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Introduction to Volume 2 – Functional
Analytic Methods

In this second volume, Functional Analytic Methods, we continue our
textbook Partial Differential Equations of Geometry and Physics.
From both areas we shall answer central questions such as curvature estimates
or eigenvalue problems, for instance. With the title of our textbook we also
want to emphasize the pure and applied aspects of partial differential equa-
tions. It turns out that the concepts of solutions are permanently extended in
the theory of partial differential equations. Here the classical methods do not
lose their significance. Besides the n-dimensional theory we equally want to
present the two-dimensional theory – so important to our geometric intuition.

We shall solve the differential equations by the continuity method, the vari-
ational method or the topological method. The continuity method may be
preferred from a geometric point of view, since the stability of the solution is
investigated there. The variational method is very attractive from the physi-
cal point of view; however, difficult regularity questions for the weak solution
appear with this method. The topological method controls the whole set of
solutions during the deformation of the problem, and does not depend on
uniqueness as does the variational method.

We would like to mention that this textbook is a translated and expanded ver-
sion of the monograph by Friedrich Sauvigny: Partielle Differentialgleichungen
der Geometrie und der Physik 2 – Funktionalanalytische Lösungsmethoden
– Unter Berücksichtigung der Vorlesungen von E.Heinz, which appeared in
Springer-Verlag in 2005.

In Chapter VII we consider – in general – nonlinear operators in Banach
spaces. With the aid of Brouwer’s degree of mapping from Chapter III we
prove Schauder’s fixed point theorem in § 1 ; and we supplement Banach’s
fixed point theorem. In § 2 we define the Leray-Schauder degree for mappings
in Banach spaces by a suitable approximation, and we prove its fundamental
properties in § 3 . In this section we refer to the lecture [H4] of my academic
teacher, ProfessorDr. E.Heinz in Göttingen.
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Then, by transition to linear operators in Banach spaces, we prove the funda-
mental solution-theorem of F. Riesz via the Leray-Schauder degree. At the end
of this chapter we derive the Hahn-Banach continuation theorem by Zorn’s
lemma(compare [HS]).

In Chapter VIII on Linear Operators in Hilbert Spaces, we transform the
eigenvalue problems of Sturm-Liouville and of H. Weyl for differential opera-
tors into integral equations in § 1 . Then we consider weakly singular integral
operators in § 2 and prove a theorem of I. Schur on iterated kernels. In § 3
we further develop the results from Chapter II, § 6 on the Hilbert space and
present the abstract completion of pre-Hilbert-spaces. Bounded linear opera-
tors in Hilbert spaces are treated in § 4: The continuation theorem, Adjoint
and Hermitian operators, Hilbert-Schmidt operators, Inverse operators, Bi-
linear forms and the theorem of Lax-Milgram are presented. In § 5 we study
the transformation of Fourier-Plancherel as a unitary operator on the Hilbert
space L2(Rn) .
Completely continuous, respectively compact operators are studied in § 6 to-
gether with weak convergence. The operators with finite square norms rep-
resent an important example. The solution-theorem of Fredholm on opera-
tor equations in Hilbert spaces is deduced from the corresponding result of
F. Riesz in Banach spaces. We particularly apply these results to weakly sin-
gular integral operators.
In § 7 we prove the spectral theorem of F. Rellich on completely continuous
and Hermitian operators by variational methods. Then we address the Sturm-
Liouville eigenvalue problem in § 8 and expand the relevant integral kernels
into their eigenfunctions. Following ideas of H. Weyl we treat the eigenvalue
problem for the Laplacian on domains in Rn by the integral equation method
in § 9. In this chapter as well, we take a lecture of Professor Dr. E.Heinz
into consideration (compare [H3]). For the study of eigenvalue problems we
recommend the classical treatise [CH] of R. Courant and D. Hilbert, which has
also smoothed the way into modern physics.

We have been guided into functional analysis with the aid of problems concern-
ing differential operators in mathematical physics (compare [He1] and [He2]).
The usual content of functional analysis can be taken from the Chapters II
§§ 6-8, VII and VIII. Additionally, we investigated the solvability of nonlinear
operator equations in Banach spaces. For the spectral theorem of unbounded,
selfadjoint operators we refer the reader to the literature.

In our compendium we shall directly construct classical solutions of boundary
and initial value problems for linear and nonlinear partial differential equa-
tions with the aid of functional analytic methods. By appropriate a priori esti-
mates with respect to the Hölder norm we establish the existence of solutions
in classical function spaces.

In Chapter IX, §§ 1-3 , we essentially follow the book of I. N. Vekua [V] and
solve the Riemann-Hilbert boundary value problem by the integral equation
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method. Using the lecture [H6] , we present Schauder’s continuity method in
§§ 4-7 in order to solve boundary value problems for linear elliptic differential
equations with n independent variables. Therefore, we completely prove the
Schauder estimates.

In Chapter X on weak solutions of elliptic differential equations, we profit from
the Grundlehren [GT] Chapters 7 and 8 of D. Gilbarg and N. S. Trudinger.
Here, we additionally recommend the textbook [Jo] of J. Jost and the com-
pendium [E] by L. C. Evans.
We introduce Sobolev spaces in § 1 and prove the embedding theorems in
§ 2. Having established the existence of weak solutions in § 3 , we show the
boundedness of weak solutions by Moser’s iteration method in § 4 . Then
we investigate Hölder continuity of weak solutions in the interior and at the
boundary; see §§ 5-7 . Restricting ourselves to interesting classes of equations,
we can illustrate the methods of proof in a transparent way. Finally, we apply
the results to equations in divergence form; see § 8, § 9, and § 10.

In Chapter XI, §§ 1-2, we concisely lay the foundations of differential geom-
etry (compare [BL]) and of the calculus of variations. Then, we discuss the
theory of characteristics for nonlinear hyperbolic differential equations in two
variables (compare [CH], [G], [H5]) in § 3 and § 4. In particular, we solve the
Cauchy initial value problem via Banach’s fixed point theorem. In § 6 we
present H. Lewy’s ingenious proof for the analyticity theorem of S. Bernstein.
Here, we would like to refer the reader to the textbook by P.Garabedian [G]
as well.

On the basis of Chapter IV from Volume 1, Generalized Analytic Functions,
we treat Nonlinear Elliptic Systems in Chapter XII. We give a detailed survey
of the results at the beginning of this chapter.
Having presented Jäger’s maximum principle in § 1 , we develop the general
theory in §§ 2-5 from the fundamental treatise of E.Heinz [H7] about nonlinear
elliptic systems. An existence theorem for nonlinear elliptic systems is situ-
ated in the center, which is gained by the Leray-Schauder degree. In §§ 6-10 we
apply the results to differential geometric problems. Here, we introduce con-
formal parameters into a nonanalytic Riemannian metric by a nonlinear con-
tinuity method. We directly establish the necessary a priori estimates which
extend to the boundary. Finally, we solve the Dirichlet problem for nonpara-
metric equations of prescibed mean curvature by the uniformization method.
For this chapter, one should also study the Grundlehren [DHKW], especially
Chapter 7, by U. Dierkes and S. Hildebrandt, where the theory of minimal sur-
faces is presented. With the aid of nonlinear elliptic systems we can also study
the Monge-Ampère differential equation, which is not quasilinear any more.
This theory has been developed by H. Lewy, E.Heinz and F. Schulz (vgl. [Sc])
in order to solve Weyl’s embedding problem.

This textbook Partial Differential Equations has been developed from
lectures, which I have been giving in the Brandenburgische Technische Univer-
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sität at Cottbus since the winter semester 1992/93. The monograph , in part,
builds upon the lectures of Professor Dr. E. Heinz, whom I was fortunate to
know as his student in Göttingen from 1971 to 1978. As an assistant in Aachen
from 1978 to 1983, I very much appreciated the elegant lecture cycles of Pro-
fessor Dr. G. Hellwig. Since my research visit to Bonn in 1989/90, Professor
Dr. S. Hildebrandt has followed my academic activities with his supportive
interest. All of them will forever have my sincere gratitude!

My thanks go also to M. Sc. Matthias Bergner for his elaboration of Chapter
IX. Dr. Frank Müller has excellently worked out the further chapters, and
he has composed the whole TEX-manuscript. I am cordially grateful for his
great scientific help. Furthermore, I owe to Mrs. Prescott valuable suggestions
to improve the style of the language. Moreover, I would like to express my
gratitude to the referee of the English edition for his proposal, to add some
historical notices and pictures, as well as to Professor Dr. M. Fröhner for his
help, to incorporate the graphics into this textbook. Finally, I thank Herrn
C. Heine and all the other members of Springer-Verlag for their collaboration
and confidence.

Last but not least, I would like to acknowledge gratefully the continuous
support of my wife, Magdalene Frewer-Sauvigny in our University Library
and at home.

Cottbus, in May 2006 Friedrich Sauvigny
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VII

Operators in Banach Spaces

We shall now present methods from the nonlinear functional analysis. In this
chapter we build upon our deliberations from Chapter II, §§ 6-8. A detailed
account of the contents for this chapter is given in the ’Introduction to Volume
2’ above.

§1 Fixed point theorems

Definition 1. The Banach space B is a linear normed complete (infinite-
dimensional) vector space above the field of real numbers R.

Example 1. Let the set Ω ⊂ Rn be open, 1 ≤ p < +∞, B := Lp(Ω). We have
f ∈ Lp(Ω) if and only if f : Ω → R is measurable and∫

Ω

|f(x)|p dx < +∞

holds true. For the element f ∈ B we define the norm

‖f‖ :=
(∫

Ω

|f(x)|p dx
) 1

p

.

We obtain the Lebesgue space with B. The case p = 2 reduces to the Hilbert
space using the inner product

(f, g) :=
∫
Ω

f(x)g(x) dx.

Example 2. (Hilbert’s sequence space �p) For the sequence x = (x1, x2, x3, . . .)
we have x ∈ �p with 1 ≤ p < +∞ if and only if
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∞∑
i=1

|xi|p < +∞

is fulfilled. By the norm

‖x‖ :=
( ∞∑

i=1

|xi|p
) 1

p

the set �p becomes a Banach space. Obviously, we have �p ⊂ Lp((0,+∞)).

0 1 2 3 4 5

x x x

x x2

3

4

51 . . . . . . . . . . . . . .

Example 3. (Sobolev spaces) Let the numbers k ∈ N, 1 ≤ p < +∞ be given,
and Ω ⊂ Rn denotes an open set. The space

B = W k,p(Ω) :=
{
f : Ω → R : Dαf ∈ Lp(Ω) for all |α| ≤ k

}
with the norm

‖f‖W k,p(Ω) :=
( ∑

|α|≤k

∫
Ω

|Dαf(x)|p dx
) 1

p

, f ∈ B,

represents a Banach space. Here, the vector α = (α1, . . . , αn) ∈ Nn
0 indicates

a multi-index, and we set

|α| :=
n∑

i=1

αi ∈ N0 := N ∪ {0}.

In this context we refer the reader to Chapter X, § 1.

Example 4. Finally, we consider the classical Banach spaces Ck(Ω), k =
0, 1, 2, 3, . . . , on a bounded domain Ω ⊂ Rn. We have f ∈ Ck(Ω) if and
only if

sup
x∈Ω

∑
|α|≤n

|Dαf(x)| < +∞

holds true. Here α ∈ Nn
0 again denotes a multi-index. The vector space B :=

Ck(Ω) equipped with the norm

‖f‖Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω

|Dαf(x)|

is complete, and consequently represents a Banach space. Here, we abbreviate

Dαf(x) :=
∂|α|

∂xα1
1 . . . ∂xαn

n
f(x), α ∈ Nn

0 , N0 := N ∪ {0}.
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Definition 2. A subset K ⊂ B of the Banach space B is named convex, if we
have the inclusion λx + (1 − λ)y ∈ K for each two points x, y ∈ K and each
parameter λ ∈ [0, 1].

Remarks:

1. When K is closed, this set is convex if and only if

x, y ∈ K ⇒ 1
2

(x + y) ∈ K

holds true.
2. For a convex set K we have the following implication: Choosing the points

x1, . . . , xn ∈ K and the parameters λi ≥ 0, i = 1, . . . , n with λ1+. . .+λn =
1, we infer

n∑
i=1

λixi ∈ K.

Definition 3. A subset E ⊂ B is called precompact, if each sequence

{xn}n=1,2,... ⊂ E

contains a Cauchy sequence as a subsequence. If the set E is additionally
closed, which means {xn}n∈N ⊂ E with xn → x for n → ∞ in B implies
x ∈ E, we call the set E compact.

Example 5. Let E ⊂ B be a closed and bounded subset of a finite-dimensional
subspace of B. Then the Weierstraß selection theorem yields that E is com-
pact.

Example 6. For infinite-dimensional Banach spaces, bounded and closed sub-
sets are not necessarily compact: Choosing k ∈ N we consider the set of
sequences xk := (δkj)j=1,2,... in the space �2. As usual, δkj denotes the Kro-
necker symbol. Obviously, we have ‖xk‖ = 1 for k ∈ N and

‖xk − xl‖ =
√

2 (1 − δkl) for all k, l ∈ N.

Therefore, the set {xk}k=1,2,... is not precompact.

Example 7. A bounded set in Ck(Ω) is compact, if we additionally require a
modulus of continuity for the k-th partial derivatives: Consider the set

E :=

⎧⎪⎨⎪⎩f ∈ Ck(Ω) :

‖f‖Ck(Ω) ≤M ;

|Dαf(x)−Dαf(y)| ≤M ′|x− y|ϑ
for all x, y ∈ Ω, |α| = k

⎫⎪⎬⎪⎭
with k ∈ N0, M,M ′ ∈ (0,+∞) and ϑ ∈ (0, 1]. By the Theorem of Arzelà-
Ascoli we easily deduce that the set

E ⊂ B := Ck(Ω)

is compact.
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Definition 4. On the subset E ⊂ B in the Banach space B we have defined
the mapping F : E → B. We call F continuous, if

xn → x for n→∞ in E

implies
F (xn)→ F (x) for n→∞ in B.

We name F completely continuous (or compact as well), if additionally the set
F (E) ⊂ B is precompact; this means all sequences {xn}n=1,2,... ⊂ E contain
a subsequence {xnk

}k ⊂ {xn}n, such that {F (xnk
)}k=1,2,... gives a Cauchy

sequence in B.

Proposition 1. Let K be a precompact subset of the Banach space B. For all
ε > 0 we have finitely many elements w1, . . . , wN ∈ K with N = N(ε) ∈ N,
such that the covering property

K ⊂
N(ε)⋃
j=1

{
x ∈ B : ‖x− wj‖ ≤ ε

2

}
is fulfilled.

Proof: We choose w1 ∈ K and the covering property is already valid if

K ⊂
{
x ∈ B : ‖x− w1‖ ≤ ε

2

}
holds true. When this is not the case, there exists a further point w2 ∈ K
with ‖w2 − w1‖ > ε

2 and we consider the balls{
x ∈ B : ‖x− wj‖ ≤ ε

2

}
for j = 1, 2.

If they do not yet cover the set K , there would exist a third point w3 ∈ K
with ‖w3−wj‖ > ε

2 for j = 1, 2. In case the procedure did not stop, we could
find a sequence {wj}j=1,2... ⊂ K of points satisfying

‖wj − wi‖ > ε

2
for i = 1, . . . , j − 1.

This yields a contradiction to the precompactness of the set K. q.e.d.

Proposition 2. Let K be a precompact set in B, and ε > 0 is arbitrarily given.
Then we have finitely many elements w1, . . . , wN ∈ K with N = N(ε) ∈ N

continuous functions

ti = ti(x) : K → R ∈ C0(K)

satisfying
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ti(x) ≥ 0 and
N∑

i=1

ti(x) = 1 in K,

such that the following inequality holds true:∥∥∥∥ N∑
i=1

ti(x)wi − x

∥∥∥∥ ≤ ε for all x ∈ K.

Proof: We choose the points {w1, . . . , wN} ⊂ K according to Proposition1.
We define the continuous function ϕ(τ) : [0,+∞)→ [0,+∞) via

ϕ(τ) :=

{
ε− τ, for 0 ≤ τ ≤ ε

0, for ε ≤ τ < +∞ ,

and obtain
N∑

j=1

ϕ(‖x− wj‖) ≥ ε

2
for all x ∈ K.

Consequently, the functions

ti(x) :=
ϕ(‖x− wi‖)

N∑
j=1

ϕ(‖x− wj‖)
, x ∈ K, i = 1, . . . , N

are well-defined, and we note that

ti ∈ C0(K, [0, 1]) and
N∑

i=1

ti(x) = 1 for all x ∈ K.

Now, we can estimate as follows:∥∥∥∥x− N∑
i=1

ti(x)wi

∥∥∥∥ =
∥∥∥∥ N∑

i=1

ti(x)(x − wi)
∥∥∥∥

≤
N∑

i=1

ti(x)‖x− wi‖

≤
N∑

i=1

ti(x)ε = ε for all x ∈ K.

This gives us the inequality stated. q.e.d.

Proposition 3. Let the set E ⊂ B be closed and the function F : E → B be
completely continuous. To each number ε > 0 then we have N = N(ε) ∈ N

elements w1, . . . , wN ∈ F (E) and N continuous functions Fj : E → R, j =
1, . . . , N satisfying
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Fj(x) ≥ 0 and
N∑

j=1

Fj(x) = 1, x ∈ E,

such that the following inequality is valid:∥∥∥∥F (x) −
N∑

j=1

Fj(x)wj

∥∥∥∥ ≤ ε for all x ∈ E.

Proof: The set K := F (E) ⊂ B is precompact and we apply Proposition2.
Then we have the elements

w1, . . . , wN ∈ F (E)

and the nonnegative continuous functions

ti = ti(x), x ∈ K

satisfying t1(x) + . . . + tN (x) = 1 in K for each ε > 0, such that∥∥∥∥x− N∑
i=1

ti(x)wi

∥∥∥∥ ≤ ε for all x ∈ K.

Setting Fi(x) := ti(F (x)), x ∈ E, we comprehend the statement above.
q.e.d.

We now consider the unit simplex

Σn−1 :=
{
x ∈ Rn : xi ≥ 0 for i = 1, . . . , n,

n∑
i=1

xi = 1
}

and its projection onto the plane Rn−1 × {0} ⊂ Rn

σn−1 :=
{
x ∈ Rn−1 : xi ≥ 0 for i = 1, . . . , n− 1,

n−1∑
i=1

xi ≤ 1
}
.

n=3

2

2
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We note that

Σn−1 =
{

(x1, . . . , xn) ∈ Rn : xn = 1−
n−1∑
i=1

xi with (x1, . . . , xn−1) ∈ σn−1

}
.

Proposition 4. (Brouwer’s fixed point theorem for the unit simplex)
Each continuous mapping f : Σn−1 → Σn−1 possesses a fixed point.

Proof:

1. The function f = (f1, . . . , fn) : Σn−1 → Σn−1 being given, we define the
mapping g(x) = (g1(x), . . . , gn−1(x)) : σn−1 → σn−1 by

gi(x) = gi(x1, . . . , xn−1) := fi

(
x1, . . . , xn−1, 1−

n−1∑
j=1

xj

)

with i = 1, . . . , n . Now the point η = (η1, . . . , ηn−1) ∈ σn−1 is a fixed
point of the mapping g : σn−1 → σn−1 if and only if the point(

η1, . . . , ηn−1, 1−
n−1∑
i=1

ηi

)
∈ Σn−1

is a fixed point of the mapping f : Σn−1 → Σn−1.
2. We consider the following mapping defined in 1., namely

g = (g1, . . . , gn−1) : σn−1 → σn−1.

The adjoint functions

hi = hi(x1, . . . , xn−1) :=
√
gi(x2

1, . . . , x
2
n−1), i = 1, . . . , n− 1

are defined on the ball

K :=
{

(x1, . . . , xn−1) ∈ Rn−1 : x2
1 + . . . + x2

n−1 ≤ 1
}
.

According to Brouwer’s fixed point theorem for the ball (compare Theo-
rem2 from Chapter III, § 3) the continuous mapping h = (h1, . . . , hn−1) :
K → K has a fixed point ξ = (ξ1, . . . , ξn−1) ∈ K, more precisely h(ξ) = ξ.
This implies

gi(ξ2
1 , . . . , ξ

2
n−1) = ξ2

i for i = 1, . . . , n− 1.

With the point η := (ξ2
1 , . . . , ξ

2
n−1) ∈ σn−1 we finally obtain a fixed point

of the mapping g : σn−1 → σn−1 satisfying g(η) = η. q.e.d.
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Theorem 1. (Schauder’s fixed point theorem)
Let A ⊂ B be a closed and convex subset of the Banach space B. Then each
completely continuous mapping F : A → A possesses a fixed point ξ ∈ A,
more precisely F (ξ) = ξ.

Proof:

1. We apply Proposition3 to the completely continuous mapping F : For each
ε > 0 there exist N = N(ε) ∈ N elements {w1, . . . , wN} ⊂ F (A) ⊂ A and
N nonnegative continuous functions Fj : A → R, j = 1, . . . , N satisfying
F1(x) + . . . + FN (x) = 1 in A, such that∥∥∥∥F (x)−

N(ε)∑
j=1

Fj(x)wj

∥∥∥∥ ≤ ε for all x ∈ A.

We now consider the continuous function

g(λ) = (g1(λ1, . . . , λN ), . . . , gN(λ1, . . . , λN )) : ΣN−1 → ΣN−1

with

gj(λ1, . . . , λN ) := Fj

( N∑
i=1

λiwi

)
, j = 1, . . . , N.

Due to Proposition4, we have a point λ ∈ ΣN−1 satisfying g(λ) = λ. This
implies

Fj

( N∑
i=1

λiwi

)
= λj for j = 1, . . . , N.

2. According to 1. the mapping

Fε(x) :=
N(ε)∑
j=1

Fj(x)wj

possesses the fixed point

ξε :=
N∑

i=1

λiwi.

We note that ‖F (x) − Fε(x)‖ ≤ ε for all x ∈ A holds true and obtain
‖F (ξε) − ξε‖ ≤ ε. Taking the zero sequence ε = 1

n , n = 1, 2, . . . as our
parameter ε, we obtain a sequence of points {ξn}n=1,2,... satisfying

‖F (ξn)− ξn‖ ≤ 1
n
, n = 1, 2, . . .

Since F (A) is precompact, we can select a subsequence such that F (ξnk
) →

ξ(k → ∞). We obtain ξ ∈ A because the set A is closed. Therefore, we
deduce
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‖ξ − ξnk
‖ ≤ ‖F (ξnk

)− ξnk
‖+ ‖ξ − F (ξnk

)‖ → 0 for k →∞.

Together with the continuity of F finally follows

ξ = lim
k→∞

F (ξnk
) = F ( lim

k→∞
ξnk

) = F (ξ).
q.e.d.

We now provide an application of Theorem1, namely

Theorem 2. (Leray’s eigenvalue problem)
Let K(s, t) : [a, b] × [a, b] → (0,+∞) be a continuous and positive integral-
kernel. Then the integral equation

b∫
a

K(s, t)x(t) dt = λx(s), a ≤ s ≤ b,

possesses at least one positive eigenvalue λ with the adjoint nonnegative con-
tinuous eigenfunction x(s) �≡ 0.

Proof: We choose the Banach space B := C0([a, b]) with the norm

‖x‖ := max
a≤s≤b

|x(s)|.

Then we consider the convex subset

A :=
{
x = x(s) ∈ C0([a, b]) : x(s) ≥ 0 in [a, b],

b∫
a

x(s) ds = 1
}
,

which is closed in B. Furthermore, we study the mapping F : A→ A defined
by

F (x) :=

b∫
a

K(s, t)x(t) dt

b∫
a

( b∫
a

K(s, t)x(t) dt
)
ds

, x ∈ A.

With the aid of the Arzelà-Ascoli theorem one shows that the mapping F :
A→ A is completely continuous. According to Schauder’s fixed point theorem
there exists a point ξ ∈ A with F (ξ) = ξ. Consequently, we see

b∫
a

K(s, t)ξ(t) dt =

[ b∫
a

( b∫
a

K(s, t)ξ(t) dt
)
ds

]
ξ(s), s ∈ [a, b].

Therefore, ξ is the desired eigenfunction for the eigenvalue
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λ :=

b∫
a

( b∫
a

K(s, t)ξ(t) dt
)
ds ∈ (0,+∞).

q.e.d.

In Brouwer’s as well as Schauder’s fixed point theorem only the existence of
a fixed point is established, which is in general not uniquely determined. The
subsequent fixed point theorem of S.Banach supplies both the existence and
uniqueness of the fixed point. Furthermore, we shall show the continuous de-
pendence of the fixed point from the parameter. The Picard iteration scheme
proving the existence of initial value problems with ordinary differential equa-
tions already contains the essence of the Banach fixed point theorem in the
classical spaces.

Definition 5. The family of operators Tλ : B → B, 0 ≤ λ ≤ 1, is called
contracting, if we have a constant θ ∈ [0, 1) satisfying

‖Tλ(x) − Tλ(y)‖ ≤ θ‖x− y‖ for all x, y ∈ B und λ ∈ [0, 1].

For each fixed x ∈ B let the curve {Tλ(x)}0≤λ≤1 in B be continuous. If T :=
Tλ : B → B for 0 ≤ λ ≤ 1 is constant, we call the operator T contracting.

Theorem 3. (Banach’s fixed point theorem)
Let the family of operators

Tλ : B → B, 0 ≤ λ ≤ 1

be contracting on the Banach space B. Then we have exactly one point xλ ∈
B satisfying Tλ(xλ) = xλ for each λ ∈ [0, 1], namely a fixed point of Tλ.
Furthermore, the curve

[0, 1] � λ→ xλ ∈ B
is continuous.

Proof:

1. We define yλ := Tλ(0), 0 ≤ λ ≤ 1, and set

� := max
0≤λ≤1

‖yλ‖ ∈ (0,+∞).

On the ball Br := {x ∈ B : ‖x‖ ≤ r} of radius r := �
1−θ ∈ (0,+∞) in the

Banach space B we consider the family of mappings

Tλ : Br → Br, 0 ≤ λ ≤ 1.

Taking x ∈ Br we have

‖Tλ(x)‖ ≤ ‖Tλ(x)− Tλ(0)‖+ ‖Tλ(0)‖
≤ θ‖x‖+ ‖yλ‖ ≤ θr + �

≤ θ
�

1− θ
+ � = r.
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2. For n = 0, 1, 2, . . . we consider the iterated points

x
(n)
λ := T n

λ (0) = Tλ ◦ . . . ◦ Tλ︸ ︷︷ ︸
n−times

(0).

Evidently, we have x
(0)
λ = 0 and x

(1)
λ = yλ for 0 ≤ λ ≤ 1. Furthermore, we

observe

x
(n+1)
λ = x

(n+1)
λ − x

(0)
λ =

n∑
k=0

(
x

(k+1)
λ − x

(k)
λ

)
=

n∑
k=0

(
T k+1

λ (0)− T k
λ (0)

)
.

Now, we can estimate

‖T k+1
λ (0)− T k

λ (0)‖ ≤ θ‖T k
λ (0)− T k−1

λ (0)‖
≤ . . . ≤ θk‖Tλ(0)− T 0

λ(0)‖
= θk‖yλ‖, 0 ≤ λ ≤ 1, k = 0, 1, 2, . . .

Therefore, the series
∞∑

k=0

(
T k+1

λ (0)− T k
λ (0)

)

possesses the convergent majorizing function
∞∑

k=0

θk‖yλ‖, and the following

limit exists:

xλ := lim
n→∞x

(n+1)
λ =

∞∑
k=0

(
T

(k+1)
λ (0)− T

(k)
λ (0)

)
∈ Br.

3. The contracting operator Tλ : B → B is continuous. Consequently, we see

xλ = lim
n→∞x

(n+1)
λ = lim

n→∞Tλ

(
x

(n)
λ

)
= Tλ

(
lim

n→∞x
(n)
λ

)
= Tλ(xλ)

for 0 ≤ λ ≤ 1. The fixed points xλ depend continuously on the parameters
λ ∈ [0, 1]: We choose the parameters λ1, λ2 ∈ [a, b] and infer

‖xλ1 − xλ2‖ = ‖Tλ1(xλ1)− Tλ2(xλ2)‖
≤ ‖Tλ1(xλ1)− Tλ1(xλ2)‖ + ‖Tλ1(xλ2)− Tλ2(xλ2 )‖
≤ θ‖xλ1 − xλ2‖+ ‖Tλ1(xλ2)− Tλ2(xλ2)‖

as well as
‖xλ1 − xλ2‖ ≤

1
1− θ

‖Tλ1(xλ2 )− Tλ2(xλ2)‖.
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4. Finally, we show the uniqueness of the fixed point. Therefore, we consider
two elements xλ, x̃λ ∈ B satisfying

xλ = Tλ(xλ), x̃λ = Tλ(x̃λ).

Then the contraction inequality implies

‖xλ − x̃λ‖ = ‖Tλ(xλ)− Tλ(x̃λ)‖ ≤ θ‖xλ − x̃λ‖
and ‖xλ − x̃λ‖ = 0 or xλ = x̃λ for λ ∈ [0, 1]. q.e.d.

Remark: If the family of operators Tλ depends even differentiably on the
parameter λ ∈ [0, 1], we can additionally deduce the differentiable dependence
of the fixed point from the parameter as in part 3 of the proof above.

§2 The Leray-Schauder degree of mapping

In the sequel we denote mappings between Banach spaces B by

f : B → B, x �→ f(x).

Let B be a finite-dimensional Banach space with 1 ≤ dimB = n < +∞.
Furthermore, we have the bounded open set Ω ⊂ B and g : Ω → B denotes
a continuous mapping with the property 0 /∈ g(∂Ω). At first, we shall define
the degree of mapping δB(g,Ω).

Let {w1, ..., wn} ⊂ B constitute a basis of the linear space B. Consider the
coordinate mapping

ψ = ψw1...wn(x) := x1w1 + . . . + xnwn, x = (x1, . . . , xn) ∈ Rn.

Evidently, ψ : Rn → B holds true and the inverse mapping ψ−1 : B → Rn

exists. We pull back the mapping g : Ω → B onto the space Rn. Therefore,
we set

Ωn := ψ−1(Ω), ∂Ωn = ψ−1(∂Ω), Ωn = ψ−1(Ω)

and consider the mapping

gn := ψ−1 ◦ g ◦ ψ |Ωn
with 0 /∈ gn(∂Ωn).

Parallel to Chapter III, § 2 we can attribute the degree of mapping d(gn, Ωn)
to the continuous mapping gn : Ωn → Rn.

Definition 1. Let the finite-dimensional Banach space B be given with n =
dimB ∈ N, and Ω ⊂ B denotes a bounded open set. Furthermore, the contin-
uous mapping g : Ω → B with 0 /∈ g(∂Ω) is prescribed. Then we define the
degree of mapping

δB(g,Ω) := d(gn, Ωn).

Here, we have set gn := ψ−1 ◦ g ◦ ψ |Ωn
with Ωn := ψ−1(Ω), and ψ : Rn → B

denotes an arbitrary coordinate mapping.



§2 The Leray-Schauder degree of mapping 13

We still have to show the independence of the definition above from the basis
chosen: Let {w∗

1 , ..., w
∗
n} be a further basis of B with the coordinate mapping

ψ∗(x∗) = ψ∗
w∗

1 ...w∗
n
(x∗1, ..., x

∗
n) = x∗1w

∗
1 + . . . + x∗nw

∗
n : Rn → B

and its inverse ψ∗−1 : B → Rn. On Ω∗
n := ψ∗−1(Ω) we define the mapping

g∗n := ψ∗−1 ◦ g ◦ ψ∗ |Ω∗
n
, 0 /∈ g∗n(∂Ω∗

n).

Definition 1 makes sense on account of

Proposition 1. We have d(g∗n, Ω
∗
n) = d(gn, Ωn).

Proof: The mapping
χ := ψ−1 ◦ ψ∗ : Rn → Rn

is linear and nonsingular, and we note that ψ∗ = ψ◦χ. Furthermore, χ(Ω∗
n) =

Ωn holds true and we calculate

g∗n = ψ∗−1 ◦ g ◦ ψ∗ = (ψ ◦ χ)−1 ◦ g ◦ (ψ ◦ χ)

= χ−1 ◦ (ψ−1 ◦ g ◦ ψ) ◦ χ = χ−1 ◦ gn ◦ χ on Ω∗
n.

Now, we have a sequence of mappings

gn,ν : Rn → Rn ∈ C1(Rn,Rn)

with the following properties (compare Chapter III, § 4):

(a) The convergence gn,ν(x) → gn(x) for ν →∞ is uniformly on Ωn.
(b) For all numbers ν ≥ νo the equation

gn,ν(x) = 0, x ∈ Ωn

possesses only finitely many solutions {x(μ)
ν }μ=1,...,pν with the Jacobian

Jgn,ν (x(μ)
ν ) �= 0 for μ = 1, . . . , pν .

The mapping g∗n,ν := χ−1 ◦ gn,ν ◦ χ then satisfies

g∗n,ν(x) → g∗n(x) for ν →∞ uniformly on Ω
∗
n.

The zeroes g∗n,ν(y) = 0, y ∈ Ω
∗
n are evidently given by χ−1(x(μ)

ν ) =: y(μ)
ν for

μ = 1, . . . , pν , and we evaluate

Jg∗
n,ν

(y(μ)
ν ) = (detχ−1) · Jgn,ν (x(μ)

ν ) · detχ = Jgn,ν (x(μ)
ν ), μ = 1, . . . , pν .

With the aid of Theorem3 from Chapter III, § 4 we deduce the following iden-
tity for all ν ≥ ν0:
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d(gn,ν , Ωn) =
pν∑

μ=1

sgnJgn,ν (x(μ)
ν )

=
pν∑

μ=1

sgnJg∗
n,ν

(y(μ)
ν )

= d(g∗n,ν , Ω
∗
n).

Passing to the limit ν →∞, we have proved the statement above. q.e.d.

Via the pull-back onto the space Rn we immediately obtain the subsequent
Propositions 2-5 from the corresponding results in Chapter III.

Proposition 2. Let gλ : Ω → B with a ≤ λ ≤ b denote a family of continuous
mappings, which satisfy the relation gλ(x) → gλ0(x) for λ→ λ0 uniformly on
the set Ω. Furthermore, gλ(x) �= 0 for all x ∈ ∂Ω and λ ∈ [a, b] holds true.
Then we conclude

δB(gλ, Ω) = const on [a, b].

Proposition 3. Let the mapping g : Ω → B be continuous and g(x) �= 0 for
all x ∈ ∂Ω. Furthermore, δB(g,Ω) �= 0 is valid. Then we have a point z ∈ Ω
with g(z) = 0.

Proposition 4. Let Ω1 and Ω2 be bounded open disjoint subsets of B, and
we define Ω := Ω1 ∪ Ω2. Furthermore, g : Ω → B denotes a continuous
mapping satisfying 0 /∈ g(∂Ωi) for i = 1, 2. Then we have the following identity

δB(g,Ω) = δB(g,Ω1) + δB(g,Ω2).

Proposition 5. On the open bounded subset Ω ⊂ B we have defined the con-
tinuous function g : Ω → B. Furthermore, let Ω0 ⊂ Ω be an open set with the
property g(x) �= 0 for all x ∈ Ω \Ω0. Then we have

δB(g,Ω) = δB(g,Ω0).

In the Banach space B we have an open bounded subset Ω ⊂ B. Furthermore,
B′ denotes a finite-dimensional subspace of B satisfying ΩB′ := Ω ∩ B′ �= ∅.
The set ΩB′ is open and bounded in B′, and we have

∂ΩB′ ⊂ ∂Ω ∩ B′, ΩB′ ⊂ Ω ∩ B′.

With the continuous mapping f : Ω → B′ we associate the mapping

ϕf (x) := x− f(x), x ∈ Ω.

For all Banach spaces B′′ ⊃ B′ we have the inclusion

ϕf (Ω ∩ B′′) ⊂ B′′.
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Proposition 6. Let the Banach spaces B′ ⊂ B′′ ⊂ B be given with

0 < dimB′ ≤ dimB′′ < +∞.

The open bounded set Ω ⊂ B fulfills ΩB′ = Ω ∩ B′ �= ∅. With the continuous
mapping f : Ω → B′ we associate ϕf (x) := x− f(x), x ∈ Ω satisfying

ϕf (x) �= 0 for all x ∈ ∂Ω.

Then we have the equality

δB′(ϕf , ΩB′) = δB′′(ϕf , ΩB′′).

Proof: On account of ∂ΩB′ ⊂ ∂Ω and ∂ΩB′′ ⊂ ∂Ω the degrees of mapping
above are well-defined. Without loss of generality we can assume

dimB′′ > dimB′.

We choose a basis {w1, ..., wn} ⊂ B′ of B′ and extend the vectors to a basis

{w1, ..., wn, wn+1, . . . , wn+p} ⊂ B′′

of B′′; with an integer p ∈ N. When we represent the mapping ϕf : B′′ → B′′ in
the coordinates belonging to the basis {w1, . . . , wn+p}, we obtain the mapping
ϕ′′ := ϕf |B′′ : B′′ → B′′ via

(
x1, . . . , xn, xn+1, . . . , xn+p

) �→
(
x1 − f1(x1, . . . , xn, xn+1, . . . , xn+p), . . .

xn − fn(x1, . . . , xn, xn+1, . . . , xn+p),

xn+1, . . . , xn+p

)
.

The restricted mapping ϕ′ := ϕf |B′ : B′ → B′ appears with respect to the
coordinates x1, . . . , xn as follows:

(x1, . . . , xn) �→ (x1−f1(x1, . . . , xn, 0, . . . , 0), . . . , xn−fn(x1, . . . , xn, 0, . . . , 0)).

Now, the function ϕ′′ has a zero x′′ = (
◦
x1, . . . ,

◦
xn, 0, . . . , 0) if and only if ϕ′

has a zero x′ = (
◦
x1, . . . ,

◦
xn), and we see Jϕ′′(x′′) = Jϕ′(x′) and consequently

sgn Jϕ′′(x′′) = sgn Jϕ′(x′).

Summing up all zeroes, we finally obtain

δB′′(ϕf , ΩB′′) = δB′(ϕf , ΩB′). q.e.d.

Definition 2. Let Ω be a bounded open set in B and B′ denotes a linear
subspace of B with 1 ≤ dimB′ < +∞ and ΩB′ := Ω ∩ B′ �= ∅. Furthermore,
let the function f : Ω → B′ be continuous, and we assume

ϕf (x) = x− f(x) �= 0 for all x ∈ ∂Ω.

Then we define
δB(ϕf , Ω) := δB′(ϕf , ΩB′).
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We have to establish independence from the choice of the finite-dimensional
subspace B′ now. Let B′′ ⊂ B with 1 ≤ dimB′′ < +∞ and Ω ∩ B′′ �= ∅ be
an additional subspace of B. We set B∗ := B′ ⊕ B′′, such that B′ ⊂ B∗ and
B′′ ⊂ B∗ holds true. Then Proposition 6 yields

δB′(ϕf , ΩB′) = δB∗(ϕf , ΩB∗) = δB′′(ϕf , ΩB′′).

We shall now present the transition to completely continuous mappings f :
B → B.

Proposition 7. Let the set A ⊂ B be closed and the function f : A → B be
completely continuous satisfying

ϕf (x) = x− f(x) �= 0 for all x ∈ A.

Then we have a number ε > 0, such that ‖ϕf (x)‖ ≥ ε for all x ∈ A holds
true.

Proof: If the statement were violated, we would have a sequence {xn}n=1,2,... ⊂
A satisfying

ϕf (xn) = xn − f(xn)→ 0 for n→∞.

Since the set f(A) is precompact, there exists a subsequence {xnk
}k=1,2,...

with f(xnk
)→ x∗ ∈ B for k →∞. This implies

‖xnk
− x∗‖ ≤ ‖xnk

− f(xnk
)‖ + ‖f(xnk

)− x∗‖ → 0

and xnk
→ x∗ ∈ A for k →∞, because A is closed. Finally, we obtain

ϕf (x∗) = x∗ − f(x∗) = lim
k→∞

(xnk
− f(xnk

)) = 0

contradicting the assumption ϕf �= 0 in A. q.e.d.

Proposition3 from § 1 implies the following

Proposition 8. Let Ω ⊂ B be a bounded open set and f : Ω → B a completely
continuous function. To each number ε > 0 we then have a linear subspace
Bε with 0 < dimBε < +∞ and Ω ∩ Bε �= ∅ as well as a continuous mapping
fε : Ω → Bε with the property

‖fε(x) − f(x)‖ ≤ ε for all x ∈ Ω.

Proof: With the functions Fj(x), x ∈ Ω, j = 1, . . . , N - defined in § 1, Propo-
sition 3 - and the elements w1, . . . , wN ∈ B we choose

fε(x) :=
N∑

j=1

Fj(x)wj .

q.e.d.
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Definition 3. Let the set Ω ⊂ B be bounded and open. The function f :
Ω → B may be completely continuous and its associate function ϕf (x) =
x− f(x) satisfies 0 �∈ ϕf (∂Ω). Then the function g : Ω → Bg ⊂ B is called an
admissible approximation of f , if the following conditions are fulfilled:

(a) The function g is continuous.
(b) The linear subspace Bg satisfies 1 ≤ dimBg < +∞ and Ω ∩ Bg �= ∅.
(c) We have the following inequality

sup
x∈Ω

‖g(x)− f(x)‖ < inf
x∈∂Ω

‖ϕf (x)‖.

Proposition 9. The mapping f : Ω → B fulfills the assumptions of Defini-
tion 3, and g : Ω → Bg as well as h : Ω → Bh are two admissible approxima-
tions of f . Then we have

δB(ϕg, Ω) = δB(ϕh, Ω).

Proof: We set B∗ := Bg ⊕ Bh. This implies

δB(ϕg, Ω) := δBg (ϕg, ΩBg ) = δB∗(ϕg, ΩB∗),

and furthermore
δB(ϕh, Ω) = δB∗(ϕh, ΩB∗).

We now consider the family of mappings

χλ(x) = x− (λg(x) + (1− λ)h(x)
)
, x ∈ Ω, λ ∈ [0, 1].

Setting η := inf
x∈∂Ω

‖ϕf (x)‖ > 0 we can estimate as follows:

‖χλ(x)− ϕf (x)‖ = ‖λ(g(x) − f(x)) + (1− λ)(h(x) − f(x))‖
≤ λ‖g(x)− f(x)‖ + (1− λ)‖h(x) − f(x)‖
< η for all x ∈ ∂Ω.

Consequently, ‖χλ(x)‖ > 0 for all x ∈ ∂Ω and all λ ∈ [0, 1] holds true, and
Proposition2 yields δB∗(χλ, ΩB∗) = const on [0, 1]. We then obtain

δB(ϕg, Ω) = δB∗(χ1, ΩB∗) = δB∗(χ0, ΩB∗) = δB(ϕh, Ω). q.e.d.

Definition 4. The set Ω ⊂ B is bounded and open, and we assume the func-
tion f : Ω → B to be completely continuous such that ϕ(x) = x − f(x) �= 0
for all x ∈ ∂Ω holds true. Furthermore, let g : Ω → Bg be an admissible
approximation of f . Then we call

δB(ϕf , Ω) := δB(ϕg, Ω)

the Leray-Schauder degree of mapping for (ϕf , Ω) with respect to x = 0.
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§3 Fundamental properties for the degree of mapping

At first, we collect our previous results: Let Ω ⊂ B denote a bounded open
set and f : Ω → B a completely continuous function, such that

ϕf (x) = x− f(x) �= 0 for all x ∈ ∂Ω.

Then we have defined our degree of mapping for ϕf by the following chain of
equations:

δB(ϕf , Ω) = δB(ϕg, Ω) = δBg (ϕg, Ω ∩ Bg) = d(ϕn, Ωn).

Here g denotes an admissible approximation, n = dimBg, Ωn is the image
of Ω ∩ Bg with respect to an arbitrary coordinate mapping ψ−1, and ϕn =
ψ−1 ◦ ϕg ◦ ψ|Ωn

.

Theorem 1. (Homotopy)
Let Ω ⊂ B be a bounded open set, and let

fλ : Ω → B, λ ∈ [a, b]

denote a family of mappings with the following properties:

(a) For all λ ∈ [a, b] the mapping fλ : Ω → B is completely continuous.
(b) To each number ε > 0 we have a quantity δ = δ(ε) > 0, such that

‖fλ1(x) − fλ2(x)‖ ≤ ε for all λ1, λ2 ∈ [a, b] with |λ1 − λ2| ≤ δ

holds true for all x ∈ Ω.
(c) For all x ∈ ∂Ω and all λ ∈ [a, b] we have ϕfλ

(x) = x− fλ(x) �= 0.

Then we have the identity δB(ϕfλ
, Ω) = const, λ ∈ [a, b].

Proof: Let λ0 ∈ [a, b] be chosen arbitrarily. Then we have a number ε > 0
satisfying ‖ϕfλ0

(x)‖ ≥ ε for all x ∈ ∂Ω. We construct an admissible approxi-
mation g : Ω → Bg ⊂ B of fλ0 , such that

‖g(x)− fλ0(x)‖ ≤ ε

4
for all x ∈ Ω.

Therefore, we have a number δ = δ(ε) with the following property: All λ ∈
[a, b] with |λ− λ0| ≤ δ fulfill

‖g(x)− fλ(x)‖ ≤ ‖g(x)− fλ0(x)‖ + ‖fλ0(x) − fλ(x)‖ ≤ ε

2
, x ∈ Ω.

On the other hand we have

‖ϕfλ
(x)‖ ≥ ‖ϕfλ0

(x)‖ − ‖ϕfλ
(x) − ϕfλ0

(x)‖ ≥ 3ε
4
, x ∈ ∂Ω
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for |λ − λ0| ≤ δ. Consequently, g is an admissible approximation for all λ ∈
[a, b] with |λ− λ0| ≤ δ, and we see

δB(ϕfλ
, Ω) = δB(g,Ω) for all λ : |λ− λ0| ≤ δ.

A continuation argument finally yields δB(ϕfλ
, Ω) = const on [a, b].

q.e.d.

Theorem 2. (Existence result)
Let the set Ω ⊂ B be bounded and open. The mapping f : Ω → B may be
completely continuous and satisfies

ϕf (x) = x− f(x) �= 0 for all x ∈ ∂Ω.

Finally, let the assumption δB(ϕf , Ω) �= 0 hold true. Then the equation
ϕf (x) = 0 possesses a solution x ∈ Ω, which means the mapping x �→ f(x)
has a fixed point in the set Ω.

Proof: We consider a sequence of admissible approximations gn : Ω → Bgn for
f satisfying

sup
x∈Ω

‖gn(x)− f(x)‖ ≤ 1
n
.

We then obtain

0 �= δB(ϕf , Ω) = δBgn
(ϕgn , Ω ∩ Bgn), n ≥ n0.

According to Proposition3 from § 2 we have a sequence xn ∈ Ω ∩ Bgn , n =
n0, n0 + 1, . . . with

0 = ϕgn(xn) = xn − gn(xn).

This implies

‖xn − f(xn)‖ = ‖xn − gn(xn)‖ + ‖gn(xn)− f(xn)‖ ≤ 1
n
, n ≥ n0,

and therefore
inf
x∈Ω

‖ϕf (x)‖ = inf
x∈Ω

‖x− f(x)‖ = 0.

Due to § 2, Proposition7 there exists a point x0 ∈ Ω with ϕf (x0) = x0 −
f(x0) = 0. q.e.d.

Definition 1. Let Ω ⊂ B denote a bounded open set and f : Ω → B a com-
pletely continuous mapping with the associate mapping ϕf (x) = x− f(x),x ∈
Ω. Furthermore, let the domain G ⊂ B \ ϕf (∂Ω) be given. Then we define

δB(ϕf , Ω, z) = δB(ϕf , Ω,G) := δB(ϕf−z, Ω)

for arbitrary points z ∈ G.
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When we consider the family of mappings ft(x) = f(x) − z(t) with the con-
tinuous curve z(t) : [0, 1] → G, Theorem1 reveals the independence from the
choice of the point z ∈ G. Now we could derive a product theorem as in the
space Rn, which we do not elaborate here. However, we shall generalize the
index-sum formula (compare Theorem1 from Chapter III, § 4) to completely
continuous mappings between Banach spaces.

Proposition 1. Let Ω ⊂ B be a bounded open set, and the mapping f : Ω → B
is completely continuous. Furthermore, let Ω0 ⊂ Ω denote an open subset
satisfying ϕf (x) �= 0 for all x ∈ Ω \Ω0. Then we have

δB(ϕf , Ω) = δB(ϕf , Ω0).

Proof: We observe ∂Ω ⊂ Ω \Ω0 and ∂Ω0 ⊂ Ω \Ω0, which implies

ϕf (x) �= 0 for all x ∈ ∂Ω ∪ ∂Ω0.

Proposition7 from § 2 yields

‖ϕf (x)‖ ≥ ε > 0 for all x ∈ Ω \Ω0,

because Ω \ Ω0 is closed. Take with g : Ω → Bg ⊂ B an admissible approx-
imation satisfying Ω0 ∩ Bg �= ∅ and ‖g(x) − f(x)‖ ≤ ε

2 for all x ∈ Ω. This
implies

‖ϕg(x)‖ ≥ ‖ϕf (x)‖ − ‖ϕf (x)− ϕg(x)‖ ≥ ε

2
for all x ∈ Ω \Ω0.

Together with Proposition5 from § 2 we obtain

δB(ϕf , Ω) = δBg (ϕg, Ω ∩ Bg) = δBg(ϕg, Ω0 ∩ Bg) = δB(ϕf , Ω0).
q.e.d.

Proposition 2. Let the sets Ω1, Ω2 ⊂ B be bounded open and disjoint. Fur-
thermore, we define Ω := Ω1

·∪ Ω2. Then we have

δB(ϕf , Ω) = δB(ϕf , Ω1) + δB(ϕf , Ω2).

Proof: Take with g : Ω → Bg ⊂ B an admissible approximation of f satisfying
Ωi ∩ Bg �= ∅ for i = 1, 2. Then g|Ωi

are admissible approximations of f |Ωi
,

and Proposition 4 from § 2 yields

δB(ϕf , Ω) = δBg (ϕg, Ω ∩ Bg)

= δBg (ϕg, Ω1 ∩ Bg) + δBg (ϕg, Ω2 ∩ Bg)

= δB(ϕf , Ω1) + δB(ϕf , Ω2). q.e.d.
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Definition 2. Let U = U(z) ⊂ B denote an open neighborhood of the point z
and f : U(z) → B a completely continuous mapping. The associate mapping
may fulfill

ϕf (x) �= 0 in U(z) \ {z} and ϕf (z) = 0.

Then we define the index

i(ϕf , z) := δB(ϕf ,K) with K := {x ∈ B : ‖x− z‖ < ε} ⊂⊂ U(z).

Theorem 3. (Index-sum formula)
Let the mapping f : Ω → B be completely continuous. Furthermore, the equa-
tion ϕf (x) = 0 admits exactly p different solutions z1, . . . , zp ∈ Ω. Then we
have the identity

δB(ϕf , Ω) =
p∑

ν=1

i(ϕf , zν).

Proof: Taking ε > 0 sufficiently small, we consider the mutually disjoint balls

Kν := {x ∈ Ω : ‖x− zν‖ < ε}, ν = 1, . . . , p.

We apply Proposition 1 and Proposition2 to Ω0 :=
p⋃

ν=1

Kν ⊂ Ω as follows:

δB(ϕf , Ω) = δB(ϕf , Ω0) =
p∑

ν=1

δB(ϕf ,Kν) =
p∑

ν=1

i(ϕf , zν).
q.e.d.

We collect our arguments to the following

Theorem 4. (Leray, Schauder)
Let Ω ⊂ B be a bounded open set in the Banach space B, and

fλ : Ω → B, a ≤ λ ≤ b

denotes a family of mappings with the following properties:

(a) For all λ ∈ [a, b] the functions fλ : Ω → B are completely continuous.
(b) To each number ε > 0 we have a quantity δ = δ(ε) > 0, such that

‖fλ1(x) − fλ2(x)‖ ≤ ε for all λ1, λ2 ∈ [a, b] with |λ1 − λ2| ≤ δ

holds true for all x ∈ Ω.
(c) For all x ∈ ∂Ω and all λ ∈ [a, b] we have ϕfλ

(x) = x− fλ(x) �= 0.
(d) With a special λ0 ∈ [a, b] the equation

ϕfλ0
(x) = x− fλ0(x) = 0, x ∈ Ω

has finitely many solutions z1, . . . , zp, p ∈ N satisfying
p∑

ν=1

i(ϕfλ0
, zν) �= 0.
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Then the equation ϕfλ
(x) = 0, x ∈ Ω, possesses at least one solution for each

λ ∈ [a, b].

Remark: In Chapter XII we shall prove the existence of solutions for nonlinear
elliptic systems with the aid of Theorem4.

§4 Linear operators in Banach spaces

Let us consider two Banach spaces {Bj, ‖ ‖j} for j = 1, 2. Then we can define
open sets in Bj, j = 1, 2 with the aid of the respective norm ‖ ‖j . In the sequel
we study linear continuous operators

T : B1 → B2.

We call the operator T linear if

T (αx+ βy) = αT (x) + βT (y) for all x, y ∈ B1 and all α, β ∈ R (1)

is valid. The operator T is continuous if and only if T is bounded, or equiva-
lently

‖T ‖ := sup
x∈B1
x 	=0

‖Tx‖2
‖x‖1 < +∞. (2)

At first, we note the following

Theorem 1. (Open mapping principle)
The linear continuous operator T : B1 → B2 is assumed surjective. Then T is
an open mapping, which means the image of each open set is open.

Proof: This is achieved by methods from set-theoretical topology. We refer the
reader to [HS], pp. 39-41 (Satz 9.1) and pp. 21-22 (Lemma 4.1 and Satz 4.3).

Theorem1 immediately implies

Theorem 2. (Inverse operator)
Let the linear continuous operator T : B1 → B2 be bijective. Then the inverse
operator T−1 : B2 → B1 is continuous.

We endow the set B = B1 × B2 with the norm

‖(x, y)‖ :=
√
‖x‖21 + ‖y‖22, (x, y) ∈ B = B1 × B2

and obtain a Banach space. Therefore, open sets are defined in B. We now
define the graph of T : B1 → B2 by

graph (T ) :=
{
(x, Tx) ∈ B1 × B2 : x ∈ B1

}
. (3)
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Theorem 3. (Closed graph)
For a linear operator T : B1 → B2 we have the equivalence: The operator T is
continuous if and only if graph (T ) in B1 × B2 is closed.

Proof:

‘⇒’ We consider a sequence {xn}n=1,2,... ⊂ B1 with xn → x ∈ B1 for n→∞.
Since the operator T is continuous, we infer

lim
n→∞Txn = T ( lim

n→∞xn) = Tx

and consequently

lim
n→∞(xn, Txn) = (x, Tx) ∈ graph (T ).

Therefore, the graph (T ) is closed.
‘⇐’ Let the graph (T ) ⊂ B1 × B2 now be closed. Then this graph represents

a Banach space. The projection

π : graph (T )→ B1, (x, Tx) �→ x

is bijective, linear and continuous. Theorem 2 implies that the mapping
π−1 : B1 → graph (T ) is continuous as well. The projection

� : B1 × B2 → B2, (x, y) �→ y

is evidently continuous, and we finally obtain the continuity of

T = � ◦ π−1 : B1 → B2. q.e.d.

We now choose B1 = B2 = B and consider linear continuous operators T :
B → B. These are injective if and only if ker T := T−1(0) consists only of {0}.
With the aid of the Leray-Schauder degree of mapping we now shall prove a
criterion for the surjectivity of T . In the sequel we denote the open balls in B
by

Br :=
{
x ∈ B : ‖x‖ < r

}
, 0 < r < +∞.

Their boundaries are described by ∂Br = {x ∈ B : ‖x‖ = r}.
Definition 1. The linear operator K : B → B is called compact or alterna-
tively completely continuous, if the condition that K(∂Br) is precompact holds
true for a number r ∈ (0,+∞).

Remarks:

1. This definition is independent of the number r ∈ (0,+∞).
2. A compact operator is bounded and consequently continuous. Therefore,

this definition for linear operators is equivalent to the Definition 4 from
§ 1.
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Definition 2. With the completely continuous operator K : B → B we asso-
ciate the Fredholm operator

Tx := x−Kx = (IdB −K)(x), x ∈ B. (4)

Fundamentally important for the solution of linear operator equations in Ba-
nach spaces is the subsequent

Theorem 4. (F.Riesz)
Let K : B → B be a completely continuous operator on the Banach space B
with the associate Fredholm operator

Tx := (IdB −K)(x) = x−Kx, x ∈ B.

Furthermore, the implication

Tx = 0, x ∈ B ⇒ x = 0

holds true, which means the kernel of T consists only of the zero element.
Then the mapping T : B → B is bijective; the inverse operator T−1 : B → B
for T exists and is bounded on B. Especially, the operator equation

Tx = y, x ∈ B,

possesses exactly one solution for all right-hand sides y ∈ B.

Proof: Choosing r ∈ (0,+∞) arbitrarily, we study the operator Tx = x−Kx,
x ∈ Br. According to the assumptions above, we have

Tx �= 0 for all x ∈ ∂Br.

Proposition7 from § 2 gives us a number ε > 0, such that

‖Tx‖ ≥ εr for all x ∈ ∂Br (5)

is correct. We prescribe y ∈ B and consider the family of operators

Tλx := Tx− λy, x ∈ Br, 0 ≤ λ ≤ 1. (6)

Choosing r sufficiently large, we obtain

‖Tλx‖ ≥ ‖Tx‖ − ‖λy‖ ≥ εr − ‖y‖ > 0

for all x ∈ ∂Br and all λ ∈ [0, 1]. At the initial value λ = 0 the equation
Tλx = 0, x ∈ Br admits exactly one solution, namely the element x = 0 with
the index i(T, 0) �= 0. According to the Leray-Schauder theorem, our equation
Tλx = 0, x ∈ Br possesses at least one solution for each λ ∈ [0, 1]. For the
value λ = 1 especially, we find a solution x ∈ Br satisfying
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Tx = y.

Since the point y has been chosen arbitrarily, the mapping T : B → B is
surjective. The injectivity of T immediately follows from ker T = {0}. Finally,
the inequality

‖Tx‖ ≥ ε‖x‖ for all x ∈ B
implies the boundedness of the operator T−1, namely

‖T−1y‖ ≤ 1
ε
‖y‖ for all y ∈ B.

q.e.d.

We call the linear operator F : B → R a linear functional on the Banach space
B. Concluding this chapter we prove the well-known

Theorem 5. (Extension theorem of Hahn-Banach)
Let L be a subspace of the Banach space B, and f : L → R denotes a linear
continuous mapping with

‖f‖ := sup
x∈L
x 	=0

|f(x)|
‖x‖ .

Then we have a continuous linear functional F : B → R satisfying F (x) =
f(x) for all x ∈ L and ‖F‖ = ‖f‖.
Definition 3. Let L ⊂ B denote a subspace of the Banach space B. We call
the function p = p(x) : L → R superlinear (on L) if

p(λx) = λp(x) for all x ∈ L and all λ ∈ [0,+∞) (7)

and
p(x + y) ≤ p(x) + p(y) for all x, y ∈ L (8)

holds true.

Proposition 1. With the assumptions of Theorem 5 the function

p(x) := inf
y∈L

{
‖f‖ ‖x− y‖+ f(y)

}
, x ∈ B, (9)

is superlinear in B, and we have

p(x) ≤ ‖f‖ ‖x‖, x ∈ B; p(x) ≤ f(x), x ∈ L. (10)

Proof: At first, we note that

p(x) := inf
y∈L

{
‖f‖ ‖x− y‖+ f(y)

}
≥ inf

y∈L

{
f(y) + ‖f‖ ‖y‖ − ‖f‖ ‖x‖

}
≥ −‖f‖ ‖x‖ > −∞, x ∈ B.
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We now deduce (7): For λ = 0, we have

p(0 x) = inf
y∈L

{
‖f‖ ‖y‖+ f(y)

}
= 0 = 0 p(x) for all x ∈ B.

For λ ∈ (0,+∞), we calculate

p(λx) = inf
y∈L

{
‖f‖ ‖λx− y‖+ f(y)

}
= inf

y∈L

{
‖f‖ ‖λx− λy‖+ f(λy)

}
= λ inf

y∈L

{
‖f‖ ‖x− y‖+ f(y)

}
= λp(x) for all x ∈ B.

We now deduce (8): Let the elements x, z ∈ B be chosen arbitrarily. The
number ε > 0 given , there exist elements y1, y2 ∈ L satisfying

p(x) ≥ ‖f‖ ‖x− y1‖+ f(y1)− ε,

p(z) ≥ ‖f‖ ‖z − y2‖+ f(y2)− ε.

Therefore, we can estimate as follows

p(x + z) = inf
y∈L

{
‖f‖ ‖x+ z − y‖+ f(y)

}
≤ ‖f‖ ‖x+ z − (y1 + y2)‖ + f(y1 + y2)

≤ ‖f‖
{
‖x− y1‖+ ‖z − y2‖

}
+ f(y1 + y2)

=
{
‖f‖ ‖x− y1‖+ f(y1)

}
+
{
‖f‖ ‖z − y2‖+ f(y2)

}
≤ p(x) + p(z) + 2ε.

The transition to the limit ε → 0 yields the superlinearity of p(x). We addi-
tionally show (10): We especially choose y = 0 in the definition of p(x) and
obtain

p(x) = inf
y∈L

{
‖f‖ ‖x− y‖+ f(y)

}
≤ ‖f‖ ‖x‖+ f(0) = ‖f‖ ‖x‖, x ∈ B.

Correspondingly, the choice y = x ∈ L implies the inequality

p(x) = inf
y∈L

{
‖f‖ ‖x− y‖+ f(y)

}
≤ f(x), x ∈ L.

This completes the proof. q.e.d.

We now consider the set of functions, which are superlinear in L, namely
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F := S(L) :=
{
p : L → R : p is superlinear in L

}
.

With respect to the relation

p, p̃ ∈ S(L) : p ≤ p̃ ⇔ p(x) ≤ p̃(x) for all x ∈ L (11)

this set is partially ordered in the following sense:

p ≤ p; p ≤ p̃, p̃ ≤ p̂ ⇒ p ≤ p̂; p ≤ p̃, p̃ ≤ p ⇒ p = p̃. (12)

A subset E ⊂ F is called totally ordered, if each two elements p, p̃ ∈ E satisfy
at least one of the alternatives p ≤ p̃ or p̃ ≤ p. The element p∗ ∈ F is called
a lower bound of E if

p∗ ≤ p for all p ∈ E (13)

is correct.

Proposition 2. Each totally ordered subset E ⊂ S(L) possesses a lower bound
p∗ = p∗(E) ∈ S(L).

Proof: Let E = {pi}i∈I ⊂ S(L) be a totally ordered subset. We choose

p∗(x) := inf
i∈I

pi(x), x ∈ L

as a lower bound and show that p∗ is a superlinear function. Here it suffices to
prove the inequality (8). Let x, y ∈ L be chosen arbitrarily. For each number
ε > 0 we then find an index j ∈ I such that

p∗(x) ≥ pj(x)− ε.

Similarly we find an index k ∈ I satisfying

p∗(y) ≥ pk(y)− ε.

Since we have alternatively the inequalities pj ≥ pk or pk ≥ pj in L, both are
even valid with the same index - say j ∈ I. Therefore, we obtain

p∗(x + y) = inf
i∈I

pi(x + y) ≤ pj(x + y)

≤ pj(x) + pj(y) ≤ p∗(x) + p∗(y) + 2ε.

The transition to the limit ε→ 0 yields the statement above. q.e.d.

Definition 4. In a partially ordered set F we call p ∈ F a minimal element
of F if the implication

p̃ ∈ F with p̃ ≤ p ⇒ p̃ = p (14)

is correct. Therefore, we don’t have strictly smaller elements for p.
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Proposition 3. p ∈ S(L) is a minimal element of S(L) if and only if p : L →
R is linear.

Proof:

‘⇐’ Let p(x) : L → R be linear. Furthermore, we choose p̃(x) ∈ S(L) with
p̃ ≤ p, which implies p̃(x) ≤ p(x) for all x ∈ L. We then infer p̃ = p
immediately. If there existed a point y ∈ L with p̃(y) < p(y), we could
deduce

0 = p̃(y − y) ≤ p̃(y) + p̃(−y) < p(y) + p(−y) = p(y − y) = 0.

‘⇒’ The point a ∈ L being fixed, we consider the function

pa(x) := inf
t≥0

{
p(x + ta)− tp(a)

}
, x ∈ L. (15)

We easily see pa(x) ≤ p(x), x ∈ L. Furthermore, we calculate

pa(λx) = inf
t≥0

{
p(λx + ta)− tp(a)

}
= inf

t≥0

{
p(λx + λta)− λtp(a)

}
= λ inf

t≥0

{
p(x + ta)− tp(a)

}
= λpa(x), x ∈ L

for λ > 0. In the case λ = 0 this identity is trivially fulfilled.
We now show that pa(x) also is subject to the inequality (8): Let the
points x, y ∈ L be chosen. As in the proof of Proposition 1 we select
values t1 ≥ 0 and t2 ≥ 0, where the infima pa(x) and pa(y), respectively,
can be approximated up to the quantity ε > 0. This implies

pa(x + y) = inf
t≥0

{
p(x+ y + ta)− tp(a)

}
≤ p(x + y + (t1 + t2)a)− (t1 + t2)p(a)

≤
{
p(x + t1a)− t1p(a)

}
+
{
p(y + t2a)− t2p(a)

}
≤ pa(x) + pa(y) + 2ε,

and the passage to the limit ε→ 0 yields (8). Consequently, the function
pa(x), x ∈ L, is superlinear. Since p(x) is a minimal element in S(L) we
infer

p(x) ≤ pa(x) = inf
t≥0

{
p(x + ta)− tp(a)

}
≤ p(x + a)− p(a)

or equivalently

p(x) + p(a) ≤ p(x + a) ≤ p(x) + p(a) for all x, a ∈ L.
Therefore, p : L → R is linear. q.e.d.
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From set theory we need the following

Proposition 4. (Lemma of Zorn)
In the partially ordered set F we assume that each totally ordered subset E ⊂ F
possesses a lower bound. Then a minimal element exists in F .

We now arrive at the

Proof of Theorem 5: With the assumptions of Theorem5 we consider the su-
perlinear function p(x) from Proposition1 and define the partially ordered
set

F :=
{
p̃ ∈ S(B) : p̃ ≤ p

}
.

According to Proposition2 each totally ordered subset E ⊂ F possesses a
lower bound. From Proposition4 we infer the existence of a minimal element
in F , namely F : B → R. Due to Proposition 3 the latter represents a linear
function. We note (10) and obtain the following inequalities for all x ∈ B,
namely

F (x) ≤ p(x) ≤ ‖f‖ ‖x‖
and

−F (x) = F (−x) ≤ ‖f‖ ‖ − x‖ = ‖f‖ ‖x‖.
This implies |F (x)| ≤ ‖f‖ ‖x‖ for all x ∈ B and consequently ‖F‖ = ‖f‖.
All x ∈ L satisfy the inequality F (x) ≤ p(x) ≤ f(x) and f : L → R is linear.
Therefore, we infer

F (x) = f(x) for all x ∈ L

from Proposition3. q.e.d.

§5 Some historical notices to the Chapters III and VII

By L.Kronecker, H. Poincaré, and L. Brouwer about 1900, the degree of map-
ping in Euclidean spaces has been developed in the framework of combinatorial
topology. Here we refer the reader to the textbook Topologie by P.Alexandroff
and H. Hopf from 1935.
The analytical definition for the degree of mapping was invented by E.Heinz
in 1959, utilizing A.Sard’s lemma on the critical values of differentiable map-
pings from 1942. Our representation in Chapter III contains the Jordan-
Brouwer theorem in Rn, whose proof was given by L. Bers via the product
formula. A beautiful approach to Jordan’s curve theorem was already invented
by E. Schmidt. We would like to recommend B. von Kérékjartó’s monograph
Flächentopologie from 1923 in this context.
The first definition for the degree of mapping in Banach spaces was given
by J. Leray and J. Schauder in their joint paper on functional equations from
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1934. They discovered that the existence question is independent of the an-
swer to the uniqueness problem. Finally, we would like to mention S.Banach’s
influential book Théorie des Opérations Linéaires from 1932 in connection
with §4 of Chapter VII.

Portrait of D.Hilbert (1862–1943);
taken from page 244 of the biography by C.Reid: Hilbert,
Springer-Verlag, Berlin... (1970).



VIII

Linear Operators in Hilbert Spaces

Motivated by the eigenvalue problems for ordinary and partial differential op-
erators, we shall develop the spectral theory for linear operators in Hilbert
spaces. Here we transform the unbounded differential operators into singular
integral operators which are completely continuous. With his study of inte-
gral equations D. Hilbert, together with his students E. Schmidt, I. Schur, and
H. Weyl, opened a new era for the Analysis.

§1 Various eigenvalue problems

At first, we consider the resolution of linear systems of equations: For the
given matrix A = (aij)i,j=1,...,n ∈ Rn×n we associate the mapping

x �→ Ax : Rn → Rn

and the system of equations

n∑
k=1

aikxk = yi, i = 1, . . . , n, or equivalently Ax = y

with the right-hand side y = (y1, . . . , yn)t. The system Ax = y has a solution
for all y ∈ Rn if and only if the homogeneous equation Ax = 0 possesses only
the trivial solution x = 0 and we have x = A−1y. We remark that the concept
of determinants is not necessary in this context.

In Theorem4 from Chapter VII, § 4 by F. Riesz, we have transferred this
solvability theory to linear operators in Banach spaces: Let B be a real Banach
space and K : B → B a linear completely continuous operator with the
associate operator Tx := x−Kx, x ∈ B. If the implication

Tx = 0 ⇒ x = 0
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holds true, the equation
Tx = y, x ∈ B

possesses exactly one solution for all y ∈ B.

We now consider the principal axes transformation of Hermitian matrices:
Let A = (aik)i,k=1,...,n ∈ C n×n denote a Hermitian matrix, which means aik =
aki for all i, k = 1, . . . , n. Then A possesses a complete orthonormal system of
eigenvectors ϕ1, . . . , ϕn ∈ C n with the real eigenvalues λ1, . . . , λn ∈ R, more
precisely

Aϕi = λiϕi, i = 1, . . . , n,

and we have
(ϕi, ϕk) = δik, i, k = 1, . . . , n.

Here we have used the inner product (x, y) := xt ·y. By ξi := (ϕi, x) we denote
the i-th component of x ∈ Cn with respect to (ϕ1, . . . , ϕn) which implies

x =
n∑

i=1

ξiϕi.

Then we note that

Ax =
n∑

i=1

ξiAϕi =
n∑

i=1

λiξiϕi.

We define the diagonal matrix

Λ :=

⎛⎜⎜⎝
λ1 0 . . . 0
0

. . . . . .
......

. . . . . . 0
0 . . . 0 λn

⎞⎟⎟⎠ ∈ Rn×n

and the unitary matrix U−1 := (ϕ1, . . . , ϕn) ∈ C n×n. Now we obtain the
representation x = U−1ξ with ξ = (ξ1, . . . , ξn)t and consequently ξ = Ux.
This implies the equation

U ◦A ◦ U−1 ◦ ξ = U ◦A ◦ x = U ◦ U−1 ◦ Λ ◦ ξ = Λ ◦ ξ

and consequently the unitary transformation

Λ = U ◦A ◦ U−1.

Now we observe U−1 = U∗ = U
t
, and we calculate the transformation of the

associate Hermitian form
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n∑
i,k=1

aikxixk = (x,Ax) =
( n∑

i=1

(ϕi, x)ϕi,
n∑

j=1

(ϕj , x)λjϕj

)

=
n∑

i,j=1

(ϕi, x)(ϕj , x)λjδij

=
n∑

i=1

|(ϕi, x)|2λi =
n∑

i=1

λi|ξi|2.

In the present chapter we intend to deduce the corresponding theorems for
operators in Hilbert spaces. Specializing them to integral operators we shall
treat eigenvalue problems for ordinary and partial differential equations.

Example 1. Let the domain of definition

D :=
{
u = u(x) ∈ C 2[0, π] : u(0) = 0 = u(π)

}
and the differential operator

Lu(x) := −u′′(x), x ∈ [0, π], for u ∈ D
be given. Which numbers λ ∈ R admit a nontrivial solution of the eigenvalue
problem

Lu(x) = λu(x), 0 ≤ x ≤ π, u ∈ D, (1)

satisfying u ∈ D and u �≡ 0?

λ = 0: We have u′′(x) = 0 for x ∈ [0, π] and consequently u(x) = ax + b with
the constants a, b ∈ R. The boundary conditions for u yield 0 = u(0) = b
and 0 = u(π) = aπ + b = aπ, and we obtain

u(x) ≡ 0, x ∈ [0, π].

Therefore, λ = 0 is not an eigenvalue of (1).
λ < 0: Setting λ = −k2 with k ∈ (0,+∞), we rewrite (1) into the form

u′′(x) − k2u(x) = 0, x ∈ [0, π].

Evidently, the functions {ekx, e−kx} constitute a fundamental system of
the differential equation. Taking u(0) = 0 into account, we infer

u(x) = Aekx + Be−kx = A(ekx − e−kx) = 2A sinh(kx).

Noting u(π) = 0, we finally obtain

u(x) ≡ 0, x ∈ [0, π].

Therefore, negative eigenvalues λ < 0 of (1) do not exist.
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λ > 0: We now consider λ = k2 with a number k ∈ (0,+∞). Then (1) is
written in the form

u′′(x) + k2u(x) = 0, x ∈ [0, π].

The fundamental system is given by {cos(kx), sin(kx)} and the general
solution by

u(x) = A cos(kx) + B sin(kx), x ∈ [0, π].

From 0 = u(0) = A we infer u(x) = B sin(kx) for x ∈ [0, π], and the
boundary condition 0 = u(π) = B sin(kπ) implies k ∈ N. In this way we
obtain the eigenvalues λ = k2 of (1) with the eigenfunctions

uk(x) = sin(kx), x ∈ [0, π], k = 1, 2, . . .

Example 2. Let the domain

G :=
{
x = (x1, . . . , xn) ∈ Rn : xi ∈ (0, π), i = 1, . . . , n

}
= (0, π)n ⊂ Rn

be given. On the domain of definition

D :=
{
u ∈ C 2(G) ∩C 0(G) : u|∂G = 0

}
we define the differential operator

Lu(x) := −Δu(x) = −
n∑

i=1

∂2

∂x2
i

u(x), x ∈ G.

We consider the eigenvalue problem

Lu(x) = λu(x), x ∈ G, (2)

for u ∈ D and λ ∈ R. In order to solve this problem we propose the ansatz of
separation

u(x) = u(x1, . . . , xn) := u1(x1) · u2(x2) · . . . · un(xn), x ∈ G.

The differential equation (2) becomes

−
n∑

i=1

u1(x1)·. . .·ui−1(xi−1)u′′
i (xi)ui+1(xi+1)·. . .·un(xn) = λu1(x1)·. . .·un(xn)

and consequently

−
n∑

i=1

u′′
i (xi)
ui(xi)

= λ, x ∈ G.

We now choose ui(xi) := sin(kixi) with ki ∈ N for i = 1, . . . , n, and we obtain
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−
n∑

i=1

u′′
i (xi)
ui(xi)

=
n∑

i=1

k2
i = λ ∈ (0,∞).

The solutions of the eigenvalue problem (2) appear as follows:

u(x1, . . . , xn) := sin(k1x1) · . . . · sin(knxn) and λ = k2
1 + . . . + k2

n

for k1, . . . , kn ∈ N. Normalizing

uk1,...,kn(x1, . . . , xn) :=
( 2
π

)n
2

sin(k1x1) · . . . · sin(knxn), x ∈ G (3)

and using the inner product

(u, v) :=
∫
G

u(x1, . . . , xn)v(x1, . . . , xn) dx1 . . . dxn u, v ∈ D,

we obtain the orthonormal system of functions

(uk1...kn , ul1...ln) = δk1l1 · . . . · δknln for k1, . . . , kn, l1, . . . , ln ∈ N. (4)

On account of
Luk1...kn = (k2

1 + . . . + k2
n)uk1...kn

and
‖uk1...kn‖2L2(G) := (uk1...kn , uk1...kn) = 1

for all k1 . . . kn ∈ N we infer

sup
u∈D, ‖u‖=1

‖Lu‖ ≥ sup
k1...kn∈N

‖Luk1...kn‖ = sup
k1...kn∈N

(k2
1 + . . .+ k2

n) = +∞. (5)

Consequently L = −Δ : L2(G) → L2(G) represents an unbounded operator
on the Hilbert space L2(G).

The following question is of central interest: Do the given functions

{uk1...kn}k1...kn=1,2,...

constitute a complete system? Can we expand an arbitrary function into such
a series of functions?

We now consider the Sturm-Liouville eigenvalue problem:
Let the numbers c1, c2, d1, d2 ∈ R satisfying c21 + c22 > 0 and d2

1 + d2
2 > 0 be

prescribed. We choose the linear space

D :=
{
f ∈ C 2([a, b],R) : c1f(a) + c2f

′(a) = 0 = d1f(b) + d2f
′(b)
}

as our domain of definition, where the numbers −∞ < a < b < +∞ are fixed.
With the functions p = p(x) ∈ C 1([a, b], (0,+∞)) and q = q(x) ∈ C 0([a, b],R)
we define the Sturm-Liouville operator

Lu(x) := − (p(x)u′(x))′ + q(x)u(x), x ∈ [a, b], for u ∈ D.
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Proposition 1. The operator L : D → C 0([a, b],R) is linear and symmetric
satisfying

L(αu + βv) = αLu + βLv for all u, v ∈ D, α, β ∈ R

and

b∫
a

u(x)
(
Lv(x)

)
dx =

b∫
a

(
Lu(x)

)
v(x) dx for all u, v ∈ D.

Proof: The linearity is evident, and we calculate for u, v ∈ D as follows:

vLu− uLv = v(−(pu′)′ + qu)− u(−(pv′)′ + qv)

=
d

dx

{
p(x)(u(x)v′(x)− u′(x)v(x))

}
, x ∈ [a, b].

(6)

This implies

b∫
a

(vLu− uLv) dx =
[
− p(x)(u(x), u′(x)) · (−v′(x), v(x))t

]b
a

= 0,

since the vectors (u(x), u′(x)) and (v(x), v′(x)) are parallel for x = a and
x = b, respectively; here we take u, v ∈ D into account. q.e.d.

We now investigate the eigenvalue problem

Lu = λu, u ∈ D. (7)

Setting

(u, v) :=

b∫
a

u(x)v(x) dx for u, v ∈ D,

we obtain an orthonormal system of eigenfunctions

uk(x) ∈ D with (uk, ul) = δkl, k, l ∈ N

in § 8 satisfying
Luk = λkuk, k = 1, 2, . . .

On account of Example 1 we expect the asymptotic behavior

−∞ < λ1 ≤ λ2 ≤ λ3 ≤ . . .→ +∞ (8)

for the eigenvalues. Consequently, the operator L is unbounded. We shall
derive the expansion into the series



§1 Various eigenvalue problems 37

f(x) =
∞∑

k=1

ckuk(x) with ck = (uk, f)

for all functions f ∈ D. At first, we require the

Assumption 0: The equation Lu = 0 with u ∈ D admits only the trivial
solution u ≡ 0.

The domain D is not complete with respect to the norm ‖u‖ :=
√

(u, u) for
u ∈ D, and the operator L is unbounded in general. Therefore, we cannot
prove the existence of the inverse L−1 by the Theorem of F. Riesz. With the
Assumption 0 however, we shall construct the inverse with the aid of Green’s
function for the Sturm-Liouville operator K = K(x, y). Having achieved this,
we shall transform (7) equivalently into an eigenvalue problem for the bounded
operator L−1, namely

L−1u =
1
λ
u, u ∈ D. (9)

For the construction of the inverse we consider the ordinary differential equa-
tion

Lu(x) = − (p(x)u′(x))′ + q(x)u(x)

= −p(x)u′′(x)− p′(x)u′(x) + q(x)u(x) (10)

= f(x), a ≤ x ≤ b.

The homogeneous equation Lu = 0 possesses a fundamental system α = α(x),
β = β(x) satisfying

Lα(x) ≡ 0 ≡ Lβ(x) in [a, b].

We construct a solution of (10) by the method variation of the constants

u(x) = A(x)α(x) + B(x)β(x), a ≤ x ≤ b, (11)

under the subsidiary condition

A′(x)α(x) + B′(x)β(x) = 0. (12)

With the aid of (12) we calculate

u′(x) = A(x)α′(x) + B(x)β′(x)

and
u′′(x) = A(x)α′′(x) + B(x)β′′(x) + A′(x)α′(x) + B′(x)β′(x).

Together with the formula (11) we obtain

Lu(x) = A(x)Lα(x)+B(x)Lβ(x)−p(x)
{
A′(x)α′(x)+B′(x)β′(x)

}
= f(x) ,
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and therefore

−p(x)
{
A′(x)α′(x) + B′(x)β′(x)

}
= f(x), a ≤ x ≤ b. (13)

By the ansatz

A′(x) = β(x)k(x), B′(x) = −α(x)k(x), a ≤ x ≤ b, (14)

with a continuous function k = k(x), x ∈ [a, b], the relation (12) is fulfilled
and (13) becomes

−p(x) {β(x)α′(x)− α(x)β′(x)} k(x) = f(x), a ≤ x ≤ b. (15)

Proposition 2. The relation p(x){α(x)β′(x) − α′(x)β(x)} =const in [a, b]
holds true.

Proof: Applying (6) to u = α(x) and v = β(x) we infer

0 =
d

dx

{
p(x) (α(x)β′(x) − α′(x)β(x))

}
in [a, b].

q.e.d.

We now choose α = α(x) and β = β(x) to solve the homogeneous equation
Lu = 0 satisfying

p(x)
{
α(x)β′(x) − α′(x)β(x)

}
≡ 1 in [a, b] (16)

and
c1β(a) + c2β

′(a) = 0 = d1α(b) + d2α
′(b). (17)

Here we solve the initial value problems

Lα = 0 in [a, b], α(b) = d2, α′(b) = −d1

and
Lβ = 0 in [a, b], β(a) =

1
M

c2, β′(a) = − 1
M

c1.

Thereby, we determine M �= 0 such that

p(a)
{
α(a)β′(a)− α′(a)β(a)

}
= − 1

M
p(a)

{
c1α(a) + c2α

′(a)
}

= 1

is fulfilled choosing

M = −p(a)
{
c1α(a) + c2α

′(a)
}
.

The statement M �= 0 is contained in the following

Proposition 3. The functions {α, β} constitute a fundamental system.
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Proof: If the statement were violated, we have a number μ �= 0 with the
property

α(x) = μβ(x), a ≤ x ≤ b.

We deduce α ∈ D from (17), and the Assumption 0 yields a contradiction
with α ≡ 0. q.e.d.

The relations (15) and (16) imply

k(x) = f(x) in [a, b], (18)

and (14) yields

A(x) =

x∫
a

β(y)f(y) dy + const, B(x) =

b∫
x

α(y)f(y) dy + const. (19)

We summarize our considerations to the following

Theorem 1. The Sturm-Liouville equation Lu = f for u ∈ D with the right-
hand side f ∈ C 0([a, b]) is solved by the function

u(x) = α(x)

x∫
a

β(y)f(y) dy + β(x)

b∫
x

α(y)f(y) dy =

b∫
a

K(x, y)f(y) dy. (20)

With the aid of the fundamental system {α, β} of Lu = 0 satisfying (16) and
(17), we here define the Green’s function of the Sturm-Liouville operator as
follows:

K(x, y) =

{
α(x)β(y), a ≤ y ≤ x

β(x)α(y), x ≤ y ≤ b.
(21)

Proof: The derivation above implies that the function u(x) from (20) satisfies
the differential equation Lu = f . Furthermore, we see

u(a) = β(a)

b∫
a

α(y)f(y) dy, u′(a) = β′(a)

b∫
a

α(y)f(y) dy,

and (17) gives us

c1u(a) + c2u
′(a) = (c1β(a) + c2β

′(a))

b∫
a

α(y)f(y) dy = 0.

In the same way we determine
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u(b) = α(b)

b∫
a

β(y)f(y) dy, u′(b) = α′(b)

b∫
a

β(y)f(y) dy

and

d1u(b) + d2u
′(b) = (d1α(b) + d2α

′(b))

b∫
a

β(y)f(y) dy = 0.

q.e.d.

Theorem1 directly implies the following

Theorem 2. With the Assumption 0, these subsequent statements are equiv-
alent:

I. The function u ∈ D with u �≡ 0 satisfies Lu = λu.

II. The function u ∈ D with u �≡ 0 satisfies

b∫
a

K(x, y)u(y) dy =
1
λ
u(x) for

a ≤ x ≤ b.

We shall now address the eigenvalue problem of the n-dimensional oscillation
equation considered by H. von Helmholtz : Let G ⊂ Rn be a bounded Dirichlet
domain, which means that all continuous functions g = g(x) : ∂G→ R possess
a solution of the Dirichlet problem

u = u(x) ∈ C 2(G) ∩ C 0(G),

Δu(x) = 0 in G,

u(x) = g(x) on ∂G

(22)

(compare ChapterV, § 3). The further assumption will be eliminated by
Proposition 1 in § 9, namely that G satisfies the conditions of the Gaussian in-
tegral theorem from § 5 in Chapter I. Then we can specify the Green’s function
of the Laplace operator for the domain G as follows:

H(x, y) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
log |y − x|+ h(x, y), n = 2

1
(n− 2)ωn

1
|y − x|n−2

+ h(x, y), n ≥ 3
(23)

for (x, y) ∈ G ⊗G := {(ξ, η) ∈ G×G : ξ �= η}. Here we have Δyh(x, y) = 0
in G and

h(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
2π

log |y − x|, n = 2

− 1
(n− 2)ωn

1
|y − x|n−2

, n ≥ 3
(24)
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for x ∈ G and y ∈ ∂G. Furthermore, ωn denotes the area of the unit sphere
in Rn. According to Chapter V, § 1 and § 2 we can represent a solution of the
problem

u = u(x) ∈ C 2(G) ∩ C 0(G),

−Δu(x) = f(x) in G,

u(x) = 0 on ∂G

(25)

in the following form

u(x) =
∫
G

H(x, y)f(y) dy, x ∈ G. (26)

For the deduction of (26) we consider the domain Gε := {y ∈ G : |y−x| > ε}
with a small ε > 0. The Gaussian integral theorem implies∫

Gε

(
H(x, y)Δu(y)− u(y)ΔyH(x, y)

)
dy

=
∫

∂G

(
H(x, y)

∂u

∂ν
(y)− u(y)

∂H

∂ν
(x, y)

)
dσ(y)

−
∫

y:|y−x|=ε

(
H(x, y)

∂u

∂ν
(y)− u(y)

∂H

∂ν
(x, y)

)
dσ(y).

Observing ε ↓ 0 we obtain

−
∫
G

H(x, y)f(y) dy = lim
ε↓0

∫
r=|y−x|=ε

u(y)
(

1
(n− 2)ωn

(2 − n)r1−n

)
dσ(y)

= − lim
ε↓0

( 1
εn−1ωn

∫
r=|y−x|=ε

u(y) dσ(y)
)

= −u(x) for all x ∈ G

in the case n ≥ 3, and similarly in the case n = 2.

We now derive the symmetry of Green’s function, namely

H(x, y) = H(y, x) for all (x, y) ∈ G⊗G. (27)

Here we choose the points x, y ∈ G satisfying x �= y, and on the domain

Gε :=
{
z ∈ G : |z − x| > ε and |z − y| > ε

}
we consider the functions p(z) := H(x, z) and q(z) := H(y, z), z ∈ Gε. For
ε ↓ 0 the Gaussian integral theorem implies
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0 = lim
ε↓0

∫
Gε

(qΔp − pΔq) dz = lim
ε↓0

∫
∂Gε

(
q
∂p

∂ν
− p

∂q

∂ν

)
dσ(z)

= − lim
ε↓0

∫
|z−x|=ε

(
q
∂p

∂ν
− p

∂q

∂ν

)
dσ(z)− lim

ε↓0

∫
|z−y|=ε

(
q
∂p

∂ν
− p

∂q

∂ν

)
dσ(z)

= q(x) − p(y) = H(y, x)−H(x, y) for all x, y ∈ G with x �= y.

We now show a growth condition for Green’s function H(x, y) as follows: With
ε > 0 given we define the harmonic function

Wε(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
(1 + ε) log

|y − x|
d

, n = 2

1 + ε

(n− 2)ωn
|y − x|2−n, n ≥ 3

setting d := diamG. We consider the function Φε(x, y) := Wε(x, y) −H(x, y)
and choose δ > 0 so small that

Φε(x, y) ≥ 0 for all y : |y − x| = δ and all y ∈ ∂G

is satisfied. Applying the maximum principle to the harmonic function Φε(x, .)
on the domain Gδ := {y ∈ G : |x − y| > δ} we infer Φε(x, y) ≥ 0 in Gδ and
consequently

H(x, y) ≤Wε(x, y) for all ε > 0.

Therefore, we obtain

0 ≤ H(x, y) ≤

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
log

|y − x|
d

, n = 2

1
(n− 2)ωn

|y − x|2−n, n ≥ 3

for all (x, y) ∈ G⊗G and finally the growth condition

|H(x, y)| ≤ const
|x− y|α for all (x, y) ∈ G⊗G (28)

with α := n− 2 < n.

Definition 1. Let G ⊂ Rn denote a bounded domain where n ∈ N holds true,
and let the number α ∈ [0, n) be chosen arbitrarily. A function K = K(x, y) ∈
C 0(G⊗G,C) is called a singular kernel of the order α - briefly K ∈ Sα(G,C)
- if we have a constant c ∈ [0,+∞) satisfying

|K(x, y)| ≤ c

|x− y|α for all (x, y) ∈ G⊗G. (29)

We name the kernel K ∈ Sα(G,C) Hermitian, if
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K(x, y) = K(y, x) for all (x, y) ∈ G⊗G (30)

is valid. The real kernels belong to the class Sα(G) := Sα(G,R), and these
kernels K ∈ Sα(G) are Hermitian if and only if they are symmetric in the
following sense:

K(x, y) = K(y, x) for all (x, y) ∈ G⊗G. (31)

We summarize our considerations about the n-dimensional oscillation equation
to the following

Theorem 3. Let G ⊂ Rn, n = 2, 3, . . . denote a Dirichlet domain satisfying
the assumptions for the Gaussian integral theorem. Furthermore, we fix the
domain of definition

D :=
{
u = u(x) ∈ C2(G) ∩ C0(G) : u(x) = 0 for all x ∈ ∂G

}
.

Then the following two statements are equivalent:

I. The function u ∈ D with u �≡ 0 solves the differential equation

−Δu(x) = λu(x) in G

for a number λ ∈ R.
II. The function u ∈ D with u �≡ 0 solves the integral equation∫

G

H(x, y)u(y) dy =
1
λ
u(x) in G

for a number λ ∈ R \ {0}.
Here Green’s function H(x, y) of the Laplace operator for the domain G
represents a symmetric real singular kernel of the regularity class Sn−2(G).

We finally consider singular integral operators: On the bounded domain G ⊂
Rn with n ∈ N, the singular kernel K = K(x, y) ∈ Sα(G,C) of the order
α ∈ [0, n) is defined. On the domain of definition

D :=

{
u(x) : G→ C ∈ C 0(G,C) :

There exists a number c ∈ [0,+∞)

satisfying |u(x)| ≤ c for all x ∈ G

}

=: C 0
b (G,C) = C 0(G,C) ∩ L∞(G,C)

we consider the integral operator K : D → C 0(G,C) given by

Ku(x) :=
∫
G

K(x, y)u(y) dy, x ∈ G, with u ∈ D.

Evidently, we obtain with K : D → C 0(G,C) a linear operator.
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Theorem 4. Let the kernel K = K(x, y) ∈ Sα(G,C) with α ∈ [0, n) be Her-
mitian. Then we have the following statements:

a) If u ∈ D is an eigenfunction of the associate integral operator, more pre-
cisely u �≡ 0 and Ku = λu with λ ∈ C, we then infer λ ∈ R.

b) Given the two eigenfunctions ui ∈ D with Kui = λiui and i = 1, 2 for the
eigenvalues λ1 �= λ2, we infer (u1, u2) = 0. Here we used the inner product

(u, v) :=
∫
G

u(x)v(x) dx for u, v ∈ D.

Proof:

a) Let u ∈ D\{0} be a solution of the problem Ku = λu with a number
λ ∈ C. This implies

λu(x) =
∫
G

K(x, y)u(y) dy, x ∈ G.

We multiply the equation by u(x) and afterwards integrate over the domain
G with respect to x, and we obtain

λ(u, u) =
∫
G

∫
G

K(x, y)u(x)u(y) dx dy ∈ R.

Since the inner product (u, u) is a real expression, the number λ has to be
real.

b) Let the eigenfunctions ui ∈ D satisfying Kui = λiui with i = 1, 2 and the
eigenvalues λ1 �= λ2 be given. On account of λ1, λ2 ∈ R we infer

λ1(u1, u2) = (λ1u1, u2) = (Ku1, u2) = (u1,Ku2) = (u1, λ2u2) = λ2(u1, u2)

or (λ1−λ2)(u1, u2) = 0 and consequently (u1, u2) = 0. We namely deduce
for all u, v ∈ D:

(Ku, v) =
∫
G

(∫
G

K(x, y)u(y) dy
)
v(x) dx =

∫
G

∫
G

K(x, y)u(y)v(x) dx dy

=
∫
G

∫
G

K(y, x)v(x)u(y) dx dy =
∫
G

u(y)
(∫

G

K(y, x)v(x) dx
)
dy

= (u,Kv).
q.e.d.
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§2 Singular integral equations

In § 1 we have equivalently transformed eigenvalue problems for differential
equations into so-called integral equations of the first kind∫

G

K(x, y)u(y) dy = μu(x), x ∈ G, (1)

with the singular kernels K = K(x, y). Parallel to the swinging equation we
take a bounded Dirichlet domain G ⊂ Rn satisfying the assumptions of the
Gaussian integral theorem with the associate Green’s function H = H(x, y) ∈
Sn−2(G) for the Laplace operator. Especially for the unit ball B := {x ∈ Rn :
|x| < 1} we obtain as Green’s function in the case n = 2:

G(ζ, z) :=
1
2π

log
∣∣∣1− zζ

ζ − z

∣∣∣, (ζ, z) ∈ B ⊗B, (2)

and in the case n ≥ 3:

G(x, y) :=
1

(n− 2)ωn

{
1

|y − x|n−2
− 1

|x|n−2
∣∣∣y − x

|x|2
∣∣∣n−2

}
, (x, y) ∈ B⊗B.

