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PREFACE 

The present book has its source in the authors’ wish to create a bridge between  
mathematics and the technical disciplines that need a good knowledge of a strong 
mathematical tool. The authors tried to reflect a common experience of the University of 
Bucharest, Faculty of Mathematics and of the Technical University of Civil Engineering 
of Bucharest. 
The necessity of such an interdisciplinary work drove the authors to publish a first book 
with this aim (“Ecuaţii diferenţiale cu aplicaţii în mecanica construcţiilor” – Ordinary 
differential equations with applications to the mechanics of constructions, Editura 
Tehnică, Bucharest, Romania). 
The present book is a new edition of the volume published in 1999. Unfortunately, the 
first author (M.V. Soare) passed away shortly before the publication of the Romanian 
edition, so that the present work is only due to the other two authors. It contains many 
improvements concerning the theoretical (mathematical) information, as well as new 
topics, using enlarged and updated references. 
We considered only ordinary differential equations and their solutions in an analytical 
frame, leaving aside their numerical approach. 
Compared to the Romanian edition, this volume presents the applications in a new way. 
The problem is firstly stated in its mechanical frame. Then the mathematical model is set 
up, emphasizing on the one hand the physical magnitude playing the part of the unknown 
function and on the other hand the laws of mechanics that lead to an ordinary differential 
equation or system. The solution is then obtained by specifying the mathematical 
methods described in the corresponding theoretical presentation. Finally – last, but not 
least – a mechanical interpretation of the solution is provided, this giving rise to a 
complete knowledge of the studied phenomenon; after all, this is the main goal of any 
scientific approach. In most of cases, the solution is interpreted by using a parametrical 
study, which better emphasizes the core of the phenomenon. Sometimes, we pointed out 
the influence of a certain parameter or presented auxiliary diagrams and tables, whence, 
by interpolation, one can immediately get effective numerical values of the solution. 
The number of the applications was increased; in order to keep the volume within a 
reasonable number of pages and also, not to exaggerate the interference between 
mathematics and engineering, we did not exhaustively introduce and present the 
mathematical model. It must be pointed out that many of these problems currently 
appear in engineering. 



x ODEs WITH APPLICATIONS TO MECHANICS 

The book is organized in seven chapters. Each of them begins with a theoretical 
presentation, which insists on the practical computation – the “know-how” of the 
mathematical method – and ends with a rich range of applications.  Unlike the standard 
presentations, we introduced separately the linear case, which is exposed in the first three 
chapters. The reason of this is that in the linear case one can use not only general 
methods, fitted for any differential equation, but also specific methods. The non-linear 
case forms the object of the next two chapters. The sixth chapter treats problems in a 
variational frame. Finally, the last chapter is devoted to an initiation in the modern 
domain of stability. 
It should be mentioned that the book contains some personal results of the authors, 
published in scientific reviews of wide circulation.  
The prerequisites of this book are courses of elementary analysis and algebra, acquired 
by a student in a technical university. It is addressed to a large audience, to all those 
interested in using mathematical models and methods in various fields, like: mechanics, 
civil and mechanical engineering, people involved in teaching or design as well as 
students. 
 

 P.P.TEODORESCU  and  ILEANA TOMA 
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INTRODUCTION 

1. Generalities 

The study of physical phenomena becomes consistent and applicable by establishing 
mathematical relationships between the involved physical quantities. Sometimes, these 
relationships are algebraic. But in most cases, algebra is not enough to characterize the 
phenomenon. The involved quantities may depend on other quantities, considered as 
independent variables, and the relationships are no more algebraic, containing both the 
unknown function and its derivatives. In the case of functions depending only on one 
variable, these are called ordinary differential equations (ODEs). If the unknown 
function depends on several variables, the equations will also contain its partial 
derivatives; such equations are called partial differential equations (PDEs). 
In this book, only ODEs will be considered. Solving them is not only formally necessary, 
but also leads to physical interpretations in the frame of the considered phenomenon. 
To emphasize the above considerations, let us take an example. 

The parabolic mirror 

Problem. Find the profile of an axially symmetric reflector (mirror), such that all the 
luminous radiations coming from a point-source O be reflected as a parallel beam, of 
given direction. 

Solution. We choose O as origin for the system of co-ordinate axes and as Ox-axis – the 
direction of the parallel beam and we search the equation of the generating curve in the 
form 

( )xy ϕ= . (1.1) 

We admit that this unknown curve is contained in the xOy  plane (Fig.1) 
 

O 
T 

T’ y 

x 

rω
iω

Q P 

α 
θ 

M 

α 

 
Figure 1. The parabolic mirror 

Let ( )yxP ,  be a point on this curve. Draw the tangent TT ′  at P  and consider a 
luminous beam OP , issued from O  and reflected in PQ . By hypothesis, OxPQ , so 
that the angles OTP and QPT’ are both equal to α. As the incidence angle iω  must equal 
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the reflection angle rω , we see that the angles θ and α  are equal. Looking at the 
triangle POT, we see that the angle MOP is 2α. From the right triangle MOP we deduce 

x
y

=α2tan . (1.2) 

On the other hand, 

x
y

y
d
d

tan =′=α . (1.3) 

From (1.2) and (1.3), using the tangent of a double arc, it follows 

21
2

y
y

x
y

′−

′
= . (1.4) 

Equation (1.4) is an ODE, representing precisely the mathematical model for the curve 
( )xy ϕ= . 

To get the form of φ, one must find the solutions of this equation. 
Let us leave aside – for the moment – the physical phenomenon and provide these 
solutions in a mathematical frame. This is by no means an easy task; we shall use the 
idea of differentiating with respect to y. Step by step, we thus get 

,12 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−

′
= y

y
yx  

y
yyy

yy
y
x ′−

′
+⎟

⎟
⎠

⎞
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⎜
⎝

⎛
−

′
−

′
=

111
d
d

d
d2

2
, 

(1.5) 

or else 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

′

′
−′−

′
=

′
11

d
d12

2yy
yyy

yy
; (1.6) 

after canceling and simplifying by 0,0,1 2 ≠≠′′+ yyy , it is obtained 

y
y

y
y dd

−=
′
′

. (1.7) 

But equation (1.7) is equivalent to 

Cyy ′+−=′ lnlnln , (1.8) 

where 0>′C is an arbitrary constant. It then follows 



Introduction 3 

CC
y
Cy ′±==′ , , (1.9) 

and finally 

,
2

2
KCxy

+=  (1.10) 

K being a new arbitrary constant. 
Note that in this case there were obtained two arbitrary constants only because of the 
differentiation with respect to y; one of them may be determined from the other. Indeed, 
at the point of intersection of the curve with the Oy-axis one has 0=x , therefore, by the 
first equation (1.5) 1d/d =xy and so 045=α ; it follows that  2/2CK = . Thus, the final 
form of the solution is 

22 2 CCxy += , (1.11) 

that is a family of parabolae of axis Ox, of common focal point O and focal distance 
2/C . 

Conclusion. The internal surface of the silvered mirror is a paraboloid of revolution. 
This simple example emphasizes the necessity of an organized study of the ODEs in an 
appropriate mathematical frame. 

2. Ordinary Differential Equations 

An ODE is defined by an equality of the form 

( ) ( ) ( ) ( )( ) 0,,,, =′ xyxyxyxF nK , (2.1) 

where the unknown function y also appears through its derivatives ( ) niy i ,1, = . The 
variable x is also called independent variable. 
It is considered that it belongs to a real interval I, on which the function y is defined; this 
last one is supposed of class ( )InC , meaning that y is continuous on I, together with its 
derivatives up to n–th order inclusive. The function F is supposedly defined on the 
Cartesian product Ω×I , where 1+ℜ⊆Ω n is such that Ω×I  be compact in the space of 
co-ordinates ( ) ( ) ( ) ( )( )xyxyxyx n,,,, K′ . In most of the standard applications, F is 
continuous in its arguments. The maximum order of differentiation of the unknown 
function is called the order of the differential equation. For instance, the equation (2.1) 
is of order n. 
Under the previous conditions, the equation (2.1) may be developed with respect to 

( )ny  to give 

( ) ( ) ( ) ( ) ( )( )xyxyxyxfy nn 1,,,, −′= K ; (2.2) 
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we call this form normal. 
A particular solution of (2.1) is a function of class ( )InC  that satisfies (2.1) for any 

Ix∈ . 
The general solution (or general integral) of (2.1) is a function 

( )nCCCxyy ,,,, 21 K=  (2.3) 

of class ( )InC , depending on n arbitrary constants nCCC ,,, 21 K , corresponding to the 
order of equation, and satisfying (2.1) on I, for any set of admissible constants.  
Thus, in the previous example, the function (1.11) is the general solution of equation 
(1.4). 
The particular solutions of a differential equation are obtained from the general one by 
giving particular values to the constants nCCC ,,, 21 K . The solutions that cannot be 
obtained in this way are called singular.  
If we represent the general solution (2.3) in a system of rectangular axes xOy , we shall 
obtain a family of plane curves – the parabolae (1.11) in the case of the previous example. 
This justifies the denomination of integral curve for any particular solution of (1.4). 
A very important class of ODEs is the class of linear differential equations. In order to 
make things clear, denote by 

( ) ( )0,,0,0, KxFxb =− . 

Then 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )xbxyxyxyxGxyxyxyxF nn −′=′ ,,,,,,,, KK . 

We call the n-th order differential equation (1.12) linear if its left member satisfies 
( ) ( )( )

( )( ) ( )( ),,,,,,,,,

,,,,
nn

nn

zzzxGyyyxG

zyzyzyxG

KK

K

′β+′α=

=β+α′β+′αβ+α
 (2.4) 

for any ℜ∈βα,  and any ( )Izy nC, ∈ . 
If G has an analytic expression and is linear, then necessarily 

( ) ( ) ( ) ( )( ) ( ) ( )∑
=

=′
n

i

i
i

n yxaxyxyxyxG
0

,,,, K , (2.5) 

where ( )xai  are real functions, defined on I. So, G is a homogeneous first degree 
polynomial with respect to the unknown function y and its derivatives. Consequently, a 
linear n-th order ODE has the general form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ℜ→=+′+++ −
− Ibxbyxayxayxayxa nn

nn :,1
1

10 K , (2.6) 

If, in particular, ( ) Ixxb ∈= ,0 , then (2.6) is called homogeneous. 
Remark. While the linear ODE of order n could be directly defined by (2.6), we preferred 
to express the linearity in the form (2.5) from various reasons. First of all, the definition 
(2.5) of the linearity is extremely useful in applications and mostly effective to establish 
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the general representation of the solutions. Secondly, from (2.4) it is immediately seen 
that the linearity of an ODE means linearity with respect to the unknown function and 
not at all with respect to the independent variable x, the last confusion being a common 
error. 
Obviously, the differential equation (1.4) is non-linear, as it does not satisfy condition 
(2.6). Let us note, in particular, that we used an artifice to solve this equation; it could 
not be easily solved by using a standard method. 
Actually, the non-linear case has not the advantage of a general method, leading to 
satisfactory representations of the solution. Unlike this, in the linear case there were 
found general techniques effectively leading to the solutions, in many cases expressed in 
closed form. 
This is why, in the present book, we decided to treat separately the case of linear ODEs, 
starting with the first order ones. 

3. Supplementary Conditions Associated to ODEs 

We saw that the general integral of an ODE does not represent a well defined integral 
curve. For instance, (1.11) represents a family of parabolae. This means that the solution 
of a differential equation is not unique. As the classical physical phenomena are 
deterministic, this means that some supplementary conditions must be added to the 
equation such that the whole problem should allow a unique solution. Such conditions 
are naturally imposed in the process of modelling itself. More precisely, the 
mathematical model must be well posed in the sense of Hadamard. This means that its 
solution 

a) must exists, in a certain class of function 1C ; 
b) must be unique, in a certain class of functions 2C ; 
c) must be continuous with respect to the given data. 
Again, according to the involved phenomenon, we may distinguish two standard 
types of such conditions: 

 the Cauchy (or initial) conditions; 
 the boundary conditions. 

3.1 THE CAUCHY (INITIAL) PROBLEM 

Consider, for the moment, the ODE of first order 

( ) ( )( ) IxxyxyxF ∈=′ ,0,, , (3.1) 

whose general solution is 

( ) IxCxy ∈ϕ= ,, . (3.2) 

In other words, every particular solution of (3.1) may be found among the curves of the 
family (3.2), in which we take C as a parameter. A possible choice would be to get the 
curve passing through a certain point ( ) Ω×∈ Iyx 00 , , therefore, for which 
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( ) 00 yxy = ; (3.3) 

this yields 

( ) 00 , yCx =ϕ . (3.4) 

From (3.4), we get C. 
The condition (3.3) is a Cauchy (initial) condition associated to (3.1). 
The equation (3.1) and the Cauchy condition (3.3)  

( ) ( )( )
( )⎩

⎨
⎧

=
∈=′

,
,,0,,

00 yxy
IxxyxyxF

 (3.5) 

form together a Cauchy (initial) problem. 
If the problem is well posed (i.e., the solution exists and is unique), then the functional 
equation (3.4) allows only one solution ( )0,0 yxCC =  and the unique integral curve, 
satisfying (3.5), is 

( )( )00 ,, yxCxyy = . (3.6) 

Suppose now that we deal with a second order ODE. A common physical phenomenon 
leading to such equations is e.g. the motion of a particle. Let us give an example. 

Problem. Study the free fall of a body of mass m. 

Mathematical model. We must firstly set up a mathematical model for this phenomenon. 
To do this, we must observe two steps: 
1) establish the physical quantity/quantities representing the unknown function, whose 
knowledge should give us an exact and complete idea of the phenomenon evolution 
2) find the physical law/laws governing the considered phenomenon. 
In the case of a free fall, the body, modelled as a particle (material point), moves on a 
vertical to the earth. To know the motion is therefore to know at every moment t the 
distance y from the impact point. Thus, the unknown function will be the displacement 

( )tyy =  along the vertical; this is a real function, of one independent variable: the time 
t. As for the law of mechanics governing the free fall, we can obviously use Newton’s 
law 

Fa =m , 

where a is the acceleration and F is the resultant of the forces acting upon the body. 
According to the problem, we only deal with the force of gravity G, expressed as 

gG m−= , 

g being the gravity acceleration. 
The sign minus is meant to indicate that G acts downwards, unlike y, which is upwards 
directed.  
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Note that all the involved vectors have only one component-dimensional, as the motion 
evolves along one direction: the vertical. Consequently, the forces acting upon the body 
are expressed in the form mg− , with 81.9=g m/s2. 
The velocity of the body – also one-dimensional – will be expressed as the derivative of 
the displacement y with respect to the independent variable t 

y
t
y

&≡
d
d

. 

The acceleration will be the first derivative of the velocity with respect to t, and therefore 
the second derivative of the displacement 

y
t

y
&&≡

2

2

d
d

. 

In the above expressions, we used the dot for the derivative with respect to the time, as it 
is a standard notation in mechanics. 
Introducing this in Newton’s law, we get 

mgym −=&& . 

After simplifying with m, we finally obtain 

gy −=&& , (3.7) 

which represents the mathematical model for the free fall. 

Solution. This is a second order ODE.As g is a constant, we can immediately integrate 
once both sides, to get 

1Cgty +−=& , (3.8) 

where 1C  is an arbitrary constant. It is possible to integrate once more and we obtain 

21

2

2
CtCtgy ++−= , (3.9) 

where 2C  is a new arbitrary constant. 
According to the previously defined notions, (3.9) is precisely the general solution of 
(3.7) and it is seen that it depends on two arbitrary constants. So, clearly, we need two 
supplementary conditions in order to specify these constants. In this case, it is natural to 
define more accurately 

 the position of the body at the beginning of the motion (initial position) 
 its velocity at the same moment (initial velocity). 

If the motion starts at the moment 0=t , then these conditions read 

( )
( )⎩

⎨
⎧

−=
−=

velocity,initialthe0
position,initialthe0

0

0

vy
yy

&
 (3.10) 
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with 00 , vy  previously given. The conditions (3.10) are called Cauchy or initial 
conditions. 
If we now make 0=t in (3.8), we get 

( ) 0110 vCCy =⇒=& . (3.11) 

Taking 0=t in (3.9) yields 

( ) 0220 yCCy =⇒= , (3.12) 

therefore both constants are perfectly determined from the supplementary conditions 
(3.10). 
The problem formed by equation (3.7) and the initial conditions (3.10) 

( )
( )⎪

⎩

⎪
⎨

⎧

=
=
−=

,0
,0

,

0

0

vy
yy

gy

&

&&

 (3.13) 

is a Cauchy or initial problem. 
In general, the motion problems may be modelled by using Newton’s law. If we consider 
the case of a single particle, the unknown function will be its displacement, say, 

( )txx = . As in the previous example, the particle velocity will be txx d/d=&  and the 

particle acceleration, 22 d/d txx =&& . As for the resultant of the forces acting upon the 
particle, we usually find expressions depending on x and x& . Thus, the unidimensional 
equation of motion of a particle is usually expressed in the form 

( )xxtFxm &&& ,,= . (3.14) 

The initial conditions read now 

( )
( )⎩

⎨
⎧

=
=

.0
,0

0

0

xx
xx
&&

 (3.15) 

The equation (3.14) together with the conditions (3.15) form a Cauchy or initial problem. 
We observe that a first order ODE requires one Cauchy condition, while a second order – 
two such conditions. 
In the general case, to the equation (2.1) we associate n Cauchy conditions 

( ) ( ) ( ) Ixniyxyyxy i
i ∈−=== + 00,10100 ,1,1,, , (3.16) 

where niyi ,1,0 =  are previously defined constants, usually known as Cauchy or initial 
data. It is important to note that, in this case, all the involved conditions are given at the 
same point 0x . Obviously, the point ( )0100 ,,, nyyx K  must belong to the domain of 
definition of F. 
If the general solution (or integral) of equation (2.1) 

( )nCCCxyy ,,,, 21 K=  (3.17) 
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is known, then the Cauchy problem (2.1), (3.16) is reduced to get the constants 

niCi ,1, =  from the algebraic (or functional) system of n relationships and n unknowns 

( )
( )

( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

=′
=

−
.0210

1

20210

10210

,,,,

,
,,,,,

,,,,,

nn
n

n

n

yCCCxy

yCCCxy
yCCCxy

K

KKKKKKKKKKKK

K

K

 (3.18) 

Under certain conditions, ensuring the existence and uniqueness of the solution of the 
Cauchy problem (2.1), (3.16), this system allows a unique solution. 

3.2 THE TWO-POINT PROBLEM 

Like the Cauchy problem, this kind of problem has it source in the modelling of the 
physical phenomena. 
A classic example is the simply supported bar. Let us study the deflection of the bar axis 
( )xy  with respect to its rest position Ox , when the bar is acted upon by some known 

forces or loadings. 
The unknown function ( )xy  satisfies, under certain physical hypotheses, the Bernoulli – 
Euler equation 

( )( )2
3

21 yxfy ′+=′′ , (3.19) 

where f depends on the bending moment and on the bar rigidity. This is a second order 
non-linear ODE, in normal form. From the physical point of view, a bar is simply 
supported if the bar deflection is null at the bar ends a and b, say, laying on the Ox - axis. 
Translated in mathematical terms, this reads 

( ) ( ) 0,0 == byay . (3.20) 

These are no more Cauchy conditions, because the unknown function must be known at 
two different points: a and b. 
The simply supported bar problem (3.19), (3.20) is therefore a two-point (or bilocal) 
problem. 
The two-point conditions may be generalized for the n-th order equation (2.1) 

( ) ( ) ( ) ( )[ ] ,,0,
1

0
nibyay i

n

j

j
ij

j
ij =γ=β+α∑

−

=

 (3.21) 

where ( ) yy =0 , 1,0,,,, −=γβα njiiijij  are given constants and Iba ∈, . 
Let us note that, while for the Cauchy problem (2.1), (3.16) we have the benefit of 
appropriate theorems, ensuring the existence and uniqueness of the solution under 
sufficiently large hypotheses, for the two-point problem such general theorems are no 
more available, even for linear equations. This is why we shall not try to find convenient 
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hypotheses ensuring the existence and uniqueness of the solution of a two-point problem; 
they will be specified on particular cases, when applied. 
Another important generalization of the two-point problem is the polylocal (or n-point) 
problem, which consists in getting those solutions of (2.1) that also take given values at n 
different points niIai ,1, =∈  

( ) nkjaaniyay kjii ,1,,,,1, =<== . (3.22) 

To find convenient theorems of existence and uniqueness of the solution of the poly-
local problem (2.1), (21) is not an easy task. Yet, the polylocal conditions may be 
considered, in a certain sense, a generalization of the Cauchy conditions (3.16). Indeed, if 

the points niai ,2, =  , are getting closer to 1−ia , then the ratios 
( ) ( )

1

1

−

−

−
−

ii

ii

aa
ayay

 tend to 

the derivative of y at 1−ia . All the involved constants being previously known, it follows 

that the limit ( ) 1,1, −=′ niay i  is also known. Further, the points 1,2, −= niai  are 

again moving to the left; this yields ( ) 2,1, −=′′ niay i . After 1−n such steps, we know 

all the values ( ) ( ) 1,0,1 −= niay i . 
This interpretation is intuitive and might be somewhat formal, but it serves as a 
foundation for some general considerations in the study of polylocal problems. As we do 
not consider here applications involving polylocal problems, we shall not treat such 
problems in detail. 
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Chapter 1 

LINEAR ODEs OF FIRST AND SECOND ORDER 

1. Linear First Order ODEs 

As it was already specified in the introduction, the general form of such equations is 

( ) ( ),xfyxpy =+′  (1.1.1) 

where f and g are functions defined and supposed continuous on the real interval I. The 
function ( )xf  is usually called the free term. 
We shall study this equation starting from the most simple up to the most general case, 
which is (1.1.1). 

1.1 EQUATIONS OF THE FORM ( )xfy =′  

This is the simplest form of (1.1.1). The solutions of this equation may be obviously 
regarded as primitives of f. Consequently, its general solution (integral) is 

( ) ( ) Cdxxfxy += ∫ , (1.1.2) 

where ( )∫ dxxf is one of the primitives of f and C is an arbitrary constant. The 

representation (1.1.2) is obviously obtained by integrating both members of ( )xfy =′ . 
If we wish to get the solution passing through the point ( )00 , yx , where Ix ∈0 , then it 

is convenient to choose ( ) ξξ∫ d
0

x

x

f among the primitives of f. Indeed, with this choice, the 

solution passes through ( )00 , yx  if 

( ) 0d
0

0

yfC
x

x

=ξξ+ ∫ , (1.1.3) 

therefore if 0yC = . This yields 

( ) ( ) 0d
0

yfxy
x

x

+ξξ= ∫ . (1.1.4) 
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1.2 THE LINEAR HOMOGENEOUS EQUATION 

This equation is also a particular case of (1.1.1), where the free term is identically null, 
that is 

( ) 0=+′ yxpy . (1.1.5) 

 Dividing by y both terms of this equation, we immediately get 

( ) ( )xpy
x

−=ln
d
d . (1.1.6) 

This means that yln  satisfies an equation of the previously considered type. Thus, the 
general solution of (1.1.6) is, by using directly (1.1.2), 

( )∫−= xxpCy d~ln , (1.1.7) 

where C~  is an arbitrary constant and ( )∫ xxp d  – one of the primitives of p. From (1.1.7) 
we see that y is the general solution of (1.1.5) and is expressed by 

( ) ( )∫−= xxpCxy de , (1.1.8) 

with C arbitrary constant. 
As previously, to get a particular solution, passing through the point ( )00 , yx , we shall 

choose ( )∫ ξξ−
x

x

p
0

d  among the primitives of p. Then (1.1.8) immediately yields 0yC = . 

Consequently, the solution passing through ( )00 , yx  is given by 

( )
( )∫ ξξ−

=

x

x
p

yxy 0
d

0e . (1.1.9) 

1.3 THE GENERAL CASE 

Let us get back to the equation (1.1.1), in which the functions f and p, defined on ℜ⊆I , 
are not identically null. Suppose that we know a particular solution of (1.1.1), ( )xY  say, 
and let us perform the change of function 

( ) ( ) ( )xYxzxy += . (1.1.10) 

Introducing this in (1.1.1) immediately involves 

( ) ( ) ( )xfYxpYzxpz =+′++′ ; (1.1.11) 

thus, z satisfies the homogeneous equation 
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( ) 0=+′ zxpz , (1.1.12) 

which was studied at Sec.1.2 and whose general solution is 

( ) ( )∫−= xxpCxz de . (1.1.13) 

Getting back to (1.1.10), we see that the general solution of (1.1.1) may be expressed in 
the form 

( ) ( ) ( )xYCxy xxp += ∫− de , (1.1.14) 

where ( )xY  is a particular solution of the non-homogeneous equation (1.1.1). This form 
is very important, as it is characteristic for linear ODEs in general; we shall discuss it 
further. 

1.4 THE METHOD OF VARIATION OF PARAMETERS (LAGRANGE’S 
METHOD) 

Except for ( )xY , formula (1.1.14) refers only to the coefficients of (1.1.1). Lagrange 
remarked that ( )xY  can be obtained in terms of these coefficients if we search it under 
the form 

( ) ( ) ( )∫−= xxpxCxY de , (1.1.15) 

that is, shaping it according to the general solution of the associated to (1.1.1) 
homogeneous equation. Introducing this in (1.1.1) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xfxCxpxCxpxC xxpxxpxxp =+−′ ∫−∫−∫− ddd eee ,  (1.1.16) 

from which we deduce that ( )xC  must satisfy 

( ) ( ) ( )xfxC xxp =′ ∫− de , (1.1.17) 

which leads to 

( ) ( ) ( ) .e d∫=′ xxpxfxC  (1.1.18) 

This is an equation considered at Sec.1.1. It follows that the general integral of (1.1.18) 
is written in the form 
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( ) ( ) ( ) xxfKxC xxp de d∫ ∫+= . (1.1.19) 

In this expression, K is an arbitrary constant and the integral in the right member is a 
primitive of the function ( ) ( )∫ xxpxf de . Actually, we don’t need the general solution of 
(1.1.18) for our purpose; all we need is a particular solution, which can be found giving 
to K an arbitrarily chosen value, e.g. 0=K . With this, we get 

( ) ( ) ( ) ( ) xxfxY xxpxxp dee dd ∫ ∫∫−= . (1.1.20) 

We replace now this particular solution in (1.1.14). The final form of the general solution 
of the linear non-homogeneous equation (1.1.1) is thus 

( ) ( ) ( ) ( )( )xxfKxy xxpxxp dee dd ∫ ∫∫− += . (1.1.21) 

It is seen that this expression contains only primitives involving the coefficients of the 
equation. 
To find the integral curve passing through a given point ( )00 , yx  we conveniently 
choose the primitives. The solution of this Cauchy problem will be 

( )
( )

( )
( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+= ∫
∫∫− x

x

pp
x

x

x

x fyxy
0

00 dee
d

0

d

ηη
ξξξξ

. (1.1.22) 

From the above considerations, we point out the following two aspects, particularly 
important in the study of linear ODEs: 

(i) The general integral ( )xy  of the non-homogeneous equation (1.1.1) may 
be put under the form (1.1.10), i.e., a sum between a particular solution of 
(1.1.1) and the general solution of the associated to (1.1.1) homogeneous 
equation. 

(ii) We succeeded to find a particular solution of the non-homogeneous 
equation shaping it in the form of the general solution of the associated 
homogeneous equation, in which the constant C was replaced by a 
function ( )xC . This method is called the method of variation of 
parameters or Lagrange’s method. 

The representation (1.1.10), as well as Lagrange’s method, are extremely important and 
useful tools for the study of linear ODEs and systems; they will be also used for higher 
order linear ODEs. 



1. Linear ODEs of First and Second Order 

 

15

( )yxpyy +′≡L  (1.1.23) 

the left member of (1.1.1). Actually, we can think of L as being a succession of 
functional operations executed on ( )I1C - class functions y. 

Example. For xyyy −′≡L , let us take 2
1 xy = . According to the operations indicated by 

the definition of L, we have 32
1 22L xxxxxy −=⋅−≡ , therefore the result is a function. 

If, for instance we take xy 2
2 e= , then ( ) xxx xxy 222

2 e2ee2L −=⋅−≡ . Taking 
2/

3
2

e xy = , we get 0eeL 2/2/
3

22
=⋅−≡ xx xxy , therefore the null function. 

We can say that L is an operator, as it realizes a function-to-function correspondence. 
Moreover, we say that it is defined on ( )I1C , with the range in ( )I0C . 
In general, an operator ZY:L → , where Y and Z are spaces of functions, is called 
linear if 

( ) Y,,,,LLL 212121 ∈∀ℜ∈βα∀β+α=β+α yyyyyy . (1.1.24) 

With this definition, we can easily prove that the differential operator introduced in 
(1.1.23) is linear. Indeed, we have 

( ) ( ) ( )( )
( )[ ] ( )[ ]

.

L

21

2211

212121

LyLy
yxpyyxpy
yyxpyyyy

βα
βα

βαβαβα

+=
+′++′=
++′+=+

 (1.1.25) 

Let us get back to the general case. The kernel of an operator ZY:L →  is a subset of Y, 
containing functions cancelled by L 

{ }0LYLker =∈= yy . (1.1.26) 

As Y is a linear vector space, Lker will be a linear subspace of Y. Indeed, if 
Lker, 21 ∈yy , then ( ) ℜ∈βα∀=β+α=β+α ,,0LLL 2121 yyyy , therefore  

Lker
21 ∈β+α yy

.  It is seen  that finding solutions  for  the  homogeneous  ODE  (1.1.5) means
 in  fact  to  get  Lker .  From  the  form  (1.1.8)  of  the  general  solution  we  deduce  that 
the dimension of Lker  is 1, for first order ODEs. This is not a casualty; we shall see that 
the kernels of linear n-th order ODEs have the dimension n. 

Let us think of the property of linearity in an algebraic frame. Denote by 

1.5 DIFFERENTIAL POLYNOMIALS 

Let us denote by D the operator indicating the derivative of first order of a function 
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xd
dD ≡  (1.1.27) 

and by E the identity 

yy =E  (1.1.28) 

Then L may be also expressed as 

( ) ( ) ( )EDD,P,D,PL 11 xpxyxy +≡= . (1.1.29) 

The operator defined in (1.1.29) is a formal polynomial of first order in D and it is called 
a differential polynomial. 
Let now [ ] [ ]

njjnjj fy
,1,1

,
==

== fy  be vector functions and assume that we must solve 

the vector equation 

( ) ( ) ( )( )nIIpxp 00 C,C,L ∈∈=+≡ ffyyy & . (1.1.30) 

Writing (1.1.30) componentwisely, this means, in fact, that one has to solve n uncoupled 
ODEs 

( ) njfyxpyy jjjj ,1,L ==+≡ & . (1.1.31) 

These first order ODEs are linear and non-homogeneous, therefore their general solution 
can be written, following formula (1.1.21) 

( ) ( ) ( ) ( )( )xxfKxy xxp
jj

xxp
j dee dd ∫ ∫∫− += , (1.1.32) 

or, in vector form 

( ) ( ) ( ) ( )( ) [ ]
njj

xxpxxp Kxxx
,1

dd ,dee
=

∫∫− =+= ∫ KfKy . (1.1.33) 

2. Linear Second Order ODEs 

The general form of such equations is, according to the introduction (see e.g.(15)) 

( ) ( ) ( ) ( )xbyxayxayxa =+′+′′ 210 , (1.2.1) 

where baaa ,,, 210  are real functions defined on a real interval ℜ⊆I . We may 
consider these functions continuous on I. 
If ( ) Ixxa ∈∀≠ ,00 , we can divide both members of (1.2.1) by it, thus getting an 
equation whose leading coefficient is 1 
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( ) ( ) ( ),xfyxqyxpy =+′+′′  (1.2.2) 

where we used the notations ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )xa
xbxf

xa
xa

xq
xa
xa

xp
00

2

0

1 ,, === . Obviously, if 

the coefficients of (1.2.1) are of class ( )I0C , so are p, q and f. 
We see that, if ( ) Ixxa ∈∀= ,00 , the equation is no more of second order, and, at the 
points at which ( ) 00 =xa , it has singularities. For the moment, we shall not deal with 
such situations, such that we consider that the given equation may be brought to the form 
(1.2.2).  
Let us denote by 

( ) ( )yxqyxpyy +′+′′≡L . (1.2.3) 

The operator L is defined on ( )I2C , with range in ( )I0C , and we can easily prove that it 
is linear.  
The kernel of this operator is a subset of ( )I2C , containing functions cancelled by L 

( ){ }0LCLker 2 =∈= yIy . (1.2.4) 

In other terms, Lker  is the set of all the solutions of the homogeneous ODE 
( ) ( ) 0=+′+′′ yxqyxpy . 

As in the case of first order ODEs, by using the notations we can express L in terms of 
the second degree differential polynomial 

( ) ( ) ( ) ( )EDDD,P,D,PL 2
22 xqxpxyxy ++≡=  (1.2.5) 

In (1.2.5), the formal power 2D  means to apply twice the operator D, in other words, to 
differentiate twice 

yy
x

y
x

y ′′==⎟
⎠
⎞

⎜
⎝
⎛=

2

22
2

d
d

d
dD . (1.2.6) 

2.1 HOMOGENEOUS EQUATIONS 

Let us take the associated to (1.2.1) homogeneous equation 

( ) ( ) ( ) 0210 =+′+′′ yxayxayxa . (1.2.7) 

If we know a particular solution of this equation, say ( )xY , we can completely solve 
(1.2.7). Indeed, let us perform the change of function 

( ) ( ) ( )xYxzxy = , (1.2.8) 

( )xz  being the new unknown function. Replacing this in (1.2.7), we get 
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( ) ( )[ ] ( ) ( ) ( )[ ] 02 210100 =+′+′′+′+′+′′ zYxaYxaYxazYaYxazYxa . (1.2.9) 

As Y is a solution of (1.2.7), it follows that zu ′= must satisfy 

( ) ( )[ ] 02 100 =+′+′ uYaYxauYxa ; (1.2.10) 

this is a linear first order ODE. 
We conclude that if we know a particular solution, we can reduce the order of the given 
equation by one unit. 
Suppose now that ( )xY1  is a known particular solution of the homogeneous equation, 
associated to (1.2.2) 

( ) ( ) 0=+′+′′ yxqyxpy  (1.2.11) 

and suppose moreover that 1Y  does not vanish on I. Using the change of function 
zYy 1= , we find that zu ′= must satisfy 

( )
( ) ( ) 02

1

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

′
+′ uxp

xY
xY

u , (1.2.12) 

i.e., a linear first order homogeneous ordinary differential equation. According to 
Sec.1.2, it allows the general integral 

( )
( )

( )xY
eCxu

xxp

2
1

d

1

∫−
= , (1.2.13) 

where ( )∫ xxp d is a primitive of ( )xp  and 1C  is an arbitrary constant. Getting back to y, 
we deduce 

( ) ( )
( )

( )
x

xY
exYCxy

xxp

d
2

1

d

11 ∫
∫−

= . (1.2.14) 

The path we followed so far, as well as the linearity of the homogeneous equation, 
involve that any solution of (1.2.11) is a linear combination between the function ( )xY1  
and the function 

( ) ( )
( )

( )
x

xY
exYxY

xxp

d
2

1

d

12 ∫
∫−

= . (1.2.15) 

The two particular solutions ( ) ( )xYxY 21 ,  are linearly independent, i.e. 

( ) ( ) 0,0,0 212211 ==⇒∈∀=+ kkIxxYkxYk . (1.2.16) 
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We can check this either directly, or, better, by introducing the Wronskian  

[ ] 1221
21

21
21 det, YYYY

YY
YY

YYW
def

′−′=⎥
⎦

⎤
⎢
⎣

⎡
′′

≡ . (1.2.17) 

We can prove that if 21 , YY  are linearly dependent, then ( ) 0, 21 ≡YYW  on I, and if 

21 , YY  are linearly independent, then ( )( ) IxxYYW ∈∀≠ ,0, 21 .  
A fundamental system of solutions of (1.2.7), or, accordingly, of (1.2.11), is a pair of 
linearly independent particular solutions of (1.2.7) or (1.2.11), nonvanishing identically 
on I. 
Following this definition, we can say that the above mentioned functions ( ) ( )xYxY 21 ,  
form a fundamental system of solutions for the equation (1.2.11) and the general integral 
of this equation will be expressed in the form 

( ) ( ) ( )xYCxYCxy 2211 += , (1.2.18) 

i.e., in the form of a linear combination of the functions of the fundamental system with 
arbitrary constant coefficients. 
Otherwise speaking, in this case the dimension of Lker is 2 and any fundamental system 
of solutions represent a basis for it. 
We can choose the functions of the fundamental system such that, at a given point 

Ix ∈0 , the following Cauchy conditions be satisfied 

( ) ( )
( ) ( ) .1,0

,0,1

0201

0201

==
==

xYxY
xYxY

 (1.2.19) 

The corresponding system of solution will be called in this case normal; it is a 
fundamental system for the equation (1.2.11). Indeed, suppose that 

( ) ( ) .,02211 IxxYkxYk ∈∀=+  

As ( ) ( )xYxY 21 ,  are differentiable on I, we can also write 

( ) ( ) .,02211 IxxYkxYk ∈∀=′+′  

These two relationships may be written at any point of I, therefore also at Ix ∈0 , 

( ) ( )
( ) ( ) ,0

,0

022011

022011

=′+′
=+

xYkxYk
xYkxYk

 (1.2.20) 

and, taking (1.2.19) into account, it results that 0,0 21 == kk . 
This might be more effectively proved by using the Wronskian. Indeed, 

[ ]( ) ( ) ( )
( ) ( ) 01

10
01

,
0201

0201
021 ≠==

′′
=

xYxY
xYxY

xYYW , (1.2.21) 

which means that ( ) ( )xYxY 21 ,  are linearly independent on I. 
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The Wronskian also has a special property, very useful in practice. 
Let us differentiate it, by using the well-known rules of differentiating determinants. We 
have 

[ ]

[ ].,
d

,d

21

21

21

2211

21

21

2121

YYpW
YY
YY

p
qYYpqYYp

YY
YY
YY

x
YYW

−=

′′
−=

+′+′
−=

′′′′
=

 (1.2.22) 

This means that the Wronskian satisfies the first order linear homogeneous ODE 

.0
d

d
=+ pW

x
W  (1.2.23) 

According to Sec.1.2, the general solution of this equation is  

[ ] ( )∫−=
xxp

CYYW
d

21 e, , (1.2.24) 

where C is an arbitrary constant. 
If we know the value of W at a point Ix ∈0 , then (1.2.24) may be also written in the 
form 

( ) ( )
( )∫−

=

x

x

ttp

xWxW 0

d

0 e . 
(1.2.25) 

From this, it follows that, if the Wronskian vanishes at some point Ix ∈0 , then it 
vanishes identically. 
Formula (1.2.24), or, equivalently, (1.2.25), is known as Liouville’s formula. 

2.2 NON-HOMOGENEOUS EQUATIONS. LAGRANGE’S METHOD 

 To solve the non-homogeneous equation (1.2.2), we shall use again the previous ideas, 
exposed for first order ODEs. 
Suppose that we know a particular solution of (1.2.2), say ( )xY . Let us perform the 
change of function Yzy += , where z is the new unknown function. Introducing this in 
(1.2.2), we get for z  

( ) ( ) 0=+′+′′ zxqzxpz , (1.2.26) 

which is precisely the associated to (1.2.2) homogeneous equation. Therefore, the 
general solution of (1.2.2) is the sum between one of its particular solutions and the 
general solution of the associated homgeneous equation, exactly as in the case of first 
order equations. 
If we also know a fundamental system ( ) ( )xYxY 21 ,  for (1.2.26), we can write the general 
solution of this equation in the form of the linear combination 
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( ) ( ) ( )xYCxYCxz 2211 += . (1.2.27) 

Thus, the general solution of the non-homogeneous equation (1.2.2) is 

( ) ( ) ( ) ( )xYxYCxYCxy ++= 2211 . (1.2.28) 

To write this, we must therefore know three functions: 21 ,, YYY . 
But from the above considerations it follows that we need to know only one particular 
solution of the homogeneous equation (1.2.26), say ( )xY1 . Indeed, in this case we 
immediately get another particular solution, ( )xY2 , linearly independent on ( )xY1 , as it 
was previously shown. The functions ( ) ( )xYxY 21 , form a fundamental system of 
solutions for (1.2.26). 
According to Lagrange’s idea, we can search now for a particular solution of (1.2.2) 
under the form 

( ) ( ) ( ) ( ) ( )xYxCxYxCxY 2211 += . (1.2.29) 

Differentiating this once, it is obtained 

( ) ( ) ( ) ( ) ( )xYCxYCxYCxYCxY 22112211 ′+′+′+′=′ . (1.2.30) 

We can choose 21 , CC  such that 

( ) ( ) 02211 =′+′ xYCxYC , (1.2.31) 

therefore 

( ) ( ) ( )xYCxYCxY 2211 ′+′=′ . (1.2.32) 

We differentiate this once more 

( ) ( ) ( ) ( ) ( )xYCxYCxYCxYCxY 22112211 ′′+′′+′′+′′=′′ . (1.2.33) 

To retrieve the non-homogeneous equation (1.1.24) we shall multiply (1.2.32) by ( )xp , 
(1.2.29) by ( )xq  and then add them to (1.2.33). We obtain 

( ) ( ) ( ) ( ) ( )xYCxYCxYCxYCxY 22112211 LLL ++′′+′′=  (1.2.34) 

or 

( ) ( ) ( )xYxYCxYC L2211 =′′+′′ . (1.2.35) 

But ( ) ( )xfxY =L  and so we get for 21 , CC ′′  a linear algebraic system 

( ) ( )
( ) ( ) ( )⎩

⎨
⎧

=′′+′′
=′+′

.
,0

2211

2211

xfxYCxYC
xYCxYC

 (1.2.36) 
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The associated determinant is precisely the Wronskian of 21 ,YY , therefore it does not 
vanish all over I. Solving (1.2.36), we find for 21 , CC ′′  

( ) ( )
( )

( ) ( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=′

−=′

,

,

1
2

2
1

xW
xfxY

C

xW
xfxY

C
 (1.2.37) 

that, integrated once, yield 

( ) ( )
( )

( ) ( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=

−=

∫

∫

.d

,d

1
2

2
1

x
xW

xfxY
C

x
xW

xfxY
C

 (1.2.38) 

We did not add arbitrary constants to the primitives 21 , CC , because we only need a 
particular solution of (1.1.24). This particular solution is precisely 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )∫∫ −= x
xW

xfxYxYx
xW

xfxYxYxY dd 2
1

1
2 . (1.2.39) 

The conclusion is that if we know Lker1 ∈Y , then the non-homogeneous ODE (1.1.24) 
is completely solved. Its general solution may be put in the form 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ,dd 2
1

1
22211 ∫∫ −++= x

xW
xfxY

xYx
xW

xfxY
xYxYCxYCxy  (1.2.40) 

where ( )xY2  is expressed e.g. by (1.2.15). 
Lagrange’s idea of finding a particular solution Y for a non-homogeneous linear ODE 
may be applied in various ways. Thus, we can search for Y in the form  

( ) ( ) ( ) ( ) ( ) ( )xzxYxCxYxCxY ++= 2211 , (1.2.41) 

or 

( ) ( ) ( ) ( ) ( )[ ] ( )xzxYxCxYxCxY 2211 += , (1.2.42) 

if these forms present more advantages in computation. 
Naturally, the algebraic system in 21 , CC ′′  will differ from (1.2.36). Thus, for instance, 
applying (1.2.41), we find, if ( ) Ixxq ∈≠ ,0  

( ) ( )
( ) ( )

⎪
⎩

⎪
⎨

⎧

=
=′′+′′

′−=′+′

.
,0

,

2211

2211

fbz
xYCxYC

zxYCxYC
 (1.2.43) 
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The general integral (1.2.40) may be written in a compact form by introducing the 
function 

( ) ( ) ( ) ( ) ( )
( )tW

tYxYtYxY
txk 1221,

−
±= , (1.2.44) 

where we take the sign + for tx <  and the sign – for tx > . We observe that this 
function has the following properties 

(i) k is of class ( )I1C , for tx ≠ ; 
(ii) ( )txk ,  satisfies the homogeneous ODE (1.2.11), for ( ) IItxtx ×∈≠ ,, ; 
(iii) for any Is∈ , the first derivative of k with respect to x has a jump equal to 

one unit 

( ) ( ) 1,0,0 =−
∂
∂

−+
∂
∂ ss

x
kss

x
k . (1.2.45) 

By definition, a function with the above properties is called a fundamental solution of the 
equation (1.2.11). 
The fundamental solution is not unique. Yet, one can prove that the set of all the 
fundamental solutions of (1.2.11) is given by the function of the form 

( ) ( ) ( ) ( ) ( )xYtCxYtCtxk 2211, ++ , (1.2.46) 

with ( )txk ,  defined by (1.2.44) and 21 , CC  continuous with respect to t. 
By means of the fundamental solution, we can express the general solution of the non-
homogeneous equation (1.2.2) in the form 

( ) ( ) ( ) ( ) ( )∫++=
β

α

ttftxkxYkxYkxy d,2211 , (1.2.47) 

α and β being the extremities of I.  
The idea of fundamental solution may be also applied to first order ODEs and may be 
extended to PDEs, but this last exceeds the topics of the present book. The natural 
mathematical frame for the fundamental solutions is the theory of distributions. 
Let now [ ] [ ]

njjnjj fy
,1,1

,
==

== fy  be vector functions and assume that we must solve 

the vector equation 

( ) ( ) ( ) ( )( )nIIqpxqxp 00 C,C,,L ∈∈=++≡ ffyyyy &&& . (1.2.48) 

Writing (1.1.30) componentwisely, this means, in fact, that one has to solve n uncoupled 
ODEs 

( ) ( ) njfyxqyxpyy jjjjj ,1,L ==++≡ &&& . (1.2.49) 
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These second order ODEs are linear and non-homogeneous, therefore, knowing the 
fundamental system of solutions 21 ,YY , their general solution can be written, following 
formula (1.2.40), 

( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )
( ) .,1,dd 2

1
1

2

2211

njx
xW

xfxY
xYx

xW
xfxY

xY

xYkxYkxy

jj

jjj

=−+

+=

∫∫
 (1.2.50) 

Eventually, the solution of the vector equation (1.2.48), written in vector form, is 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
[ ] [ ] .,

,dd

,122,111

2
1

1
22211

njjnjj kk

x
xW

xxYxYx
xW

xxYxYxYxYx

==
==

−++= ∫∫
kk

ffkky
 (1.2.51) 

2.3 ODEs WITH CONSTANT COEFFICIENTS 

In this case, we can always find easily a fundamental system of solutions for the given 
ODE. 
Indeed, consider the second order homogeneous ODE with constant coefficients 

0,,,,0L 0210210 ≠ℜ∈=+′+′′≡ aaaayayayay  (1.2.52) 

and, naturally, ℜ≡I .  
Euler’s idea was to search for solutions in exponential form, i.e. 

( ) xxy α= e  (1.2.53) 

with α constant. Introducing this in (1.2.52) yields for α an algebraic equation 

021
2

0 =+α+α aaa , (1.2.54) 

also called the characteristic equation. The second degree polynomial in the left member 
is the characteristic polynomial. 
This equation allows two roots, 21 ,αα , say, that might be  

i) real and distinct, 
ii) complex-conjugate, 
iii) double. 

Let us analyse one by one the above mentioned cases. 
i) There are two distinct solutions of the exponential form (1.2.53) 

( ) ( ) xx xYxY 21 e,e 21
αα == . (1.2.55) 
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[ ] ( ) ( )x
xx

xx

YY
YY

YYW 21

21

21

e
ee

ee, 12
2121

21
21

αα
αα

αα
αα

αα
+−==

′′
= , (1.2.56) 

does not vanish, as the roots are distinct. 
So, the functions 21 e,e αα form a fundamental system and the general solution may be 
written as 

( ) xx CCxy 21 ee 21
αα += . (1.2.57) 

Let us get now a normal system, at some point ℜ∈0x .  
We must find the solutions 21 , ZZ of (1.2.52) satisfying the Cauchy conditions 

( ) ( )
( ) ( ) .1,0

,01,

0201

0201

=′=′
==

xZxZ
xZxZ

 (1.2.58) 

Inspired by (1.2.57), we express 21 , ZZ  in the form 

( ) ( ) ( )

( ) ( ) ( ).ee

,ee
0201

0201

212

211
xxxx

xxxx

ddxZ

ccxZ
−α−α

−α−α

+=

+=
 (1.2.59) 

Imposing now the conditions (1.2.58), we obtain for the coefficients 21 , cc  the following 
linear algebraic system 

,0
1,

2211

21

=α+α
=+

cc
cc

 (1.2.60) 

and for 21 , dd  the system 

.1
0,

2211

21

=α+α
=+

dd
dd

 (1.2.61) 

Both systems allow the unique solution 

.1,1

,,

12
2

12
1

12

1
2

12

2
1

α−α
=

α−α
−=

α−α
α

=
α−α

α
=

dd

cc
 (1.2.62) 

We notice that 21 ,YY  are linearly independent. Indeed, their Wronskian  
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( )
( ) ( )

( )
( ) ( )

.ee

,
ee

12
2

12

12
1

0201

0201

α−α
+−

=

α−α
α−α

=

−α−α

−α−α

xxxx

xxxx

xZ

xZ
 (1.2.63) 

The general solution of (1.2.52) in terms of this normal system is 

( )
( ) ( ) ( ) ( )

12
2

12

12
1

02010201 eeee
α−α
+−

+
α−α
α−α

=
−α−α−α−α xxxxxxxx

CCxy . (1.2.64) 

If 121 −=α−=α , then ( ) ( ) ( ) ( )0201 sinh,cosh xxxZxxxZ −=−= and (1.2.64) becomes 

( ) ( ) ( )0201 sinhcosh xxCxxCxy −+−= . (1.2.65) 

ii) In this case, the two roots are complex-conjugate. Putting 
θ−ρ=αθ+ρ=α i,i 21 , with 0≠θ , we see that the functions ( ) ( )xx θ−ρθ+ρ ii e,e  form a 

fundamental system for (1.2.52). But this equation is linear, and, as Lker  is a vector 
space, their linear combinations, which, according to Euler’s formulae, are real 
functions, also belong to Lker  

( ) ( )

( ) ( )
.sine

i2
e-ee

i2
ee

,cose
2

ee
e

2
ee

iiii

2

iiii

1

xY

xY

x
xx

x
xx

x
xx

x
xx

θ==
−

=

θ=
+

=
+

=

ρ
θ−θ

ρ
θ−ρθ+ρ

ρ
θ−θ

ρ
θ−ρθ+ρ

 (1.2.66) 

Besides, they form a fundamental system, as their Wronskian 

[ ]
( ) ( )

x
xx

xx

xxxx
xxYYW ρ

ρρ

ρρ

θ=
θθ+θρθθ−θρ

θθ
= 2

21 e
cossinesincose

sinecose,  (1.2.67) 

is obviously non-zero. 
The general solution of (1.77) is therefore 

( ) ( )xCxCxy x θ+θ= ρ sincose 21 , (1.2.68) 

with 21, CC  arbitrary constants. 
iii) Let us denote by α the double root of the characteristic equation (1.2.54). 

Obviously, (1.77) allows 

( ) xxY α= e1  (1.2.69) 

as a particular solution. A second particular solution cannot coincide with 1Y . So, in 
order to get a new particular solution, linearly independent from 1Y , we suppose, for the 

Introducing this in (1.2.59), we obtain 
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moment, that the characteristic equation allows two distinct solutions, α′α, , very close 
to each other. To these roots, according to i), we put into correspondence the solutions 

xx α′α e,e , which, so far, are linearly independent. But this does not hold if α→α′ . We 

then replace xα′e by the linear combination 
α−α′

− αα′ xx ee  and, passing to the limit as 

α→α′ , we obtain a second particular solution, distinct from 1Y , 

( ) x
xxx

xxxY α
α′

α→α′

αα′

α→α′
==

α−α′
−

= e
1

elimeelim2 . (1.2.70) 

To get 2Y  we used L’Hospital rule. 
The functions 21 ,YY  form a fundamental system. Indeed, 

[ ]
( )

0e
e1e

ee, 2
21 ≠=

+αα
= α

αα

αα
x

xx

xx

x
xYYW . (1.2.71) 

The general solution of (1.2.52) is then 

( ) ( )xCCxy x
21e += α , (1.2.72) 

with 21, CC  arbitrary constants. 
The general integral of the non-homogeneous ODE 

( ) ( )Ifaaaaxfyayayay 0
0210210 C,0,,,,L ∈≠ℜ∈=+′+′′≡ , (1.2.73) 

obviously allows the representation (1.2.47), where 21 ,YY  are determined as it was 
shown in the cases i), ii) or iii). But this kind of formula often leads to cumbrous 
computation, because of the integral in the right side. We have another option, if f is an 
elementary function – polynomial, exponential, trigonometric function etc. In this case, 
the particular solution of (1.2.73) is searched under a form similar to f. In applications, 
we shall make use of this idea. 

2.4 ORDER REDUCTION 

Let us get back to the linear ODE(1.2.7), whose coefficients are supposed continuous on 
the real interval I and ( ) Ixxa ∈∀≠ ,00 . We already proved that, once we know a 
particular solution, one can completely solve this equation. But there are cases in which 
we don’t even need this. Let us mention some of them. 

a) If ( ) ,012 aaxa ′′−′=  then (1.2.7) may be integrated once, to give 

( ) Cyaaya =′−+′ 010 , (1.2.74) 

where C is a real arbitrary constant. The linear first order ODE (1.2.74) was already 
completely solved at Sec.1.3. 
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b) By the change of function ( ) ( )
( )
( )∫

=
x

xa
xa

xyxu
d

2
1

0

1

e , the equation (1.2.7) is brought 
to Liouville’s normal form 

( ) 0=+′′ uxKu . (1.2.75) 

The function ( )xK  is defined by the formula 

( )
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≡

0

1
2

0

1

0

2

2
1

4
1

a
a

a
a

a
a

xK  (1.2.76) 

and is called the invariant of (1.2.7). We see that K has a sense only if ( )Iaa 1
01 C/ ∈ . 

c) Let us consider, together with (1.2.7), a similar ODE, fulfilling the same 
conditions 

( ) ( ) ( ) 0210 =+′+′′ uxbuxbuxb . (1.2.77) 

It can be proved that their solutions are connected by the relationship 

( ) ( ) ( ) ( )ICpxpxuxy 2, ∈= , (1.2.78) 

with p nonvanishing on I, if and only if the two corresponding ODEs have the same 
invariant ( )xK . In this case, let 21 ,YY  and, accordingly, 21 ,UU , be two fundamental 
systems for these ODEs. It can be proved that the ratio 

( ) ( )
( )

( )
( )xU
xU

xY
xY

xs
2

1

2

1 == , (1.2.79) 

with ( ) 0≠′ xs , satisfies the non-linear ODE 

( )xK
s
s

s
s 2

2
3 2

=⎟
⎠
⎞

⎜
⎝
⎛

′
′′

−
′
′′′

. (1.2.80) 

The differential expression in the left member is called the Schwarz derivative of s and 
plays an important part in the study of stability of the solutions of ODEs. 

d) By means of the transformation 

y
yu
′

= , (1.2.81) 

the equation (1.2.7) becomes 

( ) ( ) ( ) ( ) 02
2

010 =+++′ xauxauxauxa , (1.2.82) 

which is a first order non-linear ODE, of Riccati type (see Chap. 4, Sec. 1.4). 
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2.5 THE CAUCHY PROBLEM. ANALYTICAL METHODS TO OBTAIN THE 

SOLUTION 

We shall briefly expose several of the mostly used and most general analytical methods 
to get the solutions of Cauchy problems for linear second order ODEs. 
Let us associate to the equation (1.2.2) the following initial (or Cauchy) conditions 

( ) ( ) Ixyxyyxy ∈′=′= 00000 ,, . (1.2.83) 

Suppose that the coefficients and the free term allow derivatives of any order on I, 
therefore ( )Ifqp ∞∈C,, . 

a) The method of the Taylor series expansion 
We write Taylor’s formula for ( )xy  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),,
!

!2!1

00
0

0

2
0

0
0

0

xxRxy
k
xx

xy
xx

xy
xx

xyxy

k
k

k

+
−

+

+′′
−

+′
−

+= K

 (1.2.84) 

where 

( ) ( )
( )

( ) ( )( ) 1,
!1

, 00

1
0

0 <θ−θ+
+

−
=

+

xxxy
k

xx
xxR k

k

k , 

is the Lagrange remainder. The first ( )1+k  terms of Taylor’s formula form a k-th degree 
polynomial, usually called Taylor’s polynomial. The value of ( )xy  around 0x may thus 

be approximated by Taylor’s polynomial. To obtain the coefficients ( ) ( ) kjxy j ,2,0 = , 
we differentiate step by step, also using the ODE (1.2.2). This yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )

.......................................................................................................................
,

,

0000000

0000
2

000

00000000
2

0

00000000000

xfxpxfyxqxqxp
yxqxpxpxfxpxf

xyxqxqxpxyxqxpxpxy

xfyxqyxpxfxyxqxyxpxy

+′−′−+

′−′−=+′−

′−+′−′−=′′′

−−′−=−−′−=′′

 (1.2.85) 

This way, we expressed the values of higher derivatives of y at 0x , required by Taylor’s 
polynomial, in terms of the Cauchy data 00 , yy ′ . 
Remark. The Taylor’s formula is currently used especially to solve Cauchy problems. 
Yet, the obtained approximation has a local character and for this reason it serves to set 
up one-step methods in the frame of the numerical analysis. 

b) The method of the successive approximations (Picard) 
Let 1y  be a linear function, satisfying the Cauchy conditions (1.2.52). 
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Picard’s method for the linear second order ODE consists of determining the sequence of 
functions ( )xyk  by the recurrence relationship 

( ) ( ) ( ) ( ) ( ) 2,11 ≥+−′−=′′ −− kxfyxqxyxpxy kkk , (1.2.86) 

starting from 1y . It can be proved that the (convergent) series 

( ) ( ) ( ) ( ) K+++= xyxyxyxy 321  (1.2.87) 

is the desired solution. 

c) The method of continued fraction expansion 
This method can be applied to the homogeneous ODEs (1.2.11) for which ( ) 0≠xq . The 
equation may be written in the form 

( ) ( )yxqyxpy 00 +′= . (1.2.88) 

If 00 , qp  allow derivatives of any order on I, then, differentiating (1.2.88), we get 

( ) ( )
0

0
1

0

00
111 1

,
1

,
q

q
q

q
qp

pyxqyxpy
′−

=
′−

′+
=′′′+′′=′ , (1.2.89) 

and, in general, 

( ) ( ) ( ) ( ) ( )

1

1

1

1121

1
,

1
,

−

−

−

−−++

′−
=

′−

′+
=+=

k

k
k

k

kk
k

k
k

k
k

k

q
q

q
q

qp
pyxqyxpy , (1.2.90) 

if the denominators do not vanish. 
The relationships (1.2.88) and (1.2.89) involve 

( ) ( )
y
yxqxp

y
y

′
′′

+=
′ 00 . (1.2.91) 

Dividing (1.2.89) by y ′′ , we deduce 

( ) ( )
.

11

0
0

y
yqp

xq
xp

y
y

′′
′′′

+
+=

′
 

(1.2.92) 

Eventually, we obtain the continued fraction 

K++++=
′ 3

2

2

1

1

0
0 p

q
p
q

p
q

p
y
y

, (1.2.93) 

where 
p
q

 stands for 
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Qp
q

Q
p
q

+
=+ . (1.2.94) 

If the expression in the right side of (1.2.93) converges, then it may be either determined 
or conveniently approximated. In both cases, (1.2.93) becomes a first order linear ODE, 
which can be straightforwardly integrated with the method described at Sec.1.2. 
An interesting application of this method will be presented in Sec.2.7, where we shall 
study the hypergeometric series. 

2.6 TWO-POINT PROBLEMS (PICARD) 

Another kind of problem, very interesting for applications to mechanics is the two-point 
(bilocal) problem. The (semi-homogeneous) linear two-point problem consists of finding 
a solution of (1.2.2) that satisfies the homogeneous conditions 

( ) ( ) β<α∈βα=β=α ,,,0,0 Iyy . (1.2.95) 

This problem may be solved in many ways, among which we chose two, that are 
connected with the previously exposed facts. 

a) The general solution of the ODE (1.2.2) allows the representation (1.2.47), 
based on the fundamental solution ( )txk , . Therefore, to get the solution of the 
above two-point problem, it is enough to find ( ) ( )tCtC 21 ,  such that the 
fundamental solution match (1.2.95). 

The Green function for the two-point problem (1.2.2), (1.2.95) is that fundamental 
solution of (1.2.2) that satisfies (1.2.95). 
Remark. The Green function is defined provided the homogeneous two-point problem 
(for 0=f ) allows only the null solution. 
Let us suppose now that, instead of (1.2.95), the solution y of (1.2.2) must satisfy some 
non-zero conditions 

( ) ( ) β<α∈βα=β=α ,,,, IByAy . (1.2.96) 

In this case, we make the change of function ( ) ( ) ( )xhxzxy += , with h chosen such that 
( ) ( ) BhAh =β=α , . The new unknown function ( )xz  will obviously satisfy a semi-

homogeneous two-point problem. 

Examples of Green functions 

1. The fundamental solution for the ODE 0=′′y is tx −
2
1 . Consequently, the 

Green function for the associated semi-homogeneous two-point problem is  

( ) ( ) ( ) txtxCtCtxK −++=
2
1, 21 . (1.2.97) 
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2. Take the ODE 0=−′′ yy . The Green function for the associated semi-

homogeneous two-point problem is 

( ) ( ) ( ) txtCtCtxK xx −++= − sinh
2
1ee, 21 , (1.2.98) 

where ( ) ( )tCtC 21 , match (1.2.95). 
b) The general solution of the ODE (1.2.2) can be written in the form 

( ) ( ) ( ) ( )xYxYCxYCxy ++= 2211 , (1.2.99) 

where 21 , YY  form a fundamental system for the associated to (1.2.2) homogeneous 
equation and Y is a particular solution of (1.2.2); suppose that these three functions could 
be obtained by the previously described methods. 
Imposing now to y the two-point conditions (1.2.95), we get for 21 , CC  the following 
algebraic system 

( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

β−=β+β
α−=α+α
.
,

2211

2211

YBYCYC
YAYCYC

 (1.2.100) 

There are two possibilities: 

i) The determinant 
( ) ( )
( ) ( ) 0

21

21 ≠≡
ββ
αα

YY
YY

d . 

In this case, the two-point problem allows a unique solution of the form (1.2.99), with 
21 , CC  uniquely determined from (1.2.100). We observe that, in this case, the 

homogeneous two-point problem allows only the null solution. 
ii) The determinant 0=d . According to Rouché’s theorem,  

a. either the bordered matrix has the rank 1, in which case the two-point 
problem allows infinitely many solutions; 

b. or the bordered matrix has the rank 2, and the two-point problem has 
no solution. 

In conclusion, the following alternative works 

Alternative. Either 0≠d and the non-homogeneous problem (1.2.2), (1.2.96) allows a 
unique solution, and the homogeneous one – only the null solution, or 0=d , case in 
which the homogeneous problem allows also non-null solutions. In this last situation, the 
non-homogenoues problem has no solutions, in general, except for some special cases. 
It may be also proved that, if ( )Ifqp 0C,, ∈  and if there is a strictly negative constant 
Q such that ( ) IxQxq ∈∀<≤ ,0 , then the two-point problem (1.2.2), (1.2.96) allows a 
unique solution. 
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2.7 STURM-LIOUVILLE PROBLEMS 

Another class of boundary value problems that might be associated to ODEs are the 
eigenvalue and eigenfunction problems; these are by no means simple artificial 
mathematical generalizations, but, on the contrary, they come from the study of physical 
models. We shall illustrate the way these problems appear by a notorious example. 
Let us study the longitudinal oscillations of a non-homogeneous thread, fixed at its ends 
α and β. It is known that these oscillations are described by the linear second order PDE 

,
2

2

t
u

x
uE

x ∂

∂
ρ=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂  (1.2.101) 

where ( )xE  is the modulus of elasticity and ( )xρ  is the volume density. The unknown 
function ( )txu ,  represents the displacement of the point of abscissa x of the thread at the 
moment t, with respect to its rest position. 
Suppose we know the initial displacement and velocity 

( ) ( ) ( ) ( ) [ ]βα≡∈=
∂
∂

= ,,0,,0, Ixxgx
t
uxfxu . (1.2.102) 

As the thread is fixed at its ends, we shall also have 

( ) ( ) 0,0,,0, ≥=β=α ttutu . (1.2.103) 

By reason of continuity, the functions f and g must satisfy the compatibility conditions 

( ) ( ) ( ) ( ) 0,0,0,0 =β=β=α=α gfgf . (1.2.104) 

Let us search for solutions of (1.2.101) in the form 

( ) ( ) ( )tTxXtxu =, . (1.2.105) 

Replacing this in (1.2.101) we obtain  

( )[ ]
( ) T

T
Xx

XxE
x &&

=
ρ

′
d
d

, (1.2.106) 

where the primes stand for the derivatives with respect to x and the points – for the 
derivatives with respect to t. 
The right member of this equation does not depend on x and the left one does not depend 
on t. Consequently, the above ratio must have a constant value, say λ. Otherwise, the 
relationship (1.2.106) would represent a functional dependence between the temporal 
and the spatial variables t and x. From (1.2.106) we thus get two linear second order 
ODEs: one in x 

( )[ ] ( )XxXxE λρ=′′ , (1.2.107) 
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and one in t 

TT λ=&& . (1.2.108) 

Obviously, the ODE (1.2.107) is defined for ( ) ( )IIE 01 C,C ∈ρ∈  at least. The boundary 
conditions (1.2.103) yield for X the two-point conditions 

( ) ( ) 0,0 =β=α XX . (1.2.109) 

If ( ) Ixx ∈=ρ ,1 , then the ODE (1.2.107) becomes more simple. Even if this is not true, 

but ( )xρ  does not cancel on I and is of class ( )I0C , we may perform the change of 
function 

( )xXy ρ= , (1.2.110) 

by which (1.2.107) becomes 

( )[ ] ( ) yyxqyxpy λ=+′′≡L . (1.2.111) 

In (1.2.111) we introduced the linear operator L and used the notations 

( ) ( )
( ) ( )

( )
( )

( )

′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ′

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ρρ
=

ρ
=

x
xE

x
xq

x
xExp 11, . 

The two-point conditions (1.2.109) obviously will not change for y 

( ) ( ) 0,0 =β=α yy . (1.2.112) 

So, our problem was transformed into a homogeneous two-point problem 

( ) ( )⎩
⎨
⎧

=β=α
λ=

.0,0
,L

yy
yy

 (1.2.113) 

It is easily seen that the null function satisfies (1.2.113), for any constant λ. But, 
naturally, this is not a convenient issue. Thus, we are led, by the above considerations, to 
the following problem: 

Problem. Find λ such that the solutions of the homogeneous two-point problem (1.2.113) 
allow at least another solution, different from the null one. 
These particular values of λ are called eigenvalues; they are included in the spectrum of 
L. The corresponding non-zero solutions are called eigenfunctions. 
In order to get a representation of ( )txu , , we must prove that the eigenfunctions for an 
infinite and complete system in ( )I2  – the space of measurable and square-integrable 
on I functions. This property ensures the representation of any function of ( )I2L  as a 
series of eigenfunctions. 

L



1. Linear ODEs of First and Second Order 

 

35
In the case of the thread, the boundary conditions are precisely the two-point conditions. 
But there are other physical models leading to the more general problem 

( )
( ) ( )
( ) ( )⎪

⎩

⎪
⎨

⎧

=β′+β
=α′+α

λ=

,0
,0

,L

2221

1211

yaya
yaya

yxry
      2,1,021 =≠+ jaa jj  (1.2.114) 

The boundary conditions of (1.2.114) are usually called the Sturm conditions. 
The problem of finding the eigenvalues and eigenfunctions of (1.2.114), as well as of 
proving the closure and completeness of the eigenfunction system is called the Sturm-
Liouville problem. 
It can be proved that two eigenfunctions 21 , yy , corresponding to two distinct 
eigenvalues 21 ,λλ , are orthogonal with weight r on I 

( ) ( ) ( ) 0d21 =∫ xxyxyxr
β

α

. (1.2.115) 

If the sign of r does not change on I, then all the eigenvalues of (1.2.114) are real. 
By using Sturm’s oscillation theorem, one can prove that, if ( ) ( )IrqIp 01 C,,C ∈∈  and 
if p, r do not vanish on I, then 

i) the set of eigenvalues { }
N∈

λ
jj  form a monotonically decreasing sequence; 

ii) the eigenvalues are simple (their order of multiplicity is 1); 
iii) any eigenfunction has, in I, only n zeros. 

These general facts are helpful in proving e.g. the completeness of the eigenfunction 
system. 
Getting back to the Sturm-Liouville problem (1.2.113), let us try to solve it in the 
particular case of a homogeneous thread, i.e., const=ρ . If const=E  too and 

l=β=α ,0 , l being the thread length, the problem (1.2.113) becomes 

( ) ( )⎩
⎨
⎧

==
=μ−′′

,0,00
,0

lyy
yy

  
ρ

λ=μ
E . (1.2.116) 

We see that for 0≥μ  the problem allows only the null solution. So, the only possibility 

is that 0,2 >νν−=μ . The involved ODE becomes 02 =ν+′′ yy . It is with constant 
coefficients and its associated characteristic equation allows only the purely imaginary 
roots ν±i . So, its general solution is the linear combination 

( ) xCxCxy ν+ν= sincos 21 . 
Introducing the boundary conditions, we obtain for 21 , CC  the linear algebraic system 

⎩
⎨
⎧

=ν+ν
=⋅+⋅

.0sincos
,001

21

21

lClC
CC
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This leads to 0sin,0 21 =ν= lCC . The only option in order to get non-zero solutions 
is that 0sin =νl , which yields 

N∈
π

=ν k
l

k
k , . (1.2.117) 

The eigenvalues of the Sturm-Liouville problem (1.2.116) are 

N∈
π

−=λ k
l

k
k ,

2

22
, (1.2.118) 

and the corresponding eigenfunction 

( ) N∈
π

= k
l
xkxyk ,sin . (1.2.119) 

Thus, ( ){ } N∈kk xy  forms an infinite system of eigenfunctions for the problem (1.2.116). 

The spectrum of L is, in this case, composed of the eigenvalues N∈
π

−=λ k
l

k
k ,

2

22
. It 

is seen that ( ){ } N∈kk xy is orthogonal on I, with weight 1, as 1=r , i.e. 

N∈
⎪⎩

⎪
⎨
⎧

=

≠
=

ππ
∫ jk

jk

jk
x

l
xj

l
xk

l

,
,,

2
1

,,0
dsinsin

0

. (1.2.120) 

The final solution of the thread problem exceeds the frame of this book. However, this 
example emphasizes the natural way in which a Sturm-Liouville system may occur and 
serve to solve a physical problem. 

2.8 LINEAR ODEs OF SPECIAL FORM 

In what follows, we shall consider two ODEs, leading to the introduction of several 
special functions. 

1. Gauss’ equation. The hypergeometric function (series) 
There are various physical models that lead to a second order ODE of the form 

( ) ( ) ℜ∈=+++++ edcbaeyydctybatt ,,,,,02 &&& , (1.2.121) 

where the dot means differentiation with respect to t. 
Let us assume that the polynomial batt ++2  allows the distinct roots, 21 , tt . Then, by 
using the change of variable ( ) ( )121 / ttttx −−=  we can reduce this ODE to a standard 
form, Gauss’ equation, 

( ) ( )[ ] N∈−≠=−′++−+′′− nnyyxyxx ,,011 γαββαγ . (1.2.122) 
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In (1.2.122), the primes mean differentiation with respect to x. 
The invariant of this equation, computed by formula (1.2.76), is 

( ) ( ) ( )
( )

( ) ( ) ( )
( )14

11
14

1
4

11 222

2

2

2

2

−
−β−α−−γ+γ−β+α

+
−

γ−β+α−
+

−γ−
=

xxxx
xK . (1.2.123) 

Searching for a solution in the form of a power series, we obtain the hypergeometric 
series or function 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) .

1!1
11
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11

1
1,,,

1

2
1
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+⋅⋅⋅
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⋅

+=≡

+nx
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xxxFxy

γγγ
βββααα

γγ
ββαα

γ
αβγβα

. (1.2.124) 

A second solution of Gauss’ equation, independent of ( )xy1 , is a series as well 

( ) ( )xFxxy ;2,1,11
2 γ−γ−+βγ−+α≡ γ− . (1.2.125) 

Both series are convergent for 1<x . Obviously, the series are breaking off if α or β are 
zero or negative integers. Some of the polynomials obtained this way have various 
applications. Thus, 

( ) ( ) ( )

( ) ( ) ( ),
12531

!21;
2
3,

2
3,

,
12531

!21;
2
1,

2
1,

12
2

2
2
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nxnnxF
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++⋅⋅
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⎠
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⎝
⎛ +−
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⎠
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⎝
⎛ +−

K

K
. (1.2.126) 

where ( )xPj  are Legendre’s polynomials, satisfying the equation 

( ) ( ) 01212 =+−′+′′− ynnyxyx . (1.2.127) 

Jacobi’s polynomials, more general than Legendre’s, are obtained by considering 

( ) ( ) ( )
( ) ( ) ( )[ ]β−+α−+β

α−ββ−

−
−+β+ββ

−
=βα+−≡ nn

n

n

n xx
xn

xxxnnFxQ 1
d
d

11
1;,, 1

1

K
. (1.2.128) 

The function systems{ } N∈nnP and { } N∈nnQ are orthogonal and complete. 
Other particular cases of hypergeometric series, leading to elementary functions, are, 
e.g., 
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( ) ( )

( )

( ) .arctan;
2
3,1,

2
1                              ,ln1;2,1,1
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2
3,

2
1,

2
1                               ,

1
1;,,1
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=ββ
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⎝
⎛+=−ββ−

. (1.2.129) 

One can also get convergent numerical series. For instance, a numerical series, 
converging to π, is 

π=⎟
⎠
⎞

⎜
⎝
⎛

2
1;

2
3,1,12F . (1.2.130) 

Other elementary functions could be obtained from the hypergeometric series passing to 
the limit 

( )

.sin
4

;
2
3,,lim

,e;1,,1lim

2

,
xxxF

xF x

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

αβ
−βα

=β

∞→βα

∞→β

 (1.2.131) 

From the identity 

( ) ( ) .0,1;,,1;,, >γβ−α−γβ−α−=γβα FF  (1.2.132) 

we get the recurrence formula  

( ) ( ) .,;1,1,1;,, nxFxF −≠γ+γ+β+α
γ
αβ

=γβα  (1.2.133) 

The Wronskian of a fundamental system of solutions 21 ,YY of Gauss’ equation is  

[ ] 1
21 1, −β−α−γγ− −= xxCYYW , (1.2.134) 

according to Liouville’s formula (1.2.24). 
Finally, let us mention the continued fraction expansion for the hypergeometric function, 
obtained by the method exposed at Sec.2.4 

( )
( ) K+++=

γβα
+γ+βα

111
1

;,,
;1,1, 21 xaxa

xF
xF , (1.2.135) 
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( )( )
( )( )

( )( )
( )( )122

,
212 122 +++

−−+
=

+−+
−−+

= + nn
nna

nn
nna nn γγ

γβα
γγ
γαβ . (1.2.136) 

This expansion converges on the whole complex plane, with a slit from +1 to +∞ , 
except for the zeros of ( )xF ;,, γβα . 

2. Euler’s gamma function 
To get another remarkable representation of the hypergeometric function, we need to 
introduce the gamma function, which is also important in itself. 
The gamma function is defined, for real arguments, by means of the integral 

( ) ∫
∞

−−ν=νΓ
0

1 de xx x , (1.2.137) 

and makes sense for 0Re >ν . 
From the definition, we get, integrating by parts, 

( ) ∫∫
∞

−−ν∞−ν
∞

−ν ν+−==+νΓ
0

1
00

deede1 xxxxx xxx , (1.2.138) 

The term xx −νe  is null for 0=x  and 

0
e

lim =
ν

∞→ xx

x , 

therefore 

( ) ( )νΓν=+νΓ 1 . (1.2.139) 

This recurrence relationship extends the factorials of positive numbers. Indeed, by 
integration, we have 

( ) 1ede1
00
=−==Γ

∞−
∞

−∫ xx x . (1.2.140) 

Applying now the recurrence formula, it results 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ,!!11
....................................

,!3!23334
,!2!12223

,!11112

nnnnnn =−⋅=Γ⋅=+Γ

=⋅=Γ⋅=Γ
=⋅=Γ⋅=Γ

==Γ⋅=Γ

 (1.2.141) 

where n is a positive integer. 

where 
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The values of ( )νΓ  for all positive ν may be deduced from the above recurrence formula, 
once ( )νΓ  known between two consecutive integers, e.g., between 1 and 2. For instance, 

as ( ) π=Γ 5.0 , we have, step by step 

( ) ( ) ( ) ( ) 63.115.05.05.15.25.35.25.25.35.35.35.4 ≅Γ⋅⋅⋅⋅=Γ⋅⋅=Γ⋅=Γ , 

and, in general, for a positive integer r, 

( ) ( ) ( ) ( )( ) ( ) ( )νννννννν Γ+−++==+Γ+=++Γ 1...1...1 rrrrr . (1.2.142) 

Taking this formula into account, the well-known combinatorial formula 

( )!!
!

knk
nC k

n −
=  

may be expressed in terms of gamma functions as 

( )
( ) ( )11

1
+−Γ+Γ

+Γ
=

knk
nC k

n ; (1.2.143) 

 
Figure 1. 1. The graph of the gamma function 

This formula is useful for the calculus of k
nC  for great n and k. 

It should be mentioned that the classic definition of the gamma function may be 
extended to complex arguments 
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( ) ( )∫ −−ν−
πν

−=νΓ
c

t tt de
sini2

1 1 , (1.2.144) 

where c is a given contour. 
It can be proved that ( )νΓ  is a rational analytical function with respect to its argument, 
having simple poles at N∈−=ν nn, , at which the corresponding residues are 

( ) nn /1− . 
The graph of Γ as a function of ν is represented in Fig.1.1. 
The gamma function also satisfies other recurrence relationships; we mention here two 
of them 

( ) ( )
πν
π

=⎟
⎠
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⎜
⎝
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⎝
⎛ ν−Γ

πν
π

=νΓν−Γ
cos2

1
2
1,

sin
1 , (1.2.145) 

useful for applications. 
Getting back to the hypergeometric series, we see that, by using gamma functions, one 
obtains the following representation formula 

( ) ( ) ( )
( ) ( )1;,,

β−γΓα−γΓ
β−α−γΓγΓ

=γβαF . (1.2.146) 

3. Bessel’s equation  
The ODE 

( ) 0222 =ν−+′+′′ yxyxyx , (1.2.147) 

where ν is a real/complex parameter and x may be real or complex, is called Bessel’s 
equation. Its solutions are called Bessel functions and also cylindrical functions, as they 
usually appear when solving boundary values problems on domains with cylindrical 
symmetry; such models appear e.g. in the frame of the potential theory. 
Searching for solutions of (1.2.147) in the form of a power series, we find the Bessel 
functions of order ν and first kind  
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 (1.2.148) 

for N∉ν . The expansions (1.2.148) converge on ℜ (even on the complex space C), but 
not at the infinity. The Wronskian of the system ν−ν JJ ,  is 

[ ] πν
π

−=ν−ν sin2,
x

JJW . (1.2.149) 
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As [ ] 0, ≠ν−ν JJW for N∉ν , it follows that the general solution of Bessel’s equation 
may be written in the form of the linear combination 

( ) ( ) ( ) N∉ν+= ν−ν ,21 xJCxJCxy . (1.2.150) 

If N∈=ν n , then the Wronskian vanishes. In fact, it can be shown that 

( ) ( ) ( ) N∈−=− nxJxJ n
n

n ,1 . (1.2.151) 

So nn JJ −,  form no more a fundamental system. To avoid this, one introduces the 
second kind Bessel functions, also called Neumann or Weber functions 

( ) ( ) ( )
πν
−νπ

= ν−ν
ν sin

cos xJxJ
xY . (1.2.152) 

It is seen that  

[ ] 0/,2, ≠ℜ∈ν
π

=νν x,
x

YJW C . (1.2.153) 

It can be proved that  
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nnn 1lim1
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cos
lim  (1.2.154) 

satisfies Bessel’s equation of integer order n. It follows that νν YJ ,  are linearly 
independent for any ν, so they form in any case a fundamental system. Thus, the general 
solution of Bessel’s equation may be expressed as 

( ) ( ) ( )xYCxJCxy νν += 21 , (1.2.155) 

for any ν. 
The Bessel functions may be obtained as the coefficients of the development of their 
generating function 
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2e . (1.2.156) 

The expansions 
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 (1.2.157) 

represent the Bessel functions of orders 0 and 1. 
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( ) ( ) ( )
( ) ( ) ( )xJxJxJ
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xJxJ
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2
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11

11  (1.2.158) 

simplify the calculus of Bessel’s functions. By using them, one can get e.g. the 
expressions of ( ) N∈nxJ n , starting from ( ) ( )xJxJ 10 , . 
The only orders for which ( )xJ ν is converted into an elementary function are, according 

to Liouville’s theorem, 
2
1

+=ν n , with n integer ; for instance, 

( ) ( ) x
x

xJx
x

xJ cos2,sin2
2/12/1 π

=
π

= − . (1.2.159) 

Starting from (1.2.159), one can get step by step ( )xJ
n

2
1

+
, by using the recurrence 

relationships (1.2.158). 
All the other ( )xJ ν are new functions. 
The invariant of Bessel’s equation, computed by formula (1.2.76), is 

( )
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4
411
x

xK ν−
+= . (1.2.160) 

A property very useful in applications is the orthogonality. 
Let us firstly note that, for 1Re −>ν , ( )xJ ν  allows infinitely many real and simple 
zeros, KK ,,,,, 321 nμ±μ±μ±μ± , symmetric with respect to the origin. For 1Re −>ν , 
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if 22
nk μμ ≠  

3. Applications 

Application 1.1 

Problem. Consider a symmetric membrane state of efforts in a thin shell of rotation, 
acted upon by the external loads Y and Z, along the tangent to the meridian line and the 

The recurrence relationships, e.g. 
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normal to the median surface, accordingly. Find the general expressions of the meridian 
and the annular efforts θϕ NN , , respectively (Fig.1.2). 

Mathematical model. The equations of equilibrium of a shell element read  

( ) ,0cos
d
d

1010 =+ϕ−
ϕ θϕ rYrrNrN  (a) 

0
21

=++ θϕ Z
r
N

r
N

. (b) 

The independent variable for this problem is the meridian angle ϕ, measured clock-wise 
from the top, while θ is the angle along the parallel circle. Other intervening quantities 
are: the radius 0r of the parallel circle, the curvature radius ( )( )ϕϕ= d/dcos/1 01 rr of the 
meridian curve – the first principal radius of curvature of the median surface – and the 
second principal curvature radius of the median surface, ϕ= sin/02 rr . 

 
Figure 1. 2. Membrane efforts in a thin shell of rotation 

 

Solution. The equation (b) is algebraic, therefore we find for θN  

2
1

2 ZrN
r
r

N −−= ϕθ , (c) 

which introduced in (a) yields 

( ) 0cos
d
d

211020 =++ϕ+
ϕ ϕϕ rZrrYrrNrN . 

Taking into account the relationship between the radii 2r and 0r , we obtain 

( ) ( ) 100 cossinsin
d
d rrZYrN ϕ+ϕ−=ϕ
ϕ ϕ ; 

denoting by ( ) ϕ=ϕ ϕ sin0rNy , we get for y a linear and non-homogeneous first order 
ODE, studied at the Sec.1.1 
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( ) 10cossin
d
d rrZYy

ϕ+ϕ−=
ϕ

. (d) 

By straightforward integration, it follows 

( ) CrrZY
r

N +ϕϕ+ϕ
ϕ

−= ∫ϕ dcossin
sin
1

10
0

,  

C being an arbitrary constant. 
The annular effort is directly obtained from (c) 

( )
1

2
102

1
2 dcossin

sin
1

r
r

CrrZY
r

ZrN −ϕϕ+ϕ
ϕ

+−= ∫θ . 

The constant C may be determined from a condition imposed at the superior edge 
( sϕ=ϕ ), or at the vertex ( 0=ϕ ). 

Application 1.2 

Problem. Find the general expression of the normal stress, as a function of time, for a 
Maxwell body. 

Mathematical model. To explain the relaxation, one sets up the Maxwell model by a 
series combination of a Hooke (elastic) and a Newton (viscous) model (Fig.1.3, a). The 
stress results as a sum of the states of strain of the two bodies; thus, the total strain 

const0 =ε  is composed of 
 the elastic strain of the arc, expressed as 

E/elastic σ=ε , (a) 

where E is the longitudinal modulus of elasticity, and 
 the viscous strain, viscousε . 

Consequently (Fig.1.3, a) 

viscous0 ε+
σ

=ε
E

. 

Differentiating this with respect to the time t ( 00 =ε& ), we get 

0viscous =ε+
σ

&
&

E
. (b) 

By Newton’s law,  

η
σ

=ε viscous& , 

where η is the coefficient of dynamic viscosity, which is constant. Thus, (b) becomes 
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0=σ
η

+σ
E

& . (c) 

Solution. The equation (c) is a first order linear and homogeneous ODE, of the type 
studied at Sec.1.2. Separating the variables, we get 

tE dd
η

−=
σ
σ , 

involving 

tEC
η

−=σ lnln ,  

where C is an arbitrary constant. 

 
Figure 1. 3. Maxwell model (a). Diagram σ  vs. t (b) 

The general solution of the homogeneous ODE is therefore 

tE

Ce η
−

=σ . 

To this equation, we can add the initial condition 

( ) 00 σ=σ . 

yielding 0σ=C . The solution of the above Cauchy problem is thus 

tR
η

−
σ=σ e0 . (d) 

The variation of σ as a function of t is given in Fig.1.3, b. The diagram represents a 
decreasing exponential, having as asymptote the time axis. 
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Application 1.3 

Problem. A thread is wrapped round a rough circular fixed pulley, of radius R (Fig.1.4). 
If the thread end 1P  is acted upon by a tension 1T  , then what tension 2T must be 
applied to the other end 2P , such that the thread slide on the pulley? 

Mathematical model. As the pulley is rough, the reaction ( ) ss dR  upon an element of 
thread will have, along with a normal component ( ) ss dN , a tangential one, ( ) ss dΦ , 
called force of sliding friction. 
The equilibrium of an element of thread (Fig.1.5) leads to the vector equation 

( ) 0RT =+ ss dd ; (a) 

we can also write 

( ) 0τντ =−− fNNT
sd

d , (b) 

 
Figure 1. 4. Equilibrium of a thread on a pulley 

In (b), N is the normal reaction along the unit vector ν and fN is the tangential reaction 
at the limit – along the unit vector τ, f  being the coefficient of sliding friction. 

 
Figure 1. 5. Efforts acting on a thread 

Finally, using Frenet’s formula Rs /d/d ντ = , we can write the system that models the 
phenomenon 
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.0

,0
d
d

=−

=−

N
R
T

fN
s
T

 (c) 

Solution. Eliminating the normal reaction N, we find the first order linear homogeneous 
ODE ( θ= dd Rs ) 

( ) 0
d

d
=−

θ
θ fTT . (d) 

According to the hypotheses, this equation must be integrated under the initial condition 

( ) 10 TT = . (e) 

Integrating this, as shown at the Sec.1.2, we get the general solution of (d) 
θ= fCT e , (f) 

where C is an arbitrary constant. 
The initial condition leads to the solution of the Cauchy problem (d), (e) 

θ= fTT e1 . (g) 

For α=θ , one can write α= fTT e12 , where the tensions at the thread ends were 
emphasized. 

The equilibrium may also occur for 12 TT < ; in this case, the force of sliding friction 

changes the sense and we have α= fTT e21 . Thus, Euler’s condition of equilibrium is 
obtained 

αα− << ff

T
T

ee
1

2 . (h) 

If the ratio 12 / TT  is outside this interval, the thread begins to slide. 

Application 1.4 

Problem. Find the general expression of the strain ( )tε=ε  in the case of a Voigt-Kelvin 
model and determine it in the particular case ( ) 00 =ε . 

Mathematical model. To explain the creep phenomenon, one sets up the Voigt-Kelvin 
model, by combining in parallel a Hooke and a Newton body (Fig.1.6, a). The strain state 
is then a sum between the states of stress of the two bodies 

210 σ+σ=σ , 
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where 0σ  represents the resultant stress, supposedly known; ε=σ E1  corresponds to 
Hooke’s, while εη=σ &2  corresponds to Newton’s model. In the last two relationships, E 
is the modulus of longitudinal elasticity, η is the coefficient of dynamic viscosity and 

td/dε=ε& is the velocity of deformation.  
It immediately follows εη+ε=σ &E0 , that may be also written in the form 

η
σ

=ε
η

+ε 0E
& . (a) 

Consequently, in a Voigt-Kelvin model the strain ( )tε=ε  must satisfy the equation (a). 

Solution. The first order ODE (a) is linear and non-homogeneous; this type was treated at 

the Sec.1.3. The associated homogeneous equation 0=ε
η

+ε
E

& allows the general 

solution 

tE

C η
−

=ε ehomog . (b) 

As the free term is constant, we can directly search for a particular solution of (a) in the 
form of a constant, K=ε part . Finally, E/0part σ=ε  and the general solution of (a) is 

( )
E

Ct
tE

0e
σ

+=ε η
−

. (c) 

 
Figure 1. 6. Voigt-Kelvin model (a). Diagram ε  vs. t (b) 

This formula gives the strain in the case of a Voigt-Kelvin model. To get the solution of 
(a) corresponding to null Cauchy conditions, we put 0=t in (c); it results 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

σ
=ε η

− tE

E
e10 . (d) 
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The variation of ε as a function of t is presented in Fig.1.6, b. It is seen that the graph of 
the function allows an asymptote E/0σ=ε∞ , parallel to the t – axis; this means that 
the deformation is damped in time. The tangent at the origin is ησ=ε /0& . 
The time-dependent function 

( )
tE

t η
−

−=ϕ e1  

is called the creep function. 

Application 1.5 

Problem. Determine the general meridian displacements w of a thin shell of rotation. 
Particular case: the spherical dome of radius a, acted upon by its own weight g.  

Mathematical model. The meridian displacements of a shell of rotation are described, in 
the membrane theory, by the ODE (see e.g. Flügge) 

( )ϕ=ϕ−
ϕ

fww cot
d
d , (a) 

where φ is the angular variable (the meridian angle) and ( )ϕf  is a function depending on 
the external loading. 

Solution. The equation (a) is a linear first order non-homogeneous ODE, of the kind 
treated at Sec.1.3. The associated homogeneous equation 

0cot
d
d

=ϕ−
ϕ

ww , (b) 

allows, according to Sec.1.2, the general solution 

ϕ= sinhomog Cw . 

