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To my mathematical family





Tous les géomètres et physiciens semblent aujourd’hui d’accord que le domaine
d’application des mathématiques n’a d’autres limites que les limites de nos connais-
sances mêmes. Il serait pourtant bien téméraire d’affirmer que nous nous trouvons
déjà en possession des symboles les mieux appropriés pour interpréter simplement
les phénomènes de la nature. I1 est au contraire beaucoup plus probable que bien
des théories mathématiques aujourd’hui en estime ne seront admirés plus tard que
comme des chefs d’oeuvre historiques, et d’autres théories aussi belles et aussi
parfaites, mais d’une application plus large viendront les remplacer.

Serge Bernstein, 1904 ([63])
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Preface

Investigation of elliptic partial differential equations began more than two centuries
ago with the mathematical theories of gravimetry, fluid dynamics, electrostatics
and heat conduction due to works by Euler, Laplace, Lagrange, Poisson, Fourier,
Green and Gauss. In the second half of the XIXth century, Schwarz, Neumann,
Harnack, Poincaré and Picard developed efficient methods to study existence of
solutions of boundary value problems for linear and nonlinear equations. The basis
of the spectral theory was established by Schwarz, Poincaré, Steklov and Zaremba.
Elliptic equations had important development in the XXth century. Its beginning
can be related to the mathematical congress in Paris in 1900 where Hilbert had
posed 23 problems, including the 18th and 19th devoted to elliptic boundary value
problems. They stimulated works by Bernstein followed by Caccioppoli, Schauder,
Leray and other authors who established the foundations of modern analysis.
The method of Fredholm integral equations was developed in 1900–1903. It had
important applications to elliptic partial differential equations.

Today’s understanding of elliptic partial differential equations begins with a
priori estimates of solutions of linear problems. They provide normal solvability,
the Fredholm property and solvability conditions. Important achievements were
related to index theories. The structure of the spectrum of linear elliptic problems
provides their sectorial property. It allows introduction of analytic semi-groups
and investigation of parabolic problems. The properties of linear operators play
an important role for investigation of nonlinear problems. In particular, for con-
struction of the topological degree, which is a powerful tool to study existence
and bifurcations of solutions. Many of these methods and results are related to
the Fredholm property of elliptic operators. Little can be done in elliptic partial
differential equations without it. This determines the presentation of the material
of the book around this fundamental property of elliptic problems.

Under the influence of numerous applications, the theory of elliptic partial
differential equations continues to attract much attention. During the last several
decades, travelling wave solutions of parabolic systems have been intensively stud-
ied in relation with combustion problems, population dynamics and many other
applications. Travelling waves are solutions of elliptic problems in unbounded do-
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mains. These studies intensified the development of the theory of elliptic operators
in unbounded domains.

It should be noted that the classical theory of elliptic problems has been
developed in the case of bounded domains with a sufficiently smooth boundary. In
this case, their Fredholm property is provided by the ellipticity condition, proper
ellipticity and the Lopatinskii condition. In the case of unbounded domains, these
conditions are no longer sufficient and the Fredholm property may not be satisfied.
This is related to a lack of compactness. In order to satisfy the Fredholm property,
we need to impose an additional condition, which can be formulated in terms of
limiting problems. They characterize the behavior of the operator at infinity and
determine the location of the essential spectrum.

In this book, we present a systematic investigation of general elliptic problems
applicable both for bounded and unbounded domains. We pay more attention
to the case of unbounded domains which is not yet sufficiently well presented
in the existing literature. We introduce and use in essential ways some special
function spaces well adapted for problems in unbounded domains. They generalize
Sobolev spaces by specifying the behavior of functions at infinity. Another point
we emphasize is related to limiting domains. This notion is necessary to define
limiting operators. Moreover, there are two types of limiting domains. One of them
determines the Fredholm property, another one some properties of the index. The
proof of the Fredholm property is based on the properties of function spaces, on
limiting domains and operators and on some special a priori estimates.

If the operator satisfies the Fredholm property, then its index is well defined.
Computation of the index is well known in the case of bounded domains. It is also
possible for some classes of operators in unbounded domains. We will develop a new
method based on approximation of unbounded domains by a sequence of bounded
domains. Under some conditions formulated in terms of limiting operators, the
index in the sequence of bounded domains stabilizes to the index in the unbounded
domain.

Elliptic operators with a parameter is an important class of operators essen-
tially used in the theory of elliptic and parabolic problems. They are related to
sectorial operators and to analytic semi-groups. We will extend the theory of ellip-
tic operators with a parameter to general elliptic problems in unbounded domains.

If limiting problems have nonzero solutions, then the operator does not satisfy
the Fredholm property, and the usual solvability conditions are not applicable.
We introduce a class of operators, weakly non-Fredholm operators, for which it
appears to be possible to formulate solvability conditions. In some cases, these
conditions are similar to the usual ones and consist in orthogonality to solutions
of the homogeneous adjoint problem. In some other cases, the solvability conditions
are different.

Methods of nonlinear analysis, such as asymptotic methods, bifurcation the-
ory or topological degree are based on the solvability conditions. We will define
the topological degree for Fredholm and proper operators with the zero index and
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will discuss some of its applications including the Leray-Schauder method and
bifurcations of solutions.

The book is organized as follows. In the first chapter we present a brief
introduction to the classical theory of elliptic problems and to the theory of el-
liptic problems in unbounded domains. Chapters 2–8 are devoted to the theory
of general linear elliptic problems (a priori estimates, normal solvability and the
Fredholm property, operators with a parameter, index). In many cases we present
it directly for unbounded domains, keeping in mind that it remains valid and
even simpler for bounded domains. In the next chapter we deal with second-
order operators in cylinders where some additional, more explicit methods can be
used. Non-Fredholm operators are discussed in Chapter 10. The theory of linear
operators will be used in Chapter 11 devoted to nonlinear Fredholm operators.
Infinite-dimensional discrete operators are discussed in the supplement. Historical
and bibliographical comments presented at the end of this monograph can help
to acquire a general view of the theory of elliptic equations, its evolution and
perspectives.

The presentation of the results is mostly self-contained. We should note that
some proofs are rather technical. However, the formulations of the results and
their application are quite clear. The results of the first volume will be used in the
second volume to study reaction-diffusion problems.

Most of the results of this book devoted to linear and nonlinear elliptic prob-
lems in unbounded domains were obtained in our works with Aizik Volpert. We
began to write this book together. It concludes many years of our collaboration.





Introduction

1 Elliptic problems in applications

We briefly present here some physical, chemical and biological problems described
by elliptic partial differential equation. This list of applications is necessarily in-
complete and the choice of them is determined by the purposes of presentation.
We return to some of these problems below in this and in the second volume. Some
other important applications, such as for example elasticity problems, remain out
of the scope of this short introduction. We will use some classical examples in or-
der to show the physical importance of elliptic boundary value problems, including
the questions of existence of solutions, spectral properties and bifurcations.

1.1 Heat and mass transfer

Consider a stationary heat distribution in a homogeneous isotropic medium. Ac-
cording to the Fourier law, the heat flux q is proportional to the temperature
gradient, q = −κ∇T . If V is a domain in R3 with the surface S, then the heat
flux through this surface, in the absence of heat sources or sinks, equals zero:

κ

∫
S

∂T

∂n
ds = 0.

Here T (x) is the temperature at the point x, κ is the coefficient of heat conduction,
∂T
∂n is the normal derivative at the surface S, n is the outer normal vector. From
Green’s formula ∫

V

(T∆w − w∆T )dv =
∫
S

(
T
∂w

∂n
− w

∂T

∂n

)
ds,

where we put w = 1, follows ∫
V

∆T dv = 0. (1.1)

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic 1
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_1, © Springer Basel AG 2011 

Chapter 1



2 Chapter 1. Introduction

Here

∆T =
3∑
i=1

∂2T

∂x2
i

is the Laplace operator. Since the volume V in (1.1) is arbitrary, then we obtain
the equality

∆T = 0 (1.2)

called the Laplace equation. If there are heat sources in the medium, then the
stationary heat distribution can be described by the Poisson equation

∆T = f. (1.3)

In order to find temperature distribution in a domain Ω, we need to complete
equations (1.2) or (1.3) by some boundary conditions at the boundary ∂Ω. Most
often considered are Dirichlet (a), Neumann (b) and third order (also called Robin
or mixed) (c) boundary conditions:

(a) T (x) = φ(x), (b)
∂T

∂n
= φ(x), (c)

∂T

∂n
+ β(x)T = φ(x), x ∈ ∂Ω. (1.4)

Here φ(x) and β(x) are some given functions.
Similar boundary value problems can be considered for mass diffusion. In

the case of chemically reacting media, we should take into account heat and mass
production (consumption):

κ∆T +
n∑
i=1

qiWi(A, T ) = 0,

dj∆Aj +
n∑
i=1

γijWi(A, T ) = 0, j = 1, . . . ,m,

where A1, . . . , Am are the concentrations of reacting species, A = (A1, . . . , Am),
Wi, i = 1, . . . , n are the reaction rates which represent given functions of A and T ,
dj are the diffusion coefficients and γij the stoichiometric coefficients. Problems of
this type arise in combustion and in chemical kinetics.

If the mass transport coefficients are not constant, then the Laplace operator
in the first equation above should be replaced by

− div q = div (κ ∇ T ) =
3∑
i=1

∂

∂xi

(
κ
∂T

∂xi

)
,

and similarly for the second equation. If heat and mass transfer takes place in a
moving reacting medium, then instead of the previous equations we consider the
equations

κ∆T − u.∇T +
n∑
i=1

qiWi(A, T ) = 0,
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dj∆Aj − u.∇Aj +
n∑
i=1

γijWi(A, T ) = 0, j = 1, . . . ,m,

where u = (u1, u2, u3) is the velocity vector, and

u.∇T =
3∑
i=1

ui
∂T

∂xi
, u.∇Aj =

3∑
i=1

ui
∂Aj
∂xi

are the convective terms. The velocity of the medium can be a given function of
space and time or should be found as a solution of equations of motion.

More precise description of heat and mass transfer should take into account
complex multi-component diffusion where the matrix of transport coefficients is
not diagonal. In the case of a binary mixture the heat and diffusion fluxes are,
respectively:

q = −κ∇T − k2∇C +Hj, j = −d (∇C + k1∇T ) ,

where the coefficients k1 and k2 depend on T and C, H is related to the enthalpy
[182]. Stationary temperature and concentration distributions are described by the
system of two equations:

div q = 0, div j = 0.

Heat explosion. One of the most well-known problems in combustion theory is the
problem of heat explosion [591]. Under certain simplifications, it is described by
the elliptic problem

κ∆T +K(T ) = 0, T |∂Ω = T0. (1.5)

Here T is the temperature, K(T ) heat production due to an exothermic chemical
reaction, κ the coefficient of thermal conductivity, Ω is a bounded domain in Rn.
Since the function K(T ) is positive, a solution of problem (1.5) may not exist.
In this case, the solution of the corresponding parabolic initial boundary value
problem becomes unbounded (blow-up solution). This unbounded temperature
increase is interpreted as heat explosion. Solutions of problem (1.5) may not be
unique. Their uniqueness and stability determine the behavior of solutions of the
evolution problem.

Thus, conditions of heat explosion are related to the existence, stability and
bifurcations of solutions of the elliptic problem. There exists an extensive physical
and mathematical literature devoted to this question.

Flame propagation. Another classical problem of combustion theory concerns
propagation of flames. In the simplest case, stationary flame propagation is de-
scribed by the elliptic system of equations

κ∆T + c
∂T

∂x1
+ qW (T, α) = 0, (1.6)
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d∆α+ c
∂α

∂x1
+W (T, α) = 0 (1.7)

considered in unbounded cylinders. Here α is the depth of conversion, W the
reaction rate, q the adiabatic heat release, c the speed of the flame. This is an
unknown parameter which should be found as a solution of the problem. Existence,
uniqueness or non-uniqueness, speed of propagation, stability and bifurcations of
combustion waves are among the major topics in combustion theory.

1.2 Electrostatic and gravitational fields

For a constant electrostatic field, Maxwell equations have the form

div E = 4πρ, rot E = 0, (1.8)

where E is the electric field and ρ the density of the charge. The electric field can
be expressed through the potential φ, E = −∇φ. Substituting this expression into
the first equation in (1.8), we obtain the Poisson equation:

∆φ = −4πρ. (1.9)

In the case of a point charge e located at the origin, that is ρ = eδ(x), in R3,
φ(x) = e/R, where R =

√
x2

1 + x2
2 + x2

3. In the case of two space dimensions, up
to a constant factor φ(x) = ln(1/R).

Gravitational potential ψ(x) of a point mass m located at the space point
ξ equals −κm/r, where κ is a constant and r = |x − ξ|. The difference in sign
with respect to the electric potential reflects the fact that the gravitational force
is attracting while electric charges of the same sign are repulsing. If the mass is
distributed with the density ρ in some domain V , then up to a constant factor the
corresponding potential is given by the expression

UN (x) =
∫
V

ρ(ξ)
r

dξ.

It is similar for the electric potential. It is called the Newton potential. Under
certain conditions on the function ρ, for example if it is bounded and continuous
together with its first derivatives and decays at infinity at least as 1/|ξ|2, then
the Newton potential has continuous first and second derivatives. It satisfies the
Poisson equation, ∆UN = −4πρ.

Consider a surface S with the density charge ρs(ξ), ξ ∈ S. The potential of
this field equals up to a constant factor

US(x) =
∫
S

ρs(ξ)
r

dξ,

where r = |x − ξ|. This is the simple layer potential. If there is a layer of dipoles
at the surface S with the axis in the direction of outer normal vectors and with
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the density ρd(ξ), then the potential is given by the integral

UD(x) =
∫
S

ρd(ξ)
∂

∂n

(
1
r

)
dξ.

This is the double layer potential.
The theory of potential is applied in numerous problems of electrostatics and

gravimetry. On the other hand, it plays an important role in the theory of elliptic
problems.

1.3 Hydrodynamics

Many problems in hydrodynamics are described by parabolic and, in the station-
ary case, by elliptic problems. Among commonly used models are Navier-Stokes
equations and Darcy’s law in the case of a porous medium.

Viscous incompressible fluid. Motion of a viscous incompressible fluid is described
by the Navier-Stokes equations:

∂v

∂t
+ v.∇v = −1

ρ
∇p+ ν∆v. (1.10)

Here v = (v1, v2, v3) is the velocity vector, p is the pressure, ρ and ν are the density
and kinematic viscosity supposed to be constant, v.∇v denotes the scalar product
of the two vectors. The incompressibility condition implies that

∇.v ≡
3∑
i=1

∂vi
∂xi

= 0. (1.11)

In the stationary case, problem (1.10), (1.11) is elliptic. It should be completed
by boundary conditions. In the case of the no-slip boundary condition the fluid
velocity at the boundary equals the velocity of the boundary itself. Another often
used boundary condition is the free surface boundary condition.

Navier-Stokes equations admit some explicit solutions. In the two-dimension-
al strip 0 ≤ x2 ≤ 1 with the no-slip boundary condition, the horizontal component
of the velocity v1 depends only on x2, v1(x) = ax2(1−x2), the vertical component
of the velocity v2 equals zero. This is the Poiseuille profile. Flow in diffusor is
another example of explicit solutions (see, e.g., [289]). In some other cases, as for
example fluid motion over a rotating disc (Kármán problem) or some boundary
layer problems, the Navier-Stokes equations can be reduced to ordinary differential
equations.

Stream function. In the two-dimensional case it is often convenient to introduce
the stream function ψ related to the fluid velocity v = (vx, vy) as follows:

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
.
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The space variables are denoted here by x and y. In the stationary case the Navier-
Stokes equations can be reduced to the fourth-order equation

ν∆∆ψ − v.∇∆ψ = 0.

In the case of the free surface boundary condition for the velocity, the boundary
conditions for the stream function become ψ = 0 and ∆ψ = 0.

Natural convection. A nonuniform temperature or density distribution under the
gravity field can result in fluid motion. It can be described by the Navier-Stokes
equations under the Boussinesq approximation

∂v

∂t
+ v.∇v = −1

ρ
∇p+ ν∆v + gβγ(T − T0), (1.12)

∂T

∂t
+ v.∇T = κ∆T, (1.13)

∇.v = 0, (1.14)

where the density of the fluid is considered to be constant everywhere except
for the buoyancy term, the last term in the right-hand side of the first equation
describing the action of gravity. Here g is the gravity acceleration, β the coefficient
of thermal expansion, γ the unit vector in the vertical direction, T0 a reference
temperature.

Among many problems related to natural convection, let us mention the
Rayleigh-Benard problem about convection in a horizontal layer of a liquid heated
from below. In the layer 0 ≤ y ≤ 1 with the Dirichlet boundary condition for the
temperature and the free surface boundary condition for the velocity,

y = 0 : T = T0,
∂vx
∂y

= 0, vy = 0; y = 1 : T = T1,
∂vx
∂y

= 0, vy = 0,

problem (1.12)–(1.14) has a stationary solution T (y) = T0 + (T1 − T0)y, v =
0. Linearization about this solution gives an eigenvalue problem which admits
an analytical solution. If the eigenvalue with the maximal real part crosses the
origin, then the stationary solution loses its stability resulting in appearance of a
convective motion (see, e.g., [107], [195]).

Binary fluids. Nonuniform concentration distribution in binary fluids can create
additional volume forces in the equations of motion:

∂v

∂t
+ v.∇v = −1

ρ
∇p+ ν∆v +

K

ρ
∇c∆c. (1.15)

The last term in the right-hand side of this equation is called Korteweg stress
[266]. Equation (1.15) should be completed by the equation for the concentration.
It can be the Cahn-Hilliard

∂c

∂t
+ v.∇c = M∆µ (1.16)
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or diffusion equation. Here µ is the chemical potential µ = df0
dc − λ∆c, f0 the free

energy density,

df0
dc

= −K1 +K2c+ n0kbT (ln c− ln(1 − c)),

T the temperature, λ,K1,K2, n0, kb some thermodynamical parameters. This
model describes various capillary phenomena in miscible and immiscible liquids
and phase separation.

Porous medium. Fluid motion in a porous medium can be described by Darcy’s
law

v = −K
µ

∇p,

where v is the velocity vector, p the pressure, K permeability and µ viscosity. If
the fluid is incompressible, that is ∇.v = 0, then the pressure satisfies the Laplace
equation

∆p = 0.

In the case of the presence of sources or sinks, this equation becomes inhomo-
geneous. Let us consider as an example spreading of the fluid in the Hele-Shaw
cell from a point source (Stokes-Leibenzon problem, see [223] and the references
therein). We obtain the free boundary problem for the equation

∆p = δ(x), x ∈ Ω, p = 0, x ∈ ∂Ω,

where δ(x) is the Dirac δ-function, the domain Ω changes in time according to the
equation vn = −∇p. Here vn denotes the speed of the boundary in the direction
of the outer normal vector.

1.4 Biological applications

Mathematical models in biology are often described by reaction-diffusion systems
and by equations of fluid and solid mechanics. On the other hand, complexity of
biological phenomena requires the development of new approaches. Among them
hybrid and multi-scale models.

Population dynamics. Many problems in population dynamics are described by
reaction-diffusion equations and systems. The scalar reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ F (u) (1.17)

was first introduced in population dynamics by Fisher [172] and Kolmogorov,
Petrovskii, Piskunov [263] as a model of propagation of a dominant gene. The
variable u is the density of a population, the nonlinearity F (u) gives the rate
of its reproduction. In the case of the logistic equation, F (u) = ku(1 − u), the
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reproduction is proportional to the density of the population u and to available
resources (1 − u).

If we consider this equation on the whole axis, x ∈ R, then there exist trav-
elling wave solutions, the solutions of the form u(x, t) = w(x − ct). Here c is the
wave speed, the function w(x) satisfies the equation

w′′ + cw′ + F (w) = 0.

Travelling wave solutions of parabolic systems arise in many applications includ-
ing population dynamics and combustion. They have stimulated the development
of the theory of elliptic problems in unbounded domains. From the mathemati-
cal point of view, elliptic problems in unbounded domains possess some specific
features related to the essential spectrum. We will discuss them in Section 3. An-
other particularity of travelling waves is related to the fact that c is an unknown
parameter.

Among many reaction-diffusion systems in population dynamics we can men-
tion competition of species and prey-predator models. More recent development
is related to nonlocal reaction-diffusion equations. The model with nonlocal con-
sumption of resources

∂u

∂t
=
∂2u

∂x2
+ ku

(
1 −

∫ ∞

∞
φ(x− y)u(u, t)dy

)

describes reproduction with the same phenotype, random mutations and intra-
specific competition. These three conditions determine the process of speciation
including the emergence of biological species [194], [560].

Biological pattern formations. One of the most interesting and intriguing ques-
tions of mathematical biology is related to biological pattern formation. Consider
the following idealized biological situation. At the first stage of the development of
an embryo, all its cells are identical. After some time, they differentiate and lead
to appearance of various organs. What is the mechanism of the transition from
identical cells to differentiated? A possible explanation was suggested by Turing
[522]. Consider a reaction-diffusion system

∂u

∂t
= d∆u + F (u) (1.18)

in a bounded domain Ω with no-flux boundary conditions

∂u

∂n
= 0, x ∈ ∂Ω. (1.19)

Here u and F are vectors, d is a square matrix, n the outer normal vector. Suppose
next that F (u0) = 0 for some constant vector u0 and that this is a stable stationary
point of the ordinary differential system of equations

du

dt
= F (u), (1.20)
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that is the matrix F ′(u0) has all eigenvalues in the left half-plane. At the same
time, u0 can be unstable as a stationary solution of problem (1.18), (1.19). This
instability takes place if the eigenvalue problem

d∆v + F ′(u0)v = λv,
∂v

∂n
|∂Ω = 0

has some eigenvalues in the right half-plane. In this case, a nonhomogeneous in
space stationary solution can appear. These are so-called Turing (or dissipative)
structures. It appears that the instability conditions depend on the size of the
domain. When it is sufficiently small, the solution u0 remains stable. When the
domain becomes large enough, it loses its stability resulting in appearance of
spatially distributed stationary solutions.

From the biological point of view, the components of the vector u are concen-
trations of some bio-chemical substances, morphogenes. When the embryo is small,
their distribution is uniform in space and all cells are identical. When the embryo
becomes sufficiently large, the distribution of morphogenes becomes nonuniform
due to the instability described above. This leads to a spatially nonhomogeneous
gene expression and, as a consequence, to cell differentiation.

Thus, in the framework of this approach, biological pattern formation is
related to the existence, stability and bifurcations of solutions of elliptic problems.
Other biological mechanisms of morphogenesis are also discussed in the literature
[345], [363], [394].

Multi-scale modelling. Modern approaches to modelling of living organisms re-
quire simultaneous description of physical and bio-chemical phenomena at differ-
ent levels [22, 23]. They include intra-cellular regulatory networks, cell populations
(tissue), extra-cellular matrix, organs or the whole organism.

Cell populations can be considered as a continuous medium and described
by partial differential equations of continuum mechanics. Another approach is
to consider cells as individual objects. In the simplest case, they are viewed as
mathematical points with a pairwise force between them which depends on the
distance between the two points (soft sphere model). Their motion is described by
Newton’s second law. If we consider a system of N particles and take into account
energy dissipation, then we obtain the system of second-order ordinary differential
equations which represents a particular case of elliptic systems:

mẍi − Fi(x, ẋ, c) = 0, i = 1, . . . , N. (1.21)

Here xi is the coordinate of the ith particle, ẋi is its speed, ẍi acceleration, m
is the mass of the particles, x = (x1, . . . , xN ), Fi is the sum of forces acting on
the ith particle, c = (c1, . . . , cm) are the concentrations of bio-chemical substances
in the extra-cellular matrix. The dependance of the force on these concentrations
takes into account a possible chemotactic motion.
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The concentrations in the extra-cellular matrix can be described by the dif-
fusion equation

∂c

∂t
= d∆c+W (c, n), (1.22)

where the rate of their production or consumption W depends on the local cell
concentrations n = (n1, . . . , nk). Here the subscript corresponds to different cell
types. We do not take into account convective terms in equation (1.22) which can
appear because of cell motion.

Intra-cellular regulatory networks can be described by ordinary differential
systems of equations:

ds(i)

dt
= Φ(s(i), c), i = 1, . . . , N, (1.23)

where s(i) is the vector of intra-cellular concentrations for the ith cell. The rate Φ
of their production depends on the local concentrations c(x, t) in the extra-cellular
matrix. Cell division, differentiation, death, adhesion to other cells depend on the
intra-cellular concentrations. In particular, cell division leads to the evolution of
cell population where cells interact chemically and mechanically. These mechanical
forces influence cell motion.

System (1.21)–(1.23) is a multi-scale model of cell dynamics. It represents a
parabolic or elliptic system coupled with ordinary differential equations. Depend-
ing on specific applications, it can be completed by various regulatory mechanisms.
For example, production of red blood cells in the bone marrow is regulated by the
hormone erythropoietin produced by the kidney and liver. In response to hypoxia
(lack of oxygen) it decreases cell apoptosis in the bone marrow and, as a conse-
quence, increases the quantity of erythrocytes in blood and reinforces the transport
of oxygen.

2 Classical theory of linear elliptic problems

2.1 Function spaces

In this section we briefly recall the main definitions and some properties of function
spaces used in this book. More detailed presentation can be found elsewhere [1],
[277], [285], [318]. Sobolev space W l,p(Rn), where 1 < p < ∞ and l is an integer,
consists of all functions which belong to Lp(Rn) together with their derivative up
to the order l. The derivatives are understood in the sense of generalized functions.
The norm in this space is given by the equality

‖u‖W l,p(Rn) =


∑

|j|≤l
‖u(j)‖pLp(Rn)




1/p

.
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In order to define Sobolev-Slobodetskii spaces (l is not integer), consider first
the case 0 < l < 1. The space W l,p(Rn) consists of all functions from Lp(Rn) for
which the integral

I(u) =
∫

Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+pl

dxdy

is bounded. The norm is given by the equality

‖u‖W l,p(Rn) =
(
‖u‖pLp(Rn) + I(u)

)1/p

.

If l > 1, then we put l = [l] + λ, 0 ≤ λ < 1. The space W l,p(Rn) consists of all
functions for which all derivatives of the order [l] belong to the space Wλ,p(Rn),

‖u‖W l,p(Rn) =


‖u‖p

W [l],p(Rn)
+

∑
|j|=[l]

‖u(j)‖p
Wλ,p(Rn)




1/p

.

Finally, if l < 0, then

W l,p(Rn) =
(
W−l,p′(Rn)

)∗
,

where 1/p+ 1/p′ = 1 and ∗ denotes the dual space.

The space of Bessel potentials H l,p(Rn) (−∞ < l <∞, p > 1) consists of all
generalized functions u from S′(Rn) for which

F−1
(
(1 + |ξ|2)l/2F (u)

)
∈ Lp(Rn).

Here F denotes the Fourier transform. The norm is given by

‖u‖Hl,p(Rn) = ||F−1
(
(1 + |ξ|2)l/2F (u)

)
||Lp(Rn).

For l = 0 the space of Bessel potential coincides with Lp, H0,p(Rn) = Lp(Rn).
The space H−l,p(Rn) can be identified with the dual space to the space H l,p′(Rn).

Besov spaces Bl,p(Rn) coincide with W l,p(Rn) for noninteger positive l. For
integer l ≥ 1 and p > 1 it consists of functions u ∈ W l−1,p(Rn) for which the
integrals

Ij(u) =
∫

Rn

∫
Rn

|u(j)(x) − 2u(j)((x + y)/2) + u(j)(y)|p
|x− y|n+p

dxdy, |j| = l

are finite. The norm in this space is defined as follows:

‖u‖Bl,p(Rn) =


‖u‖p

W l−1,p(Rn)
+

∑
|j|=l

Ij(u)




1/p

.

For l < 0, by definition Bl,p(Rn) =
(
B−l,p′(Rn)

)∗
.
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The spaces W l,p(Rn), H l,p(Rn), Bl,p(Rn) are reflexive. The space D(Rn) of
infinitely differentiable functions with bounded supports is dense in each of these
spaces. For p = 2 all three spaces coincide for any positive l. For integer l,W l,p(Rn)
andH l,p(Rn) coincide, for noninteger l and p �= 2 they are different. For noninteger
l, W l,p(Rn) = Bl,p(Rn), for integer l and p �= 2 they are different.

We next define these spaces in domains Ω ⊂ Rn. Let its boundary Γ be an
oriented infinitely differentiable manifold of the dimension n − 1. The domain Ω
is located from one side of Γ (locally). The space W l,p(Ω) consists of all functions
u(x) defined in Ω and such that they can be extended to some functions ũ(x)
defined in Rn and ũ(x) ∈ W l,p(Rn). The norm in the space W l,p(Ω) is defined as
infimum with respect to all possible extensions,

‖u‖W l,p(Ω) = inf ‖ũ‖W l,p(Rn).

The spaces H l,p(Ω) and Bl,p(Ω) are defined similarly. The spaces W l,p(Ω) and
Bl,p(Ω) can also be defined as in the case Rn with the integrals taken over Ω.
The assumption that the boundary of the domain is infinitely differentiable is not
necessary and weaker assumptions will be used.

For any function u from W l,p(Ω) (H l,p(Ω)), Bl,p(Ω)), l > 1/p its trace at the
boundary Γ is defined and belongs to the space Bl−1/p,p(Γ). On the other hand,
for any φ ∈ Bl−1/p,p(Γ), there exists its continuation u from W l,p(Ω) (H l,p(Ω))
such that

‖u‖W l,p(Ω)(Hl,p(Ω),Bl,p(Ω)) ≤ C‖φ‖Bl−1/p,p(Γ),

where the constant C does not depend on φ.

A function u(x) satisfies the Hölder condition with the exponent α ∈ (0, 1)
if the quantity

〈u〉αΩ = sup
x,y∈Ω,x �=y

|u(x) − u(y)|
|x− y|α

is bounded. The Hölder space C(α)(Ω̄) consists of all functions continuous in Ω
and such that 〈u〉αΩ is bounded. The norm in this space is given by the equality

‖u‖C(α)(Ω̄) = sup
Ω

|u(x)| + 〈u〉αΩ.

The space C(k+α)(Ω̄) consists of all functions continuous in Ω together with their
derivatives up to the order k and such that the derivatives of the order k satisfy
the Hölder condition with the exponent α. The norm in this space is given by the
equality

‖u‖C(k+α)(Ω̄) =
k∑

|j|=0

sup
Ω

|Dju(x)| +
∑
|j|=k

〈Dju〉αΩ.



2. Classical theory of linear elliptic problems 13

2.2 Elliptic problems

2.2.1. Main definitions. We present here the main definitions and some properties
of elliptic problems (see, e.g., [7], [11], [318], [542]).

Scalar operators. Consider the linear differential operator

Au =
∑
|α|≤r

aα(x)Dαu, (2.1)

with complex coefficients aα(x), where α = (α1, . . . , αn) is the multi-index, Dα =
Dα1

1 . . . Dαn
n , Di denotes the partial derivative with respect to xi, x ∈ Ω ⊂ Rn.

The smoothness of the coefficients and of the boundary ∂Ω will be specified below.
Let

A0(x, ξ) =
∑
|α|=r

aα(x)ξα,

where ξ ∈ R
n. The operator A is called elliptic in Ω̄ if

A0(x, ξ) �= 0, ∀x ∈ Ω̄, ξ ∈ R
n, ξ �= 0.

The integer r is the order of the operator. It is known that for n > 2 every
elliptic operator has an even order. This assertion remains valid for n = 2 if the
coefficients of the operator are real. If they are complex, then it is not true. The
Cauchy-Riemann operator is a first-order elliptic operator in R2.

The operator A is called properly elliptic if it is elliptic and the equation

A0(x, ξ + τη) = 0

with respect to the complex number τ has the same number m = r/2 of solutions
with positive and negative imaginary parts for any ξ, η ∈ Rn, x ∈ ∂Ω. For n > 2,
proper ellipticity follows from ellipticity. If n = 2 and the boundary is connected,
then the condition of proper ellipticity is satisfied everywhere if it is satisfied at
one point of the boundary.

Consider next the boundary operators

Bju =
∑

|β|≤rj

bβj (x)D
βu, j = 1, . . . ,m. (2.2)

We assume that the order r of the operator A is even. The number m of the
boundary operators equals r/2. In order to introduce the Lopatinskii (or Shapiro-
Lopatinskii) condition, let us consider a point x ∈ ∂Ω and local coordinates (x′, xn)
where x′ are the coordinates in the tangent plane. Consider the boundary problem
on the half-line:

Ã0(x′, 0, ξ′, Dn)v(t) = 0, (2.3)

B̃j,0(x′, 0, ξ′, Dn)v(t)|t=0 = hj , j = 1, . . . ,m, (2.4)
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where (x′, 0) is the point at the boundary, Dn is the derivative with respect to
the variable xn = t, the functions Ã0 and B̃j,0 are obtained from (2.1), (2.2) by
freezing the coefficients, omitting the lower-order terms and applying the formal
Fourier transform with respect to the variables x′. For any ξ′ �= 0 and any complex
numbers hj , problem (2.3), (2.4) is supposed to have a unique bounded solution.
There exist equivalent formulations of the Lopatinskii condition (see [7], [11], [318],
[579] and the next subsection).

The boundary value problem

Au = f, x ∈ Ω, Bj = gj, j = 1, . . . ,m, x ∈ ∂Ω (2.5)

is called elliptic if the operator A is elliptic, properly elliptic and the Lopatinskii
condition is satisfied.

General elliptic problems. Consider the differential operators

Aiu =
N∑
k=1

∑
|α|≤αik

aαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω (2.6)

in a domain Ω ⊂ R
n and at its boundary ∂Ω:

Bju =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
βuk, j = 1, . . . ,m, x ∈ ∂Ω. (2.7)

Here u = (u1, . . . , uN), α = (α1, . . . , αn), Dα = Dα1
1 . . . Dαn

n , Dk = ∂/∂xk,
|α| = |α1| + · · · + |αn|, Dβ and |β| are defined similarly. These operators can also
be written in the matrix form

A =


 A11 . . . A1N

. . .
AN1 . . . ANN


 , B =


 B11 . . . B1N

. . .
Bm1 . . . BmN


 ,

where
Aik =

∑
|α|≤αik

aαik(x)D
α, Bjk =

∑
|β|≤βjk

bβjk(x)D
β .

Conditions on the coefficients of the operators and on the domain Ω will be speci-
fied below. At the moment, we can suppose for simplicity that the coefficients and
the boundary of the domain are infinitely differentiable.

According to the definition of elliptic operators in the Douglis-Nirenberg
sense we suppose that

αik ≤ si + tk, i, k = 1, . . . , N, βjk ≤ σj + tk, j = 1, . . . ,m, k = 1, . . . , N

for some integers si, tk, σj such that si ≤ 0, max si = 0, tk ≥ 0. The number∑N
i=1(si+ ti) is called the order of the operator. It is supposed to be equal to 2m,

that is twice the number of the boundary operators.
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Denote by A0
ik the principal symbol of the operator Aik, that is

A0
ik(x, ξ) =

∑
|α|=αik

aαik(x)ξ
α,

where ξ = (ξ1, . . . , ξn) ∈ Rn, ξα = ξα1
1 . . . ξαn

n . Let A0(x, ξ) be the matrix with
the elements A0

ik(x, ξ) if αik = si + tk and 0 if αik < si + tk.
The operator is called elliptic in the Douglis-Nirenberg sense if

detA0(x, ξ) �= 0, ∀ x ∈ Ω̄, ξ ∈ R
n, |ξ| �= 0.

We next define the condition of proper ellipticity. We introduce local coordi-
nates (x′, xn) at the boundary of the domain where x′ are the coordinates in the
tangent plane, the vector (0, xn) is normal to the boundary, (x′, 0) ∈ ∂Ω. Consider
the equation

detA0(x′, 0, ξ′, ζ) = 0

with respect to ζ. By virtue of the ellipticity condition this equation does not
have solutions for real ζ. It is supposed to have the same number of roots m with
positive and negative imaginary parts. This formulation of the condition of proper
ellipticity is equivalent to the formulation given above for the scalar operator. It is
known that for n > 2 the condition of proper ellipticity follows from the ellipticity
condition (see, e.g., [11]).

We finally introduce the Lopatinskii condition. Consider the principal terms
(|α| = αik, |β| = βjk) of problem (2.6), (2.7) with constant coefficients fixed at
some boundary point x ∈ ∂Ω. Consider, next, the local coordinates x = (x′, xn)
in the neighborhood of this point and apply the Fourier transform with respect
to the variables x′. We suppose that for each point of the boundary and for each
vector h the corresponding one-dimensional problem

A0(x′, 0, ξ′, Dn)v(t) = 0, B0(x′, 0, ξ′, Dn)v(t)|t=0 = h

considered on the half-axis t > 0 (t = xn) has a unique solution v(t) such that
|v(t)| → 0 as t→ ∞. Here B0 is the matrix with the elements

B0
jk =

∑
|β|=βjk

bβjk(x)D
β

if βjk = σj + tk and 0 if βjk < σj + tk.

If the ellipticity condition, proper ellipticity and Lopatinskii conditions are
satisfied then the problem

Aiu = fi, Bju = gj , i = 1, . . . , N, j = 1, . . . ,m

is called elliptic in the Agmon-Douglis-Nirenberg (ADN) sense or in the general
sense. A particular case of elliptic problems in the ADN sense is an elliptic problem
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in the sense of Petrovskii where s1 = · · · = sN . This means that the orders of the
operators Aik in the principal part of the operator A are the same for all i.

We will also use another form of the Lopatinskii condition. In order to for-
mulate it, for any point x ∈ ∂Ω consider the local coordinates (ξ′, ν), where
ξ′ = (ξ1, . . . , ξn−1) are the coordinates in the tangential hyperspace, ν is the nor-
mal coordinate. Let Â(x, ξ′, ν) and B̂(x, ξ′, ν) be the matrices with the elements

Âij(x, ξ′, ν) =
∑

|α′|+αn=αij

aα
′αn

ij ξ′α
′
ναn , i, j = 1, . . . , N,

B̂ij(x, ξ′, ν) =
∑

|α′|+αn=βij

bα
′αn

ij ξ′α
′
ναn , i = 1, . . . ,m, , j = 1, . . . , N.

The Lopatinskii matrix is defined by the equality

Λ(x, ξ′) =
∫
γ+

B̂(x, ξ′, µ)Â−1(x, ξ′, µ)Φ(µ)dµ,

where
Φ(µ) = (E, µE, . . . , µs−1E),

E is the identity matrix of the order N , s = maxi,j αij , γ+ is a Jordan curve
in the half-plane Imµ > 0 enclosing all the roots of det A(x, ξ′, µ) with positive
imaginary parts. By virtue of the condition of proper ellipticity there are m such
roots, and there are no roots on the real axis. The Lopatinskii condition implies
that the rank of the matrix Λ(x, ξ′) equals m for all |ξ′| �= 0.

We will use the notation

e0d = inf
x∈Ω,|ξ|=1

| detA0(x, ξ)|, e0Γ = inf
x∈Γ,|ξ′|=1

∑
α

|µα(x, ξ′)|,

where µα(x, ξ′) are all m-minors of the Lopatinskii matrix in the local coordinates
(ξ′, ν) at the point x. Problem (2.6), (2.7) is called uniformly elliptic if e0d >
0, e0Γ > 0. In what follows, when we assume that the problem is uniformly elliptic,
we will understand that the condition of proper ellipticity is also satisfied.

2.2.2. Examples. Laplace operator. Consider the Laplace operator

Lu = ∆u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

in the half-plane R2
+ = {(x1, x2) : x2 > 0}. Its principal symbol A0(ξ) = ξ21 + ξ22

is different from zero for |ξ| �= 0. Therefore the ellipticity condition is satisfied. In
order to verify the condition of proper ellipticity, consider the equation

ξ21 + ζ2 = 0
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with respect to ζ. For any real ξ1 �= 0 it has one solution with positive and
another one with negative imaginary part. The condition of proper ellipticity is
also satisfied.

We discuss next the Lopatinskii condition. We carry out the partial Fourier
transform with respect to x1 and obtain the ordinary differential equation

d2ṽ

dt2
− ξ21 ṽ = 0 (2.8)

on the half-axis t > 0. In the case of the Dirichlet boundary condition we have

ṽ(0) = h. (2.9)

Here t replaces x2, ṽ denotes the Fourier transform. For any real ξ1 �= 0 and any
h problem (2.8), (2.9) has a unique solution decaying at infinity. It is also the case
for the Neumann boundary condition:

ṽ′(0) = h.

In the case of the boundary operator with oblique derivative,

Bu ≡ a
∂u

∂x1
+ b

∂u

∂x2
, a2 + b2 �= 0;

after the partial Fourier transform we obtain the boundary condition for ṽ:

aiξ1ṽ(0) + bṽ′(0) = h. (2.10)

Problem (2.8), (2.10) has a unique decaying solution for any ξ1 �= 0. This means
that the Lopatinskii condition is satisfied.

In the case of the tangent derivative (b = 0) the Lopatinskii condition remains
valid in the 2D case but not in 3D. For the boundary operator

Bu ≡ a
∂u

∂x1
+ b

∂u

∂x2
+ c

∂u

∂x3
, a2 + b2 + c2 �= 0

we obtain
aiξ1ṽ(0) + biξ2ṽ(0) + cṽ′(0) = h. (2.11)

If c = 0, the equation
d2ṽ

dt2
− (ξ21 + ξ22)ṽ = 0

with boundary condition (2.11) may not have solutions for |ξ1|+ |ξ2| �= 0. Indeed,
this is the case if aξ1 + bξ2 = 0.
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Cauchy-Riemann system. Consider the Hilbert problem for the Cauchy-Riemann
system:

∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
+
∂v

∂x
= 0 (2.12)

in the half-plane R
2
+ = {(x, y) : y > 0} with the boundary condition

au+ bv = h(x), (2.13)

where a and b are real numbers, a2 + b2 = 1. We have

A0(ξ) =
(
ξ1 −ξ2
ξ2 ξ1

)
, detA0(ξ) �= 0 for |ξ| �= 0.

Hence the ellipticity condition is satisfied. To verify the condition of proper ellip-
ticity, we obtain the same equation as for the Laplace operator. There is one root
with a positive and one with a negative imaginary part.

Applying the partial Fourier transform with respect to x to system (2.12),
we obtain the system {

ũ′ + iξ1ṽ = 0,
ṽ′ − iξ1ũ = 0

on the half-axis y > 0. Here the tilde denotes the partial Fourier transform and
prime denotes the derivative with respect to y. There exists a bounded solution
for y > 0: (

ũ
ṽ

)
=
(
p1

p2

)
e−|ξ1| y,

where
p2 = −i ξ1|ξ1| · p1 .

From the boundary condition (2.13) we have
(
a− bi

ξ1
|ξ1|

)
p1 = h̃(ξ1),

where h̃ is the Fourier transform of the function h. Since a and b are real, then
this equation has a solution for any ξ1 �= 0. The Lopatinskii condition is satisfied.

Stokes equations. Let us now consider the Stokes equations for an incompressible
fluid:

∆ui +
∂p

∂xi
= 0 (i = 1, 2, 3),

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0. (2.14)

In this case

A =




∂2 0 0 ∂1

0 ∂2 0 ∂2

0 0 ∂2 ∂3

∂1 ∂2 ∂3 0


 ,
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where
∂i =

∂

∂xi
(i = 1, 2, 3), ∂2 = ∂2

1 + ∂2
2 + ∂2

3 .

The orders αik of the operators Aik differ from each other. According to the
definition of elliptic operators in the Douglis-Nirenberg sense, we introduce integers
si, tk, i, k = 1, 2, 3, 4 such that αik ≤ si + tk. If the inequality is strict, then in the
definition of the principle symbol the corresponding operator is replaced by zero.
We put s1 = s2 = s3 = 0, s4 = −1, t1 = t2 = t3 = 2, t4 = 1. Then

A0(ξ) =




|ξ|2 0 0 ξ1
0 |ξ|2 0 ξ2
0 0 |ξ|2 ξ3
ξ1 ξ2 ξ3 0


 , detA0(ξ) = −(|ξ1|2 + |ξ2|2 + |ξ3|2)3.

Therefore the ellipticity condition is satisfied.
Consider system (2.14) in the half-space R3

+ = {(x1, x2, x3), x3 ≥ 0} with
the Dirichlet boundary conditions for the velocity. Applying the partial Fourier
transform with respect to x1, x2 we obtain the problem on the half-axis x3 ≥ 0:

ũ′′i − ξ2ũi + iξip̃ = 0, i = 1, 2, (2.15)

ũ′′3 − ξ2ũ3 + p̃′ = 0, (2.16)

iξ1ũ1 + iξ2ũ2 + ũ′3 = 0, (2.17)

ũi(0) = hi, i = 1, 2, 3, (2.18)

where tilde denotes the Fourier transform and prime the derivative with respect
to t(= x3), ξ2 = ξ21 + ξ22 . We multiply (2.15) by iξi, differentiate (2.16) and take
their sum. By virtue of (2.17) we obtain

p̃′′ − ξ2p̃ = 0.

Let, for certainty, ξ > 0. Then

p̃(t) = ce−ξt,

where c is a constant which will be found below. From (2.15), (2.16), (2.18),

ũi(t) = hie
−ξt +

ξi
2ξ
icte−ξt, i = 1, 2,

ũ3(t) = h3e
−ξt − 1

2
cte−ξt.

Finally, from (2.17),
c = 2ξ(ih1 + ih2 − h3).

Hence, there exists a unique solution decaying at infinity for any hi. Therefore the
Lopatinskii condition is satisfied.
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2.3 A priori estimates

A priori estimates of solutions play an important role in the theory of linear
elliptic problems. They imply normal solvability and Fredholm property of elliptic
operators. We will sketch the derivation of the Schauder estimates for second-
order problems and will give their formulation for general elliptic operators. The
detailed proof of these estimates can be found elsewhere [7], [285]. The derivation of
integral estimates will be presented in Chapter 3 in more detail. We will use them
to investigate the Fredholm property of elliptic operators in unbounded domains.

For a bounded operator L acting from a Banach space E(Ω) into another Ba-
nach space F (Ω), where Ω ⊂ R

n is a domain with a sufficiently smooth boundary,
a priori estimates can be written in the form

‖u‖E(Ω) ≤ k
(‖Lu‖F (Ω) + ‖u‖E′(Ω)

)
, (2.19)

where E′(Ω) is some other Banach space such that

E(Ω) ⊂ E′(Ω), (2.20)

and the inclusion is understood in the algebraic and in the topological sense. Such
estimates are obtained for general elliptic operators acting in Sobolev (bounded
domains) and in Hölder (bounded or unbounded domains) spaces (see [7], [318],
[457], [542] and the references therein). For the second-order elliptic operators and
the spaces

E(Ω) = C2+α(Ω̄), F (Ω) = Cα(Ω̄), E′(Ω) = C(Ω̄), (2.21)

(2.19) corresponds to the Schauder estimate.

2.3.1. Schauder estimates for second-order problems. In this section we consider
the second-order operator

Lu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i

bi(x)
∂u

∂xi
+ c(x)u

with real coefficients which belong to the space Cl−2+α(Ω̄), l ≥ 2. The matrix
a = (aij) is symmetric and satisfies the condition of strong ellipticity:

(aξ, ξ) ≥ ν|ξ|2, ∀ξ ∈ R
n, ν > 0.

The domain Ω ⊂ R
n is bounded with the boundary ∂Ω of the class Cl+α. Then

the solution of the Dirichlet problem

Lu = f, u|∂Ω = g (2.22)

satisfies the estimate

‖u‖Cl+α(Ω̄) ≤ K

(
‖f‖Cl−2+α(Ω̄) + ‖g‖Cl+α(∂Ω) + sup

x∈Ω̄

|u|
)
, (2.23)
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where the constant K depends only on l, α, ν, on the norms of the coefficients
and on the boundary of the domain.

The proof of such estimates is based on the following approach. At the first
step, the Newton and double layer potentials are estimated. Then these estimates
are used in order to estimate the solution of the Poisson equation. Finally, freezing
the coefficients of problem (2.22), we reduce it locally to the Poisson equation.

We briefly present here this construction (see, e.g., [285]). Consider the New-
ton potential:

w(x) = τ−1
n

∫
Rn

f(y)
|x− y|n−2

dy,

and the double layer potential in the half-space Rn+ = {x ∈ Rn, xn ≥ 0}:

v(x) = 2τ−1
n

∫
yn=0

∂

∂xn

φ(y′)
|x− y|n−2

dy′.

Here τn = n(n− 2)κn, κn is the volume of the unit ball.
If f ∈ Cα(Rn) has a bounded support, then the Newton potential w(x) is

continuous together with its derivatives up to the second order and

〈D2w〉α
Rn ≤ c〈f〉α

Rn (2.24)

(see the notation in Section 2.1). If φ ∈ C2+α(Rn−1) has a bounded support, then
the double layer potential v(x) is continuous together with its second derivatives
and

〈D2v〉α
R

+
n
≤ c〈D2φ〉αxn=0. (2.25)

The constant c in these estimates depends only on n and α.

The estimates of the potentials allow us to estimate solutions of the model
problems in the whole space and in the half-space. The solution of the problem

∆u = f, x ∈ R
n, (2.26)

where the function f ∈ Cα(Rn) has a bounded support, is given by the Newton
potential. Therefore, we can use estimate (2.24). The solution of the model problem
in the half-space

∆u = f̂ , xn > 0, u = ψ(x′), x = xn, (2.27)

where the functions f̂ ∈ Cα(Rn+) and φ ∈ C2+α(Rn−1) have bounded supports,
can be sought in the form u = v + w. The Newton potential w is a solution of
(2.26) where the function f is defined in the whole space, coincides with f̂ for
xn ≥ 0 and has the same norm. Then v is a solution of the Laplace equation
in the half-space with the boundary value v(x′, 0) = ψ(x′) − w(x′, 0). It is given
by the double layer potential for which we can use estimate (2.25). Thus, we can
estimate the solutions of the model problems.
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Let us return to problem (2.22). Consider a partition of unity ζk,
∑N

k=1 ζk = 1
in Ω̄ and put uk = uζk. We suppose that the functions ζk are uniformly bounded
in the norm C2+α(Ω̄). Multiplying equation Lu = f by ζk, we obtain after some
simple calculations

n∑
i,j=1

aij(x0)
∂2uk
∂xi∂xj

= Fk, (2.28)

where

Fk =
n∑

i,j=1

(aij(x0) − aij(x))
∂2uk
∂xi∂xj

+
n∑

i,j=1

aij(x)
(
∂2ζku

∂xi∂xj
− ζk

∂2u

∂xi∂xj

)

−
(

n∑
i

bi(x)
∂u

∂xi
+ c(x)u

)
ζk + fζk.

Without loss of generality we can suppose that the support of ζk is a ball with
the center at x0. We denote it by Bk. If it is completely inside Ω, then we will
use estimate (2.24). If it crosses the boundary, we map it on the half-ball and use
estimate (2.25). Here the smoothness of the boundary is used. In both cases we
apply the change of variables in order to reduce the operator in the left-hand side
of (2.28) to the Laplace operator. It is supposed that Bk is sufficiently small such
that we can apply the estimates above and that the first term in the expression
for Fk is sufficiently small in Bk. The second and the third terms in the expression
for Fk contain the first-order derivatives. They can be estimated with the help of
the inequality

‖u‖Cs(Ω̄) ≤ ε
∑
|j|=s

‖Dju‖Cα(Ω̄) + cεmax
Ω

|u|,

where ε > 0 is arbitrarily small, cε depends on ε and on the domain Ω. Thus, we
obtain the following estimate of uk:

‖uk‖C2+α(Ω̄) ≤ K
(
ε‖u‖C2+α(Ω̄) + ‖φζk‖C2+α(∂Ω) + ‖fζk‖Cα(Ω̄) + max

Ω
|u|

)
.

Taking a sum of such estimates with respect to k, we easily obtain estimate (2.23).
Similar estimates can be obtained in the case of other boundary conditions.

2.3.2. General operators in Hölder spaces. Consider the operators

Aiu =
p∑
k=1

∑
|β|≤βik

aβik(x)D
βuk (i = 1, . . . , p), x ∈ Ω, (2.29)

Biu =
p∑
k=1

∑
|β|≤γik

bβik(x)D
βuk (i = 1, . . . , r), x ∈ ∂Ω, (2.30)

where β = (β1, . . . , βn) is a multi-index, βi nonnegative integers, |β| = β1 +
· · · + βn, Dβ = Dβ1

1 . . .Dβn
n , Di = ∂/∂xi. According to the definition of elliptic
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operators in the Douglis-Nirenberg sense we consider integers s1, . . . , sp; t1, . . . , tp;
σ1, . . . , σr such that

βij ≤ si + tj , i, j = i, . . . , p; γij ≤ σi + tj , i = 1, . . . , r, j = 1, . . . , p, si ≤ 0.

We suppose that the number m =
∑p
i=1(si + ti) is even and put r = m/2. We

assume that the problem is uniformly elliptic, that is the ellipticity condition

det


 ∑

|β|=βik

aβik(x)ξ
β



p

ik=1

�= 0, βik = si + tk

is satisfied for any ξ ∈ Rn, ξ �= 0, x ∈ Ω̄, as well as the condition of proper
ellipticity and the Lopatinskii conditions. Here ξ = (ξ, . . . , ξn), ξβ = ξβ1 . . . ξ

β
n .

Moreover, the condition of uniform ellipticity implies that the last determinant is
bounded from below by a positive constant for all |ξ| = 1 and x ∈ Ω̄, as well as
the minors of the Lopatinskii matrix (Section 2.2.1).

Denote by E0 the space of vector-valued functions u(x) = (u1(x), . . . , up(x)),
where uj ∈ Cl+tj+α (Ω̄), j = 1, . . . , p, l and α are given numbers, l ≥ max(0, σi),
0 < α < 1. Therefore

E0 = Cl+t1+α(Ω̄) × · · · × Cl+tp+α(Ω̄).

The domain Ω is supposed to be of the class Cl+λ+α, where λ = max(−si,−σi, tj),
and the coefficients of the operator satisfy the following regularity conditions:

aβij ∈ Cl−si+α(Ω̄), bβij ∈ Cl−σi+α(∂Ω).

The operator Ai acts from E0 into Cl−si+α(Ω), and Bi from E0 into Cl−σi+α(∂Ω).
Let A = (A1, . . . , Ap), B = (B1, . . . , Br). Then A : E0 → E1, B : E0 → E2,
L = (A,B) : E0 → E, where E = E1 × E2,

E1 = Cl−s1+α(Ω̄)× · · · ×Cl−sp+α(Ω̄), E2 = Cl−σ1+α(∂Ω)× · · · ×Cl−σr+α(∂Ω).

Then the following estimate holds [7], [8]:

‖u‖E0 ≤ K(‖Lu‖E + ‖u‖C). (2.31)

Here the constant K is independent of the function u ∈ E0(Ω) and ‖ ‖C is the
norm in C(Ω̄).

2.3.3. Sobolev spaces. Denote by E the space of vector-valued functions u =
(u1, . . . , uN ), where uj belongs to the Sobolev space W l+tj ,p(Ω), j = 1, . . . , N ,
1 < p <∞, l is an integer, l ≥ max(0, σj + 1), E = ΠN

j=1W
l+tj ,p(Ω). The norm in

this space is defined as

‖u‖E =
N∑
j=1

‖uj‖W l+tj,p(Ω).
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The operator Ai acts from E into W l−si,p(Ω), the operator Bj from E into
W l−σj−1/p,p(∂Ω). Set

L = (A1, . . . , AN , B1, . . . , Bm), (2.32)

F = ΠN
i=1W

l−si,p(Ω) × Πm
j=1W

l−σj−1/p,p(∂Ω).

Then L : E → F .
We suppose that the coefficients of the operator are defined for x ∈ R

n and

aαβij (x) ∈ Cl−si+θ(Rn), bαβkj (x) ∈ Cl−σk+θ(Rn), 0 < θ < 1.

We also assume that the domain Ω satisfies the following condition.

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with the radius δ and the center x0, where δ is
independent of x0,

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in Rn such that the images of Ω

⋂
U(x0) and

∂Ω ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively,

3. The function ψ(x;x0) and its inverse belong to the Hölder space Cm0+θ,
0 < θ < 1, m0 = maxi,j,k(l + ti, l − sj, l − σk). Their ‖ · ‖m0+θ-norms are
bounded uniformly in x0.

Theorem 2.1. Let Ω ⊂ R
n be a bounded domain satisfying Condition D and u ∈

ΠN
j=1W

l1+tj ,p(Ω), where l1 = max(0, σj + 1). If L is a uniformly elliptic operator,
then for any l ≥ l1 the following estimate holds:

‖u‖E ≤ C
(‖Lu‖F + ‖u‖Lp(Ω)

)
.

Here the constant C depends on the domain and on the coefficients of the operator.

This a priori estimate plays a fundamental role in the theory of elliptic problems.
It is proved in [7] under slightly different conditions on the coefficients and on the
domain.

One of the main properties of elliptic problems is given by the following
theorem (see the definitions in the next section).

Theorem 2.2. Let Ω ⊂ Rn be a bounded domain satisfying Condition D. If the
operator L is elliptic, that is the ellipticity condition, proper ellipticity and the
Lopatinskii condition are satisfied, then it satisfies the Fredholm property.

There are many variants of this theorem. Rather often it is formulated for the scalar
case or for p = 2 (see the bibliographical comments). The formulation above is
close to that in [542] where it is supposed for simplicity that the coefficients are
infinitely differentiable. We will see below that this result may not be valid for
unbounded domains. To provide the Fredholm property in this case, an additional
condition, which determines the behavior at infinity, should be imposed.
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2.4 Fredholm operators

2.4.1. Abstract operators. We recall some notions and results from operator theory.
We say that a linear operator L acts from a Banach space E into another Banach
space F if the domain of definition D(L) of the operator L belong to E and its
image R(L) belongs to F . The manifold Ker(L) of solutions of the equation Lu = 0
is called the kernel of the operator L. The subspace R⊥(L) of all linear functionals
φ from the dual space F ∗ such that φ(f) = 0 for any f ∈ R(L) is called the defect
subspace of the operator L. The dimension of the kernel of the operator will be
denoted by α(L), the dimension of the defect subspace by β(L). We will also call
it the codimension of the image. Their difference is, by definition, the index of the
operator, κ(L) = α(L) − β(L).

If α(L) = 0, then there exists an inverse operator L−1 defined on R(L) and
acting onto D(L). An operator L has a bounded inverse on D(L) when and only
when there exists a constant c such that ‖Lu‖F ≥ c‖u‖E for any u ∈ D(L). We
say that the operator L is continuously invertible if R(L) = F and the inverse
operator exists and is bounded.

An operator L is said to be normally solvable if the equation Lu = f is
solvable if and only if φ(f) = 0 for all φ ∈ R⊥(L). The operator is normally
solvable if and only if its range is closed.

We recall that an operator L is called closed if from un → u (un ∈ D(L))
and Lun → f it follows that u ∈ D(L) and Lu = f . According to the Banach
theorem a closed linear operator defined on all of a Banach space is continuous.

A closed linear operator L is called a Fredholm operator if it is normally
solvable, its kernel has a finite dimension and the codimension of its image is also
finite. In this case we also say that the operator L satisfies the Fredholm property.
The following properties of Fredholm operators are known (see, e.g., [207]).

Theorem 2.3. Let L and M be two Fredholm operators acting in a Banach space
E and let D(L) be dense in E. Then the product LM is also a Fredholm operator
and κ(LM) = κ(L) + κ(M).

An operator L̃ is called an extension of the operator L if D(L) ⊂ D(L̃)
and L̃u = Lu for u ∈ D(L). If the dimension of the factor space D(L̃)/D(L) is
finite and equals k, then it is a k-dimensional extension. In this case D(L̃) can
be represented as a direct sum, D(L̃) = D(L) ⊕M, where M is a k-dimensional
subspace, and

L̃(u+ v) = Lu+Kv, ∀u ∈ D(L), v ∈ M,

where K is a finite-dimensional operator defined on M. Let L̃ be a k-dimensional
extension of a Fredholm operator L. Then L̃ is also a Fredholm operator and
κ(L̃) = κ(L) + k, α(L̃) ≤ α(L) + k.

Theorem 2.4. Let L be a Fredholm operator acting from E into F . Then there exists
a positive number ρ such that for any bounded linear operator B : E → F for which
‖B‖ < ρ, the operator L+B is Fredholm and κ(L+B) = κ(L), α(L+B) ≤ α(L).
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It is also known that if L if a Fredholm operator acting from E into F and
T : E → F is a compact linear operator, then the operator L+T is also Fredholm
and κ(L+ T ) = κ(L).

If an operator L acts in a Banach space E, and for some complex number λ
the operator L− λI satisfies the Fredholm property, then λ is called a Φ-point of
the operator L.

Theorem 2.5. The set of Φ-points of a linear closed operator L is open. For all λ of
a connected component G of this set, the index of the operator L−λI is constant,
and for all λ ∈ G with a possible exception of certain isolated points, α(L − λI)
has a constant value n. At these isolated points α(L − λI) > n.

This theorem admits a generalization for holomorphic operator functions Lλ whose
values are closed linear operators acting from E into F . They are represented in
the form of the series

Aλ = Aλ0 +
∞∑
k=1

(λ− λ0)kCk

in the neighborhood of each point λ0 ∈ G. Here Ck are bounded linear operators
acting from E to F , the series converges in the operator norm.

We continue this short review with some properties of semi-Fredholm oper-
ators. A closed linear operator L : E → F will be called a Φ+-operator if it is
normally solvable, the dimension α(L) of its kernel is finite and the codimension
β(L) of its image is infinite. Similarly, for Φ−-operators, α(L) is infinite and β(L)
is finite. The results above remain valid for semi-Fredholm operators. Namely, if
L is a Φ+-operator and B is a bounded linear operator with a sufficiently small
norm, then L + B is also a Φ+-operator, and α(L + B) ≤ α(L). Similarly, for
Φ−-operators, α(L + B) = α(L), β(L + B) ≤ β(L). Adding a compact operator
to a Φ±-operator leaves it a Φ±-operator.

Let L : E → F be a linear operator with the dense domain of definition. An
adjoint operator L∗ : F ∗ → E∗ is defined by the equality 〈L∗φ, u〉E = 〈φ,Lu〉F ,
where u ∈ E, φ ∈ F ∗, 〈·, ·〉 denotes the duality in the corresponding spaces. It is
known that if L is a bounded operator, then L∗ is also bounded and ‖L∗‖ = ‖L‖.
Moreover, L∗φ = 0 if and only if φ(f) = 0 for any f ∈ R(L). Hence, α(L∗) = β(L).
On the other hand, β(L∗) ≥ α(L). In the case of reflexive spaces E and F , the last
relation becomes equality. We finally note that if a closed operator L with a dense
domain of definition is normally solvable, then the operator L∗ is also normally
solvable.

2.4.2. Solvability of elliptic problems. Under some natural assumptions, a priori
estimate (2.19) implies that the operator L is normally solvable with a finite-
dimensional kernel (see, e.g., [7]). Suppose that the domain Ω is bounded and
inclusion (2.20) is compact, that is a closed bounded set in E(Ω) is compact in
E′(Ω) (cf. (2.21)). Let B be a unit ball in the kernel KerL of the operator L,
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KerL ⊂ E(Ω). Consider a sequence un ∈ KerL. It has a subsequence, for which
we keep the same notation, converging in E′(Ω) to some u0 ∈ E′(Ω). From (2.19)
it follows that the sequence un is fundamental in E(Ω). Properties of elliptic
operators and of the function spaces allow us to conclude that un → u0 in E(Ω)
and u0 ∈ KerL. Therefore the unit ball is compact and, consequently, the kernel
of the operator L is finite dimensional.

A similar construction can be used to prove that the image of the operator
is closed. Consider the equations Lu = fn, where fn → f0 in F (Ω), fn belongs to
the image ImL of the operator L. We should verify that f0 is also in ImL. Let
E(Ω) = KerL ⊕ E1 and let un ∈ E1 be such that Lun = fn. If the sequence un
is bounded, then it has a subsequence converging to some u0 in E′(Ω). It follows
from (2.19) that it converges also to u0 ∈ E(Ω), and Lu0 = f0. If the sequence
is not bounded, we consider the equation for the functions vn = un/‖un‖E(Ω). As
before, we obtain vn → v0. Moreover, Lv0 = 0, that is v0 ∈ KerL. On the other
hand, v0 ∈ E1. Therefore the assumption that the sequence is unbounded gives a
contradiction.

Normal solvability of the operator L means that the equation

Lu = f (2.33)

is solvable if and only if 〈f, φ〉 = 0 for all functionals φ from some subspace Φ of the
dual space F ∗(Ω). It is equivalent to the closeness of the image. Since Φ = KerL∗,
where L∗ : F ∗(Ω) → E∗(Ω) is the adjoint operator, then we obtain the solvability
conditions: equation (2.33) is solvable if and only if 〈f, φ〉 = 0 for all solutions φ
of the homogeneous adjoint equation L∗φ = 0.

The number of linearly independent solvability conditions is determined by
the dimension of the kernel of the adjoint operator L∗. A priori estimates for
the adjoint operator similar to (2.19) allow one to prove that its kernel has a
finite dimension. In some cases, it is possible to replace the adjoint operator by
a formally adjoint operator for which the solvability conditions can be written as
orthogonality in L2.

One of the simplest examples of elliptic problems is given by the Laplace
operator with the Dirichlet boundary condition

∆u = f, u|∂Ω = 0. (2.34)

Here Ω is a bounded domain with a sufficiently smooth boundary. If f ∈ L2(Ω),
then we look for a solution in H2(Ω). The formally adjoint operator is determined
by the equality ∫

Ω

(Lu)vdx =
∫

Ω

u(L∗v)dx.

The problem is formally self-adjoint, and the homogeneous formally adjoint prob-
lem

∆v = 0, v|∂Ω = 0
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has only zero solution. Therefore, problem (2.34) is solvable for any right-hand
side. If we consider the Neumann boundary condition, ∂u/∂n = 0, where n is
the outer normal vector, then the homogeneous formally adjoint problem has a
nonzero solution v = const. It provides one solvability condition

∫
Ω fdx = 0. In

both cases, the numbers of linearly independent solutions of the homogeneous
problem and of solvability conditions for the nonhomogeneous problem are equal
to each other. Therefore the index equals zero.

Thus, a priori estimates for the direct and adjoint operators imply the Fred-
holm property and solvability conditions. The construction briefly described above
uses the compact embedding of E(Ω) into E′(Ω). It may not take place for un-
bounded domains. This is why the ellipticity condition, proper ellipticity and the
Lopatinskii condition may not be sufficient in this case for the Fredholm property.
We will discuss this question in Section 3.

2.4.3. Index. If the operator satisfies the Fredholm property, then its index is
well defined. It equals the difference between the dimension of the kernel and
the codimension of the image (or the number of linearly independent solvability
conditions). The index is stable with respect to small perturbations of the operator.
If L : E(Ω) → F (Ω) satisfies the Fredholm property, B : E(Ω) → F (Ω) is bounded
and has a sufficiently small norm, then L+B is also Fredholm and its index equals
the index of the operator L. Hence the index does not change under a continuous
deformation of the operator in the class of Fredholm operators. This means that
if the family of operators Lτ is continuous with respect to τ in the operator norm,
then the index does not depend on τ . It remains also true for semi-Fredholm
operators. In this case the index does not change under a continuous deformation
in the class of normally solvable operators with a finite-dimensional kernel.

These properties can be used to study the index of elliptic operators. One
of the possible approaches consists in constructing a continuous deformation to
some model operator for which the index is known. All operators from the family
should be normally solvable with a finite-dimensional kernel. For elliptic operators
in bounded domains this is provided by ellipticity conditions (ellipticity, proper
ellipticity, Lopatinskii condition). A possible approach to find the index in the
case of two-dimensional elliptic problems can be schematically described as fol-
lows (see Chapter 8 and the bibliographical comments). It is known that general
elliptic problems can be reduced to first-order problems, while the latter to canon-
ical problems. In their turn, canonical problems can be reduced by a continuous
deformation, which preserves the index, to the problems of the type

i
∂u1

∂x1
− ∂u1

∂x2
= 0, −i∂u2

∂x1
− ∂u2

∂x2
= 0,

b1(x)u1 + b2(x)u2 = g.

The final step of this construction is to represent the last problem in the form
of a Hilbert problem, that is to find a holomorphic function in the inner and in
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the outer domains with a given jump at the boundary. The index of the Hilbert
problem can be found by means of singular integral equations [190], [366], [532].

A Laplace operator with oblique derivative

∆u = 0, a(x)
∂u

∂x
− b(x)

∂u

∂y
|∂Ω = h(x), a2(x) + b2(x) �= 0 (2.35)

provides an example of problems which can have a nonzero index. LetN denote the
number of rotations of the vector (a(x), b(x)) around the origin when x goes around
the boundary ∂Ω counterclockwise. Positive N corresponds to a counterclockwise
rotation. The index of this problem equals 2N + 2. It equals zero in the case of
the Neumann boundary conditions (N = −1).

The index theories for elliptic problems had an important development be-
ginning from the 1960s due to the Atiyah-Singer theory.

2.4.4. Spectrum and invertibility. Consider an unbounded operator L : E → E
acting in a Banach space E with a dense domain of definition. We introduce the
operator Lλ = L − λI, where λ is a complex parameter and I is the identity
operator. The set Φ(L) of all λ, for which Lλ is a Fredholm operator, is open. Its
complement is called the essential spectrum of the operator L. The index κ(Lλ)
of the operator Lλ is constant in each connected component of the set Φ(L). The
dimension of the kernel α(Lλ) is constant except for some isolated points where its
value is greater. These are eigenvalues of finite multiplicity. They can accumulate
to the points of the essential spectrum or to infinity. This is the structure of the
spectrum of abstract Fredholm operators. It is applicable for elliptic operators.

If the index of the operator Lλ is zero in some connected component of the
set Φ(L), then it is invertible for all λ from this component except possibly for
some isolated points. To prove the invertibility in this case it is sufficient to verify
that the kernel of the operator is empty. Various specific methods can be used
for some particular classes of operators. For example, in order to prove that the
equation ∆u − λ2u = 0 with the Dirichlet boundary condition and with a real
λ has only a zero solution, it is sufficient to multiply it by u and integrate over
Ω. In the general case, the invertibility can be proved for elliptic problems with a
parameter

A(x, λ,D)u = f, x ∈ Ω, B(x, λ,D)u = g, x ∈ ∂Ω

introduced by Agranovich and Vishik [13]. Precise definitions are given in Chap-
ter 7. Some special a priori estimates of solutions allow one to prove the existence
and the uniqueness of solutions for λ in a given sector S, and |λ| ≥ λ0 > 0.
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3 Elliptic problems in unbounded domains

One of the main results of the theory of elliptic problems affirms that they satisfy
the Fredholm property. If we consider unbounded domains, then the ellipticity con-
dition, proper ellipticity and the Lopatinskii condition are not sufficient, generally
speaking, in order for the operator to be Fredholm. Some additional conditions
formulated in terms of limiting problems should be imposed. The typical result
says that the operator satisfies the Fredholm property if and only if all its limiting
operators are invertible. The question is about the classes of operators for which
this result is applicable.

Limiting operators and their inter-relation with solvability conditions and
with the Fredholm property were first studied in [160], [309], [310] (see also [491])
for differential operators on the real axis, and later for some classes of elliptic
operators in Rn [48], [361], [362], in cylindrical domains [114], [567], or in some
specially constructed domains [45], [46]. Some of these results are obtained for
the scalar case, some others for the vector case, under the assumption that the
coefficients of the operator stabilize at infinity or without this assumption. This
theory is also developed for some classes of pseudo-differential operators [153],
[295], [440]–[442], [475], [490] and discrete operators [13], [443].

In spite of the considerable progress in the understanding of properties of
elliptic operators in unbounded domains, this question is not yet completely elu-
cidated. In this book we will systematically develop Fredholm theory of general
elliptic problems. As it is often the case for elliptic problems, these studies will be
based on a priori estimates of solutions of direct and adjoint operators and on the
introduction of special function spaces. The results will be formulated in terms of
the unique solvability of limiting problems.

We will introduce two types of limiting domains. Limiting domains of the
first type are defined through translations of a given unbounded domain Ω. Limit-
ing domains of the second type are introduced for a sequence of bounded domains
Ωn approximating an unbounded domain Ω. We next define limiting operators. In
order to do this, we consider sequences of shifted coefficients and choose locally
convergent subsequences. Limiting operators are operators with limiting coeffi-
cients. According to the type of limiting domains, we obtain two types of limiting
problems.

Unique solvability of limiting problems of the first type determine the Fred-
holm property of elliptic operators in unbounded domains. Unique solvability of
limiting problems of the second type determine stabilization of the index. This
means that the indices of the operators in the domains Ωn become independent
of n for n sufficiently large. They are equal to each other and to the index of the
operator L.

If one of the limiting operators of the first type is not uniquely solvable,
then the operator L does not satisfy the Fredholm property. The theory of such
operators is not yet sufficiently well developed. In some cases it is possible to reduce
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them to Fredholm operators on some subspaces or by some special constructions.
An interesting question is about solvability conditions for non-Fredholm operators.
We will discuss this question for some particular classes of operators.

3.1 Function spaces

Sobolev spaces W s,p proved to be very convenient in the study of elliptic problems
in bounded domains. In order to study elliptic problems in unbounded domains, we
will introduce some generalization of the spacesW s,p. They will coincide withW s,p

in bounded domains and will have a prescribed behavior at infinity in unbounded
domains. It turns out that such spaces can be constructed for arbitrary Banach
spaces of distributions (not only Sobolev spaces) as follows. Consider first functions
defined in R

n. As usual, we denote by D the space of infinitely differentiable
functions with compact support and by D′ its dual. Let E ⊂ D′ be a Banach
space, where the inclusion is understood both in an algebraic and a topological
sense. Denote by Eloc the collection of all u ∈ D′ such that fu ∈ E for all
f ∈ D. Let us take a function ω(x) ∈ D such that 0 ≤ ω(x) ≤ 1, ω(x) = 1 for
|x| ≤ 1/2, ω(x) = 0 for |x| ≥ 1.

Let {φi}, i = 1, 2, . . . be a partition of unity. Then, by definition, Ep is the
space of all u ∈ Eloc such that

∑∞
i=1 ‖φiu‖pE < ∞, where 1 ≤ p < ∞, with the

norm

‖u‖Ep =

( ∞∑
i=1

‖φiu‖pE
)1/p

;

E∞ is the space of all functions u ∈ Eloc such that supi ‖φiu‖E < ∞, with the
norm

‖u‖E∞ = sup
i

‖φiu‖E.

These spaces do not depend on the choice of the partition of unity. We will also
use an equivalent definition: Eq (1 ≤ q ≤ ∞) is the space of all u ∈ Eloc such that

‖u‖Eq :=
(∫

Rn

‖u(.)ω(.− y)‖qEdy
)1/q

<∞, 1 ≤ q <∞,

‖u‖E∞ := sup
y∈Rn

‖u(.)ω(.− y)‖E <∞.

It will be shown that Eq is a Banach space.
If Ω is a domain in R

n, then by definition Eq(Ω) is the space of restrictions of
Eq to Ω with the usual norm of restrictions. It is easy to see that if Ω is a bounded
domain, then

Eq(Ω) = E(Ω), 1 ≤ q ≤ ∞.

In the particular case where E = W s,p, we set W s,p
q = Eq (1 ≤ q ≤ ∞). It is

proved that
W s,p
p = W s,p (s ≥ 0, 1 < p <∞).
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Hence the spaces W s,p
q generalize the Sobolev spaces (q < ∞) and the Stepanov

spaces (q = ∞) (see [309], [310]). We will study elliptic operators acting in these
spaces.

3.2 Limiting problems

The notion of limiting domains and of limiting problems or operators will be
essentially used throughout this book. They will determine normal solvability and
Fredholm property of elliptic operators in unbounded domains. Limiting operators
were first considered in [160], [309], [310] for differential operators on the real axis
with quasi-periodic coefficients, and then for elliptic operators in Rn or for domains
cylindrical or conical at infinity [48], [361], [362], [491]. In the general case limiting
operators and domains are introduced in [565], [564].

3.2.1. Limiting domains of the first type. We will illustrate construction of limiting
domains with some examples. Consider first a cylinder Ω in Rn with the axis along
the x1-direction and with a bounded cross-section G ⊂ R

n−1. Let xk = (xk1 , y
k) ∈

Ω be a sequence of points for which the first coordinate xk1 tends to infinity. Denote
by Ωk the shifted cylinders for which the point xk is moved to the origin. More
precisely, let χ(x) be the characteristic function of the domain Ω. Then Ωk is the
domain with the characteristic function χ(x+ xk).

Figure 1: Construction of the limiting domain for a half-cylinder.

The sequence of points yk ∈ G is bounded. Let ykl be a subsequence converg-
ing to some y0 ∈ Ḡ. Consider the sequence of domains Ωkl

. Since the shift with
respect to x1 does not change the cylinder, then the sequence of domains converges
to the domain Ω0 with the characteristic function χ(x + x0), where x0 = (0, y0).
The cylinder Ω0 is a limiting domain for the domain Ω. If the sequence yk has
another converging subsequence, then we obtain another limiting domain, which
is also a cylinder that differs from Ω0 by a shift. We then consider all sequences
xk ∈ Ω with the first coordinate going to ±∞ and the corresponding limiting
domains. All of them can be obtained from the cylinder Ω by a shift. We will not
distinguish limiting domains obtained from each other by a finite shift. Therefore,
an infinite cylinder has a single limiting domain, the cylinder itself.
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If the domain Ω+ is a half-cylinder, Ω+ = {x ∈ Ω, x1 ≥ 0}, then it has a
single limiting domain, the whole cylinder Ω (Figure 1). We shift the half-cylinder
in such a way that the points xk coincide with the origin. Therefore we obtain a
sequence of half-cylinders Ωk. The left boundary of Ωk moves to −∞ as k increases.
Passing to the limit, we obtain the whole cylinder Ω, which is the only limiting
domain in this case.

Figure 2: Construction of limiting domains for a hyperbolic domain.

In the general case, we have a sequence of domains obtained as translations
of the same unbounded domain, and we choose all locally convergent subsequence
of this sequence. More precisely, the construction is as follows. Let xk ∈ Ω be a
sequence which tends to infinity. Consider the shifted domains Ωk corresponding
to the shifted characteristic functions χ(x + xk), where χ(x) is the characteristic
function of the domain Ω. Consider a ball Br ⊂ Rn with the center at the origin
and with the radius r. Suppose that for all k there are points of the boundaries
∂Ωk inside Br. If the boundaries are sufficiently smooth, then from the sequence
Ωk ∩ Br we can choose a subsequence that converges to some limiting domain
Ω̂. After that we take a larger ball and choose a convergent subsequence of the
previous subsequence. The usual diagonal process allows us to extend the limiting
domain to the whole space.

We consider two more examples to explain the local convergence of the se-
quence of domains. Consider the half-space Rn+ = {x ∈ Rn, xn ≥ 0}. Limiting
domains depend now on the choice of the sequence. Let us first take a sequence
xk for which its last coordinate is fixed, xkn = h for some constant h. Then each
domain in the sequence Ωk is the half-space {x ∈ Rn, xn ≥ −h}. It depends on
the value of h but, as it is indicated above, we do not distinguish limiting domains
obtained from each other by translation. Therefore, the first limiting domain is
a half-space. Consider next a sequence xk for which the coordinate xkn tends to
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infinity as k → ∞. Then the limiting domain is the whole space Rn. Indeed, we fix
a ball BR1 with the radius R1. There exists k1 such that BR1 ⊂ Ωk for all k ≥ k1.
We next take a ball BR2 with R2 > R1 and choose k2 such that BR2 ⊂ Ωk for all
k ≥ k2. We continue this construction with a sequence of growing balls. Each of
them belongs to the limiting domain. Hence the limiting domain is the whole Rn.

The next example illustrates the convergence of the boundaries of the do-
mains. Consider the domain above the curve y = f(x) (Figure 2). It has two
asymptotes, y = −x and y = 0. Depending on the choice of the sequence there are
three limiting domain: the whole R2 and two different half-planes. Let us describe
the construction of the limiting domain for the sequence of points (xk, yk), where
xk → ∞, yk = h with some constant h. If we translate the domain in such a
way that the point (xk, yk) coincides with the origin, then we obtain the domain
Ωk = {(x, y), y ≥ fk(x)}, where fk(x) = f(x+ xk)− h. The sequence of functions
fk(x) locally converges to f0(x) ≡ −h. Therefore, the limiting domain is the half-
plane y ≥ −h. If we take the left sequence of points shown in Figure 2, we obtain
the limiting domain y ≥ −x − h. For the sequence in the middle, the limiting
domain is the whole R2.

We note that limiting domains for the same sequence of points may be
nonunique. In the previous example, we can choose a function f(x) in such a
way that the sequence fk(x) would have more than one local limit.

3.2.2. Limiting domains of the second type. In the previous section we have de-
fined limiting domains by means of all possible sequences of domains Ωk obtained
as translations of an unbounded domain Ω. In this section we will introduce an-
other type of limiting domains. It will be also used to study elliptic operators in
unbounded domains.

Consider now a sequence of arbitrary domains Ωk. They can be bounded or
unbounded, and they are not necessarily obtained from each other by translation.
As above, we will assume that their boundaries are sufficiently smooth.

In what follows we will be interested by sequences of growing bounded do-
mains, Ω1 ⊂ Ω2 ⊂ · · · which locally converge to an unbounded domain Ω. By local
convergence we understand the convergence of the boundaries of the domains in
every bounded ball. Precise definitions will be given in Chapters 4 and 8.

We will illustrate the definition of limiting domains with the example shown
in Figure 3. We consider a sequence of growing rectangles (with smoothed angles)
whose length tends to infinity and the width to some constant (Figure 3a). We
denote these domains by Ωk and choose points xk ∈ Ωk in such a way that |xk| →
∞. Consider the sequence of points in Figure 3a going to the left. We translate
the domains Ωk n such a way that these points coincide with the origin. Hence
we obtain a new sequence of domains shown in Figure 3b. As before, these are
bounded rectangles but now their left boundary is fixed while the right boundary
moves to infinity. The local limit of this sequence of domains is a right half-cylinder.
Similarly, if we consider the sequence of point going to the right, we will obtain



3. Elliptic problems in unbounded domains 35

Figure 3: Construction of limiting domains of the second type. There
are three limiting domains: left half-cylinder, right half-
cylinder, and the whole cylinder.

another limiting domain, a left half-cylinder. Finally, we can choose a sequence of
points for which the distance to both side boundaries of the rectangles grows to
infinity. Then the limiting domain is the whole cylinder.

Thus, there are three limiting domains for the sequence of growing rectan-
gles. At the same time, the unbounded domain Ω, that is the infinite cylinder,
has only one limiting domain, the cylinder itself. We call the sequence of bounded
domains Ωk an approximating sequence for the unbounded domain Ω. The def-
inition of limiting domains in the second sense is applicable for approximating
sequences. It appears that there can be more limiting domains in the second sense
for an approximating sequence than of limiting domains in the first sense for the
unbounded domain itself.

We finish the description of limiting domains in the second sense with one
more example shown in Figure 4. The domains Ωk in this case are circles with
growing diameters. Translating the circles in such a way that they have the same
tangent, we obtain a limiting domain, which is the half-plane bounded by the same
tangent. Thus, we have a continuum of limiting domains, which are all possible
half-planes. The whole R2 is also a limiting domain.

3.2.3. Limiting problems. In order to define limiting operators we consider shifted
coefficients aα(x+xk), bαj (x+xk) and choose subsequences that converge to some
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Figure 4: Construction of limiting domains of the second type. There
is a continuum of limiting domains: all half-planes and the
whole plane.

limiting functions âα(x), b̂αj (x) uniformly in every bounded set. The limiting op-
erator is the operator with the limiting coefficients. Limiting operators considered
in limiting domains constitute limiting problems. It is clear that the same problem
can have a family of limiting problems depending on the choice of the sequence xk
and on the choice of converging subsequences of domains and coefficients. Limiting
problems for the same sequence of points xk may be nonunique.

3.3 Fredholm property and solvability conditions

For elliptic problems in bounded domains, their ellipticity, proper ellipticity and
the Lopatinskii condition determine their Fredholm property. In the case of un-
bounded domains we should introduce one more condition related to the invert-
ibility of limiting problems.

3.3.1. One-dimensional second-order problems. We begin with the one-dimensional
scalar operator

Lu = a(x)u′′ + b(x)u′ + c(x)u,

where x ∈ R. Suppose that the coefficients are sufficiently smooth real-valued
functions and that there exist limits at infinity:

a± = lim
x→±∞ a(x), b± = lim

x→±∞ b(x), c± = lim
x→±∞ c(x).

Then we can define the limiting operators

L±u = a±u′′ + b±u′ + c±u
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and consider the corresponding eigenvalue problems L±u = λu. Since the limiting
operators have constant coefficients, we can apply the Fourier transform to obtain

λ(ξ) = −a±ξ2 + ib±ξ + c±, ξ ∈ R.

These are two parabolas in the complex plane (Figure 5). It will be proved that
the operator L satisfies the Fredholm property if and only if they do not pass
by the origin. Therefore, the operator L − λI, where I is the identity operator,
satisfies the Fredholm property for the values of λ, which do not belong to the
parabolas. They form the essential spectrum of the operator L, that is the set of
points where the operator L− λI does not satisfy the Fredholm property.

We note that if the essential spectrum contains the origin, then the limiting
equation has a nonzero bounded solution u(x) = exp(iξx) for some real ξ (cf.
Condition NS below).

Figure 5: Essential spectrum is formed by two parabolas
λ = −a±ξ2 + b±iξ + c±.

3.3.2. General problems. For general elliptic problems, limiting operators can have
variable coefficients and limiting domains may not be translation invariant. Condi-
tions of normal solvability can be formulated using the notion of limiting problems.

Condition NS. Any limiting problem

L̂u = 0, x ∈ Ω̂, u ∈ E∞(Ω̂)

has only the zero solution.

This condition is necessary and sufficient for general elliptic operators to be nor-
mally solvable with a finite-dimensional kernel [564], [565], [570]. Similarly to Con-
dition NS for the direct operators, we introduce Condition NS∗ for the adjoint
operators.
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Condition NS∗. Any limiting problem L̂∗v = 0 has only the zero solution in
(F ∗(Ω̂))∞. Here L̂∗ is the operator adjoint to the limiting operator L̂.

A priori estimates for adjoint operators and Condition NS∗ imply that the oper-
ator L∗ : (F ∗(Ω))∞ → (E∗(Ω))∞ is normally solvable with a finite-dimensional
kernel. However, this is not yet sufficient to affirm that the operator L satisfies
the Fredholm property because the adjoint operator L∗ acts here not in the dual
spaces, from (F∞(Ω))∗ into (E∞(Ω))∗ but from (F ∗(Ω))∞ into (E∗(Ω))∞. These
spaces are different. In fact, we will show that (E∗)∞ = (E1)∗, (F ∗)∞ = (F1)∗.
This property will allow us to establish a relation between the operators (L∗)∞ :
(E∗)∞ → (F ∗)∞ and (L∞)∗ : (E∞)∗ → (F∞)∗. We will use it to prove the Fred-
holm property of the operator L in the spaces W s,p, 1 < p < ∞ and W s,p

q for
some q.

We arrive here at the notion of local operators and realization of operators.
An operator L is called local if for any u ∈ E with a bounded support, we have
suppLu ⊂ suppu. Differential operators satisfy obviously this property. If an
operator L is local, then the adjoint operator is also local. For local operators we
can define their realization in different spaces, Lq : Eq → Fq, 1 ≤ q ≤ ∞. We
will also consider the operator LD : ED → FD, where ED and FD are the spaces
obtained as a closure of functions from D in the norms of the spaces E∞ and F∞,
respectively. We will first prove that Conditions NS and NS∗ imply the Fredholm
property of the operator LD and then of the operators L∞ and Lq. The exact
formulations of the results are given in Chapter 5.

One of the main properties of Fredholm operators is related to solvability
conditions of nonhomogeneous equations. If the operator L : E∞(Ω) → F∞(Ω)
satisfies the Fredholm property, then the equation Lu = f is solvable if and only
if φ(f) = 0 for all φ ∈ (F∞(Ω))∗ such that L∗φ = 0. Similar solvability conditions
are valid for the operators acting in other spaces.

3.3.3. Formally adjoint problems. Solvability conditions can be represented in a
simpler form in terms of a formally adjoint operator. This property is well known
for elliptic operators in bounded domains. It is not directly applicable in the case
of unbounded domains because of the additional conditions on limiting operators.

We will illustrate it with the operator L considered in Section 3.3.1. Suppose
that the coefficients a(x), b(x) and c(x) of the operator L are sufficiently smooth
and consider the operator

L∗v = (a(x)v)′′ − (b(x)v)′ + c(x)v.

Both operators,L and L∗ act fromH2(R) into L2(R). The operator L∗ is a formally
adjoint operator to the operator L. It satisfies the equality

∫ ∞

−∞
(Lu)vdx =

∫ ∞

−∞
u(L∗v)dx
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for any u, v ∈ H2(R). We will use the same notation for formally adjoint operators
and for adjoint operators but we should keep in mind that they can be different
and act in different spaces.