(3)
We now consider the Dirichlet problem

u = u(x) ∈ C2(G) ∩C0(G),

Δu(x) +
n∑

i=1

bi(x)uxi(x) + c(x)u(x) = f(x), x ∈ G,

u(x) = 0, x ∈ ∂G.

(4)

Here we assume the functions bi(x), i = 1, . . . , n, c(x) and f(x) to be Hölder
continuous in G. We transfer the equation (4) into an integral equation as
follows: With the representation

−Δu(x) =
n∑

i=1

bi(x)uxi(x) + c(x)u(x) − f(x) =: g(x), x ∈ G, (5)

we deduce (similarly to the oscillation equation)

u(x) =
∫
G

H(x, y)
{ n∑

i=1

bi(y)uxi(y) + c(y)u(y)− f(y)
}
dy

and
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u(x)−
∫
G

{
(H(x, y)c(y))u(y) +

n∑
i=1

(H(x, y)bi(y))uxi(y)
}
dy

= −
∫
G

H(x, y)f(y) dy for all x ∈ G.

(6)

We differentiate (6) with respect to xj for j = 1, . . . , n and obtain the addi-
tional n equations

uxj(x)−
∫
G

{(
Hxj (x, y)c(y)

)
u(y) +

n∑
i=1

(
Hxj (x, y)bi(y)

)
uxi(y)

}
dy

= −
∫
G

Hxj (x, y)f(y) dy, x ∈ G, j = 1, . . . , n.
(7)

Setting

K00(x, y) := H(x, y)c(y), K0i(x, y) := H(x, y)bi(y),

Kj0(x, y) := Hxj (x, y)c(y), Kji(x, y) := Hxj (x, y)bi(y)

for i, j = 1, . . . , n and

f0(x) := −
∫
G

H(x, y)f(y) dy, fj(x) := −
∫
G

Hxj (x, y)f(y) dy

for j = 1, . . . , n, we arrive at the following

Theorem 1. The solution u = u(x) of (4) is transferred into the system of
Fredholm’s integral equations

uj(x)−
∫
G

n∑
i=0

Kji(x, y)ui(y) dy = fj(x), x ∈ G, j = 0, . . . , n (8)

with the functions u0(x) := u(x) and ui(x) := uxi(x) for i = 1, . . . , n. Here
the singular kernels Kji(x, y) ∈ Sn−1(G) are real for i, j = 0, . . . , n. However,
they are not symmetric in general.

Remark: In the special case n = 2, G = B, b1(x) ≡ 0 ≡ b2(x) in B we can
transfer the problem

u = u(z) ∈ C2(B) ∩ C0(B),

Δu(z) + c(z)u(z) = f(z), z ∈ B,

u(z) = 0, z ∈ ∂B,

(9)

into Fredholm’s integral equation
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u(z)−
∫
B

1
2π

log
∣∣∣1− zζ

ζ − z

∣∣∣c(ζ)u(ζ) dζ = −
∫
B

1
2π

log
∣∣∣1− zζ

ζ − z

∣∣∣f(ζ) dζ, z ∈ B.

(10)
Sometimes (10) is called an integral equation of the second kind. We remark
that the integral kernel which appears is not symmetric in general.

For the Lp-spaces used in the following we refer the reader to Chapter II, § 7.
On the bounded domain G ⊂ Rn we choose a singular kernel K = K(x, y) ∈
Sα(G,C) with α ∈ [0, n). On the domain of definition

D :=
{
f : G→ C ∈ C 0(G) : sup

x∈G
|f(x)| < +∞

}
we consider the associate integral operator

Kf(x) :=
∫
G

K(x, y)f(y) dy, x ∈ G, for f ∈ D. (11)

Choosing an exponent p ∈ (1, n
α

)
, we obtain a constant C = C(c, α, n, p) ∈

(0,+∞) with the following property∫
G

|K(x, y)|pdy ≤ C for all x ∈ G, (12)

due to § 1, Definition 1. When q ∈ ( n
n−α ,+∞) denotes the conjugate exponent

to p satisfying 1
p + 1

q = 1, Hölder’s inequality from Theorem1 in Chapter II,
§ 7 yields the following estimate:

|Kf(x)| ≤
∫
G

|K(x, y)||f(y)| dy

≤
(∫

G

|K(x, y)|p dy
) 1

p
(∫

G

|f(y)|q dy
) 1

q

(13)

≤ C
1
p ‖f‖Lq(G), x ∈ G

for all f ∈ D. Here the symbol

‖f‖p = ‖f‖Lp(G) :=
(∫

G

|f(x)|pdx
) 1

p

, 1 ≤ p < +∞

denotes the Lp-norm on the Banach space

Lp(G) :=
{
f : G→ C measurable : ‖f‖Lp(G) < +∞

}
(compare Chapter II, § 6 and § 7). Furthermore, we introduce the C 0-norm
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‖f‖C0(G) := sup
x∈G

|f(x)|, f ∈ D,

and (13) yields the estimate

‖Kf‖C0(G) ≤ C‖f‖Lq(G) for all f ∈ D (14)

with a constant C ∈ (0,+∞). Therefore, K : D → C 0(G) represents a
bounded linear operator, whereD is endowed with the Lq(G)-Norm (see Chap-
ter II, § 6, Definitions 6, 7 and Theorem3). Parallel to Theorem1 in Chapter II,
§ 8 we can now continue K to the operator

K : Lq(G) → C 0(G) (15)

on the Banach space Lq(G). The set C∞
0 (G) ⊂ D is dense in the space Lq(G)

and for each f ∈ Lq(G) we therefore have a sequence

{fj}j=1,2,... ⊂ C∞
0 (G) satisfying ‖f − fj‖Lq(G) → 0 (j →∞).

We then define
Kf := lim

j→∞
Kfj in C 0(G). (16)

We summarize our considerations to the following

Theorem 2. The integral operator K : D → C 0(G) with the singular kernel
K ∈ Sα(G) and α ∈ [0, n) can be uniquely continued to the bounded linear
operator K : Lq(G) → C 0(G) satisfying

‖Kf‖C0(G) ≤ C(q)‖f‖Lq(G), f ∈ Lq(G) (17)

for each q ∈ ( n
n−α ,+∞), due to (16). Here we have chosen the constant

C = C(q) ∈ (0,+∞) appropriately.

Remark: In the case n ≥ 3, Green’s function of the Laplace operator H =
H(x, y) belongs to the class Sn−2(G) which means α = n−2 and q ∈ (n

2 ,+∞
)
.

Therefore, the associate singular integral operator

H : Lq(G) → C 0(G)

is even defined on the Hilbert space L2(G) for n = 3. In the case n > 3,
Green’s function H cannot be continued onto the Hilbert space L2(G).

For the orders α ∈ [0, n) and β ∈ [0, n) let K = K(x, y) ∈ Sα(G,C) and
L = L(y, z) ∈ Sβ(G,C) denote two singular kernels with the associate integral
operators

Kf(x) :=
∫
G

K(x, y)f(y) dy, x ∈ G; f ∈ D,

Lf(y) :=
∫
G

L(y, z)f(z) dz, y ∈ G; f ∈ D.
(18)
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With the aid of Fubini’s theorem from Chapter II, § 5 we now calculate for all
f ∈ D and all x ∈ G as follows:

K ◦ Lf(x) = K

(∫
G

L(y, z)f(z) dz
)∣∣∣

x

=
∫
G

K(x, y)
(∫

G

L(y, z)f(z) dz
)
dy

=
∫
G

∫
G

K(x, y)L(y, z)f(z) dz dy (19)

=
∫
G

(∫
G

K(x, y)L(y, z) dy
)
f(z) dz

=
∫
G

M(x, z)f(z) dz = Mf(x), x ∈ G.

Here we have as the product kernel

M(x, z) =
∫
G

K(x, y)L(y, z) dy, (x, z) ∈ G⊗G. (20)

Proposition 1. We have the regularity result M = M(x, z) ∈ C 0(G⊗G,C).

Proof: We take the point (x0, z0) ∈ G ⊗G such that x0, z0 ∈ G and x0 �= z0

holds true. Then we choose the number 0 < δ < 1
4 |x0 − z0| sufficiently small

and define the sets

Bδ :=
{
y ∈ G : |y − x0| ≤ 2δ or |y − z0| ≤ 2δ

}
,

Gδ := G\Bδ =
{
y ∈ G : |y − x0| > 2δ and |y − z0| > 2δ

}
.

Given the quantity ε > 0, we find a number δ = δ(ε) > 0 with the property∫
Bδ

|K(x, y)L(y, z)| dy ≤ ε (21)

for all x, z ∈ G with |x− x0| ≤ δ and |z − z0| ≤ δ, taking K ∈ Sα and L ∈ Sβ

into account. Furthermore, we have a number η ∈ (0, δ] such that∣∣∣K(x, y)L(y, z)−K(x0, y)L(y, z0)
∣∣∣ ≤ ε (22)

holds true for all y ∈ Gδ and x, z ∈ G with |x − x0| ≤ η and |z − z0| ≤ η.
Finally, we obtain the following estimate
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|M(x, z)−M(x0, z0)| ≤
∫
Gδ

∣∣∣K(x, y)L(y, z)−K(x0, y)L(y, z0)
∣∣∣ dy

+
∫
Bδ

∣∣∣K(x, y)L(y, z)−K(x0, y)L(y, z0)
∣∣∣ dy

≤ ε|G|+ 2ε

for all x, z ∈ G with |x − x0| ≤ η and |z − z0| ≤ η. Therefore, the regularity
result M = M(x, z) ∈ C 0(G⊗G) is correct. q.e.d.

Proposition 2. If α + β < n holds true, we have M ∈ S0(G,C).

Proof: We have to prove only the boundedness of the kernel M . Without loss
of generality, we can assume α > 0 and β > 0. Taking (x, z) ∈ G ⊗ G, we
estimate with the aid of Hölder’s inequality as follows:

|M(x, z)| ≤
∫
G

|K(x, y)||L(y, z)| dy ≤ c1c2

∫
G

1
|x− y|α

1
|y − z|β dy

≤ c1c2

(∫
G

1
|x− y|α+β

dy

) α
α+β
(∫

G

1
|y − z|α+β

dy

) β
α+β

≤ c1c2C for all (x, z) ∈ G⊗G.

Here we observe C := sup
x∈G

∫
G

1
|x− y|α+β

dy < +∞, since α + β < n holds

true. q.e.d.

Proposition 3. In the case α + β > n, we have the regularity result M ∈
Sα+β−n(G,C).

Proof: We set R := diamG ∈ (0,+∞), and for the points x, z ∈ G satisfying
x �= z we define the quantity δ := |x− z| ∈ (0, R). Then we calculate

|M(x, z)| ≤
∫
G

|K(x, y)||L(y, z)| dy ≤ c

∫
G

1
|x− y|α ·

1
|y − z|β dy

= c

∫
y∈G

|y−x|≤ 1
2 δ

1
|x− y|α

1
|y − z|β dy + c

∫
y∈G

1
2 δ≤|y−x|≤2δ

1
|x− y|α

1
|y − z|β dy

+ c

∫
y∈G

|y−x|≥2δ

1
|x− y|α

1
|y − z|β dy
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with a constant c ∈ (0,+∞).

Taking the point y ∈ G with |y − x| ≤ 1
2δ, we estimate as follows:

|y − z| ≥ |z − x| − |x− y| ≥ δ − 1
2
δ =

1
2
δ.

Taking the point y ∈ G with |y − x| ≥ 2δ, we obtain

|y − z| ≥ |y − x| − |x− z| = |y − x| − δ ≥ |y − x| − 1
2
|y − x| = 1

2
|y − x|.

Consequently, we see

|M(x, z)| ≤ c

(1
2δ)

β

∫
y:|y−x|≤1

2 δ

1
|y − x|α dy +

c

(1
2δ)

α

∫
y:|y−x|≤2δ

1
|y − z|β dy

+
c

(1
2 )β

∫
y:|y−x|≥2δ

1
|y − x|α+β

dy

≤ c

(1
2δ)

β

∫
y:|y−x|≤1

2 δ

1
|y − x|α dy +

c

(1
2δ)

α

∫
y:|y−z|≤3δ

1
|y − z|β dy

+
c

(1
2 )β

∫
y:|y−x|≥2δ

1
|y − x|α+β

dy.

(23)
We now substitute

y = x + �ξ, dy = ωn�
n−1 d�, � ∈ (0,

1
2
δ), ξ ∈ Sn−1,

and calculate

∫
y:|y−x|≤1

2 δ

1
|y − x|α dy =

1
2 δ∫

0

�−α�n−1ωnd� = ωn

1
2 δ∫

0

�n−α−1d�

=
ωn

n− α

[
�n−α

] 1
2 δ

0
=

ωn

n− α

(1
2
δ
)n−α

.

(24)

Analogously, we get ∫
y:|y−z|≤3δ

1
|y − z|β dy =

ωn

n− β
(3δ)n−β . (25)

With the aid of the substitution above, we deduce
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∫
y:|y−x|≥2δ

1
|y − x|α+β

dy = ωn

+∞∫
2δ

�−α−β�n−1d�

= ωn
1

n− (α + β)

[
�n−α−β

]+∞

2δ
(26)

=
ωn

α + β − n
(2δ)n−α−β .

Combining (23), (24), (25), and (26) we finally obtain the estimate

|M(x, z)| ≤ c
{(1

2

)n−α−β ωn

n− α
+ 3n−β

(1
2

)−α ωn

n− β
+

2n−αωn

α + β − n

}
δn−α−β

=
C(n, α, β)
|x− z|α+β−n

for all x, z ∈ G with x �= z.

(27)
Therefore, the statement M ∈ Sα+β−n(G,C) follows. q.e.d.

We summarize our arguments to the subsequent

Theorem 3. (I. Schur)
To the given orders α ∈ [0, n), β ∈ [0, n) let K = K(x, y) ∈ Sα(G,C),
L = L(y, z) ∈ Sβ(G,C) denote singular kernels with the associate integral
operators K, L. Then the composition

K ◦ Lf(x) =
∫
G

M(x, z)f(z) dz, x ∈ G, f ∈ D

represents a singular integral operator as well, where its product kernel

M(x, z) =
∫
G

K(x, y)L(y, z) dy, (x, z) ∈ G⊗G

satisfies the following regularity properties:

M = M(x, y) ∈
{
S0(G,C), if α + β < n

Sα+β−n(G,C), if α + β > n
.

Theorem 4. (Iterated kernels)
Let K = K(x, y) ∈ Sα(G,C) denote a singular kernel of the order 0 < α < n
with the associate integral operator K. Then we have a positive integer k =
k(K) ∈ N and a kernel L = L(x, y) ∈ S0(G,C) with the associate integral
operator L such that

Kkf = Lf for all f ∈ D.
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Proof: We choose β ∈ (α, n) satisfying

β �= m

m + 1
n for all m ∈ N.

This implies
β + m(β − n) �= 0 for all m ∈ N.

With the aid of the theorem by I. Schur we now consider the iterated kernels:

K ∈ Sα ⊂ Sβ , K2 = K ◦K ∈ Sβ+β−n = Sβ+1(β−n),

K3 = K ◦K ◦K ∈ Sβ+2(β−n), . . . , Kk = K ◦ . . . ◦K︸ ︷︷ ︸
k

∈ Sβ+(k−1)(β−n).

We now determine the number k ∈ N such that

β + (k − 2)(β − n) > 0 and β + (k − 1)(β − n) < 0

is satisfied, and we infer

{β + (k − 2)(β − n)} + β = β + (k − 1)(β − n) + n < n.

Theorem3 finally yields Kk ∈ S0(G,C). q.e.d.

An outlook on the treatment of the eigenvalue problem for the n-dimensional
oscillation equation (Weyl’s eigenvalue problem): Parallel to Theorem3 from
§ 1 we use the domain of definition

D0 :=
{
u = u(x) ∈ C 2(G) ∩ C 0(G) : u(x) = 0 on ∂G

}
and consider the eigenvalue problem for the n-dimensional oscillation equation

−Δu(x) = λu(x), x ∈ G; u ∈ D0 \ {0}, λ ∈ R. (28)

In § 9 we show the property λ > 0. Then the differential equation (28) can be
transferred into the singular integral equation

Hu(x) :=
∫
G

H(x, y)u(y) dy =
1
λ
u(x), x ∈ G, (29)

with the singular kernel H = H(x, y) ∈ Sn−2(G) which is symmetric. Accord-
ing to Theorem 4 we now choose a number k ∈ N satisfying

Hku = Ku =
∫
G

K(x, y)u(y) dy, u ∈ D0,

with a kernel K = K(x, y) ∈ S0(G). The eigenvalue problem (29) is trans-
ferred into the equation
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Ku = Hku =
1
λk

u(x), x ∈ G. (30)

Now we can continue the operator K : Lq(G) → C0(G) for each exponent
q > 1, according to Theorem 2. With (30) we obtain an eigenvalue problem
on the Hilbert space L2(G) ⊂ Lq(G), if q ∈ (1, 2] holds true. Therefore, it
suffices in the following considerations to investigate eigenvalue problems for
operators in Hilbert spaces.

§3 The abstract Hilbert space

We now continue the considerations from § 6 in Chapter II.

Postulate (A): H is a linear space. This means H is an additive Abelian
group with 0 as its neutral element:

x, y ∈ H ⇒ x + y ∈ H, x = 0 ∈ H.

Furthermore, we have a scalar multiplication in H: With the number λ ∈ C

and the element x ∈ H the statement λx ∈ H is correct, and the axioms for
vector spaces are valid.

Postulate (B): In H we have defined the inner product

H×H → C

(x, y) �→ (x, y)H

with the following properties:

(a) (x, αy)H = α(x, y)H for all x, y ∈ H and α ∈ C

(b) (x, y)H = (y, x)H for all x, y ∈ H (Hermitian character)
(c) (x1 + x2, y)H = (x1, y)H + (x2, y)H for all x1, x2, y ∈ H
(d) (x, x)H ≥ 0 for all x ∈ H and (x, x)H = 0 ⇔ x = 0 (positive-

definiteness)

Postulate (C): For each positive integer n ∈ N we have n linear independent
elements x1, . . . , xn ∈ H, which means

α1, . . . αn ∈ C,

n∑
i=1

αixi = 0 ⇒ α1 = . . . = αn = 0.

Definition 1. If the set H′ satisfies the Postulates (A), (B),and (C) then H′

is named a pre-Hilbert-space.

Example 1. Let G ⊂ Rn denote a bounded open set and define

H′ :=
{
f : G→ C ∈ C 0(G) : sup

x∈G
|f(x)| < +∞

}
.
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With the inner product

(f, g) :=
∫
G

f(x)g(x) dx, f, g ∈ H′, (1)

the vector space H′ becomes a pre-Hilbert-space.

Theorem 1. In pre-Hilbert-spaces H′ we have the following calculus rules for
the inner product (. , .):

a) For all x, y, y1, y2 ∈ H′, α ∈ C we have

(αx, y) = α(x, y), (x, y1 + y2) = (x, y1) + (x, y2).

Consequently, the bilinear form (. , .) is antilinear in the first and linear in
the second component.

b) The Cauchy-Schwarz inequality is satisfied:

|(x, y)| ≤
√

(x, x)
√

(y, y) for all x, y ∈ H′.

c) Setting ‖x‖ :=
√

(x, x) with x ∈ H′, the pre-Hilbert-space H′ becomes a
normed space. This means

‖x‖ = 0 ⇔ x = 0,

‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ H′,

‖λx‖ = |λ|‖x‖ for all x ∈ H′, λ ∈ C,

‖x− y‖ ≥ | ‖x‖ − ‖y‖ | for all x, y ∈ H′.

d) The inner product is continuous on H′ in the following sense: From the
assumptions

xn → x (n→∞) with {xn}n=1,2,... ⊂ H′ and x ∈ H′

and

yn → y (n→∞) with {yn}n=1,2,... ⊂ H′ and y ∈ H′

we infer
(xn, yn) → (x, y) (n→∞).

Here the symbol xn → x (n → ∞) indicates that ‖xn − x‖ → 0 (n → ∞)
is satisfied.

Proof:
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a) We calculate
(αx, y) = (y, αx) = α(y, x) = α(x, y)

and

(x, y1 + y2) = (y1 + y2, x) = (y1, x) + (y2, x)

= (y1, x) + (y2, x) = (x, y1) + (x, y2).

b) and c) are contained in Chapter II, § 6 - more precisely in Theorem1 with
its proof and the Remark following Definition 1.

d) The subsequent estimate yields this statement:

|(xn, yn)− (x, y)| ≤ |(xn, yn)− (xn, y)|+ |(xn, y)− (x, y)|
= |(xn, yn − y)|+ |(xn − x, y)|
≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ → 0 (n→∞).

q.e.d.

Postulate (D): H is complete. This means each sequence {xn}n=1,2,... ⊂ H
satisfying ‖xn − xm‖ → 0 (n,m → ∞) possesses a limit element x ∈ H such
that

lim
n→∞ ‖xn − x‖ = 0.

Definition 2. If H satifies the Postulates (A), (B), (C),and (D) we name H
a Hilbert space.

Remark: The Hilbert space H becomes a Banach space via the norm given in
Theorem1 c).

Definition 3. The Hilbert space H is separable, if the following Postulate (E)
holds true additionally:

Postulate (E): There exists a sequence {xn}n=1,2,... ⊂ H which is dense
in H: This means for all x ∈ H and every ε > 0 we have an index n ∈ N

satisfying ‖x− xn‖ < ε.

Example 2. Hilbert’s sequential space
We endow the set of sequences

l2 :=
{
x = (x1, x2, . . .) ∈ C× C× . . . :

∞∑
k=1

|xk|2 < +∞
}

with the inner product

(x, y) :=
∞∑

k=1

xkyk ∈ C

and we obtain a separable Hilbert space.
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Example 3. Let G ⊂ Rn be a bounded open set, and by

L2(G) :=
{
f : G→ C measurable :

∫
G

|f(x)|2 dx < +∞
}

we denote the Lebesgue space of the square-integrable functions with the inner
product

(f, g) :=
∫
G

f(x)g(x) dx for f, g ∈ L2(G).

Then H = L2(G) represents a separable Hilbert space. The pre-Hilbert-space
H′ described in Example 1 lies dense in H (compare Chapter II,§ 7).

Parallel to the transition from rational numbers Q to real numbers R we prove
the following result using the ideas of D. Hilbert, which were presented in his
famous book on The Foundations of Geometry:

Theorem 2. (Hilbert’s fundamental theorem)
Each pre-Hilbert-space H′ can be completed to a Hilbert space H such that H′

lies dense in H. We name H the abstract completion of H′. When H′ satisfies
the Postulate (E), then the abstract completion H is a separable Hilbert space.

Proof: Let H′ be a pre-Hilbert-space. We then consider the Cauchy sequences
{f ′

n}n=1,2,... ⊂ H′ and {g′n}n=1,2,... ⊂ H′. We call them equivalent if

f ′
n − g′n → 0 (n→∞)

is satisfied. Now we set

H :=

{
f = [f ′

n]n=1,2,... :
[f ′

n] is the equivalence class

of the Cauchy sequences {f ′
n}n=1,2,... ⊂ H′

}
.

For f = [f ′
n]n ∈ H and g = [g′n]n ∈ H we evidently have the statement

[f ′
n]n = [g′n]n ⇔ ‖f ′

n − g′n‖ → 0 (n→∞).

To Postulate (A): On H we define a vector space structure as follows: For
α, β ∈ C and f = [f ′

n]n ∈ H, g = [g′n]n ∈ H we set

αf + βg := [αf ′
n + βg′n]n.

The null element is the equivalence class of all zero sequences in H′:

0 = [f ′
n]n with {f ′

n}n=1,2,... ⊂ H′ and ‖f ′
n‖ → 0 (n→∞).
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To Postulate (B): For the elements f = [f ′
n]n ∈ H and g = [g′n]n ∈ H we

define the inner product

(f, g) := lim
n→∞(f ′

n, g
′
n).

On account of

|(f ′
n, g

′
n)− (f ′

m, g′m)| ≤ |(f ′
n − f ′

m, g′n)|+ |(f ′
m, g′n − g′m)|

≤ ‖f ′
n − f ′

m‖‖g′n‖+ ‖f ′
m‖‖g′n − g′m‖ → 0 (n,m→∞),

the limit given above exists. One easily verifies that the so-defined inner
product satisfies the Postulate (B).

To the Postulates (C) and (E): Let H̃ denote the set of all f ∈ H satisfying
f = [f ′, f ′, . . .] and f ′ ∈ H′. Then the vector spaces H′ and H̃ are iso-
morphic, and consequently H′ is embedded into H. Now H̃ is dense in H:
Taking f = [f ′

n]n ∈ H we set f̃m = [f ′
m, f ′

m, . . .] ∈ H̃ and see

‖f − f̃m‖ = lim
n→∞ ‖f

′
n − f ′

m‖ → 0 (m→∞).

Evidently the Postulate (C) remains valid for H. In the case that H′

additionally satisfies the Postulate (E), this holds true for H as well.
To Postulate (D): Let {fn}n=1,2,... ⊂ H with

‖fn − fm‖ → 0 (n,m→∞)

be chosen. Since H̃ lies dense in H we have a sequence {f̃n}n=1,2,... ⊂ H̃
satisfying

‖fn − f̃n‖ ≤ 1
n
, n = 1, 2, . . .

Here we have f̃n = [f ′
n, f

′
n, . . .] with f ′

n ∈ H′. We now set f := [f ′
n]n=1,2,...

and show that f ∈ H and ‖f − fn‖ → 0 (n → ∞) are correct. At first,
we estimate

‖f ′
n − f ′

m‖ = ‖f̃n − f̃m‖ ≤ ‖f̃n − fn‖+ ‖fn − fm‖+ ‖fm − f̃m‖

≤ 1
n

+ ‖fn − fm‖+
1
m

→ 0 (n,m→∞).

Now we have

‖f − fm‖ ≤ ‖f − f̃m‖+ ‖f̃m − fm‖ ≤ ‖f − f̃m‖+
1
m
,

and note that f̃m = [f ′
m, f ′

m, . . .] and f = [f ′
1, f

′
2, . . .]. Then we infer

‖f − f̃m‖ = lim
n→∞ ‖f

′
n − f ′

m‖ ≤ εm



§3 The abstract Hilbert space 59

with the numbers εm > 0 and m ∈ N satisfying εm → 0 (m → ∞). We
summarize our considerations to

‖f − fm‖ ≤ εm +
1
m
→ 0 (m→∞).

q.e.d.

Remark: We can complete the pre-Hilbert-space H′ from the Example 1 ab-
stractly to a Hilbert space H with the aid of Theorem2. Alternatively, we can
concretely complete H′ to the Hilbert space

L2(G,C) :=
{
f : G→ C measurable :

∫
G

|f(x)|2dx < +∞
}
,

whose inner product is given in (1).

Definition 4. A sequence of elements {ϕ1, ϕ2, . . .} ⊂ H′ in a pre-Hilbert-
space H′ is called orthonormal if and only if

(ϕi, ϕj) = δij for all i, j ∈ N

is correct. We name the orthonormal system {ϕk}k=1,2,... complete - briefly
we speak of a c.o.n.s. - if each element f ∈ H′ satisfies the completeness
relation

‖f‖2 =
∞∑

k=1

|(ϕk, f)|2. (2)

This definition is justified by the following theorem, whose proof is contained
in the Propositions 1, 2 and Theorem5 from § 6 in Chapter II.

Theorem 3. Let {ϕk}k=1,2,... ⊂ H′ represent an orthonormal system. For all
f ∈ H′ we then have Bessel’s inequality

∞∑
k=1

|(ϕk, f)|2 ≤ ‖f‖2. (3)

An element f ∈ H′ satisfies the equation
∞∑

k=1

|(ϕk, f)|2 = ‖f‖2 (4)

if and only if

lim
N→∞

∥∥∥f − N∑
k=1

(ϕk, f)ϕk

∥∥∥ = 0 (5)

holds true. The latter statement means that f ∈ H′ can be represented by the
Fourier series ∞∑

k=1

(ϕk, f)ϕk

converging with respect to the norm ‖ · ‖ in the Hilbert space.
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Example 4. With the Fourier series and the spherical harmonic functions in § 4
and § 5 from Chapter V, respectively, we obtain two c.o.n.s. in the adequate
Hilbert spaces.

Theorem 4. An orthonormal system {ϕk}k=1,2,... in the pre-Hilbert-space H′

is complete if and only if the relation (ϕk, x) = 0, k = 1, 2, . . . with x ∈ H′

implies the identity x = 0.

Proof:

‘⇒’ Let x ∈ H′ and (ϕk, x) = 0 hold true for all k ∈ N. Then the completeness
relation yields

‖x‖2 =
∞∑

k=1

|(ϕk, x)|2 = 0

as well as ‖x‖ = 0 and consequently x = 0 ∈ H′.
‘⇐’ Let {ϕk}k=1,2,... be an orthonormal system such that the statement

(ϕk, x) = 0 for all k ∈ N implies x = 0. For arbitrary y ∈ H we set

x := y −
∞∑

k=1

(ϕk, y)ϕk

and we calculate

(ϕl, x) = (ϕl, y)−
(
ϕl,

∞∑
k=1

(ϕk, y)ϕk

)
= (ϕl, y)− (ϕl, y) = 0

for all l ∈ N. This implies x = 0 and consequently

y =
∞∑

k=1

(ϕk, y)ϕk.

Therefore, the system {ϕk}k=1,2,... ⊂ H′ is complete due to Theorem3.
q.e.d.

Theorem 5. Let H denote a separable Hilbert space.

a) Then there exists a c.o.n.s. {ϕk}k=1,2,... ⊂ H.
b) For two arbitrary elements x, y ∈ H we have the Parseval equation

(x, y) =
∞∑

k=1

(ϕk, x)(ϕk, y). (6)
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c) The Hilbert space H is isomorphic to the Hilbert sequential space l2 via the
mapping

Φ : H → l2, x �→ (x1, x2, . . .) with xk := (ϕk, x).

By the prescription

x =
∞∑

k=1

xkϕk with (x1, x2, . . .) ∈ l2

the mapping inverse to Φ is given.

Proof:

a) Since H is separable, we have a sequence {g1, g2, . . .} ⊂ H which is dense
in H. We eliminate the linear dependent functions from {g1, g2, . . .}, and
construct a system of linear independent functions {f1, f2, . . .} in H with
the following property:

[g1, . . . , gn] ⊂ [f1, . . . , fp] for all p ≥ n ≥ 1, (7)

denoting with [g1, . . . , gn] and [f1, . . . , fp] the C-linear spaces spanned by
the elements g1, . . . , gn and f1, . . . , fp, respectively; here n, p ∈ N holds
true. Now we apply the orthonormalizing procedure of E. Schmidt to the
system of functions {fk}k=1,2...:

ϕ1 :=
1
‖f1‖f1, ϕ2 :=

f2 − (ϕ1, f2)ϕ1

‖f2 − (ϕ1, f2)ϕ1‖ , . . . ,

ϕn :=
fn −

n−1∑
j=1

(ϕj , fn)ϕj∥∥∥fn −
n−1∑
j=1

(ϕj , fn)ϕj

∥∥∥ , n = 1, 2, . . . .

We evidently have (ϕj , ϕk) = δjk for j, k = 1, 2, . . . and

[g1, . . . , gn] ⊂ [ϕ1, . . . , ϕp] for all p ≥ n ≥ 1. (8)

When f ∈ H and ε > 0 are given, we have an index n ∈ N satisfying
‖f − gn‖ ≤ ε. According to (8) we find p ≥ n numbers c1, . . . , cp ∈ C with

∥∥∥f − p∑
k=1

ckϕk

∥∥∥ ≤ ε.

Due to the minimal property of the Fourier coefficients (compare Chap-
ter II, § 6, Corollary to Proposition1) we can still choose n and p such
that
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k=1

(ϕk, f)ϕk

∥∥∥ ≤ ε for all ε > 0.

Observing the limit process ε ↓ 0 we deduce

f =
∞∑

k=1

(ϕk, f)ϕk,

and {ϕk}k=1,2,... is a c.o.n.s.
b) For two elements x, y ∈ H with the representations

x =
∞∑

k=1

(ϕk, x)ϕk, y =
∞∑
l=1

(ϕl, y)ϕl

we evaluate the inner product

(x, y) = lim
n→∞

( n∑
k=1

(ϕk, x)ϕk,

n∑
l=1

(ϕl, y)ϕl

)
= lim

n→∞

n∑
k,l=1

(ϕk, x)(ϕl, y)(ϕk, ϕl)

= lim
n→∞

n∑
k=1

(ϕk, x)(ϕk, y)

=
∞∑

k=1

(ϕk, x)(ϕk, y).

c) Here nothing has to be shown any more. q.e.d.

Definition 5. We name M ⊂ H a linear subspace of the Hilbert space H,
if for arbitrary elements f, g ∈ M and all numbers α, β ∈ C we obtain the
inclusion

αf + βg ∈M.

A linear subspace M⊂H is called closed, if each Cauchy sequence

{fn}n=1,2,... ⊂M
fulfills

f := lim
n→∞ fn ∈M.

With a linear subspace M⊂H we denote by

M :=

{
f ∈ H :

There exists a Cauchy sequence {fn}n=1,2,... ⊂M
satisfying f = limn→∞ fn

}

the closure of M.
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Example 5. The space C∞
0 (G) =: M ⊂ H := L2(G) is a nonclosed linear

subspace, and we have M = H.

Definition 6. We call H a unitary space, if the following Postulate (C’) is
satisfied in addition to the Postulates (A) and (B).

Postulate (C’): With an integer n ∈ N we have dimH = n.

Remarks:

1. In an n-dimensional unitary space H we have n linearly independent ele-
ments {f1, . . . , fn}, and each g ∈ H can be represented in the form

g =
n∑

k=1

ckfk with c1, . . . , cn ∈ C.

2. A unitary space H possesses an orthonormal basis {ϕ1, . . . , ϕn} with n =
dimH satisfying

f =
n∑

k=1

(ϕk, f)ϕk for all f ∈ H.

3. Each unitary space H endowed with the inner product

(x, y) :=
n∑

k=1

xkyk, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C

is isomorphic to Cn, where n = dimH holds true.
4. Each unitary space is complete.

Noticing the Definitions 5 and 6, we easily prove the following

Theorem 6. Let H denote a Hilbert space, and M is a closed linear subspace
of H. Then M represents either a Hilbert space or a unitary space. In the
case that H is separable the same holds true for M.

Definition 7. LetM be a linear subspace of H. Then we define the orthogonal
space of M in H setting

M⊥ :=
{
g ∈ H : (g, f) = 0 for all f ∈M

}
.

Remark: On account of the continuity for the inner product, the orthogonal
space M⊥ ⊂ H is closed.

From Theorem2 in Chapter II, § 6 we now take over the proof of the following
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Theorem 7. (Projection theorem)
Let M denote a closed linear subspace in H. Then each element x ∈ H can
be uniquely represented in the form x = x1 + x2 with x1 ∈ M and x2 ∈M⊥.
We then obtain the decomposition

H = M⊕M⊥.

We still note the subsequent

Theorem 8. Let M be a linear subspace in a Hilbert space H. Then M lies
dense in H if and only if the following implication is correct:

ϕ ∈ H : (f, ϕ) = 0 for all f ∈M ⇒ ϕ = 0. (9)

Proof: The projection theorem yields the orthogonal decomposition H =M⊕
M⊥. Now the subspace M lies dense in H if the statement M = H and
consequently M⊥ = {0} is correct. The latter statement coincides with the
implication (9). q.e.d.

§4 Bounded linear operators in Hilbert spaces

We begin with the fundamental

Definition 1. On the Hilbert space H the mapping A : H → C is a bounded
linear functional, if the following conditions are fulfilled:

a) A(αf + βg) = αAf + βAg for all f, g ∈ H and α, β ∈ C,
b) |Af | ≤ c‖f‖ for all f ∈ H , with a constant c ∈ [0,+∞).

According to Chapter II, § 6, Definitions 6 to 8 and Theorem3 the following
three statements are equivalent for a linear functional:

(i) A is bounded,
(ii) A is continuous at one point,
(iii) A is continuous at all points of the Hilbert space.

We define the norm of the bounded linear functional A by

‖A‖ := sup
x∈H, ‖x‖≤1

|Ax| = sup
x∈H, ‖x‖=1

|Ax| < +∞.

In Chapter II, § 6, Theorem4 we have proved the following statement:

Theorem 1. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H → C on the Hilbert space H can be
represented in the form

Af = (g, f) for all f ∈ H (1)

with a uniquely determined generating element g ∈ H.
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Definition 2. Let D denote a linear subspace of the Hilbert space H. A linear
operator T consists of a function T : D → H with the following property

T (c1u1 +c2u2) = c1T (u1)+c2T (u2) for all u1, u2 ∈ D and c1, c2 ∈ C.

Definition 3. A linear operator T : D → H is called bounded, if we have a
number c ∈ [0,+∞) such that

‖Tu‖ ≤ c‖u‖ for all u ∈ D (2)

holds true. Then the norm of T is defined by

‖T ‖ := sup
u∈D, u	=0

‖Tu‖
‖u‖ = sup

u∈D, ‖u‖≤1

‖Tu‖ = sup
u∈D, ‖u‖=1

‖Tu‖. (3)

Remark: The Example 2 in § 1 contains an unbounded operator with T := −Δ.

Definition 4. Let DT ,D�T denote two linear subspaces of the Hilbert space H.
Then the mapping

T̃ : D
�T → H

is called the extension of the bounded linear operator T : DT → H , if the
following properties are satisfied

a) DT ⊂ D�T ,
b) T̃ u = Tu for all u ∈ DT .

We then write T ⊂ T̃ .

For bounded operators it suffices to define them on dense subspaces of Hilbert
spaces due to the following

Theorem 2. (Extension theorem)
Let T : D → H denote a bounded linear operator, and the linear subspace D ⊂
H lies dense in the Hilbert space H. Then there exists a uniquely determined
bounded extension T̃ ⊃ T satisfying D

�T = H and ‖T̃‖ = ‖T ‖.
Proof:

1. We define T̃ : H → H as follows: Taking f ∈ H we have a sequence
{fn}n=1,2,... ⊂ DT satisfying fn → f (n → ∞) in H. Now {Tfn}n=1,2...

gives a Cauchy sequence in H on account of

‖Tfn − Tfm‖ = ‖T (fn − fm)‖ ≤ ‖T ‖‖fn − fm‖ → 0 (n,m→∞).

Therefore the limit lim
n→∞Tfn exists, and we set

T̃ f := lim
n→∞Tfn, f ∈ H.
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This notion is uniquely determined: Taking namely a further sequence
{f ′

n}n=1,2,... ⊂ DT satisfying f ′
n → f (n→∞) in H, we observe

‖Tfn−Tf ′
n‖ ≤ ‖T ‖‖fn−f ′

n‖ ≤ ‖T ‖ (‖fn − f‖+ ‖f − f ′
n‖)→ 0 (n→∞).

Finally, we note that T̃ f = Tf for all f ∈ DT .
2. Now the relation

‖T̃‖ := sup
f∈H, ‖f‖≤1

‖T̃ f‖ = sup
f∈DT , ‖f‖≤1

‖T̃ f‖ = sup
f∈DT , ‖f‖≤1

‖Tf‖ = ‖T ‖

is correct. Furthermore, the operator T̃ : H → H is linear: For two ele-
ments

f = lim
n→∞ fn, g = lim

n→∞ gn from H
with {fn}n ⊂ DT and {gn}n ⊂ DT we have the equation

T̃ (αf + βg) = T̃ ( lim
n→∞(αfn + βgn)) = lim

n→∞(αTfn + β Tgn)

= α lim
n→∞Tfn + β lim

n→∞Tgn = α T̃f + β T̃ g

for arbitrary α, β ∈ C on account of the continuity of T̃ .
3. If T̂ , T̃ : H → H are two extensions of DT on H, we have

(T̃ − T̂ )(f) = 0 for all f ∈ DT .

Since DT ⊂ H lies dense and (T̃ − T̂ ) : H → H is continuous, we infer

(T̃ − T̂ )(f) = 0 for all f ∈ H
and consequently T̃ = T̂ . q.e.d.

Theorem 3. Let T : H → H denote a bounded linear operator in the Hilbert
space H. Then we have a uniquely determined linear operator T ∗ : H → H
such that

(Tf, g) = (f, T ∗g) for all f, g ∈ H (4)

is correct. Furthermore, we have

‖T ∗‖ = ‖T ‖ and T ∗∗ = T,

which means that the operation ∗ is an involution.

Definition 5. The operator T ∗ is named the adjoint operator of T .

Definition 6. A bounded linear operator H is called Hermitian if H∗ = H
holds true, which means

(Hx, y) = (x,Hy) for all x, y ∈ H.
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Proof of Theorem 3:
-Uniqueness: Let T1 and T2 be two adjoint operators to T: Then (4) yields

(f, T1g) = (Tf, g) = (f, T2g) for all f, g ∈ H
as well as (f, (T1 − T2)g) = 0 for all f, g ∈ H, and consequently T1 = T2.

-Existence: For a fixed g ∈ H we consider the bounded linear functional

Ag(f) := (g, T f), f ∈ H.

This is bounded on account of

|Ag(f)| ≤ ‖g‖‖Tf‖ ≤ (‖g‖‖T ‖)‖f‖ for all f ∈ H.

We apply the Representation theorem of Fréchet-Riesz: For each g ∈ H
we have an element g∗ ∈ H with the property

(g, T f) = Ag(f) = (g∗, f) for all f ∈ H.

We now set T ∗g := g∗, and the so-defined mapping T ∗ : H → H has the
property (4).

-Linearity: We take the elements g1, g2 ∈ H and the numbers c1, c2 ∈ C. With
the aid of (4) we then calculate

(T ∗(c1g1 + c2g2), f) = (c1g1 + c2g2, T f)

= c1(g1, T f) + c2(g2, T f)

= c1(T ∗g1, f) + c2(T ∗g2, f)

= (c1T ∗g1 + c2T
∗g2, f) for all f ∈ H.

-Boundedness: At first, we note that

(Tf, g) = (f, T ∗g) = (T ∗∗f, g) for all f, g ∈ H.

Therefore, T is an involution. With the aid of (4) we obtain the following
estimate

‖(f, T ∗g)‖ ≤ ‖Tf‖‖g‖ ≤ ‖T ‖‖f‖‖g‖ for all f, g ∈ H.

Inserting f = T ∗g, we obtain

‖T ∗g‖2 ≤ ‖T ‖‖T ∗g‖‖g‖
and consequently

‖T ∗g‖ ≤ ‖T ‖‖g‖,
which means

‖T ∗‖ ≤ ‖T ‖.
Since T is an involution, we infer

‖T ‖ = ‖T ∗∗‖ ≤ ‖T ∗‖.
Consequently, the relation ‖T ‖ = ‖T ∗‖ is correct. q.e.d.
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Example 1. Let the following cube in Rn be given, namely

Q :=
{
x = (x1, . . . , xn) ∈ Rn : |xj | ≤ R for j = 1, . . . , n

}
whose sides have the length 2R ∈ (0,+∞). Then we consider a Hilbert-Schmidt
integral kernel

K = K(x, y) : Q×Q→ C ∈ L2(Q×Q,C). (5)

On account of ∫
Q×Q

|K(x, y)|2dx dy <∞

we have a null-set N ⊂ Q with the following property: For all x ∈ Q \N the
function y �→ K(x, y) is measurable on Q and

∫
Q

|K(x, y)|2 dy <∞ is satisfied.

Furthermore, we have∫
Q

(∫
Q

|K(x, y)|2 dy
)
dx =

∫
Q×Q

|K(x, y)|2 dx dy =: ‖K‖2 <∞

due to the Fubini-Tonelli theorem. Taking f ∈ L2(Q,C) we define the Hilbert-
Schmidt operator

Kf(x) =

⎧⎪⎨⎪⎩
∫
Q

K(x, y)f(y) dy, x ∈ Q \N

0, x ∈ N

. (6)

The Hölder inequality yields

|Kf(x)|2 ≤
(∫

Q

|K(x, y)|2 dy
)
‖f‖2

for all x ∈ Q \N and integration with respect to x ∈ Q gives∫
Q

|Kf(x)|2dx ≤
( ∫

Q×Q

|K(x, y)|2 dx dy
)
‖f‖2 = ‖K‖2‖f‖2 ,

and finally
‖Kf‖ ≤ ‖K‖‖f‖ for all f ∈ L2(Q,C). (7)

We therefore obtain the following

Theorem 4. The Hilbert-Schmidt operator K : H → H from (6) with the
integral kernel (5) represents a bounded linear operator on the Hilbert space
H = L2(Q,C), and we have the estimate

‖K‖ ≤ ‖K‖.
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Remarks:

1. The singular kernels

K = K(x, y) ∈ Sα(G,C) with α ∈ [0, n)

generate special Hilbert-Schmidt operators. The statements from § 2, The-
orem3 and Theorem4, valid for these special operators, will later be uti-
lized to obtain regularity results concerning the solutions of the integral
equation.

2. The kernel
K∗(x, y) := K(y, x) ∈ L2(Q×Q,C)

generates the adjoint operator K∗ belonging to the Hilbert-Schmidt oper-
ator K.

3. The operator K is Hermitian if and only if the following identity is satisfied:

K(x, y) = K(y, x) a. e. in Q×Q.

We now shall investigate the inverse of a linear operator.

Definition 7. Let T : DT → H denote a linear operator on the subset DT ⊂ H
of the Hilbert space H with the range WT := T (DT ) ⊂ H. Furthermore, let
the mapping

x �→ Tx, x ∈ DT

be injective. Setting f := T−1g the inverse T−1 : WT → DT ⊂ H of the
operator T is then defined if Tf = g holds true. We note that

DT−1 = WT , WT−1 = DT .

We immediately obtain the following

Theorem 5. The operator T−1 : WT → DT is linear and does exist if and
only if the equation

Tx = 0, x ∈ DT

possesses only the trivial solution x = 0.

Theorem 6. (O.Toeplitz)
Let T : H → H denote a bounded linear operator in the Hilbert space H. Then
the operator T possesses a bounded inverse in H - namely T−1 : H → H - if
and only if the following conditions are satisfied:

a) For all x ∈ H we have ‖Tx‖ ≥ d‖x‖ with a bound d ∈ (0,+∞).
b) The homogeneous equation T ∗x = 0 admits only the trivial solution x = 0.

Proof:
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‘⇒’ We assume that the bounded inverse T−1 : H → H exists. Then we have
a number c > 0 satisfying

‖T−1x‖ ≤ c‖x‖ for all x ∈ H.

With x := Tf we infer

‖Tf‖ ≥ 1
c
‖f‖.

Therefore the condition a) is fulfilled with d := 1
c .

If z ∈ H is a solution of T ∗z = 0 we deduce

(Tx, z) = (x, T ∗z) = (x, 0) = 0 for all x ∈ H.

Inserting the element x = T−1z, we obtain z = 0.
‘⇐’ At first, we show that WT ⊂ H is closed: Let {yn}n=1,2,... ⊂ WT denote

an arbitrary sequence with yn → y (n → ∞) in H. We set yn = Txn,
n = 1, 2, . . . , and with the aid of a) we get the inequality

‖xn − xm‖ ≤ 1
d
‖yn − ym‖ → 0 (m,n→∞).

This implies xn → x (n→∞) , and the continuity of T yields

Tx = T ( lim
n→∞xn) = lim

n→∞Txn = lim
n→∞ yn = y ∈ WT .

Consequently, WT is closed in H, and we have the orthogonal decompo-
sition

H =WT ⊕W⊥
T .

Now we take z ∈ W⊥
T and obtain

0 = (z, Tx) = (T ∗z, x) for all x ∈ H

and finally T ∗z = 0. The condition b) therefore yields z = 0 and conse-
quently H = WT , which means T is surjective. The injectivity of T follows
immediately from a). Consequently, T−1 exists and is bounded due to a)
with

‖T−1‖ ≤ 1
d
.

q.e.d.

Remark: If H : H → H is a bounded Hermitian operator satisfying

‖Hx‖ ≥ d‖x‖ for all x ∈ H

with the number d ∈ (0,+∞), then Theorem6 implies the existence of the
bounded inverse H−1 : H → H.
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Theorem 7. Let T : H → H denote a bounded linear operator in the Hilbert
space H. Furthermore, let the bounded inverse T−1 : H → H be defined. Then
the operator T ∗ possesses an inverse (T ∗)−1, which is defined and bounded in
H. Furthermore, we have (T−1)∗ = (T ∗)−1.

Proof: According to the assumptions we see

‖T−1x‖ ≤ c‖x‖ for all x ∈ H.

When we insert the element x = T−1y into the relation

(Tx, y) = (x, T ∗y) for all y ∈ H

we obtain
‖y‖2 ≤ ‖T−1y‖‖T ∗y‖ ≤ c‖y‖‖T ∗y‖

and consequently

‖T ∗y‖ ≥ 1
c
‖y‖ for all y ∈ H.

Theorem3 and the relation

(T ∗)∗f = T ∗∗f = Tf

imply, with (T ∗)∗f = 0 then f = 0 holds true. Due to Theorem6 the inverse

(T ∗)−1 : H → H

exists, and we have
‖(T ∗)−1‖ ≤ ‖T−1‖.

Let the elements f, g ∈ H be chosen arbitrarily. With x = T−1f and y =
(T ∗)−1g we then obtain the relation

(f, (T ∗)−1g) = (Tx, y) = (x, T ∗y) = (T−1f, g) = (f, (T−1)∗g).

Consequently, the identity (T ∗)−1 = (T−1)∗ is correct. q.e.d.

In the Hilbert space H we consider a closed linear nonvoid subspaceM⊂H ,
and the Projection theorem yields the decomposition H =M⊕M⊥. Noting
that

f = f1 + f2 ∈ H with f1 ∈ M, f2 ∈M⊥

holds true, the following definition for a projector P is sensible:

P : H →M via f = f1 + f2 �→ Pf := f1.

We consider
‖Pf‖2 = ‖f1‖2 ≤ ‖f‖2 for all f ∈ H
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and
‖Pf‖ = ‖f‖ for all f ∈M.

The norm of the projector consequently satisfies

‖P‖ = 1.

Furthermore, we observe

P 2f = P ◦ Pf = Pf and consequently P 2 = P in H ,

and we conclude

(Pf, g) = (f1, g1 + g2) = (f1, g1)

= (f1 + f2, g1) = (f, Pg) for all f, g ∈ H,

which means P = P ∗.

Definition 8. A bounded linear operator P : H → H is a projection operator
or a projector if the following holds true:

a) P is Hermitian, which means P = P ∗;
b) P 2 = P .

Theorem 8. Let P : H → H denote a projector. Then the set

M :=
{
g ∈ H : g = Pf with f ∈ H

}
is a closed linear subspace in H. Furthermore, we have

f = Pf + (f − Pf) ∈ M⊕M⊥.

Proof:

1. We show that M = P (H) is closed: Let {gn}n=1,2,... ⊂M be a sequence
with gn → g (n → ∞) in H. On account of gn = Pfn with fn ∈ H we
infer

Pgn = P 2fn = Pfn = gn.

Since P is continuous, Pg = g follows and consequently g ∈ M.
2. We take f ∈ H , set f1 := Pf and f2 := f − Pf , and observe f1 ∈ M.

Furthermore, all h ∈M satisfy

(f2, h) = (f − Pf, h) = (f − Pf, Ph) = (Pf − P 2f, h) = 0.

Consequently, f2 = f − Pf ∈ M⊥ is correct. q.e.d.



§4 Bounded linear operators in Hilbert spaces 73

Remark: In the Hilbert space H let the linear subspace M⊂H be given. The
sequence {ϕj}j=1,2,... is assumed to constitute a c.o.n.s. in M. Then we have

PMf =
j0∑

j=1

(ϕj , f)ϕj , f ∈ H

with j0 ∈ N ∪ {∞}.
In Physics the energy of a system is measured with the aid of bilinear forms.
Linear operators are then attributed to the latter.

Definition 9. A complex-valued function

B(. , .) : H×H → C

is named a bilinear form if

B(f, c1g1 + c2g2) = c1B(f, g1) + c2B(f, g2) for all f, g1, g2 ∈ H
B(c1f1 + c2f2, g) = c1B(f1, g) + c2B(f2, g) for all f1, f2, g ∈ H

(8)

and all c1, c2 ∈ C holds true. The bilinear form is Hermitian if

B(f, g) = B(g, f) for all f, g ∈ H (9)

is correct, and we name B symmetric if

B(f, g) = B(g, f) for all f, g ∈ H (10)

holds true. For real-valued bilinear forms the conditions (9) and (10) are equiv-
alent. The bilinear form B is bounded if we have a constant c ∈ [0,+∞) with
the property

|B(f, g)| ≤ c‖f‖‖g‖ for all f, g ∈ H. (11)

A Hermitian bilinear form is strictly positive-definite if we have a constant
c ∈ (0,+∞) such that

B(f, f) ≥ c‖f‖2 for all f ∈ H (12)

is satisfied.

Remarks:

1. Alternatively, one calls (12) the coercivity condition.
2. For a given bounded linear operator T : H → H, we obtain with

B(f, g) := (Tf, g), f, g ∈ H
a bilinear form. This is bounded on account of

|B(f, g)| ≤ ‖Tf‖‖g‖ ≤ ‖T ‖‖f‖‖g‖, f, g ∈ H.

If T is Hermitian, the bilinear form is Hermitian as well since we have

B(f, g) = (Tf, g) = (f, T g) = (Tg, f) = B(g, f), f, g ∈ H.
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We now address the inverse question.

Theorem 9. (Representation theorem for bilinear forms)
For each bounded bilinear form B = B(f, g) with f, g ∈ H, there exists a
uniquely determined bounded linear operator T : H → H satisfying

B(f, g) = (Tf, g) for all f, g ∈ H. (13)

If B is Hermitian then T is Hermitian as well.

Proof: For a fixed element f ∈ H we obtain with

Lf(g) := B(f, g), g ∈ H
a bounded linear functional on H. According to the representation theorem
of Fréchet-Riesz we have an element f∗ ∈ H with the property

(f∗, g) = B(f, g) = Lf (g) for all g ∈ H. (14)

Now f∗ is uniquely determined by f , and we set

Tf := f∗, f ∈ H.

1. The operator T : H → H is linear: We calculate

(T (c1f1 + c2f2), g) = B(c1f1 + c2f2, g) = c1B(f1, g) + c2B(f2, g)

= c1(Tf1, g) + c2(Tf2, g) = (c1Tf1 + c2Tf2, g)

for all f1, f2, g ∈ H and all c1, c2 ∈ C.
2. Since the bilinear form B(f, g) = (Tf, g) is bounded, we have

|(Tf, g)| ≤ c‖f‖‖g‖ for all f, g ∈ H.

With g = Tf
‖Tf‖ we easily comprehend the inequality

‖Tf‖ ≤ c‖f‖ for all f ∈ H,

and we conclude
‖T ‖ ≤ c < +∞.

3. If B is Hermitian, we see

(Tf, g) = B(f, g) = B(g, f) = (Tg, f) = (f, T g) for all f, g ∈ H.

Therefore T is Hermitian. q.e.d.

Theorem 10. (Lax, Milgram)
Let B : H×H → C denote a Hermitian bilinear form, which is bounded due
to

|B(f, g)| ≤ c+‖f‖‖g‖ for all f, g ∈ H (15)
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and satisfies the following coercivity condition

B(f, f) ≥ c−‖f‖2 for all f ∈ H. (16)

Here the constants 0 < c− ≤ c+ < +∞ have been chosen adequately. Then we
have a bounded Hermitian operator T : H → H satisfying ‖T ‖ ≤ c+ and

B(f, g) = (Tf, g) for all f, g ∈ H. (17)

This operator possesses a bounded inverse T−1 : H → H which is Hermitian
and subject to

‖T−1‖ ≤ 1
c−

.

Proof: Due to Theorem9, we have a Hermitian operator T : H → H with
‖T ‖ ≤ c+ and the property (17). Together with (16) we arrive at

c−‖f‖2 ≤ B(f, f) = (Tf, f) ≤ ‖Tf‖‖f‖ for all f ∈ H

and consequently

‖Tf‖ ≥ c−‖f‖ for all f ∈ H. (18)

According to the Theorem of Toeplitz then T possesses a bounded inverse
T−1 : H → H, which is Hermitian due to Theorem7. Finally, the relation
(18) implies

‖T−1‖ ≤ 1
c−

. q.e.d.

Remarks:

1. The Theorems 9 and 10 remain valid for real bilinear forms, if we replace
’Hermitian’ with ’symmetric’.

2. Theorem10 gives us the basic result for the weak solvability of elliptic
differential equations.

§5 Unitary operators

Definition 1. Let H and H′ denote two Hilbert spaces with the inner products
(x, y) and (x, y)′. Then the linear operator V : H → H′ is called isometric if
the following holds true:

(V f, V g)′ = (f, g) for all f, g ∈ H. (1)

Remarks:
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1. With the isometric operator V : H → H′ we calculate

‖V f − V g‖′2 = ‖V (f − g)‖′2 =
(
V (f − g), V (f − g)

)′
= (f − g, f − g) = ‖f − g‖2 for all f, g ∈ H.

(2)

Therefore the relation f �= g implies V f �= V g , and consequently V is
injective.

2. The operator V is bounded. Noting that

‖V f‖′ =
√

(V f, V f)′ =
√

(f, f) = ‖f‖ for all f ∈ H
we infer

‖V ‖ = 1. (3)

3. We have DV = H for the domain of definition of an isometric opera-
tor V , and the range WV ⊂ H′ is closed. We take a sequence gn =
V fn ∈ WV , n = 1, 2, . . . satisfying gn → g (n → ∞) and observe
that {fn}n=1,2,... ⊂ H is a Cauchy sequence due to (2), namely

‖fn − fm‖2 = ‖gn − gm‖′ 2 → 0 (n,m→∞).

This implies fn → f ∈ H (n→∞) and furthermore

g = lim
n→∞ gn = lim

n→∞ V fn = V ( lim
n→∞ fn) = V f ∈ WV ,

since V is continuous. Consequently, WV ⊂ H is closed.
4. In the case dimH = dimH′ < +∞, the injectivity implies the surjectiv-

ity. For infinite-dimensional Hilbert spaces H and H′ this is not true, as
illustrated by the following example:

Example 1. We consider the so-called shift-operator in Hilbert’s sequential
space H := l2 =: H′:

V : H → H′,
(x1, x2, . . .) �→ (0, . . . , 0, x1, x2, . . .).

Evidently, the operator V is isometric; however, it is not surjective.

Definition 2. An isometric operator V : H → H′ is called unitary if V :
H → H′ is surjective, more precisely V (H) = H′.

Remark: For a unitary operator U : H → H′ there exists its inverse U−1 :
H′ → H, and we have the identity

(U−1f, U−1g) = (U ◦ U−1f, U ◦ U−1g)′ = (f, g)′ for all f, g ∈ H′ (4)

on account of (1). Therefore, the inverse U−1 is unitary as well.



§5 Unitary operators 77

Definition 3. Let H and H′ denote two Hilbert spaces with the inner products
(x, y) and (x, y)′. Furthermore, T and T ′ are two linear operators in H and
H′ , respectively. Then the operators T and T ′ are named unitary equivalent,
if there exists a unitary operator U : H → H′ satisfying

T ′ = U ◦ T ◦ U−1. (5)

Theorem 1. A bounded linear operator V : H → H is unitary if and only if

V ∗ ◦ V = V ◦ V ∗ = E (6)

is correct. Here the symbol E : H → H denotes the identity operator.

Proof:

‘⇒’ At first, we remark that V : H → H is isometric if and only if

(V ∗ ◦ V f, g) = (V f, V g) = (f, g) = (Ef, g) for all f, g ∈ H

or equivalently
V ∗ ◦ V = E

is valid.
If V is unitary, we have the existence of V −1 : H → H. From the last
relation we infer V ∗ = V −1 and therefore V ◦ V ∗ = E .

‘⇐’ Now let the identity (6) be satisfied for V : H → H. Then we infer
V −1 = V ∗. In particular, the operator V is surjective and isometric as
well according to the following relation:

(f, g) = (V ∗ ◦ V f, g) = (V f, V g) for all f, g ∈ H.

q.e.d.

We now shall prove the Theorem of Fourier-Plancherel (compare Chapter VI,
§ 3, Theorem1). At first, we present the transition from Fourier series to the
Fourier integral: Taking c > 0 arbitrarily, the functions{ 1√

2c
e−

π
c ikx
}

k∈Z

constitute a complete orthonormal system of functions on the interval [−c,+c].
For all

f ∈ L2([−c,+c],R) ∩ C0
0 ((−c,+c),R)

the completeness relation yields the following identity:
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+c∫
−c

|f(x)|2 dx =
+∞∑

k=−∞

∣∣∣ +c∫
−c

1√
2c

e
π
c ikxf(x) dx

∣∣∣2

=
+∞∑

k=−∞

1
2c

∣∣∣ +c∫
−c

e
π
c ikyf(y) dy

∣∣∣2.
We set

g(x) :=
1√
2π

+c∫
−c

eixyf(y) dy, x ∈ R,

and xk = π
c k for k ∈ Z. Then we obtain xk − xk−1 = π

c and

1
2c

∣∣∣ +c∫
−c

e
π
c ikyf(y) dy

∣∣∣2 =
1
2c

∣∣∣√2πg(xk)
∣∣∣2 =

π

c
|g(xk)|2 = |g(xk)|2(xk − xk−1)

for all k ∈ Z. For all c > 0 the following identity holds true:

+c∫
−c

|f(x)|2 dx =
+∞∑

k=−∞
|g(xk)|2(xk − xk−1).

The transition to the limit c→ +∞ yields

+∞∫
−∞

|f(x)|2 dx =

+∞∫
−∞

|g(x)|2 dx. (7)

We expect the operator

Tf(x) :=
1√
2π

+∞∫
−∞

eixyf(y) dy, x ∈ R (8)

to be unitary on the space L2(R).
More generally, we define Fourier’s integral operator on the Euclidean space
Rn as follows:

Tf(x) =
1√
2π

n

∫
Rn

ei(x·y)f(y) dy, x ∈ Rn. (9)

We shall prove that T : L2(Rn) → L2(Rn) is unitary.

At first, we determine T from (8) explicitly for the characteristic function
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ϕa,b(x) = ϕ(a, b, x) =

{
1, a ≤ x ≤ b

0, x < a or x > b
. (10)

We calculate

Tϕa,b(0) =
1√
2π

+∞∫
−∞

ei 0 yϕa,b(y) dy =
b− a√

2π
(11)

and for x �= 0 we evaluate

Tϕa,b(x) =
1√
2π

+∞∫
−∞

eixyϕa,b(y) dy =
1√
2π

b∫
a

eixy dy

=
1√
2π

[eixy

ix

]y=b

y=a
=

1√
2π

eibx − eiax

ix
.

(12)

Proposition 1. For Cauchy’s principal values

ψ(h) =
1
π

+∞∫
−∞
− eihx − 1

x2
dx := lim

ε↓0

{
1
π

−ε∫
−∞

eihx − 1
x2

dx +
1
π

+∞∫
+ε

eihx − 1
x2

dx

}

we have
ψ(h) = −|h|, h ∈ R.

Proof: Taking an arbitrary h ≥ 0 , we consider the holomorphic function

f(z) :=
eihz − 1

z2
=

1 + ihz + 1
2 (ihz)2 + . . .− 1
z2

=
ih

z
+ . . . , z ∈ C \ {0}.

(13)

For 0 < ε < R < +∞ we utilize the domain

Gε,R :=
{
z ∈ C : ε < |z| < R, Re z > 0

}
with the boundary in the positive orientation

[−R,−ε] ∪Kε ∪ [+ε,+R] ∪KR = ∂Gε,R.

Here we have defined the semicircle

KR : z = Reiϕ, 0 ≤ ϕ ≤ π,

and the following semicircle
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−Kε : z = εeiϕ, 0 ≤ ϕ ≤ π

negatively run through. Since f is a holomorphic function in Gε,R , Cauchy’s
integral theorem yields the following identity:

0 =
∫

∂Gε,R

f(z) dz =

−ε∫
−R

eihx − 1
x2

dx +

+R∫
+ε

eihx − 1
x2

dx

+
∫

KR

eihz − 1
z2

dz −
∫

−Kε

eihz − 1
z2

dz

(14)

for all 0 < ε < R < +∞. With the aid of (13) we now calculate

lim
ε↓0

∫
−Kε

eihz − 1
z2

dz = lim
ε↓0

∫
−Kε

( ih
z

+ . . .
)
dz = lim

ε↓0

∫
−Kε

ih

z
dz

= lim
ε↓0

π∫
0

ih

εeiϕ
iεeiϕ dϕ = −hπ.

(15)

Futhermore, we deduce

∫
KR

eihz − 1
z2

dz =

π∫
0

exp
{
ih(cosϕ + i sinϕ)R

}
− 1

R2e2iϕ
iReiϕ dϕ

=
i

R

π∫
0

e−iϕ
{
eihR cos ϕe−hR sin ϕ − 1

}
dϕ

and estimate for all R > 0 as follows:

∣∣∣ ∫
KR

eihz − 1
z2

dz
∣∣∣ ≤ 1

R

π∫
0

1 · {1 · e−hR sin ϕ + 1} dϕ

≤ 2π
R
→ 0 (R→ +∞).

This implies

lim
R→+∞

∫
KR

eihz − 1
z2

dz = 0 for all h ≥ 0. (16)

In (14) we observe the transition ε ↓ 0 and R ↑ +∞ . With the aid of (15)
and (16) we obtain the identity
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0 =

+∞∫
−∞
− eihx − 1

x2
dx + hπ

and consequently
ψ(h) = −h for all h ≥ 0. (17)

Via the substitution y = −x we evaluate

ψ(−h) = lim
ε↓0

{
1
π

−ε∫
−∞

eih(−x) − 1
x2

dx +
1
π

+∞∫
ε

eih(−x) − 1
x2

dx

}

= lim
ε↓0

{
1
π

+∞∫
ε

eihy − 1
y2

dy +
1
π

−ε∫
−∞

eihy − 1
y2

dy

}
= ψ(h) for all h ∈ R.

Finally, we obtain the following identity from (17):

ψ(h) = −|h| for all h ∈ R.
q.e.d.

Proposition 2. With respect to the inner product in L2(R,C) we see

(Tϕa,b, Tϕc,d) =

{
0, if −∞ < a < b ≤ c < d < +∞
b− a, if −∞ < a = c < b = d < +∞

. (18)

Proof: We utilize (12) and calculate

(Tϕa,b, Tϕc,d) =
1
2π

+∞∫
−∞
− (e−ibx − e−iax)(eidx − eicx)

x2
dx

=
1
2π

+∞∫
−∞
− ei(d−b)x − ei(c−b)x − ei(d−a)x + ei(c−a)x

x2
dx.

If −∞ < a < b ≤ c < d < +∞ is fulfilled, Proposition1 implies

(Tϕa,b, Tϕc,d) =
1
2

{
ψ(d− b)− ψ(c− b)− ψ(d− a) + ψ(c− a)

}
=

1
2

{
b− d + c− b + d− a + a− c

}
= 0.

If −∞ < a = c < b = d < +∞ holds true, we obtain
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(Tϕa,b, Tϕc,d) =
1
2π

+∞∫
−∞
− 1− ei(c−b)x − ei(d−a)x + 1

x2
dx

= −1
2

{
ψ(c− b) + ψ(d− a)

}
= −1

2
{c− b + a− d}

= −1
2
{2a− 2b} = b− a. q.e.d.

Let the rectangle

Q :=
{
x = (x1, . . . , xn) ∈ Rn : aα ≤ xα ≤ bα for α = 1, . . . , n

}
in Rn be given. We decompose the interval [aα, bα] into the parts

aα = x(0)
α < x(1)

α < . . . < x(mα)
α = bα for α = 1, . . . , n

and set
I(kα)
α = [x(kα−1)

α , x(kα)
α ]

for 1 ≤ kα ≤ mα and α = 1, . . . , n. Finally, we define the following rectangles
for k = (k1, . . . , kn) ∈ Nn with 1 ≤ kα ≤ mα:

I(k) = I
(k1)
1 × . . .× I(kn)

n ⊂ Rn.

We define the characteristic function of the set I(k) by

ϕI(k)(x) =

{
1, x ∈ I(k)

0, x ∈ Rn \ I(k)

and similarly

ϕ
I
(kα)
α

(x) =

{
1, x ∈ I

(kα)
α

0, x ∈ R \ I(kα)
α

for α = 1, . . . , n.

Then we see

ϕI(k)(x) = ϕ
I
(k1)
1

(x1) · . . . · ϕI
(kn)
n

(xn), x ∈ Rn. (19)

Now we calculate

TϕI(k)(x) =
1√
2π

n

∫
Rn

ei(x·y)ϕI(k)(y) dy

=
( +∞∫
−∞

eix1y1

√
2π

ϕ
I
(k1)
1

(y1) dy1

)
· . . . ·

( +∞∫
−∞

eixnyn

√
2π

ϕ
I
(kn)
n

(yn) dyn

)
(20)

= Tϕ
I
(k1)
1

(x1) · . . . · TϕI
(kn)
n

(xn).
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For the admissible multi-indices k = (k1, . . . , kn) and l = (l1, . . . , ln) we de-
duce

(TϕI(k) , TϕI(l))

=
∫

Rn

(
Tϕ

I
(k1)
1

(x1) · . . . · TϕI
(kn)
n

(xn)
)(

Tϕ
I
(l1)
1

(x1) · . . . · TϕI
(ln)
n

(xn)
)
dx

= (Tϕ
I
(k1)
1

, Tϕ
I
(l1)
1

) · . . . · (Tϕ
I
(kn)
n

, Tϕ
I
(ln)
n

)

= |I(k1)
1 | · . . . · |I(kn)

n | δk1l1 · . . . · δknln

= |I(k)| δk1l1 · . . . · δknln

and consequently

(TϕI(k) , TϕI(l)) =

{
|I(k)|, k = l

0, k �= l
. (21)

Here we have set

|I(kα)
α | = x(kα)

α − x(kα−1)
α and |I(k)| = |I(k1)

1 | · . . . · |I(kn)
n |.

We summarize our considerations to the following

Proposition 3. Let ϕk := ϕI(k) with k = (k1, . . . , kn) and 1 ≤ kα ≤ mα for
α = 1, . . . , n be chosen. Then we have the inclusion

Tϕk ∈ L2(Rn)

and furthermore the equation

(Tϕk, Tϕl) = (ϕk, ϕl) holds true for all admissible k, l. (22)

We now consider the linear subspace D ⊂ L2(Rn) of the step functions in Rn.
They consist of all those functions f satisfying the following conditions:

1. Outside of a rectangle Q ⊂ Rn the relation f(x) = 0 is correct.
2. There exists a decomposition Q =

⋃
k

I(k) of the rectangle as above, and

we have the representation

f(x) =
∑

k

ckϕk

with the coefficients ck ∈ C and the characteristic functions ϕk := ϕI(k) .

Proposition 4. For all step functions f, g ∈ D we have

(Tf, T g) = (f, g).
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Proof: We choose a rectangle Q ⊃ supp (f)∪ supp (g) and find a canonical
decomposition of Q, such that

f =
∑

k

ckϕk, g =
∑

l

dlϕl.

Therefore, we obtain

(Tf, T g) =
(∑

k

ckTϕk,
∑

l

dlTϕl

)
=
∑
k,l

ckdl(Tϕk, Tϕl)

=
∑
k,l

ckdl(ϕk, ϕl) = (f, g).
q.e.d.

We now consider the integral operator

Sf :=
1√
2π

n

∫
Rn

e−i(x·y)f(y) dy, f ∈ D,

and note that
Sf = Tf, f ∈ D. (23)

Since T : D → L2(Rn) represents a linear bounded operator, this is the case
for S as well. Furthermore, the operator S is isometric on account of

(Sf, Sg) = (Tf, T g) = (Tf, T g) = (f, g) = (f, g)

for all f, g ∈ D.

Intermediate statement: We have the identity

(Tf, g) = (f, Sg) for all f, g ∈ D.
Proof: We now calculate

(Tf, g) =
∫
Q

( 1√
2π

n

∫
Q

e−i(x·y)f(y) dy
)
g(x) dx

=
1√
2π

n

∫
Q×Q

e−i(x·y)f(y)g(x) dy dx

=
∫
Q

f(y)
( 1√

2π
n

∫
Q

e−i(x·y)g(x) dx
)
dy

= (f, Sg).

We sum up our considerations to the following
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Proposition 5. Let D denote the set of all step functions in Rn. Then the
operators

T, S : D → L2(Rn)

are isometric, and S is adjoint to T which means

(Tf, T g) = (f, g) = (Sf, Sg) (24)

and
(Tf, g) = (f, Sg) (25)

for all f, g ∈ D.

Now the linear space D ⊂ L2(Rn) lies dense, and consequently for each f ∈
L2(Rn) we have a sequence

{fk}k=1,2,... ⊂ D with ‖fk − f‖L2(Rn) → 0 (k →∞).

Therefore, we can uniquely extend the bounded operators T, S of D onto
L2(Rn) as follows:

Tf := lim
k→∞

Tfk, Sf := lim
k→∞

Sfk. (26)

The relations (24) and (25) yield

S ◦ T = T ∗ ◦ T = E = S∗ ◦ S = T ◦ S on D,

and we infer
S ◦ T = E = T ◦ S on L2(Rn). (27)

Consequently T : L2(Rn) → L2(Rn) gives us a unitary operator satisfying

T ∗ = S = T−1.

From (26) we now shall derive a direct representation of T and S as follows:
We choose

f ∈ L2
0(R

n) :=
{
g ∈ L2(Rn) : supp (g) ⊂ Rn is compact

}
.

For f ∈ L2
0(Rn) we have a sequence {fk}k=1,2,... ⊂ D such that

supp (f), supp (fk) ⊂ Q, k = 1, 2, . . .

- where Q ⊂ Rn is a fixed rectangle - and

‖f − fk‖L2(Q) → 0 (k →∞)

holds true. For all x ∈ Rn we obtain the estimate
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2π

n

∫
Q

ei(x·y)f(y) dy
∣∣∣ = 1√

2π
n

∣∣∣ ∫
Q

ei(x·y)(fk(y)− f(y)) dy
∣∣∣

≤ 1√
2π

n

∫
Q

|fk(y)− f(y)| dy (28)

≤ 1√
2π

n

√
|Q|‖fk − f‖L2(Q) → 0 (k →∞)

and consequently∥∥∥Tfk(x) − 1√
2π

n

∫
Q

ei(x·y)f(y) dy
∥∥∥

L2(Rn)
→ 0 (k →∞). (29)

Together with (26) we obtain∥∥∥Tf(x)− 1√
2π

n

∫
Q

ei(x·y)f(y) dy
∥∥∥

L2(Rn)

≤ ‖Tf − Tfk‖L2(Rn) +
∥∥∥Tfk(x)− 1√

2π
n

∫
Q

ei(x·y)f(y) dy
∥∥∥

L2(Rn)

→ 0 (k →∞).

For all f ∈ L2
0(R

n) therefore the relation

Tf(x) =
1√
2π

n

∫
Q

ei(x·y)f(y) dy a. e. in Rn (30)

is correct. Taking f ∈ L2(Rn) arbitrarily, we choose a sequence of rectangles

Q1 ⊂ Q2 ⊂ . . . with
∞⋃

n=1

Qk = Rn

and set

fk(x) =

{
f(x), x ∈ Qk

0, x ∈ Rn \Qk

.

Then the relation ‖fk − f‖L2(Rn) → 0 for (k →∞) is valid, and (26) yields

Tf = lim
k→∞

Tfk = l.i.m.
1√
2π

n

∫
Qk

ei(x·y)f(y) dy, (31)

Sf = lim
k→∞

Sfk = l.i.m.
1√
2π

n

∫
Qk

e−i(x·y)f(y) dy. (32)
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Here the symbol l.i.m. denotes the limit for k → ∞ in the quadratic means,
more precisely in the L2(Rn)-norm.

We summarize our considerations to the following

Theorem 2. (Fourier, Plancherel)
According to (31), the Fourier integral operator T : L2(Rn) → L2(Rn) ex-
ists and is unitary. Additionally, the adjoint integral operator S : L2(Rn) →
L2(Rn) from (32) is unitary, and we have

S ◦ T = T ◦ S = E on L2(Rn).

§6 Completely continuous operators in Hilbert spaces

We owe the following notion of convergence to David Hilbert:

Definition 1. In the Hilbert space H a sequence {xn}n=1,2,... ⊂ H is called
weakly convergent towards an element x ∈ H, symbolically xn ⇀ x (n→∞),
if the relation

lim
n→∞(xn, y) = (x, y) for all y ∈ H

is satisfied.

Example 1. Let {ϕi}i=1,2,... denote an orthonormal system in the Hilbert space
H, and we observe

‖ϕi − ϕj‖ =
√

(ϕi − ϕj , ϕi − ϕj) =
√

(ϕi, ϕi) + (ϕj , ϕj) =
√

2

for all i, j ∈ N with i �= j. Consequently, {ϕi}i=1,2,... does not contain a
subsequence which represents a Cauchy sequence with respect to the Hilbert
space norm. According to Bessel’s inequality, all f ∈ H are subject to the
estimate ∞∑

i=1

|(ϕi, f)|2 ≤ ‖f‖2 < +∞,

and we infer
lim

i→∞
(ϕi, f) = 0 = (0, f) for all f ∈ H.

We therefore obtain ϕi ⇀ 0 (i→∞) and note that

‖0‖ ≤ lim inf
i→∞

‖ϕi‖ = 1.

Theorem 1. (Principle of uniform boundedness)
On the Hilbert space H let the sequence of bounded linear functionals An :
H → C with n ∈ N be given, such that each element f ∈ H possesses a
constant cf ∈ [0,+∞) with the property
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|Anf | ≤ cf , n = 1, 2, . . . (1)

Then we have a constant α ∈ [0,+∞) satisfying

‖An‖ ≤ α for all n ∈ N. (2)

Proof:

1. Let A : H → C denote a bounded linear functional such that

|Af | ≤ c for all f ∈ H with ‖f − f0‖ ≤ ε.

Here we have chosen an element f0 ∈ H, a quantity ε > 0, and a constant
c ≥ 0 . Then we have

‖A‖ ≤ 2c
ε
.

Setting x := 1
ε (f − f0) we infer ‖x‖ ≤ 1 and

|Ax| =
∣∣∣1
ε
Af − 1

ε
Af0

∣∣∣ ≤ 1
ε

(
|Af |+ |Af0|

)
≤ 2c

ε

and finally ‖A‖ ≤ 2c
ε .

2. If the statement (2) does not hold true, part 1 of this proof together with
the continuity of the functionals {An}n enables us to construct a sequence
of balls

Σn :=
{
f ∈ H : ‖f − fn‖ ≤ εn

}
, n ∈ N

satisfying Σ1 ⊃ Σ2 ⊃ . . . with εn ↓ 0 (n → ∞) and an index-sequence
1 ≤ n1 < n2 < . . . such that

|Anjx| ≥ j for all x ∈ Σj and j = 1, 2, . . . (3)

is correct. Evidently, the relation (3) yields a contradiction to (1). q.e.d.

Theorem 2. (Weak convergence criterion)
Let the sequence {xn}n=1,2,... ⊂ H be given in a Hilbert space such that all
elements y ∈ H possess the limit

lim
n→∞(xn, y).

Then the sequence {xn}n is bounded in H and weakly convergent towards an
element x ∈ H, which means xn ⇀ x (n→∞).

Proof: We consider the bounded linear functionals

An(y) := (xn, y), y ∈ H
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with the norms ‖An‖ = ‖xn‖ for n = 1, 2, . . . . Since the limits

lim
n→∞An(y) =: A(y)

exist for all y ∈ H by assumption, Theorem1 gives us a constant c ∈ [0,+∞)
with ‖xn‖ = ‖An‖ ≤ c for all n ∈ N. This implies ‖A‖ ≤ c, and due to the
representation theorem of Fréchet-Riesz we have exactly one element x ∈ H
satisfying

A(y) = (x, y), y ∈ H
for the bounded linear functional A . We obtain

lim
n→∞(xn, y) = lim

n→∞An(y) = A(y) = (x, y) for all y ∈ H

which means xn ⇀ x (n→∞). q.e.d.

Though it is not possible in general to select a subsequence convergent with
respect to the norm out of a bounded sequence in a Hilbert space (compare the
Example 1 above), we can prove the following fundamental result (compare
Theorem7 in Chapter II, § 8 for the special case H = L2(X)):

Theorem 3. (Hilbert’s selection theorem)
Each bounded sequence {xn}n=1,2,... ⊂ H in a Hilbert space H contains a
weakly convergent subsequence {xnk

}k=1,2,....

Proof:

1. The sequence {xn}n=1,2,... is bounded and we have a constant c ∈ [0,+∞),
such that

‖xn‖ ≤ c, n = 1, 2, . . . (4)

is correct. On account of

|(x1, xn)| ≤ c‖x1‖ for all n ∈ N

we find a subsequence {x(1)
n }n ⊂ {xn}n, such that lim

n→∞(x1, x
(1)
n ) exists.

Noting that
|(x2, x

(1)
n )| ≤ c‖x2‖ for all n ∈ N

we select a further subsequence {x(2)
n }n ⊂ {x(1)

n }n whose limit exists,
namely lim

n→∞(x2, x
(2)
n ). The continuation of this procedure gives us a chain

of subsequences

{xn}n ⊃ {x(1)
n }n ⊃ {x(2)

n }n ⊃ . . . ⊃ {x(k)
n }n,

such that the limits
lim

n→∞(xi, x
(k)
n )
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exist for i = 1, . . . , k. With the aid of Cantor’s diagonal procedure we
get the sequence xk

′ := x
(k)
k . Then the sequence {(xi, xk

′)}k=1,2,... is con-
vergent for all i ∈ N. Denoting the linear subspace of all finite linear
combinations by M , namely

x =
N(x)∑
i=1

αixi, αi ∈ C, N(x) ∈ N,

the following limits exist:

lim
k→∞

(x, xk
′) for all x ∈M. (5)

2. Now we make the transition to the linear closed subspace M ⊂M ⊂ H,
and the following limits exist as well:

lim
k→∞

(y, xk
′) for all y ∈M. (6)

Here we note that we can extend the bounded linear functional

A(y) := lim
k→∞

(xk
′, y) = lim

k→∞
(y, xk

′), y ∈ M

continuously onto the closure M . Due to the Projection theorem each
element y ∈ H can be represented in the form y = y1 + y2 with y1 ∈ M
and y2 ∈M⊥

. This implies the existence of

lim
k→∞

(y, xk
′) = lim

k→∞
(y1 + y2, xk

′) = lim
k→∞

(y1, xk
′)

for all y ∈ H. Consequently, the sequence {xk
′}k=1,2,... in the Hilbert space

H converges weakly. q.e.d.

Remarks to the weak convergence:

1. If the sequence xn → x (n→∞) converges strongly, which means

lim
n→∞ ‖xn − x‖ = 0,

then it converges weakly xn ⇀ x (n→∞) as well. For arbitrary elements
y ∈ H we namely deduce

|(xn, y)− (x, y)| = |(xn − x, y)| ≤ ‖xn − x‖‖y‖ → 0 (n→∞).

2. The norm is lower-semi-continuous with respect to weak convergence. This
means

xn ⇀ x (n→∞) ⇒ lim inf
n→∞ ‖xn‖ ≥ ‖x‖, xn, x ∈ H
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for a real Hilbert space H. We namely observe

‖xn‖2 − ‖x‖2 = (xn, xn)− (x, x) = (xn − x, xn + x)

= (xn − x, xn − x) + 2(x− xn, x), n = 1, 2, . . . ,

and consequently

lim inf
n→∞ ‖xn‖2 − ‖x‖2 = lim inf

n→∞ ‖xn − x‖2 + 2 lim inf
n→∞ (x− xn, x) ≥ 0 ,

and finally
lim inf
n→∞ ‖xn‖ ≥ ‖x‖.

3. From xn ⇀ x (n → ∞) and yn → y (n → ∞) we infer (xn, yn) → (x, y)
(n→∞). Here we utilize the estimate

|(xn, yn)− (x, y)| = |(xn, yn)− (xn, y) + (xn, y)− (x, y)|
≤ |(xn, yn − y)|+ |(xn − x, y)|
≤ ‖yn − y‖‖xn‖+ |(xn − x, y)| → 0 (n→∞).

Definition 2. A subset Σ ⊂ H of a Hilbert space is named precompact, if
each sequence {yn}n=1,2,... ⊂ Σ contains a strongly convergent subsequence
{ynk

}k=1,2,... ⊂ {yn}n , which means

lim
k,l→∞

‖ynk
− ynl

‖ = 0.

Definition 3. A linear operator K : H1 → H2 is called completely continuous
or alternatively compact, if the following set

Σ :=
{
y = Kx : x ∈ H1 with ‖x‖1 ≤ r

}
⊂ H2

is precompact, with a certain radius r ∈ (0,+∞) given. This means that each
sequence {xn}n=1,2,... ⊂ H1 with ‖xn‖1 ≤ r for n ∈ N contains a subsequence
{xnk

}k=1,2,... such that {Kxnk
}k=1,2,... ⊂ H2 converges strongly.

Remarks:

1. It suffices to choose r = 1 in Definition 3.
2. A completely continuous linear operator K : H1 → H2 is bounded. If this

were not the case, there would exist a sequence {xn}n=1,2,... ⊂ H1 with
‖xn‖1 = 1 for all n ∈ N and ‖Kxn‖2 → +∞ (n → ∞). Therefore, we
cannot select a convergent subsequence from {Kxn}n=1,2,... in the Hilbert
space H2 . This yields a contradiction to Definition 3 .

Theorem 4. Let K : H1 → H2 denote a linear operator between the Hilbert
spaces H1 and H2. The operator K is completely continuous if and only if for
each weakly convergent sequence xn ⇀ x (n→∞) in H1 the statement
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Kxn → Kx (n→∞) in H2

follows. Consequently, the operator K is completely continuous if and only if
each weakly convergent sequence in H1 is transferred into a strongly convergent
sequence in H2 .

Proof:

‘⇐’ Let {xn}n=1,2,... ⊂ H1 be a sequence with ‖xn‖1 ≤ 1, n ∈ N. According to
Hilbert’s selection theorem we have a subsequence {xnk

}k=1,2,... ⊂ {xn}n

satisfying
xnk

⇀ x (k →∞) in H1.

By assumption
ynk

→ Kx (k →∞)

is fulfilled for the subsequence ynk
:= Kxnk

, k = 1, 2, . . . . Consequently,
the operator K : H1 → H2 is completely continuous.

‘⇒’ Now let K be completely continuous, and {xn}n=1,2,... ⊂ H1 denotes
a sequence satisfying xn ⇀ x = 0 (n → ∞). We then have to prove:
Kxn → Kx = 0 (n→∞) in H2 . If the latter statement were false, there
would exist a number d > 0 and a subsequence {xn

′}n ⊂ {xn}n satisfying

‖Kxn
′‖ ≥ d > 0 for all n ∈ N.

Since the operator K is completely continuous, we have a further subse-
quence

{xn
′′}n ⊂ {xn

′} with Kxn
′′ → y (n→∞).

Therefore, we obtain with the statement

0 < d2 ≤ (y, y) = lim
n→∞(y,Kxn

′′) = lim
n→∞(K∗y, xn

′′) = (K∗y, 0) = 0

a contradiction. q.e.d.

Remarks about completely continuous operators:

1. If K : H → H is a bounded linear operator with a finite-dimensional range
WK := K(H), then K is completely continuous.

2. If T1 : H1 → H2 and T2 : H2 → H3 are two bounded linear operators, and
T1 or T2 is completely continuous, then the operator

T := T2 ◦ T1 : H1 → H3

is completely continuous as well. If the operator T1 is completely contin-
uous for instance, then the weakly convergent sequence xn ⇀ x (n→∞)
in H1 is transferred into the strongly convergent sequence T1xn → T1x
(n→∞) in H2 . Since T2 is continuous, we infer

Txn = T2 ◦ T1xn → T2 ◦ T1x = Tx (n→∞) in H3.
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3. The operator K : H → H is completely continuous on the Hilbert space H
if and only if the adjoint operator K∗ : H → H is completely continuous.
Proof: Let K : H → H be completely continuous, then the operator K ◦K∗

is completely continuous as well. From an arbitrary sequence

{xn}n=1,2,... ⊂ H with ‖xn‖ ≤ 1, n ∈ N

we can extract a subsequence {xnk
}k=1,2,... such that {K ◦K∗xnk

}k con-
verges strongly in H . We infer

‖K∗xnk
−K∗xnl

‖2 = ‖K∗(xnk
− xnl

)‖2

=
(
K∗(xnk

− xnl
),K∗(xnk

− xnl
)
)

=
(
K ◦K∗(xnk

− xnl
), xnk

− xnl

)
≤ ‖K ◦K∗(xnk

− xnl
)‖‖xnk

− xnl
‖ → 0 (k, l →∞).

Consequently, the sequence {K∗xnk
}k=1,2,... converges in H, and the op-

erator K∗ is completely continuous.
The inverse direction can be seen with the identity K = (K∗)∗.

4. Let A : H → H be a completely continuous Hermitian linear operator on
the Hilbert space H. Then the associate bilinear form

α(x, y) := (Ax, y) = (x,Ay), (x, y) ∈ H×H
is continuous with respect to weak convergence. This means with xn ⇀ x
(n→∞) and yn ⇀ y (n→∞) in H we have the limit relation

α(xn, yn) → α(x, y) (n→∞).

Proof: This follows immediately from Remark 3 concerning the weak con-
vergence combined with Theorem4.

Definition 4. Let H denote a separable Hilbert space with two c.o.n.s.

ϕ = {ϕi}i=1,2,... and ψ = {ψi}i=1,2,....

The linear operator T : H → H has a finite square-norm if

N(T ;ϕ, ψ) :=

√√√√ ∞∑
i,k=1

|(Tϕi, ψk)|2 < +∞

holds true.

Proposition 1. Let T : H → H denote a linear operator as in Definition 4
with N(T ;ϕ, ψ) < +∞. Then we have

‖T ‖ ≤ N(T ;ϕ, ψ) =

√√√√ ∞∑
i=1

‖Tϕi‖2. (7)
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Proof: At first, we observe

N(T ;ϕ, ψ)2 =
∞∑

i,k=1

|(Tϕi, ψk)|2 =
∞∑

i=1

( ∞∑
k=1

|(Tϕi, ψk)|2
)

=
∞∑

i=1

‖Tϕi‖2.

With the series

f =
∞∑

i=1

ci ϕi ∈ H

we calculate

Tf =
∞∑

i=1

ciTϕi

and consequently

‖Tf‖ ≤
∞∑

i=1

|ci|‖Tϕi‖.

This implies

‖Tf‖ ≤
√√√√ ∞∑

i=1

|ci|2
√√√√ ∞∑

i=1

‖Tϕi‖2 = ‖f‖N(T ;ϕ, ψ) for all f ∈ H

and therefore ‖T ‖ ≤ N(T ;ϕ, ψ). q.e.d.

Proposition 2. We consider with

ϕ = {ϕi}i=1,2,..., ϕ′ = {ϕ′
i}i=1,2,..., ψ = {ψi}i=1,2,..., ψ′ = {ψ′

i}i=1,2,...

four complete orthonormal systems in H. Then the identity N(T ;ϕ, ψ) =
N(T ;ϕ′, ψ′) =: N(T ) holds true - defining the square-norm. Furthermore
N(T ) = N(T ∗) is correct.

Proof: We calculate as follows:

N(T ;ϕ, ψ)2 =
∞∑

i,k=1

|(Tϕi, ψk)|2 =
∞∑

i=1

‖Tϕi‖2

=
∞∑

i,k=1

|(ψ′
k, Tϕi)|2 =

∞∑
i,k=1

|(T ∗ψ′
k, ϕi)|2

=
∞∑

k=1

‖T ∗ψ′
k‖2 =

∞∑
i,k=1

|(T ∗ψ′
k, ϕ

′
i)|2

=
∞∑

i,k=1

|(ψ′
k, Tϕ

′
i)|2 =

∞∑
i,k=1

|(Tϕ′
i, ψ

′
k)|2 = N(T ;ϕ′, ψ′).



§6 Completely continuous operators in Hilbert spaces 95

From the identity above we also infer N(T ) = N(T ∗). q.e.d.

Proposition2 implies that the square-norm is independent of the chosen
c.o.n.s.

Example 2. On the rectangle

Q :=
{
x = (x1, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi for i = 1, . . . , n

}
let the kernel K = K(x, y) : Q×Q→ C ∈ L2(Q×Q,C) with∫

Q×Q

|K(x, y)|2 dx dy < +∞ (8)

be given. As in the Example 1 from § 4 we define the Hilbert-Schmidt operator

Kf(x) :=
∫
Q

K(x, y)f(y) dy for almost all x ∈ Q.

According to Theorem4 from § 4 , the linear operator K : L2(Q) → L2(Q) is
bounded by ‖K‖ ≤ ‖K‖L2(Q×Q).