To get a particular solution of (a), we use the variation of parameters, searching for it in 
the form  

( ) ϕϕ= sinpart Cw . 

Replacing this in (a) yields 

( )
ϕ

ϕ
ϕ

ϕ= ∫ d
sin

sinpart
fw . 

Thus, the general solution of (a) is 

( ) ( )
ℜ∈ϕ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ

ϕ
ϕ

+=ϕ ∫ C
f

Cw ,sind
sin

. (c) 
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In the case of the spherical dome, one has 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ+

−ϕ
δ

ν+
=ϕ

cos1
2cos12

E
gaf , (d) 

where E represents the modulus of longitudinal elasticity, ν is Poisson’s ratio and δ is the 
thickness of the shell, assumed constant. 
In the particular case of the loading (d), we directly replace the expression of f in (c). 
After integration, we get the closed formula 

( ) ( ) ( ) ℜ∈ϕ+ϕ⎥
⎦

⎤
⎢
⎣

⎡
ϕ+

−ϕ+
δ

ν+
=ϕ CC

E
ga

w ,sinsin
cos1
1cos1ln

12
. (e) 

We get the constant C requiring null displacements along the inferior circle of support, 
defined by the angle iϕ=ϕ   

( ) 0=ϕ iw . (f) 

This is a Cauchy condition, associated to the ODE (a). We deduce 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
ϕ+

−ϕ+
δ

ν+
−=

i
iE

ga
C

cos1
1cos1ln

12
. (g) 

Finally, the solution of the Cauchy problem (a), (f) is 

( ) ( )
ϕ⎥

⎦

⎤
⎢
⎣

⎡
ϕ+

+
ϕ+

−
ϕ+
ϕ+

δ
ν+

=ϕ sin
cos1
1

cos1
1

cos1
cos1ln

12

iiE
ga

w . 

Application 1.6 

Problem. Let P be a particle of mass m,acted upon by an elastic force of attraction 
rF k−= , where r is the position vector and 0>k is a coefficient of elasticity. Study the 

motion of P. 

Mathematical model. Newton’s equation of motion 

rFr km −==&& , (a) 

may be written in the form of a second order vector ODE 

0rr =ω+ 2&& , (b) 

where mk /2 =ω .  
To (b) we can add the initial (Cauchy) conditions 

( ) ( ) 00 0,0 vrrr == & . (c) 
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Solution. The mathematical model (b) is a second order homogeneous vector ODE, of a 
type studied at Sec.2.2. We must find a fundamental system of solutions for the scalar 
equation 02 =ω+ yy&& , searching them in the exponential form tαe . We get the 

characteristic equation 022 =ω+α , allowing only the purely imaginary roots ω±i . 
Using Euler’s formulae, we obtain the solutions tt ωω sin,cos , that form a fundamental 
system. The vector solution of (b) is 

( ) ttt ω+ω= sincos BAr , (d) 

with A and B arbitrary constant vectors. Imposing the initial conditions (c), we find (see 
Fig.1.7) 

( )
( ) .sincos

,sincos

00

0
0

ttt

ttt

ωω−ω=

ω
ω

+ω=

rvv

v
rr

 (e) 

Mechanical interpretation. We observe that 00 vrvr ×=× , corresponding to the first 
integral of areas. The vector r is a linear combination of 00 , vr ; consequently, the 
trajectory is a plane curve, except for the case 0vr =× 00 , which means that 00 , vr  are 
collinear. The trajectory does not pass through the origin, because ( ) 0r ≠t for any t. 

 

 
Figure 1. 7. The elliptic oscillator 

We see that ω+≤ /00 vrr  for any t, so that all the points of the trajectory lay at finite 
distance. The trajectory is a closed curve, surrounding the centre O, which is a stable 
position of equilibrium; the orbit can be included in an arbitrarily small circle and the 
particle velocity can be also arbitrarily small. The motion is periodic, as the particle 
returns at the same point ( ) ( )tTt rr =+ with the same velocity ( ) ( )tTt vv =+ , after the 
same period of time 

k
mT π=

ω
π

= 22 . 

The pole O is a centre of symmetry of the motion, because ( ) ( )tTt rr −=+ 2/ , 
( ) ( )tTt vv −=+ 2/ . The velocity vector is finite too, is continuous and is different from 
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zero no matter t. Using the oblique co-ordinate system Ox’y’, determined by the 
conjugate diameters corresponding to the vectors 0r and 0v , we get the parametric 
equations of the trajectory 

,sin,cos 0
0 t

v
ytrx ω

ω
=′ω=′  (f) 

which is an ellipse of equation 

( )
1

/ 2
0

2

2
0

2
=

ω

′
+

′

v
y

r
x , (g) 

known as the elliptic oscillator. 
We notice that 

( ) trvt ωω−
ω

+ω⋅=⋅ 2sin
2
1cos 22

0
2
000 vrvr ; (h) 

hence, to obtain a circular oscillator ( t∀=⋅ ,0vr ) it is necessary and sufficient that the 
initial conditions of the elliptic case verify the relationships 000 =⋅ vr and ω= 00 rv . In 
the case of the circular oscillator, the motion is uniform (v = const), because one has 

( ) ttvrvv ω⋅ω−ω−ω+= 2sinsin 00
22

0
2

0
22

0
2 vr , (i) 

as a consequence of the above conditions. 
The number which shows how many times the particle travels through the whole 
trajectory in a unit time is called the frequency of the motion and is given by 

m
k

T
f

π
=

π
ω

==
2
1

2
1 ; (j) 

we notice that the pulsation fπ=ω 2  represents the number of periods in π2  units of 
time , and the denomination of circular frequency, also used, is thus justified. 

Application 1.7 

Problem. Study the motion of a particle P of mass m, acted upon by an elastic repulsive 
force, rF k= , where r is the position vector and 0>k  is a coefficient of elasticity. 

Mathematical model. Newton’s equation of motion may be written in the form of a 
second order vector ODE 

0rr =ω− 2&& , (a) 

where mk /2 =ω .  
To (a) we can add the initial (Cauchy) conditions 
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( ) ( ) 00 0,0 vrrr == & . (b) 

Solution. The mathematical model (a) is a second order homogeneous vector ODE, of a 
type studied at Sec.2.2. We must find a fundamental system of solutions for the scalar 
equation 02 =ω− yy&& , searching them in the exponential form tαe . We get the 

characteristic equation 022 =ω−α , allowing the real and distinct roots ω± . Using the 
hyperbolic functions, we obtain the solutions tt ωω sinh,cosh , that form a fundamental 
system. The vector solution of (a) is 

( ) ttt ω+ω= sinhcosh BAr , (c) 

with A and B arbitrary constant vectors. 
The initial conditions (b) lead to (Fig.1.8) 

( )
( ) .sinhcosh

,sinhcosh

00

0
0

ttt

ttt

ωω+ω=

ω
ω

+ω=

rvv

v
rr

 (d) 

 
Figure 1. 8. The motion on a hyperbola under the action of repulsive forces 

Mechanical interpretation. With respect to an oblique co-ordinate system Ox’y’, 
determined by the conjugate diameters corresponding to the vectors 0r and 0v , we get 
the parametric equations of the trajectory 

,sinh,cosh 0
0 t

v
ytrx ω

ω
=′ω=′  (e) 

which is an arc of hyperbola, of equation 

( )
1

/ 2
0

2

2
0

2
=

ω

′
−

′

v
y

r
x . (f) 
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It is seen that the centre O is a labile position of equilibrium, as the orbit cannot be 
contained inside an arbitrarily small circle and the velocity of the particle may increase 
indefinitely.  
The particle travels only once through the trajectory and does not return to the initial 
position. Putting (d) in the form 

( )

( ) ttt

ttt

ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

+ωω=

ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

ω
+=

coshtanh

,coshtanh

0
0

0
0

v
rv

v
rr

 (g) 

and noticing that 1tanhlim =ω
∞→

t
t

, it follows that the trajectory tends asymptotically to 

ω
+= 0

0
v

rr . (h) 

Let us note that the velocity also tends to a vector with the same direction. 

Application 1.8 

Problem. Study the oscillatory motion of a heavy particle P on a cycloid C of horizontal 
basis, laying in a vertical plane, of concavity directed upwards (the cycloidal pendulum).  

Mathematical model. Let us take the tangent to the cycloid at its lowest point as Ox- axis 
and the Oy-axis be the symmetry axis of the cycloid, being ascendent (Fig.1.9). The 
parametric equations of the cycloid C are then 

( ) ( ) [ ]ππ−∈θθ−=θ+θ= ,,cos1,sin ayax , (a) 

where ay 2=  is the right line along which the cycloid generating circle – of centre 

O ′ and radius a – is rolling without sliding. Starting from 222 ddd yxs += , we find 

( ) yyaas d/2d2/cos2d =θθ= . Integrating this with respect to y, it is obtained 

( )2/sin422 θ== aays , so that assy 4/d/d = . 
If m is the particle mass and g – the gravity acceleration, the motion equations read 

RFmv
s
ymgFsmvm +=

ρ
−=== ντ

2
,

d
d

&&& , (b) 

where τ and ν are the unit vectors of the tangent and, accordingly, of the principal 
normal, and ρ is the curvature radius of the cycloid. It results 

a
g

ss
4

,0 22 =ω=ω+&& ; (c) 
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This is a linear and homogeneous second order ODE with constant coefficients. 
Searching for solutions of the exponential type tαe , we firstly get the characteristic 
equation 022 =ω+α , allowing only the purely imaginary roots ω±i . We then find the 
fundamental system of solutions tt ωω sin,cos  by using Euler’s formulae. The general 
solution of the ODE (b) is thus 

( ) tctcts ω+ω= sincos 21 . (d) 

Assume now that the particle is launched with null initial velocity from the point 0P  of 
curvilinear co-ordinate 0s  at the moment 00 =t ; this corresponds to the Cauchy 
conditions 

( ) ( ) 00,0 0 == sss & . (e) 

 

 
Figure 1. 9. The cycloidal pendulum 

The solution of the Cauchy problem (c), (e) is then 

( ) tsts ω= cos0 . (f) 

Mechanical interpretation. The period of the motion is 

g
a

g
aT 4242

π=π=
ω
π

= ; (g) 

this period does not depend on the amplitude s, so that the oscillations are isochronic 
(immaterial of their magnitude). On the other hand, the particle in free falling from the 
point 0P  attains the point O – the lowest point of the cycloid – in a time of 4/T , no 
matter 0s , therefore it is independent on the initial position; this is the property of 
tautochronism of the cycloid. We say that the motion is tautochronous, i.e., immaterial 
of the magnitude of oscillations, the cycloid being thus a tautochronous curve. This 
property was emphasized by Huygens, who realized a cycloidal pendulum by means of 
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the evolute Γ of a cycloid, Γ being itself a cycloid. The thread linking the particle P 
(unilateral constraint) is fixed at the point Q, the cuspidal point of a set up cycloid 
(Fig.1.9); but the occurring resistance considerably modifies the motion. 
Integrating the first equation (b), we get ( )yygv −= 0

2 2 , where the ordinate 

0y corresponds to the initial position 0P . As  

( ) ( ) ( ) saax d2/cosd2/cos2dcos1d 2 θ=θθ=θθ+= , 

we have ( )2/cosd/d θ−=−=ν mgsxmgF ; but ( )2/cos42 θ=′=′′=ρ aMPOP  and 
thus the second equation (b) provides the constraint force in the form 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

θ
θ−θ

+
θ

=

2
cos2

coscos
2

cos 0mgR . (h) 

If, in particular, π±=θ0 , meaning that the particle is left to travel along the cycloid 

with null initial velocity, starting from one of the cuspidal points P  or P ′ , it results 

ν−=⎟
⎠
⎞

⎜
⎝
⎛ θ= FmgR 2

2
cos2 ; (i) 

we can state in this case, following Euler, that the modulus of the constraint force is 
twice as much as the modulus of the normal component of the particle weight. 

Application 1.9 

Problem. Study the motion of a heavy particle P acted upon by an elastic force of 
attraction of fixed support (the Ox – axis), of the form ( ) 0, >−= kkxxF  being an elastic 
constant. 

Mathematical model. Using the results of Appl.1.6, we may write the equation of motion 
in the form 

02 =ω+ xx&& , (a) 

with the initial conditions 

( ) ( ) ( ) 00 00,0 vvxxx === & . (b) 

Solution. The second order linear and homogeneous ODE (a) is with constant 
coefficients and was already solved at Appl.1.6. We thus find  
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( ) ( )
( ) ( ) ( ).sinsincos

,cossincos

00

0
0

ϕ−ωω−=ωω−ω==

ϕ−ω=ω
ω

+ω=

tatxtvtvtx

tat
v

txtx

&

 (c) 

where 

0

0
2

2
02

0 arctan,
x

vv
xa

ω
=ϕ

ω
+= . (d) 

Mechanical interpretation. In (c), a is the amplitude of the oscillation, i.e., the maximum  
elongation, the elongation x  being the distance from the centre O to an arbitrary 
position of the particle; φ is the phase difference, computed with respect to the phase 

tω , such as the whole argument ϕ−ωt represents the phase at the moment t. The 

trajectory is the segment of a line AA , travelled through back and forth during the 
period ωπ= /2T , starting with the initial position 0P  (Fig.1.10, a). 

 
Figure 1. 10. The linear oscillator (a). Diagram of the motion (b) 

Therefore, the motion is oscillatory, around the oscillation centre O, which is a stable 
position of equilibrium. Because the period T, as well as the frequency Tf /1= , are 
independent on the amplitude, it results that the free linear oscillations of a particle with 
one degree of freedom are isochronic; on the other hand, the interval of time 4/T  in 
which the segment AO is travelled through does not depend on the initial position A 
(more precisely, does not depend on a), the velocity vanishing at this point, so that the 
motion is tautochronous too. The diagram of the motion is given in Fig.1.10, b, where 
the phase difference effect is also emphasized. 
The mechanical system formed by a particle which describes a segment of a line under 
the action of an elastic force is called a linear oscillator; this one can be also considered 
as a limit case of an elliptic oscillator, i.e., the case in which one of the semiaxes of the 
ellipse tends to zero. 
We also notice a connection with the circular oscillator, that is, a particle of velocity v, 
of constant modulus ω= av , uniformly travelling along a circle; ω is the angular 
velocity. The above linear oscillator may be obtained by projecting the motion of this 
circular oscillator on one of its diameters AA . Let the diameter AA  be positioned by 
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the angle φ with respect to the Ox – axis and let the radius P′O  be positioned by the 
angle tω=θ ; then we get the equation (b) (Fig.1.11). 
Let us consider now two harmonic vibrations having the same direction 

( ) ( ) 2,1,cos0 =ϕ−ω= jtatx jjj . (e) 

Each ( )tx j satisfies the equation 

2,1,02 ==ω+ jxx jjj&& , (f) 

in which 2,1,,, =ϕω ja jjj , are the corresponding amplitudes, pulsations and phase 
differences. We shall study the motion obtained by their superposition. 

 
Figure 1. 11. The linear oscillator as projection of a circular one 

We firstly consider two harmonic vibrations of the same pulsation ω=ω=ω 21 ; the 
composition of these vibrations, usually called interference in the case of acoustic or 
light waves, also results in a harmonic vibration 

( )ϕ−ω=+= taxxx cos21 . (g) 

where, by identification, 

( )
2211

2211
1221

2
2

2
1 coscos

sinsin
arctan,cos2

ϕ+ϕ
ϕ+ϕ

=ϕϕ−ϕ++=
aa
aa

aaaaa . (h) 

The term ( )1221 cos2 ϕ−ϕaa  is called the interference term, producing the effect of 
interference fringes. If π=ϕ−ϕ n212 , then 21 aaa +=  and the interference is 
constructive, while if ( ) Z∈π+=ϕ−ϕ nn ,1212 , then 21 aaa −=  and the interference 
is destructive. Finally, if 21 aa = , the destructive interference leads to extinction (zones 
in which the sound disappears, in case of acoustic waves, or zones of darkness, in case of 

light waves). If ( )
2

12
12

π−
=ϕ−ϕ

n , then ( )21
2
2

2
1 /arctan, aaaaa =ϕ+= . 

In the case of composition of a certain number of harmonic vibrations, one can make an 
analogous computation. 
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If the two harmonic vibrations have not the same pulsation, then their composition, still 
called interference, by extension, leads to an expression of the same form, modulated in 
amplitude 

( ) ( ) ( )[ ]212121
2
2

2
1 coscos2 ϕ−ϕ−ω−ω++= taaaata , (i) 

as well as in phase 

( ) ( )
( ) ( ) 2

,
coscos
sinsin

arctan 21

2211

2211 ω−ω
=ω

ϕ+ω+ϕ−ω
ϕ+ω+ϕ−ω−

=ϕ
tata
tata

, (j) 

where ( ) 2/21 ω+ω=ω . The motion thus obtained is no more harmonic, as its form 
depends on the amplitude, on the ratio of frequencies and on the phase differences; it is 
periodic only if the periods of the two motions have a common multiple, i.e. if 

N∈ωπ=ωπ 212211 ,,/2/2 nnnn , or, equivalently, Q∈=ωω q21 / (Fig.1.12, a, b). 

 
Figure 1. 12. The resultant motion of two collinear periodic motions: non-periodic case (a); periodic case (b) 

The amplitude ( )ta varies between 21min aaa −=  and 21max aaa += . Its maximal 

values are attained at intervals of time given by the periods 21/2 ω−ωπ=bT and are 
called beats (Fig.1.13), in the case of acoustic waves; the corresponding frequency will 
be 

21212
1 fff b −=ω−ω
π

= , (k) 

hence it equals the modulus of the difference of the frequencies of the component 
motions. One may thus tune two musical instruments: the period of the beats tends to 
infinity if the frequencies of the two instruments tend to become equal. 
One can take notice of this phenomenon the more so as the two amplitudes are close in 
magnitude. If 21 aa = , the formulae (i) and (j) lead to 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ+ϕ
−

ω+ω
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−ϕ
−

ω−ω
=

22
cos

22
cos2 21212121 ttax , (l) 

i.e., to a product of two harmonic functions. 

 
       Figure 1. 13. Beats   Figure 1. 14. Simple beats 

In this case, aa 2max = , while 0min =a , for which one gets the nodes of the beats 
(Fig.1.14). It is seen that in this case one has simple beats. 

Application 1.10 

Problem. Study the motion of a simple pendulum in a resistent medium. 

Mathematical model. Consider the simple pendulum of Appl.4.33. We introduce the 
resistance R of the medium, tangent to the trajectory and of a direction opposite to that 
of the velocity; the equation of motion along the tangent reads, with the notations used in 
the above mentioned application, 

Rtmgml −θ−=θ sin&& . (a) 

Consider the case of small oscillations ( θ≅θsin ); if we assume that the resistance is 
proportional to the velocity (viscous damping), of the form 0,const,2 >λ=λθλ= &mlR , 
then the equation (a) becomes 

02 2 =θω+θλ+θ &&& . (b) 

If, in the case of oscillations of finite amplitude, we consider a resistance proportional to 

the square of the velocity (aerodynamic damping), i.e., const, 222 =θ= kmlkR & , then 

the equation (a) becomes 

0sin 222 =θω+θ+θ &&& k  (c) 

for an ascendant motion; in the case of a descendant motion, 2k  will be replaced by 
2k− . 
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Solution. The second order linear and homogeneous ODE (b) is with constant 
coefficients. Assuming that 22 λ>ω  and denoting by 222 λ−ω=μ , we get the general 
solution in the form 

( )tBtAt μ+μ=θ λ− sincose , (d) 

where the constants A and B may be determined from the initial conditions 
( ) ( ) 0000 , θ=θθ=θ && tt . Taking 00 =t for the sake of simplicity, we may thus write 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
μθ+λθ

μ
+μθ=θ λ− ttt sin1cose 000

& , (e) 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
μθλ+θω

μ
−μθ=θ λ− ttt sin1cose 00

2
0

&&& . (f) 

If, in particular, we take 00 =θ& , then the particle moves without initial velocity from the 

point 0P  and attains the point 1P , where the velocity ( ) tt μθωμ−=θ λ− sine/1 0
2&  

vanishes at the moment μπ= /1t  (Fig.1.15); the motion continues following the same 
law, the particle returning till the point 2P after a time μπ= /22t  a.s.o. 

 
Figure 1. 15. Simple pendulum in a resistent medium 

The oscillations are isochronic and the period 

22/2/2 λ−ωπ=μπ=T  

(greater than that of the motion in vacuum) does not depend on the amplitudes 

...3210 >θ>θ>θ>θ  ; 

we also notice that  
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μπλ−==θθ=θθ=θθ /

231201 e.../// , 

so that the absolute values of the amplitudes form a geometric series of ratio μπλ− /e . 
Hence, the motion is damped after an infinite time and the particle attains its lowest 
position (the stable position of equilibrium). 

In what concerns the equation (c), we notice that ( ) θθ=θθθ=θ d2/dd/d 2&&&&& , so that we 
get 

( ) 0sin
d

d
2
1 2222

2
=θω+θ±

θ
θ &
&

k , (g) 

a linear and non-homogeneous first order ODE, whose general solution is 

( )θθ
+

ω
+=θ θ sin2cos

14
2 2

4

2
22 2

k
k

Ce k m& m , (h) 

where C is a constant to be determined. Actually, the relationship (h) represents an ODE 
with separable variables; the quadrature is easily performed for small amplitudes. 

Application 1.11 

Problem. Consider a particle acted upon by an elastic force of attraction 0, >−= kkrF  
and by a damping force vΦ versΦ−= , tangent to the trajectory and whose direction is 
opposite to the direction of motion. Study the motion in case of a viscous damping force 

0,const, >′=′′−=Φ kkvk  being a damping coefficient. 

Mathematical model. The equation motion in Appl.1.6 is completed in the form 

0rrr =ω+λ+ 22 &&& , (a) 

introducing the constant 02/ >′=λ mk . The damping coefficient corresponding to the 
relation λ=ω  is the coefficient of critical damping ck ′ , that does not depend on k ′ ; we 
notice that, in this case, 

kmmkc 22 =ω=′ . (b) 

We also introduce the non-dimensional ratio of damping 

ω
λ

=
′
′

=χ
ck

k . (c) 

Solution. The vector ODE (a) with constant coefficients will be solved as shown at 
Sec.2.2. With the initial conditions ( ) ( ) 00 0,0 vvrr == , the solution reads 
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( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω′λ+

ω′
+ω′= λ− ttt t sin1cose 000 rvrr , (d) 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω′λ+ω

ω′
−ω′= λ− ttt t sin1cose 00

2
0 vrvv , (e) 

where we introduced the pseudopulsation 

222 1 χ−ω=λ−ω=ω′ , (f) 

assuming that 1<χ , hence λ>ω (subcritical damping). The damping factor 
tλ−e transforms the trajectory, which, in its absence, would be an ellipse, in a spiral (the 

vector radius ( )tr  diminishes continuously in magnitude), the particle tending in an 
infinite time to the origin O, with a velocity tending to zero (Fig.1.16, a). 
This mechanical system is called a damped pseudoelliptic oscillator, the respective 
motion of the particle being a pseudoperiodic damped motion. After intervals of time 
equal to the pseudoperiod 

⎟
⎠
⎞

⎜
⎝
⎛ −χ+χ+

ω
π

=
χ−ω

π
=

ω′
π

= ...
8
3

2
112

1

22 42

2
T , (g) 

 

 
Figure 1. 16. Pseudoelliptic damped oscillator (a). Critical and supercritical damping (b) 

the particle attains the points ,..., PP ′′′ , all of them situated on the common support of 
the position vectors ( ) ( ),..., tt rr ′′′ , with the velocities ( ) ( ),..., tt vv ′′′ , of the same 

direction. We notice that Trrrr λ−==′′′=′ e...// , Tλ−==ν′ν ′′=νν′ e...// , thus 
obtaining a geometric progression of decreasing ratio Tλ−e  of the vector radius and of 
the velocities; the number 
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⎟
⎠
⎞

⎜
⎝
⎛ −χ+χ+χπ−=

χ−

πχ
−=

ω′
λ′π

−=λ−=δ ...
8
3

2
12

1

22 53

2
T , (h) 

is called the logarithmic decrement (for 1<<χ  we may take πχ−≅λ− 2T ), being equal 
to ( ) ( ) .../ln/ln =′=′ vvrr . 
If 1=χ , hence if λ=ω  (critical damping), then we may write 

( ) ( )[ ],e 000 tt t rvrr λ++= λ− ( ) ( )[ ]tt t
000e rvvv λ+λ−= λ− . (i) 

The corresponding motion is damped; the trajectory starts from the point 0P  and tends, 
in an infinite time, with a velocity tending to zero, to the centre O, which is an 
asymptotic point (Fig.1.16, b). Noting that we may write 

( ) ( ) ,e 00
0

⎥
⎦

⎤
⎢
⎣

⎡
λ++= λ− rv

r
r

t
tt t ( ) ( )⎥

⎦

⎤
⎢
⎣

⎡
λ+λ−= λ−

00
0e rv

v
v

t
tt t  (j) 

and that we have 0elim =λ−

∞→

t

t
t , it results that the tangent at O to the trajectory is 

specified by the vector 

λ
+= 0

0
v

rr . (k) 

If 1>χ , hence if λ<ω  (supercritical damping), then we use the notation 

1222 −χω=ω−λ=ω ′′ , (l) 

and we obtain 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω ′′λ+

ω ′′
+ω ′′= λ− ttt t sinh1coshe 000 rvrr , (m) 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω ′′λ+ω

ω ′′
−ω ′′= λ− ttt t sinh1coshe 00

2
0 vrvv . (n) 

Observing that we may write 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω ′′λ+

ω ′′
+ω ′′= λ− ttt t tanh1coshe 000 rvrr , (o) 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω ′′λ+ω

ω ′′
−ω ′′= λ− ttt t tanh1coshe 00

2
0 vrvv  (p) 
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( ) ( ) 1tanhlim,0e1elimcoshelim2 2 =ω ′′=+=ω ′′
∞→

ω′′−ω′′−λ−

∞→

λ−

∞→
tt

t

tt

t

t

t
, 

it results that the trajectory of the particle has the same form as in the previous case 
(Fig.1.16, b); the tangent at the asymptotic point O will be specified by the vector 

( ) ( )000
1 rvrr λ+
ω ′′

+=t . (q) 

The corresponding motion is a strongly damped motion. More precisely, we may say that 
the last two cases correspond to aperiodic motions. 

Application 1.12 

Problem. Study the motion of a damped linear oscillator. 

Mathematical model. Using the notations in Appl.1.11, we get the equation of motion 
(along the Ox-axis) 

02 2 =ω+λ+ xxx &&& ; (a) 

with the initial conditions ( ) ( ) 00 0,0 vvxx == , we obtain the solution 

( ) ( ) ( )ϕ−ω′=⎥⎦
⎤

⎢⎣
⎡ ω′λ+

ω′
+ω′= λ−λ− tatxvtxtx tt cosesin1cose 000 , (b) 

where we used the notations 

( )
ω′
λ+

=ϕλ+
ω′

+=
0

002
002

2
0 arctan,1

x
xv

xvxa , (c) 

corresponding to a subcritical damping ( 1<χ ). The motion is a pseudoperiodic damped 
motion of pseudoperiod ω′π= /2T , the trajectory – which starts from the point 0P  

being contained in the segment of a line AA  and tending to the asymptotic point O after 
an infinity of oscillations around this pole (Fig.1.17, a). 

 
Figure 1. 17. Linear oscillator with subcritical damping (a). The diagram of the motion (b) 

and that 
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This motion constitutes a modulated vibration in amplitude, being strongly damped; the 
diagram of motion has the form of a cosinusoid contained between the curves 

tax λ−±= e  and the tangents to it at the points ω′ϕ= /t , Tt +ω′ϕ= / ,…, and 
2// Tt +ω′ϕ= , 2/3/ Tt +ω′ϕ=  ,…, respectively, where ω′π= /2T  (Fig.1.17, b). 

In the case of a critical damping ( 1=χ ), we obtain an aperiodic damped motion given 
by 

( ) ( )[ ]txvxtx t
000e λ++= λ− . (d) 

If 00 >v , then the particle starts from the point 0P , attains A at the moment 
( )000 / xvvt λ+λ=′  and then changes of direction, tending asymptotically to the centre 

O (Fig.1.18, a, b); the diagram of motion has a maximum for tt ′= , tending then 
asymptotically to zero. 

 
Figure 1. 18. Linear oscillator with critical damping (a) and the diagram of the motion (b). Linear oscillator 

with critical and sub critical damping (c) and the diagram of the motion (d) 

If 000 ≤≤λ− vx , then the particle starts from the point 0P  and tends asymptotically to 
O (Fig.1.18, c, d); the corresponding diagram has no zeros and no extrema, yet if 

02/ 00 ≤≤λ− vx  a point of inflection appears. 

 
Figure 1. 19. Linear oscillator with critical and subcritical damping 

If 00 xv λ−< , then the particle starts from 0P , passes through the centre O at the 

moment ( )000 / xvxt λ+−=′′ , attains A  at the moment t ′  and then turns back 
asymptotically to the centre O (Fig.1.19); the diagram of motion pierces the Ot-axis at 
the point tt ′′= , has a minimum for tt ′= , and tends asymptotically to zero with 
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negative values. If the point 0P  is on the other side of the pole O, hence if 00 <x , then 
– by symmetry – one obtains analogous results. 
A supercritical damping ( 1>χ ) leads to an aperiodic damped motion of the form 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ω ′′λ+

ω ′′
+ω ′′= λ− txvtxtx t sinh1coshe 000 . (e) 

In what concerns the trajectory and the diagram of motion, one obtains the same results 
as before, as 00 >v , ( ) 000 ≤≤ω ′′+λ− vx or as ( ) 00 xv ω ′′+λ−< (Fig.1.18, 1.19); we 
notice that 

00

0

00
2

0 tanharg1,tanharg1
xv

x
t

vx
v

t
λ+

ω ′′−
ω ′′

=′′
λ+ω

ω ′′

ω ′′
=′ . (f) 

Application 1.13 

Problem. Determine the oscillation period of a liquid in a curved pipe. 

Mathematical model. By means of Bernoulli’s conservation theorem of mechanical 
energy one can write 

,
d
dd

d
d1

2
0

21 t
v

g
lzs

t
v

g
zz

l
+=+= ∫  

where the data of the problem are given in Fig.1.20; it is supposed that the velocity v 
depends only on the time. 

Solution. Noting that 

,
d
d

d
d

2

2

t
x

t
v
=  

one obtains 

.0
d
d

122

2
=−+ zz

t
x

g
l  

Using β=α= sin,sin 21 xzxz  (the angles α and β are given), the differential equation of 
the problem reads 

( ) .0sinsin
d
d

2

2
=β+α+ x

l
g

t
x  

Noting ( )( )β+α=ω sinsin2 lg , this equation becomes a linear second order ODE with 
constant coefficients 
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0
d
d 2

2

2
=ω+ x

t
x , (a) 

whose general solution is 

( )ϕ−ω= tAx cos . 

 

 
Figure 1. 20. Oscillations of a liquid in a curved pipe 

The period of the proper oscillations of the liquid is given by 

( )β+α
π=

ω
π

=
sinsin

22
g

lT . (b) 

Application 1.14 

Problem. Study the motion of a heavy particle P (the motion of a particle in gravitational 
field of the Earth) of mass m, in vacuum. 

Mathematical model. Newton’s equation of motion is of the form 

gr mm =&& , (a) 

where g is the gravitational acceleration. 

Solution. By direct integration, we get 

( ) ( ) ( ) 0000
2

0 ,
2
1 vgvrvgr 0 +−=+−+−= tttttt , (b) 

where we took into account the initial conditions ( ) ( ) 0000 , vvrr == tt ; noting that 

0rr −  is a linear combination of the constant vectors g  and 0v , it results that the 
trajectory is a plane curve. Without any loss of generality, we may assume that 

0, 00 == t0r , so that 
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00
2 ,

2
1 vgvvgr +=+= ttt ; (c) 

and also obtain the remarkable relation 

( )ttt 0
2

2
1

2
1 vvvgr +=+−= . (d) 

Mechanical intepretation. We suppose that 0v ≠0  and has not the same direction as g; 
the velocity v cannot vanish in this case, and the relation (d) allows a simple graphic 
construction of the velocity of the particle P if its position is known or allows to set up 
graphically its position if one knows the velocity v. Projecting the equations (c) on the 
co-ordinate axes Ox and Oy (Oy is the ascendent vertical, while α is the angle made by 
the initial velocity with the Ox- axis), we get the parametric equations of the trajectory 
(Fig.1.21)  

α+−=α= sin
2
1,cos 0

2
0 tvgtytvx  (e) 

and the components of the velocity 

α+−=α= sin,cos 00 vgtvvv yx . (f) 

 

 
Figure 1. 21. Motion of a heavy particle in vacuum – Cauchy’s problem 

Eliminating the time t  between the equations (e), we obtain 

α+
α

= tan
cos2

2
22

0
xx

v
gy , (g) 

hence, the trajectory of the particle is a parabola. Further, taking into account (e), we 
may write the magnitude of the velocity in the form 
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gyvv 22
0 −= . (h) 

For 0>α , we are in the basic problem of external ballistics neglecting the friction with 
the air. The particle (an eventual projectile) obtains the highest point of the trajectory P  
if 0=yv , hence at the moment gvvt y

0
0 gsin =α= ; the co-ordinates of the point are 

( )
g

v
g

v
y

g
vv

g
v

x yyx

2
sin

2
,2sin

2

20
2

2
0

002
0 =α==α= , (i) 

and Torricelli’s formula is given by 

yhghvy == ,20 . (j) 

We obtain thus the component 0
yv  of the velocity by which one must launch a projectile 

to attain the height h, immaterial of the angle α ; the formula (j) takes place for the 
motion along the vertical ( 2π=α ) too. The formula (h) may be written also in the form 

( )ygvgv −= 22 2
0

2 ; one can thus state that the magnitude of the velocity at a given 
moment is equal to that of a particle falling, without initial velocity, from a height 

gv 22
0 . 

If 0<α , then the particle starts from a point situated on the descending branch of the 
parabola. 
The point 1P  of abscissa ( ) α= 2sin2 2

0 gvx  is the most distant point attained by the 
projectile on a horizontal plane, at the moment t2 , the magnitude of the velocity being 
the same as that of the initial moment; the range of throw is maximal for 4π=α , 

namely gvx 2
0max2 = . If we wish to attain a point 1P  of abscissa x2 , the initial 

conditions must verify the relation xgv 22sin2
0 =α  (the two-point problem). To the 

same magnitude 0v  of the initial velocity correspond two angles: 4π<α  and α−π 2  
(symmetric with respect to the angle 4π , because ( ) 424 π−α−π=α−π ) under 

which one may attain the same point 1P  (Fig.1.22); in particular, if xgv 20 = , then we 
have 4π=α . To the two shooting angles there correspond the shooting heights 

( ) α= 22
0 sin2gvh  and ( ) α= 22

0 cos2gvh . 
If we wish that the projectile do pass through the point ( )ηξ,P , then we find the 
condition 

0
2

tantan
2 2

0

2
2

2
0

2
=

ξ
+η+αξ−α

ξ
v

g
v

g ; (k) 
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as in the above considered particular case, one may reach the point P , shooting a 
projectile under two angles specified by 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ξ
+η−±

ξ
=α 2

0

2

2
0

2
0

2
211tan

v
g

v
g

g
v . (l) 

 
Figure 1. 22. Motion of a heavy particle in vacuum – two-point problem 

To reach a point P by a projectile, that one must be in the interior of the safety parabola 
(Fig.1.21) 

g
v

x
v
gy

22

2
02

2
0

+−= , (m) 

which passes through the points ( )gvP 2,0 2
0max  and ( )0,22

0max1 gvP ; no point in the 

exterior of this parabola may be reached by an initial velocity of magnitude 0v . This 
parabola is the envelope of the family of trajectories (g) for const0 =v  and α variable. 

The parameter of the parabola (g) is ( ) α= 22
0 cos2gvp , so that the locus of the focus 

( ) ( )( )α−α 2cos2,2sin2 2
0

2
0 gvgvF  is the quarter of a circle (Fig.1.21) 

2

4
022

4g
v

yx =+ , (n) 

the centre of which is the origin and which passes through the point maxP ; all these 

parabolas have as directrix a parallel to the Ox- axis of equation gvy 22
0= , which 

passes through the vertex of the safety parabola. The locus of the vertices of the 
trajectories (g) is the ellipse (Fig.1.21) 
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y
g
v

yx
2
022 2

4 =+ , (o) 

the minor axis of which is maxPO , the major axis being parallel to the Ox- axis (the half 

of it is equal to gv 22
0 ). 

Application 1.15 

Problem. Consider a cantilever bar of a variable cross section, the height h being 
constant, while the width has a linear variation ( 0b  at the free end and 1b  at the built-in 
cross section), which is acted upon by a concentrated force P. It is required: 

i) to determine the rotation of the free end; 
ii) to determine the deformed axis of the bar and its maximal deflection. 

Particular case: 01 2bb =  (Fig.1.23). 

Mathematical model. Let 123
00 hbI =  and 123

11 hbI =  be the moments of inertia of 
the cross section with respect to the neutral axis for the free end and for the built-in end, 
respectively. The moment of inertia of an arbitrary cross section of abscissa x is given by 

( ) ( )lx
l

I
l
x

b
bI

l
x

I
IIxI β+

β
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 0

0

1
0

0

1
0 1111 , (a) 

with the notation 

11

0

1 −=
β b

b . (b) 

 

 
Figure 1. 23. Cantilever bar of a variable rectangular cross section 

The bending moment in a cross section x is given by 

( ) PxxM −= , (c) 
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so that the approximate differential equation of the bar axis is of the form 

( )
( ) lx

x
EI
Pl

xEI
xM

x
w

β+
β

=−=
0

2

2

d
d , 

where w is the deflection. 

Solution. The rotation of the cross section is given by 
x
w

d
d

=ϕ . Thus, we get 

⎟⎟
⎠

⎞
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⎝
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EI
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x
1
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, (d) 

from which, by straightforward integration, 

( )[ ]1
00

lnd1
d
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EI
Plx
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EI
Pl

x
w

+β+β−
β
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⎠
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⎝

⎛
β+

β
−

β
==ϕ ∫ , 

1C  being an arbitrary constant. The condition ( ) 0=ϕ l  leads to 

( )[ ]lll
EI
PlC β+β−
β

−= 1ln
0

1 , 

and the rotation is given by 
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At the free end we have 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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β
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β
=ϕ=ϕ

1
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A new integration leads to the deflections 
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⎦

⎤
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which gives 
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The condition ( ) 0=lw  determines the new integration constant 

2
2 2

1 lC ⎟
⎠
⎞

⎜
⎝
⎛ β−= , 

so that the expression of the deflections reads 
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The maximal deflection is obtained at the free end ( )0=x  and reads 
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⎞
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β
β−β−β==

1
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1 2

0
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Plww . (h) 

In the particular case ( )201 =bb  it results 1=β  and the maximal rotation (f) becomes 
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0

2

0

2

0

2

max 306852819.069314718.01
2
1ln1

EI
Pl

EI
Pl

EI
Pl

−=+−=⎟
⎠
⎞

⎜
⎝
⎛ −−=ϕ , 

 
Figure 1. 24. Diagram of the deflections w 

while the deflection (g) is given by 

⎥
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⎥
⎥
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their diagram is plotted in Fig.1.24. 

Application 1.16  

Problem. A cantilever bar of span l has a variable circular cross section of radius r . We 
have to determine: 

i) the profile of the bar so as to be of equal resistance for a concentrated force P 
acting upon the free end; 
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ii) the maximal deflection at the same cross section (Fig.1.25). 

Mathematical model. Let ( )xrr =  be the radius of the cross section at the abscissa x 
(Fig.1.25, a). The moment of inertia and the modulus of resistance are given by 

( ) ( )
4

,
4

34 rxWrxI π
=

π
= , 

respectively. For the bending moment ( ) PxxM −=  (Fig.1.25, b) the normal stress (in 
absolute value) is given by Navier’s formula 

( )
( ) ar

xP
r

Px
xW
xM

σ=
π

=
π

==σ 33max
4 , (a) 

and is equated to the admissible stress aσ . 
The approximate differential equation of the deflection w is of the form 

( )
( )

31

0

343/4

0
2

2

d
d −=⎟

⎠
⎞

⎜
⎝
⎛=−= x

EI
Pl

x
l

EI
Px

xEI
xM

x
w , (b) 

where E is the modulus of longitudinal elasticity. 

Solution. From (a) we get 

333 4,4
l
xPlrPxr

aa πσ
=

πσ
= ; 

 
Figure 1. 25. Cantilever bar with a variable circular cross section (a). Diagram of bending moments (b). 

Variation of the radius r (c) 
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30
4

a

Plr
πσ

=  

the radius of the built-in cross section, it results 3
0 lxrr = , so that one obtains a cubic 

parabola (Fig.1.25, c). Numerical values for the ratio 0rr  as a function of the non-
dimensional abscissa lx  are given in Table 1.1. 

Table 1. 1. The values of 0rr  

lx /  0/ rr  lx /  0/ rr  lx /  0/ rr  
0 0 0.333… 0.6934 0.70 0.8879 
0.10 0.4642 0.40 0.7368 0.75 0.9086 
0.20 0.5848 0.50 0.7937 0.80 0.9283 
0.25 0.6300 0.60 0.8434 0.90 0.9655 
0.30 0.6694 0.666… 0.8736 1 1 

 
The moment of inertia becomes 

( )
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,
4

4
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⎠
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Integrating the equation, one obtains successively 
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where 1C  and 2C  are integration constants determined by the conditions 

0,0
d
d

== w
x
w  for lx = . 

 

Figure 1. 26. Diagram of the deflections w 

It is easily seen that ( ) 32
1 23 lC −= , ( ) 35

2 53 lC = . The deflection becomes (Fig.1.26) 

denoting by 
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The maximal deflection is obtained at the free end ( )0=x  

0

3

0

3

2max 8.1
5
3

EI
Pl

EI
PlCw === , 

 and is with %80  greater than the maximal deflection of the cantilever bar of constant 
circular cross section of moment of inertia 0I . 

Application 1.17 

Problem. Study the motion of a particle of mass m subjected to the action of a force of 
Newtonian attraction 

2r
mMfF −= , (a) 

where M is the mass of the attracting particle, r the distance between the two particles 
and 228 cm/38711106732.6 sgf ⋅≅⋅= −  is a coefficient of universal attraction. 

Mathematical model. The force F is a central force (the particle of mass M is considered 
fixed), so that we may consider Binet’s theory (see Appl.4.25); one obtains the equation  

22

2 11
d
d

C
fM

rr
=+⎟

⎠
⎞

⎜
⎝
⎛

θ
, (b) 

in polar co-ordinates θ,r , where C is the constant of areas. 

Solution. The associated equation is a non-homogeneaous linear second order ODE with 
constant coefficients, with respect to r/1 . Integrating, we get 

( )
221 cos1

C
fMCC

r
+−θ= , (c) 

where 21,CC  are two scalar integration constants. 

Using the notations peC =1 , 12 θ=C , fMCp 2= , we find the equation of a conic, 
in polar co-ordinates, with respect to the focus F and to an axis inclined by 1θ  with 
respect to the apsidal line in the form 

( )1cos1 θ−θ+
=

e
pr . (d) 
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The conditions at the initial moment 0tt =  (as in Appl.4.25) lead to the parameter of the 
conic 

fM
vr

fM
Cp 0

22
0

2
0

2 sin α
== , (e) 

where 00 , vr  correspond to the initial conditions, while 0α  is the angle formed by those 
vectors. 
Analogously, the eccentricity e and the angle 1θ  are given by 

( ) ( ) 0
0

1
0

1 cotsin,cos1 α=θ−θ=θ−θ+
r
pe

r
pe , (f) 

whence 
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 (g) 

( ) .
sin

cossincot
tan

0
22

00

00
2
00

0

0
1

fMvr
vr

rp
p

−α

αα
=

−
α

=θ−θ  (h) 

Hence, the trajectory is an ellipse if fMvr 22
00 < , a parabola if fMvr 22

00 =  or a 

hyperbola if fMvr 22
00 > . 

Mechanical interpretation. The genus of the conic depends only on the initial distance to 
the centre of attraction (radius 0r ), on the intensity of this centre (the mass M), and on 
the intensity of the initial velocity (the velocity 0v ), but does not depend on the direction 
of this velocity (angle 0α ). As (f) yields 0rp =  and 20 π=α , the condition 0=e  
leads to  

12
2
00

2
00 −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

fM
vr

fM
vr ; 

hence, the orbit is circular if fMvr =2
00  (one can see that 20 π=α  is now a 

consequence). 
Using the results of Appl.4.25 , we notice that 

( ) ( ) ( )
m
h

r
C

r
fMr

r
mC

r
fmMrU

r
fmMrU 22,

2
, 2

2

2

2
+−=ϕ−== . (i) 
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We choose the Ox- axis so as to be an apsidal line; we are thus led to the equation of the 
trajectory in polar co-ordinates (we take 00 =θ ) 

( )

,

21

1
r
1

arccos

12

1d
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ρ
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ρ

−
ρ

ρ
=θ ∫∫

 

where we noticed that minrr =  corresponds to 0=θ . We find again the equation (d) of a 
conic, with 

22

22 21,
mMf

hCe
fM
Cp +== . (j) 

 
Figure 1. 27. The orbit in case of a force of Newtonian attraction 

It results (we observe that θ= cosrx ) (Fig.1.27) 

( ) 0222 =−−+ pexyx  (k) 

in Cartesian co-ordinates; the conic pierces the co-ordinate axes at the points ( )0,minr  
and ( )p,0 , obtaining thus a geometric interpretation for the parameter of the conic. From 
the expression of the eccentricity one sees that the trajectory is an ellipse, a parabola or a 
hyperbola as 0<h , 0=h , 0>h , respectively; in particular, if 22 2CmMfh −= , then 

0=e  and the ellipse is a circle. 
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The law of motion of the particle on the trajectory is of the form 

∫
+

ρ
−

ρ

ρ
+=

r

r

m
hCfM

tt
min 22

d

2

20 . 
(l) 

In the case of an elliptic motion we write the equation (k) in the form (we have 10 <≤ e ) 

( ) 2222 21 ppexyxe =++− . 

We notice that one may write this equation also in the form 

( ) 12

2

2

2
=+

+
b
y

a
aex , (m) 

where the semiaxes 

k
mC

e

pb
h

fmM
e

pa
21

,
21 22 −=

−
=−=

−
=  (n) 

and the focal distance (Fig.1.28) 

22
2 21

ba
h

fmMe
e

peaec −=−=
−

==  (o) 

are emphasized; we mention that, for a given potential – fmM  is given – the semi-major 
axis of the ellipse depends only on the constant mechanical energy h. We may express 

 
Figure 1. 28. Elliptic orbit 

the semiaxes of the ellipse in the form 
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with respect to the initial conditions; we notice thus that a does not depend on the 
direction of the initial velocity. 

 
Figure 1. 29. Kepler’s ellipse 

Taking into account the above used notations, we see that the relations 

( ) ( )earea
m
h

e
p

m
hChfmM −=−−=

−
−=α−= 1,12

1
2,2 min

22
2

2
2  (q) 

hold true; we thus obtain the law of motion of the particle along the ellipse (l) in the form  

( )( )
∫
− ρ−−

ρρ
−+=

r

ae aeah
mtt

1 222
0

d
2

; (r) 

by the change of variable ( )uea cos1−=ρ , we may write 

( ) uue
h

matt
u

dcos1
2 0

0 ∫ −−+= , (s) 

so that Kepler’s equation reads 

( )0sin ttnueu −=− , (t) 

with the notation 
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3a
fMn = , (u) 

usual in celestial mechanics. 
We assume now that, in general, the Fx- axis does not coincide with the aspidal line 
( 01 ≠θ , Fig.1.29), 1θ−θ=ψ  being the true anomaly. The equation of the conic takes 

the form ( ) ( ) ceaacaabper −=−===ψ+ 222cos1 , where we used the above 
notations; it results ( ) uaerarc coscos =−=ψ+ , if we take into account the previous 
change of variable. The ordinate of the point P pierces the director circle of the ellipse at 
Q; denoting by u the angle QOF , we notice that uauOQ coscos = is given by 

ψ+=+ cosrcFMQF , hence just by the expression obtained above. The angle u has 
thus a simple geometric interpretation, being called eccentric anomaly. 
In the case in which the centre of attraction of mass M, considered fixed, is the Sun, the 
particle in motion (relative to the fixed centre) being a planet, we have to do with the 
solar system. Analogously, one may consider the motion of a satellite of a planet with 
respect to the planet itself, e.g., the motion of the Moon around the Earth. One may state 
Kepler’s laws, obtained as a synthesis of astronomic observations, i.e.: 

Law I. The motion of a planet around the Sun takes place along an elliptic orbit, 
the Sun being in one of the foci. 
As a consequence of the first integral of areas (see Appl.4.25) one may state 

Law II. (the law of areas). In the motion of a planet around the Sun, the vector 
radius drawn from the Sun to the planet sweeps over equal areas in equal times. 
We notice that to a variation π2  of the true anomaly ψ  corresponds the same variation 
of the eccentric anomaly u. Kepler’s equation (t) leads to the period T in which the planet 
describes the whole ellipse, hence a motion of revolution is effected (the vector radius 
describes the whole area of the ellipse), in the form 

fM
aa

n
T π=

π
= 22 ; (v) 

it results that n represents the circular frequency (called mean motion). We may write 

fMa
T 2

3

2 4π
= , (w) 

too, stating thus (the ratio fM24π ) depends only on the mass of the Sun). 

Law III. In the motion of planets around the Sun, the ratio of the square of the 
time of revolution and the cube of the semi-major axis is the same for all the planets. 
By astronomical observations, these results represent a particularly important check of 
the Newtonian model of mechanics. 
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Application 1.18  

Problem. Study the motion of a linear non-damped oscillator subjected to the action of a 
perturbing force of the form ( ) ( )ϕ−α= pttf cos . 

Mathematical model. Using the notations of Appl.1.9, we may write the equation of 
motion (along the Ox-axis) in the form 

( ) ( )ϕ−α==ω+ pttfxx cos2&& . (a) 

Solution. This is a non-homogeneous linear second order ODE, with constant 
coefficients. Its general solution is written as a sum between the general solution of the 
associated homogeneous equation and a particular solution of the non-homogeneous 
equation. The solution corresponding to the Cauchy data ( ) ( ) 00 0,0 vvxx ==  is then 

( )

( ) ,costsinsinptcoscos

tsintcos

22

0
0

⎥⎦

⎤
⎢⎣

⎡ ϕ−−ωϕ
ω

+ωϕ
−ω

α
−

ω
ω

+ω=

pt
p

v
xtx

 (b) 

 
Figure 1. 30. Phenomenon of resonance 

We may write  

( ) ( ) ( )ϕ−
−ω
α

+ψ−ω= pt
p

tatx coscos 22 , (c) 

where 
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⎟
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ϕα
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−ω
ϕα

−
=ψ

220
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cos
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arctan

p
x

p
pv

. (e) 

It is thus seen that the motion of the particle is obtained as an interference of two 
harmonic vibrations: the eigen vibration of pulsation ω  and the forced vibration of 
pulsation p. 
If, in particular, we assume null initial conditions ( )000 == vx  and if the difference 
phase of the perturbing force vanishes ( )0=ϕ , then it results 

( ) ( )tpt
p

tx ω−
−ω
α

= cos22 . (f) 

If the pulsation p differs greatly from the pulsation ω ( ω<<p  or ω>>p ), then the 
diagram of the motion is that of Fig.1.12, b (the case ω<<p , hence an eigen vibration 
of great pulsation, “carried on” by a forced vibration of small pulsation); we notice that 
the maximal elongation of the resultant motion is practically equal to the double of the 
amplitude of one of the motions ( )( )22

max 2 px −ωα≅ . If the two magnitudes of the 
pulsations are close, then one obtains the phenomenon of “beats” (Fig.1.13, 1.14). 

 
Figure 1. 31. The diagram of the amplitude A  vs. η in the case of the phenomenon of resonance 

In the case ω=p , it results an indeterminedness in (b), as well as in (f). For ω→p  we 
obtain at the limit, according to the theorem of l’ Hospital), 

( ) tttx ω
ω
α

= sin
2

, (g) 
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for the law of motion (f). In the case of the law of motion (b) one obtains an analogous 
result (one adds supplementary harmonic vibrations). The diagram of the motion (g) is a 
sinusoid of modulated amplitude after the straight lines ωα±= 2tx  and of 
pseudoperiod ωπ= 2T  (Fig.1.30). The amplitude increases very much, in arithmetic 
progression, and the phenomenon is called resonance, being particularly dangerous for 
civil and industrial constructions or for mechanical ones. 
The amplitude of the forced vibration (g) is proportional to the amplification factor 

A
21

1
η−

= , (h) 

where we have introduced the relative pulsation ω=η p , which is a non-dimensional 
ratio. The graphic of the absolute value A is given in Fig.1.31. 

Application 1.19  

Problem. Study the motion of the previous case for a damped linear oscillator. 

Mathematical model. Assuming a viscous damping (as in Appl.1.12), we are led to the 
equation of motion 

ptxxx cos2 2 α=ω+λ+ &&& , (a) 

with the notations introduced in the mentioned application; to simplify, we admit that 
0=ϕ . To fix the ideas, we assume to be in the case of a subcritical damping ( )1<χ .  

Solution. The solution of the linear second ordre ODE with constant coefficients (a) is of 
the form 

( ) ( ) ptCptCtaetx t sincos'cos 21 ++ψ−ω= ω− , (b) 

where 

( )
( ) ( ) 22222222222

22

1
4

2,
4 pp

pC
pp

pC
λ+−ω

αλ
=

λ+−ω

α−ω
= , (c) 

the last two terms corresponding to the forced motion. 

Mechanical interpretation. Taking into account the exponential term, the proper motion 
is rapidly damped, so that we may consider the forced motion in the form 

( ) ( )ϕ−= ptAtx cos , (d) 

with 

( ) 22
22222

2
arctan,

4 p
p

pp
A

−ω

λ
=ϕ

λ+−ω

α
= . (e) 
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Figure 1. 32. Diagram of the amplification factor of the amplitude (A vs. η) 

By means of the notations introduced in Appl.1.12 and of the relative pulsation 
ω=η p , we may also write 

A 
( ) 2

2222 1
2arctan,

41

1
η−

χη
=ϕ

ηχ+η−
= , (f) 

the amplitude A being proportional to the amplification factor A = A ( )η , the diagram of 
which is given in Fig.1.32 as a function of various values of the damping factor χ . We 
notice that A ( ) χ= 211 . 
We define an amplitude resonance for the values 

21,121 2 ≤χ<χ−=η=η res , (g) 

for which the amplification factor has a maximum 

A 
χ

>
χ−χ

=
2
1

212

1
2

max . (h) 

One observes that the resonance amplitude is smaller as damping is greater, the graphic 
of the function becoming oblate for a great damping; the effect of the damping is 
particularly important in the vicinity of the resonance zone ( )1≅η . If the damping is 
very small ( )1<<χ , then the amplitude resonance appears for 1≅η , the amplitude 
factor being A χ≅ 21max . Eliminating χ  between (g) and (h), we get 
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A 4
max 21 resη−= , (i) 

that is the locus of the points of maximum of the graphics for various values of χ  
(represented by a broken line); these points are at the left of the line 1=η . 

 
Figure 1. 33. Diagram of the phase function ( ϕ  vs. η ) 

The diagram of the phase function ( )ηϕ=ϕ  is given Fig.1.33 for various values of the 
coefficient χ . We notice that for the non-damped system the phase is 0=ϕ  below the 
resonance ( )1<η , the vibration being in phase with the perturbing force, and π=ϕ , 
over the resonance ( )1>η , the vibration being in phase opposition with respect to the 
perturbing force; at the damped system there always exists a phase difference between 
the perturbing force and the vibration. For 1<η , χ  (hence, the damping) increases as 
the phase shift between the motion and the perturbing force increases, the motion 
remaining after that force. For 1>η , χ  increases as the phase shift decreases, the 
motion remaining after the perturbing force too. For a very great η , the phase shift 
increases immaterial the perturbing force. But the opposition is rigorously obtained only 
in the absence of the damping ( )0=η . For 1=η  one obtains 2π=ϕ , immaterial of the 
damping coefficient χ ; one may thus define a phase resonance for which the vibration is 
in quadrature with the perturbing force. 

Application 1.20 

Problem. Determine the bending deflections w  of a circular ring of radius a  acted upon 
by two diametral concentrated forces P (Fig.1.34, a). 

Mathematical model. The deflections w satisfy the differential equation 

⎟
⎠
⎞

⎜
⎝
⎛ ϕ−
π

−=+
ϕ

cos2
2d

d 3

2

2

EI
Paww , (a) 
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in polar co-ordinates, where EI represents the bending rigidity (E is the modulus of 
longitudinal elasticity and I is the moment of inertia of the cross section with respect to 
the neutral axis). 

 
Figure 1. 34. Loading of a ring with diametral concentrated forces P  (a). The deformation of the ring (b) 

Solution. This is a second order linear, non-homogneous ODE. The general solution of 
the associated homogenous equation is 

ϕ+ϕ= cossin 21 CCwh , 

and a particular solution of the non-homogeneous ODE may be searched in the form 

( )ϕ+ϕϕ+= cossin CBAw p ; 

introducing this in (a), we get the coefficients 

0,
4

,
33

==
π

−= C
EI

PaB
EI

PaA . 

The general solution of the above ODE is thus 

ϕ+ϕ+ϕϕ+
π

−=+= cossinsin
4 21

33
CC

EI
Pa

EI
Pawww hp . 

By differentiation, we get 

ϕ−ϕ+ϕϕ+ϕ=
ϕ

sincoscos
4

sin
4d

d
21

33
CC

EI
Pa

EI
Paw . 

The integration constants are specified by the symmetry condition for 0=ϕ  and 
2π=ϕ . It results 01 =C  and EIPaC 4/3

2 = . Finally, the deflections read 

⎟
⎠
⎞

⎜
⎝
⎛

π
−ϕϕ+ϕ=

4sincos
4

3

EI
Paw , 

the deformation of the ring axis being drawn in Fig.1.34, b. 
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Application 1.21  

Problem. The tram of a cable railroad moves downwards (Fig.1.35) with a velocity 0v . 
The driving wheel is braked by a band brake, so that after a time 0t  it remains blocked 
(the delayed acceleration may be considered constant). Determine the frequency and the 
amplitude a of the free longitudinal vibrations of the tram hanged down, due to the 
brake. 

 
Figure 1. 35. Circulation of a tram 

Numerical data: hkm6.30 =v , s30 =t , the modulus of longitudinal elasticity 
26 cmdaN103.1 ⋅=E , the area of the active cross section of the cable 2cm3=A , the 

length of the cable in rest km3.1=l , the weight of the tram kN4.29=G . 

 
Figure 1. 36. The equivalent mechanical system 

Mathematical model. The cable subjected to traction may be modelled by an elastic 
string; due to the small linear strain 

0023.0
1300

3m,30 ==
Δ

==Δ
l
ltvl , 

the elastic constant of the string may be considered invariable. To study the problem 
enounced above, we may consider the equivalent mechanical system (Fig.1.36), 
corresponding to the following 

Equivalent problem. Two points A and B, moving with a constant velocity 0v , are 
connected by a string. In B there is a particle of mass gGm = . Starting from the 
moment 0=t , the velocity ( ) AxA txv == dd  of the point A is reduced from 0v  to zero in 

0t  seconds, by a constant delayed acceleration, and then the point A remains in rest. 
Study the motion of the particle B. 
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The velocity Av  has a linear variation in time (Fig.1.37). 

 
Figure 1. 37. The linear variation of the velocity 

A
v  

If the link between the points A and B would be rigid, then the displacements, for 
[ ]0,0 tt∈ , would be equal to 

0

2
0

0 2t
tv

tvxx BA −== . (a) 

Due to the elastic connection, the differential equation of motion of the mass m in the 
interval of time [ ]0,0 t  is  

( ) 0
d

d
2

2
=−+ AB

B xxk
t
x

m , (b) 

where k is an elastic constant, Ax  is given by (a), while Bx  is the unknown of the 
problem. 

Solution. Introducing the notation Gkg=β  for the pulsation of the free vibrations, the 
equation (b) becomes 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−β=β+

0

2
0

0
22

2

2

2
 

d
d

t
tv

tvx
t
x

B
B ; (c) 

hence, the perturbing term is no more periodic. The general solution of the associated 
homogeneous equation is 

tCtC xB,h β+β= cossin 21  

and a particular solution of the non-homogeneous equation (c) is of the form 
2

321 tctccxB,p ++= , 
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where 321 ,, ccc  are constants to be determined by identification; one obtains thus 

0

0
302

0
2
0

1 2
,, 

t
v

cvc
t

v
c −==

β
= , 

so that 

2

0

0
0

0
2
0

, 2
 t

t
v

tv
t

v
x pB −+

β
= . 

The general solution of (c) is the sum 

2

0

0
0

0
2
0

21 2
cossin t

t
v

tv
t

v
tCtC xxx B,pB,hB −+

β
+β+β=+= . (d) 

The initial conditions for 0=t  are 0=Bx , 0d/d vtxB =  and lead to 

( )t
t

v
t

t
v

tv xB β−
β

+−= cos1
2 0

2
02

0

0
0 , 

or, taking (a) into account, to 

( )t
t

v
x x AB β−

β
+= cos1

0
2
0 . (e) 

If AB xx −=ξ  is the deviation from the rest position, one obtains 

( ) t
t

v
t

t
t

v
β

β
=

ξ
β−

β
=ξ sin

d
d,cos1 

0

0

0
2
0 , 

and for 0tt = , the initial values read 

( ) ( ) 0
0

00
0

0
2
0

00 sin
d

d
,cos1 t

t
v

t
t

t
v

t β
β

=
ξ

β−
β

=ξ=ξ . (f) 

For 0tt > , the differential equation of motion becomes 

0
d
d 2

2

2
=ξβ+

ξ
t

m , (g) 

so that the motion of the point B is a free harmonic vibration, the amplitude of which 
must be determined by using the initial values 0ξ  and td/d 0ξ . 
The equation (g) leads to 

( ) ( )

( ) ( ).sincos
d
d

,cossin 

00

00

ttBttA
t

ttBttA

−ββ−−ββ=
ξ

−β+−β=ξ
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One obtains the harmonic motion 

( ) ( ) ( )[ ]

( )[ ] ,
2

sin
2

sin
2

sin
2

coscos

sinsincoscos1 

000

0
2

0
0

0
2
0

0000
0

2
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−β=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−β

β

β
=β−−β

β
=

−ββ+−ββ−
β

=ξ

t
ta

t
t

t
t

v
ttt

t
v

tttttt
t

v

 

where the amplitude and the proper period of vibration are accordingly given by 

β
π

=
β

β
=

2,
2

sin
2 0

0
2

0 T
t

t
v

a . 

Introducing numerical values, one has 

cmdaN30
103.1

3103.1
5

6
=

⋅

⋅⋅
==

l
EAk , 21-daNcm99694.2

981
2940 s

g
Gm === , 

so that the pulsation is 

1s162.3
3

30 −====β
m
k

G
kg , 

the amplitude is given by 

cm66.6
2

3162.3sin
310

1002
2

sin
2 0

0
2

0 =
⋅

⋅
⋅

=
β

β
=

t
t

v
a , 

while the proper period is 

s987.1
162.3
22

=
π

=
β
π

=T . 

Application 1.22  

Problem. Determine the deflections w of a hanged up structure. 

Mathematical model. The deflections w satisfy the linear second order non-homogeneous 
ODE with constant coefficients 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −+−=β−

l
x

l
xfH

l
xM

l
xMM

EIx
w

pp 1411w
d
d

21
2

2

2
, (a) 

where x is the abscissa, pM , 1M , 2M , pH  are dimensional constants, EI is the 
bending rigidity, while f and l are the bending deflection and the span of the cable, 
respectively. 
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xx
h BAw β−β += ee , (b) 

and a particular solution of the non-homogeneous equation is a trinomial of second 
degree 

322

2

1 C
l
xC

l
xCwp ++= ; (c) 

by identifying the coefficients, it results 

EIl

fH

EI

MM
C

EI

fHMM
C

EI

fH
C pppp

242
1

32
21

121
8

,
4

,
4

β
+

β

+
=

β

++
=

β
= . 

Hence, the general solution of (a) is of the form 

⎥
⎦

⎤
⎢
⎣

⎡

β
−⎟

⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −+

β
++= β−β

22212

8
1411

l

fH
l
x

l
xfH

l
xM

l
xMM

EI
BeAew p

pp
xx . (d) 

The solution (b) may be also written in the form 

xBxAwh β′+β′= sinhcosh , 

where BABBAA −=′+=′ ,  are new integration constants. 

Application 1.23  

Problem. Determine the amplitude and the period of the water oscillations in the 
cylindrical equilibrium tank, of (horizontal) cross section F, of hydroenergetical conduit, 
having the length L and the cross section A (Fig.1.38). The frictions are neglected and the 
suddenly vanishing of the rate of flow of the turbine tQ  is assumed, the initial conditions 
being 0vv = , 0=z , 0QQt = . 

Mathematical model. Bernoulli’s conservation theorem of mechanical energy, written 
between the storage basin and the equilibrium tank, leads to 

0
d
d

=+
t
v

g
Lz , (a) 

where g is the gravitational acceleration, and the equation of continuity reads 

t
FAv

d
dz

= . (b) 

Solution. The general solution of the associated homogeneous ODE is of the form 
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Figure 1. 38. Schema of the hydroenergetical conduit 

 Eliminating the velocity v between (a), (b), one obtains finally 

0
d
d 2

2

2
=ω+ z

t
z , (c) 

with the notation  

FL
gA

=ω . (d) 

Solution. The solution of the linear and homogeneous ODE with constant coefficients (c) 
may be put in the form 

( )ϕ+ω= tzz sin0 , (e) 

where 0z  is the oscillation amplitude; the period is given by 

gA
FLT π=

ω
π

= 22 , 

so that 

⎟
⎠
⎞

⎜
⎝
⎛ ϕ+

π
= t

T
zz 2sin0 . (f) 

The initial condition ( ) 00 =z  leads to 0=ϕ . The condition ( ) 00 vv =  at the initial 
moment, the rate of flow of the turbine tQ  vanishing, all the rate of flow in the conduit 
enters in the tank, so that 

0
0 d

dz

=
⎟
⎠
⎞

⎜
⎝
⎛=

tt
FAv . 
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0
0

0
2

d
dz,2cos2

d
dz z

Tt
t

T
z

Tt t

π
=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ππ

=
=

. 

Equating the two expressions of 
0d

dz

=
⎟
⎠
⎞

⎜
⎝
⎛

tt
, it follows 

gF
LAvz 00 = . 

Application 1.24  

Problem. A bar of steel subjected to traction is formed by joining two bands by two 
longitudinal welding seams (Fig.1.39). Determine the effort S  in one of the bands and 
the effort T in the welding seams. 

Mathematical model. The searched efforts are given by the differential equations  

0
d
d

221

21
2

2
=+

+
−

EA
cPS

AA
AA

E
c

x
S , (a) 

x
ST

d
d

2
1

−= , (b) 

where 1A  and 2A  represent the areas of the cross sections of the joining bands, P is the 
effort of traction in the bar, and E and G are the moduli of longitudinal and transverse 
elasticity, respectively, of the material; the coefficient of deformation due to shifting is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

2

2

1

1

66
1

2
11

t
b

t
b

Gc
, 

where 21,bb  and 21, tt  are the width and the thickness of the two bands, respectively. 

 
Figure 1. 39. The joining of two bands by longitudinal welding seams 

Using the notation 

21

212

AA
AA

E
c +

=ω , (c) 

On the other hand 
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the differential equation (a) becomes 

2

2
2

2

d
d

EA
cPS

x
S

−=ω− . (d) 

Solution. The model represents a linear second order non-homogeneous ODE with 
constant coefficients. The associated two-point conditions are ( ) PS =0  and ( ) 0=lS . 
Noting that the free term is constant, the general solution of (d) is 

P
AA

AxCxCS
21

1
21 sinhcosh

+
+ω+ω= . 

The two-point conditions lead to 

,0sinhcosh

,

21

1
21

21

1
1

=
+

+ω+ω

=
+

+

P
AA

AlClC

PP
AA

AC
 

so that 

l
lAA

AA
PCP

AA
A

C
ω

ω+
+

−=
+

=
sinh

cosh
, 21

21
2

21

2
1 . 

The final form of S is thus 

( ) .
sinh

sinh
sinh
sinh1

sinh
sinh

cosh
cosh

21
21

21

221

2121

2

⎥
⎦

⎤
⎢
⎣

⎡
ω
−ω

+⎟
⎠
⎞

⎜
⎝
⎛

ω
ω

−
+

=

+
+ω

ω
ω+

+
−ω

+
=

l
xlA

l
xA

AA
P

P
AA

A
x

l
lAA

AA
PxP

AA
A

S
 (e) 

Differentiating (e) and taking (b) into account, it results 

( )
.

sinh
coshcosh

2

cosh
sinh

cosh
sinh

2

21

21

21
2

21

l
xlAxA

AA
P

x
l

lAA
xA

AA
PT

ω
−ω−ω

+
ω

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω

ω
ω+

−ω
+

ω
−=
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Figure 1. 40. Variation of 1S  and 2S  (a). Variation of T (b) 

For the numerical data: mm1001 =b , mm1202 =b , mm121 =t , mm102 =t , 
2

21 cm12== AA , 6.2EG = , 26 cmdaN101.2 ⋅=E , cm20=l , one obtains 

.2417876.15sinh,148262426.3,cm170913121.0

,029211295.0
6.279

6
144
24

6.2
1

79
36

1212
1212

79
36

,
79
36,

36
79

0.16
12

2.16
101

2
11

1

2

=ω=ω=ω

=
⋅

==
⋅
+

=ω

==⎟
⎠
⎞

⎜
⎝
⎛

⋅
+

⋅
+=

− ll
E
G

Gc
GGc

 

The solution (e) is given by 

( )

( )[ ]
( )[ ] .sinhsinh2417876.15032804551.0

sinhsinh2417876.15
2417876.1524
12

sinh
sinh12

sinh
sinh112

1212

Pxlx

Pxlx

l
xl

l
xPS

−ω+ω−=

−ω+ω−
⋅

=

⎥
⎦

⎤
⎢
⎣

⎡
ω
−ω

+⎟
⎠
⎞

⎜
⎝
⎛

ω
ω

−
+

=

 

The variations of 1S  and 12 SPS −=  are given in Fig.1.40, a, and the variation of PTl  
in Fig.1.40, b. 
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Application 1.25  

Problem. Consider a bar of axis not perfectly rectilinear (we say that the bar has an 
initial curvature). Study the influence of this curvature, supposing that the bar is doubly 
hinged and is acted upon by compression forces P. One assumes that the initial 
curvilinear form of the axis is given by 

l
xww π

= sin0 , (a) 

where 0w  is known (Fig.1.41). 

 
Figure 1. 41. The influence of the initial curvature in the stability of a bar 

Mathematical model. The bending moment in the deformed state is given by 

( )
l
xPwPwwwPM π

+=+= sin0 , 

where w is the bending deflection. The differential equation of the deformed bar axis 
becomes 

l
xw

EI
Pw

x
w π

−=β+ sin
d
d

0
2

2

2
, (b) 

where EI is the bending rigidity. 

Solution. This is a linear non-homogeneous ODE with constant coefficients. A particular 
solution is searched in the form 

l
xCw π

= sin ; (c) 
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PP
Pw

l
EI

PwC
E −

=
π

−β
−= 0

2

2
2

0 1 , 
(d) 

where  

2

2
2 ,

l
EIP

EI
P

E
π

==β . 

In this case, we get 

l
xw

PP
PP

l
xw

PP
Pw

E

E

E

π
−

=
π

−
= sin

1
sin 00 , (e) 

emphasizing an amplification of the initial geometric line (a). 
The bending moment is given by 

.sin
1

1

sinsin
d
d

0

002

2

2

2

l
xPw

PP

l
xPw

PP
P

l
xw

PP
P

l
EI

x
wEIM

E

E

E

E

π
−

=

π
−

=
π

−
π

=−=
 (f) 

We notice that for EPP →  (Euler’s load), the deflection w and the bending moment M 
tend to infinity, independently on the initial curvature 0w (instability by divergence). 

Application 1.26 

Problem. Consider a doubly hinged bar, of length l, acted upon by the compression 
forces P and transversally by a sinusoidal load ( ) ( )lxpxp π= sin0  (Fig.1.42). 
Determine the deflection w and the bending moment M. 

Mathematical model. The bending moment is given by 

2

2

d
d

x
wEIM −= , 

where EI is the bending rigidity, and the deflection w satisfies the differential equation 

l
x

EI
lp

w
EI
P

x
w π

π
−=+ sin

d
d

2

2
0

2

2
. (a) 

Solution. Denoting by 

EI
P

=β2 , (b) 

it satisfies the two-point conditions ( ) ( ) 00 == lww . Introducing this in (b), one gets 
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xBxAwh β+β= cossin . (c) 

 

 

Figure 1. 42. Doubly hinged bar acted upon by axial forces P and by a sinusoidal transverse load 

A particular solution of the non-homogeneous ODE (a) is searched of the same form as 
the free term 

l
xWw p
π

=
sin . (d) 

As (d) must satisfy the ODE (a), it follows 

PP
lp

l
EIP

lp
W

E −π
=

π
−

π
−=

11
2

2
0

2

22

2
0 , 

where 

2

2

l
EIPE

π
=  

is Euler’s load. 
Because the particular solution satisfies the two-point conditions ( ) ( ) 00 == lww , the 
constants A and B of (c) vanish. We thus get 

l
x

PP
lp

w
E

π
−π

=
sin1

2

2
0 , 

the solution of the associated homogeneous equation is given by 



ODEs WITH APPLICATIONS TO MECHANICS 

 

102

l
xlp

P
Pl

xlp
PP

P
x
wEIM

E

E

E π

π−
=

π

π−
=−=

sin

1

1sin
d
d

2

2
0

2

2
0

2

2
. 

For EPP → , the quantities w and M tend to infinity, immaterial of the intensity of the 
load ( )xp (instability by divergence). 

Application 1.27 

Problem. Consider a doubly hinged bar, of length l, acted upon by compression forces P 
and transversally by a uniform load p  (Fig.1.43). Determine the deflection w and the 
bending moment M. 

Mathematical model. The deflection w satisfies the differential equation 

( )
EI

xlpx
w

EI
P

x
w

2d
d

2

2 −
−=+ , (a) 

and the bending moment reads 22 d/d xwEIM −=  (EI is the bending rigidity). 

Solution. The model represents a second order linear non-homogeneous ODE with 
constant coefficients. Searching a particular solution of the form 

2
210 xcxccwp ++= , 

one obtains, by identification, the coefficients 

2210 ,
2

,
2 P

pEIc
P
pc

P
plc −==−= . 

Denoting by EIP=β2 , the general solution of the ODE (a) reads 

( ) xBxA
P

xlpx
P
pEIw β+β+

−
−−= cossin

22 . (b) 

By using the two-point conditions ( ) ( ) 00 == lww , we get  

22 ,
sin

cos1
P
pEIB

l
l

P
pEIA =

β
β−

= . 

We obtain the deflection w and the bending moment M 

( ) ( ) ( )
P

xlpx
l

xlxl
P
pEIw

2sin
sinsinsin

2
−

−
β

β−β−−β
= , 
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( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

β

⎟
⎠
⎞

⎜
⎝
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β
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⎦

⎤
⎢
⎣

⎡
−

β
−β

+
β
β

=

2
cos

2
cos

11
sin

sin
sin
sin

2 l
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p

l
xl

l
x

P
pEIM , 

respectively. 
 

 
Figure 1. 43. Doubly hinged bar acted upon by axial forces P and by a uniform distributed transverse load 

The maximal values (at the middle of the span 2lx = ) are 

P
pl

l

l

P
pEIw

8
2

cos

2
cos1 2

2max −
β

β
−

= , 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

β
+−

β
=

2
cos

112 l
PM . 

For 22 lEIPP E π=→  (Euler’s force), the quantities w and M tend to infinity, 
immaterial of the load p  (instability by divergence). 

Application 1.28 

Problem. Study the influence of the eccentricity of application of the normal force P  to 
a bar free at the upper end and perfectly built-in at the lower end. 

Mathematical model. We denote by e the initial eccentricity (Fig.1.44); the bending 
deflections satisfy the second order linear non-homogeneous ODE with constant 
coefficients 

EI
pe

w
EI
P

x
w

−=+
2

2

d
d . (a) 
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Solution. The general solution of the non-homogeneous equation is the sum between the 
general solution of the associated homogeneous equation and a particular solution of the 
non-homogeneous one, therefore it is of the form 

xBxAew β+β+−= cossin ; 

we also have 

( )xBxA
x
w

β−ββ= sincos
d
d . 

 
Figure 1. 44. Eccentricity of application of the normal force P 

The boundary conditions ( ) 00 =w , ( ) 0dd ==lxxw  lead to eBleA =β= ,tan . 
Hence, the deflections become 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
β
−β

+−=ββ+β+−=
l

xlexlxew
cos

cos1sintancos1 , 

and the bending moments are given by 

( ) ( )
l

xlPexl
l

EIe
x
wEIM

β
−β

=−β
β

β
=−=

cos
coscos

cosd
d 2

2

2
. 

For 2π→βl  we have 0cos =βl , so that the deflection and the bending moment tend to 
infinity (instability by divergence). In this case, the normal force P tends to the value of 
the critical buckling force (see Appl.1.31). 

Application 1.29 

Problem. Let be a doubly hinged bar, of length l, acted upon by compression forces P 
and transversally by a concentrated force F at the middle of the span (Fig.1.45). 
Determine the bending deflections w. 
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Mathematical model. For an arbitrary cross-section of abscissa x one may write the 
bending moment  

FxPwM
2
1

+= . 

 
Figure 1. 45. Doubly hinged bar acted upon by axial forces P and by a transverse force F 

The model is thus a linear second order ODE of the form 

EI
Plxx

EI
Fw

x
w

=β⎥⎦
⎤

⎢⎣
⎡∈−=β+ 22

2

2
,

2
,0,

2d
d , 

to which one associates the two-point conditions ( ) 00 =w , ( ) 0dd 2 ==lxxw ; the last one 
is a symmetry condition. 

Solution. The general solution of the above ODE is 

xBxAx
P

Fw β+β+−= cossin
2

, 

and therefore 

xBxA
P

F
x
w

ββ−ββ+−= sincos
2d

d . 

Taking into account the boundary conditions, we get 

0,

2
cos2

=
β

β
= B

lP

FA , 

so that 



ODEs WITH APPLICATIONS TO MECHANICS 

 

106

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

β
β

+β−
β

=

2
cos

sin
2 l

xx
P
Fw . 

The bending moment becomes 

2
cos

sin
2 l

xFM
β
β

β
= . 

For 22 lEIPP E π=→  (Euler’s force) we have ( ) 02cos =βl , so that w and M tend to 
infinity, independently of the transverse force F (instability by divergence). 

Application 1.30 

Problem. A cable CBO  passes over a mast AO , of height l (Fig.1.46, a). A tension in 
the cable introduces a compression force in the mast. Determine the value of the critical 
force for which the mast loses its stable form. 

Mathematical model. Let α be the inclination angle of the cable with respect to a 
horizontal line, in the initial position (Fig.1.46, a). We suppose that, due to the buckling 
phenomenon, the upper edge O has a lateral displacement f. Then, the inclination angle 
of the left part of the cable is reduced with αΔ , while the inclination angle of the right 
part of it increases with αΔ  (Fig.1.46, b). 
If N is the effort of tension in the cable, the initial position of equilibrium leads to 

α
=

sin2
PN . (a) 

Due to the deformation of the mechanical system, a horizontal force arises 

( ) ( ) αΔα=αΔ+α−αΔ−α= sinsin2coscos NNNH ; 

as αΔ  is very small with respect to α ( αΔ≅αΔsin ), we may write 

αΔ=αΔα= PNH sin2 . (b) 

If D is the projection of O on OB ′  ( O′  is the point reached by O by buckling), then 
from the triangle OOD ′  it results (Fig.1.46, c) 

α=αΔ= sinfBOOD ; 

as α= sinlBO , one obtains 
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α=

α

α
=αΔ 2sin

sin

sin
l
f

l
f , 

(c) 

 
Figure 1. 46. Geometric schema of the mast and of the cable (a). Lateral displacement f (b). Displacement of 

the upper edge (c). Static schema of the mast (d) 

so that 

α= 2sin
l
fPH . (d) 

One must thus determine the critical force for a cantilever bar AO  acted upon at the free 
end by the forces P and H (Fig.1.46, d).  
We choose the origin of the x -axis at the upper edge of the bar, so that for an arbitrary 
x  we obtain the bending moment 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ α−=−= 2sin

l
fxwPHxPwxM . (e) 

The differential equation of the deformed bar axis is 

⎟
⎠
⎞

⎜
⎝
⎛ α−−= 2

2

2
sin

d
d

l
fxw

EI
P

x
w , 

where EI is the bending rigidity, or 

αβ=β+ 222
2

2
sin

d
d

l
fxw

x
w , (f) 
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with the usual notation 

EI
P

=β2 . (g) 

Solution. The general solution of the linear second order ODE is of the form 

α+β+β= 2sincossin
l
fxxBxAw , (h) 

and the rotation of the cross section is given by 

α+ββ−ββ= 2sinsincos
d
d

l
fxBxA

x
w . (i) 

The boundary conditions ( ) 00 =w , ( ) 0=lw , ( ) 0dd ==lxxw  lead to 

.0sinsincos

,sincossin

,0

2

2

=α+ββ−ββ

=α+β+β

=

l
flBlA

fflBlA

B

 (j) 

The linear system of algebraic equation in fBA ,,  has non- zero solutions (which 
correspond to the stable position of equilibrium) if 

0
sin1cos

cossin
det 2

2

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

αββ

α−β

l
l

l
; 

thus, the following characteristic equation is obtained 

α−=
β
β 2cottan
l

l , 

whose solution can be obtained only numerically. The Table 1.2 may be used to this 
goal. For instance, for 4π=α  one obtains 02876.2=βl , so that the critical force is 
given by 

( )2
2

2
2

5485.1
02876.2

l
EI

l
EIPcr

π
== . 
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Table 1. 2. The values of the function ( ) uuuf /tan=  

u  
u

utan  u  
u

utan  u  
u

utan  u  
u

utan  

0 1.0000 1.800 -2.3813 3.600  0.1371 5.300 -0.2833 
0.050 1.0008 1.850 -1.8854 3.650 0.1527 5.350 -0.2523 
0.100 1.0033 1.900 -1.5406 3.700 0.1688 5.400 -0.2255 
0.150 1.0076 1.950 -1.2869 3.750 0.1857 5.450 -0.2019 
0.200 1.0136 2.000 -1.0925 3.800 0.2036 5.500 -0.1810 
0.250 1.0214 2.050 -0.9388 3.850 0.2225 5.550 -0.1623 
0.300 1.0311 2.100 -0.8142 3.900 0.2429 5.600 -0.1433 
0.350 1.0429 2.150 -0.7112 3.950 0.2651 5.650 -0.1299 
0.400 1.0570 2.200 -0.6245 4.000 0.2895 5.700 -0.1157 
0.450 1.0735 2.250 -0.5505 4.050 0.3166 5.750 -0.1026 
0.500 1.0926 2.300 -0.4866 4.100 0.3472 5.800 -0.0905 
0.550 1.1147 2.350 -0.4308 4.150 0.3823 5.850 -0.0791 
0.600 1.1402 2.400 -0.3817 4.200 0.4233 5.900 -0.0683 
0.650 1.1695 2.450 -0.3380 4.250 0.4721 5.950 -0.0582 
0.700 1.2033 2.500 -0.2988 4.300 0.5316 6.000 -0.0485 
0.750 1.2421 2.550 -0.2635 4.350 0.6063 6.050 -0.0393 
0.800 1.2870 2.600 -0.2314 4.400 0.7037 6.100 -0.0304 
0.850 1.3392 2.650 -0.2021 4.450 0.8367 6.150 -0.0218 
0.900 1.4002 2.700 -0.1751 4.4934 1.0000 6.200 -0.0134 
0.950 1.4720 2.750 -0.1502 4.500 1.0305 6.250 -0.0053 
1.000  1.5574 2.800 -0.1270 4.550 1.3415 2π  0 
1.050 1.6605 2.850 -0.1053 4.600 1.9261 6.300  0.0027 
1.100 1.7861 2.900 -0.0850 4.6042 2.0000 6.350  0.0105 
1.150 1.9430 2.950 -0.0658 4.650 3.4425 6.400  0.0183 
1.200 2.1435 3.000 -0.0475 4.700  17.1729 6.450  0.0261 
1.250 2.4077 3.050 -0.0301 3π/2   ±∞  6.500  0.0339 
1.300 2.7708 3.100 -0.0134 4.750   -5.5948 6.550  0.0417 
1.350 3.3002 π  0 4.800   -2.3718 6.600  0.0497 
1.400 4.1413 3.150  0.0027 4.850   -1.4889 6.650  0.0578 
1.450 5.6814 3.200  0.0183 4.900   -1.0750 6.700  0.0661 
1.500 9.4009 3.250  0.0335 4.950   -0.8342 6.750  0.0747 
1.550 31.0184 3.300  0.0484 5.000    -0.6761 6.800  0.0836 
π/2  ±∞  3.350  0.0631 5.050   -0.5641 6.850  0.0929 
1.600 -21.3953 3.400  0.0777 5.100   -0.4803 6.900  0.1028 
1.650 -7.6359 3.450  0.0923 5.150   -0.4150 6.950  0.1132 
1.700 -4.5274 3.500  0.1070 5.200   -0.3626 7.000   0.1245 
1.750 -3.1545 3.550  0.1219 5.250   -0.3195 7.050  0.1369 

 
 



ODEs WITH APPLICATIONS TO MECHANICS 

 

110
Application 1.31 

Problem. A slender doubly hinged bar is subjected to compression by two axial forces 
P . If a critical force crP  is attained, then the bar does no more remain in the rectilinear 
form of equilibrium. Determine the first two values of this force. To solve the problem, 
one considers the moment in which the bar leaves its rectilinear form of equilibrium and 
takes a new curvilinear form, very close to the initial position. 

Mathematical model. For a cross section of arbitrary abscissa x, the bending moment is 
given by PwM = , where w is the deflection; the differential equation of the deformed 
axis becomes 

0
d
d

2

2
=+ w

EI
P

x
w , (a) 

where EI is the minimal bending rigidity of the cross section. 
Choosing the origin of the x-axis at the upper edge, the two-point conditions are  

( ) ( ) 00 == lww , (b) 

 whith l the bar length (Fig.1.4 ). 

Solution. This is a Sturm-Liouville problem, as the linear ODE (a) and the boundary 
conditions (b) are homogeneous; a non-zero solution is only possible for certain 
eigenvalues of the parameter P. 

 
Figure 1. 47. Buckling of a doubly hinged bar 

For the sake of simplicity, with the notation (g) from Appl.1.30, the equation (a) 
becomes 

7



1. Linear ODEs of First and Second Order 

 

111

0
d
d 2

2

2
=β+ w

x
w . (c) 

Searching a solution of the form xw λ= e , we find the characteristic equation 
022 =β+λ , with the roots β±=λ i2,1 . The general solution is 

xBxAw β+β= cossin , (d) 

A and B being integration constants. 
The boundary conditions ( ) ( ) 00 == lww  yield 0=B  and 0sin =βlA . But 0≠A , or 
else the bar remains rectilinear. Also, 0≠β , or else the bar should not be loaded. Thus, 
it follows that 0sin =βl , with the roots K3,2,1, =π=β nnl . 
Turning back to the notation (g) for β, one obtains the eigenvalues 

K3,2,1,2

2
22 =
π

=β= n
l
EInEIPcr  

and the equations of the deformed axis 

K3,2,1,sin =
π

= n
l
xnAw  (e) 

We notice that the amplitude A of the deformed axis remains non-determinate; as a 
matter of fact, the model we used was an approximate (linearized) form of the ODE 
satisfied by the deformed bar axis. The solution (e) represents a sinusoid of semi-wave 

nl . 
Practically, the minimal value of the critical force (for 1=n ) is of particular interest. 
This one is called the Eulerian critical force 

2

2

l
EIPP Ecr

π
== , (f) 

for which the deformed axis of semi-wave l is given by 

,max l
xww π

=  (g) 

where maxw  corresponds to the middle of the span. 
For greater values of n, e.g., 2=n , the next critical force is obtained  

crcr P
l
EIP 42 2

2
2

2, =
π
⋅= , (h) 

corresponding to another form of equilibrium; this situation also matches to a 
supplementary simple support at the middle of the span. 
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Application 1.32 

Problem. Study the buckling problem for a straight bar built-in at one end and free at the 
other end (a cantilever bar). 

Mathematical model. The problem being similar with the previous one, we use the same 
ODE (a), or, likewise, (c), for the deflection of the bar axis; we also use the same 
notations. The difference between the two problems is mathematically expressed by the 
differences between the two-point conditions, which, in this case, are (Fig.1.48): 
( ) 00 =w , ( ) 0dd ==lxxw . 

 
Figure 1. 48. Buckling of a cantilever bar 

Solution. As in the previous application, the model is a Sturm-Liouville problem. The 
general solution of the ODE (c) and its derivative read accordingly 

xBxAw β+β= cossin , 

xBxA
x
w

ββ−ββ= sincos
d
d . 

The boundary conditions involve 0=B  and 0cos =βl , with the eigenvalues 

l
n

n 2
π

=β . 

The minimal value of the critical force ( )1=n  is 

2

2

4l
EIPcr

π
=  

and the equation of the corresponding deformed axis is given by 

l
xAw

2
sin π

= . 
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This represents a sinusoid whose period is twice as much as that of the previous case; the 
amplitude A is non-determinate. 

Application 1.33 

Problem. Study the buckling problem for a straight bar of length l , built-in at one end 
and hinged at the other end. 

Mathematical model. Due to the built-in mounting, a reaction H – playing the rôle of a 
non-determinate parameter – also appears in the hinge, normal to the bar axis (Fig.1.49).  

 
Figure 1. 49. Buckling of a bar built-in at one end and hinged at the other end 

The bending moment in a cross section of abscissa x of the deformed axis is given by 
HxPwM += , so that the differential equation of the problem is 

x
EI
Hw

EI
P

x
w

−=+2

2

d
d , (a) 

where P is the compression force and EI is the bending rigidity. 
With the notation (g), Appl.1.30, the equation (a) becomes 

x
EI
Hw

x
w

−=β+ 2
2

2

d
d . (b) 

The boundary conditions are  

( ) 00 =w , ( ) 0=lw , ( ) 0dd ==lxxw . (c) 

Solution. The above model is a Sturm-Liouville problem. The general solution of the 
linear second order ODE (b) and its derivative are, accordingly, 
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xBxAx
P
Hw β+β+−= cossin , 

( )xBxA
P
H

x
w

β−ββ+−= sincos
d
d . 