We will introduce Condition NS∗ for the formally adjoint operator similarly to
Condition NS for the direct operator. It appears that if both of them are satisfied,
then the operator L satisfies the Fredholm property and the equation Lu = f
is solvable if and only if

∫∞
−∞ fvdx = 0 for all solutions v of the homogeneous

formally adjoint equation L∗v = 0.

3.4 Index

The index theories developed for elliptic operators in bounded domains may not
be applicable for unbounded domains. In some cases, the index can be computed
by rather simple and explicit methods. Among them, some problems in cylinders
which can be reduced to one-dimensional equations by a spectral decomposition
(Chapter 9).

In Chapter 8, we will develop the method based on the approximation of
operators in unbounded domains by operators in bounded domain. Under some
conditions, the value of the index for the approximating domains stabilizes and
equals the index for the limiting unbounded domain. There are counterexamples
which show that the stabilization may not take place. The conditions under which
the stabilization occurs can be formulated in terms of limiting problems. We recall
that limiting problems of the first type determine the Fredholm property. If it is
satisfied, then the index is well defined. Conditions of stabilization of the index
are formulated in terms of limiting problems of the second type. They are more
restrictive than the conditions which provide the Fredholm property. Indeed, there
are more limiting domains of the second type than of the first type for the same
unbounded domain.

3.4.1. One-dimensional operators. We consider the same operator as in Section
3.3.1 as acting in Sobolev or in Hölder spaces. We suppose that the essential
spectrum of this operator does not contain the origin, which implies Conditions
NS and NS∗. Then its index is defined and equals

κ = n+ + n− − 2,

where n+ is the number of solutions of the equation L+u = 0 bounded at +∞, n−
is the number of solutions of the equation L−u = 0 bounded at −∞ (Chapter 9)
They can be easily expressed through the coefficients of the limiting operators.

The value of the index is related to the location of the spectrum shown in
Figure 5. If both of the parabolas are in the left half-plane, then the index equals
zero. If one of them is partially in the right half-plane, as it is shown in the figure,
then the index is ±1. If the vertices of both parabolas are on the positive half-axis,
then the index is zero or ±2. In fact, each time when one of the parabolas crosses
the origin, the index changes by ±1.
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Let us now consider the problem

Lu = f, u(±N) = 0 (3.1)

in the interval [−N,N ]. It can be shown that its index is zero for any finite N . On
the other hand, as it is discussed before, the index of the problem on the whole
axis can have any value between −2 and 2. We will use this example to discuss
the conditions of stabilization of the index.

We have a sequence of bounded domains ΩN = [−N,N ] approximating the
unbounded domain Ω = R. The limiting domain of the first type is the same Ω,
the limiting operators L± are introduced in Section 3.3.1. Let us now construct
limiting domains and operators of the second type. Consider a sequence xN ∈ ΩN .
Put xN =

√
N . Then the shifted domains, for which xN is moved to zero, are

Ω̃N = [−N−√
N,N−√

N ]. The limiting domain in this case is Ω̂ = R. The limiting
operator is obtained as before: we consider the sequence of shifted coefficients and
choose locally convergent subsequences. We obtain L̂ = L+, that is the limiting
operator is the same as the limiting operator of the first type. If we take the
sequence xN = −√

N , then we will obtain the limiting operator L̂ = L−. We
recall that the limiting problems L±u = 0 do not have nonzero bounded solutions
(Condition NS) if and only if c± < 0 or c± > 0 and b± �= 0.

We now consider the sequence xN = N − 1. Then the limiting domain is the
half-axis {x ≤ 1} and the limiting problem:

a+u
′′ + b+u

′ + c+u = 0, u(1) = 0. (3.2)

The formally adjoint problem is

a+u
′′ − b+u

′ + c+u = 0, u(1) = 0. (3.3)

We require that both of them have only zero bounded solutions. This condition
is satisfied if and only if c+ < 0. Hence the corresponding parabola (essential
spectrum) lies in the left half-plane.

Similarly, for the sequence xN = −N + 1 we obtain the limiting problems

a−u′′ ± b−u′ + c−u = 0, u(−1) = 0 (3.4)

in the half-axis Ω̂ = {x ≥ −1}. This problem does not have nonzero bounded
solutions if c− < 0 and the second parabola of the essential spectrum is completely
in the left half-plane.

Thus, there is a single limiting domain of the first type with two limiting
operators. There are two more limiting domains of the second type and the op-
erators corresponding to these domains. If the limiting problems of the first type
do not have nonzero bounded solutions, then the operator satisfies the Fredholm
property and its index is defined. The condition of stabilization of the index is
formulated in a similar way: the limiting problems of the second type should not
have nonzero bounded solutions.
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In the example considered above, this condition is satisfied if c± < 0. In this
case, the essential spectrum of the operator L considered on the whole axis lies
in the left half-plane and its index is zero. It equals the indices of the problems
considered on bounded intervals. Therefore, stabilization of the index takes place.
We note that the index of the operator L may be equal zero but the conditions of
stabilizations may not be satisfied. It can be the case for positive c+ and c−.

3.4.2. Stabilization of the index. To formulate conditions of stabilization of the
index in the general case, consider a sequence of bounded domains Ωn locally con-
vergent to an unbounded domain Ω. The sequence of operators Ln : E∞(Ωn) →
F∞(Ωn) converges to an operator L : E∞(Ω) → F∞(Ω) in the sense of local con-
vergence of the coefficients. We suppose that the operators Ln satisfy the ellipticity
condition, proper ellipticity and the Lopatinskii condition. Therefore, they satisfy
the Fredholm property and their indices are well defined.

Condition NS(seq). Any limiting problem of the second type

L̂u = 0, x ∈ Ω̂, u ∈ E∞(Ω̂)

has only zero solution.

This condition is practically the same as Condition NS. The difference between
them is that there are more limiting problems of the second type than of the
first type. Therefore, Condition NS(seq) is more restrictive than Condition NS. A
similar condition should be imposed on the adjoint problems.

Condition NS∗(seq). Any limiting problem L̂∗v = 0 of the second type has only
zero solution in (F ∗(Ω̂))∞. Here L̂∗ is the operator adjoint to the limiting opera-
tor L̂.

If these conditions are satisfied, then the indices of the operators Ln are
equal to each other for n sufficiently large, the index of the operator L is defined
and equals the indices of the operators Ln. Condition NS∗(seq) for the adjoint
operators can be replaced by a similar condition for formally adjoint problems if
they are defined.

Stabilization of the index is related to the convergence of solutions of the
nonhomogeneous problems Lnu = fn to solutions of the problem Lu = f , under
the assumption that the right-hand sides of these equations converge. Generally
speaking, we cannot expect the convergence of solutions even if the conditions of
stabilization of the index are satisfied. Indeed, equality of the indices does not
necessary imply equality of the dimensions of the kernels and of codimensions of
the images (we recall that the index is the difference between them). Hence, if
the dimension of KerLn does not stabilize for large n, then the solutions may
not converge even for the homogeneous problems. If we assume that Conditions
NS(seq) and NS∗(seq) are satisfied and, moreover, the dimension of the kernels is
the same for all n sufficiently large, then the convergence of solutions takes place
(Chapter 8).
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3.5 A priori estimates

In the case of bounded domains, normal solvability of elliptic operators follows
from a priori estimates. If a sequence un is bounded in E, then we can choose a
subsequence unk

convergent in a weaker norm E′. Assuming that Lun → 0, we
obtain from (2.19) convergence of unk

in the norm E. We can use it to prove that
the kernel of the operator has a finite dimensional and its image is closed (Section
2.4.2).

In the case of unbounded domains, a sequence un bounded in E may not
be compact in E′. Hence, a priori estimates presented in Section 2.3 do not en-
sure normal solvability with a finite-dimensional kernel. Another type of a priori
estimates

‖u‖E(Ω) ≤ k
(‖Lu‖F (Ω) + ‖u‖E′(ΩR)

)
(3.5)

was first suggested in [360]–[362] in the case Ω = Rn. Here ΩR is the intersection
of the domain Ω with a ball BR = {x ∈ Rn : |x| ≤ R}. The difference with
estimate (2.19) is in the second term in the right-hand side. This norm is now
taken over a bounded subdomain of the domain Ω. Hence, local convergence in
the E′(ΩR) norm will provide strong convergence in the E(Ω) norm. We will prove
such estimates for general elliptic problems.

Estimate (3.5) will allow us to show normal solvability of elliptic problems
in unbounded domains. The proof of the estimate employs Condition NS. So we
can use this condition to prove normal solvability directly or through a priori
estimates. These two approaches are equivalent. We will obtain similar estimates
for sequences of domains,

‖u‖E(Ωk) ≤ k
(‖Lu‖F (Ωk) + ‖u‖E′(ΩkR)

)
.

They will be used to study stabilization of the index and convergence of solutions.

3.6 Non-Fredholm operators

If Condition NS is not satisfied, then the operator is not normally solvable with
a finite-dimensional kernel. Hence, it does not satisfy the Fredholm property. One
of the simplest examples of such problems is given by the equation

u′′ = f (3.6)

considered on the whole axis. The operator Lu = u′′ does not satisfy Condition
NS. Indeed, it coincides with its limiting operator, and the equation Lu = 0 has
a nonzero bounded solution. It can be easily verified that the usual solvability
conditions are not applicable for equation (3.6).

General theory of non-Fredholm operator does not exist. In some cases, it is
possible to reduce them to Fredholm operators by a modification of function spaces
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or operators. For the example considered above we can introduce an exponential
weight and put

v(x) = u(x)eµ
√

1+x2
, g(x) = f(x)eµ

√
1+x2

(µ > 0).

Then v satisfies the equation

v′′ − 2µ
x1√

1 + x2
1

v′ +
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

)
v = g.

In this case the limiting problems do not have nonzero bounded solutions. The
operator satisfies the Fredholm property and its index equals −2.

An interesting question is about solvability conditions different from the usual
ones. Instead of the classical solvability condition

∫∞
−∞ f(t)v(t)dt = 0 for the equa-

tion Lu = f considered on the whole axis, the solvability condition can take the
form

sup
x

|
∫ x

0

f(t)v(t)dt| <∞.

In both cases, v is a solution of the homogeneous adjoint equation L∗v = 0. The
last condition is principally different compared with the previous one. It does not
have the form of a linear functional from the dual space. We will study some classes
of non-Fredholm operators in Chapter 10.

4 Nonlinear Fredholm operators

Nonlinear operators are called Fredholm operators if the corresponding linearized
operators satisfy the Fredholm property. Methods of analysis of nonlinear prob-
lems often use solvability conditions and other properties of linear operators. One
of the most powerful methods of nonlinear analysis is related to topological degree.
It applies to investigation of existence and bifurcations of solutions, their persis-
tence, convergence of approximate methods. The topological degree theory starts
with finite-dimensional mappings. It was generalized by Leray and Schauder for
compact perturbations of the identity operator. They applied it to second-order
elliptic operators in bounded domains. The degree generalization for Fredholm and
proper operators with the zero index, which begins with the works by Caccioppoli
and uses the results by Smale, makes it possible to apply it to general elliptic
problems in bounded and unbounded domains.

4.1 Topological degree

The notion of the degree. Consider an operator A acting from a Banach space
E into another Banach space F . Let D be a bounded domain in E. Topological
degree is by definition an integer number γ(A,D) which depends on the operator
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A and on the domainD. This number should satisfy the following three properties:
homotopy invariance, additivity, normalization. We will not give here the exact
formulations (see Chapter 11) but rather a simple intuitive understanding of the
notion of the degree, its properties and applications.

Consider first a finite-dimensional mapping and suppose that the equation
A(u) = a with a = 0 has a finite number of solutions u1, . . . , uk in D. Moreover, we
assume that the matrices A′(uj), j = 1, . . . , k do not have zero eigenvalues. In this
case we say that a = 0 is a regular point. If some of these matrices are degenerate,
then this is a singular point. According to Sard’s lemma, singular points form a set
of the first category (countable union of nowhere dense sets). Therefore, regular
points are dense in F .

If a = 0 is a regular point, then the degree can be determined as

γ(A,D) =
k∑
j=1

(−1)νj , (4.1)

where νk is the number of real negative eigenvalues of the matrix A′(uj) together
with their multiplicities. If a = 0 is a singular point, then we can approximate it
by a regular point â sufficiently close to a = 0. In this case we can use the same
formula (4.1) for the solutions of the equation A(u) = â. This definition is correct
and independent of the choice of â if A(u) �= 0 at the boundary ∂D.

A similar formula remains valid for infinite-dimensional operators: compact
perturbation of the identity operator (Leray-Schauder degree) and for Fredholm
and proper operators with the zero index. The topological degree given by (4.1)
satisfies the properties indicated above. Moreover, the degree is unique. It has the
same value even if its construction is different.

Homotopy invariance of the degree means that its value does not change un-
der a continuous deformation of the operator. More precisely, consider an operator
Aτ : E → F which depends on the parameter τ . This dependence is continuous in
the operator norm. Suppose that Aτ (u) �= 0 for u ∈ ∂D. Then γ(Aτ , D) is inde-
pendent of τ . This property of the degree is used in the Leray-Schauder method
(see the next subsection).

Another important property of the degree is called the principle of nonzero
rotation. It means that if γ(A,D) �= 0, then the equation A(u) = 0 has at least
one solution in D.

Degree for elliptic operators. Consider the semi-linear elliptic problem

∆u + g(u) = 0, u|∂Ω = 0 (4.2)

in a bounded domain Ω ⊂ Rn with a sufficiently smooth boundary. The function g
is also supposed to be sufficiently smooth. Let us consider the auxiliary problem:

∆v = f, v|∂Ω = 0,
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where f ∈ Cα(Ω̄). It has a unique solution v ∈ C2+α(Ω̄). Denote by L the operator
which puts in correspondence the solution of this problem to each f . It is a compact
operator acting in the space Cα(Ω̄). Multiplying equation (4.2) by L, we obtain
the equation A(u) = 0, where A(u) = u + Lg(u), Lg(u) is a compact operator.
This simple construction allows the application of the Leray-Schauder degree to
elliptic operators in bounded domains.

The principle difference of unbounded domains is that the operator L is not
compact and the Leray-Schauder degree cannot be used. We will use the degree
construction for Fredholm and proper operators with the zero index. Consider
the operator A(u) which corresponds to the left-hand side of equation (4.2) and
acts from the space E0 = {u ∈ C2+α(Ω̄), u|∂Ω = 0} into the space E1 = Cα(Ω̄).
It appears that in this case the degree may not exist (Chapter 11). If we look
for solutions converging to zero at infinity and suppose that F ′(0) < 0, then
the operator is Fredholm with the zero index. However, it may not be proper.
Properness is understood here in the sense that the inverse image of a compact set
is compact in any bounded closed set. It is an important property which provides
compactness of the set of solutions of operator equations. In order to provide
the properness, we should introduce some weighted spaces. Then it holds and
the degree can be defined for general nonlinear elliptic problems in bounded or
unbounded domains.

4.2 Existence and bifurcations of solutions

We briefly recall some classical methods of nonlinear analysis based on the topo-
logical degree. The first one is used to prove existence of solutions, the second
method to study bifurcations of solutions. We suppose that the operators and
spaces are such that the topological degree can be constructed.

Leray-Schauder method. Consider an operator A(u) : E → F and the equation

A(u) = 0. (4.3)

In order to prove the existence of its solutions in some domain D ⊂ E, we can use
the following construction. Suppose that there exists a homotopy (or continuous
deformation)Aτ (u) of the operatorA to some other operatorA1 such thatA0 = A,

Aτ (u) �= 0, u ∈ ∂D, ∀ τ ∈ [0, 1], (4.4)

and γ(A1, D) �= 0. Then, by virtue of homotopy invariance of the degree, γ(A,D) �=
0. From the principle of nonzero rotation it follows that there exists a solution of
the equation (4.3) in the domain D.

Put D = BR, where BR is a ball in the space E of the radius R. Suppose
that we can obtain a priori estimates of solutions of the equation Aτ (u) = 0, that
is the estimate ‖u‖E ≤ M of all possible solutions of this equation. Here M is
some positive constant. If we take R > M , then condition (4.4) is satisfied. As
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an operator A1, we can take a simple model operator with known properties. For
example, if the equation A1(u) = 0 has a unique solution u0 and the linearized
operator A′(u0) is invertible, then γ(A1, BR) �= 0.

The method described here was developed by Leray and Schauder in [303].
It is widely used to prove existence of solutions. When the topological degree is
defined, the main difficulty of its application is related to a priori estimates of
solutions.

Local bifurcations of solutions. As before, consider an operator Aτ which depends
on the parameter τ . Suppose that the equation

Aτ (u) = 0 (4.5)

has a solution u0 for all values of τ in a neighborhood δ(τ0) of τ = τ0. Consider
the operator A′

τ (u0) linearized about u0 and suppose that it has a simple real
eigenvalue λ0(τ) such that λ0(τ0) = 0 and λ0(τ0) �= 0 for τ �= τ0. We also assume
that there are no other eigenvalues in the vicinity of zero for τ ∈ δ(τ0).

Under these assumptions, we can assert that τ = τ0 is a bifurcation point.
This means that, along with u0, there are other solutions of equation (4.5) in
some neighborhood U(u0) of u0 for τ ∈ δ(τ0). Indeed, suppose that this is not
true and that u0 is the only solution of equation (4.5) in the neighborhood U(u0)
for τ ∈ δ(τ0). Then we can express the value of the degree γ(U,Aτ ) through the
number of negative eigenvalues of the operator A′

τ (u0):

γ(U,Aτ ) = (−1)ν(τ).

However, this value is different for τ < τ0 and for τ > τ0. This contradicts homo-
topy invariance of the degree.

Continuous branches of solutions. Topological degree implies persistence of solu-
tions and existence of continuous branches of solutions. In order to explain these
properties, we recall that the index ind(uτ ) of a solution uτ of the operator equa-
tion Aτ (u) = 0 is the value of the degree γ(Aτ , U(uτ )) with respect to a small
neighborhood U(uτ ) which does not contain other solutions. If ind(uτ ) �= 0, then
the solution cannot disappear under a small change of the parameter. Indeed,
otherwise the degree γ(Aτ , U(uτ )) becomes zero. Therefore, each solution with
a nonzero index forms a continuous branch in the function space. Each branch
either goes to infinity or meets another branch where they can cross and continue
or disappear. The points where they meet are points of local bifurcations where
the linearized operator has a zero eigenvalue.

Continuous branches of solutions are related to their stability. Suppose that
two branches of solutions u1

τ and u2
τ start at some point uτ0 of the function space.

Since they do not exist for τ < τ0, then the sum of their indices equals zero. Hence
the numbers of negative eigenvalues of the corresponding linearized operators differ
from each other. Therefore, one of these two solutions is necessarily unstable,
another one can be stable or unstable.



Chapter 2

Function Spaces and Operators

Sobolev spaces W s,p proved to be very convenient in the study of elliptic prob-
lems in bounded domains. For unbounded domains, it is also useful to introduce
some generalizations of these spaces in such a way that they coincide with W s,p

in bounded domains and have a prescribed behavior at infinity in unbounded do-
mains. In this chapter we introduce spaces of functions in unbounded domains and
study their properties.

It turns out that such spaces can be constructed for arbitrary Banach spaces
of distributions, not only Sobolev spaces, as follows. Consider first functions de-
fined on Rn. As usual we denote by D the space of infinitely differentiable func-
tions with compact support and by D′ its dual. Let E ⊂ D′ be a Banach space,
the inclusion is understood both in an algebraic and a topological sense. De-
note by Eloc the collection of all u ∈ D′ such that fu ∈ E for all f ∈ D. Let
ω(x) ∈ D, 0 ≤ ω(x) ≤ 1, ω(x) = 1 for |x| ≤ 1/2, ω(x) = 0 for |x| ≥ 1.

Definition. Eq (1 ≤ q ≤ ∞) is the space of all u ∈ Eloc such that

‖u‖Eq :=
(∫

Rn

‖u(.)ω(.− y)‖qEdy
)1/q

<∞, 1 ≤ q <∞,

‖u‖E∞ := sup
y∈Rn

‖u(.)ω(.− y)‖E <∞.

In what follows we will also use an equivalent definition based on a partition
of unity. It will be proved that Eq is a Banach space. If Ω is a domain in Rn, then
by definition Eq(Ω) is the space of restrictions of Eq to Ω with the usual norm of
restrictions. It is easy to see that if Ω is a bounded domain, then

Eq(Ω) = E(Ω), 1 ≤ q ≤ ∞.

In particular, if E = W s,p, then we set W s,p
q = Eq (1 ≤ q ≤ ∞). We will show

that
W s,p
p = W s,p (s ≥ 0, 1 < p <∞).
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Hence the spaces W s,p
q generalize Sobolev spaces (q < ∞) and Stepanov spaces

(q = ∞) (see [309], [310]).

1 The space E

Everywhere below we denote by D(Rn) the space of infinitely differentiable func-
tions with finite supports, and by D′(Rn) the space of generalized functions, i.e.,
linear continuous functionals on D(Rn). In this section we consider only the whole
Rn, and we will use the notations D and D′.

Consider a Banach space E with the elements from D′. The inclusion E ⊂ D′

is understood both in the algebraic and topological sense.

Definition 1.1. The space of multipliers M(E) on E is a set of infinitely differen-
tiable functions f(x), x ∈ Rn such that the operator of multiplication by f is a
bounded operator in E. All functions defined in Rn, which are infinitely differen-
tiable and have all bounded derivatives, are multipliers in E.

We denote by ‖ · ‖E the norm in E and by ‖ · ‖M the norm in M(E). By
definition

‖fu‖E ≤ ‖f‖M‖u‖E, ∀f ∈M(E), ∀u ∈ E.

Proposition 1.2. Let E be invariant with respect to translation in R
n and

‖τhu‖E = ‖u‖E, ∀u ∈ E,

where τh is an operator of translation. Let further f ∈M(E), τhf(x) = f(x+ h),
h ∈ R

n. Then
‖τhf‖M = ‖f‖M .

Proof. We first prove that
τh(fu) = τhf(τhu). (1.1)

Indeed, by definition for any φ ∈ D we have

〈τh(fu), φ〉 = 〈fu, τ−hφ〉,
〈τhf(τhu), φ〉 = 〈τhu, (τhf) · φ〉 = 〈u, τ−h((τhf) · φ)〉 = 〈u, f · τ−hφ〉 = 〈fu, τ−hφ〉,
and (1.1) is proved. Further,

‖fu‖E = ‖τh(fu)‖E = ‖τhf(τhu)‖E ≤ ‖τhf‖M‖τhu‖E = ‖τhf‖M‖u‖E.
Hence

‖f‖M ≤ ‖τhf‖M . (1.2)

Therefore
‖τhf‖M ≤ ‖τ−h(τhf)‖M = ‖f‖M .

Together with (1.2) this estimate proves the proposition. �
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In what follows we suppose that for any f ∈ D,

sup
h

‖τhf‖M <∞. (1.3)

Example 1.3. If E = Hs,p or E = W s,p, where −∞ < s < ∞, 1 < p < ∞, then
any infinitely differentiable function f from C [|s|]+1(Rn) belongs to M(E) and

‖f‖M ≤ K‖f‖C[|s|]+1,

where K is a positive constant.

Definition 1.4. Eloc is a space of all u ∈ D′ such that fu ∈ E for all f ∈ D.

2 Systems of functions

Definition 2.1. Partition of unity is a sequence {φi}, i = 1, 2, . . . of functions
φi ∈ D, φi(x) ≥ 0 such that

∞∑
i=1

φi(x) = 1, x ∈ R
n.

Condition 2.2. Let {φi}, i = 1, 2, . . . be a sequence of functions φi ∈ D. For
some given N and any i there exists no more than N functions φj such that
suppφj ∩ suppφi �= �.

Everywhere below we consider partitions of unity for which Condition 2.2 is sat-
isfied.

Definition 2.3. Two systems of functions {φi}, {ψj}, i = 1, 2, . . . , j = 1, 2, . . . ,
φi ∈ D, ψj ∈ D are called equivalent if there exists a number N such that:

– for any i there exists no more than N functions ψj such that suppψj ∩
suppφi �= �,

– for any j there exists no more than N functions φi such that suppφi ∩
suppψj �= �.

Proposition 2.4. The equivalence relation introduced by Definition 2.3 is reflexive,
symmetric, and transitive.

We will also use systems of functions satisfying the following condition.

Condition 2.5. System of functions φi satisfies the following conditions:

1. φi(x) ≥ 0, φi ∈ D,
2. Condition 2.2 is satisfied,
3. supi ‖φi‖M <∞,
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4. φ(x) =
∑∞
i=1 φi(x) ≥ m > 0 for some constant m,

5. the following estimate holds:

sup
x

|Dαφ(x)| ≤Mα,

where Dα denotes the operator of differentiation, and Mα are positive con-
stants.

3 The space Ep

Definition 3.1. Let {φi}, i = 1, 2, . . . be a partition of unity. Ep is the space of all
u ∈ Eloc such that

∞∑
i=1

‖φiu‖pE <∞,

where 1 ≤ p <∞, with the norm

‖u‖Ep =

( ∞∑
i=1

‖φiu‖pE
)1/p

.

Proposition 3.2. Let {φ1
i } and {φ2

i } be two partitions of unity such that

sup
i

‖φ1
i ‖M <∞, sup

i
‖φ2

i ‖M <∞.

Suppose that E1
p and E2

p are the spaces Ep corresponding to {φ1
i } and {φ2

i }, re-
spectively. If the partitions of unity are equivalent, then E1

p = E2
p , and their norms

are equivalent.

Proof. Let u ∈ E2
p . We have

φ1
i u = φ1

i

∞∑
j=1

φ2
ju =

∑
j′
φ1
iφ

2
j′u,

where j′ are all the numbers j such that suppφ1
i ∩ suppφ2

j �= �. By Definition 2.3
the number of such j′ is no more than N . We have the estimate

‖φ1
iu‖pE ≤


∑

j′
‖φ1

iφ
2
j′u‖E



p

.

Let aj ≥ 0, j = 1, . . . ,m. Then from convexity of the function sp we obtain
the estimate 

 m∑
j=1

aj



p

= mp


 m∑
j=1

1
m
aj



p

≤ mp−1
m∑
j=1

apj .
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Therefore 
∑

j′
‖φ1

iφ
2
j′u‖E



p

≤ mp−1
∑
j′

‖φ1
iφ

2
j′u‖pE,

where m is the number of j′. Since m ≤ N , then

‖φ1
i u‖pE ≤ Np−1

∑
j′

‖φ1
iφ

2
j′u‖pE = Np−1

∞∑
j=1

‖φ1
iφ

2
ju‖pE.

Let k be a positive integer. We have

k∑
i=1

‖φ1
iu‖pE = Np−1

k∑
i=1

∞∑
j=1

‖φ1
iφ

2
ju‖pE = Np−1

∞∑
j=1

k∑
i=1

‖φ1
iφ

2
ju‖pE, (3.1)

k∑
i=1

‖φ1
iφ

2
ju‖pE =

∑
i′

‖φ1
i′φ

2
ju‖pE ≤

∑
i′

‖φ1
i′‖pM‖φ2

ju‖pE,

where i′ are those of i for which suppφ1
i ∩ suppφ2

j �= �. The number of such i′ is
less than or equal to N . Let

Kj = sup
i

‖φji‖M , j = 1, 2.

Then
k∑
i=1

‖φ1
iφ

2
ju‖pE ≤ NK1‖φ2

ju‖pE.

It follows from (3.1) that

k∑
i=1

‖φ1
iu‖pE ≤ NpK1

∞∑
j=1

‖φ2
ju‖pE = NpK1‖u‖pE2

p
.

From this we obtain ∞∑
i=1

‖φ1
iu‖pE ≤ NpK1‖u‖pE2

p
.

Hence u ∈ E1
p and

‖u‖E1
p
≤ NK

1/p
1 ‖u‖E2

p
, E2

p ⊂ E1
p .

Similarly we get
‖u‖E2

p
≤ NK

1/p
2 ‖u‖E1

p
, E1

p ⊂ E2
p .

The proposition is proved. �

Proposition 3.3. The space Ep is complete.
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Proof. Consider a fundamental sequence um in the space Ep. Then for any ε > 0
there exists N(ε) such that

∞∑
i=1

‖(uk − um)φi‖pE ≤ ε (3.2)

for any k,m ≥ N(ε). Denote Φn =
∑n

i=1 φi. Let Ψn be an infinitely differentiable
function with a finite support such that Ψn = 1 in the support of Φn. Since E is
a Banach space and the sequence Ψnum is fundamental with respect to m for any
n fixed, then Ψnum → vn in E as m → ∞. Obviously, Φnum → Φnvn in E as
m→ ∞.

Consider a sequence nj, nj → ∞ as j → ∞. We construct the sequence of
limiting functions vnj such that

‖Φnj (um − vnj )‖E → 0 as m→ ∞,

and for any j2 > j1,
Φnj1

vnj1
= Φnj1

vnj2
.

Therefore we have constructed the limiting function v defined in Rn. It coincides
with vj in the support of Φj . We have

‖Φnj (um − v)‖E → 0, as m→ ∞. (3.3)

We note that for any δ > 0 there exists N(δ) and i0(δ) such that

∞∑
i=i0(δ)

‖ukφi‖pE ≤ δ (3.4)

for any k ≥ N(δ). Indeed, we choose N(δ) such that

∞∑
i=1

‖(uk − um)φi‖pE ≤ Cpδ (3.5)

for any k,m ≥ N(δ). Here Cp = 2−p. On the other hand, for a fixed m we can
choose i0(δ) such that

∞∑
i=i0(δ)

‖umφi‖pE ≤ Cpδ (3.6)

since the corresponding series converges. From (3.5) it follows that for m fixed and
any k ≥ N(δ),

∞∑
i=i0(δ)

‖(uk − um)φi‖pE ≤ Cpδ. (3.7)

From (3.6) and (3.7) we obtain (3.4).
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We prove next that
∞∑

i=i0(δ)

‖vφi‖pE ≤ δ, (3.8)

where i0(δ) is the same as in (3.4). Suppose that this estimate is not true. Then
there exists i1(δ) such that

i1(δ)∑
i=i0(δ)

‖vφi‖pE > δ. (3.9)

On the other hand from (3.3) we have

i1(δ)∑
i=i0(δ)

‖(um − v)φi‖pE → 0 as m→ ∞.

This convergence and (3.9) contradict (3.4).
From (3.3), (3.4), and (3.8) we conclude that um converges to v in Ep. The

proposition is proved. �

Proposition 3.4. Let uk =
∑k

i=1 uφi. Then uk → u in Eq for 1 ≤ q <∞.

Proof. We have

‖u− uk‖qEq
=

∞∑
i=1

‖φi(u− uk)‖qE =
∞∑
i=1

‖φi
∞∑

j=k+1

uφj‖qE =
∞∑
i=k′

‖φi
∞∑

j=k+1

uφj‖qE ≡ S,

where the external sum is taken over all i such that suppφi ∩ suppφj �= � for all
j ≥ k + 1. The value k′ depends on k, and k′ → ∞ as k → ∞,

S =
∞∑
i=k′

‖φi
∑
j′
uφj′‖qE ,

where j′ denotes all j such that suppφj ∩ suppφi �= � for a given i. Since the
number of such j is uniformly bounded, we have the estimate

S ≤ C1

∞∑
i=k′

‖φiuφj′‖qE ≤ C2

∞∑
i=k′

‖uφj′‖qE.

The last sum converges to zero as k → ∞. The proposition is proved. �

Corollary 3.5. Infinitely differentiable functions with bounded supports are dense
in Eq, 1 ≤ q <∞.

Proof. It is sufficient to note that D is dense in E, and uk ∈ E. �
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Definition 3.6. Let {φi}, i = 1, 2, . . . be a system of functions satisfying Condition
2.5. Ep is the space of all u ∈ Eloc such that

∞∑
i=1

‖φiu‖pE <∞,

where 1 ≤ p <∞, with the norm

‖u‖Ep =

( ∞∑
i=1

‖φiu‖pE
)1/p

.

Proposition 3.7. The spaces in Definitions 3.1 and 3.6 coincide and their norms
are equivalent.

The proof is similar to the proof of Proposition 4.4 below.

We introduce now one more definition of the norm in the space Eq. Let the
norm be given by the equality

‖u‖Eq =
(∫

Rn

‖u(·)φ(· − y)‖qEdy
)1/q

. (3.10)

We show that this norm is equivalent to the norm defined through a partition of
unity. We note first of all that the function

s(y) = ‖u(·)φ(· − y)‖qE
is continuous. Indeed,

|s1/q(y) − s1/q(y0)| ≤ ‖u(·)(φ(· − y) − φ(· − y0))‖E → 0 as y → y0

by the properties of multipliers.
We have

‖u‖qEq
=
∫

Rn

s(y)dy =
∞∑
i=1

∫
Qi

s(y)dy,

where Qi are unit cubes of the square lattice in Rn,
∫
Qi

s(y)dy = s(yi)

for some yi ∈ Qi since s(y) is continuous. Hence

‖u‖qEq
=

∞∑
i=1

s(yi). (3.11)
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This equality is obtained without specific assumptions on the function φ(x). Sup-
pose now that it equals 1 in the ball of the radius r =

√
n, and 0 outside of the

ball with the radius 2r. Then for any yi ∈ Qi,

φ(x − yi) = 1, x ∈ Qi.

Therefore the system of functions φi(x) = φ(x − yi) satisfies the following condi-
tions:

(1) m ≤ ∑∞
i=1 φi(x) ≤M for all x ∈ Rn and some positive constants m and M ,

(2) for each x ∈ Rn there exists a finite number of functions φi different from
zero at this point. The estimate of this number is independent of x.

Hence the norm (3.11) is equivalent to the norm defined with any other
system of functions equivalent to φi We have proved the following proposition.

Proposition 3.8. The norm (3.10) is equivalent to the norm in Definition 3.1.

4 The space E∞
Definition 4.1. Let {φi} be a system of functions from D, φi(x) ≥ 0. E∞ is the
space of all functions u ∈ Eloc such that

sup
i

‖φiu‖E <∞,

with the norm
‖u‖E∞ = sup

i
‖φiu‖E.

Proposition 4.2. Let {φ1
i } and {φ2

i } be two partitions of unity satisfying Condition
2.2,

sup
i

‖φ1
i ‖M <∞, sup

i
‖φ2

i ‖M <∞.

Suppose that E1
∞ and E2

∞ are the spaces E∞ corresponding to {φ1
i } and {φ2

i },
respectively. If {φ1

i } and {φ2
i } are equivalent, then E1∞ = E2∞, and their norms

are equivalent.

Proof. We have

φ1
i u = φ1

i

∞∑
j=1

φ2
ju =

∑
j′
φ1
iφ

2
j′u,

where j′ are all the numbers j such that suppφ1
i ∩ suppφ2

j �= �. By Definition 2.3
the number of j′ is less than or equal to N . Hence

‖φ1
iu‖E ≤

∑
j′

‖φ1
iφ

2
j′u‖E ≤ ‖φ1

i ‖M
∑
j′

‖φ2
j′u‖E ≤ N‖φ1

i ‖M‖u‖E2∞,

sup
i

‖φ1
iu‖E ≤ N sup

i
‖φ1

i ‖M‖u‖E2∞.
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Therefore u ∈ E1∞ and

‖u‖E1∞ ≤ N sup
i

‖φ1
i ‖M‖u‖E2∞.

Similarly it can be proved that E1
∞ ⊂ E2

∞ with the corresponding inequality
between their norms. The proposition is proved. �

Example 4.3. If E = Hs,p or W s,p, −∞ < s <∞, 1 < p <∞, then instead of 3 in
Condition 2.5 we can require

sup
i

‖φi‖C[|s|]+1 <∞.

Proposition 4.4. Let {φ1
i } and {φ2

i } be two systems of functions satisfying Con-
dition 2.5, E1∞ and E2∞ be two spaces E∞ corresponding to {φ1

i } and {φ2
i }, re-

spectively. If {φ1
i } and {φ2

i } are equivalent, then E1
∞ = E2

∞, and their norms are
equivalent.

Proof. We introduce the system of functions θ1i (x) = φ1
i (x)/φ

1(x), where

φ1(x) =
∞∑
i=1

φ1
i (x).

Obviously θ1i is a partition of unity. Denote by E3
∞ the space which is constructed

with the functions θ1i according to Definition 4.1. We will prove that E1∞ = E3∞
and that their norms are equivalent. Indeed, let u ∈ E3

∞. Then

sup
i

‖θ1i u‖E <∞, ‖u‖E3∞ = sup
i

‖θ1i u‖E.

We have
‖φ1

iu‖E = ‖φ1θ1i u‖E ≤ ‖φ1‖M‖θ1i u‖E ≤ ‖φ1‖M‖u‖E3∞.

Hence u ∈ E1
∞ and

‖u‖E1∞ ≤ ‖φ1‖M‖u‖E3∞.

We have proved that E3
∞ ⊂ E1

∞. Conversely, let u ∈ E1
∞. We have

‖θ1i u‖E = ‖φ
1
i

φ1
u‖E ≤ ‖ 1

φ1
‖M‖φ1

i u‖E ≤ ‖ 1
φ1

‖M‖u‖E1∞.

Hence u ∈ E3
∞ and

‖u‖E3∞ ≤ ‖ 1
φ1

‖M‖u‖E1∞.

Therefore E1
∞ ⊂ E3

∞.
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We can repeat the same construction for the second system of functions. Let
θ2i (x) = φ2

i (x)/φ
2(x), where

φ2(x) =
∞∑
i=1

φ2
i (x).

Denote by E4
∞ the space constructed with θ2i . Then we obtain E4

∞ = E2
∞ and

the corresponding equivalence of the norms. It remains to apply the previous
proposition to the spaces E3∞ and E4∞. The proposition is proved. �

5 Completeness of the space E∞
Theorem 5.1. The space E∞ is complete.

Proof. Let uk ∈ E∞, k = 1, 2, . . . be a fundamental sequence. This means that for
any ε > 0 there exists N = N(ε) such that

‖uk − ul‖E∞ < ε, k, l > N. (5.1)

Let {φi}, i = 1, 2, . . . be a partition of unity in Rn such that supports of φi belong
to the cubes of a lattice in Rn and supi ‖φi‖M < ∞. By Definition 4.1 and (5.1)
we have

sup
i

‖φiuk − φiul‖E∞ < ε, k, l > N. (5.2)

It follows that for all i,

‖φiuk − φiul‖E∞ < ε, k, l > N. (5.3)

This implies that for any i the sequence φiuk, k = 1, 2, . . . is fundamental in the
space E. Since E is a complete space, we conclude that there exists ui ∈ E such
that

φiuk → ui, k → ∞ (5.4)

in E. Passing to the limit in (5.3) we get

‖ui − φiul‖E∞ ≤ ε, ∀i, l > N. (5.5)

For any i we can construct a function ψi ∈ D such that ψi(x) = 1, x ∈ suppφi.
Then φi(x)ψi(x) = φi(x) for x ∈ R

n.
Consider the formal sum u =

∑
i ψiu

i. We introduce the following functional:
for any φ ∈ D,

〈u, φ〉 =
∑
i′
〈ψi′ui′ , φ〉.

Here i′ are those of i for which suppψi ∩ suppφ �= �. We note that

〈u, φ〉 =
∑
i

〈ψiui, φ〉
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for any finite set of i which contains i′ since 〈ψiui, φ〉 = 〈ui, ψiφ〉 = 0 if suppψi ∩
suppφ = �. Obviously u is a linear functional on D since for any φ1, φ2 ∈ D we
can take those i which contain i′ for φ1, φ2, and φ1 + φ2.

We now prove that u ∈ D′, i.e., that the functional is continuous. Indeed, let
φk → 0 in D. This means that suppφk ⊂ B for all k and for some ball B ⊂ Rn,
and φk → 0 uniformly with all their derivatives. We take u =

∑
i′ ψi′u

i′ , where i′

are those of i for which suppψi ∩B �= �. Since ψiui ∈ D′, then u ∈ D′.
Moreover, u ∈ Eloc. Indeed, let f ∈ D. We have for any φ ∈ D:

〈fu, φ〉 = 〈u, fφ〉 =
∑
i′
〈ψi′ui′ , fφ〉 = 〈f

∑
i′
ψi′u

i′ , φ〉.

Hence fu = f
∑

i′ ψi′u
i′ . Here i′ are those of i for which suppψi ∩ supp f = �.

Since ui ∈ E and f and ψi are multipliers, we get fu ∈ E. Therefore, u ∈ Eloc.
It remains to prove that u ∈ E∞ and limk→∞ uk = u in E∞. We have

φiu = φi
∑
j

ψju
j, (5.6)

where j are all of the subscripts for which

suppψj ∩ suppφi �= �. (5.7)

Further, from (5.4)
φi
∑
j

ψju
j = φi

∑
j

ψj lim
k→∞

φjuk. (5.8)

Since ψj and φi are multipliers in E, we obtain

∑
j

φiψj lim
k→∞

φjuk =
∑
j

lim
k→∞

φiψjφjuk = lim
k→∞

∑
j

φiφjuk. (5.9)

The subscripts j are defined by (5.7). For all other j we have suppψj∩suppφi = �.
Hence suppφj ∩ suppφi = �. Therefore

∑
j

φiφj = φi

∞∑
j=1

φj = φi.

From (5.8), (5.9)
φi
∑
j

ψju
j = lim

k→∞
φiuk = ui.

From (5.6), φiu = ui. We get now from (5.5)

‖φiu− φiul‖E = ‖ui − φiul‖E ≤ ε, ∀i, l > N. (5.10)
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It follows that
‖φiu‖E ≤ ε+ ‖φiul‖E ≤ ε+ ‖ul‖E∞ .

Hence u ∈ E∞.
We obtain from (5.10)

sup
i

‖φi(u − ul)‖E ≤ ε, l > N.

Therefore
‖u− ul‖E∞ ≤ ε, l > N.

Hence liml→∞ ul = u in E∞. The theorem is proved. �

6 Other definitions of the space E∞
Definition 6.1. Let η(x) ∈ D satisfy the following conditions:

1. 0 ≤ η(x) ≤ 1, x ∈ Rn,
2. η(x) = 1 in the cube |xi| ≤ a1, i = 1, 2, . . . , n,
3. η(x) = 0 outside the cube |xi| ≤ a2, i = 1, 2, . . . , n, where a1 and a2 are given

numbers, a1 < a2.

Denote ηy(x) = η(x − y), y ∈ Rn. The space E∞ is the set of all u ∈ Eloc such
that

sup
y∈Rn

‖ηyu‖E <∞.

The norm in this space is given by the relation ‖u‖E∞ = supy∈Rn ‖ηyu‖E.

Proposition 6.2. Let {φi} be a partition of unity in Rn with supports in lattice
cubes, supi ‖φi‖M <∞. Then the spaces in Definitions 4.1 and 6.1 coincide.

Proof. Denote by E1
∞ and E2

∞ the spaces in Definitions 6.1 and 4.1, respectively.
We will use the function η(x) constructed in the following way. Let Qa be the cube
|xi| ≤ a, i = 1, . . . , n, χ(x) be the characteristic function of the cube Q2a. Set

η(x) =
∫
ωε(x− ξ)χ(ξ)dξ =

∫
ωε(τ)χ(x + τ)dτ,

where ωε(x) is a symmetric averaging kernel,

ωε(x) = 0 for |x| > ε,

∫
ωε(x)dx = 1.

For ε > 0 sufficiently small we obtain

η(x) = 1, x ∈ Qa, η(x) = 0, x �∈ Q3a.
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Set ηy(x) = η(x − y), χy(x) = χ(x− y). Obviously,

ηy(x) =
∫
ωε(x− ξ)χy(ξ)dξ =

∫
ωε(τ)χy(x + τ)dτ.

We coverRn with the cubes obtained by translation of the cube Q2a such that they
intersect each other only by their sides. Let χi(x) be the characteristic functions
of these cubes. Then∑

i

χi(x) = 1 almost everywhere in R
n. (6.1)

We have χi(x) = χ(x− hi) for some hi. Hence

ηhi(x) =
∫
ωε(τ)χi(x+ τ)dτ.

From (6.1) it follows that
∑
i ηhi(x) = 1. Therefore ηhi(x) is a partition of unity,

supp ηhi belong to some cubes. Moreover, ηhi(x) = η(x − hi), supi ‖ηhi‖M <∞.
Let u ∈ E1

∞. We have

sup
i

‖ηhiu‖M ≤ sup
y

‖ηyu‖E ≤ ‖u‖E1∞.

Hence u ∈ E2∞ and ‖u‖E2∞ ≤ ‖u‖E1∞. We have proved that

E1
∞ ⊂ E2

∞ for this choice of η(x). (6.2)

Now let u ∈ E2
∞ and {φi} be the partition of unity in the formulation of the

proposition. We have

ηyu =
∞∑
i=1

ηyφiu =
∑
i′
ηyφi′u, (6.3)

where i′ are all the numbers i for which suppφi has a nonempty intersection with
supp ηy . The number of such i′ is less than or equal to N , where N does not
depend on y. It follows from (6.3) that

‖ηyu‖E ≤
∑
i′

‖ηyφi′u‖E ≤ ‖ηy‖M‖φi′u‖E ≤ N‖ηy‖M‖u‖E2∞.

Hence
sup
y

‖ηyu‖E ≤ N sup
y

‖ηy‖M‖u‖E2∞ ≤ K‖u‖E2∞.

From this estimate it follows that u ∈ E1
∞ and

‖u‖E1∞ ≤ K‖u‖E2∞, E2
∞ ⊂ E1

∞. (6.4)

The proposition is proved for the special choice of ηy. Below we will prove that
E1

∞ does not depend on the choice of ηy. �
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In what follows we use the space E(G), where G is a domain in Rn. The
space E(G) is defined as the set of all generalized functions from D′

G which are
restrictions to G of generalized functions from E. The norm in this space is

‖u‖E(G) = inf ‖v‖E ,
where the infimum is taken over all those generalized functions v ∈ E whose
restriction to G coincides with u.

Definition 6.3. The space E∞ is the set of all u ∈ Eloc such that

sup
y∈Rn

‖uy‖E(Gy) <∞, (6.5)

where uy is a restriction of u to Gy, G ⊂ Rn is a bounded domain containing the
origin, Gy is a shifted domain: the characteristic function of Gy is χ(x− y), where
χ(x) is the characteristic function of G. The norm in E∞ is given by

‖u‖E∞ = sup
y∈Rn

‖uy‖E(Gy).

Proposition 6.4. The spaces in Definitions 6.1 and 6.3 coincide.

Proof. Denote by E1
∞ and E3

∞ the spaces given by Definitions 6.1 and 6.3, respec-
tively. Let u ∈ E1∞. We take a1 sufficiently large such that G ⊂ Qa1 , where Qa1 is
the cube |xi| < a1, i = 1, . . . , n. Let uy be the restriction of u to Gy. Then ηyu is
an extension of uy to E. Hence

‖uy‖E(Gy) ≤ ‖ηyu‖E ≤ ‖u‖E1∞.

Therefore, u ∈ E3∞, and

‖u‖E3∞ ≤ ‖u‖E1∞ , E1
∞ ⊂ E3

∞. (6.6)

This inequality is proved only for such a1 that G ⊂ Qa1 . From (6.4) we have
E2∞ ⊂ E1∞ for any a1. Hence E2∞ ⊂ E3∞ for any choice of G.

Now let u ∈ E3∞. By Definition 6.3 this means that u ∈ Eloc and (6.5) holds.
By the definition of the norm ‖uy‖E(Gy), there exists a function v ∈ E such that
v is an extension of uy and

‖v‖E ≤ 2‖uy‖E(Gy) <∞. (6.7)

We take a function η(x) in Definition 6.1 such that Qa2 ⊂ G. We have

‖ηyv‖E ≤ ‖ηy‖M‖v‖E ≤ K‖v‖E (6.8)

since supy ‖ηy‖M <∞.
Since Qa2 ⊂ G, then

ηyv = ηyuy in D′. (6.9)
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Indeed, for any φ ∈ D we have

〈ηyv, φ〉 = 〈v, ηyφ〉, 〈ηyuy, φ〉 = 〈uy, ηyφ〉.
From the inclusion supp ηyφ ⊂ Gy follows the equality 〈v, ηyφ〉 = 〈uy, ηyφ〉 since
v is an extension of uy.

It follows from (6.9) that

‖ηyuy‖E = ‖ηyv‖E ≤ K‖v‖E ≤ 2K‖uy‖E(Gy) ≤ 2K‖u‖E3∞.

Therefore
‖ηyu‖E ≤ 2K‖u‖E3∞ (6.10)

since ηyu = ηyuy in D′. From (6.10) we conclude that u ∈ E1
∞ and

‖u‖E1∞ ≤ 2K‖u‖E3∞, E3
∞ ⊂ E1

∞. (6.11)

This result is obtained under the assumption that Qa2 ⊂ G. We can take η(x)
as in the proof of (6.2). Since this result is true for any a, we obtain from (6.11)
that E3

∞ ⊂ E2
∞ for any choice of G. Therefore E3

∞ = E2
∞ for any choice of G. We

conclude that E3
∞ does not depend on the choice of G.

Let us return to (6.6). We recall that it is obtained under the assumption
that G ⊂ Qa1 . But since E3

∞ does not depend on the choice of G, a1 can be taken
arbitrary. Similarly, a2 can be taken arbitrary in the assumption Qa2 ⊂ G. Hence
(6.11) is true for any a2. From (6.6) and (6.11) we obtain E1∞ = E3∞ for any choice
of a1 and a2. The proposition is proved. �

Remark 6.5. It follows from the proposition that E∞ in Definition 6.1 does not
depend on the choice of η(x). The same result is true if instead of cubes in Defi-
nition 6.1 we take balls. Indeed, since we have proved that E3

∞ does not depend
on the choice of G, we can repeat the same proof.

7 Bounded sequences in E∞
Definition 7.1. A sequence uk ∈ Eloc is called locally weakly convergent to u ∈ Eloc

if for any φ ∈ D,
φuk → φu weakly in E.

Lemma 7.2. If a sequence uk ∈ E∞ is bounded in E∞ and locally weakly convergent
to u, then u ∈ E∞.

Proof. We use Definition 4.1 of the space E∞. Let {φi} be a partition of unity.
Then u ∈ E∞ if supi ‖φiu‖E < ∞. Suppose that u �∈ E∞. Then there is a subse-
quence ik of i such that

‖φiu‖E → ∞ as ik → ∞. (7.1)
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A set in a Banach space is bounded if and only if any functional from the dual space
is bounded on it. Hence there exists a functional F ∈ E∗ such that F (φiku) →
∞ as ik → ∞. Since ul is locally weakly convergent to u, then F (φikul) →
F (φiku) as l → ∞ for any ik. Therefore we can choose lk such that |F (φikulk)−
F (φiku)| < 1. It follows from (7.1) that

F (φikulk) → ∞ as ik → ∞. (7.2)

On the other hand, by assumption uk is bounded in E∞. Hence ‖uk‖E∞ ≤
M, ‖φikuk‖E ≤M . This contradicts (7.2). The lemma is proved. �

Theorem 7.3. Let E be a reflexive Banach space. If {uk}, k = 1, 2, . . . is a bounded
sequence in E∞, then there exists a subsequence uki of uk and u ∈ E∞ such that

uki → u locally weakly and in D′.

Proof. Denote by Br a ball |x| < r in Rn and consider the sequence Bj , j =
1, 2, . . . . Suppose that fj , j = 1, 2, . . . is a sequence of functions such that fj ∈ D,

fj(x) = 1, x ∈ Bj , fj(x) = 0, x �∈ Bj+1, j = 1, 2, . . .

Let {φi}, i = 1, 2, . . . , φi ∈ D be a partition of unity for which E∞ is defined. We
suppose that suppφi belong to unit cubes and supi ‖φi‖M = K <∞. Since

‖φiuk‖E ≤ K‖uk‖E∞ ≤M,

we get
‖fjuk‖E ≤Mj (7.3)

with a constant Mj independent of k. Indeed,

‖fjuk‖E = ‖
∑
i′
fjφi′uk‖E .

Here i′ are those of i for which suppφi ∩ supp fj �= �. The number of i′ is less or
equal to Nj , where Nj is a constant. Therefore

‖fjuk‖E ≤
∑
i′

‖fj‖M‖φi′uk‖E ≤ NjM‖fj‖M ,

and (7.3) is proved. Since E is a reflexive space, we conclude that there exists a
subsequence uji , i = 1, 2, . . . of uk such that fju

j
i → vj weakly in E, vj ∈ E. This

means that there exists a sequence ũi such that

F (fj ũi) → F (vj) as i→ ∞ (7.4)

for any F ∈ E∗. Indeed, we choose uji such that u2
i is a subsequence of u1

i , u
3
i is

a subsequence of u2
i and so on. Denote by ũi the diagonal subsequence. Then we

obtain from (7.4)
F (fj ũi) → F (vj) as i→ ∞ (7.5)

for any j and any F ∈ E∗.
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It follows from (7.5) that if k > j, then

fjvk = vj . (7.6)

Indeed, F (fj ·) ∈ E∗. Hence F (fjfkũi) → F (fjvk) as i → ∞. But fj(x)fk(x) =
fj(x). Therefore F (fj ũi) → F (fjvk) as i → ∞. From this and (7.5) we obtain
(7.6).

From (7.6) it follows that

〈vj , φ〉 = 〈vk, φ〉 (7.7)

if k > j and suppφ ⊂ Bj . Indeed,

〈vj , φ〉 = 〈fjvk, φ〉 = 〈vk, fjφ〉 = 〈vk, φ〉

since fjφ = φ.
We introduce a generalized function u ∈ D′ such that for any φ ∈ D,

〈u, φ〉 = 〈vj , φ〉 (7.8)

if suppφ ⊂ Bj . The proof that u is a continuous linear functional onD is standard.
Obviously, u ∈ Eloc. Indeed, for any φ ∈ D and f ∈ D we have

〈fu, φ〉 = 〈u, fφ〉 = 〈vj , fφ〉 = 〈fvj , φ〉,

where j is taken such that supp f ⊂ Bj . Hence fu = fvj in D′. Since vj ∈ E, we
get fu ∈ E, and therefore u ∈ Eloc.

We prove now that

ũi → u locally weakly as i→ ∞.

We have to prove that

F (fũi) → F (fu) as i→ ∞ (7.9)

for any f ∈ D and F ∈ E∗. If F ∈ E∗, f ∈ D, then fF ∈ E∗. It follows from (7.5)
that

fF (fjũi) → fF (vj) as i→ ∞
or

F (ffj ũi) → F (fvj) as i→ ∞.

Since f ∈ D, we can take j so large that supp f ⊂ Bj . Then f(x)fj(x) = f(x) for
all x ∈ Rn. Therefore ffjũi = fũi and

F (fũi) → F (fvj) as i→ ∞. (7.10)
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Further, for any φ ∈ D we have 〈fvj , φ〉 = 〈vj , fφ〉. Since supp fφ ⊂ Bj , from
(7.8) we obtain

〈fu, φ〉 = 〈u, fφ〉 = 〈vj , fφ〉.
Hence

〈fu, φ〉 = 〈fvj , φ〉, ∀φ ∈ D.

Therefore fu = fvj in D′. From (7.10) we obtain (7.9).
Since {ũi} is a subsequence of {uk} and this latter is bounded in E∞, we can

conclude that {ũi} is bounded in E∞. From Lemma 7.2 it follows that u ∈ E∞.
It remains to prove that ũi → u in D′. Since E ⊂ D′ (inclusion with the

topology), it follows that for any φ ∈ D, φ(u) = 〈u, φ〉 ∈ E∗. Let f ∈ D, f(x) = 1
in suppφ. Then

〈ũi − u, φ〉 = 〈ũi − u, fφ〉 = φ(f(ui − u)) → 0

as i→ ∞ because of the local weak convergence. The theorem is proved. �

8 The space Ep(Γ)

Let Γ be an m-dimensional manifold, Γ ⊂ Rn, (m < n). We first consider the
case where it is C∞ manifold. We recall the definition of D′(Γ) (see [243]). We are
given a family J of homeomorphisms ψ, called coordinate systems, of open sets
Γψ ⊂ Γ on open sets Γ̃ψ ⊂ Rm such that:

(i) If ψ and ψ′ belong to J , then the mapping

ψ′ψ−1 : ψ(Γψ ∩ Γψ′) → ψ′(Γψ ∩ Γψ′) (8.1)

is infinitely differentiable,
(ii) ∪ψ∈JΓψ = Γ.

We define the space D(Γ). If to every coordinate system ψ in Γ we are given
a function θψ ∈ D(Γ̃ψ) such that

θψ′ = θψ ◦ (ψ(ψ′)−1) in ψ(Γψ ∩ Γψ′),

we say that θ ∈ D(Γ) and set θψ = θ ◦ ψ−1.
If to every coordinate system ψ in Γ corresponds a distribution uψ ∈ D′(Γ̃ψ)

such that
uψ′ = uψ ◦ (ψ(ψ′)−1) in ψ′(Γψ ∩ Γψ′), (8.2)

we call the system uψ a distribution u in Γ. The set of all distributions in Γ is
denoted by D′(Γ). We write also uψ = u ◦ ψ−1, u = uψ ◦ ψ.

As in Section 1, we consider the space E = E(Rm), E ⊂ D′(Rm). We denote
by M(E) the space of multipliers of E, and we suppose that D(Rm) ⊂ M(E).
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Moreover we suppose that there exist numbers κ > 0 and ν > 0 such that for any
φ ∈ D(Rm),

‖φ‖M(E) ≤ κ‖φ‖Cν . (8.3)

Definition 8.1. A function u belongs to the space Eloc(Γ) if and only if u ∈ D′(Γ)
and for any θ ∈ D(Γ),

(θu) ◦ ψ−1 ∈ E. (8.4)

It is supposed that (θu)ψ is extended by zero from Γ̃ψ to Rm. By definition
(θu)ψ = θψuψ. We give the definition of the space Ep(Γ). Let Ui, i = 1, 2, . . . be
a covering of Γ for which a coordinate system ψi is introduced. We suppose that
there exists a number N such that for any i there is no more than N of j such that
Ui ∩Uj �= �. Let θi ∈ D(Γ) be a partition of unity, supp θi ⊂ Ui,

∑
i θi(x) = 1 for

any x ∈ Γ.

Definition 8.2. A function u belongs to the space Ep(Γ), 1 ≤ p <∞ if and only if
u ∈ Eloc(Γ) and

‖u‖Ep(Γ) =


 ∞∑
j=1

‖(θju) ◦ ψ−1
j ‖pE




1/p

<∞.

A function u belongs to the space E∞(Γ) if and only if u ∈ Eloc(Γ) and

‖u‖E∞(Γ) = sup
i

‖(θju) ◦ ψ−1
j ‖E <∞.

Definition 8.3. Two coverings U1
i and U2

j are called equivalent if there exists a
number N such that for any i there is no more than N of j such that U1

i ∩U2
j �= �;

for any j there is no more than N of i such that U1
i ∩ U2

j �= �.

In the following theorem we prove the independence of the space Ep(Γ) of
the choice of equivalent coverings of Γ and of the choice of partition of unity.

Theorem 8.4. Let U1
i and U2

j be two equivalent coverings of Γ, θ1i and θ2j be two
corresponding partitions of unity. Suppose that the following conditions are satis-
fied:
(α) For any i, j such that U1

i ∩ U2
j �= � the norms of the operators of change of

variables

ψ2
j (ψ

1
i )

−1 : ψ1
i (U

1
i ∩ U2

j ) → ψ2
j (U

1
i ∩ U2

j ),

ψ1
i (ψ

2
j )

−1 : ψ2
j (U

1
i ∩ U2

j ) → ψ1
i (U

1
i ∩ U2

j )

are uniformly bounded in E,
(β) The estimates

K1 = sup
i

‖θ1i ◦ (ψ1
i )

−1‖Cν <∞, K2 = sup
j

‖θ2j ◦ (ψ2
j )

−1‖Cν <∞,

hold with the same ν as in (8.3).
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Let E1
p(Γ) and E2

p(Γ) (1 ≤ p ≤ ∞) be the spaces Ep(Γ) that correspond to
the coverings U1

i and U2
j and the partitions of unity θ1i and θ2j , respectively. Then

E1
p(Γ) = E2

p(Γ), and their norms are equivalent.

Proof. Consider first the case 1 ≤ p < ∞. Let u ∈ Eloc(Γ) and ‖u‖E2
p
< ∞. We

have

θ1i u = θ1i

∞∑
j=1

θ2ju =
∑
j′
θ1i θ

2
j′u, (8.5)

where j′ are all the numbers j for which U1
i ∩U2

j �= �. By assumption, the number
of j′ is less than or equal to N . It follows from (8.5) that

‖(θ1i u) ◦ (ψ1
i )

−1‖pE ≤

∑

j′
‖θ1i θ2j′u) ◦ (ψ1

i )
−1‖E



p

.

From convexity of the function sp we obtain

‖(θ1i u) ◦ (ψ1
i )

−1‖pE ≤ Np−1
∑
j′

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖pE

= Np−1
∞∑
j=1

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖pE .

Let k be a positive integer. We have

k∑
i=1

‖(θ1i u) ◦ (ψ1
i )

−1‖pE ≤ Np−1
∞∑
j=1

k∑
i=1

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖pE. (8.6)

Further
k∑
i=1

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖pE ≤
∑
i′

‖(θ1i′θ2j′u) ◦ (ψ1
i′)

−1‖pE, (8.7)

where i′ are those i for which U1
i ∩U2

j �= �. The number of such i′ is less than or
equal to N .

For any i and j such that U1
i ∩ U2

j �= � we have, according to (8.2),

(θ1i θ
2
ju) ◦ (ψ1

i )
−1 =

(
(θ1i θ

2
ju) ◦ (ψ2

j )
−1
) ◦ (ψ2

j (ψ
1
i )

−1). (8.8)

By the condition of the theorem, the norms of the operators ψ2
j (ψ

1
i )

−1 are uni-
formly bounded. Therefore we get from (8.8)

‖(θ1i θ2ju) ◦ (ψ1
i )

−1‖E ≤M1‖(θ1i θ2ju) ◦ (ψ2
j )

−1‖E .
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Denote by θ̃1i (x) the restriction of θ1i (x) to U1
i ∩U2

j . We have obviously θ1i θ
2
j = θ̃1i θ

2
j .

Hence

(θ1i θ
2
ju) ◦ (ψ2

j )
−1 = (θ̃1i θ

2
ju) ◦ (ψ2

j )
−1 = θ̃1i ◦ (ψ2

j )
−1 · θ2ju ◦ (ψ2

j )
−1

= θ̃2i ◦ (ψ1
i )

−1 · θ2ju ◦ (ψ2
j )

−1.

It follows that

‖(θ1i θ2ju) ◦ (ψ2
j )

−1‖E ≤ ‖θ̃2i ◦ (ψ1
i )

−1‖M(E)‖θ2ju ◦ (ψ2
j )

−1‖E
≤ κ‖θ̃2i ◦ (ψ1

i )
−1‖Cν‖θ2ju ◦ (ψ2

j )
−1‖E

by virtue of (8.3). Obviously

‖θ̃2i ◦ (ψ1
i )

−1‖Cν ≤ ‖θ2i ◦ (ψ1
i )

−1‖Cν ≤ K1

according to condition (β). Thus we have obtained

‖(θ1i θ2ju) ◦ (ψ1
i )

−1‖E ≤ κK1M1‖(θ2ju) ◦ (ψ2
j )

−1‖E . (8.9)

Let us return to (8.7). From (8.9) we get
∑
i′

‖(θ1i′θ2ju) ◦ (ψ1
i′ )

−1‖pE ≤ N(κK1M1‖)p‖(θ2ju) ◦ (ψ2
j )

−1‖pE. (8.10)

Therefore (8.6), (8.7), and (8.10) imply

k∑
i=1

‖(θ1i u) ◦ (ψ1
i )

−1‖pE ≤ cp1

∞∑
j=1

‖(θ2ju) ◦ (ψ2
j )

−1‖pE ,

where
c1 = κNK1M1. (8.11)

Passing to the limit as k → ∞, we obtain

‖u‖E1
p(Γ) ≤ c1‖u‖E2

p(Γ).

Hence u ∈ E1
p(Γ).

Similarly we get for u ∈ E1
p(Γ) that

‖u‖E2
p(Γ) ≤ c2‖u‖E1

p(Γ),

and therefore u ∈ E2
p(Γ).

We have proved that E1
p(Γ) = E2

p(Γ) and that the norms in these spaces are
equivalent. Thus the theorem is proved for 1 ≤ p <∞.

Consider the case p = ∞. Let u ∈ Eloc(Γ) and ‖u‖E2∞(Γ) < ∞. From (8.5)
we obtain

‖(θ1i u) ◦ (ψ1
i )

−1‖E ≤
∑
j′

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖E.
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From (8.9) it follows that

‖(θ1i θ2j′u) ◦ (ψ1
i )

−1‖E ≤ κK1M1‖(θ2ju) ◦ (ψ2
j )

−1‖E ≤ κK1M1‖u‖E2∞(Γ).

Hence
‖(θ1i u) ◦ (ψ1

i )
−1‖E ≤ c1‖u‖E2∞(Γ),

where c1 is given by (8.11). Therefore

‖u‖E1∞(Γ) ≤ c1‖u‖E2∞(Γ).

Similarly
‖u‖E2∞(Γ) ≤ c2‖u‖E1∞(Γ).

The theorem is proved. �

Remark 8.5. In what follows Γ = ∂Ω, where Ω is a domain satisfying Condition
D (Section 2, Chapter 3), E = W s,q, (−∞ < s < ∞, 1 < q < ∞). In this case
condition (α) of the theorem is satisfied if |s| + 1 ≤ l, where l is the number in
Condition D. Indeed, from Condition D it follows that the functions ψ2

j (ψ
1
i )

−1 and
ψ1
i (ψ

2
j )

−1 belong to Cl. It can be verified that the following proposition is true for
E = W s,q and |s| + 1 ≤ l.

Proposition 8.6. Let g : Rm → Rm be a homeomorphism, g ∈ Cl(Rm), g−1 ∈
Cl(Rm). If u ∈ E, then u ◦ g ∈ E, and ‖u ◦ g‖E ≤ M‖u‖E, where M does not
depend on u, and it depends continuously on ‖g‖Cl(Rm) and ‖g−1‖Cl(Rm).

Hence condition (α) of the theorem is satisfied. Moreover under the same
assumptions on E and l, for any f ∈ Cl(Rm) and u ∈ E we have fu ∈ E and

‖fu‖E ≤M1‖f‖Cl(Rm)‖u‖E,
where M1 does not depend on f and u. Therefore (8.3) is satisfied with ν = l.

Consider now the case where Γ is a Cl manifold, where l ≥ 1 is an integer.
In this case the space D′ cannot be used since the multiplication of elements from
D′ by functions from Cl is not defined. We can consider instead the spaces Dl

and D′
l. Here Dl is the space of all functions φ ∈ Cl with compact supports. The

convergence in Dl is defined as follows: φi → 0 in Dl if Dαφi → 0 uniformly,
|α| ≤ l, and there is a fixed compact set containing the supports of all φj . The
space D′

l is defined as the space of all continuous functionals on Dl.
It is clear that the multiplication of elements of D′

l by functions φ ∈ Cl is
defined. We can define the space D′

l(Γ) similar to the definition of D′(Γ) above.
Using the space D′

l(Γ) instead of D′(Γ) we can give Definitions 8.1 and 8.2 and
prove Theorem 8.3 for Cl manifolds exactly as it was done above. We consider the
space E = E(Rm) such that E ⊂ D′

l(R
m), and we suppose that Dl(Rm) ⊂M(E).

In (8.3) we put ν = l. In the definition of the space Ep(Γ) we suppose that the
partition of unity θi ∈ Dl(Γ).
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The space E∞(Γ) was defined in Definition 8.2. In what follows we need
also other equivalent definitions. Suppose that Γ = ∂Ω, where Ω ⊂ Rn is a domain
satisfying Condition D (Section 2, Chapter 3). We assume that the spaceE satisfies
the condition of the Proposition 8.6 in the Remark 8.5, and the number ν in (8.3)
is equal to l.

Let δ be the number in Condition D and 0 < ρ ≤ δ. Consider a function
η(x) ≥ 0 such that η ∈ C∞(Rn), η(x) = 1 for |x| < ρ/2, η(x) = 0 for |x| > ρ.
Let ηz(x) = η(x − z), z ∈ Rn.

Definition 8.7. E∞(Γ) is the space of functions u ∈ Eloc(Γ) such that

‖u‖E∞(Γ) = sup
z∈Γ

‖(ηzu) ◦ ψ−1
z ‖E <∞,

where ψz is the function in Condition D which corresponds to the point z ∈ Γ.

In Theorem 8.4 we have proved that the space Ep(Γ) (1 ≤ p ≤ ∞) does not
depend on the choice of equivalent coverings of Γ. We now specify the equivalence
class of coverings, which we shall use, by pointing out its representative: covering
of Γ by cubes with the sides equal 2 and the centers at lattice points with the
increment equal to 1.

Proposition 8.8. Suppose that in Definition 8.2,

sup
i

‖θi ◦ ψ−1
i ‖Cl(Rn−1) <∞. (8.12)

Then the spaces E∞(Γ) in Definitions 8.2 and 8.7 coincide.

Proof. Denote by E2∞(Γ) and E4∞(Γ) the spaces E∞(Γ) in Definitions 8.2 and 8.7,
respectively. Let u ∈ E4

∞(Γ). Let us construct a covering of Γ and a partition of
unity as follows. We cover Γ by balls Bj of the radii ρ/2 and the centers at the
points xj ∈ Γ (i = 1, 2, . . . ). Denote by B̃j the balls of the radii ρ and the centers
at xj . We suppose that the points xj are chosen such that the covering by the
balls B̃j belongs to the equivalence class under consideration. Denote by N such
number that for any i there is no more than N of j such that the intersection
B̃i

⋂
B̃j is not empty. Let

ω(x) =
∑
j

ηxj (x). (8.13)

Obviously, supp ηxj ⊂ B̃j . Hence for any x ∈ Γ we have no more than N nonzero
terms in sum (8.13). Moreover, ω(x) ≥ 1, x ∈ Γ.

Set

θj(x) =
ηxj (x)
ω(x)

. (8.14)
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Clearly, this is a partition of unity which corresponds to the covering by B̃j . We
have

‖(θju) ◦ ψ−1
j ‖E = ‖((1/ω) ◦ ψ−1

j )((ηxju) ◦ ψ−1
j )‖E

≤ ‖(1/ω) ◦ ψ−1
j ‖M(E)‖(ηxju) ◦ ψ−1

j ‖E,
whereM(E) is the space of multipliers. By Condition D and (8.3) we have ‖(1/ω)◦
ψ−1
j ‖M(E) ≤ K, where the constant K does not depend on j. Hence

‖(θiu) ◦ ψ−1
j ‖E ≤ K‖(ηxju) ◦ ψ−1

j ‖E ≤ K‖u‖E4∞(Γ).

It follows that ‖u‖E2∞(Γ) ≤ K‖u‖E4∞(Γ) and u ∈ E2
∞(Γ). We have proved that

E4∞(Γ) ⊂ E2∞(Γ).
Now, let u ∈ E2

∞(Γ) and θi be the partition of unity in Definition 8.2. For
any z ∈ Γ we have

(ηzu) ◦ ψ−1
z =

∑
i′

(ηzθi′u) ◦ ψ−1
z , (8.15)

where i′ are all of i for which supp θi has nonempty intersection with supp ηz .
By the assumption above on the choice of the equivalent class of coverings, it is
obvious that there exists a number N independent of z such that the number of
i′ is less than N . It follows from (8.15) that

‖(ηzu) ◦ ψ−1
z ‖E ≤

∑
i′

‖(ηzθi′u) ◦ ψ−1
z ‖E . (8.16)

As in the proof of Theorem 8.4, we get

‖(ηzθi′u) ◦ ψ−1
z ‖E ≤M‖(θi′u) ◦ ψ−1

i′ ‖E,
where the constant M does not depend on z and i′. Since ‖(θi′u) ◦ ψ−1

i′ ‖E ≤
‖u‖E2∞(Γ), we obtain from (8.16) that

‖(ηzu) ◦ ψ−1
z ‖E ≤ NM‖u‖E2∞(Γ).

Hence ‖u‖E4∞(Γ) ≤ NM‖u‖E2∞(Γ). Therefore u ∈ E4∞(Γ). It follows that E2∞(Γ) ⊂
E4

∞(Γ). The proposition is proved. �

It follows from the proof that this result remains true if instead of the parti-
tion of unity in Definition 8.2 we take an arbitrary system of functions θi ∈ Dl(Γ),
supp θi ⊂ Ui and such that (8.12) is satisfied. We now give another definition of
the space E∞(Γ) (Definition 8.9) and prove its equivalence to the previous ones.
Let G ⊂ Rn be a bounded domain, and the intersection Γ

⋂
G be not empty.

Denote by D′
l(Γ

⋂
G) the restriction of D′

l(Γ) to Γ
⋂
G.

Definition 8.9. The function u ∈ E∞(Γ
⋂
G) if and only if u ∈ D′

l(Γ
⋂
G) and

there exists v ∈ E∞(Γ) such that the restriction of v to D′
l(Γ

⋂
G) coincides with

u. The norm in E∞(Γ
⋂
G) is given by

‖u‖E∞(Γ
⋂
G) = inf ‖v‖E∞(Γ),
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where the infimum is taken over all v, for which u is the restriction of v to
D′
l(Γ

⋂
G).

Definition 8.10. The space Ẽ∞(Γ) is the set of all u ∈ Eloc(Γ) such that

‖u‖Ẽ∞(Γ) = sup
y∈Γ

‖uy‖E∞(Γ
⋂
Gy) <∞, (8.17)

where uy is the restriction of u to Γ
⋂
Gy, Gy is the shifted domain: the char-

acteristic function of Gy is χ(x − y), where χ(x) is the characteristic function
of G.

In what follows it is supposed that G contains the origin.

Proposition 8.11.

Ẽ∞(Γ) = E∞(Γ).

Proof. Let u ∈ E∞(Γ), uy be the restriction of u to Γ
⋂
Gy and θj be the partition

of unity (8.14). Further, let j′ be all of j for which supp θj has a nonempty inter-
section with Γ

⋂
Gy . According to the choice of xj in (8.14) it is clear that the

number of j′ is less than a number N which does not depend on y. The function∑
j′ θj′u is an extension of uy. Hence

‖uy‖E∞(Γ∩Gy) ≤ ‖
∑
j′
θj′u‖E∞(Γ) ≤ K‖u‖E∞(Γ),

whereK does not depend on y. Therefore ‖u‖Ẽ∞(Γ) ≤ K‖u‖E∞(Γ). We have proved
that E∞(Γ) ⊂ Ẽ∞(Γ).

Now let u ∈ Ẽ∞(Γ). This means that

u ∈ Eloc(Γ) and sup
y∈Γ

‖uy‖E∞(Γ
⋂
Gy) <∞.

By Definition 8.9, there exists an extension v ∈ E∞(Γ) of uy such that

‖v‖E∞(Γ) ≤ 2‖uy‖E∞(Γ
⋂
Gy). (8.18)

Since the space E∞(Γ) does not depend on the choice of ρ, we can suppose that
ρ is taken so small that supp ηy ∈ Gy. We have

‖ηyv‖E∞(Γ) ≤ K1‖v‖E∞(Γ), (8.19)

where K1 does not depend on y.
Since supp ηy ∈ Gy, we have

ηyv = ηyuy, (8.20)
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where ηyuy is extended by zero outside Γ
⋂
Gy. From (8.18), (8.19) and (8.20),

‖ηyuy‖E∞(Γ) = ‖ηyv‖E∞(Γ) ≤ K1‖v‖E∞(Γ)

≤ 2K1‖uy‖E∞(Γ
⋂
Gy) ≤ 2K1‖u‖Ẽ∞(Γ).

But ηyuy = ηyu. Therefore

‖ηyu‖E∞(Γ) ≤ 2K1‖u‖Ẽ∞(Γ). (8.21)

By Definition 8.7, we have

sup
y∈Γ

‖ηyu‖E∞(Γ) = sup
y∈Γ

sup
z∈Γ

‖(ηzηyu) ◦ ψ−1
z ‖E. (8.22)

On the other hand, since the space E∞(Γ) in Definition 8.7 does not depend
on the choice of η, we can take η2(x) instead of η(x). Hence for some constant
κ > 0 we have

κ‖u‖E∞(Γ) ≤ sup
z∈Γ

‖η2
zu ◦ ψ−1

z ‖E ≤ sup
y∈Γ

sup
z∈Γ

‖(ηyηzu) ◦ ψ−1
z ‖E = sup

y∈Γ
‖ηyu‖E∞(Γ)

by (8.22). It follows from (8.21) that

κ‖u‖E∞(Γ) ≤ 2K1‖u‖Ẽ∞(Γ).

Therefore u ∈ E∞(Γ). We have proved that Ẽ∞(Γ) ⊂ E∞(Γ). The proposition is
proved. �

Remark 8.12. The formulation of Proposition 8.11 and its proof remain the same
if instead of (8.17) we suppose that

‖u‖Ẽ∞(Γ) = sup ‖uy‖E∞(Γ
⋂
Gy) <∞,

where the supremum is taken over all y ∈ Ω such that the Γ
⋂
Gy is not empty.

9 Spaces in unbounded domains

Let Ω be a domain in Rn, E be a space in Definition 1.1. Instead of the estimate

‖fu‖E ≤ ‖f‖M‖u‖E
for f ∈ D, u ∈ E, we have a similar estimate for the space E(Ω):

‖fu‖E(Ω) ≤ ‖f‖M‖u‖E(Ω), (9.1)

where f ∈ D, u ∈ E(Ω). Indeed, let uc be an extension of u to E. Then fuc is an
extension of fu to E. Hence

‖fu‖E(Ω) ≤ ‖fuc‖E ≤ ‖f‖M‖u‖E.
If we take the infimum over all extensions uc, we obtain (9.1).
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Definition 9.1. The space E(Ω) is defined as the space of the generalized functions
from D′

Ω that are restrictions to Ω of generalized functions from E. The norm in
E(Ω) is defined as

‖u‖E(Ω) = inf ‖uc‖E ,
where the infimum is taken over all uc ∈ E whose restriction to Ω coincide with u.

Definition 9.2. The space E1∞(Ω) is defined as the set of the generalized functions
from D′

Ω that are restrictions to Ω of generalized functions from E∞. The norm
in E1

∞(Ω) is defined as
‖u‖E1∞(Ω) = inf ‖uc‖E∞ ,

where the infimum is taken over all uc ∈ E∞ whose restriction to Ω coincide
with u.

We will also give another definition of the space E∞(Ω). Let ηy(x) be the
same as in Definition 6.1.

Definition 9.3. The space E2
∞(Ω) is defined as the set of such generalized functions

from D′
Ω that ηyu ∈ E(Ω) for all y ∈ Rn and

sup
y∈Rn

‖ηyu‖E(Ω) <∞.

If supp ηy ∩ Ω = �, then ηyu = 0. The norm in E2∞(Ω) is given by the equality

‖u‖E2∞(Ω) = sup
y∈Rn

‖ηyu‖E(Ω).

Definition 9.4. Let {φi} be a system of functions satisfying Condition 2.2. The
space E3

∞(Ω) is defined as the set of generalized functions u ∈ D′
Ω such that

φiu ∈ E(Ω) for all i and
sup
i

‖φiu‖E(Ω) <∞.

The norm in E3
∞(Ω) is given by the equality

‖u‖E3∞(Ω) = sup
i

‖φiu‖E(Ω).

Definition 9.5. Denote byBy,r the ball {x : |x−y| < r}. The spaceE4∞(Ω) is defined
as the set of generalized functions u ∈ D′

Ω such that for any y ∈ Ω,Ω ∩ By,r �= �
the restriction of u to Ω ∩By,r satisfies the condition

‖u‖E(Ω∩By,r) ≤M

with M independent of u. The norm in E4∞(Ω) is defined by the equality

‖u‖E3∞(Ω) = sup ‖u‖E(Ω∩By,r),

where the supremum is taken over all y ∈ Ω such that Ω ∩By,r �= �.
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Proposition 9.6. Let E1∞(Ω) and E3∞(Ω) be the space defined above. Then E3∞(Ω) ⊂
E1

∞(Ω) and for any u ∈ E3
∞(Ω) we have

‖u‖E1∞(Ω) ≤M‖u‖E3∞(Ω),

where M is a constant independent of u.

Proof. Let u ∈ E3
∞(Ω). Then φiu ∈ E(Ω) for any i. By the definition of E(Ω),

there exists ui ∈ E such that

〈ui, φ〉 = 〈φiu, φ〉 for anyφ : suppφ ∈ Ω (9.2)

and
‖ui‖E ≤ 2‖φiu‖E(Ω). (9.3)

We can suppose that {φi} is a partition of unity. Let {ψi} be another system
of functions satisfying Condition 2.2 such that ψi(x) = 1 for x ∈ suppφi. Then
φi(x)ψi(x) = φi(x) for any i and x. Set

uc =
∞∑
i=1

ψiui. (9.4)

Obviously, for φ ∈ D the functional uc is defined. Indeed, by definition

〈uc, φ〉 =
∞∑
i=1

〈ψiui, φ〉 =
∞∑
i=1

〈ui, ψiφ〉.

But this sum has only a finite number of nonzero terms. For definiteness we suppose
that the supports of φi and ψi are cubes of a lattice.

We now prove that uc is an extension of u. Indeed, if suppφ ⊂ Ω, we have
〈uc, φ〉 =

∑∞
i=1〈ui, ψiφ〉. Since suppψiφ ⊂ Ω, we have, from (9.2),

〈ui, ψiφ〉 = 〈φiu, ψiφ〉 = 〈u, φiψiφ〉 = 〈u, φiφ〉.
Hence

〈uc, φ〉 =
∞∑
i=1

〈u, φiφ〉 = 〈u, φ〉

since
∑∞

i=1 φi(x) = 1. It follows that uc is an extension of u.
We will prove that uc ∈ E∞. Indeed, we have

φku
c =

∑
i

φkψiui =
∑
i′
φkψi′ui′ , (9.5)

where i′ denotes all the subscripts for which suppφk and suppψi have a nonempty
intersection. Let the number of such i′ be no more than N , which does not depend
on i and k. From (9.5) follows the estimate

‖φkuc‖E ≤
∑
i′

‖φkψi′ui′‖E . (9.6)



76 Chapter 2. Function Spaces and Operators

By Definition 1.1 of the space E we have ‖φkψiui‖E ≤M‖φkψi‖M‖ui‖E . By Con-
dition 2.5 ‖φkψi‖M ≤ K, where K is independent of k and i. Hence ‖φkψiui‖E ≤
MK‖ui‖E . From (9.6) we obtain ‖φkuc‖E ≤MK

∑
i′ ‖ui′‖E . The inequality (9.3)

implies ‖φkuc‖E ≤ 2MK
∑

i′ ‖φi′u‖E(Ω). From Definition 9.4,

‖φkuc‖E ≤ 2MKN‖u‖E3∞(Ω).

Since k is arbitrary, by the definition of E∞ we get uc ∈ E∞ and

‖uc‖E∞ = sup
k

‖φkuc‖E ≤ 2MKN‖u‖E3∞(Ω).

Since u is a restriction of uc to Ω, we obtain that u ∈ E1
∞(Ω). Moreover,

‖u‖E1∞(Ω) ≤ ‖uc‖E∞ ≤ 2MKN‖u‖E3∞(Ω) = M0‖u‖E3∞(Ω). (9.7)

Thus the proposition is proved for the special choice of φi. We can write (9.7) in
the form

‖u‖E1∞(Ω) ≤M0 sup
k

‖φku‖E(Ω). (9.8)

We now prove the proposition for any system of functions {ωi} satisfying Definition
2.3 and equivalent to the system of functions {φi}, which is considered above. We
have

φku = φk
∑
i

ωi
ω
u =

∑
i′
φk
ωi′

ω
u,

where i′ are those subscripts i for which suppωi has a nonempty intersection with
suppφk. The number of such i′ is no more than N by the definition of equivalence
of systems of functions.

We now have

‖φku‖E(Ω) =
∑
i

‖φk
ω
ωi′u‖E(Ω) ≤ K

∑
i′

‖ωi′u‖E(Ω).

Hence

‖φku‖E(Ω) ≤ KN‖u‖E3∞(Ω), sup
k

‖φku‖E(Ω) ≤ KN‖u‖E3∞(Ω).

Therefore by the results of the first part of the proof we conclude that u ∈ E1
∞(Ω),

and from (9.8) we obtain

‖u‖E1∞(Ω) ≤M0KN‖u‖E3∞(Ω).

The proposition is proved. �

Proposition 9.7. Let E1∞(Ω) and E2∞(Ω) be the space in Definitions 9.2 and 9.3,
respectively. Then E1

∞(Ω) ⊂ E2
∞(Ω) and for any u ∈ E1

∞(Ω) we have

‖u‖E2∞(Ω) ≤M‖u‖E1∞(Ω),

where M is a constant independent of u.
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Proof. Let u ∈ E1∞(Ω). Then there exists uc ∈ E∞ such that

〈u, φ〉 = 〈uc, φ〉 for any φ ∈ D, suppφ ⊂ Ω. (9.9)

By the definition of E∞ we have ηyuc ∈ E for any y ∈ Rn, and

‖uc‖E∞ = sup
y∈Rn

‖ηyuc‖E <∞. (9.10)

From (9.9) it follows that 〈ηyu, φ〉 = 〈ηyuc, φ〉 for any φ ∈ D, suppφ ⊂ Ω. Hence
ηyu

c is an extension of ηyu to E∞. By the definition of E(Ω) we have ηyu ∈ E(Ω)
and ‖ηyu‖E(Ω) ≤ ‖ηyuc‖E ≤ ‖uc‖E∞ . Therefore u ∈ E2∞(Ω) and

‖u‖E2∞(Ω) = sup
y∈Ω

‖ηyu‖E(Ω) ≤ ‖uc‖E∞ .

The left-hand side here does not depend on the extension uc. Hence

‖u‖E2∞(Ω) ≤ inf
uc

‖uc‖E∞ = ‖u‖E1∞(Ω).

The proposition is proved. �

Proposition 9.8. Let E2∞(Ω) and E4∞(Ω) be the space in Definitions 9.3 and 9.5,
respectively. Then E2

∞(Ω) ⊂ E4
∞(Ω) and for any u ∈ E2

∞(Ω) we have

‖u‖E4∞(Ω) ≤M‖u‖E2∞(Ω),

where M is a constant independent of u.

Proposition 9.9. If {φ1
i } and {φ2

i } are two systems of functions equivalent in the
sense of Definition 2.3, then the spaces E3

∞(Ω) corresponding to them coincide,
and their norms are equivalent.

Proposition 9.10. Let E2
∞(Ω) and E3

∞(Ω) be the spaces in Definitions 9.3 and 9.4,
respectively. Then E2

∞(Ω) = E3
∞(Ω) and their norms are equivalent.

Corollary 9.11. The space E2
∞(Ω) does not depend on the choice of the numbers

a1 and a2 in Definition 6.1.

Proposition 9.12. Let E2∞(Ω) and E4∞(Ω) be the spaces in Definitions 9.3 and 9.5,
respectively. Then E4

∞(Ω) ⊂ E2
∞(Ω) and for any u ∈ E4

∞(Ω) we have

‖u‖E2∞(Ω) ≤M‖u‖E4∞(Ω),

where M is a constant independent of u.

Theorem 9.13. All definitions of the space E∞(Ω) are equivalent, i.e.,

E1
∞(Ω) = E2

∞(Ω) = E3
∞(Ω) = E4

∞(Ω)

and their norms are equivalent.
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10 Dual spaces

Let E(Rn) be a Banach space satisfying the conditions of Section 1, and E∗(Rn)
be its dual. As above, we will denote them by E and E∗, respectively. We suppose
that D ⊂ E, the inclusion being in the algebraic and topological sense, and that
D is dense in E. Then E∗ ⊂ D′, and this inclusion should be also understood in
the algebraic and topological sense. We can define (E∗)q as it is done in Sections
3 and 4. For example the norm in the space (E∗)∞ is given by

‖v‖(E∗)∞ = sup
i

‖φiv‖E∗ , (10.1)

where φi is a partition of unity. The norm in the right-hand side of (10.1) is the
norm of functionals from E∗.

Lemma 10.1. (Ep)∗ ⊂ E∗
loc.

Proof. Let v ∈ (Ep)∗, φ ∈ D. We should verify that vφ ∈ E∗. For any u ∈ E,
φu ∈ Ep. Therefore

|〈φv, u〉| = |〈v, φu〉| ≤ ‖v‖(Ep)∗‖φu‖Ep ≤M‖v‖(Ep)∗‖u‖E.
The lemma is proved. �

In what follows we say that two normed spaces are equal or coincide if they
are linearly isomorphic and their norms are equivalent.

Theorem 10.2. The spaces (E∗)∞ and (E1)∗ coincide.

Proof. Let v ∈ (E1)∗. Then for any u ∈ E1,

〈v, u〉 ≤ ‖v‖(E1)∗ ‖u‖E1.

Since v ∈ E∗
loc and u ∈ E, then 〈φiv, u〉 is defined and

|〈φiv, u〉| = |〈v, φiu〉| ≤ ‖v‖(E1)∗ ‖φiu‖E1 ≤M‖v‖(E1)∗ ‖u‖E.
Here {φi} is a partition of unity, supi ‖φi‖M <∞.

Therefore
‖φiv‖E∗ ≤M‖v‖(E1)∗ .

