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Introduction to Volume 2 — Functional
Analytic Methods

In this second volume, FUNCTIONAL ANALYTIC METHODS, we continue our
textbook PARTIAL DIFFERENTIAL EQUATIONS OF GEOMETRY AND PHYSICS.
From both areas we shall answer central questions such as curvature estimates
or eigenvalue problems, for instance. With the title of our textbook we also
want to emphasize the pure and applied aspects of partial differential equa-
tions. It turns out that the concepts of solutions are permanently extended in
the theory of partial differential equations. Here the classical methods do not
lose their significance. Besides the n-dimensional theory we equally want to
present the two-dimensional theory — so important to our geometric intuition.

We shall solve the differential equations by the continuity method, the vari-
ational method or the topological method. The continuity method may be
preferred from a geometric point of view, since the stability of the solution is
investigated there. The variational method is very attractive from the physi-
cal point of view; however, difficult regularity questions for the weak solution
appear with this method. The topological method controls the whole set of
solutions during the deformation of the problem, and does not depend on
uniqueness as does the variational method.

We would like to mention that this textbook is a translated and expanded ver-
sion of the monograph by Friedrich Sauvigny: Partielle Differentialgleichungen
der Geometrie und der Physik 2 — Funktionalanalytische Lésungsmethoden
— Unter Bericksichtigung der Vorlesungen von E.Heinz, which appeared in
Springer-Verlag in 2005.

In Chapter VII we consider — in general — nonlinear operators in Banach
spaces. With the aid of Brouwer’s degree of mapping from Chapter III we
prove Schauder’s fixed point theorem in §1 ; and we supplement Banach’s
fixed point theorem. In § 2 we define the Leray-Schauder degree for mappings
in Banach spaces by a suitable approximation, and we prove its fundamental
properties in §3 . In this section we refer to the lecture [H4] of my academic
teacher, Professor Dr. E. Heinz in Gottingen.
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Then, by transition to linear operators in Banach spaces, we prove the funda-
mental solution-theorem of F. Riesz via the Leray-Schauder degree. At the end
of this chapter we derive the Hahn-Banach continuation theorem by Zorn’s
lemma(compare [HS]).

In Chapter VIII on Linear Operators in Hilbert Spaces, we transform the
eigenvalue problems of Sturm-Liouville and of H. Weyl for differential opera-
tors into integral equations in §1 . Then we consider weakly singular integral
operators in §2 and prove a theorem of I.Schur on iterated kernels. In §3
we further develop the results from Chapter II, §6 on the Hilbert space and
present the abstract completion of pre-Hilbert-spaces. Bounded linear opera-
tors in Hilbert spaces are treated in §4: The continuation theorem, Adjoint
and Hermitian operators, Hilbert-Schmidt operators, Inverse operators, Bi-
linear forms and the theorem of Lax-Milgram are presented. In §5 we study
the transformation of Fourier-Plancherel as a unitary operator on the Hilbert
space L?(R") .

Completely continuous, respectively compact operators are studied in §6 to-
gether with weak convergence. The operators with finite square norms rep-
resent an important example. The solution-theorem of Fredholm on opera-
tor equations in Hilbert spaces is deduced from the corresponding result of
F. Riesz in Banach spaces. We particularly apply these results to weakly sin-
gular integral operators.

In §7 we prove the spectral theorem of F.Rellich on completely continuous
and Hermitian operators by variational methods. Then we address the Sturm-
Liouville eigenvalue problem in §8 and expand the relevant integral kernels
into their eigenfunctions. Following ideas of H. Weyl we treat the eigenvalue
problem for the Laplacian on domains in R™ by the integral equation method
in §9. In this chapter as well, we take a lecture of Professor Dr.E. Heinz
into consideration (compare [H3]). For the study of eigenvalue problems we
recommend the classical treatise [CH] of R. Courant and D. Hilbert, which has
also smoothed the way into modern physics.

We have been guided into functional analysis with the aid of problems concern-
ing differential operators in mathematical physics (compare [Hel] and [He2]).
The usual content of functional analysis can be taken from the Chapters II
8§ 6-8, VII and VIII. Additionally, we investigated the solvability of nonlinear
operator equations in Banach spaces. For the spectral theorem of unbounded,
selfadjoint operators we refer the reader to the literature.

In our compendium we shall directly construct classical solutions of boundary
and initial value problems for linear and nonlinear partial differential equa-
tions with the aid of functional analytic methods. By appropriate a priori esti-
mates with respect to the Hélder norm we establish the existence of solutions
in classical function spaces.

In Chapter IX, §§1-3 , we essentially follow the book of I. N. Vekua [V] and
solve the Riemann-Hilbert boundary value problem by the integral equation



Introduction to Volume 2 — Functional Analytic Methods ix

method. Using the lecture [H6] , we present Schauder’s continuity method in
§64-7 in order to solve boundary value problems for linear elliptic differential
equations with n independent variables. Therefore, we completely prove the
Schauder estimates.

In Chapter X on weak solutions of elliptic differential equations, we profit from
the Grundlehren [GT| Chapters 7 and 8 of D. Gilbarg and N.S. Trudinger.
Here, we additionally recommend the textbook [Jo] of J.Jost and the com-
pendium [E] by L. C. Evans.

We introduce Sobolev spaces in §1 and prove the embedding theorems in
§2. Having established the existence of weak solutions in §3 , we show the
boundedness of weak solutions by Moser’s iteration method in §4 . Then
we investigate Holder continuity of weak solutions in the interior and at the
boundary; see §§5-7 . Restricting ourselves to interesting classes of equations,
we can illustrate the methods of proof in a transparent way. Finally, we apply
the results to equations in divergence form; see §8, §9, and §10.

In Chapter XI, §§1-2, we concisely lay the foundations of differential geom-
etry (compare [BL]) and of the calculus of variations. Then, we discuss the
theory of characteristics for nonlinear hyperbolic differential equations in two
variables (compare [CH], [G], [H5]) in §3 and §4. In particular, we solve the
Cauchy initial value problem via Banach’s fixed point theorem. In §6 we
present H. Lewy’s ingenious proof for the analyticity theorem of S. Bernstein.
Here, we would like to refer the reader to the textbook by P.Garabedian [G]
as well.

On the basis of Chapter IV from Volume 1, Generalized Analytic Functions,
we treat Nonlinear Elliptic Systems in Chapter XII. We give a detailed survey
of the results at the beginning of this chapter.

Having presented Jéger’s maximum principle in §1 , we develop the general
theory in §§ 2-5 from the fundamental treatise of E. Heinz [H7] about nonlinear
elliptic systems. An existence theorem for nonlinear elliptic systems is situ-
ated in the center, which is gained by the Leray-Schauder degree. In §§ 6-10 we
apply the results to differential geometric problems. Here, we introduce con-
formal parameters into a nonanalytic Riemannian metric by a nonlinear con-
tinuity method. We directly establish the necessary a priori estimates which
extend to the boundary. Finally, we solve the Dirichlet problem for nonpara-
metric equations of prescibed mean curvature by the uniformization method.
For this chapter, one should also study the Grundlehren [DHKW], especially
Chapter 7, by U. Dierkes and S. Hildebrandt, where the theory of minimal sur-
faces is presented. With the aid of nonlinear elliptic systems we can also study
the Monge-Ampere differential equation, which is not quasilinear any more.
This theory has been developed by H. Lewy, E. Heinz and F. Schulz (vgl. [Sc])
in order to solve Weyl’s embedding problem.

This textbook PARTIAL DIFFERENTIAL EQUATIONS has been developed from
lectures, which I have been giving in the Brandenburgische Technische Univer-
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sitdt at Cottbus since the winter semester 1992/93. The monograph , in part,
builds upon the lectures of Professor Dr. E. Heinz, whom I was fortunate to
know as his student in Gottingen from 1971 to 1978. As an assistant in Aachen
from 1978 to 1983, I very much appreciated the elegant lecture cycles of Pro-
fessor Dr. G. Hellwig. Since my research visit to Bonn in 1989/90, Professor
Dr. S. Hildebrandt has followed my academic activities with his supportive
interest. All of them will forever have my sincere gratitude!

My thanks go also to M. Sc. Matthias Bergner for his elaboration of Chapter
IX. Dr. Frank Miiller has excellently worked out the further chapters, and
he has composed the whole TEX-manuscript. I am cordially grateful for his
great scientific help. Furthermore, I owe to Mrs. Prescott valuable suggestions
to improve the style of the language. Moreover, I would like to express my
gratitude to the referee of the English edition for his proposal, to add some
historical notices and pictures, as well as to Professor Dr. M. Frohner for his
help, to incorporate the graphics into this textbook. Finally, I thank Herrn
C. Heine and all the other members of Springer-Verlag for their collaboration
and confidence.

Last but not least, I would like to acknowledge gratefully the continuous
support of my wife, Magdalene Frewer-Sauvigny in our University Library
and at home.

Cottbus, in May 2006 Friedrich Sauvigny
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VII

Operators in Banach Spaces

We shall now present methods from the nonlinear functional analysis. In this
chapter we build upon our deliberations from Chapter 11, §§6-8. A detailed
account of the contents for this chapter is given in the 'Introduction to Volume
2’ above.

81 Fixed point theorems

Definition 1. The Banach space B is a linear normed complete (infinite-
dimensional) vector space above the field of real numbers R.

Ezample 1. Let the set 2 C R™ be open, 1 < p < 400, B := LP(f2). We have
f € LP(N) if and only if f: 2 — R is measurable and

/|f(:c)|pd:c < 400
(9]

holds true. For the element f € B we define the norm

IfIF= [ [f @) de ;-
()

We obtain the Lebesgue space with B. The case p = 2 reduces to the Hilbert
space using the inner product

(f,9) :/f(ir)g(x) dx.
2

Ezample 2. (Hilbert’s sequence space £F) For the sequence x = (21, x2, 23, . ..)
we have x € (P with 1 < p < 400 if and only if
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Z |i|P < 400
i=1
is fulfilled. By the norm
%) 1
P
el = (X lasP)
i=1

the set ¢? becomes a Banach space. Obviously, we have ¢ C LP((0, +00)).

Xy Xy

X X3 Xs

Ezample 3. (Sobolev spaces) Let the numbers k € N, 1 < p < 400 be given,
and {2 C R™ denotes an open set. The space

B=WFkr(Q) .= {f Q=R : Df € LP(Q) for all |a| < k}

with the norm

T < >/ IDaf(I)Ipdw>p, jes,

la|<k

represents a Banach space. Here, the vector a = (o, ..., a,) € NI indicates
a multi-index, and we set

|a| = Zai € Ng:=NU {0}
=1

In this context we refer the reader to Chapter X, §1.

Ezample 4. Finally, we consider the classical Banach spaces C*(82), k =
0,1,2,3,..., on a bounded domain 2 C R™. We have f € C¥(§2) if and
only if

sup 37 1D ()] < +o0

el lal<n
holds true. Here o € Njj again denotes a multi-index. The vector space B :=
C*(£2) equipped with the norm

IFllneey = Y sup |D*f(x)]

lal<k el
is complete, and consequently represents a Banach space. Here, we abbreviate

glel

D~ = o = .
fx) e . Oz (x), aeNj, Ny:=Nu{o}
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Definition 2. A subset K C B of the Banach space B is named convex, if we
have the inclusion A\x + (1 — Ny € K for each two points x,y € K and each
parameter X € [0,1].

Remarks:

1. When K is closed, this set is convex if and only if
1
rye K = 2(w+y)€K

holds true.
2. For a convex set K we have the following implication: Choosing the points
T1,...,Zn € K and the parameters \; > 0,¢=1,...,nwith \q+...+ X, =

1, we infer
n
i=1

Definition 3. A subset E C B is called precompact, if each sequence
{xn}nzl,Z,,.. CE

contains a Cauchy sequence as a subsequence. If the set E is additionally
closed, which means {x,}nen C E with x, — x for n — oo in B implies
x € E, we call the set E compact.

Ezxample 5. Let E C B be a closed and bounded subset of a finite-dimensional
subspace of B. Then the Weierstrafl selection theorem yields that E is com-
pact.

Ezxample 6. For infinite-dimensional Banach spaces, bounded and closed sub-
sets are not necessarily compact: Choosing k¥ € N we consider the set of
sequences xy := (0pj)j=1,2.... in the space £2. As usual, §x; denotes the Kro-
necker symbol. Obviously, we have ||zx|| =1 for k € N and

lzr — 2] = V2 (1 — 1) for all k,l€N.
Therefore, the set {zy}x=1,2,.. is not precompact.

Ezample 7. A bounded set in C*(£2) is compact, if we additionally require a
modulus of continuity for the k-th partial derivatives: Consider the set

Hf”ck((z) < M;
E:=1feC"Q): |D"f(x) = D*f(y)| < M'lzw —y|”
for all z,y € 2, |a| =k

with k € No, M, M’ € (0,400) and 9 € (0,1]. By the Theorem of Arzela-
Ascoli we easily deduce that the set

EcB:=C"n)

is compact.
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Definition 4. On the subset E C B in the Banach space B we have defined
the mapping F : E — B. We call F continuous, if

Tn, —x for n—oo in FE
implies
F(z,) — F(x) for m—oo in B.

We name F completely continuous (or compact as well), if additionally the set
F(E) C B is precompact; this means all sequences {xp}tn=1,2,.. C E contain
a subsequence {xn, }i C {Tn}n, such that {F(xn,)}k=1,2,.. gives a Cauchy
sequence in B.

Proposition 1. Let K be a precompact subset of the Banach space B. For all
e > 0 we have finitely many elements w1, ..., wy € K with N = N(¢) € N,
such that the covering property

N (e) .
K { B : —w;l| < }
c J{ze =y <

j=1
is fulfilled.

Proof: We choose w; € K and the covering property is already valid if
€
Kc{eeB: |o-w|< 2}

holds true. When this is not the case, there exists a further point wy € K
with [Jwy — w1 || > § and we consider the balls

{:EEB: ||:v—w]|\§;} for j=1,2.

If they do not yet cover the set K , there would exist a third point ws € K
with [[wz —w;|| > 5 for j =1,2. In case the procedure did not stop, we could
find a sequence {w;},=12... C K of points satisfying

llw; — will > for i=1,...,5—1.

This yields a contradiction to the precompactness of the set K. q.e.d.

Proposition 2. Let K be a precompact set in B, and € > 0 is arbitrarily given.
Then we have finitely many elements wy,...,wy € K with N = N(¢) € N
continuous functions

ti =ti(z) : K — R € C°(K)

satisfying
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N
ti(x) >0 and Zti(x)zl in K,

such that the following inequality holds true:

N

Z ti(x)w; —x

i=1

<e forall zeK.

Proof: We choose the points {wi,...,wnx} C K according to Proposition1.
We define the continuous function ¢(7) : [0, +00) — [0, +00) via

e—71, for0<7<e¢
o(r) = :
0, fore <7< 40

and obtain

N
ng”:z:fwjﬂ ; forall ze€ K.
j=1

Consequently, the functions
oz —wil)
N
> el —wyll)
j=1

ti(x) == , reK, i=1,....N

are well-defined, and we note that

N
t; € C°(K,[0,1]) and th(x) =1 forall z€ K.
i=1
Now, we can estimate as follows:
N N
T — Ztl(:r)wl = Zt1(517)($ —w;)
i=1 i=1
N
<Y ti@)llz — will
i=1
N
SZti(x)s =€ forall ze K.
i=1
This gives us the inequality stated. q.e.d.

Proposition 3. Let the set E C B be closed and the function F : E — B be

completely continuous. To each number € > 0 then we have N = N(e) € N

elements wi,...,wy € F(E) and N continuous functions F; : E — R, j =
., N satisfying
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N
Fi(z) >0 and Y Fj(x)=1, =z€kE,
j=1
such that the following inequality is valid:

<e forall xzeFE.

|7 - i_VjF (o)

Proof: The set K := F(E) C B is precompact and we apply Proposition 2.
Then we have the elements

Wiy ..., WN EF(E)
and the nonnegative continuous functions
t;, = ti(:v),;v eK

satisfying t1(z) + ... +ty(2) = 1 in K for each £ > 0, such that

N
x— Z t; (z)w;
i=1

Setting F;(z) := t;(F(z)), x € E, we comprehend the statement above.
q.e.d.

<e forall ze€ K.

We now consider the unit simplex

n

Y11= {xER” cx; >0 for i=1,...,n, lel}

=1

and its projection onto the plane R*~! x {0} C R"

n—1
Op_q = {xeR"_l cx; >0 for i=1,....,n—1, ingl}.
i=1

n=3
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We note that

n—1

Enl—{(xl,...,xn)GR" : xnzl—in with (xl,...,xnl)Eanl}.

=1

Proposition 4. (Brouwer’s fixed point theorem for the unit simplex)
Each continuous mapping f : X1 — X1 possesses a fized point.

Proof:

1. The function f = (f1,..., fn) : Zn—1 — Xn_1 being given, we define the
mapping g(z) = (91(),...,gn-1(2)) : 0p—1 — on—1 by

n—1
9i(x) = gi(x1, ..., Tp—1) = fi (561, R T Zfﬂg)

Jj=1

with ¢ = 1,...,n . Now the point = (n1,...,Mn—1) € on_1 is a fixed
point of the mapping g : 0,,_1 — 0,1 if and only if the point

n—1

(771;~-~77]n1;1 - Zm) € X

i=1

is a fixed point of the mapping f: X, 1 — X, _1.
2. We consider the following mapping defined in 1., namely

g = (gla e 7971—1) cO0p—1 —7 Op—1-

The adjoint functions

hi = hi(x1,...,2p1) := \/gi(x%,...,xifl), i=1,....,n—1

are defined on the ball

K = {(Ila"'vxnfl) GRn_l : x%++x72171 < 1}

According to Brouwer’s fixed point theorem for the ball (compare Theo-
rem 2 from Chapter ITI, § 3) the continuous mapping h = (h1,...,hp_1) :
K — K has a fixed point £ = (£1,...,&,—1) € K, more precisely h(§) = &.
This implies

gi(&f,... & ) =¢ for i=1,...,n—1.
With the point 1 := (£2,...,£2_,) € 0,1 we finally obtain a fixed point

of the mapping ¢ : 0,1 — o1 satisfying g(n) = . qed
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Theorem 1. (Schauder’s fixed point theorem)

Let A C B be a closed and convex subset of the Banach space B. Then each
completely continuous mapping F : A — A possesses a fixed point & € A,
more precisely F(§) = ¢&.

Proof:

1. We apply Proposition 3 to the completely continuous mapping F' : For each
e > 0 there exist N = N(g) € N elements {wy,...,wy} C F(A) C A and
N nonnegative continuous functions F; : A — R, j = 1,..., N satisfying
Fi(x)+ ...+ Fn(z) =1 in A, such that

N(e)

7o) - > B

<e for all = € A.

‘We now consider the continuous function
gA) = (g1( A1, AN)s oo 9N (A AN)) s XN — Y
with

N
gj(>\17-~-7)\N):Fj(Z)\iwi)7 _]:1,,]\7
i=1

Due to Proposition4, we have a point A € X' y_1 satisfying g(\) = A. This

implies N
FJ<Z>\ZU)1>—)\J for _]:1,,N
i=1

2. According to 1. the mapping

N(e)

F(e) = Y By,

possesses the fixed point

N
55 = Z )\sz
i=1

We note that ||F(z) — F.(z)|] < € for all z € A holds true and obtain
|F(&) — & || < e. Taking the zero sequence e = |, n = 1,2,... as our
parameter €, we obtain a sequence of points {&, }n=12,... satisfying

yeen

1
IFE) —&all < n=12...

Since F'(A) is precompact, we can select a subsequence such that F'(§,, ) —
&(k — 00). We obtain £ € A because the set A is closed. Therefore, we
deduce
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1€ = &nill < [1F(Eni) = &nill + 1€ = F(&n )| =0 for &k — oo

Together with the continuity of F' finally follows

We now provide an application of Theorem 1, namely

Theorem 2. (Leray’s eigenvalue problem)
Let K(s,t) : [a,b] X [a,b] — (0,400) be a continuous and positive integral-
kernel. Then the integral equation

/K(s,t):v(t) dt = Axz(s), a<s<b,

possesses at least one positive eigenvalue A with the adjoint nonnegative con-
tinuous eigenfunction x(s) Z 0.

Proof: We choose the Banach space B := C°([a, b]) with the norm
ol i= max [2(5)].

Then we consider the convex subset

b

A= {:17 = x(s) € C°%([a, b)) : x(s) >0 in [a,b], /x(s)ds = 1},

a

which is closed in B. Furthermore, we study the mapping F': A — A defined

by
/Kst

F(x):= z €A

(freoone

With the aid of the Arzela-Ascoli theorem one shows that the mapping F :
A — A is completely continuous. According to Schauder’s fixed point theorem
there exists a point £ € A with F(§) = £. Consequently, we see

/Kst /(/Kst )ds] e, sclml

Therefore, £ is the desired eigenfunction for the eigenvalue
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)\::/b</bK(s,t)§(t) dt)ds € (0,+00).

In Brouwer’s as well as Schauder’s fixed point theorem only the existence of
a fixed point is established, which is in general not uniquely determined. The
subsequent fixed point theorem of S.Banach supplies both the existence and
uniqueness of the fixed point. Furthermore, we shall show the continuous de-
pendence of the fixed point from the parameter. The Picard iteration scheme
proving the existence of initial value problems with ordinary differential equa-
tions already contains the essence of the Banach fixed point theorem in the
classical spaces.

q.e.d.

Definition 5. The family of operators T : B — B, 0 < A\ < 1, is called
contracting, if we have a constant 6 € [0,1) satisfying

IT3(@) = Ta@) < Ole =yl forall z,yeB und e [0,1].

For each fized x € B let the curve {Tx(x)}o<r<1 in B be continuous. If T :=
Ty\:B— B for 0 < X\ <1 is constant, we call the operator T contracting.

Theorem 3. (Banach’s fixed point theorem)
Let the family of operators

T\:B—B, 0<A<1

be contracting on the Banach space B. Then we have exactly one point x) €
B satisfying Ta(xzx) = xx for each A € [0,1], namely a fixed point of T).
Furthermore, the curve

0,1]5X—z\€B

18 continuous.
Proof:
1. We define yy := T5(0), 0 < A < 1, and set

0= max [[yx] € (0, +00).

On the ball B, := {z € B : ||z|| < r} of radius r := | ?, € (0,+00) in the
Banach space B we consider the family of mappings

T)\:BT‘_)BT7 OS)\Sl
Taking x € B, we have
[T (@)[] < | Ta(z) — TA(0)[| + | Tx(0)]]

< Ollz]| + [yl < O0r+ 0
0

<
_91—9

+o0 = .
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2. Forn=0,1,2,... we consider the iterated points

(")
=T Ty o...oT)\(0).
A() A A()

n—times

Evidently, we have :1:&0) =0 and xf\l) =y, for 0 < A < 1. Furthermore, we

observe
n+1 n+1 0 k+1 k
D a2 3 (o) ) = 3 (2f0) - THO)).
k=0 k=0

Now, we can estimate
|ITXHH0) = TX(0)]| < BITX(0) — T3~ (0)]
<. < 08T (0) = TR(0)]
=0%yall, O0<A<1, k=0,1,2,...

Therefore, the series
Z (Tk‘+1 T)]\C(o))

o0
possesses the convergent majorizing function Z 6%y, and the following

. . . k:0
limit exists:

z) = lim :17&"+1) = Z (T)(\]Hl)(()) - Tf\k)(o)) € B;.

n—oo
k=0
3. The contracting operator T : B — B is continuous. Consequently, we see

wx = Tim 2" = lim T (of”) = 7 lim 2{”) = T (@)

for 0 < A < 1. The fixed points x depend continuously on the parameters
A € [0,1]: We choose the parameters Ay, A2 € [a, b] and infer
H‘T/\l - ‘T)\zH = HT/\l (‘TM) - T>\2 (‘T/\z)”
< HT>\1 (xkl) - T)\l (xkz)” + ”T)\l (I)\2) - T>\2 (xkz)H
< 9”‘T>\1 - ‘T/\2|| + HT/\l (wk2> - T)\z(w/\2>||

as well as

Hx>\1 x>\2H < HT>\1(x>\2) 7T)\2(x>\2)”'

1-
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4. Finally, we show the uniqueness of the fixed point. Therefore, we consider
two elements x), Z) € B satisfying
xx = Th(xy), Zx = Th(Zy).
Then the contraction inequality implies
[zx = Zall = 1Ta(@r) = Ta(@X)] < Ollzx — A
and ||zy — Za|| =0 or x\ = &, for A € [0,1]. q.e.d.
Remark: If the family of operators T depends even differentiably on the

parameter A € [0, 1], we can additionally deduce the differentiable dependence
of the fixed point from the parameter as in part 3 of the proof above.

82 The Leray-Schauder degree of mapping

In the sequel we denote mappings between Banach spaces B by
f:B—=B, xw— f(x).

Let B be a finite-dimensional Banach space with 1 < dimB = n < 4oo.
Furthermore, we have the bounded open set {2 C B and g : {2 — B denotes
a continuous mapping with the property 0 ¢ ¢g(942). At first, we shall define
the degree of mapping d5(g, £2).

Let {w1,...,wy,} C B constitute a basis of the linear space B. Consider the
coordinate mapping

Y = Y., (T) = 2101 + ...+ Tpwy, x=(x1,...,2,) € R™

Evidently, ¢ : R® — B holds true and the inverse mapping ¢! : B — R"
exists. We pull back the mapping g : {2 — B onto the space R™. Therefore,
we set

2, := 1/)_1(9), a~Qn = 1/}_1(89), 2, = 1/)_1('0)
and consider the mapping

gn =1 togoy |Qn with 0 ¢ g,,(02).

Parallel to ChapterIII, §2 we can attribute the degree of mapping d(gp, 2,)
to the continuous mapping g, : 2, — R™.

Definition 1. Let the finite-dimensional Banach space B be given with n =
dim B € N, and {2 C B denotes a bounded open set. Furthermore, the contin-
uous mapping g : 2 — B with 0 ¢ g(9S2) is prescribed. Then we define the
degree of mapping

05(g, 2) := d(gn, 2n).
Here, we have set g, := ¢ togo |, with £, := v Y$2), and ¢ : R™ — B
denotes an arbitrary coordinate mapping.
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We still have to show the independence of the definition above from the basis
chosen: Let {wj,...,w}} be a further basis of B with the coordinate mapping

() = o (@0 T) = T30 o+ T 5 RT B

and its inverse ¥*~! : B — R™. On 27 := ¢*~1(£2) we define the mapping
gn=v " ogoy g, 0 gn(092).

Definition 1 makes sense on account of

Proposition 1. We have d(g}, 2) = d(gn, ).

Proof: The mapping
x:=9v toy* :R" - R"

is linear and nonsingular, and we note that ¢* = 1 oy. Furthermore, x(§2}) =
§2,, holds true and we calculate

gn=v""togoy* = (Yox)togo(¥ox)
=xto(® logoy)ox = xltogaox on .
Now, we have a sequence of mappings
gny : R" = R" € C*(R",R")
with the following properties (compare Chapter III, §4):

(a) The convergence gy, (z) — gn(x) for v — oo is uniformly on §2,,.
(b) For all numbers v > v, the equation

Gn(z) =0, T € 2,

.....

Jgn,u(xl(lu)) #O fOI‘ ,LL: 1,...,py.

1

The mapping gy, , := X~ © gn,» © x then satisfies

Gn() = gn(T) for v — oo uniformly on .Q;;.

The zeroes g, ,(y) =0,y € (ZZ are evidently given by X’l(gc,(,”)) =: y,(j‘) for
w=1,...,p,, and we evaluate

Iy, (W) = (detx™1) - Jg, , (@) - det x = Jy, , (@), p=1,....p,.

n,v

With the aid of Theorem 3 from ChapterIII, § 4 we deduce the following iden-
tity for all v > vy:
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Pv
d(gn,ua Qn) = Z Sgn J n,v (‘Tl(lu))
pn=1

Pv
= sendg  (y1)
p=1

= d(gn,., 12,)-
Passing to the limit v — oo, we have proved the statement above. q.e.d.

Via the pull-back onto the space R" we immediately obtain the subsequent
Propositions 2-5 from the corresponding results in Chapter ITI.

Proposition 2. Let gy : 2 — B with a < XA < b denote a family of continuous
mappings, which satisfy the relation gx(x) — gx,(x) for X — Ao uniformly on
the set (2. Furthermore, gx(z) # 0 for all x € 002 and X\ € [a,b] holds true.
Then we conclude

05(gx, £2) = const on la,bl.

Proposition 3. Let the mapping g : 2 — B be continuous and g(x) # 0 for
all x € 02. Furthermore, dg(g, 2) # 0 is valid. Then we have a point z € (2
with g(z) = 0.

Proposition 4. Let {21 and 2 be bounded open disjoint subsets of B, and
we define §2 := (1 U (25. Furthermore, g : {2 — B denotes a continuous
mapping satisfying 0 ¢ g(0£2;) fori = 1,2. Then we have the following identity

08(g,12) = 05(g, 1) + 05(g, (22).

Proposition 5. On the open bounded subset {2 C B we have defined the con-
tinuous function g : {2 — B. Furthermore, let £29 C {2 be an open set with the
property g(x) £ 0 for all x € 2\ 29. Then we have

65(95 “Q) = 53(97 'QO)

In the Banach space B we have an open bounded subset {2 C B. Furthermore,
B’ denotes a finite-dimensional subspace of B satisfying 25 := 2 N B’ # .
The set 25/ is open and bounded in B, and we have

g CcoNnp, N CcNNB.
With the continuous mapping f : 2 — B’ we associate the mapping
of(x) =z — f(z), x € (.
For all Banach spaces B” D B’ we have the inclusion

or(2NB")C B
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Proposition 6. Let the Banach spaces B' C B” C B be given with
0<dimB <dimB"’ < +o0.

The open bounded set 2 C B fulfills Q5 = 20 B # 0. With the continuous
mapping f : 2 — B’ we associate pf(x) == x — f(x), x € 2 satisfying

wr(x) #0 for all x € 012
Then we have the equality
op (py, 28') = o (05, 287).

Proof: On account of 025 C 0f2 and 0f2p» C OS2 the degrees of mapping
above are well-defined. Without loss of generality we can assume

dimB” > dim B'.
We choose a basis {wy, ..., w,} C B’ of B’ and extend the vectors to a basis
{W1, ooy Wy Wit 1y« + oy Whpp} C B”

of B”; with an integer p € N. When we represent the mapping ¢ : B” — B” in
the coordinates belonging to the basis {w1, ..., wn4p}, we obtain the mapping
©" =y |pr: B — B via

(:171—fl(xl,...,xn,xn+1,...,xn+p),...
($17-~-»17m17n+17-~-7$n+p)'—’ Tp = fulZ1, - Ty T 1y o Trgp),s
In+1a"'7xn+p)'

The restricted mapping ¢’ := ¢y |g: B’ — B’ appears with respect to the
coordinates x1, ..., T, as follows:

(X1, yxn) — (@1 — fi(z1, . 0, 20,0,...,0), ooy — fu(21, .., 20, 0,...,0)).

Now, the function ¢ has a zero 7"/ = (:%1, 2,0, ,0) if and only if ¢’

has a zero @’ = (Z1, ..., &,), and we see Jor (") = Jor(2') and consequently
sgn J,r (2'") = sgn J (2').
Summing up all zeroes, we finally obtain
g (pf, S287) = 6B (05, (28). qee.d.

Definition 2. Let 2 be a bounded open set in B and B’ denotes a linear
subspace of B with 1 < dim B’ < +oo and Qs := 2 N B # 0. Furthermore,
let the function f : 2 — B’ be continuous, and we assume

or(r) =a— f(x) #0 for all x € 012.

Then we define
53(90f5 “Q) = 65’ (‘va QB’)'



16 VII Operators in Banach Spaces

We have to establish independence from the choice of the finite-dimensional
subspace B’ now. Let B” Cc B with 1 < dimB"” < 400 and 2N B"” # 0 be
an additional subspace of B. We set B* := B’ @ B”, such that B’ ¢ B* and
B C B* holds true. Then Proposition 6 yields

o (¢, 287) = 0B+ (pg, 28+) = 0B (0, 7).
We shall now present the transition to completely continuous mappings f :
B — B.

Proposition 7. Let the set A C B be closed and the function f : A — B be
completely continuous satisfying

or(x)=x—f(x)#£0  forall z€ A.

Then we have a number € > 0, such that ||¢s(x)|| > € for all x € A holds
true.

Proof: If the statement were violated, we would have a sequence {zp }n=12,.. C
A satisfying
of(xn) =z, — f(zn) =0 for n — oo.

Since the set f(A) is precompact, there exists a subsequence {zn, }r=12,. ..
with f(zn,) — o* € B for kK — oco. This implies

@0, = 2% < l2n,, = f@n )l + 1f (@n,) — 27| =0
and x,, — z* € A for k — oo, because A is closed. Finally, we obtain
pr(a*) ="~ f(&*) = Jim (zn, — f(zn,)) =0
contradicting the assumption ¢¢ # 0 in A. q.e.d.
Proposition 3 from §1 implies the following

Proposition 8. Let {2 C B be a bounded open set and f : 2 — B a completely
continuous function. To each number € > 0 we then have a linear subspace
Be with 0 < dim B; < +o00 and 2 N B # 0 as well as a continuous mapping
fe : 2 — B, with the property

|fe(x) — f(@)]| <e  forall z€ .
Proof: With the functions Fj;(z), x € 2, j =1,...,N - defined in § 1, Propo-

sition 3 - and the elements wy, ..., wy € B we choose

fe(x) = Z Fj(z)w;.

j=1
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Definition 3. Let the set 2 C B be bounded and open. The function f :
2 — B may be completely continuous and its associate function ¢r(x) =
x — f(x) satisfies 0 & p(992). Then the function g : 2 — B, C B is called an
admissible approximation of f, if the following conditions are fulfilled:

(a) The function g is continuous.
(b) The linear subspace By satisfies 1 < dim By < +o00 and 2N By # 0.
(¢) We have the following inequality

:lelg llg(z) — f(2)| < nf llor ()l

Proposition 9. The mapping f : 2 — B fulfills the assumptions of Defini-
tion 3, and g : 2 — By as well as h : 2 — By, are two admissible approzima-
tions of f. Then we have

65(@95 “Q) = 5B(S0ha “Q)
Proof: We set B* := By @ Bp. This implies

08(pg, 12) := 08, (g, 28,) = 0+ (¢g, 25-),
and furthermore
05(on, 2) = 0B (¢n, 25-).
We now consider the family of mappings

xa(z) =2 — (Ag(x) + (1 — Nh(z)), x €2, Ae|0,1].

Setting 7 := xie%fﬁ llof(x)]] > 0 we can estimate as follows:

Ixa(@) = op(@)]] = [IMg(@) = f(2)) + (1 = A)(h(z) = f(2))]
< AMlg(@) = f(@)] + 1 = N[[h(z) = f(z)]
<n for all x € 912.

Consequently, ||xa(z)|| > 0 for all z € 92 and all A € [0,1] holds true, and
Proposition 2 yields s« (X, £28+) = const on [0, 1]. We then obtain

58(g, £2) = 0B+ (x1, 28+ ) = 0B+ (X0, £28+) = OB (¢n, £2). qed.

Definition 4. The set £2 C B is bounded and open, and we assume the func-
tion f : 2 — B to be completely continuous such that ¢(z) = x — f(z) # 0
for all x € 082 holds true. Furthermore, let g : 2 — By be an admissible
approzimation of f. Then we call

66(@]‘7 ‘Q) = 53(9097 ‘Q)

the Leray-Schauder degree of mapping for (¢, 2) with respect to x = 0.
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83 Fundamental properties for the degree of mapping

At first, we collect our previous results: Let 2 C B denote a bounded open
set and f : {2 — B a completely continuous function, such that

pr(x) =z — f(xr) #0 for all =z € 0f2.

Then we have defined our degree of mapping for ¢ by the following chain of
equations:

6B(¢f7 ‘Q) = 53(9097 ‘Q) = 655 (@ga “Q N B!]) = d(wnv 'Qn)

Here g denotes an admissible approximation, n = dim B, {2, is the image
of 2N B, with respect to an arbitrary coordinate mapping 1~!, and ¢, =

Y~to Pg © 1/)|Qn'

Theorem 1. (Homotopy)
Let 2 C B be a bounded open set, and let

fa: 82— B,A€ [a,b]

denote a family of mappings with the following properties:

(a) For all X € [a,b] the mapping fx : 2 — B is completely continuous.
(b) To each number € > 0 we have a quantity 6 = d(¢) > 0, such that

£, (@) = fao (@) <& forall A, Ag € a,b] with |[A\ —Ag| <0

holds true for all x € 2.
(c) For all x € 012 and all \ € [a,b] we have ¢y, (x) = x — fa(z) # 0.

Then we have the identity 05(py, , £2) = const, X € [a,b].

Proof: Let Ao € [a,b] be chosen arbitrarily. Then we have a number € > 0
satisfying ||, (7)|| > € for all z € 0£2. We construct an admissible approxi-

mation g : 2 — By C B of fy,, such that
lg(@) = frp (@) < forall we .

Therefore, we have a number § = §(g) with the following property: All A €
[a, b] with |\ — Ag| < 0 fulfill

lg(@) = (@)l < llg(@) = fro (@) + [[fa0 (2) = A(@)] < ; SRS

On the other hand we have

3e
lesn @l 2 lles @I = llen (@) —¢p, @I 2. 2€df
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for |A — Ag| < 4. Consequently, g is an admissible approximation for all A €
[a,b] with |A — Xg| < §, and we see

08(py,, £2) = 05(g, £2) forall A: |A—X| <4

A continuation argument finally yields dg(yy, , £2) = const on [a, b].
q.e.d.

Theorem 2. (Existence result)
Let the set £2 C B be bounded and open. The mapping f : {2 — B may be
completely continuous and satisfies

pf(r) =2~ f(xr) #0 for all x € 01.

Finally, let the assumption 6g(eyr,$2) # 0 hold true. Then the equation
wf(x) = 0 possesses a solution x € {2, which means the mapping x — f(z)
has a fized point in the set §2.

Proof: We consider a sequence of admissible approximations g, : {2 — B, for
f satisfying
1
sup ||gn(z) — f(2) < .
e n

We then obtain

0 # o(ps, 12) = 08, (¢g,, 2N By, ), n > ng.

According to Proposition3 from §2 we have a sequence x, € 2N B,,, n =
ng,no + 1, ... with
0= Sogn (‘Tn) =Tn — g’n(xn>-

This implies

en = f@a)ll = 120 = gn(zn)l| + llgn(zn) = flza)] < Tll n > no,

and therefore
inf [lof(2)[| = inf [z — f(z)]| = 0.
€2 x€N

Due to §2, Proposition7 there exists a point xy € 2 with ¢¢(z9) = xo —
f(zo) = 0. q.ed.

Definition 1. Let {2 C B denote a bounded open set and f : {2 — B a com-
pletely continuous mapping with the associate mapping vs(x) =z — f(x),x €
2. Furthermore, let the domain G C B\ ¢(992) be given. Then we define

63(@)"7 ‘Qa Z) = 53(90f5 QvG) = 63(90]6*27 ‘Q)

for arbitrary points z € G.
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When we consider the family of mappings f:(z) = f(x) — z(¢) with the con-
tinuous curve z(t) : [0,1] — G, Theorem 1 reveals the independence from the
choice of the point z € G. Now we could derive a product theorem as in the
space R", which we do not elaborate here. However, we shall generalize the
index-sum formula (compare Theorem 1 from ChapterIIl, §4) to completely
continuous mappings between Banach spaces.

Proposition 1. Let 2 C B be a bounded open set, and the mapping f : 2 — B
is completely continuous. Furthermore, let 29 C {2 denote an open subset
satisfying pr(x) # 0 for all x € 2\ £2y. Then we have

8(r, 82) = 0(ps, £20).
Proof: We observe 002 C 2\ {2y and 9§29 C 2\ {29, which implies
wr(x) #0 for all z € 002U 1.
Proposition 7 from § 2 yields
lofp(z)]| >e>0  forall ze 2\,

because 2\ 2 is closed. Take with g : 2 — B, C B an admissible approx-
imation satisfying £20 N By, # 0 and ||g(z) — f(z)|| < § for all 2 € £2. This
implies

9
leg@)Il 2 llos (@) = lles(z) —pg(@)ll 2, forall =€ 2\ (.

Together with Proposition5 from § 2 we obtain

66(@]‘7 ‘Q) = 655 (@ga n Bg) = 539 (@ga QO N Bg) = 65(@]"7 'QO)
q.e.d.

Proposition 2. Let the sets (21,22 C B be bounded open and disjoint. Fur-
thermore, we define {2 := () U {25. Then we have

0B(@y, 12) = 05(pyr, $21) + 05(pf, (22).

Proof: Take with g : 2 — B, C B an admissible approximation of f satisfying
;N By # 0 for i = 1,2. Then g|, are admissible approximations of f|, ,
and Proposition4 from § 2 yields

68(@f’ Q) = 639 (Qﬂg, Q m B(])
=68, (¢g, 1 N By) + 08, (pg, 22 N By)
= 0B(pf, $1) + 05(py, 22).
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Definition 2. Let U = U(z) C B denote an open neighborhood of the point z
and f : U(z) — B a completely continuous mapping. The associate mapping

may fulfill
pr(x) #0 in U(z)\{z} and wf(z) =0.
Then we define the index
i(pf, z) == dp(ps, K) with K :={xe€B:|x—z|| <e} cCU(z).

Theorem 3. (Index-sum formula)
Let the mapping f : 2 — B be completely continuous. Furthermore, the equa-

tion py(x) = 0 admits exactly p different solutions z1,...,z, € 2. Then we
have the identity
P
‘Pfa Z 1 gofv ZI/
v=1

Proof: Taking € > 0 sufficiently small, we consider the mutually disjoint balls

K, ={ze€:|z—=z]| <e}, v=1,...,p

P
We apply Proposition 1 and Proposition2 to {2y := U K, C {2 as follows:

v=1
P p
08(py, 2) = 805, 20) = Y 8(es Ko) = Y ilps, 2)-
v=1 v=1 q.e.d.

We collect our arguments to the following

Theorem 4. (Leray, Schauder)
Let 2 C B be a bounded open set in the Banach space B, and

M2 —-B,a<A<b
denotes a family of mappings with the following properties:

(a) For all X € [a,b] the functions fx : 2 — B are completely continuous.
(b) To each number ¢ > 0 we have a quantity 6 = 6(g) > 0, such that

[/ () = fa (@) <& forall A,As €[ab] with |A —Xa| <6

holds true for all x € (2.
(c) For all x € 9012 and all \ € [a,b] we have ¢y, (x) = x — fa(z) # 0.
(d) With a special \g € [a,b] the equation

P (T) =2 — fap(x) =0, z€N

has finitely many solutions z1, ..., 2y, p € N satisfying

Z W Pfryr 2 # 0.
v=1
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Then the equation @y, () =0, x € {2, possesses at least one solution for each
A € [a,b].

Remark: In Chapter XII we shall prove the existence of solutions for nonlinear
elliptic systems with the aid of Theorem 4.

84 Linear operators in Banach spaces

Let us consider two Banach spaces {8B;,]| ||;} for j = 1,2. Then we can define
open sets in B;, j = 1,2 with the aid of the respective norm || ||,. In the sequel
we study linear continuous operators

T:B1 — Bs.
We call the operator T linear if
T(ax + By) = oT () + BT (y) forall z,ye B andall «,f€R (1)

is valid. The operator T is continuous if and only if T" is bounded, or equiva-
lently

Tx
7| := sup Il (2)
T
z#0

At first, we note the following

Theorem 1. (Open mapping principle)
The linear continuous operator T : By — Bsy is assumed surjective. Then T is
an open mapping, which means the image of each open set is open.

Proof: This is achieved by methods from set-theoretical topology. We refer the
reader to [HS], pp. 39-41 (Satz9.1) and pp.21-22 (Lemma4.1 and Satz4.3).

Theorem 1 immediately implies

Theorem 2. (Inverse operator)
Let the linear continuous operator T : By — By be bijective. Then the inverse
operator T~ : By — By is continuous.

We endow the set B = B; x By with the norm

I o)l == \/l2ll3 + 93, (@.y) € B= By x By

and obtain a Banach space. Therefore, open sets are defined in 5. We now
define the graph of T': By — By by

graph (T') := {(w,T:B) eBxBy: z€ Bl}. (3)
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Theorem 3. (Closed graph)
For a linear operator T : By — B we have the equivalence: The operator T is
continuous if and only if graph(T) in By x Bsy is closed.

Proof:

‘=’ We consider a sequence {zp }n=12,.. C Bi with z,, — = € B; for n — oo.
Since the operator T is continuous, we infer

lim Tz, =T(lim z,) =Tz

n—oo n—oo

and consequently

lim (z,,Tz,) = (z,Tx) € graph (T).
Therefore, the graph (T) is closed.
‘<" Let the graph (T") C By x By now be closed. Then this graph represents
a Banach space. The projection

m:graph(T) — By, (z,Tx)— 2

is bijective, linear and continuous. Theorem 2 implies that the mapping
71 : By — graph (T) is continuous as well. The projection

0:B1xBy— By, (2,9)—y
is evidently continuous, and we finally obtain the continuity of

T=opon ':B — Bs. qed.
We now choose By = By = B and consider linear continuous operators T :
B — B. These are injective if and only if ker 7" := T~1(0) consists only of {0}.
With the aid of the Leray-Schauder degree of mapping we now shall prove a
criterion for the surjectivity of T'. In the sequel we denote the open balls in B
by

BTZZ{TL'EBZH,TH<T}, 0<7r < 4o0.
Their boundaries are described by 0B, = {z € B : ||z| =r}.

Definition 1. The linear operator K : B — B is called compact or alterna-
tively completely continuous, if the condition that K(0B,.) is precompact holds
true for a number r € (0,+00).

Remarks:

1. This definition is independent of the number r € (0, +00).
2. A compact operator is bounded and consequently continuous. Therefore,
this definition for linear operators is equivalent to the Definition4 from

§1.
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Definition 2. With the completely continuous operator K : B — B we asso-
ciate the Fredholm operator

Te =2 — Ko = (Idg — K)(z), x € B. (4)

Fundamentally important for the solution of linear operator equations in Ba-
nach spaces is the subsequent

Theorem 4. (F. Riesz)
Let K : B — B be a completely continuous operator on the Banach space B
with the associate Fredholm operator

Tx:=(Idg — K)(x) =2 — Kz, xz€B.
Furthermore, the implication
Tr=0, x€B = z=0

holds true, which means the kernel of T consists only of the zero element.
Then the mapping T : B — B is bijective; the inverse operator T~' : B — B
for T exists and is bounded on B. Especially, the operator equation

Tr =y, x € B,
possesses exactly one solution for all right-hand sides y € B.

Proof: Choosing r € (0,400) arbitrarily, we study the operator Tz = . — Kz,
x € B,.. According to the assumptions above, we have

Tx #0 for all x € 0B,.
Proposition 7 from §2 gives us a number € > 0, such that
|Tz|| > er for all z € 9B, (5)
is correct. We prescribe y € B and consider the family of operators
Tha :=Tx — Ay, reB, 0<A<1. (6)
Choosing r sufficiently large, we obtain
[Txz|| 2 | Tx|| = [|Ayl| = er — Iyl > 0

for all x € 9B, and all A € [0,1]. At the initial value A = 0 the equation
Thx =0, x € B, admits exactly one solution, namely the element x = 0 with
the index (7, 0) # 0. According to the Leray-Schauder theorem, our equation
Thx = 0, x € B, possesses at least one solution for each A € [0,1]. For the
value \ = 1 especially, we find a solution z € B, satisfying
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Tr=y.

Since the point y has been chosen arbitrarily, the mapping T : B — B is
surjective. The injectivity of 7" immediately follows from ker 7' = {0}. Finally,
the inequality

|Tz|| > e||=| forall ze€B

implies the boundedness of the operator 7!, namely

1
1Tyl < "Nyl forall yeB.
€ q.e.d.

We call the linear operator F' : B — R a linear functional on the Banach space
B. Concluding this chapter we prove the well-known

Theorem 5. (Extension theorem of Hahn-Banach)
Let L be a subspace of the Banach space B, and f : L — R denotes a linear
continuous mapping with

|/ ()]

I£1l':= sup AN

Then we have a continuous linear functional F : B — R satisfying F(x) =

f(x) for all x € L and | F|| = ||f]

Definition 3. Let £L C B denote a subspace of the Banach space B. We call
the function p = p(x) : L — R superlinear (on L) if

p(Az) = A\p(z) forall ze€L andall Xe€[0,+00) (7)

and
p(x+y) <p@)+ply)  foral z,yeLl (8)

holds true.

Proposition 1. With the assumptions of Theorem 5 the function
pla) = it {|fll e~ vl + f@)|. @B, (9)

is superlinear in B, and we have
p(@) <|Iflll=ll, z€B;  plx)<flx), zeLl (10)

Proof: At first, we note that
pla) = inf {||flle—ll + F) |
inf { ) + 71l = 171 1ol }

=1zl > =00, z€B.

Y

Y
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We now deduce (7): For A = 0, we have
p(O2) = inf {[|flllyll + (&)} =0=0p() forall zcB.

For X € (0,400), we calculate

p() = int {171 Az~ yll + /) |

int {112 = Ml + 7Ow)}
=A££Hﬂww—w+fwﬁ

= A\p(x) for all z € B.

We now deduce (8): Let the elements x,z € B be chosen arbitrarily. The
number € > 0 given , there exist elements y1,y2 € L satisfying

p@) > [If |z =yl + flya) — e,
p(2) > [Iflllz = yall + f(y2) — €.

Therefore, we can estimate as follows

pla+2) = inf {|If]| =+ 2~ yll + F) |

< If e+ 2 = (i + )]l + Flon +32)

< 10w =gl + 1z = wall } + £ 1 + v2)

= {110z = wall + £ } + {1711z = wall + S (92) }
p(z) + p(z) + 2¢.

The transition to the limit € — 0 yields the superlinearity of p(x). We addi-
tionally show (10): We especially choose y = 0 in the definition of p(z) and
obtain

p(x) = inf {Hfl\ ==yl + f(y )} < Il + £O) = £ l«ll, =z €B.
Correspondingly, the choice y = x € £ implies the inequality
pl@) = il {|flllle =l + f@)} < f2).  wel

This completes the proof. q.e.d.

We now consider the set of functions, which are superlinear in £, namely
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F:=8L):= {p : L — R : pis superlinear in E}.
With respect to the relation
p,p€S(L): p<p & plz)<plx) forall ze€Ll (11)
this set is partially ordered in the following sense:
p<p; p<p, P<p = p<pH  p<ph p<p = p=p (12)

A subset £ C F is called totally ordered, if each two elements p, p € £ satisfy
at least one of the alternatives p < p or p < p. The element p, € F is called
a lower bound of & if

pe <p forall peé& (13)

is correct.

Proposition 2. Fach totally ordered subset £ C S(L) possesses a lower bound

Proof: Let £ = {p; }ier C S(L) be a totally ordered subset. We choose
pu(z) =infpi(z), wzel

as a lower bound and show that p, is a superlinear function. Here it suffices to
prove the inequality (8). Let =,y € L be chosen arbitrarily. For each number
€ > 0 we then find an index j € I such that

p+(7) = pj(x) —e.
Similarly we find an index k € I satisfying

P« (y) > pr(y) —e.

Since we have alternatively the inequalities p; > py or pr, > p; in £, both are
even valid with the same index - say j € I. Therefore, we obtain

pu(z +y) = nfpi(z +y) < p;(z +y)
< pj(x) +pi(y) < pel@) + puly) + 22
The transition to the limit € — 0 yields the statement above. q.e.d.

Definition 4. In a partially ordered set F we call p € F a minimal element
of F if the implication

peF with p<p = p=p (14)

is correct. Therefore, we don’t have strictly smaller elements for p.
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Proposition 3. p € S(L£) is a minimal element of S(L) if and only if p : L —
R is linear.

Proof:

‘<’ Let p(z) : L — R be linear. Furthermore, we choose p(z) € S(L) with
p < p, which implies p(z) < p(x) for all z € L. We then infer p = p
immediately. If there existed a point y € £ with p(y) < p(y), we could
deduce

0=p(y—y) <py) +6(—y) <py) +p(-y) =py —y) =0.
‘=" The point a € L being fixed, we consider the function

palT) == Izlg{ (x +ta) — tp(a)}, xeL. (15)
We easily see p,(z) < p(z), € L. Furthermore, we calculate

Pa(A&) = inf {p(m +ta) — tp(a)}

>0

= inf {p()\:c + Ma) — )\tp(a)}

>0
= )\21211(") {p(:c + ta) — tp(a)}
= Apa(2), reLl

for A > 0. In the case A = 0 this identity is trivially fulfilled.

We now show that p,(x) also is subject to the inequality (8): Let the
points =,y € L be chosen. As in the proof of Propositionl we select
values t1 > 0 and ty > 0, where the infima p,(z) and p,(y), respectively,
can be approximated up to the quantity € > 0. This implies

pa(z+y) = tlg(f) {p(a: +y+ta) — tp(a)}
<p(x+y+ (t1 +t2)a) — (t1 +t2)p(a)
< {p(e+tia) — tip(@)} + {py + t20) — tap(a) }

< pa(x) +pa(y) + 2e,

and the passage to the limit e — 0 yields (8). Consequently, the function
pa(z), © € L, is superlinear. Since p(x) is a minimal element in S(L) we
infer

P(@) < pa(e) = inf {p(a + ta) ~ tp(@) | < pla +a) ~ p(a)
or equivalently

p(z) + pla) < p(z+a) < p(z) + p(a) for all z,a€ L.
Therefore, p : £L — R is linear. q.e.d.
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From set theory we need the following

Proposition 4. (Lemma of Zorn)
In the partially ordered set F we assume that each totally ordered subset £ C F
possesses a lower bound. Then a minimal element exists in F.

We now arrive at the

Proof of Theorem 5: With the assumptions of Theorem 5 we consider the su-
perlinear function p(x) from Proposition1 and define the partially ordered
set

.7:::{]568(3) : ﬁgp}.

According to Proposition2 each totally ordered subset £ C F possesses a
lower bound. From Proposition4 we infer the existence of a minimal element
in F, namely F': B — R. Due to Proposition 3 the latter represents a linear
function. We note (10) and obtain the following inequalities for all x € B,
namely

F(a) <p(z) <[ £l
and
—F(x) = F(=z) < [[fl[| = 2l = [[f][ |=]]-
This implies |F(z)| < || f]| ||| for all x € B and consequently || F|| = | f].

All z € £ satisfy the inequality F(z) < p(z) < f(z) and f : £ — R is linear.
Therefore, we infer

F(z) = f(x) forall zel

from Proposition 3. q.e.d.

85 Some historical notices to the Chapters III and VII

By L. Kronecker, H. Poincaré, and L. Brouwer about 1900, the degree of map-
ping in Euclidean spaces has been developed in the framework of combinatorial
topology. Here we refer the reader to the textbook Topologie by P. Alexandroff
and H. Hopf from 1935.

The analytical definition for the degree of mapping was invented by E. Heinz
in 1959, utilizing A.Sard’s lemma on the critical values of differentiable map-
pings from 1942. Our representation in Chapter III contains the Jordan-
Brouwer theorem in R™, whose proof was given by L. Bers via the product
formula. A beautiful approach to Jordan’s curve theorem was already invented
by E.Schmidt. We would like to recommend B. von Kérékjarté’s monograph
Fldchentopologie from 1923 in this context.

The first definition for the degree of mapping in Banach spaces was given
by J.Leray and J. Schauder in their joint paper on functional equations from
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1934. They discovered that the existence question is independent of the an-
swer to the uniqueness problem. Finally, we would like to mention S.Banach’s
influential book Théorie des Opérations Linéaires from 1932 in connection
with §4 of Chapter VIL.

PORTRAIT OF D. HILBERT (1862-1943);
taken from page 244 of the biography by C. Reid: Hilbert,
Springer-Verlag, Berlin... (1970).




VIII

Linear Operators in Hilbert Spaces

Motivated by the eigenvalue problems for ordinary and partial differential op-
erators, we shall develop the spectral theory for linear operators in Hilbert
spaces. Here we transform the unbounded differential operators into singular
integral operators which are completely continuous. With his study of inte-
gral equations D. Hilbert, together with his students E. Schmidt, I. Schur, and
H. Weyl, opened a new era for the Analysis.

81 Various eigenvalue problems

At first, we consider the resolution of linear systems of equations: For the
given matrix A = (a;j)i j=1,...n € R"*" we associate the mapping

z— Az : R" — R"

and the system of equations
n
Z aixTr =Yy, 1=1,...,m, or equivalently Ar =y
k=1

with the right-hand side y = (y1, - . ., yn)!. The system Az = y has a solution
for all y € R™ if and only if the homogeneous equation Az = 0 possesses only
the trivial solution z = 0 and we have = A~'y. We remark that the concept
of determinants is not necessary in this context.

In Theorem4 from Chapter VII, §4 by F.Riesz, we have transferred this
solvability theory to linear operators in Banach spaces: Let B be a real Banach
space and K : B — B a linear completely continuous operator with the
associate operator Tx := x — Kz, x € B. If the implication

Tr=0 = x=0
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holds true, the equation
Tx =y, xeB

possesses exactly one solution for all y € B.

We now consider the principal axes transformation of Hermitian matrices:
Let A = (aik)ik=1,...n € C"*™ denote a Hermitian matrix, which means a;;, =

ag; forall i,k =1,...,n. Then A possesses a complete orthonormal system of
eigenvectors 1, ..., p, € C™ with the real eigenvalues A\1,..., A\, € R, more
precisely

Ap; = Aipi, i=1,...,n,
and we have
(piy k) = Oiks Lwk=1,...,n.

Here we have used the inner product (z,y) := x'-y. By & = (i, *) we denote
the i-th component of x € C™ with respect to (¢1, ..., ¢,) which implies

n
z=2 &g
i=1
Then we note that

i=1

=1

We define the diagonal matrix

A0 ... 0

A= 0 : c RnXn
o e 0
0 ... 0\,

and the unitary matrix U1 := (¢1,...,0,) € C™". Now we obtain the
representation z = U !¢ with € = (&,...,&,)! and consequently ¢ = Uux.
This implies the equation

UoAoU tot=UocAocx=UoU toAof=A0¢
and consequently the unitary transformation
A=UoAoU™L,

Now we observe U=l =U* =U t, and we calculate the transformation of the
associate Hermitian form
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aiprizy = (v, Ar) (Z i 2)pis %»é@&%)
j=1

i=1

-

D s @)Ph =Y Nil&l*
=1

i=1

In the present chapter we intend to deduce the corresponding theorems for
operators in Hilbert spaces. Specializing them to integral operators we shall
treat eigenvalue problems for ordinary and partial differential equations.

Ezxample 1. Let the domain of definition

D= {u = u(z) € C2[0,7] : u(0)=0= u(w)}
and the differential operator

Lu(x) == —u"(x), xz€[0,7], for uweD

be given. Which numbers A € R admit a nontrivial solution of the eigenvalue
problem
Lu(z) = du(z), 0<z<m, u €D, (1)

satisfying u € D and u # 07

A = 0: We have u”(z) = 0 for z € [0, 7] and consequently u(z) = ax + b with
the constants a,b € R. The boundary conditions for u yield 0 = u(0) = b
and 0 = u(m) = am + b = am, and we obtain

u(z) =0, z €0, 7).

Therefore, A = 0 is not an eigenvalue of (1).
A < 0: Setting A = —k? with k € (0, +00), we rewrite (1) into the form

u”(z) — kK*u(z) =0, z € [0,

Evidently, the functions {e**, =%} constitute a fundamental system of
the differential equation. Taking «(0) = 0 into account, we infer

u(z) = Ae*® + Be ™k = A(eF* — e7*) = 2 A sinh(kx).
Noting u(7) = 0, we finally obtain
u(z) =0, z €0,

Therefore, negative eigenvalues A < 0 of (1) do not exist.
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A > 0: We now consider A\ = k? with a number k& € (0,+00). Then (1) is
written in the form

u” () + k*u(r) = 0, x € [0, 7).

The fundamental system is given by {cos(kx),sin(kz)} and the general
solution by

u(z) = Acos(kx) + Bsin(kx), x € [0,7].

From 0 = u(0) = A we infer u(z) = Bsin(kz) for € [0,7], and the
boundary condition 0 = u(w) = Bsin(kn) implies k& € N. In this way we
obtain the eigenvalues A = k2 of (1) with the eigenfunctions

ug(z) = sin(kz), =z € (0,7, k=1,2,...
Ezxample 2. Let the domain
G := {3:: (1,...,2n) ER™ : z; € (0,7), i = 1,...,n} =(0,m)" CR"
be given. On the domain of definition
D= {u € C2(G)NCQ) : ulpg = 0}

we define the differential operator

Lu(z) := —Au(x) = — Z 885102 u(z), z €.

i=1 "t
We consider the eigenvalue problem
Lu(z) = Au(z), z € G, (2)

for w € D and A € R. In order to solve this problem we propose the ansatz of
separation

w(z) = u(xy, ..., xn) = ur(21) - u2(z2) - .. - un(zy), z € G.

The differential equation (2) becomes
- Z wr(z1) o1 (T )u) ()i (Tig1) e un(@n) = M (21) 2 up (20)
i=1

and consequently
n "
Z Ui
‘ Us
i=

(zi) _ .
() =\, ed.

1
We now choose u;(x;) := sin(k;x;) with k; € Nfor ¢ = 1,...,n, and we obtain



81 Various eigenvalue problems 35
-
=1 Wi

(z:) :ikf =\ € (0,00).
(@) =

The solutions of the eigenvalue problem (2) appear as follows:
w(xy, ..., x,) i =sin(kizy) - ... - sin(kp2y,) and A=Fki+.. . +Kk

for k1, ..., k, € N. Normalizing

n

2
Uy, ko (T15 ey X)) 1= (w) : sin(kyxy) - ... - sin(kpzy), xeG (3)

and using the inner product

(u,v) ::/u(a:l,...,xn)v(xl,...,xn)dzl...dxn u,v € D,
G

we obtain the orthonormal system of functions

(ukl,,,kn,ull_“ln) = 6k1l1 el (51%1 for kl,. . .,k‘n,ll,. . .,ln € N. (4)

n

On account of
Lug, .k, = (k% +...+ ki)ukl..,kn
and
||Uk1mkn||2L2(G) = (Uky.o o Uk k) = 1

for all k1 ...k, € N we infer

sup  |[Lull > sup [|Lug, g, | = sup (kf+...+k}) = +oo. (5)
w€eD, |lul|=1 E1..kn€N E1..kn€N

Consequently L = —A : L*(G) — L?(G) represents an unbounded operator
on the Hilbert space L?(G).

The following question is of central interest: Do the given functions
{uks b Yo k=122,

constitute a complete system? Can we expand an arbitrary function into such
a series of functions?

We now consider the Sturm-Liouville eigenvalue problem:
Let the numbers ci,c2,d1,da € R satisfying ¢ + ¢3 > 0 and d? + d3 > 0 be
prescribed. We choose the linear space

D= {f € C%([a,b],R) : e1f(a) +c2f'(a) =0 =di f() + dzf'(b>}

as our domain of definition, where the numbers —co < a < b < 400 are fixed.
With the functions p = p(z) € C''([a, b], (0, +0)) and q¢ = g(z) € C°([a, b], R)

we define the Sturm-Liouville operator

Lu(z) := — (p(a)/(2)) + q(z)u(z), € [a,b], for weD.
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Proposition 1. The operator L : D — C%([a, b],R) is linear and symmetric
satisfying

L(au+ pv) = aLu+ SLv forall wyveD, o feR

and

b b

/u(z)(Lv(x)) dx = / (Lu(x))v(x) dx for all wu,veD.

Proof: The linearity is evident, and we calculate for u,v € D as follows:
vLu —uLv = v(—(pu') + qu) — u(—(pv')’ + qv)
d ) ) (6)
= —{p@) @ @) — v @@)}, @€l
This implies
b

/ (vLu— uLv)dz = | = p(a)(u(@), v (@) - (' (@), 0(2))"] =0,

a

since the vectors (u(z),u'(z)) and (v(x),v'(z)) are parallel for z = a and
x = b, respectively; here we take u,v € D into account.

q.e.d.
We now investigate the eigenvalue problem
Lu = \u, u € D. (7)
Setting
b
(u,v) := /u(m)v(m) dx for w,v €D,
we obtain an orthonormal system of eigenfunctions
uk(:v) eD with (uk,ul) = 01, k,leN
in § 8 satisfying
Luy = A\pug, k=1,2,...
On account of Example 1 we expect the asymptotic behavior
—0 <A1 <A< A3< ... — +00 (8)

for the eigenvalues. Consequently, the operator L is unbounded. We shall
derive the expansion into the series
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o0
f(z) = chuk(x) with ¢ = (ug, f)
k=1

for all functions f € D. At first, we require the

Assumption 0: The equation Lu = 0 with v € D admits only the trivial
solution u = 0.

The domain D is not complete with respect to the norm [ju|| := /(u,u) for
u € D, and the operator L is unbounded in general. Therefore, we cannot
prove the existence of the inverse L~! by the Theorem of F. Riesz. With the
Assumption 0 however, we shall construct the inverse with the aid of Green’s
function for the Sturm-Liouville operator K = K (z,y). Having achieved this,
we shall transform (7) equivalently into an eigenvalue problem for the bounded
operator L~!, namely

1
Lty = \U u€eD. 9)

For the construction of the inverse we consider the ordinary differential equa-
tion

Lu(z) = — (p(a)u (2))’ + q()u(z)
= —p(x)u”(z) — p'(x)u’(x) + q(z)u(z) (10)
= f(x), a<xz<b.

The homogeneous equation Lu = 0 possesses a fundamental system a = a(x),
8 = B(x) satistying

La(x) =0= LA(x) in [a,b)].
We construct a solution of (10) by the method wvariation of the constants
u(z) = A(x)a(z) + B(x)B(x),  a<z<b, (11)
under the subsidiary condition
A(x)a(z) + B'(z)3(z) = 0. (12)
With the aid of (12) we calculate
W' (z) = A(@) (z) + B(@)' (2)

and
u'(z) = A(z)a” (z) + B(z)8" (z) + A'(z)d (2) + B'(2)5'(2).

Together with the formula (11) we obtain

Lu(x) = A@)La(@) + B(@)LB(x) —p(@){ A (2)o/ (@) + B'(2)8 (@) } = f(2)
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and therefore

A'(x) = B(x)k(z), B'(z) = —a(x)k(z), a<x<bd, (14)

with a continuous function k = k(z), x € [a,b], the relation (12) is fulfilled
and (13) becomes

—p(@) {Bx)d/ () — a(@)B (2)} k(z) = f(z), a<az<b  (15)

Proposition 2. The relation p(x){a(x)p () — o/ (2)B(x)} =const in [a,b]
holds true.
Proof: Applying (6) to u = a(z) and v = (z) we infer
d
0=—{p@) (a@)F @) - @)} i [a0]
q.e.d.

We now choose o« = a(z) and 8 = 3(x) to solve the homogeneous equation
Lu = 0 satisfying

p(:v){a(:v)ﬁ’(w) - a’(:v)ﬁ(:v)} =1 in [a,b] (16)

and
c18(a) + o' (a) = 0 = dya(b) + d2c/ (b). (17)

Here we solve the initial value problems

La=0 in [a,b], a(b) = da, o/ (b) = —d

and ! 1
LB=0 in [ab],  pla)= e  Bla)=—, e
Thereby, we determine M # 0 such that
p@{a@(@ - @5} = - | pa{eal@ + @} =1

is fulfilled choosing

M = —p(a){cla(a) + cza'(a)}.
The statement M # 0 is contained in the following

Proposition 3. The functions {«, 3} constitute a fundamental system.
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Proof: If the statement were violated, we have a number p # 0 with the

property
alx

)
We deduce o € D from (17), and the Assumption 0 yields a contradiction
with a = 0.

= ufB(z), a<z<b.

q.e.d.
The relations (15) and (16) imply
k(x) = f(x)  in [a,b], (18)

and (14) yields

/6 y) dy + const, B(z) = /a(y)f(y) dy + const.  (19)

x

We summarize our considerations to the following

Theorem 1. The Sturm-Liouville equation Lu = f for u € D with the right-
hand side f € C°([a,b]) is solved by the function

/6 dy+6()/ dy—/my Ydy. (20)

With the aid of the fundamental system {c, 8} of Lu = 0 satisfying (16) and
(17), we here define the Green’s function of the Sturm-Liouville operator as
follows:

K(x,y) = { (21)

Proof: The derivation above implies that the function u(z) from (20) satisfies
the differential equation Lu = f. Furthermore, we see

b b
/O[ dy, U /05 dyv

and (17) gives us

cru(a) + et/ (a) = (e18(a) + 23 (a

\&
Q
O

In the same way we determine
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b b

u(b) = a(b) / B )y, w(b) = a(b) / B/ () dy

a a

and
b

dyu(b) + dord' (b) = (dra(b) + dor'(5)) / By)f(y) dy = 0.

a

q.e.d.
Theorem 1 directly implies the following

Theorem 2. With the Assumption 0, these subsequent statements are equiv-
alent:

1. The function u € D with uw # 0 satisfies Lu = Au.
b
1
II. The function u € D with u # 0 satisfies /K(w,y)u(y) dy = )\u(:v) for

a<x<bh.

We shall now address the eigenvalue problem of the n-dimensional oscillation
equation considered by H. von Helmholtz : Let G C R™ be a bounded Dirichlet
domain, which means that all continuous functions g = g(x) : G — R possess
a solution of the Dirichlet problem

u=u(z) € C?*(G)NCYG),

Au(z) =0 in G, (22)

u(z) = g(x) on I0G
(compare ChapterV, §3). The further assumption will be eliminated by
Proposition 1in §9, namely that G satisfies the conditions of the Gaussian in-

tegral theorem from § 5 in Chapter I. Then we can specify the Green’s function
of the Laplace operator for the domain G as follows:

1
2w

1 1
(n = 2)wn [y — 2|72

H(z,y) = (23)

+ h(z,y), n>3

for (z,y) € GG :={(§,n) € G x G : £+#n}. Here we have Ayh(z,y) =0
in G and 1
) 10g|yil’|7 n=2
T
h(z,y) = 1 1 (24)

— >3
(n— 2w y — a2 "=
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for x € G and y € OG. Furthermore, w,, denotes the area of the unit sphere
in R™. According to Chapter V, §1 and §2 we can represent a solution of the
problem

u=u(z) € C*(G)NCYG),
—Au(z) = f(x) in G, (25)
u(z) =0 on IG

in the following form

/H z,y) f(y) dy, z€QG. (26)

For the deduction of (26) we consider the domain G, :={y € G : |y —z| > ¢}
with a small € > 0. The Gaussian integral theorem implies

[ (H@9)2u) - ul)A, Hz.v)) dy
) ~ [ (Ha)5et) — uw) ), (@) dotw)
Pa
- [ (HeGe) - u) ) @) o).
Observing ¢ | 0 we obta:y_w_g

/ aearma =t [,y @0t )t

r_|y7x|:s

- _laifg (sn}lwn / uly) do(y))

= —u(x) forall ze€G
in the case n > 3, and similarly in the case n = 2.
We now derive the symmetry of Green’s function, namely
H(x,y) = H(y,x) for all (z,y) € G®G. (27)
Here we choose the points =,y € G satisfying « # y, and on the domain
Ge = {ZEG i |z—x| >¢eand |z —y >5}

we consider the functions p(z) := H(z,z2) and ¢(z) := H(y,z), 2 € G¢. For
€ | 0 the Gaussian integral theorem implies
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L L dp dq
0= lelfg/(qu —pAq)dz = lim / (qay pay) do(z)
a. oG,

o op  Oq T op  Oq
h E%l (qau p8u> do(2) 151?8 / (qau p@u) do(z)
|z—z|=¢ lz—y|=¢

=q(z) —ply) = H(y,z) — H(x,y) for all z,y € G with z #uy.

We now show a growth condition for Green’s function H(x,y) as follows: With
€ > 0 given we define the harmonic function

1 _
— (1+5)10g|y x|, n=2
2m d
Wg(x,y) = 14+¢
ly—=*", n>3

(n —2)wy Y

setting d :=diam G. We consider the function @.(x,y) := W.(x,y) — H(z,y)
and choose d > 0 so small that

b (x,y) >0 forall y:|ly—z|=40 andall ye€dG

is satisfied. Applying the maximum principle to the harmonic function @ (z, .)
on the domain G5 := {y € G : |z —y| > §} we infer .(z,y) > 0 in Gs and
consequently

H(z,y) < W.(z,y) for all &> 0.

Therefore, we obtain

1 ly — |
— 1
21 o8 d '’

1
(n —2)wy

n=2
0< H(z,y) <
|y_w|2_na TLZS

for all (x,y) € G ® G and finally the growth condition

t
muﬂng;T;! for all (z,y9) € G®G (28)

with v :=n —2 < n.

Definition 1. Let G C R" denote a bounded domain where n € N holds true,
and let the number a € [0,n) be chosen arbitrarily. A function K = K (z,y) €
C%G®G,C) is called a singular kernel of the order « - briefly K € S, (G, C)

- if we have a constant ¢ € [0, +00) satisfying

C

|K(z,y)| < 1z — ylo for all (z,y) € G®G. (29)

We name the kernel K € S, (G, C) Hermitian, if
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K(xz,y) = K(y,x) forall (z,y) e G®G (30)

is valid. The real kernels belong to the class So(G) := So(G,R), and these
kernels K € S,(G) are Hermitian if and only if they are symmetric in the
following sense:

K(z,y) = K(y,z) forall (z,y) € GRG. (31)

We summarize our considerations about the n-dimensional oscillation equation
to the following

Theorem 3. Let G C R™, n = 2,3,... denote a Dirichlet domain satisfying
the assumptions for the Gaussian integral theorem. Furthermore, we fix the
domain of definition

D= {u =u(z) € C}G)NCYG) : u(z) =0 for all z € BG}.