(d) 

The boundary conditions yield 0=B  and the algebraic linear system, satisfied by 
( )PH−  and A, 

0cos,0sin =β+−=β+− lA
P
HlAl

P
H . (e) 

This system is also homogeneous, therefore it has non-vanishing solutions only if 

0
cos

sin
det =⎥

⎦

⎤
⎢
⎣

⎡
ββ
β

ll
ll

. 

Computing this determinant, we obtain the transcendental characteristic equation 

ll β=βtan . (f) 

The minimal root of this equation (corresponding to the Table 1.2) 

7.0699155653.0
4934095.4 π

≅
π

==βl  

leads to the minimal critical force 

( )2
2

7.0 l
EIPcr

π
≅ . (g) 

Application 1.34 

Problem. Determine the critical buckling force for a doubly built-in bar. 

Mathematical model. The differential equation of the problem is  

EI
M

x
EI
Hw

EI
P

x
w 0
2

2

d
d

−−=+ , (a) 

where P is the compression force, H and 0M  (the reaction normal to the bar axis and the 
moment at the built-in cross section, respectively) are non-determined parameters, EI is 
the bending rigidity and w is the unknown deflection (Fig.1.50). The two-point 
conditions are, in this case, 

( ) ( ) 00 == lww , ( ) ( ) 0dddd 0 == == lxx xwxw , (b) 

where l is the bar length. 
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Solution. To solve this Sturm-Liouville problem, we firstly get the general solution of the 
linear ODE and the corresponding derivative 

( ).sincos
d
d

,cossin0

xBxA
P
H

x
w

xBxA
P

M
x

P
Hw

β−ββ+−=

β+β+−−=
 (c) 

 

 
Figure 1. 50. Buckling of a doubly built-in bar 

The two-point conditions lead to the linear homogeneous algebraic system, written in 
matrix form 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−ββ−ββ
−−ββ

−β
−

0
0
0
0

01sincos
1cossin

010
1010

0 PM
PH

B
A

ll
lll

. (d) 

To have non-zero solutions, we must equate to zero the determinant of the associated 
matrix, thus obtaining the characteristic equation 

( ) 0
22

tansin2sincos12 =⎟
⎠
⎞

⎜
⎝
⎛ β

−
β

β=ββ−β−
llllll , (e) 

of roots K3,2,1,2 =π=β nnl . The root π=β 21l  leads to the minimal buckling force 
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( )2
2

2

2

5.0
4

l
EI

l
EIPcr

π
=

π
= . (f) 

The minimal root corresponding to the second factor is greater than 2/1lβ . 

Application 1.35 

Problem. Study the lateral buckling of a slender beam subjected to bending. 

Mathematical model. It is possible for a slender beam subjected to bending to lose its 
plane form of equilibrium if the bending moment attains a critical value. (Fig.1.51). The 
beam loses its stability in the compressed zone; the beam axis becomes curvilinear in its 
plane of minimal rigidity while various cross sections of the beam rotate around the axis.  

 
Figure 1. 51. Lateral buckling of a beam of simple cross section 

This phenomenon of losing the stability of the equilibrium form of a beam subjected to 
bending is called lateral buckling (or buckling due to bending). 
The study of the lateral buckling leads to the differential equation 

0
d
d 2

2

2
=θ+

θ

tzGIEI
M

x
, (a) 

where zEI  and tGI  are the rigidities by bending in the z-plane or torsion (of the cross 
section), respectively, M is the bending moment in the y-plane, while θ  is the unknown 
rotation of torsion of the cross section (simple, without booms) . 
Introducing the notation 
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tzGIEI
M

=β , (b) 

the equation (a) becomes 

0
d
d 2

2

2
=θβ+

θ
x

, (c) 

analogous to that of the axial buckling (see e.g. Appl.1.31). To this ODE one associates 
the two-point conditions 

( ) ( ) 00 =θ=θ l , (d) 

therefore a Sturm-Liouville problem. 

Solution. The general solution of the ODE (c) is 

xBxA β+β=θ cossin . 

Making use of the two-point conditions, one obtains the minimal eigenvalue lπ=β , so 
that 

tzcr GIEI
l

M π
= . 

Application 1.36 

Problem. Consider a steel bar built-in at one end and elastically supported at the other 
end. Determine the critical buckling force crP . 

Mathematical model. The bending moment in a cross section of abscissa x is given by 
(Fig.1.52) 

( ) ( )xlcfwfPM −−−= , (a) 

where P is the axial force, f the deflection of the elastically supportel end (the elastic 
coefficient is c), and l is the bar length. Using the notation (g), Appl.1.30, it results the 
differential equation of the deflection 

( )⎥⎦
⎤

⎢⎣
⎡ −−β=β+ xl

P
cffw

x
w 22
2

2

d
d , (b) 

to which we must add the conditions 

( ) ( ) 0dd0 0 == =xxww , ( ) flw = , (c) 

therefore, again an eigenvalue problem. 

Solution. The general solution of the differential equation is 
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x
P
cf

P
clfxBxAw +⎟
⎠
⎞

⎜
⎝
⎛ −+β+β= 1cossin . (d) 

The initial conditions lead to 

EI
clB

EI
clfA 32 ,1

β
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

β
−−= , (e) 

 

 
Figure 1. 52. Buckling of a bar built-in at one end and elastically supported at the other end 

so that the deflection is given by 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

β
−

β
+β−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

β
−= xx

EI
cx

EI
clfxw sin1cos11 22 . (f) 

The condition ( ) flw =  leads to the characteristic equation  

( ) 1sin1cos11 22 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

β
−

β
+β−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

β
− ll

EI
cl

EI
cl , (g) 

which can also be written as 

( ) llkl β=β−β tan3 , (h) 

where 

3cl
EIk = . (i) 
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For a bar of circular cross section of diameter d and the numerical data 

26 cmdaN101.2 ⋅=E , m2=l , cmdaN5=c , cm4=d , we get 

659734457.0
200500

64
4101.2

3

4
6

=
⋅

⋅π
⋅⋅

=k . 

Table 1. 3. The values of k fas a function of βl 

lβ  k  lβ  k  
π/2 +∞  2.05 0.461347 
1.60 8.748177 2.10 0.411386 
1.65 3.172054 2.15 0.370179 
1.70 1.912600 2.20 0.335633 
1.75 1.356572 2.25 0.306272 
1.80 1.043598 2.30 0.281024 
1.85 0.843079 2.35 0.259092 
1.90 0.703761 2.40 0.239874 
1.95 0.601423 2.45 0.222901 

 
The minimal root of the equation (h) is, in this case, 

9197825.1=βl . 

 
Figure 1. 53. The diagram of the function ( )lfk β=  
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( )2
2

2
2

6364.1
9197825.1

l
EI

l
EIPcr

π
== , 

where the buckling length ll f 6364.1=  was emphasized. 
Various values of 

( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
β

−
β

=
β

β−β
=β=

l
l

ll
lllfk tan11tan

23  (j) 

are given in Table 1.3 and are plotted into a diagram (Fig.1.53). Both the table and the 
figure are useful to obtain the root lβ  for a given k. 

Application 1.37 

Problem. Search a solution by power series for the buckling of a doubly hinged bar. 

Mathematical model. The deflection w satisfies the linear second order ODE 

0
d
d

2

2
=+ w

EI
P

x
w , (a) 

where EI is the bending rigidity and w is the unknown deflection. To this ODE, we must 
add the boundary conditions 

( ) 00 =w , ( ) 0=lw . (b) 

Solution. As the deformed axis of the bar has an antisymmetric form with respect to the 
origin O, we use an odd series expansion  

KK +α+α++α+α+α= +
+

−
−

12
12

12
12

5
5

3
31

n
n

n
n xxxxxw . (c) 

The second derivative of (c) is  

( ) KK +α+++α⋅+α⋅+α⋅= −
+

12
12

5
7

3
532

2
122765432

d
d n

n xnnxxx
x
w . (d) 

As it is seen, the boundary condition ( ) 00 =w  is fulfilled. 
Introducing (c) and (d) in (a), it follows 

( )[ ]
( ) .0

122765432

12
12

12
12

5
5

3
31

12
12

5
7

3
53

=+α+α++α+α+α+

++α+++α⋅+α⋅+α⋅

+
+

−
−

−
+

KK

KK

n
n

n
n

n
n

xxxxx
EI
P

xnnxxx
 (e) 

The value of the force P must be crP , so that 2β=EIP  must be positive; the 
polynomials in (e) must differ by a constant factor, and the ratio of two homologous 
coefficients (of the same power) must be negative 

The critical force becomes 
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( ) 2

12

122

5

72

3

52

1

3 122,76,54,32
β−=

α
α+

β−=
α
α⋅

β−=
α
α⋅

β−=
α
α⋅

−

+

n

nnn , (f) 

so that 

( ) ( ) KK ,
!12

1,,
!554

,
32 1

2

121

4

3

2

51

2

3 α
+

β
−=αα

β
=α

⋅
β

−=αα
⋅
β

−=α + n

n
n

n . (g) 

Finally, we get 

( ) ( ) ( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
β

−+−
β

+
β

−β
β
α

=
+

KK
!12

1
!5!3

1253
1

n
xxxxw

n
n , (h) 

which is precisely the series expansion of the sinus  

β
α

=β= 1,sin axaw . (i) 

The boundary condition ( ) 0=lw  is satisfied if lnπ=β ; hence, 

l
xnaw π

= sin ; (j) 

thus, we found again the classical solution. 
We also obtain 2222 lEInEIPcr π=β= . 
Using the same development (c), one may study the buckling of a bar free at one end and 
built-in at the other end, a.s.o. 

Application 1.38 

Problem. Determine the buckling critical force of a cantilever bar, of moment of inertia 
varying as ( )40 axII x =  (e.g., for a circular cross section, Fig.1.54). 

Mathematical model. The deflection w of the bar axis due to the compression force P is 
governed by the differential equation 

0
d
d

2

2
=+ Pw

x
wEI x , (a) 

where xEI  is the bending rigidity. 
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Figure 1. 54. Buckling of a cantilever bar with a variable moment of inertia 

Taking into account the expression of xI , the equation (a) becomes 

0
d
d 2

2

2
4 =β+ w

x
wx , (b) 

where 

0

2

EI
Pa=β . (c) 

To (b) we must associate the boundary conditions 

( ) 0=aw , ( ) 0dd =+= laxxw . 

Solution. The ODE (b) is linear, but it has no more constant coefficients. Yet, we can 
obtain its general solution by means of Bessel’s functions of the first species and order 

21=γ ; in this case, applying Liouville’s theorem, we conclude that it can be expressed 
by elementary functions (see Sec.2.7) 

⎟
⎠
⎞

⎜
⎝
⎛ β

+
β

=
x

B
x

Axw sincos , (d) 

where A and B are integration constants. 
The derivative reads 

⎟
⎠
⎞

⎜
⎝
⎛ β

−
ββ

+
β

+
β

=
x

B
x

A
xx

B
x

A
x
w cossinsincos

d
d . (e) 

Applying now the boundary conditions (c), we get for A and B a homogeneous linear 
algebraic system 
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0
cossinsincos

sincos
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
β

+
β

−
+
β

+
β

+
β

+
+
β

ββ

B

A

lalalalalala

aa . (f) 

To obtain non-zero solutions, the determinant of (f) must vanish and we get the 
characteristic equation 

( ) ( ) 0cossin =
+

β
+
β

+
+

β
laa

l
la

l
laa

l , (g) 

or 

( ) ( ) l
a

laa
l

laa
l

+
β

−=
+

βtan . (h) 

Table 1. 4. The values of u and μ for various ratios a/l 

la /  u  μ  

0.2 2.65366 0,19731 
0.5 2.28893 0.45751 
1 2.02876 0.77426 
2 1.83660 1.14037 
3 1.75186 1.34014 
5 1.68868 1.55032 
10 1.63199 1.69126 
∞ π/2 2 

With the notation 

( ) 0EI
P

la
al

laa
lu

+
=

+
β

= , (i) 

the equation (h) becomes 

l
a

u
u

−=
tan , (j) 

which is solved using the Table 1.2. 
From (i) one obtains the critical force 

( )2
0

22

0
2

l
1 1

l
EI

a
EIPcr

μ

π
=⎟

⎠
⎞

⎜
⎝
⎛ +γ= , (k) 
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⎟
⎠
⎞

⎜
⎝
⎛ +

π
=μ

a
lu 1

. 
(l) 

Table 1.4 contains the numerical values of u and μ for various ratios [ )∞∈ ,2.0la . 
The variation of the buckling length ll f μ=  as function of the ratio la  is plotted in a 

diagram (Fig.1.55). For ∞→la , one obtains 2=μ , that is, the value corresponding to 
a cantilever of constant cross section. 

 
Figure 1. 55. The diagram of the function ( )laf=μ  

Application 1.39 

Problem. Determine the buckling critical load of a bar of length l, free at the upper end 
and built-in at the bottom; the axial load p is supposed to be uniformly distributed along 
the bar axis (Fig.1.56). 

 
Figure 1. 56. Buckling of a cantilever bar acted upon by an axial uniformly distributed load 

where 
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Mathematical model. The deflection w satisfies the differential equation 

( ) 0
d
d

d
d

3

3
=−+

x
wxl

EI
P

x
w , (a) 

where EI is the bending rigidity. The boundary conditions are 

( ) 00 =w , ( ) 0dd 0 ==xxw , (b) 

( ) 0dd 22 ==lxxw . (c) 

Solution. We notice that the order of the equation (a) may be easily reduced by a unit. 
But first of all, we make a change of variable 

( ) 32323

4
9,

3
2 z

p
EIlxxl

EI
Pz −=−= . (d) 

Step by step differentiation yields 

.
d
d

d
d

d
d

9
1

2
3

d
d

,
d
d

d
d

3
1

2
3

d
d

,
2
3

d
d

d
d

3

3

2

2
1

3

3

2

2
3231

32

2

2

3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛=

−=

−

−

z
wz

z
w

z
wz

EI
p

x
w

z
wz

z
wz

EI
p

x
w

z
EI
p

z
w

x
w

 (e) 

Introducing this in (a) and using the notation 

u
z
w
=

d
d , (f) 

we get 

,0
9

11
d
d1

d
d

22

2
=⎟

⎠
⎞

⎜
⎝
⎛ −++ u

zz
u

zz
u  (g) 

i.e. a differential equation of Bessel type of first species and order 31=γ  (see Sec.2.7). 
The general solution of this ODE is 

( ) ( ),312311 zJCzJCu −+=  (h) 
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( ) ( ) .
320
9

8
31,

896
9

16
31 4231

31
4231

31 ⎟
⎠
⎞

⎜
⎝
⎛ −+−=⎟

⎠
⎞

⎜
⎝
⎛ −+−= −

− KK zzzzJzzzzJ  (i) 

In the new variables, the boundary condition (c) becomes ( ) 0dd31 3231 =+− zuzuz  for 
0=z , and we obtain 02 =C . The second boundary condition (b) becomes 0=u  for 

0=x , so that ( ) EIplz 332= . 
The transcendental equation which leads to ( )crpl  becomes 

0
9
4

320
9

9
4

8
31

3
2

233
34

3
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

K
EI
pl

EI
pl

EI
pl . (j) 

The smallest root of this equation is ( ) 866.132 3 =EIpl , so that 

( )
( )2

2

22
2

2

122.1
834.7866.1

2
3

l
EI

l
EI

l
EIpl cr

π
==⋅⋅⎟

⎠
⎞

⎜
⎝
⎛= . (k) 

The deflection w is obtained from (f), by integration, taking 02 =C , while 1C  remains 
non-determinate. The value ll f 122.1=  represents the buckling length of the bar. 

Application 1.40 

Problem. Consider a circular cylindrical vessel of wall thickness varying linearly with 
the height. Determine its axially symmetric deformation due to an interior loading with 
liquid (Fig.1.57). 
Mathematical model. Let us take the origin of the xO -axis (Fig.1.57) at the theoretical 
applicate corresponding to a vanishing wall thickness. Then the differential equation of 
the deflection is given by 

( ) ( )( )
,

112112
d
d

d
d

3
0

2

23

2

2

2
2

2

2

α

−ν−
−=

α

ν−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

E
xx

xw
ax

wx
x

 (a) 

where the variation law of the thickness of the wall is given by 

xh α= . (b) 

The free edges ( 0xx =  and hxx += 0 ) are thus specified; the constants E and ν  are the 
modulus of longitudinal elasticity and Poisson’s ratio, respectively. 
The problem requires the general solution of (a). 

Solution. A particular solution of the linear fourth order ODE (a) is  

where 
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x
xx

E
awp

0
2 −γ

−= , (c) 

where γ  is the unit weight of the liquid; it represents the radial dilatation of the cylinder. 

 

 
Figure 1. 57. Cylindrical tank the wall thickness of which has a linear variation 

Further, it is necessary to search the general solution of the homogeneous equation 

0
d
d

d
d1 4

2

2
2

2

2
=ρ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
w

x
wx

xx
, (d) 

where we used the notation 

( )
22

2
4 112

aα

ν−
=ρ . (e) 

We mention that the first term in (d) may be written in the form 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

x
wx

xxx
x

xxx
wx

x
w

x d
d

d
d1

d
d

d
d1

d
d

d
d1 22

2

2
2

2

2
. 

Introducing the differential operator 

( )
x
w

x
wx

x
wx

xx
w

d
d2

d
d

d
d

d
d1L

2

2

2

2
2 +=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= , (f) 

the equation (d) becomes 
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( )[ ] 0LL 4 =ρ+ ww . (g) 

We search solutions of the form ( ) ww λ=L , const=λ ; introducing this in (g), we get, 
step by step, 

( ) ( ) ( ) 0LL 424244 =ρ+λ=ρ+λ=ρ+λ=ρ+λ wwwwwww . (h) 

If 042 =ρ+λ , that is 2iρ±=λ , then the differential equation (h) may be split into the 
following two differential equations 

( ) 0iL 2 =ρ+ ww , (i) 

( ) 0iL 2 =ρ− ww . (j) 

Let  

432211 i,i ϕ+ϕ=ϕ+ϕ= ww ,  (k) 

be two independent linear solutions of the equation (i); then 

434213 i,i ϕ−ϕ=ϕ−ϕ= ww , (l) 

are two linearly independent solutions of the equation (j). 
By a convenient choice of the integration constants, the general solution of the 
differential equation (d) may be put in the form 

44332211 ϕ+ϕ+ϕ+ϕ= CCCCw , (m) 

where 4321 ,,, CCCC  are four integration constants. 

Thus, the problem is reduced to searching the four functions 4,1, =ϕ ii ; hence, one must 
search the solution of one of the equations (i) or (j). 
Choosing e.g. the equation (i) and replacing ( )wL  by (f), it results 

0i
d
d2

d
d 2

2

2
=ρ++ w

x
w

x
wx . (n) 

By the change of variable 

xwx =ξρ=η ,i2 , (o) 

the equation (n) becomes 

( ) 01
d
d

d
d 2

2

2
2 =ξ−η+

η
ξ

η+
η
ξ

η . (p) 

One may search a solution of the equation (p) in the form of a power series 
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K+η+η+=ξ 2
2101 aaa . 

Introducing this in (p) and taking 00 =a , we obtain 

( )
( )η=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⋅⋅⋅

η
−

⋅⋅
η

+
⋅
η

−
η

=ξ 12

6

2

42

1
864264242

1
2

JK , (q) 

where ( )η1J  is Bessel’s function of first species and order 1. This expression may be 
also written in the form 

( )
( ) ( ) η

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⋅⋅

η
−

⋅

η
+

η
−

η
−=η=ξ

d
d

642422
1

d
d 0

2

6

2

4

2

2

11
JJ K , (r) 

where 0J  is Bessel’s function of first species and order zero 

( )
( ) ( )

K+
⋅⋅

η
−

⋅

η
+

η
−=η 2

6

2

4

2

2

0
642422

1J  

Replacing η  in the first expression (o) and separating the real and imaginary parts, one 
may write 

( ) ( ) ( )xxJ ρψ+ρψ=η 2i2 210 , 

where 

( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

;
108642

2
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2
2

22

,
8642

2
42
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2
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2
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2

2

2

2
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2
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1
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K

+
⋅⋅⋅⋅

ρ
−

⋅⋅

ρ
+

ρ
−=ρψ

−
⋅⋅⋅

ρ
+

⋅

ρ
−=ρψ

xxxx

xxx

 

in this case the solution (q) reads 

( ) ( )xx ρψ′−ρψ′−=ξ 2i2 211 . (s) 

A second solution of the equation (p) may be obtain in the form 

( ) ( )xx ρψ′+ρψ′−=ξ 2i2 432 , (t) 

where 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ],2ln22

2
12

,2ln22
2
12

1224

2113

xxRxx

xxRxx

ρψρβ+
π

+ρψ=ρψ

ρψρβ+
π

−ρψ=ρψ
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with 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) K

K

−ρ+ρ−ρ=

−ρ+ρ−ρ=

12

2

8

2

4

22

10

2

6

2

2
1

!6
6

!4
4

2
2

,
!5
5

!3
3

xSxSxSR

xSxSxR

 

and  

( ) ,1
3
1

2
11

n
nS ++++= K  

K57722.0ln =β  (Euler’s constant). 

The general solution of the equation (m) becomes 

( ) ( ) ( ) ( )[ ]xCxCxCxC
xx

w ρψ′+ρψ′+ρψ′+ρψ′=
ξ

= 22221
44332211 . 

Numerical values of the functions 4,1, =ψ ii , and of their derivatives of first order may 
be found in F. Schleicher. These functions are connected also to Klein’s functions. 
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Chapter 2 

LINEAR ODEs OF HIGHER ORDER ( 2>n ) 

1. The General Study of Linear ODEs of Order 2>n  

1.1 GENERALITIES 

The linear ODE of order n is of the form (see also the Introduction) 

( ) ( ) ( ) ( ) ( ) ( ) ( )xFyxayxayxayxay nn
nn =+′+++≡ −
−

1
1

10 ...L , (2.1.1)  

where the functions ( ) ( )xFxa j ,  are defined and supposedly continuous on a real 
interval I. 
Obviously, in a classical frame we search for solutions of (2.1.1) in the class ( )InC . 
If ( ) 00 ≠xa for Ix∈ , we can divide both members of (2.1.1) by ( )xa0 . We obtain 

( ) ( ) ( ) ( ) ( ) ( )xfyxpyxpyxpyy nn
nn =+′+++≡ −
−

1
1

11 ...L , (2.1.2)  

where 

( )
( )
( ) ( ) ( )

( )xa
xFxf

xa
xa

xp j
j

00
, == . (2.1.3)  

The ODEs (2.1.1), (2.1.2) are non-homogeneous. If the right member is null, then they 
are called homogeneous. The homogeneous ODE associated to (2.1.1) is 

( ) ( ) ( ) ( ) ( ) ( ) 0...L 1
1

10 =+′+++≡ −
− yxayxayxayxay nn

nn . (2.1.4)  

A linear ODE is still linear for any change of variable and for any linear change of 
function. 

1.2 LINEAR HOMOGENEOUS ODEs 

The operator L, defined by the left member of (2.1.1), is linear, i.e., 

( ) zyzy LLL β+α=β+α , (2.1.5)  

for any real/complex α, β and any ( )Izy nC, ∈ . 
The operator L, and, consequently, also L1, may be put in the form of a differential 
polynomial, as shown in Sec.1.5, 
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( ) ( ) ( ) ( ) ( )
x

xaxaxaxax nn
nn

d
dD,ED...DDD,PL 1

1
10 =++++≡≡ −

− , (2.1.6)  

E being the identity on ( )InC . By using the well-known Leibniz formula 

( ) uvvuuv DDD += , (2.1.7)  

we can prove the following formula, useful for applications, 

( )( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ,D,PD
!

1...D,PD
!

1...

D,PD
!2

1D,PD
!1

1D,PD,P 221

vxu
n

vxu
j

vxuvxuvxuuvx

nnjj ++++

++=
 (2.1.8)  

in which ( ) ( )D,P xj  are the formal derivatives with respect to D of the differential 
polynomial P 
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1

1
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jnnnxax

j
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−

 (2.1.9)  

Indeed, we have 
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xauvCvuCvuuv

xauvvuuv
xauvuv

jn
n

nn
n

n
n

nn
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1111

1111

3
33

3
22

3
21

3
33
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22

2
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22
1

         .DDD...DDDD

.......................................................................................................

       ,DDD...DDDD

......................................................................................................
                       ,DDDDDDD

                                              ,DDDDD

                                                                          ,DDD
                                                                                         ,E

×++++=

×++++=

×+++=

×++=

×+=
×=

−−−

−
−−−

−

−

−

 (2.1.10)  

We then perform the multiplication with the coefficients, indicated on the right hand of 
(2.1.10) and we sum up both members of these relationships. Also observing the 
common factors u, Du, a.s.o., we finally get (2.1.8). 
As previously, in the case of lower order ODEs, y is a solution of the homogeneous 
equation (2.1.4) if and only if y is an element of the kernel of L 

( ){ }0LCLker =∈= yIy n . (2.1.11)  

As L is linear, it immediately follows that if 21 , yy are solutions of the homogeneous 
ODE (2.1.4), then any of their linear combination is also a solution of the same equation. 
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It results that Lker  is a vector subspace of ( )InC . Obviously, one can immediately 
prove that if nyyy ,...,, 21  are solutions of (2.1.4), then any linear combination 

nn ycycycy ++= ...2211  (2.1.12)  

is also a solution, i.e., it belongs to Lker . 
One can prove that 

nL =kerdim . (2.1.13)  

A basis in Lker  is called a fundamental system of solutions of (2.1.4). In other words, a 
fundamental system of solutions for (2.1.4) is a system of n linearly independent 
solutions of (2.1.4). 
In general, a system of n functions { } nkk ,1=ϕ  defined on some real set A is called 

linearly independent if any linear combination ( )∑
=

ϕ
n

j
jj xc

1
 vanishing identically on I – 

i.e., ( ) 0
1

=ϕ∑
=

n

j
jj xc , A∈∀x  – involves njc j ,1,0 == . 

It can be proved that the necessary and sufficient condition that a system of n solutions 
{ } nkk ,1=ϕ  of (2.1.1) be fundamental is that its Wronskian, defined by the determinant 

[ ]
( ) ( ) ( )11

2
1

1

21

21

21

...
............

...

...

,...,,

−−−

′′′
≡

n
n

nn

n

n

defn

yyy

yyy
yyy

yyyW , (2.1.14)  

be non-zero on I. 
We previously mentioned Liouville’s formula for linear second order ODEs. This result 
may be generalized to get Liouville’s formula for linear n-th order ODEs, which is 

( )
( )
( )∫−

=
x

xa
xa

CxW
d

0

1

e , (2.1.15)  

or, for an arbitrary Ix ∈0  

( ) ( )
( )
( )∫

0
0

1 d

0 e

x

x

t
ta
ta

xWxW = . 
(2.1.16)  

From the last formula, we see that if the Wronskian cancels at a point of I, then it 
vanishes identically on I. Hence, given a system of n solutions of the homogeneous ODE 
(2.1.4), if their Wronskian cancels in a point of I, the system is not fundamental. If the 
Wronskian is not nul on the whole I, then the system is fundamental. 
Also by using the Wronskian, it can be proved that a linear n-th order ODE with 
continuous coefficients always allows a fundamental system of solutions. 
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From the above considerations, it follows that if { }

njjy
,1=

 form a fundamental system 

for a linear homogeneous ODE, then every solution y of this ODE may be written as a 
linear combination of the functions of the system, i.e. 

( ) ( ) ( ) ( )xycxycxycxy nn+++= ...2211 . (2.1.17)  

Thus, if we know a fundamental system of solutions for a linear homogeneous ODE, 
then this equation is completely solved. 
Consider now the problem of finding a solution of (2.1.4) that also satisfies the Cauchy 
conditions 

( )
( )

( ) ( ) ( ) .,

......................
,

,

0
1

00
1

00

00

Ixyxy

yxy
yxy

nn ∈=

′=′
=

−−

 (2.1.18)  

The solution of the Cauchy problem (2.1.4), (2.1.18) may be written in the form (2.1.17). 
Differentiating this expression 1−n times and taking then into account the initial 
conditions (2.1.18), we get a linear algebraic system for the constants njc j ,1, = , 

( ) ,...

............................................................
,...

,...

1
0

1
0

1
02

1
101

0
1

0
1
202

1
101

0
0
0

0
202

0
101

−−−− =+++

′=+++

=+++

nn
nn

n
n

n

nn

nn

yycycyc

yycycyc

yycycyc

 (2.1.19)  

in which we used the notations ( ) ( ) njnkxyy k
j

k
j ,1,1,0,00 =−== , for the values of the 

functions belongong to the fundamental system, obtained for 0=k , and of their 
derivatives, all of them taken at Ix ∈0 . We see that the determinant of the system 
(2.1.19) is precisely the Wronskian ( )0xW of the considered fundamental system, taken 
at 0x . As the system is fundamental, its Wronskian never vanishes on I, therefore 
( ) 00 ≠xW . It follows that the Cauchy problem (2.1.4), (2.1.18) is unique. We get this 

unique solution by replacing the solution njc j ,1, = , of the algebraic system (2.1.19) in 
the expression (2.1.17). 
The calculus of the coefficients may be considerably simplified if the functions of the 
fundamental system were determined such that they satisfy the initial conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) njxyxyxyxyxy j
n

j
j

j
jjj ,1,0,...,0,1,...,0,0 001000 =====′= + . (2.1.20)  

Indeed, in this case the system (2.1.19) straightforwardly yields ( ) njyc j
j .1,1

0 == − , 

where ( )
0

0
0 yy = . The solution of the Cauchy problem (2.1.4), (2.1.18) is then 
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( ) ( ) ( ) ( ) ( )xyyxyyxyyxy n
n 1

02010 ... −++′+= . (2.1.21)  

A fundamental system of solutions satisfying the Cauchy conditions (2.1.20) is called a 
normal system. As we see, a normal system allows to write directly the solution of a 
Cauchy problem replacing the initial data in the formula (2.1.17). 
At Sec.2.1, Chap.1, we considered a normal system in the particular case of the second 
order ODEs. At Sec.2.3, same chapter, we determined the functions 21 , ZZ , representing 
the normal system for the second order linear ODE with constant coefficients, if the 
associated characteristic equation allows real and distinct roots (formulae (1.2.63), 
(1.2.65)). 
Given a linear ODE, we can get for it infinitely many fundamental systems. Conversely, 
a fundamental system { }

njjy
,1=

 corresponds to a unique linear n-th order ODE, except 

for a multiplicative factor. This ODE is found by using the functions njy j ,1, = of the 
fundamental system. Indeed, if y is an arbitrary solution of the ODE, then 

yyyy n ,,...,, 21  are linearly dependent, i.e. their Wronskian is identically null on I. We 
thus have 

[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0,,...,,

21

11
2

1
1

1

22
2

2
1

2

21

21

21 =

′′′′

≡

−−−−

−−−−

n
n

nnn

n
n

nnn

n
n

nnn

n

n

n

yyyy
yyyy
yyyy

yyyy
yyyy

yyyyW

K

K

K

KKKKK

K

K

. (2.1.22)  

This is the ODE we are looking for. It is linear, as we can see developing the above 
determinant following the first column and it is of order n, as the coefficient of ( )ny  is 
precisely the Wronskian [ ]nyyyW ,...,, 21  of the given fundamental system, which does 
not vanish on I.  

Example. Let us find the homogeneous ODE allowing xyxy sinh,cosh 21 ==  as a 
fundamental system. 
The searched ODE is of second order and the Wronskian of the given fundamental 
system is 

[ ] 01sinhcosh
coshsinh
sinhcosh

, 22
21 ≠=−== xx

xx
xx

yyW . 

As any solution y of the searched equation is linearly dependent on 21 , yy , we shall 
have 
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0
sinhcosh
coshsinh
sinhcosh

=
′′
′

xxy
xxy
xxy

. 

Developing this determinant following its first column, we immediately find 

0=−′′ yy . (2.1.23)  

1.3 THE GENERAL SOLUTION OF THE NON-HOMOGENEOUS ODE 

The general solution of (2.1.1) is written as a sum between the general solution of the 
associated homogeneous equation and a particular solution ( )xy p  of the non-

homogeneous ODE, i.e., in terms of a fundamental system { }
njjy

,1=
, also taking (2.1.17) 

into account, 

( ) ( ) ( ) ( ) ( )xyxycxycxycxy pnn ++++= ...2211 . (2.1.24)  

To get the particular solution ( )xy p , we can use again the fundamental system. 
Following Lagrange, we can use the method of variation of parameters, also called 
Lagrange’s method. The particular solution is searched in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )xyxKxyxKxyxKxy nnp +++= ...2211 . (2.1.25)  

After step-by-step differentiations and replacements in (2.1.1), we get for ( )xK j′  the 
following linear algebraic system 

( ) ( ) ( ) ( )
( ) ....

.........................................................................
,0...
,0...

0

11
22

1
11

2211

2211

xa
xFyKyKyK

yKyKyK
yKyKyK

n
nn

nn

nn

nn

=′++′+′

=′′++′′+′′
=′++′+′

−−−

 (2.1.26)  

The determinant of this system is precisely the Wronskian of the fundamental system, 
hence it does not vanish. Solving algebraically the system (2.1.26), we get 

( ) njxK j ,1, =′ , and by integration, we finally obtain the expressions of ( ) njxK j ,1, = . 

1.4 ORDER REDUCTION 

Let ( )xy p  be a particular solution of the homogeneous ODE (2.1.4), i.e. 

( ) 0L =xy p ; (2.1.27)  
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( ) ( ) ( )xzxyxy p= . (2.1.28)  

To apply it, we must compute ( ) ( )( )zyxzy pp D,PL = , where ( )D,P x  is the associated to 
L differential polynomial; to perform this computation, we can use formula (2.1.8), with 
the same notations, explained in (2.1.9). Taking pyvzu == , , we get 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,D,PD
!

1...D,PD
!

1...

D,PD
!2

1D,PD
!1

1D,PD,PL 221

p
nn

p
jj

ppppp

yxz
n

yxu
j

yxzyxzyxzzyxzy

++++

++==
 (2.1.29)  

or, as 0L =y and ( ) 0D,P =pyx , 

( ) ( )
( ) ( )
( )

( )
( ) ( ) ( ) ( ) 0D,P

!2
D,P

...
!1

D,P
 1

2
1

1

0 =′+′′++
−

+ −
−

zyxz
yx

z
n

yx
zxa p

pnp
n

n . (2.1.30)  

In this ODE we perform again the change of function uz =′ , thus obtaining another 
ODE, of order 1−n  with respect to the new unknown function u. 
By using the same pattern, one can prove that if we previously know r particular 
solutions of the homogeneous ODE (2.1.4), which are linearly independent, the order of 
the ODE may be reduced by r units. 
At Sec.2.1 and 2.2, Chap.1, we treated the case of second order ODEs, for which one 
knows a particular solution, say ( )xY1 , of the associated homogeneous equation. In this 
case, it was obtained the representation (1.2.40), in which ( )xY2  is given by (1.2.15). 

2. Linear ODEs with Constant Coefficients 

The general form of such equations is (2.1.1), with nja j ,1, =  real constants and 

00 ≠a . More precisely, we have 

( ) ( ) ( ) ℜ→ℜ⊆=+′+++≡ −
− Ifxfyayayayay nn

nn :,...L 1
1

10 . (2.2.1)  

This equation may be written in terms of differential polynomials 

( ) ( ) ( ) ℜ→ℜ⊆=++++≡≡ −
− Ifxfyaaaayy nn

nn :,ED...DDDPL 1
1

10 . (2.2.2) 

 From the above considerations, it follows that the solution of this equation depends on 
the effective determination of a fundamental system of solutions, i.e., of n linearly 
independent solutions of the associated homogeneous ODE 

( ) ( ) 0...L 1
1

10 =+′+++≡ −
− yayayayay nn

nn , (2.2.3) 

let us perform the change of function 
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( ) ( ) 0ED...DDDP 1
1

10 =++++≡ −
− yaaaay nn

nn . (2.2.4)  

2.1 THE GENERAL SOLUTION OF THE HOMOGENEOUS EQUATION 

Following Euler’s idea, one searches for solutions of the exponential form 

( ) xxy λ= e , (2.2.5)  

where λ is a parameter, so far undetermined. Replacing this in (2.2.3), or, better, in 
(2.2.4), we immediately see that ( ) ( )λ= λλ PeeDP xx , hence we find for λ the algebraic 

equation ( ) 0Pe =λλx ; as this must hold for any real x and as 0e ≠λx , we eventually 
obtain the algebraic equation 

( ) 0...P 1
1

10 =+λ++λ+λ≡λ −
−

nn
nn aaaa , (2.2.6)  

known as the characteristic equation. The polynomial ( )λP is called the characteristic 
polynomial. It is easily seen that it may be formally written replacing the j-th derivative 
of y in the given ODE by jλ . The solutions of the ODE (2.2.3), or, equivalently, (2.2.4), 
depend on the roots of the characteristic polynomial. We must therefore examine the 
cases a) – d). The set C of the complex numbers form an algebraically closed field, 
therefore the characteristic polynomial allows n roots, all of them contained in C. Let us 
denote them by njj ,1, =λ . 

a) jλ  are real and distinct. In this case, we obtain the system of n particular 
solutions of (2.2.3) 

( ) ( ) ( ) x
n

xx nxyxyxy λλλ === e,e,e 21
21 , (2.2.7)  

which is fundamental, as their Wronskian 

[ ] ( )x

n
n

nnn

n

n

n
nyyyW λ++λ+λ

−−−− λλλλ

λλλλ
λλλλ

= ...

11
3

1
2

1
1

22
3

2
2

2
1

321

21
21e

1111

,...,,

K

KKKKK

K

K

K

 (2.2.8)  

is non-zero. Indeed, the determinant in (2.2.8) is of Vandermonde type and does not 
vanish, as kj λ≠λ  for nkjkj ,1,, =≠ . 
The general solution of the homogeneous ODE is thus 

( ) x
n

xx ncccxy λλλ +++= e...ee 21
21 , (2.2.9)  

or, equivalently, of 
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where njc j ,1, = , are arbitrary constants. 

b) The characteristic equation allows complex roots. Let, for instance, 
β+α=λ i1 , with βα,  real and 0≠β . As the characteristic equation has real 

coefficients, once 1λ  is a root, its complex-conjugate β−α=λ i2  will also be a root. For 

the sake of simplicity, suppose now that the remaining roots njj ,3, =λ  are real and 
distinct. Then, according to the previous considerations, the system  

( ) ( ) ( ) ( ) ( ) ( ) x
n

xxx nxyxyxyxy λλβ−αβ+α ==== e,...,e,e,e 3
3

i
2

i
1  (2.2.10)  

is fundamental. To avoid complex calculus, we consider, instead of the first two 
functions of this system, two linear combinations of them, which are also solutions of the 
ODE (2.2.3) 

( )
( ) ( )

( )
( ) ( )

.sine
i2
ee

i2

,cose
2

ee
2

ii
21

2

ii
21

1

xyyxY

xyyxY

x
xx

x
xx

β=
−

=
−

=

β=
+

=
+

=

α
β−αβ+α

α
β−αβ+α

 (2.2.11) 

In (2.2.11), we used Euler’s formulae 

i2
eesin,

2
eecos

iiii xxxx
xx

β−ββ−β −
=β

+
=β . (2.2.12) 

Finally, the general solution reads, in this case, 

( ) ( ) x
n

xx ncxcxcxy λλα +++β+β= ec...esincose 3
321 , (2.2.13) 

with njc j ,1, = , arbitrary constants. 

c) The characteristic equation allows multiple roots. Suppose e.g. that 1λ  has the 

order of multiplicity m. We cannot take x1eλ  m times in the fundamental system, 
because it should not be linearly independent. We can take it just once.  
To complete the fundamental system, we use the following remark. Let 2=n and 
suppose for now that 21 λ≠λ . We can choose for the corresponding second order ODE 
the fundamental system  

( ) ( )
12

21

12
1 ee,e

λ−λ
−

==
λλ

λ
xx

x xyxy . (2.2.14) 

If the associated characteristic equation allows the double root 1λ , we can consider for it  



ODEs WITH APPLICATIONS TO MECHANICS 

 

140

( ) ( ) x
xx

x xxyxy 1
12

12

1 eeelim,e
12

21
λ

λλ

λ→λ

λ =
λ−λ

−
== ; (2.2.15) 

to compute the above limit, we used l’Hospital rule. 
Getting back to arbitrary n, we see that ( ) xj

j xxy 1eλ=  satisfy the linear ODE with 

constant coefficients for 1,1 −= mj . To prove this, we use again formulae (2.1.8), 

(2.1.9), taking xj vxu 1e, λ==  

( )( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ,eDPD
!

1...eDPD
!

1...

eDPD
!2

1eDPD
!1

1eDPeDP

11

1111

λλ

λ22λ1λλ

xnjnxjjj

xjxjxjxj

x
n

x
j

xxxx

++++

++=
 (2.2.16) 

in which ( )( ) ( )( ) xkxk 11 λ
1

λ eλPeDP =  and ( ) ( ) jkxkjjjx kjjk ≤+−−= − ,1...1D . We 
eventually get 

( )( ) ( ) ( )( ) ( )( ) xjxjjxj j
j

jxxx 111 λ
1

λ
1

11
1

λ eλP!
!

1...eλP
!1

1λPeDP +++= ; (2.2.17)  

The other terms in the sum (2.2.16) vanish, because jkx jk >= ,0D . As the order of 

multiplicity of 1λ  is m, we obviously have ( ) ( ) ( ) ( ) ( ) 0P...,0,P,0P 1
1

1
1

1 =λ=λ=λ −m . 

From (2.2.17) it then follows that ( )( ) 1,0,0eDP 1λ mjx xj == . One can easily see that 

1,0,e 1 −=λ mjx xj , are linearly independent. Again for the sake of simplicity, suppose  

that the other roots of the characteristic equation nmjj ,1, +=λ  are real and distinct. 

Then xxxxmxx nmmxx λλλλ−λλ ++ e,...,e,e,e,...,e,e 21111 1  form a fundamental system for the 
given ODE and its general solution is 

( ) ( ) x
n

x
m

x
m

xm
m

nmm cccxcxccxy λλ
2

λ
1

λ1
21 e...eee... 211 +++++++= ++

++ . (2.2.18) 

d) The characteristic equation allows multiple complex roots. Let 
β+α=λ==λ=λ i...21 m  be a multiple root of order m. Then 

β−α=λ==λ=λ ++ i... 221 mmm  is also a root with the same order of multiplicity. 
Exactly as before, we deduce 2m linearly independent solutions of the given ODE 

,sine,cose

.................................................
,sine,cose

,sine,cose

11 xxxx

xxxx

xx

xmxm

xx

xx

ββ

ββ

ββ

α−α−

αα

αα

 (2.2.19) 
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that, together with the other mn 2−  linearly independent solutions – determined by 
taking into account the nature of the roots of ( )λP  – form a fundamental system for 
(2.2.3). The general solution of this ODE is then a linear combination of the functions of 
this fundamental system, with arbitrary constants as coefficients. 

2.2 THE NON-HOMOGENEOUS ODE 

At the previous section, we showed how to find a fundamental system for a 
homogeneous ODE with constant coefficients, by using the roots of the characteristic 
equation. According to Sec.1.3, we can get particular solutions of the non-homogeneous 
ODE by using Lagrange’s method. Yet this method lead to cumbrous computation, the 
more so as the order of the ODE is greater. If the free term is an elementary function, or 
a linear combination of such functions, then there exists a direct method of obtaining 
particular solutions, which is more efficient than the method of variation of parameters. 
Let us note firstly that if ( ) ( ) ( ) ( )xfxfxfxf p+++= ...21  and if we determine 

pyyy ,...,, 21  such that 

pp fyfyfy === L,...,L,L 2211 , (2.2.20) 

then their sum pyyyY +++= ...21  is a particular solution of the non-homogeneous 
ODE ((2.2.1), i.e., 

( ) ( )xffffyyyY pp =+++=+++= ......LL 2121 . (2.2.21)  

Now let us get particular solutions for non-homogeneous ODEs with free terms 
composed of elementary functions, currently met in applications. 

a) ( ) mm
mm bxbxbxbxf ++++= −
−

1
1

10 ... . We search for a particular solution 
shaping ( )xf  

( ) ( )mm
mmr qxqxqxqxxY ++++= −
−

1
1

10 ... , (2.2.22)  

where r is the order of multiplicity of 0 as a root of the associated characteristic 
polynomial. Naturally, if 0 does not satisfy the characteristic equation, then 0=r . 
Introducing the above expression in (2.2.1) and identifying the coefficients of the same 
powers of x, we find mjq j ,0, = . The algebraic system obtained for mjq j ,0, = , is 
linear and allows a unique solution. 

b) ( ) xxf α= e . We search for solutions of the form 

( ) xrAxxY α= e , (2.2.23) 

where r is the order of multiplicity of α as root of the characteristic equation. Again, if α 
does not satisfy the characteristic equation, then 0=r . To introduce (2.2.23) in the ODE 
(2.2.1), we use formula (2.2.17), for α=λ= 1,rj . We get 
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( )( ) ( )( )
( ) ( )( ) ( )( ) .eαP!

!
1...αP

!1
1αP           

eDPeDP

α11

αα

xrrr

xrxr

r
r

rxxA

xAAx

+++=

=
 (2.2.24)  

By virtue of multiplicity, ( ) ( ) 1,00,P −==α rjj , with ( ) ( ) ( )α≡α PP 0 , but ( ) ( ) 0P ≠αr . 
We finally get for Y 

( ) ( ) ( )
xr

r
xxY α

α
= e

P
1 . (2.2.25)  

c) ( ) ( )mm
mmx bxbxbxbxf ++++= −
−α

1
1

10 ...e . If α is not a root of the 
characteristic equation, then we search for Y in the form 

( ) ( )mm
mmx qxqxqxqxY ++++= −
−α

1
1

10 ...e . (2.2.26)  

The coefficients jq  are found by identification. 
If α is a multiple root of order r of the characteristic equation, then we search for Y in the 
form 

( ) ( )mm
mmxr qxqxqxqxxY ++++= −
−α

1
1

10 ...e . (2.2.27)  

The introduction of this expression in the given ODE leads to tiresome computation. 
This is why it is recommended to perform firstly the change of function 

( ) ( ) xxzxy α= e , (2.2.28)  

where ( )xz  is a new unknown function. Applying formula (2.1.8) for ( ) xvxzu α== e, , 
we get for z the following ODE 

( ) ( ) ( )( ) ( ) x
mm

mmxr
r

n
n

n
n bxbxbxbzAzAzA α

1
1

10
α1

1 e ...e ... ++++=+++ , (2.2. 29)  

where 

( ) ( ) nrj
j

A j
j ,,P

!
1

=α= . (2.2.30)  

Simplifying with xαe , this case is reduced to a). 

d) Suppose now that 

( ) ( )
( ) .sin...        

cos...

1
1

10

1
1

10

xdxdxdxd

xbxbxbxbxf

kk
kk

mm
mm

β+++++

β++++=

−
−

−
−
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Let us denote by { }kms ,max= . If β is not a root of the characteristic equation, then we 
search for Y in the form 

( ) ( )
( ) .sin...

cos...

1
1

10

1
1

10

xpxpxpxp

xqxqxqxqxY

ss
ss

ss
ss

β+++++

β++++=

−
−

−
−

 (2.2.31)  

Replacing this in the given ODE, we get by identification the coefficients 
sjqp jj ,0,, = . If β is a multiple root of order r of the characteristic equation, then we 

search for Y in the form 

( ) ( )[
( ) ],βsin...

βcos...

1
1

10

1
1

10

xpxpxpxp

xqxqxqxqxxY

ss
ss

ss
ssr

+++++

++++=
 (2.2.32)  

the coefficients sjqp jj ,0,, = , being obtained, as previously, by identification. 

2.3 EULER TYPE ODEs 

These ODEs are also linear, but with variable coefficients. Yet, by a change of variable, 
they can be reduced to ODEs with constant coefficients. Euler’s ODEs are of the form 

( ) ( ) 0...L 1
11

10 =+′+++≡ −
−− yayxayxayxay nn

nnnn . (2.2.33)  

Applying the change of variable tx e= , we immediately get 

( ) ( )( ) ...,E2DEDDe,EDDe,De 32 yyyyyy ttt −−=′′′−=′′=′ −−− . (2.2.34)  

where td/dD =  and E is the identity operator. Introducing this in (2.2.33), we get an 
ODE with constant coefficients. In this new equation, searching for solutions of 
exponential type rty e= , we get the characteristic equation 

( ) ( ) ( ) ( ) 0...2...11...1 110 =++++−−++−− − nn aranrrranrrra , (2.2.35)  

whose roots lead to a fundamental system of solutions for (2.2.33). We see that we can 
get the same characteristic equation by searching directly for y in the form 

rxr xy == lne . 

3. Fundamental Solution. Green Function 

3.1 THE FUNDAMENTAL SOLUTION 

By definition, a fundamental solution of the ODE (2.1.1) is a function ( )txE , with the 
following properties: 
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i) ( )JDE n \C∈ , where [ ]baIIID ,, ≡×=  and J is the diagonal of the square D, 
i.e., ( ){ }IxxxJ ∈= ,, , 

ii)  as a function of x, E satisfies the ODE in JD \ , 

iii)  ( )DE n 2C −∈  and ( ) ( ) ( )xa
tt

x
Ett

x
E

n

n

n

n

0
1

1

1

1 1,, =
∂

∂
−

∂

∂
−−

−

+−

−

. 

An ODE of type (2.1.1) always allows fundamental solutions. For instance, if { }
njjy

,1=
 

is a fundamental system for (2.1.1), then 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )tytyty

tytyty

tytyty
tytyty

tWta
txtxE

n
n

nn

n
n

nn

n

n

K

K

KKKK

K

K

21

22
2

2
1

21

21

02
sgn,

ŒŒŒ

=  (2.3.1)  

is a fundamental solution for (2.1.1). This solution has the important property 

( ) ( ) ( ) 0,...,,
2

2
=

∂

∂
==

∂
∂

=
−

−

tt
x

Ett
x
EttE

n

n
. (2.3.2)  

The set of the fundamental solutions of the ODE (2.1.1) is given by 

( ) ( ) ( )∑
=

+
n

j
jj xytctxE

1
, , (2.3.3)  

where ( )tc j  are continuous functions. By using the fundamental solution, one can 
immediately put the solution of (2.1.1) in the form 

( ) ( ) ( ) ttFtxExy
b

a
d,∫= . (2.3.4)  

In the case of constant coefficients, we can easily find a fundamental system of solutions 
as shown at Sec.2.2. Then, the corresponding fundamental solution will be obtained by 
replacing the expressions of jy in formula (2.3.1). 

3.2 THE GREEN FUNCTION 

Let us consider the generalized two-point problem 

0L =y , (2.3.5)  
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( )[ ( ) ( ) ( )]
( )[ ( ) ( ) ( )]

( )[ ( ) ( ) ( )] .0U

.........................................................................

,0U

,0U

1

0

2

1

0
22

1

1

0
11

=+≡

=+≡

=+≡

∑

∑

∑

−

=

−

=

−

=

byBayAy

byBayAy

byBayAy

k
nk

n

k

k
nkn

k
k

n

k

k
k

k
k

n

k

k
k

 (2.3.6)  

The operator L is given by (2.1.1); the coefficients jkjk BA ,  must be such that the rank 
of the matrix 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

1,2101,210

1,22221201,2222120

1,11211101,1121110

nnnnnnnnnn

nn

nn

BBBBAAAA

BBBBAAAA
BBBBAAAA

KK

KKKKKKKKKK

KK

KK

 (2.3.7)  

be n. 
As previously, we shall consider only coefficients ( )xa j continuous on [ ]baI ,= . 
By definition, we call Green function or influence function for the problem (2.3.5), 
(2.3.6) a fundamental solution ( )txG ,  for the ODE (2.3.6) also satisfying the boundary 
conditions (2.3.7). 
The two-point problem (2.3.5), (2.3.6) may allow other solutions besides the trivial one. 
We say that the two-point problem has the index k if every one of its solutions may be 
written as a linear combination of k solutions of a fundamental system of the ODE 
(2.3.5). 
If the boundary problem (2.3.5), (2.3.6) allows only the trivial solution, then the 
associated Green function is unique. 
The Green function may be effectively set up if one knows a fundamental system of 
solutions for the given ODE, which is always possible in the case of constant 
coefficients. If nyyy ,...,, 21  form a fundamental system of (2.3.5), then the associated 
Green function is given by 

( ) ( )
Δ

=
txHtxG ,,  (2.3.8)  

where 

( )

( ) ( ) ( ) ( )

nnnnn

n

n

yyyE

yyyE
xyxyxytxE

txH

UUUU

UUUU
,

,

21

121111

21

K

KKKKK

K

K

= , (2.3.9)  
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( )txE ,  is given by formula (2.3.1) and Δ is the determinant 

nnnn

n

n

yyy

yyy
yyy

UUU

UUU
UUU

21

22212

12111

K

KKKK

K

K

=Δ . (2.3.10)  

The representation (2.3.8) is generally not valid at the ends a and b of the interval I. At 
these points, one takes ( ) ( ) ( ) ( )txGbxGtxGaxG

btat
,lim,,,lim,

→→
== . 

3.3 THE NON-HOMOGENEOUS PROBLEM 

Consider firstly the semi-homogeneous problem 

( )
.,1,0U

,L

njy

xfy

j ==

=
 (2.3.11)  

Its solution is represented in the form 

( ) ( ) ( ) ttftxGxy
b

a
d,∫= . (2.3.12)  

Finally, the solution of the non-homogeneous problem 

( )
ℜ∈==

=

jjj KnjKy

xfy

,,1,U

,L
 (2.3.13)  

reads 

( ) ( ) ( ) ( )∑∫
=

ϕ+=
n

j
jj

b

a
xKttftxGxy

1
d, , (2.3.14)  

where ( )xjϕ  are the unique solutions of the “elementary” Cauchy problems 

,0U
....................

,1U
...................

,0U

,0U

,0L

2

1

=ϕ

=ϕ

=ϕ

=ϕ

=ϕ

jn

jj

j

j

j

    nj ,1= . (2.3.15)  
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To get ( )xjϕ , we may write them as linear combinations of the functions ( ) njxy j ,1, =  
of a fundamental system 

njycycyc nnjjjj ,1,...2211 =+++=ϕ . (2.3.16)  

The constants kjc  are, for every j, the solutions of the linear algebraic system 

.0U...UU
....................

,1U...UU
...................

,0U...UU

,0U...UU

2211

2211

2222121

1212111

=+++

=+++

=+++

=+++

nnnjnjnj

njnjjjjj

nnjjj

nnjjj

ycycyc

ycycyc

ycycyc

ycycyc

 (2.3.17)  

For nj ,1=  we get n such systems, whose associated determinant is defined by formula 
(2.3.10). The solutions of these systems are then replaced in (2.3.16) and, eventually, the 
functions ( )xjϕ  are introduced in (2.3.14). 

3.4 THE HOMOGENEOUS TWO-POINT PROBLEM. EIGENVALUES 

Let us consider now the homogeneous problem 

( )
,,1,0U

,0L

njy

yxgy

j ==

=λ+
 (2.3.18)  

where λ is a parameter and ( )Ig 0C∈ . Obviously, this problem always allows the trivial 
solution. 
The values of λ for which (2.3.18) allows non-zero solutions are called eigenvalues; they 
are included in the spectrum of the problem. The non-trivial solutions corresponding to 
every λ are called eigenfunctions (see also Sec.2.7, Chap.1). 
We say that an eigenvalue λ has the order k of multiplicity if for that λ the two-point 
problem (2.3.18) has the index k. 
Let ( ){ }

njj xy
,1

,
=

λ  be a fundamental system for the ODE ( ) 0L =λ+ yxgy , for every 

fixed λ. Also suppose that this system is normal (for ax =0 ), i.e. 

( ) ( ) njmay m
j

m
j ,1,,1 =δ=− , (2.3.19)  
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⎩
⎨
⎧

≠
=

=δ
.,0
,,1
jm
jmm

j  (2.3.20)  

The determinant 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )λλλ

λλλ
λλλ

=λΔ

,U,U,U

,U,U,U
,U,U,U

21

22212

12111

xyxyxy

xyxyxy
xyxyxy

nnnn

n

n

K

KKKK

K

K

 (2.3.21)  

is called the characteristic determinant. According to the previous considerations, the 
zeros of this determinant will be the eigenvalues of the problem. The order of 
multiplicity of an eigenvalue is less or equal to its order of multiplicity, considered as a 
root of the characteristic determinant. 
In applications, we shall treat each problem by using specific methods, that, in general, 
could not be considered as particular cases of the above exposed theory. 

4. Applications 

Application 2.1  

Problem. Study the wire drawing. 

Mathematical model. Modelling the drawing phenomenon, one obtains an ODE of the 
form 

0
sin

16cot 2 =′⎟
⎠
⎞

⎜
⎝
⎛

θ
−+θ′′+′′′ uuu . (a) 

Solution. Putting yu =′ , the equation (a) becomes 

0
sin

16cot
2

=⎟
⎠
⎞

⎜
⎝
⎛

θ
−+θ′+′′ yyy . (b) 

Observing that 

θ+=
θ

2
2 cot1

sin
1 ,  

the equation (b) may be written further 

( ) 0cot5cot 2 =θ−+θ′+′′ yyy , (c) 

or in the form 

where m
jδ is the Kronecker delta, defined as follows 
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( ) 0cot1cot4 2 =θ−+θ′++′′ yyyy ; (d) 

it also reads 

0
cot
cot1cot4

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ
θ−

+
′

θ++′′
y
yyyy . 

On the other hand, 

( )
θ

′θ
−=

θ
θ−

=θ−=
θ
θ−

2sin
2sin

2sin
2cot22cot2

cot
cot1 2

, 

and the equation (b) may take the form 

( ) 0
2sin
2sincot4 =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

θ

′θ
−

′
θ++′′

y
yyyy . (e) 

Because the differential equation 04 =+′′ yy  has the general integral 

θ+θ= 2cos2sin1 BAy , 

it results that the equation (b) has the particular solution θ= 2sin1y . 
The other particular solution of the equation (b) is thus reduced to quadratures. Let 2y  
be this particular solution. 
In the particular case of homogeneous linear equations of second order, Liouville’s 
formula is of the form 

( )
( )∫ θ
θ
θ

−
=′−′=

′′

d

2121
21

21 0

1

e a
a

Cyyyy
yy
yy

; 

hence, 
( )
( )∫ θ
θ
θ

−
=

′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

′−′ d

2
11

2
2
1

2121 0

1

e a
a

y
C

y
y

y
yyyy

. (f) 

In our case θ= 2sin1y , ( ) θ=θ cot1a , ( ) 10 =θa , so that the relation (f) becomes 

θθ
=

θθ
=

′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ

∫ θ
θ
θ

−

23

d
sin
cos

22
2

cossin
e

cossin42sin
CCy

, 

therefore 

∫
θθ

θ
θθ= 232 cossin

dcossin
2
Cy . 



ODEs WITH APPLICATIONS TO MECHANICS 

 

150
Neglecting the multiplicative constant, the second particular solution is given by 

∫
θθ

θ
θθ= 232 cossin

dcossiny , 

hence, by integration, one obtains 

θ
−

θ
θθ+θ=

sin2
1

2
tanlncossin

2
3sin

2
3

2y . (g) 

Let us also notice that 

.
2

tanln2cos
3
1cos2

8
3d

,2cos
2
1d

2

1

⎥
⎦

⎤
⎢
⎣

⎡ θ
⎟
⎠
⎞

⎜
⎝
⎛ θ++θ−=θ

θ−=θ

∫

∫

y

y
 

By a slight modification of the arbitrary constants, the general integral of the differential 
equation (a) reads 

( ) ⎥
⎦

⎤
⎢
⎣

⎡ θ
⎟
⎠
⎞

⎜
⎝
⎛ θ++θ+θ+=θ

2
tanln2cos

3
1cos22cos CBAu . 

Application 2.2  

Problem. Study the deformation and the state of stress of a circular gallery, surrounded 
by an elastic medium. Determine the efforts in a cross section and the bending deflection 
w. Particular case: a lateral uniform pressure of the medium. 

Mathematical model. The equations of equilibrium are of the form 

0
d
d1

=+−
ϕ

Y
a
TN

a
, (a) 

0
d
d1

=−++
ϕ

kwZ
a
NT

a
, (b) 

ϕ
=

d
d1 M

a
T ; (c) 

and the equation of deformation is given by 

IE
Mww

a 0
2

2

2 d
d1

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ϕ
, (d) 

where MTN ,,  are the axial force, the shearing force, and the bending moment, 
respectively, in a cross section specified by the angle ϕ  (the angular variable, measured 
clockwise from the vertex), k  is the foundation modulus (representing the pressure 
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which leads to a deflection 1=w ), a  is the median radius of the pipe (supposed of 
constant thickness), IE0  is the bending rigidity of a span of a pipe of unit width, and 

ZY ,  are the tangential and normal components of the external bending, respectively. 
From (b), one obtains 

kawZaTN +−
ϕ

−=
d
d , (e) 

i.e. 

ϕ
+

ϕ
−

ϕ
−=

ϕ d
d

d
d

d
d

d
d

2

2 wkaaZTN ; (f) 

introducing this in (a), it results 

0
d
d

d
d

d
d

2

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ϕ
+

ϕ
−+

ϕ
aYZwkaTT . (g) 

Further, we eliminate T between (c) and (g) 

0
d
d

d
d

d
d

d
d 2

3

3
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ϕ
+

ϕ
−

ϕ
+

ϕ
aYZwkaMM . (h) 

Finally, M given by (d) is introduced in (h) 

IE
aZYw

IE
kaww

0

4

0

4

3

3

5

5

d
d

d
d1

d
d2

d
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

+−=
ϕ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

ϕ
+

ϕ
, (i) 

obtaining thus the searched differential equation. 
The efforts on the cross section may be thus expressed by means of w in the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ϕ
−= ww

a
IE

M 2

2

2
0

d
d , (j) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

+
ϕ

−=
d
d

d
d

3

3

2
0 ww

a
IE

T , (k) 

Zakawww
a

IE
N −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ

+
ϕ

= 2

2

4

4

3
0

d
d

d
d . (l) 

Solution. To obtain a solution in the form of a trigonometric series for the equation (i), 
we suppose that the components of the external loading are of the form 

∑ ϕ=
n

n nYY sin , ∑ ϕ=
n

n nZZ cos , 

where nY  and nZ  are dimensional factors specifying that loading. We denote 
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( ) ∑∑ ϕ=ϕ+−=
ϕ

+−=ψ
n

n
n

nn npnnZYZY sinsin
d
d . (m) 

Thus, the equation (i) reads 

∑ ϕ=
ϕ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

ϕ
+

ϕ n
n np

IE
aw

IE
kaww sin

d
d1

d
d2

d
d

0

4

0

4

3

3

5

5
, (n) 

where 

nnn nZYp +−= . (o) 

Taking into account the trigonometric form of the right member in (m), we search for a 
similar solution 

∑ ϕ=
n

n nww cos . (p) 

Introducing it in the equation (i), it results 

 0sin12
0

4

0

4
35 =∑ ϕ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

n

n
n n

IE
ap

wn
IE

kann .  

Hence, the coefficients of the series must vanish, so that 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−

−=

IE
kann

p
IE

aw n
n

0

4220

4

1
. 

(q) 

In the particular case of a lateral pressure of the medium one has ϕϕ= cossinpY , 
ϕ= 2sinpZ , leading to 

ϕ=ψ 2sin
2
3 p . 

We thus obtain 

ϕ
+

−= 2cos
94

3

0

4
0

4

IE
ka

p
IE

paw n , 

ϕ

+

−= 2cos
9

4
9

0

4
2

IE
ka

p
paM n , 
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ϕ
+

−= 2sin
92

9

0

4

IE
ka

p
paT n , 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ϕ+−
+

= 2cos1
9

3
4

0

4

IE
ka

paN . 

Application 2.3  

Problem. Determine the angle ϕ  of relative rotation in the starting of an engine under 
the action of a variable driving moment. 

Mathematical model. The ODE governing the above enounced problem is of the form 

( )
0

d
d

d
d

d
d

021

0

21

21
2

2

01

0
3

3
=ϕ

ω
+

ϕ+
+

ϕ
ω

+
ϕ

JJ
kM

tJJ
JJk

tJ
M

t
, (a) 

where 1J  and 2J  are the moments of inertia of the mass of the rotor, of the driving 
motor and of the coupling and of the reduced mass of the mechanism of transmission of 
motion of the work organ and of the connected loads, respectively, k  is the rigidity 
coefficient of the elastic element of connection between the disks 1J  and 2J  (Fig.2.1), 

21 ϕ−ϕ=ϕ  is the relative rotation angle, 0M  is the starting moment of the motor, and 

0ω  is the angular velocity in loose running. 

 
Figure 2. 1. Geometric schema of the elastic element and of the disks J1 and J2 
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One assumes the initial conditions of Cauchy type 

( ) ( ) ( ) 0
d

0d,0
d

0d,00 2

2
=

ϕ
=

ϕ
=ϕ

tt
. (b) 

Solution. The linear differential equation (a) is homogeneous and with constant 
coefficients; we search for solutions of the form tλ=ϕ e , being thus led to the 
characteristic equation 

032
2

1
3 =+λ+λ+λ aaa , (c) 

where 

( )
021

0
3

21

21
2

01

0
1 ,,

ω
=

+
=

ω
=

JJ
kM

a
JJ

JJk
a

J
M

a . 

By the substitution 31ay −=λ , the equation (c) is reduced to the canonical form 

0233 =++ qpyy , (d) 

where 

( )
2
0

2
1

22
0

21

21
2
1

2
9333

1
ω

−
+

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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J
kM

JJ
JJka

ap , (e) 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+

ωω
=+⎟
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⎠

⎞
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⎜
⎝

⎛
−=

21
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2
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2
1

2
0

01

03
2

2
11

2
2

9229
2

6 JJ
kJJ

J
M

J
Ma

a
aa

q . (f) 

In the case of the considered mechanical system, 033 >+ qp , so that the equation (d) 
has one real and two complex conjugate roots, that is 

vuyvuyvuy 1232121 ,, ε+ε=ε+ε=+= , 

where 

3 32 pqqu ++−= , 3 32 pqqv ++−= , 

1ε  and 2ε  being the roots of the equation 012 =+ε+ε , that is 

( )3i1
2
1

1 +−=ε , ( )3i1
2
1

2 −−=ε . 

The roots of the equation (d) become 

( ) ( ).
2
3i

23
,

2
3i

23
,

3
1

3
1

2
1

1 vuvua
vuvua

vu
a

−−
+

−−=λ−+
+

−−=λ++−=λ  
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Introducing the notations 

( ) ,
2
3

2
3

,
2
1

323

3 323 32

3 323 32

01

01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++−=−=β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−++−−

ω
−=

+
−−=α

pqqpqqvu

pqqpqq
J
Mvua

 

the roots of the characteristic equation read 

.i,i

,2

32

01

0
1

β−α=λβ+α=λ
ω

−α−=λ=λ
J
M

 

The general solution of the differential equation (a) becomes 

( )tCtCC tt β+β+=ϕ αλ cossinee 321 . (h) 

To determine the integration constants, one must compute the first two derivatives of ϕ  
with respect to time, i.e. 

( ) ( )[ ]tCCtCCC
t

tt βα+β+ββ−α+λ=
ϕ αλ cossinee

d
d

32321 , (i) 

( )[ ] ( )[ ]{ }tCCtCCC
t

tt ββ−α+αβ+βαβ−β−α+λ=
ϕ αλ cos2sin2ee

d
d

3
22

232
222

12

2
. (j) 

The initial conditions (b) lead to the linear system of algebraic equations 
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⎣

⎡

β−ααβλ
αβλ

1
0
0

2

101

1

0

3

2

1

222 J
M

C
C
C

, 

therefore 

( )[ ]

( )[ ] .

,

122
1

0
2

3222
1

0
1

C
J

M
C

CC
J

M
C

β
λ−α

=
β+λ−αβ

λ−α
=

−=
λ−α

β
=

β+λ−α
=

 

The solution (h) becomes 

( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β−β

β
λ−α

+
β+λ−α

=ϕ αλ tt
J

M tt cossinee
22

1

0 . 
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Application 2.4  

Problem. Determine the buckling critical force of a doubly hinged bar in an elastic 
medium, the coefficient of soil reaction of which is k . 

Mathematical model. The deflection w  satisfies the differential equation 

0
d
d

d
d

2

2

4

4
=++ kw

x
wP

x
wEI , (a) 

and is obtained combining the bending equation of a beam on elastic medium with 
buckling; we denote by P the compression forces and by EI the bending rigidity. Taking 
into account that ( ) 22 dd xwEIxM = , the following boundary conditions must be added 
to this ODE 

( ) ( ) ,0,00 == lww   ( ) ( ) 0
d
d,00

d
d

2

2

2

2
== l

x
w

x
w . 

Solution. The above model reprezents an eigenvalue problem. The linear homogeneous 
differential equation 

0
d
d

d
d

2

2

4

4
=++ w

EI
k

x
w

EI
P

x
w  (b) 

is of fourth order with constant coefficients. Searching a solution of the form rxw e= , 
we get the characteristic equation 

024 =++
EI
kr

EI
Pr , 

of roots 

EI
k

EI
P

EI
Prrrr −⎟

⎠
⎞

⎜
⎝
⎛±−±=

2

4321 22
,,, , (c) 

the solution depending on the sign of the expression kEIP 42 − . 
If kEIP 42 < , then the roots of the characteristic equation are complex conjugate, i.e. 

barrrr i,,, 4321 ±±= , where 

4EI
P

4EI
k a −= , 

4EI
P

4EI
k b += , (d) 

and the general solution is of the form 

bxaxCbxaxCbxaxCbxaxCw sinsinhcossinhsincoshcoscosh 4321 +++= . (e) 
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If kEIP 42 > , then the roots are imaginary and may be written in the form 121, ikrr ±= , 

243 i, krr ±= , where 

EI
k

2EI
P 

2EI
Pk −⎟

⎠
⎞

⎜
⎝
⎛−=

2

1 , 
EI
k

2EI
P 

2EI
Pk −⎟

⎠
⎞

⎜
⎝
⎛+=

2

2 . (f) 

The general solution takes the form 

xkCxkCxkCxkCw 24231211 cossincossin +++= . (g) 

For both solutions (e) and (g), the constants 1C , 2C , 3C , 4C  are determined by two-
point conditions, which lead to a homogeneous system of four linear algebraic equations; 
to get non-zero solutions, its associated determinant must vanish. It is thus obtained a 
characteristic equation, of mimimal root corresponding to the critical force. 
We consider the solution (g) (the solution (e) does not lead to real values for crP ), then 
we put the conditions 0=w  and 0dd 22 == xwEIM  for 0=x  and lx = , which 
lead to the system 

0
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⎥
⎥
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⎢
⎢
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⎣

⎡

C
C
C
C
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. 

The characteristic equation becomes 

( ) 0sinsin 21
22

1
2
2 =− lklkkk  

and it is satisfied for 

( )K,3,2,1, 21 =
π

= n
l

nkk . (h) 

The solution (g) is reduced to 

l
xnCw π

= ; 

the relationships (f) and (h) lead to 

2EI
P

l
n

EI
k

2EI
P −

π
=−⎟

⎠
⎞

⎜
⎝
⎛± 2

222

, 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

+
π

=
EIn

kln
l
EIPcr 42

4
2

2

2
. (i) 

 

Figure 2. 2. Buckling of a beam in an elastic medium 

The critical force is given by the minimal value in (i). Denoting  

EIn
kl

42

4

π
=γ , (j) 

we may write 

⎟
⎠
⎞

⎜
⎝
⎛ γ

+
π

= 2
2

2

2

n
n

l
EIPcr . (k) 

Hence, one must determine the integer number n of semiwaves which minimizes (k) 
(Fig.2.2). In the absence of the elastic medium ( )0=k  we get 0=γ  and the minimum 
takes place for 1=n , obtaining again Euler’s critical force 

2

2

l
EIPP Ecr

π
== . 

For increasing γ , the minimum takes place for K,3,2,1=n , hence if the deformed 
axis has one, two, three or more semiwaves. 

whence 
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The value crP  must be smaller for n than for 1−n  or 1+n , hence we must have 

( )
( )

( )
( )2

2
2

2
2

2

1
1

1
1

+

γ
++<

γ
+>

−

γ
+−

n
n

n
n

n
n . (l) 

The second inequality leads to 

( )
( ) 22

22 1
1

nn
nn

−+<
+

γ
−

γ  

or to 

( )22 1+<γ nn . 

Likewise, from the first inequality it results 

( ) 221 nn −>γ , 

so that 

( ) ( )2222 11 +<γ<− nnnn , (m) 

therefore: 40 ≤γ≤  for 1=n , 364 ≤γ≤  for 2=n , 14436 ≤γ≤  for 3=n , 
400144 ≤γ≤  for 4=n , a.s.o.; thus, one, two, three or four semiwaves are obtained. 

In general, if ( )22 1+=γ nn , the deformed curve may have n  or 1+n  semiwaves. 
If γ  is great, that is if the coefficient of soil reaction k  is great or if the bar length is 
great, then the number of semiwaves is also great. In these cases, the inequalities (l) are 
reduced to the approximate relation 4n=γ ; hence, one sees that 

2

2

2

4

2

2

2

2
22

l
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EI
kl

l
EI

l
EIPcr

π
π

=
π

γ=
⎟
⎟
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⎞
⎜
⎜
⎝

⎛

γ

γ
+γ

π
= , 

or, finally, 

kEIPcr 2= , (n) 

the critical force being thus independent of the bar length. One obtains the same result by 
differentiating the relation (k) 

022
d

d
32

2
=⎟

⎠
⎞

⎜
⎝
⎛ γ

−
π

=
n

n
l
EI

n
Pcr , 

as if n would take continuous values. One obtains the same value for γ . 
Practically, one determines first the non-dimensional quantity γ , then the consecutive 

integers between which is situated the value 4 γ=n . The minimal value of crP  is then 
given by (k) for n thus obtained. 
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Application 2.5  

Problem. Study the deformation of circular pipe in an elastic medium, assuming that it is 
acted upon by a uniformly distributed load along the vertex generator (Fig.2.3, a). 
Discussion. 

Mathematical model. One starts from the results and notations in Appl.2.2, i.e. from the 
differential equation 
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aZYw

IE
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d
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d
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⎛
ϕ
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ϕ⎟⎟
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⎛
++

ϕ
+

ϕ
. (a) 

 

Figure 2. 3. Circular pipe in an elastic medium: geometric and static schema. Loading with an 
uniformly distributed force along the vertex genetrix (a); the case of a loading acting in 

antigravitational direction (b) 

Assuming that the length of the pipe is great (theoretically infinite), the study is made on 
a span of unit length (the case of a plane state of deformation). 

Solution. The reaction of the elastic medium is specified by the foundation modulus k ; 
because there are not other distributed external loads, we may take 0== ZY . 
With the notation 

IE
ka

0

4
1 +=η , (b) 

the ODE (a) becomes 

0
d
d

d
d2

d
d 2

3

3

5

5
=

ϕ
η+

ϕ
+

ϕ
www , (c) 
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hence a linear homogeneous differential equation of 5th order with constant coefficients. 
Searching for a solution of the form ϕ= mw e , one obtains the characteristic equation 

02 235 =η++ mmm , 

with the roots 01 =m , β±α±= i,,, 5432 mmmm , where 

2
1−η

=α , 
2

1+η
=β . (d) 

The general solution of the equation (b) is thus of the form 

( ) ( ) βϕαϕ+αϕ+βϕαϕ+αϕ+= sinsinhcoshcossinhcosh 43210 CCCCCw , (e) 

where 43210 ,,,, CCCCC  are five integration constants which must be determined from 
the boundary conditions. 
The sectional efforts are given by (see Appl. 2.2) 
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 (f) 

Taking into account the displacement w, we get 

( )[{

( ) ]},coscoshsinh

sincoshsinh2

43

2102
0

βϕαϕ+αϕ−

βϕαϕ+αϕαβ−−=

CC

CCC
a

IE
M

, (g) 

( ) ( )[

( ) ( ) ],coscoshsinsinh

cossinhsincosh2

3232

41413
0

βϕαϕα−β+βϕαϕβ+α+

βϕαϕα−β+βϕαϕβ+ααβ⋅=

CCCC

CCCC
a

IE
T

 (h) 

( )[

( ) ].coscoshsinh

sincoshsinh

43

213
0

0

βϕαϕ+αϕ−

βϕαϕ+αϕ+=

CC

CC
a

IE
kaCN

 (i) 

Let us notice that the functions βϕαϕ coscosh  and βϕαϕ sinsinh  are even, while the 
functions βϕαϕ cossinh  and βϕαϕ sincosh  are odd. 
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In our case, the origin of the variable ϕ  is at the vertex. Considering the symmetry and 
the antisymmetry with respect to the vertical axis, respectively ( 0=ϕ  and π=ϕ ), 
there result the boundary conditions 

0
d
d

=
ϕ
w , (j) 

2
PT = ,  (k) 

for 0=ϕ  and 

0
d
d

=
ϕ
w , (l) 

0=T , (m) 
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d1d w
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a
ww

aIE
Ma

0
 (n) 

for π=ϕ . 
The last condition shows that there is no relative rotation between 0=ϕ  and π=ϕ ; 
taking into account the conditions (j) and (l), the condition (n) reduces to 

∫ =ϕ
π

0
0dw . (o) 

To simplify the calculus, we consider also the pipe loaded by the force P  applied in the 
antigravitational direction at the bottom (Fig.2.3, b). In this case, the boundary 
conditions are: condition (j) and 

0=T , ( k ′ ) 

for 0=ϕ  and (k) and 

2
PT −= , ( m′ ) 

for π=ϕ , as well as the condition (o). 
Conditions (j) and ( k ′ ) yield 032 =β+α CC  and 032 =α−β CC , accordingly, 
consequently 032 == CC , so that the solution (e) contains only even terms. 
The other three conditions lead to 

( )
( ) ,0cossinhsincosh

sincoshcossinh

4

1

=βπαπβ+βπαπα+
βπαπβ−βπαπα

C
C
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( )

( ) ,
4

sincoshcossinh
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The first two relationships involve 

( )βπ+απη

βπαπβ+βπαπα
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=
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( )βπ+απη
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=
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introducing these expressions in the third condition, we get 

IE
PaC

0
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0 2πη
−= . 

By means of the notations 

( )βπ+απαβη

βπαπβ+βπαπα
=

22 sinsinh4
cossinhsincoshA , 

( )βπ+απαβη

βπαπβ−βπαπα
=

22 sinsinh4
sincoshcossinhB , 

where α , β , η  are given by (b) and (d), the final expressions of w , M, T and N become 
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( ) ( )[ ]βϕαϕα+β+βϕαϕβ−α= cossinhsincosh
2

BABAPT ,

⎟⎟
⎠

⎞
⎜⎜
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2 2

2
BAPN . 

In the previous expressions, the sectional efforts appear as product of a dimensional 
factor IEPa 0

3  (for the deflections), Pa  (for the bending moment), and P  (for the 
shearing force and the axial force) by a factor which is a function of the angular velocity 
ϕ . As it is seen, only one parameter η  intervenes, which depends on the geometry of 
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the pipe (the radius a  and the moment of inertia I ), on the elastic medium (the 
foundation modulus k ), and on the material of the pipe (the modulus of elasticity 0E , 
corresponding to a state of plane deformation). 

 

Figure 2. 4. The w-diagram (a); the M-diagram (b); the T-diagram (c); the N-diagram (d) 

Tables 2.1, 2.2, 2.3, 2.4 contain the values of w , M, T, N as functions of ϕ  for various 
values of the parameter η . These values are plotted into the diagrams 2.4, a, b, c, d, 
corresponding to the values 0.3,5.2,0.2,5.1=η  and 0.5 . 
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Table 2.1. The values of 
IE

Pa
w

0

3
/  

 η φ0 
 1.5 2.0 2.5 3.0 5.0 10.0 

  0 +1.173 +0.560 +0.361 +0.262 +0.116 +0.041 
 10 +1.143 +0.540 +0.345 +0.249 +0.107 +0.035 
 20 +1.061 +0.489 +0.305 +0.215 +0.086 +0.024 
 30 +0.938 +0.414 +0.249 +0.169 +0.059 +0.012 
 40 +0.785 +0.327 +0.185 +0.119 +0.033 +0.003 
 50 +0.611 +0.233 +0.120 +0.069 +0.010 - 0.004 
 60 +0.427 +0.139 +0.058 +0.024 - 0.008 - 0.007 
 70 +0.239 +0.051 +0.002 - 0.015 - 0.021 - 0.009 
 80 +0.056 - 0.030 - 0.046 - 0.047 - 0.030 - 0.009 
 90 - 0.119 - 0.101 - 0.085 - 0.070 - 0.034 - 0.009 
100 - 0.281 - 0.161 - 0.114 - 0.087 - 0.036 - 0.008 
110 - 0.427 - 0.211 - 0.136 - 0.097 - 0.036 - 0.007 
120 - 0.555 - 0.249 - 0.151 - 0.102 - 0.034 - 0.007 
130 - 0.664 - 0.279 - 0.160 - 0.104 - 0.032 - 0.006 
140 - 0.753 - 0.301 - 0.165 - 0.104 - 0.030 - 0.006 
150 - 0.822 - 0.316 - 0.167 - 0.102 - 0.028 - 0.006 
160 - 0.871 - 0.326 - 0.168 - 0.100 - 0.027 - 0.006 
170 - 0.900 - 0.331 - 0.168 - 0.099 - 0.026 - 0.006 
180 - 0.910 - 0.333 - 0.168 - 0.098 - 0.025 - 0.006 

Table 2.2. The values of PaM /  

 η 
φ0 

 1.5 2.0 2.5 3.0 5.0 10.0 

  0 +0.225 +0.210 +0.196 +0.183 +0.148 +0.108 
 10 +0.143 +0.129 +0.116 +0.104 +0.072 +0.037 
 20 +0.072 +0.061 +0.050 +0.041 +0.017 - 0.005 
 30 +0.013 +0.007 +0.001 - 0.005 - 0.017 - 0.023 
 40 - 0.032 - 0.033 - 0.035 - 0.035 - 0.035 - 0.027 
 50 - 0.063 - 0.060 - 0.056 - 0.053 - 0.042 - 0.022 
 60 - 0.082 - 0.075 - 0.067 - 0.060 - 0.040 - 0.015 
 70 - 0.090 - 0.079 - 0.068 - 0.059 - 0.033 - 0.008 
 80 - 0.088 - 0.075 - 0.063 - 0.052 - 0.024 - 0.003 
 90 - 0.078 - 0.065 - 0.052 - 0.042 - 0.016 +0.001 
100 - 0.062 - 0.050 - 0.039 - 0.029 - 0.008 +0.002 
110 - 0.042 - 0.032 - 0.023 - 0.016 - 0.001 +0.003 
120 - 0.019 - 0.013 - 0.008 - 0.004 +0.004 +0.003 
130 +0.003 +0.005 +0.006 +0.007 +0.007 +0.003 
140 +0.024 +0.021 +0.019 +0.016 +0.009 +0.002 
150 +0.042 +0.035 +0.029 +0.024 +0.011 +0.002 
160 +0.056 +0.046 +0.037 +0.029 +0.011 +0.002 
170 +0.064 +0.052 +0.042 +0.032 +0.012 +0.002 
180 +0.067 +0.055 +0.043 +0.033 +0.012 +0.001 
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Table 2.3. The values of PT /  

 η φ0 
 1.5 2.0 2.5 3.0 5.0 10.0 

  0 - 0.500 - 0.500 - 0.500 - 0.500 - 0.500 - 0.500 
 10 - 0.441 - 0.429 - 0.418 - 0.407 - 0.373 - 0.317 
 20 - 0.371 - 0.350 - 0.330 - 0.311 - 0.251 - 0.163 
 30 - 0.296 - 0.269 - 0.242 - 0.219 - 0.147 - 0.055 
 40 - 0.219 - 0.190 - 0.162 - 0.137 - 0.066 +0.008 
 50 - 0.145 - 0.117 - 0.091 - 0.068 - 0.009 +0.036 
 60 - 0.076 - 0.053 - 0.032 - 0.014 +0.027 +0.042 
 70 - 0.015 +0.001 +0.014 +0.025 +0.076 +0.036 
 80 +0.037 +0.043 +0.048 +0.052 +0.052 +0.026 
 90 +0.077 +0.075 +0.071 +0.067 +0.049 +0.015 
100 +0.106 +0.095 +0.084 +0.073 +0.042 +0.007 
110 +0.124 +0.105 +0.088 +0.073 +0.033 +0.002 
120 +0.130 +0.107 +0.086 +0.068 +0.024 - 0.001 
130 +0.126 +0.101 +0.078 +0.059 +0.016 - 0.002 
140 +0.113 +0.088 +0.066 +0.048 +0.009 - 0.003 
150 +0.091 +0.071 +0.052 +0.037 +0.005 - 0.002 
160 +0.064 +0.049 +0.036 +0.025 +0.002 - 0.001 
170 +0.033 +0.025 +0.018 +0.012 +0.001 - 0.001 
180 0 0 0 0 0 0 

Table 2.4. The values of PN /  

 η φ0 
 1.5 2.0 2.5 3.0 5.0 10.0 

  0 +0.066 +0.051 +0.037 +0.024 - 0.011 - 0.051 
 10 - 0.017 - 0.030 - 0.043 - 0.055 - 0.088 - 0.123 
 20 - 0.088 - 0.098 - 0.109 - 0.118 - 0.142 - 0.164 
 30 - 0.146 - 0.152 - 0.159 - 0.164 - 0.176 - 0.182 
 40 - 0.191 - 0.192 - 0.194 - 0.195 - 0.195 - 0.186 
 50 - 0.222 - 0.219 - 0.216 - 0.212 - 0.201 - 0.182 
 60 - 0.242 - 0.234 - 0.226 - 0.219 - 0.199 - 0.175 
 70 - 0.249 - 0.238 - 0.228 - 0.218 - 0.192 - 0.168 
 80 - 0.247 - 0.234 - 0.222 - 0.211 - 0.184 - 0.162 
 90 - 0.237 - 0.224 - 0.211 - 0.201 - 0.175 - 0.159 
100 - 0.221 - 0.209 - 0.198 - 0.188 - 0.167 - 0.157 
110 - 0.201 - 0.191 - 0.183 - 0.175 - 0.160 - 0.156 
120 - 0.178 - 0.172 - 0.167 - 0.163 - 0.155 - 0.156 
130 - 0.156 - 0.154 - 0.153 - 0.152 - 0.152 - 0.156 
140 - 0.135 - 0.138 - 0.140 - 0.143 - 0.150 - 0.157 
150 - 0.117 - 0.124 - 0.130 - 0.135 - 0.148 - 0.157 
160 - 0.103 - 0.113 - 0.122 - 0.130 - 0.148 - 0.157 
170 - 0.095 - 0.107 - 0.118 - 0.127 - 0.148 - 0.158 
180 - 0.092 - 0.105 - 0.116 - 0.126 - 0.148 - 0.158 
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Application 2.6  

Problem. Study the buckling of a straight bar in a general case of support at both ends. 

Mathematical model. In a general case, the buckling of a straigth bar of length l , acted 
upon by compression forces P, leads to a linear ODE of fourth order 

0
dx
d

d
d

2

2
2

4

4
=β+

w
x
w , (a) 

where the parameter β  is given by EIP=β2 , EI being the bending rigidity. Particular 
case: a doubly built-in bar (Fig.1.49). 

Solution. Searching a solution of the form xβe , we get the characteristic equation 

0224 =λβ+λ , 

of roots 021 =λ=λ , β±=λ=λ i43 . The general solution of (a) and its derivative are, 
accordingly, 

DCxxBxAw ++β+β= cossin , 

( ) CxBxA
x
w

+β−ββ= sincos
d
d . 

Choosing the origin of x-coordinates at the upper end of the bar, the boundary conditions 
in the particular case mentioned above are 0=w , 0d/d =xw  for 0=x  and lx = . 
The four conditions lead to 

0

01sincos
1cossin
010
1010

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ββ−ββ
ββ

β

D
C
B
A

ll
lll

. 

This system has non-zero solutions only if 

( )[ ] 0sincos12

01sincos
1cossin
010
1010

=ββ−β−β−=

ββ−ββ
ββ

β
lll

ll
lll

. 

As 0≠β , one obtains again the solution given in Appl.1.34. 
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Application 2.7  

Problem. Determine the deflections of a beam in an elastic medium, assuming Winkler’s 
hypothesis ( kwp = , the pressure p is proportional to the displacement w , constk =  
being the coefficient of soil reaction). 

Mathematical model. The ODE which governs the deformation of the bar is of the form 

04
d
d 2

4

4
=β+

ϕ
ww , (a) 

where the parameter β depends on the elasticity of the medium. 

Solution. Searching for solutions of the exponential form xβe , one obtains the 
characteristic equation 

04 24 =β+λ , 

of roots ( )βi1λ,λ,λ,λ 4321 ±±= . 
The general solution may be expressed in one of the following forms 

xxAxxAxxAxxAw ββ+ββ+ββ+ββ= sinsinhsincoshcossinhcoscosh 4321 , (b) 

( ) ( )xDxCxBxAw xx β+β+β+β= ββ− sincosesincose , (c) 

where 4321 ,,, AAAA  and DCBA ,,, , respectively, represent integration constants. 
Starting from formula (b), we can introduce new integration constants, with a physical 
significance (initial parameters), i.e. : 0000 ,,, TMw ϕ , representing the deflection, the 
rotation, the bending moment, and the shearing force, respectively, at the left end of the 
bar (chosen as origin of x-co-ordinates). 
Introducing the functions 

( )
( )
( )
( ) ,sincoshcossinh

,sinsinh
,sincoshcossinh

,coscosh

4

3

2

1

xxxxxf
xxxf

xxxxxf
xxxf

ββ−ββ=β
ββ=β

ββ+ββ=β
ββ=β

 (d) 

we may express the deflection, the rotation, the bending moment, and the shearing force 
in the form 

( ) ( ) ( ) ( )xf
k

T
xf

k
M

xfxfww β
β

+β
β

−β
β
ϕ

+β= 4
0

3

2
0

2
0

10
2

2
, 

( ) ( ) ( ) ( )xf
k

T
xf

k
M

xfxfw
x
w

β
β

+β
β

−βϕ+ββ==ϕ 3

2
0

2

3
0

1040
22

d
d , 

(e) 
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( ) ( ) ( ) ( )xf
T

xfMxf
k

xf
kw

x
wEIM 2 β

β
+β+β

β
ϕ

−β
β

=−= 2
0

1043
0

32
0

2

242d
d , 

( ) ( ) ( ) ( )xfTxfMxf
k

xf
kw

x
wEIT 3 β+ββ+β

β
ϕ

+β
β

=−= 104032
0

2
0

3

22d
d . 

The above defined functions ( ) 4,3,2,1, =β ixfi , are often met in the mechanics of 
deformable solids. Their diagrams are given in Fig.2.5. 