Consequently,
‖v‖(E∗)∞ ≤M‖v‖(E1)∗ .

Suppose that v ∈ (E∗)∞. Then v ∈ E∗
loc. Let u ∈ E1, uk =

∑k
i=1 φiu. Then

uk ∈ E, and

|〈v, uk〉| = |〈v,
k∑
i=1

φiu〉| ≤
k∑
i=1

|〈v, φiu〉| =
k∑
i=1

|〈φiv, ψiu〉| ≤
k∑
i=1

‖φiv‖E∗ ‖ψiu‖E

≤ ‖v‖(E∗)∞

∞∑
i=1

‖ψiu‖E ≤M‖v‖(E∗)∞‖u‖E1.
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Here ψi ∈ D, ψi = 1 in suppφi. We suppose that the system of functions ψi
satisfies Condition 2.2. We can pass to the limit in the last estimate as k → ∞.
Therefore v can be considered as a functional on E1, and

‖v‖(E1)∗ ≤M‖v‖(E∗)∞ .

The theorem is proved. �

We note that functionals from both spaces (E∗)∞ and (E1)∗ are considered
in Theorem 10.2 on functions from E1.

Theorem 10.3. Let 1/p+ 1/q = 1, 1 < p, q <∞. Then (E∗)p ⊂ (Eq)∗.

Proof. Let v ∈ (E∗)p. We show that v ∈ (Eq)∗. For any u ∈ D we have

|〈v, u〉| = |〈v,
∞∑
i=1

φiu〉| ≤
∞∑
i=1

|〈v, φiu〉| =
∞∑
i=1

|〈ψiv, φiu〉| ≤
∞∑
i=1

‖ψiv‖E∗‖φiu‖E

≤
( ∞∑
i=1

‖ψiv‖pE∗

)1/p( ∞∑
i=1

‖φiu‖qE
)1/q

≤M‖v‖(E∗)p
‖u‖Eq .

Here ψi ∈ D, ψi(x) = 1 in suppφi(x). SinceD is dense in Eq, this estimate remains
valid for all u ∈ Eq. Therefore

‖v‖(Eq)∗ ≤M‖v‖(E∗)p
.

The theorem is proved. �

Lemma 10.4. Let φ ∈ (E∞)∗, un =
∑n

i=1 uθi, where u ∈ E∞, θi is a partition of
unity. Then there exists the limit limn→∞ φ(un).

Proof. We have

‖un‖E∞ = sup
j

‖unθj‖E = sup
j

‖
(

n∑
i=1

uθi

)
θj‖E

≤ sup
j


 ∑
i:supp θi∩supp θj �=�

‖uθiθj‖E

 ≤MN sup

j
‖uθj‖ = MN‖u‖E∞.

Suppose that the limit φ(un) does not exist. Then there exist two subsequences
unk and unm such that

φ(unk) → C1, φ(unm) → C2, C1 �= C2.

We will construct a bounded sequence in E∞ such that the functional φ will be
unbounded on it. This contradiction will prove the existence of the limit.
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Without loss of generality we can assume that C1 > C2. For all k and m
sufficiently large,

φ(unk) ≥ C1 − ε, φ(unm) ≤ C2 + ε.

For ε ≤ (C1 − C2)/4,

φ(unk − unm) ≥ C1 − C2

2
(= a > 0).

We choose k and m such that this estimate is satisfied and write v1 = unk − unm.
We note that

unk − unm =
nk∑

i=nm

uθi.

Therefore the support of the function v1 is inside
⋃nk

i=nm
supp θi.

Similarly, we choose other values of k and m and define the function v2,
φ(v2) ≥ a. Moreover, if the new values k andm are sufficiently large, then supp v1∩
supp v2 = �. In the same way, we construct other functions vl such that their
supports do not intersect and φ(vl) ≥ a. We finally put wj =

∑j
l=1 vl. Similar

to the sequence un, the sequence wj is uniformly bounded in E∞. At the same
time φ(wj) → ∞. This contradicts the assumption that φ ∈ (E∞)∗. The lemma is
proved. �

Consider a functional φ from (E∞)∗. We define a new functional φ̃ as follows.
For any function u ∈ E∞ with a bounded support we put

φ̃(u) = φ(u).

For any function u ∈ E∞, we put

φ̃(u) = lim
n→∞φ(

n∑
i=1

uθi).

Thus φ̃ is a weak limit of
∑n
i=1 θiφ in (E∞)∗. From Lemma 10.4 it follows that

this limit exists. It is easy to verify that φ̃ is a bounded linear functional on E∞.
Let φ0 = φ− φ̃. Then φ0(u) = 0 for any function u with a bounded support.

Thus we have the following result.

Lemma 10.5. The space (E∞)∗ can be represented as a direct sum of two subspaces,
(E∞)∗0 and (E∞)∗ω, where (E∞)∗0 consists of functionals equal to 0 on all functions
with bounded supports, and (E∞)∗ω consists of the functionals φ̃ constructed above.

Proof. It remains to prove that (E∞)∗ω and (E∞)∗0 are closed. Let vk ∈ (E∞)∗ω ,
vk → v in (E∞)∗. We have

〈vk, u〉 = lim
n→∞〈vk, un〉, ∀u ∈ E∞, (10.2)
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where un =
∑n

i=1 θiu (see Lemma 10.8 below). We prove that we can pass to the
limit with respect to k in the right-hand side of (10.2). Indeed we have

|〈vk − v, un〉| ≤ ‖vk − v‖(E∞)∗‖un‖E∞ ≤M‖vk − v‖(E∞)∗

since ‖un‖E∞ is bounded. Hence

| lim
n→∞〈vk − v, un〉| ≤M‖vk − v‖(E∞)∗ → 0

as k → ∞. Passing to the limit with respect to k in (10.2), we obtain

〈v, u〉 = lim
n→∞〈v, un〉, ∀u ∈ E∞.

Therefore v ∈ (E∞)∗ω. The completeness of the space (E∞)∗ω is proved. It can be
easily verified that the second subspace is also closed. The lemma is proved. �

If φ0 ∈ (E∞)∗0 and θ ∈ D, then θφ0 = 0 is an element of (E∞)∗. Therefore,
if φ = φ0 + φ1, then θφ = θφ1 (see the next lemma).

Lemma 10.6. If φ ∈ (E∞)∗, then φ ∈ (E∗)1 and

‖φ‖(E∗)1 ≤M ‖φ‖(E∞)∗ , (10.3)

where M is a constant independent of φ.

Proof. We have θiφ ∈ E∗ for θi ∈ D and

‖θiφ‖E∗ = sup
u∈E, ‖u‖E=1

|θiφ(u)|.

Hence there exists ui ∈ E such that ‖θiφ‖E∗ ≤ 2 |θiφ(ui)| = 2 θiφ(σiui), where
|σi| = 1. Therefore

m∑
i=1

‖θiφ‖E∗ ≤ 2 φ

(
m∑
i=1

θiσiui

)
. (10.4)

For any θk we have
∥∥∥∥∥
m∑
i=1

θkθiσiui

∥∥∥∥∥
E

≤
m∑
i=1

‖θkθiui‖E ≤
∑
i′

‖θkθi′ui′‖E ,

where i′ are all those numbers i for which supp θi
⋂

supp θk �= �. It follows that
∥∥∥∥∥
m∑
i=1

θkθiσiui

∥∥∥∥∥
E

≤ NK2, (10.5)

where N is the number from Condition 2.2 and K = supi ‖θi‖M(E). Inequality
(10.5) implies ‖∑m

i=1 θiσiui‖E∞ ≤ NK2. From (10.4) we obtain
∑m

i=1 ‖θiφ‖E∗ ≤
2NK2‖φ‖(E∞)∗ and (10.3) follows. The lemma is proved. �
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Lemma 10.7. The following inclusions hold:

E1 ⊂ E, (E∗)1 ⊂ E∗.

Proof. Suppose that u ∈ E1. Then

‖u‖E =

∥∥∥∥∥
∞∑
i=1

φiu

∥∥∥∥∥
E

≤
∞∑
i=1

‖φiu‖E = ‖u‖E1,

where φi is a partition of unity. Therefore u ∈ E. The second inclusion follows
from the first one applied to the space E∗. The lemma is proved. �

We will prove below that the spaces (E∞)∗ω and (E∗)1 coincide (Theorem
10.10). Let us introduce an operator J : (E∞)∗ → (E∗)1 as follows. According to
Lemma 10.6, to any v ∈ (E∞)∗ we can put in correspondence w = Jv ∈ (E∗)1
such that

〈w, u〉 = 〈v, u〉, ∀u ∈ E. (10.6)

The right-hand side in (10.6) has sense since E ⊂ E∞. The left-hand side in (10.6)
is well defined since (E∗)1 ⊂ E∗. There is only one w satisfying (10.6). Indeed, let
w1 be another one and w0 = w1 − w. Then 〈w0, u〉 = 0, ∀u ∈ E. This means
that w0 is the zero element in E∗ and

‖w0‖(E∗)1 =
∞∑
i=1

‖w0 θi‖E∗ = 0.

Hence w1 = w. It is clear that J is a linear operator.

Lemma 10.8. If v ∈ (E∞)∗ω, then

〈v, u〉 = lim
n→∞

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞. (10.7)

Proof. By definition of (E∞)∗ω , there exists y ∈ (E∞)∗ such that

〈v, u〉 = lim
n→∞

〈
y,

n∑
i=1

θiu

〉
, ∀u ∈ E∞.

In order to prove (10.7), it is sufficient to verify the equality

〈y, θiu〉 = 〈v, θiu〉. (10.8)

We have

〈v, θiu〉 = lim
n→∞

〈
y,

n∑
j=1

θjθiu

〉
.
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Since
∑∞

j=1 θjθi has only a finite number of terms, we can pass to the limit and
obtain

〈v, θiu〉 =

〈
y,

∞∑
j=1

θjθiu

〉
,

and (10.8) follows from this equality. The lemma is proved. �

Lemma 10.9. The space (E∞)∗ can be represented as a direct sum of linear sub-
spaces (E∞)∗ω and KerJ :

(E∞)∗ = (E∞)∗ω ⊕ KerJ. (10.9)

Proof. Let v ∈ (E∞)∗ and ṽ be given by

〈ṽ, u〉 = lim
n→∞

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞.

Then ṽ ∈ (E∞)∗ω. Set v0 = v − ṽ. For any φ ∈ D we have

〈ṽ, φ〉 =

〈
v,

∞∑
i=1

φ θi

〉
= 〈v, φ〉

since the sum contains only a finite number of terms. It follows that 〈v0, φ〉 =
0, ∀φ ∈ D. SinceD is dense in E and E ⊂ E∞ (inclusion with topology), it follows
that 〈v0, u〉 = 0, ∀u ∈ E. From (10.6) it follows that 〈Jv0, u〉 = 0, ∀u ∈ E.
Therefore Jv0 = 0 in E∗ and, hence, this equality also holds in (E∗)1. This means
that v0 ∈ KerJ . Thus we have proved that v = ṽ + v0, where ṽ ∈ (E∞)∗ω and
v0 ∈ KerJ .

It remains to prove that (10.9) is a direct sum. Suppose that v ∈ (E∞)∗ω and
v ∈ KerJ . We have to verify that v = 0. We have

〈v, u〉 = lim
n→∞

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞ (10.10)

(see Lemma 10.8) because v ∈ (E∞)∗ω. Since v ∈ KerJ we conclude that 〈v, θiu〉 =
0, ∀u ∈ E∞. Indeed, if u ∈ E∞, then θiu ∈ E. From (10.10) we obtain 〈v, u〉 =
0, ∀u ∈ E∞. The lemma is proved. �

Theorem 10.10. (E∞)∗ω = (E∗)1.

Proof. The inclusion (E∞)∗ω ⊂ (E∗)1 follows from Lemma 10.6. Suppose now that
φ ∈ (E∗)1. Consider the functionals φk =

∑k
i=1 θiφ, where θi is a partition of
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unity. By the definition of the space (E∗)1, the series
∑∞

i=1 ‖θiφ‖E∗ converges. We
show that φk converges to φ in (E∗)1. Indeed,

‖φ− φk‖(E∗)1 =

∥∥∥∥∥φ−
k∑
i=1

θiφ

∥∥∥∥∥
(E∗)1

=
∞∑
j=1

∥∥∥∥∥θj
(
φ−

k∑
i=1

θiφ

)∥∥∥∥∥
E∗

=
∞∑
j=1

∥∥∥∥∥θjφ−
k∑
i=1

θi(θjφ)

∥∥∥∥∥
E∗

≡ S.

All terms of this sum, for which
∑k
i=1 θi equals 1 in the support of θj , disappear.

The remaining terms begin with some k′, where k′ depends on k and tends to
infinity together with it.

S =
∞∑
j=k′

∥∥∥∥∥θjφ−
k∑
i=1

θi(θjφ)

∥∥∥∥∥
E∗

≤
∞∑
j=k′

‖θjφ‖E∗ +
∞∑
j=k′

k∑
i=1

‖θiθjφ‖E∗

=
∞∑
j=k′

‖θjφ‖E∗ +
∞∑
j=k′

∑
i′

‖θi′θjφ‖E∗

≤
∞∑
j=k′

‖θjφ‖E∗ +NM

∞∑
j=k′

‖θjφ‖E∗ → 0 as k → ∞.

Here i′ denotes all those i for which the support of θi intersects the support of θj
for each j fixed. As usual, we use the fact that their number is limited by N .

Thus, the functional φ can be represented in the form φ =
∑∞
i=1 θiφ. Then

it is also a continuous functional on E∞. Indeed, for any u ∈ E∞,

|〈φ, u〉| ≤
∞∑
i=1

|〈θiφ, ψiu〉| ≤
∞∑
i=1

‖θiφ‖E∗‖ψiu‖E

≤ C‖u‖E∞

∞∑
i=1

‖θiφ̃‖E∗ ≤ C‖φ‖(E∗)1‖u‖E∞.

Here ψi = 1 in the support of θi. Therefore φ ∈ (E∞)∗, and

‖φ‖(E∞)∗ ≤ C‖φ‖(E∗)1 .

Let u ∈ E∞. Put uk =
∑k

i=1 θiu. Then φ(uk) = φk(u). Hence

φ(u) = lim
k→∞

φk(u) = lim
k→∞

φ(uk).

This means that φ ∈ (E∞)∗ω.
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We prove that the spaces (E∞)∗ω and (E∗)1 are linearly isomorphic. Let
w ∈ (E∗)1. From the proof above it follows that there exists v ∈ (E∞)∗ω such that
(10.6) holds. This means that

Jv = w. (10.11)

Denote by J1 the restriction of the operator J to (E∞)∗ω. Then from (10.11) we
get J1v = w. This means that the range of the operator J1 coincides with (E∗)1.
Since according to Lemma 10.9 the operator J1 is invertible, we conclude that the
spaces under consideration are linearly isomorphic.

Since the operator J−1
1 is bounded, we can use the Banach theorem to con-

clude that J1 is also bounded. The theorem is proved. �

Consider now the closure ED ofD in the norm E∞. The proof of the following
lemma is the same as the proof of Lemma 10.6.

Lemma 10.11. (ED)∗ ⊂ (E∗)1.

Theorem 10.12. (ED)∗ = (E∗)1.

Proof. Let φ ∈ (E∗)1, u ∈ D. Then φ(u) is well defined, and

|φ(u)| ≤
∞∑
i=1

|φ(θiu)| =
∞∑
i=1

|φ(θiψiu)|

≤
∞∑
i=1

‖θiφ‖E∗‖ψiu‖E ≤M‖φ‖(E∗)1 ‖u‖E∞,

where ψi = 1 in the support of θi.
This estimate remains valid for u ∈ ED. Therefore, φ ∈ (ED)∗. The opposite

inclusion follows from the previous lemma.
We now prove the isomorphism of the spaces. Let v ∈ (ED)∗, then v ∈ D′. As

in the proof of Lemma 10.6 we obtain that v ∈ (E∗)1. We introduce the embedding
operator

T : (ED)∗ → (E∗)1.

This means that to any v ∈ (ED)∗ we put in correspondence Tv ∈ (E∗)1 such
that

〈Tv, φ〉 = 〈v, φ〉, ∀φ ∈ D. (10.12)

It is clear that T is a linear operator. It is easy to see that the range of the operator
T coincides with (E∗)1. Indeed let w ∈ (E∗)1. Then, as in the proof above, we
obtain

|〈w, φ〉| ≤M‖w‖(E∗)1 ‖φ‖E∞ . (10.13)

Consider v ∈ D′ such that 〈v, φ〉 = 〈w, φ〉, ∀φ ∈ D. Then by (10.13) we have
v ∈ (ED)∗. Hence by (10.12) we get

〈Tv, φ〉 = 〈w, φ〉, ∀φ ∈ D.
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Since D is dense in E, we conclude that Tv and w coincide as elements of E∗ and
therefore as elements of (E∗)1. We have proved that the equation Tv = w has a
solution v ∈ (ED)∗ for any w ∈ (E∗)1. Hence the range of the operator T coincides
with (E∗)1.

It remains to prove that the operator T is invertible. By definition of the
operator T , the equality (10.12) holds. Hence if Tv = 0 in (E∗)1, then 〈v, φ〉 =
0, ∀φ ∈ D and therefore v = 0 in (ED)∗.

From (10.13) we have |〈v, φ〉| ≤ M‖w‖(E∗)1 ‖φ‖E∞ , and ‖T−1w‖(ED)∗ ≤
M‖w‖(E∗)1 . Hence the operator T−1 is bounded. By the Banach theorem the
operator T is also bounded. Therefore the norms in the spaces (ED)∗ and (E∗)1
are equivalent. The theorem is proved. �

The next theorem follows from Theorems 10.10 and 10.12. Nevertheless we
give a direct proof of this theorem in order to obtain an explicit relation between
the elements of these spaces.

Theorem 10.13. (E∞)∗ω = (ED)∗.

Proof. We note that E ⊂ ED. Indeed, let u ∈ E, then u ∈ E∞. Since D is dense
in E, there exists a sequence {φn}, φn ∈ D such that ‖φn − u‖E → 0. Hence

‖φn − u‖E∞ ≤M‖φn − u‖E → 0.

This means that u ∈ ED.
Let v ∈ (ED)∗. We introduce a functional w as follows:

〈w, u〉 = lim
n→∞

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞. (10.14)

We prove that the limit in (10.14) exists. Indeed, by the Hahn-Banach theorem
we can extend v to a functional v̂ ∈ (E∞)∗. We have 〈v̂, u〉 = 〈v, u〉, ∀u ∈ ED.
Since

∑n
i=1 θiu ∈ E ⊂ ED, ∀u ∈ E∞, we get

〈
v̂,

n∑
i=1

θiu

〉
=

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞.

From Lemma 10.4 it follows that the limit in (10.14) exists and w ∈ (E∞)∗ω.
Let us introduce an operator S : (ED)∗ → (E∞)∗ω by the formula w = Sv,

where w is given by (10.14). It is clear that S is a linear operator. We will prove
that S is invertible. Indeed, let Sv = 0. Then from (10.14) we obtain

lim
n→∞

〈
v,

n∑
i=1

θiu

〉
= 0, ∀u ∈ E∞.

In particular, if u ∈ D, we get 〈v, u〉 = 0, ∀u ∈ D. Since D is dense in ED, it
follows that v = 0.
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To prove that (E∞)∗ω is linearly isomorphic to (ED)∗, it is sufficient to verify
that the range of S coincides with (E∞)∗ω . Let w ∈ (E∞)∗ω. Then w ∈ (E∞)∗.
From Lemma 10.8 it follows that

〈w, u〉 = lim
n→∞

〈
w,

n∑
i=1

θiu

〉
, ∀u ∈ E∞. (10.15)

Denote by v the restriction of w to ED: 〈v, u〉 = 〈w, u〉, ∀u ∈ ED. From this
equality it follows that

〈
w,

n∑
i=1

θiu

〉
=

〈
v,

n∑
i=1

θiu

〉
, ∀u ∈ E∞

since θiu ∈ ED. From this and (10.15) we conclude that (10.14) is true. Therefore
w = Sv. We have proved that the range of S coincides with (E∞)∗ω and hence
(E∞)∗ω and (ED)∗ are linearly isomorphic.

We now prove that the operator S is bounded. From (10.14) we get

|〈w, u〉| = lim
n→∞

∣∣∣∣∣
〈
v,

n∑
i=1

θiu

〉∣∣∣∣∣ , ∀u ∈ E∞.

Further,
∣∣∣∣∣
〈
v,

n∑
i=1

θiu

〉∣∣∣∣∣ ≤
n∑
i=1

|〈θiv, ψiu〉| ≤
n∑
i=1

‖θiv‖E∗‖ψiu‖E ≤M‖v‖(E∗)1‖u‖E∞.

As in Lemma 10.6, we prove that ‖v‖(E∗)1 ≤M1‖v‖(ED)∗ . Therefore

|〈w, u〉| ≤M2‖v‖(ED)∗‖u‖E∞ .

It follows that ‖w‖(E∞)∗ ≤ M2‖v‖(ED)∗ . Hence the operator S is bounded. The
theorem is proved. �

Remark 10.14. The space ED is a subspace of E∞. Therefore we can expect that
(E∞)∗ ⊂ (ED)∗. Nevertheless we obtain that (ED)∗ coincides with a subspace
(E∞)∗ω of (E∞)∗. To explain this situation we note that ED is not dense in E∞.
Therefore there exist different from zero functionals in (E∞)∗, equal zero at ED.
We call them “bad” functionals or functional with support at infinity. Each func-
tional from (E∞)∗ can be formally considered as a functional from (ED)∗. However,
if we do not take into account zero functionals, then the inclusion (E∞)∗ ⊂ (ED)∗

does not hold. “Bad” functionals do not belong to D′ and cannot be considered
as generalized functions.

In the definition of the space Ep in Section 3 it is supposed that E ⊂ D′.
Hence, in order to use this definition for the space (E∗)p, we should assume that
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E∗ ⊂ D′. We will define the space (E∗)p without this assumption. We will give an
intrinsic definition of the spaces E1 and (E∗)p which coincides with the previous
ones. We do not suppose now thatE ⊂ D′ but assume, as before, that all f ∈ D are
multipliers in E according to Definition 1.1. Obviously, it follows thatD ⊂M(E∗).

Definition 10.15. E1 is the space of all u ∈ E such that

∞∑
i=1

‖φiu‖E <∞, (10.16)

where {φi} is a partition of unity.

Proposition 10.16. The spaces E1 in Definition 10.15 and in Definition 3.1 coin-
cide.

Proof. The proof follows from the fact that any u ∈ Eloc satisfying (10.16) belongs
to E. �

Thus, the space E1 is defined. Hence the space (E1)∗ is also defined. We can now
define the space (E∗)∞.

Definition 10.17. u ∈ (E∗)∞ if and only if u ∈ (E1)∗ and

‖u‖(E∗)∞ = sup
i

‖φiu‖E∗ <∞.

Proposition 10.18. The spaces (E∗)∞ and (E1)∗ coincide and their norms are
equivalent.

The proof of this theorem is the same as in Theorem 10.2. We can now give the
intrinsic definition of the space (E∗)p, 1 ≤ p <∞.

Definition 10.19. u ∈ (E∗)p if and only if u ∈ (E1)∗ and

‖u‖(E∗)p
=

( ∞∑
i=1

‖φiu‖pE∗

)1/p

<∞.

If the space E is reflexive, we can also give an intrinsic definition of the
spaces Ep, 1 ≤ p ≤ ∞. Indeed, as before we define (E∗)1. Then E∞ = (E∗∗)∞ =
((E∗)∗)∞ = ((E∗)1)∗ according to Proposition 10.18 applied to E∗. Therefore
(E∗)1 ⊂ ((E∗)1)∗∗ = (E∞)∗ (cf. Theorem 10.10).

Definition 10.20. u ∈ Ep, 1 ≤ p <∞ if and only if u ∈ E∞ and

‖u‖Ep =

( ∞∑
i=1

‖φiu‖pE
)1/p

<∞.
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11 Dual spaces in domains

Let E ∈ D′ be a reflexive Banach space. First of all, we will explain in what sense
ϕ ∈ D are understood as elements of the space E∗. We consider ϕ̃(u) (ϕ ∈ D, u ∈
E) as the functional

ϕ̃(u) = u(ϕ). (11.1)

The right-hand side in (11.1) is defined since E ⊂ D′. The inclusion E ⊂ D′ is
supposed to be with the topology. Hence if un → 0 in E, then un → 0 in D′.
Therefore un(ϕ) → 0 for any ϕ ∈ D. From (11.1) it follows that ϕ̃(un) → 0 and
ϕ̃ ∈ E∗.

Moreover, the functions ϕ∈C∞
0 (Ω) can be understood as elements of [E(Ω)]∗.

We consider ϕ̂(u) (ϕ ∈ D, u ∈ E(Ω)) as the functional

ϕ̂(u) = u(ϕ). (11.2)

We can do this since if the convergence

un → 0 (11.3)

holds in E(Ω), then
ϕ̂(un) = un(ϕ) → 0. (11.4)

Indeed, let ucn be an extension of un such that

ucn(ϕ) = un(ϕ) (11.5)

for ϕ ∈ C∞
0 (Ω) and ‖ucn‖E ≤ 2‖un‖E(Ω). Then from (11.3) it follows that ucn → 0

in E. Since E ⊂ D′, then we get ucn(ϕ) → 0 for ϕ ∈ C∞
0 (Ω), and (11.4) follows

from (11.5).
Denote by Ĉ∞

0 (Ω) the set of all ϕ ∈ C∞
0 (Ω) considered as functionals on

E(Ω) in the sense described by (11.2).

Theorem 11.1. Let E ∈ D′ be a reflexive Banach space. Then

[E(Ω)]∗ = Ê∗
0 (Ω), (11.6)

where Ê∗
0 (Ω) is the closure of Ĉ∞

0 (Ω) in [E(Ω)]∗.

Proof. From the definition of Ĉ∞
0 (Ω) it follows that

Ĉ∞
0 (Ω) ⊂ [E(Ω)]∗. (11.7)

Denote by EΩ the subspace of E consisting of such generalized functions that their
supports are contained in Ω. Then it is known that

E(Ω) = E/ECΩ (11.8)

(for the proof see, for example, in [543], p. 22). It follows that E(Ω) is a reflexive
Banach space.
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From (11.7) we conclude that Ê∗
0 (Ω) ⊂ [E(Ω)]∗. Suppose now that (11.6) is

not true. Then there exists a functional f ∈ [E(Ω)]∗∗ such that

f �= 0 (11.9)

and
f(v) = 0 (11.10)

for all v ∈ Ê∗
0 (Ω). Since E(Ω) is a reflexive Banach space, then E(Ω) coincides

with [E(Ω)]∗∗ by the natural embedding. This means that there exists y ∈ E(Ω)
such that

f(v) = v(y) (11.11)

for any v ∈ [E(Ω)]∗. It follows from (11.10) that f(ϕ̂) = 0 for all ϕ ∈ C∞
0 (Ω).

Equality (11.11) implies ϕ̂(y) = 0 for all ϕ ∈ C∞
0 (Ω). We conclude from (11.2) that

y(ϕ) = 0 for all ϕ ∈ C∞
0 (Ω). By definition of E(Ω), this means that y = 0 as an

element of E(Ω), and from (11.11) f(v) = 0 for all v ∈ [E(Ω)]∗. This contradicts
(11.9). The theorem is proved. �

It follows from Theorem 11.1 that for any v ∈ [E(Ω)]∗ there exists vk ∈
C∞

0 (Ω) such that
‖v̂k − v‖[E(Ω)]∗ → 0 (11.12)

as k → ∞.

Theorem 11.2. Let E ⊂ D′ be a reflexive Banach space and v ∈ [E(Ω)]∗. Then
there exists a unique ṽ ∈ E∗ such that for any u ∈ E(Ω) and any extension ũ of
u to E we have

ṽ(ũ) = v(u). (11.13)

Moreover,
‖ṽ‖E∗ = ‖v‖[E(Ω)]∗. (11.14)

Proof. Let ϕ ∈ C∞
0 (Ω), ϕ̃ and ϕ̂ be as in (11.1) and (11.2), respectively. Then for

any u ∈ E(Ω) and any extension ũ of u to E we have

ϕ̂(u) = u(ϕ) = ũ(ϕ) = ϕ̃(ũ). (11.15)

By definition of the norm in E(Ω) we have

‖u‖E(Ω) ≤ ‖ũ‖E. (11.16)

For any ũ ∈ E and its restriction u to E(Ω), (11.15) and (11.16) hold. Therefore

|ϕ̃(ũ)| = |ϕ̂(u)| ≤ ‖ϕ̂‖[E(Ω]∗‖u‖E(Ω) ≤ ‖ϕ̂‖[E(Ω)]∗‖ũ‖E.

Hence
‖ϕ̃‖E∗ ≤ ‖ϕ̂‖[E(Ω)]∗ . (11.17)
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Now, let vk ∈ C∞
0 , k = 1, 2 . . . , be a sequence which satisfies (11.12). Then by

(11.17) we obtain
‖ṽk‖E∗ ≤ ‖v̂k‖[E(Ω)]∗ (11.18)

and
‖ṽk − ṽl‖E∗ ≤ ‖v̂k − v̂l‖[E(Ω)]∗ . (11.19)

It follows from (11.12) and (11.19) that the sequence {ṽk} is convergent in E∗.
Denote by ṽ its limit. Then the inequality ‖ṽ‖E∗ ≤ ‖v‖[E(Ω)]∗ follows from (11.18).
From (11.15) we get ṽk(ũ) = v̂k(u). Passing here to the limit we obtain (11.13).

We now show that the function ṽ with property (11.13) is unique. If we have
two of them, ṽ1 and ṽ2, then for any ũ ∈ E we take its restrictions u to E(Ω) and
obtain ṽ1(ũ) = v(u), ṽ2(ũ) = v(u). Hence ṽ1 = ṽ2.

It remains to prove that

‖v‖[E(Ω)]∗ ≤ ‖ṽ‖E∗ . (11.20)

It follows from (11.13) that |v(u)| = |ṽ(ũ)| for any u ∈ E(Ω) and any extension ũ
to E. Hence

|v(u)| ≤ ‖ṽ‖E∗‖ũ‖E . (11.21)

Let ε > 0 be an arbitrary number. Since ‖u‖E(Ω) = inf ‖ũ‖E , where the infimum
is taken over all extensions ũ of u, we can take ũ such that ‖ũ‖E ≤ (1+ ε)‖u‖E(Ω).
Therefore from (11.21), ‖v‖[E(Ω)]∗ ≤ (1 + ε)‖ṽ‖E∗ . Since ε > 0 is arbitrary, we get
(11.20). The theorem is proved. �

Denote by C̃∞
0 (Ω) the set of functionals (11.1) and by E∗

0 (Ω) its closure in E∗.

Theorem 11.3. Let E ⊂ D′ be a reflexive Banach space. Then [E(Ω)]∗ is isomet-
rically isomorphic to the subspace E∗

0 (Ω) of E∗. The correspondence is described
by Theorem 11.2. More exactly. Any functional v ∈ [E(Ω)]∗ can be represented in
the form

v(u) = ṽ(ũ), u ∈ E(Ω), (11.22)

where ṽ is the corresponding functional, which belongs to E∗
0 (Ω), and ũ is an

arbitrary extension of u to E. Moreover,

‖v‖[E(Ω)]∗ = ‖ṽ‖E∗.

Proof. The representation (11.22) follows from Theorem 11.2. It remains only to
prove that ṽ ∈ E∗

0 (Ω). Let vk ∈ C∞
0 (Ω) be a sequence such that (11.12) holds.

Then we have
ṽk(ũ) = v̂k(u). (11.23)

Moreover, (11.19) holds. Hence {ṽk} is convergent in E∗. Denote by ṽ its limit.
Obviously ṽ ∈ E∗

0 (Ω), and from (11.23) we obtain (11.22). The theorem is proved.
�
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Let φi ∈ D be a partition of unity in Rn, and Ω ⊂ Rn be an unbounded
domain. We consider the space E(Ω) and its dual (E(Ω))∗. For each u ∈ E(Ω) the
product φiu is defined, and φiu ∈ E(Ω). Therefore we can define the product φiv
for v ∈ (E(Ω))∗:

〈φiv, u〉 = 〈v, φiu〉, u ∈ E(Ω). (11.24)

It is a bounded functional on E(Ω):

|〈φiv, u〉| = |〈v, φiu〉| ≤ ‖v‖E∗(Ω)‖φiu‖E(Ω) ≤M‖v‖E∗(Ω)‖u‖E(Ω). (11.25)

Thus φiv ∈ (E(Ω))∗, and ‖φiv‖E∗(Ω) ≤M‖v‖(E(Ω))∗ .
Let v be a functional on E(Ω). We do not assume a priori that it is bounded.

We say that v ∈ ((E(Ω))∗)loc if φiv ∈ (E(Ω))∗ for any i.

Definition 11.4. The space ((E(Ω))∗)∞ is the set of all functionals v ∈ ((E(Ω))∗)loc

such that
‖v‖((E(Ω))∗)∞ = sup

i
‖φiv‖(E(Ω))∗ <∞.

Theorem 11.5. The spaces ((E(Ω))∗)∞ and (E(Ω))1)∗ coincide.

The proof is the same as for Theorem 10.2

We have proved in Theorem 11.3 that a functional v ∈ (E(Ω))∗ can be
extended to ṽ ∈ E∗ = (E(Rn))∗. We will use this result in order to show that a
functional v ∈ ((E(Ω))∗)∞ can be extended to (E∗)∞.

Theorem 11.6. For any v ∈ ((E(Ω))∗)∞ there exists an extension

ṽ ∈ (E∗)∞ = ((E(Rn))∗)∞

such that
〈v, u〉 = 〈ṽ, ũ〉, ∀u ∈ (E(Ω))1, (11.26)

where ũ ∈ E1 = (E(Rn))1 is an extension of u.

Proof. We can represent the functional v ∈ (E(Ω))∗ in the form v =
∑∞

i=1 φiv
with the equality understood in the sense of equality of generalized functions.
Let ψi ∈ D equal 1 in the support of φi. Then v =

∑∞
i=1 φiψiv. Denote by vi the

extension of ψiv such that 〈vi, ũ〉 = 〈ψiv, u〉, where u ∈ E(Ω) and ũ is its extension
to E. We put ṽ =

∑∞
i=1 φivi. We show that ṽ ∈ (E∗)∞. Indeed,

|〈φiφjvi, ũ〉| = |〈vi, φiφj ũ〉| = |〈ψiv, φiφju〉| = |〈φiφjv, u〉|
≤ ‖φiφjv‖(E(Ω))∗‖u‖E(Ω) ≤ ‖φiφjv‖(E(Ω))∗‖ũ‖E .

Therefore
‖φiφjvi‖E∗ ≤ ‖φiφjv‖(E(Ω))∗ .
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We have

‖φj ṽ‖E∗ ≤
∞∑
i=1

‖φiφjvi‖E∗ ≤
∞∑
i=1

‖φiφjv‖(E(Ω))∗

≤ KM‖φjv‖(E(Ω))∗ ≤ KM‖v‖((E(Ω))∗)∞ .

Thus
‖ṽ‖(E∗)∞ ≤ KM‖v‖((E(Ω))∗)∞ .

To finish the proof of the theorem we verify equality (11.26). It is sufficient to
check it for functions u with a bounded support since they are dense in (E(Ω))1.
We have

〈φivi, ũ〉 = 〈φiψiv, u〉 = 〈φiv, u〉,
where an extension ũ can also be chosen with a bounded support. Taking a sum
with respect to those i for which the support of φi has a nonempty intersection
with the supports of u and ũ, we obtain (11.26). The theorem is proved. �

12 Spaces W s,p
q (Rn)

In this section we consider the spaces Eq in the case where E is a Sobolev-
Slobodetskii space W s,p(Rn) with a real s ≥ 0 and 1 ≤ p < ∞. We denote
them by W s,p

q (Rn). If s = 0 we will use the notation Lpq(R
n) and the conventional

notation Lp(Rn). In what follows we do not specify the domain if it is the whole
Rn. Applying results of Section 10, we obtain the relations

(W s,p
1 )∗ = W−s,p′

∞ , (W s,p
D )∗ = W−s,p′

1 ,

(Theorems 10.2 and 10.10). We begin with a result that shows the relation of the
spaces W s,p

q (Rn) and usual Sobolev or Sobolev-Slobodetskii spaces.

Lemma 12.1. Lpp = Lp.

Proof. We have

‖u‖p
Lp

p
=

∞∑
i=1

‖φiu‖pLp =
∞∑
i=1

∫
Rn

|φiu|pdx,

where φi is a partition of unity. Denote by Bi the support of φi and recall that
for any x ∈ Rn there exist no more than N + 1 functions φi different from zero at
this point. Therefore

‖u‖p
Lp

p
≤

∞∑
i=1

∫
Bi

|u|pdx ≤ (N + 1)
∫

Rn

|u|pdx.

On the other hand, ∫
Rn

|u|pdx =
∞∑
i=1

∫
Si

|u|pdx,
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where Si are unit cubes forming a lattice in Rn,
∫
Si

|u|pdx =
∫
Si

|
∑
i′
φi′u|pdx

≤
∫

Rn

|
∑
i′
φi′u|pdx ≤ C1

∑
i′

∫
Rn

|φi′u|pdx

where
∑
i′ φi′ (x) = 1 for x ∈ Si, since the number of i′ is bounded independently

of i. Therefore ∫
Rn

|u|pdx ≤ C2

∞∑
i=1

∫
Rn

|φiu|pdx.

Thus the norms in Lp and Lpp are equivalent. The lemma is proved. �

Lemma 12.2. Let s be a positive integer. Then W s,p
p = W s,p.

Proof. By the definition of the norm in W s,p
p ,

‖u‖W s,p
p

=
∞∑
i=1

‖φiu‖pW s,p =
∞∑
i=1

∑
|α|≤s

∫
Rn

|Dα(φiu)|pdx.

Taking into account that the derivatives of φi are uniformly bounded, we obtain
the estimate

∞∑
i=1

∫
Rn

|DβφiD
γu|pdx ≤ C1

∫
Rn

|Dγu|pdx

in the same way as in the previous lemma. The opposite estimate

∫
Rn

|Dγu|pdx ≤ C2

∞∑
i=1

∫
Rn

|φiDγu|pdx

can be also obtained as above. The lemma is proved. �

Theorem 12.3. Let s be real and positive. Then W s,p
p = W s,p.

Proof. Consider first the case where 0 < s < 1. Then

‖u‖p
W s,p

p
=

∞∑
i=1

‖φiu‖pW s,p

=
∞∑
i=1

‖φiu‖pLp +
∞∑
i=1

∫
Rn

∫
Rn

|φi(x)u(x) − φi(y)u(y)|p
|x− y|n+ps

dxdy.
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Denote by Ji the last integral in the right-hand side. Then

|Ji| ≤ C1

∫
Rn

∫
Rn

|φi(x)|p |u(x) − u(y)|p
|x− y|n+ps

dxdy

+ C1

∫
Rn

∫
Rn

|u(y)|p |φi(x) − φi(y)|p
|x− y|n+ps

dxdy

≤ C1 sup
x

|φi(x)|p
∫

Rn

∫
Bi

|u(x) − u(y)|p
|x− y|n+ps

dxdy

+ C1

∫
Rn

|u(y)|p
(∫

Rn

|φi(x) − φi(y)|p
|x− y|n+ps

dx

)
dy,

where Bi is the support of φi. To estimate
∑∞

i=1 |Ji| we first use the inequality

∞∑
i=1

∫
Rn

∫
Bi

|u(x) − u(y)|p
|x− y|n+ps

dxdy ≤ C2

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+ps

dxdy

which follows from the fact that at each x ∈ R
n the number of intersecting supports

Bi is no more than N + 1. We next estimate the function

Φ(y) ≡
∞∑
i=1

∫
Rn

|φi(x) − φi(y)|p
|x− y|n+ps

dx = Φ1(y) + Φ2(y),

where Φ1(y) contains all i such that y ∈ Bi or y �∈ Bi but the distance from y
to Bi is less than 1. The function Φ2(y) contains the remaining terms. There is a
finite number of terms in Φ1(y). For each such i we have
∫

Rn

|φi(x) − φi(y)|p
|x− y|n+ps

dx =
∫
Ki

|φi(x) − φi(y)|p
|x− y|n+ps

dx+
∫

Rn/Ki

|φi(x) − φi(y)|p
|x− y|n+ps

dx

≤ C3

∫
Ki

|x− y|p
|x− y|n+ps

dx+
∫

Rn/Ki

|φi(y)|p
|x− y|n+ps

dx,

where Ki is the ball with the same center as Bi and the radius two times greater.
Both integrals in the right-hand side are bounded. Therefore Φ1(y) is also bounded.

Consider next Φ2(y):

Φ2(y) =
∞∑
i=1

∫
Bi

|φi(x)|p
|x− y|n+ps

dx ≤ C4

∫
Rn/S(y)

dx

|x− y|n+ps
,

where S(y) is the unit ball with the center at y. Hence Φ2(y) is bounded. Thus,
Φ(y) is bounded independently of y, and

‖u‖p
W s,p

p
≤ C5‖u‖pLp

p
+ C5

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+ps

dxdy = C5‖u‖pW s,p .
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We now prove the opposite inequality. The 2n-dimensional space Rn×Rn is
represented as a sum of two sets,

Π = {x ∈ R
n, y ∈ R

n, |x− y| ≤ ε},

and

Λ = {x ∈ R
n, y ∈ R

n, |x− y| > ε}.
Consider a square lattice in Rn with distance d between its points, and the balls
Ki with centers at the centers of the lattice and the radii 2d. For ε > 0 sufficiently
small, Π ⊂ ∪∞

i=1Ki ×Ki. Let θi be a system of functions such that θi = 1 in Ki.
Then

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x− y|n+ps

dxdy

≤
∞∑
i=1

∫
Ki

∫
Ki

|u(x) − u(y)|p
|x− y|n+ps

dxdy +
∫

Λ

|u(x) − u(y)|p
|x− y|n+ps

dxdy,

∞∑
i=1

∫
Ki

∫
Ki

|u(x) − u(y)|p
|x− y|n+ps

dxdy =
∞∑
i=1

∫
Ki

∫
Ki

|θi(x)u(x) − θi(y)u(y)|p
|x− y|n+ps

dxdy

≤
∞∑
i=1

∫
Rn

∫
Rn

|θi(x)u(x) − θi(y)u(y)|p
|x− y|n+ps

dxdy,

∫
Λ

|u(x) − u(y)|p
|x− y|n+ps

dxdy ≤ C6

∫
Λ

|u(x)|p
|x− y|n+ps

dxdy + C6

∫
Λ

|u(y)|p
|x− y|n+ps

dxdy,

∫
Λ

|u(x)|p
|x− y|n+ps

dxdy =
∫

Rn

|u(x)|p
(∫

|y−x|>ε

dy

|x− y|n+ps

)
dx.

Since the internal integral in the right-hand side of the last equality can be esti-
mated by a constant independent of x, then

∫
Λ

|u(x) − u(y)|p
|x− y|n+ps

dxdy ≤ C7‖u‖pLp ≤ C8‖u‖pLp
p
.

Thus,

‖u‖W s,p ≤ C9‖u‖W s,p
p
.

This estimate is obtained for the system of functions θi. We recall that the norms
in W s,p

p with equivalent systems of functions are equivalent.
We have proved that the norms in W s,p and W s,p

p are equivalent in the case
of positive s < 1. For an integer s ≥ 1, the assertion of the theorem follows from
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Lemma 12.2. Consider now noninteger s > 1. We have

‖u‖p
W s,p

p
=

∞∑
i=1

‖φiu‖pW s,p

=
∑

|α|≤[s]

∞∑
i=1

‖Dα(φiu)‖pLp

+
∞∑
i=1

∫
Rn

∫
Rn

|D[s](φi(x)u(x)) −D[s](φi(y)u(y))|p
|x− y|n+pσ

dxdy,

where σ = s− [s]. The estimate of the integral
∫

Rn

∫
Rn

|Dβφi(x)Dγu(x) −Dβφi(y)Dγu(y)|p
|x− y|n+pσ

dxdy

can be done in the same way as above in the case s < 1. This allows us to obtain
the estimate

‖u‖W s,p
p

≤ C10‖u‖W s,p .

To prove the opposite inequality we use the estimate∫
Rn

∫
Rn

|Dαu(x) −Dαu(y)|p
|x− y|n+pσ

dxdy

≤
∞∑
i=1

∫
Rn

∫
Rn

|θi(x)Dαu(x) − θi(y)Dαu(y)|p
|x− y|n+pσ

dxdy + ‖u‖p
W [s],p

(12.1)

similar to the estimate obtained for s < 1. Since

‖u‖W [s],p ≤ C11‖u‖W [s],p
p

,

it remains to estimate the integral in the right-hand side of (12.1):
∞∑
i=1

∫
Rn

∫
Rn

|θi(x)Dαu(x) − θi(y)Dαu(y)|p
|x− y|n+pσ

dxdy

≤
∞∑
i=1

∫
Rn

∫
Rn

|Dα(θi(x)u(x)) −Dα(θi(y)u(y))|p
|x− y|n+pσ

dxdy

+
∞∑
i=1

C12

∑
|β|+|γ|=|α|,|γ|<|α|

∫
Rn

∫
Rn

|Dβθi(x)Dγu(x) −Dβθi(y)Dγu(y)|p
|x− y|n+pσ

dxdy

≤ ‖u‖p
W s,p

p
+ C13‖u‖pW s−1,p . (12.2)

The second term in (12.2) is estimated similar to the estimate of Ji above. Thus

‖u‖W s,p ≤ C14(‖u‖W s,p
p

+ ‖u‖W s−1,p) ≤ C15(‖u‖W s,p
p

+ ‖u‖W [s],p) ≤ C16‖u‖W s,p
p
.

The theorem is proved. �
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To study further properties of the spaces W s,p
q we use the integral definition

of the norm in W s,p
q :

‖u‖W s,p
q

=
(∫

Rn

‖u(·)φ(· − y)‖qW s,pdy

)1/q

(see Section 3). If s = 0 it becomes

‖u‖Lp
q

=

(∫
Rn

(∫
Rn

|u(x)φ(x − y)|pdx
)q/p

dy

)1/q

.

We can replace φ(x) by the characteristic function of the unit ball. Then

‖u‖Lp
q

=



∫

Rn

(∫
|x−y|≤1

|u(x)|pdx
)q/p

dy




1/q

.

We will determine conditions on u(x) to belong to the space Lpq. We have

‖u‖q
Lp

q
=
∫

Rn

(∫
|x−y|≤1

|u(x)|pdx
)q/p

dy = I1 + I2,

where

I1 =
∫
|y|≤2

(∫
|x−y|≤1

|u(x)|pdx
)q/p

dy, I2 =
∫
|y|>2

(∫
|x−y|≤1

|u(x)|pdx
)q/p

dy.

Let u(x) = |x|−α, α > 0. Then

I1 =
∫
|y|≤2

(∫
|x−y|≤1

dx

|x|αp
)q/p

dy ≤
∫
|y|≤2

(∫
|x|≤3

dx

|x|αp
)q/p

dy.

If αp < n, then

I1 ≤ 2nωn

(
3n−αpκn
n− αp

)q/p
,

where ωn and κn are the volume and the surface of the unit sphere, respectively.
Consider I2. Since |y| > 2, then |x| ≥ |y| − 1 ≥ 1

2 |y|. If n < αq, then

I2 ≤
∫
|y|>2

(∫
|x−y|≤1

2αpdx
|y|αp

)q/p
dy =

2nωnκn
αq − n

.
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We have proved the following lemma.

Lemma 12.4. If αp < n < αq, then u(x) = 1/|x|α ∈ Lpq.

From this lemma we easily obtain the following proposition.

Proposition 12.5. If for some R > 0,
∫
|x|≤R

|u(x)|pdx <∞

and |u(x)| ≤ K|x|−α for |x| > R, where K is a positive constant and αq > n, then
u ∈ Lpq.

In the remaining part of this section we construct an example of “bad” func-
tionals (Remark 10.12) in the space L2

∞(R). Consider the subspace Elim of this
space that consists of functions u(x) for which there exists the limit

φ(u) = lim
x→+∞

∫ x+1

x

u(s)ds.

We verify that Elim is closed in the norm

‖u‖L2∞ = sup
x

(∫ x+1

x

u2(s)ds
)1/2

.

Let un ∈ Elim, un → u0 in L2∞. Put

zn(x) =
∫ x+1

x

un(s)ds, an = φ(un).

Then

|zn(x)| ≤
(∫ x+1

x

u2
n(s)ds

)1/2

≤ ‖un‖L2∞ ≤M

for some positive constant M . The last inequality follows from the assumption
that the sequence is convergent. The sequence φ(un) is fundamental. Denote by
a0 its limit. We will show that z0(x) → a0. Indeed,

|z0(x) − a0| ≤ |zn(x) − an| + |an − a0| + |z0(x) − zn(x)|.

For any ε > 0 we can choose N such that for any n ≥ N , |an − a0| < ε/3, and
|z0(x)−zn(x)| < ε/3 for all x ∈ R1. For a fixed n ≥ N , we can choose x0 such that
|zn(x) − an| < ε/3 for x ≥ x0. Therefore |z0(x) − a| < ε for x ≥ x0. This proves
the convergence. Thus, u0 ∈ Elim.

By the Hahn-Banach theorem we can extend the functional φ(u) to the whole
space L2

∞. For any u ∈ D, φ(u) = 0.
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13 Local operators

1. Operators in Rn. Let E and F be local spaces, that is the spaces of distributions
introduced in Section 1. We suppose that D ⊂ E, D ⊂ F , and D is dense in F .

Definition 13.1. An operator A : E → F is called local if for any u ∈ E with a
compact support the inclusion suppAu ⊂ suppu holds.

Theorem 13.2. If A : E → F is a bounded local operator, then A∗ : E∗ → F ∗ is
also a bounded local operator.

Proof. Let v ∈ F ∗ be a function with compact support. We have to prove that
suppA∗v ⊂ supp v. Suppose that it is not the case. Then there exists a point
x0 ∈ Rn such that x0 ∈ suppA∗v, x0 �∈ supp v. Let B be a closed ball with the
center at x0 such that B ∩ supp v = � and f ∈ D be such that supp f ⊂ D,

〈A∗v, f〉 �= 0. (13.1)

On the other hand,
〈A∗v, f〉 = 〈v,Af〉 (13.2)

and 〈v,Af〉 = 0 since the support of Af belongs to B and it does not intersect the
support of v. Here we use the density of D in F in order to approximate Af by
functions from D with supports in B. This contradiction proves the theorem. �

Theorem 13.3. Let A : E → F be a local operator. Then

Alocu =
∞∑

i,j=1

θjA(θiu), ∀u ∈ Eloc (13.3)

is a linear operator acting from Eloc to Floc. Convergence of the series in (13.3)
is understood in the sense of distributions, and it does not depend on the choice
of the partition of unity θi.

Proof. Let

Am,nu =
m∑
i=1

n∑
j=1

θjA(θiu).

Since u ∈ Eloc, then θiu ∈ E and A(θiu) ∈ F . Moreover suppA(θiu) ⊂ supp θiu ⊂
θi. Let φ ∈ D. We have

〈Am,nu, φ〉 =
m∑
i=1

n∑
j=1

〈A(θiu), θjφ〉. (13.4)

Denote by N the number of functions θi for which supp θi∩ suppφ �= �. Then the
right-hand side of (13.4) contains no more than N2 terms. Therefore we can pass
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to the limit in (13.4) as m,n→ ∞, and

〈Alocu, φ〉 =
m∑
i=1

n∑
j=1

〈A(θiu), θjφ〉 (13.5)

for m and n sufficiently large (depending on suppφ).
We show next that Alocu ∈ Floc, that is ψAlocu ∈ F for any ψ ∈ D. We have

〈ψAlocu, φ〉 =
m∑
i=1

n∑
j=1

〈A(θiu), θjψφ〉,

where m and n depend on suppψ but do not depend on suppφ. Hence for n
sufficiently large,

ψAlocu = ψ

m∑
i=1

n∑
j=1

θjA(θiu) =
m∑
i=1


ψ

∞∑
j=1

θj


A(θiu) = ψ

m∑
i=1

A(θiu),

where m depends on suppψ. Since A(θiu) ∈ F , then Alocu ∈ Floc.
The fact that Aloc is a linear operator follows directly from (13.5). It remains

to show that (13.3) does not depend on the partition of unity. From (13.5)

〈Alocu, φ〉 =
m∑
i=1

〈A(θiu), φ〉 (13.6)

for all m sufficiently large. Let θ̃i be another partition of unity. Then from (13.6)
we obtain

〈Alocu, φ〉 =
m∑
i=1

〈
A


 ∞∑
j=1

θ̃jθiu


 , φ

〉
=

m∑
i=1

〈
A


 n∑
j=1

θ̃jθiu


 , φ

〉
, (13.7)

where n depends on suppφ and does not depend on i since suppA(θ̃jθiu) ⊂
supp θ̃jθi and 〈A(θ̃jθiu), φ〉 = 0 if supp θj ∩ suppφ = �. From (13.7)

〈Alocu,φ〉=
n∑
j=1

〈
A

(
θ̃j

m∑
i=1

θiu

)
,φ

〉
=

n∑
j=1

〈
A

(
θ̃j

∞∑
i=1

θiu

)
,φ

〉
=

n∑
j=1

〈A(θ̃ju),φ〉

for n sufficiently large. This equality together with (13.6) show that Aloc is inde-
pendent of the partition of unity. The theorem is proved. �

Definition 13.4. Operator Aloc : Eloc → Floc is called the extension of A : E → F
to Eloc. Operator Aq(1 ≤ q ≤ ∞) is a restriction of Aloc to Eq.

Theorem 13.5. Let A : E → F be a bounded local operator. Then Aq is a bounded
operator from Eq to Fq.
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Proof. We begin with the case q = ∞. Let θi be a partition of unity, u ∈ E∞. We
have

θiAlocu = θi

m∑
j=1

A(θju)

for all m sufficiently large. Since suppA(θju) ⊂ supp θju ⊂ supp θj , then

θiA∞u = θiAlocu = θi
∑
j′
A(θj′u),

where j′ are all those j for which supp θi ∩ supp θj �= �. Therefore

‖θiA∞u‖F ≤
∑
j′

‖θiA(θj′u)‖F ≤
∑
j′

‖θi‖M(F )‖A‖ ‖θj′u‖E

≤ N‖A‖ ‖θi‖M(F )‖u‖E∞.

Let κ = supi ‖θi‖M(F ). Then

‖A∞u‖F∞ ≤ κN‖A‖ ‖u‖E∞.

Consider next 1 ≤ q <∞. We have

θiAqu = θiAlocu = θi
∑
j′
A(θj′u),

and for any integer m,
m∑
i=1

‖θiAqu‖qF =
m∑
i=1

‖θi
∑
j′
A(θj′u)‖qF ≤

m∑
i=1

N q−1
∑
j′

‖θiA(θj′u)‖qF

= N q−1
∞∑
j=1

m∑
i=1

‖θiA(θju)‖qF = N q−1
∞∑
j=1

m∑
i′

‖θi′A(θju)‖qF

≤ N q−1
∞∑
j=1

m∑
i′

‖θi′‖M(F )q‖A(θju)‖qF ≤ N qκq
∞∑
j=1

‖A(θju)‖qF

≤ N qκq‖A‖q
∞∑
j=1

‖θju‖qE = N qκq‖A‖q‖u‖qEq
.

Here i′ are all those i for which supp θi ∩ supp θj �= �. The number of such i is
not greater than N . Passing to the limit as m→ ∞, we get

‖Aqu‖qFq
≤ N qκq‖A‖q‖u‖qEq

.

Therefore
‖Aqu‖Fq ≤ Nκ‖A‖ ‖u‖Eq .

The theorem is proved. �
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2. Operators in Ω. Let Ω be a domain in Rn, E be the space in Definition 13.1.
The space E(Ω) is defined in Definition 9.1.

Definition 13.6. The space Eq(Ω) is defined as the set of those generalized functions
from D′

Ω that are restrictions to Ω of generalized functions from Eq, (1 ≤ q ≤ ∞).
The norm in Eq(Ω) is given by the equality

‖u‖Eq(Ω) = inf ‖uc‖Eq ,

where the infimum is taken over all those uc ∈ Eq, whose restriction to Ω coincide
with u (cf. Definition 9.2).

Definition 13.7. Let A : E → F be a local bounded operator. Operator Aq(Ω), (1 ≤
q ≤ ∞) is the restriction of Aq to Eq(Ω).

We discuss the last definition in more detail. Let u ∈ Eq(Ω). Then there
exists uc ∈ Eq such that

〈uc, φ〉 = 〈u, φ〉, ∀φ ∈ DΩ.

Then Aq(Ω)u is the restriction of Aquc to Ω.
We show that Aq(Ω)u does not depend on the extension uc. Indeed, let u1

and u2 be two extensions of u. Then

〈u1, φ〉 = 〈u2, φ〉 = 〈u, φ〉, ∀φ ∈ DΩ.

Let z = u1 − u2. Then 〈z, φ〉 = 0, ∀φ ∈ DΩ. This means that the support supp z
of z belongs to the complement CΩ of the domain Ω. By the definition of local
operators, suppAz ⊂ CΩ. Therefore 〈Az, φ〉 = 0, ∀φ ∈ DΩ, that is

〈Au1, φ〉 = 〈Au2, φ〉 = 0, ∀φ ∈ DΩ.

Hence Au1 and Au2 coincide as elements of F (Ω). Thus Aq(Ω) acts from Eq(Ω)
to F (Ω).

Theorem 13.8. Operator Aq(Ω) is bounded as acting from Eq(Ω) to Fq(Ω).

Proof. Let u ∈ Eq(Ω). By Definition 13.6 there exists uc ∈ Eq such that

‖uc‖Eq ≤ 2‖u‖Eq(Ω).

Let vc = Aqu
c. Then vc ∈ Fq. We have

‖vc‖Fq = ‖Aquc‖Fq ≤ ‖Aq‖ ‖uc‖Eq ≤ 2‖Aq‖ ‖u‖Eq(Ω).

By definition, Aq(Ω)u is the restriction of vc to Ω. Hence

‖Aq(Ω)u‖Fq(Ω) ≤ ‖vc‖Fq ≤ 2‖Aq‖ ‖u‖Eq(Ω).

Therefore Aq(Ω) : Eq(Ω) → Fq(Ω) is a bounded operator and ‖Aq(Ω)‖ ≤ 2‖Aq‖.
The theorem is proved. �
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3. Boundary operators. Let ∂Ω be a Cl manifold, where l ≥ 1 is an integer. As
in Section 8 we denote by Dl the space of all functions φ ∈ Cl(Rn) with compact
support. Let E be a local space and Dl be dense in E. We denote by Dl(Ω) the
restriction of Cl to Ω. Since Dl is dense in E, then Dl(Ω) is dense in E(Ω).

For any u ∈ E(Ω) we can define its trace û on ∂Ω. We first define the norm
of traces of functions from Dl(Ω). Let φ ∈ Dl(Ω). Then φ is defined on ∂Ω. We
put

‖φ‖E(∂Ω) = inf ‖φc‖E(Ω), (13.8)

where the infimum is taken over all φc ∈ E(Ω) such that φc(x) = φ(x) for x ∈ ∂Ω.

Definition 13.9. The space E(∂Ω) is the closure of Dl(∂Ω) in the norm (13.8),
where Dl(∂Ω) is the space of traces of Dl(Ω) on ∂Ω.

Let u ∈ E(Ω). Then there exists a sequence φn → u in E(Ω), φn ∈ D(Ω).
Then û = limn φ̂n in the norm (13.8), where φ̂n is the trace of φn. Obviously, û
does not depend on the choice of φn.

Example 13.10. Let E(Ω) = W s,p(Ω). If s > 1/p, then E(∂Ω) = W s−1/p,p(∂Ω).
Let E(Ω) = L2(Ω). Applying formally the definition we obtain ‖φ‖E(∂Ω) = 0 for
any φ. Therefore the norm of any function defined on ∂Ω equals zero. This means
that we can formally define the space of traces if we consider equivalence classes of
functions, but this definition has no sense because the space contains only the zero
element. Nevertheless this definition can be useful since it allows us to consider
the general case.

Definition 13.11. Linear operator B : E → F (∂Ω) is called local if for any u ∈ E
we have suppBu ⊂ suppu, where suppBu is taken in ∂Ω.

It follows from the definition that if suppu ∩ ∂Ω = �, then suppBu = �.
Hence Bu = 0 as an element of F (∂Ω). Consider the operator

B∗ : (F (∂Ω))∗ → E∗.

We suppose that D is dense in E, and Dl(∂Ω) is dense in F (∂Ω).

Theorem 13.12. Let B : E → F (∂Ω) be a bounded local operator. Then B∗ :
(F (∂Ω))∗ → E∗ is also a bounded local operator.

The proof of this theorem is similar to the proof of Theorem 13.2. It follows from
this theorem that for any v ∈ (F (∂Ω))∗, suppB∗v ∈ ∂Ω.

Definition 13.13. Linear operator B : E(Ω) → F (∂Ω) is called local if for any
u ∈ E(Ω) we have suppBu ⊂ suppu.

Theorem 13.14. Let B : E(Ω) → F (∂Ω) be a bounded local operator. Then B∗ :
(F (∂Ω))∗ → (E(Ω))∗ is also a bounded local operator.

The proof of this theorem is similar to the proof of Theorem 13.2.



Chapter 3

A Priori Estimates

In this chapter we obtain a priori estimates for elliptic operators in bounded or
unbounded domains. We will use the spaces of functions introduced in Chapter 2.
Consider the operators

Aiu =
N∑
k=1

∑
|α|≤αik

aαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω, (0.1)

Bju =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
βuk, j = 1, . . . ,m, x ∈ ∂Ω, (0.2)

where u = (u1, . . . , uN), Ω ⊂ Rn is an unbounded domain that satisfies certain
conditions given below. According to the definition of elliptic operators in the
Douglis-Nirenberg sense [134] we suppose that

αik ≤ si + tk, i, k = 1, . . . , N, βjk ≤ σj + tk, j = 1, . . . ,m, k = 1, . . . , N

for some integers si, tk, σj such that si ≤ 0, max si = 0, tk ≥ 0. We assume that
the operator is uniformly elliptic.

Denote by E the space of vector-valued functions u = (u1, . . . , uN), where uj
belongs to the Sobolev space W l+tj ,p(Ω), j = 1, . . . , N , 1 < p <∞, l is an integer,
l ≥ max(0, σj + 1), E = ΠN

j=1W
l+tj ,p(Ω). The norm in this space is defined as

‖u‖E =
N∑
j=1

‖uj‖W l+tj,p(Ω).

The operator Ai acts from E to W l−si,p(Ω), the operator Bj acts from E to
W l−σj−1/p,p(∂Ω). Let

L = (A1, . . . , AN , B1, . . . , Bm),

F = ΠN
i=1W

l−si,p(Ω) × Πm
j=1W

l−σj−1/p,p(∂Ω).
(0.3)
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Then L : E → F . The coefficients of the operators are in general complex-valued.
We assume that aαik ∈ Cm(Rn), m ≥ 1 + l − si and bβjk(x) ∈ Cm(Rn−1), m ≥
1+ l−σj−1/p. The notation C0 will be used for functions with bounded support.

The proof of a priori estimates is based on the invertibility of model problems
for pseudo-differential operators introduced as a modification of elliptic differential
operators. Their invertibility allows us to obtain a priori estimates both for the
direct and for the adjoint operators. The invertibility of these operators was proved
earlier in [457] in a more general case. Here we use another method suggested in
[566] which allows a simplification of the proof. This method is an adaptation of
the approach developed in [542] in order to obtain a priori estimates of solutions.

1 Model problems in a half-space

1.1 Formulation of the main result

We use the following notation:

Dj = i∂/∂xj, j = 1, . . . , n,

D̂j = (F ′)−1 ξj
|ξ′| (1 + |ξ′|)F ′, j = 1, . . . , n− 1, D̂n = Dn,

where F ′ is the partial Fourier transform with respect to the variables x1, . . . , xn−1,
ξ′ = (ξ1, . . . , ξn−1), |ξ′| = (ξ21 + · · · + ξ2n−1)

1/2.
Denote by A(D) the square N × N matrix of linear differential operators

Aij(D),
Aij(D) =

∑
|α|=αij

aαijD
α

with constant coefficients. We suppose that the operator A(D) is elliptic in the
Douglis-Nirenberg sense and contains only the principal terms. Then (see [542])

A(cξ) = S(c)A(ξ)T (c) (1.1)

for any ξ = (ξ1, . . . , ξn) and any real c. Here S and T are diagonal matrices,

S(c) = (δijcsi) , T (c) =
(
δijc

tj
)
, (1.2)

where δij is the Kronecker symbol, s1, . . . , sN , t1, . . . , tN are given integers, αij =
si + tj, i, j = 1, . . . , N, si ≤ 0.

We consider the system of equations

A(D̂)u = f (1.3)

in the half-space

R
n
+ = {x ∈ R

n, x = (x1, . . . , xn), xn > 0},
u(x) = (u1(x), . . . , uN (x)), f(x) = (f1(x), . . . , fN (x)).
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We set the boundary conditions

B(D̂)u = g(x′) (1.4)

at the boundary Γ of Rn+, where g(x′) = (g1(x′), . . . , gm(x′)), B(D) is a rectangular
m×N matrix with the elements

Bkj(D) =
∑

|α|=σkj

bαkjD
α,

and bαkj are some constants. The matrix B(ξ) is homogeneous,

B(cξ) = M(c)B(ξ)T (c),

where M(c) is a diagonal matrix of order m,

M(c) = (δijcσi) , (1.5)

σi = max1≤j≤N (σij − tj), i = 1, . . . ,m (see [542]). We introduce the following
spaces

E(Ω) = ΠN
j=1W

l+tj ,p(Ω),

F d(Ω) = ΠN
j=1W

l−si,p(Ω),

F b(∂Ω) = Πm
j=1W

l−σj−1/p,p(∂Ω),

where Ω is a domain in R
n, ∂Ω is its boundary, l is an integer, l ≥ maxj(σj + 1),

1 < p <∞. The main result of this section is given by the following theorem.

Theorem 1.1. For any f ∈ F d(Rn+) and g ∈ F b(Rn−1) there exists a unique solution
u ∈ E(Rn+) of problem (1.3), (1.4).

The proof of this theorem is based on the following result.

Theorem 1.2. For any u ∈ E(Rn+) the following estimate holds:

‖u‖E(Rn
+) ≤

(
‖A(D̂)u‖Fd(Rn

+) + ‖B(D̂)u‖F b(Γ)

)
,

where c is a constant independent of u.

The proof of this theorem is given in Section 1.4 and of the previous one in Section
1.5. Theorem 1.1 in more general spaces is proved in [457]. We use the approach
developed in [542] to give a simpler proof for the case under consideration.

1.2 Auxiliary results

Set ξ = (ξ1, . . . , ξn), ξ̂ = (ξ̂1, . . . , ξ̂n), where

ξ̂i =
ξi
|ξi| + ξi, i = 1, . . . , n− 1, ξ̂n = ξn. (1.6)
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Proposition 1.3. Let f(ξ) be a homogeneous function of degree s ≥ 0 and

µ = inf
1≤|ξ|≤2

|f(ξ)|. (1.7)

Then for any ξ,
|f(ξ̂(ξ))| ≥ max(1, |ξ|s)µ. (1.8)

Proof. We have
|ξ̂|2 = 1 + 2|ξ′| + |ξ|2. (1.9)

Hence
|ξ̂| ≥ 1. (1.10)

If |ξ| ≤ 1, then |ξ̂| ≤ 2 and (1.8) follows from (1.7).
Let |ξ| ≥ 1 and η = ξ̂ · |ξ|−1. Then 1 ≤ |η| ≤ 2. Therefore |f(ξ̂)| = |ξ|s|f(η)| ≥

µ|ξ|s. The proposition is proved. �

Proposition 1.4. Let f(ξ) be a homogeneous function of degree s ≤ 0 and M =
sup1≤|ξ|≤2 |f(ξ)|. Then for any ξ, |f(ξ̂(ξ))| ≤ min(1, |ξ|s)M .

The proof is similar to the proof of the previous proposition.

Denote by R the ring with the basis

1, φi(ξ′) =
ξi
|ξ′| , i = 1, . . . , n− 1. (1.11)

The elements of R are finite products of (1.11) and their algebraic sums. It is easy
to see that if a(ξ′) ∈ R, then

ξk
∂a(ξ′)
∂ξk

∈ R, k = 1, . . . , n− 1.

This follows from the fact that

ξk
∂φi(ξ′)
∂ξk

= δikφk − φiφ
2
k ∈ R.

Denote by Πm the set of all polynomials of the variables ξi, i = 1, . . . , n of degree
m with the coefficients from R:

P (ξ) =
∑

|α|≤m
cα(ξ′)ξα, cα(ξ′) ∈ R,

where α is a multi-index. It is easy to verify that

ξk
∂P (ξ′)
∂ξk

∈ Πm, k = 1, . . . , n, ∀P (ξ) ∈ Πm. (1.12)
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Proposition 1.5. Let a function f(ξ) have continuous derivatives of order less than
or equal to m. Then for |α| ≤ m,

ξαDαf(ξ̂(ξ)) =
∑

|β|≤|α|
aβ(ξ)D

β

ξ̂
f(ξ̂(ξ)), (1.13)

where aβ(ξ) ∈ Π|β|.

The proof is straightforward and can be done by induction in |α|.
We will find conditions for f(ξ̂(ξ)) to be a Fourier multiplier in Lp. We recall

that a function Φ(ξ) is called a Fourier multiplier in Lp if for all v ∈ C∞
0 ,

‖F−1Φ(ξ)Fv‖Lp ≤ c‖v‖Lp ,

where F is the Fourier transform. The norm ‖Φ‖M of this multiplier is the infimum
of the constants c. We will use the following theorem.

Michlin’s Theorem (see [322], [349]). Suppose that the function Φ(ξ) is continuous
with its mixed derivatives for |ξj | > 0, j = 1, . . . , n and

|ξαDαΦ| < K, |α| ≤ n,

where α = (α1, . . . , αn), and the numbers α1, . . . , αn take the values 0 or 1. Then
Φ(ξ) is a Fourier multiplier in Lp and

‖Φ‖M ≤ cpK,

where the constant cp does not depend on the function Φ(ξ).

Proposition 1.6. Let f(ξ) be a homogeneous function of degree zero, Dαf(ξ), |α| ≤
n be continuous for 1 ≤ |ξ| ≤ 2. Then f(ξ̂(ξ)) is a Fourier multiplier in Lp.

Proof. From (1.13) we have

|ξαDαf(ξ̂(ξ))| ≤
∑

|β|≤|α|
|aβ(ξ)||Dβ

ξ̂
f(ξ̂(ξ))|. (1.14)

The function Dβ
ξ f(ξ) is a homogeneous function of degree −|β|. Hence by Propo-

sition 1.4
|Dβ

ξ̂
f(ξ̂(ξ))| ≤ min(1, |ξ|−|β|)Mβ ,

where
Mβ = sup

1≤|ξ|≤2

|Dβ
ξ f(ξ)|. (1.15)

Further, aβ(ξ) ∈ Π|β|. Therefore

|aβ(ξ)| ≤ Nβ|ξ||β|, |ξj | > 0, j = 1, . . . , n, (1.16)
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where Nβ is a constant, since the elements of the ring R are bounded for |ξj | > 0.
From (1.14)–(1.16) we obtain

|ξαDαf(ξ̂(ξ))| ≤
∑

|β|≤|α|
MβNβ,

and the conditions of Michlin’s Theorem are satisfied. The proposition is proved.
�

Proposition 1.7. For −∞ < s <∞, 1 < p <∞,

‖u‖Hs,p = ‖F−1|ξ̂(ξ)|sFu‖Lp

is an equivalent norm in Hs,p.

The proof follows from the fact that the function |ξ̂(ξ)|s(1 + |ξ|2)−s/2 satisfies the
conditions of Michlin’s Theorem.

Proposition 1.8. Consider the function

f(ξ′, t) = a(ξ′)ξ′α(1 + |ξ′|2)s/2Dκ
t ψ(ξ̂′, t), (1.17)

where

ψ(ξ̂′, t) =
∫
γ+(ξ′)

eiλtg(ξ′, λ)dλ, (1.18)

γ+(ξ′) is a contour lying in the half-plane Imλ > 0 and enclosing the zeros λ of
the polynomial det A(ξ′, λ) lying in this half-plane; g(ξ′, λ) is a homogeneous (with
respect to (ξ′, λ)) function of degree γ, analytic in λ and infinitely differential in
ξ′ for ξ′ �= 0; a(ξ′) is an element of the ring R; α is a multi-index; κ ≥ 0 is an
integer.

If
|α| + s+ κ+ γ ≤ 0, (1.19)

then f(ξ′, t) is a Fourier multiplier in Lp(Rn−1) with respect to ξ′, t > 0 is a
parameter. The norm of the multiplier satisfies the estimate

‖f(·, t)‖M ≤ c

t
, (1.20)

where c is a constant.

Proof. We put ξ̂′ instead of ξ in (1.18) and substitute λ = µ|ξ̂′|. Denoting η̂′ =
ξ̂′|ξ̂′|−1, we obtain

ψ(ξ̂′, t) = |ξ̂′|γ+1

∫
γ̃+

eiµ|ξ̂
′|tg(η̂′, µ)dµ, (1.21)
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where γ̃+ is a contour, which encloses the zeros µ of det A(η̂′, µ) (since det A(ξ′, λ)
is a homogeneous function). Since |η̂′| = 1, γ̃+ can be taken to be independent of
η̂′ and situated in the half-plane Imµ > δ > 0.

From the boundedness of |a(ξ′)|, (1.17) and (1.21) we get

|f(ξ′, t)| ≤ c1|ξ′||α|(1 + |ξ′|2)s/2|ξ̂′|κ+γ+1e−δ|ξ
′|t ≤ c2|ξ̂′||α|+s+κ+γ+1e−δ|ξ

′|t.

Hence in view of (1.19),

|f(ξ′, t)| ≤ c3
t
. (1.22)

It is easy to verify that ξk
∂f(ξ′,t)
∂ξk

, k = 1, . . . , n− 1 is a sum of functions satisfying
the conditions of the proposition. Therefore the same is true for ξ′αDαf(ξ′, t),
where ξ′αDα satisfies the conditions of Michlin’s Theorem. Thus ξ′αDα satisfies
the estimate of type (1.22). The proposition follows from Michlin’s Theorem. �

Proposition 1.9. (cf. [542], Proposition 5.2). Consider the operator

Tφ =
∫ ∞

0

F ′−1(H(ξ′, t+ τ)F ′φ(ξ′, τ))dτ,

where
Mp(H(·, t)) ≤ c

t
,

Mp being the norm of the Fourier multiplier in Lp(Rn−1), φ(x′, t) ∈ Lp(Rn+). Then

‖Tφ‖Lp(Rn
+) ≤ c1‖φ‖Lp(Rn

+).

Proof. We have

‖Tφ‖Lp(Rn
+) =

(∫ ∞

0

∥∥∥∥
∫ ∞

0

F ′−1 (H(ξ′, t+ τ)F ′φ(ξ′, τ)) dτ
∥∥∥∥
p

Lp(Rn−1)

dt

)1/p

.

(1.23)
Further ∥∥∥∥

∫ ∞

0

F ′−1 (H(ξ′, t+ τ)F ′φ(ξ′, τ)) dτ
∥∥∥∥
p

Lp(Rn−1)

≤
∫ ∞

0

‖F ′−1 (H(ξ′, t+ τ)F ′φ(ξ′, τ)) ‖pLp(Rn−1)dτ

≤ c

∫ ∞

0

(t+ τ)−1‖φ(·, τ)‖Lp(Rn−1)dτ.

(1.24)

Set
Φ(τ) = ‖φ(·, τ)‖Lp(Rn−1), τ ≥ 0, Φ(τ) = 0, τ < 0.
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Then in the right-hand side of (1.24) we have the Hilbert transform of the function
Φ(−τ). Applying the theorem of M. Riesz on the boundedness in Lp of the Hilbert
transform (see, e.g., [504]), we find from (1.23)

‖Tφ‖Lp(Rn
+) ≤ c

(∫ ∞

0

(∫ ∞

−∞
(t+ τ)−1Φ(τ)dτ

)p
dt

)1/p

≤ c

(∫ ∞

−∞
|
∫ ∞

−∞
(t+ τ)−1Φ(τ)dτ |pdt

)1/p

≤ c1‖Φ‖Lp(R1) = c1‖φ‖Lp(Rn
+).

The proposition is proved. �

1.3 Reduction to homogeneous systems

Consider problem (1.3), (1.4). Let f∗(x) be an extension of f(x) to Rn, f∗ ∈
F d(Rn). Consider the equation

A(D̂)u∗ = f∗ in R
n.

After the Fourier transform we obtain

A(ξ̂)ũ∗(ξ) = f̃∗(ξ), (1.25)

where ũ∗ = Fu∗, f̃∗ = Ff , ξ̂ is given by (1.6).
It follows from (1.1) that det A(ξ) is a homogeneous function of degree∑N

1 (si + ti) ≥ 0. By the ellipticity condition we have

µ := inf
1≤|ξ|≤2

| det A(ξ)| > 0.

Therefore Proposition 1.3 implies that for all ξ, | det A(ξ̂(ξ))| ≥ µ. Thus

ũ∗(ξ) = A−1(ξ̂(ξ))f̃∗(ξ). (1.26)

Let S and T be matrices (1.2). It follows from (1.26) that

F−1|ξ̂|lT (|ξ̂|)Fu∗ = F−1T (|ξ̂|)A−1(ξ̂)S(|ξ̂|)FF−1|ξ̂|lS−1(|ξ̂|)Ff∗. (1.27)

Obviously the elements of the matrix T (|ξ|)A−1(ξ)S(|ξ|) are homogeneous func-
tions of degree zero (see (1.1)). By Proposition 1.6 they are Fourier multipliers in
Lp. Therefore taking the Lp norm of (1.27), we get

‖u∗(ξ)‖E(Rn) ≤ c‖f∗‖Fd(Rn). (1.28)

Set
v(x) = u(x) − u∗(x), x ∈ R

n
+. (1.29)
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Then

A(D̂)v = 0, x ∈ R
n
+, (1.30)

B(D̂)v = h(x′), x′ ∈ Γ, (1.31)

where
h = g −B(D̂)u∗ ∈ F b(Γ). (1.32)

We have reduced problem (1.3), (1.4) to problem (1.30), (1.31).

1.4 Proof of Theorem 1.2

Since D(Rn+) is dense in W s,p
N (Rn+), it is sufficient to prove this theorem for

u ∈ΠN
j=1D(Rn+). For such u let

A(D̂)u = f. (1.33)

Obviously, f ∈ F d(Rn+). We repeat the construction of the previous subsection
and consider problem (1.30), (1.31). We will prove the estimate

‖v‖E(Rn
+) ≤ c‖B(D̂)v‖F b(Γ). (1.34)

Theorem 1.2 will follow from it. Indeed, the extension f∗ of f can be done such
that

‖f∗‖Fd(Rn) ≤ κ‖f‖Fd(Rn
+), (1.35)

where κ is a constant independent of f . Since u∗ ∈ E(Rn+), then we have

‖B(D̂)u∗‖F b(Γ) ≤ c1‖u∗‖E(Rn
+). (1.36)

From (1.29), (1.28), (1.34)–(1.36) we obtain the estimate of Theorem 1.2.
Thus, it remains to prove (1.34). We write problem (1.30), (1.31) in the form

A(D̂′, Dt)v = 0, x ∈ Rn+, (1.37)

B(D̂′, Dt)v|t=0 = h(x′), (1.38)

where xn = t, D̂ = (D̂′, Dt). We do here the partial Fourier transform F ′ with
respect to x′. We note that since u ∈ ΠN

1 D(Rn+), then f ∈ F d(Rn+) also with
p = 2, and we can suppose that u∗ ∈ E(Rn), v ∈ E(Rn) not only for the p under
consideration but also for p = 2. Hence we can use the L2 theory of the Fourier
transform.

After the partial Fourier transform in (1.37), (1.38) we obtain

A(ξ̂′, Dt)ṽ(ξ′, t) = 0, t > 0, (1.39)

B(ξ̂′, Dt)ṽ(ξ′, 0) = h̃(ξ′), (1.40)
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where ṽ = F ′v, h̃ = F ′h. Denote by ω(ξ′, t) the stable, that is decaying at infinity,
solution of the problem

A(ξ′, Dt)ω(ξ′, t) = 0, t > 0, (1.41)
B(ξ′, Dt)ω(ξ′, 0) = I, (1.42)

where I is the identity matrix of order r. The solution of problem (1.39), (1.40) is

ṽ(ξ′, t) = ω(ξ̂′, t)h̃(ξ′) (1.43)

(cf. [542]). The operator B acts from E(Rn+) into F b(Γ). Hence h ∈ F b(Γ). Let

φ ∈ Πm
j=1W

l−σi,p(Rn+)

be any extension of h(x′), h(x′) = φ(x′, 0). From (1.43),

v(x) = F ′−1(ω(ξ̂′, t)φ̃(ξ′, 0)). (1.44)

Since the elements of the matrix ω(ξ̂′, t) exponentially decrease as t → ∞,
then we have

ω(ξ̂′, t)φ̃(ξ′, 0) = −
∫ ∞

0

Dτω(ξ̂′, t+ τ)φ̃(ξ′, τ)dτ −
∫ ∞

0

ω(ξ̂′, t+ τ)Dτ φ̃(ξ′, τ)dτ.

(1.45)
Let M be matrix (1.5), Qκ(ξ′) = ‖δγj

ij ‖, where γj is a multi-index, 0 ≤ |γj | ≤
l+ tj − κ, κ ≥ 0 is an integer. From (1.44), (1.45) we have

Dκ
t Qκ(D

′)v(x) = −(T1 + T2), (1.46)

where

T1 = Dκ
t Qκ(D

′)F ′−1

∫ ∞

0

Dτω(ξ̂′, t+ τ)φ̃(ξ′, τ)dτ,

T2 = Dκ
t Qκ(D

′)F ′−1

∫ ∞

0

ω(ξ̂′, t+ τ)Dτ φ̃(ξ′, τ)dτ.

We write these expressions in the form

T1 = F ′−1

∫ ∞

0

H(ξ′, t+ τ)ã(ξ′, τ)dτ,

T2 = F ′−1

∫ ∞

0

G(ξ′, t+ τ)b̃(ξ′, τ)dτ,
(1.47)

where

H(ξ′, t) = (1 + |ξ′|2)−l/2Qκ(ξ′)
(
Dκ+1
t ω(ξ̂′, t)

)
M(

√
1 + |ξ′|2),

G(ξ′, t) = (1 + |ξ′|2)−(l−1)/2Qκ(ξ′)
(
Dκ
t ω(ξ̂′, t)

)
M(

√
1 + |ξ′|2),

a(x) = F ′−1(1 + |ξ′|2)l/2M−1(
√

1 + |ξ′|2)F ′φ,

b(x) = F ′−1(1 + |ξ′|2)(l−1)/2M−1(
√

1 + |ξ′|2)F ′Dτφ.

(1.48)
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Using the Laplace transform, we find from (1.41), (1.42) that

ω(ξ̂′, t) =
∫
γ+

eiλtΦ(ξ̂′, λ)dλ,

where
Φ(ξ′, λ) = A−1(ξ′, λ)K(ξ′, λ),

K(ξ′, λ) is an N ×m matrix which satisfies the following homogeneity condition:

K(ρξ′, ρλ) = ρ−1S(ρ)K(ξ′, λ)M−1(ρ),

S and M being matrices (1.2) and (1.5) (see [542]).
Direct calculations show that the elements Hjk and Gjk of the matrices

H and G satisfy conditions of Proposition 1.8. According to this proposition we
conclude that Hjk(ξ′, t) and Gjk(ξ′, t) are Fourier multipliers with respect to ξ′ in
Lp(Rn−1) and the norms of these multipliers admit the estimates

‖Hjk(·, t)‖M ≤ c

t
, ‖Gjk(·, t)‖M ≤ c

t
, t > 0. (1.49)

We can now estimate T1 and T2. Let a = (a1, . . . , am), φ = (φ1, . . . , φm), T1 =
(T11, . . . , T1m),

Ajk =
∫ ∞

0

F ′−1Hjk(ξ′, t+ τ)F ′ak(ξ′, τ)dτ.

Then

T1j =
m∑
k=1

Ajk. (1.50)

From Proposition 1.9 we obtain

‖Ajk‖Lp(Rn
+) ≤ cjk‖ajk‖Lp(Rn

+). (1.51)

Here and in what follows c with subscripts denotes some constants. It follows from
(1.48) that

ak(x) = F ′−1(1 + |ξ′|2)(l−σk)/2F ′φk. (1.52)

We can suppose that φk is extended to W l−σk,p(Rn) in such a way that

‖φk‖W l−σk,p(Rn) ≤ 2‖φk‖W l−σk,p(Rn
+). (1.53)

In view of (1.52), (1.53) we have

‖ak‖Lp(Rn
+) ≤ ‖ak‖Lp(Rn) ≤ c‖φk‖W l−σk,p(Rn) ≤ 2c‖φk‖W l−σk,p(Rn

+). (1.54)

We take such extension φk of hk that

‖φk‖W l−σk,p(Rn
+) ≤ 2‖hk‖W l−σk−1/p,p(Γ). (1.55)
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It follows from (1.50), (1.51), (1.54), and (1.55) that

‖T1‖Lp(Rn
+) ≤ c1‖h‖F b(Γ).

Similarly we obtain the estimate

‖T2‖Lp(Rn
+) ≤ c2‖h‖F b(Γ).

Hence from (1.46) we conclude that

‖Dκ
t Qκv‖Lp(Rn

+) ≤ c‖h‖F b(Γ).

Estimate (1.34) follows from the last estimate. Theorem 1.2 is proved. �

1.5 Proof of Theorem 1.1

Uniqueness of solutions follows from Theorem 1.2. From the results of Subsection
1.3 it follows that it is sufficient to prove existence of solutions of problem (1.3),
(1.4) for the case f(x) = 0. By virtue of Theorem 1.2 it is sufficient to consider
g ∈ Πm

1 D(Γ) since this space is dense in F b(Γ). For such g we do the partial
Fourier transform and prove existence of a solution in E(Rn+) as it is done in the
previous subsection. The theorem is proved. �

2 A priori estimates in the spaces W s,p
∞

In this section we define the spaces W s,p∞ and obtain a priori estimates of solu-
tions, which are similar to those in the usual Sobolev spaces. As before, denote by
W k,p

∞ (Ω) the space of functions defined as the closure of smooth functions in the
norm

‖u‖Wk,p
∞ (Ω) = sup

y∈Ω
‖u‖Wk,p(Ω∩Qy).

Here Ω is a domain in R
n, Qy is a unit ball with the center at y, ‖ · ‖Wk,p is

the Sobolev norm. We note that in bounded domains Ω the norms of the spaces
W k,p(Ω) and W k,p

∞ (Ω) are equivalent.
We suppose that the boundary ∂Ω belongs to the Hölder space Ck+θ, 0 < θ <

1, and that the Hölder norms of the corresponding functions in local coordinates
are bounded independently of the point of the boundary. Then we can define the
space W k−1/p,p

∞ (∂Ω) of traces on the boundary ∂Ω of the domain Ω,

‖φ‖
W

k−1/p,p
∞ (∂Ω)

= inf ‖v‖Wk,p
∞ (Ω),

where the infimum is taken with respect to all functions v ∈ W k,p∞ (Ω) equal φ at
the boundary, and k > 1/p.
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The space W k,p∞ (Ω) with k = 0 will be denoted by Lp∞(Ω). We will use also
the notation

E∞ = ΠN
j=1W

l+tj ,p∞ (Ω),

F∞ = ΠN
i=1W

l−si,p∞ (Ω) × Πm
j=1W

l−σj−1/p,p
∞ (∂Ω).

We consider the operator L defined by (0.3) and denote l1 = max(0, σj + 1). We
suppose that the integer l in the definition of the spaces is such that l ≥ l1, and the
boundary ∂Ω belongs to the class Cr+θ with r specified in the following condition.

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with the radius δ and the center x0, where δ is
independent of x0,

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in Rn such that the images of Ω

⋂
U(x0) and

∂Ω ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively,

3. The function ψ(x;x0) and its inverse belong to the Hölder space Cr+θ, 0 <
θ < 1. Their ‖ · ‖r+θ-norms are bounded uniformly in x0.

Here r ≥ max(l + ti, l − si, l − σj + 1), where the first expression under the
maximum is required for a priori estimates of solutions (similar to [8]), the second
and the third ones for the proof of convergence in Lemma 2.14 in Chapter 4. For
definiteness we suppose that δ < 1.

Theorem 2.1. Let the support of the function u ∈ ΠN
j=1W

l1+tj ,p(Ω) be sufficiently
small. Then for any l ≥ l1,

‖u‖E ≤ c
(‖Lu‖F + ‖u‖Lp(Ω)

)
, (2.1)

where the constant c does not depend on u.