Then the following two statements are equivalent:

I The function u € D with u # 0 solves the differential equation
—Au(x) = du(x) in G

for a number X € R.
II. The function u € D with u # 0 solves the integral equation

[y = uw) i G
G

for a number A € R\ {0}.
Here Green’s function H(x,y) of the Laplace operator for the domain G
represents a symmetric real singular kernel of the reqularity class Sp—2(G).

We finally consider singular integral operators: On the bounded domain G C
R™ with n € N, the singular kernel K = K(z,y) € Suo(G,C) of the order
a € [0,n) is defined. On the domain of definition

o There exists a number ¢ € [0, +00)
D:=<u(z):G—CeC”G,C) :
satisfying |u(x)| < ¢ for all z € G

= CY(G,C) = C°G,C)N L™¥(G,C)

we consider the integral operator K : D — C'%(G, C) given by

Ku(zx) := /K(x,y)u(y) dy, z¢€G, with w € D.
G

Evidently, we obtain with K : D — C°(G, C) a linear operator.
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Theorem 4. Let the kernel K = K(z,y) € So(G,C) with o € [0,n) be Her-
mitian. Then we have the following statements:

a) If u € D is an eigenfunction of the associate integral operator, more pre-
cisely u £20 and Ku = Au with X € C, we then infer A € R.

b) Given the two eigenfunctions u; € D with Ku; = M\ju; and i = 1,2 for the
eigenvalues Ay # A, we infer (uy,us) = 0. Here we used the inner product

(u,v) := /u(a:)v(:z:) dx for w,veD.
e}
Proof:
a) Let v € D\{0} be a solution of the problem Ku = Au with a number
A € C. This implies

Mu(z) = | K(z,y)u(y) dy, zeqG.
/

We multiply the equation by u(z) and afterwards integrate over the domain
G with respect to x, and we obtain

)\(u,u)://K(x,y)u(x)u(y) dedy € R
G G

Since the inner product (u,u) is a real expression, the number A has to be
real.

b) Let the eigenfunctions u; € D satisfying Ku; = \ju; with ¢ = 1,2 and the
eigenvalues A1 # Ay be given. On account of A1, Ao € R we infer

)\1 (Ul,UQ) = ()\111,1,’[1,2) = (Kul,UQ) = (ul,KUQ) = (Ul, )\2u2) = )\2(’[1,1,’[1,2)

or (A1 — A2)(u1, uz) = 0 and consequently (uy,uz) = 0. We namely deduce
for all u,v € D:

G G

q.e.d.
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§2 Singular integral equations

In §1 we have equivalently transformed eigenvalue problems for differential
equations into so-called integral equations of the first kind

/ K(z.y)uly) dy = pu(z), =€, (1)
G

with the singular kernels K = K(x,y). Parallel to the swinging equation we
take a bounded Dirichlet domain G C R" satisfying the assumptions of the
Gaussian integral theorem with the associate Green’s function H = H(x,y) €
Sn—2(G) for the Laplace operator. Especially for the unit ball B := {x € R" :
|z| < 1} we obtain as Green’s function in the case n = 2:

1 1-
@2 =, oL (2 eBoB, 2)
27 (—=z
and in the case n > 3:
1 1 1
G(Ivy) = _9 n— 9 (Ivy)EB®B
(7’L - 2>wn |y - $|n 2 |x|n—2}y _ oz 2
||

We now consider the Dirichlet problem
u=u(r) € C*(G)NC°QG),
Au(z) + ibz(x)uml(x) + c(z)u(z) = f(x), z € G, (4)
u(z) = O,l:1 z € 0G.

Here we assume the functions b;(z), i = 1,...,n, ¢(z) and f(z) to be Holder
continuous in G. We transfer the equation (4) into an integral equation as
follows: With the representation

n

—Au(x) = Z bi(x)uz, (z) + c(x)u(z) — f(x) =: g(x), xeG, (5)

i=1

we deduce (similarly to the oscillation equation)
u(w) = [ {3 b)) + cly)utw) - 1)} dy
& i=1

and
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u(w)~ [ { e uw) + 3 H b))} dy
¢ - (6)
:—/H(:v,y)f(y)dy for all z € G.
G

We differentiate (6) with respect to z; for j = 1,...,n and obtain the addi-
tional n equations

Uy, () — /{ (He, (,9)e() uly) + > (Hae,(,9)bi(y)) Uzi(y)} dy
¢ = (7)
:*/Hx](xvy)f(y)dya IEGv ]:177’”’
G

Setting
Koo(w,y) := H(z,y)c(y), Koi(w,y) == H(z,y)bi(y),
KjO(x7y> = Hacj (w,y)c(y), Kji(xay) = Hmj (!T»y)bz(y)

fori,j=1,...,n and
fole) = = [ B fdy. 5ye) == [ o, ()1 ) dy
G G
for j =1,...,n, we arrive at the following

Theorem 1. The solution u = u(x) of (4) is transferred into the system of
Fredholm’s integral equations

wmf/Eﬁ%@wa@:hm, v€G, j=0,...m (8
G 1=0

with the functions ug(z) := u(x) and u;(x) := uy,(x) for i =1,...,n. Here
the singular kernels Kj;(x,y) € Sn—1(G) are real fori,5 =0,...,n. However,
they are not symmetric in general.

Remark: In the special case n = 2, G = B, bi(z) = 0 = by(z) in B we can
transfer the problem

u=u(z) € C*(B)NC°B),
Au(z) + c(2)u(z) = f(2), z € B, 9)
u(z) =0, z € 0B,

into Fredholm’s integral equation
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Hewutrdc =~ [, 08| |rrac. zen.

B

(10)
Sometimes (10) is called an integral equation of the second kind. We remark
that the integral kernel which appears is not symmetric in general.

For the LP-spaces used in the following we refer the reader to Chapter II, § 7.
On the bounded domain G C R™ we choose a singular kernel K = K(z,y) €
So(G,C) with a € [0,m). On the domain of definition
D:i={f:G—CeC’G) : sup|f(@)| <+oc}
zeCG

we consider the associate integral operator

Kf(x):= /K(x,y)f(y) dy, z¢€G, for feD. (11)
G

Choosing an exponent p € (1, Z), we obtain a constant C' = C(c,a,n,p) €
(0, +00) with the following property

/|K(:v,y)|pdy <C forall zed, (12)
G

due to § 1, Definition 1. When ¢ € (", +00) denotes the conjugate exponent
to p satistying ;19 + 1 =1, Holder’s inequality from Theorem 1 in ChapterII,
§ 7 yields the following estimate:

|Kfcw|s‘/ﬂkxx4»nf@ﬂdy

G
< ([ e ) ([iweaw) 13
G G

1
<C|flle), reG

for all f € D. Here the symbol
1
190 = Il = ([ 1f@Pdz)", 1<p<toc
G
denotes the LP-norm on the Banach space

LP(G) = {f : G — C measurable : || f]|zr(q) < —l—oo}

(compare ChapterIl, §6 and § 7). Furthermore, we introduce the C'%-norm
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[fllco) =sup |f(x)],  feD,
z€G
and (13) yields the estimate
IKfllcoe) < Cllfllsey  forall feD (14)

with a constant C' € (0,+oc). Therefore, K : D — C?(G) represents a
bounded linear operator, where D is endowed with the L?(G)-Norm (see Chap-
ter IT, § 6, Definitions 6, 7 and Theorem 3). Parallel to Theorem 1 in Chapter II,
§8 we can now continue K to the operator

K : LY(G) — C(G) (15)
on the Banach space LI(G). The set C§°(G) C D is dense in the space LY(G)
and for each f € LI(G) we therefore have a sequence

{fiti=12.. CC7(G)  satistying ||f = fjllLa) — 0 (j — o0).

We then define
Kf = lim Kf; in C’O(G). (16)
J—00

We summarize our considerations to the following

Theorem 2. The integral operator K : D — C%(G) with the singular kernel
K € 8,(G) and a € [0,n) can be uniquely continued to the bounded linear
operator K : LY(G) — C%@G) satisfying

IKfllcoey < C@llfllzoae, — feLiG) (17)

for each g € (. " ,400), due to (16). Here we have chosen the constant

n—a’

C =C(q) € (0,+00) appropriately.

Remark: In the case n > 3, Green’s function of the Laplace operator H =
H (z,y) belongs to the class S,,_2(G) which means @ = n—2and q € (7, +00).
Therefore, the associate singular integral operator

H: LYG) — C°%G)

is even defined on the Hilbert space L?(G) for n = 3. In the case n > 3,
Green’s function H cannot be continued onto the Hilbert space L?(G).

For the orders @ € [0,n) and 8 € [0,n) let K = K(z,y) € S4(G,C) and
L = L(y, z) € Sg(G,C) denote two singular kernels with the associate integral
operators

Kf(z) := / K(@,g)f(y)dy, ceG:  feD,
G

Lf(y) = /L(y,Z)f(Z) dz, yeG; feD.

G
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With the aid of Fubini’s theorem from Chapter II, § 5 we now calculate for all
f €D and all z € G as follows:

KoLf(z) = K(/L(y, 2)f(2) dz)

x

/K x y / ,2)f(2) dZ)dy

/ / K (2, 5)L(y, 2) £ (=) d= dy (19)

I
Q\
\
=
®
<
S
S~—
2
<
N—
Py
=
I\

Here we have as the product kernel

M(z,z) = /K(x,y)L(y, 2) dy, (x,2) e GRG. (20)

Proposition 1. We have the reqularity result M = M (z,z) € C°(G ® G, C).

Proof: We take the point (2°,2") € G ® G such that 2°,2° € G and 2% # 2°
holds true. Then we choose the number 0 < § < i|:v0 — 29| sufficiently small
and define the sets

Byi={yeG: ly—a| <2 or |y 2" <26},

Gs = G\Bj = {y €G: |y—2° > 20 and |y — 2% > 25}.
Given the quantity & > 0, we find a number 6 = d(¢) > 0 with the property
[ 1K@ L)y < (21)
Bs

for all 2,2 € G with |z — 2% < § and |z — 2°| < 4, taking K € S, and L € S
into account. Furthermore, we have a number n € (0, §] such that

|K (@, 9)L(y,2) = K@% y) Ly, %) < e (22)

holds true for all y € Gs and z,z € G with |z — 2% < n and |2z — 2°] < n.
Finally, we obtain the following estimate
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IM@@—M@WWS/MWWde—MﬁwM%ﬂwy

+ /’K(w,y)L(y, 2) = K (%, y)L(y, ZO)‘ dy

< |G|+ 2¢
for all #,z € G with |z — 2°| < n and |z — 2°| < n. Therefore, the regularity
result M = M(z,2) € C%(G ® G) is correct. qed
Proposition 2. If o + 8 < n holds true, we have M € Sy(G, C).

Proof: We have to prove only the boundedness of the kernel M. Without loss
of generality, we can assume o > 0 and 8 > 0. Taking (z,2) € G ® G, we
estimate with the aid of Holder’s inequality as follows:

1
|am|</mmwuu%n@<qq/|

mawfdﬁ

<‘”C2<L/‘| yle? y) (//|y oratr)” -

< c1c2C for all (z,2) e GRG.

1
Here we observe C' := sup/ dy < 400, since a + 8 < n holds
zGGG |,T - yla—i-ﬁ

true. q.e.d.

Proposition 3. In the case a + 8 > n, we have the regularity result M €
Sa+p-n(G,C).

Proof: We set R := diam G € (0, +00), and for the points z, z € G satisfying
x # z we define the quantity § := |z — z| € (0, R). Then we calculate

1 1
Mz, z §/K:17,y L(y, 2 dygc/ . dy
el 2 el ze [ Jey, L

/ 1 - /‘ 1 L
=c y + ¢ y
|z —y|o |y — 2|° |z =yl |y — 2|8

yeG yeG
ly—z|<36 10<|y—=|<26
1 1
+c / o 3 dy
|z —yl* |y — 2|
€G
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with a constant ¢ € (0, +00).
Taking the point y € G with |y — x| < }4, we estimate as follows:

1 1
> lr—al—|r—y >6— 5="s
L r ET S
Taking the point y € G with |y — z| > 2§, we obtain
1 1
y—zl2ly -2l —lz—zl=ly—al =02y —a| - ly—2[= ly—al

Consequently, we see

c 1 c 1
M(z, 2)| < / dy + / dy
M2 < (150 y—afo ¥ T (15 ly — 28

yily—x|< 36 y:|ly—z|<28
c 1
+ d
(3)° ly — afo+s ¥
yily—=x|>26

< ¢ / 1 dy + c / 1 J
(30)° ly — x| (30)~ ly — z|°
yily—=z|<36 y:|ly—2z|<35
c 1
(1)ﬁ |y — x|0¢+ﬁ dy

? yily—w|>26

We now substitute
1
y=x+0f dy=wno" "do, 0€(0,,9), ge s
and calculate

36

1
/ ly— 2o dy = /Q‘“Q"‘lwndg = wn/gn‘“‘ldg
!
y J (24)

. 1
yily—z|<50

(S

(=)

Analogously, we get

1 Wn

d =
y—212 Y " n—p
y:ly—2]| <36

(36)"5. (25)

With the aid of the substitution above, we deduce
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+oo

1 —a—f8 n—
/ |y_x|a+ﬁdy—wn/9 0" ldo
y:ly—w| =26 28
1 +oo
neas] 26
nn—(a—i—ﬁ)[g 25 (26)
w
NG
ot i ., (20)

Combining (23), (24), (25), and (26) we finally obtain the estimate

1\n—a=8 w 1\ w 2" %W
Meal<el(y) TR G) L P
[M(z, 2)] < 2 nfa+ 2 n—ﬁ+a+ﬁfn

C
= | (n’ﬁ;g)n forall z,ze€ G with x# z.
x—z

(27)
Therefore, the statement M € Sy p-_n (G, C) follows. q.e.d.

We summarize our arguments to the subsequent

Theorem 3. (I. Schur)

To the given orders o € [0,n), 8 € [0,n) let K = K(z,y) € Sa(G,C),
L = L(y,z) € S3(G,C) denote singular kernels with the associate integral
operators K, I.. Then the composition

KOLf(:v):/M(x,z)f(z)dz, z €@, febD
G

represents a singular integral operator as well, where its product kernel

M(z,z) = /K(z,y)L(y,z) dy, (,2) eGRG
G

satisfies the following reqularity properties:

SO(Ga(C)v Zf Oé+,8<’n

M = M(z,y) € { . :
SomLﬁ*n(GvC)a Zf Oé+6 >n

Theorem 4. (Iterated kernels)

Let K = K(z,y) € Sa(G,C) denote a singular kernel of the order 0 < a < n
with the associate integral operator K. Then we have a positive integer k =
k(K) € N and a kernel L = L(z,y) € So(G,C) with the associate integral
operator I such that

Kff=Lf  foral feD.
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Proof: We choose (3 € (a,n) satisfying

m

n for all m e N.
m+1

B #

This implies
B+m(B—n)#0 for all m € N.

With the aid of the theorem by I. Schur we now consider the iterated kernels:
KesS, C Sﬁ, K?=KoK ¢ Sﬁ.,.g_n = Sngl(g,n),

K32K0K0K685+2(g,n), ey Kk:KO...OKESg+(k,1)(5,n).
k

We now determine the number k € N such that
B+ (k—=2)(B-n)>0 and B+ (k—1)(8-n)<0
is satisfied, and we infer
{8+ (k—-2)B-n)}t+B=B+(k—-1)(B-n)+n<n
Theorem 3 finally yields K* € Sy(G, C). q.e.d.

An outlook on the treatment of the eigenvalue problem for the n-dimensional
oscillation equation (Weyl’s eigenvalue problem): Parallel to Theorem 3 from
§1 we use the domain of definition

Do = {u =u(z) € C*(G)NCYG) : u(z)=0on 3G}
and consider the eigenvalue problem for the n-dimensional oscillation equation
—Au(z) = du(z), z€G, u€ Do\ {0}, AeR (28)

In §9 we show the property A > 0. Then the differential equation (28) can be
transferred into the singular integral equation

Hu(z) := /H(x,y)u(y) dy = iu(x), zed, (29)
G

with the singular kernel H = H(z,y) € S,—2(G) which is symmetric. Accord-
ing to Theorem 4 we now choose a number k € N satisfying

H*u = Ku = /K(I,y)U(y) dy, € Dy,
G

with a kernel K = K(z,y) € So(G). The eigenvalue problem (29) is trans-
ferred into the equation
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& 1
Ku = H'u = )\ku(:z:), z€G. (30)

Now we can continue the operator K : L4(G) — C°(G) for each exponent
g > 1, according to Theorem 2. With (30) we obtain an eigenvalue problem
on the Hilbert space L?(G) C L4(G), if ¢ € (1,2] holds true. Therefore, it
suffices in the following considerations to investigate eigenvalue problems for
operators in Hilbert spaces.

83 The abstract Hilbert space

We now continue the considerations from § 6 in Chapter II.

Postulate (A): H is a linear space. This means H is an additive Abelian
group with 0 as its neutral element:

r,yeH = x+yeH, r=0¢€H.

Furthermore, we have a scalar multiplication in H: With the number A € C
and the element x € H the statement Ax € H is correct, and the axioms for
vector spaces are valid.

Postulate (B): In H we have defined the inner product

HxH—-C
(‘Tvy) = (‘Tay)'H
with the following properties:

(a) (z,ay)n = a(z,y)y forall z,y € H and a € C
(x, )0 = (y,x)n forall z,y € H (Hermitian character)

(b)

(c) (w1 4+ x2, )0 = (21, y)n + (22,y)n forall @y, 20,y €H

(d)(x,x) >0 forall z € H and (z,2)p =0 < = =0 (positive-
definiteness)

Postulate (C): For each positive integer n € N we have n linear independent
elements x4, ...,x, € H, which means

at,...an € C, Zaixizo = ar=...=a, =0.
i=1

Definition 1. If the set H' satisfies the Postulates (A), (B),and (C) then H’
is named a pre-Hilbert-space.

Ezxample 1. Let G C R™ denote a bounded open set and define

={r:¢-cec’G): sw|f) < +oo}.

zelG
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With the inner product
(f.9)= [ f@ga) o, fige . 1)
G
the vector space H’ becomes a pre-Hilbert-space.

Theorem 1. In pre-Hilbert-spaces H' we have the following calculus rules for
the inner product (.,.):

a) For all x,y,y1,y2 € H', a € C we have
(OCLL',y) = Oé((E,y), (xayl +y2) = (‘Tvyl) + ($7y2)'

Consequently, the bilinear form (.,.) is antilinear in the first and linear in
the second component.
b) The Cauchy-Schwarz inequality is satisfied:

(2, y)] < V(z,2)\/(y.y)  forall z,yeH.

c) Setting ||z|| := \/(z,2) with x € H’, the pre-Hilbert-space H' becomes a
normed space. This means

|z =0 & x=0,
lz+yll <zl + iyl forall zyeH,
Az = |Allz]| forall zeH', XeC,

e =yl = [zl = llyll | forall z,ye™H

d) The inner product is continuous on H' in the following sense: From the
assumptions

Ty — x (N — 00) with {zp}n=12.. CH and zeH
and
Yn — y (n — o) with  {Yn}n=12.. CH and yeH

we infer
(#n,yn) = (2,9) (n — o0).

Here the symbol x,, — x (n — o0) indicates that ||z, — x| — 0 (n — o)
is satisfied.

Proof:
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a) We calculate
(ar,y) = (y, ax) = aly, z) = a(x,y)

and

(‘Tvyl +y2> = (yl +y2aw> = (yl,l') + (y2aw>
= (y1,2) + (y2,7) = (2, 91) + (7, 92).

b) and ¢) are contained in Chapter II, § 6 - more precisely in Theorem 1 with
its proof and the Remark following Definition 1.
d) The subsequent estimate yields this statement:

[(@nsyn) = (2, 9)] <[(@n,yn) = (@, Y)| + (20, y) = (2,9)]
= |(@n,yn = 9)[ + [(2n — z,y)]

< lznllllyn =yl + llzn — zllllyll — 0 (n — o).
q.e.d.

Postulate (D): H is complete. This means each sequence {xy}n=12.. CH
satisfying ||zn — Tm| — 0 (n,m — 00) possesses a limit element x € H such
that

lim ||z, —z|| = 0.

n—oo

Definition 2. If H satifies the Postulates (A), (B), (C),and (D) we name H
a Hilbert space.

Remark: The Hilbert space H becomes a Banach space via the norm given in
Theorem 1 c).

Definition 3. The Hilbert space H is separable, if the following Postulate (E)
holds true additionally:

Postulate (E): There exists a sequence {Tp}tn=12,.. C H which is dense

yeen

in H: This means for all x € 'H and every € > 0 we have an index n € N
satisfying ||x — x| < e.

Example 2. Hilbert’s sequential space
We endow the set of sequences

oo

Iy = {x:(xl,xz,...)GCxCx... : Z|xk|2<+oo}

k=1

with the inner product
o0
(2,y) == Zxkyk e C
k=1

and we obtain a separable Hilbert space.
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Example 3. Let G C R™ be a bounded open set, and by

L*(G) := {f : G — C measurable : /|f(x)|2 dzx < +oo}
G

we denote the Lebesgue space of the square-integrable functions with the inner
product

(f.9) = / f@g@)dz  for f.ge L*G).
G

Then H = L?(G) represents a separable Hilbert space. The pre-Hilbert-space
H' described in Example 1 lies dense in H (compare Chapter IL1,§ 7).

Parallel to the transition from rational numbers Q to real numbers R we prove
the following result using the ideas of D. Hilbert, which were presented in his
famous book on The Foundations of Geometry:

Theorem 2. (Hilbert’s fundamental theorem)

Each pre-Hilbert-space H' can be completed to a Hilbert space H such that H’
lies dense in H. We name H the abstract completion of H'. When H' satisfies
the Postulate (E), then the abstract completion H is a separable Hilbert space.

Proof: Let 'H' be a pre-Hilbert-space. We then consider the Cauchy sequences
{flIn=1,2,.. CH and {g),}n=1,2,.. C H'. We call them equivalent if

fr=9n — 0 (n— o)
is satisfied. Now we set

[f] is the equivalence class }

H:= =[f/ n= s "
{f Faln=12, of the Cauchy sequences {f) }n=12,. CH

For f = [f)]n € H and g = [g,,]» € H we evidently have the statement
[faln=lgnln & i =gnll =0 (n—o0).

To Postulate (A): On H we define a vector space structure as follows: For
a,peCand f=|[f]n€H, g=Ig,]n € H we set

af + By = [afy + Bgnln-
The null element is the equivalence class of all zero sequences in H':

0=[faln  with {fi}nm12. CH and |[fy] =0 (n— o0).
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To Postulate (B): For the elements f = [f/], € H and g = [g}]n € H we

n
define the inner product

(f,9) = lim (f;,9,).
On account of

< fn = Fullllgnll + 1£5lllgn = gmll = 0 (n,m — 00),

the limit given above exists. One easily verifies that the so-defined inner
product satisfies the Postulate (B).

To the Postulates (C) and (E): Let H denote the set of all f € H satisfying

f=1f,f,..] and f' € H'. Then the vector spaces H' and H are iso-
morphic, and consequently H’ is embedded into H. Now H is dense in H:

Taking f = [f/]n € H we set f, = [f,,, f}.,...] € H and see
If = Foull = N |1, = f1.]l = 0 (m — o0).

Evidently the Postulate (C) remains valid for H. In the case that H’
additionally satisfies the Postulate (E), this holds true for H as well.

To Postulate (D): Let {fn}n=1,2,... C H with

Ifn = fmll = 0 (n,m — o0)

be chosen. Since H lies dense in ‘H we have a sequence {fn}n:1,27,,, cCH
satisfying

. 1
o= fall < o n=1,2,...

Here we have f,, = [f’, f/,...] with f, € H'. We now set f := [f/]n=12....

and show that f € H and ||f — fall = 0 (n — o0) are correct. At first,
we estimate

Ifn = frll

1 1
+ [ fo = full+—= — 0 (n,m— o0).
n m

IN

Now we have
. . . 1
and note that fo, = [f.,, f/.,...] and f = [f], f5,...]. Then we infer

m>Jm>

1 = Full = T 5= fill < em
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with the numbers €, > 0 and m € N satisfying ,, — 0(m — o). We
summarize our considerations to

1
Ilf — fnll SEmJFEHO(mHOO)- q.e.d.

Remark: We can complete the pre-Hilbert-space H’ from the Example 1 ab-
stractly to a Hilbert space ‘H with the aid of Theorem 2. Alternatively, we can
concretely complete H’ to the Hilbert space

L*(G,C) := {f : G — C measurable : /|f(x)|2d:17 < +oo},
G

whose inner product is given in (1).

Definition 4. A sequence of elements {¢1,p2,...} C H' in a pre-Hilbert-
space H' is called orthonormal if and only if
(pi, i) = bij forall i,57€N

is correct. We name the orthonormal system {pg}tr=1,2,.. complete - briefly
we speak of a c.o.n.s. - if each element f € H' satisfies the completeness
relation

IF1% =D ICen, I (2)
k=1

This definition is justified by the following theorem, whose proof is contained
in the Propositions 1, 2 and Theorem 5 from § 6 in Chapter II.

... CH represent an orthonormal system. For all
f € H' we then have Bessel’s inequality

Yo HE < AP (3)

k=1

An element f € H' satisfies the equation

> lers HIZ = 11£17 (4)
k=1
if and only if
N
]\}EIloo”f_Z(@k»f>90k“ =0 (5)
k=1

holds true. The latter statement means that f € H' can be represented by the

Fourier series
o0

Z(Sﬁka f)@k

k=1
converging with respect to the norm || - || in the Hilbert space.
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Ezxample 4. With the Fourier series and the spherical harmonic functions in § 4
and §5 from Chapter V, respectively, we obtain two c.o.n.s. in the adequate
Hilbert spaces.

Theorem 4. An orthonormal system {@k}k=1,2,... in the pre-Hilbert-space H’
is complete if and only if the relation (pr,x) =0, k =1,2,... with x € H’
implies the identity x = 0.

Proof:
‘=’ Let x € H' and (g, x) = 0 hold true for all k& € N. Then the completeness

relation yields
2> =D~ l(ew, 2)* = 0
k=1

as well as ||z]| = 0 and consequently z =0 € H'.
‘" Let {@r}tr=1,2,. be an orthonormal system such that the statement
(pr,x) =0 for all kK € N implies 2 = 0. For arbitrary y € H we set

oo
=Yy - Z Pk, Y
k=1
and we calculate

(Sﬁlv ) Sﬁlv ( laz PEy Y ):(wla ) (‘Pla ) 0
k=1

for all [ € N. This implies = 0 and consequently

o0

y=> (o.y

k=1

Therefore, the system {py }r=12.. C H' is complete due to Theorem 3.
q.e.d.

Theorem 5. Let H denote a separable Hilbert space.
a) Then there exists a c.o.n.s. {pgtr=12,.. CH.

yeen

b) For two arbitrary elements x,y € H we have the Parseval equation

oo

= (¢, 2) (k). (6)

k=1
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¢) The Hilbert space H is isomorphic to the Hilbert sequential space la via the
mapping

P:H—l, e (21,22,...) with k= (pk, ).

By the prescription
oo
x:Zkak with  (x1,22,...) €la
k=1

the mapping inverse to ® is given.

Proof:

a) Since H is separable, we have a sequence {g1, go, ...} C H which is dense
in H. We eliminate the linear dependent functions from {g¢1, g2, ...}, and
construct a system of linear independent functions {fi, f2,...} in H with
the following property:

(91, 9n] C [f1,--, 1ol forall p>n>1, (7)

denoting with [g1,...,¢9,] and [f1,..., fp] the C-linear spaces spanned by
the elements ¢1,...,9, and fi,..., fp, respectively; here n,p € N holds
true. Now we apply the orthonormalizing procedure of E. Schmidt to the
system of functions {fx}r=12.:

1= 1 fi g 1= f2 = (o1, f2)1
AT 2= (ens L)l
n—1
Pn = = . n=12...
[ = Z (o5 126
=

We evidently have (¢;, pr) = 0% for j,k=1,2,... and

91, 9n) T o1, -, 0p) forall p>n>1. (8)

When f € ‘H and € > 0 are given, we have an index n € N satisfying
Il f — gnll <e. According to (8) we find p > n numbers c1, ..., ¢, € C with

p
Hf - Z%‘Pk” <e.

k=1

Due to the minimal property of the Fourier coefficients (compare Chap-
terII, §6, Corollary to Proposition1l) we can still choose n and p such
that
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Hf—i(gok,f)gokH <e forall £>0.

Observing the limit process € | 0 we deduce

o0
F= (er: Her,
k=1

and {¢r}r=12.. 1s a c.o.n.s.
b) For two elements z,y € H with the representations

%)
Z Pk L @kv Y=
k=1

we evaluate the inner product

(z,y) = nlggo(z R Y (T )
=1

NE

(e y)e

Il
—

sE
Mﬁ I

(x> ) (21, y)(Pr, 1)

:nlggoZ(sak, z)(r,y)

3 =~
Il

I
M8
?

) (ks y

¢) Here nothing has to be shown any more. q.e.d.

Definition 5. We name M C H a linear subspace of the Hilbert space H,
if for arbitrary elements f,g € M and all numbers o, 5 € C we obtain the
inclusion

af + g € M.
A linear subspace M C 'H is called closed, if each Cauchy sequence
{fn}n:l,Q,,,, cM
fulfills
f= lim f, e M.

n—oo

With a linear subspace M C 'H we denote by
; There exists a Cauchy sequence {fn}n=1,2,.. C M
= S :
satisfying f = lim, o0 fn

the closure of M.
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Ezample 5. The space Cg°(G) =: M C ‘H := L?*(G) is a nonclosed linear
subspace, and we have M = H.

Definition 6. We call H a unitary space, if the following Postulate (C’) is
satisfied in addition to the Postulates (A) and (B).

Postulate (C’): With an integer n € N we have dimH = n.

Remarks:

1. In an n-dimensional unitary space H we have n linearly independent ele-
ments {f1,..., fn}, and each g € H can be represented in the form

n

g:chfk with ¢1,...,¢, € C.
k=1

2. A unitary space H possesses an orthonormal basis {¢1,...,¢,} with n =
dim H satisfying

F=Y (er:lox  forall fe™.
=1

3. Each unitary space ‘H endowed with the inner product
n
(xvy) ::Zxkyk; 17:(171a~-~»17n)ay:(y17-~-7yn)€(c
k=1

is isomorphic to C"™, where n = dim H holds true.
4. Each unitary space is complete.

Noticing the Definitions 5 and 6, we easily prove the following

Theorem 6. Let H denote a Hilbert space, and M is a closed linear subspace
of H. Then M represents either a Hilbert space or a unitary space. In the
case that H is separable the same holds true for M.

Definition 7. Let M be a linear subspace of H. Then we define the orthogonal
space of M in 'H setting

MJ‘::{gEH: (g,f):OforallfeM}.

Remark: On account of the continuity for the inner product, the orthogonal
space M+ C H is closed.

From Theorem 2 in Chapter II, § 6 we now take over the proof of the following
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Theorem 7. (Projection theorem)

Let M denote a closed linear subspace in H. Then each element x € H can
be uniquely represented in the form x = x, + x9 with x1 € M and x9 € M*.
We then obtain the decomposition

H=Ma M-

We still note the subsequent

Theorem 8. Let M be a linear subspace in a Hilbert space H. Then M lies
dense in H if and only if the following implication is correct:

weH: (f,p)=0 foralfeM = o =0. 9)

Proof: The projection theorem yields the orthogonal decomposition H = M &
M+, Now the subspace M lies dense in H if the statement M = H and
consequently M+ = {0} is correct. The latter statement coincides with the

implication (9). q.e.d.

84 Bounded linear operators in Hilbert spaces

We begin with the fundamental

Definition 1. On the Hilbert space H the mapping A : H — C is a bounded
linear functional, if the following conditions are fulfilled:

a) Alaf + Bg) = aAf +Ag  forall f,ge™H and «,f €C,
b) |Af| <c|fll forall feH , with a constant c € [0,+00).
According to Chapter II, §6, Definitions 6 to 8 and Theorem 3 the following

three statements are equivalent for a linear functional:

(i) A is bounded,
(ii) A is continuous at one point,
(iii) A is continuous at all points of the Hilbert space.

We define the norm of the bounded linear functional A by

|All:= sup |Az|= sup |Az| < +oo.
zeH, ||z]|<1 z€H, ||z]|=1

In Chapter II, §6, Theorem4 we have proved the following statement:

Theorem 1. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H — C on the Hilbert space H can be
represented in the form

Af =(g9,f) forall feH (1)

with a uniquely determined generating element g € H.
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Definition 2. Let D denote a linear subspace of the Hilbert space H. A linear
operator T' consists of a function T : D — H with the following property

T(crur + cous) = erT(u1) + coT (uz) for all wy,us €D and c1,co € C.

Definition 3. A linear operator T : D — H is called bounded, if we have a
number ¢ € [0, +00) such that

1Tu|| < cfjull forall weD (2)

holds true. Then the norm of T is defined by

Tu
IT|:= sup 17wl _ sup  ||Tull= sup  [|Tul. (3)
weD,uz0 Ul wep, juy<i weD, [[uf=1

Remark: The Example 2 in § 1 contains an unbounded operator with 7' := — A.

Definition 4. Let Dr, Dz denote two linear subspaces of the Hilbert space 'H.
Then the mapping _

T: DT —H
is called the extension of the bounded linear operator T : Dy — H , if the
following properties are satisfied
a) Dr C D’f’
b) Tu=Tu for all u € Dr.

We then write T C T.

For bounded operators it suffices to define them on dense subspaces of Hilbert
spaces due to the following

Theorem 2. (Extension theorem)

Let T : D — 'H denote a bounded linear operator, and the linear subspace D C
H lies dense in the Hilbert space H. Then there exists a uniquely determined
bounded extension T D T satisfying Dz ="H and IT|| = |IT|.

Proof:

1. We define T : H — 'H as follows: Taking f € H we have a sequence
{fn}n=1,2.. C Dr satistying f, — f (n — o0) in H. Now {1 f,}n=12..
gives a Cauchy sequence in H on account of

1T fr = Thmll = T (fn = S| S NT N fr = finll = 0 (n,m — o0).

Therefore the limit lim T'f, exists, and we set

n—oo

Tf:= lim Tf,, fe€H.

n—oo
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This notion is uniquely determined: Taking namely a further sequence
{f1}n=1,2,.. C Dr satistying f;, — f (n — o0) in H, we observe

T fu=Tfll S NTN o= Foll SNTHUfn = £+ 1 = S2lD) = 0 (n — 00).

Finally, we note that T f=Tf forall f € Drp.
Now the relation

1T == sup |Tfl= sup |Tfll= sup |Tf]|=]T]
fem, |fl<1 feDr, |flIs1 feDr, |flls1

is correct. Furthermore, the operator T : H — H is linear: For two ele-
ments
f=lim f,, ¢g= lim g, from H
n—oo n—oo

with {f,}n C Dr and {g,}» C Dr we have the equation
T(af +Bg) = T( lim (afn + Bgn)) = lim (aTfu+ BTgy)
=a lim Tf,+( lim Tg, = afquﬁTg

for arbitrary a, 8 € C on account of the continuity of T.
If T, T : H — H are two extensions of Dy on H, we have

(T-T)(f)=0 forall feDr.
Since Dy C H lies dense and (T — f) :'H — 'H is continuous, we infer

(T-7)(f)=0 forall fe™H

and consequently T=T. q.e.d.

Theorem 3. Let T : H — H denote a bounded linear operator in the Hilbert
space H. Then we have a uniquely determined linear operator T* : H — H
such that

(Tf,g9)=(f,T"g)  forall f,ge™H (4)

s correct. Furthermore, we have

T =TI and T =T,

which means that the operation * is an involution.

Definition 5. The operator T is named the adjoint operator of T .

Definition 6. A bounded linear operator H is called Hermitian if H* = H
holds true, which means

(Hz,y) = (z, Hy) for all z,y e H.
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Proof of Theorem 3:
-Uniqueness: Let Ty and Ty be two adjoint operators to T: Then (4) yields

(f,Thg) = (Tf,g9) = (f,Teg) forall f,ge™H

as well as (f, (Th —Tz)g) =0 for all f,g € H, and consequently 71 = T.
-Existence: For a fixed g € H we consider the bounded linear functional

Ay(f) = (9, Tf), feH.
This is bounded on account of

[Ag(DE< Mgl < (lglITIDIF for all - f € H.

We apply the Representation theorem of Fréchet-Riesz: For each g € H
we have an element ¢* € H with the property

(9, Tf)=Ag(f) = (9", f) for all f € H.

We now set T*g := g*, and the so-defined mapping T : H — H has the
property (4).

-Linearity: We take the elements g1, go € H and the numbers ¢y, co € C. With
the aid of (4) we then calculate

(T (c191 + c292), f) = (191 + c292, T'f)
=c1(91, Tf) + c2(92, T f)
=a(T"g1, f) + c2(T7g2, f)
= (e1T"g1 + 2T ga, f) for all f e H.
-Boundedness: At first, we note that

(Tf,g)=(f,T"g)=(T""f,g)  forall f,geH.

Therefore, T is an involution. With the aid of (4) we obtain the following
estimate

ICET I < ITf gl < ITHIf Mgl for all - f,g € H.
Inserting f = T*g, we obtain
IT*gll* < ITHIT*glllg]

and consequently
1T*gll < 1T[llgll;

which means

1Tl < 7).
Since T is an involution, we infer
1T = N7 < 7]
Consequently, the relation ||T|| = | T*|| is correct. q.e.d.
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Ezxample 1. Let the following cube in R™ be given, namely
Q= {x: (1,...,2n) €R™ ¢ |z §Rforj:1,...,n}

whose sides have the length 2R € (0, +00). Then we consider a Hilbert-Schmidt
integral kernel

K=K(z,y):QxQ—CeLQ x Q,C). (5)

On account of
/ |K (z,y)|?dz dy < oo
QxQ
we have a null-set N C @ with the following property: For all z € Q \ N the
function y — K (z,y) is measurable on @ and [ |K(z,y)|? dy < oo is satisfied.
Q

Furthermore, we have
J([E@Pd)ar= [ g@pPdedy = K] < o0
Q Q QxXQ

due to the Fubini-Tonelli theorem. Taking f € L?(Q, C) we define the Hilbert-
Schmidt operator

/K(I,y)f(y)dy, reQ\N
Kf(x) = 5 .
0

(6)
, z€eN
The Holder inequality yields
Kf@P < ([ 1K@P ) 117
Q
for all z € @ \ N and integration with respect to x € @ gives
[t@par< ([ 1K@o)P ddy) 112 = 1K1
Q QxQ
and finally
K< IENIfl - forall fe L*Q,C). (7)

We therefore obtain the following
Theorem 4. The Hilbert-Schmidt operator K : H — H from (6) with the

integral kernel (5) represents a bounded linear operator on the Hilbert space
H = L*(Q,C), and we have the estimate

K| < 1K]]-
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Remarks:

1. The singular kernels
K = K(z,y) € Sa(G,C) with « €[0,n)

generate special Hilbert-Schmidt operators. The statements from § 2, The-
orem 3 and Theorem 4, valid for these special operators, will later be uti-
lized to obtain regularity results concerning the solutions of the integral
equation.

2. The kernel

K*(z,y) = K(y,z) € L*(Q x Q,C)

generates the adjoint operator K* belonging to the Hilbert-Schmidt oper-
ator K.

3. The operator K is Hermitian if and only if the following identity is satisfied:

K(x,y) = K(y,z) a.e.in QX Q.

We now shall investigate the inverse of a linear operator.

Definition 7. Let T : Dy — H denote a linear operator on the subset Dy C H
of the Hilbert space H with the range Wy := T(Dr) C H. Furthermore, let
the mapping

e z € Dr
be injective. Setting f := T 'g the inverse T~' : Wp — Dp C H of the
operator T is then defined if T f = g holds true. We note that

Dy =Wy,  Wrpo1 = Dr.

We immediately obtain the following

Theorem 5. The operator T—' : Wy — Dr is linear and does exist if and
only if the equation
Tx =0, x € Dr

possesses only the trivial solution x = 0.

Theorem 6. (O. Toeplitz)

LetT : H — H denote a bounded linear operator in the Hilbert space H. Then
the operator T possesses a bounded inverse in H - namely T~' : H — H - if
and only if the following conditions are satisfied:

a) For all x € H we have | Tz|| > d||z| with a bound d € (0, +00).
b) The homogeneous equation T*x = 0 admits only the trivial solution x = 0.

Proof:
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‘= We assume that the bounded inverse 7! : H — H exists. Then we have
a number ¢ > 0 satisfying

Tz < |z forall = eH.
With z := T f we infer
1
ITfl= N1

Therefore the condition a) is fulfilled with d := _.
If 2 € H is a solution of T*z = 0 we deduce

(Tz,z) = (2, T"2) = (,0) =0 for all =€ H.

Inserting the element x = Tz, we obtain z = 0.

‘" At first, we show that Wr C H is closed: Let {yn}n=12.. C Wr denote
an arbitrary sequence with y, — y (n — o0) in H. We set y, = Ty,
n=1,2,..., and with the aid of a) we get the inequality

1
ln = 2mll < g = ymll =0 (2,0 — ).

This implies x,, — & (n — 00) , and the continuity of 7" yields

Tx=T(lim z,)= lim Tz, = lim y, =y € Wr.
n—oo n—oo n—oo
Consequently, Wr is closed in ‘H, and we have the orthogonal decompo-
sition
H=Wr & Ws.

Now we take z € Wfp‘ and obtain
0=(2,Tx)=(T"z,x) forall zeH

and finally 7*z = 0. The condition b) therefore yields z = 0 and conse-

quently H = Wy, which means T is surjective. The injectivity of T follows

immediately from a). Consequently, 7! exists and is bounded due to a)
with 1

I <

q.e.d.

Remark: If H : H — H is a bounded Hermitian operator satisfying
||Hz|| > d|z]] forall zeH

with the number d € (0,400), then Theorem 6 implies the existence of the
bounded inverse H~! : H — H.
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Theorem 7. Let T : H — 'H denote a bounded linear operator in the Hilbert
space H. Furthermore, let the bounded inverse T—1 : H — H be defined. Then
the operator T* possesses an inverse (T*)~1, which is defined and bounded in
H. Furthermore, we have (T~1)* = (T*)~L.

Proof: According to the assumptions we see
1T || < cf|z|| for all z € H.
When we insert the element = T~y into the relation
(Tz,y) = (z,T"y) forall yeH

we obtain
lyll? < IT~ Tyl < ellylllI T*y|

and consequently
. 1
1Tyl = llyll  forall ye™.

Theorem 3 and the relation
Ty f=T"f=Tf
imply, with (T*)*f = 0 then f = 0 holds true. Due to Theorem 6 the inverse
(T*) ' H—H

exists, and we have
1T~ < 1T

Let the elements f,g € H be chosen arbitrarily. With x = T7'f and y =
(T*)~'g we then obtain the relation

(f,(T") 7 g) = (Ta,y) = (2, T*y) = (T f,9) = ([, (T )"g).
Consequently, the identity (7*)~! = (T~1)* is correct. q.e.d.

In the Hilbert space H we consider a closed linear nonvoid subspace M C ‘H ,
and the Projection theorem yields the decomposition H = M & M. Noting
that

f=fH+f €H  with freM, fre M+

holds true, the following definition for a projector P is sensible:
P:H—-M via f=fi+ fo— Pf:=f1.

We consider
IPfII? = 11017 < IFI1P forall fe™H



72 VIII Linear Operators in Hilbert Spaces

and

[PFI=Ifll forall feM.
The norm of the projector consequently satisfies
I1P] = 1.
Furthermore, we observe
P?2f=PoPf=Pf and consequently P?=P in H

and we conclude

(Pf,g) = (f1,91+g2) = (f1,91)
:(f1+f27gl):(fvpg) for all f?QEHa

which means P = P*.

Definition 8. A bounded linear operator P : H — 'H is a projection operator
or a projector if the following holds true:

a) P is Hermitian, which means P = P*;

b) P2=P.
Theorem 8. Let P : H — 'H denote a projector. Then the set
M= {ge’H : g=Pf withfeH}
is a closed linear subspace in H. Furthermore, we have
f=Pf+(f-Pf) € MoM".

Proof:

1. We show that M = P(H) is closed: Let {gn }n=1,2,... C M be a sequence
with g, — ¢ (n — o0) in ‘H. On account of g, = Pf, with f, € H we
infer

Pgn:P2fn:an:gn-

Since P is continuous, Pg = g follows and consequently g € M.
2. We take f € H , set f1 := Pf and fy := f — Pf , and observe f; € M.
Furthermore, all h € M satisfy

(fo;h) = (f = Pf.h) = (f = Pf,Ph) = (Pf — P*f,h) = 0.

Consequently, fo = f — Pf € M~ is correct. q.e.d.
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Remark: In the Hilbert space ‘H let the linear subspace M C ‘H be given. The
sequence {g;};=1,2,.. is assumed to constitute a c.o.n.s. in M. Then we have

Jo
PMf:Z(wjvf)QOjv fGH

Jj=1

with jp € NU {OO}

In Physics the energy of a system is measured with the aid of bilinear forms.
Linear operators are then attributed to the latter.

Definition 9. A complex-valued function
B(.,.):HxH—-C
is named a bilinear form if
B(f,cig1 + c292) = 1 B(f, 1) + c2B(f,g2)  forall f.g1,92 € H
Bleifi + caf2,9) = a1B(f1,9) + 2B(f2,9)  forall fi,f2,9€H

and all c1,co € C holds true. The bilinear form is Hermitian if

B(f.g)=B(g.f)  forall fgeH (9)
is correct, and we name B symmetric if
B(f.g)=B(g.f)  forall fgeH (10)

holds true. For real-valued bilinear forms the conditions (9) and (10) are equiv-
alent. The bilinear form B is bounded if we have a constant ¢ € [0, 4+00) with
the property

\B(f; )l <clflllgll forall f,ge™. (11)

A Hermitian bilinear form is strictly positive-definite if we have a constant
¢ € (0,+00) such that

B(f.f)zclf|*  forall feH (12)
1s satisfied.
Remarks:

1. Alternatively, one calls (12) the coercivity condition.
2. For a given bounded linear operator T : H — H, we obtain with

B(f,g) = (Tf,9), fLge™H

a bilinear form. This is bounded on account of

(B <ITFIlgll < ITHIAMNgl,  frg €.

If T is Hermitian, the bilinear form is Hermitian as well since we have

B(f,g9)=(Tf,9)=(f,Tg9)=(Tg,f)=DB(g,f), f,geH.
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We now address the inverse question.

Theorem 9. (Representation theorem for bilinear forms)
For each bounded bilinear form B = B(f,g) with f,g € H, there exists a
uniquely determined bounded linear operator T : H — H satisfying

B(f,g)=(Tf,g)  forall fgecH. (13)

If B is Hermitian then T is Hermitian as well.

Proof: For a fixed element f € ‘H we obtain with

L¢(g):==B(f,9), geH

a bounded linear functional on H. According to the representation theorem
of Fréchet-Riesz we have an element f* € ‘H with the property

(f%9) = B(f,9) = Ly(g9)  forall geH. (14)
Now f* is uniquely determined by f , and we set
Tf:=f", feH.
1. The operator T : ' H — 'H is linear: We calculate

(T'(crfr+c2f2),9) = Blerfr + cafz,9) = a1 B(f1,9) + c2B(f2, 9)
=c(Tf1,9) +c2(T fa,9) = (T f1 + 2T f2,9)

for all f1, fo,9 € H and all ¢1,c0 € C.
2. Since the bilinear form B(f,g) = (Tf,g) is bounded, we have

[(Tf, 9)l <cllfllllgll forall f,g €H.

With g = |I£§H we easily comprehend the inequality
ITf <cllf[l  forall feH,

and we conclude
IT) < ¢ < 4o0.

3. If B is Hermitian, we see

(Tf,9)=B(f,g9)=B(g, f)=(Tg,f)=(f,Tg) forall fgecH.

Therefore T is Hermitian. q.e.d.

Theorem 10. (Lax, Milgram)
Let B : H x H — C denote a Hermitian bilinear form, which is bounded due
to

IB(f.9)l < lfllgll forall fgeH (15)
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and satisfies the following coercivity condition
B(f.f)zc |fI*  foral feH. (16)

Here the constants 0 < ¢~ < ¢ < 400 have been chosen adequately. Then we
have a bounded Hermitian operator T : H — H satisfying |T|| < ¢ and

B(f.9)=(Tf.9)  foral fgeH. (17)

This operator possesses a bounded inverse T—' : H — H which is Hermitian
and subject to

1
=M<
&

Proof: Due to Theorem9, we have a Hermitian operator T' : H — H with
IT|| < ¢t and the property (17). Together with (16) we arrive at

NP <BU N =TLHNH<ITIINfI forall feH

and consequently
ITfl =z clIfl forall fe™H. (18)

According to the Theorem of Toeplitz then T possesses a bounded inverse
T-!: H — H, which is Hermitian due to Theorem 7. Finally, the relation
(18) implies

1
1=l = c~ q.e.d.

Remarks:

1. The Theorems 9 and 10 remain valid for real bilinear forms, if we replace
"Hermitian’ with 'symmetric’.

2. Theorem 10 gives us the basic result for the weak solvability of elliptic
differential equations.

85 Unitary operators

Definition 1. Let H and H' denote two Hilbert spaces with the inner products
(z,y) and (z,y)'. Then the linear operator V : H — H' is called isometric if
the following holds true:

(V£Vg) =(f.g)  foral fgeH. (1)

Remarks:
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1. With the isometric operator V : H — H' we calculate

!/
V=Vl = IV(f =l = (V(f = 9),V(f - 9))
Therefore the relation f # ¢ implies Vf # Vg , and consequently V is

injective.
2. The operator V is bounded. Noting that

WV =VVEVE =V =IfIl  forall feH

(2)

we infer
Vi =1 (3)
3. We have Dy = H for the domain of definition of an isometric opera-
tor V, and the range Wy C H’ is closed. We take a sequence g, =
Vin € Wy, n = 1,2,... satisfying g, — g (n — o0) and observe

that {fn}n=1,2,.. C H is a Cauchy sequence due to (2), namely
1fo = frull* = llgn = gml"* = 0 (n,m — ).
This implies f,, — f € H (n — o0) and furthermore
g= lim g, = lim Vf,=V(lim f,)=Vf € Wy,

since V is continuous. Consequently, Wy C H is closed.

4. In the case dimH = dimH' < +oo, the injectivity implies the surjectiv-
ity. For infinite-dimensional Hilbert spaces H and H’ this is not true, as
illustrated by the following example:

Ezxample 1. We consider the so-called shift-operator in Hilbert’s sequential
space H :=ly =: H':

V:H—H,
(x1,22,...) — (0,...,0,21,22,...).
Evidently, the operator V is isometric; however, it is not surjective.

Definition 2. An isometric operator V. : H — H' is called unitary if V :
H — H' is surjective, more precisely V(H) =H'.

Remark: For a unitary operator U : H — H’ there exists its inverse U ™! :
‘H' — 'H, and we have the identity

(UL UT ) =UoUT fUoU ) = (frg)  forall fgeH (4)

on account of (1). Therefore, the inverse U1 is unitary as well.
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Definition 3. Let H and H' denote two Hilbert spaces with the inner products
(x,y) and (x,y)’. Furthermore, T and T’ are two linear operators in H and
H' , respectively. Then the operators T and T’ are named unitary equivalent,
if there exists a unitary operator U : H — H' satisfying

T'=UoToU " (5)

Theorem 1. A bounded linear operator V : H — H is unitary if and only if
VieV=VoV*=E (6)
s correct. Here the symbol E : H — 'H denotes the identity operator.

Proof:

‘=’ At first, we remark that V : H — H is isometric if and only if

(V*oVfg)=VfVg) =(fg) = (Efg)  forall fgeH

or equivalently
VeV =E

is valid.
If V is unitary, we have the existence of V~! : H — 7. From the last
relation we infer V* = V! and therefore Vo V* =E .

‘<=’ Now let the identity (6) be satisfied for V' : H — H. Then we infer
V~1 = V*. In particular, the operator V is surjective and isometric as
well according to the following relation:

(f,g)=(V*oVfg) =(VfVg)  forall fgeH.

q.e.d.

We now shall prove the Theorem of Fourier-Plancherel (compare Chapter VI,
§3, Theorem 1). At first, we present the transition from Fourier series to the
Fourier integral: Taking ¢ > 0 arbitrarily, the functions

{ 1 JM}
6 c
V2¢ keZ

constitute a complete orthonormal system of functions on the interval [—¢, 4.
For all
f € L2([7C, +C]a R) n Cg((fcv +C)a R)

the completeness relation yields the following identity:
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T 2 = T 1 T ikx
_/clf(:z:)l dx_k_zooj_/cmec f(x) da

’ 2

00 1 te 2
= ¢ tky d ‘ )
> ol [etrsway

k=—o0

We set
+c

g(x) := \/127r /eixyf(y) dy, r €R,

—C

and zy = Tk for k € Z. Then we obtain x, — xx—1 = 7 and

+c

[erswan] =, [Verg(an

—C

1

2
2c )

= "lg(@)? = lg(an)P (@ — xi1)

for all k € Z. For all ¢ > 0 the following identity holds true:

“+c

+oo
/ F@Pdr= 3 lg@@n)P @, — 2 1).

“e k=—o0

The transition to the limit ¢ — +o00 yields

+oo +oo
[f(@)?de = [ lg(x)” da. (7)
/ /

We expect the operator

—+o0

Tf(x):= \/127T / e f(y) dy, reR (8

— 00

~—

to be unitary on the space L?(R).
More generally, we define Fourier’s integral operator on the Euclidean space
R™ as follows:

1

Tf(z) = o

[ i@y, aere (9)

RTL
We shall prove that 7' : L?(R™) — L?(R") is unitary.

At first, we determine T from (8) explicitly for the characteristic function
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1, a<z<bd
Pap(T) = p(a,b,x) = : (10)
0, z<aorz>0b
We calculate
N b
i —a
Tpap(0) = Jon / e Yoap(y) dy = Jon (11)

and for x # 0 we evaluate

+oo b

1 . 1 .
Toep(x) = eV, dy = /e”yd
cosle) = o [ ey = [ ey "
- 1 [eizy}y:b - 1 eib:c _ eiaz
V2rlir ly=a  /2r 1z

Proposition 1. For Cauchy’s principal values

1 oo ihz 1 1 ; ihx 1 1 +oo ihz 1

e — (& — e —
h) = dr =l d d
w(h) = _ 7[ o2 Elﬂ)l{ﬂ_/ 42 :c+7T/ 22 :c}

— 00 — 00 +e

we have
w(h) = I,  heR

Proof: Taking an arbitrary h > 0 , we consider the holomorphic function

ethz —1  14ihz+ L(ih2)2+...—1
) (13)
:ZZ+..., zeC\ {0}

For 0 < € < R < 400 we utilize the domain
Gs,R::{ZGC ;e <|z| <R, Rez>0}
with the boundary in the positive orientation
[-R, —e] UK. U [+¢,+R|U Kr = 9G; g.
Here we have defined the semicircle
Kr: z=Re"¥, 0<p<m,

and the following semicircle
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-K. : zzaei“’, 0<p<m

negatively run through. Since f is a holomorphic function in G¢ r , Cauchy’s
integral theorem yields the following identity:

£ 1 +R h 1
61 xT __ 61 T
0= / f(z)dz:/ 2 d:v—l—/ 2 dx
G- n “rR +e , (14)
ezhzild ezhzild
+ L2 z — 42 z
KR _Ke

for all 0 < e < R < 4+00. With the aid of (13) we now calculate

th= 1 ih ih
lim © 5 dz = lim (Z +...)dz = lim ‘ dz
|0 z el0 z |0 z
—K. —K. —-K.
(15)
” '
= lim M eeiv dp = -—hm.
el0 cew
0
Futhermore, we deduce
eihz _ 1 T exp {ih(cosgp +dsin gp)R} -1 _
_ D LiP
/ .2 dz = / R202i iRe'™ dp
Kr 0
— ;/efinp{eithosapethsinnp - 1} d(p
0
and estimate for all R > 0 as follows:
et —1 1 i —hRsin
’/ L2 dz §R/1'{1~e Y+ 1}de
Kr 0
<™ 0 (R — +00)
— — ).
- R
This implies
) eihz -1
lim , dz=0 forall h>0. (16)
R—+o00 z
Kr

In (14) we observe the transition € | 0 and R T +oo . With the aid of (15)
and (16) we obtain the identity
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+oo

ithx 1
T
and consequently
w(h) =—h for all h>0. (17)
Via the substitution y = —x we evaluate
—€ +oo
1 eih(fx) -1 1 eih(fsn) -1
—h) =1 d d
¥(—h) ;{g{w/ 22 ~’C+7T/ 22 f”}
— 00 €
+oo . —€
Ly 1/ezhy_1d+1/€emy_1d
TR Y2 - 2 Y
€ —0o0

— (k) forall heR.
Finally, we obtain the following identity from (17):

P(h) = —|h| for all heR.

q.e.d.
Proposition 2. With respect to the inner product in L*(R,C) we see
0, if —o<a<b<c<d<+4oo
(T'¢a,p, Tpe.a) = . - (18)
b—a, if —co<a=c<b=d< 4+

Proof: We utilize (12) and calculate

1 +oo( —ibx 7iax)( idx icx)
e —e T —e
Toab, Tocq) = d
+oo . . .
1 ez(d—b)w _ ez(c—b)m _ ez(d—a)w =+ ez(c—a);ﬂ J
T on ][ 2 -
If —oo<a<b<c<d< +oo is fulfilled, Proposition 1 implies
1
(Tan, Toea) = o {(d = b) = ple—b) = ¥(d— a) + ¥(c — a)}

1
= 2{b—d+c—b+d—a+a—c}=0.

If —oo < a=c¢<b=d< 400 holds true, we obtain
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dzr

+oo
1 1— ei(cfb)z _ ei(dfa):v +1
(Tap, Tpe,a) = ]l 72

2

— 00

= {wle-D+vd-a)} = fe—bta-d)

1
f72{2a—2b}:bfa. qed.

Let the rectangle
Q= {x:(xl,...,xn) ER" : aq <o < by fora:l,...,n}

in R™ be given. We decompose the interval [a, by] into the parts
aa:xgo)<I&1)<...<xgma):ba for a=1,...,n

and set
[ka) = [plha=1) p(ka)]

for 1 <k, <mgy and o = 1,...,n. Finally, we define the following rectangles
for k= (k1,...,kn) € N with 1 <k, < mg:
I® = 1% 5 s k) c R,
We define the characteristic function of the set I(*) by
1, zeI®
S0”'”(27){o,gceJRa"\joc)

and similarly

(@) 1, xeféka) : 1
P k) () = or a=1,...,n.
fo 0, z € R\ I

Then we see
gﬁl(k)(ir) :(p[ikl)(zl) 'sﬁlr(bkn)(l'n), x € R™ (19)

Now we calculate
1

Torm(r) = Jor"

/Bi(m'y)%(k) (y) dy

]R'n.

400 | .
eyl etrnYn

= < Jon wlikl)(yl)dyl) < Jon SQIT(Lkn)(yn)dyn> (20)

— 00

= T(Plikl) (1) ... T<P1£kn)(33n)~
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For the admissible multi-indices k& = (k1,...,k,) and | = (I1,...,1,) we de-
duce

(T, Torm)

= / (Tsplikl) (171) et T(plﬁn)(xn)) (Tsplill) (171) M TQOIS”) (:17")) dx
R"

= (T@I{kl),TSDI{ll)> . (Tsplflk")’T(pfr(f"))

= |Il(k1)| et |IT(Lk")| 576111 et 5knl

n

= |I(k)|6k¢1l1 6k: !

ntn

and consequently

IR k=1
(Terw, Torw) = 0, Rl (21)
Here we have set
10| = glhe) — gla=D) g [I®) = 1) 1),

We summarize our considerations to the following

Proposition 3. Let ¢ := @ with k = (k1,...,k,) and 1 < ko < myg for
a=1,...,n be chosen. Then we have the inclusion

Ty € L*(R™)
and furthermore the equation

(Tor, Tor) = (¢k, 1) holds true for all admissible k1. (22)

We now consider the linear subspace D C L?(R") of the step functions in R".
They consist of all those functions f satisfying the following conditions:

1. Outside of a rectangle @ C R™ the relation f(z) = 0 is correct.
2. There exists a decomposition Q = (J T (k) of the rectangle as above, and
k

we have the representation
f@) =" crpn
k

with the coeflicients ¢, € C and the characteristic functions g := @) .

Proposition 4. For all step functions f,g € D we have
(T'f.Tg)=(f.9)
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Proof: We choose a rectangle @ D supp (f)Usupp (g) and find a canonical
decomposition of @, such that

f:ZCksOk, g:Zdstz-
k 1

Therefore, we obtain

(Tf,Tyg)= (Z cT'or, Z dszﬁl) > erdi(Ter, Teor)

k,l

chdl @ka@l (f?g)

k.l q.e.d.

We now consider the integral operator

— 1 —i(z-y)
S ¢2Wn./e f)dy,  feD,

RTL

and note that
Sf=TFf, fenD. (23)

Since T : D — L?(R™) represents a linear bounded operator, this is the case
for S as well. Furthermore, the operator S is isometric on account of

(Sf,S9)=(Tf,Tg)=(Tf,Tg)=(f 9)=(f9)
for all f,g € D.

Intermediate statement: We have the identity

(Tf,9)=(f,S9) for all f,geD.

Proof: We now calculate

wro= [ (
Q

e f(y) dy)g(w) da

\/217r / e ") f(y)g(x) dy da
/f / —eVg(z) d:zc) dy
= (f,959).

We sum up our considerations to the following
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Proposition 5. Let D denote the set of all step functions in R™. Then the

operators
T,S:D — L*(R")

are isometric, and S is adjoint to T which means
(T'f.Tg) = (f,9) = (Sf.S9) (24)

and
(Tf,9)=(f.S9) (25)
for all f,g € D.

Now the linear space D C L?(R") lies dense, and consequently for each f €
L?(R™) we have a sequence

{fk}kzl_rz)m cD with ||fk — fHL2(Rn,) — 0 (k — OO)

Therefore, we can uniquely extend the bounded operators T,S of D onto
L?(R™) as follows:

Tf:= klim T fx, Sf = klirn S fr. (26)
The relations (24) and (25) yield
SoT =T"cT=E=80S=ToS on D,

and we infer
SoT=E=ToS on L*R"). (27)

Consequently T : L2(R™) — L?(R™) gives us a unitary operator satisfying
T*=S=T""
From (26) we now shall derive a direct representation of T and S as follows:
We choose
fe L3R := {g € L*(R™) : supp(g9) C R™ is compact}.
For f € L3(R™) we have a sequence {f}x=12, .. C D such that
Supp(f)7 Supp(fk)CQv k:1527
- where Q C R™ is a fixed rectangle - and

ILf = frll2(@) — 0 (k — o0)

holds true. For all x € R™ we obtain the estimate
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ThH@) - / D f(y) dy| = ﬁ} [t - fw)ay
Q

< m / i) — F)l dy (28)

< \/%n VIQIIfx = fllza@) = 0 (k — o0)

and consequently

HTfk(:v) - \/217_(71 /ei(m‘y)f(y) dy’
Q

Together with (26) we obtain

1 .
Tf)— , o [TV f(y)d
61 o [0

§||TfTfk||Lz(Rn)+HTfk(x)\/21 n/ @D f(y) dy)

0 (k — o). (29)

L2(R™)

L2 (Rn)

T L2(R"
Q
— 0 (k — 00).
For all f € LZ(R™) therefore the relation
1 ,
Tf(x)= - /ei(z'y)f(y) dy a.e.in R" (30)
Vor b

is correct. Taking f € L?(R") arbitrarily, we choose a sequence of rectangles

Qi1 CQ2C... with UQk:Rn
n=1
and set
f($>a S Qk
fe(z) = . .
0, zeR \ Qrk
Then the relation || fx — f| 2@n) — 0 for (k — o0) is valid, and (26) yields
1 .
Tf=lim Tf, = Lim——70 [ @Y f(y)dy, 31
f= lim Tf Ton / f(y)dy (31)
k
Sf=lim Sfy = lim. ! - / e @) £ (y) dy. (32)
k—oo \/27-‘—

Qk
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Here the symbol l.i.m. denotes the limit for ¥ — oo in the quadratic means,
more precisely in the L?(R")-norm.

We summarize our considerations to the following

Theorem 2. (Fourier, Plancherel)

According to (31), the Fourier integral operator T : L*(R™) — L*(R") ea-
ists and is unitary. Additionally, the adjoint integral operator S : L?(R™) —
L2(R™) from (82) is unitary, and we have

SoT=ToS=E  on L*R").

86 Completely continuous operators in Hilbert spaces

We owe the following notion of convergence to David Hilbert:

Definition 1. In the Hilbert space H a sequence {xp}n=12,.. C H is called
weakly convergent towards an element x € H, symbolically x,, = x (n — 00),
if the relation

lim (z,,y) = (z,9) forall yeH

n—oo

1s satisfied.

Ezample 1. Let {¢;}i=1.2,... denote an orthonormal system in the Hilbert space
‘H, and we observe

o = osll = /(01 = 0501 = 03) = /(01 00) + (05, 05) = V2

for all 4,5 € N with i # j. Consequently, {¢;}i=12, .. does not contain a
subsequence which represents a Cauchy sequence with respect to the Hilbert
space norm. According to Bessel’s inequality, all f € H are subject to the
estimate

> i HP < NIFIIP < +o0,
=1

and we infer
lim (p;, f)=0=(0,f) forall feH.
We therefore obtain ¢; — 0 (i — o0) and note that

0]l < limint [|;]| = 1.
11— 00

Theorem 1. (Principle of uniform boundedness)

On the Hilbert space H let the sequence of bounded linear functionals A, :
H — C with n € N be given, such that each element f € H possesses a
constant ¢y € [0,400) with the property
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AL f] <y, n=12,... (1)
Then we have a constant o € [0, +00) satisfying
|[An| < « for all neN. (2)
Proof:
1. Let A:H — C denote a bounded linear functional such that
|Af] <c¢ forall feH with |f— fol <e.

Here we have chosen an element fy € H, a quantity € > 0, and a constant

¢ >0 . Then we have

2
4] < =,
E

Setting « := ! (f — fo) we infer ||| <1 and

1 1 1 2c
x| =|2Af = Afo| < (1441 +1450]) <
e e e e

and finally [|A < *°.
2. If the statement (2) does not hold true, part 1 of this proof together with

the continuity of the functionals { A, },, enables us to construct a sequence
of balls

Zn::{feH: ||f—fn||§an}, neN

satisfying Xy D Xy D ... with e, | 0 (n — o0) and an index-sequence
1 <ny <ng <...such that

| A, x| > j forall ze€X; and j=1,2,... (3)
is correct. Evidently, the relation (3) yields a contradiction to (1).

q.e.d.

Theorem 2. (Weak convergence criterion)
Let the sequence {Tn}n=1,2,.. C H be given in a Hilbert space such that all
elements y € H possess the limit

lim (2,,y).

n—oo

Then the sequence {x,}n is bounded in H and weakly convergent towards an
element x € H, which means x,, — x (n — o).

Proof: We consider the bounded linear functionals

An(y) = (zn,y), yeEH
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with the norms ||A,|| = ||z.|| for n =1,2,... . Since the limits

lim A, (y) = A(y)
exist for all y € H by assumption, Theorem 1 gives us a constant ¢ € [0, +00)
with ||2,| = ||An|| < ¢ for all n € N. This implies ||A] < ¢, and due to the
representation theorem of Fréchet-Riesz we have exactly one element x € H
satisfying

Aly) = (z,y), yeH

for the bounded linear functional A . We obtain

lim (z,,y) = lim A,(y) = A(y) = (z,y) forall yeH

n—oo n—oo
which means z,, — z (n — 00). q-e.d.

Though it is not possible in general to select a subsequence convergent with
respect to the norm out of a bounded sequence in a Hilbert space (compare the
Example 1 above), we can prove the following fundamental result (compare
Theorem 7 in Chapter I, § 8 for the special case H = L?(X)):

Theorem 3. (Hilbert’s selection theorem)
Fach bounded sequence {xn}n=12.. C H in a Hilbert space H contains a
weakly convergent subsequence {Tn, }r=12....-

yeen

Proof:

1. The sequence {zy, }n=1,2,... is bounded and we have a constant ¢ € [0, +00),
such that
|zn ]| < e, n=12... (4)

is correct. On account of

[(z1, 2n)] < c||z1]| forall neN

we find a subsequence {xﬁﬂ)}n C {zn}n, such that lim (:vl,xgll)) exists.

n—oo
Noting that
(22, 20| < ||| forall neN
we select a further subsequence {xg)}n C {xg)}n whose limit exists,
namely lim (x2, :cg)). The continuation of this procedure gives us a chain
n—oo

of subsequences
{zn}n D {w;”}n ) {xg)}n S...D {xg@)}n’
such that the limits

lim (2, z(F)

n
n—oo
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exist for ¢ = 1,...,k. With the aid of Cantor’s diagonal procedure we
get the sequence x’ := a:,(ck). Then the sequence {(x;, 1) }r=1,2,... is con-
vergent for all 7 € N. Denoting the linear subspace of all finite linear
combinations by M ;| namely

N(z)
T = Zaixi, a; €C, N(z)eN,
i=1

the following limits exist:

klim (v,zp")  forall ze M. (5)

Now we make the transition to the linear closed subspace M C M C H,
and the following limits exist as well:

klim (y, zx") for all y € M. (6)
Here we note that we can extend the bounded linear functional
Aly) = lim (2’ y) = lim (y,2)/),  yeM

continuously onto the closure M . Due to the Projection theorem each
element y € H can be represented in the form y = y; + yo with y; € M

1
and yo € M. This implies the existence of
lim (y, ') = lim (y1 + o, 22") = lim (y1,21")
k—o00 k—o00 k—o00
for all y € H. Consequently, the sequence {z}'}r=12, .. in the Hilbert space

‘H converges weakly. qed

Remarks to the weak convergence:

1.

2.

If the sequence z,, — x (n — 00) converges strongly, which means
lim |z, —z| =0,
n—oo

then it converges weakly x,, = = (n — o0) as well. For arbitrary elements
y € 'H we namely deduce

(@0, y) = (2, 9)] = [(2n — 2, 9)] < |z = 2[llly]] = 0 (n — 00).

The norm is lower-semi-continuous with respect to weak convergence. This
means

Tp = (n—o00) = liminf|z,| > ||z, Tn,x €H
n—oo
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for a real Hilbert space H. We namely observe

lnll* = ll2l* = (@0, 2n) = (2,2) = (20 — @, 20 + )

= (zp —z,2y — ) + 2(x — Ty, ), n=12...,
and consequently
liminf ||z, ||* — ||z||* = liminf ||z, — z|* + 2liminf(z — 2,,2) >0
n—oo n—oo n—oo

and finally
liminf ||z, ]| > ||z

3. From z,, = 2 (n — o0) and y, — y (n — o0) we infer (z,,yn) — (z,7)
(n — 00). Here we utilize the estimate

[(@nsyn) = (@,9)] = (20, yn) = (@0, ) + (20, y) — (2, 9)]
< |(wnayn - y)' + |(‘T’ﬂ - xvy)|
< llyn —ylllzal + (20 — 2,9)[ = 0 (n — o0).

Definition 2. A subset X C 'H of a Hilbert space is named precompact, if
each sequence {yn}tn=1,2.. C X contains a strongly convergent subsequence
{Yny, ti=1.2,... C{Yn}n , which means

klllgloo ||ynk — Yny H =0.

Definition 3. A linear operator K : Hy1 — Ha is called completely continuous
or alternatively compact, if the following set

Y= {y:Kz :x € Hy with ||z Sr} C Ha

is precompact, with a certain radius r € (0,+00) given. This means that each
sequence {xn fn=12,. C Hi with ||z,]l1 <7 for n € N contains a subsequence
{Zn, tk=1,2,... such that {Kxy, }r=12,... C Ha converges strongly.

Remarks:

1. It suffices to choose r = 1 in Definition 3.

2. A completely continuous linear operator K : Hi — Hs is bounded. If this
were not the case, there would exist a sequence {zp}n=12,.. C Hi with
lzn]li = 1 for all n € N and [|[Kz,||2 — +00 (n — o0). Therefore, we
cannot select a convergent subsequence from {Kx,, },=12, .. in the Hilbert
space Hso . This yields a contradiction to Definition 3 .

Theorem 4. Let K : H1 — Hs denote a linear operator between the Hilbert
spaces Hy1 and Ho. The operator K is completely continuous if and only if for
each weakly convergent sequence x, — x (n — 00) in Hy the statement
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Kz, — Kz (n — 0) in Ha

follows. Consequently, the operator K is completely continuous if and only if
each weakly convergent sequence in H; is transferred into a strongly convergent
sequence in Hy .

Proof:

‘<" Let {xn }n=12,.. C H1 be asequence with ||z,]1 < 1,n € N. According to
Hilbert’s selection theorem we have a subsequence {zp, }k=12,.. C {Tn}n
satisfying

T, = (k — 00) in Hi.
By assumption
is fulfilled for the subsequence yy,, = Kz,,, k = 1,2,... . Consequently,

the operator K : H; — Hs is completely continuous.

‘=’ Now let K be completely continuous, and {xy,}n=12,.. C Hi denotes
a sequence satisfying z, — z = 0 (n — o0). We then have to prove:
Kz, - Kx =0 (n — 00) in Hy . If the latter statement were false, there
would exist a number d > 0 and a subsequence {x,'},, C {z,}n satisfying

|Kz,'|| >d>0  forall neN.

Since the operator K is completely continuous, we have a further subse-
quence
{22 "} C{z,} with Kz,” -y (n — ).

Therefore, we obtain with the statement

O < d2 S (y7y> = hIIl (yaK'rnN) = hm (K*yvxn”) = (K*yvo) =

n—oo

a contradiction. q.e.d.

Remarks about completely continuous operators:

1. If K : ' H — 'H is a bounded linear operator with a finite-dimensional range
Wk = K(H), then K is completely continuous.