 

Figure 2. 5. Graphics of functions ( ) 4,3,2,1, =β ixif  

Application 2.8  

Problem. Determine the critical moment crM  in the lateral buckling of a doubly hinged 
beam (Fig.2.6). 

Mathematical model. The lateral buckling of a beam subjected to pure bending in a 
vertical plane is governed by the differential equation 

0
d
d

d
d 2

0
2

2

4

4

1 =θ−
θ

−
θ

zEI
M

x
C

x
C , (a) 

where θ  is he rotation of the transverse section in its plane, zEI  is the bending rigidity 
with respect to the minimal neutral axis (vertical), C  and 1C  are the torsion and 
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hindered torsion rigidities, respectively, and 0M  are the bending moments applied at the 
end sections of the beam. 

 

Figure 2. 6. Lateral buckling of a doubly hinged beam of rotation 

The boundary conditions are 

( ) ( ) 0,00 =θ=θ l , ( ) ( ) 0
d
d,00

d
d

2

2

2

2
=

θ
=

θ l
xx

. (b) 

Solution. Using the notations 

,
2 1C
C

=α  ,
12

2
02
CEI

M
=β  0, >βα , (c) 

the equation (a) becomes 

0
d
d2

d
d 2

2

2

4

4
=θβ−

θ
α−

θ
xx

, (d) 

that is a linear, homogeneous differential equation with constant coefficients. The roots 
of the characteristic equation 

02 224 =β−αλ−λ  

are mi, 21 ±=λλ , n±=λλ 43 , , with 

22 β+α+α−=m , 22 β+α+α=n , (e) 

yielding the general solution 

nxAnxAmxAmxA coshsinhcossin 4321 +++=θ , 

( ) ( )nxAnxAnmxAmxAm
x2 coshsinhcossin

d
d

43
2

21
2

2
+++−=

θ . 
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Introducing the boundary conditions (b), we get the homogeneous algebraic system 

0

coshsinhcossin
coshsinhcossin

00
1010

4

3

2

1

2222

22
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

A
A
A
A

nlnnlnmlmmlm
nlnlmlml

nm
. 

Equating to zero the determinant of the coefficients, we get 

( ) 0sinhsin2 222 =+ nlmlnmn . 

The only factor which can vanish is 

0sin =ml . (f) 

The equation of the rotations of the cross sections is then given by 

mxA sin1=θ , 

where the constant 1A  remains non-determinate. 
From (f) one obtains the minimal value lm π= , and – returning to (c) – one has 

2

2
22

l
π

=β+α+α− . 

Introducing the relations (c), the critical moment becomes 

Cl
C

CEI
l

M zcr 2
1

2

1
π

+
π

= . 

Application 2.9  

Problem. Determine the critical rotative speed of a simply supported driving shaft. 

Mathematical model. The deflections w  satisfy the homogeneous differential equation 

0
d
d 2

4

4
=

ωγ
− w

gEI
A

x
w , (a) 

where ω  is the angular velocity, A  is the area of the cross section of the shaft, γ  is the 
unit weight of the material and g  is the gravitational acceleration. The boundary 
conditions are 0=w , xw d/d  for 0=x , lx = . 

Solution. Introducing the notation 

gEI
A 2

4 ωγ
=β , (b) 

the equation (a) becomes 
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0
d
d 4

4

4
=β− w

x
w , (c) 

with the general solution 

xCxCxCxCw β+β+β+β= sincossinhcosh 4321 , (d) 

where 4321 ,,, CCCC  are integration constants. The second derivative is given by 

( )xCxCxCxC
x
w
2 β−β−β+ββ= sincossinhcosh

d
d

4321
2

2
. 

Taking into account the boundary conditions, we get the homogeneous algebraic system 

0

sincossinhcosh
sincossinhcosh

00
0101

4

3

2

1

2222

22

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ββ−ββ−ββββ
ββββ

β−β

C
C
C
C

llll
llll

. (e) 

It has non-zero solutions only if the determinant of the coefficients vanishes. The 
characteristic equation thus obtained leads to 0sin =βl , that involves π=β nl , 

K,2,1=n . From the relation (b), we obtain thus the critical rotation speed 

4
2

2
242

A
gEI

l
n

A
gEI

cr γ
π

=
γ

β=ω . (f) 

The solution (d) is currently met in the mechanics of deformable solids. 

Application 2.10  

Problem. A very long beam (theoretically infinite) stays on an elastic medium and is 
acted upon by a concentrated transverse force P . Determine the deflection w , the 
rotation ϕ , the bending moment M and the sharing force T in an arbitrary cross section. 
Mathematical model. The origin of the x-co-ordinates may be chosen in any point, 
because the beam is of infinite length; but it is convenient to choose the point of 
application of the force P, to obtain diagrams with properties of symmetry or 
antisymmetry with respect to this point (Fig.2.7, a). 
The deflection is given by the general solution (see Appl.2.7) 

( ) ( )xDxCxBxAw xx β+β+β+β= ββ− sincosesincose , (a) 

where β  is a dimensional constant given by EIk 4/4 =β , where k  is the response of 
the elastic medium and EI is the bending rigidity of the beam. 
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Figure 2. 7. Beam of infinite length on elastic medium. Diagram of deflections (a). Diagram of shearing forces 
in the vicinity of the origin (b) 

Solution. At the origin we have 0d/d =xw , while the shearing force has a jump; at the 
right, we have 2r PT −=  (Fig.2.7, b). At infinity, the influence of the concentrated 

force vanishes, so that w , M and T tend to zero. As the factor xβe  increases indefinitely 
for ∞→x , we take 0== DC . We therefore get 

( )xBxAw x β+β= β− sincose , 

( ) ( )[ ]xBAxAB
x
w x β+−β−β==ϕ β− sincose

d
d , 

( )xAxBEI
x

wEIM x β−ββ=−= β− sincose2
d
d 2

2

2
, 

( ) ( )[ ]xABxBAEIwEIT x β−−β+β−=−= β− sincose2
xd

d 3
3

3
. 

(b) 

Introducing the above mentioned boundary conditions, it results kPBA 2β== , so 
that 

( )xx
k

Pw x β+β
β

= β− sincose
2

, 

x
k

P x β
β

−=ϕ β− sine
2

, 

( )xxPM x β−β
β

= β− sincose
4

, 

xPT x β−= β− cose
2

 for 0≥x . 

(c) 

We notice that formula (c) contains four functions of argument xβ , i.e.: 
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( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).sincose

,sincose

,sine

,cose

214

213

2

1

xxxxx

xxxxx

xx

xx

x

x

x

x

βψ−βψ=β−β=βψ

βψ+βψ=β+β=βψ

β=βψ

β=βψ

β−

β−

β−

β−

 (d) 

The functions ( ) 4,1, =βψ ixi , are usual in the mechanics of deformable solids; they are 
plotted into diagrams (Fig.2.8). 

 

Figure 2.8. Graphics of functions TMw ,,, ϕ  

Application 2.11  

Problem. Determine the deflection, the bending moment M and the shearing force T  for 
a beam on an elastic medium of elastic response k , acted upon by moments 0M  at its 
free ends. 

Mathematical model. We use the functions ( ) 4,1, =β ixf i , introduced in Appl.2.7 (see 
Fig.2.9), as well as the solution (e). The boundary conditions are 0, 00 === TTMM  
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for 0=x  and lx = . In the above mentioned formulae we therefore take 00 =T , 0M  
being a known value. 

 

Figure 2. 9. Beam on elastic medium acted upon at its ends by moments M0 

Solution. From the previous considerations, we obtain 

( ) ( ) ( )xf
k

M
xfxfww β

β
−β

β
ϕ

+β= 3

2
0

2
0

10
2

2
, (a) 

( ) ( ) ( ),
42 1043

0
32

0 xfMxf
k

xf
kw

M β+β
β
ϕ

−β
β

=  (b) 

( ) ( ) ( ).
22 4032

0
2

0 xfMxf
k

xf
kw

T ββ+β
β
ϕ

+β
β

=  (c) 

Introducing the boundary conditions in (b) and (c), we are led to 

( ) ( ) ( )

( ) ( ) ( );
22

,
42

4032
0

22
0

1043
0

32
0

xfMxf
k

xf
kw

xfMxf
k

xf
kw

ββ−=β
β

ϕ
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β

β−=β
β

ϕ
−β

β
 

the solution is given by 

( ) ( ) ( )
( ) ( ) ( )lflflf

lflflf
k

M
w

β+ββ

β+βββ
=

2
342

2
431

2
0

0
2

, 

( ) ( ) ( ) ( )
( ) ( ) ( )lflflf

lflflflf
k

M
β+ββ

ββ−βββ
=ϕ

2
342

4321
3

0
0

4
, 

where EIk 44 =β , EI being the bending rigidity. 
The values of the bending moment M are plotted into diagrams for various values of the 
argument lβ  (Fig.2.10). As it can be seen, lβ  has a strong influence on M; the greater 

lβ , the more the variation of M  has the character of a local perturbation (at the bar 
ends). 
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Figure 2. 10. Variation of the bending moments M for various values of the parameter lβ  

We notice that the boundary conditions for lx =  may be replaced by 0=ϕ  and 
0=T  for 2lx = , and the initial parameters become 
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. 

One may also take into account the geometric and the loading symmetry of the beam, 
choosing the origin of the x-co-ordinates at the middle of the span. In this case, the initial 
parameters 0ϕ  and 0T  vanish. We put the boundary conditions MM =  and 0=T  for 

2lx =  (we denote by M  the moments at the beam ends); by means of 

( ) ( )xf
k

M
xfww β

β
−β= 3

2
0
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2

, 

( ) ( ),
2 1032

0 xfMxf
kw

M β+β
β

=  

( ) ( ) ,
2 402

0 xfMxf
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T ββ+β
β

=  

we obtain the initial parameters 
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Application 2.12  

Problem. Determine the general expression of the deflections of a beam of span l, acted 
upon by two uniformly distributed loads of intensities 1p  and 2p  (Fig.2.11). 

Mathematical model. The deflections w  are given by the differential equation 

( )
EI

xp
x
w

=4

4

d
d , (a) 

where ( )xp  is the transverse load and EI is the bending rigidity. 

 

Figure 2. 11. Beam acted upon by two uniformly distributed loads 

Solution. The general solution of the homogeneous differential equation is given by 

43

2

2

3

1 !2!3
CxCxCxCEIw +++= . (b) 

To obtain a particular solution of the non-homogeneous ODE, we use Cauchy’s integral 
relationship, i.e. 
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( ) ( ) ( ) ( )∫∫∫∫∫ −
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in our case, 4=n  and the particular solution becomes 
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We notice that the load is expressed in the form 
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In this case 
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(f) 
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We observe that at the common end of two intervals the deflections are continuous, 
while in the expression of pw  appears a supplementary term. 

Introducing the Macaulay brackets K , the general expression of pw  reads 
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( ) ( )
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 (g) 

with the convention that the respective term must be considered only for the positive 
argument. 

Application 2.13  

Problem. Determine the traiectory of an electrized particle in an electromagnetic field of 
intensity E and induction B. 
Mathematical model. The components of the two forces are represented in Fig.2.12 with 
respect to an orthogonal reference trihedron Oxyz. The resultant force is 

BvEF xqq += , where q is the electric load, v is the velocity of the particle, and the 
second term is Lorenz’s force. We have 

ji
kji

Bv BvBv
B
vvv xyzyx −==

00
x ; 

to study the motion, we introduce Newton’s equation 

raF &&mm == ,  

where m  is the mass of the particle. 

Solution. Projecting on the three axes of co-ordinates, we obtain the equations of motion 

Bqvxm y=&& , (a) 

BqvqEym xy −=&& , (b) 
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.zqEzm =&&  (c) 

 

Figure 2. 8. Electrized particle in an electromagnetic field 

The equation (c) may be considered separately. By integration, we get 

1d Ct
m

qEt
m

qEz zz +=∫=& , 

the constant 1C  being determined by the initial condition ( ) 00 zvz =& . One obtains 
0

1 zvC =  and 

0
z

z vt
m

qEz +=& . 

A new integration gives 

2
02

2
Ctvt

m
qE

z z
z ++= . 

The condition ( ) 00 =z  leads to 02 =C , so that 

tvt
m

qE
z z

z 02
2

+=  (d) 

represents a uniformly accelerated motion along the z-axis, of acceleration mqEa zz = . 
For the other two axes, we may write the equations (a) and (b) in the form 

yqBxm &&& = , xqBqBym &&& −= . (e) 

Eliminating the function y , we obtain 
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2

2

2

22

m

BEq
x

m
Bqx y=+ &&&& , (f) 

hence a linear non-homogeneous third order ODE with constant coefficients. 
The ratio mq  represents the elastic load on the unit mass. 
Denoting by 

2
2

22
ω=

m
Bq , 2

2

2

R
m

BEq y = , (g) 

the equation (f) becomes 
22 Rxx =ω+ &&&& . 

As the right member of this ODE is a constant, we find easily the particular solution 
BtEx yp /= . Searching for an exponential solution tx λ= e  of the associated 

homogeneous ODE, one obtains the characteristic equation 

( ) 02223 =ω+λλ=λω+λ , 

having three roots, 01 =λ , ω±=λλ i, 32 . Thus, the general solution of the associated 
homogeneous ODE is 

tDtDDxh ω+ω+= sincos 321 , 

hence, the general solution of the non-homogeneous ODE is finally given by 

t
B

E
tDtDDx y+ω+ω+= sincos 321 . (h) 

The first equation (e) gives 

constcossinconst 32 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ωω+ωω−=+= tDtD

B
E

qB
mx

qB
my y&  

or, finally, 

( ) constcossin 32 +ω+ω−
ω

= tDtD
qB
my . (i) 

The four integration constants are determined by the initial conditions ( ) 00 =x , 

( ) 00 =y , ( ) ( ) 00 0,0 yx vyvx == && . They are 

2

0

1 ω
=

m
qBv

D y , 2

0

2 ω
−=

m
qBv

D y , 
ω

−
ω

=
B
Ev

D yx
0

3 , 2

0

4 qB
mE

qB
mv

D yx +−= , 
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so that 

( ) ( )

( ) .sincos1

,sinsincos1

0

2

0

2

0

t
v

t
qB

mE
y

t
v

tt
B
E

t
m

qBv
x

yy

xyy

ω
ω

+ω−=

ω
ω

+ω−ω
ω

+ω−
ω

=

 

Taking into account the notation (g), the displacements x and y read 

( ) ( )

( ) .cos1sin

,sincos1sin

0

00

xt
B

E
tv

qB
my

tt
B

E
tvtv

qB
mx

y
y

y
yx

&ω=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ω−+ω=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ω−ω+ω−+ω=

 

We obtained the parametric equations of the projection of the trajectory on the xyO -
plane; this projection is a trochoid. 

Application 2.14  

Problem. A circular cylindrical tank, of a very great length is subjected to an internal 
constant pressure p . Assuming that at the bottom end the envelope is articulated to the 
corresponding circular plate, determine the deflection w  and the bending moment xM . 

Mathematical model. The ODE of the deflection is 

K
pw

x
w

−=β+ 4
4

4
4

d
d , 

where β is a constant damping coefficient, while K is the bending rigidity of the 
cylindrical shell. 

We consider the cylindrical tank of semi-infinite length. Choosing the origin of the x-co-
ordinates at the bottom (Fig.2.13), the boundary conditions are 0=w , 0d/d 22 =xw  
for 0=x . 

Solution. Obviously, a particular solution of the above non-homogeneous ODE with 
constant coefficients is 

44 β
−=

K
pwp ; 

searching for solutions of the associated homogeneous equation of the exponential form 
xλe  , we get the characteristic equation 

04 44 =β+λ , 
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of roots ( )β±±=λλλλ i1,,, 4321 . 

 

Figure 2. 9. Circular cylindrical bunker 

Hence the general solution of the non-homogeneous equation is 

( ) ( )[ ]xDxCxBxA
K
pw xx β+β+β+β+
β

−= ββ− sincosesincose1
4 4 , 

where DCBA ,,,  are integration constants. 
For ∞→x , the conditions are satisfied only if 0== DC . One obtains thus 

( )[ ]

( ) ( )[ ]

( ).sincose
2d

d

,sincose
4d

d

,sincose1
4

22

2

3

4

xAxB
K
p

x
w

xBAxBA
K
p

x
w

xBxA
K
pw

x

x

x

β−β
β

=

β++β−
β

=

β+β+
β

−=

β−

β−

β−

 

The conditions at the bottom 0=x  lead to 

( ) ( )

( ) ,0
2

0
d
d

,01
4

0

22

2

4

=
β

=

=+
β

−=

B
K
p

x
w

A
K
pw

 

yielding 1−=A , 0=B . The general solution becomes 

( )x
K
pw x β−
β

−= β− cose1
4 4 , 
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xe
p

M x
x β

β
= β− sin

2 2
. 

Application 2.15  

Problem. A circular cylindrical tank of vertical axis is subjected to an internal pressure 
p . Assuming that at both the bottom ( 0=x ) and the upper end ( lx = ) the envelope is 

articulated to rigid plates, determine the deflections w and the bending moments 
22 d/d xwKM x −= , K being the bending rigidity of the plate. 

Mathematical model. The differential equation of the deflection is given by (see also the 
previous application) 

K
pw

x
w

−=β+ 4
4

4
4

d
d , (a) 

where β  is a constant damping coefficient, and the boundary conditions are 0=w , 
0d/d 22 =xw  for 0=x  and lx = . 

Solution. We may choose the particular solution 44/ β−= Kpw p  for the non-
homogeneous equation. In this case, it is convenient to express the general solution of 
the associated homogeneous equation in terms of hyperbolic functions, which are linear 
combinations of the exp-functions. We finally get the general solution of the non-
homogeneous equation (a) in the form 

(

).sinsinhsinh

sincoshcoscosh1
4

43

214

xxCxsxcoC

xxCxxC
K
pw

ββ+ββ+

ββ+ββ+
β

−=
 (b) 

Its second derivative is 

(

).sinsinhcossinh   

sincoshcoscosh
2d

d

12

3422

2

xxCxxC

xxCxxC
K
p

x
w

ββ−ββ+

ββ−ββ
β

−= . (c) 

From ( ) 00 =w , we obtain 11 −=C . 

Analogously, the condition ( ) 00
d
d

2

2
=

x
w  leads to 04 =C .  

The same conditions for lx =  yield the relationships 

,sinsinhsincoshcossinh
,coscosh1cossinhsincosh

32

32

llllCllC
llllCllC

ββ−=ββ−ββ
ββ+−=ββ+ββ
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therefore 

( )

( ) .
sinsinh

coscoshsinh

,
sinsinh

coscoshsin

223

222

ll
lllC

ll
lllC

β+β
β−ββ

−=

β+β
β−ββ

−=
 (d) 

Eventually, one obtains 

( )xxCxxCxx
K
pw ββ+ββ+ββ−
β

−= cossinhsincoshcoscosh1
4 324

, 

( )xxxxCxxCpM x ββ+ββ+ββ−
β

= sinsinhcossinhsincosh
2 232 , 

where 2C  and 3C  are given by (d). 
Choosing the origin of the co-ordinates x at the middle of the height (for the sake of 
symmetry), we take 032 == CC  in (b) and we have 

( )

( ).sinsinhcoscosh
4d

d

,sinsinhcoscosh1
4

1442

2

414

xxCxxC
K
p

x
w

xxCxxC
K
pw

ββ−ββ
β
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ββ+ββ+
β

−=

 (e) 

Applying now the conditions ( ) ( ) 02/
d
d,02/

2

2
== l

x
wlw , it results 
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=
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which means 
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2
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2
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2
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2
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Application 2.16  

Problem. Determine the radial displacements u , the radial stress rσ  and the annular 
stress ϕσ  for a circular (or annular) disk acted upon by an axially symmetric load. 
Application for the annular disk in Fig.2.14. 

 

Figure 2. 10. Annular disk 

Mathematical model. The displacements u  verify the linear second order ODE 

0
d
d1

d
d

22

2
=−+

r
u

r
u

rr
u , (a) 

where r  is the vector radius. The radial stress and the annular stress are given by 

0
d
d

1 2
=⎟

⎠
⎞

⎜
⎝
⎛ ν+

ν−
=σ

r
u

r
uE

r , 0
d
d

1 2
=⎟

⎠
⎞

⎜
⎝
⎛ ν+

ν−
=σϕ r

u
r
uE , (b) 

respectively. 

Solution. The homogeneous linear ODE is of Euler type; we search for solutions of the 
form λ= ru . The characteristic equation is 

012 =−λ  

and has the roots 1, 21 ±=λλ . The general solution for the radial displacement is 
therefore 

r
BAru += . 

The stresses are given accordingly by 
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( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ ν−−ν+
ν−

=σ
22

111
1 r

BAE
r ,  (c) 

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ ν−+ν+
ν−

=σϕ 22
111

1 r
BAE . (d) 

In the particular case of an annular disk (Fig.2.14), one determines the integration 
constants using the boundary conditions ( ) par −=σ  and ( ) 0=σ br . It results 

( )
22

21
ab

a
E

p
A

−

ν−
= , 

( )
22

221
ab

ba
E

p
B

−

ν+
= , 

so that the stresses read 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=σ 2

2

22

2
1

r
b

ab
pa

r , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=σϕ 2

2

22

2
1

r
b

ab
pa , 

Their distribution is given in Fig.2.14. 

Application 2.17  

Problem. Determine the buckling critical force of a cantilever bar the moment of inertia 
of which has a variation given by ( )20 axII x =  (Fig.2.15). 

 

Figure 2. 11. Pillar of variable cross section subjected to compression 

Mathematical model. The differential equation of the deformed axis is 

0
d
d

2

2
=+ Pw

x
wEI x ; (a) 
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taking into account the expression of xI , one obtains 

0
d
d

0

2

2

2
2 =+ w

EI
Pa

x
wx . (b) 

To this ODE we add the boundary conditions ( ) 0=aw and ( ) 0
d
d

=+ la
x
w . 

Solution. The linear homogeneous ODE is of Euler type, thus we search for solutions of 
the form λ= xw ; the corresponding characteristic equation 

( ) 01
0

2
=+−λλ

EI
Pa  

has the roots β±=λλ i21, 21 , with the notation 

4
1

0

2
−=β

EI
Pa . (c) 

Thus, the solution may be expressed in the form 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛β+⎟

⎠
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⎜
⎝
⎛β=

a
xB

a
xA

a
xw lncoslnsin , 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛β⎟

⎠
⎞

⎜
⎝
⎛ β++⎟

⎠
⎞

⎜
⎝
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⎠
⎞

⎜
⎝
⎛ β−=

a
xAB

a
xBA

axx
w lncos

2
lnsin

2
1

d
d . 

The boundary conditions lead to 0=B  and to 

( )
0lncos2lnsin

2
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +
ββ+⎟

⎠
⎞

⎜
⎝
⎛ +
β

+ a
la

a
la

laa
A . 

As 0≠A , one obtains the equation 

02lntan =β+⎟
⎠
⎞

⎜
⎝
⎛ +
β

a
la . (d) 

For a given ratio al , one obtains the minimal value β  from (d); the relationship (c) 
determines the critical force 

( )2
0

2
2

2
0

4
1

l
EI

a
EI

Pcr
μ

π
=⎟

⎠
⎞

⎜
⎝
⎛ +β= . (e) 

To solve numerically the equation (d), we write it in the form 
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0
ln

2lnlntan =
+

⋅
+

β+⎟
⎠
⎞

⎜
⎝
⎛ +
β

a
laa

la
a

la . 

Denoting by 

a
laa

lau
+

−=γ
+

β=
ln

2,ln , 

the above equation is put in the form 

γ=
u

utan ; 

to solve it, one may use the Table 1.2. For various values of the ratio la , the values of 
u , β  and μ  are given in Table 2.5. 

Table 2.5. The values of u, β and μ for [ ]10,2.0/ ∈la  

la /  umin (rad) β μ 
 0.2 1.993206  1.112429 0.51517 
 0.5 1.858220  1.691425 0.89059 
 1 1.764719  2.545951 1.21083 
 2 1.690173  4.168480 1.49658 
 3 1.657368  5.761110 1.62980 
 5 1.626775  8.922560 1.75772 
10 1.600561 16.793180 1.86993 

The variation of the buckling length llb μ=  as a function of the ratio la  is given in 
Fig.2.16. 

 

Figure 2. 12. Variation of the buckling length as a function of the ratio la  
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For ∞→la  one obtains 2=μ , that is the value corresponding to a cantilever bar of 
constant cross section. 
The variable moment of inertia considered above corresponds approximately to a cross 
section formed by four corner irons, the moment of inertia of which with respect to the 
own axis is negligible with respect to the product 42dA  ( A  is the area of the cross 
section of a corner iron and d  is the distance between the centers of gravity of two 
adjacent corner irons). 

Application 2.18  

Problem. Study the symmetric state of stress with respect to the pole in plane elasticity. 

Mathematical model. The plane state of stress in an axially symmetric case is governed 
by the differential equation 

0=ΔΔF , (a) 

where ( )rFF =  is a potential function. 

Solution. In polar co-ordinates, Laplace’s operator is 

rrr d
d1

d
d

2

2
+=Δ , 

in the axially symmetric case. Successive differentiations 
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lead to the biharmonic equation 

0
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d
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d
d
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which finally yields an ODE of Euler type 

0
d
d

d
d

d
d2

d
d

2

2
2

3

3
3

4

4
4 =+−+

r
Fr

r
Fr

r
Fr

r
Fr . (b) 

Searching for solutions of the form λr , one obtains the characteristic equation 

( )( )( ) ( )( ) ( ) ( ) 02λλλ1λλ2λ1λλ23λ2λ1λλ 22 ==++ , 

with the double roots 0, 21 =λλ , 2, 43 =λλ . 
The general solution is then 
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( ) DCrrBrrArF +++= 22 lnln , 

where the integration constants DCBA ,,,  must be determined from the boundary 
conditions. 
Due to the logarithmic terms, 0=r  is a pole. In the case of a circular disk one must take 

0== BA , while in the case of an annular disk one has 0, ≠BA . 

Application 2.19  

Problem. Determine the deflections w  of a circular (or annular) plate of constant 
thickness in case of an axially symmetric state of stress and strain with respect to its 
centre. 
Particular case: a simply supported circular plate acted upon by a uniformly distributed 
load constp =  (Fig.2.17). 

 

Figure 2. 13. Circular plate acted upon by a uniformly distributed load. Diagrams of the deflections w, the 
radial moments Mr, the annular moments Mφ and the shearing force Tr 

Mathematical model. The deflections satisfy the ODE 

( )
K
rp

r
w

rr
w

rrr
=⎟⎟

⎠

⎞
⎜⎜
⎝
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d
d
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2

2

2
, (a) 

where ( )rp  is the external load and const=K  is the bending rigidity of the plate. 
The bending moments are given by 
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⎟
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KM , (b) 

where ν is the coefficient of transverse contraction of the material. 

Solution. As we have seen in Appl.2.18, the general solution of the homogeneous 
equation (a) is of the form 

DCrrBrrAwc +++= 22 lnln . 

To obtain a particular solution of the non-homogeneous equation, we notice that 
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The equation (a) may be thus written 
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after integration, we get 
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Multiplying both members by r, it follows 
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A new integration leads to 

( )∫ ∫∫= rrrp
r
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w

r p ddd1
d

d
. 

Thus, the general solution of the equation (a) reads 

( ) DCrrBrrAwrw p ++++= 22 lnln ,  

whence 
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( )∫ ∫ ∫∫= rdrdrdrd1 rrp
r

r
rK

w p . (c) 

The bending moments are of the form 

( ) ( ) ( ) ( ) ⎥⎦

⎤
⎢⎣
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KM pp 1231ln1211

2
. 

(d) 

In the particular case of a simply supported plate one must take 0== BA , to have a 
finite displacement for 0=r ; on the boundary one has ( ) 0=aw , ( ) 0=aM r . 
The general solution becomes 

DCrww p ++= 2 , 

( )+++= Cw
r

wKM ppr ν12ν , 

( )+++= Cww
r

K pp ν12ν1 . 
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If ( ) const== prp , then the particular solution becomes 
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The formulae (e) take the form 
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(f) 

Introducing the boundary conditions 
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one obtains the integration constants 

K
pa

C
321

3 3

ν+
ν+

−= , 
K

pa
D

641
5 4

ν+
ν+

= . 

The formulae (f) thus become 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ν+
ν+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ν+
ν+

+
ν+
ν+

−=
2

2

2

244224

1
51

64641
5

321
3

64 a
r

a
r

K
pa

K
pa

K
rpa

K
prw , 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−ν+=

2

22
1

16
3

a
r

K
pa

M r , 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ν+−ν+=ϕ 2

22
313

16 a
rpaM , [ ]ar ,0∈ . 

A global equilibrium (for a plate δ  of radius r) 
22 aprTr π−=π⋅  

leads to 

2
prTr −= . 

The variations of w , rM , ϕM , and rT  are given in Fig.2.17. 

Application 2.20  

Problem. Study the deflection w of a beam on an elastic medium, of variable response 
depending on the law 

( )4
4

lx
lk
β+

α
= , (a) 

where x  is the abscissa (measured from the left end of the beam), l is the bar length, α  
and β  are parameters characterizing the variability of k. 

Mathematical model. In the absence of the distributed loads, the differential equation of 
the problem is of the form  

0
d
d

4

4
=+ w

EI
k

x
w , (b) 
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where const=EI  is the bending rigidity of the beam. We assume that  

[ ]1,04 ∈α=γ EIl . (c) 

Solution. Replacing (a) in (b), one obtains the linear ODE 

( ) 0
d
d

4

4
4 =γ+β+ w

x
wlx . (d) 

The equation (d) is of Euler type; assuming a solution of the form ( )rlxw β+= , we get 
the characteristic equation 

( )( )( ) 0321 =γ+−−− rrrr . 

If we write this equation in the form 

( )( ) ( ) ( ) ( ) γ−=+−=+−+−=++−− 11313231233 2222222 rrrrrrrrrr , 

then, taking into account the interval mentioned in (c), we get the real and distinct roots 

γ−+±= 1
4
5

2
3, 21 rr , γ−−±= 1

4
5

2
3, 43 rr . 

The general solution of the ODE (d) reads 

( ) ( ) ( ) ( ) 4321
4321

rrrr lxClxClxClxCw β++β++β++β+= , (e) 

where the integration constants 4,3,2,1, =iCi , must be determined by boundary 
conditions. 

Application 2.21  

Problem. Consider a circular cylindrical tank of radius R  and height l , the thickness of 
which has a parabolic variation between the values sδ  (at the upper end) and 0δ  (at the 
bottom of the tank). Determine the general expression of the deflection w . 

Mathematical model. The deformation of tank walls is governed by the differential 
equation 

Zw
a

E
x
wK

x
x

x −=
δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
22

2

2

2

d
d

d
d , (a) 

where Z is the normal component of the internal load, due to a liquid of unit weight γ , 

xδ  is the wall thickness and ( )23 112 ν−δ= xx EK  is the bending rigidity at the abscissa 
x  and ν,E  are the elastic constants of the material. 
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Solution. One chooses the origin of the x-co-ordinates at the section where – theoretically 
– the wall thickness vanishes (Fig.2.18). The thickness of the wall is given by the 
parabolic law 

( )2
2

0
la

x
x

+
δ=δ , (b) 

where a  is the distance from the origin to the upper end of the tank. Taking into account 
that sx δ=δ  for ax = , it results 

1

1

0 −
δ
δ

=

x

a . 
(c) 

 

Figure 2. 14. Circular cylindrical tank the thickness of which has a parabolic variation 

The loading Z is of the form 

( )xaZ −γ= , (d) 

as we have ( ) 0=aZ  and for lax +=  it results lZ γ−= , corresponding to the 
hydrostatic pressure ( 0>Z  towards the interior of the tank). 
The bending rigidity becomes 
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( ) ( ) ( )
6

6
0

6

6

2

3
0

112
x

la

K

la
xE

K x
+

=
+ν−

δ
= , ( )2

3
0

0
112 ν−

δ
=

E
K , (e) 

so that the differential equation (a) reads 

( ) ( )
( )xawx

laR
E

x
wx

xla
K

−γ=
+

δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
2

22
0

2

2
6

2

2

6
0 1

d
d

d
d  

and further 

( ) ( ) ( )xa
K

lawxla
RK

E
x
wx

x
−

+γ
=+

δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0

6
24

2
0

0
2

2
6

2

2

d
d

d
d .  

Differentiating the first term in the previous equation, we have 

( )
2

0

6
4

2

2
2

3

3
3

4

4
4 4

d
d30

d
d12

d
d

x
xa

K
law

x
wx

x
wx

x
wx −+γ

=β+++ , (f) 

with the notation 

( ) ( ) ( )4
2
0

2

2
4

2
0

04 1124 la
R

la
RK

E
+

δ

ν−
=+

δ
=β . (g) 

The equation (f) is a linear, non-homogeneous ODE of Euler type. 
For this equations, we firstly search a particular solution of the form 

( )
2x

xaAwp
−

= , (h) 

where A is a constant to be specified. Introducing this in (f), we obtain 

( )
( )4

0

6

34
1
β+

+γ
=

K
laA , (i) 

so that the particular solution is 

( )
( ) 24

0

6

34 x
xa

K
lawp

−
β+

+γ
= . (j) 

At the upper end ( ax = ) we have 0, =spw , while at the bottom ( lax += ) we have 

( )
( )4

0

4

0, 34 β+
+γ

−=
K

lalwp . 

The general solution 0w  of the homogeneous equation 
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04
d

d
30

d
d

12
d

d
0

4
2
0

2
2

3
0

3
3

4
0

4
4 =β+++ w

x
w

x
x
w

x
x
w

x  (k) 

is searched in the form rxw =0 , where the parameter r  must be specified. 
Differentiating 

( ) 2
2
0

2
1

d
d −−= rxrr

x
w

, ( )( ) 3
3
0

3
21

d
d −−−= rxrrr

x
w

, ( )( )( ) 4
4
0

4
321

d
d −−−−= rxrrrr

x
w

 

and introducing in (k), we get the associated characteristic equation 

( )( )( ) ( )( ) ( ) 041302112321 4 =β+−+−−+−−− rrrrrrrrr , 

which may be also written in the form 

( ) ( ) 04343 4222 =β++−+ rrrr . 

To solve this equation, we write further 

( ) ( ) ( ) ( )14144343 44222 −β−=β−=++−+ rrrr . 

So, the roots are qprr i, 121 ±= , qprr i, 243 ±= , where 

01764225
22

1
2
3 4

1 >+β++−=p , 

01764225
22

1
2
3 4

2 <+β+−−=p , 

01764225
22

1 4 >−β+=q . 

Taking into account the complex form of the roots 4,1, =iri , this solution may be 
written as  

( ) ( ) ,i
4

i
3

i
2

i
1

i
4

i
3

i
2

i
10

21

2211

qqpqqp

qpqpqpqp

xCxCxxCxCx

xCxCxCxCw
−−

−+−+

′+′+′+′=

′+′+′+′=
 

where 4,1, =′ iCi , are integration constants, or, equivalently, 

( ) ( )[ ] ( ) ( )[ ]xqCxqCxxqCxqCxw pp lnsinlncoslnsinlncos 43210
21 +++= . (l) 

The general solution of the ODE (a) is thus pwww += 0 , where 0w  is given by (l) and 

pw , by (j). The constants 4,1, =iCi , will be determined from convenient boundary 
conditions, put at both ends of the tank. 
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The above solution is suggested by a study of E. Steuermann. 

Application 2.22  

Problem. Consider a cantilever column of length l  and minimal flexural rigidity EI, 
subjected to axial compression forces P and immersed in an elastic medium of response 
constant k , corresponding to a Winkler model. Determine the deformed axis and the 
critical load (see ). 

Mathematical model. The action of the elastic medium is equivalent to the transverse 
load 

( ) ,0, ≥−= kkwxg  (a) 

where for 0=k  the elastic medium does not exist and for ∞→k  this a rigid one and 
the bifurcation of the equilibrium does no more take place; ( )xw  is the transverse 
displacement of the axis of the column in the cross section of abscissa x  (Fig.2.19). This 
model corresponds e.g. to piles driven in the earth, which can suffer displacements at the 
upper end. 

 

Figure 2. 15. Cantilever column in an elastic medium 

The bending moment in a current cross section is given by 

( ) ( ) ( )xMyPxM q+−δ−= , 

where qM  is the bending moment due to the load q; noting that 
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kyqMMyEI q =−=′′−=′′ ,  

we can write 

0=+′′+ kyyPEIy IV . 

By using the notations 

42 ,2 b
EI
ka

EI
P

== , (b) 

we obtain the ODE of the problem 

02 42 =+′′+ ybyay IV . (c) 

The boundary conditions are two-point conditions of the form 

( ) ( ) 00,00 =′= yy  (d) 

for the built-in cross section and of the form 

0,0 =′+= yPTM , 

where MT ′−='  is the shearing force, i.e. of the form 

( ) ( ) ( ) 02,0 2 =′+′′′=′′ lyalyly  ( d′ ) 

at the free end of the column. 
The deflection curve of the column is only specified up to a multiplicative factor, 
because the phenomenon has been linearized. 

Solution. We introduce the conventional load 

EIkP 20 =  (e) 

and the critical Euler type load 

2
cr

2

cr
l

EIP π
= , ( e′ ) 

where crl  is the critical length in case of buckling. 
If 0r PPc < , i.e. if 22 ba < , then we can use the solution 

( )
,sinsinhcossinh        

sincoshcoscosh

124123

122121

xxCxxC
xxCxxCxy

ββ+ββ+
ββ+ββ=

 (f) 

where 
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0

cr22cr
2,1 1

2
1

2
12

2
1

P
P

bab
EI
P

EI
k

±=±=±=β ; ( f ′ ) 

the boundary conditions ( d′ ) become 

( ) ( ) ( ) ( ) 02,0 2
2

2
1 =′β−β+′′′=′′ lylyly . ( d ′′ ) 

The boundary conditions (d) lead to 01 =C , 03221 =β+β CC , so that 

( ) ( ) ( )

( ) ( );cossinhsincoshsinsinh1         

cossinhsincoshsinsinh

1211224122
2
2

2
1

2

1211224123122

xxxxCxxC

xxxxCxxCCxy

βββ+βββ+βββ+β
β

=

βββ+βββ+βββ−β=′
 

we obtain 

( ) ( ) ( )

( )[ ]
( ) ( ) ( )[ ]

( ) ( )[ ].cossinh3sincosh3         

coscosh2sinsinh1
,coscosh2cossinh         

cossinhsincosh1

121
2
2

2
1122

2
2

2
14

122112
2
2

2
12

2
2

2
1

2

122112
2
2

2
14

1211222
2
2

2
1

2

xxxxC

xxxxCxy

xxxxC

xxxxCxy

ββββ−β+ββββ−β−

ββββ−βββ−ββ+β
β

−=′′′

ββββ−βββ−β−

βββ+ββββ+β
β

=′′

 

The conditions ( d ′′ ) lead to a linear algebraic system 

( ) ( )
( )[ ]

( )[ ]
( ) ,0cossinhsincosh 

coscosh2sinsinh

,0coscosh2sinsinh

cossinhsincosh

12112242

122112
2
2

2
12

122112
2
2

2
142

1211222
2
2

2
1

=βββ−ββββ−
ββββ+βββ−β

=ββββ−βββ−ββ−

βββ+ββββ+β

llllC
llllC

llllC

llllC

 

where we admit that 022
2

2
1 ≠=β+β b  (if not, we have 0=k , that is absence of the 

elastic medium). To obtain a bifurcation of the equilibrium, i.e. a deformation of the axis 
of the column ( 0, 42 ≠CC ), the equation 

( )( )
( ) llll

llll

1
2

2
22

2
2
11

2
2

22
2

2
1

1
2

2
22

11
2

2
22

2
2
2

2
1

coscosh4sinsinh

cossinhsincosh

ββββ−βββ−β=

βββ−ββββ+β
 (g) 

must be verified; this is the characteristic equation, which leads to the critical load. 
The deflection curve is given by 
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( ) ( )[{

( )[
( )] },sincoshsin        

sinhcossinh        

cossinh
sinsinh

1212

21122

1211
1

22
22

22
1

xxll
xllx

xll
ll

xy

β−βββ−
−ββββ−β−

−ββββ
ββ+ββ

δ
=

 
(h) 

where we have introduced the deflection ( )ly=δ  at the free end of the column; the 
bending moment is 

( ) ( )( )
( )( ){
( )
( )[ ] ( )[

]}.coscosh2sinsinh      
coscosh2sinsinh

cossinhsincosh        
cossinhsincosh

sinsinh2

122112

2
2

2
1122112

2
2

2
1

121122

121122
2
2

2
1

1
22

22
22

1
2
2

2
1

xxxx
llll

xxxx
llll

ll
PxM

ββββ−ββ×
β−βββββ+βββ−β−

βββ+βββ×
βββ−ββββ+β×

ββ+βββ−β

δ
=

 
(i) 

The condition ( ) 0=lM  is verified if we take into account the equation (g); the moment 
in the built-in cross section is given by 

( ) ( )( )ll
P

xM
1

22
22

22
1

2
2

2
1

21

sinsinh ββ+βββ−β

δββ
= . ( i′ ) 

Dividing by ll 1
2

2
2 coshcosh ββ , we notice that the characteristic equation (g) can be 

written in the form 

( )( ) ( ) 2
2

2
11

2
2

222
2

2
12

22
11

22
2

2
2

2
1 4tantanhtanhtan ββ−βββ−β=ββ−βββ+β llll , ( g′ ) 

which is more convenient for computation; taking into account the relations 
ll 2

2
2

2 sinh1cosh β+=β , ll 1
2

1
2 sin1cos β−=β , we can write 

( ) ( ) ll 1
22

2
2
2

2
11

22
1

2
2

2
1

2
2

2
1 sin3sinh34 βββ−β+βββ−β=ββ  ( g ′′ ) 

or 

( ) ( ) ( ) ll 2
22

1
2
2

2
11

22
2

2
2

2
1

22
2

2
1 cosh3cos3 βββ−β=βββ−β+β−β . ( g ′′′ ) 

With the notation ( f ′ ), we have 

( ) 222
2

2
1

222
2

2
1

422
2

2
1

442
2

2
1 23,23,,4 babaaab +=β−β−=β−β=β−β−=ββ ; 

using also the notations (b), the critical load will be determined by the equation 
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l
P
P

P
P

l
P
P

P
P

P
P

1
2

0

cr

0

cr
2

2

0

cr

0

cr
2

0

cr sin112sinh11212 β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++β⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− , (j) 

which can be written in the form 

2sinh
1

11sin
1

11 2
2

cr

0
1

2

cr

0
=β

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
+−β

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+ l

P
P

l

P
P

 ( ′) 

or by the equation 

l
P
P

P
P

l
P
P

P
P

P
P

2
2

0

cr

0

cr
1

2

0

cr

0

cr
2

0

cr cosh112cos1122 β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=β⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
. ( ′′ ) 

Taking into account the condition 22 ba <  of validity of the solution ( f ′ ), we notice 
that 

1
2
1

0

cr <<
P
P

. (k) 

The equations (j), ( j ′′ ) allow to determine the ratio 0cr PP  (the reduced critical load) as 

a function of the non-dimensional magnitude 4 EIklbl = , i.e. as a function of the data 
of the problem (rigidity of the elastic medium and rigidity and length of the column); 
starting from 

EIkl
EI

P
P

2
1

2
cr

2

0

cr π
= , 

the critical length is given by 

0

cr

cr 11
2

P
Pbll

l π
= . 

(l) 

We can write 

0

0
cr

0
cr

cr

0

cr

P
P

P
P

P
P

= , 

where 0
crP  is the critical load in the absence of the elastic medium; observing that 

0
crcr PP >  (in the absence of the elastic medium, 0

crP  is smaller) and that 0
crcr PP <  (the 

condition of validity of the solution), it results 

j

j
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( )
11

82
1

4 2

2

2

2

0

0
cr <

π
=

π
=

blEIkl
EI

P
P

, 

hence 1107207.122 ≅π>bl . 
In the limit case 0cr PP = , i.e. in the case 22 ba = , the general solution of the equation 
(c) is of the form 

( ) ( ) ( ) bxCxCbxCxCxy sincos 4321 +++= ; (m) 

the two-point conditions (d), ( d′ ) lead to the relations 02 =C , 041 =+ aCC , as well 
as to 

( ) ( )
( ) ( ) .0cossinsincos2

,0sincos2cossin

31

31

=−++
=−−+

blblblCblblblC
blblblCblblblC

 

The corresponding characteristic equation will be 

( )1
3
1cos 222 −= lbbl , (n) 

leading to 1896.1≅bl , whence, taking into account the notations (b), we obtain the 
critical load 

( )2
2

2cr
867.1

830.2
l

EI
l

EIP π
≅≅ , (o) 

as well as 

4cr
00.2
l

EIk ≅ . ( o′ ) 

In the absence of the elastic medium, the critical load is given by 

22

2 467.2
4 l

EI
l
EI

≅
π ; 

this load is somewhat smaller than the critical load (o). 
Taking into account the continuity of the solution with respect to the coefficients of the 
differential equation, the case 0cr PP <  can take place only for 1896.1>bl . 
The general solution 

( ) xCxCxCxCxy 24231211 coscossincos α+α+α+α= , (p) 

where 
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1
2

0

cr

0

cr442
2,1 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±=−±=α

P
P

P
P

bbaa , ( p′ ) 

corresponds to the case 0cr PP > , i.e. 22 ba > ; the boundary conditions ( d′ ) become 

( ) ( ) ( ) ( ) 0,0 2
2

2
1 =′α+α+′′′=′′ lylyly . ( d ′′′ ) 

As in the former cases, the conditions (d), ( d ′′′ ) lead to a system of linear equations for 
the constants ,1C ,2C ,3C  and ,4C hence to the characteristic equation 

( ) ( ) 2
2

2
121

4
2

4
121

2
2

2
121 2coscossinsin αα=ααα+α+ααα+ααα llll . (q) 

Noting that 

( )444
2

4
1

22
2

2
1

2
21 22,2, baab −=α+α=α+α=αα , 

we can write 

1coscos12sinsin 21

2

0

cr
21

0

cr =αα
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+αα ll

P
P

ll
P
P

 ( q′ ) 

or 

( ) 1coscos112cos 21
0

cr

0

cr
21

0

cr =αα⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++α−α ll

P
P

P
P

l
P
P

. ( q ′′ ) 

The equations (q), ( q ′′ ) allow to determine the reduced critical force 0cr PP  as a 
function of the non-dimensional magnitude bl , i.e. as a function of the data of the 
problem; the reduced critical length llcr  is given by the formula (l). 

Table 2.6. The values of 0cr / PP  and ll /cr  

bl 0cr / PP  ll /cr  bl 0cr / PP  ll /cr  bl 0cr / PP  ll /cr  
0 ∞ 2.000 1.5 0.748 1.712 4.5 0.516 0.687 

0.2 30.846 2.000 1.8 0.654 1.526 5.0 0.506 0.625 
0.5 4.958 1.995 2.0 0.636 1.393 6.0 0.502 0.523 
0.8 1.986 1.970 2.5 0.629 1.120 7.0 0.502 0.448 
1.0 1.325 1.930 3.0 0.661 0.947 8.0 0.501 0.392 

1.1896 1.000 1.867 3.5 0.573 0.838 8.5 0.500 0.370 
1.2 0.987 1.863 4.0 0.538 0.757 ∞ 0.500 0 

For 1896.1→bl  we have 10cr →PP , hence the solution corresponding to the general 
integral (p) tends to the solution corresponding to the general integral (m); for 0→bl , 
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we obtain ∞→0cr PP . The reduced critical load approaches the unity, remaining 
greater than the unity for an infinity of values of the non-dimensional magnitude bl  
(e.g., for 142≅bl ). In conclusion, till 1896.1≅bl  we have one crP  and from this 
value further two critical loads; but we take into account only the smallest one. 
The values of the reduced critical load 0cr PP  ( crP  is the smallest critical load) and of 
the reduced critical load are listed in Table 2.6 and plotted into diagrams (Figs.2.20 and 
2.21). 

 

Figure 2. 16. Diagram of the reduced critical load 0cr PP  vs. bl 

 
Figure 2. 17. Diagram of the reduced critical length 0cr ll  vs. .bl 
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5.84 >=
EI
klbl  

we can use the asymptotic formulae 

( ) EPbl
l
EIblEIkPP

2

2
2

0cr 500.0 ⎟
⎠
⎞

⎜
⎝
⎛
π

===≅  (r) 

and 

bll
l π

≅cr , ( r ′ ) 

where 

2

2

l
EIPE

π
=  (s) 

is the Euler critical load corresponding to a simply supported column in the absence of 
the elastic medium. 
We observe that in case of a column for which the bilocal conditions allow a greater 
deformation the elastic medium has a smaller influence on the critical load. Indeed, in 
case of the cantilever column, this load grows (in comparison to the critical load 
corresponding to the absence of the elastic medium) less than in case of the simply 
supported one. A calculus shows that the critical load is much greater in case of a double 
built-in column in an elastic medium and much smaller in case of a free column 
immersed in such a medium. 

For 
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Chapter 3 

LINEAR ODSs OF FIRST ORDER 

 The General Study of Linear First Order ODSs 

GENERALITIES 

The canonical form of a linear non-homogeneous first order ODS with n unknown 
functions is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),...
...................................................................................

,...
,...

2211

222221212

112121111

xfyxayxayxay

xfyxayxayxay
xfyxayxayxay

nnnnnnn
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nn

++++=′
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++++=′

 (3.1.1) 

where the primes mean differentiation with respect to x, njiaf iji ,1,,, = , are functions 

considered of class ( ) [ ] ℜ∈≡ baII ,,C0  and njy j ,1, = , are the unknown functions. In 

a classic frame, we shall search for solutions of class ( )I1C . 
If if  vanish identically on I, then we get the associated homogeneous ODS 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ....
........................................................................
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 (3.1.2) 

To simplify the writing and, also, to emphasize certain useful properties, we shall 
introduce the following vector functions 
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and the associated to (3.1.1) – or, also to (3.1.2) – matrix 

1.

1.1
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( )

( ) ( ) ( )
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Then the above non-homogeneous system is written in matrix form 

( ) fyA
y

+= x
xd

d
, (3.1.5) 

while the associated homogeneous ODS takes the form 

( )yA
y

x
x
=

d
d

. (3.1.6) 

 THE GENERAL SOLUTION OF THE HOMOGENEOUS ODS 

Consider n linearly independent vector-solutions of the homogeneus system (3.1.6) 
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Such a system is called a fundamental system of solutions. Exactly as in the case of the 
linear ODEs, we consider the Wronskian of this system 
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which is non-zero if and only if the system { }nYYY ,...,, 21  is linearly independent. We 
also can prove Liouville’s theorem and formula 

( ) ( )
( )

nn

tt

aaaxWxW

x

x +++==
∫

...tr,e 2211

dtr

0
0 A

A

. 
(3.1.9) 

More specific, tr A is the trace of the matrix A, that is the sum of the entries of the main 
diagonal. In the above formula (3.1.9), 0x  is an arbitrary point in I. Exactly as in the 
case of higher order ODEs, one can prove that any linear ODS with continuous 
coefficients always allows a fundamental system of solutions. 

1.2
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Any solution y of the homogeneous ODS may thus be written as a linear combination 
with constant coefficients of the functions belonging to a fundamental system, i.e. 

( ) ( ) ( ) ( )xcxcxcx nn YYYy +++= ...2211 . (3.1.10) 

The Cauchy – or initial – problem associated either to the non-homogeneous ODS 
(3.1.1) or to the homogeneous ODS (3.1.2) consists of finding a solution of the given 
ODS that also satisfies the initial (Cauchy) conditions 

( ) ( ) ( ) Ixyxyyxyyxy nn ∈=== 00020021001 ,,...,, , (3.1.11) 

or, using vector-functions 

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

20

10

000 ,

ny

y
y

x
M

yyy . (3.1.12) 

If the vector-functions of the fundamental system satisfy the initial conditions 
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then the system is called normal. Knowing a normal system, the solution of the Cauchy 
problem (3.1.6), (3.1.13) is written using directly the Cauchy data 

( ) ( ) ( ) ( )xyxyxyx nn YYYy 0220110 ...+++= . (3.1.14) 

 THE GENERAL SOLUTION OF THE NON-HOMOGENEOUS ODS 

The general solution of the linear non-homogeneous ODS (3.1.1) – or, equivalently, 
(3.1.6) –  is the sum between one of its particular solutions 
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and the general solution of the associated homogeneous ODS, i.e., 

( ) ( ) ( ) ( ) ( )xxcxcxcx pnn yYYYy ++++= ...2211 . (3.1.15) 

Knowing a fundamental system of solutions for the given ODS enables us to get a 
particular solution for the non-homogeneous ODS by using, as previously, the method of 

1.3
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variation of parameters (Lagrange’s method). We search for a solution shaping (3.1.10), 
but with variable – instead of constant – coefficients 

( ) ( ) ( ) ( ) ( ) ( ) ( )xxcxxcxxcx nnp YYYy +++= ...2211 . (3.1.16) 

The functions ( )xc j  are supposedly of class ( )I1C . Introducing the above expression in 
the non-homogeneous ODS (3.1.5), we get 
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or, taking (3.1.16) into account, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xxxxcxxcxxc
x pnn
p yAYYY

y
+′++′+′= ...

d
d

2211 . (3.1.18) 

But ( )xpy  must satisfy the ODS (3.1.5), whence we get for njc j ,1, =′ , 

( ) ( ) ( ) ( ) ( ) ( ) ( )xxxcxxcxxc nn fYYY =′++′+′ ...2211 , (3.1.19) 

that may be written componentwise 
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 (3.1.20) 

This represents, in fact, a linear algebraic system, whose associated determinant is 
precisely the Wronskian of the fundamental system. As the Wronskian does not vanish 
on I, it follows that the algebraic system (3.1.20) allowe a unique solution. We therefore 
get 

( ) ( ) njxpxc jj ,1, ==′ , (3.1.21) 

whence ( )xpy  results by direct integration. 

 ORDER REDUCTION OF HOMOGENEOUS ODSs 

To simplify the presentation, we shall take the case 3=n , i.e., we consider the ODS 

1.4
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for which we know a particular solution, say 
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We perform the change of functions 
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where 321 ,, uuu  are the new unknown functions. 
We differentiate the above expressions and we replace them in (3.1.23), getting the 
degenerate ODS 
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 (3.1.24) 

The last two equations of this system may be solved separately. As a result, we obtain 
the functions 32 , uu , which, introduced in the first equation (3.1.24), determine 1u . As 
the system formed by the last two equations has only two unknown functions, it follows 
that the order of the ODS (3.1.22) was reduced by one unit. 

 BOUNDARY VALUE PROBLEMS FOR ODSs 

Consider again the ODS 

( ) fyA
y

+= x
xd

d
, (3.1.25) 

with njfa jij ,1,, = , defined and continuous on the real interval [ ]baI ,= . Also 
consider the real matrix of rank n 
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with n rows and 2n columns. By using this matrix, we form the two-point conditions 

[ ( ) ( )] niKbyBayA ijij
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j
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==+≡ ∑

=
y , (3.1.27) 

where iK  are given real constants. 
The boundary value (two-point) problem for the ODS (3.1.25) consists of finding a 
solution of this system that also satisfies the two-point conditions (3.1.27). The semi-
homogeneous problem consists of finding a solution of (3.1.25) that satisfies (3.1.27) for 

niKi ,1,0 == . The homogeneous problem is defined as 
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 (3.1.28) 

If the homogeneous problem allows only the trivial solution, then we say that it has the 
index 0. 
If the homogeneous problem allows k linearly independent non-trivial solutions, then this 
problem is called of index k. Any other solution may be written as a linear combination 
of these k solutions. 
If nYYY ,...,, 21  are n vector functions, solutions of the homogeneous ODS, then the 
homogeneous boundary value problem allows non-trivial solutions if and only if the 
determinant 
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Is identically null. If the associated matrix has the rank r, then the index of the 
corresponding boundary value problem is rn − . 
One can introduce the notions of fundamental solution and Green function for the ODS 
(3.1.25) by considering its correponding adjoint system. 
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 ODSs with Constant Coefficients 

 THE GENERAL SOLUTION OF THE HOMOGENEOUS ODS 

Consider the homogeneous ODS with constant coefficients 

[ ] njiaa
x ijnjiij ,1,,,,

d
d
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=ℜ∈==

=
AAy

y
. (3.2.1) 

As in the case of linear ODEs with constant coefficients, we shall search for solutions of 
exponential form 
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where λ is a parameter and 
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is a constant vector. Introducing this in (3.2.1), we get 
xx λλ =λ ee ACC  (3.2.4) 

or, denoting by E the nn×  unit matrix 
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we deduce 

( ) 0CEA =λ− , (3.2.6) 

i.e., an algebraic linear homogeneous system, that must be fulfilled by the components of 
C. Componentwise, this system reads 

2.
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It allows non-zero solutions if and only if its associated determinant vanishes 

( ) [ ] 0det =λ−≡λΔ EA . (3.2.8) 

The n-th degree polynomial ( )λΔ  is called the characteristic polynomial and the 
equation (3.2.8) – the characteristic equation. The solutions of the homogeneous ODS 
depend on the nature of the roots of the characteristic equation. It is seen that these roots 
are precisely the eigenvalues of the matrix A and that C are the corresponding 
eigenvectors. 
Let nλλλ ,...,, 21  be the roots of the characteristic equation. As for the ODEs, we must 
consider several distinct cases. 

a) Real and distinct roots. Denote by 
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the corresponding eigenvectors. As the eigenvalues are distinct, the Wronskian of the 
vector-functions njx

j
j ,1,e =λC , does not vanish. Consequently, these vectors are 

linearly independent and the general solution of the homogeneous ODS (3.2.1) is 
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or, componentwise, 
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where njk j ,1, = , are arbitrary constants. 

b) Complex-conjugate roots. Suppose that all the roots are distinct, but some of 
them are complex. Let β+α=λ i1 , with 0≠β . The characteristic equation has real 
coefficients, it will allow also the solution β−α=λ i2 . If 21 iCCC += C is the 
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(complex) eigenvector corresponding to 1λ , then 21 iCCC −=  will be the eigenvector 
corresponding to 2λ , 21 , CC  being constant real vectors. As the ODS is linear, once 

with the solutions ( ) ( )xx β−αβ+α ii e,e CC  it also allows as solutions their linear 
combinations 

( )
( ) ( )

( )
( ) ( )

;sine
2i

eee
i2

ee

,cose
2

eee
2

ee

2

i-i

2

ii

2

1

-ii

1

ii

1

xx

xx

x
xx

x
xx

x
xx

x
xx

β=
−

=
−

=

β=
+

=
+

=

α
ββ

α
β−αβ+α

α
ββ

α
β−αβ+α

CCCCy

CCCCy
 (3.2.12) 

to get the above expressions, we used Euler’s formulae (2.2.5). These real solutions are 
linearly independent too. Therefore, they may replace ( ) ( )xx β−αβ+α ii e,e CC  in the 
corresponding fundamental system. So, if the remainding roots of the characteristic 
equation are real and distinct, the general solution of (3.2.1) reads 

( ) x
nn

xxx nkkxkxkx λλαα +++β+β= e...esinecose 3
332211 CCCCy  (3.2.13) 

 c) Multiple roots. To simplify the presentations, let us suppose that 1λ  has the 
order of multiplicity m and that the other roots of the characteristic equation are all of 
them real and distinct. As in the case of ODEs, we search for solutions of the form 

xm
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xx xx 111 e,.....,e,e 1
21

λ−λλ CCC , (3.2.14) 

where mjj ,1, =C , are constant vectors, whose components are determined by 
identification, after replacing (3.2.14) in the ODS (3.2.1). Thus, the general solution of 
(3.2.1) reads 
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 SOLUTIONS IN MATRIX FORM FOR LINEAR ODSs WITH CONSTANT 
COEFFICIENTS 

Let us start from the Cauchy problem associated to the linear ODS with constant 
coefficients (3.2.1) 

( ) ℜ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

== 0

0

20

10

000 ,, x

y

y
y

x

n

M
yyy . (3.2.16) 

We can expand the solution in a Taylor series around 0x  

2.2
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( ) ( ) ( ) ( ) ( )
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 (3.2.17) 

Replacing this expansion in (3.2.1) and taking into account the initial conditions (3.2.16), 
we obtain, step by step, 
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(3.2.18) 

We thus get for y the expansion 

( ) ( ) ( )
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+= yAyAAyyy k
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xxxxxx
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or 

( ) ( ) ( )
0
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00 ...
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!2!1

yAAAEy
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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xxxxxx

x . (3.2.20) 

By analogy with the scalar functions, we define 

( ) ( ) ( )
...

!
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!2!1
e 02

2
000 +

−
++
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+

−
+=− k

k
xx

k
xxxxxx

AAAEA  (3.2.21) 

Thus, the solution of the Cauchy problem (3.2.1), (3.2.16) finally reads 

( ) ( )
0

0e yy A xxx −= . (3.2.22) 

The problem of solving the system (3.2.1) is ultimately reduced to the calculus of the 
exponential matrix (3.2.21). 
Let rλλλ ,...,, 21  be the eigenvalues of the matrix A, i.e., the roots of the characteristic 
equation 

[ ] 0det =λ− EA , (3.2.23) 
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each of them having the order of multiplicity rmmm ,...,, 21 , accordingly. Hence 

nm
r

k
k =∑

=1
. Let us denote by kJ  the kk mm ×  matrix 

rk

k

k

k

k

k

k ,1,

00000
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00100
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⎥
⎥
⎥
⎥
⎥
⎥

⎦
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⎢
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⎢
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⎣

⎡

λ
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λ
λ

λ

=

K

K

KKKKKKK

K

K

K

J , (3.2.24) 

and by J the block matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

rJ00

0J0
00J

J

K

KKKK

K

K

2

1

. (3.2.25) 

The matrix J is called the normal Jordan form for A; kJ  are called Jordan cells. If 
1=km , then the corresponding Jordan cell is reduced to the 11×  matrix [ ]kk λ=J . 

From the matrix theory, it is known that one can find a non-degenerate matrix D such 
that 

1−= DJDA . (3.2.26) 

The ODS (3.2.1) may then be written in the form 

AyD
y

D 11

d
d −− =

x
. (3.2.27) 

Let us apply now the change of vector-function ( ) ( )xx Dzy = . The ODS (3.2.27) 
becomes 

ADzDz 1

d
d −=

x
 (3.2.28) 

or, taking (3.2.26) into account, 

Jzz
=

xd
d

. (3.2.29) 

For the new unknown vector-function z, one has the initial conditions 

( ) 0
1

0 yDz −=x , (3.2.30) 
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deduced from (3.2.16). 
Applying now formula (3.2.22) to the ODS (3.2.29), also considering (3.2.30), we 
deduce for z the following representation 

( ) ( )
0

10e yDz J −−= xxx . (3.2.31) 

But the exponential matrix of this formula is easily computed, due to the particular form 
of J. Indeed, we find immediately 

( )

( )
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( ) ⎥
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⎥
⎥
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⎢
⎢
⎢
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⎡
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, (3.2.32) 

where 
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( ) ( ) ( )
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J . (3.2.33) 

Eventually, the solution of the initial problem (3.2.1), (3.2.16) reads 

( ) ( )
0

10e yDDy J −−= xxx . (3.2.34) 

Remarks. 1)Another practical possibility to solve a linear ODS with constant coefficients 
is to eliminate the unknown functions, all but one, by successive differentiations, thus  
reducing it to a linear ODE with constant coefficients, which can be solved by the 
methods exposed at Chap.2. 

   2) To solve a non-homogeneous ODS with constant coefficients, one can use, 
as in the case of linear ODEs, either the general method of variation of parameters 
(Lagrange), as exposed at Sec.1.3, or to search for solutions in the form of the free term, 
if this term is formed by elementary functions. 
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 Applications 

Application 3.1  

Problem. Consider two masses 1m  and 2m , sliding frictionless along a vertical axe, 
being connected with springs of elastic constants 1k  and 2k  (Fig.3.1). Study the motion 
of the two springs. 

 
Figure 3. 1. Oscillation of two masses m1 and m2 connected with springs of elastic constants k1 and k2 

Mathematical model. We specify the positions of the two masses at the moment t  by the 
displacements 1x  and 2x , measured from the static positions of equilibrium, when the 
springs are not acted upon. Taking into account Newton’s equation of motion, we may 
write 

( )1221111 xxkxkxm −+−=&& , (a) 

( )12222 xxkxm −−=&& . (b) 

Introducing the notations 

a
m

kk
=

+

1

21 , b
m
k

=
1

2 , c
m
k

=
2

2 , (c) 

these equations read 

0
d

d
212

1
2

=−+ bxax
t
x

, 

0
d

d
212

2
2

=+− cxcx
t
x

, 

(d) 

3.
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that is, they form a linear and homogeneous ODS, of unknown functions 1x  and 2x  and 
of independent variable t. 

Solution. The solution of the problem can be obtained by two methods: 1) the method of 
elimination and 2) the standard method. 

1) In the first method we eliminate one of the unknown functions, e.g., 2x . To 
this goal, we write the system (a), (b) in the form 

0
d
d

212

2
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ bxxa

t
, 

0
d
d

22

2

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++− xc

t
cx . 

(e) 

The differential operators a
t

+2

2

d
d , c

t
+

2

2

d
d  are prime between them, so that – 

eliminating 2x  – one obtains 

0
d
d

d
d

12

2

2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ xbcc

t
a

t
 (f) 

or 

( ) ( ) 0
d

d
d

d
12

1
2

4
1

4
=−+++ xbac

t
x

ca
t
x

. (g) 

We get thus a linear differential equation of fourth order, homogeneous and with 
constant coefficients. Searching solutions of the form tx γ= e1 , we obtain the 
characteristic equation 

( ) ( ) 024 =−+γ++γ bacca , (h) 

 of roots 

bccaca
+⎟

⎠
⎞

⎜
⎝
⎛ −

±
+

−±=γγγγ
2

4321 22
,,, . (i) 

The quantity under the second radical must be positive 

0
2

2

>+⎟
⎠
⎞

⎜
⎝
⎛ − bcca . 

Further, the notations (c) lead to 0>− ba , hence the value of the second radical is 
always less than ( ) 2ca + . In this case, we may write pi=γ , where 
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bccacapppp +⎟
⎠
⎞

⎜
⎝
⎛ −

±
+

±=
2

4321 22
,,, . (j) 

Taking into account Euler’s formula ( ppp sinicosei += ), the general solution may be 
written in a real form 

tpCtpCtpCtpCx 242312111 sincossincos +++= . (k) 

The second function 2x  may be determined by the first relation (d) 

1
2

21
1

2

1
2 x

k
kk

x
m
m

x
+

+= && . (l) 

Noting that 13 pp −=  and 24 pp −= , the relation (k) may take the form 

( ) ( )α ′′++α′+= tpAtpAx 22111 sinsin , (m) 

and (l) takes the corresponding form 

( ) ( )α ′′+λ ′′+α′+λ′= tpAtpAx 22112 sinsin , (n) 

where 

2
1

2
1

pc
c

b
pa

−
=

−
=λ′ , 

2
2

2
2

pc
c

b
pa

−
=

−
=λ ′′ . (o) 

2) To apply the standard method exposed in Sec.2.2, we firslty write the system 
(a), (b) in the form of a first order ODS, introducing two new unknown auxiliary 
functions u  and v , 

.
,

,
,

21

2

21

1

cxcxv
vx

bxaxu
ux

−=
=

+−=
=

&

&

&

&

 (p) 

According to the results in Sec.2.2, we determine the eigenvalues of the matrix P of the 
system, which satisfy 

[ ] 0

0
100
0
001

det =

λ−−
λ−

λ−−
λ−

=λ−

cc

ba
EP , (q) 

leading to the biquadratic equation 
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( ) ( ) 024 =−+λ++λ bacca , (r) 

the same as (b). One obtains thus the imaginary roots given by (j). 
The eigenvector corresponding to the eigenvalue 1ip  is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

b
pa

p

b
pa

p

2
1

1

2
1

1

i

i
1

. 

By means of all the four eigenvectors, corresponding to the eigenvalues 21 i,i pp ±± , we 
obtain the general solution of the system (p) in the form 
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 (s) 

where BA i+=α , DC i+=β , and DCBA ,,,  are arbitrary real constants. It follows 

tpDtpCtpBtpAx 242111 sincossincos −+−= , 

( ) ( )tpDtpC
b

pa
tpBtpA

b
pa

x 242

2
2

11

2
1

2 sincossincos −
−

+−
−

= . 
(t) 

If we take BA −=1 , ( )BA−=α′ arctan , DA −=2 , ( )DC−=α ′′ arctan , then we 
obtain the form (m), (n) of the solution. 
Finally, we notice that we may assume from the very beginning a trigonometric form of 
the solution, taking into account that we have to do with a problem of oscillations. For 
the sake of simplicity of the calculation we search for 1x  and 2x  solutions of the form 
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( )
( ),sin

,sin

2

1

α+=
α+=

ptBx
ptAx

 (u) 

where α,,, pBA  are indeterminate constants. Introducing the solution (u) in the 
differential system (a), (b), one obtains the homogeneous algebraic equations 

( )
( ) .0

,0
2

2

=−+−

=−−

pcBAc
BbpaA

 (v) 

The trivial solution 0== BA  defines the condition of equilibrium. A non- trivial 
solution is obtained by equating to zero the determinant 

,0
2

2
=

−−
−−

pcc
bpa

 (w) 

yielding the biquadratic equation 

( ) ( ) 024 =−++− bacpcap , 

which coincides with the equation (h) in γ , of roots (j). 
Due to the homogeneity of the algebraic system, we may determine only the ratio AB ; 
the calculus corresponding to the two values 2

1p  and 2
2p  results in λ′=11 AB  and 

λ ′′=22 AB , with the values (o) previously given. 

Application 3.2  

Problem. Consider a vertical string strongly tensioned by a force S . On the string are 
fixed three masses m  at equal distances (Fig.3.2, a). Determine the various types of 
vibration, assuming that the tension does not change very much four small transverse 
displacements. 

 
Figure 3. 2. String acted upon by the tension S and having three equal masses m fixed (a); three types of 

vibration (b, c, d) 
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Mathematical model. We denote by a the distances between the three masses and by 

321 ,, yyy  the transverse displacements of those masses. The equations of motion of the 
three masses are 
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 (a) 

Solution. The above linear and homogeneous ODS may be written in the form 
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 (b) 

where 321 ,, uuu  are new auxiliary unknown functions, while b  is given by  

am
Sb = . (c) 

Introducing the variable 

bt=τ , (d) 

one simplifies the system to the form 

.2
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,2
,

,2
,
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 (e) 

where primes mean differentiation with respect to τ. The matrix associated to (e) is 
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The eigenvalues of this matrix are given by 
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=λ− EP . (g) 

The biquadratic equation (g) has purely imaginary roots, i.e. 

22i,22i,2i 321 +=−== ppp ,  (h) 

the other three being their conjugates. After computing the corresponding eigenvectors, 
the general solution of the system (e) is given by 
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 (i) 

where 21 i2 AA +=α , 21 i2 BB +=β , 21 i2 CC +=γ , 2,1,,, =jCBA jjj , being 
arbitrary real constants. Finally, we return to the variable t and choose from the 
representation (i) only the components of odd index, corresponding to the unknown 
functions 321 ,, yyy , of interest for our problem; we thus get  
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.tan,tan,tan

,
cos

,
cos

,
cos

1

2
3

1

2
2

1

2
1

3

1
3

2

1
2

1

1
1

C
C

B
B

A
A

CBA

−=δ−=δ−=δ

δ
=λ

δ
=λ

δ
=λ

 (l) 

The standard method used above often leads to cumbrous computation, despite its 
generality. In the above considered particular case one may simplify the computation; 
thus, the system (e) can be directly written in the form 

;2
d

d

,2
d

d

,2
d
d

322
3

2

3212
2

2

212
1

2

yy
y

yyy
y

yy
y

−=
τ

+−=
τ

+−=
τ

 (m) 
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then, subtracting the last equation from the first one, we find out that the function 

31 yy −=ϕ  satisfies the second order ODE with constant coefficients  

02
d
d

2

2
=ϕ+

τ
ϕ . (n) 

The characteristic equation associated to (n) is 

022 =+λ , (o) 

and thus 

( ),2cos2sin2cos 111131 δ−=τβ+τα=−=ϕ Ayy  (p) 

with notations of the form (l). 
Further, we add the first and the last equation (m) and get 

( ) ( )

.2
d

d

,22
d
d

3122
2

2

231312

2

yyy
y

yyyyy

+=+
τ

++−=+
τ  (q) 

Eliminating 1y  between the above two equations, one obtains 

.02
d

d
4

d
d

22
2

2

4
2

4
=+

τ
+

τ
y

yy
 (r) 

The corresponding characteristic equation is 

024 24 =+λ+λ , (s) 

with the roots 22i −± , 22i +± . Hence, the general solution of the equation (r) 
is  

( ) ⎟
⎠
⎞⎜

⎝
⎛ δ−τ++⎟

⎠
⎞⎜

⎝
⎛ δ−τ−=τ 33222 22cos22cos AAy . (t) 

From the second equation (q) we get 

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ δ−τ+−⎟

⎠
⎞⎜

⎝
⎛ δ−τ−=+ 332231 22cos22cos2 AAyy , (u) 

and, together with (p), the unknowns 1y  and 3y  read 
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( )

( )

.22cos22cos
2
2

2cos
2

,22cos22cos
2
2

2cos
2

3322

1
1

3

3322

1
1

1

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ δ−τ+−⎟

⎠
⎞⎜

⎝
⎛ δ−τ−+

δ−τ−=

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ δ−τ+−⎟

⎠
⎞⎜

⎝
⎛ δ−τ−+

δ−τ=

AA

A
y

AA

A
y

 (v) 

The formulae (t) and (v) represent the general solution of the system in τ , where 
3,2,1,, =δ jA jj , are arbitrary constants. It coincides with the formulae (k) if we return 

to the variable t  and denote by 

,
2
2,

2
2,

2 3322
1

1 AA
A

−=λ=λ=λ   

without any loss of generality. 
The three types of oscillation are indicated in Fig.3.2, b, c, d. 

Application 3.3  

Problem. Study the translation and the rotation vibrations of a foundation block on an 
elastic ground.  

Mathematical model. The differential equations governing this phenomenon are 

,0=ϕ−+ hkxkxm xx&&  (a) 

( ) ,02 =−ϕ+−+ϕ ϕ hxkhkGhkJ xx&&  (b) 

in a plane zxO , where J  is the moment of inertia of the assembly foundation-engine 
with respect to the Oy-axis (normal to the plane Ozx), passing through the centre of 
gravity. mgG =  is the weight of the block on the elastic ground, h  is the applicate of 
the centre of gravity with respect to the ground, x  is the translation displacement in the 
direction of the Ox-axis, ϕ  is the rotation about the Oy-axis, xk  is the horizontal force 
due to a unit displacement and ϕk  is the moment in the plane Ozx due to a unit rotation 
(Fig.3.3). 

 Solution. The equations (a) and (b) may be written in the form 

0
d
d

2

2
=ϕ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ hkxk

t
m xx , (c) 
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0
d
d 2

2

2
=ϕ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−ϕ+++− Ghhhk

t
Jhxk xx . (d) 

Eliminating the displacement x  between these equations one obtains a linear, 
homogeneous differential equation of fourth order with constant coefficients for the 
rotation ϕ . 

 

Figure 3. 3. Foundation block on an elastic ground 

Searching a solution of the form rte , we find for r the characteristic equation 

( )
02

2
4 =

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−ϕ+
+ ϕ

mJ
Ghkk

r
m
k

J
Ghhhk

r xxx . (f) 

The notations 

[ ]1,0,,,
22

22 ∈γ
+

=γ
+

−
== ϕ

ϕ mhJ
J

mhJ

Ghk
p

m
k

p x
x , (g) 

where xp  is the limit pulsation of the translation vibrations in the absence of rotations, 
while ϕp  is the limit pulsation of the rotaion vibration in the absence of sliding, are 
introduced. 
The biquadratic equation (f) becomes 

( ) 0222224 =+++γ ϕϕ pprppr xx ; 

its roots are given by 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ γ−+±+−

γ
= ϕϕϕ

22222222 4
2
1 ppppppr xxx  

and are all imaginary. Hence, the solution of the equations (a) and (b) may be obtained 
directly in the form 
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( )
( ),sin

,sin
α+=
α+=ϕ

ptCx
ptB

. (h) 

where B, C,α  are constants to be determined from the initial conditions. Introducing (h) 
in (a) and (b), one obtains the linear algebraic system 

022

2
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−+−−
−−

ϕ B
C

JphkGhkhk
hkmpk

xx

xx . (i) 

The system is homogeneous, so that the determinant of the coefficients must be equated 
to zero, to get non-zero solutions; this leads to the equation of the pulsation p  

( ) 0222224 =+++γ ϕϕ pppppp xx , 

which differs from the corresponding equation for r  only by a sign (the change of r  in 
ip ). The roots of this equation are 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
γ−+±+

γ
= ϕϕϕ

22222222
2

2
1 4

2
1, pppppppp xxx . (j) 

Hence, in motions with two degrees of freedom the system engine-foundation may 
oscillate with one of the principal pulsations 1p  or 2p , given by (j). 
The ratio of the amplitudes B  and C  of the two vibrations is of the form 

22

2

2
2 pp

hp

p
m
k

h
m
k

mpk
hk

B
C

x

x

x

x

x

x

−
=

−
=

−
= .  

The system (a), (b) may be also solved directly, using the standard method for the linear 
first order ODS, without reducing to only one differential equation (of fourth order in 
this case). By means of the notations (g) and introducing the auxiliary functions y  and 
ψ , the system (a), (b) becomes 

.

,
,

,

2
2

2
2

22

ϕ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

γ
−=ψ

ψ=ϕ
+−=

=

ϕ

J
mhp

p
xp

J
hm

hpxpy

yx

xx

xx

&

&

&

&

 (k) 

The associated characteristic determinant is 
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[ ]
γ

+λ
γ

+
+λ=

λ−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

γ
−

λ−
λ−−

λ−

=λ− ϕϕ

ϕ

22
2

22
4

2
2

2
2

22

0

100
1
001

det
pppp

J
mhp

p
p

J
hm

hpp
xx

xx

xx

EP . 

Equating it with zero, we find the eigenvalues of the matrix P of the system (k) which 
are purely imaginary and coincide with the roots of the equation in r . Taking into 
account the form of the system, we may search for the solution, as in the previous 
method, in the form 

( )
( )
( )
( )⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

α+
α+
α+
α+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ψ
ϕ

rtD
rtC
rtB
rtA

y
x

cos
sin
cos
sin

. (l) 

From now on, the solution of the problem follows the same way as before. 

Application 3.4  

Problem. The foundation of an engine of weight Q  lays on an elastic medium (Fig.3.4). 
The area of the foundation basis is S  and the coefficient of elasticity of the medium is 

sk . To avoid the resonance which may appear during the working, the engine is placed 
on a rigid bed, connected to the foundation by springs of elastic constant 1k . The weight 
of the engine and of the bed is P . Determine the pulsation of the system foundation-
engine. Numerical data: NQ 6108.9 ⋅= , 217mS = , 36108.58 mNks ⋅= , 

mNk 6
1 1049 ⋅= , NP 31002.48 ⋅= . 

Mathematical model. The differential equations of the motion are 

( ) 021111 =−+ xxkxm && , (a) 

( ) 0112122 =−++ xkxkkxm && , (b) 

where the displacements 1x  and 2x  are measured from the static position of equilibrium 
of the system and Skk s= . 

Solution. The second order ODS given by (a) and (b) may be expressed as a system of 
first order, introducing auxiliary unknown functions. One may search directly the 
unknown functions in the form 

tCx β= e11 , tCx β= e22 ; 
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( )
( ) .0

,0

11212
2

2

2111
2

1

=−++β

=−+β

CkCkkCm
CCkCm

 

 
Figure 3. 4. The foundation of an engine on a rigid bed 

This is a linear and homogeneous algebraic system in 1C , 2C . To get non-zero 
solutions, the associated determinant must vanish, i.e.  

0
1

2
21

11
2

1 =
++β−

−+β
=Δ

kkmk
kkm

, 

or  

0
21

12

2

1

1

14 =+β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++β

mm
kk

m
kk

m
k

. (c) 

Taking into account that gPm =1  and gQm =2 , the equations (c) becomes  

0
2

12114 =+β⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++β

PQ
Sgkk

Q
kSk

P
k

g ss . (d) 

The roots of this equation are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+±

+
+−=ββ

PQ
Skk

Q
kSk

P
k

Q
kSkkg sss 1

2
11112

2
2
1

4
22

, . 

We denote by 2,1,22 =−=β ipii . Introducing numerical data, we have 

it follows that 
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( ),512107.924107408163.1127905.4

5308.416326408163.1127107408163.1020905.4

108.91002.48
17810.4581049.4

108.9
104917108.58

1002.48
1049

108.9
104917108.58

1002.48
1049

2
81.9,

2

63

662

6

66

3

6

6

66

3

6
2
2

2
1

±+=

⎟
⎠
⎞⎜

⎝
⎛ −±+=

=
⎥
⎥
⎥

⎦

⎤

⋅⋅⋅
⋅⋅⋅

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
⋅+⋅⋅

+
⋅

⋅
±

⎢
⎢
⎣

⎡
±

⋅
⋅+⋅⋅

+
⋅

⋅
=pp

 

therefore  
22

2
22

1 66892.10064,2051568.995 −− == spsp , 

and 
1

2
1

1 323.100,547.31 −− == spsp . 

Because the roots of the characteristic equation (d) are purely imaginary in this case, the 
solution of the system (a), (b) is of the form 

( ) ( )

( ) ( ) .sin1sin1

,sinsin

22

2
21

211
1

2
11

12

2221111

α+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+α+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

α++α+=

tp
k
pm

Atp
k
pm

Ax

tpAtpAx

l

 

Application 3.5 

Problem. An engine of mass M, staying on an elastic spring of constant K is subjected to 
a vertical pulsatory force tFF ω= sin0 . Because, for a certain velocity of running of 
the engine, the frequence of the pulsatory force may become equal to the frequence of 
the eigenvibrations of the system ( )KM ,  it appears the risk of resonance (Fig.3.5, a); it 
is useful to fit out the equipment by a dynamic damper, formed by a mass m  linked to 
the engine M  by a spring of elastic constant k  (Fig.3.5, b). The system thus obtained 
has two degrees of freedom. 

Mathematical model. The ODS modelling the phenomenon is of the form 

( )xykym −−=&& , (a) 

( ) tFKxxykxM ω+−−= sin0&& , (b) 

and the boundary conditions are 

( ) 00 =x , ( ) 00 =y , ( ) 00 =x& , ( ) 00 =y& . (c) 
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2α=
M
K , 2β=

m
k , 2γ=

M
k , 0

0 f
M
F

= , (d) 

the differential equations (a), (b) become 

0
d
d 22

2

2
=β−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β+ xy

t
, (e) 

tfx
t

Jy ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ+α++γ− sin

d
d

0
22

2

2
2 . (f) 

 
Figure 3. 5. Resonance of the mechanical system (a). Dynamic damper (b) 

Eliminating the function y  between these equations, we find 

( ) ( ) tfx
t

ωω−β=⎥
⎦

⎤
⎢
⎣

⎡
βα+γ+β+α+ sin

d
d 22

0
22222

4

4
. (g) 

Similarly, the function x  may be eliminated and it results 

( ) tfy
tt

ωβ=⎥
⎦

⎤
⎢
⎣

⎡
βα+γ+β+α+ sin

d
d

d
d 2

0
22

2

2
222

4

4
. (h) 

As it should be expected, the differential operator applied to the functions x  and y  is 
the same, because the system (e), (f) is linear with constant coefficients. 
Noting that (g), (h) contain only derivatives of even order, we may search particular 
solutions of the form 

tAx p ω= sin , tBy p ω= sin . (i) 

Solution. By using the notations 
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( ) tf
N

x p ωω−β= sin1 22
0 , tf

N
y p ωβ= sin1 2

0 , (j) 

with the notation 

( ) 2222224 βα+ωγ+β+α−ω=N . (k) 

The eigenvibrations (represented by the solution of the homogeneous equations) may be 
neglected, remaining only the forced vibrations (represented by the particular solution 
(i)). From (i), one observes that the masses m  and M have a simple harmonic motion 
after the eigenvibrations tend to zero. 
The reaction between the pulsatory force F and the system ( )KM ,  works when the 

frequency ω  or F  and the eigenfrequency MK=α  of the system ( )KM ,  are 
equal. Taking ω=α , the expressions (i) become 

( ) tfx p ωω−β
γω

−= sin1 22
022

, tfy p ωβ
γω

−= sin1 2
022

; (l) 

it is thus proved that the amplitude of px , which – normally – tends to infinity, is 

reduced – due to the damper – to the finite value ( ) 2222
0 γωω−βf . 

If the values of k  and m  of the damper are such that ω=β=α , then the relations (l) 
are reduced to 

0=px , tfy p ω
γ

−= sin1
02

; 

this proves that the damper called syntonized, completely cancels the vibrations of M. 

Introducing (i) in (g) and (h), we get 
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Chapter 4 

NON-LINEAR ODEs OF FIRST AND SECOND ORDER 

1. First Order Non-Linear ODEs 

1.1 FORMS OF FIRST ORDER ODEs AND OF THEIR SOLUTIONS 

1.1.1 Forms of ODEs 
A first order ODE may appear in various forms, according to the modelled physical 
phenomenon and it also may be put in forms better suited to the method of solving it. 

a) The general form 

( )
x
yyyyxF

d
d,0,, =′=′ , (4.1.1) 

also called the implicit form. 
If 0/ ≠′∂∂ yF , then, according to the implicit function theorem, we can express y ′  as a 
function of x and y, thus getting 

b) The canonic/normal/explicit form 

( )
x
yyyxfy

d
d,, =′=′ . (4.1.2) 

Writing this as ( ) xyxfy d,d = , we observe that a first order ODE may also be expressed 
in 

c) The differential form 

( ) ( ) 0,, =+ dyyxQdxyxP . (4.1.3) 

Dividing by the product PQ and re-noting the functions, this can also be written in 

d) The symmetric form 

( ) ( )yxY
y

yxX
x

,
d

,
d

= . (4.1.4) 

1.1.2 Forms of the solutions 
We firstly define the types of solutions of first order ODEs. 

1. A solution of a first order ODE is a function of class C1(I), ℜ⊆I , identically 
satisfying the ODE for any Ix∈ . 
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2. The general solution is a function ( )Cxy ,ϕ= , depending on the arbitrary 

constant C, that satisfies the given ODE for any admissible C. 
3. The particular solutions are obtained from the general one by giving numerical 

values to C.  
4. The singular solutions are those solutions of the ODE that cannot be obtained 

from the general one by particularizing the constant C. 
The constant C is determined imposing a supplementary condition. For instance, it is 
required that ( ) 00 yxy = , where 00 , yx  are previously given. This is a Cauchy condition 
(see also the Introduction). 
The forms in which there can be obtained the solutions of first order ODEs are 

a) the explicit form 

( )xy ϕ= , (4.1.5) 

b) the implicit form 

( ) 0, =Φ yx  (4.1.6) 

and 
c) the parametric form 

( )
( ) [ ] ℜ⊂∈

⎩
⎨
⎧

ψ=
ϕ=

bat
ty
tx

,, . (4.1.7) 

Example. Consider the ODE 
y
xy −=′ , defined for 0>y . Then 

a) the function ( )1,1,1 2 −∈−= xxy  is an explicit solution of the ODE; 

b) the function 122 =+ yx  is an implicit solution. Indeed, differentiating both 
members, we get 0d2d2 =+ yyxx , or yxxy /d/d −= ; 

c) the functions  

( )ππ−∈
⎩
⎨
⎧

=
=

,
,sin
,cos

t
ty
tx

, 

determine a parametric solution. Indeed, 

⎩
⎨
⎧

=
−=

,dcosd
,dsind

tty
ttx

 

whence 

t
t

tt
tt

x
y

sin
cos

dsin
dcos

d
d

−=
−

= , 
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which coincides with ttyx sin/cos/ −=− , therefore the parametric solution identically 
satisfies the given ODE. 

1.2 GEOMETRIC INTERPRETATION. THE THEOREM OF EXISTENCE AND 
UNIQUENESS 

Let ( )yxf ,  be a function depending on the real variables x and y; suppose that the point 

( )yxP ,  belongs to an open set 2ℜ⊂Ω . The function ( )yxf ,  defines an ODE with one 
unknown function, of first order with respect to the independent variable x 

( )yxf
x
y

,
d
d

= . (4.1.8) 

To solve this ODE means to find all its solutions and to study their behaviour. 
We call solution or integral curve or, simply, integral of (4.1.1), a function ( )xy ϕ= , 

defined on a real open interval [ ] ℜ∈≡ baI , , of class ( )I1C , that satisfies 

( ) ( )( ) Ixxxfx ∈∀ϕ=ϕ′ ,, , (4.1.9) 

if, moreover, the points ( )( )xx ϕ, belong to Ω for any Ix∈ . 
To solve the associated Cauchy (or initial) problem means to find those solutions of 
(4.1.1) that satisfy 

( ) 00 yxy = , (4.1.10) 

where ( )00 , yx  is a given point, belonging to Ω. 

 

x 

y 
Ω 

α 

d 

 

Figure 4. 1. The contact element 

In what follows, we shall see that, under certain convenient hypotheses concerning the 
regularity of f, the Cauchy problem (4.1.1), (4.1.10) allows at least one solution; the 
uniqueness is ensured only if f satisfies some supplementary conditions. 
Let us define, for every point ( )yxP ,  belonging to Ω, the angle α, by the formula 
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( )yxf ,tan =α . (4.1.11) 

The point ( )yxP ,  forms, together with the angle α, the so called contact element or 
linear element. The set of all contact elements is called field of directions; this field of 
directions defines the differential ODE (4.1.1). 
Hence, a solution – or, equivalently, an integral curve – of the ODE (4.1.1) is a curve 
possessing a tangent of slope α at each of its points ( )yxP , , with the property that 
( )yxP ,  and α are, all of them, contact elements of (4.1.1). 

In Fig.4.1 we give an intuitive representation of the contact element. 
We shall give two classical examples that are significant for the importance of these 
notions. 

Example 1. Consider the equation 

22

d
d yx

x
y

+= . (4.1.12) 

To draw the integral curves, we firstly shall draw the curves for which the slope is the 
same; these curves are called isoclines. For example, if 0=′y , it follows that 

0,0 == yx . For 2/1=′y , we find 2/122 =+ yx , i.e. a circle centered at the origin, of 

radius 2/1 ; the unit circle corresponds to 1=′y , a.s.o. (see Fig.4.2, a). We then 
choose in the plane a point of co-ordinates ( )00 , yx  and we draw a curve passing 
through this point and has, at any of its points, a tangent parallel to the field direction; 
according to the previous considerations, this will be an integral curve of the ODE 
(4.1.12). Choosing another point, we find another integral curve. In the Fig.4.2, a there 
are drawn those integral curves passing through the points ( ) ( ) ( )0,2,2/1,0,0,0 − . One 
finally obtain a family of integral curves depending on a parameter. 