Proof. Consider first the operators

A0
i u =

N∑
k=1

∑
|α|=si+tk

aαikD
αuk, i = 1, . . . , N, x ∈ Ω,

B0
j u =

N∑
k=1

∑
|β|=σi+tk

bβjkD
βuk, i = 1, . . . ,m, x ∈ ∂Ω,

with constant coefficients aαik, b
β
jk and suppose that the domain Ω is the half-space

R
+
n = {xn ≥ 0}. We will denote by Â0

i and B̂0
j the operators obtained from A0

i and
B0
j , respectively, if we replace the derivatives Di, i = 1, . . . , n− 1 by the operators

D̂i. The operator
L̂0 = (Â0

1, . . . , Â
0
N , B̂

0
1 , . . . , B̂

0
m)
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acts from E into F = F d × F b. We consider the operator

L0 : E → F, L0 = (A0
1, . . . , A

0
N , B

0
1 , . . . , B

0
m).

From Theorem 1.1 it follows that the operator L̂0 has a bounded inverse. Therefore

‖u‖E ≤ C
(
‖L0u‖F + ‖(L̂0 − L0)u‖F

)
. (2.2)

Here and below we denote by C positive constants independent of u. To prove the
theorem it is sufficient to estimate the second term in the right-hand side of this
inequality. Since

(Â0
i −A0

i )u ∈ W l−si+1,p(Ω) ⊂W l−si,p(Ω), (B̂0
j −B0

j )u ∈W l−σj−1/p+1,p(∂Ω)

(see [457]), then
‖(L̂0 − L0)u‖F ≤ ε‖u‖E + C‖u‖Lp(Ω). (2.3)

Together with (2.2) this inequality proves (2.1).
In the general case, the coefficients of the operator can be variable, it can

contain lower-order terms, and the domain is not necessarily a half-space. The
lower-order terms can be estimated similar to (2.3). The difference between the
operator with variable coefficients and the operator with constant coefficients can
be estimated by ε‖u‖E since the support of the function u is sufficiently small
(the diameter of the support depends on ε). Finally, the case of arbitrary domains
can be reduced to the case of a half-space or of a whole space. For this we map
the support of the function u inside Ω on a ball or on a half-ball. We use here
Condition D and the fact that the support is sufficiently small (see the proof of
Theorem 5.1 below for more details). The theorem is proved. �

Theorem 2.2. Let u ∈ ΠN
j=1W

l1+tj ,p∞ (Ω). Then for any l ≥ l1 we have u ∈ E∞ and

‖u‖E∞ ≤ c
(‖Lu‖F∞ + ‖u‖Lp

∞(Ω)

)
, (2.4)

where the constant c does not depend on u.

Proof. Let ω(x) be an infinitely differentiable nonnegative function such that

ω(x) = 1, |x| ≤ 1
2
, ω(x) = 0, |x| ≥ 1.

Set ωy(x) = ω(x− y). Suppose that u(x) is a function satisfying the conditions of
the theorem. Then ωyu ∈ ΠN

j=1W
l1+tj ,p∞ (Ω). Since the support of this function is

bounded, we can use now a priori estimates of solutions (Theorem 2.1):

‖ωyu‖E ≤ c
(‖L(ωyu)‖F + ‖ωyu‖Lp(Ω)

)
, ∀y ∈ R

n, (2.5)
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where the constant c does not depend on y. We now estimate the right-hand side
of the last inequality. We have

Ai(ωyu) = ωyAiu+ Ti,

where

Ti =
N∑
k=1

∑
|α|≤αik

aαik
∑

β+γ≤α,|β|>0

cβγ D
βωy D

γuk,

and cβγ are some constants. If |τ | ≤ l− si, then

‖Dτ (ωyAiu)‖Lp(Ω) ≤M‖Aiu‖W l−si,p
∞ (Ω)

.

For any ε > 0 we have the estimate

‖Ti‖W l−si,p(Ω) ≤ ε
N∑
k=1

‖uk‖W l+tk,p(Ω∩Qy) + Cε

N∑
k=1

‖uk‖Lp(Ω∩Qy)

≤ ε‖u‖E∞ + Cε‖u‖Lp
∞(Ω),

where Qy is a unit ball with the center at y. Thus

‖Ai(ωyu)‖W l−si,p(Ω) ≤M‖Aiu‖W l−si,p
∞ (Ω)

+ ε‖u‖E∞ + Cε‖u‖Lp
∞(Ω). (2.6)

Consider next the boundary operators in the right-hand side of (2.5). We
have

Bj(ωyu) = ωyΦj + Sj ,

where Φj = Bju,

Sj =
N∑
k=1

∑
|β|≤βjk

bβjk

∑
α+γ≤β,|α|>0

λαγ D
αωy D

γuk,

and λαγ are some constants.
There exists a function v ∈ W

l−σj ,p∞ (Ω) such that v = Φi on ∂Ω and

‖v‖
W

l−σj,p
∞ (Ω)

≤ 2‖Φj‖
W

l−σj−1/p,p
∞ (∂Ω)

.

Since v ∈W
l−σj ,p∞ (Ω), then ωyv ∈W l−σj ,p(Ω) and

‖ωyv‖W l−σj,p(Ω) ≤M‖v‖
W

l−σj,p
∞ (Ω)

with a constant M independent of v. Since ωyv = ωyΦj on ∂Ω, then

‖ωjΦj‖W l−σj−1/p,p(∂Ω)
≤M1‖Φj‖

W
l−σj−1/p,p
∞ (∂Ω)

.
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Further,

‖Sj‖W l−σj−1/p,p(∂Ω)
≤ ‖Sj‖W l−σj,p(Ω)

≤ ε

N∑
k=1

‖uk‖W l+tk,p(Ω∩Qy) + Cε

N∑
k=1

‖uk‖Lp(Ω∩Qy)

≤ ε‖u‖E∞ + Cε‖u‖Lp
∞(Ω).

Thus

‖Bj(ωyu)‖
W l−σj−1/p,p(∂Ω)

≤M‖Φj‖
W

l−σj−1/p,p
∞ (∂Ω)

+ε‖u‖E∞+Cε‖u‖Lp
∞(Ω). (2.7)

From (2.5)–(2.7) we obtain the estimate

‖ωyu‖E ≤ c
(
M2‖Lu‖F∞ + κε‖u‖E∞ + Cε‖u‖Lp

∞(Ω)

)
with some constants M2 and κ. Taking ε > 0 sufficiently small, we obtain (2.4).
The theorem is proved. �

3 A priori estimates for adjoint operators.
Model systems

In this section we consider the operators

A0
i u =

N∑
k=1

∑
|α|=si+tk

aαikD
αuk, i = 1, . . . , N, x ∈ Ω,

B0
j u =

N∑
k=1

∑
|β|=σi+tk

bβjkD
βuk, i = 1, . . . ,m, x ∈ ∂Ω,

with constant coefficients aαik, b
β
jk. We suppose here that the domain Ω is the half-

space R+
n = {xn ≥ 0}. We will denote by Â0

i and B̂0
j the operators obtained from

A0
i and B0

j , respectively, if we replace the derivatives Di, i = 1, . . . , n− 1 by the
operators D̂i. The operator

L̂0 = (Â0
1, . . . , Â

0
N , B̂

0
1 , . . . , B̂

0
m)

acts from E to F = F d × F b. We consider the operator

(L0)∗ : F ∗ → E∗

adjoint to L0 = (A0
1, . . . , A

0
N , B

0
1 , . . . , B

0
m). We have

E∗ = ΠN
j=1Ẇ

−l−tj ,p′(Ω),

F ∗ = ΠN
i=1Ẇ

−l+si,p
′
(Ω) × Πm

j=1W
−l+σj+1/p,p′(∂Ω),

(3.1)
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where Ω = Rn+, and Ẇ−s,p′(Ω) is the closure in W−s,p′(Rn) of infinitely differen-
tiable functions with supports in Ω, Ẇ−s,p′(Ω) = (W s,p(Ω))∗, 1

p + 1
p′ = 1. Set

F ∗
−1 = ΠN

i=1Ẇ
−l+si−1,p′(Ω) × Πm

j=1W
−l+σj+1/p−1,p′(∂Ω). (3.2)

Theorem 3.1. The following estimate holds:

‖v‖F∗ ≤ C
(
‖(L0)∗v‖E∗ + ‖v‖F∗

−1

)
, ∀v ∈ F ∗, (3.3)

where C is a constant independent of v.

Proof. From Theorem 1.1 it follows that the operator L̂0 has a bounded inverse,

(L̂0)−1 : F → E.

Therefore the operator
((L̂0)∗)−1 : E∗ → F ∗

is also bounded. Hence we have the estimate

‖v‖F∗ ≤ C‖(L̂0)∗v‖E∗ , ∀v ∈ F ∗.

Therefore
‖v‖F∗ ≤ C

(
‖(L0)∗v‖E∗ + ‖((L̂0)∗ − (L0)∗)v‖E∗

)
. (3.4)

We estimate the second term in the right-hand side of this inequality. Let 〈, 〉E be
the duality between E and E∗. For u ∈ E we have

|〈u, ((L̂0)∗ − (L0)∗)v〉E | = |〈(L̂0 − L0)u, v〉F |. (3.5)

Let v = (v1, . . . , vN , w1, . . . , wm), where

vi ∈ (W l−si,p(Ω))∗, wj ∈ (W l−σj−1/p,p(∂Ω))∗.

Then we have

〈(L̂0 − L0)u, v〉F =
N∑
i=1

〈(Â0
i −A0

i )u, vi〉 +
m∑
j=1

〈(B̂0
j −B0

j )u,wj〉. (3.6)

Let
Ti : W l−si+1,p(Rn) →W l−si,p(Rn)

be an isomorphism between the two spaces.
Denote by ũj an extension of uj to W l+tj ,p(Rn) such that

‖ũj‖W l+tj ,p(Rn) ≤ 2‖uj‖W l+tj,p(Ω), (3.7)
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and ũ = (ũ1, . . . , ũN ). Then (Â0
i − A0

i )ũ is an extension of (Â0
i − A0

i )u from
W l−si+1,p(Ω) to W l−si+1,p(Rn). We have

(Â0
i −A0

i )u ∈ W l−si+1,p(Ω) ⊂W l−si,p(Ω).

Hence vi can be considered as an element of (W l−si+1,p(Ω))∗. It can be extended
to an element ṽi ∈ (W l−si+1,p(Rn))∗ such that

〈(Â0
i −A0

i )u, vi〉 = 〈(Â0
i −A0

i )ũ, ṽi〉

and
‖ṽi‖(W l−si+1,p(Rn))∗ = ‖vi‖(W l−si+1,p(Ω))∗ . (3.8)

Then

|〈(Â0
i −A0

i )u, vi〉| = |〈T−1
i Ti(Â0

i −A0
i )ũ, ṽi〉| = |〈Ti(Â0

i −A0
i )ũ, (T

−1
i )∗ṽi〉|.

Since
(T−1
i )∗ : W−l+si−1,p′(Rn) →W−l+si,p

′
(Rn),

then

|〈(Â0
i −A0

i )u, vi〉| ≤ ‖Ti(Â0
i −A0

i )ũ‖W l−si,p(Rn)‖(T−1
i )∗ṽi‖(W l−si,p(Rn))∗

≤ C‖(Â0
i −A0

i )ũ‖W l−si+1,p(Rn)‖ṽi‖(W l−si+1,p(Rn))∗

≤ C1‖ũ‖E(Rn)‖ṽi‖(W l−si+1,p(Rn))∗ .

From (3.7), (3.8)

|〈(Â0
i −A0

i )u, vi〉| ≤ C2‖u‖E(Ω)‖‖vi‖(W l−si+1,p(Ω))∗

= C2‖u‖E(Ω)‖‖vi‖Ẇ−l+si−1,p′
(Ω).

(3.9)

Consider now the boundary operators in (3.6). We have

(B̂0
j −B0

j )u ∈ W l−σj−1/p+1,p(∂Ω).

Let
Sj : W l−σj−1/p+1,p(∂Ω) →W l−σj−1/p,p(∂Ω)

be an isomorphism between the two spaces. Then

|〈(B̂0
j −B0

j )u,wj〉| = |〈S−1
j Sj(B̂0

j −B0
j )u,wj〉| = |〈Sj(B̂0

j −B0
j )u, (S

−1
j )∗wj〉|

≤ ‖Sj(B̂0
j −B0

j )u‖W l−σj−1/p,p(∂Ω)
‖(S−1

j )∗wj‖(W l−σj−1/p,p(∂Ω))∗

≤ C3‖(B̂0
j − B0

j )u‖W l−σj−1/p+1,p(∂Ω)
‖wj‖(W l−σj−1/p+1,p(∂Ω))∗

≤ C4‖u‖E(Ω)‖ ‖wj‖W−l+σj+1/p−1,p′
(∂Ω)

. (3.10)
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From (3.5), (3.6), (3.9), and (3.10) we obtain

|〈u, ((L̂0)∗ − (L0)∗)v〉E |

≤ C5‖u‖E(Ω)


 N∑
i=1

‖vi‖Ẇ−l+si−1,p′
(Ω) +

m∑
j=1

‖wj‖W−l+σj+1/p−1,p′
(∂Ω)




= C5‖u‖E(Ω)‖v‖F∗
−1
.

Therefore
‖((L̂0)∗ − (L0)∗)v‖E∗ ≤ C5‖v‖F∗

−1
.

Estimate (3.3) follows from this estimate and (3.4). The theorem is proved. �

4 The general problem in a half-space

We consider operators (0.1), (0.2) with Ω = Rn+.

Theorem 4.1. Let v ∈ F ∗(Rn+) vanish outside the ball σ(ρ) = {x : |x| < ρ}. Then
there exists ρ0 > 0 such that for ρ < ρ0 the following estimate holds:

‖v‖F∗(Rn
+) ≤ C

(
‖L∗v‖E∗(Rn

+) + ‖v‖F∗
−1(R

n
+)

)
. (4.1)

Proof. Let

A0
i u =

N∑
k=1

∑
|α|=si+tk

aαik(0)Dαuk, i = 1, . . . , N, x ∈ R
n
+,

B0
j u =

N∑
k=1

∑
|β|=σj+tk

bβjk(0)Dβuk, i = 1, . . . ,m, x ∈ R
n−1,

L0 = (A0
1, . . . , A

0
N , B

0
1 , . . . , B

0
m) : E → F , (L0)∗ is the adjoint operator, (L0)∗ :

F ∗ → E∗. From Theorem 3.1 we have

‖v‖F∗(Rn
+) ≤ C

(
‖(L0)∗v‖E∗(Rn

+) + ‖v‖F∗
−1(R

n
+)

)
. (4.2)

On the other hand,

‖(L0)∗v‖E∗ ≤ ‖L∗v‖E∗ + ‖(L0)∗v − L∗v‖E∗ . (4.3)

We estimate the second term in the right-hand side. For any u ∈ E and
v = (v1, . . . , vN , w1, . . . , wm) we have

〈(u, ((L0)∗−L∗)v〉E = 〈((L0−L)u, v〉F =
N∑
i=1

〈(A0
i−Ai)u, vi〉+

m∑
j=1

〈(B0
j−Bj)u,wj〉.

(4.4)
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Further,
|〈(A0

i −Ai)u, vi〉| ≤ |〈A1
i u, vi〉| + |〈A2

i u, vi〉|, (4.5)

where

A1
iu =

N∑
k=1

∑
|α|=αik

(aαik(0) − aαik(x))D
αuk, A2

iu =
N∑
k=1

∑
|α|<αik

aαik(x)D
αuk. (4.6)

We estimate first the operator A1
i . We have

〈A1
i u, vi〉 =

N∑
k=1

∑
|α|=αik

〈(aαik(0) − aαik(x))D
αuk, vi〉,

|〈(aαik(0) − aαik(x))D
αuk, vi〉| = |〈Dαuk, (aαik(0) − aαik(x))vi〉|

≤ ‖Dαuk‖W l−si,p(Rn
+)‖(aαik(0) − aαik(x))vi‖(W l−si,p(Rn

+))∗

≤ ‖uk‖W l+tk,p(Rn
+)‖(aαik(0) − aαik(x))vi‖(W l−si,p(Rn

+))∗ ,

|〈A1
i u, vi〉| ≤

N∑
k=1

‖uk‖W l+tk,p(Rn
+)

∑
|α|=αik

‖(aαik(0) − aαik(x))vi‖(W l−si,p(Rn
+))∗ . (4.7)

We estimate the second sum in the right-hand side. Let ψ ∈ D, ψ(x) = 1 in σ(ρ),
ψ(x) = 0 outside σ(2ρ). Then we have

‖(aαik(0) − aαik(x))vi‖(W l−si,p(Rn
+))∗ = ‖(aαik(0) − aαik(x))ψvi‖(W l−si,p(Rn

+))∗

= ‖(aαik(0) − aαik(x))ψvi‖Ẇ−l+si,p′
(Rn

+) ≡ T.

From Lemma 4.2 (see below) we obtain

T ≤ C1 max
x∈Rn

|(aαik(0) − aαik(x))ψ| ‖vi‖Ẇ−l+si,p′
(Rn

+) +Kαρ‖vi‖Ẇ−l+si−1,p′
(Rn

+).

For any ε > 0 we can find ρ0 > 0 such that for 0 < ρ ≤ ρ0 we have

T ≤ ε‖vi‖Ẇ−l+si,p′
(Rn

+) +Kαρ‖vi‖Ẇ−l+si−1,p′
(Rn

+).

From (4.7)

|〈A1
iu, vi〉| ≤ ‖u‖E(Rn

+)

(
κε‖vi‖Ẇ−l+si,p′

(Rn
+) +M‖vi‖Ẇ−l+si−1,p′

(Rn
+)

)
, (4.8)

where κ and M are some constants.
Consider now the operator A2

i in (4.6). We have A2
i : E(R+

n ) →W l−si,p(Rn+).
We can extend its coefficients in such a way that the extended operator

Ã2
i : E(Rn) →W l−si,p(Rn)
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is bounded. Let further Ti be a bounded linear operator with a bounded inverse
acting from W l−si+1,p(Rn) into W l−si,p(Rn). Then

(T−1
i )∗ : (W l−si+1,p(Rn))∗ → (W l−si,p(Rn))∗

is also bounded.
Let u ∈ E(R+

n ), ũ be its extension to E(Rn) such that ‖ũ‖E(Rn) ≤ 2‖u‖E(Rn
+).

Suppose that
vi ∈ (W l−si,p(Rn+))∗ = Ẇ−l+si,p

′
(Rn+).

We consider the extension ṽi ∈ W−l+si−1,p′(Rn). Then we have

|〈A2
i u, vi〉| = |〈Ã2

i ũ, ṽi〉| = |〈T−1
i TiÃ

2
i ũ, ṽi〉| = |〈TiÃ2

i ũ, (T
−1
i )∗ṽi〉|

≤ ‖TiÃ2
i ũ‖W l−si,p(Rn)‖(T−1

i )∗ṽi‖W−l+si,p′
(Rn)

≤ C1‖Ã2
i ũ‖W l−si+1,p(Rn)‖ṽi‖W−l+si−1,p′

(Rn)

≤ C2‖u‖E(R+
n )‖vi‖Ẇ−l+si−1,p′

(Rn
+). (4.9)

From this estimate, (4.5) and (4.8) it follows that

|〈(A0
i −Ai)u, vi〉| ≤ ‖u‖E(R+

n )

(
κε‖vi‖Ẇ−l+si,p′

(Rn
+) +M1‖vi‖Ẇ−l+si−1,p′

(Rn
+)

)
.

(4.10)
Consider now the second term in the right-hand side of (4.4). We have

(B0
j −Bj)u = B1

j u+B2
ju, (4.11)

where

B1
ju =

N∑
k=1

∑
|β|=βjk

(bβjk(0)−bβjk(x))Dβuk, B2
j u = −

N∑
k=1

∑
|β|<βjk

bβjk(x)D
βuk. (4.12)

Consider first the operator B1
j :

〈B1
ju,wj〉 =

N∑
k=1

∑
|β|=βjk

〈(bβjk(0) − bβjk(x))D
βuk, wj〉,

|〈(bβjk(0) − bβjk(x))D
βuk, wj〉| = |〈Dβuk, (b

β
jk(0) − bβjk(x))wj〉|

≤ ‖Dβuk‖W l−σj−1/p,p(Rn−1)
‖(bβjk(0) − bβjk(x))wj‖W−l+σj+1/p,p′

(Rn−1)

≤ ‖uk‖W l+tk,p(Rn
+)‖(bβjk(0) − bβjk(x))wj‖W−l+σj+1/p,p′

(Rn−1)
.

Hence

|〈B1
j u,wj〉| ≤

N∑
k=1

‖uk‖W l+tk,p(Rn
+)

∑
|β|=βjk

‖(bβjk(0) − bβjk(x))wj‖W−l+σj+1/p,p′
(Rn−1)

.

(4.13)
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We estimate the second sum in the right-hand side. We have

‖(bβjk(0) − bβjk(x))wj‖W−l+σj+1/p,p′
(Rn−1)

= ‖(bβjk(0) − bβjk(x))ψwj‖W−l+σj+1/p,p′
(Rn−1)

≡ T1.

Then by Lemma 4.2 we have

T1 ≤ C1 max
x∈Rn−1

|(bβjk(0) − bβjk(x))ψ| ‖wj‖W−l+σj+1/p,p′
(Rn−1)

+Kβρ‖wj‖W−l+σj+1/p−1,p′
(Rn−1)

.

For any ε > 0 we can find ρ0 > 0 such that for 0 < ρ ≤ ρ0 the following inequality
holds:

T1 ≤ ε ‖wj‖W−l+σj+1/p,p′
(Rn−1)

+Kβρ‖wj‖W−l+σj+1/p−1,p′
(Rn−1)

.

From (4.13)

|〈B1
j u,wj〉| (4.14)

≤ ‖u‖E(Rn
+)

(
κε‖wj‖W−l+σj+1/p,p′

(Rn−1)
+M‖wj‖W−l+σj+1/p−1,p′

(Rn−1)

)
.

Consider now the operator B2
j in (4.11),

B2
j : E(Rn+) →W l−σj−1/p+1,p(Rn−1).

Let
Sj : W l−σj−1/p+1,p(Rn−1) →W l−σj−1/p,p(Rn−1)

be an isomorphism. We have

〈B2
j u,wj〉 = 〈S−1

j SjB
2
ju,wj〉 = 〈SjB2

ju, (S
−1
j )∗wj〉,

|〈B2
j u,wj〉| ≤ ‖SjB2

ju‖W l−σj−1/p,p(Rn−1)
‖(S−1

j )∗wj‖W−l+σj+1/p,p′
(Rn−1)

≤ C‖B2
ju‖W l−σj−1/p+1,p(Rn−1)

‖wj‖W−l+σj+1/p−1,p′
(Rn−1)

≤ C1‖u‖E(Rn
+)‖wj‖W−l+σj+1/p−1,p′

(Rn−1)
. (4.15)

From this estimate, (4.11), and (4.14) we obtain

|〈(B0
j −Bj)u,wj〉| (4.16)

≤ ‖u‖E(Rn
+)

(
κε‖wj‖W−l+σj+1/p,p′

(Rn−1)
+M1‖wj‖W−l+σj+1/p−1,p′

(Rn−1)

)
.
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From (4.4), (4.10), and (4.16)

|〈(u, ((L0)∗ − L∗)v〉E |

≤ ‖u‖E(R+
n )

(
κε

N∑
i=1

‖vi‖Ẇ−l+si,p′
(Rn

+) +
N∑
i=1

M1‖vi‖Ẇ−l+si−1,p′
(Rn

+)

)

+ ‖u‖E(R+
n )

(
κε

m∑
j=1

‖wj‖W−l+σj+1/p,p′
(Rn−1)

+M1

m∑
j=1

‖wj‖W−l+σj+1/p−1,p′
(Rn−1)

)
.

Using notations (3.1) and (3.2) we can write this estimate as

|〈(u, ((L0)∗ − L∗)v〉E | ≤ ‖u‖E(R+
n )

(
κε‖v‖F∗(Rn

+) +M1‖v‖F∗
−1(R

n
+)

)
.

Hence
‖((L0)∗ − L∗)v‖E∗(R+

n ) ≤ κε‖v‖F∗(Rn
+) +M1‖v‖F∗

−1(R
n
+).

Estimate (4.1) follows from the last estimate, (4.2) and (4.3). The theorem is
proved. �

In the proof of the theorem we used the following lemma.

Lemma 4.2. Let v have a bounded support, a ∈ Cm0 (Rn), v ∈ Hs,p(Rn), 1−m ≤
s ≤ 0. Then

‖av‖Hs,p(Rn) ≤ c1 max
x∈Rn

|a(x)|‖v‖Hs,p(Rn) + c2(a)‖v‖Hs−1,p(Rn), (4.17)

where the constant c1 does not depend on v and a, and c2 = 0 if s = 0. A similar
estimate holds for a function v ∈ Bs,p(Rn−1):

‖av‖Bs,p(Rn−1) ≤ c1 max
x∈Rn−1

|a(x)|‖v‖Bs,p(Rn−1) + c2(a)‖v‖Bs−1,p(Rn−1). (4.18)

Proof. The proof in [457] (Section 1.12) is given for the spaces Hs,p(Rn). Let us
prove estimate (4.18) for the case of noninteger s which we use below. All necessary
elements of the proof are given in [457]. We recall that the Besov spaces coincide
in this case with the Sobolev-Slobodetskii spaces.

We note first of all that for positive noninteger s the estimate

‖av‖W s,p(Rn) ≤ c1 max
x∈Rn

|a(x)|‖v‖W s,p(Rn) + c2(a)‖v‖W s−σ,p(Rn), (4.19)

where σ = s− k, k = [s] can be verified directly from the definition of the space
W s,p(Rn). Indeed,

‖av‖pW s,p(Rn) = ‖av‖p
Wk,p(Rn)

+
∑
|α|=k

∫
Rn

∫
Rn

|Dα(a(x)v(x)) −Dα(a(y)v(y))|p
|x− y|n+pσ

dxdy,
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‖av‖Wk,p(Rn) ≤ C
∑

|α|+|β|≤k
‖DαaDβv‖Lp(Rn)

= C
∑
|β|≤k

‖aDβv‖Lp(Rn) + C
∑

|α|+|β|≤k,|α|>0

‖DαaDβv‖Lp(Rn)

≤ c1 sup
x

|a(x)|‖v‖Wk,p(Rn) + c2(a)‖v‖Wk−1,p(Rn),

∫
Rn

∫
Rn

|Dαa(x)Dβv(x) −Dαa(y)Dβv(y)|p
|x− y|n+pσ

dxdy ≤M1(I1 + I2),

where

I1 =
∫

Rn

∫
Rn

|Dαa(x)|p|Dβv(x) −Dβv(y)|p
|x− y|n+pσ

dxdy,

I2 =
∫

Rn

∫
Rn

|Dβv(y)|p|Dαa(x) −Dαa(y)|p
|x− y|n+pσ

dxdy.

If |α| = 0, then
I1 ≤ ‖a‖pC0(Rn)‖v‖pW s,p(Rn).

If |α| > 0, then
I1 ≤ ‖a‖p

Ck(Rn)
‖v‖pW s−1,p(Rn).

We estimate now I2:

I2 =
∫

Rn

|Dβv(y)|p
(∫

Rn

|Dαa(x) −Dαa(y)|p
|x− y|n+pσ

dx

)
dy.

Let us prove that

J =
∫

Rn

|Dαa(x) −Dαa(y)|p
|x− y|n+pσ

dx ≤M2,

where M2 is a constant. We have

J =
∫

Rn

|Dαa(y + z) −Dαa(y)|p
|z|n+pσ

dz = J1 + J2,

where

J1 =
∫
|z|≤1

|Dαa(y + z) −Dαa(y)|p
|z|n+pσ

dz, J2 =
∫
|z|>1

|Dαa(y + z) −Dαa(y)|p
|z|n+pσ

dz.

The integral J1 is bounded since

|Dαa(y + z) −Dαa(y)| ≤ K|z|, |z| ≤ 1, y ∈ R
n,

and J2 is bounded since |Dαa(x)| ≤M . HereK andM are some positive constants.
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Thus, I2 ≤ M2‖v‖pWk,p(Rn)
. This completes the proof of estimate (4.19) for

positive s. We recall that it is proved for σ = s − [s]. It can now be obtained for
any positive σ with the help of the estimate

‖v‖W s,p(Rn) ≤ ε‖v‖W s1,p(Rn) + Cε‖v‖W s2,p(Rn)

that holds for any s2 < s < s1 and any ε > 0.
We now prove a similar estimate for the dual spaces. It is shown in [457] that

there exists an operator χN which satisfies the following properties:

(i) it is a continuous operator from Bs,p(Rn−1) into Bs+t,p(Rn−1) for any real
s and t > 0,

(ii) the estimate
‖(I − χN )u‖Bs,p(Rn−1) ≤M‖u‖Bs,p(Rn−1)

holds with a constant M independent of u and N ,
(iii) for any ε > 0 and σ0 > 0 there exists N(ε, σ0) > 0 such that

‖(I − χN )u‖Bs−σ,p(Rn−1) ≤ ε‖u‖Bs,p(Rn−1)

for any N ≥ N(ε, σ0) and σ ≥ σ0.

Substituting in (4.19) p′ instead of p and (I − χN )u instead of v and using
the properties of the operator χN , we obtain the estimate

‖a(I − χN )u‖Bs,p′(Rn−1) ≤M max
x∈Rn−1

|a(x)|‖u‖Bs,p′(Rn−1) (s > 0). (4.20)

Let u ∈ B−s,p(Rn−1), w ∈ Bs,p(Rn−1). Then we have from (4.20) for a positive s:

|〈(I − χN )au,w〉| = |〈u, ā(I − χN )w〉|
≤ ‖u‖B−s,p(Rn−1)‖ā(I − χN )w‖Bs,p′(Rn−1)

≤M max
x∈Rn−1

|a(x)|‖u‖B−s,p(Rn−1)‖w‖Bs,p′(Rn−1).

Therefore

‖(I − χN )au‖B−s,p(Rn−1) ≤M max
x∈Rn−1

|a(x)|‖u‖B−s,p(Rn−1) (s > 0). (4.21)

We have finally for s > 0, σ > 0:

‖au‖B−s,p(Rn−1) ≤ ‖(I − χN )au‖B−s,p(Rn−1) + ‖χNau‖B−s,p(Rn−1)

≤M1

(
max
x∈Rn−1

|a(x)|‖u‖B−s,p(Rn−1) + ‖au‖B−s−σ,p(Rn−1)

)

≤M1

(
max
x∈Rn−1

|a(x)|‖u‖B−s,p(Rn−1) + c2(a)‖u‖B−s−σ,p(Rn−1)

)
.
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Here we use (4.21), the fact that the operator χN is continuous from
B−s−σ,p(Rn−1) into B−s,p(Rn−1), and the estimate

‖au‖B−s−σ,p(Rn−1) ≤ c2(a)‖u‖B−s−σ,p(Rn−1) (σ < 1).

To obtain (4.18) we use the inequality

‖u‖B−s−σ,p(Rn−1) ≤ ε‖u‖B−s,p(Rn−1) + c(ε)‖u‖B−s−1,p(Rn−1),

where ε = (max |a(x)|)/c2(a) > 0 (in the case a(x) = 0, (4.18) is obvious). The
lemma is proved. �

5 The general problem in unbounded domains

Consider the operators Ai, Bj , and L defined by (0.1)–(0.3). We will use the spaces
E and F introduced in Sections 1 and 3, and the corresponding ∞-spaces:

E∞(Ω) = ΠN
j=1W

l+tj ,p∞ (Ω),

F∞(Ω) = ΠN
i=1W

l−si,p∞ (Ω) × Πm
j=1W

l−σj−1/p,p
∞ (∂Ω),

(E∗(Ω))∞ = ΠN
j=1(Ẇ

−l−tj ,p′(Ω))∞,

(F ∗(Ω))∞ = ΠN
i=1(Ẇ

−l+si,p
′
(Ω))∞ × Πm

j=1(W
−l+σj+1/p,p′(∂Ω))∞,

(F ∗
−1(Ω))∞ = ΠN

i=1(Ẇ
−l+si−1,p′(Ω))∞ × Πm

j=1(W
−l+σj+1/p−1,p′(∂Ω))∞.

We suppose that the domain Ω satisfies Condition D (Section 3).

Theorem 5.1. For any v ∈ (F ∗(Ω))∞ the following estimate holds:

‖v‖(F∗(Ω))∞ ≤M
(
‖L∗v‖(E∗(Ω))∞ + ‖v‖(F∗

−1(Ω))∞

)
(5.1)

with a constant M independent of v.

The proof of the theorem will be given after some preliminary considerations.
Let δ and ψ be the same as in Condition D, Bδ(x0) = {x : |x − x0| < δ},
Gx0 = ψ(Bδ(x0)). We introduce the operator of change of variables,

T : W s,p(Ω ∩Bδ(x0)) →W s,p(Gx0 ∩ {yn > 0}), s ≥ 0.

We will use the same notation also for the operator of change of variables in the
space W s,p(Γ)(s ≥ 0,Γ = ∂Ω) defined on functions with support in Bδ(x0),

T : W s,p(Γ) →W s,p(Rn−1
y′ ).

We have for functions with supports in Bδ(x0):

T : F (Ω) → F (Rn+), T−1 : F (Rn+) → F (Ω),

T : E(Ω) → E(Rn+), T−1 : E(Rn+) → E(Ω),

L : E(Ω) → F (Ω), L̃ = TLT−1 : E(Rn+) → F (Rn+).
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Consider the adjoint operators. We have

(L̃)∗ = (T−1)∗L∗T ∗ : F ∗(Rn+) → E∗(Rn+).

Here

T ∗ : F ∗(Rn+) → F ∗(Ω), (T ∗)−1 : F ∗(Ω) → F ∗(Rn+),

T ∗ : E∗(Rn+) → E∗(Ω), (T ∗)−1 : E∗(Ω) → E∗(Rn+).

Let ṽ ∈ F ∗(Rn+) satisfy the conditions of Theorem 4.1, and v = T ∗ṽ ∈ F ∗(Ω).
From Theorem 4.1 we have

‖ṽ‖F∗(Rn
+) ≤ C

(
‖(L̃)∗ṽ‖E∗(Rn

+) + ‖ṽ‖F∗
−1(R

n
+)

)
. (5.2)

Since
(L̃)∗ṽ = (T−1)∗L∗v,

then from (5.2)

‖v‖F∗(Ω) ≤ ‖T ∗‖ ‖ṽ‖F∗(Rn
+) ≤ C‖T ∗‖

(
‖(T−1)∗L∗v‖E∗(Rn

+) + ‖(T ∗)−1v‖F∗
−1(R

n
+)

)
.

Therefore
‖v‖F∗(Ω) ≤ C1

(
‖L∗v‖E∗(Ω) + ‖v‖F∗

−1(Ω)

)
. (5.3)

Let φ(x) ∈ C∞(Γδ), suppφ ⊂ Bε(x0), Γδ be the δ-neighborhood of Γ, ε > 0 is
taken such that ε ≤ δ/2 and ψ(Bε(x0)) ⊂ σρ with the same ρ as in Theorem 4.1.
Then the previous estimate gives

‖φv‖F∗(Ω) ≤ C1

(
‖L∗(φv)‖E∗(Ω) + ‖φv‖F∗

−1(Ω)

)
. (5.4)

Let us estimate the difference L∗(φv) − φL∗v. We have for any u ∈ E(Ω):

〈u, L∗(φv) − φL∗v〉 = 〈φLu− L(φu), v〉

=
N∑
i=1

〈φAiu−Ai(φu), vi〉 +
m∑
j=1

〈φBju−Bj(φu), wj〉,
(5.5)

where v = (v1, . . . , vN , w1, . . . , wm). We begin with the first term in the right-hand
side of (5.5). The operator Ai acts from E(Ω) into W l−si+1,p(Ω). Let

Ti : W l−si+1,p(Rn) →W l−si,p(Rn)

be a linear isomorphism between the two spaces. Then

(T−1
i )∗ : (W l−si+1,p(Rn))∗ → (W l−si,p(Rn))∗.
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Consider a function ψ ∈ D such that suppψ ∈ Bδ(x0), ψ(x) ≥ 0, ψ(x) = 1 for
x ∈ Bδ/2(x0). Denote by ũ an extension of u to E(Rn) such that

‖ũ‖E(Rn) ≤ 2‖u‖E(Ω). (5.6)

We have ψvi ∈ (W l−si,p(Ω))∗ ⊂ (W l−si+1,p(Ω))∗. Hence there exists an extension
ψ̂vi ∈ (W l−si+1,p(Rn))∗ such that

〈φAiu−Ai(φu), ψvi〉 = 〈φAiũ−Ai(φũ), ψ̂vi〉.

Here we suppose that the coefficients of the operator Ai are extended to Rn. Hence

|〈φAiu−Ai(φu), vi〉| = |〈φAiu−Ai(φu), ψvi〉| (5.7)

= |〈T−1
i Ti(φAiũ−Ai(φũ)), ψ̂vi〉| = |〈Ti(φAiũ−Ai(φũ)), (T−1

i )∗ψ̂vi〉|
≤ ‖Ti(φAiũ−Ai(φũ))‖W l−si,p(Rn)‖(T−1

i )∗ψ̂vi‖(W l−si,p(Rn))∗

≤ C1‖ũ‖E(Rn)‖ψ̂vi‖(W l−si+1,p(Rn))∗ ≤ C2‖u‖E(Ω)‖ψvi‖(W l−si+1,p(Ω))∗

according to (5.6).
We obtain similar estimates for the operators Bj in (5.5).

|〈φBju−Bj(φu), wj〉| = |〈S−1
j Sj(φBju−Bj(φu)), ψwj〉| (5.8)

= |〈Sj(φBju−Bj(φu)), (S−1
j )∗(ψwj)〉|

≤ ‖Sj(φBju−Bj(φu))‖W l−σj−1/p,p(Γ)
‖(S−1

j )∗(ψwj)‖(W l−σj−1/p,p(Γ))∗

≤ C3‖u‖E(Ω)‖ψwj‖W−l+σj+1/p−1,p′
(Γ)
.

From (5.5), (5.7), (5.8) we obtain

|〈u, L∗(φv) − φL∗v〉|

≤ C4‖u‖E(Ω)‖
( N∑
i=1

‖ψvi‖(W l−si+1,p(Ω))∗ +
m∑
j=1

‖ψwj‖W−l+σj+1/p−1,p′
(Γ)

)

= C4‖u‖E(Ω)‖ψv‖F∗
−1(Ω).

Therefore
‖L∗(φv) − φL∗v‖E∗(Ω) ≤ C4‖ψv‖F∗

−1(Ω). (5.9)

From this estimate and (5.4) it follows that

‖φv‖F∗(Ω) ≤ C5

(
‖φL∗v‖E∗(Ω) + ‖φv‖F∗

−1(Ω) + ‖ψv‖F∗
−1(Ω)

)
. (5.10)

Proof of Theorem 5.1. Let δ be the same as in Condition D. We cover the bound-
ary Γ of the domain Ω by a countable number of balls Bε of the radius ε, where
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ε ≤ δ/2 is the number which appears in the proof of estimate (5.10), and extend
this covering to a covering of Ω. Let Vj , j = 1, 2, . . . be all the balls of the covering,
and Ṽj be the balls with the same centers as Vj but with radius δ. We suppose that
there exists a number N such that each of the balls Ṽj has a nonempty intersection
with at most N other balls.

Let further φj(x) and φ̃j(x) be systems of nonnegative functions such that

φj(x) ∈ C∞(Rn), suppφj ⊂ Vj , φ̃j(x) ∈ C∞(Rn), supp φ̃j ⊂ Ṽj ,

and φ̃j(x) = 1 for x ∈ Vj . For the balls Vj with the centers at Γ by virtue of (5.10)
we have the estimate

‖φjv‖F∗(Ω) ≤M0

(
‖φjL∗v‖E∗(Ω) + ‖φjv‖F∗

−1(Ω) + ‖φ̃jv‖F∗
−1(Ω)

)
(5.11)

with a constant M0 independent of j and v.
The covering of the domain Ω can be constructed in such a way that all other

balls, with centers outside of Γ, do not contain points of the boundary. We can
obtain a similar estimate for them. It is even simpler because we do not have to
take into account the boundary operators.

By the definition of the spaces (E∗(Ω))∞ and (F ∗
−1(Ω))∞ we have for any j:

‖φjL∗v‖E∗(Ω) ≤M1‖L∗v‖(E∗(Ω))∞ , ‖φjv‖F∗
−1(Ω) ≤M2‖v‖(F∗

−1(Ω))∞ ,

‖φ̃jv‖F∗
−1(Ω) ≤M3‖v‖(F∗

−1(Ω))∞ ,

where the constants M1, M2, M3 do not depend on v and j. Therefore (5.11) gives

‖φjv‖F∗(Ω) ≤M
(
‖L∗v‖(E∗(Ω))∞ + ‖v‖(F∗

−1(Ω))∞

)
.

Estimate (5.1) follows from this. The theorem is proved. �
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Normal Solvability

As in the previous chapter, we consider the operators

Aiu =
N∑
k=1

∑
|α|≤αik

aαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω, (0.1)

Bju =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
βuk, j = 1, . . . ,m, x ∈ ∂Ω, (0.2)

where u = (u1, . . . , uN ), Ω ⊂ Rn is an unbounded domain. Conditions on the oper-
ators and on the domains will be specified below. We will study normal solvability
of the operator

L = (A1, . . . , AN , B1, . . . , Bm) (0.3)

considered in Sobolev or in Hölder spaces.
We recall that the operator is normally solvable with a finite-dimensional

kernel if and only if it is proper on closed bounded sets, that is if the intersection
of the inverse image of a compact set with any closed bounded set is compact. We
understand properness only in this sense and will not necessarily explain it each
time. In this chapter we obtain necessary and sufficient conditions for a general
elliptic operator to satisfy this property. Consider for example the operator

Lu = a(x)u′′ + b(x)u′ + c(x)u (0.4)

acting from H2(R) into L2(R). If we assume that there exist limits of the coeffi-
cients of the operator at infinity, then we can define the operators

L±u = a±u′′ + b±u′ + c±u,

where the subscripts + and − denote the limiting values at +∞ and −∞, respec-
tively. Applying the Fourier transform to the equation

a±u′′ + b±u′ + c±u = λu,
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we obtain the essential spectrum

λ(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R

of the operator L given by the two parabolas in the complex plane. It can be
proved that if the essential spectrum does not pass through the origin, then L is a
Fredholm operator. In particular, it is normally solvable with a finite-dimensional
kernel.

This simple approach is not applicable for general elliptic problems where
limits of the coefficients may not exist and the domain may not be translation
invariant. In the next section we will begin with the construction of limiting prob-
lems. It can be briefly described as follows. Let xk ∈ Ω be a sequence which
tends to infinity. Consider the shifted domains Ωk corresponding to the shifted
characteristic functions χ(x+ xk), where χ(x) is the characteristic function of the
domain Ω. Consider a ball Br ⊂ Rn with center at the origin and with radius r.
Suppose that for all k there are points of the boundaries ∂Ωk inside Br. If the
boundaries are sufficiently smooth, we can expect that from the sequence Ωk ∩Br
we can choose a subsequence that converges to some limiting domain Ω∗. After
that we take a larger ball and choose a convergent subsequence of the previous
subsequence. The usual diagonal process allows us to extend the limiting domain
to the whole space.

In order to define limiting operators, we consider the shifted coefficients
aα(x + xk), bαj (x + xk) and choose subsequences that converge to some limit-
ing functions âα(x), b̂αj (x) uniformly in every bounded set. The limiting operator
is the operator with limiting coefficients. Limiting operators and limiting domains
constitute limiting problems. It is clear that the same problem can have a family
of limiting problems depending on the choice of the sequence xk and on the choice
of converging subsequences of domains and coefficients.

We note that in the case where Ω = Rn the limiting domain is also Rn. In
this case the limiting operators were introduced in [361], [362], [490], [491].

The following condition determines normal solvability of elliptic problems.

Condition NS. Any limiting problem

L̂u = 0, x ∈ Ω∗, u ∈ E∞(Ω∗)

has only a zero solution.

It is a necessary and sufficient condition for general elliptic operators to be
normally solvable with a finite-dimensional kernel. More precisely, it will be proved
that the elliptic operator L is normally solvable and has a finite-dimensional kernel
in the space W l,p

∞ (1 < p < ∞) if and only if Condition NS is satisfied. Similar
results will also be obtained for Hölder spaces.

It is easy to see how this condition is related to the condition formulated
in terms of the Fourier transform. The nonzero solution of the limiting problem
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L±u = 0 corresponding to operator (0.4) has the form u0(x) = eiξx, where ξ is
the value for which the essential spectrum passes through the origin. We note that
the function u0(x) belongs to the Hölder spaces and also to the space W 2,p∞ (R).
However it does not belong to the usual Sobolev space W 2,p(R). Therefore it is
more convenient to use here the spaces W s,p

q .

1 Limiting domains

1.1 General properties

In this section we define limiting domains for unbounded domains in Rn, we show
their existence and study some of their properties. We consider an unbounded
domain Ω ⊂ Rn, which satisfies the following condition:

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with radius δ and center x0, where δ is independent
of x0,

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in Rn such that the images of Ω

⋂
U(x0) and

∂Ω ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively,

3. The function ψ(x;x0) and its inverse belong to the Hölder space Cr+θ. Their
‖ · ‖r+θ-norms are bounded uniformly in x0.

For definiteness we suppose that δ < 1. We assume that

r ≥ max(l + ti, l − si, l − σj + 1), i = 1, . . . , N, j = 1, . . . ,m.

The first expression in the maximum is used for a priori estimates of solutions, the
second and the third allow us to extend the coefficients of the operator (Section
2.2.2).

In what follows we suppose that ψ is extended such that ψ ∈ Cr+θ(Rn) and
‖ψ‖Cr+θ(Rn) ≤ M with M independent of x0. It is easy to see that δ and ψ in
Condition D can be chosen in such a way that this requirement can be satisfied.
Indeed, denote by Vδ the sphere with the center at x0 and the radius δ and let
Wδ = ψ(Vδ). Obviously, there exists a sphere Qε with center at y0 = ψ(x0;x0) and
radius ε such that Qε ⊂Wδ and ε does not depend on x0. Indeed, let ϕ = ψ−1 and
let y1 be an arbitrary point on the boundary of Wδ. We have δ = |ϕ(y1)−ϕ(y0)| ≤
K|y1 − y0|, where K is the Lipschitz constant which does not depend on x0. Let
ε < δ/K. We have |y1−y0| > ε which proves existence of the desired sphereQε. Let
Ũ(x0) = ϕ(Qε). There exists a sphere S with center at x0 and radius δ̃ such that
S ⊂ Ũ(x0) and δ̃ does not depend on x0. Indeed, let x1 be an arbitrary point of the
boundary of Ũ(x0). Then we have ε = |ψ(x0;x0)−ψ(x1;x0)| ≤ K1|x0−x1|, where
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K1 is the Lipschitz constant of ψ, which does not depend on x0. So for δ̃ < ε/K1 we
have |x0−x1| > δ̃, which proves existence of the mentioned sphere S. We can take
Ũ(x0) as a new neighborhood of x0 and ψ̃(x;x0) = 1

ε (ψ(x;x0)−ψ(x0;x0)) as a new
function ψ. Since ψ̃(x;x0) is defined in the sphere Vδ it can be extended on Rn.

To define convergence of domains we use the following Hausdorff metric space.
Let M and N denote two nonempty closed sets in Rn. Set

ς(M,N) = sup
a∈M

ρ(a,N), ς(N,M) = sup
b∈N

ρ(b,M),

where ρ(a,N) denotes the distance from a point a to a set N , and let

�(M,N) = max(ς(M,N), ς(N,M)). (1.1)

We denote by Ξ a metric space of bounded closed nonempty sets in Rn with the
distance given by (1.1). We say that a sequence of domains Ωm converges to a
domain Ω in Ξloc if

�(Ω̄m ∩ B̄R, Ω̄ ∩ B̄R) → 0, m→ ∞
for any R > 0 and BR = {x : |x| < R}. Here bar denotes the closure of the
domains.

Definition 1.1. Let Ω ⊂ Rn be an unbounded domain, xm ∈ Ω, |xm| → ∞ as
m → ∞; χ(x) be a characteristic function of Ω, and Ωm be a shifted domain
defined by the characteristic function χm(x) = χ(x + xm). We say that Ω∗ is a
limiting domain of the domain Ω if Ωm → Ω∗ in Ξloc as m→ ∞.

We denote by Λ(Ω) the set of all limiting domains of the domain Ω (for all se-
quences xm). It will be shown below that if Condition D is satisfied, then limiting
domains exist and also satisfy this condition.

Theorem 1.2. If a domain Ω satisfies Condition D, then there exists a function
f(x) defined in Rn such that:

1. f(x) ∈ Ck+α(Rn),
2. f(x) > 0 if and only if x ∈ Ω,
3. |∇f(x)| ≥ 1 for x ∈ ∂Ω,
4. min(d(x), 1) ≤ |f(x)|, where d(x) is the distance from x to ∂Ω.

Proof. There exists a number N such that from the covering U(x0) of ∂D we can
choose a countable subcovering Ui such that the following conditions are satisfied:

1)
⋃
i Ui covers the δ/2-neighborhood of ∂Ω,

2) Any N distinct sets Ui have an empty intersection.

Indeed, denote by V the δ/2-neighborhood of ∂Ω. Obviously, for any point x0 ∈ V
there exists a point x′0 ∈ ∂Ω such that Bδ/2(x0) ⊂ Bδ(x′0) ⊂ U(x′0). Here and in
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what follows Br(x) denotes a ball in Rn with center at x and with radius r. So we
have a covering U ′(x0) = U(x′0) of V such that the centers of the balls are at the
boundary of the domain. Write Γ =

⋃
U ′.

Consider an ε-mesh in Rn. We denote by K the union of all n-dimensional ε-
intervals of this mesh which have a nonempty intersection with V . For any Qi ∈ K
we take a point xi ∈ Qi

⋂
V (i = 1, 2, . . . ) and consider the neighborhood Ui ∈ Γ,

which contains the point xi. We suppose that ε is taken such that the diameter of
Qi is less then δ/2. Then Qi ⊂ Ui and

V ⊂ Γ0 =
⋃
i

Ui.

Therefore the covering Γ0 satisfies condition 1).
To each Qi ∈ K corresponds no more than one neighborhood Ui ∈ Γ0. From

Condition D it follows that the diameter of Ui is less than a constant independent
of i. Hence 2) is also satisfied.

Let ωi ∈ Ck+α(Rn) be a partition of unity subordinate to the covering Γ0, i.e.,
suppωi ⊂ Ui. Denote by ψi the vector-valued function ψ(x, x0) which corresponds
to Ui in Condition D and

f0(x) = c Σi ψin(x) ωi(x), (1.2)

where ψin(x) is the last component of ψi(x) and the constant c will be chosen
later. We note that this sum contains no more than N terms.

For any points x ∈ Ui and x1 ∈ ∂Ω
⋂
Ui we have |x−x1| ≤M |y− y1|, where

y = ψi(x), y1 = ψi(x1) and the constant M does not depend on i. So

d(x) ≤M inf
y1

n=0
|y − y1| = M |ψin(x)|.

It follows that for all x ∈ V we have d(x) ≤ M |f0(x)|/c. We have used here the
fact that the functions ψin(x) have the same sign for all i. We take c ≥M . Then

min(d(x), 1) ≤ |f0(x)|.
Therefore assertion 4 of the theorem is proved for f0(x).

We now prove statement 3 of the formulation. Set ϕi = ψ−1
i and denote by

ϕ′
i and ψ′

i the Jacobian matrices of ϕi and ψi, respectively. Then for any x ∈ Ui
we have ψ′

i(x) . ϕ
′
i(ψ(x)) = I (identity matrix). Let ai be the kth row of ψ′

i and bi
be the kth column of ϕ′

i, then |ai| |bi| ≥ 1. From Condition D, |bi| ≤ M1, where
M1 is a constant independent of i. So |ai| ≥ 1/M1. In particular

|∇ψin(x)| ≥ 1/M1. (1.3)

From (1.2) for x ∈ ∂D we have

∇f0(x) = c
∑
i

∇ψin(x) ωi(x). (1.4)
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Let ν be the unit inward normal to ∂D. Then

(∇f0(x), ν(x)) = (∇f0(x),∇f0(x)/|∇f0(x)|) = |∇f0(x)|.

For x ∈ ∂Ω
⋂
Ui we have similarly (∇ψin(x), ν(x)) = |∇ψin(x)|. Multiplying (1.4)

by ν(x) we get
|∇f0(x)| = c

∑
i

|∇ψin(x)| ωi(x).

From (1.3), taking c ≥ M1 we obtain |∇f0(x)| ≥ 1, x ∈ ∂Ω. Hence, point 3 is
proved for f0(x).

We have defined the function f0(x) in a neighborhood of the boundary ∂Ω.
We can easily extend it on the whole Rn in such a way that its regularity is
preserved, it is greater than a positive constant inside the domain Ω and less than
a negative constant outside the domain. Multiplying it by a large positive number,
we will have the last two assertions of the theorem also satisfied. The theorem is
proved. �

Let Ω be an unbounded domain satisfying Condition D and f(x) be the func-
tion satisfying conditions of Theorem 1.2. Consider a sequence xm ∈ Ω, |xm| → ∞.
Let fm(x) = f(x+ xm).

Theorem 1.3. Let fm(x) → f∗(x) in Ckloc(R
n) (local convergence), where k is not

greater than that in Theorem 1.2. Write Ω∗ = {x : x ∈ Rn, f∗(x) > 0}. Then

1) f∗(x) ∈ Ck+α(Rn),
2) Ω∗ is a nonempty open set.

If Ω∗ �= Rn, then

3) |∇f∗(x)|∂Ω∗ ≥ 1,
4) min(d∗(x), 1) ≤ |f∗(x)|, where d∗(x) is the distance from x to ∂Ω∗.

Proof. The first assertion of the theorem is obvious. To prove the second assertion,
we note that the origin O belongs to all domains Ωm. Denote by dm the distance
from O to the boundary ∂Ωm. If dm → 0, then from the properties of the functions
fm(x) it follows that

f∗(O) = 0, |∇f∗(O)| ≥ 1.

Hence there are points in a neighborhood of the origin where the function f∗(x)
is positive. Consequently Ω∗ is nonempty.

If dm does not converge to zero, then dmi ≥ a > 0 for some positive a. From
Theorem 1.2 we conclude that fmi(O) ≥ min(a, 1). Therefore f∗(O) ≥ min(a, 1) >
0, and we obtain again that the set Ω∗ is not empty. The fact that it is open is
obvious.

We now verify the third assertion of the theorem. Let f∗(x0) = 0 for some x0.
Then fm(x0) → 0. From assertion 4 of Theorem 1.2 it follows that dm(x0) → 0,
where dm(x0) is the distance of x0 to ∂Ωm. So there exists zm ∈ ∂Dm such that
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|zm − x0| → 0. Since |∇fm(zm)| ≥ 1 by 3 of Theorem 1.2, then passing to the
limit we get |∇f∗(x0)| ≥ 1.

We finally prove the last assertion of the theorem. For any x0 ∈ Rn we have

min(dm(x0), 1) ≤ |fm(x0)|.
So we should verify that dm(x0) converges to d∗(x0) as m→ ∞. Suppose that x0

belongs to a ball BR. Set

Γm = {x : fm(x) = 0, x ∈ BR}, Γ∗ = {x : f∗(x) = 0, x ∈ BR}.
It is sufficient to prove that

�(Γm,Γ∗) → 0, m→ ∞. (1.5)

Let Γεm, Γε∗ be ε-neighborhoods of these sets, respectively. From the convergence
fm(x) → f∗(x) in Ck(BR) it follows that Γm ⊂ Γε∗ for m sufficiently large. We
show that Γ∗ ⊂ Γεm for m large. Indeed,

|fm(x) − f∗(x)| < ε, x ∈ BR

for m ≥ mε and some mε. If x ∈ Γ∗, then f∗(x) = 0 and |fm(x)| < ε. From the
last assertion of Theorem 1.2 it follows that dm(x) < ε, and x ∈ Γεm. Convergence
(1.5) follows from this. The theorem is proved. �

We note that the limiting set Ω∗ is not necessarily connected even if the
domain Ω is connected.

Theorem 1.4. If fm(x) → f∗(x) in Ckloc as m→ ∞, then ∂Ωm → ∂Ω∗ in Ξloc.

The proof of the theorem follows from convergence (1.5).

Theorem 1.5. If fm(x) → f∗(x) in Ckloc as m → ∞, then the limiting domain Ω∗
satisfies Condition D, or Ω∗ = Rn.

Proof. Suppose that Ω∗ �= Rn and x0 ∈ ∂Ω∗. Then there exists a sequence x̂m
such that

x̂m → x0, x̂m ∈ ∂Ωm,

where Ωm are the domains where the functions fm(x) are positive. For each point
x̂m and domain Ωm there exists a neighborhood U(x̂m) and the function ψ(x; x̂m)
defined in Condition D.

Since the domain Ω satisfies Condition D, the functions ψ(x; x̂m) are uni-
formly bounded in the Ck+α-norm with k ≥ 1. The domain of definition of each of
these functions is an inverse image of the unit sphere in Rn. Choosing a converging
subsequence of the inverse images and of the functions ψ(x; x̂m), we obtain a lim-
iting neighborhood U(x0) and a limiting function ψ(x;x0) which satisfy Condition
D. The theorem is proved. �
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From the previous theorems follows the main result of this section.

Theorem 1.6. Let Ω be an unbounded domain satisfying Condition D, xm ∈ Ω,
|xm| → ∞, and f(x) be the function constructed in Theorem 1.2. Then there exists
a subsequence xmi and a function f∗(x) such that fmi(x) ≡ f(x + xmi) → f∗(x)
in Ckloc(R

n), and the domain Ω∗ = {x : f∗(x) > 0} satisfies Condition D, or
Ω∗ = Rn. Moreover Ω̄mi → Ω̄∗ in Ξloc, where Ωmi = {x : fmi(x) > 0}.

1.2 Examples

Half-space, space, cylinders. We begin with some examples in which limiting do-
mains can be constructed explicitly.

1. If Ω = Rn, then the only limiting domain is the whole Rn. If Ω is an exterior
domain for some bounded domain, then, as before, the only limiting domain
is Rn.

2. In the case of the half-space, Ω = Rn+, n > 1, there are two limiting domains,
the same half-space and the whole space. For the half-line, the limiting do-
main is R1.

3. If Ω is an unbounded cylinder with a bounded cross-section, then the only
limiting domain is the same cylinder (up to a shift). It is also the limiting
domain for a half-cylinder.

Plane domains bounded by a curve. Consider the following domain in R
2:

Ω = {(x, y), y > f(x)},

where f(x), x ∈ R1 is a given function continuous with its first derivative. Suppose
that f(x) and f ′(x) have limits (finite or infinite) as x→ ±∞. Then the tangent to
the boundary ∂Ω has limits. The half-planes limited by the limiting tangents are
limiting domains. These half-planes and the whole plane form all limiting domains.

If, for example, f(x) = x2, then there are three types of limiting domains:
the whole plane, the right half-plane, the left half-plane. For the exponential,
f(x) = ex, the limiting domains are the whole plane, the left half-plane, the upper
half-plane.

For a periodic function f(x), for which limits for the function and for its
derivative at infinity do not exist, the limiting domains are either the domain Ω
itself (up to a sift) or the whole plane.

Domains slowly varying at infinity. We will introduce a special class of domains
for which limiting domains can be either the whole spaces or a half-space. Limiting
problems are easier to study in this case. We denote by ν(x) the internal normal
unit vector to the boundary at x ∈ ∂Ω.

Condition R. For any sequence xk ∈ ∂Ω, k = 1, 2, . . . , |xk| → ∞ and for any given
number r > 0 there exists a subsequence xki such that the limit limki→∞ ν(xki +
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hki) exists for all hki : hki ∈ Rn, |hki | < r, xki + hki ∈ ∂Ω, and it does not depend
on hki .

We will study the structure of limiting domains Ω∗ for domains Ω, which satisfy
Condition R. Let Ω∗ be a limiting domain and xk ∈ Ω, k = 1, 2, . . . , |xk| → ∞
is the sequence that determines this limiting domain. Denote by dk the distance
from xk to the boundary ∂Ω. Consider the following two cases:

1. If the sequence dk is unbounded, then there exists a subsequence dki → ∞.
The sequence xki determines the same limiting domain Ω∗. Then Ω∗ = Rn,

2. If the sequence dk is bounded, then we can assume, choosing a subsequence
if necessary, that dk → d <∞.

It is convenient to reformulate Condition R in the following form.

Condition R. If the boundary ∂Ω is unbounded, then for any sequence xk ∈ ∂Ω,
k = 1, 2, . . . , |xk| → ∞ there exists a subsequence xki such that for any given
number r > 0 the limit limki→∞ ν(xki +hki) exists for all hki : hki ∈ Rn, |hki | < r,
xki + hki ∈ ∂Ω, and it does not depend on hki .

In the other words, the subsequence can be chosen independently of r. To
prove that the second definition follows from the first one, it is sufficient to take a
sequence rj → ∞. For each value of j we can take a subsequence according to the
first definition in such a way that it is a subsequence of the previous one. Then
we use a diagonal process.

Denote by yk the point of the boundary ∂Ω such that the distance from yk
to xk equals dk. Obviously, |yk| → ∞. Let yki be a subsequence chosen according
to Condition R. Instead of the sequence xk we consider the subsequence xki . The
limiting domain Ω∗ remains the same. We can use Theorem 1.2. Let f(x) be a
function that satisfies the conditions of the theorem. Then, taking a subsequence
if necessary, according to Theorem 1.6 we can find a function f∗(x) such that
fki(x) ≡ f(x+ xki) → f∗(x) in C1

loc(R
n), and the domain Ω∗ = {x : f∗(x) > 0} is

the limiting domain under consideration.
For convenience we write k instead of ki:

fk(x) ≡ f(x+ xk) → f∗(x) (1.6)

in C1
loc(R

n). The limit
lim
k→∞

ν(xk + hk) = µ (1.7)

exists for all hk: hk ∈ Rn, |hk| < r, xk + hk ∈ ∂Ω, where r > 0 is a given number,
µ is some constant. This limit is independent of hk.

It will be shown below that for any z0 ∈ ∂Ω∗ the internal unit normal vector
equals µ. The following lemma allows us to conclude that Ω∗ is a half-space.

Lemma 1.7. If the domain Ω ⊂ Rn satisfies Condition D and all internal normal
unit vectors to the boundary ∂Ω coincide up to a shift, then Ω is a half-space.
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Proof. Let Γ = ∂Ω. Let us show that any point z ∈ Γ has a neighborhood U such
that U ∩Γ coincides with U ∩T (z), where T (z) is a tangent plane to Γ at the point
z. Consider a local coordinate y = (y1, . . . , yn) in the vicinity of the point z such
that the axis yn is along the internal normal vector to Γ at the point z, and all
other coordinate axes are in the tangent plane. We can assume that this system of
coordinates is obtained from the original one by a translation of the origin and by
rotation. In this case, if the neighborhood U is sufficiently small, then the surface
Γ in U can be given by the equation

yn = f(y′), y′ = (y1, . . . , yn−1). (1.8)

Since all normal vectors to Γ∗ are parallel to each other, then all normal vectors
to the surface (1.8) are parallel to the yn-axis. This means that ∂f/∂yi ≡ 0,
i = 1, . . . , n− 1, that is f(y′) is a constant. Since f(0) = 0, then f(y′) ≡ 0. Thus,
it is proved that U ∩ Γ = U ∩ T (z).

Take an arbitrary point z0 ∈ Γ. Denote by Γ(z0) the part of the manifold Γ
such that its points can be connected by a continuous curve on Γ. Let z ∈ Γ(z0)
and γ ⊂ Γ be a continuous curve connecting z0 and z. For each point ζ ∈ γ choose
a neighborhood as it is indicated above. We can also choose a finite covering of
the curve γ with such neighborhoods. If we consider consecutive neighborhoods
from this covering and take into account that the vectors ν(ζ) are equal, we obtain
T (z0) = T (z). Therefore γ ⊂ T (z0). Since z is an arbitrary point in Γ(z0), then

Γ(z0) ⊂ T (z0). (1.9)

Let us show that
Γ(z0) = T (z0). (1.10)

Suppose that this equality is not true. Let z1 ∈ T (z0), z1 �∈ Γ(z0). Let us connect
the points z0 and z1 by an interval l. Then there is such a point z∗ ∈ l that in each
of its neighborhoods there are points from Γ(z0) and points that do not belong to
Γ(z0). Since [z0, z∗) ∈ Γ and Γ is a closed set, then z∗ ∈ Γ. As it is shown above,
z∗ has a neighborhood U where

U ∩ Γ = U ∩ T (z∗). (1.11)

Therefore [z0, z∗] ⊂ Γ. This means that z∗ ∈ Γ(z0). From (1.9) it follows that z∗ ∈
T (z0). As above, we obtain T (z∗) = T (z0). By virtue of (1.11), U ∩Γ = U ∩T (z0).
Hence, we can conclude that all points of the interval l, sufficiently close to z∗
belong to Γ and consequently to Γ(z0). This contradiction proves (1.10).

Denote by Π+(z0) (Π−(z0)) the half-space bounded by the plane T (z0) and
located in the direction of the internal (external) normal vector to Γ at the point
z0. Let us show that

Π+(z0) ⊂ Ω. (1.12)

If this is not the case, then there exists a point z ∈ Π+(z0), z �∈ Ω. Let z̃ be the
projection of the point z on the plane T (z0). We have z̃ ∈ Γ. Since Condition
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D is satisfied, then some interval ν(z̃) belongs to Ω. Therefore, there is a point
ξ in the interval [z̃, z] such that (z̃, ξ) ∈ Ω and ξ �∈ Ω. Hence, ξ ∈ Γ. Consider
the internal normal vector ν(ξ) at the point ξ. According to the condition of the
lemma, ν(ξ) and ν(z̃) coincide up to a shift. Moreover, by virtue of Condition D,
none of the points of the external normal vector sufficiently close to ξ belong to Ω.
This contradiction proves (1.12).

We show that
Π+(z0) = Ω. (1.13)

Indeed, otherwise there exists a point z ∈ Ω, z �∈ Π+(z0). This means that z ∈
Π−(z0). Let z̃ be the projection of the point z on the plane T (z0). There is a point
ξ in the interval [z, z̃] such that [z, ξ) belongs to Ω, ξ �∈ Ω. Therefore, ξ ∈ Γ and
the internal normal vector ν(ξ) has a direction opposite to the interval [z, ξ]. Since
it is not possible, we obtain a contradiction which proves (1.13). The lemma is
proved. �

We will now show that for any point z0 ∈ ∂Ω∗ the internal normal unit vector
equals µ. Denote B(x0, r) = {x ∈ Rn, |x− x0| < r}. Let Γk be the intersection of
∂Ω with B(xk, r), where r > d. Then Γk is not empty. As above, we take the point
yk ∈ ∂Ω, such that its distance to xk equals dk. All points of the set Γk have the
form yk + h, where |h| < 2r. Therefore, we have (1.7).

Let us shift the point xk to the origin and denote the shifted domain by
Ωk. Further let Γ̃k = ∂Ωk ∩ B(0, r). For any point z ∈ ∂Ω∗ ∩ B(0, r) we can
indicate a sequence of points zk → z, zk ∈ Γ̃k. Moreover, νk(zk) → ν∗(z), where
νk(zk) (ν(z∗)) is the internal normal unit vector to Γ̃k (∂Ω∗) at the point zk (z).
From (1.7) it follows that ν∗(z) = µ. The assertion is proved. We have proved the
following theorem.

Theorem 1.8. If Conditions D and R are satisfied for a domain Ω ⊂ Rn, then each
of its limiting domains is either the whole space Rn or some half-space.

The inverse theorem also holds.

Theorem 1.9. Suppose that domain Ω ⊂ R
n satisfies Condition D and each of its

limiting domains is either the space Rn or some half-space. Then Condition R is
satisfied.

Consider domains Ω in the space Rn+1 with the coordinates (x, y), where
x = (x1, . . . , xn), determined by the inequality y > f(x), where f(x) is a function
defined for all x ∈ Rn and continuous with its first derivatives. As usual, put
∇f(x) = (∂f(x)/∂x1, . . . , ∂f(x)/∂xn) and consider the spherical coordinates x =
rθ where r = |x|. We present the following theorem without proof.

Theorem 1.10. For any θ0, |θ0| = 1, let one of the following conditions be satisfied:

1. There exists limr→∞,θ→θ0 ∇f(rθ) and limr→∞,θ→θ0 |∇f(rθ)| <∞;
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2. limr→∞,θ→θ0 |∇f(rθ)| = ∞ and there exists

lim
r→∞,θ→θ0

∇f(rθ)
|∇f(rθ)| .

Then the domain Ω satisfies Condition R.

Consider the following examples (see also [442]):

1. Let f(x) = g(|x|), where g(t) is a continuously differentiable function defined
for t ≥ 0. Suppose that limt→∞ g′(t) = g′(∞) exists. If |g′(∞)| < ∞, then
we have the first case of Theorem 1.10; if |g′(∞)| = ∞, then it is case 2,

2. Let f(x) = f0(x) + f1(x) (for |x| ≥ σ > 0), where f0(x) is a homogeneous
function of a positive order α ≥ 1,

f0(ρx) = ραf0(x), ρ > 0,

and f1(x) satisfies the condition

∇f1(x)|
|x|α−1

→ 0, |x| → ∞

(for example, f(x) can be a polynomial). These functions are supposed to be
continuously differentiable and |∇f(θ)| �= 0 for all |θ| = 1. Then it can be
verified that the conditions of the theorem are satisfied.

2 Sobolev spaces

2.1 A priori estimates in the spaces W k,p
∞

In this section we obtain a priori estimates of solutions in the spaces W k,p
∞ similar

to those in the usual Sobolev spaces. We recall that W k,p∞ (Ω), (0 ≤ k, 1 < p <∞)
is the space of functions defined as the closure of smooth functions in the norm

‖u‖
Wk,p

∞ (Ω) = sup
y∈Ω

‖u‖Wk,p(Ω∩Qy).

Here Ω is a domain in Rn, Qy is a unit ball with its center at y, ‖ · ‖Wk,p is
the Sobolev norm. We note that in bounded domains Ω the norms of the spaces
W k,p(Ω) and W k,p∞ (Ω) are equivalent.

We suppose that the boundary ∂Ω belongs to the Hölder space Ck+θ, 0 < θ <
1, and that the Hölder norms of the corresponding functions in local coordinates
are bounded independently of the point of the boundary. Then we can define the
space W k−1/p,p

∞ (∂Ω) of traces at the boundary ∂Ω of the domain Ω,

‖φ‖
W

k−1/p,p
∞ (∂Ω)

= inf ‖v‖Wk,p
∞ (Ω),
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where the infimum is taken with respect to all functions v ∈ W k,p∞ (Ω) equal to φ
at the boundary, and k > 1/p.

The space W k,p∞ (Ω) with k = 0 will be denoted by Lp∞(Ω). We will use also
the following notation:

E∞ = ΠN
j=1W

l+tj ,p∞ (Ω),

F∞ = ΠN
i=1W

l−si,p∞ (Ω) × Πm
j=1W

l−σj−1/p,p
∞ (∂Ω).

We consider the operator L defined by (0.3) assuming that it is uniformly elliptic
and put l1 = maxj(0, σj+1). We suppose that the integer l in the definition of the
spaces is such that l ≥ l1, and the boundary ∂Ω belongs to the class Cr+θ with r
specified in Condition D (Section 1).

Theorem 2.1. Let u ∈ ΠN
j=1W

l1+tj ,p∞ (Ω). Then for any l ≥ l1 we have u ∈ E∞ and

‖u‖E∞ ≤ c
(‖Lu‖F∞ + ‖u‖Lp

∞(Ω)

)
, (2.1)

where the constant c does not depend on u.

The proof is given in Section 2 of the previous chapter.

2.2 Limiting problems

2.2.1. Convergence. In the previous section we introduced limiting domains. We
now define the corresponding limiting problems. Let Ω be a domain satisfying
Condition D and χ(x) be its characteristic function. Consider a sequence xm ∈
Ω, |xm| → ∞ and the shifted domains Ωm defined by the shifted characteristic
functions χm(x) = χ(x + xm). We suppose that the sequence of domains Ωm
converge in Ξloc to some limiting domain Ω∗. In this section we suppose that
0 ≤ k ≤ l (see Section 2.1).

Definition 2.2. Let um ∈ W k,p∞ (Ωm), m = 1, 2, . . . . We say that um converges to
a limiting function u∗ ∈ W k,p

∞ (Ω∗) in W k,p
loc (Ωm → Ω∗) if there exists an extension

vm(x) ∈ W k,p∞ (Rn) of um(x),m = 1, 2, . . . and an extension v∗(x) ∈ W k,p∞ (Rn) of
u∗(x) such that vm → v∗ in W k,p

loc (Rn).

Here and in what follows, convergence in W k,p
loc (Rn) signifies local convergence in

W k,p
∞ (Rn).

Definition 2.3. Let um ∈W
k−1/p,p
∞ (∂Ωm), k > 1/p, m = 1, 2, . . . . We say that um

converges to a limiting function u∗ ∈ W
k−1/p,p
∞ (∂Ω∗) in W

k−1/p,p
loc (∂Ωm → ∂Ω∗)

if there exists an extension vm(x) ∈ W k,p
∞ (Rn) of um(x),m = 1, 2, . . . and an

extension v∗(x) ∈ W k,p
∞ (Rn) of u∗(x) such that vm → v∗ in W k,p

loc (Rn).

Definition 2.4. Let um(x) ∈ Ck(Ωm),m = 1, 2, . . . . We say that um(x) converges to
a limiting function u∗(x) ∈ Ck(Ω∗) in Ckloc(Ωm → Ω∗) if there exists an extension
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vm(x) ∈ Ck(Rn) of um(x),m = 1, 2, . . . and an extension v∗(x) ∈ Ck(Rn) of u∗(x)
such that

vm → v∗ in Ckloc(R
n).

Definition 2.5. Let um(x) ∈ Ck(∂Ωm), m = 1, 2, . . . . We say that um(x) converges
to a limiting function u∗(x) ∈ Ck(∂Ω∗) in Ckloc(∂Ωm → ∂Ω∗) if there exists an ex-
tension vm(x) ∈ Ck(Rn) of um(x),m = 1, 2, . . . and an extension v∗(x) ∈ Ck(Rn)
of u∗(x) such that

vm → v∗ in Ckloc(R
n).

Theorem 2.6. The limiting function u∗(x) in Definitions 2.2–2.5 does not depend
on the choice of extensions vm(x) and v∗(x).

Proof. Consider Definition 2.2. Any point x ∈ Ω∗ has a neighborhood U such that
U ⊂ Ωm for all m sufficiently large. Since vm → v∗ in Ŵ k,p

loc (Rn), then
∫
U

|vm − v∗|pdx→ 0, m→ ∞.

Hence ∫
U

|um − u∗|pdx→ 0, m→ ∞.

Therefore u∗ does not depend on the choice of vm.
Consider now Definition 2.3. Let x0 be an arbitrary point of ∂Ω∗. Then there

exists a sequence xm such that xm → x0, xm ∈ ∂Ωm. For each point xm and
domain Ωm there exists a neighborhood U(xm) and a function ψm(x) = ψ(x;xm)
from Condition D. The functions ψm(x) are uniformly bounded in Ck+θ-norm.
The domain of definition of each of these functions is an inverse image of the unit
sphere B in Rn. Choosing a convergent subsequence of the inverse images and
of the functions ψm(x) we obtain a limiting neighborhood U(x0) and a limiting
function ψ0(x) which satisfy Condition D. For this subsequence we retain the same
notation as for the whole sequence. Thus we have

ψm : U(xm) → B, ψ0 : U(x0) → B.

Set φm = ψ−1
m , φ0 = ψ−1

0 . We have φm → φ0 in Ck(B). Let

um ∈ W k−1/p,p
∞ (∂Ωm), u∗ ∈W k−1/p,p

∞ (∂Ω∗)

and
vm ∈ W k,p

∞ (Rn), v∗ ∈W k,p
∞ (Rn)

be extensions of these functions defined in Definition 2.3. Then

vm → v∗ in W k,p
loc (Rn). (2.2)

It is sufficient to consider the case 1/p < k < 1.
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We first prove that

vm(φm(y)) → v∗(φ0(y)) in W k,p(B) (2.3)

as m→ ∞. To do this we will prove that

‖vm(φm(y)) − v∗(φm(y))‖Wk,p(B) → 0 (2.4)

and
‖v∗(φm(y)) − v∗(φ0(y))‖Wk,p(B) → 0 (2.5)

as m→ ∞. We begin with (2.4). We will prove that

Tm ≡
∫
B

∫
B

|[vm(φm(y)) − v∗(φm(y))] − [vm(φm(z)) − v∗(φm(z))]|p
|y − z|n+pk

dydz → 0

(2.6)
as m → ∞. We do the change of variables y = ψm(η), z = ψm(ζ). Taking into
account that for the Jacobians we have the uniform estimates:

|dψm/dη| ≤M, |dψm/dζ| ≤M,

and
|η − ζ| = |φm(y) − φm(z)| ≤ K|y − z|

with K independent of m, we get

Tm ≤M1

∫
U(xm)

∫
U(xm)

|[vm(η) − v∗(η)] − [vm(ζ) − v∗(ζ)]|p
|η − ζ|n+pk

dηdζ.

Since U(xm) belongs to a ball V with the center at x0 and with the radius inde-
pendent of m, we get Tm ≤M1‖vm− v∗‖pWk,p(V )

→ 0 as m→ ∞. We use the fact

that vm → v∗ in Ŵ k,p
loc (Rn). To prove (2.4) it remains to verify it for k = 0. It can

be done with the same change of variables as above. Thus (2.4) is proved.
Let us prove (2.5). Let

ωl(x) → v∗(x) in W 1,p
loc (Rn) as l → ∞, (2.7)

where ωl(x) are smooth functions, and ε > 0 be a given number. We take l so
large that

‖v∗(φm(y)) − ωl(φm(y))‖Wk,p(B) ≤
ε

3
for all m (2.8)

and
‖v∗(φ0(y)) − ωl(φ0(y))‖Wk,p(B) ≤

ε

3
. (2.9)

It is possible by virtue of (2.7). The fact that the left-hand side in (2.8) tends to
0 as l → ∞ uniformly with respect to m is proved similarly to (2.6) by the change
of variables x = φm(y).
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For a fixed l we can find m0 such that

‖ωl(φm(y)) − ωl(φ0(y))‖Wk,p(B) ≤
ε

3
(2.10)

for m > m0. From (2.8)–(2.10) it follows that

‖v∗(φm(y)) − v∗(φ0(y))‖Wk,p(B) ≤ ε

as m > m0 and therefore (2.5) is proved.
Convergence (2.3) follows from (2.4) and (2.5). Set fm(y) = vm(ϕm(y)),

f∗(y) = v∗(ϕ0(y)). It follows from (2.3) that

‖f+
m − f+

∗ ‖Lp(B0) → 0 as m→ ∞. (2.11)

Here f+
m and f+

∗ are the traces of fm(y) and f∗(y) respectively from B+. Sup-
pose now that there is another limiting function ũ∗(x) ∈ W

k−1/p,p
∞ (∂Ω∗) for the

sequence um and other extensions ṽm(x) ∈ W k,p
∞ (Rn) of um, m = 1, 2, . . . and

ṽ∗(x) ∈ W k,p∞ (Rn) of ũ∗(x) such that ṽm → ṽ∗ in W k,p
loc (Rn). We will prove that

ũ∗ = u∗.
Let f̃m(y) = ṽm(ϕm(y)), f̃∗(y) = ṽ∗(ϕ0(y)). Similar to (2.11) we obtain

‖f̃+
m − f̃+

∗ ‖LP (B0) → 0 as m→ ∞. (2.12)

On the other hand ṽ+
m(x) = u+

m(x) = v+
m(x) Hn−1-almost everywhere in

∂Ωm
⋂
U(xm). HereHn−1 is an (n−1)-dimensional Hausdorff measure. Taking into

account that ψm : U(xm) → B is a diffeomorphism such that ψm(∂Ωm
⋂
U(xm)) =

B0, it is easy to prove that f̃+
m(y) = f+

m(y) Hn−1-almost everywhere on B0. To
prove this it is sufficient to approximate vm(x) and ṽm(x) by smooth functions. It
follows from (2.12) that

‖f+
m − f̃+

∗ ‖Lp(B0) → 0 as m→ ∞.

Comparing this convergence with (2.11) we obtain that

f̃+
∗ (y) = f+

∗ (y) (2.13)

Hn−1-almost everywhere in B0. Since v+∗ (x) = u∗(x),

ṽ+
∗ (x) = ũ∗(x) in ∂Ω∗

⋂
U(x0)

and ψ0 : U(x0) → B is a diffeomorphism such that ψ0(∂Ω∗
⋂
U(x0)) = B0, we

conclude from (2.13) that ũ∗(x) = u∗(x) Hn−1-almost everywhere in ∂Ω∗
⋂
U(x0).

Since x0 is an arbitrary point in ∂Ω∗, it follows that ũ∗ coincides with u∗ as
elements of the space W k−1/p,p

∞ (∂Ω∗).
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Consider Definition 2.3. For any point x ∈ Ω∗ there exists a sequence x̂m ∈
Ωm such that x̂m → x. Therefore

u∗(x) = v∗(x) = lim
m→∞ vm(x̂m) = lim

m→∞um(x̂m).

Definition 2.5 is treated similarly. The theorem is proved. �

Theorem 2.7. Suppose that 0 < k ≤ l − 1. Let

um ∈ W k+1,p
∞ (Ωm), ‖um‖Wk+1,p

∞ (Ωm) ≤M,

where the constant M does not depend on m. Then there exists a function u∗ ∈
W k+1,p

∞ (Ω∗) and a subsequence umi such that umi → u∗ in W k,p
loc (Ωm → Ω∗).

Proof. Let
‖um‖Wk+1,p

∞ (Ωm) ≤M.

It follows from Condition D that there exists an extension vm(x) of um(x) on the
whole R

n such that
‖vm‖Wk+1,p

∞ (Rn) ≤M1. (2.14)

Denote by BR a ball in Rn, |x| ≤ R. Then

‖vm‖Wk+1,p(BR) ≤M2.

Since the space W k+1,p(BR) is reflexive, then there exists a subsequence vmi con-
verging weakly in W k+1,p(BR) to a function v∗ ∈W k+1,p(BR). On the other hand,
choosing if necessary a subsequence of vmi and keeping for it the same notation,
we have the convergence

‖vmi − v0‖Wk,p(BR) → 0,

where v0(x) is a function in W k,p(BR).
It is easy to see that v0 = v∗. Indeed, from the strong convergence in

W k,p(BR) we obtain the weak convergence to v0 in the same space. Since the
weak limit is unique, and it equals v∗, then v∗ = v0.

By a diagonal process we can extend the function v∗ to the whole Rn. There-
fore

‖vmi − v∗‖Wk,p
loc (Rn) → 0 (2.15)

by some subsequence vmi of vm. From (2.14) and (2.15) it follows that v∗ ∈
W k,p∞ (Rn). It remains to use Definition 2.2 for umi and for the restriction u∗ of v∗
on Ω∗.

We finally prove that u∗ ∈ W k+1,p
∞ (Ω∗). It is sufficient to verify that v∗ ∈

W k+1,p∞ (Rn). It is shown that v∗ ∈ W k+1,p∞ (BR) for any R. We can put R = 1.
Similarly we can prove that v∗ ∈ W k+1,p

∞ (Qy) for a unit ball Qy with the center
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at y. Suppose that v∗ �∈ W k+1,p∞ (Rn). Then there exists a sequence Bi of the unit
balls with the centers at yi and such that

‖vi‖Wk+1,p(Bi) → ∞, i→ ∞,

where vi is the restriction of v∗ to Bi. On the other hand, vi is a weak limit of a
sequence vmi of functions defined in Bi. Indeed, this follows from (2.15) and from
the definition

vmi (x) = vm(x), x ∈ Bi.

Set
wmi (x) = vmi (x− yi), wi(x) = vi(x− yi).

The functions wmi (x) are defined in the unit ball B with the center at 0. By the
assumption of the theorem,

‖wmi (x)‖Wk+1,p(B) ≤M1

and wmi converges weakly in W k+1,p(B) to wi as m→ ∞.
On the other hand,

‖wi‖Wk+1,p(B) → ∞, i→ ∞.

A set in a normed space is bounded if and only if any functional from the dual
space is bounded on it. Therefore there exists a functional φ ∈ (W k+1,p(B))∗ such
that φ(wi) → ∞ as i → ∞. From the weak convergence of wmi to wi it follows
that for each i we can choose m(i) in such a way that

φ(wm(i)
i ) → ∞, i→ ∞.

Hence the set wmi is not bounded. This contradiction proves the boundedness of
v∗ in the norm W k+1,p∞ (Rn). The theorem is proved. �

Theorem 2.8. Suppose that 0 < k ≤ l − 1. Let um ∈W
k+1−1/p,p
∞ (∂Ωm),

‖um‖Wk+1−1/p,p
∞ (∂Ωm)

≤M,

where the constant M does not depend on m. Then there exists a function

u∗ ∈W k+1−1/p,p
∞ (∂Ω∗)

and a subsequence umi such that

umi → u∗ in W k+1−ε−1/p,p
loc (∂Ωm → ∂Ω∗),

where 0 < ε < k + 1 − 1/p.
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Proof. By the definition of the space W k+1−1/p,p
∞ (∂Ωm) there exists an extension

wm of the function um to W k+1,p(Ωm) such that

‖wm‖Wk+1,p
∞ (Ωm) ≤ 2‖um‖Wk+1−1/p,p

∞ (∂Ωm)
≤ 2M,

wm(x) = um(x), x ∈ ∂Ωm. It follows from Condition D that there exists an
extension vm(x) of wm(x) to the whole Rn such that

‖vm‖Wk+1,p
∞ (Rn) ≤M1,

vm(x) = wm(x), x ∈ Ωm. As in the proof of the previous theorem, there exists a
function v∗ ∈ W k+1,p

∞ (Rn) such that

vmi → v∗ in W k+1−ε,p
loc (Rn).

The assertion of the theorem follows from Definition 2.3. The theorem is proved.
�

Theorem 2.9. Let um ∈ Ck+θ(Ωm), ‖um‖Ck+θ ≤ M , where the constant M is
independent of m. Then there exists a function u∗ ∈ Ck+θ(Ω∗) and a subsequence
umk

such that umk
→ u∗ in Ckloc(Ωmk

→ Ω∗).
Let um ∈ Ck+θ(∂Ωm), ‖um‖Ck+θ ≤ M . Then there exists a function u∗ ∈

Ck+θ(∂Ω∗) and a subsequence umk
such that umk

→ u∗ in Ckloc(∂Ωmk
→ ∂Ω∗).

Proof. Let um ∈ Ck+θ(Ωm), ||um||Ck+θ ≤ M . It follows from Condition D that
there exists an extension vm(x) of um(x) on the whole space Rn such that

vm ∈ Ck+θ(Rn), ||vm||Ck+θ(Rn) ≤M0, vm(x) = um(x), x ∈ Ωm,

where M0 is independent of m. Passing to a subsequence and retaining the same
notation we can suppose that there exists a function v∗(x) ∈ Ck+θ(Rn) such that
||v∗||Ck+θ(Rn) ≤M0 and

vm → v∗ in Ckloc(R
n). (2.16)

Therefore
um → u∗ in Ckloc(Ωm → Ω∗) (2.17)

in the sense of Definition 2.2. Here u∗(x) is the restriction of v∗(x) on Ω∗.
The second part of the theorem for um ∈ Ck+θ(∂Ωm) is proved similarly.

The theorem is proved. �

2.2.2. Limiting Operators

Suppose that we are given a sequence {xν}, ν = 1, 2, . . . , xν ∈ Ω, |xν | → ∞.
Consider the shifted domains Ων with the characteristic functions χν(x) = χ(x+
xν) where χ(x) is the characteristic function of Ω, and the shifted coefficients of
the operators Ai and Bj :

aαik,ν(x) = aαik(x+ xν), bβjk,ν(x) = bβjk(x+ xν).
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We suppose that

aαik(x) ∈ Cl−si+θ(Ω̄), bβjk(x) ∈ Cl−σj+θ(∂Ω), (2.18)

where 0 < δ < 1, and that these coefficients can be extended to Rn:

aαik(x) ∈ Cl−si+θ(Rn), bβjk(x) ∈ Cl−σj+θ(Rn). (2.19)

Therefore

‖aαik,ν(x)‖Cl−si+θ(Rn) ≤M, ‖bβjk,ν(x)‖Cl−σj+θ(Rn) ≤M (2.20)

with some constant M independent of ν. It follows from Theorem 1.6 that there
exists a subsequence of the sequence Ων , for which we keep the same notation,
such that it converges to a limiting domain Ω∗. From (2.20) it follows that this
subsequence can be chosen such that

aαik,ν → âαik in Cl−si(Rn) locally, bβjk,ν → b̂βjk in Cl−σj (Rn) locally, (2.21)

where âαik and b̂βjk are limiting coefficients,

âαik ∈ Cl−si+θ(Rn), b̂βjk ∈ Cl−σj+θ(Rn).

We have constructed the limiting operators

Âiu =
N∑
k=1

∑
|α|≤αik

âαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω∗, (2.22)

B̂ju =
N∑
k=1

∑
|β|≤βjk

b̂βjk(x)D
βuk, i = 1, . . . ,m, x ∈ ∂Ω∗, (2.23)

L̂ = (Â1, . . . , ÂN , B̂1, . . . , B̂m). (2.24)

We consider them as acting from E∞(Ω∗) into F∞(Ω∗).