2. If Ty : Hy — Hg and T3 : Ho — H3 are two bounded linear operators, and
Ty or T, is completely continuous, then the operator

T:ZTQOTllHlﬂHg

is completely continuous as well. If the operator 1 is completely contin-
uous for instance, then the weakly convergent sequence z,, — x (n — 00)
in H; is transferred into the strongly convergent sequence Tz, — Tiz
(n — o0) in Hz . Since T is continuous, we infer

Te, =TeoTix, = ThoTix =Tz (n — o0) in Hs.
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3. The operator K : H — 'H is completely continuous on the Hilbert space H
if and only if the adjoint operator K* : H — H is completely continuous.
Proof: Let K : H — H be completely continuous, then the operator K o K*
is completely continuous as well. From an arbitrary sequence

{n}tn=12,.. CH with |jz,]| <1, neN

we can extract a subsequence {xn, }r=1,2,. such that {K o K*x,, }, con-
verges strongly in H . We infer

”K*‘Tnk - K*‘T’ﬂz”2 = HK*(‘T’ﬂk - xnz>”2
= (K*(:'L.nk _‘Tnz)vK*(w’ﬂk _‘T’ﬂz))
= (KOK*(Ink 7xnl)7xnk *xnz)
< HKOK*(‘TWC _‘Tnz)HHw’ﬂk _‘T’ﬂz” —0 (kvl - OO)

Consequently, the sequence {K*z,, }x=1,2,.. converges in H, and the op-
erator K* is completely continuous.
The inverse direction can be seen with the identity K = (K*)*.

4. Let A:H — H be a completely continuous Hermitian linear operator on
the Hilbert space H. Then the associate bilinear form

a(z,y) = (Az,y) = (z, Ay),  (z,y) EHxH

is continuous with respect to weak convergence. This means with z,, — x
(n — o0) and y, — y (n — o0) in H we have the limit relation

(Tn, Yn) — a(z,y) (n — 00).

Proof: This follows immediately from Remark 3 concerning the weak con-
vergence combined with Theorem 4.

Definition 4. Let H denote a separable Hilbert space with two c.o.n.s.
Y = {%‘}i:l,z,... and Y = {1/%'}1':1,2,...-

The linear operator T : H — H has a finite square-norm if
N(Tig, ) = | S [(Tn )P < 400
ik=1
holds true.

Proposition 1. Let T : ' H — H denote a linear operator as in Definition 4
with N(T;,%) < +00. Then we have

ITI < N(T50,9) = | D ITill> (7)
i=1
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Proof: At first, we observe

= > 1Tl = (1T ) 2) = Z 1Tl
ik=1 i=1 k=1
With the series -
f= ch- i € H
i=1
we calculate -
Tf= ZCiTQDi
i=1

and consequently

T <D lelITeill-

=1

This implies

TN < ([ D leil? | Do IT @il = IFIIN(Ts0,9)  forall fe™
i=1 i=1

and therefore | T|| < N(T; ¢, ). q.e.d.
Proposition 2. We consider with

o={pitiz12,..., ¢ ={¢}ti=12,... Vv={itiz12,..., ¥ ={}iz12,..

four complete orthonormal systems in H. Then the identity N(T;¢,v) =
N(T; ¢, ¢") = N(T) holds true - defining the square-norm. Furthermore
N(T) = N(T*) is correct.

Proof: We calculate as follows:

N(T;0,9)* = > [(Ten b)) = D | Teill?
i,k=1 i=1
i k=1 ik=1

||T*¢;CH2 = Z T*’l/)krvgoz
i,k=1

s L[]8

(W TENP = > UTeLv)l> = N(T;¢,¢).
i,k=1

-
e
Il

1
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From the identity above we also infer N(T') = N(T™). q.ed.

Proposition 2 implies that the square-norm is independent of the chosen
C.0.N.8.

Example 2. On the rectangle
Q= {x: (X1,...,2n) ER™ : a; <x; <b; for i = 1,...,n}

let the kernel K = K(z,y) : Q x Q — C € L*(Q x Q,C) with

[ 1K@y dsdy < 400 0
xXQ
be given. As in the Example 1 from §4 we define the Hilbert-Schmidt operator

= /K(x,y)f(y) dy for almost all =z € Q.

According to Theorem 4 from §4 , the linear operator K : L?(Q) — L?(Q) is
bounded by [[K|| < |K| r2(ox0)-

Statement: The Hilbert-Schmidt operator K has the finite square-norm

N(K) = /|K(w,y)|2dxdy<+oo. )
QxQ

Proof: Let {p;(z)}i=1,2,... constitute a c.o.n.s. in L?(Q). Then we set

wi(x):/K(:v,y)gpi(y)dy:Kgoi(:v) a.e.in Q for i=1,2,...

We calculate

ilwi(x)F i’/K (. y)pily dy‘
i=1 =

= / K (z,y)|* dy,
a

and Fubini’s theorem yields

JRLERl d:cdy/iwz e =3 /w}z 2 da

QxQ Q =t

= Z Kepi|* = N (K)*.
i=1
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Of central significance is the subsequent

Theorem 5. On the separable Hilbert space H let T : H — H denote a linear
operator with finite square-norm N(T) < 4+oc. Then the operator T : H — H
is completely continuous.

Proof: Let the sequence f,, — f = 0 (n — o00) be weakly convergent. If
{@i}i=1,2,... represents a c.o.n.s. in H, we have the expansion

o0

Jn = ZCZ%'

i=1

with _
lim ¢, =0 for i=1,2,... (10)
and -
SlalP<M* for n=1,2,... (11)
i=1

According to Proposition 1 the operator T': H — H is continuous, and we
infer

Tf, = i cfngoi
i=1

and furthermore

N
175l < | Y T
=1

oo
+H Z cingpi
i=N+1

N
< H Z ch T
i—1

o0 oo
D2 Il D ITel
i=1

i=N+1
With the aid of (11) we obtain
N 0o
ITfall < || S bl + M| S0 IT@il2, m=12... (12)
=1 i=N+1

Given the quantity € > 0 , we choose an integer N = N(g) € N so large that
o0
M| Y ITeil? <e
i=N+1

is attained. Observing (10), we then can choose a number ng = ng(c) € N
such that
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N(e)
H Z T
=1

is correct. Altogether, we obtain the estimate

<e for all n > mng

ITfnll < 2e forall n>ng
with the quantity € > 0 given. Therefore, T'f,, — 0 (n — 00) holds true. g.e.d.

Remark: According to Theorem 5, the Hilbert-Schmidt operators are com-
pletely continuous.

Definition 5. With the completely continuous operator K : H — H on the
Hilbert space H we associate the so-called Fredholm operator T := E — K :
H—H by

Tr:=Ex— Kr=x— Kz, r € H.

Using the theorem of F. Riesz we now prove the important

Theorem 6. (Fredholm)

Let K : ' H — 'H denote a completely continuous linear operator on the Hilbert
space H with the associate Fredholm operator T :=E — K. Then we have the
following statements:

i) The null-spaces
Nt = {er : Tx:O}

of the operator T and
Nps = {er : T*:v:O}
of T* =E — K* fulfill the identity
w :=dim Ny =dimNp- € No=NU{0}. (13)
ii) The operator equation
x— Ke=Tzx =y, reH (14)

is solvable for the right-hand side y € H if and only if y € N%‘* 1s correct,
which means

(y,z2) =0 for all z € Np- (15)

is satisfied.
i) If w = 0 holds true, the bounded inverse operator T~ : H — H ewists.

Proof:
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At first, we show dim Ny < +o0. If this were violated, there would exist
an orthonormal system {¢; }i=1,2, .. satisfying

OZTQOZZQDZ*KQDZ, 221,2,

Since the operator K is completely continuous, we can select a subsequence
{@i,}i=1,2,... € {pi}i such that ¢;; — ¢ (j — o0) in ‘H. This contradicts
the statement

loi — @il =v2  forall i,je€N with i#j.

Therefore, we see dim Nt € Ng. With K the operator K* is completely
continuous as well, and we comprehend dim N7« € Nj.
We now decompose H into the closed linear subspaces

H = Ni & Nr. (16)
Furthermore, we assume
dim N7 < dim Np-.

If this were not the case, we could replace T by T* and T* by T** = T.
Finally, we set

Wr:=T(H) and Wr. = T*(H).
We now have y € Wi if and only if
0=(y,Tx) = (T"y,x) forall zeH

is correct, and therefore T*y = 0 or equivalently y € N7« holds true. This
implies

N« = Wi or equivalently Wr = N, (17)
In particular, the range of T is closed in H. We now consider the ortho-
normal basis

{Sola"w@d} CNT

in M7 and the orthonormal basis

{¢15"'7wd*} CNT*
in Np« satisfying 0 < d < d* < +oo. We modify the operator T and
obtain a Fredholm operator

d
Sz =Tz — Z(gﬁi,x)d)i, reH. (18)

i=1

On account of (16) and (17), the null-space of the operator S evidently
satisfies
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Ns:{IGH: Sa::O}:{O}.

Theorem4 from Chapter VII, §4 of F.Riesz implies that the mapping
S : H — 'H is surjective. Consequently, d* = d and moreover dim N7 =
dim N7~ is correct. Furthermore, the mapping T : N%‘ — N is invert-
ible. In the special case

w = dim Ny = dimNp- =0

the theorem of F.Riesz quoted above guarantees the existence of the
bounded inverse operator on the entire Hilbert space H.

q.e.d.

Remark: Theorem6 is especially valid for linear operators K : H — H on
the separable Hilbert space H with finite square-norm N(K) < +o00. We can
estimate the dimension of the null-space for the operator T due to

dim N7 < N(K)?2 (19)

If {¢1,...,paq} namely denotes an orthonormal system in AN, we enlarge it
to a c.on.s. {¢;}i=1,2,... in H and obtain

[e'S) d
N(K)? =Y 1Keill* =) 1K@l
i=1 i=1

d
= Z lgill? = d = dim Nop.

=1

We now collect our results for Hilbert-Schmidt operators in the following

Theorem 7. (D. Hilbert, E. Schmidt) On the rectangle Q = [a1,b1]x...X
[an, by let the integral kernel

K=EK(r,y):QxQ—CeL*QxQ)

be given. We consider the linear subspaces of L*(Q) satisfying

N / K(r.y)fw)dy = fz), feL*Q),
Q

N / K*(,y)b(y) dy = v(@), ¥ € LA(Q),
Q

with K*(x,y) :== K(y,x) for (z,y) € Q@ X Q, and the following statement
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dimN = dim N* < / |K (2, y)|* do dy < +o0 (20)
QxQ

holds true. The right-hand side f(z) € L?(Q) given, the integral equation

UW%i/K@wM@ﬁw:f@% we IX(Q),
Q

can be solved if and only if

/f(x)w(:r) dr =0 for all € N*
Q

1s satisfied.
Proof: The Hilbert-Schmidt operator

Kf()i= [ K@iy [e1¥@)
Q
has the finite square-norm

N(K) = / | K (z,y)|?dz dy < +00.
QxQ

Due to Theorem 5, the operator is completely continuous with the adjoint
operator

KW@%=/KW%wﬂw@, fe Q).
Q

From Theorem 6 and the subsequent Remark we infer the statements given.
q.e.d.
In the bounded domain G C R™ we consider the weakly singular kernels
K =K(z,y) € S.(G,C)
from § 1, Definition 1 with « € [0,n) and their associate integral operators
Kf(@)i= [ K@iy 2€0,
G (21)
for feD:=CG,C)nL>®G,C).
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Proposition 3. Let the kernel K = K(x,y) € So(G,C) with the properties

/IK(x,y)ldySM, z € G,
¢ (22)
/ K(z,y)ldz <N, yeG,
G

be given. Then the operator K : H — H can be extended from D onto the
Hilbert space H = L*(G,C) , and the following estimate holds true:

IK|| < VMN.

Proof: Taking arbitrary functions f,g € D we estimate as follows:

(9, Kf)| = )/@(/K(I,y)f(y)dy) d:c)
G G

< / K (2, )l 9(2)] £ ()] dx dy

GG

= [ (K@ wElo@)) (1K@ ) dedy

GG

<(/ Kaplla(@)? do dy) / K|l ) dwdy)
GRG GRG

= ([wr( [ieia)a) ([irwr( [ikel)a)’
G G G G

<VMN /Ig(x)|2d$ /If(y)|2dy = VMN]|glllIf]-
G G

Consequently, the operator K : H — H is defined with |K|| < VMN. q.e.d.

We define
0, 0<t<1
O):={t—1,1<t<2.
1 2<t

)

With K = K(z,y) € Sa(G,C) and 6 € (0,dp) we consider the continuous
kernels

Ks(z,y) = K (x,y) @('x S y ). @y eGxa, (23)
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together with their associate integral operators Ks. For all 6 € (0,dp) the
operator Ks : H — H is completely continuous due to Theorem 5. With the
aid of Proposition 3 we easily deduce the limit relation

IKs — K|| — 0 (§ — 0). (24)

The complete continuity of K is inferred from the following

Proposition 4. On the Hilbert space H let the sequence of completely con-
tinuous operators A; : H — H for j = 1,2,... be given, converging due to
14; — Al — 0 (j — o0) towards the bounded linear operator A : H — H.
Then the limit operator A : H — H is completely continuous.

C H with ||zx|| < 1 for all k € N,
we can select a subsequence {x,(j)}k C {xk}x such that {Alw,gl)}k:m,___ CH

Proof: Taking the sequence {xj}r=1,2

yeen

converges. Furthermore, we have a subsequence {x,(f)}k C {,T](Cl)}k such that

{Ale(f)} r C H converges. In this way we successively select subsequences
1 2
{zM o 2Py o

and go over to the diagonal sequence zj := ,T](ck) for k =1,2,.... We then
show the sequence {Axz} }r—1,2,. to be convergent in H as well: At first, we
estimate

[ Az, — Axj|| < [| Az, — Ao || + ([ A2, — Aoyl + ([ Ajz; — Az

< |JA = Ajllllall + 1Ay — Ajaill + |45 — Allll]l-
With a given quantity € > 0 , we now choose an index j € N so large that
[|[A— A;|| < e is correct. Furthermore, we chose an integer N = N(¢) € N

satisfying
|4z, — Ajx)|| <e  forall k,I>N.

From the relation (25) we obtain the inequality
|Ax) — Axj|| <26 +e=3¢c  forall k,l> N(e).

Therefore, the sequence {Ax} }r=12, . convergesin H. q.e.d.

yeen

Theorem 8. (Weakly singular integral equations)

On the bounded domain G C R™ let the weakly singular kernel K = K (x,y) of
the class So(G, C) with o € [0,n) and the integral operator K be given. Then
the null-spaces

N /K(w,y)w(y)dyzw(w), reG; ¢peD
G

N* / K(z,y)(e)de = b(y), yeG eD
G
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satisfy the identity dim N = dim N* < +oo . The integral equation

ul) - / K(yuly)dy=f(z), z€G weD,  (26)
G

can be solved for the given right-hand side f € D if and only if the following
condition holds true:

/w(ac)f(ac) =0  forall v eN*. (27)
G

Proof: On account of Proposition4 the integral operator K : H — H is com-
pletely continuous, and Fredholm’s Theorem 6 can be applied in the Hilbert
space H = L?(G,C) . We still have to show that (26) is solvable in D .
Therefore, let u € H be a solution of the integral equation

Eu—Ku=f (28)

with the continuous right-hand side f € D. According to the Theorem of
I. Schur on iterated kernels (compare §2, Theorem4) there exists an integer
k € N, such that K*¥ = L with a bounded kernel L = L(z,y) € So(G,C) is
correct. From Theorem 2 in § 2 the property Lu € D is satisfied. Via (28) we
now obtain the following identity:

Fu—TLu=Fu—Ku=E+K+...+ K 1)f =g (29)

Due to §2, Theorem 2 we have E+K+...+K*"!: D — D and consequently
g € D. Finally, we obtain

u=g+LueD. g.e.d.

87 Spectral theory for completely continuous Hermitian
operators

At first, we consider the following

Example 1. On the Hilbert space H = L?((0,1),C) with the inner product

(f.9) = / f@)g(@)dz,  fgeH
0

we define the linear operator

Af(@)=af(@), ze(O1); [=f()eH.

On account of
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1 1
|AFI® = /x2f(x)f(x) dr < /If(f17)|2dfl7 = f1”
0 0

the operator A is bounded by ||A]| < 1. Furthermore, the operator A is sym-
metric due to

1
(41.9) = [2f(@)gle)dz = (f.49)  forall fgeh.
0

We now claim that A does not possess eigenvalues. From the identity Af = \f
we namely infer

(x =N f(z)=0 a.e.in (0,1)
and consequently f(x) =0 a. e. in (0,1) which implies f =0 € H.

Theorem 1. Let A : H — H denote a completely continuous Hermitian op-
erator on the Hilbert space H. Then we have an element p € H with ||¢| =1
and a number X\ € R with |\ = || A|| such that

Ap = Ao

Consequently, the numbers +||A|| or —||A|| are eigenvalues of the operator A.
Furthermore, we have the following estimate:

|(z, Az)| < |A|(z,x) forall x € ™H. (1)
Proof:
1. At first, we show
[Al = sup [(Az,z)]. (2)
z€H, ||z||=1

From the estimate
(Az, z)| < [|Az]| ||z]| < | All ll=]* = || Al
for all x € H with ||z|| = 1 we infer

sup  |(Az, z)| < | A]l.
z€H, ||z||=1

In order to show the reverse inequality, we choose an arbitrary a € [0, +00)
satisfying
|(Az, z)| < al|z)? forall zeH.

With arbitrary elements f, g € H we calculate

(A(f+9), f+9)—(A(f —9), f —g9) = 2{(Af,9) + (Ag, f)} = 4Re(Af, 9g)
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and consequently
A Re(Af, )l < [(A(f +9). f+ 9|+ |(A(f —9). f = 9)l
< ofllf +gl* +I1f = all*} = 2a{1I 717 + llgl1*}-

We now replace

iv (1l
[yl

P R

, y
]|

with a suitable angle ¢ € [0,27), such that the inequality

|y|2} — dalla] Iyl

&

Y
4|(Az,y)| < 2a{ ity 2 ¢ o

(]
follows and equivalently
|(Az,y)| < allzll |yl forall z,yeH.
Inserting the element y = Ax, we obtain
| Az||? < alz|| || Az|| or equivalently |Az|| < o]

for all € H, and therefore || A|| < a. Finally, we see

|(Az, )] < ol
> || All

forall z e H

sup  |(Az,z)| = inf {a € 1[0,400) :
z€H, ||z||=1

. We now consider the variational problem

Az, x
jal= sup 2O G a0
N weH, |]=1

: (3)

and without loss of generality we assume A # 0 . Let {z,}n=12.. C H
denote a sequence with ||z, || =1 for all n € N satisfying

(A, 20)| = [JA]] (n — o0).

Then we have a subsequence {z] }n=12,... C {Zn}tn=12,.. and an element
x € H with ||z]| <1, such that 2], = z (n — o0) and

(Azy,,27,) — A € {=[|A]l, 1A}

n'n

hold true. Since the bilinear form (y, z) — (Ay, z) is weakly continuous,
we infer

0#\= lim (A2}, 2}) = (Az,x)

n? n

and therefore 2z # 0. Now the condition ||z| = 1 holds true: If ||z|| < 1
were correct, we would obtain
Ax, A
() _
[l 1

1Al

contradicting (3).
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3. Without loss of generality we now assume A = +||A|| ; and the element
x € H satisfying ||z|| = 1 may solve the variational problem (3) from part
2 of our proof. We therefore have

(Az,z) = )\Hx||2

Taking an arbitrary element y € H, there exists a quantity eg = eo(y) > 0
such that all € € (—eg, &¢) fulfill

(A(z +ey),z+ey) < Mz + ey, x + €y)
and consequently
(Az, ) + e{(Az,y) + (Ay, 2)} < M|z]* + eM(@,y) + (y,2)} + o(e).
This implies
eRe(Az — Mz, y) < o(e),

and consequently Re(Az — Az,y) < o(1) for all y € H. Therefore, the
relation
Re(Ax — Az,y) =0 forall yeH

has to be fulfilled and especially

Ax = \x.
q.e.d.

Theorem 2. (Spectral theorem of F. Rellich)

Let the completely continuous Hermitian operator A : H — H be given on the
Hilbert space H satisfying A # 0. Then we have a finite or countably infinite
system of orthonormal elements {(pi}izl,27,,, m H such that

a) The elements @; are eigenfunctions to the eigenvalues \; € R ordered as
follows:

Al = [A1] = [A2] = |As] > ... >0,

more precisely
Aspi:)\igoiv i1=1,2,...

If the set {p;}i is infinite, we have the asymptotic behavior

,lim )\i =0.

11— 00

b) For all x € H we have the representations

Az = Z Ai(©i, )i and (z,Azx) = il (i, ) ]2

i=1,2,... i=1,2,...
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Remark: This theorem remains true for inseparable Hilbert spaces. If the
system {¢;};=1,.. n is finite, the series above reduce to sums.

Proof of Theorem 2: On account of ||A|| > 0, Theorem1 yields the existence
of an element p; € H with ||¢1]| = 1 satistying

Apr = A1, A1 € {—[|All, +[[All}-
Furthermore, we have
[(Az, )| < |M|(z, ) forall zeH.

We now assume that we have already found m > 1 orthonormal eigenelements
Y1, .-, pm With the associate eigenvalues A1, ..., A\, € R satisfying the prop-
erty a). Then we consider the completely continuous Hermitian operator

Bz = Az — Z Xi(@i, )i
i=1
Case 1: We have B,,, = 0. Then the following representation holds true:

m

Ax = Z)\i(gpi,x)gpi.

i=1

Case 2: We have By, # 0. According to Theorem 1 we have an element ¢ € H
with ||| = 1, such that B, = A¢ and consequently

Ap = Xili p)pi = Ap
=1

is satisfied with |A\| = ||Bn| > 0 . Multiplication by ¢ with k €
{1,...,m} from the left yields

Ak, ) = (o, Ap) — Ak, ) = (Apr, ©) — Mi(@r )
Z)\k(gok,(p)—)\k(gok,go)zo, k=1,...m.
Therefore, the system {¢1,...,¢m, ¢} is orthonormal as well; we set
Om+1 = @ and Apy1 := A # 0. Now we deduce |Api1| < |Am|: By
construction the following estimate
[(z, Bmx)| < |Am|(z, x) forall zeH

holds true, and for x = ¢,,+1 we obtain

Al 2> [(@m+1; Bmem+1)| = [(Pmt1, At 19m+1)| = [Ama -



108 VIII Linear Operators in Hilbert Spaces

We now assume that the procedure above does not end. Since the elements
{i}i are orthonormal, we infer ¢; — 0 (i — oo) and the complete continuity
of the operator A yields

|Ail = [[Awill = 0 (i = o0).

On account of || By, || = |Am+1| we obtain the statement

= [Amt1| =0 (m — o0) (4)

HA - i Ai(pis )i
=1

and consequently
Az = Z)\i(goi,:c)%, z € H.
i=1
Therefore, all y = Az with x € H can be represented in the form

y="> (piv)ei,

=1

which means the system {p; };=1,2, ... is complete in W4 = A(H) .

yeen

q.e.d.

Theorem 3. The Hermitian operator A : H — H with finite square-norm
N(A) < 400 satisfying A # 0 is defined on the separable Hilbert space H . The
operator A may possess a countably infinite system of orthonormal eigenele-
ments {@;}i=1,2,... and associate eigenvalues {\;}i=12,.. with the properties
a) and b) from Theorem 2. We set

n

=1

Then the sequence of square-norms

NA)?P= D> X, n=12...
i=n—+1

is a zero sequence.
Proof: Noting that N(A) < +oo , the operator A : H — H is completely
continuous and Theorem 2 gives us the representation

o0

y=> (piy)p; forall yeWa.

i=1

We observe the decomposition H = W4 ® Na. The relation y € N4 or
equivalently Ay = 0 holds true if and only if
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0= (Ay,x) = (y, Ax) forall zeH
is satisfied, which means Ny = Wy.

Let now {¢;};=1,2, .. represent a c.o.n.s. in N4. Then the set {¢;}; U {1}
constitutes a c.o.n.s. in H. This allows us to evaluate

=S 1Ail? + 3 A2 = Y 22 < +oo
=1 i=1 =1

and finally

Z | Angps | + Z | Antil|? = Z A =0 (n— o0).

i=n+1 q.e.d.

We specialize the Theorems 2 and 3 to Hilbert-Schmidt operators and imme-
diately obtain the following

Theorem 4. (Spectral theorem of D. Hilbert and E. Schmidt)
On the rectangle @ C R™ with n € N let the integral kernel K = K(x,y) :
QxQ— CeL*Q xQ) be given satisfying

/ |K (2,y)]* dedy >0
QxQ
and
K(y,z) = K(z,y) for almost all (x,y) € Q x Q. (5)
Then we have a finite or countably infinite system of eigenfunctions

{pi(®) }iz1,2,.. C LQ(Q» C)

with the associate eigenvalues {\;}i=1,2,.. C R, such that the following
integral-eigenvalue-equation

/K(w,y)gpi(y) dy = \ipi(x) for almost all = € Q (6)
is satisfied with i = 1,2,... . The eigenvalues have the properties
A1] > A2 >...>0 and lim \; = 0. (7)

Furthermore, we have the eigenvalue expansions

/ |K(z y)|2d:cdy*Z)\2 < 400 (8)

QxQ =1

/‘ Z)\z% )i (y ‘dwdy: i M =0 (n—o0). (9)

QxQ 1=n+1
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88 The Sturm-Liouville eigenvalue problem

We need the following result:

Theorem 1. (Eigenvalue problem for weakly singular integral oper-
ators)

Let the weakly singular kernel K = K(x,y) € So(G,C) with o € [0,n) be
given on the bounded domain G C R"™, and we have K(x,y) £ 0 and

K(z,y) = K(y,x) forall (z,y) e GRG.
We denote the associate integral operator by K, and define as our domain of
definition
D := {f € C'(G,C) : sup|f(z)| < +oo}.
zeG
Statements: Then we have a finite or countably infinite orthonormal system

of eigenfunctions {@;}icr C D with their eigenvalues A\; € R\ {0} fori e I
satisfying

/K(I,y)%—(y) dy = Nipi(r), = €G, i€l (1)
G

If I =11,2,...} is countably infinite, we have

lim \; =0, (2)

11— 00

and each function g = Kf with f € D can be approzimated in the square-mean
due to

n—oo

lim / }g(w) - igigoi(x)r dx = 0. (3)
P i=1

Here we have set
gi = /goz(:v)g(x) dx, iel (4)
G
for the Fourier coefficients. When we additionally assume « € [0,7), the

' 2
function g = Kf with f € D can be expanded into the following uniformly

convergent series:

g(z) = ng(:v)» req. (5)

Proof: As it has been elaborated in the proof of Theorem8 from §6 , the
operator K : H — H is completely continuous on the Hilbert space H =
L?(G,C). Furthermore, we have the regularity result

Ev—-Ku=v with ueH and veD = u€eD. (6)
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Due to Rellich’s spectral theorem from §7, Theorem 2 the operator K pos-
sesses a finite or countably infinite system of orthonormal eigenfunctions
{¢i}i=12,.. C H. Then we have the identities

/K(%y)%’(y) dy = Nipi(x), z€G
G

foralli=1,2,... with [A;] > |A2] > ... >0and \; — 0 (i — o0), in the case
that infinitely many eigenfunctions exist. According to the regularity result
(6) we see @; € D for i =1,2,.... Furthermore, the function ¢ = Kf with an
arbitrary element f € D satisfies the following identity in the Hilbert space:

g=Kf= > X fei= > (Kgi flei

i=1,2,... i=1,2,...

= Z (i, Kf)pi = Z (is 9)pi

i=1,2,... i=1,2,...

or equivalently (3), with the Fourier coefficients g; defined in (4). When we
additionally assume o € [0, ) , the linear operator K : L?(G) — C°(G) is
bounded by

IKfllcoqey < Cllfllz2e  forall feD

due to Theorem 2 from § 2. Therefore, the series

> (i fei

i=1,2,...

convergent in the Hilbert space H = L?(G,C) is transferred by the operator
K into the uniformly convergent series

> )\i(sﬁi,f)%:K( > (Sﬁi,f)%'):g-

i=1,2,... i=1,2,...
q.e.d.

Theorem 2. (Expansion theorem for kernels)

Let K = K(x,y) : G x G — C denote a Hermitian integral kernel of the class
So(G,C), which is continuous on G X G . For the associate integral operator
K we assume

(f,Kf)>0  foral feD. (7)

Then we have a representation by the uniformly convergent series in each
compact set I' C G as follows:

K(z,y) = ZAiSDi(x)(pi(y>’ (z,y) e I'x I (8)
i=1
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Proof:
1. We show at first that
K(z,x) >0 forall zeG 9)

is fulfilled. Here we utilize the function ¢ = (y) : R™ — [0, +00) € C°(R™)
satisfying

o) =0, [yl>1, and /ﬂwsz
R’n

The quantity § > 0 given arbitrarily, we consider the approximate point
distributions about z € G, namely

fs(y) = ;nsa((ls(y*x)), y € R™.

We insert the function fs; € D into (7) and obtain

osmxm://ﬁ@Kmamaww

R” R»
— [ [ )t ts) dydz
Rn Rn
+ [ @2 - K@) tswiss(e) dy s
Rn Rn

= K(z,x) +//(K(y,z) — K(z,z))fs(y) fs(2) dy dz.
Rn Rn

Since the second term on the right-hand side vanishes for 6 — 0, we infer
(9).
2. We now show the validity of
O<Z)\|g01 ))? < K(x,2) < 400 for all z€G. (10)

We define the integral kernel
N
Kn(z,y) = K(@,y) = Y Nigi(@)eily
i=1
with the associate integral operator Ky. The latter satisfies

(f,Knf) = Z Ml(gi, IR >0 forall feD.
1=N+1
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From part 1 of our proof we obtain Ky(x,x) > 0 for all z € G or equiva-
lently

N
K(x,x) > Z)\igpi(ac)goi(:v), reG

for all N € N. This implies (10).

. Let the point x € G be chosen as fixed. For an arbitrary quantity € > 0

we then can estimate

> wi@ei )l < | D0 Mle@) | D Nileiw)l?
i=N+1 i=N+1 i=N+1

Ss\/K(y,y)§5~const, y € G,

for all N > Ny(e). Therefore, we have the following statement for each
fixed x € G:

The series &@(y) := Z Aiwi(z)pi(y) converges uniformly in  G. (11)
i=1
. According to Theorem 4 from §7 we have the relation
K(z,y) = Z Aipi(z)pi(y) (12)
i=1

in the L?(G x G,C)-sense. Choosing the point z € G and the function
f € CY(G) arbitrarily, we obtain the following identity via (11) and (12):

N
/K(w,y)f(y) dy = Nligloo/ (Z/\m(w)%(y))f(y) dy
G c =1

= [ (o re@et) s as
G =1

This implies

[ (K@) - Y @) fdy=0  forall £ e CH(G)
i=1

G

Since K € C°(G x G) holds true, and the series in the integrand is con-
tinuous with respect to y € G, we deduce the pointwise identity

K(z,y) =Y Agi(@)pi(y)  forall z,yeG. (13)
=1
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5. Especially for x = y we infer the following identity from (13):
K(z,z) =Y Nlgi(@)?, 2€G.
i=1

According to Dini’s theorem the series converges uniformly on each com-
pact set I' C G. Finally, we obtain the following inequality for arbitrary
e > 0 and suitable N > Ny(¢g), namely

| Y de@e@)| < | X Me@l | Y Aleiy)? <&

i=N+1 i=N+1 i=N+1
for all (z,y) e I' x I q.e.d.

Theorem 3. (The Sturm-Liouville eigenvalue problem)
We prescribe a,b € R with a < b and the coefficient functions

p= p(:z:) € Cl([avb]v (Oa +OO)), q= Q(x) € CO([avb]vR)a

and consider the Sturm-Liouville operator L : C?([a,b],C) — C°([a,b],C)
defined by

Lu(z) := —(p(x)u'(x))" + q(z)u(x), x € [a, b].

Furthermore, we use the real boundary operators B; : C?([a,b],C) — C for
7 =1,2 defined by

Biu := ciu(a) + cou/(a) with ¢} +c3 >0
and

Bou := dyu(b) + dou/ () with d3 +d3 > 0.
Finally, we fix the domain of definition

D= {u € C*([a,b],C) : Bju=0= Bgu}.

Statements: Then we have a sequence {A;}i=1,2,... C R of eigenvalues satis-
fying
—0 <A <A <.l and lim A\; = 400

11— 00

and the associate eigenfunctions {p;}i=1,2,... C D with the following proper-

ties:

a) We have

yeen

b
Lo; = Aipi, /gpi(:v)goj (x)dx = §;; forall i,j5 €N,
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and the identity

o b 9 b
;)/%(:v)f(w)dw‘ =a/|f(:v)|2dx forall feD

a

1s satisfied.

b) Each function g € D can be expanded into the uniformly convergent series

on the interval [a,b] as follows:

- b
g(x) = Zgi%(iﬂ)» z € [a,b], with — g; == /wi(w)g(:v) dr, i€N.
=1 a

¢) If the property \; # 0 for all i € N is satisfied, the following series

oo

Z ;_‘Pi(w)%(y)» (x,y) € la,b] x [a,b]

X3

converges uniformly towards the Green function K of L under the boundary
conditions B; = 0 = Bs.

Proof: We continue our considerations from § 1 concerning the Sturm-Liouville
eigenvalue problem.

1.

All eigenvalues of L. are real. Since the coeflicient functions p and ¢ are real,
we obtain the following statement from Proposition1 in § 1 via separation
into the real and imaginary part:

b b
/Lu(m)v(x) dx = /u(w)Lv(:v) dx for all w,v € D. (14)

We calculate

b

b b
)\i/|<Pi(fU)|2d$ = /)\i%(fﬂ)%(fﬂ) dw:/L%’ ; dx

a a
b b

= /cpil[,gpi dr = /gai)\igai dzr

b
:)\i/|30¢(:6)|2dx, i=1,2,...

This implies
i =N\ for all 7€ N.
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2. We now prove that the sequence of eigenvalues is bounded from below.
Here we consider the class of admissible functions

Dy = {u = u(z) € C*([a,],C) : u(a) =0 = u(b)}.
If u € Dy is a solution of Lu = Au, we infer

A>q.:= inf q(x). (15)

a<z<b
With the aid of partial integration, we evaluate

b b

)\/ |u(z)|? do = /\/u(x)u(x) dx = /bLu(w)u(w) dx

a a a

b
> 4. / Ju(z) 2 da.

We now show indirectly that the operator I on D possesses at most two
eigenvalues smaller than g,. On the contrary, we assume that we had three
eigenfunctions 1, 2, @3 € D satisfying

Lg&i = )\igﬁi, = 1,2,3 and )\1 < )\2 < )\3 < Q-

Then we can find numbers oy, a2, a3 € C with a1 |* + |as]? + |as]? = 1

such that .
V= Z a0; € Do
i=1

is correct. On account of (15) we see

b b

0 / o)) de < / Lo(x) v(x) dz = / (Z)\%%)(i%‘%)dx

a a

b 3
/ZA Pl b 33 [[3 Pt

i=1
b
= )\3/|v(:17)|2 dx.

We obtain A3 > ¢, in contradiction to A3 < gx.
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3. We name \; € R the least eigenvalue of L. on D, existing due to part 2 of
our proof. Then we obtain in

L=L-ME+E

a Sturm-Liouville operator with the eigenvalues e > 1 ,k=1,2,.... Due
to Theorem 1 in §1 the operator L on D possesses a symmetric Green’s
function K = K (x,y),(x,y) € [a,b] X [a, b] of the class C°([a, b] X [a, b], R).
We now take Theorem 2 from § 1 into account and utilize Theorem 1 for
the given integral equation. Then we obtain a sequence of eigenfunctions
{gﬁi}izlﬁz,,,, C D satisfying

L(pi = /\iSDia i €N, and A <A< — oo

From Theorems 1 and 2 we immediately infer all the statements above.
q.e.d.

89 Weyl’s eigenvalue problem for the Laplace operator

We need the following generalization of the Gaussian integral theorem, which
does not require regularity assumptions for the boundary of the domain with
vanishing boundary values:

Proposition 1. (Giesecke, Heinz)
1. Let the bounded domain G C R™ be given, in which N € Ng mutually
disjoint balls
K-::{xGRn: |xfx(j)|§rj}, ji=12...,N

with their radii v; > 0 and their centers \9) are contained. We set

N
G =G\ {zW,... 2N} and  G” ::G\UKj.

Jj=1

The topological closure of the set G is denoted by G”.
II. For the two functions u,v € C*(G") N C°(G") we assume

ulog = 0 = v]ag; / {|Au(w)| + |AU(:E)|} dz < +o00.
G//

Statement: Then the following identity

N
/(vAu + V- Vu)de = — Z / vaa: ds2; (1)
J

G j:1\1_1<j)|:rj

holds true. Here the symbol v; denotes the exterior normal to K; and df2; the
surface element on the spheres {x : |v — 2| =r;} = 0K, forj=1,...,N.
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From Proposition 1 we immediately infer the subsequent

Proposition 2. With the assumptions from Proposition 1 we have Green’s
identity
N

/(vAu—uAv)dx:—Z / (U;Z_—ug:j)dﬂj. 2)

G =Yy )=,

Proof of Proposition 1:

1. At first, we assume that v € C§(G) is satisfied in addition to the assump-
tions above, and we consider the vector-field f = vVu. Then the Gaussian
integral theorem yields the identity

N
/(vAu+Vv~Vu)d:c: —Z / 'Ug: ds;. (3)
J

G" j:1|m_m(j)\:m.

We approximate an arbitrary function v € C?(G’)NC°(G") by a sequence
{vk}r=1,2,.. as follows: Let {wy(t)}r=12.. C C(R,[0,1])) denote a se-
quence of functions with the properties

1
L
wg(t) = 1 k=1,2,...
0, [t] <

The functions ,

o (t) == /wk(s)dS, teR
0
then satisfy

er(0) =0, @h(t) =wi(t), k=12,...,

and we estimate
/ 2
|gpk(t)ft|:’/(wk(s)fl)ds < . k=12
0

Now we define the sequence
vp(xz) = prp(v(x)), z€qG”, k=1,2,... (4)
and consider the relation
2
[or(z) —v(@)] = lek(v(z)) —v(@)| < | — 0 (k — 00)
for all z € G”, which implies

v (z) = v(z) (k — ) uniformly in  G”. (5)
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. We now prove that
E = {:v eG" : v(z) =0, Vo(z) # O}

represents a Lebesgue null-set: Here we choose the point z € E arbitrarily.
Taking the quantity € > 0 sufficiently small, the set

En{zeG’: |xfz|<€}

constitutes a graph, and is consequently a Lebesgue null-set due to the
theorem on implicit functions. We exhaust the set G’ with the aid of the
cube decomposition. For each point z € E we consider a sufficiently small
cube z € W C G” such that W N E is a Lebesgue null-set. Now the set E
consists of a countable union of those sets W N E, and the o-additivity of
the Lebesgue measure yields the statement above.

. For all points € G” \ E we deduce

Vor(z) = @ (v(2))Vo(z) = wi(v(z))Vo(z) = Vo(z) (k- o0),

which holds true a. e. in G” due to part 2 of our proof. We insert v = vy,
into (3) and obtain

/(vau—i-Vvk Vu)d Z / vk 2, k € N.

G \z z@|=r;

Then we observe the passage to the limit £k — oo and see

v(x)Au(z) de + klirgo (Vo (x) - Vu(z)) de
G G

al ou(x) (6)
= _ Zl / v(x) o, ag;.
1= |lz—z(@)|=r;

Inserting v(z) = u(x) into (6) and noting that
Vg (z) = wg (u(z)) Vu(z),
we see

u(z)Au(x) dx + klin;o / wy (u(z))|Vu(z)? de

G G
N (7)

:_Z / ayj ) 4o,

|x x(ﬂ)\_rj

Fatou’s theorem now yields
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/ |Vu(z)|? de < 400 and / |Vo(x)? de < +oo. (8)
G// G//
On account of
Vo () - Vu(z)] = [wi(v(z))] [Vo(z) - Vu(z)]
1
<L (Vu@)* + |[Vo@)?),  wed”,

we have an integrable majorant for the limit in (6). By Lebesgue’s conver-
gence theorem the identity (1) follows.
q.e.d.

We now continue the considerations from §1 concerning the eigenvalue prob-
lem of the n-dimensional oscillation equation : Let G C R™ denote a bounded
Dirichlet domain. On the linear space

&= {u=ul@) € C*E)NCG) : ulog =0}
we consider Weyl’s eigenvalue problem
—Au(z) = du(z), =G, with we &\{0} and AeR. (9)
Proposition 3. All eigenvalues A of (9) have the property A > 0.

Proof: With u € £\ {0} we consider a solution of (9) belonging to the eigen-
value A € R. Then we infer

/|Au(x)|d:z: = |)\|/|u(x)|d:17 < +o0.
G

G

We apply Proposition 1 with v = u and obtain

/|Vu(:v)|2dx _ —/u(w)Au(w) de = )\/|u(:v)|2dw
G

G G

/|Vu(:17)|2 dx
G

- /|u(w)|2d:v
G

Remark: The Rayleigh quotient appears in the last formula.

or equivalently

> 0.

q.e.d.

We do not mention the case n = 2 separately, and utilize Green’s function in
the dimensions n = 3,4, ... as follows:
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1 1

H =
@9 = (0~ 9y Jy — a2

+ h(z,y), (z,y) e GRG. (10)
A solution u of (9) evidently belongs to the space

D:= {u = u(x) € C%(G) : sup |u(z)| < +oo} =C"(G)NL=(G)
zeCG

and satisfies the integral-equation-problem
u(z) = )\/H(:C,y)u(y) dy, =€, with weD\{0} and XeR.
G

(11)
We deduce the latter statements as in §1 (compare Theorem 3 there), using
the Propositions 1 and 2 above. We have shown already the symmetry of
Green’s function and have controlled the growth condition:

H = H(z,y) € S$n—2(G),

(12)
0 < H(z,y) = H(y,x), (z,y) € GRG.

We now shall prove that a solution u of (11) solves (9) as well.

Proposition 4. Let the function u = u(z) € D be given, and the parameter
integral

v(x) = /H(:v,y)u(y) dy, reG
G

be defined. Then we have the properties v € C°(G) and v|pg = 0.
Proof: With the aid of the function
0, o0<t<l1
Ot)={t-1, 1<t<?2
1 2<t

)

we define the continuous integral kernel

Hs(z,y) == H(w,y)@('x g y|)

—o(" ") (o fz)wn y—aP " hGy), 90
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For all § > 0 the parameter integral

/H(;:ry y) dy, xz € @G,

is continuous on G, and we observe vs|sg = 0. Furthermore, we have the
following inequality for all x € G:

[v5(a) — ol |</\@ )~ 1| 1 @)l u(w)] dy
(13)
© i dy < (&) =0 (51 0).
- ly === 7~
yily—x|<26
This implies
vs(x) — v(x) (§ ] 0) uniformly in G
and therefore: v € C(G) , v]se = 0. q.e.d.

Proposition 5. Given a solution u of (11), we infer v € C?(G) and the
ergenvalue equation

—Au(z) = u(z), z €d.

Proof: We take an arbitrary point z € G, and then choose a quantity € > 0 so
small that the inclusion

Kg(z)::{weR”: |w—z|§€}CG

is valid. From the integral equation (11) we infer

u(z) = A / (n,1 ! _yuly)dy

2)wn |y — z["?
K. (2)

+A / ; L U(y)dy+/h(:v»y)U(y)dy (14)
G

(n = 2)wn |y —z["~2
G\K.(2)
N (7 B SR E N YD A S
= u (), x z) .
(n =2 [y — a2 TR |
K (2)
Here the function ¢, .(x) is harmonic in K.(z). We can differentiate the rela-
tion (14) once (but not twice!) and obtain via the Gaussian integral theorem
the relation



89 Weyl’s eigenvalue problem for the Laplace operator 123

Vu(z) = /1(nfgw%(wangFQ)Awdy+V%%4®

K. (2)
1 1

= / (n — 2)wn, (Vy ly — z|n—2 )u(y) dy + Vi, (v)

K. (2)
- 1 u(y)
- / (n_2)wnvy(|y—l’|n_2)dy

- 1 Vu(y) (15)

A / (n—2)wy |y — ;U|y”—2 u(y) dy + Vi o ()
K:(2)

=-A / (nfl uly) v(y) d2(y)

2)wn [y — x|

K. (2)
1 Vu(y)
A dy + Vi,
S AT AR
Ks(z)

for all # €K (z). Here the symbol v(y) denotes the exterior normal to the
ball K.(z) and df2(y) the surface element on the sphere dK,.(z). From (15)
we infer the statement

u € C*(G), (16)
since the point z € G could be chosen arbitrarily. We differentiate (15) once
more, choose x = z, and evaluate the limit € | 0. Then we obtain

s =i a [ (v M) o)

OK. ()
: 1 Vu(y)
1 P
+ cl0 {)\ / (n — 2wy, (V ly — :v|"—2)
K. (z)
= —du(z) + 0= —du(z) for all ze€G.

We summarize our considerations to the following

r=z

N dy} (17)

q.e.d.

Proposition 6. The function u solves the eigenvalue problem (9) if and only
if the function u solves the eigenvalue problem (11).

Theorem 1. (H. Weyl)

On each bounded Dirichlet domain G C R™ with n = 2,3,..., the Laplace
operator possesses a c.0.n.s. of eigenfunctions o € €, k = 1,2,... . This
means

—App(x) = Appr(x), =€, k=1,2,..., (18)

and the eigenvalues have the properties

O< A< X< A<, — +o0. (19)
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Proof: Equivalently to (9) we consider the integral eigenvalue problem (11)

[HG v = m@, cec p=)
G

with the symmetric weakly singular kernel H (z,y) from (12). The statements

of the theorem can now be inferred from §8, Theorem1 . qed

Remarks:

1. In the spaces R? and R3, we can even uniformly expand each function
f € & into the series of eigenfunctions for the Laplace operator.

2. The least eigenvalue A1 for the Laplacian on the bounded domain G C R™
satisfies

[ IVt do
G

A(G) = inf . (20)
PEW?(G)NGO(G), p#0 / |¢(I)|2 dx
G

Here we refer the reader to the Sobolev spaces in §1 and § 2 of Chapter X.
From the relation (20) we immediately infer the monotonicity property of
the least eigenvalue:

With the aid of a regularity theorem for weak solutions of the Laplace
equation one proves the strict monotonicity property:

G cc G, = M (G) >\ (G*) (22)

In this context we refer the reader to [CH|, Band II, Kapitel VI.
3. Comparing sufficiently regular domains G C R™ with the ball of the same
volume K C R” - which means |K| = |G| - we have the estimate

AM(G) = Mi(K). (23)

Here, the equality is attained only in the case that G is already a ball in
R™. This Theorem of Faber and Krahn rests on the isoperimetric inequality
in R™ and had already been conjectured by Rayleigh in his book Theory
of the Sound. In the case n = 2 we recommend the study of the following

paper:
E.Krahn: Uber eine von Rayleigh formulierte Minimaleigenschaft des
Kreises. Mathematische Annalen, Bd. 94 (1924), S. 97-100.

4. Tf the function ¢ € & is a solution of (9) for the eigenvalue A € R, we infer
A=\ & p(x) #£0 forall z €. (24)

Therefore, the eigenfunction to the least eigenvalue A; has no zeroes in G.
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5. About the eigenfunctions for the higher eigenvalues and their nodal do-
mains almost no results are available (compare [CH]).
6. Endowing the domain G C R™ with the elliptic Riemannian metric

ds* = Z gij () dx; dxj,

i,7=1

we propose the integral equation method in order to treat the eigenvalue
problem of the Laplace-Beltrami operator

n

RGN iy 0
A= N CZED SR (25)

j=1

with ((¢") = (gij);jl and g =det(g;;)) . In this context we need the
generalized Green’s function for elliptic operators in divergence form which
is weakly singular again. Here we refer the reader to our approach in
Chapter X, §9 and § 10 or to the following original paper:

M. Griiter, K. O. Widman: The Green function for uniformly elliptic
equations. Manuscripta mathematica, Bd. 37 (1982), S. 303-342.

7. Theorems of Faber-Krahn type are valid even for the operators (25). Here
we recommend the monographs

G. Polya: Isoperimetric inequalities, Princeton University Press, 1944
and

C. Bandle: Isoperimetric inequalities in Mathematical Physics, Pitman,
1984.
8. The spectral theory for unbounded operators is presented e.g. in Kapitel
IV: Selbstadjungierte Operatoren im Hilbertraum of the monograph

H. Triebel: Héhere Analysis. Verlag der Wissenschaften, Berlin, 1972.

A simple proof of the spectral theorem for selfadjoint operators has been
discovered by

H. Leinfelder: A geometric proof of the spectral theorem for unbounded
selfadjoint operators. Mathematische Annalen, Bd. 242 (1979), S. 85-
96.

810 Some historical notices to Chapter VIII

The investigation of eigenvalue problems for ordinary differential operators
started in 1837; then C.F.Sturm invented his well-known comparison theo-
rem, essential for the stability question of geodesics. C.G. Jacobi (1804-1851)
created the general stability theory for one-dimensional variational problems.
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In order to study the stability question for parametric minimal surfaces,
H.A. Schwarz investigated eigenvalue problems for the two-dimensional Lapla-
cian already in the Festschrift from 1885, dedicated to his academic teacher
Karl Weierstrass.

D. Hilbert created the theory of integral equations in the years 1904-1910,
solving linear systems of infinitely many equations. This theory may be seen
as one of Hilbert’s greatest achievements, and it was substantially further
developed by his students H. Weyl and E. Schmidt.

We have presented H. Weyl’s approach to the eigenvalue problem of the n-
dimensional Laplacian via the integral equation method in this chapter. In his
famous textbook together with Hilbert, R. Courant solved eigenvalue problems
for partial differential equations alternatively by direct variational methods.
His student F. Rellich then created a spectral theory for abstract operators in
Hilbert spaces, as well as K. Friedrichs.

In the meantime, physicists became intensively interested in eigenvalue prob-
lems for partial differential equations; these are situated in the center of
Quantum Mechanics — evolving in the 1930s. Their source of information
were mainly the textbooks Methoden der Mathematischen Physik I, II by
R. Courant and D. Hilbert.

PORTRAIT OF R. COURANT (1888-1972);
taken from page 240 of the biography by C. Reid: Hilbert, Springer-Verlag,
Berlin... (1970).




IX

Linear Elliptic Differential Equations

At first, we transform boundary value problems for elliptic differential equa-
tions with two independent variables into a Riemann-Hilbert boundary value
problem in § 1. The latter can be solved by the integral equation method due
to I. N. Vekua in §2 and §3. Then, we derive potential-theoretic estimates for
the solution of Poisson’s equation in §4 . For use in Chapter XII we prove cor-
responding inequalities for solutions of the inhomogeneous Cauchy-Riemann
equation. For elliptic differential equations in n variables we solve the Dirich-
let problem by the continuity method in the classical function space C2+%(£2);
see §5 and §6 . The necessary Schauder estimates are completely derived in
the last paragraph.

81 The differential equation
A¢ + p(z,y) ¢ + a(z, y) ¢y = (2, y)

In the simply connected domain {2 C C we take the bounded coefficient
functions

p=p(.y), ¢=q(zy), r=r(z,y) € C°(2R),
and consider the differential operator

0 0
L=A+p@y)g-+ Q(x,y)ay : (1)

We define the complex-valued function

a=a(z):= —i (p(x,y) +iq(z,y)), z=ux+1iy € 1, (2)

and remark that
720 ) oG tis)

9z 2\0x Zay
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With arbitrary functions ¢ = ¢(z,y) € C?(£2,R) we calculate

iﬁgf)(x,y) _ i (Ad(z,y) + péa + ady)

1 1
= 6o+, Re{(p+ia) ) (6 — i0)}
= ¢,. — 2Re{a(2)d.(2)}
= ¢zz - a¢z - a¢z in {2

Here we denote the real and imaginary parts of a complex number z by Rez
and Imz, respectively. Now we consider solutions

o= fu(2) € C1(£2,C\{0})

of the differential equation

2 h) @) =0 i 2 (1)

These appear in the form
fe(2) = exp // o d§ d77 z €2, (5)

with an arbitrary holomorphic function Fy : 2 — C\{0}. Furthermore, we
have utilized Cauchy’s integral opemtor

Tola //c dedy,  zeQ (C=t+in)  (6)
from §5 in Chapter IV. We now consider the associate gradient function
9
F(z) = f*(:) $.(2), z€ Q. (7)
With the coefficient function
1 0 1 0
W)= g D= g h) zeR®)
we calculate
0 0 21 1 0 —2i
ICRUCHORS = GuRtC) K GEENC) 0
29 29 29
:ﬁ(bzz f2( f*>¢_f(faf)¢z
29
= ﬁ {¢zz - a¢z - a(bz}

= opl LO(@y), z=a+iye .
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Theorem 1. a) If the function ¢ = ¢(z,y) € C*(2) satisfies Lo(z,y) =
r(xz,y) in 2, then its associate gradient function (7) fulfills the following
differential equation:

0 i

b) On the other hand, if we start with a solution f € C*(£2,C) of the equation
(10) in the simply connected domain 2 C C, then the real contour integral

r(z) =: ¢(2), z € £ (10)

oay) =2he [ LLQFQ G, zen (1)

gives us a solution of the differential equation Lo(x,y) = r(x,y) in 2.
Here, the point zg € (2 is chosen arbitrarily.

Proof: a) This follows from the identity (9).
b) At first, we infer the following differential equation from (8):

%f*(z) +b(2) f«(2) =0, z € (.

Furthermore, the contour integral from (11) is independent of the path chosen:
With G CC {2 taking an arbitrary normal domain, the Gaussian integral
theorem in the complex form yields

Re [ ), £-(0)F(0)dc = Re / [ (r-&1@)_dzdy
oG
fRe// SR} dedy
7Re// Dfef 4+ bz )ff*Jr;r(z)}d:rdy:O.

Furthermore, we have

z

1 _
o) = g, [{1OHO%-1OTTa}.  zen
which implies .
(ZSZ(Z):Z][*(Z)][(Z), z € {2. (12)
We infer the validity of L¢ = r(x,y) in {2 from the identity (9).
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Theorem 2. (P. Hartman, A. Wintner)
Let the nonconstant function ¢ = ¢(z,y) € C*(£2) satisfy the homogeneous
elliptic differential equation

Lo(x,y) =0, (x,y) € 2. (13)

Then the gradient of ¢ has, at most, isolated zeros in {2, and at each zero
zo € {2 we have the asymptotic expansion

¢=(20 +¢) = cC" +o(|¢["), (=0 (14)

Here we used the numbers n € N, ¢ = ¢1 + ica € C\{0}; the symbol o(|¢|™)
denotes a function ¥ = 1(¢) : C\{0} — C with the property

NG
&2 g =

Furthermore, the function ¢ reveals the behavior of a saddle point near zg,
namely

2

P(z0 +1e"?) = ¢(20) + nt1

phtl (cl cos(n+ 1)p — casin(n + 1)@) +o(r™ )
(15)

with r — 04. Consequently, the function ¢ does not attain a local minimum
nor a local mazrimum at the point zy.

Proof: The identity (12) implies

¢z(z):%f*(z)f(z), z € .

Here, the function f, is defined by (5) and the function f satisfies the differ-
ential equation

%f(z) =b(2)f(2), z € 8. (16)

Consequently, the function f is pseudoholomorphic (compare Chapter IV, §6),
and we obtain the following expansion near a zero zg of ¢.:

(20 +¢) =™+ o(|¢|"), ¢ —0.

Here we have chosen the numbers ¢ = ¢; + ica € C\{0} and n € N. Further-
more, we have
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d .
do ¢(z0 + 0e'?) do

d(z0 + re'?) — p(z) =
d

dg(b(fro + 0cos p,yo + osinyp) do

I
S O O

{qﬁz(. ..)coso + oy(...) Singp} do

Q/TRe{ngz(zO + Qew)ew} do.

0

When we insert the asymptotic expansion (14) of ¢,, we finally obtain

d(z0 + 7€) — ¢(20)
= 2/Re{cg”ei("“)“’} do + o(r"t1)
0
Tn+1

2Re{(c1 +ics)(cos(n + 1)g + isin(n + 1)@} +o(rm )

n—+1

2
= i1 {cl cos(n +1)¢ — cosin(n + 1)(p}74n+1 +o(r )

with r — 0+. q.e.d.

Let 2 C C be a simply connected bounded domain, whose boundary consists
of a regular C2-curve in the following sense:

002 : z=((t):[0,T] — 9N € CA(R,C) with |¢'(t)|=1, 0<t<T. (17)

Here ¢'(t), 0 < t < T gives us the tangential vector-field to 92, and we
abbreviate

C%(R,C) := {g € C*(R,C) : gis periodic with the period T}.
Furthermore, the vector-field v(¢t) := —i(’(t), 0 < ¢t < T represents the exterior
normal to 9f2. Now, we prescribe the continuous unit vector-field

v(t) = a(t) +ip(t) € CX(R,R?)  with |y(t)|=1, teR

on the boundary 92 and the function x = x(t) € C¥(R,R).
Then we consider the following boundary value problem of Poincaré

¢ = ¢(x,y) € C*(2)N CY(),
Lo(z,y) =r(z,y) in 2, (18)
02(C(1)e(t) + &y (C(1)B(L) = x(t), 0<t<T.
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Remarks:

1. In the special case y(t) = v(t), 0 < ¢t < T, the condition reduces to
Neumann’s boundary condition

PCt) =x(t), 0<t<T (19)

2. In the special case y(t) = ¢'(t), 0 < t < T, the condition reduces to
Dirichlet’s boundary condition

S =x),  0<t<T

and consequently

M«m:¢@@wﬁ/xﬂm, 0<i<T.
0

Here we additionally require

T
/X(T) dr = 0. (20)
0

The associate gradient function f(z) = f*2(iz) ¢x(2), z € (2 satisfies
X(t) = o2 (C(8)a(t) + by (C(2))B(2)
— 2R (6. () (0)
:Re{—if*(z)v(z)f(z)}}z:qt), 0<t<T.

Introducing the function

9(2) = ifu(2)7(2), 2z €08, (21)
we find the following boundary condition for f:
Re{g(c)F )} =X,  0<t<T, (22)

Together with Theorem 1 we arrive at the following

Theorem 3. a) If the function ¢ solves the general boundary value problem
(18), then the associate gradient function

24
F=1E= e

yields a solution of the Riemann-Hilbert boundary value problem (10),

(22).

b.(2) € CH2)NC°(N)
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b) If the complez-valued function f = f(z) € C1(£2) N C°(N2) solves the
Riemann-Hilbert boundary value problem (10), (22), then we obtain a solu-
tion of the general boundary value problem (18) by the real contour integral

(11).

Now, the Riemann-Hilbert boundary value problem

LI TR =), zen, (23)
Re(3()/(2)} =x(2), =€ 00,

is invariant with respect to conformal mappings. Applying the Riemann map-
ping theorem (compare Chapter IV, §7 and §8), we shall assume {2 to be the
unit disc in the sequel.

82 The Schwarzian integral formula

On the unit disc B := {z = ¢ +1iy € C : |z| < 1} with the boundary
OB = {e'* : 0 < ¢ < 27} and the exterior domain A := {z € C : |z| > 1}
we shall solve boundary value problems for holomorphic functions. We begin
with the important

Theorem 1. (Plemelj)
Let F : B — C be a Hélder continuous function; that means ¢ — F(e'?)
defines a 2m-periodic Holder continuous function. Then the Cauchy principal

values ) F(O)
H(z) :281_1)%1_’_% ?{ C_ch, z € 0B

¢eoB
I(—z[>e

represent a continuous function. Furthermore, the function

G(z) ::i_ 7{ f(gidg, z€BUA

(eoB

reveals the following boundary behavior at the circle line OB:

1
Jlim G(2) = H(z0) + _ F(20) for all zy € OB (1)

2659 2

and L
lim G(z) = H(z0) — 2F(ZQ) for all zy € 0B. (2)

z€EA
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Remark: The function G can be continuously extended within the disc B and
from the exterior A onto the circle line 9B. However, there G has a jump of
the size F(zg), 20 € 0B.

Proof: We show continuity of the Cauchy principal values by arguments from
Proposition 3 in Chapter IV, §4 . For a fixed point zy € 0B we define I, :=
{z€0B : |z—2¢| >}, ST :={2€B: |z—2)|=¢},and ST :={z€ A :
|z — z0| = €}. Taking an arbitrary point z € B\{0} we deduce

F(O-F(73)
G(z) = 27171% (—=z . dC+F(|z|>ﬁ(J§C12dC

OB
F(O) - F(7)
:2;8?5 gsz dC+F(|§|>%{F/¢1ZdC+/clde}
. s+

for all sufficiently small € > 0. With 2y € 9B we obtain

lim G(z) = 1'7{F(§)—F(z0) dc

o 2maB ¢— 2o
1 1 1
+F(ZO)%{ / ¢ — 20 de + / ¢ — 20 d(}
I S;r

for all € > 0. The passage to the limit ¢ — 04 yields

lim G(z) = lim _© {/F(O_F(ZO) dC+F(ZO)/

z2—20 e—0+ 271 —Z
z€eB -0 < 0
£ £

o 1 F(Q) 1
_eli%l+{2m/gzo d4}+2F(Z°)
I

= H(z0) +  F(z0),

1 1
¢~ 2 dC} + ,F(=0)

and we attain (1). By similar calculations we obtain (2), substituting the

integrals on S by the corresponding integrals on S7 . qed

Theorem 2. (Schwarzian integral formula)
Let us consider the Hélder continuous, real-valued function ¢ : 0B — R, and
let the Schwarzian integral be defined as follows:

2 | e —z

27
Flz)= /”“qs(ew)d(p, 2] < 1. 3)
0
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Then the holomorphic function F can be continuously extended onto the closed
unit disc B. Furthermore, its real part

ReF(z): B—R

takes on the boundary values ¢; more precisely

Jim Re F(z) = é(20) for all zp € 0B. (4)
z€eB
Proof:
1. We extend F to the function
2m
F(z):= 2171- /zzi_zﬂew)d@, z€ BUA,
0

and obtain the reflection condition

27 2w .
1 [e®+z 1 e
_ WP\ Jp — z i
P =y [ o o=, [T o) ap
0 0
| feie gt 1
€ .
= — Z P = —
2W/ew_ o) b F(1), zemuopua
0

2. Furthermore, we have the following identity for all z € B U A:

L e o= ST 000

T 2 (—z
OB

c

and calculate

FE =y (= o+ 2 )otoric

oB
1 a1 [ #()
_2m7§¢(0 ¢ +m7§g—zdg
OB OB

27
1 , 1
_2ﬂ/¢(ezw)d<p+mj{?(c>zdg z€ BUA.
0 OB
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According to the Theorem of Plemelj, the function F' can be continuously
extended to 9B, and we see

27

: _ 1 i L[ eC)
hzn;F(z) =y O/¢(e ) de + ﬂa]g RS ¢(z0), 20 € 0B,
2
. N Lo[oe0
Zilé%’ F(z) o Z)/¢(e ) dp + M_Bf ¢— 20 d¢ — ¢(z0), 2o € 0B.

(5)

By the integrals ¢ ... given here, we comprehend the Cauchy principal

oB
values according to Theorem 1 . Finally, we obtain the following identity
for all zg € OB:

lim Re F'(2) = ! lim [F(2)+ F(2)] = ! lim [F(z) - F(lﬂ = ¢(2p).
“er “er 258

83 The Riemann-Hilbert boundary value problem

We now consider the following Riemann-Hilbert boundary value problem: For
the Hoélder continuous coefficient function b = b(z) € C%(B,C) being given,
let the function

f=f(2)=u(z,y) +iv(z,y) € C1(B,C)nC"(B,C)

satisfy the homogeneous differential equation

0
P f(z) =b(2)f(2) =0, z € B. (1)
Furthermore, let us take the Holder continuous directional function
a=a(z) =a(z,y) +ip(z,y) : 0B — 0B

satisfying
2(2)+p%(z) =1 forall zecdB.

The index n € Z of the Riemann-Hilbert problem indicates how often the
directional vector-field a winds about the origin 0. Therefore, we assume the

representation .
a(z) = 2" 2 e 8B, (2)

with a Hdélder continuous function ¢ : B — R. Furthermore, we prescribe
the Holder continuous function x : 9B — R and require the Riemann-Hilbert
boundary condition
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a(2)u(z) + B(2)u(z) = Re(a(2)f(2)) = x(z),  z€0B.  (3)

We now solve the Riemann-Hilbert boundary value problem (1), (3) for the
indices n > —1 by the integral equation method of I.N. Vekua. Particularly
important is the case n = —1: According to §1, Theorem3 we can then
solve a mixed boundary value problem for linear elliptic differential equations,
especially under Dirichlet and Neumann boundary conditions. We owe to
G. Hellwig the fundamental observation: The solution space for the Riemann-
Hilbert problem 1s interrelated with this index and integral conditions on the
right-hand side have to be assumed.

Based on Theorem 2 from §2, we consider the following function which is
continuous on B and holomorphic in B:

2w
1 [eiv :
o) +ive) =P = [T e de <t @
0
We note that
hé% #(2) = ¢(20) for all 2o € 9B. (5)

z2—20
We multiply (3) by e?(*), 2z € 9B and equivalently obtain

n(z) = e?Px(z) = Re(e“’(z)e*iﬂz)ﬁ)

Zn

—iF(z)
= Re(6 an(z)) for all z € 0B.

(6)

Multiplication of the differential equation (1) by the holomorphic function
e () = g¥(R)—id(z) £ ~cB

yields the equivalent differential equation

0 ; - .

= (e—zF(z)f(Z)) _ b(z)efzzcb(z) (e—zF(z)f(Z)) =0, 2 € B. (7)
z

By the transition f(z) +— e (3)f(z) we obtain the canonical Riemann-

Hilbert boundary condition from (6):

Re(@) = x(2), z € 0B. (8)
z

Therefore, we have to solve the boundary value problem (1) and (8), which
we shall transform into an integral equation problem. We obtain the following
Riemann-Hilbert boundary value problem in the normal form:
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f=7k)e Cl(B,(C) N CO(B,(C),
0 .
55 /(2 —b(x)f(z)=0 in B, (9)
fN _
Re( n ) = x(z) on O0B.

We denote by

Tl =~ [[ 8 acmn. cen (c-exin

Cauchy’s integral operator. For n = 0,1,2,... we consider the Riemann-
Hilbert operator of order n

vt ] 29 0= [ 9 s

= Tpg)(z) — 2*" (—i // Cg(C)i dg dn) (10)

= Tulol(=) — > { Tl i )} zen

The substitution
1

C:i, vy=a+if e A:=C\B, dﬁdn:|7|4do¢dﬂ
yields
L2+l q( i)
Vag(2) = Talol(2) - /A/ (1 23y 09
In+1 g(+) L
2ol =" [T dean (1)
A
= Tg[g)(2) + 2" Talg)(2),  z€B,
with . .
3(0) = ?9(2)’ CeA (12)

We note that
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which follows from (10) immediately. The following Riemann-Hilbert problem

f=f(z) e CY{(B,C)nC°B,C),

0 .
7 f(z)=0 in B, (14)

Re(M> = x(2) on 0B

Zn

can be solved explicitly with the aid of the Schwarzian integral:

n—1
" d
2= 5 (2@ 7T T i 3 {2
oB k=0

(15)
Here we have used 2n + 1 real constants ag,...,an—1,00,-.Bn_1,7. We can
transfer the boundary value problem (9) equivalently into the integral equa-
tion

f(z) =Valbfl(z) = 2(2), z€B, (16)

with the right-hand side &(z) from (15). The linear integral operator f —
V,.[bf] is completely continuous on the Hilbert space H = L?(B, C) since the
kernel appearing is weakly singular. Applying Theorem 8 from § 6 in Chapter
VIII we comprehend: A solution f € H of the integral equation (16) belongs
to the class D := C°(B,C) N L>=(B,C).

We need the following

Proposition 1. (Vekua)
Let n € {0,1,2,...} be given, and f € H may solve the integral equation
f—=V,[bf] =0. Then we have f = 0.

Proof: Let f be a solution of the integral equation f—V,[bf] = 0. This implies
1 b(Q)f (<) _ 2 b(Q)f (<)
f(z)eré/ Co dédn = — - /B/ ot d¢ dn, z € B. (17)

The right-hand side of (17) is holomorphic in B and continuous on B. The
integral on the left-hand side is continuous in the entire Gaussian plane C,

vanishes at 0o, and is holomorphic in the exterior domain A = C\ B. We take
z € 0B, multiply both sides of (17) by

1 dz

— , te B,
2mi oz —t

and integrate along dB. The Cauchy integral theorem and Cauchy’s integral
formula yield
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1 f( ) t2n+1
27 z—td N // 1ft( ' (18)

0B

We now develop both sides into powers of ¢ about the point 0 and see

7{ f(z)e"™*dp =0 for k=0,1,...,2n (19)

with z = €. The similarity principle of Bers and Vekua gives us the following
representation

fz) =¢(z)e’™, 2 €B. (20)
Here the function v is holomorphic in B, and we define
1 9(¢0)  z9(Q) o f
w/B/{C—z 1_<Z}d§dn, g=b. (21)

On account of the equation Imp(z) = 0 on B and (20), we deduce the
boundary condition

Re(w(z)) -0 on OB (22)
Z’ﬂ
for the holomorphic function 4. This implies
2n
W(z) = ezt (23)
k=0
where the complex constants cg, c1, ..., co, satisfy the following conditions:
Con—k = —Ck, k=0,1,...,n. (24)
Therefore, we find that
2n
fz)= (chzk)ep(z), z € B. (25)
k=0
Inserting (25) into (19), we infer
2n
ch/zz P gp =0, 1=0,1,...,2n, (26)
k=0 5B
and consequently ¢y = 0 for £k = 0,1,2,...,2n. Here we use that the Gram

determinant for the system of linear independent functions
Fe2r®) |k =0,1,2,...,2n
satisfying Imp(z) = 0 on 9B is different from zero. We consequently obtain

f =0 from the representation (25). qed.
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Theorem 1. Given the indices n = 0,1,2,3, ..., the Riemann-Hilbert bound-
ary value problem (9) possesses a (1+2n)-dimensional space of solutions.

Proof: We use the integral equation (16) and Proposition 1. With the aid of
Theorem 8 from § 6 in Chapter VIII, we can solve the integral equation for all
right-hand sides @ in (15) within the class of continuous functions. Therefore,

we obtain a (2n+1)-dimensional solution space of (9). qed

We shall now solve the Riemann-Hilbert problem (9) for the index n = —1.
Taking a solution f of (9) we make a transition to the continuous function

g9(z) = 2f(2), z € B. (27)
The latter solves the following Riemann-Hilbert problem for the index 0:

0= L[] ~be) D [1E)] = 5 o) —el2)glz) B,

Z

(28)
Xx(z) = Reg(z) on O0B.

Here we abbreviate B := B\{0} and set
z .
c(z) == "b(2), z € B.
z

The function g(z) = zf(2), 2 € B consequently fulfills the integral equation

d
2() = Volezfl(2) = 5 / X<<>§fz cC i
oB

or equivalently

2f(2) — Volzbf](z) = 2;,/@@4 - / C()é(f)z) ¢ +iy,  z€B,
oB oB (29)
29

with v € R. We now develop
Volegl| =) [[o@dcan+owigl . zeB (30)

B
and define
1 9(¢) | ¢g(Q)
W[g]z.w//{C_ZJrl_ZC}dgdn, z € B.
B

In this context we note that
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[ 90 dean- // 2 2 Yaca
// - "f_g C}dgdn.

When we insert (30) into (29), the following integral equation is revealed:

1) - m/c )

e +—/ ! fucrciea.

In order to obtain a continuous solution of (31), the condition

0=ir+, / // F(0) de dn (32)

has to be fulfilled. Then we have to solve the following integral equation

F(2) — Wbf)(2) = ; / C()é(f)z) ¢, z€B. (33)
oB

(31)

We now consider the integral operator

// P dgdn, 2€B.

With the aid of the substitution

{zl, y=a+if €A, dé dn = 14dadﬂ
gl vl
we obtain
1 r9() 11
Wlg)(2) = Talgl(z) - _ // s oy 2 ddB
CC
// - dé“dn (34)
= Tolgl(x) + Ta[ ] (), ze B,
setting
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Proposition 2. (Vekua) Let the function f € H be a solution of f—WIbf] =
0. Then we have f = 0.

Proof: We define the kernel function

¢

| _ for z,(€B (36)

K(z,¢) =
and calculate

K*(2,¢) = K(C,2) = (1_242) — 1—Zzg' (37)

We deduce for arbitrary functions f,g € C%(B,C):

F(z)Wgl(2) + g(2)Vo[f]() { d2
s }
_ ,i//// {f(z)g(_c)z +g(z)g(_<>z}dzdg
jlr//// {f(Z)K(ZvC)g(C)+g(z)K((,z)m} dzd¢ (38)
Re(// [ remeauoteac).

Here we naturally comprehend dz = dxdy and d( = d¢ dn. By substitution
of the functions f — bg and g — bf into the commutator relation (38), we
obtain the following identity for arbitrary functions f,g € C°(B,C):

I@H{WWAU@fWWWD+Wﬁ@@@fwwwﬂwwwﬂ.

39
]

IS

(
If the function f € CY(B,C) is a solution of the integral equation f —WI[bf
0, we infer

Im// — Volbg]( )) drdy=0 forall geC%B,C). (40)

With the aid of Theorem 1, we now determine the solution g € C°(B,C) of
the integral equation for the given right-hand side ib(z)f(z) as follows:

9(z) = Volbg)(z) = ib()f(z), =€ B.

We insert into (40) and arrive at
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o=tafi [P asdny = [[RGPaa @

This implies b(z) f(z) = 0 and consequently

f(z)=Wpfl(z) =0 in B. qe.d.

Theorem 2. For the index n = —1, the Riemann-Hilbert boundary value
problem (9) has a solution if and only if the condition (32) is satisfied.