Statement: The Hilbert-Schmidt operator K has the finite square-norm

N(K) =

√√√√ ∫
Q×Q

|K(x, y)|2 dx dy < +∞. (9)

Proof: Let {ϕi(x)}i=1,2,... constitute a c.o.n.s. in L2(Q). Then we set

ψi(x) =
∫
Q

K(x, y)ϕi(y) dy = Kϕi(x) a. e. in Q for i = 1, 2, . . .

We calculate
∞∑

i=1

|ψi(x)|2 =
∞∑

i=1

∣∣∣ ∫
Q

K(x, y)ϕi(y) dy
∣∣∣2

=
∞∑

i=1

∣∣∣(K(x, ·), ϕi)
∣∣∣2 =

∫
Q

|K(x, y)|2 dy,

and Fubini’s theorem yields∫
Q×Q

|K(x, y)|2 dx dy =
∫
Q

∞∑
i=1

|ψi(x)|2 dx =
∞∑

i=1

∫
Q

|ψi(x)|2 dx

=
∞∑

i=1

‖Kϕi‖2 = N(K)2.
q.e.d.
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Of central significance is the subsequent

Theorem 5. On the separable Hilbert space H let T : H → H denote a linear
operator with finite square-norm N(T ) < +∞. Then the operator T : H → H
is completely continuous.

Proof: Let the sequence fn ⇀ f = 0 (n → ∞) be weakly convergent. If
{ϕi}i=1,2,... represents a c.o.n.s. in H, we have the expansion

fn =
∞∑

i=1

ci
nϕi

with
lim

n→∞ ci
n = 0 for i = 1, 2, . . . (10)

and ∞∑
i=1

|ci
n|2 ≤M2 for n = 1, 2, . . . (11)

According to Proposition 1 the operator T : H → H is continuous, and we
infer

Tfn =
∞∑

i=1

ci
nTϕi

and furthermore

‖Tfn‖ ≤
∥∥∥ N∑

i=1

ci
nTϕi

∥∥∥+
∥∥∥ ∞∑

i=N+1

ci
nTϕi

∥∥∥
≤
∥∥∥ N∑

i=1

ci
nTϕi

∥∥∥+

√√√√ ∞∑
i=1

|ci
n|2
√√√√ ∞∑

i=N+1

‖Tϕi‖2 .

With the aid of (11) we obtain

‖Tfn‖ ≤
∥∥∥ N∑

i=1

ci
nTϕi

∥∥∥+ M

√√√√ ∞∑
i=N+1

‖Tϕi‖2, n = 1, 2, . . . (12)

Given the quantity ε > 0 , we choose an integer N = N(ε) ∈ N so large that

M

√√√√ ∞∑
i=N+1

‖Tϕi‖2 ≤ ε

is attained. Observing (10), we then can choose a number n0 = n0(ε) ∈ N

such that
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∥∥∥N(ε)∑
i=1

ci
nTϕi

∥∥∥ ≤ ε for all n ≥ n0

is correct. Altogether, we obtain the estimate

‖Tfn‖ ≤ 2ε for all n ≥ n0

with the quantity ε > 0 given. Therefore, Tfn → 0 (n→∞) holds true. q.e.d.

Remark: According to Theorem5, the Hilbert-Schmidt operators are com-
pletely continuous.

Definition 5. With the completely continuous operator K : H → H on the
Hilbert space H we associate the so-called Fredholm operator T := E − K :
H → H by

Tx := Ex−Kx = x−Kx, x ∈ H.

Using the theorem of F. Riesz we now prove the important

Theorem 6. (Fredholm)
Let K : H → H denote a completely continuous linear operator on the Hilbert
space H with the associate Fredholm operator T := E−K. Then we have the
following statements:

i) The null-spaces
NT :=

{
x ∈ H : Tx = 0

}
of the operator T and

NT∗ :=
{
x ∈ H : T ∗x = 0

}
of T ∗ = E−K∗ fulfill the identity

ω := dimNT = dimNT∗ ∈ N0 = N ∪ {0}. (13)

ii) The operator equation

x−Kx = Tx = y, x ∈ H (14)

is solvable for the right-hand side y ∈ H if and only if y ∈ N⊥
T∗ is correct,

which means
(y, z) = 0 for all z ∈ NT∗ (15)

is satisfied.
iii) If ω = 0 holds true, the bounded inverse operator T−1 : H → H exists.

Proof:
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1. At first, we show dimNT < +∞. If this were violated, there would exist
an orthonormal system {ϕi}i=1,2,... satisfying

0 = Tϕi = ϕi −Kϕi, i = 1, 2, . . .

Since the operatorK is completely continuous, we can select a subsequence
{ϕij}j=1,2,... ⊂ {ϕi}i such that ϕij → ϕ (j → ∞) in H. This contradicts
the statement

‖ϕi − ϕj‖ =
√

2 for all i, j ∈ N with i �= j.

Therefore, we see dimNT ∈ N0. With K the operator K∗ is completely
continuous as well, and we comprehend dimNT∗ ∈ N0.
We now decompose H into the closed linear subspaces

H = N⊥
T ⊕NT . (16)

Furthermore, we assume

dimNT ≤ dimNT∗ .

If this were not the case, we could replace T by T ∗ and T ∗ by T ∗∗ = T .
Finally, we set

WT := T (H) and WT∗ := T ∗(H).

2. We now have y ∈ W⊥
T if and only if

0 = (y, Tx) = (T ∗y, x) for all x ∈ H
is correct, and therefore T ∗y = 0 or equivalently y ∈ NT∗ holds true. This
implies

NT∗ = W⊥
T or equivalently WT = N⊥

T∗ . (17)

In particular, the range of T is closed in H. We now consider the ortho-
normal basis

{ϕ1, . . . , ϕd} ⊂ NT

in NT and the orthonormal basis

{ψ1, . . . , ψd∗} ⊂ NT∗

in NT∗ satisfying 0 ≤ d ≤ d∗ < +∞. We modify the operator T and
obtain a Fredholm operator

Sx := Tx−
d∑

i=1

(ϕi, x)ψi, x ∈ H. (18)

On account of (16) and (17), the null-space of the operator S evidently
satisfies



§6 Completely continuous operators in Hilbert spaces 99

NS =
{
x ∈ H : Sx = 0

}
= {0}.

Theorem4 from Chapter VII, § 4 of F. Riesz implies that the mapping
S : H → H is surjective. Consequently, d∗ = d and moreover dimNT =
dimNT∗ is correct. Furthermore, the mapping T : N⊥

T → N⊥
T∗ is invert-

ible. In the special case

ω = dimNT = dimNT∗ = 0

the theorem of F. Riesz quoted above guarantees the existence of the
bounded inverse operator on the entire Hilbert space H.

q.e.d.

Remark: Theorem6 is especially valid for linear operators K : H → H on
the separable Hilbert space H with finite square-norm N(K) < +∞. We can
estimate the dimension of the null-space for the operator T due to

dimNT ≤ N(K)2. (19)

If {ϕ1, . . . , ϕd} namely denotes an orthonormal system in NT , we enlarge it
to a c.o.n.s. {ϕi}i=1,2,... in H and obtain

N(K)2 =
∞∑

i=1

‖Kϕi‖2 ≥
d∑

i=1

‖Kϕi‖2

=
d∑

i=1

‖ϕi‖2 = d = dimNT .

We now collect our results for Hilbert-Schmidt operators in the following

Theorem 7. (D.Hilbert, E. Schmidt) On the rectangle Q = [a1, b1]× . . .×
[an, bn] let the integral kernel

K = K(x, y) : Q×Q→ C ∈ L2(Q×Q)

be given. We consider the linear subspaces of L2(Q) satisfying

N :
∫
Q

K(x, y)f(y) dy = f(x), f ∈ L2(Q),

N ∗ :
∫
Q

K∗(x, y)ψ(y) dy = ψ(x), ψ ∈ L2(Q),

with K∗(x, y) := K(y, x) for (x, y) ∈ Q×Q, and the following statement
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dimN = dimN ∗ ≤
∫

Q×Q

|K(x, y)|2 dx dy < +∞ (20)

holds true. The right-hand side f(x) ∈ L2(Q) given, the integral equation

u(x)−
∫
Q

K(x, y)u(y) dy = f(x), u ∈ L2(Q),

can be solved if and only if∫
Q

f(x)ψ(x) dx = 0 for all ψ ∈ N ∗

is satisfied.

Proof: The Hilbert-Schmidt operator

Kf(x) :=
∫
Q

K(x, y)f(y) dy, f ∈ L2(Q)

has the finite square-norm

N(K) =

√√√√ ∫
Q×Q

|K(x, y)|2dx dy < +∞.

Due to Theorem5, the operator is completely continuous with the adjoint
operator

K∗f(x) :=
∫
Q

K∗(x, y)f(y) dy, f ∈ L2(Q).

From Theorem6 and the subsequent Remark we infer the statements given.

q.e.d.

In the bounded domain G ⊂ Rn we consider the weakly singular kernels

K = K(x, y) ∈ Sα(G,C)

from § 1, Definition 1 with α ∈ [0, n) and their associate integral operators

Kf(x) :=
∫
G

K(x, y)f(y) dy, x ∈ G,

for f ∈ D := C0(G,C) ∩ L∞(G,C).

(21)



§6 Completely continuous operators in Hilbert spaces 101

Proposition 3. Let the kernel K = K(x, y) ∈ Sα(G,C) with the properties∫
G

|K(x, y)| dy ≤M, x ∈ G,

∫
G

|K(x, y)| dx ≤ N, y ∈ G,

(22)

be given. Then the operator K : H → H can be extended from D onto the
Hilbert space H = L2(G,C) , and the following estimate holds true:

‖K‖ ≤
√
MN.

Proof: Taking arbitrary functions f, g ∈ D we estimate as follows:

|(g,Kf)| =
∣∣∣ ∫
G

g(x)
(∫

G

K(x, y)f(y) dy
)
dx
∣∣∣

≤
∫

G⊗G

|K(x, y)||g(x)||f(y)| dx dy

=
∫

G⊗G

(
|K(x, y)| 12 |g(x)|

)(
|K(x, y)| 12 |f(y)|

)
dx dy

≤
( ∫

G⊗G

|K(x, y)||g(x)|2 dx dy
) 1

2
( ∫

G⊗G

|K(x, y)||f(y)|2 dx dy
) 1

2

=
( ∫

G

|g(x)|2
( ∫

G

|K(x, y)| dy
)
dx
) 1

2
( ∫

G

|f(y)|2
(∫

G

|K(x, y)| dx
)
dy
) 1

2

≤
√
MN

√√√√∫
G

|g(x)|2 dx
√√√√∫

G

|f(y)|2 dy =
√
MN‖g‖‖f‖.

Consequently, the operator K : H→ H is defined with ‖K‖ ≤ √MN . q.e.d.

We define

Θ(t) :=

⎧⎪⎨⎪⎩
0, 0 ≤ t ≤ 1

t− 1, 1 ≤ t ≤ 2

1, 2 ≤ t

.

With K = K(x, y) ∈ Sα(G,C) and δ ∈ (0, δ0) we consider the continuous
kernels

Kδ(x, y) := K(x, y)Θ
( |x− y|

δ

)
, (x, y) ∈ G×G, (23)
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together with their associate integral operators Kδ. For all δ ∈ (0, δ0) the
operator Kδ : H → H is completely continuous due to Theorem 5. With the
aid of Proposition3 we easily deduce the limit relation

‖Kδ −K‖ → 0 (δ → 0). (24)

The complete continuity of K is inferred from the following

Proposition 4. On the Hilbert space H let the sequence of completely con-
tinuous operators Aj : H → H for j = 1, 2, . . . be given, converging due to
‖Aj − A‖ → 0 (j → ∞) towards the bounded linear operator A : H → H.
Then the limit operator A : H → H is completely continuous.

Proof: Taking the sequence {xk}k=1,2,... ⊂ H with ‖xk‖ ≤ 1 for all k ∈ N,
we can select a subsequence {x(1)

k }k ⊂ {xk}k such that {A1x
(1)
k }k=1,2,... ⊂ H

converges. Furthermore, we have a subsequence {x(2)
k }k ⊂ {x(1)

k }k such that
{A2x

(2)
k }k ⊂ H converges. In this way we successively select subsequences

{x(1)
k } ⊃ {x(2)

k } ⊃ . . .

and go over to the diagonal sequence x′k := x
(k)
k for k = 1, 2, . . . . We then

show the sequence {Ax′k}k=1,2,... to be convergent in H as well: At first, we
estimate

‖Ax′k −Ax′l‖ ≤ ‖Ax′k −Ajx
′
k‖+ ‖Ajx

′
k −Ajx

′
l‖+ ‖Ajx

′
l − Ax′l‖

≤ ‖A−Aj‖‖x′k‖+ ‖Ajx
′
k −Ajx

′
l‖+ ‖Aj −A‖‖x′l‖.

(25)

With a given quantity ε > 0 , we now choose an index j ∈ N so large that
‖A − Aj‖ ≤ ε is correct. Furthermore, we chose an integer N = N(ε) ∈ N

satisfying
‖Ajx

′
k −Ajx

′
l‖ ≤ ε for all k, l ≥ N.

From the relation (25) we obtain the inequality

‖Ax′k −Ax′l‖ ≤ 2ε+ ε = 3ε for all k, l ≥ N(ε).

Therefore, the sequence {Ax′k}k=1,2,... converges in H. q.e.d.

Theorem 8. (Weakly singular integral equations)
On the bounded domain G ⊂ Rn let the weakly singular kernel K = K(x, y) of
the class Sα(G,C) with α ∈ [0, n) and the integral operator K be given. Then
the null-spaces

N :
∫
G

K(x, y)ϕ(y) dy = ϕ(x), x ∈ G; ϕ ∈ D

N ∗ :
∫
G

K(x, y)ψ(x) dx = ψ(y), y ∈ G; ψ ∈ D
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satisfy the identity dimN = dimN ∗ < +∞ . The integral equation

u(x)−
∫
G

K(x, y)u(y) dy = f(x), x ∈ G; u ∈ D, (26)

can be solved for the given right-hand side f ∈ D if and only if the following
condition holds true:∫

G

ψ(x)f(x) = 0 for all ψ ∈ N ∗. (27)

Proof: On account of Proposition4 the integral operator K : H → H is com-
pletely continuous, and Fredholm’s Theorem6 can be applied in the Hilbert
space H = L2(G,C) . We still have to show that (26) is solvable in D .
Therefore, let u ∈ H be a solution of the integral equation

Eu −Ku = f (28)

with the continuous right-hand side f ∈ D. According to the Theorem of
I. Schur on iterated kernels (compare § 2, Theorem4) there exists an integer
k ∈ N, such that Kk = L with a bounded kernel L = L(x, y) ∈ S0(G,C) is
correct. From Theorem2 in § 2 the property Lu ∈ D is satisfied. Via (28) we
now obtain the following identity:

Eu − Lu = Eu −Kku = (E + K + . . . + Kk−1)f =: g. (29)

Due to § 2, Theorem2 we have E + K + . . .+ Kk−1 : D → D and consequently
g ∈ D. Finally, we obtain

u = g + Lu ∈ D. q.e.d.

§7 Spectral theory for completely continuous Hermitian
operators

At first, we consider the following

Example 1. On the Hilbert space H = L2((0, 1),C) with the inner product

(f, g) =

1∫
0

f(x)g(x) dx, f, g ∈ H

we define the linear operator

Af(x) := xf(x), x ∈ (0, 1); f = f(x) ∈ H.

On account of



104 VIII Linear Operators in Hilbert Spaces

‖Af‖2 =

1∫
0

x2f(x)f(x) dx ≤
1∫

0

|f(x)|2 dx = ‖f‖2

the operator A is bounded by ‖A‖ ≤ 1. Furthermore, the operator A is sym-
metric due to

(Af, g) =

1∫
0

xf(x)g(x) dx = (f,Ag) for all f, g ∈ H.

We now claim that A does not possess eigenvalues. From the identity Af = λf
we namely infer

(x− λ)f(x) = 0 a. e. in (0, 1)

and consequently f(x) = 0 a. e. in (0, 1) which implies f = 0 ∈ H.

Theorem 1. Let A : H → H denote a completely continuous Hermitian op-
erator on the Hilbert space H. Then we have an element ϕ ∈ H with ‖ϕ‖ = 1
and a number λ ∈ R with |λ| = ‖A‖ such that

Aϕ = λϕ.

Consequently, the numbers +‖A‖ or −‖A‖ are eigenvalues of the operator A.
Furthermore, we have the following estimate:

|(x,Ax)| ≤ |λ|(x, x) for all x ∈ H. (1)

Proof:

1. At first, we show
‖A‖ = sup

x∈H, ‖x‖=1

|(Ax, x)|. (2)

From the estimate

|(Ax, x)| ≤ ‖Ax‖ ‖x‖ ≤ ‖A‖ ‖x‖2 = ‖A‖

for all x ∈ H with ‖x‖ = 1 we infer

sup
x∈H, ‖x‖=1

|(Ax, x)| ≤ ‖A‖.

In order to show the reverse inequality, we choose an arbitrary α ∈ [0,+∞)
satisfying

|(Ax, x)| ≤ α‖x‖2 for all x ∈ H.

With arbitrary elements f, g ∈ H we calculate

(A(f + g), f + g)− (A(f − g), f − g) = 2{(Af, g) + (Ag, f)} = 4 Re(Af, g)
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and consequently

4|Re(Af, g)| ≤ |(A(f + g), f + g)|+ |(A(f − g), f − g)|
≤ α{‖f + g‖2 + ‖f − g‖2} = 2α{‖f‖2 + ‖g‖2}.

We now replace

f =

√
‖y‖
‖x‖ x, g = eiϕ

√
‖x‖
‖y‖ y

with a suitable angle ϕ ∈ [0, 2π), such that the inequality

4|(Ax, y)| ≤ 2α
{‖y‖
‖x‖‖x‖

2 +
‖x‖
‖y‖‖y‖

2

}
= 4α‖x‖ ‖y‖

follows and equivalently

|(Ax, y)| ≤ α‖x‖ ‖y‖ for all x, y ∈ H.

Inserting the element y = Ax, we obtain

‖Ax‖2 ≤ α‖x‖ ‖Ax‖ or equivalently ‖Ax‖ ≤ α‖x‖
for all x ∈ H, and therefore ‖A‖ ≤ α. Finally, we see

sup
x∈H, ‖x‖=1

|(Ax, x)| = inf

{
α ∈ [0,+∞) :

|(Ax, x)| ≤ α‖x‖2
for all x ∈ H

}
≥ ‖A‖.

2. We now consider the variational problem

‖A‖ = sup
x∈H\{0}

|(Ax, x)|
‖x‖2 = sup

x∈H, ‖x‖=1

|(Ax, x)| , (3)

and without loss of generality we assume A �= 0 . Let {xn}n=1,2,... ⊂ H
denote a sequence with ‖xn‖ = 1 for all n ∈ N satisfying

|(Axn, xn)| → ‖A‖ (n→∞).

Then we have a subsequence {x′n}n=1,2,... ⊂ {xn}n=1,2,... and an element
x ∈ H with ‖x‖ ≤ 1, such that x′n ⇀ x (n→∞) and

(Ax′n, x
′
n)→ λ ∈ {−‖A‖, ‖A‖}

hold true. Since the bilinear form (y, z) �→ (Ay, z) is weakly continuous,
we infer

0 �= λ = lim
n→∞(Ax′n, x

′
n) = (Ax, x)

and therefore x �= 0. Now the condition ‖x‖ = 1 holds true: If ‖x‖ < 1
were correct, we would obtain

|(Ax, x)|
‖x‖2 >

|λ|
1

= ‖A‖

contradicting (3).
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3. Without loss of generality we now assume λ = +‖A‖ ; and the element
x ∈ H satisfying ‖x‖ = 1 may solve the variational problem (3) from part
2 of our proof. We therefore have

(Ax, x) = λ‖x‖2.

Taking an arbitrary element y ∈ H, there exists a quantity ε0 = ε0(y) > 0
such that all ε ∈ (−ε0, ε0) fulfill

(A(x + εy), x+ εy) ≤ λ(x + εy, x + εy)

and consequently

(Ax, x) + ε{(Ax, y) + (Ay, x)} ≤ λ‖x‖2 + ελ{(x, y) + (y, x)} + o(ε).

This implies
εRe(Ax− λx, y) ≤ o(ε),

and consequently Re(Ax − λx, y) ≤ o(1) for all y ∈ H. Therefore, the
relation

Re(Ax− λx, y) = 0 for all y ∈ H
has to be fulfilled and especially

Ax = λx.
q.e.d.

Theorem 2. (Spectral theorem of F.Rellich)
Let the completely continuous Hermitian operator A : H → H be given on the
Hilbert space H satisfying A �= 0. Then we have a finite or countably infinite
system of orthonormal elements {ϕi}i=1,2,... in H such that

a) The elements ϕi are eigenfunctions to the eigenvalues λi ∈ R ordered as
follows:

‖A‖ = |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . > 0,

more precisely
Aϕi = λiϕi, i = 1, 2, . . .

If the set {ϕi}i is infinite, we have the asymptotic behavior

lim
i→∞

λi = 0.

b) For all x ∈ H we have the representations

Ax =
∑

i=1,2,...

λi(ϕi, x)ϕi and (x,Ax) =
∑

i=1,2,...

λi|(ϕi, x)|2.
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Remark: This theorem remains true for inseparable Hilbert spaces. If the
system {ϕi}i=1,...,N is finite, the series above reduce to sums.

Proof of Theorem 2: On account of ‖A‖ > 0, Theorem1 yields the existence
of an element ϕ1 ∈ H with ‖ϕ1‖ = 1 satisfying

Aϕ1 = λ1ϕ1, λ1 ∈ {−‖A‖,+‖A‖}.

Furthermore, we have

|(Ax, x)| ≤ |λ1|(x, x) for all x ∈ H.

We now assume that we have already found m ≥ 1 orthonormal eigenelements
ϕ1, . . . , ϕm with the associate eigenvalues λ1, . . . , λm ∈ R satisfying the prop-
erty a). Then we consider the completely continuous Hermitian operator

Bmx = Ax −
m∑

i=1

λi(ϕi, x)ϕi.

Case 1: We have Bm = 0. Then the following representation holds true:

Ax =
m∑

i=1

λi(ϕi, x)ϕi.

Case 2: We have Bm �= 0. According to Theorem1 we have an element ϕ ∈ H
with ‖ϕ‖ = 1, such that Bmϕ = λϕ and consequently

Aϕ−
m∑

i=1

λi(ϕi, ϕ)ϕi = λϕ

is satisfied with |λ| = ‖Bm‖ > 0 . Multiplication by ϕk with k ∈
{1, . . . ,m} from the left yields

λ(ϕk, ϕ) = (ϕk, Aϕ) − λk(ϕk, ϕ) = (Aϕk, ϕ)− λk(ϕk, ϕ)

= λk(ϕk, ϕ)− λk(ϕk, ϕ) = 0, k = 1, . . .m.

Therefore, the system {ϕ1, . . . , ϕm, ϕ} is orthonormal as well; we set
ϕm+1 := ϕ and λm+1 := λ �= 0. Now we deduce |λm+1| ≤ |λm|: By
construction the following estimate

|(x,Bmx)| ≤ |λm|(x, x) for all x ∈ H

holds true, and for x = ϕm+1 we obtain

|λm| ≥ |(ϕm+1, Bmϕm+1)| = |(ϕm+1, λm+1ϕm+1)| = |λm+1|.
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We now assume that the procedure above does not end. Since the elements
{ϕi}i are orthonormal, we infer ϕi ⇀ 0 (i→∞) and the complete continuity
of the operator A yields

|λi| = ‖Aϕi‖ → 0 (i→∞).

On account of ‖Bm‖ = |λm+1| we obtain the statement∥∥∥A− m∑
i=1

λi(ϕi, ·)ϕi

∥∥∥ = |λm+1| → 0 (m→∞) (4)

and consequently

Ax =
∞∑

i=1

λi(ϕi, x)ϕi, x ∈ H.

Therefore, all y = Ax with x ∈ H can be represented in the form

y =
∞∑

i=1

(ϕi, y)ϕi,

which means the system {ϕi}i=1,2,... is complete in WA = A(H) .
q.e.d.

Theorem 3. The Hermitian operator A : H → H with finite square-norm
N(A) < +∞ satisfying A �= 0 is defined on the separable Hilbert space H . The
operator A may possess a countably infinite system of orthonormal eigenele-
ments {ϕi}i=1,2,... and associate eigenvalues {λi}i=1,2,... with the properties
a) and b) from Theorem 2. We set

Anf := Af −
n∑

i=1

λi(ϕi, f)ϕi, n = 1, 2, . . .

Then the sequence of square-norms

N(An)2 =
∞∑

i=n+1

λ2
i , n = 1, 2, . . .

is a zero sequence.

Proof: Noting that N(A) < +∞ , the operator A : H → H is completely
continuous and Theorem2 gives us the representation

y =
∞∑

i=1

(ϕi, y)ϕi for all y ∈ WA.

We observe the decomposition H = WA ⊕ NA. The relation y ∈ NA or
equivalently Ay = 0 holds true if and only if
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0 = (Ay, x) = (y,Ax) for all x ∈ H
is satisfied, which means NA =W⊥

A .

Let now {ψi}i=1,2,... represent a c.o.n.s. in NA. Then the set {ϕi}i ∪ {ψi}i

constitutes a c.o.n.s. in H. This allows us to evaluate

N(A)2 =
∞∑

i=1

‖Aϕi‖2 +
∞∑

i=1

‖Aψi‖2 =
∞∑

i=1

λ2
i < +∞

and finally

N(An)2 =
∞∑

i=1

‖Anϕi‖2 +
∞∑

i=1

‖Anψi‖2 =
∞∑

i=n+1

λ2
i → 0 (n→∞).

q.e.d.

We specialize the Theorems 2 and 3 to Hilbert-Schmidt operators and imme-
diately obtain the following

Theorem 4. (Spectral theorem of D.Hilbert and E. Schmidt)
On the rectangle Q ⊂ Rn with n ∈ N let the integral kernel K = K(x, y) :
Q×Q→ C ∈ L2(Q×Q) be given satisfying∫

Q×Q

|K(x, y)|2 dx dy > 0

and
K(y, x) = K(x, y) for almost all (x, y) ∈ Q×Q. (5)

Then we have a finite or countably infinite system of eigenfunctions

{ϕi(x)}i=1,2,... ⊂ L2(Q,C)

with the associate eigenvalues {λi}i=1,2,... ⊂ R, such that the following
integral-eigenvalue-equation∫

Q

K(x, y)ϕi(y) dy = λiϕi(x) for almost all x ∈ Q (6)

is satisfied with i = 1, 2, . . . . The eigenvalues have the properties

|λ1| ≥ |λ2| ≥ . . . > 0 and lim
i→∞

λi = 0. (7)

Furthermore, we have the eigenvalue expansions∫
Q×Q

|K(x, y)|2 dx dy =
∞∑

i=1

λ2
i < +∞ (8)

and ∫
Q×Q

∣∣∣K(x, y)−
n∑

i=1

λiϕi(x)ϕi(y)
∣∣∣2 dx dy =

∞∑
i=n+1

λ2
i → 0 (n→∞). (9)



110 VIII Linear Operators in Hilbert Spaces

§8 The Sturm-Liouville eigenvalue problem

We need the following result:

Theorem 1. (Eigenvalue problem for weakly singular integral oper-
ators)
Let the weakly singular kernel K = K(x, y) ∈ Sα(G,C) with α ∈ [0, n) be
given on the bounded domain G ⊂ Rn, and we have K(x, y) �≡ 0 and

K(x, y) = K(y, x) for all (x, y) ∈ G⊗G.

We denote the associate integral operator by K, and define as our domain of
definition

D :=
{
f ∈ C0(G,C) : sup

x∈G
|f(x)| < +∞

}
.

Statements: Then we have a finite or countably infinite orthonormal system
of eigenfunctions {ϕi}i∈I ⊂ D with their eigenvalues λi ∈ R \ {0} for i ∈ I
satisfying ∫

G

K(x, y)ϕi(y) dy = λiϕi(x), x ∈ G, i ∈ I. (1)

If I = {1, 2, . . .} is countably infinite, we have

lim
i→∞

λi = 0, (2)

and each function g = Kf with f ∈ D can be approximated in the square-mean
due to

lim
n→∞

∫
G

∣∣∣g(x)−
n∑

i=1

giϕi(x)
∣∣∣2 dx = 0. (3)

Here we have set
gi :=

∫
G

ϕi(x)g(x) dx, i ∈ I (4)

for the Fourier coefficients. When we additionally assume α ∈ [0, n
2 ), the

function g = Kf with f ∈ D can be expanded into the following uniformly
convergent series:

g(x) =
∞∑

i=1

giϕi(x), x ∈ G. (5)

Proof: As it has been elaborated in the proof of Theorem8 from § 6 , the
operator K : H → H is completely continuous on the Hilbert space H =
L2(G,C). Furthermore, we have the regularity result

Eu −Ku = v with u ∈ H and v ∈ D ⇒ u ∈ D. (6)
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Due to Rellich’s spectral theorem from § 7, Theorem2 the operator K pos-
sesses a finite or countably infinite system of orthonormal eigenfunctions
{ϕi}i=1,2,... ⊂ H. Then we have the identities∫

G

K(x, y)ϕi(y) dy = λiϕi(x), x ∈ G

for all i = 1, 2, . . . with |λ1| ≥ |λ2| ≥ . . . > 0 and λi → 0 (i→∞), in the case
that infinitely many eigenfunctions exist. According to the regularity result
(6) we see ϕi ∈ D for i = 1, 2, . . . . Furthermore, the function g = Kf with an
arbitrary element f ∈ D satisfies the following identity in the Hilbert space:

g = Kf =
∑

i=1,2,...

λi(ϕi, f)ϕi =
∑

i=1,2,...

(Kϕi, f)ϕi

=
∑

i=1,2,...

(ϕi,Kf)ϕi =
∑

i=1,2,...

(ϕi, g)ϕi

or equivalently (3), with the Fourier coefficients gi defined in (4). When we
additionally assume α ∈ [0, n

2 ) , the linear operator K : L2(G) → C0(G) is
bounded by

‖Kf‖C0(G) ≤ C‖f‖L2(G) for all f ∈ D
due to Theorem2 from § 2. Therefore, the series∑

i=1,2,...

(ϕi, f)ϕi

convergent in the Hilbert space H = L2(G,C) is transferred by the operator
K into the uniformly convergent series∑

i=1,2,...

λi(ϕi, f)ϕi = K

( ∑
i=1,2,...

(ϕi, f)ϕi

)
= g.

q.e.d.

Theorem 2. (Expansion theorem for kernels)
Let K = K(x, y) : G×G→ C denote a Hermitian integral kernel of the class
S0(G,C), which is continuous on G×G . For the associate integral operator
K we assume

(f,Kf) ≥ 0 for all f ∈ D. (7)

Then we have a representation by the uniformly convergent series in each
compact set Γ ⊂ G as follows:

K(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y), (x, y) ∈ Γ × Γ. (8)
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Proof:

1. We show at first that

K(x, x) ≥ 0 for all x ∈ G (9)

is fulfilled. Here we utilize the function ϕ = ϕ(y) : Rn → [0,+∞) ∈ C0(Rn)
satisfying

ϕ(y) = 0, |y| ≥ 1, and
∫

Rn

ϕ(y) dy = 1.

The quantity δ > 0 given arbitrarily, we consider the approximate point
distributions about x ∈ G, namely

fδ(y) :=
1
δn

ϕ
(1
δ
(y − x)

)
, y ∈ Rn.

We insert the function fδ ∈ D into (7) and obtain

0 ≤ (fδ,Kfδ) =
∫

Rn

∫
Rn

fδ(y)K(y, z)fδ(z) dy dz

=
∫

Rn

∫
Rn

K(x, x)fδ(y)fδ(z) dy dz

+
∫

Rn

∫
Rn

(K(y, z)−K(x, x))fδ(y)fδ(z) dy dz

= K(x, x) +
∫

Rn

∫
Rn

(K(y, z)−K(x, x))fδ(y)fδ(z) dy dz.

Since the second term on the right-hand side vanishes for δ → 0, we infer
(9).

2. We now show the validity of

0 ≤
∞∑

i=1

λi|ϕi(x)|2 ≤ K(x, x) < +∞ for all x ∈ G. (10)

We define the integral kernel

KN(x, y) := K(x, y)−
N∑

i=1

λiϕi(x)ϕi(y)

with the associate integral operator KN . The latter satisfies

(f,KNf) =
∞∑

i=N+1

λi|(ϕi, f)|2 ≥ 0 for all f ∈ D.
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From part 1 of our proof we obtain KN (x, x) ≥ 0 for all x ∈ G or equiva-
lently

K(x, x) ≥
N∑

i=1

λiϕi(x)ϕi(x), x ∈ G

for all N ∈ N. This implies (10).
3. Let the point x ∈ G be chosen as fixed. For an arbitrary quantity ε > 0

we then can estimate

∞∑
i=N+1

|λiϕi(x)ϕi(y)| ≤
√√√√ ∞∑

i=N+1

λi|ϕi(x)|2
√√√√ ∞∑

i=N+1

λi|ϕi(y)|2

≤ ε
√
K(y, y) ≤ ε · const, y ∈ G,

for all N ≥ N0(ε). Therefore, we have the following statement for each
fixed x ∈ G:

The series Φ(y) :=
∞∑

i=1

λiϕi(x)ϕi(y) converges uniformly in G. (11)

4. According to Theorem4 from § 7 we have the relation

K(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y) (12)

in the L2(G × G,C)-sense. Choosing the point x ∈ G and the function
f ∈ C0

0 (G) arbitrarily, we obtain the following identity via (11) and (12):∫
G

K(x, y)f(y) dy = lim
N→∞

∫
G

( N∑
i=1

λiϕi(x)ϕi(y)
)
f(y) dy

=
∫
G

( ∞∑
i=1

λiϕi(x)ϕi(y)
)
f(y) dy.

This implies∫
G

(
K(x, y)−

∞∑
i=1

λiϕi(x)ϕi(y)
)
f(y) dy = 0 for all f ∈ C0

0 (G).

Since K ∈ C0(G × G) holds true, and the series in the integrand is con-
tinuous with respect to y ∈ G, we deduce the pointwise identity

K(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y) for all x, y ∈ G. (13)
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5. Especially for x = y we infer the following identity from (13):

K(x, x) =
∞∑

i=1

λi|ϕi(x)|2, x ∈ G.

According to Dini’s theorem the series converges uniformly on each com-
pact set Γ ⊂ G. Finally, we obtain the following inequality for arbitrary
ε > 0 and suitable N ≥ N0(ε), namely

∣∣∣ ∞∑
i=N+1

λiϕi(x)ϕi(y)
∣∣∣ ≤
√√√√ ∞∑

i=N+1

λi|ϕi(x)|2
√√√√ ∞∑

i=N+1

λi|ϕi(y)|2 ≤ ε2

for all (x, y) ∈ Γ × Γ . q.e.d.

Theorem 3. (The Sturm-Liouville eigenvalue problem)
We prescribe a, b ∈ R with a < b and the coefficient functions

p = p(x) ∈ C1([a, b], (0,+∞)), q = q(x) ∈ C0([a, b],R),

and consider the Sturm-Liouville operator L : C2([a, b],C) → C0([a, b],C)
defined by

Lu(x) := −(p(x)u′(x))′ + q(x)u(x), x ∈ [a, b].

Furthermore, we use the real boundary operators Bj : C2([a, b],C) → C for
j = 1, 2 defined by

B1u := c1u(a) + c2u
′(a) with c21 + c22 > 0

and
B2u := d1u(b) + d2u

′(b) with d2
1 + d2

2 > 0.

Finally, we fix the domain of definition

D :=
{
u ∈ C2([a, b],C) : B1u = 0 = B2u

}
.

Statements: Then we have a sequence {λi}i=1,2,... ⊂ R of eigenvalues satis-
fying

−∞ < λ1 ≤ λ2 ≤ . . . and lim
i→∞

λi = +∞
and the associate eigenfunctions {ϕi}i=1,2,... ⊂ D with the following proper-
ties:

a) We have

Lϕi = λiϕi,

b∫
a

ϕi(x)ϕj(x) dx = δij for all i, j ∈ N,
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and the identity

∞∑
i=1

∣∣∣ b∫
a

ϕi(x)f(x) dx
∣∣∣2 =

b∫
a

|f(x)|2 dx for all f ∈ D

is satisfied.
b) Each function g ∈ D can be expanded into the uniformly convergent series

on the interval [a, b] as follows:

g(x) =
∞∑

i=1

giϕi(x), x ∈ [a, b], with gi :=

b∫
a

ϕi(x)g(x) dx, i ∈ N.

c) If the property λi �= 0 for all i ∈ N is satisfied, the following series

∞∑
i=1

1
λi

ϕi(x)ϕi(y), (x, y) ∈ [a, b]× [a, b]

converges uniformly towards the Green function K of L under the boundary
conditions B1 = 0 = B2.

Proof: We continue our considerations from § 1 concerning the Sturm-Liouville
eigenvalue problem.

1. All eigenvalues of L are real. Since the coefficient functions p and q are real,
we obtain the following statement from Proposition1 in § 1 via separation
into the real and imaginary part:

b∫
a

Lu(x)v(x) dx =

b∫
a

u(x)Lv(x) dx for all u, v ∈ D. (14)

We calculate

λi

b∫
a

|ϕi(x)|2 dx =

b∫
a

λiϕi(x)ϕi(x) dx =

b∫
a

Lϕi ϕi dx

=

b∫
a

ϕiLϕi dx =

b∫
a

ϕiλiϕi dx

= λi

b∫
a

|ϕi(x)|2 dx, i=1,2,. . .

This implies
λi = λi for all i ∈ N.
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2. We now prove that the sequence of eigenvalues is bounded from below.
Here we consider the class of admissible functions

D0 :=
{
u = u(x) ∈ C2([a, b],C) : u(a) = 0 = u(b)

}
.

If u ∈ D0 is a solution of Lu = λu, we infer

λ ≥ q∗ := inf
a≤x≤b

q(x). (15)

With the aid of partial integration, we evaluate

λ

b∫
a

|u(x)|2 dx = λ

b∫
a

u(x)u(x) dx =

b∫
a

Lu(x)u(x) dx

=

b∫
a

{
p(x)|u′(x)|2 + q(x)|u(x)|2

}
dx

≥ q∗

b∫
a

|u(x)|2 dx.

We now show indirectly that the operator L on D possesses at most two
eigenvalues smaller than q∗. On the contrary, we assume that we had three
eigenfunctions ϕ1, ϕ2, ϕ3 ∈ D satisfying

Lϕi = λiϕi, i = 1, 2, 3 and λ1 ≤ λ2 ≤ λ3 < q∗.

Then we can find numbers α1, α2, α3 ∈ C with |α1|2 + |α2|2 + |α3|2 = 1
such that

v :=
3∑

i=1

αiϕi ∈ D0

is correct. On account of (15) we see

q∗

b∫
a

|v(x)|2 dx ≤
b∫

a

Lv(x) v(x) dx =

b∫
a

( 3∑
i=1

λiαiϕi

)( 3∑
j=1

αjϕj

)
dx

=

b∫
a

3∑
i=1

λi|αi|2|ϕi(x)|2 dx ≤ λ3

b∫
a

3∑
i=1

|αi|2|ϕi(x)|2 dx

= λ3

b∫
a

|v(x)|2 dx.

We obtain λ3 ≥ q∗ in contradiction to λ3 < q∗.



§9 Weyl’s eigenvalue problem for the Laplace operator 117

3. We name λ1 ∈ R the least eigenvalue of L on D, existing due to part 2 of
our proof. Then we obtain in

L̃ := L− λ1E + E

a Sturm-Liouville operator with the eigenvalues λ̃k ≥ 1 , k = 1, 2, . . . . Due
to Theorem 1 in § 1 the operator L on D possesses a symmetric Green’s
function K = K(x, y),(x, y) ∈ [a, b]× [a, b] of the class C0([a, b]× [a, b],R).
We now take Theorem2 from § 1 into account and utilize Theorem 1 for
the given integral equation. Then we obtain a sequence of eigenfunctions
{ϕi}i=1,2,... ⊂ D satisfying

Lϕi = λiϕi, i ∈ N, and λ1 ≤ λ2 ≤ . . .→ +∞.

From Theorems 1 and 2 we immediately infer all the statements above.
q.e.d.

§9 Weyl’s eigenvalue problem for the Laplace operator

We need the following generalization of the Gaussian integral theorem, which
does not require regularity assumptions for the boundary of the domain with
vanishing boundary values:

Proposition 1. (Giesecke, Heinz)

I. Let the bounded domain G ⊂ Rn be given, in which N ∈ N0 mutually
disjoint balls

Kj :=
{
x ∈ Rn : |x− x(j)| ≤ rj

}
, j = 1, 2, . . . , N

with their radii rj > 0 and their centers x(j) are contained. We set

G′ := G \ {x(1), . . . , x(N)} and G′′ := G \
N⋃

j=1

Kj .

The topological closure of the set G′′ is denoted by G′′.
II. For the two functions u, v ∈ C2(G′) ∩ C0(G′′) we assume

u|∂G = 0 = v|∂G;
∫

G′′

{
|Δu(x)|+ |Δv(x)|

}
dx < +∞.

Statement: Then the following identity∫
G′′

(vΔu +∇v · ∇u) dx = −
N∑

j=1

∫
|x−x(j)|=rj

v
∂u

∂νj
dΩj (1)

holds true. Here the symbol νj denotes the exterior normal to Kj and dΩj the
surface element on the spheres {x : |x− x(j)| = rj} = ∂Kj for j = 1, . . . , N .
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From Proposition 1 we immediately infer the subsequent

Proposition 2. With the assumptions from Proposition 1 we have Green’s
identity ∫

G′′

(vΔu− uΔv) dx = −
N∑

j=1

∫
|x−x(j)|=rj

(
v
∂u

∂νj
− u

∂v

∂νj

)
dΩj . (2)

Proof of Proposition 1:

1. At first, we assume that v ∈ C0
0 (G) is satisfied in addition to the assump-

tions above, and we consider the vector-field f = v∇u. Then the Gaussian
integral theorem yields the identity∫

G′′

(vΔu +∇v · ∇u) dx = −
N∑

j=1

∫
|x−x(j)|=rj

v
∂u

∂νj
dΩj . (3)

We approximate an arbitrary function v ∈ C2(G′)∩C0(G′′) by a sequence
{vk}k=1,2,... as follows: Let {wk(t)}k=1,2,... ⊂ C∞(R, [0, 1])) denote a se-
quence of functions with the properties

wk(t) =

⎧⎪⎨⎪⎩
1, |t| ≥ 1

k

0, |t| ≤ 1
2k

, k = 1, 2, . . .

The functions

ϕk(t) :=

t∫
0

wk(s) ds, t ∈ R

then satisfy

ϕk(0) = 0, ϕ′
k(t) = wk(t), k = 1, 2, . . . ,

and we estimate

|ϕk(t)− t| =
∣∣∣ t∫

0

(wk(s)− 1) ds
∣∣∣ ≤ 2

k
, k = 1, 2, . . .

Now we define the sequence

vk(x) := ϕk(v(x)), x ∈ G′′, k = 1, 2, . . . (4)

and consider the relation

|vk(x) − v(x)| = |ϕk(v(x)) − v(x)| ≤ 2
k
→ 0 (k →∞)

for all x ∈ G′′, which implies

vk(x) → v(x) (k →∞) uniformly in G′′. (5)
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2. We now prove that

E :=
{
x ∈ G′′ : v(x) = 0, ∇v(x) �= 0

}
represents a Lebesgue null-set: Here we choose the point z ∈ E arbitrarily.
Taking the quantity ε > 0 sufficiently small, the set

E ∩ {x ∈ G′′ : |x− z| < ε
}

constitutes a graph, and is consequently a Lebesgue null-set due to the
theorem on implicit functions. We exhaust the set G′′ with the aid of the
cube decomposition. For each point z ∈ E we consider a sufficiently small
cube z ∈ W ⊂ G′′ such that W ∩E is a Lebesgue null-set. Now the set E
consists of a countable union of those sets W ∩E, and the σ-additivity of
the Lebesgue measure yields the statement above.

3. For all points x ∈ G′′ \ E we deduce

∇vk(x) = ϕ′
k(v(x))∇v(x) = wk(v(x))∇v(x) → ∇v(x) (k →∞),

which holds true a. e. in G′′ due to part 2 of our proof. We insert v = vk

into (3) and obtain∫
G′′

(vkΔu +∇vk · ∇u) dx = −
N∑

j=1

∫
|x−x(j)|=rj

vk
∂u

∂νj
dΩj , k ∈ N.

Then we observe the passage to the limit k →∞ and see∫
G′′

v(x)Δu(x) dx + lim
k→∞

∫
G′′

(∇vk(x) · ∇u(x)) dx

= −
N∑

j=1

∫
|x−x(j)|=rj

v(x)
∂u(x)
∂νj

dΩj .
(6)

Inserting v(x) = u(x) into (6) and noting that

∇vk(x) = wk(u(x))∇u(x),

we see ∫
G′′

u(x)Δu(x) dx + lim
k→∞

∫
G′′

wk(u(x))|∇u(x)|2 dx

= −
N∑

j=1

∫
|x−x(j)|=rj

u(x)
∂u(x)
∂νj

dΩj .
(7)

Fatou’s theorem now yields
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G′′

|∇u(x)|2 dx < +∞ and
∫

G′′

|∇v(x)|2 dx < +∞. (8)

On account of

|∇vk(x) · ∇u(x)| = |wk(v(x))| |∇v(x) · ∇u(x)|

≤ 1
2
(|∇u(x)|2 + |∇v(x)|2), x ∈ G′′,

we have an integrable majorant for the limit in (6). By Lebesgue’s conver-
gence theorem the identity (1) follows.

q.e.d.

We now continue the considerations from § 1 concerning the eigenvalue prob-
lem of the n-dimensional oscillation equation : Let G ⊂ Rn denote a bounded
Dirichlet domain. On the linear space

E :=
{
u = u(x) ∈ C2(G) ∩ C0(G) : u|∂G = 0

}
we consider Weyl’s eigenvalue problem

−Δu(x) = λu(x), x ∈ G, with u ∈ E \ {0} and λ ∈ R. (9)

Proposition 3. All eigenvalues λ of (9) have the property λ > 0.

Proof: With u ∈ E \ {0} we consider a solution of (9) belonging to the eigen-
value λ ∈ R. Then we infer∫

G

|Δu(x)| dx = |λ|
∫
G

|u(x)| dx < +∞.

We apply Proposition 1 with v = u and obtain∫
G

|∇u(x)|2 dx = −
∫
G

u(x)Δu(x) dx = λ

∫
G

|u(x)|2 dx

or equivalently

λ =

∫
G

|∇u(x)|2 dx
∫
G

|u(x)|2 dx
> 0.

q.e.d.

Remark: The Rayleigh quotient appears in the last formula.

We do not mention the case n = 2 separately, and utilize Green’s function in
the dimensions n = 3, 4, . . . as follows:
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H(x, y) =
1

(n− 2)ωn

1
|y − x|n−2

+ h(x, y), (x, y) ∈ G⊗G. (10)

A solution u of (9) evidently belongs to the space

D :=
{
u = u(x) ∈ C0(G) : sup

x∈G
|u(x)| < +∞

}
= C0(G) ∩ L∞(G)

and satisfies the integral-equation-problem

u(x) = λ

∫
G

H(x, y)u(y) dy, x ∈ G, with u ∈ D \ {0} and λ ∈ R.

(11)
We deduce the latter statements as in § 1 (compare Theorem3 there), using
the Propositions 1 and 2 above. We have shown already the symmetry of
Green’s function and have controlled the growth condition:

H = H(x, y) ∈ Sn−2(G),

0 ≤ H(x, y) = H(y, x), (x, y) ∈ G⊗G.
(12)

We now shall prove that a solution u of (11) solves (9) as well.

Proposition 4. Let the function u = u(x) ∈ D be given, and the parameter
integral

v(x) :=
∫
G

H(x, y)u(y) dy, x ∈ G

be defined. Then we have the properties v ∈ C0(G) and v|∂G = 0.

Proof: With the aid of the function

Θ(t) =

⎧⎪⎨⎪⎩
0, 0 ≤ t ≤ 1

t− 1, 1 ≤ t ≤ 2

1, 2 ≤ t

we define the continuous integral kernel

Hδ(x, y) := H(x, y)Θ
( |x− y|

δ

)
= Θ

( |x− y|
δ

)( 1
(n− 2)ωn

|y − x|2−n + h(x, y)
)
, δ > 0.
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For all δ > 0 the parameter integral

vδ(x) :=
∫
G

Hδ(x, y)u(y) dy, x ∈ G,

is continuous on G, and we observe vδ|∂G = 0. Furthermore, we have the
following inequality for all x ∈ G:

|vδ(x)− v(x)| ≤
∫
G

∣∣∣Θ( |x− y|
δ

)
− 1
∣∣∣ |H(x, y)| |u(y)| dy

≤
∫

y:|y−x|≤2δ

c

|y − x|n−2
dy ≤ γ(δ) → 0 (δ ↓ 0).

(13)

This implies
vδ(x) → v(x) (δ ↓ 0) uniformly in G

and therefore: v ∈ C0(G) , v|∂G = 0. q.e.d.

Proposition 5. Given a solution u of (11), we infer u ∈ C2(G) and the
eigenvalue equation

−Δu(x) = λu(x), x ∈ G.

Proof: We take an arbitrary point z ∈ G, and then choose a quantity ε > 0 so
small that the inclusion

Kε(z) :=
{
x ∈ Rn : |x− z| ≤ ε

}
⊂ G

is valid. From the integral equation (11) we infer

u(x) = λ

∫
Kε(z)

1
(n− 2)ωn

1
|y − x|n−2

u(y) dy

+λ

∫
G\Kε(z)

1
(n− 2)ωn

1
|y − x|n−2

u(y) dy +
∫
G

h(x, y)u(y) dy

= λ

∫
Kε(z)

1
(n− 2)ωn

1
|y − x|n−2

u(y) dy + ψz,ε(x), x ∈
◦

Kε(z) .

(14)

Here the function ψz,ε(x) is harmonic in
◦

Kε(z). We can differentiate the rela-
tion (14) once (but not twice!) and obtain via the Gaussian integral theorem
the relation
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∇u(x) = λ

∫
Kε(z)

1
(n− 2)ωn

(
∇x

1
|y − x|n−2

)
u(y) dy +∇ψz,ε(x)

= −λ
∫

Kε(z)

1
(n− 2)ωn

(
∇y

1
|y − x|n−2

)
u(y) dy +∇ψz,ε(x)

= −λ
∫

Kε(z)

1
(n− 2)ωn

∇y

( u(y)
|y − x|n−2

)
dy

+λ

∫
Kε(z)

1
(n− 2)ωn

∇u(y)
|y − x|n−2

u(y) dy +∇ψz,ε(x)

= −λ
∫

∂Kε(z)

1
(n− 2)ωn

u(y)
|y − x|n−2

ν(y) dΩ(y)

+λ

∫
Kε(z)

1
(n− 2)ωn

∇u(y)
|y − x|n−2

dy +∇ψz,ε(x)

(15)

for all x ∈
◦

Kε(z). Here the symbol ν(y) denotes the exterior normal to the
ball Kε(z) and dΩ(y) the surface element on the sphere ∂Kε(z). From (15)
we infer the statement

u ∈ C2(G), (16)

since the point z ∈ G could be chosen arbitrarily. We differentiate (15) once
more, choose x = z, and evaluate the limit ε ↓ 0. Then we obtain

Δu(z) = lim
ε↓0

{
− λ

∫
∂Kε(z)

1
(n− 2)ωn

(
∇x

u(y)
|y − x|n−2

)∣∣∣
x=z

ν(y) dΩ(y)
}

+ lim
ε↓0

{
λ

∫
Kε(z)

1
(n− 2)ωn

(
∇x

∇u(y)
|y − x|n−2

)∣∣∣
x=z

dy

}
= −λu(z) + 0 = −λu(z) for all z ∈ G.

(17)

q.e.d.
We summarize our considerations to the following

Proposition 6. The function u solves the eigenvalue problem (9) if and only
if the function u solves the eigenvalue problem (11).

Theorem 1. (H.Weyl)
On each bounded Dirichlet domain G ⊂ Rn with n = 2, 3, . . ., the Laplace
operator possesses a c.o.n.s. of eigenfunctions ϕk ∈ E, k = 1, 2, . . . . This
means

−Δϕk(x) = λkϕk(x), x ∈ G, k = 1, 2, . . . , (18)

and the eigenvalues have the properties

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .→ +∞. (19)
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Proof: Equivalently to (9) we consider the integral eigenvalue problem (11)∫
G

H(x, y)u(y) dy = μu(x), x ∈ G, μ =
1
λ

with the symmetric weakly singular kernel H(x, y) from (12). The statements
of the theorem can now be inferred from § 8, Theorem1 . q.e.d.

Remarks:

1. In the spaces R2 and R3, we can even uniformly expand each function
f ∈ E into the series of eigenfunctions for the Laplace operator.

2. The least eigenvalue λ1 for the Laplacian on the bounded domain G ⊂ Rn

satisfies

λ1(G) = inf
ϕ∈W 1,2

0 (G)∩G0(G), ϕ 	=0

∫
G

|∇ϕ(x)|2 dx
∫
G

|ϕ(x)|2 dx
. (20)

Here we refer the reader to the Sobolev spaces in § 1 and § 2 of ChapterX.
From the relation (20) we immediately infer the monotonicity property of
the least eigenvalue:

G ⊂ G∗ ⇒ λ1(G) ≥ λ1(G∗). (21)

With the aid of a regularity theorem for weak solutions of the Laplace
equation one proves the strict monotonicity property:

G ⊂⊂ G∗ ⇒ λ1(G) > λ1(G∗). (22)

In this context we refer the reader to [CH], Band II, Kapitel VI.
3. Comparing sufficiently regular domains G ⊂ Rn with the ball of the same

volume K ⊂ Rn - which means |K| = |G| - we have the estimate

λ1(G) ≥ λ1(K). (23)

Here, the equality is attained only in the case that G is already a ball in
Rn. This Theorem of Faber and Krahn rests on the isoperimetric inequality
in Rn and had already been conjectured by Rayleigh in his book Theory
of the Sound. In the case n = 2 we recommend the study of the following
paper:

E.Krahn: Über eine von Rayleigh formulierte Minimaleigenschaft des
Kreises. Mathematische Annalen, Bd. 94 (1924), S. 97-100.

4. If the function ϕ ∈ E is a solution of (9) for the eigenvalue λ ∈ R, we infer

λ = λ1 ⇔ ϕ(x) �= 0 for all x ∈ G. (24)

Therefore, the eigenfunction to the least eigenvalue λ1 has no zeroes in G.
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5. About the eigenfunctions for the higher eigenvalues and their nodal do-
mains almost no results are available (compare [CH]).

6. Endowing the domain G ⊂ Rn with the elliptic Riemannian metric

ds2 =
n∑

i,j=1

gij(x) dxi dxj ,

we propose the integral equation method in order to treat the eigenvalue
problem of the Laplace-Beltrami operator

Δ =
1√
g(x)

n∑
i=1

∂

∂xi

(√
g(x)

n∑
j=1

gij(x)
∂

∂xj

)
(25)

with ((gkl)kl = (gij)−1
ij and g =det(gij)) . In this context we need the

generalized Green’s function for elliptic operators in divergence form which
is weakly singular again. Here we refer the reader to our approach in
ChapterX, § 9 and § 10 or to the following original paper:

M. Grüter, K.O. Widman: The Green function for uniformly elliptic
equations. Manuscripta mathematica, Bd. 37 (1982), S. 303-342.

7. Theorems of Faber-Krahn type are valid even for the operators (25). Here
we recommend the monographs

G. Polya: Isoperimetric inequalities, Princeton University Press, 1944
and

C.Bandle: Isoperimetric inequalities in Mathematical Physics, Pitman,
1984.

8. The spectral theory for unbounded operators is presented e.g. in Kapitel
IV: Selbstadjungierte Operatoren im Hilbertraum of the monograph

H. Triebel: Höhere Analysis. Verlag der Wissenschaften, Berlin, 1972.

A simple proof of the spectral theorem for selfadjoint operators has been
discovered by

H. Leinfelder: A geometric proof of the spectral theorem for unbounded
selfadjoint operators. Mathematische Annalen, Bd. 242 (1979), S. 85-
96.

§10 Some historical notices to Chapter VIII

The investigation of eigenvalue problems for ordinary differential operators
started in 1837; then C.F. Sturm invented his well-known comparison theo-
rem, essential for the stability question of geodesics. C.G. Jacobi (1804–1851)
created the general stability theory for one-dimensional variational problems.
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In order to study the stability question for parametric minimal surfaces,
H.A. Schwarz investigated eigenvalue problems for the two-dimensional Lapla-
cian already in the Festschrift from 1885, dedicated to his academic teacher
Karl Weierstrass.

D. Hilbert created the theory of integral equations in the years 1904–1910,
solving linear systems of infinitely many equations. This theory may be seen
as one of Hilbert’s greatest achievements, and it was substantially further
developed by his students H. Weyl and E. Schmidt.
We have presented H. Weyl’s approach to the eigenvalue problem of the n-
dimensional Laplacian via the integral equation method in this chapter. In his
famous textbook together with Hilbert, R. Courant solved eigenvalue problems
for partial differential equations alternatively by direct variational methods.
His student F. Rellich then created a spectral theory for abstract operators in
Hilbert spaces, as well as K. Friedrichs.

In the meantime, physicists became intensively interested in eigenvalue prob-
lems for partial differential equations; these are situated in the center of
Quantum Mechanics – evolving in the 1930s. Their source of information
were mainly the textbooks Methoden der Mathematischen Physik I, II by
R. Courant and D. Hilbert.

Portrait of R.Courant (1888–1972);
taken from page 240 of the biography by C.Reid: Hilbert, Springer-Verlag,
Berlin... (1970).



IX

Linear Elliptic Differential Equations

At first, we transform boundary value problems for elliptic differential equa-
tions with two independent variables into a Riemann-Hilbert boundary value
problem in § 1. The latter can be solved by the integral equation method due
to I. N. Vekua in § 2 and § 3. Then, we derive potential-theoretic estimates for
the solution of Poisson’s equation in § 4 . For use in Chapter XII we prove cor-
responding inequalities for solutions of the inhomogeneous Cauchy-Riemann
equation. For elliptic differential equations in n variables we solve the Dirich-
let problem by the continuity method in the classical function space C2+α(Ω);
see § 5 and § 6 . The necessary Schauder estimates are completely derived in
the last paragraph.

§1 The differential equation
Δφ + p(x, y)φx + q(x, y)φy = r(x, y)

In the simply connected domain Ω ⊂ C we take the bounded coefficient
functions

p = p(x, y), q = q(x, y), r = r(x, y) ∈ C0(Ω,R),

and consider the differential operator

L := Δ + p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
. (1)

We define the complex-valued function

a = a(z) := −1
4

(p(x, y) + iq(x, y)), z = x + iy ∈ Ω, (2)

and remark that

∂

∂z
=

1
2

( ∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1
2

( ∂

∂x
+ i

∂

∂y

)
.
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With arbitrary functions φ = φ(x, y) ∈ C2(Ω,R) we calculate
1
4
Lφ(x, y) =

1
4
(
Δφ(x, y) + pφx + qφy

)
= φzz +

1
2

Re
{
(p + iq)

1
2

(φx − iφy)
}

= φzz − 2Re{a(z)φz(z)}
= φzz − aφz − aφz in Ω.

(3)

Here we denote the real and imaginary parts of a complex number z by Rez
and Imz, respectively. Now we consider solutions

f∗ = f∗(z) ∈ C1(Ω,C\{0})
of the differential equation

∂

∂z
f∗(z)− a(z)f∗(z) = 0 in Ω. (4)

These appear in the form

f∗(z) = F∗(z) exp
{−1

π

∫∫
Ω

a(ζ)
ζ − z

dξ dη
}
, z ∈ Ω, (5)

with an arbitrary holomorphic function F∗ : Ω → C\{0}. Furthermore, we
have utilized Cauchy’s integral operator

TΩ[a](z) :=
−1
π

∫∫
Ω

a(ζ)
ζ − z

dξ dη, z ∈ Ω (ζ = ξ + iη) (6)

from § 5 in Chapter IV. We now consider the associate gradient function

f(z) :=
2i

f∗(z)
φz(z), z ∈ Ω. (7)

With the coefficient function

b(z) := − 1
f∗(z)

∂

∂z
f∗(z) = −

( 1
f∗

∂

∂z
f∗(z)

)
, z ∈ Ω, (8)

we calculate
∂

∂z
f(z)− b(z)f(z) =

∂

∂z

( 2i
f∗(z)

φz(z)
)

+
1

f∗(z)

( ∂

∂z
f∗(z)

) −2i
f∗(z)

φz(z)

=
2i
f∗

φzz − 2i
f2∗

( ∂

∂z
f∗
)
φz − 2i

f∗

( 1
f∗

∂

∂z
f∗
)
φz

=
2i
f∗

{
φzz − aφz − aφz

}
= i

2f∗(z) Lφ(x, y), z = x + iy ∈ Ω.

(9)
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Theorem 1. a) If the function φ = φ(x, y) ∈ C2(Ω) satisfies Lφ(x, y) =
r(x, y) inΩ, then its associate gradient function (7) fulfills the following
differential equation:

∂

∂z
f(z)− b(z)f(z) =

i

2f∗(z)
r(z) =: c(z), z ∈ Ω. (10)

b) On the other hand, if we start with a solution f ∈ C1(Ω,C) of the equation
(10) in the simply connected domain Ω ⊂ C, then the real contour integral

φ(x, y) := 2Re

z∫
z0

1
2i

f∗(ζ)f(ζ) dζ, z ∈ Ω (11)

gives us a solution of the differential equation Lφ(x, y) = r(x, y) in Ω.
Here, the point z0 ∈ Ω is chosen arbitrarily.

Proof: a) This follows from the identity (9).
b) At first, we infer the following differential equation from (8):

∂

∂z
f∗(z) + b(z) f∗(z) = 0, z ∈ Ω.

Furthermore, the contour integral from (11) is independent of the path chosen:
With G ⊂⊂ Ω taking an arbitrary normal domain, the Gaussian integral
theorem in the complex form yields

Re
∫

∂G

1
2i

f∗(ζ)f(ζ) dζ = Re
∫∫
G

(
f∗(z)f(z)

)
z
dx dy

= Re
∫∫
G

{
(
∂

∂z
f∗)f + (

∂

∂z
f)f∗

}
dx dy

= Re
∫∫
G

{
− b(z)f∗f + b(z)ff∗ +

i

2
r(z)

}
dx dy = 0 .

Furthermore, we have

φ(z) =
1
2i

z∫
z0

{
f∗(ζ)f(ζ) dζ − f∗(ζ) f(ζ) dζ

}
, z ∈ Ω,

which implies

φz(z) =
1
2i

f∗(z)f(z), z ∈ Ω. (12)

We infer the validity of Lφ = r(x, y) in Ω from the identity (9).
q.e.d.
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Theorem 2. (P. Hartman, A. Wintner)
Let the nonconstant function φ = φ(x, y) ∈ C2(Ω) satisfy the homogeneous
elliptic differential equation

Lφ(x, y) = 0, (x, y) ∈ Ω. (13)

Then the gradient of φ has, at most, isolated zeros in Ω, and at each zero
z0 ∈ Ω we have the asymptotic expansion

φz(z0 + ζ) = c ζn + o(|ζ|n), ζ → 0. (14)

Here we used the numbers n ∈ N, c = c1 + ic2 ∈ C\{0}; the symbol o(|ζ|n)
denotes a function ψ = ψ(ζ) : C\{0} → C with the property

lim
ζ→

�=
0

|ψ(ζ)|
|ζ|n = 0 .

Furthermore, the function φ reveals the behavior of a saddle point near z0,
namely

φ(z0 + reiϕ) = φ(z0) +
2

n + 1
rn+1

(
c1 cos(n+ 1)ϕ− c2 sin(n+ 1)ϕ

)
+ o(rn+1)

(15)
with r → 0+. Consequently, the function φ does not attain a local minimum
nor a local maximum at the point z0.

Proof: The identity (12) implies

φz(z) =
1
2i

f∗(z)f(z), z ∈ Ω.

Here, the function f∗ is defined by (5) and the function f satisfies the differ-
ential equation

∂

∂z
f(z) = b(z)f(z), z ∈ Ω. (16)

Consequently, the function f is pseudoholomorphic (compare Chapter IV, § 6),
and we obtain the following expansion near a zero z0 of φz:

φz(z0 + ζ) = c ζn + o(|ζ|n), ζ → 0.

Here we have chosen the numbers c = c1 + ic2 ∈ C\{0} and n ∈ N. Further-
more, we have
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φ(z0 + reiϕ)− φ(z0) =

r∫
0

d

d�
φ(z0 + �eiϕ) d�

=

r∫
0

d

d�
φ(x0 + � cosϕ, y0 + � sinϕ) d�

=

r∫
0

{
φx(. . .) cosϕ + φy(. . .) sinϕ

}
d�

= 2

r∫
0

Re
{
φz(z0 + �eiϕ)eiϕ

}
d�.

When we insert the asymptotic expansion (14) of φz , we finally obtain

φ(z0 + reiϕ)− φ(z0)

= 2

r∫
0

Re
{
c�nei(n+1)ϕ

}
d� + o(rn+1)

= 2Re
{
(c1 + ic2)(cos(n + 1)ϕ + i sin(n + 1)ϕ)

} rn+1

n + 1
+ o(rn+1)

=
2

n + 1

{
c1 cos(n + 1)ϕ− c2 sin(n + 1)ϕ

}
rn+1 + o(rn+1)

with r → 0+. q.e.d.

Let Ω ⊂ C be a simply connected bounded domain, whose boundary consists
of a regular C2-curve in the following sense:

∂Ω : z = ζ(t) : [0, T ]→ ∂Ω ∈ C2
T (R,C) with |ζ′(t)| ≡ 1, 0 ≤ t ≤ T. (17)

Here ζ′(t), 0 ≤ t ≤ T gives us the tangential vector-field to ∂Ω, and we
abbreviate

C2
T (R,C) :=

{
g ∈ C2(R,C) : g is periodic with the period T

}
.

Furthermore, the vector-field ν(t) := −iζ′(t), 0 ≤ t ≤ T represents the exterior
normal to ∂Ω. Now, we prescribe the continuous unit vector-field

γ(t) = α(t) + iβ(t) ∈ C0
T (R,R2) with |γ(t)| ≡ 1, t ∈ R

on the boundary ∂Ω and the function χ = χ(t) ∈ C0
T (R,R).

Then we consider the following boundary value problem of Poincaré

φ = φ(x, y) ∈ C2(Ω) ∩ C1(Ω),

Lφ(x, y) = r(x, y) in Ω, (18)

φx(ζ(t))α(t) + φy(ζ(t))β(t) = χ(t), 0 ≤ t ≤ T.
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Remarks:

1. In the special case γ(t) = ν(t), 0 ≤ t ≤ T , the condition reduces to
Neumann’s boundary condition

∂

∂ν
φ(ζ(t)) = χ(t), 0 ≤ t ≤ T. (19)

2. In the special case γ(t) = ζ′(t), 0 ≤ t ≤ T , the condition reduces to
Dirichlet’s boundary condition

∂

∂t
φ(ζ(t)) = χ(t), 0 ≤ t ≤ T,

and consequently

φ(ζ(t)) = φ(ζ(0)) +

t∫
0

χ(τ) dτ, 0 ≤ t ≤ T.

Here we additionally require

T∫
0

χ(τ) dτ = 0. (20)

The associate gradient function f(z) = 2i
f∗(z)φz(z), z ∈ Ω satisfies

χ(t) = φx(ζ(t))α(t) + φy(ζ(t))β(t)

= 2Re
{
φz(ζ(t))γ(t)

}
= Re

{− if∗(z)γ(z)f(z)
}∣∣

z=ζ(t)
, 0 ≤ t ≤ T.

Introducing the function

g(z) := if∗(z) γ(z), z ∈ ∂Ω, (21)

we find the following boundary condition for f :

Re
{
g(ζ(t))f(ζ(t))

}
= χ(t), 0 ≤ t ≤ T. (22)

Together with Theorem 1 we arrive at the following

Theorem 3. a) If the function φ solves the general boundary value problem
(18), then the associate gradient function

f = f(z) :=
2i

f∗(z)
φz(z) ∈ C1(Ω) ∩ C0(Ω)

yields a solution of the Riemann-Hilbert boundary value problem (10),
(22).
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b) If the complex-valued function f = f(z) ∈ C1(Ω) ∩ C0(Ω) solves the
Riemann-Hilbert boundary value problem (10), (22), then we obtain a solu-
tion of the general boundary value problem (18) by the real contour integral
(11).

Now, the Riemann-Hilbert boundary value problem

∂

∂z
f(z)− b(z)f(z) = c(z), z ∈ Ω, (23)

Re
{
g(z)f(z)

}
= χ(z), z ∈ ∂Ω,

is invariant with respect to conformal mappings. Applying the Riemann map-
ping theorem (compare Chapter IV, § 7 and § 8), we shall assume Ω to be the
unit disc in the sequel.

§2 The Schwarzian integral formula

On the unit disc B := {z = x + iy ∈ C : |z| < 1} with the boundary
∂B = {eiϕ : 0 ≤ ϕ ≤ 2π} and the exterior domain A := {z ∈ C : |z| > 1}
we shall solve boundary value problems for holomorphic functions. We begin
with the important

Theorem 1. (Plemelj)
Let F : ∂B → C be a Hölder continuous function; that means ϕ �→ F (eiϕ)
defines a 2π-periodic Hölder continuous function. Then the Cauchy principal
values

H(z) := lim
ε→0+

1
2πi

∮
ζ∈∂B

|ζ−z|≥ε

F (ζ)
ζ − z

dζ, z ∈ ∂B

represent a continuous function. Furthermore, the function

G(z) :=
1

2πi

∮
ζ∈∂B

F (ζ)
ζ − z

dζ, z ∈ B ∪A

reveals the following boundary behavior at the circle line ∂B:

lim
z→z0
z∈B

G(z) = H(z0) +
1
2
F (z0) for all z0 ∈ ∂B (1)

and
lim

z→z0
z∈A

G(z) = H(z0)− 1
2
F (z0) for all z0 ∈ ∂B. (2)
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Remark: The function G can be continuously extended within the disc B and
from the exterior A onto the circle line ∂B. However, there G has a jump of
the size F (z0), z0 ∈ ∂B.

Proof: We show continuity of the Cauchy principal values by arguments from
Proposition3 in Chapter IV, § 4 . For a fixed point z0 ∈ ∂B we define Γε :=
{z ∈ ∂B : |z − z0| > ε}, S−

ε := {z ∈ B : |z − z0| = ε}, and S+
ε := {z ∈ A :

|z − z0| = ε}. Taking an arbitrary point z ∈ B\{0} we deduce

G(z) =
1

2πi

∮
∂B

F (ζ)− F
(

z
|z|
)

ζ − z
dζ + F

( z

|z|
) 1

2πi

∮
∂B

1
ζ − z

dζ

=
1

2πi

∮
∂B

F (ζ)− F
(

z
|z|
)

ζ − z
dζ + F

( z

|z|
) 1

2πi

{∫
Γε

1
ζ − z

dζ +
∫

S+
ε

1
ζ − z

dζ

}

for all sufficiently small ε > 0. With z0 ∈ ∂B we obtain

lim
z→z0
z∈B

G(z) =
1

2πi

∮
∂B

F (ζ) − F (z0)
ζ − z0

dζ

+F (z0)
1

2πi

{∫
Γε

1
ζ − z0

dζ +
∫

S+
ε

1
ζ − z0

dζ

}

for all ε > 0. The passage to the limit ε→ 0+ yields

lim
z→z0
z∈B

G(z) = lim
ε→0+

1
2πi

{∫
Γε

F (ζ)− F (z0)
ζ − z0

dζ + F (z0)
∫
Γε

1
ζ − z0

dζ

}
+

1
2
F (z0)

= lim
ε→0+

{
1

2πi

∫
Γε

F (ζ)
ζ − z0

dζ

}
+

1
2
F (z0)

= H(z0) +
1
2
F (z0),

and we attain (1). By similar calculations we obtain (2), substituting the
integrals on S+

ε by the corresponding integrals on S−
ε . q.e.d.

Theorem 2. (Schwarzian integral formula)
Let us consider the Hölder continuous, real-valued function φ : ∂B → R, and
let the Schwarzian integral be defined as follows:

F (z) :=
1
2π

2π∫
0

eiϕ + z

eiϕ − z
φ(eiϕ) dϕ, |z| < 1. (3)
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Then the holomorphic function F can be continuously extended onto the closed
unit disc B. Furthermore, its real part

ReF (z) : B → R

takes on the boundary values φ; more precisely

lim
z→z0
z∈B

ReF (z) = φ(z0) for all z0 ∈ ∂B. (4)

Proof:

1. We extend F to the function

F (z) :=
1
2π

2π∫
0

eiϕ + z

eiϕ − z
φ(eiϕ) dϕ, z ∈ B ∪A,

and obtain the reflection condition

F (z) =
1
2π

2π∫
0

e−iϕ + z

e−iϕ − z
φ(eiϕ) dϕ =

1
2π

2π∫
0

1
z + eiϕ

1
z − eiϕ

φ(eiϕ) dϕ

= − 1
2π

2π∫
0

eiϕ + 1
z

eiϕ − 1
z

φ(eiϕ) dϕ = −F
(1
z

)
, z ∈ (B\{0}) ∪A.

2. Furthermore, we have the following identity for all z ∈ B ∪A:

F (z) =
1
2π

2π∫
0

eiϕ + z

eiϕ − z
φ(eiϕ) dϕ =

1
2πi

∮
∂B

ζ + z

ζ − z
φ(ζ)

dζ

ζ
.

We observe
z + ζ

ζ(ζ − z)
=

z − ζ + 2ζ
ζ(ζ − z)

= −1
ζ

+
2

ζ − z

and calculate

F (z) =
1

2πi

∮
∂B

(
− 1

ζ
+

2
ζ − z

)
φ(ζ) dζ

= − 1
2πi

∮
∂B

φ(ζ)
dζ

ζ
+

1
πi

∮
∂B

φ(ζ)
ζ − z

dζ

= − 1
2π

2π∫
0

φ(eiϕ) dϕ +
1
πi

∮
∂B

φ(ζ)
ζ − z

dζ, z ∈ B ∪A.
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According to the Theorem of Plemelj, the function F can be continuously
extended to ∂B, and we see

lim
z→z0
z∈B

F (z) = − 1
2π

2π∫
0

φ(eiϕ) dϕ +
1
πi

∮
∂B

φ(ζ)
ζ − z0

dζ + φ(z0), z0 ∈ ∂B,

lim
z→z0
z∈A

F (z) = − 1
2π

2π∫
0

φ(eiϕ) dϕ +
1
πi

∮
∂B

φ(ζ)
ζ − z0

dζ − φ(z0), z0 ∈ ∂B.

(5)
By the integrals

∮
∂B

. . . given here, we comprehend the Cauchy principal

values according to Theorem 1 . Finally, we obtain the following identity
for all z0 ∈ ∂B:

lim
z→z0
z∈B

ReF (z) =
1
2

lim
z→z0
z∈B

[
F (z) + F (z)

]
=

1
2

lim
z→z0
z∈B

[
F (z)− F

(1
z

)]
= φ(z0).

q.e.d.

§3 The Riemann-Hilbert boundary value problem

We now consider the following Riemann-Hilbert boundary value problem: For
the Hölder continuous coefficient function b = b(z) ∈ C0(B,C) being given,
let the function

f = f(z) = u(x, y) + iv(x, y) ∈ C1(B,C) ∩C0(B,C)

satisfy the homogeneous differential equation

∂

∂z
f(z)− b(z)f(z) = 0, z ∈ B. (1)

Furthermore, let us take the Hölder continuous directional function

a = a(z) = α(x, y) + iβ(x, y) : ∂B → ∂B

satisfying
α2(z) + β2(z) = 1 for all z ∈ ∂B.

The index n ∈ Z of the Riemann-Hilbert problem indicates how often the
directional vector-field a winds about the origin 0. Therefore, we assume the
representation

a(z) = zn eiφ(z), z ∈ ∂B, (2)

with a Hölder continuous function φ : ∂B → R. Furthermore, we prescribe
the Hölder continuous function χ : ∂B → R and require the Riemann-Hilbert
boundary condition
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α(z)u(z) + β(z)v(z) = Re
(
a(z)f(z)

)
= χ(z), z ∈ ∂B. (3)

We now solve the Riemann-Hilbert boundary value problem (1), (3) for the
indices n ≥ −1 by the integral equation method of I. N. Vekua. Particularly
important is the case n = −1: According to § 1, Theorem3 we can then
solve a mixed boundary value problem for linear elliptic differential equations,
especially under Dirichlet and Neumann boundary conditions. We owe to
G. Hellwig the fundamental observation: The solution space for the Riemann-
Hilbert problem is interrelated with this index and integral conditions on the
right-hand side have to be assumed.
Based on Theorem 2 from § 2, we consider the following function which is
continuous on B and holomorphic in B:

φ(z) + iψ(z) = F (z) :=
1
2π

2π∫
0

eiϕ + z

eiϕ − z
φ(eiϕ) dϕ, |z| < 1. (4)

We note that
lim
z∈B
z→z0

φ(z) = φ(z0) for all z0 ∈ ∂B. (5)

We multiply (3) by eψ(z), z ∈ ∂B and equivalently obtain

η(z) := eψ(z)χ(z) = Re
(
eψ(z)e−iφ(z) f(z)

zn

)
= Re

(e−iF (z)f(z)
zn

)
for all z ∈ ∂B.

(6)

Multiplication of the differential equation (1) by the holomorphic function

e−iF (z) = eψ(z)e−iφ(z) �= 0, z ∈ B

yields the equivalent differential equation

∂

∂z

(
e−iF (z)f(z)

)
− b(z)e−2iφ(z)

(
e−iF (z)f(z)

)
= 0, z ∈ B. (7)

By the transition f(z) �→ e−iF (z)f(z) we obtain the canonical Riemann-
Hilbert boundary condition from (6):

Re
(f(z)

zn

)
= χ(z), z ∈ ∂B. (8)

Therefore, we have to solve the boundary value problem (1) and (8), which
we shall transform into an integral equation problem. We obtain the following
Riemann-Hilbert boundary value problem in the normal form:
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f = f(z) ∈ C1(B,C) ∩ C0(B,C),

∂

∂z
f(z)− b(z)f(z) = 0 in B, (9)

Re
(f(z)

zn

)
= χ(z) on ∂B.

We denote by

TB[g](z) := − 1
π

∫∫
B

g(ζ)
ζ − z

dξ dη, z ∈ B (ζ = ξ + iη)

Cauchy’s integral operator. For n = 0, 1, 2, . . . we consider the Riemann-
Hilbert operator of order n

Vng(z) := − 1
π

∫∫
B

g(ζ)
ζ − z

dξ dη − z2n+1

π

∫∫
B

g(ζ)
1− zζ

dξ dη

= TB[g](z)− z2n

(
− 1
π

∫∫
B

g(ζ)
ζ − 1

z

dξ dη

)
(10)

= TB[g](z)− z2n
{
TB[g]

( 1
z

)}
, z ∈ B.

The substitution

ζ =
1
γ
, γ = α + iβ ∈ A := C\B, dξ dη =

1
|γ|4 dα dβ

yields

Vng(z) = TB[g](z)− z2n+1

π

∫∫
A

g( 1
γ )(

1− z 1
γ

)
γ γγ2

dα dβ

= TB[g](z)− z2n+1

π

∫∫
A

g
(

1
ζ

)
1

ζζ
2

ζ − z
dξ dη (11)

= TB[g](z) + z2n+1TA[g̃](z), z ∈ B,

with

g̃(ζ) :=
1

ζζ
2 g
( 1
ζ

)
, ζ ∈ A. (12)

We note that
∂

∂z
Vng(z) = g(z) in B,

Re
(Vng(z)

zn

)
= 0 on ∂B,

(13)
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which follows from (10) immediately. The following Riemann-Hilbert problem

f = f(z) ∈ C1(B,C) ∩C0(B,C),

∂

∂z
f(z) = 0 in B,

Re
(f(z)

zn

)
= χ(z) on ∂B

(14)

can be solved explicitly with the aid of the Schwarzian integral:

Φ(z) =
zn

2πi

∫
∂B

χ(ζ)
ζ + z

ζ − z

dζ

ζ
+ iγzn+

n−1∑
k=0

{
αk(zk−z2n−k)+ iβk(zk +z2n−k)

}
.

(15)
Here we have used 2n+ 1 real constants α0, . . . , αn−1, β0, . . . βn−1, γ. We can
transfer the boundary value problem (9) equivalently into the integral equa-
tion

f(z)− Vn[bf ](z) = Φ(z), z ∈ B, (16)

with the right-hand side Φ(z) from (15). The linear integral operator f �→
Vn[bf ] is completely continuous on the Hilbert space H = L2(B,C) since the
kernel appearing is weakly singular. Applying Theorem8 from § 6 in Chapter
VIII we comprehend: A solution f ∈ H of the integral equation (16) belongs
to the class D := C0(B,C) ∩ L∞(B,C).

We need the following

Proposition 1. (Vekua)
Let n ∈ {0, 1, 2, . . .} be given, and f ∈ H may solve the integral equation
f − Vn[bf ] = 0. Then we have f = 0.

Proof: Let f be a solution of the integral equation f−Vn[bf ] = 0. This implies

f(z) +
1
π

∫∫
B

b(ζ)f(ζ)
ζ − z

dξ dη = −z2n+1

π

∫∫
B

b(ζ)f(ζ)
1− zζ

dξ dη, z ∈ B. (17)

The right-hand side of (17) is holomorphic in B and continuous on B. The
integral on the left-hand side is continuous in the entire Gaussian plane C,
vanishes at ∞, and is holomorphic in the exterior domain A = C\B. We take
z ∈ ∂B, multiply both sides of (17) by

1
2πi

dz

z − t
, t ∈ B,

and integrate along ∂B. The Cauchy integral theorem and Cauchy’s integral
formula yield
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1
2πi

∮
∂B

f(z)
z − t

dz = − t2n+1

π

∫∫
B

b(ζ)f(ζ)
1− tζ

dξ dη. (18)

We now develop both sides into powers of t about the point 0 and see∮
∂B

f(z)e−ikθ dθ = 0 for k = 0, 1, . . . , 2n (19)

with z = eiθ. The similarity principle of Bers and Vekua gives us the following
representation

f(z) = ψ(z)ep(z), z ∈ B. (20)

Here the function ψ is holomorphic in B, and we define

p(z) = − 1
π

∫∫
B

{ g(ζ)
ζ − z

− zg(ζ)
1− ζz

}
dξ dη, g = b

f

f
. (21)

On account of the equation Im p(z) = 0 on ∂B and (20), we deduce the
boundary condition

Re
(ψ(z)

zn

)
= 0 on ∂B (22)

for the holomorphic function ψ. This implies

ψ(z) =
2n∑

k=0

ckz
k, (23)

where the complex constants c0, c1, . . . , c2n satisfy the following conditions:

c2n−k = −ck, k = 0, 1, . . . , n. (24)

Therefore, we find that

f(z) =
( 2n∑

k=0

ckz
k
)
ep(z), z ∈ B. (25)

Inserting (25) into (19), we infer

2n∑
k=0

ck

∫
∂B

zkz−lep(z) dθ = 0, l = 0, 1, . . . , 2n, (26)

and consequently ck = 0 for k = 0, 1, 2, . . . , 2n. Here we use that the Gram
determinant for the system of linear independent functions

zke
1
2 p(z), k = 0, 1, 2, . . . , 2n

satisfying Im p(z) = 0 on ∂B is different from zero. We consequently obtain
f = 0 from the representation (25). q.e.d.
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Theorem 1. Given the indices n = 0, 1, 2, 3, . . ., the Riemann-Hilbert bound-
ary value problem (9) possesses a (1+2n)-dimensional space of solutions.

Proof: We use the integral equation (16) and Proposition 1. With the aid of
Theorem 8 from § 6 in Chapter VIII, we can solve the integral equation for all
right-hand sides Φ in (15) within the class of continuous functions. Therefore,
we obtain a (2n+1)-dimensional solution space of (9). q.e.d.

We shall now solve the Riemann-Hilbert problem (9) for the index n = −1.
Taking a solution f of (9) we make a transition to the continuous function

g(z) := zf(z), z ∈ B. (27)

The latter solves the following Riemann-Hilbert problem for the index 0:

0 =
∂

∂z

[
zf(z)

]− b(z)
z

z

[
zf(z)

]
=

∂

∂z
g(z)− c(z)g(z) in Ḃ,

χ(z) = Re g(z) on ∂B.

(28)

Here we abbreviate Ḃ := B\{0} and set

c(z) :=
z

z
b(z), z ∈ Ḃ.

The function g(z) = zf(z), z ∈ B consequently fulfills the integral equation

zf(z)− V0[czf ](z) =
1

2πi

∫
∂B

χ(ζ)
ζ + z

ζ − z

dζ

ζ
+ iγ

or equivalently

zf(z)− V0[zbf ](z) =
1

2πi

∫
∂B

χ(ζ)
ζ

dζ +
z

πi

∫
∂B

χ(ζ)
ζ(ζ − z)

dζ + iγ, z ∈ B,

(29)
with γ ∈ R. We now develop

V0[zg]
∣∣∣
z

= − 1
π

∫∫
B

g(ζ) dξ dη + zW[g]
∣∣∣
z
, z ∈ B, (30)

and define

W[g]
∣∣∣
z

:= − 1
π

∫∫
B

{ g(ζ)
ζ − z

+
ζ g(ζ)
1− zζ

}
dξ dη, z ∈ B.

In this context we note that
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− 1
π

∫∫
B

g(ζ) dξ dη − z

π

∫∫
B

{ g(ζ)
ζ − z

+
ζ g(ζ)
1− zζ

}
dξ dη

= − 1
π

∫∫
B

{ζg(ζ)
ζ − z

+
zζ g(ζ)
1− zζ

}
dξ dη.

When we insert (30) into (29), the following integral equation is revealed:

f(z)−W[bf ](z) =
1
πi

∫
∂B

χ(ζ)
ζ(ζ − z)

dζ

+
1
z

{
iγ +

1
2πi

∫
∂B

χ(ζ)
ζ

dζ − 1
π

∫∫
B

b(ζ)f(ζ) dξ dη
}
.

(31)

In order to obtain a continuous solution of (31), the condition

0 = iγ +
1

2πi

∫
∂B

χ(ζ)
ζ

dζ − 1
π

∫∫
B

b(ζ)f(ζ) dξ dη (32)

has to be fulfilled. Then we have to solve the following integral equation

f(z)−W[bf ](z) =
1
πi

∫
∂B

χ(ζ)
ζ(ζ − z)

dζ, z ∈ B. (33)

We now consider the integral operator

W[g](z) = − 1
π

∫∫
B

{ g(ζ)
ζ − z

+
g(ζ)
1
ζ
− z

}
dξ dη, z ∈ B.

With the aid of the substitution

ζ =
1
γ
, γ = α + iβ ∈ A, dξ dη =

1
|γ|4 dα dβ

we obtain

W[g](z) = TB[g](z)− 1
π

∫∫
A

g
(

1
γ

)
γ − z

1
γ

1
γγ2 dα dβ

= TB[g](z)− 1
π

∫∫
A

g
(

1
ζ

)
1

ζζ
2

1
ζ

ζ − z
dξ dη (34)

= TB[g](z) + TA

[ g̃
z

]
(z), z ∈ B,

setting

g̃(ζ) :=
1

ζζ
2 g
(1
ζ

)
, ζ ∈ A. (35)
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Proposition 2. (Vekua) Let the function f ∈ H be a solution of f−W[bf ] =
0. Then we have f = 0.

Proof: We define the kernel function

K(z, ζ) :=
ζ

1− zζ
for z, ζ ∈ B (36)

and calculate

K∗(z, ζ) := K(ζ, z) =
( z

1− ζz

)
=

z

1− zζ
. (37)

We deduce for arbitrary functions f, g ∈ C0(B,C):∫∫
B

{
f(z)W[g](z) + g(z)V0[f ](z)

}
dz

= − 1
π

∫∫
B

∫∫
B

{
f(z)

g(ζ)
ζ − z

+ g(z)
f(ζ)
ζ − z

}
dz dζ

− 1
π

∫∫
B

∫∫
B

{
f(z)K(z, ζ)g(ζ) + g(z)K(ζ, z) f(ζ)

}
dz dζ

= − 2
π

Re
(∫∫

B

∫∫
B

f(z)K(z, ζ)g(ζ) dz dζ
)
.

(38)

Here we naturally comprehend dz = dx dy and dζ = dξ dη. By substitution
of the functions f �→ bg and g �→ bf into the commutator relation (38), we
obtain the following identity for arbitrary functions f, g ∈ C0(B,C):

Im
∫∫
B

{
b(z)g(z)

(
f(z)−W[bf ](z)

)
+ b(z)f(z)

(
g(z)−V0[bg](z)

)}
dx dy = 0.

(39)
If the function f ∈ C0(B,C) is a solution of the integral equation f−W[bf ] =
0, we infer

Im
∫∫
B

b(z)f(z)
(
g(z)−V0[bg](z)

)
dx dy = 0 for all g ∈ C0(B,C). (40)

With the aid of Theorem 1, we now determine the solution g ∈ C0(B,C) of
the integral equation for the given right-hand side ib(z)f(z) as follows:

g(z)− V0[bg](z) = ib(z)f(z), z ∈ B.

We insert into (40) and arrive at
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0 = Im
{
i

∫∫
B

|b(z)|2|f(z)|2 dx dy
}

=
∫∫
B

|b(z)|2|f(z)|2 dx dy. (41)

This implies b(z)f(z) ≡ 0 and consequently

f(z) = W[bf ](z) ≡ 0 in B. q.e.d.

Theorem 2. For the index n = −1, the Riemann-Hilbert boundary value
problem (9) has a solution if and only if the condition (32) is satisfied.

Proof: We use Theorem 8 from § 6 in Chapter VIII again together with Propo-
sition 2.

q.e.d.

Remark: For the indices n = −2,−3, . . . as well, we can solve the Riemann-
Hilbert problem if and only if (−n) suitable integral conditions are posed. In
this context, we refer the reader to the monograph of I. N. Vekua [V], especially
Chapter IV, § 7, part 3.

§4 Potential-theoretic estimates

We now refer the reader to the results of Chapter V, § 1 and § 2 about Poisson’s
differential equation. For the unit ball B := {x ∈ Rn : |x| < 1} we can
explicitly give Green’s function as follows:

φ(y;x) =
1
2π

log
∣∣∣ y − x

1− xy

∣∣∣, y ∈ B, x ∈ B, if n = 2 (1)

and

φ(y;x) =
1

(2 − n)ωn

(
1

|y − x|n−2
− 1

(1− 2(x · y) + |x|2|y|2)n−2
2

)
,

y ∈ B, x ∈ B, if n ≥ 3.

(2)

The Poisson integral formula from Theorem2 in Chapter V, § 2 is our starting
point: A solution u of the problem

u = u(x) = u(x1, . . . , xn) ∈ C2(B) ∩C0(B),

Δu(x) = f(x), x ∈ B,
(3)

with the right-hand side
f = f(x) ∈ C0(B) (4)

satisfies Poisson’s integral representation

u(x) =
1
ωn

∫
|y|=1

|y|2 − |x|2
|y − x|n u(y) dσ(y) +

∫
|y|≤1

φ(y;x)f(y) dy, x ∈ B. (5)
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Question I: For which right-hand sides f : B → R and for which bound-
ary values u : ∂B → R can we solve the Dirichlet problem of Poisson’s
equation?

Question II: Under which conditions can the second derivatives uxixj(x),
x ∈ B be extended continuously onto the closure B with i, j = 1, . . . , n?

If the function u possesses zero boundary values on ∂B, we only have to
consider the singular integral defined on B in (5).

Definition 1. Let Ω ⊂ Rn be a domain, and the parameter α ∈ (0, 1) is
regularly used in the following. Then the continuous function f : Ω → R

belongs to the regularity class Cα(Ω), if we have a Hölder constant b ∈ (0,+∞)
satisfying

|f(x)− f(y)| ≤ b|x− y|α for all x, y ∈ Ω. (6)

Proposition 1. (E. Hopf)
For the dimensions n = 2, 3, . . . let Ω ⊂ Rn be a bounded domain, and we set

Ω ⊗Ω :=
{

(x, y) ∈ Ω ×Ω : x �= y
}
.

Let the symmetric kernel function

φ(y;x) = φ(x; y) : Ω ⊗Ω → R

be given with the growth conditions

|φ(y;x)| ≤
{
a log |y − x|, if n = 2

a|y − x|2−n, if n ≥ 3
, (7)

and
|φxi(y;x)| ≤ a|y − x|1−n,

|φxixj (y;x)| ≤ a|y − x|−n, i, j = 1, . . . , n.
(8)

Here a ∈ (0,+∞) denotes a constant. Furthermore, the functions

Φi(x) :=
∫
Ω

φxi(y;x)dy, x ∈ Ω, with i = 1, . . . , n

belong to the class C1(Ω). Finally, we consider the following parameter inte-
gral associated with the function f ∈ Cα(Ω),namely

F (x) :=
∫
Ω

φ(y;x)f(y) dy, x ∈ Ω. (9)

Then F (x) ∈ C2(Ω) holds true, and we calculate their derivatives in the form
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Fxi(x) =
∫
Ω

φxi(y;x)f(y) dy, x ∈ Ω, (10)

and

Fxixj (x) =
∫
Ω

φxixj (y;x)
(
f(y)− f(x)

)
dy + f(x)Φixj (x), x ∈ Ω. (11)

Proof: The integral (9) converges absolutely due to (7). On account of (8), we
can form the difference quotient of F (x) and have a convergent majorizing
function. We deduce the identity

Fxi(x) =
∫
Ω

φxi(y;x)f(y) dy, x ∈ Ω, for i = 1, . . . , n

by the convergence theorem for improper Riemannian integrals. We are not
allowed to directly differentiate this integral once more, since it does not
remain absolutely convergent. Therefore, we consider the rearrangement

Fxi(x) =
∫
Ω

φxi(y;x)
(
f(y)− f(x0)

)
dy + f(x0)Φi(x), x ∈ Ω,

with the point x0 ∈ Ω being fixed. Now, the difference quotient converges
again

Fxixj(x0) =
∫
Ω

φxixj(y;x0)
(
f(y)− f(x0)

)
dy + f(x0)Φixj (x0)

for all x0 ∈ Ω, since the integral possesses the convergent majorizing function
|y − x0|−n+α.

q.e.d.

