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Preface

Impulsive differential equations are suitable for the mathematical simulation
of evolutionary processes in which the parameters undergo relatively long
periods of smooth variation followed by a short-term rapid changes (i.e.,
jumps) in their values. Processes of this type are often investigated in various
fields of science and technology.

The question of the existence and uniqueness of almost periodic solutions
of differential equations is an age-old problem of great importance. The
concept of almost periodicity was introduced by the Danish mathematician
Harald Bohr. In his papers during the period 1923–1925, the fundamentals
of the theory of almost periodic functions can be found. Nevertheless,
almost periodic functions are very much a topic of research in the theory
of differential equations. The interplay between the two theories has enriched
both. On one hand, it is now well known that certain problems in celestial
mechanics have their natural setting in questions about almost periodic
solutions. On the other hand, certain problems in differential equations have
led to new definitions and results in almost periodic functions theory. Bohr’s
theory quickly attracted the attention of very famous researchers, among
them V.V. Stepanov, S. Bochner, H. Weyl, N. Wiener, A.S. Besicovitch,
A. Markoff, J. von. Neumann, etc. Indeed, a bibliography of papers on almost
periodic solutions of ordinary differential equations contains over 400 items.
It is still a very active area of research.

At the present time, the qualitative theory of impulsive differential
equations has developed rapidly in relation to the investigation of various
processes which are subject to impacts during their evolution. Many results on
the existence and uniqueness of almost periodic solutions of these equations
are obtained.

In this book, a systematic exposition of the results related to almost
periodic solutions of impulsive differential equations is given and the potential
for their application is illustrated.
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viii Preface

Some important features of the monograph are as follows:

1. It is the first book that is dedicated to a systematic development of almost
periodic theory for impulsive differential equations.

2. It fills a void by making available a book which describes existing literature
and authors results on the relations between the almost periodicity and
stability of the solutions.

3. It shows the manifestations of direct constructive methods, where one
constructs a uniformly convergent series of almost periodic functions
for the solution, as well as of indirect methods of showing that certain
bounded solutions are almost periodic, by demonstrating how these
effective techniques can be applied to investigate almost periodic solutions
of impulsive differential equations and provides interesting applications of
many practical problems of diverse interest.

The book consists of four chapters.
Chapter 1 has an introductory character. In this chapter a description of

the systems of impulsive differential equations is made and the main results on
the fundamental theory are given: conditions for absence of the phenomenon
“beating,” theorems for existence, uniqueness, continuability of the solutions.
The class of piecewise continuous Lyapunov functions, which are an apparatus
in the almost periodic theory, is introduced. Some comparison lemmas and
auxiliary assertions, which are used in the remaining three chapters, are
exposed. The main definitions and properties of almost periodic sequences
and almost periodic piecewise continuous functions are considered.

In Chap. 2, some basic existence and uniqueness results for almost periodic
solutions of different classes of impulsive differential equations are given.
The hyperbolic impulsive differential equations, impulsive integro-differential
equations, forced perturbed impulsive differential equations, impulsive differ-
ential equations with perturbations in the linear part, dichotomous impulsive
differential systems, impulsive differential equations with variable impulsive
perturbations, and impulsive abstract differential equations in Banach space
are investigated. The relations between the strong stability and almost
periodicity of solutions of impulsive differential equations with fixed moments
of impulse effect are considered. Many examples are considered to illustrate
the feasibility of the results.

Chapter 3 is dedicated to the existence and uniqueness of almost periodic
solutions of impulsive differential equations by Lyapunov method. Almost
periodic Lyapunov functions are offered. The existence theorems of almost
periodic solutions for impulsive ordinary differential equations, impulsive
integro-differential equations, impulsive differential equations with time-
varying delays, and nonlinear impulsive functional differential equations are
stated. By using the concepts of uniformly positive definite matrix functions
and Hamilton–Jacobi–Riccati inequalities, the existence theorems for almost
periodic solutions of uncertain impulsive dynamical systems are proved.



Preface ix

Finally, in Chap. 4, the applications of the theory of almost periodicity to
impulsive biological models, Lotka–Volterra models, and neural networks are
presented. The impulses are considered either as means of perturbations or
as control.

The book is addressed to a wide audience of professionals such as mathe-
maticians, applied researches, and practitioners.

The author has the pleasure to express his sincere gratitude to Prof. Ivanka
Stamova for her valuable comments and suggestions during the preparation
of the manuscript. He is also thankful to all his coauthors, the work with
whom expanded his experience.

Sliven, Bulgaria G. T. Stamov
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Introduction

I. Impulsive Differential Equations

The necessity to study impulsive differential equations is due to the fact
that these equations are useful mathematical tools in modeling of many real
processes and phenomena studied in optimal control, biology, mechanics, bio-
technologies, medicine, electronics, economics, etc.

For instance, impulsive interruptions are observed in mechanics [13, 25,
85], in radio engineering [13], in communication security [79, 80], in Lotka–
Volterra models [2–4,76,99,103,106,188,191,192], in control theory [75,104,
118, 146], in neural networks [5, 6, 36, 162, 169, 175–177]. Indeed, the states of
many evolutionary processes are often subject to instantaneous perturbations
and experience abrupt changes at certain moments of time. The duration of
these changes is very short and negligible in comparison with the duration
of the process considered, and can be thought of as “momentary” changes
or as impulses. Systems with short-term perturbations are often naturally
described by impulsive differential equations [15, 20, 62, 66, 94, 138].

Owing to its theoretical and practical significance, the theory of impulsive
differential equations has undergone a rapid development in the last couple
of decades.

The following examples give a more concrete notion of processes that can
be described by impulsive differential equations.

Example 1. One of the first mathematical models which incorporate interac-
tion between two species (predator–prey, or herbivore-plant, or parasitoid-
host) was proposed by Alfred Lotka [109] and Vito Volterra [184]. The
classical “predator–prey” model is based on the following system of two
differential equations

{
Ḣ(t) = H(t)[r1 − bP (t)],
Ṗ (t) = P (t)[−r2 + cH(t)],

(A)

xiii



xiv Introduction

where H(t) and P (t) represent the population densities of prey and predator
at time t, respectively, t ≥ 0, r1 > 0 is the intrinsic growth rate of the
prey, r2 > 0 is the death rate of the predator or consumer, b and c are the
interaction constants. More specifically, the constant b is the per-capita rate
of the predator predation and the constant c is the product of the predation
per-capita rate and the rate of converting the prey into the predator.

The product p = p(H) = bH of b and H is the predator’s functional
response (response function) of type I, or rate of prey capture as a function
of prey abundance.

There have been many studies in literatures that investigate the population
dynamics of the type (A) models. However, in the study of the dynamic
relationship between species, the effect of some impulsive factors, which
exists widely in the real world, has been ignored. For example, the birth
of many species is an annual birth pulse or harvesting. Moreover, the human
beings have been harvesting or stocking species at some time, then the
species is affected by another impulsive type. Also, impulsive reduction of the
population density of a given species is possible after its partial destruction by
catching or poisoning with chemicals used at some transitory slots in fishing or
agriculture. Such factors have a great impact on the population growth. If we
incorporate these impulsive factors into the model of population interaction,
the model must be governed by an impulsive differential system.

For example, if at the moment t = tk the population density of the predator
is changed, then we can assume that

ΔP (tk) = P (t
+
k )− P (t−k ) = gkP (tk), (B)

where P (t−k ) = P (tk) and P (t
+
k ) are the population densities of the predator

before and after impulsive perturbation, respectively, and gk ∈ R are
constants which characterize the magnitude of the impulsive effect at the
moment tk. If gk > 0, then the population density increases and if gk < 0,
then the population density decreases at the moment tk.

Relations (A) and (B) determine the following system of impulsive
differential equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ḣ(t) = H(t)[r1 − bP (t)], t �= tk,

Ṗ (t) = P (t)[−r2 + cH(t)], t �= tk,

H(t+k ) = H(tk), P (t
+
k ) = P (tk) + gkP (tk),

(C)

where tk are fixed moments of time, 0 < t1 < t2 < . . ., lim
k→∞

tk = ∞.

In mathematical ecology the system (C) denotes a model of the dynamics
of a predator–prey system, which is subject to impulsive effects at certain
moments of time. By means of such models, it is possible to take into account
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the possible environmental changes or other exterior effects due to which the
population density of the predator is changed momentary.

Example 2. The most important and useful functional response is the Holling
type II function of the form

p(H) =
CH

m+H
,

where C > 0 is the maximal growth rate of the predator, and m > 0 is
the half-saturation constant. Since the function p(H) depends solely on prey
density, it is usually called a prey-dependent response function. Predator–prey
systems with prey-dependent response have been studied extensively and the
dynamics of such systems are now very well understood [77,88,125,135,181,
192].

Recently, the traditional prey-dependent predator–prey models have been
challenged, based on the fact that functional and numerical responses over
typical ecological timescales ought to depend on the densities of both prey and
predators, especially when predators have to search for food (and therefore
have to share or compete for food). Such a functional response is called a
ratio-dependent response function. Based on the Holling type II function,
several biologists proposed a ratio-dependent function of the form

p(
H

P
) =

C H
P

m+ H
P

=
CH

mP +H

and the following ratio-dependent Lotka–Volterra model

⎧⎪⎪⎨
⎪⎪⎩
Ḣ(t) = H(t)

[
r1 − aH(t)− CP (t)

mP (t) +H(t)

]
,

Ṗ (t) = P (t)
[
−r2 + KH(t)

mP (t) +H(t)

]
,

(D)

where K is the conversion rate.
If we introduce time delays in model (D), we will obtain a more

realistic approach to the understanding of predator–prey dynamics, and it
is interesting and important to study the following delayed modified ratio-
dependent Lotka–Volterra system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ḣ(t) = H(t)
[
r1 − a

∫ t

−∞
k(t− u)H(u)du− CP (t− τ(t))

mP (t) +H(t)

]
,

Ṗ (t) = P (t)
[
−r2 + KH(t− τ(t))

mP (t) +H(t− τ(t))
]
,

(E)
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where k : R+ → R
+ is a measurable function, corresponding to a delay kernel

or a weighting factor, which says how much emphasis should be given to the
size of the prey population at earlier times to determine the present effect on
resource availability, τ ∈ C[R,R+].

However, the ecological system is often affected by environmental changes
and other human activities. In many practical situations, it is often the case
that predator or parasites are released at some transitory time slots and
harvest or stock of the species is seasonal or occurs in regular pulses. By
means of exterior effects we can control population densities of the prey and
predator.

If at certain moments of time biotic and anthropogeneous factors act on the
two populations “momentary”, then the population numbers vary by jumps.
In this case we will study Lotka–Volterra models with impulsive perturbations
of the type

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḣ(t) = H(t)
[
r1 − a

∫ t

−∞
k(t− u)H(u)du

− CP (t− τ(t))
mP (t) +H(t)

]
, t �= tk,

Ṗ (t) = P (t)
[
−r2 + KH(t− τ(t))

mP (t) +H(t− τ(t))
]
, t �= tk,

H(t+k ) = (1 + hk)H(tk), k = 1, 2, . . . ,

P (t+k ) = (1 + gk)P (tk), k = 1, 2, . . . ,

(F)

where hk, gk ∈ R and tk, k = 1, 2, . . . are fixed moments of impulse effects,
0 < t1 < t2 < . . ., lim

k→∞
tk = ∞.

By means of the type (F) models it is possible to investigate one of the most
important problems of the mathematical ecology - the problem of stability of
the ecosystems, and respectively the problem of the optimal control of such
systems.

Example 3. Chua and Yang [42, 43] proposed a novel class of information-
processing system called Cellular Neural Networks (CNN) in 1988. Like
neural networks, it is a large-scale nonlinear analog circuit which processes
signals in real time.

The key features of neural networks are asynchronous parallel processing
and global interaction of network elements. For the circuit diagram and
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connection pattern, implementation the CNN can be referred to [44].
Impressive applications of neural networks have been proposed for various
fields such as optimization, linear and nonlinear programming, associative
memory, pattern recognition and computer vision [30, 31, 35, 40–44,72].

The mathematical model of a Hopfield type CNN is described by the
following state equations

ẋi(t) = −cixi(t) +
n∑
j=1

aijfj (xj(t)) + Ii, (G)

or by delay differential equations

ẋi(t) = −cixi(t) +
n∑
j=1

aijfj (xj(t)) +
n∑
j=1

bijfj (xj(t− τj(t))) + Ii, (H)

where i = 1, 2, . . . , n, n corresponds to the numbers of units in the neural
network, xi(t) corresponds to the state of the ith unit at time t, fj(xj(t))
denotes the output of the jth unit at time t, aij denotes the strength of the
jth unit on the ith unit at time t, bij denotes the strength of the jth unit
on the ith unit at time t− τj(t), Ii denotes the external bias on the ith unit,
τj(t) corresponds to the transmission delay along the axon of the jth unit and
satisfies 0 ≤ τj(t) ≤ τ (τ = const), ci represents the rate with which the ith
unit will reset its potential to the resting state in isolation when disconnected
from the network and external inputs.

On the other hand, the state of CNN is often subject to instantaneous
perturbations and experiences abrupt changes at certain instants which may
be caused by switching phenomenon, frequency change or other sudden noise,
that is, do exhibit impulsive effects.

Therefore, neural network models with impulsive effects should be more
accurate in describing the evolutionary process of the systems.

Let at fixed moments tk the system (G) or (H) be subject to shock
effects due to which the state of the ith unit gets momentary changes. The
adequate mathematical models in such situation are the following impulsive
CNNs

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋi(t) = −cixi(t) +

n∑
j=1

aijfj (xj(t)) + Ii, t �= tk, t ≥ 0,

Δxi(tk) = xi(t
+
k )− xi(tk) = Pik(xi(tk)), k = 1, 2, . . . ,

(I)
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or the impulsive system with delays

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −cixi(t) +
n∑
j=1

aijfj (xj(t))

+

n∑
j=1

bijfj (xj(t− τj(t))) + Ii, t �= tk, t ≥ 0,

Δxi(tk) = xi(t
+
k )− xi(tk) = Pik(xi(tk)), k = 1, 2, . . . ,

(J)

where tk, k = 1, 2, . . . are the moments of impulsive perturbations and satisfy
0 < t1 < t2 < ldots, lim

k→∞
tk = ∞ and Pik(xi(tk)) represents the abrupt

change of the state xi(t) at the impulsive moment tk.
Such a generalization of the CNN notion should enable us to study different

types of classical problems as well as to “control” the solvability of the
differential equations (without impulses).

In the examples considered the systems of impulsive differential equations
are given by means of a system of differential equations and conditions of
jumps. A brief description of impulsive systems is given in Chap. 1.

The mathematical investigations of the impulsive ordinary differential
equations mark their beginning with the work of Mil’man and Myshkis [119],
1960. In it some general concepts are given about the systems with impulse
effect and the first results on stability of such systems solutions are obtained.
In recent years the fundamental and qualitative theory of such equations
has been extensively studied. A number of results on existence, uniqueness,
continuability, stability, boundedness, oscillations, asymptotic properties, etc.
were published [14–18,20,61,62,87,91–96,124,128,129,136,138,148–151,153–
161, 165, 166, 178, 199]. These results are obtained in the studying of many
models which are using in natural and applied sciences [2, 10, 11, 59, 75, 103–
105,121, 130, 131, 152, 163, 164, 167, 168, 170–176,178].

II. Almost Periodicity

The concept of almost periodicity is with deep historical roots. One of the
oldest problems in astronomy was to explain some curious behavior of the
moon, sun, and the planets as viewed against the background of the “fixed
stars”. For the Greek astronomers the problem was made more difficult by
the added restriction that the models for the solar system were to use only
uniform linear and uniform circular motions. One such solution, sometimes
attributed to Hipparchus and appearing in the Almagest of Ptolemy, is the
method of epicycles.

Let P be a planet or the moon. The model of motion of P can be written as
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r1e
iλ1t + r2e

iλ2t,

where r1, λ1 and r2, λ2 are real constants. When applied to the moon, for
example, this not very good approximation.

Copernicus showed that by adding a third circle one could get a better
approximation to the observed data. This suggests that if ϕ(t) is the true
motion of the moon, then there exist r1, r2, . . . , rn and λ1, λ2, . . . , λn such
that for all t ∈ R, ∣∣∣ϕ(t) −

n∑
j=1

rje
iλjt

∣∣∣ ≤ ε,
where ε > 0 is the observational error. If the numbers λ1, λ2, . . . , λn are not
all rational multiplies of one real number, then the finite sum is not periodic.
It would be almost periodic in the sense of the following Condition: If for
every positive ε > 0, there exists a finite sum

n∑
j=1

rje
iλj t ≡ p(t)

and for all t ∈ R,
|f(t)− p(t)| < ε,

then the function f(t) is almost periodic.
The idea of Ptolemy and Copernicus was to show that the motion of

a planet is described by functions of this type. The main aspects of the
historical development of this problem can be found in [122, 179].

The formal theory of almost periodic functions was developed by Harald
Bohr [26]. In this paper Bohr was interested in series of the form

∞∑
n=1

e−λns

called Dirichlet series, one of which is the Riemann-zeta function. In his
researches he noticed that along the lines Re(s) = const., these functions
had a regular behavior. He apparently hoped that a formal study of this
behavior might give him some insight into the distribution of values of the
Dirichlet series. The regular behavior he discovered we shall consider in the
following way [55].

The continuous function f is regular, if for every ε > 0 and for every t ∈ R,
the set T (f, ε),

T (f, ε) ≡
{
τ ; sup

t∈R

|f(t+ τ) − f(t)| < ε
}

is relatively dense in R, i.e. if there is an l > 0 such that every interval of
length l has a non-void intersection with T (f, ε).
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It is easy to see that the sum of two regular functions is also regular, and a
uniform limit of functions from this class will converge to a regular function.
Consequently, all regular functions are almost periodic in the sense of Bohr.

Later, Bohr considered the problem of when the integral of an almost
periodic function is almost periodic. Many applications of this theory to
various fields became known during the late 1920s. One of the results
connected with the work of Bohr and Neugebauer [27] is that the bounded
solutions of the system of differential equations in the form

ẋ = Ax + f

are almost periodic by necessity, when A is a scalar matrix, and f is almost
periodic in the sense of Bohr.

The single most useful property of almost periodicity for studying differen-
tial equations is investigated from Bochner [22]. In this paper he introduced
the following definition.

The continuous function f is normal, if from every sequence of real num-
bers {αn} one can extract a subsequence {αnk

} such that

lim
k→∞

f(t+ αnk
) = g(t)

exists uniformly on R. Bochner also proved the equivalence between the
classes of normal and regular functions.

The utility of this definition for different classes of differential equations
was exploited by Bochner in [23, 24].

Later on, in 1933 in Markoff’s paper [114] on the study of almost periodic
solutions of differential equations, it was recognized that almost periodicity
and stability were closely related. Here for the fist time it was considered that
strong stable bounded solutions are almost periodic.

After the first remarkable results in the area of almost periodicity in the
middle of the twentieth century a number of impressive results were achieved.
Some examples may be found are in the papers [12, 21, 47, 49, 53, 55–57, 69,
84, 97, 98, 143, 180, 183, 193–195,201].

The beginning of the study of almost periodic piecewise continuous
functions came in the 1960s. Developing the theory of impulsive differential
equations further requires an introduction of definitions for these new objects.
The properties of the classical (continuous) almost periodic functions can be
greatly changed by impulses.

The first definitions and results in this new area were published by Halanay
and Wexler [63], Perestyuk, Ahmetov and Samoilenko [8, 9, 127, 136–141],
Hekimova and Bainov [67], Bainov, Myshkis, Dishliev and Stamov [17, 18].



Chapter 1
Impulsive Differential Equations
and Almost Periodicity

The present chapter will deal with basic theory of the impulsive differential
equations and almost periodicity.

Section 1.1 will offer the main classes of impulsive differential equations,
investigated in the book. The problems of existence, uniqueness, and
continuability of the solutions will be discussed. The piecewise continuous
Lyapunov functions will be introduced and some main impulsive differential
inequalities will be given.

Section 1.2 will deal with the almost periodic sequences. The main
definitions and properties of these sequences will be considered.

Finally, in Sect. 1.3, we shall study the main properties of the almost
periodic piecewise continuous functions.

1.1 Impulsive Differential Equations

Let R
n be the n-dimensional Euclidean space with norm ||.||, and let

R
+ = [0,∞). For J ⊆ R, we shall define the following class of functions:
PC[J,R] =

{
σ : J → R

n, σ(t) is a piecewise continuous function with points
of discontinuity of the first kind t̃ ∈ J at which σ(t̃+) and σ(t̃−) exist, and
σ(t̃−) = σ(t̃)

}
.

We shall make a brief description of the processes that are modeling with
systems of impulsive differential equations.

Let Ω ⊆ R
n be the phase space of some evolutionary process, i.e. the set

of its states. Denote by Pt the point mapping the process at the moment t.
Then the mapping point Pt can be interpreted as a point (t, x) of the
(n+1)−dimensional space R

n+1. The set R × Ω will be called an extended
phase space of the evolutionary process considered. Assume that the evolution
law of the process is described by:

G.T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations,
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2 1 Impulsive Differential Equations and Almost Periodicity

(a) A system of differential equations

ẋ = f(t, x), (1.1)

where t ∈ R; x = col(x1, x2, . . . , xn) ∈ Ω; f : R×Ω → R
n.

(b) Sets Mt, Nt of arbitrary topological structure contained in R×Ω.
(c) An operator At :Mt → Nt.

The motion of the point Pt in the extended phase space is performed in the
following way: the point Pt begins its motion from the point (t0, x(t0)), t0 ∈R,
and moves along the curve (t, x(t)) described by the solution x(t) of the
(1.1) with initial condition x(t0) = x0, x0 ∈ Ω, till the moment t1>t0
when Pt meets the set Mt. At the moment t1 the operator At1 “instantly”
transfers the point Pt from the position Pt1 = (t1, x(t1)) into the position
(t1, x

+
1 ) ∈ Nt1 , x+1 = At1x(t1). Then the point Pt goes on moving along the

curve (t, y(t)) described by the solution y(t) of the system (1.1) with initial
condition y(t1) = x

+
1 till a new meeting with the set Mt, etc.

The union of relations (a), (b), (c) characterizing the evolutionary process
will be called a system of impulsive differential equations, the curve described
by the point Pt in the extended phase space—an integral curve and the
function defining this curve—a solution of the system of impulsive differential
equations. The moments t1, t2, . . . when the mapping point Pt meets the set
Mt will be called moments of impulse effect and the operator At :Mt → Nt—
a jump operator.

We shall assume that the solution x(t) of the impulsive differential equation
is a left continuous function at the moments of impulse effect, i.e. that

x(t−k ) = x(tk), k = 1, 2, . . . .

The freedom of choice of the sets Mt, Nt and the operator At leads to the
great variety of the impulsive systems. The solution of the system of impulsive
differential equation may be:

– A continuous function, if the integral curve does not intersect the set Mt

or intersects it at the fixed points of the operator At.
– A piecewise continuous function with a finite number of points of disconti-
nuity of first type, if the integral curve intersects Mt at a finite number of
points which are not fixed points of the operator At.

– A piecewise continuous function with a countable set of points of disconti-
nuity of first type, if the integral curve intersects Mt at a countable set of
points which are not fixed points of the operator At.

In the present book systems of impulsive differential equations will be
considered for which the moments of impulse effect come when some spatial-
temporal relation Φ(t, x) = 0, (t, x) ∈ R×Ω is satisfied, i.e. when the mapping
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point (t, x) meets the surface with the equation Φ(t, x) = 0. Such systems can
be written in the form

ẋ = f(t, x), Φ(t, x) �= 0,

Δx(t) = I(t, x(t)), Φ(t, x(t)) = 0.

The sets Mt, Nt and the operator At are defined by the relations

Mt = {(t, x) ∈ R×Ω : Φ(t, x) = 0}, Nt = R×Ω,
At :Mt → Nt, (t, x) → (t, x+ I(t, x)),

where I : R×Ω → Ω and t = tk is a moment of impulse effect for the solution
x(t) if Φ(tk, x(tk)) = 0.

We shall give a more detailed description of the following two classes of
impulsive differential equations which have particular interest.

Class I. Systems with fixed moments of impulse effect. For these systems,
the set Mt is represented by a sequence of hyperplanes t = tk where {tk} is a
given sequence of impulse effect moments. The operator At is defined only for
t = tk giving the sequence of operators Ak : Ω → Ω, x→ Akx = x+ Ik(x).

The systems of this class are written as follows:

ẋ = f(t, x), t �= tk, (1.2)

Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . , (1.3)

where Δx(tk) = x(t
+
k )− x(tk), Ik : Ω → R

n, k = ±1,±2, . . . .
Let . . . < t−1 < t0 < t1 < t2 < . . . and lim

k→±∞
tk = ±∞. Denote by

x(t) = x(t; t0, x0) the solution of system (1.2), (1.3), satisfying the initial
condition

x(t+0 ) = x(t0). (1.4)

The solution x(t) = x(t; t0, x0) of the initial value problem (1.2), (1.3),
(1.4), is characterized by the following:

(a) For t = t0 the solution x(t) satisfies the initial condition (1.4).
(b) For t ∈ (tk, tk+1], the solution x(t) satisfies the (1.2).
(c) For t = tk the solution x(t) satisfies the relations (1.3).

Class II. Systems with variable impulsive perturbations. For these systems of
impulsive differential equations, the set Mt is represented by a sequence of
hypersurfaces σk : t = τk(x), k = ±1,±2, . . ..

Assume that τk(x)<τk+1(x) for x∈Ω, k= ±1,±2, . . . and lim
k→∞

τk(x)=∞
for x ∈ Ω ( lim

k→−∞
τk(x) = −∞).
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We shall assume that the restriction of the operator At to the hypersurface
σk is given by the operator Akx = x+Ik(x), where Ik : Ω → R

n. The systems
of impulsive differential equations of this class are written in the form

{
ẋ = f(t, x), t �= τk(x),
Δx(t) = Ik(x(t)), t = τk(x(t)), k = ±1,±2, . . . .

(1.5)

The solution x(t) = x(t; t0, x0) of the initial value problem (1.5), (1.4) is
a piecewise continuous function but unlike the solution of (1.2), (1.3), (1.4)
it has points of discontinuity depending on the solution, i.e. the different
solutions have different points of discontinuity. This leads to a number of
difficulties in the investigation of the systems of the form (1.5). One of the
phenomena occurring with such systems is the so called “beating” of the
solutions. This is the phenomenon when the mapping point (t, x(t)) meets
one and the same hypersurface σk several or infinitely many times [94, 138].
Part of the difficulties are related to the possibilities of “merging” of different
integral curves after a given moment, loss of the property of autonomy, etc.

It is clear that the systems of impulsive differential equations with fixed
moments of impulse effect can be considered as a particular case of the
systems with variable impulsive perturbations. Indeed, if t = tk, k =
±1,±2, . . . are fixed moments of time and we introduce the notation σk =
{(t, x) ∈ R × Ω : t = tk}, then the systems of the second class are reduced
to the systems of the first class.

Let f : R × Ω → R
n, τk : Ω → R, Ik : Ω → R

n, Ω ⊂ R
n, τk(x) <

τk+1(x), lim
k→±∞

τk(x) = ±∞ for x ∈ Ω.
Now we shall give one such result.
Let μ > 0, (t0, x0) ∈ R×Ω and

K(t0, x0, μ) = {(t, x) ∈ R×Ω : μ|x− x0| < t− t0}.

Theorem 1.1 ([15]). Let the following conditions hold.

1. The function f(t, x) is continuous in R × Ω and is locally Lipschitz
continuous with respect to x ∈ Ω.

2. The integral curve (t, x(t)), t ∈ R, of (1.5) is contained in R×Ω and

(τk+1, xk+1) ∈ K(τk, x
+
k , μ), τk < τk+1, (1.6)

where (τk, xk) are the points at which the integral curve (t, x(t)), t ∈ R,
meets the hypersurfaces σj ≡ t= τj(x) and x+i =xi+Ij(xi) if (τi, xi)∈ σj.

3. The functions τk(x) are Lipschitz continuous with respect to x ∈ Ω with
constants Lk ≤ μ and

τk(x + Ik(x)) ≤ τk(x) for x ∈ Ω, k = ±1,±2, . . . .
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Then the integral curve (t, x(t)) meets each hypersurface σk at most
once.

Remark 1.1. Condition 1 of Theorem 1.1 is imposed in order to guarantee
the existence and uniqueness of the solution of (1.5).

Corollary 1.1. Theorem 1.1 still holds, if condition (1.6) is replaced by the
condition

||f(t, x)|| ≤M, for (t, x) ∈ R×Ω, (1.7)

where MLk < 1, k = ±1,±2, . . ..

Corollary 1.2. Theorem 1.1 still holds, if condition (1.6) is replaced by the
condition (1.7), and condition 3 is replaced by the following condition

3’. The functions τk(x) are differentiable in Ω and

||∂τk(x)
∂x

|| ≤ Lk < 1

M
, for x ∈ Ω, k = ±1,±2, . . . , (1.8)

sup
0≤s≤1, x∈Ω

〈∂τk
∂x

(x + sIk(x)), Ik(x)
〉
≤ 0, k = ±1,±2, . . . ,

where 〈., .〉 is the scalar product in R
n.

In fact, from (1.8) it follows that the functions τk(x), k = ±1,±2, . . . are
Lipschitz continuous with constants Lk, and

τk(x+ Ik(x)) − τk(x) =
∫ 1

0

〈∂τk
∂x

(x+ sIk(x)), Ik(x)
〉
ds ≤ 0,

i.e. condition 3 of Theorem 1.1 holds.

1.1.1 Existence, Uniqueness and Continuability

Let α < β. Consider the system of impulsive differential equations (1.5).

Definition 1.1. The function ϕ : (α, β) is said to be a solution of (1.5) if:

1. (t, ϕ(t)) ∈ R×Ω for t ∈ (α, β).
2. For t ∈ (α, β), t �= τk(ϕ(t)), k=±1, ±2, . . . the function ϕ(t) is

differentiable and
dϕ(t)

dt
= f(t, ϕ(t)).

3. The function ϕ(t) is continuous from the left in (α, β) and if t = τk(ϕ(t)),
t �= β, then ϕ(t+) = ϕ(t)+Ik(ϕ(t)), and for each k = ±1,±2, . . . and some
δ > 0, s �= τk(ϕ(s)) for t < s < t+ δ.
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Definition 1.2. Each solution ϕ(t) of (1.5) which is defined in an interval of
the form (t0, β) and satisfies the condition ϕ(t+0 ) = x0 is said to be a solution
of the initial value problem (1.5), (1.4).

We note that, instead of the initial condition x(t0) = x0, we have imposed
the limiting condition x(t+0 ) = x0 which, in general, is natural for (1.5) since
(t0, x0) may be such that t0 = τk(x0) for some k. Whenever t0 �= τk(x0), for
all k, we shall understand the initial condition x(t+0 ) = x0 in the usual sense,
that is, x(t0) = x0.

It is clear that if t0 �= τk(x0), k = ±1,±2, . . ., then the existence and
uniqueness of the solution of the initial value problem (1.5), (1.4) depends
only on the properties of the function f(t, x). Thus, for instance, if the
function f(t, x) is continuous in a neighborhood of the point (t0, x0), then
there exists a solution of the initial problem (1.5), (1.4) and this solution is
unique if f(t, x) is Lipschitz continuous in this neighborhood.

If, however, t0 = τk(x0) for some k, that is, (t0, x0) belongs to the
hypersurface σk ≡ t = τk(x), then it is possible that the solution x(t) of
the initial value problem

ẋ = f(t, x), x(t0) = x0 (1.9)

lies entirely in σk.
Consequently, we need some additional conditions on f(t, x) and τk(x) to

guarantee the existence of solution x(t) of the initial value problem (1.9) in
some interval [t0, β), and the validity of the condition

t �= τk(x(t)) for t ∈ (t0, β) and k = ±1,±2, . . . .

Conditions of this type are imposed in the next theorem.

Theorem 1.2 ([15]). Let the following conditions hold:

1. The function f : R×Ω → R
n is continuous in t �= τk(x), k = ±1,±2, . . ..

2. For any (t, x) ∈ R× Ω there exists a locally integrable function l(t) such
that in a small neighborhood of (t, x)

||f(s, y)|| ≤ l(s).
3. For each k = ±1,±2, . . . the condition t1 = τk(x1) implies the existence

of δ > 0 such that
t �= τk(x)

for all 0 < t− t1 < δ and ||x− x1|| < δ.
Then for each (t0, x0) ∈ R×Ω there exists a solution x : [t0, β) → R

n

of the initial value problem (1.5), (1.4) for some β > t0.
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Remark 1.2. Condition 2 of Theorem 1.2 can be replaced by the condition:
2’. For any k = ±1,±2, . . . and (t, x) ∈ σk there exists the finite limit of

f(s, y) as (s, y) → (t, x), s > τk(y).

Remark 1.3. The solution x(t) of the initial value problem (1.5), (1.4) is
unique, if the function f(t, x) is such that the solution of the initial value
problem (1.9) is unique. This requirement is met if, for instance, f(t, x) is
(locally) Lipschitz continuous with respect to x in a neighborhood of (t0, x0).

Now, we shall consider in more detail the system with fixed moments of
impulsive effect:

{
ẋ = f(t, x), t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,

(1.10)

where tk < tk+1, k = ±1,±2, . . . and lim
k→±∞

tk = ±∞.

Let us first establish some theorems.

Theorem 1.3 ([15]). Let the following conditions hold:

1. The function f : R×Ω → R
n is continuous in the sets (tk, tk+1]×Ω, k =

±1,±2, . . ..
2. For each k = ±1,±2, . . . and x ∈ Ω there exists the finite limit of f(t, y)

as (t, y) → (tk, x), t > tk.
Then for each (t0, x0) ∈ R × Ω there exists β > t0 and a solution

x : [t0, β) → R
n of the initial value problem (1.10), (1.4).

If, moreover, the function f(t, x) is locally Lipschitz continuous with
respect to x ∈ Ω then this solution is unique.

Let us consider the problem of the continuability to the right of a given
solution ϕ(t) of system (1.10).

Theorem 1.4 ([15]). Let the following conditions hold:

1. The function f : R×Ω → R
n is continuous in the sets (tk, tk+1]×Ω, k =

±1,±2, . . ..
2. For each k = ±1,±2, . . . and x ∈ Ω there exists the finite limit of f(t, y)

as (t, y) → (tk, x), t > tk.
3. The function ϕ : (α, β) → R

n is a solution of (1.10).

Then the solution ϕ(t) is continuable to the right of β if and only if there
exists the limit

lim
t→β−

ϕ(t) = η

and one of the following conditions hold:

(a) β �= tk for each k = ±1,±2, . . . and η ∈ Ω.
(b) β = tk for some k = ±1,±2, . . . and η + Ik(η) ∈ Ω.
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Theorem 1.5 ([15]). Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 1.1.11 hold.
2. The function f is locally Lipschitz continuous with respect to x ∈ Ω.
3. η + Ik(η) ∈ Ω for each k = ±1,±2, . . . and η ∈ Ω.

Then for any (t0, x0) ∈ R × Ω there exists a unique solution of the
initial value problem (1.10), (1.4) which is defined in an interval of the
form [t0, ω) and is not continuable to the right of ω.

Let the conditions of Theorem 1.5 be satisfied and let (t0, x0) ∈ R × Ω.
Denote by J+ = J+(t0, x0) the maximal interval of the form [t0, ω) in which
the solution x(t; t0, x0) is defined.

Theorem 1.6 ([15]). Let the following conditions hold:

1. Conditions 1, 2 and 3 of Theorem 1.1.12 are met.
2. ϕ(t) is a solution of the initial value problem (1.10), (1.4).
3. There exists a compact Q ⊂ Ω such that ϕ(t) ∈ Q for t ∈ J+(t0, x0).

Then J+(t0, x0) = (t0,∞).

Let ϕ(t) : (α, ω) → R
n be a solution of system (1.10) and consider the

question of the continuability of this solution to the left of α.
If α �= tk, k = ±1,±2, . . . then the problem of continuability to the left

of α is solved in the same way as for ordinary differential equations without
impulses [45]. In this case such an extension is possible if and only if there
exists the limit

lim
t→σ+

ϕ(t) = η (1.11)

and η ∈ Ω.
If α = tk, for some k = ±1,±2, . . ., then the solution ϕ(t) will be

continuable to the left of tk when there exists the limit (1.11), η ∈ Ω, and
the equation x + Ik(x) = η has a unique solution xk ∈ Ω. In this case the
extension ψ(t) of ϕ(t) for t ∈ (tk−1, tk] coincides with the solution of the
initial value problem

{
ψ̇ = f(t, ψ), tk−1 < t ≤ tk,
ψ(tk) = xk.

If the solution ϕ(t) can be continued up to tk−1, then the above procedure
is repeated, and so on. Under the conditions of Theorem 1.5 for each
(t0, x0) ∈ R × Ω there exists a unique solution x(t; t0, x0) of the initial
value problem (1.10), (1.4) which is defined in an interval of the form (α, ω)
and is not continuable to the right of ω and to the left of α. Denote by
J(t0, x0) this maximal interval of existence of the solution x(t; t0, x0) and
set J− = J−(t0, x0) = (α, t0]. A straightforward verification shows that the
solution x(t) = x(t; t0, x0) of the initial value problem (1.10), (1.4) satisfies
the following integro-summary equation
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x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0 +

∫ t

t0

f(s, x(s))ds +
∑

t0<tk<t

Ik(x(tk)), for t ∈ J+,

x0 +

∫ t

t0

f(s, x(s))ds −
∑

t≤tk≤t0
Ik(x(tk)), for t ∈ J−.

(1.12)

Now, we consider the linear system impulsive equations

{
ẋ = A(t)x, t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(1.13)

under the assumption that the following conditions hold:

H1.1. tk < tk+1, k = ±1,±2, . . . and lim
k→±∞

tk = ±∞.

H1.2. A ∈ PC[R,Rn×n], Bk ∈ R
n×n, k = ±1,±2, . . ..

Theorem 1.7 ([15]). Let conditions H1.1 and H1.2 hold. Then for any
(t0, x0) ∈ R × R

n there exists a unique solution x(t) of system (1.13) with
x(t+0 ) = x0 and this solution is defined for t ≥ t0.

If moreover, det(E+Bk) �= 0, k = ±1,±2, . . ., then this solution is defined
for all t ∈ R.

Let Uk(t, s) (t, s ∈ (tk−1, tk]) be the Cauchy matrix [65] for the linear
equation

ẋ(t) = A(t)x(t), tk−1 < t ≤ tk, k = ±1,±2, . . . .

Then by virtue of Theorem 1.7 the solution of the initial problem (1.13),
(1.4) can be decomposed as:

x(t; t0, x0) =W (t, t+0 )x0, (1.14)

where

W (t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk(t, s) as t, s ∈ (tk−1, tk],

Uk+1(t, t
+
k )(E +Bk)Uk(tk, s) as tk−1 < s ≤ tk < t ≤ tk+1,

Uk(t, tk)(E +Bk)
−1Uk+1(t

+
k , s) as tk−1 < t ≤ tk < s ≤ tk+1,

Uk+1(t, t
+
k )

i+1∏
j=k

(E +Bj)Uj(tj , t
+
j−1)(E +Bi)Ui(ti, s)

as ti−1 < s ≤ ti < tk < t ≤ tk+1,

Ui(t, ti)

k−1∏
j=i

(E +Bj)
−1Uj+1(t

+
j , tj+1)(E +Bk)

−1Uk+1(t
+
k , s)

as ti−1 < t ≤ ti < tk < s ≤ tk+1,

is the solving operator of the (1.13).
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1.1.2 Piecewise Continuous Lyapunov Functions

The second method of Lyapunov is one of the universal methods for
investigating the dynamical systems from a different type. The method is
also known as a direct method of Lyapunov or a method of the Lyapunov
functions. Put forward in the end of the nineteenth century by Lyapunov
[111], this method hasn’t lost its popularity today. It has been applied initially
to ordinary differential equations, and in his first work Lyapunov standardized
the definition for stability and generalized the Lagrange’s work on potential
energy. The essence of the method is the investigation of the qualitative
properties of the solutions without an explicit formula. For this purpose we
need auxiliary functions—the so-called Lyapunov functions.

Different aspects of the Lyapunov second method applications for differ-
ential equations are given in [25, 39, 51, 52, 64, 83, 85, 86, 113, 134, 147, 193].

Gradually, there has been an expansion both in the class of the studied
objects and in the mathematical problems investigated by means of the
method.

Consider the system (1.5), and introduce the following notations:

Gk =
{
(t, x) ∈ R×Ω : τk−1(x) < t < τk(x)

}
, G =

⋃
k=±1,±2,...

Gk,

Definition 1.3. A function V : R×Ω → R
+ belongs to the class V0, if:

1. V (t, x) is continuous in G and locally Lipschitz continuous with respect to
its second argument on each of the sets Gk, k = ±1,±2, . . ..

2. For each k = ±1,±2, . . . and (t∗0, x
∗
0) ∈ σk there exist the finite limits

V (t∗−0 , x
∗
0)= lim

(t,x)→(t∗
0
,x∗

0
)

(t,x)∈Gk

V (t, x), V (t∗+0 , x
∗
0)= lim

(t,x)→(t∗
0
,x∗

0
)

(t,x)∈Gk+1

V (t, x)

and the equality V (t∗−0 , x
∗
0) = V (t

∗
0, x

∗
0) holds.

Let the function V ∈ V0 and (t, x) ∈ G. We define the derivative

V̇(1.5)(t, x) = lim
δ→0+

sup
1

δ

[
V (t+ δ, x+ δf(t, x)) − V (t, x)].

Note that if x = x(t) is a solution of system (1.5), then for t �= τk(x(t)),
k = ±1,±2, . . . we have V̇(1.5)(t, x) = D

+
(1.5)V (t, x(t)), where

D+
(1.5)V (t, x(t)) = lim

δ→0+
sup

1

δ

[
V (t+ δ, x(t+ δ))− V (t, x(t))] (1.15)
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is the upper right-hand Dini derivative of V ∈ V0 (with respect to system
(1.5)).

The class of functions V0 is also used for investigation of qualitative
properties (such as stability, boundedness, almost periodicity) of the solutions
of impulsive differential equations with fixed moments of impulse effect (1.10).
In this case, τk(x) ≡ tk, k = ±1,±2, . . ., σk are hyperplanes in R

n+1, the
sets Gk are

Gk = {(t, x) ∈ R×Ω : tk−1 < t < tk},
and the condition 2 of Definition 1.3 is substituted by the condition:

2’. For each k = ±1,±2, . . . and x ∈ Ω, there exist the finite limits

V (t−k , x) = lim
t→tk
t<tk

V (t, x), V (t+k , x) = lim
t→tk
t>tk

V (t, x),

and the following equalities are valid

V (t−k , x) = V (tk, x).

For t �= tk, k = ±1,±2, . . . the upper right-hand derivative of Lyapunov’s
function V ∈ V0, with respect to system (1.10) is

D+V(1.10)(t, x(t)) = lim
δ→0+

sup
1

δ

[
V (t+ δ, x(t+ δ)) − V (t, x)].

In Chap. 3 we shall use the next classes of piecewise continuous Lyapunov’s
functions

V1 =
{
V : R×Ω ×Ω → R

+, V is continuous in (tk−1, tk]×Ω ×Ω and

lim
(t,x,y)→(tk ,x0,y0)

t>tk

V (t, x, y) = V (t+k , x0, y0)
}
.

Definition 1.4. A function V ∈ V1 belongs to class V2, if:

1. V (t, 0, 0) = 0, t ∈ R.
2. The function V (t, x, y) is locally Lipschitz continuous with respect to its

second and third arguments with a Lipschitz constant H1 > 0, i.e. for
x1, x2 ∈ Ω, y1, y2 ∈ Ω and for t ∈ R it follows

|V (t, x1, x2)− V (t, y1, y2)| ≤ H1

(||x1 − x2||+ ||y1 − y2||
)

on each of the sets Gk, k = ±1,±2, . . ..
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Let V ∈ V2, t �= tk, k = ±1,±2, . . . , x ∈ PC[R, Ω], y ∈ PC[R, Ω].
We introduce

D+V (t, x(t), y(t))

= lim
δ→0+

sup
1

δ

[
V (t+ δ, x(t) + δf(t, x(t)), y(t) + δf(t, y(t)))− V (t, x(t), y(t))].

1.1.3 Impulsive Differential Inequalities

In this section we shall present the main comparison results and integral
inequalities we use. The essence of the comparison method is in studying the
relations between the given system and a comparison system so that some
properties of the solutions of comparison system should imply the correspond-
ing properties of the solutions of system under consideration. These relations
are obtained employing differential inequalities. The comparison system is
usually of lower order and its right-hand side possesses a certain type of
monotonicity, which considerably simplifies the study of its solutions.

Define the following class:
PC1[J,Ω] = {σ ∈ PC[J,Ω] : σ(t) is continuously differentiable every-

where except the points tk at which σ̇(t−k ) and σ̇(t
+
k ) exist and σ̇(t

−
k ) = σ̇(tk),

k = ±1,±2, . . .}.
Together with the system (1.10) we shall consider the comparison equation{

u̇(t) = g(t, u(t)), t �= tk,
Δu(tk) = Bk(u(tk)), k = ±1,±2, . . . ,

(1.16)

where g : R× R
+ → R

+, Bk : R+ → R
+, k = ±1,±2, . . ..

Let t0 ∈ R
+ and u0 ∈ R

+. Denote by u(t) = u(t; t0, u0) the solution
of (1.16) satisfying the initial condition u(t+0 ) = u0 and by J+(t0, u0)—the
maximal interval of type [t0, β) in which the solution u(t; t0, u0) is defined.

Definition 1.5. The solution u+ : J+(t0, u0) → R of the (1.16) for which
u+(t0; t0, u0) = u0 is said to be a maximal solution if any other solution
u : [t0, ω̃) → R, for which u(t0) = u0 satisfies the inequality u+(t) ≥ u(t)
for t ∈ J+(t0, u0) ∩ [t0, ω̃).

Analogously, the minimal solution of (1.16) is defined.
In the case when the function g : R×R

+ → R
+ is continuous and monotone

increasing, all solutions of (1.16) starting from the point (t0, u0) ∈ [t0,∞)×
R

+ lie between two singular solutions—the maximal and the minimal ones.
The next result follows directly from the similar results in [94].

Theorem 1.8. Let the following conditions hold:

1. Condition H1.1 holds.
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2. The function g : R×R
+ → R

+ is continuous in each of the sets (tk−1, tk]×
R

+, k = ±1,±2, . . ..
3. Bk ∈ C[R+,R+] and ψk(u) = u + Bk(u) ≥ 0, k = ±1,±2, . . . are non-

decreasing with respect to u.
4. The maximal solution u+ : J+(t0, u0) → R

+ of (1.16), u+(t+0 ; t0, u0) = u0
is defined in R.

5. The function V ∈ V0 is such that V (t+0 , x0) ≤ u0,

V (t+, x+ Ik(x)) ≤ ψk(V (t, x)), x ∈ Ω, t = tk, k = ±1,±2, . . . ,

and the inequality

D+
(1.10)V (t, x(t)) ≤ g(t, V (t, x(t))), t �= tk, k = ±1,±2, . . .

is valid for t ∈ R.
Then

V (t, x(t; t0, x0)) ≤ u+(t; t0, u0), t ∈ R. (1.17)

In the case when g(t, u) = 0 for (t, u) ∈ R × R
+ and ψk(u) = u for

u ∈ R
+, k = ±1,±2, . . ., the following corollary holds.

Corollary 1.3. Let the following conditions hold:

1. Condition H1.1 holds.
2. The function V ∈ V0 is such that

V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω, t = tk, k = ±1,±2, . . . ,

and the inequality

D+
(1.10)V (t, x(t)) ≤ 0, t �= tk, k = ±1,±2, . . .

is valid for t ∈ R.
Then

V (t, x(t; t0, x0)) ≤ V (t+0 , x0), t ∈ R.

We shall next consider Bihari and Gronwall type of integral inequality in
a special case with impulses.

Theorem 1.9. Let the following conditions hold:

1. Condition H1.1 holds.
2. The functions m : R → R

+, p : R → R
+ are continuous in each of the

sets (tk−1, tk], k = ±1,±2, . . ..
3. C ≥ 0, βk ≥ 0 and
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m(t) ≤ C +

∫ t

t0

p(s)m(s)ds+
∑

t0<tk<t

βkm(tk). (1.18)

Then
m(t) ≤ C

∏
t0<tk<t

(1 + βk)e
∫

t
t0
p(s)ds

. (1.19)

Proof. We shall proof this theorem by the method of mathematical induction
[138].

Let t ∈ [t0, t1]. Then the inequality (1.18) is in the form

m(t) ≤ C +

∫ t

t0

p(s)m(s)ds.

From the Gronwall–Bellman’s inequality, it follows that

m(t) ≤ Ce
∫

t
t0
p(s)ds

,

i.e. for t ∈ [t0, t1] the inequality (1.19) holds.
Let the inequality (1.19) holds for t ∈ [tk, tk+1], k = 1, 2, . . . , k = i− 1.
Then, for t ∈ (ti, ti+1] it follows

m(t) ≤ C +

i∑
k=1

βkC

k−1∏
j=1

(1 + βj)e
∫ tk
t0

p(s)ds

+
i∑

k=1

∫ tk

tk−1

p(s)C
k−1∏
j=1

(1 + βj)e
∫

s
t0
p(σ)dσ

ds+

∫ t

tk

p(s)m(s)ds

= C
[
1 +

i∑
k=1

k−1∏
j=1

(1 + βj)e
∫ tk
t0

p(s)ds(1 + βk)−
i∑

k=1

k−1∏
j=1

(1 + βj)e
∫ tk−1
t0

p(s)ds
]

= C

k∏
j=1

(1 + βj)e
∫ tk
t0
p(s)ds +

∫ t

tk

p(s)m(s)ds.

Consequently, for the function m(t), t ∈ (tk, tk+1] the next inequality holds

m(t) ≤ C1 +

∫ t

tk

p(s)m(s)ds,

where

C1 = C
i∏

k=1

(1 + βk)e
∫ ti
t0
p(s)ds.
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Then, from Gronwall–Bellman’s inequality for t ∈ (tk, tk+1] it follows that

m(t) ≤ Ce
∫ t
t0
p(s)ds

,

or finally

m(t) ≤ C
∏

t0<tk<tk

(1 + βk)e
∫ t
t0
p(s)ds

. ��

The functions of Lyapunov and differential inequalities defined above are
used in the investigation of stability of the impulsive systems. We shall use
the next definitions for stability of these systems.

Let Bh =
{
x ∈ R

n, ||x|| ≤ h}, h > 0.

Definition 1.6 ([138]). The zero solution x(t) ≡ 0 of system (1.10) is said
to be:

(a) Stable, if

(∀ε > 0)(∀t0 ∈ R)(∃δ > 0)(∀x0 ∈ Bδ)(∀t ≥ t0) : ||x(t; t0, x0)|| < ε.

(b) Uniformly stable, if the number δ in (a) is independent of t0 ∈ R.
(c) Attractive, if

(∀t0 ∈ R)(∃λ > 0)(∀x0 ∈ Bλ) : lim
t→∞ ||x(t; t0, x0)|| = 0.

(d) Equi-attractive, if

(∀t0 ∈ R)(∃λ > 0)(∀ε > 0)(∀x0 ∈ Bλ)
(∃T > 0)(∀t ≥ t0 + T ) : ||x(t; t0, ϕ0)|| < ε.

(e) Uniformly attractive, if the numbers λ and T in (d) are independent of
t0 ∈ R.

(f) Asymptotically stable, if it is stable and attractive.
(g) Uniformly asymptotically stable, if it is uniformly stable and uniformly

attractive.

Let ψ(t) = ψ(t; t0, ψ0), ψ(t
+
0 ) = ψ0 ∈ Ω, be a solution of system (1.10).

Definition 1.7 ([138]). The solution ψ(t) is said to be:

(a) Stable, if

(∀ε > 0)(∀t0 ∈ R)(∃δ > 0)(∀x0 ∈ Ω, ||x0 − ψ(t+0 )|| < δ) :
||x(t; t0, x0)− ψ(t)|| < ε.



16 1 Impulsive Differential Equations and Almost Periodicity

(b) Uniformly stable, if the number δ in (a) is independent of t0 ∈ R.
(c) Attractive, if

(∀t0 ∈ R)(∃λ > 0)(∀x0 ∈ Ω, ||x0 − ψ(t+0 )|| < λ)
limt→∞ x(t; t0, ϕ0) = ψ(t).

(d) Equi-attractive, if

(∀t0 ∈ R)(∃β > 0)(∀ε > 0)(∀x0 ∈ Ω, ||x0 − ψ(t+0 )|| < β)
(∃σ > 0)(∀t ≥ t0 + σ) : ||x(t; t0, x0)− ψ(t)|| < ε.

(e) Uniformly attractive, if the numbers λ and T in (d) are independent of
t0 ∈ R.

(f) Asymptotically stable, if it is stable and attractive.
(g) Uniformly asymptotically stable, if it is uniformly stable and uniformly

attractive.
(h) Exponentially stable, if

(∃λ > 0)(∀α > 0)(∀t0 ∈ R)(∃γ = γ(α) > 0)

(∀x0 ∈ Ω, ||x0 − ψ(t+0 )|| < α)(∀t ≥ t0) :
||x(t; t0, x0)− ψ(t)|| < γ(α)||x0 − ψ(t+0 )|| exp{−λ(t− t0)}.

1.2 Almost Periodic Sequences

In this part, we shall follow [138] and consider the main definitions and
properties of almost periodic sequences.

We shall consider the sequence {xk}, xk ∈ R
n, k = ±1,±2, . . ., and let

ε > 0.

Definition 1.8. The integer number p is said to be an ε-almost period of
{xk}, if for each k = ±1,±2, . . .

||xk+p − xk|| < ε. (1.20)

It is easy to see that, if p and q are ε-almost periods of {xk}, then p+q, p−q
are 2ε-almost periods of the sequence {xk}.
Definition 1.9. The sequence {xk}, xk ∈ R

n, k = ±1,±2, . . . is said to be
almost periodic, if for an arbitrary ε > 0 there exists a relatively dense set of
its ε-almost periods, i.e there exists a natural number N = N(ε) such that
for an arbitrary integer number k, between integer numbers in the interval
[k, k+N ], there exists at least one integer number p for which the inequality
(1.20) holds.
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Theorem 1.10. Let the following conditions hold:

1. The sequence {xk} ⊂ Bα, k = ±1,±2, . . ., is almost periodic.
2. The function y = f(x) is uniformly continuous in Bα.

Then:

1. The sequence {xk}, k = ±1,±2, . . . is bounded.
2. The sequence {yk}, yk = f(xk), k = ±1,±2, . . . is almost periodic.

Proof of Assertion 1. Let ε > 0 and k be an arbitrary integer number.
Then there exists a natural number N such that in the interval [−k,−k+N ]
there exists an ε-almost period p of {xk}.

From −k ≤ p ≤ −k +N , we get 0 ≤ p+ k ≤ N and

||xk|| ≤ ||xk − xk+p||+ ||xk+p|| < ε+ max
0≤k≤N

||xk||.

Then the sequence {xk} is bounded.
Proof of Assertion 2. For ε > 0 there exists δ = δ(ε) > 0 such that

||f(x′)− f(x′′)|| < ε,

when ||x′ − x′′|| < δ, x′, x′′ ∈ Bα.
If p is a δ-almost period of the sequence {xk}, then we have

||yk+p − yk|| = ||f(xk+p)− f(xk)|| < ε, k = ±1,±2, . . . .