2.3 A priori estimates with condition NS

We have already discussed above that the ellipticity condition, proper ellipticity
and the Lopatinskii condition may not be sufficient in order for elliptic operators in
unbounded domains to be normally solvable. We introduce an additional condition.

Condition NS. Any limiting problem

L̂u = 0, x ∈ Ω∗, u ∈ E∞(Ω∗)

has only the zero solution.
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In the next section we will prove that Condition NS is necessary and sufficient
in order for the operator L to be normally solvable with a finite-dimensional kernel.
In this section we will use it to obtain a priori estimates of solutions stronger than
those given by Theorem 2.1. Estimates of this type were first obtained in [361],
[362] for elliptic operators in the whole Rn.

Theorem 2.10. Let Condition NS be satisfied. Then there exist numbers M0 and
R0 such that the following estimate holds:

‖u‖E∞ ≤M0

(
‖Lu‖F∞ + ‖u‖Lp(ΩR0)

)
, ∀u ∈ E∞. (2.25)

Here ΩR0 = Ω ∩ {|x| ≤ R0}.
Proof. Suppose that the assertion of the theorem is not correct. Let Mk → ∞ and
Rk → ∞ be given sequences. Then there exists uk ∈ E∞ such that

‖uk‖E∞ > Mk

(
‖Luk‖F∞ + ‖uk‖Lp(ΩRk

)

)
.

We can suppose that
‖uk‖E∞ = 1. (2.26)

Then
‖Luk‖F∞ + ‖uk‖Lp(ΩRk

) <
1
Mk

→ 0 as k → ∞. (2.27)

From Theorem 2.1 we obtain

‖Luk‖F∞ + ‖uk‖Lp
∞(Ω) ≥

1
c
.

It follows from (2.27) that ‖Luk‖F∞ → 0. Hence

‖uk‖Lp
∞(Ω) >

1
2c

for k ≥ k0 (2.28)

with some k0. Since
‖uk‖Lp

∞(Ω) = sup
y∈Ω

‖uk‖Lp(Qy∩Ω),

then it follows from (2.28) that there exists yk ∈ Ω such that

‖uk‖Lp(Qyk
∩Ω) >

1
2c
. (2.29)

From (2.27)
‖uk‖Lp(ΩRk

) → 0.

This convergence and (2.29) imply that |yk| → ∞.
Let

Luk = fk. (2.30)
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From (2.27) we get
‖fk‖F∞ → 0 as k → ∞. (2.31)

Next, let x = y + yk,
wk(y) = uk(y + yk). (2.32)

We rewrite (2.30) in the detailed form

N∑
h=1

∑
|α|≤αih

aαih(x)D
αuhk = fik, i = 1, . . . , N, x ∈ Ω, (2.33)

N∑
h=1

∑
|β|≤βjh

bβjh(x)D
βuhk = f bj k, i = 1, . . . ,m, x ∈ ∂Ω, (2.34)

where
fk = (f1k, . . . , fNk, f

b
1k, . . . , f

b
mk), uk = (u1k, . . . , uNk).

Writing
aih

α
k (y) = aαih(y + yk), bjh

β
k (y) = bβjh(y + yk),

we obtain from (2.33), (2.34),

N∑
h=1

∑
|α|≤αih

aih
α
k (y)Dαwhk(y) = fik(y + yk), i = 1, . . . , N, x ∈ Ωk, (2.35)

N∑
h=1

∑
|β|≤βjh

bjh
β
k (y)D

βwhk(y) = f bj k(y + yk), i = 1, . . . ,m, x ∈ ∂Ωk, (2.36)

where Ωk is the shifted domain. From (2.26) we have

‖wk‖E∞(Ωk) = 1. (2.37)

We have wk = (w1k, . . . , wNk), and (2.37) can be written in the form

N∑
i=1

‖wik‖W l+ti,p
∞ (Ωk)

= 1.

We suppose that the functions wik are extended to Rn such that theirW l+ti,p∞ (Rn)-
norms are uniformly bounded. Passing to a subsequence and retaining the same
notation, we can suppose that

wik → wi0 in W l+ti−ε,p(Rn) locally, (ε > 0), (2.38)

wik → wi0 in W l+ti,p(Rn) locally weakly (2.39)

for some wi0 as k → ∞, and

wi0 ∈W l+ti,p∞ (Rn), i = 1, . . . , N. (2.40)
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Let w0 = (w10, . . . , wN 0). We prove that

L̂w0 = 0 (2.41)

for a limiting operator L̂. To do this we pass to the limit in (2.35), (2.36) by a
subsequence of k. We choose this subsequence such that Ωk converges to a limiting
domain, Ωk → Ω∗, and keep for it the same notation.

We begin with equation (2.35). For any x0 ∈ Ω∗ we take a neighborhood U
in such a way that U ⊂ Ωk for k sufficiently large. For any φ ∈ D with its support
in U we get from (2.35):

∫
U

N∑
h=1

∑
|α|≤αih

aih
α
k (y)Dαwhk(y)φ(y)dy =

∫
U

fik(y + yk)φ(y)dy. (2.42)

We can suppose, passing to a subsequence, that

aαih,k(y) → âαih(y) in Cl−si(Rn) locally

(see (2.20)), where âαih(y) are the coefficients of the limiting operator. It follows
from (2.39) that Dαwhk (|α| ≤ αih) converges locally weakly in W l−si,p to Dαwh0

as k → ∞. Hence we can pass to the limit in (2.42).
From (2.31) it follows that

‖fik(· + yk)‖W l−si,p
∞ (Ωk)

→ 0 as k → ∞.

Hence the right-hand side in (2.42) tends to zero. Passing to the limit in this
equation, we obtain

N∑
h=1

∑
|α|≤αih

âαih(y)D
αwh0(y) = 0, y ∈ Ω∗. (2.43)

Consider now (2.36). From (2.38) it follows that Dβwhk (|β| ≤ βih) tends to
Dβwh0 in W l−σj−ε,p(Rn) locally. Hence (2.20) implies that

N∑
h=1

∑
|β|≤βjh

bjh
β
k (y)D

βwhk(y) →
N∑
h=1

∑
|β|≤βjh

b̂βjh(y)D
βwh0(y) (2.44)

in W
l−σj−ε,p
loc (Rn). Therefore this convergence takes place also in W

l−σj−ε,p
loc (Ω∗)

and, consequently, in W
l−σj−ε−1/p,p
loc (∂Ω∗). In other words, we have proved that

the convergence (2.44) is in W l−σj−ε−1/p,p
loc (∂Ωk → ∂Ω∗) (see Definition 2.3).

Consider next the right-hand side in (2.36). According to (2.31) we have

‖f bjk(· + yk)‖
W

l−σj−1/p,p
∞ (∂Ωk)

→ 0 as k → ∞.



158 Chapter 4. Normal Solvability

We can extend f bjk(y + yk) to the whole Rn in such a way that

f bjk(· + yk) → 0 in W l−σj ,p∞ (Rn).

Therefore
f bjk(· + yk) → 0 in W

l−σj−1/p,p
loc (∂Ωk → ∂Ω∗).

From this and convergence (2.44) follows

N∑
h=1

∑
|β|≤βjh

b̂βjh(y)D
βwh0(y) = 0, y ∈ ∂Ω∗. (2.45)

From (2.40) it follows that the left-hand side of this equality belongs to
W

l−σj−1/p,p
∞ (∂Ω∗). Hence it can be regarded as an equality in W l−σj−1/p,p

∞ (∂Ω∗).
From (2.43) and (2.45) we conclude that w0 is a solution of the limiting

problem (2.41). We prove now that w0 �= 0. From (2.29) and (2.32) we have

‖wk‖Lp(Ωk∩Q0) >
1
2c
, (2.46)

where Q0 is the unit ball with its center at the origin. We prove that

‖w0‖Lp(Ω∗∩Q0) ≥
1
2c
. (2.47)

Indeed, from (2.38),
wk → w0 in Lploc(R

n).

Set Sk = Ωk ∩Q0, S∗ = Ω∗ ∩Q0. Then

| ‖wk‖Lp(Sk) − ‖w0‖Lp(S∗)|
≤ | ‖wk‖Lp(Sk) − ‖w0‖Lp(Sk)| + | ‖w0‖Lp(Sk) − ‖w0‖Lp(S∗)| ≡ Ak +Bk.

Further

Ak ≤ ‖wk − w0‖Lp(Sk) =
N∑
i=1

‖wik − wi0‖Lp(Sk)

=
N∑
i=1

(∫
Sk

|wik − wi0|pdx
)1/p

→ 0 as k → ∞,

Bk ≤
N∑
i=1

| ‖wi0‖Lp(Sk) − ‖wi0‖Lp(S∗)|

≤M
N∑
i=1

(∫
SkS∗

|wi0|pdx
)1/p

→ 0 as k → ∞

since the measure of the symmetric difference Sk�S∗ converges to 0.
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We have proved that

‖wk‖Lp(Ωk∩Q0) → ‖w0‖Lp(Ω∗∩Q0),

and (2.47) follows from (2.46). Thus there exists a limiting problem with a nonzero
solution. This contradicts Condition NS. The theorem is proved. �

Write
ωµ = eµ

√
1+|x|2 ,

where µ is a real number.

Theorem 2.11. Let Condition NS be satisfied. Then there exist numbers M0 > 0,
R0 > 0 and µ0 > 0 such that for all µ, 0 < µ < µ0 the following estimate holds:

‖ωµu‖E∞ ≤M0

(
‖ωµLu‖F∞ + ‖ωµu‖Lp(ΩR0 )

)
if ωµu ∈ E∞. (2.48)

Proof. According to (4.2) we have

‖ωµu‖E∞ ≤M
(
‖L(ωµu)‖F∞ + ‖ωµu‖Lp(ΩR0 )

)
. (2.49)

The operator L has the form: L = (A1, . . . , AN , B1, . . . , Bm). Consider first the
operator

Ai(ωµu) =
N∑
k=1

∑
|α|≤αik

aαik(x)D
α(ωµuk), i = 1, . . . , N.

We have
Ai(ωµu) = ωµAi(u) + Φi, (2.50)

where

Φi =
N∑
k=1

∑
|α|≤αik

∑
β+γ=α,|β|>0

aαik(x)cβγD
βωµD

γuk,

and cβγ are some constants. Direct calculations give the following estimate:

‖Φi‖W l−si,p
∞

≤M1µ‖ωµu‖E∞(Ω). (2.51)

For the boundary operators we have

Bj(ωµu) =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
β(ωµuk).

As above we get

Bj(ωµu) = ωµBj(u) + Ψj , (2.52)
‖Ψj‖

W
l−σj−1/p,p
∞

≤M2µ‖ωµu‖E∞(Ω). (2.53)
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From (2.50)–(2.53) we obtain

‖L(ωµu)‖F∞ ≤ ‖ωµLu‖F∞ +Mµ‖ωµu‖E∞.

The assertion of the theorem follows from this estimate and (2.49). The theorem
is proved. �

Theorem 2.12. If 0 < µ < µ0 for some µ0, u ∈ E∞, and ωµLu ∈ F∞, then
ωµu ∈ E∞. In particular, if u ∈ E∞ and Lu = 0, then ωµu ∈ E∞.

Proof. Let {Bj}(j = 1, 2, . . . ) be a covering of Rn by unit balls with centers at the
points xj . Let further θj be the corresponding partition of unity, supp θj ⊂ Bj .
We introduce the norms in E∞ and F∞ in accordance with this partition of unity.
Suppose that functions φj ∈ D are such that

φj(x) = 1 for |x− xj | ≤ 2, suppφj ⊂ {|x− xj | < 3},

and functions ψj ∈ D are such that

ψj(x) = 1 for |x− xj | ≤ 3, suppφj ⊂ {|x− xj | < 4}.

We introduce next a small parameter ε > 0 and denote φεj(x) = φj(εx), ψεj(x) =
ψj(εx). It follows from Theorem 2.11 that

‖ωuφεj‖E∞ ≤M0

(‖ωL(uφεj)‖F∞ + ‖ωuφεj‖Lp(ΩR)

)
(2.54)

≤M0

(‖ωφεjLu‖F∞ + ‖ωuφεj‖Lp(ΩR)

)
+M0‖ω(φεjLu− L(uφεj))‖F∞ .

Here and in what follows we write ω instead of ωµ. We have

‖ω(φεjLu− L(uφεj))‖F∞ = ‖ωψεj(φεjLu− L(uφεj))‖F∞

≤M1ρε sup
α

‖ωψεjDαu‖F∞ ,
(2.55)

where
ρε = sup

x,0<|α|≤l+tk,k=1,...,N

|Dαφεj(x)|.

We estimate the right-hand side in (2.55):

‖ωψεjDαu‖F∞ ≤ K
∑
i′

‖ωφεi′u‖E∞ , (2.56)

where K is a constant independent of ε, i′ denotes all of i for which

suppφεi ∩ suppψεj �= �.

Denote the number of such i by N . It is easy to see that it does not depend on ε.
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From (2.54)–(2.56) we obtain

‖ωuφεj‖E∞ ≤M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+M2ρε

∑
i′

‖ωuφεi′‖E∞ .

In the last term in the right-hand side we take the maximum among the summands:

‖ωuφεj‖E∞ ≤M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+M2ρεN‖ωuφεi(j)‖E∞ . (2.57)

We rewrite this inequality in the form

‖ωuφεj1‖E∞ ≤M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+ σ‖ωuφεj2‖E∞ , (2.58)

where σ is a small constant, and the support of the function φj2 is neighboring to
the support of the function φj1 . Since the last estimate is true for any j, then we
can write

‖ωuφεj2‖E∞ ≤M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+ σ‖ωuφεj3‖E∞ , (2.59)

where the support of the function φj3 is neighboring to the support of the function
φj2 . If we continue in the same way, we obtain the inequality

‖ωuφεjk‖E∞ ≤M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+ σ‖ωuφεjk+1

‖E∞ , (2.60)

where the support of the function φjk+1 is neighboring to the support of the func-
tion φjk . In order to estimate the last summand in the right-hand side of inequality
(2.58) we use the inequality (2.59):

‖ωuφεj1‖E∞ ≤M0(1 + σ)
(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+ σ2‖ωuφεj3‖E∞ . (2.61)

We estimate next the last summand in the right-hand side of inequality (2.61) and
so on. We obtain the estimate:

‖ωuφεj1‖E∞ ≤M0(1+σ+· · ·+σk) (‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+σk+1‖ωuφεjk+2

‖E∞ .
(2.62)

Let us specify the choice of the functions φj . Let φ(x) ∈ D, 0 ≤ φ(x) ≤ 1, φ(x) = 1
for |x| ≤ 2, suppφ ⊂ {|x| < 3}. Put φj(x) = φ(x−xj). The points xj are chosen at
the nodes of some orthogonal grid. Therefore, the function φεj2 in (2.58) is shifted
with respect to φεj1 with the value of the shift that does not exceed λ/ε, where
the constant λ does not depend on x and j. Hence the function φεjk+2

in (2.62) is
shifted with respect to φεj1 with a value of the shift that does not exceed (k+1)λ/ε.
Thus, φεjk+2

(x) = φεj1(x − hk), where

|hk| ≤ (k + 1)λ
ε

. (2.63)

We have, further,

‖ωuφεjk+2
‖E∞(Ω) = sup

l
‖ωuθlφεjk+2

‖E(Ω). (2.64)
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The following estimate holds:

Sk,l : = ‖ωuθlφεjk+2
‖E(Ω) = ‖ωuθlφεj1 (x− hk)‖E(Ω)

= ‖ω(x+ hk)u(x+ hk)θl(x + hk)φεj1 (x)‖E(Ωhk
)

≤
∥∥∥∥ω(x+ hk)

ω(x)

∥∥∥∥
M(E)

‖ω(x)u(x+ hk)θl(x+ hk)φεj1(x)‖E(Ωhk
).

Here Ωhk
is a shifted domain, ‖ · ‖M(E) is the norm of multiplier in the space E.

It is known that this norm can be estimated by the C-norm of the corresponding
derivatives. Therefore ∥∥∥∥ω(x+ hk)

ω(x)

∥∥∥∥
M(E)

≤ ceµ|hk|,

where the constant c is independent of µ and k. Let us return to the estimate of
Sk,l. Since

‖θl(x+ hk)‖M(E) ≤ c1,

then we have
Sk,l ≤ c2e

µ|hk| ‖ω(x)u(x+ hk)φεj1 (x)‖E(Ωhk
). (2.65)

Further,

suppφεj1(x) ⊂
{
|x− xj1

ε
| < 3

ε

}
,

such that at the support of the function φεj1 ,

|x| ≤ ρj1
ε

≡ 3
ε

+
|xj1 |
ε
.

Let us introduce the function

fε(x) =
{

1, |x| < ρj1/ε,
0, |x| > 1 + ρj1/ε.

Then

‖ω(x)u(x+ hk)φεj1(x)‖E(Ωhk
) = ‖ω(x)u(x+ hk)φεj1 (x)fε(x)‖E(Ωhk

)

≤ ‖ωfε‖M(E)‖φεj1‖M(E)‖u(x+ hk)‖E(Ωhk
)

≤ c3‖ωfε‖M(E)‖u‖E(Ω) ≤ c4e
µρj1/ε,

where the constant c4 does not depend on ε for ε < 1. From the last inequality,
(2.64) and (2.65) we have

‖ωuφεjk+2
‖E∞(Ω) ≤ c5e

µ(k+1)λ/εeµρj1/ε. (2.66)

Consider inequality (2.62). Taking into account (2.66), we have

‖ωuφεj1‖E∞ ≤M0(1 + σ + · · · + σk)
(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+ c5σ

k+1eµkλ/εeµ(ρj1+λ)/ε.
(2.67)
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Let ε be chosen in such a way that σ ≤ 1
2 . Put µ0 <

ε ln 2
λ . Then for 0 < µ ≤ µ0

from (2.67) we obtain

‖ωuφεj1‖E∞ ≤ 2M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
+

1
2
c5

(
1
2
eµ0λ/ε

)k
eln 2(ρj1+λ)/λ.

Passing to the limit as k → ∞, we have

‖ωuφεj1‖E∞ ≤ 2M0

(‖ωLu‖F∞ + ‖ωu‖LP (ΩR)

)
.

The theorem is proved. �

For some classes of elliptic problems satisfying the Fredholm property the
exponential decay of solutions is known (see [433] and the references therein).
Here it is proved that solutions of general elliptic problems behave exponentially at
infinity if the corresponding operator is normally solvable with a finite-dimensional
kernel. It is not assumed that it satisfies the Fredholm property.

2.4 Normal solvability

We recall that an operator L acting in Banach spaces is normally solvable if its
range is closed. It is sometimes called n-normally solvable if it is normally solvable
and has a finite-dimensional kernel (see, for example [277]).

Theorem 2.13. Let Condition NS be satisfied. Then the elliptic operator

L : E∞(Ω) → F∞(Ω)

is normally solvable and has a finite-dimensional kernel.

Proof. It is known that a linear bounded operator L : E → F has a finite-
dimensional kernel and a closed range if its restriction to any bounded closed
set is proper. Indeed, its kernel has a finite dimension because the inverse im-
age of the set {0} ⊂ F in the unit ball B ⊂ E is compact, that is the unit ball
in the kernel is compact. Let us check that the image of the operator is closed.
Consider a sequence fn ∈ F and suppose that fn → f0 as n → ∞. Then there
exists a sequence un ∈ E such that Lun = fn. If this sequence is bounded in E,
then by virtue of the properness of the operator, it has a convergent subsequence,
unk

→ u0. Therefore Lu0 = f0, and f0 belongs to the image of the operator.
If the sequence un is not bounded, we represent it in the form un = vn + wn,
where vn belongs to the kernel of the operator and wn to its supplement. We
put w̃n = wn/‖wn‖E , f̃n = fn/‖wn‖E . Then Lw̃n = f̃n and f̃n → 0. From the
properness of the operator it follows that the sequence w̃n is compact and has a
convergent subsequence. Denote by w0 its limit. Then Lw0 = 0. Hence w0 belongs
to the kernel of the operator while w̃n to its supplement. This contradiction proves
that the image of the operator is closed. Hence it is normally solvable.
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Thus, we should prove the properness of the operator L. Let Lun = fn,
un ∈ E∞(Ω), fn ∈ F∞(Ω). Suppose that ‖un‖E∞ ≤ M and fn is convergent. It
is sufficient to prove that the sequence un is compact. This follows from Theorem
2.10. The theorem is proved. �

In the next theorem we prove that Condition NS is necessary for the oper-
ator L to be normally solvable with a finite-dimensional kernel. To simplify the
construction we impose a stronger regularity condition on the boundary of the
domain, ∂Ω ∈ Cr+1+θ. We will use the following lemma.

Lemma 2.14. Let Ωk and Ω∗ be a shifted and a limiting domain, respectively. Then
for any N there exists k0 such that for k > k0 there exists a diffeomorphism

hk(x) : Ω̄k
⋂
BN → Ω̄∗

⋂
BN

satisfying the condition

||hk(x) − x||Cr+1+θ0 (Ω̄k

⋂
BN ) → 0

as k → ∞. Here 0 < θ0 < θ.

Proof. Consider a domain G such that Ḡ ⊂ Ωk∩Ω∗ for all m sufficiently large. Let
x0 ∈ ∂Ω∗. Denote by n(x0) the normal to ∂Ω∗ at x = x0. If m is sufficiently large,
then in a neighborhood of x0, n(x0) intersects ∂Ωk only at one point. The domain
G can be chosen such that it satisfies the same property. We put hk(x) = 1 for
x ∈ G. We define then hk(x) along each normal n(x0) by mapping the interval,
which belongs to Ωk, on the interval in Ω∗. It can be done in such a way that we
have the required regularity. The lemma is proved. �

Theorem 2.15. Suppose that a limiting problem for the operator L has a nonzero
solution. Then the operator L is not n-normally solvable.

Explanation. In order to prove the theorem we construct a sequence un such that
it is not compact in E∞(Ω) but Lun converges to zero in F∞(Ω). The idea of the
construction is rather simple but its technical realization is rather long. This is
why we preface the proof by a short description of the construction.

Let us consider a ball BR(xk) of a fixed radius R with its center at xk. From
the definition of limiting problems it follows that we can choose the sequence xk
in such a way that inside BR(xk) the domain Ω is close to the limiting domain,
and the coefficients of the operator are close to the coefficients of the limiting
operator. Moreover, the domain and the coefficients converge to their limits as
k → ∞. Thus we move the ball BR(xk) to infinity and superpose it on the domain
Ω in the places where the operator and the domain are close to their limits and
converge to them.

If u0 is a nonzero solution of the limiting problem, then we shift it to the
ball BR(xk). Denote the shifted function by uk. Then inside BR(xk), Luk tends
to zero as k → ∞. The sequence uk is not compact.
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If u0 had a bounded support, the construction would be finished. Since it is
not necessarily the case, we multiply u0 by an infinitely differentiable function φ
with a bounded support. Of course, this product is not an exact solution of the
limiting problem any more. However, all terms of the difference L̂(φu0) − φL̂u0

contain derivatives of φ. If the support of φ is sufficiently large, then the derivatives
of φ can be done sufficiently small. Hence when we move the ballBR(xk) to infinity,
we should also increase its radius and also increase supports of the corresponding
functions φk.

Proof. Suppose that there exists a limiting operator L̂ such that the corresponding
limiting problem has a nonzero solution:

L̂u0 = 0, u0 ∈ E∞(Ω∗), u0 �= 0.

Consider an infinitely differentiable function ϕ(x), x ∈ Rn such that 0 ≤ ϕ(x) ≤ 1,
ϕ(x) = 1 for |x| < 1, ϕ(x) = 0 for |x| > 2. If {xk} is the sequence for which
the limiting operator L̂ is defined, write ϕk(x) = ϕ(x/rk), where rk → ∞ and
rk ≤ |xk|/3. Some other conditions on the sequence rk will be formulated below.

Let Vj = {y : y ∈ R
n, |y| < j}, j = 1, 2, . . . . Denote by nj a number such

that for k ≥ nj the diffeomorphism hk defined in Lemma 2.14 can be constructed
in Ωk

⋂
Vj+1 and

||hk(y) − y||Cr+1+θ0(Ωk

⋂
Vj+1) < δ, (2.68)

where δ > 0 is taken so small that |h′k − I| < 1/2, h′k is the Jacobian matrix and
I is the identity matrix. For arbitrary kj ≥ nj we take rkj = min(j/2, |xkj |/3).
Let

vkj (y) = ϕkj (y) u0(hkj (y)) for y ∈ Ωkj

⋂
Vj+1,

vkj (y) = 0 for y ∈ Ωkj , |y| ≥ j + 1.

Write
ukj (x) = vkj (x− xkj ), x ∈ Ω. (2.69)

It is easy to see that ukj ∈ E∞(Ω) and

||ukj ||E∞(Ω) ≤M, (2.70)

where M does not depend on kj . Indeed, obviously

ϕkj (y) = 0 (2.71)

for y outside Vj . Therefore to prove (2.70) it is sufficient to show that

||vkj ||E∞(Ωkj

⋂
Vj+1) ≤M1,

or
||u0(hkj (y))||E∞(Ωkj

⋂
Vj+1) ≤M2,
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where M1 and M2 do not depend on kj . This follows from (2.68) and the fact that
u0 ∈ E∞(Ω∗).

We now prove that the choice of kj in (2.69) can be specified in such a way
that

(i) Lukj → 0 in F (Ω) as kj → ∞,
(ii) the sequence {ukj} is not compact in E∞(Ω).

The assertion of the theorem will follow from this.

(i) We consider first the operators Ai, i = 1, . . . , N , and then the operator
Bj, j = 1, . . . ,m. For any k = kj ≥ nj we have

Aiuk = A1
i uk +A2

iuk,

where

A1
i uk(x) = ϕk(x− xk)

N∑
r=1

∑
|α|≤αir

aαir(x)D
αu0r(hk(x− xk)), x ∈ Ω, (2.72)

and A2
i contains derivatives of ϕk. Obviously

||A2
i uk||W l−si,p

∞ (Ω)
→ 0

as k → ∞. Let y = x− xk. From (2.72) we obtain

A1
i uk(y + xk) = ϕk(y)Tik(y), y ∈ Ωk, (2.73)

where

Tik(y) =
N∑
r=1

∑
|α|≤αir

air
α
k (y)Dαu0r(hk(y)), y ∈ Ωk,

air
α
k (y) = aαir(y + xk). We prove that for any fixed j,

||Tik||W l−si,p
∞ (Ωk

⋂
Vj+1)

→ 0 (2.74)

as k → ∞. Indeed, by the definition of u0 the following equality holds:

N∑
r=1

∑
|α|≤αir

âαir(x)D
αu0r(x) = 0, x ∈ Ω∗.

Here âαir(x) are the limiting coefficients. Hence

Tik(y) =
N∑
r=1

∑
|α|≤αir

[Sirαk (y) + Pir
α
k (y)],
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where

Sir
α
k (y) = air

α
k (y)[Dα

y u0r(hk(y)) −Dα
xu0r(hk(y))], (2.75)

Pir
α
k (y) = [airαk (y) − âαir(hk(y))]D

α
xu0r(hk(y)). (2.76)

The first factor in the right-hand side of (2.75) is bounded in the norm Cl−si(Ωk)
since

||airαk ||Cl−si (Ωk) = ||aαir||Cl−si (Ω).

From Lemma 2.14 it follows that the second factor tends to 0 in the norm

W l−si,p∞
(
Ωk

⋂
Vj+1

)

as k → ∞. Consequently,

||Sirαk ||W l−si,p
∞ (Ωk

⋂
Vj+1)

→ 0 as k → ∞.

Consider (2.76). Using (2.68) we easily prove that

||Dα
xu0(hk(y))||W l−si,p

∞ (Ωk

⋂
Vj+1)

≤M3

with M3 independent of k.
To prove (2.74) it remains to show that

||airαk (.) − âαir(hk(.))||Cl−si (Ωk

⋂
Vj+1) → 0 as k → ∞.

We recall that it is supposed that airαk (y) and âαir(y) are defined for y ∈ Rn, and

‖airαk ‖Cl−si+θ(Rn) ≤M

with M independent of k, âαir(y) ∈ Cl−si+θ(Rn) and

air
α
k (y) → âαir(y) (2.77)

in Cl−si

loc (Rn) as k → ∞. We have

‖airαk (y) − âαir(hk(y))‖Cl−si (Ωk

⋂
Vj+1)

≤ ‖airαk (y) − âαir(y)‖Cl−si (Ωk

⋂
Vj+1) + ‖âαir(y) − âαir(hk(y))‖Cl−si (Ωk

⋂
Vj+1).

The first term on the right tends to zero as k → ∞ according to (2.77). The
second term tends to zero by the properties of the function âαir mentioned above,
by Lemma 2.14 and by inequality (2.68). Thus (2.74) is proved.

Now, we specify the choice of kj in (2.69). According to (2.74) for any j we
can take pj in such a way that

||Tik||W l−si,p
∞ (Ωk

⋂
Vj+1)

< 1/j

for k ≥ pj .
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We put kj = max(nj , pj). Then obviously

||ϕkjTikj ||W l−si,p
∞ (Ωkj

)
→ 0 as k → ∞. (2.78)

Consider now the boundary operators Bi. According to our assumptions, the
coefficients bβih(x) of the operators Bi (i = 1, . . . ,m) are defined in the domain Ω
and belong to the space Cl−σi+θ(Ω). By the same arguments, which we used for
the operator Ai, we prove that

‖Biukj‖W l−σi−1/p,p
∞ (∂Ω)

→ 0 as kj → ∞.

We repeat the same construction as above and obtain the following operator:

Tik(y) =
N∑
h=1

∑
|β|≤βih

bih
β
k (y)D

βu0h(hk(y)), y ∈ Ωk,

where bih
β
k (y) = bβih(y + xk). We prove that

‖Tik‖W l−σi−1/p,p
∞ (∂Ωk

⋂
Vj+1)

→ 0. (2.79)

Indeed, let

gi(x) =
N∑
h=1

∑
|β|≤βih

b̂ihβ(y)Dβu0h(x), x ∈ Ω∗.

This expression equals 0 only at the boundary ∂Ω∗. Therefore instead of what is
written above for the operator Ai, we have now

Tik(y) = Qik(y) + gi(hk(y)), (2.80)

where

Qik(y) =
N∑
h=1

∑
|β|≤βih

[Sih
β
k(y) + Pih

β
k (y)].

Here S and P are the same as for the operator A but the coefficients a are replaced
by b. Exactly as we have done it for the operator A, we prove that

‖Qk‖W l−σi,p
∞ (Ωk

⋂
Vj+1)

→ 0 as k → ∞.

It follows that

‖Qk‖W l−σi−1/p,p
∞ (∂Ωk

⋂
Vj+1)

→ 0 as k → ∞. (2.81)

Since for y ∈ ∂Ωk we have hk(y) ∈ ∂Ω∗, we have gi(hk(y)) = 0 for y ∈ ∂Ωk. From
this, (2.80) and (2.81) we get (2.79). Thus the assertion (i) is proved.
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(ii) We now prove that sequence (2.69) does not have a convergent subse-
quence. Obviously ukj (x) = 0 for |x| < rkj and, consequently,

∫
Ω

ukj (x)ω(x)dx → 0 (2.82)

as kj → ∞ for any continuous ω(x) with a compact support. For any subsequence
si of kj there exists N such that

∫
Ω

|usi(x)|pdx ≥ ρ (2.83)

for si > N and some ρ > 0. Indeed, let y = x− xsi . Then

Ti ≡
∫

Ω

|usi(x)|pdx =
∫

Ωsi

|vsi(y)|pdy =
∫

Ωsi

⋂
Vj+1

|ϕsi(y)u0(hsi(y))|pdy

≥
∫

Ωsi

⋂
Vrsi

|u0(hsi(y))|pdy.

We do the change of variables y = h−1
si

(x) in the last integral. Then

Ti ≥
∫

Ω∗
⋂
Wsi

|u0(x)|p
∣∣∣∣dh

−1
si

(x)
dx

∣∣∣∣ dx,

where Wsi = hsi(Vrsi
). Since ‖u0‖Lp(Ω∗) �= 0, there exists a ball Bl = {x : |x| < l}

and a number ρ0 > 0 such that
∫

Ω∗
⋂
Bl

|u0(x)|pdx ≥ ρ0. (2.84)

Increasing N , if necessary, we can suppose that Bl ⊂ Wsi and |dh
−1
si

(x)

dx | ≥ ε for
x ∈ Bl and some ε > 0. The last inequality follows from the fact that according to
(2.68) the derivatives of hsi(y) are uniformly bounded. By (2.84) we get Ti ≥ ερ0

and (2.83) is proved.
If (2.69) has a convergent subsequence: usi → u∗ in E(Ω), then this con-

vergence holds also in Lp(Ω). From (2.82) it follows that u∗ = 0 which contra-
dicts (2.83). Thus the sequence (2.69) is not compact in E(Ω). The theorem is
proved. �
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3 Hölder spaces

3.1 Operators and spaces

Let β = (β1, . . . , βn) be a multi-index, βi nonnegative integers, |β| = β1 + · · · +
βn, Dβ = Dβ1

1 . . . Dβn
n , Di = ∂/∂xi. We consider the operators

Aiu =
p∑

k=1

∑
|β|≤βik

aβik(x)D
βuk (i = 1, . . . , p), x ∈ Ω, (3.1)

Biu =
p∑

k=1

∑
|β|≤γik

bβik(x)D
βuk (i = 1, . . . , r), x ∈ ∂Ω. (3.2)

According to the definition of elliptic operators in the Douglis-Nirenberg sense we
consider integers s1, . . . , sp; t1, . . . , tp; σ1, . . . , σr such that

βij ≤ si + tj , i, j = i, . . . , p;
γij ≤ σi + tj , i = 1, . . . , r, j = 1, . . . , p, si ≤ 0.

We suppose that the number m =
∑p
i=1(si + ti) is even and put r = m/2. We

assume that the problem is elliptic, that is the ellipticity condition

det(
∑

|β|=βik

aβik(x)ξ
β)pik=1 �= 0, βik = si + tk

is satisfied for any ξ ∈ Rn, ξ �= 0, x ∈ Ω̄, as well as the condition of proper
ellipticity and the Lopatinskii conditions. Here ξ = (ξ, . . . , ξn), ξβ = ξβ1 . . . ξ

β
n . The

condition of uniform ellipticity implies that the last determinant is bounded from
below by a positive constant for all |ξ| = 1 and x ∈ Ω̄ (see Chapter 1 for more
details). We recall that Ck+α(Ω) denotes the Hölder space of functions bounded in
Ω together with their derivatives up to order k, and the latter satisfies the Hölder
condition uniformly in x.

Denote by E0 a space of vector-valued functions u(x) = (u1(x), . . . , up(x)),
uj ∈ Cl+tj+α (Ω̄), j = 1, . . . , p, where l and α are given numbers, l ≥ max(0, σi),
0 < α < 1. Therefore

E0 = Cl+t1+α(Ω̄) × · · · × Cl+tp+α(Ω̄).

The domain Ω is supposed to be of the class Cl+λ+α, where

λ = max(−si, −σi, tj),

and the coefficients of the operator satisfy the following regularity conditions:

aβij ∈ Cl−si+α(Ω̄), bβij ∈ Cl−σi+α(∂Ω).
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The operator Ai acts from E0 into Cl−si+α(Ω), and Bi from E0 into Cl−σi+α(∂Ω).
Let A = (A1, . . . , Ap), B = (B1, . . . , Br). Then

A : E0 → E1, B : E0 → E2, L = (A,B) : E0 → E,

where E = E1 × E2,

E1 = Cl−s1+α(Ω̄) × · · · × Cl−sp+α(Ω̄),

E2 = Cl−σ1+α(∂Ω) × · · · × Cl−σr+α(∂Ω).

In this section we will use a priori estimates for elliptic operators in Hölder spaces
[7], [8]:

‖u‖E0 ≤ K(‖Lu‖E + ‖u‖C). (3.3)

Here the constant K is independent of the function u ∈ E0(Ω) and ‖ ‖C is the
norm in C(Ω̄).

We will also consider weighted Hölder spaces E0,µ and Eµ with the norms

‖u‖E0,µ = ‖uµ‖E0, ‖u‖Eµ = ‖uµ‖E.

The weighted Hölder space with the norm ‖u‖Ck+α
µ

= ‖uµ‖Ck+α will be denoted by
Ck+αµ . We suppose that the weight function µ is a positive infinitely differentiable
function defined for all x ∈ R

n, µ(x) → ∞ as |x| → ∞, x ∈ Ω, and

| 1
µ(x)

Dβµ(x)| → 0, |x| → ∞, x ∈ Ω (3.4)

for any multi-index β, |β| > 0. In fact, we will use its derivative only up to a
certain order. The operator L = (A,B) considered in weighted Hölder spaces acts
from E0,µ into Eµ.

3.2 Normal solvability

We consider the operator L : E0(Ω) → E(Ω) and introduce limiting domains and
limiting operators defined above. In what follows we will use also the spaces E′

0

and E′, which are obtained from E0 and E, respectively, if we put α = 0.
From Theorem 2.9 it follows that, for any sequences um ∈ E0(Ωm), fm ∈

E(Ωm) with uniformly bounded norms, there exist subsequences umk
and fmk

con-
verging to some limiting functions u∗ ∈ E0(Ω∗) and f∗ ∈ E(Ω∗) in E′

0,loc(Ωmk
→

Ω∗) and E′
loc(Ωmk

→ Ω∗), respectively. If Lm is a sequence of operators with
shifted coefficients and Lmum = fm, then there exists a limiting operator L̂ such
that L̂u∗ = f∗.

We introduce a condition similar to that in Section 2.3 but in the spaces
considered here.
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Condition NS. For any limiting domain Ω∗ and any limiting operator L̂ the prob-
lem

L̂u = 0, u ∈ E0(Ω∗) (3.5)

has only the zero solution.

Theorem 3.1. Let Condition NS be satisfied. Then the operator L is normally
solvable and its kernel is finite dimensional.

Proof. Let the limiting problems have only the zero solution. It is sufficient to
prove that the operator L is proper (cf. Theorem 2.13). Consider the equation
Lun = fn, where fn ∈ E(Ω) and fn → f0. Suppose that ‖un‖E0(Ω) ≤M . We will
prove that there exists a function u0 ∈ E0(Ω) and a subsequence unk

such that

‖unk
− u0‖E0(Ω) → 0. (3.6)

There exists a function u0 ∈ E0(Ω) such that unk
→ u0 in E′

0,loc(Ω) and Lu0 = f0.
Without loss of generality we can assume, here as well as below, that it is the same
sequence. We prove first that

‖un − u0‖C(Ω̄) → 0. (3.7)

Suppose that this convergence does not take place. Since un → u0 in Cloc(Ω), we
conclude that there exists a sequence xm, |xm| → ∞ and a subsequence unm of
un such that

‖unm(xm) − u0(xm)‖ ≥ ε > 0.

Consider the shifted domains Ωn with the characteristic functions χ(x+ xm), the
operators with shifted coefficients and the functions vnm(x) = unm(x + xm) −
u0(x + xm). Passing to a subsequence we conclude that there exists a limiting
domain Ω∗, a limiting operator L̂, and a nonzero limiting function v0 ∈ E0(Ω∗)
such that

L̂v0 = 0.

This contradiction proves (3.7). From this convergence, from the convergence fn →
f0 in E(Ω), and estimate (3.3) it follows that un → u0 in E0(Ω). The theorem is
proved. �

The next theorem will provide a necessary condition of normal solvability. In
fact, it is the same Condition NS. However we need now more restrictive conditions
on the coefficients of the operator and on the domain Ω. We suppose here that

aβik ∈ Cl−si+δ(Ω̄), bβik ∈ Cl−σi+δ(∂Ω) and the domain Ω is of the class Cr+1+δ

(3.8)
with α < δ < 1. Similar to Lemma 2.14 we suppose that Ωm and Ω∗ are shifted
and limiting domains respectively. Then for any N there exists m0 such that for
m > m0 there exists a diffeomorphism

hm(x) : Ω̄m
⋂
BN → Ω̄∗

⋂
BN
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satisfying the condition

||hm(x) − x||Cr+1+α(Ω̄m
⋂
BN ) → 0

as m→ ∞.

Theorem 3.2. Suppose that the problem (3.5) has a nonzero solution u0 for some
limiting operator L̂ and limiting domain Ω∗. Then the operator L is not proper.

Proof. Let ϕ(x) be an infinitely differentiable function defined in Rn such that
0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 for |x| < 1, ϕ(x) = 0 for |x| > 2. If {xm} is the sequence
for which the limiting operator L̂ is defined, let ϕm(x) = ϕ(x/rm), where rm → ∞
and rm ≤ |xm|/3. Some other conditions on the sequence rm will be formulated
below.

Let Vj = {y : y ∈ Rn, |y| < j}, j = 1, 2, . . . . Denote by nj a number such
that for m ≥ nj the diffeomorphism hm defined in Lemma 2.14 can be constructed
in Ωm

⋂
Vj+1 and

||hm(y) − y||Cr+1+α(Ω̄m

⋂
Vj+1) < 1. (3.9)

For arbitrary mj ≥ nj we take rmj = min(j/2, |xmj |/3). Let, further,

vmj (y) = ϕmj (y) u0(hmj (y)) for y ∈ Ωmj

⋂
Vj+1,

vmj (y) = 0 for y ∈ Ωmj , |y| ≥ j + 1.

Let
umj(x) = vmj (x − xmj ), x ∈ Ω. (3.10)

It is easy to see that umj ∈ E0(Ω) and

||umj ||E0(Ω) ≤M, (3.11)

where M does not depend on mj . Indeed, obviously

ϕmj (y) = 0 (3.12)

for y outside Vj . So to prove (3.11) it is sufficient to show that

||vmj ||E0(Ωmj

⋂
Vj+1) ≤M1,

or
||u0(hmj (y))||E0(Ωmj

⋂
Vj+1) ≤M2,

where M1 and M2 do not depend on mj . This follows from (3.9) and the fact that
u0 ∈ E0(Ω∗).

We will prove that choice of mj in (3.10) can be specified so that

(i) Lumj → 0 in E(Ω) as mj → ∞,
(ii) the sequence {umj} is not compact in E0(Ω).

The assertion of the theorem will follow from this.



174 Chapter 4. Normal Solvability

(i) We consider operator Ai. The operator Bi is treated similarly. For any j
and m ≥ nj we have

Aium = A1
i um +A2

ium,

where

A1
ium(x) = ϕm(x− xm)

p∑
k=1

∑
|β|≤βik

aβik(x)D
βu0k(hm(x− xm)), x ∈ Ω, (3.13)

u0 = (u01, . . . , u0p) and A2
i contains derivatives of ϕm. Obviously

||A2
i um||Cl−si+α(Ω̄) → 0

as m→ ∞. Set y = x− xm. From (3.13) we obtain

A1
i um(y + xm) = ϕm(y)Tim(y), y ∈ Ωm, (3.14)

where

Tim(y) =
p∑
k=1

∑
|β|≤βik

aβik,m(y)Dβu0k(hm(y)), y ∈ Ωm,

aβik,m(y) = aβik(y + xm). We will prove that for any j fixed,

||Tim||Cl−si+α(Ω̄m
⋂
Vj+1) → 0 (3.15)

as m→ ∞. By definition of u0, the following equality holds:

p∑
k=1

∑
|β|≤βik

âβik(x)D
β
xu0k(x) = 0, x ∈ Ω∗.

Here âβik(x) are the limiting coefficients. So

Tim(y) =
p∑
k=1

∑
|β|≤βik

[Sβik,m(y) + P βik,m(y)],

where

Sβik,m(y) = aβik,m(y)[Dβ
yu0k(hm(y)) −Dβ

xu0k(hm(y))], (3.16)

P βik,m(y) = [aβik,m(y) − âβik(hm(y))]Dβ
xu0k(hm(y)). (3.17)

The first factor on the right in (3.16) is bounded since

||aβik,m||Cl−si+α(Ω̄m) = ||aβik||Cl−si+α(Ω̄).
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From Lemma 2.14 it follows that the second factor tends to 0 in the norm

Cl−si+α
(
Ω̄m

⋂
Vj+1

)

as m→ ∞. So
||Sβik,m||Cl−si+α(Ω̄m

⋂
Vj+1) → 0

as m→ ∞. Consider (3.17). Using Lemma 2.14 we easily prove that

||Dβ
xu0k(hm(y))||Cl−si+α(Ω̄m

⋂
Vj+1) ≤M3

with M3 independent of m. To prove (3.15) it remains to show that, for any
subsequence ofm, Tim has a convergent to zero subsequence. Ifmν is a subsequence
of m, then assumption (3.8) and Lemma 2.14 imply that

||aβik,m(.) − âβik(hm(.))||Cl−si+α(Ω̄m
⋂
Vj+1) → 0

as m→ ∞ by some subsequence of mν . So (3.15) is proved.
Now, we specify the choice of mj in (3.10). According to (3.15), for any j we

can take pj such that

||Tim||Cl−si+α(Ω̄m

⋂
Vj+1) < 1/j

for m ≥ pj . We take mj = max(nj , pj). Then obviously

||ϕmjTimj ||Cl−si+α(Ω̄mj
) → 0 (3.18)

as mj → ∞. It is easy to see that mj can be chosen in the same manner in such
a way that (3.18) is true for all i = 1, . . . , p, and also for operators Bi. Thus the
assertion (i) is proved.

(ii) We will prove that sequence (3.10) does not have a convergent subse-
quence. Obviously umj (x) = 0 for |x| < rmj and so

umj (x) → 0 (3.19)

as mj → ∞ for any x ∈ Ω fixed. For any subsequence si of mj there exists N such
that

supx∈Ω|usi(x)| > 0 (3.20)

for si > N . Indeed, let y = x− xsi . Then

supx∈Ω|usi(x)| ≥ supy∈Ωsi

⋂
Vj+1 |ϕsi(y)u0(hsi(y))|. (3.21)

Let x0 ∈ Ω∗ be a point such that |u0(x0)| > 0. Set ysi = h−1
si

(x0), ysi ∈ Ωsi .
From Lemma 2.14 it follows that |ysi | is bounded. So there exists N such that
|ysi | < rsi , |ysi | < j + 1 for si > N . From (3.21) it follows that supx∈Ω |usi(x)| ≥
|u0(x0)|, and (3.20) holds. Thus, ||usi ||C(Ω) > 0. This and (3.19) imply that umj

is not compact in E0(Ω). The theorem is proved. �
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3.3 Dual spaces. Invertibility of limiting operators

We now consider the space E = E(Ω) defined in Section 3.1 and the space E0,
which consists of functions u ∈ E converging to 0 at infinity in the norm E, i.e.,

‖u‖E(Ω ∩ {|x|≥N}) → 0

as N → ∞. We say that un → u0 in Eloc(Ω) if this convergence holds in
Ω ∩ {|x| ≤ N} for any N .

Lemma 3.3. Let φ be a functional in the dual space (E0)∗, u ∈ E and u �∈ E0,
un ∈ E0, ‖un‖E ≤ 1, and un → u in Eloc. Then there exists a limit

φ̂ = lim
n→∞φ(un). (3.22)

Proof. Since φ is a bounded functional, then |φ(un)| ≤ K‖un‖E ≤ K with some
positive constantK. Suppose that the limit (3.22) does not exist. We will construct
a sequence zn ∈ E0, uniformly bounded in the norm E such that φ(zn) → ∞. We
can choose two subsequences ûn and ūn such that

φ(ûn) → K1, φ(ūn) → K2, K1 �= K2.

Without loss of generality we can assume that K1 > K2 and that, for all n ≥ 1,

φ(ûn) ≥ K1 − δ > K2 + δ ≥ φ(ūn)

for some positive δ. We put v1 = ûn1 − ūn1 . Then φ(v1) ≥ K1 − K2 − 2δ > 0.
For any given ball and any ε > 0 we can choose n1 sufficiently large such that the
E-norm of v1 in this ball is less than ε/2. On the other hand, v1 converges to 0
at infinity in the sense of the definition of the space E0. Therefore there exists a
function ω1 ∈ E0, ‖ω1‖E ≤ ε such that w1 = v1 + ω1 has a finite support.

We choose ε such that

|φ(ω1)| ≤ K‖ω1‖E ≤ Kε < K1 −K2 − 2δ.

Then φ(w1) > K1 − K2 − 2δ − Kε > 0. We choose the functions ûn2 , ūn2 such
that v2 = ûn2 − ūn2 is sufficiently small in the support of w1. Then there exists ω2

such that ‖ω2‖E ≤ ε, suppw1∩ suppw2 = � and φ(w2) > K1−K2−2δ−Kε > 0.
In the same manner we construct other functions of the sequence wn. We put
zn =

∑n
i=1 wi. Then the functions zn are uniformly bounded in the E norm and

φ(zn) → ∞. The lemma is proved. �

Lemma 3.4. The limit (3.22) does not depend on the sequence un.

Proof. Suppose that there are two sequences ûn and ūn such that ûn → u, ūn → u
in Eloc and

lim
n→∞φ(ûn) �= lim

n→∞φ(ūn).

Then we proceed as in the proof of the previous lemma. The lemma is proved. �
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Corollary 3.5. If un → 0 in Eloc, then φ(un) → 0.

We can now extend the functional φ to the space E(Ω). For any u ∈ E(Ω)
we put φ̂(u) = φ(u) if u ∈ E0(Ω) and φ̂(u) = limn→∞ φ(un), where un ∈ E0(Ω) is
an arbitrary sequence converging to u in Eloc. This is a linear bounded functional
on E(Ω). Denote all such functionals by Ê. It is a linear subspace in E∗. Suppose
that Ê �= E∗. We take a functional ψ ∈ E∗, which does not belong to Ê. Let ψ0 be
a restriction of ψ to E0. Then ψ0 ∈ (E0)∗. As above we can define the functional
ψ̂0 ∈ (E)∗. By assumption ψ �= ψ̂0. Set ψ̃ = ψ − ψ̂0. Then

ψ̃ = 0, ∀u ∈ E0. (3.23)

Thus we have proved the following theorem.

Theorem 3.6. The dual space E∗ is a direct sum of the extension Ê of (E0)∗ on
E and of the subspace Ẽ consisting of all functionals satisfying (3.23).

Remark 3.7. For any function v ∈ L1(Ω) we can define the functional φ ∈ Ê as

φ(u) =
∫

Ω

v(x)u(x)dx.

We do not know whether Ê = (Cα(Ω))∗. However, if instead of the space Cα(Ω)
we take for example, the space of functions from Cα(Ω) having limits at infinity,
then all constructions above remain applicable and Ê �= (Cα(Ω))∗. Indeed, the
functional ψ(u) = lim|x|→∞ u(x) does not belong to Ê. However the following
lemma shows that normal solvability is determined completely by functionals from
Ê.

Lemma 3.8. Suppose that the operator L : E0 → E is normally solvable with a
finite-dimensional kernel, and the problem

Lu = f, f ∈ E (3.24)

is solvable if and only if ψi(f) = 0, i = 1, . . . , N , where ψi are linearly independent
functionals in E∗. Then ψi ∈ Ê.

Proof. Suppose that the assertion of the lemma does not hold and ψ1 �∈ Ê,
ψ2, . . . , ψN ∈ Ê. We suppose first that ψ1 ∈ Ẽ. We consider the functionals
ψi, i = 2, . . . , N as functionals on E0. They are linearly independent. There exist
functions fj ∈ E0, j = 2, . . . , N such that ψi(fj) = δij , i, j = 2, . . . , N , where δij
is the Kronecker symbol.

Let f (n) ∈ E0, the norms ‖f (n)‖E be uniformly bounded and f (n) → f in
Eloc. Then the equation Lu = g(n), where

g(n) = f (n) −
N∑
i=2

ψi(f (n))fi
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is solvable in E0 since

ψ1(f (n)) = 0, ψ1(fi) = 0, ψi(g(n)) = 0, i = 2, . . . , N.

Denote by u(n) its solution and put u(n) = v(n) + w(n), where

v(n) ∈ KerL, w(n) ∈ (KerL)⊥,

and (KerL)⊥ denotes the supplement to the kernel of the operator L in the space
E0. Then

Lw(n) = g(n) (3.25)

and the E0 norms of the functions w(n) are uniformly bounded.
Indeed, if ‖w(n)‖E0 → ∞, then for the functions

w̃(n) =
w(n)

‖w(n)‖E0

, g̃(n) =
g(n)

‖w(n)‖E0

we have
Lw̃(n) = g̃(n), ‖g̃(n)‖E → 0.

Since the operator L is proper, then there exists a function w0 such that w̃(nk) →
w0. Hence w0 ∈ (KerL)⊥. On the other hand, Lw0 = 0. This contradiction proves
the boundedness of the sequence w(n).

Therefore there exists a subsequence w(nk) converging in E′
0,loc (see Section

2.4) to a limiting function ŵ ∈ E0. Passing to the limit in (3.25), we have

Lŵ = f −
N∑
i=2

ψi(f)fi. (3.26)

Since this problem in solvable for any f , then

0 = ψ1(f −
N∑
i=2

ψi(f)fi) = ψ1(f).

This means that for any function f ∈ E, the value of the functional ψ1 equals
zero. This contradiction proves the lemma under the assumption that ψ1 ∈ Ẽ.

If ψ1 �∈ Ê and ψ1 �∈ Ẽ, then by virtue of Theorem 3.6, ψ1 = ψ̃1 + ψ̂1,
where ψ̃1 ∈ Ẽ, ψ̂1 ∈ Ê. If the functionals ψ̂1, ψ2, . . . , ψN are linearly dependent,
we can take their linear combination and reduce this case to the case considered
above. If they are linearly independent, we repeat the same construction with all
N functionals, i.e., the sum in the expression for g(n) contains the term ψ̂1(f (n))f1.
The solvability condition

0 = ψ1(f −
N∑
i=2

ψi(f)fi − ψ̂1(f)f1) = ψ̃1(f)

gives ψ1 ∈ Ê. The proof remains the same if we suppose that more than one
functional does not belong to Ê. The lemma is proved. �
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Theorem 3.9. If the operator L is Fredholm, then each of its limiting operators is
invertible.

Proof. It is sufficient to prove that the problem

L̂u = f∗ (3.27)

is solvable for any f∗ ∈ E(Ω∗) where L̂ is a limiting operator and Ω∗ is the
corresponding limiting domain. The problem

Lu = f, u ∈ E0(Ω), f ∈ E(Ω)

is solvable if and only if ψi(f) = 0, i = 1, . . . , N , where ψi are linearly inde-
pendent functionals in Ê (see Lemma 3.8). Denote by fj ∈ E0(Ω), j = 1, . . . , N
the functions, which form the biorthogonal system with these functionals. For any
f ∈ E(Ω) the problem

Lu = f −
N∑
i=1

ψi(f)fi (3.28)

has a solution u ∈ E0(Ω).
Let {xm} be the sequence for which the limiting operator L̂ is defined. Denote

Tmf(x) = f(x+ xm) and consider the shifted problem. Then from (3.28)

LmTmu = Tmf −
N∑
i=1

ψi(f)Tmfi, (3.29)

where Lm is the operator with shifted coefficients. So for any f ∈ E(Ωm) the
equation

Lmu = f −
N∑
i=1

ψi(T−1
m f)Tmfi (3.30)

has a solution u ∈ E0(Ωm).
To prove existence of solutions of (3.27) we use the construction given in

the proof of Theorem 3.2. Let ϕm, Vj , nj , mj be the same as in Theorem 3.2.
Suppose that (3.8) is satisfied. Set gmj(y) = ϕmj (y)f∗(hmj (y)) for y ∈ Ωmj

⋂
Vj+1

and suppose that gmj (y) = 0 for y ∈ Ωmj , |y| > j + 1. Consider the equation

Lmj umj = gmj −
N∑
i=1

ψi(T−1
mj
gmj) Tmjfi. (3.31)

It is of the same type as (3.30), and so it has a solution umj ∈ E0(Ωmj ).
Since ||gmj ||E(Ωmj

) is bounded, we obtain from (3.31) that ||umj ||E0(Ωmj
) is

also bounded. By Theorem 2.9 there exists a function u ∈ E0(Ω∗) and a subse-
quence umjk

→ u in E′
0,loc(Ωmjk

→ Ω∗). Moreover the subsequence can be taken
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in such a way that gmjk
is convergent in E′

loc(Ωmjk
→ Ω∗, ∂Ωmjk

→ ∂Ω∗). Ob-
viously the limit of gmjk

is f∗. Passing to the limit in (3.31) by this subsequence
and taking into account that Tmjfi → 0, we obtain solvability of problem (3.27).
The theorem is proved. �

Corollary 3.10. If an operator L coincides with its limiting operator and satisfies
the Fredholm property, then it is invertible.

This corollary is applicable to operators with constant, periodic or quasi-periodic
coefficients in domains with translation invariance.

3.4 Weighted spaces

In this section we discuss the Fredholm property of elliptic operators in weighted
spaces. Consider the equation Lu = f , where u ∈ E0,µ, f ∈ Eµ (see the notation
in Section 3.1). Set v = uµ, g = fµ. Then Lv+Ku = g, where Ku = µLu−L(µu).

Lemma 3.11. Suppose that the operator L : E0 → E is normally solvable and has a
finite-dimensional kernel, the operator Ku ≡ µLu−L(µu) : E0,µ → E is compact.
Then the operator L : E0,µ → Eµ is normally solvable and has a finite-dimensional
kernel.

Proof. Let fk be a convergent sequence in Eµ, Luk = fk, and ‖uk‖E0,µ ≤ 1.
We will show that the sequence uk is compact and, by this, that the operator
L : E0,µ → Eµ is proper. We have Lvk + Kuk = gk, where vk = µuk, gk = µfk.
Let wk = Kuk and wkl

be a subsequence converging in E. Then Lvkl
= gkl

−wkl
,

and the sequence vkl
is compact in E0 since the operator L : E0 → E is proper.

Therefore the sequence ukl
is compact in E0,µ. The lemma is proved. �

Theorem 3.12. Suppose that Condition NS is satisfied. Then the operator L :
E0,µ → Eµ is normally solvable and has a finite-dimensional kernel.

Proof. We consider the operators Ai defined in Section 3.1. The boundary oper-
ators Bi are treated similarly. Let Kiu = µAiu − Ai(µu). According to Lemma
3.11 it is sufficient to prove that the operator Ki : E0,µ → Cl−si+α(Ω̄) is compact.
Obviously

Kiu =
p∑
k=1

∑
0<|σ|≤βik, |τ |<βik

cστ (x) Dσµ Dτuk, (3.32)

where cστ is a linear combination of the coefficients aβik(x) of the operator Ai. So

cστ (x) ∈ Cl−si+α(Ω̄).

Suppose that we have a sequence {uν}, ν = 1, 2, . . . , such that

||uν ||E0,µ = ||uνµ||E0 ≤ M
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with M independent of ν. We will prove that we can choose a subsequence of the
sequence Kiu

ν convergent in Cl−si+α(Ω̄). Indeed, write vν = µuν . Then ||vν ||E0 ≤
M . So we can find a subsequence wj = vνj convergent in Ê ≡ Cl+t1(Ω̄) × · · · ×
Cl+tp(Ω̄) locally to some limiting function w0 ∈ E0. Set u0 = w0

µ . Then we have

||Kiu
νj −Kiu0||Cl−si+α(Ω̄) = ||Ki

zj
µ
||Cl−si+α(Ω̄),

where
zj = wj − w0, ||zj||E0 ≤M1, zj → 0 (3.33)

in Ê locally and M1 does not depend on j. Set yj = Ki(
zj

µ ). We have to prove
that

||yj ||Cl−si+α(Ω̄) → 0 (3.34)

as j → ∞. It follows from (3.32) that

yj =
p∑
k=1

∑
|γ|<βik

Tkγ(x) Dγzjk, (3.35)

where zj = (zj1, . . . , zjp),

Tkγ(x) =
∑

0<|σ|≤βik,|τ |<βik,|λ|<βik

cστ (x) bλγ Dσµ Dλ 1
µ
,

bλγ are constants. From (3.35) we get

||yj ||Cl−si+α(G) ≤M2

p∑
k=1

∑
|γ|<βik

||Tkγ ||Cl−si+α(Ḡ) ||Dγzjk||Cl−si+α(Ḡ), (3.36)

where G = ΩN+1 or G = Ω̂N , ΩN+1 = Ω
⋂ {|x| < N +1}, Ω̂N = Ω

⋂ {|x| > N}.
For any ε > 0 we can find N0 such that for N > N0 we have

||yj ||Cl−si+α(Ω̂N ) < ε (3.37)

for all j. This follows from the fact that

Dβ (Dσµ(x) Dλ 1
µ(x)

) → 0

as |x| → ∞, x ∈ Ω for any |σ| > 0, λ and β. Boundedness of the last norm in the
right-hand side of (3.36) follows from (3.33). From (3.37), (3.33) and (3.36) with
G = ΩN+1 we get (3.34). The theorem is proved. �



Chapter 5

Fredholm Property

In the previous chapter we showed that under certain conditions elliptic operators
are normally solvable with a finite-dimensional kernel. In order to prove their
Fredholm property it remains to verify that the codimension of their image is also
finite. For this we need to study some properties of the adjoint operators. Similar
to Condition NS for the direct operators we will introduce Condition NS∗ for the
adjoint operators.

We recall that Condition NS is a necessary and sufficient condition for the op-
erator L to be normally solvable with a finite-dimensional kernel. A priori estimates
for the adjoint operators and Condition NS∗ will allow us to prove that the op-
erator L∗ : (F ∗(Ω))∞ → (E∗(Ω))∞ is normally solvable with a finite-dimensional
kernel. We note that these spaces are different from the dual spaces (F∞(Ω))∗

and (E∞(Ω))∗ where the adjoint operator acts. Detailed analysis of these spaces
and of the properties of the operators will allow us to prove that the kernel of the
adjoint operator has a finite dimension when considered in the dual spaces. From
this we will conclude the existence of the Fredholm property of the operator L in
the spaces W s,p (1 < p <∞) and W s,p

q .

1 Estimates with Condition NS∗

Condition NS∗. Any limiting homogeneous problem L̂∗v = 0 has only the zero
solution in the space (F ∗(Ω̂))∞, where L̂∗ is the operator adjoint to the limiting
operator L̂, and Ω̂ is a limiting domain.

The main result of this section is given by the following theorem.

Theorem 1.1. Let L be an elliptic operator, and Condition NS∗ be satisfied. Then
there exist positive numbers M and ρ such that for any v ∈ (F ∗(Ω))∞ the following

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_5, © Springer Basel AG 2011 
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estimate holds:

‖v‖(F∗(Ω))∞ ≤M
(
‖L∗v‖(E∗(Ω))∞ + ‖v‖F∗

−1(Ωρ)

)
. (1.1)

Here
F ∗
−1(Ωρ) = ΠN

i=1Ẇ
−l+si−1,p′(Ωρ) × Πm

j=1Ẇ
−l+σj+1/p−1,p′(Γρ),

Ωρ and Γρ are the intersections of Ω and Γ with the ball |x| < ρ.

Proof. Suppose that the assertion of the theorem does not hold. Let Mk → ∞,
ρk → ∞ be some given sequences. Then there exist a sequence vk ∈ (F ∗(Ω))∞
such that

‖vk‖((F (Ω))∗)∞ ≥Mk

(
‖L∗vk‖((E(Ω))∗)∞ + ‖vk‖F∗

−1(Ωρk
)

)
. (1.2)

We can suppose that
‖vk‖((F (Ω))∗)∞ = 1. (1.3)

Then from (1.2)

‖L∗vk‖((E(Ω))∗)∞ + ‖vk‖F∗
−1(Ωρk)

<
1
M k

→ 0 as k → ∞. (1.4)

From Theorem 5.1 (Chapter 3) we have

‖L∗vk‖((E(Ω))∗)∞ + ‖vk‖(F∗
−1(Ω))∞ ≥ 1

M
. (1.5)

Estimate (1.4) implies

‖L∗vk‖((E(Ω))∗)∞ → 0, ‖vk‖F∗
−1(Ωρk

) → 0 as k → ∞. (1.6)

Hence
‖vk‖(F∗

−1(Ω))∞ >
1

2M
(1.7)

for k sufficiently large. Since

‖vk‖(F∗
−1(Ω))∞ = sup

y∈Ω
‖vk‖F∗

−1(Ω∩By),

then it follows from (1.7) that there exists yk ∈ Ω such that

‖vk‖F∗
−1(Ω∩Byk

) >
1

2M
. (1.8)

From this and (1.6) we conclude that |yk| → ∞. Set

L∗vk = zk. (1.9)
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From (1.6) it follows that

‖zk‖(E∗(Ω))∞ → 0 as k → ∞.

Let Th be the operator of translation in (E∗(Ω))∞, h ∈ Rn. We apply Tyk
to

(1.9):
Tyk

L∗vk = Tyk
zk. (1.10)

The shifted functions are defined in shifted domains Ωk. We will pass to the limit
in this equality as k → ∞. We have

Tyk
L∗T−yk

Tyk
vk = Tyk

zk, (1.11)

where the operators Tyk
act in the corresponding spaces. Set

wk = Tyk
vk, L∗

k = Tyk
L∗T−yk

, Tyk
zk = ζk. (1.12)

From (1.11) we obtain
L∗
kwk = ζk. (1.13)

Let vk = (v1k, . . . , vNk, vb1k, . . . , v
b
mk). From (1.3)

‖vik‖(Ẇ−l+si,p′
(Ω))∞ ≤ 1,

i = 1, . . . , N, ‖vbjk‖(W−l+σj+1/p,p′
(Γ))∞

≤ 1, j = 1, . . . ,m.
(1.14)

Writing wk = (w1k, . . . , wNk, w
b
1k, . . . , w

b
mk), we have

wik = Tyk
vik, i = 1, . . . , N, wbjk = Tyk

vbjk, j = 1, . . . ,m.

Then from (1.14)

‖wik‖(Ẇ−l+si,p′
(Ωk))∞ ≤ 1, i = 1, 2, . . . , N,

‖wbjk‖(W−l+σj+1/p,p′
(∂Ωk))∞

≤ 1, j = 1, 2, . . . ,m,
(1.15)

where Ωk is the shifted domain. Consider first the functions wik. Since

(Ẇ−l+si,p
′
(Ωk))∞ ⊂W−l+si,p

′
∞ (Rn),

then wik ∈ W−l+si,p
′

∞ (Rn), and

‖wik‖W−l+si,p′
∞ (Rn)

≤ 1. (1.16)

To continue the proof of the theorem we will use the following lemma.

Lemma 1.2. Let E be a reflexive Banach space. If {uk}, k = 1, 2, . . . is a bounded
sequence in E∞, then there exists a subsequence uki of uk and u ∈ E∞ such that

uki → u locally weakly and in D′.
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Proof. Let φj ∈ D have a support in the ball Bj of the radius rj = j + 1, and
φj = 1 inside the ball Bj−1. Consider the sequence φjuk, k = 1, 2, . . . We can
choose a weakly convergent subsequence,

φjuk → u0 weakly and in D′.

For any ψ ∈ D with its support in Bj−1,

ψuk → ψu0 weakly and in D′.

We begin this construction with the ball B2. Then we consider the ball B3, and
consider a convergent subsequence of the previous subsequence, and so on. We
choose the diagonal subsequence. Thus we obtain a function u0 defined in any ball
Bj and a sequence ukj such that

ψukj → ψu0 weakly and in D′ (1.17)

for any function ψ ∈ D.
We should show that u0 ∈ E∞. Suppose that this is not true. Then there

exists a sequence ψj ∈ D such that

‖ψju0‖E → ∞, j → ∞.

Therefore there exists a functional F ∈ E∗ such that F (ψju0) → ∞. From con-
vergence (1.17) for each ψ fixed, we can conclude that there exists a subsequence
ukj such that F (ψjukj ) → ∞. This contradicts the unform boundedness of the
functions uk in the norm E∞. The lemma is proved. �

It follows from Lemma 1.2 that there exists a subsequence wikj and a function
w̄i ∈W−l+si,p

′
∞ (Rn) such that

φwikj → φw̄i weakly in W−l+si,p
′
(Rn) as kj → ∞ (1.18)

for any φ ∈ D. Moreover the sequence wikj can be chosen such that for an ε > 0

φwikj → φw̄i strongly in W−l+si−ε,p′(Rn) as kj → ∞ (1.19)

for any φ ∈ D.
In what follows we need a special covering of the boundary ∂Ω∗ of the limiting

domain Ω∗. Let x0 ∈ ∂Ω∗. Then there exists a sequence x̂k such that x̂k → x0,
x̂k ∈ ∂Ωk. For each point x̂k and domain Ωk there exists a neighborhood U(x̂k)
and a function ψk(x) = ψ(x; x̂k) defined in Condition D. It maps U(x̂k) on the unit
ball B ⊂ Rn with the center at 0. This mapping is a bijection. Write φk = ψ−1

k .
By Condition D, the functions φk are uniformly bounded in Cr+θ(B). Hence this
sequence has a convergent in Cr(B) subsequence: φki → φ0 in Cr(B). Write
U(x0) = φ0(B). The mapping φ0 : B → U(x0) is also a bijection. Set ψ0 = φ−1

0 :
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U(x0) → B. Then ψki → ψ0 ∈ Cr+θ(U(x0)), U(x0) is an open set, it contains a
sphere S(x0) of a radius δ.

Consider now a sequence xj ∈ ∂Ω∗, and denote by S(xj) the spheres of the
radius δ/2 and the centers at xj . We can take the points xj such that the union W
of the spheres S(xj) covers the δ/4-neighborhood of the boundary ∂Ω∗. We repeat
the construction above for the point x1 of this sequence. We choose a subsequence
of the previous sequence (denoted also ki) such that

ψki → ψ1, φki → φ1, U(x1) = φ1(B), S(x1) ⊂ U(x1).

We then repeat the same construction for the point x2 and so on, and take the
diagonal subsequence. Therefore we construct neighborhoods U(xj) of all points
xj . Moreover this construction can be done in such a way that for some number
N , any N different sets U(xj) have an empty intersection, and for any compact
K ⊂ R

n the number of the sets for which K ∩ U(xj) �= � is finite.
The covering V = ∪∞

j=1U(xj) is called a special covering of ∂Ω∗. Hence we
have a sequence Ωk, points xjk ∈ ∂Ωk, neighborhoods U(xjk) of the points xjk,
mappings ψjk : U(xjk) → B, φjk = (ψjk)

−1, such that

ψjk → ψj , φjk → φj , U(xj) = φj(B).

Consider a sequence gk defined on ∂Ωk such that

‖gk‖(E(∂Ωk))∞ ≤ K, (1.20)

where K is a constant independent of k, E = W−s,p, s > 0. The norm in (1.20) is
defined as follows. Let η(x) ∈ C∞(Rn) be such that

η(x) ≥ 0, η(x) = 1, |x| < δ

2
, η(x) = 0, |x| > δ.

Set ηz = η(x− z), z ∈ Rn. Then

‖gk‖(E(∂Ωk))∞ = sup
z∈∂Ωk

‖(ηzgk) ◦ ψ−1
z ‖E(Rn−1

y′ ), (1.21)

where ψz maps the neighborhood U(z) to the ball B.
Consider the neighborhood U(x1

k) of the point x1
k ∈ ∂Ωk. The function ψ1

k

maps U(x1
k)∩ ∂Ωk onto B0 = B ∩ {yn = 0}. We can define a generalized function

g̃1
k on DB0 by the equality

g̃1
k = (ηx1

k
gk) ◦ (ψ1

k)
−1.

We extend it to DRn−1 by zero outside B0. It follows from (1.20), (1.21) that

‖g̃1
k‖E(Rn−1

y′ ) ≤ K, (1.22)
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where E(Rn−1
y′ ) = W−s,p(Rn−1

y′ ). Since this space is reflexive, we can find a subse-
quence g̃1

kj
and a function h̃1 ∈ E(Rn−1

y′ ) such that g̃1
kj

→ h̃1 weakly in E(Rn−1
y′ )

and g̃1
kj

→ h̃1 strongly in E−1(Rn−1
y′ )(= W−s−1,p(Rn−1

y′ )). We use here the com-
pact embedding of E into E−1 in bounded domains. The generalized function h̃1

is defined on DB0 . Denote by h1 the corresponding generalized function defined
on U(x1)∩ ∂Ω∗: h1 = h̃1 ◦ψ1. We extend h1 by zero outside U(x1)∩ ∂Ω∗ on ∂Ω∗.

We construct next a generalized function h2 on DU(x2)∩∂Ω∗ . The construc-
tion is the same but we consider a subsequence of the previous subsequence. We
continue this construction for all xj and take a diagonal subsequence. Denote this
subsequence by kl.

Thus we have the following result. There exists a subsequence kl of k such
that for any j there exists a generalized function hj on DU(xj)∩∂Ω∗ defined by the
equality hj = h̃j ◦ ψj ,

‖g̃jkl
− h̃j‖E−1(R

n−1
y′ ) → 0 as kl → ∞,

g̃jkl
→ h̃j weakly in E(Rn−1

y′ ) as kl → ∞.

Moreover,
‖g̃jkl

‖E(Rn−1
y′ ) ≤ K. (1.23)

The points xj ∈ ∂Ω∗ and the functions ηxj
k

can be chosen such that gk =∑
j ηxj

k
gk, x ∈ ∂Ωk. Set h =

∑∞
j=1 h

j. This is the limiting function for the
sequence gk. We note that for any φ ∈ D∂Ω∗ we have

〈h, φ〉 =
∑
j′

〈hj′ , φ〉,

where j′ are those of j for which suppφ ∩ U(xj) �= �. By construction of U(xj)
the number of such j′ is finite.

Lemma 1.3. The limiting generalized function h belongs to (W−s,p(∂Ω∗))∞, that is

‖h‖(E(∂Ω∗))∞ = sup
z∈∂Ω∗

‖(ηzh) ◦ ψ−1
z ‖E(Rn−1

y′ ) <∞. (1.24)

Proof. Suppose that it is not true. Then there is a sequence zi ∈ ∂Ω∗ such that

‖(ηzih) ◦ ψ−1
zi

‖E(Rn−1
y′ ) → ∞ as i→ ∞. (1.25)

Since ηzih
j = 0 for all j except for a finite number of them less than or equal to

N , then there is a sequence hji such that

‖(ηzih
ji) ◦ ψ−1

zi
‖E(Rn−1

y′ ) → ∞ as i→ ∞.
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Therefore
‖ηzi(φzi(y))h̃

ji‖E(Rn−1
y′ ) → ∞ as i→ ∞. (1.26)

From this we can conclude that there exists a functional F ∈ E∗(Rn−1
y′ ) such that

F (ηzi(φzi(y))h̃
ji ) → ∞ as i→ ∞.

From the weak convergence

g̃jik → h̃ji as k → ∞
it follows that for some sequence ki,

F (ηzi(φzi(y))g̃
ji
ki

) → ∞ as i→ ∞.

This contradicts estimate (1.23). The lemma is proved. �

Thus from (1.15) and Lemma 1.3 we can conclude that there exist limiting
functions

w̄bj ∈ (W−l+σj+1/p,p′(∂Ω∗))∞, j = 1, . . . ,m.

Existence of the limits w̄i ∈W−l+si,p
′

∞ (Rn), j = 1, . . . , N was proved above. Write
w̄ = (w̄1, . . . , w̄N , w̄

b
1, . . . , w̄

b
m).

Lemma 1.4. The limiting function w̄ is a solution of the problem adjoint to a
limiting problem.

Proof. Consider equation (1.13). It is supposed that we have done a special cov-
ering of ∂Ω∗. Let ψik and φik be the functions from the special covering,

ψjk → ψj , φjk → φj , U(xjk) = φjk(B), U(xj) = φj(B).

Let θ(x) = (θ1(x), . . . , θN (x)), where θi(x) ∈ D(Rn), supp θi ⊂ U(xj), θk(x) be
the corresponding function with support in U(xjk): θk = θ(φj(ψjk)). From (1.13)
we have

〈L∗
kwk, θk〉 = 〈ζk, θk〉

or
〈wk, Tyk

LT−yk
θk〉 = 〈ζk, θk〉.

We can rewrite this equality in the form

〈wk, Lkθk〉 = 〈ζk, θk〉, (1.27)

where

Lk = Tyk
LT−yk

, Lk = (A1k, . . . , ANk, B1k, . . . , Bmk),
Aik = Tyk

AiT−yk
, Bjk = Tyk

BjT−yk
,
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Tyk
Aiu =

N∑
l=1

∑
|α|≤αil

Tyk
(aαil(x))Tyk

Dαul =
N∑
l=1

∑
|α|≤αil

aαil(x+ yk)Tyk
Dαul.

Hence

Aiku =
N∑
l=1

∑
|α|≤αil

aαilk(x)D
αul, Bjku =

N∑
l=1

∑
|β|≤βjl

bβjlk(x)D
βul,

where
aαilk(x) = aαil(x+ yk), bβjlk(x) = bβjl(x + yk).

We can now write (1.27) as

N∑
i=1

〈wik, Aikθk〉 +
m∑
j=1

〈wbjk, Bjkθk〉 = 〈ζk, θk〉. (1.28)

We will pass to the limit in this equality. We begin with the first term in the
left-hand side. From (1.18) we have the weak convergence

φwik → φw̄i in W−l+si,p
′
(Rn) as k → ∞ (1.29)

for any φ ∈ D (we write k instead of kj). By the definition of the limiting problem,

aαipk(x) → âαip(x) in Cl−si

loc (Rn), p = 1, . . . , N.

Here âαip(x) are the coefficients of the limiting operator. From the definition of
θk(x) we have

lim
k→∞

θk(x) = θ(φj(ψj(x)) = θ(x),

where this limit is supposed to be in Cr. We suppose that ψjk(x) and ψj(x) are
extended on a ball which contains U(xj) and U(xjk) with k sufficiently large. Then

Aikθk →
N∑
p=1

∑
|α|≤αip

âαip(x)D
αθp = Âiθ, k → ∞

in Cl−si (Rn). Here Âi is the limiting operator. From (1.29) it follows that

N∑
i=1

〈wik, Aikθk〉 →
N∑
i=1

〈w̄i, Âiθ〉, k → ∞. (1.30)

Consider now 〈wbik, Bikθk〉. Let ηz be the function which is used in the def-
inition of the limiting function h above. Instead of the functions gk considered
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above we take functions wbik and instead of kl we write k. We obtain a sequence
of functions

w̃bjik = (ηx1
k
wbik) ◦ φjk,

where φjk = (ψ1
k)

−1. As above, w̃bjik → w̃bji weakly in W−l+σi+1/p, p′(Rn−1
y′ ) as

k → ∞. Set wbji = w̃bji ◦ ψj and

w̄bi =
∞∑
j=1

wbji .

This is the limiting function for the sequence wbik.
Suppose that x ∈ ∂Ωk ∩ U(xjk). Write fik = Bikθk. Since supp θk ⊂ U(xjk),

then supp fik ⊂ U(xjk). We have

〈ηxj
k
wbik, fik〉 = 〈w̃bjik , (fikρk) ◦ φjk〉,

where ρk is the density for the manifold Ωk. The density is the (n−1)-dimensional
Hausdorff measure of ∂Ωk written in local coordinates. Further

fik(φ
j
k(y)) =

N∑
p=1

∑
|β|≤βip

bβipk(φ
j
k(y))D

βθpk(φ
j
k(y)).

By definition of limiting problems, the functions bβip(x) are extended to R
n and

bβipk(x) → b̂βip(x) in Cl−σi

loc (Rn) as k → ∞,

where b̂βip(x) are the limiting coefficients. Since

lim
k→∞

θk(φ
j
k(y)) = lim

k→∞
θ(φj(ψjk(φ

j
k(y)))) = θ(φj(ψj(φj(y)))) = θ(φj(y)),

then

fik(φ
j
k(y)) →

N∑
p=1

∑
|β|≤βip

b̂βip(φ
j(y))Dβθp(φj(y)) ≡ fi(φj(y)).

This convergence is in Cl−σi .
Therefore

〈w̃bjik , (fikρk) ◦ φjk〉 → 〈w̃bji , (fiρ∗) ◦ φj〉 as k → ∞,

where ρ∗ is the density for the manifold Ω∗. It follows that

〈ηxj
k
wbik, fik〉 → 〈w̃bji , (fiρ∗) ◦ φj〉 = 〈wbji , fi〉,

which is the duality on ∂Ω∗.
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Taking the sum with respect to j, we get

〈wbik, fik〉 →
〈
w̄bi ,

N∑
p=1

∑
|β|≤βip

b̂βipD
βθp

〉
.

From this and (1.30) it follows that

N∑
i=1

〈wik, Aikθk〉 +
m∑
i=1

〈wbik, Bikθk〉 →
N∑
i=1

〈w̄i, Âiθ〉 +
m∑
i=1

〈w̄bi , B̂iθ〉,

where

B̂iθ =
N∑
p=1

∑
|β|≤βip

b̂βipD
βθp.

We will prove that
N∑
i=1

〈w̄i, Âiθ〉 +
m∑
i=1

〈w̄bi , B̂iθ〉 = 0. (1.31)

It is sufficient to show that the following convergence holds:

〈ζk, θk〉 → 0, k → ∞, (1.32)

(see (1.28)). We recall that

‖ζk‖(E∗(Ωk))∞ → 0, k → ∞.

Since the diameters of supp θk are uniformly bounded, convergence (1.32) follows
from the last convergence and from the boundedness of the norm ‖θk‖E(Rn) inde-
pendently of k. The lemma is proved. �

To finish the proof of the theorem it remains to prove the following lemma.

Lemma 1.5. The solution w̄ of the limiting problem (1.31) is different from 0.

Proof. If (w̄1, . . . , w̄N ) �= 0 then the lemma is proved. Consider the case where
(w̄1, . . . , w̄N ) = 0. From (1.8), (1.12) we get

‖wk‖F∗
−1(Ωk∩B0) >

1
2M

. (1.33)

Therefore
m∑
j=1

‖wbjk‖W−l+σj+1/p−1,p′
(∂Ωk∩B0)

>
1

2M

for k > k0, if k0 is sufficiently large. For any k > k0 there exists j = jk such that

‖wbjk‖W−l+σj+1/p−1,p′
(∂Ωk∩B0)

>
1

2Mm
.
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Passing to a subsequence, if necessary, we can suppose that j is the same for all
k. Hence

‖w̄bj‖W−l+σj+1/p−1,p′
(∂Ω∗∩B0)

≥ 1
2Mm

, (1.34)

and w̄j is different from 0 as an element of the space W−l+σj+1/p−1,p′(∂Ω∗ ∩B0).
Consequently, it is also different from 0 as an element of W−l+σj+1/p,p′(∂Ω∗∩B0).
Indeed, if it is not so, then

〈w̄bj , φ〉 = 0 ∀φ ∈W l−σj−1/p,p(∂Ω∗ ∩B0).

Then the same equality is true for all φ ∈ W l−σj−1/p+1,p(∂Ω∗ ∩ B0). But this
contradicts (1.34). The lemma is proved. �

Thus, assuming that (1.1) does not hold, we have obtained a nonzero solution
of a limiting problem, which contradicts Condition NS∗. The theorem is proved.

�

Corollary 1.6. If Condition NS∗ is satisfied, then the operator L∗ : (E∗(Ω))∞ →
(F ∗(Ω))∞ is normally solvable with a finite-dimensional kernel.

2 Abstract operators

Let E = E(Ω) and F d(Ω) be Banach spaces of functions defined in a domain Ω,
F b(∂Ω) be a space of functions defined at the boundary ∂Ω, F = F d(Ω)×F b(∂Ω).
Let further an operator L : E → F be local in the sense of Chapter 2. Then we
can define its realization in various spaces:

L∞ : E∞ → F∞, LD : ED → FD, Lq : Eq → Fq, 1 ≤ q <∞.

Here ED and FD is the closure of D in E∞ and F∞, respectively. We will also
consider the adjoint operators

(L∞)∗ : (F∞)∗ → (E∞)∗, (LD)∗ : (FD)∗ → (ED)∗,
(Lq)∗ : (Fq)∗ → (Eq)∗, 1 ≤ q <∞

and the operator
(L∗)∞ : (F ∗)∞ → (E∗)∞.

We recall that
(E∗)∞ = (E1)∗, (F ∗)∞ = (F1)∗.

Therefore by the definition of local operators, (L∗)∞ = (L1)∗. This equality is
understood as

〈(L∗)∞w, θ〉 = 〈w,L1θ〉
for any w ∈ (F1)∗, and any θ ∈ E1. It is sufficient to consider it for ∀θ ∈ D.
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We suppose that there exist Banach spaces of distributions E and F such
that the spaces E and F are embedded in them locally compactly. This means
that for any ball Bρ with radius ρ, the restriction E(Ωρ) of the spaces E(Ω) to
Ωρ = Ω ∩ Bρ is compactly embedded into the space E(Ωρ). A similar property
holds for spaces F and F . We note that Eq(Ωρ) = E(Ωρ). Therefore Eq(Ωρ) is
also compactly embedded in E(Ωρ).

Lemma 2.1. Suppose that the following estimate

‖u‖Eq ≤M
(‖Lqu‖Fq + ‖u‖E(Ωρ)

)
(2.1)

holds for some positive constants M and ρ, and any u ∈ Eq. Then the operator
Lq is proper, that is the inverse image of a compact set is compact in any bounded
closed ball. Here 1 ≤ q ≤ ∞.

Proof. Let Lquk = fk, fk → f0 in Fq, and ‖uk‖Eq ≤ C for some constant C and
all k. Let us take ρ for which (2.1) is satisfied. Then there exists a subsequence
ukn fundamental in E(Ωρ):

‖ukn − ukm‖E(Ωρ) → 0 as m,n→ ∞.

From (2.1) it follows that the same subsequence is fundamental in Eq. The lemma
is proved. �

Corollary 2.2. The operator Lq is normally solvable with a finite-dimensional ker-
nel.

(Cf. Theorem 2.13 of Chapter 4.)

We repeat the same construction for the adjoint operators. We suppose that
there exist spaces E∗ and F∗ such that the spaces E∗ and F ∗ are embedded in
them locally compactly.

Lemma 2.1′. Suppose that the estimate

‖u‖(E∗)q
≤M

(‖(L∗)qu‖(F∗)q
+ ‖u‖E∗(Ωρ)

)
(2.2)

holds for some positive constants M and ρ, and any u ∈ (E∗)q. Then the operator
(L∗)q is proper. Here 1 ≤ q ≤ ∞ or q = D.

Corollary 2.2′. The operator (L∗)q is normally solvable with a finite-dimensional
kernel.

Lemma 2.3. Let the operator L∞ : E∞ → F∞ be proper. Then the operator LD :
ED → FD is also proper.

Proof. Let L∞uk = fk, fk → f0 in F∞, uk ∈ ED, fk, f0 ∈ FD, ‖uk‖E∞ ≤ C for
some constant C and all k. Since L∞ is proper, then there exists a subsequence
ukn and u0 ∈ E∞ such that ukn → u0 in E∞. Since ukn ∈ ED, then u0 also
belongs to ED. The lemma is proved. �
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Theorem 2.4. Suppose that estimates (2.1) and (2.2) are satisfied for the operators
L∞ and (L∗)∞, respectively, in the corresponding spaces. Then LD is a Fredholm
operator.

Proof. It follows from Lemma 2.3 that LD is normally solvable with a finite-
dimensional kernel. It remains to show that the adjoint operator (LD)∗ has also a
finite-dimensional kernel. We note that Ker(L∗)∞ is finite dimensional by virtue of
Corollary 2.2 for the operator (L∗)∞. We will show that Ker(LD)∗ ⊂ Ker(L∗)∞.
Indeed, let (LD)∗v = 0 for some v ∈ (FD)∗. This means that

〈v, LDu〉 = 0, ∀u ∈ ED.

Then for any u ∈ E1 ⊂ ED,

〈v, L1u〉 = 〈v, LDu〉 = 0.

The functional in the left-hand side is well defined because v ∈ (FD)∗ ⊂ (F1)∗.
Thus (L1)∗v = 0. By definition,

〈(L∗)∞v, u〉 = 〈(L1)∗v, u〉, ∀u ∈ E1. (2.3)

Since (L1)∗v = 0, then (L∗)∞v also equals zero as an element of (E∗)∞. Indeed,
if it is different from zero, then there exists φ ∈ D such that φ(L∗)∞v �= 0. On the
other hand, φ(L∗)∞v ∈ E∗. Hence for some w ∈ E,

〈(L∗)∞v, φw〉 = 〈φ(L∗)∞v, w〉 �= 0.

This contradicts (2.3) since φw ∈ E1. The theorem is proved. �

Corollary 2.5. The equation

LDu = f, f ∈ FD(Ω) (2.4)

is solvable in ED(Ω) if and only if φi(f) = 0 for a finite number of linearly inde-
pendent functionals φi ∈ (FD(Ω))∗ that are solutions of the homogeneous adjoint
problem (LD)∗v = 0.