A very important tool in Potential Theory is the intricate

Proposition 2. (Hopf’s estimates)
Let Ω ⊂ Rn be a bounded convex domain, on which the singular kernel

K(x, y) : Ω ⊗Ω → R ∈ C1(Ω ⊗Ω)

is defined with the growth conditions

|K(x, y)| ≤ a

|x− y|n ,
n∑

i=1

|Kxi(x, y)| ≤
a

|x− y|n+1
for (x, y) ∈ Ω ⊗Ω.

(12)
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Furthermore, let the function f = f(x) ∈ Cα(Ω) be given satisfying

|f(x′′)− f(x′)| ≤ b|x′′ − x′|α for all x′, x′′ ∈ Ω. (13)

Here the quantities a, b ∈ (0,+∞) and α ∈ (0, 1) are fixed constants.

Then the parameter integral

F (x) :=
∫
Ω

K(x, y)
(
f(y)− f(x)

)
dy, x ∈ Ω,

fulfills the following estimates

|F (x)| ≤M0(α, n, diam(Ω))ab, x ∈ Ω, (14)

and∣∣∣∣(F (x′′)− F (x′)
)

+
(
f(x′′)− f(x′)

) · ∫
y∈Ω

|y−x′|≥3|x′′−x′|

K(x′, y) dy
∣∣∣∣ ≤M1(α, n)ab|x′′ − x′|α

(15)
for all x′, x′′ ∈ Ω.

Proof:

1. Choosing x ∈ Ω we have

|F (x)| ≤
∫
Ω

|K(x, y)| |f(y)− f(x)| dy

≤ ab

∫
Ω

|y − x|−n+α dy

≤ M0(α, n, diam(Ω))ab.

2. We set δ := |x′′ − x′|, choose arbitrary points x′, x′′ ∈ Ω, and calculate
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F (x′′)− F (x′)

=
∫
Ω

K(x′′, y)
(
f(y)− f(x′′)

)
dy −

∫
Ω

K(x′, y)
(
f(y)− f(x′)

)
dy

=
∫

|y−x′|≤3δ

K(x′′, y)
(
f(y)− f(x′′)

)
dy −

∫
|y−x′|≤3δ

K(x′, y)
(
f(y)− f(x′)

)
dy

+
∫

|y−x′|≥3δ

K(x′′, y)
(
f(y)− f(x′′)

)
dy −

∫
|y−x′|≥3δ

K(x′, y)
(
f(y)− f(x′)

)
dy

=
∫

|y−x′|≤3δ

K(x′′, y)
(
f(y)− f(x′′)

)
dy −

∫
|y−x′|≤3δ

K(x′, y)
(
f(y)− f(x′)

)
dy

+
∫

|y−x′|≥3δ

(
K(x′′, y)−K(x′, y)

)(
f(y)− f(x′′)

)
dy

+
(
f(x′)− f(x′′)

) ∫
|y−x′|≥3δ

K(x′, y) dy

=: I1 + I2 + I3 +
(
f(x′)− f(x′′)

) ∫
|y−x′|≥3δ

K(x′, y) dy.

(16)
This implies∣∣∣∣(F (x′′)− F (x′)

)
+
(
f(x′′)− f(x′)

) ∫
|y−x′|≥3δ

K(x′, y) dy
∣∣∣ ≤ |I1|+ |I2|+ |I3|.

(17)
3. Due to (12) we can estimate I1 as follows:

|I1| ≤
∫

|y−x′|≤3δ

a

|y − x′′|n b|y − x′′|α dy ≤ ab

∫
|y−x′′|≤4δ

|y − x′′|α−n dy

= ab

4δ∫
0

rα−nrn−1ωn dr = ab ωn

4δ∫
0

rα−1 dr = ωn
ab

α

[
rα
]4δ

0
(18)

=
ab ωn

α
(4δ)α =

4αab ωn

α
|x′′ − x′|α.

Correspondingly, we deduce

|I2| ≤ 3αab ωn

α
|x′′ − x′|α. (19)

4. The mean value theorem of differential calculus implies
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K(x′′, y)−K(x′, y) =
n∑

i=1

Kxi(ζ, y)(x
′′
i − x′i),

with an intermediate point ζ = x′ + t(x′′ − x′) ∈ Ω and a parameter
t ∈ (0, 1). From |y − x′| ≥ 3δ we infer |y − x′′| ≥ 2δ and therefore

|y − ζ| ≥ |y − x′′| − |x′′ − ζ| ≥ |y − x′′| − |x′′ − x′| ≥ 1
2
|y − x′′| .

Noting (12), for all y ∈ Ω with |y − x′| ≥ 3δ we obtain the following
inequality:

|K(x′′, y)−K(x′, y)| ≤ |x′′ − x′|
n∑

i=1

|Kxi(ζ, y)|

≤ aδ
1

|y − ζ|n+1
(20)

≤ aδ2n+1 1
|y − x′′|n+1

.

Inserting into I3 we get

|I3| ≤
∫

|y−x′|≥3δ

|K(x′′, y)−K(x′, y)| |f(y)− f(x′′)| dy

≤ 2n+1ab δ

∫
|y−x′|≥3δ

|y − x′′|−n−1+α dy

≤ 2n+1ab δ

∫
|y−x′′|≥2δ

|y − x′′|−n−1+α dy

≤ 2n+1ab δ

+∞∫
2δ

r−n−1+αωnr
n−1 dr

= 2n+1ωn ab δ

+∞∫
2δ

rα−2 dr

= 2n+1ωn ab δ
[
rα−1

]+∞
2δ

1
α− 1

=
2n+1

1− α
ωn ab δ(2δ)α−1 =

2n+α

1− α
ωn ab δα

and consequently

|I3| ≤ 2n+α

1− α
ωn ab|x′′ − x′|α. (21)
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5. From (17)-(19) and (21) we now obtain a constant M1 = M1(α, n), such
that the estimate (15) is valid. q.e.d.

For the function f ∈ Cα(Ω) given in the domain Ω ⊂ Rn we define the
quantities

‖f‖Ω
0 := sup

x∈Ω
|f(x)|,

‖f‖Ω
0,α := sup

x′,x′′∈Ω
x′ 	=x′′

|f(x′)− f(x′′)|
|x′ − x′′|α ,

‖f‖Ω
α := ‖f‖Ω

0 + ‖f‖Ω
0,α.

(22)

By the norm (22) the set Cα(Ω) becomes a Banach space. Furthermore, we
easily show the following inequality for two functions f, g ∈ Cα(Ω), namely

‖fg‖Ω
α ≤ ‖f‖Ω

α ‖g‖Ω
α .

In the function space

C2+α(Ω) :=
{
u ∈ C2(Ω) : uxixj ∈ Cα(Ω) für i, j = 1, . . . , n

}
we define the following quantities

‖u‖Ω
0 := sup

x∈Ω
|u(x)|,

‖u‖Ω
1 := sup

x∈Ω

n∑
i=1

|uxi(x)|,

‖u‖Ω
2 := sup

x∈Ω

n∑
i,j=1

|uxixj (x)|,

‖u‖Ω
2+α := ‖u‖Ω

0 + ‖u‖Ω
1 + ‖u‖Ω

2 + ‖u‖Ω
2,α.

(23)

Here, we have abbreviated

‖u‖Ω
2,α := sup

x′,x′′∈Ω
x′ 	=x′′

n∑
i,j=1

|uxixj (x′)− uxixj (x′′)|
|x′ − x′′|α .

With the aid of the norm (23) the set C2+α(Ω) becomes a Banach space. By
the symbol

C2+α
∗ (Ω) :=

{
u ∈ C2+α(Ω) : u|∂Ω = 0

}
we denote the closed subspace of C2+α(Ω), consisting of the functions with
zero boundary values. We now prove the following
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Theorem 1. Let the function f ∈ Cα(B) be given. Then the parameter inte-
gral

u(x) :=
∫

|y|<1

φ(y;x)f(y) dy, x ∈ B,

belongs to the class C2+α
∗ (B) and satisfies Poisson’s differential equation Δu =

f in B. Furthermore, we have the estimate

‖u‖B
2+α ≤ C(α, n)‖f‖B

α (24)

with a constant C(α, n) ∈ (0,+∞).

Proof:

1. From the representation

φ(y;x) =
−1

(n− 2)ωn

{
1

|x− y|n−2
− 1
|y|n−2

1∣∣x− y
|y|2
∣∣n−2

}
, x, y ∈ B,

of Green’s function one easily derives

n∑
i=1

|φxi(y;x)| ≤ a(n)
|x− y|n−1

, (25)

n∑
i,j=1

|φxixj(y;x)| ≤ a(n)
|x− y|n , (26)

n∑
i,j,k=1

|φxixjxk
(y;x)| ≤ a(n)

|x− y|n+1
(27)

for all x, y ∈ B with x �= y; here a = a(n) ∈ (0,+∞) is a constant.
2. We consider the function w(x) := |x|2−1

2n , x ∈ B, of class C2+α
∗ (B), satis-

fying the differential equation

Δw(x) =
n∑

i=1

wxixi(x) =
1
2n

n∑
i=1

2 = 1, x ∈ B.

The Poisson integral representation yields∫
B

φ(y;x) dy =
|x|2 − 1

2n
, x ∈ B, (28)

with the nonpositive Green’s function φ(y;x). For all x ∈ B we estimate
as follows:

|u(x)| =
∣∣∣∣ ∫
|y|<1

φ(y;x)f(y)dy
∣∣∣∣ ≤ ‖f‖B

0

∣∣∣∣ ∫
B

φ(y;x)dy
∣∣∣∣ ≤ 1− |x|2

2n
‖f‖B

0 .
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This implies
u(x) = 0 for all x ∈ ∂B (29)

and
‖u‖B

0 ≤
1
2n
‖f‖B

0 . (30)

Noting (25) we can differentiate (28) and obtain the functions

Φi(x) :=
∫
B

φxi(y;x) dy =
1
n
xi, x ∈ B, for i = 1, . . . , n (31)

of class C1(B) with

Φixj (x) =
1
n
δij , x ∈ B, for i, j = 1, . . . , n. (32)

3. On account of (25) we have

uxi(x) =
∫
B

φxi(y;x)f(y) dy, x ∈ B, for i = 1, . . . , n. (33)

This implies the estimate

n∑
i=1

|uxi(x)| ≤ ‖f‖B
0

∫
B

n∑
i=1

|φxi(y;x)| dy

≤ ‖f‖B
0

∫
B

a(n)
|y − x|n−1

dy, x ∈ B,

and consequently
‖u‖B

1 ≤ c1(n)‖f‖B
0 . (34)

Proposition 1 yields the representation

uxixj (x) =
∫
B

φxixj (y;x)
(
f(y)− f(x)

)
dy + f(x)Φixj (x), x ∈ B (35)

for i, j = 1, . . . , n. With the aid of (32) we deduce the differential equation

Δu(x) =
∫
B

Δxφ(y;x)
(
f(y)− f(x)

)
dy + f(x)

n∑
i=1

φixi(x)

= f(x)
n∑

i=1

1
n

= f(x), x ∈ B.

(36)

Here we have utilized Δxφ(y;x) = 0. For all x ∈ B we infer the following
estimate from (26):
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n∑
i,j=1

|uxixj(x)| ≤
∫
B

n∑
i,j=1

|φxixj (y;x)| |f(y)− f(x)| dy + ‖f‖B
0

≤ ‖f‖B
0,α

∫
B

a

|y − x|n |y − x|α dy + ‖f‖B
0 ≤ c2(n, α)‖f‖B

α

and consequently
‖u‖B

2 ≤ c2(n, α)‖f‖B
α . (37)

4. We still have to estimate ‖u‖B
2,α. The indices i, j ∈ {1, . . . , n} being fixed,

we consider the kernel

K(x, y) := φxixj (y;x) : B ⊗B → R

and utilize Hopf’s estimate for the function

F (x) :=
∫
B

K(x, y)
(
f(y)− f(x)

)
dy, x ∈ B.

With the aid of the Gaussian integral theorem we show the uniform bound-
edness of the Cauchy principal values∣∣∣∣ ∫

y∈B:|y−x|≥δ

K(x, y) dy
∣∣∣∣ = ∣∣∣∣ ∫

y∈B
|y−x|≥δ

φxixj (y;x) dy
∣∣∣∣ ≤ c3(n), x ∈ B (38)

for δ > 0. For all x′, x′′ ∈ B we obtain the estimate

|F (x′′)− F (x′)| − |f(x′′)− f(x′)|
∣∣∣∣ ∫

y∈B
|y−x′|≥3|x′′−x′|

K(x′, y) dy
∣∣∣∣

≤
∣∣∣∣(F (x′′)− F (x′)

)
+
(
f(x′′)− f(x′)

) ∫
y∈B

|y−x′|≥3|x′′−x′|

K(x′, y) dy
∣∣∣∣

≤M1(α, n) a ‖f‖B
0,α |x′′ − x′|α

and consequently

|F (x′′)− F (x′)| ≤
{
c3(n) + aM1(α, n)

}
‖f‖B

0,α|x′′ − x′|α.

Therefore, we see

|F (x′′)− F (x′)|
|x′′ − x′|α ≤ c̃3(n, α)‖f‖B

0,α, x′, x′′ ∈ B, x′ �= x′′. (39)

Taking (35) and (32) into account we deduce

‖u‖B
2,α ≤ c4(n, α)‖f‖B

0,α. (40)
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5. Finally, we infer from (30), (34), (37) and (40) a constant C(n, α), such
that

‖u‖B
2+α ≤ C(n, α)‖f‖B

α

is valid. q.e.d.

For later use in Chapter XII, finally we derive a potential-theoretic estimate of
the solutions for the inhomogeneous Cauchy-Riemann equation. The Hölder
norms defined in (22) and (23) are naturally transferred to complex-valued
functions

w = f(z) : B → C (41)

on the unit disc B := {z = x + iy ∈ C : |z| < 1}. We consider functions
f ∈ Cα(B,C) and define the Riemann-Hilbert operator

Vf(z) := − 1
π

{∫∫
B

f(ζ)
ζ − z

dξ dη +
∫∫
B

zf(ζ)
1− zζ

dξ dη

−
∫∫
B

1
2|ζ|2

(
ζf(ζ)− ζf(ζ)

)
dξ dη

}
, z ∈ B,

(42)

with ζ = ξ + iη ∈ B.

Theorem 2. Assuming f = f(z) ∈ Cα(B,C) the function g(z) := Vf(z),
z ∈ B solves the uniquely determined Riemann-Hilbert boundary value problem

g = g(z) ∈ C1(B,C) ∩C0(B,C),

∂

∂z
g(z) = f(z), z ∈ B,

Re g(z) = 0, z ∈ ∂B,

Im g(0) = 0.

(43)

Furthermore, we have g ∈ C1+α(B,C), and there exists a constant C(α) ∈
(0,+∞) satisfying

‖g‖C1+α(B,C) ≤ C(α)‖f‖Cα(B,C). (44)

Proof: By (10) from § 3 one easily realizes that the function g(z) = Vf(z), z ∈
B solves the boundary value problem (43). Applying the maximum principle
for harmonic functions on the real part of the difference of two solutions,
we directly see the unique solvability of the problem (43). With the right-
hand side f(z) ≡ 1, z ∈ B especially, this boundary value problem yields the
solution g(z) = z − z, z ∈ B. Corresponding to the formula (28) we obtain
the identity



§4 Potential-theoretic estimates 155

− 1
π

{∫∫
B

1
ζ − z

dξ dη+
∫∫
B

z

1− zζ
dξ dη− 1

2

∫∫
B

(1
ζ
− 1
ζ

)
dξ dη

}
= z−z (45)

for z ∈ B. With the aid of Proposition 3 and Proposition 4 from § 5 in
Chapter IV we can differentiate the function g(z) = Vf(z) with respect to z
and z. Parallel to the proof of Theorem 1 we attain the a-priori-inequality
(44) via the Hopf estimate.

q.e.d.

As a corollary we obtain the

Theorem 3. (Privalov)
To the boundary function φ(z) : ∂B → R ∈ C1+α(∂B) we consider the
Schwarzian integral

F (z) :=
1
2π

2π∫
0

eiϕ + z

eiϕ − z
φ(eiϕ) dϕ, |z| < 1.

Then we have a constant Ĉ(α) ∈ (0,+∞) satisfying

‖F‖C1+α(B) ≤ Ĉ(α)‖φ‖C1+α(∂B). (46)

Proof: We compare F (z) with the function

G(z)
∣∣∣
z=reiϕ

:= r1+αψ(ϕ), 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ 2π,

setting ψ(ϕ) := φ(eiϕ), 0 ≤ ϕ ≤ 2π. For all z ∈ B \ {0} we calculate

∂

∂z
G(z)

∣∣∣
z=reiϕ

=
1
2

{( ∂

∂x
+ i

∂

∂y

)
G(z)

}∣∣∣
z=reiϕ

=
eiϕ

2

( ∂

∂r
+

i

r

∂

∂ϕ

)
G(reiϕ)

=
eiϕ

2
(
(1 + α)rαψ(ϕ) + irαψ′(ϕ)

)
=: f(z)

∣∣∣
z=reiϕ

.

We note that
‖f‖Cα(B) ≤ C̃(α)‖φ‖C1+α(∂B). (47)

Using Theorem 2 from § 2, the function g(z) := G(z) − F (z), z ∈ B solves
the boundary value problem (43), and Theorem 2 yields

‖G− F‖C1+α(B) ≤ C(α)‖f‖Cα(B) ≤ C(α)C̃(α)‖φ‖C1+α(∂B). (48)

We finally obtain (46). q.e.d.

Without requiring boundary conditions,we supplement the following
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Theorem 4. Considering the Cauchy integral operator

TB[f ](z) := − 1
π

∫∫
B

f(ζ)
ζ − z

dξ dη, z ∈ B,

we have the estimate

‖TB[f ]‖C1+α(B) ≤ C(α)‖f‖Cα(B)

for all f ∈ Cα(B) with a constant C(α) ∈ (0,∞).

Proof: We remark

∂

∂z
TB[f ](z) = ΠB[f ](z) := lim

ε→0+

{
− 1

π

∫∫
ζ∈B

|ζ−z|>ε

f(ζ)
(ζ − z)2

dξ dη

}
, z ∈ B.

Then, we apply the Hopf estimates from Proposition 2 to the Vekua integral
operator ΠB[f ]. q.e.d.

§5 Schauder’s continuity method

We now follow the arguments in Chapter VI, § 1 and define the differential
operator

L(u) :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x) = f(x), x ∈ Ω.

Assumption C1: The solution u(x) of L(u) = f belongs to the class
C2+α(Ω). Furthermore, we have u(x) = 0 on ∂Ω.

Assumption C2: The coefficients aij(x), bi(x), c(x) with i, j = 1, . . . , n be-
long to the regularity class Cα(Ω). Furthermore, the matrix (aij(x))i,j=1,...,n

is real, symmetric and positive-definite for all points x ∈ Ω.

Assumption C3: For each point ξ ∈ ∂Ω there exists a positive number
� = �(ξ) and a function

G(x) ∈ C2+α({x ∈ Rn : |x− ξ| < �},R)

satisfying
n∑

i=1

Gxi(x)2 > 0 for |x− ξ| < �, G(ξ) = 0,

such that
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Ω ∩
{
x ∈ Rn : |x− ξ| < �

}
=
{
x ∈ Rn : |x− ξ| < �, G(x) < 0

}
is valid; this means ∂Ω ∈ C2+α. Furthermore, Ω ⊂ Rn is a bounded domain.

Assumption C4: We have c(x) ≤ 0 for all x ∈ Ω.

We need the following profound result, which we shall prove in § 7.

Theorem 1. (Schauder’s estimates)
Let the assumptions C1, C2, C3 be satisfied. Furthermore, we have

n∑
i,j=1

‖aij‖Ω
α +

n∑
i=1

‖bi‖Ω
α + ‖c‖Ω

α ≤ H

and

m2
n∑

i=1

λ2
i ≤

n∑
i,j=1

aij(x)λiλj ≤M2
n∑

i=1

λ2
i

for all λ = (λ1, . . . , λn) ∈ Rn, x ∈ Ω with the constants H > 0 and 0 < m ≤
M < +∞.
Then we can determine a number θ = θ(α, n,m,M,H,Ω) such that

‖u‖Ω
1 + ‖u‖Ω

2 + ‖u‖Ω
2,α ≤ θ

(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
(1)

holds true.

Generalizing Theorem1 from § 4 we obtain as a corollary the following

Theorem 2. In addition to the assumptions of Theorem 1 let the condition
C4 be required.
Then we have a fixed positive number θ = θ(α, n,m,M,H,Ω) such that the
following a priori estimate

‖u‖Ω
2+α ≤ θ‖f‖Ω

α (2)

for all solutions u ∈ C2+α(Ω) of the Dirichlet problem

L(u) = f in Ω,

u = 0 on ∂Ω
(3)

holds true.

Proof: Theorem 1 from § 1 in Chapter VI yields

‖u‖Ω
0 ≤ γ‖f‖Ω

0

with a constant γ = γ(Ω,m,M). We combine this inequality with the
Schauder estimate and obtain (2).
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q.e.d.

We additionally need the following

Assumption C0: For all f ∈ Cα(Ω) the partial differential equation Δu = f
possesses a solution in the regularity class u ∈ C2+α

∗ (Ω).

Remark: According to Theorem 1 from § 4, the condition (C0) is satisfied for
the unit ball Ω = B. Later we shall show the implication (C3)⇒(C0) and
eliminate this assumption.

Theorem 3. (Continuity method)
We require the assumptions C0, C2, C3, C4 and consider the differential op-
erator L on the domain Ω.
Then the boundary value problem

L(u) = f in Ω,

u = 0 on ∂Ω
(4)

has exactly one solution u ∈ C2+α∗ (Ω) for each right-hand side f ∈ Cα(Ω).

Proof: We take 0 ≤ τ ≤ 1 and define the family of differential operators

Lτ (u) :=
n∑

i,j=1

aij(x, τ)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x, τ)
∂u

∂xi
+ c(x, τ)u

with the coefficients

aij(x, τ) := τaij(x) + (1− τ)δij , i, j = 1, . . . , n,

bi(x, τ) := τbi(x), i = 1, . . . , n,

c(x, τ) := τc(x).

This means, briefly, Lτ = (1 − τ)Δ + τL. According to Theorem2 we have
the following a priori estimate

‖u‖2+α ≤ θ‖f‖α, τ ∈ [0, 1], (5)

for all solutions of the Dirichlet problem Lτ (u) = f in B and u ∈ C2+α
∗ (Ω).

Here we abbreviate ‖u‖2+α := ‖u‖Ω
2+α and ‖f‖α := ‖f‖Ω

α for the fixed domain
Ω. We now start with a solution u = uτ0 ∈ C2+α

∗ (Ω) of the problem Lτ0(u) =
f for an arbitrary τ0 ∈ [0, 1]. Due to (C0), this is possible for τ0 = 0, and we
consider

Lτ (u) = f ⇐⇒ Lτ0(u) =Mτ (u) + f (6)

with Mτ =
(Lτ0 − Lτ

)
(u) = (τ − τ0)

(
Δ− L)(u).
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We set u0 ≡ 0 and successively define the approximating sequence {uk}k=0,1,...

by the prescription

Lτ0(uk) =Mτ (uk−1) + f, k = 1, 2, . . . (7)

We start with the statement

Aτ0 :

{
For each f ∈ Cα(Ω) the differential equation

Lτ0(u) = f has a solution uτ0 ∈ C2+α∗ (Ω)
. (8)

Then we shall investigate the convergence of the sequence

{uk}k=0,1,... ⊂ C2+α
∗ (Ω)

with respect to the ‖ · ‖2+α-norm. Taking an arbitrary u ∈ C2+α
∗ (Ω) we infer

‖Mτ (u)‖α = |τ − τ0| ‖(Δ− L)u‖α ≤ |τ − τ0|η(H)‖u‖2+α (9)

with a constant η = η(H). From (7) we deduce

Lτ0(uk − uk−1) = Mτ (uk−1 − uk−2), k = 2, 3, . . . (10)

The Schauder estimate (5) together with (9) yields the inequality

‖uk − uk−1‖2+α ≤ θ‖Mτ (uk−1 − uk−2)‖α

≤ |τ − τ0|θ η(H)‖uk−1 − uk−2‖2+α, k = 2, 3, . . .
(11)

Choosing |τ − τ0| ≤ 1
2θ η(H) , we deduce

‖uk − uk−1‖2+α ≤ 1
2
‖uk−1 − uk−2‖2+α, k = 2, 3, . . . ,

and
‖uk − uk−1‖2+α ≤ ‖u1‖2+α

2k−1
, k = 2, 3, . . . .

This implies
+∞∑
k=1

‖uk − uk−1‖2+α < +∞.

Therefore, the series
+∞∑
k=1

(uk−uk−1) converges in the Banach space C2+α∗ (Ω).

For all τ satisfying |τ − τ0| ≤ 1
2θ η(H) we have a function uτ ∈ C2+α∗ (Ω) such

that Lτ0(uτ ) = Mτ (uτ ) + f holds true, and finally

Lτ (uτ ) = f .

Consequently, the statement (Aτ ) is valid for all |τ − τ0| ≤ 1
2ϑ η(H) . By the

usual continuation process we attain the statement (A1) after finitely many
steps. q.e.d.

The following profound result will be proved in § 7 as well:
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Theorem 4. (Interior Schauder estimates)
The coefficients of the differential operator L defined on the bounded domain
Ω ⊂ Rn satisfy the assumption C2. Furthermore, we require the inequalities

n∑
i,j=1

‖aij‖Ω
α +

n∑
i=1

‖bi‖Ω
α + ‖c‖Ω

α ≤ H

and

m2
n∑

i=1

λ2
i ≤

n∑
i,j=1

aij(x)λiλj ≤M2
n∑

i=1

λ2
i

for all λ ∈ Rn and all x ∈ Ω; with the given constants H > 0 and 0 < m ≤
M < +∞. The function u = u(x) ∈ C2+α(Ω) ∩ C0(Ω) solves the differential
equation

L(u) = f in Ω

with the right-hand side f ∈ Cα(Ω). Finally, we consider the set

Ωd :=
{
x ∈ Ω : dist(x, ∂Ω) > d

}
,

where we choose d > 0 sufficiently small.
Then we have an a-priori-bound κ = κ(α, n,m,M,H, d) > 0, such that

‖u‖Ωd
1 + ‖u‖Ωd

2 + ‖u‖Ωd
2,α ≤ κ

(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
(12)

is satisfied.

Remark: The abbreviation u ∈ C2+α(Ω) means that the statement u ∈
C2+α(Θ) is fulfilled for each compact subset Θ ⊂ Ω.

Theorem 5. With the assumptions C0, C2, C3, C4 we consider the differen-
tial operator L on the domain Ω. Consequently, for all f ∈ Cα(Ω) and all
continuous functions g : ∂Ω → R the Dirichlet problem

L(u) = f in Ω,

u = g on ∂Ω
(13)

has exactly one solution in the regularity class C2+α(Ω) ∩ C0(Ω).

Proof: We construct a sequence of polynomials {gn}n=1,2,..., which converge
on the boundary ∂Ω uniformly towards g(x). For each index n = 1, 2, . . . we
now solve the problem

un ∈ C2+α(Ω),

L(un) = f in Ω,

un = gn on ∂Ω.

(14)
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With the aid of Theorem3 we construct a sequence

{vn}n=1,2,... ⊂ C2+α
∗ (Ω)

satisfying
L(vn) = f − L(gn) =: fn ∈ Cα(Ω) in Ω,

vn = 0 on ∂Ω.
(15)

Evidently, the functions un := vn +gn solve the boundary value problems (14)
for n = 1, 2, . . . . On account of L(um − un) = 0 in Ω and (C4) the maximum
principle yields

‖un − um‖Ω
0 ≤ max

x∈∂Ω
|gn(x)− gm(x)| → 0 (m,n→∞)

‖un‖Ω
0 ≤ const, n = 1, 2, . . .

(16)

Choosing d > 0 sufficiently small, we obtain the following inequality by the
interior Schauder estimate:

‖un − um‖Ωd
1 + ‖un − um‖Ωd

2 + ‖un − um‖Ωd
2,α

≤ κ(d)‖un − um‖Ω
0 → 0 (m,n→∞).

Setting
u(x) := lim

n→∞un(x), x ∈ Ω,

we deduce un → u (n → ∞) in C2+α(Θ) for each compact subset Θ ⊂ Ω.
Therefore, the function u belongs to the class C0(Ω)∩C2+α(Ω) and represents
the unique solution of (13). q.e.d.

§6 Existence and regularity theorems

At first, we shall eliminate the assumption C0.

Definition 1. Two bounded domains Ω1, Ω2 ⊂ Rn are C2+α-diffeomorphic,
if we have a one-to-one mapping

y = y(x) : Ω1 → Ω2 ∈ C2+α(Ω1)

with the inverse mapping

x = x(y) : Ω2 → Ω1 ∈ C2+α(Ω2)

satisfying ∂(y1,...,yn)
∂(x1,...,xn) �= 0 in Ω1. When the set Ω is C2+α-diffeomorphic to the

unit ball B ⊂ Rn, we speak of a C2+α-ball.
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We need the following

Theorem 1. (Reconstruction)
In the C2+α-ball Ω ⊂ Rn the coefficients of the differential operator L fulfill
the assumptions C2 and C4.
For all right-hand sides f ∈ Cα(Ω) and all boundary values g ∈ C0(∂Ω), then
there exists a solution u = u(x) of the regularity class C2+α(Ω) ∩ C0(Ω) for
the Dirichlet problem

L(u) = f in Ω,

u = g on ∂Ω.
(1)

At a boundary point ξ ∈ ∂Ω we define the set Ω(ξ, �) := {x ∈ Ω : |x− ξ| < �}
with � > 0 and additionally require the boundary condition

g(x) = 0 for all x ∈ ∂Ω ∩ ∂Ω(ξ, �). (2)

In this situation we have

u ∈ C2+α(Ω(ξ, r)) (3)

for all sufficiently small 0 < r < �.

Proof:

1. Since the set Ω is C2+α-diffeomorphic to B, there exists a C2+α-diffeo-
morphism

y = (y1(x), . . . yn(x)) ∈ C2+α(Ω)

of Ω onto B with the inverse mapping

x = (x1(y), . . . , xn(y)) ∈ C2+α(B).

We define u(x) = ũ(y(x)), x ∈ Ω and deduce

uxi =
n∑

k=1

ũyk

∂yk

∂xi
,

uxixj =
n∑

k,l=1

ũykyl

∂yk

∂xi

∂yl

∂xj
+

n∑
k=1

ũyk

∂2yk

∂xi∂xj
.

For all y ∈ B we obtain
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L(u)|x=x(y) =
{ n∑

i,j=1

aijuxixj +
n∑

i=1

biuxi + cu
}∣∣∣

x=x(y)

=
n∑

k,l=1

( n∑
i,j=1

aij
∂yk

∂xi

∂yl

∂xj

)∣∣∣
x=x(y)

ũykyl

+
n∑

k=1

( n∑
i,j=1

aij
∂2yk

∂xi∂xj
+

n∑
i=1

bi
∂yk

∂xi

)∣∣∣
x=x(y)

ũyk
(4)

+c|x=x(y)ũ(y)

=:
n∑

k,l=1

ãkl(y)ũykyl
+

n∑
k=1

b̃k(y)ũyk
+ c̃(y)ũ.

Due to Theorem1 from § 4 the set B satisfies the assumption C0, and we
can solve the Dirichlet problem (1) in B with the aid of Theorem 5 from
§ 5 . On account of the behavior for the coefficients in (4) with respect to
the given transformations, namely

ãkl(y), b̃k(y) ∈ Cα(B), k, l = 1, . . . , n,

0 ≥ c̃(y) ∈ Cα(B),
(5)

we can solve the Dirichlet problem (1) on the domain Ω as well.
2. We control the construction in the proof of Theorem 5 from § 5 as fol-

lows: With the additional assumption (2) we approximate the function g
uniformly on ∂Ω by a sequence {gk}k=1,2,... of polynomials.We use the
mollifier

Θ(t) :=

{
0, 0 ≤ t ≤ 1

2

1, 1 ≤ t < +∞ ∈ C∞(R)

and consider the functions

g̃k(x) := gk(x)Θ
( |x− ξ|

�

)
, x ∈ Rn, k = 1, 2, . . .

We observe the uniform convergence g̃k(x) → g(x) (k → ∞) on ∂Ω and
the fact that

g̃k(x) = 0 for all x ∈ Rn with |x− ξ| ≤ 1
2
�. (6)

Following the proof of Theorem5 in § 5 we obtain the solutions

uk ∈ C2+α(Ω),

L(uk) = f in Ω,

uk = g̃k on ∂Ω.

(7)
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We utilize an interpolation of the Schauder estimates from the Theorems 1
and 4 in § 5 (compare § 7) and obtain the following estimate for arbitrary
0 < r < 1

2�

‖uk − ul‖Ω(ξ,r)
1 + ‖uk − ul‖Ω(ξ,r)

2 + ‖uk − ul‖Ω(ξ,r)
2,α

≤ ϑ‖uk − ul‖Ω(ξ, 12 �)
0 ≤ ϑ‖uk − ul‖Ω

0 (8)

≤ ϑ sup
x∈∂Ω

|g̃k(x)− g̃l(x)| → 0 (k, l→∞).

This implies

u(x) := lim
k→∞

uk(x) ∈ C2+α(Ω) ∩ C0(Ω) ∩ C2+α(Ω(ξ, r))

for all 0 < r < 1
2�, and the function u evidently solves the boundary value

problem (1).
q.e.d.

Proposition 1. Let the function G = G(x) ∈ C2+α({x ∈ Rn : |x − ξ| < �})
with � > 0 be given, which satisfies G(ξ) = 0 and

∇G(x) �= 0 for all x with |x− ξ| < �.

Then we have a C2+α-ball

D ⊂
{
x ∈ Rn : |x− ξ| < �, G(x) < 0

}
,

whose boundary fulfills

∂D ∩ {x ∈ Rn : |x− ξ| < �′
}

=
{
x ∈ Rn : |x− ξ| < �′, G(x) = 0

}
(9)

for a number 0 < �′ < �.

Proof: Exercise.

Theorem 2. (Existence theorem for linear elliptic equations)
With the assumptions C2, C3, C4 let the differential operator L be defined on
the domain Ω. Furthermore, we take the functions f ∈ Cα(Ω) and g : ∂Ω →
R ∈ C0(∂Ω) arbitrarily.
Then the Dirichlet problem

L(u) = f in Ω,

u = g on ∂Ω
(10)

possesses exactly one solution in the regularity class C2+α(Ω) ∩ C0(Ω).
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Proof: We only have to eliminate the assumption C0 in Theorem5 from § 5 .
With f ∈ Cα(Ω), we consider the following function in the dimensions n ≥ 3

v(x) :=
1

(2 − n)ωn

∫
Ω

f(y)
|y − x|n−2

dy, x ∈ Ω. (11)

We derive
v ∈ C2(Ω) ∩ C0(Ω),

Δv(x) = f(x) in Ω.
(12)

Following Chapter V, § 3 we solve the boundary value problem by Perron’s
method

w ∈ C2(Ω) ∩ C0(Ω),

Δw = 0 in Ω,

w = −v on ∂Ω.

(13)

Then the function u(x) := v(x) + w(x), x ∈ Ω represents a solution of the
boundary value problem

Δu(x) = f(x) in Ω,

u = 0 on ∂Ω.
(14)

With the aid of Theorem1 we locally reconstruct the solution u in the interior
and at the boundary via Proposition1 as well. Then we obtain u ∈ C2+α(Ω).
In this context we refer the reader to the subsequent proofs of Theorem3 and
Theorem4. q.e.d.

Theorem 3. (Inner regularity)
Let the differential operator L be defined on the domain Ω ⊂ Rn with the
assumption C2, and let the right-hand side f ∈ Cα(Ω) be given.
Then a solution u ∈ C2(Ω) of the differential equation

L(u) = f in Ω (15)

belongs to the regularity class C2+α(Ω).

Proof: On account of (15) the function u ∈ C2(Ω) satisfies the differential
equation

L̃(u) = f̃ in Ω

abbreviating

L̃(u) :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
,

f̃ := f − cu ∈ Cα(Ω).
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Since the operator L̃ satisfies the assumption C4, we can reconstruct the
solution with the aid of Theorem1 as follows: We take ξ ∈ Ω, choose � > 0
sufficiently small, and consider the set D := {x ∈ Rn : |x − ξ| < �} ⊂⊂ Ω.
There exists a solution v ∈ C2+α(D) ∩ C0(D) of the problem

L̃(v) = f̃ in D,

v = u on ∂D.
(16)

The maximum principle implies u(x) ≡ v(x) in D, and consequently u ∈
C2+α(D).

q.e.d.

With the assumption C3 we comprehend the set ∂Ω as an (n−1)-dimensional
manifold of regularity class C2+α. Therefore, we naturally define boundary
functions

g : ∂Ω → R ∈ C2+α(∂Ω).

We easily show the following

Proposition 2. Let the function g : ∂Ω → R ∈ C2+α(∂Ω) be prescribed. For
each ξ ∈ ∂Ω and each sufficiently small ε > 0, then there exists a function

h = h(x1, . . . , xn) ∈ C2+α({x ∈ Rn : |x− ξ| ≤ ε})

satisfying h = g on ∂Ω ∩ {x ∈ Rn : |x− ξ| ≤ ε}.

Theorem 4. (Boundary regularity)
With the assumptions C2 and C3, let the differential operator L be defined
on the domain Ω ⊂ Rn. For the boundary distribution g ∈ C2+α(∂Ω) and
the right-hand side f ∈ Cα(Ω) let the solution u of the following Dirichlet
problem be given:

u ∈ C2(Ω) ∩ C0(Ω),

L(u) = f in Ω,

u = g on ∂Ω.

(17)

Then we have u = u(x) ∈ C2+α(Ω).

Proof:

1. We choose the point ξ = (ξ1, . . . , ξn) ∈ ∂Ω arbitrarily. Furthermore, we
consider the function w(x) := e−μ(x1−ξ1)2 > 0 in Rn with the parameter
μ > 0 to be fixed later. On account of

wx1 = −2μ(x1 − ξ1)e−μ(x1−ξ1)
2
,

wx1x1 =
{
4μ2(x1 − ξ1)2 − 2μ

}
e−μ(x1−ξ1)

2
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we obtain
Lw|x=ξ = −2μa11(ξ) + c(ξ) < 0

taking μ > 0 sufficiently large. Now we choose � > 0 sufficiently small and
observe

Lw(x) ≤ 0, w(x) > 0 for all x ∈ Ω with |x− ξ| ≤ �. (18)

By the product device u(x) = w(x)v(x) presented in § 1 from Chapter VI,
we find that the differential operator relevant for v satisfies the assump-
tion C4. Consequently, we additionally require the assumption (C4) in the
sequel.

2. Due to Proposition2 we can locally extend g : ∂Ω → R about the point ξ
to a function

h ∈ C2+α({x ∈ Rn : ‖x− ξ| ≤ �}).
Now we choose a C2+α-ball D described in Proposition1, such that

D ⊂
{
x ∈ Rn : |x− ξ| ≤ �

}
∩Ω

holds true. The function v(x) := u(x)−h(x) ∈ C2+α(D)∩C0(D) satisfies
the problem

Lv(x) = Lu(x)− Lh(x) = f(x)− Lh(x), x ∈ D. (19)

Here the right-hand side of (19) belongs to the class Cα(D). Furthermore,
v(x) = 0 for all x ∈ ∂Ω(ξ, �′) ∩ ∂Ω holds true with a sufficiently small
�′ > 0. In this context we defined

Ω(ξ, �′) :=
{
x ∈ Ω : |x− ξ| < �′

}
.

Reconstructing the solution v on D with the aid of Theorem 1 as in the
proof of Theorem 3, we obtain

v ∈ C2+α(Ω(ξ, �′′)) (20)

for a parameter 0 < �′′ < �′ < �. The point ξ ∈ ∂Ω chosen arbitrarily, we
finally see

u ∈ C2+α(Ω).
q.e.d.

Remark: Since the proof of Theorem4 is of a local nature as described in
Theorem 1, we could prove a local regularity result as well.

We now attain the goal of our theory, namely
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Theorem 5. (Fundamental theorem for elliptic differential opera-
tors)
With the assumptions C2 and C3 let the differential operator L be defined on
the domain Ω, and we require the condition:

The homogeneous problem L(u) = 0 in Ω, u = 0 on ∂Ω, u ∈ C2(Ω)
admits only the trivial solution u ≡ 0.

(21)

For all functions f ∈ Cα(Ω) and g ∈ C2+α(∂Ω) given, then the boundary
value problem

u ∈ C2+α(Ω),

L(u) = f in Ω,

u = g on ∂Ω

(22)

possesses exactly one solution.

Proof: We consider the reduced differential operator

L0(u) :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi

and solve the following Dirichlet problem with the aid of Theorems 2 and 4:

u0 ∈ C2+α(Ω),

L0(u0) = 0 in Ω,

u0 = g on ∂Ω.

(23)

The right-hand side f ∈ Cα(Ω) given, we solve the problem (22) by the ansatz

u = u0 + u1, u1 ∈ C2+α
∗ (Ω). (24)

For the function u1 we find the condition

f = L(u) = L(u0 + u1) = L0(u0 + u1) + c(u0 + u1)

= L0(u0) + L0(u1) + cu0 + cu1 = L0(u1) + cu0 + cu1

or equivalently

u1 + L−1
0 (cu1) = L−1

0 (f)− L−1
0 (cu0) = f̃ ∈ C2+α

∗ (Ω). (25)

We consider the Banach space

B :=
{
u : Ω → R ∈ C2(Ω) : u = 0 on ∂Ω

}
with the norm

‖u‖ := ‖u‖Ω
0 + ‖u‖Ω

1 + ‖u‖Ω
2 , u ∈ B.



§7 The Schauder estimates 169

Now we introduce the linear operator

K(u) := −L−1
0

[
c(x)u(x)

]
, u ∈ B. (26)

The Schauder estimate yields

‖K(u)‖ ≤ ‖K(u)‖Ω
2+α =

∥∥L−1
0

[
c(x)u(x)

]∥∥Ω

2+α
≤ ϑ‖cu‖Ω

α

≤ ϑ‖c‖Ω
α ‖u‖ = ϑ̃‖u‖, u ∈ B.

(27)

Consequently, the linear operator K is bounded on the Banach space B and
even is completely continuous, due to the theorem of Arzelà-Ascoli. On ac-
count of (21) the homogeneous equation

u + L−1
0 (cu) = 0, u ∈ B, (28)

admits only the trivial solution u ≡ 0. We apply the Theorem of F. Riesz from
Chapter VII, § 4 and obtain exactly one solution of the operator equation

u−K(u) = f̃ , u ∈ B, (29)

for each right-hand side f̃ ∈ B. With the aid of Theorem4 we obtain the
desired function

u1 ∈ C2+α
∗ (Ω)

satisfying (25). Therefore, the function u = u0 + u1 solves the Dirichlet prob-
lem (22). q.e.d.

§7 The Schauder estimates

For ξ ∈ Rn and R > 0 given, we consider the set

B = B(ξ, R) :=
{
x = (x1, . . . , xn) ∈ Rn : |x− ξ| < R, xn > 0

}
.

With x = (x1, . . . , xn) we set x∗ = (x1, . . . , xn−1,−xn). We abbreviate

E :=
{
x ∈ Rn : xn = 0

}
,

and for n ≥ 3 we define Green’s function on the half-space xn > 0

φ(x, y) :=
1

(n− 2)ωn

( 1
|y − x|n−2

− 1
|y − x∗|n−2

)
.

Evidently, we have φ(x, y) = 0 for all y ∈ E. We now define the class of
functions

C2+α
∗ (B) :=

{
u ∈ C2+α(B(ξ, R)) : u(x) = 0 for all x ∈ ∂B(ξ, R) ∩ E

}
.
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Proposition 1. Let the function u ∈ C2+α
∗ (B) be given, then we have the

following identity for all x ∈ B :

u(x) =
∫

|y−ξ|=R
yn≥0

(
φ(x, y)

∂u

∂ν
(y)− u(y)

∂φ(x, y)
∂ν

)
dσ(y)−

∫
|y−ξ|≤R

yn≥0

φ(x, y)Δu(y) dy.

Proof: At first, the Gaussian integral theorem yields∫
B(ξ,R)
|y−x|>ε

(
φ(x, y)Δu(y) − u(y)Δyφ(x, y)

)
dσ(y)

=
∫

∂B

(
φ(x, y)

∂u

∂ν
− u(y)

∂φ

∂ν

)
dσ(y)

+
∫

|y−x|=ε

(
φ(x, y)

∂u

∂ν
− u(y)

∂φ

∂ν

)
dσ(y)

for all ε > 0 and x ∈ B. We note that u ∈ C2+α
∗ (B) and consider the limit

process ε ↓ 0

u(x) =
∫

|y−ξ|=R
yn≥0

(
φ
∂u

∂ν
− u

∂φ

∂ν

)
dσ(y) −

∫
|y−ξ|<R

yn>0

φ(x, y)Δu(y) dy.

q.e.d.

Remarks:

1. It is important that u vanishes on a plane portion of the boundary. A
contraction with ξ ∈ E and R ↓ 0 transfers this part into itself. Very
important in the sequel are half-balls.

2. With Green’s function for the half-ball B = B(ξ, R) and ξ ∈ E at our
disposal, we could directly derive potential-theoretic estimates extending
to the boundary ∂B ∩ E as in § 4.

3. In order to construct Green’s function for the half-ball, we have to solve
the Dirichlet problem for the ball by Poisson’s integral formula. However,
we do not yet know of the latter solution whether their derivatives are
continuous in B.

Proposition 2. The function u ∈ C2+α
∗ (B) may satisfy Poisson’s differential

equation Δu = f in B with f ∈ Cα(B). Then, we have the following equations
for x ∈ B and i, j = 1, . . . , n:

uxixj (x) =
∫

|y−ξ|=R
yn≥0

(
φxixj (x, y)

∂u

∂ν
(y)− u(y)

∂φxixj (x, y)
∂ν

)
dσ(y)

−f(x)ψxixj (x,R)−
∫
B

φxixj (x, y)
(
f(y)− f(x)

)
dy.
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Here, we define

ψ(x,R) :=
∫

|y−ξ|=R
yn≥0

(
φ(x, y)

∂(1
2y

2
n)

∂ν
− 1

2
y2

n

∂φ

∂ν
(x, y)

)
dσ(y) − 1

2
x2

n.

Proof: From the integral representation of Proposition 1 we can easily differ-
entiate the surface integral twice. The questionable volume integral

F (x) =
∫
B

φ(x, y)f(y) dy, x ∈ B,

can be directly differentiated only once:

Fxi(x) =
∫
B

φxi(x, y)f(y) dy, x ∈ B for i = 1, . . . , n.

We apply Proposition1 and insert the function u(x) := 1
2x

2
n with u(x) = 0

for x ∈ E and Δu(x) = 1 in Rn. This implies∫
B

φ(x, y)dy =
∫

|y−ξ|=R
yn≥0

(
φ(x, y)

∂(1
2y

2
n)

∂ν
− 1

2
y2

n

∂φ

∂ν
(x, y)

)
dσ(y) − 1

2
x2

n

= ψ(x,R), x ∈ B.

Therefore, the function

Φi(x) :=
∫
B

φxi(x, y) dy = ψxi(x,R), x ∈ B,

belongs to the class C1(B), and Proposition 1 from § 4 due to E.Hopf yields

Fxixj (x) =
∫
B

φxixj (x, y)
(
f(y)− f(x)

)
dy + f(x)ψxixj (x,R), x ∈ B

for i, j = 1, . . . , n. q.e.d.

Proposition 3. The function u = u(x) ∈ C2+α
∗ (B(ξ, 1)) may satisfy the par-

tial differential equation Δu(x) = f(x) in B(ξ, 1) with the right-hand side
f ∈ Cα(B). Then, we have a constant C = C(n, α), such that the inequality

‖u‖B(ξ,12 )
2 +‖u‖B(ξ,12 )

2,α ≤ C(α, n)
(
‖u‖B(ξ,1)

0 +‖u‖B(ξ,1)
1 +‖f‖B(ξ,1)

0 +‖f‖B(ξ,1)
0,α

)
holds true.
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Proof: The indices i, j ∈ {1, . . . , n} being fixed, we consider the functions

g(x) :=
∫

|y−ξ|=1
yn≥0

(
φxixj (x, y)

∂u

∂ν
(y)− u(y)

∂φxixj

∂ν
(x, y)

)
dσ(y),

h(x) := f(x)ψxixj (x, 1),

F (x) :=
∫

B(ξ,1)

φxixj (x, y)
(
f(y)− f(x)

)
dy, x ∈ B(ξ, 1).

The Proposition 2 yields

uxixj (x) = g(x)− h(x)− F (x), x ∈ B(ξ, 1). (1)

At first, we deduce

‖g‖B(ξ,12 )
0 + ‖g‖B(ξ, 12 )

0,α ≤ C1(α, n)
(
‖u‖B(ξ,1)

0 + ‖u‖B(ξ,1)
1

)
. (2)

Furthermore, we have

‖h‖B(ξ, 12 )
0 + ‖h‖B(ξ,12 )

0,α = ‖h‖B(ξ, 12 )
α = ‖f · ψxixj (·, 1)‖B(ξ, 12 )

α

≤ ‖ψxixj(·, 1)‖B(ξ, 1
2 )

α ‖f‖B(ξ, 12 )
α (3)

≤ C2(α, n)
(
‖f‖B(ξ,1)

0 + ‖f‖B(ξ,1)
0,α

)
.

We utilize Proposition 2 from § 4 in order to estimate F (x) and obtain

|F (x)| ≤ C3(α, n)‖f‖B(ξ,1)
0,α , x ∈ B(ξ, 1). (4)

Furthermore, the estimate of E.Hopf yields∣∣∣∣F (x′′)− F (x′) +
(
f(x′′)− f(x′)

) ∫
y∈B(ξ,1)

|y−x′|≥3|x′′−x′|

φxixj (x
′, y) dy

∣∣∣∣
≤ C4(α, n)‖f‖B(ξ,1)

0,α |x′′ − x′|α for all x′, x′′ ∈ B(ξ, 1).

(5)

With the aid of the Gaussian integral theorem we show the uniform bound-
edness of the Cauchy principal values:∣∣∣∣ ∫

y∈B(ξ,1)
|y−x′|≥δ

φxixj (x
′, y) dy

∣∣∣∣ ≤ C5 for all x′ ∈ B(ξ,
1
2
) and δ > 0. (6)

Together with (5) we see
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|F (x′′)− F (x′)| ≤ {C4(α, n) + C5

}‖f‖B(ξ,1)
0,α |x′′ − x′|α

for all x ∈ B
(
ξ,

1
2

)
and x′′ ∈ B(ξ, 1).

(7)

The inequalities (4) and (7) now imply

‖F‖B(ξ, 12 )
0 + ‖F‖B(ξ, 12 )

0,α ≤
{
C3(α, n) + C4(α, n) + C5

}
‖f‖B(ξ,1)

0,α . (8)

From (1)-(3) and (8) we obtain the inequality

‖uxixj‖B(ξ, 12 )
0 + ‖uxixj‖B(ξ, 12 )

0,α

≤ C̃(α, n)
{
‖u‖B(ξ,1)

0 + ‖u‖B(ξ,1)
1 + ‖f‖B(ξ,1)

0 + ‖f‖B(ξ,1)
0,α

}
for i, j = 1, . . . , n, which gives us the desired estimate. q.e.d.

By means of a scaling argument we now show the following

Theorem 1. Let u = u(x) ∈ C2+α∗ (B(ξ, R)) with ξ ∈ Rn and R > 0 be a
solution of Poisson’s equation Δu(x) = f(x), x ∈ B(ξ, R).
Then, we have the estimates

‖u‖B(ξ,12 R)
2 ≤ C(α, n)

(‖u‖B(ξ,R)
0

R2
+
‖u‖B(ξ,R)

1

R
+
‖f‖B(ξ,R)

0

1
+ Rα‖f‖B(ξ,R)

0,α

)
and

‖u‖B(ξ,12 R)
2,α ≤ C(α, n)

(‖u‖B(ξ,R)
0

R2+α
+
‖u‖B(ξ,R)

1

R1+α
+
‖f‖B(ξ,R)

0

Rα
+ ‖f‖B(ξ,R)

0,α

)
.

Proof: We apply Proposition3 to the function v(y) := u(Ry) , y ∈ B( ξ
R , 1), of

class C2+α
∗
(
B( ξ

R , 1)
)

and obtain

‖v‖B( ξ
R , 12 )

2 + ‖v‖B( ξ
R , 1

2 )
2,α

≤ C(α, n)
{
‖v‖B( ξ

R ,1)
0 + ‖v‖B( ξ

R ,1)
1 + ‖g‖B( ξ

R ,1)
0 + ‖g‖B( ξ

R ,1)
0,α

}
.

(9)

Furthermore, we calculate

vyi(y) = Ruxi(Ry), i = 1, . . . , n,

vyiyk
(y) = R2 uxixk

(Ry), i, k = 1, . . . , n,

Δv(y) = R2 f(Ry) =: g(y), y ∈ B
( ξ
R
, 1
)

and note that
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‖v‖B( ξ
R ,1)

l = Rl‖u‖B(ξ,R)
l , ‖v‖B( ξ

R , 1
2 )

l = Rl‖u‖B(ξ,R
2 )

l , l = 0, 1, 2.

Finally, we use the identities

‖v‖B( ξ
R , 1

2 )
2,α = R2+α‖u‖B(ξ,R

2 )
2,α ,

‖g‖B( ξ
R ,1)

0 = R2‖f‖B(ξ,R)
0 ,

‖g‖B( ξ
R ,1)

0,α = R2+α‖f‖B(ξ,R)
0,α .

From (9) we infer the inequality

R2‖u‖B(ξ, R
2 )

2 + R2+α‖u‖B(ξ,R
2 )

2,α

≤ C(α, n)
{
‖u‖B(ξ,R)

0 + R‖u‖B(ξ,R)
1 + R2‖f‖B(ξ,R)

0 + R2+α‖f‖B(ξ,R)
0,α

}
.

This relation implies the estimates stated above. q.e.d.

We now present the transition to elliptic differential operators with constant
coefficients and prove the preparatory

Proposition 4. Let A = (aij)i,j=1,...,n be a real, symmetric, positive-definite
matrix satisfying

m2
n∑

i=1

ξ2
i ≤

n∑
i,j=1

aijξiξj ≤M2
n∑

i=1

ξ2
i for all ξ = (ξ1, . . . , ξn) ∈ Rn

with the constants 0 < m ≤M < +∞.
Then we have a real matrix T = (tij)i,j=1,...,n with the entries tnj = 0 for
j = 1, . . . , n− 1 and tnn > 0, such that

T ◦A ◦ T ∗ = E

holds true. Furthermore, the following dilation estimates

M−1|x| ≤ |Tx| ≤ m−1|x|, x ∈ Rn

and
m|y| ≤ |T−1y| ≤M |y|, y ∈ Rn

are valid.

Proof: Since A is a real, symmetric matrix, there exists an orthogonal matrix
B with B ◦B∗ = E = B∗ ◦B, such that

B ◦A ◦B∗ = Λ =: diag(λ1, . . . , λn)

is transformed into a diagonal matrix with the eigenvalues λi ∈ [m2,M2] for
i = 1, . . . , n. We multiply this equation from the left- and the right-hand side
by the matrix
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Λ−1/2 := diag(λ−1/2
1 , . . . , λ−1/2

n ).

With C := Λ−1/2 ◦B we obtain the identity

E = Λ−1/2 ◦B ◦A ◦B∗ ◦ (Λ−1/2)∗ = C ◦A ◦ C∗.

The multiplication of this equation by an arbitrary orthogonal matrix D yields
the following identity with T := D ◦ C:

E = D ◦ C ◦A ◦ C∗ ◦D∗ = T ◦A ◦ T ∗.

We now choose D in such a way that the conditions tnj = 0 (j = 1, . . . , n− 1)
and tnn > 0 are fulfilled. We remark the relation

T = D ◦ Λ−1/2 ◦B
with the orthogonal matrices B and D, and the diagonal matrix Λ−1/2 with
the elements λ

−1/2
i ∈ [M−1,m−1] for i = 1, . . . , n. This representation gives

us the estimate

M−1|x| ≤ |Tx| ≤ m−1|x|, x ∈ Rn.

Setting x = T−1y we obtain the second dilation estimate

M−1|T−1y| ≤ |y| ≤ m−1|T−1y|, y ∈ Rn. q.e.d.

Theorem 2. The real, symmetric matrix A = (aij)i,j=1,...,n may satisfy the
condition

m2
n∑

i=1

ξ2
i ≤

n∑
i,j=1

aijξiξj ≤M2
n∑

i=1

ξ2
i , ξ ∈ Rn,

with the constants 0 < m ≤ M < +∞. The function u = u(x) ∈
C2+α

∗ (B(ξ, R)) may solve the partial differential equation

L(u)|x :=
n∑

i,j=1

aij
∂2u

∂xi∂xj
(x) = f(x), x ∈ B(ξ, R).

Then, we have a constant C = C(α, n,m,M) ∈ (0,+∞), such that the rela-
tions

‖u‖B(ξ, m
M

R
2 )

2 ≤ C

(
‖f‖B(ξ,R)

0 + Rα‖f‖B(ξ,R)
0,α +

‖u‖B(ξ,R)
0

R2
+
‖u‖B(ξ,R)

1

R

)
and

‖u‖B(ξ, m
M

R
2 )

2,α ≤ C

(‖f‖B(ξ,R)
0

Rα
+ ‖f‖B(ξ,R)

0,α +
‖u‖B(ξ,R)

0

R2+α
+
‖u‖B(ξ,R)

1

R1+α

)
hold true.
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Proof: The matrix A given, we use the transformation y = Tx according to
Proposition 4. On account of yn = tnnxn we have

T :
{x ∈ Rn : xn = 0} ↔ {y ∈ Rn : yn = 0},
{x ∈ Rn : xn > 0} ↔ {y ∈ Rn : yn > 0}.

Furthermore, the following inclusions are valid

T
(
B
(
ξ,

m

2M
R
))
⊂ B

(
Tξ,

R

2M

)
, (10)

B
(
Tξ,

R

M

)
⊂ T (B(ξ, R)). (11)

Starting with y ∈ T (B(ξ, m
2M R)), we see

|T−1(y − Tξ)| = |T−1y − ξ| < m

2M
R.

Proposition4 then implies

m|y − Tξ| ≤ |T−1(y − Tξ)| < m

2M
R or equivalently |y − Tξ| < R

2M
.

This means y ∈ B(Tξ, R
2M ), and (10) is proved.

Starting with y ∈ B(Tξ, R
M ), that means |y − Tξ| < R

M , Proposition 4 yields
the inequality

|T−1y − ξ| = |T−1(y − Tξ)| ≤M |y − Tξ| < R.

Therefore, T−1y ∈ B(ξ, R) and y ∈ T (B(ξ, R)) hold true. Now (11) is proved
as well.
We consider the function v(y) := u(T−1y) of class C2+α

∗ (T (B(ξ, R))) and
consequently u(x) = v(Tx) of class C2+α

∗ (B(ξ, R)). Noting that

uxi =
n∑

k=1

vyk
tki, uxixj =

n∑
k,l=1

vykyl
tkitlj for i, j = 1, . . . , n

we deduce
L(u)|x =

n∑
i,j=1

aij
∂2u

∂xi∂xj
(x) =

n∑
k,l=1

( n∑
i,j=1

aijtkitlj

)
vykyl

∣∣∣
Tx

=
n∑

k,l=1

δklvykyl

∣∣∣
Tx

=
n∑

k=1

vykyk

∣∣∣
Tx

= Δv(Tx)

for all x ∈ B(ξ, R). Consequently, we obtain

Δv(y) = g(y), y ∈ T (B(ξ, R)), with g(y) := f(T−1y). (12)
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Due to the formula (11), we can apply Theorem 1 to the function v in the
ball B(Tξ, R

M ) : There exists a constant C̃ = C̃(α, n), such that

‖v‖B(Tξ, R
2M )

2 ≤ C̃
(M2

R2
‖v‖B(Tξ, R

M )
0 +

M

R
‖v‖B(Tξ, R

M )
1

+‖g‖B(Tξ, R
M )

0 +
Rα

Mα
‖g‖B(Tξ, R

M )
0,α

)
.

We note (10) and deduce

‖u‖B(ξ, m
2M R)

2 ≤ μ(m,M)‖v‖B(Tξ, R
2M )

2 .

Finally, we obtain

‖u‖B(ξ, m
2M R)

2 ≤ μ(m,M)C̃
{
M2

R2
‖u‖B(ξ,R)

0 +
M

R
μ1(m,M)‖u‖B(ξ,R)

1

+‖f‖B(ξ,R)
0 +

Rα

Mα
μ2(m,M)‖f‖B(ξ,R)

0,α

}

≤ C(α, n,m,M)
{‖u‖B(ξ,R)

0

R2
+
‖u‖B(ξ,R)

1

R

+‖f‖B(ξ,R)
0 + Rα‖f‖B(ξ,R)

0,α

}
,

taking (11) into account. Analogously, we estimate the quantity ‖u‖B(ξ, m
2M R)

2,α .
q.e.d.

For the functions u ∈ C2+α∗ (B(ξ, R)) we now introduce the following weighted
norms, abbreviating d(x) := R− |x− ξ| :

A0 := sup
x∈B

|u(x)|,

A1 := sup
x∈B

{
d(x)

n∑
i=1

|uxi(x)|
}
,

A2 := sup
x∈B

{
d(x)2

n∑
i,j=1

|uxixj (x)|
}
,

A2,α := sup
x′,x′′∈B
x′ 	=x′′

{(
min[d(x′), d(x′′)]

)2+α
n∑

i,j=1

|uxixj (x′)− uxixj (x′′)|
|x′ − x′′|α

}
.

(13)

Proposition 5. (Norm-interpolation)
Given the functions u = u(x) ∈ C2+α

∗ (B(ξ, R)), we have the following esti-
mate:

A1 ≤ 2n
κ
A0 +

nκ

(1 − κ)2
A2 for all κ ∈ (0, 1). (14)
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Proof: We assume A1 > 0 and choose a point x′ = (x′1, . . . , x
′
n) ∈ B satisfying

A1 = d(x′)
n∑

i=1

|uxi(x
′)| and d(x′) > 0.

For an arbitrary index j ∈ {1, . . . , n} we define x′′ = (x′′1 , . . . , x
′′
n) by x′′i := x′i

for i �= j and x′′j := x′j + κd(x′), with an arbitrary κ ∈ (0, 1). We remark that
x′′ ∈ B holds true. The mean value theorem of differential calculus gives us
a value κ̃ ∈ (0, κ) with the adjoint point x̃ = (x̃1, . . . , x̃n) satisfying x̃i = x′i,
i �= j and x̃j = x′j + κ̃d(x′), such that the relation

uxj (x̃) =
u(x′′)− u(x′)

κd(x′)

holds true. This implies

|uxj(x̃)| ≤ 2A0

κd(x′)
. (15)

Furthermore, we calculate

uxj (x̃)− uxj (x
′) =

x̃j∫
x′

j

uxjxj (x
′
1, . . . , x

′
j−1, t, x

′
j+1, . . . , x

′
n) dt.

For x = (x′1, . . . , x
′
j−1, t, x

′
j+1, . . . , x

′
n) and x′j ≤ t ≤ x̃j we infer

d(x) = R− |x− ξ| ≥ R− |x′ − ξ| − |x− x′| ≥ d(x′)(1 − κ)

and consequently

|uxjxj (x)| ≤ A2

d(x)2
≤ A2

(1− κ)2d(x′)2
.

We then obtain

|uxj(x̃)− uxj(x
′)| ≤ A2 κ d(x′)

(1− κ)2(d(x′))2
=

κA2

(1− κ)2d(x′)
. (16)

The relations (15) and (16) imply

|uxj(x
′)| ≤ |uxj (x̃)− uxj (x

′)|+ |uxj(x̃)| ≤ κA2

(1− κ)2d(x′)
+

2A0

κd(x′)

and
d(x′)|uxj(x

′)| ≤ κA2

(1 − κ)2
+

2A0

κ
for j = 1, . . . , n.

We summarize and get
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A1 = d(x′)
n∑

i=1

|uxj (x
′)| ≤ 2nA0

κ
+

nκA2

(1− κ)2
,

the parameter κ ∈ (0, 1) being arbitrarily chosen. q.e.d.

We now consider general elliptic differential operators

L(u) :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u, x ∈ B(ξ, R), (17)

and require the following conditions on the coefficients:

Assumption D: For i, j = 1, . . . , n let the coefficients

aij(x), bi(x), c(x) ∈ Cα(B(ξ, R))

with the bound P be given:

n∑
i,j=1

‖aij‖B(ξ,R)
α +

n∑
i=1

‖bi‖B(ξ,R)
α + ‖c‖B(ξ,R)

α + R ≤ P.

With the ellipticity constants 0 < m ≤ M < +∞, we have the following
inequalities for all x ∈ B(ξ, R) and λ ∈ Rn :

m2
n∑

i=1

λ2
i ≤

n∑
i,j=1

aij(x)λiλj ≤M2
n∑

i=1

λ2
i .

Proposition 6. Let the assumption D be fulfilled. The function u ∈ C2+α
∗ (B)

may satisfy the differential equation

L(u) = f in B with f ∈ Cα(B).

Then, we have the following estimates for each point x̃ ∈ B and each number
κ ∈ (0, 1

2 ) :

‖u‖B(x̃, m
2M κd(x̃))

2 ≤ C

d(x̃)2

{
‖f‖B

0 + κα‖f‖B
0,α +

A0

κ2
+

A1

κ
+ καA2 + κ2αA2,α

}
and

‖u‖B(x̃, m
2M κd(x̃))

2,α ≤ C

d(x̃)2+α

{‖f‖B
0

κα
+ ‖f‖B

0,α +
A0

κ2+α
+

A1

κ1+α
+A2 + καA2,α

}
with a constant C = C(α, n,m,M,P ) ∈ (0,+∞).
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Proof: We show this proposition by a method usually called freezing of coef-
ficients. For each x ∈ B(x̃, κd(x̃)) we have

d(x) = R− |x− ξ| ≥ R− |x̃− ξ| − |x− x̃| ≥ (1 − κ)d(x̃) ≥ 1
2
d(x̃).

Then, we obtain

A0 = sup
x∈B

|u(x)| ≥ sup
x∈B(x̃,κd(x̃))

|u(x)| = ‖u‖B(x̃,κd(x̃))
0 (18)

and
2A1

d(x̃)
= sup

x∈B

{2d(x)
d(x̃)

n∑
i=1

|uxi(x)|
}

≥ sup
x∈B(x̃,κd(x̃))

{ n∑
i=1

|uxi(x)|
}

= ‖u‖B(x̃,κd(x̃))
1 .

(19)

Furthermore, we note that

4A2

d(x̃)2
≥ ‖u‖B(x̃,κd(x̃))

2 (20)

and
22+αA2,α

d(x̃)2+α
≥ ‖u‖B(x̃,κd(x̃))

2,α . (21)

Since u satifies the differential equation L(u) = f , we infer

L̃(u) :=
n∑

i,j=1

aij(x̃)
∂2u

∂xj∂xj
(x) = g(x), x ∈ B(x̃, κd(x̃)), (22)

with the right-hand side

g(x) := f(x)−
{ n∑

i,j=1

(
aij(x)−aij(x̃)

) ∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u

}
. (23)

To the relation (22) we now apply Theorem 2 with ξ = x̃, R = κd(x̃). Then
we obtain

‖u‖B(x̃, m
2M κd(x̃))

2 ≤ C̃

(
‖g‖B(x̃,κd(x̃))

0 + ‖g‖B(x̃,κd(x̃))
0,α καd(x̃)α

+
A0

κ2d(x̃)2
+

2A1

κd(x̃)2

) (24)

and

‖u‖B(x̃, m
2M κd(x̃))

2,α ≤ C̃

(‖g‖B(x̃,κd(x̃))
0

καd(x̃)α
+ ‖g‖B(x̃,κd(x̃))

0,α

+
A0

κ2+αd(x̃)2+α
+

2A1

κ1+αd(x̃)2+α

) (25)
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with the constant C̃ = C̃(α, n,m,M) ∈ (0,+∞).
The quantity ‖g‖B(x̃,κd(x̃))

0 is estimated as follows: Taking x ∈ B(x̃, κd(x̃)) we
have

|g(x)| ≤ ‖f‖B(x̃,κd(x̃))
0 +

n∑
i,j=1

|aij(x) − aij(x̃)|
∣∣∣ ∂2u

∂xi∂xj
(x)
∣∣∣

+
n∑

i=1

|bi(x)|
∣∣∣ ∂u
∂xi

(x)
∣∣∣ + |c(x)| |u(x)|

and consequently

|g(x)| ≤ ‖f‖B(x̃,κd(x̃))
0 + ‖u‖B(x̃,κd(x̃))

2 καd(x̃)α
n∑

i,j=1

‖aij‖B(x̃,κd(x̃))
0,α

+‖u‖B(x̃,κd(x̃))
1

n∑
i=1

‖bi‖B(x̃,κd(x̃))
0 + ‖u‖B(x̃,κd(x̃))

0 ‖c‖B(x̃,κd(x̃))
0 .

Therefore, we find

‖g‖B(x̃,κd(x̃))
0 ≤ ‖f‖B

0 + P
(
A0 +

2A1

d(x̃)
+

4καd(x̃)α

d(x̃)2
A2

)
≤ ‖f‖B

0 +
k0(P )
d(x̃)2

(
A0 + A1 + καA2

)
,

(26)

with a constant k0 = k0(P ).
In order to estimate the quantity ‖g‖B(x̃,κd(x̃))

0,α ,we calculate for each two
points x′, x′′ ∈ B(x̃, κd(x̃)) as follows:

|g(x′)− g(x′′)| ≤ |f(x′)− f(x′′)|+
n∑

i,j=1

{
|aij(x′)− aij(x′′)| |uxixj (x

′)|

+|aij(x′′)− aij(x̃)| |uxixj (x
′)− uxixj(x

′′)|
}

+
n∑

i=1

{
|bi(x′)− bi(x′′)| |uxi(x

′)|+ |bi(x′′)| |uxi(x
′)− uxi(x

′′)|
}

+
{
|c(x′)− c(x′′)| |u(x′)|+ |c(x′′)| |u(x′)− u(x′′)|

}
.

This implies
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|g(x′)− g(x′′)| ≤ |x′ − x′′|α
{
‖f‖B(x̃,κd(x̃))

0,α + ‖u‖B(x̃,κd(x̃))
2

n∑
i,j=1

‖aij‖B(x̃,κd(x̃))
0,α

+‖u‖B(x̃,κd(x̃))
2,α καd(x̃)α

n∑
i,j=1

‖aij‖B(x̃,κd(x̃))
0,α + ‖u‖B(x̃,κd(x̃))

1

n∑
i=1

‖bi‖B(x̃,κd(x̃))
0,α

+‖u‖B(x̃,κd(x̃))
2 (2κd(x̃))1−α

n∑
i=1

‖bi‖B(x̃,κd(x̃))
0

+‖c‖B(x̃,κd(x̃))
0,α ‖u‖B(x̃,κd(x̃))

0 + ‖c‖B(x̃,κd(x̃))
0 ‖u‖B(x̃,κd(x̃))

1 (2κd(x̃))1−α
}

≤ |x′ − x′′|α
{
‖f‖B

0,α +
4A2P

d(x̃)2
+ καP

22+αA2,α

d(x̃)2
+

2A1P

d(x̃)

+
4A2P

d(x̃)2
(2κ)1−α(d(x̃))1−α + PA0 +

2PA1

d(x̃)
(2κ)1−α(d(x̃))1−α

}
.

Then, we obtain

‖g‖B(x̃,κd(x̃))
0,α ≤ ‖f‖B

0,α +
k1(P )
d(x̃)2

{
A0 + A1 + A2 + καA2,α

}
(27)

with a constant k1 = k1(P ).
Combining the estimates (24), (26), and (27) we deduce

‖u‖B(x̃, m
2M κd(x̃))

2 ≤ C̃

{
‖f‖B

0 +
k0(P )
d(x̃)2

(A0 + A1 + καA2) + καd(x̃)α‖f‖B
0,α

+κα k1(P )
d(x̃)2−α

(A0 + A1 + A2 + καA2,α) +
A0

κ2d(x̃)2
+

2A1

κd(x̃)2

}
≤ C(α, n,m,M,P )

d(x̃)2
{
‖f‖B

0 + κα‖f‖B
0,α +

A0

κ2
+

A1

κ
+ καA2 + κ2αA2,α

}
.

Furthermore, we estimate with the aid of (25), (26), and (27) as follows:

‖u‖B(x̃, m
2M κd(x̃))

2,α ≤ C̃
{ ‖f‖B

0

καd(x̃)α
+

k0(P )
καd(x̃)2+α

(
A0 + A1 + καA2

)
+ ‖f‖B

0,α

+
k1(P )
d(x̃)2

(A0 + A1 + A2 + καA2,α) +
A0

κ2+αd(x̃)2+α
+

2A1

κ1+αd(x̃)2+α

}
≤ C(α, n,m,M,P )

d(x̃)2+α

{‖f‖B
0

κα
+ ‖f‖B

0,α +
A0

κ2+α
+

A1

κ1+α
+ A2 + καA2,α

}
.

This completes the proof. q.e.d.
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Theorem 3. Let the assumption D be fulfilled; and u ∈ C2+α
∗ (B(ξ, R)) may

satisfy the differential equation

L(u) = f in B = B(ξ, R)

with the right-hand side f ∈ Cα(B).
Then we have a constant C = C(α, n,m,M,P ) ∈ (0,+∞), such that

A1 + A2 + A2,α ≤ C(A0 + ‖f‖B
0 + ‖f‖B

0,α). (28)

Proof: We choose κ ∈ (0, 1
2 ) and infer the following inequality from Proposition

5 :

A1 ≤ 2n
κ1+α

A0 +
nκ1+α

(1− κ1+α)2
A2. (29)

Together with Proposition 6 we obtain the estimates

A2 ≤ C

{
‖f‖B

0 + κα‖f‖B
0,α +

( 1
κ2

+
2n

κ2+α

)
A0

+
( n

(1− κ1+α)2
+ 1
)
καA2 + κ2αA2,α

}
and

καA2,α ≤ C

{
‖f‖B

0 + κα‖f‖B
0,α +

( 1
κ2

+
2n

κ2+α

)
A0

+
( n

(1− κ1+α)2
+ 1
)
καA2 + κ2αA2,α

}
.

Their addition yields

A2 + καA2,α ≤ 2C
{
‖f‖B

0 + κα‖f‖B
0,α +

( 1
κ2

+
2n

κ2+α

)
A0

+κα
(
1 +

n

(1− κ1+α)2
)
(A2 + καA2,α)

}
.

Choosing 0 < κ0 so small that the condition

2Cκα
0

(
1 +

n

(1− κ1+α
0 )2

)
≤ 1

2

is fulfilled, we deduce

A2 + κα
0A2,α ≤ 4C

{
‖f‖B

0 + κα
0 ‖f‖B

0,α +
( 1
κ2

0

+
2n

κ2+α
0

)
A0

}
.

Consequently, the quantities A2 and A2,α are estimated in the desired form.
Utilizing Proposition 5 once more, we attain the stated inequality (28).

q.e.d.
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From this Theorem 3 we now can easily deduce the Schauder estimates given
in § 5 .

Proof of Theorem 4 from § 5 : The quantity d > 0 being chosen arbitrarily
small, we consider the set

Ωd := {x ∈ Ω : dist(x, ∂Ω) > d}.
In the ball B = B(x0, d) ⊂ Ω we apply Theorem 3 with x0 ∈ Ωd and R = d.
Then we obtain

C̃
(

sup
x∈Ω

|u(x)|+ ‖f‖Ω
0 + ‖f‖Ω

0,α

)
≥ A1 + A2 + A2,α

≥ d

n∑
i=1

|uxi(x0)|+ d2
n∑

i,j=1

|uxixj (x0)|

+
(d

2

)2+α n∑
i,j=1

sup
x′,x′′∈B(x0,d/2)

x′ 	=x′′

|uxixj (x′)− uxixj (x′′)|
|x′ − x′′|α

for all x0 ∈ Ωd. This implies

‖u‖Ωd
1 + ‖u‖Ωd

2 + ‖u‖Ωd
2,α ≤ C(. . . , d)

(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
.

q.e.d.

Let the domain Ω satisfy the assumption C3. For each boundary point x0 ∈
∂Ω we then have a half-neighborhood Ω0, which can be mapped onto a half-
ball B(ξ, R) with ξ ∈ E = {x ∈ Rn : xn = 0} in such away that B(ξ, R) ∩ E
is related to ∂Ω ∩ ∂Ω0. This mapping represents a diffeomorphism of B(ξ, R)
onto Ω0 in the class C2+α. The differential equation L(u) = f is transformed
- similar to the proof of Theorem 1 from § 6 - into an elliptic differential
equation on the half-ball with zero boundary values on E. The Schauder
estimates utilized in the proof of Theorem 1 from § 6 can be directly taken
from Theorem3 with the aid of the transformation above.

Finally, we supplement the

Proof of Theorem 1 from § 5: Following the arguments above, to each point
x0 ∈ ∂Ω there exists a neighborhood Ω0 := Ω ∩ B(x0, ε0) with ε0 > 0, such
that

‖u‖Ω0
1 + ‖u‖Ω0

2 + ‖u‖Ω0
2,α ≤ C̃

(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
holds true. The boundary ∂Ω being compact, finitely many such neighbor-
hoods Ωj , j = 1, . . . , N suffice in order to cover this set. Then we obtain

‖u‖Ωj

1 + ‖u‖Ωj

2 + ‖u‖Ωj

2,α ≤ C̃
(‖u‖Ω

0 + ‖f‖Ω
0 + ‖f‖Ω

0,α

)
for j = 1, . . . , N.

Choosing d > 0 sufficiently small, we attain the global Schauder estimate



§8 Some historical notices to Chapter IX 185

‖u‖Ω
1 + ‖u‖Ω

2 + ‖u‖Ω
2,α ≤ ‖u‖Ωd

1 + ‖u‖Ωd
2 + ‖u‖Ωd

2,α

+
N∑

j=1

(‖u‖Ωj

1 + ‖u‖Ωj

2 + ‖u‖Ωj

2,α

)
≤ (C̃N + C̃(d)

)(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
≤ C

(‖u‖Ω
0 + ‖f‖Ω

0 + ‖f‖Ω
0,α

)
with a constant C = C(α, n,m,M,P,Ω) ∈ (0,+∞). q.e.d

Now we have completely proved all the Schauder estimates, which we applied
in § 5 and § 6.

§8 Some historical notices to Chapter IX

Boundary value problems for holomorphic functions have already been consid-
ered by B. Riemann. The just established theory of integral equations enabled
D. Hilbert in 1904, to obtain new results for this problem. G. Hellwig observed
in 1952 the nonuniqueness of the Riemann-Hilbert problem and the intricate
structure for the set of their solutions. For a thorough treatment of these
questions we refer the reader to the profound monograph by I.N. Vekua.

The boundary value problem for elliptic differential equations was solved by
J. Schauder from 1932–1934 via functional analytic methods. At about the
same time, G. Giraud and E. Hopf treated similar problems with alternative
methods. For a detailed account we refer the reader to the book by D. Gilbarg
and N. Trudinger.
J. Schauder worked, as a brilliant student of S. Banach, in the intellectually
excellent atmosphere of the University at Lwóv, now in the Ukraine. However,
his life ended already in 1943 – within the tragical times of World War II.
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Weak Solutions of Elliptic Differential
Equations

In this chapter we consider Sobolev spaces in § 1 and prove the Sobolev embed-
ding theorem and the Rellich selection theorem in § 2. Then we establish the
existence of weak solutions in § 3 . With the aid of Moser’s iteration method
we show the boundedness of weak solutions in § 4 . In the subsequent § 5 we
deduce Hölder continuity of weak solutions with the aid of the weak Har-
nack inequality by J. Moser. The necessary regularity theorem of John and
Nirenberg will be derived in § 6 . Finally, we investigate the boundary reg-
ularity of weak solutions in § 7 . Then we apply our results to equations in
divergence form (compare § 8) . At the end of this chapter we present Green’s
function for elliptic operators with the aid of capacity methods, and we treat
the eigenvalue problem for the Laplace-Beltrami operator.

§1 Sobolev spaces

Let Ω ⊂ Rn be a bounded open set. Then the space C∞
0 (Ω) is dense in the

Lebesgue space Lp(Ω) for all 1 ≤ p < +∞. We shall now construct a space
W k,p(Ω) of the k-times weakly differentiable functions - with weak derivatives
in the space Lp(Ω).

To the element f ∈ Lp(Ω) we attribute the following functional in a natural
way:

Af (ϕ) :=
∫
Ω

f(x)ϕ(x) dx, ϕ ∈ C∞
0 (Ω). (1)

Taking the multi-index α = (α1, . . . , αn) ∈ Nn
0 , N0 := N ∪ {0}, with |α| :=

α1 + . . . + αn ∈ N0, we consider the functionals

Af,α(ϕ) := (−1)|α|
∫
Ω

f(x)∂αϕ(x) dx, ϕ ∈ C∞
0 (Ω). (2)

Here the symbol
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∂αϕ(x) :=
∂|α|

∂xα1
1 . . . ∂xαn

n
ϕ(x), x ∈ Ω,

denotes the corresponding partial derivative of ϕ. We note that

Af,0 = Af .

With the function f ∈ C|α|(Ω), an |α|-times partial integration yields

Af,α(ϕ) =
∫
Ω

(
∂αf(x)

)
ϕ(x) dx, ϕ ∈ C∞

0 (Ω). (3)

On account of ϕ ∈ C∞
0 (Ω), the boundary integrals vanish during the partial

integration.

In case the linear functional Af,α - defined due to (2) - is bounded with respect
to the Lq(Ω)-norm on the set C∞

0 (Ω), we can extend this functional to the
Lebesgue space Lq(Ω) for 1 ≤ q < +∞. Via the Riesz representation theorem
we have an element g ∈ Lp(Ω) with p = q

q−1 ∈ (1,+∞], such that

Af,α(ϕ) =
∫
Ω

g(x)ϕ(x) dx = Ag(ϕ) for all ϕ ∈ C∞
0 (Ω) (4)

holds true.

On account of (3) the following definition makes sense:

Definition 1. Take the multi-index α = (α1, . . . , αn) ∈ Nn
0 , the exponent

1 ≤ p ≤ +∞, and the element f ∈ Lp(Ω). Then the element

g(x) := Dαf(x) ∈ Lp(Ω)

is called the weak partial derivative of order α for f if∫
Ω

g(x)ϕ(x) dx = (−1)|α|
∫
Ω

f(x)∂αϕ(x) dx for all ϕ ∈ C∞
0 (Ω) (5)

holds true.

Remarks:

1. Let the elements g1, g2 ∈ Lp(Ω) with p > 1 satisfy the identity (5). We
then obtain∫

Ω

g1(x)ϕ(x) dx = Af,α(ϕ) =
∫
Ω

g2(x)ϕ(x) dx for all ϕ ∈ C∞
0 (Ω).

For the conjugate exponent q ∈ [1,+∞) with p−1 + q−1 = 1 we infer
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Ω

(g1 − g2)(x)ϕ(x) dx = 0 for all ϕ ∈ Lq(Ω).

Utilizing Theorem2 from Chapter II, § 8 we obtain

0 = ‖A(g1−g2)‖ = ‖g1 − g2‖p

and the identities g1 = g2 in Lp(Ω) respectively g1 = g2 almost everywhere
(briefly a.e.) in Ω follow. Even if the weak derivative exists only in L1(Ω),
it is uniquely determined in this space.

2. In the classical situation f ∈ C|α|(Ω) we have the coincidence

∂αf(x) = Dαf(x) in Ω

due to the relation (3).

Definition 2. Let the numbers k ∈ N0 and 1 ≤ p ≤ +∞ be given. Then we
define the Sobolev space

W k,p(Ω) :=
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ k

}
with the Sobolev norm

‖f‖W k,p(Ω) := ‖f‖k,p,Ω :=

⎛⎝ ∑
|α|≤k

∫
Ω

|Dαf(x)|p dx
⎞⎠

1
p

. (6)

Remarks:

1. An equivalent norm is given by

‖f‖′k,p :=
∑
|α|≤k

‖Dαf‖p .

Therefore, there exist constants 0 < c1 ≤ c2 < +∞ satisfying

c1‖f‖k,p ≤ ‖f‖′k,p ≤ c2‖f‖k,p for all f ∈W k,p(Ω).

2. Endowed with the norm from Definition 2, the space W k,p(Ω) becomes a
Banach space.

3. With 1 < p ≤ +∞ and q = p
p−1 , the preliminary considerations yield

W k,p(Ω) =
{
f ∈ Lp(Ω) : Af,α ∈ (Lq(Ω))∗, |α| ≤ k

}
. (7)

Here the symbol (Lq(Ω))∗ denotes the continuous dual space of Lq(Ω).
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4. In the special case p = 2 we obtain the Hilbert spaces

Hk(Ω) := W k,2(Ω)

with the inner product

(f, g)Hk(Ω) :=
∑
|α|≤k

∫
Ω

Dαf(x)Dαg(x) dx, f, g ∈ Hk(Ω).

5. One immediately shows the linearity of the weak derivative: Let the num-
bers c, d ∈ R, the multi-index α from the set Nn

0 , and the elements f, g in
W k,p(Ω) be given. Then we have

Dα(cf + dg) = cDαf + dDαg.

We shall now present a mollifying process which we owe to K.Friedrichs. By
� ∈ C∞(Rn) we denote the mollifier

�(x) =

{
c exp

(
1

|x|2−1

)
, |x| < 1

0 , |x| ≥ 1

satisfying ∫
Rn

�(x) dx = 1.

Here we have to choose c > 0 suitably. A function u(x) ∈ Lp(Ω) with 1 ≤ p ≤
+∞ is extended onto the whole Euclidean space Rn as follows:

u(x) =

{
u(x) , x ∈ Ω

0 , x ∈ Rn \Ω .

Theorem 1. (Friedrichs)
Taking the exponent 1 ≤ p ≤ +∞ and the function u(x) ∈ Lp(Ω), we attribute
the regularized function

uh(x) := h−n

∫
Rn

�

(
x− y

h

)
u(y) dy, x ∈ Rn,

for each h > 0. Then the mapping u �→ uh is linear from Lp(Rn) into Lp(Rn),
and we have the estimate

‖uh‖p ≤ ‖u‖p for all h > 0, u ∈ Lp(Rn).
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Proof: The linearity of the map u �→ uh is evident, and we only have to show
the norm estimate. The transformation formula for multiple integrals remains
applicable to L1-functions via approximation, and we deduce

uh(x) = h−n

∫
Rn

�

(
x− y

h

)
u(y) dy

=
∫

Rn

�(z)u(x− hz) dz

=
∫

|z|≤1

�(z)u(x− hz) dz

(8)

for all h > 0. With the aid of Hölder’s inequality for 1 < p < +∞ and the
identity p−1 + q−1 = 1 we arrive at

|uh(x)| ≤
∫

|z|≤1

�
1
p (z)|u(x− hz)|� 1

q (z) dz

≤
( ∫

|z|≤1

�(z)|u(x− hz)|p dz
) 1

p
( ∫

|z|≤1

�(z) dz

) 1
q

and
|uh(x)|p ≤

∫
|z|≤1

�(z)|u(x− hz)|p dz for all x ∈ Rn.

Integration via Fubini’s theorem yields (for p = 1 as well)∫
Rn

|uh(x)|p dx ≤
∫

x∈Rn

( ∫
|z|≤1

�(z)|u(x− hz)|p dz
)
dx

=
∫

|z|≤1

�(z)

( ∫
x∈Rn

|u(x− hz)|p dx
)
dz

=

( ∫
Rn

|u(x)|p dx
)( ∫

|z|≤1

�(z) dz

)
.

This implies

‖uh‖p ≤ ‖u‖p for all u ∈ Lp(Rn), h > 0, 1 ≤ p < +∞.

In the case p = ∞ we obtain |uh(x)| ≤ ‖u‖∞ a. e. in Rn and consequently
‖uh‖∞ ≤ ‖u‖∞. q.e.d.
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Theorem 2. (Friedrichs)
We have the following statements:

1. Taking u(x) ∈ C0
0 (Ω) we observe

sup
x∈Rn

|u(x)− uh(x)| −→ 0 for h→ 0 + .

2. For u ∈ Lp(Ω) with 1 ≤ p < +∞ we infer

‖u− uh‖p −→ 0 for h→ 0 + .

Proof:

1. We depart from u ∈ C0
0 (Ω): For each ε > 0 we find a number δ > 0, such

that the estimate
|u(x)− u(y)| ≤ ε

is valid for all x, y ∈ Rn with |x− y| ≤ δ. Via (8) we obtain

|uh(x) − u(x)| ≤
∫

|z|≤1

�(z)|u(x− hz)− u(x)| dz

≤ ε for all 0 < h ≤ δ(ε), x ∈ Rn.

Consequently, we observe

sup
x∈Rn

|uh(x) − u(x)| −→ 0 for h→ 0 + .

2. Now we consider u ∈ Lp(Ω) with the exponent 1 ≤ p < +∞. Because
of Theorem6 in Chapter II, § 7, each given ε > 0 admits a function v ∈
C0

0 (Ω) satisfying ‖u− v‖p ≤ ε. Utilizing part 1 of our proof, we choose a
number h0(ε) > 0 so small that

‖v − vh‖p ≤ ε for all 0 < h ≤ h0(ε)

is correct. For all 0 < h ≤ h0(ε) we obtain the following inequality

‖u− uh‖p ≤ ‖u− v‖p + ‖v − vh‖p + ‖vh − uh‖p

≤ 2‖u− v‖p + ‖v − vh‖p ≤ 3ε,

taking Theorem 1 into account. This implies ‖u− uh‖p → 0 for h→ 0+.
q.e.d.

Now we shall prove that one can interchange weak differentiation and molli-
fication.



§1 Sobolev spaces 193

Theorem 3. (Friedrichs)
Let us extend the function f ∈W k,p(Ω) onto the whole Euclidean space setting
f ≡ 0 on Rn \ Ω. With the number ε > 0 given, we define the regularized
function of class C∞(Ω) by

fε(x) :=
1
εn

∫
Rn

�
(x− y

ε

)
f(y) dy, x ∈ Rn.

For all multi-indices α ∈ Nn
0 with |α| ≤ k and all numbers ε satisfying 0 <

ε < dist (x,Rn \Ω) we have the identity

∂αfε(x) = (Dαf)ε(x), x ∈ Ω.

Proof: We calculate

∂αfε(x) =
1
εn

∫
Rn

∂α
x �
(x− y

ε

)
f(y) dy

= (−1)|α| 1
εn

∫
Rn

∂α
y �
(x− y

ε

)
f(y) dy

=
1
εn

∫
Rn

�
(x− y

ε

)
Dαf(y) dy = (Dαf)ε(x).

q.e.d.

Theorem 4. (Meyers, Serrin)
With the exponent 1 ≤ p < +∞ given, the linear subspace C∞(Ω) ∩W k,p(Ω)
is dense in the Sobolev space W k,p(Ω).

Proof: We choose the open sets Ωj ⊂ Rn for j ∈ N0 satisfying

∅ = Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω and Ωj ⊂ Ωj+1, j ∈ N0,

such that ∞⋃
j=1

Ωj = Ω.

Furthermore, let Ψj ∈ C∞
0 (Ω) denote a partition of unity subordinate to the

set system {Ωj+1 \Ωj−1}j=1,2,.... This means

suppΨj ⊂ Ωj+1 \Ωj−1 and
∞∑

j=1

Ψj(x) = 1, x ∈ Ω.

The quantity ε > 0 given, we choose εj > 0 such that εj < dist (Ωj+1, ∂Ω)
and
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‖(Ψjf)εj − (Ψjf)‖W k,p(Ω) ≤ ε 2−j

is valid. This can be achieved with the aid of Theorem2 and Theorem3. We
now observe

g(x) :=
∞∑

j=1

(Ψjf)εj (x) ∈ C∞(Ω)

and furthermore

‖g − f‖W k,p(Ω) =
∥∥∥∥ ∞∑

j=1

(Ψjf)εj −
∞∑

j=1

(Ψjf)
∥∥∥∥

W k,p(Ω)

≤
∞∑

j=1

‖(Ψjf)εj − (Ψjf)‖W k,p(Ω) ≤
∞∑

j=1

ε

2j
= ε.

From the property f ∈ W k,p(Ω) we infer g ∈ W k,p(Ω). q.e.d.

According to this theorem we comprehend the Sobolev space W k,p(Ω) as the
completion of the linear set of functions C∞(Ω) with respect to the Sobolev
norm ‖ · ‖W k,p(Ω). If the boundary ∂Ω represents a smooth C1-hypersurface
in the Euclidean space Rn, one can prove that even the linear space C∞(Ω)
lies densely in the Sobolev space W k,p(Ω). However, only in the case k = 0
and p < +∞ is the set C∞

0 (Ω) dense in the space W k,p(Ω) = Lp(Ω). For
k > 0 we obtain the Sobolev space W k,p

0 (Ω) with weak zero boundary values.