Therefore, p is an ε-almost period of {yk}. ��
Let us now consider the set of all bounded sequences,

BS =
{
{xk}, xk ∈ R

n, k = ±1,±2, . . .
}

with norm |xk|∞ = sup
k=±1,±2,...

||xk||.
Clearly, BS is a Banach space, and the sequence of almost periodic

sequences {xmk }, k = ±1,±2, . . . , m = 1, 2, . . ., is convergent to the sequence
{yk}, if there exists the limit lim

m→∞ |xmk − yk|∞ = 0.

Then on the set BS the following theorems hold.

Theorem 1.11 ([138]). Let the following conditions hold:

1. For each m = 1, 2, . . . the sequence {xmk }, k = ±1,±2, . . . , is almost
periodic.

2. There exists a limit {yk}, k = ±1,±2, . . . of the sequence {xmk }, k =
±1,±2, . . . as m→ ∞.

Then the limit sequence {yk}, k = ±1,±2, . . . is almost periodic.
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Theorem 1.12. The sequence {xk}, k = ±1,±2, . . . is almost periodic if
and only if for any sequence of integer numbers {mi}, i = ±1,±2, . . . there
exists a subsequence {mij}, such that {xk+mij

} is convergent for j → ∞
uniformly on k = ±1,±2, . . ..

Proof. First, let {xk} be almost periodic, {mi} i = ±1,±2, . . . be an arbitrary
sequence of integer numbers and let ε > 0. Then, there exists N = N(ε) such
that in the interval [mi − N,mi] there exists an ε-almost period pi of the
sequence {xk}. From mi −N < pi ≤ mi, it follows 0 ≤ mi − pi < N .

Let now qi = mi−pi. The sequence {qi} has only finite numbers of elements
and there exists a number q such that qi = q for unbounded numbers of
indices i1j .

Then, from

||xk+mi − xk+qi || = ||xk+mi − xk+mi−pi || < ε

it follows that
||xk+m

i1
j

− xk+q || < ε
for k = ±1,±2, . . ..

Let us use the decreasing sequence {εj}, εj > 0, j = ±1,±2, . . ., and let
the sequence {xk+m

i1
j

} be a subsequence of {xk+mi}, such that ||xk+m
i1
j

−
xk+q1 || < ε1.

Then, we choice a subsequence {xk+m
i2
j

} from the sequence {xk+m
i1
j

} such

that ||xk+m
i2
j

− xk+q2 || < ε2. If we continue, we will find a subsequence

{xk+mir
j
} for which ||xk+mir

j
− xk+qr || < εr. Finally, we construct a diagonal

sequence {xk +mijj
} and we shall proof that it is convergent uniformly on k

for j → ∞.
Let ε > 0 and the number N ′ is such that εN ′ < ε

2 . Then, for r, s ≥ N ′,
we have

||xk+mirs
− xk+miss

|| ≤ ||xk+mirr
− xk+qN′ ||

+||xk+qN′ − xk+miss
|| < εN ′ + εN ′ < ε,

since {mirj
} and {misj

}, j = ±1,±2, . . ., are subsequences of the sequence

{mN ′
ij

}, j = ±1,±2, . . ..
Therefore,

||xk+mirr
− xk+miss

|| < ε,
and the sequence {xk+m

i
j
j

}, j = ±1,±2, . . . is uniformly convergent on k.

On the other hand, let us suppose that the sequence {xk} is not almost
periodic. Then there exists a number ε0 > 0 such that for any natural
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number N , we have N consecutive integer numbers and between them there
is not an ε0-almost period.

Let now LN be such a set of consecutive integer numbers, and let we
choice arbitrary m1 and m2, so that m1 −m2 ∈ L1. Let L1 = Lν1 and we
choice ν2 > |m1 −m2| and m3, such that m3 −m1,m3 −m2 ∈ Lν2 . This is
possible because, if l, l+ 1, . . . , l+ ν2 − 1 are from Lν2 and m2 ≤ m1, we can
take m3 = l+m1, such that m3 −m1 ∈ Lν2 and from

m3 −m2 = m3 −m1 +m1 −m2 < l + ν2, m3 −m2 ≥ l

it follows that m3 −m2 ∈ Lν2 .
Now for an arbitrary k, we can choice νk > max

1≤μ<ν≤k
|mμ −mν | and mk+1

such that mk+1 −mμ ∈ Lνk for 1 ≤ μ ≤ k. Then, for the sequence {mk}, we
have

sup
k=±1,±2,...

||xk+mr − xk+ms || = sup
k=±1,±2,...

||xk+mr−ms − xk||.

On the other hand,mr−ms ∈ Lνr−1 , where r ≥ s and it is not an ε0-almost
period. Then, there exists a number k for which ||xk+mr−ms −xk|| ≥ ε0, and
we have that sup

k=±1,±2,...
||xk+mr − xk+ms || ≥ ε0, or ||xk+mr − xk+ms || ≥ ε0.

Therefore, for the sequence {mk}, there exists a subsequence {mij}, such
that the sequence {xk+mij

}, j = ±1,±2, . . . is uniformly convergent on
k = ±1,±2, . . .. Then, there exists an index j0, such that for j, l ≥ j0, we get
||xk+mij

− xk+mil
|| < ε0, which is a contradiction. ��

From this theorem, we get the next corollary.

Corollary 1.4. Let the sequences {xk}, {yk}, xk, yk ∈ R
n are almost

periodic and the sequence {αk}, k = ±1,±2, . . ., of real numbers is almost
periodic.

Then the sequences {xk + yk} and {αkxk}, k = ±1,±2, . . ., are almost
periodic.

From Theorem 1.12 and Corollary 1.4 it follows that the set of all almost
periodic sequences {xk}, k = ±1,±2, . . . , xk ∈ R

n is a linear space, and
equipped with the norm |xk|∞ = sup

k=±1,±2,...
||xk|| is a Banach space.

Theorem 1.13. Let the sequences {xk}, {yk}, k = ±1,±2, . . . , xk, yk ∈
R
n, are almost periodic.
Then for any ε > 0 there exists a relatively dense set of their common

ε-almost periods.

Proof. Let ε > 0 be fixed. There exist integer numbers N1 = N1(ε) and N2 =
N2(ε) such that between integers in the intervals [i, i+N1] and [i, i+N2] there
exists at least one ε

2 -almost period of the sequences {xk}, {yk}, respectively.
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Let now N3 = N3(ε) = max{N1, N2}. Then there exists at least one ε
2 -

almost period p1 of the sequence {xk} and one ε
2 -almost period p2 of the

sequence {yk} from the integer numbers in the interval [i, i + N3]. Since
|p1− p2| ≤ N3, then the difference p2− p1 has only a finite number of values,
for arbitrary choices of the N3 consecutive integer numbers. The pairs (p1, p2)
and (p′1, p

′
2, ) are said to be equivalent, if |p1 − p2| = |p′1 − p′2|. Since |p1 − p2|

can take only a finite number of values, then there exist a finite number
classes of equivalence with respect to this relation of equivalence.

Let we choice arbitrary representative pairs (pr1, p
r
2), r = 1, 2, . . . , s, and

let N4 = N4(ε) = max
1≤r≤s

|pr1|, N = N3 + 2N4.

We shall show that there exists an ε-almost period from integers in [i,
i+N4], which is common for the sequences {xk} and {yk}. Let i be an integer,
p1, p2 be ε

2 -almost periods belong to the interval [i + N4, i + N4 + N3], and
the pair (pr1, p

r
2) be from the same class like (p1, p2, ), so we have |p1 − p2| =

|pr1 − pr2|. Then, from pr1 − pr2 = p1 − p2, or pr1 − pr2 = p2 − p1, it follows
pr1 − p1 = pr2 − p2 = −p, or pr1 + p1 = pr2 + p2 = p.

On the other hand, from the inequality |pr1| ≤ N4, we have that i <
p1 + p

r
1 ≤ i+N3 +2N4 = i+N and i < p1 − pr1 ≤ i+N3 +2N4 = i+N , i.e.

in the both cases i < p ≤ i +N . Then, the number p is a common ε-almost
period for the sequences {xk} and {yk}.

Indeed,

||xk+p − xk|| = ||xk+p1±pr1 − xk|| ≤ ||xk+p1±pr1 − xk+p1 ||

+||xk+p1 − xk|| <
ε

2
+
ε

2
= ε,

||yk+p − yk|| = ||yk+p2±pr2 − yk|| ≤ ||yk+p2±pr2 − yk+p2 ||
+||yk+p2 − yk|| <

ε

2
+
ε

2
= ε. ��

Theorem 1.14 ([138]). For any almost periodic sequence {xk}, k =
±1,±2, . . . , xk ∈ R

n there exists uniformly on k the average value

lim
n→∞

1

n

k+n−1∑
j=k

xk =M(xk) <∞.

Now we shall consider the set B,
B =

{
{tk}, tk ∈ R, tk < tk+1, k = ±1,±2, . . . , lim

k→±∞
tk = ±∞

}
of

all unbounded increasing sequences of real numbers, and let i(t, t+A) is the
number of the points tk in the interval (t, t+A].

Lemma 1.1. Let {tk} ∈ B be such that the sequence {t1k}, t1k = tk+1 −
tk, k = ±1,±2, . . . is almost periodic.
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Then, uniformly on t ∈ R there exists the limit

lim
A→∞

i(t, t+A)

A
= p <∞. (1.21)

Proof. We shall show that there exists a nonzero limit

lim
n→∞

tn
n

=
1

p
<∞.

Without loss of generality, let t−1 < 0 and t1 ≥ 0. Then,

tn = t1 +

n−1∑
j=1

t1j ,

and
tn
n

=
t1
n

+
1

n

n−1∑
j=1

t1j .

The sequence {t1k} is almost periodic, and from Theorem 1.14 it follows
that there exists an average value and the finite limit

lim
n→∞

1

n

n−1∑
j=1

t1j �= 0,

since t1k > 0.
Then,

lim
n→∞

tn
n

= lim
n→∞

{ t1
n

+
1

n

n−1∑
j=1

t1j

}
=

1

p
�= 0,

and there exists

lim
n→∞

i(0, tn)

tn
= p. (1.22)

Now, from
A

i(0, A)
=
tk + θk
k

for a natural number k and 0 ≤ θk ≤ sup
k=±1,±2,...

{t1k}, we have

A

i(0, A)
− tk
k

= o(
1

k
),

where o( 1k ) is the Landaw symbol.
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Then, from (1.22) and from the last equality, we get

lim
n→∞

i(0, A)

A
= p.

On the other hand, from the almost periodicity of {t1k} it follows

∣∣∣
ν+k−1∑
j=ν

t1j −
k−1∑
j=1

t1j

∣∣∣ ≤ εk

4
+ 2N sup

j=±1,±2,...
{t1j}. (1.23)

Using (1.23), we have

∣∣∣1
k

νk−1∑
j=(ν−1)k

t1j −
1

k

k−1∑
j=1

t1j

∣∣∣ ≤ ε

4
+

2N

k
sup

j=±1,±2,...
{t1j},

where ν = 1, 2, . . ..
Therefore, for

1

n

n∑
ν=1

[1
k

νk−1∑
j=(ν−1)k

t1j −
1

k

k−1∑
j=1

t1j

]
=

1

nk

nk−1∑
j=1

t1j −
1

k

k−1∑
j=1

t1j ,

we have ∣∣∣ 1
nk

nk−1∑
j=1

t1j −
1

k

k−1∑
j=1

t1j

∣∣∣ ≤ ε

4
+

2N

k
sup

j=±1,±2,...
{t1j}. (1.24)

Then, from (1.23) and (1.24) it follows

∣∣∣1
k

ν+k−1∑
j=ν

t1j −
1

p

∣∣∣ < ε
2
+

4N

k
sup

j=±1,±2,...
{t1j},

or

lim
n→∞

tk+n − tk
n

=
1

p
(1.25)

uniformly on k = ±1,±2, . . ..
Let in the interval [t, t + A] there exist i elements of the sequence

{tk}, tν+1, tν+2, . . . , tν+i.
Then, we get

A

i(t, t+A)
=
A

i
=
tν+i − tν + θi

i
, |θi| ≤ sup

k=±1,±2,...
{t1k}.
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Now, it follows that

lim
A→∞

i(t, t+A)

A
= p <∞

for all t ∈ R. ��
We shall consider the sequences {tjk}, tjk = tk+j − tk, k, j = ±1,±2, . . ..

It is easy to see that

tjk+i − tjk = tik+j − tik, tjk − tik = tj−ik+i, i, j, k = ±1,±2, . . . . (1.26)

��
Definition 1.10. The set of sequences {tjk}, tjk = tk+j−tk, k, j = ±1,±2, . . .,
is said to be uniformly almost periodic, if for an arbitrary ε > 0 there exists
a relatively dense set of ε-almost periods, common for all sequences {tjk}.
Example 1.1 ([138]). Let {αk}, αk ∈ R, k = ±1,±2, . . . be an almost
periodic sequence such that

sup
k=±1,±2,...

∣∣αk∣∣ = α < A
2
, A > 0,

and let tk = kA+ αk, k = ±1,±2, . . ..
Then

tk+1 − tk ≥ A− 2α > 0,

and lim
k→±∞

tk = ±∞.

Let ε > 0 and p be an
ε

2
-almost period of the sequence {αk}. Then, for all

integers k and j it follows

∣∣tjk+p − tjk∣∣ = ∣∣αk+j+p − αk+j |+ ∣∣αk+p − αk∣∣ < ε.
The last inequality shows that the set of sequences {tjk} is uniformly almost
periodic.

Example 1.2 ([67]). Let tk = k + αk, where

αk =
1

4
|cosk − cosk

√
2|, k = ±1,±2, . . . .

The sequence {tk} is strictly increasing, since we have

tk+1 − tk = 1 +
1

4
|cos(k + 1)− cos(k + 1)

√
2| − 1

4
|cosk − cosk

√
2| ≥ 1

2
,

and it is easy to see that lim
k→±∞

tk = ±∞.
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We shall prove that the set of sequences {tjk} is uniformly almost periodic.

Let ε > 0 and p be an
ε

2
-almost period of the sequence {αk}. Then for all

integers k and j, we have

∣∣tjk+p − tjk∣∣ = ∣∣tk+p+j − tk+p − tk+j + tp∣∣
≤ ∣∣αk+p+j − αk+j |+ ∣∣αk+p − αk∣∣ < ε,

and from Definition 1.10 it follows that the set of sequences {tjk} is uniformly
almost periodic.

We shall use the following properties of the uniformly almost periodic
sequences.

Lemma 1.2 ([138]). Let the set of sequences {tjk}, tjk = tk+j − tk, k, j =
±1,±2, . . ., be uniformly almost periodic. Then for each p > 0 there exists
a positive integer N such that on each interval of a length p, there exist no
more than N elements of the sequence {tk} and

i(s, t) ≤ N(t− s) +N, (1.27)

where i(s, t) is the number of points tk in the interval (s, t).

Lemma 1.3 ([138]). Let the set of sequences {tjk}, tjk = tk+j − tk, k, j =
±1,±2, . . ., be uniformly almost periodic. Then for each ε > 0 there exists a
positive number l = l(ε) such that for each interval A of a length l, there exist
a subinterval I ⊂ A of a length ε > 0, and an integer number q such that

∣∣tqk − r∣∣ < ε, k = ±1,±2, . . . , r ∈ I. (1.28)

Lemma 1.4 ([63]). Let the set of sequences {tjk}, tjk = tk+j − tk, k, j =
±1,±2, . . ., be uniformly almost periodic, and let the function Φ(t) be almost
periodic in sense of Bohr. Then, for each ε > 0 there exists a positive l = l(ε)
such that for each interval A of a length l, there exists r ∈ A and an integer
number q such that

∣∣tqk − r∣∣ < ε, ∣∣Φ(t+ r)− Φ(t)∣∣ < ε,
for all k = ±1,±2, . . ., and t ∈ R.

Lemma 1.5 ([63]). Let the set of sequences {tjk}, tjk = tk+j − tk, k, j =
±1,±2, . . ., be uniformly almost periodic, and let the function Φ(t) be almost
periodic in sense of Bohr. Then the sequence {Φ(tk)} is almost periodic.

Definition 1.11 ([139]). The set T ∈ B is almost periodic, if for every
sequence of real numbers {s′m} there exists a subsequence {sn}, sn = s′mn
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such that T − sn = {tk − sn} is uniformly convergent for n → ∞ to the set
T1 ∈ B.
Lemma 1.6. The set of sequences {tjk}, tjk = tk+j − tk, k, j = ±1,±2, . . .
is uniformly almost periodic if and only if for every sequence of real numbers
{s′m} there exists a subsequence {sn}, sn = s′mn

such that T −sn = {tk−sn}
is uniformly convergent for n→ ∞ on B.
Proof. The proof follows directly from Theorem 1 in [139]. ��

In the investigation of the existence of almost periodic solutions of
impulsive differential equations, the question for the separation from the
origin of the sequences {tk} ∈ B is very important. Hence, we always shall
suppose that the following inequality

inf
k=±1,±2,...

t1k = θ > 0

holds.
We shall use, also, the set UAPS, UAPS ⊂ B for which the sequences

{tjk}, tjk = tk+j − tk, k, j = ±1,±2, . . ., form uniformly almost periodic set
and inf

k=±1,±2,...
t1k = θ > 0.

1.3 Almost Periodic Functions

In this part we shall consider the main definitions and properties of almost
periodic piecewise continuous functions.

Definition 1.12. The function ϕ ∈ PC[R,Rn] is said to be almost periodic,
if the following holds:

(a) {tk} ∈ UAPS.
(b) For any ε > 0 there exists a real number δ = δ(ε) > 0 such that, if the

points t′ and t′′ belong to one and the same interval of continuity of ϕ(t)
and satisfy the inequality |t′ − t′′| < δ, then ||ϕ(t′)− ϕ(t′′)|| < ε.

(c) For any ε > 0 there exists a relatively dense set T such that, if τ ∈ T ,
then ||ϕ(t+τ)−ϕ(t)|| < ε for all t ∈ R satisfying the condition |t−tk| > ε,
k = ±1,±2, . . ..

The elements of T are called ε-almost periods.

Example 1.3 ([67]). Let {μk}, μk ∈ R, k = ±1,±2, . . ., be an almost
periodic sequence and {tk} ∈ UAPS, be uniformly almost periodic. Then
the function ϕ(t) = μk, tk ≤ t < tk+1 is almost periodic.

Now we shall consider some properties of almost periodic functions.
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Theorem 1.15. Every almost periodic function is bounded on the real
line.

Proof. Let the function ϕ ∈ PC[R,Rn] be almost periodic, and let the dense
coefficient of the set T 1 be l = l(1). This means, that between the integer
numbers k and k + l there exists an integer number p such that

|tpk − τ | < ε.

Let
M = max

0≤t≤l
||ϕ(t)||, ||ϕ(t′)− ϕ(t′′)|| ≤M1, M1 > 0

for |t′−t′′| ≤ 1, where t′, t′′ belong to one and the same interval of continuity
of ϕ(t). From Definition 1.12 it follows that for all t ∈ R and |t − tk| > 1,
there exists an 1-almost period r such that t + r ∈ [0, l] and ||ϕ(t+r) −
ϕ(t)|| ≤ 1. Now, for all t ∈ R, we have ||ϕ(t)|| < M +M1+1, and the proof is
complete. ��
Theorem 1.16. If ϕ ∈ PC[R,Rn] is an almost periodic function, then for
any ε > 0 there exists a relative dense set of intervals with a fixed length
γ, 0 < γ < ε which contains ε−almost periods of the function ϕ(t).

Proof. Let Γ be the set of all ε
2 -almost periods of the function ϕ(t), and

let l be the dense coefficient of Γ . Let the number γ
2 = δ( ε2 ) is defined by

the uniform continuity of ϕ(t). Hence, if t′, t′′ belong to one and the same
interval of continuity of the function ϕ(t) and |t′ − t′′| < γ

2 , then

||ϕ(t′)− ϕ(t′′)|| < ε
2
.

Let for the simplicity γ < ε
2 . Set L = l + γ, and consider an arbitrary

interval [a, a+ L]. From the definition of the almost period of a function, it
follows that there exists an ε

2 -almost period r ∈ [a+ γ
2 , a+

γ
2 + l], such that

[r − γ
2 , r +

γ
2 ] ⊂ [a, a+ L].

Let now ξ be an arbitrary number from the interval [r − γ
2 , r +

γ
2 ]. Then,

from the inequality |ξ− r| < δ, if t′ = t− r+ ξ, t ∈ R is such that |t− tk| > ε,
we get |t′ − tk| > ε

2 and

||ϕ(t+ ξ)− ϕ(t)|| ≤ ||ϕ(t′ + r)− ϕ(t′)||+ ||ϕ(t′)− ϕ(t)||
<
ε

2
+
ε

2
= ε. ��

Theorem 1.17. Let ϕ ∈ PC[R,Rn] be an almost periodic function with a
range Y ⊂ R

n. If the function F (y) is uniformly continuous with a domain
Y , then the function F (ϕ(t)) is almost periodic.

Proof. The proof is trivial and we omit the details in this book. ��
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Theorem 1.18. For every two almost periodic functions with points of
discontinuity from the sequence {tk} ∈ UAPS and for arbitrary ε > 0, there
exists a relatively dense set of their common ε-almost periods.

Proof. Let ϕ1(t) and ϕ2(t) be almost periodic functions with a common
sequence {tk} ∈ UAPS of points of discontinuity. From Theorem 1.16 it
follows, that there exist numbers l1 and l2, such that each of the intervals
[a, a+ l1] and [a, a+ l2] will contain corresponding ε

4 -almost periods r1 and
r2, which are factors of the number γ, 0 < γ < ε

4 . If we set l = max{l1, l2},
then there exist a pair of ε4 -almost periods r1 = n′γ and r2 = n′′γ for every
interval of the form [a, a+ l], where n′ and n′′ are integer numbers.

Since r1 − r2 = (n′ − n′′)γ = nγ and |nγ| ≤ l, then the number nγ takes
only finite values, n1γ, n2γ, . . . , npγ . Let they are represented by the pair of
numbers (r11 , r

1
2), (r

2
1 , r

2
2), . . . , (r

p
1 , r

p
2) such that rs1− rs2 = nsγ, s = 1, 2, . . . , p.

Set max
s

|rs1| = A and let [a, a + l + 2A] be an arbitrary interval with the

length l + 2A. We choice in the interval [a + A, a + l + A] two ε
4 -almost

periods r1 = n′γ and r2 = n′′γ of the functions ϕ1(t) and ϕ2(t), respectively,
and let r1 − r2 = nsγ = rs1 − rs2. Then, we have

r = r1 − rs1 > r2 − rs2, r ∈ [a, a+ l + 2A]. (1.29)

All numbers defined by (1.29), which are factors of γ, form a relatively
dense set of numbers T . Now we shall show, that there exists a relatively
dense set T 0 ⊂ T , such that r0 ∈ T 0 and |t− tk| > ε, k = ±1,±2, . . . imply
|t+ r − tk| > ε

2 .
Let l = l(ε) be the dense coefficient of Γ and let l′ = l′(ε) be the dense

coefficient of Γ ′, Γ ′ is defined by Lemma 1.3, for ε
4 . Apparently, the number

γ can be choice so that l < +∞, l′ < +∞. Set l′′ = max(l, l′). Then, for
every interval [a, a+ l′′], there exist integer numbers m, m′ and q, such that
mγ,mγ′ ∈ [a, a+ l′′] and

|tqi −mγ| <
ε

4
, ||ϕj(t+m′γ)− ϕj(t)|| < ε

2
, (1.30)

j = 1, 2, i = ±1,±2, . . ..
The differences m − m′ can take only finite numbers of values ns, s =

1, 2, . . . , p. For every ns, there exist triples (ms,m
′
s, q), which represent the

class defined by the number ns. Let λ = max
1≤s≤p

|m′
sγ| and for the intervals

I = [a, a+ l′′+2λ], I ′ = [a+λ, a+λ+ l′′], I ′ ⊂ I, there exist integer numbers
m′, m, q for which (1.30) holds and mγ, m′γ ∈ A.

Let now mγ −m′γ = nsγ, or mγ − m′γ = msγ − m′
sγ, and m −ms =

m′ −m′
s. If r = (m −ms)γ, h = q − qs, then r ∈ A and for i = ±1,±2, . . .

from (1.26) it follows that
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|thi − r| = |tq−qsi − r| = |tq−qsi−q−qs − r| = |tqi−qs − tqsi−qs −mγ +msγ|

≤ |tqi−qs −mγ|+ |tqsi−qs −msγ| < ε
4
+
ε

4
=
ε

2
.

Now, let |t − tk| > ε and ti + ε < t < ti+1 − ε. Then ti + r + ε < t+ r <
ti+1+ r− ε. Since |thk − r| < ε

2 for t = 0,±1,±2, . . ., then thk − ε
2 < r < t

h
k +

ε
2 ,

and hence,

ti+h − ti + ti + ε− ε
2
< t+ r < ti+1 + ti+h+1 − ti+1 +

ε

2
− ε, ti+h

+
ε

2
< t+ r < ti+h+1 − ε

2
,

i.e.
|t+ r − tk| > ε

2
, k = ±1,±2, . . . .

Consequently, the set T 0 is not empty, and it is a relatively dense set on R.
For j = 1, 2 and r ∈ Γ0, we get

||ϕj(t+ r) − ϕk(t)|| = ||ϕj(t+ (m′ −m′
s)γ)− ϕ(t)||

≤ ||ϕj(t+ (m′ −m′
s)γ)− ϕj(t+m′γ)||

+ ||ϕj(t)− ϕj(t+m′γ)|| < ε
2
+
ε

2
= ε. ��

The proof of the next theorem is similar to the proof in the continuous
case.

Theorem 1.19. The sum of two almost periodic functions with points of
discontinuity tk, k = ±1,±2, . . . , {tk} ∈ UAPS, is an almost periodic
function.

Theorem 1.20. The quotient
ϕ(t)

ψ(t)
between two almost periodic functions

with points of discontinuity tk, k = ±1,±2, . . . , {tk} ∈ UAPS, is an almost
periodic function if

inf
t∈R

||ψ(t)|| > 0.

Now, let we consider the following system of impulsive differential
equations

{
ẋ = A(t)x+ f(t), t �= tk,
Δx(tk) = Bkx(tk) + Ik(x(tk)), k = ±1,±2, . . . ,

(1.31)

where the A : R → R
n×n is an almost periodic matrix in the sense of Bohr.
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Lemma 1.7. Let the following conditions hold:

1. U(t, s) is the fundamental matrix of the linear part of (1.31).
2. f(t) is an almost periodic function.
3. The sequence of functions {Ik} and the sequence of matrices {Bk} are

almost periodic.
4. The set of sequences {tjk} is uniformly almost periodic.

Then for every ε > 0 and every θ > 0, there exist ε1, 0 < ε1 < ε, a relatively
dense set T of real numbers and a set P of integer numbers, such that the
following relations hold:

(a) ||U(t+ τ, s+ τ)− U(t, s)|| < ε, t ∈ R, τ ∈ T , 0 ≤ t− s ≤ θ.
(b) ||f(t+ τ)− f(t)|| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(c) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . ..
(d) ||Ik+q − Ik|| < ε, q ∈ P, k = ±1,±2, . . ..
(e) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Proof. From Theorem 1.15, Theorem 1.18 and [47] it follows that there exists
a relatively dense set containing the common almost periods of the function
f(t) and matrix A(t), which are the factors of the number ε2, 0 < ε2 < ε,
such that

||A(t+ τ)−A(t)|| < ε

2θ
e−mθ, ||f(t+ τ)− f(t)|| < ε

2
,

where τ = nε2, |t− tk| > ε, k = ±1,±2, . . ..
From Theorem 1.18, we have that, there exist a relatively dense set T of

real numbers and a set P of integer numbers, such that

||A(t+ τ)−A(t)|| < ε

2θ
e−mθ, ||f(t+ τ)− f(t)|| < ε

2
,

where |t− ti| > ε, |tpi − τ | < ε1
2 , 0 < ε1 < ε, i = ±1,±2, . . ..

On the other hand, for the sequences {Ik} and {Bk} there exists a
relatively dense sets of their common almost periods. Then there exists a
natural number N between the neighbours factors of the numbers p and q,
such that

|tpi −mε1| <
ε1
2
, ||Ii+q−Ii|| < ε

2
, ||Bi+q−Bi|| < ε

2
, i = ±1,±2, . . . . (1.32)

The difference p−q takes only a finite number of values nk, k = 1, 2, . . . , r.
Then, for every nk we consider the pair of integer numbers (pk, qk), for which
the inequalities (1.32) hold. Set M = max

k
|pk|, and let l + 1, l + 2, . . . , l +

N + 2M be N + 2M arbitrary integer numbers. For any N integer numbers
l+M +1, . . . , l+M +N , there exists a pair (p, q), such that the inequalities
(1.32) hold, and let p − q = nj . Then, p − pj = q − qj = μ, and μ is one of
the integer numbers l+ 1, l + 2, . . . , l +N + 2M .
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On the other hand, for every integer number k = ±1,±2, . . ., we have

||Ii+μ − Ii|| ≤ ||Ii+pj−p − Ii+pj ||+ ||Ii+pj − Ii|| < ε2 +
ε

2
= ε.

Analogously, we get ||Bi+μ −Bi|| < ε.
Now, let τ and τj are almost periods, which are cofactors of ε2, corre-

sponding to the pairs (p, q) and (pj , qj).
If we note τμ = τ − τj , then

||A(t+ τμ)−A(t)|| ≤ ||A(t+ τμ)−A(t− τj)||+ ||A(t− τj)−A(t)||
<
ε

2θ
e−mθ +

ε

2θ
e−mθ =

ε

θ
e−mθ. (1.33)

Since tjk − tik = tj−ik+i, then

|tμi − τμ| ≤ |tpi−pj − τ | + |tpji−pj − τj | <
ε1
2

+
ε1
2

= ε1.

On the other hand, from |tpi − τ | < ε1 < ε
2 and |t− tk| > ε, we get

|t− τ − tk| > ε
2
, k = ±1,±2, . . . .

Indeed, let tk + ε < t < tk+1 − ε. Then, we have tk + τ + ε < t + τ <
tk+1−ε+ τ , and tk+p < tk+ τ+ε1, tk+1+ τ−ε1 < tk+p+1. Hence ti+p+

ε
2 <

t+ τ < tk+p+1 − ε
2 , or |t+ τ − tk| > ε

2 . Now, we have

||f(t+ τμ)− f(t)|| ≤ ||f(t+ τμ)− f(t+ τ)||
+ ||f(t+ τ) − f(t)|| < ε

2
+
ε

2
= ε. ��

We shall consider the following definition for almost periodic piecewise
continuous functions.

Let T, P ∈ B, and let s(T ∪ P ) : B → B be a map such that the set
s(T ∪ P ) forms a strictly increasing sequence. For D ⊂ R and ε > 0, we
introduce the notations θε(D) = {t+ ε, t ∈ D}, Fε(D) = ∩{θε(D).

By φ = (ϕ(t), T ) we denote an element from the space PC[R,Rn] × B
and for every sequence of real number {sn}, n = 1, 2, . . . with θsnφ, we shall
consider the sets {ϕ(t+ sn), T − sn} ⊂ PC × B, where

T − sn = {tk − sn, k = ±1,±2, . . . , n = 1, 2, . . .}.

Definition 1.13. The sequence {φn}, φn = (ϕn(t), Tn) ∈ PC[R,Rn]× B is
convergent to φ, φ = (ϕ(t), T ), (ϕ(t), T ) ∈ PC[R,Rn]×B, if and only if, for
any ε > 0 there exists n0 > 0 such that n ≥ n0 implies



1.3 Almost Periodic Functions 31

ρ(T, Tn) < ε, ||ϕn(t)− ϕ(t)|| < ε

uniformly for t ∈ R \ Fε(s(Tn ∪ T )), ρ(., .) is an arbitrary distance in B.
Definition 1.14. The function ϕ ∈ PC[R,Rn] is said to be an almost
periodic piecewise continuous function with points of discontinuity of the first
kind from the set T ∈ B, if for every sequence of real numbers {s′m} there
exists a subsequence {sn}, sn = s′mn

, such that θsnφ is uniformly convergent
on PC[R,Rn]× B.

Now, let Ω ⊆ R
n and consider the impulsive differential system (1.10).

Introduce the following conditions:

H1.3. The function f(t, x) is almost periodic in t uniformly with respect to
x ∈ Ω.

H1.4. The sequence {Ik(x)}, k = ±1,±2, . . . . is almost periodic uniformly
with respect to x ∈ Ω.

H1.5. The set of sequences {tk} ∈ UAPS.
Let the assumptions H1.3–H1.5 hold, and let {s′m} be an arbitrary

sequence of real numbers. Then there exists a subsequence {sn}, sn =
smn

′, such that the sequence {f(t + sn, x)} is convergent uniformly to the
function {f s(t, x)}, and from Lemma 1.6 it follows that the set of sequences
{tk − sn}, k = ±1,±2, . . . is convergent to the sequence tsk uniformly with
respect to k = ±1,±2, . . . as n→ ∞.

By {kni} we denote the sequence of integers, such that the subsequence
{tkni

} is convergent to the sequence tsk uniformly with respect to k =
±1,±2, . . . as i→ ∞.

Then, for every sequence {s′m}, the system (1.10) “moves” to the system

{
ẋ = f s(t, x), t �= tsk,
Δx(tsk) = I

s
k(x(t

s
k)), k = ±1,±2, . . . .

(1.34)

Remark 1.4. In many papers, the limiting systems (1.33) are called Hull of
the system (1.10), and is denoted by H(f, Ik, tk).

In Chap. 3, we shall use the next class of piecewise Lyapunov functions,
connected with the system (1.33).

Definition 1.15. A function W : R×Ω → R
+ belongs to class W0, if:

1. The function W (t, x) is continuous on (t, x) ∈ R × Ω, t �= tsk, k =
±1,±2, . . . and W (t, 0) = 0, t ∈ R.

2. The function W (t, x) is locally Lipschitz continuous with respect to its
second argument.
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3. For each k = ±1,±2, . . . and x ∈ Ω there exist the finite limits

W (ts−k , x)= lim
t→ts

k
t<ts

k

W (t, x), W (ts+k , x)= lim
t→ts

k
t>ts

k

W (t, x)

and the equality W (ts−k , x) =W (tsk, x) holds.

Let the function W ∈ W0 and x ∈ PC[R, Ω]. We shall use the upper right-
hand Dini derivative

D+W (t, x(t)) = lim
δ→0+

sup
1

δ

[
W (t+ δ, x(t) + δf s(t, x(t))) −W (t, x(t))

]
.



Chapter 2
Almost Periodic Solutions

In the present chapter, we shall state some basic existence and uniqueness
results for almost periodic solutions of impulsive differential equations.
Applications to real world problems will also be discussed.

Section 2.1 will offer the existence and uniqueness theorems for almost
periodic solutions of hyperbolic impulsive differential equations.

In Sect. 2.2, using weakly non-linear integro-differential systems, the
existence and exponential stability of almost periodic solutions of impulsive
integro-differential equations will be discussed.

In Sect. 2.3, we shall study the existence of almost periodic solutions for
forced perturbed impulsive differential equations. The example here, will state
the existence criteria for impulsive differential equations of Lienard’s type.

Section 2.4 will deal with sufficient conditions for the existence of almost
periodic solutions of impulsive differential equations with perturbations in
the linear part.

In Sect. 2.5, we shall consider the strong stability and almost periodicity
of solutions of impulsive differential equations with fixed moments of impulse
effect. The investigations are carried out by means of piecewise continuous
Lyapunov functions.

Section 2.6 is devoted to the problem of the existence of almost periodic
projektor-valued functions for dichotomous impulsive differential systems.

In Sect. 2.7, we shall investigate separated solutions of impulsive differ-
ential equations with variable impulsive perturbations and we shall give
sufficient conditions for almost periodicity of these solutions.

Finally, in Sect. 2.8, the existence results for almost periodic solutions of
abstract differential equations in Banach space will be given. Applications for
impulsive predator–prey systems with diffusion will be considered.

G.T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations,
Lecture Notes in Mathematics 2047, DOI 10.1007/978-3-642-27546-3 2,
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2.1 Hyperbolic Impulsive Differential Equations

In this paragraph, we shall consider the following systems of impulsive
differential equations with impulses at fixed moments

{
ż = A(t)z + f(t), t �= tk,
Δz(tk) = bk, k = ±1,±2, . . . ,

(2.1)

and {
ż = A(t)z + F (t, z), t �= tk,
Δz(tk) = Ik(z(tk)), k = ±1,±2, . . . ,

(2.2)

where t ∈ R, {tk} ∈ B, A : R→R
n×n, f :R→R

n, bk ∈R
n, F :R × Ω →

R
n, Ik : Ω → R

n.
By z(t) = z(t; t0, z0), we denote the solution of (2.1) or (2.2) with initial

condition z(t+0 ) = z0, t0 ∈ R, z0 ∈ R
n. Together with the systems (2.1) and

(2.2), we shall consider the corresponding homogeneous system

ż = A(t)z. (2.3)

Definition 2.1 ([71]). The system (2.3) is said to be hyperbolic, if there
exist constants α > 0, λ > 0 and for each t ∈ R there exist linear spaces
M+(t), andM−(t), whose external direct sum is M+(t)⊕M−(t) = R

n, such
that if z0 ∈M+(t0), then for all t ≥ t0 the inequality

||z(t; t0, z0)|| ≤ a||z0||e−λ(t−t0),

holds true, while if z0 ∈M−(t0) then for all t ≤ t0, we have

||z(t; t0, z0)|| ≤ a||z0||eλ(t−t0).

In this part, we shall investigate the existence of almost periodic solutions
of systems (2.1) and (2.2), assuming that the corresponding homogeneous
system is hyperbolic.

Introduce the following conditions:

H2.1. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.2. The function f ∈ PC[R,Rn] is almost periodic.
H2.3. The sequence {bk}, k = ±1,±2, . . ., is almost periodic.
H2.4. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . ,
j = ±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

H2.5. The function F ∈ C[R × Ω,Rn] is almost periodic with respect to t
uniformly in z ∈ Ω.
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H2.6. The sequence of functions {Ik(x)}, Ik ∈ C[Ω,Rn], k = ±1,±2, . . .,
is almost periodic with respect to k uniformly in z ∈ Ω.

We shall use the following lemmas:

Lemma 2.1. Let conditions H2.1–H2.4 hold. Then for each ε > 0 there exist
ε1, 0 < ε1 < ε, a relatively dense set T of real numbers, and a set P of integer
numbers, such that the following relations are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T .
(c) ||bk+q − bk|| < ε, q ∈ P, k = ±1,±2, . . . .
(d) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

The proof of Lemma 2.1 is analogous to the proof of Lemma 1.7.

Lemma 2.2. Let the system (2.3) is hyperbolic and the condition H2.1 holds.
Then there exists a non-singular transformation, defined by almost periodic
matrix S(t), S ∈ C[R,Rn×n], which reduces the system (2.1.3) into the next
ones

ẋ = Q+(t)x (2.4)

and
ẏ = Q−(t)y (2.5)

where x ∈ R
k, y ∈ R

n−k, Q+ ∈ C[R,Rk×k], Q− ∈ C[R,R(n−k)×(n−k)] and
the following assertions hold true:

1. Q+(t) and Q−(t) are almost periodic matrix-valued functions.
2. If Φ+(t, s) and Φ−(t, s) are the corresponding fundamental matrices of the

systems (2.4) and (2.5), then the following inequalities hold true:

||Φ+(t, s)|| ≤ ae−λ(t−s), t ≥ s, (2.6)

||Φ−(t, s)|| ≤ aeλ(t−s), t ≤ s, (2.7)

where s, t ∈ R, a > 0.
3. For each ε > 0, t ∈ R, s ∈ R there exists relatively dense set T of
ε−almost periods, such that for each τ ∈ T , fundamental matrices Φ+(t, s)
and Φ−(t, s) satisfy the inequalities

||Φ+(t+ τ, s+ τ) − Φ+(t, s)|| ≤ εKe−λ
2 (t−s), t ≥ s, (2.8)

||Φ−(t+ τ, s+ τ) − Φ−(t, s)|| ≤ εKeλ
2 (t−s), t ≤ s, (2.9)

where λ > 0, K > 0.
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Proof. Assertions 1 and 2 are immediate consequences of Theorem 1 in [71].
In fact, following the ideas used in [71], we define the matrix S(t) to be
formed by the vector-columns, which are solutions of (2.3). It follows from
the condition H2.1, that S(t) consists of almost periodic functions. On the
other hand, the transformation z = S(t)u rewrites (2.3) in the form

u̇ = Q(t)u,

where
Q(t) = S−1(t)

(
A(t)S(t)− Ṡ(t)

)
.

Hence, Q(t) is an almost periodic function. The estimates (2.6) and (2.7)
are direct consequences of Theorem 1 in [71].

To prove Assertion 3, let Φ+(t, s) and Φ−(t, s) be the fundamental matrices
of systems (2.4) and (2.5), respectively. Then for each ε > 0 the following
relations hold true

∂Φ+(t, s)

∂t
= Q+(t)Φ+(t+ τ, s+ τ) +

(
Q+(t+ τ)−Q+(t)

)
Φ+(t+ τ, s+ τ),

∂Φ−(t, s)
∂t

= Q−(t)Φ−(t+ τ, s+ τ) +
(
Q−(t+ τ) −Q−(t)

)
Φ−(t+ τ, s+ τ)

and

Φ+(t+ τ, s+ τ) = Φ+(t, s)

+

∫ t

s

Φ+(t, v)
(
Q+(v + τ)−Q+(v)

)
Φ+(v + τ, s+ τ)dv,

Φ−(t+ τ, s+ τ) = Φ−(t, s)

+

∫ t

s

Φ−(t, v)
(
Q−(v + τ)−Q−(v)

)
Φ−(v + τ, s+ τ)dv.

Therefore,

||Φ+(t+ τ, s+ τ)− Φ+(t, s)|| ≤
∫ t

s

||Φ+(t, v)||||(Q+(v + τ)

−Q+(v)||||Φ+(v + τ, s+ τ)||dv,

||Φ−(t+ τ, s+ τ)− Φ−(t, s)|| ≤
∫ t

s

||Φ−(t, v)||||Q−(v + τ)

−Q−(v)||||Φ−(v + τ, s+ τ)||dv.



2.1 Hyperbolic Impulsive Differential Equations 37

It follows from (2.6), that

||Φ+(t+ τ, s+ τ) − Φ+(t, s)|| ≤ εKe−λ
2 (t−s), t ≥ s,

where in this case K = (a)2.
The proof of (2.9) is analogous. ��
From Lemma 2.2 it follows that, by a transformation with the matrix S(t),

system (2.1) takes on the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = Q+(t)x+ f+(t), t �= tk,
Δx(tk) = b

+
k , k = ±1,±2, . . . ,

ẏ = Q−(t)y + f−(t), t �= tk,
Δy(tk) = b

−
k , k = ±1,±2, . . . ,

(2.10)

where x ∈ R
k, y ∈ R

n−k, f+ : R → R
k, f− : R → R

n−k, b+k and b−k are k
and n− k-dimensional constant vectors, respectively.

In an analogous way, the system (2.2) after a transformation with the
matrix S(t), goes to the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = Q+(t)x + F+(t, x, y), t �= tk,
Δx(tk) = I

+
k (x(tk), y(tk)), k = ±1,±2, . . . ,

ẏ = Q−(t)y + F−(t, x, y), t �= tk,
Δy(tk) = I

−
k (x(tk), y(tk)), k = ±1,±2, . . . ,

(2.11)

where F+ : R × R
k × R

n−k → R
k, F− : R × R

k × R
n−k → R

n−k, and
I+k : Rk × R

n−k → R
k, I−k : Rk × R

n−k → R
n−k.

Theorem 2.1. Let the following conditions hold:

1. Conditions H2.1–H2.4 hold.
2. The system (2.3) is hyperbolic.

Then for the system (2.1) there exists a unique almost periodic solution, which
is exponentially stable.

Proof. We consider the following equations

x(t) =

∫ t

−∞
Φ+(t, s)f+(s)ds +

∑
tk<t

Φ+(t, tk)b
+
k ,

y(t) = −
∫ ∞

t

Φ−(t, s)f−(s)ds+
∑
tk>t

Φ−(t, tk)b−k ,

which are equivalent to the (2.10).
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Let ε > 0 be an arbitrary chosen constant. It follows from Lemma 2.1 that
there exist sets T and P such that for each τ ∈ T and q ∈ P , the following
estimates hold true:

||x(t + τ)− x(t)|| =
∫ t

−∞
||Φ+(t+ τ, s+ τ)− Φ+(t, s)||||f+(s+ τ)||ds

+

∫ t

−∞
||Φ+(t, s)||||f+(s+ τ)− f+(s)||ds

+
∑
tk<t

||Φ+(t+ τ, tk+q)− Φ+(t, tk)||||b+k+q||

+
∑
tk<t

||Φ+(t, tk)||||b+k+q − b+k ||, (2.12)

and

||y(t+ τ)− y(t)|| =
∫ ∞

t

||Φ−(t+ τ, s+ τ) − Φ−(t, s)||||f−(s+ τ)||ds

+

∫ ∞

t

||Φ−(t, s)||||f−(s+ τ)− f−(s)||ds

+
∑
t>tk

||Φ−(t+ τ, tk+q)− Φ−(t, tk)||||b−k+q||

+
∑
t>tk

||Φ−(t, tk)||||b−k+q − b−k ||. (2.13)

From Lemma 2.2, (2.12) and (2.13), we have

||x(t+ τ) − x(t)|| ≤ K1ε, (2.14)

where

K1 =
2K

λ
sup
t∈R

||f+(t)||+ a
λ
+

2Na

1− e−λ
2

sup
k=±1,±2,...

||b+k ||+
2Na

1− e−λ .

In the same manner, we obtain

||y(t+ τ) − y(t)|| ≤ K2ε, (2.15)

where

K2 =
2K

λ
sup
t∈R

||f−(t)||+ a
λ
+

2Na

1− e−λ
2

sup
k=±1,±2,...

||b−k ||+
2Na

1− e−λ .
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The number N , which is defined in the last inequalities, is from Lemma 1.2
Now, from (2.14) and (2.15), we conclude that the solution z(t) = (x(t), y(t))
of system (2.1) is almost periodic.

On the other hand, each solution (x(t), y(t)) of (2.1) can be written in the
form

x(t) = Φ+(t, t0)χ+

∫ t

t0

Φ+(t, s)f+(s)ds+
∑

s<tk<t

Φ+(t, tk)b
+
k ,

y(t) = −
∫ ∞

t

Φ−(t, s)f−(s)ds+
∑
tk>t

Φ−(t, tk)b−k ,

where χ is a constant k-dimensional vector.
It follows that, for two different solutions z1(t) and z2(t) of system (2.1)

the estimate

||z1(t)− z2(t)|| ≤ ae−λ(t−t0)||z1(t0)− z2(t0)|| (2.16)

holds true.
Thus, (2.16) implies that the solution z(t) of (2.1) is unique and exponen-

tially stable. ��
Let Ω ≡ Bh.

Theorem 2.2. Let the following conditions hold:

1. Conditions H2.1, H2.4–H2.6 hold.
2. The system (2.3) is hyperbolic.
3. The functions F (t, z), Ik(z), k = ±1,±2, . . ., are Lipschitz continuous

with respect to z ∈ Bh with a Lipschitz constant L > 0, i.e.,

||F (t, z1)− F (t, z2)||+ ||Ik(z1)− Ik(z2)|| ≤ L||z1 − z2||,

and they are bounded, i.e. there exists a constant L1 > 0, such that

max
(

sup
t∈R,z∈Bh

||F (t, z)||, sup
k=±1,±2,...,z∈Bh

||Ik(z))||
)
= L1 <∞.

4. The following inequalities hold

L1

(a
λ
+

2aN

1− e−λ
)
< h,

L
(a
λ
+

2aN

1− e−λ
)
< 1.

Then for the system (2.2) there exists a unique almost periodic solution.
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Proof. Denote by AP the set of all almost periodic solutions ϕ(t), ϕ ∈
PC[R, Ω], such that ||ϕ|| < h.

We define in AP the operator SAP , such that if ϕ ∈ AP , then
ϕ = (ϕ+, ϕ−), where ϕ+ : R → R

k, ϕ− : R → R
n−k, SAPϕ =

(SAPϕ+, SAPϕ−), u = SAPϕ+ is the almost periodic solution of

{
u̇ = Q+(t)u + F+(t, ϕ(t)), t �= tk,
Δu(tk) = I

+
k (ϕ(tk)), k = ±1,±2, . . . ,

and v = SAPϕ− is the almost periodic solution of

{
v̇ = Q−(t)v + F−(t, ϕ(t)), t �= tk,
Δv(tk) = I

−
k (ϕ(tk)), k = ±1,±2, . . . .

The existence of almost periodic solutions u(t) and v(t), is guaranteed
by Theorem 2.1. In fact, the almost periodicity of the sequence {ϕ(tk)},
k = ±1,±2, . . . follows from Lemma 1.5, and from the method for find-
ing of common almost periods, we obtain that the sequence {Ik(ϕ(tk))},
k = ±1,±2, . . . ., is almost periodic, also. The almost periodicity of the
function F (t, ϕ(t)) follows from Theorem 1.17. Further on, conditions 2 and
3 imply that SAP (AP ) ⊂ AP .

Let ϕ, ψ ∈ AP . Then, the estimate

||SAPϕ− SAPψ|| ≤ La
( 1
λ
+

2N

1− e−λ
)
|ϕ− ψ|∞,

where |ϕ− ψ|∞ = sup
t∈R

||ϕ(t)− ψ(t)|| holds true.
It follows from condition 3, and from the last inequality, that SAP is

a contracting operator on SAP . Hence, for the system (2.2) there exists a
unique almost periodic solution. ��

2.2 Impulsive Integro-Differential Equations

In this section, we shall present the main results on the existence of almost
periodic solutions of impulsive integro-differential systems.

Consider the following linear system of impulsive integro-differential
equations

⎧⎪⎨
⎪⎩
ẋ = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ f(t), t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.17)
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where t ∈ R, {tk} ∈ B, A ∈ PC[R,Rn×n], K ∈ PC[R2,Rn×n], f ∈
PC[R,Rn], Bk ∈ R

n×n, k = ±1,±2, . . ..
The solution of (2.17), x(t) = x(t; t0, x0) with initial condition x(t+0 ) =

x0, t0 ∈ R, x0 ∈ R
n, is characterized at the following way:

1. For t �= tk, k = ±1,±2, . . ., the mapping point (t, x(t)) moves along some
of the integral curves of the system

ẋ = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ f(t).

2. At the moment t = tk, k = ±1,±2, . . ., the system is subject to an
impulsive effect, as a result of which the mapping point is transferred
“instantly” from the position (tk, x(tk)) into a position

(
tk, x(tk) +

Bkx(tk)
)
. Afterwards, for tk < t < tk+1 the solution x(t) coincides with

the solution y(t) of the system

⎧⎪⎨
⎪⎩
ẏ = A(t)y(t) +

t∫
t0

K(t, s)y(s)ds+ f(t), t �= tk,

y(tk) = x(tk) +Bkx(tk), k = ±1,±2, . . . ,

At the moment t = tk+1, the solution is subject to a new impulsive effect.
We shall, also, consider weakly nonlinear impulsive integro-differential

systems

⎧⎪⎨
⎪⎩
ẋ(t) = A(t)x(t) +

t∫
t0

K(t, s)x(s)ds+ F (t, x(t)), t �= tk,

Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.18)

where F (t, x) ∈ PC[R× R
n,Rn], and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂R(t, s)

∂t
= A(t)x(t) +

t∫
t0

K(t, v)R(v, s)dv, s �= tk, t �= tk,

R(t+k , s) = (E +Bk)R(tk, s), k = ±1,±2, . . . ,

(2.19)

where R(t, s) is an n× n-dimensional matrix function and R(s, s) = E, E is
the identity matrix in R

n.

Lemma 2.3 ([131]). If R(t, s) is a solution of (2.19), then the unique
solution x(t) = x(t; t0, x0) of (2.17) is given by
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x(t) = R(t, t0)x(t0) +

t∫
t0

R(t, s)f(s)ds, x(t+0 ) = x0.

Introduce the following conditions:

H2.7. There exists an n × n-dimensional matrix function R(t, s), satisfying
(2.19).

H2.8. det(E +Bk) �= 0, k = ±1,±2, . . ..
H2.9. μ[A(t)−R(t, t)] ≤ −α, α > 0, μ[.] is the logarithmic norm.

Lemma 2.4 ([15]). Let conditions H2.7–H2.9 hold.
Then

||R(t, s)|| ≤ K1e
−α(t−s), (2.20)

where K1 > 0, t > s.

Remark 2.1. In the special case, when in (2.17), K(t, s) ≡ 0, we obtain the
linear impulsive system

{
ẋ = A(t)x + f(t), t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, . . . .

Then, from Lemma 2.3, it follows, respectively, well known variation
parameters formula [94], where R(t, s) is the fundamental matrix and
R(t0, t0) = E.

We shall investigate the existence of almost periodic solutions of systems
(2.17), (2.18), and we shall use the following conditions:

H2.10. A(t) is an almost periodic n× n-matrix function.
H2.11. The sequence {Bk}, k = ±1,±2, . . . is almost periodic.
H2.12. The set of sequences {tjk}, k = ±1,±2, . . . , j = ±1,±2, . . . is

uniformly almost periodic, and infkt
1
k = θ > 0.

H2.13. The matrix K(t, s) is almost periodic along the diagonal line, i.e. for
any ε > 0, the set T (K, ε) composed from ε-almost periods τ , such
that for τ ∈ T (K, ε), K(t, s) satisfies the inequality

||K(t+ τ, s+ τ)−K(t, s)|| ≤ εe−α
2 (t−s),

t > s, is relatively dense in R.
H2.14. The function f(t), f ∈ PC[R,Rn] is almost periodic.
H2.15. The function F (t, x) is almost periodic along t uniformly with respect

to x ∈ Ω.

We shall use the next lemma, which is similar to Lemma 1.7.
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Lemma 2.5. Let conditions H2.10–H2.12 and H2.14 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense set T of

real numbers and a set P of integer numbers, such that the following relations
are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(c) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . ..
(d) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.6. Let conditions H2.7–H2.13 hold.
Then R(t, s) is almost periodic along the diagonal line and the following

inequality holds

||R(t+ τ, s+ τ)−R(t, s)|| ≤ εΓe−α
2 (t−s), (2.21)

where t > s, Γ > 0, ε > 0, τ is an almost period.