In the remaining part of this section we study the operator L∞. If it satisfies
estimate (2.1), then it is normally solvable with a finite-dimensional kernel. We will
use normal solvability of this operator and the Fredholm property of the operator
LD to show that the codimension of its image is also finite. From normal solvability
of the operator L∞ we conclude that the equation

L∞u = f, f ∈ F∞ (2.5)

is solvable in E∞ if and only if φ(f) = 0 for all φ ∈ Φ, where Φ is a set in (F∞)∗.
Consider the functionals φi, i = 1, . . . , N that provide the solvability condi-

tions for equation (2.4). By the Hahn-Banach theorem they can be extended from
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FD(Ω) to (F (Ω))∞. Denote these new functionals by φ̂i. Since φ̂i ∈ ((F (Ω))∞)∗,
then by virtue of Lemma 10.4 (Chapter 2) we can define functionals φ̃i ∈
((F (Ω))∞)∗ as follows: φ̃i(f) = φ̂i(f) for functions f ∈ (F (Ω))∞ with a bounded
support,

φ̃i(f) = lim
k→∞

φ̂i(
k∑
j=1

θjf), ∀f ∈ (F (Ω))∞. (2.6)

Here θj is a partition of unity. We note that the functionals φ̂i are not uniquely
defined. However the functionals φ̃i are uniquely defined. Indeed, if there are two
different functionals φ̃1

i and φ̃2
i that correspond to the same φ̂i, then the difference

φ̃1
i − φ̃2

i vanishes on all functions with a bounded support. Therefore the limit in
(2.6) is also zero.

By the definition of φ̃i,

φ̃i(f) = φi(f), ∀f ∈ FD(Ω). (2.7)

Lemma 2.6. The restriction φD of a functional φ ∈ Φ from the solvability condition
for equation (2.5) to FD(Ω) is a linear combination of functionals φi from the
solvability condition for equation (2.4).

Proof. For any f ∈ FD(Ω), the equation

Lu = f −
N∑
i=1

〈φi, f〉ei, (2.8)

where ei, i = 1, . . . , N are such that 〈φi, ej〉 = δij , ej ∈ FD(Ω), is solvable in
ED(Ω). Therefore it is also solvable in E∞(Ω). Hence for any φ ∈ Φ,

φ

(
f −

N∑
i=1

〈φi, f〉ei
)

= 0, ∀f ∈ FD(Ω).

Denote ci = φ(ei). Then from the previous equality

φ(f) =
N∑
i=1

ciφi(f), ∀f ∈ FD(Ω). (2.9)

Here φi(f) = 〈φi, f〉. The lemma is proved. �

Corollary 2.7. For any φ ∈ Φ,

φ =
N∑
i=1

ciφ̃i + ψ, ci = φ(ei), (2.10)

where ψ ∈ ((F (Ω))∞)∗, ψ(f) = 0 for any f ∈ FD(Ω).
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Proof. We construct the functionals φ̃i ∈ ((F (Ω))∞)∗ on the basis of the function-
als φi ∈ (FD(Ω))∗. Set ψ = φ−∑N

i=1 ciφ̃i. From (2.7) and (2.9) we conclude that
ψ(f) = 0 for any f ∈ FD(Ω). The corollary is proved. �

Condition C. Let Lun = fn, (fn− f0)θ → 0 in (F (Ω))∞ for any infinitely differen-
tiable function θ with a bounded support, fn, f0 ∈ (F (Ω))∞, and ‖un‖(E(Ω))∞ ≤
M . Then there exists u0 ∈ (E(Ω))∞ such that Lu0 = f0.

Lemma 2.8. Let Condition C be satisfied. Then the functional ψ in (2.10) equals
zero.

Proof. Let f ∈ (F (Ω))∞, fk =
∑k
i=1 θif . The equation

Lu = fk −
N∑
i=1

〈φi, fk〉ei (2.11)

is solvable in ED(Ω). The operator LD : ED(Ω) → FD(Ω) has a bounded inverse
defined on the image R(LD) ⊂ FD(Ω) and acting on the subspace of ED(Ω)
supplementary to the kernel. Therefore

‖uk‖ED(Ω) ≤ ‖(LD)−1‖ ‖fk −
N∑
i=1

〈φi, fk〉ei‖FD(Ω),

where uk is a solution of (2.11) in the subspace supplementary to the kernel.
We note that the norm in FD(Ω) is the same as in (F (Ω))∞. Hence

‖fk −
N∑
i=1

〈φi, fk〉ei‖FD(Ω) ≤ C1‖fk‖FD(Ω) ≤ C2‖f‖(F (Ω))∞.

Thus ‖uk‖(E(Ω))∞ ≤M with some constant M .
We can now use Condition C. Passing to the limit in (2.11), we obtain that

the equation

Lu = f −
N∑
i=1

〈φ̃i, f〉ei (2.12)

is solvable in (E(Ω))∞ for any f ∈ (F (Ω))∞. Then for any φ ∈ Φ,

φ

(
f −

N∑
i=1

〈φ̃i, f〉ei
)

= 0.

Hence

φ(f) =
N∑
i=1

ciφ̃i(f), ∀f ∈ (F (Ω))∞.

From (2.10) we conclude that ψ = 0. The lemma is proved. �
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Thus we have proved the following theorem.

Theorem 2.9. Suppose that the operators L∞ and (L∗)∞ satisfy estimates (2.1) and
(2.2), respectively, in the corresponding spaces, and Condition C is satisfied. Then
the operator L∞ is Fredholm. Equation (2.5) is solvable in (E(Ω))∞ if and only
if φ(f) = 0 for a finite number of functionals φ ∈ ((F (Ω))∞)∗. They satisfy the
homogeneous adjoint equation (L∞)∗φ = 0. The restriction φD of these functionals
to FD(Ω) coincides with the functionals φi in the solvability conditions for equation
(2.4).

Remark 2.10. The space ((F (Ω))∞)∗ contains “bad” functionals that vanish at
all functions from FD(Ω) and do not belong to D′ (Remark 10.14 of Chapter 2).
Theorem 2.9 shows that these functionals do not enter the solvability conditions.

3 Elliptic problems in spaces W s,p
∞ (Ω)

Consider the operators

Aiu =
N∑
k=1

∑
|α|≤αik

aαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω, (3.1)

Bju =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
βuk, j = 1, . . . ,m, x ∈ ∂Ω, (3.2)

where u = (u1, . . . , uN), Ω ⊂ Rn is an unbounded domain that satisfies Condition
D. According to the definition of elliptic operators in the Douglis-Nirenberg sense
we suppose that

αik ≤ si + tk, i, k = 1, . . . , N, βjk ≤ σj + tk, j = 1, . . . ,m, k = 1, . . . , N

for some integers si, tk, σj such that si ≤ 0, max si = 0, tk ≥ 0.
Denote by E the space of vector-valued functions u = (u1, . . . , uN), where uj

belongs to the Sobolev space W l+tj ,p(Ω), j = 1, . . . , N , 1 < p <∞, l is an integer,
l ≥ max(0, σj + 1), E = ΠN

j=1W
l+tj ,p(Ω). The norm in this space is defined as

‖u‖E =
N∑
j=1

‖uj‖W l+tj,p(Ω).

The operator Ai acts from E into W l−si,p(Ω), the operator Bj from E into
W l−σj−1/p,p(∂Ω). Let

L = (A1, . . . , AN , B1, . . . , Bm),

F = ΠN
i=1W

l−si,p(Ω) × Πm
j=1W

l−σj−1/p,p(∂Ω).
(3.3)

Then L : E → F .
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Lemma 3.1. The operator Lq, 1 ≤ q ≤ ∞ is a bounded operator from Eq to Fq.

The proof is standard.

We will apply the results of the previous section. The properness of the
operator L∞ is proved in Chapter 4. The estimates of the operator (L∗)∞ are
obtained in Section 1 of this chapter. It remains to check Condition C (Section
2). Let Luν = fν (ν = 1, 2, . . . ), (fν − f0)θ → 0 in (F (Ω))∞ for any infinitely
differentiable function with a bounded support as ν → ∞, fν , f0 ∈ (F (Ω))∞, and

‖uν‖(E(Ω))∞ ≤M0, ∀ν. (3.4)

Let uν = (u1ν , . . . , uNν). It follows from Theorem 7.3 (Chapter 2), which is also
true for domains in Rn, and from (3.4) that there exists a subsequence of uiν and
ui0 ∈W l+ti,p∞ (Ω) such that for ε > 0,

uiν → ui0 in W l+ti−ε,p(Ω) locally, (3.5)

uiν → ui0 in W l+ti,p(Ω) locally weakly (3.6)

as ν → ∞, i = 1, . . . , N . We retain the same notation for the subsequence. Set
u0 = (u10, . . . , uN0). We prove that

Lu0 = f0. (3.7)

Indeed, we have

Aiuν = fdiν , i = 1, . . . , N, (3.8)

Bjuν = f biν , i = 1, . . . ,m, (3.9)

where fν = (fd1ν , . . . , f
d
Nν , f

b
1ν , . . . , f

b
mν). Write f0 = (fd10, . . . , f

d
N0, f

b
10, . . . , f

b
m0).

By (3.6) for any θ ∈ C∞
0 (Ω) we have

θAiuν → θAiu0 as ν → ∞ weakly in W l−si,p(Ω).

Hence
θAiu0 = θfdi0 (i = 1, . . . , N).

Therefore
Aiu0 = fdi0 (i = 1, . . . , N) in W l−si,p(Ω). (3.10)

Now, consider (3.9). We can suppose that the coefficients bβjk of the operator Bj
are extended to Ω in such a way that bβjk ∈ Cl−σj+δ(Ω). From (3.5) it follows that
for θ ∈ D we have

θBjuν → θBju0 in W l−σj−ε,p(Ω) as ν → ∞.

Hence
θBjuν → θBju0 in W l−σj−ε−1/p,p(∂Ω) as ν → ∞.
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By assumption of Condition C, θf bjν → θf bj0 in W l−σj−1/p,p(∂Ω). Therefore

θBju0 = θf bj0 in W l−σj−ε−1/p,p(∂Ω). (3.11)

Since u0 ∈ (E(Ω))∞ and f0 ∈ (F (Ω))∞, then from (3.11)

Bju0 = f bj0 in W l−σj−1/p,p(∂Ω) j = 1, . . . ,m.

This and (3.10) imply (3.7). Thus we have proved that the operator L defined
by (3.3) satisfies Condition C. Hence Theorem 2.9 is applicable. We obtain the
following result.

Theorem 3.2. Let Conditions NS and NS∗ be satisfied. Then the realizations LD
and L∞ of the operator L are Fredholm operators. The equation LDu = f , f ∈
FD(Ω) is solvable in ED(Ω) if and only if φ(f) = 0 for any solution φ ∈ (FD(Ω))∗

of the problem (L∞)∗φ = 0. The equation L∞u = f , f ∈ (F (Ω))∞ is solvable in
(E(Ω))∞ if and only if φ(f) = 0 for any solution φ ∈ ((F (Ω))∗)1 of the problem
(L∞)∗φ = 0.

Let v be a vector-valued function, v ∈ F , v = (vd1 , . . . , vdN , v
b
1, . . . , v

b
m).

We use Definitions 2.2 and 2.3 (Chapter 4) for vdi in W l−si,p(Ω) and for vbj in
W l−σj−1/p,p(∂Ω). Denote by Ty the translation operator Tyu(x) = u(x+ y). Then
we can define the operator with shifted coefficients, Lyv = TyLT

−1
y v. It acts on

functions defined in the shifted domain Ωy. We will use the following condition.

Condition CL. Let Lyk
uk = fk, uk ∈ (E(Ωyk

))∞, fk ∈ (F (Ωyk
))∞, (fk− f0)θ →

0 in F (Ωyk
→ Ω̂) for any infinitely differentiable function θ with a bounded sup-

port, ‖uk‖(E(Ωyk
))∞ ≤ M , Lyk

→ L̂. Then there exists a function u0 ∈ (E(Ω̂))∞
such that L̂u0 = f0.

This condition is satisfied for the elliptic operators (cf. the proof of Theorem 2.10,
Chapter 4).

Theorem 3.3. If the operator L∞ satisfies the Fredholm property, Condition CL
and Condition NS, then any limiting operator L̂∞ is invertible.

Proof. For any function f0 ∈ (F (Ω̂))∞ there exists a sequence of functions fk ∈
(F (Ω))∞, ‖fk‖(F (Ω))∞ ≤M and of points yk ∈ Ω |yk| → ∞ such that

(fk(x+ yk) − f0(x))θ → 0 in F (Ωyk
→ Ω̂)

for any infinitely differentiable function θ with a finite support. Indeed, let f0 ∈
(F (Ω̂))∞. Then f0 = (fd10, . . . , fdN0, f

b
10, . . . , f

b
m0), where

fdi0 ∈ W l−si,p∞ (Ω̂), i = 1, . . . , N, f bj0 ∈ W l−σj−1/p,p
∞ (∂Ω̂), i = 1, . . . ,m.
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We can extend these functions to Rn in such a way that for the extended functions
f̃di0 and f̃ bj0 we have

f̃di0 ∈W l−si,p∞ (Rn), f̃ bj0 ∈ W l−σj ,p∞ (Rn).

Let yk, k = 1, 2, . . . be a sequence such that yk ∈ Ω, |yk| → ∞, Ωyk
→ Ω̂, where

Ωyk
are the shifted domains. Set

f̃dik(x) = f̃di0(x− yk), i = 1, . . . , N, f̃ bjk = f̃ bj0(x − yk), j = 1, . . . ,m.

Let fdik(x) be the restriction of f̃dik(x) to Ω, f bjk be the trace of f̃ bjk on ∂Ω. Then it
is easy to verify that the sequence

fk(x) = (fd1k(x), . . . , f
d
Nk(x), f

b
1k(x), . . . , f

b
mk(x))

satisfies the conditions above.
Since the operator L∞ : E∞(Ω) → F∞(Ω) satisfies the Fredholm property,

then the equation

L∞u = fm −
N∑
i=1

〈vi, fm〉 ei (3.12)

is solvable in (E(Ω))∞. Here vi, i = 1, . . . , N are all linearly independent solutions
of the homogeneous adjoint equation, (L∞)∗vi = 0, and ei ∈ F∞, i = 1, . . . , N are
functions biorthogonal to the functionals vj , j = 1, . . . , N . We can suppose that
ei, i = 1, . . . , N have bounded supports (see Lemma 5.1 below).

Denote by um the solution of the equation (3.12). The numbers aim = 〈vi, fm〉
are uniformly bounded because the sequence fm is bounded in (F (Ω))∞. The
equation

Lymv = fm(x+ ym) −
N∑
i=1

aim ei(x+ ym) (3.13)

has a solution vm(x) = um(x + ym) ∈ (E(Ωym))∞. Since ei(x + ym) → 0 in
F (Ωym → Ω̂), then by virtue of Condition CL there exists a solution v0 ∈ (E(Ω̂))∞
of the equation L̂∞v0 = f0. It remains to note that the homogeneous equation has
only the zero solution since Condition NS is necessary for normal solvability. The
theorem is proved. �

Remark 3.4. In the proof of the theorem we use the existence of functions ei
biorthogonal to functionals vj and such that they have bounded supports. We will
prove this assertion in Lemma 5.1 below using Condition NS. Therefore we have
to assume in the formulation of Theorem 3.3 that it is satisfied. Otherwise we
can assume that Conditions NS and NS∗ are satisfied and not to assume that the
operator is Fredholm (see Theorem 3.2).
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If instead of the operator L∞ we consider the operator LD, then the functions
ei belong, by assumption, to FD. Though they do not necessarily have bounded
supports, the convergence

ei(x+ ym) → 0 in F (Ωym → Ω̂)

still holds. This allows us to prove the following theorem.

Theorem 3.5. If the operator LD satisfies the Fredholm property and Condition
CL, then any limiting operator L̂D is invertible.

The proof is the same as the proof of the previous theorem.

Theorem 3.6. If all limiting operators L̂D are invertible, then Conditions NS and
NS∗ for the operator L∞ are satisfied, and consequently the operators LD and L∞
are Fredholm.

Proof. We prove first that for all limiting operators L̂ the equation

L̂1u = f, u ∈ E1(Ω̂), f ∈ F1(Ω̂) (3.14)

is solvable. Indeed, consider the equation

L̂u = θjf, (3.15)

where θj , j = 1, 2, . . . is a partition of unity, f ∈ F1(Ω̂). Since F1(Ω̂) ⊂ FD(Ω̂),
then there exists a solution u = uj ∈ ED(Ω̂) of equation (3.15).

Let ωδ(x) = eδ
√

1+|x|2 . Then according to Lemma 5.4 below, for δ > 0
sufficiently small the following estimate holds:

‖uj(·)ωδ(· − yj)‖E1(Ω̂) ≤ C‖fθj‖F (Ω̂),

where Bj is a unit ball with its center at yj , supp θj ⊂ Bj and the constant C is
independent of j. Since

‖uj‖E1(Ω̂) ≤ C1‖uj(·)ωδ(· − yj)‖E1(Ω̂),

we get
‖uj‖E1(Ω̂) ≤ C2‖fθj‖F (Ω̂).

It follows that the series u =
∑∞
j=1 uj is convergent in E1(Ω̂), and

‖u‖E1(Ω̂) ≤
∞∑
j=1

‖uj‖E1(Ω̂) ≤ C2

∞∑
j=1

‖fθj‖F (Ω̂) = C2‖f‖F1(Ω̂).

From (3.15) we conclude that

L̂1u =
∞∑
j=1

L̂1uj =
∞∑
j=1

θjf = f.
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Therefore we have proved that equation (3.14) has a solution for any f ∈ F1(Ω̂).
Hence the equation

(L̂1)∗v = 0, v ∈ (F1(Ω̂))∗

has only the zero solution. Since (L̂1)∗ = (L̂∗)∞, then the equation

(L̂∗)∞v = 0, v ∈ (F ∗(Ω̂))∞

also has only the zero solution. Thus we have proved that Condition NS∗ is satis-
fied.

We now prove that Condition NS is satisfied. Let u be a solution of the
equation

L̂∞u = 0, u ∈ E∞(Ω̂)

for a limiting operator L̂. Then ũ = S−δu is a solution of the equation

L̂δũ = 0, (3.16)

where L̂δ = S−δL̂Sδ, and Sδ is an operator of multiplication by ωδ(x). Equation
(3.16) can be written in the form (L̂ + δK)ũ = 0, where K : ED(Ω̂) → FD(Ω̂) is
a bounded operator. Since the operator L̂ is invertible by the assumption of the
theorem, then for δ sufficiently small, L̂+ δK is also invertible. Hence ũ = 0, and
consequently, u = 0. The theorem is proved. �

4 Exponential decay

Denote by S the operator of multiplication by ωµ(x) = exp(µ
√

1 + |x|2), where
µ is a complex number. Let Lµ = SLS−1. If we consider the differential operator
L as acting from E∞ into F∞, then Lµ acts in the same spaces and Lµ = L +
µK(µ), where K(µ) : E∞ → F∞ is a bounded operator, which depends on µ
polynomially. Thus, Lµ is a holomorphic operator function with respect to the
complex variable µ.

If L is a Fredholm operator, then Lµ is also Fredholm in some domain G of
the µ-plane, and 0 ∈ G. Its index κ(Lµ) is constant in G, α(Lµ) and β(Lµ) are
also constant with a possible exception of some isolated points where they have
greater values (see Chapter 1, Section 2.4).

Lemma 4.1. Equation
Lµu = 0 (4.1)

has the same number of linearly independent solutions for all µ ∈ G.

Proof. Suppose that for some µ0 ∈ G the number of linearly independent solutions
of equation (4.1) in E∞ is greater than any other µ in a small neighborhood of
µ0. Denote these solutions by u1, . . . , um. Then

ũi ≡ uie
δ
√

1+|x|2 ∈ E∞, i = 1, . . . ,m
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for real negative δ. On the other hand, ũi are linearly independent solutions of the
equation Lµ0+δu = 0. Indeed,

Lµ0+δũi = eδ
√

1+|x|2Lµ0e
−δ

√
1+|x|2(uieδ

√
1+|x|2) = eδ

√
1+|x|2Lµ0ui = 0.

We obtain a contradiction with the assertion that the number of solutions is the
same for all µ except for isolated values. This contradiction proves the lemma. �

Corollary 4.2. There exists µ, Re µ > 0 such that all solutions of the equation
Lu = 0 can be represented in the form u = v exp(−µ√1 + |x|2), where v ∈ E∞.

Proof. Let u1, . . . , um be solutions of the equation Lu = 0. Consider the equa-
tion Lµu = 0 with Re µ > 0. Denote its solutions by v1, . . . , vm. Then wi =
vi exp(−µ√1 + |x|2) are solutions of the equation Lu = 0. Since the number of
linearly independent solutions of these two equations is the same, then ui is a
linear combination of wj . The corollary is proved. �

The assertion of the corollary signifies exponential decay of solutions at infin-
ity. Consider now the adjoint operator L∗ : (F∞)∗ → (E∞)∗. Write L∗

µ = S−1L∗S.
This operator is adjoint to Lµ. Since the index κ(Lµ) is independent of µ for all
µ ∈ G, and also the dimension of the kernel α(Lµ), then the codimension of the
image β(Lµ) is also independent of µ. On the other hand, the kernel of the adjoint
operator α(L∗

µ) equals β(Lµ). Therefore we have proved the following lemma.

Lemma 4.3. The dimension α(L∗
µ) of the kernel of the operator L∗

µ is independent
of µ for all µ ∈ G.

Corollary 4.4. There exists µ, Re µ < 0 such that all solutions of the equation
L∗φ = 0 can be represented in the form φ = ψ exp(µ

√
1 + |x|2), where ψ ∈ (F∞)∗.

The proof is the same as the proof of Corollary 4.2. We note that the spaces E
and F are not supposed to be reflexive.

Theorem 4.5. Let the operator L : E∞ → F∞ be Fredholm. Then there exists
a domain G of the complex plane such that 0 ∈ G, and for every µ ∈ G the
dimensions of the kernel of the operators Lµ = S−1LS and L∗

µ are independent
of µ. Every solution of the equation Lu = 0 can be represented in the form u =
v exp(−µ√1 + |x|2), where v ∈ E∞, µ ∈ G. Every solution of the equation L∗φ =
0 can be represented in the form φ = ψ exp(µ

√
1 + |x|2), where ψ ∈ (F∞)∗.

The domain G is the set of all µ which contains 0 and where the operator
Lµ is Fredholm, i.e., Conditions NS and NS∗ are satisfied. For some classes of
elliptic problems satisfying the Fredholm property, exponential decay of solutions
is known (see [433] and the references therein). In Section 2.3 of Chapter 4 (see
also [564]) we proved exponential decay if the operator is normally solvable with
a finite-dimensional kernel but not necessarily Fredholm.
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5 The space Eq

Suppose that the operator L∞ : E∞ → F∞ satisfies the Fredholm property. Then
the equation

L∞u = f (5.1)

is solvable if and only if

〈f, vi〉 = 0, i = 1, . . . , N, (5.2)

and the homogeneous equation (f = 0) has a finite number of linearly indepen-
dent solutions. Here vi, i = 1, . . . , N are all linearly independent solutions of the
homogeneous adjoint equation, (L∞)∗vi = 0, and (L∞)∗ : (F∞)∗ → (E∞)∗ is the
adjoint operator.

We study in this section the operator L acting from Eq into Fq. To show
its dependence on the spaces we denote it by Lq. We begin with some auxiliary
results. Let ei ∈ F∞, i = 1, . . . , N be functions biorthogonal to the functionals
vj , j = 1, . . . , N ,

〈ei, vj〉 = δij , (5.3)

where δij is the Kronecker symbol.

Lemma 5.1. There exist functions ei, i = 1, . . . , N with bounded supports satisfy-
ing (5.3).

Proof. Let ei ∈ F∞, i = 1, . . . , N satisfy (5.3). We will construct new functions
ẽi ∈ E∞, i = 1, . . . , N with bounded supports such that

〈ẽi, vj〉 = δij . (5.4)

Denote

êi =
m∑
k=1

eiθk, i = 1, . . . , N,

where θi is a partition of unity. We put ẽi = ci1ê1 + · · · + ciN êN . Then (5.4) is a
system of equations with respect to ci1, . . . , ciN . Its matrix has the elements

〈êi, vj〉 =

〈
m∑
k=1

eiθk, vj

〉
, j = 1, . . . , N.

Since vj ∈ (F∞)∗ω, then 〈
m∑
k=1

eiθk, vj

〉
→ δij

as m → ∞. Therefore for m sufficiently large the determinant of this matrix is
different from 0, and the system has a solution. The lemma is proved. �
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Lemma 5.2. If w ∈ E∞, then u = S−1w ∈ E1 for any µ > 0, and ‖u‖E1 ≤
C(µ)‖w‖E∞ .

The proof of the lemma is based on the definition of the spaces and on the prop-
erties of multiplicators.

Lemma 5.3. Let an operator L, acting from a Banach space E into another space F ,
have a bounded inverse defined on its image R(L) ⊂ F . Suppose that the equation
Lµu = f has a solution, where Lµ = L + µK, K : E → F is a bounded operator,
‖K‖ ≤ M . Then for µ sufficiently small ‖u‖E ≤ C‖f‖F , where the constant C
depends on µ and M but does not depend on the operator K.

Proof. Since the equation Lu + µKu = f has a solution, then f − µKu ∈ R(L).
Therefore u = L−1(f−µKu). The assertion of the lemma follows from the estimate

‖u‖E ≤ ‖L−1‖‖f − µKu‖F ≤ ‖L−1‖(‖f‖F + |µ|‖K‖‖u‖E).

The lemma is proved. �

We generalize here the approach developed in [362] for the operators acting
in Hs(Rn). As above, we use the function ωδ(x) = exp(δ

√
1 + |x|2).

Lemma 5.4. Let θj be a partition of unity, vi and ei be the same as in Lemma 5.1,
ei have a bounded support. Then for any f ∈ F∞ there exists a solution uj of the
equation

Lu = θjf −
N∑
i=1

〈θjf, vi〉ei, (5.5)

and for δ sufficiently small the following estimate holds:

‖uj(·)ωδ(· − yj)‖Eq ≤ C‖fθj‖F , (5.6)

where Bj is a unit ball with the center at yj, supp θj ⊂ Bj, and the constant C is
independent of j.

Proof. Since the operator L : E∞ → F∞ satisfies the Fredholm property, then the
equation

Lu = g −
N∑
i=1

〈g, vi〉ei (5.7)

is solvable for any g ∈ F∞. Let supp g ∈ Bj . Consider the function

g̃(x) =

(
g(x) −

N∑
i=1

〈g, vi〉ei(x)
)
ωδ(x − yj).

We show that its norm in F∞ is independent of j. We note first of all that ωδ(x−yj)
is bounded in Bj together with all derivatives independently of j. Therefore

‖g(x)ωδ(x− yj)‖F∞ ≤ C‖g(x)‖F∞
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with a positive constant C independent of j. We use here the fact that the norm
of a multiplier in Ω and ∂Ω can be estimated by the norm in Ck. We have next

|〈g, vi〉| = |〈g, ψjvi〉| ≡ S

where ψj = ψ(x − yj) is a function with a finite support equal 1 in Bj ,

S = |〈g, ω−µ(x)ψjwi〉|
where wi ∈ (F∞)∗ (see Corollary 4.4),

S ≤ ‖g‖F∞‖ω−µ(x)ψjwi‖(F∞)∗ ≤ ‖g‖F∞ ‖ω−µ(x)ψj‖M ‖wi‖(F∞)∗ ,

where ‖ · ‖M is the norm in the space of multipliers. By virtue of the properties of
this norm

‖ω−µ(x)ψj‖M ≤ K‖ω−µ(x+ yj)ψ(x)‖M ≤ Cω−µ(yj)

with some constants K and C independent of j, µ > 0. For δ ≤ µ the product
ω−µ(yj)ωδ(x − yj) is bounded independently of yj ∈ Rn and of x ∈ supp ei(x).
Hence ‖g̃‖F∞ ≤ C‖g‖F∞ , where the constant C depends on the diameter of the
supports of ei but is independent of j.

Since u is a solution of equation (5.7), then ũ = Sδu is a solution of the
equation

Lδũ = g̃, (5.8)

where Lδ = SδLS−δ, and Sδ is the operator of multiplication by ωδ(x − yj). On
the other hand, Lδ = L + δK, where K is a bounded operator, ‖K‖ ≤ C, where
C does not depend on j and on δ for δ sufficiently small. By virtue of Lemma 5.3
the solution of (5.8), which belongs to the subspace supplementary to the kernel
of the operator L, admits the estimate

‖ũ‖E∞ ≤ C1‖g̃‖F∞ ≤ C2‖g‖F∞

independent of j. Let δ = δ1 + δ2, where δ1 and δ2 are positive. Then

‖u(x)ωδ1(x− yj)‖Eq = ‖ũ(x)ω−δ2 (x− yj)‖Eq ≤ C3‖ũ(x)‖E∞ ≤ C4‖g‖F∞ .

Applying this estimate to equation (5.5), we obtain

‖u(x)ωδ1(x− yj)‖Eq ≤ C5‖fθj‖F∞ ≤ C6‖fθj‖F .
The lemma is proved. �

Assumption 5.5. Let uj ∈ Eq, j = 1, 2, . . . , and

∞∑
j=1

‖uj ωδ(x− yj)‖qEq
<∞.
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Then the series u =
∑∞

j=1 uj is convergent, and the following estimate holds:

‖u‖qEq
≤ C

∞∑
j=1

‖uj ωδ(x− yj)‖qEq
. (5.9)

If this assumption is satisfied, then from the estimate in Lemma 5.4 we obtain:
‖u‖Eq ≤ C‖f‖Fq . Therefore for any f ∈ Fq(⊂ F∞) there exists a solution u ∈ Eq
of the equation

Lu = f −
N∑
i=1

〈f, vi〉ei. (5.10)

Hence the operator Lq is normally solvable and the codimension of its image is
finite. Its kernel is also finite dimensional since it is true for the operator L∞.
Hence Lq is a Fredholm operator.

We note that estimate (5.9) characterizes the function spaces and it is not
related to the operators under consideration. In the remaining part of this section
we show that it is satisfied for Sobolev spaces.

Lemma 5.6. (Elementary inequality). Let ui ≥ 0. Then

(us1 + us2 + · · · )1/s ≤ u1 + u2 + · · · (s ≥ 1),

(us1 + us2 + · · · )1/s ≥ u1 + u2 + · · · (s ≤ 1).

(See for example [226].)

Lemma 5.7. Let u =
∑∞
i=1 ui, yi be the centers of an orthogonal lattice in Rn,

1 ≤ p <∞. Then the following estimate holds:

‖u‖pLp(Rn) ≤ C

∞∑
i=1

‖ui ωδ(x− yi)‖pLp(Rn). (5.11)

Proof. Let k = [p]+ 1, p = ks. Here k is an integer, s < 1. If p is an integer, we do
not need to introduce k. All estimates below can be done directly for p. We have

‖u‖pLp(Rn) =
∫

Rn

|u|ksdx =
∫

Rn

∣∣∣∣∣
∞∑
i=1

ui

∣∣∣∣∣
ks

dx ≤
∫

Rn

( ∞∑
i=1

|ui|s
)k

dx

=
∫

Rn

∞∑
i1,i2,...,ik=1

|ui1 |s|ui2 |s . . . |uik |sdx.
(5.12)

By virtue of the inequality between the geometrical and arithmetical mean values,

|ui1 |s|ui2 |s . . . |uik |s ≤
1
k

(|ui1 |ks + · · · + |uik |ks
)
.
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The same inequality with any positive aij gives

|ui1 |s|ui2 |s . . . |uik |s ≤
1
k

(|ui1 |ksak−1
i1

a−1
i2
. . . a−1

ik
+ · · · + |uik |ksa−1

i1
a−1
i2
. . . ak−1

ik

)
.

(5.13)
Put aik(x) = ωδ1(x− yik). Then

∞∑
ik=1

a−1
ik

(x) ≤ C ∀x,

and substituting (5.13) into the right-hand side of (5.12) and taking into account
that there are k similar summands, we obtain

∫
Rn

∑
i1,i2,...,ik

|ui1 |s|ui2 |s . . . |uik |sdx ≤
∑

i1,i2,...,ik

∫
Rn

|ui1 |ksak−1
i1

a−1
i2
. . . a−1

ik
dx

≤ Ck−1

∫
Rn

∑
i1

|ui1 |pωδ1(x− yi1)
k−1dx.

Replacing Ck−1 by C, we obtain (5.11) for δ = δ1(k− 1)/p. The lemma is proved.
�

Similarly we prove the lemma for the spaces W l,p(Rn) and W l,p(Ω) with an
integer l ≥ 0.

Lemma 5.8. The estimate

‖u‖p
Wk,p(Ω)

≤ C

∞∑
i=1

‖ui ωδ(x − yi)‖pWk,p(Ω)
(5.14)

holds with 1 ≤ p <∞ and an integer k ≥ 0.

This lemma proves that Assumption 5.5 holds for Sobolev spaces. Thus we can
formulate the following theorem.

Theorem 5.9. Suppose that Conditions NS and NS∗ are satisfied. Then for q = p
the equation Lqu = 0 has a finite number of linearly independent solutions in
(E(Ω))q, and the equation

Lu = f, f ∈ (F (Ω))q

has a solution u ∈ (E(Ω))q if and only if

〈f, vi〉 = 0, i = 1, . . . , N,

where vi ∈ (Fq)∗ are linearly independent solutions of the equation

(Lq)∗v = 0. (5.15)
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Proof. Equation (5.15) should be considered in (F∞)∗. However, if vi ∈ (F∞)∗,
then vi ∈ (Fq)∗. Moreover, all solutions of this equation from (Fq)∗ belong also to
(F∞)∗. Indeed, suppose that there exists w ∈ (Fq)∗ such that L∗w = 0 and w is
not a linear combination of vi, i = 1, . . . , N . Then we can find g ∈ Fq such that

vi(g) = 0, i = 1, . . . , N, w(g) �= 0.

By virtue of the solvability conditions, the equation Lqu = g has a solution in Eq.
Applying the functional w to both its sides, we obtain a contradiction.

We finally recall that if E = W k,q, then Eq = E = W k,q, (1 < q < ∞).
Thus we obtain the Fredholm property for elliptic operators in Sobolev spaces.
The theorem is proved. �

Remark 5.10. Solvability conditions in the spaces W k,q do not depend on q.

6 The space Eq . Continuation

In this section we prove the main theorem about the Fredholm property of elliptic
operators in the spaces Eq. We begin with the following lemma.

Lemma 6.1. Let E be a Banach space such that D is dense in E, φi ∈ E∗ be
linearly independent functionals, i = 1, . . . , N , and φi(f) = 0 for some f ∈ E.
Then for any ε > 0 there exists f0 ∈ D such that ‖f − f0‖E ≤ ε and φi(f0) = 0,
i = 1, . . . , N .

Proof. We first show that there exists a system of functions θj, j = 1, . . . , N
biorthogonal to φi and such that θj ∈ D. To do this we note that there exist
functions θj ∈ D such that the matrix ΦN = (φi(θj)) is invertible. We prove it by
induction on the number of functionals. For a single functional it is obvious. Sup-
pose that for the functionals φ1, . . . , φN−1 there exist functions θj , j = 1, . . . , N−1
such that the corresponding matrix ΦN−1 is invertible. We show that for a func-
tional φN linearly independent with the functionals φ1, . . . , φN−1 we can choose
θN such that the matrix ΦN is invertible. Indeed, otherwise, from the equality of
its determinant to zero we obtain

cNφN (θN ) = c1φ1(θN ) + · · · + cN−1φN−1(θN ), ∀θN ∈ D,

where the coefficients cj are determined by φi(θj) with j = 1, . . . , N − 1. We note
that cN �= 0 since det ΦN−1 �= 0. Hence φN is linearly dependent of φ1, . . . , φN−1

since D is dense in E. This contradiction proves the existence of functions θj ∈ D
such that the matrix ΦN is invertible.

The construction of the biorthogonal system of functions is now obvious. We
put

θ̃j = k1θ1 + · · · + kNθN

and choose ki such that φi(θ̃j) = δij . We omit the tilde in what follows.
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Let f ∈ E be such that φi(f) = 0, i = 1, . . . , N . Consider a sequence fn ∈ D
converging to f . Put

f̃n = fn −
N∑
j=1

φj(fn)θj .

Then f̃n ∈ D and φi(f̃n) = 0. Moreover, f̃n converges to f . As a function f0 from
the formulation of the lemma we take f̃n for n sufficiently large. The lemma is
proved. �

Since D is dense in Eq, then the lemma is applicable, and we can choose a
system of functions ej ∈ D, j = 1, . . . , N biorthogonal to functionals vi ∈ (Fq)∗,
i = 1, . . . , N . We can use Lemma 5.4 for these spaces. If we assume that the
operator Lq : Eq → Fq satisfies the Fredholm property, then the equation

Lu = θjfj −
N∑
i=1

〈θjfj, vi〉ei (6.1)

is solvable in Eq for any fj ∈ Fq, and its solution uj satisfies the estimate

‖uj(·)ωδ(· − yj)‖Eq ≤ C‖fjθj‖F , (6.2)

where C depends on the diameters of the supports of ei but is independent of
j, and the support of θj belongs to a unit ball Bj with the center at yj . Since
Eq ⊂ E∞, we have also the estimate

‖uj(·)ωδ(· − yj)‖E∞ ≤ C‖fjθj‖F . (6.3)

Let θ0(x) ∈ C∞
0 (Rn), supp θ0 ⊂ B0, where B0 is the unit ball with its center

at the origin, f0 ∈ (F (Ω̂))q. We use the construction similar to that in the proof
of Theorem 3.3. We extend the function f0 to Fq(Rn). Let it be f̃0. Write

f̃j(x) = f̃0(x− yj), θj(x) = θ0(x− yj).

Then supp θj ⊂ Bj . As functions fj(x), we take the restrictions of f̃j(x) to Ω. It
can be proved that

(θj(x+ yj)fj(x+ yj) − θ0(x)f0(x))θ → 0 in F (Ωyj → Ω̂)

for any θ ⊂ C∞
0 (Rn), where Ω̂ is a limiting domain. This convergence is defined

in Section 2.2 of Chapter 4.
Consider now sequences θj and fj such that

‖θjfj‖F ≤M

with some constant M , and where yj → ∞. This means that the support of θj
moves to infinity. Instead of this, we can shift the domain Ω in such a way that
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Bj does not change. Let it be the unit ball with the center at y0. As in the proof
of Theorem 3.3 we can pass to the limit in equation (6.1):

L̂u = θ0f̂ . (6.4)

The second term in the right-hand side disappears since the functions ei have
bounded supports. Since the sequence uj is uniformly bounded in E∞, and the op-
erator L∞ satisfies Condition CL, then equation (6.4) has a solution u0 ∈ E∞(Ω̂).
The sequence uj converges to u0 locally weakly in E∞.

On the other hand, the sequence vj(x) = uj(x)ωδ(x − y0) is uniformly
bounded in E∞. Therefore, there exists its subsequence that converges locally
weakly to some v0 ∈ E∞(Ω̂). Hence u0(x)ωδ(x− y0) ∈ E∞(Ω̂). As in the proof of
Lemma 5.4 we conclude that

‖u0(x)ωδ1(x − y0)‖Eq ≤ C1‖θ0f̂‖F
for some positive constant C1 and 0 < δ1 ≤ δ.

Let θj be a partition of unity. As above, the equation

L̂u = θj f̂ (6.5)

has a solution. Denote it by uj . Then u =
∑∞

j=1 u
j is a solution of the equation

Lu = f . Lemmas 5.7 and 5.8 allow us to conclude that u ∈ Eq for q = p. Thus we
have proved the following lemma.

Lemma 6.2. Let the operator Lq be Fredholm, q = p. Then any limiting problem
L̂qu = f, x ∈ Ω̂ is solvable in Eq for any f ∈ Fq.

We recall that for q = p the spaces Eq and Fq coincide, respectively, with the
spaces E and F .

Theorem 6.3. Let q be a given number, 1 < q <∞, q = p, L be an elliptic operator.
Then the following assertions are equivalent:

(i) The operator Lq is Fredholm,
(ii) All limiting operators L̂q are invertible,
(iii) Conditions NS and NS∗ are satisfied.

Proof. 1. (i) → (ii). Consider the equation

L̂qu = f0, u ∈ Eq(Ω̂), f0 ∈ Fq(Ω̂).

The solvability of this equation for any f0 ∈ Fq(Ω̂) follows from Lemma 6.2. It
remains to prove that the equation

L̂qu = 0, u ∈ Eq(Ω̂) (6.6)
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has only the zero solution. Suppose that it is not true. To obtain a contradiction
it is sufficient to prove that the operator Lq : Eq(Ω) → Fq(Ω) is not proper.
Consider a nonzero solution u = u0 of equation (6.6). We can suppose that u0

is extended to Eq(Rn). Let vn(x) = φn(x)u0(x + xn), where φn(x) are functions
with compact supports, xn ∈ Ω, |xn| → ∞ is the sequence for which the shifted
domains converge to the limiting domain Ω̂. Moreover we suppose that suppφn
are balls with radius rn → ∞, and all derivatives of φn(x) tend to zero as n→ ∞.
We have

Lqvn = φnLqu0(· + xn) + · · · . (6.7)

The terms in the right-hand side of (6.7) that are not written tend to zero because
of the assumption on φn that their derivatives tend to zero. The supports of the
functions φn can be chosen in such a way that the first term in the right-hand side
of (6.7) tends to zero as n → ∞. Hence Lqvn → 0. It can be easily proved that
the sequence vn is not compact in Eq(Ω). Therefore the operator Lq is not proper.
This contradiction shows that equation (6.6) has only the zero solution. Thus the
invertibility of the operator L̂q is proved.

2. (ii) → (iii). The proof is the same as the proof of Theorem 3.6.

3. (iii) → (i). This follows from Theorem 5.9.

The theorem is proved. �

We will now show that if the Fredholm property is satisfied for some value of
p, then it is also satisfied for other p assuming that the domain and the coefficients
are sufficiently smooth. Suppose that the operator Lp is Fredholm for some p = p0.
Then from (i) of Theorem 6.3 we have (ii) and (iii) for the same p0.

We can prove that Conditions NS and NS∗ are satisfied in other spaces. Let
us begin with Condition NS. Suppose that it is not satisfied for some l1, p1, that
is there exists a nonzero solution of the equation

L̂u = 0, u ∈ ΠN
j=1W

l1+tj ,p
1

∞ (Ω̂).

Then, obviously, u ∈ ΠN
j=1W

l+tj ,p
1

∞ (Ω̂) for max(0, σj + 1) ≤ l < l1. But also
for l > l1. This follows from a priori estimates of solutions in ∞-spaces. From
the embedding theorems it follows that u belongs to ΠN

j=1W
l+tj ,p∞ (Ω̂) with other

p also. Hence if Condition NS is not satisfied in some space, then neither is it
satisfied in other spaces.

Consider now Conditions NS∗. We note first of all that from Theorem 6.3
it follows that limiting operators are invertible. Therefore the equation L̂u = f
is solvable for any f ∈ D. Its solution belongs to ΠN

j=1(W
l+tj ,p(Ω̂))1 for any l, p.

Locally it follows from a priori estimates, behavior at infinity – since f has a
bounded support. Suppose that Condition NS∗ is not satisfied for some l1, p1,
that is there exists v �= 0 such that

L̂∗v = 0, v ∈ (F ∗)∞
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or, consequently,
L̂∗v = 0, v ∈ (F1)∗.

Since v belongs to the space dual to F1, then there exists f ∈ D such that 〈v, f〉 �=
0. Hence the equation L̂u = f is not solvable in E1. Indeed, otherwise we apply
the functional v to both sides of this equality and obtain a contradiction. However,
it was shown above that this equation is solvable. This contradiction shows that
Condition NS∗ is satisfied for all l, p.

This result shows in particular that if the Fredholm property is verified for
elliptic problems in Lp, then it can be also used in L2, which is sometimes more
convenient. On the other hand, if the Fredholm property is verified in L2, then it
can be also done in Lp.

Let us now show that the Fredholm property holds not only for q = p but
also for q ≤ p. We will verify Assumption 5.5. Let

E = Lp, Eq = (Lp)q.

Then
‖u‖qEq

=
∑
j

‖φju‖qLp .

If u =
∑
i ui, then from Lemma 5.7,

‖φju‖pLp ≤ C
∑
i

‖φjuiωδ(x− yi)‖pLp .

From this estimate and the previous equality we have

‖u‖qEq
≤ Cq/p

∑
j

(∑
i

‖φjuiωδ(x− yi)‖pLp

)q/p
.

On the other hand,
∑
i

‖uiωδ(x− yi)‖qEq
=
∑
i

∑
j

‖φjuiωδ(x− yi)‖qLp .

Therefore, to verify Assumption 5.5 it is sufficient to satisfy the estimate

(∑
i

‖φjuiωδ(x− yi)‖pLp

)q/p
≤
∑
i

‖φjuiωδ(x− yi)‖qLp .

It is satisfied if q ≤ p (see Lemma 5.6). We can now apply Theorem 5.9 for any
q ≤ p.
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7 Weighted spaces

Let µ(x) be a positive infinitely differentiable function defined for all x ∈ R
n and

satisfying the condition

| 1
µ(x)

Dβµ(x)| → 0 as |x| → ∞

for any multi-index β, |β| > 0. We can take for example µ(x) = (1 + |x|2)s, where
s ∈ R. For any normed space E we introduce the space Eµ with the norm

‖u‖Eµ = ‖µu‖E. (7.1)

This means that u ∈ Eµ if and only if µu ∈ E. Consider weighted Sobolev spaces.
Let

E = ΠN
j=1W

l+tj ,p(Ω), (7.2)

F = ΠN
j=1W

l−si,p(Ω) × Πm
j=1W

l−σj−1/p,p(∂Ω). (7.3)

Then spaces Eµ and Fµ are defined.
Denote by S the operator of multiplication by µ. We have

S : Eµ → E, S−1 : E → Eµ,

S : Fµ → F, S−1 : F → Fµ.

If v ∈ Eµ, then ‖Sv‖E = ‖µv‖E = ‖v‖Eµ . Consider elliptic operators (3.1)–(3.3),
L : E → F , where E and F are spaces (7.2), (7.3).

Proposition 7.1. The operator L is a bounded operator from Eµ to Fµ.

Proof. Let u ∈ W r,p
µ (Ω), where r is a positive integer. Then v = uµ ∈ W r,p(Ω),

and

µ
∂u

∂xi
=

∂v

∂xi
− µ−1 ∂µ

∂xi
∈W r−1,p(Ω).

Therefore u ∈ W r−1,p
µ (Ω), that is the operator of differentiation is bounded from

W r,p
µ (Ω) into W r−1,p

µ (Ω). Hence Dα is a bounded operator from W r,p
µ (Ω) into

W
r−|α|,p
µ (Ω), and Ai is a bounded operator from Eµ into W l−si,p

µ (Ω). Similarly, Bj
is a bounded operator from Eµ into W l−σj ,p

µ (Ω) and hence into W l−σj−1/p,p
µ (∂Ω).

The proposition is proved. �

Theorem 7.2. If operator L : E → F is Fredholm, then the operator L : Eµ → Fµ
is Fredholm.
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Proof. Consider the operator L as acting from Eµ into Fµ. Then the operator
M = SLS−1 acts from E into F . We have for u ∈ E, ω = 1/µ:

SAiS
−1u = SAi(ωu) = Aiu+

n∑
k=1

∑
|α|≤αik

aαik(x)
∑

β+γ≤α,β �=0

cβγµD
βωDγuk.

Since for |β| > 0
µ(x)Dβω(x) → 0 as |x| → ∞,

then we conclude that limiting operators for SAiS−1 coincide with the limiting
operators for Ai. The same is true for the boundary operators. Hence the operators
M : E → F and L : E → F have the same limiting operators.

If the operator L : E → F is Fredholm, then Conditions NS and NS∗ are
satisfied for it. Hence they are also satisfied for the operatorM : E → F . Therefore
the operator M is Fredholm.

It remains to prove that if M : E → F is Fredholm, then the operator
L : Eµ → Fµ also satisfies the Fredholm property. Indeed, let ui ∈ E, i = 1, . . . , k
be all linearly independent solutions of the equation Mu = 0. Then vi = S−1ui ∈
Eµ, i = 1, . . . , k are solutions of the equation

Lv = 0. (7.4)

Conversely, if v ∈ Eµ is a solution of the equation (7.4), then u = Sv is a solution
of the equation Mu = 0. Hence u =

∑k
i=1 ciui, and it follows that

v = S−1u =
k∑
i=1

ciS
−1ui =

k∑
i=1

civi.

Therefore vi, i = 1, . . . , k are all linearly independent solutions of (7.4).
Consider now the adjoint operators

L∗ : F ∗
µ → E∗

µ, M∗ : F ∗ → E∗.

We have
S∗ : F ∗ → F ∗

µ , (S−1)∗ : F ∗
µ → F ∗.

Let φj ∈ F ∗, j = 1, . . . , l be linearly independent solutions of the equation

M∗φ = 0. (7.5)

Then ψj = S∗φj ∈ F ∗
µ , j = 1, . . . , l are solutions of the equation L∗ψj = 0 since

M∗ = (S−1)∗L∗S∗ : F ∗ → E∗. If ψ ∈ F ∗
µ is an arbitrary solution of the equation

L∗ψ = 0, (7.6)
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then φ = (S−1)∗ψ ∈ F ∗ is a solution of the equation M∗φ = 0. Hence φ =∑l
j=1 cjφj . Therefore

ψ = S∗φ =
l∑

j=1

cjS
∗φj =

l∑
j=1

cjψj .

We have proved that ψj , j = 1, . . . , l is a complete system of linearly independent
solutions of equation (7.6).

Consider the equation

Lv = g, v ∈ Eµ, g ∈ Fµ. (7.7)

Suppose that
〈g, ψj〉 = 0, j = 1, . . . , l, (7.8)

where ψj ∈ F ∗
µ are all linearly independent solutions of the equation (7.6). Then

φj = (S∗)−1ψj ∈ F ∗, j = 1, . . . , l

are all linearly independent solutions of the equation M∗φ = 0. It follows from
(7.8) that

〈g, S∗φj〉 = 0, j = 1, . . . , l.

Consequently,
〈Sg, φj〉 = 0. (7.9)

Denote f = Sg ∈ F . Since the operator M is Fredholm, then from (7.9) it follows
that the equation Mu = f has a solution u ∈ E. We have SLS−1u = f . Therefore
LS−1u = S−1f = g. Hence v = S−1u ∈ Eµ is a solution of equation (7.7). We
have proved that from (7.8) it follows that equation (7.7) has a solution. Therefore
the operator L : Eµ → Fµ is Fredholm. The theorem is proved. �

8 Hölder spaces

In this section we will prove that the Fredholm property in Hölder spaces follows
from the Fredholm property in Sobolev spaces if the coefficients of the operator
and the boundary of the domain are sufficiently smooth. We consider the operator
L and the spaces E and F defined in Section 3. We consider also the same operator
acting in Hölder spaces. Let

EC = ΠN
j=1C

l+tj+θ(Ω̄), FC = ΠN
j=1C

l−si+θ(Ω̄) × Πm
j=1C

l−σj+θ(∂Ω), 0 < θ < 1.

Denote by LC the realization of the operator L in these spaces, LC : EC → FC .
Along with the usual Hölder spaces we will consider the spaces EG and FG

obtained as a closure of infinitely differentiable functions (not necessarily with a
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bounded support) in the norm of the spaces EC and FC , respectively. We denote
by LG the corresponding operator.

We recall that the operator L∞ : E∞ → F∞ is normally solvable with a
finite-dimensional kernel if and only if Condition NS is satisfied (Chapter 4). In
Chapter 4 we have also proved the same result for the operator LC : EC → FC . In
this case the space E∞(Ω̂) in the formulation of Condition NS is replaced by the
space EC(Ω̂). Obviously, the operator LG : EG → FG is normally solvable with a
finite-dimensional kernel if it is the case for the operator LC .

Theorem 8.1. Suppose that Condition NS is satisfied for the operator L : E → F .
Then it is also satisfied for the operator LC.

Proof. Suppose that u is a solution of the equation L̂u = 0, u ∈ EC(Ω̂), where Ω̂
is a limiting domain, and L̂ is a limiting operator. It is easy to see that

u ∈ E∞(Ω̂). (8.1)

Indeed, let u = (u1, . . . , uN). Then uj ∈ Cl+tj+θ(Ω̂). Denoting by Q a unit cube
with its center at y we have

‖Dαuj‖Lp(Ω̂∩Qy) ≤M‖uj‖Cl+tj+θ(Ω̂),

where |α| ≤ l+tj, andM is a constant. Then (8.1) follows from this estimate. Since
Condition NS is satisfied for L : E → F , then u = 0. The theorem is proved. �

In the following theorem we impose additional conditions on the smoothness
of the coefficients of the operator and of the boundary of the domain. We suppose
that the coefficients of the operator satisfy the following regularity conditions:

aβij ∈ Cλ−si+α(Ω̄), bβij ∈ Cλ−σi+α(∂Ω),

and in the inequality for the number r in Condition D (Chapter 4, Section 1) we
replace l by λ, where λ is an integer, λ > l + 1 + n/p.

Theorem 8.2. If the operator L : E → F satisfies the Fredholm property, then the
operator LG : EG → FG also satisfies it.

Proof. Suppose that the operator L : E → F is Fredholm. From Theorem 6.3
it follows that Condition NS is satisfied in the space E∞. By Theorem 8.1 it is
also satisfied in EC . Hence the operator LC is normally solvable with a finite-
dimensional kernel. Therefore this is also true for the operator LG.

Since the operator L : E → F is Fredholm, then Theorems 6.3 and 3.2
imply that the operator L∞ : E∞ → F∞ is Fredholm. This means that there exist
functionals vj ∈ (F∞)∗, j = 1, . . . , N such that the equation

Lu = f −
N∑
j=1

〈f, vj〉ej (8.2)
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has a solution u ∈ E∞ for any f ∈ F∞. Here ej ∈ F∞ are elements biorthogonal
to vj .

Let g ∈ FG. Then g ∈ F∞ and the expressions 〈g, vj〉 are defined. We will
prove that if

〈g, vj〉 = 0, j = 1, . . . , N, (8.3)

then the equation
Lu = g, u ∈ EG

has a solution. This will prove the theorem.
Since the space FG is a closure of the set of infinitely differentiable functions,

then FλG is dense in FG. We denote by Fλ and Eλ the spaces F and E where l is
replaced by λ. Let gk ∈ FλG, k = 1, 2, . . . be a sequence which converges to g in
FG. Since gk ∈ Fλ∞ ⊂ F∞, then the equation

Luk = gk −
N∑
j=1

〈gk, vj〉ej (8.4)

has a solution uk ∈ E∞. Without loss of generality we can assume that ej ∈ Fλ∞.
From a priori estimates (Chapter 4) we conclude that uk ∈ Eλ∞. Therefore from
the embedding theorems, uk ∈ EG.

Let P : EG → KerLG be a projector. Then

‖wk‖EG ≤ const ‖Luk‖FG , (8.5)

where wk = uk − Puk. From (8.3) and (8.4) follows the convergence

Lwk = Luk → g in FG. (8.6)

From (8.5) we obtain wk → u, for some u ∈ EG. Therefore Lu = g. The theorem
is proved. �

Theorem 8.3. If the operator L : E → F satisfies the Fredholm property, then the
operator LC : EC → FC also satisfies it.

Proof. Similar to the proof of the previous theorem we consider the spaces Fλ∞ ⊂
FC ⊂ F∞ and equation (8.2). It is solvable in E∞ for any f ∈ F∞, and in Eλ∞ for
any f ∈ Fλ∞. Here vj ∈ (F∞)∗ ⊂ (Fλ∞)∗.

Let f ∈ FC , fk ∈ FλC ,

‖fk‖FC ≤M, k = 1, 2, . . . , (8.7)

and fk → f in the weaker norm of the space

F 0
C = ΠN

i=1C
l−si(Ω̄) × Πm

j=1C
l−σj (∂Ω).
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Such a sequence can be constructed as follows. We extend the function f to the
space

ΠN
i=1C

l−si+θ(Rn) × Πm
j=1C

l−σj+θ(Rn).

Denote this function by f̂ . With an infinitely differentiable averaging kernel ω(x)
we construct the function

f̂k(x) = ε−nk

∫
f̂(x − y)ω(

y

εk
)dy.

Here εk → 0 as k → ∞. It can be easily verified that the restriction fk of the
function f̂k to the space FλC has all the desired properties.

Since fk ∈ Fλ∞, then equation (8.2) is solvable in Eλ∞. By virtue of the
embedding theorems its solution uk belongs to EC .

A priori estimates of solutions in Hölder spaces (Section 2.3, Chapter 1) and
(8.7) imply that ‖uk‖EC ≤M1, k = 1, 2, . . . Therefore there exists a subsequence
of the sequence uk converging locally in the space E0

C = ΠN
j=1C

l+tj (Ω̄) to some
function u ∈ EC satisfying the equation. Thus equation (8.2) is solvable in EC for
any f ∈ FC . The theorem is proved. �

9 Examples

9.1 Bounded domains

Second-order equations in a bounded interval. Consider the equation

Lu ≡ a(x)u′′ + b(x)u′ + c(x)u = f (9.1)

in the interval I = [0, 1] with the Dirichlet boundary conditions

u(0) = u(1) = 0. (9.2)

Here and in what follows we will suppose that the coefficients are real-valued
sufficiently smooth functions, a(x) > 0 for all x ∈ I. We consider the operator
L as acting from H2(I) with the Dirichlet boundary conditions into L2(I). The
homogeneous formally adjoint problem is

L∗v ≡ (a(x)v)′′ − (b(x)v)′ + c(x)v = 0, (9.3)
v(0) = v(1) = 0. (9.4)

Equation (9.1) is solvable if and only if the solvability condition
∫ 1

0
fvdx = 0

is satisfied for any solution v of problem (9.3), (9.4). The number of linearly
independent solutions of this problem equals the number of linearly independent
solutions of the homogeneous (f = 0) problem (9.1), (9.2), that is the index equals
zero. Indeed, the operator L − λ is normally solvable with a finite-dimensional
kernel for any λ, it is invertible for sufficiently large positive λ. Therefore its index
equals zero for any λ. The same properties remain valid for the Neumann boundary
conditions and for Hölder spaces.
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Laplace operator. Consider the Laplace operator

Lu =
n∑
i=1

∂2u

∂x2
i

in a bounded domain Ω ⊂ Rn with a sufficiently smooth boundary, acting on
functions fromH2(Ω). In the case of the Dirichlet boundary condition, the problem
is formally self-adjoint. The nonhomogeneous problem

Lu = f, u|∂Ω = 0 (9.5)

is solvable if and only if ∫
Ω

fvdx = 0 (9.6)

for any solution v of the problem

Lv = 0, v|∂Ω = 0. (9.7)

This problem has the only zero solution. Indeed, multiplying the equation Lv = 0
by v and integrating over Ω, we obtain ‖∇v‖L2(Ω) = 0. Therefore, problem (9.5)
is solvable for any f ∈ L2(Ω).

In the case of the Neumann boundary condition, the homogeneous formally
adjoint problem

Lv = 0,
∂v

∂n
|∂Ω = 0

has a unique up to a constant factor nonzero solution, v = 1. Instead of (9.6), the
solvability condition can be written as

∫
Ω
fdx = 0.

Fourth-order equation. Consider the operator Lu = ∆2u, where ∆ denotes, as
usual, the Laplace operator. We suppose that it acts from the space

E = {u ∈ H4(Ω), u|∂Ω = 0,
∂u

∂n
|∂Ω = 0}

into L2(Ω). Similar to the previous examples, the boundary conditions are included
here in the definition of the function space. It is also possible to consider them as
boundary operators. The nonhomogeneous problem

Lu = f, u ∈ E (9.8)

is solvable if and only if condition (9.6) is satisfied for any solution v of the homo-
geneous formally adjoint problem Lv = 0, v ∈ E. Multiplying this equation by v
and integrating, we obtain ‖∆v‖L2(Ω) = 0. Therefore, v = 0 and problem (9.7) is
solvable for any f ∈ L2(Ω).
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9.2 Unbounded domains

Constant limits at infinity. We consider the same operator (9.1) acting fromH2(R)
into L2(R), a(x) ≥ a0 > 0 for all x ∈ R. Suppose that there exist limits of the
coefficients at infinity:

a± = lim
x→∞ a(x), b± = lim

x→∞ b(x), c± = lim
x→∞ c(x).

There are two limiting operators that correspond to +∞ and −∞:

L±u = a±u′′ + b±u′ + c±u.

The essential spectrum of the operator L consists of all complex λ such that at
least one of the two equations,

L±u = λu,

has a nonzero bounded solution. Applying the Fourier transform, we obtain

λ(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

The operator L satisfies the Fredholm property if and only if the two curves λ±(ξ)
do not pass through the origin. Its index equals n+ + n− − 2, where n+ is the
number of bounded solutions of the equation L+u = 0 at +∞, n− is the number
of bounded solutions of the equation L−u = 0 at −∞. In particular, the index
equals zero if c± < 0. It can also be zero if c± > 0. Hence there exist different
homotopy classes of such operators with the same index.

The nonhomogeneous equation Lu = f is solvable if and only if
∫ ∞

−∞
f(x)v(x)dx = 0

for all solutions v of the equation L∗v = 0, where L∗ is given by (9.3).

Slowly variable coefficients at infinity. We consider the same operator as above
and assume that the coefficients have limits at infinity, except for the function
c(x) which does not have a limit as x→ +∞. We suppose that

limx→+∞ = c∗, limx→+∞ = c∗,

where c∗ < c∗, and c′(x) → 0 as x→ +∞.
Let hk be a sequence of numbers, hk → ∞ as k → ∞. Consider the sequence

of functions c̃k(x) = c(x+hk). It has a subsequence locally convergent to a constant
ĉ ∈ [c∗, c∗]. For any ĉ from this interval, there exists a sequence hk such that the
sequence c̃k(x) converges to ĉ. Therefore the limiting operator has the form

L−u = a−u′′ + b−u′ + c−u and L̂u = a+u
′′ + b+u

′ + ĉu
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for any ĉ ∈ [c∗, c∗]. Hence, the essential spectrum of the operator L consists of two
parts: of the curve

λ = −a−ξ2 + b−iξ + c−, ξ ∈ R

and of the domain filled by the curves

λ = −a+ξ
2 + b+iξ + ĉ, ξ ∈ R

for all ĉ ∈ [c∗, c∗]. If the essential spectrum does not contain the origin, then the
operator satisfies the Fredholm property. The solvability conditions are the same
as in the previous example. In order to compute the index of the operator, we
can use a continuous deformation which reduces it to an operator with constant
coefficients at infinity.

Periodic and almost periodic coefficients. Consider the operator L given by (9.1),
where a(x), b(x), and c(x) are periodic functions with the same period τ . In this
case, all limiting operators have the form

L̂u = a(x+ h)u′′ + b(x+ h)u′ + c(x+ h)u,

where h is an arbitrary real number. Since the shift of the coefficients does not
change the solvability of the equation L̂u = 0, then Condition NS can be for-
mulated in terms of the operator L: the operator L is normally solvable with a
finite-dimensional kernel if and only if the equation Lu = 0 does not have nonzero
bounded solutions. If a similar condition is satisfied for the formally adjoint oper-
ator, then the operator L satisfies the Fredholm property.

If the coefficients of the operator are almost periodic, then limiting opera-
tors also have almost periodic coefficients. Properties of almost periodic functions
allow one to establish some specific properties of solutions. In particular, it is
known for first-order systems with almost periodic coefficients that if the right-
hand side is almost periodic, then any bounded solution is also almost periodic
[160], [116]. There is an extensive literature devoted to spectral properties of pe-
riodic and quasi-periodic elliptic operators (see, for example, [17], [280], [449] and
the references therein).

Problems on a half-axis. Consider the problem Lu = f, u(0) = 0 on the half-
axis x ≥ 0. The operator L is given by (9.1). The difference with respect to the
previous examples is that limiting operators should be defined only at +∞. In
particular, if the coefficients have limits as x → +∞, then there exists a unique
limiting equation

L+u ≡ a+u
′′ + b+u

′ + c+u = 0, x ∈ R.

The limiting domain here is the whole axis. The essential spectrum is the curve
on the complex plane:

λ(ξ) = −a+ξ
2 + b+iξ + c+, ξ ∈ R.

If it is in the left half-plane, then the index equals zero.
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The solvability conditions are given by the equality
∫∞
0 f(x)v(x)dx = 0 for

all solutions v of the homogeneous formally adjoint problem L∗v = 0, v(0) = 0,
where the operator L∗ is defined in (9.3).

Systems of equations. Let a(x), b(x), and c(x) be sufficiently smooth square ma-
trices of the order n,

(a(x)ζ, ζ) ≥ a0 > 0, ∀x ∈ R, ζ ∈ R
n, |ζ| = 1.

If they have limits a±, b±, and c± as x→ ±∞, then the limiting operators are

L±u = a±u′′ + b±u′ + c±u.

The essential spectrum consists of all λ for which at least one of the equalities

det(−a±ξ2 + b±iξ + c± − λE) = 0, ξ ∈ R

holds. Here E is the identity matrix. The index and solvability conditions for such
problems are discussed in Chapter 9.

Second-order operators in Rn. Consider the operator

Lu = a(x)∆u +
n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u

acting from the Hölder spaceC2+δ(Rn) into the space Cδ(Rn). The square matrices
a(x), bi(x), c(x) of the order m belong to Cδ(Rn). The ellipticity condition

(a(x)ξ, ξ) ≥ a0 > 0, ∀x ∈ R
n, ξ ∈ R

m, |ξ| = 1

is supposed to be satisfied. Let us consider the unit sphere S in R
n and represent

x ∈ Rn as x = (r, θ), where θ ∈ S and r ≥ 0 is a real number. Suppose that the
matrix a(x) = a(r, θ) has a limit

â(θ) = lim
r→∞ a(r, θ)

for any θ fixed. Similarly, we define the matrix-functions b̂i(θ) and ĉ(θ) and suppose
that all of them are continuous with respect to θ.

If these conditions are satisfied, then there is a family of limiting operators

L̂θu = â(θ)∆u +
n∑
i=1

b̂i(θ)
∂u

∂xi
+ ĉ(θ)u, θ ∈ S

with constant coefficients. Denote by Λ the set of all complex numbers λ for which

det(−â(θ)ξ2 + iξ

n∑
i=1

b̂i(θ) + ĉ(θ) − λE) = 0
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for some θ ∈ S and ξ ∈ Rn. Here E is the identity matrix. If the set Λ does not
contain the origin, then Condition NS is satisfied and the operator L is normally
solvable with a finite-dimensional kernel. It can be shown for the multi-dimensional
scalar case (m = 1, n > 1) that the Fredholm operator of this form has necessarily
zero index. It can be different from zero for n = 1.

Other problems. Second-order operators in cylinders are studied in Chapter 9.
The Cauchy-Riemann problem and the Laplace operator with oblique derivative
in bounded and unbounded domains are discussed in Chapter 8.



Chapter 6

Formally Adjoint Problems

In this chapter we study the Fredholm property of regular scalar elliptic problems
and formulate their solvability conditions in terms of formally adjoint problems. In
bounded domains such results were obtained in [318] (L2 theory) and in [457] (Lp

theory). As we already know, in unbounded domains some conditions at infinity
(Conditions NS and NS∗) should be imposed. We will introduce a similar condition
for formally adjoint problems and will use it to prove solvability conditions. We
restrict ourselves to scalar problems though some of the results can be easily
generalized for systems.

1 Definitions

We consider the boundary value problem

Au = f0 in Ω, Bju = fj in Γ, j = 1, . . . ,m. (1.1)

Here

Au =
∑

|α|≤2m

aα(x)Dαu, x ∈ Ω,

Bju =
∑

|α|≤sj

bαj (x)Dαu, x ∈ Γ, j = 1, . . . ,m, sj < 2m,

where α = (α1, . . . , αn) is a multi-index, |α| = α1 + · · · + αn, Dα = Dα1
1 . . . Dαn

n ,
Dαi

i = ∂αi/∂xαi

i , Ω ⊂ Rn is an unbounded domain and Γ is its boundary. The coef-
ficients aα(x) and bαj (x) in (1.1) are complex-valued functions given in Ω̄ which are
assumed, for simplicity, to be infinitely differentiable with all bounded derivatives.

We suppose that problem (1.1) is uniformly elliptic. This means that (i) A is
a uniformly elliptic operator, (ii) A is properly elliptic, (iii) the boundary operators

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_6, © Springer Basel AG 2011 
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satisfy uniformly Lopatinskii conditions (see Chapter 1). It is also supposed that
Bj form a normal system, that is 0 ≤ s1 < · · · < sm and for each normal vector
νx on Γ, where x ∈ Γ, it holds that

∑
|α|=si

bαj (x)ναx �= 0, j = 1, . . . ,m

(see [32], [318]). Such problems are referred to as regular elliptic problems. Fol-
lowing [318], we call a system of boundary operators Fi, i = 1, . . . , ν the Dirichlet
system if it is normal and if the orders mi of the operators take on the values
0, 1, . . . , ν − 1 when i changes from 0 to ν − 1.

The formally adjoint operator A∗ to the operator A is given by the formula

A∗v =
∑

|α|≤2m

(−1)|α|Dα(aα(x)v).

We have ∫
Ω

Au v̄ dx −
∫

Ω

u A∗v dx = 0, ∀u, v ∈ D(Ω̄).

The operator A∗ satisfies the ellipticity condition if and only if the operator A
satisfies it.

Consider problem (1.1). If the boundary operators form a normal system,
then it can be completed to a Dirichlet system of order 2m by some operators Sj ,
j = 1, . . . ,m. The choice of these operators is not unique. Then there exists another
Dirichlet system of order 2m formed by some operators Cj , Tj , j = 1, . . . ,m such
that the following Green’s formula holds [318]:

∫
Ω

Au v̄ dx −
∫

Ω

u A∗v dx =
m∑
j=1

∫
Γ

Sju Cjv ds −
m∑
j=1

∫
Γ

Bju Tjv ds. (1.2)

The boundary value problem

A∗v = f0 in Ω, Cjv = fj in Γ, j = 1, . . . ,m. (1.3)

is called the formally adjoint problem of (1.1).

As before, we suppose that the boundary of the domain Ω satisfies Condition
D (cf. Chapter 3, Section 2):

Condition D. For each x0 ∈ Γ there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with radius δ and center x0, where δ is independent
of x0.

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in R

n such that the images of Ω
⋂
U(x0) and
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Γ ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively.

3. The function ψ(x;x0) and its inverse are infinitely differentiable and each
derivative is uniformly bounded on Γ.

We recall the definitions of the function spaces introduced in Chapter 2.
Consider first functions defined on Rn. As usual we denote by D the space of
infinitely differentiable functions with compact support and by D′ its dual. Let
E ⊂ D′ be a Banach space, the inclusion being understood in both the algebraic
and topological sense. Denote by Eloc the collection of all u ∈ D′ such that fu ∈ E
for all f ∈ D. Let ω(x) ∈ D, 0 ≤ ω(x) ≤ 1, ω(x) = 1 for |x| ≤ 1/2, ω(x) = 0
for |x| ≥ 1.

Definition 1.1. Eq (1 ≤ q ≤ ∞) is the space of all u ∈ Eloc such that

‖u‖Eq :=
(∫

Rn

‖u(.)ω(.− y)‖qEdy
)1/q

<∞, 1 ≤ q <∞,

‖u‖E∞ := sup
y∈Rn

‖u(.)ω(.− y)‖E <∞.

If Ω is a domain in Rn, then by definition Eq(Ω) is the space of restrictions of Eq
to Ω with the usual norm of restrictions. It is easy to see that if Ω is a bounded
domain, then

Eq(Ω) = E(Ω), 1 ≤ q ≤ ∞.

In particular, if E = W s,p, then we write W s,p
q = Eq (1 ≤ q ≤ ∞). It is proved

that
W s,p
p = W s,p (s ≥ 0, 1 < p <∞).

If E = Hs, then we can introduce also spaces Hs
q , 1 ≤ q ≤ ∞. We suppose that

in problem (1.1),

u ∈ W l,p
q (Ω), f0 ∈ W l−2m,p

q (Ω), fj ∈ W l−sj−1/p,p
q (Γ), j = 1, . . . ,m,

where l ≥ 2m is an integer, 1 < p <∞, 1 ≤ q ≤ ∞.

As in previous chapters, we will use the notion of limiting domains. Their
construction can be briefly described as follows. Let xk ∈ Ω be a sequence, which
tends to infinity. Consider the shifted domains Ωk corresponding to the shifted
characteristic functions χ(x+ xk), where χ(x) is the characteristic function of the
domain Ω. Consider a ball Br ⊂ Rn with its center at the origin and with radius
r. Suppose that for all k there are points of the boundaries ∂Ωk inside Br. If the
boundaries are sufficiently smooth, then we can expect that from the sequence
Ωk ∩ Br we can choose a subsequence that converges to some limiting domain
Ω∗. After that we take a larger ball and choose a convergent subsequence of the
previous subsequence. The usual diagonal process allows us to extend the limiting
domain to the whole space.
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To define limiting operators we consider shifted coefficients aα(x+xk), bαj (x+
xk) and choose subsequences that converge to some limiting functions âα(x), b̂αj (x)
uniformly in every bounded set. The limiting operator is the operator with the
limiting coefficients. Limiting operators considered in limiting domains constitute
limiting problems. It is clear that the same problem can have a family of limiting
problems depending on the choice of the sequence xk and on the choice of both
converging subsequences of domains and coefficients.

Set L = (A,B1, . . . , Bm) and let L̂ be a corresponding limiting operator. We
have already discussed in previous chapters that the following condition determines
normal solvability of elliptic problems.

Condition NS. Any limiting problem

L̂u = 0, x ∈ Ω∗, u ∈W l,p
∞ (Ω∗)

has only the zero solution.

A similar condition is formulated for formally adjoint problems. We recall that
formally adjoint operators act in the same spaces as the direct operators, while
the adjoint operator acts in dual spaces. We use here the same notation of this
condition for formally adjoint operators as before for adjoint operators. In this
chapter we understand it only in the sense of formally adjoint operators.

Condition NS∗. Any limiting problem

L̂∗v = 0, x ∈ Ω∗, v ∈W l,p
∞ (Ω∗)

has only the zero solution. Here L̂∗ is the operator formally adjoint to L̂.

We will use below the space of exponentially decreasing functions.

Definition 1.2. A function f belongs to the space E if f(x) is defined on R
n,

infinitely differentiable, and for any multi-index α there exists ε > 0 such that

|Dαf(x) eε|x|| ≤ Cα, ∀x ∈ R
n.

E(Ω̄) is the restriction of E to Ω̄, the definition of E(Γ) is standard.

The main result of this chapter is given by the following theorem. It will be proved
in Section 4.

Theorem 1.3. Let Conditions NS and NS∗ be satisfied. Suppose that

f0 ∈W l−2m,p
q (Ω), fj ∈W l−sj−1/p,p

q (Γ),

j = 1, . . . ,m, 1 < p <∞, 1 < q ≤ p, l ≥ 2m

is an integer. Then problem (1.1) has a solution u ∈W l,p
q if and only if

∫
Ω

f0 v0 dx +
m∑
j=1

∫
Γ

fj Tjv0 ds = 0 (1.4)
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for any v0 from the finite-dimensional space

N∗ = {v0 : v0 ∈ E(Ω̄), A∗v0 = 0, C1v0 = 0, . . . , Cmv0 = 0}. (1.5)

It follows from the theorem that if Conditions NS and NS∗ are satisfied, then
the operator is Fredholm. Moreover its cokernel, that is the functions which provide
solvability conditions, belongs to the space E and therefore does not depend on
l, p, q. It is shown in Section 5 that the same is true for the kernel. Thus the index
of the operator does not depend on l, p, q.

Set

E = W l,p(Ω), F = W l−2m,p(Ω) ×W l−s1−1/p,p(Γ) × · · · ×W l−sm−1/p,p(Γ).

The corresponding spaces E∞ and F∞ are defined in Chapter 2. We will use a
priori estimates of solutions obtained in Chapter 4:

Theorem 1.4. Let Condition NS be satisfied. Then there exist numbers M0 and R0

such that the following estimate holds:

‖u‖E∞ ≤M0

(
‖Lu‖F∞ + ‖u‖Lp(ΩR0)

)
, ∀u ∈ E∞. (1.6)

Here ΩR0 = Ω ∩ {|x| ≤ R0}.
Theorem 1.5. Let Condition NS be satisfied. Then there exist numbers M0 > 0,
R0 > 0 and µ0 > 0 such that for all µ, 0 < µ < µ0 the following estimate holds:

‖ωµu‖E∞ ≤M0

(
‖ωµLu‖F∞ + ‖ωµu‖Lp(ΩR0 )

)
, ∀u ∈ E∞. (1.7)

Here ωµ = exp(µ
√

1 + |x|2), µ is a real number.

Corollary 1.6. If 0 < µ < µ0, u ∈ E∞, and ωµLu ∈ F∞, then ωµu ∈ E∞. In
particular, if u ∈ E∞ and Lu = 0, then ωµu ∈ E∞.

We recall that the spaces W s,2 and Hs coincide. We will use below the spaces of
Bessel potentials.

2 Spaces V 2m(Ω)

Denote by V 2m(Ω) all functions u ∈ H2m∞ (Ω) such that
∫

Ω

|Au|2dx+
m−1∑
j=0

〈Bju,Bju〉 <∞. (2.1)

Here 〈, 〉 is duality in H2m−sj . We suppose that Condition NS is satisfied. Let

N = {u | u ∈ H2m
∞ (Ω), Au = 0, Bj = 0, j = 0, . . . ,m− 1}.

Then N is finite dimensional and u(x) → 0 exponentially as |x| → ∞, x ∈ Ω.
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For u, v ∈ V 2m(Ω) we introduce the inner product

[u, v] =
∫

Ω

Au · Av dx+
m−1∑
j=0

〈Bju,Bjv〉 +
∫

Ω

Pu · Pv dx. (2.2)

Here P is the projection operator in L2(Ω) on the subspace N . More precisely, let
u1, . . . , uk be a basis in N , and v1, . . . , vk ∈ D(Ω) such that

∫
Ω

ui(x)vj(x) dx = δij , i, j = 1, . . . , k.

Then

Pu =
k∑
i=1

(u, vi)ui. (2.3)

Here and in what follows

(u, v) =
∫

Ω

u(x)v(x) dx. (2.4)

We introduce also the notation

[u, v]0 =
∫

Ω

Au · Av dx+
m−1∑
j=0

〈Bju,Bjv〉. (2.5)

Therefore
[u, v] = [u, v]0 + (Pu, Pv). (2.6)

Proposition 2.1. If u ∈ V 2m(Ω), then

‖u‖H2m∞ (Ω) ≤ C‖u‖V 2m(Ω), (2.7)

where
‖u‖V 2m(Ω) =

√
[u, u].

Proof. Since Condition NS is satisfied, then

‖u‖H2m∞ (Ω) ≤ C


‖Au‖L2∞(Ω) +

m−1∑
j=0

‖Bju‖
H

2m−sj−1/2
∞ (Γ)

+

(∫
Ωρ

|u(x)|2dx
)1/2




for some C > 0, ρ > 0, and for any u ∈ H2m∞ (Ω) (Theorem 1.4). Therefore

‖u‖H2m∞ (Ω) ≤ C


‖Au‖L2(Ω) +

m−1∑
j=0

‖Bju‖H2m−sj−1/2(Γ)
+

(∫
Ωρ

|u(x)|2dx
)1/2


 .
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It follows that

‖u‖H2m∞ (Ω) ≤ C1


‖u‖V 2m(Ω) +

(∫
Ωρ

|u(x)|2dx
)1/2


 . (2.8)

It is sufficient to prove (2.7) for ∀‖u‖V 2m(Ω) = 1. In this case this estimate takes
the form

‖u‖H2m∞ (Ω) ≤ C, ∀u ∈ V 2m(Ω), ‖u‖V 2m(Ω) = 1. (2.9)

Suppose that this estimate does not hold. Then there exists a sequence {uk},
uk ∈ V 2m(Ω) such that

‖uk‖H2m∞ (Ω) → ∞, ‖uk‖V 2m(Ω) = 1.

Set
wk =

uk
‖uk‖H2m∞ (Ω)

.

Then we have

‖wk‖H2m∞ (Ω) = 1, (2.10)

‖wk‖V 2m(Ω) → 0 as k → ∞. (2.11)

From (2.10) it follows that there exists a subsequence of wk, still denoted by wk
such that the following convergence occurs:

∫
Ωρ

|wk(x) − wl(x)|2dx→ 0 as k, l → ∞.

Estimate (2.8) implies

‖wk − wl‖H2m∞ (Ω) → 0 as k, l → ∞.

Hence there exists w ∈ H2m∞ (Ω) such that

‖wk − w‖H2m∞ (Ω) → 0 as k → ∞. (2.12)

From (2.10)
‖w‖H2m∞ (Ω) = 1. (2.13)

On the other hand, (2.11) implies
∫

Ω

|Awk|2dx→ 0, (2.14)

〈Bjwk, Bjwk〉 → 0, j = 0, . . . ,m− 1 (2.15)∫
Ω

|Pwk|2dx→ 0 as k → ∞. (2.16)
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From (2.14) it follows that
Aw = 0. (2.17)

Indeed, (2.14) implies the convergence
∫

Ω

Awkφ(x)dx→ 0 as k → ∞ (2.18)

for any φ ∈ C∞
0 (Ω). From (2.12) we can conclude that

‖wk − w‖H2m(B∩Ω) → 0 as k → ∞
for any ball B ⊂ Rn. Therefore we can pass to the limit in (2.18):

∫
Ω

Awφ(x)dx = 0.

Equality (2.17) follows from the last one.
Similarly, from (2.15) we conclude that Bjw = 0, j = 0, . . . ,m − 1. From

this and (2.17) we get w ∈ N . Hence

w = Pw. (2.19)

Now, (2.3) and (2.12) imply

‖Pwk − Pw‖L2(Ω) ≤
k∑
i=1

|(wk − w, vi)|‖ui‖L2(Ω) → 0.

From this convergence and (2.16), Pw = 0, and from (2.19), w = 0. This contra-
dicts (2.13). The proposition is proved. �

Proposition 2.2. V 2m(Ω) is a Hilbert space.

Proof. We have to prove the completeness of V 2m(Ω). Let

‖uk − ul‖V 2m(Ω) → 0 as k, l → ∞. (2.20)

Then from (2.7) we have

‖uk − ul‖H2m∞ (Ω) → 0 as k, l → ∞.

Hence there exists u ∈ H2m∞ (Ω) such that

‖uk − u‖H2m∞ (Ω) → 0 as k → ∞. (2.21)

Set vk = Auk. Then from (2.20)

‖vk − vl‖L2(Ω) → 0 as k, l → ∞.
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Therefore there exists v ∈ L2(Ω) for which

‖vk − v‖L2(Ω) → 0 as k → ∞. (2.22)

Hence
‖vk − v‖L2(Ω∩B) → 0 as k → ∞

for any ball B ⊂ R
n, or

‖Auk − v‖L2(Ω∩B) → 0 as k → ∞.

On the other hand, from (2.21) it follows that

‖Auk −Au‖L2(Ω∩B) → 0 as k → ∞.

Hence v = Au in Ω ∩B. Since B is arbitrary, then

v = Au in Ω and Au ∈ L2(Ω). (2.23)

From this and (2.22) we obtain

‖Auk − Au‖L2(Ω) → 0 as k → ∞. (2.24)

Consider now the boundary operators. Write Bjuk = wk. Then from (2.20)
it follows that

‖wk − wl‖H2m−sj−1/2(Γ)
→ 0 as k, l → ∞.

Hence there exists w ∈ H2m−sj−1/2(Γ) for which

‖wk − w‖
H2m−sj−1/2(Γ)

→ 0 as k → ∞. (2.25)

Therefore
‖wk − w‖

H2m−msj−1/2(Γ∩B)
→ 0 as k → ∞ (2.26)

for any ball B ⊂ R
n. From (2.21) we conclude that

‖Bjuk −Bju‖H2m−sj−1/2(Γ∩B)
→ 0 as k → ∞.

This and (2.26) imply that Bju = w as elements of H2m−sj−1/2(Γ ∩B). Since B
is an arbitrary ball, we conclude that Bju = w as generalized functions on Γ. It
follows that

Bju ∈ H2m−sj−1/2(Γ) (2.27)

and (2.25) implies that

‖Bjuk −Bju‖H2m−sj−1/2(Γ)
→ 0 as k → ∞. (2.28)

From (2.23) and (2.27) we conclude that u ∈ V 2m(Ω).
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It remains to consider the operator P . Obviously,

‖P (uk − ul)‖L2(Ω) → 0 as k, l → ∞.

Taking into account (2.3), we get

‖Puk − Pu‖L2(Ω) → 0 as k → ∞. (2.29)

This convergence, (2.28), and (2.24) imply

‖uk − u‖V 2m(Ω) → 0 as k → ∞.

The proposition is proved. �

Proposition 2.3. If u ∈ H2m(Ω), then u ∈ V 2m(Ω), and

‖u‖V 2m(Ω) ≤ C‖u‖H2m(Ω). (2.30)

Proof. Let u ∈ H2m(Ω). Then u ∈ H2m
∞ (Ω) and (2.1) is satisfied. Hence u ∈

V 2m(Ω) and
[u, u]0 ≤ C1‖u‖2

H2m(Ω). (2.31)

From (2.3) it follows that

‖Pu‖2
L2(Ω) ≤ C2‖u‖2

H2m(Ω). (2.32)

This estimate, (2.31) and (2.6) imply (2.30). The proposition is proved. �

It follows from Propositions 2.1 and 2.3 that

H2m(Ω) ⊂ V 2m(Ω) ⊂ H2m
∞ (Ω),

the inclusions being with the topology. These spaces coincide locally. The difference
between them consists in the behavior of the functions at infinity.

Proposition 2.4. If f ∈ L2
1(Ω), v ∈ V 2m(Ω), then

(v, f) =
∫

Ω

v(x)f(x) dx

is a continuous functional on V 2m(Ω).

Proof. We have

|(v, f)| = |
∫

Ω

∞∑
i=1

φi(x)v(x)f(x) dx| ≡ S,

where φi is a partition of unity, ψi(x) ∈ D, ψi(x) = 1 for x ∈ suppφi,

S ≤
∞∑
i=1

|
∫

Ω

φivψif dx| ≤
∞∑
i=1

‖φiv‖L2‖ψif‖L2 ≤ C‖v‖L2∞(Ω)

∞∑
i=1

‖ψif‖L2(Ω)

≤ C1‖v‖L2∞(Ω)‖f‖L2
1(Ω) ≤ C1‖v‖H2m∞ (Ω)‖f‖L2

1(Ω) ≤ C2‖v‖V 2m(Ω)‖f‖L2
1(Ω).

The proposition is proved. �
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The following proposition is a generalization of Proposition 5.1 in [318].

Proposition 2.5. Let u ∈ V 2m(Ω), f ∈ L2
1(Ω) ∩ Hr

loc(Ω), where r is a positive
integer, and

[u, v]0 =
∫

Ω

fv dx, ∀v ∈ V 2m(Ω), (2.33)

then u ∈ H4m+r
loc (Ω).

Proof. Choosing v ∈ D(Ω) in (2.33), we obtain A∗Au = f . Hence u ∈ H4m+r(ω)
for any open bounded set ω such that ω̄ ⊂ Ω. Since V 2m(Ω) coincides locally with
H2m(Ω), we obtain (5.19) in [318], and we use the result of [318]. The proposition
is proved. �

3 Fredholm theorems

We will use Green’s formula (1.2) and Definition 1.2.

Proposition 3.1. Let Conditions NS and NS∗ be satisfied, and f0 ∈ D(Ω̄), fj ∈
D(Γ), j = 1, . . . ,m. Then problem (1.1) has a solution u ∈ H2m(Ω) if and only if

∫
Ω

f0 v0 dx +
m∑
j=1

∫
Γ

fj Tjv0 ds = 0 (3.1)

for any v0 from the finite-dimensional space

N∗ = {v0 : v0 ∈ E(Ω̄), A∗v0 = 0, C1v0 = 0, . . . , Cmv0 = 0}. (3.2)

Proof. Green’s formula (1.2) implies that condition (3.1) is necessary. We will
prove that it is sufficient.

1. We begin with the case where

f0 ∈ D(Ω̄), fj = 0, j = 1, . . . ,m. (3.3)

We introduce the space V 2m∗ (Ω) similar to the space V 2m(Ω) in Section 2. Namely
V 2m
∗ (Ω) is the collection of all u ∈ H2m

∞ (Ω) such that

∫
Ω

|A∗u|2dx+
m∑
j=1

〈Cju,Cju〉j <∞.

We introduce the inner product

[u, v] =
∫

Ω

A∗uA∗vdx +
m∑
j=1

〈Cju,Cjv〉j +
∫

Ω

PuPvdx, (3.4)
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where P is the projector in L2(Ω) on the space N∗ defined by (3.2). More precisely,
let u1, . . . , uk be a basis in N∗ and v1, . . . , vk ∈ D(Ω) be such that (ui, vj) =
δij , i, j = 1, . . . , k. Then

Pu =
k∑
i=1

(u, vi)ui.

The norm in V 2m∗ (Ω) is given by the equality ‖u‖V 2m∗ (Ω) =
√

[u, u]. Similar to
Section 2 we can prove that V 2m

∗ (Ω) is a Hilbert space and

‖u‖H2m∞ (Ω) ≤ c‖u‖V 2m∗ (Ω), ∀u ∈ V 2m
∗ (Ω),

‖u‖V 2m∗ (Ω) ≤ c‖u‖H2m(Ω), ∀u ∈ H2m(Ω),

H2m(Ω) ⊂ V 2m
∗ (Ω) ⊂ H2m

∞ (Ω).