Example 2. The first order ODE 

x
y

x
y

−=
d
d

. (4.1.13) 

defines a field of directions in the whole plane, except for the origin. In the current point 
( )yxM ,  the field direction is perpendicular on the vector radius OM. Due to this 

property, the integral curves will be circles centered at the origin, of arbitrary radii, and 
they will be represented analitically by the expression 

22 xCy −±= , 

where C is an arbitrary real constant. 
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Figure 4. 2. Field of directions and integral curves for the ODE (4.1.12) (a); Field of directions and integral 

curves for the ODE (4.1.14) (b) 

Example 3. In Fig.4.2, b it is represented the field of directions corresponding to the 
ODE 

x
y

x
y 2

d
d

= , (4.1.14) 

formed by the tangents to the parabolae 2Cxy = . 
A study of uniqueness and existence of the solution of the Cauchy problem associated to 
the ODE (4.1.1) may be tackled in many ways, following the functional frame in use. 
To enounce the classic theorem of existence and uniqueness some preliminary notions  
must be introduced: the maximal solution and the Lipschitz property. 
If ( ) Ixxy ∈ϕ= , , is a solution of (4.1.1), then any of its restrictions to a subinterval of I 
is also a solution. This remark permits the introduction of an order relationship on the set 
of the solutions of (4.1.1); more precisely, if 11 , Ix∈ϕ , and 22 , Ix∈ϕ , are two 
solutions, then we say that 1ϕ  is “smaller” than 2ϕ  and we write 21 ϕϕ p if 21 II ⊂  
and ( ) ( )xx 21 ϕ=ϕ  for any 1Ix∈ . In fact, 21 ϕϕ p means that 2ϕ  is the prolongation of 

1ϕ . Any maximal element of the set of solutions is called a maximal solution. According 
to this definition, such a solution cannot be anymore prolonged in Ω. One can also prove 
that any solution is “smaller” than a certain maximal solution. 
We say that the function ( )yxf ,  is Lipschitzian with respect to y if one can find a 
constant 0>K such that 

( ) ( ) ( ) ( ) Ω∈Ω∈−<− 212121 ,,,,,, yxyxyyKyxfyxf . (4.1.15) 

The function ( )yxf ,  is called locally Lipschitzian if any point of Ω has a neighbourhood 
on which f is Lipschitzian. 
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There are large classes of functions with Lipschitz’s propriety; e.g., the analytic 
functions and, in general, the functions of bounded derivatives with respect to y are also 
Lipschitzian. 
A function f may be Lipshitzian in y without being continuous with respect to ( )yx, . 
Indeed, let ( ) ( ) yxgyxf +=, ; this function is obviously Lipschitz with respect to y, 
independently of the continuity of g. 
Let us also note that a locally Lipschitz function is not necessarily Lipschitz on its whole 
domain of definition; as an example, let us take ( ) ( ) 22 ,,, ℜ≡Ω∈= yxyyxf . With 
these preparations, one can state 

Theorem 4.1. Let ( )yxf , be defined and continuous on the open set 2ℜ⊂Ω . Then 
there is a unique maximal solution of (4.1.1) passing through any arbitrary point of Ω. 

Yet, there are simple ODEs that do not fit the conditions of this theorem and for which 
the uniqueness of the solution is not ensured. Indeed, let us consider the ODE 

3/23yy =′ . (4.1.16) 

The right member is defined and continuous on 2ℜ . Yet, there are at least two solutions, 
3

21 ,0 xyy == , passing through ( )0,0 . Actually, there are infinitely many solutions 
passing through any point of the plane. The most general form of the solutions passing 
through the origin is represented by the function 

( )
( )

( )⎪
⎩

⎪
⎨

⎧

>−

≤<
≤−

=

,         ,

,         ,0
,         ,

3

3

bxbx

bxa
axax

xy . (4.1.17) 

where 0,0 ≥≤ ba . 
Intuitively, the Lipschitz propriety plays an important part in what concerns the 
uniqueness of the solution. What does this mean from the geometric point of view? 
Let ( )11 , yxP  and ( )22 , yxP  be two points in Ω and let let Q be the piercing point of the 
right lines corresponding to the elements of contact of 1P and 2P (Fig.4.3). 

 
Figure 4. 3. The Lipschitz propriety 
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From the figure, it is seen that 

( ) ( )
ρ≡

σ−
=

−
−

xyy
yxfyxf 1,,

21

21 . (4.1.18) 

If f is Lipschitz, then it satisfies the inequality (4.1.12) and thus the relationship (4.1.15) 
involves K≤ρ , for all the points of Ω. Consequently, any condition imposing to ρ 
values greater than 1/x automatically yields the uniqueness of the solution. 
This remark may represent a starting point in considering some hypotheses – other than 
the Lipschitz propriety – yielding the existence and uniqueness of solutions. 
In what concerns the Cauchy problem, the (local) existence and the uniqueness of the 
solutions are ensured by 

Theorem 4.2 (Cauchy-Picard-Lipschitz). If 
i) ( )Df 0C∈ , where ( ){ }byyaxxyxD ≤−≤−ℜ∈= 00

2 ,,, , 

ii) f is Lipschitz in y, i.e. ( ) ( ) ( ) ( ) DZxYxZYKZxfYxfK ∈−<−>∃ ,,,,,,:0 , 
then the Cauchy problem (4.1.1), (4.1.10) allows a unique solution ( )xyy = , of class 

( ) [ ]hxhxIIC +−= 00
1 ,, , where { }

( )
( )yxfMMbah

Dyx
,sup,/,min

, ∈
== . 

Remark. If f is only continuous in D, then one can only ensure the existence of the 
solution (the Cauchy-Peano theorem), but uniqueness may fail, as in the case of equation  
(4.1.16). 
The proof of Theorem 4.2 is constructive, being based on the method of successive 
approximations, also called the Picard-Lindelöff method; by using it, one can get 
analytic approximates of the solution of the Cauchy problem (4.1.1), (4.1.10). 

1.3 ANALYTIC METHODS FOR SOLVING FIRST ORDER NON-LINEAR ODEs 

a) The method of successive approximations 
Suppose that f satisfies the hypotheses of theorem 4.2. Then one sets up on the rectangle 
D the recurrent sequence of functions, defined as follows 

( ) ( )

( ) ( )( )

( ) ( )( )

................................................

,d,

..............................................

,d,

,d,

0

0

0

10

102

001

∫

∫

∫

−+=

+=

+=

x

x
nn

x

x

x

x

ttytfyxy

ttytfyxy

tytfyxy

 
(4.1.19) 
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It is proved that the sequence { } N∈nny  is uniformly and absolutely convergent to the 
solution of the Cauchy problem (4.1.1), (4.1.10) on the interval I, centred at 0x , of 
length h, defined in theorem 4.2. More precisely, it is shown that the following inequality 
holds true 

( ) ( ) hxxxx
j

K
K
Mxyxy j

nj

j

n ≤−−≤− ∑
∞

+=
00

1
,

!
. (4.1.20) 

The above inequality allows a good enough evaluation of the distance between the 
approximate and the solution itself. 

b) The method of power series expansion 
If f is infinitely many differentiable with respect to both its arguments, then ( )xy  will 
alow a Taylor series expansion around 0x  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),,
!

...        

!2!1

00
0

0

2
0

0
0

0

xxRxy
n
xx

xy
xx

xy
xx

xyxy

n
n

n

+
−

++

′′
−

+′
−

+=
 (4.1.21) 

where ( )0, xxRn  is the remainder. The Lagrange’s form for the remainder reads 

( ) ( )
( )

( ) ( ) ( )xxy
n

xx
xxR n

n

n ,,
!1

, 0
1

1
0

0 ∈ξξ
+

−
= +

+

, (4.1.22) 

so that, if 
( )( )

( ) ( ) Myxf n

Dxyx
≤

∈
,sup

,
, then 

( ) ( )
( ) ( ) ( )xxy

n
xx

MxxR n
n

n ,,
!1

, 0
1

1
0

0 ∈ξξ
+

−
≤ +

+

. (4.1.23) 

Therefore, in a close neighbourhood of 0x  the remainder is small enough to be 
neglected; thus, the solution of (4.1.1), (4.1.10) can be approximated by Taylor’s 
polynomial 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
0

0
0

0 !
...

!1
xy

n
xx

xy
xx

xyxy n
n−

++′
−

+= , (4.1.24) 

whose coefficients ( ) ( )0xy k  are computed step by step, by using the chain rule 
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( )
( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

.........................................................................................................................

,,,,,,

,,,
,

000000000000

00000

00

yx
y
fyxfyx

x
fxyyx

y
fyx

x
fxy

yxfxyxfxy
yxy

∂
∂

+
∂
∂

=′
∂
∂

+
∂
∂

=′′

==′
=

 (4.1.25) 

In the particular case in which f can be developd as a double power series in x and y 
around ( )00 , yx , i.e., 

( ) ( ) ( )kj

kj
jk yyxxayxf 00

0,
, −−= ∑

∞

=
, (4.1.26) 

also expanding y in a power series around 0x  

( ) ( )n
n

n xxcyxy 0
1

0 −+= ∑
∞

=
, (4.1.27) 

convergent for hxx ≤− 0 , therefore on the interval I from Theorem 4.2, we get, 
introducing both developments in the ODE (4.1.1), 

( ) ( ) ( )∑∑∑
∞

=

−
∞

=

∞

=
−=⎥

⎦

⎤
⎢
⎣

⎡
−−

1

1
0

1
00

0, m

m
m

k

n

n
n

j

kj
jk xxcxxcxxa . (4.1.28) 

From (4.1.28) we obtain by identification the coefficients mc  

.......................................................
,3

,2
,

201
2
102111203

101102

001

cacacaac

caac
ac

+++=

+=
=

 (4.1.29) 

1.4 FIRST ORDER  INTEGRABLE BY QUADRATURES 

There are several types of ODEs of first order that may be solved by special methods, 
leading to general solutions expressed in terms of first integrals of known functions. We 
shall give here some of the most usual such types. 

1.4.1 ODEs with separate variables 
The ODEs with separate variables are of the form 

( ) ( ) 0dd =+ yyYxxX , (4.1.30) 

where the functions X and Y are supposedly continuous with respect to the variables x 
and y respectively. In this case, the ODE can be integrated directly, obtaining the general 
solution in the form 

ODEs
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( ) ( ) CyyYxxX =+ ∫∫ dd , (4.1.31) 

or else 

( ) ( ) CttYttX
y

y

x

x
=+ ∫∫

00

dd . (4.1.32) 

The Cauchy problem for (4.1.30) consists of finding the integral curve that passes 
through the point ( )00 , yx ; this solution reads 

( ) ( ) 0dd
00

=+ ∫∫
y

y

x

x
ttYttX . (4.1.33) 

1.4.2 ODEs with separable variables 
These ODEs are of the form 

( ) ( ) ( ) ( ) 0dd =+ yyQxpxyqxP . (4.1.34) 

If ( ) ( )yqxp ,  do not vanish, then we divide the ODE by the product ( ) ( )yqxp , thus 
getting 

( )
( )

( )
( ) 0dd =+ y
yq
yQx

xp
xP , (4.1.35) 

which is an ODE with separate variables. The general solution of (4.1.34) is then 

( )
( )

( )
( )∫∫ =+ Cy
yq
yQx

xp
xP dd . (4.1.36) 

1.4.3 Homogeneous first order ODEs 
A function ℜ→ℜ2:f is called homogeneous of degree m if 

( ) ( ) ℜ∈∀= yxtyxfttytxf m ,,,,, . 

The ODE 

( ) ( ) 0d,d, =+ yyxQxyxP . (4.1.37) 

in which ( ) 20 ,C, ℜ⊆∈ DDQP  are homogeneous functions of the same degree m, is 
called homogeneous. 
By using the change of function 

zxy = . (4.1.38) 

the ODE (4.1.37) becomes, after simplification by mx  (we take xt /1= ) 
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( ) ( )[ ] ( ) 0d,1d,1,1 =++ zzxQxzzQzP , (4.1.39) 

i.e., an ODE with separable variables. Its general solution is therefore 

( ) ( ) ( )
( ) ( ) 0d

,1,1
,1,e =

+
−=ψ= ∫ψ z

zzQzP
zQzCx z  (4.1.40) 

and getting back to the variables x, y, the general solution of (4.1.37) is 

⎟
⎠
⎞

⎜
⎝
⎛ψ

= x
y

Cx e , 
(4.1.41) 

where ψ is not defined for 0=x . 

1.4.4 ODEs of the form 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ+β+α

++
=

yx
cbyax

f
x
y

d
d

. (4.1.42) 

a) If 0≠α−β≡Δ ba , then the linear algebraic system 

,0
,0

=γ+β+α
=++

yx
cbyax

 (4.1.43) 

allows the unique solution ( )00 , yx , as its determinant Δ is not null. By using the change 
of variables 00 , yyvxxu −=−= , we reduce (4.1.41) to the 0-degree homogeneous 
ODE 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+α

+
=

vu
bvauf

u
v

d
d . (4.1.44) 

b) If 0=α−β≡Δ ba , then λ=β=α // ba , and therefore ( )yxbyax β+αλ=+ . 
Denoting by byaxt += , we get xybadxt d/d/d += , whence 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γλ+
λ+λ

+=
t

ctbfa
x
t

d
d , (4.1.45) 

i.e., an ODE with separable variables. 

1.4.5 Total differential ODEs 
By definition, an ODE 

( ) ( ) 0d,d, =+ yyxQxyxP , ( ) 20 ,C, ℜ⊆∈ DDQP , (4.1.46) 
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is called a total differential ODE if there exists a differentiable function ( )yxFF ,=  
such that ( ) ( ) yyxQxyxPF d,d,d +≡ . Consequently, the general solution of a total 
differentiable ODE is 

( ) CyxF =, , (4.1.47) 

where C is an arbitrary constant. So, solving such an ODE is equivalent to finding a 
function of two real variables given its first order differential. 
 It is well known that, if ( )DQP 0C, ∈ , then ( ) ( ) yyxQxyxPF d,d,d +≡   if and only if 

( ) ( ) ( ) Dyxyx
x
Qyx

y
P

∈
∂
∂

=
∂
∂ ,,,, . (4.1.48) 

Thus, to solve a total differential ODE one must observe the following two steps: 

1) One computes the partial derivatives
x
Q

y
P

∂
∂

∂
∂ , ; if they coincide, then the ODE is 

with total differentials, i.e., there exists F  such that ( ) ( ) yyxQxyxPF d,d,d +≡ . 
2) As the first differential of a function F is 

y
y
Fx

x
FF ddd

∂
∂

+
∂
∂

= , (4.1.49) 

one must have 

( ) ( ) ( ) ( ) IyxQyx
y
FyxPyx

x
F

∈=
∂
∂

=
∂
∂ ,, ,,,, . (4.1.50) 

Integrating the first relationship with respect to x, we find 

( ) ( ) ( )ytytPyxF
x

x
ϕ+= ∫

0

d,, , (4.1.51) 

where ϕ is an arbitrary function depending only on  y. Differentiating both members of 
(4.1.51) with respect to y, we get 

( ) ( )ytxt
y
P

y
F x

ϕ′+
∂
∂

=
∂
∂

∫ d,
0x

, (4.1.52) 

where 0x  is fixed up, but arbitrarily chosen, such that ( )yx ,0  belong to D. Taking now 
(4.1.50) into account, it results 

( ) ( ) ( ) ( ) ( )yyxQyxQytxt
t
Q

y
F x

ϕ′+−=ϕ′+
∂
∂

=
∂
∂

∫ ,,d, 0
x0

. (4.1.53) 

Comparing this with the expression of yF ∂∂ /  from (4.1.52), it follows 
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( ) ( ) ( ) ( )yxQyyxQyxQ ,,, 0 =ϕ′+− , (4.1.54) 

whence 

( ) ( )yxQy ,0=ϕ′ ; (4.1.55) 

thus, ϕ is given by 

( ) ( )∫=ϕ
y

y
ttxQy

0

d,0 , (4.1.56) 

0y  being chosen in the same conditions as 0x . Eventually, we find  F in the form 

( ) ( ) ( ) ttxQtytPyxF
y

y

x

x
d,d,, 0

00

∫∫ += . (4.1.57) 

The general solution of the ODE with total differentials (4.1.46) is 

( ) ( ) CttxQtytP
y

y

x

x
=+ ∫∫ d,d, 0

00

, (4.1.58) 

where C is an arbitrary constant. 
If we firstly integrate the second relation (4.1.50)  with respect to y, we obtain the 
general solution of (4.1.46) in an equivalent form 

( ) ( ) CttxQtyxP
y

y

x

x
=+ ∫∫ d,d,

00
0 . (4.1.59) 

1.4.6 Integrant factor 
In most of cases, an ODE is not a total differential one. In this case, we can still use this 
idea by looking for a function ( )yx,μ=μ  such that 

( ) ( ) ( )[ ] 0d,d,, =+μ yyxQxyxPyx , ( ) 21 ,C, ℜ⊆∈ DDQP  (4.1.60) 

be a total differential ODE. 
The function  ( )yx,μ=μ  is called an integrant factor. One can prove several important 
fact, ensuring the existence and the form of the integrant factors of a given ODE. 

a) One can always find an integrant factor for a given first order ODE. Indeed, the 
general solution of the ODE (4.1.46) may be written in the implicit form 

( ) CyxF =, . (4.1.61) 
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0dd =
∂
∂

+
∂
∂ y

y
Fx

x
F , (4.1.62) 

which means 

y
F
x
F

x
y

∂
∂
∂
∂

−=
d
d

. (4.1.63) 

On the other hand, from the ODE (4.1.46), we also get 

( )
( )yxQ

yxP
x
y

,
,

d
d

−= . (4.1.64) 

This yields 

( ) ( ) ( )yx
yxQ

y
F

yxP
x
F

,
,,

μ=
∂
∂

=∂
∂

 (4.1.65) 

and so 

( ) ( ) ( ) ( )yxQyx
y
FyxPyx

x
F ,,,,, μ=

∂
∂

μ=
∂
∂ . (4.1.66) 

This means that μ is an integrant factor for (4.1.46). 

b) A first order ODE allows infinitely many integrant factors. Indeed, if μ is an 
integrant factor for (4.1.46) and ( ) CyxF =, , for some C, is one of its integral curves, 
then any ( ) ( )( ) ( )yxyxFyx ,,, μϕ=λ  is also an integrant factor, as 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ] 0d,,d,,d,d,, =μ+μϕ=+λ yyxQyxxyxPyxFyyxQxyxPyx .  (4.1.67) 

Thus, ( ) ( ) ( ) ( ) yyxQyxxyxPyx d,,d,, λ+λ is the differential of the function 

( ) ( )∫ ϕ=Φ FFF d , (4.1.68) 

i.e., ( )yx,λ  is an integrant factor for (4.1.46). 

c)  Any integrant factor of (4.1.46) is of the form ( )( ) ( )yxyxF ,, μϕ . Let λ be 
another integrant factor, different from μ. Then we have 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ).,dd,,d,,

,,dd,,d,,
yxGyyxQyxxyxPyx
yxFyyxQyxxyxPyx

=λ+λ
=μ+μ

 (4.1.69) 

Therefore, according to the properties of the first order  differentials, we have 

Then 
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,,

,,

y
GQ

x
GP

y
FQ

x
FP

∂
∂

=λ
∂
∂

=λ

∂
∂

=μ
∂
∂

=μ
 (4.1.70) 

involving 

( )
( ) ( ) Dyx

y
G

x
G

y
F

x
F

yxD
GFD

∈=

∂
∂

∂
∂

∂
∂

∂
∂

≡ ,,0
,
, . (4.1.71) 

According to the properties of the Jacobian, it exists then ( )FΦ=Φ  such that 
( ) ( )( )yxFyxG ,, Φ= . So, 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ].d,d,,

d,,d,,,d
,dd,,d,,d,d,,

yyxQxyxPyxF
yyxQyxxyxPyxFyxFF

yxGyyxQyxxyxPyxyyxQxyxPyx

+μΦ′=
μ+μΦ′=Φ′=

=λ+λ=+λ
. (4.1.72) 

This yields precisely that 

( ) ( ) ( )yxFyx ,, μΦ′=λ . (4.1.73) 

Consequence. If one knows two qualitatively different integrant factors, say λ and μ, of a 
first order  ODE, then its general solution is written without quadrature 

( )
( ) C

yx
yx

=
μ
λ

,
, . (4.1.74) 

d) Getting an integrant factor. If (4.1.60) is a total differential ODE, then 

( ) ( )Q
x

P
y

μ
∂
∂

=μ
∂
∂ , (4.1.75) 

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

μ=
∂
μ∂

−
∂
μ∂

x
Q

y
P

y
P

x
Q . (4.1.76) 

Let us find for (4.1.76) solutions of the form ( )ωμ=μ , where ω is a known functionm 
depending on x and y. As 

yyxx ∂
ω∂

ω
μ

=
∂
μ∂

∂
ω∂

ω
μ

=
∂
μ∂

d
d              ,

d
d , 
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we deduce that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

μ=
ω
μ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ω∂

−
∂
ω∂

x
Q

y
P

y
P

x
Q

d
d . (4.1.77) 

Suppose now that the expression 

( )

y
P

x
Q

x
Q

y
P

yxE

∂
ω∂

−
∂
ω∂

∂
∂

−
∂
∂

≡,   (4.1.78) 

depends explicitely only on ω, i.e. ( ) ( )ωψ=yxE , . Then μ satisfies the linear ODE 

( )μωψ=
ω
μ

d
d , (4.1.79) 

allowing the solution 
( )∫ ωωψ=μ de . (4.1.80) 

This the integrant factor we are looking for. Note that we only need a particular solution 
of (4.1.79) and not its general solution. 

Particular cases. A) If x=ω  , then 

( ) ( )
Q

x
Q

y
P

xxx ∂
∂

−
∂
∂

=ψ=μ ∫ψ ,e d ; (4.1.81) 

B) If y=ω  , then 

( ) ( )
P

y
P

x
Q

yyy ∂
∂

−
∂
∂

=ψ=μ ∫ψ ,e d . 
(4.1.82) 

1.4.7 Clairaut’s equation 
This ODE is of the form 

( )yyxy ′ϕ+′= . (4.1.83) 

We see that the ODE is linear in both x and y, but it is not explicit with respect to y ′ . 
Using the change py =′ , (4.1.83) reads 

( )pxpy ϕ+= . (4.1.84) 
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As xpy dd = , differentiating (4.1.84) we get 

( ) pppxxpxp dddd ϕ′++= , (4.1.85) 

whence 

( )[ ] 0d =ϕ′+ ppx , (4.1.86) 

If 0d =p , then Cp = ; introducing this in (4.1.84), we get the general solution of 
Clairaut’s equation 

( )CCxy ϕ+= . (4.1.87) 

The second possibility, ( )px ϕ′−= , yields the singular solution, expressed in parametric 
form 

( )
( ) ( ).

,
pppy

px
ϕ+ϕ′−=

ϕ′−=
 (4.1.88) 

Indeed, it is easily seen that this solution cannot be obtained from the general one by 
giving particular values to C. 
From the geometric point of view, the general solution of Clairaut’s equation always 
represents a pencil of straight lines; the envelope of this pencil can be obtained 
eliminating C from the algebraic system formed of the general solution and its partial 
derivative with respect to C, i.e. 

( ) ( )

( ) ,0

,0,,

=ϕ′−−≡
∂
∂

=ϕ−−≡

Cx
C
F

CCxyCyxF
 (4.1.89) 

which is precisely, apart from the notation, the singular solution. We deduce that the 
singular solution of Clairaut’s equation always represents the envelope of the pencil of 
straight lines giving its general solution. 

1.4.8 Lagrange’s equation 
This is, in fact, a generalization of Clairaut’s equation 

( ) ( ) ( ) 0=′+′+′ yCxyByyA . (4.1.90) 

Supposing that ( ) 0≠′yA , we divide by it and thus (4.1.90) reads 
  

( ) ( )yxyy ′ψ+′ϕ= . (4.1.91) 

In order to avoid Clairaut’s equation, previously treated, we also suppose ( ) yy ′≠′ϕ . 
The method of solving (4.1.91) is the same: we use the change py =′ , thus getting 

( ) ( )pxpy ψ+ϕ= , (4.1.92) 
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then we differentiate this, and, taking into account that xpy dd = , we deduce 

( )[ ] ( ) ( )[ ] 0dd =ψ′+ϕ′+−ϕ pppxxpp . (4.1.93) 

If ( )pϕ  is a constant, then (4.1.93) is an ODE with separable variables. If ( )pϕ  is not 
constant, then, as ( ) pp ≠ϕ ,  (4.1.93) may be written in the form 

( )
( )

( )
( )pp
px

pp
p

p
x

ϕ−
ψ′

=
−ϕ

ϕ′
+

d
d , (4.1.94) 

which is a first order linear non-homogeneous ODE, that can be easily solved by using 
the method described in Chap.1, Sec.1. We get x as a function of p 

( ) ( )pCpx β+α= , (4.1.95) 

with C an arbitrary constant. Getting back to (4.1.92), we deduce 

( ) ( ) ( )[ ] ( )ppCppy ψ+β+αϕ= , (4.1.96) 

so that the general solution of Lagrange’s equation, written in parametric form, is 

( ) ( )
( ) ( ).

,
pCpy
pCpx

δ+γ=
β+α=

 (4.1.97) 

Let us consider now the case ( ) pp =ϕ . Generally speaking, this represents a 
transcendental equation. Denoting by ip  its solutions, we find the equations of some 
straight lines 

( )ii pxpy ψ+= , (4.1.98) 

also representing solutions of Lagrange’s equation, possibly singular. 

1.4.9 Bernoulli’s equation 
This ODE is of the form 

( ) ( ) 0=++′ αyxQyxPy , (4.1.99) 

with ( ) ℜ⊆∈ IIQP ,C, 0 . If 0=α , then (4.1.99) is a linear non-homogeneous first 
order ODE; if 1=α , then (4.1.99) becomes also a linear first order ODE, but in this case 
it is homogeneous. As both these cases were treated in Chap.1, we shall consider 

{ }1,0∉α . 
By using the change of function 

α−= 1yu , (4.1.100) 

the Bernoulli ODE becomes 
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( ) ( ) 0
1

=++
α−
′

xQuxPu , (4.1.101) 

i.e., again a linear ODE, that can be solved as shown in Chap.1. After obtaining u, we 
return to y by using  (4.1.100). 

1.4.10 Riccati’s equation 
This widely studied ODE is of the form 

( ) ( ) ( )xRyxQyxPy ++=′ 2 , (4.1.102) 

where ( ) ℜ⊆∈ IIRQP ,C,, 0 . If R or Q vanish identically on I, then (4.1.102) is 
reduced either to a Bernoulli equation for 2=α  or to a linear first order ODE, both of 
them previously studied. 
 Riccati’s equation is of great interest as it models important classes of physical 
phenomena. We shall emphasize several important properties of this equation and of its 
solutions, along with methods of solving it. 

a) If we know one of its particular solutions, say Y, then Riccati’s equation may be 
solved by quadratures. 
Indeed, by the change of function 

( ) ( ) ( )xYxzxy += , (4.1.103) 

we find out that the new unknown function ( )xz  must satisfy Bernoulli’s equation 

( ) ( ) ( )[ ] ( ) ( ) 22 zxQxzxQxYxPz ++=′ ,  (4.1.104) 

and therefore the function ( )Yyzu −== /1/1  satisfies the linear non-homogeneous 
ODE 

( ) ( ) ( )[ ] ( )xQuxQxYxPu =++′ 2 . (4.1.105) 

b) The solution of a Riccati equation is a homographic function of an arbitrary 
constant C. 
The solution of (4.1.105) may be written in the form 

( ) ( ) ( )[ ] ( )xUCu xxQxYxP += ∫ + d2e , (4.1.106) 

where U is a particular solution of the non-homogeneous ODE. Note that (4.1.106) may 
be also written in the form 

( ) ( )xxCu ψ+ϕ= , (4.1.107) 

putting C into evidence. Getting back to y, we find the general solution of Riccati’s 
equation in the form 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )xxC
xYxxYxC

xxC
xYxy

ψ+ϕ
ψ+ϕ

=
ψ+ϕ

+=
1  (4.1.108) 

or, with obvious notations, 

( ) ( ) ( )
( ) ( )xxC

xxCxy
δ+γ
β+α

= , (4.1.109) 

meaning that y is a homographic function of C. 
We can prove, conversely, that 

a) Any homographic function (4.1.109) represents the general solution of a certain  
Riccati equation. 
Indeed, from (4.1.109) it follows that 

( ) ( ) ( )
( ) ( ) ( )xxyx

xyxxC
α−γ

δ−β
= . (4.1.110) 

Differentiating this with respect to x, we find that y satisfies a Riccati equation. 

d) If we know two particular solutions, say 21 ,YY , then Riccati’s equation can be 
solved by using only one quadrature. 
By using the same changes of function as before, we find out that the function 

( ) ( ) ( )xYxY
xu

21

1
−

=  (4.1.111) 

is a particular solution of the linear non-homogeneous ODE 

( ) ( ) ( )[ ] ( )xQuxQxYxPu =++′ 12 . (4.1.112) 

To find the general solution of (4.1.112) we need only the general solution of its 
associated homogeneous ODE, which is 

( ) ( ) ( )[ ] xxQxYxP
h Cu d2 1e ∫ += , (4.1.113) 

yielding only one quadrature. 

e)  If we know three particular solutions, say 321 ,, YYY , then Riccati’s equation 
can be solved  without quadratures. 
Indeed, in this case, the functions  

( ) ( ) ( ) ( ) ( ) ( )xYxY
xu

xYxY
xu

13
2

12
1

1,1
−

=
−

=  (4.1.114) 

are both particular solutions of  the linear non-homogeneous ODE (4.1.112). Their 
difference will satisfy the associated homogeneous ODE. Therefore, the general solution 
of (4.1.112) is obtained without quadratures 
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( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) .111        
121312

121

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

+
−

=

−+=

xYxYxYxY
C

xYxY

xuxuCxuxu
 (4.1.115) 

Thus, turning  back to y, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
−

−
−

+
−

=
− xYxYxYxY

C
xYxYxYxy 1213121

1111  (4.1.116) 

or 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) C

xYxY
xYxY

xYxy
xYxy

=
−
−

−
−

12

23

1

2 : . (4.1.117) 

The general solution of Riccati’s equation can therefore be written in the form of a 
constant anharmonic ratio. This immediately yields the following property. 

f) The anharmonic ratio of any four particular solution of Riccati’s quation is 
always constant. 
As it was previously shown, there is a tight connection between the Riccati’s equation 
and the linear second order ODE; this connection is useful if this linear ODE is easier 
solved. Let us mention some particular cases of interest. 

1) If ( ) ( ) ( ) 0=++ xRxQxP  on I, then the general solution of Riccati’s equation is 

( ) ( ) ( )[ ] ( ) ( )
( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]∫ −=ϕ

ϕ+ϕ++

ϕ−ϕ++
=

∫
∫ xxRxQ

xxxxRxQC
xxxxRxQC

xy dex     ,
d
d

. (4.1.118) 

2) In the more general case ( ) ( ) ( ) 022 =++ xRbxabQxPa , Ix∈ , where the 
constants a and b are not simultaneously null; if 0≠b , we can use the change of 
function ( ) ( )xubaxy += / , obtaining for the new unknown function a Bernoulli-type 
equation 

( ) ( ) ( ) uxPxQ
b
auxQu ⎥⎦

⎤
⎢⎣
⎡ ++=′

22 . (4.1.119) 

3) If P and R are polynomials satisfying const422 =−′−=Δ RPP , then 

( ) ( )[ ]Δ+−= xPxY
2
1

1  and ( ) ( )[ ]Δ−−= xPxY
2
1

2  are both of them solutions of 

Riccati’s equation 

( ) ( )xRyyxPy ++=′ 2 . (4.1.120) 



ODEs WITH APPLICATIONS TO MECHANICS 

 

260
2. Non-Linear Second Order ODEs 

The general form of a second order ODE is 

( ) 0,,, =′′′ yyyxF . (4.2.1) 

If 0/ ≠′′∂∂ yF  on the domain of definition of F and if F is sufficiently regular, then, by 
the implicit function theorem we can explicit y ′′ , thus getting the normal/canonic form 

( ) ℜ→××′=′′ ′yy DDIfyyxfy :,,, . (4.2.2) 

2.1 CAUCHY PROBLEMS 

In the examples given in the Introduction, we saw that the study of a motion, for whoch 
Newton’s second law represents a fundamental principle in the classical mechanics leads 
to an ODE of form (4.2.2). To determine completely the trajectory of the moving body 
one must know its position and its initial velocity. The mathematical correspondent of 
the velocity is the derivative of the displacement with respect to time. Consequently, to 
an ODE of type (4.2.2) one can naturally associate the following supplementary 
conditions 

( ) ( ) ( ) yy DDIyyxyxyyxy ′××∈′′=′= 0000000 ,,,, , (4.2.3) 

called initial or Cauchy conditions. 
As in a study of motion the initial position and velocity perfectly determine the trajectory 
of the body, we should expect that the initial problem (4.2.2), (4.2.3) allow unique 
solution, under certain hypotheses on f. 
One can easily prove an existence and uniqueness theorem for the solution of this 
problem, similar to theorem 4.2. But, as we previously saw, a second order ODE can be 
reduced to a first order ODS with two unknown functions, we shall rediscover this 
theorem in Chap.5, as a particular case of the corresponding theorem for ODSs. 

2.2 TWO-POINT PROBLEMS 

We already saw that, if we associate to an ODE the Cauchy (or initial) conditions, this 
means that the values of the unknown function and of its derivative at the same point 0x  
are supposedly known. Such conditions do not match to all mathematical models; for 
instance, they do not fit to the simply supported bar, as in this case the physical problem 
requires the values of the displacement at two distinct point: the bar ends. The simplest 
conditions of this type are 

( ) ( ) ℜ∈∈== BAIbaBbyAay ,,,,, , (4.2.4) 

which, associated to the ODE (4.2.2), form the two-point (bilocal) problem. 
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The first difficulty in tackling this problem is to get appropriate hypotheses ensuring the 
existence and uniqueness of the solution, as in this case we have no more the benefit of 
such powerful a tool as the Cauchy-Picard theorem. 
We shall suppose [ ]( )baf ,C0∈ , for any ℜ∈′yy, . Obviously, there are infinitely many 
integral curves passing through the point ( )Aa, . But it is possible, even in simple cases 

as that of the ODE 32yy ′=′′ , that none of these integral curves reach the point ( )Bb, . 
In other words, it is possible that the solution of the two-point problem not even exist. 
Hereafter, we give some of the most common conditions, each of them ensuring the 
existence and uniqueness of the solution of the two-point problem (4.2.1), (4.2.4): 

1. ( )yyxf ′,,  bounded. 

2. yCf <  for sufficiently great values of y ; here, ( )23 /3 abC −π< . 
3. f is Lipschitzian with respect to yy ′,  on any finite interval and 

( ) ( )yyyyxf ′+′ /,,  tends to 0, uniformly on [ ]ba, , if ( ) ∞→′+ yy . 
4. f is Lipschitzian with respect to yy ′, on any finite interval and has the form 

( ) ( ) ( )yyxyxyyxf ′ψ+ϕ≡′ ,,,,, , (4.2.5) 

where ( ) ( )yyyyx ′+′ψ /,,  tends to 0 uniformly on [ ]ba, , if ( ) ∞→′+ yy . 
5. f allows continuous partial derivatives with respect to yy ′,  and 

1,, <β+αβ<
′∂

∂
α<

∂
∂

y
f

y
f , (4.2.6) 

or 0/ ≥∂∂ yf . 
6. A particular case of interest is that of the two-point problem 

( )
( ) ( ) .0,00

,,
==

=′′

ayy
yxfy

 (4.2.7) 

One can prove the existence and uniqueness of its solution provided [ ]( )ℜ×∈ aCf ,00 , 
and there exist two numbers 0,0 10 >≥ cc  such that 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ π
∈−−≥∫

1
0

2
1

0 2
,0,d,

c
acycttxf

y
. (4.2.8) 

2.3 ORDER REDUCTION OF SECOND ORDER ODEs 

There are particular cases in which the second order ODEs may be easier solved by 
reducing their order. In what follows, we shall present some of these cases, frequently 
met in applications. 
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a) If the ODE is of the form 

( ) 0,, =′′′ yyxF , (4.2.9) 

i.e., F does not explicitly depend on y, then, by the change of function py =′ , we get 

( ) 0,, =′ppxF , (4.2.10) 

which is a first order ODE, that can be solved by using the above presented methods. Let 
( )1, Cxpp =  be its general solution. Then the general solution of (4.2.9) is 

( ) ( ) 21 d, CxCxpxy += ∫ , (4.2.11) 

1C  and 2C  being arbitrary constants. 

b) If the ODE does not depend explicitly on x, i.e., if 

( ) 0,, =′′′ yyyF , (4.2.12) 

then, using again the change py =′ , we obtain 

y
p

p
x
y

y
p

x
p

y
d
d

d
d

d
d

d
d

===′′ ; (4.2.13) 

this means that (4.2.12) becomes a first order ODE, having p as unknown function and y 
as independent variable 

0
d
d

,, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
p

pyF . (4.2.14) 

The general solution of this ODE reads ( )1, Cypp = , whence we get another first order 
ODE 

( )1,
d
d

Cyp
x
y
= , (4.2.15) 

which can be solved by separation of variables, thus getting 

( ) 2
1

d
,
1 Cy

Cyp
x += ∫ . (4.2.16) 

This is precisely the general solution of (4.2.12). 

c) If the function ( )yyyxF ′′′,,,  is homogeneous of degree m with respect to 
yyy ′′′,, , that is, if 

( ) ( )yyyxFtytyttyxF m ′′′=′′′ ,,,,,, , (4.2.17) 

then we can use the change 
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y
y

u
′

= . (4.2.18) 

This yields 

2

2

d
d

d
d

y
yyy

y
y

xx
u ′−′′

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
= , (4.2.19) 

whence 

2uu
y
y

+′=
′′

. (4.2.20) 

Eventually, the second order ODE (4.2.1) is replaced by the first order ODE 

( ) 0,,1, 2 =+′ uuuxF . (4.2.21) 

Let ( )1, Cxuu =  be its general solution. Introducing it in (4.2.18), we get a new first 
order ODE, linear and homogeneous, 

( ) 0, 1 =−′ yCxuy , (4.2.22) 

whose general solution reads 

( ) ( ) xCxuCxy d,
2

1e ∫= ; (4.2.23) 

this is also the general solution of (4.2.1) in this particular case. 

2.4 THE BERNOULLI-EULER EQUATION 

This ODE is of greatest importance in the mechanics of constructions, as it represents the 
mathematical model of an elastic bar deformation by bending. 
We shall consider later on the physical hypotheses under which this model is set up. The 
Bernoulli-Euler equation reads 

( )( ) 2/321 yxfy ′+=′′ , (4.2.24) 

where y corresponds to the deflection of the bar axis, and the independent variable x is 
considered along the ideal non-deflected bar. The function ( ) EIMxf /= , where M is 
the bending moment and the rigidity EI is expressed by the product between the modulus 
of elasticity E and the moment of inertia I of the cross section with respect to the neutral 
bar axis. 
The ODE (4.2.24) is of the form a) from Sec.2.3. Therefore, by using the change zy =′ , 
it becomes 

( )( ) 2/321 zxfz +=′ . (4.2.25) 
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Introducing the function ( )xh  as a primitive of ( )xf , i.e. 

( ) ( ) ( )∫==
x

ttfxhxf
x
h

0
d,

d
d , (4.2.26) 

we can simplify the form of (4.2.25), applying the change of variable ( )hzz = , that leads 
to 

( ) 2/321
d

z
h

dz
+= . (4.2.27) 

This ODE is invariant on the class of Bernoulli-Euler type equations. Its form does not 
depend on the physical bar characteristics; one can say that it represents the intrinsic 
mathematical structure of an elastic bar model. 
Using the change of function uz sinh= , we can integrate (4.2.27), obtaining its general 
solution in the form 

Ch
z

z
+=

+ 21
, (4.2.28) 

where C is an arbitrary constant; it results 

( )21 Ch

Chz
+−

+
= ,       1<+Ch . (4.2.29) 

In the particular case ( ) const/1 == Rxf , we deduce ( ) Rxxh /= , therefore 

2

1
d
d

⎟
⎠
⎞

⎜
⎝
⎛ +−

+
=

C
R
x

C
R
x

x
y

, (4.2.30) 

whence we get the general solution of the Bernoulli-Euler equation in the form of a 
pencil of circles 

( ) ( ) const,          ,222 ==−++ CbRbyCRx . (4.2.31) 

This was to be expected, taking into account the physical interpretation of the function 
( )xf . 

Expanding now (4.2.29) in a power series with respect to ( )Ch + , we get 

( ) ( )( )∑ ∏
∞

= =

++−++=
1 1

1212
!2

1
d
d

k

k

j

k
k

Chj
k

Ch
x
y

, (4.2.32) 

whence 
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( ) ( )[ ] ( ) ( )[ ]∑ ∏ ∫∫
∞

= =

++−++=
1 1

12 d12
!2

1d
k

k

j

k
k

xCxhj
k

xCxhxy , (4.2.33) 

valid for 1<+Ch . 

2.5 ELLIPTIC INTEGRALS 

From (4.2.29) it follows that the general solution of the Bernoulli-Euler ODE can also be 
written in integral form 

( ) ( )
( )[ ]

bx
Cxh

Cxhxy +
+−

+
= ∫ d

1 2
. (4.2.34) 

If ( )xh is a polynomial ( )xP , then the Bernoulli-Euler equation would be reduced to the 
study of an integral of the type 

( )( )∫ Φ xxPx d, . (4.2.35) 

where ( )βαΦ ,  is rational with respect to its arguments. 
If ( )xP  has the degree 3 ar 4, then this integral can be reduced to integrals of rational 
functions and to three other integrals, called elliptic integrals of first, second and third 
species accordingly, in normal Legendre form 

( )( ) ( ) ( )( )∫∫∫
−−+−

−

−−
x

xkxnx
x

x

xkx
xkx

d
111

1,d
1

2,d
11

1
22222

22

222
. (4.2.36) 

The number k is called the modulus of the integrals and 21 kk −=′  is the 
complementary modulus ( 1<k ); the number n is the parameter of the integral of third 
species. 
By the substitution ϕ= sinx  one obtains the elliptic integrals in normal trigonometric 
form; thus 

( )
( )( ) ∫∫

ϕϕ
ψ

ψ−
=

−−
=ϕ

0 22

sin

0 222
d

sin1

1d
11

1,
k

x
xkx

kF . (4.2.37) 

is the elliptic integral of first species, 

( ) ψψ−=
−

−
=ϕ ∫∫

ϕϕ

0

22
sin

0 2

22
dsin1d

1

1, kx
x

xkkE , (4.2.38) 

is the elliptic integral of second species and 
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( )
( ) ( ) ( ) ( )∫∫

ϕϕ
ψ

ψ−ψ+
=

−−+
=ϕε

0 222

sin

0 2222
d

sin1sin1

1d
111

1,,
kn

x
xkxnx

kn .(4.2.39) 

is the elliptic integral of third species. 
We must also mention the following combination of the elliptic integrals, useful in 
applications 

( ) ( ) ( )
( )( ) ∫∫

ϕϕ

ψ
ψ−

ψ
=

−−
=

ϕ−ϕ
=ϕ

0 22

2sin

0 222

2

2 d
sin1

sind
11

,,,
k

x
xkx

x
k

kEkFkD . (4.2.40) 

For 2/π=ϕ , we get the complete elliptic integrals 

( )

( )

( ) ( ) .d
sin1

sin,
2

,dsin1,
2

,d
sin1

1,
2

2

0 22

2

2

2

0

22

2

0 22

∫

∫

∫

π

π

π

ϕ
ϕ−

ϕ
=

−
≡⎟

⎠
⎞

⎜
⎝
⎛ π

ϕϕ−=≡⎟
⎠
⎞

⎜
⎝
⎛ π

ϕ
ϕ−

=≡⎟
⎠
⎞

⎜
⎝
⎛ π

kk
kEkKkD

kkEkE

k
kKkF

. (4.2.41) 

The current notations when we use the complementary modulus are 

( )

( ) .dsin1,
2

,d
sin1

1,
2

2

0

22

2

0 22

∫

∫

π

π

ϕϕ′−=⎟
⎠
⎞

⎜
⎝
⎛ ′π

=′

ϕ
ϕ′−

=⎟
⎠
⎞

⎜
⎝
⎛ ′π

=′

kkEkE

k
kFkK

 (4.2.42) 

In practice, the modulus k is usually omitted; for instance, we can write E instead of 
( )kE , E ′  instead of ( )kE ′ , a.s.o. 

In most of cases, the elliptic integrals, whether they are complete or not, cannot be 
computed in terms of elementary functions. This is why series expansions were used, 
leading to accurate approximations. This approximations were then used to set up tables 
of values for the elliptic integrals. 
We give several of the most useful series developments for the calculus of complete 
elliptic integrals: 



4. Non-Linear ODEs of First and Second Order 267 

( ) ( )

( ) ( )

( ) ( ) ( ) ....
!2

!!12
12

...
42
31

3
2

2
1

1
1

,...
12!2

!!12
...

42
31

2
11

2

,...
!2

!!12
...

42
31

2
11

2

12
2

2
22

22

22

2
2

2

2
2

4
2

2
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡ −
−

++⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅

+⎟
⎠
⎞

⎜
⎝
⎛π=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
−⎥

⎦

⎤
⎢
⎣

⎡ −
−−

⋅

⋅
−−

π
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡ −
++⎟

⎠
⎞

⎜
⎝
⎛

⋅
⋅

+⎟
⎠
⎞

⎜
⎝
⎛+

π
=

−n
n

n

n

n
n

k
n

n
n
nkkD

n
k

n
n

kkkE

k
n

n
kkkK

 (4.2.43) 

For the elliptic integrals ( ) ( )kEkF ,,, ϕϕ  there were also found trigonometric series 
expansion. It should be mentioned that the complete elliptic integrals can be decomposed 
in Legendre’s polynomials. 
The calculus of the elliptic integrals is considerably simplified by certain functional 
relationships between them. The more currently in use are 
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For the complete elliptic integral, we emphasize the following representative 
relationships 
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and also 
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Finally, let us mention that the functions K and K ′  satisfy the ODE of independent 
variable k 

,0
d
d

d
d 2 =−⎟

⎠
⎞

⎜
⎝
⎛ ′ ku

k
ukk

k
 (4.2.47) 

and the functions E and ( )KE ′−′  are particular solutions of the ODE 

0
d
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d2 =+⎟
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⎛′ ku

k
uk

k
k . (4.2.48) 

3. Applications 

Application 4.1 

Problem. Study the motion of a heavy particle P (the motion of a particle in the 
gravitational field of the Earth), of mass m , in a resistant medium. Such a particle is, for 
instance, a projectile in motion, which has a spherical form and is not subjected to 
rotations; from the point of view of the mathematical modelling, the projectile is reduced 
to its centre of gravity. 

Mathematical model. We assume that, besides the given force (in our case the 
gravitational force mg, where g is the gravitational acceleration) intervenes also a force 
R, called resistance, 

( ) vR versvmgϕ−= , ( ) 00 =ϕ , ( ) ∞=ϕ
∞→

v
v
lim , (a) 

where ( )vϕ  is a strictly increasing function (the resistance of the air increases together 
with the velocity v ); there exists – obviously – a value ∗v  and only one for which 
( ) 1=ϕ ∗v . 

Solution. Newton’s equation of motion is 

( )rgr &&& vmgm ϕ−= , (b) 

where ( ) ( ) vvv ϕ=ϕ ; we assume that, in general, the initial velocity 0v  is not directed 
along the vertical of the launching position ( 0v is not collinear with g); the trajectory is a 
plane curve (contained in a vertical plane). Using Frenet’s trihedron, we may write 

( )[ ] θ=
ρ

ϕ+θ−= cos,sin
2

gvvgv& , (c) 

where θ is the angle made by velocity v with the x-axis, while ρ is the curvature radius of 
the trajectory. We notice that 0cos ≥θ , hence 22 π≤θ≤π− ; the concavity of the 



4. Non-Linear ODEs of First and Second Order 269 
trajectory is directed towards the negative ordinates (Fig.4.4), so that to 0d >s  
corresponds 0d <θ  (the angle θ  is decreasing). It follows θ−=θ−=ρ dddd tvs , so 
that the second equation (c) takes the form 

θ−=θ cosgv& . (d) 

We have thus obtained a system of two differential equations (c), (d) for the unknown 
functions ( )tvv =  and ( )tθ=θ , with the initial conditions ( ) 00 vtv = , ( ) 00 θ=θ t . 
Eliminating the time t , we may write the equation  

( )
⎥⎦
⎤

⎢⎣
⎡

θ
ϕ

+θ=
θ cos

tan
d
d vvv , (e) 

which defines the function ( )θ= vv  with the initial condition ( ) 00 vv =θ . This equation 
of the hodograph of velocities, which can be written in the form 

( ) ( )vvv
ϕ=

θ
θ

d
cosd  (f) 

too, is the basic equation of the external ballistics. The equation (d) allows then to 
determine (usually, one takes 00 =t )  

 

Figure 4. 4. Motion of a heavy particle in a resistant medium 

( )
ϑ

ϑ
ϑ

−= ∫
θ

θ
d

cos
1

0
0

v
g

tt , (g) 

whence – afterwards – we may obtain ( )tθ=θ . Noting that tvx dcosd θ= , 
tvy dsind θ= , there result the parametric equations of the trajectory in the form 
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( ) ϑϑ−= ∫
θ

θ
d1

0

2
0 v

g
xx , ( ) ϑϑϑ−= ∫

θ

θ
dtan1

0

2
0 v

g
yy , (h) 

where we take 000 == yx  if the particle (the projectile) is launched from the origin 0. 
In the case of an object launched from an airplane at the height h  we take 00 =x , 

hy =0 ; the initial velocity is the velocity of the airplane at the moment of launching 
the object. 
From the second equation (c) one observes that ( θ  is only decreasing and greater than 

2π−  for t  finite, hence 0cos >θ ) the velocity v  is finite and non-zero. An extreme 
value of v  is given by 0dd =tv ; we obtain thus ( ) θ−=ϕ sinv . Because the velocity 
v  is finite, from (d) it follows that θ  has an extreme value for 0dd =θ t , hence for 

0cos =θ ; but the angle θ  is decreasing, so that we have 2/lim π−=θ
∞→t

. We notice that 

for *vv > , ( ) 1* =ϕ v , we have 0<v& , the function ( )vϕ  being monotone decreasing. 
Hence, the velocity v  has a lower limit ( 0>v ) and a upper limit ( ∗≤ vv ). The 
trajectory has a vertical asymptote xx = , with 

( ) ϑϑ== ∫
θ

π−+π−→θ
d1lim

0

2

2

02
v

g
xx , (i) 

and the corresponding velocity is given by ( ) ∗
+π−→θ

=θ vv
02

lim . Because of the 

resistance of the air, we notice that the range of throw of the projectile is smaller. 
Besides, for two points P  and P′ , which have the same ordinate y , it results θ′<θ ; 
hence, the two branches (increasing and decreasing) of the trajectory are not symmetric. 
Multiplying the first equation (c) by v  and noting that tvy dsind θ= , we may write 

( ) ( ) tvvgygv dd2d 2 ϕ−−= , so that, integrating between the points ( )tP  and ( )tP ′′ , we 
obtain 

( ) ( )( ) ( ) 0d
2
1 22 <τττϕ−=−′ ∫

′
vvgvv

t

t
, 

whence 0>′> vv . 
Modelling the projectile as a rigid solid, one can take into account also its rotation, being 
led to a deviation from the vertical plane of the trajectory. 
In particular, d’Alembert has considered the law of resistance ( ) 0, >λ=ϕ nvv n , λ  
being a positive constant with dimension. The equation (f) leads to 

( ) ( )
θ

θλ
=θ

θ +

+

1

1

cos
coscos

d
d

n

nvv ; (j) 

integrating, we get 
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θθεθελ−

θ
=θ , (k) 

where we have introduced the integral 

( ) ∫
ϑ

ϑ
=θε

θ

+
0

1cos
d
nn . (l) 

For small velocities one can use Stokes’ law ( 1=n ); thus, we obtain ( ) θ=θε tan1 , so 
that 

( ) ( )000

00

sincos
cos

θ−θλ−θ
θ

=θ
v

v
v . (m) 

 For velocities till sm250 , one may take 2=n , obtaining Euler’s law; we notice that 
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Let us consider now the case N∈n ; for n  odd ( 12 −= pn ), we have 
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while for n  even ( pn 2= ) we may write 
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The velocity ( )θv  is easily obtained from the formula (k), getting the time t  and the 
parametric equations of the trajectory from the formulae (g) and (h). 
We observe that, by the substitution ( )[ ] yvv 1sin =ϕ+θ , the equation (e) reads 

( )[ ] ( ) ( ) 232

d
d21

d
d

y
v
vvvyvv

v
y

⎥⎦
⎤

⎢⎣
⎡ ϕ

+ϕ−−ϕ= . (q) 

Drach has determined all the forms of the function ( )vϕ  for which the solution of the 
equation may be obtained by quadratures. 
 
 
 



ODEs WITH APPLICATIONS TO MECHANICS 

 

272
Application 4.2 

Problem. Study the motion of a heavy solid body of weight 0P  which is moving on a 
plane inclined by the angle α  with respect to the horizontal and is tied by a chain 
wrapped up frictionless on a pulley in A  (Cayley’s problem, 1857) (Fig.4.5). 

Mathematical model. Applying the theorem of momentum, one obtains the differential 
equation 

( ) Xvv
g
p

t
v

g
P

=−+ 0d
d , (a) 

where gP /  is the total mass of the mechanical system at the moment t , g being the 
gravitational acceleration, gp /  is the accumulation of mass, X  is the external force, v  
is the velocity at the moment t , while 0v  is the initial velocity of the additional mass, 
one obtains the model of a mechanical system of variable mass. 
Let be q  the weight of the chain on the unit length; in this case, for a displacement x  of 
the weight 0P  the total mass is 

qxPP += 0 . (b) 

We notice that 

qv
t
Pp ==

d
d . (c) 

 

Figure 4. 5. Mechanical system of variable mass 

The portion of the chain wrapped up on the pulley being in rest, we may consider that the 
initial velocity of the additional mass is zero ( 00 =v ). The external force X  is the 
component along the inclined plane of the force P , so that ( ) α+= sin0 qxPX . Thus, 
the equation (a) becomes 
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( ) α+=⎟
⎠
⎞

⎜
⎝
⎛ + sin

d
d

d
d1

0 qxP
t
Pv

t
vP

g
. 

Solution. The equation governing the problem becomes 

( ) ( ) α+=α= sinsin
d
d

0 gqxPPgPv
t

. (d) 

Multiplying at the left by Pv  and at the right by ( ) txqxP dd0 +  and integrating, we get 

( ) ( ) CqxP
q
gPv +α+= sin

32
1 3

0
2 . (e) 

If we assume that for 0=t  the mechanical system is at rest at the upper part of the 
inclined plane, then the condition ( ) 00 =x  leads to ( ) α−= sin3/ 3

0PqgC  and the 
velocity is given by 

( )
( )

( )
( )

α
+

++
=α

+

−+
= sin

3
3

2sin
3
2

2
0

22
00

2
0

3
0

3
02

qxP

xqqxPPgx
qxP

PqxP
q
gv . (f) 

In the particular case 00 =P  (the chain is free to fall), one obtains 

α=⎟
⎠
⎞

⎜
⎝
⎛= sin

3
2

d
d 2

2 gx
t
xv , (g) 

whence 

tg
x
x dsin

3
2d

α= ; 

then 

1sin6 Ctgx +α= , 

so that ( ( ) 00 =x ) 

( ) α= sin
6

2t
g

tx , ( ) α= sin
3

t
g

tv , ( ) α= sin
3
g

ta , (h) 

the motion of the chain being uniformly accelerated. 

Application 4.3 

Problem. Study the motion in air along the vertical of a body of mass m , launched with 
an initial velocity 0v , if the resistance of the air is given by 2kvR −= , v  being the 
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velocity and k  a constant coefficient. Determine the maximal height attained by the 
body. 

Mathematical model. Modelling the body as a particle, Newton’s equation of motion 
2kvmgxm −−=&&  becomes 

gvx −=ω+ 22&& , (a) 

where mk=ω2 . 

Solution. Noting that 

( )
x
vv

t
x

x
v

t
vx

t
x

d
d

d
d

d
d

d
d

d
d

==== &&& , 

the equation of motion becomes 

( )22

d
d vg

x
vv ω+−=  (b) 

and is a differential equation with separable variables. Separating the variables and 
integrating, we have 

x
vg

vv dd
22

−=
ω+

, 

( ) Cvgx lnln
2

1 22
2

+ω+
ω

−= ; 

because 0=x  and 0vv =  for 0=t , we obtain 

22

2
0

2

2
ln

2
1

vg
vg

x
ω+

ω+

ω
= ; 

the maximal value maxx  is obtained for 0=v  and is given by 

⎟
⎟
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⎞
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⎜
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⎛ ω
+
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=

ω+
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=

g
v
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x
2
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2
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2
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2

2max 1ln
2

1ln
2

1 . 

Application 4.4 

Problem. Study the motion of a heavy particle on a surface of rotation. 
Mathematical model. Let be a heavy particle P of mass m , constrained to move on a 
surface of rotation the symmetry axis of which is vertical (Fig.4.6). The own weight of 
the particle mg, where g is the gravitational acceleration, and the constraint force R (the 
support of which pierces the Oz-axis) act in the meridian plane, their moments with 
respect to the symmetry axis vanishing; hence, we may write the first integral of areas 
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for the projection P′  of particle P on the plane Oxy (for the particle P too) in the form 
(we use cylindrical co-ordinates zr ,,θ ) 

Crr =θ=θ 0
2

0
2 && , (a) 

where ( ) 00 rtr = , ( ) 00 θ=θ && t . Because the constraint is scleronomic and the given force 
is conservative, we may use the first integral of energy 

( )zzgvzrrv −+=+θ+= 0
2
0

22222 2&&&  (b) 

too, where ( ) 00 ztz = , ( ) 00 vtv = . 

 

Figure 4. 6. Motion of a heavy particle on a surface of rotation 

Solution. If the surface of rotation is specified by the equation ( )zfr =  (the equation of 
the meridian curve C), we can eliminate the functions ( )trr =  and ( )tθ=θ  from (a) 
and (b), obtaining the equation with separate variables 

( ) ( )
2

2

0
2
0

22 21
f
Czzgvfz −−+=′+& , 

z
f

f
d
d

=′ , (c) 

which determines the applicate ( )tzz =  by a quadrature; returning to the equation of the 
rotation surface and to the first integral of areas, we obtain the other co-ordinates of the 
point P . 
In case of a circular cylinder of radius l , the equation (c) becomes ( lf = ) 

( )
2

2

0
2
0

2
0 2

l
Czzgvz −−+=& ,  (d) 

in case of a circular cone of equation kzr = , we may write  

( ) ( )
22

2

0
2
0

22 21
zk

Czzgvzk −−+=+ &  (e) 
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and in case of a sphere of radius l , we obtain ( 222 lzr =+ ) 

( )[ ]( ) 222
0

2
0

22 2 Czlzzgvzl −−−+=& . (f) 

If we represent the rotation surface by the equation ( )rz ϕ= , then we may eliminate the 
functions ( )tzz =  and ( )tθ=θ ; it results 

( ) ( )
2

2

0
2
0

22 21
r
Czzgvr −−+=ϕ′+& , 

rd
dϕ

=ϕ′ , (g) 

which specifies the radius ( )trr =  by a quadrature too. 
Eliminating the time, we get the equation of the trajectory of the point P ′  in the form 

( )[ ]
( )[ ]{ } 22

0
2
0

2

0
2

1d

0 Czgv
C

r

r −ρρϕ−+

ρϕ′+
ρ
ρ

+θ=θ ∫ , (h) 

where ( ) 00 θ=θ t ; assuming that the surface is algebraic, we may put in evidence the 
cases in which the function ( )tθ=θ  is expressed by means of elliptic functions. 
In the case of a conservative force the potential of which depends only on r , the 
problem may be solved also only by quadratures. 

Application 4.5 

Problem. Study the motion of a heavy particle of weight mg (m is the mass, g is the 
gravitational acceleration), which moves frictionless on a sphere of radius l  (spherical 
pendulum). 
Mathematical model. The constraint may be bilateral or unilateral in the considered 
problem; we consider the case of a bilateral constraint. We choose the equatorial plane of 
the sphere as Oxy-plane, the Oz-axis being directed towards the descendent vertical; it is 
convenient to use cylindrical co-ordinates (Fig.4.7). If the constant C  in the first integral 
of areas (a) (see Appl.4.4) vanishes, then 0=θ&  and const=θ ; the trajectory of the 
particle is contained in a meridian plane of the sphere, hence it is a great circle of it. The 
spherical pendulum is, in this case, a simple pendulum (see Appl.4.33). If the constant 
C  is non-zero, then we have to do with a non-degenerate spherical pendulum. The 
equation (f) of Appl.4.4 becomes 

( )zPzl =22 & , ( ) ( )[ ]( ) 222
0

2
0 2 CzlzzgvzP −−−+= . (a) 

Solution. From (a), we get 

( )∫
ξ

ξ
±=

z

z P
ltt

0

d
0 ; (b) 

the first integral (a) of Appl.4.4 allows to determine the angle θ  in the form 
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( ) ( )∫
ξξ−

ξ
±θ=θ

t

t Pl
Cl

0
220
d . (c) 

Assuming that 00 ≠z& , we take the sign of ( ) 00 ztz && =  in the two above formulae. If 
00 =z& , then we search if z  is increasing or decreasing, starting from the initial value 

0z . 

 

 
Figure 4. 7. Spherical pendulum 

Let us suppose firstly that 00 ≠z& ; in this case, ( ) 00 >zP  (from (a) and (b), Appl.4.4 it 
results ( ) ( )2

0
2

0
2

00 zrrzP && += ). 
However, during the motion we must have ( ) 0≥zP  so that the integrals (b) and (c) be 
real. Noting that lz <0  (if lz =0 , then we have a simple pendulum) and 

( ) ∞=−∞P , ( ) 2ClP −=± , it results that the polynomial ( )zP  is of the form 

( ) ( )( )( ) lzzzlzzzzzzzgzP <<<<−<<∞−−−−−= 1023321 ,2 . (d) 

Hence, the particle P  oscillates on the spherical zone between the parallel circles 
specified by 1zz =  and 2zz =  (to have ( ) 0≥zP ). 

Application 4.6 

Problem. Study the motion in Appl.4.3 , assuming a resistance of the form α−= kvR . 
The case 2=α  may be considered for a simplification of the computation; it is a 
satisfactory approximation in case of motions at small velocities. 

Mathematical model. If 2>α  the equation of motion becomes 

( ) 0,
d
d

00
12 ≠=⎟
⎠

⎞
⎜
⎝

⎛ ω+−= −α vxvv
v
g

x
v . (a) 
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Solution. In this form, the equation may be easily solved by Taylor series. Corresponding 
to the relations (4.16), we write 
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so that, taking only the first three terms of the series 
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v
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Application 4.7 

Problem. To eliminate the unfortunate effect of the centrifugal force which appears in 
case of a curvilinear motion of a vehicle, between the straight- way and the arc of circle 
an arc of curve having a progressive curvature is inserted. Determine this curve, called 
clothoid (or spiral curve of Cornu) (Fig.4.8). 

 
Figure 4. 8. Clothoid 

Mathematical model. The intrinsic equation of the clothoid is of the form 
2ks =ρ , (a) 
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where ρ  is the curvature radius, s  is the length of the arc measured from the point of 
zero curvature ( 01 =ρ ) and const=k  is the modulus of the clothoid. The curve will 
be determined by its parametric equations in the form of a power series in x and y. 

Solution. If we denote by α  the angle made by the tangent at a point of the clothoid with 
the xO - axis, then the curvature is expressed by means of the relation α=ρ dd s , so 
that the equation (a) becomes 

2

d
d kss =
α

. (b) 

A direct integration leads to Cks +α= 22 2 ; noting that 0=α  for 0=s , it results 
0=C , so that 

α= 22 2ks  (c) 

or 

α= 2ks . (d) 

One can write the ODEs 

α= cos
d
d

s
x , α= sin

d
d

s
y

, (e) 

allowing the determination of x and y when s and α  are known. From (d) one obtains, 
by differentiation, 

α

α
=

d
2

d ks . (f) 

Further, the substitution 

ttt d2d,2 =α=α , (g) 

leads to 

tk
t
ttks d2d2

2
d == . (h) 

One obtains thus 

,dsin2sindd

,dcos2cosdd
2

2

ttksy

ttksx

=α=

=α=
 

whence, by integration, 
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∫=
t

ttkx
0

2dcos2 , ∫=
t

ttky
0

2dsin2 . (i) 

Developing in a power series 

( ) ( )

( ) ( ) ,
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41284
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KK
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+
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and integrating term by term, we get 

( ) ( )( ) ⎥
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!1234

1
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2
341173

nn
ttttky

n
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(j) 

Application 4.8 

Problem. Determine the curve for which the length of the segment of tangent from the 
contact point to the curve till the intersection with the xO - axis is constant. 

Mathematical model. Let ( )00 , yxP  be a point on the curve; the tangent to it is given by 

( )000 xxyyy −′=− , (a) 

and pierces the Ox-axis in A , of abscissa 000 yyxx A ′−= . The condition imposed 

( const== aPA ) leads to 

( ) 2
0

2
0

2 yxxa A +−= , 

whence 

22d
d

ya

y
x
y

−
±=  

or 

y
y

ya
x dd

22 −
±= . 

Solution. We obtain thus a differential equation with separate variables. By integration, 
we get 
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C
y
a

y
aayax +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−+−= 1ln

2

2
22 . (b) 

The curve thus obtained is called tractrix. The graphic of the function (b) is given in 
Fig.4.9 for 0=C . 

 
Figure 4. 9. Tractrix 

Application 4.9 

Problem. Determine the families of principal normal stresses in the case of an elastic 
half- plane acted upon by a concentrated force P  normal to the separaton line. 

Mathematical model. The searched families of lines are defined by the differential 
equation of first order 

01
d
d

d
d 2

=−
τ

σ−σ
+⎟

⎠

⎞
⎜
⎝

⎛
x
y

x
y

xy

yx , (a) 

where yx σσ ,  and xyτ  are the normal stresses and the tangential stress (supposed 

known), respectively, at the point ( )yx, , given by 

( )222

32

yx

x
b
P

x
+π

−=σ ,  

( )222

22

yx

xy
b
P

y
+π

−=σ , 

( )222

22

yx

yx
b
P

xy
+π

−=τ , 

(b) 

where bP  is known. 

Solution. The differential equation is of second degree with respect to xy dd  and may be 
decomposed in two differential equations of first order. The product of the roots is equal 
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to 1− , so that the two families of trajectories are orthogonal. Solving the equation (a) 
with respect to xy dd , we get 

1
22d

d
2

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ

σ−σ
±

τ

σ−σ
−=
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x
y . (c) 

 
Figure 4. 10. Trajectories of the principal normal stress in case of an elastic half- plane acted upon by a 

concentrated force normal to the separation line 

The relations (b) lead to 

xy
yx

yx
xyx

xy

yx

222

22

2

23 −
=

−
+−

=
τ

σ−σ
, 

so that 

xy
yx

xy
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xy
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x
y
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d 222222222 +

±
−

−=+⎟
⎟
⎠

⎞
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⎜
⎝

⎛ −
±

−
−= , 

and may be decomposed in the equations 

,
d
d

x
y

x
y
=  (d) 

x
y

x
y

−=
d
d

. (e) 

The equation (d) is a differential equation with separate variables  

y
y

x
x dd
=  



4. Non-Linear ODEs of First and Second Order 283 
and has the general solution myx lnlnln −= , const=m . One obtains thus mxy = , 
which represents a family of radial semi-lines (passing through the point O  of 
application of the force). 
The equation (e) may be also written in the form of a differential equation with constant 
coefficients 

0dd =+ yyxx ; 

to the general solution 222 Ryx =+  corresponds a family of semicircles with the 
centre O  (the integration constant is 2R ). The two nets are represented in Fig.4.10. 
If we wish to determine the trajectories passing through the point ( )00 , yx  (the Cauchy 
problem), it results 

0

0

x
y

m = , 2
0

2
0

2 yxR += . 

Application 4.10 

Problem. The vessel of a storage basin is asimilated to a parallelepiped the transverse 
(horizontal) section area of which is A . The discharge of the water at the downhill is 
made with the aid of an overflow, the flow rate of which is given by the formula 

23ChQd = , where C  is a constant and h  is the charge of the overfall, defined in the 
Fig.4.11. Study the variation in time of the water level if the flow rate of the entrance 
stream eQ  is given by 

[ ]
⎩
⎨
⎧

>
∈

=
,for0

,,0for0

Tt
TtQ

Qe  

where 0Q  and T  are constants. 

 
Figure 4. 11. The vessel of a storage basin 

Mathematical model. To obtain the differential equation governing the motion, we notice 
that, in a time interval dt, the sum of the stored volume and the evacuated volume is 
equal to the entrance volume 
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tQtChhA eddd 23 =+ . (a) 

Solution. For the first interval, we write the equation (a) in the form 

t
ChQ
hA

e

dd
23
=

−
. (b) 

Introducing the notation 3β=CQe , the change of function 

yyhyh d2d,2 ==  (c) 

leads to the differential equation with separate variables 

t
y
yy

C
A d

d2
33
=

−β
. (d) 

Decomposing the previous fraction in simple fractions 
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the differential equation becomes 

ty
yyyy

y
yC

A dd1
2

32
2
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3
2
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⎟
⎠

⎞
⎜
⎜
⎝
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β
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+

−ββ
. 

Integrating, we get 

( ) ( ) 0
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3
2arctan3ln

2
1ln

3
2 ttyyyy
C
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⎥
⎥
⎦

⎤

⎢
⎢
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β

β+
−β+β++−β−

β
, 

where 0t  is an integration constant. 
The previous solution reads 

0
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arctan3ln
3
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β+
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β+β+

β
 

too; returning to the initial function h , we obtain 
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For 0=t  we have 0=h , so that 

0
3

1arctan3
3
2 t
C
A

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β
− . 

Finally, we obtain 
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h

h
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β
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At the time Tt = , (f) becomes a transcendental equation 

T
h

h

h
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C
A

T

T

T
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⎟
⎟
⎟

⎠
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⎜
⎜
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⎛

β+
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β 2

3
arctan3ln

3
2 2

, (g) 

which determines the level Th  of the water. 
For Tt >  we have 0=eQ  and the equation (a) reads 

0dd 23 =+ tChhA  (h) 

or 

0dd23 =+− thh
C
A . 

Integrating, one obtains 

1
212 tth

C
A

=+− − , (i) 

where 1t  is an integration constant, which is determined by the condition ( ) ThTh = . In 
this case 

1
212 tTh

C
A

T =+− − . 

Hence, we get the formal solution 

( ) TtThh
C
At T ≥+−= −− ,2 2121 , 

whence 
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( )
Tt

Tt
A

Ch

h

T

≥
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⎤

⎢⎣
⎡ −+

=
−

,

2

1
2

21

. 

Application 4.11 

Problem. A vessel the transverse (horizontal) section area of which is A  has at the 
bottom an outflow orifice which may evacuate a flow rate 21

d ChQ = , where C  is a 
constant and h  is the depth of the water in the vessel. Study the variation in time of the 
level h  of the water in the vessel if the flow rate of the inflow is eQ  (initially the vessel 
is empty, that is we have 0=h  for 0=t ). One considers two cases: 

a) 
[ ]

⎩
⎨
⎧

>
∈

=
,for         0

,,0for     0
e Tt

TtQ
Q  

b) 
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⎪
⎩
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=
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2
,

4
for              42

,
4

,0for                        4
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0

e TTt
T
tQ

Tt
T
tQ

Q  

where 0Q  and T  are constants. 
The computation schema is given in the Fig.4.12, a and the two variation laws of iQ  are 
given in Fig.4.12, b.  

Mathematical model. To obtain the differential equation governing the motion, we notice 
that, in a time interval dt, the sum of the stored volume and the evacuated volume is 
equal to the inflow volume 

e
21

d
d QCh

t
hA =+ . (a) 

This is a non-linear, non-homogeneous differential equation. 

Solution. By the change of function 

yyhyh d2d2 =⇒=  (b) 

the equation (a) becomes 

ed
d

2 QCy
t
y

Ay =+ , (c) 

and we may consider the two cases for eQ . 
a) For [ ]Tt ,0∈  the equation (c) is with separate variables 
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CyQ
yAyt
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=
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d2d . 

Introducing the notation β=CQ0 , the general solution of the previous equation 
becomes 

( ) ( )02
ln τ+−=−ββ+ t

A
Cyy , 

where 0τ  is an integration constant; returning to the variable h , the solution becomes 

( )0
210021

2
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Figure 4. 12. Vessel with orifice. Computation schema (a). Variation laws of Qe (b) 

Introducing the initial condition ( 0=h  for 0=t ), it results 

C
Q

C
Q

C
A 00

0 ln2
−=τ , 

so that (d) becomes 
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A

C
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Q
h ,0,

2
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In particular, at the moment Tt = , we have 

T
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Q
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T 2
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⎟
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⎜
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−+ , (f) 

obtaining the height Th . 
For the interval Tt > , the differential equation (a) takes the form 
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0
d
d 21 =+Ch

t
hA  

or 

0dd
21

=+ tC
h

hA , 

with the general solution 

1
212 τ=+ CtAh , (g) 

where 1τ  is an integration constant, which must be determined from the condition of 
continuity; for Tt =  we must have Thh = , so that 

1
212 τ=+ CTAhT . (h) 

Introducing in (g), one obtains 

CTAhCtAh T +=+ 2121 22 , 

so that the level h  is determined by 
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A
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The time t is thus given by 
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b) The differential equation (a) becomes 

T
tQCh

t
hA 4

d
d

0
21 =+  

for the first interval; by means of the change of function uth 2= , the equation reads 

( )
T
tQuCtuttuA 42 0

2 =+′+ . 

Simplifying by t , we get the equation with separate variables 
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hence 

( ) KuFK
AuuC

T
Q

uAt lnln
2

4
dln

0
+≡+

−−
= ∫ , 

K being an arbitrary positive constant. 
The primitive F in the right member may be written 
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where uv =  and 21 , vv  are the roots of the algebraic equation 

0
4

2 02 =−+
T
Q

CvAv , 

which are always real. Hence, 

0,0,
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2
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The solution is thus of the form 
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or 

( ) ( ) 121
21 Ktvhtvh

vv
=−−

−
, 

where 1K  is a new arbitrary constant. 
If ( ) 00 =h , it results 22

1 tvh =  on the first interval. 
For the second interval, we use the same method. 
In the equation 
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Simplifying by ( )Tt /42− , we obtain again a differential equation with separable 
variables 
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Application 4.12 

Problem. Study the variation of the velocity of the water in a simple pipe filled in from a 
tank by the sudden oppening of the slide valve (Fig.4.13). 

Mathematical model. The energetically relation of Bernoulli between the bunker and the 
slide valve leads to 

( )
t
v

g
L

g
vaH

d
d

2

2

0 +ξ+=  (a) 

for the case of the non-permanent motion (transitory regime), and to 

( )
g

v
aH

2

2
0

0 ξ+=  (b) 

where const0 =v  is the velocity in a permanent regime, for the case of the permanent 
motion (stabilized regime). 

Solution. Subtracting the relation (b) from (a), it results the differential equation 

( ) 0
d
d

2
2
0

2 =+−
ξ+

t
v

g
Lvv

g
a ; 

simplifying by g and introducing the notation 
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Figure 4. 13. Geometric schema of the tank and of the pipe 

The general solution of the differential equation with separate variables (d) is 
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where C  is an integration constant. We put ( ) 00 =v ; it results 0=C , so that we have 
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as well as 
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Application 4.13 

Problem. Study the form of the free surface of water which flows through a pervious 
layer on a tight bed of inclination i. The velocity v of aparent flow through an arbitrary 
section (the flow rate with respect to the whole section) is proportional to the inclination 
of the free surface of water in that section (Darcy’s law). Particular case: 0=i . 

Mathematical model. The computation schema is given in Fig.4.14, where q is the unit 
flow rate (corresponding to a section of unit breadth), z  is the applicate of the tight bed 
with respect to a horizontal plane of reference, z is the applicate of the free surface of 
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water, measured from the inclined tight bed, and 0h  is the constant depth in the uniform 
motion. 

 
Figure 4. 14. Flow through a pervious layer 

Hence, szi dd−=  is the inclination of the tight bed and sHj dd−=  is the 
inclinationt of the free surface, where 

hzH += . (a) 

Darcy’s law reads 

kjv = , (b) 

where k  is the proportionality constant. 

Solution. The velocity may be written in the following forms: 
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From the second and the last member, we get 
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q

i
s
h

−=
d
d . (c) 

In the case of a uniform motion we have 00 hqvv ==  and ij = , hence kihq =0 ; 
it results 0kihq = . Replacing in (c), one obtains 
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or, separating the variables, 
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Integrating, it results 

( ) Cishhhh +=−+ 00 ln , (e) 

where C  is an integration constant. To determine it, we put the condition that the 
applicate of the free surface is 1hh =  in a section 1ss = ; the relation (e) becomes 

( ) Cishhhh +=−+ 11001 ln . (f) 

Subtracting (f) from (e), we have, finally, 
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To obtain h , one must solve numerically the transcendental equation (g). 
In the particular case 0=i , the equation (c) has a simpler form 
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and, separating the variables, we get 
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Noting that for 1ss =  we have 1hh = , it results, eliminating the constant C , 
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In this case, the free surface is a parabolical cylinder. 
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Application 4.14 

Problem. Establish the equation of the meridian curve of the free surface of water which 
flows through a pervious layer with horizontal bed towards a circular fountain (Fig.4.15). 
One assumes that the perfect fountain attains the bottom tight layer. 

 
Figure 4. 15. Free surface of the water in flow through a pervious layer 

Mathematical model. The problem is axi-symmetrical, so that the free surface of water is 
a surface of rotation defined by its meridian curve. 
We denote by Q the flow rate extracted from the fountain, by 0r  the radius of the 
fountain, by r the radius of the cylinder of height h through which the water flows, by 

rhkv dd=  the velocity (given by d’Arcy’s law), where k is a proportionality constant, 
and by 0h  the free depth of water in the fountain. 
To put the problem in equation, we notice that the flow rate extracted from the fountain 
is equal to the flow rate which flows through the pervious layer towards the fountain. We 
may write 

r
hrhkrhvQ

d
d22 π=π= , 

obtaining thus a differential equation with separate variables  

hh
r
r

k
Q

dd
2

=
π

. (a) 

Solution. Integrating, one obtains 

Chr
k

Q
+=

π 2
ln

2

2
, (b) 
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where C is an integration constant, determined by the condition 0hh =  for 0rr = ; hence 

C
h

r
k

Q
+=

π 2
ln

2

2
0

0 . (c) 

Subtracting (c) from (b), we get 

( )2
0

2

0 2
1ln

2
hh

r
r

k
Q

−=
π

. 

The flow rate through a cylinder of radius r and height h is thus given by 

( )

0

2
0

2

ln
r
r

hhk
Q

−π
= , 

(d) 

whence 

0

2
0 ln

r
r

k
Q

hh
π

+=  (e) 

and 

( ) [ )∞∈= −π ,,e 00
2
0

2
rrrr Qhhk , (f) 

respectively. 
The formula (f) may be written more conveniently if a point of the curve, e.g. 1hh =  for 

1rr = , is known. From (d), one obtains 

0

1

2
0

2
1

ln
r
r
hh

k
Q −

=
π

; 

introducing this in (f), we eventually have 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

0

1
2
0

2
1

2
0

2

0 lnexp
r
r

hh
hh

rr . (g) 

Application 4.15 

Problem. Study the curve of the free surface of water in a prismatic channel of 
rectangular cross section, the longitudinal gradient being i . 

Mathematical model. The computation schema is given in Fig.4.16 and the differential 
equation of the problem is 
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33

3
0

3

d
d

crhh
hh

i
s
h

−

−
= , (a) 

where h is the depth of water at the distance s and 0h  and crh  are the normal and the 
critical depth, respectively. The two heights 0h  and crh  may be in any ratio( cr0 hh <  or 

cr0 hh > ); in Fig.4.16 it has been considered the case crhh >0 . 

 
Figure 4. 16. The curve of the surface of water in an inclined channel 

Solution. The equation (a) may be written in the form 

sih
hh
hh cr dd

3
0

3

33
=

−

−
, (b) 

hence an ODE with separate variables. 
The ratio in the left member may be written successively 
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⎠
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=
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0
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and the equation (b) becomes 

sih
hhhh

h
hhhh

hh
hhh

hh cr dd1
2
32

2
11

3
1

2
00

202
00

2
0

0
2
0

33
0 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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−

++

+
−

−
−

+ . 

Integrating, it results 
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( ) ( )

( ),  
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2
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6
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0
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where C is an integration constant; the solution may be written 

( )Csi
h

hh

hhhh

hh
h

hh
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+
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0

0

2
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0
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0

33
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2
arctan3ln

3
 (c) 

too, where the constant is determined supposing that, downhill, we have 1hh =  for 

1ss = , that is 

( )Csi
h

hh
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hh
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+
−
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3
, (d) 

Subtracting  (d) from (c), we finally get 

( ) ( ).
32

3
arctan3

ln
3

1
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1

2
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1
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⎝

⎛
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, (e) 

The formula (e) allows to determine the free surface upstream the section 1ss = . 

Application 4.16 

Problem. Study the flow rate of water from a vessel the form of which is a rotation 
surface of vertical axis. Consider the particular case of a semi-sphere vessel of radius a, 
with an orifice of area A at the bottom (we assume that the radius of the orifice may be 
neglected with respect to the dimensions of the vessel). Determine the interval of time in 
which the full vessel becomes empty. Numerical data: cm100=a , 2cm1=A . 

Mathematical model. In hydro-dynamics, the velocity of flow of water through an orifice 
at the depth h from the free surface of the liquid is given by Galilei’s formula, in the 
form 

hkghkv == 21 , (a) 

where 1k  is a viscosity coefficient (for water, 6.01 ≅k ). 
We suppose that the equation of the meridian curve of the vessel is ( )hrr 22 =  
(Fig.4.17) and we must determine the height h  of water at a given moment t . 
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The velocity v of the flow is also a function of time (by the agency of h, as it can be seen 
in (a)). 

 
Figure 4. 17. The flow of water from a vessel the form of which is a rotation surface 

We calculate now the volume of water which flows in the interval of time dt. First of all, 
through the orifice flows the liquid contained in a cylinder of basis area A and height 

tvd , hence 

tAkhtAvV ddd 21== . (b) 

On the other hand, the height in the vessel lowers with dh; the corresponding volume is 

hrV dd 2π−= . (c) 

Equating the expressions (b) and (c) of dV, it results the ODE of the problem 

tAkhhr dd 212 =π− . 

Solution. Separating the variables, we get 

h
h
r

Ak
t dd

21

2π
−= , 

whence, by integration 

∫ +
π

−= Ch
h
r

Ak
t d

2/1

2
. (d) 

The integration constant C is determined by the initial condition maxhh =  for 0=t . 
Then it results 

∫
π

=
h

h
h

h
r

Ak
t

max

d
21

2
. (e) 



4. Non-Linear ODEs of First and Second Order 299 
In the particular case of a semi-sphere, the equation of the meridian curve is (with 

ah =max ) 

( )hahr −= 22 . 

Introducing in (e), we have successively 

( ) ( )

.
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5
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25232321
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⎠
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π
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=

−π
= ∫∫

haha
Ak
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Ak
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h
h

hah
Ak

t
h

a

h

a

h

a  

The vessel is completely empty for 0=h ; it corresponds the interval of time 

25
0 15

14 a
Ak

t π
= . 

With the numerical data of the problem and taking 2scm981=g , we get 

3530h33531831103
98126.01

100
15
14 25

0 ′′′=′′′=′′=
⋅⋅

⋅π
⋅=t . 

Application 4.17 

Problem. To cross a river, a swimmer starts from a point ( )00 , yxP  situated on a bank 
and wishes to reach the point ( )0,0Q  on the other bank. The velocity of the water flow is 
a and the velocity of displacement of the swimmer is b. Which is the trajectory described 
by the swimmer if the relative velocity is directed all the time towards the point Q ? 

Mathematical model. Let be M  the position of the swimmer at the moment t (Fig.4.18). 
The components of the absolute velocity along the two axes Ox and Oy ( )QO ≡  are 

22d
d

yx

xba
t
x

+
−= ,  

22d
d

yx

y
b

t
y

+
−= ; 

(a) 

eliminating dt, we obtain 

2

2
1

d
d

y
x

b
a

y
x

y
x

+−= ,  (b) 

which is  the differential equation of the searched trajectory. 
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Figure 4. 18. Swimmer’s problem 

Solution. The equation (b) is a homogeneous one, so that we make the substitution 

⇒=      uyx    
y
uyu

y
x

d
d

d
d

+= , 

and it becomes 

21
d
d u

b
a

y
uy +−= . (c) 

Introducing the ratio bam =  of the velocities, we get 

21

dd

u

u
y
ym

+
=− . 

By integration, one obtains 

( )21lnlnln uucmym ++=+− , 

where c  is an integration constant, or 

2

2
1

y
x

y
x

y
c

m

++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. 

Thus, we get 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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c
y

y
cy

x
2

, (d) 

and the problem has a solution only for ( )1,0∈m . The constant may be determined by 
imposing the condition that the trajectory passes through the points P and Q. 
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Application 4.18 

Problem. Determine the families of the trajectories of the extreme tangential stresses in 
case of an elastic half-plane acted upon by a concentrated force P normal to the 
separation line. 

Mathematical model. The searched trajectories are defined by the first order ODE  

01
d
d4

d
d 2

=−
σ−σ

τ
−⎟

⎠

⎞
⎜
⎝

⎛
x
y

x
y

yx

xy , (a) 

where yx σσ ,  and xyτ  are the normal and tangential stresses (supposedly known), 

respectively, at a point ( )yx,  (Fig.4.19). The state of stress is given by 

( )

( )

( )
,2

,2

,2

222

2

222

2

222

3

yx

yx
b
P

yx

xy
b
P

yx

x
b
P
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y

x

+π
−=τ

+π
−=σ

+π
−=σ

 (b) 

where b is the constant thickness of the plate and const=bP . 

Solution. The differential equation is of second degree and may be decomposed in two 
differential equations of first order. The product of the roots is 1− , so that the two 
families of curves are orthogonal. Solving the algebraic equation of second degree (a), 
one obtains 

1
22

d
d

2

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ−σ

τ
±
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τ
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x
y , (c) 

By means of relations (b), we obtain 

22
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xy

yx

xy

−
=

σ−σ

τ
, 

so that the differential equation of the trajectories becomes 

22
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x
y

−

+
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−
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⎟
⎠
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⎜
⎜
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⎛

−
±

−
=  

and may be decomposed in two equations 
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yx
yx

x
y

−
+

=
d
d , (d) 

yx
yx

x
y

+
−

−=
d
d , (e) 

The equation (d) may be written as a homogeneous equation 

x
y

x
y

x
y

−

+
=

1

1

d
d

. (f) 

By the substitution xyu = , the equation (f) reads 

222 1
d2

2
1

1
dd

1
1

1
1
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u
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u
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u
u

u
u
u
u

x
x

+
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+
=

+

−
=

−
−
+

= ; 

integrating, we get 

( ) Cuux ln1ln
2
1arctanln 2 ++−= , 

where C  is an integration constant. 
The solution is obtained in a simpler form in polar co-ordinates; we have successively 
(with ϕ= cosrx , ϕ= sinry , ϕ= tanxy ) 

12

2
lnarctan1lnln C

x
y

x
yx +=++ , 

1
22 lnarctanln C

x
y

yx +=+ , 

1lnln Cr +ϕ=  

and, finally, 
ϕ= e1Cr . (g) 

The curve (g) represents the equation of a family of logarithmic spirals which pierce the 
radial half-lines in the Appl.4.9 under angles of 4π . 
The equation (e) may be written in the homogeneous form 
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1
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d
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y . (h) 

The same substitution xyu =  leads to 
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1
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By integration, it results 

( ) 2
2 ln1ln

2
1arctanln Cuux ++−−=  

or, finally, 
ϕ−= e2Cr . (i) 

which represents a family logarithmic spirals, orthogonal to the first one. 
Let us determine the constants 1C  and 2C . Consider the point ( )00 , yxA  through which 
pass the trajectories of the principal normal stresses and the trajectories of extreme 
tangential stresses. 
The equation of the trajectory 1σ  reads 

0

0
00 tan,tan

x
y

xy =ϕϕ= . (j) 

and the trajectory 2σ  may be written 

2
0

2
00

2
0

22 , yxrryx +==+ . (k) 

Let us consider further the solution (g). The condition that this logarithmic spiral passes 
through the point A  leads to 

0e01
ϕ−= rC ; 

hence, 

0e0
ϕ−ϕ= rr . (l) 

For the second trajectory we may write 

ϕ−ϕ= 0e0rr . (l) 
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To represent graphically the trajectories, we take 100 == yx . It follows that 40 π=ϕ  

and 20 =r . 

 
Figure 4. 19. The trajectories of the extreme tangential stresses in case of an elastic half- plane acted 

upon by a concentrated force normal to the separation line 

The curves (l) and (m) have been represented in Fig.4.19, together with the trajectories 
(j) and (k). We notice that the trajectories of the extreme tangential stress pierce the 
straight line (j) and the semicircle (m) under angles of 4π . From the two trajectories we 
retain the arcs corresponding to 0>x . 

Application 4.19 

Problem. Find the isogonal trajectories of the family of straight lines passing through a 
fixed point; the angle of intersection is α .  

Mathematical model. As it is known, in general, if a family of curves is given by the 
differential equation 

( ) 0dd,, =xyyxF , (a) 

then the family of isogonal trajectories is defined by the differential equation 
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where α= tank . 
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Solution. In our case, choosing the origin of the co-ordinate axes at the fixed point, the 
equation of the family of straight lines is given by mxy = , whence mxy =dd , so that 
the differential equation of the family of straight lines is 

x
y

x
y

d
d

= . (c) 

In this case, the equation (b) leads to 

1
d
d

d
d

+

−
=

x
yk

k
x
y

x
y

, 

which represents the ODE of the isogonal trajectories. 
It may be reduced to the form 

kyx
ykx

x
y

−
+

=
d
d , (d) 

hence to a homogeneous equation with separate variables 

u
u
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kx
x d

1
11d

2+

−
= , 

the general solution of which is 

( ) Cuu
k

x ln1ln
2
1arctan1ln 2 ++−= ; 

returning to the initial variables, we get 

C
x
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x lnarctan11ln
2
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After some transformations, the previous expression reads 

( ) ( )xykCyx arctan/122 e=+  (e) 

In polar co-ordinates 22 yxr += , ( )xyy arctan= , one obtains 

kCr ϕ= e , (f) 

which is the equation of a family of logarithmic spirals. 
The previous application is thus generalized. 
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Application 4.20 

Problem. Determine the trajectories of the principal normal stresses in a gravity dam, the 
upstream face of which is vertical, while the downhill face is inclined of angle α . The 
unit weights of concrete and of water are 1γ  and γ , respectively (Fig.4.20). 