Proof. Let ε > 0 and τ be a common ε-almost period of A(t) and K(t, s).
Then, for s �= t′k, t �= t′k, we have

∂R(t+ τ, s+ τ)

∂t
= A(t)R(t+ τ, s+ τ) +

(
A(t+ τ) −A(t))R(t+ τ, s+ τ)

×
t∫
s

(
K(t+ τ, v + τ)−K(t, v)

)
R(v + τ, s+ τ)dv

+

t∫
s

K(t, v)R(v + τ, s+ τ)dv,

and

R(t′k + τ, s+ τ) = (E +Bk)R(t
′
k + τ, s+ τ) + (Bk+q −Bk)R(tk + τ, s+ τ),

where t′k = tk − τ and τ, q are the numbers from Lemma 2.5.
Hence, from (2.19), we obtain

R(t+ τ, s+ τ)−R(t, s)

=

t∫
s

R(t, u)
(
A(u + τ)−A(u))R(u+ τ, s+ τ)du
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+

t∫
s

R(t, u)
( u∫
s

(
K(u+ τ, v + τ)−K(u, v)R(v + τ, s+ τ

)
dv
)
du

+
∑

s≤t′v<t
R(t, t

′+
v )(Bv+q −Bv)R(t′v + τ, s+ τ). (2.22)

From Lemma 2.5, it follows that, if |t− t′k| > ε, t ∈ R, then t′k+q < t+ τ <
t′k+q+1 and from (2.20), (2.22), we obtain

||R(t+ τ, s+ τ )−R(t, s)|| ≤ K2
1ε
(
e−α(t−s)(t− s) +

4

α2
e−

α
2 (t−s)i(s, t)e−α(t−s)

)
,

where i(t, s) is the number of points tk in the interval (t, s).
Now, from the condition H2.12 and Lemma 1.2, it follows that there exists

a positive integer N , such that for any t ∈ R, s ∈ R and t > s the following
inequality holds

i(s, t) ≤ (t− s)N +N.

Therefore,

||R(t+ τ, s+ τ)−R(t, s)|| ≤ εΓe−α
2 (t−s),

where t > s, Γ = K2
1

2

α

(
1 +

2

α
N +

Nα

2

)
. ��

The next theorems are the main in this paragraph.

Theorem 2.3. Let conditions H2.7–H2.14 hold.
Then for the system (2.17), there exists a unique exponentially stable

almost periodic solution ϕ(t), such that

||ϕ(t)|| ≤ 2K1

α
max
s<t

||f ||. (2.23)

Proof. Consider the function

ϕ(t) =

t∫
−∞

R(t, s)f(s)ds. (2.24)

From (2.19), (2.24), and Fubini’s theorem, it follows that

ϕ̇(t) =

t∫
−∞

∂R(t, s)

∂t
f(s)ds+ f(t)

=

t∫
−∞

(
A(t)R(t, s) +

t∫
u

K(t, u)R(t, u)du
)
f(s)ds+ f(t)
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= A(t)ϕ(t) +

t∫
u

( t∫
−∞

K(t, u)R(u, s)f(s)ds
)
du

= A(t)ϕ(t) +

t∫
s

K(t, s)ϕ(s)ds+ f(t), (2.25)

where s < t, s �= tk, t �= tk, k = ±1,±2, . . ..
On the other hand, for t = tk, k = ±1,±2, . . ., we have

Δϕ(tk) = ϕ(t
+
k )− ϕ(tk) = Bkϕ(tk). (2.26)

Then, from (2.25) and (2.26), it follows that ϕ(t) is a solution of system
(2.17).

From Lemma 2.4, we obtain

||ϕ(t)|| ≤
t∫

−∞
||R(t, s)||||f(s)||ds ≤ 2K1

α
max
s<t

||f(t)||.

Let τ ∈ T , q ∈ P , where T and P are determined in Lemma 2.5. From
Lemma 2.6, it follows that

||ϕ(t+ τ)− ϕ(t)|| =
t∫

−∞
||R(t+ τ, s+ τ)f(s+ τ)−R(t, s)f(s)||ds

≤
t∫

−∞
||R(t+ τ, s+ τ)−R(t, s)||||f(s+ τ)||ds

+

t∫
−∞

||R(t, s)||||f(s+ τ) − f(s)||ds

≤ ε
(2ΓM
α

+
K1

α

)
, (2.27)

where M = max
s<t

||f(t)||. The estimate (2.27) means that ϕ(t) is an almost

periodic function.
Let η(t) is one other solution of (2.17). Then, from (2.20), it follows that

||ϕ(t) − η(t)|| ≤ K1e
−α(t−t0)||ϕ(t0)− η(t0)||,

and we obtain that the solution ϕ(t) is unique and exponentially stable. ��
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Theorem 2.4. Let the following conditions hold:

1. Conditions H2.7–H2.13, and H2.15 hold.
2. The function F (t, x) is Lipschitz continuous with respect to x ∈ Bh with

a Lipschitz constant L > 0, i.e.

||F (t, x1)− F (t, x2)|| ≤ L‖x1 − x2‖, x1, x2 ∈ Bh,

and F (t, x) is uniformly bounded, i.e. there exists a constant G > 0, such
that

||F (t, x)|| ≤ G, ||x|| < h.
3. The following inequalities hold

K1G

α
< h,

KL

α
< 1.

Then there exists a unique exponentially stable almost periodic solution of
(2.18).

Proof. Let us denote by AP the set of all almost periodic functions ϕ(t),
ϕ ∈ PC[R,Rn], satisfying the inequality ||ϕ(t)|| < h, and let |ϕ(t)|∞ =
sup
t∈R

||ϕ(t)||.
In AP , we define an operator S

Sϕ =

t∫
−∞

R(t, s)F (t, ϕ(s))ds. (2.28)

Let ϕ ∈ AP . From (2.28), it follows that

||Sϕ|| ≤
t∫

−∞
||R(t, s)||||F (t, ϕ(s))||ds

≤ K1

t∫
−∞

e−α(t−s)Gds ≤ K1G

α
< h. (2.29)

On the other hand, from Theorem 1.17, it follows that the function
F (t, ϕ(t)) is almost periodic, and let τ be the common almost period of ϕ(t)
and F (t, ϕ(t)).

Then,

||Sϕ(t+ τ)− Sϕ(t)||

≤
t∫

−∞
||R(t+ τ, s+ τ)F (s, ϕ(s + τ)) −R(t, s)F (s, ϕ(s))||ds

≤
(2GΓ
α

+
K1

α

)
ε. (2.30)
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Hence, using (2.29) and (2.30), we obtain that S(AP ) ⊂ AP.
Let ϕ ∈ AP, η ∈ AP . From (2.28) and Lemma 2.6, we have

||Sϕ(t)− Sη(t)|| ≤
t∫

−∞
||R(t, s)||||F (s, ϕ(s)) − F (s, η(s))||ds

≤ K1L

α
|ϕ(t)− η(t)|∞. (2.31)

Therefore, the inequality (2.31) shows that S is a contracting operator
in AP , and hence, there exists a unique almost periodic solution of system
(2.18).

Now, let ψ(t) is one other solution of (2.18). Then, Lemma 2.3 and (2.20)
imply that

||ϕ(t)− ψ(t)||

≤ K1||ϕ(t0)− ψ(t0)||e−α(t−s) +
t∫

t0

K1e
−α(t−s)L||ϕ(s)− ψ(s)||ds. (2.32)

Set
v(t) = ||ϕ(t)− ψ(t)||eα(t).

From (2.32) and Gronwall–Belman’s inequality, we have

v(t) ≤ K1v(t0)exp
( t∫
t0

K1Lds
)
.

Consequently,

||ϕ(t)− ψ(t)|| ≤ K1||ϕ(t0)− ψ(t0)||e(K1L−α)(t−t0).

From the last inequality, it follows that ϕ(t) is exponentially stable. ��

2.3 Forced Perturbed Impulsive Differential
Equations

In this part, we shall consider sufficient conditions for the existence of almost
periodic solutions for forced perturbed systems of impulsive differential
equations with impulsive effects at fixed moments.
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We shall consider the system

{
ẋ = A(t)x + g(t) + μX(t, x, μ), t �= tk,
Δx(tk) = Bkx(tk) + gk + μXk(x(tk), μ), k = ±1,±2, . . . ,

(2.33)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, g : R → R

n, μ ∈ M ⊂ R, X :
R×Ω×M → R

n, Bk ∈ R
n×n, gk ∈ R

n, Xk : Ω×M → R
n, k = ±1,±2, . . ..

Denote by x(t, μ)= x(t; t0, x0, μ) the solution of (2.33) with initial condi-
tion x(t+0 , μ) = x0, x0 ∈ Ω, μ ∈M .

We shall use the following definitions:

Definition 2.2. The system

{
ẋ = A(t)x + g(t), t �= tk,
Δx(tk) = Bkx(tk) + gk, k = ±1,±2, . . . ,

(2.34)

is said to be generating system of (2.33).

Definition 2.3 ([56]). The matrix A(t) is said to has a column dominant
with a parameter α > 0 on [a, b], if

aii(t) +
∑
j �=i

|aji(t)| ≤ −α < 0,

for each i, j = 1, . . . , n, and t ∈ [a, b].

Introduce the following conditions:

H2.16. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.17. {Bk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.18. det(E + Bk) �= 0, k = ±1,±2, . . . where E is the identity matrix in

R
n×n.

H2.19. The function g ∈ PC[R,Rn] is almost periodic.
H2.20. {gk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.21. The function X ∈ C[R×Ω×M,Rn] is almost periodic in t uniformly

with respect to (x, μ) ∈ Ω × M , and is Lipschitz continuous with
respect to x ∈ Bh with a Lipschitz constant l1 > 0, such that

||X(t, x, μ)−X(t, y, μ)|| ≤ l1||x− y||, x, y ∈ Bh,

for any t ∈ R and μ ∈M .
H2.22. The sequence of functions {Xk(x, μ)}, k = ±1,±2, . . . , Xk ∈ C[Ω ×

M,Rn] is almost periodic uniformly with respect to (x, μ) ∈ Ω ×M ,
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and the functions Xk are Lipschitz continuous with respect to x ∈ Bh
with a Lipschitz constant l2 > 0, such that

||Xk(x, μ)−Xk(y, μ)|| ≤ l2||x− y||, x, y ∈ Bh,

for k = ±1,±2, . . . , μ ∈M .
H2.23. The set of sequences {tjk}, tjk = tk+j − tk, k= ± 1,±2, . . . , j =

±1,±2, . . . is uniformly almost periodic, and infkt
1
k = θ > 0.

We shall use the next lemma, which is similar to Lemma 1.7.

Lemma 2.7. Let conditions H2.16, H2.17, H2.19, H2.20 and H2.23 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense set T of
real numbers, and a set P of integer numbers, such that the following relations
are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||g(t+ τ) − g(t)|| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(c) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . ..
(d) ||gk+q − gk|| < ε, q ∈ P, k = ±1,±2, . . ..
(e) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.8. Let conditions H2.19, H2.20 and H2.23 hold.
Then there exists a positive constant C1 such that

max(sup
t∈R

||g(t)||, sup
k=±1,±2,...

||gk||) ≤ C1.

Proof. The proof follows from Lemma 1.7. ��
Lemma 2.9 ([138]). Let the following conditions hold:

1. Conditions H2.16–H2.18 and H2.23 are met.
2. For the Cauchy matrix W (t, s) of the system

{
ẋ = A(t)x, t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

there exist positive constants K and λ such that

||W (t, s)|| ≤ Ke−λ(t−s),

where t ≥ s, t, s ∈ R.

Then for any ε > 0, t ∈ R, s ∈ R, |t − tk| > ε > 0, |s − tk| > ε, k =
±1,±2, . . ., there exists a relatively dense set T of ε-almost periods of matrix
A(t) and a positive constant Γ , such that for τ ∈ T it follows
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||W (t+ τ, s+ τ) −W (t, s)|| ≤ εΓe−λ
2 (t−s).

Now, we are ready to proof the main theorem.

Theorem 2.5. Let the following conditions hold:

1. Conditions H2.16–H2.23 are met.
2. There exists a positive constant L1, such that

max
{

sup
t∈R

(x,μ)∈Ω×M

||X(t, x, μ)||, sup
k=±1,±2,...
(x,μ)∈Ω×M

||Xk(x, μ)||
} ≤ L1.

3. For the generating system (2.34), there exists a unique almost periodic
solution.

Then there exists a positive constant μ0, μ0 ∈M such that:

1. For any μ, |μ| < μ0 and C < C1, where the constant C1 is from Lemma 2.8,
there exists a unique almost periodic solution of (2.33).

2. There exists a positive constant L such that

||x(t, μ1)− x(t, μ2)|| ≤ L|μ1 − μ2|,

where t ∈ R, |μi| < μ0, i = 1, 2.
3. For |μ| → 0, x(t, μ) converges to the unique almost periodic solution of

(2.34).
4. The solution x(t, μ) is exponentially stable.

Proof of Assertion 1. Let we denote by AP , the set of all almost periodic
functions ϕ(t, μ), ϕ∈AP ∈ PC[R ×M,Rn] satisfying the inequality ||ϕ|| <
C, and let |ϕ|∞ = sup

t∈R, μ∈M
||ϕ(t, μ)||.

In AP, we define the operator S,

Sϕ =

∫ t

−∞
W (t, s)

(
g(s) + μX(s, ϕ(s, μ), μ)

)
ds

+
∑
tk<t

W (t, tk)
(
gk + μXk(ϕ(tk, μ), μ)

)
. (2.35)

From Lemma 2.8 and Lemma 2.9, it follows

||Sϕ|| =
∫ t

−∞
||W (t, s)||

(
||g(s)||+ |μ|||X(s, ϕ(s, μ), μ)||

)
ds

+
∑
tk<t

||W (t, tk)||
(
||gk||+ |μ|||Xk(ϕ(tk, μ), μ)||

)

≤ (C1 + |μ|L1)
(K
λ

+
KN

1− e−λ
)
.
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Consequently, there exists a positive constant μ1 such that for μ ∈
(−μ1, μ1) and C = (C1 + |μ|L1)

(
K
λ + KN

1−e−λ

)
< C1, we obtain

||Sϕ|| ≤ C. (2.36)

Now, let τ ∈ T , q ∈ P , where the sets T and P are determined in
Lemma 2.7. From Lemma 1.5 and Theorem 1.17, we have

||Sϕ(t+ τ, μ)− Sϕ(t, μ)||

≤
∫ t

−∞
||W (t+ τ, s+ τ)−W (t, s)||

(
||g(s+ τ)||

+ |μ|||X(s+ τ, ϕ(s+ τ, μ), μ)||
)
ds

+

∫ t

−∞
||W (t, s)||

(
||g(s+ τ)− g(s)||

+ |μ|||X(s+ τ, ϕ(s+ τ, μ), μ)−X(s, ϕ(s, μ), μ)||
)
ds

+
∑
tk<t

||W (t+ τ, tk+q)−W (t, tk)||
(
||gk+q||

+ |μ|||Xk+q(ϕ(tk+q , μ), μ)||
)

+
∑
tk<t

||W (t, tk)||
(
||gk+q − gk||

+ |μ|||Xk+q(ϕ(tk+q , μ), μ)−Xk(ϕ(tk, μ), μ)||
)

≤ ε
(
(C1 + |μ|L1)

(2Γ
λ

+
NΓ

1− e−λ
)
+ (1 + |μ|)

(K
λ

+
NK

1 + e−λ
))
. (2.37)

Thus, by (2.35) and (2.36), we obtain Sϕ ∈ AP .
Let ϕ ∈ AP, ψ ∈ AP . Then from (2.35), it follows

||Sϕ− Sψ|| ≤ |μ|
∫ t

−∞
||W (t, s)||||X(s, ϕ(s, μ), μ) −X(s, ψ(s, μ), μ)||ds

+ |μ|
∑
tk<t

||W (t, tk)||||Xk(ϕ(tk, μ), μ)−Xk(ψ(tk, μ), μ)||

≤ |μ|K
( l1
λ

+
l2

1− e−λ
)
|ϕ− ψ|∞.
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Since there exists a positive constant μ0 < μ1 such that

μ0K
( l1
λ
+

l2
1− e−λ

)
< 1,

we have that S is a contracting operator in AP .

Proof of Assertion 2. Let ϕj = ϕj(t, μj), j = 1, 2, and |μj | < μ0.
Then,

||ϕ1 − ϕ2|| ≤ |μ1 − μ2|
( ∫ t

−∞
||W (t, s)||||X(s, ϕ1(s, μ1), μ1)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ1(tk, μ1), μ1)||
)

+ |μ2|
(∫ t

−∞
||W (t, s)||||X(s, ϕ1(s, μ1), μ1)−X(s, ϕ2(s, μ2), μ2)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ1(tk, μ1), μ1)−Xk(ϕ2(tk, μ2), μ2)||
)

≤ L|μ1 − μ2|, (2.38)

where

L = L1K
( l1
λ
+

l2
1− e−λ

)
(1− μ0K)K

( l1
λ

+
Nl2

1− e−λ
)
.

Proof of Assertion 3. Let we denote by x(t) the almost periodic solution of
(2.33).

From (2.35) and Lemma 2.9, it follows

||x(t, μ) − x(t)|| ≤ |μ|
( ∫ t

−∞
||W (t, s)||||X(s, ϕ(s, μ), μ)||ds

+
∑
tk<t

||W (t, tk)||||Xk(ϕ(tk, μ), μ)||
)

≤ |μ|L1K
( 1
λ
+

N

1− e−λ
)
.

Then x(t, μ) → x(t) for |μ| → 0.

Proof of Assertion 4. Let y(t) be an arbitrary solution of (2.34). Then using
(2.35), we obtain

y(t)− x(t, μ) =W (t, t0)
(
y(t0)− x(t0, μ)

)

+ μ
(∫ t

t0

W (t, s)
(
X(s, y(s), μ)−X(s, x(s, μ), μ)

)
ds

+
∑

t0<tk<t

W (t, tk)
(
Xk(y(tk), μ)−Xk(x(tk, μ), μ)

))
.
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Now, we have

||y(t)− x(t, μ)|| ≤ Ke−λ(t−t0)||y(t0)− x(t0, μ)||

+ |μ|
( ∫ t

t0

Kl1e
−λ(t−s)||y(s)− x(s, μ)||ds

+
∑

t0<tk<t

Kl2e
−λ(t−tk)||y(tk)− x(tk, μ)||

)
.

Set u(t) = ||y(t) − x(t, μ)||e−λt and from Gronwall–Bellman’s inequality,
it follows

||y(t)− x(t, μ)|| ≤ K||y(t0)− x(t0, μ)||(1 + |μ|Kl1)i(t0,t)e(−λ+|μ|Kl2)(t−t0),

where i(t, s) is the number of points tk in the interval (t, s). Obviously, if there
exists μ ∈M such thatN ln(1+|μ|Kl1)+|μ|Kl2 < λ, then the solution x(t, μ)
is exponentially stable. ��
Lemma 2.10. Let the following conditions hold:

1. Conditions H2.16, H2.17 are met.
2. The matrix-valued function A(t) has a column dominant with a parameter
α > 0 for t ∈ R.

Then for the Cauchy’s matrix W (t, s) it follows

||W (t, s)|| ≤ Ke−α(t−s),

where t ∈ R, s ∈ R, t ≥ s, K > 0.

Proof. The proof follows from the definition of matrix W (t, s). ��
Example 2.1. We consider the following system of impulsive differential
equations of Lienard’s type:

⎧⎨
⎩
ẍ+ f(t)ẋ+ q(t) = μh(t, x, ẋ, μ), t �= tk,
Δx(tk) = b

1
kx(tk) + g

1
k + μX

1
k(x(tk), ẋ(tk), μ),

Δẋ(tk) = b
2
kx(tk) + g

2
k + μX

2
k(x(tk), ẋ(tk), μ), k = ±1,±2, . . . ,

(2.39)

where t ∈ R, x ∈ R, μ ∈ M , {tk} ∈ B, the functions f ∈ PC[R,R], q ∈
PC[R,R] are almost periodic, the function h ∈ C[R3 × M,R] is almost
periodic in t uniformly with respect to x, ẋ and μ, bmk ∈ R, gmk ∈ R, the
sequences {bmk }, {gmk } are almost periodic, Xm

k ∈ C[R2 × M,R] and the
sequences {Xm

k }, k = ±1,±2, . . . , m = 1, 2, are almost periodic uniformly
with respect to x, ẋ and μ.
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Set

ẋ = y − (f(t)− a)x,
ẏ =

(
af(t)− a2 − ḟ(t))x− ay − q(t) + μh(t, x, ẋ, μ),

z =
(
x

y

)
, A(t) =

(−f(t) + a 1

af(t)− a2 − ḟ(t) −a
)
, X =

(
0

h

)
,

Xk =
( X1

k(
f(t+k )− a

)
X1
k +X

2
k

)
,

Bk =
( b1k 0(
f(t+k )− a

)
b1k − b2k(f(tk)− a) b2k

)
,

gk =
(

g1k(
f(t+k )− a

)
g1k

)
, g(t) =

(
0

−q(t)
)
.

Then, we can rewrite system (2.39) in the form

{
ż = A(t)z + g(t) + μX(t, z, μ), t �= tk,
Δz(tk) = Bkz(tk) + gk + μXk(z(tk), μ), k = ±1,±2, . . . .

Now, the conditions for the column dominant of the matrix A(t) are

1 < a <
1

2

(
f(t)− 1 +

√(
f(t)− 1

)2
+ 4f(t)− 4ḟ(t)

)
,

a− f(t) + ∣∣af(t)− a2 − ḟ(t)∣∣ < 0,

i.e. (
f(t)− 1

)2
< 4ḟ(t) <

(
f(t) + 1

)2
,

2f(t)− ḟ(t)− 2 > 0.
(2.40)

Theorem 2.6. Let the following conditions hold:

1. Condition H2.23 and the inequalities (2.40) are met.
2. b1kb

2
k + b

1
k + b

2
k + 1 �= 0, k = ±1,±2, . . ..

3. The functions h(t, x, ẋ, μ), Xk(x, ẋ, μ) are Lipschitz continuous with
respect to x and ẋ uniformly for t ∈ R, k = ±1,±2, . . . , and μ ∈ M
respectively.

Then there exists a positive constant μ0, μ0 ∈M such that:

1. For any μ, |μ| < μ0 the system (2.39) has a unique almost periodic solution.
2. The almost periodic solution is exponentially stable.
3. For |μ| → 0 the solution is convergent to the unique almost periodic

solution of the system
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{
ż = A(t)z + g(t), t �= tk,
Δz(tk) = Bkz(tk) + gk, k = ±1,±2, . . . .

Proof. The proof follows directly from Theorem 2.5. ��
Now, we shall consider the following systems

{
ẋ = f(t, x), t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,

(2.41)

and

{
ẋ = f(t, x) + g(t) + μX(t, x, μ), t �= tk,
Δx(tk) = Ik(x(tk)) + gk + μXk(x(tk), μ), k = ±1,±2, . . . .

(2.42)

Introduce the following conditions:

H2.24. The function f ∈ C[R×Ω,Rn] is almost periodic in t uniformly with
respect to x ∈ Ω and it is Lipschitz continuous with respect to x ∈ Bh
with a Lipschitz constant l3 > 0, such that uniformly in t ∈ R

||f(t, x)− f(t, y)|| ≤ l3||x− y||, x, y ∈ Bh.

H2.25. The sequence of functions {Ik}, Ik ∈ C[Ω,Rn], k = ±1,±2, . . . is
almost periodic uniformly with respect to x ∈ Ω, and the functions
Ik are Lipschitz continuous with respect to x, y ∈ Bh with a Lipschitz
constant l4 > 0, such that

||Ik(x)− Ik(y)|| ≤ l4||x− y||,

where x, y ∈ Bh, k = ±1,±2, . . ..

We shall suppose that for the system (2.42) there exists an almost periodic
solution ϕ(t), and consider the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ =
∂f

∂x
(t, ϕ(t))x, t �= tk,

Δx(tk) =
∂Ik
∂x

(ϕ(tk)), k = ±1,±2, . . . .

(2.43)

Let

L1(δ) = sup
t∈R, z∈Bδ

||f(t, ϕ(t) + z)− f(t, ϕ(t))||,

L2(δ) = sup
k=±1,±2,..., z∈Bδ

||Ik(ϕ(tk) + z)− Ik(ϕ(tk))||.
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Theorem 2.7. Let the following conditions hold:

1. Conditions H2.19–H2.25 are met.
2. Condition 2 of Theorem 2.5 holds.
3. For the Cauchy’s matrix W1(t, s) of the system (2.43), conditions of

Lemma 2.3.5 are met.
4. There exist positive constants C0, C1, C2 and μ0 such that

K

λ

(
l3 + μ0l1 + sup

t∈R

||∂f
∂x

(t, ϕ(t))||
)
+

K

1− e−λ
(
l3 + μ0l2

+ sup
k=±1,±2,...

||∂Ik
∂x

(ϕ(tk))||
)
< 1,

K

λ

(
C1 + μ0L1 + sup

t∈R

||∂f
∂x

(t, ϕ(t))||
)

+
K

1− e−λ
(
C2 + μ0L1 + sup

k=±1,±2,...
||∂Ik
∂x

(ϕ(tk))||
)
< C0.

Then there exists a positive constant μ0 ∈ M , and for any μ, |μ| < μ0,
system (2.42) has a unique almost periodic solution, such that:

1. ||x(t, μ)− ϕ(t)|| ≤ C0.
2. lim

|μ|→0
x(t, μ) = x(t, 0).

3. The solution x(t, μ) is exponentially stable.

Proof. Set x = z + ϕ(t) and from (2.43), it follows the equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż =
∂f

∂x
(t, ϕ(t))z +R(t, z) + μX(t, z + ϕ(t), μ), t �= tk,

Δz(tk) =
∂Ik
∂z

(ϕ(tk)) +Rk(z(tk)) + μX(z(tk) + ϕ(tk, μ), μ),

k = ±1,±2, . . . ,

(2.44)

where

R(t, z) = f(t, ϕ(t) + z)− f(t, ϕ(t)) + g(t)− ∂f
∂z

(t, ϕ(t))z,

Rk(z) = Ik(ϕ(tk) + z)− Ik(ϕ(tk)) + gk − ∂Ik
∂z

(ϕ(tk)).

Let AP, AP ⊂ PC[R×M,Rn] is the set of all almost periodic functions
ϕ(t, μ), satisfying the inequality ||ϕ|| < C0.

Let us define in AP an operator Sμ,

Sμz =

∫ t

−∞
W1(t, s)

(
R(t, z(s)) + μX(s, z(s) + ϕ(s), μ)

)
ds

+
∑
tk<t

W1(t, tk)
(
Rk(z(tk)) + μXk(z(tk) + ϕ(tk))

)
. (2.45)
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From (2.45), Lemma 1.5, Theorem 1.17, Lemma 2.8 and the conditions of
Theorem 2.7 it follows that the operator Sμ is contracting in AP . Hence, there
exists a unique almost periodic solution z(t, μ) of system (2.44). Moreover,
x(t, μ) = z(t, μ) + ϕ(t) is an almost periodic solution of (2.42). The proof of
Assertions 1–3 are analogous to the proof of Theorem 2.5. ��

2.4 Perturbations in the Linear Part

In this paragraph, sufficient conditions for the existence of almost periodic
solutions of differential equations with perturbations in the linear part, are
obtained.

We shall consider the system of impulsive differential equations

{
ẋ = A(t)x+ f(t), t �= tk,
Δx(tk) = Akx(tk) + lk, k = ±1,±2, . . . ,

(2.46)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, f : R → R

n, Ak ∈ R
n×n, lk ∈ R

n,
k = ±1,±2, . . .. By x(t) = x(t; t0, x0) we denote the solution of (2.46) with
initial condition x(t+0 ) = x0, t0 ∈ R, x0 ∈ Ω.

Together with the system (2.46), we shall consider the following systems
of impulsive differential equations with perturbations in the linear part:

{
ẋ =

(
A(t) +B(t)

)
x+ f(t), t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk) + lk, k = ±1,±2, . . . ,

(2.47)

and

{
ẋ =

(
A(t) +B(t)

)
x+ F (t, x), t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk) + Ik(x(tk)), k = ±1,±2, . . . ,

(2.48)

where B : R → R
n×n, F : R × Ω → R

n, Bk ∈ R
n×n, and Ik : Ω → R

n,
k = ±1,±2, . . ..

Introduce the following conditions:

H2.26. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.27. det(E + Ak) �= 0, where E is the identity matrix in R
n, and the

sequence {Ak}, k = ±1,±2, . . . is almost periodic.
H2.28. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =

±1,±2, . . . is uniformly almost periodic, and infkt
1
k = θ > 0.

H2.29. The function f ∈ PC[R,Rn] is almost periodic.
H2.30. The sequence {lk}, k = ±1,±2, . . . is almost periodic.
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H2.31. The matrix function B ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H2.32. The sequence {Bk}, k = ±1,±2, . . . is almost periodic.

Let us denote with W (t, s) the Cauchy matrix for the linear impulsive
system {

ẋ = A(t)x, t �= tk,
Δx(tk) = Akx(tk), k = ±1,±2, . . . ,

(2.49)

and with Q(t, s) the Cauchy matrix for the linear perturbed impulsive system

{
ẋ =

(
A(t) +B(t)

)
x, t �= tk,

Δx(tk) =
(
Ak +Bk

)
x(tk), k = ±1,±2, . . . .

In this part, we shall use the following lemmas:

Lemma 2.11 ([138]). For the system (2.46) there exists only one almost
periodic solution, if and only if:

1. Conditions H2.26–H2.30 hold.
2. The matrix W (t, s) satisfies the inequality

||W (t, s)|| ≤ Ke−α(t−s), (2.50)

where s < t, K ≥ 1, α > 0.

Lemma 2.12 ([148]). Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 hold.
2. For K ≥ 1, α > 0 and s < t, it follows

||W (t, s)|| ≤ Ke−α(t−s).

Then:

1. If there exists a constant d > 0 such that

sup
t∈(t0,∞)

||B(t)|| < d, sup
tk∈(t0,∞)

||Bk|| < d,

then
||Q(t, s)|| ≤ Ke−(α−Kd)(t−s)+i(s,t), (2.51)

where s < t.
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2. If there exists a constant D > 0 such that

∫ ∞

t0

||B(σ)||dσ +
∑
t0≤tk

||Bk|| ≤ D,

then
||Q(t, s)|| ≤ KeKDe−α(t−s), (2.52)

where s < t.

The proof of the next lemma is similar to the proof of Lemma 1.7.

Lemma 2.13. Let the conditions H2.26–H2.32 hold. Then for each ε > 0
there exist ε1, 0 < ε1 < ε, a relatively dense set T of real numbers and a set
P of integer numbers, such that the following relations are fulfilled:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) ||B(t+ τ)−B(t)|| < ε, t ∈ R, τ ∈ T .
(c) ||f(t+ τ) − f(t)|| < ε, t ∈ R, τ ∈ T .
(d) ||Ak+q −Ak|| < ε, q ∈ P, k = ±1,±2, . . . .
(e) ||Bk+q −Bk|| < ε, q ∈ P, k = ±1,±2, . . . .
(f) ||lk+q − lk|| < ε, q ∈ P, k = ±1,±2, . . . .
(g) |tqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

Lemma 2.14 ([148]). Let the conditions H2.31 and H2.32 hold. Then there
exist positive constants d1, and d2, such that

sup
t∈(t0,∞)

||B(t)|| < d1, sup
tk∈(t0,∞)

||Bk|| < d2.

Lemma 2.15. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) ||W (t, s)|| ≤ Ke−α(t−s), where s < t, K ≥ 1 and α > 0,
(b) ν = −α−Kd−N(1 +Kd) > 0,

where d = max(d1, d2), d1 and d2 are from Lemma 2.14, N is the number of
the points tk lying in the interval (s, t).

Then for each ε > 0, t ∈ R, s ∈ R there exists a relatively dense set T of
ε-almost periods, common for A(t) and B(t) such that for each τ ∈ T the
following inequality holds

||Q(t+ τ, s+ τ)−Q(t, s)|| < εΓe− ν
2 (t−s), (2.53)

where Γ =
1

ν
2KeN ln(1+Kd)(1 +N +

Nd

2
).

Proof. Let T and P be the sets, defined in Lemma 2.13.



60 2 Almost Periodic Solutions

Then for τ ∈ T and q ∈ P the matrix Q(t + τ, s + τ) is a solution of the
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Q

∂t
=
(
A(t) +B(t)

)
Q(t+ τ, s+ τ)

+
(
A(t+ τ) +B(t+ τ) −A(t)−B(t))Q(t+ τ, s+ τ), t �= t′k,

ΔQ(t′k) =
(
Ak +Bk

)
(Q(t′k + τ, s+ τ))

+
(
Ak+q +Bk+q −Ak −Bk

)
Q(t′k + τ, s+ τ),

where k = ±1,±2, . . . , t′k = tk − τ .
Then

Q(t+ τ, s+ τ)−Q(t, s) =
∫ t

s

Q(t, s)
(
A(σ + τ) +B(σ + τ) −A(σ)

−B(σ))Q(σ + τ, s+ τ)dσ +
∑

s≤t′
k
<t

Q(t, t
′+
v )

× (
Ak+q +Bk+q −Ak −Bk

)
Q(t′ν + τ, s+ τ).

From Lemmas 1.2 and 2.13, we have

||Q(t+ τ, s+ τ) −Q(t, s)|| ≤ εKeN ln(1+Kd)(e−ν(t−s)(t− s)
+ i(s, t)e−ν(t−s)) ≤ εΓe− ν

2 (t−s). ��

The proof of the next lemma is analogously.

Lemma 2.16. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31 and H2.32 are met.
2. The following inequalities hold

(a) ||W (t, s)|| ≤ Ke−α(t−s), where s < t, K ≥ 1, α > 0,

(b)

∫ ∞

t0

||B(σ)||dσ +
∑
t0<tk

||Bk|| ≤ D, D > 0, where s < t, D > 0.

Then for each ε > 0, t ∈ R, s ∈ R there exists a relatively dense set T
of ε-almost periods, common for A(t) and B(t) such that for each τ ∈ T the
following inequality holds

||Q(t+ τ, s+ τ)−Q(t, s)|| < εΓe−α
2 (t−s), (2.54)

where Γ = KeKD
2

α

(
1 +N +

2N

α

)
.
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Now, we are ready to proof the main results in this paragraph.

Theorem 2.8. Let the following conditions hold:

1. Conditions H2.26–H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.

Then there exists a constant d0 such that for d ∈ (0, d0] for the system
(2.47) there exists a unique almost periodic solution ϕ(t), and

||ϕ(t)|| ≤ Cmax( sup
t∈R

||f ||, sup
k=±1,±2,...

||lk||
)
, (2.55)

where C > 0.

Proof. Let the inequalities (2.50) and (2.51) hold, and let we consider the
function

ϕ(t) =

∫ t

−∞
Q(t, s)f(s)ds+

∑
tk<t

Q(t, t+k )lk.

A straightforward verification yields, that ϕ(t) is a solution of (2.47). ��
Then, from Lemma 2.15 it follows that there exists a constant d0 > 0 such

that for any d ∈ (0, d0], we have

ν = α−Kd−N ln(1 +Kd) > 0.

Now, we obtain

||ϕ(t)|| ≤ K

ν
sup
t∈R

||f(t)||+KeN ln(1+K1d) sup
k=±1,±2,...

||lk||
∑
tk<t

e−ν(t−tk). (2.56)

Then, from the relations

∑
tk<t

e−ν(t−tk) =
∞∑
k=0

∑
t−k−1<tk<t−k

e−ν(t−tk) ≤ 2N

1− e−ν,

and (2.56), we obtain

||ϕ(t)|| ≤ Cmax
(
sup
t∈R

||f(t)||, sup
k=±1,±2,...

||lk||
)
,

where C = KeN ln(1+Kd)
(1
ν
+

2N

1− e−ν
)
.

Let ε > 0 be an arbitrary chosen constant. It follows from Lemma 2.13,
that there exist sets T and P , such that for each τ ∈ T , q ∈ P , and d ∈ (0, d0]
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the following estimates hold:

||ϕ(t+ τ) − ϕ(t)|| ≤
∫ t

−∞
||Q(t+ τ, σ + τ)−Q(t, σ)||||f(σ + τ)||dσ

+

∫ t

−∞
||Q(t, σ)||||f(σ + τ)− f(σ)||dσ

+
∑
tk<t

||Q(t+ τ, t+k+q)−Q(t, t+k )||||lk+q||

+
∑
tk<t

||Q(t, t+k )||||lk+q − lk|| ≤Mε,

where M > 0, |t− tk| > ε.
The last inequality implies, that the function ϕ(t) is almost periodic.
The uniqueness of this solution follows from the fact that the homogeneous

part of system (2.47) has only the zero bounded solution under conditions
H2.26, H2.27, H2.31 and H2.32, and from the estimate (2.50). ��
Theorem 2.9. Let the following conditions hold:

1. Conditions H2.26–H2.32 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. There exists a constant D0 > 0, such that∫ ∞

t0

||B(σ)||dσ +
∑
t0<tk

||Bk|| < D0.

Then, for D ∈ (0, D0] for the system (2.47), there exists a unique almost
periodic solution ϕ(t) such that

||ϕ(t)|| ≤ Cmax
(
sup
t∈R

||f ||, sup
k=±1,±2,...

||lk||
)
,

where C > 0.

Proof. Using Lemma 2.16 and (2.52), the proof of Theorem 2.9 is carried out
in the same way as the proof of Theorem 2.8. ��
Theorem 2.10. Let the following conditions hold:

1. Conditions H2.26–H2.30 are met.
2. For the system (2.46), there exists a unique almost periodic solution.
3. B(t) = B, Bk = Λ, where B and Λ are constant matrices such that

||B||+ ||Λ|| ≤ d1, d1 > 0.

Then there exists a constant d0 > 0, d0 ≤ d1, such that for d ∈ (0, d0] for
the system (2.47), there exists a unique almost periodic solution.
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Proof. The proof of Theorem 2.10 is carried out in the same way as the proof
of Theorem 2.8. ��
Example 2.2. We shall consider the systems

{
ẋ = −x+ f(t), t �= tk,
Δx(tk) = lk, k = ±1,±2, . . . ,

(2.57)

and ⎧⎨
⎩
ẋ =

(
b(t)− 1

)
x+ f(t), t �= tk,

Δx(tk) = lk + gk, k = ±1,±2, . . . ,

(2.58)

where t ∈ R, x ∈ R, {tk} ∈ B, the function b ∈ C[R,R] is almost periodic
in the sense of Bohr, the function f ∈ PC[R,R] is almost periodic, bk ∈ R,
lk ∈ R and {bk}, {lk}, k = ±1,±2, . . ., are almost periodic sequences.

Let condition H2.28 holds. From [138] it follows that for the system (2.57)
there exists a unique almost periodic solution.

Then, the conditions of Theorem 2.8. are fulfilled, and hence, there exists
a constant d0 such that for any d ∈ (0, d0] for the system (2.58), there exists
a unique almost periodic solution in the form

x(t) =

∫ t

−∞
Q(t, σ)f(σ)dσ +

∑
tk<t

Q(t, t+k )lk,

where

Q(t, s) =
∏

s≤tk<t
(1 + bk)exp

{ ∫ t

s

b(σ)dσ − (t− s)}.
Now, we shall investigate the existence of almost periodic solutions for the

system (2.48).
Introduce the following conditions:

H2.33. The function F ∈ C[R × Ω,Rn] is almost periodic in t uniformly
with respect to x ∈ Ω, and it is Lipschitz continuous with respect to
x ∈ Bh with a Lipschitz constant L > 0,

||F (t, x)− F (t, y)|| ≤ L||x− y||, x, y ∈ Bh, t ∈ R.

H2.34. The sequence of functions {Ik(x)}, Ik ∈ C[Ω,Rn] is almost periodic
uniformly with respect to x ∈ Ω, and the functions Ik(x) are Lipschitz
continuous with respect to x ∈ Bh with a Lipschitz constant L > 0,

||Ik(x) − Ik(y)|| ≤ L||x− y||, x, y ∈ Bh, k = ±1,±2, . . . .

Theorem 2.11. Let the following conditions hold:

1. Conditions H2.26–H2.28, H2.31–H2.34 are met.
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2. For the functions F (t, x) and Ik(x), k = ±1,±2, . . . , there exists a
constant L1 > 0 such that

max
(

sup
t∈R,x∈Bh

||F (t, x)||, sup
k=±1,±2,..., x∈Bh

||Ik(x))||
)
≤ L1.

3. The inequalities (2.50) and

CL1 < h, CL < 1. (2.59)

hold.

Then there exists a constant d0 > 0 such that for any d ∈ (0, d0], for the
system (2.48) there exists a unique almost periodic solution.

Proof. Let we denote by AP the set of all almost periodic solutions ϕ(t),
ϕ ∈ PC[R,Rn], satisfy the inequality ||ϕ|| < h, and let |ϕ|∞ = sup

t∈R

||ϕ(t)||.
We define in AP the operator S, such that if ϕ ∈ AP , then y = Sϕ(t) is

the almost periodic solution of the system

{
ẏ =

(
A(t) +B(t)

)
y + F (t, ϕ(t)), t �= tk,

Δy(tk) =
(
Ak +Bk

)
y(tk) + Ik(ϕ(tk)), k = ±1,±2, . . . ,

determined by Theorem 2.8.
We shall note that the almost periodicity of the sequence {ϕ(tk)}, the

function F (t, ϕ(t)) and the sequence {Ik(ϕ(tk))} follows from Lemma 1.5
and Theorem 1.17.

On the other hand, there exists a positive constant d0 > 0 such that for
any d ∈ (0, d0],

α−Kd−N ln(1 +Kd) > 0.

From the last inequality and (2.59), it follows that (2.51) and conditions
of Lemma 2.15 hold.

Then S(AP ) ⊂ AP .
If ϕ ∈ AP, ψ ∈ AP , then from (2.51) and condition 2 of Theorem 2.11,

we get

||Sϕ(t)− Sψ(t)|| ≤ CL|ϕ− ψ|∞. (2.60)

Finally, from (2.59) and (2.60,) it follows that S is contracting in AP , i.e.
there exists a unique almost periodic solution of system (2.48). ��
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2.5 Strong Stable Impulsive Differential Equations

In this section, conditions for strong stability and almost periodicity of
solutions of impulsive differential equations with impulsive effect at fixed
moments will be proved. The investigations are carried out by means of
piecewise continuous Lyapunov functions.

We shall consider the system of impulsive differential equations

{
ẋ = f(t, x), t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,

(2.61)

where t ∈ R, {tk} ∈ B, f : R×Ω → R
n, Ik : Ω → R

n, k = ±1,±2, . . ..
Set

ρ(x, y) = ||x− y||, x, y ∈ R
n,

Bh(a) = {x ∈ R
n, ||x− a|| < h}, h > 0, a ∈ R

n,

Ψh = {(t, x) ∈ R×Bh, x ∈ Bh, if (t, x) ∈ G and x+ Ik(x) ∈ Bh,
if t = tk},

where G is the set from Sect. 1.1.
Introduce the following conditions:

H2.35. The function f ∈ C[R × Bh,R
n], and has continuous partial

derivatives of the first order with respect to all components of x ∈ Bh.
H2.36. The functions Ik ∈ C[Bh,Rn], k = ±1,±2, . . . and have continuous

partial derivatives of the first order with respect to all components of
x ∈ Bh.

H2.37. There exists h0, 0 < h0 < h such that if x ∈ Bh0 , then x + Ik(x) ∈
Bh, k = ±1,±2, . . ..

H2.38. The functions Lk(x)= x + Ik(x), k = ±1,±2, . . . are such that
L−1
k (x) ∈ Bh for x ∈ Bh.

From [138] if the conditions H2.35–H2.38 are satisfied, then for each point
(t0, x0) ∈ R×Bh, there exists a unique solution x(t) = x(t; t0, x0) of system
(2.61), which satisfies the initial condition x(t+0 ) = x0.

We need the following condition in our subsequent analysis:

H2.39. f(t, 0) = 0, Ik(0) = 0 for t ∈ R and k = ±1,±2, . . ., respectively.

If the conditions H2.35–H2.39 hold, then there exists a zero solution for
system (2.61).

Definition 2.4 ([90]). The zero solution x(t) ≡ 0 of system (2.61) is said
to be strongly stable, if
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(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀x0 ∈ Bδ : (t0, x0) ∈ Ψδ)
(∀t ∈ R) : ρ(x(t; t0, x0), 0) < ε.

Definition 2.5 ([90]). An arbitrary solution x(t) = x(t; t0, x0) of (2.61) is
said to be strongly stable, if

(∀ε > 0)( ∀η > 0)(∃δ > 0)(∀τ1 ∈ R, ∀τ2 ∈ R, ρ(x(τ1), x(τ2)) < δ)

(∀t ∈ R) : ρ(x(t+ τ1), x(t+ τ2)) < ε.

Definition 2.6. The function V ∈ V0 belongs to the class V ∗
0 , if V has

continuous partial derivatives on the sets Gk.

For each function V ∈ V ∗
0 , we define the function

V̇ (t, x) =
∂V (t, x)

∂t
+

n∑
i=1

∂V (t, x)

∂xi
fi(t, x)

for (t, x) ∈ G.
If x(t) is a solution of system (2.61), then

d

dt
V (t, x(t)) = V̇ (t, x(t)), t ∈ R, t �= tk.

Definition 2.7. The function V ∈ V0 belongs to the class V ∗∗
0 , if V has

continuous partial derivatives of the second order in the sets Gk.

Let V ∈ V ∗∗
0 . If the function f(t, x) satisfies condition H2.35 and has a

continuous partial derivative with respect to t, we can define the function

V̈ (t, x) =
∂V̇ (t, x)

∂t
+

n∑
i=1

∂V̇ (t, x)

∂xi
fi(t, x)

for (t, x) ∈ G.
In the further considerations, we shall use the next class K of functions

K =
{
a ∈ C[R,R+], a is strictly increasing and a(0) = 0

}
.

Introduce the following conditions:

H2.40. The function f(t, x) is almost periodic in t uniformly with respect to
x, x ∈ Bh.

H2.41. The sequence {Ik(x)}, k = ±1,±2, . . ., is almost periodic uniformly
with respect to x, x ∈ Bh.
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H2.42. The set of sequences {tjk}, tjk= tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

Definition 2.8 ([114]). The set S, S ⊂ R is said to be:

(a) Δ−m set, if from every m+1 real numbers τ1, τ2, . . . , τm+1 one can find
i �= j, such that τi − τj ∈ S.

(b) symmetric Δ−m set, if S is Δ−m set symmetric with respect to the
number 0.

Lemma 2.17 ([114]). Every symmetric Δ−m set is relatively dense.

Theorem 2.12. Let conditions H2.35–H2.42 hold. Then any strongly stable
bounded solution of (2.61) is almost periodic.

Proof. Let x = x(t; t0, x0) be a unique bounded solution of system (2.61)
with initial condition x(t0) = x0. Let ε > 0 be given, δ(ε) > 0, and the points
a1, a2, . . . , aN+1 , al ∈ R

n, l = 1, 2, . . . , N+1, are such that for t ∈ R, t ≥ t0,
it follows that x(t) ∈ B δ

2
(al). If t0, . . . , tN+1 are given real numbers, then for

some i �= j and some l ∈ {1, . . . , N + 1}, we get

ρ(x(τi), al) <
δ(ε)

2
, ρ(x(τj), al) <

δ(ε)

2
.

Consequently, ρ(x(ti), x(tj)) < δ(ε).
On the other hand, the solution x(t) is strongly stable, i.e. it follows that

ρ(x(t+ τi), x(t+ τj)) < ε, where t ∈ R.
Then, for t ∈ R we have ρ(x(t+τi−τj), x(t)) < ε and consequently, τi−τj

is an ε-almost period of the solution x(t).
Let T be the set of all ε-almost periods of x(t). Then, for any sequence of

numbers τ0, . . . , τN from above, it follows that there exists i �= j, such that
τi − τj ∈ T .

From Definition 2.8, we get that T is a symmetric Δ − N set, and from
Lemma 2.17, it follows that T is a relatively dense set. Then, x(t) is an almost
periodic function. ��

Let x(t) be a solution of the system (2.61). Set z = x− x(t), and consider
the system {

ż = g(t, z), t �= tk,
Δz(tk) = Jk(z(tk)), k = ±1,±2, . . . ,

(2.62)

where g(t, z) = f(t, z + x(t))− f(t, x(t)), Jk(z) = Ik(z + x)− Ik(x).
Theorem 2.13. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. There exist functions V ∈ V ∗

0 and a, b ∈ K such that:
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(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.
(b) V̇ (t, z) ≡ 0, for (t, z) ∈ R×Bh, t �= tk.
(c) V (t+k , z + Ik(z)) = V (tk, z), k = ±1,±2, . . . , z ∈ Bh.

Then the solution x(t) of (2.61) is almost periodic.

Proof. Let 0 < ε < h, 0 < μ < h be given, and let

δ = δ(ε) < min
{
ε, b−1(a(ε)), b−1(a(μ))

}
,

where a, b ∈ K. If z(t) = z(t; t0, z0) be a solution of (2.62) such that t0 ∈
R, (t0, x0) ∈ Sδ, then from condition 2 of Theorem 2.13, it follows that

a(||z||) ≤ V (t, z(t)) = V (t+0 , z0) ≤ b(||z0||) < b(δ(ε)) < min
{
a(ε), a(μ)

}
.

Consequently, ||z(t; t0, z0)|| < min(ε, μ) for t ∈ R, i.e. the zero solution of
(2.62) is strongly stable. Then, x(t) is strongly stable, and from conditions
H2.40–H2.42, and Theorem 2.12, it follows that x(t) is almost periodic. ��
Definition 2.9 ([90]). The zero solution of system (2.62) is said to be
uniformly stable to the right (to the left), if for any ε > 0 there exists δ(ε) > 0,
such that if t0 ∈ R and (t0, z0) ∈ R × Bδ(ε), then ||z(t; t0, z0)|| < ε for all
t ≥ t0 ( for all t ≤ t0), where z(t; t0, z0) is a solution of (2.62) such that
z(t+0 ) = z0.

Lemma 2.18 ([90]). The zero solution of system (2.62) is uniformly stable
to the left if and only if for any ε > 0 the following inequality holds:

γ(ε) = inf
{||z(t; t0, z0)|| : t0 ∈ R, ||z0|| ≥ ε

}
> 0.

Lemma 2.19 ([90]). The zero solution of system (2.62) is strongly stable if
and only if it is stable to the left and to the right at the same time.

Example 2.3. We shall consider the linear impulsive system of differential
equations {

ẋ = A(t)x, t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.63)

where A(t) is a square matrix, the elements of which are almost periodic
continuous functions for t ∈ R, {Bk} is an almost periodic sequence of
constant matrices such that det(E + Bk) �= 0, and for the points tk the
condition H2.42 is fulfilled. LetW (t, s) be the Cauchy matrix of system (2.63).

Since the nontrivial solution of (2.63) is given by the formula x(t; t0, x0) =
W (t, t0)x0, then x0 =W−1(t, t0)x(t; t0, x0). Hence, for any ε > 0 and ||x0‖ ≥
ε, we have

ε ≤ ||x0|| ≤ ||W−1(t, t0)||||x(t; t0, x0)||,
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and
||x(t; t0, x0)|| ≥ ε||W−1(t, t0)||−1.

However, for t = t0 and ||x0|| = ε, we have

||x(t; t0, x0)|| = ε||W−1(t, t0)||−1.

Hence,

γ(ε) = inf
{
ε||W−1(t, t0)||−1 : t ≥ t0

}
> 0

and, applying Lemma 2.18, we conclude that the zero solution of system
(2.63) is uniformly stable to the left if and only if the function ||W−1(t, s)||
is bounded on the set s ≤ t <∞. Moreover, it is clear that the zero solution
of (2.63) is uniformly stable to the right if and only if the function ||W (t, s)||
is bounded on the set s ≤ t < ∞. Then, by virtue of Lemma 2.18, the
zero solution of system (2.63) is strongly stable if and only if the functions
||W (t, t0)|| and ||W−1(t, t0)|| are bounded for t ∈ R. Consequently, an
arbitrary solution x(t) of the system (2.63) is bounded and strongly stable.
From Theorem 2.7, it follows that the solution z(t) is almost periodic.

Now, we consider the following scalar impulsive differential equations:

{
u̇ = ω1(t, u), t �= tk,
Δu(tk) = Pk(u(tk)), k = ±1,±2, . . . ,

(2.64)

where ω1 : [t0 − T, t0]× χ→ R, χ is an open interval in R, and t0 and T are
constants such that t0 > T, Pk : χ→ χ;

{
v̇ = ω2(t, v), t �= tk,
Δv(tk) = Pk(v(tk)), k = ±1,±2, . . . ,

(2.65)

where ω2 : [t0, t0 + T ]× χ→ R;

⎧⎨
⎩
ü = ω(t, u, u̇), t �= tk,
Δu(tk) = Ak(u(tk)), k = ±1,±2, . . . ,

Δu̇(tk) = Bk(u(tk), u̇(tk)), k = ±1,±2, . . . ,

(2.66)

where ω : [t0 − T, t0 + T ]× χ1 × χ2 → R, Ak : χ2 → χ1, Bk : χ1 × χ2 → χ2,
χ1 and χ2 are open intervals in R.

Theorem 2.14. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. The zero solution u(t) ≡ 0, (v(t) ≡ 0) of (2.64), (2.65) is uniformly stable

to the left (to the right).
3. The functions u + Pk(u), k = ±1,±2, . . ., are monotone increasing in

R×Bh.
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4. There exist functions V ∈ V ∗
0 and a, b ∈ K such that

(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.
(b) ω1(t, V (t, z)) ≤ V̇ (t, z) ≤ ω2(t, V (t, z)) (t, z) ∈ R×Bh.
(c) V (t+k , z + Jk(z)) = V (tk, z) + Pk(V (tk, z)), k = ±1,±2, . . . .

5. The solution x(t) of system (2.61) is bounded.

Then the solution x(t) of system (2.61) is almost periodic.

Proof. From conditions of the theorem and [90], it follows that the zero
solution of system (2.61) is strongly stable, i.e. the solution x(t) is strongly
stable. Then, from H2.40–H2.42 and Theorem 2.12, it follows that x(t) is
almost periodic. ��
Definition 2.10 ([90]). The zero solution x(t) ≡ 0 of (2.66) is said to be
u-strongly stable, if

(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀u0 : 0 ≤ u0 < δ(ε))(∀u̇0 ∈ R : |u̇0| < δ(ε))
(∀t ∈ R) : 0 ≤ u(t; t0, u0, u̇0) < ε.

Theorem 2.15. Let the following conditions hold:

1. Conditions H2.35–H2.42 are met.
2. The function g(t, x) has continuous partial derivative of the first kind with

respect to t.
3. There exist functions V ∈ V ∗∗

0 and a, b ∈ K, such that

(a) a(||z||) ≤ V (t, z) ≤ b(||z||), (t, z) ∈ R×Bh.

(b) V̇ (t, z) ≤ c‖z‖, c = const > 0, (t, z) ∈ G.

(c) V̈ (t, z) ≤ ω(t, V (t, z), V̇ (t, z)) for (t, z) ∈ R×Bh, t �= tk,
where ω(t, u1, u2), ω : R

3 → R
+ is continuous and monotone

increasing on u1 and ω(t, 0, 0) = 0 for t ∈ R.
(d) V (t+k , z + Jk(z)) ≤ V (tk, z) +Ak(V̇ (tk, z)).

(e) V̇ (t+k , z+Jk(z))≤ V̇ (tk, z)+Bk(V (tk, z), V̇ (tk, z)), k=±1,±2, . . . , z ∈
Bh.

4. The following inequalities hold

u1 +Ak(v1) ≤ u2 +Ak(v2),
v1 +Bk(u1, v1) ≤ v2 +Bk(u2, v2)

for u1 ≤ u2, v1 ≤ v2, where u1, u2 ∈ χ1, v1, v2 ∈ χ2, k = ±1,±2, . . ..
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5. The zero solution of equation (2.66) is strongly u-stable.
6. The solution x(t) of system (2.61) is bounded.