Proof: We use Theorem 8 from § 6 in Chapter VIII again together with Propo-
sition 2.
q.e.d.

Remark: For the indices n = —2,—3, ... as well, we can solve the Riemann-
Hilbert problem if and only if (—n) suitable integral conditions are posed. In
this context, we refer the reader to the monograph of I. N. Vekua [V], especially
Chapter 1V, §7, part 3.

84 Potential-theoretic estimates

We now refer the reader to the results of Chapter V, § 1 and § 2 about Poisson’s
differential equation. For the unit ball B := {z € R" : |z| < 1} we can
explicitly give Green’s function as follows:

P(y; ) = '

x‘ yeB, ze€B, if n=2 (1)
2 Ty

and

o0 = o o (s 1 )
yix) = —2 T n-z |

2-nJwn \ly—2"2 (1 -2(x-y)+|ePly>)"" 2)
yE€ B, z€B, if n>3.

The Poisson integral formula from Theorem 2 in Chapter V, § 2 is our starting
point: A solution u of the problem

u=u(z) =u(zy,...,2,) € C3(B) N C°(B),
Au(z) = f(x), x € B,

with the right-hand side
f=f(x)eC’B) (4)
satisfies Poisson’s integral representation
_ 1 ly|* — |=f? :
u(zr) = — u(y)do(y)+ | o(y;z)f(y)dy, xze€B. (5)

ly — x|
ly|=1 ly|<1
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Question I: For which right-hand sides f : B — R and for which bound-
ary values u : 9B — R can we solve the Dirichlet problem of Poisson’s
equation?

Question IT: Under which conditions can the second derivatives wuz,o,(z),
x € B be extended continuously onto the closure B with i, =1,...,n?

If the function u possesses zero boundary values on 0B, we only have to
consider the singular integral defined on B in (5).

Definition 1. Let 2 C R™ be a domain, and the parameter a € (0,1) is
reqularly used in the following. Then the continuous function f : 2 — R
belongs to the regqularity class C*(£2), if we have a Hélder constant b € (0, +00)
satisfying

|f(z) = f) <ble—yl*  forall zye (6)

Proposition 1. (E. Hopf)
For the dimensions n = 2,3,... let 2 C R" be a bounded domain, and we set

NN = {(x,y) €N x0: x#y}
Let the symmetric kernel function
o(y;x) = dlasy) : R© 2 —R
be given with the growth conditions

alogly—z|, ifn=2
aly — x>, ifn>3"

lp(y; )| < {

and )
|fa, (y; )| < aly — a7,

|¢111J(y7‘r)| Sa’ly_‘rl_n? i?jzlv"'an'

Here a € (0,400) denotes a constant. Furthermore, the functions

D,(z) = [ ¢z, (y;2)dy, =€ 12, with 1=1,...,n
i
2

belong to the class C1(§2). Finally, we consider the following parameter inte-
gral associated with the function f € C*(2),namely

F(z) = / o)) dy, ze . (9)
2

Then F(x) € C%(82) holds true, and we calculate their derivatives in the form



146 IX Linear Elliptic Differential Equations

F, (z) = / b (i) f(y) dy,  TE D, (10)
(]

and

Fyou, () = / boie, i) (f) — F(@)) dy + f(@)Bia,(2), xR (11)
(9]

Proof: The integral (9) converges absolutely due to (7). On account of (8), we
can form the difference quotient of F(x) and have a convergent majorizing
function. We deduce the identity

Fm,-(w)=/¢m(y;:v)f(y)dy, reR, for i=1,...,n
2

by the convergence theorem for improper Riemannian integrals. We are not
allowed to directly differentiate this integral once more, since it does not
remain absolutely convergent. Therefore, we consider the rearrangement

Fy(z) = / bo (0 2) () — F(20)) dy + F(z0) i),  we
(9]

with the point xy € {2 being fixed. Now, the difference quotient converges
again

Fyoa, (o) = / G, (70) (F(y) — £(0)) dy + F(0)Pi, (0)
(]

for all 2y € 2, since the integral possesses the convergent majorizing function
|y _ x0|7n+a.

q.e.d.
A very important tool in Potential Theory is the intricate
Proposition 2. (Hopf’s estimates)
Let 2 CR™ be a bounded convex domain, on which the singular kernel
K(r,y): 2002 -RecCY(NxN)
is defined with the growth conditions
K (z,y)| < ;
|z —yl"
(12)

- a
> | Ka(2,y)] < ooy T @y efen
=1



84 Potential-theoretic estimates
Furthermore, let the function f = f(x) € C¥(£2) be given satisfying
lf(z") — f(&")] < blz” —2'|* for all ' 2" € .

Here the quantities a,b € (0,+00) and o € (0,1) are fized constants.

Then the parameter integral

F(z) == / K(@.o)(f) - f(@)dy, e,
(9]

fulfills the following estimates
|F(x)| < Mo(a, n,diam(S2))ab, x € 12,

and

147

(13)

(14)

(F(") = F(2') + (f(=") = f(2)) - /K(x’,y) dy’ < My(a,n)ablz” — 2’|

en

ly—a’|>3]z"" ~a'|

for all 2', 2" € £2.

Proof:

1. Choosing = € {2 we have

F(z)| < / K (2, 9)||f () — f(@)|dy

0

< ab/|y—w|_"+“dy
o

< My(a, n,diam(£2))ab.

(15)

2. We set 6 := |2 — 2’|, choose arbitrary points 2/, 2" € 2, and calculate
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F(x

") - F()
= /K(w”»y) (fly) = f(2")) dy — /K(w’,y)(f(y) — f(a)) dy
(9] (9]

/K(f’, D (F(y) — 7)) dy — /K(x’,y)(f(y)  f@) dy

ly—a’|<36 ly—a’| <368
n /K(x”,y)(f(y) ~f")) dy /K( D (F) - f(a')) dy
ly—z'|>36 ly—z'|>306
- /K( D (F(y) — 7)) dy — /K(x’,y)(f(y) f@) dy
ly—a’|<36 ly—a’|<36
+ [r6" ) - K@) () - £) dy
ly—a’|>36
HIE) = 1) [ EE ) dy
ly—a’|>36
— LI (f@) - £67) [ K dy
ly—2'|>36

(16)
This implies

(P = F@) + () = 1) [ K] < 5]+ 10+ 5

ly—a’|>36
(17)
3. Due to (12) we can estimate I; as follows:
a (0% a—n
i< [ <o [y sy
ly—a’|<36 ly—a’"| <46
45 45 ; 15
= ab/ro‘_"rn_lwn dr = abwn/ro‘_l dr = wna [7’@] (18)
a 0
0 0
bwy, 4%ab wy,
) R L
a a
Correspondingly, we deduce
3%abwy,
[ <70 e (19)

4. The mean value theorem of differential calculus implies
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n

K@, y) = K@@' y) =Y K (Cy) (@] — ),
=1

with an intermediate point { = a’ + t(2” — ') € {2 and a parameter
t € (0,1). From |y — 2’| > 38 we infer |y — 2’| > 2§ and therefore
1 1 1 1 / 1 1
ly—Clzly—a"| =" ¢l 2 |y —a"| = 2" = 2| = | |y — "] .
Noting (12), for all y € 2 with |y — 2’| > 35 we obtain the following
inequality:

n

K (@, y) = K@, y)| <o = | Y |Ke (CGy)l

i=1
5 1
=gy ¢ 0
1
n+1
< ad2 ly — 2|t

Inserting into I3 we get

13| < /IK(I",y)*K(x’vy)llf(y)*f(x”)ldy

ly—z’|>36
< 2n+1ab6 / |y _ w//|fn71+a dy
ly—='|>38
S 2n+1(1b6 / |y _ :Cl/|—n—1+o¢ dy
ly—a''|>26

—+oo
< 2"*tlaps / prnT ey el gy
25

—+oo
=921y, abd / re=2dr
25

_ on+1 a—17+0o0 1
=2 wnab5[r ]25 o1
2n+1 2n+a
= Wy abd(26)7 = L wnp, ab§”
— —

and consequently
n+ao

2
|I5| < L_g¥n ablz” — 2| (21)
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5. From (17)-(19) and (21) we now obtain a constant M; = M (a, n), such

that the estimate (15) is valid.
q.e.d.

For the function f € C*(£2) given in the domain 2 C R™ we define the
quantities
115" == sup |f(2)],
e

n o "
118 = sup H1Z) TG
’ ',z e |‘T—‘T|a

CE/#I”
A1 = AT + 1F 115

By the norm (22) the set C*(§2) becomes a Banach space. Furthermore, we
easily show the following inequality for two functions f,g € C*(£2), namely

2 2 2
I£glle < IFIE Nglles-

: (22)

In the function space
C*r(Q) = {u €C* ) : Uy, €C*(N) fird,j=1,... ,n}
we define the following quantities

0Q
[ullg” = sup [u(z)],

e
o n
[Jully” := sup Zl |ue, ()],
z =
) : (23)
[ull3 :==sup > |ue,a, ()],
T€EN i, j=1
[l o = Nullg + llulf + llullf + lull$q

Here, we have abbreviated

[ul|fy == sup i |Usiz; (%) — Usya; (27)]
)a ' ’ " .

! pll|a
z' "€ i1 |.’,E Y |
/ 1" J=
z'#x

With the aid of the norm (23) the set C?t%(£2) becomes a Banach space. By
the symbol

C2ra(0) = {u € C2F(Q0) : ulon = o}

we denote the closed subspace of C?7({2), consisting of the functions with
zero boundary values. We now prove the following
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Theorem 1. Let the function f € C*(B) be given. Then the parameter inte-
gral

ul(z) = / o) f(y)dy, B,
ly|<1

belongs to the class C2T(B) and satisfies Poisson’s differential equation Au =
f in B. Furthermore, we have the estimate

lullZa < Clasm)|IfIZ (24)
with a constant C(a,n) € (0,400).
Proof:

1. From the representation

-1 1 1 1
; = - ’ ) €B7
402~ oyl ™ i \x—iz\"”} N

of Green’s function one easily derives

Zm <) " (25)

Z | P, x; (y;7)] < | aln )|n’ (26)

7,j=1

Z P22 (Y3 )] < a(;21+1 (27)

<4
i,5,k=1

for all z,y € B with x # y; here a = a(n) € (0,+0c0) is a constant.

2. We consider the function w(z) := ‘1‘2;1 x € B, of class C?T%(B), satis-
fying the differential equation

n 1 n
x):;wxixi(x):mL;Z:l, x € B.

The Poisson integral representation yields
a2 -1

jx)dy = , € B, 28

/ o(y; ) dy on x (28)

with the nonpositive Green’s function ¢(y;z). For all 2 € B we estimate

as follows:
2
x
ol =| [ o) < 1518 /m, o < s

lyl<1
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This implies
u(zr) =0 forall ze€ 0B (29)

and
[ullg’ < on, HfHo (30)

Noting (25) we can differentiate (28) and obtain the functions

1
:/gbxi(y;x)dy: xi, x € B, for i=1,...,n (31)
n

of class C1(B) with

1 .
Diz; () = néij, x € B, for ¢,j=1,...,n. (32)

On account of (25) we have

Uy, (T /%Z y;x)f(y)dy, xé€ B, for i=1,...,n. (33)

This implies the estimate

Sl @ < 1718 [ 3162 (wi)l dy
=1 B =1

a(n)
<ing [, " e
B

and consequently
lull? < ex()ll£lls- (34)

Proposition 1 yields the representation

B
fori,j =1,...,n. With the aid of (32) we deduce the differential equation

:/Am(y;x)(f() f(@)) dy + f(x Z%

:C)Zi:f(:v), x € B.

=1

(36)

Here we have utilized A,¢(y;x) = 0. For all x € B we infer the following
estimate from (26):
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S it (2 ‘/Eﬂwwy,Hﬂw—ﬂMMwWﬂﬁ

1,5=1 1,5=1

a «
o [ 1) apply =l du 1118 < eatm ) 112
B

and consequently
lully” < ea(n, @) | fIIF- (37)

. We still have to estimate [[u[|Z,. The indices 4, j € {1,...,n} being fixed,
we consider the kernel

K(z,y) := ¢g,0,(y;2) : B® B> R

and utilize Hopf’s estimate for the function

)= [ K@) (W - f@)dy. e b

With the aid of the Gaussian integral theorem we show the uniform bound-
edness of the Cauchy principal values

/K(xvy) dy' = /szizj(y;x) dy' <ecs(n), x€B (38)

YyEB:|ly—z|>4d yEB
ly—=z|>0

for 0 > 0. For all 2/, 2" € B we obtain the estimate

/ K(I',y)dy‘

€eB
/y " ’
ly—a’|23[z" —a'|

S O RN COR 0 W e

eB
/y "
ly—a'|>3]z" —z

|F(") = F(a')| = [f(=") = f(2)]

']
< M m)al f|Ele" 2|
and consequently
[F(a") = F@)| < {es(n) + a Mo, m) SNl = o'

Therefore, we see

[F(2") = F(2)]

o e SEmalfIf., o€ B 2 A (39

Taking (35) and (32) into account we deduce

[ullza < ca(n, @) f15a- (40)
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5. Finally, we infer from (30), (34), (37) and (40) a constant C(n, «), such
that

||u||2+o¢ S C(TL a)”f”a
is valid. q.e.d.

For later use in Chapter XII, finally we derive a potential-theoretic estimate of
the solutions for the inhomogeneous Cauchy-Riemann equation. The Holder
norms defined in (22) and (23) are naturally transferred to complex-valued
functions

w=f(z):B—-C (41)

on the unit disc B := {z = z +iy € C : |z| < 1}. We consider functions
f € C*(B,C) and define the Riemann-Hilbert operator

vier= = { [[ L aean [ TG
/ [ e (cre) = dﬁdn}

with ( =¢+1in € B.
Theorem 2. Assuming f = f(z) € C*(B,C) the function g(z) = Vf(z),
z € B solves the uniquely determined Riemann-Hilbert boundary value problem

g=g9(z) e CY(B,C)NC"(B,C),
0

B_Eg(z):f(z), z € B, (43)
Reg(z) =0 z € 0B,
Img(0) =0

Furthermore, we have g € C1T%(B,C), and there exists a constant C(a) €
(0, +00) satisfying

||9Hcl+a(B,<C) < C(a)||f||ca(B,C)- (44)

Proof: By (10) from § 3 one easily realizes that the function g(z) = Vf(z), z €
B solves the boundary value problem (43). Applying the maximum principle
for harmonic functions on the real part of the difference of two solutions,
we directly see the unique solvability of the problem (43). With the right-
hand side f(z) =1, z € B especially, this boundary value problem yields the
solution ¢g(z) = Z — z, z € B. Corresponding to the formula (28) we obtain
the identity
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_i{/B/ClzdédnJré/lZzgdgdn—;/B/(z—z)dgdn}:z—z (45)

for z € B. With the aid of Proposition 3 and Proposition 4 from §5 in
Chapter IV we can differentiate the function g(z) = Vf(z) with respect to z
and Zz. Parallel to the proof of Theorem 1 we attain the a-priori-inequality

(44) via the Hopf estimate.

As a corollary we obtain the

Theorem 3. (Privalov)

q.e.d.

To the boundary function ¢(z) : OB — R € C'*(0B) we consider the

Schwarzian integral

21 ew — z

2m
1 b .
F(z):= /e. +Z¢(e“")dg@, |z| < 1.
0

Then we have a constant C(a) € (0,400) satisfying

||FHcl+o<(B) < C(O‘)Héf’HCHa(aB)-

Proof: We compare F(z) with the function

G(2) = riT(p), 0<r<1, 0<p<2nm

z=re¥

setting ¥(p) := ¢(e’?), 0 < p < 27. For all z € B\ {0} we calculate

266 _ = (G rig )o@ .
_ e;ﬁa (;T n :a‘?p)g(mw)
el

=, ((1+ Q) + i (9)) = £(2)

We note that B
[fllcacny < Cl@)]|dllcr+aan)-

(47)

Using Theorem 2 from §2, the function g(z) := G(z) — F(2), z € B solves

the boundary value problem (43), and Theorem 2 yields

IG = Fllgrrazy < C@|fllcasy < C(@C(@)|lcrieon)-
We finally obtain (46).

Without requiring boundary conditions,we supplement the following

(48)

q.e.d.
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Theorem 4. Considering the Cauchy integral operator
_ 1 f(©)
Ts[fl(z) := 7T//Cizalﬁdn, z € B,
B

we have the estimate
IT8[fllci+as) < Cl@)fllgas
for all f € C¥(B) with a constant C(a) € (0, 00).

Proof: We remark

O 1u111() = mol) :—813&{; i (Cf_(fydsdn}, B
¢eB
[(—z|>e

Then, we apply the Hopf estimates from Proposition 2 to the Vekua integral

operator IIg[f]. g.e.d.

85 Schauder’s continuity method

We now follow the arguments in Chapter VI, §1 and define the differential
operator

- 2y ~ u
L(u) := Z aij(x)%&rj + Zbl(x) 0 +c(z)u(z) = f(2), x € 2.

ij=1

Assumption Cji: The solution u(z) of L(u) = f belongs to the class
C?T(£2). Furthermore, we have u(z) = 0 on 2.

Assumption Cgz: The coeflicients a;;(z), bi(z), c¢(x) with i, =1,...,n be-
long to the regularity class C*(£2). Furthermore, the matrix (a;;(z))i j=1,....n
is real, symmetric and positive-definite for all points x € 2.

Assumption Cs: For each point £ € 9f2 there exists a positive number
0= 0(£) and a function

Gz) e C*™({r € R" : |z —¢| < o}, R)

satisfying

n

Y Ga(@)’>0 for|z—¢ <o, G(E)=0,

i=1
such that
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Qﬂ{xER" Dl =g <Q} :{IG]R" Dz =€ <o, G(z) <O}
is valid; this means 962 € C?T°. Furthermore, {2 C R" is a bounded domain.
Assumption C4: We have ¢(z) <0 for all z € (2.

We need the following profound result, which we shall prove in §7.

Theorem 1. (Schauder’s estimates)
Let the assumptions Cy, Cs, C5 be satisfied. Furthermore, we have

n n
2 2 2
> Nl + D16l + llell < H
=1

i,j=1
and . . .
m?Y A< Y aii(@)hid; < MY N
i=1 ij=1 i=1

for all X = (A1,..., ) € R™, € 2 with the constants H > 0 and 0 < m <
M < 4o0.
Then we can determine a number 6 = 0(«,n,m, M, H, {2) such that

el + Nl + lullZe < O(ully’ + 1S + 1 15s) (1)

holds true.

Generalizing Theorem 1 from §4 we obtain as a corollary the following

Theorem 2. In addition to the assumptions of Theorem 1 let the condition
Cy be required.

Then we have a fized positive number 8 = 0(«,n,m, M, H, {2) such that the
following a priori estimate

lull$ha <OIFIE (2)
for all solutions u € C*T*(02) of the Dirichlet problem
L(u)=f in £,
u=20 on 012
holds true.
Proof: Theorem 1 from §1 in Chapter VI yields

2 2
lullg < I £l

with a constant v = ~(£2,m, M). We combine this inequality with the
Schauder estimate and obtain (2).
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q.e.d.
We additionally need the following

Assumption Cg: For all f € C%(£2) the partial differential equation Au = f
possesses a solution in the regularity class u € C2T(£2).

Remark: According to Theorem 1 from §4, the condition (Cyp) is satisfied for
the unit ball 2 = B. Later we shall show the implication (C3)=-(Cy) and
eliminate this assumption.

Theorem 3. (Continuity method)

We require the assumptions Cy, Co, Cs, Cy and consider the differential op-
erator L on the domain (2.

Then the boundary value problem

L(u)=f in £,

4
u=~0 on 0Of2 )

has exactly one solution u € C2T(2) for each right-hand side f € C*(£2).

Proof: We take 0 < 7 < 1 and define the family of differential operators

Lr(u) = Z aij(z,T) 0 Zbi(iC,T) 0 +c(z, m)u

+
=1 8:17181:] = 8171
with the coefficients
a;j(z,7) == Ta;;(z) + (1 — 7)d;;, ,7=1,...,n,

bi(x,7) := 7b;i(z), t=1,...,n,
c(x, 1) = Te(x).

This means, briefly, £; = (1 — 7)A + 7L. According to Theorem 2 we have
the following a priori estimate

lulleta < Ollflla; 7 €[0,1], (5)

for all solutions of the Dirichlet problem £, (u) = f in B and u € C?T*(2).
Here we abbreviate ||ul|o4q = |[ul| 4 and || f|la := || f]|$ for the fixed domain
2. We now start with a solution u = u,, € C2+*(2) of the problem L., (u) =
f for an arbitrary 79 € [0, 1]. Due to (Cy), this is possible for 7y = 0, and we
consider

L(u)=[f <<= Lgu)=M(u)+f (6)
with M, = (L, — L) (u) = (1 — 70) (A — L) (u).
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We set ug = 0 and successively define the approximating sequence {uy }x=0,1,...
by the prescription
Lro(up) = Mo(upg_1) + f,  k=1,2,... (7)
We start with the statement
For each f € C*({2) the differential equation
o {ETO (u) = f has a solution u,, € C2T(£2)

(8)

Then we shall investigate the convergence of the sequence
{urtr=01,.. C Cera(-Q)
with respect to the || - ||24o-norm. Taking an arbitrary u € C?+(£2) we infer
M- (u)lla = |7 = 70l [I(A = L)ulla < |7 = 1o[n(H)|ull24a 9)
with a constant n = n(H). From (7) we deduce
Lo (ug — ug—1) = My(ug—1 — ug—2), k=2,3,... (10)
The Schauder estimate (5) together with (9) yields the inequality
lur — ug—1ll2+a < O M7 (ug—1 — up—2)|la
(11)

S |T—To|97’](H)Huk_1 —uk_2|\2+a, k:2,3,...

Choosing |7 — 10| < ,, nl(H), we deduce

1
[lur — uk—1]|24a < 2||uk—1 — Up—2|2+4a; k=23,...,
e ™
u
lur — vur—1]l24a < 21,6_21“‘, k=2,3,....

This implies
+oo

>k — ur—1llaa < +o00.
k=1

+oo
Therefore, the series > (ux —up_1) converges in the Banach space C2t%(£2).
k=1
For all 7 satisfying |7 — 10| < o nl(H) we have a function u, € C2T%(£2) such
that £, (ur) = M, (ur) + f holds true, and finally

Er(ur) = f .

Consequently, the statement (A;) is valid for all [T — 79| < o ;(H). By the

usual continuation process we attain the statement (A;) after finitely many

steps. qed.

The following profound result will be proved in §7 as well:
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Theorem 4. (Interior Schauder estimates)
The coefficients of the differential operator L defined on the bounded domain
2 C R™ satisfy the assumption Cs. Furthermore, we require the inequalities

D Nagld + D IbillE + el < H

i,j=1 i=1
and . . .
i=1 i,j=1 i=1

for all A\ € R™ and all x € (2; with the given constants H > 0 and 0 < m <
M < 4o0. The function u = u(z) € C*T*(£2) N C°(2) solves the differential
equation

L(u)=f in £
with the right-hand side f € C*({2). Finally, we consider the set

024 := {x € 2 dist(x,00) > d},

where we choose d > 0 sufficiently small.
Then we have an a-priori-bound k = k(a,n,m, M, H,d) > 0, such that

2 2 2
all 2+ Ml + iz’ < w(llullg + 115+ 118s) (12)

1s satisfied.

Remark: The abbreviation u € C?T*(§2) means that the statement u €
C?7(0) is fulfilled for each compact subset © C (2.

Theorem 5. With the assumptions Cy, Cs, C3, Cy we consider the differen-
tial operator L on the domain 2. Consequently, for all f € C*(£2) and all
continuous functions g : 92 — R the Dirichlet problem

L(u)=f in £,

13
u=gq on 02 (13)

has exactly one solution in the regularity class C*t(£2) N C°(12).

Proof: We construct a sequence of polynomials {gy }n=1,2,.., which converge
on the boundary 92 uniformly towards g(x). For each index n = 1,2,... we
now solve the problem

Uy, € C*H(02),
L(un) =f in {2, (14)
Up = Gn on O0f2.
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With the aid of Theorem 3 we construct a sequence
{Un}n:1,2,... C C>,2<+a(9)
satisfying
L(vn) = f—L(gn) =: fn € C*(N2) in {2, (15)
v, =0 on Of2.

Evidently, the functions u,, := v, + g, solve the boundary value problems (14)
forn=1,2,.... On account of L(uy, —uy,) =0 in 2 and (C4) the maximum
principle yields

[tn = |6 < max g () — gm(2)] = 0 (m,n — o)
€02 (16)
l|lwn||§ < const, n=12...

Choosing d > 0 sufficiently small, we obtain the following inequality by the
interior Schauder estimate:

.Qd
2,

l|tn — um”?d + [lun — um”gd + [[un — wnm|
< k(d)||upn — um||g2 — 0 (m,n — 00).

Setting
u(z) = lim up,(z), x € 12,

n—oo

we deduce u, — u(n — o00) in C?*T%(O) for each compact subset © C (2.
Therefore, the function u belongs to the class CY(2)NC?T*(£2) and represents

the unique solution of (13). qed

§6 Existence and regularity theorems

At first, we shall eliminate the assumption Cg.

Definition 1. Two bounded domains 21,825 C R™ are C*t*-diffeomorphic,
if we have a one-to-one mapping

Yy = y(:v) 22— (g € C2+a(91)
with the inverse mapping
x=x(y): 29 — 21 € C*(12y)

satisfying ggi """ yn) # 0 in £21. When the set £2 is C?>T%-diffeomorphic to the

7"'7371)

unit ball B C R™, we speak of a C*T*-ball.
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We need the following

Theorem 1. (Reconstruction)
In the C?T-ball 2 C R™ the coefficients of the differential operator L fulfill
the assumptions Cy and Cy.
For all right-hand sides f € C*(§2) and all boundary values g € C°(092), then
there exists a solution u = u(x) of the reqularity class C*T*(2) N C°(2) for
the Dirichlet problem
L(u)=f in £,
u=g on 0f2.

At a boundary point £ € 002 we define the set 2(£,0) :={zx € Q2 :|x—¢| < o}
with o > 0 and additionally require the boundary condition

(1)

glx) =0 for all x€002N0NE, o). (2)
In this situation we have
ue C*e(0(e,r)) (3)

for all sufficiently small 0 < r < p.

Proof:
1. Since the set §2 is C?***-diffeomorphic to B, there exists a C?t*-diffeo-
morphism
y=01(2), ... yn(2)) € C*F*(12)
of £2 onto B with the inverse mapping

@ = (21(y),. .., za(y)) € C*F(B).
We define u(z) = a(y(z)), = € 2 and deduce
n ) 3yk
Ug; = Zuyk O’
k=1 ’
N . Ouk Oun
i = kgl P e Oy Z o axj

For all y € B we obtain
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L(u)|g=a(y) = { Z AijUs,z; + Zbiumi +cu}
j i=1

Py z=z(y)
= ij YrYl
M=l i1 (9,@1 al'] z=xz(y)
n n 32yk n ayk
. b, ) iy, (4
+ Z ( Z i (9,@1(9,@ * . (9.%'1 m:m(y)uyk ( )
k=1 4,j=1 J i=1

+C|m:m(y)ﬂ(y)

= Z dkl(y)ﬂykyl + ng(y)ﬂyk + &(y)ﬂ

k=1 k=1

Due to Theorem 1 from §4 the set B satisfies the assumption Cy, and we
can solve the Dirichlet problem (1) in B with the aid of Theorem 5 from
§5 . On account of the behavior for the coefficients in (4) with respect to
the given transformations, namely

an(y), be(y) € C¥(B),  ki=1,...,n, 5
0> é(y) € C*(B),

we can solve the Dirichlet problem (1) on the domain {2 as well.

. We control the construction in the proof of Theorem 5 from §5 as fol-
lows: With the additional assumption (2) we approximate the function g
uniformly on 942 by a sequence {gi}x=1,2,.. of polynomials.We use the
mollifier

0,0<t<]
o(t) := € C*(R)
1, 1<t<+o00

and consider the functions

Jr () gk(a:)Q(lx;ﬂ), z € R", k=1,2,...

We observe the uniform convergence gi(x) — g(z) (k — o0) on 92 and
the fact that

1
ge(x) =0  forall zeR" with |z—¢ < 50 (6)

Following the proof of Theoremb5 in §5 we obtain the solutions

ur € C2+Q(Q),
Llup)=f in £, (7)
U = gk on Of2.
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We utilize an interpolation of the Schauder estimates from the Theorems 1
and 4 in §5 (compare §7) and obtain the following estimate for arbitrary
0<r< ég

g, — wal[ 77+ g, — il + g — w5
0 ,1
< Olug — w20 < Ouy, — | (8)

< ¥ sup |gr(z) — Gi(z)| — 0 (k, 1 — oo).
€02

This implies

u(z) == lim ug(x) € C* ()N C°(02) N C*(02(E,r))

k—o0

forall0 < r < %g, and the function u evidently solves the boundary value
problem (1).
q.e.d.

Proposition 1. Let the function G = G(x) € C*T*({z € R" : |z — £| < o})
with o > 0 be given, which satisfies G(§) = 0 and

VG(z)#0 forall = with |z—¢& <o
Then we have a C*T-ball
D cC {xeR" D =€l <o, Gx) <0},
whose boundary fulfills
ODN{z eR" : |z —¢| <g'}: {xER" e — € < o, G(x):O} 9)

for a number 0 < o' < o.

Proof: Exercise.

Theorem 2. (Existence theorem for linear elliptic equations)

With the assumptions Ca, C3, Cy let the differential operator L be defined on
the domain (2. Furthermore, we take the functions f € C*(£2) and g : 02 —
R € C°(002) arbitrarily.

Then the Dirichlet problem

Lu)=f in  £2,

10
u=g on 0f2 (10)

possesses exactly one solution in the regularity class C*t(£2) N C°(92).
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Proof: We only have to eliminate the assumption Cy in Theorem5 from §5 .
With f € C*(£2), we consider the following function in the dimensions n > 3

- 1 f(y) .
v(x) = 2 — n)wn ([ ly — -2 dy, € . (11)

We derive
v E 02((2) N CO(Q),

Av(x) = f(x) in .

Following Chapter V, §3 we solve the boundary value problem by Perron’s
method

(12)

w e C2(2)NCORQ),

Aw =0 in £, (13)
w=—v on 0f2.
Then the function u(z) := v(z) + w(x), x € {2 represents a solution of the

boundary value problem

Au(z) = f(x) in £,

(14)

u=20 on 012
With the aid of Theorem 1 we locally reconstruct the solution « in the interior
and at the boundary via Proposition 1 as well. Then we obtain u € C?T%(2).
In this context we refer the reader to the subsequent proofs of Theorem 3 and

Theorem 4.
q.e.d.

Theorem 3. (Inner regularity)

Let the differential operator L be defined on the domain {2 C R™ with the
assumption Ca, and let the right-hand side f € C*(£2) be given.

Then a solution u € C?(£2) of the differential equation

L(u)=f in {2 (15)
belongs to the regularity class C*t*(2).

Proof: On account of (15) the function u € C?({2) satisfies the differential
equation

Lu)=f in

abbreviating
~ " 0%u - ou
L) = 32 al@) g o, +D 0@y, s
i,j=1 i=1

f=f—cue CN).
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Since the operator L satisfies the assumption C4, we can reconstruct the
solution with the aid of Theorem 1 as follows: We take £ € {2, choose o > 0
sufficiently small, and consider the set D := {z € R" : |z —¢| < g} CC 2.
There exists a solution v € C***(D) N CY(D) of the problem

L) =f in D,

16
V= on OD. (16)

The maximum principle implies u(z) = v(z) in D, and consequently u €
C?*te(D).
q.e.d.

With the assumption Cs we comprehend the set 912 as an (n— 1)-dimensional
manifold of regularity class C?*®. Therefore, we naturally define boundary
functions

g:002 —Re C*(00).
We easily show the following

Proposition 2. Let the function g : 02 — R € C***(012) be prescribed. For
each & € 012 and each sufficiently small € > 0, then there exists a function

h=h(zy,...,2,) € C**({z € R™ : |z — €] <))

satisfying h =g on 02 N{x e R™ : |x —&| <e}.

Theorem 4. (Boundary regularity)
With the assumptions Cs and Cs, let the differential operator L be defined
on the domain §2 C R™. For the boundary distribution g € C*T*(982) and
the right-hand side f € C*(£2) let the solution u of the following Dirichlet
problem be given:

u € C*(2)NCN),

L(u)=f in £, (17)
u=yg on 0f2.

Then we have u = u(z) € C*T*(12).

Proof:

1. We choose the point £ = (&1,...,&,) € 082 arbitrarily. Furthermore, we
consider the function w(z) := e #@1=¢)% > 0 in R™ with the parameter
1 > 0 to be fixed later. On account of

Way = —2pwy — Er)e M

2
Wara, = {42 (@1 — €)% — 2u}e @16
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we obtain
Lw|z=¢ = —2pai1(§) +c(§) <0

taking p > 0 sufficiently large. Now we choose ¢ > 0 sufficiently small and
observe

Lw(z) <0, w(x)>0 forall xe 2 with |[z—¢ <p. (18)

By the product device u(x) = w(x)v(z) presented in § 1 from Chapter VI,
we find that the differential operator relevant for v satisfies the assump-
tion C4. Consequently, we additionally require the assumption (Cy4) in the
sequel.
2. Due to Proposition 2 we can locally extend g : {2 — R about the point £
to a function
heC*({z e R" : ||z — & < 0}).

Now we choose a C?*%-ball D described in Proposition 1, such that
DC{:UER" : |x—§|§g}ﬂﬂ

holds true. The function v(x) := u(z) — h(z) € C?*T*(D)NCY(D) satisfies
the problem

Lou(x) = Lu(x) — Lh(z) = f(x) — Lh(x), reD. (19)

Here the right-hand side of (19) belongs to the class C*(D). Furthermore,
v(z) = 0 for all z € 9N2(E, o) N 952 holds true with a sufficiently small
o' > 0. In this context we defined

0, 0) = {:CEQ: |x—§|<g'}.

Reconstructing the solution v on D with the aid of Theorem 1 as in the
proof of Theorem 3, we obtain

v € CT(0(8,0")) (20)

for a parameter 0 < ¢” < o’ < 0. The point £ € A2 chosen arbitrarily, we
finally see
u € C*T(0).
q.e.d.

Remark: Since the proof of Theorem4 is of a local nature as described in
Theorem 1, we could prove a local regularity result as well.

We now attain the goal of our theory, namely
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Theorem 5. (Fundamental theorem for elliptic differential opera-
tors)

With the assumptions Cs and Cs let the differential operator L be defined on
the domain {2, and we require the condition:

The homogeneous problem L(u) =0 in 2, u =0 on 012, u € C%(12)

admits only the trivial solution u = 0. (21)

For all functions f € C%(2) and g € C*T(982) given, then the boundary
value problem

u € C?T(02),
L(u)=f in £, (22)
u=g on 012

possesses exactly one solution.

Proof: We consider the reduced differential operator

2 0%u - ou
Lo(u) =Y aij(@) 5 o +Zbi(a:)axl
ij=1 TR =1 B

and solve the following Dirichlet problem with the aid of Theorems 2 and 4:

Up € C2+a(9>,
Eo(’UJO) =0 in .Q, (23)
Uy =g on 0f2.

The right-hand side f € C*({2) given, we solve the problem (22) by the ansatz
u = ug + u1, ur € CTF(0). (24)
For the function u; we find the condition

f = ,C(’U,) = ,C(’UJO + Ul) = Eo(UO —+ Ul) + C(UO —+ Ul)
= Lo(ug) + Lo(u1) + cug + cur = Lo(u1) + cug + cuy

or equivalently
uy + L5 eur) = L5H(f) — Ly Heuo) = f € CH(0). (25)
We consider the Banach space
B:= {u:Q—>R€C2(Q) : u:OonaQ}
with the norm

ull = lull§ + lull? + ulg’,  weB.
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Now we introduce the linear operator
K(u) == —Ly" [e(z)u(z)], u € B. (26)
The Schauder estimate yields

1K ()| < 1K (W)l|Fy o = L5 [e(z)u()] < Ojeul|§

Hera
~ (27)
< el ul =ul, uweB

Consequently, the linear operator K is bounded on the Banach space B and
even is completely continuous, due to the theorem of Arzela-Ascoli. On ac-
count of (21) the homogeneous equation

u+ Ly (cu) =0, u € B, (28)

admits only the trivial solution u = 0. We apply the Theorem of F. Riesz from
Chapter VII, §4 and obtain exactly one solution of the operator equation

u—K(u) = f, u € B, (29)

for each right-hand side f € B. With the aid of Theorem4 we obtain the
desired function
up € Of+a(9)

satisfying (25). Therefore, the function u = u + u; solves the Dirichlet prob-
lem (22).

q.e.d.
§7 The Schauder estimates
For ¢ € R™ and R > 0 given, we consider the set
B=DB(,R) = {:17: (X1,...,2n) ER™ : Jx —¢| <R, z, > 0}.
With z = (z1,...,z,) we set 2* = (21,...,Zn_1, —Tn). We abbreviate
E = {xGR” : :17":0},
and for n > 3 we define Green’s function on the half-space z,, > 0

T ()

(n = 2wn \|y —z[*2 |y —z**=2

Evidently, we have ¢(z,y) = 0 for all y € E. We now define the class of
functions

C2t(B) = {u € C2F(B(£,R)) : u(x) =0 for all z € IB(E, R) N E}
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Proposition 1. Let the function u € C?t%(B) be given, then we have the
following identity for all x € B :

ww) = [ (o)) o)) arw) - [ st au)ay
| yyifézo R \ y;nf\z% R

Proof: At first, the Gaussian integral theorem yields

[ (wndu) - ut)a,00w.1)) doty)

= [ (45— w5 dotw)

0B

b [ (g —ut)5e) doty)
ly—zl=<

for all ¢ > 0 and z € B. We note that u € C?**(B) and consider the limit
process € | 0

uw)= [ (o5 —uS) ot~ [ e duldy

ly—¢|=R \y 5\<R
Yn >0 q.e.d.

Remarks:

1. It is important that u vanishes on a plane portion of the boundary. A
contraction with £ € F and R | 0 transfers this part into itself. Very
important in the sequel are half-balls.

2. With Green’s function for the half-ball B = B({,R) and £ € E at our
disposal, we could directly derive potential-theoretic estimates extending
to the boundary 0B N E as in §4.

3. In order to construct Green’s function for the half-ball, we have to solve
the Dirichlet problem for the ball by Poisson’s integral formula. However,
we do not yet know of the latter solution whether their derivatives are
continuous in B.

Proposition 2. The function u € C2T%(B) may satisfy Poisson’s differential
equation Au = f in B with f € C*(B). Then, we have the following equations
forxe Bandi,j=1,...,n

@ = [ (e o) o) ) 5 Yoy
ly—¢|=R
Yn >0

@), (2, R) / bore, (2.9 (F(y) — () dy.
B
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Here, we define

1,2
¥(z, R) = / <¢(x,y)a(§‘3") - ;yﬁ%(:r,y)) do(y) — ;xf;

ly—¢|=R
Yn >0

Proof: From the integral representation of Proposition 1 we can easily differ-
entiate the surface integral twice. The questionable volume integral

F(z) = [ ¢(z,y)f(y)dy, r € B,
/

can be directly differentiated only once:

Fmi(w)=/¢m,-(:v,y)f(y)dy, r€B for i=1,...,n.
B

We apply Proposition1 and insert the function u(z) := 22 with u(z) = 0

for x € E and Au(z) = 1 in R™. This implies

1
2

(Ly? 0
/¢(w,y)dy = / (¢($»y) (gf”) N ;yia_f(x’y)) dl) = ;xi
B |y*§£:03

YnZ

= ¢ (z, R), x € B.

Therefore, the function

Di(x) = /%(w,y) dy = g, (z,R), x€B,
B

belongs to the class C*(B), and Proposition 1 from §4 due to E. Hopf yields

Fyon, (1) = / Gore, (.9) (f(0) — F(2)) dy + f(@)bon, (@, R), v B
B

fori,j=1,...,n. q.e.d.
Proposition 3. The function u = u(z) € C2T*(B(£,1)) may satisfy the par-

tial differential equation Au(x) = f(x) in B(£,1) with the right-hand side
f € C*(B). Then, we have a constant C = C(n, ), such that the inequality

B(¢,3) B(¢,3) B(£,1 B(¢1 B(£,1 B(£,1
lullz 2+ lulze < Cam) (IlullgE+ Hull 0+ 1716 + 1171155

holds true.
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Proof: The indices 7, j € {1,...,n} being fixed, we consider the functions
au 8¢1111
s@)i= [ (baun e G ) ul) " (20)) doty),
ly—¢|=1
Yn=>0

h(x) = f(x)wzlzj (LE, 1),
F(z) = / boe, (0.0)(F(y) — f(@)) dy,  z € BE1).

B(£,1)
The Proposition 2 yields

At first, we deduce

e
lgll ¢ 2 < Oy (a, n)(Hu”B(sl T ”3@1) @)

Furthermore, we have
B(¢,} B(¢, L B(¢,} B(&,5
hllg €2 + [lhllo ) = Ale 2 = |If - o (1) 3
B(&, B(¢,}
< Nboray (5 DIE &2 f 102 (3)
B(&,1 B(&,1
< Colam) (17157 + 171EEY).
We utilize Proposition 2 from §4 in order to estimate F'(z) and obtain
1
|F(2)] < Cs(a, )| flo$, o eBE). (4)
Furthermore, the estimate of E.Hopf yields

F(a") = F(a') + (f(z") - / Py (2 Y dy‘
€B(§ 1) (5>

|ly—z |>3\m”—m |
< Colay )| fIFE )" —a'1* forall o' 2" € B(E,1).
With the aid of the Gaussian integral theorem we show the uniform bound-
edness of the Cauchy principal values:

‘ / N ) dy’ < Cs for all 2’ € B(g, ;) and 6>0. (6)

yeB(&,1)
ly—a'|>6

Together with (5) we see
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(") = F(')] < {Cala,n) + G5} g Vla” — 2|
forall e B(g, 2) and 2" € B(€,1).
The inequalities (4) and (7) now imply

B(&, 1)
[FalF

o) < {Cslam) + Culasn) + CsHIFIEEY. (8)
From (1)-(3) and (8) we obtain the inequality

B(§,
HU%IJHO : + HU%IJHO

~ 1 B(g,1 B(g,1 B(g,1
< Claym) {Jull &Y + Il P + 115D + 17165 }
for i,j =1,...,n, which gives us the desired estimate. q.e.d.

By means of a scaling argument we now show the following

Theorem 1. Let u = u(z) € C?T*(B(,, R)) with £ € R™ and R > 0 be a
solution of Poisson’s equation Au(z) = f(x), x € B(&, R).
Then, we have the estimates

B(¢,R) B(§,R) B(¢,R)
st FEER PSR IR e
Jullf 4 < claum (M, Y R
and
B(§,R) B(§,R) B(§,R)
. RISl BERp)e -
a4 < o (M. + R+ I e

Proof: We apply Proposition 3 to the function v(y) := u(Ry) , y € B(};, 1), of
class C2+e (B(};, 1)) and obtain

B(§.3)
Dt ol

B(&,1 B(&.1 B(j,1
sc<a,n>{||v|\ D ol 7D 4 gllg

B(R7 )}.

Furthermore, we calculate

vy, (y) = Rug,(Ry), i=1,...,n,
Vg () = R2tp,0, (Ry), i k=1,...,n,

Av(y) = R* f(Ry) =: g(y), yE€ B(g, 1)

and note that
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B(§.1 B(£,R B(&, 1) B(¢, %)
ol 77V = R PEP, o) P02 = RYull7 ), 1=0,1,2.

Finally, we use the identities

B(R 2) R2+(¥||u||B(§>2)

o]l :
B(§ 1 B(¢,R

lgllg Y = B2 £ 85
B(&.1 @ B(¢,R

gl = RE+e f|| S,

From (9) we infer the inequality

B(¢, o B(&,5)
R2ullF &%) 4 R u) P&

R B(£,R .R) a) ¢ BER
< Clam){lullg ™™ + RIull7S™ + B2 £I7C + R 715}
This relation implies the estimates stated above. q.e.d.

We now present the transition to elliptic differential operators with constant
coefficients and prove the preparatory

Proposition 4. Let A = (a;j)i j=1,...n be a real, symmetric, positive-definite
matriz satisfying

n

m2Y <Y a&iG <MY &G foral {=(&,....6) ER"
=1

ij=1 i=1

with the constants 0 < m < M < +o00.
Then we have a real matric T = (t;j)i j=1,...n With the entries t,; = 0 for
7j=1,...,n—1 and t,, > 0, such that

ToAoT*"=F
holds true. Furthermore, the following dilation estimates
Mz <|Tx| <m™ Y, x eR"

and
mly| <|T7'y| < Mly|, yeR"

are valid.

Proof: Since A is a real, symmetric matrix, there exists an orthogonal matrix
B with Bo B* = F = B* o B, such that

BoAoB*=A=:diag(\,...,\n)

is transformed into a diagonal matrix with the eigenvalues \; € [m?, M?] for
i=1,...,n. We multiply this equation from the left- and the right-hand side
by the matrix
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ATV = diag(A] V2, A1)
With C := A~'/2 o B we obtain the identity
E=A"Y20BoAoB* o (A"Y?)* =CoAoC".

The multiplication of this equation by an arbitrary orthogonal matrix D yields
the following identity with 7" := D o C"

E=DoCoAoC*oD*=ToAoT*.

We now choose D in such a way that the conditions ¢,; =0 (j =1,...,n—1)
and t,, > 0 are fulfilled. We remark the relation

T=DoA Y208

with the orthogonal matrices B and D, and the diagonal matrix A~1/? with
the elements A, /2

%

us the estimate

€ [M~t,m™1] for i = 1,...,n. This representation gives

M Ya| < |Txz| < m™ Yzl z € R".
Setting © = T~y we obtain the second dilation estimate

—1p—1 —1|p—1 n
M7T yl<|yl<m™[T77yl, yeR™ qe.d.

Theorem 2. The real, symmetric matriv A = (aij)ij=1,....n may satisfy the
condition

n

m2zn:§i2§ Zaij§i§j§M2i§¢2» £ eR”,
i=1

ij=1 i=1

with the constants 0 < m < M < +oo. The function u = u(z) €
C?t2(B(&, R)) may solve the partial differential equation

- 0%u
LWl = Y ay,. o (@)= f@), =€BER).
ij=1 v

Then, we have a constant C = C(a,n,m, M) € (0,400), such that the rela-
tions

B(¢,R) B(§,R)
s ) b6, oy e, NlEE™ | Jul
5D < o (g™ + mpage + e Tl

and

B(e, 1 B) BeR) | vl
muaMzsc( 0 Ty ppEen y lelo

B(&,R B(¢,R B(&,R
[FilFa N (17 i
Ra R2+a Rl-i—a

hold true.
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Proof: The matrix A given, we use the transformation y = Tz according to
Proposition 4. On account of y,, = t,,x, we have

{zeR": 2, =0} > {yeR™: gy, =0},
{reR": x, >0} = {yeR" : y, >0}

Furthermore, the following inclusions are valid

r{ofs ) < n(rs ) <w>
B(Tg, A};) c T(B(&, R)). (11)
Starting with y € T(B(¢, ,3; R)), we see

Ty —TE)| = T 1y — " R.
T (y—TE| =Ty £|<2MR

Proposition4 then implies

mly — TE| < |T Hy —T¢)| < "R or equivalently ly —T¢| <

2M 2M°

This means y € B(T¢, %), and (10) is proved.
Starting with y € B(T¢, AI}), that means |y — T¢| < AI}, Proposition 4 yields
the inequality

Tty — & =Ty —TE)| < Mly—Té| < R.

Therefore, T~y € B(¢, R) and y € T(B(&, R)) hold true. Now (11) is proved
as well.

We consider the function v(y) = u(T~'y) of class C2T(T(B(&, R))) and
consequently u(z) = v(Tz) of class C2T*(B(&, R)). Noting that

n n
Uy, = g Uy thi,  Uziz; = E Uy thiti; for 4,j=1,...,n
= k=1

we deduce n

Lu)le = > ai 8:@8% =y ( > az’ﬂk#lj)”ykyl .

7,j=1 7,j=1
n
E Okl Uy, e
k=1

for all z € B(&, R). Consequently, we obtain

Av(y) =g(y), yeT(BER),  with g(y):= f(T"'y). (12)

. Av(Tz)
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Due to the formula (11), we can apply Theorem 1 to the function v in the
ball B(T¢, ) : There exists a constant C' = C(a,n), such that

lF TS < G (%, olg T 4 o P

+ el

B(T§7M)>

ol

B(T&M)

+llgllo
We note (10) and deduce
B(¢,)% R B(T¢, R
lully € =5  < pu(m, Aoy 6=

Finally, we obtain

B(&, % R) ~[M? per M B(&,R
Jall? 5 < o, A C{ T Tl + i m 30l P

Be,R)  R®
+H£llg e +

Apaba(m ML

| BER) B(&.R)

< Clomman{ 1S L 1D

R)}

taking (11) into account. Analogously, we estimate the quantity |jul|; .,

B ,R 167
+HIFIgE™ + R

B(gsz )

q.e.d.

For the functions u € C2T*(B(&, R)) we now introduce the following weighted
norms, abbreviating d(z) := R — |z — £] :

Ap = sup |u(z)|,

xeB
n

A= sup L) Y- s (0] .

xeB i—1

n

Ay 1= sup {d(g:)2 Z U (:17)|},

reB =1

. 2+a |’U/1 x — Ug;z; (‘T”)|
Ag o = sup { min[d(z"), d(x"") sas I :
@ = 1”63 ( ljzl :L./I|o¢
m;éw”

(13)

Proposition 5. (Norm-interpolation)

Given the functions u = u(z) € C***(B(&, R)), we have the following esti-
mate:

nk

m/b for all k€ (0,1). (14)

2
A < nA0+
K
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Proof: We assume A; > 0 and choose a point 2’ = (2], ...,2},) € B satisfying
n
Ay =d(@)) |ug, ()] and  d(2’) > 0.
i=1
For an arbitrary index j € {1,...,n} we define " = (zf,...,2)") by 2 =«

for i # j and 27 := 2} + kd(2'), with an arbitrary & € (0,1). We remark that
2" € B holds true. The mean value theorem of differential calculus gives us
a value & € (0, ) with the adjoint point & = (Z1,...,%,) satislying &; = 2,
i # j and T; = x; + Rd(z'), such that the relation

u(z") = u(z')

holds true. This implies
249
(2)] < . 15
Furthermore, we calculate
zj
~ AN / / / /
uxj (I) - ul‘j (I ) - /uzjl‘j (Ilv T 7xj717ta :Ej+1a N ~7xn) dt.
r;

For x = (2y,...,2%_,,t,2%,,..., ;) and 2 <t < 7; we infer

d@)=R—|z—¢=R—|2' =& — |z —a'| = d(')(1 - k)
and consequently

A A
e 1= e = (1 wpae

We then obtain

o (3) — e (2 As kd(a') _ KAy
@ = WS (4 g T @ - wpaey 00

The relations (15) and (16) imply

e, (@) < fta, (8) = i, (@) - bty B <)y g

: A 2A
’ ’ KA2 0
d(x ) |ug. ()] < +

( )| CEJ( )| — (1 )2 K

We summarize and get
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- 2nAg nKkAs

— (! ’
Al—d(w)zzzlhl/mj(x”g o +m s
the parameter k € (0,1) being arbitrarily chosen. q.e.d.

We now consider general elliptic differential operators

- 0%u - ou
L(u) := Z aij(x)ax_ax_ + Zbi(x)ax_ + c(z)u, x € B(§,R), (17)
i,j=1 T =1 !

and require the following conditions on the coefficients:

Assumption D: For i, = 1,...,n let the coefficients
aij(x), bi(x), c(x) € C*(B(, R))

with the bound P be given:

3 a5 + 37 B ZED + e 260 + R< P,

i,j=1 i=1

With the ellipticity constants 0 < m < M < 400, we have the following
inequalities for all x € B({, R) and A € R™ :

m? zn:Af < zn: aij(T)\iN; < M? zn:Af.
i=1 i,5=1

=1

Proposition 6. Let the assumption D be fulfilled. The function u € C**%(B)
may satisfy the differential equation

Luw)=f inB with f € C%(B).

Then, we have the following estimates for each point £ € B and each number
k€ (0,3)

A A
/-;20 + 0 R4y + H2a142,a}

KR

B(&, " rd(%)) C a
L e T R T

and

B(&, 33 ni( c I A A o
Julle” 7 < d(@m{ R e

with a constant C = C(a,n,m, M, P) € (0,+0c0).
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Proof: We show this proposition by a method usually called freezing of coef-
ficients. For each x € B(Z, kd(Z)) we have

Aw) = R—lo—€ > R[5~ ~ o~ > (1 - w)d() > | d(3).
Then, we obtain

Ag=sup lu(@)| > sup  |u(z)| = [uf§ T (18)
rz€B r€B(Z,kd(Z))

and
n

2A1 o 2d(fL’)
i) =2 o) 2@}

reB

n (19)
B(3,kd(3
> sup {Zluﬂh(‘f)l} = HUH1( @,
z€B(Z,kd(%)) ~ ;4
Furthermore, we note that
4A B(#,rd(%))
> ' 20
s Il (20)
and 2ba g
2°T% Az o B(%,kd(F))
d(j)2+a Z HUH2,0¢ . (21)
Since u satifies the differential equation £(u) = f , we infer
£(u) = znj ai; (%) Pu (z) = g(z), =z €B(@rd#), (22)
=1 / 8:1:j8:1:j

with the right-hand side

0@ = 1@ - 3 (an@ -an@). 8 43 0@ O @b, (29
001 Ox;

i
ij=1 i=1

To the relation (22) we now apply Theorem 2 with £ = &, R = kd(Z). Then
we obtain

B(Z, J kd(Z)) = B(&,kd(& B(&,kd(E)) _a 3/ ~\ox
Ju B® @) c(|g||0< @) 4 |l g|EER ea )

(24)
L Ap i 2A,
K2d(Z)?  kd(Z)?
and
B, gy nd@) _ A lglly @ B(%,rd(%))
l[ull2,q <O asia Tldllos
Kkd(T)
(25)
n Ap n 2A,
R2+ad(i-)2+a K1+ad(j.)2+a
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with the constant C = C'(a,n,m,M) € (0, 400).

The quantity Hg||B<x #4®) i estimated as follows: Taking x € B(%, kd(Z)) we
have
B(%,xd(Z ~ (92u
@) < IIZE + 3 oy @) - a =@ 5y, 5. )]

1,5=1

+Z|b M )] + @) o)
and consequently

B(&,kd(Z)) (Z,kd(Z a B(%,xd(Z
lg(@)] < 1 £11gE ) )| §E 1) gz Z||au||< )

3,5=1

B(&,kd(& B(&,kd(& B(&,kd(% B(&,kd(%
[l FEED Sy [§E ) g E) o DEAED
=1

Therefore, we find

5 .md(E 2A | Amnd(E)e
o7 < 1718 + (a0 + 08 + 1 o)
(@)
(26)
ko(P

7)

~—

S HfHOB+ (A0+A1+I€QA2),

U
o

with a constant kg = ko(P).

In order to estimate the quantity ||g,
points 2/, 2" € B(z, kd(Z)) as follows:

B(w rd(@)) ,we calculate for each two

n

l9(e") —g(a")| < |7@) = 7@+ 30 {lai (@) — asi(a”) s, ()
i,j=1
lais (0") = 5 (@) ta.o, () =z, (2]}
37 {Ibu(a) = @) s ()] i)z ) = s 2"

+{le(@’) = (@) Ju(@)| + le(@”)] [u(@’) = u(a")|}.

This implies
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meix zndz zndm
lg(a’) — g(z")] < |2’ — 2"| {nfn (@) g 5@ Z ai; @
i,j=1
zndm andz meix andz
|5 4@ Z||aw||< @) || ) Z||b||< )
i,j=1
I EED (@)1 Y 54
=1
(Z,kd(Z (Z,kd(Z B(%,xd(Z B(&,kd(Z)) ~ —a
Hlelige ™ g @ 4 el Ol FEE (20a(@)) e |

4A5P 22t Ay 24P
< |z — " ap >
= | | {”f”Oa (j)2 trK d(,f)2 + d(j)

2P A, 1-a ~\\1—a
o 2R ) e

4A5P

+ (26)17%(d(2))' ™ + PAo +

Then, we obtain

oEmE) < || F15 + fa {A0+A1+A2+RA2Q} (27)

with a constant k1 = kq(P).
Combining the estimates (24), (26), and (27) we deduce

x, Kalx ~ ko(P o a g/m\o
a5 < g + 5 o+ A+ waa) 4 @)

+K d(i;)zf‘l (Ao + A+ A+ K Ag,a) + H2d(f)2 + Iid(j)2}
C(a,n,m, M, P) Ay Ay o 20
< .
- d(z)? {”fHO K2 + K oAy e A2’O‘}

Furthermore, we estimate with the aid of (25), (26), and (27) as follows:
B
B i nd@) _ &f o ko(P) a B
el O pog(aye * wod(yree (Ao + A1+ 5% 42) + £
kl( ) AO 2A1
Ag+ A1+ A *As o
d(7)2 (Ao + A1 + Az + % Az.a) + r2Had(§)2te + klted(z )2+a}

C(o,n,m, M, P) s | fII¥ L A A )
= d(F)e { o TGt i T 4 TA2+5 Az,a}-

+

This completes the proof. q.e.d.
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Theorem 3. Let the assumption D be fulfilled; and u € C***(B(&, R)) may
satisfy the differential equation

L(u)=f in B=DB(,R)
with the right-hand side f € C*(B).
Then we have a constant C = C(a,n,m, M, P) € (0,400), such that
A1+ Az + Azq < C(Ao +IF1I5 + 11 F11G0)- (28)

Proof: We choose k € (0, ;) and infer the following inequality from Proposition
5
2n nrlte

Ao + (1 — gl+a)2

Together with Proposition 6 we obtain the estimates

A <

< lba As. (29)
B o B 1 2n
Az < CLNFIE + KNI+ (o + oy ) Ao

n a 2a
+((1*H1+a)2 +1>:‘$ As + K A27a}

and

N o 1 2n
wdaa < CQUIE + w118+ (4 20 ) 4

n [} 20
+((1_,€1+a>2 —l—l)li As + K AQ,Q}.

Their addition yields

1 2n
Aotk a < 20011 + U180+ (o + 20 ) Ao

o n [0}
+K (1+ (1_1%1_’_(!)2)(1424-% A27Q)}.

Choosing 0 < k¢ so small that the condition

n 1
2CkKg (1 + ) <
0 (1— mé*o‘)2 -2

is fulfilled, we deduce
« B « B 1 2n
Azt 5§ Ar0 AOUIE +w3ITIEa+ (o + 2ta ) Ao p-
Iio /{0
Consequently, the quantities Ay and As , are estimated in the desired form.

Utilizing Proposition 5 once more, we attain the stated inequality (28).
q.e.d.
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From this Theorem 3 we now can easily deduce the Schauder estimates given
in§5.

Proof of Theorem 4 from §5 : The quantity d > 0 being chosen arbitrarily
small, we consider the set

Q4 :={xe N2 : dist(z,00) > d}.

In the ball B = B(xg,d) C {2 we apply Theorem 3 with 2o € £2; and R = d.
Then we obtain

O sup [u(a) |+ 1715+ 1£18a) = A1 + Az + A
TE

> dz |uwz(x0)| +d? Z |uiﬂﬂj (‘TO)l
=1

4,7=1
+(d>2+0‘ 3 sup Uz, (') = Ua,a, (2")]
2 ij=17 2" €B(z0,d/2) |a" — &' |
’ x' #x!

for all xg € 24. This implies

£, 02, 02, 2 i) i)
lully + llulls + lullys < CC o d) (lullg’ + 17167+ 111, .
q.e.d.

Let the domain (2 satisfy the assumption Cs. For each boundary point zy €
042 we then have a half-neighborhood (2, which can be mapped onto a half-
ball B({,R) with £ € E = {z € R" : z,, = 0} in such away that B({, R)N E
is related to 92N 0$2y. This mapping represents a diffeomorphism of B(&, R)
onto 2 in the class C?*®. The differential equation £(u) = f is transformed
- similar to the proof of Theorem 1 from §6 - into an elliptic differential
equation on the half-ball with zero boundary values on E. The Schauder
estimates utilized in the proof of Theorem 1 from §6 can be directly taken
from Theorem 3 with the aid of the transformation above.

Finally, we supplement the

Proof of Theorem 1 from § 5: Following the arguments above, to each point
xo € OF2 there exists a neighborhood 2y := 2 N B(xzg, &) with 9 > 0, such

that
.Q() .Q()
1 2

+ flullg® + [lul

2 < C(Iullg” + 118 + 1F115e)

holds true. The boundary 0f2 being compact, finitely many such neighbor-
hoods §2;, j =1,..., N suffice in order to cover this set. Then we obtain

[l

Q; Q; Q _ A )
[l + lully” + llullan < C(lullg’ + 1F1E +1F1§a)  for j=1,...,N.

Choosing d > 0 sufficiently small, we attain the global Schauder estimate
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24

2 [0}
lull? + lullF + el 2o < Tullt™ + lull? + llull2’

2,

N
2; Q; Q;
A Uy + ally” + llully %)
j=1

< (CN +C(@d)) (lull§ + I FIE + 1£]

)
< C(|lull§ + 118 + 1£115)
with a constant C = C(a,n,m, M, P, §2) € (0,+00). q.e.d

Now we have completely proved all the Schauder estimates, which we applied
in §5 and §6.

88 Some historical notices to Chapter IX

Boundary value problems for holomorphic functions have already been consid-
ered by B. Riemann. The just established theory of integral equations enabled
D. Hilbert in 1904, to obtain new results for this problem. G. Hellwig observed
in 1952 the nonuniqueness of the Riemann-Hilbert problem and the intricate
structure for the set of their solutions. For a thorough treatment of these
questions we refer the reader to the profound monograph by I.N. Vekua.

The boundary value problem for elliptic differential equations was solved by
J.Schauder from 1932-1934 via functional analytic methods. At about the
same time, G. Giraud and E. Hopf treated similar problems with alternative
methods. For a detailed account we refer the reader to the book by D. Gilbarg
and N. Trudinger.

J.Schauder worked, as a brilliant student of S.Banach, in the intellectually
excellent atmosphere of the University at Lwov, now in the Ukraine. However,
his life ended already in 1943 — within the tragical times of World War II.
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Weak Solutions of Elliptic Differential
Equations

In this chapter we consider Sobolev spaces in § 1 and prove the Sobolev embed-
ding theorem and the Rellich selection theorem in §2. Then we establish the
existence of weak solutions in §3 . With the aid of Moser’s iteration method
we show the boundedness of weak solutions in §4 . In the subsequent §5 we
deduce Holder continuity of weak solutions with the aid of the weak Har-
nack inequality by J.Moser. The necessary regularity theorem of John and
Nirenberg will be derived in §6 . Finally, we investigate the boundary reg-
ularity of weak solutions in §7 . Then we apply our results to equations in
divergence form (compare §8) . At the end of this chapter we present Green’s
function for elliptic operators with the aid of capacity methods, and we treat
the eigenvalue problem for the Laplace-Beltrami operator.

81 Sobolev spaces

Let 2 C R™ be a bounded open set. Then the space C§°({2) is dense in the
Lebesgue space LP(£2) for all 1 < p < 4+00. We shall now construct a space
WkP(0) of the k-times weakly differentiable functions - with weak derivatives
in the space LP(f2).

To the element f € LP(f2) we attribute the following functional in a natural
way':

Ap(p) = / f@p@)dz, ¢ e CE(A). (1)
(9]

Taking the multi-index a = (a1,...,a,) € NI, Ny := NU {0}, with |a| :=
ai + ...+ a, € Ny, we consider the functionals

Apale) = ()" [1@os@ds, pecrE@. @)
2

Here the symbol
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glel
9%p(x) :

= 94
oust .. oagr P TEE

denotes the corresponding partial derivative of ¢. We note that
Ao =Ag.

With the function f € C1°l(£2), an |a|-times partial integration yields

Apale) = [ (°7@) @)t 0 e CF(@). 3)

0

On account of ¢ € C§°(£2), the boundary integrals vanish during the partial
integration.

In case the linear functional A, - defined due to (2) - is bounded with respect
to the LI(£2)-norm on the set C§°(§2), we can extend this functional to the
Lebesgue space L1(£2) for 1 < g < +00. Via the Riesz representation theorem
we have an element g € LP(£2) with p= 7, € (1,400], such that

Apalp) = / g(@)p(e)de = Ay(g)  forall peCE(@)  (4)
2

holds true.

On account of (3) the following definition makes sense:

Definition 1. Take the multi-index o = (oa,...,a,) € N, the exponent
1 <p < 400, and the element f € LP(2). Then the element

g(x) := D*f(x) € LP(N2)
is called the weak partial derivative of order « for f if

/ g(x)p(z) de = (~1)°! / J@)op@)de  forall peCE@Q)  (5)
(9]

I7)
holds true.
Remarks:

1. Let the elements g1, g2 € LP(£2) with p > 1 satisfy the identity (5). We
then obtain

/ 01(2)p(@) do = Ap () = / p@)p@)dr  forall e CR(Q).
(9] (9]

For the conjugate exponent g € [1,4+00) with p~ + ¢! = 1 we infer
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/(gl —g2)(@)p(x)dz =0 for all ¢ € L9(£2).
2

Utilizing Theorem 2 from ChapterII, § 8 we obtain

0= [|Ag—gll = llgr = g2ll,

and the identities g1 = g2 in LP({2) respectively g1 = go almost everywhere
(briefly a.e.) in §2 follow. Even if the weak derivative exists only in L (2),
it is uniquely determined in this space.

2. In the classical situation f € C1*!(£2) we have the coincidence

0%f(x) =D%(x) in £
due to the relation (3).

Definition 2. Let the numbers k € Ny and 1 < p < +o0 be given. Then we
define the Sobolev space

WhP(0) = {f € LP(R) : D°f € LP(R), |o| < k}

with the Sobolev norm

1
P

1/ lwesiy = 1l = | 3 / D° f@)Pde | (©)

la|<k
Remarks:

1. An equivalent norm is given by

£y = D 1D fllp -

la|<k

Therefore, there exist constants 0 < ¢; < ¢y < +00 satisfying

allf|

kp S IFllkp S c2llfllkp  forall feWhr(0).

2. Endowed with the norm from Definition 2, the space W*P?(§2) becomes a

Banach space.
3. With 1 <p < +oc and g = pf 1, the preliminary considerations yield

Whe(0) = {f €LP(Q) : Apa € (LYR)*, |a| < k} (7)

Here the symbol (L9(£2))* denotes the continuous dual space of L4(£2).
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4. In the special case p = 2 we obtain the Hilbert spaces
H*(92) := WH2(02)

with the inner product

(f Dy =3 / Do f(x)D%g(x)dz,  f.g € H*(£2).
lal<k ¢

5. One immediately shows the linearity of the weak derivative: Let the num-
bers ¢,d € R, the multi-index o from the set Nij, and the elements f, g in
WkP(£2) be given. Then we have

D%(ef +dg) = ¢D“f + dD%g.

We shall now present a mollifying process which we owe to K. Friedrichs. By
0 € C*(R™) we denote the mollifier

o(x) = {CeXp (m?lfl) el <1

0 , lzl >1

/g(x) dz = 1.

R™

satisfying

Here we have to choose ¢ > 0 suitably. A function u(x) € LP(£2) with 1 <p <
400 is extended onto the whole Euclidean space R™ as follows:

B u(z), e N
u(:v)—{ 0 ,zeR"\ 2

Theorem 1. (Friedrichs)
Taking the exponent 1 < p < +o0 and the function u(x) € LP(£2), we attribute
the reqularized function

o
i) =1 [o(T, uman, wer,
RTL

for each h > 0. Then the mapping u — uy, is linear from LP(R™) into LP(R™),
and we have the estimate

[lunllp < llwllp forall h>0, wue LP(R").
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Proof: The linearity of the map u — wy, is evident, and we only have to show
the norm estimate. The transformation formula for multiple integrals remains
applicable to L'-functions via approximation, and we deduce

up(z) = h‘"/@ (w N y) u(y) dy

= /g(z)u(:v —hz)dz 8)
= / o(z)u(x — hz)dz
si<1

for all h > 0. With the aid of Holder’s inequality for 1 < p < +oo and the
identity p~! + ¢~ = 1 we arrive at

@l < [ o @lule - hle (2)dz
lsi<1

s( / g(z>|u<xhz>|pdz>;< / g(z)dzf

l2]<1 |z|<1

and
|up ()P < / o(2)|u(z — hz)|P dz for all z e R".
|z]<1

Integration via Fubini’s theorem yields (for p = 1 as well)

/Rn|uh( )P dz < / (/ |ua:hz)|pdz>d:17

rER™

<1
( |u(z — h2)|P d:c> dz

\\<1 z€ERn

- </|u(x)|pdz>< / o(2) dz).
R |z]<1

lunllp < llullp for all we LP(R™), h>0, 1<p<+oo.

This implies

In the case p = oo we obtain |up(z)| < ||ul| a. e. in R™ and consequently
unlloo < [lulloo- q.e.d.
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Theorem 2. (Friedrichs)
We have the following statements:

1. Taking u(z) € C§(£2) we observe

sup |u(z) — up(x)] — 0 for h—0+.
T€ER™

2. For u € LP(2) with 1 < p < 400 we infer
lw —unll, — 0 for h—0+.

Proof:

1. We depart from u € CJ(£2): For each € > 0 we find a number § > 0, such
that the estimate

lu(z) —u(y)l <e
is valid for all z,y € R™ with |z — y| < d. Via (8) we obtain
un(z) = u(z)] < / o(2)[u(x — hz) —u(z)| dz
|z]<1

<e forall 0<h<d(e), zeR".
Consequently, we observe

sup |up(z) — u(x)] — 0 for h—0+4.
zER™

2. Now we consider v € LP(§2) with the exponent 1 < p < +oo. Because
of Theorem 6 in Chapter II, §7, each given ¢ > 0 admits a function v €
C(£2) satisfying ||u — v||, < e. Utilizing part 1 of our proof, we choose a
number ho(e) > 0 so small that

lv—wpllp <e for all 0 < h < ho(e)
is correct. For all 0 < h < hg(e) we obtain the following inequality
l[u = unllp < flu=wvllp + [l = vnllp + [[lon = unll
< 2flu = vllp + [lv = onllp < 3¢,

taking Theorem 1 into account. This implies ||u — up||, — 0 for h — 0+.
q.e.d.

Now we shall prove that one can interchange weak differentiation and molli-
fication.
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Theorem 3. (Friedrichs)
Let us extend the function f € W*P(£2) onto the whole Euclidean space setting

f =0 onR"\ 2. With the number € > 0 given, we define the regularized
function of class C*°(£2) by

fe(x) = 1 /Q(I;y)f(y)dy, r e R™

877,
R

For all multi-indices o € Ny with |a] < k and all numbers e satisfying 0 <
e < dist(x,R™\ §2) we have the identity

0% fe(x) = (D f)c (), x € 1.

Proof: We calculate

0% fo(x)

Eln /559($;y)f(y)dy
o

= (=1l El,,/aig(x;y)f(y)dy
A

= Eln /g(a7 ; y)Daf(y) dy = (Daf)e(:r)'
Rn q.e.d.

Theorem 4. (Meyers, Serrin)
With the exponent 1 < p < 400 given, the linear subspace C™(£2) "Wk (£2)
is dense in the Sobolev space W*P((2).

Proof: We choose the open sets {2; C R" for j € Ny satisfying
b= cCcHhcCcHhc...cn and QjCQj+1, j € No,

such that

s

Il
=

;= 0.
J

Furthermore, let ¥; € C§°(§2) denote a partition of unity subordinate to the
set system {£2;41 \ £2;—1};=1,2,.... This means

SuppLT/j C Qj+1 \ .Qj,1 and Z'I/j(x) = 1, T € 2.
j=1

The quantity ¢ > 0 given, we choose €; > 0 such that ¢; < dist (£2;41,012)
and
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1(25.)e; = (23 Hllwrnay <277

is valid. This can be achieved with the aid of Theorem 2 and Theorem 3. We
now observe

= > @if)., (@) € C¥()

and furthermore

lg = Flwss(ay = Y|
j=1 j=1 Wk (£2)
<Z||Wf — (D lweri) €Y o, =
j=1
From the property f € W*P(£2) we infer g € W*P(2). q.e.d.

According to this theorem we comprehend the Sobolev space W (£2) as the
completion of the linear set of functions C'*°(£2) with respect to the Sobolev
norm | - [|yr.e (). If the boundary 942 represents a smooth C'-hypersurface

in the Euclidean space R", one can prove that even the linear space C°({2)
lies densely in the Sobolev space WP ((2). However, only in the case k = 0
and p < +oo is the set C5°(£2) dense in the space WkP(2) = LP(§2). For

k > 0 we obtain the Sobolev space W:’p(()) with weak zero boundary values.

Definition 3. Let the numbers k € N and 1 < p < 400 be prescribed, then
we define the Sobolev space

There 1 —10.. CCL(N2
Wé’p(ﬁ) :: {f c Wk*p(_()) : ere is a sequence { fih 1,2, 5°(02) } .

with || f — fillwwrr2y — 0 for I — oo

In the sequel we concentrate on the Sobolev spaces WP (£2) and WP (£2). Let
the symbol e; := (614, ...,0n;) € R™ with ¢ € {1,...,n} denote a unit vector.
Taking the point x € {2 and the number ¢ with 0 < |¢] < dist (z,R™ \ £2)
arbitrarily, we define the difference quotient in the direction e; by

Jla+ees) - f(@)

g

Ai,af(w) =

Therefore, we can characterize the Sobolev functions as follows:

Theorem 5. Let the exponent 1 < p < +oo and the element f € LP(2) be
given, then the following two statements are equivalent:

i) We have the property f € WHP($2).
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i) There exists a constant C € [0,400), such that we have the uniform esti-
mate

|8iefllLeey < C

for all open sets © C 2 with © C §2 and all numbers e with 0 < |e| < dist
(O,R™\ 2) and all indices i € {1,...,n}.