 
Figure 4. 20. Cross section in a gravity dam 

Mathematical model. As a study of plane elasticity, one may express the state of stress in 
a gravity dam in the form 

.
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 (a) 

where xσ , yσ  and xyτ  are the normal and the tangential stresses, respectively. The 
differential equations of the searched trajectories are given by 

1
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Solution. We compute the ratio 
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where we used the notations 
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The ODE of the trajectories become 
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From the equation (e) we may separate the two trajectories. We take first of all the sign 
+  before the radical, hence 
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For 0→y  it results 0dd =yx , hence ∞→xy dd , characterizing thus the family of the 
trajectories of the compression stresses 2σ  which start normal to the upstream face. To 
see this, one multiplies the equation by its conjugate and, after a reduction of terms, one 
makes 0=y . 
For α= tanxy  (the inclined downhill face) it results  

α
=

tan
1

d
d
y
x , α= tan

d
d

x
y

, 

and the trajectories of 2σ  become asymptotically tangent to the downhill face. 
Returning to the differential equation (f), the substitution  

y
xbat

b
at

y
x

+=
−

= , , (g) 

leads to the equation with separate variables 
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=
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A new change of variables 
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transforms the equation (h) in another equation with separate variables 



ODEs WITH APPLICATIONS TO MECHANICS 

 

308
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We notice that 
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so that 

( )( )α+−α−=−−− tan2tan1222 auubauu . 

Decomposing in simple fractions 
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we obtain 
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(l) 

Integrating now the equation (j), we get 

( ) ( )α+−−α−−= tan2lntanlnlnln
1

auCuBuA
C
y , 

where the constants CBA ,,  are given by (l); further, we may write 

( ) ( )CB

A

auu
uCy

α+−α−
=

tan2tan
1 , (m) 

where 1C  is a new integration constant, which can be determined by the condition that 
the trajectory passes through a given point. 
The variable u  may be expressed by means of the variables x  and y  in the form 
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In particular, for α= tanxy  we have 

α
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1tan 2

y
xba , α= tanu . 

For this value of u, the denominator in the right member of (m) vanishes, so that 
α= tanxy  is an asymptote of the trajectory. 

Taking into account (n), the solution (m) may be written in its final form 

( )
y
xbayxu

uuauu

uu
Cy

CB

A

+=

⎟
⎠
⎞⎜

⎝
⎛ α++++−⎟

⎠
⎞⎜

⎝
⎛ α−++

⎟
⎠
⎞⎜

⎝
⎛ ++

= ,,
tan12tan1

1

22

2

1 . (o) 

For the trajectories of the tension stress 2σ , the differential equation is 

1
d
d

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

y
xba

y
xba

y
x . (p) 

For 0→y  it results ∞→yx dd , hence 0dd →xy , and the trajectories are asymptotic 
to the upstream face; for α= tanxy  it results α−= tandd yx , hence 

α−= tan1dd xy , so that the trajectories are normal to the downhill face. 
By the same substitutions (g) and (i) one obtains the differential equation with separate 
variables 

( )
( ) ( )[ ] ( ) 12tan

d
1tan

dd
12tan1tan

d1d 2

−−α
−

+α
−=

−−α+α
−

=
au

uE
u

uD
u
u

auuu
uu

y
y , (q) 

where  

( )a
D

−α
α+

=
tan2

tan1 2
, ( ) a

a
aDE 2

tan2
tan12

2
−

−α
α+

=−= . (r) 

As in the first case, the final solution is 

( )
ED

auuuu

uuCy

⎥⎦
⎤

⎢⎣
⎡ −−α⎟

⎠
⎞⎜

⎝
⎛ ++⎥⎦

⎤
⎢⎣
⎡ +α⎟

⎠
⎞⎜

⎝
⎛ ++

++
=

12tan11tan1

1

22

2

2 , 
(s) 

where 2C  is a second integration constant and u has the same significance as in the 
formula (o). 
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Figure 4. 21. Trajectories of principal normal stresses passing through a point in a gravity dam 

The two trajectories passing through a certain point are given in Fig.4.21; this analytical 
solution is quite difficult to use in practice. 

Application 4.21 

Problem. Study the surface of coincidence in case of a surface of the form 

( )
0

0

00

sin

d
d

cos
N

rZ
rr

−=
ϕ

+

ϕ

ϕ , 
(a) 

where 0r  is the radius of the parallel circle, ϕ  is the meridian angle between the axis of 
rotation and the support of the curvature radii, ( )0rZ  is the normal component of the 
load (uniform distributed along the parallel circles) and 0N  is the constant value of the 
meridian and annular efforts (supposed to be known). 

Solution. The equation (a) may be written in the form 

( )
0dsindcos 0

0

00
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ϕ+ϕϕ r

N
rrZ

r . (b) 

It is an ODE with total differentials, because 
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( ) ( )
ϕ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ϕ

ϕ∂
∂

=ϕ
∂
∂ cossincos

0

00
0

0 N
rrZ

r
r

. 

Hence, there exists a function ( )ϕ= ,0rFF  so that 

0
0

ddd r
r
FFF

∂
∂

+ϕ
ϕ∂

∂
= , (c) 

with 

( )
.sin

,cos

0

00

0

0

N
rrZ

r
F

rF

+ϕ=
∂
∂

ϕ=
ϕ∂
∂

 (d) 

The function F  is thus of the form 

( ) ( )000 sin, rfrrF +ϕ=ϕ ; 

introducing in (d), we are led to ( ) ( ) 0000 NrrZrf =′ . 
Hence, the general solution of the equation (b) is given by 

( )
Cr

N
rrZ

r ++ϕ ∫ 0
0

00
0 dsin . (e) 

Application 4.22 

Problem. Search the solution of the equation (d) in Appl.4.19 by means of an integrating 
factor. 

Solution. The equation  

kyx
ykx

x
y

−
+

=
d
d  

may be written in the form 

( )xyyx
k

yyxx dd1dd −=+  (a) 

too. An integrant factor is ( )221 yx + , so that the equation (a) becomes 

2222
dd1dd

yx
xyyx

kyx
yyxx

+

−
=

+

+
; 

each member of this equation is a total differential, the general solution being of the form 
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( ) C
x
y

k
yx lnarctan1ln

2
1 22 +=+ . 

We find thus again the solution in orthogonal Cartesian co-ordinates or in polar co-
ordinates, respectively. 

Application 4.23 

Problem. Determine a curve so that the portion of a tangent to it between two rectangular 
straight lines be of constant length a. 

 
Figure 4. 22. The segment of line of length a with the ends leaning on two rectangular axes (a). Astroid (b) 

Mathematical model. We choose the two orthogonal straight lines as Ox - and Oy -axes 
and be ( )00 , yx  a point on the searched curve. The equation of the tangent reads 

( )000 xxyyy −′=− . 

The segments OA  and OB  determined by the tangent on the two axes (Fig.4.22, a) are 

0

000

0

0
0 y

yxy
y
y

xOA
′

′−
−=

′
−= , 000 yxyOB ′−= . 

Applying Pythagoras’ theorem, we obtain 

( ) 22
000

2

0

000 ayxy
y

yxy
=′−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

′−
. (a) 

Passing to the co-ordinates yx,  and denoting yp ′= , the equation (a) becomes 

( ) ( ) 2222 1 pappxy =+− , whence 
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21 p

appxy
+

±= , (b) 

obtaining an equation of Clairaut type. 

Solution. The general solution of the equation (b) is  

21 C

acCxy
+

±= , (c) 

representing a family of straight lines. 
The solution is obtained by eliminating the constant C  between the equation (c) and its 
derivative with respect to C  

( )
0

1 232
=

+
±

C

ax . 

Denoting ϕ= tanC  , it results 

ϕ±= 3sinay , ϕ±= 3cosax ; 

eliminating the parameter ϕ  between the two above relations, we have 
323232 ayx =+ , 

obtaining thus an astroid (Fig.4.22, b). 
Technically, one may find such a situation in case of the door of a rectangular shower 
bath, from the open to the closed position. 

Application 4.24 

Problem. Study the differential equation of thin shells of rotation in a theory of 
membrane. Particular cases: spherical and parabolical dome. 

Mathematical model. The function efforts in the membrane shell ( )ϕ= UU  is of the 
form 

0
sind

d1
cos

cot
d
d1

d
d 20

0

0

0
=

ϕ
+

ϕϕ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ−

ϕ
+

ϕ
nU

r
r

nU
r

r
U , (a) 

where ϕ  is the meridian angle (independent variable), ( )ϕ= 00 rr  is the radius of the 
parallel circle of the rotation surface, and 2≥n  is an integer number. 

Solution. The equation (a) is of Riccati type and its solution may be obtained by 
quadratures only if a particular integral is known; this is possible only in particular cases, 
specifying the form of the meridian curve. 
In case of a spherical dome for which a is the radius of the sphere; it results 

ϕ= sin0 ar , whence ( ) ϕ=ϕ cotdd1 00 rr . The equation (a) takes the simpler form 
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( ) 01
sind

d 2 =−
ϕ

+
ϕ

UnU . (b) 

We may write this equation as a differential equation with separate variables 

0
sin

d
1

d
2

=
ϕ
ϕ

+
−

n
U
U , (c) 

the solution of which is 

2
tan

2
tan

2

2

ϕ
−

ϕ
+

=
n

n

C

C
U , (d) 

where C is an integration constant. 
In case of a parabolical dome for which a is the curvature radius at the vertex of the 
paraboloid, we have ϕ= tan0 ar  and ϕ=ϕ 2

0 cosdd ar , so that the equation (a) 
becomes 

0
sincossincos

sin
d
d 2

2
=

ϕ
+

ϕϕ
−

ϕ
ϕ

+
ϕ

nUnUU . (e) 

It may be written also in the form 

0
cos

1
sincosd

dcos
2

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ϕ
−

ϕ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕϕ

ϕ
UnU ; (f) 

we notice thus that it has two particular solutions ϕ±= cos, 21 UU . 
From now on, one may follow two ways to get the solution. 

i) We introduce the notation ϕ= cosUv  and the equation (f) becomes 

( ) 01
sincosd

d 2 =−
ϕϕ

+
ϕ

vnv , (g) 

hence an equation with separable variables of the same type as (b). We may write 

ϕ
ϕ

−=
− 2sin

d2
1

d
2

n
v
v , 

whence 

ϕ−
ϕ+

=
n

n

c
cv

2

2

tan
tan ; 

finally, we have 
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ϕ−
ϕ+

ϕ=
n

n

c
cU

2

2

tan
tancos  , 

where c  is an arbitrary constant. 
ii) Another way is to use the fact that the equation (e) is of Riccati type; if 

we know a particular solution we are led to a complete solution. Indeed, by a change of 
function 

ϕ+= cosvU , (i) 

we obtain 

0
cossincossin

2
cos
sin

d
d 2

2
=

ϕϕ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕϕ

−
ϕ
ϕ

+
ϕ

vnnvv , (j) 

hence an equation of Bernoulli type with 2=α . Denoting vz 1= , it results for the new 
unknown function z the non-homogeneous linear equation 

0
cossincossin

2
cos
sin

d
d

2
=

ϕϕ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕϕ

−
ϕ
ϕ

+
ϕ

−
nnzz , (k) 

which may be solved by the method presented in Sec.1.6, c. The solution is the sum of 
the general solution of the associated non-homogeneous equation 

( ) ncz 2
0 tan

cos
−ϕ

ϕ
=  

and a particular solution of the non-homogeneous equation, which may be obtained by 
the method of variation of parameters. Finally, we have 

( )
ϕ

−ϕ
ϕ

= −

cos2
1tan

cos
2ncz . 

Returning to v and then to U, we get 

( )

( )

( )
( )
( ) n

n

n

n

n K
K

c

c

c
U 2

2

2

2

2 tan
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2
1tan

2
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2
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ϕ+
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⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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+ϕ
ϕ=ϕ+

−ϕ

ϕ
=

−

−

−
, (l) 

where we denoted cK 21= . The forms (h) and (l) of the solution are identical. 
A possibility to integrate the equation (a) appears if its coefficients satisfy the condition 
in Sec.1.6. d, case 1, that is 

0
sind

d1
cos

cot
d
d1 0

0

0

0
=

ϕ
+

ϕϕ
−ϕ−

ϕ
nr

r
nr

r
, (m) 

whence 
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ϕ
ϕ

=
ϕ

sin
cosd

d

0

0

r

r

. (n) 

As we have seen, this condition is satisfied for a spherical dome ( )ϕ= sin0 ar . 
In the more general case indicated in Sec.1.6. d, case 2, the Riccati equation (a) may be 
integrated if there exist two non- simultaneous non-zero constants a, b, so that 

0
sin
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d
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d
d1

cos
20

0

0
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2 =
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−⎟⎟
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whence 

ϕ−

ϕ−
ϕ=

ϕ cos
coscot

d
d1

2

2
0

0 abna
abnbr

r
. (p) 

Application 4.25 

Problem. Study the motion of a particle P of mass m, acted upon by a central force F, 
which passes through the fixed point O. 

Mathematical model. Newton’s equation of motion is of the form  

r
Fm rr =&& , (a) 

where r is the position vector of the point P (Fig.4.23). A cross product by r in both 
members leads to 0rr =×&& , so that ( ) 0rr =× tdd & , whence Crr =×& , const=C ; we 
effect now a scalar product by r in both members and obtain 0=⋅rC  (the triple scalar 
product in the left member vanishes). We may thus state that the trajectory is a plane 
curve C; taking the corresponding plane as plane Oxy, we may write the equations of 
motion in polar co-ordinates θ,r  in the form 

( ) ( ) 02,2 =θ+θ=θ− &&&&&&& rrmFrrm . (b) 

Solution. The second equation (b) leads to the first integral of areas 

constsin,2 000
0

00
2

0
2 =α==θ===θ=Ω θθ vrvrrCCrvr && , (c) 

where Ω  is the areal velocity of the particle P and the constant C is specified by the 
initial conditions (Fig.4.23) 

( )00 trr = , ( ) ( ) ( )000000 ,, tttvv θ=θθ=θ= && , 

where 0α  is the angle between the vectors 0r  and 0v . 
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Figure 4. 23. The motion of a particle subjected to the action of a central force 

Taking into account (c), the first equation (b) may be written in the form 

( ) ( ) ( )
r

mv
trrF

r
mCtrrFtrrFrm

2

3

2
;,,,;,,,;,,, θ+θθ=+θθ=θθ= &&&&&&&& , (d) 

where we have introduced the apparent force F  (we notice that the supplementary force 
rmv2

0  is of the nature of a centrifugal force); the system of differential equations (c), 
(d) determines the functions ( )trr = , ( )tθ=θ , the three integration constants which 
appear being specified by the initial conditions. If ( )trrFF ;, &= , then the motion along 
the vector radius is given by Newton’s one-dimensional equation, where the apparent 
force F  is used, the angle θ  being then obtained from the integral areas. 
Successive differentiations lead to 
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replacing in the equation (d), we obtain Binet’s equation (we assume that 
0=∂∂= tFF& ) 

2

2

2

2 11
d
d

mC
Fr

rr
−=+⎟

⎠
⎞

⎜
⎝
⎛

θ
, ( )θθ= &&,,, rrFF ; (e) 



ODEs WITH APPLICATIONS TO MECHANICS 

 

318

eliminating, analogously, r&  and θ&  from the expression of the force F, one obtains a 
differential equation of the second order, which determines the trajectory of the motion 
in the form 

( )21,;1 CCf
r

θ= . (f) 

The initial conditions 

( )
0

210
1,;
r

CCf =θ , ( )
0

00
210

cot
,;

rC
r

CCf
α

−=−=θ′
&

, (g) 

where 000 cos α= vr& , θ∂∂≡′ ff  allow to determine the integration constants 1C  and 

2C . The integral of areas specifies the motion on the trajectory in the form 

( )∫
θ

θ ϑ

ϑ
+=

0 21
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CCfC
tt . (h) 

If we notice that rF
r

r
r

F ddd =⎟
⎠
⎞

⎜
⎝
⎛⋅=⋅

rrrF , the theorem of kinetic energy leads to 

( ) ρθρθρ=− ∫ d;,,,
22

0

2
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2 r

r
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mvmv && . (i) 

If ( )θ= &,rFF , hence if ( )rFF = , then we may write a first integral of Binet’s 
equation in the form 
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⎥
⎥
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d2111
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noting that 2222222 rCrrrv +=θ+= &&& ; one may obtain this result multiplying both 
members of Binet’s equation by ( ) θd/1d r  and integrating. The given force is, in this 
case, conservative and we can introduce the simple potential ( )rUU = , so that 
( ) ( ) rUrUrF dd=′= . The first integral (f) becomes 

( )

( ) ( ) ( ),
2

,
2

,
d
d
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 (k) 

where we have introduced the apparent potential ( )rU  and the energy constant h; we 
obtain thus 
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( )
( ) ( )

( ) ( )[ ]hrU
m

rCC
r

r

r

r
+=ϕ

ρϕρ

ρ
θ=

ρϕ

ρ
±θ=θ ∫∫

2,d1d

00
200 m , (l) 

the trajectory being determined in polar co-ordinates. The two first integral used allow, 
at the same time, to put in evidence the motion of the particle along the trajectory, 
establishing the parametric equations of that one in the form 

( )
( )∫∫
ρϕ

ρ
±=ϑϑ±=

θ

θ

r

r
ttrCtt

00

d,d 0
2

0 . (m) 

If the potential is of the form ( ) srkrU = , const=k , Z∈s , then the above integrals 
may be expressed by elementary functions only if 2−=s  (harmonic oscillator), 1−=s , 

1=s  (Keplerian motion), and 2=s ; if 6,4,3,4,6 −−=s , then these integrals may be 
expressed by means of elliptic functions. 
The sign of the radical is determined by the sign of the initial velocity ( )00 trr && =  if 
( ) 0>ϕ r . If ( ) 0=ϕ r , then 00

0 == rvr & , so that the velocity is normal to the vector 
radius at the initial moment; the motion along the vector radius takes place as if the 
radius would be fixed, the force acting upon the particle being F . If the apparent force 
is positive (repulsive force), then r  is increasing and one takes the sign + ; otherwise 
one takes the sign –. Let us suppose, in particular, that 0=F  at the initial moment; in 
this case the particle remains immovable for an observer of the vector radius, because the 
particle moves on this radius as it would be fixed, the particle being launched without 
initial velocity from a point at which the apparent force vanishes. Hence, the trajectory is 
a circle of radius 0r , the motion being uniform (because the areal velocity is constant). 
To have a circular trajectory we must have 20 π±=α  (the velocity must be normal to 

the vector radius at the initial moment so that 00vrC ±= ) and ( ) 03
0

2
0 =+ rmCrF . If 

0rr =  (circular motion) and 0θ=θ &&  (uniform motion) during the motion, then the 
equation (e) is identically verified; because the initial conditions are fulfilled, the 
theorem of uniqueness ensures us about the searched solution. The velocity at the initial 
moment must have the modulus 

( )
m

rrF
v 00

0
−

= ; (n) 

hence, at the initial moment, the force F must be of attraction ( ( ) 00 <rF . 
The relation (e) may be written also in the form 
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2

2

2

2
; (o) 

we obtain thus Binet’s formula, which allows to solve the inverse problem: determinate 
the central force which, applied to a given particle, leads to a plane trajectory, after the 
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areas law with respect to a fixed pole. Taking into account the equation (f) of the 
trajectory, we may write 

( ) ( )[ ]θ+θ′′−= ff
r

mCF
2

2
 (p) 

too, where 22 θ∂∂≡′′ ff . If a given form of the expression F  is not previously 
imposed, then that one has a certain indetermination, taking into account the equation of 
the trajectory (the equation which links r  to θ ); eliminating θ , one obtains ( )rFF = , 
a form used the most times. 
For example, in the case of trajectories for which corresponds the equation 

bkar k +θ= cos , const,, =kba , (q) 

we obtain 

( ) ( )( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
++

−+
−=

+
bk

r
bak

r
CrF

kk
21 22

3

2
, (r) 

choosing the origin as a fixed pole; in particular, these trajectories may be conics having 
the pole as focus ( )1−=k  or as centre ( )1=k , Pascal’s limaçons ( )0,2 == bk , 
lemniscates etc. 
The trajectory of a particle in a field of central forces is usually called orbit (even if it is 
not a closed curve). The relations (k) – (m) determine the orbit and the motion on the 
orbit only if r& , θ , and t are real quantities, that is if ( ) 0≥ϕ r ; the apparent potential 
must verify the condition ( ) 0≥+ hrU , which determines the domain of variation of r , 
corresponding to the motion of the particle; the solutions of the equation 

( ) 0=+ hrU  (s) 

specify the frontier of the domain. From (k) it is seen that the radial velocity vanishes on 
the frontier ( )0=r& , the angular velocity being non-zero ( 0≠θ& ; if we have 0=θ&  at a 
point different of the origin, then, from the first integral of areas, it results 0=C , hence 
the trajectory is rectilinear); the velocity is normal to the vector radius at the respective 
points. On the frontier, ( )tr  changes of sign, the respective point corresponding to a 

relative extremum for ( )tr . The relation (c) shows that ( )tθ&  has a constant sign, so that 
( )tθ  is a monotone function; the integrals (l) and (m) must be calculated on intervals of 

monotony, the sign being chosen correspondingly. Let be minr  and maxr the extreme 
values which may be taken by r ; the corresponding points of the orbit are called 
apsides. In this case maxmin0 rrr ≤≤≤ . 
The radius maxr  is finite, hence the orbit is bounded and the trajectory is contained in the 
annulus determined by the circles minrr =  and maxrr = (we suppose at the beginning 
that 0min >r ); the radii minr  and maxr  are called apsidal distances. The points for 
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which minrr = are called pericentres, while those for which maxrr =  are called 
apocentres. Taking into account that at an apsidal point the velocity is normal to the 
vector radius, which is the radius of a circle, it results that the trajectory is tangent to the 
concentric circles at the corresponding apsides (Fig.4.24). Choosing as origin of angles 
θ  the radius of an apsidal point 0=θ , called apsidal line, we may use the relation (m) 
for two points of same vector radius r  of the trajectory, of one and the other part of that 
line, 0r  being minr  or maxr ; it results that the trajectory of the particle is symmetric with 
respect to an apsidal line. The angle χ  at the centre between two consecutive apsidal 
lines is constant; it is called apsidal angle and is given by 

( )∫
ϕ

=χ
max

min
2

dr

r rr
rC . (t) 

It results that the angle at the centre between two consecutive pericentres (apocentres) is 
equal to χ2 . 

 
Figure 4. 24. Orbit of a particle subjected to the action of a central force 

From the above mentioned properties it results that, if the arc of trajectory between two 
consecutive apsides is known, then one may set up geometrically the whole trajectory 
(Fig.4.24). From (c) it results that θ&  has a constant sign, so that the particle rotates 
always in the same direction around the point O . To have a closed bound trajectory, it is 
necessary that, after a finite number of such rotations, the particle returns at a previous 
position; hence, the condition qπ=χ 22 , Q∈q , must be satisfied. In the contrary case, 
the orbit is open and covers the annulus [ ]maxmin , rrr ∈ . We observe that the apparent 
potential ( )rU  has a maximum at a point in the interior of the annulus, corresponding to 
( ) 0dd == rUrF . It is possible that the equation ( ) 0=ϕ r  may have more than two 

roots. In this case, we obtain two possible annular domains; the motion takes place in 
that domain which contains the given initial position ( )00 trr = . If 0min =r , then the 
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particle passes through the pole O  or stops at this point. Assuming that 

0≠C (otherwise, the trajectory is rectilinear), the term 22 2rmC−  leads to 

( ) −∞=
→

rU
r 0
lim , “the fall” towards O  being thus hindered. The condition of “falling” 

towards O  is obtained from the condition hU −≥ , written in the form 
( ) 222 2 hrmCrUr −≥− . To have 0min =r  we must have ( )[ ] 2/lim 22

00
mCrUr

r
≥

+→
, 

hence ( )rU  must tend to zero at least as 2rA , 22mCA >  or as nrA , 0>A , 
2>n . 

If 0maxmin rrr == , the trajectory is a circle of radius 0r , corresponding to ( ) 0=rF and 
the energy constant maxUh −= . 
One may prove the following 

Theorem 4.3 (J. Bertrand). The only closed orbits corresponding to central forces are 
those for which 2−=s , 0<k  for any initial conditions or 0,1 >= ks  for certain 

initial conditions, assuming a potential of the form ( ) Z∈== skrkrU s ,const, . 
 
Jacobi considered the case in which the central force is of the form ( ) 2rF θγ= , hence 
it is inverse proportional to the square of the distance to the point O . Binet’s equation 
(c) becomes 

( )
22

2 11
d
d

mCrr
θγ

−=+⎟
⎠
⎞

⎜
⎝
⎛

θ
; (u) 

integrating, we obtain 

( )θγ+θ+θ= sincos1
21 CC

r
, (v) 

where ( )θγ  is a particular integral, which may be always obtained by quadratures. The 
integration constants are easily obtained by initial conditions of Cauchy type. 
Analogously, we may consider central forces of the form const,3 =krk , leading to the 
equation 

0111
d
d

22

2
=⎟

⎠

⎞
⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛

θ rmC
k

r
, (w) 

whence the general integral 

221 1,sincos1
mC

kCC
r

+=ββθ+βθ= . (x) 
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Application 4.26 

Problem. Study the motion of rotation of a simple pendulum around a vertical axis. 

Mathematical model. Let us assume that the vertical circle on which mores a heavy 
particle, in particular the mathematical pendulum considered in Appl.4.33, rotates with a 
constant angular velocity ω  around its vertical diameter. The co-ordinates of the particle 
are thus: θ−=ϖθ=ϖθ= cos,sincos,cossin lztlytlx , where the applicate z  has 
been taken along the ascendent local vertical (Fig.4.25). 

 

Figure 4. 25. Simple pendulum in a motion of rotation 

The constraint is rheonomic, so that we use Lagrange’s equation (see Appl.2, formula 
(m)), where 

( )ωω+θ= 2222 sin
2
1 &mlT , θ−=⋅= sin

d
d mgl

t
mQ rg ; (a) 

we obtain thus 

0sincossin2 =θ+θθω−θ
l
g&& . (b) 

Solution. Introducing the non-dimensional variable tω=ϕ , we may write the equation 
(b) in the form ( ϕθ=θ′ω=ϕ dd,ddd t ) 

( )
2

,sincos
ω

=λθλ−θ=θ ′′
l

g
; (c) 

multiplying by θ&2  and integrating, it results the first integral  

( ) constcos2sin 22 =θλ+θ−θ& , (d) 

and the equation ( )ϕθ=θ  of the trajectory is obtained by a quadrature. 
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The above considerations are valid for a pendular motion as well as for a circular motion. 

Application 4.27 

Problem. Determine the motion of a particle constrained to stay on a straight line which 
rotates around one of its points, the tangent of the rotation angle being proportional to the 
time t (Fig.4.26). 

 
Figure 4. 26. Motion of a particle on a straight line which is rotating 

Mathematical model. Let us consider kt=ϕtan , where k  is a constant of 
proportionality. At the time t , the equation of the straight line is 

ktxy = , (a) 

The components of the acceleration along the two axes are 22 dd txax = , 
22 dd tya y = . By a virtual displacement of the particle, of components xδ  and yδ , 

the condition of compatibility, deduced from (a), leads to 

xkty δ=δ ; (b) 

the virtual work is (m is the mass of the particle) 

0
d
d

d
d

2

2

2

2
=δ+δ y

t
y

mx
t

xm . (c) 

Simplifying by m and taking into account (b), the relation (c) becomes 

0
d
d

d
d

2

2

2

2
=+

t
y

kt
t

x . (d) 

Solution. From (a), one obtains (differentiating twice) 

2

2

2

2

d
d

d
d2

d
d

t
xkt

t
xk

t
y

+= . (e) 

Eliminating 22 d/d ty  between (d) and (e), we get 



4. Non-Linear ODEs of First and Second Order 325 

( ) 0
d
d2

d
d1 2

2

2
22 =++

t
xtk

t
xtk . (f) 

Noting that in this differential equation we have not a term in x, we make the substitution 

t
u

t
xu

t
x

d
d

d
d        

d
d

2

2
=⇒=  

and the equation (f) becomes successively 

( ) 02
d
d1 222 =++ tuk

t
utk , 

t
tk
tk

u
u d

1
2d

22

2

+
−= . 

The variables are separated and, by integration, 

( ) kCtku 1
22 ln1lnln ++= ; 

hence, we deduce 

22
1

1d
d

tk
kC

t
xu

+
== , 

221
1

dd
tk

tkCx
+

=  , 

whence 

21 arctan CktCx += . (g) 

From (a), it results 

( )21 arctan CktCkty += , (h) 

so that (g) and (h) are the parametric equations of the trajectory. 
Eliminating the parameter t  between the two relations, it results 

1

2arctan
C

Cx
x
y −
=  

or 

1

2tan
C

Cx
xy

−
= . (i) 

We notice that (f) is a linear, homogeneous ODE; one may apply the results in Sec.1.2 
after  the change of function txu d/d= , obtaining 
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( ) ( )[ ]
22

22
22

2

1
1lnexpd

1
2exp

tk
CtkCt

tk
tkCtu

+
=+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−= ∫ . 

Integrating once more with respect to t, one obtains the formula (g). 

Application 4.28 

Problem. An electron is situated in an electrostatic field of a very long wire (theoretically 
infinite) with a positive charge and starts from rest at the moment 0=t . The electron 
has a negative charge and is attracted towards the wire. Evaluate the time T  necessary 
for the electron to reach the wire. 

Mathematical model. Corresponding to Coulomb’s law, two particles of electric charges 
1q  and 2q , of opposite sign, respectively, situated at a distance r, are attracted by a force 

2
21 krqqF = , where k is the dielectric constant of the medium. 

If e is the charge of the electron, λ  is the charge per unit length of the wire, y is the 
distance from the electron to the wire, and dz is the elementary length of wire (Fig.4.27), 
then the attraction exerted by the charge λdz  upon e is 

2
dd

kr
zeF λ

= , (a) 

where r is the distance between the electron and the element dz. Denoting by θ  the angle 
between the Oy-axis and the straight line connecting the electron to the element dz, we 
have 

θ
=

cos
y

r , 
θ
θ

=
cos

dd rz , 

and the relation (a) becomes 

ky
e

kr
reF θλ

=
θ

θλ
=

d
cos
dd

2
. 

The element dz symmetric with respect to the origin, hence situated at the distance z− , 
acts upon e with a force of the same magnitude; the components parallel to zO  of these 
forces are equal in modulus and of opposite directions, their sum vanishing. The non- 
zero resultant, parallel to the Oy-axis, is 

θθ
λ

=θ dcos2cosd
ky
eF . 

Summing all these elementary forces, we obtain the force by which the wire acts upon 
the electron, i.e. 
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yk
e

ky
eF 12dcos2 2

0

λ
=θθ

λ
= ∫

π

. (b) 

 
Figure 4. 27. Motion of an electron in the electrostatic field of a wire 

Under the action of this force, the motion of the electron of mass m  is governed by 
Newton’s law 

yk
eym 12 λ

−=&& , (c) 

where the sign minus in the second member takes into account the fact that, for a 
positive y , the force acts in the negative direction of yO , and inversely. 
Denoting 

km
eK λ

=
2 , (d) 

the equation of motion is a non-linear equation of second order 

y
K

t
y

−=
2

2

d
d . (e) 

The initial conditions are 

( ) ( ) 00,0 == yhy , (f) 

where h  represents the initial distance of the electron to the wire. 

Solution. Noting that the equation (e) does not contain the independent variable, we 
make the substitution  
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t
y

p
d
d

= ; (g) 

hence, 

y
p

p
t
y

t
p

t
p

t
y

tt
y

d
d

d
d

d
d

d
d

d
d

d
d

d
d

2

2
===⎟

⎠

⎞
⎜
⎝

⎛= . (h) 

Substituting in (e), we obtain 

y
K

y
pp −=

d
d . (i) 

Separating the variables, it results yyKpp dd −= ; integrating this, we get 
CyKp +−= ln22 . From the homogeneous initial conditions ( ) 00 =y and 

( ) ( ) 000 == py& , it results ChK +−= ln0  or hKC ln= , so that 

( )
y
hKyhK

p
lnlnln

2

2
=−= . 

One obtains thus 

y
hK

t
y

p ln2
d
d

±== . 

In the previous relation one takes the sign minus, because the velocity is directed 
towards a negative y for a positive h, so that 

y
hK

y
t

ln2

d
d −=  . 

Integrating in the left member between 0  and T  and in the right member between the 
corresponding limit h and 0, we get finally, 

∫∫ =−=
h

h

y
h

y
K

y
h

y
K

T
0

0

ln

d
2
1

ln

d
2
1 . 

(j) 

The integrals in (j) may be calculated by the change of variable 

y
hx ln= , (k) 

whence 
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x

y
h e=  , xhy −= e , xhy xded −−= , 

where ∞→x  for 0=y  and 0=x  for hy = . 
The expression (j) of T  becomes 

∫∫
∞

−

∞

− −−
=−=

0

0
de

2
de

2
1 2121

xx
K

hxxh
K

T xx . (l) 

The integral (l) may not be calculated by means of elementary functions in a finite form. 
Developing the integrand into a power series 

KK +−+−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−=

−−− −

!3!2!3!2
1e

252332 21212121 xxxxxxxxx x  

and integrating, one obtains the power series of primitive 

( ) .
!

2
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1                        

!37
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22de
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2725232121

nn
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xxxxxx
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+
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+
⋅

−
⋅

+−=

+
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=

−

∑

∫
−−

K

. (m) 

The series (m) is convergent for any x  and may be used to calculate 

( )
!

2
12

1limd
2

12

00

21

nn
xxex

n

n

n

n
x

+
∑ −=∫

+
∞

=∞→

∞
−− , (n) 

hence a Gamma function Γ  (see the Chap.1, Subsec.2.8 ). 

Application 4.29 

Problem. The form of a directrix curve of a surface of translation is given by the 
differential equation 

ay
y 1

1 2
−=

′+

′′
. (a) 

Determine the general solution of the equation (a) and the integration constants assuming 
the bilocal homogeneous conditions ( ) ( ) 00 == lyy . Discussion. 

Solution. The equation (a) is of the form ( ) 0, =′′′ yyF  and, by a change of variable 
py =′ , we obtain the differential equation with separate variables 
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ap
p 1

1 2
−=

+

′
 

or  

a
x

p
p d

1
d

2
−=

+
. 

The general integral is 

1arctan C
a
xp −−= , const1 =C , 

whence 

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
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⎠
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1
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sin
tan

d
d

C
a
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C
a
x

C
a
x

x
yp . 

A last integration leads to 

21cosln CC
a
xay +⎟

⎠
⎞

⎜
⎝
⎛ += , (b) 

where 2C  is a second integration constant. 
From the boundary condition ( ) 00 =y , we get 

12 cosln CaC −= , 

hence 

⎟
⎠
⎞

⎜
⎝
⎛ +

−=

1

1

cos

cos
ln

C
a
x

C
ay . 

(c) 

The boundary condition ( ) 0=ly  leads to 

1111 sinsincoscoscoscos C
a
lC

a
lC

a
lC −=⎟

⎠
⎞

⎜
⎝
⎛ += , 

whence 
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a
l

a
l

a
l

C
2

tan
sin

cos1
tan 1 =

−
=   

or  

a
lC

21 −= . 

Finally, the equation of the directrix curve reads 

⎟
⎠
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⎛ −

−=
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a
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a
l

a
y

2
cos

2
cos

ln . (d) 

To have a real solution, the condition [ ]2,02 π∈al  must be fulfilled. We consider the 
particular cases πππ= 23,2,3la . 
For π= 3la , the equation (d) becomes 

⎟⎟
⎠
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⎝

⎛ π
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π
=

π
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3ln

36
cos

6
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ln . 

We notice that all the curves defined by the equation (d) are symmetric with respect to 
the middle of the span. To set up the curve, we divide the span in 10 equal intervals. The 
ordinates thus obtains are listed in Table 4.1 and are plotted into diagrams in Fig.4.28. 
In the limit case π=la  the co-ordinates y  tend to infinity, while for ∞→la  we 
have 0→y , that is the graphic of the curve is reduced to the segment of a line l. 

Table 4.1. The values of y/l for various a/l 
x/l y/l 
 π= /3/ la  π= /2/ la  π= 2/3/ la

0 0 0 0 
0.1 0.05101 0.08571 0.13912 
0.2 0.08944 0.14717 0.22976 
0.3 0.11626 0.18869 0.28779 
0.4 0.13211 0.21275 0.32040 
0.5 0.13736 0.22064 0.33095 

Another way to solve the equation takes into account the fact that the equation (a) does 
not contain explicitly the function y . As it was shown in Sec.2.3, b, we may make a 
change of function py =′ , considering then p as function of y . We obtain 
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y
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and the equation (a) becomes 

ap
y
pp

1
1

d
d

2
−=

+
, (e) 

hence a non-linear equation of first order with separate variables, the general solution of 
which is of the form 

1e
1

2

−±==′
+− C

a
y

py , (f) 

 
Figure 4. 28. The directrix curve for various a/l 

where 1C  is an arbitrary constant. The equation (f) is also with separate variables; 
integrating it, we get 

ℜ∈+=
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∫
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kkxy

C
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,

1e

d
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. 

Calculating the primitive in the left member, we obtain, successively, 
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by the change of variable vuu Cax cosh,e 21 == +− . Hence, we get 
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finally, 

12cosln CC
a
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⎠
⎞

⎜
⎝
⎛ += , (h) 

i.e. the same formula as that previously obtained. 
But the first method is more convenient, because it is quite direct. In this case, the 
second method led to an intricate computation of the primitive (g). 

Application 4.30 

Problem. Determine the form of equilibrium of an elastic thread suspended between two 
points; the area of the cross section is A and the modulus of longitudinal elasticity is E. 
The thread is acted upon by its own weight mg. 

Mathematical model. Let be S the tension in the thread and sxS dd , syS dd  its 
components along the axes Ox and Oy, respectively (Fig.4.29). 
In the deformed form, the equations of projection on the two axes are 
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where g is the own weight on unit length (we take the mass equal to unity). From (a) it 
results 

x
sSSS

s
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d
d,const

d
d

00 === , (c) 

and introducing in (b) we get 
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Taking into account the relations xys d1d 2′+= , yxy ′=dd , we obtain the 
differential equation 

.
1

1
d
d

2

0
0 g

yEA
S

x
y

S =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

′+
+

′
 (e) 



ODEs WITH APPLICATIONS TO MECHANICS 

 

334

 

Figure 4. 29. Deformation of an elastic thread suspended between two points 

Solution. We denote py =′ and consider p as independent variable; we obtain 
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Integrating, it results 

( ) .1ln 1
200

⎥
⎦

⎤
⎢
⎣

⎡
++++= Cppp

EA
S

g
S

x  (g) 

Because for 0=x  we have 0==′ py , we obtain 01 =C  and 
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Multiplying (f) by xyp dd= , we get 
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Integrating, it results 
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Because we have 0==′ py  for 0≡y , we obtain 02 =C , so that 
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The relations (h) and (j) constitute the parametric representation of the deformed thread. 
If ∞→EA  (inextensible thread) one finds the catenary curve. 
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The tension 0S  may be obtained from a geometric condition connected to the total 
length of the thread. 

Application 4.31 

Problem. Determine the deflections of a cantilever bar of length l acted upon at the free 
end by a couple 0M  (Fig.4.30). 

 

Figure 4. 30. Cantilever bar acted upon by a concentrated moment at the free end 

Mathematical model. The bending moment along the bar axis is 0MM = , so that the 
equation of the curvature is given by 

const1 0 ==
ρ EI

M
, (a) 

where ρ  is the curvature radius and EI is the bending rigidity. The curvature is given by 

ρ
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⎥
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where w is the deflection. The equations (a) and (b) leads to the differential equation of 
the problem. 

Solution. By the substitution 
22 dddd,dd xwxuxwu == , the relation (b) becomes 

( ) ρ
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u d
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. 

Integrating once, we obtain 
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u
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. (c) 
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The condition of built-in section ( ) 0=lu  determines the integration constant ρ= 11C , 
so that the relation (c) becomes 

( )22d
d

xl

xl
x
wu

−−ρ

−
−== . 

The sign minus appears because to positive deflections correspond negative slopes (see 
Fig.4.30). 
The deflection w is obtained by integration in the form 

( )
2

22
d Cx

xl

xlw +
−−ρ

−
−= ∫ , (d) 

where 2C  is a second constant of integration. 
To calculate the integral in (d), one makes the change of variable 

( )221cos,dcosd       sin xlxxl −−ρ
ρ

=ϕϕϕρ−=⇒ϕρ=− , 

so that  

222
222

cosdsindcos
sin

sin CCCw +ϕρ−=+ϕϕρ=+ϕϕρ
ϕρ−ρ

ϕ
= ∫∫ ; 

returning to the variable x, we get 

( )22
2 xlCw −−ρ−= . 

The constant 2C  is determined by the condition that, in the built-in cross section, the 
deflection be zero; hence, 0=w  for lx =  and one obtains ρ=2C  so that 

( )22 xlw −−ρ−ρ= . (e) 

From (a) it results, obviously, that the deformed axis in an arc of circle of radius ρ . The 
relation (e) leads to the equation of this circle in Cartesian co-ordinates 

( ) ( ) 222 ρ=ρ−+− wxl . 

The expression (e) is not convenient for the computation, because it is a difference of 
two great quantities of near values. We may write 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣
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⎞
⎜⎜
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ρ
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−−ρ=
2

11 xlw ; (f) 
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developing the radical into power series after Newton’s binomial we have 
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⎥
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⎞
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⎛
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531
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2
1111 xlxlxlxl . 

Thus, the expression (f) becomes 

( ) ( ) ( )
K−

ρ
−

+
ρ
−

−
ρ

−
≅

5

6

3

42

16
5

8
3

2
xlxlxlw . 

Taking only the first term in the power series, it results 

( ) ( )
EI

xlMxlw
22

2
0

2 −
=

ρ
−

≅ , 

hence an arc of parabola; this solution coincides with that obtained if we start from the 
approximate differential equation of the deformed axis 

EI
M

x
w 0
2

2

d
d

−= , 

in the case of infinitesimal strains and of rotations negligible with respect to unity. 

Application 4.32 

Problem. Determine the deflections of a cantilever bar of length l, acted upon by a 
uniformly distributed normal load p (Fig.4.31). 

 

Figure 4. 31. Cantilever bar acted upon by a normal uniformly distributed load p 

Mathematical model. We search a solution by means of a power series. The bending 
moment in a section of abscissa x  is 22pxM −= ; the differential equation of the 
deformed axis is given by 
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EI
px

EI
M

x
w

x
w

2

d
d1

d
d

2
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⎥
⎥
⎦

⎤
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⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
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. (a) 

Solution. The function w does not effectively appear in (a); by the substitution 
22 dddd,dd xwxuxwu == , the equation (a) becomes 

( )
x

EI
px

u

u d
21

d 2

232
=

+
. 

We integrate once 

EI
pxC

u

u
61

3

1
2

+=
+

. (b) 

The condition ( ) 0=lu  in the built-in cross section determines the integration constant 

EI
plC
6

3

1 = , 

so that (b) becomes 

( )33
2 61

xl
EI
p

u

u
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+
, 

whence 
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2
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6
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Integrating the previous relation, it results 

( )
x
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EI
p
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EI
p

Cw d

6
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6 2
33
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2 ∫
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⎤
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We denote 

( )33
6

xl
EI
p

−=ξ , 
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so that the integrand becomes 

( ) 212
2

1
1

−ξ−=
ξ−

ξ . 

Because 1<<ξ , one may develop in a power series 
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Taking into account the substitution (e) and returning to the variable x, we have 
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p
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or, developing the parentheses and integrating, we get 
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⎠
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The condition ( ) 0=lw  in the built-in cross section leads to 
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The constant 2C  represents the maximal deflection (at the free end 0=x ) of the 
cantilever bar. The first term in the development into series corresponds to the 
approximate solution, which is given by the simplified differential equation 

EI
M

x
w

−=
2

2

d
d . 
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Application 4.33 

Problem. Study the motion of a heavy particle P of mass, frictionless, on a circle C of 
radius l, situated in a vertical plane (mathematical pendulum). 

Mathematical model. We choose the Ox-axis in the direction of the gravitational 
acceleration g (Fig.4.32); the theorem of kinetic energy, applied between the points 0P  
and P , allows to write 

( ) ( ) ( )xagglvxxgvv −−=θ−θ−=−−= 2coscos22 0
2
00

2
0

2 , (a) 

where gvxa 22
00 −= , 00 θ= &lv  being the initial velocity at the point 0P  at the initial 

moment 0t . 
The equation ax =  is the equation of the straight line till which a particle may rise if it 
is launched after the local vertical, with the initial velocity 0v ; the values of the constant 
a determine the character of the motion in case of a bilateral constraint. Indeed, if the 
straight line ax =  pierces the circle C ( )lal <<− , then the motion is oscillatory, if 
this straight line is tangent to the circle ( )la −= , then we have 00 =v , corresponding a 
stable position of equilibrium, hence an asymptotic motion, while if the straight line does 
not pierce the circle ( )la −< , then the motion is circular. We cannot have la > . 

 
Figure 4. 32. Mathematical pendulum 

From the relation (a) it results that the velocity θ= &lv  may vanish for an angle given by 
glv 2coscos 2

00 −θ=θ  or by ( ) ( ) glv 42sin2sin 2
00

22 +θ=θ . This condition can 

never be satisfied if glv 42
0 > (or lg=ωω>θ 222

0 ,4& ), the motion being circular. If 

glv 42
0 < , then the condition may be fulfilled for certain values of the angle 0θ , hence 
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for some initial positions, e.g. for 00 =θ , the motion being, in this case, oscillatory. If 

glv 42
0 =  we must have 00 =θ , the motion being asymptotic. 

Solution. We assume that the motion is oscillatory, we denote α= cosla , where 
π<α<0  is the angle corresponding to the limit position P  (for which 0=v ) of the 

particle P, specifying the amplitude of the motion. The relation (a) takes the form 

( )α−θω=θ coscos2 22& ; (b) 

differentiating with respect to time, we may write (we notice that 00 ≠θ ) 

0sin22 =θω+θ&&  (c) 

too. This equation (called the equation of mathematical pendulum) is often encountered 
in problems of mechanics in one of the two forms mentioned above; in fact, the relation 
(b) corresponds to a first integral of the equation of motion (c). 
The particle P starts from the initial position 0P  with the velocity 0v  and mounts on the 
circle with a velocity of diminished intensity; at the extreme position P  the velocity 
vanishes. Returning on the arc of circle, the velocity increases; the particle passes over 
the initial position 0P  and reaches the lowest point P′ , where it has the maximal 
velocity; then, the velocity decreases till the particle attains the point P ′  for which 

α−=θ . The particle returns then at P′ , at 0P , at P , a.s.o. Hence the motion is 
oscillatory. From the relation (b) we observe also that the velocity ( )tv  depends only on 
the position of the particle, being a periodic function of this position (of angle θ ); 
integrating this equation with separate variables, we may write (during the motion 

α>θ coscos ) 

∫
θ

θ α−ϑ

ϑ

ω
+=

0 coscos
d

2
10tt , (d) 

where 0θ  corresponds to the position at the arbitrary moment 0t  (which may be 
different from the initial moment 0t ). As one may see, the interval of time 0tt −  
depends only on the corresponding positions of the two moments; it results that the 
oscillatory motion is periodical, of period T. We notice further that, if we change the 
direction of the motion on the arc of circle, then the sign of the velocity is changed, its 
modulus remaining the same by passing through the same point; hence, the arc PP ′  is 
traveled through in an interval of time 2T . Because the relation (b) is even with respect 
to θ , it results that for symmetric points with respect to the Ox-axis we have the same 
velocity (by up, or down travel); hence the arc PP′  is traveled through in a quarter of 
period. In this case, the period T is given by 

∫
α

α−ϑ

ϑ
ω

=
0 coscos

d22T . (e) 
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We notice that ( ) ( )[ ]2sin2sin2coscos 22 θ−α=α−θ  and denoting by 
( ) ϕ=θ sin2sin k , ( )2sin α=k , we may write 

∫
ϕ

ϕ ψ−

ψ
ω

+=
0 22

0

sin1

d1

k
tt , (f) 

where 0ϕ  is given by ( ) 00 sin2sin ϕ=θ k ; denoting z=ϕ0sin , we can write 

( )( )∫
ζ−ζ−

ζ
ω

+=
z

z k
tt

0 22

0

11

d1 , (g) 

too, where 0z  is specified by 00sin z=ϕ . Introducing, after Legendre, the elliptic 
integral of first species 

( )
( )( )∫ ∫

ϕ ϕ

−−
=

ψ−

ψ
=ϕ

0

sin

0 2222 11

d

sin1

d,
zkz

z

k
kF , (h) 

where ϕ  is the amplitude and k  is the modulus of the integral, we obtain 

( ) ( )[ ]kFkFtt ,,1 00 ϕ−ϕ
ω

+= . (i) 

By the notation tu ω= , we can write 

( ) ( )kFkFuu ,, 00 ϕ−ϕ=− , (j) 

where 00 tu ω= . Taking 00 =t , without any loss of generality, and if we assume that 
00 =θ , then it results ( ) 0,0000 =ϕ===ϕ kFuz , so that 

( )kFu ,ϕ= , (k) 

As it was noticed by Abel, we may express the angle ϕ  as a function of the variable u  
in the form 

usnsin =ϕ , (l) 

where sn is the symbol of the elliptic sinus (the amplitude sinus), one of the elliptic 
functions of Jacobi; analogously, we may use the elliptic cosinus (the amplitude 
cosinus), denoted by the symbol cn ( )ucncos =ϕ . 
Starting from the formula (a), the period of motion is given by 

( )
( )( )∫∫

−−ω
=

ϕ−

ϕ
ω

=
ω

=
π l

zkz

z

k
kKT

0 22

2

0 22 11

d4

sin1

d44 , (m) 
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with lg=ω , where ( ) ( )kFkK ,2π=  is the elliptic integral of first species. Noting 

that 12 <k , it results the development (we use Newton’s binomial series) 

( ) ( )
( )

ϕ+=ϕ− ∑
∞

=

− nn

n n
k

n
n

k 22

1
22

2122 sin
!2
!2

1sin1 . (n) 

This series is absolutely and uniform convergent in the interval [ ]2,0 π , so that we may 
integrate, taking into account Wallis’ formula 

( )
( ) 2!2

!2
dsin

22

2

0

2 π
=ϕϕ∫

π

n
n

n
n , (o) 

and obtain the period 

( )[ ]
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⎪
⎬
⎫
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⎪
⎨
⎧ α
+π= ∑

∞

= 2
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44
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nn

n n
k
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n

g
lT . (p) 

Because we may develop ( )2sin α  too into an absolutely convergent series with respect 
to α , we obtain also for the period T such a development, which takes the form 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
α

+
α

+π= K
2

42

1612
11

16
12

g
lT . (q) 

We notice that the ratio between the second and the first term of series is equal to 
162α ; as well, the ratio between the third and the second term is given by 

( ) 16161211 22 α<α , a.s.o. This series is rapidly convergent; practically, we may take 

⎭
⎬
⎫

⎩
⎨
⎧ α
+π=

16
12

2

g
lT . (r) 

If 4.0=α  (corresponding to an angle of 6055220 ′′′ ), then the correction brought by 
the second term of the development is not greater than %1 . The astronomical clocks 
have penduli with amplitudes not greater than 0310 ′ , corresponding a correction of 
approximate %05.0 . In general, the period T depends on the angle α , but is 
independent of the mass m of the particle. 
In case of small oscillations around a stable position of equilibrium, the equation (c) 
becomes the form (we approximate θsin  by θ ) 

,02 =θω+θ&&  (s) 

whence 

( ) ( ),cos ϕ+ωα=θ tt  (t) 
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the angle ϕ  being specified by the initial conditions, the period being given by Galilei’s 
formula 

g
lT π= 2 ; (u) 

we observe that this result approximates the development into series (q). The period T 
thus obtained depends on the length l of the pendulum and on the gravitational 
acceleration g at the respective place on the Earth. Because this period does not depend 
on the amplitude α , we say that the respective motion is isochronic (the small motions 
around a stable position of equilibrium take place in the same interval of time). A 
particle P left to fall from P  without initial velocity reaches the lowest position P′  in 
an interval of time 4T , which does not depend on the initial position (angle α ); hence, 
the respective motion is called tautochronous. 

Application 4.34 

Problem. Study the motion of a system with one degree of freedom which begins to 
move from the initial position with the velocity 0v  at the moment 0=t  and oscillates 
under the action of a non- linear spring. 

Mathematical model. The motion is governed by Duffing’s equation 

⎟
⎠

⎞
⎜
⎝

⎛
+−= 30 x

m
rx

m
k

x&& , (a) 

with the initial conditions ( ) ( ) 00,00 0 === vxx & . 

Solution. Multiplying both members of the equation (a) by txx d2d2 &= , we have 
successively 

txx
m
rx

m
k

xx d2d2 30 &&& ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= , 

( ) xx
m
rx

m
k

x d22
d 302

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=& . 

Integrating between 0v  and x&  in the left member and between 0 and x in the right 
member, we get 

⎟
⎠

⎞
⎜
⎝

⎛
+−=− 4202

0
2

2
x

m
rx

m
k

vx&  , 

whence one obtains 
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⎟
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v
t
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it was taken the sign +  because 00 >v . 
Separating the variables and integrating with respect to time between 0  and t , we may 
write 

∫

⎟
⎟
⎠
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⎜
⎜
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⎛
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=
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z
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z
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1

d1 , 
(b) 

where z is an integration variable. 
The above integral may be reduced to elliptic integrals. We denote 

( )( ) ( ) 42222222224
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where 2a  and 2b  are constants given by the relations 
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with the solutions 

.
22

,
22

2
0

2

2
0

0
2
0

02

2
0

2

2
0

0
2
0

02

mv
r

mv
k

mv
k

b

mv
r

mv
k

mv
k

a

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

 

Using the new notations, the integral in relation (b) becomes 

( )( )∫
+−

=
x

zbza

z
v

t
0 22220 11

d1 . 

Denoting 

a
uzc

a
bazu dd,, 2

2

2
=== , (c) 

we may write 
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( )( )∫
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=
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u
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0 2220 11

d1 . (d) 

Denoting further 

ψ==
+

=
+
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1

2
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2
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c
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we obtain 

ψψ−= dsindu , ψ=− 22 sin1 u , 
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and the integration limits become 
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So, from (b), (c) and (d) we get 
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(g) 

To obtain x as a function of t, we express, first of all, 

( ) ( ) tbavkKkF 22
0, +−=ϕ . 

Using the inverse function uam , we get 

( )( )tbavkK 22
0am +−=ϕ  

and, finally, 
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( ) ( )( )tbavkK
aa

tx 22
0cn1cos1

+−=ϕ= . 

The displacement ( )tx  is thus a periodic function of amplitude a1 , the maximal value 
of which is obtained for 

( )
22

0 bav

kKt
+

= . 

The period T of he motion is four times greater and is given by 

( )
22

0

4

bav

kKT
+

= . (h) 

Application 4.35 

Problem. Study the non- linear problem of buckling of a doubly hinged straight bar of 
length l, subjected to compression by forces P, also taking into account the shortening of 
the bar. 

Mathematical model. The second order ODE which governs the deformation of the bar is  

0cossinsin 21 =ϕϕλ−ϕλ+ϕ ′′ , (a) 

where ϕ  is the slope of the deformed axis and 

EIEA
P

EI
P

⋅
=λ=λ

2

21 , , 

EA and EI being the axial and the bending rigidities, respectively. The abscissa along the 
initial bar axis will be denoted by x. 

Solution. We do not consider the solution 0=ϕ , which corresponds to the non- 
deformed state of the bar. 
Multiplying the equation (a) by the integrating factor ϕ′2 , we get 

0cossin2sin22 21 =ϕ′ϕϕλ−ϕ′ϕλ+ϕ ′′ϕ′ , 

whence, by integration, we may write 

( ) 1
2

1
2 2cos

2
cos2 C+ϕ

λ
−ϕλ=ϕ′ , (b) 

where 1C  is a first integration constant. 
The maximal value of ϕ  is obtained for 0=x ; let be mϕ  this value. For the doubly 
articulated bar, the bending moment at both ends must vanish, hence 0=ϕ′ . One 
obtains thus from (b) 



ODEs WITH APPLICATIONS TO MECHANICS 

 

348

mmC ϕ
λ

+ϕλ−= 2cos
4

cos 2
11 , 

so that, introducing in (b), one obtains 

( ) ( )mm ϕ−ϕ
λ

−ϕ−ϕλ±=ϕ′ 2cos2cos
2

coscos2 2
1 . (c) 

The signs ±  indicate that the buckling may take place on both sides of the bar. 
Noting that xddϕ=ϕ′ , from (c) one obtains 

( ) ( )
∫ +

ϕ−ϕ
λ

−ϕ−ϕλ

ϕ
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2
1 2cos2cos

2
coscos2

d Cx

mm

, 

where 2C  is a second integration constant. 
The solution of the differential constant is thus reduced to a quadrature. It cannot be 
performed in a finite form by means of elementary functions, but may reduced to elliptic 
integrals listed in tables. 
Further, we make the substitutions 

2
sin8

2
sin812cos,

2
sin21cos 422 ϕ

+
ϕ

−=ϕ
ϕ

−=ϕ . 

The relation (b) becomes 

( )
∫ +

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ
−

ϕ
λ−λ

λ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ϕ
−

ϕ
λ−λ

ϕ
±= 2

22

21

222
21 2

sin
2

sin1
2

sin
2

sin4

d Cx
mm

. 
(e) 

Using the notation 

2
sin,

2
sin 2

21

22 mm qp
ϕ

λ−λ
λ

=
ϕ

=  

and introducing a new variable defined by 

z
pzpz

ppz d
1

1d      
2

sin
−

=ϕ⇒=
ϕ , 

the expression (e) becomes 

( )( )( )∫ +
++−−λ−λ

±= 2
21 111

d
2

1 C
qzqpzzz

zx . 

A new substitution 
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( )
u

bua
zz

bua
uz ddd     

2+
=⇒

+
= , 

with the notations 

q
qb

q
qa

+
−=

+
+

=
1

,
1

21 , 

leads to 

( )( ) ( )
∫ +

⎟
⎠

⎞
⎜
⎝

⎛ −
−−

+λ−λ
±= 2

21 11

d
212

1 C

u
a

bpuu

u
q

x . 

Finally, taking θ= 2sinu , which yields θθθ= dcossin2du  and denoting 

( )( ) a
bpk

q
K −

=
+λ−λ

= 2

21

,
212

1 , 

one obtains 

2
22 sin1

d C
k

Kx +
θ−

θ
±= ∫ . (f) 

Expressing now the last notations K and 2k  in terms of the first ones, we get 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ
λ−λ

λ
+λ−λ

=

2
sin21

1

2

21

2
21

m

K , 

2
sin2

2
sin

2
sin

2
221

2
21

22

m

m

mk
ϕ

λ+λ−λ

ϕ
λ−λϕ

= , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ
+

ϕ
λ−λ

λ
+

ϕ
λ−λ

λ
+

ϕ
ϕ

=θ

2
sin

2
sin1

2
sin21

2
sin

1
2

sinsin
22

21

2

2

21

2

2 m

m

m
. 

We determine now the constant 2C . Introducing the limits of the primitive (f) and taking 
into account the boundary conditions ( ) ml ϕ=ϕ  and ( ) 2π=θ l , we obtain 
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∫
θ

ϑ−

ϑ
=

0 22
2

sin1

d

k
KC , 

and the final result is 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ϑ−

ϑ
±

θ−

θ
= ∫∫

θπ

0 22

2

0 22 sin1

d

sin1

d

kk
Kx . (g) 

These two integrals represent the Legendre’s normal form of the elliptic integral of first 
species. 
For given values of the rigidity, of the loading and of the angle mϕ , we may determine, 
with the aid of tables, firstly x as a function of θ  and secondly ϕ  as a function of x. 
We notice that this is a boundary value problem and not a problem of eigenvalues as that 
in Appl.1.31. 

Application 4.36 

Problem. Study the previous buckling problem, assuming that the axial rigidity of the bar 
is neglected. 

Mathematical model. The differential equation of second order which governs the 
deformation of the bar is given by the equation (a), Appl.4.35 

0sin1 =ϕλ+ϕ ′′ , (a) 

where we made ∞→EA , hence 02 =λ . 

Solution. We denote 2
1 p=λ . The above equation may be thus written in the form 

ϕ−=
ϕ sin

d
d 2

2

2
p

s
, (b) 

where s represents a linear variable, measured along the deformed axis. Multiplying both 
members by ( ) ss dddϕ , it results 

ϕϕ−=
ϕϕ

∫∫ dsind
d
d

d
d 2

2

2
ps

ss
 

or still 

ϕϕ−=⎟
⎠
⎞

⎜
⎝
⎛ ϕ

∫∫ dsind
d
d

d
d

2
1 2

2

ps
ss

. 

Integrating, we obtain 
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1
2

2

cos
d
d

2
1 Cp

s
+ϕ=⎟

⎠
⎞

⎜
⎝
⎛ ϕ , 

where 1C  is an integration constant, which is determined by the boundary condition at 
one end of the bar. Thus, for 0=x , we must have 0dd =ϕ s , because the bending 
moment vanishes, while the slope is mϕ=ϕ . We obtain thus mpC ϕ−= cos2

1  so that 

( )mp
s

ϕ−ϕ=⎟
⎠
⎞

⎜
⎝
⎛ ϕ coscos2

d
d 2

2

 

or  

mp
s

ϕ−ϕ±=
ϕ coscos2

d
d . 

Solving with respect to s, we may write 

mp
s

ϕ−ϕ

ϕ
±=

coscos2
dd . 

The total length of the bar remains unchanged, so that 

∫∫∫
ϕϕ

ϕ
−

ϕ

ϕ
=

ϕ−ϕ

ϕ
==

mm

mm

l

pp
sl

0 2200

2
sin

2
sin

d
2
1

coscos2
dd . 

The integral may be written in a simpler form, denoting ( )2sin mk ϕ=  and introducing 
a new variable θ , so that 

θ
ϕ

=θ=
ϕ sin

2
sinsin

2
sin mk . 

Thus, if ϕ  variates between 0 and mϕ , then θ  variates between 0 and 2π . 
Differentiating, we obtain 

θ−

θθ
=

ϕ
θθ

=ϕ
22 sin1

dcos2

2
cos

dcos2d
k

kk . 

Introducing in the expression of the length l , and noting that 

θ=
ϕ

−
ϕ

sin
2

sin
2

sin 22 km , 
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( )kK
pkp

l 1

sin1

d1 2

0 22
=

θ−

θ
= ∫

π

, 

where ( )kK  is the complete elliptic integral of the first species. 

Application 4.37 

Problem. Compute the deformed axis of a cantilever bar acted upon at the free end by a 
normal concentrated force P. The length of the bar is l and the bending rigidity is EI. 

Mathematical model. The curvature of the deformed axis of the bar is given by 

EI
M

x
w

x
w

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

=
ρ 232

2

2

d
d1

d
d

1 , 

where w is the deflection and the bending moment is ( )xlPM −=  (the origin of the 
Ox-axis is chosen at the built-in cross section, Fig.4.33). We obtain thus the non-linear 
second order ODE  

( )xl
EI
P

x
w

x
w

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

232

2

2

d
d1

d
d

. (a) 

 

Figure 4. 33. Cantilever bar acted upon by a normal concentrated force P at the free end 

Solution. By the substitution xwp dd= , the equation (a) becomes an ODE with 
separable variables 

we get 
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( )( ) 2321
d
d

pxl
EI
P

x
p

+−=  

or 

( )
( ) xxl

EI
P

p

p d
1

d
232

−=
+

. 

Integrating once, we get 

1

2

2 21
Cxlx

EI
P

p

p
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

+
. 

We put the condition 0dd == xwp  for 0=x  and obtain 01 =C ; hence 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+ 21

2

2

xlx
EI
P

p

p . 

From (b) we obtain 

222

2

2
1

2

d
d

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

==
xlx

EI
P

xlx
EI
P

x
wp  

and, by a new integration, we may write 

∫ +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=
x

Cx
xlx

EI
P

xlx
EI
P

w
0

2
2

2

2

d

2
1

2
. 

By means of the condition ( ) 00 =w , we obtain 02 =C , so that 

∫ ξ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ξ
−ξ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ξ
−ξ

=
x

l
EI
P

l
EI
P

w
0 2

2

2

d

2
1

2
. 

The substitution 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=ζ

2

2xlx
EI
P  

leads to 

βζ−α

ζβ
±=ζ−±=

2
dd,22 x

P
EIllx  , 

introducing the notations 2l=α , PEI2=β , αβ== /2 22 PlEIk . 
Finally, we have 

( )( )∫
ζ−ζ−

ζζ
−=

EIPl

kPl
EIw

2

0 222
max

2

11

d . 

Application 4.38 

Problem. Establish the equation of the deformed axis of a simply supported beam acted 
upon by a concentrated moment 1M  at the fixed end. The span is L and the bending 
rigidity is EI (Fig.4.34, a,b) 

Mathematical model. Taking into account the bending curvature of the beam and the 
linear variation of the moment diagram (Fig.4.34, c), the solution may be obtained with 
the aid of elliptic integrals. In the previous application the problem was directly treated, 
noting that the boundary value problem was a problem of initial values. In the present 
case we have to do with a bilocal problem. 
The equilibrium of an element of beam (Fig.4.34, d) leads to 

0
d
d

d
d 1 =−

s
x

l
M

s
M . (a) 

From the geometry of an element we obtain 

θ= cos
d
d

s
x , (b) 

θ= sin
d
d

s
y

. (c) 

The relation between the bending moment and the slope θ  of the tangent is (Fig.4.34, b) 

s
EIM

d
dθ

= . (d) 

Differentiating M  with respect to s and introducing in (a) we get 



4. Non-Linear ODEs of First and Second Order 355 

0cos
d
d 1

2

2
=θ−

θ
l

M
s

EI  

or 

θ=
θ cos

d
d 1

2

2

Ell
M

s
. (e) 

 
Figure 4. 34. Simply supported beam (a). Deformation of the beam axis acted upon by a concentrated moment 

1M  (b). M-diagram (c). Equilibrium of an element ds (d) 

Solution. Multiplying both members by ( ) θ=θ dddd ss , we get 

θθ=
θθ dcosd

d
d

d
d 1

2

2

Ell
M

s
ss

 

or further 

θθ=⎟
⎠
⎞

⎜
⎝
⎛ θ dcosd

d
d

d
d

2
1 1

2

Ell
M

s
ss

. 

Integrating both members, it results 
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1
1

2

sin
d
d

2
1 C

Ell
M

s
+θ=⎟

⎠
⎞

⎜
⎝
⎛ θ . (f) 

The integration constant may be determined if we put the condition that the bending 
moment does vanish at the left end, hence where 0d/d =θ s  and 0θ−=θ  (still 
unknown). 
The relation (f) may be written in the form 

⎟
⎠
⎞

⎜
⎝
⎛ θ

−
π

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
=

θ
24

sin
24

sin2
d
d 2021

Ell
M

s
. (g) 

where the rotation θ  is positive if it takes place in the anticlockwise direction. We make 
a change of variable 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

⎟
⎠
⎞

⎜
⎝
⎛ θ

−
π

=ϕ

24
sin

24
sin

sin
0

, (h) 

whence 

ϕ

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

−=θ d

sin
24

sin1

cos
24

sin2
d

202

0

. (i) 

Thus, the relation (g) becomes 

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−

ϕ−
=

2021
sin

24
sin1

dd
M
EIls . 

(j) 

If we suppose that the axial rigidity of the beam is infinite (the length of the axis does not 
change by bending), we my write 

,,
2424

   

sin
24

sin1

d

1
00

1

2

2021 1

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
=

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−

ϕ
= ∫

π

ϕ

FK
M
EIl

M
EIlL

, (k) 
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where F and K are the elliptic and the complete elliptic integrals of the first species, 
respectively, 1ϕ  is the value of the variable ϕ  given by 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

=ϕ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

=ϕ

24
sin

24
sin

arcsin,

24
sin

24
sin

sin
0

1

1
0

1

1 , (l) 

and 1θ  is the slope of the deformed axis at the right (fixed) end. The quantities 0θ , 1θ  
and l are the unknowns of the problem. 
From the relations (h), (i) and (j), it results 

ϕϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−= dsin

24
sin2d 0

1M
EIlx , (m) 

ϕ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−

−ϕ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−−= d

sin
24

sin1

1sin
24

sin12d
202

202

1M
EIly . (n) 

By integration, one obtains 

( )01
1

sinsin2d
1

0

θ+θ== ∫
θ−

θ M
EIlyl , (o) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
== ∫

θ−

θ
1

00
1

00 ,
2424

,
2424

2d0
1

0

FKEEy . (p) 

The equations which determine the three unknowns are (p), (n) and (o); it results 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
θ+θ= 1

00
01

1 ,
2424

sinsin2 FK
EI

LM
, (q) 

obtaining the slope 1θ  as function of EILM1 . 
The distance between the supports si given by the the relation  

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

θ+θ
=

1
00

01

,
2424

sinsin2

FK
L
l , 

while the parametric equations of a point of the deformed axis are 
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( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

θ+θ−θ+θ
== ∫

θ

θ
1

00

010

,
2424

sinsin2sinsin2
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1 FK
x

LL
x , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ

θ
+

π
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ θ
+

π

== ∫
θ

θ
1

00

1
0000

,
2424

,
2424

2
2424

2
d1

1 FK

FEKE
y

LL
y . 

Application 4.39 

Problem. A flexible band of length l and unit breadth, in a vertical position, is subjected 
to a hydrostatic pressure of a liquid of unit weight γ . Determine the deformation of the 
band. Discussion. 

Mathematical model. A flexible bar cannot take over bending moments and shearing 
forces; thus, the equations of equilibrium are reduced to 

0
d
d

=
s
N , (a) 

npN
=

ρ
, (b) 

where N represents the axial effort, s is the arc of curve, 

( )
y
y
′′
′+

=ρ
2321  (c) 

is the curvature radius of he deformed axis, and np  is the normal pressure exerted by the 
liquid. 
From (a) we deduce ( ) const=sN , while from (b), we have 

const=ρ= npN . (d) 

The relation (d) determines the curvature radius ρ , hence the form of the funicular 
curve, for a given np . 
The hydrostatic pressure is given by xpn γ= , [ ]lx ,0∈ , where we suppose that the 
water plane is at the upper end of the band. 
From (c) and np  we get 

( ) N
x

y

y γ
=

′+

′′
2321

. (e) 
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Integrating once, we may write 

( )1
2

2 21
Cx

Ny

y
+

γ
=

′+

′
, (f) 

where 1C  is an integration constant. The first derivative becomes 

( )

( )21
2

2

2

1
2

4
1

2
d
d

Cx
N

Cx
N

x
yy

+
γ

−

+
γ

==′ . (g) 

Taking into account the mechanical significance of the problem, that is that along the 
span l there is a section for which the tangent to the deformed axis is parallel to the non-
deformed axis, it results that 01 <C ; we take 22

1 lcC −= , where [ ]1,0∈c . 
By the notation, the relation (g) becomes 

( )

( )2222
2

2

222

4
1

2
d
d

lcx
N

lcx
N

x
yy

−
γ

−

−
γ

==′ . (h) 

Integrating once the previous relation, we get 

( )

( )
x

lcx
N

lcx
Ny

x
d

4
1

2
0 2222

2

2

222

∫
−

γ
−

−
γ

= . (i) 

Fixing the inferior limit of the integral, the condition of support at the origin, that is 
0=y  for 0=x , is satisfied. The constant c is then specified by ( ) 0=ly . 

The integral in (i) is an elliptic integral. To obtain a canonical form of it, one makes the 
substitutions 

( ) ϕ−=−
γ 22222 sin21

2
klcx

N
, (j) 

( )2
2

2 212 k
l
Nc −

γ
−= . (k) 

It results 

ϕϕ
γ

−=ϕ
γ

= dsin2d,cos2 kNxkNx , (l) 

and the limits become 0=x  for 2π=ϕ  and ϕ→x . Thus, we obtain 
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.
sin1

d
sin1

ddsin12   

dsin12d
sin1
sin21

0
22

2

0
22

0

22

2

0

22
2

0
22

22

∫∫∫

∫∫

ϕπϕ

ππ

ξ−

ξ
γ

+
ϕ−

ϕ
γ

−ϕϕ−
γ

−

ϕϕ−
γ

=ϕ
ϕ−

ϕ−
γ

=

k
N

k
NkN

kN
k
kNy

 (m) 

Introducing the elliptic integral of second species, of amplitude ϕ  and of modulus k, 

( ) ξξ−=ϕ ∫
ϕ

dsin1,
0

22kkE , 

the complete elliptic integral of second species,  

ϕϕ−=⎟
⎠
⎞

⎜
⎝
⎛ π

∫
π

dsin1,
2

2

0

22kkE , 

the elliptic integral of first species, of amplitude ϕ , and of modulus k, 

( ) ∫
ϕ

ξ−

ξ
=ϕ

0 22 sin1

d,
k

kF  

and the complete elliptic integral of first species 

∫
π

ϕ−

ϕ
=⎟

⎠
⎞

⎜
⎝
⎛ π 2

0 22 sin1

d,
2 k

kF , 

the equation of the funicular curve becomes 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
ϕ+⎟

⎠
⎞

⎜
⎝
⎛ π−ϕ−⎟

⎠
⎞

⎜
⎝
⎛ π

γ
= kFkFkEkENy ,,

2
,2,

2
2 . (n) 

The elliptic functions are listed in tables as functions of ϕ  and θ  (where θ= sink ). 
To put the condition at the end lx = , we notice that from (l) we get 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ γ
=ϕ

γ
=ϕ

N
l

kN
l

k

2

1

2

1 2
1arccos,

2
1cos . (o) 

If we take 1ϕ=ϕ  in (n), that one is transformed in the transcendental equation 

( ) ( ) 0,,
2

,2,
2

2 11 =ϕ+⎟
⎠
⎞

⎜
⎝
⎛ π−ϕ−⎟

⎠
⎞

⎜
⎝
⎛ π kFkFkEkE , (p) 

whose solution finally yields the constant c. 



4. Non-Linear ODEs of First and Second Order 361 
As the direct solution of the transcendental equation (p) is difficultly obtained, one may 
search a numerical solution, starting from the equation 

( )
( )

0d

4
12

0 2222
2

2

222
=

−
γ

−

−γ
∫ x

lcx
N

N

lcxl
. 

(q) 

To this goal, the length l was divided in 20 equal intervals. To obtain non-dimensional 
expressions, we denote 

2lN αγ=  (r) 

and make the change of variable lx ξ= ⇒  ξ= dd lx , [ ]1,0∈ξ ; thus, the equation (q) 
becomes 

( )
0d

4
1120 22

2

22
=ξ

−ξ
α

−α

−ξ
∫
l

c

c , 
(s) 

where the roots c are determined for various values of the parameter α . If α  takes very 
great values (great efforts in the band), then the value of c may be directly obtained 
considering under the radical that 041 2 →α , hence neglecting the paranthesis with 
respect to unity. It is left to compute the integral 

( ) 2
1

0

2
3

0

22

3
1

3
d ccc

l
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ξ−

ξ
=ξ−ξ∫ , 

whence, equating to zero the last member, it results the convenient root 
57735.031 ≅=c  (value which determines the position of the maximal bending 

moment in a simply supported beam), acted upon by a triangular distributed load. 
The problem of the inferior limit is more difficult. From the condition of existence of a 
real solution we may write the inequality 

( ) 0
4

11 22
2

>−ξ
α

− c , 

equivalent to the inequalities 

( ) ( ) 11
2
1

2
1

2
1 222

2
<−

α
≤−ξ

α
≤

α
−<− ccc . 

One obtains the conditions 

α<α−> 2,21 22 cc . 
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To the limit, if the inequalities become equalities, then the equations α−= 212c  and 
α= 22c  represent two parabolas; their graphics, αvsc , are represented in Fig.4.35. 

The two parabolas have a piercing point, i.e. 21,41 ==α c . 
We try to represent the graphic of the function ( ) 0, =αcf , corresponding to the 
equation (s). As it was established before, the graphic admits an asymptote parallel to the 
axis Oα, that is 31=c . 
The numerical calculation provides values of c for 35.0>α . If 35.0<α , then the 
equation (s) must be solved directly. 
We search the limit point of the curve, situated on the parabola α−= 212c . 
Associating the relation (k), in which we replace N by the expression (r), we have 

( )22 21221 kc −α−=α−= , 

whence we obtain 14 2 =αk  or 12 =αk . 

Further, the relation (o) becomes 121cos 1 =α=ϕ k  or 01 =α . 
Because ( ) ( ) 0,0,0 =θ=θ FE , the transcendental equation (p) is reduced to 

0,
2

,
2

2 =⎟
⎠
⎞

⎜
⎝
⎛ π−⎟

⎠
⎞

⎜
⎝
⎛ π kFkE  

 
Figure 4. 35. Diagrams of the two parabolas (c vs. α) 
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or 

0,
2

,
2

2 =⎟
⎠
⎞

⎜
⎝
⎛ θ
π

−⎟
⎠
⎞

⎜
⎝
⎛ θ
π FE , 

by the substitution θ→k . 
Using the tables and the linear interpolation, it results 0315,65=θ  and successively 

30262.0
4

1,90891.0sin
2
==α=θ=

k
k , 

62830.0,39476.0212 ==α−= cc . 

The solution may be obtained in a direct way, using the developments into power series 
of the functions ( )kE ,2π  and ( )kF ,2π ; finally, we get the equation 

( )
( )

m

m
k

m
m

m
ml 2

2

1 2642
12531

12
12

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

−⋅⋅
−
+

=
∞

= K

K , 

obtaining the same value of the root k . 

Application 4.40 

Problem. To compute the contour of a section with thin walls of constant thickness and 
of maximal rigidity of the cross section area, one must solve the ODE 

022 22 =′′λ−′′−′+ yyyyyy , (a) 

where y is the applicate of the median line of the cross section, x  is the abscissa in the 
cross section, while λ  is a given constant. Determine the general solution of (a). 

Solution. The equation (a) may be written 

( ) ( ) 012 22 =λ+′′−′+ yyyy  

or 

λ+
=

′+

′′
22
2

1 y
y

y
y . 

Supposing that 0≠y , we multiply by y ′2  and obtain 

λ+

′
=

′+

′′′
22
4

1
2

y
yy

y
yy ; 

integrating once we have 

( ) ( ) 2
1

22 lnln21ln Cyy −λ+=′+  
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or  

( )
2
1

22
21

C
y

y
λ+

=′+ . 

Further, we may write 

( )
( )

y
Cy

C
x

C
Cy

y dd,
2
1

22

1

1

2
1

22

−λ+
=

−λ+
=′ , 

( )( )∫
−λ++λ+

==+
1

2
1

2
12

d

CyCy

yCICx . 

By the change of variable ( )zCy λ+−= 1 , we obtain 

( )
∫

−λ+λ+−−
=

1
2

1
2

1

1

d

CzCz

zC
I ; 

further 

∫
+

λ−
λ+

λ−−

=

11

d

2

1

1
1

2

1

z
C
C

Cz

zC
I . 

If we denote ( ) ( )λ−λ+−= 11
2 CCk , it results 

( )
( )( )∫

−−
=+

λ−
222

2
1

1

11

d

zkz

zCx
C

C
. 

The integral in the second member is the inverse Legendre’s elliptic integral of first 
species; we obtain ( )( )211sn CxCCz +λ−=  and, having in view the value of z, 

( )2
1

1
1 sn Cx

C
C

Cy +
λ−

λ−−= , 

where sn is the Legendre’s sinus-amplitude function. 
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Chapter 5 

NON-LINEAR ODSs OF FIRST ORDER 

1. Generalities 

1.1 THE GENERAL FORM OF A FIRST ORDER ODS 

The general form of a first order ODS with n unknown functions is 

( )
( )

( ) ,0,...,,,,...,,,
..............................................................

,0,...,,,,...,,,
,0,...,,,,...,,,

2121

21212

21211

=′′′

=′′′
=′′′

nnn

nn

nn

yyyyyyxF

yyyyyyxF
yyyyyyxF

 (5.1.1) 

where jF  are defined on the same ( )12 +n -dimensional domain and are considered 
sufficiently regular. 
If the hypotheses of the theorem of implicit systems are fulfilled, then one can get jy ′  
explicitely from (5.1.1), thus obtaining the canonic/normal form of a first order ODS 

( )
( )

( ).,...,,,
......................................

,,...,,,
,,...,,,

21

2122

2111

nnn

n

n

yyyxfy

yyyxfy
yyyxfy

=′

=′
=′

 (5.1.2) 

In what follows, we shall consider only first order ODSs of canonic form. 
These ODSs can also be written in compact form. Indeed, by using the notations 

( )

( )
( )

( )

,

,

,
,

,,
d
d

, 2

1

2

1
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1
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⎥
⎥
⎥
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⎥
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⎢
⎢

⎣

⎡
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y
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y

y

xf

xf
xf
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y

y
y

x
y

y
y

nnn

MMM
 (5.1.3) 

the ODS (5.1.2) may be written in the vector form 

( )yf
y

,
d
d

x
x
= . (5.1.4) 

Let us also note that any n-th order ODE 
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( ) ( )( )1...,,,, −′′′= nn yyyyxfy , (5.1.5) 

can be written in the form of a first order ODS with n unknown functions. Indeed, with 
the notations 

( )1
321 ,...,,, −=′′=′== n

n yyyyyyyy , (5.1.6) 

the ODE (5.1.5) becomes the following first order ODS with n unknown functions 

( ).,...,,,
,

............
,
,

21

1

32

21

nn

nn

yyyxfy
yy

yy
yy

=′
=′

=′
=′

−

 (5.1.7) 

One can prove that, conversely, a normal (canonical) first order ODS with n unknown 
functions can be reduced to a n-th order ODE, under certain regularity conditions. 

1.2 THE EXISTENCE AND UNIQUENESS THEOREM FOR THE SOLUTION OF 
THE CAUCHY PROBLEM 

Exactly as in the case of linear ODSs, we can consider the problem of determining that 
solution of (5.1.2) that satisfies the initial or Cauchy conditions 

( )
( )

( ) 00

2002

1001

............
,
,

nn yxy

yxy
yxy

=

=
=

 (5.1.8) 

or, in vector form, 

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

20

10

000 ,

ny

y
y

x
M

yyy . (5.1.9) 

The point ( ) ( )00020100 ,,...,,, yxyyyx n ≡  belongs to the ( )1+n -dimensional domain on 
which (5.1.2), or, equivalently, (5.1.4), makes sense. We can generalize to ODSs the 
Cauchy-Picard theorem 4.2 from Chap.4. 

Theorem 5.1. Suppose that f satisfies the following conditions: 

i) ( )( )nD0C∈f , where ( ){ }njbyyaxxxD jj
n ,1,,,, 00 =≤−≤−ℜ∈= y , 

ii) njf j ,1, =  are Lipschitz with respect to y, i.e 
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( ) ( ) ( ) ( ) njDxxZYKxfxfK
n

m
jjjjj ,1,,,,,,,:0

1
=∈−<−>∃ ∑

=
ZYZY . 

Then the Cauchy problem (5.1.4), (5.1.9)  allows a unique solution ( )xyy = , of class 

( )( ) [ ]hxhxII
n

+−= 00
1 ,,C , where { }

( )
( )

⎭
⎬
⎫

⎩
⎨
⎧

==
∈=

y
y

,supmax,/,min
,,1

xfMMbah j
Dxnj

. 

 The proof of this theorem is also based on successive approximations; this method 
offers a practical and efficient possibility of getting solutions of ODSs. 
Let us note that, if the general solution of a first order ODE depends on an arbitrary 
constant, the general solution of a first order ODS with n unknown functions and n 
equations depends on n arbitrary constants. In both cases, the constants can be fixed up 
by adding Cauchy conditions to the ODE or to the ODS, accordingly. 
The general solution of an ODS of type (5.1.2) or (5.1.4) can thus be written in the 
explicit form 

( )
( )

( ).,...,,,
......................................

,,...,,,
,,...,,,

21

2122

2111

nnn

n

n

CCCxy

CCCxy
CCCxy

ϕ=

ϕ=
ϕ=

 (5.1.10) 

If we think of (5.1.10) as a functional system with respect to nCCC ,...,, 21 , then, 
supposing that this system fulfills the hypotheses of the implicit function theorem, we 
can explicit  nCCC ,...,, 21  from (5.1.10), thus obtaining the general solution of the ODS 
(5.1.2) in the implicit form                                               

( )
( )

( ) .,...,,,
......................................

,,...,,,
,,...,,,

21

2212

1211

nnn

n

n

Cyyyx

Cyyyx
Cyyyx

=ψ

=ψ
=ψ

 (5.1.11) 

1.3  THE PARTICLE DYNAMICS 

The classical study of mechanical motions is generally based on Newton’s second law, 
according to which the acceleration of a moving particle is determined by the resultant of 
the forces acting upon it, i.e. 

Fa =m  (5.1.12) 

where m is the mass of the particle. 
A moving body can be thought as a particle of co-ordinates ( )zyx ,,  with respect to a 
fixed up system of co-ordinates; obviously, as the position of the particle changes every 
moment, x, y and z will be functions depending on time. 
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The co-ordinates of the velocity vector of the particle will be given by 

( ) ( ) ( )kjiV tztytx &&& ++= , (5.1.13) 

where kji ,,  are the versors of the co-ordinate axes and the point signifies differentiation 
with respect to the time t. Also, the acceleration vector is represented in the form 

( ) ( ) ( )kjia tztytx &&&&&& ++= . (5.1.14) 

Suppose that the resultant of the forces acting upon the particle, determining its motion, 
is known, that is 

kjiF ZYX ++= , (5.1.15) 

where X, Y and Z are given functions that might depend on the time t, on the particle 
position and also on its velocity,  so that the motion of the particle is finally described by 
the second order ODS 
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( )
( ) .,,,,,,

,,,,,,,
,,,,,,,

zyxzyxtZzm
zyxzyxtYym
zyxzyxtXxm

&&&&&

&&&&&

&&&&&

=
=
=

 (5.1.16) 

This system can be reduced to a first order ODS, by introducing the functions 

.,, wzvyux === &&&  (5.1.17) 

The new first order ODS will have six equations and six unknown functions, 
wvuzyx ,,,,,  

( )
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( ) .,,,,,,

,,,,,,,
,,,,,,,

,
,
,

zyxzyxtZwm
zyxzyxtYvm
zyxzyxtXum

wz
vy
ux

&&&&

&&&&

&&&&

&

&

&

=
=
=

=
=
=

 (5.1.18) 

The general integral of this system will be written in the form 

( )
( )
( )
( )
( )
( ),,,,,,,

,,,,,,,
,,,,,,,
,,,,,,,
,,,,,,,
,,,,,,,

6543213

6543212

6543211
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CCCCCCxw
CCCCCCxv
CCCCCCxu
CCCCCCxfz
CCCCCCxfy
CCCCCCxfx

ϕ=
ϕ=
ϕ=

=
=
=

 (5.1.19) 

obvioulsy depending on six arbitrary constants 654321 ,,,,, CCCCCC . 
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The first three relations (5.1.19) refer to the particle position and define its trajectory and 
the last three, concerning its velocity, represent the law of motion. 
The system (5.1.18) allows infinitely many solutions. But if the initial position and the 
initial velocity of the particle are fixed up, this particle will follow a unique trajectory. 
This physical fact is mathematically justified by applying the Theorem 5.1 of local 
existence and uniqueness of the solution of the Cauchy problem associated to the ODS 
(5.1.18); indeed, knowing the initial position and velocity of the particle means in fact 
that there are satisfied the Cauchy (initial) conditions  

( ) ( ) ( )
( ) ( ) ( ) ,,,

,,,

000000

000000

ztzytyxtx
ztzytyxtx
&&&&&& ===

===
 (5.1.20) 

where 0t  marks the beginning of the motion. If, moreover, X, Y, Z are continuous with 
respect to their arguments and Lipschitz-ian in wvuzyx ,,,,, , then by Theorem 5.1 the 
solution of the Cauchy problem (5.1.18), (5.1.20) allows a unique solution. 

2. First Integrals of an ODS 

2.1 GENERALITIES 

The left members jψ  of the relations (5.1.11) obviously become identically constant if  

we replace jy  by their corrresponding expressions (5.1.10). 
We call first integral of the ODS (5.1.2) a C1-class  function, depending on the 
independent variable and on the unknown functions, which becomes identically constant 
if we replace the unknown functions by an arbitrary solution of the system. 
With this definition, we see that any of the relations (5.1.11) is a first integral of the ODS 
(5.1.2). Also from the definition we deduce that a given ODS allows infinitely many first 
integrals. Indeed, the relation 

( ) ( ) ( )( ) Cyyyxyyyxyyyx nnnn =ψψψΦ ,...,,,,...,,...,,,,,...,,, 21212211 , (5.2.1) 

where Φ is an arbitrary C1-class function in its arguments and C is an arbitrary constant,  
is obviously a first integral of (5.1.2). 
Suppose now that in one of the first integrals of the ODS (5.1.2) 

( ) Cyyyx n =ψ ,...,,, 21  (5.2.2) 

we replaced nyyy ,...,, 21  by an arbitrary solution of the system. If ψ allows a total 
differential, then 0d =ψ , whence 

0
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d
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+
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ψ∂

+
∂
ψ∂
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yx
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yx
y

yx
n

n
; (5.2.3) 

as jy  also satisfy the ODS (5.1.2), we find out that 
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( ) ( )
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 (5.2.4) 

Thus, the left members of every first integral of (5.1.2) satisfies (5.2.4). 
We observe that (5.2.4) may represent a linear first order PDE, having  ψ  as unknown 
function. 
Suppose now that, conversely, ψ satisfies (5.2.4). Then along any integral hypersurface 
of the system (5.1.2) the relation (5.2.3) holds true, therefore (5.2.4) is also true. We thus 
get the following results: 

A. The PDE (5.2.4) is the necessary and sufficient condition for (5.2.2) to be a first 
integral of the ODS (5.1.2). 

Suppose now that we could find n functionally independent first integrals of (5.1.2), 
nψψψ ,...,, 21 . This means that their Jacobian with respect to nyyy ,...,, 21  does no 

vanish identically, i.e. 
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. (5.2.5) 

Let us show that, once determined a system of n functionally independent first integrals, 
one can determine any solution of the ODS (5.1.2). Indeed, suppose known the system of 
first integrals and let nyyy ,...,, 21  be an arbitrary solution of (5.1.2). Let 0x  be an 
arbitrary point of the domain of definition of the solution and denote by 

( ) njxyy jj ,1,00 == . Also suppose that 0x  was chosen such that the Jacobian (5.2.5) 

be not null at the point ( )02010 ,...,, nyyy . According  to the implicit function theorem, 
we can invert (5.1.11) around this point, thus obtaining 
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nnn
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=
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 (5.2.6) 

where jy  are continuous and univocal functions of nCCCx ,...,,, 21 . These relations 

will become identities if we replace every jC  by ( )nj yyyx ,...,,, 21ψ . Now, replacing  
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each jC  by ( )0201000 ,...,,, njj yyyxC ψ= accordingly, then, obviously, the vector of 
components 
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,,...,,,
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nnn
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n
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 (5.2.7) 

satisfies the Cauchy conditions ( ) njyxy jj ,1,00 == , as well as the system (5.1.2). But 
the arbitrary solution we started from satisfies the same conditions; therefore, by theorem 
5.1, this solution (locally) coincides with the solution (5.2.7), determined by first 
integrals. Consequently, 

B. Knowing n functionally independent first integrals is equivalent to the 
integration of the ODS (5.1.2). 

Suppose that we succeeded to find only one first integral of (5.1.2) 

( ) Cyyyx n =ψ ,...,,, 21 . (5.2.8) 

From this relation we can express one of the unknown functions – say ny , if 
0/ ≠∂ψ∂ ny  – as a function of  121 ,...,,, −nyyyx  and C, therefore 

( )Cyyyxy nn ,,...,,, 121 −ϕ= . (5.2.9) 

Introducing ny  in (5.1.2), we obtain a new first order ODS, with ( )1−n  unknown 
functions 121 ,...,, −nyyy . Thus, the number of the unknown functions of the ODS was 
diminished by one unit. Integrating this new system, its solution will depend on ( )1−n  
arbitrary constants, which, together with C, will complete the set of n arbitrary constants 
corresponding to (5.1.2). Similarly, we can prove that 

C. If we know k functionally independent first integrals of (5.1.2) , then the number 
of the unknown functions can be reduced by k units. 