Then the solution x(t) of system (2.61) is almost periodic.

Proof. The proof of Theorem 2.15 is analogous to the proof of Theorem 2.14.
��

2.6 Dichotomies and Almost Periodicity

In this part, the existence of an almost periodic projector-valued function
of dichotomous impulsive differential systems with impulsive effects at fixed
moments is considered.

First, we shall consider the linear system of impulsive differential equations

{
ẋ = A(t)x, t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, . . . ,

(2.67)

where t ∈ R, {tk} ∈ B, A : R → R
n×n, Bk ∈ R

n×n, k = ±1,±2, . . ..
By x(t) = x(t; t0, x0) we denote the solution of (2.67) with initial condition

x(t+0 ) = x0, x0 ∈ R
n.

Introduce the following conditions:

H2.43. The matrix-valued function A ∈ PC[R,Rn×n] is almost periodic.
H2.44. {Bk}, k = ±1,±2, . . . is an almost periodic sequence.
H2.45. det(E + Bk) �= 0, k = ±1,±2, . . . where E is the identity matrix

in R
n.

H2.46. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . is uniformly almost periodic, and infkt

1
k = θ > 0.

LetW (t, s) be the Cauchy matrix of system (2.67). From conditions H2.43–
H6.46, it follows that the solutions x(t) are written down in the form

x(t; t0, x0) =W (t, t0)x0.

It is easy to verify, that the equalities W (t, t) = E and W (t, t0) =
X(t)X−1(t0) are valid, X(t) = (x1(t), x2(t), . . . , xn(t)) is some non degen-
erate matrix solution of (2.67).

Definition 2.11. The linear system (2.67) is said to has an exponential
dichotomy in R, if there exist a projector P and positive constantsK, L, α, β
such that

||X(t)PX−1(s)|| ≤ K e−α(t−s), t ≥ s,
||X(t)(E − P )X−1(s)|| ≤ L e−β(t−s), s ≥ t. (2.68)

Lemma 2.20. Let the system (2.67) has an exponential dichotomy in R.
Then any other fundamental matrix of the form X(t)C satisfies inequalities
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(2.68) with the same projector P if and only if the constant matrix C com-
mutes with P .

Proof. The proof of this lemma does not use the particular form of the matrix
X(t), and is analogous to the proof of a similar lemma in [46]. ��
Definition 2.12. The functions f ∈ PC[R, Ω], g ∈ PC[R, Ω] are said to be

ε-equivalent, and denoted f
ε∼ g, if the following conditions hold:

(a) The points of possible discontinuity of these functions can be enumerated

tfk , t
g
k, admitting a finite multiplicity by the order in R, so that

|tfk − tgk| < ε.
(b) There exist strictly increasing sequences of numbers {t′k}, {t′′k}, t′k <

t′k+1, t
′′
k < t

′′
k+1, k = ±1,±2, . . ., for which we have

sup
t∈(t′k,t

′
k+1), t

′∈(t′′k ,t
′′
k+1)

||f(t)− g(t)|| < ε, |t′k − t′′k | < ε, k = ±1,±2, . . . .

By ρ(f, g) = infε we denote the distance between functions f ∈ PC[R, Ω]
and g ∈ PC[R, Ω], and by PCϕ the set of all functions ϕ ∈ PC[R, Ω], for
which ρ(f, ϕ) is a finite number. It is easy to verify, that PCϕ is a metric
space.

Definition 2.13 ([9]). The function ϕ ∈ PC[R, Ω] is said to be almost
periodic, if for any ε the set

T =
{
τ : ρ(ϕ(t+ τ), ϕ(t)) < ε, t, τ ∈ R

}

is relatively dense in R.

By D= {Mi}, i ∈ I, we denote the family of countable sets of real numbers
unbounded below an above and not having limit points, where I is a countable
index set. Let M1 and M2 be sets of D.

Lemma 2.21 ([9]). The function ϕ ∈ PC[R, Ω] is almost periodic if and
only if for an arbitrary sequence {sn} the sequence {ϕ(t + sn)} is compact
in PCϕ.

Definition 2.14. The sets M1 and M2 are said to be ε–equivalent, if
their elements can be renumbered by integers m1

k, m
2
k, admitting a finite

multiplicity by their order in R, so that

sup
k=±1,±2,...

|m1
k −m2

k| < ε.

Definition 2.15. The number ρD(M1,M2)= inf
M1

ε∼M2

ε is said to be a dis-

tance in D.
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Throughout the rest of this paragraph, the following notation will be used:
Let conditions H2.43–H2.46 hold and let {s′m} be an arbitrary sequence of

real numbers. Analogously to the process from Chap. 1, it follows that there
exists a subsequence {sn}, sn = s′m such that the system (2.67) moves to the
system {

ẋ = As(t)x, t �= tsk,
Δx(tsk) = B

s
kx(t

s
k), k = ±1,±2, . . . .

(2.69)

The systems of the form (2.69), we shall denote by Es, and in this meaning
we shall denote (2.67) by E0. From [127], it follows that, each sequence of
shifts Esn of system E0 is compact, and let denote by H(A,Bk, tk) the set
of shifts of E0 for an arbitrary sequence {sn}.

Now, we shall consider the following scalar impulsive differential equation

{
v̇ = p(t)v, t �= tk,
Δv(tk) = bkv(tk), k = ±1,±2, . . . ,

(2.70)

where p ∈ PC[R,R], bk ∈ R.

Lemma 2.22. Let the following conditions hold:

1. Condition H2.46 holds.
2. The function p(t) is almost periodic.
3. The sequence bk is almost periodic.
4. The function v(t) is a nontrivial almost periodic solution of (2.70).

Then inf
t∈R

|v(t)| > 0 and the function 1/v(t) is almost periodic.

Proof. Suppose that inf
t∈R

|v(t)| = 0. Then, there exists a sequence {s′m} of real

numbers such that lim
n→∞ v(sn) = 0. From the almost periodicity of p(t) and

v(t) it follows that, the sequences of shifts p(t+sn) and v(t+sn) are compact
in the sets PCp and PCv, respectively. Hence, from Ascoli’s diagonal process,
it follows that there exists a subsequence {snk

}, common for p(t) and v(t)
such that the limits

lim
k→∞

p(t+ snk
) = ps(t),

and
lim
k→∞

v(t+ snk
) = vs(t)

exist uniformly for t ∈ R. Analogously, it is proved that for the sequences of
shifts {tk + nk} and {bk + nk} there exists a subsequence of {nk}, for which
there exist the limits {tsk} and {bsk}. Consequently, for the system

{
v̇s = ps(t)vs, t �= tsk,
Δvs(tsk) = b

s
kv
s(tsk), k = ±1,±2, . . . ,
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with initial condition vs(0) = 0 it follows that there exists only the trivial
solution.

Then,
v(t) = lim

k→∞
vα(t− snk

) = 0

for all t ∈ R, which contradicts the conditions of Theorem 1.20. Hence,
inf
t∈R

|v(t)| > 0, and from Lemma 2.21 it follows that 1/v(t) is an almost

periodic solution. ��
Theorem 2.16. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. The fundamental matrix X(t), X ∈ PC[R,Rn] is almost periodic.

Then X−1(t) is an almost periodic matrix-valued function.

Proof. From the representation of W (t, s) in Sect. 1.1, we have that X(t) =
W (t, t0)X(t0), hence

X−1(t) = X−1(t0)W
−1(t, t0)

= X−1(t0)
(
detW (t, t0)

)−1(
adj W (t, t0)

)T
,

where by adj W (t, t0) we denote the matrix of cofactors of matrix W (t, t0).
Then, X(t) will be almost periodic when the following function

(
v(t)

)−1

=
(
detW (t, t0)

)−1

is almost periodic.
From

detW (t, t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∏
t0≤tk<t

det(E +Bk)exp
( ∫ t

t0

Tr A(s)ds
)
, t > t0,

∏
t≤tk<t0

det(E +Bk)exp
( ∫ t

t0

Tr A(s)ds
)
, t ≤ t0,

where TrA(t) is the trace of the matrix A, and a straightforward verification,
it follows that the function v(t) = detW (t, t0) is a nontrivial almost periodic
solution of the system

{
v̇ = Tr A(t)v, t �= tk,
Δv(tk) = bkv(tk), k = ±1,±2, . . . .

Then, from Lemma 2.22 it follows that 1/v(t) is an almost periodic
function. ��
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Theorem 2.17. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. The fundamental matrix X(t) satisfies inequalities (2.68).

Then the fundamental matrix Xs(t) of system (2.70) also satisfies inequalities
(2.68).

Proof. Let we denote by H the square root of the positively definite Hermite
matrix

H2 = PX ∗ XP + (E − P )X ∗ X(E − P ).

Since P commutes with H2, then P commutes with H and H−1.
The matrix X(t) is continuously differentiable for t �= tk and with points of

discontinuity at the first kind at t= tk. Hence, the matricesH, XH−1, HX−1

enjoy the properties of X(t), and let {sn} be an arbitrary sequence of real
numbers. By a straightforward verification we establish that the matrixXn =
x(t+ sn)H

−1(sn) is a fundamental matrix of system (2.69).
On the other hand, the matrix H−1(sn) commutes with P , consequently,

from Lemma 2.20 it follows that the matrix Xn(t) satisfies inequalities (2.68).
Hence, the matrices Xn(0), X

−1
n (0) are bounded, and then there exists

a subsequence, common for both matrix sequences such that Xn(0) → Xs
0 ,

where Xs
0 is invertible. Then, from the continuous dependence of the solution

on initial condition and on parameter, it follows that Xn(t) tends, uniformly
on each compact interval, to the matrix solutionXs(t) of (2.69). Since n→∞,
we obtain that X(t) satisfies (2.68). ��
Theorem 2.18. Let the following conditions hold:

1. Conditions H2.43–H2.46 are met.
2. For the system (2.67) there exists an exponential dichotomy with an

hermitian projector P and fundamental matrix X(t).

Then, the projector-valued function P (t) = X(t)X−1(t) is almost periodic.

Proof. Let {s′m} be an arbitrary sequence of real numbers, which moves the
system (2.67) to the system (2.69).

Since the function P (t) = X(t)X−1(t) is bounded and uniformly con-
tinuous in the intervals of the form (tk, tk+1], hence the sequence {P (t +
s′m)} is uniformly bounded and uniformly continuous on the intervals
(tk−s′m, tk+1−s′m]. From Ascoli’s diagonal process it follows that there exists
a subsequence {sn} of the sequence {s′m} such that the sequence {P (t+ sn)}
is convergent at each compact interval, and let we denote its limit by Y (t). If
{sn} is a subsequence of {s′m}, such that X(sn)H

−1(sn) → Xs
0 is invertible,

then from Theorem 2.17 it follows that the sequence {X(t + sn)H
−1(sn)}

tends uniformly in each compact interval to the fundamental matrix Xs(t)

of system (2.69) and Xs(t) satisfies Y (t) = Xs(t)P
(
Xs(t)

)−1

.
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From Theorem 2.17 it follows that each uniformly convergent in a compact
interval subsequences of {P (t+ sn)} tends to one and the same limit. Thus,
the sequence {P (t+ sn)} tends uniformly to Y (t) on each compact interval.

Further on, we shall show that this convergence is uniform in R. Suppose
that this is not true. Then, for some γ > 0 there exists a sequence {hn} of
real numbers and a subsequence {s′n} of {sn} such that

||P (hn + s′n)− Y (hn)|| ≥ γ, (2.71)

for each n. It is easily to verify that Ehn+s
′
n and Ehn are uniformly convergent

in H(A,Bk, tk). From the almost periodicity and from the process of the
construction of Es it follows that the limit of such system in H(A,Bk, tk) is
one and the same, and let we denote it by Er. Analogously, {P (t+hn+ s′n)}
tends uniformly on each compact interval to Z(t)PZ−1(t), where Z(t) is
the fundamental matrix of system Er, for which there exists an exponential
dichotomy with a projector P . Hence, Y (t+hn) tends to Z(t)PZ

−1(t). Then

||P (hn + s′n)− Y (hn)|| → 0,

which contradicts the assumption (2.71). ��

2.7 Separated Solutions and Almost Periodicity

In the present paragraph, by using the notion of separated solutions,
sufficient conditions for the existence of almost periodic solutions of impulsive
differential equations with variable impulsive perturbations are obtained.
Amerio, formulated in [12] the concept of separated solutions, in order to
give sufficient conditions for the existence of almost periodic solutions to
ordinary differential equations.

The objective of this section is to extend the notion of separated solutions
for impulsive differential equations.

Consider the system of impulsive differential equations with variable
impulsive perturbations

{
ẋ = f(t, x), t �= τk(x),
Δx = Ik(x), t = τk(x), k = ±1,±2, . . . ,

(2.72)

where t ∈ R, f : R×Ω → R
n, τk : Ω → R, and Ik : Ω → R

n, k = ±1,±2 . . ..
Introduce the following conditions:

H2.47. The function f ∈ C1[R×Ω,Rn].
H2.48. The functions Ik ∈ C1[Ω,Rn], k = ±1,±2 . . ..



2.7 Separated Solutions and Almost Periodicity 77

H2.49. If x ∈ Ω, then x+ Ik(x) ∈ Ω, Lk(x) = x+ Ik(x) are invertible on Ω
and L−1

k (x) ∈ Ω for k = ±1,±2 . . ..
H2.50. τk(x) ∈ C1(Ω,R) and lim

k→±∞
τk(x) = ±∞ uniformly on x ∈ Ω.

H2.51. The following inequalities hold:

sup
{
||f(t, x)|| : (t, x) ∈ R×Ω

}
≤ A <∞,

sup
{
‖∂τk(x)∂x ‖ : x ∈ Ω, k = ±1,±2, . . .

}
≤ B <∞, AB < 1,

sup
{
〈∂τk∂x (x + sIk(x)), Ik(x)〉 : s ∈ [0, 1], x ∈ Ω, k = ±1,±2, . . .

}
≤0.

From Chap. 1, it follows that, if conditions H2.47–H2.51 are satisfied,
then system (2.72) has a unique solution x(t) = x(t; t0, x0) with the initial
condition

x(t+0 ) = x0.

Assuming that conditions H2.48–H2.51 are fulfilled, we consider the
hypersurfaces:

σk =
{
(t, x) : t = τk(x), x ∈ Ω

}
, k = ±1,±2, . . . .

Let tk be the moments in which the integral curve (t, x(t; t0, x0)) meets
the hypersurfaces σk, k = ±1,±2, . . . .

Introduce the following conditions:

H2.52. The function f(t, x) is almost periodic in t uniformly with respect to
x ∈ Ω .

H2.53. The sequences {Ik(x)} and {τk(x)}, k = ±1,±2, . . ., are almost
periodic uniformly with respect to x ∈ Ω.

H2.54. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.

Let conditions H2.47–H2.54 hold, and let {s′m} be an arbitrary sequence
of real numbers. Then, there exists a subsequence {sn}, sn= s′mn

, so that
analogous to the process in Chap. 1, the system (2.72) moves to the system

{
ẋ = fs(t, x), t �= τsk ,
Δx = Ik(x), t = τ

s
k , k = ±1,±2, . . . ,

(2.73)

and in this case, the set of systems in the form (2.73) we shall denote by
H(f, Ik, τk).

We shall introduce the following operator notation. Let α= {αn} be a
subsequence of the sequence α′ = {αn}∞n=0, and denote α ⊂ α′. Also with
α+ β we shall denote {αn + βn} of the sequences {αn} and {βn}.

By α > 0 we mean αn > 0 for each n. If α ⊂ α′ and β ⊂ β′, then α and β
are said to have matching subscripts, if α = {α′nk

} and β = {β′nk
}.
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Let we denote by Sα+βφ and SαSβφ the limits lim
n→∞ θαn+βn(φ) and

lim
n→∞ θαn( lim

m→∞ θβmφ), respectively, where the number θαn is defined in

Chap. 1, and φ =
(
ϕ(t), T

)
, φ ∈ PC[R, Ω]× UAPS.

Lemma 2.23. The function ϕ(t) is almost periodic if and only if from every
pair of sequences α′, β′ one can extracts common subsequences α ⊂ α′, β ⊂ β′
such that

Sα+βϕ = SαSβϕ, (2.74)

exists pointwise.

Proof. Let (2.74) exists pointwise, γ′ be a sequence, such that for γ ⊂ γ′,
Sγϕ exists. If Sγφ is uniform, we are done. If not, we can find ε > 0 and
sequences β ⊂ γ, β′ ⊂ γ such that

ρ(T βn , T
β′
n ) < ε,

but
sup

t∈R\Fε(s(T
β
n∪Tβ′

n ))

||ϕ(t+ βn)− ϕ(t+ β′n)|| ≥ ε > 0,

where T βn and T β
′

n are the points of discontinuity of functions ϕ(t + βn),
ϕ(t+ β′n), n = 0, 1, 2, . . ., respectively.

From the intermediate value theorem for the common intervals of conti-
nuity of functions ϕ(t+ βn) and ϕ(t+ β

′
n), and the fact that

lim
n→∞ ||ϕ(βn)− ϕ(β′n)|| = 0,

it follows that there exists a sequence α such that

sup
t∈R\Fε(s(T

β
n ∪Tβ′

n ))

||ϕ(αn + βn)− ϕ(αn + β′n)|| ≥ ε > 0. (2.75)

Then, for the sequence α there exist common subsequences α1 ⊂ α, β1 ⊂ β,
β2 ⊂ β such that

Sα1+β1φ = R1, Sα1+β2φ = R2,

where Rj = (rj(t), Pj), rj ∈ PC, Pj ∈ UAPS, j = 1, 2, exist pointwise.
From (2.74), we get

R1 = Sα1+β1φ = Sα1Sβ1φ = Sα1Sγφ

= Sα1Sβ2φ = Sα1+β2φ = R2, (2.76)

for t ∈ R \ Fε(s(P1 ∪ P2)).
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On the other hand, from (2.75) it follows that

||r1(0)− r2(0)|| > 0,

which is a contradiction of (2.76).
Let ϕ(t) be almost periodic and if α′ and β′ are given, we take subsequences

α ⊂ α′, β ⊂ β′ successively, such that they are common subsequences and
Sαφ = φ1, Sβφ1 = φ2 and Sα+βφ = φ3, where φj = (φj , Tj), φj ∈ PC[R, Ω]×
UAPS, j = 1, 2, 3, exist uniformly for t ∈ R \ Fε(s(T1 ∪ T2 ∪ T3)).

If ε > 0 is given, then

||ϕ(t+ αn + βn)− ϕ3(t)|| < ε
3
,

for n large and for all t ∈ R \ Fε(s(Tn,n ∪ T3)), where Tn,n is the set of points
of discontinuity of functions ϕ(t+ αn + βn).

Also,

||ϕ(t+ αn + βm)− ϕ1(t+ βn)|| < ε
3
,

for n, m large and for all t ∈ R \ Fε(s(Tn,m ∪ T1,n)), where Tn,m is the set
of points of discontinuity of functions ϕ(t+ αn + βm) and T1,n is formed by
the points of discontinuity of functions ϕ1(t+ βn).

Finally,

||ϕ1(t+ βm)− ϕ2(t)|| < ε
3
,

for m large and all t ∈ R \ Fε(s(T1,m ∪ T2)), where T1,m is the set of points
of discontinuity of functions ϕ1(t+ βm).

By the triangle inequality for n=m large, we have ||ϕ2(t)−ϕ3(t)|| < ε for
all t ∈ R \ Fε(s(T2 ∪ T3)).

Since ε is arbitrary, we get ϕ2(t) = ϕ3(t) for all t ∈ R \ Fε(s(T1,m ∪ T2)),
i.e. (2.74) holds. ��
Definition 2.16. The function ϕ(t), ϕ ∈ PC[R, Ω], is said to satisfy the
condition SG, if for a given sequence γ′, lim

n→∞ γ
′
n = ∞ there exist γ ⊂ γ′ and

a number d(γ) > 0 such that Sγφ, φ =
(
ϕ(t), T

)
, T ∈ UAPS exists pointwise

for each ε > 0. If α is a sequence with α > 0, β′ ⊂ γ and β′′ ⊂ γ are such
that Sα+β′φ = (r1(t), P1), Sα+β”φ = (r2(t), P2), then either r1(t) = r2(t) or
||r1(t)− r2(t)|| > d(γ) hold for t ∈ R \ Fε(s(P1 ∪ P2)).
Definition 2.17. Let K ⊂ Ω be a compact. The solution x(t) of system
(2.72) with points of discontinuity in the set T is said to be separated in K,
if for any other solution y(t) of (2.72) in Ω with points of discontinuity in
the set T there exists a number d(y(t)) such that ||x(t)− y(t)|| > d(y(t)) for
t ∈ R \ Fε(s(T )). The number d(y(t)) is said to be a separated constant.
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Theorem 2.19. The function ϕ(t), ϕ ∈ PC[R, Ω], is almost periodic if and
only if ϕ satisfies the condition SG.

Proof. Let ϕ satisfies the condition SG, and let γ′ be a sequence such that
lim
n→∞ γ

′
n = ∞. Then there exists γ ⊂ γ′ such that Sγφ, φ =

(
ϕ(t), T

)
exists

pointwise. If the convergence is not uniformly in R, then there exist sequences
δ′ > 0, α′ ⊂ γ, β′ ⊂ γ, and a number ε > 0 such that ||ϕ(α′n + δ′n)− ϕ(β′n +
δ′n)|| ≥ ε, where we may pick ε < d(γ). Since Sγ(ϕ(0), T ) exists, we have

||ϕ(α′n)− ϕ(β′n)|| < d(γ), (2.77)

for large n.
Consequently, k(t) = ϕ(t + α′n) − ϕ(t + β′n) satisfies ||k(0)|| < d(γ) and

||k(δ′n)|| ≥ ε for large n. Hence, there exists δ′′n such that δ′′n ⊂ δ′n and ε ≤
||k(δ′′n)|| < d(γ).

We shall consider the sequences α′ + δ′′ and β′ + δ′′. By SG there exist
sequences α + δ ⊂ α′ + δ′′ and β + δ ⊂ β′ + δ′′ with matching subscripts
such that Sα+δφ = φ1, Sα+δφ = φ2, φj = (ϕj , Tj) exist pointwise, and
ϕ1(t) = ϕ2(t) or ||ϕ1(t)− ϕ2(t)|| > 2d(γ), for t ∈ R \ Fε(s(T1 ∪ T2)).

On the other hand,

||ϕ1(0)− ϕ2(0)|| = lim
n→∞ ||ϕ(αn + δn)− ϕ(βn + δn)||,

and from (2.77), it follows that ||ϕ1(0) − ϕ2(0)|| ≤ d(γ). The contradiction
shows that Sγϕ exists uniformly on t ∈ R \ Fε(s(T )).

Conversely, if ϕ(t) is an almost periodic function, and γ′ be given with
lim
n→∞ γ

′
n = ∞ then, there exists γ ⊂ γ′ such that Sγφ exists uniformly on

t ∈ R \ Fε(s(T )) and Sγϕ = (k(t), Q), (k(t), Q) ∈ PC[R, Ω]× UAPS.
Let the subsequences β′ ⊂ γ, β′′ ⊂ γ, and α > 0 be such that Sα+β′φ =

(r1(t), P1), Sα+β′′φ = (r2(t), P2), (rj(t), Pj) ∈ PC[R, Ω]× UAPS.
From Lemma 2.23 it follows that there exist α′ ⊂ α, β

′ ⊂ β′, β
′′ ⊂ β′′

such that

(r1(t), P1) = Sα′+β′(p(t), T ) = Sα′Sβ′(p(t), T ) = Sα′Sγ(p(t), T )

= Sα′(k(t), Q) = Sα(k(t), Q), (2.78)

(r2(t), P2) = Sα′+β′′(p(t), T ) = Sα′Sβ′′(p(t), T ) = Sα′Sγ(p(t), T )

= Sα′(k(t), Q) = Sα(k(t), Q). (2.79)

Hence, from (2.78) and (2.79), we get r1(t) = r2(t) for t ∈ R\Fε(s(P1∪P2)).
Then, (ϕ(t), T ) satisfies SG. ��
Now, let K ⊂ Ω be a compact. We shall consider the system of impulsive

differential equations
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{
ẋ = g(t, x), t �= σk(x),
Δx = Gk(x), t = σk(x), k = ±1,±2, . . . ,

(2.80)

where (g,Gk, σk) ∈ H(f, Ik, τk).

Theorem 2.20. Let the following conditions hold:

1. Conditions H2.47–H2.54 are met.
2. Every solution of system (2.80) in K is separated.

Then every system in H(f, Ik, τk) has only a finite number of solutions
and the separated constant d may be picked to be independent of solutions.

Proof. The fact that each system has only a finite number solutions in K
is a consequence of a compactness of K and the resulting compactness
of the solutions in K. But no solution can be a limit of others by the
separated condition. Consequently, the number of solutions of any system
from H(f, Ik, τk) is finite and d may be picked as a function of the system.

Let (h, Lk, lk)∈H(f, Ik, τk) and Sα′(g,Gk, σk)= (h, Lk, lk), with lim
n→∞

α′n = ∞.
Let (ϕ(t), T ), (ϕ0(t), T0) be two solutions in K, and let α ⊂ α′ be such

that Sα(ϕ(t), T ) and Sα(ϕ0(t), T0) exist uniformly on K, and are solutions
of (2.80).

Then,
||Sα(ϕ(t), T )− Sα(ϕ0(t), T0)|| ≥ d(g,Gk, σk).

So, if ϕ1, . . . , ϕn are solutions of (2.80) in K, then Sα(ϕj(t), Tj), j =
1, 2, . . . , n, are distinct solutions of (2.80) in K such that

||Sα(ϕj(t), Tj)− Sα(ϕi(t), Ti)|| ≥ d(g,Gk, σk), i �= j.

Hence, the number of solutions of (2.80) in K is greater or equal than n.
By “symmetry” arguments the reverse is true, hence each system has the
same number of solutions.

On the other hand, Sα(ϕi, Ti) exhaust the solutions of (2.80) in K, so that
d(g,Gk, σk) ≤ d(h, Lk, lk). Again by symmetry, d(h, Lk, lk) ≥ d(g,Gk, σk).

��
Theorem 2.21. Let the following conditions hold:

1. Conditions H2.47–H2.54 are met.
2. For every system in H(f, Ik, τk) there exist only separated solutions on K.

Then:

1. If for some system in H(f, Ik, τk) there exists a solution in K, then for
every system in H(f, Ik, τk) there exists a solution in K.
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2. All such solutions in K are almost periodic and for every system in
H(f, Ik, τk) there exists an almost periodic solution in K.

Proof. The first statement has been proved in Theorem 2.20. Let ϕ(t) be a
solution of system (2.80) in K and δ be the separation constant.

Let γ′ be a sequence such that lim
n→∞ γ

′ = ∞ and γ ⊂ γ′, Sγ(g,Gk, σk) =
(h, Lk, lk), and Sγ(ϕ(t), T ) exists.

Let β′ ⊂ γ, β′′ ⊂ γ and α > 0 are such that

Sα+β′(ϕ(t), T ) = (ϕ1(t), T1),

Sα+β′′(ϕ(t), T ) = (ϕ2(t), T2).

Again, take further subsequences with matching subscripts, so that
(without changing notations)

Sα+β′(g,Gk, σk) = SαSβ′(g,Gk, σk)

= SαSγ(g,Gk, σk) = Sα(h, Lk, lk),

and
Sα+β′′(g,Gk, σk) = Sα(h, Lk, lk).

Consequently, ϕ1(t) and ϕ2(t) are solutions of the same system and for
ε > 0, ϕ1 ≡ ϕ2, for R \ Fε(s(T1

⋃
T2)) or ||ϕ1(t) − ϕ2(t)|| ≥ δ=2d on

R \ Fε(s(T1
⋃
T2)).

Therefore, ϕ(t) satisfies the SG, and from Theorem 2.19 it follows that
ϕ(t) is an almost periodic function.

Let now ϕ(t) be a solution of (2.80) in K which by the above is an almost
periodic function, and let we choice α′n = n. Then, there exists α ⊂ α′ such
that the limits Sα(g,Gk, σk) = (h, Lk, lk), S−α(h, Lk, lk) = (g,Gk, σk) exist
uniformly and Sα(ϕ(t), T ) = (r(t), P ), S−α(r(t), P ) exist uniformly on K,
where S−α(r(t), P ) is the solution of (2.80).

From condition 2 of Theorem 2.21 it is easy to see that (r(t), P ) =
Sα(ϕ(t), T ) and thus S−α(r(t), P ) exists uniformly and ϕ(t) is almost
periodic. ��

2.8 Impulsive Differential Equations in Banach Space

The abstract differential equations arise in many areas of applied mathe-
matics, and for this reason these equations have received much attention in
the resent years. Natural generalizations of the abstract differential equations
are impulsive differential equations in Banach space.

In this paragraph, we shall investigate the existence of almost periodic
solutions of these equations.
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Let (X, ||.||X) be an abstract Banach space.
Consider the impulsive differential equation

ẋ(t) = Ax+ F (t, x) +
∑

k=±1,±2,...

[
Bx+Hk(x)

]
δ(t− tk), (2.81)

where A : D(A) ⊂ X → X , B : D(B) ⊂ X → X are linear bounded
operators with domainsD(A) andD(B), respectively. The function F : D(R×
X) → X is continuous with respect to t ∈ R and with respect to x ∈ X ,
Hk : D(Hk) ⊂ X → X are continuous impulse operators, δ(.) is the Dirac’s
delta-function, {tk} ∈ B.

Denote by x(t)= x(t; t0, x0), the solution of (2.81) with the initial condition
x(t+0 ) = x0, t0 ∈ R, x0 ∈ X .

The solutions of (2.81) are piecewise continuous functions [16], with points
of discontinuity at the moments tk, k = ±1,±2, . . . at which they are
continuous from the left, i.e. the following relations are valid:

x(t−k ) = x(tk), x(t
+
k ) = x(tk) +Bx(tk) +Hk(x(tk)), k = ±1,±2, . . . .

Let PC[R, X ] = {ϕ : R → X, ϕ is a piecewise continuous function with
points of discontinuity of the first kind at the moments tk, {tk} ∈ B at which
ϕ(t−k ) and ϕ(t

+
k ) exist, and ϕ(t

−
k ) = ϕ(tk)}.

With respect to the norm ||ϕ||PC = sup
t∈R

||ϕ(t)||X , PC[R, X ] is a Banach

space [16].
Denote by PCB[R, X ] the subspace of PC[R, X ] of all bounded piecewise

continuous functions, and together with (2.81) we consider the respective
linear non-homogeneous impulsive differential equation

ẋ = Ax+ f(t) +
∑

k=±1,±2,...

[
Bx+ bk

]
δ(t− tk), (2.82)

where f ∈ PCB[R, X ], bk : D (bk) ⊂ X → X , and the homogeneous
impulsive differential equation

ẋ(t) = Ax+
∑

k=±1,±2,...

Bxδ(t − tk). (2.83)

Introduce the following conditions:

H2.55. The operators A and B commute with each other, and for the
operator I + B there exists a logarithm operator Ln(I + B), I is
the identity operator on the space X .

H2.56. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic, and infkt

1
k = θ > 0.
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Following [16], we denote by Φ(t, s), the Cauchy evolutionary operator for
(2.83),

Φ(t, s) = eΛ(t−s)(I +B)−p(t−s)+i(t,s),

where Λ = A+ pLn(I + B), i(t, s) is the number of points tk in the interval
(t, s), and p > 0 is defined in Lemma 1.1.

Lemma 2.24. Let conditions H2.55–H2.56 hold, and the spectrum σ(Λ) of
the operator Λ does not intersect the imaginary axis, and lying in the left
half-planes.

Then for the Cauchy evolutionary operator Φ(t, s) of (2.83) there exist
positive constants K1 and α such that

||Φ(t, s)||X ≤ K1e
−α(t−s), (2.84)

where t ≥ s, t, s ∈ R.

Proof. Let ε > 0 be arbitrary. Then

||(I +B)−p(t−s)+i(s,t)||X ≤ δ(ε)exp{ε||Ln(I +B)||X(t− s)},
where δ(ε) > 0 is a constant.

On the other hand [50], if α1 > 0 and

δ1 ∈ (α1, λ
∗(α1)), λ∗(α1) = inf

{|Reλ|, λ ∈ σ(Λ)},
then,

||eΛ(t−s)||X ≤ K1e
−α1(t−s), t > s

and (2.84) follows immediately. ��
The next definition is for almost periodic functions in a Banach space of

the form PC[R, X ]. ��
Definition 2.18. The function ϕ ∈ PC[R, X ] is said to be almost peri-
odic, if:

(a) The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . , {tk} ∈ B is uniformly almost periodic.

(b) For any ε > 0 there exists a real number δ(ε) > 0 such that, if the points
t′ and t′′ belong to one and the same interval of continuity of ϕ(t) and
satisfy the inequality |t′ − t′′| < δ, then ||ϕ(t′)− ϕ(t′′)||X < ε.

(c) For any ε > 0 there exists a relatively dense set T such that, if τ ∈ T , then
||ϕ(t+ τ)−ϕ(t)||X < ε for all t ∈ R satisfying the condition |t− tk| > ε,
k = ±1,±2, . . ..

The elements of T are called ε− almost periods.
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Introduce the following conditions:

H2.57. The function f(t) is almost periodic.
H2.58. The sequence {bk}, k = ±1,±2, . . . is almost periodic.

We shall use the next lemma, similar to Lemma 1.7.

Lemma 2.25. Let conditions H2.56–H2.58 hold.
Then for each ε > 0 there exist ε1, 0 < ε1 < ε, a relatively dense

set T of real numbers, and a set P of integer numbers such that the
following relations are fulfilled:

(a) ||f(t+ τ)− f(t)||X < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..
(b) ||bk+q − bk||X < ε, q ∈ P, k = ±1,±2, . . ..
(c) |τqk − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . ..

We shall prove the next theorem.

Theorem 2.22. Let the following conditions hold:

1. Conditions H2.55–H2.58 are met.
2. The spectrum σ(Λ) of the operator Λ does not intersect the imaginary

axis, and lying in the left half-planes.

Then:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of
(2.82).

2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function

x(t) =

∫ t

−∞
Φ(t, s)f(s)ds +

∑
tk<t

Φ(t, tk)bk. (2.85)

It is immediately verified, that the function x(t) is a solution of (2.82).
From conditions H2.57 and H2.58, it follows that f(t) and {bk} are bounded
and let

max
{||f(t)||PC , ||bk||X} ≤ C0, C0 > 0.

Using Lemmas 1.1 and 2.24, we obtain

||x(t)||PC =

∫ t

−∞
||Φ(t, s)||PC ||f(s)||PCds+

∑
tk<t

||Φ(t, tk)||PC ||bk||X

≤
∫ t

−∞
K1e

−α(t−s)||f(s)||PCds+
∑
tk<t

Ke−α(t−tk)||bk||X

≤ K1

(C0

α
+

C0N

1− e−α
)
= K. (2.86)
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From (2.86) it follows that x(t) ∈ PCB[R, X ].
Let ε > 0, τ ∈ T, q ∈ Q, where the sets T and P are from Lemma 2.25.
Then,

||x(t+ τ) − x(t)||PC

≤
∫ t

−∞
||Φ(t, s)||PC ||f(s+ τ)− f(s)||PCds

+
∑
tk<t

||Φ(t, tk)||PC ||bk+q − bk||X ≤Mε,

where |t− tk| > ε, M > 0.
The last inequality implies that the function x(t) is almost periodic. The

uniqueness of this solution follows from the fact that the (2.83) has only the
zero bounded solution under conditions H2.55 and H2.56.

Let x̃ ∈ PCB[R, X ] be an arbitrary solution of (2.82), and y = x̃ − x.
Then y ∈ PCB[R, X ] and

y = Φ(t, t0)y(t0). (2.87)

The proof that x(t) is asymptotically stable follows from (2.87), the estimates
from Lemma 2.24, and the fact that i(t0, t)− p(t− t0) = o(t) for t→ ∞. ��

Now, we shall investigate almost periodic solutions of (2.81).

Theorem 2.23. Let the following conditions hold:

1. Conditions H2.55–H2.58 are met.
2. The spectrum σ(Λ) of the operator Λ does not intersect the imaginary

axis, and lying in the left half-planes.
3. The function F (t, x) is almost periodic with respect to t ∈ R uniformly at
x ∈ Ω and the sequence {Hk(x)} is almost periodic uniformly at x ∈ Ω, Ω
is every compact from X, and

||x||X < h, h > 0.

4. The functions F (t, x) and Hk(x) are Lipschitz continuous with respect to
x ∈ Ω uniformly for t ∈ R with a Lipschitz constant L > 0,

||F (t, x)− F (t, y)||X ≤ L||x− y||X , ||Hk(x) −Hk(y)||X ≤ L||x− y||X .

5. The functions F (t, x) and Hk(x) are bounded,

max
{
||F (t, x)||X , ||Hk(x)||X

}
≤ C,

where C > 0, x ∈ Ω.
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Then, if:

KC < h and KL < 1,

where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of (2.81).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote byD∗ ⊂ PCB[R, X ] the set of all almost periodic functions
with points of discontinuity of the first kind tk, k = ±1,±2, . . ., satisfying
the inequality ||ϕ||PC < h.

In D∗, we define an operator S in the following way. If ϕ ∈ D∗, then
y = Sϕ(t) is the almost periodic solution of the system

ẏ(t) = Ay + F (t, ϕ(t)) +
∑

k=±1,±2,...

[
By +Hk(ϕ(tk))

]
δ(t− tk), (2.88)

determined by Theorem 2.22. Then, from (2.86) and the conditions of
Theorem 2.23, it follows that D (S) ⊂ D∗.

Let ϕ, ψ ∈ D∗. Then, we obtain

||Sϕ(t)− Sψ(t)||PC ≤ KL.

From the last inequality, and the conditions of the theorem, it follows that
the operator S is a contracting operator in D∗. ��
Example 2.4. In this example, we shall investigate materials with fading
memory with impulsive perturbations at fixed moments of time.

We shall investigate the existence of almost periodic solutions of the
following impulsive differential equation

⎧⎨
⎩
ẍ(t) + β(0)ẋ(t) = γ(0)Δx(t) + f1(t)f2(x(t)), t �= tk,
x(t+k ) = x(tk) + b

1
k,

ẋ(t+k ) = ẋ(tk) + b
2
k, k = ±1,±2, . . . ,

(2.89)

where tk = k + lk, lk = 1
4 |cosk − cosk

√
2|, k = ±1,±2, . . ..

If y(t) = ẋ(t) and

z(t) =

[
x(t)

y(t)

]
, A =

[
0 1

γ(0)Δ− β(0)
]
, ż(t) =

[
ẋ(t)

ẏ(t)

]
,

F (t, z) =

[
0

f1(t)f2(x)

]
, B =

[
0 1

1 0

]
, bk =

[
b1k
b2k

]
, k = ±1,±2, . . . ,
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then the (2.89) rewrites in the form

ż(t) = Az + F (t, z) +

∞∑
k=±1,±2,...

[
Bz + bk

]
δ(t− tk). (2.90)

From [138], it follows that the set of sequences {tjk}, k = ±1,±2, . . . , j =
±1,±2, . . ., is uniformly almost periodic and for the (2.90) the conditions of
Lemma 1.2 hold.

Let X = H1
0 (ω) × L2(ω), where ω ⊂ R3 is an open set with smooth

boundary of the class C∞, β(t), γ(t) are bounded and uniformly continuous
R valued functions of the class C2 on [0,∞), β(0) > 0, γ(0) > 0.

If A : D (A) = H2(ω) ∩H1
0 (ω)×H1

0 (ω) → X is the operator from (2.90)
and Δ is Laplacian on ω with boundary condition y|∂ω = 0, then it follows
that A is the infinitesimal generator of a C0-semigroup and the conditions of
Lemma 2.24 hold.

By Theorem 2.23 and similar arguments, we conclude with the following
theorem.

Theorem 2.24. Let for (2.89) the following conditions hold:

1. The sequences {bik}, k = ±1,±2, . . . , i = 1, 2, are almost periodic.
2. The function f1(t) is almost periodic in the sense of Bohr.
3. The function f2(x) is Lipschitz continuous with respect to ||x||X < h with

a Lipschitz constant L > 0,

||f2(x1)− f2(x2)||X ≤ L||x1 − x2||X , ||xi||X < h, i = 1, 2.

4. The function f2(x) is bounded, ||f2(x)||X ≤ C, where C > 0 and x ∈ ω.
Then, if

KC < h and KL < 1,

where K was defined by (2.86), it follows:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.89).
2. The almost periodic solution x(t) is asymptotically stable.

Now, we shall study the existence and uniqueness of almost periodic
solutions of impulsive abstract differential equations out by means of the
infinitesimal generator of an analytic semigroup and fractional powers of this
generator.

Let the operatorA in (2.81)–(2.83) be the infinitesimal operator of analytic
semigroup S(t) in Banach space X . For any α > 0, we define the fractional
power A−α of the operator A by

A−α =
1

Γ (α)

∫ ∞

0

tα−1S(t)dt,
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where Γ (α) is the Gamma function. The operators A−α are bounded,
bijective and Aα = (A−α)−1, is a closed linear operator such that D(Aα) =
R(A−α), where R(A−α) is the range of A−α. The operator A0 is the identity
operator in X and for 0 ≤ α ≤ 1, the space Xα = D(Aα) with norm
||x||α = ||Aαx||X is a Banach space [50, 58, 68, 115, 126].

We shall use the next lemmas.

Lemma 2.26 ([115, 126]). Let A be the infinitesimal operator of an
analytic semigroup S(t).

Then:

1. S(t) : X → D(Aα) for every t > 0 and α ≥ 0.
2. For every x ∈ D(Aα) it follows that S(t)Aαx = AαS(t)x.
3. For every t > 0 the operator AαS(t) is bounded, and

||AαS(t)||X ≤ Kαt−αe−λt, Kα > 0, λ > 0.

4. For 0 < α ≤ 1 and x ∈ D(Aα), we have

||S(t)x− x||X ≤ Cαtα||Aαx||X , Cα > 0.

Lemma 2.27. Let conditions H2.56–H2.58 hold, and A be the infinitesimal
operator of an analytic semigroup S(t).

Then:

1. There exists a unique almost periodic solution x(t) ∈ PCB[R, X ] of (2.82).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. We consider the function

x(t) =

∫ t

−∞
S(t− s)f(s)ds+

∑
tk<t

S(t− tk)bk. (2.91)

First, we shall show that the right hand of (2.91) is well defined.
From H2.57 and H2.58, it follows that f(t) and {bk} are bounded, and let

max
{||f(t)||PC , ||bk||X} ≤M0, M0 > 0.

Using Lemma 2.26 and the definition for the norm in Xα, from (2.91), we
obtain

||x(t)||α =

∫ t

−∞
||AαS(t− s)||X ||f(s)||PCds

+
∑
tk<t

||AαS(t− tk)||X ||bk||X
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≤
∫ t

−∞
Kα(t− s)−αe−λ(t−s)||f(s)||PCds

+
∑
tk<t

Kα(t− tk)−αe−λ(t−tk)||bk||X . (2.92)

We can easy to verify, that

∫ t

−∞
Kα(t− s)−αe−λ(t−s)||f(s)||PCds

≤ KαM0

∫ t

−∞
(t− s)−αe−λ(t−s)ds

≤ KαM0
Γ (1− α)
λ1−α

. (2.93)

Let m = min{t− tk, 0 < t − tk ≤ 1}. Then from H2.58 and Lemma 1.2,
the sum of (2.92) can be estimated as follows

∑
tk<t

Kα(t− tk)−αe−λ(t−tk)||bk||X

≤ KαM0

∑
tk<t

(t− tk)−αe−λ(t−tk)

= KαM0

[ ∑
0<t−tk≤1

(t− tk)−αe−λ(t−tk)

+

∞∑
j=1

∑
j<t−tk≤j+1

(t− tk)−αe−λ(t−tk)
]

≤ 2KαM0N
(m−α

e−λ
+

1

eλ − 1

)
. (2.94)

From (2.93), (2.94), and equality

Γ (α)Γ (1− α) = π

sinπα
, 0 < α < 1,

we have

||x(t)||α ≤ KαM0

[ π

Γ (α)sinπαλ1−α
+ 2N

(m−α

e−λ
+

1

eλ − 1

)]
,

and x ∈ PCB[R, X ].
On the other hand, it is easy to see that the function x(t) is a solution of

(2.82).
Let ε > 0, τ ∈ T, q ∈ P , where the sets T and P are from Lemma 2.25.
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Then,

||ϕ(t+ τ)− ϕ(t)||α = ||Aα(x(t + τ)− x(t))||PC

≤
∫ t

−∞
||AαS(t− s)||X ||f(s+ τ)− f(s)||PCds

+
∑
tk<t

||AαS(t− tk)||X ||bk+q − bk||X ≤Mαε,

where |t− tk| > ε, Mα > 0.
The last inequality implies, that the function x(t) is almost periodic. The

uniqueness of this solution follows from conditions H2.56–H2.58 [126].
Let now, x̃ ∈ PCB[R, X ] be an arbitrary solution of (2.82), and y = x̃−x.

Then, y ∈ PCB[R, X ] and

y = S(t− t0)y(t0). (2.95)

The proof that x(t) is asymptotically stable follows from (2.95), the
estimates from Lemma 2.26 and the fact that i(t0, t) − p(t − t0) = o(t) for
t→ ∞. ��

Now, we shall investigate the almost periodic solutions of (2.81).
Introduce the following conditions:

H2.59. The function F (t, x) is almost periodic with respect to t ∈ R

uniformly at x ∈ Ω, Ω is compact from X , and there exist constants
L1 > 0, 1 > κ > 0, 1 > α > 0 such that

||F (t1, x1)− F (t2, x2)||X ≤ L1(|t1 − t2|κ + ||x1 − x2||α),

where (ti, xi) ∈ R×Ω, i = 1, 2.
H2.60. The sequence of functions {Hk(x)}, k = ±1,±2, . . . is almost periodic

uniformly at x ∈ Ω, Ω is every compact from X , and there exist
constants L2 > 0, 1 > α > 0 such that

||Hk(x1)−Hk(x2)||X ≤ L2||x1 − x2||α ,

where x1, x2 ∈ Ω.
Theorem 2.25. Let the following conditions hold:

1. Conditions H2.58–H2.60 hold.
2. A is the infinitesimal generator of the analytic semigroup S(t).
3. The functions F (t, x) and Hk(x) are bounded:

max
{
||F (t, x)||X , ||Hk(x)||X

}
≤M,

where t ∈ R, k = ±1,±2, . . . , x ∈ Ω, M > 0.

Then if L = max{L1, L2}, L > 0 is sufficiently small it follows that:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.81).
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2. The almost periodic solution x(t) is asymptotically stable.

Proof. We denote byD∗ ⊂ PCB[R, X ] the set of all almost periodic functions
with points of discontinuity of the first kind tk, k = ±1,±2, . . ., satisfying
the inequality ||ϕ||PC < h, h > 0.

In D∗, we define the operator S∗ in the following way

S∗ϕ(t) =
∫ t

−∞
AαS(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

AαS(t− tk)Hk(A−αϕ(tk)). (2.96)

The facts that S∗ is well defined, and S∗ϕ(t) is almost periodic function
follow in the same way as in the proof of Lemma 2.27. Now, we shall show,
that S∗ is a contracting operator in D∗.

Let ϕ, ψ ∈ D∗. Then, we obtain

||S∗ϕ(t)− S∗ψ(t)||X

≤
∫ t

−∞
||AαS(t− s)||X ||F (t, A−αϕ(t))− F (t, A−αψ(t))||Xds

+
∑
tk<t

||AαS(t− tk)||X ||Hk(A−αϕ(tk))−Hk(A−αψ(tk))||X

≤ LKα||ϕ(t)− ψ(t)||X
[ ∫ t

−∞
(t− s)−αe−λ(t−s)ds

+
∑
tk<t

(t− tk)−αe−λ(t−tk)
]
.

With similar arguments like in (2.94), for the last inequality, we have

||S∗ϕ(t)− S∗ψ(t)||X ≤ LKα
[Γ (1− α)
λ1−α

+ 2N
(m−α

e−λ
+

1

eλ − 1

)]
||ϕ(t) − ψ(t)||X .

Then, if L is sufficiently small and

L ≤
(
Kα

[ π

Γ (α)sinπαλ1−α
+ 2N

(m−α

e−λ
+

1

eλ − 1

)])−1

,

it follows that the operator S∗ is a contracting operator in D∗.
Consequently, there exists ϕ ∈ D∗ such that
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ϕ(t) =

∫ t

−∞
AαS(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

AαS(t− tk)Hk(A−αϕ(tk)). (2.97)

On the other hand, since Aα is closed, we get

A−αϕ(t) =
∫ t

−∞
S(t− s)F (t, A−αϕ(s))ds

+
∑
tk<t

S(t− tk)Hk(A−αϕ(tk)). (2.98)

Now, let h ∈ (0, θ), where θ is the constant from H2.56, and t ∈ (tk,
tk+1 − h].

Then,

||ϕ(t + h)− ϕ(t)||α

≤ ||
∫ t

−∞
(S(h)− I)AαS(t− s)F (t, A−αϕ(s))ds||α

+ ||
∫ t+h

t

AαS(t+ h− s)F (t, A−αϕ(s))ds||α. (2.99)

From Lemma 2.26 for (2.99), it follows that

||ϕ(t+ h)− ϕ(t)||α ≤ Kα+βMCβhβ +KαM
h1−α

1− α.

Then, there exists a constant C > 0 such that

||ϕ(t+ h)− ϕ(t)||α ≤ Chβ .

On the other hand, from H2.59 it follows that F (t, A−αϕ(t)) is locally
Hölder continuous. From H2.60 and the conditions of the theorem,
Hk(A

−αϕ(tk)) is a bounded almost periodic sequence.
Let ϕ(t) be a solution of (2.97), and let consider the equation

ẋ(t) = Ax+ F (t, A−αϕ(t)) +
∞∑

k=−∞
Hk(A

−αϕ(tk))δ(t− tk). (2.100)

Using the condition H2.60 and Lemma 2.27, it follows that for (2.100)
there exists a unique asymptotically stable solution in the form
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ψ(t) =

∫ t

−∞
S(t− s)F (s, A−αϕ(s))ds +

∑
tk<t

S(t− tk)Hk(A−αϕ(tk)),

where ψ ∈ D(Aα).
Then,

Aαψ(t) =

∫ t

−∞
AαS(t− s)F (s, A−aϕ(s))ds

+
∑
tk<t

AαHk(A
−αϕ(tk)) = ϕ(t).

The last equality shows that ψ(t) = A−αϕ(t) is a solution of (2.81), and
the uniqueness follows from the uniqueness of the solution of (2.97), (2.100)
and Lemma 2.27. ��
Example 2.5. Here, we shall consider a two-dimensional impulsive predator–
prey system with diffusion, when biological parameters assumed to change in
almost periodical manner. The system is affected by impulses, which can be
considered as a control.

Assuming that the system is confined to a fixed bounded space domain
Ω ⊂ R

n with smooth boundary ∂Ω, non-uniformly distributed in the domain
Ω = Ω× ∂Ω and subjected to short-term external influence at fixed moment
of time. The functions u(t, x) and v(t, x) determine the densities of predator

and pray, respectively, Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . .+ ∂2

∂x2
n
is the Laplace operator and

∂
∂n is the outward normal derivative.

The system is written in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= μ1Δu+ u

[
a1(t, x) − b(t, x)u− c1(t, x)v

r(t, x)v + u

]
, t �= tk,

∂v

∂t
= μ2Δv + v

[
− a2(t, x) + c2(t, x)u

r(t, x)u + v

]
, t �= tk,

u(t+k , x) = u(t
−
k , x)Ik(x, u(tk, x), v(tk, x)), k = ±1,±2, . . . ,

v(t+k , x) = v(t
−
k , x)Jk(x, u(tk, x), v(tk, x)), k = ±1,±2, . . . ,

∂u

∂n

∣∣∣∣∣
∂Ω

= 0,
∂v

∂n

∣∣∣∣∣
∂Ω

= 0.

(2.101)

The boundary condition characterize the absence of migration, μ1>0,
μ2 > 0 are diffusion coefficients. We assume that, the predator functional
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response has the form of the ratio function
c1v

rv + u
. The ratio function

c2u

rv + u
represents the conversion of prey to predator, a1, a2, c1 and c2 are positive
functions that stand for prey intrinsic growth rate, capturing rate of the

predator, death rate of the predator and conversion rate, respectively,
a1(t, x)

b(t, x)
gives the carrying capacity of the prey, and r(t, x) is the half saturation
function.

We note that the problems of existence, uniqueness, and continuability of
solutions of impulsive differential equations (2.101) have been investigated
in [7].

Introduce the following conditions:

H2.61. The functions ai(t, x), ci(t, x), i = 1, 2, b(t, x) and r(t, x) are almost
periodic with respect to t, uniformly at x ∈ Ω, positive-valued on
R × Ω and locally Hölder continuous with points of discontinuity at
the moments tk, k = ±1,±2, . . ., at which they are continuous from
the left.

H2.62. The sequences of functions {Ik(x, u, v)}, {Jk(x, u, v)}, k = ±1,±2, . . .
are almost periodic with respect to k, uniformly at x, u, v ∈ Ω.

Set w = (u, v), and

A =

⎡
⎣λ− μ1Δ 0

0 λ− μ2Δ

⎤
⎦ ,

F (t, w) =

⎡
⎢⎢⎣
u
[
a1(t, x)− b(t, x)u− c1(t, x)v

r(t, x)v + u

]
+ λu

v
[
− a2(t, x) + c2(t, x)u

r(t, x)u + v

]
+ λv

⎤
⎥⎥⎦ ,

Hk(w(tk)) =

[
u(tk, x)Ik(x, u(tk, x), v(tk, x))− u(tk, x)
v(tk, x)Jk(x, u(tk, x), v(tk, x)) − v(tk, x)

]
,

where λ > 0.
Then, the system (2.101) moves to the equation

ẇ(t) = Aw + F (t, w) +
∑

k=±1,±2,...

Gk(w)δ(t − tk). (2.102)

It is well-known [68], that the operator A is sectorial, and Reσ(A) ≤ −λ,
where σ(A) is the spectrum of A. Now, the analytic semigroup of the operator
A is e−At, and

A−α =
1

Γ (α)

∫ ∞

0

tα−1e−Atdt.
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Theorem 2.26. Let for the equation (2.102) the following conditions hold:

1. Conditions H2.56, H2.61 and H2.62 are met.
2. For the functions F (t, w) there exist constants L1 > 0, 1 > κ > 0, 1 >
α > 0 such that

||F (t1, w1)− F (t2, w2)||X ≤ L1

(|t1 − t2|κ + ||w1 − w2||α
)
,

where (ti, wi) ∈ R×Xα, i = 1, 2.
3. For the set of functions {Hk(w)}, k = ±1,±2, . . . there exist constants
L2 > 0, 1 > α > 0 such that

||Hk(w1)−Hk(w2)||X ≤ L2||w1 − w2||α.

where w1, w2 ∈ Xα
4. The functions F (t, w) and Hk(w) are bounded for t ∈ R, w ∈ Xα and
k = ±1,±2, . . ..

Then, if L = max{L1, L2} is sufficiently small, it follows:

1. There exists a unique almost periodic solution x ∈ PCB[R, X ] of (2.101).
2. The almost periodic solution x(t) is asymptotically stable.