Set

[u, v]0 =
∫

Ω

A∗uA∗vdx+
m∑
j=1

〈Cju,Cjv〉j . (3.5)

Then similar to Proposition 2.5 we have the following proposition.

Proposition 3.2. Let u ∈ V 2m
∗ (Ω), f ∈ L2

1(Ω) ∩ Hr
loc(Ω), where r is a positive

integer, and

[u, v]0 =
∫

Ω

fv dx, ∀v ∈ V 2m
∗ (Ω); (3.6)

then u ∈ H4m+r
loc (Ω).

Since for f0 ∈ D(Ω̄), (v, f0) is a continuous linear functional on V 2m
∗ (Ω) (see

Proposition 2.4), then there exists w ∈ V 2m∗ (Ω) such that

[w, v] =
∫

Ω

f0v dx, ∀v ∈ V 2m
∗ (Ω). (3.7)

Write
w′ = w − Pw. (3.8)

Let v′ ∈ V 2m
∗ (Ω) and Pv′ = 0. Then from (3.7) we have

[w, v′] =
∫

Ω

f0 v′ dx. (3.9)

But
[w, v′] = [w′ + Pw, v′] = [w′, v′] + [Pw, v′]. (3.10)

Obviously, [Pw, v′] = (Pw,Pv′) since Pw ∈ N∗. Hence [Pw, v′] = 0, and from
(3.10) we get [w, v′] = [w′, v′]. Moreover, (3.9) implies

[w′, v′] = (f0, v′). (3.11)
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Let v ∈ V 2m∗ (Ω). Then we have

[w′, v] = [w′, v′] + [w′, v′′],

where v′′ = Pv, v′ = (I − P )v, and Pv′ = 0. Further,

[w′, v′′] = [w′, Pv] = (Pw′, Pv) = 0

since Pw′ = 0 by virtue of (3.8). It follows that [w′, v] = [w′, v′]. From (3.11)

[w′, v] = (f0, v′). (3.12)

From assumptions (3.3) and (3.1) we have (f0, v0) = 0 for all v0 ∈ N∗. In partic-
ular, (f0, v′′) = 0 since v′′ = Pv ∈ N∗. Hence

(f0, v) = (f0, v′ + v′′) = (f0, v′).

It follows from (3.12) that

[w′, v] = (f0, v), ∀v ∈ V 2m
∗ (Ω). (3.13)

From (3.8) it follows that Pw′ = 0. Therefore, by virtue of (3.5) [w′, v] = [w′, v]0.
From (3.13)

[w′, v]0 = (f0, v), ∀v ∈ V 2m
∗ (Ω). (3.14)

From Proposition 3.2 we conclude that

w′ = H4m+r
loc (Ω) (3.15)

for any integer r. Hence w′ is a smooth function. Write

u = A∗w′. (3.16)

From (3.5) and (3.14) we get

∫
Ω

uA∗v dx +
m∑
j=1

〈Cjw′, Cjv〉j = (f0, v), ∀v ∈ V 2m
∗ (Ω). (3.17)

In particular, ∫
Ω

uA∗v dx = (f0, v), ∀v ∈ D(Ω).

It follows that
Au = f0. (3.18)

Now, from (3.17) we obtain

(u,A∗v) +
m∑
i=1

〈Cjw′, Cjv〉j = (Au, v), ∀v ∈ V 2m
∗ (Ω).
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We take here v ∈ D(Ω̄) such that

Cjv = 0, j = 1, . . . ,m. (3.19)

Then (u,A∗v) = (Au, v). We use Green’s formula (1.2) for u and v ∈ D(Ω̄)
satisfying (3.19). We get

m∑
j=1

∫
Γ

Bju Tjv ds = 0.

It follows that
Bju = 0, j = 1, . . . ,m (3.20)

(see [318], Corollary 2.1). From (3.15), (3.16) it follows that u ∈ H2m
loc (Ω). It

remains to study the behavior of u at infinity. Since Condition NS is satisfied, and
ωµLu ∈ F∞, we get µu ∈ H2m∞ (Corollary 1.6). Therefore u ∈ H2m. Proposition
3.1 is proved in the case (3.3).

2. Consider now the case

f0 ∈ D(Ω̄), fj ∈ D(Γ), j = 1, . . . ,m. (3.21)

This case can be reduced to the previous one. Let u1 ∈ D(Ω̄) be a function
satisfying the boundary conditions in (1.1):

Bju1 = fj on Γ, j = 1, . . . ,m.

Existence of such a function follows from [318], Lemma 2.2. Write g0 = f0 −Au1.
Then g0 ∈ D(Ω̄). Consider the problem

Au0 = g0 in Ω, Bju0 = 0 on Γ, j = 1, . . . ,m. (3.22)

For any v0 ∈ N∗ we have
∫

Ω

g0v0dx =
∫

Ω

f0v0dx−
∫

Ω

Au1v0dx. (3.23)

Applying Green’s formula to u1 and v0, we get
∫

Ω

Au1v0dx = −
m∑
j=1

∫
Γ

Bju1Tjv0ds = −
m∑
j=1

∫
Γ

fjTjv0ds.

From (3.23) it follows that
∫

Ω

g0v0dx =
∫

Ω

f0v0dx +
m∑
j=1

∫
Γ

fjTjv0dx.

Therefore (3.1) implies ∫
Ω

g0v0dx = 0, ∀v0 ∈ N∗.
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It was proved in the previous section that there exists a solution u0 ∈ H2m(Ω)
of problem (3.22). Obviously u = u0 + u1 is a solution of problem (1.1). Thus
Proposition 3.1 is proved in the case (3.21). �

We introduce also the following duality: for any f = (f0, f1, . . . , fm) ∈
Lp0∞(Ω̄)×Lp1∞(Γ)×· · ·×Lpm∞ (Γ) and v = (v0, v1, . . . , vm) ∈ E(Ω̄)×E(Γ)×· · ·×E(Γ)
we write

〈f, v〉 =
∫

Ω

f0v0dx+
m∑
j=1

∫
Γ

fjvjds. (3.24)

Here pi ≥ 1, i = 0, 1, . . . ,m. Consider the subspace

N̂ = {v|v = (v0, T1v0, . . . , Tmv0), v0 ∈ N∗}

and denote by Ẇ s,p
∞ (Rn), s ≥ 0, 1 < p < ∞ the closure of D in W s,p

∞ (Rn). As
always, Ẇ s,p∞ (Ω) is the restriction of Ẇ s,p∞ (Rn) to Ω. The definition of the space
Ẇ s,p

∞ (Γ) is standard.

Theorem 3.3. Let Conditions NS and NS∗ be satisfied. Then for any

f = (f0, . . . , fm), f0 ∈ D(Ω̄), fj ∈ D(Γ), i = 1, . . . ,m

such that 〈f, v〉 = 0, ∀v ∈ N̂ the problem

Lu = f (3.25)

has a solution u ∈ E.

Proof. It is proved above that problem (3.25) has a solution u ∈ H2m(Ω). From a
priori estimates it follows that u ∈ H2m+r(Ω) for any integer r ≥ 0. From Corollary
1.6 it follows that for any l ≥ 2m there exists ε > 0 such that ωεu ∈ H l

∞(Ω), where
ωε(x) = eε

√
1+|x|2 . From embedding theorems it follows that for |α| < l − n/2

we get
|Dα(ωεu(x))| ≤ c‖ωεu‖Hl(Ω), ∀x ∈ Ω.

Therefore for any α there exists ε > 0 such that

|Dα(ωεu(x))| ≤ cα, ∀x ∈ Ω. (3.26)

Writing v = ωεu, we get

|Dαu(x)| ≤ |Dα(ω−εv(x))| ≤ ω−εc′α, ∀x ∈ Ω.

It follows that u ∈ E . The theorem is proved. �
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Let D(Ω,Γ) = {u|u = (u0, u1, . . . , um), u0 ∈ D(Ω̄), uj ∈ D(Γ), j =
1, . . . ,m}. We take a basis of N̂ : v1, . . . , vl. Let e1, . . . , el ∈ D(Ω,Γ) be a biorthog-
onal system:

〈ek, vi〉 = δik, i, k = 1, . . . , l.

It follows from Theorem 3.3 that the problem

Lu = f −
l∑

i=1

〈f, vi〉ei (3.27)

has a solution u ∈ E for any f ∈ D(Ω,Γ). Let l be an integer, l ≥ 2m.

Theorem 3.4. Let Conditions NS and NS∗ be satisfied. Then for any

f = (f0, f1, . . . , fm), f0 ∈ Ẇ l−2m,p
∞ (Ω), fj ∈ Ẇ l−sj−1/p,p

∞ (Γ), j = 1, . . . ,m,

such that 〈f, v〉 = 0 for any v ∈ N̂ the problem

Lu = f (3.28)

has a solution u ∈ Ẇ l,p
∞ (Ω).

Proof. Let {fk}, k = 1, 2, . . . , fk ∈ D(Ω,Γ) be a sequence such that fk → f in
the space

F = W l−2m,p
∞ (Ω) × Πm

j=1W
l−sj−1/p,p
∞ (Γ).

Consider a solution uk ∈ E of problem (3.27) for f = fk. From Lemma 3.5 below
we have

‖wk‖W l,p
∞ (Ω) ≤ c‖fk −

l∑
i=1

< fk, vi > ei‖F ,

where wk = (I−P )uk. It follows that wk → u inW l,p∞ (Ω). Obviously u is a solution
of (3.28). From Corollary 1.6 we conclude that wk ∈ E . Hence u ∈ Ẇ l,p

∞ (Ω). The
theorem is proved. �

Lemma 3.5. Let an operator L : E → F have a closed image and a finite-
dimensional kernel. Denote by P a projection operator of E on kerL: P 2u =
Pu, Pu ∈ kerL, ∀u ∈ E. Then for any u ∈ E we have

‖u− Pu‖E ≤ c‖Lu‖F ,

where c is a constant independent of u.

Proof. Set E0 = (I−P )E, where I is the unit operator in E. Let L0 be a restriction
of L on E0. Then L0 is invertible. For any u ∈ E write u0 = (E − P )u. Then
L0u0 = Lu0 = Lu. Hence ImL0 = ImL. By the Banach theorem L−1

0 is bounded.
Therefore u0 = L−1

0 Lu, ‖u0‖E ≤ c‖Lu‖F . The lemma is proved. �
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4 Spaces Eq

In this section we will use again the notation

E = W l,p
∞ (Ω), F = W l−2m,p

∞ (Ω) ×W l−s1−1/p,p
∞ (Γ) × · · · ×W l−sm−1/p,p

∞ (Γ).

We recall that Ė∞ and Ḟ∞ are the closures of D in the norms of the spaces E
and F , respectively. In the previous section we proved the Fredholm property of
the operator L : Ė∞ → Ḟ∞. In this section we will use this result to prove the
Fredholm property of the operator Lq : Eq → Fq , where we denote by Lq the same
operator acting in the corresponding spaces. We begin with some auxiliary results.

Lemma 4.1. Let an operator L acting from a Banach space E into another space F
have a bounded inverse defined on its image R(L) ⊂ F . Suppose that the equation
Lµu = f has a solution, where Lµ = L + µK, K : E → F is a bounded operator,
‖K‖ ≤ M . Then for µ sufficiently small ‖u‖E ≤ C‖f‖F , where the constant C
depends on µ and M but does not depend on the operator K.

Proof. Since the equation Lu + µKu = f has a solution, then f − µKu ∈ R(L).
Therefore u = L−1(f−µKu). The assertion of the lemma follows from the estimate

‖u‖E ≤ ‖L−1‖‖f − µKu‖F ≤ ‖L−1‖(‖f‖F + |µ|‖K‖‖u‖E).

The lemma is proved. �

We generalize here the approach developed in [362] for the operators acting
in Hs(Rn). As above we use the function ωδ(x) = exp(δ

√
1 + |x|2) and a system of

functions ei ∈ Ḟ∞ biorthogonal to the functions vj that form a basis in N̂ (Section
3). Since infinitely differentiable functions with bounded supports are dense in Ḟ∞,
we can choose functions ei with bounded supports. We will assume this condition
satisfied.

Lemma 4.2. For any f ∈ Ḟ∞ there exists a solution uj of the equation

Lu = θjf −
N∑
i=1

〈θjf, vi〉ei, (4.1)

and for δ sufficiently small the following estimate holds:

‖uj(·)ωδ(· − yj)‖Eq ≤ C‖fθj‖F , (4.2)

where Bj is a unit ball with its center at yj, supp θj ⊂ Bj, and the constant C is
independent of j.

Proof. Since the operator L : Ė∞ → Ḟ∞ satisfies the Fredholm property, then the
equation

Lu = g −
N∑
i=1

〈g, vi〉ei (4.3)
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is solvable for any g ∈ Ḟ∞. Let supp g ∈ Bj . Consider the function

g̃(x) =

(
g(x) −

N∑
i=1

〈g, vi〉ei(x)
)
ωδ(x − yj).

We show that its norm in F∞ is independent of j. We note first of all that ωδ(x−yj)
is bounded in Bj together with all derivatives independently of j. Therefore

‖g(x)ωδ(x− yj)‖F∞ ≤ C‖g(x)‖F∞

with a positive constant C independent of j. We use here that the norm of the
multiplier in Ω and ∂Ω can be estimated by the norm in Ck. Taking (3.24) into
account, we obtain

|〈g, vi〉| = |〈g, ψjvi〉| ≤ C sup
x

|ω−µ(x)ψj | ‖g‖F∞,

where ψj = ψ(x−yj) is a function with a finite support equal to 1 in Bj , vi ∈ E(Ω).
We have

sup
x

|ω−µ(x)ψj | ≤ sup
x

|ω−µ(x+ yj)ψ(x)| ≤ Cω−µ(yj)

with C independent of j. For δ ≤ µ the product ω−µ(yj)ωδ(x − yj) is bounded
independently of yj ∈ Rn and of x ∈ supp ei(x). Hence ‖g̃‖F∞ ≤ C‖g‖F∞ , where
the constant C depends on the diameter of the supports of ei but is independent
of j.

Since u is a solution of equation (4.3), then ũ = Sδu is a solution of the
equation

Lδũ = g̃, (4.4)

where Lδ = SδLS−δ, and Sδ is the operator of multiplication by ωδ(x − yj). On
the other hand, Lδ = L + δK, where K is a bounded operator, ‖K‖ ≤ C, where
C does not depend on j and on δ for δ sufficiently small. By virtue of Lemma 4.1
the solution of (4.4), which belongs to the subspace supplementary to the kernel
of the operator L, admits the estimate

‖ũ‖E∞ ≤ C1‖g̃‖F∞ ≤ C2‖g‖F∞

independent of j. Let δ = δ1 + δ2, where δ1 and δ2 are positive. Then

‖u(x)ωδ1(x− yj)‖Eq = ‖ũ(x)ω−δ2 (x− yj)‖Eq ≤ C3‖ũ(x)‖E∞ ≤ C4‖g‖F∞ .

Applying this estimate to equation (4.1), we obtain

‖u(x)ωδ1(x− yj)‖Eq ≤ C5‖fθj‖F∞ ≤ C6‖fθj‖F .

The lemma is proved. �
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Assumption 4.3. Let uj ∈ Eq, j = 1, 2, . . . , and

∞∑
j=1

‖uj ωδ(x− yj)‖qEq
<∞.

Then the series u =
∑∞

j=1 uj is convergent, and the following estimate holds:

‖u‖qEq
≤ C

∞∑
j=1

‖uj ωδ(x− yj)‖qEq
. (4.5)

If this assumption is satisfied, then from the estimate in Lemma 4.2 we obtain
‖u‖Eq ≤ C‖f‖Fq . Therefore for any f ∈ Fq(⊂ F∞) there exists a solution u ∈ Eq
of the equation

Lu = f −
N∑
i=1

〈f, vi〉ei. (4.6)

From this follows that the operator Lq is normally solvable and the codimension of
its image is finite. Its kernel is also finite dimensional since it is true for the operator
L∞. Hence Lq is a Fredholm operator. We note that estimate (4.5) characterizes
the function spaces and is not related to the operators under consideration. It was
proved in Section 5 of Chapter 5 that it is satisfied for Sobolev spaces.

Suppose that l ≥ 2m is an integer, and 1 < p < ∞. Then the following
theorem holds.

Theorem 4.4. Let Conditions NS and NS∗ be satisfied. Then for f ∈W l−2m,p(Ω)×
Πm
j=1W

l−sj−1/p,p(Γ) the problem Lu = f has a solution u ∈ W l,p(Ω) if and only
if 〈f, v〉 = 0 for any v ∈ N̂ .

Let us now show that the Fredholm property holds not only for q = p but
also for q ≤ p. We will verify Assumption 4.3. Let E = Lp, Eq = (Lp)q. Then

‖u‖qEq
=
∑
j

‖φju‖qLp .

If u =
∑
i ui, then from Lemma 5.7 of Chapter 5,

‖φju‖pLp ≤ C
∑
i

‖φjuiωδ(x− yi)‖pLp .

From this estimate and the previous equality we have

‖u‖qEq
≤ Cq/p

∑
j

(∑
i

‖φjuiωδ(x− yi)‖pLp

)q/p
.
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On the other hand,
∑
i

‖uiωδ(x− yi)‖qEq
=
∑
i

∑
j

‖φjuiωδ(x− yi)‖qLp .

Therefore, to verify Assumption 4.3 it is sufficient to verify the estimate
(∑

i

‖φjuiωδ(x− yi)‖pLp

)q/p
≤
∑
i

‖φjuiωδ(x− yi)‖qLp .

It is satisfied if q ≤ p (see Lemma 5.7 of Chapter 5). This proves Theorem 1.3. �

5 Smoothness of solutions

Denote by C∞
B (Ω) the class of infinitely differentiable functions defined in Ω and

such that, for any multi-index α,

sup
x∈Ω

|Dαu(x)| <∞.

Similarly C∞
B (Γ) is the class of functions defined on the boundary Γ of Ω, all of

whose derivatives are bounded. Consider elliptic problem (1.1). It is not supposed
here to be regular.

Theorem 5.1. If u ∈ W l,p
q (Ω) (l ≥ 2m, 1 < p < ∞, 1 ≤ q ≤ ∞) is a solution of

problem (1.1), and f0 ∈ C∞
B (Ω), fj ∈ C∞

B (Γ) (j = 1, . . . ,m), then u ∈ C∞
B (Ω).

Proof. Since W l,p
q (Ω) ⊂ W l,p

∞ (Ω), it suffices to consider q = ∞. The following
estimate is proved in Chapter 3:

‖u‖Wk,p
∞ (Ω) ≤ ckp


‖f0‖Wk−2m,p

∞ (Ω) +
∑
j

‖fj‖
W

k−sj−1/p,p
∞ (Γ)

+ ‖u‖Lp
∞(Ω)


 (5.1)

for any k ≥ l. We recall that the coefficients and the boundary of the domain are
supposed to be infinitely differentiable. Since f0 ∈ C∞

B (Ω) and fj ∈ C∞
B (Γ), we

get
‖u‖

Wk,p
∞ (Ω) ≤Mkp, ∀k ≥ l.

Let α be an arbitrary multi-index and k > n/p. Then by the Sobolev embedding
theorem we have

sup
x∈Ω

|Dαv(x)| ≤ c|α|,k,p‖v‖W |α|+k,p(Ω), ∀v ∈ W |α|+k,p(Ω).

It follows from Definition 1.1 that

‖u‖
W

|α|+k,p
∞ (Ω)

= sup
y∈Ω

‖u(·)ω(· − y)‖W |α|+k,p(Ω).
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Hence for any y ∈ Ω we have

sup
x∈Ω

|Dα
x (u(x)ω(x − y))| ≤ Cα,

where the constant Cα does not depend on y. In particular, for y = x we get

sup
x∈Ω

|Dα
xu(x)| ≤ Cα.

The theorem is proved. �

It follows from this theorem that Conditions NS and NS∗ can be formulated in
the following equivalent form where the spaces are different in comparison with
the definitions in Section 1.

Condition NS. Any limiting problem

L̂u = 0, x ∈ Ω∗, u ∈ C∞
B (Ω∗)

has only the zero solution.

Condition NS∗. Any limiting problem

L̂∗v = 0, x ∈ Ω∗, v ∈ C∞
B (Ω∗)

has only the zero solution.

Corollary 5.2. Let Condition NS be satisfied. Then any solution u ∈ W l,p
q (Ω) of

the problem Lu = 0 belongs to the space E(Ω̄). Here 1 < p <∞, 1 ≤ q ≤ ∞, E(Ω̄)
is introduced in Section 1.

The proof follows from Corollary 1.6 if we use the estimates from the proof of
Theorem 5.1.

6 Examples

Scalar operators. Formally adjoint problems are introduced in this chapter for
scalar elliptic operators by means of Green’s formula. If the boundary operators
Bj, j = 1, . . . ,m form a normal system, then the formally adjoint problem can be
defined. In some cases, boundary operators of the formally adjoint problem can
be determined more explicitly. In the case of the Dirichlet boundary conditions,

Bju =
∂j−1u

∂nj−1
, j = 1, . . . ,m,

where n is an interior normal vector, there exists a formally adjoint operator also
with the Dirichlet boundary conditions [318].

There are other examples and particular cases where formally adjoint op-
erators can be easily determined. For example, the Laplace operator with the
Neumann boundary condition is formally self-adjoint. In the case of the Laplace
operator with oblique derivative, the formally adjoint operator may not be defined.
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Vector operators in Rn. Some results of this chapter can be generalized for some
classes of vector operators, in particular, for operators in Rn. Following [361], [362],
consider uniformly elliptic operators in the sense of Petrovskii,

Lu =
∑
|p|≤r

Ap(x)Dpu,

where Ap(x) are real matrix functions with their elements in Cr+α(Rn), 0 < α < 1,

inf
x,ξ∈Rn,|ξ|=

∣∣∣∣∣∣det
∑
|p|=r

Ap(x)ξp

∣∣∣∣∣∣ > 0.

The operator L acts from Hr(Rn) into H0(Rn) = L2(Rn). The formally adjoint
operator is given by the formula

L∗v =
∑
|p|≤r

(−1)|p|Dp(ATp (x)v),

where the superscript T indicates the transposed matrices. This operator acts in
the same spaces as the operator L.

Limiting operators L̂ and L̂∗ for the direct and for the formally adjoint
operators are defined in the usual way. If all limiting equations L̂u = 0 and L̂∗v = 0
have only zero solutions in the space H0∞(Rn), then the operator L satisfies the
Fredholm property and the equation Lu = f where f ∈ H0

∞(Rn) is solvable if and
only if ∫

Rn

(f, v)dx = 0

for any solution v ∈ Hr(Rn) of the equation L∗v = 0.

Solvability conditions with formally adjoint operators. In the case where a for-
mally adjoint operator can be defined, it allows a more explicit formulation of
solvability conditions. It is discussed in this chapter for general scalar elliptic prob-
lems. A simpler approach can be developed under some additional conditions. We
assume that an elliptic operator L has a formally adjoint operator L∗, that both
of them satisfy the Fredholm property, and that the sum of their indices equals
zero. Both operators L and L∗ act from a space E into another space F . Here E
and F are some Sobolev or Hölder spaces specific for elliptic problems. Denote by
α the dimension of the kernel and by β the codimension of the image, κ = α−β is
the index. For simplicity of presentation, we restrict ourselves to operators in R

n

in order not to deal with boundary operators, and consider spaces of real-valued
functions.

Lemma 6.1. β(L) ≥ α(L∗).



6. Examples 249

Proof. The equation
Lu = f (6.1)

is solvable for some f ∈ F if and only if

φi(f) = 0, i = 1, . . . , β(L), (6.2)

where φi are some linearly independent functionals from the dual space F ∗. Con-
sider the functionals

ψj(f) =
∫

Ω

f(x)vj(x)dx, j = 1, . . . , α(L∗),

where uj are linearly independent solutions of the equation L∗v = 0. The integrals
here are well defined since the functions vj are exponentially decreasing at infinity.
Obviously, ψj ∈ F ∗. If β(L) < α(L∗), then among the functionals ψj there exists
at least one, which is linearly independent with respect to the functional φi. Let it
be for example ψ1. Then there exists a function f ∈ F such that conditions (6.2)
are satisfied but ψ1(f) �= 0. Multiplying (6.1) by v1 and integrating, we obtain a
contradiction. The lemma is proved. �

We recall that L is a formally adjoint operator of the operator L∗. Hence,
similarly to Lemma 6.1, it can be proved that β(L∗) ≥ α(L). Therefore κ(L) +
κ(L∗) ≤ 0. If we suppose that

κ(L) + κ(L∗) = 0, (6.3)

then β(L) = α(L∗), β(L∗) = α(L).

Theorem 6.2. Suppose that condition (6.3) is satisfied. Then equation (6.1) is
solvable if and only if

∫
Ω

f(x)vj(x)dx = 0, j = 1, . . . , α(L∗),

where vj are linearly independent solutions of the equation L∗v = 0.

Proof. Consider two subspaces of the space F ∗. One of them is formed by the func-
tionals ψj defined in the proof of Lemma 6.1, and another one by the functionals
φj . From Lemma 6.1 it follows that their dimensions are equal to each other. It
remains to conclude that they coincide. Indeed, otherwise we would obtain the
same contradiction with the solvability of equation (6.1) as in the proof of the
lemma. The theorem is proved. �

We illustrate this result and show how it can be adapted for problems in
domains. Consider the scalar second-order operator

Lu = ∆u+
n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u
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with sufficiently smooth coefficients. Instead of the whole Rn, we consider a domain
Ω, with a sufficiently smooth boundary, and the Dirichlet boundary conditions.
We do not consider the boundary operators but take into account the boundary
condition in the definition of function spaces. In the case of Hölder spaces, the
operator L can be considered as acting from the space

E = {u ∈ C2+δ(Ω̄), u |∂Ω= 0}

into the space F = Cδ(Ω̄). Denote by L∗ the formally adjoint operator,

L∗u = ∆u−
n∑
i=1

∂(bi(x)u)
∂xi

+ c(x)u

acting in the same spaces.
If the domain Ω is bounded, then both operators L and L∗ satisfy the Fred-

holm property with zero index. The solvability conditions can be formulated in
terms of orthogonality to solutions of the homogeneous formally adjoint equation.
If the domain is unbounded, then we need to impose the additional condition on
limiting operators. If we suppose for example that the function c(x) is negative at
infinity, that is c(x) ≤ c0 < 0 for |x| ≥ R and some positive R, then it can be ver-
ified that all limiting equations have only zero solutions. Therefore, the Fredholm
property is satisfied. Moreover, since it is also satisfied for the operator L− λ for
any positive λ, and it is invertible for λ sufficiently large (Chapter 7), then the
index of the operator L equals zero. The same is true for the operator L∗. The
theorem formulated above is applicable.



Chapter 7

Elliptic Problems
with a Parameter

In this chapter we study general elliptic problems with a parameter for mixed-order
systems in unbounded domains Ω ⊂ Rn:

A(x, λ,D)u = f, x ∈ Ω, (0.1)
B(x, λ,D)u = g, x ∈ ∂Ω. (0.2)

Precise definitions are given below. We will obtain a priori estimates of solutions
and will prove the existence and the uniqueness of solutions for λ in a given sector
S, and |λ| ≥ λ0 > 0.

Elliptic problems with a parameter form an important class of elliptic prob-
lems because it is possible to prove for them the existence and the uniqueness of
solutions. As it is well known, they are also used to study evolution problems.
Moreover, it turns out that parameter-elliptic problems may be applied to study
the Fredholm property of general elliptic problems in unbounded domains. It was
proved in previous chapters that a general elliptic partial differential operator is
Fredholm if its limiting operators at infinity are invertible. This is why we intro-
duce here a new class of operators – elliptic operators with a parameter at infinity.
They will be invertible for λ ∈ S, |λ| ≥ λ0 and some λ0 > 0. It follows that elliptic
operators in domain Ω, which are parameter-elliptic at infinity, are Fredholm for
λ ∈ S, |λ| ≥ λ0. Obviously, any parameter-elliptic operator in the domain Ω is also
parameter-elliptic at infinity but the corresponding values of λ0 are different. This
is essential in the analysis of the location of the Fredholm spectrum. We note also
that the parameter-ellipticity at infinity plays an essential role in the index theory
for elliptic operators in unbounded domains (see the next chapter).

We will use the Agranovich-Vishik method adapted for unbounded domains.
We obtain these results not directly in Sobolev spaces but in the scale of spaces

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_7, © Springer Basel AG 2011 
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W l,p
q (1 < p < ∞, 1 ≤ q ≤ ∞). The space W l,p

q coincides with the Sobolev space
W l,p for q = p (1 < p < ∞) and with the Sobolev-Stepanov space for q = ∞,
1 < p <∞. For arbitrary domains Ω ⊂ Rn with Ck+α boundary we obtain a priori
estimates in the spaces W l,p

q (1 ≤ q ≤ ∞) and construct the inverse operator first
for the case q = ∞. Then we use this result to prove an existence theorem for the
case q < ∞. For this we consider functions f and g in (0.1), (0.2) with compact
supports. The set of such functions is dense in the case q < ∞. It is known (see
Chapters 4 and 5) that any solution u ∈W l,p

∞ of (0.1), (0.2) with such f, g decays
exponentially at infinity and hence belongs to W l,p

q (q <∞). From this and a priori
estimates we obtain the desired existence result.

1 Parameter-elliptic boundary value problems

Consider the matrix operator A(x, λ,D) with elements

Aij(x, λ,D) =
∑

|α|+β≤αij

aαβij (x)λβDα, i, j = 1, . . . , N

in an unbounded domain Ω, and the boundary operator B(x, λ,D) with elements

Bkj(x, λ,D) =
∑

|α|+β≤βkj

bαβkj (x)λβDα, k = 1, . . . , r, j = 1, . . . , N.

Consider a sector S of the complex plane,

S = {λ : σ1 ≤ arg λ ≤ σ2},

where we do not exclude the case σ1 = σ2. For each fixed λ ∈ S, let the operator
L = (A,B) be an elliptic operator in the Douglis-Nirenberg sense. We recall that
this implies the existence of some integers si, tj , σk such that

si + tj = αij , σk + tj = βkj .

We suppose that the coefficients of the operator are defined for x ∈ Rn and

aαβij (x) ∈ Cl−si+θ(Rn), bαβkj (x) ∈ Cl−σk+θ(Rn), 0 < θ < 1.

We also assume that the domain Ω satisfies the following condition.

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with radius δ and center x0, where δ is independent
of x0.

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in R

n such that the images of Ω
⋂
U(x0) and
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∂Ω ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively.

3. The function ψ(x;x0) and its inverse belong to the Hölder space Cm0+θ,
0 < θ < 1, m0 = maxi,j,k(l + ti, l − sj, l − σk). Their ‖ · ‖m0+θ-norms are
bounded uniformly in x0.

It can be proved that this condition is satisfied if and only if the domain is
uniformly regular in the sense of [87]. The operator L is supposed to be uniformly
elliptic with a parameter (see Definition 1.2 below). For any x ∈ Ω̄ consider the
matrix A(x, λ, ξ) with elements

Aij(x, λ, ξ) =
∑

|α|+β≤αij

aαβij (x)λβξα, i, j = 1, . . . , N,

where ξ = (ξ1, . . . , ξn). For any x ∈ ∂Ω consider the local coordinates (ξ′, ν),
where ξ′ = (ξ1, . . . , ξn−1) are the coordinates in the tangential hyperspace, ν is
the normal coordinate. Let A(λ, ξ′, ν) andB(λ, ξ′, ν) be the matrices with elements

Aij(λ, ξ′, ν) =
∑

|α′|+αn+β=αij

aα
′αnβ
ij λβξ′α

′
ναn , i, j = 1, . . . , N,

Bij(λ, ξ′, ν) =
∑

|α′|+αn+β=βij

bα
′αnβ
ij λβξ′α

′
ναn , i = 1, . . . , r, , j = 1, . . . , N

(the dependence of the coefficients on x is not indicated). We recall that the
Lopatinskii matrix is given by the equality

Λ(λ, ξ′) =
∫
γ+

B(λ, ξ′, µ)A−1(λ, ξ′, µ)Φ(µ)dµ,

where
Φ(µ) = (E, µE, . . . , µs−1E),

E is the identity matrix of the order N , s = maxi,j αij , γ+ is a Jordan curve
in the half-plane Imµ > 0 enclosing all the roots of det A(λ, ξ′, µ) with positive
imaginary parts. By virtue of the condition of proper ellipticity there are r such
roots, and there are no roots on the real axis. The Lopatinskii condition implies
that the rank of the matrix Λ(λ, ξ′) equals r for all |ξ′| �= 0.

We will use the following notation:

e0d = inf
x∈Ω,|ξ|=1

| detA(x, 0, ξ)|,

ed = inf
x∈Ω,|ξ|+|λ|=1,λ∈S

| detA(x, λ, ξ)|,

Md = max
|α|+β≤αij,i,j=1,...,N

‖aαβij ‖Cl−si(Ω),
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MΓ = max
|α|+β≤βij,i=1,...,r,j=1,...,N

‖bαβij ‖Cl−σi (Γ),

e0Γ = inf
x∈Γ,|ξ′|=1

∑
α

|µα(x, 0, ξ′)|,

eΓ = inf
x∈Γ,|ξ′|+|λ|=1,λ∈S

∑
α

|µα(x, λ, ξ′)|,

where µα(x, ξ′) are all r-minors of the Lopatinskii matrix in the local coordinates
(ξ′, ν) at the point x.

Definition 1.1. The operator L(x, 0, D) is called uniformly elliptic if e0d > 0, e0Γ >
0, Md <∞, MΓ <∞.

Definition 1.2. The operator L(x, λ,D) is called uniformly elliptic with a parameter
if ed > 0, eΓ > 0, Md <∞, MΓ <∞.

2 Spaces

We consider the following function spaces:

E(Ω) = ΠN
i=1W

l+tj ,p(Ω),

F d(Ω) = ΠN
j=1W

l−si,p(Ω),

F b(∂Ω) = Πr
k=1W

l−σk−1/p,p(∂Ω)
and

F = F d × F b.

The operator L can be considered as acting from E to F . In the case of unbounded
domains it is convenient to use the spaces Eq, 1 ≤ q ≤ ∞ introduced in Chapter 2.
Their norms are given by the equalities

‖u‖E∞(Ω) = sup
i

‖φiu‖E(Ω),

‖u‖Eq(Ω) =

(∑
i

‖φiu‖qE(Ω)

)1/q

, 1 ≤ q <∞.

We define similarly the spaces Fq, 1 ≤ q ≤ ∞. Here φi is a system of functions
satisfying Condition 2.5 (Chapter 2) which we re-state here.

Condition 2.5 (Chapter 2). System of functions φi satisfies the following conditions:

1. φi(x) ≥ 0, φi ∈ D.
2. For any i there exists no more than N functions φj such that suppφj ∩

suppφi �= �.
3. supi ‖φi‖M <∞.
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4. φ(x) =
∑∞
i=1 φi(x) ≥ m > 0 for some constant m.

5. The following estimate holds: supx |Dαφ(x)| ≤ Mα, where Dα denotes the
operator of differentiation, and Mα are positive constants.

Here ‖φ‖M is the norm of a multiplier φ: ‖φu‖E ≤ ‖φ‖M ‖u‖E, ∀u ∈ E. For
E = W s,p it is known that ‖φ‖M ≤ ‖φ‖C[|s|]+1, where K is a positive constant.
For partitions of unity {φi} we always suppose that supi ‖φi‖M <∞.

To study operators with a parameter, following [13] and [457] we introduce
the norm

‖|u‖|W l,p(Rn) = ‖F−1(1 + |ξ|2 + |λ|2)l/2Fu‖Lp(Rn),

where F denotes the Fourier transform, ξ = (ξ1, . . . , ξn). For λ = 0 this norm is
the usual W l,p norm, for any λ fixed these norms are equivalent. On the other
hand, the norm ‖| · ‖|W l,p(Rn) is equivalent to the norm

[u]W l,p(Rn) = ‖u‖W l,p(Rn) + |λ|l‖u‖Lp(Rn).

The proof uses Mikhlin’s theorem. It is also used to prove the following assertion
(cf. [13] and [457]).

Proposition 2.1. (Interpolation inequality.) The estimate

|λ|l−k‖|u‖|Wk,p(Rn) ≤ ckl‖|u‖|W l,p(Rn) (2.1)

holds for any u ∈ W l,p(Rn), 0 ≤ k ≤ l with some constants ckl that depend on
k, l, n, and p only.

To define the ‖| · ‖|-norm in domains we put

‖|u‖|W l,p(Ω) = inf ‖|uc‖|W l,p(Rn),

where the infimum is taken with respect to all uc ∈ W l,p(Rn) such that the
restriction of uc(x) to Ω coincides with u(x).

Proposition 2.2. (Interpolation inequality.) The estimate

|λ|l−k‖|u‖|Wk,p(Ω) ≤ ckl‖|u‖|W l,p(Ω) (2.2)

holds for any u ∈ W l,p(Ω), 0 ≤ k ≤ l with the same constants ckl as in Proposition
2.1.

Proposition 2.3. The estimate

‖|Dαu‖|W l,p(Ω) ≤ c‖|u‖|W l+|α|,p(Ω) (2.3)

holds for any u ∈W l+|α|,p(Ω) with a constant c independent of u and λ.
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We consider next the spaces W l−1/p,p(∂Ω) with an integer l ≥ 1, 1 < p <∞.
We introduce the norm

‖|φ‖|W l−1/p,p(∂Ω) = inf ‖|u‖|W l,p(Ω),

where the infimum is taken over all u ∈ W l,p(Ω) such that the restriction of u to
∂Ω coincides with φ.

Proposition 2.4. (Interpolation inequality.) The estimate

|λ|l−k‖|φ‖|Wk−1/p,p(∂Ω) ≤ ckl‖|φ‖|W l−1/p,p(∂Ω) (2.4)

holds for any φ ∈ W l−1/p,p(∂Ω), 1 ≤ k ≤ l with the same constants ckl as in
Proposition 2.1.

We define next the ‖| · ‖|-norms for the ∞-spaces. Let φi be a system of
functions satisfying Condition 2.5 (Chapter 2). We put

‖|u‖|W l,p
∞ (Ω) = sup

i
‖|φiu‖|W l,p(Ω), ∀u ∈ W l,p

∞ (Ω).

We note that ‖|u‖|W l,p
∞ (Ω) <∞. It follows from the estimate

‖|φiu‖|W l,p(Ω) ≤ c(λ)‖φiu‖W l,p(Ω)

that holds for any λ.

Proposition 2.5. Let φ1
i and φ2

i be two equivalent systems of functions satisfying
Condition 2.5 (Chapter 2). Then the norms ‖| · ‖|1

W l,p
∞ (Ω)

and ‖| · ‖|2
W l,p

∞ (Ω)
corre-

sponding to these systems of functions are equivalent:

c1‖|u‖|2W l,p
∞ (Ω)

≤ ‖|u‖|1
W l,p

∞ (Ω)
≤ c2‖|u‖|2W l,p

∞ (Ω)
.

Here c1 and c2 are positive constants independent of λ.

This proposition remains similar for the space W l−1/p,p
∞ (∂Ω).

3 Model problem in Rn

Consider the equation with constant coefficients A(D,λ)u = f in Rn. Applying
the Fourier transform, we obtain A(ξ, λ)ũ(ξ) = f̃(ξ). We use a tilde to denote a
Fourier transform as well as the letter F . Hence

ũ(ξ) = A−1(ξ, λ)f̃(ξ). (3.1)
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In the notations of the previous section we have

‖|u‖|E(Rn) =
N∑
j=1

‖F−1(1 + |ξ|2 + |λ|2)(l+tj)/2Fuj‖Lp(Rn),

‖|f‖|Fd(Rn) =
N∑
j=i

‖F−1(1 + |ξ|2 + |λ|2)(l−si)/2Ffi‖Lp(Rn).

Set µ =
√

1 + |ξ|2 + |λ|2. We have (cf. [542])

A(µξ, µλ) = S(µ)A(ξ, λ)T (µ),

‖|u‖|E(Rn) = ‖F−1µlT (µ)Fu‖Lp(Rn), ‖|f‖|Fd(Rn) = ‖F−1µlS−1(µ)Fu‖Lp(Rn),

where
S(ρ) = (δijρsi), T (ρ) = (δijρtj )

are diagonal matrices. From (3.1)

F−1µlT (µ)Fu = F−1T (µ)A−1(λ, ξ)S(µ)FF−1µlS−1(µ)Ff. (3.2)

With the notation

Φ(ξ) = T (µ)A−1(λ, ξ)S(µ), v(x) = F−1µlS−1(µ)Ff

we rewrite (3.2) as
F−1µlT (µ)Fu = F−1Φ(ξ)Fv.

Hence
‖|u‖|E(Rn) = ‖F−1Φ(ξ)Fv‖Lp(Rn). (3.3)

We note that

Φ(ξ) = A−1

(
λ

µ
,
ξ

µ

)

and

∆(ξ) ≡ detA
(
λ

µ
,
ξ

µ

)
≥
( |λ|
µ

+
|ξ|
µ

)σ
ed,

where σ = s1 + · · · + sN + t1 + · · · + tN . Taking into account that, for λ ≥ λ0,

|λ| + |ξ|
µ

≥ λ1 ≡ λ0√
1 + |λ0|2

,

we obtain
∆(ξ) ≥ λσ1 ed.

It can be verified that

ξαDαΦik(ξ) = P

(
λ

µ
,
ξ

µ

)
∆−m(ξ),
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where Φik(ξ) are the elements of the matrix Φ(ξ), α is the multi-index from
Mikhlin’s theorem, P is a polynomial, m is a positive integer. Therefore Φik(ξ)
are Fourier multipliers and

|ξαDαΦik(ξ)| ≤ cik
λσ1 e

m
d

with some constants cik. We conclude from (3.3) that

‖|u‖|E(Rn) ≤ c

λσ1 e
m
d

‖|f‖|Fd(Rn).

We have proved the following theorem.

Theorem 3.1. The equation

A(D,λ)u = f, u ∈ E, f ∈ F d

has a unique solution u for any λ ∈ S, λ ≥ λ0 > 0. The estimate

‖|u‖|E(Rn) ≤ c

eκd
‖|f‖|Fd(Rn)

holds with some constants c and κ independent of λ and u. The constant c depends
on λ0 and on Md (see Section 1).

4 Model problem in a half-space

Consider the matrix operators A(λ,D) and B(λ,D) with elements

Aij(λ,D) =
∑

|α|+β=αij

aαβij λ
βDα, i, j = 1, . . . , N,

Bkj(λ,D) =
∑

|α|+β=βkj

bαβkj λ
βDα, k = 1, . . . , r, j = 1, . . . , N,

respectively, in the half-space R
n
+ (xn ≥ 0). The coefficients of the operators are

complex numbers. It is supposed that

A(ρξ, ρλ) = S(ρ)A(ξ, λ)T (ρ), B(ρξ, ρλ) = M(ρ)B(ξ, λ)T (ρ), (4.1)

where
S(ρ) = (δijρsi), T (ρ) = (δijρtj ), M(ρ) = (δijρσk)

are diagonal matrices (cf. [542]). We consider the operator L = (A,B) from the
space E into the space F with the ‖| · ‖|-norms (see Section 2).

Proposition 4.1. The operator L : E → F is bounded. The estimate

‖|Lu‖|F ≤ c‖|u‖|E, ∀u ∈ E (4.2)

holds with a constant c independent of u and λ.
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Proof. We have
‖|Lu‖|F = ‖|Au‖|Fd + ‖|Bu‖|F b.

Consider first the operator Au = (A1u, . . . , ANu),

‖|Aiu‖|W l−si,p(Ω) ≤Md

N∑
j=1

∑
|α|+β=αij

|λ|β‖|Dαuj‖|W l−si,p(Ω),

where Md is defined in Section 1. By virtue of Proposition 2.3,

‖|Aiu‖|W l−si,p(Ω) ≤ cMd

N∑
j=1

∑
|α|+β=αij

|λ|β‖|uj‖|W l−si+|α|,p(Ω),

and by the interpolation inequality (Proposition 2.2),

‖|Aiu‖|W l−si,p(Ω) ≤ K1

N∑
j=1

‖|uj‖|W l+tj ,p(Ω).

Hence
‖|Au‖|Fd ≤ K2‖|u‖|E.

Here the constants c, K1 and K2 are independent of u and λ. Similarly,

‖|Bu‖|F b ≤ K3‖|u‖|E.

The last two estimates give (4.2). The proposition is proved. �

Proposition 4.2. The operator L : E∞ → F∞ is bounded. The estimate

‖|Lu‖|F∞ ≤ c‖|u‖|E∞, ∀u ∈ E (4.3)

holds with a constant c independent of u and λ.

Proof. We have
‖|Lu‖|F∞ = ‖|Au‖|Fd∞ + ‖|Bu‖|F b∞ .

Let us consider the first norm in the right-hand side,

‖|Au‖|Fd∞ =
N∑
i=1

‖|Aiu‖|W l−si,p
∞ (Ω)

.

Further, let φk be a partition of unity and ψk(x) = 1 for x ∈ suppφk. Then

‖|φkAiu‖|W l−si,p(Ω) = ‖|φkAi(ψku)‖|W l−si,p(Ω) ≤ c1‖|Ai(ψku)‖|W l−si,p(Ω),
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where c1 = supk ‖φk‖M is independent of λ. Here ‖ · ‖M denotes the norm of
multipliers (see Lemma 4.3 below). From the boundedness of the operator A it
follows that

‖|φkAiψku‖|W l−si,p(Ω) ≤ c2‖|ψku‖|E ≤ c3

N∑
j=1

‖|uj‖|
W

l+tj ,p
∞ (Ω)

= c3‖|u‖|E∞ ,

where c3 does not depend on λ. Taking the supremum with respect to k in the
last estimate and a sum with respect to i, we obtain

‖|Au‖|Fd∞ ≤ c3‖|u‖|E∞ .

The estimates of the boundary operators are similar. The proposition is proved.
�

Lemma 4.3. For any u ∈W l,p,

‖|φu‖|W l,p ≤ c‖φ‖Cl‖|u‖|W l,p ,

where the constant c is independent of φ, u, and λ.

Proof. Consider first the norm [·]. We have

[φu]W l,p = ‖φu‖W l,p + |λ|l‖φu‖Lp ≤ c4‖φ‖Cl‖u‖W l,p + |λ|l‖‖φ‖C‖u‖Lp

≤ (c4 + 1)‖φ‖Cl [u]W l,p ,

where c4 does not depend on φ, u, and λ. It remains to note that the norms [·]
and ‖| · ‖| are equivalent. The lemma is proved. �

Consider the problem

Lu = f, u ∈ E, f ∈ F. (4.4)

The remaining part of this section is devoted to the following theorem.

Theorem 4.4. For any λ ∈ S, λ �= 0 and for any f ∈ F there exists a unique
solution u ∈ E of equation (4.4). If λ ∈ S and |λ| ≥ λ0, where λ0 is an arbitrary
positive number, then the following estimate holds:

‖|u‖|E ≤ c‖|f‖|F (4.5)

with a constant c that depends on the coefficients of the operator L only through
Md,MΓ, ed, eΓ, λ0 and does not depend on λ and f . Here S is a sector in the
complex plane defined in Section 1.
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Proof. We begin the proof of the theorem with some auxiliary results (cf. [542]).
First of all, we write problem (4.4) in the form

Au = fd, u ∈ E, fd ∈ F d, (4.6)

Bu = f b, u ∈ E, f b ∈ F b (4.7)

and reduce problem (4.6), (4.7) to the case where fd = 0. For this consider an
extension f∗(x) of the function fd(x) to Rn such that

f∗ ∈ F d(Rn) = ΠN
i=1W

l−si,p(Rn)
and

‖|f∗‖|Fd(Rn) ≤M‖|fd‖|Fd(Ω), (4.8)

where M is a positive constant. Consider the equation

Au∗ = f∗ in R
n. (4.9)

According to Theorem 3.1 there exists a solution u∗ ∈ Rn of this equation, and
the estimate

‖|u∗‖|E(Rn) ≤ c0‖|f∗‖|Fd(Rn) (4.10)

holds. Here c0 depends on Md, ed (see Section 1), λ0, and does not depend on λ
and u.

Set
v(x) = u(x) − u∗(x), x ∈ Ω(= R

n
+). (4.11)

Then
Av = 0, x ∈ Ω, v ∈ E(Ω),
Bv = g(x, λ), x ∈ ∂Ω,

(4.12)

where
g(x, λ) = f b(x) −B(D,λ)u∗(x).

We have

‖|Bu∗‖|F b(∂Ω) ≤ c1‖|u∗‖|E(Ω) ≤ c2‖|f∗‖|Fd(Rn) ≤ c3‖|fd‖|Fd(Ω).

Hence g ∈ F b(∂Ω) and

‖|g‖|F b(∂Ω) ≤ ‖|f b‖|F b(∂Ω) + c3‖|fd‖|Fd(Ω). (4.13)

Thus we can consider problem (4.12) with g ∈ F b(∂Ω).
We will prove the estimate

‖|v‖|E ≤ c4‖|Bv‖|F b(∂Ω), ∀v ∈ E (4.14)

with a constant c4 independent of v and λ. Estimate (4.5) follows from it.
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Proposition 4.5. If the estimate

‖|u‖|E ≤ c‖|Lu‖|F (4.15)

holds for all u ∈ S(Rn+), then it is true for all u ∈ E with the same constant c.

The proof of this proposition is straightforward. It is based on the boundedness of
the operator L. Therefore it is sufficient to prove estimate (4.14) for v ∈ S(Rn+).
We can assume that in (4.12) g ∈ S(Rn−1). We fulfil the partial Fourier transform
in (4.12) with respect to x′ and use the notation t = xn. We obtain

A(λ, ξ′, Dt)ṽ(λ, ξ′, t) = 0, t > 0, (4.16)
B(λ, ξ′, Dt)ṽ(λ, ξ′, 0) = g̃(λ, ξ′), (4.17)

where A(λ, ξ′, Dt) and B(λ, ξ′, Dt) are the matrices with elements

Aij(λ, ξ′, Dt) =
∑

|α′|+αn+β=αij

aα
′αnβ
ij λβξ′α

′
Dαn
t , i, j = 1, . . . , N,

Bij(λ, ξ′, Dt) =
∑

|α′|+αn+β=βij

bα
′αnβ
ij λβξ′α

′
Dαn
t , i = 1, . . . , r, j = 1, . . . , N.

Denote by ω(λ, ξ′, t) the stable, that is decaying at +∞, solution of the problem

A(λ, ξ′, Dt)ω(λ, ξ′, t) = 0, t > 0, (4.18)
B(λ, ξ′, Dt)ω(λ, ξ′, 0) = I, (4.19)

where I is the identity matrix of order r.

Proposition 4.6. Let the Lopatinskii condition be satisfied. Then the matrix
ω(λ, ξ′, t) can be represented in the form

ω(λ, ξ′, t) =
∫
γ+

eiµtA−1(λ, ξ′, µ)K(λ, ξ′, µ)dµ,

where K(λ, ξ′, µ) is an N × r matrix polynomial with respect to µ, continuous with
respect to λ, ξ′ for |λ|+ |ξ′| > 0 and such that the following homogeneity condition
holds:

K(ρλ, ρξ′, ρµ) = ρ−1S(ρ)K(λ, ξ′, µ)M−1(ρ).

Proof. We recall the definition of the Lopatinskii matrix,

Λ(λ, ξ′) =
∫
γ+

B(λ, ξ′, µ)A−1(λ, ξ′, µ)Φ(µ)dµ,

where
Φ(µ) = (E, µE, . . . , µs−1E)

(see Section 1). For some fixed (λ, ξ′) such that |λ| + ξ′| > 0, λ ∈ S we choose r
columns of the matrix Φ(µ),

H0(µ) = Φ(µ)Ψr



4. Model problem in a half-space 263

such that the matrix

Λ0(λ, ξ′) =
∫
γ+

B(λ, ξ′, µ)A−1(λ, ξ′, µ)H0(µ)dµ

is invertible. Put
K(λ, ξ′, µ) = H0(µ)Λ−1

0 (λ, ξ′).

Then
ω(λ, ξ′, t) =

∫
γ+

eiµtA−1(λ, ξ′, µ)K(λ, ξ′, µ)dµ

is a solution of (4.18), (4.19). Indeed,

A(λ, ξ′, Dt)ω(λ, ξ′, t) =
∫
γ+

eiµtA(λ, ξ′, µ)A−1(λ, ξ′, µ)K(λ, ξ′, µ)dµ

=
∫
γ+

eiµtH0(µ)dµΛ−1
0 (λ, ξ′) = 0,

B(λ, ξ′, Dt)ω(λ, ξ′, t) =
∫
γ+

eiµtB(λ, ξ′, µ)A−1(λ, ξ′, µ)K(λ, ξ′, µ)dµ.

Hence

B(λ, ξ′, Dt)ω(λ, ξ′, t)
∣∣
t=0

=
∫
γ+

B(λ, ξ′, µ)A−1(λ, ξ′, µ)H0(µ)dµΛ−1
0 (λ, ξ′) = I

by virtue of the definition of Λ0.
It remains to verify the homogeneity of the matrix K. We have

Λ0(ρλ, ρξ′) = ρ

∫
γ̃+

B(ρλ, ρξ′, ρζ)A−1(ρλ, ρξ′, ρζ)H0(ρζ)dζ

= ρ

∫
γ̃+

M(ρ)B(λ, ξ′, ζ)T (ρ)T−1(ρ)A−1(λ, ξ′, ζ)S−1(ρ)H0(ρζ)dζ ≡ P.

We use further that H0(ρζ) = H0(ζ)h(ρ), S−1(ρ)H0(ζ) = H0(ζ)D(ρ), where h(ρ)
and D(ρ) are some diagonal matrices,

P = ρM(ρ)Λ0(λ, ξ′)D(ρ)h(ρ).

Hence

K(ρλ, ρξ′, ρµ) = H0(ρµ)Λ−1
0 (ρλ, ρξ′)

= H0(µ)h(ρ)h−1(ρ)D−1(ρ)Λ−1
0 (λ, ξ′)ρ−1M−1(ρ)

= H0(µ)(H0(µ)D(ρ))−1H0(µ)Λ−1
0 (λ, ξ′)ρ−1M−1(ρ)

= S(ρ)K(λ, ξ′, µ)ρ−1M−1(ρ).

The proposition is proved. �
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The solution of problem (4.16), (4.17) has the form

ṽ(λ, ξ′, t) = ω(λ, ξ′, t)g̃(λ, ξ′). (4.20)

We recall that the Lopatinskii matrix Λ(λ, ξ′) is introduced in Section 1. The
Lopatinskii condition for problems with a parameter is formulated as

rankΛ(λ, ξ′) = r ∀λ, ξ′, λ ∈ S, |λ| + |ξ′| > 0.

Proposition 4.7. The Lopatinskii condition is equivalent to the condition eΓ > 0.

The proof of this proposition is based on the fact that any minor of Λ(λ, ξ′) of
order r is a homogeneous function of (λ, ξ′).

Let φ ∈ S(Rn−1
+ ) be an extension of g:

g(λ, x′) = φ(λ, x′, 0). (4.21)

Then from (4.20)
ṽ(λ, ξ′, t) = ω(λ, ξ′, t)φ̃(λ, ξ′, 0).

Hence
v(λ, x) = (F ′)−1(ω(λ, ξ′, t)φ̃(λ, ξ′, 0)), t = xn. (4.22)

Since the elements of the matrix ω(λ, ξ′, t) exponentially decay as t→ ∞, then we
have

ω(λ, ξ′, t)φ̃(λ, ξ′, 0) (4.23)

= −
∫ ∞

0

Dτω(λ, ξ′, t+ τ)φ̃(λ, ξ′, τ)dτ −
∫ ∞

0

ω(λ, ξ′, t+ τ)φ̃(λ, ξ′, τ)dτDτ .

Let M(ρ) = (δijρσi), Q(ξ′) be another diagonal matrix polynomial in ξ′, which
will be specified below. From (4.22), (4.23) we have

Dk
tQ(D′)v(λ, x) = −(T1 + T2), (4.24)

where

T1 = Dk
tQ(D′)(F ′)−1

∫ ∞

0

Dτω(λ, ξ′, t+ τ)φ̃(λ, ξ′, τ)dτ,

T2 = Dk
tQ(D′)(F ′)−1

∫ ∞

0

ω(λ, ξ′, t+ τ)Dτ φ̃(λ, ξ′, τ)dτ.

We can write these expressions in the form

T1 = (F ′)−1

∫ ∞

0

H(λ, ξ′, t+ τ)ã(λ, ξ′, τ)dτ, (4.25)

T2 = (F ′)−1

∫ ∞

0

G(λ, ξ′, t+ τ)b̃(λ, ξ′, τ)dτ, (4.26)
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where
H(λ, ξ′, t) = ρ−lQ(ξ′)Dk+1

t ω(λ, ξ′, t)M(ρ),

G(λ, ξ′, t) = ρ−l+1Q(ξ′)Dk
t ω(λ, ξ′, t)M(ρ),

(4.27)

a(λ, x) = (F ′)−1ρlM−1(ρ)F ′φ,

b(λ, x) = (F ′)−1ρl−1M−1(ρ)F ′Dτφ,
(4.28)

ρ =
√|λ|2 + |ξ′|2.
We will prove that the matrixH(λ, ξ′, t) given by (4.27) is a Fourier multiplier

in Lp(Rn−1) with respect to ξ′. It follows from Proposition 4.6 that

Dk+1
t ω(λ, ξ′, t) =

∫
γ+

µk+1eiµtΦ(λ, ξ′, µ)dµ,

where
Φ(λ, ξ′, µ) = A−1(λ, ξ′, µ)K(λ, ξ′, µ)dµ.

Hence
H(λ, ξ′, t) = ρ−lQ(ξ′)

∫
γ+

µk+1eiµtΦ(λ, ξ′, µ)dµM(ρ), (4.29)

where Q(ξ′) = (δijξ′
γi) is a diagonal matrix, γi are multi-indices.

Put
λ0 =

λ

ρ
, ξ0

′ =
ξ′

ρ
, ζ =

µ

ρ
.

Then |λ0|2 + |ξ0′|2 = 1 and

H(λ, ξ′, t) = ρ−lQ(ξ′)
∫
γ̃+

ρk+1ζk+1eiρζtΦ(ρλ0, ρξ0
′, ρζ)ρdζM(ρ), (4.30)

where γ̃+ is a contour in the half-plane Im ζ > 0 enclosing the zeros ζ of the
polynomial det A(λ0, ξ0

′, ζ) lying in this half-plane. We have

Φ(ρλ0, ρξ0
′, ρζ) = A−1(ρλ0, ρξ0

′, ρζ)K(ρλ0, ρξ0
′, ρζ)

= T−1(ρ)A−1(λ0, ξ0
′, ζ)S−1(ρ)ρ−1S(ρ)K(λ0, ξ0

′, ζ)M−1(ρ)

= ρ−1T−1(ρ)Φ(λ0, ξ0
′, ζ)M−1(ρ). (4.31)

Therefore
H(λ, ξ′, t) = ρ−lQ̂(ρ)ρk+1T−1(ρ)Ψ(λ0, ξ0

′), (4.32)

where
Q̂(ρ) = (δijρ|γi|),

Ψ(λ0, ξ0
′) = Q(ξ0′)

∫
γ̃+

ζk+1eiρζtΦ(λ0, ξ0
′, ζ)dζ.

(4.33)

Set
ω = inf Im ζ, ζ ∈ γ̃+(λ0, ξ0

′), |λ0|2 + |ξ0′|2 = 1, λ0 ∈ S. (4.34)
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It will be proved below that ω > 0. Hence

|eiρζt| ≤ e−ρωt.

To estimate Ψ(λ0, ξ0
′) we introduce the parametric representation of the contour

γ̃+(λ0, ξ0
′) : ζ = ζ(s), 0 ≤ s ≤ lγ . Then

Ψ(λ0, ξ0
′) = Q(ξ0′)

∫ lγ

0

(ζ(s))k+1eiρζ(s)tΦ(λ0, ξ0
′, ζ(s))ζ′(s)ds.

Denote by Ψjm the elements of the matrix Ψ. We have

|Ψjm(λ0, ξ0
′)| ≤ e−ρωt

∫ lγ

0

|(ζ(s))k+1||Φjm(λ0, ξ0
′, ζ(s))||ζ′(s)|ds.

Set

ψ = sup
|λ0|2+|ξ0′|2=1,λ0∈S,j,m

∫ lγ

0

|(ζ(s))k+1||Φjm(λ0, ξ0
′, ζ(s))||ζ′(s)|ds.

Then
|Ψjm(λ0, ξ0

′)| ≤ ψe−ρωt.

From (4.30)

|Hjm(λ, ξ′, t)| ≤ ρ−l+|γj |+k+1−tjψe−ρωt ≤ ρ−l+|γj |+k−tj ψ
ω

1
t
.

Therefore, if
|λ| ≥ λ0 > 0, k + |γj | ≤ l + tj ,

then
|Hjm(λ, ξ′, t)| ≤ 1

λν0

ψ

ω

1
t
,

where ν = l− |γj | − k + tj .

Proposition 4.8. The elements of the matrices H(λ, ξ′, t) and G(λ, ξ′, t) defined in
(4.27) are Fourier multipliers in Lp(Rn−1) with respect to ξ′. The norms of these
multipliers admit the estimates

‖Hjm(λ, ·, t)‖M ≤ K

t
, ‖Gjm(λ, ·, t)‖M ≤ K

t
, (4.35)

where the constant K depends on Md,MΓ, ed, and eΓ only.

The proof of this proposition will be given below. We estimate now T1 and
T2 given by (4.25), (4.26). Let

a = (a1, . . . , am), φ = (φ1, . . . , φm), T1 = (T11, . . . , T1m),

Ajk = (F ′)−1

∫ ∞

0

Hjk(λ, ξ′, t+ τ)F ′ak(λ, ξ′, τ)dτ.
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Then

T1j =
m∑
k=1

Ajk. (4.36)

It follows from Proposition 1.9 (Chapter 3) (cf. [542], Proposition 5.2) that

‖Ajk‖Lp(Rn
+) ≤ cjkK‖ak‖Lp(Rn

+), (4.37)

where K is the constant in (4.35), and cjk are constants independent of the coeffi-
cients of the operators A(D,λ) and B(D,λ) under consideration (we will use the
notation c with subscripts for such constants). It follows from (4.28) that

ak(λ, x) = (F ′)−1(ρl−σkF ′φk) = F−1(ρl−σkFφk). (4.38)

Since we assume that φk ∈ S(Rn+), then it belongs to W l−σk,p(Rn+) and can be
extended to W l−σk,p(Rn) in such a way that

‖|φk‖|W l−σk,p(Rn) ≤ 2‖|φk‖|W l−σk,p(Rn
+) ≤ 4‖|gk‖|W l−σk−1/p,p(Γ) (4.39)

(see (4.21)). In view of (4.38), (4.39) we have for |λ| ≥ λ0 > 0:

‖ak‖Lp(Rn
+) ≤ ‖ak‖Lp(Rn) = ‖F−1(ρl−σkFφk)‖Lp(Rn)

≤ c‖F−1((1 + |ξ|2 + |λ|2)(l−σk)/2Fφk)‖Lp(Rn) = c‖|φk‖|W l−σk,p(Rn).

From (4.36), (4.37), (4.39) and the last estimate we obtain

‖T1j‖Lp(Rn
+) ≤ c1K‖|g‖|F b(Γ), j = 1, . . . , N.

Similarly,
‖T2j‖Lp(Rn

+) ≤ c2K‖|g‖|F b(Γ), j = 1, . . . , N.

By virtue of (4.24),

‖Dk
t (D

′)γjvj(λ, x)‖Lp(Rn
+) ≤ c3K‖|g‖|F b(Γ), j = 1, . . . , N.

We suppose that |γj | + k ≤ l + tj . Therefore

‖vj‖W l+tj ,p(Ω) ≤ c3K‖|g‖|F b(Γ), j = 1, . . . , N. (4.40)

To estimate the norm ‖|vj‖|W l+tj ,p(Ω) it remains to estimate |λ|l+tj‖vj‖Lp(Ω).
We can repeat the same construction as above replacing Q(ξ′) in (4.30) by Q(λ) =
(δij |λ|l+tj ). Then instead of (4.32) we get

H(λ, ξ′, t) = ρ−lQ(λ)ρT−1(ρ)Ψ(λ0, ξ0
′), (4.41)

where Ψ is the same as in (4.33) with k = 0 and Q(ξ′) is replaced by the identity
matrix. It follows that

Hjm(λ, ξ′, t) = ρ−l+1−tjλl+tj Ψjm(λ0, ξ0
′).
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Hence
|Hjm(λ, ξ′, t)| ≤ ρ−l+1−tjλl+tjψe−ρωt ≤ ψ

ω

1
t

since
ρ−l−tjλl+tj ≤ 1, ρe−ρωt ≤ 1

ωt
.

As before we get

|λ|l+tj‖vj‖Lp(Ω) ≤ c4K‖|g‖|F b(Γ), j = 1, . . . , N.

Together with (4.40) this gives

‖|v‖|E(Ω) ≤ c5K‖|g‖|F b(Γ). (4.42)

Proof of Proposition 4.8. We consider the elements of the matrix H(λ, ξ′, t) in the
form

Hij(λ, ξ′, t) = ρ−l+σj |λ|ν(ξ′)γiDk+1
t ψij(λ, ξ′, t), (4.43)

which includes both (4.27) and (4.41). Here

ψij(λ, ξ′, t) =
∫
γ+

eiµtΦij(λ, ξ′, µ)dµ, (4.44)

Φ(λ, ξ′, µ) is the same matrix as in (4.29), and ρ =
√|ξ′|2 + |λ|2. The proof of the

proposition is based on the following lemma.

Lemma 4.9. Consider the function

f(λ, ξ′, t) = λβ(ξ′)α(|λ|2 + |ξ′|2)s/2Dk
t ψ(λ, ξ′, t), (4.45)

where
ψ(λ, ξ′, t) =

∫
γ+(λ,ξ′)

eiµtg(λ, ξ′, µ)dµ, (4.46)

γ+(λ, ξ′) is a contour lying in the half-plane Imµ > 0 and enclosing the zeros µ
of the polynomial det A(λ, ξ′, µ) lying in this half-plane; g(λ, ξ′, µ) is a function
homogeneous with respect to (λ, ξ′, µ) of degree γ, analytic in µ and infinitely
differentiable in ξ′, it is defined in a neighborhood of any point (λ, ξ′); ψ(λ, ξ′, µ)
is infinitely differentiable in ξ′; α is a multi-index, β is an integer, k ≥ 0 is an
integer.

It is supposed that for any multi-index m,

|Dm
ξ′ g(λ0, (ξ0)′, µ)| ≤ Km, ∀µ ∈ γ+(λ0, ξ0) (4.47)

for |(ξ0)′|2 + |λ0|2 = 1, λ0 ∈ S, where Km is a constant which depends on
Md,MΓ, ed, eΓ and does not depend directly on the coefficients of the operators
A and B and on λ. If

|α| + β + s+ k + γ ≤ 0, |λ| ≥ λ0 > 0, (4.48)
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then f(λ, ξ′, µ) is a Fourier multiplier in Lp(Rn−1) with respect to ξ′. The norm
of the multiplier admits the estimate

‖f(λ, ·, t)‖M ≤ K

t
, (4.49)

where K is a constant which depends on Md,MΓ, ed, eΓ and does not depend di-
rectly on the coefficients of the operators A and B and on λ.

Proof. We fix a point λ0, (ξ0)′ such that |(ξ0)′|2 + |λ0|2 = 1, λ0 ∈ S and put

ξ′ = ρ(ξ0)′, λ = ρλ0, µ = ρζ, ρ =
√
|ξ′|2 + |λ|2.

From (4.46)

ψ(λ, ξ′, t) = ρ

∫
γ̄+

eiρζtg(ρλ0, ρ(ξ0)′, ρζ)dζ,

where γ̄+ is a contour, which encloses all zeros ζ of det A(λ0, (ξ0)′, ζ) lying in
the half-plane Im ζ > 0. According to Lemma 4.10 below, the contour γ̄+ can be
chosen in such a way that it lies in the set

|ζ| ≤ Md

ed
, Im ζ ≥ ω.

Since the function g(λ, ξ′, µ) is homogeneous, we get

ψ(λ, ξ′, t) = ργ+1

∫
γ̄+

eiρζtg(λ0, (ξ0)′, ζ)dζ.

Hence in view of (4.45) and (4.47) with m = 0,

|f(λ, ξ′, t)| ≤ |λ|β |ξ′||α|ρs+k+γ+1e−ρωt
∫
γ̄+

|ζ|k|g(λ0, (ξ0)′, ζ)||ζ′(σ)|dσ

≤ ρ|α|+β+s+k+γK0

ωt

∫
γ̄+

|ζ|k|ζ′(σ)|dσ ≤Mρ|α|+β+s+k+γ 1
t
,

where

M =
K0

ω

∫
γ̄+

|ζ|k|ζ′(σ)|dσ.

It follows from (4.48) that

|f(λ, ξ′, t)| ≤Mλν0
1
t
, (4.50)

where ν = |α| + β + s + k + γ. According to Lemma 4.10 below and condition
(4.47) the constant M depends only on Md,MΓ, ed, eΓ.
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Consider now

ξj
∂f(λ, ξ′, t)

∂ξj
(4.51)

= (αjρ2 + sξ2j )λ
β(ξ′)αρs−2Dk

t ψ(λ, ξ′, t) + λβ(ξ′)αρsξj
∂

∂ξj
Dk
t ψ(λ, ξ′, t).

Obviously, the first term in the right-hand side of the last equality satisfies the
conditions of the lemma. Consider the second term. Set

gj(λ, ξ′, µ) = ξj
∂g(λ, ξ′, µ)

∂ξj
, ψj(λ, ξ′, t) =

∫
γ+(λ,ξ′)

eiµtgj(λ, ξ′, µ)dµ,

fj(λ, ξ′, t) = λβ(ξ′)αρsDk
t ψj(λ, ξ

′, t).

Obviously, fj coincides with the second term in (4.51) since taking the deriva-
tive ∂ψ/∂ξj we can retain the same contour γ+. The function gj is a homogeneous
function of degree γ. It satisfies the estimate of the type (4.47). Therefore the func-
tion fj(λ, ξ′, t) satisfies the conditions of the lemma. Consequently, the functions
ξj
∂f(λ,ξ′,t)

∂ξj
, j = 1, . . . , n − 1 also satisfy them. Hence f satisfies the conditions of

Mikhlin’s theorem, which implies that it is a Fourier multiplier and that estimate
(4.49) holds. The lemma is proved. �

Lemma 4.10. Let
P (z) = a0z

m + · · · + am−1z + am

be an arbitrary polynomial with complex coefficients. Suppose that

|a0| ≥ ed,

m∑
i=0

|ai| ≤ µd, (4.52)

where µd and ed are given positive numbers. Then all roots of the equation P (z) = 0
admit the estimate

|z| ≤ µd
ed

. (4.53)

If in addition P (z) > 0 for all real z, then

| Im z| ≥ ω > 0 (4.54)

for all roots of this polynomial. Here ω is a constant which depends only on µd
and ed.

Proof. Suppose that estimate (4.53) does not hold and

|z| > µd
ed

(> 1). (4.55)
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From the equation we get

z = − 1
a0zm−1

(a1z
m−1 + · · · + am−1z + am).

Therefore (since |z| > 1)

|z| ≤ 1
ed

(|a1| + · · · + |am|) ≤ µd
ed

.

This estimate contradicts (4.55).
Suppose next that (4.54) is not true. Then there is a sequence zk such that

Im zk → 0 and Pk(zk) = 0, where

Pk(z) ≡ ak0z
m + · · · + akm−1z + akm

(the polynomial can depend on k). By virtue of (4.52), (4.53),

m∑
i=0

|ak0 | ≤ µd, |zk| ≤ µd
ed

.

Therefore we can choose convergent subsequences of the roots, zki → z0, Im zki →
0, and of the coefficients, aki

j → a0
j , j = 1, . . . ,m. Passing to the limit in the

equation, we get
a0
0z
m
0 + · · · + a0

m−1z0 + a0
m = 0.

This equality contradicts the condition of the lemma that there are no real roots
of the polynomials. The lemma is proved. �

We return to the proof of Proposition 4.8. We will verify that Lemma 4.9 is
applicable to the functions Hij given by (4.43). We begin with the properties of
the contour γ+(λ, ξ′). After the change of variables ξ′ = ρ(ξ0)′, λ = ρλ0, µ = ρζ,
where |(ξ0)′|2 + |λ0|2 = 1, λ0 ∈ S, it is reduced to the contour γ̄+(λ0, (ξ0)′). We
need to verify that it is bounded and separated from the real axis uniformly in
(λ0, (ξ0)′). For this we should verify the applicability of Lemma 4.10, that is of
condition (4.52) for the polynomial det A(λ0, (ξ0)′, ζ) and that it does not have real
roots. This follows from the conditions on the coefficients of the operator, from the
ellipticity condition and the condition of proper ellipticity (see Section 1). Indeed,
we can write

detA(λ0, (ξ0)′, z) = a0z
m + · · · + am−1z + am.

Then |a0| = | detA(0, 0, 1)| ≥ ed, where ed is determined in Section 1. Since
|λ0| ≤ 1 and |(ξ0)′| ≤ 1, then the coefficients of this polynomial can be estimated
by the coefficients of the operator A, that is by Md.

We study next the properties of the function

g(λ, ξ′, µ) = Φij(λ, ξ′, µ).
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We will verify that it is a homogeneous function of the order γ = −1− ti−σj . We
recall that

Φ(λ, ξ′, µ) = A−1(λ, ξ′, µ)K(λ, ξ′, µ).

By virtue of (4.1) and Proposition 4.6 we have

Φ(ρλ, ρξ′, ρµ) = A−1(ρλ, ρξ′, ρµ)K(ρλ, ρξ′, ρµ)

= T−1(ρ)A−1(ξ, λ)S−1(ρ)ρ−1S(ρ)K(λ, ξ′, µ)M−1(ρ)

= T−1(ρ)Φ(λ, ξ′, µ)ρ−1M−1(ρ).

This equality proves that Φij(λ, ξ′, µ) is a homogeneous function of the order
indicated above. Other conditions of Lemma 4.9 can be easily verified. Proposition
4.8 is proved. �

We can now finish the proof of Theorem 4.4. We have proved estimate (4.14)
for functions from S(Rn+). Then we have estimate (4.5) first for such functions and
then for all functions from E (Proposition 4.5). Existence of solutions for functions
from S(Rn+) can be easily obtained by the Fourier transform. From this and from
the estimates of solutions we obtain the existence for all functions f ∈ F . The
uniqueness of solutions follows from estimate (4.5). The theorem is proved. �

5 Problem in Rn

We consider the operators

Aij(x, λ,D) =
∑

|α|+β=αij

aαβij (x)λβDα, i, j = 1, · · · , N,

where x ∈ Rn, and the matrix A(x, λ,D) with the elements Aij(x, λ,D). Here

aαβij (x) ∈ Cl−si+θ(Rn), 0 < θ < 1.

Theorem 5.1. Suppose that the operator A(0, λ,D) is elliptic. Then there exist
constants ε > 0, λ0 > 0 and K > 0, which depend only on ed and Md, such
that if

|aαβij (x) − aαβij (0)| < ε, i, j = 1, . . . , N, |α| + β = αij

for all x, then for all λ ∈ S, |λ| ≥ λ0 the operator A(x, λ,D) has a right inverse
R, for which the estimate

|||Rf |||E ≤ K |||f |||Fd , ∀f ∈ F d

holds.
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Proof. According to Theorem 3.1 the operator A(0, λ,D) has an inverse R0 and

‖|R0f‖|E ≤ K0‖|f‖|Fd , (5.1)

where the constantK0 = ‖|R0‖| does not depend on f and λ. Consider the operator
A(x, λ,D)R0. We have

A(x, λ,D)R0 = A(0, λ,D)R0 + T = I + T, (5.2)

where I is the identity operator in F d and

T = A(x, λ,D)R0 −A(0, λ,D)R0.

Set u = R0f . The elements of the vector Tf have the form

Tif =
N∑
j=1

∑
|α|+β=αij

(aαβij (x) − aαβij (0))λβDαuj. (5.3)

We need to estimate the norm ‖|Tif‖|W l−si,p . Consider first ‖Tif‖W l−si,p . We have

Dγ(aαβij (x) − aαβij (0))λβDαuj = λβ
∑

τ+σ=γ

cτσD
τ (aαβij (x) − aαβij (0))Dσ+αuj

= λβ(aαβij (x) − aαβij (0))Dγ+αuj + λβ
∑

τ+σ=γ,|τ |>0

cτσD
τaαβij (x)Dσ+αuj .

Hence

‖Dγ(aαβij (x) − aαβij (0))λβDαuj‖Lp (5.4)

≤ |λβ |ε‖Dγ+αuj‖Lp + |λβ |
∑

τ+σ=γ,|τ |>0

|cτσ|‖Dτaαβij (x)Dσ+αuj‖Lp = S1 + S2.

Here |γ| ≤ l − si. We estimate S2:

S2 ≤ ‖aαβij ‖Cl−si |λβ |
∑

|σ|<|γ|
‖Dσ+αuj‖Lp ≤ ‖aαβij ‖Cl−si |λβ |

∑
|σ|<|γ|

‖uj‖W |σ|+|α|,p

≤ ‖aαβij ‖Cl−si

c1
|λ|

∑
|σ|<|γ|

‖|uj‖|Wβ+|σ|+|α|+1,p

by the interpolation inequality. Here and below, c with subscripts denotes con-
stants independent of u, λ, and of the coefficients of the operator. We have

β + |σ| + |α| + 1 ≤ αij + |γ| ≤ αij + l − si = l + tj .

Therefore
S2 ≤ ‖aαβij ‖Cl−si

c2
|λ| ‖|u‖|E.
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Further,

S1 ≤ ε|λ|β‖uj‖W |γ|+|α|,p ≤ εc3‖|uj‖|Wβ+|γ|+|α|,p ≤ εc3‖|uj‖|W l+tj ,p ≤ εc3‖|u‖|E.

From (5.4) we get

‖Dγ(aαβij (x) − aαβij (0))λβDαuj‖Lp ≤ c4

(
ε+

1
|λ| ‖a

αβ
ij ‖Cl−si

)
‖|u‖|E. (5.5)

From this estimate and (5.3) we obtain

‖Tif‖W l−si,p ≤ c5

(
ε+

1
|λ|Md

)
‖|u‖|E. (5.6)

We now estimate the expression |λ|l−si‖Tif‖Lp . We have

|λ|l−si‖(aαβij (x) − aαβij (0))λβDαuj‖Lp ≤ ε|λβ+l−si |‖Dαuj‖Lp

≤ ε|λβ+l−si |‖uj‖W |α|,p ≤ ε‖|uj‖|W |α|+β+l−si,p = ε‖|uj‖|W l+tj ,p .

Therefore
|λ|l−si‖Tif‖Lp ≤ εc6‖|u‖|E. (5.7)

It follows from (5.6), (5.7) that

‖|Tf‖|W l−si,p ≤ c7

(
ε+

1
|λ|Md

)
‖|u‖|E (5.8)

and

‖|Tf‖|Fd ≤ c8

(
ε+

1
|λ|Md

)
‖|u‖|E ≤ c8

(
ε+

1
|λ|Md

)
K0‖|f‖|Fd . (5.9)

Thus, if (
ε+

1
|λ|Md

)
K0 ≤ 1

2c8
, (5.10)

then ‖|T ‖| ≤ 1
2 , the operator I + T is invertible, and ‖|(I + T )−1‖| ≤ 2. From

(5.2),
A(x, λ,D) = (I + T )R−1

0 .

Hence, the operator A(x, λ,D) is invertible,

R = (A(x, λ,D))−1 = R0(I + T )−1, and ‖|R‖| ≤ 2‖|R0‖|.

Since ‖|R0‖| depends only on ed and Md, then ‖|R‖| depends also only on them.
The theorem is proved. �
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6 Problem in R
n
+

We consider the operators A(x, λ,D) and B(x, λ,D) in the half-space R
n
+(xn > 0).

Here A(x, λ,D) is the matrix with elements

Aij(x, λ,D) =
∑

|α|+β=αij

aαβij (x)λβDα, i, j = 1, . . . , N,

B(x, λ,D) is a rectangular matrix with elements

Bij(x, λ,D) =
∑

|α|+β=βij

bαβij (x)λβDα, i = 1, . . . , r, j = 1, . . . , N,

aαβij (x) ∈ Cl−si+θ(Rn+), bαβij (x) ∈ Cl−σi+θ(Rn+), 0 < θ < 1.

Theorem 6.1. Suppose that the operator L(0) = (A(0, λ,D), B(0, λ,D)) is elliptic.
Then there exist constants ε > 0, λ0 > 0 and K > 0, which depend only on
ed, eΓ,Md and MΓ, such that if

|aαβij (x) − aαβij (0)| < ε, x ∈ R
n
+, i, j = 1, . . . , N, |α| + β = αij ,

|bαβij (x) − bαβij (0)| < ε, x ∈ R
n
+, i = 1, . . . , r, j = 1, . . . , N, |α| + β = βij ,

then for all λ ∈ S, |λ| ≥ λ0 the operator L(x) = (A(x, λ,D), B(x, λ,D)) has a
right inverse R, for which the estimate

|||Rf |||E ≤ K |||f |||F , ∀f ∈ F

holds.

Proof. According to Theorem 4.4 the operator L(0) has inverse R0 and

‖|R0f‖|E(Rn
+) ≤ K0‖|f‖|F (Rn

+). (6.1)

Consider the operator

L(x)R0 = L(0)R0 + T = I + T, (6.2)

where I is the identity operator in F and

T = (L(x) − L(0))R0. (6.3)

Set u = R0f . Then

Tf = (L(x) − L(0))u = (A(x, λ,D) −A(0, λ,D), B(x, λ,D) −B(0, λ,D))u.

Similarly as it is done in R
n we get the estimate

‖|A(x, λ,D) −A(0, λ,D)u‖|Fd ≤ c1

(
ε+

1
|λ|Md

)
‖|u‖|E, (6.4)
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where c1 is a constant independent of the coefficients of the operator L(x). In the
same way we obtain a similar estimate for the boundary operator:

‖|B(x, λ,D) −B(0, λ,D)u‖|F b ≤ c2

(
ε+

1
|λ|Mb

)
‖|u‖|E. (6.5)

From (6.4), (6.5),

‖|Tf‖|F ≤ c3

(
ε+

Md +Mb

|λ|
)

‖|f‖|F .

Here c3 is a constant independent of the coefficients of the operator L(x). We
choose ε and λ such that

c3

(
ε+

Md +Mb

|λ|
)

≤ 1
2
.

Then ‖|T ‖| ≤ 1
2 and the inverse operator R = R0(I + T )−1 admits the estimate

‖|R‖| ≤ 2‖|R0‖|. The theorem is proved. �

7 Problem in Ω

Let Ω be an unbounded domain in Rn. It is supposed that Condition D is satis-
fied. We consider the operators A(x, λ,D) and B(x, λ,D) in the domain Ω. Here
A(x, λ,D) is the matrix with elements

Aij(x, λ,D) =
∑

|α|+β≤αij

aαβij (x)λβDα, i, j = 1, . . . , N,

B(x, λ,D) is a rectangular matrix with elements

Bij(x, λ,D) =
∑

|α|+β≤βij

bαβij (x)λβDα, i = 1, . . . , r, j = 1, . . . , N,

aαβij (x) ∈ Cl−si+θ(Rn), bαβij (x) ∈ Cl−σi+θ(Rn), 0 < θ < 1.

Write L = (A,B). We will first consider this operator as acting in ∞-spaces
introduced in Section 2 (see also Chapter 2).

Proposition 7.1. The operator L is a bounded operator from E∞ to F∞. Moreover,

‖|Lu‖|F∞ ≤ K‖|u‖|E∞,

where K is a constant independent of u and λ. This is also true for the spaces E
and F .

The proof of this proposition is similar to the proofs of Propositions 4.1, 4.2.
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Let φi(x) be a partition of unity in Rn, and ψi(x) be a system of functions,
ψi(x) ∈ D such that ψi(x) = 1 in a neighborhood of suppφi(x). We suppose that
φi(x) and ψi(x) satisfy the conditions which are specified for systems of functions
in the construction of spaces Eq. Moreover, we suppose that suppφi either do not
intersect the boundary Γ or belong to a given covering of Γ. Similar assumptions
are made for ψi (cf. [13], p. 86). It is easy to prove that for uniformly regular
domains such systems of functions can be constructed. Moreover, we can suppose
that the support of the function φi(x) is a ball Bi(r) with its center at xi and
radius r, the support of the function ψi(x) is the ball Bi(2r) with the same center
and radius 2r.

Denote by Xi the space E(Ω ∩ Bi(2r)) and by Li the restriction of the
operator L to Xi. The operator Li acts from Xi into Yi = F (Ω ∩ Bi(2r)) =
F d(Ω ∩Bi(2r)) × F b(Ω ∩Bi(2r)). We have

Lu =
∞∑
i=1

φiL(ψiu). (7.1)

By construction, L(ψiu) = Li(ψiu). If the support suppψi is sufficiently small,
then the coefficients of the operator Li are close to constant (cf. [13], p. 86).

We denote next by Li0 the principal part of the operator Li. According to
Theorem 3.1 and Theorem 4.4 there exists λ0 such that for |λ| ≥ λ0 the supports
of the functions ψi can be chosen so small that the operators Li0 have locally right
inverse operators Ri : Yi → Xi, that is

Li0Rif = f, ∀f ∈ Yi.

The norms of the inverse operators ‖|Ri‖|F→E are bounded independently of i. It
is supposed that the boundary of the domain is sufficiently smooth (see Condition
D in Section 1) in order to map the problems under consideration into the problems
in half-spaces.

For any f ∈ F∞, Ri(φif) is defined. Therefore we can introduce the operator

Rf =
∞∑
i=1

ψiRi(φif), f ∈ F∞. (7.2)

This sum contains only a finite number of terms at any x ∈ Ω̄.

Proposition 7.2. The operator R is a bounded operator from F∞ to E∞ with domain
F∞. Moreover,

‖|Rf‖|E∞ ≤ K‖|f‖|F∞,

where K is a constant independent of u and λ. It depends on Md,Mb, ed, eΓ and
the smoothness of the boundary.
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Proof. Set
ui = Ri(φif), f ∈ F∞ (7.3)

and u = Rf . Then

u(x) =
∞∑
i=1

ψi(x)ui(x). (7.4)

Here ui ∈ Xi, ψi(x)ui(x) is defined in Ω and equals 0 outside the set Ω ∩Bi(2r).
It follows from (7.4) that

φku =
∞∑
i=1

φkψiui =
∞∑
i′
φkψi′ui′ ,

where i′ are all values of i such that φkψi �= 0. By virtue of the condition on the
systems of functions the number of such i′ is limited by some number N0. We have

‖|φku‖|E ≤
∞∑
i′

‖|φkψi′ui′‖|E ≤ N0 sup
i

‖|φkψiui‖|E ≤ N0c1 sup
i

‖|ui‖|Xi ,

where the constant
c1 = sup

k
‖|φk‖|M sup

i
‖|ψi‖|M

does not depend on λ. From (7.3)

‖|φku‖|E ≤ N0c1K1 sup
i

‖|φif‖|Yi ≤ N0c1K1‖|f‖|F∞ ,

where
K1 = sup

i
‖|Ri‖|Yi→Xi .

Hence
‖|u‖|E∞ ≤ N0c1K1‖|f‖|F∞.

The proposition is proved. �

It follows from Propositions 7.1, 7.2 that the operator LR is a bounded
operator in F∞ defined on all F∞. Consider the operator T given by the expression

Tf =
∞∑
j=1

∞∑
i=1

φi((Liψjψiui − ψjψiLiui) + ψjψi(Liui − Li0ui)),

where ui is defined by (7.3). The expression in the right-hand side contains a finite
number of terms for every x ∈ Ω̄.

Proposition 7.3.
LRf = f + Tf, ∀f ∈ F∞. (7.5)
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Proof. Let f ∈ F∞, u = Rf . We have from (7.1), (7.4),

Lu =
∞∑
j=1

φjL(ψju) =
∞∑
j=1

φjLj(ψju) =
∞∑
j=1

φj

∞∑
i=1

Ljψjψiui.

The number of terms of this series is finite for each x ∈ Ω̄. We have

Ljψjψiui = Lψjψiui = Liψjψiui.

Hence

Lu =
∞∑
j=1

∞∑
i=1

φjLiψjψiui.

Further

Lψjψiui = Lψjψiui − ψjψiLiui + ψjψi(Liui − Li0ui) + ψjψiLi0ui.

Taking into account (7.3) we get

ψjψiLi0ui = ψjψiLi0Riφif = ψjψiφif = ψjφif.

Therefore

Lu =
∞∑
j=1

∞∑
i=1

φj(Lψjψiui − ψjψiLiui + ψjψi(Liui − Li0ui)) +
∞∑
j=1

∞∑
i=1

φjφif.

The last term in the right-hand side equals f . Thus,

Lu = Tu+ f

almost everywhere. The proposition is proved. �

Proposition 7.4. For λ ∈ S, |λ| > λ0, where λ0 is sufficiently large, the following
estimate holds:

‖|Tf‖|F∞ ≤ K|λ|−1‖|f‖|F∞, ∀f ∈ F∞

with a constant K determined by Md,Mb, ed, eΓ and the smoothness of the bound-
ary (Condition D), and independent of f and λ.