2.2 THE THEOREM OF CONSERVATION OF THE KINETIC ENERGY 

Let us write the ODEs (5.1.16) in the form 

( )
( )
( ) .0,,,,,,

,0,,,,,,
,0,,,,,,

=−≡
=−≡
=−≡

zyxzyxtZzmH
zyxzyxtYymG
zyxzyxtXxmF

&&&&&

&&&&&

&&&&&

 (5.2.10) 

We suppose for now that the functions X, Y, Z do not depend on zyxt &&& ,,, , therefore they 
only depend on the particle position ( )zyx ,, . Also suppose that the vector of 
components ( )ZYX ,,  may be written as the gradient of a scalar function U, i.e. 
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z
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The function U is called force function or potential. The derivative of U with respect to 
the time t is expressed in the form 

zZyYxXz
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U

&&&&&& ++=
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∂
∂

+
∂
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=
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Multiplying the above ODEs (5.2.10) by zyx &&& ,,  respectively and adding them member 
by member, we get 

( ) 0
d
d

2
222 =++−++=++ zZyYxXzyx

t
mzHyGxF &&&&&&&&& . (5.2.13) 

or, taking (5.2.12) into account, 

( ) ( ) 0,,
2d

d 222 =⎥⎦
⎤

⎢⎣
⎡ −++ zyxUzyxm

t
&&& , (5.2.14) 

whence, by integration 

( ) ( ) CzyxUzyxm
=−++ ,,

2
222 &&& . (5.2.15) 

This is, in fact, a first integral of the ODS (5.2.10); actually, in terms of the above 
definition for first integrals, (5.2.15) is a first integral of the equivalent first order ODS 
(5.1.18). 
The mechanical interpretation of this first integral is extreemly important. It practically 
proves the theorem of energy conservation. Indeed, denoting by v the modulus of the 
particle velocity, it results 

( )
22

2
222 mvzyxm
=++ &&& , (5.2.16) 

so that the first term of the sum in (5.2.15) has the significance of kinetic energy. 

2.3 THE SYMMETRIC FORM OF AN ODS. INTEGRAL COMBINATIONS 

The system (5.1.2) may be written in the differential form 

( ) ( ) ( )nn
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d
1
d

21212

2

211

1 ====  (5.2.17) 

This system is equivalent to (5.1.2) if we multiply the denominators with the same non-
zero factor. We can thus suppose from the beginning that, instead of 1, the differential dx 
is divided by an arbitrary function. To take advantage of a symmetric writing, we shall 
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put nxxx ,...,, 21  instead of nyyyx ,...,,, 21 , re-noting the number of variables with n, 
instead of ( )1+n . 
In conclusion, the symmetric form of a first order ODS is 

( ) ( ) ( )nn
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nn yyyxX
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yyyxX
x

yyyxX
x

,...,,,
d
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,...,,,

d
,...,,,

d

21212

2

211

1 === . (5.2.18) 

Let us note that the values cancelling all the functions jX  cannot be chosen as initial 
data for an associated Cauchy problem. These values are called singular and they 
corrrespond to the critical (singular) points of the system. In this case, the Cauchy-
Picard theorem 5.1. does not work. 
The symmetric form of a first order ODS may be useful to emphasize first integrals. 
Indeed, if we can determine n functions ( ) njxxx nj ,1,,...,, 21 =λ  such that 

0...2211 =λ++λ+λ nn XXX  (5.2.19) 

and if the expression 

Φ=λ++λ+λ dd...dd 2211 nn xxx  (5.2.20) 

is a total differential, then the sum ∑
=
λ

n

j
jj X

1
is called integral combination and 

( ) Cxxx n =Φ ,...,, 21  (5.2.21) 

is a first integral of the system (5.2.18). 

2.4 JACOBI’S MULTIPLIER. THE METHOD OF THE LAST MULTIPLIER 

The necessary and sufficient condition that a function ( )nxxxf ,...,, 21  be a first integral 
of the ODS (5.2.18) is  

0dd
1

=
∂
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= ∑
=

n

j
j

j
x

x
f

f . (5.2.22) 

Taking the system into account, this can be written in the form 

0..
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1

1 =
∂
∂

++
∂
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+
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n
n x

fX
x
fX

x
fX . (5.2.23) 

This is a linear and homogeneous first order PDE. Without insisting on details, we shall 
only note that the characteristic system associated to this PDE is precisely (5.2.18). We 
already showed that if one knows ( )1−n  functionally independent first integrals 

121 ,...,, −ϕϕϕ n  of  (5.2.18), then any other first integral f is functionally dependent on 
them, i.e. 
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Expanding this determinant with respect to its first row, we get 
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j j
j x

f
, (5.2.25) 

where jΔ  is the algebraic complement corresponding to jxf ∂∂ / . As both (5.2.23) and 
(5.2.25) must be fulfilled, it follows 

njMX jj ,1, ==Δ . (5.2.26) 

The function M is called Jacobi’s multiplier. We cam also write 

Δ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++
∂
∂

+
∂
∂

n
n x

f
X

x
f

X
x
f

XM ..
2

2
1

1 . (5.2.27) 

Starting, with Jacobi, from the determinant 
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we observe that ∑
=

Δ=
n

j
jjaU

1
, again developing U with respect to its first row. 

Differentiating now jΔ  with respect to jx  , we deduce 
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j j

j

x
, (5.2.29) 

which, together with (5.2.25), involves 

( ) 0
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∂
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∑
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j
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j j
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. (5.2.30) 
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This is the equation of Jacobi’s multiplier. 
Computing the expression 
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whence, taking (5.2.23) and (5.2.30) into account, we obtain 

( ) 0
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j j
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x
. (5.2.32) 

This means that the product between a Jacobi multiplier of the ODS (5.2.18) and any of 
its first integrals is also a Jacobi multiplier.  If 
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=
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∂
∑
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n

j j

j

x
X

, (5.2.33) 

in other words, if the divergence of the vector of components nXXX ,...,, 21  is null, 
then, obviously, any constant is a Jacobi multiplier for (5.2.18). Consequently, for such 
systems any non-constant Jacobi multiplier is a first integral. 
Suppose that we know ( )2−n independent first integrals 221 ,...,, −ϕϕϕ n of  (5.2.18). 
Should we know another first integral 1−ϕn , functionally independent on the previous 
ones, we could express ( )1−n  variables as functions of the n-th one and of ( )1−n  
arbitrary constant, thus obtaining the general integral of the ODS (5.2.18). 
According to the previous remarks, the system would be then reduced to  

2

2

1

1 dd
X
x

X
x

= , (5.2.34) 

which is in fact a first order ODE, that can be written in differential form 

0dd 2112 =− xXxX . (5.2.35) 

Multiplying this equation by the integrant factor μ, we get a total differential equation 

( ) 0,d 21 =Φ xx . (5.2.36) 

The integrant factor must satisfy the condition (see also Chap.4, Sec.1.4) 

( ) ( )
0

2

2

1
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μ∂

+
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μ∂

x
X

x
X

. (5.2.37) 

This integrant factor is also called the last multiplier for the system (5.2.18). 
Consequently, if we know a multiplier for the ODS (5.2.18), then it is enough to know 
( )1−n  first integrals in order to integrate it. If the ODS satisfies the condition (5.2.33), 
then 1=M is a Jacobi multiplier, so that to integrate the system we need only ( )2−n  
first integrals. 
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3. Analytical Methods of Solving the Cauchy Problem for non-Linear ODSs 

3.1 THE METHOD OF SUCCESSIVE APPROXIMATIONS (PICARD-LINDELÕFF) 

Let us consider again the Cauchy problem (5.1.2), (5.1.8) or, equivalently, (5.1.4), 
(5.1.9) and suppose satisfied the hypothesis of the existence Theorem 5.1.  The Picard-
Lindelöff method, also called the successive approximation method, which serves to 
prove the local existence and uniqueness of the solutions, is a strong tool for setting up 
this solution. It is proved that the sequence of the approximations 

( ) ( ) ( ) ( )( ) ( ) njyxyttytytytfyxy jj
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m
j ,1,,d,...,,, 0

011
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1
10
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==+= ∫ −−− , (5.3.1) 

uniformly converges on [ ]hxhx +− 00 ,  to the solution of the considered Cauchy 
problem. The length 2h of this interval is determined by Theorem 5.1. 
The construction of the n recurrent sequences tending to the unique solution of the 
Cauchy problem is a straightforward generalization of that exposed at Sec.1.2 for the 
case 1=n . More precisely, the functions defined by recurrence in (5.3.1) satisfy the 
inequality 
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for hxx <− 0 . The constant K is the Lipschitz constant. 

3.2 THE METHOD OF THE TAYLOR SERIES EXPANSION 

If the functions ( )nj yyyxf ,...,,, 21  are of class ∞C  in a neighbourhood of 

( )020100 ,...,,, nyyyx , then the solution of (5.1.2), (5.1.8) may be searched in the form of 
a Taylor series, i.e. 
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 (5.3.3) 

where ( )0, xxRR j
m

j
m =  are the corresponding  remainders of the above developments. 

The Lagrange estimations of these remainders are 
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therefore 
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where 

( )
( ) ( ){ }njbyyaxxxxfM jjj

xnj
,1,,,,,supmax 00

,,1
=<−<−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∈=
yy

y
D

D
. (5.3.6) 

Precisely as in the one-dimensional case (see Sec.1.2), the solution of the Cauchy 
problem (5.1.2), (5.1.8) may be approximated by Taylor’s polynomials in the right sides 
of  (5.3.3), neglecting the remainder, therefore 
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for nj ,1= . The corresponding coefficients are computed successively, as follows 
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We can also consider the case in which jf  allow a series expansion in the form 
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where ν is a ( )1+n -dimensional multi-index  and the coefficients ( )xf jν  are continuous 

on [ ]a,0 . We suppose that they also satisfy in this interval the inequality 
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A and nkrk ,0, =  being determined constants. 
Then the solution of the initial problem (5.1.2), (5.1.8) can be developed in a series 
expansion 
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which is absolutely convergent in the domain determined by the inequality 
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In the particular case ( ) 0ν
νν = xaxf jj , in the above series  of jy  we also take 

( ) 0ν
νν =ϕ xcx jj . The coefficients νjc  are obtained by identification. 

Yet this procedure is very difficultly applied in practice. In the next section, dedicated to 
the linear equivalence method, we shall present an efficient way of deducing the 
coefficients νjc  by using the normal LEM representation. 

3.3 THE LINEAR EQUIVALENCE METHOD (LEM) 

The linear equivalence method, or, briefly, LEM, was introduced to find convenient, 
both quantitative and qualitative representations of the solutions of non-linear ODSs via 
the methods in use for the linear ones. The method, initially introduced for first order 
polynomial differential systems , was extended to first order ODSs, with right side 
analytic with respect to the unknown functions. The case of polynomial operators 
involves some simplified formulae for the LEM representations and even more 
simplifications are emphasized in the case of constant coefficients. 
Consider therefore the system 

( ) ( ) ( )[ ] ( )( ) [ ] ℜ⊆=∈≡=
=

batftt
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njj ,I,IC,,,,, 1
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yyyfyfy& , (5.3.13) 

where ( )y,tf j  are analytic functions, uniformly with respect to I∈t , i.e. 

( ) ( ) { }( )njj njtftf 0,,1,,
1

∪∈μ== ∑
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μ Nyy , (5.3.14) 

( )nμμμ=μ ,...,, 21  is a multi-index,  nμ++μ+μ=μ ...21  and 

n
nyyy μμμμ ≡ ...21

21y . (5.3.15) 
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The coefficients ℜ→μ I:jf  are supposedly at least of class ( )IC0 . The applications 

presented here deal only with ODS with null free term; this is why the sums in (5.3.14) 
are starting from 1 on. 
This system may be also written putting into evidence the differential operator ( )yF , 

( ) ( ) 0yfyy =−≡ ,t&F . (5.3.16)  

LEM considers an exponential mapping depending on n parameters, nℜ∈ξ ,  
( )nξξξ= ,,, 21 Kξ , namely 

( ) ∑
=
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n

j
jj yxv

1

, ,,e, yξξ yξ , (5.3.17) 

that associates to the above non-linear ODS two linear equivalents : 
1. a linear PDE, always of first order with respect to x 
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∂
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≡ vx
t
vxv fξξL , (5.3.18)  

2. and a linear, while infinite, first order ODS 
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The operator L  introduces the linear PDE (5.3.18), always of first order with respect to t; 
in (5.3.18), the formal operators 
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make sense on Exp-type spaces. 
The LEM equivalent (5.3.18) was obtained by differentiating (5.3.17) with respect to t 
and replacing the derivatives jy&  from the non-linear system (5.3.16). 
The usual notation ( )ξDtf j ,  stands for the differential polynomial associated to 

( )y,tf j . The second LEM equivalent, the system (5.3.19), is obtained from the first one, 
by searching the unknown function v in the class of analytic with respect to ξ functions 

( ) ( )
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γ+= tvtv . (5.3.21)  

The LEM system (5.3.19) may be also written in matrix form 

( ) ( ) ( )
jjjj vt

x =γγ∈
===−≡ VVV0VAVV ,,
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d

N
S . (5.3.22)  
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The LEM matrix A has a special form, being always row-finite and, in the case of 
polynomial operators, also  column-finite 
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The cells ( )tssA on the main diagonal are square, of 1+s  rows and columns, and are 
generated by the coefficients of the linear part of the operator – namely, those ( )tf jμ  for 

which 1=μ . The other cells ( )tskk +,A  contain only those ( )tf jμ  with 1+=μ s . 
More precisely, the diagonal cells contain the coefficients of the linear part, on the next 
upper diagonal we find the coefficients of the second degree in y etc. In the case of 
polynomial operators of degree m, the associated LEM matrix is band-diagonal, the band 
being made up of m lines. 
It should be mentioned that this particular form of the LEM matrix permits the calculus 
by block partitioning, which represents a considerable simplification. 
Consider now for (5.3.13) or, equivalently, (5.3.16), the initial conditions 

( ) I, 000 ∈= tt yy . (5.3.24)  
By LEM, they are transferred to 

( ) ntv ℜ∈= ξξ yξ ,e, 0,
0 , (5.3.25)  

a condition that must be associated to the PDE , and 

( ) N∈γ= γ
γ ,00 ytv , (5.3.26)  

indicating an initial condition for the system (5.3.19) or, equivalently, (5.3.22). For the 
matrix form, the initial conditions (5.3.26) become 

( ) ( ) N∈γ
γ= 00 yV t . (5.3.27)  

Let us note that, in order to get back to the solutions of the polynomial Cauchy problem 
(5.3.16), (5.3.24), the PDE should be conveniently defined on some space of analytic 
with respect to ξ functions, uniformly for I∈t . To this aim, we introduce  
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where ⋅  is the “sup” norm in ( )IC0  and ( ){ }mjff j
m ,0,max ==  is the norm in 

( )ICm . 
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Another space may be similarly introduced, ( )Ik
nB  – the isomorphic with ( )Ik

nA  space of 
infinite vectors V, of components satisfying the same inequalities as in (5.3.28). The 
isomorphism is emphasized by the application ( ) ( )II k

n
k
n BA: →τ  that associates to v the 

infinite vector of the coefficients in the development, i.e. ( )( ) ( )ttv Vξ =τ , . 
The relationships among the above-introduced operators are suggestively explained in 
the following diagram 
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3.3.1. Solutions of non-linear ODSs by LEM 
We note that the above diagram is not closed; yet, it may be used to turn back to the 
solutions of the polynomial system. In this respect, it was proved 

Theorem 5.2.  Suppose that ( )I∞
μ ∈Cf j . Then the solution of the initial problem,  

(5.3.27) formally allows the representation 

( ) ( ) ( )00 tttt VΠV −= , (5.3.29) 

where the infinite matrix Π is given by 
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!
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The matrices ( )kA  are determined by the recurrence 

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) EAAAAA =+= −
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1

, 
d

d , (5.3.31) 

where E is the infinite unit matrix. The components γv  of V are consistent on 

intervals N∈γγ ,I , centred at 0t , whose length depends on μjf , on γ and on 0y . 

In particular, the first n components of V  coincide with the Taylor series expansion of 
the solution of the Cauchy problem (5.3.16), (5.3.24) around 0t . 
The first n rows of Π represent in fact the inverse of the non-linear operator F in matrix 
form. Thus, the representation separates the contribution of the operator from that of the 
initial data.  
Let us mention that, as the series form cannot be completely computed, if we wish to 
stop at some level k, all the involved computation up to this level is finite. 
In the case of constant coefficients, the following representations were found: 
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Theorem 5.3. If the coefficients njf j ,1, =μ , are constant, then the solution of the non-
linear initial problem (5.3.16), (5.3.24)  
i) coincides with the first n components of the infinite vector 

( ) ( )
0

0e VV A ttt −= , (5.3.32) 
where the exponential matrix 
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can be computed by block partitioning, each step involving finite sums; 
ii) coincides with the series 
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where ( )tu jγ  are solutions of the finite linear ODS 
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that satisfy the Cauchy conditions 
( ) ( ) lsxt sj ,2,, 001 === 0UeU . (5.3.36)  

The representation is very much alike a solution of a linear ODS with constant 
coefficients. There is more: the computation is even easier due to the fact that the 
eigenvalues of the diagonal cells are always known . The representation (5.3.34) is called 
the normal LEM representation  and was used in many applications requiring the 
qualitative behavior of the solution. 

3.3.2. New LEM representations in the case of polynomial coefficients  
Suppose now that the coefficients μjf  of the non-linear operator are also polynomials, 
of maximum degree q, written in the form 
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Then, the linear equivalent system  becomes  
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Let us mention that in (5.3.38) the matrices kA  are all of them constant and, obviously, 
of LEM construction. Each of the LEM matrices kA  is set up by using only the 

coefficients k
jf μ . One can formally write (5.3.38) in integral form 
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and apply to this linear integral equation the successive approximations 
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With these preparations, using the same techniques as in Theorem 5.1, one can obtain 
LEM representations in the case of polynomial coefficients. 
The representation (5.3.29) is more suitable for numerical applications, while the normal 
LEM representation suits better to study the qualitative behavior of the solution. 
LEM was used to many applications: to set up a transport matrix for REBs (relativistic 
electron beams), to get asymptotic estimations for the solution of Troesch’s plasma 
problem, to a qualitative study of the oscillatory solution of Belousov-Zhabotinskij’s 
chemical reaction, to the Lotka-Volterra prey-predator model and even in the theory of 
graphs. 
The most pertinent results were obtained in the frame of mechanics, studying the 
Bernoulli-Euler bar and the non-linear rigid pendulum; some of them will be presented 
in this book. 
It must be mentioned that during the last several years, the interest in applying LEM to 
various mechanical and technical problems was continuously increasing. Thus, the 
application of LEM was extended to modern high-tech modelling for shape memory 
alloys  for non-linear mesoscopic materials  and to domains like damping in machine 
tools . 
LEM was applied to the non-linear coupled pendulum, comparing the LEM 
representations and the cnoidal ones, comparison also sustained by the numerical results 
obtained via wavelets. In  it is suggested the application of LEM to equations like 
Korteweg de Vries. In an excellent book, recently appeared, there are opened the 
perspectives of applying LEM to non-linear models in nanotechnologies. This may give 
rise to a fruitful feedback between the development of the method itself, on the one hand, 
and the specific results obtained by applying it, on the other hand. 

4. Applications 

Application 5.1 

Problem. Study the motion of a discrete mechanical system formed by two particles 1P  
and 2P  of masses 1m  and 2m , respectively, subjected to the reciprocal action of forces 
of Newtonian attraction (the problem of the two particles). 

Mathematical model. Consider the particles 1P  and 2P  of position vectors 1r  and 2r , 
respectively, acted upon by forces of Newtonian attraction (Fig.5.1) 
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where 21PP=r . Newton’s equations of motion are 
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Figure 5. 1. The problem of the two particles 

Noting that 12 rrr −=  and 12 rrr &&&&&& −=  and subtracting the equations (c) we obtain 
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hence the equation of motion of the particle 2P  with respect to the particle 1P ; 
analogously, we may determine the equation of motion of the particle 1P  with respect to 
the particle 2P . 

Solution. The equation (d) has been considered in Appl. 1.17 for Kepler’s problem: 
motion of a planet of mass mm =2  subjected to the action of a central force of 
Newtonian attraction, the Sun, of mass Mm =1 , considered fixed. The equation (d) 
becomes 
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The first two Kepler’s laws are verified. The planet describes an ellipse, the Sun being at 
one of the foci; but also the Sun describes an ellipse, the planet being at one of its foci. 
Concerning the third law, we are led to 
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this law is verified with good approximation too, because 1/ <<Mm . 
This problem plays an important rôle both for the macrocosm (in celestial mechanics) an 
for the microcosm (in atomic mechanics). 

Application 5.2 

Problem. A man goes along the straight line yO ′′  with a uniform velocity 1v . At the 
moment 0=t  he is at O′  and calls his dog; that one runs towards the master with the 
uniform velocity 12 kvv = , 1>k , so that it is directed at any moment towards the man. 
Determine the trajectory of the dog and the interval of time in which it reaches the 
master (problem of the meeting). Discussion. 

Mathematical model. We model mathematically the man and the dog by two particles 1P  
and 2P , respectively; the velocity 2v  of the particle 2P  is collinear with the vector 

1PP , tangent to its trajectory. We choose a fixed frame of reference yxO ′′′  linked to the 
initial position O′  of the particle 1P  and a movable frame of reference xyP1 , linked to a 
momentary position of the particle 1P , in uniform translation with respect to the fixed 
frame; in fact, its motion is specified by the equations (we admit that the two particles 
start from the points OP ′≡0

1  and 0
2P  at the initial moment 0=t ) (Fig.5.2) 

xx =′ , ytvy +=′ 1 . (a) 

We notice that 1222 vers PPv=v , obtaining the differential equations which determine 
the trajectory of the particle 2P  in the movable frame in the form ( 2v  has the 
components x&  and y& ) 
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Solution. Dividing the two equations (b), member by member (we eliminate the time t ), 
we get 
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Noting that ( ) ( )xyxxxyxy /dd//d/d +=  and integrating, we may write the equation of 
the trajectory with respect to the movable frame in the form 
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Eliminating 22 yx +  between the two differential equations, we may write 
( )( )yxyvx /1 && += ; taking into account the previous observation and (d), it results 

 
Figure 5. 2.  The problem of the meeting 
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whence , assuming that 21 vv ≠ , 
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Calculating ( )txx =  and then ( )tyy = , we obtain the parametric equations of motion of 
the particle 2P  on the trajectory. The equation of the trajectory with respect to the fixed 
frame is of the form 
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The constants a  an 1t  are specified by (d) and (e), if we put the initial conditions 

00 xxx ′== , 00 yyy ′==  for 0=t . For 0→x  we have 0→y , 1tt →  if 21 vv < , and 
−∞→y , ∞→t  if 21 vv > . As a consequence, if 21 vv < , then the particle 2P  meets 

the particle 1P  at the moment 1tt =  at the point o co-ordinates 0=′x , 11tvy =′  with 
respect to the fixed frame. If 21 vv = , then the two particles do not meet. The distance 

between them is given by 222
21 yxPP += , so that 
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the minimum of this distance is obtained for 
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In particular, for 00 =y , we obtain ax =  and 

2
2

2
1

2
1

vv
av

t
−

−= , (k) 

being led to 

( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+⎟

⎠
⎞

⎜
⎝
⎛ ′

−
−⎟

⎠
⎞

⎜
⎝
⎛ ′

+
=′

−+

1
2

1
1

1
1

2 2

/1/1

ka
x

ka
x

k
aky

kkkk

. (l) 

For instance, for 2=k  the trajectory is an arc of semicubic parabola 
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If vvv == 21 , 1=k , then the equation of the trajectory with respect to the movable 
frame is given by 
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2
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the motion being specified by 
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as well 
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The two particles do not meet, the minimal distance between them being obtained for 
0=x  at the moment ∞→t ; it is equal to 2/a . 

Application 5.3 

Problem. Determine the first integrals in the motion of a discrete mechanical system S , 
expressed by Lagrange’s equations in the space o configurations 

Mathematical model. In case of discrete mechanical system S  of n  particles, the 
equations of motion of the representative point P  in the space of configurations sΛ  are 
of the form (see Appl.6.2) 
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where T  is the kinetic energy, kQ  are the generalized forces and s  is the number of 
degrees of freedom of the system S . 

Solution. Multiplying by kq&  and summing from 1  to s , we obtain 
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Taking into account the relation (c) in Appl.6.3 and applying Euler’s theorem concerning 
homogeneous functions, we may write 

12
1

12

1
2 TTq

q
T

q
q
T

q
q
T s

k
k

k
k

k

s

k
k

k
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

∑∑
==

&
&

&
&

&
&

, 

where we noticed that 2T  and 1T  are homogeneous forms of the second and first degree 
with respect to the generalized velocities, respectively, while 0T  is a constant with 
respect to these velocities. As well, 
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Finally, we may write 
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If there exists a function W  so that 
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is a first integral of Lagrange’s equations (the first integral of Painlevé). We observe that 
( )tqqqWW s ;,,, 21 K=  and cannot depend on the generalized velocities too. Indeed, in 

this case, in the total derivative tW d/d  would appear also the generalized acceleration 
kq&& ; but the given forces cannot depend on accelerations (second principle of Newton), 

hence neither the generalized forces cannot depend on the generalized accelerations, so 
that neither in the expression tW d/d  cannot appear such accelerations. We may write 
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because only the functions W  and 0T  do not depend on the generalized velocities, it 

results that 0TW && −= . Differentiating partially the relation (c) with respect to the time, 

we obtain also 02 =T& . We may thus state that Painlevé’s first integral does not depend 
explicitly on time, neither in the case of rheonomic constraints and of forces which 
depend explicitly on time. 
In case of quasi-conservative generalized forces kk qUQ ∂∂= / , ( )tqqqUU s ;,...,, 21= , 
we may introduce the kinetic potential UT +=L , and the equations (a) take the form 
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We follow now an analogous procedure. We multiply the equation by kq&  and sum for k  
from 1  to s ; we obtain 
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By an analogous calculation, we get 
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Hence, if 0=L& , we may write the first integral 
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called the first integral of Jacobi. Noting that UTTT +++= 012L , we may also write 

const02 ==−−= hUTTE , (f) 

where E is the generalized mechanical energy. In case of scleronomic constraints (which 
do no depend explicitly on time), we have 001 == TT , while 2TT = , so that 

EUT =−=E ; the generalized mechanical energy coincides with the mechanical energy 
E . We get again the conservation theorem of mechanical energy. 
If 0/ =∂∂ qkT , then the respective co-ordinate kq  is called a hidden co-ordinate; in this 
case, the corresponding equation (a) is reduced to 
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If we have 0=kQ  too, then we obtain 
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which is also a first integral. 
If 0/ =∂∂ kqL , then the respective co-ordinate is called an ignorable co-ordinate, and 
the equations (d) lead to the first integral 
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in fact, kq&∂∂ /L  is just the generalized momentum kp  (see Appl. 6.3), so that kk cp = . 

Application 5.4 

Problem. Determine the first integrals in the motion of a discrete mechanical system S , 
expressed with the aid of Hamilton’s equations in the phase space. 

Mathematical model. In case of a discrete mechanical system S  of n  particles, the 
equations of motion of the representative point P  in the phase space s2Γ  may be 
written in the form (see Appl.6.3) 
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where ( )tpppqqqHH ss ;,,,,,,, 2121 KK=  is Hamilton’s function, while s  is the 
number of degrees of freedom of the system S . 

Solution. The total derivative of the Hamiltonian H  takes the form 
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If the canonical equations are verified, then it results 
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we may thus state that along the trajectory of the representative point P  (when 
Hamilton’s equations, which govern the motion of this point, take place) the total 
derivative of the function H  does not depend explicitly on time (e.g., in case of 
scleronomic constraints), therefore 0d/d =tH  and H  is a first integral of the system of 
canonical equations. Taking into account the definition of Hamilton’s function (see 
Appl.6.3), we may write 
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so that 

E=−−= UTTH 02 , (c) 

where E is the generalized mechanical energy (see Appl. 5.3). We find thus again the 
first integral of Jacobi in canonical co-ordinates. Indeed, the link between the functions 
H  and L puts in evidence the equivalence of the conditions 0=L&  and 0=H& . If the 
constraints are scleronomic, we get const== EH , hence the conservation theorem of 
the mechanical energy (as in case of Lagrange’s equations). 
Let be ( )tpppqqq ss ;,,,,,,, 2121 KKϕ  and ( )tpppqqq ss ;,,,,,,, 2121 KKψ  two 

functions of class 1C ; the expression 
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is called the Poisson bracket corresponding to the functions ϕ  and ψ . 
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The obvious properties 

( ) 0, =ϕ C , const=C , ( ) ( )ϕψ−=ψϕ ,, , ( ) ( )ψϕ−=ψϕ− ,,  (e) 

take place; taking into account the definition relation (d) it may be shown that 

( ) ( ) ( )ψϕ+ψϕ=ψϕ
∂
∂

&& ,,,
t

. (f) 

Let us consider now a first integral of the canonical system (a), hence a function of class 
1C , which is identically reduced to a constant if one replaces the generalized co-

ordinates kq  and the generalized momenta kp  by the solutions of this system. Hence, 
const=f  along the trajectory of the representative point P ; it results that 0d/d =tf  

or 

0
1

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∑
=

fp
p
f

q
q
fs

k
k

k
k

k

&&& . 

Because the equations (a) take place, we may also write 

0
1

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

∑
=

f
q
H

p
f

p
H

q
fs

k kkkk

&  

or 

( ) 0, =+ fHf & . (g) 

Hence, if f  is a first integral, then the relation (g) takes place. Reciprocally, supposing 
that the relation (g) holds, let us write the sequence of Lagrange-Charpit differential 
equations attached to this partial derivative equation of first order 

1
ddddddd
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2

1

1

2

2

1

1 t

q
H

p

q
H

p

q
H

p

p
H
q

p
H
q

p
H
q s

s

s =

∂
∂

−
==

∂
∂

−
=

∂
∂

−
=

∂
∂

==

∂
∂

=

∂
∂

KK ; 
(h) 

but this sequence is just the system of canonical equations (a). We may thus state the 
relation (g) represents the necessary and sufficient condition so that the function f  be a 
first integral of Hamilton’s equations. 
By partial differentiation of the relation (g) with respect to time, taking into account the 
property (f), we obtain 

( ) ( ) ( ) 0,,, =++=+
∂
∂ fHfHffHf
t

&&&&&& . 

If 0=H& , then we have 
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( ) 0, =
∂
∂

+ f
t

Hf && ; (i) 

hence, if H  and f  are first integrals of the canonical system, then f&  is also a first 

integral of this system (Poisson’s theorem). Analogously, f&& , f&&& , … are first integrals 
too. 
If ( )tpppqqq ss ;,,,,,,, 2121 KKϕ , ( )tpppqqq ss ;,,,,,,, 2121 KKψ  and 

( )tpppqqq ss ;,,,,,,, 2121 KKχ  are functions of class 2C , then the Poisson-Jacobi 
identity 

( )( ) ( )( ) ( )( ) 0,,,,,, =ψϕχ+ϕχψ+χψϕ , (j) 

expressed by means of Poisson’s brackets, holds true; indeed, using the definition 
relation (d), one obtains mixed derivatives of second order of the functions ϕ , ψ  and 
χ , the coefficients of which vanish. Let us suppose now that ϕ  and ψ  are first integrals 
of the system (a); then the relations 

( ) 0, =ϕ+ϕ &H , ( ) 0, =ψ+ψ &H  (k) 

take place. If H=χ  the Poisson-Jacobi identity (j) becomes 

( )( ) ( )( ) ( )( ) 0,,,,,, =ψϕ+ϕψ+ψϕ HHH . 

Taking into account (k) and the properties (e), it results 

( )( ) ( ) 0,,, =ψϕ
∂
∂

+ψϕ
t

H . (l) 

Hence, if ϕ  and ψ  are first integrals of the canonical system (relations (k)), then their 
Poisson bracket ( )ψϕ,  is a first integral of this system (relation (l)) (Jacobi-Poisson 
theorem). 
Assuming that ϕ , ψ  and H  are first integrals of the system (a) and using Poisson’s 
theorem and the Poisson-Jacobi theorem, one may obtain various first integrals for this 
system i.e.: ( ) t∂ψϕ∂ /, , ( )( )H,,ψϕ , ( )H,ϕ , ( )H,ψ , ( )ψϕ,& , ( )ψϕ &,  etc. We notice that 
one may obtain at the most s2  distinct first integrals (linear independent), any other first 
integral being a linear combination of the other ones. Often, we find again a first integral 
previously obtained or a combination of such first integrals or we obtain a constant 
(which may be zero). 
If 0/ =∂∂ kqH , then the corresponding co-ordinate is called cyclic co-ordinate; in this 
case, the second sequence of equations (a) leads to const== kk cp . Let us suppose that 
the co-ordinates 1q , 2q , …, hq , sh ≤ , are cyclic co-ordinates. In this case 

kk cp = , hk  ,1= , (m) 
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and we have h  first integrals, while 

( )tpppcccqqqHH shhhshh ;,,,,,,,,,,, 212121 KKK ++++= . 

The system of canonical equations (a) is reduced to 

j
j p

Hq
∂
∂

=& , 
j

j q
Hp

∂
∂

−=& , skj  ,1+= , (n) 

hence to a system of ( )hs −2  equations with ( )hs −2  unknown functions ( )tqq jj = , 

( )tpp jj = , shj  ,1+= . The functions once determined are introduced in the 
Hamiltonian H , which becomes thus a function depending only on the time t . There 
remain the equations 

t
q
Hq

k
k dd

∂
∂

= , hk  ,1= , (o) 

which specify the cyclic co-ordinates ( )tqq kk = , hk  ,1= . 

If sh = , hence if all the co-ordinates are cyclic ( )tqq kk = , sk  ,1= , then we have 

kk cp = , sk  ,1= , (p) 

hence s  first integrals, the Hamiltonian being thus of the form ( )tcccHH s ;,,, 21 K= , 
hence a function of time. The cyclic co-ordinates are thus given by 

k
k

k t
q
Hq γ+

∂
∂

= ∫ d , const=γ k , sk  ,1= . (q) 

Particularly, if H is a first integral ( )0=H& , denoting const/ =ω=∂∂ kkcH , we have 

kkk tq γ+ω= , sk  ,1= . (r) 

If 1=s  one obtains the equation of motion on a circle, 1q  being an angle and 1ω  the 
angular velocity; the denomination of cyclic co-ordinate is just justified. Hence, the 
integration of the canonical system (a) is equivalent to the finding of a transformation of 
co-ordinates so that all generalized co-ordinates be cyclic. 

Application 5.5 

Problem. Determine the first integrals in the motion of a discrete mechanical system S , 
expressed by Hamilton’s equations in the phase space, by the Hamilton-Jacobi method. 

Mathematical model. In the case of a discrete mechanical system S of n particles, the 
equations of motion of the representative point P  in the phase space s2Γ are written in 
the form (see Appl.6.3) 
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k
k p

Hq
∂
∂

=& ; 
k

k q
Hp

∂
∂

−=& , sk  ,1= , (a) 

where ( )tpppqqqHH ss ;,,,,,,, 2121 KK=  is Hamilton’s function, while s  is the 
number of degrees of freedom of the system S . 

Solution. Let us build up the partial differential equation 

0;,,,,,,,
21

21 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

+ t
q
S

q
S

q
SqqqHS

s
s KK& , (b) 

where we replace the generalized momenta kp  by the partial derivatives of first order 

kqS ∂∂ / , sk  ,1= , in the expression of the Hamiltonian. We assume that 
( )ss aaatqqqSS ,,,;;,,, 2121 KK=  is a complete integral of the equation (b) (an 

integral which contains s  essential constants of integration 1a , 2a , …, sa  and which 
may be obtained, for instance, as a combination of s  particular integrals), which verifies 
the condition 

0det
2

≠
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

kj aq
S . (c) 

The partial differential equation (b) is called the Hamilton-Jacobi equation or the 
equation in S . 
Let us set up the sequences of relations 

k
k

b
a
S

=
∂
∂ , k

k
p

q
S

=
∂
∂ , sk  ,1= , (d) 

where 1b , 2b , …, sb  are arbitrary constants. The total derivatives of these sequences 
with respect to time (condition of first integral) lead to 

0
1

22
=

∂∂
∂

+
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∑
=

s

j
j

kjk
q

aq
S
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S
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&& =
∂∂

∂
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∑
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22
, sk  ,1= . (e) 

As well, noting that by introducing the complete integral S  in the equation (b) we obtain 
an identically zero expression (which does not depends on ka  and kq ) the equation (b) 
leads to 

0
1

22
=

∂∂
∂

∂
∂

+
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∂
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j jkjk qa
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j jkjk p
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qq
S

p
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tq
S , sk  ,1= . (f) 

Subtracting the relations (e) and (f) member by member an noting that S  is a function of 
class 2C (the mixed derivatives of the second order do not depend on the order of 
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differentiation, corresponding to the theorem of Schwartz), we obtain the conditions of 
first integral, equivalent to (e), in the form 
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, sk  ,1= . (g) 

If the canonical equations (a) take place, the conditions (g) are identically verified. Let us 
assume now that the relations (g) take place. The first of these relations may be 
considered as a system of homogeneous algebraic linear equations in the parentheses 

jj pHq ∂∂− /& ; noting that the determinant (c) of the coefficients is non-zero, it results 
that we can have only vanishing solutions, corresponding the first subsystem (a) of 
equations of Hamilton. If we replace in the second relation (g), we find the second 
subsystem (a). We may thus state: 
The sequences of relations (d) represent s2  first integrals of the canonical system (a) 
(Hamilton-Jacobi theorem). The first sequence of relations (d) specifies the trajectory of 
the representative point in the configuration space sΛ  (the condition (c) allows to apply 
the theorem of implicit functions for the determination of the generalized co-ordinates), 
while the second sequence of relations (d) determines the generalized momenta, hence 
also the trajectory of the representative point in the phase space s2Γ . 

The Hamilton-Jacobi method may be simplified in some particular cases. Thus, if 0=H&  
(e.g. in case of scleronomic constraints) the equation (b) leads to 0=S&& , where, by 
integration, 

( )ss aaaqqqShtS ,,,;,,, 2121 KK+−= , (h) 

where we take, for instance, has = . The Hamilton-Jacobi equation takes the reduced 
form 

h
q
S

q
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q
SqqqH

s
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⎠

⎞
⎜⎜
⎝

⎛
∂
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∂
∂

∂
∂ ,,,;,,,

21
21 KK , (i) 

hence the sequences of first integrals are written in the form 

j
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b
a
S

=
∂
∂ , 1 ,1 −= sj , tb

a
S

s
s

+=
∂
∂ , k

k
p

q
S

=
∂
∂ , sk  ,1= . (j) 

If one of the generalized co-ordinates is cyclic (for instance, 1q ), then we have 01 =p& , 

hence const11 == ap . It results 0/ 1
2 =∂∂∂ tqS ; integrating, we obtain 

( )ss aaatqqqSqaS ,,,;;,,, 3232011 KK+= , (k) 

where 0S  verifies the equation 



5. Non-Linear ODSs of First Order 397 

0;,,,,;,,, 0
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∂
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q
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aqqqHS
s

s KK& , (l) 

hence an equation which contains only 1−s  generalized co-ordinates. 

Application 5.6 

Problem. Study the motion of a rigid solid with a fixed point O  subjected to the action 
of the own weight in the Euler-Poinsot case (first case of integrability). 

Mathematical model. In the Euler-Poinsot case (see Appl. 5.7 too) the system of 
differential equations of motion is written in the form (Euler’s kinetic equations) 

( )
( )
( ) , 0

, 0

, 0

=ωω−+ω

=ωω−+ω

=ωω−+ω

yxxyzz

xzzxyy

zyyzxx

III

III

III

&

&

&

 (a) 

where xI , yI , zI  are the moments of inertia with respect to the axes of the movable 
frame Oxyz , rigidly linked to the rigid, while xω , yω , zω  are the components of the 
rotation vector of the movable frame (of the rigid solid) with respect to the fixed frame 

zyxO ′′′ . The principal axes of inertia are taken as axes Ox , Oy and Oz , respectively. 
Noting that multiplying the first equation (a) by xxI ω , the second by yyI ω  and the 
third one by zzI ω  and summing, we obtain a first integral of the form 

const2222222 =′=ω+ω+ω Ozzyyxx KIII , (b) 

where OK ′  is the moment of momentum of the rigid solid with respect to the pole of the  
fixed frame, in that frame. Analogously, multiplying the first equation by xω , the 
second one by yω  and the third one by zω  and summing, it results a first integral given 
by 

const2222 =′=ω+ω+ω TIII zzyyxx , (c) 

where T ′  is the kinetic energy of the rigid solid with respect to the fixed frame. The 
constants OK ′  and T ′  which intervene in these first integrals are, obviously, positive; we 

denote them Ω=′ IKO , 22 Ω= IT , where I  is a quantity of the nature of moment of 

inertia, while Ω  is a quantity of the nature of an angular velocity ( TKI O ′′= 2/2 , 

OKT ′′=Ω /2 ). 
In this case, the motion is governed by the dynamical system 
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, 

, 
2222

22222222

Ω=ω+ω+ω

Ω=ω+ω+ω

IIII

IIII

zzyyxx

zzyyxx  (d) 

( ) 0=ωω−+ω xzzxyy III & , (e) 

the equation (e) being one of the three equation (a). We associate to these equations the 
initial conditions ( ) 0

0 xx t ω=ω , ( ) 0
0 yy t ω=ω , ( ) 0

0 zz t ω=ω . The ratio of the two relations 
(d) are written in the form 

I
III

III

zzyyxx

zzyyxx =
ω+ω+ω

ω+ω+ω
222

222222

. (f) 

Assuming that the principal moments of inertia are ordered in the form zyx III >> , we 
may write (the ellipsoid of inertia is not of rotation) 

z
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From the equations (d) we get 
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x
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(h) 

and the differential equation (e) becomes 

( )( ) ( )( )22222
yyyy

zx

zyyx
y II

IIII
ω−βω−β

−−
=ω& , (i) 

hence a differential equation of the first order with separate variables for the unknown 
function ( )tyy ω=ω . We obtain thus 

( )( )∫
βω

βω
−−

=− yy

yy zkz

z
p

tt /
/ 222

0 0

11

d1 , (j) 

where 
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β
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Denoting κβ=ω sinyy  and introducing the elliptic integral of the first species ( )kF ,κ , 
given by 

( )
( )( )∫ ∫

κ κ

−−
=

ϕ−

ϕ
=κ 0 0 22222 11

d

sin1

d,
zkz

z

k
kF , (l) 

where κ  is the amplitude and k  is the modulus of the integral, we may write the 
relation (j) in the form 

( ) ( )[ ]kFkF
p

tt ,,1 0
0 κ−κ+= , (m) 

where yy βω=κ /sin 00 . One obtains thus ( )tyy ω=ω  and then ( )txx ω=ω , 

( )tzz ω=ω , using the relations (h). 
Denoting ( )0ttpu −= , we may also write 

( ) ( )kkFu ,, 0κ−κ= . (n) 

Without any loss of generality, we assume that 00 =ω y ; it results ( ) 0,00 =κ=κ kF , so 
that 

( )kFu ,κ= , (o) 

where κ= argu , uam=κ . Introducing Jacobi’s elliptic functions: the amplitude sinus 
( )κ= sinsn u , the amplitude cosine ( )κ= coscn u  and the amplitude delta 

⎟
⎠
⎞⎜

⎝
⎛ κ−= 22 sin1dn ku , we may express the components of the vector angular velocity 

of rotation in the form 

( ) ( )0cn ttpt xx −β−=ω , ( ) ( )0sn ttpt yy −β=ω , ( ) ( )0dn ttpt zz −β=ω , (p) 

observing that xx β−=ω2 , 00 =ω y  and zz β=ω0 , where 
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z III

III
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−
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=β . (q) 

Application 5.7 

Problem. Study the motion of a rigid solid with a fixed point O  acted upon by its own 
weight gM , where M  is the mass and g  the gravitational acceleration. 
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Mathematical model. We consider a fixed frame of reference zyxO ′′′  and a movable 
frame of reference Oxyz , the last one rigidly linked to the rigid solid S  and having as 
axes the principal axes of inertia of S . The own weight kg ′−= MgM , where k′  is the 
unit vector of the zO ′ -axes, acts a the centre of gravity C , of position vector ρ  with 
respect to the movable frame. The equation of motion, corresponding to the principle of 
moment o momentum, is written in the form 

( ) ( ) kρωIωωIωI ′×−=×+= Mg
t OOO &

d
d , (a) 

where we put into evidence the derivative with respect to time in the fixed and in the 
movable frames of reference of the contracted tensor product ωI O ; OI  is the moment 
of inertia tensor and ω  is the rotation vector of the rigid solid (of the movable frame). 
Projecting on the axes of the movable frame Oxyz , we find Euler’s kinetic equations 

( ) ( )
( ) ( )
( ) ( ), 

, 
, 

yxxyyxxyzz

xzzxxzzxyy

zyyzzyyzxx

MgIII
MgIII
MgIII

αρ−αρ=ωω−+ω
αρ−αρ=ωω−+ω
αρ−αρ=ωω−+ω

&

&

&

 (b) 

where xα , yα , zα  are the components (direction cosines) of the unit vector k ′  with 
respect to the same movable frame. We may establish the vector equation 

0kωkk =′×+′=′
td

d  (c) 

too, which shows that the unit vector k ′  has a fixed direction; projecting on the axes of 
the same frame, we may write 

.0

,0

, 0

=αω−αω+α
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zxxzy

yzzyx

&
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 (d) 

We have thus obtained a system of six differential equations of first order, formed by the 
subsystems (b) and (d) for the unknown functions ( )txx ω=ω , ( )tyy ω=ω , 

( )tzz ω=ω , ( )txx α=α , ( )tyy α=α  and ( )tzz α=α . 

Solution. Introducing the notations xx ω=1 , yx ω=2 , zx ω=3 , xx α=4 , yx α=5 , 

zx α=6 , as well as 

( ) ( )[ ]zyyzzyzy
x

MgII
I

X αρ−αρ+ωω−=
1

1 , 



5. Non-Linear ODSs of First Order 401 

( ) ( )[ ]yzzxxzxz
y

MgII
I

X αρ−αρ+ωω−=
1

2 , 

( ) ( )[ ]yxxyyxyx
z

MgII
I

X αρ−αρ+ωω−=
1

3 , 

zyyzX αω−αω=4 ,  

xzzxX αω−αω=5 , 

yxxyX αω−αω=6 , 

we may write the system (b), (d) in the form (5.35), that is 

t
X
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X
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X
x

d
ddd
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2

2

1

1 ==== K . (e) 

Let us suppose now that for the system 

6

6

2

2

1

1 ddd
X
x

X
x

X
x

=== K , (f) 

which does not contain the time explicitly, we succeed in obtaining the independent first 
integrals ( ) kk Cxxxf =621 ,,, K , 5 , ,2 ,1 K=k , const=kC , which form a basic system 
of first integrals (the rank of the matrix [ ]jk xf ∂∂ / , 5 , ,2 ,1 K=k , 6 , ,2 ,1 K=j ); we 
may thus express five of the variables as functions of the sixth one (e.g. 

( )5216 ,,,, CCCxxx kk K= , 5 , ,2 ,1 K=k , so that the system (e) is reduced to the 
differential equations with separate variables ( ) tCCCxXx d,,,,d 521666 K= . By a 
quadrature, we obtain ( ) τ+= txf 6 , const=τ , noting that 

0/1d/dd/d 666 ≠== Xxtxf . The theorem of implicit functions leads to 
( )τ+= txx 66 , obtaining also ( )521 ,,,, CCCtxx kk Kτ+= , 5 , ,2 ,1 K=k , too. Hence, 

to integrate the system of differential equations (b) and (d) it is sufficient to determine 
five independent first integrals, which do not depend on time. We notice that a condition 
of the form (5.50) is verified, that is 

0
6

1
=

∂
∂

∑
=i i

i

x
X

; (g) 

using the method of the last multiplier, it results that it is sufficient to know four 
independent first integrals 1f , 2f , 3f , 4f  of the considered differential system to may 
determine a fifth first integral, independent of the other ones; we obtain then an 
integrating factor, which allows to determine all the unknown functions of the problem. 
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A scalar product of the vector equation (a) by k ′  leads to ( )[ ] 0d/d =′⋅kωI tO  or 
( )[ ] 0d/d =′⋅ tO kωI , k ′  being a constant unit vector, so that 

( ) zOO K ′′=′⋅kωI , (h) 

where zOK ′′  represents the constant projection of the moment of momentum on the fixed 
zO ′ ; we obtain thus a scalar first integral of the moment of momentum (the conservation 

of the moment of momentum along the local vertical) in the form 

zOzzzyyyxxx KIII ′′=αω+αω+αω . (i) 

A scalar product of the equation (a) by ω , leads to 

( ) ( ) ( ) ( )ρkρkρkωρkωωωI ⋅′
∂
∂

−=⋅′−=⋅′×=′=
t

MgMgMgMgO
&& ,, , 

the derivative being taken with respect to the movable frame; integrating we get 

( ) hMgO 22 +⋅′−=⋅ ρkωωI , (j) 

where h  represents the constant of mechanical energy. It results thus the first integral of 
mechanical energy in the form 

( ) hMgIII zzyyxxzzyyxx 22222 +αρ+αρ+αρ−=ω+ω+ω . (k) 

A third first integral is 

12
3

2
2

2
1 =α+α+α , (l) 

which is justified because k ′  is a unit vector. 
Taking into account the above results, we may state that the problem of integration of the 
system of equations (b), (d) reduces to the problem of finding a fourth first integral of 
this system. Ed. Husson proved in his doctor thesis (1906) that, in the problem of the 
rigid solid with a fixed point O , governed by the mechanical equations (b) and by the 
geometric equations (d), in case of arbitrary initial conditions, excepting the first 
integrals (I), (k), (l), there exists a fourth first integral, algebraic function of xω , yω , 

zω , xα , yα , zα , non-depending explicitly on t , if an only if the fixed point is just the 
centre of mass ( CO ≡ , hence 0ρ = , Euler-Poinsot case) or if the ellipsoid of inertia is 
of rotation ( yx II =  and 0=ρ=ρ yx , Lagrange-Poisson case; zyx III 2== , 0=ρ z , 
Sonya Krukovsky (Sophia Kovalévsky) case). If we renounce to the generality 
concerning the initial conditions, we may find also other cases of integrability (by 
quadratures). 
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Application 5.8 

Problem. Study the motion of a rigid solid with a fixed point O  subjected to the action 
of its own weight in the Lagrange-Poisson case (second case of integrability). 

Mathematical model. In the Lagrange-Poisson case (see Appl. 5.7 too), the ellipsoid of 
inertia with respect to the axes of the movable frame of reference Oxyz , rigidly linked to 
the rigid solid, verifies the relations zyx IJII >==  (hence, the oblate case); the 
principal axes of inertia are taken as Ox , Oy  and Oz  axes. The co-ordinates of the 
centre of mass C  with respect to the movable frame verify the relations 0=ρ=ρ yx , 

00 >ρ=ρ z , this centre being on the principal axis Oz , which is thus a central principal 
axis of inertia. The differential equations of motion (Euler’s kinetic equations) are 
written in the form 

( )
( )
, 0

, 

,

=ω
αρ=ωω−−ω

αρ=ωω−−ω

z

xzxzzx

yzzyzx

MgIJJ

MgIJJ

&

&

&

 (a) 

where xω , yω , zω  are the components of the rotation vector of the movable frame (of 

the rigid solid) with respect to a fixed frame zyxO ′′′ , kg ′−= MgM , k ′  being the unit 
vector of the zO ′ -axis, is the own weight which acts at the centre C  ( M  is the mass, 
and g  is the gravitational acceleration); as well xα , yα , zα  are the components 

(direction cosines) of the unit vector k ′  with respect to the same movable frame. 

Solution. We obtain 

( ) 0
zz t ω=ω , (b) 

the constant 0
zω  is called spin, that one being the fourth integral in Husson’s theorem 

(see Appl. 5.7). The first integrals (i) an (k) (see the same application) become 

( )
( ) ( ) , 22

, 
2022

0

hMgIJ

KIJ

zzzyx

zOzzzyyxx

+αρ−=ω+ω+ω

′=αω+αω+αω ′
 (c) 

where we took into account the first integral (b). 
It is useful to introduce Euler’s cinematic equations 

, cos

, cossinsin

, sinsincos

θϕ+ψ=ω

ϕθψ+ϕθ−=ω

ϕθψ+ϕθ=ω

&&

&&

&&

z

y

x

 (d) 
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where Euler’s angles appear: the angle of precession ψ , the angle of nutation θ  and the 
angle of proper rotation ϕ , which specify the position of the movable frame with 
respect to the fixed frame. We mention, as well, the relations 

, cos

, cossin
, sinsin

θ=α

ϕθ=α
ϕθ=α

z

y

x

 (e) 

which link the components of the vector ω  to the components of the unit vector k ′ ; 
thus we may determine Euler’s angles when we know the direction cosines xα , yα , 

zα . 
Using the relations (e), we may write the first integrals (c) in the form 

( )
( ) ( ) . 2cos2

, coscossin
2022

0

hMgIJ

KIJ

zzyx

zOzzyx

+θρ−=ω+ω+ω

′=θω+ϕω+ϕω ′
 (f) 

Using the equations (d), the first integrals (b) and (f) lead to the system of equations 

, cos
, cossin

, cossin

0

22

02

z

z

b
a

ω=ϕ+θψ
θ−β=θ+θψ

θω−α=θψ

&&

&&

&

 (g) 

where we have introduced the notations JK zO /′′=α , ( ) JI zz /2
20
⎥⎦
⎤

⎢⎣
⎡ ω−=β , 

0/ >= JIa z , 0/2 >ρ= Jmgb z ; we observe that α  and β  are constants which 
depend on the initial conditions, while the constants a  and b  are functions depending 
only on the geometry and on the mechanical properties of the rigid solid. 
The system of differential equations (g) will determine Euler’s angles ( )tψ=ψ , ( )tθ=θ  
and ( )tϕ=ϕ . Eliminating ψ&  between the first two equations, we obtain 

( ) ( ) θθ−θθ−β=θω−α 2220 sinsincoscos &ba z . (h) 

Denoting θ= cosu , it results the differential equation 

( )uPu =2& , ( ) ( )( ) ( )2021 uaubuuP zω−α−−−β= , (i) 

whence 

( )∫
ξ

ξ
+= u

u P
tt

0

d
0 , (j) 
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with 00 cosθ=u , ( )00 tθ=θ ; assuming that ( ) 00 ≠tu&  ( ( )tu&  has a continuous variation, 
beginning with ( )0tu& ), the radical is taken with the sign of ( )0tu& . 

If 00 ≠θ  and π≠θ0 , then we have ( )1,10 −∈u , hence 0
zzzO IK ω±≠′ ′ . Because the 

equation (i) admits a solution only if ( ) 00 ≥uP , it results that the polynomial ( )uP  is of 
the form 

( ) ( )( )( )321 uuuuuubuP −−−= , (k) 

where 1u , 2u , 3u  are the real zeros of the polynomial of third degree ( )uP , so that 
∞<≤≤≤<− 32011 uuuu . One may thus show that ( )tu  varies between 1u  and 2u , 

the duration of a complete period being 

( )∫= 2

1

d2 u
u uP

uT . (l) 

Hence, ( ) ( )tuTtu =+  and ( ) ( )tuTtu && =+ ; it results ( ) ( )tTt θ=+θ  too. 
We may introduce a new variable κ  by the relation 

( )
( ) ( )( ),sin1cos

sinsincos
22

133
2

122

2
211

2
2

2
1

κ−−−=κ−−=

κ−+=κ+κ=

kuuuuuu

uuuuuu
 (m) 

where 

1
13

12 <
−
−

=
uu
uu

k ; 

introducing this in (i) and (j), we obtain 

∫
κ
κ

χ−

χ
=−

0 22
0

sin1

d1

kp
tt , ( )132

1 uubp −= , (n) 

where 0κ=κ  corresponds to 0uu = . Using the notation κ= sinw , we may also write 

( )( )∫
ζ−ζ−

ζ
=− w

w
kp

tt
0 222

0
11

d1 ,       00 sin κ=w . (o) 

Introducing now Jacobi’s elliptic functions (see Appl.5.6), it also results 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) , dncn

snsncn

0
2

1330
2

122

0
2

1210
2

20
2

1

ttpuuuttpuuu

ttpuuuttputtputu

−−−=−−−=

−−+=−+−=
 (p) 

the nutation angle being thus completely determined. 
The other angles of Euler are given by the equations (g) in the form 
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2

0

1 u
ua z

−

ω−α
=ψ& , 

( )
2

0
0

1 u
uua z

z
−

ω−α
−ω=ϕ& ; (q) 

hence, it results ( ) ( )tTt ψ=+ψ &&  and ( ) ( )tTt ϕ=+ϕ && , so that 

( ) ( ) 0Ψ+ψ=+ψ tTt , ( ) ( ) 0Φ+ϕ=+ϕ tTt , (r) 

where 0Ψ  and 0Φ  are arbitrary constants. 

Application 5.9 

Problem. Study the circular thin plates acted upon by axially symmetric loads, in the 
hypothesis of great deformations. 

Mathematical model. We take into consideration the equations of equilibrium 

0
d

d
=+−

r
N

rNN t
tr , (a) 

∫−−=
r

tr rqr
rr

wNT
0

d1
d
d , (b) 

the equations of deformation 
2

d
d1

d
d

⎟
⎠
⎞

⎜
⎝
⎛+=ε

r
w

rr
u

r , (c) 

r
u

t =ε  (d) 

and the relations of elasticity 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ν+⎟

⎠
⎞

⎜
⎝
⎛+

ν−
=νε+ε
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=

r
u

r
u

r
uEtEtN trr

2

22 d
d

2
1

d
d

11
, (e) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ν+ν+

ν−
=νε+ε

ν−
=

2

22 d
d

2d
d

11 r
w

r
u

r
uEtEtN rtt , (f) 

( ) ⎟
⎟
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⎞
⎜
⎜
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⎛
−+
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−=

r
w

rr
w

rr
wEtT

d
d1

d
d1

d
d

112 2

2

3

3

2

3
, (g) 
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where rN , tN  represent the radial and the annular efforts in the plate, respectively, 

TTr =  is the shearing force, u  and w  are the displacement and the deflection of a point 
of the plate in the radial and transverse direction, respectively, rε , tε  are the linear 
strains in the radial and annular directions, respectively, E , ν are the elastic constants of 
the material, const=t  and a  are the thickness and the radius of the plate, respectively, 
and q  is the transverse load (supposed to be constant). Application for the circular built-
in plate. 

Solution. Introducing the shearing force (g) in (b), we obtain 

( ) 2d
d

d
d1

d
d1

d
d

112 2

2

3

3

2

3 qr
r
wN

r
w

rr
w

rr
wEt

r +=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

ν−
, (h) 

the last term representing the integral in (b) for const=q . 
Eliminating u  between (c) and (d), we get the equation of compatibility 

2

d
d

2
1

d
d

⎟
⎠
⎞

⎜
⎝
⎛+

ε
+ε=ε

r
w

r
r t

tr , 

or, replacing 

( )trr NN
Et

ν−=ε
1 , ( )rtt NN

Et
ν−=ε

1  

and using the equation (a), 

( ) 0
d
d

2d
d 2

=⎟
⎠
⎞

⎜
⎝
⎛++

r
wEtNN

r
r tr . (i) 

The equations (a), (b), and (i) contain the unknown functions rN , tN  and w  and will 
be considered as the general equations of the problem. 
We introduce the non-dimensional unknowns 

E
qp = , 

t
r

=ξ , 
Et
N

S r
r = , 

Et
N

S t
t = . (j) 

With these notations, the equations (a), (b), (i) become 

( ) 0
d
d

=−ξ
ξ tr SS , (k) 

( ) r
wS

p
r
w

r d
d

2d
d

d
d1

d
d

112
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2
+

ξ
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ξ

ξξξν−
, (l) 
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( ) 0
d
d

2
1

d
d 2

=⎟
⎠
⎞

⎜
⎝
⎛++

ξ r
wSS tr . (m) 

From the equation (d), one obtains 

( ) ( )trrtt SSrNN
Et
rru ν−=ν−=ε= . 

The boundary conditions are 0=u , 0d/d =rw , 0=w  for ar = . Thus, on the contour 
( )ar =  we have 

( ) 0=ν−
=arrt SS . (n) 

We may assume that rS  is a symmetric function, while rw d/d  is an antisymmetric 
function with respect to ξ , so that one may introduce the power series 

K+ξ+ξ+= 4
4

2
20 BBBSr , (o) 

( )K+ξ+ξ+ξ= 5
5

3
318

d
d CCC

r
w , (p) 

where 0B , 2B , 4B , … and 1C , 3C , 5C , … are constants which must be determined. 
Introducing the series (o) in (k), it results 

K+ξ+ξ+= 4
4

2
20 53 BBBSt  (q) 

Differentiating the relation (p) with respect to ξ , we get 

( )K+ξ+ξ+=⎟
⎠
⎞

⎜
⎝
⎛

ξ
4

5
2

21 538
d
d

d
d CCC

r
w . (r) 

It is seen that all the quantities of interest may be obtained if we know the constants 0B , 

2B , 4B , …, and 1C , 3C , 5C , … Introducing the series (o), (p), (q) in the equations (l) 
and (m) and noting that all these equations must be satisfied for any ξ , we find 
following relations between the constants B  and C  

( ) ∑= +−−+
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k

m
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12222
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2
3 CB

p
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We notice that if we choose certain values for 0B  and 1C , all the other constants may be 
determined with the aid of the relations (s). We observe also that choosing rS  is 
equivalent to choosing 0B  and 1C  and the curvature at the centre of the plate. 
The problem is extremely difficult from the point of view of the numerical computation. 
Practically, there are chosen values for ν and Eqp /=  and then, for the values which 
are chosen for 0B  and 1C , are determined the radii of the plates, so as to satisfy the 
boundary conditions 0d/d =rw  for ar = . 
The boundary values for rS  and tS  have been thus calculated, as well as the radial 
displacement u  for ar = . The condition (n) is not generally satisfied, but all the data 
which are necessary for plates, if both boundary conditions are satisfied, may be 
obtained. 

Application 5.10 

Problem. Study the critical and postcritical behaviour of a cantilever bar acted upon by 
an axial force P . 

Mathematical model. The deformed axis of the bar, denoted by y  and supposed to be a 
function depending on the arc s , satisfies the system of non-linear ODE 

( ) , 
ds
d

, sin
d
d

2 yf

x
y

−α−=
θ

θ=
 (a) 

where 2α , f , θ  have the signification mentioned in Chap. 4, Sec. 2.4. The functions 
y  and θ  must verify also the Cauchy conditions 

( ) 00 =y , ( ) 00 =θ . (b) 

Solution. We apply the LEM, presented in the Section 3.3. In this case, the LEM 
exponential transformation depends on two parameters σ  and ξ  

( ) ξθ+σ=ξσ ysv
~

e,, , fyy −=~ . (c) 

We preferred the function y~  as unknown function, because the LEM is easier applied to 
homogeneous non-linear systems; indeed, we notice that y~  and θ  satisfy the differential 
system 

y
s

y ~
d
d, sin

ds

~d 2α−=
θ

θ=  (d) 

and the initial conditions 
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( ) fy −=0~ , ( ) 00 =θ′ . (e) 

The first linear equivalent equation corresponding to the transformation (c) is 

0sin 2 =
ξ∂
∂

ξα+σ−
∂
∂

ξ
vvD

s
v , (f) 

where ξDsin  is the operator 
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( ) 12

12

1

1
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Consider now for v  the development 

( ) ( )∑
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ij ji
svsv . 

Then we obtain from (f) the infinite linear ODS of first order for the coefficients ( )svij  
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In vector form, we get 

AVV
=

sd
d , [ ] NVV ∈−= mlm2 , [ ]
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mjiijlm vV . (h) 

The linear equivalence matrix A  is of the form 
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the cells klA  being given by 
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We specify that the matrix 122,12 −+− kjjA  has j2  lines and kj 22 +  columns. 
As we have shown in the Sec.3.3, the solution of the non-linear problem (d), (e) assumes 
the following normal LEM representation 
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12
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j
j fsufsy , (k) 

where ( )su j 0,12 −  are the first components of the finite vectors 12 −jU , satisfying the 
finite systems of ODEs, written by blocks 
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as well as the initial conditions 
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01U , ( ) [ ]0U =+ 012m , { }1\N∈m . (m) 

We will solve these systems on blocks. Firstly, we look for the vector 1U , using the 
methods presented in Chap.3. We have 
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The characteristic determinant is [ ]EA λ−11det , hence 122 =α+λ , where α±=λ i2,1 . 
The matrix of the corresponding eigenvectors is 

⎥
⎦

⎤
⎢
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α−α ii

11
; 

its inverse reads 
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Hence, the solution of the linear Cauchy problem deduced for 1U  from (l) and (m) is 
written as 
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We look now for the second block of equations, corresponding to 3U . Similarly, we get 
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We can stop at 3U , for instance, including thus the 3rd order effects; this yields 
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The criticity condition is determined by the relation ( ) fly = . From (p) we get 
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which leads to the critical values 

( )
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corresponding to the critical charges 
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Turninig back to (q), we obtain an approximate formula for the postcritical behaviour of 
the cantilever bar, i.e. 

ll
l

ll
f

α−α
α

α
≅

22sin
cot24 , π<α<

π l
2

. (t) 

This formula leads to numerical results closer to the solution expressed by elliptic 
integrals than other approximate postcritical formulae (e.g. to Grashof’s or Steiner’s 
formula). 
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Application 5.11 

Problem. Study the criticity problem of the built-in bar, with small geometric 
imperfections 

Mathematical model. Let us suppose that the bar is not perfectly built-in, so that its axis 
forms a small angle 0θ  with the ideal direction. Let be 00 tan θ=β . In this case, the 
deformation y  of the mean fiber of the bar satisfies the Bernoulli-Euler equation 
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as well as Cauchy’s conditions 

( ) 00 =y , ( ) 00
d
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x
y

. (b) 

By the translation ( ) fyxy −=~ , where f  is the deflection, we get for y~  the non-linear 
problem with initial values 

( )
( ) ( ) . 0~ , 0~

, 0~1~~

0

2/322

β=′−=
=′+α+′′

yfy
yyy  (c) 

Solution. Applying LEM to this problem, same way as previously, we obtain for y   

( ) ( ) ( )

( ) ( ) , sincossin
116
9

cos1

cossin93sin
12
1

116
9

sin

00002
0

2
0

0

0000
0

2
0

2
0

0
0

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
γγγ−γ

β+

β
−γ−+

⎥⎦
⎤

⎢⎣
⎡ γγ−γ+γ

γβ+

β
−γ

γ
β

≅

xxxxxf

xxxxxy

. (d) 

with ( ) 4/32
00 1 β+α=γ . The condition ( ) fly =  involves 

( )

( ) ( ) llll

lll

l
l

f
f

00002
0

2
0

000
2

2
0

2
0

0

0

0 tancossin
116
9

1

cotsin
3
11

116
9

1
tan

γγγ−γ
β+

β
+

⎥⎦
⎤

⎢⎣
⎡ γγ−γ−

β+

β
+

γ
γ

≅ , (e) 

where lf 00 β=  is the deformation due to the imperfection of the built-in cross section. 
We note that 

EP
Pl

2
π

=α , (f) 
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where Euler’s force is given by the formula 

2

2

4l
EIPE

π
= . (g) 

The formula (e) represents the non-dimensional fraction 0/ ff  as a function of the ratio 

EPP / . Neglecting 2
0β  with respect to unity, we obtain the linear classical result 

l
l

f
f

α
α

=
tan

0
, (h) 

which leads to the critical value 
EPP =cr , (i) 

corresponding to 2/π=αl . 
Writing the formula (e) in the form 

( ) ( )

( ) , 
116
91

tan

cossinsin
3
11

116
91

0
2
0

2
0

0

0

0000
0

0
2

02
0

0

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β+
β

+
γ

γ
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
γγ−γγ−⎟

⎠
⎞

⎜
⎝
⎛ γ−β

β+
β

+

f
f

l
l

llll
f
fl

f
f

 (j) 

we observe that the arrow f  cannot be greater than the length l  of the bar and grows 
indefinitely for 2/0 π→γ l . 
One obtains immediately the critical load for the cantilever bar with small geometrical 
imperfections 

( ) 2/32
0

cr
1 β+

≅ EP
P  (k) 

or 

2
0

cr

2
31 β+

≅ EP
P . 

(l) 

Unlike the previous application, in which the instability is obtained by bifurcation, in 
this case it is obtained by divergence. By LEM, we got a complete picture of the criticity, 
i.e. a picture which definitely cannot be obtained by a linear study. We also notice that 
the formulae (k) and (l) lead to Euler’s critical load for 00 =β . 



415 

Chapter 6 

VARIATIONAL CALCULUS 

1. Necessary Condition of Extremum for Functionals of Integral Type 

1.1 GENERALITIES 

In various cases, the mathematical models associated to mechanical phenomena are 
presented in integral form. This form naturally appears e.g. when we are searching for a 
minimum energy. 
If the energy depends only on one physical magnitude, corresponding to a function 
( )xy , as well as on its derivative ( )xy ′ , then one can enounce the following  

Minimum problem. Find the function [ ]( )21
2 ,C xxy∈ for which the integral 

[ ] ( ) ( )( ) xxyxyxFy
x

x
d,,I

2

1

′≡ ∫  (6.1.1) 

has a mimimal value. 
If the mechanical problem involves other restrictions on y, then the minimum of [ ]yI  
must be searched for in the set of the admissible functions, i.e., of the functions satisfying 
these restrictions. 
We admit that the integrand of [ ]yI  – the function F – is of class C2 with respect to its 
arguments  yyx ′,, ; the ends 21 , xx of the interval of integration are supposedly fixed up. 

Obviously, the integral I has a well-determined value for each [ ]( )21
1 ,C xxy∈ . It thus 

associates to any such function a real number. 
We say the I is a real functional. We can also say that  I is defined on [ ]( )21

1 ,C xx . 

In what follows, we shall denote by [ ]( )21
1 ,C xx⊆F  the domain of definition of I and by 

FU ⊂  the set of the admissible functions that satisfy the supplementary conditions 
imposed by the considered mechanical problem. 
Denote by 

[ ]
( )xff

xxx 21,
sup
∈

=  the norm in [ ]( )21
0 ,C xx  and by { }fff ′= ,max1  the 

norm in [ ]( )21
1 ,C xx . 

Let now F∈y .  We call { }ε≤−∈= yY,YV F0 a neighbourhood of order 0 of  y. The 

set   { }ε≤−∈= 11 yY,YV F  is a neighbourhood of order 1 of  y. Obviously, a 
neighbourhood of order 0 is richer than one of order 1. 
We say that  ℜ→F:I  allows an absolute maximum at U∈y  if 
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[ ] [ ]yY II ≤  for any  U∈Y ; (6.1.2) 

Similarly, we say that ℜ→F:I  allows an absolute minimum at U∈y  if 

[ ] [ ]yY II ≥  for any  U∈Y . (6.1.3) 

The maxima and minima are also called extrema. Relaxing the above conditions, we 
obtain the definitions of the relatively strong/weak extrema. 
We say that ℜ→F:I  allows a relatively strong  maximum at U∈y  if there exists a 
neighbourhood 0V  of order 0 of y such that 

[ ] [ ]yY II ≤  for any  U∩∈ 0VY  (6.1.4) 

and allows a relatively weak  maximum at U∈y  if there exists a neighbourhood 1V  of 
order 1 of y such that 

[ ] [ ]yY II ≤  for any  U∩∈ 1VY . (6.1.5) 

The relatively strong/weak minima are defined exactly sameway; the only difference is 
that one changes the sense of the inequalities (6.1.4), (6.1.5). 
From the above definitions, we see that an absolute extremum is also both relatively 
strong and weak; a relatively strong extremum is also relatively weak. 
To get necessary conditions of extremum for relatively weak extrema one must prove the 
following essential result 

Lemma 6.1 (fundamental). Let  [ ]( )21
0 ,C xxf ∈ . If 

( ) ( ) 0d
2

1

=η∫ xxxf
x

x
 (6.1.6) 

for any [ ]( ) ( ) ( ) 0,0,,C 2121
2 =η=η∈η xxxx , then ( ) [ ]21,,0 xxxxf ∈∀= . 

The proof is by reductio ad absurdum. We firstly note that, due to the continuity of f, if 
( ) ( )21 ,,0 xxxxf ∈∀= , then ( ) ( ) 0,0 21 == xfxf . So, we only need to prove that 
( ) 0=xf in the open interval ( )21 , xx .  Let, for instance ( )21 , xxa∈ such that ( ) 0>af . 

Then, again by the continuity of f, one can find 0>ε such that 
( ) ( )ε+ε−∈∀> aaxxf ,,0 . Let us consider the function η defined as follows  

( )
( ) ( )

( )⎪
⎩

⎪
⎨

⎧

ε+ε−∉

ε+ε−∈ε−−
=η

⎥⎦
⎤

⎢⎣
⎡

.,                           ,0

,,,
322

aax

aaxax
x  (6.1.7) 

Obviously, η satisfies the hypotheses of the fundamental lemma. For this choice, we 
have 
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( ) ( ) ( ) ( ) 0dd
2

1

<η=η ∫∫
ε+

ε−
xxxfxxxf

a

a

x

x
; (6.1.8) 

this  contradicts the hypothesis, the lemma being thus proved. 

1.2 FUNCTIONALS OF THE FORM [ ] ( ) ( )( ) xxyxyxFy
x

x
d,,I

2

1

′≡ ∫  

Let us consider the functional (6.1.1), defined in the introduction of this chapter. We 
wish to determine the relatively weak extrema of I. Suppose that F is of class C2 with 
respect to its arguments and that y realizes an extremum on a set of admissible functions 
U, defined by 

[ ]( ) ( ) ( ){ }221121
2 ,,,C yxYyxYxxY ==∈=U , (6.1.9) 

where 21 , yy  are given real numbers. It is natural to search for this extremum among the 
functions in a neighbourhood of order 1 of y. In particular, the functions of the type 

( ) ( ) ( )xxyxY εη+= , (6.1.10) 

where η is a function of class [ ]( )21
2 ,C xx , vanishing at 21 , xx , belong to such a 

neighbourhood, as  

ηε<− yY . (6.1.11) 

Moreover, due to the continuity of the derivatives of the three functions η,,Yy , we also 
have the inequality 

11 ηε<− yY . (6.1.12) 

Let us replace y by Y in (6.1.1). For a fixed up η, we get an integral depending on the 
parameter ε 

( ) ( ) ( ) ( ) ( )( ) xxxyxxyxFJ
x

x
d,,

2

1

η′ε+′εη+≡ε ∫ , (6.1.13) 

that must be maximum or minimum at 0=ε , as a function of ε. Therefore, the becessary 
condition of extremum is 

( ) 0
d

d

0
=

ε
ε

=ε

J . (6.1.14) 

As the conditions of differentiation of the integral (6.1.13) with respect to the parameter 
ε are fulfilled, we can write 
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( ) ( ) ( ) xx
y
Fx

y
FJ x

x
d

d
d 2

10
⎥
⎦

⎤
η′
′∂

∂
⎢
⎣

⎡
+η

∂
∂

=
ε
ε

∫
=ε

. (6.1.15) 

Integration by parts yields 

( ) ( ) ( ) xx
y
F

xy
Fxxx

y
F x

x

xx

xx

x

x
d

d
dd

2

1

2

1

2

1
∫∫ η⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−⎥

⎦

⎤
⎢
⎣

⎡
′∂

∂
η=η′

′∂
∂

=

=

. (6.1.16) 

As ( ) ( ) 0,0 21 =η=η xx , the first term in the right member of (6.1.16) vanishes and the 
condition  (6.1.14) eventually becomes 

( ) 0d
d
d2

1

=η
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

∫ xx
y
F

xy
Fx

x
. (6.1.17) 

This equality is satisfied for any η of class [ ]( )21
2 ,C xx , vanishing at 21 , xx . The 

function in square brackets is also continuous, by our initial assumption on F.  Therefore 
we can apply the fundamental lemma and it results that y must satisfy 

[ ]21 ,,0
d
d xxx

y
F

xy
F

∈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂ . (6.1.18) 

This is a second order ODE, called Euler’s equation. So, we proved the following 
theorem 

Theorem 6.1 (Euler). Suppose that F is of class C2 with respect to its arguments and that 
y realizes an extremum on a set of admissible functions U, defined by (6.1.9). Then y 
must satisfy Euler’s equation (6.1.18). 

The reciprocal of this theorem is not always true. The solutions of Euler’s equation are 
called extremals, even if they do not realize an extremum for (6.1.1). 

1.3 FUNCTIONALS OF THE FORM [ ] ( )( ) xyyyyxFy n
x

x
d,...,,,,I

2

1

′′′≡ ∫  

Let us consider now the case of an integrand depending on higher order derivatives of y. 
Let  [ ]yI  be of the form 

[ ] ( ) ( ) ( ) ( ) ( )( ) xxyxyxyxyxFy n
x

x
d,...,,,,I

2

1

′′′≡ ∫ , (6.1.19) 

where F is of class 1C +n  in its arguments. We wish to get relatively weak extrema for 
[ ]yI  on the set U of  the function of class [ ]( )21

2 ,C xxn , satisfying the conditions 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,,...,,,

,,...,,,

22
1

232222212

11
1

131121111

n
n

n
n

yxyyxyyxyyxy

yxyyxyyxyyxy

==′′=′=

==′′=′=
−

−

, (6.1.20) 

where nkjy jk ,1,2,1, == , are given constants. 
Let U∈y  realizing a relatively weak extremum of (6.1.19). As in the previous case, we 
shall consider variations of the function y of the form 

( ) ( ) ( )xxyxY εη+= , (6.1.21) 

where [ ]( )21
2 ,C xxn∈η  is an arbitrary function, vanishing together with its first ( )1−n  

derivatives at 21 , xx . Replacing y by Y in (6.1.19), we get, for a fixed up η, the integral 
depending on the parameter ε 

( ) ( ) ( )( ) xyyyxFJ nn
x

x
d,...,,, 11

2

1

−− εη+η′ε+′εη+≡ε ∫ ; (6.1.22) 

This integral allows, as a function of ε, an extremum at 0=ε , therefore 

( ) ( ) ( ) ( )
( ) ( ) 0d...

d
d 2

10
=

⎥
⎥
⎦

⎤
η

∂

∂
++η′

′∂
∂

⎢
⎣

⎡
+η

∂
∂

=
ε
ε

∫
=ε

xx
y
Fx

y
Fx

y
FJ n

n

x

x
. (6.1.23) 

Integrating by parts, taking into account the fundamental lemma and the conditions 
satisfied by η, we deduce for the functional  (6.1.19) the following ODE, of order n2  

( ) ( ) [ ]212

2
,,0

d
d1...

d
d

d
d xxx

y
F

xy
F

xy
F

xy
F

nn

n
n ∈=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′′∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂ . (6.1.24) 

This is Euler-Poisson’s equation. Thus, we have proved 

Theorem 6.2 (Euler-Poisson). Suppose that F is of class 1C +n  with respect to its 
arguments and that [ ]( )21

2 ,C xxy n∈ y realizes an extremum on the set U of admissible 
functions, defined by (6.1.20) . Then y must satisfy Euler-Poisson’s equation (6.1.24). 

Let us note that Euler’s equation is a particular case (for 1=n ) of Euler-Poisson’s 
equation. 

1.4 FUNCTIONALS OF INTEGRAL TYPE, DEPENDING ON n FUNCTIONS 

Let us consider necessary conditions of extrema for functionals of the type 

[ ] ( ) xyyyyyyxFyyy nn

x

x
n d,...,,,,...,,,,...,,I 212121

2

1

′′′≡ ∫ , (6.1.25) 
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where the integrand F depends on n unknown functions nyyy ,...,, 21  and on their 
derivatives of first order.  
Considering the vector functions  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]xyxyxyxxyxyxyx nn ′′′=′= ,...,,,,...,, 2121 yy ,  [ ]21 , xxx∈ , (6.1.26) 

we can simplify the form of  (6.1.25) 

[ ] ( ) ( )( ) xxxxF
x

x
d,,I

2

1

yyy ′≡ ∫ . (6.1.27) 

 We shall search for the relatively weak extrema of I on the class U of admissible 
functions, defined by 

[ ]( )( ) ( ) ( )
⎭⎬
⎫

⎩⎨
⎧ ==∈= 221121

2 ,,,C yYyYY xxxx
n

U , (6.1.28) 

where the constant vectors 

[ ] [ ]nn yyyyyy 222212112111 ,...,,,,...,, == yy  (6.1.29) 

are considered known. 
Suppose that U∈y  realizes a relatively weak extremum for I. As previously, consider 
variations of  y of the form 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) njxxyxYxYxYxYx jjjjn ,1,,,...,, 21 =ηε+=≡Y , (6.1.30) 

where jε  are small parameters and jη  are arbitrary [ ]( )21
2 ,C xx -functions, vanishing 

at 21, xx . Replacing y by Y in (6.1.27), we get, for fiexd up jη , a function J depending 

on the n parameters nεεε ,...,, 21 , written as [ ]nεεε= ,...,, 21ε  

( ) ( ) xyyyyyxFJ nnnnnn

x

x
d,...,,...,,...,,, 111222111

2

1

η′ε+′η′ε+′ηε+ηε+ηε+≡ ∫ε . (6.1.31) 

This function allows an extremum for 0ε = , therefore 

( ) nkJ

k
,1,0

0

==
ε∂

∂

=ε

ε ; (6.1.32) 

this immediately yields 

( ) ( ) nkxx
y
Fx

y
F

k
k

x

x
k

k
,1,0d

2

1

==⎥
⎦

⎤
η′

′∂
∂

⎢
⎣

⎡
+η

∂
∂

∫ . (6.1.33) 
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Integrating by parts the terms containing ( )xkη′ , taking into account that 

( ) ( ) nkxx kk ,1,0,0 21 ==η=η  and, eventually, applying the fundamental lemma, we 
deduce for y the second order ODS 

,0
d
d

...............................

,0
d
d

,0
d
d

22

11

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

nn y
F

xy
F

y
F

xy
F

y
F

xy
F

 (6.1.34) 

that must be satisfied on [ ]21 , xxx∈ . This is called the Euler-Lagrange system. 
Thus, we proved the 

Theorem 6.3 (Euler-Lagrange). Suppose that F is of class 2C  with respect to its 

arguments and that [ ]( )( )nxx 21
2 ,C∈y y realizes an extremum on the set U of admissible 

functions, defined by (6.1.28). Then y must satisfy Euler-Lagrange’system (6.1.34). 

As in the previous cases, all the solutions of the Euler-Lagrange system will be called 
extremals. 
Let us note that the necessary conditions of extrema emphasized in this chapter may be 
also expressed in a significant form by introducing the notions of variation of a 
functional, of Gâteaux and Fréchet derivatives. 

2. Conditional Extrema 

In certain cases, one must search for extrema of functionals on classes of admissible 
functions that must satisfy supplementary conditions, expressed in terms of functions or 
integrals. We shall tackle here variational problems of isoperimetric and Lagrange type.  

2.1 ISOPERIMETRIC PROBLEMS 

The isoperimetric problem consists of finding the extrema of a functional 

[ ] ( ) ( )( ) xxxxF
x

x
d,,I

2

1

yyy ′≡ ∫ , (6.2.1) 

where 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]xyxyxyxxyxyxyx nn ′′′=′= ,...,,,,...,, 2121 yy ,  [ ]21 , xxx∈ , (6.2.2) 
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on a set U of admissible functions, satisfying the standard conditions 

[ ] [ ]nn yyyyyy 222212112111 ,...,,,,...,, == yy  (6.2.3) 

and also the supplementary conditions 
  

[ ] ( ) ( )( ) pjaxxxxG j

x

x
jj ,1,d,,I

2

1

==′≡ ∫ yyy , (6.2.4) 

ja  being given constants. 
The term isoperimetric comes from Greek, meaning the same perimeter. 
This type of problem is also called Dido’s problem; this denomination has roots of 
history and legend. Dido – or Didona – the legendary founder of Carthago (Carthagena) 
was a Phoenician queen, obliged to leave hastily her country because of a plot put in  
application by her brother. Once on the African coast, Dido and her faithful servants  
required hospitality and a place to settle up from the natives. The local king’s diplomatic 
answer was positive, but, in fact, he offered  them as much land as could be held by a 
bull’s skin. The fugitives were highly disappointed, but Dido did not immediately reject 
the offer; she promised a firm answer for the next morning. During the night, she cut the 
bull skin in thin stripes and, joining them one by one, she succeded to cover a great piece 
of land, with the skin stripes as a perimeter. So, the natives gave up and Dido settled up 
on that land, building Carthagena after a while. 
While her idea was fruitful, obviously, Dido was not initiated in modern variational 
calculus. Yet, her problem can be easily put in mathematical terms. In the xOy plane, 
denote by Γ the smooth closed curve that limits the plane domain D. The area A of D is 
then given by Green’s formula 

∫
Γ

−= ydxxdy
2
1

A . (6.2.5) 

The curve Γ has a fixed length l, as, according to the problem,  the perimeter is the same, 
therefore 

ls =∫
Γ

d , (6.2.6) 

where ds is the element of arclength on Γ. So, Dido’s problem consists of getting a 
maximum value of (6.2.5) if (6.2.6) is fulfilled. Considering a parametrization of Γ, we 
immediately obtain a variational problem of isoperimetric type, whose solution should be 
a circle. In general, in the plane, π≤ 4/2lA . 
Suppose that the functional I depends only on one argument, i.e. 

[ ] ( ) ( )( ) xxyxyxFy
x

x
d,,I

2

1

′≡ ∫  (6.2.7) 

and only one supplementary condition must be fulfilled 
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[ ] ( ) ( )( ) axxyxyxGy
x

x
=′≡ ∫

2

1

d,,I . (6.2.8) 

Then one can prove by using, as a rule, the same techniques as in the previous section,  
that if y realizes an extremum for I and satisfies  the condition (6.2.8) and also the 
conditions ( ) ( ) 2211 , yxyyxy == , then one can find a constant λ such that y be a free 
extremum for the functional 

[ ] ( ) ( )( ) ( ) ( )( )[ ]∫ ′λ+′≡
2

1

d,,,,K
x

x
xxyxyxGxyxyxFy . (6.2.9) 

Thus, the problem of a conditional extremum was reduced to that of a free one, similar to 
those treated at Sec.1. According to Theorem 6.1, if y realizes an extremum for K, then  y 
satisfies 

0
d
d

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
λ+

′∂
∂

−
∂
∂

λ+
∂
∂

y
G

y
F

xy
G

y
F . (6.2.10) 

a) Consider now the general isoperimetric problem, stated at the beginning of this 
section. Suppose that the admissible functions nyyy ,...,, 21  realize an extremum for the 
functional (6.2.1), but not for any of the functionals (6.2.4). In this case, one can prove, 
again by using the calculus of variations, that one can find p constants, pλλλ ,...,, 21 , 

such that nyyy ,...,, 21  realize a free extremum for the functional 

[ ] ( ) ( )( ) ( ) ( )( )∫ ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′λ+′≡

=

2

1

d,,,,K
1

x

x

p

j
jj xxxxGxxxF yyyyy . (6.2.11) 

Applying to the integrand the Euler-Lagrange system (6.1.34), we find the ODS 
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whose solutions are the extremals of the considered isoperimetric problem. 

2.2 LAGRANGE’S PROBLEM 

a) We shall firstly state this problem for the functional 

[ ] ( ) ( ) ( ) ( )( ) xxyxyxyxyxFyy
x

x
d,,,,,I 212121

2

1

′′≡ ∫ . (6.2.13) 

Let us find an arc C, of equations ( ) ( ) [ ]212211 ,,, xxxxyyxyy ∈== , laying on the 
surface S of equation 
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( ) 0,, 21 =yyxG  (6.2.14) 

and for which the functional (6.2.13) realizes an extremum. The co-ordinates of the arc 
ends will be ( ) ( )( ) ( ) ( )( )2221212111 ,,,,, xyxyxxyxyx . Let us denote 

( ) ( )
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yxyyxy

==
==

 (6.2.15) 

As C lays on S, so will its extremities, therefore 

( ) ( ) 0,,,0,, 2212221111 == yyxGyyxG . (6.2.16) 

If 0/ 2 ≠∂∂ yG  along the extremal, then we can explicit 2y  from (6.2.14) 

( )12 , yxy ϕ= . (6.2.17) 

Introducing this in (6.2.13), we finally get a new functional, depending only on the 
argument 1y  
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with Φ given by 
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The corresponding Euler equation is immediately brought to the form 
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Replacing 2y  by ( )1, yxϕ  in (6.2.13), we deduce 
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and, eliminating 1/ y∂ϕ∂  between (6.2.20) and (6.2.21), we get 
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Denoting by ( )xλ−  the common value of the ratios (6.2.22) along the extremal, we have 
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As 2,1,0/ ==′∂∂ jyG j , the above relations may be also written in the form 
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These are the necessary conditions of extremum for Lagrange’s problem in the case of a 
functional depending on two arguments. Let us note that the ODS (6.2.24) is in fact the 
Euler-Lagrange system, written for the functional 
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b) Lagrange’s problem for functionals 
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depending on several arguments – or, equivalently, on a vector function y – consists of 

finding a vector function ( )nyyy ,...,, 21=y , at least of class [ ]( )( )nxx 21
2 ,C , satisfying 

(6.2.15) as well as the supplementary conditions 

( ) pjaxG jj ,1,, ==y . (6.2.27) 

As previously, this problem may be reduced to a problem of free extremum for a certain 
functional. More precisely, if y realizes an extremum for the Lagrange problem b), then 
one can find p functions ( ) ( ) ( )xxx pλλλ ,...,, 21  such that y is an extremal for the 
functional 
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The equations of the extremals are, in this case 
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3. Applications  

Application 6.1 

Problem. Study the motion of a discrete mechanical system of n  particles subjected to 
holonomic constraints and situated in a field of quasi-conservative forces, using 
Hamilton’s variational principle. 