Proof. From conditions H2.61, H2.62 and conditions of the theorem, it follows
that all conditions of Theorem 2.25 hold. Then, for (2.102) and consequently
for (2.101) there exists a unique almost periodic solution of (2.101), which is
asymptotically stable. ��



Chapter 3
Lyapunov Method and Almost
Periodicity

The present chapter will deal with the existence and uniqueness of almost
periodic solutions of impulsive differential equations by Lyapunov method.

Section 3.1 will offer almost periodic Lyapunov functions. The existence
results of almost periodic solutions for different kinds of impulsive differential
equations will be given.

In Sect. 3.2, we shall use the comparison principle for the existence theo-
rems of almost periodic solutions of impulsive integro-differential equations.

Section 3.3 will deal with the existence of almost periodic solutions of
impulsive differential equations with time-varying delays. The investigations
are carried out by using minimal subsets of a suitable space of piecewise
continuous Lyapunov functions.

In Sect. 3.4, we shall continue to use Lyapunov method, and we shall
investigate the existence and stability of almost periodic solutions of nonlinear
impulsive functional differential equations.

Finally, in Sect. 3.5, by using the concepts of uniformly positive definite
matrix functions and Hamilton–Jacobi–Riccati inequalities, we shall prove
the existence theorems for almost periodic solutions of uncertain impulsive
dynamical equations.

3.1 Lyapunov Method and Almost Periodic Solutions

In this part, we shall consider the system of impulsive differential equations

{
ẋ = f(t, x), t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, . . . ,

(3.1)

where t ∈ R, {tk} ∈ B, f : R× R
n → R

n, Ik : Rn → R
n, k = ±1,±2, . . ..
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We shall introduce the following conditions:

H3.1. The function f ∈ C[R× R
n,Rn] and f(t, 0) = 0 for t ∈ R.

H3.2. The function f is Lipschitz continuous with respect to x ∈ R
n with

a Lipschitz constant L1 > 0 uniformly on t ∈ R, i.e.

||f(t, x)− f(t, x)|| ≤ L1||x− x||,

for x, x ∈ R
n.

H3.3. The functions Ik ∈ C[Rn,Rn], k = ±1,±2, . . ..
H3.4. Ik(0) = 0, k = ±1,±2, . . ..
H3.5. The functions Ik, k = ±1,±2, . . . are Lipschitz continuous with

respect to x ∈ R
n with a Lipschitz constant L2 > 0, i.e.

||Ik(x)− Ik(x)|| ≤ L2||x− x||,

for x, x ∈ R
n.

We note that [94], if conditions H3.1–H3.5 are satisfied, then for the system
(3.1) with initial condition x(t+0 ) = x0, there exists a unique solution x(t) =
x(t; t0, x0).

We shall use the sets Gk, the set

G =
⋃

k=±1,±2,...

Gk,

the class of piecewise continuous functions V0, introduced in Chap. 1 for
Ω ≡ R

n, and the class of function K,

K =
{
a ∈ C[R+,R+]; a is increasing and a(0) = 0

}
.

Introduce the following conditions:

H3.6. The function f(t, x) is almost periodic in t uniformly with respect to
x ∈ R

n.
H3.7. The sequence {Ik(x)}, k = ±1,±2, . . . is almost periodic uniformly

with respect to x ∈ R
n.

H3.8. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . is uniformly almost periodic, and infkt

1
k = θ > 0.

Let the assumptions H3.1–H3.8 are satisfied, and let {sn} be an arbitrary
sequence of real numbers. Like in Chap. 1, the system (3.1) moves to the
system {

ẋ = f s(t, x), t �= tsk,
Δx(tsk) = I

s
k(x(t

s
k)), k = ±1,±2, . . . ,

(3.2)

and the set of systems (3.2) we shall denote by H(f, Ik, tk).



3.1 Lyapunov Method and Almost Periodic Solutions 99

In this paragraph we shall use Definition 1.6, Definition 1.7, and the next
definitions.

Definition 3.1. The zero solution x(t) ≡ 0 of system (3.1) is said to be:

1. Globally asymptotically stable, if it is stable and if every solution of (3.1)
with an initial state in a neighborhood of the zero tends to zero as t→ ∞;

2. Globally quasi-equi-asymptotically stable, if

(∀α > 0)(∀ε > 0)(∀t0 ∈ R)(∃T > 0)(∀x0 ∈ Bα)(∀t ≥ t0 + T ) :
||x(t; t0, x0)|| < ε.

Definition 3.2. The solution x(t; t0, x0) of system (3.1) is equi-bounded, if

(∀α > 0)(∀t0 ∈ R)(∃β > 0)(∀x0 ∈ Bα)(∀t ≥ t0) : ||x(t; t0, x0)|| < β.

Definition 3.3. The zero solution x(t) ≡ 0 of (3.1) is said to be globally
perfectly uniform-asymptotically stable, if it is uniformly stable, the number
β in Definition 3.2 and the T in the part 2 of Definition 3.2 are independent
of t0 ∈ R.

3.1.1 Almost Periodic Lyapunov Functions

In the further considerations we shall use the following lemma.

Lemma 3.1 ([116]). Given any real function A(r, ε) of real variables,
defined, continuous and positive in Q =

{
(r, ε) : r ∈ R

+ and ε > 0
}
,

there exist two continuous functions h = h(r), h(r) > 0 and g = g(ε),
g(ε) > 0, g(0) = 0 such that h(r)g(ε) ≤ A(r, ε) in Q.

Now, we shall prove a Massera’s type theorem.

Theorem 3.1. Let conditions H3.1–H3.8 hold, and suppose that the zero
solution of system (3.1) is globally perfectly uniform-asymptotically stable.

Then there exists a Lyapunov function V , defined on R × R
n, V ∈ V0,

which is almost periodic in t uniformly with respect to x ∈ R
n, and satisfies

the following conditions

a(||x||) ≤ V (t, x) ≤ b(||x||), (t, x) ∈ R× R
n, (3.3)

where a, b ∈ K, a(r), b(r) → ∞ as r → ∞,

V (t+, x) ≤ V (t, x), x ∈ R
n, t = tk, k = ±1,±2, ...,
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and
D+V (t, x) ≤ −cV (t, x), (t, x) ∈ G (3.4)

for c = const > 0.

Proof. Fallow [15] let Γ ∗(σ, α) =
{
(t, x) : t ∈ (−σ, σ), x ∈ Bα

}
, where σ

and α are arbitrary positive constants. From [21] and by the global perfect
uniform-asymptotic stability of the zero solution of (3.1), it follows that the
solutions of system (3.1) are equi-bounded, i.e. there exists a constant β =
β(α) > 0 such that for (t0, x0) ∈ Γ ∗(σ, α), we have ||x(t; t0, x0)|| < β(α),
where t ≥ t0.

Moreover, there exists a T (α, ε) > 0 such that from (t0, x0) ∈ Γ ∗(σ, α), we
obtain ||x(t; t0, x0)|| < ε for t ≥ t0+T (α, ε). If ε > 1, we set T (α, ε) = T (α, 1).

From conditions H3.2 and H3.4, it follows that there exist L1(α, ε) > 0
and L2(α, ε) > 0 such that if 0 ≤ t ≤ σ + T (α, ε), x1, x2 ∈ Bβ(α), we get

||f(t, x1)− f(t, x2)|| ≤ L1(α, ε)||x1 − x2||,
||Ik(x1)− Ik(x2)|| ≤ L2(α, ε)||x1 − x2||, k = ±1,±2, ....

Let

f∗ = 1 +max ||f(t, x)||, 0 ≤ t ≤ T (α, ε), x ∈ Bβ(α),
I∗ = max ||Ik(x)||, x ∈ Bβ(α), k = ±1,±2, ...,

and let c = const > 0.
We set

A(α, ε) = ecT (α,ε) ×
{(

2
(
f∗ + I∗

1

p

)

+
(1
p
+ 1

)
T (α, ε)

)
eL1(α,ε)+

1
p ln(1+L2(α,ε)) + β(α)

}
. (3.5)

From Lemma 3.1, it follows that there exist two functions h(α) > 0 and
g(ε) > 0 such that ε > 0, g(0) = 0 and

g(ε)A(α, ε) ≤ h(α). (3.6)

For i = 1, 2, ..., let we define Vi(t, x) by

Vi(t, x) = g
(

1
i

)
sup
τ≥0

Yi
(‖x(t+ τ, t, x)‖)ecτ , t �= tk,

Vi(tk, x) = Vi(t
−
k , x), k = ±1,±2, ...,

(3.7)

where

Yi(z) =

{
z − 1

i , if z ≥ 1
i ,

0, if 0 ≤ z ≤ 1
i .
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Clearly, Yi(z) → ∞ as z → ∞, for each i, and

||Yi(z1)− Yi(z2)|| ≤ |z1 − z2|, (3.8)

where z1, z2 ≥ 0.
From the definition of Vi(t, x) it follows that

g
(1
i

)
Yi(||x||) ≤ Vi(t, x), (3.9)

and Vi(t, 0) ≡ 0 as (t, x) ∈ Γ ∗(σ, α).
On the other hand, from (3.5) and (3.6), we have

Vi(t, x) ≤ g
(1
i

)
Yi(β(α))e

cT (α, 1i ) ≤ g
(1
i

)
β(α)ecT (α, 1i ) ≤ h(α). (3.10)

Then from (3.9) and (3.10) for the function Vi(t, x) it follows that (3.3)
holds. For (t′, x′), (t, x) ∈ Γ ∗(σ, α) and t < t′, we get

∣∣Vi(t′, x′)− Vi(t, x)∣∣ ≤ g
(1
i

)
sup
τ≥0

∣∣∣Yi(||x(t′ + τ ; t′, x′)||)
− Yi(||x(t + τ ; t, x)||)

∣∣∣ecτ

≤ g
(1
i

)
sup

0≤τ≤T (α, 1i )

ecτ
∥∥x(t′ + τ ; t′, x′)− x(t + τ ; t, x)∥∥

≤ g
(1
i

)
sup
τ≥0
ecτ
{∥∥x(t′ + τ ; t′, x′)− x(t′ + τ ; t, x)∥∥

+
∥∥x(t′ + τ ; t, x) − x(t+ τ ; t, x)∥∥}. (3.11)

Then

∥∥x(t′ + τ ; t, x)− x(t+ τ ; t, x)∥∥

≤
∫ t′+τ

t+τ

‖f(s, x(s))‖ ds+
∑

t+τ<tk<t′+τ

‖Ik(x(τk))‖

≤ max
t+τ≤s≤t′+τ

x∈Bβ(α)

‖f(s, x(s))‖(t′ − t) + max
t+τ≤tk≤t′+τ

‖Ik(x(tk))‖ i(t+ τ, t′ + τ)

≤
(
f∗ + I∗

1

p

)
(t′ − t), (3.12)

where i(t+ τ, t′ + τ) is the number of points on the interval (t+ τ, t′ + τ).
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Let X = x(t′; t, x). From Theorem 1.9, we obtain

∥∥x(t′ + τ ; t, x) − x(t′ + τ ; t′, x′)∥∥
≤ ||X − x′|| exp

{
L1

(
α,

1

i

)
+

1

p
ln
(
1 + L2

(
α,

1

i

))
T
(
α,

1

i

)}

≤ (||X − x||+ ||x− x′||) exp{L1

(
α,

1

i

)
+

1

p
ln
(
1 + L2

(
α,

1

i

))
T
(
α,

1

i

)}

≤
((
f∗ + I∗

1

p

)
(t′ − t) + ||x− x′||

)

× exp
{
L1

(
α,

1

i

)
+

1

p
ln
(
1 + L2

(
α,

1

i

))
T
(
α,

1

i

)}
. (3.13)

Then from (3.12), (3.13) for (3.11), it follows

∣∣Vi(t, x)− Vi(t′, x′)∣∣ ≤ g
(1
i

)
sup

0≤τ≤T (α, 1i )

ecτ
((
f∗ + I∗

1

p

)
+
(
f∗ + I∗

1

p

)
(t′ − t)

+ ‖x− x′‖
)
× exp

{
L1

(
α,

1

i

)
+

1

p
ln
(
1 + L2

(
α,

1

i

))
T
(
α,

1

i

)}

≤ g
(1
i

)
2
(
f∗ + I∗

1

p

)
exp

{
L1

(
α,

1

i

)
+

1

p
ln
(
1 + L2

(
α,

1

i

))
T
(
α,

1

i

)}

× (|t′ − t|+ ||x− x′||) ≤ h(α)(|t′ − t|+ ||x− x′||). (3.14)

On the other hand, as x ∈ Bβ(α) and t = tk, from (3.14) it follows that
Vi(t, x) is continuous, and for t = t′ we obtain that the function Vi(t, x) is
locally Lipschitz continuous.

Let tk are fixed, t
′, t′′ ∈ (tk, tk+1], x

′, x′′ ∈ Bβ(α) and u′ = x(t′; tk, x′), u′′ =
x(t′′; tk, x′′).

Then

∣∣Vi(t′, x′)− Vi(t′′, x′′)∣∣ ≤ ∣∣Vi(t′, x′)− Vi(t′, u′)∣∣
+
∣∣Vi(t′′, x′′)− Vi(t′′, u′′)∣∣+ ∣∣Vi(t′, u′)− Vi(t′′, u′′)∣∣. (3.15)

By the fact that the functions Vi(t, x) and f(t, x) are Lipschitz continuous,
we obtain the estimates

|Vi(t′, x′)− Vi(t′, u′)| ≤ h(α)||x′ − u′||,
||x′ − u′|| ≤ ||x′ − x||+ ||u′ − x||,

||u′ − x|| ≤
∫ t′

tk

L1

(
α,

1

i

)
exp

{∫ s

tk

L1

(
α,

1

i

)
dτ

}
ds||x|| ≡ N(t′)||x||.
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Then

∣∣Vi(t′, x′)− Vi(t′, u′)∣∣ ≤ h(α)‖x′ − x‖ + h(α)N(t′)||x||. (3.16)

By analogy,

∣∣Vi(t′′, x′′)− Vi(t′′, u′′)∣∣ ≤ h(α)||x′′ − x||+ h(α)N(t′′)||x||. (3.17)

Since ai(δ)= sup
τ>δ
Yi(‖x(tk+τ, tk, x)‖)ecτ is non-increasing and lim

δ→0+
ai(δ) =

ai(0), it follows that

∣∣Vi(t′, u′)− Vi(t′′, u′′)∣∣ ≤ g
(1
i

)∣∣∣∣ sup
s>0
Yi
(||x(t′ + s; t′, u′)||)ecs

− sup
s>0
Yi
(‖x(t′′ + s; t′′, u′′)‖)ecs

∣∣∣∣
≤ g

(1
i

)∣∣∣a(t′ − tk)e−c(t′−tk) − a(t′′ − tk)e−c(t′′−tk)
∣∣∣→ 0

as t′ → t+k and t′′ → t+k . From (3.15)–(3.17), we obtain that there exists the
limit Vi(t

+
k , x).

The proof of the existence of the limit Vi(t
−
k , x) follows by analogy.

Let η(t; t0, x0) be the solution of the initial value problem

{
η̇ = f(t, η),

η(t0) = x0.

Since tk−1 < λ < tk < μ < tk+1 and s > μ it follows that

x
(
s;μ, η(μ; tk, x+ Ik(x))

)
= x

(
s;λ, η(λ, tk, x)

)
.

Then
Vi
(
μ, η(μ; tk, x+ Ik(x))

) ≤ Vi(λ, η(λ; tk, x))
and passing to the limits as μ→ t+k and λ→ t−k , we obtain

Vi
(
t+k , x+ Ik(x)

) ≤ Vi(t−k , x) = Vi(tk, x). (3.18)

Let x ∈ Bβ(α), t �= tk, h > 0, and x′ = x(t+ h; t, x).
Then

Vi(t+ h, x
′) = g

(1
i

)
sup
s≥0
Yi
(‖x(t+ h+ s, t+ h, x′)‖)ecs

= g
(1
i

)
sup
τ>h

Yi
(‖x(t+ τ, t+ h, x′)‖)ecτe−ch ≤ Vi(t, x)e−ch
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or
1

h

(
Vi(t+ h, x

′)− Vi(t, x)
) ≤ 1

h
(e−ch − 1)Vi(t, x).

Consequently, D+Vi(t, x) ≤ −cVi(t, x). From this inequality, we obtain
(3.4) for the function Vi(t, x).

Now, we define the desired function V (t, x) by setting

⎧⎪⎨
⎪⎩
V (t, x) =

∞∑
i=1

1

2i
Vi(t, x), t �= tk,

V (tk, x) = V (t
−
k , x), k = ±1,±2, ....

(3.19)

Since (3.11) implies the uniform convergence of the series (3.19) in
Γ ∗(σ, α), V (t, x) is defined on R × R

n, piecewise continuous along t, with
points of discontinuity at the moments tk, k = ±1,±2, ... and it is continuous
along x.

From (3.9) it follows that V (t, 0) ≡ 0. For x such that ||x|| ≥ 1, from (3.9)
and (3.19), we obtain

V (t, x) >
1

2
V1(t, x) ≥ 1

2
g(1)Y1(‖x‖) ≥ 1

2
(‖x‖ − 1). (3.20)

For x such that
1

i
≤ ||x|| ≤ 1

i− 1
, we obtain

V (t, x) ≥ 1

2i+1
Vi+1(t, x)

≥ 1

2i+1
g
( 1

i+ 1

)
Yi+1(||x||)

≥ 1

2i+1
g
( 1

i+ 1

)
Yi+1

(
‖x‖ − 1

i+ 1

)

≥ 1

2i+1
g
( 1

i+ 1

) 1

i(i+ 1)
. (3.21)

From (3.20) and (3.21) we can find a ∈ K such that a(r) → ∞ as r → ∞
and a(||x||) ≤ V (t, x).

Let (t, x), (t′, x′) ∈ Γ ∗(σ, α) with t < t′, and then

∣∣V (t, x)− V (t′, x′)∣∣ ≤
∞∑
i=1

1

2i

∣∣Vi(t, x) − Vi(t′, x′)∣∣

≤
∞∑
i=1

1

2i
h(α)

(|t− t′|+ ‖x− x′‖)

≤ h(α)(|t− t′|+ ‖x− x′‖). (3.22)
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From (3.22) it follows that for x ∈ Bβ(α) and t �= tk the function V (t, x)
is continuous, and for t = t′, we obtain V (t+, x+ Ik(x)) ≤ V (t, x).

Let tk ∈ R, x ∈ Bβ(α) be fixed and ξj ∈ (tk, tk+1], xj ∈ Bβ(α), where
uj = x(ξj ; tk, xj), (j = 1, 2).

Then

∣∣V (ξj , xj)− V (ξj , uj)∣∣ =
∞∑
i=1

1

2i
∣∣Vi(ξj , xj)− Vi(ξj , uj)∣∣

≤
∞∑
i=1

1

2i
g
( 1

2i

)∣∣∣a(ξ1 − tk)e−c(ξ1−tk) − a(ξ2 − tk)e−c(ξ2−tk)
∣∣∣→ 0

for ξj → t+k (j = 1, 2), i.e. there exists the limit V (t+k , x). The proof of the
existence of the limit V (t−k , x) follows by analogy.

Let now tk−1 < λ < tk < μ < tk+1, s > μ and from (3.18), we get

V
(
t+k , x+ Ik(x)

)
=

∞∑
i=1

1

2i
Vi
(
t+k , x+ Ik(x)

) ≤
∞∑
i=1

V (t−k , x)

≤
∞∑
i=1

1

2i
Vi(tk, x) = V (tk, x). (3.23)

Let x ∈ Bβ(α), t �= tk and h > 0. Then from (3.19), we obtain

D+V (t, x) =

∞∑
i=1

lim
h→0+

sup
1

h

[
Vi(t+ h, x(t+ h; t, x)) − Vi(t, x)

]

and ∞∑
i=1

1

2i
(− cVi(t, x)) ≤ −cV (t, x).

Then
D+V (t, x) ≤ −cV (t, x). (3.24)

Consequently, from (3.24) it follows that there exists V (t, x) from V0 such
that (3.3) and (3.4) are fulfilled.

Here, we shall show that the function V (t, x) is almost periodic in t
uniformly with respect to x ∈ Bβ(α).

From conditions of the theorem it follows that if x ∈ Bβ(α), then there
exists β(α) > 0 such that ||x(t; τ, x)|| ≤ β(α) for any t ≥ τ, τ ∈ R.
From conditions H3.6–H3.8, we get that for an arbitrary sequence {sm′}
of real numbers there exists a subsequence {sn}, sn = smn

′ moving (3.1) in
H(f, Ik, tk).
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Then, as x ∈ Bβ(α), we obtain

∣∣Vi(t+ sn, x)− Vi(t+ sp, x)∣∣ ≤ g
(1
i

)
sup
τ≥0

ecτ
∣∣∣Yi(∥∥x(t + sn + τ ; t+ sn, x)

∥∥)

− Yi
(∥∥x(t+ sp + τ ; t+ sp, x)∥∥)

∣∣∣
≤ g

(1
i

)
sup

0≤τ≤T (α, 1i )

ecτ
∥∥∥x(t+ sn + τ ; t+ sn, x

)

− x(t+ sp + τ ; t+ sn, x)
∥∥∥. (3.25)

On the other hand,

x
(
t+ sn + τ ; t+ sn, x

)

= x+

∫ t+τ

t

f
(
σ + sn, x(σ + sn; t+ sn, x)

)
dσ

+
∑

t<σi(sn)<t+τ

Ii+i(sn)

(
x
(
σi(sn) + sn; t+ sn, x

))
(3.26)

and

x
(
t+ sp + τ ; t+ sp, x

)

= x+

∫ t+τ

t

f
(
σ + sp, x(σ + sp; t+ sp, x)

)
dσ

+
∑

t<σi(sp)<t+τ

Ii+i(sp)
(
x
(
σi(sp) + sp; t+ sp, x

))
, (3.27)

where σi(sj) = tk − sj, j = n, p, and the numbers i(sn) and i(sp) are such
that i+ i(sj) = k.

From (3.26) and (3.27), it follows

∥∥∥x(t+ sn + τ ; t+ sn, x)− x(t+ sp + τ, t+ sp, x)
∥∥∥

≤
∫ t+τ

t

∥∥∥f(σ + sn, x(σ + sn; t+ sn, x))

− f(σ + sp, x(σ + sn; t+ sn, x)
)∥∥∥dσ

+

∫ t+τ

t

∥∥∥f(σ + sp, x(σ + sn; t+ sn, x))
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− f(σ + sp, x(σ + sp; t+ sp, x)
)∥∥∥dσ

+
∑

t<σi(sn)<t+τ

∥∥∥Ii+i(sn)

(
x(σi(sn) + sn; t+ sn, x)

)

− Ii+i(sp)
(
x(σi(sn) + sn; t+ sn, x)

)∥∥∥
+

∑
t<σi(sp)<t+τ

∥∥∥Ii+i(sp)(x(σi(sp) + sn; t+ sn, x))

− Ii+i(sp)
(
x(σi(sp) + sp; t+ sp, x)

)∥∥∥.
Now, from x(σ + sn; t+ sn, x) ∈ Bβ(α) it follows that for any ε > 0 there

exists a number N(ε) > 0 such that as n, p ≥ N(ε), we obtain

∥∥∥f(σ + sn, x(σ + sn; t+ sn, x))

− f(σ + sp, x(σ + sn; t+ sn, x))
∥∥∥ < ε, (3.28)

∥∥∥Ii+i(sn)

(
x(σi(sn) + sn; t+ sn, x)

)

− Ii+i(sp)
(
x(σi(sn) + sn; t+ sn, x)

)∥∥∥ < ε. (3.29)

Then from (3.28), (3.29) and conditions H3.2 and H3.4, we obtain

∥∥∥x(t + sn + τ ; t+ sn, x)− x(t + sp + τ, t+ sp, x)
∥∥∥

≤ ετ
(
1 +

1

p

)
+

∫ t+τ

t

L1(α,
1

i
)
∥∥∥x(σ + sn; t+ sn, x)

− x(σ + sp, t+ sp, x)
∥∥∥dσ

+
∑

t<σi<t+τ

L2(α,
1

i
)
∥∥∥x(σi(sn) + sn; t+ sn, x)

− x(σi(sp) + sp; t+ sp, x)
∥∥∥. (3.30)

On the other hand, from Theorem 1.9 and (3.30), we obtain

∥∥∥x(t+ sn + τ ; t+ sn, x)− x(t+ sp + τ, t+ sp, x)
∥∥∥

≤ ετ
(
1 +

1

p

)
exp

{
(L1(α,

1

i
) +

1

p
ln(1 + L2(α,

1

i
))τ
}
. (3.31)
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From (3.31) and (3.25) it follows

∣∣Vi(t+ sn, x)− Vi(t+ sp, x)∣∣
≤ g

(1
i

)(
1 +

1

p

)
T
(
α,

1

i

)
exp

{
(c+ L1(α,

1

i
)

+
1

p
ln(1 + L2(α,

1

i
))T (α,

1

i
))
}
ε

≤ h(α)ε. (3.32)

From (3.32) we get that Vi(t+ sn, x) is uniformly convergent with respect to
t ∈ R and x ∈ Bβ(α). Then, Vi(t, x) is almost periodic on t uniformly with
respect to x ∈ Bβ(α).

Inequality (3.19) implies that for n, p ∈ N(ε) and x ∈ Bβ(α) we obtain

∣∣V (t+ sn, x)− V (t+ sp, x)∣∣ ≤ h(α)ε,
i.e. V (t, x) is almost periodic in t uniformly with respect to x ∈ Bβ(α). ��

3.1.2 Almost Periodic Solutions of Impulsive
Differential Equations

In this part of the paragraph, together with system (3.1), we shall consider
the comparison equation (1.16).

The proof of the next lemma is analogous to the proof of Theorem 1.8.

Lemma 3.2. Let the following conditions hold:

1. Conditions H3.1–H3.3 are met.
2. The function V ∈ V1,

V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ ψk(V (t, x, y)), x, y ∈ R
n, t = tk,

k = ±1,±2, ...,

and the inequality

D+V (t, x(t), y(t)) ≤ g(t, V (t, x(t), y(t))), t �= tk, k = ±1,±2, ...

holds for any t ≥ t0 and for any x, y ∈ PC[R,Rn].
3. The maximal solution r(t; t0, u0) of (3.16), for which u0 ≥ V (t+0 , x0, y0),

is defined on the interval [t0,∞).
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Then
V (t, x(t; t0, x0), y(t; t0, y0)) ≤ r(t; t0, u0),

as t ≥ t0, where x(t) = x(t; t0, x0), y(t) = y(t; t0, y0) are solutions of
(3.1).

Lemma 3.3 ([94]). Let the following conditions hold:

1. Conditions H3.1–H3.8 are met.
2. For any system from H(f, Ik, tk) there exist functions W ∈W0, a, b ∈ K

such that

a(||x||) ≤W (t, x) ≤ b(||x||), (t, x) ∈ R× R
n,

W (t+, x+ Isk(x)) ≤W (t, x), x ∈ R
n, t = tsk, k = ±1,±2, ...,

and the inequality

D+W (t, x(t)) ≤ −cW (t, x(t)), t �= tsk, k = ±1,±2, ...

is valid for t ≥ t0, x ∈ PC[[t0,∞),Rn].

Then the zero solution of (3.2) is uniformly asymptotically stable.

We shall proof the main theorem in this part.

Theorem 3.2. Let the following conditions hold:

1. Conditions H3.1–H3.8 are met.
2. There exists a function V (t, x, y), V ∈ V2 and a, b ∈ K such that

a(||x − y||) ≤ V (t, x, y) ≤ b(||x− y||), (t, x, y) ∈ R×Bα ×Bα,
V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ V (t, x, y), x, y ∈ Bα, t = tk,
k = ±1,±2, ...,

D+V (t, x, y) ≤ −cV (t, x, y), x, y ∈ Bα, t �= tk, k = ±1,±2, ...,

where c > 0, α > 0.
3. There exists a solution x(t; t0, x0) of (3.1) such that ||x(t; t0, x0)|| ≤ α1,

where t ≥ t0, α1 < α.
Then in Bα, there exists a unique almost periodic solution ω(t) of (3.1) such
that:

(a) ||ω(t)|| ≤ α1.
(b) ω(t) is uniformly asymptotically stable.
(c) H(ω, tk) ⊆ H(f, Ik, tk).
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Proof. Let {si} be an arbitrary sequence of real numbers, such that si → ∞
as i→ ∞, and {si} moves the (3.1) into H(f, Ik, tk).

For the real number β, let i0 = i0(β) be the smallest value of i such
that si0 + β ≥ t0. Since ||x(t; t0, x0)|| < α1, α1 < α for all t ≥ t0, then
x(t+ si; t0, x0) ∈ Bα1 for t ≥ β, i ≥ i0.

Then for any compact subset U, U ⊂ [β,∞) and any ε > 0, choose an
integer n0(ε, β) ≥ i0(β), so large that for l ≥ i ≥ n0(ε, β) and t ∈ R, it follows

b(2α1)e
−c(β+si−t0) <

a(ε)

2
, (3.33)

||f(t+ sl, x)− f(t+ si, x)|| < a(ε)c
2H1

, (3.34)

where a, b ∈ K and H1 > 0 is the Lipschitz constant of the function V (t, x, y).
From condition 2 of Theorem, we obtain

D+V (σ, x(σ), x(σ + sl − si)) ≤ −cV (σ, x(σ), x(σ + sl − si))
+H1||f(σ + sl − si, x(σ + sl − si))− f(σ, x(σ + sl − si))||, (3.35)

for σ �= tk − (sl − si).
On the other hand, from σ = tk − (sl − si) and the system (3.5) it follows

V (σ, x(σ) + Ik(x(σ)), x(σ + sl − si) + Ik(x(σ + sl − si)))
≤ V (σ, x(σ), x(σ + sl − si)). (3.36)

Set ζ = σ − si. Then,

f(σ + sl − si, x(σ + sl − si))− f(σ, x(σ + sl − si))
= f(ζ + sl, x(ζ + sl))− f(ζ + si, x(ζ + si)).

Then from (3.34) and (3.36), we get

D+V (σ, x(σ), x(σ+sl−si)) ≤ −cV (σ, x(σ), x(σ+sl−si))+ a(ε)c
2
. (3.37)

From (3.35), (3.36) and (3.37) it follows that the conditions of Lemma 3.2
are fulfilled.

Consequently, for l ≥ n0(ε, β) and any t ∈ U ,

V (t+ si, x(t+ si), x(t+ sl))

≤ exp{−c(t+ si − t0)}V (t0, x(t0), x(t0 + sl − si)) + a(ε)
2

≤ a(ε).
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From the condition 2 of theorem it follows that for any t ∈ U , we get

||x(t+ si)− x(t+ sl)|| < ε.

Consequently, there exists a function ω(t), t ∈ (β,∞) such that x(t+si)−
ω(t) → 0, i→ ∞, which is bounded from α1. Since β is arbitrary, it follows
that ω(t) is defined uniformly on t ∈ R.

Next, we shall show that ω(t) is a solution of (3.2).
Since x(t; t0, x0) is a solution of (3.1), we have

||ẋ(t+ si)− ẋ(t+ sl)|| ≤ ||f(t+ si, x(t+ si))− f(t+ sl, x(t+ si))||
+ ||f(t+ sl, x(t+ si))− f(t+ sl, x(t+ sl))|| (3.38)

for t+ sj �= tk, j = i, l and k = ±1,±2, ....
As x(t + si) ∈ Bβ(α) for large i, then for each compact subset of R there

exists an n1(ε) > 0 such that, if l ≥ i ≥ n1(ε) then,

||f(t+ si, x(t+ si))− f(t+ sl, x(t+ si))|| < ε
2
.

Since x(t+ sj) ∈ Bβ(α), j = i, l, and from Lemma 1.2 it follows that there
exists n2(ε) > 0 such that, if l ≥ i ≥ n2(ε), then

||f(t+ sl, x(t+ si)− f(t+ sl, x(t+ sl))|| < ε
2
.

Then for l ≥ i ≥ n(ε), n(ε) = max{n1(ε), n2(ε)}, we obtain

||ẋ(t+ si)− ẋ(t+ sl)|| < ε,
where t + sj �= tsk, j = i, l, k = ±1,±2, ..., which shows that lim

i→∞
ẋ(t + si)

exists uniformly on all compact subsets of R.
Now, we have lim

i→∞
ẋ(t+ si) = ω̇(t), and

ω̇(t) = lim
i→∞

(
f(t+ si, x(t+ si))−

(
f(t+ si, ω(t)) + f(t+ si, ω(t)

))

= fs(t, ω(t)), (3.39)

for t �= tsk, where tsk = lim
i→∞

tk+i(s).

On the other hand, for t+ si = t
s
k, we get

ω(ts+k )− ω(ts−k ) = lim
i→∞

(x(tsk + si + 0)− x(tsk + si − 0))

= lim
i→∞

Isk(x(t
s
k + si)) = I

s
k(ω(t

s
k)). (3.40)

From (3.39) and (3.40) it follows that ω(t) is a solution of (3.2).
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Now, we shall show that ω(t) is an almost periodic function.
Let the sequence of real number {sn} moves the system (3.1) to

H(f, Ik, tk). Then, for any ε > 0 there exists m0(ε) > 0 such that if
l ≥ i ≥ m0(ε), then

e−csib(2α1) <
a(ε)

4
,

||f(σ + si, x)− f(σ + sl, x)|| < a(ε)
4H1

.

For each fixed t ∈ R, let τε =
a(ε)
4H1

be a translation number of f such that
t+ τε ≥ 0.

Consider the function

V (τε + σ, ω(σ), ω(σ + sl − si)),

where t ≤ σ ≤ t+ si.
Then

D+V (τε + σ, ω(σ), ω(σ + sl − si))
≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) +H1||f s(σ, ω(σ)) − f s(τε + σ, ω(σ))||
+H1||f s(σ + sl − si, ω(σ + sl − si)− f s(τε + σ, ω(σ + sl − si)||

≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) + 3a(ε)

4
. (3.41)

On the other hand,

V (τε + t
s
k, ω(t

s
k) + I

s
k(ω(t

s
k)), ω(t

s
k + sl − si) + Isk(ω(tsk + sl − si)))

≤ V (τε + tsk, ω(tsk), ω(tsk + sl − si)). (3.42)

From (3.41), (3.42) and Lemma 3.2 it follows

V (τε + t+ si, ω(t+ si), ω(t+ sl))

≤ e−csiV (τε + t, ω(t), ω(t+ si − sl)) + 3a(ε)

4
< a(ε). (3.43)

Then by (3.43) for l ≥ i ≥ m0(ε), we have

||ω(t+ si)− ω(t+ sl)|| < ε. (3.44)
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From the definition of the sequence {sn} and (3.2) for l ≥ i ≥ m0(ε) it
follows that ρ(tk+ si, tk+ sl) < ε, where ρ(., .) is an arbitrary distance in the
set B.

Now, by (3.44) and the last inequality, we obtain that the sequence ω(t+si)
converges uniformly to the function ω(t).

The assertions (a) and (c) of the theorem follow immediately. We shall
proof the assertion (b).

Let ω(t) be an arbitrary solution of (3.2).
Set

u(t) = ω(t)− ω(t),
gs(t, u) = f s(t, u+ ω(t))− f s(t, ω(t)),
Bsk(u) = I

s
k(u+ ω)− Isk(u).

Let we consider the system

{
u̇ = gs(t, u), t �= tsk,
Δu(tsk) = B

s
k(u(t

s
k)), k = ±1,±2, ...,

(3.45)

and let W (t, u(t)) = V (t, ω(t), ω(t) + u(t)).
Then from Lemma 3.3 it follows that the zero solution u(t) ≡ 0 of (3.45)

is uniformly asymptotically stable for t0 ≥ 0, and consequently, ω(t) is
uniformly asymptotically stable. ��

3.1.3 Weakly Nonlinear Impulsive Differential
Equations

We shall consider the system of impulsive differential equations
{
ẋ = f(t, x) + γ(t), t �= tk,
Δx(tk) = Ik(x(tk)) + γk, k = ±1,±2, ...,

(3.46)

where γ ∈ C[R,Rn], γk ∈ R
n.

Introduce the following conditions:

H3.9. The function γ(t) is almost periodic.
H3.10. The sequence {γk}, k = ±1,±2, ... is almost periodic.
H3.11. The following inequality

||γ(t)||+ ||γk|| ≤ κ,
where κ > 0, holds for t ∈ R, k = ±1,±2, ....

The next lemma is important for the proof of the main result in this part.
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Lemma 3.4. Let the following conditions hold:

1. Conditions H3.1–H3.11 are met.
2. There exist functions V (t, x, y), V ∈ V2 and a, b ∈ K such that

a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||), (3.47)

V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ V (t, x, y), t = tk,
D+V (t, x, y) ≤ −cV (t, x, y), t �= tk, k = ±1,±2, ..., (3.48)

where c > 0, x, y ∈ Bα, α > 0.
3. There exists a solution x0 = x0(t) of (3.1) such that ||x0|| ≤ r, where
r = const > 0, and

a−1
(H1κ

c

)
+ r ≤ α1 < α,

a−1 is the inverse function of a ∈ K.
4. The following inequality

||x0 − x0(t0)|| ≤ b−1
(H1κ

c

)
,

holds, where x0 ∈ Bα, t0 ≥ 0 and b−1 is the inverse function of b ∈ K.

Then, if x(t; t0, x0) is a solution of (3.46),

||x(t; t0, x0)− x0(t)|| ≤ a−1
(H1κ

c

)
, (3.49)

for t ∈ R.

Proof. Let x(t; t0, x0) be an arbitrary solution of (3.46) such that

||x0 − x0(t0)|| ≤ b−1
(H1κ

c

)
,

and let ||x0 − x0(t0)|| ≤ α∗, where α1 < α∗ < α.
From (3.48) and (3.49) for t �= tk, k ± 1,±2, ..., we get

D+V (t, x0(t), x(t; t0, x0)) ≤ −cV (t, x0(t), x(t; t0, x0)) +H1κ (3.50)

and from (3.2) for t = tk, k = ±1,±2, ..., we obtain

V
(
t+k , x

0(tk) + Ik(x
0(tk)), x(tk; t0, x0) + Ik(x(tk; t0, x0))

)
≤ V (tk, x0(tk), x(tk; t0, x0)). (3.51)
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Then from Lemma 3.3, (3.50) and (3.51) it follows that

V (t, x0(t), x(t; t0, x0)) ≤ e−c(t−t0)
(
V (t, x0(t0), x0)− H1κ

c

)
+
H1κ

c

≤ H1κ

c
.

Now, from (3.47), we have

||x(t; t0, x0)− x0(t)|| ≤ a−1
(H1κ

c

)
,

and from (3.48), it follows

||x(t; t0, x0)|| = ||x0(t)− x(t; t0, x0)||+ ||x0(t)||

≤ a−1
(H1κ

c

)
+ c ≤ α1 < α∗.

Then, (3.49) holds for every t ≥ t0. In particular, if x0 = x0(t0), then
clearly x(t; t0, x0) is a solution of (3.46), such that ||x(t; t0, x0)|| ≤ α1. ��
Theorem 3.3. Let conditions of Lemma 3.4 hold.

Then for the system (3.46) there exists a unique globally perfectly uniform-
asymptotically stable almost periodic solution bounded by the constant α1.

Proof. Let we consider the following system associated with (3.46)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f(t, x) + γ(t), t �= tk,
Δx(tk) = Ik(x(tk)) + γk,

ẏ = f(t, y) + γ(t), t �= tk,
Δy(tk) = Ik(y(tk)) + γk, k = ±1,±2, ....

(3.52)

Then for any α∗ such that α1 < α
∗ < α, it follows

D+V (t, x(t), y(t)) = lim
δ→0+

sup
1

δ

{
V
(
t+ δ, x(t) + δf(t, x(t))

+ δγ(t), y(t) + δf(t, y(t)) + δγ(t))
)− V (t, x(t), y(t))}

≤ lim
δ→0+

sup
1

δ

{
V
(
t+ δ, x(t) + δf(t, x(t)), y(t) + δf(t, y(t))

)

≤ −V (t, x(t), y(t))
}
≤ −cV (t, x(t), y(t)). (3.53)
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On the other hand, for t = tk, we have

V
(
t+k , x(tk) + Ik(x(tk)) + γk, y(tk) + Ik(y(tk)) + γk

)
≤ V (t+k , x(tk) + Ik(x(tk)), y(tk) + Ik(y(tk))). (3.54)

Then, from Lemma 3.4, (3.53) and (3.54) it follows that for the system
(3.52) conditions of Theorem 3.2 hold. Consequently, the proof follows from
Theorem 3.2 ��
Example 3.1. Now, we shall consider the linear systems

{
ẋ = A(t)x, t �= tk,
Δx(tk) = Bkx(tk), k = ±1,±2, ...,

(3.55)

and

{
ẋ = A(t)x + γ(t), t �= tk,
Δx(tk) = Bkx(tk) + γk, k = ±1,±2, ...,

(3.56)

where A ∈ C[R,Rn×n], and Bk ∈ R
n×n.

The proof of the next theorem follows immediately.

Theorem 3.4. Let the following conditions hold:

1. Conditions H3.1–H3.11 are met.
2. The matrix A(t) is almost periodic.
3. The sequence {Bk}, k = ±1,±2, ... is almost periodic.
4. The zero solution of system (3.55) is globally perfectly uniform-

asymptotically stable.

Then:

1. All solutions of (3.56) are bounded;
2. For the system (3.56) there exists a unique globally perfectly uniform-

asymptotically stable almost periodic solution.

3.1.4 (h0, h)-Stable Impulsive Differential
Equations

We extend, in this part, Lyapunov second method to investigate almost
periodic solutions for (h0, h)-stable systems of impulsive differential equations
in the form (3.1).



3.1 Lyapunov Method and Almost Periodic Solutions 117

Let us list the following classes of functions for convenience,

Γh =
{
h ∈ V1 : inf

x∈Rn, y∈Rn
h(t, x, y) = 0, for t ∈ R

}
,

Γr =
{
r ∈ C[R× R

n,R+] : inf
x∈Rn

r(t, x) = 0, for t ∈ R

}
.

Let
S(r, α) =

{
x ∈ R

n : r(t, x) < α, r ∈ Γr, α > 0
}
.

We replace the conditions H3.1.1–H3.1.5 with the following conditions:

H’3.1. The function f ∈ C[R× S(r, α),Rn], and f(t, 0) = 0 for t ∈ R.
H’3.2. The functions Ik ∈ C[S(r, α),Rn] and Ik(0) = 0, k = ±1,±2, ....
H’3.3. The functions (E + Ik) : S(r, α) → S(r, α), k = ±1,±2, ..., where E

is the identity in R
n×n.

H’3.4. The function f is Lipschitz continuous with respect to x ∈ R
n

uniformly on t ∈ R, with a Lipschitz constant L1 > 0, i.e.

||f(t, x1)− f(t, x2)|| ≤ L1||x1 − x2||,

for x1, x2 ∈ S(r, α).
H’3.5. The functions Ik, k= ± 1,±2, ... are Lipschitz continuous with

respect to x ∈ R
n with a Lipschitz constant L2 > 0, i.e.

||Ik(x1)− Ik(x2)|| ≤ L2||x1 − x2||

for x1, x2 ∈ S(r, α).

Introduce and new conditions:

H3.12. The functions from the class Γh are Lipschitz continuous along its
second and third arguments with a Lipschitz constant κ > 0 such
that

|h(t, x1, y1)− h(t, x2, y2)| ≤ κ(||x1 − x2||+ ||y1 − y2||)

for xi, yi ∈ R
n, i = 1, 2.

H3.13. For any function h ∈ Γh, it follows that
∣∣∂h
∂t

(t, x, y)
∣∣ ≤ c,

where c > 0, and x, y ∈ R
n.
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H3.14. For any x, y ∈ S(r0, α) and t ∈ R, where r0 ∈ Γr it follows that

h(t, x, y) ≤ 2r0(t, x).

H3.15. There exists α0, 0 < α0 < α, such that, h(tk, x, y) < α0 implies
h(t+k , x+ Ik(x), y + Ik(y)) < α, k = ±1,±2, ....

Definition 3.4. Let (h0, h) ∈ Γh. The impulsive system (3.1) is said to be:

(a) (h0 , h) − stable, if

(∀ε > 0)(∀t0 ∈ R)(∃δ > 0)(∀x0, y0 ∈ R
n, h0(t

+
0 , x0, y0) < δ)

(∀t ≥ t0) : h(t, x(t; t0, x0), y(t; t0, y0)) < ε;

(b) (h0, h)− uniformly stable, if δ in (a) is independent of t0;
(c) (h0, h)− equi− attractive, if

(∀t0 ∈ R)(∃δ > 0)(∀ε > 0)(∃T > 0)

(∀x0, y0 ∈ R
n, h0(t

+
0 , x0, y0) < δ)

(∀t ≥ t0 + T ) : h(t, x(t; t0, x0), y(t; t0, y0)) < ε;

(d) (h0, h) − uniformly attractive, if the numbers δ and T in (c) are
independent of t0;

(e) (h0, h)−uniformly asymptotically stable, if it is (h0, h)-uniformly stable
and (h0, h) uniformly attractive.

Definition 3.5. Let r0, r ∈ Γr. The solution x(t; t0, x0) of system (3.1) is
called (r0, r)− uniformly bounded, if

(∀α > 0)(∃β > 0)(∀t0 ∈ R)

(∀x0 ∈ R
n, r0(t0, x0) ≤ α)(∀t ≥ t0) : r(t, x(t; t0, x0)) < β.

The proofs of the next theorems are analogous to the proof of Theorems 3.1
and 3.2

Theorem 3.5. Let the following conditions hold:

1. Conditions H3’.1–H’3.5, H3.6–H3.8 and H3.12–H3.15 are met.
2. For the system (3.1) there exists an (r0, r)−uniformly bounded solution.
3. The system (3.1) is (h0, h)-uniformly asymptotically stable.

Then there exists a function V ∈ V2 almost periodic along t uniformly with
respect to x ∈ R

n such that
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V
(
t+k , x(tk) + Ik(x(tk)), y(tk) + Ik(y(tk))

) ≤ V (tk, x(tk), y(tk)),
a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||),

where h(t, x, y) < δ, h0(t, x, y) ≤ δ, a, b ∈ K,

D+V (t, x, y) ≤ −cV (t, x, y)

for t �= tk, (x, y) ∈ S(r0, α)× S(r0, α), α > 0, c > 0, k = ±1,±2, ...,.

Theorem 3.6. Let the following conditions hold:

1. Conditions H3’.1–H’3.5, H3.6–H3.8 and H3.12–H3.15 are met.
2. For the system (3.1) there exists an (r0, r)-uniformly bounded solution.
3. The system (3.1) is (h0, h)-uniformly asymptotically stable.

Then, in Bα, α > 0 there exists a unique almost periodic solution ω(t) of
(3.1), such that:

(a) ω(t) is (r0, r)−uniformly bounded.
(b) ω(t) is (h0, h)− uniformly asymptotically stable.
(c) H(ω(t), tk) ⊆ H(f, Ik, tk).

3.2 Impulsive Integro-Differential Equations

In this part we apply the comparison principle to the problem of existence
of almost periodic solutions of the system of impulsive integro-differential
equations.

We shall consider the following system of impulsive integro-differential
equation

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = f

(
t, x(t),

∫ t

t0

K(t, s, x(s))ds
)
, t �= tk,

Δx(tk) = Ik(x(tk)), k = ±1,±2, ...,

(3.57)

where t ∈ R, t0 ∈ R, {tk} ∈ B, f : R×Ω ×R
n → R

n, K : R×R×Ω → R
n,

Ik : Ω → R
n, k = ±1,±2, ....

Introduce the following conditions:

H3.16. The function f ∈ C[R×Ω × R
n,Rn)], and f(t, 0, 0) = 0 for t ∈ R.

H3.17. Ik ∈ C[Ω,Rn], and Ik(0) = 0 for k = ±1,±2....
H3.18. E + Ik : Ω → Ω, k = ±1,±2..., where E is the identity in R

n×n.
H3.19. The function K ∈ C[R× R×Ω,Rn], and K(t0, 0, 0) = 0.
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We shall denote by x(t) = x(t; t0, x0) the solution of (3.57) with the initial
condition x(t+0 ; t0, x0) = x0.

Definition 3.6. The function K ∈ C[R × R × Ω,Rn] is said to be integro-
almost periodic uniformly for x ∈ PC[R, Ω], if for every sequence of real
numbers {s′m} there exists a subsequence {si}, si= s′mi

such that the
sequence {∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ
}
, t0 ∈ R

converges uniformly with respect to i→ ∞.
Introduce the following conditions:

H3.20. The function f(t, x, y) is almost periodic in t uniformly with respect
to x ∈ Ω, y ∈ R

n.
H3.21. The sequence {Ik(x)}, k = ±1,±2, ... is almost periodic uniformly

with respect to x ∈ Ω.
H3.22. The functionK(t, s, x) is integro-almost periodic in t uniformly with

respect to x ∈ PC[R, Ω].
H3.23. The set of sequences {tjk}, tjk = tk+j − tk, k= ± 1,±2, ...,

j = ±1,±2, ... is uniformly almost periodic, and infkt
1
k = θ > 0.

Let conditions H3.16–H3.23 hold, and let {s′m} be an arbitrary sequence
of real numbers. Then, there exists a subsequence {si}, si = s′mi

, so that
analogous to the process in Chap. 1, the system (3.57) moves to the system

⎧⎨
⎩
ẋ(t) = fs(t, x(t),

∫ t

t0

Ks(t, ξ, x(ξ))dξ), t �= tsk,
Δx(tsk) = Ik(x(t

s
k)), k = ±1,±2, ...,

(3.58)

and in this case, the set of systems in the form (3.58) we shall denote by
H(f,K, Ik, tk).

We shall use the following definition for the stability of the zero solution
of (3.57).

Definition 3.7. [93] The zero solution x(t) ≡ 0 of (3.57) is said to be:

(a) Uniformly stable, if

(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀x0 ∈ Bδ)(∀t ≥ t0) : ||x(t; t0, x0)|| < ε;
(b) Uniformly attractive, if

(∃λ > 0)(∀ε > 0)(∃T > 0)(∀t0 ∈ R)(∀x0 ∈ Bλ)
(∀t ≥ t0 + T ) : ||x(t; t0, x0)|| < ε;

(c) Uniformly asymptotically stable, if it is uniformly stable and uniformly
attractive.
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In this section, we shall use, also, the classes V1, V2 and W0, defined in
Chap. 1. Let V ∈ V1, t �= tk, x ∈ PC[R, Ω], y ∈ PC[R, Ω].

Introduce the function

D+V (t, x(t), y(t))

= lim
δ→0+

sup
1

δ

{
V
(
t+ δ, x(t) + δf

(
t, x(t),

∫ t

t0

K(t, ξ, x(ξ))dξ
)

+ δf
(
t, y(t),

∫ t

t0

K(t, ξ, y(ξ))dξ)
) − V (t, x(t), y(t))}. (3.59)

By analogy for W ∈ W0, t �= tsk, x ∈ PC[R, Ω], we shall introduce the
function

D+W (t, x(t)) = lim
δ→0+

sup
1

δ

{
W
(
t

+ δ, x(t) + δf s
(
t, x(t),

∫ t

t0

Ks(t, ξ, x(ξ))dξ)
) −W (t, x(t))

}
.

Now, we shall proof the main result for the system (3.57).

Theorem 3.7. Let the following conditions hold:

1. Conditions H3.16–H3.23 are met.
2. There exist functions V ∈ V2 and a, b ∈ K such that

V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ V (t, x, y), x, y ∈ Ω, t = tk, k = ±1,±2, ...,

a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||), t ∈ R, x, y ∈ Ω, (3.60)

and the inequality

D+V (t, x(t), y(t)) ≤ −cV (t, x(t), y(t)), t �= tk, k = ±1,±2, ..., (3.61)

is valid for t> t0, x, y ∈PC[R, Ω], for which V (s, x(s), y(s))≤V (t, x(t),
y(t)), s ∈ [t0, t], c > 0.

3. There exists a solution x(t; t0, x0) of (3.57) such that ||x(t; t0, x0)|| < α1,
where t ≥ t0, α1 < α.

Then for the system (3.57) there exists a unique almost periodic solution ω(t)
such that:

(a) ||ω(t)|| ≤ α1.
(b) ω(t) is uniformly asymptotically stable.
(c) H(ω, tk) ⊂ H(f,K, Ik, tk).
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Proof. Let {si} be an arbitrary sequence of real numbers, so that si → ∞ as
i→ ∞ and {si} moves the system (3.57) to a system from H(f,K, Ik, tk).

For any real number β, let i0 = i0(β) be the smallest value of i, such that
si0 + β ≥ t0. Since ||x(t; t0, x0)|| ≤ α1, where α1 < α, for all t ≥ t0, then
x(t+ si; t0, x0) ∈ Bα1 for t ≥ β, i ≥ i0.

Let U, U ⊂ (β,∞) be a compact and for any ε > 0, choose an integer
n0(ε, β) ≥ i0(β), so large that for l ≥ i ≥ n0(ε, β) and t ∈ (β,∞), it follows

b(2α1)e
−c(β+si−t0) <

a(ε)

2
, (3.62)

∥∥∥f(t+ sl, x(t),
∫ t+sl

t0

K(t+ sl, ξ, x(ξ))dξ
)

− f(t+ si, x(t),
∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ)
∥∥∥ < a(ε)c

2H1
, (3.63)

where H1 > 0 is the Lipschitz constant of the function V (t, x, y).
Now, we shall consider the function V (σ, x(σ), x(σ + sl − si)).
For σ > t0, x(σ) ∈ PC[(t0,∞),Rn], x(σ + sl − si) ∈ PC[(t0,∞),Rn] and

V (s, x(s), x(s + sl − si)) ≥ V (σ, x(σ), x(σ + sl − si)),

s ∈ [t0, σ], from condition 2 of the theorem, we obtain

D+V (σ, x(σ), x(σ + sl − si)) ≤ −cV (σ, x(σ), x(σ + sl − si))

+H1

∥∥∥f(σ + sl − si, x(σ + sl − si),
∫ σ+sl−si

t0

K(σ + sl − si, ξ, x(ξ))dξ
)

− f(σ, x(σ + sl − si),
∫ σ

t0

K(σ, ξ, x(ξ))dξ
)∥∥∥

≤ −cV (σ, x(σ), x(σ + sl − si)
)
+
a(ε)c

2
. (3.64)

From (3.64) it follows that the conditions of Lemma 3.2 are fulfilled.
Consequently from (3.62), for l ≥ n0(ε, β) ≥ i0(β) and for t ∈ U , it follows

V (t+ si, x(t+ si), x(t+ sl))

≤ e−c(t+si−t0)V (t0, x(t0), x(t0 + sl − si)) + a(ε)
2
< a(ε).

Then using (3.60), we have

||x(t+ si)− x(t+ sl)|| < ε.
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Then there exists a function ω(t), t ∈ (β,∞) such that x(t+si)−ω(t) → 0
for i→ ∞.

Since β is arbitrary chosen, it follows that ω(t) is defined uniformly on
t ∈ U .