Definition 3. Let the numbers k ∈ N and 1 ≤ p ≤ +∞ be prescribed, then
we define the Sobolev space

W k,p
0 (Ω) :=

{
f ∈ W k,p(Ω) :

There is a sequence {fl}l=1,2,... ⊂ C∞
0 (Ω)

with ‖f − fl‖W k,p(Ω) → 0 for l →∞

}
.

In the sequel we concentrate on the Sobolev spaces W 1,p(Ω) and W 1,p
0 (Ω). Let

the symbol ei := (δ1i, . . . , δni) ∈ Rn with i ∈ {1, . . . , n} denote a unit vector.
Taking the point x ∈ Ω and the number ε with 0 < |ε| < dist (x,Rn \ Ω)
arbitrarily, we define the difference quotient in the direction ei by

�i,εf(x) :=
f(x+ εei)− f(x)

ε
.

Therefore, we can characterize the Sobolev functions as follows:

Theorem 5. Let the exponent 1 < p < +∞ and the element f ∈ Lp(Ω) be
given, then the following two statements are equivalent:

i) We have the property f ∈ W 1,p(Ω).
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ii) There exists a constant C ∈ [0,+∞), such that we have the uniform esti-
mate

‖�i,εf‖Lp(Θ) ≤ C

for all open sets Θ ⊂ Ω with Θ ⊂ Ω and all numbers ε with 0 < |ε| < dist
(Θ,Rn \Ω) and all indices i ∈ {1, . . . , n}.

Proof:

1. At first, we prove the direction: i)⇒ ii).
Choosing i ∈ {1, . . . , n}, f ∈ C∞(Ω) ∩W 1,p(Ω), and Θ ⊂ Ω we calculate

�i,εf(x) =
f(x + εei)− f(x)

ε
=

1
ε

ε∫
0

∂

∂xi
f(x + tei) dt

for all 0 < |ε| < dist (Θ,Rn \ Ω). With the aid of Hölder’s inequality we
deduce the following estimate for all x ∈ Θ:

|�i,εf(x)|p ≤ 1
εp

⎛⎝ ε∫
0

1
∣∣∣ ∂

∂xi
f(x + tei)

∣∣∣ dt
⎞⎠p

≤ ε
p
q

εp

ε∫
0

∣∣∣ ∂

∂xi
f(x + tei)

∣∣∣p dt
=

1
ε

ε∫
0

∣∣∣ ∂

∂xi
f(x + tei)

∣∣∣p dt.
Here, we observe 1 ∈ Lq(Ω) and p−1 + q−1 = 1. Then Fubini’s theorem
yields

∫
Θ

|�i,εf(x)|p dx ≤ 1
ε

ε∫
0

⎛⎝∫
Rn

|Deif(x+ tei)|p dx
⎞⎠ dt

=
∫

Rn

|Deif(x)|p dx.

Consequently, we obtain

‖�i,εf‖Lp(Θ) ≤ ‖f‖W 1,p(Ω) =: C

via the Meyers-Serrin theorem.
2. It remains to show the inverse direction: ii)⇒ i).

For the data i ∈ {1, . . . , n}, Θ ⊂ Ω, and ε satisfying 0 < |ε| < dist (Θ,Rn\
Ω) we have
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‖�i,εf‖Lp(Θ) ≤ C.

Due to Theorem7 in Chapter II, § 8 we have a sequence εk ↓ 0 and an
element gi ∈ Lp(Ω) such that∫

Rn

ϕ(x)�i,εk
f(x) dx −→

∫
Rn

ϕ(x)gi(x) dx for all ϕ ∈ C∞
0 (Ω)

is valid. Now we see that∫
Rn

ϕ(x)�i,εk
f(x) dx = −

∫
Rn

(
�i,−εk

ϕ(x)
)
f(x) dx

−→ −
∫

Rn

f(x)
∂

∂xi
ϕ(x) dx

(9)

for k →∞, and consequently

−
∫

Rn

f(x)
∂

∂xi
ϕ(x) dx =

∫
Rn

ϕ(x)gi(x) dx for all ϕ ∈ C∞
0 (Ω).

This implies

�i,εk
f

Lp(Ω)
⇁ Deif = gi ∈ Lp(Ω),

and therefore f ∈ W 1,p(Ω). In order to comprehend the identity (9), we
integrate as follows:

�i,εk
(ϕ(x)f(x))

=
1
εk

{(
ϕ(x + εkei)− ϕ(x)

)
f(x + εkei) + ϕ(x)

(
f(x + εkei)− f(x)

)}
=
{

1
εk

(
ϕ(y)− ϕ(y − εkei)

)
f(y)

}∣∣∣∣
y=x+εkei

+ ϕ(x)�i,εk
f(x)

=
{
f(y)�i,−εk

ϕ(y)
}∣∣∣

y=x+εkei

+ ϕ(x)�i,εk
f(x).

(10)
This completes the proof. q.e.d.

Remark: With the Sobolev function f ∈ W 1,p(Ω) we consider the weakly
convergent sequence of difference quotients {�i,εk

f}k=1,2,..., where εk ↓ 0
holds true. Then the proof above yields

�i,εk
f ⇁ Deif in Lp(Ω), i = 1, . . . , n.

This fact explains the notion weak derivative.
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Theorem 6. (Weak product rule)
Let the Sobolev functions f, g ∈ W 1,p(Ω) ∩L∞(Ω) with the exponent 1 < p <
+∞ be given. Then we have the property h := fg ∈ W 1,p(Ω) ∩ L∞(Ω) and
the formula

Dαh = fDαg + gDαf, for all α ∈ Nn
0 with |α| = 1.

Proof: Choose the function ϕ ∈ C∞
0 (Ω) and a sufficiently small number ε > 0.

When we apply the identity (10) twice, we obtain the following equation:

�i,ε

(
ϕ(x)h(x)

)
=
{
h(y)�i,−εϕ(y)

}
y=x+εei

+ ϕ(x)�i,εh(x)

=
{
h(y)�i,−εϕ(y)

}
y=x+εei

+ϕ(x)
({

f(y)�i,−εg(y)
}

y=x+εei

+ g(x)�i,εf(x)
)

=
{
h(y)�i,−εϕ(y)

}
y=x+εei

(11)

+ϕ(x)g(x)�i,εf(x) +
{
ϕ(y)f(y)�i,−εg(y)

}
y=x+εei

+
{(

ϕ(y − εei)− ϕ(y)
)
f(y)�i,−εg(y)

}
y=x+εei

.

Noting f, g ∈ W 1,p(Ω), Theorem5 and Theorem7 from Chapter II, § 8 allow
us to choose a zero sequence εk ↓ 0, such that

�i,εk
f(x) ⇁ Deif(x) and �i,−εk

g(x) ⇁ Deig(x) in Lp(Ω).

From (11) we obtain

0 =
∫
Ω

h(x)�i,−εk
ϕ(x) dx +

∫
Ω

ϕ(x)g(x)�i,εk
f(x) dx

+
∫
Ω

ϕ(x)f(x)�i,−εk
g(x) dx +

∫
Ω

(
ϕ(x − εkei)− ϕ(x)

)
f(x)�i,−εk

g(x) dx

by integration via the transformation formula. The passage to the limit k→∞
yields

0 =
∫
Ω

h(x)
∂

∂xi
ϕ(x) dx +

∫
Ω

ϕ(x)g(x)Deif(x) dx +
∫
Ω

ϕ(x)f(x)Deig(x) dx

for all ϕ ∈ C∞
0 (Ω). This implies Dαh = fDαg + gDαf for all α ∈ Nn

0 with
|α| = 1. q.e.d.



198 X Weak Solutions of Elliptic Differential Equations

Theorem 7. (Weak chain rule)
On the bounded open set Ω ⊂ Rn let the function f ∈ W 1,p(Ω) ∩ L∞(Ω)
be defined with the exponent 1 < p < +∞. Furthermore, we have the scalar
function g : R → R ∈ C1. Then the composition h := g ◦ f belongs to the class
W 1,p(Ω) ∩ L∞(Ω) as well, and we have the chain rule

Dαh(x) = g′
(
f(x)

)
Dαf(x), x ∈ Ω, (12)

for all α ∈ Nn
0 with |α| = 1.

Proof:

1. For monomials g(y) = ym, m ∈ N, we show the chain rule by induction.
We start the induction with the evident case m = 1. From the validity of
the statement for m we infer the correctness of the statement for m + 1
with the aid of Theorem6:

Dα
{

(f(x))m+1
}

= Dα
{
f(x)(f(x))m

}
= (Dαf(x))(f(x))m + f(x)Dα

{
(f(x))m

}
= (Dαf(x))(f(x))m + f(x)m(f(x))m−1Dαf(x)

= (m + 1)(f(x))mDαf(x) = g′(f(x))Dαf(x).

2. When

g(y) =
m∑

k=0

aky
k , ak ∈ R, k = 0, . . . ,m

is an arbitrary polynomial, we deduce

Dα
{
g(f(x))

}
=

m∑
k=0

akD
α
{
(f(x))k

}
=

m∑
k=0

kak(f(x))k−1Dαf(x)

= g′(f(x))Dαf(x).

3. In the general case g : R → R ∈ C1 we invoke the Weierstraß approxima-
tion theorem: We obtain a sequence of polynomials gk, k = 1, 2, . . ., which
converge together with their first derivatives g′k locally uniformly on R.
Following part 2, the functions hk := gk(f) ∈ W 1,p(Ω) ∩ L∞(Ω) satisfy

Dαhk(x) = g′k(f(x))Dαf(x) for all α ∈ Nn
0 , |α| = 1.

For all ϕ ∈ C∞
0 (Ω) this implies∫

Ω

g′k(f(x))(Dαf(x))ϕ(x) dx =
∫
Ω

(Dαhk(x))ϕ(x) dx

= (−1)|α|
∫
Ω

hk(x)Dαϕ(x) dx
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with arbitrary |α| = 1. The passage to the limit k →∞ yields∫
Ω

g′(f(x))(Dαf(x))ϕ(x) dx = (−1)|α|
∫
Ω

h(x)∂αϕ(x) dx

for all ϕ ∈ C∞
0 (Ω). Finally, we obtain Dαh = g′(f)Dαf ∈ Lp(Ω), |α| = 1.

q.e.d.

If the function g : R → R satisfies a Lipschitz condition

|g(y1)− g(y2)| ≤ C |y1 − y2| for all y1, y2 ∈ R

and the property f ∈ W 1,p(Ω) holds true, then the composition h := g ◦ f
belongs to the class W 1,p(Ω) as well. This is shown with the aid of Theorem
5, since we have

|�i,εh(x)| =
∣∣∣∣g(f(x + εei))− g(f(x))

ε

∣∣∣∣ ≤ C
|f(x + εei)− f(x)|

|ε| = C|�i,εf(x)|

for all x ∈ Ω and 0 < |ε| < dist {x,Rn \ Ω}. In order to establish the chain
rule, one needs a.e.-differentiability for the absolutely continuous function g.

We now shall prove an important special case of this statement directly.

Theorem 8. (Lattice property)
Taking the Sobolev function f ∈ W 1,p(Ω) with the exponent 1 < p < +∞,
then the following functions

f+(x) := max {f(x), 0}, f−(x) := −min {f(x), 0}, |f |(x) := |f(x)|,

f−c,+c(x) :=

⎧⎪⎨⎪⎩
−c, f(x) ≤ −c
f(x), −c < f(x) < +c

+c, +c ≤ f(x)

belong to the Sobolev space W 1,p(Ω), and we have

Df+ =

{
Df, if f > 0

0, if f ≤ 0
, Df− =

{
0, if f ≥ 0

−Df, if f < 0
,

D|f | =

⎧⎪⎨⎪⎩
Df, if f > 0

0, if f = 0

−Df, if f < 0

, Df−c,+c =

{
Df, if − c < f < +c

0, else
.

(13)
Here the symbol Df = (De1f, . . . , Denf) denotes the weak gradient of f .

Proof:
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1. On account of the identities f− = (−f)+, |f | = f+ + f−, and f−c,+c =
(2c− (f − c)−)+ − c it suffices to investigate the function f+.

2. We consider f ∈ W 1,p(Ω) with the exponent 1 < p < +∞. Then the
element f+ belongs to Lp(Ω) as well, and its difference quotient satisfies

|�i,εf
+(x)| =

∣∣∣∣f+(x + εei)− f+(x)
ε

∣∣∣∣ ≤ ∣∣∣∣f(x + εei)− f(x)
ε

∣∣∣∣ = |�i,εf(x)|

for all x ∈ Ω and all 0 < |ε| < dist {x,Rn \ Ω}. According to Theorem 5
the function f+ belongs to the class W 1,p(Ω) as well.

3. Let the function

g(y) :=

{
y, y > 0

0, y ≤ 0

be given. For all δ > 0 we approximate this function by the C1-functions

gδ(y) :=

{√
y2 + δ2 − δ, y > 0

0, y ≤ 0

with their derivatives

g′δ(y) =

⎧⎨⎩
y√

y2 + δ2
, y > 0

0, y ≤ 0
.

Evidently, the inequalities

0 ≤ gδ(y) ≤ g(y), 0 ≤ g′δ(y) ≤
{

1, y > 0

0, y ≤ 0

hold true for all δ > 0, and we observe g′δ(y) ↑ 1 (δ ↓ 0) for all y > 0.
4. Assuming f ∈ W 1,p(Ω), we consider the regularized function fε ∈ C∞(Ω)

for all ε > 0. We differentiate the C1(Ω)-function

hε,δ(x) := gδ(fε(x)), x ∈ Ω,

and obtain

∂αhε,δ(x) = g′δ(fε(x))∂αfε(x) = g′δ(fε(x))(Dαf)ε(x)

for all α ∈ Nn
0 with |α| = 1. Taking an arbitrary test function ϕ ∈ C∞

0 (Ω),
we infer∫

Ω

g′δ(fε(x))(Dαf)ε(x)ϕ(x) dx =
∫
Ω

(∂αhε,δ(x))ϕ(x) dx

= (−1)|α|
∫
Ω

hε,δ(x)∂αϕ(x) dx

= (−1)|α|
∫
Ω

gδ(fε(x))∂αϕ(x) dx
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for all α ∈ Nn
0 with |α| = 1.

5. On account of the convergence fε → f and (Dαf)ε → Dαf for ε → 0
in Lp(Ω), the Lebesgue selection theorem from Chapter II,§ 4 gives us a
subsequence εk ↓ 0, such that fεk

→ f and (Dαf)εk
→ Dαf a.e. in Ω are

correct. Via the Lebesgue convergence theorem we obtain the following
identity observing εk ↓ 0:∫

Ω

g′δ(f(x))(Dαf(x))ϕ(x) dx = (−1)|α|
∫
Ω

gδ(f(x))∂αϕ(x) dx

for all ϕ ∈ C∞
0 (Ω). The transition to the limit δ → 0+ yields∫

x∈Ω:f(x)>0

(Dαf(x))ϕ(x) dx = (−1)|α|
∫

x∈Ω:f(x)>0

f(x)∂αϕ(x) dx

= (−1)|α|
∫
Ω

f+(x)∂αϕ(x) dx.

Finally, we obtain

Dαf+(x) =

{
Dαf(x), f > 0

0, f ≤ 0
.

q.e.d.

§2 Embedding and compactness

We begin with the fundamental

Theorem 1. (Sobolev’s embedding theorem)
Let the open bounded set Ω ⊂ Rn with n ≥ 3 and the exponent 1 ≤ p < n be
given. Then the Sobolev space W 1,p

0 (Ω) ⊂ L
np

n−p (Ω) is continuously embedded
into the specified Lebesgue space: This means that the following estimate

‖f‖
L

np
n−p (Ω)

≤ C‖Df‖Lp(Ω) for all f ∈ W 1,p
0 (Ω) (1)

holds true with a constant C = C(n, p) ∈ (0,+∞). Here we denote the weak
gradient by Df := (De1f, . . . , Denf) ∈ Lp(Ω)× . . .× Lp(Ω).

Proof: (L. Nirenberg)

1. Because of the Definition 3 from § 1 it suffices to prove the inequality (1) for
all f ∈ C∞

0 (Ω). In this context we need the generalized Hölder inequality,
which can easily be deduced from Hölder’s inequality by induction. For the
integer m ∈ N with m ≥ 2 we choose the exponents p1, . . . , pm ∈ (1,∞)
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satisfying p−1
1 + . . .+ p−1

m = 1. For all fj ∈ Lpj(Ω) with j = 1, . . . ,m then
the following inequality holds true:∫

Ω

f1(x) . . . fm(x) dx ≤ ‖f1‖Lp1(Ω) . . . ‖fm‖Lpm(Ω) . (2)

2. At first, we deduce the estimate (1) in the case p = 1. Noting f ∈ C∞
0 (Ω),

we have the following representation for all x ∈ Rn:

f(x) =

xi∫
−∞

Deif(x1, . . . , xi−1, t, xi+1, . . . , xn) dt.

This implies

|f(x)| ≤
xi∫

−∞
|Deif | dt ≤

+∞∫
−∞

|Deif | dxi,

and consequently

|f(x)| n
n−1 ≤

(
n∏

i=1

+∞∫
−∞

|Deif | dxi

) 1
n−1

.

We integrate this inequality successively with respect to the variables
x1, . . . , xn, using each time the generalized Hölder inequality with p1 =
. . . = pm = n− 1 and m = n− 1. We then obtain

+∞∫
−∞
|f(x)| n

n−1 dx1

≤
( +∞∫

−∞
|De1f | dx1

) 1
n−1 +∞∫

−∞

n∏
i=2

( +∞∫
−∞

|Deif | dxi

) 1
n−1

dx1

≤
( +∞∫

−∞
|De1f | dx1

) 1
n−1 n∏

i=2

( +∞∫
−∞

+∞∫
−∞
|Deif | dxidx1

) 1
n−1

.

A similar integration over the variables x2, . . . , xn yields

∫
Rn

|f(x)| n
n−1 dx ≤

(
n∏

i=1

∫
Rn

|Deif | dx
) 1

n−1

,

and finally
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‖f‖ n
n−1

≤
(

n∏
i=1

∫
Rn

|Deif | dx
) 1

n

≤ 1
n

∫
Ω

(
n∑

i=1

|Deif |
)
dx

≤ 1√
n

∫
Ω

|Df | dx =
1√
n
‖Df‖1

(3)

for all f ∈ C∞
0 (Ω).

3. We now consider the case 1 < p < n. Here we insert |f |γ with γ > 1 into
(3) and obtain the following relation with the aid of Hölder’s inequality
and the condition p−1 + q−1 = 1:

‖ |f |γ‖ n
n−1

≤ 1√
n

∫
Ω

∣∣∣D|f |γ∣∣∣ dx =
γ√
n

∫
Ω

|f |γ−1|Df | dx

≤ γ√
n
‖ |f |γ−1‖q‖Df‖p ,

(4)

and consequently

‖f‖γ
γn

n−1
≤ γ√

n
‖f‖γ−1

(γ−1)q‖Df‖p.

Choosing

γ :=
(n− 1)p
n− p

=
np− p

n− p
,

we infer
γn

n− 1
= (γ − 1)q =

np

n− p
.

Finally, we arrive at

‖f‖ np
n−p

≤ γ√
n
‖Df‖p for all f ∈ C∞

0 (Ω).

With the constant
C :=

np− p√
n(n− p)

the statement above follows. q.e.d.

Theorem 2. (Continuous embedding)
Let the assumptions of Theorem 1 with p > n be satisfied. Then we have a
constant C = C(n, p, |Ω|) ∈ (0,+∞), such that

‖f‖C0(Ω) := sup
x∈Ω

|f(x)| ≤ C‖Df‖Lp(Ω) for all f ∈ C∞
0 (Ω) (5)

holds true. This implies W 1,p
0 (Ω) ↪→ C0(Ω), which means this Sobolev space

is continuously embedded into the space C0(Ω).
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Proof:

1. When we have proved this inequality for open bounded sets Ω ⊂ Rn whose
measure fulfills |Ω| = 1, we then obtain the inequality stated above by
the transformation

y = x |Ω|− 1
n , x ∈ Ω.

Therefore, we can assume |Ω| = 1 in the sequel.
2. We utilize the inequality (4) and set

n′ :=
n

n− 1
> p′ :=

p

p− 1
, δ :=

n′

p′
∈ (1,∞).

For all γ ∈ (1,∞) we therefore obtain the estimate∥∥∥∥√n|f |γ‖Df‖p

∥∥∥∥
n′
≤ γ‖|f |γ−1‖p′ .

By multiplication with
√

n γ−1

‖Df‖γ−1
p

this implies

∥∥∥∥( √n|f |‖Df‖p

)γ∥∥∥∥
n′
≤ γ

∥∥∥∥∥
( √

n|f |
‖Df‖p

)γ−1
∥∥∥∥∥

p′

.

Setting g :=
√

n
‖Df‖p

|f | we find

‖gγ‖n′ ≤ γ‖gγ−1‖p′ for all γ > 1

and consequently

‖g‖γ
n′γ ≤ γ‖g‖γ−1

p′(γ−1) ≤ γ‖g‖γ−1
p′γ .

Finally, we obtain

‖g‖n′γ ≤ γ
1
γ ‖g‖1−

1
γ

p′γ for all γ > 1.

3. We now insert γ := δν with ν = 1, 2, . . . into the inequality above and get

‖g‖n′δν ≤ δνδ−ν ‖g‖1−δ−ν

n′δν−1 . (6)

From (3), the fact that |Ω| = 1, and Hölder’s inequality we deduce

‖g‖n′ =
√
n

‖Df‖p
‖f‖n′ ≤ ‖Df‖1

‖Df‖p
≤ 1.

With the aid of |Ω| = 1 and Hölder’s inequality we see that the sequence
‖g‖n′δν , ν = 0, 1, 2, . . . increases weakly monotonically. Therefore, we have
the following alternative: ‖g‖n′δν ≤ 1 for all ν – or there exists an index
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λ > 0 satisfying ‖g‖n′δν ≤ 1 for all ν ≤ λ and ‖g‖n′δν > 1 for all ν > λ.
In the second case, we obtain the following estimate from the iteration
formula (6) for μ > λ:

‖g‖n′δμ ≤ δ
�μ

ν=λ+1 νδ−ν ‖g‖1−δ−(λ+1)

n′δλ ≤ δ
�∞

ν=1 νδ−ν

=: c ∈ R.

In each case we have ‖g‖L∞(Ω) ≤ c and therefore

‖f‖L∞(Ω) ≤ c√
n
‖Df‖p for all f ∈ C∞

0 (Ω).

This implies the statement above. q.e.d.

If one intends to treat eigenvalue problems for partial differential equations
with the aid of direct variational methods, we need the subsequent

Theorem 3. (Selection theorem of Rellich and Kondrachov)
Let Ω ⊂ Rn with n ≥ 3 denote a convex open bounded set and let 1 ≤ p < n
be an exponent. For all 1 ≤ q < np

n−p and all s ∈ [0,+∞) then the set

K :=
{
f ∈ W 1,p

0 (Ω) ∩ Lq(Ω) : ‖f‖W 1,p(Ω) ≤ s
}
⊂ Lq(Ω)

is compact: This means for each sequence {fk}k=1,2,... ⊂ K we can select a
subsequence {fkl

}l=1,2,... and an element f ∈ Lq(Ω) satisfying

lim
l→∞

‖fkl
− f‖Lq(Ω) = 0.

Remarks:

1. F. Rellich discovered this result for the Hilbert spaces W 1,2
0 (Ω) ↪→ L2(Ω)

in the year 1930. The general case was investigated later by Kondrachov.
2. The Banach space {B1, ‖ · ‖1} may be continuously embedded into the

Banach space {B2, ‖ · ‖2}. We call B1 compactly embedded into B2 if the
injective mapping I1 : B1 → B2 is compact; this means that bounded sets
in B1 are mapped on precompact sets in B2. Here a set A ⊂ B2 is called
precompact if each sequence {fk}k=1,2,... ⊂ A contains a subsequence con-
verging in B2 with respect to the norm. Therefore, the theorem above
indicates that W 1,p

0 (Ω) is compactly embedded into the Lebesgue space
Lq(Ω).

Proof of Theorem 3:

1. We start with an arbitrary sequence {fk}k=1,2,... ⊂ K, and make the
transition to a sequence {gk}k=1,2,... ⊂ C∞

0 (Ω) with the property

‖gk − fk‖W 1,p(Ω) ≤ 1
k
.

The latter satisfies the restriction
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‖gk‖W 1,p(Ω) ≤ 1 + s (7)

for all k ∈ N. If we manage to select a subsequence {gkl
}l=1,2,... conver-

gent in L1(Ω) from the sequence {gk}k=1,2,..., then the adjoint sequence
{fkl

}l=1,2,... is convergent in L1(Ω) as well. Here, we observe the inequality

‖gk − fk‖L1(Ω) ≤ c‖gk − fk‖W 1,p(Ω) ≤ c

k
.

2. In order to show then that the sequence {fkl
}l=1,2,... converges even in

the space Lq(Ω) with 1 < q < np
n−p , we apply the following interpolation

inequality:

If the exponents 1 ≤ p ≤ q ≤ r fulfill 1
q = λ

p + (1−λ)
r with λ ∈ [0, 1], we

conclude:
‖f‖q ≤ ‖f‖λ

p ‖f‖1−λ
r for all f ∈ Lr(Ω). (8)

The proof of this interpolation estimate is established via Hölder’s in-
equality. Noting

1 =
λq

p
+

(1− λ)q
r

=
(

p

λq

)−1

+
(

r

(1− λ)q

)−1

we obtain

‖f‖q =

( ∫
Ω

|f |λq|f |(1−λ)qdx

) 1
q

≤
( ∫

Ω

|f |pdx
)λ

p
( ∫

Ω

|f |rdx
) 1−λ

r

= ‖f‖λ
p‖f‖1−λ

r .

We now choose a number λ ∈ (0, 1) with the property 1
q = λ+(1−λ)n−p

np ,
and Theorem 1 yields the estimate

‖f‖q ≤ ‖f‖λ
1‖f‖1−λ

np
n−p

≤ ‖f‖λ
1(C‖Df‖p)1−λ

for all f ∈ W 1,p
0 (Ω). Therefore, we have

‖fkl
− fkm‖q ≤ C̃‖fkl

− fkm‖λ
1 −→ 0 for l,m→∞.

Consequently, the sequence {fkl
}l=1,2,... converges in Lq(Ω) if {gkl

}l=1,2,...

is convergent in L1(Ω).
3. It still remains to select a subsequence convergent in L1(Ω) from the

sequence
{gk}k=1,2,... ⊂ C∞

0 (Ω).
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Therefore, we take an arbitrary ε ∈ (0, 1] and consider the sequence of
functions

gk,ε(x) :=
1
εn

∫
Rn

�

(
x− y

ε

)
gk(y) dy =

∫
Rn

�(z)gk(x− εz) dz ∈ C∞
0 (Θ)

with
Θ :=

{
x ∈ Rn : dist (x,Ω) < 1

}
.

For each fixed ε ∈ (0, 1] the sequence of functions {gk,ε}k=1,2,... is uni-
formly bounded and equicontinuous: We namely have the following esti-
mates for all x ∈ Θ:

|gk,ε(x)| ≤ 1
εn

∫
Rn

�

(
x− y

ε

)
|gk(y)| dy ≤ C0

εn
sup
|z|≤1

�(z)

and

|Dgk,ε(x)| ≤ 1
εn+1

∫
Rn

∣∣∣∣D�

(
x− y

ε

)∣∣∣∣ |gk(y)| dy

≤ ε−(n+1) sup
|z|≤1

|D�(z)|
∫

Rn

|gk(y)| dy

≤ C0

εn+1
sup
|z|≤1

|D�(z)|.

4. We apply the Arzelà-Ascoli theorem as follows: For each ε > 0 we have a
subsequence {gkl,ε}l=1,2,... of the sequence {gk,ε}k=1,2,... converging uni-
formly in the set Ω. We now set εm = 1

m with m = 1, 2, . . . ; and with the
aid of Cantor’s diagonal procedure we select a subsequence {gkl

}l=1,2,...

of the sequence {gk}k=1,2,... with the following property: For each fixed
m ∈ N the sequence {gkl,εm}l=1,2,... converges uniformly in the set Ω.

5. We have the inequality

|gk(x)− gk,ε(x)| ≤
∫

|z|≤1

�(z)|gk(x)− gk(x− εz)| dz

≤
∫

|z|≤1

�(z)

ε∫
0

|Dgk(x− tz)| dtdz,

for all x ∈ Ω, which implies the estimate∫
Ω

|gk(x) − gk,ε(x)| dx ≤ ε

∫
Ω

|Dgk(x)| dx ≤ C1 ε
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for all k ∈ N. Choosing an arbitrary number ε > 0, we obtain the relation

‖gkl1
− gkl2

‖L1(Ω) ≤ ‖gkl1
− gkl1 ,εm‖L1(Ω) + ‖gkl1 ,εm − gkl2 ,εm‖L1(Ω)

+‖gkl2 ,εm − gkl2
‖L1(Ω)

≤ (2C1 + |Ω|)ε for all l1, l2 ≥ l0(ε).

In this context, we determine m = m(ε) ∈ N sufficiently large and after-
wards we choose l1, l2 ≥ l0(ε,m(ε)) =: l0(ε). Consequently, {gkl

}l=1,2,...

represents a Cauchy sequence in the space L1(Ω) possessing a limit in
L1(Ω) - according to Theorem3 from Chapter II, § 7.

q.e.d.

§3 Existence of weak solutions

From now on, we require n ≥ 3 for the space dimension in this chapter. With
adequate regularity assumptions, we consider a solution v = v(x) : Ω → R on
the open bounded set Ω ⊂ Rn of the following elliptic differential equation in
divergence form

Lv(x) :=
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
v(x)

)
+ c(x)v(x) = f(x), x ∈ Ω, (1)

under Dirichlet’s boundary conditions

v(x) = g(x), x ∈ ∂Ω. (2)

Extending the boundary values g = g(x) onto Ω , then the function u(x) :=
v(x) − g(x), x ∈ Ω solves the Dirichlet problem

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
u(x)

)
− c(x)u(x)

= −f(x) + c(x)g(x) +
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
((x)
)
, x ∈ Ω,

(3)

under zero boundary conditions

u(x) = 0, x ∈ ∂Ω. (4)

We now define the bilinear form

B(u, v) :=
∫
Ω

{ n∑
i,j=1

aij(x)Deiu(x)Dejv(x) − c(x)u(x)v(x)
}
dx (5)

and the linear form
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F (v) :=
∫
Ω

{(
−f(x)+ c(x)g(x)

)
v(x)−

n∑
i,j=1

aij(x)Deig(x)Dejv(x)
}
dx. (6)

Here the symbol Dei again denotes the weak derivative in the direction ei =
(δ1i, . . . , δni) with i = 1, . . . , n. Multiplying (3) by a test function ϕ = ϕ(x) ∈
C∞

0 (Ω), the Gaussian integral theorem gives us the differential equation (3)
in the weak form

B(u, ϕ) = F (ϕ) for all ϕ ∈ C∞
0 (Ω) (7)

under zero boundary conditions (4).

Now we fix the assumptions for the coefficients of the differential equation:

aij(x) ∈ L∞(Ω) for i, j = 1, . . . , n,

aij(x) = aji(x) a.e. in Ω for i, j = 1, . . . , n,

1
M
|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤M |ξ|2 a.e. in Ω for all ξ ∈ Rn

(8)

and
0 ≤ −c(x) a.e. in Ω, ‖c‖L∞(Ω) ≤ N (9)

with the constants M ∈ [1,+∞) and N ∈ [0,+∞). We work in the Hilbert
space H := W 1,2

0 (Ω) with the inner product

(u, v)H :=
∫
Ω

{
Du(x) ·Dv(x)

}
dx =

∫
Ω

{ n∑
i=1

Deiu(x)Deiv(x)
}
dx, u, v ∈ H.

(10)
According to the Sobolev embedding theorem, the induced norm

‖u‖H :=
(∫

Ω

|Du(x)|2 dx
) 1

2

, u ∈ H,

is equivalent to the norm of the space W 1,2(Ω) specified in § 1, Definition 2.
For the right-hand side and the boundary condition we now assume

f(x) ∈ L2(Ω) and g(x) ∈ W 1,2(Ω). (11)

Then F (v) defined in (6) becomes a bounded linear functional on H. More
precisely, we have a constant

b = b(‖f‖L2(Ω), ‖g‖W 1,2(Ω),M,N) ∈ [0,+∞)

with the property

|F (v)| ≤ b‖v‖H for all v ∈ H. (12)
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The representation theorem of Fréchet-Riesz in the Hilbert space H implies
the existence of an element w ∈ H satisfying

(w, v)H = F (v) for all v ∈ H. (13)

In the special situation aij(x) = δij for i, j = 1, . . . , n and c(x) = 0 a.e. in Ω,
we have already found a solution u = w of the weak differential equation (7).
We emphasize that the representation theorem used above has been proved
in Chapter II, § 6 by direct variational methods.

In the general situation the coefficients satisfy the conditions (8) and (9),
and we consider the symmetric bilinear form B(u, v) for u, v ∈ H defined
in (5). The latter is bounded and coercive, and therefore we have constants
c± = c±(M,N) with 0 < c− ≤ c+ < +∞, such that the inequalities

|B(u, v)| ≤ c+‖u‖H‖v‖H for all u, v ∈ H (14)

and
B(u, u) ≥ c−‖u‖2H for all u ∈ H (15)

are satisfied. Based on the Lax-Milgram theorem (compare Chapter VIII, § 4
Theorem10), we find a bounded symmetric operator T : H → H with ‖T ‖ ≤
c+ possessing a bounded inverse T−1 : H → H with ‖T−1‖ ≤ 1

c− , such that

B(u, v) = (Tu, v)H for all u, v ∈ H. (16)

This existence result is established by direct variational methods as well. The
weak differential equation (7) therefore is transformed as follows:

(Tu, v)H = F (v) = (w, v)H for all v ∈ H. (17)

With the element u := T−1w ∈ H we obtain a solution of the weak differential
equation (7).

Theorem 1. With the assumptions (8) and (9) for the coefficients, the weak
differential equation (7) has exactly one solution u ∈ H for all data (11) .

Proof: If we have two solutions u1 and u2 of (7), then the function u = u1−u2 ∈
H satisfies the weak differential equation

B(u, ϕ) = 0 for all ϕ ∈ H. (18)

We especially insert ϕ = u and obtain

0 = B(u, u) ≥ 1
M

∫
Ω

|Du(x)|2 dx

and consequently u(x) ≡const in Ω. On account of u ∈W 1,2
0 (Ω) we conclude

u ≡ 0 a.e. in Ω and finally u1 = u2.
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q.e.d.

We now eliminate the sign condition in (9) and substitute this by the weaker
assumption

c(x) ∈ L∞(Ω), ‖c‖L∞(Ω) ≤ N. (19)

In order to solve the equation (7), we now consider the transferred bilinear
form to a given σ ∈ R, namely

Bσ(u, v) :=
∫
Ω

{ n∑
i,j=1

aij(x)Deiu(x)Dej v(x) +
(
σ − c(x)

)
u(x)v(x)

}
dx (20)

for u, v ∈ H. Furthermore, we need the identical bilinear form

I(u, v) :=
∫
Ω

u(x)v(x) dx (21)

for u, v ∈ H. The equation (7) then appears in the equivalent form

Bσ(u, ϕ)− σI(u, ϕ) = F (ϕ) for all ϕ ∈ H. (22)

We now choose σ ∈ R so large that

σ − c(x) ≥ 0 a.e. in Ω (23)

is satisfied and the bilinear form Bσ(u, v) becomes coercive. We additionally
need the following

Proposition 1. The mapping K : H → H satisfying

(Ku, v)H = I(u, v) for all u, v ∈ H (24)

is completely continuous.

Proof: Let {uk}k=1,2,... ⊂ H denote a sequence with ‖uk‖H ≤const for all
k ∈ N. We then consider the continuous linear functionals

Tk := I(uk, ·) : H → R ∈ H∗, k = 1, 2, . . .

We apply the representation theorem of Fréchet-Riesz, and for each k ∈ N we
have exactly one element vk =: Kuk ∈ H, such that

I(uk, ·) = Tk(·) = (vk, ·)H = (Kuk, ·)H
is valid. The selection theorem of Rellich-Kondrachov allows the transition to
a subsequence {ukl

}l=1,2,... of {uk}k=1,2,... satisfying

‖ukl
− ukm‖L2(Ω) → 0 (l,m→∞).
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We obtain

‖Kukl
−Kukm‖H = ‖Tkl

− Tkm‖ ≤ c‖ukl
− ukm‖L2(Ω) → 0 (l,m→∞).

Therefore, the operator K : H → H is completely continuous. q.e.d.

With the aid of the representations (13), (16), and (24) we transform (22)
equivalently for σ from (23) :

(Tσu, ϕ)H − σ(Ku,ϕ)H = (w,ϕ)H for all ϕ ∈ H. (25)

When we insert ϕ = T−1
σ v into this equation, we obtain

(u, v)H − σ(T−1
σ ◦Ku, v)H = (T−1

σ w, v) for all v ∈ H (26)

and consequently (
IdH − σT−1

σ ◦K
)
u = T−1

σ w (27)

with the completely continuous operator T−1
σ ◦ K : H → H. According to

Fredholm’s theorem (compare ChapterVIII, § 6 Theorem6) the null space

N :=
{
u ∈ H : B(u, v) = 0 for all v ∈ H

}
(28)

is finite-dimensional with the orthogonal space

N⊥ :=
{
u ∈ H : (u, v)H = 0 for all v ∈ N

}
. (29)

Choosing the right-hand side f and the boundary condition g from (11) such
that its representation w from (13) satisfies the condition

T−1
σ w ∈ N⊥ , (30)

then the weak differential equation (7) possesses a solution u ∈ H. We finally
obtain the following

Theorem 2. With the assumptions (8) and (19) the solution space N of the
homogeneous equation from (28) is finite-dimensional. To those data (11),
whose linear form (6) allows a representation w from (13) such that T−1

σ w ∈
N⊥ with σ ∈ R from (23) is satisfied, the weak differential equation (7) has a
solution u ∈ H.
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§4 Boundedness of weak solutions

We continue our considerations from § 3 and quote those results by the added
symbol *. We refer the reader to the bilinear form B(u, v) from (5*) with the
coefficients (8*) and (19*). With the aid of Moser’s iteration method we prove
the following

Theorem 1. (Stampacchia)
There exists a constant C = C(M,N, n, |Ω|) ∈ (0,+∞), such that each weak
solution u ∈ H := W 1,2

0 (Ω) of the elliptic differential equation

B(u, v) = 0 for all v ∈ H (1)

satisfies the following estimate

‖u‖L∞(Ω) ≤ C‖u‖L2(Ω) . (2)

Proof:

1. We refer the reader to the proof of Theorem2 from § 2 for an orientation.
Having already proved the inequality (2) for open bounded sets Ω ⊂ Rn

with the measure |Ω| = 1 , we obtain the general case by the following
transformation

y = |Ω|− 1
n x, x ∈ Ω. (3)

The coefficients of the weak differential equation then additionally depend
on |Ω|. Therefore, we assume |Ω| = 1 in the sequel, and the norm ‖u‖p :=
‖u‖Lp(Ω) becomes weakly monotonically increasing with respect to 1 ≤
p ≤ ∞ via Hölder’s inequality.

2. We choose K ∈ (0,+∞) arbitrarily, and consider the function

ū(x) :=

⎧⎪⎨⎪⎩
K, u(x) ≥ K

u(x), −K < u(x) < K

−K, u(x) ≤ −K
(4)

of the class W 1,2
0 (Ω) ∩ L∞(Ω). With the exponent

β ∈ [+1,+∞) (5)

we insert the test functions

v(x) := ū(x)β , x ∈ Ω, (6)

into the weak differential equation (1). Together with the Sobolev embed-
ding theorem, we obtain
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Ω

c(x)u(x)ū(x)β dx

= β

∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej ū(x)
}
ū(x)β−1 dx

=
4β

(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)

)
Dej

(
ū(x)

1
2 (β+1)

)}
dx

≥ 4β
M(β + 1)2

∥∥∥D(ū 1
2 (β+1)

)∥∥∥2

2

≥ 4β
M(β + 1)2C(n, 2)2

∥∥ū 1
2 (β+1)

∥∥2
2 n

n−2
.

(7)
3. For all β ∈ [+1,+∞) and K ∈ (0,+∞) we infer

‖ū‖β+1
n

n−2 (β+1) ≤ βMNC(n, 2)2‖u‖β+1
β+1, (8)

if u ∈ Lβ+1(Ω) is satisfied. In (8) we pass to the limit K → +∞ and set

δ :=
n

n− 2
∈ (+1,+∞) and Γ := MNC(n, 2)2 ∈ [0,+∞).

Then we find an iteration inequality

‖u‖δ(β+1) ≤ β+1
√
β + 1 β+1

√
Γ ‖u‖β+1

for all β ∈ [+1,+∞) if u ∈ Lβ+1(Ω).
(9)

4. Noticing u ∈ L2(Ω) we start the iteration with β = 1 and obtain

‖u‖2δ ≤ 2
√

2 2
√
Γ ‖u‖2. (10)

We then choose β ∈ (1,+∞) such that β + 1 = 2δ, and from (9) we infer
the inequality

‖u‖2δ2 ≤ 2δ
√

2δ 2
√

2 2δ
√
Γ

2
√
Γ ‖u‖2. (11)

Continuation of this procedure yields for all k ∈ N:

‖u‖2δk ≤
( k−1∏

j=0

2δj√
2δj

)( k−1∏
j=0

2δj√
Γ

)
‖u‖2

=
(√

2
)k−1�

j=0
( 1

δ )j{ k−1∏
j=0

(√
δ

j
)δ−j}(√

Γ
)k−1�

j=0
( 1

δ )j

‖u‖2

≤ (√2
) ∞�

j=0
( 1

δ )j(√
δ
) ∞�

j=0
j( 1

δ )j (√
Γ
) ∞�

j=0
( 1

δ )j

‖u‖2.

(12)
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Observing k → +∞, we finally obtain the desired estimate

‖u‖L∞(Ω) ≤ C(M,N, n, |Ω|)‖u‖2. (13)
q.e.d.

Now we shall estimate weak solutions of the Dirichlet problem by their bound-
ary values. In the bilinear form (5*) we require

c(x) = 0 a.e. in Ω, (14)

and we obtain the Dirichlet-Riemann bilinear form

R(u, v) :=
∫
Ω

{ n∑
i,j=1

aij(x)Deiu(x)Dejv(x)
}
dx (15)

with the coefficients from (8*). The boundary function is prescribed as follows:

g = g(x) ∈ W 1,2(Ω) ∩ C0(Ω). (16)

Theorem 2. (L∞-boundary-estimate)
Let u = u(x) ∈ W 1,2(Ω) denote a weak solution of the differential equation

R(u, v) = 0 for all v ∈ H (17)

with the weak boundary values

u− g ∈ W 1,2
0 (Ω). (18)

Then we have

μ := inf
y∈∂Ω

g(y) ≤ u(x) ≤ sup
y∈∂Ω

g(y) =: ν for almost all x ∈ Ω. (19)

Proof: Since the problem is invariant with respect to translations, we can
always assume μ = 0 by the transition u(x) �→ u(x)− μ. We now show

u(x) ≥ 0 a.e. in Ω. (20)

If (20) were violated, we then would consider the nonvanishing function

u−(x) :=

{
u(x), u(x) < 0

0, u(x) ≥ 0
(21)

of the class W 1,2
0 (Ω). When we insert this function into (17), we attain a

contradiction with the relation

0 = R(u, u−) > 0. (22)

Therefore, the inequality (20) is valid. On account of the invariance with
respect to translations, we can additionally achieve ν = 0. Then we can reduce
the second part of the inequality (19) to the statement (20) by the reflection
u(x) �→ −u(x) .

q.e.d.

Remark: Further L∞-estimates for weak solutions are contained in [GT] 8.5.



216 X Weak Solutions of Elliptic Differential Equations

§5 Hölder continuity of weak solutions

We quote the results from § 3 by the added symbol * and those from § 4 by
**. With

Kr(y) :=
{
x ∈ Rn : |x− y| ≤ r

}
we denote the closed balls of radius r ∈ (0,+∞) about the center y ∈ Rn.
We consider the bilinear form B(u, v) from (5*) again, with the coefficients
(8*) and (19*). With the aid of Moser’s iteration method we now show the
profound

Theorem 1. (Moser’s inequality)
Let u = u(x) ∈ W 1,2(Ω) ∩ L∞(Ω) with the property u(x) ≥ 0 a.e. in Ω be a
solution of the weak differential inequality

B(u, v) ≥ 0 for all v ∈ H satisfying v(x) ≥ 0 a.e. in Ω. (1)

Then we have a constant C = C(M,Nr2, n) ∈ (0,+∞), such that the integral
means over all balls K4r(y) ⊂ Ω satisfy the following inequality:∫

K2r(y)

− u(x) dx :=
1

|K2r(y)|
∫

K2r(y)

u(x) dx ≤ C inf
x∈Kr(y)

u(x). (2)

Remarks:

1. With a function u(x) ∈W 1,2(Ω) ∩ L∞(Ω) we naturally define

inf
x∈Ω

u(x) := inf
{
c ∈ R :

{
x ∈ Ω : u(x) ≤ c

}
is not a null-set

}
. (3)

2. If Ω ⊂ Rn is a domain, Theorem1 implies the principle of unique contin-
uation: A nonnegative solution of (1) vanishes on the set Ω, if we have a
point y ∈ Ω and a radius r0 > 0 such that

inf
x∈Kr(y)

u(x) = 0 for all balls Kr(y) ⊂ Ω with 0 < r < r0.

Proof of Theorem 1:

1. We choose r0 = r0(n) > 0 such that

|K3r0(y)| = 1 (4)

is valid. For all 0 < r ≤ 3r0 then the ‖.‖Lp(Kr(y))-norm becomes monoton-
ically increasing with respect to 1 ≤ p ≤ +∞. Let the point y ∈ Ω be
chosen to be fixed such that K4r0(y) ⊂ Ω is correct. At first, we show the
estimate (2) with r = r0 and afterwards we prove the general case by a
scaling argument. For measurable functions v = v(x) : Ω → R satisfying
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0 < ε ≤ v(x) ≤ 1
ε

a.e. in Ω (5)

with fixed ε > 0, we define the positive-homogeneous function

‖v‖p,Kr(y) :=
( ∫

Kr(y)

v(x)p dx

) 1
p

(6)

for all p ∈ R and all 0 < r ≤ 3r0. In the interval p ≥ 1 we obtain the
familiar Lp-norm, and we see that

lim
p→−∞ ‖v‖p,Kr(y) =

1

lim
p→−∞

( ∫
Kr(y)

(
1

v(x)

)−p
dx
) 1

−p

=
1∥∥ 1

v

∥∥
L∞(Kr(y))

=
1

sup
Kr(y)

1
v

= inf
Kr(y)

v.

(7)

By the symbol η = ηr,�(x) : Ω → R ∈ W 1,∞(Ω) for 0 < r + � ≤ 3r0
we denote the piecewise linear, radially symmetric, annihilating function
with the properties

η(x)

⎧⎪⎨⎪⎩
= 1, x ∈ Kr(y)
∈ [0, 1], x ∈ Kr+�(y) \Kr(y)
= 0, x ∈ Ω \Kr+�(y)

(8)

and
|Dη(x)| ≤ 1

�
a.e. in Ω. (9)

2. Into the weak differential inequality (1) we now insert the following test
function

v(x) := η(x)2ū(x)β , x ∈ Ω, (10)

with
ū(x) := u(x) + ε, x ∈ Ω, (11)

and the exponents

−∞ < β < −1 and − 1 < β < 0. (12)

Here we have chosen ε > 0 in (11) to be fixed. We observe v ∈ W 1,2
0 (Ω)

and calculate
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Ω

c(x)u(x)ū(x)βη(x)2 dx

≤ β

∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej ū(x)
}
ū(x)β−1η(x)2 dx

+2
∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej η(x)
}
ū(x)βη(x) dx

=
4β

(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dej

(
ū(x)

1
2 (β+1)η(x)

)}
dx

− 4β
(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
ū(x)β+1 dx

+
(
2− 4β

β + 1

)∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej η(x)
}
ū(x)βη(x) dx

=
4β

(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dej

(
ū(x)

1
2 (β+1)η(x)

)}
dx

− 4
(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
ū(x)β+1 dx

−4
β − 1

(β + 1)2

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dejη(x)

}
ū(x)

1
2 (β+1)dx.

(13)

Then we obtain the following inequality for all β ∈ (−∞,−1) ∪ (−1, 0):

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dej

(
ū(x)

1
2 (β+1)η(x)

)}
dx =
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≤ 1
4
(1 + β)

(
1 +

1
β

)∫
Ω

c(x)u(x)ū(x)βη(x)2 dx

+
(
1− 1

β

) ∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dejη(x)

}
ū(x)

1
2 (β+1)dx

+
1
β

∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
ū(x)β+1 dx

≤ 1
4
(1 + β)

(
1 +

1
β

)∫
Ω

c(x)u(x)ū(x)βη(x)2 dx

+
1
2

∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dej

(
ū(x)

1
2 (β+1)η(x)

)}
dx

+
{

1
β

+
1
2

(
1− 1

β

)2
}∫

Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
ū(x)β+1 dx.

(14)

Finally, we deduce the estimate∫
Ω

{ n∑
i,j=1

aij(x)Dei

(
ū(x)

1
2 (β+1)η(x)

)
Dej

(
ū(x)

1
2 (β+1)η(x)

)}
dx

≤ 1
2
(1 + β)

(
1 +

1
β

) ∫
Ω

c(x)u(x)ū(x)βη(x)2 dx

+
(
1 +

1
β2

)∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
ū(x)β+1 dx

(15)

for all β ∈ (−∞,−1) ∪ (−1, 0).

3. We now apply Sobolev’s embedding theorem with p = 2. Let δ ∈ (1, n
n−2 ]

be chosen, and furthermore we assume 0 < r + � ≤ 3r0. We take the
definition of η into account and obtain the following estimate for all β ∈
(−∞,−1) ∪ (−1, 0):
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‖ū‖β+1
δ(β+1),Kr

=
(∫

Kr

|ū(x)|δ(β+1) dx

) 1
δ

=
∥∥ū 1

2 (β+1)η
∥∥2

L2δ(Kr)

≤ ∥∥ū 1
2 (β+1)η

∥∥2

L
2n

n−2 (Ω)
≤ C(n, 2)2

∥∥D(ū 1
2 (β+1)η

)∥∥2
L2(Ω)

≤MC(n, 2)2
∫
Ω

{ n∑
i,j=1

aijD
ei

(
ū

1
2 (β+1)η

)
Dej

(
ū

1
2 (β+1)η

)}
dx

≤MC(n, 2)2
{

1
2
|1 + β|

∣∣∣1 +
1
β

∣∣∣N +
(
1 +

1
β2

)M
�2

}
‖ū‖β+1

β+1,Kr+�
.

(16)
4. In part 8 of the proof, we determine a number p0 = p0(M,N, n) > 0 and

a constant C0 = C0(M,N, n) > 0, such that

‖ū‖p0,K3r0
≤ C0‖ū‖−p0,K3r0

. (17)

We now choose δ ∈ (1, n
n−2 ] and ν ∈ N0 satisfying

δjp0 ∈ (0, 1) for j = 0, . . . , ν − 1,

δνp0 ∈ (1,+∞).
(18)

Taking j = 0, . . . , ν we consider the balls K�j ⊂ Ω with the radii �j :=
3r0 − j r0

ν . Formula (16) then yields a constant C̃+ = C̃+(M,N, n) > 0,
such that

‖ū‖δjp0,K�j
≤ C̃+‖ū‖δj−1p0,K�j−1

for j = 1, . . . , ν (19)

holds true. An iteration ν-times finally reveals the following estimate:

‖ū‖L1(K2r0) ≤ ‖ū‖δνp0,K�ν
≤ C+(M,N, n)‖ū‖p0,K3r0

. (20)

5. From (16) we obtain the following inequalities for all β ≤ −1− p0 abbre-
viating δ := n

n−2 :

‖ū‖β+1
δ(β+1),Kr

≤ MC(n, 2)2
{

1
2
|β + 1|N +

2M
�2

}
‖ū‖β+1

β+1,Kr+�

≤ C̃−(M,N, n)|β + 1|
�2

‖ū‖β+1
β+1,Kr+�

with a constant C̃− = C̃−(M,N, n) > 0 and

‖ū‖β+1,Kr+� ≤
(
C̃−(M,N, n)|β + 1|

�2

) 1
|β+1|

‖ū‖δ(β+1),Kr
(21)

assuming 0 < r + � ≤ 3r0. When we choose
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�j := 3r0 − 2r0
j∑

l=1

1
2l
, j = 0, 1, 2, . . . ,

the relation (21) yields the iteration inequality

‖ū‖−δjp0,K�j
≤ C̃

δ−j

p0− (δjp0)
δ−j

p0

(22j

r2
0

) δ−j

p0 ‖ū‖−δj+1p0,K�j+1
(22)

for j = 0, 1, 2, . . . This implies the estimate

‖ū‖−p0,K3r0
≤
{(

p0

√
C̃−
) k�

j=0
( 1

δ )j(
p0
√
δ
) k�

j=0
j( 1

δ )j(
p0
√
p0

) k�

j=0
( 1

δ )j

·( p0
√

4
) k�

j=0
j( 1

δ )j(
p0

√
r−2
0

) k�

j=0
( 1

δ )j
}
‖ū‖−δk+1p0,K�k+1

≤ C−(M,N, n)‖ū‖−δk+1p0,K�k+1
, k = 0, 1, 2, . . .

(23)

The passage to the limit k →∞ finally gives

‖ū‖−p0,K3r0
≤ C−(M,N, n) inf

x∈Kr0

ū(x). (24)

6. From (20), (17), and (24) we obtain

‖ū‖L1(K2r0 ) ≤ C+‖ū‖p0,K3r0
≤ C+C0‖ū‖−p0,K3r0

≤ C+C0C− inf
x∈Kr0

ū(x).

Setting C = C(M,N, n) := C+C0C− and observing the independence of
this constant from ε > 0, the transition to the limit ε → 0+ yields the
following inequality:

‖u‖L1(K2r0) ≤ C(M,N, n) inf
x∈Kr0

u(x). (25)

This implies Moser’s inequality (2) for the case r = r0 with r0 = r0(n) > 0
from (4).
Having chosen y ∈ Ω and r > 0 with K4r(y) ⊂ Ω, we then observe the
transition from u to

u�(x) := u
( r

r0
x
)
, x ∈ K4r0

(r0
r
y
)
. (26)

The function u� = u�(x) satisfies a weak differential inequality (1) in
◦

K4r0(
r0
r y) with the coefficients aij ∈ L∞(K4r0(

r0
r y)) defined in (8*) and

c ∈ L∞
(
K4r0

(r0
r
y
))

, ‖c‖L∞(K4r0(
r0
r y)) ≤

Nr2

r2
0

.
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The arguments above therefore yield the inequalities

‖u�‖L1(K2r0(
r0
r y)) ≤ C(M,Nr2, n) inf

x∈Kr0(
r0
r y)

u�(x)

and
rn
0

rn

∫
K2r(y)

u(x) dx ≤ C(M,Nr2, n) inf
x∈Kr(y)

u(x).

Now the proof of our theorem is complete, if we still show (17).
7. To this aim we deduce a growth condition for Dirichlet’s integral from the

weak differential inequality. With the annihilating function η(x) from (8)
for � = r and with ū(x) from (11), we insert the following test function
into the inequality (1):

v(x) := η(x)2ū(x)−1, x ∈ Ω. (27)

We remark that this function coincides with v from (10) for β = −1 ! We
then obtain∫

Ω

c(x)u(x)ū(x)−1η(x)2 dx

≤ −
∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej ū(x)
}
ū(x)−2η(x)2 dx

+2
∫
Ω

{ n∑
i,j=1

aij(x)Dei ū(x)Dej η(x)
}
ū(x)−1η(x) dx

= −
∫
Ω

{ n∑
i,j=1

aij(x)Dei
(
log ū(x)

)
Dej
(
log ū(x)

)}
η(x)2 dx

+2
∫
Ω

{ n∑
i,j=1

aij(x)
[

1√
2
η(x)Dei

(
log ū(x)

)][√
2Dejη(x)

]}
dx

≤ −1
2

∫
Ω

{ n∑
i,j=1

aij(x)Dei
(
log ū(x)

)
Dej
(
log ū(x)

)}
η(x)2 dx

+2
∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
dx.

(28)
We now define the function

w(x) := log ū(x), x ∈ Ω,
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and from (28) we infer the estimate∫
Kr(y)

|Dw(x)|2 dx ≤ M

∫
Ω

{ n∑
i,j=1

aij(x)Deiw(x)Dejw(x)
}
η(x)2 dx

≤ 2M
∫
Ω

|c(x)|ū(x)ū(x)−1η(x)2 dx

+4M
∫
Ω

{ n∑
i,j=1

aij(x)Deiη(x)Dejη(x)
}
dx

≤ 2M
{
N +

2M
r2

}
|K2r(y)| ≤ C1(M,N, n)rn−2

for r ≤ r0(n). Therefore, the growth condition∫
Kr(y)

|Dw(x)| dx ≤ √κn r
n
2

( ∫
Kr(y)

|Dw(x)|2 dx
) 1

2

≤ C2(M,N, n)rn−1

(29)
follows for all balls K2r(y) ⊂ Ω with r ≤ r0(n). Here κn denotes the
volume of the n-dimensional unit ball.

8. We now apply the regularity theorem of John and Nirenberg to the func-
tion w(x) (see Theorem1 in § 6) : Taking y ∈ Ω with K4r0(y) ⊂ Ω we
define

w0 := |K3r0(y)|−1

∫
K3r0 (y)

w(x) dx.

Then there exists a constant p0 = p0(M,N, n) > 0, such that∫
K3r0(y)

exp
{
p0|w(x) − w0|

}
dx ≤ C3(M,N, n). (30)

This implies ∫
K3r0(y)

exp
{
p0

(± w(x) ∓ w0

)}
dx ≤ C3(M,N, n)

and consequently∫
K3r0(y)

exp
{± p0w(x)

} ≤ e±p0w0C3(M,N, n).

We then obtain by multiplication
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K3r0(y)

exp
{
p0w(x)

}
dx ·

∫
K3r0 (y)

exp{−p0w(x)} dx ≤ C3(M,N, n)2

and finally
‖ū‖p0,K3r0(y) ≤ C4(M,N, n)‖ū‖−p0,K3r0(y).

This is the desired estimate (17). q.e.d.

We now prove the important

Theorem 2. (de Giorgi, Nash)
Let u = u(x) ∈ W 1,2(Ω) ∩ L∞(Ω) denote a solution of the weak differential
equation

R(u, v) = 0 for all v ∈ H = W 1,2
0 (Ω) (31)

with the Dirichlet-Riemann bilinear form R(u, v) from (15**). Then we have
constants C = C(M,n) ∈ (0,+∞) and α = α(M,n) ∈ (0, 1), such that the
oscillation estimate

osc
Kr(y)

u ≤ C
( r

r0

)α

osc
Kr0(y)

u, 0 < r ≤ r0, (32)

holds true for all balls Kr0(y) ⊂ Ω. Here the oscillation is defined by

osc
Kr(y)

u := sup
Kr(y)

u− inf
Kr(y)

u. (33)

Proof:

1. We abbreviate Kr = Kr(y), and for 0 < r ≤ 1
4r0 we introduce the quan-

tities

M4 = sup
K4r

u, m4 = inf
K4r

u, M1 = sup
Kr

u, m1 = inf
Kr

u.

The functions M4 − u and u −m4 are nonnegative in K4r ⊂ Kr0 ⊂ Ω,
and they satify the following weak differential equation (31) there. Moser’s
inequality now yields

|K2r|−1

∫
K2r

{
M4 − u(x)

}
dx ≤ C(M,n)(M4 −M1),

|K2r|−1

∫
K2r

{
u(x)−m4

}
dx ≤ C(M,n)(m1 −m4).

(34)

Addition gives us

M4 −m4 ≤ C
{
(M4 −m4)− (M1 −m1)

}
and
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M1 −m1 ≤
(
1− 1

C

)
(M4 −m4) ,

respectively. Therefore, we obtain the oscillation estimate

osc
Kr

u ≤ γ osc
K4r

u with γ := 1− 1
C
∈ (0, 1). (35)

2. We then consider the monotonically increasing function

ω(r) := osc
Kr

u, 0 < r ≤ r0, (36)

with the growth property

ω(r) ≤ γ ω(4r) for 0 < r ≤ 1
4
r0. (37)

To each number r ∈ (0, 1
4r0] we have an integer k ∈ N satisfying(1
4

)k+1

r0 < r ≤
(1

4

)k

r0, (38)

and we choose α = α(M,n) ∈ (0, 1), such that

γ ≤
(1

4

)α

. (39)

From (37)-(39) we infer the estimate

ω(r) ≤ ω
((1

4

)k

r0

)
≤ γkω(r0)

≤
( 1

4k

)α

ω(r0) ≤
(4r
r0

)α

ω(r0), 0 < r ≤ 1
4
r0,

or equivalently

osc
Kr

u ≤ 4α
( r

r0

)α

osc
Kr0

u, 0 < r ≤ r0. (40)

The monotonicity of ω(r) namely implies (40) for 1
4r0 ≤ r ≤ r0. q.e.d.

Remarks:

1. Requiring an exterior cone condition for the domain Ω, one can even prove
Hölder continuity of the solution up to the boundary. We refer the reader
to Theorem2 from § 7 in this context.

2. With suitable assumptions on the coefficient matrix (aij(x))i,j=1,...,n, one
obtains higher regularity of the solution by the Schauder theory from
Chapter IX. Here one should locally reconstruct the weak solution by the
classical C2+α-solution.
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Theorem 3. (J. Moser)
Let u = u(x) ∈ W 1,2(Rn) ∩ L∞(Rn) denote an entire solution of the weak
differential equation

R(u, v) = 0 for all v ∈ C∞
0 (Rn). (41)

Then we have
u(x) ≡ const in Rn.

Proof: We infer the following estimate from Theorem2:

osc
Kr(0)

u ≤ C
( r

r0

)α

osc
Rn

u, 0 < r ≤ r0 < +∞. (42)

The passage to the limit r0 → +∞ yields

osc
Kr(0)

u = 0 for all 0 < r < +∞.

Therefore, the solution u is constant. q.e.d.

For later use in § 9 we still provide the following

Theorem 4. (Harnack-Moser inequality)
Let u = u(x) ∈ W 1,2(Ω) ∩ C0(Ω) with the property u(x) > 0, x ∈ Ω be a
positive solution of the weak differential equation

R(u, v) = 0 for all v ∈ H.

Then we have a constant C = C(M,n) ∈ (0,+∞), such that the following
inequality

sup
x∈Kr(y)

u(x) ≤ C inf
x∈Kr(y)

u(x)

is fulfilled for all balls K4r(y) ⊂ Ω.

Proof: We have to supplement the proof of Moser’s inequality in Theorem 1
as follows: We insert the test functions (10) with arbitrary positive powers
β ∈ (0,+∞) into the weak differential equation. Now the constant N = 0
vanishes, the inequality (13) turns into an equation 0 = . . ., and via the
estimates (14) and (15) we arrive at the decisive inequality

‖ū‖β+1
δ(β+1),Kr

≤MC(n, 2)2
(
1 +

1
β2

)M
�2
‖ū‖β+1

β+1,Kr+�
for all β ∈ (0,+∞)

(43)
parallel to (16). When we define p1 := δνp0 ∈ (1 +∞) from (18), we easily
obtain a constant C̃++(M,n) such that the estimate

‖ū‖δ(β+1),Kr
≤
(
C̃++(M,n)

�2

) 1
β+1

‖ū‖β+1,Kr+� for all β ≥ p1 − 1 (44)
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holds true - parallel to (21) - with δ := n
n−2 . Now we introduce the radii

�j := 2r0 − r0

j∑
l=1

1
2l
, j = 0, 1, 2, . . .

and employ Moser’s iteration technique - as described in (22) and (23). Thus
we obtain a constant C++(M,n) such that

‖ū‖δk+1p1,K�k+1
≤

{(
p1

√
C̃++

) k�

j=0
( 1

δ )j(
p1
√

4
) k�

j=0
(j+1)( 1

δ )j(
p1

√
r−2
0

) k�

j=0
( 1

δ )j
}
‖ū‖p1,K�0

(45)

≤ C++(M,n)‖ū‖p1,K2r0
, k = 0, 1, 2, . . .

is valid. Then we evaluate the limit

lim
p→+∞ ‖ū‖p,Kr0(y) = sup

x∈Kr0(y)

ū(x) (46)

in formula (45) and arrive at the estimate

supx∈Kr0(y) ū(x) ≤ C++(M,n)‖ū‖p1,K2r0
. (47)

Combining this inequality with the estimates (20), (17), and (24) we finally
obtain the Harnack-Moser inequality. q.e.d.

§6 Weak potential-theoretic estimates

Let Ω ⊂ Rn denote an open ball with radius R > 0 about the center x0 ∈ Rn.
By the symbol ωn we denote the area of the unit sphere in Rn.

Definition 1. For the numbers μ ∈ (0, 1] we define the Riesz operator

Vμf(x) :=
∫
Ω

|x− y|n(μ−1)f(y) dy for all f ∈ C∞
0 (Ω). (1)

Proposition 1. The linear operator Vμ : L1(Ω) → L1(Ω) is continuous for
all μ ∈ (0, 1] and satisfies

‖Vμf‖L1(Ω) ≤ ωn

nμ
(2R)nμ‖f‖L1(Ω) for all f ∈ L1(Ω). (2)
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Proof: We choose f ∈ C∞
0 (Ω) and estimate as follows:

‖Vμf‖L1(Ω) =
∫
Ω

|Vμf(x)| dx

≤
∫
Ω

{∫
Ω

|x− y|n(μ−1)|f(y)| dy
}
dx

≤
∫
Ω

|f(y)|
{ ∫
x:|x−y|≤2R

|x− y|n(μ−1) dx

}
dy.

(3)

In polar coordinates we deduce

∫
x:|x−y|≤2R

|x− y|n(μ−1) dx =

2R∫
0

�nμ−nωn�
n−1 d� =

ωn

nμ
(2R)nμ. (4)

From (3) and (4) we infer the statement (2). q.e.d.

Definition 2. For 1 ≤ p ≤ +∞ the measurable function f belongs to Morrey’s
class of functions Mp(Ω) if and only if∫

Ω∩Kr(x)

|f(y)| dy ≤ Lrn(1− 1
p ) for all x ∈ Ω, r > 0 (5)

is satisfied, with a constant L ∈ [0,+∞) .

Remark: Evidently Lp(Ω) ⊂Mp(Ω) holds true for all 1 ≤ p ≤ +∞.

When we remember part 7 in the proof of Theorem1 from § 5, we should
concentrate on the class Mn(Ω) .

Proposition 2. Let f ∈Mn(Ω) and 1
n < μ ≤ 1 be satisfied. Then we have

|Vμf(x)| ≤ (2R)nμ−1 n− 1
nμ− 1

L a.e. in Ω. (6)

Proof: We fix the point x ∈ Ω and consider the function

Φ(r) :=
∫

Ω∩Kr(x)

|f(y)| dy, 0 < r < 2R, (7)

with the derivative
Φ′(r) =

∫
Ω∩∂Kr(x)

|f(y)| dσ(y). (8)

Then we obtain the following estimate for almost all x ∈ Ω
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|Vμf(x)| ≤
∫
Ω

|y − x|nμ−n|f(y)| dy

=

2R∫
0

rnμ−n

{ ∫
Ω∩∂Kr(x)

|f(y)| dσ(y)
}
dr =

2R∫
0

rnμ−nΦ′(r) dr

=
[
rnμ−nΦ(r)

]2R

0+
− (nμ− n)

2R∫
0

rnμ−n−1Φ(r) dr

≤ (2R)nμ−nL(2R)n−1 + n(1− μ)

2R∫
0

rnμ−n−1Lrn−1 dr

= L
{
(2R)nμ−1 + n(1− μ)

1
nμ− 1

[
rnμ−1

]2R

0

}
= L(2R)nμ−1 n− 1

nμ− 1
,

and consequently (6). q.e.d.

Proposition 3. The functions f ∈ Mn(Ω) are subject to the following esti-
mate ∫

Ω

exp
{

γ

(n− 1)L

∣∣V 1
n
f(x)

∣∣} dx ≤ C(n, γ)Rn (9)

for each γ ∈ (0, 1
e ), with a constant C = C(n, γ) > 0.

Proof: For k = 1, 2, . . . we note that

|x− y|1−n = |x− y|n( 1
nk−1) 1

k |x− y|n( 1
nk + 1

n−1)(1− 1
k ).

With the aid of Hölder’s inequality we deduce∣∣V 1
n
f(x)

∣∣
≤
∫
Ω

{
|x− y|n( 1

nk−1) 1
k |f(y)| 1k

}{
|x− y|n( 1

nk + 1
n−1)(1− 1

k )|f(y)|1− 1
k

}
dy

≤
(∫

Ω

|x− y|n( 1
nk−1)|f(y)| dy

) 1
k
(∫

Ω

|x− y|n( 1
nk + 1

n−1)|f(y)| dy
)1− 1

k

and therefore ∣∣V 1
n
f(x)

∣∣k ≤ (V 1
nk
|f |(x)

)(
V( 1

n + 1
nk)|f |(x)

)k−1

for all x ∈ Ω and k = 1, 2, . . .
(10)
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Via Proposition 1 and 2 we estimate for k = 1, 2, . . . as follows:∫
Ω

∣∣V 1
n
f(x)

∣∣k dx ≤ { sup
x∈Ω

V( 1
n + 1

nk)|f |(x)
}k−1

∫
Ω

V 1
nk
|f |(x) dx

≤ (2R)
k−1

k

{
k(n− 1)

}k−1
Lk−1k ωn(2R)

1
k ‖f‖L1(Ω)

≤ 2Rkk(n− 1)k−1Lk−1ωnLR
n−1

= 2
ωn

n− 1
Rn
{
(n− 1)L

}k
kk.

Consequently, we arrive at∫
Ω

1
k!

{
γ

(n− 1)L

∣∣V 1
n
f(x)

∣∣}k

dx ≤ 2
ωn

n− 1
Rn (γk)k

k!
for k = 0, 1, 2, . . .

(11)
The summation over k = 0, 1, 2, . . . yields∫

Ω

exp
{

γ

(n− 1)L

∣∣V 1
n
f(x)

∣∣} dx ≤ 2
ωn

n− 1
Rn

∞∑
k=0

(γk)k

k!
.

We investigate the convergence of the series
∞∑

k=0

ak by the quotient test
with ak := (γk)k

k! :

ak+1

ak
=

{
γ(k + 1)

}k+1
k!

(k + 1)!(γk)k
= γ
(
1 +

1
k

)k k→∞−→ γe < 1.

Therefore, we find a constant C = C(n, γ) ∈ (0,+∞) satisfying∫
Ω

exp
{

γ

(n− 1)L

∣∣V 1
n
f(x)

∣∣} dx ≤ C(n, γ)Rn.

q.e.d.

Proposition 4. We take u = u(x) ∈ W 1,1(Ω) and set

u0 :=
1
|Ω|
∫
Ω

u(x) dx.

Then we have the inequality∣∣u(x)− u0

∣∣ ≤ 2n

nκn

∫
Ω

|x− y|1−n|Du(y)| dy, (12)

where κn denotes the volume of the n-dimensional unit ball.
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Proof: Due to the Meyers-Serrin theorem it suffices to prove the inequality (12)
in the class of functions u = u(x) ∈ C1(Ω) ∩W 1,1(Ω). We choose x, y ∈ Ω
arbitrarily and note that

u(x)− u(y) = −
|x−y|∫
0

d

dr
u(x + rζ) dr with ζ :=

y − x

|y − x| .

We integrate over Ω with respect to y and obtain

|Ω|(u(x)− u0

)
= −

∫
Ω

{ |x−y|∫
0

d

dr
u(x+ rζ) dr

}
dy.

Now we define the L1(Rn)-function

v(x) :=

{
|Du(x)|, x ∈ Ω

0, x �∈ Ω
.

On account of | d
dru(x + rζ)| ≤ |Du(x + rζ)| we then get the estimate

∣∣u(x)− u0

∣∣ ≤ 1
|Ω|
∫
Ω

{ |x−y|∫
0

∣∣Du(x + rζ)
∣∣ dr} dy

≤ 1
|Ω|

∫
K2R(x)

{ ∞∫
0

v(x + rζ) dr
}
dy

=
1
|Ω|

∞∫
0

{ ∫
K2R(x)

v(x + rζ) dy
}
dr.

We introduce polar coordinates due to y = x + �ζ, and for fixed r ∈ (0,+∞)
we obtain ∫

K2R(x)

v(x + rζ) dy =
∫

|ζ|=1

{ 2R∫
0

v(x + rζ)�n−1 d�

}
dσ(ζ)

=
(2R)n

n

∫
|ζ|=1

v(x + rζ) dσ(ζ)

and consequently∣∣u(x)− u0

∣∣ ≤ (2R)n

n|Ω|

∞∫
0

{ ∫
|ζ|=1

v(x + rζ) dσ(ζ)
}
dr. (13)
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With the notation z = x + rζ, dz = |x − z|n−1 dr dσ(ζ) and the definition of
v we infer the following inequality from (13):

|u(x)− u0| ≤ 2n

nκn

∫
Ω

|x− z|1−n|Du(z)| dz.
q.e.d.

We summarize our results to the subsequent

Theorem 1. (John, Nirenberg)
Let the function u = u(x) ∈W 1,1(Ω) satisfy the growth condition∫

Ω∩Kr(y)

|Du(x)| dx ≤ Lrn−1 for all y ∈ Ω, r > 0 (14)

with a constant L > 0. Then we have a constant C = C(n, γ) > 0 for each
γ ∈ (0, 1

e ), such that∫
Ω

exp
{

nκnγ

2n(n− 1)L

∣∣u(x)− u0

∣∣} dx ≤ C(n, γ)Rn (15)

holds true.

Proof: On account of (14) the function f(x) := |Du(x)|, x ∈ Ω, belongs to
Morrey’s class Mn(Ω). From Proposition 4 we infer

nκn

2n
|u(x)− u0| ≤ V 1

n
f(x), x ∈ Ω.

Then Proposition 3 yields the desired estimate (15). q.e.d.

Now we require a higher growth condition in (14) and deduce Hölder conti-
nuity directly. In this context we modify Proposition 2 to the following

Proposition 5. Let f ∈ Mp(Ω) with n < p < +∞ be given. Then we have
the estimate

|V 1
n
f(x)| ≤ C(n, p) · Rα a.e. in Ω (16)

with the Hölder constant C(n, p) ∈ (0,+∞) and the Hölder exponent α =
1− n

p ∈ (0, 1).

Proof: We follow the arguments in the proof of Proposition 2 utilizing (7) and
(8). Then we obtain the subsequent estimate for almost all x ∈ Ω, namely
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|V 1
n
f(x)| ≤

2R∫
0

r1−nΦ′(r) dr

=
[
r1−nΦ(r)

]2R

0+
+ (n− 1)

2R∫
0

r−nΦ(r) dr

≤ (2R)1−nΦ(2R) + (n− 1)L

2R∫
0

r−
n
p dr

≤ L
{
(2R)1−

n
p +

n− 1
1− n

p

[
r1−n

p
]2R

0

}
= L

{
2α +

n− 1
1− n

p

2α
}
· Rα

=: LC(n, p) ·Rα .

q.e.d.

In order to establish regularity for solutions of variational problems, we prove
the fundamental

Theorem 2. (C.B. Morrey)
Let Θ ⊂ Rn denote a bounded domain where the function u = u(x) ∈W 1,1(Θ)
may satisfy Morrey’s growth condition∫

Θ∩Kr(x)

|Du(y)| dy ≤ Lrn−n
p for almost all x ∈ Θ and all r > 0 ; (17)

with n < p < +∞ and L ∈ (0,+∞).
Then we find a constant C = C(n, p,Θ0) > 0 for each open set Θ0 ⊂⊂ Θ,
such that the Hölder estimate

|u(y)− u(z)| ≤ C|y − z|α for all y, z ∈ Θ0 (18)

holds true; with the Hölder exponent α = 1− n
p ∈ (0, 1).

Proof: We take y, z ∈ Θ0 with R := |y − z| ≤ dist(Θ0, ∂Θ) and define

Ω := {x ∈ Rn : |x− x0| ≤ R} ,

where x0 := y is chosen. On account of (17), the function

f(x) := |Du(x)|, x ∈ Ω

belongs to Morrey’s class Mp(Ω). Proposition 5 in combination with Propo-
sition 4 implies
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|u(x)− u0| ≤ 2n

nκn
C(n, p) ·Rα a.e. in Ω. (19)

Now we arrive at the inequality

|u(y)−u(z)| ≤ |u(y)−u0|+|u(z)−u0| ≤ 2n+1

nκn
C(n, p)·Rα =: C(n, p,Θ0)|y−z|α

for all y, z ∈ Θ0 ⊂⊂ Θ. q.e.d.

Remark: When we require the following growth condition for Dirichlet’s inte-
gral, namely∫

Θ∩Kr(x)

|Du(y)|2 dy ≤ Lrn− 2n
p for almost all x ∈ Θ and all r > 0 (20)

with 2 ≤ n < p < +∞ and 0 < L < +∞, the Morrey growth condition (17)
is obviously satisfied. This regularity criterion has been originally invented by
C.B. Morrey in the case n = 2.

Finally we note the

Theorem 3. (Morrey’s embedding theorem)
Let Θ ⊂ Rn denote a bounded domain and u ∈ W 1,p

0 (Θ) a Sobolev function
with the exponent n < p < +∞. Then u belongs to the class Cα(Θ) with the
Hölder exponent α = 1− n

p .

Proof: We continue u trivially beyond ∂Θ and preserve the W 1,1-regularity.
On account of

Du ∈ Lp(Θ) ⊂Mp(Θ) with n < p < +∞ ,

we have Morrey’s growth condition globally on Θ. Then Theorem 2 implies
our corollary. q.e.d.

§7 Boundary behavior of weak solutions

We continue the considerations from § 5 and need the following variant of
Moser’s inequality in this section.

Theorem 1. (Trudinger)
Let u = u(x) ∈ W 1,2(Ω) ∩ L∞(Ω) with u(x) ≥ 0 a.e. in Ω denote a weak
solution of the differential equation

R(u, v) = 0 for all v ∈ H := W 1,2
0 (Ω) (1)

with the Dirichlet-Riemann bilinear form R(u, v) given in formula (15) from
§ 4. With y ∈ ∂Ω and r > 0 we furthermore assume u ∈ C0(∂Ω ∩ K4r(y)),
and we set
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m ∈
[
0, inf

∂Ω∩K4r(y)
u(x)

]
.

Then we have a constant C = C(M,n) ∈ (0,+∞), such that the extended
function

w(x) = [u]m(x) :=

{
m, x ∈ K4r(y) \Ω
inf{u(x),m}, x ∈ Ω

(2)

satisfies the following estimate∫
K2r(y)

− w(x) dx :=
1

|K2r(y)|
∫

K2r(y)

w(x) dx ≤ C inf
x∈Kr(y)

w(x). (3)

Proof: We have only to consider the case m > 0 and transfer the proof of
Theorem1 in § 5 to this situation. Here we define the set

Ωm :=
{
x ∈ Ω : u(x) < m

}
.

The function u is continuous in Ω according to § 5, Theorem2 and therefore
Ωm represents an open set. In the case Ωm ∩K4r(y) = ∅ we have nothing to
show. Otherwise we define the positive function

w̄(x) :=
1

m + ε

(
w(x) + ε), x ∈ K4r(y) ∪Ω (4)

with ε > 0 fixed. In Ωm this function w̄ satisfies the weak equation

R(w̄, v) = 0 for all v ∈ W 1,2
0 (Ωm). (5)

Furthermore, we have

w̄(x) = 1 for all x ∈ K4r(y) \Ωm. (6)

We choose the powers
β ∈ (−∞, 0) (7)

and insert the following test functions into the weak differential equation (5):

v(x) :=
(
w̄(x)β − 1

)
η(x)2 ∈W 1,2

0 (Ωm). (8)

Here the function η = η(x) is defined as in the proof of Theorem1 from § 5.
We now obtain
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−β
∫

Ωm

{ n∑
i,j=1

aij(x)Dei w̄(x)Dej w̄(x)
}
w̄(x)β−1η(x)2 dx

= 2
∫

Ωm

{ n∑
i,j=1

aij(x)Dei w̄(x)Dej η(x)
}(

w̄(x)β − 1
)
η(x) dx

= 2
∫

Ωm

{[ n∑
i,j=1

aij(x)Dei w̄(x)Dej η(x)
]√−β

2
(
w̄(x)

β
2 − 1

) 1√
w̄(x)

η(x)

·
√

2
−β
(
w̄(x)

β
2 + 1

)√
w̄(x)

}
dx

≤ −β
2

∫
Ωm

{ n∑
i,j=1

aij(x)Dei w̄(x)Dej w̄(x)
}
w̄(x)β−1η(x)2 dx

+
8
−β

∫
Ωm

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
w̄(x)β+1 dx

(9)
and therefore∫

Ωm

{ n∑
i,j=1

aij(x)Dei w̄(x)Dej w̄(x)
}
w̄(x)β−1η(x)2 dx

≤ 16
β2

∫
Ωm

{ n∑
i,j=1

aij(x)Deiη(x)Dej η(x)
}
w̄(x)β+1 dx.

(10)

Since (10) in K4r(y) \ Ωm is trivially satisfied, we therefore can deduce esti-
mates analogous to (15) and (28), respectively, from the proof of Theorem1 in
§ 5. Here we substitute ū by w̄ and Ω by Ωm∪K4r(y). With the considerations
given there, one derives the inequality (3) stated above.

q.e.d.

Theorem 2. (Boundary behavior)
In the bounded domain Ω ⊂ Rn the boundary point y ∈ ∂Ω is assumed to
satisfy the Wiener condition

β ≤ |Kr(y) \Ω|
|Kr(y)| for 0 < r ≤ r0 (11)

with the constants β ∈ (0, 1) and r0 > 0. Let

u = u(x) ∈ W 1,2(Ω) ∩ L∞(Ω) ∩ C0(∂Ω ∩Kr0(y))

denote a solution of the weak differential equation (1), and we define its bound-
ary oscillation
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σ(r) := osc
x∈∂Ω∩Kr(y)

u(x), 0 < r ≤ r0. (12)

Then we have constants C = C(M,n, β) ∈ (0,+∞) and α = α(M,n, β) ∈
(0, 1), such that the following estimate

osc
Ω∩Kr(y)

u ≤ C
( r

r0

)α

osc
Ω∩Kr0(y)

u + σ(r0), 0 < r ≤ r0 (13)

holds true.

Proof:

1. We designate the sets Kr = Kr(y), Ωr := Ω∩Kr(y), (∂Ω)r := ∂Ω∩Kr(y)
and use the quantities

M4 = sup
Ω4r

u, m4 = inf
Ω4r

u, M1 = sup
Ωr

u, m1 = inf
Ωr

u.

In the ball K4r we apply Theorem1 to the functions M4−u(x) and u(x)−
m4 which are nonnegative in Ω4r , and we set

M := sup
(∂Ω)4r

u, m := inf
(∂Ω)4r

u.

For all 0 < r ≤ 1
4r0 we obtain the estimates

β(M4 −M) ≤ (M4 −M)
|K2r \Ω|
|K2r|

≤
∫

K2r

− [M4 − u(x)]M4−M dx

≤ C(M4 −M1)

(14)

and

β(m−m4) ≤ (m−m4)
|K2r \Ω|
|K2r|

≤
∫

K2r

− [u(x)−m4]m−m4 dx

≤ C(m1 −m4).

(15)

Addition of (14) and (15) yields

β(M4 −m4)− β(M −m) ≤ C(M4 −m4)− C(M1 −m1)

and
M1 −m1 ≤

(
1− β

C

)
(M4 −m4) +

β

C
(M −m),
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and therefore

osc
Ωr

u ≤ γ osc
Ω4r

u + (1 − γ)σ(4r), 0 < r ≤ 1
4
r0, (16)

with γ := 1− β
C ∈ (0, 1).

2. Analogously to the proof of Theorem2 in § 5, we consider the monotoni-
cally increasing function

ω(r) := osc
Ωr

u, 0 < r ≤ r0. (17)

The latter satisfies the growth condition

ω(r) ≤ γω(4r) + (1− γ)σ(4r), 0 < r ≤ 1
4
r0. (18)

For each r ∈ (0, 1
4r0] we now have an integer k ∈ N, such that(1

4

)k+1

r0 < r ≤
(1

4

)k

r0 (19)

is satisfied. Additionally choosing α ∈ (0, 1) with

γ ≤
(1

4

)α

, (20)

we can calculate

ω(r) ≤ ω
((1

4

)k

r0

)
≤ γω

((1
4

)k−1

r0

)
+ (1 − γ)σ(r0)

≤ γ

{
γω
((1

4

)k−2

r0

)
+ (1 − γ)σ(r0)

}
+ (1− γ)σ(r0)

...
≤ γkω(r0) +

{
1 + γ + . . . + γk−1

}
(1− γ)σ(r0)

≤
( 1

4k

)α

ω(r0) +
( ∞∑

l=0

γl

)
(1− γ)σ(r0)

≤ 4α
( r

r0

)α

ω(r0) + σ(r0), 0 < r ≤ 1
4
r0.

(21)

Since (21) for 1
4r0 ≤ r ≤ r0 is trivially satisfied, we obtain the desired

estimate (13). q.e.d.

Remark: On account of σ(r) → 0 (r → 0+), we prescribe ε > 0 in (13) and
choose r0 > 0 sufficiently small and afterwards δ(ε) > 0 such that the estimate

osc
Ω∩Kr(y)

u ≤ ε for all 0 < r ≤ δ(ε) (22)

is realized.
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§8 Equations in divergence form

When we construct minima of energy functionals in the Sobolev space by
direct variational methods, we obtain weak solutions of differential equations
in divergence form. More precisely, we take a vector-field

A(p) =
(
A1(p), . . . , An(p)

)∗ : Rn → Rn ∈ C1+α(Rn) (1)

with α ∈ (0, 1), whose Jacobi matrix

∂A(p) :=
(∂Aj

∂pk
(p)
)

j,k=1,...,n
, p ∈ Rn, (2)

is symmetric and satisfies the ellipticity condition

1
M
|ξ|2 ≤

n∑
j,k=1

∂Aj

∂pk
(p)ξjξk ≤M |ξ|2 for all ξ, p ∈ Rn (3)

with a constant M ∈ [1,+∞). We now consider bounded weak solutions

u = u(x) ∈W 1,2(Ω) ∩ L∞(Ω) (4)

of the differential equation

divA
(
Du(x)

)
= 0 in Ω, (5)

and therefore we start with the integral relation∫
Ω

{∇ϕ(x) ·A(Du(x))
}
dx = 0 for all ϕ ∈ C∞

0 (Ω). (6)

We utilize the difference quotient

Δi,εϕ(x) :=
ϕ(x + εei)− ϕ(x)

ε
(7)

in the direction ei with sufficiently small ε �= 0. This notion has been intro-
duced in § 1, and we calculate similarly to the proofs of Theorem 5 and 6
there. When we insert (7) into (6), we obtain

0 =
∫
Ω

{∇(Δi,εϕ(x)) ·A(Du(x))
}
dx = −

∫
Ω

{∇ϕ(x) ·Δi,εA(Du(x))
}
dx. (8)

We calculate

Δi,εA(Du(x)) =
1
ε

{
A
(
Du(x + εei)−Du(x)

)}
=
{ 1∫

0

∂A
(
Du(x) + t[Du(x + εei)−Du(x)]

)
dt
}
Δi,εDu(x)

(9)
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and define the symmetric matrix

Bε(x) :=

1∫
0

∂A
(
Du(x) + t[Du(x + εei)−Du(x)]

)
dt, x ∈ Ω, (10)

satisfying the uniform ellipticity condition

1
M
|ξ|2 ≤ ξ ◦Bε(x) ◦ ξ∗ ≤M |ξ|2 for all ξ ∈ Rn, x ∈ Ω, |ε| ≤ ε0. (11)

The combination of (8), (9), and (10) yields the following weak uniformly
elliptic differential equation for the difference quotient Δi,εu(x):

0 =
∫
Ω

{∇ϕ(x) ◦Bε(x) ◦D(Δi,εu(x)
)}

dx for all ϕ ∈ C∞
0 (Ω). (12)

This difference quotient satisfies a Hölder condition independent of ε, accord-
ing to Theorem 2 from § 5 of de Giorgi - Nash. The passage to the limit ε→ 0+
yields

u ∈ C1+μ(Ω) (13)

for a sufficiently small μ ∈ (0, 1). We then consider the coefficient matrix

B(x) := ∂A
(
Du(x)

)
, x ∈ Ω, (14)

of the class Cμ(Ω). The transition to the limit ε→ 0+ in (12) reveals the fol-
lowing weak differential equation in divergence form for the partial derivatives
uxi(x), i = 1, . . . , n, namely

0 =
∫
Ω

{∇ϕ(x) ◦B(x) ◦Duxi(x)
}
dx for all ϕ ∈ C∞

0 (Ω) (15)

with Hölder continuous coefficients. The higher regularity of u is shown by
local reconstruction.

Theorem 1. We prescribe the boundary values ψ : ∂K → R ∈ C1+μ(∂K) on
the boundary of the open ball K ⊂⊂ Ω. Then the following Dirichlet problem
adjoint to the vector field (1)-(3) above possesses a solution

v = v(x) ∈ C2+μ(K) ∩ C0(K) ∩W 1,2(K),

div A
(
Dv(x)

)
= 0 in K,

v(x) = ψ(x) on ∂K.

(16)

Proof:
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1. In the first part of our proof, we utilize a method proposed by A. Haar for
variational problems. At each point x0 ∈ ∂K we have the linear support
functions η+

−(x) : Rn → R with

η+
−(x0) = ψ(x0) and

η−(x) ≤ ψ(x) ≤ η+(x) for all x ∈ ∂K, where

|Dη+
−(x0)| ≤ C

(‖ψ‖C1+μ(∂K)

)
for all x0 ∈ ∂K

(17)

is satisfied. For the solution v ∈ C1(K) of (16) we then deduce the in-
equality

|Dv(x0)| ≤ C for all x0 ∈ ∂K (18)

from the inclusion

η−(x) ≤ v(x) ≤ η+(x), x ∈ K. (19)

The latter is inferred from (17) by the maximum principle applied to the
quasilinear elliptic equation

n∑
j,k=1

∂Aj

∂pk

(
Dv(x)

)
vxjxk

(x) = 0, x ∈ K. (20)

Now the derivatives vxi in K are subject to the weak elliptic differential
equation (15) as well and therefore satisfy the maximum principle:

|Dv(x)| ≤ C
(‖ψ‖C1+μ(∂K)

)
, x ∈ K. (21)

2. When we have solved our boundary value problem (16) for the boundary
values

ψ : ∂K → R ∈ C2+μ(∂K),

we then approximate the given function ψ by a sequence

ψk → ψ in C1+μ(∂K) (k →∞).

The adjoint solutions vk of (16) are equicontinuous on account of (21).
Therefore, we make the transition to a subsequence which is uniformly
convergent in K with a limit function v satisfying the inequality

|Dv(x)| ≤ C, x ∈ K. (22)

Due to the inner Hölder estimate for Dv given above, we can achieve via
the differential equation (20) by the inner Schauder estimates that the
sequence converges in C2+μ(Θ) for each open set Θ ⊂⊂ K. Consequently,
the limit function belongs to the class

C2+μ(K) ∩ C0(K) ∩W 1,2(K).
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3. It remains to solve the Dirichlet problem (16) for C2+μ-boundary-valuesψ.
Here we have to establish a global Hölder estimate for the gradient of the
solution with the aid of Theorem2 from § 7. A result of O.Ladyzhenskaya
and N. Uraltseva (see [GT] Theorem 13.2) yields

‖Dv‖Cμ(K) ≤ C(‖ψ‖C2(∂K)) (23)

for an exponent μ ∈ (0, 1). This estimate is inferred from the Hölder con-
tinuous boundary values of vxi and the weak differential equation (15) for
the derivatives. We insert this inequality into the quasilinear differential
equation (20). Applied to the sequence of boundary values

ψk → ψ in C2+μ(∂K) (k →∞)

the global Schauder estimates imply the following statement

vk → v in C2+μ(K) (k →∞)

for the adjoint solutions of the boundary value problem (16).
4. By a nonlinear continuity method deforming the boundary values, we

can solve the boundary value problem (16) for all ψ ∈ C2+μ(∂K). This
procedure will be presented in § 9 from Chapter XII for the nonparametric
equation of prescribed mean curvature. Similar to Proposition 4 there, we
start with a solution v of (20) and solve the following nonlinear differential
equation for small boundary values with the aid of Banach’s fixed point
theorem:

0 =
n∑

j,k=1

∂Aj

∂pk

(
Dv(x) + Dw(x)

)
[vxjxk

+ wxjxk
]

=
n∑

j,k=1

[∂Aj

∂pk

(
Dv(x)

)
+

n∑
l=1

∂Aj

∂pk∂pl

(
Dv(x)

)
wxl

+ . . .
]
[vxjxk

+ wxjxk
]

=
n∑

j,k=1

∂Aj

∂pk

(
Dv(x)

)
wxjxk

+
n∑

l=1

( n∑
j,k=1

vxjxk

∂Aj

∂pk∂pl

(
Dv(x)

))
wxl

+ . . . , x ∈ K.