Proof:

1. At first, we prove the direction: i) = ii).
Choosing i € {1,...,n}, f € C®°(2)NWLP(£2), and © C 2 we calculate

Poofx) = [z +€€z /ax 4 tes)d

for all 0 < |e] < dist (©,R™ \ £2). With the aid of Hélder’s inequality we
deduce the following estimate for all z € ©:

p

1( 7.0
. V4 )
|Aief(2)]P < o /1)8xif(x+tel) dt
0

55 ; 0 p
s /}8xif(x+tei) dt
0
1 [ 0 p
0

Here, we observe 1 € L4(§2) and p~! + ¢! = 1. Then Fubini’s theorem

yields
/IAi,sf(x)lpdw 1/ /|Deif(:1:+tel-)|pd:c dt
e

R

/|De x)|P dz.

| A

Consequently, we obtain

18 fllizee) < N fllwree) = C

via the Meyers-Serrin theorem.

2. It remains to show the inverse direction: ii) = 1).
For the datai € {1,...,n}, © C {2, and ¢ satisfying 0 < || < dist (6, R™\
2) we have
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”Az af”LT’ <C.

Due to Theorem 7 in ChapterIl, §8 we have a sequence ¢, | 0 and an
element g; € LP(§2) such that

/(p(x)Amkf(:v) dx — /@(x)gl(ac) dx for all e C§°(02)
RTL

RTL

is valid. Now we see that
R’Vl R’Vl (9)

for k — 00, and consequently
a oo
—/f(x) O o(z)de = /@(x)gl(ac) dr forall ¢ € C§(9).
R" R™

This implies
LP(Q2 .
Dieef "5V Do f =g e 17(92),

and therefore f € W1P(£2). In order to comprehend the identity (9), we
integrate as follows:

Bis (p(2) ()
= {(vo+2ve) - o@) o + 2w + @) (o + v - ) }

- { (900 = ot~ 2109) 10 b o) D S (2)
Yy=x+eRe;
{12} @D f@).
Yy=x+ere;
(10)
This completes the proof. q.e.d.

Remark: With the Sobolev function f € W1P(£2) we consider the weakly
convergent sequence of difference quotients {A; ¢, f}r=12,.., where g | 0
holds true. Then the proof above yields

Nieyf —D%f in LP(2), i=1,...,n.

This fact explains the notion weak derivative.



81 Sobolev spaces 197

Theorem 6. (Weak product rule)

Let the Sobolev functions f,g € WLP(£2) N L>(§2) with the exponent 1 < p <
+00 be given. Then we have the property h := fg € WHP(2) N L>=(2) and
the formula

D*h = fD%g + gD, for all a €Ny with |a=1.

Proof: Choose the function ¢ € C5°(£2) and a sufficiently small number € > 0.
When we apply the identity (10) twice, we obtain the following equation:

Dic(w@h(@) = {hw)di o))+ p@)Dich(a)

y=x+ee;

= {h(y)Ai,_aw(y)}

y=x+tee;

+o@) ({fWoi—cg®)}  +g@)bif@))

y=x+ee;

= {h(y)Ai,fssa(y)} (11)

y=x+tee;

+p(@)g(2) i £ (@) + {0 F W) i —-9(v) }

y=x+ee;

_|_{ <(p(y —ce;) — Sp(y>>f(y>Aiv_Eg(y)}y:z+aei-

Noting f,g € W1P(£2), Theorem 5 and Theorem 7 from ChapterII, §8 allow
us to choose a zero sequence ¢, | 0, such that

Nie, fx) — D f(x) and A; _..g9(x) — D%g(x) in LP($).

From (11) we obtain

0= [ hw)biapla)dat [ o)), fo) do
2

2
+ [e@r@)ti @ o+ (oo - cve) - @) 1@)5i e gl0) da
2 [0}

by integration via the transformation formula. The passage to the limit £k — oo
yields

0= [hia) ) ele)ds+ [ e@@D" f)de+ [ p@)f()D" g(z) ds
N 2 2

for all ¢ € C§°(£2). This implies D*h = fD%g + gD*f for all a € Nj with

jof = 1. q.e.d.
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Theorem 7. (Weak chain rule)

On the bounded open set 2 C R™ let the function f € WHP(£2) N L*(£2)
be defined with the exponent 1 < p < 4o00. Furthermore, we have the scalar
function g : R — R € Ct. Then the composition h := go f belongs to the class
WLP(02) N L>°(£2) as well, and we have the chain rule

D°h(z) = ¢/ (f(2))D*f(2),  wE D, (12)
for all o € N§ with |a] = 1.
Proof:

1. For monomials g(y) = y™, m € N, we show the chain rule by induction.
We start the induction with the evident case m = 1. From the validity of
the statement for m we infer the correctness of the statement for m + 1
with the aid of Theorem 6:

p{(f(@)" 1} = D{ f@)(f)™ }
= (D F@)(f)™ + f)D{ ()" |
= (D F (@) (@)™ + fa)m(f ()" D" f ()

= (m+1)(f(x))"D*f(x) = ¢'(f(2))D* f (x).
2. When
:Zakyk, ar €R, k=0,...,m

is an arbitrary polynomial, we deduce

D{g(f(2)} = Zakm{ Nk} = Zkak )e=1 Do f ()

=¢'(f(2))D" f(2).
3. In the general case g: R — R € C' we invoke the Weierstra8 approxima-
tion theorem: We obtain a sequence of polynomials gi, k = 1,2, ..., which

converge together with their first derivatives g;, locally uniformly on R.
Following part 2, the functions hy := gr(f) € WP (2) N L>°(£2) satisfy

D%hy(z) = g (f(z))D*f(z)  forall aeNj, |aof=1.
For all ¢ € C§°(£2) this implies
/gfc(f(fl?))(Daf(x))sﬁ(I) da = /(Dahk(fl?))@(x) d

0 2

— (- >'@‘/hk< )D%(x) de

0
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with arbitrary |a| = 1. The passage to the limit k — oo yields

/ ¢ (F(@))(D? f(x))p() dr = (~1)1* / W) p(x) da

2 2

for all ¢ € C§°(£2). Finally, we obtain D*h = ¢'(f)Df € LP(R2), |a| = 1.
q.e.d.

If the function g : R — R satisfies a Lipschitz condition

lg(y1) —g(y2)| < Clyr —y2|  forall yi,y2 €R

and the property f € WP(£2) holds true, then the composition h := go f
belongs to the class WP (£2) as well. This is shown with the aid of Theorem
5, since we have

<C

oo+ ee0) = a(F@))| _ If (@ +ee) -

€ le]

N IOl _ c1p, . 5(@)

for all x € 2 and 0 < |e| < dist {z,R™ \ 2}. In order to establish the chain
rule, one needs a.e.-differentiability for the absolutely continuous function g.

We now shall prove an important special case of this statement directly.

Theorem 8. (Lattice property)
Taking the Sobolev function f € W1P(§2) with the exponent 1 < p < +o00,
then the following functions

fH(@) = maz{f(2),0}, [ (2):=—min{f(x),0}, |f|(2):=][f(2)],

o fl@) < —c
foete(z) =< f(z), —c< f(z) < +c
+e,  +e< f(x)
belong to the Sobolev space WP (02), and we have

—C

Df+:{Df, Z:ff>0 ? Df_:{o, z:ffzo |
0. f=0 —Df, if f<0
Df, iff>0 .
DIf|=40, iff=0, ch,ﬂ{Df’ f—c<f<+c
0, else
-Df, if f <0

(13)
Here the symbol Df = (D' f,..., D" f) denotes the weak gradient of f.

Proof:
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1. On account of the identities f~ = (=f)*, |f| = fT + f~, and f_c 1. =
(2¢ — (f —¢)7)™ — c it suffices to investigate the function f+.

2. We consider f € W1P(§2) with the exponent 1 < p < +o0. Then the
element fT belongs to LP(£2) as well, and its difference quotient satisfies

_[F@tee) — fH@)| _ | fla+ees) — (@)

. + <
et (@) ' < '

= [Dicf(2)|

for all x € 2 and all 0 < |e| < dist {z,R™ \ 2}. According to Theorem 5
the function f* belongs to the class WP (£2) as well.

3. Let the function
) Yy, y>0
T N0, w<o

be given. For all § > 0 we approximate this function by the C''-functions
» Vi +62—6, y>0
9s\y) =
0, y<0

with their derivatives

y
, y>0

95(y) = § V2 +8?
0, y<0

Evidently, the inequalities

1, y>0

0< < . 0<g;(y) <
< 95(y) < g(y) _ga(y)_{()? ) <0

hold true for all § > 0, and we observe g5(y) T1 (6 | 0) for all y > 0.
4. Assuming f € WP(£2), we consider the regularized function f. € C°°(£2)
for all € > 0. We differentiate the C'*(£2)-function

h&(s(.%') = gé(fa(x»’ T € {2,

and obtain

0%he 5(x) = g5(fe(2))0° fe(x) = g5(f=(2))(D* f)e ()
for all & € N with |a| = 1. Taking an arbitrary test function ¢ € C§°(£2),

we infer
/%%@MDVHMﬂﬂMZ/@%m@M@Mw
(9] (]

= (1)l /hg,g(x)a%(x) dx

= (D) [ gs(f:(2))0%p(z) do

b\b
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for all & € Ny with |af = 1.

5. On account of the convergence f. — f and (D*f). — D*f fore — 0
in LP((2), the Lebesgue selection theorem from ChapterIL,§4 gives us a
subsequence ¢ | 0, such that f., — f and (D*f)., — D*f a.e.in {2 are
correct. Via the Lebesgue convergence theorem we obtain the following
identity observing ey, | 0:

/ a5 (@) (D F(2))p(x) da = (1) / 05 (F (2))0% o) d

0 2

for all p € C§°(2). The transition to the limit 6 — 0+ yields

(D (2))p() dr = (~ 1)l / F(2)0 o) da
z€802:f(x)>0 TzE€R:f(z)>0

= (=Dl [ (@)8%p(z) da.
/

Finally, we obtain

Df(x), f>0
Daﬁ(x){ g() ;<0'

q.e.d.

§2 Embedding and compactness

We begin with the fundamental

Theorem 1. (Sobolev’s embedding theorem)

Let the open bounded set 2 C R™ with n > 3 and the exponent 1 < p < n be
given. Then the Sobolev space Wy (£2) C L= (£2) is continuously embedded
into the specified Lebesque space: This means that the following estimate

1711, 22, ) < CIDFlLocey — forall feWgP(82) (1)
holds true with a constant C = C(n,p) € (0,+00). Here we denote the weak
gradient by Df := (D f,..., D" f) € LP(2) x ... x LP(12).

Proof: (L. Nirenberg)

1. Because of the Definition 3 from § 1 it suffices to prove the inequality (1) for
all f € C§°(£2). In this context we need the generalized Holder inequality,
which can easily be deduced from Hélder’s inequality by induction. For the
integer m € N with m > 2 we choose the exponents p1,...,pm € (1,00)
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satisfying p; ' 4... +p;;} = 1. For all fj € LPi(§2) with j = 1,...,m then
the following inequality holds true:

/ﬁ (@) dz < || fill oy - [l o () - (2)

2. At first, we deduce the estimate (1) in the case p = 1. Noting f € C§°(£2),
we have the following representation for all x € R™:

T

f(z) = / D f(xy, ..., Tim1,t, Tig1, .-, Tn) dL.

— 00

This implies
T —+oo
o< [ I0eside< [ Do fld

and consequently

| (E n— 1 < (H / |D61f|d:61>

We integrate this inequality successively with respect to the variables
Z1,...,Ty, using each time the generalized Holder inequality with p; =
.=pm =n—1and m =n — 1. We then obtain

+oo
Jir@ie"s o

< ( 7|Dﬂf|dscl>nll / H( / De fldrcz> dy
_+Oooo WL l_n _+oo_+oo o
< (_4 |Delf|d:c1> L 2( / /|D€’f|d:vzd:v1> .

1
n—1

A similar integration over the variables zo, ..., z, yields
1
/If(fl?)l“ildxé ( /IDe f|d$> :
R" = an

and finally
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1]l =, < (H/weif dz) < i/(ZIDeif>d:c
1= 0 =1

1 1
< m!lDfldw Ja 1D

for all f € C§°(92).

3. We now consider the case 1 < p < n. Here we insert |f|Y with v > 1 into
(3) and obtain the following relation with the aid of Hélder’s inequality
and the condition p~! 4+ ¢~ = 1:

1 T _
1P, < [ [PUefae= 0 f1sr=Ds1as
7 7 (@

Y _
< n A gl Df Ny s
and consequently
170, < U1 gD
Choosing
_(n=Dp _np—p
n-p n-p’
we infer - np
— (v —1ag = )
no1 =01 np

Finally, we arrive at

1l < T IDfl,  forall f e CR(2).

Y
Vn
With the constant
C - np —p

T /n(n—p)

the statement above follows. q.e.d.

Theorem 2. (Continuous embedding)
Let the assumptions of Theorem 1 with p > n be satisfied. Then we have a
constant C' = C(n,p,|2]) € (0,+00), such that

[fllcocoy = sup |f(2)] < CIDflleey — forall feC5(2) (5)
e

holds true. This implies Wy (2) < C°(£2), which means this Sobolev space
is continuously embedded into the space C°(£2).
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Proof:

1. When we have proved this inequality for open bounded sets {2 C R™ whose
measure fulfills |£2| = 1, we then obtain the inequality stated above by
the transformation )

y=x|Q2|"n, x € f2.
Therefore, we can assume |{2| = 1 in the sequel.

2. We utilize the inequality (4) and set

= = 5:: 1 .
ni= > b1 ple(,oo)

For all v € (1,00) we therefore obtain the estimate

valfl _
IVone | <=t
DSl |l
By multiplication with II\I/;}H; . this implies
H< \/nlfl \/nlfl
o) <) (o) )

: —
Setting ¢ := IIDJ?Hp |f| we find
gl < Allg™ My forall y>1
and consequently
gl < gl 1y < gl
Finally, we obtain
1 l—fy
lgllny <y llgll, for all ~ > 1.
3. We now insert v := 0¥ with v = 1,2, ... into the inequality above and get
lgllwse <8 gl - (6)

From (3), the fact that |£2] = 1, and Holder’s inequality we deduce

lalle = Y0 e < [P0 <,
IDflp DSl
With the aid of |£2| = 1 and Holder’s inequality we see that the sequence
llgllnsv, v =0,1,2,... increases weakly monotonically. Therefore, we have

the following alternative: ||g||nssv < 1 for all v — or there exists an index
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A > 0 satisfying ||g||nsv < 1 for all v < X and ||g||ns» > 1 for all v > A
In the second case, we obtain the following estimate from the iteration
formula (6) for p > A:

L_§—O+D)
n’/§*

lgllarsn < 6%v=re10"" | g]| < 6T e R

In each case we have ||g|| (o) < ¢ and therefore
c o0
[fllzoe2) < \/nl\Dfllp for all  f € C5°(£2).

This implies the statement above. q.e.d.

If one intends to treat eigenvalue problems for partial differential equations
with the aid of direct variational methods, we need the subsequent

Theorem 3. (Selection theorem of Rellich and Kondrachov)
Let {2 C R™ with n > 3 denote a convex open bounded set and let 1 < p <n
be an exponent. For all 1 < g < n’fp and all s € [0,400) then the set

K= {f €MD) N 19D) « | flwrney < 5} € L)

is compact: This means for each sequence {fi}r=1,2.. C K we can select a
subsequence { f, t1=1,2.... and an element f € L1({2) satisfying

Jim [ fi, = fllzage) = 0.

Remarks:

1.

2.

F. Rellich discovered this result for the Hilbert spaces W, 2(£2) < L2(£2)
in the year 1930. The general case was investigated later by Kondrachov.
The Banach space {Bi,]| - |l1} may be continuously embedded into the
Banach space {Ba, || - ||2}. We call By compactly embedded into By if the
injective mapping I : By — By is compact; this means that bounded sets
in By are mapped on precompact sets in By. Here a set A C By is called
precompact if each sequence { fi }r=1,2,... C A contains a subsequence con-
verging in B with respect to the norm. Therefore, the theorem above
indicates that VVO1 P(£2) is compactly embedded into the Lebesgue space
LY(02).

Proof of Theorem 3:

1.

We start with an arbitrary sequence {fxr}r=12.. C K, and make the
transition to a sequence {gi}r=12.. C C§°(£2) with the property

yeen

1
||9k - kawl,p(Q) < L

The latter satisfies the restriction
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lgrllwrro) <1+ (7)

for all k € N. If we manage to select a subsequence {g, }1=1,2,.. conver-

gent in L'(§2) from the sequence {gi}x=12... ., then the adjoint sequence

{fi, hi=1,2,... is convergent in L!(£2) as well. Here, we observe the inequality

C
llgr — frlloro) < cllgr = frllwiro) < r

2. In order to show then that the sequence {fkl}l:1,27,,, converges even in
the space L%({2) with 1 < ¢ < n@p, we apply the following interpolation
inequality:

If the exponents 1 < p < ¢ < r fulfill ; = 2 + (1?‘) with A € [0,1], we
conclude:
I£llg < AR A1 forall f € L7(92). (8)

The proof of this interpolation estimate is established via Holder’s in-
equality. Noting

= qu " (1;A)q B <qu)l+ <(1—TA)61>1

mu=(/m%ﬁkmm)

2

|dex>1’< |dex) T
([ (]

= IR

We now choose a number A € (0,1) with the property ; =A+(1-)) "n_pp,
and Theorem 1 yields the estimate

Iflla < IFIRIFI < NFIR(CIDF )

we obtain

IN

for all f € Wy?(£2). Therefore, we have
| fie = frwlla < Cllfi = funl} — 0 for Lm— oo,

Consequently, the sequence { fx, }i1=1,2,... converges in L9(82) if {gx, }1=1,2,...
is convergent in L'({2).

3. It still remains to select a subsequence convergent in L'(£2) from the
sequence

{grte=12,.. C C§°(£2).
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Therefore, we take an arbitrary e € (0,1] and consider the sequence of
functions

Gk e(x) = Eln /Q (w;y) gr(y) dy = /g(z)gk(gc —ez)dz € C§°(O)
Rn R~
e O := {:17 eR™ : dist(z,2) < 1}.

For each fixed £ € (0,1] the sequence of functions {gg.e}x=1,2,.. is uni-
formly bounded and equicontinuous: We namely have the following esti-
mates for all z € ©:

1 x — C
el < 5 o777 lontian = S s o)

€ |z<1
Rn

Doee(e) < L, / Do (727l ay

<= sup Do) / 98 (9)] dy

and

Co
< it lﬁlgpl |Do(2)|-

4. We apply the Arzela-Ascoli theorem as follows: For each € > 0 we have a
subsequence {gg, }i=1,2,... of the sequence {gc}r=1,2,. converging uni-
formly in the set 2. We now set €,,, = % with m =1,2,...; and with the
aid of Cantor’s diagonal procedure we select a subsequence {g, }i=12,...
of the sequence {gx}xr=1,2,... with the following property: For each fixed
m € N the sequence {g, e,, }1=1,2,... converges uniformly in the set {2.

5. We have the inequality

yeen

yees

@) = 91c@) < [ oe)lonta) o - 22)]dz
lsi<1

€
< / g(z)/|ng(x—tz)|dtdz,
<1 D

for all x € {2, which implies the estimate

/|gk — gre(z)| dx S€/|ng(:17)|d:c < Cie
o)
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for all k € N. Choosing an arbitrary number € > 0, we obtain the relation

NGke, = Gk, 2 (2) < NGk, = Ghay e lr (@) + 19h0, e = Ghiyoem llL1(2)
HGkyem — Ghi, l1(2)
< (2C1 + |2))e for all Iy,ls > lo(e).
In this context, we determine m = m(e) € N sufficiently large and after-
wards we choose l1,l2 > lo(e,m(e)) =: lp(€). Consequently, {gk, }i=1,2,...
represents a Cauchy sequence in the space L'(§2) possessing a limit in

LY(02) - according to Theorem 3 from ChapterII, §7.
q.e.d.

83 Existence of weak solutions

From now on, we require n > 3 for the space dimension in this chapter. With
adequate regularity assumptions, we consider a solution v = v(z) : 2 — R on
the open bounded set 2 C R" of the following elliptic differential equation in
divergence form

"0 0
Lo(x) := ijzzl oz, (aij (x) axiv(:v)) + c(z)v(z) = f(x), xe N, (1)
under Dirichlet’s boundary conditions
v(z) = g(x), x € 012 (2)

Extending the boundary values g = g(x) onto (2 , then the function u(x) :=
v(x) — g(x), = € 2 solves the Dirichlet problem

o " ) 3)
= —f(z) + c(z)g(z) + ”ZI o, (aij(fﬂ)axi ((;v)), x € (2,
under zero boundary conditions
u(z) =0, x € 002 (4)

We now define the bilinear form

n

Blu,v) == / { 3" aij (@)D u(z) D% v(x) c(x)u(z)v(z)}dm (5)

7] 1,j=1

and the linear form
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F) = [{ (- 10+ clolgte))vto) - > 05 0) D% gl Do) | . ()

) 4,j=1

Here the symbol D¢ again denotes the weak derivative in the direction e; =
(014 -+, 0n;) with i = 1,...,n. Multiplying (3) by a test function ¢ = ¢(x) €
C5°(£2), the Gaussian integral theorem gives us the differential equation (3)
in the weak form

B(u,) = F(p) for all e C§°(02) (7)

under zero boundary conditions (4).

Now we fix the assumptions for the coefficients of the differential equation:

aij(r) €L®(2) for i,j=1,...,n,

a;j(z) = aji(x) a.e. in {2 for i,7=1,...,n, ®)
8
1 = . n
M|§|2 < Z aij()&& < M€ a.e. in 2 forall £€e€eR

ij=1

and
0 < —c(x) ae. in £2, llell ey <N 9)

with the constants M € [1,4+00) and N € [0,400). We work in the Hilbert
space H := W, *(£2) with the inner product

(1, 0) 3¢ == /{Du()Dv }dw-/{ZDel ) D% )}dx, u,v € H.
2

(10)
According to the Sobolev embedding theorem, the induced norm

ull = (/|Du(:c)|2dac> ——
(]

is equivalent to the norm of the space W12(£2) specified in § 1, Definition 2.
For the right-hand side and the boundary condition we now assume

f(z) € L*(2) and g(x) € WH(0). (11)

Then F(v) defined in (6) becomes a bounded linear functional on H. More
precisely, we have a constant

b="0(|fllzz(2), l9llwr2(2), M, N) € [0, +00)
with the property

|F(v)] < bl|v||x for all ve™H. (12)
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The representation theorem of Fréchet-Riesz in the Hilbert space H implies
the existence of an element w € H satisfying

(w,v)y = F(v) for all veH. (13)

In the special situation a;j(z) = d;; for 4,5 =1,...,n and ¢(z) =0 a.e. in (2,
we have already found a solution u = w of the weak differential equation (7).
We emphasize that the representation theorem used above has been proved
in Chapter II, §6 by direct variational methods.

In the general situation the coefficients satisfy the conditions (8) and (9),
and we consider the symmetric bilinear form B(u,v) for u,v € H defined
in (5). The latter is bounded and coercive, and therefore we have constants
ct = c*(M, N) with 0 < ¢~ < ¢t < +00, such that the inequalities

|B(u,v)| < cFllullnllvflz  forall u,oe™ (14)

and
B(u,u) > ¢ ||ul|3, forall weH (15)

are satisfied. Based on the Lax-Milgram theorem (compare Chapter VIII, §4
Theorem 10), we find a bounded symmetric operator T : H — H with ||T]| <
¢ possessing a bounded inverse T~ : H — H with |[77!|| < ! , such that

B(u,v) = (Tu,v) for all w,v e H. (16)

This existence result is established by direct variational methods as well. The
weak differential equation (7) therefore is transformed as follows:

(Tu,v)y = F(v) = (w,v)n for all veH. (17)

With the element v := T~ 1w € H we obtain a solution of the weak differential
equation (7).

Theorem 1. With the assumptions (8) and (9) for the coefficients, the weak
differential equation (7) has exactly one solution uw € H for all data (11) .

Proof: If we have two solutions u; and usg of (7), then the function u = u;—ug €
‘H satisfies the weak differential equation

B(u,p) =0 for all ¢ e H. (18)

We especially insert ¢ = u and obtain

1
0= B(u,u) > ]\4/|Du(:1c)|2 dx
2

and consequently u(x) =const in 2. On account of u € W, *(£2) we conclude
u =0 a.e. in {2 and finally u; = us.
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q.e.d.

We now eliminate the sign condition in (9) and substitute this by the weaker
assumption

c(x) € L=(2), el < N. (19)

In order to solve the equation (7), we now consider the transferred bilinear
form to a given o € R, namely

n

By (u,v) == / { 3" ay(2) D u(x) D% vo(x) + (Uc(:r))u(:z:)v(a:)}d:zr (20)

o ig=1
for u,v € H. Furthermore, we need the identical bilinear form

I(u,v) := /u(x)v(x) dx (21)

i)

for u,v € H. The equation (7) then appears in the equivalent form
B, (u, ) — ol(u, ) = F(p) for all ¢ € H. (22)
We now choose o € R so large that
o—c(z) >0 a.e. in 2 (23)

is satisfied and the bilinear form B, (u,v) becomes coercive. We additionally
need the following

Proposition 1. The mapping K : H — H satisfying
(Ku,v)y = I(u,v) for all uw,veH (24)
is completely continuous.

... C 'H denote a sequence with ||ug||7 <const for all
k € N. We then consider the continuous linear functionals

Ty :=I(ug,"): H—R € H", k=1,2,...

We apply the representation theorem of Fréchet-Riesz, and for each k£ € N we
have exactly one element v, =: Kuy € H, such that

I(ug, ) = Ti(-) = (vk, ) = (Kug, )n

is valid. The selection theorem of Rellich-Kondrachov allows the transition to
a subsequence {ug, }i=1,2.... of {ug}r=1,2, .. satisfying

lwk, — uk,, lL2(2) — 0 (I,m — o0).
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We obtain

[Kur, — Kuk, |1 = Tk, = Tk, || < clluk, = tn,, || 22(2) — 0 (I, m — o0).
Therefore, the operator K : H — H is completely continuous. q.e.d.

With the aid of the representations (13), (16), and (24) we transform (22)
equivalently for o from (23) :

(Tou, o)n — o(Ku, ) = (w, )3 forall ¢ eH. (25)
When we insert ¢ = T, 1v into this equation, we obtain
(u,v)p — (T, o Ku,v)y = (T, w,v) forall veH (26)

and consequently
(IdH —oT o K)u — Tl (27)

with the completely continuous operator 7, ! o K : H — H. According to
Fredholm’s theorem (compare Chapter VIII, §6 Theorem 6) the null space

N = {ueH : B(u,v) =0 for allvEH} (28)
is finite-dimensional with the orthogonal space
NL::{ueH: (u,v)H:OforallveN}. (29)

Choosing the right-hand side f and the boundary condition g from (11) such
that its representation w from (13) satisfies the condition

T, 'we Nt | (30)

then the weak differential equation (7) possesses a solution v € H. We finally
obtain the following

Theorem 2. With the assumptions (8) and (19) the solution space N of the
homogeneous equation from (28) is finite-dimensional. To those data (11),
whose linear form (6) allows a representation w from (18) such that T, 1w €
N+ with o € R from (23) is satisfied, the weak differential equation (7) has a
solution u € H.
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84 Boundedness of weak solutions

We continue our considerations from § 3 and quote those results by the added
symbol *. We refer the reader to the bilinear form B(u,v) from (5%) with the
coefficients (8*) and (19*). With the aid of Moser’s iteration method we prove
the following

Theorem 1. (Stampacchia)
There ezists a constant C = C(M, N, n,|f2|) € (0,400), such that each weak
solution u € H := W01’2(Q) of the elliptic differential equation

B(u,v) =0 forall veH (1)
satisfies the following estimate

lull L2y < Cllullzz2y - (2)
Proof:

1. We refer the reader to the proof of Theorem 2 from §2 for an orientation.
Having already proved the inequality (2) for open bounded sets 2 C R™
with the measure |2] = 1 , we obtain the general case by the following
transformation

y=|2 "z, z€. (3)

The coefficients of the weak differential equation then additionally depend
on |£2]. Therefore, we assume |2| = 1 in the sequel, and the norm |jul|, :=
lull Lr(2) becomes weakly monotonically increasing with respect to 1 <
p < oo via Holder’s inequality.

2. We choose K € (0,+00) arbitrarily, and consider the function

K, wulz)>K
w(z) =< ulx), —K <u(z) <K (4)
K, u(z)<-K

of the class Wy2(£2) N L*°(£2). With the exponent
B € [+1,+00) (5)
we insert the test functions
v(z) == a(x)?, x € 12, (6)

into the weak differential equation (1). Together with the Sobolev embed-
ding theorem, we obtain
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/c(w)u(ac)a(ac)ﬁ dx

6/{ 1% x)D% u(x )Dejﬂ(x)}ﬂ(x)ﬁ_ldz

(B il5}1)2 /{ Z aij(z) D" (ﬂ(a:)i(ﬁ“))p% (ﬂ(a;)é(ﬁﬂ))}d:c
A

7,j=1
48 , 2
D(7s6B+D H
> g+ e 2@
O L
= M(B+1)2C(n,2)? 2,2
(7)
3. For all 8 € [+1,+00) and K € (0,+00) we infer

1l ”F! (511) < BMNC(n,2)%|[ull 311, (8)

if u € LAT1(0) is satisfied. In (8) we pass to the limit K — +o0o and set

o= ’_‘ , €(+L400) and  I':=MNC(n, 2)2 € [0, +0).

Then we find an iteration inequality

lullsgg+y < /B +1°VT [|ull g

(9)
for all B3 € [+1,+00) if we€ LATY(ND).
4. Noticing u € L?({2) we start the iteration with 3 = 1 and obtain
[ull2s < V2V ||ul|a. (10)

We then choose § € (1,400) such that G+ 1 = 2§, and from (9) we infer
the inequality

ullase < V2692 ¥/ TV |u2. (11)

Continuation of this procedure yields for all £ € N:

lulzss < (H o) (H r) ul

§=0 §=0

k_f(l)j s iNO~ > (3 12

— (va)=" {H(W) }wf) s 02
=0

W (v

||u||2
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Observing k — 400, we finally obtain the desired estimate
[ull Lo () < C(M, N, n, |£2])]ul]>. (13)
q.e.d.

Now we shall estimate weak solutions of the Dirichlet problem by their bound-
ary values. In the bilinear form (5*) we require

c(x) =0 a.e.in 2, (14)

and we obtain the Dirichlet-Riemann bilinear form

R(u,v) = / { 3 aij(:v)Deiu(x)Dejv(x)}dx (15)

o b=l
with the coefficients from (8*). The boundary function is prescribed as follows:
g=g(z) € WH(2)nC%(%2). (16)

Theorem 2. (L°°-boundary-estimate)
Let uw = u(x) € WH2(82) denote a weak solution of the differential equation

R(u,v) =0 forall ve™H (17)
with the weak boundary values
u—g € Wy3(0). (18)
Then we have

w:= inf g(y) <wu(z) < sup g(y) =:1v for almost all z € Q2. (19)
yeosf? yeDN

Proof: Since the problem is invariant with respect to translations, we can
always assume p = 0 by the transition u(z) — u(z) — . We now show

u(z) >0 a.e. in £ (20)
If (20) were violated, we then would consider the nonvanishing function

u(x), u(x 0
u@;:{” (@) <

0, u(z) >0 @)

of the class W,"*(£2). When we insert this function into (17), we attain a
contradiction with the relation

0= R(u,u”) > 0. (22)

Therefore, the inequality (20) is valid. On account of the invariance with
respect to translations, we can additionally achieve v = 0. Then we can reduce
the second part of the inequality (19) to the statement (20) by the reflection
u(z) — —u(x) .

q.e.d.

Remark: Further L>-estimates for weak solutions are contained in [GT] 8.5.
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85 Holder continuity of weak solutions

We quote the results from §3 by the added symbol * and those from §4 by
**_ With

K.(y) = {x eER™ : |z —y| < 7’}
we denote the closed balls of radius r € (0,400) about the center y € R™.
We consider the bilinear form B(u,v) from (5*) again, with the coefficients

(8%) and (19*). With the aid of Moser’s iteration method we now show the
profound

Theorem 1. (Moser’s inequality)
Let u = u(z) € WH2(2) N L*°(£2) with the property u(z) > 0 a.e. in 2 be a
solution of the weak differential inequality

B(u,v) >0 forall veH satisfying v(x) >0 ae in . (1)

Then we have a constant C = C(M, Nr? n) € (0,+00), such that the integral
means over all balls K4,-(y) C 2 satisfy the following inequality:

1
dr = dr < C inf . 2
ACCL P (LA TR @
K2r(y) K2T(y)

Remarks:

1. With a function u(z) € W2(£2) N L*°(£2) we naturally define

inf u(x) := inf {c eR: {ze: ulx)<c}isnota null—set}. (3)

e

2. If 2 C R" is a domain, Theorem 1 implies the principle of unique contin-
uation: A nonnegative solution of (1) vanishes on the set {2, if we have a
point y € 2 and a radius o > 0 such that

inf wu(x)=0 for all balls K, (y) C 2 with 0<7r <ro.
IEKT(y)

Proof of Theorem 1:

1. We choose ro = ro(n) > 0 such that

[ Karo (y)] = 1 (4)

is valid. For all 0 < r < 3rg then the ||| L»(x, (y))-norm becomes monoton-
ically increasing with respect to 1 < p < 4o00. Let the point y € {2 be
chosen to be fixed such that K4, (y) C {2 is correct. At first, we show the
estimate (2) with » = r¢ and afterwards we prove the general case by a
scaling argument. For measurable functions v = v(x) : 2 — R satisfying
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1 :
0<e<wu(z) < a.e.in {2 (5)
€
with fixed € > 0, we define the positive-homogeneous function

Ko (y) = ( / v(fﬂ)pdx); (6)

Kr(y)

[l

for all p € R and all 0 < r < 3rp. In the interval p > 1 we obtain the
familiar LP-norm, and we see that

pg{noo H'U”p,Kr(y) = B 1
lim ([ () "de)
PN (y) (7)
= 1 = 1 , = inf w.
HvHLOO(KT(y)) sup , Kr()

By the symbol n = 1, ,(z) : 2 > R € WhHoo(2) for 0 < r+ o < 3rg
we denote the piecewise linear, radially symmetric, annihilating function
with the properties

=1, x € K, (y)

n(x)q €0,1], € Kipp(y) \ Kr(y) (8)
=0, z € 2\ Krip(y)

and !
|Dn(z)| < a.e. in £ 9)
0

. Into the weak differential inequality (1) we now insert the following test
function

v(x) = n(x)*a(z)?, x € {2, (10)
with
(z) = u(x) +¢, x € {2, (11)
and the exponents
-0 < f<—1 and -1l<p<o. (12)

Here we have chosen & > 0 in (11) to be fixed. We observe v € W, ?(£2)
and calculate
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(13)
Then we obtain the following inequality for all § € (—oo0, —1) U (-1, 0):

/ { > asi(@) D% () Vy(a)) D% ()} () } dz =

o Lig=l
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2
—l—(l - ;) /{i aij(x)Dei(u(:v)§(ﬁ+1)77(x)>Dejn(:v)}u(:v)é(ﬁ"’l)d:ﬂ
o Chi=l
5/{ a;j(z)D%n(x )Defn(:zc)}u(:zc)ﬁ+1 dx
i(l + ﬁ / z)a(z)Pn(z)? do
2
- [{ 3" a0 (a0 % (a0 S (o)) o
o Sig=1
+1 Loy naijx ¢in(z)D% n(z) Su(z)?! de.
L)) }!{Z_ (@)D" () D) fu(a)+ d
(14)
Finally, we deduce the estimate
J{ 32 awrpe (a6 2000t 0% ()0 ) L
0 Hi=l
< ;(1 +5) (1 + ;) /c(:v)u(w)ﬁ(:v)ﬁn(:v)2 dx (15)
2
+(1 + 512) /{ i aij (:C)De"n(x)Dejn(w)}u(w)ﬁ"’l dz
o ~Hi=l
for all 8 € (—o0, —1) U (—1,0).
3. We now apply Sobolev’s embedding theorem with p = 2. Let ¢ € (1, "]

be chosen, and furthermore we assume 0 < r 4 o < 3rg. We take the
definition of 7 into account and obtain the following estimate for all 3 €

(—o0,—-1)U(-1,0):
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5(B+1 1), 112
Hu||5(ﬁ+1) K, = (/ | ()] (B+ )dx) = Huz(ﬁ+ )nHL%(KT)

< [[ab @+ hn HLT’MZ(Q) C(n.2)?|| D (w71 )HL2(Q)
< MC(n,2) /{ > ai; D (u2<ﬁ+1> )Dej (uzmn )}dx
2 =l

gMC(n,2)2{ |1+ﬁ|)1+6‘N+<1+ ) }II 154 k..,

(16)
In part 8 of the proof, we determine a number py = po(M, N,n) > 0 and
a constant Cy = Co(M, N, n) > 0, such that

”ﬂHPo,KSm < COHﬂ||7p07K3T0' (17)
We now choose ¢ € (1, ",] and v € Ny satisfying

§7po € (0,1) for j=0,...,v—1,

8"po € (1, +00). (18)

Taking j = 0,...,v we consider the balls K, C {2 with the radii g; :=
3rg — j'°. Formula (16) then yields a constant Cy = C (M, N,n) > 0,
such that

lallsporc, < Cilldlsipor, , for G=1l...v  (19)
holds true. An iteration v-times finally reveals the following estimate:
@l 1 (ko) < Nll5vpo, o, < Cp (M, Ny 1) |0y, s, - (20)

From (16) we obtain the following inequalities for all 8 < —1 — pg abbre-

viating 6 := ",

) 1 2M Y, 541
a5, < MC,22{ 1o 21 + 25 bl

6*(M7N7H)|6+ 1| —18+1
< 0 lallt1 s,

with a constant C_ = C_ (M, N,n) > 0 and

|| 5(541), ¢, (21)

5_<M,N,n>|ﬁ+1|) i
92

lallosir,,, < (

assuming 0 < r + o < 3rg. When we choose
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7
gj::37“0—27“oz2l, j=0,1,2,...,
=1

the relation (21) yields the iteration inequality

—j . 27 s—J

_ ~ eI 2% _
||u|\_5jp0,ng < C" (§7pg) o (7%) o ||uH_6j+1p07KQj+l (22)
for 7 =0,1,2,... This implies the estimate

k
-~ Z(l)j j(l)j Z(l)j
”ﬂprg,Kgm < {(T/C)J’O s (P{’/(;)j 0" ("Q/po)j AL

Vo NS (23)
(plﬁ/r02>g 0 }”u|5k+1p0*}<9k+1

™M=

k

M=

S

J(
0

.(P{J/4)j

S C*(Mvan)Hﬂ”f(;k*lpo,ngJrl5 k:071527"'
The passage to the limit £ — oo finally gives
@l -po. K5, < C—(M,N,n) inf a(z). (24)

IEKTO

. From (20), (17), and (24) we obtain

]l 21 (k2rg) < Colltllpo,icsry < C Collull-po, K5, < C+CoC inf ().

IEKTO

Setting C' = C(M, N,n) := C+CyC— and observing the independence of
this constant from ¢ > 0, the transition to the limit ¢ — 04 yields the
following inequality:

HUHLI(KQTO) < C(M,N,n) inf wu(x). (25)
IEKTO

This implies Moser’s inequality (2) for the case r = ro with rg = r9(n) > 0
from (4).

Having chosen y € 2 and r > 0 with Ky4,.(y) C {2, we then observe the
transition from u to

uw*(z) = u(:ox), x € Ky, (Z?y) (26)

The function u* = u*(z) satisfies a weak differential inequality (1) in
o

Ky ("0y) with the coefficients a;; € L™ (K4, (""y)) defined in (8*) and

- o Nr?
ce L(Kiry(19)). Nellimieay o < i
0
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The arguments above therefore yield the inequalities

. 1 ) < 2 . *
14 111 (s (70 4)) < C(M, N7 ’”)xer(f%oy)u ®)

and N
"o /u(w)deC(M,Nr2,n) inf  wu(x).

n 2€K,(y)

K2T(y)

Now the proof of our theorem is complete, if we still show (17).

7. To this aim we deduce a growth condition for Dirichlet’s integral from the
weak differential inequality. With the annihilating function n(x) from (8)
for o = r and with @(x) from (11), we insert the following test function
into the inequality (1):

v(x) = n(z)?a(x) !, x € . (27)

We remark that this function coincides with v from (10) for = —1! We
then obtain

‘We now define the function

w(z) :=logua(x), x €12,
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and from (28) we infer the estimate
/ |Dw(z)|? de < M/{ Z aij(x)peiw(x)pejw(x)}n(xy dx
Q W=

K. (y)

2M
< 2M{N + 7, Koy (y)] < C1(M, Nyn)r 2

for r < ro(n). Therefore, the growth condition

2
/ |Dw(z)|dx < \/rn 7?2 ( / |Dw(gc)|2dx) < Cy(M, N,n)r"*
Kr(y) Kr(y)

(20)
follows for all balls Ko, (y) C 2 with r < ro(n). Here k,, denotes the
volume of the n-dimensional unit ball.

. We now apply the regularity theorem of John and Nirenberg to the func-
tion w(z) (see Theorem1 in §6) : Taking y € 2 with Ky, (y) C 2 we
define

wo 1= |K3T0(y)|_1 / w(zx) d.
K3T0(y)

Then there exists a constant py = po(M, N,n) > 0, such that
/ exp {p0|w(x) - w0|} dx < C3(M, N, n). (30)
K3T0 (y)
This implies
/ €xXp {pO( + U)(.’,E) + U)O)}d.fC < 03(M5 Na Tl)
K3T0 (y)
and consequently
Epowo
/ exp{ £pow(z)} <e C3(M,N,n).
KSTO (y)

We then obtain by multiplication
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/exp{pow(x)}dx . /exp{—pow(:ﬂ)}dwSCg(M,N,n)2

KSTU (y) K3T0 (y)
and finally
%llpo, ks (v) < Ca(M, Ny (|6l o, 550, () -
This is the desired estimate (17). q.e.d.

We now prove the important

Theorem 2. (de Giorgi, Nash)
Let u = u(z) € WH2(2) N L*®(82) denote a solution of the weak differential
equation

R(u,v) =0 forall ve™=Wy72(0) (31)

with the Dirichlet-Riemann bilinear form R(u,v) from (15%*). Then we have
constants C = C(M,n) € (0,+00) and a = a(M,n) € (0,1), such that the
oscillation estimate

0sc uSC(r> 0sC U, 0<r<rg, (32)
K. (y) ro/  Kro(y)

holds true for all balls K, (y) C 2. Here the oscillation is defined by

osc u:= sup u— inf wu. (33)
K (y) Ko(y)  Kr()

Proof:
1. We abbreviate K, = K,(y), and for 0 < r < 411?"0 we introduce the quan-

tities

My =supu, my = infu, M;=supu, m;=infu.
Kar Kar K K,

r

The functions My — u and u — my are nonnegative in Ky, C K., C {2,
and they satify the following weak differential equation (31) there. Moser’s
inequality now yields

| Kor| ™ / {My —u(z)} de < C(M,n)(My — M),
| Kor| ™ / {u(z) —m4} dx < C(M,n)(m1 —ma).

(34)

Addition gives us
My —my < C{(My —my) — (M1 —m1)}

and
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1
My —mq < (1* C)(M4*m4) )
respectively. Therefore, we obtain the oscillation estimate
< ith -1 eo (35)
0sc 0sc =1- .
05K u < o8¢ u wi ~ o ,
2. We then consider the monotonically increasing function
w(r) = gscu, 0<r<ro, (36)
with the growth property
1
w(r) < yw(4r) for 0<r< 470 (37)
To each number r € (0, jro] we have an integer k € N satisfying
1\ k+1 1\ F
< 38
(4) TO<T—(4> "o (38)
and we choose o = a(M,n) € (0,1), such that
1\«
< : 39
= (4) (39)
From (37)-(39) we infer the estimate
w(r) < w((4) To) <~"w(rp)
1\« 4r\ o 1
< (4k) w(rg) < (TZ) w(ro), 0<r< 4r0,
or equivalently
oscu§4o‘(T) 0sC U, 0<r<rg. (40)
r To ro
The monotonicity of w(r) namely implies (40) for jro <r <r.  q.e.d.
Remarks:

1. Requiring an exterior cone condition for the domain {2, one can even prove
Holder continuity of the solution up to the boundary. We refer the reader
to Theorem 2 from § 7 in this context.

2. With suitable assumptions on the coefficient matrix (a;;(x)); j=1,... n, One

obtains higher regularity of the solution by the Schauder theory from
Chapter IX. Here one should locally reconstruct the weak solution by the

classical C?1“-solution.
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Theorem 3. (J. Moser)
Let u = u(z) € WH2(R™) N L>°(R™) denote an entire solution of the weak
differential equation

R(u,v) =0 for all v e C§°(R™). (41)

Then we have
u(z) = const in R™

Proof: We infer the following estimate from Theorem 2:
osc uSC(r) 0sC U, 0<r<ry<-oo. (42)
K, (0) T0 R™

The passage to the limit rg — 400 yields

osc u=20 forall 0<7r < +oo.
K..(0)

Therefore, the solution w is constant. q.e.d.

For later use in §9 we still provide the following

Theorem 4. (Harnack-Moser inequality)
Let u = u(z) € Wh2(02) N C°(2) with the property u(z) >0, x € 2 be a
positive solution of the weak differential equation

R(u,v) =0 for all veH.

Then we have a constant C = C(M,n) € (0,+00), such that the following
inequality
sup u(z) <C inf wu(x)
€K, (y) z€Kr(y)
is fulfilled for all balls K4, (y) C £2.

Proof: We have to supplement the proof of Moser’s inequality in Theorem 1
as follows: We insert the test functions (10) with arbitrary positive powers
B € (0,+00) into the weak differential equation. Now the constant N = 0
vanishes, the inequality (13) turns into an equation 0 = ..., and via the
estimates (14) and (15) we arrive at the decisive inequality

a2 0 e, < MO, 2)% (1 + 612) JQ‘fHaugﬁ,Kw for all B € (0, 4-00)
(43)
parallel to (16). When we define p; := §”py € (1 4+ o0) from (18), we easily
obtain a constant C.y 4 (M, n) such that the estimate
1

C M,n)\ s+t
|fa||5<ﬁ+1>,ms< **; )) lllssrk.,, forall Bp—1 (44)
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holds true - parallel to (21) - with 6 := ",. Now we introduce the radii

J
1 .
QjZ:2T‘0—T‘Oz2l, ]:0,1,2,...

and employ Moser’s iteration technique - as described in (22) and (23). Thus
we obtain a constant C (M, n) such that

[ —

k
> GHDG) Z( )
(vay= T (R ) }mnpl,Km (45)

< O++(M7n)|‘ﬂ”p1,K2ma k:05172a"~

1

HME‘

{(i/c++)

is valid. Then we evaluate the limit

lim ||u = sup u(x 46
lim Jallp, ., @) e (z) (46)

in formula (45) and arrive at the estimate
SUDse K, (y) W) < Oy (M, n)l|Tllpy Kory - (47)

Combining this inequality with the estimates (20), (17), and (24) we finally
obtain the Harnack-Moser inequality. q.e.d.

86 Weak potential-theoretic estimates

Let 2 C R™ denote an open ball with radius R > 0 about the center zy € R™.
By the symbol w,, we denote the area of the unit sphere in R™.

Definition 1. For the numbers u € (0,1] we define the Riesz operator
Vuf(z) = /|:v —y|" Y £ (y) dy for all f e C§°(02). (1)
Q

Proposition 1. The linear operator V,, : L'(£2) — L'(£2) is continuous for
all v € (0,1] and satisfies

Whn, n
[Vufllpio) < W(2R) "1 £l forall f € LY(0). (2)
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Proof: We choose f € C§°(2) and estimate as follows:

IV, s = / IV, f (z)| de
(9]

< Z { ([ o = "D (o)l dy o ®
< Juwi{ [ ek a
2

z:|lz—y|<2R
In polar coordinates we deduce

2R

ool D= [ g o= 2 R @)
np
z:|lz—y|<2R 0
From (3) and (4) we infer the statement (2). q-e.d.

Definition 2. For1 < p < 400 the measurable function f belongs to Morrey’s
class of functions MP(2) if and only if

|f(y)dy < Lr(-2) forall z€ 82, r>0 (5)

NK, ()
is satisfied, with a constant L € [0,+00) .
Remark: Evidently LP(£2) C MP(£2) holds true for all 1 < p < 4o0.

When we remember part7 in the proof of Theorem1 from §5, we should
concentrate on the class M™(£2) .

Proposition 2. Let f € M™(£2) and 711 < p <1 be satisfied. Then we have

npu—1 T — 1

[V.f(z)] < (2R) L a.e. in {2 (6)

nu—1

Proof: We fix the point x € {2 and consider the function

B(r) = / F)ldy,  0<r<2R, (7)
NNK, ()
with the derivative
& (r) = / £ ()| do(y). (®)
NNOK,(x)

Then we obtain the following estimate for almost all = € (2
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IMJWHS/w—wW“ﬂﬂwMy
(9]

2R 2R
= [ Fldat) far= [ a0 ar
0 QMOK, (z) 0
2R

1 _112R
n 1 n 1
{(QR) m (1 — )W_l[rﬂ )2 }
1
aRy1 "
L(2R) -1
and consequently (6). q.e.d.

Proposition 3. The functions f € M™({2) are subject to the following esti-

mate /exp { " jl)L Vs £ () } dz < C(n,y)R" (9)

[0}

for each v € (0, %), with a constant C = C(n,~) > 0.
Proof: For k =1,2,... we note that

w =y = o — gy lk Dk g — gl )00,
With the aid of Holder’s inequality we deduce

Vi f(z)]

< [{ie - Db Hio -y (et 00-Dipgp-i ay

i)

(/u—mnm D5y m@ (/m mnm+n>u<ﬂ@)ki

and therefore

-1

k
Vi s@)[* < (VaIA@) (Vg fl@)
forall z€ 2 and k=1,2,...

(10)
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Via Proposition 1 and 2 we estimate for k = 1,2, ... as follows:

!W;f(x)}kdzé {sw v i} [V ds

2
k—1 k=1, p_
R) v {k(n— 1)} L Yk w, 2R) E | fll e

<2RE*(n — 1)* LA 1w, LR"!

Wn n k
=2 " R'{(n—1)L} KF.

Consequently, we arrive at

k
/1 TV f@)] b de <2t LA
Ell(n—1)L' » ~ n-1 k! T
02

The summation over £ = 0,1,2, ... yields
gl Wn o (7R)E
/exp{(n_DL‘V;f(x)‘}d:c§2n_1R Z T
0

We investigate the convergence of the series Z ax by the quotient test

with a := (7 ) k=0

k+1
Ak+1 {’Y k + 1)} k! INF koo
an (b +1)(yk)* (1+k> — ye<l

Therefore, we find a constant C' = C'(n, ) € (0, +00) satisfying

/exp{(n VI)L’Vif(w)‘}d:v < C(n,v)R

° q.e.d.

Proposition 4. We take u = u(x) € WH1(82) and set

1
uO::|Q|/ux dx
2

Then we have the inequality
2" 1—-n
fu@) ~uol < 2 [ e~y IDu(y)| dy, (12

where Ky, denotes the volume of the n-dimensional unit ball.
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Proof: Due to the Meyers-Serrin theorem it suffices to prove the inequality (12)
in the class of functions u = u(x) € C1(2) N W1(£2). We choose z,y € 2
arbitrarily and note that

lz—yl
d . Yy—x
u(z) —uly) = — / au(x +r()dr with ¢ := |’
0
We integrate over {2 with respect to y and obtain
lz—y]
d
20(ute) o) = [{ [ Sruto+r0rdrf
0 0

Now we define the L'(R"™)-function

- |Du(z)|, z€
v(x) = {O, el 0

On account of | & u(z + r¢)| < |Du(z + r¢)| we then get the estimate

|z—y|

() — wo| < |})|!{ O/ |Du(x+r§)|dr}dy

<h ] {ZUWW}@

KQR(CE)

o [{ [ wesrou)a
= v(x+r()dy ¢ dr.
2]

0 Kog(z)

We introduce polar coordinates due to y = x + o(, and for fixed r € (0, +00)
we obtain

v(z + () dy = / { 71;@: +7¢)o" dg} do(Q)
Kar(z) I¢l=1 0
_ e / v( +7¢) do ()
I¢l=1
and consequently N
|u(z) — ug| < i@r { / v(z +r¢) do(C)} dr. (13)

0 I¢l=1
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With the notation z = z + r(, dz = |z — 2| 1 dr do(¢) and the definition of
v we infer the following inequality from (13):

n

2 —-n
|u(z) — ug| < ke /|:17 — z|'"|Du(2)| dz.

n

2 q.e.d.
We summarize our results to the subsequent
Theorem 1. (John, Nirenberg)
Let the function u = u(z) € WH1(02) satisfy the growth condition
/ |Du(x)|dx < Lr™~! forall yef2, r>0 (14)

NNK-(y)

with a constant L > 0. Then we have a constant C' = C(n,~y) > 0 for each
v €(0,1), such that

/eXp { gn(Tfyl)L Ju(z) — uo\} dz < C(n,~)R" (15)
2

holds true.

Proof: On account of (14) the function f(z) := |Du(z)|, € £2, belongs to
Morrey’s class M™(£2). From Proposition 4 we infer

%u(m)—udgvlf@), x € .
Then Proposition 3 yields the desired estimate (15). q.e.d.

Now we require a higher growth condition in (14) and deduce Hélder conti-
nuity directly. In this context we modify Proposition 2 to the following

Proposition 5. Let f € MP({2) with n < p < 400 be given. Then we have
the estimate

V1 f(z)] < C(n,p) - R a.e. in 2 (16)

with the Hélder constant C(n,p) € (0,+00) and the Holder exponent oo =
1-"€(0,1).
P

Proof: We follow the arguments in the proof of Proposition 2 utilizing (7) and
(8). Then we obtain the subsequent estimate for almost all z € (2, namely
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2R
Vif(z) < [ 7" (r)dr
=
2R
= [P 4 (- 1) / () dr

2R
< (2R)'""®(2R) + (n — 1) L/r v dr
0

n -1 n
< L{(2R)1_P n I‘_ ol f;R}
p
= {2+ "_126“}-}2“
_ .
p
=: LC(n,p) - R*

q.e.d.

In order to establish regularity for solutions of variational problems, we prove
the fundamental

Theorem 2. (C.B. Morrey)
Let © C R™ denote a bounded domain where the function u = u(z) € W(0)
may satisfy Morrey’s growth condition

|Du(y)|dy < Lr"" %  for almost allz € @ and all™ >0 ; (17)
ONK, (z)

withn < p < 400 and L € (0, +00).
Then we find a constant C = C(n,p,Og) > 0 for each open set Oy CC O,
such that the Hélder estimate

lu(y) —u(z)] < Cly — 2" forall y,z€ 6 (18)
holds true; with the Hélder exponent o =1 — Z € (0,1).
Proof: We take y, z € O with R := |y — z| < dist(6Op, 00) and define
2:={xeR":|xz—x| <R} ,
where z := y is chosen. On account of (17), the function
f(z) == |Du(z)], =€

belongs to Morrey’s class MP({2). Proposition 5 in combination with Propo-
sition 4 implies
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lu(z) — ug| < ke C(n,p) - R* a.e.in 2. (19)

n
Now we arrive at the inequality
n+1

() ~u(2)| < fuly) ol fu(z) ~uo] < =

C(n,p)-R* =: C(n,p,O)|y—=z|*

for all y,z € Oy CC 6. q.e.d.

Remark: When we require the following growth condition for Dirichlet’s inte-
gral, namely

|Du(y) > dy < Lr™~ % for almost allz € © and all r > 0 (20)
ONK,(x)
with 2 <n < p < 400 and 0 < L < 400, the Morrey growth condition (17)

is obviously satisfied. This regularity criterion has been originally invented by
C.B. Morrey in the case n = 2.

Finally we note the

Theorem 3. (Morrey’s embedding theorem)
Let © C R" denote a bounded domain and u € Wol’p(@) a Sobolev function
with the exponent n < p < +oo. Then u belongs to the class C*(O) with the

Holder exponent o =1 — Z.

Proof: We continue u trivially beyond 06 and preserve the W' !-regularity.
On account of

Du e LP(O) C MP(O©) with n<p<+oo |,

we have Morrey’s growth condition globally on @. Then Theorem 2 implies
our corollary. q.e.d.

87 Boundary behavior of weak solutions

We continue the considerations from §5 and need the following variant of
Moser’s inequality in this section.

Theorem 1. (Trudinger)
Let u = u(z) € WH2(02) N L>®(0) with u(z) > 0 a.e. in 2 denote a weak
solution of the differential equation

R(u,v) =0 for all veH:=Wy?(R) (1)

with the Dirichlet-Riemann bilinear form R(u,v) given in formula (15) from
§4. Withy € 02 and r > 0 we furthermore assume u € C°(02 N Ky (y)),
and we set
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m € [O, inf u(x)}
02N Ky4r(y)

Then we have a constant C = C(M,n) € (0,400), such that the extended
function
m, x € Kyr(y) \ 12

inf{u(z),m}, x€ 1 @)

w(z) = [u]"(z) := {
satisfies the following estimate

1
dz := dr < inf .
][ w(z) dr Ko (1) / w(z) de < Omelil(lr(y)w(x) (3)
Kar(y) Kar(y)

Proof: We have only to consider the case m > 0 and transfer the proof of
Theorem 1 in §5 to this situation. Here we define the set

nm .= {xEQ :u(z) <m}.

The function u is continuous in {2 according to §5, Theorem 2 and therefore
2™ represents an open set. In the case 2™ N Ky4,-(y) = ) we have nothing to
show. Otherwise we define the positive function

B(z) = m1+€ (w@)+e), weKuly)uQ (4)

with € > 0 fixed. In 2™ this function w satisfies the weak equation

R(w,v) =0  forall ve W, ?(0m). (5)
Furthermore, we have

w(x) =1 for all =z € Ka(y)\ £27. (6)

We choose the powers
f € (=0,0) (7)
and insert the following test functions into the weak differential equation (5):

v(z) = (w(z)” — 1)n(z)* € Wy (2™). (8)

Here the function n = n(x) is defined as in the proof of Theorem 1 from § 5.
We now obtain
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o | > az-j(w)D@iw(x)D@jw<w>}w<w>ﬁ-1n<w>2 da

G S ig=1
+_85 / { Zn: az‘j(x)DeW(I)D%77(17)}@(:17)5“ dz

and therefore
{ > aij<w>D6iw<x>Deﬂ'w<w>}w<w>ﬁ-1n<w>2 da

Gm =1

. (10)
<o [{ X ss@r a@ono baw

Gm S hi=1

Since (10) in Ky, (y) \ £2™ is trivially satisfied, we therefore can deduce esti-
mates analogous to (15) and (28), respectively, from the proof of Theorem 1 in
§ 5. Here we substitute @ by @ and {2 by 2™ U Ky, (y). With the considerations
given there, one derives the inequality (3) stated above.

q.e.d.

Theorem 2. (Boundary behavior)
In the bounded domain {2 C R™ the boundary point y € 0f2 is assumed to
satisfy the Wiener condition

K (y) \ 2|
| K- (y)]

with the constants 8 € (0,1) and 1o > 0. Let

8 < for 0<r<nrg (11)
u=u(r) € WH2(2)NL®(2)NC°0N2 N K, (y))

denote a solution of the weak differential equation (1), and we define its bound-
ary oscillation
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= , 0<r<rg. 12
O) = oSS ) r<ro (12)

Then we have constants C = C(M,n,3) € (0,4+00) and a = a(M,n, ) €
(0,1), such that the following estimate

r «
0sC uSC( ) osc u + o(rg), 0<r<mo (13)
2NK,(y) ro/ 2NKro(y)

holds true.

Proof:

1. We designate the sets K, = K, (y), 2, := 2NK,(y), (002), := 02NK.(y)
and use the quantities

My =supu, my=infu, M;=supu, m; =infu.
fors $2ar foR £2r

In the ball K4, we apply Theorem 1 to the functions My —u(x) and u(z) —
my which are nonnegative in {24, , and we set

M := sup u, m:= inf u.
(69)4T (89)47‘

Forall 0 < r < 4117"0 we obtain the estimates

|Kar \ £2
6(M47M)S(M47M) |K2r|
< [My — u(z))M—M dg (14)
]
< C(My — My)
and Ko\ 2]
Blm —myg) < (m —my) K|
< [u(z) — mg]™ "™ dx (15)
]

< C(my — my).
Addition of (14) and (15) yields
ﬁ(M4 — m4) - 5(M — m) S C(M4 - ’ITL4) - C(Ml — ml)

and

g

o) (Ms = ma) + Z(Mfm),

lemlg(lf
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and therefore

1
< 1-— < 1
%srcu_y?ifu—i—( ~y)o(4r), 0<r< 470 (16)

with v:=1— g € (0,1).
2. Analogously to the proof of Theorem?2 in §5, we consider the monotoni-
cally increasing function

w(r) = oscu, 0<r<rg. (17)
The latter satisfies the growth condition
1
w(r) <ywlr) + (1 —v)o(4r), 0<r< s (18)

For each r € (0, ;0] we now have an integer k € N, such that

1\ k41 1\ k
<
(4) r0<r_(4> o (19)
is satisfied. Additionally choosing o € (0, 1) with
1\«
< 20
v<(,) (20)

we can calculate

< wlro) + {147+ +9" L= a(ro)

< () st + ()0 =t

T\ 1
< 4“ < .
<4 (7”0) w(re) + o(ro), 0<r< 47’0

Since (21) for }rg < r < rg is trivially satisfied, we obtain the desired

estimate (13). g.e.d.

Remark: On account of o(r) — 0(r — 0+), we prescribe ¢ > 0 in (13) and
choose r¢ > 0 sufficiently small and afterwards §(¢) > 0 such that the estimate

osc u<e forall 0<r<d(e) (22)
NNK,(y)

is realized.
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§8 Equations in divergence form

When we construct minima of energy functionals in the Sobolev space by
direct variational methods, we obtain weak solutions of differential equations
in divergence form. More precisely, we take a vector-field

A(p) = (AX(p),..., A"(p))" : R* - R" € C*T*(R") (1)
with a € (0, 1), whose Jacobi matrix
XY
A(p) = R" 2
OA(p) (Bpk P )j,k:l ..... n PERS )
is symmetric and satisfies the ellipticity condition
1 o <= 0A 9
< & <M for all R™ 3
AP < ]; opy, P)Gi6e S MIE* - forall &pe (3)

with a constant M € [1,4+00). We now consider bounded weak solutions

u=u(z) € WH2(2) N L>(N) (4)
of the differential equation
divA(Du(z)) =0 in £, (5)
and therefore we start with the integral relation
/ {Vo(z)- A(Du(z))} dz =0 for all ¢ € C§°(92). (6)
0
We utilize the difference quotient
plr +ee;) —plx
Ascpla) i= #0H 50 7 00) g

in the direction e; with sufficiently small € # 0. This notion has been intro-
duced in §1, and we calculate similarly to the proofs of Theorem 5 and 6
there. When we insert (7) into (6), we obtain

0= / {V(Ai.o(z)) A(Du(z))} dz = — / {Vo(z) A cA(Du(z))} dz. (8)
[0} 2

We calculate

A; cA(Du(z)) = i{A(Du(:v +ee;) — Du(w))}

- { / OA(Dux) + t[Dulx + ce;) — Du()]) dt } Ay, Du(x)
0

(9)
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and define the symmetric matrix

B (z) := /8A(Du(x) + t[Du(x + ee;) — Du(x)]) dt, xe R, (10)
0

satisfying the uniform ellipticity condition
1
M|g|2 <EoB.(x)o&* < M|E|?  forall £€R"ze€ e <e. (11)

The combination of (8), (9), and (10) yields the following weak uniformly
elliptic differential equation for the difference quotient A, .u(z):

0= / {Vp(z) o B.(z) o D(A; cu(z)) } da for all ¢ e C5°(£2). (12)

This difference quotient satisfies a Holder condition independent of €, accord-
ing to Theorem 2 from § 5 of de Giorgi - Nash. The passage to the limit ¢ — 0+
yields

u € CH(0) (13)

for a sufficiently small p € (0,1). We then consider the coefficient matrix
B(z) := 0A(Du(z)), x € 12, (14)

of the class C*({2). The transition to the limit ¢ — 0+ in (12) reveals the fol-
lowing weak differential equation in divergence form for the partial derivatives
Uz, (x), i =1,...,n, namely

= / {Veo(x) o B(z) 0 Dug, ()} dx for all ¢ e C§°(02) (15)
Q

with Holder continuous coefficients. The higher regularity of u is shown by
local reconstruction.

Theorem 1. We prescribe the boundary values 1) : 0K — R € C*T#(OK) on
the boundary of the open ball K CC (2. Then the following Dirichlet problem
adjoint to the vector field (1)-(3) above possesses a solution
v=uv(r) € C*"(K)NC°(K)NW'3(K),
div  A(Dv(z)) =0 in K, (16)
v(x) = ¢Y(z) on OK.

Proof:
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1. In the first part of our proof, we utilize a method proposed by A.Haar for
variational problems. At each point zg € 0K we have the linear support
functions n* (x) : R® — R with

n*(x0) = (o) and
n_(z) <¢(x) <nT(x) forall z € K, where (17)
|Dnt (20)] < C(”’l/JHClJr;L(aK)) for all zg € 0K

is satisfied. For the solution v € C1(K) of (16) we then deduce the in-
equality
|Dv(z0)| < C for all zp € OK (18)

from the inclusion
n(z) So(@) S t(x),  weK. (19)

The latter is inferred from (17) by the maximum principle applied to the
quasilinear elliptic equation

n J
Z 04 (Dv(2))vg,a, (x) =0, reK. (20)
i Opk ’

Now the derivatives v, in K are subject to the weak elliptic differential
equation (15) as well and therefore satisfy the maximum principle:

|Do(z)| < C([¢]lcr+nak)) r e K. (21)

2. When we have solved our boundary value problem (16) for the boundary
values

Y : 0K — R e C*(0K),
we then approximate the given function ¢ by a sequence
Y — 1 in CYTHOK) (k— o).

The adjoint solutions vy of (16) are equicontinuous on account of (21).
Therefore, we make the transition to a subsequence which is uniformly
convergent in K with a limit function v satisfying the inequality

IDu(z)| <C, z€K. (22)

Due to the inner Hélder estimate for Dv given above, we can achieve via
the differential equation (20) by the inner Schauder estimates that the
sequence converges in C?T#(0) for each open set ©@ CC K. Consequently,
the limit function belongs to the class

C*(K)NC°K)nWh*(K).
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3. It remains to solve the Dirichlet problem (16) for C?*#-boundary-values 1.
Here we have to establish a global Holder estimate for the gradient of the
solution with the aid of Theorem 2 from §7. A result of O. Ladyzhenskaya
and N. Uraltseva (see [GT] Theorem 13.2) yields

||Dv||C#(K) < C([¥llc2(ax)) (23)

for an exponent p € (0,1). This estimate is inferred from the Holder con-
tinuous boundary values of v,, and the weak differential equation (15) for
the derivatives. We insert this inequality into the quasilinear differential
equation (20). Applied to the sequence of boundary values

Yk = in C*HOK) (k- o0)
the global Schauder estimates imply the following statement
v, — v in C*TH(K) (k— o0)

for the adjoint solutions of the boundary value problem (16).

4. By a nonlinear continuity method deforming the boundary values, we
can solve the boundary value problem (16) for all ¢ € C**#(9K). This
procedure will be presented in §9 from Chapter XII for the nonparametric
equation of prescribed mean curvature. Similar to Proposition 4 there, we
start with a solution v of (20) and solve the following nonlinear differential
equation for small boundary values with the aid of Banach’s fixed point

theorem:
i J
0= 3 Y (Do) + Dw(@)) [vayay + 100,20
j,k=1 apk
"L rOAI "oaa
— j,%_:l L?pk (Du(z)) + ; Iprp: (Dv(z))we, + .. } s,y + Wa 2]
"L DA
= (D’U(I))wx]x
j,kz—l Ipk k
~ (N DA
+; (j;l U:ijk apkapl (D'U(ZE)))U)IZ + .. - reK.

(24)
Here we assume polynomial coefficients in the differential equation (20) at
first, and we denote by ... the superlinear terms in the partial derivatives
of w. As in Theorem 2 of §9 from Chapter XII we then deform the trivial
solution v = 0 into the solution of the Dirichlet problem posed. By an
adequate approximation we finally solve the differential equation with the

given coefficients. q.e.d.

We now obtain the fundamental
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Theorem 2. (Regularity theorem of de Giorgi)
A bounded weak solution u of (4) and (6) with the vector field (1)-(3) belongs
to the regularity class C*T(£2).

Proof: In each ball K CC {2 we reconstruct the solution u for the boundary
values ¢ := ulgg by a solution of (16) from Theorem 1. With the aid of the
Gaussian energy method one easily shows that the boundary value problem
(16) for weak solutions is uniquely determined. This implies

u(z) = v(x) in K,

and consequently u € C?*T#(K). By a renewed reconstruction within the C-
solutions we obtain
u € C*T(02).
q.e.d.
Remarks:

1. The regularity questions are situated in the center of the modern calculus
of variations, especially in the monograph

M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear
elliptic systems. Princeton University Press 1983.

In this context we recommend the beautiful presentation in [Jo] 11.3 by
J. Jost.

2. By the methods of this chapter a general theory for quasilinear elliptic
differential equations in n variables can be developed as in the pioneering
book [GT] Part II of D. Gilbarg and N. Trudinger.

3. We want to address the theory of two-dimensional partial differential equa-
tions in the next chapters. Here one can transform the equations into a
normal form in the hyperbolic and in the elliptic situation as well, and
both cases are interrelated via the complex space. For intuitive geometry
the two-dimensional theory is of central importance.

We finally treat the regularity question for the minimal surface equation:

In the bounded domain 2 C R" let u = u(x) € W1>°(£2) denote a weak
solution of the nonparametric minimal surface equation in divergence form

div{(1+ [Du(z)]?) *Du(z)} =0 in . (25)

This equation will be derived differential-geometrically in the second part of
§1 from Chapter XI. On account of Du(z) € L*°((2), the differential equation
(25) is uniformly elliptic and Theorem2 from §2 reveals u € C°(£2). Now
the regularity result of de Georgi, Theorem 2 implies u € C?*%(£2). Since
one can easily construct solutions in the class W12(£2) within the calculus
of variations, the central task remains to estimate ||Dul|f~(p). Therefore,
gradient estimates have to be established!

With p € (0,1) given, we prescribe
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a bounded convex domain 2 C R® with C?t#-boundary 012

and the boundary values v : 32 — R € C?T#(942). (26)
We consider a solution of the Dirichlet problem
u=u(z) € C*}(2)N Cli(('Z) satisfies (25) (27)
and the boundary condition u(z) =¢¥(x) on 04,
and deduce the following boundary-gradient-estimate:
|Du(z)| < C(092, |[Yllcz+nian)), = €01 (28)

In this context we show: At each boundary point (z,u(z)), € 02 the tan-
gential plane for the surface

(z,u(x)), x € 2

has an angle with the support plane of the boundary manifold, whose modulus
can be estimated from below by a number w > 0 independent of the point
x € J2. Here one considers the minimal surface in its height representation

v:60 —[0,00)

above the support plane, satisfying the now differentiated minimal surface
equation (compare § 1 in Chapter XI):

(14 |Dv(z)[*) Av(z) — Z Vg, Vg, Vgiz, (€) =0 in 6. (29)

4,j=1

With the aid of the boundary point lemma due to E. Hopf from § 1 in Chapter
VI, the statement (28) follows. The weak maximum principle applied to the
derivatives ug, now implies

[ullcr gy < C(892, 1Yl c2+ncan))- (30)

With the aid of methods presented in part 3 and 4 of the proof for Theorem 1,
one finally shows the following statement, whose complete derivation however
is left to the reader.

Theorem 3. (Jenkins, Serrin)
With the data (26) there exists exactly one solution u € C*TH(§2) of the
Dirichlet problem (27) for the minimal surface equation.
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89 Green’s function for elliptic operators

In the present section, we shall construct Green’s function for elliptic differ-
ential operators in divergence form with the aid of Schauder’s theory. For in-
stance, this enables us to transform the eigenvalue problem of elliptic operators
into an integral equation and then to proceed similarly to the considerations
for the Laplace operator in Chapter VIII.

We take a bounded domain {2 C R™ such that the regular boundary 02 is
of the class C?*# with € (0,1) and an integer n € N satisfying n > 3.
Furthermore, we denote the exterior normal by v = v(z) and the diameter of
2 by R > 0. For the differential operator

L(u) = Z a‘i(

n

aij(@)ug, (), z €0 (1)

in divergence form, we require the coefficient matrix
(aij(x))ijzl ., x €82 of the class CHrE(92) (2)

to be real and symmetric satisfying the following ellipticity condition

n

1\14|§|2 <Y a@&G <MEP inQ forall (€R”, (3)

i,j=1

with the ellipticity constant M € [1,400). For a fixed point y € {2 we define
the neighborhood

U={zeR": jz—y|<ro} CN (4)

with the fixed radius 0 < rg < p = p(y) := dist(y,02) € (0, R). At first, we
assume our coefficients to fulfill

a;j(z) =06;; for zelU and i,j=1,...,n (5)

such that the differential operator £ coincides with the Laplacian near the
point y. With the aid of Schauder’s theory from Chapter IX, we determine
the unique solution of the following boundary value problem

¢ = d(x,y) € C*(Q), L($) = —L(( by, lz—y*™") in 2

1 2—m (6)
(b(I,y) = T (n=-2)wn |17 - y| , T € of1.