Next, we shall show that ω(t) is a solution of (3.58).
Since x(t; t0, x0) is a solution of (3.57), we have

||ẋ(t+ si)− ẋ(t+ sl)|| ≤
∥∥∥f(t+ si, x(t+ si),

∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ
)

− f(t+ sl, x(t+ si),
∫ t+si

t0

K(t+ sl, ξ, x(ξ))dξ
)∥∥∥

+
∥∥∥f(t+ sl, x(t+ si),

∫ t+si

t0

K(t+ sl, ξ, x(ξ))dξ
)

− f(t+ sl, x(t+ sl),
∫ t+sl

t0

K(t+ sl, ξ, x(ξ))dξ
)∥∥∥,

for t+ sj �= tk, j = i, l, k = ±1,±2, ....
As x(t+ si) ∈ Bα1 for large i for each compact subset of R there exists an

n1(ε) > 0 such that if l ≥ i ≥ n1(ε), then
∥∥∥f(t+ si, x(t+ si),

∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ
)

− f(t+ sl, x(t+ si),
∫ t+si

t0

K(t+ sl, ξ, x(ξ))dξ
)∥∥∥ < ε

2
.

Since x(t+ sj) ∈ Bβ(α), j = i, l and from Lemma 1.6 it follows that there
exists n2(ε) > 0 such that if l ≥ i ≥ n2(ε), then

∥∥∥f(t+ sl, x(t+ si),
∫ t+sl

t0

K(t+ si, ξ, x(ξ))dξ
)

− f(t+ sl, x(t+ sl),
∫ t+sl

t0

K(t+ sl, ξ, x(ξ))dξ
)∥∥∥ < ε

2
.

Then for l ≥ i ≥ n(ε), n(ε) = max{n1(ε), n2(ε)}, we obtain

||ẋ(t+ si)− ẋ(t+ sl)|| ≤ ε,

t+ sj �= tsk, j = i, l and k = ±1,±2, ... which shows that lim
i→∞

ẋ(t+ si) exists

uniformly on all compact subsets of R.



124 3 Lyapunov Method and Almost Periodicity

Therefore, lim
i→∞

ẋ(t+ si) = ω̇(t), and

ω̇(t) = lim
i→∞

(
f
(
t+ si, x(t+ si),

∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ
)

− f(t+ si, ω(t),
∫ t+si

t0

K(t+ si, ξ, ω(ξ))dξ
)

+ f
(
t+ si, ω(t),

∫ t+si

t0

K(t+ si, ξ, ω(ξ))dξ
))

= f s
(
t, ω(t),

∫ t

t0

Ks(t, ξ, ω(ξ))dξ
)
, (3.65)

where t �= tsk, tsk = lim
i→∞

tk+i(s).

On the other hand, for t+ si = t
s
k, it follows

ω(ts+k )− ω(ts−k ) = lim
i→∞

(x(tsk + si + 0)− (x(tsk + si − 0))

= lim
i→∞

Isk(x(t
s
k + si)) = I

s
k(ω(t

s
k)). (3.66)

From (3.65) and (3.66) it follows that ω(t) is a solution of (3.58).
We shall show that ω(t) is an almost periodic function.
Let the sequence {si} moves the system (3.57) to H(f,K, Ik, tk). For any

ε> 0 there exists m0(ε) > 0 such that if l ≥ i ≥ m0(ε), then

e−csib(2α1) <
a(ε)

4
,

and

∥∥∥f(σ + si, x(σ),
∫ t+si

t0

K(t+ si, ξ, x(ξ))dξ
)

− f(σ + sl, x(σ + sl),
∫ t+sl

t0

K(t+ sl, ξ, x(ξ))dξ
)∥∥∥ < a(ε)

4H1
,

where x ∈ PC[(t0,∞),Rn], c = const > 0.

For each fixed t ∈ R let τε =
a(ε)
4H1

be a translation number of the function
f such that t+ τε ≥ 0.

We shall consider the function

V (τε + σ, ω(σ), ω(σ + sl − si)),

where t ≤ σ ≤ t+ si.



3.2 Impulsive Integro-Differential Equations 125

Then

D+V (τε + σ, ω(σ), ω(σ + sl − si))

≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) +H1

∥∥∥f s(σ, ω(σ),
×
∫ σ

t0

Ks(σ, ξ, ω(ξ))dξ
)

− f s(τε + σ, ω(σ),
∫ τε+σ

t0

Ks(τε + σ, ξ, ω(ξ))dξ
)∥∥∥

+H1

∥∥∥f s(σ + sl − si, ω(σ + sl − si),
×
∫ σ+sl−si

t0

Ks(σ + sl − si, ξ, ω(ξ))dξ
)

− f s(τε + σ, ω(σ + sl − si),
∫ τε+σ

t0

Ks(τε + σ, ξ, ω(ξ))dξ
)∥∥∥

≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) + 3a(ε)

4
. (3.67)

On the other hand,

V (τε + t
s
k, ω(t

s
k) + I

s
k(ω(t

s
k)), ω(t

s
k + sl − si) + Isk(ω(tsk + sl − si)))

≤ V (τε + tsk, ω(tsk), ω(tsk + sl − si)). (3.68)

From (3.67), (3.68) and Lemma 3.2, it follows

V (τε + t+ si, ω(t+ si), ω(t+ sl))

≤ e−csiV (τε + t, ω(t), ω(t+ si − sl)) + 3a(ε)

4
< a(ε). (3.69)

Then from (3.69) for l ≥ i ≥ m0(ε), we have

||ω(t+ si)− ω(t+ sl)|| < ε. (3.70)

From definitions of the sequence {si} and system (3.58) for l ≥ i ≥ m0(ε)
it follows that ρ(tk + si, tk + sl) < ε, where ρ(., .) is an arbitrary distance
on B.

Then from (3.70) and the last inequality we obtain that the sequence
ω(t+ si) is convergent uniformly to the function ω(t).

The assertions (a) and (c) of the theorem follow immediately. We shall
proof the assertion (b).

Let ω(t) be an arbitrary solution of (3.58).
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Set

u(t) = ω(t)− ω(t), gs(t, u(t),
∫ t

t0

Ks(t, ξ, u(ξ))dξ
)

= fs
(
t, u(t) + ω(t),

∫ t

t0

Ks(t, ξ, u(ξ) + ω(ξ))dξ
)

− f s(t, ω(t),
∫ t

t0

Ks(t, ξ, ω(ξ))dξ
)
,

Bsk(u) = I
s
k(u+ ω)− Isk(u).

We shall consider the system

⎧⎪⎪⎨
⎪⎪⎩
u̇ = gs

(
t, u(t),

∫ t

t0

Ks(t, ξ, u(ξ))dξ
)
, t �= tsk,

Δu(tsk) = B
s
k(u(t

s
k)), k = ±1,±2, ...,

(3.71)

and let W (t, u(t)) = V (t, ω(t), ω(t) + u(t)).
Then, from Lemma 3.3 it follows that the zero solution u(t) = 0 of (3.71) is

uniformly asymptotically stable and hence, ω(t) is uniformly asymptotically
stable. ��

3.3 Impulsive Differential Equations
with Time-varying Delays

In this part we apply the comparison principle to the problem of existence of
almost periodic solutions of impulsive differential equations with time-varying
delays. The impulses are in the fixed moments of time and since the solutions
of such systems are piecewise continuous functions the investigations are
carried out by using minimal subset [64, 132, 145, 177] of a suitable space
of piecewise continuous functions, by the elements of which the derivatives of
Lyapunov functions are estimated.

Let ϕ0 ∈ PC[R, Ω] and |ϕ0|∞ = sup
t∈R

||ϕ0(t)||.
Consider the following system of impulsive differential equations with time-

varying delay

{
ẋ(t) = f(t, x(t), x(t − η(t))), t �= tk,
Δx(tk) = Ik(x(tk)), tk ≥ t0, k = ±1,±2, ...,

(3.72)
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where t ∈ R, f : R × Ω × Ω → R
n, η : R → R

+, {tk} ∈ B, Ik : Ω → R
n,

k = ±1,±2, ....
Introduce the following conditions:

H3.24. The function f ∈ C[R×Ω ×Ω → R
n], and f(t, 0, 0) = 0, t ∈ R.

H3.25. The function η ∈ C[R,R+], and t− η(t) ≥ 0, t ∈ R.
H3.26. The functions Ik ∈ C[Ω,Rn], and Ik(0) = 0, k = ±1,±2, ....
H3.27. E + Ik : Ω → Ω, k = ±1,±2, ... where E is the identity in R

n×n.

Let t0 ∈ R. Denote by x(t) = x(t; t0, ϕ0), ϕ0 ∈ PC[R, Ω], the solution of
the system (3.72) with initial conditions:

{
x(t) = ϕ0(t), t ∈ (−∞, t0],
x(t+0 ; t0, ϕ0) = ϕ0(t0).

We assume that the solution x(t) = x(t; t0, ϕ0) of (3.72) with an initial
function ϕ0 ∈ PC[R, Ω] exists, and from [177] it follows that x(t) is a
piecewise continuous function with points of discontinuity at the moments
tk, k = ±1,±2, ... at which it is continuous from the left.

Introduce the following conditions:

H3.28. The function f(t, x, y) is almost periodic in t uniformly with respect
to x ∈ Ω, y ∈ Ω.

H3.29. The function η(t) is almost periodic in the sense of Bohr.
H3.30. The sequence of functions {Ik(x)}, k = ±1,±2, ... is almost periodic

uniformly with respect to x ∈ Ω.
H3.31. The function ϕ0 ∈ PC[R, Ω] is almost periodic.
H3.32. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, ..., j =

±1,±2, ... is uniformly almost periodic, and infkt
1
k = θ > 0.

Let conditions H3.24–H3.32 hold, and let {s′m} be an arbitrary sequence
of real numbers. Then there exists a subsequence {sn}, sn = smn

′, such that
the system (3.72) moves to the system

{
ẋ(t) = fs(t, x(t), x(t − ηs(t))), t �= tsk,
Δx(tsk) = I

s
k(x(t

s
k)), k = ±1,±2, ...,

(3.73)

and by analogy, we shall denote the set of these systems by H(f, η, Ik, tk).

Definition 3.8. [177] The zero solution x(t) ≡ 0 of system (3.72) is said
to be:

(a) Uniformly stable, if

(∀ε > 0)(∃δ > 0)(∀ϕ0 ∈ PC[R, Ω] : |ϕ0|∞ < δ)(∀t0 ∈ R)

(∀t ≥ t0) : ||x(t; t0, ϕ0)|| < ε;
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(b) Uniformly attractive, if

(∃λ > 0)(∀ε > 0)(∃T > 0)(∀t0 ∈ R)(∀ϕ0 ∈ PC[R, Ω] : |ϕ0|∞ < λ)

(∀t ≥ t0 + T ) : ||x(t; t0, ϕ0)|| < ε;

(c) Uniformly asymptotically stable, if it is uniformly stable and uniformly
attractive.

We shall use the classes V1, V2 and W0 from Chap. 1. Let V ∈V1, t �= tk,
k = ±1,±2, ..., x ∈ PC[R, Ω], y ∈ PC[R, Ω].

Introduce

D+V (t, x(t), y(t)) = lim
δ→0+

sup
1

δ

{
V
(
t+ δ, x(t) + δf(t, x(t), x(t − η(t))), y(t)

+ δf(t, y(t), y(t− η(t)))− V (t, x(t), y(t))}. (3.74)

By analogy, introduce:

D+W (t, x(t)) = lim
δ→0+

sup
1

δ

{
W
(
t+ δ, x(t) + δf s(t, x(t), x(t

− ηs(t)))−W (t, x(t))
}
.

For V ∈ V1 and for some t ≥ t0, define the following set:

Ω1 = {x, y ∈ PC[R, Ω] : V (s, x(s), y(s)) ≤ V (t, x(t), y(t)), s ∈ (−∞, t]} .

In the proof of the main results we shall use the following lemmas. The
proofs of these lemmas are similar to the proofs of similar lemmas in [177].

Lemma 3.5. Let the following conditions hold:

1. The function g : R×R
+ → R

+ is continuous in each of the sets (tk−1, tk]×
R

+, k = ±1,±2, ... and g(t, 0) = 0 for t ∈ R.
2. Bk ∈ C[R+,R+], Bk(0) = 0 and ψk(u) = u + Bk(u), k = ±1,±2, ... are

nondecreasing with respect to u.
3. The maximal solution u+ : J+(t0, u0) → R

+ of (1.16) is defined in [t0,∞).
4. The solutions x(t) = x(t; t0, ϕ0), y(t) = y(t; t0, φ0), φ0 ∈ PC[R, Ω], of

(3.72) are such that x, y ∈ PC[R, Ω] ∩ PC1[R, Ω].
5. The function V ∈ V1 is such that V (t+0 , ϕ0, φ0) ≤ u0,

V (t+, x+Ik(x), y+Ik(y)) ≤ ψk(V (t, x, y)), x, y ∈ Ω, t = tk, k = ±1,±2, ...,

and the inequality
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D+V (t, x(t), y(t)) ≤ g(t, V (t, x(t), y(t))), t �= tk, k = ±1,±2, ...

is valid for t ∈ [t0,∞), x ∈ Ω1.

Then
V (t, x(t; t0, ϕ0), y(t; t0, φ0)) ≤ u+(t; t0, u0),

as t ≥ t0.
Lemma 3.6. Let the following conditions hold:

1. Conditions H3.24–H3.32 are met.
2. For any equation from the set H(f, η, Ik, tk) there exist functions W ∈
W0, a, b ∈ K such that

a(||x||) ≤W (t, x) ≤ b(||x||), (t, x) ∈ R×Ω,
W (t+, x+ Isk(x)) ≤W (t, x), x ∈ R

n, t = tsk, k = ±1,±2, ...,

and the inequality

D+W (t, x(t)) ≤ −cW (t, x(t)), t �= tsk, k = ±1,±2, ...

is valid for t ≥ t0, x ∈ PC[R,Rn] for which W (s, x(s)) ≤ W (t, x(t)),
s ∈ [t0, t].

Then the zero solution of (3.73) is uniformly asymptotically stable.
Now we shall prove the main theorem in this paragraph.

Theorem 3.8. Let the following conditions hold:

1. Conditions H3.24–H3.32 are met.
2. There exist functions V ∈ V2 and a, b ∈ K such that

a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||), (t, x, y) ∈ R×Ω ×Ω, (3.75)

V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ V (t, x, y), x, y ∈ Ω, t = tk, k = ±1,±2, ...,

and the inequality

D+V (t, x(t), y(t)) ≤ −cV (t, x(t), y(t)), t �= tk, k = ±1,±2, ..., (3.76)

is valid for t ≥ t0, (x, y) ∈ Ω1, where c > 0.
3. There exists a solution x(t; t0, ϕ0) of (3.72) such that

||x(t; t0, ϕ0)|| < α1,

where t ≥ t0, α1 < α.
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Then, in Bα, α > 0 for the system (3.72) there exists a unique almost
periodic solution ω(t) such that:

1. ||ω(t)|| ≤ α1.
2. ω(t) is uniformly asymptotically stable.
3. H(ω, tk) ⊂ H(f, η, Ik, tk).

Proof. Let {si} be any sequence of real numbers such that si → ∞ as i→ ∞,
and {si} moves the system (3.72) in a system from the set H(f, η, Ik, tk).

For any real number β, let i0 = i0(β) be the smallest value of i, such that
si0 + β ≥ t0. Since ||x(t; t0, ϕ0)|| < α1, where α1 < α, for all t ≥ t0, then
x(t+ si; t0, ϕ0) ∈ Bα1 for t ≥ β and i ≥ i0.

Let U, U ⊂ (β,∞) be a compact. Then, for any ε > 0, choose an integer
n0(ε, β) ≥ i0(β), so large that for l ≥ i ≥ n0(ε, β) and t ∈ (β,∞), it follows

b(2α1)e
−c(β+si−t0) <

a(ε)

2
, (3.77)

||f(t+ sl, x(t), x(t − η(t))) − f(t+ si, x(t), x(t − η(t)))|| < a(ε)c
2H1

, (3.78)

where a, b ∈ K, x ∈ PC[R, Ω], c > 0 and H1 > 0 is the Lipschitz constant
of the function V (t, x, y).

We shall consider the function V (σ, x(σ), x(σ+sl − si)), and for σ> t0,(
x(σ), x(σ + sl − si)

) ∈ Ω1 from (3.76), we obtain

D+V (σ, x(σ), x(σ + sl − si)) ≤ −cV (σ, x(σ), x(σ + sl − si))
+H1||f(σ + sl − si, x(σ + sl − si), x(σ + sl − si − η(σ + sl − si)))
− f(σ, x(σ + sl − si), x(σ + sl − si − η(σ + sl − si)))||

≤ −cV (σ, x(σ), x(σ + sl − si)) + a(ε)c
2
. (3.79)

On the other hand, from (3.77), (3.79) and Lemma 3.5, it follows

V (t+ si, x(t+ si), x(t+ sl))

≤ e−c(t+si−t0)V (t0, x(t0), x(t0 + sl − si)) + a(ε)c
2

< a(ε).

Then from (3.75), we have

||x(t+ si)− x(t+ sl)|| < ε,

for l ≥ i ≥ n0(ε, β), t ∈ U .
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Consequently, there exists a function ω(t), such that x(t+ si)−ω(t) → ∞
for i→ ∞, and since β is arbitrary, it follows that ω(t) is defined uniformly
on t ∈ U .

Next, we shall show that ω(t) is a solution of (3.73).
Since x(t; t0, ϕ0) is a solution of (3.72), we have

||ẋ(t+ si)− ẋ(t+ sl)|| ≤ ||f(t+ si, x(t+ si), x(t + si − η(t+ si)))
− f(t+ sl, x(t+ si), x(t + si − η(t+ si)))||
+ ||f(t+ sl, x(t+ si), x(t + si − η(t+ si)))
− f(t+ sl, x(t+ sl), x(t+ sl − η(t+ sl)))||,

for t+ sj �= tk, j = i, l and k = ±1,±2, ....
As x(t + si) ∈ Bα1 for large si for each compact subset of R there exists

n1(ε) > 0 such that if l ≥ i ≥ n1(ε), then

||f(t+ si, x(t+ si), x(t+ si − η(t+ si))
− f(t+ sl, x(t+ si), x(t+ si − η(t+ si)|| < ε

2
.

Since x(t+ sj) ∈ Bβ(α), j = i, l and from Lemma 1.6 it follows that there
exists n2(ε) > 0 such that if l ≥ i ≥ n2(ε), then

||f(t+ sl, x(t+ si), x(t + si − η(t+ si)))
− f(t+ sl, x(t+ sl), x(t+ sl − η(t+ sl)))|| < ε

2
.

Then for l ≥ i ≥ n(ε), n(ε) = max{n1(ε), n2(ε)}, we obtain

||ẋ(t+ si)− ẋ(t+ sl)|| < ε,

where t+sj �= tsk, j = i, l and k = ±1,±2, ..., which shows that lim
i→∞

ẋ(t+si)

exists uniformly on all compact subsets of R.
Let now lim

i→∞
ẋ(t+ si) = ω̇(t), and

ω̇(t) = lim
i→∞

[
f(t+ si, x(t+ si), x(t + si − η(t+ si)))

− f(t+ si, ω(t), ω(t+ si − η(t+ si)))

+ f(t+ si, ω(t), ω(t+ si − η(t+ si)))
]

= fs(t, ω(t), ω(t− ηs(t))), (3.80)

where t �= tsk and tsk = lim
i→∞

tk+i(s).
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On the other hand, for t+ si = t
s
k it follows

ω(ts+k )− ω(ts−k ) = lim
i→∞

(
x(tsk + si + 0)− x(tsk + si − 0)

)

= lim
i→∞

Isk(x(t
s
k + si)) = I

s
k(ω(t

s
k)). (3.81)

From (3.80) and (3.81) we get that ω(t) is a solution of (3.73).
We have to show that ω(t) is an almost periodic function.
Let the sequence {si} moves the system (3.72) to H(f, η, Ik, tk). For any

ε > 0 there exists m0(ε) > 0 such that if l ≥ i ≥ m0(ε), then

e−csib(2α1) <
a(ε)

4
,

and

||f(σ + si, x(σ + si), x(σ + si − η(σ + si)))

− f(σ + sl, x(σ + sl), x(σ + sl − η(σ + sl)))|| < a(ε)
4H1

,

where a, b ∈ K.

For each fixed t ∈ R, let τε =
a(ε)

4H1
be a translation number of the function

f such that t+ τε ≥ 0.
Now, we consider the function

V (τε + σ, ω(σ), ω(σ + sl − si)),

where t ≤ σ ≤ t+ si.
Then

D+V (τε + σ, ω(σ), ω(σ + sl − si))
≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) +H1||f s(σ, ω(σ), ω(σ − ηs(σ)))
− f s(τε + σ, ω(σ), ω(τε + σ − ηs(τε + σ)))||
+H1||f s(σ + sl − si, ω(σ + sl − si), ω(σ + sl − si − ηs(σ + sl − si)))
− fs(τε + σ, ω(σ + sl − si), ω(σ + sl − si − ηs(σ + sl − si)))||

≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) + 3a(ε)c

4
. (3.82)
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On the other hand,

V (τε + t
s
k, ω(t

s
k) + I

s
k(ω(t

s
k)), ω(t

s
k + sl − si) + Isk(ω(tsk + sl − si)))

≤ V (τε + tsk, ω(tsk), ω(tsk + sl − si)). (3.83)

Then from (3.82), (3.83) and Lemma 3.5 it follows

V (τε + t+ si, ω(t+ si), ω(t+ sl))

≤ e−csiV (τε + t, ω(t), ω(t+ si − sl)) + 3a(ε)

4
< a(ε). (3.84)

From (3.84) for l ≥ i ≥ m0(ε), we have

||ω(t+ si)− ω(t+ sl)|| < ε. (3.85)

Now, from the definition of the sequence {si} for l ≥ i ≥ m0(ε), it follows
that

ρ(tk + si, tk + sl) < ε,

where ρ(., .) is an arbitrary distance in B.
From (3.85) and the last inequality, we obtain that the sequence ω(t+ si)

is convergent uniformly to the function ω(t).
The assertions (a) and (c) of the theorem follow immediately. We shall

prove the assertion (b).
Let ω(t) be an arbitrary solution of (3.73).
Set

u(t) = ω(t)− ω(t),
gs(t, u(t)) = f s(t, u(t) + ω(t), u(t) + ω(t− ηs(t)))

− f s(t, ω(t), ω(t− ηs(t))),
Bsk(u) = I

s
k(u+ ω)− Isk(u).

Now, we consider the system

{
u̇ = gs(t, u(t)), t �= tsk,
Δu(tsk) = B

s
k(u(t

s
k)), k = ±1,±2, ...,

(3.86)

and let W (t, u(t)) = V (t, ω(t), ω(t) + u(t)).
Then from Lemma 3.6 it follows that the zero solution u(t) = 0 of system

(3.86) is uniformly asymptotically stable for t0 ≥ 0, and hence ω(t) is
uniformly asymptotically stable. ��
Example 3.2. To apply the results of Theorem 3.8, we shall consider the
following system
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{
u̇ = r(t)u(t)

(
1− u(t− η(t)K−1)

)
, t �= tk,

Δu(tk) = Kγk
(
u(tk)K

−1 − 1
)
, k = ±1,±2, ...,

(3.87)

where r, η ∈ C[R,R+] and r(t) > 0, 0 ≤ η(t) ≤ η0, γk ∈ C[R,R], k =
±1,±2, ..., K = const > 0, {tk} ∈ B.

This system presents the simulation in mathematical ecology of
the dynamics of the population u(t), where K > 0 is the capacity of the
environment, γk are functions which characterize the magnitude of the
impulsive effect at the moments tk.

The systems (3.87), where γk(u) = 0, u ≥ 0, k = ±1,±2, ... has been
studied in [198].

Let N(t) = u(t)K−1 − 1 and from (3.87), we obtain the system

{
Ṅ(t) = −r(t)(1 +N(t))N(t− η(t)), t �= tk,
ΔN(tk) = γk(N(tk)), k = ±1,±2, ....

(3.88)

Under the standard type of initial conditions, 1+N(0) > 0, 1+N(s) ≥ 0
for s ∈ (−∞, 0] it is easy to see that the solution of (3.88) satisfies 1+N(t) > 0
for t ≥ 0.

Theorem 3.9. Let the following conditions hold:

1. Conditions H3.29 and H3.32 are met.
2. The function r(t) is almost periodic in sense of Bohr and

∫ t

t−η(t)
r(s)ds = ∞.

3. The sequence of functions {γk(u)}, γk ∈ C[R,R], is almost periodic
uniformly on u ∈ R, and γk(0) = 0, −1 < γk(u) ≤ 0, k = ±1,±2, ....

4. There exists a bounded solution of (3.88).
5. The inequalities

N(t− η(t))
(
1 +N(t)

)
≥ N(t), t �= tk, k = ±1,±2, ...,

M(t− η(t))
(
1 +M(t)

)
≥M(t), t �= tk, k = ±1,±2, ...,

2N(t)
(
N(t) + γ2k(N(t))

)
≤ γk(t), t = tk, k = ±1,±2, ...,

are valid for t ≥ 0 and (N,M) ∈ Ω2 where

Ω2 =
{
(N,M) : N,M ∈ PC[R,R+], N2(s)

+M2(s) ≤ N2(t) +M2(t), s ∈ (−∞, t], t ≥ 0
}
.

Then for the system (3.88) there exists a unique almost periodic solution.



3.4 Impulsive Functional Differential Equations 135

Proof. Let V (t, N,M) = N2+M2. Then, from the conditions of the theorem,
it follows that

D+V (t, N(t),M(t))

= 2N(t)
(− r(t))(1 +N(t)

)
N(t− η(t)) + 2M(t)[−r(t)]

(
1 +M(t)

)

×M(t− η(t))
≤ −2r(t)V (t, N(t),M(t)) ≤ 0, t �= tk, k = ±1,±2, ...,

and

V
(
t+k , N(tk) + γk(N(tk)),M(tk) + γk(M(tk))

)

=
[
N(tk) + γk(N(tk))

]2
+
[
M(tk) + γk(M(tk))

]2

≤ V (tk, N(tk),M(tk)), k = ±1,±2, ....

Thus, all conditions of Theorem 3.8 are satisfied, and the conclusion of
Theorem 3.9 follows. ��

3.4 Impulsive Functional Differential Equations

In the present part, the existence and stability of almost periodic solutions
of nonlinear systems of impulsive functional differential equations are consid-
ered. Some known results are improved and generalized [19,28,142,144,197].

Let ϕ0 ∈ PC[R, Ω] and |ϕ0|∞ = sup
t∈R

||ϕ0(t)||.
We shall consider the system of impulsive functional differential equations

{
ẋ(t) = f(t, xt), t ≥ t0, t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, ...,

(3.89)

where t0 ∈ R, t ∈ R, f : R × PC[R, Ω] → R
n, {tk} ∈ B, Ik : Ω → R

n, k =
±1,±2, ... and for t > t0, xt ∈ PC[R, Ω] is defined by the relation xt =
x(t+ s), −∞ ≤ s ≤ 0.

Denote by x(t) = x(t; t0, ϕ0), ϕ0 ∈ PC[R, Ω] the solution of the system
(3.89) with initial conditions:

{
x(t; t0, ϕ0) = ϕ0(t− t0), t ≤ t0,
x(t+0 ; t0, ϕ0) = ϕ0(0),

(3.90)
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and by J+(t0, ϕ0)—the maximal interval of type [t0, β) in which the solution
x(t; t0, ϕ0) is defined.

The solution x(t) = x(t; t0, ϕ0) of the initial value problem (3.89), (3.90)
is characterized by the following [177]:

(a) For t ≤ t0, t0 ∈ [tk0 , tk1), tk0 < tk1 , tki ∈ {tk}, i = 0, 1, the solution
x(t) satisfies the initial conditions (3.90).

(b) For t0 < t ≤ tk1 , x(t) coincides with the solution of the problem

{
ẋ(t) = f(t, xt), t > t0,

xt0 = ϕ0(s), −∞ < s ≤ 0.

At the moment t= tk1 the mapping point (t, x(t; t0, ϕ0)) of the exten-
ded phase space jumps momentarily from the position (tk1 , x(tk1 ; t0, ϕ0))
to the position (tk1 , x(tk1 ; t0, ϕ0) + Ik1 (x(tk1 ; t0, ϕ0))).

(c) For tk1 < t ≤ tk2 , tk2 ∈ {tk} the solution x(t) coincides with the solution
of {

ẏ(t) = f(t, yt), t > tk1 ,

ytk1 = ϕ1, ϕ1 ∈ PC[R, Ω],

where

ϕ1(t− tk1) =
{
ϕ0(t− tk1), t ∈ (−∞, tk1 ],
x(t; t0, ϕ0) + Ik1(x(t; t0, ϕ0)), t = tk1 .

At the moment t = tk2 the mapping point (t, x(t)) jumps momentarily, etc.
Thus in interval J+(t0, ϕ0) the solution x(t; t0, ϕ0) of the problem (3.89),

(3.90) is a piecewise continuous function with points of discontinuity of the
first kind at the moments t = tk, k = ±1,±2, ..., at which it is continuous
from the left.

Introduce the following conditions:

H3.33. The function f ∈ C[R× PC[R, Ω],Rn], f(t, 0) = 0, t ∈ R.
H3.34. The function f(t, ϕ) is Lipschitz continuous with respect to ϕ ∈

PC[R, Ω] uniformly on t ∈ R.
H3.35. The functions Ik ∈ C[Ω,Rn], Ik(0) = 0.
H3.36. (E + Ik) : Ω → Ω, k = ±1,±2, ..., where E is the identity in R

n×n.

We shall use the next lemma in the prove of the main results.

Lemma 3.7 ([178]). Let the conditions H3.33–H3.36 are met.
Then, J+(t0, ϕ0) = [t0,∞).
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Introduce the following conditions:

H3.37. The function f(t, ϕ) is almost periodic in t ∈ R uniformly with respect
to ϕ ∈ PC[R, Ω].

H3.38. The sequence {Ik(x)}, k = ±1,±2, ... is almost periodic uniformly
with respect to x ∈ Ω.

H3.39. The function ϕ0 ∈ PC[R, Ω] is almost periodic.
H3.40. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, ..., j =

±1,±2, ... is uniformly almost periodic, and infkt
1
k = θ > 0.

Let the conditions H3.33–H3.40 hold, and let {s′m} be an arbitrary
sequence of real numbers. Then, there exist a subsequence {sn}, sn = smn

′

such that the system (3.89) moves to the system

{
ẋ(t) = f s(t, xt), t ≥ t0, t �= tsk,
Δx(tsk) = I

s
k(x(t

s
k)), k = ±1,±2, ...,

(3.91)

and the set of systems in the form (3.91) we shall denote by H(f, Ik, tk).
We shall use the classes V1, V2 and W0 which are defined in Chap. 1. Let

V ∈ V1, t �= tk, x ∈ PC[R, Ω], y ∈ PC[R, Ω].
Introduce

D+V (t, x(t), y(t)) = lim
δ→0+

sup
1

δ

{
V (t+ δ, x(t) + δf(t, xt), y(t) + δf(t, yt))

− V (t, x(t), y(t))
}
. (3.92)

By analogy, let W ∈W0, t �= tsk, x ∈ PC[R, Ω].
Introduce:

D+W (t, x(t)) = lim
δ→0+

sup
1

δ

{
W (t+ δ, x(t) + δf s(t, xt))−W (t, x(t))

}
.

For V ∈ V1 and for some t ≥ t0, define the following set:

Ω1 =
{
(x, y) : x, y ∈ PC[R, Ω] : V (s, x(s), y(s))

≤ V (t, x(t), y(t)), s ∈ (−∞, t]}.
In the next theorem are considered the conditions for the existence of

almost periodic solutions of the system (3.89).

Theorem 3.10. Let the following conditions hold:

1. Conditions H3.33–H3.40 are met.
2. There exist functions V ∈ V2 and a, b ∈ K such that
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a(||x− y||) ≤ V (t, x, y) ≤ b(||x− y||), (t, x, y) ∈ R×Ω ×Ω, (3.93)

V
(
t+, x+ Ik(x), y + Ik(y)

) ≤ V (t, x, y), x, y ∈ Ω, t = tk, k = ±1,±2, ...,

and the inequality

D+V (t, x(t), y(t)) ≤ −cV (t, x(t), y(t)), t �= tk, k = ±1,±2, ..., (3.94)

is valid for t > t0, (x, y) ∈ Ω1, where c > 0.
3. There exists a solution x(t; t0, ϕ0) of (3.89) such that

||x(t; t0, ϕ0)|| ≤ α1,
where t ≥ t0, α1 < α.
Then, in Bα, α > 0 for the system (3.89) there exists a unique almost

periodic solution ω(t) such that:

1. ||ω(t)|| ≤ α1.
2. ω(t) is uniformly asymptotically stable.
3. H(ω, tk) ⊂ H(f, Ik, tk).

Proof. Let {si} be any sequence of real numbers such that si → ∞ as i→ ∞
and {si} moves the system (3.89) to a system in H(f, Ik, tk).

For any real number β, let i0 = i0(β) be the smallest value of i, such
that si0 + β ≥ t0. Since ||x(t; t0, ϕ0)|| < α1, α1 < α for all t ≥ t0, then
x(t+ si; t0, ϕ0) ∈ Bα1 for t ≥ β, i ≥ i0.

Let U, U ⊂ (β,∞) be a compact. Then, for any ε > 0, choose an integer
n0(ε, β) ≥ i0(β), so large that for l ≥ i ≥ n0(ε, β) and t ∈ R, it follows

b(2α1)e
−c(β+si−t0) <

a(ε)

2
, (3.95)

||f(t+ sl, xt)− f(t+ si, xt)|| < a(ε)c
2H1

, (3.96)

where x ∈ PC[R, Ω], c > 0 and H1 is Lipschitz constant of the function
V (t, x, y).

Consider the function V (σ, x(σ), x(σ+sl−si)), and for σ > t0,
(
x(σ), x(σ+

sl − si)
) ∈ Ω1 from (3.94), (3.95), we obtain

D+V (σ, x(σ), x(σ + sl − si)) ≤ −cV (σ, x(σ), x(σ + sl − si))
+H1

∥∥f(σ + sl − si, xσ+sl−si)− f(σ, xσ+sl−si)∥∥
≤ −cV (σ, x(σ), x(σ + sl − si)) + a(ε)c

2
. (3.97)
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On the other hand, from (3.97) and Lemma 3.5, it follows that for
l ≥ n0(ε, β) ≥ i0(β) and t ∈ U

V (t+ si, x(t+ si), x(t+ sl))

≤ e−c(t+si−t0)V (t0, x(t0), x(t0 + sl − si)) + a(ε)
2
< a(ε).

Then from the condition (3.93) and t ∈ U , we have

||x(t+ si)− x(t+ sl)|| < ε.

Consequently, there exists a function ω(t), such that x(t+ si)−ω(t) → ∞
for i → ∞. Since β is arbitrary, it follows that ω(t) is defined uniformly on
t ∈ R.

Next, we shall show that ω(t) is a solution of (3.91).
Since x(t; t0, ϕ0) is solution of (3.89), we have

||ẋ(t+ si)− ẋ(t+ sl)|| ≤ ||f(t+ si, xt+si)− f(t+ sl, xt+si )||
+ ||f(t+ sl, xt+si)− f(t+ sl, xt+sl)||,

for t+ sj �= tk, j = i, k; k = ±1,±2, ....
As x(t + si) ∈ Bα1 for large si for each compact subset of R there exists

an n1(ε) > 0 such that if l ≥ i ≥ n1(ε), then

||f(t+ si, xt+si)− f(t+ sl, xt+si)|| <
ε

2
.

Since x(t+ sj) ∈ Bβ(α), j = i, l and from Lemma 1.6 it follows that there
exists n2(ε) > 0 such that if l ≥ i ≥ n2(ε), then

||f(t+ sl, xt+si)− f(t+ sl, xt+sl)|| <
ε

2
.

For l ≥ i ≥ n(ε), n(ε) = max{n1(ε), n2(ε)}, we obtain

||ẋ(t+ si)− ẋ(t+ sl)|| ≤ ε,

where t + sj �= tsk which shows that lim
i→∞

ẋ(t + si) exists uniformly on all

compact subsets of R.
Let now lim

i→∞
ẋ(t+ si) = ω̇(t), and

ω̇(t) = lim
i→∞

[
f(t+ si, xt+si )− f(t+ si, ω(t)) + f(t+ si, ω(t))

]

= fs(t, ω(t)), (3.98)

where t �= tsk, tsk = lim
i→∞

tk+i(s).
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On the other hand, for t+ si = t
s
k it follows

ω(ts+k )− ω(ts−k ) = lim
i→∞

(x(tsk + si + 0)− x(tsk + si − 0))

= lim
i→∞

Isk(x(t
s
k + si)) = I

s
k(ω(t

s
k)). (3.99)

From (3.98) and (3.99), we get that ω(t) is a solution of (3.91).
We shall show that ω(t) is an almost periodic function.
Let the sequence {si} moves the system (3.89) to H(f, Ik, tk). For any

ε > 0 there exists m0(ε) > 0 such that if l ≥ i ≥ m0(ε), then

e−csib(2α1) <
a(ε)

4
,

and

||f(σ + si, xσ+si )− f(σ + sl, xσ+sl )|| <
a(ε)

4H1
,

where x ∈ PC[R, Ω], c > 0.

For each fixed t ∈ R let τε =
a(ε)
4H1

be a translation number of f such that
t+ τε ≥ 0.

Consider the function

V (τε + σ, ω(σ), ω(σ + sl − si)),

where t ≤ σ ≤ t+ si.
Then

D+V (τε + σ, ω(σ), ω(σ + sl − si))
≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) +H1||f s(σ, ω(σ)) − f s(τε + σ, ω(σ))||
+H1||f s(σ + sl − si, ω(σ + sl − si))− f s(τε + σ, ω(σ + sl − si))||

≤ −cV (τε + σ, ω(σ), ω(σ + sl − si)) + 3a(ε)

4
. (3.100)

On the other hand,

V (τε + t
s
k, ω(t

s
k) + I

s
k(ω(t

s
k)), ω(t

s
k + sl − si) + Isk(ω(tsk + sl − si)))

≤ V (τε + tsk, ω(tsk), ω(tsk + sl − si)). (3.101)

From (3.100), (3.101) and Lemma 3.5 it follows

V (τε + t+ si, ω(t+ si), ω(t+ sl)))

≤ e−csiV (τε + t, ω(t), ω(t+ si − sl))) + 3a(ε)

4
< a(ε). (3.102)
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Then from (3.102) for l ≥ i ≥ m0(ε), we have

||ω(t+ si)− ω(t+ sl)|| < ε. (3.103)

Now, from definitions of the sequence {si} and system (3.99) for l ≥ i ≥
m0(ε) it follows that ρ(tk+si, tk+sl) < ε, where ρ(., .) is an arbitrary distance
in B.

Then from (3.103) and the last inequality we obtain that the sequence
ω(t+ si) is convergent uniformly to the function ω(t).

The assertions (a) and (c) of the theorem follow immediately. We shall
prove the assertion (b).

Let ω(t) be an arbitrary solution of (3.91).
Set

u(t) = ω(t)− ω(t),
gs(t, u(t)) = f s(t, u(t) + ω(t))− f s(t, ω(t)),
Bsk(u) = I

s
k(u+ ω)− Isk(u).

Now we consider the system

{
u̇ = gs(t, u(t)), t �= tsk,
Δu(tsk) = B

s
k(u(t

s
k)), k = ±1,±2, ...,

(3.104)

and let W (t, u(t)) = V (t, ω(t), ω(t) + u(t)). Then, from Lemma 3.5 it follows
that the zero solution u(t) = 0 of (3.104) is uniformly asymptotically stable,
and consequently ω(t) is uniformly asymptotically stable. ��
Example 3.3. We shall consider the next scalar impulsive functional differ-
ential equation

⎧⎨
⎩
ẋ(t) = −a(t)x(t) +

∫ t

−∞
c(t− s)x(s)ds + f(t), t > t0, t �= tk,

Δx(tk) = bkx(tk), k = ±1,±2, ...,

(3.105)

where a, c, f ∈ C[R,R] are almost periodic in the sense of Bohr. The function
f(t) is Lipschitz continuous in R, {bk}, bk ≥ 0, k = ±1,±2, ... is an almost
periodic sequence of real number and the condition H3.40 for the sequence
{tk} ∈ B holds.

Let

−a(t) +M
∫ ∞

0

|c(u)|du ≤ −λ,

where λ > 0 and M =
∏

k=±1,±2,...

(1 + bk).
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For the function V (t, x, y) = |x|+ |y| and (3.105) the conditions 2 and 3 of
Theorem 3.10 hold, and from [110] it follows that for the (3.105) there exists
a uniformly bounded solution.

Then, all the conditions of Theorem 3.10 hold, and consequently, for
the (3.105) there exists a uniformly asymptotically stable almost periodic
solution.

3.5 Uncertain Impulsive Dynamical Equations

In the present part sufficient conditions for the existence of almost periodic
solutions of uncertain impulsive dynamical equations are obtained.

The investigations are carried out by means the concepts of uniformly
positive definite matrix functions and Hamilton–Jacobi–Riccati inequalities.

We shall consider the following system of uncertain impulsive dynamical
equations

{
ẋ = f(t, x) + g(t, x), t �= tk,
Δx(tk) = Ik(x(tk)) + Jk(x(tk)), k = ±1,±2, ...,

(3.106)

where t ∈ R, {tk} ∈ B, f, g : R×Ω → R
n, Ik, Jk : Ω → R

n, k = ±1,±2, ....
The functions g(t, x), Jk(x) represent a structural uncertainty or a uncer-

tain perturbation in the system (3.106) and are characterized by

g ∈ Ug =
{
g : g(t, x) = eg(t, x).δg(t, x), ||δg(t, x)|| ≤ ||mg(t, x)||

}
,

and

Jk ∈ UJ =
{
Jk : Jk(x) = ek(x).δk(x), ||δk(x)|| ≤ ||mk(x)||

}
, k = ±1,±2, ...,

where eg : R × Ω → R
n×m, and ek : Ω → R

n×m are known matrix
functions, whose entries are smooth functions of the state, and δg, δk are
unknown vector-valued functions, whose norms are bounded, respectively,
by the norms of vector-valued functions mg(t, x),mk(x), respectively. Here
mg : R×Ω → R

m, mk : Ω → Rm, k = ±1,±2, ... are given functions.
We denote by x(t)= x(t; t0, x0), the solution of (3.106) with initial

condition t0 ∈ R, x(t+0 ) = x0.

Introduce the following conditions:

H3.41. The functions f(t, x) and eg(t, x) are almost periodic in t uniformly
with respect to x ∈ Ω.

H3.42. The sequences {Ik(x)} and {ek(x)}, k = ±1,±2, ... are almost
periodic uniformly with respect to x ∈ Ω.
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H3.43. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, ..., j =
±1,±2, ... is uniformly almost periodic, and infkt

1
k = θ > 0.

Let the conditions H3.41–H3.43 hold, and let {s′m} be an arbitrary
sequence of real numbers. Then there exists a subsequence {sn}, sn = smn

′

such that the system (3.106) moves to the system

{
ẋ = fs(t, x) + gs(t, x), t �= tsk,
Δx(tsk) = I

s
k(x(t

s
k)) + J

s
k(x(t

s
k)), k = ±1,±2, ...,

(3.107)

The set of all systems at the form (3.107) we shall denote by
H(f, g, Ik, Jk, tk).

Introduce the following condition.

H3.44. f(t, 0) = 0, δg(t, 0) = 0, Ik(0) = 0 and δk(0) = 0, for all t ∈ R and
k = ±1,±2, ....

We shall note that from the last condition it follows that x(t) = 0 is a
solution of the system (3.106).

Definition 3.9 ([108]). The uncertain impulsive dynamical system (3.106)
is said to be uniformly robustly stable, uniformly robustly attractive, uniformly
robustly asymptotically stable, if for any g ∈ Ug, Jk ∈ UJ , k = ±1,±2, ... the
trivial solution x(t) = 0 is uniformly stable, uniformly attractive, uniformly
asymptotically stable, respectively.

Next we shall use the classes V1, V2 andW0, which are defined in Chap. 1.
Let V ∈ V1, t �= tk, x ∈ PC[R, Ω], y ∈ PC[R, Ω].

Introduce

D+V (t, x(t), y(t)) = lim
δ→0+

sup
1

δ

{
V (t+ δ, x(t) + δf(t, x(t)), y(t) + δf(t, y(t)))

− V (t, x(t), y(t))
}
. (3.108)

For the proof of the main results we shall use the following nominal system
of the system (3.106)

{
ẋ = f(t, x), t �= tk,
Δx(tk) = Ik(x(tk)), k = ±1,±2, ....

(3.109)

Definition 3.10. The matrix function X : R → R
n×n is said to be:

(a) A positive define matrix function, if for any t ∈ R, X(t) is a positive
define matrix.

(b) A positive define matrix function bounded above, if it is a positive definite
matrix function, and there exists a positive real numberM > 0 such that
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λmax(X(t)) ≤M, t ∈ R,

where λmax(X(t)) is the maximum eigenvalue.
(c) An uniformly positive define matrix function, if it is a positive definite

matrix function, and there exists a positive real number m > 0 such that

λmin(X(t)) ≥ m, t ∈ R,

where λmin(X(t)) is the minimum eigenvalue.

The proof of the following lemma is obvious.

Lemma 3.8. Let X(t) be a positive define matrix function, and Y (t) be a
symmetric matrix.

Then for any x ∈ R
n, t ∈ R the following inequality holds

xTY (t)x ≤ λmax(X−1(t)Y (t))xTX(t)x. (3.110)

We shall use the next lemma.

Lemma 3.9 ([108]). Let Σ(t) be a diagonal matrix function.
Then for any positive scalar function λ(t) and for any ξ, η ∈ R

n, the
following inequality holds

2ξTΣ(t)η ≤ λ−1(t)ξT ξ + λ(t)ηT η. (3.111)

Now we shall prove the main theorem.

Theorem 3.11. Let the following conditions hold:

1. Conditions H3.41–H3.44 are met.
2. There exist functions V ∈ V2 and a, b ∈ K such that

a(||x − y||) ≤ V (t, x, y) ≤ b(||x− y||), (t, x, y) ∈ R×Ω ×Ω.

3. There exist positive define matrix functions G1k : R × R
n × R

n →
R

1×m, G2k : R×R
n×R

n → R
m×m and for t ∈ R, k = ±1,±2, ..., x, y ∈

PC1[R, Ω], z ∈ R
m it follows

V
(
t, x(t) + Ik(x(t)) + ek(x(t))z, y(t) + Ik(y(t)) + ek(y(t))z

)

≤ V
(
t, x(t) + Ik(x(t)), y(t) + Ik(y(t))

)
+G1k(t, x(t), y(t))z

+ zTG2k(t, x(t), y(t))z. (3.112)
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4. There exist positive constants χk, k = ±1,±2, ... such that

V
(
t+k , x(tk) + Ik(x(tk)), y(tk) + Ik(y(tk))

)

+ χ−1
k G1kG

T
1k +

(
χk + λmax(G2k)

)
mT
kmk

≤ V (tk, x(tk), y(tk)), (3.113)

where G1k =G1k(tk, x(tk), y(tk)), G2k =G2k(tk, x(tk), y(tk)), mk(x(tk)) =
mk.

5. There exists a constant c > 0 and scalar functions λk ∈ C[Rn,R+] such
that for t ∈ R, t �= tk, k = ±1,±2, ..., x, y ∈ Ω it follows

∂V

∂t
+
(∂V
∂x

+
∂V

∂y

)
f +

λ2k
2

(∂V
∂x

+
∂V

∂y

)
ege

T
g

(∂V
∂x

+
∂V

∂y

)T
+

1

2λ2k
mT
gmg

≤ −cV (t, x, y). (3.114)

6. There exists a solution x(t; t0, x0) of (3.106) such that

||x(t; t0, x0)|| < α1, where α1 < α, α > 0.

Then, in Bα for the system (3.106) there exists a unique almost periodic
solution ω(t) such that:

1. ||ω(t)|| ≤ α1.
2. ω(t) is uniformly robustly asymptotically stable.
3. H(ω, tk) ⊂ H(f, g, Ik, Jk, tk).

Proof. From (3.110), (3.111), (3.112), for t = tk, k = ±1,±2, ..., we have

V
(
t+k , x(tk) + Ik(x(tk)) + Jk(x(tk)), y(tk) + Ik(y(tk)) + Jk(y(tk)))

≤ V
(
t+k , x(tk) + Ik(x(tk)), y(tk) + Ik(y(tk))

)
+G1kδ(x(tk)

)

+ δ(x(tk))
TG2kδ(x(tk))

≤ V
(
t+k , x(tk) + Ik(x(tk)), y(tk) + Ik(y(tk))

)

+ χ−1
k G1kG

T
1k +

(
χk + λmax(G2k)

)
mT
kmk

≤ V (tk, x(tk), y(tk)). (3.115)

On the other hand, for t �= tk, k = ±1,±2, ..., from (3.108) and (3.114),
we get
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D+V (t, x(t), y(t)) =
∂V

∂t
+
(∂V
∂x

+
∂V

∂y

)
(f + g)

=
∂V

∂t
+
(∂V
∂x

+
∂V

∂y

)
f +

(∂V
∂x

+
∂V

∂y

)
egδg

=
∂V

∂t
+
(∂V
∂x

+
∂V

∂y

)
f +

λ2k
2

(∂V
∂x

+
∂V

∂y

)
ege

T
g

(∂V
∂x

+
∂V

∂y

)T

+
1

2λ2k
mgm

T
g − 1

2

{
λk

(∂V
∂x

+
∂V

∂y

)
eg − 1

λk
δTg

}{
λke

T
g

(∂V
∂x

+
∂V

∂y

)T
eg

− 1

λk
δg

}
− 1

2λ2k

{
mT
gmg − δTg δg

}

≤ ∂V

∂t
+
(∂V
∂x

+
∂V

∂y

)
f +

λ2k
2

(∂V
∂x

+
∂V

∂y

)
ege

T
g

(∂V
∂x

+
∂V

∂y

)
+

1

2λ2k
mT
gmg

≤ −cV (t, x(t), y(t)). (3.116)

Then from (3.115), (3.116) and conditions of the theorem it follows that
for the system (3.106) the conditions of Theorem 3.2 are satisfied, and hence,
the proof of the theorem is complete. ��

Now, we shall consider the linear system of uncertain impulsive dynamical
equations

{
ẋ = A(t)x+B(t)x, t �= tk,
Δx(tk) = Ak(tk)x(tk) +Bk(tk)x(tk), k = ±1,±2, ...,

(3.117)

where t∈R, {tk}∈B, A,Ak : R → R
n×n, k= ± 1,±2, ... are known matrix

functions, and B,Bk : R ∈ R
n×n, k = ±1,±2, ... are interval matrix func-

tions, i.e. B(t) ∈ IN [P (t), Q(t)] =
{
B(t) ∈ R

n×n : B(t) = (bij(t)), pij(t) ≤
bij(t) ≤ qij(t), i, j = 1, 2, ..., n

}
. Bk(t) ∈ IN [Pk(t), Qk(t)], k = ±1,±2, ...,

where P (t) = (pij(t)), Q(t) = (qij(t)), and Pk(t), Qk(t), k = ±1,±2, ... are
known matrices.

Introduce the following conditions:

H3.45. The matrix functions A(t), P (t), Q(t) are almost periodic.
H3.46. The sequences Al(tk), Pl(tk), Ql(tk), l = ±1,±2, ..., k = ±1,±2, ...

are almost periodic for any k = ±1,±2, ....

Lemma 3.10. [108] Let B(t) ∈ IN [P (t), Q(t)], where P (t), Q(t) be known
matrices.

Then B(t) can be written

B(t) = B0(t) + E(t)Σ(t)F (t),
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where:

B0(t) =
1

2
(P (t) +Q(t)),

Σ(t) = diag
{
ε11(t), ..., ε1n(t), ..., εn1(t), ..., εnn(t)

} ∈ R
n2×n2

,

||εij(t)|| ≤ 1, i, j = 1, 2, ..., n,

H(t) = (hij(t)) =
1

2
(Q(t)− P (t)), hij(t) ≥ 0, t ∈ R, i, j = 1, 2, ..., n,

E(t) =
(√
h11(t)e1, ...,

√
h1n(t)e1, ...,

√
hn1(t)en, ...,

√
hnn(t)en

) ∈ R
n×n2

,

F (t) =
(√
h11(t)e1, ...,

√
h1n(t)en, ...,

√
hn1(t)e1, ...,

√
hnn(t)en

)T ∈ R
n2×n,

ei(0, ..., 0, 1, 0, ..., 0)
T ∈ R

n, i = 1, 2, ..., n.

By Lemma 3.10, we rewrite the system (3.117) in the form

{
ẋ = A0(t)x+ E(t)Σ(t)F (t)x, t �= tk,
Δx(tk) = Ãk(tk)x(tk) + Ẽk(tk)Σ̃k(tk)F̃k(tk)x(tk),

(3.118)

where

k = ±1,±2, ...,

A0(t) = A(t) +B0(t), Ãk(t) = Ak(t) + B̃k0(t),

Bk(t) = B̃k0(t) + Ẽk(t)Σ̃k(t)F̃k(t), k = ±1,±2, ...,

and B0, Ẽk(t), Σ̃k(t), F̃k(t) are defined in Lemma 3.10.
Now, we shall prove the next theorem.

Theorem 3.12. Let the following conditions hold:

1. Conditions H3.41, H3.43 and H3.45, H3.46 are met.
2. There exist scalar functions λ(t) > 0, α(t) > 0 and an uniformly positive

matrix function X(t) bounded above such that:

(a) X(t) is differentiable at t �= tk and the Riccati inequality holds:

Ẋ +XA0 +A
T
0X + λ−1XEETX + λFTF ≤ −αX, (3.119)

for t �= tk, k = ±1,±2, ...,
(b) There exist some rk ∈ R and positive constants χk, k = ±1,±2, ...

such that
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∫ tk+1

tk

α(s)ds+ lnβk ≤ −rk, k = ±1,±2, ..., (3.120)

where

βk = λmax

{
X−1(tk)

[
(E +ATk (tk))

+ χ−1
k X(tk)Ẽk(tk)Ẽ

T
k (tk)X(tk)

(
E +Ak(tk)

)

+
(
χk + λmaxẼ

T
k (tk)X(tk)Ẽk(tk)F̃

T
k (tk)

)
F̃k(tk)

]}
≤ 1,

where E is an identity in R
n×n.

3. There exists a solution x(t; t0, x0) of (3.117) such that

||x(t; t0, x0)|| < ν1, where ν1 < ν, ν > 0.

Then, if
∞∑
k=1

rk = ∞ for the system (3.117), there exists an almost periodic

solution ω(t) such that:

1. ||ω(t)|| ≤ ν1.
2. H(ω, tk) ⊂ H(A,B,Ak, Bk, tk).
3. ω(t) is uniformly robustly asymptotically stable.