(24)
Here we assume polynomial coefficients in the differential equation (20) at
first, and we denote by . . . the superlinear terms in the partial derivatives
of w. As in Theorem2 of § 9 from Chapter XII we then deform the trivial
solution v = 0 into the solution of the Dirichlet problem posed. By an
adequate approximation we finally solve the differential equation with the
given coefficients. q.e.d.

We now obtain the fundamental
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Theorem 2. (Regularity theorem of de Giorgi)
A bounded weak solution u of (4) and (6) with the vector field (1)-(3) belongs
to the regularity class C2+α(Ω).

Proof: In each ball K ⊂⊂ Ω we reconstruct the solution u for the boundary
values ψ := u|∂K by a solution of (16) from Theorem 1. With the aid of the
Gaussian energy method one easily shows that the boundary value problem
(16) for weak solutions is uniquely determined. This implies

u(x) = v(x) in K,

and consequently u ∈ C2+μ(K). By a renewed reconstruction within the C2-
solutions we obtain

u ∈ C2+α(Ω).
q.e.d.

Remarks:

1. The regularity questions are situated in the center of the modern calculus
of variations, especially in the monograph

M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear
elliptic systems. Princeton University Press 1983.

In this context we recommend the beautiful presentation in [Jo] 11.3 by
J. Jost.

2. By the methods of this chapter a general theory for quasilinear elliptic
differential equations in n variables can be developed as in the pioneering
book [GT] Part II of D. Gilbarg and N. Trudinger.

3. We want to address the theory of two-dimensional partial differential equa-
tions in the next chapters. Here one can transform the equations into a
normal form in the hyperbolic and in the elliptic situation as well, and
both cases are interrelated via the complex space. For intuitive geometry
the two-dimensional theory is of central importance.

We finally treat the regularity question for the minimal surface equation:

In the bounded domain Ω ⊂ Rn let u = u(x) ∈ W 1,∞(Ω) denote a weak
solution of the nonparametric minimal surface equation in divergence form

div{(1 + |Du(x)|2)− 1
2Du(x)} = 0 in Ω. (25)

This equation will be derived differential-geometrically in the second part of
§ 1 from Chapter XI. On account of Du(x) ∈ L∞(Ω), the differential equation
(25) is uniformly elliptic and Theorem2 from § 2 reveals u ∈ C0(Ω). Now
the regularity result of de Georgi, Theorem 2 implies u ∈ C2+α(Ω). Since
one can easily construct solutions in the class W 1,2(Ω) within the calculus
of variations, the central task remains to estimate ‖Du‖L∞(Ω). Therefore,
gradient estimates have to be established!

With μ ∈ (0, 1) given, we prescribe
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a bounded convex domain Ω ⊂ Rn with C2+μ-boundary ∂Ω
and the boundary values ψ : ∂Ω → R ∈ C2+μ(∂Ω). (26)

We consider a solution of the Dirichlet problem

u = u(x) ∈ C2(Ω) ∩ C1(Ω) satisfies (25)
and the boundary condition u(x) = ψ(x) on ∂Ω,

(27)

and deduce the following boundary-gradient-estimate:

|Du(x)| ≤ C
(
∂Ω, ‖ψ‖C2+μ(∂Ω)

)
, x ∈ ∂Ω. (28)

In this context we show: At each boundary point (x, u(x)), x ∈ ∂Ω the tan-
gential plane for the surface

(x, u(x)), x ∈ Ω

has an angle with the support plane of the boundary manifold, whose modulus
can be estimated from below by a number ω > 0 independent of the point
x ∈ ∂Ω. Here one considers the minimal surface in its height representation

v : Θ → [0,∞)

above the support plane, satisfying the now differentiated minimal surface
equation (compare § 1 in Chapter XI):

(
1 + |Dv(x)|2)Δv(x) −

n∑
i,j=1

vxivxjvxixj (x) = 0 in Θ. (29)

With the aid of the boundary point lemma due to E. Hopf from § 1 in Chapter
VI, the statement (28) follows. The weak maximum principle applied to the
derivatives uxi now implies

‖u‖C1(Ω) ≤ C
(
∂Ω, ‖ψ‖C2+μ(∂Ω)

)
. (30)

With the aid of methods presented in part 3 and 4 of the proof for Theorem1,
one finally shows the following statement, whose complete derivation however
is left to the reader.

Theorem 3. (Jenkins, Serrin)
With the data (26) there exists exactly one solution u ∈ C2+μ(Ω) of the
Dirichlet problem (27) for the minimal surface equation.
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§9 Green’s function for elliptic operators

In the present section, we shall construct Green’s function for elliptic differ-
ential operators in divergence form with the aid of Schauder’s theory. For in-
stance, this enables us to transform the eigenvalue problem of elliptic operators
into an integral equation and then to proceed similarly to the considerations
for the Laplace operator in Chapter VIII.
We take a bounded domain Ω ⊂ Rn such that the regular boundary ∂Ω is
of the class C2+μ with μ ∈ (0, 1) and an integer n ∈ N satisfying n ≥ 3.
Furthermore, we denote the exterior normal by ν = ν(x) and the diameter of
Ω by R > 0. For the differential operator

L(u) :=
n∑

i=1

∂

∂xi

( n∑
j=1

aij(x)uxj (x)
)
, x ∈ Ω (1)

in divergence form, we require the coefficient matrix(
aij(x)

)
i,j=1,...,n

, x ∈ Ω of the class C1+μ(Ω) (2)

to be real and symmetric satisfying the following ellipticity condition

1
M
|ξ|2 ≤

n∑
i,j=1

aij(x)ξiξj ≤M |ξ|2 in Ω for all ξ ∈ Rn, (3)

with the ellipticity constant M ∈ [1,+∞). For a fixed point y ∈ Ω we define
the neighborhood

U := {x ∈ Rn : |x− y| < r0} ⊂ Ω (4)

with the fixed radius 0 < r0 < ρ = ρ(y) := dist(y, ∂Ω) ∈ (0, R). At first, we
assume our coefficients to fulfill

aij(x) = δij for x ∈ U and i, j = 1, . . . , n (5)

such that the differential operator L coincides with the Laplacian near the
point y. With the aid of Schauder’s theory from Chapter IX, we determine
the unique solution of the following boundary value problem

φ = φ(x, y) ∈ C2+μ(Ω), L(φ) = −L( 1
(n−2)ωn

|x− y|2−n
)

in Ω

φ(x, y) = − 1
(n−2)ωn

|x− y|2−n, x ∈ ∂Ω.
(6)

Naturally, the quantity ωn denotes the area of the unit sphere in Rn. We now
obtain the approximate Green’s function

g = g(x, y) :=
1

(n− 2)ωn
|x− y|2−n + φ(x, y) ∈ C2+μ(Ω \ {y}) (7)
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satisfying

L(g) = 0, x ∈ Ω \ {y} and g(x, y) = 0, x ∈ ∂Ω. (8)

Setting g(x, y) = 0 for x ∈ Rn \ Ω, y ∈ Ω we trivially continue the
function onto the whole space.
For all functions u ∈ C1(Ω) with zero boundary values u(x) = 0 on ∂Ω we
now calculate

n∑
i=1

∂

∂xi

(
u

n∑
j=1

aij(x)gxj (x, y)
)

= uL(g) +
n∑

i,j=1

aij(x)uxi(x)gxj (x, y) =

n∑
i,j=1

aij(x)uxi(x)gxj (x, y) for x ∈ Ω \ {y}.
(9)

We apply the Gaussian integral theorem on the domain Ωε := {x ∈ Ω :
|x − y| > ε} with the exterior normal ν = ν(x) and 0 < ε < r0. Then we
obtain the following relation:∫

Ωε

( n∑
i,j=1

aij(x)uxi(x)gxj (x, y)
)
dx =

∫
|x−y|=ε

(
u(x)

n∑
i=1

{νi(x)
n∑

j=1

aij(x)gxj (x, y)}
)
dσ(x) =

∫
|x−y|=ε

u(x)
∂g(x, y)
∂ν(x)

dσ(x) → u(y) for ε→ 0 + .

(10)

Consequently, we obtain the fundamental

Proposition 1. For all functions u ∈ C1(Ω) with zero boundary values
u(x) = 0 on ∂Ω we have the following identity:

R(u, g) :=
∫
Ω

( n∑
i,j=1

aij(x)uxi(x)gxj (x, y)
)
dx = u(y).

Here, the symbol R(.,.) denotes the Dirichlet-Riemann bilinear form.

Now we observe g(x, y) > 0 for x ∈ Ω \ {y} on account of E.Hopf’s maxi-
mum principle and g(x, y) → +∞ when x → y and x �= y holds true. For all
t ∈ (0,+∞) we consider the level sets

Ω(t) := {x ∈ Ω : g(x, y) < t} and Θ(t) := {x ∈ Ω : g(x, y) ≥ t},
where y is an interior point of the closed set Θ(t). We define the truncated
approximate Green’s function
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gt(x, y) =

{
g(x, y), x ∈ Ω(t)
t, x ∈ Θ(t)

. (11)

Parallel to Theorem 8 in § 1 we prove by approximation that this function
belongs to the class W 1,2

0 (Ω) ∩C0(Ω), and u(x) = gt(x, y) can be inserted as
a test function in Proposition 1. Thus we obtain the evaluation formula∫
Ω(t)

( n∑
i,j=1

aij(x)gxi(x, y)gxj (x, y)
)
dx = R(gt, g) = gt(y, y) = t, 0 < t < +∞.

(12)
The subsequent concept is of central importance:

Definition 1. For a measurable subset E ⊂⊂ Ω we define by

capΩ,L(E) := inf{R(v, v) : v ∈W 1,2
0 (Ω), v(x) = 1 a.e. in E}

the capacity of the set E in Ω.

With the function v(x) := 1
t g

t(x, y), x ∈ Ω we obviously have the unique
minimizer in the variational problem above for the set E := Θ(t) with the
energy R(v, v) = 1

t due to the evaluation formula above. Thus we have shown

Proposition 2. The relation capΩ,L
(
Θ(t)

)
= 1

t , 0 < t < +∞, for the ca-
pacities of the level sets is correct.

We need the following elementary comparison properties of the capacity:

E1 ⊂ E2 ⊂ Ω implies capΩ,L(E1) ≤ capΩ,L(E2), (13)

E ⊂ Ω1 ⊂ Ω implies capΩ1,L(E) ≥ capΩ,L(E), (14)

1
M

capΩ(E) ≤ capΩ,L(E) ≤McapΩ(E) for E ⊂ Ω, (15)

abbreviating capΩ(E) := capΩ,Δ(E) for the standard capacity. With the radii
r > 0 we consider the balls

Ur := {x ∈ Rn : |x− y| < r}
and define the quantities

a(r) := inf{g(x, y) : x ∈ ∂Ur} and b(r) := sup{g(x, y) : x ∈ ∂Ur}
for 0 < r < ρ. We note that 0 < a(r) ≤ b(r) < +∞, and Hopf’s maximum
principle implies

g(x, y) > a(r), x ∈ Ur and g(x, y) < b(r), x ∈ Ω \ Ur.

Therefore, we obtain the inclusions
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Ur ⊂ Θ(a(r)) and Θ(b(r)) ⊂ Ur.

The comparison properties for capacities together with Proposition 2 yield

capΩ,L(Ur) ≤ capΩ,L(Θ(a(r))) =
1

a(r)
(16)

and
capΩ,L(Ur) ≥ capΩ,L(Θ(b(r))) =

1
b(r)

. (17)

To the function v(x) := g(y + rx, y), 1
2 < |x| < 2 we apply the Harnack-

Moser inequality from Theorem 4 in § 5. Due to the homogeneity in r of the
differential equation for v, the ellipticity constant is independent of the radius
r. Therefore, we obtain a constant c = c(M) ∈ [1,+∞) such that

b(r) ≤ sup{v(x) : 1
2 < |x| < 2} ≤ c(M)inf{v(x) : 1

2 < |x| < 2}
≤ c(M)a(r), 0 < r < 1

2ρ
(18)

holds true. In combination with (16) and (17) we deduce

b(r) ≤ c(M)
(
capΩ,L(Ur)

)−1 (19)

and
a(r) ≥ (c(M)capΩ,L(Ur)

)−1
. (20)

From the inclusion Uρ ⊂ Ω ⊂ UR we infer the inequalities

1
M

capUR(Ur) ≤ 1
M

capΩ(Ur) ≤ capΩ,L(Ur) ≤McapΩ(Ur) ≤McapUρ(Ur)

via the comparison properties and therefore

1
M

(
capUρ(Ur)

)−1 ≤ (capΩ,L(Ur)
)−1 ≤M

(
capUR(Ur)

)−1 for 0 < r <
1
2
ρ.

(21)
The standard capacity of concentric balls can be determined as follows: On
the domain UR we have the standard Green’s function

g∗(x, y) := |x− y|2−n −R2−n, x ∈ UR.

For 0 < r < R we have the quantities

a∗(r) = b∗(r) = r2−n −R2−n,

and we observe Ur = Θ(a∗(r)). Then Proposition 2 implies(
capUR(Ur)

)−1 = a∗(r) = r2−n −R2−n. (22)
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The combination of (19), (20), (21), and (22) gives us the constants 0 < c1 =
c1(M,n) ≤ c2 = c2(M,n) < +∞ such that

c1r
2−n ≤ a(r) ≤ b(r) ≤ c2r

2−n, 0 < r <
1
2
ρ (23)

holds true. Now we easily show

Proposition 3. For the approximate Green’s function we have the following
estimates:

0 < g(x, y) ≤ c2(M,n)|x− y|2−n, x ∈ Ω, x �= y

and
g(x, y) ≥ c1(M,n)|x− y|2−n, x ∈ Ω, |x− y| ≤ 1

2
ρ(y).

Proof: The second estimate can be directly inferred from (23). However, we
still have to show the validity of the first inequality on the whole set Ω. To
this aim we introduce the exhausting set Ωδ := {x ∈ Ω : ρ(x) > δ} for
sufficiently small δ > 0 and take a test function χ = χδ(x) ∈ C∞

0 (Rn, [0, 1])
with supp χδ ⊂ Ω

1
2 δ satisfying χ(x) = 1, x ∈ Ωδ. Now we continue the

coefficients of our operator differentiably onto the ball U2R as follows:

aδ
ij(x) =

{
χδ(x)aij(x) + (1− χδ(x))δij , x ∈ Ω

δij , x ∈ U2R \Ω
. (24)

The operator Lδ in divergence form (1) with the coefficients

aδ
ij(x) for i, j = 1, . . . , n

possesses the approximate Green’s function gδ(x, y) on the domain U2R. The
auxiliary function

w(x) := gδ(x, y)− g(x, y) + sup{g(z, y) : z ∈ ∂Ωδ}, x ∈ Ωδ

satisfies
L(w) = 0, x ∈ Ωδ;w(x) > 0, x ∈ ∂Ωδ.

The maximum principle of E. Hopf yields

g(x, y) ≤ gδ(x, y) + sup{g(z, y) : z ∈ ∂Ωδ}
≤ c2(M,n)|x− y|2−n + sup{g(z, y) : z ∈ ∂Ωδ}, x ∈ Ωδ.

The transition to the limit δ → 0+ implies

g(x, y) ≤ c2(M,n)|x− y|2−n, x ∈ Ω.

q.e.d.
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With the aid of the hole-filling technique, we now estimate |∇g| in the Lp(Ω)-
norm.

Proposition 4. The approximate Green’s function satisfies the estimate∫
Ω

|∇g(x, y)|pdx ≤ C(M,n, p)

for all exponents p ∈ [1, n
n−1 ), with the a-priori-constant 0 < C(M,n, p) <

+∞.

Proof: We utilize the auxiliary function χ = χ(x) ∈ C1(Rn, [0, 1]) satisfying

χ(x) = 0 for all x ∈ Rn with |x− y| ≤ 1
4
R or |x− y| ≥ 2R,

χ(x) = 1 for all x ∈ Rn with
1
2
R ≤ |x− y| ≤ R,

and |∇χ(x)| ≤ c

R
for all x ∈ Rn.

Then we insert the test function u(x) = χ(x)2g(x, y) into the integral equation
of Proposition 1 and obtain

0 =
∫
Ω

χ2
n∑

i,j=1

(
aij(x)gxigxj

)
dx +

∫
Ω

2χg
n∑

i,j=1

(
aij(x)χxigxj

)
dx.

Standard estimates for quadratic forms as in § 5 imply∫
x∈Ω: 12 R≤|x−y|≤R

|∇g(x, y)|2 dx

≤ ∫
Ω

χ2|∇g(x, y)|2dx

≤ c(M,n)
∫
Ω

g2|∇χ(x)|2dx

≤ c(M,n)
∫

x∈Ω: 14 R≤|x−y|≤2R

g(x, y)2|∇χ(x)|2 dx

≤ c(M,n)R4−2n · R−2 ·Rn = c(M,n)R2−n,

(25)

using the growth condition for Green’s function from Proposition 3.
We take a quantity 1 ≤ p < 2 fixed and apply Hölder’s inequality with the
conjugate exponents q = 2

p , q′ = 2
2−p as follows:
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x∈Ω: 12 R≤|x−y|≤R

|∇g(x, y)|p dx

=
∫

x∈Ω: 12 R≤|x−y|≤R

|∇g(x, y)|p · 1 dx

≤
( ∫

x∈Ω: 12 R≤|x−y|≤R

|∇g(x, y)|2 dx
) p

2 ·
( ∫

x∈Ω: 12 R≤|x−y|≤R

1 dx
) 2−p

2

≤ c(M,n, p)R(2−n) p
2 ·Rn· 2−p

2 = c(M,n, p)Rp−np
2 +n−np

2

= c(M,n, p)Rn−(n−1)p.

(26)

Now we replace R by R
2k for k = 0, 1, 2, . . . and obtain∫

x∈Ω:2−k−1R≤|x−y|≤2−kR

|∇g(x, y)|p dx ≤ c(M,n, p)Rn−(n−1)p ·2−k(n−(n−1)p).

With 1 ≤ p < n
n−1 we observe that (n − (n − 1)p) > 0 holds true and the

summation over all k yields the desired estimate∫
Ω

|∇g(x, y)|pdx ≤ c(M,n, p)Rn−(n−1)p
( ∞∑

k=0

2−k(n−(n−1)p)
)

:= C(M,n, p).

Here we observe that the series above converges. q.e.d.

We are now prepared to prove the central

Theorem 1. (Generalized Green’s function)
For the elliptic differential operator L with the properties (1),(2),(3) from
above we have a function

G = G(x, y) : Ω × Ω → R

such that G(., y) belongs to the class W 1,p
0 (Ω) ∩ C2+μ(Ω \ {y}) for all y ∈ Ω

with the exponent p ∈ [1, n
n−1 ) satisfying the growth conditions

0 < G(x, y) ≤ c2(M,n)|x− y|2−n, x ∈ Ω, x �= y

and
G(x, y) ≥ c1(M,n)|x− y|n−2, x ∈ Ω, |x− y| ≤ 1

2
ρ(y).

The function G implies the following representation formula

u(y) =
∫
Ω

( n∑
i,j=1

aij(x)Deiu(x)Gxj (x, y)
)
dx, y ∈ Ω

for all functions u ∈ W 1,q
0 (Ω) with the exponent q ∈ (n,+∞]. Here we de-

note by Dei the weak derivatives and remark that the Sobolev space above is
continuously embedded into C0(Ω) due to Theorem 2 in § 2.
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Proof: At first, we consider test functions u = u(x) ∈ C∞
0 (Ω) and choose a

fixed y ∈ Ω.
Then we take a sequence of auxiliary functions χk = χk(x) ∈ C∞(Rn, [0, 1])
satisfying

χk(x) = 0, x ∈ U 1
2k ρ

and
χk(x) = 1, x ∈ Ω \ U 1

k ρ

for k = 1, 2, 3, . . . . For our operator (1) we define the coefficients

ak
ij(x) = χk(x)aij(x) + (1− χk(x))δij , x ∈ Ω; i, j = 1, . . . , n

and observe their convergence

‖ak
ij − aij‖Ls(Ω) → 0 for k →∞

with arbitrary numbers 1 ≤ s < +∞. The differential operator Lk possesses
the approximate Green’s function gk for k = 1, 2, . . . and Proposition1 implies
the following representation:∫

Ω

( n∑
i,j=1

ak
ij(x)uxi(x)gk

xj
(x, y)

)
dx = u(y) . (27)

Due to Proposition 4 the sequence gk
xj

(x, y), k = 1, 2, . . . is bounded in the
Lp(Ω)-norm for the given p and all indices j = 1, . . . , n. Then Theorem 7
in Chapter II,§ 8 allows the transition to a weakly convergent subsequence
gk′

xj
(x, y) ⇁ DejG(x, y), k′ → ∞ for j = 1, . . . , n. Here the limit function

G = G(., y) belongs to the Sobolev space W 1,p(Ω).
The sequence gk(., y), k = 1, 2, . . . satisfies the growth conditions from
Proposition 3 and is therefore uniformly bounded in each compact set K ⊂
Ω \ {y}. Consequently, we can estimate these functions in the C2+μ(K)-norm
by the Schauder estimates derived in Chapter IX. Finally, the limit function
G belongs to the class W 1,p

0 (Ω) ∩ C2+μ(Ω \ {y}).
We pass to the limit k′ → ∞ in (27) and observe the weak convergence of
the derivatives and the strong convergence of the coefficients. We use familiar
arguments for Hilbert spaces - see the Remark 3.) on weak convergence in
Chapter VIII,§ 6 - which pertain to these Lebesgue spaces. Then we obtain
the representation formula stated in the theorem for test functions.
Finally, we approximate the Sobolev functions u ∈ W 1,q

0 (Ω) with the exponent
q > n by test functions and take Theorem 2 from § 2 into account. We then
obtain the representation formula even in the Sobolev class. q.e.d.

Definition 2. We call the function G(x, y) from Theorem 1 the generalized
Green’s function for the operator L on the domain Ω.
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For twice differentiable functions we obtain the following corollary:

Theorem 2. With the generalized Green’s function from Theorem 1 we have
the representation

u(y) = −
∫
Ω

Lu(x) ·G(x, y)dx, y ∈ Ω

for all functions u ∈ C2(Ω) with u = 0 on ∂Ω.

Proof: We integrate the relation

n∑
i,j=1

aij(x)uxi(x)Gxj (x, y) =
n∑

j=1

∂

∂xj

( n∑
i=1

aij(x)uxi(x)G(x, y)
)−G(x, y)L(u)

over the domain Ωε via the Gaussian integral theorem. The boundary integrals
vanish for ε→ 0+ due to the growth condition, and we evaluate the integral
on the left-hand side by Theorem 1. This gives us the representation formula
stated above. q.e.d.

Remarks:

1. Originally the Green function for elliptic differential operators in diver-
gence form has been considered by W. Littman, G. Stampacchia, and
H.F. Weinberger. Later M. Grüter constructed Green’s function for ellip-
tic operators with L∞-coefficients in the Sobolev space and derived global
estimates together with K.-O. Widman. Here we refer the reader to the
original paper of M. Grüter and K.-O. Widman quoted at the end of
Chapter VIII in § 9.

2. In his graduate seminar at the University of Göttingen, E. Heinz gave
us the present approach to Green’s function via the Schauder theory in
the winter-semester 1985/86. I am grateful to H.-C. Grunau for an elabo-
rate copy of these beautiful lectures on Green’s function and for valuable
discussions.

3. One can even derive the familiar growth estimates for the first and second
partial derivatives of Green’s function near the singularity:

|Gxi(x, y)| ≤ c3(M,n)|x− y|1−n, i = 1, . . . , n for x ∈ Ω, x �= y

and

|Gxixj (x, y)| ≤ c4(M,n)|x − y|−n, i, j = 1, . . . , n for x ∈ Ω, x �= y.

Here we utilize the weighted Schauder estimates in Theorem 3 of § 7 from
Chapter IX without boundary conditions. We apply them to the general-
ized Green’s function G(x, y) at all midpoints x ∈ Ω \ {y} in the full disc
B(x,R) of radius R = 1

2 |y − x| outside the singularity.
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4. We infer the symmetry of the generalized Green’s function from the sym-
metry of the Riemann-Dirichlet bilinear form above. Here we proceed as
in § 1 of Chapter VIII for the ordinary Green’s function and utilize the
representation formula in Theorem 1.

5. When we take only L∞(Ω)-coefficients for the differential operator, our
approximation method described in the proof of Theorem 1 gives us a
generalized Green’s function even in this situation. Here we approximate
the coefficients by C1+α(Ω)-coefficients and control the representation
formula in the limit. This generalized Green’s function belongs to the
Sobolev space in Theorem 1, satisfies the given growth condition, and is
Hölder continuous outside the singularity - due to the regularity result of
de Georgi and Nash from Theorem 2 in § 5. However, differentiability and
moreover growth conditions for the derivatives of Green’s function cannot
be attained in this situation.

§10 Spectral theory of the Laplace-Beltrami operator

Let Ω ⊂ Rn denote a bounded domain with the C2+μ-boundary ∂Ω and
0 < μ < 1. Here we prescribe the elliptic Riemannian metric

ds2 =
n∑

i,j=1

gij(x)dxidxj , x ∈ Ω

of the class C1+μ(Ω) with its Gramian determinant

g(x) := det
(
gij(x)

)
i,j=1,...,n

and its inverse matrix (
gij(x)

)
i,j=1,...,n

, x ∈ Ω.

For the functions ψ = ψ(x) ∈ C2+μ(Ω) we consider the Laplace-Beltrami
operator

Δψ(x) =
1√
g(x)

n∑
i=1

∂

∂xi

(√
g(x)

n∑
j=1

gij(x)
∂

∂xj
ψ(x)

)
(1)

introduced in § 8 of Chapter I. Of central interest is the following eigenvalue
problem

−Δψ(x) = λψ(x), x ∈ Ω and ψ(x) = 0, x ∈ ∂Ω (2)

for real eigenvalues λ ∈ R. We recall the Beltrami operator of first order

∇(φ, ψ) :=
n∑

i,j=1

gij(x)φxi(x)ψxj (x)
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and obtain the invariant Riemann-Dirichlet bilinear form

D(φ, ψ) :=
∫

Ω

∇(φ, ψ)
√
g(x)dx =

∫
Ω

{
n∑

i,j=1

√
g(x)gij(x)φxi (x)ψxj (x)}dx.

Furthermore, we introduce the canonical bilinear form on the Riemannian
manifold

B(φ, ψ) :=
∫

Ω

{φ(x)ψ(x)}
√
g(x)dx ; φ, ψ ∈ L2(Ω).

Now we multiply (2) by an arbitrary test function and we arrive at the weak
eigenvalue equation

D(φ, ψ) = λB(φ, ψ) , φ ∈ C∞
0 (Ω). (3)

As described in § 9, we determine the symmetric Green’s function to the el-
liptic operator

L(ψ) :=
n∑

i=1

∂

∂xi

( n∑
j=1

aij(x)ψxj (x)
)
, x ∈ Ω (4)

with the coefficients

aij(x) :=
√
g(x)gij(x), x ∈ Ω for i, j = 1, . . . , n.

Now we insert G(., y) into the weak eigenvalue equation and obtain the fol-
lowing identity

λ

∫
Ω

G(x, y)ψ(x)
√
g(x)dx = λB

(
G(., y), ψ

)
=

= D
(
G(., y), ψ

)
=
∫

Ω

{
n∑

i,j=1

aij(x)Gxi (x, y)ψxj (x)}dx = ψ(y)

for all points y ∈ Ω. Finally, we define the weakly singular integral operator

Kψ(y) :=
∫

Ω

G(x, y)ψ(x)
√
g(x)dx , y ∈ Ω.

We have transformed the eigenvalue problem (1) into the equivalent eigenvalue
problem

Kψ(y) =
1
λ
ψ(y) , y ∈ Ω (5)

for the weakly singular integral operator K.

Now we can proceed as in Chapter VIII in order to study the eigenvalue
problem of this integral operator. We only have to integrate with respect to
the surface element
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g(x), x ∈ Ω

over the manifold. This constitutes a positive C1+μ(Ω)-function: We obtain
Hilbert-Schmidt integral operators with respect to the Riemannian metric
ds2, where their kernels are symmetric and weakly singular. We construct our
eigenfunctions and their eigenvalues in the Hilbert space H, endowed with the
inner product B(., .), via Rellich’s spectral theorem. Then we regularize the
eigenfunctions with the aid of I. Schur’s theory of iterated kernels. Thus we
arrive at the following result, whose complete proof can be taken from §§1, 2,
6, 7, and 9 in Chapter VIII.

Theorem 1. To the Laplace-Beltrami operator from above, there exists a com-
plete orthonormal system in H of eigenfunctions ψk(x) ∈ C2+μ(Ω) satisfying

−Δψk(x) = λkψk(x), x ∈ Ω and ψk(x) = 0, x ∈ ∂Ω

for the eigenvalues λk with k = 1, 2, 3. . . . such that

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

holds true.

§11 Some historical notices to Chapter X

The concept of weak solutions for partial differential equations was created by
D. Hilbert already in 1900. His theory of integral equations from Chapter VIII
provides the transition from the classical to the modern approach for partial
differential equations.

Before they became widely known under the present name, Sobolev spaces
have already been applied by K.Friedrichs and F. Rellich to spectral problems,
as described in Chapter VIII. Especially, Rellich’s selection theorem from 1930
provided the decisive tool treating weak partial differential equations.

About 1957, E. de Georgi and independently J.Nash achieved the break-
through in the regularity theory from weak to classical solutions. This was
substantially simplified by J.Moser in 1960 by his iteration technique, con-
sisting of inverse Hölder inequalities. Finally, W. Littman, G. Stampacchia,
and H. Weinberger constructed even the Green’s function for weak elliptic
differential equations in 1963.
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Portrait of K. Friedrichs (1901–1982); taken from the biography by
C.Reid: Courant, in Göttingen and New York - An Album; Springer-Verlag,
Berlin... (1976).



XI

Nonlinear Partial Differential Equations

In this chapter we consider geometric partial differential equations, which
appear for two-dimensional surfaces in their state of equilibrium. Here we
give the differential-geometric foundations in § 1 and determine in § 2 the
Euler equations of 2-dimensional, parametric functionals. In § 3 we present the
theory of characteristics for quasilinear hyperbolic differential equations, and
§ 4 is devoted to the solution of Cauchy’s initial value problem with the aid of
successive approximation. In § 5 we treat the Riemannian integration method
for linear hyperbolic differential equations. Finally, we prove S.Bernstein’s
analyticity theorem in § 6 using ideas of H. Lewy.

§1 The fundamental forms and curvatures of a surface

In the first part of this section, we consider the differential-geometrically reg-
ular surface on the parameter domain Ω ⊂ R2:

x(u, v) = (x(u, v), y(u, v), z(u, v))∗ : Ω → R3 ∈ C2(Ω,R3),

satisfying the condition

xu(u, v) ∧ xv(u, v) �= 0 for all (u, v) ∈ Ω. (1)

Here ∧ denotes the exterior product in R3. Now the surface x has the normal

N(u, v) := |xu ∧ xv(u, v)|−1xu ∧ xv(u, v) : Ω → S2 (2)

with S2 := {y ∈ R3 : |y| = 1} and the tangential space

Tx(u,v) :=
{
y ∈ R3 : y ·N(u, v) = 0

}
. (3)

For each point (u, v) ∈ Ω we define the linear mapping
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dx(u, v) : R2 → Tx(u,v),

(du, dv) �→ (xu,xv) ·
(du
dv

)
= xu(u, v) du + xv(u, v) dv

(4)

with its adjoint mapping

dx(u, v)∗ : (du, dv) �→ (du, dv) ·
(x∗

u

x∗
v

)
= xu(u, v)∗ du + xv(u, v)∗ dv. (5)

We remark that the relation 1 = N∗ ·N implies

N∗ ·Nu = 0 = N∗ ·Nv in Ω. (6)

Consequently, we obtain a further linear mapping

dN(u, v) : R2 → Tx(u,v),

(du, dv) �→ (Nu,Nv) ·
(
du
dv

)
= Nu(u, v) du + Nv(u, v) dv

(7)

with the adjoint mapping

dN(u, v)∗ : (du, dv) �→ (du, dv) ·
(N∗

u

N∗
v

)
= Nu(u, v)∗ du + Nv(u, v)∗ dv. (8)

We now define three quadratic forms on the space R2 depending on the point
(u, v) ∈ Ω. The first fundamental form is given by

I(u, v) := dx(u, v)∗ · dx(u, v)

= x∗
u · xu(u, v) du2 + 2x∗

u · xv(u, v) du dv + x∗
v · xv(u, v) dv2

=: E(u, v) du2 + 2F (u, v) du dv + G(u, v) dv2,

(9)

and the second fundamental form is defined by

II(u, v) := −dx(u, v)∗ · dN(u, v)

= −(x∗
u ·Nu) du2 − (x∗

u ·Nv + x∗
v ·Nu) du dv − (x∗

v ·Nv) dv2

= (N∗ · xuu) du2 + 2(N∗ · xuv) du dv + (N∗ · xvv) dv2

=: L(u, v) du2 + 2M(u, v) du dv + N(u, v) dv2.

(10)

Here we have used that the relation N∗ · xu = 0 = N∗ · xv implies

−N∗
u · xu = N∗ · xuu, −N∗

u · xv = N∗ · xuv, etc.

Finally, we define the third fundamental form

III(u, v) := dN(u, v)∗ · dN(u, v)

= (N∗
u ·Nu) du2 + 2(N∗

u ·Nv) du dv + (N∗
v ·Nv) dv2

=: e(u, v) du2 + 2f(u, v) du dv + g(u, v) dv2.

(11)
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The behavior as far as the curvatures of a surface are concerned is determined
by the Weingarten mapping or alternatively the shape operator

W (u, v) := −dN(u, v) ◦ (dx(u, v))−1 : Tx(u,v) → Tx(u,v). (12)

The parameters (u, v) ∈ Ω being fixed, the mapping W (u, v) attributes the
vectors xu �→ −Nu and xv �→ −Nv.

Geometric interpretation:
The tangential vector y ∈ Tx(u,v) given, we consider a regular curve

x(t) := x(u(t), v(t)),−ε < t < ε

on the surface x satisfying

x(0) = x(u(0), v(0)) = x(u, v) and x′(0) = y ∈ Tx(u,v).

We then observe the curve

N(t) := −N(u(t), v(t)),−ε < t < ε

with the tangent vector N′(0) ∈ Tx(u,v). The mapping

y = x′(0) �→ N′(0) =: −∇yN(u, v) : Tx(u,v) → Tx(u,v)

is usually denoted as covariant derivative of the vector-field N in direction
y. Since this linear mapping coincides with the Weingarten mapping on the
basis {xu,xv}, the Weingarten mapping is the negative covariant derivative
of the normal N in the direction of the tangential vector y. Consequently, the
Weingarten mapping is invariant with respect to positive-oriented parameter
transformations.

With respect to the basis {xu,xv} in the tangential space Tx(u,v) the Wein-
garten map W (u, v) is described by the symmetric matrix(

−Nu · xu −Nu · xv

−Nv · xu −Nv · xv

)
. (13)

Therefore, W (u, v) is a symmetric linear mapping. The latter possesses two
real eigenvalues κj(u, v) belonging to the eigenvectors ej(u, v) ∈ Tx(u,v) with
|ej(u, v)| = 1 for j = 1, 2. We obtain the principal curvatures with κj(u, v)
attributed to the principal curvature directions ej(u, v). We summarize

W (u, v) ◦ ej(u, v) = κj(u, v)ej(u, v) for j = 1, 2. (14)

Let y = cosϑ e1(u, v) + sinϑ e2(u, v), 0 ≤ ϑ ≤ 2π, be an arbitrary tangential
vector to the surface x(u, v). Then we consider the quadratic form
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Q(y) := (W (u, v) ◦ y) · y
=
(
W (u, v) ◦ (cosϑ e1 + sinϑ e2)

) · (cosϑ e1 + sinϑ e2)

= (cosϑκ1e1 + sinϑκ2e2) · (cosϑ e1 + sinϑ e2)

= κ1(u, v) cos2 ϑ + κ2(u, v) sin2 ϑ.

Consequently, we obtain the

Theorem 1. (Euler’s formula for the normal curvature)
We determine the normal curvature of the surface in the direction y =
cosϑ e1(u, v) + sinϑ e2(u, v) by

Q(y) = κ1(u, v) cos2 ϑ + κ2(u, v) sin2 ϑ. (15)

In the case κ1(u, v) ≤ κ2(u, v), the normal curvature is minimized in the
direction e1(u, v) and maximized in the direction e2(u, v).

Definition 1. A point x(u, v) of the surface x is called an umbilical point, if
κ1(u, v) = κ2(u, v) is satisfied.

Definition 2. We define the Gaussian curvature of the surface by

K(u, v) := κ1(u, v)κ2(u, v) = detW (u, v), (u, v) ∈ Ω. (16)

The mean curvature is given by

H(u, v) :=
1
2
(
κ1(u, v) + κ2(u, v)

)
=

1
2

trW (u, v), (u, v) ∈ Ω. (17)

Here det and tr denote the determinant and the trace of a matrix.

With respect to the bases {xu,xv}, {(1, 0), (0, 1)}, {xu,xv} the Weingarten
mapping is described by the matrices(

L M

M N

)(
E F

F G

)−1

=
1

EG− F 2

(
L M

M N

)(
G −F
−F E

)
. (18)

This reveals the following formulas

K(u, v) =
LN −M2

EG− F 2
(19)

and
H(u, v) =

1
2
GL− 2FM + EN

EG− F 2
. (20)

Finally, we show the



§1 The fundamental forms and curvatures of a surface 263

Theorem 2. We have the following relation between the three fundamental
forms (

e f

f g

)
− 2H

(
L M

M N

)
+ K

(
E F

F G

)
=

(
0 0

0 0

)
. (21)

Proof: According to the theorem of Hamilton-Cayley, a symmetric matrix
represents a zero of its characteristic polynomial. Noting the symmetry of
W (u, v) we obtain

0 = W (u, v)∗ ◦W (u, v)− 2H(u, v)W (u, v) + K(u, v) Id

= (dN ◦ (dx)−1)∗ ◦ dN ◦ (dx)−1 + 2HdN ◦ (dx)−1 + K Id

= (dx∗)−1 ◦ dN∗ ◦ dN ◦ (dx)−1 + 2HdN ◦ (dx)−1 + K Id.

Applying the operations dx∗◦ and ◦dx to this equation, we attain the identity

0 = dN∗ ◦ dN + 2H dx∗ ◦ dN + K dx∗ ◦ dx
= III(u, v)− 2H II(u, v) + K I(u, v),

and (21) follows. q.e.d.

In the second part of this section we investigate graphs in arbitrary dimensions
n ≥ 2:

z(x) = z(x1, . . . , xn) :=
(
x1, . . . , xn, ζ(x1, . . . , xn)

)
: Ω �→ Rn+1. (22)

Here we defined the height function

z = ζ(x) = ζ(x1, . . . , xn) ∈ C2(Ω) (23)

on the domain Ω ⊂ Rn. We determine the tangential vectors

zxi(x) =
(
δi1, . . . , δin, ζxi(x)

)
, x ∈ Ω for i = 1, . . . , n. (24)

We have the upper unit normal

N(x) := (1 + |∇ζ(x)|2)− 1
2
(− ζx1 , . . . ,−ζxn , 1

)
, x ∈ Ω (25)

and the tangential space

Tz(x) := {y ∈ Rn+1|y ·N(x) = 0}. (26)

As above we introduce the first fundamental form with the coefficients

gij(x) := zxi ·zxj (x) = δij +ζxi(x)ζxj (x), x ∈ Ω for i, j = 1, . . . , n. (27)

The tangential map
dz(x) : Rn �→ Tz(x) (28)
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with respect to the bases ei = (δi1, . . . , δin) ∈ Rn and zxi(x) ∈ Tz(x) for
i = 1, . . . , n is given by the matrix(

gij(x)
)

i,j=1,...,n
.

We now consider the family of matrices

Gλ(x) :=
(
δij + λζxi(x)ζxj (x)

)
i,j=1...,n

(29)

and observe
Gλ(x) ◦ ∇ζ(x) = (1 + λ|∇ζ(x)|2)∇ζ(x) (30)

with an arbitrary parameter λ ∈ R. Furthermore, we note that

Gλ(x) ◦ y = y for all y ∈ Rn with y · ∇ζ(x) = 0. (31)

We deduce

Gλ(x) ◦G1(x) ◦ ∇ζ(x) = (1 + λ|∇ζ(x)|2)(1 + |∇ζ(x)|2)∇ζ(x)

and choose λ such that

1 = (1 + λ|∇ζ(x)|2)(1 + |∇ζ(x)|2) or equivalently

1
1 + |∇ζ(x)|2 − 1 = λ|∇ζ(x)|2 or equivalently

−1
1 + |∇ζ(x)|2 = λ holds true.

Introducing the matrix

gij(x) := δij −
ζxi(x)ζxj (x)
1 + |∇ζ(x)|2 with i, j = 1, . . . , n (32)

we obtain
gij(x)gjk(x) = δi

k, x ∈ Ω (33)

via the Einstein summation convention.
As above we can introduce the second fundamental form with the coefficients

hij(x) := −Nxi · zxj (x) = N · zxixj (x) =
(
N(x) · e)ζxixj (x), x ∈ Ω (34)

for i, j = 1, . . . , n. Here we used the unit vector e = (0, . . . , 0, 1) ∈ Rn+1. The
linear map

−dN(x) : Rn �→ Tz(x) (35)

is represented by the matrix
(
hij(x)

)
i,j=1,...,n

with respect to the canonical
bases.

We summarize to the
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Theorem 3. The Weingarten mapping for n-dimensional graphs is given by
the matrices

W (x) =
(
N(x) ·e)(ζxixj (x)

)
i,j=1,...,n

◦
(
δij −

ζxi(x)ζxj (x)
1 + |∇ζ(x)|2

)
i,j=1,...,n

, x ∈ Ω

(36)
with respect to the canonical bases.

Remarks: From this theorem we can deduce curvature equations for graphs in
arbitrary dimensions. Especially for the equation

trace W (x) = 0, x ∈ Ω (37)

we obtain the quasilinear n-dimensional minimal surface equation

n∑
i,j=1

(
δij −

ζxi(x)ζxj (x)
1 + |∇ζ(x)|2

)
ζxixj (x) = 0 in Ω. (38)

We now calculate√
1 + |∇ζ(x)|2div

(
(1 + |∇ζ(x)|2)− 1

2∇ζ(x)
)

=

Δζ(x) − 1
2(1+|∇ζ(x)|2)

(∇∑n
i=1 ζ

2
xi

) · (∇ζ(x)
)

=

Δζ(x) − 1
1+|∇ζ(x)|2

∑n
j=1(

∑n
i=1ζxiζxixj )ζxj (x) =

Δζ(x) − 1
1+|∇ζ(x)|2

∑n
i,j=1 ζxiζxjζxixj (x).

(39)

By the identity (39) we transform (38) into the minimal surface equation in
divergence form

div
( ∇ζ(x)√

1 + |∇ζ(x)|2
)

= 0 in Ω. (40)

Geometrically, the arithmetic means of the n principal curvatures vanishes for
these graphs at each point.

§2 Two-dimensional parametric integrals

We consider differential-geometrically regular surfaces on the parameter do-
main (u, v) ∈ Ω ⊂ R2, namely

x = x(u, v) =
(
x1(u, v), x2(u, v), x3(u, v)

)
=
(
x(u, v), y(u, v), z(u, v)

)
,

x : Ω → R3 ∈ C3(Ω)
(1)

satisfying |xu ∧ xv(u, v)| > 0 for all (u, v) ∈ Ω and
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Ω

∫
|xu ∧ xv(u, v)| du dv < +∞.

Denoting by S2 := {z ∈ R3 : |z| = 1} the unit sphere in R3, the normal X
of the surface x is given as follows:

X(u, v) := |xu ∧ xv|−1xu ∧ xv(u, v) : Ω → S2 ∈ C2(Ω). (2)

We consider a density function

F = F (x,p) = F (x1, x2, x3; p1, p2, p3),

F : R3 × R3 → R ∈ C2
(
R3 × (R3 \ {0})) ∩C0(R3 × R3),

which we assume to be positive-homogeneous of degree 1; that means

F (x, λp) = λF (x,p) for all λ > 0. (3)

From the relation (3) we obtain the following condition by differentiation with
respect to λ at λ = 1:

Fp(x,p) · p∗ = F (x,p), p ◦ Fpp(x,p) ◦ p∗ = 0 for p �= 0. (4)

Furthermore, Fx(x, λp) = λFx(x,p) implies

Fxp(x,p) ◦ p∗ = Fx(x,p) for p �= 0. (5)

Here we have abbreviated Fp := (Fp1 , Fp2 , Fp3), Fpp := (Fpipj )i,j=1,2,3, etc.

We define the generalized area integral

A(x) =
∫
Ω

∫
F (x(u, v),X(u, v))|xu ∧ xv(u, v)| du dv

=
∫
Ω

∫
F (x(u, v),xu ∧ xv(u, v)) du dv.

(6)

Evidently, an arbitrary positive-oriented diffeomorphism

f = f(α, β) = (u(α, β), v(α, β)) : Θ → Ω ∈ C1(Θ,R2)

satisfies the identity
A(x) = A(x ◦ f).

Consequently, A represents a parametric functional. We can show that the
expression A from (6) gives us the most general two-dimensional parameter-
invariant functional in R3.

Examples:
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1. For F = F (x,p) := |p| we obtain the ordinary area functional.
2. In the case

F = F (x,p) = |p|+ 2H
3

x · p, H ∈ R,

we get the functional of E. Heinz

A(x) =
∫
Ω

∫ {
|xu ∧ xv|+ 2H

3
(x,xu,xv)

}
du dv, (7)

abbreviating the triple product as follows:

(x,y, z) := x · (y ∧ z), x,y, z ∈ R3.

In (7) we have to comprehend H as a Lagrange parameter. Therefore, one
minimizes the ordinary area functional with the subsidiary condition of
keeping the volume constant:

2H
3

∫
Ω

∫
(x,xu,xv) du dv = 1.

3. When we finally consider

F = F (x,p) = |p|+ 2Q(x) · p,
Q : R3 → R3 ∈ C2(R3) with divQ(x) = H(x),

we obtain the functional of S.Hildebrandt

A(x) =
∫
Ω

∫ {
|xu ∧ xv|+ 2

(
Q(x),xu,xv)

)}
du dv. (8)

Here one minimizes the ordinary area functional with respect to constant
weighted volume as a subsidiary condition:

2
∫
Ω

∫
(Q(x),xu,xv) du dv = 1.

We shall now determine the Euler equations of our generalized area integral
A: Therefore, we consider the surface varied in the normal direction, when we
take an arbitrary test function ϕ = ϕ(u, v) ∈ C∞

0 (Ω), namely

x(u, v; t) := x(u, v) + tϕ(u, v)X(u, v) : Ω × (−ε, ε)→ R3. (9)

When we choose the number ε > 0 sufficiently small, these surfaces remain
differential-geometrically regular. We calculate
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xu = xu + t(ϕX)u, xv = xv + t(ϕX)v,

xu ∧ xv = xu ∧ xv + t
{
xu ∧ (ϕX)v + (ϕX)u ∧ xv

}
+ t2(ϕX)u ∧ (ϕX)v .

(10)
This implies

∂

∂t
A(x) =

∂

∂t

∫
Ω

∫
F (x,xu ∧ xv) du dv

=
∫
Ω

∫ (
Fx(x,xu ∧ xv) ·X

)
ϕdu dv

+
∫
Ω

∫
Fp(x,xu ∧ xv) · {xu ∧ (ϕX)v + (ϕX)u ∧ xv

}
du dv

+2t
∫
Ω

∫ (
Fp(x,xu ∧ xv), (ϕX)u, (ϕX)v

)
du dv.

(11)

Then, we obtain the Euler equations in the weak form

0 =
∂

∂t
A(x)

∣∣∣
t=0

=
∫
Ω

∫ {
Fx(x,X) ·X}ϕ |xu ∧ xv| du dv

+
∫
Ω

∫ {(
Fp(x,X),xu, ϕX

)
v

+
(
Fp(x,X), ϕX,xv

)
u

}
du dv

−
∫
Ω

∫ {(
(Fp(x,X))v ,xu, ϕX

)
+
(
(Fp(x,X))u, ϕX,xv

)}
du dv

=
∫
Ω

∫ {
X ◦ Fpx(x,X) ◦X∗}ϕ |xu ∧ xv| du dv

+
∫
Ω

∫ {(
xu, Fpx(x,X) ◦ xv,X

)
+
(
Fpx(x,X) ◦ xu,xv,X

)}
ϕdu dv

+
∫
Ω

∫ {(
xu, Fpp(x,X) ◦Xv,X

)
+
(
Fpp(x,X) ◦Xu,xv,X

)}
ϕdu dv.

(12)
We now set

2H(x,p) := divFp(x,p) = trFpx(x,p).

(trFpx denotes the trace of the matrix Fpx.) Consequently, the following
parameter invariant equation holds true:
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Fpx(x,X) ◦ xu,xv,X

)
+
(
xu, Fpx(x,X) ◦ xv,X

)
+
(
xu,xv, Fpx(x,X) ◦X

)
= 2H(x,X)(xu,xv,X).

(13)
Therefore, the weak Euler differential equation (12) appears in the form

0 =
∫
Ω

∫ {(
Fpp(x,X) ◦Xu,xv,X

)
+
(
xu, Fpp(x,X) ◦Xv,X

)
+2H(x,X)|xu ∧ xv|

}
ϕ(u, v) du dv for all ϕ ∈ C∞

0 (Ω).
(14)

We obtain the Euler equation as follows:

0 =
(
Fpp(x,X) ◦Xu,xv,X

)
+
(
xu, Fpp(x,X) ◦Xv,X

)
+2H(x,X)|xu ∧ xv| in Ω.

(15)

This equation is obviously equivalent to the system

0 =
{
Fpp(x,X) ◦Xu

} ∧ xv + xu ∧
{
Fpp(x,X) ◦Xv

}
+2H(x,X)xu ∧ xv in Ω.

(16)

Following the arguments in the book by W. Klingenberg:Eine Vorlesung über
Differentialgeometrie, Section 3.6, we now introduce the lines of principal
curvatures as parameters u, v into the surface. We obtain

xu · xv = 0 = Xu · xv = Xv · xu,

Xu = −κ1xu, Xv = −κ2xv in Ω
(17)

with the principal curvatures κ1, κ2. Furthermore, we define the weight factors

�1(u, v) := |xu ∧ xv|−1
(
Fpp(x,X) ◦ xu,xv,X

)
(18)

and
�2(u, v) := |xu ∧ xv|−1

(
xu, Fpp(x,X) ◦ xv,X

)
. (19)

Then the relation (15) is transformed into the quasilinear curvature equation

�1(u, v)κ1(u, v) + �2(u, v)κ2(u, v) = 2H(x(u, v),X(u, v)) in Ω. (20)

The weight factors �1 and �2 have the same positive (different) sign if and only
if the matrix Fpp(x,p) is positive-definite (indefinite) on the space orthogonal
to p.

Theorem 1. The quasilinear curvature equation (20) represents the Euler
equation of the parametric functional (6).
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In the case of Hildebrandt’s functional (8) we observe

F (x,p) = |p|+ 2Q(x) · p =

√√√√ 3∑
k=1

p2
k + 2

3∑
k=1

qk(x)pk

with divQ(x) = H(x). We calculate

Fpi =
pi√
3∑

k=1

p2
k

+ 2qi(x), Fpipj =
δij√
3∑

k=1

p2
k

− pipj√
3∑

k=1

p2
k

3

for i, j = 1, 2, 3. The weight factors reduce to �1(u, v) ≡ 1 ≡ �2(u, v) in Ω and
the equation (20) specializes to

1
2
(
κ1(u, v) + κ2(u, v)

)
=

1
2
divFp = divQ(x) = H(x) in Ω. (21)

Then the system (16) appears in the form

Xu ∧ xv + xu ∧Xv + 2H(x)xu ∧ xv = 0 in Ω (22)

or equivalently

−(X ∧ xv)u + (X ∧ xu)v = 2H(x)xu ∧ xv in Ω. (23)

The equations (23) become transparent if we introduce conformal parameters
into the surface as follows:

xu · xv = 0 = |xu|2 − |xv|2 in Ω. (24)

We now observe

X ∧ xu = xv, X ∧ xv = −xu in Ω. (25)

Inserting (25) into (23), we obtain the H-surface system

Δx(u, v) = 2H(x)xu ∧ xv in Ω. (26)

We summarize our considerations to the following

Theorem 2. (F.Rellich)
A conformally parametrized surface x = x(u, v) : Ω → R3 due to (24) has the
prescribed mean curvature H = H(x) if and only if x fulfills the H-surface
system (26).

Remark: If the matrix Fpp(x,p) is positive-definite on the space orthogonal to
p, we can introduce conformal parameters into a weighted first fundamental
form. We then obtain the following elliptic system for the mapping
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y(u, v) := (x(u, v),X(u, v)) : Ω → R6,

namely
|Δy(u, v)| ≤ c|∇y(u, v)|2 in Ω.

In this context we refer the reader to

F. Sauvigny: Curvature estimates for immersions of minimal surface type
via uniformization and theorems of Bernstein type. Manuscripta math. 67
(1990), 69-97.

On the domain Ω ⊂ R2 we now define the surface

x(x, y) := (x, y, ζ(x, y)), (x, y) ∈ Ω, (27)

given as a graph above the x, y-plane. The normal to the surface x is then
represented by

X(x, y) :=
1√

1 + |∇ζ(x, y)|2 (−ζx,−ζy, 1), (x, y) ∈ Ω, (28)

and the surface element by

|xx ∧ xy | =
√

1 + |∇ζ(x, y)|2 =: √ . (29)

We determine the derivatives

xx(x, y) = (1, 0, ζx(x, y)), xy(x, y) = (0, 1, ζy(x, y)) (30)

and

Xx =
1√ (−ζxx,−ζxy, 0) + λ1X, Xy =

1√ (−ζxy,−ζyy, 0) + λ2X (31)

with certain functions λ1, λ2. When we insert the relations (30) and (31) into
(15), we get the differential equation

0 =

⎛⎝Fpp(x,X) ◦
⎛⎝−ζxx

−ζxy

0

⎞⎠ ,

⎛⎝ 0
1
ζy

⎞⎠ ,

⎛⎝−ζx

−ζy

1

⎞⎠⎞⎠

+

⎛⎝⎛⎝ 1
0
ζx

⎞⎠ , Fpp(x,X) ◦
⎛⎝−ζxy

−ζyy

0

⎞⎠ ,

⎛⎝−ζx

−ζy

1

⎞⎠⎞⎠
+ 2H(x,X)

√
1 + |∇ζ(x, y)|23

in Ω.

(32)

This represents a quasilinear differential equation of the form

a(x, y, ζ(x, y),∇ζ(x, y))ζxx + 2b(. . .)ζxy + c(. . .)ζyy + d(. . .) = 0 in Ω.
(33)
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In particular, for Hildebrandt’s functional we obtain

0 =

∣∣∣∣∣∣
−ζxx 0 −ζx

−ζxy 1 −ζy

0 ζy 1

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 −ζxy −ζx

0 −ζyy −ζy

ζx 0 1

∣∣∣∣∣∣+ 2H(x)
√

1 + |∇ζ(x, y)|23

= −(1 + ζ2
y)ζxx + 2ζxζyζxy − (1 + ζ2

x)ζyy + 2H(x)
√

1 + |∇ζ(x, y)|23

or equivalently

Mζ := (1 + ζ2
y )ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy

= 2H(x)
√

1 + |∇ζ(x, y)|23
in Ω.

(34)

Theorem 3. (Lagrange, Gauß)
The graph z = ζ(x, y), (x, y) ∈ Ω, possesses the prescribed mean curvature
H = H(x, y, z) if and only if the function ζ satisfies the nonparametric equa-
tion of prescribed mean curvature (34).

Remark: In the case H ≡ 0 we obtain the minimal surface equation

Mζ(x, y) ≡ 0 in Ω.

Example 1. The minimal surface of H.F. Scherk.
With the aid of the ansatz z = ζ(x, y) = f(x)+g(y) we search for all minimal
surfaces of this form satisfying ζ(0, 0) = 0, ∇ζ(0, 0) = 0. Inserting into the
minimal surface equation we obtain

0 = (1 + ζ2
y)ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy

=
{
1 + (g′(y))2

}
f ′′(x) +

{
1 + (f ′(x))2

}
g′′(y) in Ω.

This is equivalent to

f ′′(x)
1 + (f ′(x))2

= − g′′(y)
1 + (g′(y))2

in Ω.

Consequently, the condition

− f ′′(x)
1 + (f ′(x))2

= a =
g′′(y)

1 + (g′(y))2
, a ∈ R,

holds true, and we assume a > 0 without loss of generality. We deduce

a = −(arctan f ′(x))′, arctan f ′(x) = −ax + b

and via b = 0 we obtain

f ′(x) = tan(−ax), f(x) =
1
a

log cos(ax).
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Similarly we comprehend

g(y) = −1
a

log cos(ay)

and consequently

ζ(x, y) = f(x) + g(y) =
1
a

log
cos ax
cos ay

, a > 0.

This surface is defined on the open square

Ω :=
{
(x, y) ∈ R2 : |x| < π

2a
, |y| < π

2a

}
and cannot be extended beyond this domain.

A Graphic of Scherk’s Minimal Surface
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§3 Quasilinear hyperbolic differential equations and
systems of second order (Characteristic parameters)

Let the solution z = ζ(x, y) : Ω → R ∈ C3(Ω) of the quasilinear differential
equation

Lζ(x, y) := a(x, y, ζ(x, y),∇ζ(x, y))ζxx(x, y) + 2b(. . .)ζxy + c(. . .)ζyy

+d(x, y, ζ(x, y),∇ζ(x, y)) = 0 in Ω
(1)

be given on the domain Ω ⊂ R2. Here the coefficients b and c depend on the
same quantities as a does. In the sequel, we often use the abbreviations

z(x, y) := ζ(x, y), p(x, y) := ζx(x, y), q(x, y) := ζy(x, y),

r(x, y) := ζxx(x, y), s(x, y) := ζxy(x, y), t(x, y) := ζyy(x, y) in Ω.
(2)

For a given solution z = ζ(x, y) of (1) we set

a(x, y) := a(x, y, ζ(x, y),∇ζ(x, y)),
b(x, y) := b(x, y, ζ(x, y),∇ζ(x, y)),
c(x, y) := c(x, y, ζ(x, y),∇ζ(x, y)) in Ω,

(3)

and obtain the differential equation

0 = a(x, y)ζxx(x, y) + 2b(x, y)ζxy(x, y) + c(x, y)ζyy(x, y)

+d(x, y, ζ(x, y),∇ζ(x, y)) in Ω.
(4)

We now assume the differential equation (4) to be hyperbolic, which means

a(x, y)c(x, y)− b(x, y)2 < 0 in Ω. (5)

We observe that this condition depends on the coefficients a(x, y, z, p, q), . . .
and on the solution ζ and its gradient ∇ζ as well.

We now intend to bring the differential equation (1) or equivalently (4) into
a form as simple as possible. To this aim we consider the following transfor-
mation of variables in the neighborhood U(x0, y0) ⊂ Ω, namely

ξ = ξ(x, y), η = η(x, y) ∈ C2(U(x0, y0)),

ξ0 = ξ(x0, y0), η0 = η(x0, y0),
∂(ξ, η)
∂(x, y)

�= 0 in U(x0, y0),

with the inverse mapping x = x(ξ, η), y = y(ξ, η) ∈ C2(U(ξ0, η0)).

(6)

We calculate
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z = ζ(x, y) = z(ξ(x, y), η(x, y)), (x, y) ∈ U(x0, y0),

ζx = zξξx + zηηx, ζy = zξξy + zηηy,

ζxx = zξξξ
2
x + 2zξηξxηx + zηηη

2
x + zξξxx + zηηxx

ζxy = zξξξxξy + zξη(ξxηy + ξyηx) + zηηηxηy + zξξxy + zηηxy

ζyy = zξξξ
2
y + 2zξηξyηy + zηηη

2
y + zξξyy + zηηyy.

(7)

Therefore, the relation (4) yields the transformed differential equation

0 = a(x, y)ζxx + 2b(x, y)ζxy + c(x, y)ζyy + d(x, y, ζ,∇ζ)
= A(x, y)zξξ + 2B(x, y)zξη + C(x, y)zηη + D(x, y, z,∇z)

(8)

with

A(x, y) = a(x, y)ξ2
x + 2b(x, y)ξxξy + c(x, y)ξ2

y =: Q(ξ, ξ),

B(x, y) = a(x, y)ξxηx + b(x, y)(ξxηy + ξyηx) + c(x, y)ξyηy =: Q(ξ, η),

C(x, y) = a(x, y)η2
x + 2b(x, y)ηxηy + c(x, y)η2

y =: Q(η, η).

(9)

The quadratic form

Q(ξ, η) := (ξx, ξy) ◦
(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
◦
(
ηx

ηy

)
(10)

is called the characteristic form of the differential equation (4); we finally
set Q(ϕ) :=Q(ϕ, ϕ). We summarize our relations (9) to the following matrix
equation:(

A(x, y) B(x, y)
B(x, y) C(x, y)

)
=
(
ξx ξy

ηx ηy

)
◦
(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
◦
(
ξx ηx

ξy ηy

)
. (11)

This implies

AC −B2 =
( ∂(ξ, η)
∂(x, y)

)2

(ac− b2) < 0, (12)

and the transformed equation (8) is hyperbolic as well. Those level curves

Γ : ϕ(x, y) = const

satisfying
Q(ϕ) := Q(ϕ, ϕ) = (aϕ2

x + 2bϕxϕy + cϕ2
y)
∣∣∣
Γ

= 0,

are the characteristic curves of the hyperbolic differential equation (4) (com-
pare ChapterVI, § 4). Choosing the parameter transformation ξ = ξ(x, y),
η = η(x, y) such that

A(x, y) = Q(ξ) = 0, C(x, y) = Q(η) = 0 in U(x0, y0), (13)



276 XI Nonlinear Partial Differential Equations

then the curves ξ(x, y) = const and η(x, y) = const are the characteristic
curves of (4). From the relation (12) we infer the identity

|B(x, y)| =
√
b2 − ac

∣∣∣∣ ∂(ξ, η)
∂(x, y)

∣∣∣∣ > 0, (14)

and (8) is reduced to the hyperbolic normal form

zξη(ξ, η) = −
{

1
2B(x, y)

D(x, y, z, p, q)
}∣∣∣∣x=x(ξ,η)

y=y(ξ,η)

. (15)

We remind the reader that introducing characteristic parameters ξ, η has al-
ready been essential for the treatment of the one-dimensional wave equation
ζxx − ζyy = 0 in ChapterVI, § 5 .

We now show the existence of a local parameter transformation (6) with the
property (13). The transition to inverse matrices in the relation (11) yields

1
AC −B2

(
C −B
−B A

)
=
(
xξ yξ

xη yη

)
◦ 1
ac− b2

(
c −b
−b a

)
◦
(
xξ xη

yξ yη

)
. (16)

Taking the equation (12) into account, we deduce

(C dξ2 − 2B dξ dη + Adη2)
(∂(x, y)
∂(ξ, η)

)2

=
ac− b2

AC −B2
(dξ, dη) ◦

(
C −B
−B A

)
◦
(
dξ
dη

)

= (dξ, dη) ◦
(
xξ yξ

xη yη

)
◦
(

c −b
−b a

)
◦
(
xξ xη

yξ yη

)
◦
(
dξ
dη

)

= (dx, dy) ◦
(

c −b
−b a

)
◦
(
dx
dy

)
= c dx2 − 2b dx dy + a dy2.

Therefore, we obtain the transformation formula

c(x, y) dx2 − 2b(x, y) dx dy + a(x, y) dy2

=
(∂(x, y)
∂(ξ, η)

)2{
C(x, y) dξ2 − 2B(x, y) dξ dη + A(x, y) dη2

}
.

(17)

Since the coefficient matrix is transformed under parameter transformations
due to (11), a rotation of the x, y-plane allows us to achieve the condition

a(x, y)c(x, y) �= 0 in U(x0, y0). (18)
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We now solve the differential equation

0 = a(x, y) dy2 − 2b(x, y) dx dy + c(x, y) dx2

= a
(
dy2 − 2

b

a
dx dy +

c

a
dx2
)

= a(dy − λ+ dx)(dy − λ− dx)

(19)

with

λ± :=
b±√b2 − ac

a
. (20)

Respecting λ± ∈ C2(U(x0, y0)), the solutions of the regular first-order differ-
ential equation

dy − λ+ dx = 0 (21)

are constructed as level lines η(x, y) = const of a function η ∈ C2(U(x0, y0)).
In the same way we find the solutions of

dy − λ− dx = 0 (22)

in the form ξ(x, y) = const for ξ ∈ C2(U(x0, y0)). On account of λ+(x0, y0) �=
λ−(x0, y0) the vectors (1, λ+(x0, y0)) and (1, λ−(x0, y0)) are linear indepen-
dent. The vectors ∇ξ(x0, y0) and ∇η(x0, y0), respectively, are orthogonal to
them, and we see

∂(ξ, η)
∂(x, y)

= det
(
ξx ξy

ηx ηy

)
�= 0 in U(x0, y0). (23)

Therefore, the inverse mapping exists as well x = x(ξ, η), y = y(ξ, η) ∈
C2(U(ξ0, η0)) in a sufficiently small neighborhood U(ξ0, η0). Along the ξ-curve
η(x, y) = const we have

yξ − λ+xξ = 0, (24)

and (17) implies C(x, y) = Q(η) = 0. Along the η-curve ξ(x, y) = const we
have

yη − λ−xη = 0, (25)

and (17) yields A(x, y) = Q(ξ) = 0. Consequently, we arrive at the following

Theorem 1. (Linear hyperbolic differential equations)
For the hyperbolic differential equation with linear principal part (4), (5) given,
we have a transformation of variables (6) with

Q(ξ) = 0 = Q(η) in U(x0, y0). (26)

The differential equation appears in the hyperbolic normal form (15) and the
parameter transformation x = x(ξ, η), y = y(ξ, η) satisfies the first-order
system (24), (25).
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We now consider the case a = a(x, y, z), b = b(x, y, z), c = c(x, y, z) and
consequently λ± = λ±(x, y, z). The characteristic differential equations (24),
(25) now additionally depend on the solution z = ζ(x, y). Differentiating (24)
with respect to η and (25) with respect to ξ, we see

yξη − λ+xξη = λ+
η xξ = λ+

x xηxξ + λ+
y yηxξ + λ+

z zηxξ (27)

and
yξη − λ−xξη = λ−

ξ xη = λ−
x xξxη + λ−

y yξxη + λ−
z zξxη, (28)

respectively. The coefficient matrix for this linear system of equations is non-
singular due to λ+ �= λ−, and we can therefore resolve the equations (27),
(28) to xξη, yξη. Then we arrive at the following

Theorem 2. A quasilinear differential equation (1) with the coefficients a =
a(x, y, z), b = b(x, y, z), c = c(x, y, z), which is hyperbolic according to (5)
with respect to its solution z = ζ(x, y), appears as the following system in
characteristic parameters (24), (25), namely

xξη(ξ, η) = h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) (29)

for the vector-valued function x(ξ, η) := (x(ξ, η), y(ξ, η), z(ξ, η)).

We now consider the general case

a = a(x, y, z, p, q), b = b(x, y, z, p, q), c = c(x, y, z, p, q).

Noting that λ± = λ±(x, y, z, p, q) holds true in this situation, the character-
istic curves depend on the solution z = ζ(x, y) and its gradient ∇ζ(x, y). The
equations (27) and (28) are modified to

yξη − λ+xξη = λ+
x xηxξ + λ+

y yηxξ + λ+
z zηxξ + λ+

p pηxξ + λ+
q qηxξ (30)

and

yξη − λ−xξη = λ−
x xξxη + λ−

y yξxη + λ−
z zξxη + λ−

p pξxη + λ−
q qξxη, (31)

respectively. In order to obtain a complete system, we derive two additional
differential equations of the first order for the functions p = p(ξ, η), q = q(ξ, η)
in characteristic parameters: Let z = ζ(x, y) be a given solution of (1). The
second derivatives ζxx, ζxy, ζyy then satisfy three linear equations

aζxx + 2bζxy + cζyy = −d
dxζxx + dyζxy = dp

dxζxy + dyζyy = dq.

(32)

We refer the reader to the considerations in ChapterVI, § 4: Posing the Cauchy
initial value problem along a characteristic curve Γ ⊂ Ω
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Lζ = 0 in Ω,

ζ(x, y) = f(x, y) on Γ,

∂ζ

∂ν
(x, y) = g(x, y) on Γ,

(33)

not all the second derivatives ζxx, ζxy, ζyy are determined by the data L, f, g.
Since dp and dq are known along a characteristic, the linear system of equa-
tions (32) could be resolved to ζxx, ζxy, ζyy, if the determinant of the coefficient
matrix did not vanish. Therefore, the relation

0 =

∣∣∣∣∣∣
a 2b c

dx dy 0
0 dx dy

∣∣∣∣∣∣ = a dy2 − 2b dx dy + c dx2 (34)

is valid along a characteristic, which has already been shown alternatively with
the aid of (17). On the other hand, the system of equations (32) possesses the
solution {ζxx, ζxy, ζyy}. Consequently, the relation

rank

⎛⎝ a 2b c d

dx dy 0 −dp
0 dx dy −dq

⎞⎠ = 2 (35)

holds true along the characteristics. In particular, we obtain

0 =

∣∣∣∣∣∣
a c d

dx 0 −dp
0 dy −dq

∣∣∣∣∣∣ = a dy dp + c dx dq + d dx dy. (36)

Evaluating this equation along the ξ-characteristic, the multiplication by
(a dy dξ)−1 together with relation (21) yields

0 = pξ +
c

a

dx

dy
qξ +

d

a
xξ = pξ + λ+λ− 1

λ+
qξ +

d

a
xξ

and consequently

pξ + λ−qξ +
d

a
xξ = 0. (37)

Along the η-characteristic the relation (36) together with (22) implies the
following equation by multiplication with (a dy dη)−1, namely

0 = pη +
c

a

dx

dy
qη +

d

a
xη = pη + λ+λ− 1

λ− qη +
d

a
xη

and consequently

pη + λ+qη +
d

a
xη = 0. (38)

Finally, the differential equation dz = p dx + q dy along the ξ-characteristic
yields

zξ − pxξ − qyξ = 0. (39)

We now prove the interesting
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Theorem 3. (Hyperbolic normal form for quasilinear differential
equations)
The quasilinear differential equation (1), which is hyperbolic with respect to
its solution z = ζ(x, y) due to (5), can be equivalently transformed into the
following first-order system by the local parameter transformation (6):

yξ − λ+xξ = 0, yη − λ−xη = 0,

pξ + λ−qξ +
d

a
xξ = 0, pη + λ+qη +

d

a
xη = 0,

zξ − pxξ − qyξ = 0.

(40)

For the function y(ξ, η) := (x(ξ, η), y(ξ, η), z(ξ, η), p(ξ, η), q(ξ, η)) we obtain a
hyperbolic system of the second order

yξη(ξ, η) = h(ξ, η,y(ξ, η),yξ(ξ, η),yη(ξ, η)), (41)

where the right-hand side is quadratic in the first derivatives xξ, yξ, . . . , pη, qη.

Proof:

1. Starting from the solution (40) we show the validity of the differential
equation (1). The first and second equation from (40) together with the
matrix equation(

xξ xη

yξ yη

)
=
(
ξx ξy

ηx ηy

)−1

=
∂(x, y)
∂(ξ, η)

(
ηy −ξy

−ηx ξx

)
imply the relations

ηx + λ+ηy = 0, ξx + λ−ξy = 0.

Therefore, we obtain

zxx = px = pξξx + pηηx

= −
(
λ−qξ +

d

a
xξ

)
ξx −

(
λ+qη +

d

a
xη

)
ηx

= −(λ+ + λ−)(qξξx + qηηx)− λ+λ−(qξξy + qηηy)− d

a

= −2b
a
zyx − c

a
zyy − d

a
,

which reveals that azxx + 2bzxy + czyy + d = 0.
2. Differentiating all the equations of (40) containing only ξ-derivatives with

respect to η and vice-versa, we obtain
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−λ+xξη + yξη = . . .

−λ−xξη + yξη = . . .

d

a
xξη + pξη + λ−qξη = . . .

d

a
xξη + pξη + λ+qξη = . . .

−pxξη − qyξη + zξη = . . .

(42)

On the right-hand side only quadratic terms in the first derivatives of
x, y, z, p, q appear. We treat (42) as a linear system of equations in the
unknowns xξη, yξη, zξη, pξη, qξη. The coefficient matrix of this system is
nonsingular on account of∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ+ 1 0 0 0

−λ− 1 0 0 0
d

a
0 0 1 λ−

d

a
0 0 1 λ+

−p −q 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −4

b2 − ac

a2
�= 0. (43)

Therefore, we can resolve the system (42) in the form (41). q.e.d.

§4 Cauchy’s initial value problem for quasilinear
hyperbolic differential equations and systems of second
order

The theorem of d’Alembert (see Theorem1 in ChapterVI, § 5) gives us the so-
lution of Cauchy’s initial value problem (briefly CIP) for the one-dimensional
wave equation

u = u(x, y) ∈ C2(R× R,R),

�u(x, y) := uyy(x, y)− uxx(x, y) = 0 in R× R,

u(x, 0) = f(x),
∂

∂y
u(x, 0) = g(x) for all x ∈ R,

(1)

namely

u(x, y) =
1
2

(
f(x+ y) + f(x− y)

)
+

1
2

x+y∫
x−y

g(s) ds, (x, y) ∈ R× R. (2)
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Here we need f ∈ C2(R) and g ∈ C1(R). Since the problem (1) is uniquely
solvable according to Theorem2 from Chapter VI, § 4 , we easily deduce the
regularity of the solution from d’Alembert’s solution formula (2). We obtain
the following:

(a) With the assumptions f ∈ C2+k(R) and g ∈ C1+k(R) for k = 0, 1, 2, . . .,
we have the regularity u ∈ C2+k(R× R) for the solution.

(b) We now require that the functions f and g can be expanded into convergent
power series in a disc of radius 2R ∈ (0,+∞). With the variable x =
x1 + ix2 ∈ C we have the representations

f(x) =
∞∑

k=0

akx
k, g(x) =

∞∑
k=0

bkx
k for x ∈ C with |x| < 2R.

(3)
In the dicylinder ZR := {(x, y) ∈ C2 : |x| < R, |y| < R} the function

u(x, y) =
1
2

(
f(x + y) + f(x− y)

)
+

1
2

x+y∫
x−y

g(s) ds, (x, y) ∈ ZR, (4)

then gives us a solution which is holomorphic in ZR of the following CIP:

∂2

∂y2
u(x, y)− ∂2

∂x2
u(x, y) = 0 in ZR,

u(x, 0) = f(x),
∂

∂y
u(x, 0) = g(x) for all x ∈ C with |x| < R.

(5)
Here the complex derivatives are denoted by ∂

∂x and ∂
∂y .

We now perform a rotation about the angle −π
4 by the mapping(

ξ
η

)
=

(
cos(−π

4 ) − sin(−π
4 )

sin(−π
4 ) cos(−π

4 )

)
◦
(
x
y

)
=

1√
2

(
1 1
−1 1

)
◦
(
x
y

)
and get the equations

ξ =
1√
2
(x + y), η =

1√
2
(y − x). (6)

From the wave equation we determine the coefficients of the transformed dif-
ferential equation with the aid of formula (11) in § 3 as follows:(

A B
B C

)
=

1√
2

(
1 1
−1 1

)
◦
(−1 0

0 1

)
◦ 1√

2

(
1 −1
1 1

)
=
(

0 1
1 0

)
. (7)

By this rotation, the x-axis y = 0 - where the Cauchy data are prescribed - is
transferred into the secondary diagonal
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ξ + η = 0.

The vector (0, 1) is transformed into the unit normal to the secondary diagonal
in the direction of the first quadrant, namely ν = 1√

2
(1, 1). Therefore, the CIP

(1) is transformed into the following CIP:

u = u(ξ, η) ∈ C2(R2,R),

uξη(ξ, η) = 0 in R2,

u(ξ,−ξ) = f(
√

2ξ) for ξ ∈ R,

∂

∂ν
u(ξ,−ξ) :=

1√
2

(
uξ(ξ,−ξ) + uη(ξ,−ξ)) = g(

√
2ξ) for ξ ∈ R.

(8)

The problem (5) is similarly transferred in the case of real-analytic initial
values f , g.

We summarize our considerations to the following

Theorem 1. The functions f = f(ξ) ∈ C2(R) and g = g(ξ) ∈ C1(R) being
prescribed, the CIP (8) possesses exactly one solution u = u(ξ, η) ∈ C2(R2).
If we assume f ∈ C2+k(R) and g ∈ C1+k(R) with an integer k ∈ {0, 1, 2, . . .},
we have u ∈ C2+k(R2). If the functions f and g on {ξ ∈ C : |ξ| < √

2R}
can be expanded into convergent power series, then the function u = u(ξ, η) is
holomorphic in ZR, the differential equation

∂2

∂ξ ∂η
u(ξ, η) = 0 in ZR

is fulfilled, and the initial conditions in (8) are valid for all ξ ∈ C with |ξ| < R.

In § 3 we have transformed a quasilinear hyperbolic differential equation of
second order into a hyperbolic system in the normal form. In order to obtain
a solution of the CIP for the quasilinear equation, we solve the following CIP:

x = x(ξ, η) ∈ C2+k(QR,R
n), QR := [−R,R]× [−R,R], n ∈ N,

xξη(ξ, η) = h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) in QR,

x(ξ,−ξ) = f(ξ),
∂

∂ν
x(ξ,−ξ) = g(ξ) for ξ ∈ [−R,R]

(9)

with the Cauchy data

f = f(ξ) ∈ C2+k(R,Rn) and g = g(ξ) ∈ C1+k(R,Rn)

and the continuous right-hand side

h = h(ξ, η,x,p,q).
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Applying Theorem1 to each component function, we find a uniquely deter-
mined solution of the CIP

y = y(ξ, η) ∈ C2+k(R2,Rn),

yξη(ξ, η) = 0 in R2,

y(ξ,−ξ) = f(ξ),
∂

∂ν
y(ξ,−ξ) = g(ξ), ξ ∈ R.

(10)

When we make the transition to

x̃(ξ, η) := x(ξ, η) − y(ξ, η),

h̃(ξ, η, x̃, p̃, q̃) := h
(
ξ, η,y(ξ, η) + x̃,yξ(ξ, η) + p̃,yη(ξ, η) + q̃

)
,

(11)

the problem (9) is equivalently transformed into the CIP

x̃ = x̃(ξ, η) ∈ C2+k(QR,R
n),

x̃ξη(ξ, η) = h̃(ξ, η, x̃(ξ, η), x̃ξ(ξ, η), x̃η(ξ, η)) in QR,

x̃(ξ,−ξ) = 0 =
∂

∂ν
x̃(ξ,−ξ) for ξ ∈ [−R,R].

(12)

In the sequel we suppress ˜ in (12) and transform (12) equivalently into
an integro-differential-equation: Let the point (x, y) ∈ QR be chosen with
x + y > 0. We then define the characteristic triangle to (x, y) by

T (x, y) :=
{
(ξ, η) ∈ R2 : −x < −ξ < η < y

}
⊂ QR.

We confine our considerations to the subset of QR above the secondary diag-
onal. A solution beneath the secondary diagonal is constructed in the same
way, defining the characteristic triangle

T (x, y) =
{
(ξ, η) ∈ R2 : y < η < −ξ < −x

}
.

We apply the Stokes integral theorem to the Pfaffian form

ω = xη(ξ, η) dη − xξ(ξ, η) dξ, (ξ, η) ∈ T (x, y).

We deduce

2x(x, y) =
∫

∂T (x,y)

xη dη − xξ dξ =
∫

T (x,y)

∫
d(xη dη − xξ dξ)

= 2
∫

T (x,y)

∫
xξη(ξ, η) dξ dη

= 2
∫

T (x,y)

∫
h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) dξ dη
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and consequently

x(x, y) =
∫

T (x,y)

∫
h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) dξ dη, (x, y) ∈ QR. (13)

On the contrary, we depart from a given solution of the integro-differential-
equation (13) and immediately comprehend x(x,−x) = 0 for all x ∈ [−R,R].
From the representation

x(x, y) =

x∫
−y

( y∫
−ξ

h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) dη
)
dξ

we infer the equation

xx(x, y) =

y∫
−x

h(x, η,x(x, η),xξ(x, η),xη(x, η)) dη. (14)

This representation implies xx(x,−x) = 0 for all x ∈ [−R,R]. Furthermore,
the representation

x(x, y) =

y∫
−x

( x∫
−η

h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) dξ
)
dη

yields

xy(x, y) =

x∫
−y

h(ξ, y,x(ξ, y),xξ(ξ, y),xη(ξ, y)) dξ, (15)

and consequently xy(x,−x) = 0 for x ∈ [−R,R]. Finally, we can differen-
tiate (14) with respect to y and (15) with respect to x, and we obtain the
fundamental

Theorem 2. The function x = x(x, y) of the class

Cxy(QR,R
n) :=

{
y ∈ C1(QR,R

n) : yxy = yyx exist continuously in QR

}
solves the CIP

xxy(x, y) = h(x, y,x(x, y),xx(x, y),xy(x, y)) in QR,

x(x,−x) = 0 =
∂

∂ν
x(x,−x) for x ∈ [−R,R]

(16)

if and only if x satisfies the integro-differential-equation (13).
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For the right-hand side h = h(ξ, η,x,p,q) we now require the following Lip-
schitz condition

|h(ξ, η,x,p,q) − h(ξ, η, x̃, p̃, q̃)| ≤ L|(x,p,q) − (x̃, p̃, q̃)|
for all (ξ, η,x,p,q), (ξ, η, x̃, p̃, q̃) ∈ QR × Rn × Rn × Rn

(17)

with the Lipschitz constant L ∈ [0,+∞). With this assumption we derive a
contraction condition for the integro-differential-operator

I(x)(x, y) :=
∫

T (x,y)

∫
h(ξ, η,x(ξ, η),xξ(ξ, η),xη(ξ, η)) dξ dη, (x, y) ∈ QR.

(18)
For the function x,y ∈ C1(QR,R

n) we set

x̂(x, y) := I(x)(x, y), ŷ(x, y) := I(y)(x, y), (x, y) ∈ QR.

Now we can estimate

|x̂(x, y)− ŷ(x, y)| ≤
∫

T (x,y)

∫ ∣∣h(ξ, η,x,xξ,xη)− h(ξ, η,y,yξ ,yη)
∣∣ dξ dη

≤ L

∫
T (x,y)

∫ ∣∣(x(ξ, η) − y(ξ, η),xξ − yξ,xη − yη

)∣∣ dξ dη
≤ L

x+y∫
0

|x + y − τ |φ(τ) dτ

(19)
with

φ(τ) := max
(ξ,η)∈T (x,y), ξ+η=τ

∣∣(x(ξ, η) − y(ξ, η),xξ − yξ,xη − yη

)∣∣. (20)

Furthermore, the relation (14) implies the inequality

|x̂x(x, y)− ŷx(x, y)| ≤
y∫

−x

∣∣h(x, η,x(x, η),xξ ,xη)− h(x, η,y(x, η),yξ ,yη)
∣∣ dη

≤ L

y∫
−x

∣∣(x(x, η) − y(x, η),xξ − yξ,xη − yη

)∣∣ dη
≤ L

x+y∫
0

φ(τ) dτ.

(21)
In the same way we deduce the following estimate via (15):
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|x̂y(x, y)− ŷy(x, y)| ≤ L

x+y∫
0

φ(τ) dτ. (22)

We summarize the inequalities (19), (21), and (22) to the following

Theorem 3. For arbitrary functions x,y ∈ C1(QR,R
n) we have the subse-

quent estimate in QR:∣∣∣(x̂(x, y)− ŷ(x, y), x̂x(x, y)− ŷx(x, y), x̂y(x, y)− ŷy(x, y)
)∣∣∣

≤ L

x+y∫
0

(2 + |x + y − τ |)φ(τ) dτ.

We define the set

QR,S :=
{
(x, y,x,p,q) ∈ QR × Rn × Rn × Rn : |x|, |p|, |q| ≤ S

}
,

and prove the central

Theorem 4. Let the parameter-dependent right-hand side

h = h(x, y,x,p,q, λ) : QR,S × [λ1, λ2]→ Rn

of the class C1(QR,S × [λ1, λ2],Rn) with R > 0, S > 0 and −∞ < λ1 < λ2 <
+∞ be given. Then we have a number r ∈ (0, R], such that the following CIP
has exactly one solution for all λ ∈ [λ1, λ2]:

x = x(x, y, λ) ∈ Cxy(Qr,R
n),

xxy(x, y, λ) = h(x, y,x(x, y, λ),xx(x, y, λ),xy(x, y, λ), λ) in Qr,

x(x,−x, λ) = 0 =
∂

∂ν
x(x,−x, λ) for x ∈ [−r, r].

(23)

Furthermore, the solution depends differentiably on the parameter as follows:

x(x, y, λ) ∈ C1(Qr × [λ1, λ2],Rn).

Proof:

1. At first, we fix the parameter λ ∈ [λ1, λ2] and construct a solution
x(x, y, λ) with the aid of Banach’s fixed point theorem. To this aim, we
define the Banach space

B :=
{
y ∈ C1(QR,R

n) : y(x,−x) = 0 =
∂

∂ν
y(x,−x), x ∈ [−R,R]

}
endowed with the norm
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‖y‖ := sup
(x,y)∈QR

∣∣(y(x, y),yξ(x, y),yη(x, y)
)∣∣. (24)

We extend the right-hand side h : QR,S × [λ1, λ2]→ Rn onto the set

QR × Rn × Rn × Rn × [λ1, λ2]

in such a way that the Lipschitz condition (17) with a uniform Lipschitz
constant L ≥ 0 is valid for arbitrary λ ∈ [λ1, λ2]. According to Theo-
rem3 we find a sufficiently small R > 0 such that the integro-differential-
operator I : B → B defined in (18) is contractible. This means, we have a
constant θ ∈ [0, 1) satisfying

‖I(x)− I(y)‖ ≤ θ‖x− y‖ for all x,y ∈ B. (25)

Banach’s fixed point theorem (see Theorem3 in Chapter VII, § 1) gives us
the existence of a solution x = x(x, y, λ) ∈ B for the integro-differential-
equation

x(x, y, λ) =
∫

T (x,y)

∫
h(ξ, η,x(ξ, η, λ),xξ(ξ, η, λ),xη(ξ, η, λ), λ) dξ dη (26)

for all λ ∈ [λ1, λ2]. Parallel to the proof of Theorem2, we see that
x(x, y, λ) ∈ Cxy(QR,R

n) holds true for each λ ∈ [λ1, λ2].
2. We now show that the solution is independent of the extension of the

right-hand side h for sufficiently small R > 0 : Let x be a solution of the
CIP (23) to the fixed parameter λ ∈ [λ1, λ2], and we set

y(x, y) := I(0)(x, y) =
∫

T (x,y)

∫
h(ξ, η, 0, 0, 0, λ) dξ dη.

We apply Theorem 3 to the function

ψ(t) := max
(x,y)∈QR, x+y=t

∣∣(x(x, y) − y(x, y),xξ − yξ,xη − yη

)∣∣
and obtain the following estimate

ψ(t) ≤ A

t∫
0

(ψ(τ) + ‖y‖) dτ (27)

with a constant A > 0. The comparison lemma (see Proposition 1 in § 5)
yields

ψ(t) ≤ ‖y‖(eAt − 1).

Choosing R > 0 sufficiently small, the inclusion

(x(x, y),xξ(x, y),xη(x, y)) ∈ QR,S for all (x, y) ∈ QR

is fulfilled.
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3. Let two solutions x = x(x, y, λ) and x̃ = x̃(x, y, λ̃) to the parameters λ
and λ̃ be given. Then we derive an inequality of the form

ψ(t) ≤ A

t∫
0

(
ψ(τ) + ε(λ, λ̃)

)
dτ (28)

for the function

ψ(t) := max
(x,y)∈QR, x+y=t

∣∣(x(x, y) − x̃(x, y),xξ − x̃ξ,xη − x̃η

)∣∣,
as in the proof of Theorem3. Here ε(λ, λ̃) → ε(λ, λ) = 0 for λ → λ̃ is
satisfied. With the comparison lemma from above we infer

ψ(t) ≤ ε(λ, λ̃)(eAt − 1), (29)

which implies the continuous dependence of the solution on the parameter
in the C1-norm. Furthermore, the equation ε(λ, λ) = 0 gives us the unique
solvability of the CIP.

4. In order to show the differentiable dependence on the parameter, we con-
sider the difference quotient as in the theory of ordinary differential equa-
tions and observe the limit in the integro-differential-equation. q.e.d.

Remarks:

1. The solution of the CIP (23) is constructed by successive approximation

x(0)(x, y) := 0 in QR,

x(j+1)(x, y) :=
∫

T (x,y)

∫
h
(
ξ, η,x(j)(ξ, η),x(j)

ξ ,x(j)
η

)
dξ dη in QR,

for j = 0, 1, 2, . . .

(30)

2. Assuming higher regularity of the right-hand side h, we obtain the cor-
responding higher regularity for the solutions. This statement pertains
to the differentiability for the family of solutions with respect to the pa-
rameter λ ∈ [λ1, λ2]. Again one uses the method of difference quotients
indicated in part 4 of the proof above.

Theorem 5. Assumptions: Let the quasilinear differential equation

0 = a(x, y, ζ(x, y), ζx(x, y), ζy(x, y))ζxx + 2b(. . .)ζxy + c(. . .)ζyy

+d(x, y, ζ(x, y), ζx(x, y), ζy(x, y)) = 0 in Ω
(31)

with the coefficients

a = a(x, y, z, p, q), . . . , d = d(x, y, z, p, q) ∈ C2(Ω × R× R× R,R)
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be given, where Ω ⊂ R2 is an open set. We consider a regular curve

Γ : x = x(t), y = y(t), t ∈ [t0 − T, t0 + T ], in Ω

with the height function f = f(t) ∈ C3([t0 − T, t0 + T ],R) and the prescribed
derivative g = g(t) ∈ C2([t0 − T, t0 + T ],R) in the direction of its normal

ν = ν(t) :=
1√

x′(t)2 + y′(t)2
(− y′(t), x′(t)

)
.

The differential equation (31) is hyperbolic along this stripe, which means

a(t)c(t) − b(t)2 < 0 for all t ∈ [t0 − T, t0 + T ].

Here we have set a(t) := a(x(t), y(t), f(t), p(t), q(t)) etc. with

p(t) :=
x′(t)f ′(t)−√x′(t)2 + y′(t)2 y′(t)g(t)

x′(t)2 + y′(t)2
,

q(t) :=
y′(t)f ′(t) +

√
x′(t)2 + y′(t)2 x′(t)g(t)

x′(t)2 + y′(t)2
.

Finally, the curve Γ with respect to this stripe shall represent a noncharacter-
istic curve for the differential equation (31), which means

c(t)x′(t)2 − 2b(t)x′(t)y′(t) + a(t)y′(t)2 �= 0 for all t ∈ [t0 − T, t0 + T ].

Statement: Then we have a neighborhood Θ = Θ(x0, y0) of the point
(x0, y0) := (x(t0), y(t0)) and a function ζ = ζ(x, y) ∈ C2(Θ), which solves
the Cauchy initial value problem

a(x, y, ζ(x, y), ζx, ζy)ζxx + 2b(. . .)ζxy + c(. . .)ζyy + d(. . .) = 0 in Θ

ζ(x(t), y(t)) = f(t),
∂

∂ν
ζ(x(t), y(t)) = g(t) on Γ ∩Θ.

(32)
Here ∂

∂ν denotes the derivative in the direction of the normal ν to the curve
Γ . The solution of (32) is uniquely determined.

Remark: We can locally supplement the prescribed noncharacteristic stripe
{Γ, f, g} to a solution of the given differential equation.

Proof: With the aid of § 3, Theorem3 we introduce characteristic parameters
(ξ, η) into the differential equation (31). Differentiating the first-order system
once, we obtain a system of the form

yξη(ξ, η) = h(ξ, η,y(ξ, η),yξ(ξ, η),yη(ξ, η)). (33)

On account of a, b, c, d ∈ C2 the function h belongs to the class C1 with
respect to y,yξ,yη. From the Cauchy data
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(x(t), y(t), f(t), g(t)) with t0 − T ≤ t ≤ t0 + T

we calculate the initial values for y. Since ξ =const and η =const are the
characteristic curves, we can transfer the noncharacteristic curve Γ into the
secondary diagonal ξ + η = 0 by the transformation

ξ �→ ϕ(ξ), η �→ ψ(η).

With the aid of Theorem1 we make the transition to homogeneous initial val-
ues, and we solve the CIP for the system (33) by Theorem4. Via resubstitution
we obtain a solution of the CIP (32) (compare the proof of § 3, Theorem3).
The uniqueness follows from the corresponding statement for the system (33).

q.e.d.

§5 Riemann’s integration method

In this paragraph we shall investigate linear hyperbolic differential equations.
Though we established only local solvability in Theorem5 of § 4, we now shall
prove global solvability of the linear Cauchy initial value problem. For the
convenience of the reader we supply the preparatory

Proposition 1. (Comparison lemma)
The continuous function f : [ξ − h, ξ + h] → [0,+∞) satisfies the integral
inequality

f(x) ≤ A

x∫
ξ

(
f(t) + ε

) |dt| for all x ∈ [ξ − h, ξ + h]

with the constants A > 0 and ε ≥ 0. Then we have the estimate

0 ≤ f(x) ≤ ε
(
eA|x−ξ| − 1

)
= ε

∞∑
k=1

Ak

k!
|x− ξ|k

for all x ∈ [ξ − h, ξ + h].