Naturally, the quantity w,, denotes the area of the unit sphere in R"™. We now
obtain the approzimate Green’s function

1

n— 2wy,

g=g(z,y) = ( [z —y|* " + o(z,y) € C*TH(R\{y})  (7)
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satisfying
L(g)=0, ze€N\{y} and g(z,y)=0, =x€ I (8)

Setting g(z,y) = 0 for =z € R™\ 2, y € 2 we trivially continue the
function onto the whole space.
For all functions u € C'(§2) with zero boundary values u(z) =0 on 0f2 we
now calculate

n a n n
S @ as (@), (@9) = ul(9) + 3 i), (2)ga, (2,9) =
* 1

i=1 Jj= 4,5=1

(9)

n

Y ai(@)ug, (2)g0, (w,y) for @€ 2\ {y}.

ij=1

We apply the Gaussian integral theorem on the domain (2. := {z € 2 :
|z — y| > e} with the exterior normal v = v(z) and 0 < ¢ < 9. Then we
obtain the following relation:

/( Z aij(‘r)um (x)gmj ($7y))d$ =

o =1

(u(e) Y (@) Y i (@)ge, (w.p)})dol) = (10)

le—y|=¢

/ u(z) agix(g’g) do(xz) — u(y) for ¢ —0+.

lz—y|=e
Consequently, we obtain the fundamental

Proposition 1. For all functions u € C(£2) with zero boundary values
u(z) =0 on 902 we have the following identity:

n

Rlu.g) = [ (X (@), (@)gs, (0.0)) d = u(y)

o b=l
Here, the symbol R(.,.) denotes the Dirichlet-Riemann bilinear form.

Now we observe g(z,y) >0 for x € 2\ {y} on account of E.Hopf’s maxi-
mum principle and g(x,y) — +o0o when  — y and x # y holds true. For all
t € (0,4+00) we consider the level sets

Q) ={xeR:9(x,y) <t} and O(t):={zxe N:g(x,y) >t}

where y is an interior point of the closed set ©(t). We define the truncated
approzimate Green’s function
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o [olw) @ e 2
g(x,w{t’ vco (1)

Parallel to Theorem 8 in §1 we prove by approximation that this function
belongs to the class Wy"?(£2) N C°(£2), and u(z) = g*(x,y) can be inserted as
a test function in Proposition 1. Thus we obtain the evaluation formula

(Y aij(@)ga, (,9)g2, (,9))de = R(g',9) = ¢'(y,y) =1, 0 <t<+o0.
Q@) BI=1
(12)
The subsequent concept is of central importance:

Definition 1. For a measurable subset E CC {2 we define by
capo.c(E) == inf{R(v,v) :v e Wy *(2), wv(x)=1 ae in E}
the capacity of the set E in 2.

With the function v(z) = }g'(z,y),2 € £ we obviously have the unique
minimizer in the variational problem above for the set E := ©(t) with the
energy R(v,v) = | due to the evaluation formula above. Thus we have shown

Proposition 2. The relation capp r (@(t)) =1 0<t< +oo, for the ca-

t?
pacities of the level sets is correct.

We need the following elementary comparison properties of the capacity:

Ey C Ey C 2 implies capg c(E1) < capg,c(E2), (13)
E C ) C 2 implies capgn, c(E) > capa c(E), (14)

1

2y €aP2(E) < capa,c(E) < Meapo(E) for EC (2, (15)

abbreviating capn(E) := capo,a(E) for the standard capacity. With the radii
r > 0 we consider the balls

Uri={zeR": |z —y| <r}
and define the quantities
a(r) :==inf{g(xz,y) : x € OU,} and b(r):=sup{g(z,y):z €U, }

for 0 < r < p. We note that 0 < a(r) < b(r) < 400, and Hopf’s maximum
principle implies

g(x,y) > a(r),z € U, and g(x,y) <b(r),z € 2\U,.

Therefore, we obtain the inclusions
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U, C Oa(r)) and O(b(r)) C U,.

The comparison properties for capacities together with Proposition 2 yield
capa.c(Ur) < capa c(6(a(r))) = (16)

and
1

b(r)’
To the function v(z) = g(y + r:z:,y),é < |z| < 2 we apply the Harnack-
Moser inequality from Theorem 4 in §5. Due to the homogeneity in r of the
differential equation for v, the ellipticity constant is independent of the radius
r. Therefore, we obtain a constant ¢ = ¢(M) € [1,+00) such that

capg,c(Ur) 2 capa,c(O(b(r))) = (17)

b(r) < sup{v(z): ) < |z| <2} < c(M)inf{v(z): 5 <|z| < 2}

(18)
<c(M)a(r), 0<r<gp
holds true. In combination with (16) and (17) we deduce
b(r) < e(M)(capa,c(U,)) (19)
and .
a(r) > (e(M)capgo,c(Uy)) (20)

From the inclusion U, C 2 C Ugr we infer the inequalities

1 1
MCGPUR(UT) < McapQ(UT) < capo,c(Uy) < Mcapo(U,) < Mcapy,(U)

via the comparison properties and therefore

1 -1 -1 -1 1

M (capu,(Uy)) < (capo,c(Uy)) < M(capu, (Uy)) for 0<r< o
(21)

The standard capacity of concentric balls can be determined as follows: On

the domain Ui we have the standard Green’s function

9 (z,y) = |z —yf " = R* ",z € Up.
For 0 < r < R we have the quantities
@*(r) = b(r) =1~ R

and we observe U, = @(a*(r)). Then Proposition 2 implies

(capUR(UT))i1 =a*(r) =r*" - R*™, (22)
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The combination of (19), (20), (21), and (22) gives us the constants 0 < ¢ =
c1(M,n) < cg = ca(M,n) < 400 such that

1
art™ <a(r) <b(r) <cr?’™™, 0<r< N (23)

holds true. Now we easily show

Proposition 3. For the approximate Green’s function we have the following
estimates:

0<g(z,y) <co(M,n)|z—y|*™, z€2, z#y

and

. 1
g(z,y) > (M, n)|lz —y|*™, z€ L, =yl <, oly).

Proof: The second estimate can be directly inferred from (23). However, we
still have to show the validity of the first inequality on the whole set (2. To
this aim we introduce the exhausting set 2% := {x € 2 : p(z) > &} for
sufficiently small § > 0 and take a test function x = xs(z) € C§°(R™, [0, 1])
with supp xs C 229 satisfying x(z) = 1, 2 € £2°. Now we continue the
coeflicients of our operator differentiably onto the ball Usg as follows:

f]( ) _ {X&(l')aij (x) + (1 — X(S(«T))éija x € (24)

as.(x .
5ij7 xz € Usg \ (9
The operator L; in divergence form (1) with the coefficients

a?j(x) for i,7=1,...,n

possesses the approximate Green’s function gs(z,y) on the domain Usr. The
auxiliary function

w(x) = gs(x,y) — g(z,y) + sup{g(z,y) 1 2 € 02°}, we 2®

satisfies
Lw)=0, ze€%w(x)>0, zcdd.

The maximum principle of E. Hopf yields
9(z.y) < gs(w,y) + sup{g(z,y) : z € 92°}
< co(M,n)|x —y|>~" + sup{g(z,y) : z € 0}, x € 0°.
The transition to the limit § — 0+ implies

9(z,y) < co(M,n)lz —y>™", xe N



250 X  Weak Solutions of Elliptic Differential Equations

With the aid of the hole-filling technique, we now estimate |Vg| in the L?({2)-
norm.

Proposition 4. The approzimate Green’s function satisfies the estimate

[IVoteg)Pds < cOLnp)

for all exponents p € [1, "), with the a-priori-constant 0 < C(M,n,p) <
+00.

Proof: We utilize the auxiliary function x = x(x) € C*(R"™, [0, 1]) satisfying

1
x(x)=0 forall ze€R" with |:C—y|§4R or |r—y|>2R,

1
x(z)=1 forall zeR"™ with 2R§|x—y|§R,

and |Vx(z)| < ; for all 2 € R™.

Then we insert the test function u(z) = x(z)?g(x,y) into the integral equation
of Proposition 1 and obtain

n

0:/X2 Z (ai]( )gngmj d$+/2X9 Z az] Xﬂczgmj)d

0 1,7=1 7,j=1
Standard estimates for quadratic forms as in §5 imply

/ [Vg(x,y)* da
z€2:3 R<|z—y|<R

< [ XIVy(z,y)|de
(9]
(M, n)£g2lvx(w)l2d:v (25)

(M, n) J g9(@,y)*|Vx(@)*  dx
z€02:} R<|z—y|<2R

c(M,n)R*2". R72. R" = ¢(M,n)R*™™,

using the growth condition for Green’s function from Proposition 3.

We take a quantity 1 < p < 2 fixed and apply Holder’s inequality with the

conjugate exponents q = 12), q = 23}) as follows:
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/ [Vg(z,y)P  dx
x€82:3 R<|z—y|<R

= i Vg(z,y)I7 -1 da

z€Q:} R<|z—y|<R

< ( J Vg(,y)|? dw)g-( I 1 dw)zgp (26)

wEQ:éRg\w—y\gR 169:§R§|w—y|§R

< o(M,n,p)RE ™% . B3 = o(M,n,p)RP~"¥ T

= ¢(M,n,p)R* (=1,

Now we replace R by 2IE for k =0,1,2,... and obtain

\Vg(z,y)P  dz < c¢(M,n,p)RP~(n=1p.g=kn=(n=1)p)
z€2:27 k1R |z—y|<2~FR

With 1 < p < ", we observe that (n — (n — 1)p) > 0 holds true and the
summation over all k yields the desired estimate

/ Vg, y)Pde < e(M,n,p)R*"=DP( 3 27KO=(=0)) .= O(M, m,p).
(9] k=0

Here we observe that the series above converges. q.e.d.

We are now prepared to prove the central

Theorem 1. (Generalized Green’s function)
For the elliptic differential operator L with the properties (1),(2),(3) from

above we have a function

G=G(z,y): 2xN2—R

such that G(.,y) belongs to the class Wy (£2) N C2H#(2\ {y}) for all y € 2
with the exponent p € [1, ") satisfying the growth conditions

0<G(z,y) <co(M,n)|z—y|*™, x€0, z#y
and

_ 1
Gz, y) > cil(M,n)lz —y[" 2, z€, |z—y| < 5 P():

The function G implies the following representation formula
n

u(y) = /( Z aij (@)D u(z)Gy, (x,y))dz, ye 2

o ig=1

for all functions u € Wol’q(.Q) with the exponent q¢ € (n,+o0]. Here we de-
note by D the weak derivatives and remark that the Sobolev space above is
continuously embedded into C°(§2) due to Theorem 2 in § 2.
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Proof: At first, we consider test functions u = u(x) € C§°(£2) and choose a
fixed y € (2.
Then we take a sequence of auxiliary functions x, = xx(z) € C*(R",[0,1])
satisfying

xk(z) =0, relUs,

and
xe(@) =1, z€R\U:,

for k =1,2,3,.... For our operator (1) we define the coefficients
afj(x) = xk(z)ai;(x) + (1 — xx(2))di;, €82, i,j=1,...,n

and observe their convergence

||a§j —aijllps2) — 0 for k— oo

with arbitrary numbers 1 < s < +00. The differential operator L; possesses
the approximate Green’s function ¢g* for k = 1,2, ... and Proposition 1 implies
the following representation:

[ (3 @ @iet, ) de = uty) @7

0N 3,j=1

Due to Proposition 4 the sequence g’;j (z,y), k=1,2,...1is bounded in the
L?(2)-norm for the given p and all indices j = 1,...,n. Then Theorem 7
in Chapter I1,§8 allows the transition to a weakly convergent subsequence
g’j; (z,y) — D% G(x,y), k' — oo for j = 1,...,n. Here the limit function
G = G(.,y) belongs to the Sobolev space W1P(£2).

The sequence g*(.,y), k = 1,2,... satisfies the growth conditions from
Proposition 3 and is therefore uniformly bounded in each compact set K C
2\ {y}. Consequently, we can estimate these functions in the C?T#(K)-norm
by the Schauder estimates derived in Chapter IX. Finally, the limit function
G belongs to the class W, ?(£2) N C*Hr(02\ {y}).

We pass to the limit &’ — oo in (27) and observe the weak convergence of
the derivatives and the strong convergence of the coeflicients. We use familiar
arguments for Hilbert spaces - see the Remark 3.) on weak convergence in
Chapter VIIL,§6 - which pertain to these Lebesgue spaces. Then we obtain
the representation formula stated in the theorem for test functions.

Finally, we approximate the Sobolev functions u € WO1 "1(£2) with the exponent
q > n by test functions and take Theorem 2 from §2 into account. We then
obtain the representation formula even in the Sobolev class. q.e.d.

Definition 2. We call the function G(x,y) from Theorem 1 the generalized
Green’s function for the operator L on the domain (2.



89 Green’s function for elliptic operators 253

For twice differentiable functions we obtain the following corollary:

Theorem 2. With the generalized Green’s function from Theorem 1 we have
the representation

u(y) =— [ Lu(z) - G(z,y)dx, ye€ N
/

for all functions u € C?(£2) with u =0 on 12.

Proof: We integrate the relation

n

3 0@ )G, (59) = 32 0 (3 ay(@)ue, (1), 9)) — Glary) L)
i,j=1 j=1 "7 =1

over the domain (2. via the Gaussian integral theorem. The boundary integrals
vanish for e — 0+ due to the growth condition, and we evaluate the integral
on the left-hand side by Theorem 1. This gives us the representation formula
stated above. q.e.d.

Remarks:

1. Originally the Green function for elliptic differential operators in diver-
gence form has been considered by W. Littman, G. Stampacchia, and
H.F. Weinberger. Later M. Griiter constructed Green’s function for ellip-
tic operators with L*°-coefficients in the Sobolev space and derived global
estimates together with K.-O. Widman. Here we refer the reader to the
original paper of M. Griiter and K.-O. Widman quoted at the end of
Chapter VIII in §9.

2. In his graduate seminar at the University of Gottingen, E. Heinz gave
us the present approach to Green’s function via the Schauder theory in
the winter-semester 1985/86. I am grateful to H.-C. Grunau for an elabo-
rate copy of these beautiful lectures on Green’s function and for valuable
discussions.

3. One can even derive the familiar growth estimates for the first and second
partial derivatives of Green’s function near the singularity:

|G, (z,9)| < es(M,n)|z —y|*™, i=1,...,n for z€02, x#y
and
|Geix,; (2,y)| <ca(M,n)|z —y|™, i,j=1,...,n for zecf), x#y.

Here we utilize the weighted Schauder estimates in Theorem 3 of § 7 from
Chapter IX without boundary conditions. We apply them to the general-
ized Green’s function G(z,y) at all midpoints = € 2\ {y} in the full disc
B(z, R) of radius R = } |y — x| outside the singularity.
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4. We infer the symmetry of the generalized Green’s function from the sym-
metry of the Riemann-Dirichlet bilinear form above. Here we proceed as
in §1 of Chapter VIII for the ordinary Green’s function and utilize the
representation formula in Theorem 1.

5. When we take only L*°({2)-coefficients for the differential operator, our
approximation method described in the proof of Theorem 1 gives us a
generalized Green’s function even in this situation. Here we approximate
the coefficients by C1+%(§2)-coefficients and control the representation
formula in the limit. This generalized Green’s function belongs to the
Sobolev space in Theorem 1, satisfies the given growth condition, and is
Holder continuous outside the singularity - due to the regularity result of
de Georgi and Nash from Theorem 2 in § 5. However, differentiability and
moreover growth conditions for the derivatives of Green’s function cannot
be attained in this situation.

810 Spectral theory of the Laplace-Beltrami operator

Let 2 C R™ denote a bounded domain with the C?*#-boundary 0 and
0 < p < 1. Here we prescribe the elliptic Riemannian metric

ds® = Z gij(z)dxidz; , z €

7,j=1

of the class C1T#(£2) with its Gramian determinant

.....

and its inverse matrix
(g“(fﬁ))i,jzl,...,n , x €.

For the functions ¢ = 9 (z) € C**#(£2) we consider the Laplace-Beltrami
operator

Av(2) (Vo) Y a%(e) 5, 1) 1)

1 < 0
= @ & o

introduced in § 8 of Chapter I. Of central interest is the following eigenvalue
problem

—AY(z) =M(z), ze€ and Y(x)=0, =z€dN2 (2)

for real eigenvalues A € R. We recall the Beltrami operator of first order

n

V($,9) = Y g7 (@), (€)ths, ()

i,7=1
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and obtain the invariant Riemann-Dirichlet bilinear form

D($, ) := /Q V(6. 9)/a(@)dz = /Q {3 Vo(@)g? (@), (@), ()}

i,j=1

Furthermore, we introduce the canonical bilinear form on the Riemannian
manifold

B(9, ) := /Q B@IWalo)de ;¢ e IXQ).

Now we multiply (2) by an arbitrary test function and we arrive at the weak
etgenvalue equation

D(¢,9) = AB(¢,¥) , ¢ € C5°(£2). (3)

As described in §9, we determine the symmetric Green’s function to the el-
liptic operator

with the coefficients

aij(x) == \/g(x)g¥ (x), xeR for i,j=1,...,n.

Now we insert G(.,y) into the weak eigenvalue equation and obtain the fol-
lowing identity

A / G, y)d(x) /g )de = NB(G(.. ), ) =
(9]

—D(G(.y).¥) = /Q {3 045(@)Ga, (2, 9)be, (2) )l = (1)

i,j=1

for all points y € (2. Finally, we define the weakly singular integral operator

Ky(y) = /Q Gl (@) Va(o)de , ye .

We have transformed the eigenvalue problem (1) into the equivalent eigenvalue
problem

Ky(y) = vy yeQ 6)

for the weakly singular integral operator K.

Now we can proceed as in Chapter VIII in order to study the eigenvalue
problem of this integral operator. We only have to integrate with respect to
the surface element
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Vo(w), z€

over the manifold. This constitutes a positive C1T#(£2)-function: We obtain
Hilbert-Schmidt integral operators with respect to the Riemannian metric
ds?, where their kernels are symmetric and weakly singular. We construct our
eigenfunctions and their eigenvalues in the Hilbert space H, endowed with the
inner product B(.,.), via Rellich’s spectral theorem. Then we regularize the
eigenfunctions with the aid of I. Schur’s theory of iterated kernels. Thus we
arrive at the following result, whose complete proof can be taken from §§1, 2,
6, 7, and 9 in Chapter VIII.

Theorem 1. To the Laplace-Beltrami operator from above, there exists a com-
plete orthonormal system in H of eigenfunctions 1, (z) € C*TH(82) satisfying

—A¢p(x) = Mg(x), €82 and YPp(z) =0, x€0
for the eigenvalues A\, with k =1,2,3.... such that
0<)\1§)\2§)\3§...

holds true.

811 Some historical notices to Chapter X

The concept of weak solutions for partial differential equations was created by
D. Hilbert already in 1900. His theory of integral equations from Chapter VIII
provides the transition from the classical to the modern approach for partial
differential equations.

Before they became widely known under the present name, Sobolev spaces
have already been applied by K. Friedrichs and F. Rellich to spectral problems,
as described in Chapter VIII. Especially, Rellich’s selection theorem from 1930
provided the decisive tool treating weak partial differential equations.

About 1957, E.de Georgi and independently J.Nash achieved the break-
through in the regularity theory from weak to classical solutions. This was
substantially simplified by J.Moser in 1960 by his iteration technique, con-
sisting of inverse Holder inequalities. Finally, W. Littman, G.Stampacchia,
and H. Weinberger constructed even the Green’s function for weak elliptic
differential equations in 1963.
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PorTrAIT OF K. FRIEDRICHS (1901-1982); taken from the biography by
C. Reid: Courant, in Géttingen and New York - An Album; Springer-Verlag,
Berlin... (1976).




XI

Nonlinear Partial Differential Equations

In this chapter we consider geometric partial differential equations, which
appear for two-dimensional surfaces in their state of equilibrium. Here we
give the differential-geometric foundations in §1 and determine in §2 the
Euler equations of 2-dimensional, parametric functionals. In § 3 we present the
theory of characteristics for quasilinear hyperbolic differential equations, and
§4 is devoted to the solution of Cauchy’s initial value problem with the aid of
successive approximation. In § 5 we treat the Riemannian integration method
for linear hyperbolic differential equations. Finally, we prove S.Bernstein’s
analyticity theorem in §6 using ideas of H. Lewy.

81 The fundamental forms and curvatures of a surface

In the first part of this section, we consider the differential-geometrically reg-
ular surface on the parameter domain 2 C R?:

x(u,v) = (2(u,v),y(u,v), 2(u,v))* : 2 — R> € C?(N2,R?),
satisfying the condition
Xy (U, 0) A Xy (u,v) # 0 for all (u,v) € £2. (1)
Here A denotes the exterior product in R®. Now the surface x has the normal
N(t,0) 1= [xa A %0 (1, 0)] %0 A (1,0) Q= 52 2)
with §% := {y € R® : |y| = 1} and the tangential space
Ty (uw) = {y €R®: y-N(u,v) = 0}. (3)

For each point (u,v) € {2 we define the linear mapping
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dX(U,U) : R? — x(u,v)s
(4)

(du, dv) — (Xy,Xy) - GZ) = Xy (u,v) du + x, (u, v) dv

with its adjoint mapping

dx(u,v)* :  (du,dv) — (du,dv) - C?) = Xy (u, v)* du + %, (u, v)* dv.

We remark that the relation 1 = N* - N implies

N*.N,=0=N*-N, in £ (6)

Consequently, we obtain a further linear mapping

dN(’U,,U) : R? — x(u,v)
(7)

(du, dv) — (N, N,) - (th;) = Ny (u,v) du + Ny (u,v) dv

with the adjoint mapping
dN(u,v)* :  (du,dv) — (du,dv) - (ﬁ?) = Ny (u,v)* du + Ny (u,v)* dv. (8)

We now define three quadratic forms on the space R? depending on the point

(u,v) € 2. The first fundamental form is given by

I(u,v) := dx(u,v)* - dx(u,v)
= x5 xy(u,v) du? + 2x7 - x, (v, v) dudv + x5 - x, (u,0) dv? (9)
=: E(u,v) du® + 2F (u,v) du dv + G(u, v) dv?,
and the second fundamental form is defined by

I (u,v) := —dx(u,v)* - dN(u, v)
—(x} - N)du? — (x* - N, + x5 - N,) dudv — (x5 - N,) dv? 10)
10

= (N* - xyy) du? + 2(N* - X ) dudv + (N* - X)) dv
=: L(u,v) du? + 2M (u,v) du dv + N (u, v) dv?.

Here we have used that the relation N* - x, = 0 = N* - x,, implies

—N7 - xy = N™ - Xy, —N7 - x, = N* - x4, etc.

Finally, we define the third fundamental form

T (u,v) := dN(u,v)* - dN(u, v)
— (N*-N,)du? +2(N% -N,)dudv + (N* - N, do® (11

=: e(u,v) du® + 2f (u,v) du dv + g(u,v) dv?.
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The behavior as far as the curvatures of a surface are concerned is determined
by the Weingarten mapping or alternatively the shape operator

W (u,v) := —dN(u,v) o (dx(u,v)) ™" Ttuw) = Ta(unw)- (12)

The parameters (u,v) € {2 being fixed, the mapping W (u,v) attributes the
vectors x,, — —N, and x, — —N,.

Geometric interpretation:
The tangential vector y € Ty, .) given, we consider a regular curve

x(t) .= x(u(t),v(t)), —e <t<e
on the surface x satisfying
x(0) = x(u(0),v(0)) = x(u, v) and  x'(0) =y € Tx(u,v)-
We then observe the curve
N(t) :== —=N(u(t),v(t)),—e <t <e
with the tangent vector N’(0) € Ty(y,v). The mapping
y=x'(0) — N(0)==VyN(u,v) : Txup) = Tx(u)

is usually denoted as covariant derivative of the vector-field N in direction
y. Since this linear mapping coincides with the Weingarten mapping on the
basis {x,,X,}, the Weingarten mapping is the negative covariant derivative
of the normal N in the direction of the tangential vector y. Consequently, the
Weingarten mapping is invariant with respect to positive-oriented parameter
transformations.

With respect to the basis {x,,X,} in the tangential space Ty (u,w) the Wein-
garten map W (u,v) is described by the symmetric matrix

_Nu * Xy _Nu * Xy
. (13)
_Nv * Xy _Nv * Xy

Therefore, W (u,v) is a symmetric linear mapping. The latter possesses two
real eigenvalues k;(u, v) belonging to the eigenvectors e;(u,v) € T (u,v) With
lej(u,v)] = 1 for j = 1,2. We obtain the principal curvatures with r;(u,v)
attributed to the principal curvature directions ej(u,v). We summarize

W (u,v) oej(u,v) = k;(u,v)e;(u,v) for j=1,2. (14)

Let y = cosd eq(u,v) + sind ea(u,v), 0 < 9 < 27, be an arbitrary tangential
vector to the surface x(u,v). Then we consider the quadratic form
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Q) == (W(u,v)oy) -y
= (W(u,v) o (coste; +sindey)) - (cosd ey + sind ep)
= (cosY Kki1e1 + sind kaes) - (cosV er + sind ey)
= k1 (u,v) cos? ¥ + ko (u,v)sin? 9.
Consequently, we obtain the

Theorem 1. (Euler’s formula for the normal curvature)
We determine the mormal curvature of the surface in the direction y =
cosd ey (u,v) + sind ez(u,v) by

Q(y) = r1(u,v) cos® ¥ + ra(u, v) sin V. (15)

In the case k1(u,v) < ko(u,v), the normal curvature is minimized in the
direction e1(u,v) and mazimized in the direction es(u,v).

Definition 1. A point x(u,v) of the surface x is called an umbilical point, if
k1(u,v) = kao(u,v) is satisfied.

Definition 2. We define the Gaussian curvature of the surface by
K(u,v) := K1 (u,v)k2(u,v) = det W (u,v), (u,v) € £2. (16)

The mean curvature is given by
1 1
H(u,v) := 5 (k1(u,v) + K2(u,v)) = 9 trW(u,v), (u,v) € £2. (17)

Here det and tr denote the determinant and the trace of a matriz.

With respect to the bases {x,,%,}, {(1,0),(0,1)}, {xy,x,} the Weingarten
mapping is described by the matrices

L M\ (EF ‘17 1 LM\ [ G —F 5
MN)\FaG CEG-F2\MN/J\-F E ) (18)

This reveals the following formulas

LN — M?
K(u,v) = BG— F? (19)
and 1GL—-2FM + EN
H(u,v) = B : (20)

2 EG — F?
Finally, we show the



§1 The fundamental forms and curvatures of a surface 263

Theorem 2. We have the following relation between the three fundamental

forms
(o) () ()=o)
—2H + K = . (21)
[y M N FG 00

Proof: According to the theorem of Hamilton-Cayley, a symmetric matrix
represents a zero of its characteristic polynomial. Noting the symmetry of
W (u,v) we obtain

0=W(u,v)* o W(u,v) —2H (u,v)W (u,v) + K(u,v)Id
= (dN o (dx)"')* 0 dN o (dx)™' + 2HdN o (dx)~' + K 1d
= (dx*)"' 0 dN* 0 dN o (dx)™' + 2HdN o (dx)~* + K Id.

Applying the operations dx*o and odx to this equation, we attain the identity

0 =dN" odN + 2H dx* o dN + K dx* o dx
= Il (u,v) — 2H I (u,v) + K I(u,v),

and (21) follows. q.e.d.

In the second part of this section we investigate graphs in arbitrary dimensions
n > 2:

z2(z) = z(21,. .., 20) == (21, .., 20, (@1, ..., 2p)) : 21— RMTL (22)
Here we defined the height function
z=((x) = ((21,...,2,) € C*(12) (23)
on the domain {2 C R™. We determine the tangential vectors
zo,(z) = (0i1,- - Oins Coy (), @€ for i=1,...,n (24)
We have the upper unit normal
N(@) = (1+ V@) 2 (= Corvenoy—Cann 1), €0 (25)
and the tangential space
Ty = Iy € R™ ]y - N(z) = 0}. (26)
As above we introduce the first fundamental form with the coefficients
9i(2) = By, Za,; (¥) = 045+ (o, (2) (o, (), € for i,j=1,...,n. (27)

The tangential map
dz(z) : R" — T, (28)
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with respect to the bases €; = (di1,...,0i) € R™ and z,,(x) € Ty, for
i=1,...,n is given by the matrix

=1,...,

We now consider the family of matrices

CM(a) = (i + My (@)Ca; (2)), g, (29)
and observe
GMw) 0 V() = (1 + A VC(2)]*) VE(x) (30)
with an arbitrary parameter A € R. Furthermore, we note that
GMz)oy =y forall yeR" with y-V{(z)=0. (31)
We deduce

GMz) o G'(x) 0 V((z) = (1 4+ AIV¢(2) ) (1 + [V¢(2)[*) V()
and choose \ such that

L= (1+MNV¢(@)*)(1+|V¢(2)]?)  or equivalently

1
1+ |V¢()]2 1= XV((z)]* or equivalently
-1
= A holds true.
1+ |VC(.”L')|2 olas true
Introducing the matrix
J @) @)
1) :57,— g J th s :1’_._7 32
we obtain ) |
gZJ (I’)gjk(x) = 61@7 ren (33)

via the Einstein summation convention.
As above we can introduce the second fundamental form with the coefficients

hij(x) == =Ny, - 24, () = N - 24, (z) = (N(:z:) 'e)@ixj (), =€ (34)

for i,5 =1,...,n. Here we used the unit vector e = (0,...,0,1) € R**!. The
linear map
—dN(I) :R™ — TZ(I) (35)

is represented by the matrix (hy;(x))
bases.

il with respect to the canonical

We summarize to the
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Theorem 3. The Weingarten mapping for n-dimensional graphs is given by
the matrices

1) = (N0 G ), (5§ ) o 22

""" (36)

with respect to the canonical bases.

Remarks: From this theorem we can deduce curvature equations for graphs in
arbitrary dimensions. Especially for the equation

trace W(z)=0, ze€f (37)

we obtain the quasilinear n-dimensional minimal surface equation

Y Cou ()G, () -

We now calculate
V1+|V¢(@)2div((1+[V¢(@)?) "2 V((@) =
A¢(w) - 2(1+|V1C(z)\2) (VX&) - (V) =
AC(2) = 14 v 2ot (Cimt Coi Gai; )Gay (%) =
AQ(®) = 14 ve() tjmt ol Coiay (2)-

By the identity (39) we transform (38) into the minimal surface equation in
divergence form

V@) g o
(awewp) =0 ™ @ 1)

Geometrically, the arithmetic means of the n principal curvatures vanishes for
these graphs at each point.

82 Two-dimensional parametric integrals

We consider differential-geometrically regular surfaces on the parameter do-
main (u,v) € 2 C R?, namely

x =x(u,v) = (xl(u,v),xg(u,v),:rg(u,v)) = (a:(u,v),y(u,v),z(u,v)),

x: 2 —-R3eC3(N) )

satisfying |x, A x,(u,v)| > 0 for all (u,v) € 2 and
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/ |xy A Xy (1, v)| dudv < +00.
2

Denoting by S? := {z € R? : |z| = 1} the unit sphere in R3, the normal X
of the surface x is given as follows:

X (u,v) = %4 A Xo| " x0 A Xy (u,0) 1 2 — S? € C*(02). (2)
We consider a density function
F = F(x,p) = F(21, 22,23, p1, P2, P3),
F:R3xR*—Re CQ(]Rg’ x (R*\ {0})) N C°(R?® x R?),
which we assume to be positive-homogeneous of degree 1; that means
F(x,\p) = A\F(x,p) for all A > 0. (3)

From the relation (3) we obtain the following condition by differentiation with
respect to A at A = 1:

Fp(x,p)-p" = F(x,p), polpp(x,p)op”=0  for p#0. (4)
Furthermore, Fx(x, Ap) = AFx (%, p) implies
Fep(x,p)op” = Fx(x,p)  for p#0. (5)
Here we have abbreviated Fp := (Fp,, Fp,, Fp,), Fpp = (Fp,p, )i.j=1,2,3, etc.

We define the generalized area integral

A(x) = // F(x(u,v), X(u,v))|%u A%y (1, 0)| dudv
©
= // F(x(u,v), Xy A Xy (u,v)) dudo.
©

Evidently, an arbitrary positive-oriented diffeomorphism

f=fla,p) = (ula,B),v(a, §) : © — 2 € C'(O,R?)

satisfies the identity
Alx) = A(xo f).

Consequently, A represents a parametric functional. We can show that the
expression A from (6) gives us the most general two-dimensional parameter-
invariant functional in R3.

Ezxamples:
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1. For F = F(x,p) := |p| we obtain the ordinary area functional.
2. In the case

2H
F:F(X,p):|p|+ 3X'pa HERv

we get the functional of E. Heinz
2H
A(x) ://{|quxv|+ 5 (%%ux,) | dudo, (7)
[¢;

abbreviating the triple product as follows:
(X7y7z) ::X.(y/\z)7 X7y7Z€R3'

In (7) we have to comprehend H as a Lagrange parameter. Therefore, one
minimizes the ordinary area functional with the subsidiary condition of
keeping the volume constant:

2H
5 //(x,xu,xv)dudv =1
7}

3. When we finally consider
F=F(x,p) =p[+2Q(x) - p,
Q:R? - R3 e C?(R?) with divQ(x) = H(x),

we obtain the functional of S. Hildebrandt

A(x) = // {|xu A Xyl + 2(Q(x),xu,xv))} du dv. (8)
7}

Here one minimizes the ordinary area functional with respect to constant
weighted volume as a subsidiary condition:

2//(Q(x),xu,xv)dudv —1
(%}

We shall now determine the Euler equations of our generalized area integral
A: Therefore, we consider the surface varied in the normal direction, when we
take an arbitrary test function ¢ = p(u,v) € C§°(§2), namely

x(u, v;t) = x(u,v) + to(u, v)X(u,v) : 2 x (—¢,&) — R>. 9)

When we choose the number € > 0 sufficiently small, these surfaces remain
differential-geometrically regular. We calculate
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Xy = Xy + LX)y, Xy = Xy + (X))o,
Xy N\ Xy = Xy A Xy + t{xu A (X)y + (X)) A xv} +12(X)y A (X)),

(10)
This implies

8t A(x) 8t// (X, Xy A Xy) dudv
// xxu/\xv)-X)godudv

// (s 0 A %) - {360 A (0X)0 + (6X) 0 A} dutdo "

+2t// (%, X0 A Xy), (9X)u, (X)) du do.

Then, we obtain the Euler equations in the weak form

0= %A(x)’

t=0

/ {Fe(x,X) - X} ¢ x4 A x| dudv

// b (%, X), %, X)) +(Fp(x,X),g0X,xv)u}dudv

// (%, X)), X0, 9X) + ((Fp(x,X))u,QDX,xU)}dudv
:/ [X 0 F(x, X) 0 X"} 0 x4 A 0| dudo

// Xuts P (%, X) 0 Xy, X) + (P (, X)oxu,xv,X)}godudv

// Xus Pop (%, X) 0 X, X) + (Fpp (%, X) 0 Xo, X0, X) fp dudv.

(12)
We now set
2H (x,p) := div Fp(x, p) = tr Fpx (X, p)-

(tr Fpx denotes the trace of the matrix Fpx.) Consequently, the following
parameter invariant equation holds true:
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(pr(x, X) o xu,xv,X) + (xu,pr(x,X) o XU,X) + (xu,xv, Fox(x,X) 0 X)
= 2H (x, X)(xy, Xy, X).

(13)
Therefore, the weak Euler differential equation (12) appears in the form
0= // {(Fpp(x, X) 0 Xy, Xy, X) + (Xu, Fpp(x, X) 0 X, X)
Q (14)
F2H (x, X) x4 A xv|}gp(u,v) dudv  forall e ().
We obtain the Euler equation as follows:
0 = (Fpp(x,X) 0 Xy, %y, X) + (xu, Fpp(x, X) 0 X, X) (15)
15
+2H (%, X)|xy A Xy | in f£2.
This equation is obviously equivalent to the system
0 = {Fpp(x,X) 0 Xy} Axy + Xy A { Fpp(x,X) 0 X, } 16)
16

+2H (x, X)Xy A Xy in f£2.

Following the arguments in the book by W. Klingenberg: Eine Vorlesung tuber
Differentialgeometrie, Section 3.6, we now introduce the lines of principal
curvatures as parameters u, v into the surface. We obtain

Xu'Xv:():Xu'Xv:Xv'Xua
(17)
Xy = —Ki1Xy, Xy = —KoXy in £
with the principal curvatures k1, k2. Furthermore, we define the weight factors

01(u,v) == x4 A Xy| 7 (Fpp(x, X) 0 Xy, Xy, X) (18)

and
02(u,v) =[xy A Xp| " (Xu, Fpp (x, X) 0 %y, X). (19)

Then the relation (15) is transformed into the quasilinear curvature equation
01 (u, v)k1(u, v) + 2(u, v)k2(u, v) = 2H (x(u, v), X(u, v)) in 2. (20)

The weight factors p; and g have the same positive (different) sign if and only
if the matrix Fpp(x, p) is positive-definite (indefinite) on the space orthogonal
to p.

Theorem 1. The quasilinear curvature equation (20) represents the Euler
equation of the parametric functional (6).
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In the case of Hildebrandt’s functional (8) we observe

3 3
F(x,p) = p| +2Q(x) - p= [ > P} +2>  a(x)px
k=1 k=1
with div Q(x) = H(x). We calculate
Di PiPj
+ 2q’t ) pzpj = - !

\/Zpk \/Zpk \/Zpk

for i,j = 1,2,3. The weight factors reduce to o1 (u,v) =1 = g2(u,v) in 2 and
the equation (20) specializes to

; (k1(u,v) + Ka(u,v)) = ;div Fp =divQ(x) = H(x) in £ (21)

Then the system (16) appears in the form

Xy AXy + %0y AXy +2H(X)x, Ax, =0 in {2 (22)
or equivalently

—(XAXp)y + (X ARy = 2H (X)X, A Xy in £ (23)

The equations (23) become transparent if we introduce conformal parameters
into the surface as follows:

Xy Xy = 0 = [x,)? — [x,]? in . (24)
We now observe
XAXy =Xy, XAXy=—Xy in 2. (25)
Inserting (25) into (23), we obtain the H-surface system
Ax(u,v) = 2H (X)X A Xy in . (26)
We summarize our considerations to the following

Theorem 2. (F. Rellich)

A conformally parametrized surface x = x(u,v) : 2 — R? due to (24) has the
prescribed mean curvature H = H(x) if and only if x fulfills the H-surface
system (26).

Remark: If the matrix Fpp(x, p) is positive-definite on the space orthogonal to
p, we can introduce conformal parameters into a weighted first fundamental
form. We then obtain the following elliptic system for the mapping



82 Two-dimensional parametric integrals 271
y(u,v) = (x(u,v), X(u,v)) : 2 — RO,

namely
| Ay (u,v)| < c|Vy(u,v)? in £
In this context we refer the reader to

F.Sauvigny: Curvature estimates for immersions of minimal surface type
via uniformization and theorems of Bernstein type. Manuscripta math. 67
(1990), 69-97.

On the domain §2 C R? we now define the surface

X(xvy) = (I7y7<(xvy))7 (xvy) €12, (27)

given as a graph above the x,y-plane. The normal to the surface x is then
represented by

1
X(z,y) := 1+ |VC(,y))?

and the surface element by

(—Cay —Cy, 1), (x,y) € 12, (28)

X2 Axy| = V14 |VC(,y))2 =/ (29)
We determine the derivatives
xz(2,y) = (1,0, G(2,y),  xy(z,y) = (0,1,Gy(2,v)) (30)

and

1 1
Xz = \/(741:67 *Czya O) + >‘1Xa Xy = \/(7ny5 7ny7 0) + )\2X (31)

with certain functions A1, A2. When we insert the relations (30) and (31) into
(15), we get the differential equation

7(11 0 7Cx
0= Fpp(xv X) o —Cay | » 1 | —¢
0 G 1
1 _Cacy _Caa (32)
+ 0 |, Fpp(x,X)0 | =Cyy |+ | =Gy
Co 0 1

3
+2H(x, X)\/1 4 |[V¢(z,))2"  in Q.
This represents a quasilinear differential equation of the form

a(z,y, ((z,y), V(@ y))C oz +2b(. . ) oy + (.. ) yy +d(...) =0 in f2.
(33)
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In particular, for Hildebrandt’s functional we obtain

*Cacx O *Cx 1 *Cacy Cz
0=1|—Coy 1 =G| +|0 =Gy =Gy | +2H(x \/1 +|V((z y)|
0 ¢ 1 G 0 1

= (14 )Can + 26y Cay — (14 )y + 2HE)V1 + [VC(,p) 2

or equivalently
MC = (14 ) = 26GyCay + (14 )y (34)
= 2H(x)\/1+ V() 2

Theorem 3. (Lagrange, Gauf})

The graph z = ((x,y), (x,y) € §2, possesses the prescribed mean curvature
H = H(x,y,z) if and only if the function ( satisfies the nonparametric equa-
tion of prescribed mean curvature (34).

Remark: In the case H = 0 we obtain the minimal surface equation
M((z,y) =0 in f2.

Ezxample 1. The minimal surface of H. F. Scherk.

With the aid of the ansatz z = {(z,y) = f(x)+ g(y) we search for all minimal
surfaces of this form satisfying ¢(0,0) = 0, V((0,0) = 0. Inserting into the
minimal surface equation we obtain

0= (1 + C;)Cmc - 2<x<y<xy + (1 + <m2)<yy
= {1+ W)} " (@) + {1+ (f(@)*}g"(y) i 2

This is equivalent to

L I () B,
1+(f'(=)?*  1+(g'W)? '
Consequently, the condition
[ A € I 4 ¢7))
S R R 107 A,

holds true, and we assume a > 0 without loss of generality. We deduce
a = —(arctan f'(z))’, arctan f'(z) = —az + b

and via b = 0 we obtain

f(x) = tan(—axz), flx)= ilog cos(ax).
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Similarly we comprehend

1
gly) = — .08 cos(ay)

and consequently

cos ax

o) = f@) +ols) = | 0B v a0,

This surface is defined on the open square
T T
Q.= { ,y) €R? < 7yl < }
(z,y) ] <o 0 Wl <o,

and cannot be extended beyond this domain.

A GRAPHIC OF SCHERK’S MINIMAL SURFACE




274 XI Nonlinear Partial Differential Equations

83 Quasilinear hyperbolic differential equations and
systems of second order (Characteristic parameters)

Let the solution z = ((z,y) : 2 — R € C3(£2) of the quasilinear differential
equation

EC(L y) = a(xv Y, C(x, y)a VC(x, y))Cmc (177 y) + 2b(~ . )Czy + C(~ . )ny (1)
+d(z,y,{(7,y), V¢(z,y)) =0 in 2

be given on the domain 2 C R2. Here the coefficients b and ¢ depend on the
same quantities as a does. In the sequel, we often use the abbreviations

Z(I,y) = C(xvy)v p(xvy) = CI(xvy)a q(f,y) = Cy(xvy)v
T(Ivy) = sz(xvy)a S(xvy) = Cﬂﬁy(xvy)a t(:z:,y) = ny(xvy) in {2

For a given solution z = ((z,y) of (1) we set

a(z,y) = a(z,y,{(x,y), V{(z,9)),
(w,y = (.’L’ y,C(:C,y),VC(:E,y)), (3)
c(x,y) = c(z,y,((z,y), V((z,y))  in L2

and obtain the differential equation

0= a(x7y><mﬁ(xvy) + Qb(fl?,y)ﬁzy(x,y) + C(x,y)gyy(:zz,y) (4)
+d(x7y7<($7y)7V<(iE,y)) in {2.

We now assume the differential equation (4) to be hyperbolic, which means
CL(SC, y)C(SC, y) - b(CC, y)2 <0 in (2. (5)

We observe that this condition depends on the coefficients a(x,y, z,p, q), - ..
and on the solution ¢ and its gradient V( as well.

We now intend to bring the differential equation (1) or equivalently (4) into
a form as simple as possible. To this aim we consider the following transfor-
mation of variables in the neighborhood U(xg,yo) C {2, namely

£=¢&(x,y), n=n(z,y) € C*U(zo,y0)),

§o = &(w0,y0)s 1m0 = n(T0,Y0), g((i’ Z)) # 0 in U(zo, yo), (6)

with the inverse mapping = = z(§,7), y = y(&,1) € C*U(&o,m0))-

We calculate



83 Quasilinear hyperbolic differential equations and systems 275

z=((z,y) = 2@ y),n(z,y),  (2,y) € U(zo,y0),

Co = 2¢la + 2y, Cy = 2e§y + 2y,

Cow = 26662 + 22en&atle + 2gn2 + Zelax + ZyMaa (7)
Coy = zee&aly + 2en(Eany + EyMa) + ZynMatly + 268y + 2nNay

Cyy = 25553 + 2z¢n&yny + mef, + 2e8yy + Znyy-

Therefore, the relation (4) yields the transformed differential equation

0 = a(z,y)Ca + 2b(2, Y)Cay + c(z,y)Cyy + d(z,y,(, V)
= A(z,y)zee + 2B(x,y)zen + C(x,y) 20y + D(z,y, 2,V 2)

with

A, y) = a(x,y)&2 + 2b(z,y)&y + c(x, y)E2 = Q(E,€),

B(z,y) = a(@,y)&n + b(@, y)(&any + &) + c(@,y)Eymy = Q(E,n),  (9)

C(z,y) = alz, y)n; + 2b(x, y)nuny + c(z,y)n; = Q(n,n).
The quadratic form

Qe =)o (fin i) o (1) ()

is called the characteristic form of the differential equation (4); we finally
set Q(¢) :=Q(p, ). We summarize our relations (9) to the following matrix
equation:

(e =(am)Gandom)e(&n)- o
This implies

AC - B? = (géiz)))z(ac —b%) <0, (12)

and the transformed equation (8) is hyperbolic as well. Those level curves
I': p(x,y) = const

satisfying

Q(p) == Q(p, ) = (ap? + 200,y + cpl)| =0,

L=
are the characteristic curves of the hyperbolic differential equation (4) (com-
pare Chapter VI, §4). Choosing the parameter transformation £ = £(z,y),
17 = n(z,y) such that

A(.”L',y) = Q(f) =0, C(:v,y) = Q(U) =0 in U(wo,yo), (13)
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then the curves &(z,y) =const and n(x,y) =const are the characteristic
curves of (4). From the relation (12) we infer the identity

a(&,m)
(z,y)

and (8) is reduced to the hyperbolic normal form

|B(a,y)| = /b — ac

’ > 0, (14)

: (15)

1
2577(5777) = {23(1, y)D(xvyvzvpaq)} w=z(&,m)

y=y(&m)

We remind the reader that introducing characteristic parameters &, n has al-
ready been essential for the treatment of the one-dimensional wave equation
Cze — Cyy = 0 in Chapter VI, §5 .

We now show the existence of a local parameter transformation (6) with the
property (13). The transition to inverse matrices in the relation (11) yields

1 C -B Te Ye 1 c —b Te Ty
= . 1
AC’B2<B A ) (xnyn a2 \-ba ) \yey, ) (10

Taking the equation (12) into account, we deduce

a(:v»y)>2

(C de? —2Bd§dn+Adn2)(a(§ "

= cdz® — 2bdx dy + a dy®.
Therefore, we obtain the transformation formula

c(z,y) dz? — 2b(z,y) dz dy + a(z,y) dy?
(17)

= (S ) {ct det - 28(ey) dean + Atw.y) e,

Since the coefficient matrix is transformed under parameter transformations
due to (11), a rotation of the x, y-plane allows us to achieve the condition

a(xvy)c($7y> #0 in U(wo,yo). (18)



83 Quasilinear hyperbolic differential equations and systems 277
We now solve the differential equation
0 = a(z,y) dy* — 2b(z,y) dx dy + c(z, y) dz”
b
::a(dy24—2 dz dy + Cdz2) (19)
a a
= a(dy — AT dx)(dy — A\~ dz)
with

B b+ Vb2 — ac
- . )

AE (20)
Respecting A* € C?(U(x0,y0)), the solutions of the regular first-order differ-
ential equation

dy — AT dz =0 (21)

are constructed as level lines 7(x,y) = const of a function n € C?(U(xo,yo))-
In the same way we find the solutions of

dy— A" dz=0 (22)

in the form &(z,y) = const for £ € C%(U(z0,yo)). On account of A\*(zg,yo) #
A (z0,y0) the vectors (1, \T(xq,y0)) and (1, A\~ (z0,y0)) are linear indepen-
dent. The vectors VE&(xo,y0) and Vn(xo, yo), respectively, are orthogonal to
them, and we see

o m) _ € € ) .
Aary) det (771 773 #0 in U(xo,Yo)- (23)

Therefore, the inverse mapping exists as well x = xz(¢,n),y = y(&,n) €
C?(U(&o,m0)) in a sufficiently small neighborhood U (&p,70). Along the &-curve

n(x,y) = const we have
Ye — )\+x£ = O, (24)

and (17) implies C(z,y) = Q(n) = 0. Along the n-curve &(z,y) = const we
have
Yy — A xy =0, (25)

and (17) yields A(z,y) = Q(&) = 0. Consequently, we arrive at the following

Theorem 1. (Linear hyperbolic differential equations)
For the hyperbolic differential equation with linear principal part (4), (5) given,
we have a transformation of variables (6) with

QE)=0=0Q(n)  in Uxo,yo)- (26)

The differential equation appears in the hyperbolic normal form (15) and the
parameter transformation x = x(§,m), y = y(&,n) satisfies the first-order
system (24), (25).
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We now consider the case a = a(z,y,2), b = b(z,y,2), ¢ = c¢(z,y,z) and
consequently A* = A*(z,y, 2). The characteristic differential equations (24),
(25) now additionally depend on the solution z = {(x,y). Differentiating (24)
with respect to n and (25) with respect to &, we see

Yen — AT wgy = Nwe = M agze + N ygwe + A 22 (27)
and

Yen — A" Ten = Ag Ty = Ay Tely + Ay Yeln + A 2en, (28)

respectively. The coefficient matrix for this linear system of equations is non-
singular due to AT # A~, and we can therefore resolve the equations (27),
(28) to xen, Yen. Then we arrive at the following

Theorem 2. A quasilinear differential equation (1) with the coefficients a =
a(x,y,2), b = b(z,y,2), ¢ = c(x,y,z), which is hyperbolic according to (5)
with respect to its solution z = ((x,y), appears as the following system in
characteristic parameters (24), (25), namely

X&n(ﬁﬂ?) = h(f»777X(f»n)axﬁ(fvn)axn(fﬂ)) (29)

for the vector-valued function x(§,n) := (x(&,n),y(&,n), 2(&,n)).

We now consider the general case

a=a(r,y,2,p,q), b=0bzy,2p7q, c=cyz2Dpq:-
Noting that A* = \* (x,y,2,p,q) holds true in this situation, the character-
istic curves depend on the solution z = {(z,y) and its gradient V{(z,y). The
equations (27) and (28) are modified to
Yen — A wen = AL aye + N ynTe + M 2nTe + N pywe + AJ ane (30)
and
Yen — A" Ten = Ay Ty + Ay Yey + AL 26Ty + Ay Peltn + A gey, (31)

respectively. In order to obtain a complete system, we derive two additional
differential equations of the first order for the functions p = p(&, 1), ¢ = q(&,n)
in characteristic parameters: Let z = {(x,y) be a given solution of (1). The
second derivatives (g, (zy, Cyy then satisfy three linear equations

alzz + 20Cy + cCyy = —d
dxCpy + dyCyy = dg.

We refer the reader to the considerations in Chapter VI, § 4: Posing the Cauchy
initial value problem along a characteristic curve I" C {2
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LE=0 in 2,

C(:c,y) = f($7y> on I (33)
gi (x,y) =g(z,y) on I,

not all the second derivatives (;z, (zy, (yy are determined by the data L, f, g.
Since dp and dq are known along a characteristic, the linear system of equa-
tions (32) could be resolved to (zz, Coy, Cyy, if the determinant of the coefficient
matrix did not vanish. Therefore, the relation

a 2b c
0=|dedy 0 |=ady®—2bdedy+ cda? (34)
0 dx dy
is valid along a characteristic, which has already been shown alternatively with

the aid of (17). On the other hand, the system of equations (32) possesses the
solution {(zz, Coys Gyy - Consequently, the relation

a 2b ¢ d
rank | de dy 0 —dp | =2 (35)
0 dx dy —dq
holds true along the characteristics. In particular, we obtain
a c d
0=|dr 0 —dp|=adydp+ cdxdq+ ddxdy. (36)
0 dy —dq

Evaluating this equation along the &-characteristic, the multiplication by
(adyd€)~! together with relation (21) yields

dx

d 1 d
= AT
dyq§+a:17§ Pe + )\+q§+a17§

C
0=pe+
V43 a

and consequently

[SEERSH

Pe+ATqe+ xe=0. (37)

Along the n-characteristic the relation (36) together with (22) implies the
following equation by multiplication with (a dy dn)~!, namely

—~

cdx d _ 1 d
0=p,+ ad_yanr a:z:n :pn+)\+)\ )\_qn+ axn
and consequently
d

py+ AT, + S = 0. (38)
Finally, the differential equation dz = pdx + qdy along the &-characteristic
yields

ze = pre — qye = 0. (39)

We now prove the interesting
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Theorem 3. (Hyperbolic normal form for quasilinear differential
equations)

The quasilinear differential equation (1), which is hyperbolic with respect to
its solution z = ((x,y) due to (5), can be equivalently transformed into the
following first-order system by the local parameter transformation (6):

Ye — )\+I§ = 0, Yn — )\_In = 0,
_ d i d
pe+ A q5+ax5:0’ Py + A qn—i—a:v,,:O, (40)
zg — pxe — qye = 0.

For the function y(§,n) := (x(&,n),y(&,m), 2(&,n),p(&n), ¢(€,1)) we obtain a
hyperbolic system of the second order

}’En(ﬁﬂl) = h(ﬁﬂlaY(fﬂ)a}’E(ﬁ»W)aYn(fﬂ))» (41)

where the right-hand side is quadratic in the first derivatives x¢,ye, ..., Dy, @y

Proof:

1. Starting from the solution (40) we show the validity of the differential
equation (1). The first and second equation from (40) together with the
matrix equation

(wf xn) _ <€m §y>1 _ o(z,y) ( Ty _gy)
Ye Yn e A& n) \ e &
imply the relations

e+ A0y =0, &+A7g =0.
Therefore, we obtain

Zgx = Pz = pﬁgz + PNz

—(/\*qg + zwg)ém — ()\+qn + Z:v,,)nm

~ - d
—(AT + A7) (gele + anne) — NN (qe&y + anny) — .

which reveals that azy, + 2b2zy + c2yy +d = 0.
2. Differentiating all the equations of (40) containing only £-derivatives with
respect to n and vice-versa, we obtain
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7)\+x£77 + Yen =...
— A" Zgn + Yeq =...

d -
Ten +Pen + A gen = - (42)

S|

d
o en + pey + Agen =

—PTen — QYen t+ Zgq =

On the right-hand side only quadratic terms in the first derivatives of
x,y, z,p,q appear. We treat (42) as a linear system of equations in the
unknowns ey, Yen, 2en, Pens den- The coeflicient matrix of this system is
nonsingular on account of

AT 1 0
A7 1 0
d - b? — ac
" 0 0 1 AM|__y4 A £ 0. (43)
d
0 0 1 \*
a
-p —q 1 0 O

Therefore, we can resolve the system (42) in the form (41). qed

84 Cauchy’s initial value problem for quasilinear
hyperbolic differential equations and systems of second
order

The theorem of d’Alembert (see Theorem 1 in Chapter VI, § 5) gives us the so-
lution of Cauchy’s initial value problem (briefly CIP) for the one-dimensional
wave equation

u=u(z,y) € C*(R x R,R),

Ou(z,y) == tyy(z,y) — Uzz(z,y) =0 in R xR, (1)
u(z,0) = f(x), (;9 u(z,0) = g(x) for all z €R,
Yy
namely

T4y

U(I,y):;(f(:Eer)Jrf(xfy))Jr; /g(s)ds, (z,y) eRxR. (2)

z—y



282 XI Nonlinear Partial Differential Equations

Here we need f € C%(R) and g € C*(R). Since the problem (1) is uniquely
solvable according to Theorem 2 from Chapter VI, §4 | we easily deduce the
regularity of the solution from d’Alembert’s solution formula (2). We obtain
the following:

(a) With the assumptions f € C?*¥(R) and g € C**(R) for k = 0,1,2,..
we have the regularity u € C?T*(R x R) for the solution.

(b) We now require that the functions f and g can be expanded into convergent
power series in a disc of radius 2R € (0,+00). With the variable z =
r1 + ixe € C we have the representations

e

flx) = Zakxk, g(z) = Zbkxk for ze€C with |z]| < 2R.
k=0 k=0
(3)

In the dicylinder Zg := {(z,y) € C? : |z| < R, |y| < R} the function

z+y

(@t ie=n)+, [oods @) ze @

=y

u(z,y) =

then gives us a solution which is holomorphic in Zx of the following CIP:

0? 8? .
0y M0~ (e =0 i Zy,

u(z,0) = f(z), g)yu(ac,O) =g(x) forall ze€C with |z] <R.
(5)

Here the complex derivatives are denoted by aam and aay-

We now perform a rotation about the angle —7 by the mapping

()= (e o)=L (D)

and get the equations

1 1

From the wave equation we determine the coefficients of the transformed dif-
ferential equation with the aid of formula (11) in §3 as follows:

(32)- LD D)L 0D -CD) o

By this rotation, the z-axis y = 0 - where the Cauchy data are prescribed - is
transferred into the secondary diagonal
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E+n=0.

The vector (0, 1) is transformed into the unit normal to the secondary diagonal
in the direction of the first quadrant, namely v = \}2 (1,1). Therefore, the CIP

(1) is transformed into the following CIP:
u=u(¢n) € C*(R%R),
U’E’U(gvn) = 0 iIl R27

u(é, —§) = f(V2) for E€R, (8)

o6 =€) 1= (a6, —€) + unl6,-0) =a(V2)  for €€R

The problem (5) is similarly transferred in the case of real-analytic initial
values f, g.

We summarize our considerations to the following

Theorem 1. The functions f = f(§) € C*(R) and g = g(§) € CY(R) being
prescribed, the CIP (8) possesses exactly one solution u = u(&,n) € C*(R?).
If we assume f € C**R(R) and g € C*T*(R) with an integer k € {0,1,2, ...},
we have u € C*t#(R?). If the functions f and g on {£ € C : |¢| < V2R}
can be expanded into convergent power series, then the function u = u(&,n) is
holomorphic in Zg, the differential equation

2

=0 in  Z
8§ 8T]u(€’ 77) m R
is fulfilled, and the initial conditions in (8) are valid for all§ € C with |¢] < R.

In §3 we have transformed a quasilinear hyperbolic differential equation of
second order into a hyperbolic system in the normal form. In order to obtain
a solution of the CIP for the quasilinear equation, we solve the following CIP:

x =x(&,n) € C**H(QR,R"), Qr:=[-R,R| x[-R,R], neN,
Xey (& m) = B(&m x(&m), % (&), %9 (Em)) I Qr, 9)
X6 €)= 1), o x(E-6 =g for £€[-RE
with the Cauchy data
f=f(¢) e C**R,R") and g=g(¢&) e CT*R,R")
and the continuous right-hand side

h = h(f»ﬂaX»P»Q)-
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Applying Theorem 1 to each component function, we find a uniquely deter-
mined solution of the CIP

y =y(&n) € C*HF(R?%,R™),

yEU(&v’r]) =0 in R27 (10)

YE-9=f©), vl -O=gl) Ec®

When we make the transition to

x(&m) =x(&n) —y(&m),

h(&,n.%,5,@) = h(&m,y(En) + X, ye(€ 1) + B yy (&) +4),
the problem (9) is equivalently transformed into the CIP

x =x(¢n) € C*H(Qr,R"),

5(577(577” = fl(é-arhi(gvn)’iﬁ (6777)’5(77(6’77)) in QR7 (12)
%(6-0=0= ) x(6,-¢) for ¢e[-R.R]

In the sequel we suppress ~ in (12) and transform (12) equivalently into
an integro-differential-equation: Let the point (z,y) € Qgr be chosen with
x4y > 0. We then define the characteristic triangle to (z,y) by

T(x,y) = {(5,77) eER?: —z< —§<77<y} C Qg.

We confine our considerations to the subset of @ above the secondary diag-
onal. A solution beneath the secondary diagonal is constructed in the same
way, defining the characteristic triangle

T(z,y) = {(5,?7) eR?: y<n<—€£< *x}-
We apply the Stokes integral theorem to the Pfaffian form

W:Xn(fan) dn_xf(§7n>d§7 (5777) ET(.T,y)

We deduce
2x(z,y) = / Xy dn —Xe d§ = //d(x77 dn — x¢ d€)
T (z,y) T(z,y)
=2 //Xsn(f,n) d§ dn
T(z,y)

=2 //h(§,n,X(f,n),Xg(&n),Xn(f,n))d§d77

T(z,y)
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and consequently

x(z,) = // h(E,mx(E.0).xe (€. 1) 3 (€ m) dEd, (2,9) € Qr. (13)

T(z,y)

On the contrary, we depart from a given solution of the integro-differential-
equation (13) and immediately comprehend x(z, —x) = 0 for all x € [-R, R].
From the representation

x Yy
xte) = | < / h(é,n,X(é,n),Xg(é,n),xn(é,n))d77> e
-y £
we infer the equation

Y

Xq(7,y) = /h(:v»n,X(w,n)»&(wm)»xn(%n))dn- (14)

—X

This representation implies x,,(z, —z) = 0 for all z € [—R, R]. Furthermore,
the representation

x(z,y) = / ( / h(s,n,x(s,m,Xg(s,m,xn(é,n))d&) an
yields
%y () = / h(€, . X(E, 1), Xe (€, 1), % (€, 1)) dE, (15)

-y
and consequently x,(z,—z) = 0 for x € [—R, R]. Finally, we can differen-

tiate (14) with respect to y and (15) with respect to x, and we obtain the
fundamental

Theorem 2. The function x = x(x,y) of the class

Cry(Qr,R") := {y € CY(QRr,R™) : yuy = Yy exist continuously in QR}
solves the CIP

Xry(xvy) = h(:z:,y,x(x,y),xz(x,y),xy(x,y)) in QRa
o (16)
x(x,—x)=0= ayx(x, —) for x € [-R,R]

if and only if x satisfies the integro-differential-equation (13).
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For the right-hand side h = h(¢, 7, x, p,q) we now require the following Lip-

schitz condition
|h(§7 %P, q) - h(gv m, 5{5 f)a E41)| < L|(X7 P, q) - (5{7 137 Q)| (17)
for all (f»ﬁ’X»P»Q)a (5777’5(»13»51) € QR X R™ x R™ x R™

with the Lipschitz constant L € [0, 4+00). With this assumption we derive a
contraction condition for the integro-differential-operator

I(x)(z,y) == / / h(€, 7, x(E.7), xe (€. 1) 3y (€ 1) dEd, (2,9) € Q.

T(z,y)
(18)
For the function x,y € C'(Qgr, R") we set
X(z,y) = 1(x)(z,y), y(z,9):=1(y)(z,y), (z,y) € Qr.
Now we can estimate
|)A((I7y) - y(xvy” S // }h(gvnaxaxfaxn) - h(€7777y5y57y7])| dgd??
T(z,y)
T(z,y)
z+y
<L [ |z+y—7l[o(r)dr
/
(19)
with
(b(T) = ’(X(ﬁﬂl) - Y(gvn)axf - Y§7X7] - y?])‘ (20)

max
EmeET(zy), E+n=T7

Furthermore, the relation (14) implies the inequality

Yy
|§{I(I7y)7y1(:r?y)| S/}h(xvnvx(xvn)axfaxn)7h(:177’r’7y‘(:r?n)7y‘§7y‘7])}d77

< L/ | (x(,m) — y(@, 1), Xe — yes X — ¥n)| dn

—x

(21)
In the same way we deduce the following estimate via (15):
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z+y
5y (@,9) — §y(@,9) < L / o(r) dr. (22)
0

We summarize the inequalities (19), (21), and (22) to the following

Theorem 3. For arbitrary functions x,y € C*(Qr,R"™) we have the subse-
quent estimate in QR:

| (%(,9) = 9(0,0), %0 ) = $ ), %y (@,9) = 3 (29) ) |

Tty
<L /(2+|w+y—7|)¢(7)d7.

We define the set
Qn.s = {(2,,%,p,d) € Qn x R" x R" x R" : [x], |p|,|al < 5},
and prove the central
Theorem 4. Let the parameter-dependent right-hand side
h=h(z,y,x,p,q, ) : Qr,s X [A1, A2] = R"

of the class CY(Qr.s X [M, 2], R™) with R >0, S >0 and —00 < A\ < A2 <
+00 be given. Then we have a number r € (0, R], such that the following CIP
has exactly one solution for all X € [\, \a]:

X = X(xvyv >\) € CIy(QTan)v

me(xayvA) = h(w,y,X(:v,y,)\),xw(:v,y,)\),xy(x,y,/\),)\) m QTa (23)
0

x(x,—x,A) =0= ayx(:zz, —z,\) for x€[-rr].

Furthermore, the solution depends differentiably on the parameter as follows:
X(Ivyv )\) € Cl(QT X [Ala AQ]an)
Proof:

1. At first, we fix the parameter A € [A, 2] and construct a solution
x(z,y, A) with the aid of Banach’s fixed point theorem. To this aim, we
define the Banach space

0

B = {y e CHQu R ¢ y(r,—a)=0= )

y(z, ), z € [—R,R]}

endowed with the norm
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Iyl :== sup |(y(z,9),ye(@ v),yn(z,9))| (24)
(z,y)EQR

We extend the right-hand side h : Qg s X [A1, A2] — R™ onto the set
QR x R" x R™ x R" x [)\1,/\2]

in such a way that the Lipschitz condition (17) with a uniform Lipschitz
constant L > 0 is valid for arbitrary A € [A1, A2]. According to Theo-
rem 3 we find a sufficiently small R > 0 such that the integro-differential-
operator I : B — B defined in (18) is contractible. This means, we have a
constant 0 € [0, 1) satisfying

11(x) — I < Ox -yl forall x,yeB. (25)

Banach’s fixed point theorem (see Theorem 3 in Chapter VII, §1) gives us
the existence of a solution x = x(z,y,A) € B for the integro-differential-
equation

x(, y, A / (€ mox(€. 7 A) e (€, N) 3y (6 N, N) dEdy - (26)

T(z,y)

for all A € [A1, Ag]. Parallel to the proof of Theorem?2, we see that
x(z,y,A) € Cyy(Qr,R™) holds true for each A € [A1, \2].
We now show that the solution is independent of the extension of the
right-hand side h for sufficiently small R > 0 : Let x be a solution of the
CIP (23) to the fixed parameter A € [A1, A2], and we set

y(wy) = // (6,1,0,0,0,)) d€ di.

We apply Theorem 3 to the function

Z/J(t) = (w,y)eglzixw-‘ry ‘ } (X(‘Tvy) - y(xvy)axﬁ — Y& Xy — Y77)|

and obtain the following estimate

<A [+ Iyl 1)
0

with a constant A > 0. The comparison lemma (see Proposition1 in §5)
yields

D(t) < |lyll(e? = 1).
Choosing R > 0 sufficiently small, the inclusion

(X(Cﬂay)»xg(%y)axn(%y)) S QR,S for all (‘T?y) € QR
is fulfilled.
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3. Let two solutions x = x(z,y,A) and X = X(z,y, A) to the parameters A
and A be given. Then we derive an inequality of the form

t
wlt) <4 [ (9r) + O R) ar (28)
0
for the function
P(t) = (x,y)egllixx+y:t |(x(z, ) — %(2,y), x¢ — Xe, Xy — %) |

as in the proof of Theorem3. Here (A, A) — (A, \) = 0 for A — A is
satisfied. With the comparison lemma from above we infer

b(t) < (AN (e — 1), (29)

which implies the continuous dependence of the solution on the parameter
in the C*-norm. Furthermore, the equation £(\, \) = 0 gives us the unique
solvability of the CIP.

4. In order to show the differentiable dependence on the parameter, we con-
sider the difference quotient as in the theory of ordinary differential equa-
tions and observe the limit in the integro-differential-equation. qed

Remarks:

1. The solution of the CIP (23) is constructed by successive approximation

xO(z,y):=0 in Qp,

X0+ (g, ) = //h(&777X(j)(§7n)’xéj),x5f)) d¢dn  in Qgr, (30)

T(z,y)
forj=0,1,2,...

2. Assuming higher regularity of the right-hand side h, we obtain the cor-
responding higher regularity for the solutions. This statement pertains
to the differentiability for the family of solutions with respect to the pa-
rameter A € [A1, A2]. Again one uses the method of difference quotients
indicated in part4 of the proof above.

Theorem 5. Assumptions: Let the quasilinear differential equation
0= a(xa Y, C(I, y), Ca (ac, y), Cy (‘Tv y))Cm + 2b(- . )Cﬂcy + C(- . )ny
+d($,y»C($»y)aCz(ZE»y),Cy(iU»y)) =0 in {2

with the coefficients

(31)

a=alz,y,2,0,q),...,d=dxy 2pq) € C*(2 xR xR xR,R)
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be given, where £2 C R? is an open set. We consider a regular curve
I': x=x(), y=yt), telto—T,to+T], in 2

with the height function f = f(t) € C*([to — T,to + T],R) and the prescribed
derivative g = g(t) € C*([to — T, to + T],R) in the direction of its normal

1
v=u(t) = \/x’(t)2 IO (

The differential equation (31) is hyperbolic along this stripe, which means

—y'(t),2' (1))

a(t)e(t) —b(t)> <0 forall t€[to—T,to+T).
Here we have set a(t) := a(x(t),y(t), f(t),p(t), q(t)) etc. with

@' (6)f/(t) = V' (62 +y' (8)2 (D))

p(t) = 2! ()2 + y/ (1) )
q(t) = Y () F(8) + /2 (8)2 +y' ()2 2 (£)g (1)
' z'(1)? +y'(t)? '

Finally, the curve I' with respect to this stripe shall represent a noncharacter-
istic curve for the differential equation (31), which means

c(t)x'(t)* = 2b(t) ' (t)y' (t) +a(t)y' ()2 A0  forall t€[to— T, to+T).

Statement: Then we have a neighborhood © = O(x°,y°) of the point
(2°,9°) == (2(to),y(to)) and a function ¢ = ((z,y) € C*(O), which solves
the Cauchy initial value problem

Calt)0) = F1), ) Cald)y(®) = o)) on I'N6.
(32)
Here 6’?} denotes the derivative in the direction of the normal v to the curve
I'. The solution of (32) is uniquely determined.

Remark: We can locally supplement the prescribed noncharacteristic stripe
{I, f, g} to a solution of the given differential equation.

Proof: With the aid of §3, Theorem 3 we introduce characteristic parameters
(&,7n) into the differential equation (31). Differentiating the first-order system
once, we obtain a system of the form

YSn(f»ﬁ) = h(§7n7y(€a77)7YS(§777)’y77(€a77))' (33)

On account of a,b,c,d € C? the function h belongs to the class C' with
respect to y,ye¢,yy. From the Cauchy data
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we calculate the initial values for y. Since & =const and 1 =const are the
characteristic curves, we can transfer the noncharacteristic curve I into the
secondary diagonal £ +n = 0 by the transformation

§=(§),n— Y(n).

With the aid of Theorem 1 we make the transition to homogeneous initial val-
ues, and we solve the CIP for the system (33) by Theorem 4. Via resubstitution
we obtain a solution of the CIP (32) (compare the proof of §3, Theorem 3).
The uniqueness follows from the corresponding statement for the system (33).

q.e.d.

85 Riemann’s integration method

In this paragraph we shall investigate linear hyperbolic differential equations.
Though we established only local solvability in Theorem 5 of § 4, we now shall
prove global solvability of the linear Cauchy initial value problem. For the
convenience of the reader we supply the preparatory

Proposition 1. (Comparison lemma)
The continuous function f : [ — h,& + h] — [0,+00) satisfies the integral
inequality

x

f(x)gA/(f(t)+s)|dt| for all z€[§—h,&+ h]
§

with the constants A > 0 and € > 0. Then we have the estimate
0< f(z) < s(eA‘m_f‘ -1)= si Ak|x —&k
- - £ k!
=1

for all z € [£ — h, &+ h).

Proof: We set M := max{f(xz) : £ —h <z <&+ h} and show via complete
induction

"L Ak . A" .
fla)y<ed T lo—gf + M g wele—hE+h).
k=1

From the integral inequality we deduce

flx) < MAlz — &+ cAlz — ¢ for all = €[§—h,&+ A,
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such that the case n = 1 is established. If the estimate above is valid for a
number n € N, we then find

ﬂ@ﬁaﬂw—ﬂ+A/f@Wﬂ

<€A|x—§|+A/{ |x—§|k+M |:v—§|”}|dt|
k+ An+1
k+1 n+1
—5A|:c—£|+az by |7 ST e =g
"H'l n+1

752 k! |x7€|k ( )'|I7§|n+1'

We observe A o
i (Al =0
n—o00 (n+1)!

and the limit procedure in the estimate above yields

o Ak
x) < EZ i' lx —&F = s(eAlw_gl -1).
k=1

q.e.d.

Theorem 1. Let the functions f = f(t) € CZ(R) and g = g(t) € C}(R) be
given. Furthermore, the coefficient functions a = a(z,y), b = b(z,y), ¢ =
c(z,y), d = d(z,y) belong to the class CL(R?). Then the Cauchy initial value
problem

Uy (2, y) + aug (2,y) + buy(2,y) + cu(z,y) = d(z,y)  in R?

B) (1)

u(z, —z) = f(x), 8Vu(gc, —x) = g(x) for zeR

possesses exactly one solution. Here the symbol 6’?} again denotes the derivative
in the direction of the normal v = \/2(1 1).