Mathematical model. Let be a system of n  particles ( )jjj zyxP ,,  of masses jm , 

nj ,1= , subjected to m  holonomic (geometric) constraints 

( ) 0;,,,,,,,,, 222111 == tzyxzyxzyxff nnnkk K , mk ,1= , (a) 

and acted upon by quasi-conservative forces 

( )tzyxzyxzyx nnnjj ;,,,,,,,,, 222111 KFF = , nj ,1= , 

 which derives from the simple quasi-potential 

( )tzyxzyxzyxUU nnn ;,,,,,,,,, 222111 K= ; 

hence, the components of the forces jF  which acts upon the particle jP  are 

j
j x

UX
∂
∂

= , 
j

j y
UY

∂
∂

= , 
j

j z
UZ

∂
∂

= . (b) 

In general, the constraints (a) are rheonomic (time appears explicitly); if 
0/ =∂∂= tff kk

& , hence if
f

 it does not depend explicitly on time, then the constraints are 

scleronomic. As well, if 0/ =∂∂= tUU& , hence if U  does not depend explicitly on time, 
then the quasi-potential is a simple potential and the given forces are conservative. 

 
Figure 6. 1. True curve. Various paths 
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We introduce the kinetic energy 
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too, where jv  is the velocity of the particle jP . 
The sum 

UT +=L  (d) 

represents the kinetic potential of Lagrange (the Lagrangian) in the absence of 
holonomic constraints. The integral 

( ) ttzyxzyxzyxzyxzyxzyxt
t nnnnnn d;,,,,,,,,,,,,,,,,,,,1

0 222111222111∫=

=

&&&K&&&&&&KL

A
 (e) 

is called Lagrangian action and represents a functional which plays an important role in 
mechanics. We state that: 
The motion of a discrete mechanical system of free particles takes place only if the 
Lagrangian action has a minimum (Hamilton’s principle). 

Solution. The Euler-Lagrange equations corresponding to an extremum of this functional 
are written in the form 
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 (f) 

for nj ,1= . Taking into account (b), (c) and (d), we find Newton’s equations of motion 
(second principle of mechanics) in the form of a theorem 

jjj Xxm =&& , jjj Yym =&& , jjj Zzm =&& , nj ,1= . (g) 

If we take into account the holonomic constraints (a), then we may introduce a 
Lagrangian of the form 

∑
=
λ++=

m

i
ii fUT

1
L , (h) 

where iλ  are Lagrange’s multipliers. The corresponding Euler-Lagrange equations lead 
to 
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for nj ,1= . 
Let us consider now the particle jP  of position vector jr , the trajectory of which, due to 

the given forces which act upon it, is the arc of curve jC , contained between the points 
0
jP  and 1

jP , corresponding to the initial moment 0t  and to the final moment 1t , 

respectively. By a virtual displacement jrδ , we obtain the point jP′ ; from the set of 
virtual displacements jrδ  we choose those which are uniquely obtained, travelling 

through from 0
jP  to 1

jP , the locus of the points jP′  being a varied path jC ′  (Fig.6.1).  
An infinity of varied paths are thus obtained and we may write 

jjj rrr δ+=′ . (j) 

Starting from Newton’s equations, in the case of holonomic constraints, we obtain the 
principle of virtual work (the d’Alembert-Lagrange principle) in the form of a theorem, 
i.e. 

0
1

=δ⋅∑
=

n

j
jj rΦ , (k) 

where we have introduced the lost forces of d’Alembert 

jjjj m rFΦ &&−= , nj ,1= ; (l) 

thus, the dynamical problem has been reduced to a statical one, by eliminating from 
computation the constraint forces. We may also write 

0d
1

1

0
=δ⋅∑ ∫

=

n

j

t
t jj trΦ . (m) 

The fundamental lemma of the variational calculus allows to show that the relations (k) 
and (m) are equivalent. 
We calculate 
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taking into account the operational relation ( ) ( )tt d/dd/d δ=δ ; we may also write 

W
n

j
jj δ=δ⋅∑

=1
rF , (n) 

where Wδ  is the virtual work of the given forces. The relation leads thus to 

( )
1

0

1

0 1
d

t

t

n

j
jjj

t
t mtWT ∑∫

=
δ⋅=δ+δ rv . (o) 

This relation represents a general integral theorem; starting from this theorem 
(considered as to be a principle) one may obtain various integral and variational 
principles. The relation (o) corresponds to a synchronous case, in which the chronology 
(hence the time variable) is the same for all the varied paths. 

 
Figure 6. 2. Various paths with fixed ends 

In the particular case of the varied paths with fixed ends (Fig.6.2) we have 
0rr =δ=δ 10

jj , so that the general integral principle becomes 

( ) 0d1

0
=δ+δ∫

t
t tWT . (p) 
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In the case of given conservative forces (or, more general, quasi-conservative) we have 

( )tUU n ;,, 21 rrr K=  so that UW δ=δ . Introducing the Lagrangian (d) and taking into 
account the permutability of the operator δ  with the operator integral, we obtain 

0d1

0
=δ=δ ∫

t
t tLA ; (q) 

we can thus state Hamilton’s principle in the form: 
Among all possible motions of a discrete mechanical system subjected to holonomic and 
ideal constraints and acted upon by quasi-conservative forces on synchronous varied 
paths with fixed ends, only and only the motion for which the variation of the 
Lagrangian action vanishes (the extremal curves) takes place. 
We have obtained Hamilton’s principle in the form of a theorem; starting from this 
result, considered as to be a principle, we find again Newton’s equations as a theorem. 
We mention that Newton’s equations have a general character, while Hamilton’s 
principle may be applied only in the case of the existence of a Lagrangian of the 
mechanical system. 
This principle was enunciated in 1834 by W. R. Hamilton for scleronomic constraints; it 
was extended by M. V. Ostrogradski in 1848 to the case of rheonomic constraints. One 
observes that, unlike differential principles (in which, to establish the motion at a given 
moment, one considers only the motion in the vicinity of this one), in case of variational 
principles the motion of the mechanical system at a given moment is specified by its 
motion in the whole (finite) interval of time. 

Application 6.2 

Problem. Establish Lagrange’s equations of motion, corresponding to a discrete 
mechanical system S of n  particles, subjected to holonomic constraints and situated in a 
field of quasi-conservative forces, in the configuration space sΛ , using Hamilton’s 
variational principle. 

Mathematical model. Let be a system S  of n  particles ( )jjjj zyxP ,, , nj ,1= , 
subjected to m  holonomic (geometric) constraints 

( ) 0;,,,,,,,,, 222111 == tzyxzyxzyxff nnnii K , mi ,1= . (a) 

In the space 3E , the system of particles, considered as to be free, has n3  degrees of 
freedom, being necessary n3  parameters to fix its position. But we may introduce a 
representative space nE3  with n3  dimensions, in which the position of a representative 

point P  is specified by n3  co-ordinates kX , nk 3,1= , which may be chosen, e.g., in 
the form 11 xX = , 12 yX = , 13 zX = , 24 xX = , …, nn zX =3 . Hence, the position of 
the mechanical system S  in the space 3E  is specified by the position of the 
representative point P  in the space nE3 . The presence of m  holonomic constraints (a), 
expressed in a finite form, diminishes the number of degrees of freedom of the system S  
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to mns −= 3 ; hence, there are necessary s  parameters to specify the position of this 
system. Let 1q , 2q , …, sq  be such a set of parameters, obtained by eliminating the 
holonomic constraints. We introduce now a space sΛ  with s  dimensions, called 
Lagrange’s space, in which the position of a representative point P  is specified by the 
generalized co-ordinates 1q , 2q , …, sq . If we know the position of the representative 
point P  in the space sΛ , then we know the position (or the configuration) of the 
mechanical system S  in the space 3E ; hence the space sΛ  is called also the space of 
configurations. A great advantage is the fact that the representative point P  is a free 
point (non-subjected to any constraints, which have been eliminated) in the space sΛ ; as 
well, we notice that ns 3≤ . 
The kinetic potential L of Lagrange (the Lagrangian) introduced in Appl.6.1, is a 
function of the position of the particles of the system and of their velocities. We notice 
that one passes from the space 3E  to the space sΛ  by relations of the form 

( )tqqq sjj ;,,, 21
Krr = , nj ,1= ; (b) 

for velocities, we may write 
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where, by analogy, kq&  are the generalized velocities. In this case, the Lagrangian L  is 
expressed in the space sΛ  in he form 

( )ss qqqqqq &K&&K ,,,,, 2121LL = , sk ,1= , (d) 

where ( )tqq kk = . To obtain the extremum of the Lagrangian action A , given by the 
formula (c) in Appl.6.1, we may write the corresponding Euler-Lagrange equations in 
the form 

0
d
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=
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−⎟⎟
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⎞
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⎝

⎛
∂
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kk qqt
LL

&
, sk ,1= . (e) 

These equations are Lagrange’s equations of second species (shortly, Lagrange’s 
equations) which specify the motion of the representative point P  in the space sΛ . It is 
a system of s  differential equations of second order in the unknown functions 

( )tqq kk = , sk ,1= . By integration, one introduces s2  arbitrary constants which are 
determined by conditions of Cauchy type (at the initial moment 0t ) 

( ) 0
0 kk qtq = , ( ) 0

0 kk qtq && = , sk ,1= . (f) 
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Solution. As it was asked, the first variation of the Lagrangian action may be directly 
calculated in the form 
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because the varied paths are wit fixed ends. Consequently, we remain with 
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The generalized virtual displacements kqδ  are independent (the holonomic constraints 
have been eliminated); we can thus take, in turn, one of them different of zero, the other 
ones being taken equal to zero, and we obtain just the equations (e). 
Introducing the operator 

[ ]
kk

k qtq &∂
∂

−
∂
∂

=
d
d  (g) 

which generalises the operator of partial differentiation, we may write Lagrange’s 
equations also in the form 

[ ] 0=kL , sk ,1= . (h) 

Starting from the relations (b), we notice that 
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in this case, the virtual work, expressed by the relation (n) in the Appl.6.1, becomes 
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k
kk qQW

1
, (k) 

where we have introduced the generalized forces 
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If we apply the above methodology of computation to the general integral principle (o) in 
the mentioned application, then we find 
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on the basis of considerations analogous to those above, we obtain Lagrange’s equations 
in the form 
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These equations have a more general character than the equations (e), because they 
correspond to arbitrary given forces. In the case of quasi-conservative generalized forces 

k
k q

UQ
∂
∂

= , ( )tqqqUU s ;,,, 21 K= , sk ,1=  (n) 

we find again the equations (e). 

Application 6.3 

Problem. Establish Hamilton’s equations of motion, corresponding to a discrete 
mechanical system of n  particles subjected to holonomic constraints and situated in a 
field of conservative forces, in the phase space s2Γ , using Hamilton’s variational 
principle. 

Mathematical model. Let be a system of n  particles jP , nj ,1= , subjected to m  
holonomic (geometric) constraints, which may be, generally, rheonomic. If there exists a 
kinetic potential UT +=L , where T  is the kinetic energy and U  is the potential of 
quasi-conservative forces (which depend explicitly on the time), then we may write 
Lagrange’s equations of motion in the configuration space in the form (see Appl.6.2) 
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where ( )tqq kk =  are the generalized co-ordinates, ( )tqq kk && =  are the generalized 
velocities, and mns −= 3 . We introduce the notation 

k
k q

p
&∂
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=
L , sk ,1= , (b) 
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where kp  are the generalized momenta; this denomination is given because, in case of 
only one particle ( )zyxP ,, , the Lagrangian is given by 

( ) ( )tzyxUzyxm ;,,2/222 +++= &&&L , 

 so that xmp &=1 , ymp &=2 , zmp &=3 . Noting that 

∑
=

=
m

j
jj vmT

1

2

2
1  

and taking into account the expression (c) in Appl.6.2 of the velocity jv , we may 
express the kinetic energy in the form 

012 TTTT ++= , (c) 

where 2T  is a quadratic form, positive definite in the generalized velocities, 1T  is a 
linear form, while 0T  is a constant with respect to those velocities. Thus, the relation (b) 
may be seen as a system of s  linear algebraic equations, the unknowns being the 
generalized velocities kq& ; because 2T  is a positive definite quadratic form, the 
determinant of the coefficients of this system is just the discriminant of the quadratic 
form, which is non-zero. Hence, we may solve the system of equations (b) with respect 
to kq& , obtaining ( )tpppqqqqq sskk ;,,,,,,, 2121 KK&& = . In general, we get the 
Lagrangian ( )tqqqqqq ss ;,,,,,,, 2121 &K&&KLL = ; taking into account the solutions of the 
system of equations (b), it finally results that ( )tpppqqq ss ;,,,,,,, 2121 KKLL = . 

Solution. Hamilton has introduced the space s2Γ  with s2  dimensions, called the phase 
space (or Gibb’s space), in which the position of a representative point jP  is specified 
by the canonical co-ordinates 1q , 2q , …, sq , 1p , 2p , …, sp , in the given order. 
From the above considerations, it is seen that, by knowing the position of a 
representative point in the phase space s2Γ , one knows the position and the velocity of a 
representative point in the configuration space sΛ , hence the position of the mechanical 
system S  in the space 3E . 
We introduce Hamilton’s function H  in the form 

L−= ∑
=

s

k
kk qpH

1
& ; (d) 

taking into account the transformation (b) (denoted also the Legendre’s transformation), 
it results ( )tpppqqqHH ss ;,,,,,,, 2121 KK= . In this case, Hamilton’s principle (q) in 
Appl.6.1 is written in the form 
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( ) 0d;,,,,,,,1

0 2121
1

=⎥
⎦

⎤
⎢
⎣

⎡
−δ∫ ∑

=

t
t ss

s

k
kk ttpppqqqHqp KK& , (e) 

called the canonical form of Hamilton’s principle. 
Writing the Euler-Lagrange equations corresponding to this functional, we find the 
equations of motion of the representative point P  in the form 

k
k p

Hq
∂
∂

=& , 
k

k q
Hp

∂
∂

−=& , sk ,1= ; (f) 

these equations form the canonical system of equations of analytical mechanics 
(Hamilton’s equations), hence a system of s2  differential equations of first order with 

s2  unknown functions ( )tqq kk = , ( )tpp kk = , sk ,1= . One introduces s2  integration 
constants determined by conditions of Cauchy type (at the initial moment 0t ) 

( ) 0
0 kk qtq = , ( ) 0

0 kk ptp = , sk ,1= . (g) 

Passing from Lagrangian mechanics (space sΛ ) to Hamiltonian mechanics (space s2Γ ) 
the number of equations becomes double; in exchange, these ones are no more of second 
order, but of first one. As well, the initial conditions are homogeneous (only for the 
position of the representative point). 
If a certain position of the representative point is given (for instance, the initial position), 
the canonical equations allow to determine the position of this point at any moment; thus 
the deterministic character of Hamiltonian mechanics is put into evidence (in fact – in 
general – of Newtonian mechanics). 

Application 6.4 

Problem. Study the problem of two particles, using Lagrange’s equations in the 
configuration space. 

Mathematical model. Consider the particles 1P  and 2P  of masses 1m  and 2m , their 
positions being specified by the spherical co-ordinates 1r , θ , ϕ , and 2r , θ−π , ϕ+π , 
respectively, with respect to he centre of mass O , situated on the segment of straight 
line 21PP , so that 

2211 rmrm = , 12 mm > . (a) 

Because, in this problem, are acting only internal forces of Newtonian attraction 
( )rFF 3

212112 / rmfm=−=  (see Appl.5.1), then the centre of mass has a rectilinear and 
uniform motion with respect to an inertial (fixed) frame of reference. We study the 
motion of the two particles with respect to this point. 
The kinetic energy is expressed in the form 
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( )[ ] ( )[ ], sin
2
1sin

2
1

2
1

2
1

2222
2

2
22

2222
1

2
11

2
22

2
11

θϕ+θ++θϕ+θ+=

+=

&&&&&& rrmrrm

vmvmT
 (b) 

where the velocities are expressed by spherical co-ordinates. The forces of Newtonian 
attraction are conservative and derive from the potential 

r
mm

fU 21= , (c) 

where 

21 rrr += . (d) 

We notice thus that the positions of the particles 1P  and 2P  are specified by the 
parameters 1r , 2r , θ and ϕ . Taking into account the relations (a) and (b), we may write 

22
22

2
11 mrrmrm =+ , 22

22
2

11 rmrmrm &&& =+ , 
if we introduce the notation 

21

111
mmm

+= . (e) 

Thus, the Lagrangian corresponding to this problem may be written with the aid of three 
generalized co-ordinates r , θ and ϕ , respectively, in the form 

( )[ ]
r
mm

frrm 2122222 sin
2
1

+θϕ+θ+= &&&L . (f) 

 
Figure 6. 3. Problem of two particles 
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Because 

rm
r

&
&
=

∂
∂L , θ=

θ∂
∂ &
&

2mrL , ϕθ=
ϕ∂
∂

&
&

22 sinmrL  (g) 

and 

( )
2

21222 sin
r
mm

fmr
r

−θϕ+θ=
∂
∂

&&L , θθϕ=
θ∂
∂ cossin22 &mrL , 0=

ϕ∂
∂L , 

Lagrange’s equations (see Appl.6.2) read 

( )[ ]
( )
( ) ;0sin

d
d

,0cossin
d
d

,0sin

22

222

2
21222

=ϕθ

=θθϕ−θ

=+θϕ+θ−

&

&&

&&&&

r
t

rr
t

r
mm

frrm

 (h) 

hence, we obtain a system of three differential equations with the unknown functions 
( )trr = , ( )tθ=θ  and ( )tϕ=ϕ . 

Solution. From the very beginning, we notice that 

constsin 1
22 ==ϕθ ar &  (i) 

represents a first integral of the system of equations (h). Taking into account (i), the 
second equation (h) is written in the form 

( )
θ

θ
=θ

32
12

sin
cos

d
d

r
a

r
t

& ; 

multiplying by θ&22r  and integrating, we obtain a new first integral 

const
sin

22

2
124 ==
θ

+θ a
a

r & . (j) 

Eliminating the terms 22θ&r  and ϕθ &2sinr  from the first equation (h) by means of the 
two first integrals obtained above, we get 

0
2
21

3
2 =+−

mr
mm

f
r
a

r&& ; 

multiplying then by r&2  and integrating, it results the third first integral 

const2 3
21

2
22 ==−+ a

mr
mm

f
r
a

r& . (k) 

This first integral contains only one space variable, so that 
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( )rf
rt dd ±= , ( ) 32

2212 a
r
a

mr
mm

frf +−= ; (l) 

hence, by a quadrature, one obtains t  as a function of r  and then ( )trr = , introducing a 
fourth integration constant 4a . Analogously, the first integral (j) leads to 

( ) ( )θ
θ

±=
grfr

r dd
2

, ( )
θ

−=θ
2

2
1

2
sin

a
ag ; (m) 

we obtain ( )rθ=θ  and then ( )tϕ=ϕ , by two quadratures, introducing a new integration 
constant 5a . Finally, the first integral (i) allows to write 

( )θθ

θ
±=ϕ

g
a

2
1

sin
d

d , (n) 

where we used the previous results; hence, we obtain ( )θϕ=ϕ  and then ( )tϕ=ϕ , 
introducing the integration constant 6a . The integration constants ka , 6 , ,2 ,1 K=k  are 
then determined with the aid of the initial conditions. 

Application 6.5 

Problem. Study the problem of two particles, using Hamilton’s equations, in the phase 
space. 

Mathematical model. Let us consider the particles 1P  and 2P  of masses 1m  and 2m , 
respectively, the positions of which are specified by the generalized co-ordinates r , θ , 
ϕ  (see Appl.6.4, with the results and the corresponding notations). We notice that the 
generalized momenta (given by formulae of the form kk qp &∂∂= /L ) are expressed by 
(see formulae (g) in the mentioned application) 

rmpr &= , θ=θ
&2mrp , ϕθ=ϕ &22 sinmrp ; (a) 

hence, it results 

m
p

r r=& , 
2mr

pθ=θ& , 
θ

=ϕ ϕ
22 sinmr

p
& . (b) 

Having to do with holonomic and scleronomic constraints, the Hamiltonian is of the 
form UTH −=  (see Appl.5.4), so that 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

θ
++= ϕθ

r
mmm

f
r

p

r
p

p
m

H r
21

22

2

2

2
2 2

sin2
1 . (c) 

The first subsystem of canonical equations (see Appl.6.3) is given by (b), while the 
second subsystem reads 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

θ
+= ϕθ mmfm

r

p
r

p
mr

pr 212

22

2 sin
1

& , 
θ

θ
= ϕ

θ 32

2

sin

cos

mr

p
p& , 0=ϕp& . (d) 

Solution. We will use the Hamilton-Jacobi method. We notice that ϕ  is a cyclic co-
ordinate, so that 

const1 ==ϕ ap  (e) 

represents a first integral of the system of canonical equations. Because the constraints 
are scleronomic, the function S  is of the form 

( )201 ,, arSahtS θ+ϕ+−= , (f) 

h , 1a  and 2a  being the three integration constants. The Hamilton-Jacobi equation 
becomes 

ha
S

rH =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ∂

∂
θ 1

0 ,,,  (g) 

or, taking into account the expression (c) of the Hamiltonian 

h
r

mmm
f

r
aS

rr
S

m
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

θ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂ 21

22

2
1

2
0

2

2
0 2

sin
1

2
1 . (h) 

Choosing 0S  as a sum of two functions of a single variable 

( ) ( ) ( )θΘ+=θ rRrS ,0 , (i) 

the equation (h) takes the form (we denote rRR d/d=′ , θΘ=Θ′ d/d ) 

mh
r

mmm
f

r
a

r
R 22

sin
1 21

22

2
12

2
2 =−

θ
+Θ′+′ ; (j) 

we may also write 

22

2
122

21
22

sin
22 a

a
mhrmrmfmRr −=

θ
−Θ′−=−−′ , 02 >a , const2 =a . 

Hence, one obtains the equations 

( ) rrgR dd 1±= , ( )
2

2
221

1 22
r
a

r
mmm

fmhrg ++= , (k) 
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( ) θθ±=Θ dd 2g , ( ) 0
sin 2

2
1

22 ≥
θ

−=θ
a

ag . (l) 

By two quadratures, we get the functions ( )rR  and ( )θΘ , hence the function 
( )θ= ,00 rSS  and, finally, the function S . 

Applying the Hamilton-Jacobi theorem (see Appl.5.5), one may write two sequences of 
three first integrals, which allow the solution of the problem. 

Application 6.6 

Problem. Let be a doubly hinged straight bar. Determine the variation of the radius of the 
circular cross section ( )xrr =  so that, for a given volume V  of material, to obtain the 
maximal resistance to buckling. 

Mathematical model. The moment of inertia of the cross section is ( ) 44/ rI x π= , so that 
the differential equation of the deformed axis in the first state of buckling is 

04
4
=

π
+′′=+′′

r
w

E
Pww

EI
Pw

x
. (a) 

By the notation 

E
P

π
=λ

42 , (b) 

the equation (a) becomes 

w
wr
′′

λ−= 24 . (c) 

The volume of the bar of length l  is given by 

∫π=
l

xrV
0

2d , (d) 

so that the equation (c) reads 

∫ ′′
−=

πλ

l
x

w
wV

0
d . 

This expression attains a minimum when λ  (and at the same time P  too) will attain a 
maximum. We are thus led to the variational problem 

( ) extremumd,
0

=′′= ∫
l

xwwFI , 
w
wF
′′

−= , (e) 
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with the bilocal conditions ( ) ( ) 00 == lww . 

Solution. The Euler-Poisson equation reads 

0
d
d

2

2
=⎟

⎠
⎞

⎜
⎝
⎛

′′∂
∂

+
∂
∂

w
F

xw
F . 

We have further 

ww
w

ww
F

′′−
=

′′−
=

∂
∂ −

2
1

2
11 2/1 , 

( )
3

2/3

2
1

2
1

w
www

w
F

′′
−−=′′−−=

′′∂
∂ − , 

so that the Euler-Poisson equation becomes 

0
2
1

2
1

3
=

″

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′′
−−

′′− w
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ww
 

or 

01
3

=
″

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′′
−−

′′− w
w

ww
. 

If we denote 

3
2

w
wv
′′

−= , 

the previous equation may be written 

01
=′′−

′′−
v

ww
. 

Multiplying by w  and amplifying the first term by w ′′ , it results 

0
3

=′′−
′′−

′′
wv

ww

ww  

or 

0=′′−′′ wvwv . 

Integrating, we have 

1Cwvwv =′−′ . 
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From the conditions ( ) 00 =w , hence ( ) 00 =v , we get 01 =C . 
The relation 0=′−′ wvwv  is equivalent to 

0
2

=
′
⎟
⎠
⎞

⎜
⎝
⎛=

′−′
w
v

w
wvwv , 

whence 2/ Cwv =  or wCv 2= . 
Because in the hypothesis of infinitesimal deformations the amplitude of the deformed 
axis is non-determinate, one may take 12 =C , so that wv =  or 22 wv = ; it results 

13 −=′′ww . 
But the independent variable is missing in this last equation, so that one may take 

pw =′  and wppw d/d=′′ . Thus, the differential equation becomes 

ww
pp 1

d
d 3

−=⎟
⎠

⎞
⎜
⎝

⎛  

or 

wwpp dd 3/1−−= . 

Integrating the equation with separate variables, we get 

( )3/222 3 wap −= , 

where a  is a new integration constant. Hence, one may deduce 

3/223
d
d wa

x
w

−=  . 

A first substitution uw =3/1 , hence 3uw =  and uuw d3d 2= ,  leads to the equation 

22

2

22

2 d3
3

d3d
ua

uu

ua

uux
−

=
−

= . 

A new substitution ϕ= sinau , hence ϕϕ= dcosd au  allows us to write 

( ) ϕϕ−=ϕϕ=
ϕ−

ϕϕ⋅ϕ
= d2cos1

2
3dsin3

sin

dcossin3d
2

22

222

22 aa
aa

aax , 

whence, by integration, 
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where 4C  is the fourth integration constant. 
Returning to the variable w , we get 
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a
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Because 0=w  for 0=x , it results 04 =C  and 
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The boundary condition at the second end ( ) 0=lw  leads to 
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2
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2
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hence 
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Figure 6. 4. Meridian curve of a bar of given volume V 

But we have 

( ) 04
4/13

4
4 3

22
3
2 r

E
Pl

E
Pla =

π
=

ππ
=λ , 

where 0r  is the maximal radius of the cross section; hence 

E
Plr

2

3
4

0
3
16
π

= . 

The notation introduced above allows us to write, finally, 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−

π
=

2
0

2

00
1arcsin1

r
r

r
r

r
r

l
x . 

The values of lx /  vs. [ ]1,0/ 0 ∈rr  are listed in Table 6.1 (in fact, the inverse problem is 
solved). 
By solving the transcendental equation we get a solution of the form ( )xfrr 0= . The 
meridian curve of the cross section is drawn in Fig.6.4. 
Further, the volume of the bar is given by 

( ) ( )∫∫ π=π= ll xxfrxxrV 0
22

00
2 dd , 

whence 

( )∫π
=

l xxf

Vr
0

2
2

0
d

. 

The critical buckling force is obtained from 4
0r  in the form 

crcr P
l
EI

l
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l
ErP ,02

0
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24
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2
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4
3

4
3

4
3

416
3

=
π

=
ππ

=
π

= , 

hence the critical force for a bar of given volume represents three quarters of the critical 
force which corresponds to a bar of constant cross section and moment of inertia 0I . 

Table 6.1. 

0/ rr  lx /  
0 0 

0.1 0.000213 
0.2 0.001718 
0.3 0.005892 
0.4 0.014296 
0.5 0.028883 
0.6 0.052044 
0.7 0.087694 
0.8 0.142378 

0.85 0.180870 
0.90 0.231560 

0.914771 0.250 
0.95 0.304495 

1 0.500000 
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Application 6.7 

Problem. Let be a cantilever bar in the form of a solid body of revolution, acted upon at 
the free end by a concentrated force P . Determine the variation of the radius of the 
cross section along the span, for a given volume V  of material, so that the deflection be 
maximal or minimal. 

Mathematical model. Let ( )xrr =  be the variable radius and 4/4rI x π=  the moment 
of inertia. The bending moment at a cross section of abscissa x  is PxM x −= , so that 
the approximate differential equation of the deformed axis is of the form 

42

2 4
d
d

r
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E
P

x
w

π
= . (a) 

The boundary conditions are of Cauchy type, hence: ( ) ( ) 0=′= lwlw . 

Solution. Integrating once the equation (a), one obtains 
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which, integrating once more, leads to 
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and, because ( ) 0=lw , we have 
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Integrating by parts, we obtain, finally, 
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Obviously, w  attains its maximum at 0=x . Therefore 
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The volume of the cantilever bar is 

∫π=
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It results thus the variational problem 
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with the condition 
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The variational problem (d), (e) is a problem of isoperimetric type. According to  
Sec.2.1, the solution is among the extrema of the functional GF λ+ . Euler’s equation 
for the integrand of this functional 
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But ϕ  does not depend on r ′ , so that the above equation is reduced to 
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Introducing in the expression (c) of the volume, we get 
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Thus, the relation (h) leads to 

( ) 3
3
5

l
x

l
Vxrr

π
== , 

the variation of the radius being after a cubic parabola. 
If we denote by 0r  the radius at the built-in cross section, then we have 

l
Vr

π
=

3
5

0  

and we find again the same expression listed in Table 6.1. 

Application 6.8 

Problem. A filling of gelatine dynamite is placed on a circular surface of radius a  at a 
depth h  in the ground. Determine the meridian curve of the funnel of earth ejected due 
to the detonation (Fig.6.5, a). 

Mathematical model. We assume that the component of the outbreak force along the 
normal to the meridian curve is proportional to the element of area and that the total 
explosion force is minimal. 

 
Figure 6. 5. Evaluation of the force dS(a). Graphic solution of the transcendental system (b) 

Let θ  be the inclination of the tangent to the meridian curve with respect to the vertical 
line; we may write xy d/dsin =θ . We have thus xyS d2sind π⋅λ=θ , where λ  is a 
factor of proportionality; it results 
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( ) x
x
y

y
xy

y
syS d

d
d

d
d2

d
d2d

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+πλ=πλ= . 

From the elementary rectangular triangle, we get 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+′=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

y
yyx

y
x

x
y

yxyxs 1dd
d
d

d
d

ddddd 222 . 

One obtains a variational condition 

mind12
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+′πλ= ∫
−h

x
y

yyS  

for a functional of (6.1) type. 

Solution. As it was shown in § 1, the extrema are, in this case, solutions of Euler’s 

equation (6.1.8) for ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+′=′
y

yyyyxF 1,, . We easily obtain  

0
2

2
=

′

′−′′

y
yyy , 

whence 2// 1Cyy =′ , where 1C  is an integration constant. Integrating once more, it 
results the equation of the meridian curve 

( ) 12 /2e CCxy += , (a) 

where 2C  is a second integration constant. 
To determine the constants, we may write a first condition ay =  for hx −= , i.e. 

( ) aCCh =+− 12 /2e . (b) 

A second natural boundary condition reads 

011
0

2
0

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
−=⎥

⎦

⎤
⎢
⎣

⎡
′∂

∂

== xx y
y

y
F . (c) 

This condition is obtained from the relation (6.1.6). Indeed, if ( ) 0/ =ε∂ε∂J  for 0=ε , 
then we have 

( ) ;0
2

1

=⎥
⎦

⎤
⎢
⎣

⎡
η
′∂

∂
=

=

xx

xx

x
y
F  

a non-zero η  at the ends 1x , 2x  yields the condition (c). 
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Further, the condition (c) implies 

( ) 12 /2

1
e210 CC

C
y =±=′ . (d) 

The constants 1C  and 2C  are obtained from (b) and (d). We deduce thus the 
transcendental system 

( )
a

C
Ch

ln
2

1

2 =
+−

, 1e2 12 /2

1
±=CC

C
. (e) 

If we denote uC =1/2  and vCC =12 /2 , the system (e) reads 

avhu ln=+− , 1e ±=vu . (f) 

In the system of the axes Ouv , the two equations represent (Fig.6.5, b) a straight line 

1
lnln

=+
− a

v

h
a

u  

and an exponential vu −±= e , respectively. 
For given values of h  and a , the solutions u  and v  may be determinate numerically, 
and then 

21
uC = , 

u
vC =2 . 
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Chapter 7 

STABILITY 

1. Lyapunov Stability 

1.1 GENERALITIES 

Let us consider first order ODSs of the form 

( )
t

x
xnixxxtfx i

inii d
d

,,1,,...,,, 21 ≡== && ,        (7.1.1) 

where the point stands for the derivative with respect to the time t; this is a usual notation 
in mechanics. The functions if  are of class [ )( )∞,C 0

1 t . 
The system nxxx ,...,, 21  may be interpreted as representing the co-ordinates of a particle 
in motion, the independent variable being the time t. If we denote by x the vector 
function ( )nxxx ,...,, 21=x , then the system may be written in the equivalent compact 
form 

( ) ( ) ( ) ( ) ( )( )xxxxfxfx ,,...,,,,,,, 21 tftftftt n≡=& . (7.1.2) 

The system (7.1.1) or, equivalently, (7.1.2), is called autonomous (dynamical) if f does 
not explicitly depend on t and non-autonomous in the opposite case. With this 
interpretation, the particular solutions of the above ODSs will represent displacements of 
the particle. 
Consider now that the co-ordinates of the particle are given at 0t , i.e. 

( ) ( ) ( ) 0020021001 ...,,, nn xtxxtxxtx ===  (7.1.3) 

or, in vector terms 

( ) ( )02010000 ...,,,, nxxxt == xxx . (7.1.4) 

The Cauchy-Picard theorem applied to the Cauchy problem (7.1.1),  (7.1.3) or, similarly, 
to (7.1.2), (7.1.4) ensures the local existence and uniqueness of the solution 

( ) ( )00 ,, xxx ttt = . (7.1.5) 

A problem of great importance is the long term behaviour of the solution. If the 
considered ODS represents a dynamical system, then the analysis of the asymptotic 
behaviour of the solution leads to the knowledge of the successive states of the motions, 
up to its annihilation, according to the principles of thermodynamics. If the initial data 
are slightly perturbed, e.g.  ( ) 00

~~ xx =t , then we should expect that the perturbed solution 
( )00

~,,~ xx tt  be close to ( )00 ,, xx tt . In this case, obviously, the behaviour of the solution 
would be predictible. Such a solution will be called stable. 
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In order to make things clearer, let us denote by ( ) ( ) ( ) ( )txtxtxt n
22

2
2
1 ...+++=x . If for 

any 0>ε one can find ( )εδ  such that, as soon as ( )εδ<− 00
~xx , we have 

( ) ( ) ε<− 0000
~,,~,, xxxx tttt  (7.1.6) 

for any 0tt > , then we say that ( )00 ,, xx tt  is stable in the sense of Lyapunov. The 
solutions that are not sstable are called unstable (Fig.7.1 a, c) 

 
Figure 7. 1. Lyapunov stability for an equilibrium state; stable (a); asymptotically stable (b); unstable (c) 

A solution ( )tx  is called asymptotically stable if it is stable and, moreover, 
( ) ( ) 0~lim =−

∞→
tt

t
xx  for any solution ( )tx~  which is such that ( ) ( ) ε<− 00

~ tt xx  (Fig.7.1 b) 

1.2 LYAPUNOV’S THEOREM OF STABILITY 

Besides the above conditions of regularity imposed on f, let us suppose that the 
components if  allow constant partial derivatives along the trivial solution 

( ) njiat
x
f

ij
j

i ,1,,, ==
∂
∂

0 . (7.1.7) 

The functions if  may then be represented in the form 

( ) ( ) nitxatf i

n

j
jiji ,1,,,

1
=ϕ+= ∑

=
xx ; (7.1.8) 

if, moreover, ( ) nitf i ,1,0, ==0 , then iϕ  tend to zero once njx j ,1,0 =→ . Hence we 

can neglect the non-linear terms iϕ , keeping in (7.1.8) only the linear part of if . We 
thus get the following linear and homogeneous ODS with constant coefficients 
 

nixax
n

j
jiji ,1,

1
== ∑

=
& ; (7.1.9) 
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let us denote by [ ]

njiija
,1, =

=A  the matrix of its coefficients. 

The ODS (7.1.9), associated to is called the system of the first (or linear) approximation 
of (7.1.1). Initially, this system was considered satisfactory for a qualitative study of the 
solutions of (7.1.1). This idea was infirmed by Lyapunov, who proved 

Theorem 7.1.  If the roots of the characteristic equation 

( ) [ ]EA λ−=λ detnP  (7.1.10) 

of the linear approximation of (7.1.1) have all of them strictly negative real part and if 
the functions iϕ  satisfy 

( ) α+<ϕ 1, xx Mti , (7.1.11) 

where M is a constant and 0>α , then the trivial solution of (7.1.1) is stable. If at least 
one of the roots of the characteristic equation (7.1.10) has a positive real part, then the 
trivial solution of (7.1.1) is unstable. 

The above theorem studies the stability around 0; it can be directly applied to ODSs 
allowing 0 as a solution. If we wish to study the stability around another critical point of 
(7.1.1) – say, ( )nxxx ,...,, 21=x  – then, by using the change of functions 

( )nXXX ,...,,, 21=−= XxxX , (7.1.12) 

the solution x  will be translated to the origin. The problem of the stability of x  is thus 
reduced to the study of the stability of the trivial solution for the transformed system 

( )XgX ,t=& ,   ( ) ( ) ( ) ( )( )XXXXg ,,...,,,,, 21 tgtgtgt n= , (7.1.13) 

where 

( ) ( ) njxtftg jjj ,1,,, =−+= &xXX . (7.1.14) 

If the system is autonomous, the solutions of the functional system 

( )
( )

( ) 0
....................

,0
,0

2

1

=

=
=

x

x
x

nf

f
f

 (7.1.15) 

or 

( ) 0xf =  (7.1.16) 

are called critical points or equilibrium points or else stationary solutions of the ODS 
(7.1.1) or of its equivalent (7.1.2). 
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2. The Stability of the Solutions of Dynamical Systems 

2.1 AUTONOMOUS DYNAMICAL SYSTEMS 

In the case of autonomous systems, if f satisfies the hypothesis of Theorem 7.1, then the 
trivial solution is not only stable, but also asymptotically stable. If at least one of the 
eigenvalues of the matrix A – or, otherwise speaking, a root of the characteristic 
polynomial ( )λnP  – has  a positive real part, then the trivial solution is unstable. 
Using the Hurwitz matrix associated to the polynomial ( )λnP , one can straightforwardly 
check if the real part of the eigenvalues is or is not strictly negative. 
If the eigenvalues of A have zero real part, then the stability of the null solution cannot 
be checked in the frame of the first approximation of the given ODS. It may be tackled in 
another frame – for instance, in the frame of the central manifold theory. 

 
Figure 7. 2. Nodes 

Consider the autonomous system (case 2=n ) 

( ) ( )yxgyyxfx ,,, == && . (7.2.1) 

At the points at which ( ) 0, ≠yxf , this ODS can be reduced to a single ODE 

( )
( ) x

yy
yxg
yxfy

d
d,

,
,

=′=′ . (7.2.2) 

The stationary solutions of (7.2.1) will be singular points of a special type for the ODE 
(7.2.2). 
Let us admit that the system (7.2.1) is defined for ( ) 2, ℜ⊆Ω∈yx . Also suppose that Ω 
is simply connected, i.e., together with any closed curve Ω⊂Γ ,  it also contains the 
domain limited by Γ. 
If Ω contains a unique criticity point ( )000 , yxP  of (7.2.1), then the trajectories 
belonging to Ω behave in a few qualitatively distinct ways; these types of behaviour also 
represent criteria of classification of the critical point 0P , as follows: 

a) node – if the trajectories  passing through 0P  have a well-defined tangent 
(Fig.7.2); 

b) focus – if the trajectories tend asymptotically to 0P , spiraling towards it (Fig.7.3); 
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c) centre – if it is surrounded only by closed trajectories (Fig.7.4); 
d) saddle point (Fig.7.5). 

 
Figure 7. 3. A focus 

More precisely, let  

dycxybyaxx +=+= && ,  (7.2.3) 

be the linear approximation of (7.2.1) after a translation of type (7.1.12) of the 
equilibrium point to the origin. Denote by 21 ,λλ  the eigenvalues of the associated 
characteristic equation 

( ) 02 =−+λ+−λ bcadda , (7.2.4) 

i.e., the eigenvalues of the matrix 
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Figure 7. 4. A centre at the origin 

 

 
Figure 7. 5. A saddle point 

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

. (7.2.5) 

H. Poincaré explicitly found the type of the equilibrium point, according to the nature of 
21 ,λλ . 

2.2 LONG TERM BEHAVIOUR OF THE SOLUTIONS  

Usually, the solutions of the dynamical systems show firstly a transient state, after which 
the motion tends to a stable state for a long period of time. The neighbouring motions, 
with initial data close to each other, converge to these stable “attraction basins”. 
The simplest case is that of the equilibrium point at which any motion stops. A typical 
example is that of the non-linear rigid pendulum, which, after several damped 



7. Stability 457 
oscillations, gets back to the vertical position, no matter the initial data. In the phase 
space – of co-ordinates position and velocity – the portraits of these motions appear as 
non-intersecting spirals, converging to a unique point: the equilibrium point. This is a 
point attractor. 
Another type of attractor is the periodic attractor. A classical example of such an 
attractor is a thin and flexible steel rod, in resonance with an electromagnet subjected to 
alternating current. After a short transient state, the rod motion will be stabilized  to a 
forced oscillation. A change in the initial conditions will generate a distinct periodic 
motion, also stabilized after a short transient. 
Two limit cycles  are thus emphasized, each of them attracting certain motions; it is 
noticed that the attraction basins are separated by a curve called separatrix. 
We thus conclude that a linear analysis is unsatisfactory for a qualitative study of the 
solutions of a non-linear dynamical system. 
A third type of attractor, recently discovered, is the strange (or haotic) attractor, which 
collects the motion of a perfectly determined dynamical system in a bounded domain of 
the phase space; apparently, the motion is in a perpetual haos. While some values of the 
solution may repeat at irregular periods of time, one cannot say that the motion is 
periodic. Even if the phase portrait seems to be haotic, this attractor shows some 
particularities and properties that may lead to deeply know the structure of the solutions. 
Among the first discoverers of such attractors one may quote Lorenz and Hénon. 
Hénon’s attractor (Fig.7.6) was put into evidence on the occasion of an astronomic study, 
and Lorenz’s attractor was emphasized in a study of some meteorologic phenomena 
(Fig.7.7). 

 
Figure 7. 6. Hénon’s attractor 

A dynamical system often depends on some parameters with a physical significance. It 
was noticed that not only some variations of the initial data, but also the variations of this 
parameters lead to qualitative modifications of the solutions. In this sense, there are 
serious perspectives of explaining the phenomena of turbulence by using the analysis of 
the structures of the solutions of non-linear ODS generating strange attractors. 
The above remarks point out several steps in a study of the long term behaviour of the 
solutions of a non-linear dynamical system. 
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First of all, one must identify all the possible attractors of the given dynamical system. 
The non-linear systems may allow various attractors of different types, which might 
coexist (e.g., periodic and haotic attractors). 

 
Figure 7. 7. Lorenz’s attractor 

Then one identifies the basin of attraction of each of these attractors; this can be 
numerically obtained, considering the solutions corresponding to a great number of 
initial data. It is a difficult task, that might be perhaps more efficiently carried over in the 
frame of the theory of the invariant manifold, initiated by Poincaré. 
We thus obtain a portrait attractor –basin of attraction (AB) in the phase space. The 
whole procedure must be repeated if we modify the parameters of the system. In the new 
AB-portrait it is possible that some of the attractor dissapear and some others, of another 
type, replace them. 
At the points of bifurcation, we observe qualitative changes of the topological structure 
of the portrait AB; the state changes are sometimes called catastrophes. 
The theory of catastrophes, of the central manifold, of the bifurcations are all of them 
modern theories, with numerous applications in phenomenological studies. 
One can conclude that the qualitative study of the solutions of the ODS depending on 
parameters represents a key to clarify and foresee a great number of physical 
phenomena, so far unexplained and, because of this fact, sometimes classified as 
“experimental errors”. 

3. Applications 

Application 7.1 

Problem. Study the stability of the position of equilibrium of a free or constraint particle 
P  in the presence of a field of conservative forces. 
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Mathematical model. Let us consider first of all the case of a free particle subjected to 
the action of a conservative force of the form ( )rF Ugrad= , where r  is the position 
vector of the particle P ; the Newtonian equation of motion is written in the form 

Umm grad== vr &&& , (a) 

where m  is the mass of the particle, while v  is the velocity. A scalar product by rd  
leads to 

UUm
t

m
t

mm ddgrad
2
1d

d
dd

d
dd 2 =⋅=⎟

⎠
⎞

⎜
⎝
⎛=⋅=⋅=⋅ rvvvrvrr&& , 

whence 

0
2
0

2

2
1

2
1 UmvUmv −+= ; (b) 

we found thus a first integral (the first integral of mechanical energy) of the differential 
equation (a). 

Solution. We assume that the potential ( )rU  has an isolated minimum at the origin O ; 
noting that the potential is determinate abstraction of an arbitrary constant the gradient of 
which vanishes, we can take ( ) 0=0U . Let be a convex closed surface S  which contains 
the point O (e.g. a sphere of centre O ), of arbitrary small dimensions, so that in the 
interior of the surface and on it the function ( )rU  be negative, vanishing only at the 
point O . We may assume that there exists 0>p  sufficiently small so that on the surface 
S  to have pU >− , hence 0<+ pU . Let be 0P  an initial position of the particle P  in 
the interior of the surface S , the corresponding velocity being 0v ; we may thus use the 
first integral (b) with 00 <U . We determine the position and the magnitude of the 

velocity at the initial moment by the condition pUmv <− 0
2
0 2/ ; for this it is sufficient 

to take, for instance, 2/2/2
0 pmv < , 2/0 pU <− . The first relation shows that 

mpv /0 =η′< . As well, the function U  is continuous and vanishes at the origin; 

there exists thus 0>η , such that η<0OP , corresponding to 2/0 pU <− . Hence, if – in 
the interior of the surface S  – we give to the particle an initial position at a distance to 
O  less than η , with an initial velocity less than η′ , then the theorem of energy leads to 

the inequality pUmv +<2/2 ; thus, the particle cannot come out from the interior of 
the surface S . Indeed, if the particle P  would reach S , then the sum pU +  would 
become negative, which is not possible if we take into account the previous relation. 
Hence, we may state that it corresponds 0>ε  so that ε<OP , ( )tPP = . As well, 

pmv <2/2 , because 0<U ; it results ( ) 0/2 >ε′== mptv . The conditions for the 
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point O  to have a stable position of equilibrium are fulfillEd. We may thus state for a 
point OP ≡0 : 
The position of equilibrium 0P  of a free particle P , in the presence of a field of 
conservative forces, the potential U  having an isolated maximum at the point 0P , is a 
position of stable equilibrium (the Lagrange-Dirichlet theorem). 
For instance, the origin of the co-ordinate axis is a stable position of equilibrium for a 
free particle subjected to the action of an elastic force of attraction ( ) rrF k−= , 0>k , 

which derives from the potential ( ) 2/2rr kU −= . 
In the case of a particle constrained to stay on a fixed smooth surface S  there are 
introduced the generalized forces ( )vuQ ,α , 2 ,1=α , where u  and v  are co-ordinates 
along the co-ordinate lines on the respective surface. If ( )vuUvQuQ ,ddd 21 =+  is a total 
differential, then we are led to the study of the extrema of the potential ( )vuUU ,= , 
where u  and v  are generalized co-ordinates, the holonomic (geometric, integrable) and 
scleronomic (i.e.,which do not depend explicitly on time) constraints being eliminatEd. 
We may also obtain for U  a maximum equal to zero at the point 0P , coinciding with 
the origin ( )( )00,0 =U . We draw on the surface S  a closed curve C  around the point 

0P , so that to have on the curve 0<U ; there exists thus 0>p  so that 0<+ pU  on 

C . Displacing the particle from 0P  at a neighbourhood point, interior to the curve C , 
we may follow the preceding demonstration. In general, we can state that the Lagrange-
Dirichlet theorem may be applied in case of holonomic and scleronomic constraints too. 
If the potential U  has an isolated minimum at the point 0P , then that one represents a 
labile position of equilibrium. 
Introducing the potential energy UV −= , we may affirm that, for a stable position of 
equilibrium, the potential energy has an isolated minimum, while, for a labile position of 
equilibrium, it has an isolated maximum. 
In particular, let be the case of a gravitational field for which mgzV =  (the Oz -axis is 
along the ascendent vertical), where g  is the gravitational acceleration; we obtain the 
Torricelli’s theorem, which states that the stable position of equilibrium corresponds to 
the lowest position on a fixed smooth curve or surface. We may also state that a labile 
position of equilibrium corresponds to the highest such position. 

Application 7.2 

Problem. Study the motion of a particle with a single degree of freedom, subjected to 
scleronomic constraints in a conservative field. 

Mathematical model. In the case of a particle (or of a mechanical system) with only one 
degree of freedom, for which the equation of motion is of the form 

( )qfq =&& , (a) 

where q  is the generalized co-ordinate, we may set up a first integral of the energy in the 
form 
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( ) ( )[ ]0
2
0

2 2 qUqUqq −=− && , ( ) ( )∫= qqfqU d . (b) 

We have introduced a simple potential U  (or a scalar potential 0U  of a generalized 
potential); hence, the corresponding mechanical system is a conservative system. As 
well, one can show that a unidimensional conservative mechanical system (with only one 
degree of freedom) or a pluridimensional one (if we succeed to eliminate, by means of 
first integrals, the corresponding parameters, transforming it in an unidimensional 
system) leads to an equation of motion of the form (a). 

Solution. We notice that the equation (a) corresponds to non-linear, non-damped free 
oscillations; in this case, the function ( )qf  corresponds to a calling force. Integrating the 
equation (b), we get 

( )∫
ηϕ

η
±=− q

qtt
0

d
0 , (c) 

where we have introduced the notation 

( ) ( ) ( )[ ]0
2
0 2 qUqUqq −+=ϕ & . (d) 

The sign + or – in (c) is taken as the function ( )tq  is monotone increasing or decreasing, 
respectively. It is necessary to have ( ) 0≥ϕ q  so that the motion be real. Noting that 

( ) 02
00 ≥=ϕ qq & , we may assume that the function q  begins to increase together with t  

(corresponding to the direction of the initial velocity); so that one chooses the sign +. A 
study of the variation of the function ( )qf  and of its zeros allows to obtain interesting 
conclusions about the motion of the particle (or of the mechanical system). 
Denoting pq =& , we may replace the equation (a) by the system 

p
t
q
=

d
d

, ( )qf
t
p
=

d
d

, (e) 

which leads to 

( )
p
qf

q
p
=

d
d ; (f) 

the motion of the particle is the equivalent to the motion of a representative point P  in 
the phase space of co-ordinates q , p . The trajectory C  in this space pierces the axis 
Oq  under a right angle, a tangent to it being parallel to the same axis for ( ) 0=qf , 

0≠p ; if we have 0=p  too, one obtains a singular point, corresponding to a position of 
equilibrium, as it results from the system (e). 
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Figure 7. 8. Motion of a particle with one degree of freedom in a conservative case 

Expressing the first integral (b) in the form 

( ) hqVp =+ 22 , ( )0
2
0 2 qVqh += & , ( ) ( )qUqV −= , (g) 

where h  is the energy constant; we notice that the trajectory C  is symmetric with 
respect to the Oq -axis, being situated in the domain ( ) hqV ≤2 . Corresponding to the 
Lagrange-Dirichlet theorem (see Appl.7.1), to the points of minimum of the potential 
energy ( )qV  correspond positions of stable equilibrium, while to the points of maximum 
correspond positions of labile equilibrium (Fig.7.8). From the first equation (e) it results 
that, for 0>p , q  increases with the time t , which allows to specify the direction of the 
trajectory. The period of the motion is given by this equation in the form 

∫= p
qT d , (h) 

the integral taking place along a closed curve. 

Application 7.3 

Problem. Study the topological structure of the phase trajectories in the motion of a 
particle with a single degree of freedom, subjected to scleronomic constraints in a field 
of conservative forces. 

Mathematical model. In connection to the preceding application, the equation of motion 
in the generalized co-ordinate q , corresponding to a single degree of freedom, is of the 
form 

( )λ= ,qfq&& , (a) 
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where λ  is a parameter the values of which contribute to the variation of the topological 
structure of the phase trajectories. In a field of conservative forces, we have 

( ) ( ) ( )
q
qVqVqf q ∂
λ∂

−=λ′−=λ
,,, , (b) 

the position of equilibrium being situated along the curve C  of equation (Fig.7.9) 

( ) 0, =λqf . (c) 

 
Figure 7. 9. Topological structure of the phase trajectories in the motion of a particle with a single degree of 

freedom, subjected to scleronomic constraints, in a field of conservative forces 

Solution. For different values of the parameter λ  one obtains three positions of 
equilibrium (for λ′=λ  correspond the points 1P′ , 2P′ , 3P′  of ordinates 1q′ , 2q′ , 3q′ ) or a 
single position of equilibrium (for λ ′′=λ  corresponds the point P ′′  of ordinate q ′′ ); one 
passes from three positions to only one position by critical values of the parameter λ  
( )crcr λ ′′λ′=λ  , , to which correspond the points crP′ , crP ′′  of ordinates crq′ , crq ′′  and points 
P′ , P ′′  of ordinates q′ , q ′′ . Noting that ( ) ( )λ′λ′−=λ λ ,/,d/d qfqfq q , it results that 

the critical points correspond to the solution of the equation ( ) 0, =λ′ qf q  (for which the 
tangent to the curve ( ) 0, =λqf q  is parallel to the Oq -axis) assuming that ( ) 0, ≠λ′λ qf . 
We may conclude that the points of equilibrium appear and disappear two by two. We 
assume that C  is a Jordan curve, which divides the plane in two regions. We observe 
that a straight line λ′=λ  pierces the curve C , e.g., at the point 3P′ ; if ( ) 0, >λ′qf , 
hence ( ) 0, <λ′′ qVq  under the curve C , then for q  increasing ( ) 0,3 =λ′′′ qV  on C  and 

( ) 0, >λ′′ qVq  over the curve C . It results that ( )λ′′ ,3qVq  represents an isolated 
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minimum of the potential energy and the Lagrange-Dirichlet theorem (see Appl.7.1) 
allows to state that: 
The positions of equilibrium of a particle which moves after the law ( )λ= ,qfq&&  in a 
conservative field are stable if the domain ( ) 0, >λqf  is under the curve ( ) 0, =λqf , 

0>q , 0>λ , and labile if this domain is over the curve (Poincaré’s theorem). 
The hatched domain corresponds to ( ) 0, >λqf  in Fig.7.9. 

Application 7.4 

Problem. Let be a surface S  which passes through the origin O , so that the plane 
tangent at this point is horizontal; in the neighbourhood of this point, the surface is over 
this point. Study the small oscillations around the point O  of a heavy particle staying on 
this surface. 

Mathematical model. Corresponding to Torricelli’s theorem (see Appl.7.1) the point O  
is a stable position of equilibrium for a heavy particle P  of mass m . Taking the Oz -
axis along the ascendent local vertical, the surface S  may be represented in the vicinity 
of the point O  by a Maclaurin series in the form 

( )yx
R
y

R
xz ,

2
1

2

2

1

2
ϕ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= , (a) 

where 1R , 2R  are the principal curvature radii of the surface at O , while ( )yx,ϕ  
contains terms at least of the third degree with respect to the co-ordinates x , y . 

Solution. The simple potential corresponding to the gravitational field is ( ) mgzzU −= , 
where g  is the gravitational acceleration; eliminating the constraint relation (a) and 
neglecting the terms of higher order, we get 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

2

2

1

2

2
,

R
y

R
xmgyxU , 

the force which acts upon the particle being given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−== jiF

21
grad

R
y

R
xmgU . 

We obtain thus the equations of motion 

xx 2
1ω−=&& , yy 2

2ω−=&& , 
1

2
1 R

g
=ω , 

2

2
2 R

g
=ω . (b) 

By integration, it results 

( )111 cos ϕ−ω= tax , ( )222 cos ϕ−ω= tay , (c) 
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where the amplitudes 1a , 2a  and the phase differences 1ϕ , 2ϕ  are determined by initial 
conditions. In particular, if RRR == 21 , then one obtains the small motions 
corresponding to the spherical pendulum (see Appl.4.5 too). 

Application 7.5 

Problem. Study the small oscillations of a discrete system S  of n  particles subjected to 
holonomic and scleronomic constraints in a field of conservative forces, in the space 3E , 
around a stable position of equilibrium. 

Mathematical model. We consider a system S  of n  particles iP , ni  ,1= , subjected to 
m  holonomic (geometric) and scleronomic constraints; in this case, the system has 

mns −= 3  degrees of freedom, hence there are necessary s  generalized co-ordinates 

jq , sj  ,1= , to specify its position. Let be ( )sqqqP ,,, 21 K  the representative point in 
the configuration space sΛ  with s  dimensions of Lagrange and let be 

( )sqqqVV ,,, 21 K=  the potential energy corresponding to the given field of forces. The 
representative point specifies the position of the system S  in the space sΛ  by the 
functions ( )tqq jj = . 
Because the potential energy is determined making abstraction of an arbitrary constant, 
we may choose this constant as to have ( ) 00,,0,0 =KV  at the point ( )0,,0,0 KO . The 
Lagrange-Dirichlet theorem (see Appl.7.1) shows that for the position of stable 
equilibrium 0P  (let that one be the origin of generalized co-ordinates) the potential 
energy has an isolated minimum. Let OP ≡0  be the respective point; thus, in a 
neighbourhood of 0P  we have ( ) 0>PV . We assume that V  may be developed into a 
power series in the form 

KK +++++= nVVVVV 210 , (a) 

where nV  is a polynomial of n th degree in generalized co-ordinates. We observe that 

( ) 00,,0,0 0 ==VV K ; then 01 =V  is a hyperplane which passes through 0P , hence 

( )PV1  has not a constant sign in the neighbourhood of 0P . Having to do with small 
oscillations, the polynomials 3V , 4V , … may be neglected with respect to 2V . In this 
case 2VV = , hence a positive definite quadratic form ( 02 >V  in the neighbourhood of 

0P , vanishing only at 0P , hence if all generalized co-ordinates are zero); we may write 

∑ ∑
= =

=
s

i

s

j
jiij qqaV

1 12
1 , const=ija . (b) 

In the case of scleronomic constraints, the kinetic energy T  is also a positive definite 
quadratic form in the generalized velocities ( )tqq jj && = . We may thus write 
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∑ ∑
= =

=
s

i

s

j
jiij qqbT

1 12
1

&& , (c) 

where, in general, ( )sijij qqqbb ,,, 21 K= ; assuming a development into power series of 
those coefficients and taking into account that the oscillations are small, we may take 

const=ijb . 

Solution. As it is known, one can make always a linear transformation of generalized co-
ordinates so that, in the new co-ordinates ( )tkk η=η , sk  ,1=  (called normal co-
ordinates), the two quadratic forms be expressed simultaneously in the form of sums of 
squares (it is sufficient that only one of the quadratic forms be positive definite, while the 
other may be only positive) 
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kkV

1

22

2
1 ; (d) 

here 2
kω  are the s  real and positive roots of the algebraic equation of s th degree 

[ ] 0det 2 =ω− ijij ba . (e) 

Lagrange’s kinetic potential being VT −=L , one may write the Lagrange equations of  
motion in the form 

0
d
d 2 =ηω+η=

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

kkk
kk ηηt

&&
&

LL , sk  ,1=  (f) 

for the representative point. By integration, we obtain 

( ) ( )kkkk tat ϕ−ω=η cos , sk  ,1= , (g) 

where ka  and kϕ  are the amplitudes and the phase differences, respectively. One may 
thus state that any permanent oscillatory phenomenon (scleronomic constraints) may be 
analysed by a superposition of independent harmonic oscillations (D. Bernoulli’s 
theorem). 
The mechanical oscillations are called also vibrations. 

Application 7.6 

Problem. Study the influence of a holonomic constraint which intervenes in the frame of 
a permanent oscillatory phenomenon. 

Mathematical model. Consider a holonomic (geometric) constraint expressed in the 
configurations space sΛ  in the form 

( ) 0,,, 21 =ηηη sf K , (a) 
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where jη , sj  ,1= , are normal generalized co-ordinates (see Appl.7.5). Developing into 
a power series, we remain to the linear form, corresponding to small oscillations; thus, 
we have 

0
1

=η∑
=

s

j
jjC , const=jC . (b) 

Solution. Eliminating these constraints, Lagrange’s equations (the equations (f) in the 
mentioned application) become 

02 =λ+ηω+η kkkk C&& ,  sk ,1= , (c) 

where ( )tλ=λ  is a Lagrange’s multiplier. Let us assume that 

tjj ωα=η cos , tωμ=λ cos , const.,, =μωα j  (d) 

By the condition of verifying the equation (c), we find 

( ) 022 =μ+ω−ωα jjj C . (e) 

Taking into account (d), the condition (b) becomes 

0
1

=α∑
=

s

j
jjC . (f) 

Replacing jα  given by (e), it results the algebraic equation 

0
1

22
=

ω−ω
∑
=

s

j j

jC
, (g) 

which gives the values of 2ω , hence of ω , for which the equation (c) is verified; this 
equation is of ( )1−s -degree and has 1−s  real roots contained between 2

1ω , 2
2ω ; 2

2ω , 
2
3ω ; …; 2

1−ωs , 2
sω , assuming that sω<<ω<ω K21 . 

We may thus state that, in a holonomic and scleronomic, discrete mechanical system, 
with s  degrees of freedom, subjected to small oscillations around a stable position of 
equilibrium, the intervention of a holonomic constraint cannot bring down the 
fundamental note (the minimal frequency in acoustics) or cannot raise over the value of 
the frequency of the harmonic of s-th order (Rayleigh’s theorem). 

Application 7.7 

Problem. Study the motion of the mathematical pendulum in the phase space. 

Mathematical model. We use the results given in Appl.7.3, taking into consideration an 
equation of the form (a) in the phase space of co-ordinates q  and p . With the notations 
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in Appl.4.33, corresponding to a mathematical pendulum, and noting that θ=q , we 
obtain 

hp +θω= cos2 22 , θ= &p , ( ) θω−=θ cos2V , (a) 

with 

l
g

=ω2 , hh 22ω= , α−= cosh , (b) 

h  being a non-dimensional constant. 
Solution. Representing ( )θV2  vs. θ  (Fig.7.10), we see that the motion can take place 

only for [ ]1,1−∈h ; we may have also 1>h , but it does not correspond to a real angle, 
the motion being – in this case – circular. The condition ( ) hV ≤θ2  allows to draw the 
curves ( )θ= pp , symmetric with respect to the θO -axis, as function of various values 

of h  in the phase space. For ( )1,1−∈h  the motion is oscillatory (we have a simple 

pendulum), e.g. for 0=h . If 1=h , then the motion is asymptotic, obtaining the 
separation lines (drawn with a thicker line) in the phase space; it corresponds a labile 
position of equilibrium for π=α . For 1−=h  we obtain a stable position of equilibrium 
(a point in the phase space), corresponding 0=α . Noting that, for 0>p , q  increases at 
the same time as t , we have indicated by an arrow the direction of motion in the phase 
space. 

 
Figure 7. 10. Motion of the pendulum 
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We observe that the separation lines are phase trajectories of the representative point in 
the phase plane; they allow to pass from one type of motion to another one. We have 
seen that a singular point is specified by the equations ( ) 0=qf , 0=p , any other point 
being an ordinary one; it results that an ordinary point is characterized by a well definite 
direction of the tangent to the phase trajectory which passes through this point. We may 
thus state that: 
Through any ordinary point in the phase space passes a phase trajectory and only one 
(Cauchy’s theorem). 
We notice that the equation ( ) qqfpp dd =  defines a field of vectors of components q , 
p , hence a field of velocities in the phase plane; the singular point represents the point 

in which the velocity in the phase plane vanishes. 
The topological methods allow the study of the general topological properties of the 
phase trajectories in the neighbourhood of the stable points of equilibrium ( )1−=h . 
Such a singular point is called centre; analogous considerations lead to the denomination 
saddle point for a singular point of labile equilibrium ( )1=h . 

Application 7.8 

Problem. Study the topological structure of the phase trajectories of a simple pendulum 
in a motion of rotation around a vertical axis. 

Mathematical model. We use the results in Appl.4.26 to the study of the topological 
structure of the phase trajectories of a simple (mathematical) pendulum for which the 
vertical circle on which the heavy particle moves is rotating with a constant angular 
velocity ω  about its vertical diameter. The results in this application lead to the 
differential equation ( )θ=q  

( ) θλ−θ=θ sincos&& , (a) 

where 0/ 2 >ω=λ lg  is a parameter with respect to which is effected the study. 

Solution. The curves C  are given by the straight lines 0=θ  and π±=θ  and by the 
curve λ=θ arccos . Applying Poincaré’s theorem (see Appl.7.3), we find stable 
branches of the curve C  (the points of equilibrium of centre type being denoted by full 
circlets , i.e. λ=θ arccos  and 0=θ , 1>λ  and π±=θ , 1−<λ ) as well as labile 
branches (the points of equilibrium of saddle type being denoted by hollow circlets, i.e. 

0=θ , 1<λ  and π±=θ , 1−>λ ) (Fig.7.11). The points 0=θ , 1=λ  and π±=θ , 
1−=λ  are points of branching of equilibrium, while the values 1±=λ cr  are critical 

values (of bifurcation) of the parameter λ , corresponding to those points. Taking into 
account (a), it results that 0>λ , the domains of the figure being thus restraint; as well, 
to have 1<λ  the angular velocity ω  must be sufficient great. If we put the condition 
that a separation line passes trough the singular point 0=θ& , 0=θ , then we find the first 
integral 
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( )θ−λ−θ=θ cos12sin 22& , (b) 

 
Figure 7. 11. Topological structure of the phase trajectories of a simple pendulum in motion of rotation about a 

vertical axis 

whence 

λ−
θθ

±=θ
2

cos
2

sin2 2& ; (c) 

if such a line passes through the singular points 0=θ& , π±=θ , the respective first 
integral becomes 

( )θ+λ+θ=θ cos12sin 22&  (d) 

whence 

λ+
θθ

±=θ
2

sin
2

cos2 2& . (e) 

For 1−<λ , the singular points of saddle type 0=θ& , π±=θ  become singular points of 
centre type (Fig.7.12, a); passing through 1−=λ′cr , for 01 <λ<−  two separation lines,  

1C  and 2C , appear the first of those ones surrounding two centres, while the point O  
becomes a singular point of saddle type (Fig.7.12, b). 
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Figure 7. 12. Phase trajectories of a simple pendulum in motion of rotation about a vertical axis for: 

1−<λ (a);  01 <λ<−  (b); 0=λ (c); 10 <λ< (d); 1>λ (e) 

 If 0=λ , hence if ∞→ω , then the curves 1C  and 2C  coincide with the curve C  and 
form only one line of separation; in this case, the centres are of abscissae 2/π±=θ  
(Fig.7.12, c). For 10 <λ<  one obtains two separation lines 1C  and 2C , corresponding 

to the equations (c), which pass through the singular points of saddle type 0=θ& , 0=θ , 
and 0=θ& , π±=θ , respectively; in the interior of the loops of the curve 1C  there exist 

two other singular points of centre type, having the abscissae λ±=θ arccos2  
(Fig.7.12, d). If 1=λ ′′=λ cr , then the curve 1C  coincides with the singular point O , 
which becomes a point of centre type; for 1>λ , remains only one separation line C  
(Fig.7.12, e). We observe thus that the separation lines correspond to phase trajectories 
with different topological aspects. 
The above considerations allow to state, without demonstration: 
The closed phase trajectories of a particle which is moving after the law ( )λ= ,qfq&&  in a 
conservative field may surround only an odd number of singular points, the number of 
centres being greater than the number of singular points of saddle type (Poincaré’s 
theorem). 

Application 7.9 

Problem. Study the topological structure of the phase trajectories of a simple pendulum 
in a resistant medium. 
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Mathematical model. In the case of motion of the simple pendulum in a resistant medium 
the field of forces is non-conservative (see Appl.1.10). If we put the condition 

0θ=θ && greater or smaller than 0 for 0=θ  in the formula (h), in the mentioned 
application, then we obtain 

( )θθ
+

ω
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⎠

⎞
⎜
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ω
−θ=θ θ sin2cos

14
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14
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2
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2 2
k

k
e

k
k m&& m , (a) 

where the sign ±  corresponds to 0θ& greater or smaller than 0 respectively. 

 
Figure 7. 13. Topological structure of the phase trajectories of a simple pendulum in a resistent medium  

Solution. The points 0=θ& , π=θ n , Z∈n , correspond to positions of equilibrium; the 
equilibrium is stable for n  even (the corresponding singular points are of focus type), 
while for n  odd the equilibrium is labile (there correspond singular points of saddle 
type) (Fig.7.13). If 

⎟
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⎝
⎛ +
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ω
=θ πnk
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k

22
2

2
2
0 e1

14
2& , n  odd, (b) 

then we notice that for 010 θ<θ &&  the particle oscillates, the motion being damped around 

the stable position of equilibrium 0=θ& , 0=θ ; if 010 θ=θ && , then one obtains the 

asymptotic motion of the particle. For 03001 θ<θ<θ &&&  the particle effects a complete 

rotation and then its oscillatory motion is damped; in general, if 2,000 +θ<θ<θ nn
&&& , n  

odd, the particle effects ( ) 2/1+n  complete rotations, passing then in a regime of 
damped oscillations around a stable position of equilibrium 

Application 7.10 

Problem. Study the small oscillations of a small sphere M  of mass m , linked to a fixed 
point O  by a spring of elastic constant k  and of negligible weight, if it may rotate 
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around the point O  in a vertical plane (Fig.7.14). The length of the spring in non-
deformed state is 0l . 

Mathematical model. The position of the particle M  may be specified by the angle ϕ  
and by the length l  of the spring at a given moment, having two degrees of freedom.  

 
Figure 7. 14. Small oscillations of a particle linked by an elastic spring around a fixed point, in a vertical plane 

The kinetic energy and the potential one are expressed in the form 

( )222

2
1 llmT && +ϕ= , ( ) ( )ϕ−+−= cos

2
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0
2

0 llmgllkV , (a) 

respectively. We may write Lagrange’s equations (see Appl.6.2, formula (e)) in the form 
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By the notations kmll /01 += , mkp /2
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2 / lgp =  and by the change of variable 

1llx −= , the equations (b) become 
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&&&&&&

&&&
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thus obtaining a new system of non-linear differential equations. 
We observe that one may find a particular solution for 0=ϕ , the pendulum oscillating 
in this case only along the vertical, after the law 

( )ψ−== tpxxx 1
0
11 cos , 01 =ϕ=ϕ . (d) 

This motion with the pulsation 1p  represents a natural mode of oscillation. 
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Assuming that ϕ  is very small and neglecting the powers of higher order of this 
argument, the differential equations (c) become 

;0

,0
2
2

2
1

=ϕ+ϕ

=+

p

xpx

&&

&&
 (e) 

in this case x  and ϕ  become normal co-ordinates, the two modes of vibrations being no 
more couplEd. Although for a very small ϕ  we obtain a system of non-coupled ODEs, a 
reciprocal influence of the two oscillations is still possible. This appears in the form of 
the instability of the basic oscillation ( )ψ−= tpxx 1

0
11 cos  and 0=ϕ . 

To study this phenomenon, we consider the motions in the neighbourhood of the 
fundamental oscillation. Let thus be yxx += 1  and ϕ ; we suppose that y  and ϕ  are 
sufficiently small to may linearize the terms which appear. Replacing in the equations 
(e), we get 
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Although the vibrations are non-coupled with respect to the parameters y  and ϕ , one 

may see that φ depends on the fundamental motion ( )ψ−= tpxx 1
0
11 cos . Because the 

equation in ϕ  has coefficients variable with the pulsation 1p , by convenient changes of 
function it may be brought to the form of a differential equation of Hill’s type with 
variable coefficients, with the same pulsation 1p . One may deduce that the solution of 
the equation in ϕ  may have also domains of instability for some ratios between the 
pulsations 1p  and 2p ; this instability puts in evidence also the instability of the 
fundamental oscillations 1x , the reciprocal influence of the two oscillations being thus 
proved. 

Application 7.11 

Problem. A Watt centrifugal regulator is composed of two rods OA  and OB  of the 
same length l , articulated at the point O  of a vertical axle tree; at the ends of the rods 
are two balls of equal masses m . Other two rods CD  and CE  are articulated to the first 
ones at the points D  and E  and by a collar C , which slides along the axle tree; one 
assumes that the quadrangle ODCE  is a rhomb of side a . One considers a modelling of 
particle for the balls A  and B  (Fig.7.15). If the angular velocity of the axle tree 
increases, then the rods move away, while the masses raise; at the same time, the collar 
raises too, acting by a force P  a system of levels which diminishes the admission of the 
vapour in a motor. Neglecting the masses of the rods and of the collar, study the stability 
of motion of the regulator. 

Mathematical model. At a given moment, the position of the regulator is determined by 
the rotation angle θ  of the plane of the regulator around the axle OC  and by the angle 
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ϕ  made by the rods OA  and OB  with the axle tree in the plane of the regulator; the 
mechanical system has thus two degrees of freedom. The moment of inertia of the parts 
in rotation, without the balls A  and B , with respect to the axis of the tree is 0I ; the 
moment of bringing back due to the variation 0ϕ−ϕ=ϕΔ  of the angle ϕ  made by the 
rod OA  with the axis of the tree with respect to an angle 0ϕ , in case of a constant 
angular velocity 0ω  of the axle tree, is ( )0ϕ−ϕ−=ϕΔ− kk , where k  is a constant 
coefficient. 

 
Figure 7. 15. Watt’s centrifugal regulator 

The motion of the regulator is composed from a rotation in its plane around an axis 
normal to the plane around the OC -axis, with an angular velocity ϕ& . The two axes are 
principal axes of inertia, so that the kinetic energy reads 

( )2
2

2
12

1
θ+θ= && IIT , (a) 

with 

ϕ+= 22
01 sin2mlII , 2

2 2mlI = ; (b) 

finally, we get 

( )[ ]22222
0 2sin2

2
1

ϕ+θϕ+= && mlmlIT . (c) 

Upon the regulator act the weights mg  of the balls, the force P  in the collar, the 
moment ( )0ϕ−ϕ− k  and the reactions at O  and C , which give a zero virtual work. 
Assuming that only a virtual displacement δθ  takes place, we obtain 

( )δθϕ−ϕ−=δ 0kW ; hence it results the generalized force 
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( )0ϕ−ϕ−=θ kQ . (d) 

As well, the virtual displacement δϕ  leads to 

ACBAC zmgzPzmgzmgzPW δ+δ=δ+δ+δ=δ 2 ; 
but ϕ= cos2azC , ϕ= coslz A , so that ( ) ϕδϕ+−=δ sin2 mglaPW , and the 
corresponding generalized force is given by 

( ) ϕ+−=ϕ sin2 mglaPQ . (e) 

We obtain thus Lagrange’s equations (see formula (e) in Appl.6.2) 

( ) ( )01d
d

ϕ−ϕ−=θ kI
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ϕ∂

∂
θ−ϕ sin2

2
1 12

2 mglaP
I

I &&& . (f) 

Solution. We search firstly the position of relative equilibrium of the regulator in its 
plane, corresponding to the rotation with a constant velocity 0ω=θ&  about the axis of the 
tree; let be 0ϕ  the angle corresponding to this position. Noting that 0=ϕ&& , the second 

equation (f) leads to ( ) 0cossin 0
22

00 =−−ϕωϕ mglaPlm ; one obtains thus two 

positions of relative equilibrium for 00 =ϕ  and for ( ) 22
00 /cos lmmglaP ω+=ϕ . The 

motion with a constant angular velocity 0ω  given by the second relation, for which we 

assume that 22
0lmmglaP ω<+ , is called motion of régime of the regulator. 

We use now the equation (f) to study the small oscillations around this motion of régime. 
We denote ψ+ϕ=ϕ 0 , γ+ω=θ 0

& . The first equation (f) is written in the form 

( )01
2 cossin4 ϕ−ϕ−=θ+θϕϕϕ kIml &&&& , 

whence 

( ) ( ) ( )[ ] ψ−=γψ+ϕ++γ+ωψψ+ϕ kmlIml && 0
22

000
2 sin22sin2 ; 

neglecting the powers of higher order ( ψ≅ψsin , 1cos ≅ψ ), we obtain 

( ) 02sin2sin2 0
2
0

2
0

22
0 =ψ+ψϕω+γϕ+ kmlmlI && . 

The second equation (f) becomes 

( ) ϕ+−=ϕϕθ−ϕ sin2cossin2 22
2 mglaPmlI &&&  (g) 

or 

( ) ( ) ( ) ( )ψ+ϕ+−=ψ+ϕγ+ω−ψ 00
22

0
2

2 sin2sin mglaPmlI && . 

In the frame of the same approximations, we get 
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0sin2sin 0
22

000 =ψϕω+γϕω−ψ&& . (h) 

The solutions of the system of equations (g), (h) are of the form teA λ=ψ 1 , teA λ=γ 2  
and lead to the characteristic equation (the necessary and sufficient condition to have 
non-zero 1A  and 2A ) 
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(j) 

To have a stable motion, the real parts of the roots λ  must be negative (so that the 
exponential does tend to zero for ∞→t ). In conformity to Hurwitz’s criterion, this 
condition takes place if 

01 >a , 03021
20

31 >−= aaaa
aa
aa

, ( ) 0
0

0
0

30213

31

20

31

>−= aaaaa
aa

aa
aa

; (k) 

one may see that, in the considered case, these conditions are not verified and the motion 
of régime is not stable. This fact, which is established experimentally too, imposes the 
introduction of new elements in the regulator system. 

Application 7.12 

Problem. Study the motion of the centrifugal regulator in Fig.7.16. Each ball has the 
mass 1m , the collar has the mass 2m , the spring is of elastic constant k , while the four 
rods are each one of length l ; the weights of the rods and of the spring are negligible. 
The moment of inertia of the collar with respect to the axis of rotation is I . Upon the 
axis of the regulator acts a moment M . The regulator rotates with an angular velocity 
ω , the variation of which leads to a change of the distance of the balls to the rotation 
axis, to a displacement of the collar and to a deformation of the spring; by a fitment acts 
a valve which regulates the alimentation with fuel of the engine, so as to obtain a certain 
angular velocity. We assume also that the collar is linked to a hydraulic damper which 
yields a viscous force of resistance, the damping coefficient being c . 

Mathematical model. We choose as generalized co-ordinates the angle ϕ  of rotation 
about the vertical axis and the angle α  indicated in the figure, the system having thus 
two degrees of freedom. We assume that the regulator is built up so as for 0=α  the 
spring be non-deformed; measured from this position of the collar, the distances 1s  and 

2s  indicated on the figure are given by ( )α−= cos21 ls , ( )α−= cos122 ls . 
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Figure 7. 16. Centrifugal regulator 

The kinetic energy of the balls and of the collar, respectively, are 

( ) 2
111 2/2 vmT = , ( ) ( ) 22

222 2/2/ ϕ+= &IvmT . 

Noting that the relative and the transportation velocities are orthogonal and that α= &lvr , 

( )ϕα+= &sinlavt , we get ( ) 22222
1 sin α+ϕα+= && llav . The collar has a motion of 

rotation about the vertical axis with the angular velocity ϕ&  and a motion of translation 
with the velocity αα== sin2d/d 22 &ltsv . Finally, the kinetic energy of the mechanical 
system is given by 

( )[ ] [ ]
2

sin42
2

sin2
2

22
2

2
2

2
2

121
α

α++
ϕ

+α+=+=
&&

lmlmIlamTTT . (a) 

The virtual work for a displacement compatible with the constraints is 

222222112 sscskssgmsgmMQQL δ−δ−δ−δ−δϕ=δα+δϕ=δ αϕ & , 

where 2ks  is the elastic force in the spring, while 2sc&  is the viscous resistant force. 
Calculating 1sδ , 2sδ  and 2s&  and replacing in the above relation, we may write 

( )[ ]δααα−αα−−α−α−+δϕ=δ 222
21 sin4sincos14sin2sin2 &clklglmglmMW , 

so that the generalized forces are 

MQ =ϕ , ( ) ( )[ ]αα+α−++α−=α sin2cos12sin2 21 &lclkgmmlQ . (b) 

Lagrange’s equations (formula (e), Appl.6.2) read 
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( ) ( )
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llamlmlmm
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 (c) 

and form a system of non-linear differential equations. 

Solution. The goal of the regulator is, obviously, to maintain a constant angular velocity 
0ω  of the axis. First of all, we determine the position of relative equilibrium of the 

regulator corresponding to this angular velocity; thus the motion of the regulator will be 
a motion of régime. Let be, in this case, 0α  the value of α  and const0 =ω=ϕ& . As 

0=ϕ&&  and 0=α& , it results 0=M  and 

( ) ( ) ( ) 0sinsincos12cossin 021000
2
001 =α+−αα−−αωα+ gmmkllam , (d) 

thus obtaining the link between the régime angular velocity 0ω , the position 0α  of the 
regulator and the position of the collar ( )02 cos12 α−= ls , a relation important in 
design. To put in evidence the stability of the motion of régime, we assume that that one 
is characterized by 0ω  and may be perturbed by the variation of the moment M . We 
may write 10 ω+ω=ω=ϕ&  and 10 α+α=α , where 1ω  and 1α  are small, so that we 
may consider 

( ) 01010 cossinsin αα+α=α+α , ( ) 01010 sincoscos αα−α=α+α , 

( ) ( ) ( ) ( )0101010 α′α≅+α′α+α=α+α MMMM K , 

because ( ) 00 =αM . 
Replacing in the equations (c) and taking into account the equation (d), we obtain the 
system 

, 0
, 0

1111

111
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=α′−α+ω
pdbh

Mpf
&&&

&&
 (e) 

where 

( ) Ilamf +α+= 2
01 sin2 , ( ) 0001 cossin4 αωα+= lamp , 0

22 sin4 α= clb , 
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0210
2

0
2

0
2
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2
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α++−α+α+

−α+αω=
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(f) 

this system of linear ODEs determines the oscillations of the regulator about the motion 
of régime. Searching the solutions of this system in the form tA λ=α e11 , tA λ=ω e21  
we obtain the characteristic equation, which gives the pulsations 



ODEs WITH APPLICATIONS TO MECHANICS 480

0
2

23 =′−λ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++λ+λ

f
pM

f
pdbh ; (g) 

the oscillations are damped if the exponential decreases in time, hence if the real part of 
those equations is negative. According to Hurwitz’s theorem, this condition is fulfilled if 
one verifies the conditions 
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as 0>h , these conditions may be written in the form 

0>b , 0<′M , 
f
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p
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The condition 0>b  is fulfilled if there is a damping which satisfies the last condition 
(i). The condition 0<′M  is satisfied if, by a growth of the angle α , the regulator 
provokes a decreasing of the driving moment. 

Application 7.13 

Problem. The axle tree of a rotor rests in a spherical hinge with the centre at the point O  
(Fig.7.17). The weight of the system rotor-axle tree is P , the centre of gravity C  being 
situated above the point O , at the distance 1lOC = . The rotor is rotating with a constant 
angular velocity ω  about the vertical axis of symmetry of the system. The inferior 
extremity of the axle tree is at the distance lOM =  of the fixed point O . Study the 
stability of the motion of rotation of the system, knowing that the moment of inertia with 
respect to the symmetry axis is 1I , and with respect to any other axis normal to the first 
one at the point O  is 2I . 

Mathematical model. Let us consider the fixed frame of reference Oxyz , the axis Oz  
being vertical. The position of the rotation axis at a given moment is specified by the 
position M ′  of the point M  along the axis of the tree; at a certain moment, it coincides 
with the axis OC , while the functions of time by means of which we may study the 
vibrations are the co-ordinates x  and y  of the point M . 
Because the elastic forces at the point M ′  vanish, the differential equations of the 
vibrations are written in the form 

; 0
, 0

112

112

=−ω−
=−ω+

PylxIyI
PxlyIxI

&&&

&&&
 (a) 

multiplying the second equation by 1i −=  and introducing the complex variable 
yxu i+= , we get the differential equation in u  
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0i 112 =−ω− PuluIuI &&& . (b) 

 
Figure 7. 17. Motion of a rotor-axle treee system 

Solution. The characteristic equation 

0i 11
2

2 =−ω− PlsIsI  (c) 

has the roots 

⎟
⎠
⎞⎜

⎝
⎛ ω−ω= 22

1121
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2,1 4i
2
1 IPlII
I

s m , (d) 

while the general solution of the differential equation (b) is 
tsts AAu 21 ee 21 += ; (e) 

if the complex integration constants are of the form 1i
11

α= eCA , 2i
22

α= eCA , where 

1C , 2C , 1α , 2α  are real integration constants, the solution is written in the form 

2211 i
2

i
1 ee α+α+ += tsts CCu . (f) 

If PlII 12
22

1 4<ω , hence if ( ) PlII 1210 /2=ω<ω , then the roots (d) are of the form 

bas i2,1 += m , where ( ) 042/1 22
1122 >ω−= IPlIIa , 02/ 21 >ω= IIb . In this case, 

the general solution is written in the form 
( ) ( )21 i

2
i

1 ee α++α++− += btatbtat CCu . (g) 

One obtains thus the equations of motion 
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Noting that in the second term of the vibrations a factor increasing with time ( )0>a  
appears, the corresponding component has an increasing amplitude, so that the motion of 
rotation of the system is labile. If PlII 12

22
1 4=ω , hence if ( ) PlII 1210 /2=ω=ω , 

then the roots are equal, while the general solution is given by 

( ) ( ) ( )211 i
2

i
121 eee α+α+ +=+= btbtts tCCtAAu , (i) 

so that the equations of motion are 
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In this case too, the amplitudes of the second component are increasing, and the motion 
of rotation of the system is unstable too. 
If PlII 12

22
1 4>ω , hence if ( ) PlII 1210 /2=ω>ω , then the roots 2,12,1 ips = , with 

( ) ⎟
⎠
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⎝
⎛ −ωω= PlIIIIp 12

22
1112,1 4/2 m  are purely imaginary. The general solution is 

given by 
( ) ( )2211 i

2
i

1 ee α+α+ += tptp CCu  (k) 

and the equations of motion are of the form 
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( ) ( ). sinsin

, coscos

222111

222111
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Hence, the two natural modes of vibration are harmonic. The amplitudes of the 
vibrations remain finite; that is, if 0ω>ω  the motion of rotation is stable. As we have 
seen, the vertical position of equilibrium of the mechanical system is unstable; it remains 
unstable for 00 ω≤ω≤ , but becomes stable for 0ω>ω . 
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PROBLEM INDEX 
 
Angle of relative rotation in the starting of 
an engine 

 
2.3 

Astroid 4.23 
Beams on an elastic medium 2.2, 2.4, 2.7, 2.10, 2.20, 2.22  
Bessel functions 1.38, 1.39, 1.40 
Body of variable mass 4.2 
Buckling 1.30, 1.31, 1.32, 1.33, 1.34, 1.36, 1.37, 

1.38, 1.39,  2.4, 2.6, 2.17, 2.22, 4.35, 4.36 
Central forces 4.25 
Centrifugal regulator of motion 7.11, 7.12 
Circular plates 2.19, 5.9 
Clothoid 4.7 
Composition of motions 4.17, 5.2 
Connection to a straight line 4.7 
Conservative forces 7.1, 7.2, 7.3 
Creep 1.4 
Critical rotation speed 2.9 
Cycloidal pendulum 1.8 
Cylindrical vessel 1.40, 2.14, 2.15, 2.21 
Damped oscillations 1.11, 1.12 
Duffing’s equation 4.34 
Dynamical damper 3.5 
Electrized particle in an electromagnetic 
field 

 
2.13 

Elliptic integrals 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39, 
4.40, 5.6, 5.8 

Elliptic oscillator 1.6 
First integrals 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 
Forced oscillations 1.18, 1.19 
Forced vibrations 3.5 
Free vibrations 1.21, 1.23, 3.1, 3.2, 3.3, 3.4 
Galleries 2.2, 2.5 
Gamma function 4.28 
Hamilton’s equations 5.4, 5.5, 6.3, 6.5, 7.7 
Hanged up structures 1.22 
Hydraulics 1.13, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 

4.16 
Initial parameter method 2.12 
Isogonal trajectories 4.19, 4.22 
Lagrange’s equations  5.3, 6.2, 6.4, 7.5, 7.6 
Lateral buckling 1.35, 2.8 
Linear oscillator 1.9 
Motion of a body along the vertical 4.3, 4.6 



ODEs WITH APPLICATIONS TO MECHANICS 484
Motion of a material point 4.27 
Motion of a particle acted upon by 
Newtonian attraction 

 
1.17, 5.1, 6.4, 6.5 

Motion of a particle in a graviational fiekd 1.14, 4.1 
Motion of a particle on a surface 4.4, 4.5 
Oscillations around a stable position of 
equilibrium 

 
1.6, 1.9, 7.4, 7.5, 7.6, 7.10 

Relaxation 1.2 
Repulsive elastic forces 1.7 
Rigid solid with a fixed point 5.6, 5.7, 5.8 
Simple pendulum 1.10, 4.33, 7.7, 7.8, 7.9 
Stability of oscillations 7.10, 7.11, 7.12, 7.13 
Strength of materials 1.15, 1.16, 1.20, 1.21, 4.31, 4.32, 4.37, 

4.38,4.39 
Theory of elasticity 2.16, 2.18, 4.9, 4.18, 4.20 
Theory of second order 1.25, 1.26, 1.27, 1.28, 1.29 
Thin shells of rotation 1.1, 1.5, 4.21, 4.24 
Thin shells of translation 4.29 
Threads 1.30, 4.30 
Topological structure of trajectories 7.3, 7.8, 7.9 
Tractrix 4.8 
Variational principles 6.1, 6.2, 6.3 
Wire drawing 2.1 
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