Proof: We set M := max{f(x) : ξ − h ≤ x ≤ ξ + h} and show via complete
induction

f(x) ≤ ε

n∑
k=1

Ak

k!
|x− ξ|k + M

An

n!
|x− ξ|n, x ∈ [ξ − h, ξ + h].

From the integral inequality we deduce

f(x) ≤MA|x− ξ|+ εA|x− ξ| for all x ∈ [ξ − h, ξ + h],
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such that the case n = 1 is established. If the estimate above is valid for a
number n ∈ N, we then find

f(x) ≤ εA|x− ξ|+ A

x∫
ξ

f(t) |dt|

≤ εA|x− ξ|+ A

x∫
ξ

{
ε

n∑
k=1

Ak

k!
|x− ξ|k + M

An

n!
|x− ξ|n

}
|dt|

= εA|x− ξ|+ ε

n∑
k=1

Ak+1

(k + 1)!
|x− ξ|k+1 + M

An+1

(n + 1)!
|x− ξ|n+1

= ε
n+1∑
k=1

Ak

k!
|x− ξ|k + M

An+1

(n + 1)!
|x− ξ|n+1.

We observe

lim
n→∞

(A|x − ξ|)n+1

(n + 1)!
= 0,

and the limit procedure in the estimate above yields

f(x) ≤ ε

∞∑
k=1

Ak

k!
|x− ξ|k = ε

(
eA|x−ξ| − 1

)
.

q.e.d.

Theorem 1. Let the functions f = f(t) ∈ C2
0 (R) and g = g(t) ∈ C1

0 (R) be
given. Furthermore, the coefficient functions a = a(x, y), b = b(x, y), c =
c(x, y), d = d(x, y) belong to the class C1

0 (R2). Then the Cauchy initial value
problem

uxy(x, y) + aux(x, y) + buy(x, y) + cu(x, y) = d(x, y) in R2,

u(x,−x) = f(x),
∂

∂ν
u(x,−x) = g(x) for x ∈ R

(1)

possesses exactly one solution. Here the symbol ∂
∂ν again denotes the derivative

in the direction of the normal ν = 1√
2
(1, 1).

Proof: We write the differential equation in the form

uxy = h(x, y, u, ux, uy) := d(x, y)− a(x, y)ux − b(x, y)uy − c(x, y)u.

Here the right-hand side h globally satisfies a Lipschitz condition as in § 4,
formula (17), with the Lipschitz constant L ∈ [0,+∞). We consider a solution
u = u(x, y) existing in a neighborhood of the secondary diagonal x + y = 0,
and we investigate the function
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φ(t) := max
x+y=t

∣∣∣(u(x, y)− v(x, y), ux(x, y)− vx(x, y), uy(x, y)− vy(x, y)
)∣∣∣

with
v(x, y) := I(0)|(x,y).

Here I denotes the integro-differential-operator defined in § 4, formula (18).
From Theorem3 in § 4 we infer the differential inequality

φ(t) ≤ L

t∫
0

(2 + T )
(
φ(τ) + K

)
dτ for all 0 ≤ t ≤ T < +∞

with a constant K > 0. Proposition1 gives us the estimate

φ(t) ≤ K
(
eL(2+T )t − 1

)
for all 0 ≤ t ≤ T < +∞

and consequently

φ(T ) ≤ K
(
eL(2+T )T − 1

)
for 0 ≤ T < +∞. (2)

Therefore, the solution of the Cauchy initial value problem remains bounded
in the C1-norm, and the procedure of successive approximation yields a global
solution on R2.

q.e.d.

We shall now prove an integral representation for the solution of Cauchy’s
initial value problem (1). This Riemannian integration method corresponds to
the representation for solutions of Poisson’s equation with the aid of Green’s
function. Together with the linear differential operator

Lu(x, y) := uxy(x, y) + a(x, y)ux(x, y) + b(x, y)uy(x, y) + c(x, y)u(x, y) (3)

we consider the adjoint differential operator

Mv(x, y) := vxy(x, y)−[a(x, y)v(x, y)]x−[b(x, y)v(x, y)]y+c(x, y)v(x, y). (4)

The operators L and M coincide if and only if a ≡ 0 ≡ b is satisfied.
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Proposition 2. We have

vLu− uMv = (−vyu + auv)x + (vux + bvu)y. (5)

Proof: We calculate

vLu = vuxy + avux + bvuy + cvu

= (vux)y − vyux + (avu)x − (av)xu + (bvu)y − (bv)yu + cvu

= (vux + bvu)y + (−vyu + avu)x + uvxy − u(av)x − u(bv)y + ucv

= (vux + bvu)y + (−vyu + avu)x + uMv.
q.e.d.

Let the closed, regular arc Γ ⊂ R2 be given, which represents a noncharac-
teristic curve for the differential equation (1). This means, the arc Γ never
appears parallel to the coordinate axes. Therefore, we can find a continuous,
strictly monotonic function ϕ = ϕ(x) : [x1, x2]→ R such that

Γ =
{

(x, y) ∈ R2 : y = ϕ(x), x1 ≤ x ≤ x2

}
=
{

(x, y) ∈ R2 : x = ϕ−1(y), y2 ≤ y ≤ y1

}
holds true with y1 = ϕ(x1) and y2 = ϕ(x2). (Without loss of generality we
assume y2 < y1.) Furthermore, P = (x, y) �∈ Γ represents a fixed point in the
square [x1, x2]× [y2, y1] above the arc Γ , that means y > ϕ(x). Then we define
the characteristic triangle

T (x, y) :=
{
(ξ, η) ∈ R2 : ϕ(x) < ϕ(ξ) < η < y

}
.

Furthermore, we use the abbreviation

Γ (x, y) := Γ ∩ ∂T (x, y).

Finally, ν = (ν1, ν2) denotes the exterior normal to T (x, y), and we set A :=
(ϕ−1(y), y), B := (x, ϕ(x)) ∈ Γ .

With the aid of the Gaussian integral theorem we integrate (5) over the tri-
angle T (x, y) and obtain
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T (x,y)

∫
(vLu − uMv)

∣∣∣
(ξ,η)

dξ dη

=
∫

∂T (x,y)

{
(−vyu + auv)ν1 + (vux + bvu)ν2

}
dσ

=
∫
�
AB

{
(−vyu + auv)ν1 + (vux + bvu)ν2

}
dσ

+
∫
�
BP

(−vy + av)u dη +
∫
�
PA

(ux + bu)v dξ

=
∫
�
AB

{
(−vyu + auv)ν1 + (vux + bvu)ν2

}
dσ

+
∫
�
BP

(−vy + av)u dη +
∫
�
PA

(−vx + bv)u dξ +
∫
�
PA

(uv)x dξ

=
∫
�
AB

{
(−vyu + auv)ν1 + (vux + bvu)ν2

}
dσ

+
∫
�
BP

(−vy + av)u dη +
∫
�
PA

(−vx + bv)u dξ

−u(P )v(P ) + u(A)v(A).

Here
�

AB = Γ (x, y) denotes the positive-oriented arc from A to B on the
boundary of T (x, y) between the points A and B.

Definition 1. The function v(ξ, η) =: R(ξ, η;x, y) is called Riemannian func-
tion if the following conditions are fulfilled:

1. The function v satisfies the differential equation Mv = 0 in T (x, y).
2. We have v(x, y) = R(x, y;x, y) = 1.

3. Along the arc
�

BP we have −vy + av = 0, and therefore

v(x, η) = exp
{ η∫

y

a(x, t) dt
}
.

4. Along the arc
�

PA we have −vx + bv = 0, and therefore

v(ξ, y) = exp
{ ξ∫

x

b(t, y) dt
}
.
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If we can find a Riemannian function, we have the following

Theorem 2. (Riemannian integration method)
A solution of the hyperbolic differential equation Lu(ξ, η) = h(ξ, η) can be
represented by the Cauchy data with the aid of the Riemannian function
R(ξ, η;x, y) as follows: For the point P = (x, y) we have

u(P ) = u(A)R(A;P )−
∫

T (x,y)

∫
R(ξ, η;P )h(ξ, η) dξ dη

+
∫

Γ (x,y)

{(−Rη(ξ, η;P )u(ξ, η) + auR
)
ν1 + (Ruξ + bRu)ν2

}
dσ.

(6)

Remark: The problem remains to construct a Riemannian function.

§6 Bernstein’s analyticity theorem

On the unit disc B := {(u, v) : u2 + v2 < 1} we consider a solution

x = x(u, v) =
(
x1(u, v), . . . , xn(u, v)

)
: B → Rn ∈ C3(B,Rn) (1)

of the quasilinear elliptic system

Δx(u, v) = F(u, v,x(u, v),xu(u, v),xv(u, v)), (u, v) ∈ B. (2)

In an open neighborhood O ⊂ R2+3n of the surface

F :=
{(

u, v,x(u, v),xu(u, v),xv(u, v)
)

: (u, v) ∈ B
}

the function
F : O → Rn is assumed real-analytic. (3)

At each point z ∈ O we can locally expand the function F with 2 + 3n
variables into a power series whose coefficients belong to Rn. This series also
converges in the complex variables u, v, z1, . . . , zn, p1, . . . , pn, q1, . . . , qn ∈ C.
This enables us to continue the right-hand side of (2) onto an open set O in
C2+3n with F ⊂ O. Then we obtain

F = F(u, v, z1, . . . , zn, p1, . . . , pn, q1, . . . , qn) : O → Cn ∈ C1(O,Cn) (4)

without relabeling our function. Then F satisfies the 2+3n Cauchy-Riemann
equations

Fu ≡ Fv ≡ Fz1 ≡ . . . ≡ Fzn ≡ Fp1 ≡ . . . ≡ Fpn ≡ Fq1 ≡ . . . ≡ Fqn ≡ 0 (5)

in O. With the assumptions (3) or equivalently (4)-(5), we shall show that
a solution (1) of (2) is real-analytic on the disc B. Then we have an open
neighborhood B ⊂ C2 of B such that the following function extended to B
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x(u, v) = (x1(u, v), . . . , xn(u, v)) : B → Cn ∈ C3(B,Cn) (6)

satisfies the Cauchy-Riemann equations

∂

∂u
xj(u, v) ≡ 0 ≡ ∂

∂v
xj(u, v), (u, v) ∈ B, for j = 1, . . . , n (7)

or equivalently

xu := (x1,u, . . . , xn,u) ≡ 0 ≡ (x1,v, . . . , xn,v) =: xv in B. (8)

With the aid of ideas from H. Lewy, we shall analytically extend the solution
(1) of (2) from B onto B. This is achieved by solving initial value problems for
nonlinear hyperbolic differential equations with two variables. Starting from
an extension into the variables (u, v) = (α + iβ, γ + iδ) ∈ B for the moment,
the system (2) appears in the form

xαα(u, v) + xγγ(u, v) = F(u, v,x,xα(u, v),xγ(u, v)) in B. (9)

We can write the Cauchy-Riemann equations as follows:

xβ(u, v) = ixα(u, v) in B (10)

and
xδ(u, v) = ixγ(u, v) in B. (11)

These imply the Laplace equations

xαα(u, v) + xββ(u, v) = 0 in B (12)

and
xγγ(u, v) + xδδ(u, v) = 0 in B. (13)

Inserting (12) and (10) into (9) we obtain

−xββ(u, v) + xγγ(u, v) = F(u, v,x,−ixβ ,xγ) in B. (14)

From (13), (11), and (9) we infer

xαα(u, v)− xδδ(u, v) = F(u, v,x,xα,−ixδ) in B. (15)

Now we solve initial value problems for the hyperbolic equations (14) and (15)
with initial velocities given by (10) and (11), respectively.

We thus obtain the

Theorem 1. (Analyticity theorem of S. Bernstein)
Let the solution x = x(u, v) of the p.d.e. problem (1)-(2) be given with the
real-analytic right-hand side (3) or equivalently (4)-(5). Then the function x
is real-analytic in B.
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Proof (H. Lewy):

1. Using the notations from above, we start with a solution x = x(α, γ) :
B → Rn ∈ C3(B,Rn) for the system of differential equations

xαα(α, γ) + xγγ(α, γ) = F(α, γ,x,xα(α, γ),xγ(α, γ)) in B. (16)

We consider the Cauchy initial value problem

−xββ(α, β, γ) + xγγ(α, β, γ) = F(α, β, γ,x,−ixβ ,xγ) in B′,

x(α, 0, γ) = x(α, γ) in B,

xβ(α, 0, γ) = ixα(α, γ) in B

(17)

with the parameter α. Here B′ ⊂ R3 denotes a suitable open set satisfying
B ⊂ B′. According to § 4, the problem (17) possesses a locally unique
solution x = x(α, β, γ), since the characteristic curves of the differential
equation point out of B. We emphasize the differentiable dependence of
the solution from the parameter α. We now define u := α+ iβ. Taking the
Remark 2 following Theorem 4 from § 4 into consideration, we can apply
the operator

∂

∂u
=

1
2

( ∂

∂α
+ i

∂

∂β

)
to the differential equation in (17). For the function

y(α, β, γ) =
(
y1(α, β, γ), . . . , yn(α, β, γ)

)
:= xu(α, β, γ)

we obtain the system of differential equations

−yββ(α, β, γ) + yγγ(α, β, γ) =
n∑

j=1

{
Fzjyj − iFpjyj,β + Fqjyj,γ

}
in B′.

(18)
Noting (17) we comprehend

y(α, 0, γ) =
1
2
(
xα(α, 0, γ) + ixβ(α, 0, γ)

)
=

1
2
(
xα(α, γ) + iixα(α, γ)

)
= 0 in B.

(19)

Furthermore, we observe (17) and (16) and calculate

yβ(α, 0, γ) =
1
2
(
xαβ(α, 0, γ) + ixββ(α, 0, γ)

)
=

1
2
(
xαβ(α, 0, γ) + ixγγ(α, 0, γ)− iF(α, 0, γ,x,xα,xγ)

)
=

1
2
(
xαβ(α, 0, γ)− ixαα(α, γ)

)
=

1
2

∂

∂α

(
xβ(α, 0, γ)− ixα(α, γ)

)
= 0 in B,
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and consequently
yβ(α, 0, γ) = 0 in B. (20)

The homogeneous Cauchy initial value problem (18)-(20) is uniquely solv-
able by y(α, β, γ) ≡ 0 in B′, and we see

xu(α, β, γ) ≡ 0 in B′. (21)

2. We now extend x from B′ onto B ⊂ C2. In this context we solve the
Cauchy initial value problem

xαα(α, β, γ, δ)− xδδ(α, β, γ, δ) = F(α, β, γ, δ,x,xα,−ixδ) in B,
x(α, β, γ, 0) = x(α, β, γ) in B′,

xδ(α, β, γ, 0) = ixγ(α, β, γ) in B′.
(22)

The solution depends differentiably on the parameters β, γ, and higher
regularity follows as in § 4. At first, we consider the function

y(α, β, γ, δ) =
(
y1(α, β, γ, δ), . . . , yn(α, β, γ, δ)

)
:= xu(α, β, γ, δ).

On account of (22), this function satisfies the hyperbolic system

yαα(α, β, γ, δ)− yδδ(α, β, γ, δ) =
n∑

j=1

{
Fzjyj + Fpjyj,α − iFqjyj,δ

}
in B.

(23)
Due to (21) we have the initial conditions

y(α, β, γ, 0) =
1
2
(
xα(α, β, γ, 0) + ixβ(α, β, γ, 0)

)
= xu(α, β, γ) = 0 in B′

(24)

and
yδ(α, β, γ, 0) =

1
2
(
xαδ(α, β, γ, 0) + ixβδ(α, β, γ, 0)

)
=

i

2
(
xαγ(α, β, γ) + ixβγ(α, β, γ)

)
= i

∂

∂γ
xu(α, β, γ) = 0 in B′.

(25)

From (23)-(25) we deduce y(α, β, γ, δ) = 0 in B and consequently

xu(α, β, γ, δ) ≡ 0 in B. (26)

Finally, we investigate the function

z(α, β, γ, δ) =
(
z1(α, β, γ, δ), . . . , zn(α, β, γ, δ)

)
:= xv(α, β, γ, δ)
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and infer the following system of differential equations from (22):

zαα(α, β, γ, δ)− zδδ(α, β, γ, δ) =
n∑

j=1

{
Fzjzj + Fpjzj,α − iFqjzj,δ

}
in B.

(27)
For the function z we determine the initial conditions

z(α, β, γ, 0) =
1
2
(
xγ(α, β, γ, 0) + ixδ(α, β, γ, 0)

)
=

1
2
(
xγ(α, β, γ) + iixγ(α, β, γ)

)
= 0 in B′

(28)

and

zδ(α, β, γ, 0) =
1
2
(
xγδ(α, β, γ, 0) + ixδδ(α, β, γ, 0)

)
=

1
2
(
xγδ(α, β, γ, 0) + ixαα(α, β, γ, 0)− iF(α, β, γ, 0,x,xα,xγ)

)
=

1
2
(
xγδ(α, β, γ, 0)− ixγγ(α, β, γ)

)
=

∂

∂γ

1
2
(
xδ(α, β, γ, 0)− ixγ(α, β, γ)

)
= 0 in B′,

(29)
using (22) and (16). The equation (16) remains valid in B′ due to (21).
From (27)-(29) we infer z(α, β, γ, δ) ≡ 0 in B and finally

xv(α, β, γ, δ) ≡ 0 in B. (30)

Consequently, we have extended the solution x = x(α, γ) of (16) to a
function x = x(α, β, γ, δ) : B → Cn, which is holomorphic in the variables
u = α + iβ and v = γ + iδ on account of (26) and (30). Therefore, the
function

x(α, γ) = x(α, β, γ, δ)|β=δ=0

is real-analytic in α and γ. q.e.d.

The theorems about holomorphic mappings necessary for the next proof are
contained in the beautiful book [GF] of H.Grauert and K. Fritzsche, especially
in Chapter I, § 6 and § 7.

Theorem 2. On the open set Ω ⊂ R2 let us consider a solution z = ζ(x, y) ∈
C3(Ω,R) of the nonparametric H-surface equation

Mζ(x, y) := (1 + ζ2
y )ζxx(x, y)− 2ζxζyζxy(x, y) + (1 + ζ2

x)ζyy(x, y)

= 2H(x, y, ζ(x, y))(1 + |∇ζ(x, y)|2) 3
2 in Ω.

(31)
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The mean curvature H = H(x, y, z) is assumed real-analytic in a three-
dimensional open neighborhood of the surface

F :=
{(

x, y, ζ(x, y)
)

: (x, y) ∈ Ω
}
.

Then the solution z = ζ(x, y) : Ω → R is real-analytic in Ω.

Proof: We choose the point (x0, y0) ∈ Ω arbitrarily and determine r > 0 such
that the corresponding disc satisfies

Br(x0, y0) :=
{

(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < r2
}
⊂⊂ Ω.

We consider the C2-metric

ds2 = (1 + ζ2
x) dx2 + 2ζxζy dx dy + (1 + ζ2

y ) dy2 in Br(x0, y0)

and introduce isothermal parameters via the diffeomorphic mapping

f(u, v) = (x(u, v), y(u, v)) : B → Br(x0, y0) ∈ C3(B).

The function
x(u, v) := (f(u, v), z(u, v)) ∈ C3(B,R3) (32)

with
z(u, v) := ζ ◦ f(u, v), (u, v) ∈ B

satisfies Rellich’s system

Δx(u, v) = 2H(x(u, v))xu ∧ xv(u, v) in B. (33)

According to Theorem1, the function x is real-analytic in B and the mapping
f : B → Br(x0, y0) as well. Since Jf (u, v) �= 0 in B holds true, also the inverse
mapping f−1 : Br(x0, y0)→ B is real-analytic. Consequently, the function

ζ(x, y) = z ◦ f−1(x, y), (x, y) ∈ Br(x0, y0), (34)

is real-analytic in Br(x0, y0). This holds true in Ω as well, since the point
(x0, y0) ∈ Ω has been chosen arbitrarily. q.e.d.

Remarks:

1. The introduction of conformal parameters by the uniformization theorem
(see Chapter XII, § 8) can be achieved by various proofs: A continuity
method is presented in the paper by

F. Sauvigny: Introduction of isothermal parameters into a Riemannian
metric by the continuity method. Analysis 19 (1999), 235-243.

A variational method is applied by the authors

S. Hildebrandt, H. von der Mosel: On Lichtenstein’s theorem about
globally conformal mappings. Calc. Var. 23 (2005), 415-424.
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2. For arbitrary quasilinear, real-analytic, elliptic differential equations in
two variables, F. Müller has proved the Bernstein analyticity theorem by
the uniformization method used in Theorem2. In this context we refer the
reader to:

F. Müller: – On the continuation of solutions for elliptic equations in
two variables.Ann. Inst. H. Poincaré - AN 19 (2002), 745-776.
– Analyticity of solutions for semilinear elliptic systems of second
order.Calc. Var. and PDE 15 (2002), 257-288.

3. Finally, the reader should consider Hans Lewy’s original treatise:

H. Lewy: Neuer Beweis des analytischen Charakters der Lösungen el-
liptischer Differentialgleichungen. Math. Annalen 101 (1929), 609-619.

§7 Some historical notices to Chapter XI

The Bernstein analyticity theorem represents the first regularity result in
the theory of partial differential equations. This question was proposed by
D. Hilbert to S. Bernstein, who solved this problem by intricate methods in
1904.

K. Friedrichs and H. Lewy treated the initial value problem for hyperbolic
equations in 1927. Their method of successive approximations, which is nowa-
days established via Banach’s fixed point theorem, has been invented already
by E. Picard. Two years later in 1929, H. Lewy ingeniously built the bridge
from hyperbolic to elliptic equations with his approach to Bernstein’s analyt-
icity theorem. We would like to mention that H. Lewy attended lectures of
J. Hadamard (1865–1963) during his research visit to Paris in 1930.

In his wonderful book Partial Differential Equations, P.Garabedian observed
that Lewy’s proof is substantially simplified when the principal part of the
equation reduces to the Laplacian. With the uniformization theorem for non-
analytic Riemannian metrics, we present the decisive tool to investigate arbi-
trary elliptic equations in the next chapter.
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Portrait of H.Lewy (1904–1988);
taken from the biography by C.Reid: Courant, in Göttingen and New York –
An Album, Springer-Verlag, Berlin... (1976).

Portrait of F.Rellich (1906–1955); taken from the biography above.



XII

Nonlinear Elliptic Systems

We present a maximum principle of W. Jäger for the H-surface system in § 1.
Then we prove the fundamental gradient estimate of E.Heinz for nonlinear el-
liptic systems of differential equations in § 2. Global estimates are established
in § 3. In combination with the Leray-Schauder degree of mapping, we deduce
an existence theorem for nonlinear elliptic systems in § 4 . Specialized to the
system Δx = 2Hxu ∧ xv discovered by F. Rellich, this result was proved by
E. Heinz already in 1954. In § 5 we derive an inner distortion estimate for
plane nonlinear elliptic systems, which implies a curvature estimate presented
in § 6. In the next sections §§ 7-8 we introduce conformal parameters into a
Riemannian metric and establish a priori estimates up to the boundary in this
context. We explain the uniformization method for quasilinear elliptic differ-
ential equations in § 9 and solve the Dirichlet problem for the nonparametric
equation of prescribed mean curvature. Finally, we provide an introduction to
Plateau’s problem for surfaces of constant mean curvature in § 10.

§1 Maximum principles for the H-surface system

Let B := {w = u + iv ∈ C : |w| < 1} denote the unit disc. We prescribe the
function

H = H(w,x) : B × R3 → R ∈ C0(B × R3,R) (1)

with the bounds

|H(w,x)| ≤ h0, |H(w,x) −H(w,y)| ≤ h1|x− y|
for all w ∈ B, x,y ∈ R3

(2)

and consider Rellich’s H-surface system

x = x(u, v) ∈ C2(B,R3) ∩ C0(B,R3),

Δx(u, v) = 2H(w,x(w))xu ∧ xv, w ∈ B.
(3)
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If a solution of (3) additionally satisfies the relations

|xu|2 = |xv|2, xu · xv = 0 in B,

which means x represents a conformally parametrized surface, then x pos-
sesses the prescribed mean curvature H = H(w,x(w)). We now start with
two suitable solutions x,y of (3), consider the difference function z(w) :=
x(w) − y(w), w ∈ B and deduce an inequality of the form

sup
w∈B

|z(w)| ≤ C(h0, h1, . . .) sup
w∈∂B

|z(w)|. (4)

The latter implies unique solvability of the Dirichlet problem for (3) and its
stability with respect to perturbations of the boundary values in the C0-
topology.

The special case H ≡ 0: Let the two solutions x,y of the system (3)
with H ≡ 0 be given. Then their difference z(u, v) = x(u, v) − y(u, v) ∈
C2(B) ∩ C0(B) is a harmonic function as well. We consider the auxiliary
function

f(u, v) := |z(u, v)|2 = z(u, v) · z(u, v) = z(u, v)2, (u, v) ∈ B, (5)

and calculate

Δf(u, v) = ∇ · ∇f(u, v) = ∇ · ∇(z · z)
= 2∇(z · ∇z) = 2

(|∇z|2 + z ·Δz
)

= 2|∇z(u, v)|2 ≥ 0 in B.

Here we used ∇ = ( ∂
∂u ,

∂
∂v ) and abbreviated z ·∇z = (z · zu, z · zv) ∈ R2 . The

maximum principle for subharmonic functions yields

sup
w∈B

|z(w)| ≤ sup
w∈∂B

|z(w)|. (6)

In the general case H �≡ 0, we start with two solutions x,y of (3) and consider
the difference function z(u, v) = x(u, v) − y(u, v). Then we introduce the
weighted distance function of W. Jäger

F (u, v) := |z(u, v)|2 exp
{1

2

(
φ(|x(u, v)|2) + φ(|y(u, v)|2)

)}
(7)

for w = u + iv ∈ B. Here, the symbol

φ = φ(t) : [0,M2) → R ∈ C2([0,M2)) (8)

denotes an auxiliary function still to be determined - with an appropriate
quantity M > 0. With the distance function (7) we obviously can consider
only small solutions satisfying
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|x(u, v)| < M, |y(u, v)| < M for all w = u + iv ∈ B. (9)

Now we shall determine φ in such a way that F fulfills a differential inequality
subject to the maximum principle. At first, we note that

∇e 1
2 (φ(x2)+φ(y2)) = e

1
2 (φ(x2)+φ(y2))

[
φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)

]
, (10)

and we calculate

∇F = e
1
2 (φ(x2)+φ(y2))

{
∇(z2) + z2

[
φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)

]}
and consequently

e−
1
2 (φ(x2)+φ(y2))∇F = ∇(z2) + z2

[
φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)

]
. (11)

Applying the operator ∇ to this identity we obtain the subsequent

Proposition 1. The function F (u, v) defined in (7) satisfies the following
differential equation in B:

LF :=
(
e−

1
2 (φ(x2)+φ(y2))Fu

)
u

+
(
e−

1
2 (φ(x2)+φ(y2))Fv

)
v

= Δ(z2) +
1
2
z2
[
φ′(x2)Δ(x2) + φ′(y2)Δ(y2)

]
+2z2

[
φ′′(x2)(x · ∇x)2 + φ′′(y2)(y · ∇y)2

]
+2(z · ∇z) ·

[
φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)

]
.

We intend to choose φ in such a way that LF ≥ 0 in B holds true. At first,
we note that

|Δx| ≤ 2|H | |xu ∧ xv| ≤ h0|∇x|2

and obtain

Δ(x2) = 2(|∇x|2 + x ·Δx) ≥ 2(|∇x|2 − |x| |Δx|)
≥ 2|∇x|2(1− h0|x|),

Δ(y2) = 2(|∇y|2 + y ·Δy) ≥ 2(|∇y|2 − |y| |Δy|)
≥ 2|∇y|2(1 − h0|y|) in B.

(12)

Proposition 2. For all w ∈ B′ := {ζ ∈ B | |z(ζ)| �= 0} we have

Δ(z2)− 2
( z
|z| · ∇z

)2

≥ −(h2
0 + h1)|z|2(|∇x|2 + |∇y|2).
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Proof: We evaluate Δ(z2) = 2(|∇z|2 + z ·Δz) and estimate as follows:

|z ·Δz| = |z · (Δx−Δy)| = ∣∣z · (2H(w,x)xu ∧ xv − 2H(w,y)yu ∧ yv

)∣∣
≤ 2|H(w,x)| |z · (xu ∧ xv − yu ∧ yv)|

+2|H(w,x)−H(w,y)| |z| |yu ∧ yv|
≤ 2h0|(z, zu,xv) + (z,yu, zv)|+ h1|z|2|∇y|2

≤ 2h0

( |z ∧ zu|
|z| |xv| |z|+ |z ∧ zv|

|z| |yu| |z|
)

+ h1|z|2|∇y|2

≤ |z ∧ zu|2
|z|2 +

|z ∧ zv|2
|z|2 + h2

0|z|2(|xv|2 + |yu|2) + h1|z|2|∇y|2

= |∇z|2 − 1
|z|2 {(z · zu)2 + (z · zv)2}

+h2
0|z|2(|xv|2 + |yu|2) + h1|z|2|∇y|2.

Interchanging x and y we add both inequalities and obtain

2|z ·Δz| ≤ 2|∇z|2 − 2
|z|2 (z · ∇z)2 + h2

0|z|2(|∇x|2 + |∇y|2)

+h1|z|2(|∇x|2 + |∇y|2).
Finally, we arrive at

Δ(z2) ≥ 2
1
|z|2 (z · ∇z)2 − (h2

0 + h1)|z|2(|∇x|2 + |∇y|2).
q.e.d.

We now combine the Propositions 1 and 2 with the formula (12) and deduce

LF ≥
{
− (h2

0 + h1) + φ′(x2)(1− h0|x|)
}
|z|2|∇x|2

+
{
− (h2

0 + h1) + φ′(y2)(1− h0|y|)
}
|z|2|∇y|2 + 2

( z
|z| · ∇z

)2

+ + 2
√

2
( z
|z| · ∇z

)
·
{
φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)

} |z|√
2

+2|z|2
{
φ′′(x2)(x · ∇x)2 + φ′′(y2)(y · ∇y)2

}
≥ ψ(|x|)|z|2|∇x|2 + ψ(|y|)|z|2|∇y|2

−1
2
|z|2|φ′(x2)(x · ∇x) + φ′(y2)(y · ∇y)|2

+2|z|2
{
φ′′(x2)(x · ∇x)2 + φ′′(y2)(y · ∇y)2

}
.
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Consequently, we obtain

LF ≥ ψ(|x|)|z|2|∇x|2 + ψ(|y|)|z|2|∇y|2

+|z|2
{
(2φ′′(x2)− φ′(x2)2)(x · ∇x)2 + (2φ′′(y2)− φ′(y2)2)(y · ∇y)2

}
(13)

with the auxiliary function

ψ(t) := −(h2
0 + h1) + φ′(t2)(1− h0t), t ∈ [0,M). (14)

In formula (13) we additionally required φ′(t) ≥ 0 for t ∈ [0,M2) ; and we
determine a function φ(t) : [0,M2)→ R ∈ C2 such that

φ′′(t) ≥ 1
2
φ′(t)2 in [0,M2)

holds true. This is obviously realized by the function

φ(t) = −2 log(M2 − t), t ∈ [0,M2),

with φ′(t) = 2(M2 − t)−1, φ′′(t) = 2(M2 − t)−2 = 1
2φ

′(t)2 for t ∈ [0,M2) .
Inserting this function φ and the corresponding function ψ into (13) we infer
that

LF ≥ ψ(|x|) |z|2 |∇x|2 + ψ(|y|) |z|2 |∇y|2 in B,

if |x| < M, |y| < M in B
(15)

is correct. For all t ∈ [0,M) we now have the estimate

ψ(t) = −(h2
0 + h1) + 2

1− h0t

M2 − t2

=
h2

0 + h1

M2 − t2

{
− (M2 − t2) + 2

1− h0t

h2
0 + h1

}

=
h2

0 + h1

M2 − t2

{
t2 − 2

h0

h2
0 + h1

t +
( h0

h2
0 + h1

)2

− h2
0

(h2
0 + h1)2

+
2

h2
0 + h1

−M2

}

≥ h2
0 + h1

M2 − t2

{
2(h2

0 + h1)− h2
0

(h2
0 + h1)2

−M2

}
= 0,

by choosing

M =

√
h2

0 + 2h1

h2
0 + h1

. (16)

We therefore obtain the following
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Theorem 1. (Jäger’s maximum principle)
The function H = H(w,x) ∈ C0(B × R3) is subject to the inequalities (2),
and by x = x(u, v), y = y(u, v) we denote two solutions of the H-surface
system (3). We now define

F (u, v) :=
|x(u, v)− y(u, v)|2

(M2 − |x(u, v)|2)(M2 − |y(u, v)|2) , (u, v) ∈ B. (17)

Here, we assume |x(u, v)| < M , |y(u, v)| < M for all (u, v) ∈ B with

M =

√
h2

0 + 2h1

h2
0 + h1

.

Statement: Then the function F satisfies the linear elliptic differential in-
equality

LF :=
{

(M2 − |x|2)(M2 − |y|2)Fu

}
u

+
{

(M2 − |x|2)(M2 − |y|2)Fv

}
v

≥ 0 in B.

Theorem 2. (Geometric maximum principle of E.Heinz)
Let the function x(u, v) = (x1(u, v), . . . , xn(u, v)) : B → Rn ∈ C2(B)∩C0(B)
denote a solution of the differential inequality

|Δx(u, v)| ≤ a|∇x(u, v)|2, (u, v) ∈ B. (18)

The smallness condition

|x(u, v)| ≤M, (u, v) ∈ B, (19)

may be fulfilled, and we have

aM ≤ 1 for the constants a ∈ [0,+∞), M ∈ (0,+∞). (20)

Statement: Then we infer

sup
(u,v)∈B

|x(u, v)| ≤ sup
(u,v)∈∂B

|x(u, v)|.

Proof: The auxiliary function f(u, v) := |x(u, v)|2, (u, v) ∈ B, satisfies the
differential inequality

Δf(u, v) = 2
(
|∇x(u, v)|2 + x(u, v) ·Δx(u, v)

)
≥ 2
(
|∇x(u, v)|2 − |x(u, v)| |Δx(u, v)|

)
≥ 2
(
|∇x(u, v)|2 − a|x(u, v)| |∇x(u, v)|2

)
≥ 2|∇x(u, v)|2(1− aM) ≥ 0 in B.
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The maximum principle for subharmonic functions yields the statement above.
q.e.d.

Remarks:

1. If |x(u, v)| �≡M on B is valid, we deduce |x(u, v)| < M for all (u, v) ∈ B.
2. Theorem2 holds true especially for solutions of the H-surface system (3)

with a = h0.

Theorem 3. (Jäger’s estimate)
The function H = H(w,x) satisfies (1) and (2), and we set

M :=

√
h2

0 + 2h1

h2
0 + h1

.

Furthermore, the symbols x and y denote two solutions of the H-surface sys-
tem (3) such that

|x(u, v)| ≤M, |y(u, v)| ≤M for all (u, v) ∈ B. (21)

Additionally, we require ‖x‖C0(∂B) := sup
w∈∂B

|x(w)| < M and ‖y‖C0(∂B) < M .

Statement: Then we have the inequality

|x(w) − y(w)|2
(M2 − |x(w)|2)(M2 − |y(w)|2) ≤

‖x− y‖2C0(∂B)

(M2 − ‖x‖2C0(∂B))(M
2 − ‖y‖2C0(∂B))

(22)
for all w ∈ B.

Proof: We shall apply the geometric maximum principle of E. Heinz to the
functions x and y with a = h0. In this context we note that aM ≤ 1 is valid
if and only if

h2
0(h

2
0 + 2h1)

(h2
0 + h1)2

≤ 1

or equivalently h4
0 + 2h2

0h1 ≤ h4
0 + 2h2

0h1 + h2
1 is correct - and the latter

inequality is evidently fulfilled. Therefore, Theorem2 yields

‖x‖C0(B) ≤ ‖x‖C0(∂B) < M and ‖y‖C0(B) ≤ ‖y‖C0(∂B) < M.

We apply E.Hopf’s maximum principle to the auxiliary function F (u, v) from
Theorem1 and obtain (22). q.e.d.

Corollary: In addition to the assumptions of Theorem3 let the inequalities

‖x‖C0(∂B) ≤M ′ < M and ‖y‖C0(∂B) ≤M ′ < M

be satisfied. Then we have a constant k = k(M,M ′) > 0, such that
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‖x− y‖C0(B) ≤ k(M,M ′)‖x− y‖C0(∂B). (23)

Remark: In the original paper of

W. Jäger: Ein Maximumprinzip für ein System nichtlinearer Differential-
gleichungen.Nachr. Akad. Wiss. Göttingen, II. Math. Phys.Kl. (1976), 157-
164

a maximum principle is derived even for systems of the form

Δx(u, v) = F(u, v,x(u, v),∇x(u, v)), (u, v) ∈ B, (24)

under structural conditions for the right-hand side. Specialized to the H-
surface system, we obtain a quantitatively weaker statement.

§2 Gradient estimates for nonlinear elliptic systems

We take a domain Ω ⊂ R2 and consider solutions

x = x(u, v) = (x1(u, v), . . . , xn(u, v)) ∈ C2(Ω,Rn) ∩ C0(Ω,Rn) (1)

of the differential inequality

|Δx(u, v)| ≤ a|∇x(u, v)|2 + b for all (u, v) ∈ Ω (2)

with the constants a, b ∈ [0,+∞). We require the smallness condition

|x(u, v)| ≤M for all (u, v) ∈ Ω (3)

for the solution of (1), (2) with the constant M ∈ (0,+∞).

Remark: The H-surface system, linear systems as well as the Poisson equation
are covered by the differential inequality (2).

Now we shall estimate the quantity |∇x(u, v)| from above, in the interior of
Ω and on the boundary - with respect to adequate boundary conditions.

Proposition 1. Let x = x(u, v) denote a solution of (1)-(3). Then the func-
tion f(u, v) := |x(u, v)|2 in Ω satisfies the differential inequality

Δf(u, v) ≥ 2(1− aM)|∇x(u, v)|2 − 2bM, (u, v) ∈ Ω. (4)

Proof: At first, we have Δf(u, v) = 2(|∇x(u, v)|2 + x · Δx(u, v)) in Ω. Fur-
thermore, the relation (2) yields the inequality

|x ·Δx(u, v)| ≤ aM |∇x(u, v)|2 + bM in Ω ,

and we infer (4). q.e.d.
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Proposition 2. (Inner energy estimate)
Let the condition aM < 1 be satisfied and ϑ ∈ (0, 1) be chosen. Furthermore,
the disc BR(w0) := {w ∈ C : |w − w0| < R} with the center w0 ∈ Ω and the
radius R > 0 fulfills the inclusion BR(w0) ⊂ Ω. Then all solutions of (1)-(3)
satisfy the inequality∫

BϑR(w0)

∫
|∇x(u, v)|2 du dv

≤ 1
− logϑ

{
2πM

1− aM
sup

w∈∂BR(w0)

|x(w) − x(w0)|+ πbMR2

2(1− aM)

}
.

(5)

Proof: According to Theorem 3 from Chapter V, § 2 arbitrary functions φ ∈
C2(Ω) ∩ C0(Ω) satisfy the identity

φ(w0) =
1

2πR

∫
∂BR(w0)

φ(w) dσ(w) − 1
2π

∫
BR(w0)

∫ (
log

R

|w − w0|
)
Δφ(w) du dv.

(6)
Inserting φ(w) := |w − w0|2 = (u − u0)2 + (v − v0)2, w ∈ R2 we obtain

0 = R2 − 1
2π

∫
BR(w0)

∫ (
log

R

|w − w0|
)

4 du dv

and consequently ∫
BR(w0)

∫
log

R

|w − w0| du dv =
πR2

2
. (7)

Inserting φ = f(u, v) = |x(u, v)|2 into (6), Proposition 1 yields

1− aM

π

∫
BR(w0)

∫ (
log

R

|w − w0|
)
|∇x(u, v)|2 du dv − bMR2

2

≤ 1
2π

∫
BR(w0)

∫ (
log

R

|w − w0|
)
Δf(u, v) du dv

=
1

2πR

∫
∂BR(w0)

(
f(w)− f(w0)

)
dσ(w)

≤ 1
2πR

∫
∂BR(w0)

|x(w) − x(w0)| |x(w) + x(w0)| dσ(w)

≤ 2M sup
w∈∂BR(w0)

|x(w) − x(w0)|.



314 XII Nonlinear Elliptic Systems

This implies the estimate∫
BR(w0)

∫ (
log

R

|w − w0|
)
|∇x(u, v)|2 du dv

≤ 2πM
1− aM

sup
w∈∂BR(w0)

|x(w) − x(w0)|+ πbMR2

2(1− aM)
.

(8)

The inequality now yields (5). q.e.d.

Proposition 3. (Boundary-energy-estimate)
We have the condition aM < 1 and choose ϑ ∈ (0, 1). The disc BR(w0) with
the center w0 ∈ R and the radius R > 0 satisfies

BR(w0) ∩Ω =
{
w ∈ BR(w0) : Imw > 0

}
=: HR(w0). (9)

We set ∂HR(w0) = CR(w0) ∪ IR(w0) with

CR(w0) :=
{
w ∈ ∂BR(w0) : Imw ≥ 0

}
,

IR(w0) := [w0 −R,w0 + R].

For all solutions x ∈ C1(Ω) of (1)-(3) satisfying the boundary condition

x(u, 0) = 0 for all u ∈ IR(w0)

we have the following estimate∫
HϑR(w0)

∫
|∇x(u, v)|2 du dv

≤ 1
− logϑ

{
πM

1− aM
sup

w∈CR(w0)

|x(w) − x(w0)|+ πbMR2

4(1− aM)

}
.

(10)

Proof:

1. With the aid of a reflection we continue x as follows:

x̂(u, v) :=

{
x(u, v), w = u + iv ∈ HR(w0)

x(u,−v), w ∈ BR(w0) \HR(w0)
. (11)

The function x̂(u, v) is continuous in BR(w0) and satisfies the differen-
tial inequality (2) in BR(w0) \ IR(w0). However, the function xv(u, v)
may possess jump discontinuities on the interval IR(w0). We consider the
function

φ(u, v) := |x̂(u, v)|2, (u, v) ∈ BR(w0), (12)

which is subject to the differential inequality (4) in BR(w0) \ IR(w0).
Furthermore, we deduce
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φ ∈ C1(BR(w0)) and φ(u, 0) = 0 = φv(u, 0) in IR(w0). (13)

We now show that formula (6) is valid for the function φ = |x̂|2 as well.
Continuing as in the proof of Proposition 2, we then obtain the relation
(5) for the reflected function x̂(w). The estimate (10) finally follows by
means of symmetry arguments.

2. Choosing the parameter 0 < ε < ε0 sufficiently small, we define the sets

B±
ε :=

{
w ∈ C : 0 < ε < |w − w0| < R, ±Imw > 0

}
and set r := |w−w0| ∈ [0, R]. At the point w0 we utilize Green’s function

ψ(w) = ψ(u, v) =
1
2π

log
R

|w − w0|
=

1
2π

(logR− log r), w ∈ BR(w0) \ {w0}.
(14)

With the aid of Green’s formula we calculate

1
2π

∫
B±

ε

∫ (
log

R

|w − w0|
)
Δφ(u, v) du dv =

∫
B±

ε

∫
(ψΔφ − φΔψ) du dv

=
∫

∂B±
ε

(
ψ
∂φ

∂ν
− φ

∂ψ

∂ν

)
dσ

(15)

for 0 < ε < ε0. From the boundary conditions (13) and (14) for φ and ψ
we infer the following identity from (15) by addition

1
2π

∫
B+

ε ∪B−
ε

∫ (
log

R

|w − w0|
)
Δφ(u, v) du dv =

1
2πR

∫
∂BR(w0)

φ(w) dσ(w)

− 1
2πε

∫
|w−w0|=ε

φ(w) dσ(w) +
1
2π

∫
|w−w0|=ε

(
log

R

ε

)∂φ(w)
∂ν

dσ(w)

with 0 < ε < ε0. On account of φ ∈ C1(BR(w0)) the transition to the
limit ε→ 0+ yields

φ(w0) =
1

2πR

∫
∂BR(w0)

φ(w) dσ(w)

− 1
2π

∫
BR(w0)

∫ (
log

R

|w − w0|
)
Δφ(u, v) du dv.

Following part 1 of the proof, we now arrive at the statement above.
q.e.d.
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With the aid of Proposition 2 and 3, we now can estimate the oscillation
of x via the Courant-Lebesgue lemma on selected circular lines. Using the
Wirtinger operators

∂

∂w
=

1
2

( ∂

∂u
− i

∂

∂v

)
and

∂

∂w
=

1
2

( ∂

∂u
+ i

∂

∂v

)
we consider the complex derivative function

y(w) := xw(w), w ∈ Ω. (16)

The differential inequality (2) can be rewritten into the form

4|xww(w)| ≤ 4a|xw(w)|2 + b

or equivalently

|yw(w)| ≤ a|y(w)|2 +
1
4
b for all w ∈ Ω. (17)

By the oscillation inequalities we now shall estimate the Cauchy integral of
the complex derivative function y for solutions of (2).

Proposition 4. Given the assumptions of Proposition 2, each number ϑ ∈
(0, 1) admits a number λ = λ(ϑ) ∈ [14 ,

1
2 ] such that the derivative function

y(w) = xw(w) for a solution x(w) of (1)-(3) satisfies the following inequality:

∣∣∣∣ 1
2πi

∫
∂BλϑR(w0)

y(w)
w − w0

dw

∣∣∣∣ ≤ 8
√
M2 + 1

8bMR2

√
log 4

√
1− aM

1
ϑ
√− logϑ

1
R

+
a

2
ϑR sup

w∈BϑR(w0)

|y(w)|2 +
b

8
ϑR.

(18)

Proof:

1. Proposition 2 yields the following estimate for arbitrary numbers ϑ ∈
(0, 1): √√√√ ∫

BϑR(w0)

∫
|∇x(u, v)|2 du dv ≤

√
π√− logϑ

2
√
M2 + b

8MR2

√
1− aM

. (19)

Due to the Courant-Lebesgue oscillation lemma (compare Theorem 3 in
Chapter I, § 5) we have a number λ = λ(ϑ) ∈ [14 ,

1
2 ] satisfying

∫
∂BλϑR(w0)

|dx(w)| ≤ 4π√
log 4

√
M2 + b

8MR2

√
1− aM

1√− logϑ
. (20)
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2. We set B := BλϑR(w0) and � := λϑR. With the aid of the Gaussian
integral theorem in the complex form (see Chapter IV, § 4) we calculate∫

∂B

y(w)
w − w0

dw −
∫

∂B

dx(w)
w − w0

=
∫

∂B

xw(w)
w − w0

dw −
∫

∂B

xw(w) dw + xw(w) dw
w − w0

= −
∫

∂B

xw(w) dw
w − w0

= −1
�

( ∫
∂B

xw(w) dw

(w−w0
� )

)

= −1
�

( ∫
∂B

xw(w) dw
�

w−w0

)
= − 1

�2

(∫
∂B

(w − w0)xw dw

)

= − 1
�2

(
2i
∫
B

∫
∂

∂w

{
(w − w0)xw(w)

}
du dv

)

=
2i
�2

∫
B

∫
(w − w0)xww(w) du dv

=
2i
�2

∫
B

∫
(w − w0)yw(w) du dv.

3. We now estimate as follows:∣∣∣∣ 1
2πi

∫
∂B

y(w)
w − w0

dw

∣∣∣∣ ≤ 1
2π

∫
∂B

|dx(w)|
|w − w0| +

1
π�2

∫
B

∫
|w − w0||yw(w)| du dv

≤ 1
2π�

∫
∂B

|dx(w)| + � sup
w∈B

|yw(w)|

≤ 2
πϑR

4π√
log 4

√
M2 + b

8MR2

√
1− aM

1√− logϑ

+
ϑR

2

(
a sup

w∈B
|y(w)|2 +

b

4

)

≤ 8
ϑR

√
M2 + b

8MR2

√
log 4

√
1− aM

1√− logϑ

+
a

2
ϑR sup

w∈BϑR(w0)

|y(w)|2 +
b

8
ϑR.

q.e.d.
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Proposition 5. With the assumptions of Proposition 3 we consider the re-
flected gradient function

z(w) :=

{
ixw(w), w ∈ HR(w0)

−ixw(w), w ∈ BR(w0) \HR(w0)
. (21)

This function belongs to the class C0(BR(w0)) ∩ C1(BR(w0) \ IR(w0)) and
satisfies the differential inequality

|zw(w)| ≤ a|z(w)|2 +
b

4
for all w ∈ BR(w0) \ IR(w0). (22)

Furthermore, there exists a number λ = λ(ϑ) ∈ [14 ,
1
2 ] for each ϑ ∈ (0, 1), such

that

∣∣∣∣ 1
2πi

∫
∂BλϑR(w0)

z(w)
w − w0

dw

∣∣∣∣ ≤ 8
√
M2 + 1

8bMR2

√
log 4

√
1− aM

1
ϑ
√− logϑ

1
R

+
a

2
ϑR sup

w∈BϑR(w0)

|z(w)|2 +
b

8
ϑR.

(23)

Proof:

1. Due to the relation (11) we reflect x(u, v) and obtain the function x̂(u, v)
satisfying

|Δx̂(u, v)| ≤ a|∇x̂(u, v)|2 + b for all (u, v) ∈ BR(w0) \ IR(w0). (24)

We observe xu(u, 0) = 0 = Im z(u, 0) in IR(w0), and the function defined
in (21) is continuous in BR(w0). Furthermore, we have

x̂w(w) =

{
xw(w) = −iz(w), w ∈ HR(w0)

xw(w) = iz(w), w ∈ BR(w0) \HR(w0)
, (25)

and (24) yields the inequality (22). In part 1 of the proof for Proposition
4 we replace x by the function x̂, and we deduce

∫
∂BλϑR(w0)

|dx̂(w)| ≤ 4π√
log 4

√
M2 + b

8MR2

√
1− aM

1√− logϑ
(26)

with a suitable λ = λ(ϑ) ∈ [14 ,
1
2 ]. The Courant-Lebesgue lemma is namely

applicable to the function x̂, whose derivatives might possess jump dis-
continuities at the interval IR(w0).

2. We now follow the arguments in part 2 of the proof for Proposition 4, and
we additionally set
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B± :=
{
w ∈ BλϑR(w0) : ±Imw > 0

}
,

C± :=
{
w ∈ ∂BλϑR(w0) : ±Imw ≥ 0

}
.

The calculation there yields∫
C±

ix̂w(w)
w − w0

dw − i

∫
C±

dx̂(w)
w − w0

=
1
�2

( ∫
C±

(w − w0)ix̂w(w) dw
)
. (27)

We observe that the integrand (w − w0)ix̂w(w), approaching the interval
IR(w0) from above or from below, is subject to a change of sign, and we
infer ∫

C+

ix̂w(w)
w − w0

dw +
∫

C−

−ix̂w(w)
w − w0

dw − i

∫
C+

dx̂(w)
w − w0

+ i

∫
C−

dx̂(w)
w − w0

=
1
�2

( ∫
∂B+

(w − w0)ix̂w(w) dw
)

+
1
�2

( ∫
∂B−

(w − w0)(−i)x̂w(w) dw
)

=
1
�2

(
2i
∫
B+

∫
(w − w0)ix̂ww(w) du dv

)

+
1
�2

(
2i
∫
B−

∫
(w − w0)(−i)x̂ww(w) du dv

)

= − 2
�2

∫
B+

∫
(w − w0)x̂ww(w) du dv

+
2
�2

∫
B−

∫
(w − w0)x̂ww(w) du dv.

Taking (25) into account, we obtain the following estimate:∣∣∣∣ 1
2πi

∫
∂BλϑR(w0)

z(w)
w − w0

dw

∣∣∣∣ = 1
2π

∣∣∣∣ ∫
C+

ix̂w(w)
w − w0

dw +
∫

C−

−ix̂w(w)
w − w0

dw

∣∣∣∣
≤ 1

2π

∫
∂B

|dx̂(w)|
|w − w0| +

1
π�2

∫
B

∫
|w − w0| |zw(w)| du dv.

We now deduce the estimate (23) as in part 3 of the proof for Proposition
4. Therefore, we replace the function y by z and utilize besides (22) the
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oscillation estimate (26). q.e.d.

Remark: With adequate assumptions, Proposition 5 remains true for the discs
with centers w0 ∈ C and Imw0 > 0 satisfying BR(w0) ∩ Ω = {w ∈ BR(w0) :
Imw > 0} . The estimate of Dirichlet’s integral in Proposition 3 remains
correct - in a slightly modified form - also in this situation. We shall use the
Propositions 3 and 5 in the next section, in order to derive a global C1+α-
estimate.

Theorem 1. (Gradient estimate of E.Heinz)
A solution x = x(u, v) of the problem (1)-(3) with aM < 1 is given on the
bounded domain Ω ⊂ R2. We define

δ(w) := dist {w, ∂Ω} = inf
ζ∈C\Ω

|ζ − w|, w ∈ Ω and d := sup
w∈Ω

δ(w).

Then we have a constant C = C(a,M, bd2), such that the inequality

δ(w)|∇x(w)| ≤ C(a,M, bd2) for all w ∈ Ω (28)

is satisfied.

Proof:

1. At first, we assume x = x(u, v) ∈ C1(Ω,Rn) and consider the continuous
function

φ(w) := δ(w)|y(w)|, w ∈ Ω (29)

with y(w) = xw(w), w ∈ Ω. On account of the boundary condition φ|∂Ω =
0 this function attains its maximum at an interior point w0 ∈ Ω. Setting
R := δ(w0) > 0 we obtain BR(w0) ⊂ Ω. We apply the Proposition 4: For
an arbitrary number ϑ ∈ (0, 1) we find a quantity λ = λ(ϑ) ∈ [14 ,

1
2 ], such

that

R

∣∣∣∣ 1
2πi

∫
∂BλϑR(w0)

y(w)
w − w0

dw

∣∣∣∣ ≤ c1(a,M, bd2)
ϑ
√− logϑ

+
bd2

8

+
a

2
ϑR2 sup

w∈BϑR(w0)

|y(w)|2
(30)

holds true with the constant

c1(a,M, bd2) :=
8
√
M2 + 1

8bMd2

√
log 4

√
1− aM

.

On the disc B := BλϑR(w0) of radius � := λϑR ∈ (0, R) we infer the
following integral representation from Theorem 1 in Chapter IV, § 5:
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y(w0) =
1

2πi

∫
∂B

y(w)
w − w0

dw − 1
π

∫
B

∫
yw(w)
w − w0

du dv. (31)

The first integral on the right-hand side of (31) has been estimated in
(30). We introduce polar coordinates and observe (17); then we obtain
the following inequality for the second integral in (31):

R

π

∣∣∣∣ ∫
B

∫
yw(w)
w − w0

du dv

∣∣∣∣ ≤ R

π
sup
w∈B

|yw(w)|
∫
B

∫
1

|w − w0| du dv

≤ R

π

(
a sup

w∈BϑR(w0)

|y(w)|2 +
b

4

)
2π

1
2
ϑR

≤ aϑR2 sup
w∈BϑR(w0)

|y(w)|2 +
1
4
bd2.

(32)

2. From (29)-(32) we infer

φ(w0) = δ(w0)|y(w0)| = R|y(w0)|

≤ c1(a,M, bd2)
ϑ
√− logϑ

+
3
8
bd2 +

3
2
aϑR2 sup

w∈BϑR(w0)

|y(w)|2

≤ c1(a,M, bd2)
ϑ
√− logϑ

+
3
8
bd2 +

3
2
aϑR2 sup

w∈BϑR(w0)

{ δ(w)
R− ϑR

|y(w)|
}2

≤ c1(a,M, bd2)
ϑ
√− logϑ

+
3
8
bd2 +

3a
2

ϑ

(1− ϑ)2
sup

w∈BϑR(w0)

φ(w)2.

Consequently, we have the inequality

φ(w0) ≤ c1(a,M, bd2)
ϑ
√− logϑ

+
3
8
bd2 +

3a
2

ϑ

(1 − ϑ)2
φ(w0)2 (33)

for all ϑ ∈ (0, 1).
3. Taking ϑ ∈ (0, 1) we define

α(ϑ) :=
3a
2

ϑ

(1− ϑ)2
> 0 with lim

ϑ→0+
α(ϑ) = 0

and

β(ϑ) :=
c1(a,M, bd2)
ϑ
√− logϑ

+
3
8
bd2 > 0 with lim

ϑ→0+
β(ϑ) = +∞.

Then we deduce

α(ϑ)β(ϑ) =
3ac1(a,M, bd2)

2(1− ϑ)2
√− logϑ

+
9abd2ϑ

16(1− ϑ)2
→ 0, ϑ→ 0 + .
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Setting t := φ(w0) we obtain the inequality

α(ϑ)t2 − t + β(ϑ) ≥ 0 for all ϑ ∈ (0, 1). (34)

We note the equivalent statement(
t− 1

2α(ϑ)

)2

≥ 1− 4α(ϑ)β(ϑ)
4α(ϑ)2

for all ϑ ∈ (0, 1). (35)

There now exists a quantity ϑ0 = ϑ0(a,M, bd2) ∈ (0, 1) satisfying

0 < 4α(ϑ)β(ϑ) ≤ 3
4

for all ϑ ∈ (0, ϑ0], (36)

which implies√
1− 4α(ϑ)β(ϑ) ≥ 1

2
for all ϑ ∈ (0, ϑ0]. (37)

When we introduce the functions

χ±(ϑ) :=
1±√1− 4α(ϑ)β(ϑ)

2α(ϑ)
, ϑ ∈ (0, ϑ0],

the relation (35) yields the subsequent alternative for each number ϑ ∈
(0, ϑ0], namely

t ≤ χ−(ϑ) o r t ≥ χ+(ϑ). (38)

Since the functions χ−(ϑ) < χ+(ϑ), ϑ ∈ (0, ϑ0] depend continuously
on the parameter ϑ in the interval (0, ϑ0] and the asymptotic behavior
lim

ϑ→0+
χ+(ϑ) = +∞ is correct, we infer

t ≤ χ−(ϑ) for all ϑ ∈ (0, ϑ0].

This implies

t ≤ χ−(ϑ0) = χ−(ϑ0(a,M, bd2)) =:
1
2
C(a,M, bd2) (39)

and consequently

sup
w∈Ω

δ(w)|∇x(w)| = 2 sup
w∈Ω

δ(w)|y(w)| = 2 sup
w∈Ω

φ(w)

= 2φ(w0) = 2t ≤ C(a,M, bd2).

We thus obtain the desired estimate (28) in the case x ∈ C1(Ω,Rn).
4. Now we assume only the regularity x ∈ C2(Ω) ∩ C0(Ω). Then we apply

the estimate (28) on the set

Ωε :=
{
w ∈ Ω : dist {w, ∂Ω} > ε

}
for 0 < ε < ε0
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at first, and we obtain

(δ(w) − ε)|∇x(w)| ≤ C(a,M, bd2) for all w ∈ Ωε (40)

with an arbitrary parameter 0 < ε < ε0. The transition to the limit
ε→ 0+ yields

δ(w)|∇x(w)| ≤ C(a,M, bd2) for all w ∈ Ω.
q.e.d.

We consider the compact set K ⊂ C and introduce the linear space

C1+α(K,Rn) :=
{
x ∈ C1(K,Rn) : sup

w1,w2∈K
w1 	=w2

|∇x(w1)−∇x(w2)|
|w1 − w2|α < +∞

}
,

where α ∈ (0, 1) has been chosen. When we endow this space with the C1+α-
Hölder-norm

‖x‖C1+α(K) := sup
w∈K

|x(w)| + sup
w∈K

|∇x(w)| + sup
w1,w2∈K
w1 	=w2

|∇x(w1)−∇x(w2)|
|w1 − w2|α ,

(41)
the set C1+α(K,Rn) becomes a Banach space. We easily infer the following
result from Theorem 1 above, namely

Theorem 2. (Inner C1+α-estimate)
Let a solution x = x(u, v) of (1)-(3) with aM < 1 be given on the bounded
domain Ω ⊂ R2. We choose an arbitrary number ε > 0 and consider the
compact set

Kε :=
{
w ∈ Ω : dist {w, ∂Ω} ≥ ε

}
,

and additionally we fix the exponent α ∈ (0, 1). Then we have a constant
C = C(a,M, b, d, ε, α) ∈ (0,+∞), such that

‖x‖C1+α(Kε) ≤ C(a,M, b, d, ε, α). (42)

Proof: At first, we infer the inequality

sup
w∈Kε

|x(w)| ≤M

from (3), and Theorem 1 yields the gradient estimate

|∇x(w)| ≤ 2C(a,M, bd2)
ε

for all w ∈ K ε
2
. (43)

For all points w0 ∈ Kε we have the representation

xw(w∗) =
1

2πi

∫
∂B ε

2
(w0)

xw(w)
w − w∗

dw − 1
π

∫
B ε

2
(w0)

∫
xww(w)
w − w∗

du dv, w∗ ∈ B ε
2
(w0)

(44)
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according to Theorem1 in Chapter IV, § 5. On account of (43) the first pa-
rameter integral satisfies a Lipschitz condition in the disc B ε

4
(w0), with a

Lipschitz constant depending on a,M, bd2, ε. Furthermore, the relation (43)
implies

sup
w∈K ε

2

|xww(w)| ≤ C1(a,M, b, d, ε) < +∞ .

We apply Hadamard’s estimate (compare Theorem7 in Chapter IV, § 4) to the
second parameter integral in B ε

4
(w0) and get a Hölder condition depending

on a,M, b, d, ε, α. Therefore, the relation (44) yields the inequality

|xw(w1)− xw(w2)| ≤ C2(a,M, b, d, ε, α)|w1 − w2|α

for all w1, w2 ∈ K 3
4 ε ⊂ Ω.

(45)

Finally, we obtain the estimate (42). q.e.d.

§3 Global estimates for nonlinear systems

We continue our considerations from § 2 and quote these results by the addi-
tional symbol *. Let us define the unit disc E := {ζ = ξ + iη : |ζ| < 1} and
consider solutions of the problem

x = x(ζ) = (x1(ξ, η), . . . , xn(ξ, η)) ∈ C2(E,Rn) ∩ C1(E,Rn),

|Δx(ξ, η)| ≤ a|∇x(ξ, η)|2 + b for all (ξ, η) ∈ E,

|x(ξ, η)| ≤M for all (ξ, η) ∈ E,

x(ξ, η) = 0 for all (ξ, η) ∈ ∂E

(1)

with the constants a, b ∈ [0,+∞) and M ∈ (0,+∞). We intend to esti-
mate |∇x| in E from above and to establish an adequate a priori bound for
‖x‖C1+α(E). To this aim we map the unit disc E conformally onto the upper
half-plane C+ := {w = u + iv : v > 0} with the aid of the following Möbius
transformation (compare Chapter IV, § 7, Example 1):

f(ζ) =
ζ + i

iζ + 1
, ζ ∈ E; f : ∂E \ {i} ↔ R. (2)

We now define the ray

S :=
{
ζ = −it

∣∣∣ 0 ≤ t ≤ 1
}
⊂ E

and the interval
J :=

{
w = iv

∣∣∣ 0 ≤ v ≤ 1
}
⊂ C+.

The function
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f(iη) = i
1 + η

1− η
, η ∈ [−1, 0] (3)

then maps the ray S bijectively onto the interval J . The inverse mapping of
f is denoted by

ζ = g(w) : C+ → E, R → ∂E \ {i}, J → S. (4)

With the parameter μ ∈ [0, 2π) we consider the rotated rays

Sμ :=
{
ζ̃ = eiμζ : ζ ∈ S

}
and the family of conformal mappings

gμ(w) := eiμg(w), w ∈ C+. (5)

Evidently, we have

gμ : C+ ↔ E conformal, gμ : J ↔ Sμ for 0 ≤ μ < 2π. (6)

Setting
Ω+ :=

{
w ∈ C+ : dist{w, J} < 1

}
,

we have a constant β ∈ (0, 1) such that the distortion estimate

β ≤ |g′μ(w)| ≤ 1
β

for all w ∈ Ω+ and all μ ∈ [0, 2π) (7)

is correct. With the aid of arguments from § 2, we now prove the following

Theorem 1. (Global C1+α-estimate)
Let x = x(ξ, η) denote a solution of (1) with aM < 1, and let the exponent
α ∈ (0, 1) be chosen. Then we have a constant C = C(a, b,M, α) satisfying

‖x‖C1+α(E) ≤ C(a, b,M, α). (8)

Proof:

1. By the method of Theorem1* we now shall estimate |∇x| in E from above.
In this context we consider the function

φ(ζ) := |xζ(ζ)| = 1
2
|∇x(ζ)|, ζ ∈ E, (9)

which attains its maximum at a point ζ0 ∈ E. For this point ζ0 ∈ E
we find a number μ ∈ [0, 2π) and a point w0 ∈ J ⊂ C+ ∪ R satisfying
gμ(w0) = ζ0. We fix the angle μ and suppress the index. Via the mapping
(5) we now introduce new parameters (u, v) into the function x = x(ξ, η)
and reflect x ◦ g(u, v) at the real axis v = 0 as follows:
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x̂(u, v) :=

{
x ◦ g(u, v), w = u + iv ∈ C+ ∪R

x ◦ g(u,−v), w = u + iv ∈ C− := {w̃ ∈ C : Im w̃ < 0} .

(10)
A simple calculation shows

x̂(u, v) ∈ C2(C+ ∪ C−) ∩ C1(C+ ∪ R) ∩ C0(C),

sup
u+iv∈C

|x̂(u, v)| ≤M, x̂(u, 0) = 0 for all u ∈ R,

|Δx̂(u, v)| ≤ a|∇x̂(u, v)|2 +
b

β2
for all w = u + iv ∈ Ω+ ∪Ω−,

(11)
where we abbreviate Ω− := {w ∈ C : w ∈ Ω+}. We now choose R = 1
as fixed and ϑ ∈ (0, 1) arbitrarily. Then we estimate the energy as in
Proposition3*, namely ∫

Bϑ(w0)

∫
|∇x̂(u, v)|2 du dv .

(Please observe the Remark following Proposition 5*.)
2. We now make the transition to the reflected complex derivative function

z(w) :=

{
ix̂w(w), w ∈ B1(w0) ∩ C+

−ix̂w(w), w ∈ B1(w0) ∩ C− (12)

from Proposition 5*. This function is continuous in B1(w0) and satisfies
the differential inequality

|zw(w)| ≤ a|z(w)|2 +
b

4β2
for all w ∈ B1(w0) \ R. (13)

The integral representation of Pompeiu-Vekua from Theorem1 in Chapter
IV, § 5 is valid for z as well, and we have

z(w0) =
1

2πi

∫
∂Bλϑ(w0)

z(w)
w − w0

dw − 1
π

∫
Bλϑ(w0)

∫
zw(w)
w − w0

du dv (14)

with arbitrary parameters ϑ, λ ∈ (0, 1). In the derivation of this formula
we integrate separately on the half-planes C±: Since z is continuous on
the real line R, the curvilinear integrals on the real line annul each other.
We use Proposition 5* and get a number λ = λ(ϑ) ∈ [14 ,

1
2 ], such that

Cauchy’s integral of z can be estimated as follows:∣∣∣∣ 1
2πi

∫
∂Bλϑ(w0)

z(w)
w − w0

dw

∣∣∣∣ ≤ c1(a, b,M)
ϑ
√− logϑ

+
b

8β2
+
a

2
ϑ sup

w∈Bϑ(w0)

|z(w)|2 (15)
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with the constant

c1(a, b,M) :=
8
√
M2 + b

8β2M
√

log 4
√

1− aM
.

Parallel to (32)* , we deduce the following estimate from the differential
inequality (13):∣∣∣∣ 1π

∫
Bλϑ(w0)

∫
zw(w)
w − w0

du dv

∣∣∣∣ ≤ aϑ sup
w∈Bϑ(w0)

|z(w)|2 +
b

4β2
. (16)

3. Noting that

|z(w)| = |x̂w(w)| = |xζ ◦ g(w)||g′(w)|, w ∈ C+ ∪R ,

the relation (7) yields the inequality

β|z(w)| ≤ φ(g(w)) ≤ 1
β
|z(w)| for all w ∈ Bϑ(w0) ∩ C+. (17)

We then obtain the following estimate from (14)-(16):

φ(ζ0) = φ(g(w0)) ≤ 1
β
|z(w0)|

≤ c1(a, b,M)
βϑ
√− logϑ

+
3b
8β3

+
3a
2β

ϑ sup
w∈Bϑ(w0)

|z(w)|2

≤ c1(a, b,M)
βϑ
√− logϑ

+
3b
8β3

+
3a
2β3

ϑ sup
w∈Bϑ(w0)∩C+

φ(g(w))2

≤ c1(a, b,M)
βϑ
√− logϑ

+
3b
8β3

+
3a
2β3

ϑφ(ζ0)2.

Therefore, the subsequent inequality holds true

φ(ζ0) ≤ c1(a, b,M)
βϑ
√− logϑ

+
3b
8β3

+
3a
2β3

ϑφ(ζ0)2 for all 0 < ϑ < 1. (18)

4. Parallel to part 3 of the proof for Theorem1* , we obtain the existence of
a constant C1 = C1(a, b,M) from (18), such that

sup
ζ∈E

|∇x(ζ)| = 2 sup
ζ∈E

φ(ζ) ≤ C1(a, b,M) (19)

holds true. We apply the representation formula (14) - valid in E - to the
function xw. Then we find a constant C2 = C2(a, b,M, α) for the number
α ∈ (0, 1) given - as in the proof of Theorem 2* - such that

|∇x(ζ1)−∇x(ζ2)| ≤ C2|ζ1 − ζ2|α for all ζ1, ζ2 ∈ E (20)

is valid. The statement (8) can now be inferred from the inequalities (19)
and (20). q.e.d.
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§4 The Dirichlet problem for nonlinear elliptic systems

We choose the parameters α ∈ (0, 1) and M ∈ (0,+∞) and prescribe periodic
boundary values - with the period 2π - on the boundary of the unit disc
B := {w = u + iv : |w| < 1}, namely

g = g(t) = (g1(t), . . . , gn(t)) : R → Rn ∈ C2+α
2π (R,Rn),

|g(t)| ≤M for all t ∈ R.
(1)

Now we concentrate our interest on the Dirichlet problem

x = x(u, v) = (x1(u, v), . . . , xn(u, v)) ∈ C2+α(B,Rn),

Δx(u, v) = F(u, v,x(u, v),∇x(u, v)) for all (u, v) ∈ B,

|x(u, v)| ≤M for all (u, v) ∈ B,

x(cos t, sin t) = g(t) for all t ∈ R.

(2)

As our right-hand side F we prescribe a homogeneous quadratic polynomial
in the first derivatives

∇x(u, v) = (x1u(u, v), . . . , xnu(u, v), x1v(u, v), . . . , xnv(u, v)).

The coefficients are assumed to depend Hölder-continuously on the variables
u, v and Lipschitz-continuously on the vector x, and we require that they
vanish on the exterior space |x| ≥M . More precisely, we define the function

F(u, v,x;p,q) = (F1(. . .), . . . , Fn(. . .)) : B × Rn × R2n × R2n → Rn,

Fk(u, v,x;p,q) :=
2n∑

i,j=1

fk
ij(u, v,x)piqj , k = 1, . . . , n.

(3)

Here the coefficients fulfill

fk
ij(w,x) = 0 for all w ∈ B and x ∈ Rn with |x| ≥M,

|fk
ij(w,x)| ≤ K for all w ∈ B and x ∈ Rn with |x| ≤M,

|fk
ij(w,x) − fk

ij(w̃, x̃)| ≤ L{|w − w̃|α + |x− x̃|}
for all w, w̃ ∈ B and x, x̃ ∈ Rn

(4)

for i, j = 1, . . . , 2n and k = 1, . . . , n ; where the constants K,L ∈ [0 +∞) are
given. Finally, we use the following function F as the right-hand side in (2),
namely

F(u, v,x,p) := F(u, v,x;p,p), (u, v) ∈ B, x ∈ Rn, p ∈ R2n.

All elliptic systems appearing in differential geometry are of the following
form:
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Δx(u, v) = F(u, v,x(u, v);∇x(u, v),∇x(u, v))

= F(u, v,x(u, v),∇x(u, v)), (u, v) ∈ B.
(5)

Fixing (u, v,x) ∈ B × Rn , the subsequent mapping

(p,q) �→ F(w,x;p,q) (6)

is bilinear but not necessarily symmetric.
Choosing a parameter a ∈ [0,+∞), we now require a growth condition for the
right-hand side F:

|F(w,x;p,p)| ≤ a|p|2or equivalently

√√√√ n∑
k=1

( 2n∑
i,j=1

fk
ij(w,x)pipj

)2

≤ a

2n∑
i=1

p2
i

for all w ∈ B, x ∈ Rn, p = (p1, . . . , p2n) ∈ R2n.
(7)

Remarks:

1. On the basis of (3) and (4) we can certainly find a constant a satisfying
(7). One should optimize this constant, however. Though the constants
K,L from (4) do not enter quantitatively into our later existence result,
this is the case for the constant a.

2. If the condition aM ≤ 1 is fulfilled, then a solution x = x(u, v) of (2) is
subject to the geometric maximum principle of E. Heinz

sup
(u,v)∈B

|x(u, v)| ≤ sup
(u,v)∈∂B

|x(u, v)|. (8)

In order to solve (2), we make the transition to zero boundary values. In this
context we solve the following boundary value problem by potential-theoretic
methods (compare Theorem 5 in Chapter IX, § 6):

y = y(u, v) ∈ C2+α(B,Rn),

Δy(u, v) = 0 for all (u, v) ∈ B,

y(cos t, sin t) = g(t) for all t ∈ R.

(9)

The maximum principle for harmonic functions yields

sup
(u,v)∈B

|y(u, v)| ≤M. (10)

If x denotes a solution of (2), we then consider the difference function

z(u, v) := x(u, v)− y(u, v), (u, v) ∈ B, (11)

which belongs to the space
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C2+α
∗ (B) :=

{
z̃(u, v) ∈ C2+α(B,Rn) : z̃(u, v) = 0 auf ∂B

}
.

Now the function z satisfies the following differential equation:

Δz(u, v) = Δx(u, v) = F(u, v,x(u, v);∇x(u, v),∇x(u, v))

= F(u, v,y(u, v) + z(u, v);∇y(u, v) +∇z(u, v),∇y(u, v) +∇z(u, v))

= F(u, v,y(u, v) + z(u, v);∇z(u, v),∇z(u, v))

+F(u, v,y(u, v) + z(u, v);∇y(u, v),∇z(u, v))

+F(u, v,y(u, v) + z(u, v);∇z(u, v),∇y(u, v))

+F(u, v,y(u, v) + z(u, v);∇y(u, v),∇y(u, v))

=: G(u, v, z(u, v),∇z(u, v)) for all (u, v) ∈ B.
(12)

Therefore, the function z(u, v) ∈ C2+α∗ (B) satisfies an inhomogeneous differ-
ential equation with quadratic growth in its gradient. We choose an arbitrary
ε > 0 , and with the aid of (7) we deduce the following inequality

|Δz(u, v)| = |F(u, v,y(u, v) + z(u, v),∇y(u, v) +∇z(u, v))|
≤ a|∇y(u, v) +∇z(u, v)|2

≤ a
{
|∇y(u, v)|2 + 2

1√
ε
|∇y(u, v)| √ε|∇z(u, v)|+ |∇z(u, v)|2

}
≤ a(1 + ε)|∇z(u, v)|2 + a

(
1 +

1
ε

)
|∇y(u, v)|2

≤ a(1 + ε)|∇z(u, v)|2 + a
(
1 +

1
ε

)
sup

(u,v)∈B

|∇y(u, v)|2

(13)
for all (u, v) ∈ B. Very important is the subsequent

Proposition 1. (A priori estimate)
Let the constants α ∈ (0, 1) and a ∈ [0,+∞), M ∈ (0,+∞) with 2aM < 1 be
chosen. Then we have an a-priori-constant C1(a,M,α), such that all solutions
of the problem

z = z(u, v) ∈ C2(B) ∩ C1(B),

Δz(u, v) = G(w, z(w),∇z(w)) for all w ∈ B,

z(w) = 0 for all w ∈ ∂B

(14)

satisfy the following estimate:

‖z‖C1+α(B,Rn) ≤ C1(a,M,α). (15)

Proof:
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1. At first, we verify the subsequent statement:

sup
w∈B

|z(w)| ≤ 2M. (16)

If this were violated, there would exist a point w0 ∈ B satisfying

2M < |z(w0)| ≤ |y(w0) + z(w0)|+ |y(w0)| ≤ |y(w0) + z(w0)|+ M

and consequently
M < |y(w0) + z(w0)|.

For continuity reasons we can find a disc B�(w0) ⊂ B such that

|y(w) + z(w)| ≥M for all w ∈ B�(w0). (17)

On account of the assumption (4) for the coefficients fk
ij we infer

Δz(w) = F(w,y(w) + z(w);∇y(w) +∇z(w),∇y(w) +∇z(w))

= 0, w ∈ B�(w0).
(18)

We now consider the function

φ(w) := |z(w)|2, w ∈ B�(w0), (19)

which is subharmonic due to

Δφ(w) = 2
(|∇z(w)|2 +z(w) ·Δz(w)

)
= 2|∇z(w)|2 ≥ 0 in B�(w0) .

Choosing w0 ∈ B in such a way that

|z(w0)| = sup
w∈B

|z(w)|

holds true, the subharmonic function φ(w), w ∈ B�(w0) attains its maxi-
mum at the interior point w0 . Therefore, we obtain

φ(w) ≡ φ(w0) in B�(w0). (20)

A continuation argument finally yields

φ(w) ≡ φ(w0) in B

contradicting the statement φ(w) = 0 on ∂B. Consequently, the relation
(16) is satisfied.

2. Formula (13) gives us the differential inequality

|Δz(u, v)| ≤ a(1 + ε)|∇z(u, v)|2 + b(ε), (u, v) ∈ B, (21)

where we have set

b(ε) := a
(
1 +

1
ε

)
sup

(u,v)∈B

|∇y(u, v)|2 .

We choose ε > 0 so small that a(1 + ε) 2M < 1 is fulfilled, and Theorem1
from § 3 yields the following a priori estimate (15) on account of (16) and
(21). q.e.d.
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We now transform (14) into an integral equation. We consider the Banach
space

B :=
{
x ∈ C1(B,Rn) : x(w) = 0 on ∂B

}
endowed with the norm

‖ · ‖ := ‖ · ‖C1(B,Rn) ,

and define the balls
BN :=

{
x ∈ B : ‖x‖ < N

}
with the radii N > 0 . Taking 0 ≤ λ ≤ 1 we investigate the nonlinear integral
operators (ζ = ξ + iη)

Vλ(z)|w := − λ

2π

∫
B

∫
log
∣∣∣1− wζ

ζ − w

∣∣∣G(ζ, z(ζ),∇z(ζ)) dξ dη, w ∈ B. (22)

With the aid of the Leray-Schauder degree of mapping we shall construct a
solution of the nonlinear integral equation z = V1(z) . The latter then solves
(14), and by the transition (11) we obtain a solution of the problem (2). At
first, we need the following

Proposition 2. Green’s operator

u(w) ∈ C0(B) �→ L(u)|w := − 1
2π

∫
B

∫
log
∣∣∣1− wζ

ζ − w

∣∣∣u(ζ) dξ dη, w ∈ B,

(23)
maps the space C0(B) continuously to the space

C1+β
∗ (B) :=

{
v(w) ∈ C1+β(B) : v(w) = 0 for all w ∈ ∂B

}
for each number β ∈ (0, 1). Therefore, we have a constant C2(β) satisfying

‖L(u)‖C1+β(B) ≤ C2(β)‖u‖C0(B) for all u ∈ C0(B). (24)

Proof: One should utilize the potential-theoretic estimates from Chapter IX,
§ 4 and Hadamard’s estimate (compare Theorem7 in Chapter IV, § 4) for the
complex derivative ∂

∂wL(u) . q.e.d.

Proposition 3. Let the number β ∈ (0, 1) be chosen arbitrarily. Then the
nonlinear integral operator Vλ : B → C1+β

∗ (B,Rn) is continuous and as the
operator Vλ : B → B even completely continuous for all 0 ≤ λ ≤ 1 .

Proof: We observe the following connection for all 0 ≤ λ ≤ 1, namely

Vλ(z) = λL(G(·, z(·),∇z(·))), z ∈ B. (25)
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On account of (4), the function

F(·,y + z,∇y +∇z,∇y +∇z) = G(·, z,∇z), z ∈ BN (26)

satisfies a Lipschitz condition in the ball BN with an arbitrary radius N > 0
in all three components, where the Lipschitz constant may depend on N .
Therefore, we have a constant C3 = C3(K,L,N) satisfying

‖G(·, z,∇z)−G(·, z̃,∇z̃)‖C0(B) ≤ C3(K,L,N)‖z− z̃‖
for all z, z̃ ∈ BN .

(27)

Proposition2 now yields

‖Vλ(z)− Vλ(z̃)‖C1+β(B) ≤ λC2(β)C3(K,L,N)‖z− z̃‖
for all z, z̃ ∈ BN .

(28)

Consequently, the operator Vλ : BN → C1+β
∗ (B) is continuous. Furthermore,

we infer the following estimate from Proposition2 on account of (26) and (4),
namely

‖Vλ(z)‖C1+β(B) ≤ λC2(β)‖G(·, z,∇z)‖C0(B)

≤ C4(K,N, β), z ∈ BN .
(29)

Therefore, the operator Vλ : B → B is completely continuous. q.e.d.

With the aid of topological methods we now prove the following

Theorem 1. Let the constants α ∈ (0, 1) and a ∈ [0,+∞), M ∈ (0,+∞)
with aM < 1

2 be chosen. Furthermore, let the boundary values g from (1) be
prescribed, and let the right-hand side F be defined as in (3) satisfying (4) and
the growth condition (7). Then we have a solution x = x(u, v) of the Dirichlet
problem (2).

Proof: We choose the quantity N := C1(a,M,α)+1 with the constant C1 from
Proposition1 as radius for the ball BN in the Banach space B. We consider
the family of operators

Id− Vλ : BN → B, z �→ z− Vλ(z), 0 ≤ λ ≤ 1. (30)

For λ = 0 the mapping possesses a zero, namely z = 0 ∈ B. Due to Proposi-
tion 3 the operator Vλ : BN → B is completely continuous for each λ ∈ [0, 1].
Furthermore, the family Vλ depends continuously on the parameter λ ∈ [0, 1].
We now show that the statement

(Id− Vλ)(z) �= 0 for all z ∈ ∂BN and all λ ∈ [0, 1] (31)

is correct. If z ∈ ∂BN namely would be a zero of Id−Vλ with a parameter
λ ∈ [0, 1], we infer

z = Vλ(z). (32)
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The solution of this integral equation represents a solution of the Dirichlet
problem

z = z(u, v) ∈ C2(B) ∩ C1(B),

Δz(u, v) = λG(u, v, z(u, v),∇z(u, v)), (u, v) ∈ B,

z(u, v) = 0, (u, v) ∈ ∂B.

(33)

In (14) we replace G(. . .) by λG(. . .), and Proposition 1 yields an evident
contradiction with the inequality

‖z‖C1+α(B,Rn) ≤ C1(a,M,α) = N − 1 < N = ‖z‖C1(B,Rn) .

Therefore, the relation (31) is fulfilled. According to the Leray-Schauder the-
orem (compare Chapter VII, § 3) the mapping (30) possesses at least one zero
z = z(w) for each parameter λ ∈ [0, 1] . Specialized on the parameter λ = 1,
this zero solves the Dirichlet problem (14). Theorem1 from Chapter IX, § 4
now implies z ∈ C2+α

∗ (B,Rn). If y = y(w) represents the solution of (9) ,
we obtain a solution of (2) with x(u, v) = y(u, v) + z(u, v), (u, v) ∈ B . The
property

sup
(u,v)∈B

|x(u, v)| ≤M

is easily established as in part 1 of the proof for Proposition 1 . q.e.d.

We now specialize our result to the H-surface system from § 1. Taking the
boundary values g(t) from (1) in the case n = 3, we consider the Dirichlet
problem

x = x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) ∈ C2+α(B,R3),

Δx(u, v) = 2H(u, v,x(u, v))xu ∧ xv(u, v) in B,

|x(u, v)| ≤M in B,

x(cos t, sin t) = g(t) for t ∈ R.

(34)

Here we prescribe the function H = H(w,x) as follows:

H = H(w,x) : B × R3 → R ∈ Cα(B × R3) with

|H(w,x)| ≤ h0, |H(w,x) −H(w,y)| ≤ h1|x− y|, w ∈ B, x,y ∈ R3,

H(w,x) = 0, w ∈ B, x ∈ R3 with |x| ≥M.
(35)

When we set

F(u, v,x(u, v),∇x(u, v)) := 2H(u, v,x(u, v))xu ∧ xv(u, v) ,

the right-hand side (3) appears in the form
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F(u, v,x;p,q) := 2H(w,x)p′ ∧ q′′ with p,q ∈ R6 and

p = (p′,p′′) = (p′1, p
′
2, p

′
3, p

′′
1 , p

′′
2 , p

′′
3), q = (q′,q′′) = (q′1, q

′
2, q

′
3, q

′′
1 , q

′′
2 , q

′′
3 ).
(36)

We then have the growth condition

|F(w,x;p,p)| ≤ 2|H(w,x)||p′ ∧ p′′| ≤ h0(|p′|2 + |p′′|2) = h0|p|2
for all w ∈ B, x ∈ R3, p ∈ R6.

(37)

Theorem 1 immediately implies the following

Theorem 2. (E.Heinz, H.Werner, S. Hildebrandt)
In the case h0M < 1

2 the Dirichlet problem (34) possesses a solution, with the
boundary values (1) and the right-hand side (35).

Remarks:

1. E. Heinz solved the Dirichlet problem (34) for the case H ≡ const in 1954
by means of the topological method presented here.

2. H. Werner has attained the condition h0M < 1
2 .

3. With the aid of variational methods, S. Hildebrandt has solved the Dirich-
let problem (34) even in the case H = H(x) and h0M < 1.

4. According to Jäger’s maximum principle from § 1, the Dirichlet problem
(34) is uniquely solvable in a ball of the radius

M :=

√
h2

0 + 2h1

h2
0 + h1

.

Therefore, Theorem2 yields an existence result for large h1 without an-
swering the uniqueness question.

5. Due to § 1, Theorem3 and its corollary, the Dirichlet problem (34) is stable
with respect to perturbations of the boundary values in the C0(B,R3)-
norm under the conditions given there. Consequently, we can even solve
the Dirichlet problem (34) for continuous boundary values.

We finally note the following

Theorem 3. In the case H(w,x) ≡ h0 or H(w,x) ≡ −h0 with h0 > 0 and
h0M ≤ 1

2 , the Dirichlet problem (34) possesses exactly one solution of the
regularity class C2+α(B,R3)∩C0(B,R3) , for the continuous boundary values
g = g(t) ∈ C0

2π(R,Rn) satisfying |g(t)| ≤M , t ∈ R.

Proof: We smooth the constant function H at the boundary of the ball |x| ≤M
in such a way that H vanishes for all |x| ≥M . Then we solve (34) for C2+α-
boundary values and approximate the continuous boundary values g uniformly
with the aid of Theorem3 from § 1 and Theorem2 from § 2. q.e.d.
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§5 Distortion estimates for plane elliptic systems

We begin with the important

Theorem 1. Let the radius R > 0 be given, and we consider the disc BR :=
{w = u + iv ∈ C : |w| < R} and the pseudoholomorphic function f(w) :
BR → C ∈ C1(BR,C) satisfying

|fw(w)| ≤M |f(w)|, w ∈ BR, (1)

with a constant M ∈ [0,+∞). Furthermore, there exists a constant K ∈
(0,+∞) such that

0 < |f(w)| ≤ K, w ∈ BR (2)

is fulfilled. Finally, we choose the number r ∈ (0, R) . Then we have the
following inequalities for all points w ∈ Br , namely

|f(w)| ≤ K
2r

R+r e8MR|f(0)|R−r
R+r (3)

and
|f(w)| ≥ K− 2r

R−r e−
8MR(R+r)

R−r |f(0)|R+r
R−r . (4)

Proof:

1. The inequality (3) can be transformed into∣∣∣∣f(w)
K

∣∣∣∣ ≤ e8MR

∣∣∣∣f(0)
K

∣∣∣∣
R−r
R+r

, w ∈ Br,

and (4) is equivalent to∣∣∣∣f(w)
K

∣∣∣∣ ≥ e−
8MR(R+r)

R−r

∣∣∣∣f(0)
K

∣∣∣∣
R+r
R−r

, w ∈ Br.

With f(w) the function f(w)
K satisfies the inequality (1) as well. Therefore,

is suffices to verify the estimates (3) and (4) only for the case K = 1 .
2. We define the potential

a(w) :=
fw(w)
f(w)

, w ∈ BR, (5)

and note
‖a‖∞ := sup

w∈BR

|a(w)| ≤M < +∞.

Consequently, the function f satisfies the differential equation

d

dw
f(w) = a(w)f(w), w ∈ BR (6)
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and is pseudoholomorphic in the sense of Chapter IV, § 6. According to
the similarity principle of Bers and Vekua given there, we have the repre-
sentation formula

f(w) = eψ(w)φ(w), w ∈ BR, (7)

with the function φ being holomorphic in BR and the following integral
(ζ = ξ + iη)

ψ(w) := − 1
π

∫
BR

∫
a(ζ)
ζ − w

dξ dη, w ∈ BR. (8)

We note

|ψ(w)| ≤ M

π

∫
BR

∫
1

|ζ − w| dξ dη ≤
M

π
2π 2R = 4MR, w ∈ BR

and obtain
e−4MR ≤ |eψ(w)| ≤ e4MR, w ∈ BR. (9)

Together with (2) and (7), we deduce

0 < |φ(w)| = |e−ψ(w)| |f(w)| ≤ e4MR, w ∈ BR. (10)

3. We consider the nonnegative harmonic function

χ(w) := 4MR− log |φ(w)| ≥ 0, w ∈ BR.

Harnack’s inequality (compare Theorem 4 in Chapter V, § 2) yields the
estimate

R− r

R + r
χ(0) ≤ χ(w) ≤ R + r

R− r
χ(0), w ∈ Br (11)

for all r ∈ (0, R). We rewrite this inequality into the form

log |φ(w)| ≤ 4MR− R− r

R + r

(
4MR− log |φ(0)|)

=
R − r

R + r
log |φ(0)|+ 8MRr

R + r
, w ∈ Br

(12)

and
log |φ(w)| ≥ 4MR− R + r

R− r

(
4MR− log |φ(0)|)

=
R + r

R− r
log |φ(0)| − 8MRr

R− r
, w ∈ Br,

(13)

respectively. Via exponentiation we arrive at

|φ(w)| ≤ e
8MRr
R+r |φ(0)|R−r

R+r , w ∈ Br (14)

and
|φ(w)| ≥ e−

8MRr
R−r |φ(0)|R+r

R−r , w ∈ Br. (15)
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4. From (7) and (9) we infer

e−4MR|φ(w)| ≤ |f(w)| ≤ e4MR|φ(w)|, w ∈ BR. (16)

Together with (14) we obtain

|f(w)| ≤ e4MR|φ(w)| ≤ e4MRe
8MRr
R+r |φ(0)|R−r

R+r

≤ e4MRe
8MRr
R+r e4MR R−r

R+r |f(0)|R−r
R+r

= e8MR|f(0)|R−r
R+r , w ∈ Br

and finally the inequality (3) stated. Correspondingly, the relations (16)
and (15) imply

|f(w)| ≥ e−4MR|φ(w)| ≥ e−4MRe−
8MRr
R−r |φ(0)|R+r

R−r

≥ e−4MRe−
8MRr
R−r e−4MR R+r

R−r |f(0)|R+r
R−r

= e−8MR R+r
R−r |f(0)|R+r

R−r , w ∈ Br ,

and we get (4). q.e.d.

Theorem 2. (Heinz’s inequality)
We take the unit disc B := {w = u + iv ∈ C : |w| < 1} and consider the
plane mapping z(u, v) = (x(u, v), y(u, v)) ∈ C2(B,R2). The latter may satisfy
the differential inequality

|Δz(u, v)| ≤ a|∇z(u, v)|2 + b|∇z(u, v)| in B (17)

with the constants a, b ∈ [0,+∞), it is subject to the smallness condition

|z(u, v)| ≤ m in B (18)

with a constant m ∈ (0,+∞), and it is positive-oriented due to

Jz(u, v) :=
∂(x, y)
∂(u, v)

> 0 for all (u, v) ∈ B . (19)

Finally, we require the condition am < 1 . Then there exist constants
C±(a, b,m, r) > 0 for each number r ∈ (0, 1), such that

C−(a, b,m, r)|∇z(0)| 1+3r
1−r ≤ |∇z(w)| ≤ C+(a, b,m, r)|∇z(0)| 1−r

1+3r , w ∈ Br.
(20)

Proof:
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1. We take the parameter λ ∈ (0,+∞) and deduce the following estimate
from (17):

|Δz(u, v)| ≤ a|∇z(u, v)|2 + 2λ|∇z(u, v)| b

2λ

≤ (a + λ2)|∇z(u, v)|2 +
b2

4λ2
in B.