Proof: We write the differential equation in the form
Ugy = M(Z, Y, Uy Uy, uy) 1= d(x,y) — alz, y)uy — bz, y)uy — c(x, y)u.

Here the right-hand side h globally satisfies a Lipschitz condition as in §4,
formula (17), with the Lipschitz constant L € [0, +00). We consider a solution
u = u(z,y) existing in a neighborhood of the secondary diagonal x + y = 0,
and we investigate the function
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¢(t) = max

(. ) = 0l ), w (@, 9) = v, ), w2, 9) — vy (2,9))|

with
’U(I, y) = I(O)|(m,y)

Here I denotes the integro-differential-operator defined in §4, formula (18).
From Theorem 3 in §4 we infer the differential inequality

¢
¢(t)§L/(2+T)(¢(T)+K)dT forall 0<t<T <400
0

with a constant K > 0. Proposition1 gives us the estimate
o(t) < K(eL(QJrT)t — 1) forall 0<t<T < +o0
and consequently
O(T) < K(eXHDT 1) for 0<T < +oc. (2)

Therefore, the solution of the Cauchy initial value problem remains bounded
in the C'-norm, and the procedure of successive approximation yields a global
solution on R2.

q.e.d.

We shall now prove an integral representation for the solution of Cauchy’s
initial value problem (1). This Riemannian integration method corresponds to
the representation for solutions of Poisson’s equation with the aid of Green’s
function. Together with the linear differential operator

Lu(z,y) = uay(2,y) + a(, y)ua(z,y) + bz, y)uy (2,y) + c(z, y)u(z,y) (3)
we consider the adjoint differential operator
Mu(z,y) := vay (2, y) = [a(z, y)v(z, y)|. = [b(z, y)v(z, )]y +c(z, y)v(z,y). (4)

The operators £ and M coincide if and only if a = 0 = b is satisfied.
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Proposition 2. We have
vLu —uMv = (—vyu+ auv)y + (vug + bou),. (5)
Proof: We calculate
v LU = Vugy + avug + bvuy + cvu
= (VUg)y — Vyls + (avu)y; — (av)zu + (bvu)y, — (bv)yu + cvu

= (vug + bvu)y + (—vyu + avu)g + wUgy — u(av)y — u(bv)y + ucv

= (vug + bvu)y + (—vyu + avu), + u Mo.
q.e.d.

Let the closed, regular arc I' C R? be given, which represents a noncharac-
teristic curve for the differential equation (1). This means, the arc I" never
appears parallel to the coordinate axes. Therefore, we can find a continuous,
strictly monotonic function ¢ = ¢(x) : [x1, 2] — R such that

F:{(z,y)ER2 Dy =), 11 SxS:z:Q}
= {(I,y)€R2 ra =97 (Y), v SySyl}

holds true with y1 = ¢(x1) and y2 = @(x2). (Without loss of generality we
assume yo < y1.) Furthermore, P = (z,y) & I represents a fixed point in the
square [z1, Z2] X [y2, y1] above the arc I', that means y > ¢(x). Then we define
the characteristic triangle

T(,y) = {(&m) €R? : ¢(2) < @) <n<y}.
Furthermore, we use the abbreviation
I'(z,y) :=I'NIT(z,y).

Finally, v = (v1,v2) denotes the exterior normal to T'(x,y), and we set A :=
(0 M (y) ), B = (z,¢(x) € I

With the aid of the Gaussian integral theorem we integrate (5) over the tri-
angle T'(x,y) and obtain
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//(vﬁu—qu)} dé dn
(&m)
T (z,y)

{(fvyu + auv)vy + (vug + bUU)VQ} do
T (z,y)

— / {(fvyu + auv)vy + (vug + bvu)VQ} do

AB

+ /(fvy + av)udn + /(uz + bu)v dé

BP PA

= / {(—Uyu + auv)vy + (vu, + bvu)ug} do

AB

+ /(—vy + av)udn + /(—vw + bv)udE + /(uv)m d¢
BP PA PA
= / {(fvyu + auv)vy + (vug + bUU)VQ} do

—~

AB

+ /(fvy + av)u dn + /(fvx + bv)udé
BP PA
—u(P)v(P) + u(A)v(A).
Here AB = I (x,y) denotes the positive-oriented arc from A to B on the
boundary of T'(x,y) between the points A and B.

Definition 1. The function v(§,n) =: R(§,n;x,y) is called Riemannian func-
tion if the following conditions are fulfilled:

1. The function v satisfies the differential equation Mv =0 in T(x,y).
2. We have v(z,y) = R(z,y;x,y) = 1.

—~

3. Along the arc BP we have —vy, + av = 0, and therefore

v(z,n) = exp{/a(w,t) dt}.

4. Along the arc Ig\A we have —v; + bv = 0, and therefore

1S
v(&,y) = exp { /b(t,y) dt}.
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If we can find a Riemannian function, we have the following

Theorem 2. (Riemannian integration method)

A solution of the hyperbolic differential equation Lu(E,n) = h(&,n) can be
represented by the Cauchy data with the aid of the Riemannian function
R(&,m;x,y) as follows: For the point P = (x,y) we have

u(P) = u(A)R(A; P) - / / R(&, s PYh(E,m) d€ di
T(z,y)
(6)

+ / {( — R, (&,n; P)u(&,n) + auR)ul + (Rug + bRu)ug} do.

I'(z,y)

Remark: The problem remains to construct a Riemannian function.

86 Bernstein’s analyticity theorem

On the unit disc B := {(u,v) : u? +v? < 1} we consider a solution

x = x(u,v) = (z1(u,v),...,2,(u,v)) : B—R" € C*(B,R") (1)
of the quasilinear elliptic system

Ax(u,v) = F(u, v, x(u, v), Xy (u, v), Xy (u,v)), (u,v) € B. (2)

In an open neighborhood @ C R2*3” of the surface
F = {(u,v,x(u,v),xu(u,v),xv(u,v)) : (u,v) € B}

the function
F:0—R" is assumed real-analytic. (3)

At each point z € O we can locally expand the function F with 2 + 3n
variables into a power series whose coefficients belong to R™. This series also
converges in the complex variables w,v,21,...,2n,P1,--+>Pn>q1,--->qn € C.
This enables us to continue the right-hand side of (2) onto an open set O in
C2*3" with F C O. Then we obtain

F =F(U,0, 21,y Zn, D1y s Py Qs+ - -5 Gn) - O — C* € CHO,C")  (4)

without relabeling our function. Then F satisfies the 2 + 3n Cauchy-Riemann
equations

F,=F,=F, =..=F, =F5z=...=F, =F, =...=F,, =0 (5)

in O. With the assumptions (3) or equivalently (4)-(5), we shall show that
a solution (1) of (2) is real-analytic on the disc B. Then we have an open
neighborhood B C C? of B such that the following function extended to B
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x(u,v) = (21 (u,v), ..., zn(u,v)) : B—C" € C*(B,C") (6)

satisfies the Cauchy-Riemann equations

aauxj(u,v)EOE aavxj(u,v), (u,v) € B, for j=1,...,n (7)

or equivalently
Xy = (T1 sy Tnw) =0= (10,0, Tnw) =1 Xy in B. (8)

With the aid of ideas from H. Lewy, we shall analytically extend the solution
(1) of (2) from B onto B. This is achieved by solving initial value problems for
nonlinear hyperbolic differential equations with two variables. Starting from
an extension into the variables (u,v) = (a + 3,7y + id) € B for the moment,
the system (2) appears in the form

Xaa (U, V) + Xyy (4, v) = Fu, v, %, X4 (4, v), %, (u,v)) in B. 9)
We can write the Cauchy-Riemann equations as follows:
xg(u, v) = iXq(u,v) in B (10)

and
xs(u,v) = ixy(u,v) in B. (11)

These imply the Laplace equations
Xaa (U, V) +xg5(u,v) =0 in B (12)

and
Xy (U, v) + x55(u,v) =0 in B. (13)

Inserting (12) and (10) into (9) we obtain

—x33(u, V) + Xy (u,v) = F(u,v,x, —ixg,Xy) in B. (14)
From (13), (11), and (9) we infer

Xaa (U, V) — Xss(u, v) = F(u,v,X,Xq, —iXs) in B. (15)

Now we solve initial value problems for the hyperbolic equations (14) and (15)
with initial velocities given by (10) and (11), respectively.

We thus obtain the

Theorem 1. (Analyticity theorem of S. Bernstein)

Let the solution x = x(u,v) of the p.d.e. problem (1)-(2) be given with the
real-analytic right-hand side (3) or equivalently (4)-(5). Then the function x
1s real-analytic in B.
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Proof (H. Lewy):
1. Using the notations from above, we start with a solution x = x(a,7) :
B — R" € C3(B,R") for the system of differential equations
Xaa(av’Y) + X’Y'Y(av’Y) = F(O[,")/,X, Xa(av’Y)?XV(a?’Y)) iIl B (16)
We consider the Cauchy initial value problem
_xﬁﬁ(aaﬁaﬂy) +X~w(0<»ﬁ>’7) = F(a7/67’7axv —Z.Xﬁ,XV) in Bla
x(,0,7) =x(a,y)  in B, (17)
xg(e, 0,7) = ixq(a,7) in B
with the parameter o. Here B’ C R? denotes a suitable open set satisfying
B c B'. According to §4, the problem (17) possesses a locally unique
solution x = x(a, 8,7), since the characteristic curves of the differential
equation point out of B. We emphasize the differentiable dependence of
the solution from the parameter a. We now define u := o+ 3. Taking the

Remark 2 following Theorem 4 from §4 into consideration, we can apply
the operator

9 _ 1( 0 i 0 )
ou 2\0a T 'op
to the differential equation in (17). For the function
y(avﬂvv) = (%(%ﬂv’ﬂa s 7yn(a7ﬂ7’y)) = X’U«(avﬂv’)/)

we obtain the system of differential equations

—yaple, B,7) + vy (0, B,7) = Z {Fijj —iFp 8+ qu-yj,v} in B'.

j=1
(18)
Noting (17) we comprehend
1 .
¥(@,0,7) =, (xal@,0,7) + ixg(a,0,7))
(19)
1 . .
=, (xa(a, ) + iixa (e, 7)) =0 in B.

Furthermore, we observe (17) and (16) and calculate

1 .
Yﬁ(aa Ov’y) = 2 (Xaﬁ(av Oa ’7) + Zxﬁﬁ(aa Ov’y))

1
= 9 (Xaﬁ(a7 0, PY) + Z.XV’Y(a’ O?V) - iF(av 0, YV X Xay X'y))

B ;(xag(oz, O, ")/) - ixaa(av’Y))

10

= 5 9 (xf;(a,(),'y) —Zxa(a,'y)) =0 in B,
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and consequently
yvp(e,0,7) =0 in B. (20)

The homogeneous Cauchy initial value problem (18)-(20) is uniquely solv-
able by y(a, 3,7) =0 in B’, and we see

xy(a, B,7) =0 in B. (21)

. We now extend x from B’ onto B C C2. In this context we solve the
Cauchy initial value problem

Xaa(a367776) _X(56(a7/67’7a§) :F(a7/67’7a§7xax(¥7_ix5) in Ba
x(e, 3,7,0) =x(o, B,7)  in B,

x5(a, 8,7,0) = ixy(a, 5,7) in B.
(22)
The solution depends differentiably on the parameters 3,-, and higher
regularity follows as in §4. At first, we consider the function

Y(a367776) = (yl(a7/6>’7a§)7'-'7yn(a7/67’7a§)) = Xu(a7/67’7a§)-

On account of (22), this function satisfies the hyperbolic system

Yaa (Oé, /67’7a 6) - Y66(04» /67’7a 6) = Z {szy_] + ijyj,ot - Z.quyj,(s} in B.

j=1
(23)
Due to (21) we have the initial conditions
1
ya7/67’y70 = Xa a?ﬁ?’Y?O +ix a?ﬁ?’Y?O
(@850 = (ol B30 Fixs(a B 0)
:Xu(avﬁvv):() in B
and 1
ys(a, B,7,0) = 2(XO¢5(O‘757770) +ixgs(a, 8,7,0))
) .
= 9 (Xa'y (o, B, ) + X3y (cv, B, ’Y)) (25)
—igx(aﬁ )=0 in B
- (97 U ) 77 - .
From (23)-(25) we deduce y(«, 5,7,9) = 0 in B and consequently
xyu(, 3,7,0) =0 in B. (26)

Finally, we investigate the function

Z(a763776) = (21((1,6,’}/,6),... >Zn(a367776)) = Xv(a363776)
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and infer the following system of differential equations from (22):

n

Zaa(aaﬂv'y; ) - 255 @ 5777 Z {szzj + ijzj>0¢ - Z.F‘Ijzj»‘;} in B.

(27)

For the function z we determine the initial conditions

(0,8,7,0) = 5 (%, 5,7,0) + ixs (@ 5,7, 0))

1

=, (x.y(a,ﬂ, v) +dixy (e, B, 7)) =0 in B

(28)

and
1 .
Z5(CY, Ba v O) = 2 (Xvﬁ(aa Ba v O) + ZX&;(O&, ﬁf% 0))

1 . .
= (X’y(;(avﬂ?’)/v 0) + /ana(avﬂ7’yv 0) - ZF(avﬂv’Yv O,X, XOHX’)’))

2
1 .
= 9 (X'y5(a7 57’% 0) - ZXW”Y(aa Ba 7))
01 . . /
:872()(5(057&7770)7Zx7(057ﬂ77)):O mn Bv
(29)
using (22) and (16). The equation (16) remains valid in B’ due to (21).
From (27)-(29) we infer z(a, 8,7,d) = 0 in B and finally

xy(a, 8,7,6) =0 in B. (30)

Consequently, we have extended the solution x = x(«,7) of (16) to a
function x = x(«, 8,7, d) : B — C™, which is holomorphic in the variables
u=a+i3 and v = v+ id on account of (26) and (30). Therefore, the
function

X(Oz, ’Y) = X<a7 By, §)|ﬁ:5:0

is real-analytic in « and ~. q.e.d.

The theorems about holomorphic mappings necessary for the next proof are
contained in the beautiful book [GF] of H.Grauert and K. Fritzsche, especially
in Chapter I, §6 and §7.

Theorem 2. On the open set 2 C R? let us consider a solution z = ((z,y) €
C3(2,R) of the nonparametric H-surface equation

M((z,y) == (1+ <y2)<xx(xay) - 2<nyny(x,y) +(1+ Cﬁ)(yy(fﬂ,y)

. (31)
= 2H(z,y,C(z,9)) (1 + |[V((z,y)*)  in 2.
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The mean curvature H = H(x,y,z) is assumed real-analytic in a three-
dimensional open neighborhood of the surface

Fi={(wy.C@y) @@y €.
Then the solution z = ((x,y) : 2 — R is real-analytic in 2.

Proof: We choose the point (2°,9°) € 2 arbitrarily and determine r > 0 such
that the corresponding disc satisfies

B, (2°,¢%) := {(a:,y) eR?: (2 -2+ (y -y < T2} ccC .
We consider the C2-metric
ds® = (14 () da® + 20 Cy dudy + (14 ¢ dy®  in Bu(2%y°)
and introduce isothermal parameters via the diffeomorphic mapping
fu,v) = (x(u,v),y(u,v)) : B— B,(2°,9°) € C*(B).
The function
x(u,v) = (f(u,v), 2(u,v)) € C*(B,R?) (32)

with
z(u,v) == (o f(u,v), (u,v) € B

satisfies Rellich’s system
Ax(u,v) = 2H (x(u,v)) Xy A Xy (1, v) in B. (33)

According to Theorem 1, the function x is real-analytic in B and the mapping
[ : B — B.(2°,y") as well. Since J(u,v) # 0 in B holds true, also the inverse
mapping f~1: B.(z°,94°) — B is real-analytic. Consequently, the function

Clwy) =z0fwy),  (2,) € Br(a"y”), (34)

is real-analytic in B,(x°,y°). This holds true in §2 as well, since the point

(2°,4°) € £2 has been chosen arbitrarily. qed.

Remarks:

1. The introduction of conformal parameters by the uniformization theorem
(see Chapter XII, §8) can be achieved by various proofs: A continuity
method is presented in the paper by

F. Sauvigny: Introduction of isothermal parameters into a Riemannian
metric by the continuity method. Analysis 19 (1999), 235-243.

A variational method is applied by the authors

S. Hildebrandt, H. von der Mosel: On Lichtenstein’s theorem about
globally conformal mappings. Calc. Var. 23 (2005), 415-424.
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2. For arbitrary quasilinear, real-analytic, elliptic differential equations in
two variables, F. Miiller has proved the Bernstein analyticity theorem by
the uniformization method used in Theorem 2. In this context we refer the
reader to:

F. Miiller: — On the continuation of solutions for elliptic equations in
two variables.Ann. Inst. H. Poincaré - AN 19 (2002), 745-776.

— Analyticity of solutions for semilinear elliptic systems of second
order.Calc. Var. and PDE 15 (2002), 257-288.

3. Finally, the reader should consider Hans Lewy’s original treatise:

H. Lewy: Neuer Beweis des analytischen Charakters der Ldésungen el-
liptischer Differentialgleichungen. Math. Annalen 101 (1929), 609-619.

87 Some historical notices to Chapter XI

The Bernstein analyticity theorem represents the first regularity result in
the theory of partial differential equations. This question was proposed by
D. Hilbert to S.Bernstein, who solved this problem by intricate methods in
1904.

K. Friedrichs and H.Lewy treated the initial value problem for hyperbolic
equations in 1927. Their method of successive approximations, which is nowa-
days established via Banach’s fixed point theorem, has been invented already
by E.Picard. Two years later in 1929, H. Lewy ingeniously built the bridge
from hyperbolic to elliptic equations with his approach to Bernstein’s analyt-
icity theorem. We would like to mention that H. Lewy attended lectures of
J. Hadamard (1865-1963) during his research visit to Paris in 1930.

In his wonderful book Partial Differential Equations, P. Garabedian observed
that Lewy’s proof is substantially simplified when the principal part of the
equation reduces to the Laplacian. With the uniformization theorem for non-
analytic Riemannian metrics, we present the decisive tool to investigate arbi-
trary elliptic equations in the next chapter.
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PORTRAIT OF H. LEwY (1904-1988);
taken from the biography by C. Reid: Courant, in Géttingen and New York —
An Album, Springer-Verlag, Berlin... (1976).

PORTRAIT OF F. RELLICH (1906-1955); taken from the biography above.




XII

Nonlinear Elliptic Systems

We present a maximum principle of W. Jéger for the H-surface system in § 1.
Then we prove the fundamental gradient estimate of E. Heinz for nonlinear el-
liptic systems of differential equations in §2. Global estimates are established
in § 3. In combination with the Leray-Schauder degree of mapping, we deduce
an existence theorem for nonlinear elliptic systems in §4 . Specialized to the
system Ax = 2Hx, A X, discovered by F.Rellich, this result was proved by
E. Heinz already in 1954. In §5 we derive an inner distortion estimate for
plane nonlinear elliptic systems, which implies a curvature estimate presented
in §6. In the next sections §§ 7-8 we introduce conformal parameters into a
Riemannian metric and establish a priori estimates up to the boundary in this
context. We explain the uniformization method for quasilinear elliptic differ-
ential equations in §9 and solve the Dirichlet problem for the nonparametric
equation of prescribed mean curvature. Finally, we provide an introduction to
Plateau’s problem for surfaces of constant mean curvature in § 10.

81 Maximum principles for the H-surface system

Let B:={w=u+iv € C : |w| <1} denote the unit disc. We prescribe the
function
H=H(w,x): BxR*—R e C’BxR3R) (1)
with the bounds
|H (w,x)| < ho, [H(w,x) = H(w,y)| < hilx—y|
forall we B, x,ycR?

(2)

and consider Rellich’s H-surface system

x = x(u,v) € C?(B,R3) N C°(B,R?),
Ax(u,v) = 2H (w, x(w)) Xy A Xy, w € B.
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If a solution of (3) additionally satisfies the relations
Ixu|? = [%0]%, Xy %X, =0 in B,

which means x represents a conformally parametrized surface, then x pos-
sesses the prescribed mean curvature H = H(w,x(w)). We now start with
two suitable solutions x,y of (3), consider the difference function z(w) :=
x(w) —y(w), w € B and deduce an inequality of the form
sup [2(w)| < Clho, ha,..) sup |a(w)]. (1)
weB wedB
The latter implies unique solvability of the Dirichlet problem for (3) and its

stability with respect to perturbations of the boundary values in the C°-
topology.

The special case H = 0: Let the two solutions x,y of the system (3)
with H = 0 be given. Then their difference z(u,v) = x(u,v) — y(u,v) €
C?(B) N C°(B) is a harmonic function as well. We consider the auxiliary
function

fu,v) = |z(u,v)|* = z(u,v) - z(u,v) = z(u,v)?, (u,v) € B, (5)
and calculate
Af(u,v) =V -Vf(u,v)=V-V(z-2)
=2V(z-Vz) =2(|Vz|* + z - Az)
= 2|Vz(u,v)]* >0 in B.

Here we used V = (6%, aav) and abbreviated z- Vz = (z- 24,2 2,) € R? . The
maximum principle for subharmonic functions yields

sup |z(w)| < sup |z(w)]. (6)
weB wedB

In the general case H # 0, we start with two solutions x,y of (3) and consider
the difference function z(u,v) = x(u,v) — y(u,v). Then we introduce the
weighted distance function of W. Jdger

s (s(xw o) + ol o)} @

F(u,v) := |z(u,v)[* exp {
for w = u + iv € B. Here, the symbol
¢ =¢(t) : [0, M?) — R € C*([0, M?)) (8)

denotes an auxiliary function still to be determined - with an appropriate
quantity M > 0. With the distance function (7) we obviously can consider
only small solutions satisfying
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[x(u,v)] < M, |y(u,v)]<M  forall w=u+iveB. 9)

Now we shall determine ¢ in such a way that F' fulfills a differential inequality
subject to the maximum principle. At first, we note that

Vb (06 +6(y?) — o1 (6(x)+6(y?) {¢’(x2)(x Vx) + ¢ (y2)(y - vy)}, (10)
and we calculate
VF = 30000 {9 (22) 4 226/ () (x - Vx) + ¢/ (v3)(y - V)| }
and consequently
e HOCDHNITE = 9(22) + 22| () (x - V%) + ¢ (vP)(y - Ty)] . (11)
Applying the operator V to this identity we obtain the subsequent

Proposition 1. The function F(u,v) defined in (7) satisfies the following
differential equation in B:

LF = (eféw(x%w(y%)Fn) i (67;<¢<x2>+¢<y2>>pv)

= A + 2 [H AR + 6 () A7)
+222 ¢/ (x%)(x - V%) + 0 (v*)(y - Vy)?]
+2(z- V2) - [¢/ () (x - VX) + ¢/ (y?)(y - V)]

We intend to choose ¢ in such a way that LF > 0 in B holds true. At first,
we note that
| Ax| < 2[H| [xy A x| < ho|Vx[?

and obtain
A(x?) = 2(|Vx]? + x - Ax) > 2(|Vx[* — |x]|Ax])
> 2|Vx[*(1 — holx]),
(12)
A(y?) =2(|Vy|? +y - Ay) > 2(|Vy|* — |y||Ay])
>2|VyP(1—holy) in B

Proposition 2. For all w € B := {{ € B | |2({)| # 0} we have

VA 2
Az —2( al’ Vz) > —(hg + )l Vx P + [VyP?).
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Proof: We evaluate A(z%) = 2(|Vz|?> + z - Az) and estimate as follows:
|z - Az| = |z - (Ax — Ay)| = |z . (2H(w,x)xu AXy —2H(w,y)yu A yv)|
< 2|H(w,x)| |z - (Xy A Xy — Yu AYo)]
+2|H (w,x) — H(w,y)||2| [yu Ayl
< 2ho|(2, Zu, X0) + (2, Yu, 20)| + hal2]*|Vy]®

| A 2, |z Az,

< 2no( ] ol a] + [yl 21) + a2l VyI?

2| 2|

|z Azo|?  |zAz)?

S gp T ol (o [yul®) 4 ha e Vy

1
= VP =l 2)” + (2 2)%)
+hilzl* (%o |* + |yul?) + ha|2]?[Vy[*.
Interchanging x and y we add both inequalities and obtain

2
(z - Vz)* + hi|z[*(|Vx]* + [Vy[?)

2|z - Az| < 2|Vaz|* - e

+halz*(1Vx]* + [Vy]?).

Finally, we arrive at

1
A(2*) > 2, (2 V2)? = (h§ + ha)lz* ([Vx]* + [Vy]?).
|| q.e.d.

We now combine the Propositions 1 and 2 with the formula (12) and deduce
CF 2 { = (W + ) + ¢/ (%) (1 = ho[x]) } 22 Vx/?
z 2
H{ = 08 h) + 6571 oly) a9y +2( 7 V2)

2|

+2va( | Va) I 60 T+ 067y - ) | O

+2022{ 6" (x%) (x - Vx)? + ¢ (y3)(y - Vy)*}
> () ol VX[ + oy e Ty P
P16 V) + vy TP

+2022{ 6" (x%) (x - VX)? + ¢ (y*) (3 - Vy)*}.
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Consequently, we obtain
LF > y(|x])|z]*| Vx[* + ¢(ly])|z]* Vy[*

HaP{(207(2) — 9 0)2) 0 VX + (207 (v) — 9 (v2))y - V)2
(13)
with the auxiliary function

Y(t) = —(h3 + h1) + &' (t*)(1 — hot), t € [0, M). (14)

In formula (13) we additionally required ¢'(t) > 0 for ¢t € [0, M?) ; and we
determine a function ¢(t) : [0, M?) — R € C? such that

S0 > 0 i 0,07
holds true. This is obviously realized by the function
o(t) = —2log(M? —t),  te[0,M?),
with ¢'(t) = 2(M? — )71, ¢"(t) = 2(M? —t)"2 = ;¢’(t)2 for t € [0, M?) .

Inserting this function ¢ and the corresponding function ¢ into (13) we infer

that )
LF > (%)) |2* Vx> +4(ly]) |z* [Vy]*  in B,

(15)
if x| <M, ly|]<M in B
is correct. For all ¢ € [0, M) we now have the estimate
1 — hot
’l/)(t) = 7(h(2) + hl) + 2M2 42
h3 + hy o L9 1 — hot
= —(M* -t 2
YRR Bl )+ hg + hy
h3 +h h h 2
_ tot 12{{22 0t ()
M _t ho +h1 h0+h1
h2 2
- + - M?
(h§ +h1)* g+ M }
h3 +hy [2(hd + hy) — b3 a2l g
— M?—¢2 (hg + h1)? -
by choosing
VhE + 2hy
= . 16
h3 + hy (16)

We therefore obtain the following
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Theorem 1. (Jager’s maximum principle)
The function H = H(w,x) € C°(B x R®) is subject to the inequalities (2),
and by x = x(u,v), y = y(u,v) we denote two solutions of the H-surface
system (3). We now define

|X(ua U) - Y(ua U)|2

LY = (02— p(a, )2) (M2 — [y, 0)2)°

(u,v) € B. (17)

Here, we assume |x(u,v)| < M, |y(u,v)] <M for all (u,v) € B with

VR +2h
 h2+h

Statement: Then the function I satisfies the linear elliptic differential in-
equality

LF = {02 = )2 = [y )R+ {2 = i) (M2 = y )R}

Y

0 m B.

Theorem 2. (Geometric maximum principle of E. Heinz)
Let the function x(u,v) = (21(u,v), ..., z,(u,v)) : B— R" € C?*(B)NC°(B)
denote a solution of the differential inequality

| Ax(u,v)| < a|Vx(u,v)|?, (u,v) € B. (18)
The smallness condition
[x(u,v)] < M, (u,v) € B, (19)
may be fulfilled, and we have
aM <1 for the constants a € [0,+00), M € (0,400). (20)
Statement: Then we infer

sup [x(u,v)| < sup |x(u,v)].
(u,v)€B (u,v)€EOB

Proof: The auxiliary function f(u,v) := |x(u,v)[?, (u,v) € B, satisfies the
differential inequality

Af(u,v) = 2(|Vx(u, v))? + x(u,v) - Ax(u, v))
> 2(|Vx(u,v)|2 ~Ix(u, )| |Ax(u,v)|)
> 2(1Vx(u,0)? = alx(u,v)] [Vx(u,v) )

> 2|Vx(u,v)*(1 —aM) > 0 in B.
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The maximum principle for subharmonic functions yields the statement above.
q.e.d.

Remarks:

1. If |x(u,v)| # M on B is valid, we deduce |x(u,v)| < M for all (u,v) € B.
2. Theorem 2 holds true especially for solutions of the H-surface system (3)
with a = ho.

Theorem 3. (Jager’s estimate)
The function H = H(w,x) satisfies (1) and (2), and we set

Ao VhE+2h
o h% + hq '

Furthermore, the symbols x and y denote two solutions of the H-surface sys-
tem (8) such that

|x(u,v)| < M, |y(u,v)]| <M for all (u,v) € B. (21)

Additionally, we require ||x||coppy := sup [x(w)| < M and ||y||coppy < M.
wedB
Statement: Then we have the inequality

[x(w) —y(w)[? l[x — Y||200(6B)
(M2 — |x(w)[*)(M? — [y(w)[?) = (M2~ ||X||200(53)>(M2 - HY||200(83))
(22)
for all w € B.

Proof: We shall apply the geometric maximum principle of E. Heinz to the
functions x and y with a = hg. In this context we note that aM < 1 is valid
if and only if
h3(h3 + 2hy)
(h§ + h1)?

or equivalently hg + 2h2h1 < h§ + 2hZhi + h3 is correct - and the latter
inequality is evidently fulfilled. Therefore, Theorem 2 yields

<1

[%llcopy < IXllcoosy <M and  |lyllcop) < [¥llco@n) < M.

We apply E. Hopf’s maximum principle to the auxiliary function F(u,v) from

Theorem 1 and obtain (22). qed

Corollary: In addition to the assumptions of Theorem 3 let the inequalities
Ixllco@p) <M <M and  |ly|loo@n) < M' <M

be satisfied. Then we have a constant k = k(M, M’) > 0, such that
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% = ¥llcos) < kM, M)|[x = yllco@s)- (23)

Remark: In the original paper of

W. Jager: Fin Mazimumprinzip fur ein System nichtlinearer Differential-
gleichungen.Nachr. Akad. Wiss. Gottingen, II. Math. Phys. K1. (1976), 157-
164

a maximum principle is derived even for systems of the form

under structural conditions for the right-hand side. Specialized to the H-
surface system, we obtain a quantitatively weaker statement.

82 Gradient estimates for nonlinear elliptic systems

We take a domain 2 C R? and consider solutions
x = x(u,v) = (21(u,v), ..., 2,(u,v)) € C3(,R")NC°(2,R") (1)
of the differential inequality
|Ax(u,v)| < a|Vx(u,v)]* +b  forall (u,v) € 2 (2)
with the constants a,b € [0, +00). We require the smallness condition
[x(u,v)| < M for all (u,v) € 2 (3)
for the solution of (1), (2) with the constant M € (0, +0o0).

Remark: The H-surface system, linear systems as well as the Poisson equation
are covered by the differential inequality (2).

Now we shall estimate the quantity |Vx(u,v)| from above, in the interior of
{2 and on the boundary - with respect to adequate boundary conditions.

Proposition 1. Let x = x(u, v) denote a solution of (1)-(3). Then the func-
tion f(u,v) = |[x(u,v)|? in 2 satisfies the differential inequality

Af(u,v) > 2(1 — aM)|Vx(u,v)|* — 2bM, (u,v) € £2. (4)

Proof: At first, we have Af(u,v) = 2(|Vx(u,v)|* + x - Ax(u,v)) in 2. Fur-
thermore, the relation (2) yields the inequality

Ix - Ax(u,v)| < aM|Vx(u,v)> + bM in £

)

and we infer (4). q.e.d.



82 Gradient estimates for nonlinear elliptic systems 313

Proposition 2. (Inner energy estimate)

Let the condition aM < 1 be satisfied and ¥ € (0,1) be chosen. Furthermore,
the disc Br(wp) :={w € C : |w— wo| < R} with the center wy € 2 and the
radius R > 0 fulfills the inclusion Br(wg) C §2. Then all solutions of (1)-(3)
satisfy the inequality

//|quv| du dv

By r(wo) (5)
1 2w M . Ix(w) (wo)| + wbM R?
u x(w) — x(w

~— —log¥ |1 —aM wean(wo) 0 2(1 —aM)

Proof: According to Theorem 3 from Chapter V, §2 arbitrary functions ¢ €
C?(2) N C°(N2) satisfy the identity

1
= 1 .
o(wo) 9r R / ¢(w) do(w // og B w0|>A¢(w) du dv
aBR(wo) BR('WO)
(6)
Inserting ¢(w) = |w — wo|? = (u — up)* + (v — v9)?, w € R? we obtain

1 R
0=R?-— 1 4dud
2m //( og|w—w0|) wav

Br(wo)

and consequently

R TR?
1 dudv = . 7
// 08 1y - =T (7)

Inserting ¢ = f(u,v) = |x(u,v)|? into (6), Proposition 1 yields

oM R bM R?
Wa //(1og |w—w0|)|vx(u’v)|2d1ﬁdv* 5
Br(wo)
R

= //(log |w—w0|)Af(u’v)dUdv

Br(wo)
1

" 27R / (f(w) - f(wo)) do(w)
OBR(wo)

= 2;}2 / |x(w) — x(wo)| [x(w) + x(wo)| dor(w)
OBR(wo)

<2M  sup [|x(w) — x(wp)l.
wEHBR(wo)
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This implies the estimate

// (1og |w i%w0|)|VX(u,v)|2 du dv

Br(wo) (8)
2m M . Ix(w) — x(wo)| + wbM R?
< up x(w) — x(w .
1—aM w€EIBR(wo) 0 2(1 - G’M)
The inequality now yields (5). q.e.d.

Proposition 3. (Boundary-energy-estimate)
We have the condition aM < 1 and choose ¥ € (0,1). The disc Br(wq) with
the center wg € R and the radius R > 0 satisfies

Br(wo) N2 = {w € Br(wo) : Imw > O} =: Hp(wp). 9)
We set 0Hr(wo) = Cr(wo) U Ir(wp) with

Cr(wo) = {w € OBp(wo) : Imw >0},
Ir(wo) := [wo — R, wo + RJ.
For all solutions x € CY(82) of (1)-(3) satisfying the boundary condition
x(u,0) =0 for all € Ir(wo)

we have the following estimate

/ |Vx(u,v)|? du dv

Hyr(wo) (10)
1 { M b M R? }

< _
— —log¥ |1 —aM wegg()wo) pe(w) = x(wo)l + 4(1 — aM)

Proof:
1. With the aid of a reflection we continue x as follows:
{x(u,v), w =u+iv € Hp(wp) (1)
x(u, —v), w € Br(wo) \ Hr(wo)
The function %X(u,v) is continuous in Br(wp) and satisfies the differen-
tial inequality (2) in Bgr(wp) \ Ir(wo). However, the function x,(u,v)
may possess jump discontinuities on the interval Ir(wp). We consider the

function
B(u,v) := |[%(u,v)|?, (u,v) € Bgr(wy), (12)

which is subject to the differential inequality (4) in Br(wo) \ Ir(wp).
Furthermore, we deduce
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¢ € C*(Br(wo)) and d(u,0) =0 = ¢p(u,0) in Ig(wp). (13)

We now show that formula (6) is valid for the function ¢ = |%|? as well.
Continuing as in the proof of Proposition 2, we then obtain the relation
(5) for the reflected function %X(w). The estimate (10) finally follows by
means of symmetry arguments.

. Choosing the parameter 0 < € < g¢ sufficiently small, we define the sets

Bf::{we(C: 0<e<|w—w| <R, :I:Imw>0}

and set r := |w —wy| € [0, R]. At the point wy we utilize Green’s function
Ylw) = élu,v) =, log
1 27 Jw — wo (14)
=, (logR—logr),  w € Br(wo)\ {wo}-

With the aid of Green’s formula we calculate

;ﬂ//(log o f%w0|>A¢(u,v)dudv //(L/JAqb*gbAzb)dudv
B

BE

for 0 < € < g9. From the boundary conditions (13) and (14) for ¢ and
we infer the following identity from (15) by addition

g ] (oz ), 2 YAty duao = )1 [ ) dot)

BFuUBZ dBR(wo)

72; / ¢(w)do(w)+217T / (1ogf)8¢;(;”) do (w)

|w—wo|=¢ [w—wo|=€

with 0 < € < g9. On account of ¢ € C*(Bgr(wp)) the transition to the
limit € — 0+ yields

1
S

OBR(wo)

_2171_ // (log » i%w0|)A¢(u,U) du dv.
)

BR(’UJO

P(wo) =

Following part 1 of the proof, we now arrive at the statement above.
q.e.d.
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With the aid of Proposition 2 and 3, we now can estimate the oscillation
of x via the Courant-Lebesgue lemma on selected circular lines. Using the
Wirtinger operators

0 o .0 0 o .0
3w:;(3u_18v 3w:;( Tt )

and —
) ou v
we consider the complex derivative function

y(w) := Xy (w), w € {2. (16)
The differential inequality (2) can be rewritten into the form

A% ()] < dalx, (w)[? +b

or equivalently
1
[y (w)| < aly(w)* + 4b forall w e (2. (17)

By the oscillation inequalities we now shall estimate the Cauchy integral of
the complex derivative function y for solutions of (2).

Proposition 4. Given the assumptions of Proposition 2, each number ¢ €
(0,1) admits a number X = X(¥) € [}, 3] such that the derivative function
y(w) = xy(w) for a solution x(w) of (1)-(3) satisfies the following inequality:

. / yw) | sy/M2+LbMR2
2mi ~ Vlog4y1 —aM Y9y/—logd R
9Bxor(wo) (18)

b
+%9R sup  |y(w)]* + _OR.
2 we€Byr(wo) 8

Proof:

1. Proposition 2 yields the following estimate for arbitrary numbers 9 €

(0,1):
) 2\/M2 b MR?
\V4 du dv < _ 19
//|xuv| w dv \/1qu9 T —ail (19)
By r(wo)

Due to the Courant-Lebesgue oscillation lemma (compare Theorem 3 in

Chapter I, §5) we have a number A = A(J) € [}, 5] satisfying

VM2 UMRE

d < .
ldx(w)] < Viegd /1—aM /—logd

9By r(wo)

(20)
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2. We set B := Byyr(wo) and g := AJR. With the aid of the Gaussian
integral theorem in the complex form (see Chapter IV, §4) we calculate

/ wyiwiio o= / UCJZX—(ZI)O

OB OB
- e [
)
) b e

B
_é(%Z/ a‘?ﬂ{(w—wo)xw(w)}duch))
= 2w unw) duas

B

21
-2 //(w — wo)yw(w) du dv.
B
3. We now estimate as follows:

1 / y(w) dw‘< 1 [ |dx(w)] +ﬂz2 //|w,w0||yw(w)|dudv
B

2mi ) w —wo 21 ) |w—wol
OB oB

1
< o [ lixw) & o5 fyw)
FQBB weEB

2 4r \/M2+§MR2 1
<
~ IR logd 1—aM /—log?

IR , b
+y (asw iyl + )
- ] \/M2+gMR2 1

~ YR \/log4v/1 — aM /—log ¥

b
+29R sup  |y(w)]* + _9R.
2 weByr(w) 8 q.e.d.
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Proposition 5. With the assumptions of Proposition 8 we consider the re-
flected gradient function

2(w) = {ixw(w), w € Hp(wop) . (1)

—ixy(w), w € Br(wy) \ Hr(wo)

This function belongs to the class C°(Bgr(wo)) N CY(Br(wo) \ Ir(wo)) and
satisfies the differential inequality

120 (w)] < alz(w)]? + z forall w € Ba(wo)\ In(wo).  (22)

Furthermore, there exists a number A = N(¥) € [}, 3] for each 9 € (0,1), such
that

1 / z(w) dw’ _ 8\/M2+ébMR2 1 1
2mi = Vlog4y/1 —aM ¥/—log¥ R
dBx9r(wo) (23)

+;19R sup  |z(w)]* + gﬁR.

w€ By r(wo)

Proof:

1. Due to the relation (11) we reflect x(u,v) and obtain the function x(u,v)
satisfying

| A% (u,v)| < a|Vx(u,v)]* +b for all (u,v) € Br(wo) \ Ir(wo). (24)

We observe x,(u,0) = 0 = Imz(u,0) in Ig(wp), and the function defined
in (21) is continuous in Bg(wp). Furthermore, we have

R {xw(w) = —iz(w), w € Hr(wp) 7 (25)

Xy (w) = 1z2(w), w € Br(wp) \ Hr(wo)

and (24) yields the inequality (22). In part 1 of the proof for Proposition
4 we replace x by the function X, and we deduce

[ e VR

<
~ Vlogd  /1—aM /—logd
0By r(wo)

with a suitable A = A(9) € [}, 3]. The Courant-Lebesgue lemma is namely
applicable to the function %, whose derivatives might possess jump dis-
continuities at the interval Ir(wy).

2. We now follow the arguments in part 2 of the proof for Proposition 4, and

we additionally set
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Bt .= {w € Byyr(wp) : tImw > 0},

c* .= {w € OByyr(wp) : £Imw > O}.

The calculation there yields

CZ fu—j(;l]i duw = Z.C/i 5&_(1:)0 = le <CZ (w — wo )iXw (w) dw>. (27)

We observe that the integrand (w — wy)iX, (w), approaching the interval
Ir(wp) from above or from below, is subject to a change of sign, and we

infer
/ Xy (W) dw + / —iXy (W) do — i / dx(w) L / dx(w)
w — Wo w — Wo w — Wy w — Wy

c+ c- c+ c-

-5 f e miom)

OB+

vk (6 B/ (0= w0) (i) ) o
_ ;2 (QZ'B//(w — )i (w) du dv>
+ ;2 (2z' B/ / (10 — 100) (= )% (1) du dv)

__ ;2 //(w — wo) K () dut

B+

n ;2 //(w — w0 )R () du do.
e

Taking (25) into account, we obtain the following estimate:
1 | / z(w) dwl = 1 / Xy (W) dw + / — Xy (W) dw
21 w — Wy 2 w — Wy w — Wy
0By r(wo) c+ c-

1 |dx(w)] 1
< — w du dv.
S50 |w7w0|+m)2//|w wo |2y (w)| du dv
oB B

We now deduce the estimate (23) as in part 3 of the proof for Proposition
4. Therefore, we replace the function y by z and utilize besides (22) the
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oscillation estimate (26). qed

Remark: With adequate assumptions, Proposition 5 remains true for the discs
with centers wg € C and Imwy > 0 satisfying Br(wg) N 2 = {w € Br(wo) :
Imw > 0} . The estimate of Dirichlet’s integral in Proposition 3 remains
correct - in a slightly modified form - also in this situation. We shall use the
Propositions 3 and 5 in the next section, in order to derive a global C'+*-
estimate.

Theorem 1. (Gradient estimate of E. Heinz)
A solution x = x(u,v) of the problem (1)-(3) with aM < 1 is given on the
bounded domain 2 C R%2. We define

O0(w) := dist{w, 002} = inf |(—w|, wen and d := sup d(w).
¢eC\2 we

Then we have a constant C = C(a, M, bd?), such that the inequality
§(w)|Vx(w)| < C(a, M, bd?) forall we R (28)
is satisfied.

Proof:

1. At first, we assume x = x(u,v) € C*(£2,R") and consider the continuous
function

p(w) :==d(w)ly(w)], — we (29)

with y(w) = x4 (w), w € 2. On account of the boundary condition ¢|sp =
0 this function attains its maximum at an interior point wg € (2. Setting
R := §(wp) > 0 we obtain Br(wy) C 2. We apply the Proposition 4: For

an arbitrary number 9 € (0,1) we find a quantity A = A(9) € [}, 3], such
that

1 2 2

rl L / y(w) dw| < c1(a, M, bd*) n bd

2mi w — W 9y/— log 8
0Bxvr(wo) a (30)

+,0R*  sup  |y(w)?
2 w€Byr(wo)

holds true with the constant
1
8y /M2 foMa
Viegdy/1 —aM

On the disc B := Byygr(wo) of radius ¢ := MR € (0, R) we infer the
following integral representation from Theorem 1 in Chapter IV, §5:

c1(a, M, bd?) :
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y(wo) = 1. dudv. (31)
2mi ) w— wo w — Wo

OB

The first integral on the right-hand side of (31) has been estimated in
(30). We introduce polar coordinates and observe (17); then we obtain
the following inequality for the second integral in (31):

du dv| < sup [y (w |// du dv
w — Wo T weB |
R b 1
< (a sup  |y(w)]* + 4>27T219R (32)
T N weByr(wo)

1
<a?¥R?* sup |y(w)|]* +  bd>.
wEByr(wo) 4

. From (29)-(32) we infer
$(wo) = d(wo)ly(wo)| = Rly(wo)|

M, bd? 3 3
< ci(a, M, )—i— bd? + "adR?*  sup  |y(w)[?

19\/— 10g19 8 2 weEByr(wo)
ci(a,M,bd?®) 3 o 3 9 §(w) 2
bd IR
9y —logo 8" T a¢ qwgghw{R—ﬁRW@M}
ci(a, M,bd*>) 3 ., 3a 9 5
+ _bd” + sup  o(w)”.
7‘9\/_ 10g7‘9 8 2 (1 - 19)2 wEByr(wo) ( )
Consequently, we have the inequality
ci(a, M,bd?®) 3 . 3a 9 5
< bd 33
for all ¥ € (0,1).
. Taking ¥ € (0,1) we define
3a 9 . . -
a(d) = 2 (1— )2 >0 with ﬁlir(r)lJra(l?) =0
and
ci(a, M,bd?*) 3 ) .
¥) = bd* >0 th 1 ¥) = .
B() 9y/— log + 8 wi 191}[&5( ) =400

Then we deduce

3acy(a, M, bd?) 9abd??

AWBO) = o1 o/ togw + 1601 - )2

=0, 9—0+.
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Setting ¢ := ¢(wp) we obtain the inequality
a()t* —t+pW) >0  foral o€ (0,1). (34)
We note the equivalent statement

1\ _ 1—4a(®)3(®)
(t — 2@(19)) > Ja()? for all 9 € (0,1). (35)

There now exists a quantity ¥ = ¥o(a, M, bd?) € (0, 1) satisfying

0 < 4a(9)B(0) < i for all 9 € (0, )], (36)
which implies

V1 —4a(9)(0) > ; for all ¥ € (0,3 (37)

When we introduce the functions

1= V1= 4a(0)B(0)

Xi([&) : 2(1('[9) ) NS (05190]5

the relation (35) yields the subsequent alternative for each number ¢ €
(0,%o], namely
t<x (¥ or t>xT (). (38)

Since the functions x~(¢9) < xt(¥9), ¥ € (0,90] depend continuously
on the parameter ¢ in the interval (0,%] and the asymptotic behavior
19111%1 xT(9) = 400 is correct, we infer

—0+

t<x (¢ for all ¥ € (0,9].

This implies
1
t < X_(7‘90) = X_(190(G7M7 bd2)) = 2C(G,M, bd2) (39)
and consequently

sup 6(w)|Vx(w)| = 2 sup 6(w)|y(w)| = 2 sup ¢(w)
we 2 we? wes2

= 2¢(wp) = 2t < C(a, M, bd?).
We thus obtain the desired estimate (28) in the case x € C*(£2,R").

4. Now we assume only the regularity x € C?(£2) N C°(§2). Then we apply
the estimate (28) on the set

QE::{wEQ: dist{w,69}>5} for 0<e<ep
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at first, and we obtain
(6(w) — )| Vx(w)| < C(a, M, bd?*) for all w € . (40)

with an arbitrary parameter 0 < ¢ < gp. The transition to the limit
¢ — 0+ yields

§(w)|Vx(w)| < C(a, M, bd?) for all w € {2. od
q.e.d.

We consider the compact set K C C and introduce the linear space

O (K, R") = {x e CUK,RY :  sup VX)) = Vx(w2)l —l—oo},
wnupek lw1 — wa|*
w1 Fw2

where a € (0, 1) has been chosen. When we endow this space with the C*+-
Hoélder-norm

Vx(w1) — Vx(ws
[l = sup fe(w)] + sup [Vxe(w)] + sup 17XV~ VX2
weK weK w1, weEK |w1 - w2|
w17$w2
(41)
the set C1T%(K,R™) becomes a Banach space. We easily infer the following
result from Theorem 1 above, namely

Theorem 2. (Inner C'*“-estimate)

Let a solution x = x(u,v) of (1)-(8) with aM < 1 be given on the bounded
domain 2 C R%2. We choose an arbitrary number ¢ > 0 and consider the
compact set

K, = {w € dist{w,002} > 5},

and additionally we fiz the exponent o € (0,1). Then we have a constant
C=C(a,M,b,d,e,a) € (0,400), such that

Ix[|criex.) < Cla, M,b,d, e, ). (42)
Proof: At first, we infer the inequality

sup |x(w)] <M
weK.

from (3), and Theorem 1 yields the gradient estimate

2C (a, M, bd?)

V() < =

forall weK:. (43)

For all points wg € K. we have the representation

1 Xy (W) Xy (W
Xy (W) = i / w w* // w—w. dudv w, € Be (wo)

BBg (wo) Be (wo)
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according to Theorem 1 in Chapter IV, §5. On account of (43) the first pa-
rameter integral satisfies a Lipschitz condition in the disc B<(wo), with a
Lipschitz constant depending on a, M, bd?, . Furthermore, the relation (43)
implies

Sup |Xuw(w)| < Ci(a, M, b,d,e) < +00

wGKi

We apply Hadamard’s estimate (compare Theorem 7 in Chapter IV, §4) to the
second parameter integral in B-(wo) and get a Hélder condition depending
on a, M,b,d, e, «. Therefore, the relation (44) yields the inequality

|xy (w1) — Xy (w2)| < Ca(a, M, b, d, e, a)|wy — wa|® (45)
for all wy,ws € Kia C 1.

Finally, we obtain the estimate (42). q.e.d.

83 Global estimates for nonlinear systems

We continue our considerations from §2 and quote these results by the addi-
tional symbol *. Let us define the unit disc F:={{ =& +1in : |[¢|] <1} and
consider solutions of the problem

x =x(() = (@1(&n), .., za(€,m)) € C*(E,R") N C*(E,R"),
|Ax(§, )] < alVx(&n)* +b  forall (§n) € E,

x(Enl <M forall (§n)€E,

x(&,n) =0 for all (¢,n) € OF

(1)

with the constants a,b € [0,+00) and M € (0,400). We intend to esti-
mate |Vx| in E from above and to establish an adequate apriori bound for
[%/lc1+a(p)- To this aim we map the unit disc £ conformally onto the upper
half-plane Ct := {w = u +4v : v > 0} with the aid of the following Mobius
transformation (compare Chapter IV, §7, Example 1):

_ G . . ’
HO=byp (B [H0BN{} =R (2)
We now define the ray
S::{g:—z‘t ogtgl}cE
and the interval
J::{w:iv OSUSI}CC+.

The function
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fn =i, "1 mel-10 )

then maps the ray S bijectively onto the interval J. The inverse mapping of
f is denoted by
(=gw): Ct = E, R—09oE\{i}, J—S. (4)

With the parameter p € [0,27) we consider the rotated rays

Sy = {526“‘( : CES}
and the family of conformal mappings
gu(w) := e g(w), w e Ct. (5)
Evidently, we have
gy : C — E conformal, g,:J < S, for 0<p <27 (6)

Setting
0= {w e Ct : dist{w,J} < 1} ,

we have a constant § € (0,1) such that the distortion estimate
1
B <lg,(w)] < 5 forall we Nt andall uel0,2n) (7)

is correct. With the aid of arguments from §2, we now prove the following

Theorem 1. (Global C'™“-estimate)
Let x = x(&,m) denote a solution of (1) with aM < 1, and let the exponent
a € (0,1) be chosen. Then we have a constant C = C(a,b, M, @) satisfying

[xllcrtam < Cla,b, M, a). (8)

Proof:

1. By the method of Theorem 1* we now shall estimate |Vx| in F from above.
In this context we consider the function

5O = (O = VX, CeF, )

which attains its maximum at a point (y € E. For this point {4 € F
we find a number u € [0,27) and a point wg € J C CT U R satisfying
gu(wo) = {o. We fix the angle 1 and suppress the index. Via the mapping
(5) we now introduce new parameters (u,v) into the function x = x(§,7)
and reflect x o g(u,v) at the real axis v = 0 as follows:
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x(u,v) :

) xog(u,v), w=u+iveCrUR
| xog(u,—v), w=u+iweC ={weC: Imd <0}
(10)
A simple calculation shows

%X(u,v) € C*(CTUCT)NCHCTUR)NCO(C),

sup |%x(u,v)| < M, %(u,0) =0 forallu € R,
u+iveC

b
| A% (u,v)| < a|Vx(u,v)]* + 2 forall w=u+ive NTUN,
(11)

where we abbreviate 27 := {w € C : w € 27}. We now choose R = 1
as fixed and ¢ € (0,1) arbitrarily. Then we estimate the energy as in
Proposition 3%, namely

/ |V (u,v)|? du dv

By (wo)

(Please observe the Remark following Proposition 5%*.)
2. We now make the transition to the reflected complex derivative function

i%Xy(w), w e Bi(wy)NCH

z(w) = { (12)

—iXw(w), w € By(wo) NC™

from Proposition 5*. This function is continuous in By (wp) and satisfies
the differential inequality

b
|2 ()| < alz(w)|* + e for all w € Bi(wp) \ R. (13)
The integral representation of Pompeiu-Vekua from Theorem 1 in Chapter
IV, §5 is valid for z as well, and we have

z(wo) = 271”. / wZ(—w;O dwf}T / / Zw_(ﬁ dudv  (14)

OBy (wo) Bixo (wo)

with arbitrary parameters 9, A € (0,1). In the derivation of this formula
we integrate separately on the half-planes C*: Since z is continuous on
the real line R, the curvilinear integrals on the real line annul each other.
We use Proposition 5* and get a number A = A(¢) € [}, 3], such that
Cauchy’s integral of z can be estimated as follows:

1 z(w) cala,b,M) b a 9

dw| < 9 15

i / w’_ﬁ\/—log19+862+2 we%‘ﬁ’woﬂz(w)l (15)
0By (wo)
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with the constant
8\/M2 + =M
Viegdy/1 —aM

Parallel to (32)* , we deduce the following estimate from the differential
inequality (13):

c1(a,b, M) :=

b
dudv| <ad sup |z(w)]* + . 16
i L ) (16)
Bw(wo)
. Noting that
z2(w)] = [%w(w)| = [x¢ 0 g(w)llg'(w)],  weCTUR

the relation (7) yields the inequality

Blz(w)| < ¢(g(w)) < ! |z(w)| for all w € By(wy) NCH. (17)

B
We then obtain the following estimate from (14)-(16):
8(60) = Blglun)) < fa(wo)

c1(a, b, M) 3b  3a 9
< + + 9 sup |z(w
B/ —logd  83% 28 wGBg(w0)| (w)
c1(a, b, M) 3b 3a )
< g to?  sup o(g(w))
B9y —logd 883 283 wE B (wo)NCH
c1(a, b, M) 3b 3a
< +
T B9V —logy 83 253
Therefore, the subsequent inequahty holds true

c1(a,b, M) 3b
#(Co) < B9/ —log * 833 253

. Parallel to part 3 of the proof for Theorem 1* , we obtain the existence of
a constant C; = Cy(a,b, M) from (18), such that

sup [Vx(¢)| = 2sup ¢(¢) < Ci(a,b, M) (19)
CEE CEE

I (Co)*

90((p)? forall 0<d<1. (18)

holds true. We apply the representation formula (14) - valid in F - to the
function x,,. Then we find a constant Cy = C3(a, b, M, a) for the number
a € (0,1) given - as in the proof of Theorem 2* - such that

|VX(C1) - VX(C2)| < C2|Cl - <2|a forall (1,(o€F (20)
is valid. The statement (8) can now be inferred from the inequalities (19)

and (20). qed.
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84 The Dirichlet problem for nonlinear elliptic systems

We choose the parameters a € (0,1) and M € (0, +00) and prescribe periodic
boundary values - with the period 27 - on the boundary of the unit disc
B:={w=u+iv: |w| <1}, namely
g=g(t) = (g1(t),...,gn(t)) : R > R" € C3T*(R,R"), (1)
lg(t)| < M for all teR.

Now we concentrate our interest on the Dirichlet problem

x = x(u,v) = (v1(u,v),...,2,(u,v)) € C*T*(B,R"),
Ax(u,v) = F(u,v,x(u,v), Vx(u,v)) for all (u,v) € B,
|x(u,v)| < M for all (u,v) € B,

x(cost,sint) = g(t) for all teR.

(2)

As our right-hand side F we prescribe a homogeneous quadratic polynomial
in the first derivatives

Vx(u,v) = (14U, ), . . ., Tpa (U, V), T10 (U, V), . . ., Ty (U, v)).

The coefficients are assumed to depend Hoélder-continuously on the variables
u,v and Lipschitz-continuously on the vector x, and we require that they
vanish on the exterior space |x| > M . More precisely, we define the function

F(u,v,x;p,q) = (Fl() o Fu(0L) B xR x R?2 x R?" — R™,
F k=1 ®)
k(U v, X5 P, q) := Z zJuvxpzq], =1,...,n.
4,j=1
Here the coefficients fulfill
fikj(w,x):O forall we B and xe€R"™ with |x|> M,
| Z-’j-(w,x)|§K forall weB and xeR™ with |x| <M,
7w, 5) — £, %) < L{lw — 6] + x — %]}
forall w,we B and x,x¢€R"”

fori,j=1,...,2nand k = 1,...,n ; where the constants K, L € [0+ co) are
given. Finally, we use the following function F as the right-hand side in (2),
namely

F(U7U7X7 p) = F(u’v’x; p7 p)7 (u7 v) E B? X 6 Rn? p 6 Rzn'

All elliptic systems appearing in differential geometry are of the following
form:
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Ax(u,v) = F(u,v,x(u,v); Vx(u,v), Vx(u, v ))
= F(u,v,x(u,v), Vx(u,v)), (u,

Fixing (u,v,x) € B x R™ | the subsequent mapping

(5)

(p,q) — F(w,x;p,q) (6)

is bilinear but not necessarily symmetric.
Choosing a parameter a € [0, +00), we now require a growth condition for the
right-hand side F:

2 2n
|F(w, x; p, p)| < a|p|?or equivalently Z ( Z By (w,x) pzp]> < aZp?
i=1

k=1 “i,5=1
forall we B, x€R™ p=(p1,...,pan) € R
(7)
Remarks:

1. On the basis of (3) and (4) we can certainly find a constant a satisfying
(7). One should optimize this constant, however. Though the constants
K, L from (4) do not enter quantitatively into our later existence result,
this is the case for the constant a.

2. If the condition aM < 1 is fulfilled, then a solution x = x(u,v) of (2) is
subject to the geometric maximum principle of E. Heinz

sup  [x(u,v)| < sup [x(u,v)]. (8)
(u,v)EB (u,v)€0B

In order to solve (2), we make the transition to zero boundary values. In this
context we solve the following boundary value problem by potential-theoretic
methods (compare Theorem 5 in Chapter IX, §6):

y = y(u,v) € C2+Q(Bv]Rn)a
Ay(u,v) =0 for all (u,v) € B, 9)
y(cost,sint) = g(t) for all teR.

The maximum principle for harmonic functions yields

sup ly(u,0)] < M. (10)
(u,v)EB

If x denotes a solution of (2), we then consider the difference function
z(u,v) = x(u,v) — y(u,v), (u,v) € B, (11)

which belongs to the space
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C*(B) := {Z(u,v) € C***(B,R") : z(u,v) =0 auf 33}

Now the function z satisfies the following differential equation:

Az(u,v) = Ax(u,v) = F(u, v,x(u,v); Vx(u,v), Vx(u, v))

F(u,v,y(u,v) + z(u,v); Vy(u,v) + Vz(u,v), Vy(u,v) + Vz(u,v))
F(u,v,y(u,v) + z(u,v); Vz(u, v), Vz(u, v))

Vz(u,v)
+F(u,v,y(u,v) + z(u,v); Vz(u,v), Vy(u,v)
+F(u,v,y(u,v) + z(u,v); Vy(u, v), Vy(u,v)
: G(u,v,2(u,v), Vz(u, v)) for all (u,v) € B.

+F(u,v,y(u,v) + z(u,v); Vy(u,v), )
)
)

(12)
Therefore, the function z(u,v) € C?t*(B) satisfies an inhomogeneous differ-
ential equation with quadratic growth in its gradient. We choose an arbitrary
e >0, and with the aid of (7) we deduce the following inequality

|Az(u,v)| = |F(u, v,y (u,v) + z(u,v), Vy(u,v) + Vz(u,v))|
< a|Vy(u,v) + Vz(u,v)?

1
< 2
< a{|Vy(u,v)| +2\/€

a(1 4 )| Vz(u,v) 2 +a(1+ )9y (w, )

[V (1, 0)| Vel Va(u,0)| + [Va(u, v)]* }

< a(l +¢)|Va(u,v)|* + a(l + ) sup |Vy(u,v)|?
(u,v)eB
(13)
for all (u,v) € B. Very important is the subsequent

Proposition 1. (A priori estimate)

Let the constants a € (0,1) and a € [0, +00), M € (0,+00) with 2aM < 1 be
chosen. Then we have an a-priori-constant Cy(a, M, o), such that all solutions
of the problem

z = z(u,v) € C*(B)NC*(B),
u,v) = G(w, z(w), Vz(w)) forall we B, (14)
z(w) =0 for all we JB

satisfy the following estimate:
||z||C1+O¢(B’Rn) < Ci(a, M, ). (15)

Proof:
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1. At first, we verify the subsequent statement:

sup |z(w)| < 2M. (16)
weB

If this were violated, there would exist a point wy € B satisfying
2M < [z(wo)| < [y(wo) + z(wo)| + |y (wo)| < |y(wo) + z(wo)| + M

and consequently
M < |y(wo) + z(wo)|.

For continuity reasons we can find a disc B,(wp) C B such that
ly(w) + z(w)| > M for all w € B,(wy). (17)
On account of the assumption (4) for the coefficients 1-’3- we infer

Az(w) = F(w,y(w) + z(w); Vy(w) + Vz(w), Vy(w) + Vz(w))

(18)
=0, w € B,(wo).
‘We now consider the function
¢(w) == |z(w)|*,  w € By(wo), (19)

which is subharmonic due to
Ap(w) = 2(|Va(w)|* + z(w) - Az(w)) = 2|Vz(w)]> >0 in B,(wo)
Choosing wo € B in such a way that

|z(wo)| = sup |z(w)|
weB

holds true, the subharmonic function ¢(w), w € B,(wp) attains its maxi-
mum at the interior point wqy . Therefore, we obtain

d(w) = Pp(wo) in  By(wo). (20)

A continuation argument finally yields
d(w) = o(wp) in B

contradicting the statement ¢(w) = 0 on dB. Consequently, the relation
(16) is satisfied.
2. Formula (13) gives us the differential inequality

|Az(u, v)| < a(1 + ¢€)|Va(u, v)|2 + b(e), (u,v) € B, (21)
where we have set
1 2
be) == a(l + ) sup |Vy(u,v)
€/ (u,v)eB

We choose € > 0 so small that a(14¢)2M < 1 is fulfilled, and Theorem 1
from § 3 yields the following apriori estimate (15) on account of (16) and

(21). q.e.d.
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We now transform (14) into an integral equation. We consider the Banach
space

B:= {x € CY(B,R") : x(w)=0on BB}
endowed with the norm

-1 =1- ”Cl(B,R") ’

and define the balls
By = {x eB: x| < N}

with the radii N > 0 . Taking 0 < A < 1 we investigate the nonlinear integral
operators (¢ = £ +in)

@l ==y [[1og] " |Gca0). Vel dgan, we B (2
B

With the aid of the Leray-Schauder degree of mapping we shall construct a
solution of the nonlinear integral equation z = V;(z) . The latter then solves
(14), and by the transition (11) we obtain a solution of the problem (2). At
first, we need the following

Proposition 2. Green’s operator

1 1-—
u(w) € CY'(B)  —  L(u)|y = — // log’ wg‘u(() d¢dn, we B,
27 (—w
B
(23)
maps the space C°(B) continuously to the space
CHA(B) = {v(w) e CYA(B) : v(w) =0 for allw € BB}
for each number B € (0,1). Therefore, we have a constant Ca(3) satisfying

Proof: One should utilize the potential-theoretic estimates from Chapter IX,
§4 and Hadamard’s estimate (compare Theorem 7 in Chapter IV, §4) for the

complex derivative .0 L(u) . qed

Proposition 3. Let the number § € (0,1) be chosen arbitrarily. Then the
nonlinear integral operator Vy : B — C’i"'B(B,R”) is continuous and as the
operator Vy : B — B even completely continuous for all0 < A <1 .

Proof: We observe the following connection for all 0 < A < 1, namely

Va(z) = AL(G(-, 2(-), Vz(+))), z € B. (25)
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On account of (4), the function
F(,y+2zVy+Vz Vy+Vz) = G(,z Vz), z € By (26)

satisfies a Lipschitz condition in the ball By with an arbitrary radius N > 0
in all three components, where the Lipschitz constant may depend on N.
Therefore, we have a constant Cs3 = C3(K, L, N) satisfying

HG(a z, VZ) - G('viv Vz)HCU(B) < 03(K5 LvN)”Z - 2”

~ (27)
for all z,z € By.
Proposition 2 now yields
IV5(2) = Vr@lorsncey ACOCUI LN —2ll

for all z,z € By.

Consequently, the operator Vy : By — cith (B) is continuous. Furthermore,
we infer the following estimate from Proposition 2 on account of (26) and (4),
namely

IVA@ sy < AC2(B) G2 V2) | o i
< Cy(K.N,f), =€ By.

Therefore, the operator V) : B — B is completely continuous. q.e.d.

(29)

With the aid of topological methods we now prove the following

Theorem 1. Let the constants o € (0,1) and a € [0,+00), M € (0,+0c0)
with aM < % be chosen. Furthermore, let the boundary values g from (1) be
prescribed, and let the right-hand side F be defined as in (3) satisfying (4) and
the growth condition (7). Then we have a solution x = x(u,v) of the Dirichlet
problem (2).

Proof: We choose the quantity N := C1(a, M, a)+1 with the constant C; from
Proposition 1 as radius for the ball By in the Banach space B. We consider
the family of operators

Id—=Vy: By — B, z+—z—Vy(2), 0< A<, (30)

For A = 0 the mapping possesses a zero, namely z = 0 € 5. Due to Proposi-
tion 3 the operator V) : By — B is completely continuous for each A € [0, 1].
Furthermore, the family V) depends continuously on the parameter A € [0, 1].
We now show that the statement

(Id = Vy)(z) #0 forall ze€ 0By andall Ae€]0,1] (31)

is correct. If z € OBy namely would be a zero of Id —V with a parameter
A € [0, 1], we infer
z = V\(z). (32)
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The solution of this integral equation represents a solution of the Dirichlet
problem

z = z(u,v) € C*(B) N C*(B),
Az(u,v) = AG(u, v, z(u,v), Vz(u,v)), (u,v) € B, (33)
z(u,v) =0, (u,v) € OB.

In (14) we replace G(...) by AG(...), and Proposition 1 yields an evident
contradiction with the inequality

|2l oo ny < Cila, M, 0) = N =1 < N = |z or .

Therefore, the relation (31) is fulfilled. According to the Leray-Schauder the-
orem (compare Chapter VII, §3) the mapping (30) possesses at least one zero
z = z(w) for each parameter A € [0,1] . Specialized on the parameter A\ = 1,
this zero solves the Dirichlet problem (14). Theorem 1 from Chapter IX, §4
now implies z € C27%(B,R"). If y = y(w) represents the solution of (9) ,
we obtain a solution of (2) with x(u,v) = y(u,v) + z(u,v), (u,v) € B . The
property
sup |x(u,v)] <M
(u,v)€B

is easily established as in part 1 of the proof for Proposition1 . q.e.d.

We now specialize our result to the H-surface system from §1. Taking the
boundary values g(t) from (1) in the case n = 3, we consider the Dirichlet
problem

x = x(u,v) = (21(u,v), x2(u,v), 23(u,v)) € C?*T*(B,R3),

Ax(u,v) = 2H (u, v, x(u, v))Xy A Xy (1, v) in B,

(34)
|x(u,v)| < M in B,
x(cost,sint) = g(t) for teR.
Here we prescribe the function H = H(w,x) as follows:
H=H(wx):BxR > ReC*BxR3) with
|H(w7x)|§h07 |H(w7X)7H(way>|§h1|X7y|7 U)EB, X,yeRS,
H(w,x) =0, we B, xeR® with [|x|>M.
(35)

When we set
F(u,v,x(u,v), Vx(u,v)) := 2H (u, v, x(u, v))Xy A Xy (u,v)

the right-hand side (3) appears in the form
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F(u,v,x;p,q) := 2H(w,x)p’ A q" with p,q € R® and
p = (p’,p") = (1, p5 p3, 1. P5,p5), a=(d,4d") = (d1,43. 45,41, 4% G5).-
(36)
We then have the growth condition

|[F(w,x;p,p)| < 2[H(w,x)[[p’ Ap"| < ho(Ip']* + [P"|*) = holp/?

5 6 (37)
forall we B, xeR’ peR°.

Theorem 1 immediately implies the following

Theorem 2. (E. Heinz, H. Werner, S. Hildebrandt)
In the case hoM < % the Dirichlet problem (34) possesses a solution, with the
boundary values (1) and the right-hand side (35).

Remarks:

1. E.Heinz solved the Dirichlet problem (34) for the case H =const in 1954
by means of the topological method presented here.

2. H. Werner has attained the condition hoM < ; .

3. With the aid of variational methods, S. Hildebrandt has solved the Dirich-
let problem (34) even in the case H = H(x) and hoM < 1.

4. According to Jiger’s maximum principle from §1, the Dirichlet problem
(34) is uniquely solvable in a ball of the radius

R+ 2
h hg + hq

Therefore, Theorem 2 yields an existence result for large h; without an-
swering the uniqueness question.

5. Due to § 1, Theorem 3 and its corollary, the Dirichlet problem (34) is stable
with respect to perturbations of the boundary values in the C°(B,R3)-
norm under the conditions given there. Consequently, we can even solve
the Dirichlet problem (34) for continuous boundary values.

We finally note the following

Theorem 3. In the case H(w,x) = hg or H(w,x) = —hg with hg > 0 and
hoM < % , the Dirichlet problem (34) possesses exactly one solution of the
reqularity class C*T2(B,R3)NC°(B,R3) , for the continuous boundary values

g =g(t) € CY_(R,R") satisfying |g(t)] < M, t € R.

Proof: We smooth the constant function H at the boundary of the ball x| < M
in such a way that H vanishes for all |x| > M . Then we solve (34) for C?+-
boundary values and approximate the continuous boundary values g uniformly

with the aid of Theorem 3 from §1 and Theorem 2 from § 2. qed
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85 Distortion estimates for plane elliptic systems

We begin with the important

Theorem 1. Let the radius R > 0 be given, and we consider the disc Br 1=
{w=u+iveC: |w <R} and the pseudoholomorphic function f(w) :
Br — C € CY(Bg,C) satisfying

|fw(w)] < M|f(w),  w € Bg, (1)

with a constant M € [0,400). Furthermore, there exists a constant K €
(0, +00) such that
0<|f(w)| <K, weBg (2)

is fulfilled. Finally, we choose the number r € (0,R) . Then we have the
following inequalities for all points w € B, , namely

£ (w)] < K A5 SME|£(0)] Rer (3)
and o 8M R(R+r) R+4r
|fw)| > K= 7re™ w5 £(0)) R (4)
Proof:

1. The inequality (3) can be transformed into

R—7r
R4r
‘f%”)‘ < 8MER f}(?) : w € By,
and (4) is equivalent to
f(w) _ 8MR(R+r) f(()) frast
K >e R—r K , w € B,.

With f(w) the function / (}?) satisfies the inequality (1) as well. Therefore,

is suffices to verify the estimates (3) and (4) only for the case K =1 .
2. We define the potential

a(w) := w € Bg, (5)

and note
llalle == sup |a(w)| < M < +oo.

wEBR

Consequently, the function f satisfies the differential equation

= fw) = alw)f(w),  we B ()
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and is pseudoholomorphic in the sense of Chapter IV, §6. According to
the similarity principle of Bers and Vekua given there, we have the repre-
sentation formula

flw) =" ¢(w),  we B, (7)

with the function ¢ being holomorphic in B and the following integral

(¢ =¢&+1n)
1 a((¢)
Y(w) = — dé dn, w € Bp. (8)

‘We note

M 1 M
lb(w)| < // dedyp < 2w2R=4MR,  we Bg
T |¢ — w ™
Br

and obtain
e MR < b (W) < AMR w € Bp. 9)
Together with (2) and (7), we deduce
0 < [p(w)| = e[| f(w)| < *™MF, we Bpg. (10)

. We consider the nonnegative harmonic function
x(w) :=4MR — log |p(w)| > 0, w € Bp.

Harnack’s inequality (compare Theorem 4 in Chapter V, §2) yields the
estimate

R—r R+r
0) < <
() < x(w) <

for all r € (0, R). We rewrite this inequality into the form

x(0), w € B, (11)

R —
log|¢(w)| < 4AMR— " (4MR ~log |(0)))

R S8MR (12)
—r r
= 1 0 B,
Ry o8le@I+ o we
and R
log|é(w)| = 4MR— " " (4MR ~log|6(0)])
R+ ) SMR (13)
r r
= 1 0)] — B,
o loglo@ - T we
respectively. Via exponentiation we arrive at
[6(w)| < 7 [p(0)| 757, we B, (14)
and
_8MRr R+4r

|p(w)| = e™ &= [p(0)[r=r,  w € By (15)
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4. From (7) and (9) we infer
e MEp(w)| < |f(w)| < M Fp(w)],  w € Br. (16)
Together with (14) we obtain

[F)] < Mg (w)] < MR T |g(0)] 7

< MR AMR LT | £(0)| R
= SME|f(0)| Rtr,  we B,

and finally the inequality (3) stated. Correspondingly, the relations (16)
and (15) imply

8MRr R+r

|f (w)] = 6_4MR|¢(1U)| > e MM e R |¢(0)|FH

FemMRED F(0)| R

> e

R

_ R+r 47
e SMERZ | F(0)| 7, we B,

and we get (4). q-e.d.