Proof. Let V (t, x, y) = (x+ y)TX(t)(x+ y). Then V ∈ V2, and

λmin(X(t))
(
||x(t)||2 + ||y(t)||2

)
≤ V ≤ λmax(X(t))

(
||x(t)||2 + ||y(t)||2

)
,

where (t, x(t), y(t)) ∈ R×Bν ×Bν .
The matrix X(t) is an uniformly positive define matrix function and is

bounded above. Then, we have positive numbers M ≥ m > 0 such that

m ≤ λmin(X(t)) ≤ λmax(X(t)) ≤M,

and for a(t) = mt2, b(t) =Mt2, t ∈ R, a, b ∈ K, it follows that

a(||x(t)− y(t)||) ≤ V (t, x(t), y(t)) ≤ b(||x(t)− y(t)||). (3.121)

Similar to the proofs of (3.115) and (3.116), from (3.119) and (3.120) we
get

V
(
t+k , x(tk) +Ak(x(tk)) +Bk(x(tk)), y(tk) +Ak(y(tk)) +Bk(y(tk))

)

≤ βkV (tk, x(tk), y(tk)) ≤ V (tk, x(tk), y(tk)), (3.122)
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and
D+V (t, x(t), y(t)) ≤ −cV (t, x(t), y(t)), (3.123)

where t �= tk, k = ±1,±2, ..., 0 < c ≤ α(t).
Then, from (3.121), (3.112) and (3.123) it follows that for the system

(3.117), the conditions of Theorem 3.11 hold, and the proof of Theorem 3.12
is complete. ��



Chapter 4
Applications

In this chapter, we shall consider the some applications to the real world
problems to illustrate the theory developed in the previous chapters.

Section 4.1 will offer some impulsive biological models. We shall consider
conditions for the existence of almost periodic solutions for an impulsive
Lasota–Wazewska model, an impulsive model of hematopoiesis, and an
impulsive delay logarithmic population model.

Section 4.2 will deal with conditions for the existence of almost periodic
solutions of different kinds of n-species Lotka–Volterra type impulsive models.

Section 4.3 we shall present impulsive neural networks. By means of
Lyapunov functions sufficient conditions for the existence of almost periodic
solutions will be established.

4.1 Biological Models

4.1.1 An Impulsive Lasota–Wazewska Model

The main problem of this paragraph is to study the following generalized
system of impulsive differential equations with delay of Lasota–Wazewska
type: ⎧⎪⎨

⎪⎩
ẋ(t) = −α(t)x(t) +

n∑
i=1

βi(t)e
−γi(t)x(t−h), t �= tk,

Δx(tk) = αkx(tk) + νk, k = ±1,±2, . . . ,

(4.1)

where t ∈ R, {tk} ∈ B, α(t), βi(t), γi(t) ∈ C[R,R+], i = 1, 2, . . . , n, h =
const > 0, and the constants αk ∈ R, , νk ∈ R, k = ±1,±2, . . ..

We shall note that in the special cases when α, β, γ are positive constants,
the differential equations with delay and without impulses in the form

u̇ = −αu(t) + βe−γu(t−h),

G.T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations,
Lecture Notes in Mathematics 2047, DOI 10.1007/978-3-642-27546-3 4,
© Springer-Verlag Berlin Heidelberg 2012
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are considered by Wazewska-Czyzewska and Lasota [186]. The aim is an
investigation of the development and survival of the red corpuscles in the
organisms.

The late investigations in this area are in the work of Kulenovic and Ladas
[89] for the oscillations of the last equations and studying of the equation

u̇ = −μu(t) +
n∑
i=1

pie
−riu(t−h),

where μ, pi and ri are positive constants.
Let t0 ∈ R. Introduce the following notation:
PC(t0) is the space of all functions φ : [t0 − h, t0] → Ω having points

of discontinuity at θ1, θ2, . . . , θs ∈ (t0 − h, t0) of the first kind and are left
continuous at these points.

Let φ0 be an element of PC(t0). Denote by x(t) = x(t; t0, φ0), x ∈ Ω, the
solution of system (4.1), satisfying the initial conditions:

{
x(t; t0, φ0) = φ0(t), t0 − h ≤ t ≤ t0,

x(t+0 ; t0, φ0) = φ0(t0).
(4.2)

Together with (4.1), we consider the linear system

{
ẋ(t) = −α(t)x(t), t �= tk,
Δx(tk) = αkx(tk), k = ±1,±2, . . . .

(4.3)

Introduce the following conditions:

H4.1. The function α(t) is almost periodic in the sense of Bohr, and there
exists a positive constant α such that α ≤ α(t).

H4.2. The sequence {αk} is almost periodic and −1 < αk ≤ 0, k =
±1,±2, . . ..

H4.3. The set of sequences {tjk}, tjk = tk+j − tk, k = ±1,±2, . . . , j =
±1,±2, . . . is uniformly almost periodic, and there exists θ > 0 such that
infk t

1
k = θ > 0.

Now, we shall consider the equations

ẋ(t) = −α(t)x(t), tk−1 < t ≤ tk

and their solutions

x(t) = x(s)exp
{ −

∫ t

s

α(σ)dσ
}

for tk−1 < s ≤ t ≤ tk, k = ±1,±2, . . ..
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Then by the definition of the Cauchy matrix for the linear equation (1.13)
at Chap. 1, we obtain for (4.3) the matrix

W (t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{− ∫ t

s α(σ)dσ
}
, tk−1 < s ≤ t ≤ tk,

k+1∏
i=m

(1 + αi)exp
{
−
∫ t

s

α(σ)dσ
}
,

tm−1 < s ≤ tm < tk < t ≤ tk+1.

Then the solutions of (4.3) are in the form

x(t; t0, x0) =W (t, t0)x0, t0, x0 ∈ R.

Introduce the following conditions:

H4.4. The functions βi(t) are almost periodic in the sense of Bohr, and

0 < sup
t∈R

|βi(t)| < Bi, Bi > 0, βi(0) = 0, i = 1, 2, . . . , n.

H4.5. The functions γi(t), i = 1, 2, . . . ,m are almost periodic in the sense
of Bohr, and

0 < sup
t∈R

|γi(t)| < Gi, Gi > 0, γi(0) = 0, i = 1, 2, . . . , n.

H4.6. The sequence {νk}, k = ±1,±2, . . . is almost periodic.

In the proof of the main theorem we shall use the following lemma the
proof of which is similar to the proof of Lemma 1.7.

Lemma 4.1. Let conditions H4.1–H4.6 hold. Then for each ε > 0 there exist
ε1, 0 < ε1 < ε, a relatively dens sets T of real numbers, and a set P of integer
numbers such that the following relations are fulfilled:

(a) |α(t+ τ)− α(t)| < ε, t ∈ R, τ ∈ T .
(b) |βi(t+ τ)− βi(t)| < ε, t ∈ R, τ ∈ T .
(c) |γi(t+ τ)− γi(t)| < ε, t ∈ R, τ ∈ T .
(d) |αk+q − αk| < ε, q ∈ P, k = ±1,±2, . . . .
(e) |νk+q − νk| < ε, q ∈ P, k = ±1,±2, . . . .
(f) |tqk − r| < ε1, q ∈ P, r ∈ T , k = ±1,±2, . . . .
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Lemma 4.2. Let conditions H4.1–H4.3 hold.
Then:

1. For the Cauchy matrix W (t, s) of system (4.3) it follows

|W (t, s)| ≤ e−α(t−s), t ≥ s, t, s ∈ R.

2. For any ε > 0, t ∈ R, s ∈ R, t ≥ s, |t − tk| > ε, |s − tk| > ε, k =
±1,±2, . . . there exists a relatively dense set T of ε-almost periods of the
function α(t) and a positive constant Γ such that for τ ∈ T it follows

|W (t+ τ, s+ τ)−W (t, s)| ≤ εΓe−α
2 (t−s).

Proof. Since the sequence {αk} is almost periodic, then it is bounded and
from H4.2 it follows that (1 + αk) ≤ 1.

From the presentation of W (t, s) and last inequality it follows that

|W (t, s)| ≤ e−α(t−s), t ≥ s, t, s ∈ R.

Consider the sets T and P determined by Lemma 4.1, and let τ ∈ T . Then
for the matrix W (t+ τ, s+ τ), we have

∂W

∂t
= −α(t)W (t+ τ, s+ τ) +

(
α(t) − α(t+τ))W (t+τ, s+ τ), t �= t′k,

ΔW (t′k, s) = αkW (tk + τ, s+ τ) +
(
αk+q − αk

)
W (t′k + τ, s+ τ),

where t′k = tk − q, q ∈ P, k = ±1,±2, . . ..
Then

W (t+ τ, s+ τ) −W (t, s)

=

∫ t

s

W (t, σ)
(
α(σ) − α(σ + τ))W (σ + τ, s+ τ)dσ

+
∑

s<t′
k
<t

W (t, t′+k )
(
αk+q − αk

)
W (t′k + τ, s+ τ), (4.4)

and again from Lemma 4.1 it follows that if |t− t′k| > ε, then

tk+q < t+ τ < t
′
k+q+1.
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From(4.4), we obtain

|W (t+ τ, s+ τ)−W (t, s)| < ε(t− s)e−α(t−s) + εi(s, t)e−α(t−s) (4.5)

for |t − t′k| > ε, |s − t′k| > ε, where i(s, t) is the number of points t′k in the
interval (s, t).

Now from Lemma 4.2, (4.5) and the obvious inequality

t− s
2

≤ e−α
2 (t−s),

we obtain
|W (t+ τ, s+ τ)−W (t, s)| < εΓe−α

2 (t−s),

where Γ =
2

α

(
1 +N +

α

2
N
)
. ��

We shall proof the main theorem of this part.

Theorem 4.1. Let the following conditions hold:

1. Conditions H4.1–H4.6 are met.
2. The following inequality holds

n∑
i=1

Bi < α.

Then:

(1) There exists a unique almost periodic solution x(t) of (4.1).
(2) The solution x(t) is exponentially stable.

Proof. We denote by AP the set of all almost periodic functions ϕ(t), ϕ ∈
PC[R,R+], satisfying the inequality |ϕ|∞ < K, where

K =
1

α

n∑
i=1

Bi + sup
k=±1,±2,...

|νk| 1

1− e−α .

Here we denote
|ϕ|∞ = sup

t∈R

|ϕ(t)|.

We define in AP an operator S such that if ϕ ∈ AP ,

Sϕ =

∫ t

−∞
W (t, s)

n∑
i=1

βi(s)e
−γi(s)ϕ(s−h)ds+

∑
tk<t

W (t, tk)νk. (4.6)
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For an arbitrary ϕ ∈ AP it follows

|Sϕ|∞ =

∫ t

−∞
|W (t, s)|

n∑
i=1

|βi(s)|e−γi(s)ϕ(s−h)ds+
∑
tk<t

|W (t, tk)||νk|

<
1

α

n∑
i=1

Bi + sup
k=±1,±2,...

|νk| 1

1− e−α = K. (4.7)

On the other hand, let τ ∈ T , q ∈ P where the sets T and P are determined
in Lemma 4.1. Then

|Sϕ(t+ τ)− Sϕ(t)|∞

≤
∫ t

−∞
|W (t+ τ, s+ τ) −W (t, s)|

n∑
i=1

|βi(s+ τ)|e−γi(s+τ)ϕ(s+τ−h)ds

+

∫ t

−∞
|W (t, s)|

∣∣∣
n∑
i=1

|βi(s+ τ)|e−γi(s+τ)ϕ(s+τ−h)

−
n∑
i=1

|βi(s)|e−γi(s)ϕ(s−h)
∣∣∣ds+ ∑

tk<t

|W (t+ τ, tk+q)−W (t, tk)||νk+q|

+
∑
tk<t

|W (t, tk)||νk+q − νk| ≤ C1ε, (4.8)

where

C1 =
1

α

n∑
i=1

Bi

{
2Γ +

n∑
i=1

(Bi + αGi)
}
+ ε

(
Γ sup
k=±1,±2,...

|νk|+ 1

1− e−α
)
.

From (4.7) and (4.8), we obtain that Sϕ ∈ AP .
Let ϕ ∈ AP, ψ ∈ AP .
We get

|Sϕ− Sψ| ≤
∫ t

−∞
|W (t, s)|

n∑
i=1

|βi(s)|
∣∣∣e−γi(s)ϕ(s−h) − e−γi(s)ψ(s−h)∣∣∣ds

≤ 1

α

n∑
i=1

Bi|ϕ− ψ|∞. (4.9)

Then from (4.9) and the conditions of Theorem 4.1 it follows that S is a
contracting operator in AP . So, there exists a unique almost periodic solution
of (4.1).
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Now, let y(t) be another solution of (4.1) with the initial conditions

{
y(t; t0,  0) =  0, t0 − h ≤ t ≤ t0,
y(t+0 ; t0,  0) =  0,

where  0 ∈ PC(t0).
Then

y(t)− x(t) = W (t, t0)( 0 − φ0)

+

∫ t

t0

W (t, s)

n∑
i=1

βi(s)
(
e−γi(s)x(s−h) − e−γi(s)y(s−h)

)
ds.

Consequently,

|y(t)− x(t)| ≤ e−α(t−t0)| 0 − φ0|+
∫ t

t0

e−α(t−s)
n∑
i=1

Bi|y(s)− x(s)|ds.

Set u(t) = |y(t) − x(t)|eαt and from Gronwall–Bellman’s inequality and
Theorem 1.9, we have

|y(t)− x(t)| ≤ | 0 − φ0| exp
{
− (α−

m∑
i=1

Bi)(t− t0)
}
.

and the proof of Theorem 4.1 is complete. ��
Example 4.1. We consider the linear impulsive delay differential equation in
the form {

ẋ(t) = −α(t)x(t) + β(t)e−γ(t)x(t−h), t �= tk,
Δx(tk) = αkx(tk),

(4.10)

where t ∈ R, α, β, γ ∈ C[R,R+], h > 0, {tk} ∈ B, and the constants
αk ∈ R, k = ±1,±2, . . ..

Corollary 4.1. Let the following conditions hold:

1. The functions α(t), β(t), γ(t) are almost periodic.
2. Conditions H4.2 and H4.3 are met.

Then if sup
t∈R

α(t) > sup
t∈R

β(t), there exists a unique almost periodic exponen-

tially stable solution x(t) of (4.10).

Proof. The proof follows from Theorem 4.1. ��
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Remark 4.1. The results in this part show that by means of appropriate
impulsive perturbations we can control the almost periodic dynamics of these
equations.

4.1.2 An Impulsive Model of Hematopoiesis

In this part of the paragraph the existence and asymptotic stability of positive
almost periodic solution for nonlinear impulsive delay model of hematopoiesis
is investigated.

The nonlinear delay differential equation

ḣ(t) = −αh(t) + β

1 + hn(t− ω) , t ≥ t0, (4.11)

where α > 0, β > 0, ω > 0, n ∈ N has been proposed by Mackey and Glass
[112] as an appropriate model of hematopoiesis that describes the process of
production of all types of blood cells generated by a remarkable self-regulated
system that is responsive to the demands put upon it. In medical terms, h(t)
denotes the density of mature cells in blood circulation at time t and τ is the
time delay between the production of immature cells in the bone marrow and
their maturation for release in circulating bloodstream. It is assumed [190]
that the cells are lost from the circulation at a rate α and the flux of the cells
into the circulation from the stem cell compartment depends on the density
of mature cells at the previous time t− τ .

In the real world phenomena, the parameters can be nonlinear functions.
The variation of the environment, however, plays an important role in many
biological and ecological dynamical systems. In particular, the effects of
a periodically varying environment are important for evolutionary theory
as the selective forces on systems in a fluctuating environment differ from
those in a stable environment. Thus, the assumption of periodicity of the
parameters are a way of incorporating the periodicity of the environment.
It has been suggested by Nicholson [123] that any periodical change of
climate tends to impose its period upon oscillations of internal origin or
to cause such oscillations to have a harmonic relation to periodic climatic
changes.

On the other hand, some dynamical systems which describe real phenom-
ena are characterized by the fact that at certain moments in their evolution
they undergo rapid changes. Most notably this takes place due to certain
seasonal effects such as weather, resource availability, food supplies, mating
habits, etc. These phenomena are best described by the system of impulsive
differential equations of the form
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⎧⎨
⎩
ḣ(t) = −α(t)h(t) + β(t)

1 + hn(t− ω) , t �= tk,
Δh(tk) = γkh(tk) + δk, k ∈ N,

(4.12)

where tk represent the instants h(t) at which the density suffers an increment
of δk units. The density of mature cells in blood circulation decreases at
prescribed instants tk by some medication and it is proportional to the density
at that time tk.

Let {tk} ∈ B, σ > 0 and σ ≤ t1 < t2 < . . .. For a given initial function
ξ ∈ PC[[σ − ω, σ],R+], it is well known [177] that the system (4.12) has a
unique solution h(t) = h(t;σ, ξ) defined on [σ − ω,∞), and satisfying the
initial conditions

{
h(t;σ, ξ) = ξ(t), σ − ω ≤ t ≤ σ,
h(σ+;σ, ξ) = ξ(σ).

(4.13)

As we are interested in solutions of biomedical significance, we restrict our
attention to positive ones. To say that impulsive delay differential equations
have positive almost periodic solutions, one need to adopt the definitions of
almost periodicity only for t ∈ R

+ and k = 1, 2, . . ..
Related to the system (4.12), we consider the linear system

{
ḣ(t) = −α(t)h(t), t �= tk,
Δh(tk) = γkh(tk), k = 1, 2, . . . .

(4.14)

The system (4.14) with an initial condition h(t0)= h0 has a unique solution
represented by the form

h(t; t0, h0) = H(t, t0)h0,

where H(t, s) is the Cauchy matrix of (4.14) defined as follows:

H(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
{
−
∫ t

s

α(σ)dσ
}
, tk−1 < s ≤ t ≤ tk,

k+1∏
i=m

(1 + γi)exp
{
−
∫ t

s

α(σ)dσ
}
,

tm−1 < s ≤ tm < tk < t ≤ tk+1.

(4.15)

Introduce the following conditions:

H4.7. The function α ∈ C[R+,R+] is almost periodic in the sense of Bohr,
and there exists a constant μ such that α(t) ≥ μ > 0.

H4.8. The sequence {γk} is almost periodic, and −1 < γk ≤ 0, k = 1, 2, . . . .
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H4.9. The function β ∈ C[R+,R+] is almost periodic in the sense of
Bohr, and

0 < sup
t∈R

|β(t)| < ν, ν > 0, β(0) = 0.

H4.10. The sequence {δk}, k=1, 2, . . . is almost periodic and supk=1,2,... |δk|
≤ κ.

In the proof of the main theorem we shall use the following lemmas.

Lemma 4.3. Let conditions H4.3 and H4.7–H4.10 hold.
Then for each ε > 0 there exists ε1, 0 < ε1 < ε, a relatively dense sets T of

positive real numbers, and a set P of natural numbers such that the following
relations are fulfilled:

(a) |α(t+ τ)− α(t)| < ε, t ∈ R
+, τ ∈ T .

(b) |β(t+ τ)− β(t)| < ε, t ∈ R
+, τ ∈ T .

(c) |γk+q − γk| < ε, q ∈ P, k = 1, 2, . . . .
(d) |δk+q − δk| < ε, q ∈ P, k = 1, 2, . . . .
(e) |tqk − r| < ε1, r ∈ P, τ ∈ T , k = 1, 2, . . ..

Lemma 4.4. Let conditions H4.3 and H4.7–H4.10 hold.
Then:

1. For the Cauchy matrix H(t, s) of system (4.14) there exists a positive
constant μ such that

H(t, s) ≤ e−μ(t−s), t ≥ s, t, s ∈ R
+.

2. For each ε > 0, t ∈ R
+, s ∈ R

+, t ≥ s, |t − tk| > ε, |s − tk| > ε, k =
1, 2, . . . there exists a relatively dense set T of ε−almost periods of the
function α(t) such that for τ ∈ T it follows

|H(t+ τ, s+ τ)−H(t, s)| ≤ εMe−μ
2 (t−s),

where M =
2

μ

(
1 +N +

μ

2
N
)
.

We shall prove the next theorem.

Theorem 4.2. Let the following conditions hold:

1. Conditions H4.3 and H4.7–H4.10 are met.
2. The following inequality is fulfilled

ν < μ. (4.16)
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Then:

1. There exists a unique positive almost periodic solution h(t) of (4.12).
2. The solution h(t) is exponentially stable.

Proof. Let AP ⊂ PC[R+,R+] denote the set of all positive almost periodic
functions ϕ(t) with |ϕ|∞ ≤ K, where

K =
1

μ
ν +

2

1− e−μκN,

and |ϕ|∞ = sup
t∈R+

|ϕ(t)|.
In AP we define an operator S such that if ϕ ∈ AP , we have

Sϕ =

∫ t

−∞
H(t, s)β(s)

1

1 + ϕn(s− ω)ds+
∑
tk<t

H(t, tk)δk. (4.17)

One can easily check that if ϕ ∈ AP , then

|Sϕ| =
∫ t

−∞
H(t, s)|β(s)| 1

1 + ϕn(s− ω)ds+
∑
tk<t

H(t, tk)|δk|

<
1

μ
ν +

2

1− e−μκN = K. (4.18)

Now let ω ∈ T , q ∈ P , where the sets T and P are defined as in Lemma 4.3,
it follows that

|Sϕ(t+ τ)− Sϕ(t)|

≤
∫ t

−∞

∣∣∣H(t+ τ, s+ τ)−H(t, s)
∣∣∣|β(s+ τ)| 1

1 + ϕn(s+ τ − ω)ds

+

∫ t

−∞
H(t, s)

∣∣∣|β(s+ τ)| 1

1 + ϕn(s+ τ − ω) − |β(s)| 1

1 + ϕn(s− ω)
∣∣∣ds

+
∑
tk<t

∣∣∣H(t+ τ, tk + q)−H(t, tk)
∣∣∣|δk+q|

+
∑
tk<t

H(t, tk)
∣∣∣δk+q − δk

∣∣∣,

or
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|Sϕ(t+ τ) − Sϕ(t)|

≤
∫ t

−∞

∣∣∣H(t+ τ, s+ τ) −H(t, s)
∣∣∣|β(s+ τ)| 1

1 + ϕn(s+ τ − ω)ds

+

∫ t

−∞
H(t, s)

{
|β(s+ τ)− β(s)| 1

1 + ϕn(s+ τ − ω)

+ |β(s)|
∣∣∣ 1

1 + ϕn(s+ τ − ω) −
1

1 + ϕn(s− ω)
∥∥∥ds

+
∑
tk<t

∣∣∣H(t+ τ, tk+q)−H(t, tk)
∣∣∣|δk+q |

+
∑
tk<t

H(t, tk)|δk+q − δk|
}
≤ εC1, (4.19)

where

C1 =
2

μ
νM +

1

μ
(1 + ν) + κM

2N

1− e−μ
2

+
2N

1− e−μ .

In virtue of (4.18) and (4.19), we deduce that Sϕ ∈ AP .
Let ϕ, ψ ∈ AP and then

|Sϕ− Sψ| ≤
∫ t

−∞
H(t, s)|β(s)|

∣∣∣ 1

1 + ϕn(s− ω) −
1

1 + ψn(s− ω)
∣∣∣ds

≤ 1

μ
ν|ϕ− ψ|∞. (4.20)

From (4.20) and the condition (4.16) it follows that S is a contraction
mapping on AP . Then there exists a unique fixed point h ∈ D such that
Sh=h. This implies that (4.12) has a unique positive almost periodic solution
h(t).

Let now g(t) be an arbitrary solution of (4.12) supplemented with initial
conditions {

g(t) = ζ(t), ζ ∈ PC[[σ − ω, σ],R+],

g(σ+;σ, ζ) = ζ(σ),

and h(t) be the unique positive almost periodic solution of (4.12) with initial
conditions (4.13).

It follows that

h(t)− g(t) = H(t, σ)(ξ − ζ)

+

∫ t

σ

H(t, s)β(s)
( 1

1 + hn(s− ω) −
1

1 + gn(s− ω)
)
ds.
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Consequently,

|h(t)− g(t)| ≤ e−μ(t−σ)|ξ − ζ|+
∫ t

σ

e−μ(t−s)ν|h(s)− g(s)|ds.

Setting u(t) = |h(t) − g(t)|eμt, applying Gronwall–Bellman’s inequality and
Theorem 1.9 we end up with the expression

|h(t)− g(t)
∣∣∣ ≤ |ξ − ζ|e−(μ−ν)(t−σ).

The assumption (4.6) implies that the unique positive almost periodic
solution of equation (4.12) is exponentially stable. ��

4.1.3 An Impulsive Delay Logarithmic
Population Model

By employing the contraction mapping principle and applying Gronwall–
Bellman’s inequality, sufficient conditions are established to prove the
existence and exponential stability of positive almost periodic solution for
an impulsive delay logarithmic population model.

The following single species logarithmic population model

ẋ(t) = x(t)
[
λ− α lnx(t)− β lnx(t − ω)

]
,

where α, β, λ, ω are positive constants has been proposed by Gopalsamy [59]
and Kirlinger [82] and is then generalized by Liu [107] to the non autonomous
case

ẋ(t) = x(t)
[
λ(t) − α(t) ln x(t)− β(t) ln x(t− ω(t))

]
. (4.21)

In this part we shall study the existence and exponential stability of
positive almost periodic solutions of (4.21) accompanied with impulses.
Namely, system of the form

{
ẋ(t) = x(t)

[
λ(t)− α(t) ln x(t)− β(t) ln x(t− ω(t))

]
, t �= tk,

x(t+k ) = [x(tk)]
1+γkeδk , k = ±1,±2, . . . ,

(4.22)

where the moments tk, {tk} ∈ B represent the instants at which the
density suffers an increment of eδk units.

Our first observation is that under the invariant transformation x(t) =
ey(t), system (4.22) reduces to

{
ẏ(t) = −α(t)y(t)− β(t)y(t− ω(t)) + λ(t), t �= tk,
Δy(tk) = γky(tk) + δk, k = ±1,±2, . . . .

(4.23)
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Clearly, the transformation x(t) = ey(t) preserves the asymptotic proper-
ties of equation (4.22).

Let ω = max
t∈R

ω(t) and σ ∈ R, and let ξ ∈ PC[[σ − ω, σ],R+], then from

[183] it follows that system (4.23) has a unique solution y(t) = y(t;σ, ξ)
defined on [σ − ω,∞), and satisfies initial conditions

{
y(t;σ, ξ) = ξ(t), σ − ω ≤ t ≤ σ,
y(σ+;σ, ξ) = ξ(σ).

(4.24)

As we are interested in solutions of biomedical significance, we again
restrict our attention to positive ones.

Related to system (4.23), we consider the linear system

{
ẏ(t) = −α(t)y(t), t �= tk,
Δy(tk) = γky(tk), k = ±1,±2, . . . .

(4.25)

That system (4.25) with an initial condition y(t0) = y0 has a unique
solution in the form

y(t; t0, y0) = Y (t, t0)y0,

where Y is the Cauchy matrix of (4.25) defined as follows:

Y (t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
{
−
∫ t

s

α(σ)dσ
}
, tk−1 < s ≤ t ≤ tk,

k+1∏
i=m

(1 + γi)exp
{
−
∫ t

s

α(σ)dσ
}
,

tm−1 < s ≤ tm < tk < t ≤ tk+1.

(4.26)

Introduce the following conditions:

H4.11. The function α ∈ C[R,R+] is almost periodic in the sense of Bohr,
and there exists a constant μ > 0 such that μ ≤ α(t).

H4.12. The sequence {γk} is almost periodic, and −1 < γk ≤ 0, k =
±1,±2, . . . .

H4.13. The function β ∈ C[R,R+] is almost periodic in the sense of Bohr,
and

0 < sup
t∈R

|β(t)| < ν, ν > 0, β(0) = 0.

H4.14. The function λ ∈ C[R,R+] is almost periodic in the sense of Bohr,
and

0 < sup
t∈R

|λ(t)| < η, η > 0, λ(0) = 0.

H4.15. The sequence {δk}, k = 1, 2, . . . is almost periodic and sup
k=1,2,...

|δk|≤κ.
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The proofs of the next lemmas are similar to the proofs of similar lemmas in
Chap. 1.

Lemma 4.5. Let conditions H4.3 and H4.11–H4.15 hold.
Then for each ε > 0 there exists ε1, 0 < ε1 < ε, a relatively dense sets T of

positive real numbers, and a set P of natural numbers such that the following
relations are fulfilled:

(a) |α(t+ τ)− α(t)| < ε, t ∈ R, τ ∈ T .
(b) |λ(t+ τ)− λ(t)| < ε, t ∈ R, τ ∈ T .
(c) |β(t+ τ)− β(t)| < ε, t ∈ R

+, τ ∈ T .
(d) |γk+q − γk| < ε, q ∈ P, k = 1, 2, . . . .
(e) |δk+q − δk| < ε, q ∈ P, k = 1, 2, . . . .
(f) |tqk − r| < ε1, r ∈ P, τ ∈ T , k = 1, 2, . . . .

Lemma 4.6. Let conditions H4.3 and H4.11–H4.15 hold.
Then:

1. For the Cauchy matrix Y (t, s) of system (4.25) there exists a positive
constant μ such that

Y (t, s) ≤ e−μ(t−s), t ≥ s, t, s ∈ R.

2. For each ε > 0, t ∈ R, s ∈ R, t ≥ s, |t − tk| > ε, |s − tk| > ε, k =
±1,±2, . . . there exists a relatively dense set T of ε−almost periods of the
function α(t) and a positive constant M such that for τ ∈ T it follows

|Y (t+ τ) − Y (t)| ≤ εMe−μ
2 (t−s),

where M =
2

μ

(
1 +N +

μ

2

)
.

The proof of the next theorem is as the same way like the Theorems 4.1
and 4.2 using Lemmas 4.5 and 4.6.

Theorem 4.3. Let the following conditions hold:

1. Conditions H4.3 and H4.12–H4.15 are met.
2. The following inequality is fulfilled

ν < μ.

Then:

1. There exists a unique positive almost periodic solution x(t) of (4.22).
2. The solution x(t) is exponentially stable.
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4.2 Population Dynamics

4.2.1 Impulsive n-dimensional Lotka–Volterra
Models

During the past few decades, a lot of works has been done of Lotka–Volterra
models, see [1–4, 7, 29, 37, 54, 59, 76, 78, 82, 88, 99–103, 117, 125, 130, 131, 135,
177, 181, 182, 185, 187, 189, 196, 198, 200] and the references cited therein.

The classical n-species Lotka–Volterra model can be expressed as follows:

u̇i(t) = ui(t)
[
ri(t)−

n∑
j=1

aijuj(t)
]
, i = 1, 2, . . . , n,

where ui(t) represents the density of species i at the moment t ∈ R, ui ∈ R,
ri(t) is the reproduction rate function, and aij(t) are functions which describe
the effect of the j-th population upon the i-th population, which is positive
if it enhances, and negative if it inhibits the growth.

These kinds of systems are of great interest not only for population
dynamics or in chemical kinetics, but they are important in ecological
modeling and all fields of science, from plasma physics to neural nets.

If at certain moments of time the evolution of the process is subject to
sudden changes, then the population numbers vary by jumps. Therefore, it is
important to study the behavior of the solutions of Lotka–Volterra systems
with impulsive perturbations.

In this part of Sect. 4.2, we shall investigate the existence of almost periodic
solutions of following n-species Lotka–Volterra type impulsive system,

⎧⎪⎨
⎪⎩
u̇i(t) = ui(t)

[
ri(t)− ai(t)ui(t)−

n∑
j=1,j �=i

aij(t)uj(t)

]
, t �= tk,

Δui(tk) = dikui(tk), k = ±1,±2, . . . ,

(4.27)

where i = 1, 2, . . . , n, t ∈ R, {tk} ∈ B, n ≥ 2, ri, ai ∈ C[R,R] and
aij ∈ C[R,R], j = 1, 2, . . . , n, i �= j, the constants dik ∈ R, k = ±1,±2, . . ..

In mathematical ecology, the system (4.27) denotes a model of the
dynamics of an n-species system in which each individual competes with
all others of the system for a common resource. The numbers ui(tk) and
ui(t

+
k ) are respectively, the population densities of species i before and after

impulsive perturbation at the moment tk. The constants dik characterize the
magnitude of the impulsive effect on the species i at the moments tk.

Let t0 ∈ R, u0 = col(u10, u20, . . . , un0), ui0 ∈ R for 1 ≤ i ≤ n.
Denote by u(t)=u(t; t0, u0), u(t)= col(u1(t), u2(t), . . . , un(t)) the solution

of (4.27) with the initial condition
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u(t+0 ; t0, u0) = u0. (4.28)

The solution u(t) = u(t; t0, u0) of problem (4.27), (4.28) is a piece-
wise continuous function with points of discontinuity at the moments tk,
k = ±1,±2, . . . at which it is continuous from the left, i.e. the following
relations are valid:

ui(t
−
k ) = ui(tk),

ui(t
+
k ) = ui(tk) + dikui(tk), k = ±1,±2, . . . , 1 ≤ i ≤ n.

In this paragraph for a given a nonnegative function g(t) which is defined
on R, we set

gM = sup
t∈R

g(t), gL = inf
t∈R

g(t).

Introduce the following conditions:

H4.16. The functions ri(t), ai(t), 1 ≤ i ≤ n and aij(t), 1 ≤ i, j ≤ n, i �= j
are almost periodic, nonnegative, and riL > 0, riM < ∞, aiL> 0, aiM <
∞, aijL≥0, aijM <∞ for 1 ≤ i, j ≤ n, i �= j.

H4.17. The sequences {dik}, 1 ≤ i ≤ n, k = ±1,±2, . . . are almost
periodic, and −1 < dik ≤ 0.

H4.18. The set of sequences {tjk}, tjk = tk+j − tk, k, j = ±1,±2, . . . is
uniformly almost periodic, and there exists θ > 0 such that infk t

1
k = θ > 0.

Let conditions H4.16–H4.18 hold, and let {s′m} be an arbitrary sequence of
real numbers. Then there exist a subsequence {sl}, sl = s′ml

such that the
system (4.27) by the process described in Chap. 1 gives rise to the limiting
system

⎧⎪⎨
⎪⎩
u̇i(t) = ui(t)

[
rsi (t)− asi (t)ui(t)−

n∑
j=1,j �=i

asij(t)uj(t)

]
, t �= tsk,

Δui(t
s
k) = d

s
ikui(t

s
k)), k = ±1,±2, . . . .

(4.29)

In the proof of the main results we shall use the following definitions and
lemmas.

Let u0 = col(u10, u20, . . . , un0) and v0 = col(v10, v20, . . . , vn0), ui0, vi0 ∈R,
1 ≤ i ≤ n, and let

u(t) = col(u1(t), u2(t), . . . , un(t)), v(t) = col(v1(t), v2(t), . . . , vn(t))

be two solutions of (4.27) with initial conditions

u(t+0 , t0, u0) = u0, v(t
+
0 , t0, v0) = v0.
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Definition 4.1 ([177]). The solution u(t) of (4.27) is said to be:

(a) stable, if

(∀ε > 0)(∀t0 ∈ R)(∃δ > 0)(v0 ∈ R
n : ||u0 − v0|| ≤ δ)(∀t ≥ t0) :

||u(t; t0, u0)− v(t; t0, v0)|| < ε;
(b) globally asymptotically stable, if it is stable and

lim
t→∞ ||u(t; t0, u0)− v(t; t0, v0)|| = 0;

(c) globally exponentially stable, if

(∃c > 0)(∀α > 0)(∃γ > 0)(∀t0 ∈ R)(∀v0 ∈ R
n : ||u0 − v0|| ≤ α)(∀t ≥ t0) :

||u(t; t0, u0)− v(t; t0, v0)|| < γ||u0 − v0|| exp{−c(t− t0)}.

Definition 4.2 ([177]). The solution u(t) = (u1(t), u2(t), . . . , un(t)) of
system (4.27) is said to be a strictly positive solution, if for i = 1, 2, . . . , n,

0 < inf
t∈R

ui(t) ≤ sup
t∈R

ui(t) <∞.

We shall prove the next lemmas.

Lemma 4.7. Let the following conditions hold:

1. Conditions H4.16–H4.18 are met.
2. The function U(t) = col(U1(t), U2(t), . . . , Un(t)) is the maximal solution

of the system

{
U̇i(t) = Ui(t)

[
riM − aiLUi(t)

]
, t �= tk,

ΔUi(tk) = dMkUi(tk), k = ±1,±2, . . . ,
(4.30)

where dMk = max{dik} for 1 ≤ i ≤ n and k = ±1,±2, . . ..
3. The function V (t) = col(V1(t), V2(t), . . . , Vn(t)) is the minimal solution of

the system

⎧⎪⎨
⎪⎩
V̇i(t) = Vi(t)

[
riL − aiMVi(t)−

n∑
j=1,j �=i

aijM sup
t∈R

Uj(t)
]
, t �= tk,

ΔVi(tk) = dLkVi(tk), k = ±1,±2, . . . ,

(4.31)

where dLk = min{dik} for 1 ≤ i ≤ n and k = ±1,±2, . . ..
4. For each 1 ≤ i ≤ n,

Vi(t
+
0 ) ≤ ui(t+0 ) ≤ Ui(t+0 ).
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Then

Vi(t) ≤ ui(t) ≤ Ui(t) (4.32)

for t ∈ R and 1 ≤ i ≤ n.
Proof. We follow [4] and for (4.27) have that

{
u̇i(t) ≤ ui(t)

[
riM − aiLui(t)

]
, t �= tk,

Δui(tk) ≤ dMkui(tk), k = ±1,±2, . . . ,

and

⎧⎪⎨
⎪⎩
u̇i(t) ≥ ui(t)

[
riL − aiMui(t)−

n∑
j=1,j �=i

aijM sup
t∈R

uj(t)
]
, t �= tk,

Δui(tk) ≥ dLkui(tk), k = ±1,±2, . . . .

Then from the differential inequalities for piecewise continuous functions
Vi(t), Ui(t) and ui(t), we obtain that inequality (4.32) is valid for t ∈ R and
1 ≤ i ≤ n. ��
Lemma 4.8. Let the following conditions hold:

1. Conditions H4.16–H4.18 are met.
2. The solution u(t)= col(u1(t), u2(t), . . . , un(t)) of (4.27) is such that
ui(t

+
0 ) > 0, 1 ≤ i ≤ n.

Then:

1. ui(t) > 0, 1 ≤ i ≤ n, t ∈ R.
2. For t ∈ R and 1 ≤ i ≤ n

min
{
ui(t

+
0 ),

[
riL −

n∑
j=1,j �=i

aijM rjM
ajL

]/
aiM

}

≤ ui(t) ≤ max
{
ui(t

+
0 ),
riM
aiL

}
.

Proof. Let we again follow [4] and then the solution u(t; t0, u0), t0 ∈ (t−1, t1]
of (4.27) is defined by the equality

u(t; t0, u0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

.................................,

u−1(t; t−1, u
−1+), t−1 < t ≤ t0,

u0(t; t0, u
0+), t0 < t ≤ t1,

..................................

uk(t; tk, u
k+), tk < t ≤ tk+1,

..................................,
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where uk(t; tk, u
k+) is a solution of the equation without impulses u̇(t) =

p(t)u(t), p(t) = col(p1(t), p2(t), . . . , pn(t)),

pi(t) = ri(t)− ai(t)ui(t)−
n∑

j=1,j �=i
aij(t)uj(t),

in the interval (tk, tk+1], k = ±1,±2, . . . for which

uk+i = (1 + dik)u
k
i (tk; tk−1, u

k−1
i + 0), k = ±1,±2, . . . , 1 ≤ i ≤ n,

and u0+ = u0.
Thus,

ui(t) = ui(t
+
0 )exp

{∫ t

t0

pi(s) ds
} ∏
t0<tk<t

(1 + dik)

for 1 ≤ i ≤ n, so ui(t) > 0 for t ∈ R.
Now from Lemma 4.7 we get that the inequalities (4.32) hold for all t ∈ R

and 1 ≤ i ≤ n.
We shall prove that

[
riL −

n∑
j=1,j �=i

aijM rjM
ajL

]/
aiM ≤ Vi(t) ≤ Ui(t) ≤ riM

aiL
,

for all t ∈ R and 1 ≤ i ≤ n.
First, we shall prove

Ui(t) ≤ riM
aiL
, (4.33)

for all t ∈ R and 1 ≤ i ≤ n.
If t ∈ R and for some i with 1 ≤ i ≤ n, Ui(t) > riM

aiL
, then for t ∈ [tk−1, tk),

k = ±1,±2, . . . we will have

U̇i(t) < Ui(t)
[
riM − aiLUi(t)

]
< 0.

This proves that (4.33) holds for all i, 1 ≤ i ≤ n as long as Ui(t) is defined.

The inequality
[
riL−

n∑
j=1,j �=i

aijM rjM
ajL

]
/aiM ≤ Vi(t) is proves by analogous

way.
Hence, for t ∈ R, we have

min
{
ui(t

+
0 ),

[
riL −

n∑
j=1,j �=i

aijM rjM
ajL

]
/aiM

}

≤ ui(t) ≤ max
{
ui(t

+
0 ),
riM
aiL

}
. ��
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For the proof of the main result in this part we shall consider system
(4.29) and then discuss the almost periodic solutions of the system (4.27).
For simplification, we rewrite (4.27) in the form

{
u̇ = f(t, u), t �= tk,
Δu(tk) = Dku(tk), k = ±1,±2, . . . .

(4.34)

��
Lemma 4.9. Let the following conditions hold:

1. Conditions H4.16–H4.18 are met.
2. {s′m} is an arbitrary sequence of real numbers.
3. For the system (4.29) there exist strictly positive almost periodic solutions.

Then the system (4.27) has a unique strictly positive almost periodic
solution.

Proof. In (4.34) from H4.16–H4.18 it follows that f(t, x) is an almost periodic
function with respect to t ∈ R and x ∈ Bα, α > 0 and Dk is almost periodic
sequence with respect to k = ±1,±2, . . ..

Let φ(t) be a strictly positive solution of (4.34), and let the sequences of
real numbers α′ and β′ be such that for their common subsequences α ⊂ α′,
β ⊂ β′. Then we have θα+βf(t, u) = θαθβf(t, u) and θα+βφ(t), θαθβφ(t) exist
uniformly on the compact set R× B, and are solutions of the system

{
u̇ = fα+β(t, u), t �= tα+βk ,

Δu(tα+βk ) = Dα+βk u(tα+βk ), k = ±1,±2, . . . .

Therefore, θα+βφ(t) = θαθβφ(t) and then from Lemma 2.23 it follows that
φ(t) is an almost periodic solution of system (4.27). ��

In the proof of the next theorem we shall use the sets Gk, k =
±1,±2, . . . , G = ∪∞

k=−∞Gk, and the class of function V0 defined in Chap. 1.
��

Theorem 4.4. Let the following conditions hold:

1. Conditions H4.16–H4.18 are met.
2. There exist nonnegative functions δν(t), 1 ≤ ν ≤ n such that

aν(t)−
n∑

i=1,i�=ν
aiν(t) ≥ δν(t), t �= tk, k = ±1,±2, . . . , (4.35)

for t ∈ R.

Then:

1. For the system (4.27) there exists a unique strictly positive almost periodic
solution.
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2. If there exists a constant c ≥ 0 such that

∫ t

t0

δ(t)ds = c(t− t0),

where δ(t) = min(δ1(t), δ2(t), . . . , δn(t)) then the almost periodic solution
is globally exponentially stable.

Proof. From the construction of (4.29) it follows that for an arbitrary
sequence of real numbers {s′m} there exists a subsequence {sl}, sl < sl+1

and sl → ∞ for l→ ∞ such that

ri(t+ sl) → rsi (t), ai(t+ sl) → asi (t), aij(t+ sl) → asij(t), l→ ∞,

uniformly on t ∈ R, t �= tk, and there exists a subsequence {kl} of {l},
kl → ∞, l → ∞ such that tkl → tsk, dikl → dsik.

Then for the system

⎧⎪⎨
⎪⎩
u̇i(t) = ui(t)

[
rsi (t)− asi (t)ui(t)−

n∑
j=1,j �=i

asij(t)uj(t)
]
, t �= tsk,

Δui(t
s
k) = d

s
ikn
ui(t

s
k), k = ±1,±2, . . . ,

(4.36)

the conditions of Lemma 4.8 hold.
Then, if us(t) is a solution of system (4.36) it follows that

0 < inf
t∈R

ui(t) ≤ sup
t∈R

ui(t) <∞, i = 1, 2, . . . , n. (4.37)

From (4.37) we have that for every system in the form (4.29) there exists
at least one strictly positive solution.

Now suppose that (4.29) has two arbitrary strictly positive solutions
us(t) = (us1(t), u

s
2(t), . . . , u

s
n(t)), v

s(t) = (vs1(t), v
s
2(t), . . . , v

s
n(t)).

Consider a Lyapunov function

V s(t, us(t), vs(t)) =

n∑
i=1

∣∣∣ ln usi
vsi

∣∣∣, t ∈ R.

Then for t ∈ R, t �= tk

D+V s(t, us(t), vs(t)) =

n∑
i=1

[ u̇si (t)
usi (t)

− v̇
s
i (t)

vsi (t)

]
sgn(usi (t)− vsi (t))

≤
n∑
l=1

(
− asl (t)|usl (t)− vsl (t)|+

n∑
i=1,i�=l

asil(t)|usi (t)− vsi (t)|
)
.
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Thus, in view of hypothesis (4.35), we obtain

D+V s(t, us(t), vs(t)) ≤ −δs(t)ms(t), t ∈ R, t �= tsk, (4.38)

where δν(t+ sl) → δs(t), l → ∞, ν = 1, 2, . . . , n,

δs(t) = min(δs1(t), δ
s
2(t), . . . , δ

s
n(t)), m

s(t) =

n∑
i=1

|usi − vsi |.

On the other hand for t = tsk we have

V s(ts+k , u
s(ts+k ), vs(ts+k )) =

n∑
i=1

∣∣∣ ln usi (ts+k )

vsi (t
s+
k )

∣∣∣ =
n∑
i=1

∣∣∣ ln (1 + dsik)u
s
i (t

s
k)

(1 + dsik)v
s
i (t

s
k)

∣∣∣
= V s(tsk, u

s(tsk), v
s(tsk)). (4.39)

From (4.38) and (4.39), we get

D+V s(t, us(t), vs(t)) ≤ 0, t ∈ R, t �= tk,
ΔV s(tsk, u

s(tsk), v
s(tsk)) = 0,

and hence
V s(t, us(t), vs(t)) ≤ V s(t0, us(t0), vs(t0))

for all t ≥ t0, t0 ∈ R.
From the last inequality, (4.38) and (4.39), we have

∫ t

t0

δs(t)ms(t)ds ≤ V s(t0)− V s(t), t ≥ t0.

Consequently,

∫ ∞

t0

∣∣usi (t)− vsi (t)∣∣ <∞, i = 1, 2, . . . , n,

and usi (t)− vsi (t) → 0 for t→ ∞.
Let μs = inf

t∈R

{
usi , v

s
i , i = 1, 2, . . . , n

}
.

From the definition of V s(t) we have

V s(t, us(t), vs(t)) =

n∑
i=1

∣∣ lnusi − ln vsi

∣∣∣

≤ 1

μs

n∑
i=1

∣∣usi − vsi ∣∣.
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Hence, V s(t) → 0, t → −∞, V s(t) is a nonincreasing nonnegative function
on R, and from (4.38), we obtain

V s(t) = 0, t ∈ R. (4.40)

Now, from (4.40) and the boundedness of the right-hand side of (4.27) it
follows that us ≡ vs for all t ∈ R and i = 1, 2, . . . , n. Then for an arbitrary
sequence of real numbers {sn} the system (4.29) has a unique strictly positive
almost periodic solution u(t).

From Lemma 4.8 analogously it follows that system (4.27) has a unique
strictly positive almost periodic solution.

Now, consider again the Lyapunov function

V (t) = V (t, u(t), v(t)) =

n∑
i=1

∣∣∣ ln ui(t)
vi(t)

∣∣∣,

where v(t) = (v1(t), v2(t), . . . , vn(t)) is an arbitrary solution of (4.27) with
the initial condition v(t+0 ) = v0.

By Mean Value Theorem it follows that for any closed interval contained
in (tk−1, tk], k = ±1,±2, . . . there exist positive numbers r and R such that
for 1 ≤ i ≤ n, r ≤ ui(t), vi(t) ≤ R, and

1

R

∣∣ui(t)− vi(t)∣∣ ≤ ∣∣ lnui(t)− ln vi(t)
∣∣ ≤ 1

r

∣∣ui(t)− vi(t)∣∣. (4.41)

Hence, we obtain

V (t+0 , u0, v0) =
n∑
i=1

∣∣ lnui(t+0 )− ln vi(t
+
0 )
∣∣ ≤ 1

r
||u0 − v0||. (4.42)

On the other hand,

D+V (t, u(t), v(t)) ≤ −δ(t)m(t)

≤ −δ(t)rV (t, u(t), v(t)), t ∈ R, t �= tk, (4.43)

and for t ∈ R, t = tk,

V (t+k , u(t
+
k ), v(t

+
k )) =

∑n
i=1

∣∣∣ ln ui(t
+
k )

vi(t
+
k )

∣∣∣
=
∑n

i=1

∣∣∣ ln (1+dik)ui(tk)
(1+dik)vi(tk)

∣∣∣ = V (tk, u(tk), v(tk)). (4.44)
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From (4.41), (4.43) and (4.44) it follows

V (t, u(t), v(t)) ≤ V (t+0 , u0, v0) exp
{
− r

∫ t

t0

δ(s)ds
}
. (4.45)

Therefore, from (4.41), (4.44) and (4.45), we deduce the inequality

n∑
i=1

|ui(t)− vi(t)| ≤ R

r
||u0 − v0||e−rc(t−t0),

where t ≥ t0.
The last inequality shows that the unique almost periodic solution u(t) of

system (4.27) is globally exponentially stable. ��
Example 4.2. Consider a three-dimensional impulsive Lotka–Volterra system
in the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇1(t) = u1(t)
[
6− 9u1(t)− (3 − sin

√
2t)u2(t)− (3− sin

√
2t)u3(t)

]
, t �= tk,

u̇2(t) = u2(t)
[
7− (2− sin

√
2t)u1(t)− (10 + cos

√
3t)u2(t)

−(2− cos
√
3t)u3(t)

]
, t �= tk,

u̇3(t) = u3(t)
[
6 + sin t− 4u1(t)− (3− sin

√
3t)u2(t)− 9u3(t)

]
, t �= tk,

Δui(tk) = dikui(tk), k = ±1,±2, . . . , i = 1, 2, 3,

where conditions H4.17 and H4.18 hold.
Then, we have that

a1 − a21 − a31 = 9− (2− sin
√
2t)− 4 ≥ 2 = δ1,

a2 − a12 − a32 = 10 + cos
√
3t− (3 − sin

√
2t)− (3− sin

√
3t) ≥ 1 = δ2,

a3 − a13 − a23 = 9− (3− sin
√
2t)− (2− cos

√
3t) ≥ 2 = δ3.

For δ(t) = min(δ1, δ2, δ3) = 1 and c = 1 all conditions of Theorem 4.4 are
satisfied and the three-dimensional system considered has a unique strictly
positive almost periodic solution which is globally exponentially stable.

4.2.2 Impulsive Lotka–Volterra Models
with Dispersions

In the present part we shall investigate the existence of almost periodic
processes of ecological systems which are presented with nonautonomous n-
dimensional impulsive Lotka–Volterra competitive systems with dispersions
and fixed moments of impulsive perturbations.
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Consider the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = ui(t)
[
ri(t)− ai(t)ui(t)−

n∑
j=1,j �=i

aij(t)uj(t)
]
+

+

n∑
j=1

bij(t)
(
uj(t)− ui(t)

)
, t �= tk,

Δui(tk) = dkui(tk), k = ±1,±2, . . . ,

(4.46)

where t ∈ R, {tk} ∈ B, i = 1, 2, . . . , n, n ≥ 2, the functions ri, ai ∈
C[R,R], 1 ≤ i ≤ n, aij ∈ C[R,R], i �= j, bij ∈ C[R,R], 1 ≤ i, j ≤ n, the
constants dk ∈ R.

The solution u(t) = u(t; t0, u0) of problem (4.46), (4.28) is a piecewise
continuous function with points of discontinuity at the moments tk, k =
±1,±2, . . . at which it is continuous from the left, i.e. the following relations
are valid:

ui(t
−
k ) = ui(tk),

ui(t
+
k ) = ui(tk) + dkui(tk), k = ±1,±2, . . . , 1 ≤ i ≤ n.

Introduce the following conditions:

H4.19. The functions bij(t) are almost periodic, nonnegative, continuous
and bijL ≥ 0, bijM <∞ for 1 ≤ i, j ≤ n.

H4.20. The sequence {dk}, k = ±1,±2, . . ., is almost periodic and
−1 < dk ≤ 0.

Let conditions H4.16, H4.18–H4.20 hold and let {s′m} be an arbitrary
sequence of real numbers. Then there exists a subsequence {sl}, sl = s′ml

such that the system (4.2.20) moves to system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = ui(t)
[
rsi (t)− asi (t)ui(t)−

n∑
j=1,j �=i

asij(t)uj(t)
]
+

+

n∑
j=1

bsij(t)(uj(t)− ui(t)), t �= tsk,

Δui(t
s
k) = d

s
kui(t

s
k), k = ±1,±2, . . . .

(4.47)

In the proof of the main results we shall use the following lemmas for the
system (4.46).

Lemma 4.10. Let the following conditions hold:

1. Conditions H4.16, H4.18–H4.20 are met.
2. There exist functions Pi, Qi ∈ PC1[R,R] such that
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Pi(t
+
0 ) ≤ ui(t+0 ) ≤ Qi(t+0 ),

where t0 ∈ R, i = 1, 2, . . . , n.

Then
Pi(t) ≤ ui(t) ≤ Qi(t) (4.48)

for all t ≥ t0 and i = 1, 2, . . . , n.

Proof. First we shall proof that

ui(t) ≤ Qi(t) (4.49)

for all t ≥ t0 and i = 1, 2, . . . , n, where Qi(t) is the maximal solution of the
logistic system

⎧⎨
⎩
q̇i(t) = qi(t)

[
ri(t)− ai(t)qi(t)

]
, t �= tk,

qi(t
+
0 ) = qi0 > 0,

Δqi(tk) = d
Mqi(tk), k = ±1,±2, . . . ,

(4.50)

and dM = max
k=±1,±2,...

dk.

The maximal solution Qi(t) = Qi(t; t0, q0), q0 = col(q10, q20, . . . , qn0) of
(4.50) is defined by the equality

Qi(t; t0, q0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q0
i (t; t0, Q

0+
i ), t0 < t ≤ t1,

Q1
i (t; t1, Q

1+
i ), t1 < t ≤ t2,

..................................

Qki (t; tk, Q
k+
i ), tk < t ≤ tk+1,

..................................,

whereQki (t; tk, Q
k+
i ) is the maximal solution of the equation without impulses

q̇i(t) = qi(t)
[
ri(t)− ai(t)qi(t)

]
,

in the interval (tk, tk+1], k = ±1,±2, . . . , for which

Qk+i = (1 + dM )Qki (tk; tk−1, Q
k−1+
i ), k = 1, 2, . . . , 1 ≤ i ≤ n

and Q0+
i = qi0.

By [189], it follows for (4.46) that

u̇i(t) ≤ ui(t)
[
ri(t)− ai(t)ui(t))

]
, t �= tk. (4.51)
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Now, let t ∈ (t0, t1]. If 0 < ui0 ≤ Qi(t
+
0 ), then elementary differential

inequality [94] yields that
ui(t) ≤ Qi(t),

for all t ∈ (t0, t1], i.e. the inequality (4.49) is valid for t ∈ (t0, t1].
Suppose that (4.49) is satisfied for t ∈ (tk−1, tk].
Then, from H4.18 and the fact that (4.49) is satisfied for t = tk, we obtain

ui(t
+
k ) = ui(tk) + dkui(tk) ≤ ui(tk) + dMui(tk)

≤ Qi(tk) + dMQi(tk) = Qi(t+k ).