(21)

Then we choose λ = λ(a,m) > 0 so small that (a + λ2)m < 1 holds true.
Theorem1 from § 2 gives us the following estimate in the disc BR of radius
R := 1+r

2 ∈ (r, 1):

|∇z(u, v)| ≤ C1(a, b,m, r), w ∈ BR. (22)

We obtain the linear differential inequality when we insert into (17),
namely

|Δz(u, v)| ≤ (aC1(a, b,m, r) + b
)|∇z(u, v)|

= C2(a, b,m, r)|∇z(u, v)| in BR.
(23)

2. We utilize the auxiliary function f(w) := xw(w) + iyw(w) : B → C and
calculate

|f(w)|2 = f(w)f(w) = (xw + iyw)(xw − iyw)

= |xw|2 + |yw|2 − i(xwyw − xwyw)

=
1
4
|∇z(w)|2 − i

4

{
(xu − ixv)(yu + iyv)− (xu + ixv)(yu − iyv)

}
=

1
4
|∇z(w)|2 +

1
2
∂(x, y)
∂(u, v)

in B.

On account of (19), we infer

1
2
|∇z(w)| < |f(w)| ≤

√
2

2
|∇z(w)|, w ∈ B. (24)

3. The relations (22)-(24) imply the inequalities

|fw(w)| = 1
4
|Δx(w) + iΔy(w)| = 1

4
|Δz(w)|

≤ 1
4
C2(a, b,m, r)|∇z(w)|

≤ 1
2
C2(a, b,m, r)|f(w)| in BR

(25)

and

0 < |f(w)| ≤
√

2
2
|∇z(w)| ≤

√
2

2
C1(a, b,m, r) in BR. (26)
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Therefore, the function f(w) is pseudoholomorphic in BR with the con-
stants

M = M(a, b,m, r) :=
1
2
C2(a, b,m, r),

K = K(a, b,m, r) :=
√

2
2

C1(a, b,m, r).

With the aid of the identities R−r
R+r = 1−r

1+3r and R+r
R−r = 1+3r

1−r , Theorem 1
yields the estimate

K− 2r
R−r e−

8MR(R+r)
R−r |f(0)| 1+3r

1−r ≤ |f(w)| ≤ K
2r

R+r e8MR|f(0)| 1−r
1+3r (27)

in Br. Taking (24) into account, we then find the inequality (20) with the
a-priori-constants C±(a, b,m, r) > 0. q.e.d.

The following class of mappings is particularly important for problems in
differential geometry:

Definition 1. With the constants a, b ∈ [0,+∞) and N ∈ (0,+∞] being pre-
scribed, we denote the following class of mappings by the symbol Γ (B, a, b,N):

i) The function z(w) = (x(u, v), y(u, v)) : B → R2 ∈ C2(B) ∩ C0(B) maps
the circumference ∂B topologically and in a positive-orientied way onto the
circular line ∂B;

ii) The mapping z is origin-preserving which means z(0) = (0, 0);
iii) We have the condition

Jz(w) =
∂(x, y)
∂(u, v)

> 0 for all w = u + iv ∈ B;

iv) The function z satisfies the differential inequality

|Δz(u, v)| ≤ a|∇z(u, v)|2 + b|∇z(u, v)| in B;

v) Dirichlet’s integral of z fulfills

D(z) :=
∫
B

∫ (
|zu(u, v)|2 + |zv(u, v)|2

)
du dv ≤ N.

Remarks:

1. With the aid of the index-sum formula we easily see that the mapping
z : B → B is topological.

2. In the special case N = +∞, we do not require a bound on Dirichlet’s
integral D(z).

3. E. Heinz has studied this class of mappings and applied it to differential-
geometric problems.
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4. Linear systems - appearing in the special case a = 0 - have already been
considered by P. Berg.

We now prove the profound

Theorem 3. (Distortion estimate of E.Heinz)
Let the parameters a, b ∈ [0,+∞), N ∈ (0,+∞), and r ∈ (0, 1) be chosen.
Then we have constants 0 < Θ(a, b,N, r) ≤ Λ(a, b,N, r) < +∞ , such that
each mapping z = z(w) ∈ Γ (B, a, b,N) satisfies the inequality

Θ(a, b,N, r) ≤ |∇z(w)| ≤ Λ(a, b,N, r) for all w ∈ Br . (28)

Furthermore, the modulus of continuity for the mappings on B is estimated
according to the formula (29) given below.

Proof:

1. At first, we show the intermediate statement: For all functions z = z(w) ∈
Γ (B, a, b,N) and all numbers δ ∈ (0, 1

4 ) we have the estimate

|z(w1)− z(w0)| ≤ 4

√
πN

log 1
δ

for all w0, w1 ∈ B with |w0 − w1| ≤ δ.

(29)

We assume

4

√
πN

log 1
δ

< 2

without loss of generality, since (29) would be trivial otherwise. We choose
an arbitrary point w0 ∈ B. Via the Courant-Lebesgue oscillation lemma
we find a number δ∗ ∈ [δ,

√
δ] such that∫

w∈B
|w−w0|=δ∗

|dz(w)| ≤ 2

√
πN

log 1
δ

(30)

holds true. We define the following sets

Ω :=
{
w ∈ B : |w − w0| ≤ δ∗

}
, γ :=

{
w ∈ B : |w − w0| = δ∗

}
and their topological images Ω̂ := z(Ω), γ̂ := z(γ). Now we distinguish
between the following cases:
Case a: Ω ⊂ B. Then we infer ∂Ω̂ = γ̂, and the length of γ̂ satisfies

L(γ̂) ≤ 2

√
πN

log 1
δ
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on account of (30). Since the mapping z is topological, we obtain

|z(w1)− z(w0)| ≤ 2

√
πN

log 1
δ

for all w1 ∈ Ω. (31)

Case b: ∂Ω ∩ ∂B �= ∅. Then we have a point ẑ ∈ γ̂ ∩ ∂B, and the relation
(30) yields

γ̂ ⊂ K :=
{
ζ ∈ C : |ζ − ẑ| ≤ 2

√
πN

log 1
δ

}
.

On account of |ẑ| = 1 and

2

√
πN

log 1
δ

< 1

the statement 0 �∈ K holds true, and due to δ∗ ≤ √δ < 1
2 and ∂Ω∩∂B �= ∅

we have 0 �∈ Ω. Since the mapping z : B → B is topological and origin-
preserving, the relation γ̂ ⊂ K implies the inclusion Ω̂ ⊂ K. We obtain
the following estimate for all points w1 ∈ Ω, namely

|z(w1)− z(w0)| ≤ |z(w1)− ẑ|+ |ẑ− z(w0)| ≤ 4

√
πN

log 1
δ

. (32)

When we additionally note δ ≤ δ∗, the relations (31) and (32) yield the
proof of the intermediate statement (29).

2. The function z = z(w) ∈ Γ (B, a, b,N) satisfies the differential inequality

|Δz(w)| ≤ a|∇z(w)|2 +b|∇z(w)| ≤ (a+1)|∇z(w)|2 +
b2

4
in B. (33)

We now choose the number r ∈ (0, 1) so large that the quantity δ :=
1−r
2 > 0 satisfies both conditions δ ∈ (0, 1

4 ) and

(a + 1) 4

√
πN

log 1
δ

≤ 1
2

. (34)

We consider an arbitrary point w̃ ∈ B1−δ = B r+1
2

and associate the
auxiliary function

x(w) := z(w) − z(w̃), w ∈ Ω :=
{
w ∈ B : |w − w̃| ≤ δ

}
. (35)

On account of (29) and (33), we then have

|Δx(w)| ≤ (a + 1)|∇x(w)|2 +
b2

4
in

◦
Ω,

sup
w∈Ω

|x(w)| ≤ 4

√
πN

log 1
δ

.

(36)
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When we additionally note (34), the gradient estimate of E. Heinz from
§ 2, Theorem 1 yields the inequality

|∇z(w̃)| = |∇x(w̃)| ≤ Λ̃(a, b,N, δ)

=: Λ(a, b,N, r) for all w̃ ∈ B r+1
2
.

(37)

Therefore, we have obtained the estimate (28) from above.
3. We now choose the number r ∈ (0, 1) so large that the quantity δ = 1−r

2
satisfies the conditions δ ∈ (0, 1

8 ) and

4

√
πN

log 1
2δ

≤ 1
2

besides (34). From (29) we deduce

|z(w)| ≥ 1
2

for all w ∈ C with r = 1− 2δ ≤ |w| ≤ 1. (38)

We now consider the curve y(t) := z(tw0), 0 ≤ t ≤ 1 associated with a
point w0 ∈ ∂Br. Then we calculate

1
2
≤ |z(w0)| = |z(w0)− z(0)| ≤

1∫
0

|y′(t)| dt = |y′(t0)| ≤ |∇z(t0w0)|

with an element t0 ∈ [0, 1]. Therefore, we have a point

w∗ := t0w0 ∈ Br with |∇z(w∗)| ≥ 1
2
. (39)

4. On account of (37), the function z satisfies the linear differential inequality

|Δz(u, v)| ≤ (aΛ(a, b,N, r) + b)|∇z(u, v)| in B r+1
2
. (40)

We apply Heinz’s inequality from Theorem 2 (for a = 0 and B → B r+1
2

,

Br → Br). Then we obtain the following estimate in Br

C−(a, b,N, r)|∇z(0)|�−(r) ≤ |∇z(w)| ≤ C+(a, b,N, r)|∇z(0)|�+(r) (41)

with certain exponents �±(r) > 0 and constants C±(a, b,N, r) > 0.
When we additionally take (39) and (41) into account, we find a constant
Θ(a, b,N, r) > 0 such that

|∇z(w)| ≥ Θ(a, b,N, r) for all w ∈ Br (42)

holds true for arbitrary mappings z ∈ Γ (B, a, b,N) . Consequently, the
estimate from below in (28) has also been proved. q.e.d.
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§6 A curvature estimate for minimal surfaces

We can even prove distortion estimates for the class Γ (B, a, b,+∞) of those
mappings without a bound for Dirichlet’s integral, if a ∈ [0, 1

2 ) holds true. We
confine ourselves to the class Γ (B, 0, 0,+∞) of one-to-one harmonic mappings
on the unit disc B and begin with the

Proposition 1. (Continuous boundary behavior)
The harmonic mapping z = z(w) of the class Γ (B, 0, 0,+∞) may satisfy

|z(eiϕ)− z(eiϑ)| ≤ ε for all ϕ ∈ [ϑ− δ, ϑ + δ] (1)

with an angle ϑ ∈ [0, 2π), a number δ ∈ (0, π
2 ), and a quantity ε > 0. Then

we have the estimate

|z(reiϑ)− z(eiϑ)| ≤ ε +
4

sin2 δ
(1− r) for all r ∈ (0, 1). (2)

Proof: We invoke Poisson’s integral formula

z(reiϑ) =
1
2π

π∫
−π

1− r2

|eiϕ − r|2 z(ei(ϑ+ϕ)) dϕ

and obtain the following inequality for all r ∈ (0, 1):

|z(reiϑ)− z(eiϑ)| ≤ 1
2π

π∫
−π

1− r2

|eiϕ − r|2 |z(e
i(ϑ+ϕ))− z(eiϑ)| dϕ

=
1
2π

−δ∫
−π

1− r2

|eiϕ − r|2 |z(e
i(ϑ+ϕ))− z(eiϑ)| dϕ

+
1
2π

δ∫
−δ

1− r2

|eiϕ − r|2 |z(e
i(ϑ+ϕ))− z(eiϑ)| dϕ

+
1
2π

π∫
δ

1− r2

|eiϕ − r|2 |z(e
i(ϑ+ϕ))− z(eiϑ)| dϕ.

Here we have used

1
2π

π∫
−π

1− r2

|eiϕ − r|2 dϕ = 1 for all r ∈ (0, 1) .

Now we observe |eiϕ − r| ≥ sin δ for all ϕ ∈ [−π,−δ]∪ [δ, π] and all r ∈ (0, 1).
We note (1) and infer
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|z(reiϑ)− z(eiϑ)| ≤ 1
2π

1− r2

sin2 δ
2 · 2π + ε ≤ 2

(1− r)(1 + r)
sin2 δ

+ ε

≤ 4
sin2 δ

(1− r) + ε for all r ∈ (0, 1).
q.e.d.

Proposition 2. Let z = z(w) : B → B denote a topological mapping. Then
we have an angle ϑn ∈ [0, 2π) for each integer n ∈ N , such that

|z(eiϕ)− z(eiϑn)| ≤ 2π
n

for all ϕ ∈ [ϑn − π

n
, ϑn +

π

n
]. (3)

Proof: We partition the circle ∂B into n arcs σ1, . . . , σn of the equal length 2π
n ,

and denote their images with respect to the topological mapping z by γk :=
z(σk) for k = 1, . . . , n. Evidently, their lengths |γk| fulfill |γ1|+ . . .+ |γn| = 2π.
Therefore, we find an index m ∈ {1, . . . , n} with the property |γm| ≤ 2π

n . If
eiϑn with ϑn ∈ [0, 2π) denotes the center of the arc σm, the relation (3) is
satisfied. q.e.d.

In 1952, E.Heinz proved the following remarkable result:

Theorem 1. There exists a universal constant Θ > 0, such that each one-to-
one harmonic mapping z = z(w) ∈ Γ (B, 0, 0,+∞) satisfies the inequality

|∇z(0)| ≥ Θ . (4)

Proof: We choose the mapping z ∈ Γ (B, 0, 0,+∞) and the integer n ∈ N.
According to Proposition 2, we find an angle ϑn ∈ [0, 2π) satisfying (3).
Proposition 1 then yields the estimate

|z(reiϑn )− z(eiϑn)| ≤ 2π
n

+
4

sin2 π
n

(1− r) for all r ∈ (0, 1). (5)

At first, taking the integer n ∈ N sufficiently large and afterwards choosing
the radius r ∈ (0, 1) suitably, the right-hand side in (5) becomes less than or
equal to 1

2 , and we infer

|z(reiϑn )| ≥ |z(eiϑn)| − |z(reiϑn)− z(eiϑn)| ≥ 1
2
. (6)

As in part 3 of the proof for Theorem3 in § 5, we then find a point w∗ ∈ Br

satisfying

|∇z(w∗)| ≥ 1
2
. (7)

We obtain the following estimate via Heinz’s inequality from § 5 Theorem2,
namely
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|∇z(0)| ≥ C+(0, 0, 1, r)−
1+3r
1−r |∇z(w∗)|

1+3r
1−r

≥ (2C+(0, 0, 1, r))−
1+3r
1−r =: Θ ,

(8)

since the radius r ∈ (0, 1) has been determined independently of the mapping
z . q.e.d.

We now prove the following result with the aid of the uniformization method.

Theorem 2. (Curvature estimate of E.Heinz)
Let the radius R ∈ (0,+∞) be chosen arbitrarily and the disc BR := {z =
x + iy ∈ C : |z| < R} be defined. Then we have a universal constant M ∈
(0,+∞), such that all solutions of the minimal surface equation

z = ζ(x, y) ∈ C2+α(BR,R), α ∈ (0, 1),

Mζ(x, y) := (1 + ζ2
y)ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy = 0 in BR

(9)

satisfy the estimate

κ1(0, 0)2 + κ2(0, 0)2 ≤ 1
R2

M (10)

for their principal curvatures κj(0, 0) with j = 1, 2 at the point y(0, 0) of the
graph y(x, y) := (x, y, ζ(x, y)), (x, y) ∈ BR.

Proof:

1. Using the uniformization theorem (compare the subsequent § 8), we intro-
duce isothermal parameters into the Riemannian metric

ds2 := |yx|2 dx2 + 2(yx · yy) dx dy + |yy|2 dy2

= (1 + ζ2
x) dx2 + 2ζxζy dx dy + (1 + ζ2

y ) dy2, (x, y) ∈ BR,
(11)

of the class C1+α(BR) . We take the uniformizing mapping

f(u, v) = x(u, v) + iy(u, v) : B → BR ∈ C2+α(B,BR),

f(0, 0) = 0,
(12)

and consider the surface

x(u, v) = y ◦ f(u, v) = (f(u, v), ζ ◦ f(u, v)) = (x(u, v), y(u, v), z(u, v))
(13)

of the class C2+α(B,R3). This surface is subject to the differential equa-
tions

Δx(u, v) = 0 in B,

|xu| − |xv| = 0 = xu · xv in B.
(14)

In particular, the plane mapping

g(u, v) :=
1
R
f(u, v), (u, v) ∈ B, (15)
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belongs to the class Γ (B, 0, 0,+∞) . Theorem1 now yields |∇g(0, 0)| ≥ Θ
and consequently

|∇f(0, 0)| ≥ ΘR , (16)

with the universal constant Θ > 0.
2. The normal to the surface y(x, y) in direction e = (0, 0, 1) is denoted by

the symbol

Y(x, y) :=
1√

1 + |∇ζ(x, y)|2
(− ζx(x, y),−ζy(x, y), 1

)
, (x, y) ∈ BR,

and we define X(u, v) := Y ◦ f(u, v), (u, v) ∈ B. According to Theorem2
from Chapter XI, § 1 the following mapping

X : B → S+ :=
{
z = (z1, z2, z3) ∈ R3 : |z| = 1, z3 > 0

}
(17)

is antiholomorphic. We now consider the stereographic projection from
the south pole (0, 0,−1) , more precisely

σ = σ(z) : S+ → B conformal. (18)

The mapping h(u, v) := σ ◦ X(u, v), (u, v) ∈ B is antiholomorphic and
consequently harmonic. Therefore, we find a constant Λ ∈ (0,+∞) such
that

|∇X(0, 0)| ≤ Λ (19)

holds true.
3. We now evaluate via considerations from Chapter XI, § 1 as follows:

κ1(0, 0)2 + κ2(0, 0)2 = −2κ1(0, 0)κ2(0, 0) = −2K(0, 0)

= 2|K(0, 0)| = 2
|Xu ∧Xv(0, 0)|
|xu ∧ xv(0, 0)|

= 2
|∇X(0, 0)|2
|∇x(0, 0)|2 ≤ 2

|∇X(0, 0)|2
|∇f(0, 0)|2

≤ 2
Λ2

Θ2R2
=

M

R2
.

Here we have set the quantity M := 2 Λ2

Θ2 . q.e.d.

We obtain the following result as a corollary from Theorem 2, namely

Theorem 3. (S.Bernstein)
Let z = ζ(x, y) : R2 → R ∈ C2+μ(R2) - with μ ∈ (0, 1) - denote an entire
solution of the minimal surface equation Mζ(x, y) = 0 in R2. Then we have
coefficients α, β, γ ∈ R such that

ζ(x, y) = αx + βy + γ in R2

is satisfied, which means ζ is an affine-linear function.
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Proof: We consider the transition to the limit R → +∞ in the estimate (10)
and obtain κ1(0, 0) = 0 = κ2(0, 0). Since this argument is valid at each point
of the minimal graph, we infer

κ1(x, y) = 0 = κ2(x, y) in R2. (20)

Consequently, the surface y(x, y) = (x, y, ζ(x, y)), (x, y) ∈ R2 represents a
plane.

q.e.d.

Remarks to Theorem 2 and Theorem 3:

1. We owe the curvature estimate in Theorem 2 to:

E. Heinz: Über die Lösungen der Minimalflächengleichung. Nachr.
Akad. Wiss. Göttingen, Math.-Phys.Kl. (1952), 51-56.

2. Curvature estimates for surfaces of prescribed mean curvature have been
established by:

F. Sauvigny: Apriori estimates of the principle curvatures for immer-
sions of prescribed mean curvature and theorems of Bernstein-type.
Math. Zeitschrift 205 (1990), 567-582.

3. In his thesis, S. Fröhlich has derived curvature estimates for stable solu-
tions of the Euler equations for parametric elliptic functionals - in partic-
ular for relative minima. Here we refer the reader to:

S. Fröhlich: Curvature estimates for μ-stable G-minimal surfaces and
theorems of Bernstein-type. Analysis 22 (2002), 109-130.

§7 Global estimates for conformal mappings with
respect to Riemannian metrics

We define the unit disc E := {x = (x1, x2) ∈ R2 : |x| < 1} in the coordinates
(x1, x2) and the unit disc B := {w = u+ iv ∈ C : |w| < 1} in the coordinates
u + iv ∼= (u, v). We prescribe the Riemannian metric

ds2 = gjk(x1, x2) dxj dxk

= g11(x1, x2) (dx1)2 + 2g12(x1, x2) dx1 dx2 + g22(x1, x2) (dx2)2
(1)

on the disc E. Here we use Einstein’s summation convention and require the
coefficients to satisfy

gjk = gjk(x1, x2) ∈ C1+α(E,R) for j, k = 1, 2 ;

g12(x1, x2) = g21(x1, x2) in E
(2)

and
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λ|ξ|2 ≤ gjk(x1, x2)ξjξk ≤ 1
λ
|ξ|2

for all ξ = (ξ1, ξ2) ∈ R2 and (x1, x2) ∈ E ,

(3)

with the constants α, λ ∈ (0, 1).

Proposition 1. The C2-diffeomorphic, positive-orientied mapping

x = x(u, v) = (x1(u, v), x2(u, v))∗ : B → E ∈ C2(B,R2) ∩ C0(B,E)

may satisfy the weighted conformality relations

xj
u(u, v)gjk(x1(u, v), x2(u, v))xk

v(u, v) = 0 in B, (4)

xj
u(u, v)gjk(x1, x2)xk

u(u, v) = xj
v(u, v)gjk(x1, x2)xk

v(u, v) in B. (5)

Then the function x satisfies the nonlinear elliptic system

Δxl + Γ l
jk(xj

ux
k
u + xj

vx
k
v) = 0 in B for l = 1, 2 (6)

where we have used the Christoffel symbols

Γ l
jk :=

1
2
gli(gki,xj + gij,xk − gjk,xi), j, k, l = 1, 2 (7)

with the inverse matrix (gjk)j,k=1,2 := (gjk)−1
j,k=1,2 . Therefore, x represents a

harmonic mapping of the disc {B, (δjk)} onto the disc {E, (gjk)} , with the
unit matrix (δjk)j,k=1,2.

Proof: We derive the equation (4) with respect to the variable v and the
equation (5) with respect to the variable u:

xj
uvgjkx

k
v + xj

ugjkx
k
vv + xj

ugjk,xlxk
vx

l
v = 0,

xj
uvgjkx

k
v = xj

ugjkx
k
uu +

1
2
xj

ugjk,xlxk
ux

l
u −

1
2
xl

ugjk,xlxj
vx

k
v .

When we insert the second equation into the first, we obtain

xj
ugjkΔxk + xj

ugjk,xlxk
vx

l
v +

1
2
xj

ugjk,xlxk
ux

l
u −

1
2
xl

ugjk,xlxj
vx

k
v = 0

as well as

xj
ugjkΔxk +

1
2
xj

u(gkj,xl + gjl,xk − glk,xj )(xk
ux

l
u + xk

vx
l
v) = 0.

Interchanging the variables u with v in these calculations, we deduce analo-
gously

xj
vgjkΔxk +

1
2
xj

v(gkj,xl + gjl,xk − glk,xj )(xk
ux

l
u + xk

vx
l
v) = 0.
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Since the vectors xu and xv are linear independent, we obtain

gjkΔxk +
1
2
(gkj,xl + gjl,xk − glk,xj )(xk

ux
l
u + xk

vx
l
v) = 0, j = 1, 2.

Multiplication by the inverse matrix (gij) finally yields

δi
kΔxk +

1
2
gij(gkj,xl + gjl,xk − glk,xj )(xk

ux
l
u + xk

vx
l
v) = 0, i = 1, 2

and consequently

Δxi + Γ i
lk(xk

ux
l
u + xk

vx
l
v) = 0, i = 1, 2.

q.e.d.

We have the following convention for our class of mappings, namely

x(0, 0) = (0, 0)∗. (8)

Furthermore, we define the positive-definite matrix

G(x1, x2) := (gjk(x1, x2))j,k=1,2 : E → R2×2. (9)

Via the principal axes transformation, we determine its square root G
1
2 (x1, x2)

- by carrying out this operation for the positive eigenvalues. Then we calculate{
|G 1

2 (x(u, v))| |(xu,xv)|
}2

=
∣∣∣(G 1

2 (x(u, v)) ◦ xu, G
1
2 (x(u, v)) ◦ xv

)∣∣∣2
=
∣∣∣∣( (G

1
2 (x) ◦ xu)∗

(G
1
2 (x) ◦ xv)∗

)
◦
(
G

1
2 (x) ◦ xu, G

1
2 (x) ◦ xv

)∣∣∣∣
=
∣∣∣∣(x∗

u ◦G(x) ◦ xu , x∗
u ◦G(x) ◦ xv

x∗
v ◦G(x) ◦ xu , x∗

v ◦G(x) ◦ xv

)∣∣∣∣
=

1
4

{
x∗

u ◦G(x) ◦ xu + x∗
v ◦G(x) ◦ xv

}2

in B.

This implies

|G 1
2 (x(u, v))| |(xu,xv)| = 1

2

{
x∗

u ◦G(x) ◦ xu + x∗
v ◦G(x) ◦ xv

}
(10)

for all (u, v) ∈ B. With the aid of (3), we obtain

λ2

2
|∇x(u, v)|2 ≤ ∂(x1, x2)

∂(u, v)
≤ 1

2λ2
|∇x(u, v)|2 for all (u, v) ∈ B. (11)

We define the discs Er := {x ∈ E : |x| < r} for the radii r ∈ (0, 1), and
similarly Br := {w ∈ B : |w| < r} . Then we introduce the monotonic
function

γ(r) := max
j,k=1,2

‖gjk‖C1+α(Er), r ∈ (0, 1). (12)
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Theorem 1. (Inner estimates for conformal mappings)
Associated to the metric (1)-(3), let the mapping x = x(u, v) : B →
E ∈ C2(B) ∩ C0(B) represent a weighted conformal, positive-orientied C2-
diffeomorphism with (4), (5), and (8). For each number r ∈ (0, 1) given,
we then have a constant Θ = Θ(r, λ, γ( r+1

2 )) > 0 and a constant Λ =
Λ(r, λ, α, γ( r+1

2 )) < +∞, such that the estimates

Jx(u, v) =
∂(x1, x2)
∂(u, v)

≥ Θ for all (u, v) ∈ Br (13)

and
‖x‖C2+α(Br,R2) ≤ Λ (14)

hold true. Furthermore, the class of mappings above is equicontinuous.

Proof: We follow the arguments in the proof of Theorem3 from § 5. On account
of (11), we comprehend

D(x) ≤ 2
λ2

∫
B

∫
∂(x1, x2)
∂(u, v)

du dv =
2π
λ2

. (15)

Therefore, we can estimate the modulus of continuity in B parallel to part 1 of
the proof quoted above. From (6), (7), (3), and (12) we deduce the subsequent
differential inequality for an arbitrary radius r ∈ (0, 1), namely

|Δx(u, v)| ≤ a|∇x(u, v)|2 in B r+1
2

, (16)

with the constant a = a(λ, γ( r+1
2 )) ∈ (0,+∞) . Then we estimate |∇x(u, v)|

in Br+ε from above for sufficiently small numbers ε > 0, and the transition to
a linear differential inequality is possible. On account of (11) we finally obtain
the constant Θ from (13), as in part 3 and 4 of the proof quoted above. We
further deduce (14) via potential-theoretic estimates. q.e.d.

With the complex derivatives

xj
w =

1
2
(xj

u − ixj
v), xj

w =
1
2
(xj

u + ixj
v), j = 1, 2

we rewrite the weighted conformality relations into the complex form

xj
w(u, v)gjk(x1(u, v), x2(u, v))xk

w(u, v) = 0 in B. (17)

Furthermore, we modify the equation (6) and obtain harmonic mappings in
the complex form:

xl
ww +

1
2
Γ l

jk(xj
wx

k
w + xj

wx
k
w) = 0 in B; l = 1, 2. (18)

We easily infer the following result from the weighted conformality relation.
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Proposition 2. (Elimination lemma)
We have the constants μ(λ) > 1 and 0 < μ1(λ) ≤ μ2(λ) < +∞, such that
all weighted conformal mappings (4) and (5), with respect to the arbitrary
Riemannian metric (1)-(3), satisfy the following inequalities:

1
μ(λ)

|x1
w(w)| ≤ |x2

w(w)| ≤ μ(λ)|x1
w(w)|, w ∈ B, (19)

and

μ1(λ)|x1
w(w)|2 ≤ ∂(x1, x2)

∂(u, v)
≤ 1

2
|∇x(u, v)|2 ≤ μ2(λ)|x1

w(w)|2, w ∈ B .

(20)

Proof:

1. The weighted conformality relation (17) yields

g11(x1, x2)x1
wx

1
w = −2g12(x1, x2)x1

wx
2
w − g22(x1, x2)x2

wx
2
w in B.

With the aid of (3) we deduce

λ|x1
w |2 ≤ |g11| |x1

w|2 ≤ 2|g12| |x1
w| |x2

w |+ |g22| |x2
w|2

≤ 2
(√λ

2
|x1

w|
)(√ 2

λ

|x2
w|
λ

)
+

1
λ
|x2

w|2

≤ λ

2
|x1

w|2 +
( 2
λ

1
λ2

+
1
λ

)
|x2

w|2

=
λ

2
|x1

w|2 +
2 + λ2

λ3
|x2

w|2

and consequently

|x1
w |2 ≤

4 + 2λ2

λ4
|x2

w|2, w ∈ B.

Similarly, we find

|x2
w |2 ≤

4 + 2λ2

λ4
|x1

w|2, w ∈ B,

by resolving the weighted conformality relation (17) with respect to
g22(x1, x2)x2

wx
2
w . Setting μ(λ) := 1

λ2

√
4 + 2λ2 we obtain (19).

2. We now estimate

1
2
|∇x(u, v)|2 = 2

(|x1
w(w)|2 + |x2

w(w)|2)
≤ 2(1 + μ(λ)2)|x1

w(w)|2

= μ2(λ)|x1
w(w)|2, w ∈ B,
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with μ2(λ) := 2(1 + μ(λ)2). Taking (11) into account, we find

∂(x1, x2)
∂(u, v)

≥ λ2

2
|∇x(u, v)|2 = 2λ2

(|x1
w(w)|2 + |x2

w(w)|2)
≥ 2λ2

(
1 +

1
μ(λ)2

)
|x1

w(w)|2 = μ1(λ)|x1
w(w)|2, w ∈ B,

with μ1(λ) := 2λ2(1 + 1
μ(λ)2 ) > 0. Therefore, the relation (20) has been

shown. q.e.d.

We now prove the important

Theorem 2. (Global estimates for conformal mappings)
The metric ds2 from (1)-(3) with the coefficients gjk(x1, x2) ∈ C1+α(E,R)
for j, k = 1, 2 may be given, and we consider the weighted conformal, positive-
oriented C2-diffeomorphism

x = x(u, v) = (x1(u, v), x2(u, v))∗ : B → E ∈ C2(B,R2) ∩ C1(B,E) (21)

from (4), (5), and (8). Then we have the regularity property x ∈ C2+α(B,R2)
and the following a priori estimates

Jx(u, v) ≥ Θ for all (u, v) ∈ B (22)

and
‖x‖C2+α(B,R2) ≤ Λ , (23)

with the constants Θ = Θ(λ, α, γ(1)) > 0 and Λ = Λ(λ, α, γ(1)) < +∞ ; here
the function γ(r) is defined in (12).

Proof:

1. On the circular line ∂E we consider the tangential vector-field

t(x1, x2) := (−x2, x1)∗ : ∂E → R2

and the constant vector-field e = (1, 0)∗. Furthermore, let

a(x1, x2) = (a1(x1, x2), a2(x1, x2))∗ : ∂E → R2

denote a vector-field of length 1 with respect to the metric ds2, which
means

aj(x1, x2)gjk(x1, x2)ak(x1, x2) = 1 on ∂E. (24)

We choose a(x1, x2) such that its oriented angle to the tangential vector
t(x1, x2) in the Riemannian metric coincides with the Euclidean angle
between e and t(x1, x2) . With the symbol

b(x1, x2) = (b1(x1, x2), b2(x1, x2))∗ : ∂E → R2
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we denote the unit vector-field orthogonal to a(x1, x2) in the Riemannian
metric ds2 , which is oriented due to

det (a(x1, x2),b(x1, x2)) =
∣∣∣∣a1(x1, x2) b1(x1, x2)
a2(x1, x2) b2(x1, x2)

∣∣∣∣ > 0 on ∂E .

(25)
The weighted conformal mapping x(u, v) then possesses the following free
boundary condition(

xu(w),xv(w)
)

= ν(w)
(
a(x(w)),b(x(w))

)
, w ∈ ∂B, (26)

with the function ν(w) : ∂B → (0,+∞). Finally, we find a function ϕ =
ϕ(x1, x2) : ∂E → R ∈ C1+α(∂E), such that(

a1(x1, x2) , b1(x1, x2)
a2(x1, x2) , b2(x1, x2)

)
◦
(

cosϕ(x1, x2) , − sinϕ(x1, x2)
sinϕ(x1, x2) , cosϕ(x1, x2)

)
=
( ∗ 0
∗ ∗
)

(27)
holds true on ∂E .

2. We now utilize the Schwarzian integral formula from Theorem 2 in § 2 of
Chapter IX, namely

F (z) :=
1
2π

2π∫
0

eit + z

eit − z
ϕ(eit) dt, z = x1 + ix2 ∈ E, (28)

with the function ϕ ∈ C1+α(∂E) defined in part 1. Now the function
F (z) is holomorphic in E, and via potential-theoretic methods (compare
Theorem 3 in Chapter IX, § 4) we see

F (z) ∈ C1+α(E,C), ‖F‖C1+α(E) ≤ C(α)‖ϕ‖C1+α(∂E). (29)

Furthermore, F satisfies the boundary condition

ReF (z) = ϕ(z) for all z ∈ ∂E. (30)

The function
f(z) := exp{iF (z)}, z ∈ E (31)

of the class C1+α(E,C \ {0}) is consequently subject to the following
boundary condition

f(z) = �(z)eiϕ(z), z ∈ ∂E, (32)

with the positive real function

�(z) := e−ImF (z), z ∈ ∂E. (33)
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3. From (32) we deduce the following boundary condition for the function
y(w) := x1

w(w)f(x(w)) : B → C , namely

y(w) = x1
w(w)f(x(w)) =

1
2
(
x1

u(w)− ix1
v(w)

)
�(x(w))eiϕ(x(w))

=
�(x(w))

2
(
x1

u(w) − ix1
v(w)

)(
cosϕ(x(w)) + i sinϕ(x(w))

)
for all points w ∈ ∂B. From (26) and (27) we infer

Im y(w) =
�(x(w))

2
(
x1

u(w) sinϕ(x(w)) − x1
v(w) cosϕ(x(w))

)
=

ν(w)�(x(w))
2

(
a1(x(w)) sinϕ(x(w)) − b1(x(w)) cosϕ(x(w))

)
= 0 for all w ∈ ∂B.

(34)
Furthermore, we calculate

yw = x1
wwf(x1, x2) + x1

wfx1(x1, x2)x1
w + x1

wfx2(x1, x2)x2
w in B.

Together with the relations (18), (19), and (29), we arrive at the differen-
tial inequality

|yw(w)| ≤ a|y(w)|2, w ∈ B, (35)

with a constant a = a(λ, α, γ(1)) ∈ (0,+∞).
4. As in § 3 we transform the unit disc E onto the upper half-plane C+ via

the mapping g : C+ → E and apply the reflection

x̂(w) = (x̂1(w), x̂2(w)) :=

{
x ◦ g(w), Imw > 0

x ◦ g(w), Imw < 0
. (36)

From (15) we infer a growth condition for Dirichlet’s integral of x̂(w) de-
scribed in § 2, Proposition2 and 3. Here we utilize the Courant-Lebesgue
lemma, estimate the area by the length of the boundary curve via the
isoperimetric inequality, and obtain a growth condition for Dirichlet’s in-
tegral on account of (11).
Similar to Proposition 4 and 5 in § 2, we now estimate the oscillation of
x̂(w) on discs in the interior. Then we obtain the following estimates with
the notations applied there:

2
∫

∂Bϑλ(ϑ)(w0)

|Re (x̂j
w(w) dw)| =

∫
∂Bϑλ(ϑ)(w0)

|dx̂j(w)| ≤
∫

∂Bϑλ(ϑ)(w0)

|dx̂(w)|

≤ C(λ)√− logϑ
for j = 1, 2.

(37)
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Now we have functions �± = �±(x1, x2) : C+ → C \ R depending on the
metric ds2, such that

x̂2
w(w) = �±(x̂(w))x̂1

w(w) for w ∈ C \ R with ± Imw > 0 (38)

holds true (compare the formulas (5) and (6) in § 9). Consequently, we
have

2
∫

∂Bϑλ(ϑ)(w0)

|Re (x̂1
w(w) dw)| + 2

∫
∂Bϑλ(ϑ)(w0)

∣∣Re
(
�±(x̂(w)) x̂1

w(w) dw
)∣∣ ≤ 2C(λ)√− logϑ

,

which implies ∫
∂Bϑλ(ϑ)(w0)

|x̂1
w(w) dw| ≤ C̃(λ)√− logϑ

. (39)

5. Now we consider the reflected derivative function

z(w) :=

{
y ◦ g(w) = x1

w(g(w))f(x̂(w)), Imw > 0

y ◦ g(w) = x1
w(g(w))f (x̂(w)), Imw < 0

, (40)

and z is continuous due to the boundary condition (34). With the aid
of (39) and (29), we then obtain an estimate for the Cauchy integral of
z(w) - as described in Proposition4 and 5 of § 2. We apply the method of
Theorem1 from § 3 and find a constant Λ̃(λ, α, β, γ(1)) < +∞ satisfying

‖y‖C1+β(B) ≤ Λ̃(λ, α, β, γ(1)) for all β ∈ (0, 1) (41)

on account of (35). We still observe (19), and the system (6) together with
potential-theoretic methods yield the inequality

‖x‖C2+α(B,R2) ≤ Λ (42)

with the a-priori-constant Λ = Λ(λ, α, γ(1)). Finally, we apply Theorem
1 from § 5 to the nonvanishing function y(w), w ∈ B. The methods of
proof for Theorem 3 from § 5 provide a constant Θ = Θ(λ, α, γ(1)) > 0
satisfying

Jx(u, v) ≥ Θ for all (u, v) ∈ B , (43)

on account of (20). This completes the proof of our theorem. q.e.d.

Remark: When the condition gjk(x1, x2) = δjk is valid in the neighborhood of
the circular line ∂E for the Riemannian metric, we can reflect the mapping x
at the circumference: Then we do not need the Schwarzian integral formula
(28).
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§8 Introduction of conformal parameters into a
Riemannian metric

We continue our deliberations from § 7 and quote those results by adding the
symbol *. We shall introduce conformal parameters into the metric ds2 from
(1)*, (2)*, (3)* of the class C1+α(E) . This means solving the system (4)*,
(5)* of the weighted conformality relations and transferring the metric ds2

into the isothermal form

ds2 = σ(u, v)(du2 + dv2) in B, σ(u, v) > 0 in B . (1)

At first, we achieve this aim for metrics ds2 whose coefficients in the C1+α(E)-
norm have a sufficiently small deviation from the isothermal metric

dr2 = �(x1, x2)δjk dx
j dxk in E,

�(x1, x2) : E → (0,+∞) ∈ C1+α(E) .
(2)

We define the surface element of ds2 by

g(x1, x2) := (detG(x1, x2))
1
2

=
√
g11(x1, x2)g22(x1, x2)− g12(x1, x2)2 in E.

(3)

In order to render the subsequent calculations into a more simple form, we
set (x1, x2) = (x, y) = z ∈ E and

G(x1, x2) = (gjk(x1, x2))j,k=1,2 =
(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
in E. (4)

We shall construct a positive-oriented diffeomorphism

w(z) = u(x, y) + iv(x, y) : E → Ω ∈ C2+α(E,C) (5)

onto a bounded, simply connected domain Ω ⊂ C with the inverse mapping

z = z(w) = x(u, v) + iy(u, v) : Ω → E ∈ C2+α(Ω,C) , (6)

such that the metric ds2 is transferred into the isothermal form

ds2 = σ(u, v)(du2 + dv2) in Ω . (7)

We calculate

ds2 = a dx2 + 2b dx dy + c dy2

=
1
a

{
a2 dx2 + 2ab dx dy + ac dy2

}
=

1
a

{
a dx + (b + ig) dy

}{
a dx + (b − ig) dy

}
.

(8)
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Now we look for a complex, diffeomorphic primitive function

w = w(z) : E → Ω ∈ C2+α(E,C) ,

such that
a dx + (b + ig) dy = �(z) dw in E (9)

is correct, with a function � ∈ C1+α(E,C \ {0}) . Then we infer

a dx + (b− ig) dy = �(z) dw in E, (10)

and the relations (8)-(10) provide the desired isothermal form

ds2 =
1
a
� dw � dw =

|�(z)|2
a(z)

dw dw = λ(w)(du2 + dv2)

with λ(w) :=
|�(z(w))|2
a(z(w))

: Ω → (0,+∞) ∈ C1+α(Ω).

(11)

The formula (9) is equivalent to the system

�(z)
∂

∂x
w(z) = a(z), �(z)

∂

∂y
w(z) = b(z) + ig(z) in E ,

and consequently to

2�
∂

∂z
w = �

∂

∂x
w − i�

∂

∂y
w = a + g − ib,

2�
∂

∂z
w = �

∂

∂x
w + i�

∂

∂y
w = a− g + ib in E,

and to the equations

∂

∂z
w(z) =

1
2�(z)

(
a(z)− g(z) + ib(z)

)
,

1
2�(z)

=
1

a(z) + g(z)− ib(z)
∂

∂z
w(z) in E

as well. When we insert the second relation into the first, we obtain the fol-
lowing complex equation equivalent to (9), namely

∂

∂z
w(z)− a(z)− g(z) + ib(z)

a(z) + g(z)− ib(z)
∂

∂z
w(z) = 0 in E.

We now define

q(z) :=
a(z)− g(z) + ib(z)
a(z) + g(z)− ib(z)

, z ∈ E. (12)

We observe
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q(z) = 0 ⇔ b(z) = 0, a(z) = c(z) for a point z ∈ E, (13)

and

|q(z)| =
√

(a− g)2 + b2

(a + g)2 + b2
=

√
(a + g)2 + b2 − 4ag

(a + g)2 + b2

=
√

1− 4
ag

(a + g)2 + b2
< 1 for all z ∈ E.

(14)

We now have to solve Beltrami’s differential equation in the complex form

∂

∂z
w(z)− q(z)

∂

∂z
w(z) = 0, z ∈ E. (15)

Here we utilize Cauchy’s integral operator from Definition 5 in Chapter IV,
§ 4

TE [f ](z) := − 1
π

∫
E

∫
f(ζ)
ζ − z

dξ dη, z ∈ E (16)

with ζ = ξ+iη. Here the function f lies in the Banach space B := C1+α(E,C)
endowed with the norm

‖f‖ := sup
z∈E

{
|f(z)|+ |∇f(z)|

}
+ sup
z1,z2∈E
z1 	=z2

|∇f(z1)−∇f(z2)|
|z1 − z2|α . (17)

In the book of I. N. Vekua [V], namely Theorem1.33 of § 8 in Chapter I, the
following inequality is proved by potential-theoretic means:

‖TE[f ]‖C2+α(E) ≤ C1(α)‖f‖, f ∈ B. (18)

As in Proposition 3 from Chapter IV, § 5 we define Vekua’s integral operator

ΠE [f ](z) := lim
ε→0+

{
− 1

π

∫
ζ∈E

|ζ−z|>ε

∫
f(ζ)

(ζ − z)2
dξ dη

}
, z ∈ E. (19)

According to the Theorem of I. N. Vekua given above, we have the estimate

‖ΠE [f ]‖ ≤ C2(α)‖f‖, f ∈ B, (20)

with a constant C2(α) ∈ (0,+∞). Proposition4 in Chapter IV, § 5 provides
the identities

∂

∂z
{TE[f ](z)} = f(z),

∂

∂z
{TE[f ](z)} = ΠE [f ](z), z ∈ E. (21)

In order to prove (20), we apply Theorem4 from Chapter IX, § 4 to the
function ∂

∂z f . We recall the identity
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TE

[ ∂
∂ζ

f
]
(z) = ΠE [f ](z)− 1

2πi

∫
∂E

f(ζ)
ζ2(ζ − z)

dζ, z ∈ E

from Proposition5 in Chapter IV, § 5; and we still have to estimate the curvi-
linear integral in the C1+α(E)-norm. The latter represents a holomorphic
function in E, attaining certain Cauchy principal values over ∂E as bound-
ary values, due to Theorem 1 from Chapter IX, § 2 of Plemelj. We control
them with the aid of Proposition2 from Chapter IX, § 4 and note Theorem
3 there. Then we can estimate the curvilinear integral in the C1+α(E)-norm
and obtain (20). We use (21) and have shown (18) as well.
We now propose the ansatz of L.Ahlfors and I. N.Vekua for the solution of
Beltrami’s differential equation (15), namely

W (z) = z + TE [f ](z), z ∈ E, for f ∈ B. (22)

When we insert (22) into (15), we arrive at Tricomi’s integral equation for
f ∈ B

f(z)− q(z)ΠE [f ](z) = q(z), z ∈ E , (23)

with the aid of (21). We now consider the operator

Lf := q(z) + q(z)ΠE [f ](z), z ∈ E, for f ∈ B. (24)

If the condition
‖q‖C2(α) < 1 (25)

is fulfilled, the operator L on B becomes contracting. On account of (20), we
have the following inequality for two elements f1, f2 ∈ B, namely

‖Lf1 − Lf2‖ = ‖q ΠE [f1 − f2]‖
≤ ‖q‖ ‖ΠE[f1 − f2]‖
≤ ‖q‖C2(α)‖f1 − f2‖.

(26)

Given the assumption (25), the operator L : B → B possesses exactly one
fixed point f ∈ B with Lf = f , due to Banach’s fixed point theorem. Now the
function f ∈ B satisfies Tricomi’s integral equation (23). We then obtain a
solution of the differential equation (15) with the functionW (z) from (22), and
the relation (18) implies W ∈ C2+α(E). Furthermore, we infer the estimate

‖f‖ ≤ ‖q‖
1− ‖q‖C2(α)

(27)

for the fixed point f = Lf from (20) and (25). Due to (18), we can estimate
the C2+α(E)-norm for the perturbation of the identity caused by TE[f ](z) in
(22). When we assume ‖q‖ to be sufficiently small, the mapping

W (z) : E → Ω ∈ C2+α(E,C) (28)
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represents a positive-oriented diffeomorphism onto the Jordan domain Ω ⊂ C,
with the C2+α-boundary ∂Ω constituting a Jordan curve. With the aid of
results in Chapter IV, §§ 7-8 we now transform the set Ω conformally onto
the unit disc B via the mapping X(w) : Ω → B, such that X ◦W (0) = 0 is
fulfilled. The mapping X−1 : B → Ω belongs to the class C1,1(B) according
to Theorem 5 in Chapter IV, § 8. Then Theorem 2 from § 7 implies

(X ◦W )−1 = W−1 ◦X−1 : B → E ∈ C2+α(B,C),

(X ◦W )−1(0) = 0.

We summarize our considerations to the following

Theorem 1. (Stability for conformal mappings)
The metric ds2 from (1)*, (2)*, (3)* satisfies the following inequality with
respect to the metric (2), namely

‖gjk − �δjk‖C1+α(E) < δ for j, k = 1, 2 (29)

with a sufficiently small number δ = δ(α, �) > 0. Then we have a weighted
conformal diffeomorphism x(u, v) = (x1(u, v), x2(u, v)) ∈ C2+α(B,E) which
satisfies (4)*, (5)*, (8)* . Therefore, the metric ds2 appears in the isothermal
form (1).

By a nonlinear continuity method we now prove the uniformization theorem,
which is of central significance for differential geometry, complex analysis, and
the theory of partial differential equations. Already C. F. Gauß could confor-
mally map analytic surface patches in the small, and L. Lichtenstein locally
mapped differentiable surface patches conformally. Conformal mappings in the
large have been constructed by P.Koebe in the analytic situation, and in the
nonanalytic case C. B. Morrey, E. Heinz, L.Ahlfors, and I.N. Vekua attained
similar results by different methods.

Theorem 2. (Uniformization theorem)
Let the Riemannian metric ds2 from (1)*, (2)*, (3)* with the coefficients
gjk ∈ C1+α(E) for j, k = 1, 2 be prescribed. Then we have a diffeomorphism
x = x(u, v) ∈ C2+α(B,E) satisfying (4)*, (5)*, (8)*, which transfers the
metric ds2 into the isothermal form

ds2 = σ(u, v)(du2 + dv2) in B , (30)

with the surface element σ = σ(u, v) ∈ C1+α(B, (0,+∞)) .

Proof: We deform the metric ds2 into the Euclidean metric via

ds2(τ) := g
(τ)
jk (x1, x2) dxj dxk in E, 0 ≤ τ ≤ 1, with

g
(τ)
jk (x1, x2) := (1− τ)δjk + τgjk(x1, x2), (x1, x2) ∈ E, j, k = 1, 2.

(31)
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For the parameter τ = 0, the metric ds2(0) = δjk dx
j dxk is already isother-

mal. With the aid of Theorem 1, we then find a maximal number τ∗ ∈ (0, 1],
such that all metrics ds2(τ) with 0 ≤ τ < τ∗ can be transferred into the
isothermal form. Theorem 2* now implies that also the metric ds2(τ∗) can
be transferred into the isothermal form, with the aid of the diffeomorphism
x ∈ C2+α(B,E) satisfying (4)*, (5)*, (8)*. If the inequality τ∗ < 1 were true,
we could - due to Theorem 1 - transfer the metrics ds2(τ) for all parameters
τ∗ ≤ τ < τ∗ + ε - with a sufficiently small number ε > 0 - into the isothermal
form. Since the number τ∗ ∈ (0, 1] has been chosen maximal, the identity
τ∗ = 1 holds true. Consequently, the metric

ds2 = ds2(1) = gjk(x1, x2) dxj dxk

can be transferred into the isothermal form as described above. q.e.d.

We finally note the following

Theorem 3. For each Riemannian metric ds2 from (1)*, (2)*, (3)* we have
a C2+α(B)-diffeomorphism x = x(u, v) satisfying (4)*,(5)*, (8)* which trans-
fers ds2 into the isothermal form

ds2 = σ(u, v)(du2 + dv2) in B (32)

with the surface element σ = σ(u, v) ∈ C1+α(B, (0,+∞)) .

Proof: For all radii r ∈ (0, 1), we introduce isothermal parameters into the
metric ds2 on Er - according to Theorem 2. With the aid of Theorem1*, we
then find a solution of (32) by approximation. q.e.d.

Remark to Theorem 3: We can derive this theorem alternatively by approxi-
mation with metrics being Euclidean at the boundary. In this context we refer
the reader to the Remark following Theorem 2*.

§9 The uniformization method for quasilinear elliptic
differential equations and the Dirichlet problem

We consider the Jordan domain Ω ⊂ R2 with the C2+α-boundary-curve ∂Ω ,
and we investigate the quasilinear elliptic differential equation

a(x, y, z, p, q)r + 2b(x, y, z, p, q)s+ c(x, y, z, p, q)t+ d(x, y, z, p, q) = 0 in Ω

with ac− b2 > 0.
(1)

Here we use the familiar symbols of G. Monge

p = zx(x, y), q = zy(x, y), r = zxx(x, y), s = zxy(x, y), t = zyy(x, y)
(2)
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for the derivatives of a function z = z(x, y) : Ω → R ∈ C2+α(Ω) . With
adequate assumptions, we introduce isothermal parameters into the metric

ds2 = c dx2 − 2b dx dy + a dy2 (3)

via the uniformizing mapping

x + iy = f(w) = f(u, v) : B → Ω. (4)

Here we apply the uniformization theorem from § 8. The deliberations from
Chapter XI, § 3 can formally be repeated by substitution of the character-
istic parameters ξ, η with the complex parameters w,w . We now define the
functions

λ±(u, v) :=
b± i

√
ac− b2

a

∣∣∣∣
x+iy=f(u,v)

. (5)

Then we obtain the following system of first order, associated with the differ-
ential equation (1), in the same way as in the theory of characteristics quoted
above:

yw − λ+xw = 0, yw − λ−xw = 0,

pw + λ−qw +
d

a
xw = 0, pw + λ+qw +

d

a
xw = 0,

zw − pxw − qyw = 0

(6)

(with z = z ◦ f(w) etc.). In these equations the derivatives with respect to
w and w, respectively, only appear separately. Therefore, we differentiate the
equations containing ∂

∂w with respect to w, and the equations containing ∂
∂w

are derived with respect to w . We obtain a linear system of equations for the
functions xww, yww, zww, pww, qww, which we can resolve to these quantities
as in Chapter XI, § 3. We introduce the function

x(w) = x(u, v) = (x(u, v), y(u, v), z(u, v), p(u, v), q(u, v)) in B , (7)

and obtain a system

Δx(w) = Φ(x(u, v),xu(u, v),xv(u, v)), w = u + iv ∈ B, (8)

with quadratic growth in the gradient. One can deduce results for the differ-
ential equation (1) via the system (8) combined with the equations of first
order (6). Estimates for the uniformizing mapping f then guarantee the inde-
pendence of the parametrization.
We remark that the system (8) is deduced by real differentiation from the
differential equation (1) in the original papers of F. Müller, which have been
quoted in Chapter XI, § 6.

With the aid of the uniformization method, we now shall solve Dirichlet’s
problem for the nonparametric equation of prescribed mean curvature. We
choose the bound 0 < h0 < +∞ , define the disc
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Ω0 :=
{
(x, y) ∈ R2 : 4h2

0(x
2 + y2) ≤ 1

}
,

and fix a Hölder exponent α ∈ (0, 1).

Assumption D1: The bounded domain Ω ⊂ Ω0 may have a regular C2+α-
Jordan-curve ∂Ω as its boundary, whose curvature satisfies the inequality
κ(x, y) ≥ 2h0 for all points (x, y) ∈ ∂Ω . Furthermore, let the condition
(0, 0) ∈ Ω be fulfilled.

Graphic of a (2h0)-convex domain - allowing support circles of radius
1

2h0
uniformly:
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Assumption D2: On the circular cylinder

Z :=
{

(x, y, z) ∈ R3 : (x, y) ∈ Ω0

}
we prescribe the mean curvature

H = H(x, y, z) : Z → R ∈ C1+α(Z)

with the following properties:
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– We have a height z0 ∈ R and a number H0 ∈ [−h0,+h0], such that the
relation

H(x, y, z) = H0 for all (x, y, z) ∈ Z with z ≤ z0 (9)

holds true.
– We require the monotonicity

∂

∂z
H(x, y, z) ≥ 0 for all (x, y, z) ∈ Z. (10)

– Finally, we assume the bound

|H(x, y, z)| ≤ h0 for all (x, y, z) ∈ Z. (11)

According to § 2 in Chapter VI, the following problem possesses at most one
solution.

Definition 1. The continuous height representation g : ∂Ω → R ∈ C0(∂Ω,R)
being given, we consider a solution z = ζ(x, y) ∈ C2(Ω)∩C0(Ω) of Dirichlet’s
problem P(g) for the nonparametric equation of prescribed mean curvature

Mζ(x, y) := (1 + ζ2
y )ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy

= 2H(x, y, ζ(x, y))
(
1 + |∇ζ(x, y)|2) 3

2 in Ω
(12)

and
ζ(x, y) = g(x, y) for all (x, y) ∈ ∂Ω. (13)

We additionally set

‖g‖C0(∂Ω) := sup
(x,y)∈∂Ω

|g(x, y)|.

Proposition 1. (R. Finn)
A solution ζ ∈ P(g) of our problem with the boundary distribution g ∈
C0(∂Ω,R) satisfies the following estimates:

(a) |ζ(x, y)| ≤ ‖g‖C0(∂Ω) +
1
h0

for all (x, y) ∈ Ω ,

(b)
∫∫
Ω

√
1 + |∇ζ(x, y)|2 dx dy ≤ 3|Ω|+ (2h0|Ω|+ |∂Ω|

)‖g‖C0(∂Ω) .

Here the symbols |Ω| and |∂Ω| denote the area of the domain Ω and the length
of the curve ∂Ω, respectively.

Proof:
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(a) We consider the spherical graphs

η±(x, y) := ±‖g‖C0(∂Ω) ±
√

1
h2

0

− (x2 + y2), (x, y) ∈ Ω0. (14)

These fulfill the differential inequalities

Mη±(x, y) = ±2h0

(
1 + |∇η±(x, y)|2) 3

2

≥
≤ 2H(x, y, η±(x, y))

(
1 + |∇η±(x, y)|2) 3

2 in Ω.

(15)

We now deduce a differential inequality for the function

φ(x, y) := ζ(x, y)− η±(x, y) in Ω

as in § 2 from Chapter VI, taking (10) into account. Then the maximum
principle yields

η−(x, y) ≤ ζ(x, y) ≤ η+(x, y) in Ω. (16)

This implies the estimate (a).
(b) We rewrite (12) into the divergence form, abbreviate √ :=

√
1 + |∇ζ|2 ,

and obtain

ζ
∂

∂x

(
ζx√
)

+ ζ
∂

∂y

(
ζy√
)

= 2H(x, y, ζ)ζ .

Then we integrate over the domain Ω as follows:

2
∫∫
Ω

ζ(x, y)H(x, y, ζ(x, y)) dx dy

=
∫∫
Ω

{
∂

∂x

(
ζ
ζx√
)

+
∂

∂y

(
ζ
ζy√
)}

dx dy −
∫∫
Ω

|∇ζ|2√ dx dy

=
∫

∂Ω

ζ

(
ζx√ dy − ζy√ dx

)
−
∫∫
Ω

√
dx dy +

∫∫
Ω

1√ dx dy.

We note (a) and estimate∫∫
Ω

√
1 + |∇ζ|2 dx dy

=
∫

∂Ω

ζ

(
ζx√ dy − ζy√ dx

)
+
∫∫
Ω

1√ dx dy − 2
∫∫
Ω

ζH(x, y, ζ) dx dy

≤ ‖g‖C0(∂Ω)|∂Ω|+ |Ω|+ 2
(
‖g‖C0(∂Ω) +

1
h0

)
h0|Ω|,

and (b) is shown as well. q.e.d.
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Via Theorem 3 from § 8, we now introduce conformal parameters into the
graph ζ ∈ P(g) by the uniformizing mapping

f = f(u, v) : B → Ω ∈ C2(B) ∩ C0(B) diffeomorphic,

f(0, 0) = (0, 0).
(17)

Then the function

x(u, v) :=
(
f(u, v), ζ(f(u, v))

)
, (u, v) ∈ B (18)

is an H-surface in the following sense:

Definition 2. A nonconstant solution x ∈ C2(B,R3) of the system

Δx(u, v) = 2H(x(u, v))xu ∧ xv(u, v) in B,

|xu(u, v)|2 − |xv(u, v)|2 = 0 = xu · xv(u, v) in B
(19)

is called an H-surface. This surface is called immersed or free of branch points
if the condition

E(u, v) := |xu ∧ xv(u, v)| > 0 for all (u, v) ∈ B

is valid.

Proposition 2. The normal X(u, v) ∈ C2+α(B) to the immersed H-surface
x satisfies the following differential equation

ΔX(u, v)+2
(
2EH(x)2−EK−E(∇H(x) ·X)

)
X = −2E∇H(x) in B ,

(20)
with the notations from Chapter XI, §1.
Proof: From the Weingarten equations (compare [BL]) in conformal parame-
ters

Xu = −L

E
xu − M

E
xv, Xv = −M

E
xu − N

E
xv

we infer the identities

(X ∧Xv)u − (X ∧Xu)v = 2Xu ∧Xv = 2
LN −M2

E2
xu ∧ xv = 2EKX

and
X ∧Xu = −Xv − 2H(x)xv, X ∧Xv = Xu + 2H(x)xu.

On account of{
H(x(u, v))

}
u

= ∇H(x) · xu,
{
H(x(u, v))

}
v

= ∇H(x) · xv

we obtain
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2EKX = (X ∧Xv)u − (X ∧Xu)v

= Xuu + 2(∇H · xu)xu + 2Hxuu + Xvv + 2(∇H · xv)xv + 2Hxvv

= ΔX + 4EH2X + 2
(
(∇H · xu)xu + (∇H · xv)xv

)
.

(21)
Now we expand

∇H =
(
∇H · xu

|xu|
)

xu

|xu| +
(
∇H · xv

|xv|
)

xv

|xv| + (∇H ·X)X

and deduce

(∇H · xu)xu + (∇H · xv)xv = E∇H − E(∇H ·X)X. (22)

The formulas (21) and (22) imply the differential equation (20). q.e.d.

Theorem 1. (Compactness of graphs)
With the assumptions (D1) and (D2), let the boundary distributions gk ∈
C0(∂Ω,R) for k = 1, 2, . . . be given, and our problem may possess a solution
ζk ∈ P(gk) for each function gk. Furthermore, let the sequence {gk}k=1,2,...

converge uniformly on ∂Ω towards the limit function

g(x) := lim
k→∞

gk(x) ∈ C0(∂Ω,R).

Then also the limit problem P(g) possesses a solution ζ.

Proof:

1. As described in (17)-(18), we introduce conformal parameters into the
graphs ζk by the uniformizing mappings fk = fk(u, v) : B → Ω . Then we
obtain the immersed H-surfaces

xk(u, v) :=
(
fk(u, v), ζk(fk(u, v))

)
=:
(
fk(u, v), zk(u, v)

)
, (u, v) ∈ B.

(23)
Due to Proposition 1 of R. Finn, this sequence has a uniformly bounded
Dirichlet’s integral. Via the Courant-Lebesgue lemma combined with the
geometric maximum principle of E.Heinz, we prove that the sequence of
functions {xk}k=1,2,... is equicontinuous on the domain B . The Arzelà-
Ascoli theorem allows us the transition to a uniformly convergent subse-
quence on B , converging towards an H-surface

x(u, v) =
(
f(u, v), z(u, v)

)
: B → R3 ∈ C2(B) ∩ C0(B) , (24)

on account of Theorem2 in § 2.
2. Since the surface xk is conformally parametrized, we can eliminate the

third component due to Proposition 2 from § 7; more precisely

|∇zk(u, v)|2 ≤ |∇fk(u, v)|2 in B for k = 1, 2, . . . (25)
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We then obtain the sequence of plane mappings

fk(u, v) : B → Ω ∈ C2(B) ∩ C0(B) diffeomorphic,

|Δfk(u, v)| ≤ c1|∇fk(u, v)|2 in B,

fk(0, 0) = (0, 0),

D(fk) ≤ c2 for k = 1, 2, . . .

(26)

with the constants c1, c2 and Dirichlet’s integral D(fk) of fk. The distor-
tion estimate of E. Heinz from § 5 provides a constant Θ(c1, c2, r) > 0 for
each radius r ∈ (0, 1), such that the inequality

|∇fk(u, v)| ≥ Θ(c1, c2, r) for all points (u, v) ∈ Br (27)

is satisfied on the disc Br := {(u, v) ∈ B : u2 + v2 < r2}. Here we replace
the image domain B with the domain Ω in the proof of Theorem 3 from
§ 5. On account of (27), we find the estimate

|∇f(u, v)| > 0 in B (28)

for the limit mapping, and the H-surface x from (24) is immersed.
3. With the normal X(u, v) for the surface x(u, v) we associate the auxiliary

function
φ(u, v) := X(u, v) · e ≥ 0, (u, v) ∈ B, (29)

where the vector e := (0, 0, 1) appears. Introducing the potential-function

q(u, v) := 2
(
2EH(x)2 − EK − E(∇H(x) ·X)

)
,

Proposition 2 together with (10) yield the differential inequality

Δφ(u, v) + q(u, v)φ(u, v) ≤ 0 in B. (30)

Via multiplication by a nonnegative test function and integration, we ar-
rive at the weak differential inequality∫∫

B

{
∇φ(u, v) · ∇ψ(u, v)− q(u, v)φ(u, v)ψ(u, v)

}
du dv ≥ 0

for all ψ ∈ C∞
0 (B) with ψ ≥ 0 in B.

(31)

Now Moser’s inequality (compare Theorem1 from Chapter X, § 5) per-
tains to solutions of these differential inequalities, and the function φ is
subject to the principle of unique continuation. Consequently, the func-
tion φ on B must vanish if at least one zero appears in B. Since the case
φ ≡ 0 in B is evidently excluded, we infer

φ(u, v) > 0 for all (u, v) ∈ B
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and finally

Jf (u, v) :=
∂(x, y)
∂(u, v)

> 0 in B. (32)

Consequently, the function f : B → Ω represents a diffeomorphism of
the class C2(B) ∩ C0(B), when we additionally observe the following:
The boundary mapping f |∂B is weakly monotonic, at first. However, this
function cannot develop intervals where it remains constant: Otherwise,
we could easily derive the statement xw(w) ≡ 0 in B, with the aid of the
conformality relations and the similarity principle: This is impossible, of
course! With the function

ζ(x, y) := z
(
f−1(x, y)

)
, (x, y) ∈ Ω

we finally obtain a solution of the problem P(g). q.e.d.

Proposition 3. (Geometric maximum principle of S.Hildebrandt)
The auxiliary function φ(u, v) := x(u, v)2 + y(u, v)2, (u, v) ∈ B , associated
with the H-surface x(u, v) = (x(u, v), y(u, v), z(u, v)) : B → Z , satisfies the
differential inequality

Δφ(u, v) ≥ 0 in B.

Proof: We calculate

Δφ(u, v) = 2
(|∇x|2 + |∇y|2 + xΔx + y Δy

)
= 2
(|∇x|2 + |∇y|2 + 2H(x)(x, y, 0) · xu ∧ xv

)
.

Since the surface x is represented in conformal parameters, we infer

|∇z|2 ≤ |∇x|2 + |∇y|2 in B

and consequently

|2H(x)(x, y, 0) · xu ∧ xv| ≤ 2h0
1

2h0

1
2
(|∇x|2 + |∇y|2 + |∇z|2)

≤ |∇x|2 + |∇y|2 in B.

We summarize our considerations to the inequality Δφ(u, v) ≥ 0 in B. q.e.d.

With a fundamental boundary regularity result of S. Hildebrandt, J. C. C.
Nitsche, F. Tomi, and E.Heinz we prove the following

Theorem 2. (Regularity of graphs)
With the assumptions (D1) and (D2) being given, let ζ ∈ P(g) denote a solu-
tion of our problem to the boundary distribution g ∈ C2+α(∂Ω,R). Then we
have the regularity statement ζ = ζ(x, y) ∈ C2+α(Ω).
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Proof: We investigate the H-surface

x(u, v) = (f(u, v), ζ(f(u, v)) , (u, v) ∈ B

again, which belongs to the regularity class C2(B) ∩ C0(B). According to
[DHKW] 7.3, Theorem2, we infer the regularity statement x ∈ C2+α(B). We
already know the condition

Jf (u, v) > 0 in B

for the Jacobian of the uniformizing mapping, and we intend to establish this
estimate on the closed disc ∂B as well. Let the point w0 ∈ ∂B be chosen
arbitrarily, and let x0 := x(w0), y0 := y(w0) be defined. Via a translation of
the domain Ω ⊂ Ω0, we can achieve the condition (x0, y0) ∈ ∂Ω0. According to
the boundary point lemma of E. Hopf, now Proposition 3 implies the following
inequality for the auxiliary function φ in polar coordinates w = reiϑ, namely

0 <
1
2
∂φ

∂r

∣∣∣
w0

= (xxr + yyr)
∣∣∣
w0

. (33)

Since the function φ(ϑ) := φ(cosϑ, sinϑ) attains its maximum at the point
ϑ0, we infer the identity

0 =
1
2
∂φ

∂ϑ

∣∣∣
ϑ0

= (xxϑ + yyϑ)
∣∣∣
w0

. (34)

The relation (33) implies that w0 does not represent a branch point, more
precisely

|xϑ(w0)|2 = |xr(w0)|2 > 0. (35)

Furthermore, we have a number K > 0 satisfying

z2
ϑ ≤ K(x2

ϑ + y2
ϑ). (36)

From (35) and (36) we infer

0 < (x2
ϑ + y2

ϑ + z2
ϑ)
∣∣∣
w0

≤ (1 + K)(x2
ϑ + y2

ϑ)
∣∣∣
w0

and consequently
(x2

ϑ + y2
ϑ)
∣∣∣
w0

> 0. (37)

Since the mapping f is positive-oriented, we find a parameter λ > 0 satisfying

xϑ(w0) = −λy(w0), yϑ(w0) = λx(w0) ,

on account of (34). This implies

(xryϑ − xϑyr)
∣∣∣
w0

= λ(xxr + yyr)
∣∣∣
w0

> 0
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and equivalently
Jf (w0) > 0.

Therefore, the function f : B → Ω represents a C2+α(B)-diffeomorphism,
and the height function

ζ(x, y) := z(f−1(x, y)) , (x, y) ∈ Ω

belongs to the regularity class C2+α(Ω). q.e.d.

The following result was initiated by considerations of J.C.C. Nitsche for min-
imal surfaces.

Proposition 4. (Stability of graphs) For the boundary distribution g ∈
C2+α(∂Ω) let ζ = ζ(x, y) ∈ P(g) denote a solution of the class C2+α(Ω).
Then we have a quantity ε = ε(ζ) > 0, such that all boundary distributions
g̃ ∈ C2+α(∂Ω) satisfying

‖g̃ − g‖C2+α(∂Ω) ≤ ε

possess a solution of the problem P(g̃) .

Proof: We solve the problem P(g̃) via perturbation with a function η(x, y) ∈
C2+α(Ω). In this context we have to achieve that besides the function ζ the
perturbed function ζ + η satisfies the differential equation (12) as well: From
the identity

0 =
(
1 + (ζy + ηy)2

)
(ζxx + ηxx)− 2(ζx + ηx)(ζy + ηy)(ζxy + ηxy)

+
(
1 + (ζx + ηx)2

)
(ζyy + ηyy)− 2H(x, y, ζ + η)

(
1 + |∇(ζ + η)|2) 3

2
(38)

we deduce the following differential equation - ordered with respect to the
degree of homogeneity in η, ηx, . . . , ηyy, namely

Lη(x, y) = φ(η) in Ω. (39)

Here the symbol

Lη := (1 + ζ2
y)ηxx − 2ζxζyηxy + (1 + ζ2

x)ηyy

+a(x, y)ηx + b(x, y)ηy + c(x, y)η

denotes a linear elliptic differential operator, with coefficients depending on
the quantities ζ, ζx, . . . , ζyy . We observe the condition c(x, y) ≤ 0 in Ω , due
to (10). The right-hand side is quadratic and of higher order in η, ηx, . . . , ηyy

and consequently satisfies the contraction condition

‖φ(η1)− φ(η2)‖Cα(Ω) ≤ C(�)‖η1 − η2‖C2+α(B)

for all ηj ∈ C2+α(Ω) with ‖ηj‖C2+α(Ω) ≤ � and j = 1, 2.
(40)
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Here the property C(�) → 0 for � → 0+ is correct, and we note φ(0) = 0.
With the aid of the Schauder theory from § 6 in Chapter IX, we now solve the
linear problem

Lη = ω in Ω,

η = ψ on ∂Ω
(41)

uniquely by a function η ∈ C2+α(Ω) - for each right-hand side ω ∈ Cα(Ω)
and all boundary values ψ ∈ C2+α(∂Ω) . For the boundary values ψ ≡ 0 on
∂Ω, we set

C2+α
∗ (Ω) :=

{
η ∈ C2+α(Ω) : η = 0 on ∂Ω

}
.

We use the symbol L0 := L|C2+α
∗ (Ω) for the restriction of the operator L to

the subspace C2+α
∗ (Ω). Then the operator

ω = L0(η) : C2+α
∗ (Ω)→ Cα(Ω) (42)

is invertible, and we have Schauder’s estimate

‖L−1
0 (ω)‖C2+α(Ω) ≤ C‖ω‖Cα(Ω) for all ω ∈ Cα(Ω) , (43)

due to Theorem 2 in § 5 from Chapter IX. Given the boundary values
‖ψ‖C2+α(∂Ω) ≤ ε , we solve

Lη0 = 0 in Ω,

η0 = ψ on ∂Ω.
(44)

Here we have to estimate the solution by its boundary values with respect to
the C2+α-norm. In this context we firstly estimate the solution η0(x, y) in the
C0-norm by its boundary values due to Theorem 1 from Chapter VI, § 1. With
the aid of the Schauder theory from Chapter IX, § 7 we secondly estimate the
solution in the C2+α-norm by its boundary values. Here we locally straighten
the boundary of the domain, and then we can extend the boundary values
into the ambient space - without augmenting their C2+α-norm. Subtracting
the extended boundary values, we get an inhomogeneous differential equation
with zero boundary values, from which we gain our Schauder estimates. Now
we iterate

Lηk+1 = φ(ηk) in Ω,

ηk+1 = ψ on ∂Ω
(45)

for k = 0, 1, 2, . . . . With the aid of (40) and (43), we see that the sequence
{ηk}k=1,2,... converges towards a solution η ∈ C2+α(Ω) of (39) in the Banach
space C2+α(Ω); here we choose the number ε > 0 sufficiently small. q.e.d.

Theorem 3. (Quasilinear Dirichlet problem)
With the assumptions (D1) and (D2), we take an arbitrary boundary func-
tion g ∈ C0(∂Ω,R). Then the Dirichlet problem P(g) for the nonparametric
equation of prescribed mean curvature possesses exactly one solution.
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Proof: We note the condition (9) and find a spherical graph η(x, y) : Ω → R ∈
C2+α(Ω) of constant mean curvature H0 , such that the differential equation
(12) is fulfilled with the boundary values

f(x, y) := η(x, y), (x, y) ∈ ∂Ω .

We solve the problem P(gλ) for the family of boundary values

gλ(x, y) := f(x, y) + λ
(
g(x, y)− f(x, y)

)
, (x, y) ∈ ∂Ω, (46)

with 0 ≤ λ ≤ 1 and g ∈ C2+α(∂Ω,R) . This has already been done for the
start parameter λ = 0, and the solvability is - due to Proposition 4 - an open,
and - due to Theorem 1 - also a closed property. Consequently, the Dirichlet
problem P(gλ) is solvable for all 0 ≤ λ ≤ 1, and - in particular for the terminal
parameter - P(g) possesses a solution ζ ∈ C2+α(Ω). With the aid of Theorem
1, we then comprehend the solvability of Dirichlet’s problem for continuous
boundary values. The uniqueness has already been shown in § 2 of Chapter
VI. q.e.d.
Remark: This approach to the Dirichlet problem is contained in the following
paper:

F. Sauvigny: Deformation of boundary value problems for surfaces with
prescribed mean curvature. Analysis 21 (2001), 157-169.

§10 An outlook on Plateau’s problem

Given the radius M > 0, we define the ball

K :=
{
(x, y, z) ∈ R3 : x2 + y2 + z2 ≤M2

}
.

Within K we take a rectifiable Jordan curve Γ ⊂ K, where we fix three points
pj ∈ Γ for j = 1, 2, 3. We define the nonvoid class of admissible functions

Z(Γ ) :=

⎧⎪⎨⎪⎩x = x(u, v) : B → K :

x ∈ C2(B) ∩ C0(B) ∩W 1,2(B),

x : ∂B → Γ weakly monotonic,

x(e
2πi
3 j) = pj , j = 1, 2, 3

⎫⎪⎬⎪⎭ .

Besides the generalized area

A(x) :=
∫∫
B

{
|xu ∧ xv|+ 2H

3
(x,xu,xv)

}
du dv (1)

from Chapter XI, § 2 we consider the energy functional of E. Heinz

E(x) :=
∫∫
B

{(|xu|2 + |xv|2
)

+
4H
3

(x,xu,xv)
}
du dv (2)
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for x ∈ Z(Γ ) , assuming H ∈ [− 1
2M ,+ 1

2M ] . Dirichlet’s integral

D(x) :=
∫∫
B

(|xu|2 + |xv|2
)
du dv

has the following relationship to this energy functional:

E(x) ≥ 2
3
D(x) for all x ∈ Z(Γ ). (3)

Furthermore, we observe

2A(x) ≤ E(x) for all x ∈ Z(Γ ), (4)

where equality is exactly attained in the case of conformal parametrization

|xu| = |xv|, xu · xv = 0 in B . (5)

This is based on the inequality√
EG− F 2 ≤

√
EG ≤ 1

2
(E + G)

for the coefficients of the first fundamental form

dx2 = E du2 + 2F du dv + Gdv2

associate to the surface.

We owe the following result to T. Radó and C. B. Morrey:

Proposition 1. (Almost conformal parameters)
Let the function x = (x(u, v), y(u, v), z(u, v)) ∈ Z(Γ ) and the quantity ε > 0
be given. Then we have a parameter transformation f(α, β) : B → B which is
topological, such that the surface y(α, β) := x ◦ f(α, β) ∈ Z(Γ ) is admissible
and the estimate

1
2
E(y) ≤ A(y) + ε (6)

is fulfilled.

Proof: Since the second summand in 2A and E are parameter-invariant (with
respect to orientation-preserving reparametrizations), we have only to inves-
tigate the case H = 0 . Given the number δ > 0 we define the extended
mapping

x̃(u, v) =
(
x(u, v), y(u, v), z(u, v); δu, δv

)
: B → R5 (7)

with the first fundamental form

Ẽ = x̃u · x̃u = E + δ2, F̃ = x̃u · x̃v = F, G̃ = x̃v · x̃v = G + δ2
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and the surface element

ẼG̃− F̃ 2 = EG− F 2 + δ2(E + G) + δ4 > 0.

According to § 8 we introduce isothermal parameters into the regular surface
x̃(u, v) with the aid of the positive-oriented mapping

f(α, β) =
(
u(α, β), v(α, β)

)
: B → B.

The surface

ỹ(α, β) := x̃◦f(α, β) =
(
x◦f(α, β), δf(α, β)

)
=
(
y(α, β), δf(α, β)

)
: B → R5

satisfies
ỹα · ỹβ = 0 = |ỹα|2 − |ỹβ |2 in B,

and the transformation formula for multiple integrals yields

D(y) + δ2D(f) = D(ỹ) = 2
∫∫
B

√
ẼG̃− F̃ 2 dα dβ

= 2
∫∫
B

√
(EG− F 2) + δ2(E + G) + δ4 du dv

≤ 2
∫∫
B

√
EG− F 2 du dv + 2δ

∫∫
B

√
E + Gdu dv + 2πδ2.

(8)
The quantity ε > 0 given, we can find a number δ > 0 and an associate
parameter transformation f , such that the inequality (6) holds true for y =
x ◦ f . q.e.d.

Proposition 2. (Minimal property)
Let the function x(u, v) ∈ Z(Γ ) denote a solution of the H-surface system

Δx(u, v) = 2H xu ∧ xv(u, v) in B

with H ∈ [− 1
2M ,+ 1

2M ]. Then all admissible functions y(u, v) ∈ Z(Γ ) satisfy-
ing y(u, v) = x(u, v) on ∂B realize the inequality

E(y) ≥ E(x). (9)

Proof: With the aid of the Gaussian integral theorem we easily verify the
following identity:

E(x + z) = E(x) +
∫∫
B

{
|∇z|2 +

4H
3
(
3x + z, zu, zv

)}
du dv

for all z ∈ C∞
0 (B,R3).

(10)
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Therefore, we develop

E(x + z) =
∫∫
B

{
|∇x|2 + 2∇(z · ∇x) + |∇z|2 − 2z ·Δx

}
du dv

+
4H
3

∫∫
B

(
x + z,xu + zu,xv + zv

)
du dv

= E(x) +
∫∫
B

{
|∇z|2 +

4H
3

(x + z) · zu ∧ zv − 4H(xu,xv, z)
}
du dv

+
4H
3

∫∫
B

{
(z,xu,xv) + (x + z,xu, zv) + (x + z, zu,xv)

}
du dv

= E(x) +
∫∫
B

{
|∇z|2 +

4H
3

(x + z) · zu ∧ zv

}
du dv

+
4H
3

∫∫
B

{
(x + z,xu, z)v + (x + z, z,xv)u

}
du dv

−4H
3

∫∫
B

{
(zv,xu, z) + (zu, z,xv)

}
du dv

= E(x) +
∫∫
B

{
|∇z|2 +

4H
3

(3x + z) · zu ∧ zv

}
du dv

−4H
3

∫∫
B

{
(zv,x, z)u + (zu, z,x)v

}
du dv

= E(x) +
∫∫
B

{
|∇z|2 +

4H
3

(3x + z) · zu ∧ zv

}
du dv.

Via a well-known approximation procedure we can insert the function z =
y − x with |x + z| ≤ M on B into (10). From the condition |H |M ≤ 1

2 we
then infer the inequality (9). q.e.d.

We owe the following result for surfaces of constant mean curvature to
E.Heinz:

Theorem 1. (Plateau’s problem)
Let the parameter H ∈ [− 1

2M ,+ 1
2M ] be given. Then the variational problem

A(x) → minimum, x ∈ Z(Γ ) (11)

possesses a solution x ∈ Z(Γ ) , representing an H-surface with the curve Γ
as its boundary.
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Proof: We define the number

a := inf
x∈Z(Γ )

A(x) ∈ (0,+∞)

and choose a minimal sequence {xn}n=1,2,... ⊂ Z(Γ ) with

lim
n→∞A(xn) = a. (12)

Via Proposition1 we make the transition to a sequence {yn}n=1,2,... ⊂ Z(Γ )
satisfying

1
2
E(yn) ≤ A(xn) +

1
n
, n = 1, 2, . . . . (13)

Using Theorem3 from § 4 we can uniquely extend the continuous boundary
values of yn to a solution of Rellich’s system, namely

Δzn(u, v) = 2H (zn)u ∧ (zn)v(u, v) in B,

zn = yn on ∂B.
(14)

Proposition2 together with (13) yield the inequality

1
2
E(zn) ≤ A(xn) +

1
n
, n = 1, 2, . . . (15)

On account of (3) the sequence {zn}n possesses a uniformly bounded Dirich-
let’s integral. With the aid of the Courant-Lebesgue lemma we see that the
boundary values zn|∂B, n = 1, 2, . . . are equicontinuous. W. Jäger’s maxi-
mum principle from § 1 allows the transition to a uniformly convergent subse-
quence on the closed disc B. According to § 2, Theorem2 we find a function
z(u, v) ∈ Z(Γ ) in the limit satisfying

Δz(u, v) = 2H zu ∧ zv in B . (16)

On account of the convergence in C1(B) we infer the following inequality from
(15), namely

a ≤ 1
2
E(z) ≤ a ≤ A(z) (17)

which implies A(z) = 1
2E(z). Consequently, the surface z is conformally para-

metrized and represents a H-surface. q.e.d.

On each disc Br(w0) ⊂⊂ B with the center w0 ∈ B , our H-surface satisfies
the differential inequality

|xww(w)| ≤ c|xw | in Br(w0) (18)

with a number c = c(w0, r) > 0. According to the similarity principle of
Bers and Vekua (compare § 6 in Chapter IV) we then have the asymptotic
representation
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xw(w) = a(w − w0)n + o
(|w − w0|n

)
, w → w0. (19)

Here we have the integer n = n(w0) ∈ N∪ {0} and the nonvanishing complex
vector a = a(w0) ∈ C3 \ {0} . Those points w0 with n(w0) ∈ N are called
branch points of the H-surface, which are isolated on account of (19). There
the surface is not regular in the differential-geometric sense.
The regularity of H-surfaces - especially at the boundary - is intensively stud-
ied in the beautiful Grundlehren [DHKW] of U. Dierkes and S. Hildebrandt on
Minimal Surfaces. If the boundary curve Γ is real-analytic, the solution can
be analytically continued beyond the boundary as an H-surface due to the
result of

F. Müller: Analyticity of solutions for semilinear elliptic systems of second
order. Calc.Var. and PDE 15 (2002), 257-288.

According to a complicated theorem of Alt-Gulliver-Osserman one can ex-
clude the branch points for the solutions of the above variational problem a
posteriori. However, the desire remains to solve the variational problem (11)
directly in the class

Z∗(Γ ) :=
{
x ∈ Z(Γ ) : |xu ∧ xv(u, v)| > 0 for all (u, v) ∈ B

}
. (20)

Finally, we recommend the very interesting monograph by J.C.C. Nitsche [N].

In the case H = 0, Plateau’s problem has been solved independently by
T. Radó and J.Douglas, and later R. Courant created the approach using
Dirichlet’s principle.

§11 Some historical notices to Chapter XII

We owe to C.F. Gauß, already in 1827, the introduction of isothermal para-
meters in the small for real-analytic surfaces. B. Riemann was the first to
solve Plateau’s problem for a quadrilateral in 1867, treating a very special
Riemann-Hilbert problem. In 1866 and 1887, K. Weierstraß elaborated the
close relationship between the theories of holomophic functions and minimal
surfaces, respectively.
L. Lichtenstein developed his ideas for conformal mappings between nonan-
alytic surfaces from 1911 to 1916. We owe to T. Carleman, about 1930, the
profound observation that the class of pseudoholomorphic functions share the
property of isolated zeroes with the much smaller class of holomorphic func-
tions. This fact was utilized by P. Hartman and A. Wintner in 1953 for the
investigation of singularities on nonanalytic surfaces.

The significance of isothermal parameters for surfaces of prescribed mean cur-
vature was revealed by F. Rellich: In 1938 he established his H-surface-system.
Then E. Heinz solved the Dirichlet problem for this system by topological



380 XII Nonlinear Elliptic Systems

methods in 1954. Moreover, he developed the profound theory of nonlinear
elliptic systems, in 1956/57, presented here. With his pioneering paper from
1952, E.Heinz also initiated the study of curvature estimates, still flourishing
today.
In 1966, S. Hildebrandt investigated the behavior of minimal surfaces at the
nonanalytic boundary. Moreover, Plateau’s problem for prescribed variable
mean curvature has been solved by S. Hildebrandt in 1969/70 – as well as
regularity problems.

Very influential in this context was R. Courant’s book on Dirichlet’s Prin-
ciple from 1950, who personally built the bridge between Germany and the
United States of America – in Mathematics and beyond. This treatise above,
inspired aready by D. Hilbert, gives a simplified solution of Plateau’s problem
by J. Douglas and T. Radó, the first Fields medalists from 1930.
The Dirichlet problem, for the nonparametric equation of prescribed mean
curvature H, was originally treated by T. Radó in 1930 for the case H=0 –
and by J. Serrin in 1967 for arbitrary H.

In 1976, W. Jäger presented a uniqueness result for the Dirichlet problem of
nonlinear elliptic systems with his well-known maximum principle. We should
note that existence and regularity questions are quite well understood today.
However, the study of the entire set of solutions and their classification remains
a great challenge for the theory of nonlinear partial differential equations in
the future.

On the next page:
Minimal Surfaces spanning various Contours;
taken from the title-page of the monograph by
J.C. C.Nitsche: Vorlesungen über Minimalflächen,
Grundlehren Band 199, Springer-Verlag, Berlin... (1975).
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delberger Taschenbücher, Springer-Verlag, Berlin . . ., 1968.

[GuLe] R.B. Guenther, J.W.Lee: Partial Differential Equations of Mathematical
Physics and Integral Equations. Prentice Hall, London, 1988.

[H1] E. Heinz: Differential- und Integralrechnung III. Ausarbeitung einer Vor-
lesung an der Georg-August-Universität Göttingen im Wintersemester
1986/87.

[H2] E. Heinz: Partielle Differentialgleichungen. Vorlesung an der Georg-
August-Universität Göttingen im Sommersemester 1973.



384 References

[H3] E. Heinz: Lineare Operatoren im Hilbertraum I. Vorlesung an der Georg-
August-Universität Göttingen im Wintersemester 1973/74.

[H4] E. Heinz: Fixpunktsätze. Vorlesung an der Georg-August-Universität Göt-
tingen im Sommersemester 1975.

[H5] E. Heinz: Hyperbolische Differentialgleichungen. Vorlesung an der Georg-
August-Universität Göttingen im Wintersemester 1975/76.

[H6] E. Heinz: Elliptische Differentialgleichungen. Vorlesung an der Georg-
August-Universität Göttingen im Sommersemester 1976.

[H7] E. Heinz: On certain nonlinear elliptic systems and univalent mappings.
Journal d’Analyse Math. 5, 197-272 (1956/57).

[H8] E. Heinz: An elementary analytic theory of the degree of mapping. Journal
of Math. and Mechanics 8, 231-248 (1959).

[He1] G. Hellwig: Partielle Differentialgleichungen. Teubner-Verlag, Stuttgart,
1960.

[He2] G. Hellwig: Differentialoperatoren der mathematischen Physik. Springer-
Verlag, Berlin . . ., 1964.

[Hi1] S.Hildebrandt: Analysis 1. Springer-Verlag, Berlin . . ., 2002.
[Hi2] S.Hildebrandt: Analysis 2. Springer-Verlag, Berlin . . ., 2003.
[HS] F. Hirzebruch und W. Scharlau: Einführung in die Funktionalanalysis.
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Elimination lemma 352
Global estimates 353
Stability theorem 361

Conformal mappings
Inner estimates 351

Curvature
Gaussian 262
mean 262
principal 261

Curvature estimate of E. Heinz 346

Degree of mapping
due to Leray-Schauder 17

Diffeomorphic ball 161
Distortion estimate of E. Heinz 341

Eigenvalue problem
for weakly singular integral operators

110
of H. Weyl 53, 120
of Leray 9
of Sturm-Liouville 35, 114
of the n-dimensional oscillation

equation 40, 53, 120
Embedding

compact 205
Equation of prescribed mean curvature
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Dirichlet’s problem 373
Euler’s equation 269
Euler’s formula for the normal curvature

262
Existence theorem

for completely continuous mappings
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for linear elliptic equations 164
for weak elliptic differential equations

212
Expansion theorem for kernels 111
Extension

of an operator 65
Extension theorem

for dense subspaces 65
of Hahn-Banach 25

Fixed point theorem
of Banach 10
of Brouwer (for the unit simplex) 7
of Schauder 8

Fourier-Plancherel integral theorem
87

Function
superlinear 25

Functional
bounded linear 64
linear 25
of E. Heinz 267
of S. Hildebrandt 267

Fundamental theorem for elliptic
differential operators 168

Generalized area integral 266
Generalized Green’s function 251
Graphs of prescribed mean curvature

Area estimate of R. Finn 365
Regularity 370
Stability 372

Graphs of presribed mean curvature
Compactness 368

Green’s function
for the Sturm-Liouville operator 37
of the Laplace operator 40

H-surface 367
Branch points 379
Differential equation for the normal

367

immersed or free of branch points
367

H-surface system 305
Haar’s method 241
Harmonic mapping 349
Harnack-Moser inequality 226
Heinz’s inequality 338
Hermitian integral kernel 42
Hilbert space 56

separable 56
Hilbert’s fundamental theorem 57
Hilbert’s selection theorem 89
Hilbert-Schmidt integral kernel 68
Homotopy theorem 18
Hopf’s estimates 146

Index 21
Index-sum formula 21
Integral equation

of Fredholm 46
of the second kind 47

Integral equations
of the first kind 45

Integral operator
of Cauchy 128, 359
of Vekua 359

Inverse
of an operator 69

Involution 66

Jäger’s estimate 311

Lemma of Zorn 29
Leray-Schauder theorem 21
Linear subspace 62

closed 62
Closure of a 62

Lower bound
of a totally ordered set 27

Mappings in Banach spaces
completely continuous (compact) 4
continuous 4

Maximum principle
geometric, of E. Heinz 310
geometric, of S. Hildebrandt 370
of W. Jäger 310

Minimal element
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Minimal surface
of H. F. Scherk 272

Minimal surface equation 272
n-dimensional 265
in divergence form 265

Minimal surfaces spanning various
contours by J.C.C. Nitsche 380

Morrey’s class of functions 228
Morrey’s embedding theorem 234
Moser’s inequality 216

Nonlinear elliptic systems
A priori estimate 330
Boundary-energy-estimate 314
Dirichlet problem 335
Dirichlet problem for 328
Global C1,α-estimate 325
Gradient estimate of E. Heinz 320
Inner C1,α-estimate 323
Inner energy estimate 313

Norm
of a linear functional 64
Sobolev norm 189

Norm-interpolation 177

Operator
continuous 22
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Fourier’s integral 78
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linear 22, 65
linear bounded 65
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of Fredholm 97
of Hilbert-Schmidt 99, 109
of Riemann-Hilbert 154

of order n 138
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singular integral 43
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unitary 76
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unitary equivalent 77
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complete 59

Parseval’s equation 60
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K. Friedrichs (1901–1982) 257
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Principle of the open mapping 22
Principle of uniform boundedness 87
Principle of unique continuation 216
Projection theorem 64
Projector 72
Proposition
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of E. Hopf 145
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Quasilinear curvature equation 269
Quasilinear elliptic differential equation

362
Quasilinear hyperbolic differential
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Characteristic curves 275
Characteristic form 275
Hyperbolic normal form 276, 280

Regularity theorem of de Giorgi 243
Representation theorem

for bilinear forms 74
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Riemann’s integration method 291
Riemannian function 295
Riemannian integration method 296

Schauder’s continuity method 158
Schauder’s estimates 157, 169, 185

interior 160
Scherk’s minimal surface

graphic of 273
Schwarzian integral formula 134, 354
Selection theorem of Rellich-

Kondrachov 205
Set
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convex 3
partially ordered 27
precompact 3, 91
totally ordered 27

Singular kernel 42
Sobolev space 189, 194
Sobolev’s embedding theorem 201
Spectral theorem

of F. Rellich 106
of Hilbert-Schmidt 109

Surface
differential-geometrically regular
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Fundamental form of a 260
Normal of a 259
Umbilical point of a 262

Theorem
about inner regularity 165
about boundary regularity 166
about iterated kernels 52
about the continuous embedding

203
about the lattice property 199
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of de Giorgi - Nash 224
of F. Riesz 24
of Fourier-Plancherel 87
of Fredholm 97
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of S. Bernstein 347
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of the inverse operator 22
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Uniformization theorem 361
Unitary space 63

Weak chain rule 198
Weak convergence

in Hilbert spaces 87
Weak convergence criterion 88
Weak partial derivative 188
Weak potential-theoretic estimates

227–234
Weak product rule 197
Weighted conformality relations 349
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Weingarten mapping 261
Wiener’s condition 236
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