Theorem 2. (Heinz’s inequality)
We take the unit disc B := {w =u+ i € C : |w| < 1} and consider the
plane mapping z(u,v) = (x(u,v),y(u,v)) € C*(B,R?). The latter may satisfy
the differential inequality

|Az(u,v)| < a|Vaz(u,v)|* + b|Va(u,v)| in B (17)
with the constants a,b € [0,400), it is subject to the smallness condition

|z(u,v)| <m in B (18)

with a constant m € (0,+00), and it is positive-oriented due to
Jz(u,v) == ) >0 for all (u,v) € B . (19)

Finally, we require the condition am < 1 . Then there exist constants
C*(a,b,m,r) > 0 for each number r € (0,1), such that

C~(a,b,m,r)|[Vz(0)| - < |Vz(w)| < Ct(a,b,m,7)|Vz(0)|1+5-,  w € B,
(20)

Proof:
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1. We take the parameter A € (0,+0o0) and deduce the following estimate
from (17):

|Az(u,v)| < a|Vaz(u,v)]* + 2 \|Vz(u,v))| b
2X 21
9 5 b2 ( )
< .
< (a+ )| Vz(u,v)|* + 2 in B.

Then we choose A = A(a,m) > 0 so small that (a + A\?)m < 1 holds true.
Theorem 1 from § 2 gives us the following estimate in the disc Bg of radius
R:=""€(r,1):

[Vz(u,v)| < Ci(a,b,m,r), w € Bpg. (22)

We obtain the linear differential inequality when we insert into (17),
namely

|Az(u,v)| < (aCl(a,b,m,r) + b)|Vz(u,v)| (23)
= Ca(a,b,m,r)|Vz(u,v)| in Bg.

2. We utilize the auxiliary function f(w) := 2y (w) + iy, (w) : B — C and
calculate

7@ = F)f ) = (@0 + i) — i)
= |Iw|2 + |yw|2 - Z.('rwyw - xwyw)
= V) i)t i) — (et i) 0 i)}

—4|Vz(w)| +28(u,v) in B.

On account of (19), we infer

%

22|Vz(w)|, w € B. (24)

1
S V2w)| < | fw)| <
3. The relations (22)-(24) imply the inequalities
1 ) 1
Fulw)] = 1 An(w) + iAy(w)] =} Az(w)
1
< 4C2(a,b,m,r)|Vz(w)| (25)

1
S Cg(a,b,m,T”f(U))' in BR

()

and

|Vz(w)| < 5 Cy(a,b,m,r) in Bp. (26)
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Therefore, the function f(w) is pseudoholomorphic in Br with the con-
stants

1
M = M(a,b,m,r) := 2C2(a,b,m,r),

K =K(a,bym,r) := \g2C1(a,b,m,r).

With the aid of the identities g;: = 11;3“; and gf: = 11t3:, Theorem 1
yields the estimate

Kt R O] <[ f(w)] < KA SMR o) (27)
in B,. Taking (24) into account, we then find the inequality (20) with the

~ Sy +
a-priori-constants C=(a, b, m,r) > 0. g.e.d.

The following class of mappings is particularly important for problems in
differential geometry:

Definition 1. With the constants a,b € [0,400) and N € (0, +o0] being pre-
scribed, we denote the following class of mappings by the symbol I'(B,a,b, N):

i) The function z(w) = (z(u,v),y(u,v)) : B — R? € C?(B) N C°(B) maps
the circumference OB topologically and in a positive-orientied way onto the
circular line OB;

ii) The mapping z is origin-preserving which means z(0) = (0,0);

itt) We have the condition

Jo(w) = )>0 for all w=u+iv € B;

iv) The function z satisfies the differential inequality
|Az(u,v)| < a|Vz(u,v)|* + b|Vz(u,v)]| in B;

v) Dirichlet’s integral of z fulfills

D(z) := // (|zu(u,v)|2 + |zv(u,v)|2) dudv < N.

Remarks:

1. With the aid of the index-sum formula we easily see that the mapping
z : B — B is topological.

2. In the special case N = +oo, we do not require a bound on Dirichlet’s
integral D(z).

3. E. Heinz has studied this class of mappings and applied it to differential-
geometric problems.
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4. Linear systems - appearing in the special case a = 0 - have already been
considered by P.Berg.

We now prove the profound

Theorem 3. (Distortion estimate of E. Heinz)

Let the parameters a,b € [0,400), N € (0,400), and r € (0,1) be chosen.
Then we have constants 0 < O(a,b, N,r) < Aa,b, N,r) < 400 , such that
each mapping z = z(w) € I'(B,a,b, N) satisfies the inequality

O(a,b,N,r) < |Vz(w)| < A(a,b, N,r) for all we B, . (28)

Furthermore, the modulus of continuity for the mappings on B is estimated
according to the formula (29) given below.

Proof:

1. At first, we show the intermediate statement: For all functions z = z(w) €
I'(B,a,b,N) and all numbers § € (0, ;) we have the estimate

TN
log 5 (29)

for all wp,w; € B with |wg —wy| < 4.

N
4\/7T 1 <2
log 5

without loss of generality, since (29) would be trivial otherwise. We choose

an arbitrary point wy € B. Via the Courant-Lebesgue oscillation lemma
we find a number §* € [4,/6] such that

/ \dz(w)| < 2\/ 12;\71 (30)
5

weB
[w—wo|=6"

[2(w1) — z(wo)| < 4\/

We assume

holds true. We define the following sets

Q::{wEB:|w—w0|§6*}, 7::{w€B:|w—w0|:5*}

and their topological images 2 := z(£2), 4 := z(7). Now we distinguish
between the following cases:

Case a: 2 C B. Then we infer 92 = 4, and the length of ¥ satisfies

R 7N
L(7) < 2\/1 L
og ;
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on account of (30). Since the mapping z is topological, we obtain

|z(wy) — z(wo)| < 2\/1;];\71 for all w; € (2. (31)
5

Case b: 02N OB # (). Then we have a point z € § N JB, and the relation

(30) yields
N
ﬁCK::{Ce(C: |4—z|g2\/” . }
log &

On account of |z] = 1 and
N
2\/ <
log &

the statement 0 ¢ K holds true, and due to §* < v/§ < % and 02NOB #
we have 0 ¢ (2. Since the mapping z : B — B is topological and origin-
preserving, the relation 4 C K implies the inclusion 2 ¢ K. We obtain
the following estimate for all points wy € §2, namely

TN

1og§'

|2(w1) — z(wo)| < |z2(w1) — 2] + |2 — 2(wo)| < 4\/ (32)
When we additionally note § < §*, the relations (31) and (32) yield the
proof of the intermediate statement (29).

The function z = z(w) € I'(B, a,b, N) satisfies the differential inequality

2
|Az(w)| < a|Vz(w)|? +b|Vz(w)| < (a+1)|Vz(w)|2+bZ in B. (33)

We now choose the number r € (0,1) so large that the quantity 0 :=
57 > 0 satisfies both conditions d € (0, }) and

N 1
(@+1)4, /" <. . (34)
logy = 2
We consider an arbitrary point w € Bj_s = Br+1 and associate the
2

auxiliary function
x(w) = z(w) — z(w), w e 2:= {wEB o w — Sé}. (35)

On account of (29) and (33), we then have

2 o
Ax(w)] < (a4 DIVx@)P + 2 D,

(36)
sup |x(w)| < 4\/ ™

1-
we 1Og E)
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When we additionally note (34), the gradient estimate of E.Heinz from
§2, Theorem 1 yields the inequality

\Vz(w)| = |Vx(w)| < A(a,b, N, )

_ (37)
=: A(a,b,N,r) for all w € Br;l.

Therefore, we have obtained the estimate (28) from above.
. We now choose the number r € (0, 1) so large that the quantity § = 157"

satisfies the conditions & € (0, §) and

mN 1
Y=t <
log 55 — 2
besides (34). From (29) we deduce

1
|z(w)| > 9 forall weC with r=1-20 < |w| < 1. (38)

We now consider the curve y(t) := z(twp), 0 < ¢t < 1 associated with a
point wy € 0B,.. Then we calculate

5 < [aw0)| = la(uwo) ~ 2(0)| < [ Iy @)]de = Iy'(t0)| < [Va(town)
0

with an element ¢y € [0, 1]. Therefore, we have a point
) 1
wy = towo € By with  |Vz(w,)| > o (39)

. On account of (37), the function z satisfies the linear differential inequality

|Az(u,v)| < (adA(a,b, N,7) +b)|Vz(u,v)| in Bryr. (40)

We apply Heinz’s inequality from Theorem 2 (for « = 0 and B — B Sk
B, — B,). Then we obtain the following estimate in B,

C~(a,b, N, 7)|Vz(0)|- ") < |Vz(w)| < C*(a,b,N,7)|Vz(0)]2+ ) (41)

with certain exponents o+(r) > 0 and constants C*(a,b, N,r) > 0.
When we additionally take (39) and (41) into account, we find a constant
O(a,b, N,r) > 0 such that

|Vz(w)| > O(a,b, N, ) for all w € B, (42)

holds true for arbitrary mappings z € I'(B,a,b, N) . Consequently, the

estimate from below in (28) has also been proved. qed
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86 A curvature estimate for minimal surfaces

We can even prove distortion estimates for the class I'(B, a b, +00) of those
mappings without a bound for Dirichlet’s integral, if a € [0, ) holds true. We
confine ourselves to the class I'(B, 0, 0, +00) of one-to-one harmomc mappings
on the unit disc B and begin with the

Proposition 1. (Continuous boundary behavior)
The harmonic mapping z = z(w) of the class I'(B,0,0,+00) may satisfy

|z(e"?) — z(e”)] < e for all @€ [¥—46,9+] (1)

with an angle ¥ € [0,27), a number § € (0,7), and a quantity ¢ > 0. Then
we have the estimate

4

a(re?) — 2(e?) <+
sin“ ¢

(1—r) for all r e (0,1). (2)

Proof: We invoke Poisson’s integral formula

1— 72
Z(19+<P) d
z( re 27T/ |€w_r|2 ) dep

and obtain the following inequality for all r € (0,1):

_ _ 1— _
|Z(7’6“9) — z(elﬁ)| < o / |ew, _Tr|2 |Z 1(19+<P)) — Z(elﬁ)| dy

-9
1 1—r )
— 1(19+<p) - 79 d
2W/Wy¢_ﬂ2u< )~ 2(e”)] di
1 . 1
-r 1(19+<p) - 79 d
b [ e ) sl
-4
Lo i(9+¢) z
o [ )~ a(e) d

2 ) et —r|?
5
Here we have used
[had

1 [ 1-42
27r/| : _r|2dg0:1 for all r e (0,1)

Now we observe [e?? —r| > sin§ for all ¢ € [—m, —6] U [§, 7] and all r € (0, 1).
We note (1) and infer
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) . 11—72 (I=r)(1+7)
9 9
z -z < 2.2 4+e<2 +e
[2(re"™) (")l < 27 sin? § m - sin? §
4
< 5, (1=r)+e forall re(0,1).
sin” ¢

q.e.d.

Proposition 2. Let z = z(w) : B — B denote a topological mapping. Then
we have an angle ¥, € [0,27) for each integer n € N | such that

. - 2 s T
Py _ g(ein)| < N oeeld,— 9, ) 3
2~ 2@ < T Jorall peln-" Ot @)
Proof: We partition the circle B into n arcs o1, . . ., 0, of the equal length 27?,

and denote their images with respect to the topological mapping z by i :=
z(oy) for k = 1,...,n. Evidently, their lengths |y| fulfill |y1|+. ..+ |vs| = 27.
Therefore, we find an index m € {1,...,n} with the property |v,| < 7. If
e with ¥, € [0,27) denotes the center of the arc o,,, the relation (3) is
satisfied.
q.e.d.

In 1952, E. Heinz proved the following remarkable result:

Theorem 1. There exists a universal constant @ > 0, such that each one-to-
one harmonic mapping z = z(w) € I'(B,0,0,400) satisfies the inequality

[Vz(0)| > 6 . (4)

Proof: We choose the mapping z € I'(B,0,0,+00) and the integer n € N.
According to Proposition 2, we find an angle 9, € [0,27) satisfying (3).
Proposition 1 then yields the estimate

27 4

z(re”’") —z(e)| < T+ S(1=7) forall re (0,1). (5)

n Sin
n

At first, taking the integer n € N sufficiently large and afterwards choosing
the radius r € (0,1) suitably, the right-hand side in (5) becomes less than or
equal to é, and we infer

. . _ _ 1
20| = [a(e"?")| = la(re™) — a(e'"")] =

> ()

As in part 3 of the proof for Theorem 3 in §5, we then find a point w, € B,
satisfying
1
Vaw)| > . 7)

We obtain the following estimate via Heinz’s inequality from §5 Theorem 2,
namely
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IVz(0)] > CF(0,0,1,7) 17 |Va(w,)| "
, (8)
> (2C4(0,0,1,7)) 17 =6

since the radius r € (0,1) has been determined independently of the mapping
Z . q.e.d.

We now prove the following result with the aid of the uniformization method.

Theorem 2. (Curvature estimate of E. Heinz)

Let the radius R € (0,400) be chosen arbitrarily and the disc B = {z =
x+1y € C: |z| < R} be defined. Then we have a universal constant M €
(0, +00), such that all solutions of the minimal surface equation

z=((z,y) € C***(Bg,R),  a€(0,1),
M(z,y) = (1 + CZ)CM = 2C2CyCay + (1 + Ci)ny =0 in Bpr

satisfy the estimate

(9)

1
71(0,0)* + £2(0,0)* < ) M (10)

for their principal curvatures ;(0,0) with j = 1,2 at the point y(0,0) of the
graph y(z,y) == (z,y,¢(2,y)), (v,y) € Br.
Proof:

1. Using the uniformization theorem (compare the subsequent §8), we intro-
duce isothermal parameters into the Riemannian metric

ds? = |ya|? da? + 2(y, - yy) dz dy + |y, |? dy? )

= (1+2)da? + 20 Cydady + (1+(2)dy®,  (x,y) € B,
of the class C17%(Bg) . We take the uniformizing mapping
f(u,v) = z(u,v) + iy(u,v) : B— Bgr € C***(B, Bg),
f(0,0) =0,

and consider the surface

X(U,U) =Yo° f(uav) = (f(uvv)vé © f(uvv)) - (I(uav)vy(uvv)vz(uvv))

(12)

(13)
of the class C?7(B,R?). This surface is subject to the differential equa-
tions

Ax(u,v) =0 in B,
(14)
x| = |xo| =0 =xy - Xy in B.
In particular, the plane mapping
1
g(u,v) ==, f(u,v),  (u,v) €B, (15)

R
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belongs to the class I'(B, 0,0, +00) . Theorem 1 now yields |Vg(0,0)| > ©
and consequently
IVf(0,0)| =0k (16)
with the universal constant © > 0.
2. The normal to the surface y(z,y) in direction e = (0,0, 1) is denoted by
the symbol

1
Y=y e

and we define X(u,v) :=Y o f(u,v), (u,v) € B. According to Theorem 2
from Chapter XI, §1 the following mapping

(_Cﬂﬂ(‘rvy>a_4y($vy>’1)7 (‘Tvy) € Bg,

X:B— St:= {z: (21,22,23) ER® : |z| =1, 23 >0} (17)

is antiholomorphic. We now consider the stereographic projection from
the south pole (0,0,—1) , more precisely

o=o0(z): ST — B conformal. (18)

The mapping h(u,v) := o o X(u,v), (u,v) € B is antiholomorphic and
consequently harmonic. Therefore, we find a constant A € (0,+00) such
that

[VX(0,0)] < A (19)

holds true.
3. We now evaluate via considerations from Chapter XI, §1 as follows:

#1(0,0)% + k2(0,0)? = —2k1(0,0)x2(0,0) = —2K(0,0)

|X., A X, (0,0)]
|xu A x,,(0,0)]

VX(©0,0)F _,I9X(0,0)

= 2|K(0,0)| =2

=2
Vx(0,0)2 =~ [V£(0,0)
A2 M
< 2@2R2 - R2
Here we have set the quantity M := 282 . q.e.d.

We obtain the following result as a corollary from Theorem 2, namely

Theorem 3. (S. Bernstein)
Let 2 = ((z,y) : R? - R € C*"™(R?) - with u € (0,1) - denote an entire
solution of the minimal surface equation M((x,y) = 0 in R%. Then we have
coefficients o, 3,7 € R such that

((@y)=az+Py+y in R?

is satisfied, which means C is an affine-linear function.
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Proof: We consider the transition to the limit R — +o0 in the estimate (10)
and obtain x1(0,0) = 0 = k2(0,0). Since this argument is valid at each point
of the minimal graph, we infer

ki(z,y) = 0 = ka(z,y) in R2 (20)

Consequently, the surface y(z,y) = (x,9,{(z,y)), (z,y) € R? represents a

lane.
P q.e.d.

Remarks to Theorem 2 and Theorem 3:

1. We owe the curvature estimate in Theorem 2 to:

E.Heinz: Uber die Lésungen der Minimalfidchengleichung. Nachr.
Akad. Wiss. Gottingen, Math.-Phys. K1. (1952), 51-56.

2. Curvature estimates for surfaces of prescribed mean curvature have been

established by:

F. Sauvigny: A priori estimates of the principle curvatures for immer-
sions of prescribed mean curvature and theorems of Bernstein-type.
Math. Zeitschrift 205 (1990), 567-582.

3. In his thesis, S. Frohlich has derived curvature estimates for stable solu-
tions of the Euler equations for parametric elliptic functionals - in partic-
ular for relative minima. Here we refer the reader to:

S. Frohlich: Curvature estimates for p-stable G-minimal surfaces and
theorems of Bernstein-type. Analysis 22 (2002), 109-130.

87 Global estimates for conformal mappings with
respect to Riemannian metrics

We define the unit disc £ := {x = (z*,2?) € R? : |x| < 1} in the coordinates

(', 2?) and the unit disc B := {w = u+iv € C : |w| < 1} in the coordinates

u ~+iv = (u,v). We prescribe the Riemannian metric
ds® = gji(xt, 22) da? da®

= g11(zt, 2?) (dz1)? + 2g12(xt, 22) dat da? + goo (2!, 22) (dz?)?

(1)

on the disc F. Here we use Einstein’s summation convention and require the
coeflicients to satisfy

gjk = gjr(zt, 2*) € C'T*(E,R) for j, k=12 :
gra(zt,2?) = go(z',2?)  in E

(2)

and
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- 1
NEE € glat 2tk < | je
forall &= (¢4,€6%)eR? and (2',2%)eE
with the constants o, A € (0, 1).

(3)

Proposition 1. The C?-diffeomorphic, positive-orientied mapping
x = x(u,v) = (z*(u,v),2*(u,v))* : B— FE € C*(B,R*) N C°(B, E)
may satisfy the weighted conformality relations

2 (u, v)gjx (x' (u, v), % (u, v)) 2k (u,v) = 0 in B, (4)
2 (u, v)gjx(xt, 22) 2k (u,v) = 27 (u, v)gjr(xt, 22) 2k (u, v) in B. (5)
Then the function x satisfies the nonlinear elliptic system

Azt + F;k(xixﬁ +aizk)y =0 in B for 1=1,2 (6)

where we have used the Christoffel symbols

. 1
ij =

2gli(gki,zj + Gij,xk — gjk,mi)v jv k7l = 17 2 (7)

with the inverse matriz (¢7%); k=12 = (gjk);éﬂ o - Therefore, x represents a
harmonic mapping of the disc {B, (d;1)} onto the disc {E, (gjr)} , with the
unit matriz (0;k); k=1,2-

Proof: We derive the equation (4) with respect to the variable v and the
equation (5) with respect to the variable u:

k
vy =0,

j k j k j l
:Elingjkxv + ‘Tig]‘kwvv + ‘Tigjk,zlx v

k __ k l l k
xzngkxv - Iigjkxuu + 2xigjk,wl'r Ly — 2$u9jk,ml$%$v~

When we insert the second equation into the first, we obtain
k 1
u

. . 1 . .
k k..l l l kE_
], Gik AT + T Gkt Ty Ty + o TGk, ot Ty Ty, — 2:vugjk)xzw%:vv =0

2
as well as
. 1 .
figjkﬂxk + T (Grjat + Gtk — glk,wj)(xﬁxfi +apal) = 0.

Interchanging the variables u with v in these calculations, we deduce analo-
gously

_ 1 .
figjkﬂxk + 2117%(9kj,ml + Gk — gm,w)(xﬁxi + ‘Tﬁxi) =0.
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Since the vectors x,, and x,, are linear independent, we obtain

gjndat + ;(gkj,xl + Gjah = Ginas)(@hal, + ahal) =0, j=1,2.
Multiplication by the inverse matrix (¢*) finally yields

5L Az + 29” (Grjot + Gjtar — Guas ) (@it + 2ial) =0, i=1,2

and consequently

Az’ 4 I (aF 2l + abal) =0, i=1,2.

q.e.d.
We have the following convention for our class of mappings, namely
x(0,0) = (0,0)". (8)
Furthermore, we define the positive-definite matrix
G(z',a?) = (gju(a',2%))j k=12 : B — R (9)

Via the principal axes transformation, we determine its square root G2 (2!, 22)
- by carrying out this operation for the positive eigenvalues. Then we calculate

{|G% (x(u, v))| |(xu,xv)|}2 - ](Gé(x(u,v)) o Xy, G (x(u, v)) oxv)

2

1 2
:4{XZOG(x)oxu+xf,OG(x)oxv} in B.

This implies

G (x(at, )] (360, %) = {XioGEox, +x0Gx) 0x,}  (10)

2

for all (u,v) € B. With the aid of (3), we obtain

)2 1,2 1

y [Vx(uv)” < 35(3””3) < VX v)?  forall (wv)eB. (11)
We define the discs B, := {x € E : |x| < r} for the radii r € (0,1), and
similarly B, := {w € B : |w| < r} . Then we introduce the monotonic
function

2(0) = max glloriegry, € (0,1) (12)
7,k=1,2
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Theorem 1. (Inner estimates for conformal mappings)

Associated to the metric (1)-(8), let the mapping x = x(u,v) : B —
E € C?(B) N C°(B) represent a weighted conformal, positive-orientied C?-
diffeomorphism with (4), (5), and (8). For each number r € (0,1) given,
we then have a constant © = O(r,\,v("3')) > 0 and a constant A =
A(r, A, a,v("51)) < +oo, such that the estimates

1 2
T (u,v) = agzu: 3) >0  foral (uv)€ B, (13)
and
x|l c2+e (B, r2) < A (14)

hold true. Furthermore, the class of mappings above is equicontinuous.

Proof: We follow the arguments in the proof of Theorem 3 from §5. On account
of (11), we comprehend

2 o(xt, 2?) 27
D(x) < )2 // D, v) dudv = 2 (15)
B

Therefore, we can estimate the modulus of continuity in B parallel to part 1 of
the proof quoted above. From (6), (7), (3), and (12) we deduce the subsequent
differential inequality for an arbitrary radius r € (0, 1), namely

| Ax (u,v)| < a|Vx(u,v)|? in Braro, (16)

with the constant a = a(X,v("$")) € (0,+00) . Then we estimate |Vx(u, v)]
in B4 from above for sufficiently small numbers € > 0, and the transition to
a linear differential inequality is possible. On account of (11) we finally obtain
the constant © from (13), as in part 3 and 4 of the proof quoted above. We
further deduce (14) via potential-theoretic estimates.

q.e.d.
With the complex derivatives
o= @ —ied), wl = @ bied), =12
we rewrite the weighted conformality relations into the complex form
2 (u,v)gjn(xt (u, v), 2% (u,v)) 2k (u,v) = 0 in B. (17)

Furthermore, we modify the equation (6) and obtain harmonic mappings in
the complex form:

1 . .
zl + 2F}k(xzua:§ +alaf)y=0 i B; I=1,2. (18)

We easily infer the following result from the weighted conformality relation.
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Proposition 2. (Elimination lemma)

We have the constants p(A) > 1 and 0 < p1(N) < pa(N) < 400, such that
all weighted conformal mappings (4) and (5), with respect to the arbitrary
Riemannian metric (1)-(3), satisfy the following inequalities:

1
|2, ()] < |27, (w)] < p(N)zy, (w)],  we B, (19)
ey
and
@) < 2000 < Do < @, we B
! w - I(u,v) 2 ’ 2 w ’
(20)
Proof:
1. The weighted conformality relation (17) yields
g1 (zt, 2zl al = —2g19(xt, 2zl 22 — goo (2t 2?)a? 2 in B.

With the aid of (3) we deduce

M * < lgu| |23, < 2lgrz| [ow| leg] + [g22] [,

<2y (V315 + S

Al 19 21 1 912
<
< QP+ (e + )l
A 10 24X 50
= 2 ww' + A3 ‘Tw|
and consequently
4+ 22
rh|? < —’;\4 z2 |2, w € B.
Similarly, we find
4+ 2)2
2P < P we B,

by resolving the weighted conformality relation (17) with respect to
goo(zt, 2?)a2 a2 . Setting p(A) := 5 V4 + 2X2 we obtain (19).
2. We now estimate

1V, 0)? = 2| () + 127, (w)]?)

< 2(1 4 p(A)?)|zy, (w)[?
= p2(N)|ay, (W), we B,
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with p2(\) = 2(1 4+ u(\)?). Taking (11) into account, we find

Ozt a?) _ N 2 2(1,.1 2 2 2
) 2 IVt o) = 22(eb ) + Je 0)P)
> (1t L @) = mWeh ), we B,
ey
with g1 (A) = 22%(1 + u(}\)z) > 0. Therefore, the relation (20) has been
shown. q.e.d.

We now prove the important

Theorem 2. (Global estimates for conformal mappings)

The metric ds® from (1)-(3) with the coefficients gji(zt,2%) € C'T(E,R)
for i,k =1,2 may be given, and we consider the weighted conformal, positive-
oriented C?-diffeomorphism

x = x(u,v) = (2" (u,v),2*(u,v))*: B— E € C*(B,R)NCY(B,E) (21)

from (4), (5), and (8). Then we have the reqularity property x € C*T(B,R?)
and the following a priori estimates

Jx(u,v) > O for all (u,v) € B (22)

and
HXHcHa(B,Rz) <4, (23)

with the constants © = O(\, a, (1)) > 0 and A = A\, a,v(1)) < +o0 ; here
the function ~v(r) is defined in (12).

Proof:
1. On the circular line OF we consider the tangential vector-field
t(z!,2?) = (—2%, 2')*: OF — R?
and the constant vector-field e = (1,0)*. Furthermore, let
a(z',2?) = (a* (2!, 2?),a* (2, 2*))* : OF — R?

denote a vector-field of length 1 with respect to the metric ds2, which
means _
al (2, 2?)gjr (2, 2?)a” (2t 2%) = 1 on OF. (24)

We choose a(z!,x?) such that its oriented angle to the tangential vector
t(x!, 22) in the Riemannian metric coincides with the Euclidean angle
between e and t(z', 22) . With the symbol

b(z!, 2?) = (b! (2!, 2?), 0% (2!, 2?))* : OF — R?
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we denote the unit vector-field orthogonal to a(z!, #?) in the Riemannian
metric ds? , which is oriented due to

det (a(e" ) b(a" %) = | 1 )

)
2) >0 on OF

(25)
The weighted conformal mapping x(u, v) then possesses the following free
boundary condition

(xu(w),xv (w)) = V(w)(a(x(w)), b(x(w))), w € 0B, (26)

with the function v(w) : 9B — (0,+00). Finally, we find a function ¢ =
o(zt,2?) : OF — R € C'T*(9FE), such that

at(xt,2?) , b (at, 2?) cosp(zt,2?) , —sinp(z!,2?)\ (%0
(a2(171,:172) , bz(xl,xz)) ° (Singﬁ(:zzl,:r2) , cosp(zt, z?) ) o (* *)
(27)
holds true on OF .
We now utilize the Schwarzian integral formula from Theorem 2 in §2 of
Chapter IX, namely

2 | et —z

1 it )
F(z): / c ng(e”) dt, z=a'+ix? € E, (28)
0

with the function ¢ € C'**(9E) defined in part1l. Now the function
F(2) is holomorphic in E, and via potential-theoretic methods (compare
Theorem 3 in Chapter IX, §4) we see

F(z) e CT(E,C),  ||Fllorsa(m < Cla)|@llor+aom).- (29)
Furthermore, F satisfies the boundary condition
Re F(z) = ¢(2) for all z € OFE. (30)

The function
f(2) :=exp{iF(2)}, zeE (31)

of the class C'T%(E,C \ {0}) is consequently subject to the following
boundary condition

f(2) = o(2)e™?®), z € OF, (32)
with the positive real function

o(z) = e F ) z € 0E. (33)
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3. From (32) we deduce the following boundary condition for the function
y(w) := 2zl (w) f(x(w)) : B — C, namely

x, (w) — wci(w)) (cos o(x(w)) + isin go(x(w)))
for all points w € B. From (26) and (27) we infer

o(x(w))

Imy(w) =", (0 (w) sin p(x(w)) — 2 (w) cos p(x(w)))
= VRO (01 () sin o)) — b () cos o))
=0 for all w € 0B.
(34)
Furthermore, we calculate
Yw = Iiluwf(xl5 I2) + x}ufwl (xla I2)I,1u) + x}ufw2 (xla 172)17121) in B.

Together with the relations (18), (19), and (29), we arrive at the differen-
tial inequality
Yo (w)] < aly(w)?,  we B, (35)

with a constant a = a(X, a, (1)) € (0, +00).
4. As in §3 we transform the unit disc £ onto the upper half-plane C* via
the mapping g : C* — E and apply the reflection

xog(w), Imw >0

x(w) = (@' (w), &% (w)) = { (36)

xog(w), Imw <0

From (15) we infer a growth condition for Dirichlet’s integral of %(w) de-
scribed in §2, Proposition2 and 3. Here we utilize the Courant-Lebesgue
lemma, estimate the area by the length of the boundary curve via the
isoperimetric inequality, and obtain a growth condition for Dirichlet’s in-
tegral on account of (11).

Similar to Proposition4 and 5 in §2, we now estimate the oscillation of
%(w) on discs in the interior. Then we obtain the following estimates with
the notations applied there:

2 [ Re@wde) = [ laitw)< [ laxtw)
OBy x(s)(wo) OBy x(v)(wo) OBy x(v)(wo) (37)
C(\)

for j=1,2.
~ /—log? orJ
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Now we have functions o* = o*(2!,2%) : Ct — C\ R depending on the
metric ds?, such that

2 (w) = oF (%(w))zL (w) for weC\R with +Imw >0 (38)

w

holds true (compare the formulas (5) and (6) in §9). Consequently, we
have

2C (A
2 / IRe (2, (w) dw)| + 2 / Re (o (%(w)) &1, (w) dw) | < () ,
v/ —log?d
0By () (wo) OBy x(s)(wo)
which implies _
C(N)
Pl (w) dw| < 39
P < T (39)
0By () (wo)
. Now we consider the reflected derivative function
y o g(w) = z,,(9(w)) f(X(w)), Tmw >0
z(w) = L . ; (40)
yog(w) =z, (g9(w))f(X(w)), Imw <0

and z is continuous due to the boundary condition (34). With the aid
of (39) and (29), we then obtain an estimate for the Cauchy integral of
z(w) - as described in Proposition4 and 5 of §2. We apply the method of
Theorem 1 from §3 and find a constant /T()\, a, 3,7(1)) < +oo satisfying

Yl rens < AN o, B,9(1)  forall g€ (0,1) (41)

on account of (35). We still observe (19), and the system (6) together with
potential-theoretic methods yield the inequality

||X||cz+a(B,R2) <4 (42)

with the a-priori-constant A = A(\, «,v(1)). Finally, we apply Theorem
1 from §5 to the nonvanishing function y(w), w € B. The methods of
proof for Theorem 3 from §5 provide a constant © = O(\, «, (1)) > 0
satisfying

Jx(u,v) > O for all (u,v)€ B (43)

on account of (20). This completes the proof of our theorem. q.e.d.

Remark: When the condition gji (2!, 2%) = §;, is valid in the neighborhood of

the

circular line OF for the Riemannian metric, we can reflect the mapping x

at the circumference: Then we do not need the Schwarzian integral formula
(28).



88 Introduction of conformal parameters into a Riemannian metric 357

88 Introduction of conformal parameters into a
Riemannian metric

We continue our deliberations from §7 and quote those results by adding the
symbol *. We shall introduce conformal parameters into the metric ds? from
(1)*, (2)*, (3)* of the class C***(E) . This means solving the system (4)*,
(5)* of the weighted conformality relations and transferring the metric ds?
into the isothermal form

ds* = o(u,v)(du® + dv?) in B, o(u,v) >0 in B . (1)

At first, we achieve this aim for metrics ds® whose coefficients in the C1T%(E)-

norm have a sufficiently small deviation from the isothermal metric
dr® = o(z', 2%)d;x da’ da® in E, @
o(z',2%) : E — (0,4+00) € C'T*(E)

We define the surface element of ds® by
g(at,2?) = (det G(a', 2?))>
= Von(a',2?)gaa (2!, 2%) — gra(at, 22)? in E.

In order to render the subsequent calculations into a more simple form, we
set (z1,2?) = (z,y) = 2 € F and

(3)

G(z',2?) = (gjn (2", 7)) jhm1,2 = (Zgzz)) igi:gg) in E. (4)

We shall construct a positive-oriented diffeomorphism
w(z) = u(z,y) +iv(z,y) : E— 2 € C***(E,C) (5)
onto a bounded, simply connected domain {2 C C with the inverse mapping
z = z(w) = x(u,v) +iy(u,v) : 2 — E € C*T*(0,C) (6)
such that the metric ds? is transferred into the isothermal form
ds® = o(u,v)(du® + dv?) in 2 . (7)
We calculate
ds? = adx? + 2bdx dy + cdy?
- i{a2 dz?® + 2abdx dy + acdy® } (8)

= i{ad:sz (b+ig)dy}{adx + (b—ig)dy}.
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Now we look for a complex, diffeomorphic primitive function
w=w(z): E— NecC*E,C) |,

such that
adx + (b+ig)dy = o(z) dw in FE 9)

is correct, with a function p € C'**(E,C\ {0}) . Then we infer
adx + (b—ig)dy = o(z) dw in E, (10)

and the relations (8)-(10) provide the desired isothermal form

1 2
ds®> = pdw odw = lo(2)] dw dw = \w)(du® + dv?)
a a(z)

lo(z(w))[? .
. o(z(w))]* lta
with A w) := : 2 —(0,400) € C 09).
The formula (9) is equivalent to the system
0 0

Q(z)%w(z) = a(z), Q(z)ayw(z) =b(z) +1ig(2) in E
and consequently to

0 0 ,
20—w = o—w — i

— _ib
0z Ox Byw atg-—
QQ%w:Q%quigayw:afquib in F,
and to the equations
1
S0 = 5 (@) = g(e) + )

1 1 0

20(2)  a(z)+ g(z) —ib(z) 8zw(z) in E

as well. When we insert the second relation into the first, we obtain the fol-
lowing complex equation equivalent to (9), namely

13} a(z) —g(z) +ib(z) 0

8_211}(2) a(z) + g(z) —ib(z) 3zw(z) =0 - E.

We now define
q(z) = _ z e E. (12)

We observe



88 Introduction of conformal parameters into a Riemannian metric 359

g(z)=0 < b(z)=0, a(z) =c(2) for a point z € E, (13)
and
|q(z)|\/(ag)2+b2_\/(a+g)2+b24ag
(a+g)*+0b? (a+g)?+b? (14)

:\/1—4(a+5)92+b2 <1 forall z€E.

We now have to solve Beltrami’s differential equation in the complex form

Sz —a2) 5 w(z)=0,  zcB. (15)

Here we utilize Cauchy’s integral operator from Definition 5 in Chapter IV,
84

1)) = -} [[ [ dean  zer (16)

with ¢ = £+in. Here the function f lies in the Banach space B := C1*%(E, C)
endowed with the norm

171 = sup {1()] + V()1 + sup VD) VI g
zeE

szmeB |71 — 22l®
217522

In the book of I. N. Vekua [V], namely Theorem 1.33 of §8 in Chapter I, the
following inequality is proved by potential-theoretic means:

ITelflllcztam < Crlalfll,  feB. (18)

As in Proposition 3 from Chapter IV, §5 we define Vekua’s integral operator

Ms[f)(z) = Ji%u{i i (Cf_(i’)2 dédn}, 2B (19)
CEE

[(—z|>e

According to the Theorem of I. N. Vekua given above, we have the estimate

He[fll < Ca(a)llfl, feB, (20)

with a constant Ca(a) € (0,400). Proposition4 in Chapter IV, §5 provides
the identities

AT = 1C), o TelfE) = Msl)), 2B ()

In order to prove (20), we apply Theorem4 from Chapter IX, §4 to the
function gz f . We recall the identity
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TE{aagf}() 1elf 2m/¢2gf Zek

from Proposition 5 in Chapter IV, §5; and we still have to estimate the curvi-
linear integral in the C'*®(E)-norm. The latter represents a holomorphic
function in F, attaining certain Cauchy principal values over 0F as bound-
ary values, due to Theorem 1 from ChapterIX, §2 of Plemelj. We control
them with the aid of Proposition2 from Chapter IX, §4 and note Theorem
3 there. Then we can estimate the curvilinear integral in the C1*(E)-norm
and obtain (20). We use (21) and have shown (18) as well.

We now propose the ansatz of L. Ahlfors and I. N. Vekua for the solution of
Beltrami’s differential equation (15), namely

W(z) =z + Tg[f](2), z€E, for febB. (22)

When we insert (22) into (15), we arrive at Tricomi’s integral equation for
feB
f(z) —a()pf](z) = q(2), z€E (23)

with the aid of (21). We now consider the operator
Lf :=q(z) +a()Ee(fl(z), z€E, for feB. (24)
If the condition
llallCa(e) <1 (25)

is fulfilled, the operator L on B becomes contracting. On account of (20), we
have the following inequality for two elements f1, fo € B, namely

[Lf1 = Lfall = llg Helfi = f2]l
< llall HIE[fr = f]l (26)
< llgllCo(a)ll fr = foll-

Given the assumption (25), the operator L : B — B possesses exactly one
fixed point f € B with Lf = f, due to Banach’s fixed point theorem. Now the
function f € B satisfies Tricomi’s integral equation (23). We then obtain a
solution of the differential equation (15) with the function W (z) from (22), and
the relation (18) implies W € C?T(E). Furthermore, we infer the estimate

llqll
— [lg|C2(a)

for the fixed point f = Lf from (20) and (25). Due to (18), we can estimate
the C?*%(E)-norm for the perturbation of the identity caused by Tg[f](z) in
(22). When we assume ||¢|| to be sufficiently small, the mapping

7=, (27)

W(z):E— Q€ C*(E,C) (28)
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represents a positive-oriented diffeomorphism onto the Jordan domain 2 C C,
with the C?T®-boundary 92 constituting a Jordan curve. With the aid of
results in Chapter IV, §§7-8 we now transform the set (2 conformally onto
the unit disc B via the mapping X (w) : 2 — B, such that X o W(0) =0 is
fulfilled. The mapping X ~! : B — 2 belongs to the class C1''(B) according
to Theorem 5 in Chapter IV, §8. Then Theorem 2 from §7 implies

(XoW)t=W1toX': B~ E ¢ C*(B,C),
(X o W)~ 10) = 0.

We summarize our considerations to the following

Theorem 1. (Stability for conformal mappings)
The metric ds®> from (1)* (2)* (3)* satisfies the following inequality with
respect to the metric (2), namely

19jk = @jkllcrsamy <O for G k=1,2 (29)

with a sufficiently small number 6 = 6(a, ) > 0. Then we have a weighted
conformal diffeomorphism x(u,v) = (z*(u,v),z2(u,v)) € C?*T*(B, E) which
satisfies (4)%, (5)%, (8)* . Therefore, the metric ds* appears in the isothermal
form (1).

By a nonlinear continuity method we now prove the uniformization theorem,
which is of central significance for differential geometry, complex analysis, and
the theory of partial differential equations. Already C.F.Gaufl could confor-
mally map analytic surface patches in the small, and L. Lichtenstein locally
mapped differentiable surface patches conformally. Conformal mappings in the
large have been constructed by P. Koebe in the analytic situation, and in the
nonanalytic case C.B. Morrey, E. Heinz, L. Ahlfors, and I. N. Vekua attained
similar results by different methods.

Theorem 2. (Uniformization theorem)

Let the Riemannian metric ds®> from (1)*, (2)* (3)* with the coefficients
gjrx € CYT(E) for j,k = 1,2 be prescribed. Then we have a diffeomorphism
x = x(u,v) € C?**%(B,E) satisfying (4)* (5)% (8)* which transfers the

metric ds® into the isothermal form
ds* = o(u,v)(du® + dv?) in B (30)
with the surface element o = o(u,v) € C***(B, (0, +00)) .
Proof: We deform the metric ds? into the Euclidean metric via
ds?(r) := gﬁ)(:z:l, x?) da? dz* in E, 0<7<1, with
)

9 (zt,2%) == (1 — 7)0, + Tg;(zt, 2?), (z',2%) € E, Jhk=12.
(31)
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For the parameter 7 = 0, the metric ds?(0) = 6,5 dz’ da* is already isother-
mal. With the aid of Theorem 1, we then find a maximal number 7* € (0, 1],
such that all metrics d82(7') with 0 < 7 < 7* can be transferred into the
isothermal form. Theorem 2* now implies that also the metric ds?(7*) can
be transferred into the isothermal form, with the aid of the diffeomorphism
x € C?1(B, E) satisfying (4)*, (5)*, (8)*. If the inequality 7* < 1 were true,
we could - due to Theorem 1 - transfer the metrics ds?(7) for all parameters
7 < 7 < 7" 4+ ¢ - with a sufficiently small number € > 0 - into the isothermal
form. Since the number 7* € (0,1] has been chosen maximal, the identity
7* = 1 holds true. Consequently, the metric

ds? = ds*(1) = g (2, 2?) da? da®
can be transferred into the isothermal form as described above. q.e.d.

We finally note the following

Theorem 3. For each Riemannian metric ds* from (1)*, (2)*, (3)* we have
a C?T(B)-diffeomorphism x = x(u,v) satisfying (4)*,(5)*, (8)* which trans-
fers ds? into the isothermal form

ds* = o(u,v)(du® + dv?) in B (32)
with the surface element o = o(u,v) € C***(B,(0,+00)) .

Proof: For all radii € (0,1), we introduce isothermal parameters into the
metric ds? on E, - according to Theorem 2. With the aid of Theorem 1*, we

then find a solution of (32) by approximation. qed

Remark to Theorem 3: We can derive this theorem alternatively by approxi-
mation with metrics being Euclidean at the boundary. In this context we refer
the reader to the Remark following Theorem 2*.

89 The uniformization method for quasilinear elliptic
differential equations and the Dirichlet problem

We consider the Jordan domain 2 C R? with the C?**-boundary-curve 912 ,
and we investigate the quasilinear elliptic differential equation

a(x,y, z2,p,q)r +2b(z,y, 2,p,q)s + c(x,y, 2, p, )t + d(x,y,2,p,q) =0 in 2
with ac— b2 > 0.

(1)

Here we use the familiar symbols of G. Monge

p=z:(2,y), q=2z(x,y), T=zu(,y), 5= z49(x,y), t=zy(z,y)

(2)
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for the derivatives of a function z = z(z,y) : 2 — R € C*"*(2) . With
adequate assumptions, we introduce isothermal parameters into the metric

ds* = cda® — 2bdx dy + a dy? (3)
via the uniformizing mapping
z+iy = f(w) = f(u,v): B— 2. (4)

Here we apply the uniformization theorem from §8. The deliberations from
Chapter XI, §3 can formally be repeated by substitution of the character-
istic parameters &, 7 with the complex parameters w,w . We now define the
functions

M) = b+ ivac — b2 . (5)

a atiy=f(u,v)
Then we obtain the following system of first order, associated with the differ-
ential equation (1), in the same way as in the theory of characteristics quoted

above:
Yw — )\+xw = 07 Yw — )\_:E’w = Oa

d d
DPw + A quw + afrw =0, pw+)\+Qw+ axw =0, (6)

Zw = PTw — qYw = 0
(with z = z o f(w) etc.). In these equations the derivatives with respect to
w and w, respectively, only appear separately. Therefore, we differentiate the
equations containing 8‘1} with respect to w, and the equations containing 6?1)
are derived with respect to w . We obtain a linear system of equations for the

functions Zyw, Ywws Zwws Pww, Guww, Which we can resolve to these quantities
as in Chapter XI, §3. We introduce the function

x(w) = x(u,v) = (x(u,v), y(u,v), 2(u, v), p(u,v), ¢(u, v)) in B , (7)
and obtain a system
Ax(w) = ®(x(u,v), Xy (u, v), Xy (u,v)), w=u+iv € B, (8)

with quadratic growth in the gradient. One can deduce results for the differ-
ential equation (1) via the system (8) combined with the equations of first
order (6). Estimates for the uniformizing mapping f then guarantee the inde-
pendence of the parametrization.

We remark that the system (8) is deduced by real differentiation from the
differential equation (1) in the original papers of F. Miiller, which have been
quoted in Chapter XI, §6.

With the aid of the uniformization method, we now shall solve Dirichlet’s
problem for the nonparametric equation of prescribed mean curvature. We
choose the bound 0 < hg < 400 , define the disc
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2y := {(:zz,y) €R? : 4hi(2? +¢%) < 1} ,
and fix a Hélder exponent « € (0,1).

Assumption D;: The bounded domain {2 C 2y may have a regular C?+*-
Jordan-curve 0f2 as its boundary, whose curvature satisfies the inequality
k(x,y) > 2ho for all points (z,y) € 92 . Furthermore, let the condition
(0,0) € 2 be fulfilled.

GRAPHIC OF A (2h()-CONVEX DOMAIN - allowing support circles of radius
% uniformly:
0

Assumption Ds: On the circular cylinder

Z:= {(x,y,z) cR3: (z,y) € QO}
we prescribe the mean curvature
H=H(z,y,2): Z—ReC"(2)

with the following properties:
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— We have a height zp € R and a number Hy € [—hg, +hol, such that the

relation
H(z,y,z) = Hp for all (z,y,2) € Z with z<z 9)
holds true.
— We require the monotonicity
0
a—H(J?,y,Z) >0 for all (z,y,2) € Z. (10)
z

— Finally, we assume the bound

|H(x,y,2)| < ho for all (z,y,2) € Z. (11)

According to §2 in Chapter VI, the following problem possesses at most one
solution.

Definition 1. The continuous height representation g : 92 — R € CY(062,R)
being given, we consider a solution z = ((z,y) € C*(2)NCY(2) of Dirichlet’s
problem P(g) for the nonparametric equation of prescribed mean curvature

M((z,y) == (1+ Cz)gmw — 2CCyCay + (1+ C%)ny

s (12)
= 2H(2,y,C(,y) 1+ [VC(z,y)*)*  in £

and
C(zyy) = g(z,y) for all (x,y) € 912. (13)
We additionally set

lgllcon) = sup  |g(z,y)l.
(z,y)€092

Proposition 1. (R. Finn)
A solution ¢ € P(g) of our problem with the boundary distribution g €
C° (092, R) satisfies the following estimates:

1
(@) K@yl <lgleooay+, ~ fordl (wy) e,

0 [ Vi vce iy <3101+ @holl + 920

[0}
Here the symbols |2 and |012| denote the area of the domain §2 and the length
of the curve 052, respectively.

Proof:
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(a)

(b)
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We consider the spherical graphs

1
1 (2,y) = gl oo@n) = \/h2 —(@®+y?), (vy) €. (14
0
These fulfill the differential inequalities
3
M (z,y) = £2ho(1 + [ViE (2, y)[%) 2

3
2H (z,y, 0 (z,9)) (1 +|VnF(z,))*  in £

IN IV

We now deduce a differential inequality for the function

¢(x,y) = ((z,y) —n(z,y) n 0

as in §2 from Chapter VI, taking (10) into account. Then the maximum
principle yields

n (z,y) <C(z,y) <nt(z,y) in 2. (16)

This implies the estimate (a).
We rewrite (12) into the divergence form, abbreviate \/ := V1+|V¢?,

and obtain 9 /¢ 5 /¢
() o () =28

Then we integrate over the domain {2 as follows:

2 / (@, 9)H (2,9, C(z, ) dz dy
(9]

//{8( ) (gjv‘)}d:cdy_é/ 'Vj'%xdy
_84(<\</x dyf/—yd:c)é/\/ d:cdy+[2 &dzdy.

We note (a) and estimate

/ V14 |V¢|2 dady
9

= G Cy —dxdy — x x
aé¢(¢ ) // dz dy 2//§H . ) da dy

< lglleoiom|02 +121+ 2(lgllcvoa + , )hol 2,

and (b) is shown as well. q.e.d.
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Via Theorem 3 from §8, we now introduce conformal parameters into the
graph ¢ € P(g) by the uniformizing mapping

f=f(uv): B—2eC?*B)nC°B) diffeomorphic,

(17)
£(0,0) = (0,0).
Then the function
x(u,v) = (f(u,0),((f(u,v))),  (u,v) €B (18)
is an H-surface in the following sense:
Definition 2. A nonconstant solution x € C?(B,R3) of the system
Ax(u,v) = 2H (x(u, v))Xqy A Xy (u, ) in B, (19)

X (1, 0)|? — % (u,0)]> = 0 = x4 - X, (u, v) m B

is called an H-surface. This surface is called immersed or free of branch points
if the condition

E(u,v) = |xy A xp(u,v)] >0 for all (u,v) € B

1s valid.

Proposition 2. The normal X(u,v) € C***(B) to the immersed H-surface
x satisfies the following differential equation

AX (u,v) +2(2EH(X)2 —EK—-E(VH(x) X))X = —2EVH (x) imn B
(20)
with the notations from Chapter XI, §1.

Proof: From the Weingarten equations (compare [BL]) in conformal parame-
ters

Xu:__xu_ Xuv, Xv:_ Xu —

E FE
we infer the identities

LN — M?

(XAXy)u — (XAXy)y =2X, AX, =2 B2

X, ANX, = 2EKX

and
XAX, =—-X, — 2H(X)xy, XAX, =X, +2H(X)Xy.

On account of
{Hx(u,v))}, = VH(x) - Xy, {H(x(u,v))}, = VH(x) %,

we obtain
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2EKX = (X A X,y)u — (XA Xy
= Xyu + 2(VH - %)Xy + 2HXyuu + Xy + 2(VH - X)X, + 2HXy,
= AX +4EH?*X + 2((VH - %)%, + (VH - x,)%, ).

(21)
Now we expand
VH = (VH- u ) oy (VH- v ) L (VH X)X
1xul/ [%ul x| /) %]
and deduce
(VH -xy)xy + (VH - x,)%, = EVH — E(VH - X)X. (22)
The formulas (21) and (22) imply the differential equation (20). q.e.d.

Theorem 1. (Compactness of graphs)

With the assumptions (D1) and (D3), let the boundary distributions gy €
CY(02,R) for k = 1,2,... be given, and our problem may possess a solution
Ck € Pgk) for each function gi. Furthermore, let the sequence {gk}r=12,...
converge uniformly on 0f2 towards the limit function

g(@) = lim g(z) € C°(02,R).

Then also the limit problem P(g) possesses a solution (.
Proof:

1. As described in (17)-(18), we introduce conformal parameters into the
graphs (i by the uniformizing mappings fr = fr(u,v) : B — 2 . Then we
obtain the immersed H-surfaces

xg(u,v) = (fe(u,v), G (fr(u,v))) = (fr(u,v), 2x(u,v)), (u,v) € B.

(23)
Due to Proposition 1 of R. Finn, this sequence has a uniformly bounded
Dirichlet’s integral. Via the Courant-Lebesgue lemma combined with the
geometric maximum principle of E. Heinz, we prove that the sequence of
functions {xj}r=1,2, . is equicontinuous on the domain B . The Arzela-
Ascoli theorem allows us the transition to a uniformly convergent subse-
quence on B , converging towards an H-surface

x(u,v) = (f(u,v),z(u,v)) : B—-R}*cC*B)nC"B) |, (24)

on account of Theorem2 in §2.
2. Since the surface xj is conformally parametrized, we can eliminate the
third component due to Proposition 2 from § 7; more precisely

|V 2k (u, 0) | < |V fr(u,v)|? in B for k=1,2,... (25)
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We then obtain the sequence of plane mappings
fr(u,v): B— 2 € C*B)NnC°%B) diffeomorphic,
|Afk(uav)| §01|ka(u,v)|2 in B,

fk(0,0) = (0,0),
D(fr) < co for k=1,2,...

(26)

with the constants c1, co and Dirichlet’s integral D(fx) of fi. The distor-
tion estimate of E. Heinz from §5 provides a constant ©(cy, c2,7) > 0 for
each radius r € (0, 1), such that the inequality

IV fe(u,v)| > O(c1,c2,7) for all points  (u,v) € B, (27)

is satisfied on the disc B, := {(u,v) € B : u?+v? < r?}. Here we replace
the image domain B with the domain (2 in the proof of Theorem 3 from
§5. On account of (27), we find the estimate

[V f(u,v)| >0 in B (28)

for the limit mapping, and the H-surface x from (24) is immersed.
. With the normal X(u, v) for the surface x(u,v) we associate the auxiliary
function

o(u,v) := X(u,v) - e >0, (u,v) € B, (29)
where the vector e := (0,0, 1) appears. Introducing the potential-function
q(u,v) :=2(2EH (x)* — EK — E(VH(x) - X)),

Proposition 2 together with (10) yield the differential inequality
Ap(u,v) + q(u, v)p(u,v) <0 in B. (30)

Via multiplication by a nonnegative test function and integration, we ar-
rive at the weak differential inequality

// {V¢(u, v) - Vip(u,v) — q(u, v)o(u, v)w(u,v)} dudv > 0
iy (31)

forall ¢ e C5°(B) with % >0 in B.

Now Moser’s inequality (compare Theorem 1 from Chapter X, §5) per-
tains to solutions of these differential inequalities, and the function ¢ is
subject to the principle of unique continuation. Consequently, the func-
tion ¢ on B must vanish if at least one zero appears in B. Since the case
¢ =0 in B is evidently excluded, we infer

d(u,v) >0 for all (u,v) € B
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and finally
O(z,y)

Jr(u,v) = A(u,v) >0 in B. (32)

Consequently, the function f : B — {2 represents a diffeomorphism of
the class C?(B) N C°(B), when we additionally observe the following:
The boundary mapping f|sp is weakly monotonic, at first. However, this
function cannot develop intervals where it remains constant: Otherwise,
we could easily derive the statement x,,(w) = 0 in B, with the aid of the
conformality relations and the similarity principle: This is impossible, of
course! With the function

C(xvy) Z:Z(f_l(,f,y)), (:v,y)EQ

we finally obtain a solution of the problem P(g). q.e.d.

Proposition 3. (Geometric maximum principle of S. Hildebrandt)
The auziliary function ¢(u,v) = z(u,v)? + y(u,v)?, (u,v) € B , associated
with the H-surface x(u,v) = (z(u,v),y(u,v), z(u,v)) : B — Z , satisfies the
differential inequality

Ap(u,v) >0 in B.

Proof: We calculate

Ad(u,v) = 2(|Vz|* + [Vy[* + z Az +y Ay)
=2(|Vz|* + |Vy|> + 2H (x)(z,y,0) - x4 A Xy).

Since the surface x is represented in conformal parameters, we infer
V2|2 < |Vz|? + |Vy|? in B

and consequently

11
[2H (x)(z,y,0) - Xy AXyp| < 2h02h0 5

< |Vz|? + |Vy)? in B.

(V2] + [Vy* +|V2]?)

We summarize our considerations to the inequality A¢(u,v) > 0 in B. q.e.d.

With a fundamental boundary regularity result of S.Hildebrandt, J.C.C.
Nitsche, F. Tomi, and E. Heinz we prove the following

Theorem 2. (Regularity of graphs)

With the assumptions (Dy) and (Ds) being given, let ¢ € P(g) denote a solu-
tion of our problem to the boundary distribution g € C?*T*(02,R). Then we
have the regularity statement ¢ = ((x,y) € C?*T(£2).
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Proof: We investigate the H-surface

X(ua U) = (f(ua U)vC(f(“ﬂ“)) ) (ua U) €B

again, which belongs to the regularity class C?(B) N C°(B). According to
[DHKW] 7.3, Theorem 2, we infer the regularity statement x € C?*%(B). We
already know the condition

Jr(u,v) >0 in B

for the Jacobian of the uniformizing mapping, and we intend to establish this
estimate on the closed disc OB as well. Let the point wy € 9B be chosen
arbitrarily, and let 2o := z(wp), yo := y(wp) be defined. Via a translation of
the domain 2 C 2y, we can achieve the condition (zg, yo) € 92. According to
the boundary point lemma of E. Hopf, now Proposition 3 implies the following

inequality for the auxiliary function ¢ in polar coordinates w = re*’, namely
10¢
0< =—| = (zz, " 33
O g = BT YY) (33)
Since the function ¢() := ¢(cosd,sind) attains its maximum at the point
Yo, we infer the identity
10¢
0= ==X = 34
299 lv, (zz9 + YY) wo (34)

The relation (33) implies that wy does not represent a branch point, more

precisely
|9 (wo)|* = |xr(wo)[* > 0. (35)
Furthermore, we have a number K > 0 satisfying
7 < K(a) + 7). (36)
From (35) and (36) we infer

< (1+ K)(@5 + y3)

wo wo

0 < (25 +yj + 25)

and consequently

> 0. (37)

wo

(@3 +y3)
Since the mapping f is positive-oriented, we find a parameter A > 0 satisfying
zy(wo) = —Ay(wo), yo(wo) = Azx(wo)

on account of (34). This implies

(xryﬂ - wﬂyr) = /\(‘Txr + yyr) >0

wWo wo
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and equivalently
J f (’wo) > 0.

Therefore, the function f : B — §2 represents a C?7(B)-diffeomorphism,
and the height function

((z,y) :=2(f(=y) ., (z.y) e

belongs to the regularity class C2+*(2). qed

The following result was initiated by considerations of J.C.C. Nitsche for min-
imal surfaces.

Proposition 4. (Stability of graphs) For the boundary distribution g €
C?*t2(00) let ¢ = ((z,y) € P(g) denote a solution of the class C*T(£2).
Then we have a quantity € = €(¢) > 0, such that all boundary distributions
g € C*+2(012) satisfying

19— gllc2rapn) <€
possess a solution of the problem P(g) .

Proof: We solve the problem P(g) via perturbation with a function n(z,y) €
C?T(£2). In this context we have to achieve that besides the function ¢ the
perturbed function ¢ + 7 satisfies the differential equation (12) as well: From
the identity

0= (1 + (Cy + ny)z)(cww + 7711) - 2(@0 + 771)<Cy + ny)(C:Ey + nmy)
(U G+ 1)) oy + ) = 2H (9, m) (L9 + ) )

we deduce the following differential equation - ordered with respect to the
degree of homogeneity in 7,71, . .., nyy, namely

Ln(z,y) =¢(n)  in Q. (39)

(38)

Here the symbol

Ln:=(1+ Cj)nmm = 2 CyMNay + (1+ Cm2)77yy
+a(z, y)ne + b(z,y)ny + c(x,y)n

denotes a linear elliptic differential operator, with coefficients depending on
the quantities ¢, (, ..., (yy . We observe the condition ¢(x,y) < 0in {2, due
to (10). The right-hand side is quadratic and of higher order in 7, 7g, ..., 7y,
and consequently satisfies the contraction condition

16(m) = 6l < C@llm — el ez )

40
for all 7; € C*T(2) with njllcetay <0 and j=1,2. (40)
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Here the property C(o) — 0 for ¢ — 0+ is correct, and we note ¢(0) = 0.
With the aid of the Schauder theory from § 6 in Chapter IX, we now solve the
linear problem

Ln=w in 2,

n=1 on 02
uniquely by a function n € C?*%(2) - for each right-hand side w € C%(£2)

and all boundary values 1 € C?T*(9£2) . For the boundary values ¢ = 0 on
012, we set

(41)

C2r(0) = {77 cC*™ () : n=0on a(z}

We use the symbol Ly := £|C2+o¢(9) for the restriction of the operator L to
the subspace C2+%(§2). Then the operator

w = Lo(n) : CT(02) — C*(N2) (42)
is invertible, and we have Schauder’s estimate
||£51(W)ch+a(9) < CHw”ca(Q) forall weC*(f2) , (43)

due to Theorem 2 in §5 from Chapter IX. Given the boundary values
[Vl c2tea(an) < €, we solve

E??OZO in .Q,

No =Y on Of2. (44)

Here we have to estimate the solution by its boundary values with respect to
the C?T*norm. In this context we firstly estimate the solution 7o (z,y) in the
C°-norm by its boundary values due to Theorem 1 from Chapter VI, § 1. With
the aid of the Schauder theory from Chapter IX, §7 we secondly estimate the
solution in the C?*®-norm by its boundary values. Here we locally straighten
the boundary of the domain, and then we can extend the boundary values
into the ambient space - without augmenting their C?T®-norm. Subtracting
the extended boundary values, we get an inhomogeneous differential equation
with zero boundary values, from which we gain our Schauder estimates. Now

we iterate .
Logsr = () in £,

Met1=1v  on 082

for k =0,1,2,... . With the aid of (40) and (43), we see that the sequence
{Mk}k=1,2,.. converges towards a solution n € C***(£2) of (39) in the Banach
space C?T(02); here we choose the number ¢ > 0 sufficiently small.  q.e.d.

(45)

Theorem 3. (Quasilinear Dirichlet problem)

With the assumptions (Dy) and (Ds), we take an arbitrary boundary func-
tion g € C°(092,R). Then the Dirichlet problem P(g) for the nonparametric
equation of prescribed mean curvature possesses exactly one solution.
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Proof: We note the condition (9) and find a spherical graph n(z,y) : 2 - R €
C?7(£2) of constant mean curvature Hy , such that the differential equation
(12) is fulfilled with the boundary values

f(xvy) = n(xvy); (x,y) S ofn

We solve the problem P(gy) for the family of boundary values

oa(z,y) = f(z,y) + Ag(z,y) — flz,y),  (z,y) € 042, (46)

with 0 < A< 1landg€ C2+“(89,R) . This has already been done for the
start parameter A = 0, and the solvability is - due to Proposition 4 - an open,
and - due to Theorem 1 - also a closed property. Consequently, the Dirichlet
problem P(g,) is solvable for all 0 < A < 1, and - in particular for the terminal
parameter - P(g) possesses a solution ¢ € C?T(£2). With the aid of Theorem
1, we then comprehend the solvability of Dirichlet’s problem for continuous
boundary values. The uniqueness has already been shown in §2 of Chapter
VI. q.e.d.

Remark: This approach to the Dirichlet problem is contained in the following
paper:
F.Sauvigny: Deformation of boundary value problems for surfaces with
prescribed mean curvature. Analysis 21 (2001), 157-169.

810 An outlook on Plateau’s problem
Given the radius M > 0, we define the ball
K = {(:v,y,z) ER?: 2+ 422 < M2}.

Within K we take a rectifiable Jordan curve I' C K, where we fix three points
p; € I' for j =1,2,3. We define the nonvoid class of admissible functions

x € C*(B)NC°(B) NnWh3(B),
Z(I) :=<¢x=x(u,v): B— K : x:0B — I" weakly monotonic,
x(e3'9) =pj, j=1,2,3

Besides the generalized area
2H
Ax) := // {|xu A Xy| + 3 (x,xu,xv)} du dv (1)
B

from Chapter XI, §2 we consider the energy functional of E. Heinz

E(x) = //{(|xu|2+|xv|2) n 4f(x,xu,xv)}dudv 2)
B
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for x € Z(I') , assuming H € [—,},,+,1,] - Dirichlet’s integral
D(x) := // (|xu]? + |x0|?) dudv
B

has the following relationship to this energy functional:
Ex) > ;D(x) for all x € Z(I"). (3)
Furthermore, we observe
2A(x) < E(x) for all x e Z(I), (4)
where equality is exactly attained in the case of conformal parametrization
[xu| = [Xo|, Xu- Xy =0 in B . (5)
This is based on the inequality
)

VEG - F2 < VEG < L (E+G)

for the coefficients of the first fundamental form
dx? = E du® + 2F dudv + G dv?
associate to the surface.

We owe the following result to T. Rad6 and C. B. Morrey:

Proposition 1. (Almost conformal parameters)

Let the function x = (z(u,v),y(u,v), z(u,v)) € Z(I') and the quantity € > 0
be given. Then we have a parameter transformation f(«,3) : B — B which is
topological, such that the surface y(a, 3) :=xo f(a,3) € Z(I") is admissible
and the estimate

1
ZE) < Aly) +¢ (6)
1s fulfilled.

Proof: Since the second summand in 24 and F are parameter-invariant (with
respect to orientation-preserving reparametrizations), we have only to inves-
tigate the case H = 0 . Given the number § > 0 we define the extended

mapping
%(u,v) = (z(u,v),y(u,v), 2(u,v); u,6v) : B — R® (7)

with the first fundamental form

FE=%, %X,=E+6% F=x%x, % =F G=%, %, =G+
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and the surface element
EG—-F?>=EG-F*+8(E+G)+d >0.

According to §8 we introduce isothermal parameters into the regular surface
X(u,v) with the aid of the positive-oriented mapping

F(e, ) = (ule, B), v, B)) : B — B.

The surface

y(a, B) :=xof(a, ) = (XOf(a,ﬁ),éf(a,ﬁ)) = (y(a,ﬁ),éf(a,ﬁ)) : B—R®

satisfies
Vo Y5 =0=ya> =35> in B,

and the transformation formula for multiple integrals yields

D(y)+8*D(f) = DF) =2 || VEG - F2dadp
/
=2 [ V(EG - F?)+82(E +G) + §* dudv
/

§2//\/EG—F2dudv+26//\/E+Gdudv+27r62.
B B
(8)

The quantity € > 0 given, we can find a number § > 0 and an associate
parameter transformation f , such that the inequality (6) holds true for y =

xof. q.e.d.

Proposition 2. (Minimal property)
Let the function x(u,v) € Z(I") denote a solution of the H-surface system
Ax(u,v) = 2H x4y A Xy (1, v) in B

with H € [— 53, , 4 95,)- Then all admissible functions y(u,v) € Z(I') satisfy-
ing y(u,v) = x(u,v) on OB realize the inequality

E(y) =2 E(x). (9)

Proof: With the aid of the Gaussian integral theorem we easily verify the
following identity:

4H
E(x+z):E(x)+//{|Vz|2+ (3x+z,zu,zv)}dudv
3
B (10)
for all z e C§°(B,R3).
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Therefore, we develop

BE(x+z) = //{|VX|2+2V(Z.VX) +|Vz)? —2z.Ax} du dv
B
4H
+ 5 //(x—i—z,xu—i—zu,xv—i—zv)dudv
B
4H
:E(x)+//{|Vz|2—|— 5 (x+z)-zu/\zv—4H(xu,xv,z)}dudv
B
4H
+ 3 //{(z,xu,xu)Jr(x+z,xu,zu)+(x+z,zu,xv)}dudv
B
4H
:E(x)+//{|Vz|2+ 3 (x+z)~zu/\zv}dudv
B
4H
+ 3 //{(x—i—z,xu,z)v—l—(x—l—z,z,xv)u}dudv

_4?{{ // {(Zv,xu,z) + (zu,z,xv)} du dv

B
4H
:E(x)+//{|Vz|2+ 5 (3x+z)~zu/\zv}dudv

B
4H
- 3 //{(zvaxvz)u+(Zu,Z,X)U}dudv
B
:E(X)+//{|VZ|2+ 43H(3X+Z)Zu/\zy}dud’l}
B

Via a well-known approximation procedure we can insert the function z =
y — x with |x + z| < M on B into (10). From the condition |H|M < J we
then infer the inequality (9). qed

We owe the following result for surfaces of constant mean curvature to
E. Heinz:

Theorem 1. (Plateau’s problem)
Let the parameter H € [— 211\/17+211\/[] be given. Then the variational problem

A(x) — minimum, x e Z(IN) (11)

possesses a solution x € Z(I") , representing an H-surface with the curve I’
as its boundary.
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Proof: We define the number

= inf A € (0,
¢ eE(n) (x) € (0, +0)

and choose a minimal sequence {Xy }n=12,.. C Z(I') with

lim A(x,) = a. (12)

n—oo
Via Proposition 1 we make the transition to a sequence {yptn=12,.. C Z(I)
satisfying

1 1
2E(yn)§A(xn)+n, n=12... . (13)

Using Theorem 3 from §4 we can uniquely extend the continuous boundary
values of y, to a solution of Rellich’s system, namely

Az (u,v) = 2H (2)u N (Zn ) (u, v) in B,

(14)
Zn =Yn on OB.
Proposition 2 together with (13) yield the inequality
1 1
2E(zn) < Axp) + n=12,... (15)
n

On account of (3) the sequence {z, }, possesses a uniformly bounded Dirich-
let’s integral. With the aid of the Courant-Lebesgue lemma we see that the
boundary values z,|sp, n = 1,2,... are equicontinuous. W. Jager’s maxi-
mum principle from § 1 allows the transition to a uniformly convergent subse-
quence on the closed disc B. According to §2, Theorem 2 we find a function
z(u,v) € Z(I') in the limit satisfying

Az(u,v) = 2H 24 N 2y in B . (16)

On account of the convergence in C'(B) we infer the following inequality from
(15), namely

a< ;E(z) <a< A(z) (17)

which implies A(z) = %E (z). Consequently, the surface z is conformally para-

metrized and represents a H-surface. qed

On each disc B, (wp) CC B with the center wg € B, our H-surface satisfies
the differential inequality

[Xww(W)| < ¢|xXw] in B, (wp) (18)

with a number ¢ = ¢(wp,r) > 0. According to the similarity principle of
Bers and Vekua (compare §6 in Chapter IV) we then have the asymptotic
representation
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X (w) = a(w — wo)™ + o|w — wo|"), w — wWo. (19)

Here we have the integer n = n(wy) € NU {0} and the nonvanishing complex
vector a = a(wp) € C3\ {0} . Those points wy with n(wy) € N are called
branch points of the H-surface, which are isolated on account of (19). There
the surface is not regular in the differential-geometric sense.

The regularity of H-surfaces - especially at the boundary - is intensively stud-
ied in the beautiful Grundlehren [DHKW] of U. Dierkes and S. Hildebrandt on
Minimal Surfaces. If the boundary curve I' is real-analytic, the solution can
be analytically continued beyond the boundary as an H-surface due to the
result of

F. Miiller: Analyticity of solutions for semilinear elliptic systems of second

order. Calc. Var. and PDE 15 (2002), 257-288.

According to a complicated theorem of Alt-Gulliver-Osserman one can ex-
clude the branch points for the solutions of the above variational problem a
posteriori. However, the desire remains to solve the variational problem (11)
directly in the class

ZN(I) = {x € Z(I) : |xy Axy(u,v)| >0 for all (u,v) € B} . (20)

Finally, we recommend the very interesting monograph by J.C.C. Nitsche [N].

In the case H = 0, Plateau’s problem has been solved independently by
T.Rad6 and J.Douglas, and later R.Courant created the approach using
Dirichlet’s principle.

811 Some historical notices to Chapter XII

We owe to C.F.GauB, already in 1827, the introduction of isothermal para-
meters in the small for real-analytic surfaces. B. Riemann was the first to
solve Plateau’s problem for a quadrilateral in 1867, treating a very special
Riemann-Hilbert problem. In 1866 and 1887, K. Weierstraf3 elaborated the
close relationship between the theories of holomophic functions and minimal
surfaces, respectively.

L. Lichtenstein developed his ideas for conformal mappings between nonan-
alytic surfaces from 1911 to 1916. We owe to T.Carleman, about 1930, the
profound observation that the class of pseudoholomorphic functions share the
property of isolated zeroes with the much smaller class of holomorphic func-
tions. This fact was utilized by P. Hartman and A. Wintner in 1953 for the
investigation of singularities on nonanalytic surfaces.

The significance of isothermal parameters for surfaces of prescribed mean cur-
vature was revealed by F. Rellich: In 1938 he established his H-surface-system.
Then E.Heinz solved the Dirichlet problem for this system by topological
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methods in 1954. Moreover, he developed the profound theory of nonlinear
elliptic systems, in 1956/57, presented here. With his pioneering paper from
1952, E. Heinz also initiated the study of curvature estimates, still flourishing
today.

In 1966, S. Hildebrandt investigated the behavior of minimal surfaces at the
nonanalytic boundary. Moreover, Plateau’s problem for prescribed variable
mean curvature has been solved by S.Hildebrandt in 1969/70 — as well as
regularity problems.

Very influential in this context was R.Courant’s book on Dirichlet’s Prin-
ciple from 1950, who personally built the bridge between Germany and the
United States of America — in Mathematics and beyond. This treatise above,
inspired aready by D. Hilbert, gives a simplified solution of Plateau’s problem
by J.Douglas and T.Radd, the first Fields medalists from 1930.

The Dirichlet problem, for the nonparametric equation of prescribed mean
curvature H, was originally treated by T.Radd in 1930 for the case H=0 —
and by J.Serrin in 1967 for arbitrary H.

In 1976, W. Jéger presented a uniqueness result for the Dirichlet problem of
nonlinear elliptic systems with his well-known maximum principle. We should
note that existence and regularity questions are quite well understood today.
However, the study of the entire set of solutions and their classification remains
a great challenge for the theory of nonlinear partial differential equations in
the future.

On the next page:

MINIMAL SURFACES SPANNING VARIOUS CONTOURS;
taken from the title-page of the monograph by

J. C. C. Nitsche: Vorlesungen tiber Minimalfidchen,
Grundlehren Band 199, Springer-Verlag, Berlin... (1975).
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