We apply again the comparison result (4.51) in the interval (tk, tk+1], and
obtain

ui(t; t0, u0) ≤ Qki (t; tk, Qk+i ) = Qi(t; t0, q0)

i.e. the inequality (4.49) is valid for (tk, tk+1].
The proof of (4.49) is completed by induction.
Further, by analogous arguments, using [177], we obtain from (4.46) and

(4.51) that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u̇i(t) ≥ ui(t)
[
ri(t)− ai(t)ui(t)−

n∑
j=1,j �=i

aij(t) sup
t∈R

Qi(t)
]

−
n∑
j=1

bij(t) sup
t∈R

Qi(t), t �= tk,

Δui(tk) ≥ dLui(tk), k = ±1,±2, . . . ,

i = 1, . . . , n, n ≥ 2, and hence ui0 ≥ Pi(t+0 ) implies that

ui(t) ≥ Pi(t) (4.52)

for all t ∈ R and i = 1, 2, . . . , n, where Pi(t) is the minimal solution of the
logistic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗi(t) = pi(t)
[
riL − ai(t)pi(t)−

n∑
j=1
j �=i

aij(t) sup
t∈R

Qi(t)
]

−
n∑
j=1

bij(t) sup
t∈R

Qi(t), t �= tk,

pi(t
+
0 ) = pi0 > 0,

Δpi(tk) = dLpi(tk), k = ±1,±2, . . . ,

(4.53)

i = 1, . . . , n, and dL = min
k=±1,±2,...

dk for 1 ≤ i ≤ n. Thus, the proof follows

from the last system and (4.49). ��
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Lemma 4.11. Let the following conditions hold:

1. Conditions H4.16, H4.18–H4.20 are met.
2. u(t)= col(u1(t), u2(t), . . . , un(t)) be a solution of (4.46) such that ui(t

+
0 ) >

0, 1 ≤ i ≤ n.
Then:

1. ui(t) > 0, 1 ≤ i ≤ n, t ∈ R.
2. For t ∈ R and 1 ≤ i ≤ n there exist constants A > 0, B > 0, such that

A ≤ ui(t) ≤ B.

Proof. Under hypotheses H4.16, H4.18–H4.20, we consider the non impulsive
Lotka–Volterra system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏi(t) = yi(t)
[
ri(t)−Ai(t)yi(t)−

n∑
j=1,j �=i

Aij(t)yj(t)
]
+

+
n∑
j=1

Bij [yj(t)− yi(t)], t �= tk, t > t0,
(4.54)

where

Ai(t) = ai(t)
∏

0<tk<t

(1 + dk), Aij(t) = aij(t)
∏

0<tk<t

(1 + dk),

Bij(t) = bij(t)
∏

0<tk<t

(1 + dk).

We shall prove that if yi(t) is a solution of (4.54), then ui = yi
∏

0<tk<t

(1+dk)

is a solution of (4.46), 1 ≤ i ≤ n.
In fact, for t �= tk it follows

u̇i(t)− ui(t)
[
ri(t)− ai(t)ui(t)−

n∑
j=1,j �=i

aij(t)uj(t)
]
−

n∑
j=1

bij [uj(t)− ui(t)]

= ẏi(t)
∏

0<tk<t

(1 + dk)− yi(t)
∏

0<tk<t

(1 + dk)
[
ri(t)

− ai(t)yi(t)
∏

0<tk<t

(1 + dk)−
n∑

j=1,j �=i
aij(t)yj(t)

∏
0<tk<t

(1 + dk)
]

−
n∑
j=1

bij

[
yj(t)

∏
0<tk<t

(1 + dk)− yi(t)
∏

0<tk<t

(1 + dk)
]
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=
∏

0<tk<t

(1 + dk)
[
ẏi(t)− yi(t)

[
ri(t)−Ai(t)yi(t)−

n∑
j=1,j �=i

Aij(t)yj(t)
]

−
n∑
j=1

Bij(t)[yj(t)− yi(t)]
]
≡ 0. (4.55)

For t = tk, we have

ui(t
+
k ) = lim

t→t+
k

∏
0<tk<t

(1 + dk)yi(t) =
∏

0<tk<t

(1 + dk)yi(tk),

and
ui(tk) =

∏
0<tk<t

(1 + dk)yi(tk).

Thus, for every k = ±1,±2, . . .

ui(t
+
k ) =

∏
0<tk<t

(1 + dk)yi(tk). (4.56)

From (4.55) and (4.56) it follows that ui(t) is the solution of (4.46).

The proof that if ui = yi
∏

0<tk<t

(1 + dk) is a solution of (4.46), then

yi(t), 1 ≤ i ≤ n is a solution of (4.54) is analogous.
From [189] it follows that for the system without impulses (4.54) exists a

positive solution on t ∈ R.
Then, from (4.55) and (4.56) it follows that ui(t) > 0, 1 ≤ i ≤ n, t ∈ R.
Again from [189] under the conditions of the lemma for the solutions of

(4.50) and (4.53) it is valid that

αi ≤ Pi(t), Qi(t) ≤ βi,

where αi > 0, 0 < βi <∞ for all t �= tk, 1 ≤ i ≤ n, and then

αi ≤ ui(t) ≤ βi.

Also, since the solution ui(t) is left continuous, and at t = tk, we have for
t = t1 that

αi ≤ ui(t1) ≤ βi.
On the other hand,

(1 + d1)ai ≤ ui(t+1 ) ≤ (1 + d1)βi ≤ βi.

By analogous arguments for the t ∈ (tk−1, tk] it follows
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k∏
l=1

(1 + dl)αi ≤ ui(t+k ) ≤ βi.

Then for all t ∈ R, we have

A ≤ ui(t) ≤ B,

where

A = min
i

{
αi

∏
k=±1,±2,...

(1+ dk)
}
, B = min

i
βi. ��

Theorem 4.5. Let the following conditions hold:

1. Conditions H4.16, H4.18–H4.20 are met.
2. There exist nonnegative almost periodic functions δν(t), 1 ≤ ν ≤ n such

that

aν(t)−
n∑

i=1,i�=ν
aiν(t)− 1

A

n∑
i=1

biν(t) ≥ δν(t), t �= tk,

for t ∈ R, A > 0, k = ±1,±2, . . ..

Then:

1. For the system (4.46) there exists a unique strictly positive almost periodic
solution.

2. If there exists a constant c ≥ 0 such that

∫ t

t0

δ(t)ds = c(t− t0),

where δ(t) = min(δ1(t), δ2(t), . . . , δN(t)), then the almost periodic solution
is globally exponentially stable.

Proof. The proof follows from Lemmas 4.10 and 4.11 the same way like the
proof of Theorem 4.4. ��

4.2.3 Impulsive Lotka–Volterra Models with Delays

Gopalsamy [59] has studied the existence of periodic solution of the following
Lotka–Volterra system

u̇i(t) = ui(t)
[
bi(t)− aii(t)ui(t)

−
n∑

j=1,j �=i

∫ t

−∞
ki(t, s)hij(t)uj(s) ds

]
, (4.57)



182 4 Applications

where i = 1, 2, . . . , n and the delay kernel ki(t, s) = ki(t− s) is of convolution
type.

Ahmad and Rao [1] have investigated the existence of periodic asymptot-
ically stable solution of the next system of integro-differential equations

u̇i(t) = ui(t)
[
bi(t)− fi(t, ui(t))

−
n∑
j=1

∫ t

−∞
ki(t, s)hij(t, uj(s)) ds

]
, (4.58)

i = 1, 2, . . . , n. The paper [1] improves the results of Gopalsamy and some of
earlier results on this topic of interest.

If at certain moments of time the evolution of the process from (4.57)
or (4.58) is subject to sudden changes, then the population number vary
by jumps. So, in this part we shall consider the impulsive nonautonomous
competitive Lotka–Volterra system of integro-differential equations with
infinite delays and fixed moments of impulsive perturbations in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇i(t) = ui(t)
[
ri(t)− fi(t, ui(t))

−
n∑
j=1

∫ t

−∞
ki(t, σ)hij(t, uj(s)) ds

]
, t �= tk,

Δui(tk) = dikui(tk) + ci, k = ±1,±2, . . . ,

(4.59)

where 1 ≤ i ≤ n, n ≥ 2, t ∈ R and {tk} ∈ B.
We shall assume that the functions ri ∈ C[R,R+], ki ∈ C[R×R,R+], and

fi, hij ∈ C[R × R
+,R+], 1 ≤ i, j ≤ n, the constants dik ∈ R, ci ∈ R

+, 1 ≤
i ≤ n, k = ±1,±2, . . ..

Let ut0 : (−∞, t0] → R
n, ut0 = col(ut01 , u

t0
2 , . . . , u

t0
n ) is a continuous

function. We denote by

u(t) = u(t; t0, u
t0) = col(u1(t; t0, u

t0), u2(t; t0, u
t0), . . . , un(t; t0, u

t0))

the solution of the system (4.59), satisfying the initial conditions

{
u(s; t0, u

t0) = ut0(s), s ∈ (−∞, t0],
u(t+0 ; t0, u

t0) = u(t0).
(4.60)

Note that the solution u(t) = u(t; t0, u
t0) of the problem (4.59), (4.60) is

a piecewise continuous function with points of discontinuity of the first kind
at the moments tk, k = ±1,±2, . . . at which it is left continuous, i.e. the
following relations are satisfied:
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ui(t
−
k ) = ui(tk),

ui(t
+
k ) = ui(tk) + dikui(tk) + ci, k = ±1,±2, . . . , 1 ≤ i ≤ n.

In our subsequent analysis, we shall consider only initial functions that
belong to a class of bounded continuous function.

Let BC = BC[(−∞, t0],Rn] be the set of all bounded continuous functions
from (−∞, t0] into R

n, and let ut0(.) ∈ BC. If u(t) is an R
n−valued function

on (−∞, β), β ≤ ∞, we define for each t ∈ (−∞, β), ut(.) to be the restriction
of u(s) given by ut(s) = u(t+ s), −∞ < s ≤ t, and the norm is defined by

||ut(.)|| = sup
−∞<s≤t

||u(s)||.

It is clear that ||u(t)|| ≤ ||ut(.)||.
Introduce the following conditions:

H4.21. The functions ri(t), 1 ≤ i ≤ n are nonnegative, almost periodic and
riL > 0, rim <∞.

H4.22. The functions ki(t, σ) > 0 are uniformly continuous, almost periodic
with respect to t, integrable with respect to σ on (−∞, t0] and there exist
positive numbers μi such that

∫ t

−∞
ki(t, σ) dσ ≤ μi <∞,

for all t ∈ R, t �= tk, k = ±1,±2, . . ., and 1 ≤ i ≤ n.
H4.23. The functions fi(t, ui) are almost periodic on t uniformly with

respect to ui ∈ R
+, fi(t, ui) > 0 for ui > 0, fi(t, 0) = 0, and there

exist positive almost periodic continuous functions Li(t) such that

|fi(t, ui)− fi(t, νi)| ≥ Li(t)|ui − νi|,

for all (t, ui), (t, νi) ∈ R× R
+, and (ui−νi)|fi(t, ui)−fi(t, νi)| > 0 where

ui �= νi, 1 ≤ i ≤ n.
H4.24. The functions hij(t, ui) are almost periodic on t uniformly with

respect to ui ∈ R
+, 1 ≤ i, j ≤ n, hij(t, ui) > 0 for ui > 0, hij(t, 0) = 0,

and there exist positive almost periodic continuous functions Lij(t) such
that

|hij(t, ui)− hij(t, νi)| ≤ Lij(t)|ui − νi|,
for all (t, ui), (t, νi) ∈ R×R

+, and Lij(t) are nonincreasing for t ∈ R and
1 ≤ i, j ≤ n, i �= j.

H4.25. cM < ∞, cL > 0, where cM = max{ci} and cL = min{ci} for
1 ≤ i ≤ n.
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Let conditions H4.18, H4.21–H4.25 hold and let {s′m} be an arbitrary
sequence of real numbers. Then there exists a subsequence {sl}, sl = s′ml

such that the system (4.59) moves to the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇i(t) = ui(t)
[
rsi (t)− f si (t, ui(t))

−
n∑
j=1

∫ t

−∞
ksi (t, s)h

s
ij(t, uj(s)) ds

]
, t �= tsk,

Δui(t
s
k) = d

s
ikui(t

s
k) + ci, k = ±1,±2, . . . .

(4.61)

In the proof of the main results we shall use the next lemmas.

Lemma 4.12. Let the conditions H4.17, H4.18, H4.21–H4.25 hold, and

∫ t

−∞
ki(t, s)hij(t, uj(s))ds

be continuous for t ∈ [t0,∞), i, j = 1, 2, . . . , n.

J+(t0, u
t0) = [t0,∞).

Proof. If conditions H4.17, H4.18, H4.21–H4.25 hold and
∫ t
−∞ ki(t, s)hij(t, uj

(s))ds is continuous for t ∈ [t0,∞), i, j = 1, 2, . . . , n, then for the initial
problem (4.59), (4.60) there exists a unique solution [1, 37] which is defined
on [t0, t1] ∪ (tk, tk+1], k = ±1,±2, . . .. From H4.25 and H4.18 it follows that
J+(t0, u

t0) = [t0,∞). ��
The proof of the next lemma is similar to the proof of Lemma 4.11.

Lemma 4.13. Let the following conditions hold:

1. Conditions H4.17, H4.18 and H4.21–H4.25 are met.
2. There exist functions Pi, Qi ∈ PC1[[t0,∞),R] such that

Pi(t
+
0 ) ≤ ut0i (s) ≤ Qi(t+0 ),

where s ≤ t0, t0 ∈ R, 1 ≤ i ≤ n.
Then

Pi(t) ≤ ui(t) ≤ Qi(t) (4.62)

for all t ≥ t0 and 1 ≤ i ≤ n.
Lemma 4.14 ([177]). Let the following conditions hold:

1. Conditions of Lemma 4.11 are met.
2. ui(t) = ui(t; t0, u

t0
i ) be a solution of (4.59), (4.60) such that

ui(s) = u
t0
i (s) ≥ 0, suput0i (s) <∞, ut0i > 0, 1 ≤ i ≤ n. (4.63)
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3. For 1 ≤ i ≤ n and k = ±1,±2, . . .

1 + dik > 0.

Then:

1. ui(t) > 0, 1 ≤ i ≤ n, t > t0.
2. There exist positive constants αi and βi such that

αi ≤ ui(t) ≤ βi,

for all t > t0, 1 ≤ i ≤ n, and if in addition

−dikαi < ci < −dikβi

then
αi ≤ ui(t) ≤ βi,

for t ≥ t0 and 1 ≤ i ≤ n.
The proof of the next lemma is similar of the proof of Lemma 4.9.

Lemma 4.15. Let the following conditions hold:

1. Conditions H4.17, H4.18 and H4.21–H4.25 are met.
2. {sn} be an arbitrary sequence of real numbers.
3. For the system (4.61) there exists a strictly positive solution.

Then the system (4.59) has a unique strictly positive almost periodic solution.

Let ui(t; t0, u
t0) and vi(t; t0, v

t0), 1 ≤ i ≤ n, (t0, ut0), (t0, vt0) ∈ R ×BC
be any two solutions of (4.59) such that

ui(σ) = u
t0
i (σ) ≥ 0, sup

σ∈(−∞,t0]

ut0i (σ) <∞, ut0i (t0) > 0.

vi(σ) = v
t0
i (σ) ≥ 0, sup

σ∈(−∞,t0]

vt0i (σ) <∞, vt0i (t0) > 0.

We shall use the Lyapunov function

V (u(t), v(t)) =
n∑
i=1

∣∣ ln ui(t)
vi(t)

∣∣. (4.64)

By Mean Value Theorem it follows that for any closed interval contained
in (tk−1, tk], k = ±1,±2, . . . there exist positive numbers r and R such that
for 1 ≤ i ≤ n, it follows that r ≤ ui(t), vi(t) ≤ R and
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1

R
|ui(t)− vi(t)| ≤

∣∣ lnui(t)− ln vi(t)
∣∣ ≤ 1

r
|ui(t)− vi(t)|. (4.65)

Theorem 4.6. Let the following conditions hold:

1. Conditions H4.17, H4.18 and H4.21–H4.25 are met.
2. There exist nonnegative almost periodic continuous functions δν(t), 1 ≤
ν ≤ n such that

rLν(t)−R
n∑
j=1

μνLνj(t) > δν(t), t �= tk, k = ±1,±2, . . . . (4.66)

Then:

1. For the system (4.59) there exists a unique strictly positive almost periodic
solution.

2. If there exists a constant c ≥ 0 such that

∫ t

t0

δ(s)ds = c(t− t0),

where δ(t) = min(δ1(t), δ2(t), . . . , δn(t)), then the almost periodic solution
is globally exponentially stable.

Proof. Let the conditions H4.17, H4.18 and H4.21–H4.25 hold, and let {sl}
be an arbitrary sequence of real numbers. If us(t) is a solution of (4.61), from
Lemma 4.14, we get

0 < inf
t≥t0

usi (t) ≤ sup
t≥t0

usi (t) <∞, 1 ≤ i ≤ n. (4.67)

Suppose that the system (4.61) has two arbitrary strictly positive solutions

us = col(us1(t), u
s
2(t), . . . , u

s
n(t)), v

s = col(vs1(t), v
s
2(t), . . . , v

s
n(t)).

Consider the Lyapunov function

V s(us(t), vs(t)) =

n∑
i=1

∣∣ ln usi (t)
vsi (t)

∣∣.

Then for t ∈ R, t �= tsk, k = ±1,±2, . . ., and hypotheses H4.17, H4.18 and
H4.21–H4.25, we have

D+V s(us(t), vs(t)) =

n∑
i=1

( u̇si (t)
usi (t)

− v̇
s
i (t)

vsi (t)

)
sgn

(
usi (t)− vsi (t)

)
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≤
n∑
i=1

[
− Lsi (t)|usi (t)− vsi (t)|

+
n∑
j=1

∫ t

−∞
ksi (t, σ)L

s
ij(t)|usj(σ)− vsj (σ)|dσ

]
.

Thus in view of hypothesis (4.66) we obtain

D+V s(us(t), vs(t)) ≤ −δs(t)ms(t), t ∈ R, t �= tsk, (4.68)

where δ(t+ sl) → δs(t), l → ∞.

δs(t) = min(δs1(t), δ
s
2(t), . . . , δ

s
n(t)), m

s(t) =

n∑
i=1

|usi − vsi |.

On the other hand, for t = tsk, we have

V s(us(ts+k ), vs(ts+k )) =

n∑
i=1

∣∣∣ ln usi (ts+k )

vsi (t
s+
k )

∣∣∣ =
n∑
i=1

∣∣∣ ln (1 + dsik)u
s
i (t

s
k) + ci

(1 + dsik)v
s
i (t

s
k) + ci

∣∣∣

≤
n∑
i=1

∣∣∣ ln (1 + dsik)R − dsikR
(1 + dsik)r − dsikr

∣∣∣ =
n∑
i=1

∣∣∣ ln R
r

∣∣∣

=

n∑
i=1

∣∣∣− ln
R

r

∣∣∣ =
n∑
i=1

∣∣∣ ln r
R

∣∣∣ ≤
n∑
i=1

∣∣∣ ln usi (tsk)
vsi (t

s
k)

∣∣∣
= V s(us(tsk), v

s(tsk)). (4.69)

From (4.68) and (4.69) it follows that for t < t0,

∫ t0

t

δs(t)ms(t)dt ≤ V s(us(t), vs(t)) − V s(ust0 , vst0).

Then from the almost periodicity of the right hand of system (4.59) and
definition of V s(us(t), vs(t)), for the last inequality it follows that

∫ t0

−∞
|usi (σ) − vsi (σ)|dσ <∞, 1 ≤ i ≤ n,

and then |usi (t)− vsi (t)| → 0 as t→ −∞.
Hence, from (4.69), we obtain V s(us(t), vs(t)) → 0 for t→ −∞.
Analogously, from (4.68), we find

∫ t

t0

|us(σ)− vs(σ)|dσ ≤ V s(ust0 , vst0)− V s(us(t), vs(t)), t ≥ t0.
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Therefore, ∫ ∞

t0

|us(σ)− vs(σ)|dσ <∞, 1 ≤ i ≤ n.

Let
νs = inf

t∈R

{usi (t), vsi (t), 1 ≤ i ≤ n}.

From definition of V s(us(t), vs(t)), we have

V s(us(t), vs(t)) =

n∑
i=1

∣∣∣ ln usi (t)
vsi (t)

∣∣∣ ≤
n∑
i=1

1

νs
|usi (t)− vsi (t)|.

Hence V s(us(t), vs(t)) → 0, t→ ∞.
We have that V s(us(t), vs(t)) is non increasing nonnegative function on R

and consequently
V s(us(t), vs(t)) ≡ 0, (4.70)

for t �= tsk, t ∈ R. From (4.68), (4.69) and (4.70) it follows that usi (t) ≡ vsi (t)
for all t ∈ R and 1 ≤ i ≤ n. Then, every system from (4.60) has at least one
strictly positive solution.

From Lemma 4.15, analogously it follows that system (4.59) has a unique
strictly positive almost periodic solution.

Let for the system (4.59) there exists another bounded strictly positive
solution vi(t; t0, v

t0), 1 ≤ i ≤ n, (t0, vt0) ∈ R×BC.
Now we consider again the Lyapunov function V (u(t), v(t)) and obtain

V (ut0 , vt0) =

n∑
i=1

∣∣∣ ln ui(t0)
vi(t0)

∣∣∣ ≤ 1

r
||ut0 − vt0)||. (4.71)

On the other hand, for t ∈ R, t �= tk,

D+V (u(t), v(t)) ≤ −δ(t)m(t) ≤ −δ(t)rV (u(t), v(t)). (4.72)

For t ∈ R, t = tk, it follows

V (u(t+k ), v(t
+
k )) =

n∑
i=1

∣∣∣ ln ui(t+k )
vi(t

+
k )

∣∣∣ =
n∑
i=1

∣∣∣ ln (1 + dik)ui(tk) + ci
(1 + dik)vi(tk) + ci

∣∣∣

≤
n∑
i=1

∣∣∣ ln (1 + dik)R − dikR
(1 + dik)r − dikr

∣∣∣ =
n∑
i=1

∣∣∣ ln R
r

∣∣∣

=

n∑
i=1

∣∣∣− ln
R

r

∣∣∣ =
n∑
i=1

∣∣∣ ln r
R

∣∣∣ ≤
n∑
i=1

∣∣∣ ln ui(tk)
vi(tk)

∣∣∣
= V s(u(tk), v(tk)). (4.73)
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From (4.71), (4.72) and (4.73), it follows

V (u(t), v(t)) ≤ V (ut0 , vt0) exp
{
− r

∫ t

t0

δ(σ)dσ
}
. (4.74)

Therefore, from (4.71), (4.72) and (4.73) we deduce the inequality

N∑
i=1

∣∣ui(t)− vi(t)∣∣ ≤ R

r
||ut0 − vt0)||e−rc(t−t0), t ≥ t0.

This shows that the unique almost periodic solution u(t) of the system
(4.59) is globally exponentially stable. ��
Example 4.3. We shall consider the impulsive nonautonomous competitive
Lotka–Volterra system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = u1(t)
[
5
√
2− 9u1(t)−

∫ t

−∞
k1(t, σ)u2(σ) dσ

]
,

u̇2(t) = u2(t)
[5√2

9
− 2

3

∫ t

−∞
k2(t, σ)u1(σ) dσ − 16

3
u2(t)

]
, t �= tk,

u1(t
+
k ) =

3
√
2− 2u1(tk)

4
,

u2(t
+
k ) =

√
2− 2u2(tk)

3
, k = ±1,±2, . . . .

(4.75)

Let for the sequence {tk} ∈ B condition H4.18 holds.
From

∫ t

−∞
k1(t, σ)dσ = μ1 = 2,

∫ t

−∞
k2(t, σ)dσ = μ2 = 1,

we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rL1(t)− ν1RL12(t) =
1

4
.9− 2.1.1 =

1

4
= δ1,

rL2(t)− ν2RL21(t) =
1

4
.
16

3
− 1.1.

2

3
=

2

3
= δ2,

δ = min(δ1, δ2) =
1

4
,

∫ t

t0

δds =

∫ t

t0

1

4
ds =

1

4
(t− t0),

−1 < d1k = −1

2
< 0, −1 < d2k = −1

3
< 0, c1 =

3
√
2

4
, c2 =

√
2

3
.
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Then for the system (4.75) all conditions of Theorem 4.6 hold, and conse-
quently, there exists a unique positive almost periodic globally exponentially
stable solution of (4.75).

4.3 Neural Networks

In the present Section, the problems of existence and uniqueness of almost
periodic solutions for impulsive neural networks are considered.

Neural networks have been successfully employed in various areas such
as pattern recognition, associative memory and combinatorial optimization
[30–34,38, 44, 48, 60, 70, 72–74,81, 120, 121, 133, 169, 175].

While an artificial neural network has been known insofar for its transient
processing behavior, its circuit design has never been disentangled from
destabilizing factors such as impulses.

Impulses can make unstable systems stable so they have been widely used
in many fields such as physics, chemistry, biology, population dynamics, and
industrial robotics. The abrupt changes in the voltages produced by faulty
circuit elements are exemplary of impulse phenomena that can affect the
transient behavior of the network. Some results for impulsive neural networks
have been given, for example, see [6,169,175–177,202] and references therein.

4.3.1 Impulsive Neural Networks

In this part we shall investigate the problem of existence of almost periodic
solutions of the system of impulsive Hopfield neural networks

⎧⎪⎨
⎪⎩
ẋi(t) =

n∑
j=1

aij(t)xj(t) +
n∑
j=1

αij(t)fj(xj(t)) + γi(t), t �= tk,

Δx(tk) = Akx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,

(4.76)

where t ∈ R, {tk} ∈ B, aij , αij , fj , γi ∈ C[R,R], i = 1, 2, . . . , n, j =
1, 2, . . . , n, x(t)= col(x1(t), x2(t), . . . , xn(t)), Ak ∈ R

n×n, Ik ∈ C[Ω,Rn], pk ∈
R
n, k = ±1,±2, . . ..
The solution x(t) = x(t; t0, x0) of (4.76) with the initial condition x(t+0 ) =

x0 is a piecewise continuous function with points of discontinuity at the
moments tk, k = ±1,±2, . . . at which it is continuous from the left.

Together with system (4.76) we shall consider the linear system

{
ẋ(t) = A(t)x(t), t �= tk,
Δx(tk) = Akx(tk, ), k = ±1,±2, . . . ,

(4.77)



4.3 Neural Networks 191

where A(t) = (aij(t)), i = 1, 2, . . . n, j = 1, 2, . . . , n.
Introduce the following conditions:

H4.26. The matrix function A ∈ C[R,Rn×n] is almost periodic in the sense
of Bohr.

H4.27. det(E +Ak) �= 0 and the sequence
{
Ak

}
, k = ±1,±2, . . . is almost

periodic, E is the identity matrix in R
n×n.

H4.28. The set of sequences {tjk}, tjk = tk+j − tk, k, j = ±1,±2, . . . is
uniformly almost periodic, and there exists θ > 0 such that inf

k
t1k = θ > 0.

From Chap. 1 it follows that if Uk(t, s, ) is the Cauchy matrix for system

ẋ(t) = A(t)x(t), tk−1 < t ≤ tk,

then the Cauchy matrix of the system (4.77) is in the form

W (t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk(t, s) as t, s ∈ (tk−1, tk],

Uk+1(t, t
+
k )(E +Ak)Uk(tk, s) as tk−1 < s ≤ tk < t ≤ tk+1,

Uk(t, tk)(E +Ak)
−1Uk+1(t

+
k , s) as tk−1 < t ≤ tk < s ≤ tk+1,

Uk+1(t, t
+
k )

i+1∏
j=k

(E +Aj)Uj(tj , t
+
j−1)(E +Ai)Ui(ti, s)

as ti−1 < s ≤ ti < tk < t ≤ tk+1,

Ui(t, ti)

k−1∏
j=i

(E +Aj)
−1Uj+1(t

+
j , tj+1)(E +Ak)

−1Uk+1(t
+
k , s)

as ti−1 < t ≤ ti < tk < s ≤ tk+1,

and the solutions of (4.77) can to write in the form

x(t; t0, x0) =W (t, t0)x0.

Introduce the next conditions:

H4.29. The functions fj(t) are almost periodic in the sense of Bohr, and

0 < sup
t∈R

|fj(t)| <∞, fj(0) = 0,

and there exists L1 > 0 such that for t, s ∈ R

max
j=1,2,...,n

|fj(t)− fj(s)| < L1|t− s|.

H4.30. The functions αij(t) are almost periodic in the sense of Bohr, and

0 < sup
t∈R

|αij(t)| = αij <∞.
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H4.31. The functions γi(t), i = 1, 2, . . . , n are almost periodic in the sense
of Bohr, the sequence {pk}, k = ±1,±2, . . . is almost periodic and there
exists C0 > 0 such that

max{ max
i=1,2,...,n

|γi(t)|, max
k=±1,±2,...,n

||pk||} ≤ C0.

H4.32. The sequence of functions {Ik(x)}, k = ±1,±2, . . . is almost
periodic uniformly with respect to x ∈ Ω, and there exists L2 > 0 such
that

||Ik(x) − Ik(y)|| ≤ L2||x− y||,
for k = ±1,±2, . . . , x, y ∈ Ω.

Now we need the following lemmas.

Lemma 4.16. Let the following conditions hold:

1. The conditions H4.26–H4.28 are met.
2. For the Cauchy matrix W (t, s) of the system (4.77) there exist positive

constants K and λ such that

||W (t, s)|| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.

Then for any ε > 0 there exists a relatively dense set T of ε-almost periods
of the matrix A(t) and a positive constant Γ such that for τ ∈ T it follows

||W (t+ τ, s+ τ) −W (t, s)|| ≤ εΓe−λ
2 (t−s).

Proof. The proof is analogous to the proof of Lemma 2 in [138]. ��
Now from Lemma 4.16 we have the following lemmas.

Lemma 4.17. Let the following conditions hold:

1. For the matrix A(t) = diag[−a1(t),−a2(t), . . . ,−an(t)] it follows that
ai(t), ai ∈ PC[R,R], i = 1, 2, . . . , n is an almost periodic function in
the sense of Bohr, and

lim
A→∞

1

A

∫ t+A

t

ai(t)dt > 0, i = 1, 2, . . . , n.

2. The conditions H4.27 and H4.28 are met.

Then:

1. For the Cauchy’s matrix W (t, s) it follows

||W (t, s)|| ≤ Ke−λ(t−s),
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where t ∈ R, s ∈ R, t ≥ s, and K, λ are positive constants.
2. For each ε > 0 there exists a relatively dense set T from ε-almost periods

of matrix A(t), and a positive constant Γ such that for τ ∈ T it follows

||W (t+ τ, s+ τ) −W (t, s)|| ≤ εΓe−λ
2 (t−s).

Lemma 4.18. Let the following conditions hold:

1. Conditions H4.26–H4.29 are met.
2. There exists a constant λ > 0 such that for t ∈ R the eigenvalues λi, i =

1, 2, . . . , n of matrix A(t) satisfy the conditions

Reλi(t) < −λ.

Then:

1. For the Cauchy’s matrix W (t, s) it follows

||W (t, s)|| ≤ Ke−λ(t−s),

where t ∈ R, s ∈ R, t ≥ s, K is a positive constant.
2. For each ε > 0 there exists a relatively dense set T from ε-almost periods

of matrix A(t), and a positive constant Γ such that for τ ∈ T it follows

||W (t+ τ, s+ τ) −W (t, s)|| ≤ εΓe−λ
2 (t−s).

The proof of the next lemma is similar to the proof of Lemma 1.7.

Lemma 4.19. Let conditions H4.26–H4.31 hold. Then for each ε > 0 there
exist ε1, 0 < ε1 < ε, a relatively dense set T of real numbers, and a set P of
integer numbers, such that the following relations hold:

(a) ||A(t+ τ)−A(t)|| < ε, t ∈ R, τ ∈ T .
(b) |αij(t+ τ)− αij(t)| < ε, τ ∈ T , t ∈ R, i, j = 1, 2, . . . , n.
(c) |fj(t+ τ)− fj(t)| < ε, t ∈ R, τ ∈ T , j = 1, 2, . . . , n.
(d) |γj(t+ τ)− γj(t)| < ε, τ ∈ T , t ∈ R, j = 1, 2, . . . , n.
(e) ||Ak+q −Ak|| < ε, q ∈ P, k = ±1,±2, . . . .
(f) |pk+q − pk| < ε, q ∈ P, k = ±1,±2, . . . .
(g) |τk+q − τ | < ε1, q ∈ P, τ ∈ T , k = ±1,±2, . . . .

Now, we are at the position to proof the main theorem.

Theorem 4.7. Let the following conditions hold:

1. Conditions H4.26–H4.32 are met.
2. For the Cauchy matrix W (t, s) of system (4.77) there exist positive

constants K and λ such that
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||W (t, s)|| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.

3. The number

r = K
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

αij +
L2

1− e−λ
}
< 1.

Then:

(1) There exists a unique almost periodic solution x(t) of (4.76).
(2) If the following inequalities hold

1 +KL2 < e, λ−KL1 max
i=1,2,...,n

n∑
j=1

αij −N ln(1 +KL2) > 0,

then the solution x(t) is exponentially stable.

Proof. We denote by AP, AP ⊂ PC[R,Rn] the set of all almost periodic
functions ϕ(t), satisfying the inequality |ϕ|∞ < K, where

|ϕ|∞ = sup
t∈R

||ϕ(t)||, K = KC0

( 1
λ
+

1

1− e−λ
)
.

Let

ϕ0 =

∫ t

−∞
W (t, s)γ(s)ds+

∑
tk<t

W (t, tk)pk,

where γ(t) = (γ1(t), γ2(t), . . . , γn(t)).
Then

|ϕ0|∞ = sup
t∈R

{
max

i=1,2,...,n

∫ t

−∞
||W (t, s)|||γi(s)|ds

+
∑
tk<t

||W (t, tk)||||pk||
}

≤ sup
t∈R

{
max

i=1,2,...,n

∫ t

−∞
Ke−λ(t−s)|γi(s)|ds+

∑
tk<t

Ke−λ(t−tk)||pk||
}

≤ K
(C0

λ
+

C0

1− e−λ
)
= K. (4.78)

Set
F (t, x) = col

{
F1(t, x), F2(t, x), . . . , Fn(t, x)

}
,

where

Fi(t, x) =

n∑
j=1

αij(t)fj(xj), i = 1, 2, . . . , n.
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Now, we define in AP an operator S,

Sϕ =

∫ t

−∞
W (t, s)

[
F (s, ϕ(s)) + γ(s))

]
ds

+
∑
tk<t

W (t, tk)
[
Ik(ϕ(tk)) + pk

]
(4.79)

and consider a subset AP ∗, AP ∗ ⊂ AP , where

AP ∗ =
{
ϕ ∈ AP : |ϕ− ϕ0|∞ ≤ rK

1− r
}
.

Consequently, for an arbitrary ϕ ∈ AP ∗ from (4.78) and (4.79) it follows

|ϕ|∞ ≤ |ϕ− ϕ0|∞ + |ϕ0|∞ ≤ rK

1− r +K =
K

1− r .

Now, we are proving that S is self-mapping from AP ∗ to AP ∗.
For ϕ ∈ AP ∗ it follows

|Sϕ− ϕ0|∞ = sup
t∈R

{
max

i=1,2,...,n

∫ t

−∞
||W (t, s)||

n∑
j=1

|αij(s)||fj(ϕj(s))|ds

+
∑
tk<t

||W (t, tk)||||Ik(ϕ(tk))||
}

≤
{

max
i=1,2,...,n

∫ t

−∞
Ke−λ(t−s)

n∑
j=1

αijL1ds+
∑
tk<t

Ke−λ(t−tk)L2

}
|ϕ|∞

≤ K
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

αij +
L2

1− e−λ

}
|ϕ|∞ = r|ϕ|∞ ≤ rK

1− r
.

(4.80)

Let τ ∈ T , q ∈ P , where the sets T and P are determined in Lemma 4.19.
Then

|Sϕ(t+ τ)− Sϕ(t)|∞ ≤ sup
t∈R

{
max

i=1,2,...,n

(∫ t

−∞
||W (t+ τ, s+ τ)

−W (t, s)||
∣∣∣
n∑
j=1

αij(s+ τ)fj(ϕj(s+ τ))
∣∣∣ds

+

∫ t

−∞
||W (t, s)||

∣∣∣
n∑
j=1

αij(s+ τ)fj(ϕj(s+ τ))−
n∑
j=1

αij(s)fj(ϕj(s))
∣∣∣ds)
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+
∑
tk<t

||W (t+ τ, tk+q)−W (t, tk)||||Ik+q(ϕ(tk+q))||

+
∑
tk<t

||W (t, tk)||||Ik+q(ϕ(tk+q))− Ik(ϕ(tk))||
}
≤ εC1, (4.81)

where

C1 =
L1

λ

(
max

i=1,2,...,n

n∑
j=1

(2Γ +K)αij +K
)
+
L2ΓN

1− e−λ .

and the number N is from Lemma 1.2.
Consequently, after (4.80) and (4.81), we obtain that Sϕ ∈ AP ∗.
Let ϕ ∈ AP ∗, ψ ∈ AP ∗.
Then

|Sϕ− Sψ|∞

≤ sup
t∈R

{
max

i=1,2,...,n

∫ t

−∞
||W (t, s)||

n∑
j=1

|αij(s)||fj(ϕj(s))− fj(ψj(s))|ds

+
∑
tk<t

||W (t, tk)||||Ik(ϕ(tk))− Ik(ψ(tk))||
}

≤ K
(

max
i=1,2,...,n

λ−1L1

n∑
j=1

αij +
L2

1− e−λ
)
|ϕ− ψ|∞ = r|ϕ− ψ|∞.

(4.82)

Then from (4.82) it follows that S is a contracting operator in AP ∗, and
there exists a unique almost periodic solution of (4.76).

Let now y(t) be an arbitrary solution of (4.76). Then from (4.78), we obtain

y(t)− x(t) =W (t, t0)
(
y(t0)− x(t0)

)
+

∫ t

t0

W (t, s)
[
F (s, y(s))− F (s, x(s))]ds

+
∑

t0<tk<t

W (t, tk)[Ik(y(tk))− Ik(x(tk))
]
.

Hence,

||y(t)− x(t)|| ≤ Ke−λ(t−t0)||y(t0)− x(t0)||

+ max
i=1,2,...,n

( ∫ t

t0

Ke−λ(t−s)L1

n∑
j=1

αij |yi(s)− xi(s)|ds
)

+
∑

t0<tk<t

Ke−λ(t−tk)L2||y(tk)− x(tk)||.
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Set u(t) = ||y(t) − x(t)||eλt and from Gronwall–Bellman’s inequality and
Theorem 1.9, for the last inequality we have

||y(t)− x(t)||

≤ K||y(t0)− x(t0)||(1+KL2)
i(t0,t) exp

{
− λ+KL1 max

i=1,2,...,n

n∑
j=1

αij

}
(t−t0). ��

Example 4.4. Now, we shall consider the classical model of impulsive Hop-
field neural networks

⎧⎪⎨
⎪⎩
ẋi(t) = − 1

Ri
xi(t) +

n∑
j=1

αijfj(xj(t)) + γi(t), t �= tk, i = 1, 2, . . . , n,

Δx(tk) = Gx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,
(4.83)

where t ∈ R, {tk} ∈ B, Ri > 0, αij ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . , n,
γi, fi ∈ C[R,R], i = 1, 2, . . . , n, x(t) = col(x1(t), x2(t), . . . , xn(t)), Ik ∈
C[Ω,Rn], G = diag[gi], gi ∈ R, i = 1, 2, . . . , n, pk ∈ R

n.

Theorem 4.8. Let the following conditions hold:

1. Conditions H4.28, H4.29, H4.31 and H4.32 are met.
2. The following inequalities hold

λ = min
i=1,2,...,n

1

Ri
−N max

i=1,2,...,n
ln(1 + |gi|) > 0,

r = exp
{
N max

i=1,2,...,n
ln(1 + |gi|)

}

×
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

αij +
L2

1− e−λ
}
< 1.

Then:

1. There exists a unique almost periodic solution x(t) of (4.83).
2. If the following inequalities hold

1 + exp
{
N max

i=1,2,...,n
ln(1 + |gi|)

}
L2 < e,

λ− exp
(
N max

i=1,2,...,n
ln(1 + |gi|)

)
L1

n∑
j=1

αij

−N ln
(
1 + {N max

i=1,2,...,n
ln(1 + |gi|)}L2

)
> 0,

then the solution x(t) is exponentially stable.
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Proof. Let ⎧⎨
⎩
ẋi(t) = − 1

Ri
xi(t), t �= tk,

Δx(tk) = Gx(tk), k = ±1,±2, . . .
(4.84)

is the linear part of (4.83).
Recall [138] the matrix W (t, s) of (4.84) is in the form

W (t, s) = eA(t−s)(E +G)i(s,t), A = diag
[
− 1

R1
,− 1

R2
, . . . ,− 1

Rn

]
.

Then

||W (t, s)|| ≤ e
N max
i=1,2,...,n

ln(1 + |gi|)
e−λ(t−s),

t > s, t, s ∈ R, and the proof follows from Theorem 4.7. ��

4.3.2 Impulsive Neural Networks with Delays

In this part, we shall investigate the existence and attractivity of almost
periodic solutions for impulsive cellular neural networks with delay. The
results obtained are a generalization of the results for the dynamics behavior
of Hopfield neural networks with delay [34, 38].

We shall investigate the system of impulsive Hopfield neural networks with
delay

⎧⎪⎨
⎪⎩
ẋi(t) =

n∑
j=1

aij(t)xj(t) +

n∑
j=1

αij(t)fj(xj(t− h)) + γi(t), t �= tk,

Δx(tk) = Akx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,

(4.85)

where t ∈ R, {tk} ∈ B, aij , αij , fj , γi ∈ C[R,R], i = 1, 2, . . . , n, j =
1, 2, . . . , n, h > 0, x(t) = col(x1(t), x2(t), . . . , xn(t)), Ak ∈ R

n×n, Ik ∈
C[Ω,Rn], pk ∈ R

n, k = ±1,±2, . . ..
Let t0 ∈ R. Introduce the following notations:
PC(t0) is the space of all functions φ : [t0 − h, t0] → Ω having points

of discontinuity at ξ1, ξ2, . . . , ξs ∈ (t0 − h, t0) of the first kind and are left
continuous at these points.

Let φ0 ∈ PC(t0). Denote by x(t) = x(t; t0, φ0) the solution of system
(4.85), satisfying initial conditions:

{
x(t; t0, φ0) = φ0(t), t0 − h ≤ t ≤ t0,

x(t+0 ; t0, φ0) = φ0(t0).
(4.86)
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The solution x(t) = x(t; t0, φ0) of the initial value problem (4.85), (4.86)
is characterized by the following:

(a) For t0 − h ≤ t ≤ t0 the solution x(t) satisfied the initial conditions
(4.86).

(b) For t > t0 the solution x(t; t0, ϕ0) of problem (4.85), (4.86) is a piecewise
continuous function with points of discontinuity of the first kind at the
moments t = tk, k = ±1,±2, . . . at which it is continuous from the left,
i.e., the following relations hold

x(t−k ) = x(tk), x(t
+
k ) = x(tk)+Δx(tk) = x(tk)+Akx(tk)+Ik(x(tk))+pk.

(c) If for some integer j we have tk < tj + h < tk+1, k = ±1,±2, . . ., then
in the interval [tj + h, tk+1] the solution x(t) of problem (4.85), (4.86)
coincides with the solution of the problem

⎧⎪⎨
⎪⎩
ẏi(t) =

n∑
j=1

aij(t)yj(t) +

n∑
j=1

αij(t)fj(xj(t− h+)) + γj(t),

y(tj + h) = x(tj + h),

and if tj +h ≡ tk for j = 0, 1, 2, . . . , k = ±1,±2, . . ., then in the interval
[tj + h, tk+1] the solution x(t) coincides with the solution of the problem

⎧⎪⎨
⎪⎩
ẏi(t) =

n∑
j=1

aij(t)yj(t) +
n∑
j=1

αij(t)fj(xj(t− h+)) + γj(t),

y(tj + h) = x(tj + h) +Akx(tj + h) + Ik(x(tj + h)) + pk.

The proof of the next theorem is similar to the proof of Theorem 4.7.

Theorem 4.9. Let the following conditions hold:

1. Conditions H4.26–H4.32 are met.
2. For the Cauchy matrix W (t, s) of the system (4.85) there exist positive

constants K and λ such that

||W (t, s)|| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.

3. The number

r = K
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

αij +
L2

1− e−λ
}
< 1.
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Then:

1. There exists a unique almost periodic solution x(t) of (4.85).
2. If the following inequalities hold

1 +KL2 < e, λ−N ln(1 +KL2)− L1 max
i=1,2,...,n

n∑
j=1

αije
λh > 0,

then the solution x(t) is exponentially stable.

We note that the main inequalities which are used in Theorem 4.9 are
connected with the properties of matrix W (t, s) for system (4.77). Now we
shall consider a special case in which these properties are accomplished.

Example 4.5. Consider an impulsive generalization of the classical model of
impulsive Hopfield neural networks with delay [70],

⎧⎪⎨
⎪⎩
Ciẋi(t) = − 1

Ri
xi(t) +

n∑
j=1

Tijfj(xj(t− h)) + γi(t), t �= tk,

Δx(tk) = Gx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,

(4.87)

where t ∈ R, {tk} ∈ B, Ci > 0, Ri > 0, Tij ∈ R, fj , γi ∈ C[R,R], h > 0,
i = 1, 2, . . . , n, j = 1, 2, . . . , n, Ik ∈ C[Ω,Rn], G = diag[g1, g2, . . . , gn], gi ∈
R, i = 1, 2, . . . , n, pk ∈ R

n, k = ±1,±2, . . ..

Theorem 4.10. Let the following conditions hold:

1. Conditions H4.28, H4.29, H4.31 and H4.32 are met.
2. The following inequalities hold

λ = min
i=1,2,...,n

1

CiRi
−N max

i=1,2,...,n
ln
(
1 + |gi|

)
> 0,

r = exp
{
N max

i=1,2,...,n
ln(1 + |gi|)

}{
max

i=1,2,...,n
λ−1L1

n∑
j=1

Tij
Ci

+
L2

1− e−λ
}
<1.

Then:

1. There exists a unique almost periodic solution x(t) of (4.87).
2. If

1 + exp
{
N max

i=1,2,...,n
ln
(
1 + |gi|

)}
L2 < e,

λ− exp
(
N max

i=1,2,...,n
ln
(
1 + |gi|

))
L1

n∑
j=1

Tij
Ci
eλh

−N ln
(
1 +

{
N max

i=1,2,...,n
ln
(
1 + |gi|

)}
L2

)
> 0,

then the solution x(t) is exponentially stable.



4.3 Neural Networks 201

Proof. Let the system

{
ẋi(t) = − 1

CiRi
xi(t), t �= tk,

Δx(tk) = Gx(tk), k = ±1,±2, . . . ,
(4.88)

is the linear part of (4.87). Recall [138] the matrix W (t, s) for the linear
system (4.88) is in the form

W (t, s) = eA(t−s)(E +G
)i(s,t)

,

where

A = diag
[
− 1

C1R1
,− 1

C2R2
, . . . ,− 1

CnRn

]
.

Then

||W (t, s)|| ≤ e
N max
i=1,2,...,n

ln
(
1 + |gi|

)
e−λ(t−s), t > s, t, s ∈ R,

and the proof follows from Theorem 4.9. ��

4.3.3 Impulsive Neural Networks of a General Type

We shall investigate the existence of almost periodic solutions of the system
of impulsive cellular neural networks with finite and infinite delays

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi(t) =

n∑
j=1

aij(t)xj(t) +

n∑
j=1

αij(t)fj(xj(t− h))+

+

n∑
j=1

βij(t)fj
(
μj

∫ ∞

0

kij(u)xj(t− u)du
)
+ γi(t), t �= tk,

Δx(tk) = Akx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,

(4.89)

where t∈R, {tk}∈B, aij , αij , fj , βij , γi ∈C[R,R], μj > 0, i=1, 2, . . . , n,
j=1, 2, . . . , n, h> 0, kij ∈ C[R+,R+], x(t) = col(x1(t), x2(t), . . . , xn(t)),
Ak ∈ R

n×n, Ik ∈ C[Ω,Rn], pk ∈ R
n, k = ±1,±2, . . ..

For t0 ∈ R, the initial conditions associated with (4.89) are in the form

{
x(t; t0, φ0) = φ0(t), −∞ < t ≤ t0,

x(t+0 ; t0, φ0) = φ0(t0).
(4.90)

where φ0(t) ∈ PC[(−∞, t0],Rn) is a piecewise continuous function with
points of discontinuity of first kind at the moments tk, k = ±1,±2, . . ..
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Introduce the following conditions:

H4.33. The functions βij(t), i = 1, 2, . . . , n, j = 1, 2, . . . , n are almost
periodic in the sense of Bohr, and

0 < sup
t∈R

|βij(t)| = βij <∞.

H4.34. The functions kij(t) satisfy

∫ ∞

0

kij(s)ds = 1,

∫ ∞

0

skij(s)ds <∞, i, j = 1, 2, . . . , n.

H4.35. The function φ0(t) is almost periodic.

The proof of the next lemma is similar to the proof of Lemma 1.7.

Lemma 4.20. Let the following conditions hold:

1. Conditions of Lemma 4.18 are met.
2. Conditions H4.33–H4.35 are met.

Then for each ε > 0 there exist ε1, 0 < ε1 < ε and relatively dense sets T
of real numbers and Q of integer numbers, such that the following relation
holds:

(a) |βij(t+ τ)− βij(t)| < ε, t ∈ R, τ ∈ T , i, j = 1, 2, . . . , n;
(b) |φ0(t+ τ)− φ0(t)| < ε, t ∈ R, τ ∈ T , |t− tk| > ε, k = ±1,±2, . . ..

The proof of the next theorem follows from Lemma 4.20 to the same way
like Theorem 4.7.

Theorem 4.11. Let the following conditions hold:

1. Conditions H4.26–H4.32 are met.
2. For the Cauchy matrix W (t, s) of the system (4.89) there exist positive

constants K and λ such that

||W (t, s)|| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.

3. The number

r = K
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

(
αij + βijμj

)
+

L2

1− e−λ
}
< 1.

Then:

1. There exists a unique almost periodic solution x(t) of (4.89).
2. If the following inequalities hold
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1 +KL2 < e,

λ−KL1 max
i=1,2,...,n

n∑
j=1

(αij + βijμj)−N ln(1 +KL2) > 0,

then the solution x(t) is exponentially stable.

Example 4.6. Consider the next model of impulsive neural networks

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −ai(t)xi(t) +
n∑
j=1

αijfj(xj(t− h))

+

n∑
j=1

βijfj
(
μj

∫ ∞

0

kij(u)xj(t− u)du
)
+ γi(t), t �= tk,

Δx(tk) = Akx(tk) + Ik(x(tk)) + pk, k = ±1,±2, . . . ,

(4.91)

where t ∈ R, {tk} ∈ B, ai, fj,∈ C[R,R], αij , βij ∈ R, μj ∈ R
+, kij ∈

C[R+,R+], γi ∈ C[R,R], i = 1, 2, . . . , n, j = 1, 2, . . . , n, Ak ∈ R
n×n, Ik ∈

C[Ω,Rn], pk ∈ R
n, k = ±1,±2, . . ..

Theorem 4.12. Let the following conditions hold:

1. Conditions of Lemma 4.16 are met.
2. Conditions H4.28–H4.32 hold
3. The number

r = K
{

max
i=1,2,...,n

λ−1L1

n∑
j=1

(
αij + βijμj

)
+

L2

1− e−λ
}
< 1.

Then:

1. There exists a unique almost periodic solution x(t) of (4.91).
2. If the following inequalities hold

1 +KL2 < e, λ−KL1

n∑
j=1

(
αij + βijμj

)−N ln
(
1 +KL2

)
> 0,

then the solution x(t) is exponentially stable.
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118
(h0, h)–uniformly attractive, 118
(h0, h)–uniformly stable, 118
Hull, 31
Hyperplanes, 3
Hypersurfaces, 3–5, 77

I
Impulsive delay logarithmic population

model, 151, 163
Impulsive differential equations, xiii, 1, 2,

33, 97, 108
forced Perturbed, 47
hyperbolic, 33, 34
weakly nonlinear, 41, 113
(h0, h)–stable, 116

with time delays, 97, 126
Impulsive differential inequalities, 12
Impulsive function differential equations,

97, 135
Impulsive Hopfield neural networks, 190,

197, 198
Impulsive integro-differential equations, 40,

97, 119
Impulsive Lasota–Wazewska model, 151
Impulsive model of hematopoiesis, 151, 158
Infinitesimal operator, 88, 89
Initial condition, 3, 6
Initial value problem, 3, 4, 6, 8
Integral curve, 2, 4, 5
Integro-almost periodic, 120
Integro-summary equation, 8

J
Jump operator, 2

L
Lienard’s type equation, 53
Limit sequence, 17
Limiting systems, 31, 167
Linear system, 9, 40
Logarithmic Population Model, 163
Lotka–Volterra models, xvi

impulsive, 151, 166
with delays, 181

with dispersion, 175
Lyapunov functions, 10, 151

almost periodic, 25, 97, 99
continuous, 25
piecewise continuous, 1, 10, 11, 33

Lyapunov method, 10, 97

M
Masera’s type theorem, 99
Merging, 4
Moments of impulse effect, 2–4

fixed, 3, 7, 33, 47
variable impulsive perturbations, 4

Monotone increasing, 12
Δ–m set, 67

N
Neural networks, xvi, 190

impulsive, 190, 198, 201
Non-decreasing, 13
Non-singular transformation, 35

O
Ordinary differential equations, 8

P
Parasitoid-host, xiii
Perturbations in the linear part, 57
Population dynamics, 166
Positive define matrix function, 143
Predator-prey, xiii
Predator-prey system, xiv, xv, 94

R
Relatively dense set, 16, 19, 67
Response function, xiv

prey-dependent, xv
ratio-dependent, xv

(r0, r)-uniformly bounded, 118

S
Second method of Lyapunov, 10
Separated constant, 79
Separation, 25
Solution(s), 2, 5–7

almost periodic, 33, 97, 151
unique, 37, 39, 44, 46, 50, 61, 85, 96,

109, 119, 155, 161, 194
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maximal, 12, 13
minimal, 12
separated, 76, 79

Stable, 15, 168
Strictly positive solution, 168

almost periodic, 171
Strongly stable, 65, 66, 69

U
u-strongly stable, 70
Uncertain impulsive dynamical equations,

97, 142
Uniformly almost periodic

set of sequences, 23, 24
Uniformly asymptotically stable, 15, 16,

109, 120, 128
Uniformly attractive, 15, 16, 120, 128
Uniformly positive define matrix function,

144
Uniformly robustly asymptotically stable,

143, 145, 148
Uniformly robustly attractive, 143
Uniformly robustly stable, 143
Uniformly stable, 15, 16, 120, 127

to the left, 68, 69
to the right, 68, 69

Uniqueness, 1, 5, 33, 97
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