Proof. Consider the operators

T1f =
∞∑
j=1

∞∑
i=1

φj(Liψjψiui − ψjψiLiui),

T2f =
∞∑
j=1

∞∑
i=1

φjψjψi(Liui − Li0ui),
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where ui is defined by (7.3). We get

Tf = T1f + T2f, ∀f ∈ F∞.

Consider first T1f . We have

φkT1f =
∑
j′

∑
i′
φkφj′ (Li′ψj′ψi′ui′ − ψj′ψi′Li′ui′), (7.6)

where i′, j′ are all those values of i, j for which φjφk �= 0 and φiφk �= 0.
Let Ai and Bi be the restrictions of the operators A and B to Xi. Then

Li = (Ai, Bi). It follows from (7.6) that

‖|φkT1f‖|F ≤
∑
j′

∑
i′

‖|φkφj′ (Ai′ψj′ψi′ui′ − ψj′ψi′Ai′ui′)‖|Fd

+
∑
j′

∑
i′

‖|φkφj′ (Bi′ψj′ψi′ui′ − ψj′ψi′Bi′ui′)‖|F b . (7.7)

Set ui = (v1, . . . , vN )T (the subscript i is omitted), ω = ψjψi and consider the
elements of the vector (Aiωui − ωAiui):

N∑
τ=1

∑
|α|+β≤αστ

(
aαβστ (x)λβDα(ωvτ ) − aαβστ (x)λβωDαvτ

)
.

We should estimate them in the norm ‖| · ‖|W l−sσ,p(Ωi), where Ωi = Ω ∩Bi(2r).
We first estimate the ‖ · ‖W l−sσ,p(Ωi) norm:

‖aαβστ (x)λβDα(ωvτ ) − aαβστ (x)λβωDαvτ‖W l−sσ,p(Ωi)

≤ ‖aαβστ (x)‖Cl−sσ |λ|β‖Dα(ωvτ ) − ωDαvτ‖W l−sσ,p(Ωi)

≤M1‖aαβστ (x)‖Cl−sσ |λ|β‖vτ‖W l−sσ+|α|−1,p(Ωi)

≤ c1
M1

|λ| ‖a
αβ
στ (x)‖Cl−sσ ‖vτ‖W l+tτ ,p(Ωi) ≤

M2

|λ| ‖ui‖E(Ωi).

Here c1 is a constant independent of the coefficients of the operator A and B,
M1 is a constant which depends on derivatives of ω. Hence it depends on ε in
Theorems 5.1, 6.1 and, consequently, on Md,Mb, ed, eΓ.

In a similar way we can estimate the norm |λ|l−sσ‖ · ‖Lp(Ω̃). We get the same
estimate as before. Hence

∑
j′

∑
i′

‖|φkφj′ (Ai′ψj′ψi′ui′ − ψj′ψi′Ai′ui′)‖|Fd ≤
∑
j′

∑
i′
c2
M2

|λ| ‖|ui′‖|E(Ωi′),

(7.8)
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where c2 is a constant independent of the coefficients of the operator A and B.
We have

‖|ui‖|Xi = ‖|Ri(φif)‖|Xi ≤ K1‖|φif‖|Yi ≤ c3K1‖|φif‖|F ≤ c3K1‖|f‖|F∞(Ω),

where K1 = supi ‖|Ri‖|Yi→Xi . Since the number of i′ and j′ is bounded by N , the
last estimate together with (7.8) give

∑
j′

∑
i′

‖|φkφj′ (Ai′ψj′ψi′ui′ − ψj′ψi′Ai′ui′)‖|Fd ≤ c4K1
M2

|λ| ‖|f‖|F∞(Ω). (7.9)

We next estimate the operator B. We have as above

‖|bαβντ (x)λβDα(ωvτ ) − bαβντ (x)λβωDαvτ‖|W l−sν,p(Ωi) ≤
M3

|λ| ‖|ui‖|E(Ωi).

Write Ω′
i = ∂Ω ∩ Bi(2r) assuming that this intersection is not empty. Since ‖| ·

‖|W l−sν−1/p,p(Ω′
i)

≤ ‖| · ‖|W l−sν ,p(Ωi), then

‖|bαβντ (x)λβDα(ωvτ ) − bαβντ (x)λβωDαvτ‖|W l−sν−1/p,p(Ω′
i)
≤ M3

|λ| ‖|ui‖|E(Ωi).

Therefore ∑
j′

∑
i′

‖|φkφj′ (Bi′ψj′ψi′ui′ − ψj′ψi′Bi′ui′)‖|F b

≤ c5
M3

|λ| ‖|ui‖|E(Ωi) ≤ c6K1
M3

|λ| ‖|f‖|F∞(Ω) ,

where, as above,M3 depends onMd,Mb, ed, eΓ, c6 is independent of the coefficients
of the operator A and B (this convention about the constants is used also below).
The last estimate together with (7.9) give

‖|φkT1f‖|F (Ω) ≤ c7K1
M2 +M3

|λ| ‖|f‖|F∞(Ω).

Hence
‖|T1f‖|F∞(Ω) ≤ c7K1

M2 +M3

|λ| ‖|f‖|F∞(Ω).

Similarly we obtain the estimate

‖|T2f‖|F∞(Ω) ≤ c8K1
M2 +M3

|λ| ‖|f‖|E∞(Ω).

Therefore,

‖|Tf‖|F∞(Ω) ≤ K

|λ| ‖|f‖|F∞(Ω).

The proposition is proved. �
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Theorem 7.5. There exists λ0 > 0 such that for any λ ∈ S, |λ| ≥ λ0 the equation

Lu = f, u ∈ E∞, f ∈ F∞ (7.10)

is uniquely solvable for any f ∈ F∞. Moreover, the estimate

‖|u‖|E∞ ≤ κ‖|f‖|F∞ (7.11)

holds for the solution u ∈ E∞ of this problem. Here λ0 = 2K, where K is the con-
stant in Proposition 7.4, and hence depends on Md,Mb, ed, eΓ and the smoothness
of the boundary. The constant κ = 2‖|R‖| depends on the same constants and is
independent of λ and f .

Proof. According to (7.5) we have

LR = I + T, (7.12)

where I is the identity operator in F∞. From Proposition 7.4 we get ‖|T ‖| ≤ 1
2 for

λ0 = 2k. Hence the operator I + T is invertible and

‖|(I + T )−1‖| ≤ 2. (7.13)

From (7.12),
LR(I + T )−1f = f, ∀f ∈ F∞.

Write
u = R(I + T )−1f. (7.14)

Then Lu = f . From a priori estimates proved below it follows that the solution
of this equation is unique. Hence any solution has the form (7.14). It follows that
(7.11) holds with κ = 2‖|R‖|. The theorem is proved. �

Lemma 7.6. For any point x0 ∈ Ω̄ there exists a neighborhood U of this point and
a number λ0 > 0 such that for any function u ∈ E(Ω) with the support in U ∩ Ω̄
the following estimate holds:

‖|u‖|E(Ω) ≤ K‖|Lu‖|F (Ω), (7.15)

where |λ| ≥ λ0, λ ∈ S and the constant K does not depend on u and λ.

Proof. The proof of this lemma follows from Theorems 5.1 and 6.1. For a function
φ with its support in U we have, by virtue of these theorems, the estimate

‖|φu‖|E(Ω) ≤ K‖|L(φu)‖|F (Ω), (7.16)

for any u ∈ E∞(Ω). The lemma is proved. �
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Lemma 7.7. For a function φ with its support in U , the following estimate holds:

‖|φu‖|E(Ω) ≤ K1

(
‖|φLu‖|F (Ω) +

1
|λ| ‖|ψu‖|E(Ω)

)
, ∀u ∈ E(Ω), (7.17)

where K1 is a constant independent of u and λ, |λ| ≥ λ0 and λ0 is sufficiently
large. Here ψ ∈ D is such that ψ(x) = 1 for x ∈ suppφ.

Proof. We should estimate the norm ‖|L(φu) − φLu‖|F (Ω). We have

L(φu) − φLu = L(φψu) − φL(ψu).

The required estimate can be obtained in the same way as the estimates in the
proof of Proposition 7.4 (see (7.6)–(7.8)). The lemma is proved. �

Let φi be a system of functions in the definition of the space Eq, 1 ≤ q ≤ ∞,
and ψi(x) = 1 for x ∈ suppφi. Then from (7.17),

‖|φiu‖|E(Ω) ≤ K1

(
‖|φiLu‖|F (Ω) +

1
|λ| ‖|ψiu‖|E(Ω)

)
, ∀u ∈ E(Ω). (7.18)

Let first q = ∞. Taking supremum with respect to i, we get

‖|u‖|E∞(Ω) ≤ K1

(
‖|Lu‖|F∞(Ω) +

c

|λ| ‖|u‖|E∞(Ω)

)
.

The constant c appears as a result of equivalence of the norms E∞ with the systems
of functions φi and ψi. Let |λ| ≥ 2cK1. Then

‖|u‖|E∞(Ω) ≤ 2K1‖|Lu‖|F∞(Ω). (7.19)

Consider now the case 1 ≤ q <∞. From (7.18),

‖|φiu‖|qE(Ω) ≤ 2qKq
1

(
‖|φiLu‖|qF (Ω) +

1
|λ|q ‖|ψiu‖|

q
E(Ω)

)
.

Taking a sum with respect to i, we obtain

‖|u‖|qEq(Ω) ≤ 2qKq
1

(
‖|Lu‖|qFq(Ω) +

cq

|λ|q ‖|u‖|
q
Eq(Ω)

)
.

Let |λ| ≥ 4cK1. Then
(

1 − 1
2q

)
‖|u‖|qEq(Ω) ≤ 2qKq

1‖|Lu‖|qFq(Ω).

Hence
‖|u‖|Eq(Ω) ≤ 4K1‖|Lu‖|Fq(Ω). (7.20)
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We have proved the following theorem.

Theorem 7.8. The following estimate holds:

‖|u‖|Eq(Ω) ≤ 4K1‖|Lu‖|Fq(Ω), u ∈ Eq(Ω), 1 ≤ q ≤ ∞ (7.21)

with the constant K1 from Lemma 7.7, |λ| ≥ λ0 and λ0 is sufficiently large.

We prove next the solvability in the spaces Eq. Consider the equation

Lu = f, u ∈ Eq(Ω), f ∈ Fq(Ω), 1 ≤ q ≤ ∞. (7.22)

Theorem 7.9. If λ ∈ S, |λ| ≥ λ0, then equation (7.22) is uniquely solvable for any
f ∈ Fq.

Proof. From estimate (7.21) it follows that it is sufficient to prove the solvability
of (7.22) for smooth f with compact support. Let f ∈ D(Ω) ×D(Γ). Then from
Theorem 7.5 it follows that there exists a solution u ∈ E∞(Ω) of equation (7.22).
Then (Theorem 2.12, Chapter 4)

u(x) eµ
√

1+|x|2 ∈ E∞(Ω).

Hence u ∈ Eq(Ω). The theorem is proved. �

8 Generation of analytic semigroups

We suppose that the operator A has homogeneous principal terms, that is αij = m
for some m. Let

A(x, λ,D)u =
∑

|α|≤m
aα(x)Dαu− λu, (8.1)

where aα(x) are square N × N matrices and u is a vector. We suppose further
that the boundary operator B(x,D) does not contain the parameter λ. Let

Eq(Ω) = Wm,p
q (Ω), 1 < p <∞, 1 ≤ q ≤ ∞.

It is assumed that the domain of the operator A is

D(A) = {u ∈ Eq(Ω), B(x,D) = 0}.
It is clear that D(A) is dense in Lpq(Ω). Indeed, the set of infinitely differentiable
functions, which vanish at the boundary with their derivatives, is dense in Lpq(Ω).

Assumption 8.1. Suppose that λ = µn in (8.1) and the operator A(x, λ,D) with µ
as a parameter is elliptic with respect to sector S such that the set {µ : Re µm ≥
ω} belongs to S.

Theorem 8.2. Consider the operator A acting in Lpq(Ω) with the domain D(A). If
Assumption 8.1 is satisfied, then it is a generator of an analytic semigroup.
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Proof. It is known that an operator A is sectorial if the resolvent set ρ(A) contains
a half-plane

{λ ∈ C : Re λ ≥ ω} (8.2)

and
‖λR(λ,A)‖ ≤M, Re λ ≥ ω, (8.3)

where R(λ,A) is the resolvent of the operator A, M and ω are some constants. It
follows from Theorem 7.9 that ρ(A) contains the half-plane (8.2) for |µ| sufficiently
large. Estimate (8.3) follows from Theorem 7.8. The theorem is proved. �

9 Elliptic problems with a parameter at infinity

We consider the operators A(x, λ,D) and B(x, λ,D) defined in Section 4. We
suppose that the sector S is given.

Definition 9.1. The operator L(x, λ,D) = (A(x, λ,D), B(x, λ,D)) is elliptic with a
parameter at infinity if it is elliptic for x ∈ Ω̄, λ = 0 and elliptic with a parameter
for x ∈ Ω̄, |x| ≥ R and λ ∈ S, where R is a sufficiently large number.

We will use the following notation:

e0d = inf
x∈G,|ξ|=1

| detA(X, 0, ξ)|,

ed = inf
x∈G,|ξ|+|λ|=1,λ∈S

| detA(X,λ, ξ)|,

Md = max
|α|+β≤αij,i,j=1,...,N

‖aαβij ‖Cl−si (Ḡ),

MΓ = max
|α|+β≤βij,i=1,...,r,j=1,...,N

‖bαβij ‖Cl−σi (G∩Γ),

e0Γ = inf
x∈G∩Γ,|ξ′|=1

∑
α

|µα(x, 0, ξ′)|,

eΓ = inf
x∈G∩Γ,|ξ′|+|λ|=1,λ∈S

∑
α

|µα(x, λ, ξ′)|,

where G ⊂ Ω̄, µα(x, ξ′) are all r-minors of the Lopatinskii matrix in the local
coordinates (ξ′, ξn) at the point x.

Definition 9.2. The operator L(x, 0, D) is called uniformly elliptic on the set
G ⊂ Ω̄ if

e0d > 0, e0Γ > 0, Md <∞, MΓ <∞.

Definition 9.3. The operator L(x, λ,D) is called uniformly elliptic on the set G ⊂ Ω̄
with a parameter if

ed > 0, eΓ > 0, Md <∞, MΓ <∞.
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Definition 9.4. The operator L(x, λ,D) is called uniformly elliptic with a parameter
at infinity if the operator L(x, 0, D) is uniformly elliptic in Ω̄ and L(x, λ,D) is
uniformly elliptic with a parameter in the domain {|x| ≥ R} for some R.

Proposition 9.5. If the operator L(x, λ,D) is uniformly elliptic with a parameter
in the domain {x ∈ Ω, |x| ≥ R}, then all limiting operators are elliptic with a pa-
rameter with the same S and with the same values of the constants ed, eΓ,Md,MΓ

and with the same constants as in Condition D.

The proof of the theorem follows from the definition of limiting operators.

Theorem 9.6. If the operator L(x, λ,D) is uniformly elliptic with a parameter at
infinity, then there exist λ0 such that for |λ| ≥ λ0, λ ∈ S the operator L(x, λ,D)
is Fredholm as acting from the space E∞ into F∞.

Proof. From Proposition 9.5 it follows that all limiting operators are elliptic op-
erators with a parameter with the same S and constants ed, eΓ,Md,MΓ and the
same constants in the Condition D. According to Theorem 7.5 there exists a con-
stant λ0, which depends on the constants above, such that for |λ| ≥ λ0 all limiting
operators are invertible. Hence according to the results of Chapter 5 the operator
L(x, λ,D) is Fredholm from E∞ to F∞. The theorem is proved. �

Remark 9.7. From the results of Chapter 5 it also follows that the operator
L(x, λ,D) is Fredholm from Eq into Fq for q ≤ p and in the properly chosen
Hölder spaces if the coefficients and the boundary are sufficiently smooth. We re-
call that Eq = E and Fq = F for q = p. Therefore the Fredholm property is proved
also for the usual Sobolev spaces.

10 Examples

A linear elliptic operator is invertible if it satisfies the Fredholm property, its
index is zero, and the kernel is empty. Invertibility also follows from the unique
solvability of the nonhomogeneous equation for any right-hand side. In some cases,
in particular for scalar operators, the solvability conditions can be formulated with
the help of formally adjoint operators.

10.1 Invertibility of second-order operators

One-dimensional case. Consider the operator

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

acting from H2(R) into L2(). Assume that the coefficients are sufficiently smooth,
a(x) ≥ a0 > 0 and that there exist the limits

a±, b±, c± = lim
x→±∞ a(x), b(x), c(x).
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The essential spectrum of this operator is given by the curves

λ±(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

If both of them lie in the left half-plane, then the index of the operator equals zero.
It is invertible if and only if its kernel is empty, that is if the equation Lu = 0 has
only the zero solution. In particular, this is the case if the principal eigenvalue lies
in the left half-plane (see the next example).

Principal eigenvalue. Let us call the eigenvalue with the maximal real part the
principal eigenvalue. Similar to matrices with positive off-diagonal elements, the
principal eigenvalue of scalar elliptic problems is real, simple, and the correspond-
ing eigenfunction is positive. Moreover, there are no positive eigenfunctions corre-
sponding to other eigenvalues. In the case of bounded domains, where the inverse
operator is compact, this result follows from the Krein-Rutman theorem. In the
case of unbounded domains it is proved in [568], [563]. It remains also valid for
some class of systems. Consider the operator

Lu = ∆u

in a bounded domain Ω ⊂ Rn with the Dirichlet boundary condition, L : E → F ,
where

E = {u ∈ H2(Ω), u|∂Ω = 0}, F = L2(Ω).

It follows from the maximum principle that the equation Lu = λu cannot have
positive solutions for a real non-negative λ. Therefore, the principal eigenvalue is
negative and the operator is invertible.

In the case of the Neumann boundary condition, u = 1 is a positive eigenfunc-
tion corresponding to the zero eigenvalue. Therefore, it is the principal eigenvalue.
The operator L−a is invertible for any positive a. For more general operators (10.1)
the principal eigenvalue can be positive. However, it remains real and bounded.
Therefore, this operator is invertible for sufficiently large ρ.

For unbounded domains, these results remain valid if the essential spectrum
determined by limiting problems lies in the left half-plane.

Zero solution of the homogeneous equation. In this example we do not use the re-
sults on the principal eigenvalues and prove directly that the kernel of the operator
is empty. Consider the operator

Lv = a(x)∆v +
n∑
k=1

bk(x)
∂v

∂xk
+ c(x)v − ρv (10.1)

in a bounded domain Ω ⊂ Rn. Here the coefficients are sufficiently smooth real-
valued functions, a(x) ≥ a0 > 0 for x ∈ Ω, ρ is a real number.
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We have
∫

Ω

(a(x)∆v, v)dx = −
n∑
k=1

∫
Ω

(
a(x)

∂v

∂xk
,
∂v

∂xk

)
dx

−
n∑
k=1

∫
Ω

(
∂a

∂xk

∂v

∂xk
, v

)
dx+

∫
∂Ω

(
a
∂v

∂ν
, v

)
ds.

Using the ellipticity condition and the embedding ofH1(G) into L2(∂G), we obtain

∫
Ω

(a(x)∆v, v)dx ≤ −µ
∫

Ω

n∑
k=1

∣∣∣∣ ∂v∂xk
∣∣∣∣
2

dx+M1

∫
Ω

| v |2 dx

for some positive constants µ and M1. From this estimate and the inequality
∣∣∣∣∣
∫

Ω

n∑
k=1

bk(x)
∂v

∂xk
+ c(x)v, v)dx

∣∣∣∣∣ ≤ ε‖∇v‖2 +M2‖v‖2,

where ε > 0 can be taken arbitrarily small, we finally obtain

(Lv, v) ≤ (M3 − ρ)‖v‖2.

If ρ ≥ M3 + 1 and Lv = 0, then v = 0. If the homogeneous formally adjoint
problem also has only the zero solution, then the equation Lv = f is solvable for
any right-hand side, and the operator L is invertible.

10.2 Operators with a parameter

Invertibility, sectorial operators. Consider the operator L given by (10.1) in a
bounded or unbounded domain Ω ∈ Rn with the homogeneous Dirichlet or Neu-
mann boundary conditions. The usual conditions on the coefficients of the operator
and on the boundary of the domain are imposed. The operator is considered as act-
ing on functions from H2(Ω), which satisfy the boundary conditions, into L2(Ω).
This is an operator with a parameter. Therefore, the equation Lu = f is uniquely
solvable for any f if ρ is real, positive and sufficiently large. Moreover,

‖u‖L2(Ω) ≤ K
‖f‖L2(Ω)

|ρ|
for some positive constant K independent of u, f , and ρ. In fact, invertibility and
the last estimate hold for all ρ in some angle of the complex plane which contains
some positive half-axis. Thus, the operator is sectorial and it generates an analytic
semigroup. These results remain valid for more general elliptic operators and for
other function spaces.
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Nonhomogeneous boundary conditions. The estimate of the resolvent can depend
on the boundary operator. Consider the operator

Au = ∆u− λ2u (10.2)

in a bounded domain Ω ⊂ R
n with a sufficiently smooth boundary ∂Ω. Here λ is

a real positive number. Let the boundary operator be

Bu =
∂u

∂n
, (10.3)

where n is the outer normal vector. Both operators act on functions from the
Sobolev space E = W 2,p(Ω):

A : E → Fd, B : E → Fb,

where
Fd = Lp(Ω), Fb = W 1−1/p,p(∂Ω), p > 1.

Set F = Fd × Fb. Then
L = (A,B) : E → F.

In the same spaces consider the norms

‖|u‖|E = ‖u‖E + λ2‖u‖Lp(Ω), ‖|f‖|Fd
= ‖f‖Fd

,

‖|g‖|Fb
= inf

φ
‖|φ‖|W 1,p(Ω), ‖|φ‖|W 1,p(Ω) = ‖φ‖W 1,p(Ω) + λ‖φ‖Lp(Ω)

where the infimum is taken with respect to all functions φ ∈ W 1,p(Ω), which
coincide with g at ∂Ω. From the results of this chapter, we can conclude that for
λ sufficiently large, there exists a unique solution u of the problem

Au = f, Bu = g (10.4)

and
‖|u‖|E ≤ K(‖|f‖|Fd

+ ‖|g‖|Fb
). (10.5)

From this estimate and the definition of the norms, we obtain

λ2‖u‖Lp(Ω) ≤ ‖u‖E + λ2‖u‖Lp(Ω)

≤ K

(
‖f‖Lp(Ω) + inf

φ
(‖φ‖W 1,p(Ω) + λ‖φ‖Lp(Ω))

)
.

(10.6)

The dependence of the right-hand side of this estimate of λ is not explicit. It is
possible to obtain a less precise estimate with an explicit dependence. We have for
large λ:

inf
φ

(‖φ‖W 1,p(Ω) + λ‖φ‖Lp(Ω)) ≤ λ inf
φ

(‖φ‖W 1,p(Ω) + ‖φ‖Lp(Ω))

≤ 2λ inf
φ

‖φ‖W 1,p(Ω) = 2λ‖g‖Fb
.
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Hence from (10.6)

λ2‖u‖Lp(Ω) ≤ 2K
(‖f‖Lp(Ω) + λ‖g‖W 1−1/p,p(∂Ω)

)
.

Thus,

‖u‖Lp(Ω) ≤ K1

λ

(‖f‖Lp(Ω) + ‖g‖W 1−1/p,p(∂Ω)

)
.

We note that the power of λ in the right-hand side of this estimate does not depend
on p. This estimate may not be optimal.



Chapter 8

Index of Elliptic Operators

Ellipticity condition, proper ellipticity and Lopatinskii condition imply the Fred-
holm property of elliptic problems in bounded domains. In addition, invertibility
of limiting problems determines the Fredholm property and solvability conditions
of elliptic problems in unbounded domains. If this property is satisfied, then the
index of the operator is defined. There is an extensive literature devoted to the
index of elliptic operators in bounded domains and for some classes of operators
in unbounded domains (see the bibliographical comments).

In this chapter we develop a new method which consists in approximation
of problems in unbounded domains by problems in bounded domains. We will
study convergence or stabilization of the index. We consider a sequence of elliptic
operators Lk in bounded domains Ωk assuming that the domains Ωk converge
to an unbounded domain Ω and that the operators converge to an operator L.
Suppose that the indices of the operators Lk are known and equal to each other.
Is it possible to conclude that the index of the operator L equals the index of the
operators Lk? There are counterexamples that show that this may not be true.
It appears that under some additional conditions formulated in terms of limiting
operators the indices are equal to each other. This result provides a method to
compute the index of elliptic operators in unbounded domains, approximating
them by operators in bounded domains. We will prove general theorems about
the stabilization of the index and will apply this approach to find the index of the
Cauchy-Riemann system and of the Laplace operator with oblique derivative in
unbounded domains.

We will introduce in this chapter a new notion of limiting domains, different
in comparison with the definition given in Chapter 4. Limiting domains introduced
before are constructed for an unbounded domain Ω through all possible sequences
of shifted domains. Here we will consider sequences of domains Ωk locally con-
verging to the domain Ω and will define limiting domains for these sequences. It
appears that for the same domain Ω, there can exist more limiting domains in

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_8, © Springer Basel AG 2011 
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the sense of the second definition than in the sense of the first one. Therefore,
the condition about the invertibility of limiting problems is more restrictive in the
sense of the second definition. The former provides the Fredholm property, while
the latter the stabilization of the index.

The index equals the difference between the dimension of the kernel of the
operator and the codimension of its image. The stabilization of the index does not
necessarily signify that the dimensions of the kernels also stabilize. However, if it
is the case, there is a convergence of solutions in bounded domains to solutions in
unbounded domains.

For completeness of presentation, at the end of this chapter we will con-
struct the index in two-dimensional domains. Multi-dimensional problems will be
discussed in the bibliographical comments.

1 Definitions

As in previous chapters, we consider the operators

Aiu =
N∑
k=1

∑
|α|≤αik

aαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω, (1.1)

Bju =
N∑
k=1

∑
|β|≤βjk

bβjk(x)D
βuk, i = 1, . . . ,m, x ∈ ∂Ω, (1.2)

where u = (u1, . . . , uN), Ω ⊂ Rn is an unbounded domain satisfying certain condi-
tions given below. According to the definition of elliptic operators in the Douglis-
Nirenberg sense [134] we suppose that

αik ≤ si + tk, i, k = 1, . . . , N, βjk ≤ σj + tk, j = 1, . . . ,m, k = 1, . . . , N

for some integers si, tk, σj such that si ≤ 0, max si = 0, tk ≥ 0.
Denote by E the space of vector-valued functions u = (u1, . . . , uN), where uj

belongs to the Sobolev space W l+tj ,p(Ω), j = 1, . . . , N , 1 < p <∞, l is an integer,
l ≥ max(0, σj + 1), E = ΠN

j=1W
l+tj ,p(Ω). The norm in this space is defined as

‖u‖E =
N∑
j=1

‖uj‖W l+tj,p(Ω).

The operator Ai acts from E into W l−si,p(Ω), the operator Bj from E into
W l−σj−1/p,p(∂Ω). Set

L = (A1, . . . , AN , B1, . . . , Bm),

F = ΠN
i=1W

l−si,p(Ω) × Πm
j=1W

l−σj−1/p,p(∂Ω).
(1.3)
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As before we will use the spaces Eq (1 ≤ q ≤ ∞) with the norms

‖u‖Eq :=
(∫

Rn

‖u(.)ω(.− y)‖qEdy
)1/q

<∞, 1 ≤ q <∞,

‖u‖E∞ := sup
y∈Rn

‖u(.)ω(.− y)‖E <∞.

We will consider the operator L as acting from E∞ into F∞. We assume that the
operator L is uniformly elliptic.

1.1 Limiting domains

Consider a sequence of domains Ωk ⊂ Rn, k = 1, 2, . . . such that each of them
contains the origin. Each domain Ωk may be bounded or unbounded. We do not
exclude the case where the domains are uniformly bounded, that is contained in
a fixed ball independent of k. However we are interested in the case where the
sequence of domains is not bounded.

In Chapter 4 the sequence of domains Ωk is obtained as some shifts of an un-
bounded domain Ω. Here we consider an arbitrary sequence of domains satisfying
the following condition. We keep for it the same name as before.

Condition D. For each x0 ∈ ∂Ω there exists a neighborhood U(x0) such that:

1. U(x0) contains a sphere with radius δ and center x0, where δ is independent
of x0.

2. There exists a homeomorphism ψ(x;x0) of the neighborhood U(x0) on the
unit sphere B = {y : |y| < 1} in R

n such that the images of Ω
⋂
U(x0) and

∂Ω ∩ U(x0) coincide with B+ = {y : yn > 0, |y| < 1} and B0 = {y : yn =
0, |y| < 1} respectively.

3. The function ψ(x;x0) and its inverse belong to the Hölder space Cr+θ, 0 <
θ < 1. Their ‖ · ‖r+θ-norms are bounded uniformly in x0.

For definiteness we suppose that δ < 1. We also assume that

r ≥ max(l + ti, l− si, l − σj + 1), i = 1, . . . , N, j = 1, . . . ,m.

The first expression in the maximum is used for a priori estimates of solutions,
the second and the third will allow us to extend the coefficients of the operator.

We assume that domains Ωk satisfy Condition D uniformly, that is δ and
the norms of the functions ψ(x;x0) and of their inverse are independent of k. To
define convergence of domains we use the following Hausdorff metric space. Let
M and N denote two nonempty closed sets in Rn. Set

ς(M,N) = sup
a∈M

ρ(a,N), ς(N,M) = sup
b∈N

ρ(b,M),
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where ρ(a,N) denotes the distance from a point a to a set N , and let

�(M,N) = max(ς(M,N), ς(N,M)). (1.4)

We denote by Ξ a metric space of bounded closed nonempty sets in Rn with the
distance given by (1.4). We say that a sequence of domains Ωk converges to a
domain Ω in Ξloc if

�(Ω̄k ∩ B̄R, Ω̄ ∩ B̄R) → 0, m→ ∞

for any R > 0 and BR = {x : |x| < R}. Here the bar denotes the closure of
domains.

Definition 1.1. Domain Ω∗ is a limiting domain of a sequence Ωk if Ωk → Ω∗ in
Ξloc as k → ∞.

Theorem 1.2. Let a sequence Ωk satisfy Condition D uniformly. Then there exists a
subsequence Ωki and a limiting domain Ω∗ such that Ωki → Ω∗ in Ξloc as ki → ∞.

The proof is the same as the proof of Theorem 1.6 in Chapter 4.

We recall that there are two types of limiting domains. The first one is de-
fined for unbounded domains. If Ω is an unbounded domain, then we consider
an unbounded sequence xn ∈ Ω and a sequence of shifted domains Ωn where xn
is translated to the origin. There exists a subsequence Ωnk

locally convergent to
a limiting domain Ω̂. Precise definitions are given in Chapter 4. We determine
ensembles of limiting domains for all sequences xn and all locally convergent sub-
sequences of domains. Limiting domains that can be obtained from each other by
translation are considered as the same domain.

The second type of limiting domains is defined for sequences of domains.
Let Ωn be a sequence of bounded or unbounded domains. We are particularly
interested in the case where the domains Ωn are bounded and locally converge to
an unbounded domain Ω. As above, we take an unbounded sequence xn ∈ Ωn and
consider the shifted domains Ω̃n where xn is translated to the origin. After that,
we choose locally convergent subsequences of the shifted domains. Their limits are
limiting domains of the second type.

Limiting domains of the first type and the corresponding limiting operators
determine the Fredholm property of elliptic problems in unbounded domains. Lim-
iting domains of the second type will determine the stabilization of the index. For
the same unbounded domain Ω, there can exist more limiting domains of the sec-
ond type than of the first type. This implies that conditions of the stabilization of
the index are more restrictive than conditions that provide the Fredholm property.

We will restrict ourselves here to the simplest example of one-dimensional
domains. Two other examples with a sequence of rectangles and with a sequence
of circles are considered in the introduction. Let In denote the interval [−n, n].
Consider a sequence xn ∈ In. Suppose that xn = −n+ 1 and consider the shifted
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intervals Ĩn = [−1, 2n− 1]. Each such interval is obtained from In if we translate
it in such a way that the point xn moves to x = 0. The sequence Ĩn converges
to the right half-axis I+ = {x ≥ −1}. We can choose the sequence xn in such
a way that the limiting domain will be any other right half-axis. We identify
them to each other. Other limiting domains are left half-axis and the whole axis.
The corresponding sequences xn can be easily constructed. Thus, there are three
limiting domains of the second type. We note that for the unbounded interval
I = R, there exists only one limiting domain of the first type, the same unbounded
interval I.

1.2 Limiting operators and problems

Consider a sequence of domains Ων and the corresponding operators Aνi , B
ν
j with

the coefficients, respectively, aαik,ν(x) and bβjk,ν(x). We suppose that

aαik,ν(x) ∈ Cl−si+δ(Ω̄ν), bβjk,ν(x) ∈ Cl−σj+δ(∂Ων), (1.5)

where 0 < δ < 1, and that these coefficients can be extended to Rn in such a way
that

aαik(x) ∈ Cl−si+δ(Rn), bβjk(x) ∈ Cl−σj+δ(Rn) (1.6)

and
‖aαik,ν(x)‖Cl−si+δ(Rn) ≤M, ‖bβjk,ν(x)‖Cl−σj+δ(Rn) ≤M (1.7)

with some constant M independent of ν. It follows from Theorem 1.2 that there
exists a subsequence of the sequence Ων , for which we keep the same notation,
such that it converges to a limiting domain Ω∗. From (1.7) it follows that there
exists a convergent subsequence of the coefficients:

aαik,ν → âαik in Cl−si (Rn) locally, bβjk,ν → b̂βjk in Cl−σj (Rn) locally, (1.8)

where âαik and b̂βjk are limiting coefficients,

âαik ∈ Cl−si+δ(Rn), b̂βjk ∈ Cl−σj+δ(Rn).

We have constructed limiting operators:

Âiu =
N∑
k=1

∑
|α|≤αik

âαik(x)D
αuk, i = 1, . . . , N, x ∈ Ω∗, (1.9)

B̂ju =
N∑
k=1

∑
|β|≤βjk

b̂βjk(x)D
βuk, i = 1, . . . ,m, x ∈ ∂Ω∗, (1.10)

L̂ = (Â1, . . . , ÂN , B̂1, . . . , B̂m). (1.11)
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We consider them as acting fromE∞(Ω∗) into F∞(Ω∗). We assume that all limiting
operators satisfy the condition of uniform ellipticity, that they are properly elliptic
and satisfy the Lopatinskii condition.

We will deal with three different situations where a sequence of domains
converges to some domain and a sequence of operators converges to some operator.
First of all, we consider a sequence of bounded domains Ωk that converge to some
unbounded domain Ω and a sequence of operators Lk : E(Ωk) → F (Ωk) that
converge to an operator L : E∞(Ω) → F∞(Ω). We will study the stabilization of
the index of the operators Lk to the index of the operator L.

To study this question we introduce two types of limiting problems. Suppose
that a sequence of domains Ωk is not uniformly bounded. Then there exists a
sequence of points xk ∈ Ωk such that the sequence |xk| is not bounded. From
now on we will consider only such sequences that |xk| → ∞. Denote by Ω̃k the
shifted domains with the characteristic functions χk(x + xk), where χk(x) is the
characteristic function of the domain Ωk. We consider all limiting domains for
the sequence Ω̃k and define the corresponding limiting operators L̂ and the cor-
responding limiting problems. Limiting problems can depend on the choice of the
sequence xk and of converging subsequences of the domains and of the coefficients
of the operator.

Limiting problems of the first type are the problems where Ωk = Ω and
Lk = L for all k. Here Ω is an unbounded domain. This means that we consider all
shifts of the same domain and of the same operator and choose locally convergent
subsequences. Limiting problems defined in this sense are introduced in Chapter 4.

Limiting problems of the second type are the problems for which a sequence
of domains Ωk (usually bounded though it is not necessary) converge to an un-
bounded domain Ω. We consider all shifts of the domains Ωk and of the corre-
sponding operators and choose locally convergent subsequences.

Limiting problems of the second type were not studied before. Let Ωk be a
sequence of domains locally convergent to an unbounded domain Ω. It appears
that there can be more limiting problems of the second type than of the first
type. Some properties of the operators should be formulated in terms of limiting
domains of the first type (Fredholm property) and some others in terms of limiting
problems of the second type (stabilization of the index).

1.3 Conditions NS and estimates

Let Ω be an unbounded domain. We will use the spaces E and F introduced above,
the dual spaces E∗ and F ∗, and the corresponding ∞-spaces:

E∞(Ω) = ΠN
j=1W

l+tj ,p∞ (Ω),

F∞(Ω) = ΠN
i=1W

l−si,p∞ (Ω) × Πm
j=1W

l−σj−1/p,p
∞ (∂Ω),

(E∗(Ω))∞ = ΠN
j=1(Ẇ

−l−tj ,p′(Ω))∞,
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(F ∗(Ω))∞ = ΠN
i=1(Ẇ

−l+si,p
′
(Ω))∞ × Πm

j=1(W
−l+σj+1/p,p′(∂Ω))∞,

(F ∗
−1(Ω))∞ = ΠN

i=1(Ẇ
−l+si−1,p′(Ω))∞ × Πm

j=1(W
−l+σj+1/p−1,p′(∂Ω))∞,

where Ẇ−s,p′(Ω) is the closure in W−s,p′(Rn) of infinitely differentiable functions
with supports in Ω, Ẇ−s,p′(Ω) = (W s,p(Ω))∗, 1

p + 1
p′ = 1.

We recall Conditions NS and NS∗ introduced in Chapters 4 and 5 in order
to study the Fredholm property.

Condition NS. Any limiting problem of the first type, L̂u = 0, u ∈ E∞(Ω̂) has
only the zero solution. Here Ω̂ is a limiting domain, L̂ is a limiting operator.

Condition NS∗. Any limiting problem of the first type, L̂∗v = 0 for the adjoint
operator L̂∗ has only the zero solution in (F ∗(Ω̂))∞.

It is proved that Condition NS is necessary and sufficient for normal solvability.
If both conditions are satisfied, then the operator is Fredholm. We now modify
Condition NS for sequences of domains. Let a sequence of domains Ωk converge
to an unbounded domain Ω.

Condition NS(seq). Any limiting problem of the second type, L̂u = 0, u ∈ E∞(Ω̂)
has only the zero solution.

Though the formulation is the same as before, the condition is different because
limiting problems may not be the same.

Theorem 1.3. Let a sequence Ωk satisfy Condition D uniformly, u ∈ E∞(Ωk).
Then

‖u‖E∞(Ωk) ≤ c
(‖Lku‖F∞(Ωk) + ‖u‖Lp

∞(Ωk)

)
,

where the constant c does not depend on u and on k.

The proof of this theorem is similar to the proof of Theorem 2.2 in Chapter 3.

Theorem 1.4. Let Condition NS(seq) be satisfied. Then there exist numbers M and
R such that the following estimate holds:

‖u‖E∞(Ωk) ≤M
(
‖Lku‖E∞(Ωk) + ‖u‖Lp(Ωk

R)

)
, ∀u ∈ E∞(Ωk)

for any k. Here ΩkR = Ωk ∩ {|x| ≤ R}, M and R do not depend on k.

The proof of this theorem is similar to the proof of Theorem 2.10 in Chapter 4.

Theorem 1.5. Let a sequence Ωk satisfy Condition D uniformly, v ∈ (F ∗(Ωk))∞.
Then

‖v‖(F∗(Ωk))∞ ≤ c
(
‖L∗

kv‖(E∗(Ωk))∞ + ‖v‖(F∗
−1(Ωk))∞

)
,

where the constant c does not depend on v and on k.

The proof of this theorem is similar to the proof of Theorem 5.1 in Chapter 3.
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We now introduce an analogue of Condition NS∗ for sequences of problems.
Similar to Condition NS(seq), its formulation is the same as for a single unbounded
domain but limiting problems can be different.

Condition NS∗(seq). Any limiting homogeneous problem, L̂∗v = 0 has only the
zero solution in (F ∗(Ω̂))∞, where L̂∗ is the operator adjoint to the limiting operator
L̂, and Ω̂ is a limiting domain.

Theorem 1.6. Let Condition NS∗(seq) be satisfied. Then there exist positive num-
bers M and R such that for any v ∈ (F ∗(Ωk))∞ and for any k the following
estimate holds:

‖v‖(F∗(Ωk))∞ ≤M
(
‖L∗

kv‖(E∗(Ωk))∞ + ‖v‖F∗
−1(Ω

k
R)

)
.

Here

F ∗
−1(Ω

k
R) = ΠN

i=1Ẇ
−l+si−1,p′(ΩkR) × Πm

j=1Ẇ
−l+σj+1/p−1,p′(ΓkR),

ΩkR and ΓkR are the intersections of Ωk and Γk with the ball |x| < R.

The proof of this theorem is similar to the proof of Theorem 1.1 in Chapter 5.

We finally present the theorem on uniform exponential estimates of solutions.
Write ωµ = exp(µ

√
1 + |x|2), where µ is a real number.

Theorem 1.7. Let Condition NS(seq) be satisfied. Then there exist positive con-
stants M , R and µ0 independent of k and such that for all µ, 0 < µ < µ0 the
following estimate holds:

‖ωµu‖E∞(Ωk) ≤M
(‖ωµLu‖F∞(Ωk) + ‖ωµu‖Lp(ΩR)

)
if ωµu ∈ E∞(Ωk). (1.12)

This theorem follows from Theorem 1.4. Its proof is similar to the proof of Theorem
2.11 in Chapter 4. A similar theorem holds for the adjoint operator.

1.4 Results and examples

Consider a sequence of domains Ωk and a sequence of elliptic operators Lk acting
on functions defined in these domains. The corresponding function spaces will be
introduced below. Suppose that the sequence of domains converges to a domain
Ω in the sense specified in Section 1.1, and the sequence of operators converges
to an operator L (Section 1.2). Suppose that all operators Lk and L satisfy the
Fredholm property. Then the indices κ(Lk) and κ(L) are defined. Is it possible
to affirm that κ(Lk) converges to κ(L) or, since the index is an integer, that for
k sufficiently large, κ(Lk) = κ(L)? If this equality holds we say that the index
stabilizes.
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We begin with an example that shows that the stabilization of the index may
not occur. Consider the operator

Lu = u′′ + cu′ + b(x)u

acting from C2+δ(R) into Cδ(R), 0 < δ < 1. Here c is a constant, b(x) is a
sufficiently smooth function with the limits b± at ±∞. If c > 0, b− < 0, and
b+ > 0, then the index of this operator equals 1 (see the next chapter). Let Ln,
n = 1, 2, . . . be a sequence of operators given by the same differential expression
and acting from C2+δ

0 (In) into Cδ(In), where In = {−n ≤ x ≤ n}, and C2+δ
0 (In)

denotes the space of functions defined in the interval In with the zero boundary
conditions. It can be easily verified that the index of each operator Ln equals zero.
Therefore ind(Ln) does not converge to ind(L).

It appears that, similar to the Fredholm property, the stabilization of the
index is also determined by the invertibility of limiting problems. However the
definition of limiting problems in this case is different in comparison with the
previous one. The second type of limiting problems is defined not for a single
unbounded domain through its shifts but for sequences of domains Ωk and for the
corresponding operators. Each of these domains can be bounded or unbounded
but we will assume that the sequence is not uniformly bounded, that is there is
no ball BR of a given radius R which contains all domains.

Let xn ∈ Ωn, n = 1, 2, . . . be a sequence of points such that |xn| → ∞. Denote
by χn(x) the characteristic function of the domain Ωn and consider the shifted
domain Ω̃n with the characteristic function χn(x+xn). We start the procedure of
construction of limiting domains corresponding to the sequence xn. For a given ball
Br, we choose a subsequence from the sequence of domains Ω̃n converging to some
limiting domain inside Br. Then we consider a ball of a larger radius and choose
a subsequence of the previous subsequence converging to some limiting domain
inside this new ball. Going on in the same manner, we will obtain a limiting
domain Ω̂. It can depend on the sequence xn and on the choice of converging
subsequences of shifted domains.

Limiting operators are constructed here in the same way as above. We con-
sider the shifted coefficients and choose convergent subsequences.

Consider the following example. Let Ωn ⊂ R2, n = 1, 2, . . . be rectangles

−n ≤ x ≤ n, −1 ≤ y ≤ 1.

We take nonsmoooth domains for simplicity of presentation. In this case we can
obtain three types of limiting domains: an infinite strip, a left half-strip, and a
right half-strip. The domains Ωn converge locally to the domain

Ω = {(x, y),−1 ≤ y ≤ 1}.
There exists a unique (up to a shift) limiting domain for the domain Ω in the first
sense. It is the domain Ω itself. However there are also two other limiting domains
for the approximating sequence Ωn.
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This example shows that the definitions are different. There are more limit-
ing domains in the sense of the second definition. This difference appears to be
important for what follows. The invertibility of limiting operators in the sense
of the first definition provides the Fredholm property for elliptic operators in un-
bounded domains. The invertibility of limiting operators in the sense of the second
definition provides the stabilization of the index.

In Section 1.3 we have introduced Condition NS(seq) which says that any
limiting problem in the sense of Definition 1.1 has only a trivial solution. The same
condition will also be introduced for adjoint problems and for formally adjoint
problems. We will prove in Section 2 that they are sufficient for the stabilization of
the index. It is not clear whether they are also necessary. However, in the examples,
for which the stabilization does not occur, Conditions NS(seq) or NS∗(seq) are not
satisfied either.

The result on stabilization of the index allows determination of the index
of elliptic problems in unbounded domains. We apply it below for the Laplace
operator with oblique derivative, for the Cauchy-Riemann system, and for some
other problems.

One of the questions related to the stabilization of the index is convergence of
solutions in bounded domain to solutions in unbounded domains. This convergence
may or may not take place. If we consider solutions un of the problems

∆u− au = b, u|∂Ωn = 0,

where a and b are some constants and Ωn is a sequence of balls of radius n, then
un converges to −b/a if a is positive. This sequence of solutions is divergent if
a = 0. Convergence of solutions for some particular elliptic problems is studied in
[111]. Here we develop another method to study convergence of solutions which is
applicable for general elliptic problems. Similar to the stabilization of the index it
is based on limiting problems.

The main results of this chapter are given by Theorems 2.9 and 3.3. They
concern stabilization of the index in bounded domains to the index in an un-
bounded domain. The convergence of solutions in bounded domains to solutions
in unbounded domains is proved in Theorem 4.1. The convergence of the index
and of the solutions occur under Conditions NS(seq) and NS∗(seq). We essentially
use here a priori estimates of solutions formulated in Section 1.3 and the results
on ellipticity with a parameter in unbounded domains.

The results on the stabilization of the index are applied to find the index of
various elliptic problems in unbounded domains. We consider several model prob-
lems, Cauchy-Riemann system, Laplace operator, canonical first-order systems. A
specific example is given by the first-order system

∂u

∂x
− ∂v

∂y
− λu = 0,

∂u

∂y
+
∂v

∂x
+ λv = 0 (1.13)
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in the half-plane y ≥ 0 with the boundary condition

a(x)u+ b(x)v = f(x), (1.14)

where a(x) and b(x) are real functions, a2(x)+b2(x) �= 0, λ is a positive number. If
λ = 0, then it is the Hilbert problem for the Cauchy-Riemann system. In bounded
domains its index is determined by the rotation of the vector (a(x), b(x)) along the
boundary of the domain. In unbounded domains this problem does not satisfy the
Fredholm property. For λ different from zero, it is satisfied under some conditions
on the coefficients. If we assume that there exist limits a± and b± of the functions
a(x) and b(x) at ±∞, then it is required that a± + b± �= 0.

If the numbers a−+b− and a++b+ have opposite signs, then we can construct
a sequence of increasing bounded domains and of the operators in such a way that
Conditions NS(seq) and NS∗(seq) are satisfied. This allows us to find the index
of the problem in the half-plane. Similar to the problem in bounded domains it
equals 2N + 1, where N is the rotation of the vector (a(x), b(x)) for x from −∞
to +∞ (Theorem 5.9). If a− + b− and a+ + b+ have the same sign, the method of
approximation by bounded domains cannot be directly used. It is quite possible
that it is not a technical difficulty but a topological restriction.

We also consider the problem

∆u− λ2u = 0, a(x)
∂u

∂x
− b(x)

∂u

∂y
= f(x). (1.15)

If λ = 0, it is the classical problem for the Laplace operator with oblique derivative.
In the case of unbounded domains it does not satisfy the Fredholm property.
Problem (1.15) satisfies the Fredholm property in unbounded domains if λ �= 0
and if the limits b± are different from zero. Its index can be found with the
approximation method if b− and b+ have the same sign. In this case the index is
even. The method cannot be directly used if the signs are opposite.

Thus, we find the index of problem (1.13), (1.14) when it is odd, and of
problem (1.15) when it is even. It appears that these problems can be reduced to
each other by a number of consecutive transformations. This allows us to find their
indices in the cases not embraced by the approximation method: when a− + b−
and a+ + b+ have the same sign for problem (1.13), (1.14) and when b− and b+
have opposite signs for problem (1.15).

Finally, we study general first-order systems with complex coefficients on the
plane. In the case where they can be reduced to canonical systems, their index in
bounded domains can be found by reduction to singular integral equations. Then
the approximation method can be used to find the index in unbounded domains.
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2 Stabilization of the index

From now on we will consider the spaces E and F on the basis of the Hilbert space
W l,2 (see Section 1). Let Ωk be a sequence of bounded domains that converge to
an unbounded domain Ω, Lk : E(Ωk) → F (Ωk) be a sequence of operators acting
on functions defined in Ωk and converging to an operator L : E∞(Ω) → F∞(Ω).
Suppose that the operators Lk satisfy the Fredholm property and

dimKerLk = m, codim ImLk = p.

We suppose also that Conditions NS(seq) and NS∗(seq) are satisfied. It will be
proved in the sequel that we can find a subsequence such that m and p do not
depend on k. We will prove that the index of the operator L equals m− p.

Denote by uk1 , . . . , u
k
m linearly independent solutions of the equation

Lku = 0, u ∈ E(Ωk) (2.1)

and by vk1 , . . . , v
k
p linearly independent solutions of the homogeneous adjoint equa-

tion
L∗
kv = 0, v ∈ F ∗(Ωk). (2.2)

Then the equation

Lku = f, u ∈ E(Ωk), f ∈ F (Ωk) (2.3)

is solvable if and only if
〈f, vkj 〉 = 0, j = 1, . . . , p (2.4)

and the equation

Lku = f −
p∑
j=1

〈f, vkj 〉wkj (2.5)

is solvable for any f ∈ F (Ωk). Here wkj ∈ F (Ωk), j = 1, . . . , p are functions
biorthogonal to the functionals vj ∈ F ∗(Ωk):

〈wki , vkj 〉 = δij , i, j = 1, . . . , p. (2.6)

Lemma 2.1. There exist solutions v̂kj ∈ F ∗(Ωk) of equation (2.2) and functions
wki ∈ F (Ωk) with supports in a ball Bρ with the radius ρ > R independent of k
and i such that

〈wki , v̂kj 〉 = δij , i, j = 1, . . . , p

and
‖wki ‖F (Ωk) ≤ C, ‖v̂ki ‖F∗(Ωk

R) ≤ 1, i = 1, . . . , p, k ≥ k0(ρ),

where C is a constant independent of i and k, R is the same as in Theorem 1.6.
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Proof. We recall that F (Ωk) is a Hilbert space. Denote the corresponding inner
product by [·, ·]. Then for every vkj ∈ F ∗(Ωk) there exists zkj ∈ F (Ωk) such that

〈f, vkj 〉 = [f, zkj ], ∀f ∈ F (Ωk).

Without loss of generality we can assume that the domain ΩkR in Theorem 1.6
does not depend on k. We denote it by ΩR. Let φ ∈ D and φ(x) = 1 for x ∈ ΩR
and suppφ(x) ⊂ Bρ with some ρ > R. The functions z̃kj = φzkj , j = 1, . . . , p
are linearly independent for every k fixed. Indeed, otherwise there exists a linear
combination of these functions equal to zero, that is for some constants cj not all
equal to zero,

c1φv
k
1 + · · · + cpφv

k
p = 0.

Then the restriction of the functional ψ = c1v
k
1 + · · ·+cpvkp to ΩR (that is its value

on the functions with supports in ΩR) equals zero. From Theorem 1.6 it follows
that ψ = 0 in Ωk, that is the functionals vkj , j = 1, . . . , p are linearly dependent in
Ωk. This contradiction proves that z̃kj are linearly independent.

Denote by ẑkj the functions obtained as a linear combination of the functions
z̃kj (for a fixed k) and such that

[ẑki , ẑ
k
j ] = δij , i, j = 1, . . . , p, ∀k.

Such combinations exist by virtue of the linear independence of the functions z̃kj .
Let v̂kj be obtained as linear combinations of vkj with the same coefficients. Then

〈f, φv̂kj 〉 = [f, ẑkj ], ∀f ∈ F (Ωk).

Therefore
〈φẑkj , v̂kj 〉 = δij , i, j = 1, . . . , p, ∀k.

We put wki = φẑki .
It remains to estimate the norm of the restriction of the functionals v̂ki to

ΩR. We have

sup
f,supp f⊂ΩR

|〈f, v̂ki 〉|
‖f‖F (Ωk)

= sup
f,supp f⊂ΩR

|〈f, φv̂ki 〉|
‖f‖F (Ωk)

= sup
f,supp f⊂ΩR

|[f, ẑki ]|
‖f‖F (Ωk)

≤ 1.

The lemma is proved. �

Denote by ωkj ∈ E∗(Ωk), j = 1, . . . ,m functionals biorthogonal to the func-
tions uj ∈ E(Ωk):

〈uki , ωkj 〉 = δij , i, j = 1, . . . ,m. (2.7)

Lemma 2.2. There exist solutions ûkj ∈ E(Ωk) of equation (2.1) and functionals
ωki ∈ E∗(Ωk) with supports in a ball Bρ with some radius ρ > R independent of k
and i such that

〈ûki , ωkj 〉 = δij , i, j = 1, . . . ,m
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and
‖φûki ‖E(Ωk) = 1, ‖ωki ‖F∗(Ωk) ≤ C, i = 1, . . . ,m, k ≥ k0(R).

Here φ ∈ D is an arbitrary function equal to 1 for x ∈ ΩR.

Proof. The restriction of the functions uk1 , . . . , ukm to ΩR are linearly independent.
Otherwise, from Theorem 1.4 it would follow that they are linearly dependent
in Ωk.

Consider the functions ũki = φuki , where φ ∈ D equals 1 for x ∈ ΩR. They
are linearly independent and can be orthonormalized in E(Ωk). Denote by ûki a
linear combination of uki such that

[φûki , φû
k
j ] = δij .

Here [·, ·] denotes the inner product in E(Ωk). We define the functionals ωki by the
equalities

〈f, ωki 〉 = [f, φ2ûki ], ∀f ∈ E(Ωk).

We keep the same notation for the inner product in E(Ωk) as for F (Ωk). These
functionals form a biorthogonal system to ûki and

‖ωki ‖F∗(Ωk) ≤ C‖φûki ‖E(Ωk) = C.

The lemma is proved. �

Lemma 2.3. The equation

L∗
kv = g, g ∈ E∗(Ωk) (2.8)

is solvable in F ∗(Ωk) if and only if

〈ukj , g〉 = 0, j = 1, . . . ,m. (2.9)

For the proof see [256], Chapter IV, Theorem 5.13.

Lemma 2.4. Let uki and ωki be the same as in Lemma 2.2, i = 1, . . . ,m (we omit
the hat here). Then there exist subsequences ukl

i , i = 1, . . . ,m converging to some
limiting functions ui, i = 1, . . . ,m locally in E∞(Ω), and subsequences ωkl

i , i =
1, . . . ,m converging to some functionals ωi, i = 1, . . . ,m in E∗(ΩR) such that

〈ui, ωj〉 = δij , i, j = 1, . . . ,m.

The functions ui, i = 1, . . . ,m are linearly independent.

Proof. Since
‖φuki ‖E(Ωk) = 1, i = 1, . . . ,m,

then there exist subsequences ukl
i converging in L2(ΩR) to some limiting func-

tions ui. It follows from Theorem 1.4 that the same subsequences converge locally
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strongly in E∞ to some limiting functions ui ∈ E∞(Ω). This convergence occurs
in the intersection of the domains Ωk with any bounded set.

From the construction of the functionals ωkl
i it follows that they converge to

the functionals ωi defined by the equalities

〈f, ωi〉 = [f, φ2ui], i = 1, . . . ,m, ∀f ∈ E(ΩR).

We have
〈uj, ωi〉 = [φuj , φui] = lim

k→∞
[φukj , φu

k
i ] = δij .

These relations imply linear independence of the functions ui. Indeed, if for some
linear combination

∑m
i=1 ciui = 0 and cj �= 0 for some j, then

0 =

〈
m∑
i=1

ciui, ωj

〉
= cj �= 0.

This contradiction shows that the linear combination cannot have nonzero coeffi-
cients. The lemma is proved. �

Lemma 2.5. Let vki and wki be the same as in Lemma 2.1, i = 1, . . . , p (the tilde
is omitted). Then there exist subsequences vkl

i , i = 1, . . . , p converging to some
limiting functionals vi ∈ (F ∗(Ω))∞, i = 1, . . . , p locally in F ∗ and subsequences
wkl
i , i = 1, . . . , p converging in F (Ωρ) to some functions wi, i = 1, . . . ,m with

supports in Ωρ such that

〈wi, vj〉 = δij , i, j = 1, . . . , p.

Proof. By virtue of Lemma 2.1 the restriction of the sequence vki , k = 1, 2, . . . to
ΩR is bounded in F ∗(ΩR). Hence there is a subsequence converging in F ∗

−1(ΩR) to
some limiting function. From Theorem 1.6 it follows that the same subsequence is
fundamental in F ∗ on every bounded set. Thus there exists a limiting functional
vi ∈ (F ∗(Ω))∞.

From the convergence vkl
i → vi it follows that

φvkl

i → φvi in F ∗(Ωρ).

This convergence and the definition of the functionals zki (see Lemma 2.1) imply
the strong convergence of the sequence zkl

i and consequently the convergence of
the sequence wkl

i to some limiting function wi ∈ F (Ω). We have

〈wi, vj〉 = lim
kl→∞

〈wkl

i , v
kl

j 〉 = δij , i, j = 1, . . . , p.

The lemma is proved. �

Proposition 2.6. The following inequalities hold:

dimKerLk ≤ dimKerL, codim ImLk ≤ codim ImL (2.10)

for k sufficiently large.
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Proof. Suppose that
dimKerLk > dimKerL

for some sequence of k. Then there exists a number m, m > r(= dim KerL) such
that equation (2.1) has m linearly independent solutions uki , i = 1, . . . ,m. As in
Lemma 2.4 we prove that there is a subsequence which converges locally in E∞(Ω)
to linearly independent functions ui, i = 1, . . . ,m. These functions are solutions
of the equation Lu = 0. Hence r ≥ m, which contradicts the assumption above.
This contradiction proves the first inequality in (2.10). Using Lemma 2.5 we can
similarly prove the second inequality in (2.10). The proposition is proved. �

This proposition justifies the assumption in the beginning of this section that
m and p can be chosen independent of k. We can pass to a subsequence if necessary.
Consider now the operators L : E(Ω) → F (Ω) and L∗ : F ∗(Ω) → E∗(Ω). Let the
equation

Lu = 0 (2.11)

have solutions u1, . . . , ur that form an orthonormal basis of its kernel. Then r ≥ m.
Suppose that r = m+ s, where s ≥ 0. Let further the equation

L∗v = 0 (2.12)

have solutions v1, . . . , vq that form an orthonormal basis of its kernel. Then q ≥ p.
Suppose that q = p+ s∗, where s∗ ≥ 0. We will show that s = s∗.

Proposition 2.7. The inequality s∗ ≥ s holds.

Proof. From the sequence ukj of solutions of the equations Lku = 0, j = 1, . . . ,m,
k = 1, 2, . . . we can choose a subsequence that converges locally in E∞ to some
limiting function uj as k → ∞. The limiting functions uj , j = 1, . . . ,m are linearly
independent (Lemma 2.4) and belong to the kernel of the operator L. Denote by
um+1, . . . , um+s some functions that complete the basis of the kernel.

From Theorem 1.4 it follows that solutions of the equation

Lu = 0, u ∈ E∞(Ω) (2.13)

admit the estimate
‖u‖E∞(Ω) ≤ C‖u‖L2(ΩR). (2.14)

Consider the functions

u1, . . . , um, um+1, . . . , um+s, (2.15)

which form the basis of the kernel of the operator L. It follows from (2.14) that
the restrictions of (2.15) to E(ΩR) are linearly independent. Indeed, if a function
ũ =

∑m+s
i=1 ciui equals zero in ΩR, then it is also zero in Ω.
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Therefore there exists k0 such that for k > k0 the functions uk1 , . . . , ukm,
um+1, . . . , um+s are linearly independent in E(ΩR). It is convenient to introduce
the notation

ukm+j = um+j, j = 1, . . . , s, ∀k.
We recall the assumption that Ωk = Ω, k = 1, 2, . . . inside a ball Bρ with some
ρ > R. Hence, the restrictions of the functions ukm+j to Bρ are defined in Ωk.

We construct a system of functionals ωkj , j = 1, . . . ,m + s biorthogonal to
the functions uk1 , . . . , ukm, ukm+1, . . . , u

k
m+s. We follow here the method of Lemma

2.2 with some specific details explained below. Let φ ∈ D, φ(x) = 1 in ΩR,
suppφ ⊂ Ωρ with the same ρ as above. Since the functions φuki , i = 1, . . . ,m are
linearly independent, then there exists linear combinations

ũki =
m∑
i=1

ckiju
k
j

such that the functions φũki are orthonormal in E(Ωρ). The functions ũki are so-
lutions of the equations Lku = 0. As k → ∞, they converge to some limiting
functions ũi, i = 1, . . . ,m that are solutions of the equation Lu = 0. The func-
tions

ũ1, . . . , ũm, um+1, . . . , um+s

form the basis of the kernel of the operator L. We can introduce their linear
combinations

ũi =
m∑
i=1

cij ũj +
m+s∑
i=m+1

cijuj, i = m+ 1, . . . ,m+ s

such that the functions φũi, i = 1, . . . ,m+ s are orthonormal.
For the linear combinations

ũki =
m∑
i=1

cij ũ
k
j +

m+s∑
i=m+1

ciju
k
j , i = m+ 1, . . . ,m+ s

with the same coefficients, the functions φũki are “almost” orthonormal (the first
m of them are orthonormal according to the construction) since ũkj → ũj , j =
1, . . . ,m as k → ∞ and ukj = uj, i = m + 1, . . . ,m + s in Ωρ. Therefore with a
small change of the coefficients we obtain an orthonormal system of functions,

ũki =
m∑
i=1

ckij ũ
k
j +

m+s∑
i=m+1

ckiju
k
j , i = m+ 1, . . . ,m+ s,

ũki → ũi, ckij → cij as k → ∞.
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Similarly to Lemma 2.2, we now construct a system of functionals ωki ∈
E∗(Ωk) with supports in Ωρ such that

〈uki , ωkj 〉 = δij , i, j = 1, . . . ,m+ s,

‖ωki ‖E∗(Ωk) ≤ C, where C is a constant independent of i and k. Moreover, ωki → ωi
as k → ∞ and

〈ui, ωj〉 = δij , i, j = 1, . . . ,m+ s.

By virtue of the solvability conditions (Lemma 2.3) the equation

L∗
kv = ωkm+j, j = 1, . . . , s (2.16)

is solvable in F ∗(Ωk). It has a unique solution ykp+j , j = 1, . . . , s, which satisfies
the conditions

〈wki , ykp+j〉 = 0, j = 1, . . . , s, i = 1, . . . , p, (2.17)

where wki are the functions defined in Lemma 2.1.
Consider the equations

L∗v = ωm+j, j = 1, . . . , s. (2.18)

Since the solvability conditions given by Lemma 2.3 are also applicable to the
operator L∗, then the last equations are not solvable.

We explain the idea of the following proof. We consider solutions of equation
(2.16). If they remain bounded as k → ∞, then we pass to the limit in the equation
and obtain bounded solutions of equation (2.18). This contradiction shows that
the sequence of solutions of equation (2.16) is not bounded. We divide the equation
by their norms and pass to the limit. This gives us additional solutions of equation
(2.12).

From Theorem 1.6 it follows that the estimate

‖ykp+j‖(F∗(Ωk))∞ ≤ C
(
‖ωkm+j‖(E∗(Ωk))∞ + ‖ykp+j‖F∗

−1(ΩR)

)
(2.19)

holds with a constant C independent of j and k. Consider first the case where

‖ykp+j‖F∗
−1(ΩR) ≤M, j = 1, . . . , s, ∀k (2.20)

with some positive constant M . Since the norms ‖ωkm+j‖(E∗(Ωk))∞ are bounded,
then from estimate (2.19) it follows that the norms ‖ykp+j‖(F∗(Ωk))∞ are also
bounded. Therefore there exists a subsequence ykl

p+j such that its restriction to
ΩR converges in F ∗

−1(ΩR) to some limiting element yp+j ∈ F ∗
−1(ΩR). The same es-

timate and the convergence ωkl
m+j → ωm+j imply that the sequence ykl

p+j is funda-
mental in F ∗ on every bounded set. Therefore it converges locally to yp+j ∈ F ∗(Ω).
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We can pass to the limit in equation (2.16) and obtain solvability of equation
(2.18). This contradiction shows that (2.20) cannot hold.

We note that we use the equality 〈u, g〉 = 〈Lku, v〉 to pass to the limit in the
equation L∗

kv = g.
Suppose now that the sequence ykp+j is not bounded in the norm F ∗

−1(ΩR).
Without loss of generality we can assume, passing to a subsequence if necessary,
that the norms tend to infinity. Put

ỹkp+j =
ykp+j

‖ykp+j‖F∗
−1(ΩR)

, ω̃km+j =
ωkm+j

‖ykp+j‖F∗
−1(ΩR)

.

Then ỹkp+j still satisfy equalities (2.17) and the equation

L∗
kỹ
k
p+j = ω̃km+j , j = 1, . . . , s. (2.21)

For each k fixed, the restrictions of ỹkp+j , j = 1, . . . , s to ΩR are linearly indepen-
dent since ω̃km+j are linearly independent on ΩR. Therefore they can be orthonor-
malized in F ∗(ΩR). Denote by ŷkp+j the corresponding functionals given as linear
combinations of ỹkp+j:

ŷkp+j = ckj1ỹ
k
p+1 + · · · + ckjsỹ

k
p+s.

Then
L∗
kŷ
k
p+j = ckj1ω̃

k
m+1 + · · · + ckjsω̃

k
m+s

or
L∗
kŷ
k
p+j = dkj1ω

k
m+1 + · · · + dkjsω

k
m+s, (2.22)

where

dkji =
ckji

‖ykp+i‖F∗
−1(ΩR)

.

The coefficients dkji in the right-hand side of (2.22) are uniformly bounded. Indeed,
by construction

〈ukm+i, ω
k
m+j〉 = δij , i, j = 1, . . . , s.

From (2.22),
〈ukm+i, L

∗
kŷ
k
p+j〉 = dkij .

Hence
dkij = 〈Lkukm+i, ŷ

k
p+j〉.

The uniform boundedness of the coefficients dkji follows from the uniform bound-
edness of the operators Lk.

Moreover, these coefficients converge to zero. Indeed, if they are bounded
but do not converge to zero, then we can choose converging subsequences of the
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coefficients and pass to the limit in the equation as it was done above. It would
give a contradiction with the solvability conditions.

Denote the right-hand side in (2.22) by gkj . We have the estimate

‖ŷkp+j‖(F∗(Ωk))∞ ≤ C
(
‖gkj ‖(E∗(Ωk))∞ + ‖ŷkp+j‖F∗

−1(ΩR)

)
. (2.23)

It allows us to conclude that there exists a subsequence of the sequence ŷkp+j
converging locally to some yp+j :

L∗yp+j = 0, j = 1, . . . , s. (2.24)

From the relations

〈wki , ŷkp+j〉 = 0, j = 1, . . . , s, i = 1, . . . , p

and
[ŷkp+i, ŷ

k
p+j ]F∗(ΩR) = δij , i, j = 1, . . . , s

it follows that
〈wi, yp+j〉 = 0, j = 1, . . . , s, i = 1, . . . , p

and
[yp+i, yp+j ]F∗(ΩR) = δij , i, j = 1, . . . , s.

Therefore, v1, . . . , vp, yp+1, . . . yp+s are linearly independent and belong to the ker-
nel of the operator L∗. The proposition is proved. �

Proposition 2.8. The inequality s∗ ≤ s holds.

Proof. From the sequence of functionals vkj we can choose a subsequence that
converges locally in F ∗ to some functionals vj ∈ F ∗(Ω) (Lemma 2.5). The limiting
functionals vj , j = 1, . . . , p are linearly independent and belong to the kernel of
the operator L∗. Let vp+1, . . . , vp+s∗ be some functionals that complete the basis
of the kernel. From the sequence wkj we can choose a subsequence that converges
in F (ΩR) to some limiting function wj as k → ∞. We have

〈wj , vi〉 = δij , i, j = 1, . . . , p. (2.25)

Let the functions wp+1, . . . , wp+s∗ complete them to a biorthogonal system, that
is (2.25) holds for i, j = 1, . . . , p+ s∗. They can be chosen in such a way that they
have supports in Ωρ. Let us construct the functions wkj and the functionals vkj in
the same way as ukj and ωkj in the previous proposition and such that they satisfy
the following properties:

‖wkj − wj‖F (Ωρ) → 0 as k → ∞, j = 1, . . . , p+ s∗,

vkj → vj as k → ∞, j = 1, . . . , p+ s∗
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locally in F ∗,
〈wkj , vki 〉 = δij , i, j = 1, . . . , p+ s∗.

Consider the equations

Lu = wp+j , j = 1, . . . , s∗. (2.26)

Since the right-hand sides do not satisfy the solvability conditions, they are not
solvable. The equations

Lku = wkp+j , j = 1, . . . , s∗ (2.27)

are solvable in Ek(Ωk). We will repeat the same construction as in the previous
proposition to prove that equation (2.11) has at least m+ s∗ linearly independent
solutions.

Denote by uk1 , . . . , u
k
m linearly independent solutions of equation (2.1). By

virtue of Theorem 1.4 their restrictions to ΩR are also linearly independent. With-
out loss of generality we can assume that

[uki , u
k
j ]E(ΩR) = δij , i, j = 1, . . . ,m. (2.28)

From the sequences uki we can choose subsequences converging locally in E∞ to
some limiting functions ui ∈ E∞(Ω), i = 1, . . . ,m. We have

[ui, uj]E(ΩR) = δij , i, j = 1, . . . ,m. (2.29)

Denote by zkm+j, j = 1, . . . , s∗ solutions of equation (2.27) such that

[uki , z
k
m+j ]E(ΩR) = 0, i = 1, . . . ,m, j = 1, . . . , s∗. (2.30)

We have the estimate

‖zkm+j‖E∞(Ωk) ≤ C
(‖wkp+j‖F∞(Ωk) + ‖zkm+j‖L2(ΩR)

)
. (2.31)

We begin with the case where the norms ‖zkm+j‖L2(ΩR) are uniformly
bounded. Since the norms ‖wkp+j‖F∞(Ωk) are also uniformly bounded by construc-
tion, then by virtue of the previous estimate,

‖zkm+j‖E∞(Ωk) ≤M (2.32)

with some constant M independent of j and k. The restrictions of these functions
to ΩR are also uniformly bounded in E(ΩR). Therefore we can choose subse-
quences converging in the norm L2(ΩR). We recall that the functions wkp+j have
their supports in ΩR and converge to the limiting functions wp+j in F (ΩR). Hence
the sequences zkm+j converge locally in E∞ to some limiting functions zm+s. Pass-
ing to the limit in equation (2.27) we obtain solutions of equation (2.26). This
contradiction shows that (2.32) cannot hold.
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We now consider the case where the norms ‖zkm+j‖L2(ΩR) are not uniformly
bounded. Without loss of generality we can assume that they monotonically in-
crease with k. Put

z̃km+j =
zkm+j

‖zkm+j‖L2(ΩR)

, w̃kp+j =
wkp+j

‖zkm+j‖L2(ΩR)

.

Then
Lkz̃

k
m+j = w̃kp+j , j = 1, . . . , s∗ (2.33)

and
[uki , z̃

k
m+j ]E(ΩR) = 0, i = 1, . . . ,m, j = 1, . . . , s∗. (2.34)

For every k fixed the functions wkp+j , j = 1, . . . , s∗ are linearly independent on ΩR.
Therefore the restrictions of the functions zkm+j to ΩR are also linearly independent
and can be orthonormalized. Denote by ẑkm+j their linear combinations

ẑkm+j = c1j z̃
k
m+1 + · · · + cs∗j z̃

k
m+s∗

such that
[ẑkm+i, ẑ

k
m+j]E(ΩR) = δij , i, j = 1, . . . , s∗. (2.35)

Then
Lkẑ

k
m+j = d1jw

k
p+1 + · · · + ds∗jw

k
p+s∗ , j = 1, . . . , s∗, (2.36)

where

dkij =
ckij

‖zkm+j‖L2(ΩR)

and
[uki , ẑ

k
m+j ]E(ΩR) = 0, i = 1, . . . ,m, j = 1, . . . , s∗. (2.37)

If the coefficients dij are not uniformly bounded, we obtain a contradiction in
(2.36) with the uniform boundedness of the operators Lk. If these coefficients are
uniformly bounded but do not converge to zero, then we can choose converging
subsequences and pass to the limit in equation (2.36) to obtain a contradiction with
the solvability conditions for equation (2.26). Hence the coefficients dkij converge
to zero. Denote the right-hand side in equation (2.36) by fkj . Then

‖ẑkm+j‖E∞(Ωk) ≤ C
(‖fkj ‖F∞(Ωk) + ‖ẑkm+j‖L2(ΩR)

)
. (2.38)

Since the first norm in the right-hand side of this estimate converges to zero, the
second norm is bounded,

‖ẑkm+j‖L2(ΩR) ≤ ‖ẑkm+j‖E(ΩR) = 1,
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then the norms in the left-hand side are uniformly bounded. As above, we can
conclude that there exist subsequences ẑkl

m+j converging locally in E∞ to some
limiting functions ẑm+j ∈ E∞(Ω). Therefore

Lẑm+j = 0, j = 1, . . . , s∗.

By virtue of the convergence

‖ẑkm+j − ẑm+j‖E(ΩR) → 0, k → ∞,

(2.35) and (2.37) it follows that

[ẑm+i, ẑm+j ]E(ΩR) = δij , i, j = 1, . . . , s∗

and
[ui, ẑm+j]E(ΩR) = 0, i = 1, . . . ,m, j = 1, . . . , s∗.

Therefore the functions u1, . . . , um, ẑm+1, . . . , ẑm+s∗ belong to the kernel of the
operator L and they are linearly independent. The proposition is proved. �

We have proved the following theorem.

Theorem 2.9. Let bounded domains Ωn converge to an unbounded domain Ω and
Fredholm operators Ln : E(Ωn) → F (Ωn) converge to an operator L : E∞(Ω) →
F∞(Ω). If Conditions NS(seq) and NS∗(seq) are satisfied, then the index of the
operators Ln does not depend on n for n sufficiently large and equals the index of
the operator L.

Remark 2.10. Since solutions of the equations Lu = 0 and L∗v = 0 decay expo-
nentially at infinity, the index of the operator L : Eq(Ω) → Fq(Ω) is independent
of q, 1 ≤ q ≤ ∞.

3 Formally adjoint problems

In this section we consider the scalar boundary value problem

Au = f0 in Ω, Bju = fj in Γ, j = 1, . . . ,m. (3.1)

Here

Au =
∑

|α|≤2m

aα(x)Dαu, x ∈ Ω,

Bju =
∑

|α|≤sj

bαj (x)Dαu, x ∈ Γ, j = 1, . . . ,m, sj < 2m,

α = (α1, . . . , αn) is a multi-index, |α| = α1 + · · · + αn, Dα = Dα1
1 . . .Dαn

n , Dαi

i =
∂αi/∂xαi

i , Ω ⊂ Rn is an unbounded domain and Γ is its boundary. We suppose
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that problem (3.1) is uniformly elliptic. This means that (i) A is a uniformly
elliptic operator, (ii) A is properly elliptic, (iii) the boundary operators satisfy
uniformly the Lopatinskii condition. It is also supposed that Bj form a normal
system: 0 ≤ s1 < · · · < sm and for each normal vector νx on Γ, where x ∈ Γ, it
holds that ∑

|α|=si

bαj (x)ναx �= 0, j = 1, . . . ,m

(see [32], [318] and Chapter 6). Such problems are referred to as regular elliptic
problems. The coefficients aα(x) and bαj (x) in (3.1) are complex-valued functions
given in Ω̄ which, for simplicity, are assumed to be infinitely differentiable with all
bounded derivatives.

As it is known, Green’s formula takes place for the operators under consid-
eration:

∫
Ω

Au v̄ dx −
∫

Ω

u A∗v dx =
m∑
j=1

∫
Γ

Sju Cjv ds −
m∑
j=1

∫
Γ

Bju Tjv ds. (3.2)

Here u, v ∈ D(Ω̄), A∗ is the formally adjoint operator,

A∗v =
∑

|α|≤2m

(−1)|α|Dα(aα(x)v),

and the boundary operators Bj , Sj and Cj , Tj form Dirichlet systems (see [318]
and Chapter 6). The boundary value problem

A∗v = f0 in Ω, Cjv = fj in Γ, j = 1, . . . ,m. (3.3)

is called the formally adjoint problem with respect to (3.1).

Consider a sequence of bounded domains Ωn that converge to an unbounded
domain Ω and a sequence of operators Ln : E(Ωn) → F (Ωn) that converge to
an operator L : E(Ω) → F (Ω). Let the operators Ln and L satisfy the Fredholm
property. We suppose that the operators L and Ln have formally adjoint operators,
L∗ and L∗

n, respectively. Then the solvability conditions can be formulated in terms
of orthogonality to solutions of the homogeneous formally adjoint problems (both
for the direct and for the formally adjoint operators). In particular, problem (3.1)
is solvable if and only if

∫
Ω

f0 v̄ dx +
m∑
j=1

∫
Γ

fj Tjv ds = 0

for any solution v of the problem

A∗v = 0, Cjv = 0, j = 1, . . . ,m.
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Similar solvability conditions hold for the operators L∗, Ln, and L∗
n (see Chap-

ter 6).
Condition NS(seq) is supposed to be satisfied for both sequences of operators,

Ln and L∗
n. We restrict ourselves to the spaces of real-valued functions assuming

that the coefficients of the operators are real.

Lemma 3.1. Assume that the operators Ln are invertible and that dim Ker(L) =
µ ≥ 0. Then dim Ker(L∗) ≥ µ.

Proof. Let u1, . . . , uµ be linearly independent solutions of the equation

Lu = 0, u ∈ E(Ω). (3.4)

Since the operator L satisfies the Fredholm property, they decay exponentially at
infinity (Chapters 4 and 5). We can choose a system of functions f j0 ∈W l−2m(Ω)
with a bounded support strictly inside Ω, biorthogonal to the functions ui,

∫
Ω

uif
j
0dx = δij , i, j = 1, . . . , µ. (3.5)

Hence the problems

A∗v = f j0 , C1v = · · · = Cmv = 0, j = 1, . . . , µ (3.6)

are not solvable because the solvability conditions

∫
Ω

ui A∗v dx +
m∑
j=1

∫
Γ

Sjui Cjv ds = 0, i = 1, . . . , µ

are not satisfied.
Since the operators Ln are invertible, then the operators L∗

n are also invert-
ible. Indeed, the homogeneous equation L∗

nv = 0 has only zero solution. Otherwise,
it would be possible to choose such f that the equation Lnu = f was not solvable.
The nonhomogeneous equation L∗

nv = f is solvable for any f ∈ F (Ωn) since the
equation Lnu = 0 has only the zero solution.

Put f i = (f i0, f
i
1, . . . , f

i
m), where f ij = 0, j = 1, . . . ,m. The functions f i0

have bounded supports in Ω. Without loss of generality we can assume that the
domains Ωn coincide with Ω for n sufficiently large inside some ball which includes
the supports of the functions f i0. Therefore for n sufficiently large f i ∈ F (Ωn), and
the problems

L∗
nv = f i, i = 1, . . . , µ (3.7)

are uniquely solvable. Denote their solutions by vni . For each n the functions
vn1 , . . . , v

n
µ are linearly independent since f j0 are linearly independent.

Thus, equations (3.7) are solvable, while equations (3.6) are not solvable. If
there existed a convergent subsequence of the sequence of solutions of equations
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(3.7), we would obtain a solution of equation (3.6). This contradiction shows that
the sequence of norms of the solutions should be unbounded. This will allow us to
prove the existence of solutions of the equation L∗v = 0.

Consider the estimate

‖vni ‖E∞(Ωn) ≤M
(
‖L∗

nv
n
i ‖E∞(Ωn) + ‖vni ‖L2(Ωn

R)

)
, i = 1, . . . , µ, n = 1, 2, . . . ,

(3.8)
which follows from Theorem 1.4. Here ΩnR = Ωn ∩ {|x| ≤ R}, M and R do not
depend on i and n. Without loss of generality we can assume that the domains
ΩnR do not depend on n and use the notation ΩR. We recall that L∗

n are formally
adjoint operators, which can be considered as acting from E∞(Ωn) into F∞(Ωn).

If the norms ‖vni ‖L2(ΩR) are uniformly bounded, then the norms ‖vni ‖E∞(Ωn)

are also bounded. Therefore we can pass to the limit in equations (3.7) and obtain
that equation (3.6) is solvable. This contradicts the choice of the functions f i.
Therefore the sequences of norms are unbounded. Set

wni =
vni

‖vni ‖L2(Ωn
R)
, gni =

f i

‖vni ‖L2(Ωn
R)
.

Then
L∗
nw

n
i = gni , i = 1, . . . , µ. (3.9)

We can choose locally convergent subsequences of the functions wni and pass
to the limit in the equation to obtain nonzero solutions of the equation

L∗w = 0. (3.10)

We will show that there exist at least µ linearly independent solutions of this
equation.

The functions wn1 , . . . , wnµ are linearly independent. Indeed, if they were lin-
early dependent, then it would follow from equation (3.9) that the functions
gn1 , . . . , g

n
µ were also linearly dependent. This contradicts the linear independence

of the functions f1, . . . , fµ.
We construct the orthonormal system of functions:

w̃n1 =
wn1∫

Ω
|wn1 |2dx

, w̃n2 =
wn2 − an2 w̃

n
1∫

Ω
|wn2 − an2 w̃

n
1 |2dx

, an2 =
∫

Ω

wn2 w̃
n
1 dx,

w̃n3 =
wn3 − bn1 w̃

n
1 − bn2 w̃

n
2∫

Ω |wn3 − bn1 w̃
n
1 − bn2 w̃

n
2 |2dx

, bn1 =
∫

Ω

wn3 w̃
n
1 dx, b

n
2 =

∫
Ω

wn3 w̃
n
2 dx, . . .

The functions w̃n1 , . . . , w̃nm satisfy the equations

L∗
nw = g̃ni , i = 1, . . . , µ, (3.11)

where g̃ni are some linear combinations of the functions f i:

g̃n1 = kn11f
1 + · · · + kn1µf

µ , . . . , g̃nµ = knµ1f
1 + · · · + knµµf

µ.
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We note first of all that the constants knij are uniformly bounded. Indeed, otherwise
we divide equations (3.11) by the maximal constant for each n and pass to the
limit as n → ∞. We obtain a contradiction because the L2-norm of the solution
would be necessarily zero while the right-hand side is different from zero.

Moreover, they converge to zero: if there was a sequence knij that did not
converge to zero as n→ ∞, we could pass to the limit in the equation and would
obtain a contradiction with equalities (3.5) and solvability conditions.

Since the functions g̃ni have bounded supports and are uniformly bounded,
then the functions w̃n1 , . . . , w̃

n
µ admit a uniform exponential estimate,

|w̃ni (x)| ≤ ωδ(x) ≡ Ke−δ
√

1+|x|2 , i = 1, . . . , µ, n = 1, 2, . . . , (3.12)

where K and δ are some positive constants independent of i and n. This follows
from Theorem 1.7. It can be applied since the domains Ωn are bounded and,
consequently, ωδw̃ni ∈ E∞(Ωn).

From each sequence w̃ni , n = 1, 2, . . . we can choose a subsequence locally
convergent to some limiting function w̃0

i . It satisfies limiting equation (3.10). The
functions w̃0

i , i = 1, 2, . . . , µ are orthonormal and, consequently, linearly indepen-
dent. The lemma is proved. �

Corollary 3.2. The index of the operator L equals zero.

Proof. It sufficient to note that the operator L is formally adjoint to the operator
L∗. Therefore dimKer(L) ≥ dim Ker(L∗). The corollary is proved. �

The main result of this section is given by the following theorem.

Theorem 3.3. Suppose that the dimension of the kernel of the operator Ln equals µ
and the codimension of the image equals π for all n. Then the index of the operator
L equals µ− π.

Proof. Denote by un1 , . . . , u
n
µ linearly independent solutions of the equation Lnu =

0. Without loss of generality we can assume that they are orthonormal in L2(Ωn).
Let vn1 , . . . , v

n
µ be a system of functions biorthogonal to un1 , . . . , u

n
µ. Since the

functions un1 , . . . , u
n
µ admit uniform exponential estimates (Theorem 1.7), then

vn1 , . . . , v
n
µ can be chosen in such a way that they are uniformly bounded in the

W l−2m norm and that they have uniformly bounded supports strictly inside Ω.
The operator L∗

n formally adjoint to the operator Ln has a π-dimensional
kernel. Denote by wn1 , . . . , w

n
π its orthonormal basis. The problem

A∗
nv = f0 −

µ∑
i=1

vni

∫
Ωn

f0u
n
i dx, Cnj v = 0, j = 1, . . . ,m (3.13)

is solvable for any f0 such that f = (f0, 0, . . . , 0) ∈ F (Ωn).
Since the functions un1 , . . . , u

n
µ admit uniform exponential estimates, then we

can pass to the limit and obtain that the equation Lu = 0 has at least µ linearly
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independent solutions. Let the dimension of the kernel of the operator L be µ+ s,
s ≥ 0. Similarly, the dimension of the kernel of the operator L∗ is π + s∗, s∗ ≥ 0.
We will show that s = s∗.

Let u0
1, . . . , u

0
µ, u

0
µ+1, . . . , u

0
µ+s be an orthonormal basis in KerL, where the

first m functions are the limits of the sequences un1 , . . . , u
n
µ. Denote by f0

1 , . . . , f
0
µ+s

a system of functions with a finite support in Ω and biorthogonal to the functions
u0

1, . . . , u
0
µ+s: ∫

Ω

u0
i f

0
j dx = δij , i, j = 1, . . . , µ+ s.

The problems

A∗v = f0
j , Civ = 0, i = 1, . . . ,m, j = µ+ 1, . . . , µ+ s (3.14)

are not solvable since the solvability conditions for them are not satisfied. On the
other hand, the problems

A∗
nv = f0

j −
µ∑
i=1

vni

∫
Ωn

uni f
0
j dx, Cni v = 0, i = 1, . . . ,m, j = µ+ 1, . . . , µ+ s

(3.15)
are solvable for n sufficiently large for which the support of f0

j belongs to Ωn.
There is a unique solution ynj of this equation such that

∫
Ωn

ynj w
n
i dx = 0, i = 1, . . . , π. (3.16)

Suppose that the sequence ynj , n = 1, 2, . . . is uniformly bounded in L2(ΩR),
where ΩR is the same as in Theorem 1.4. As before, we can assume that it does
not depend on n. Then the norms ‖ynj ‖E(Ωn) are uniformly bounded.

Since∫
Ωn

uni f
0
j dx→ 0, n→ ∞, i = 1, . . . , µ, j = µ+ 1, . . . , µ+ s,

then we can pass to the limit in equation (3.15) and obtain that equation (3.14) is
solvable. This contradiction shows that the sequence of norms ‖ynj ‖L2(ΩR) is not
bounded. Dividing equations (3.15) by these norms, passing to the limit in the
equation and taking into account (3.16) we will obtain additional solutions of the
equation L∗v = 0. We will show that there are at least s such solutions.

Denote by zn1 , . . . , z
n
s an orthonormal linear combination of the functions

ynµ+1, . . . , y
n
µ+s. Then

∫
Ωn

znj w
n
i dx = 0, i = 1, . . . , π, j = 1, . . . , s.

The functions zn1 , . . . , z
n
s admit a uniform exponential estimate at infinity. Similar

to the proof of the previous lemma, we can show that from the sequences znj , n =
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1, 2, . . . we can choose subsequences locally converging to some limiting functions
z0
1 , . . . , z

0
s that satisfy the equation L∗v = 0. Moreover, these functions are linearly

independent between them and with wi, i = 1, . . . , π.
Thus we have proved that the dimension of the kernel of the operator L∗ is

at least µ+ s, that is s∗ ≥ s. Since the operator L is formally adjoint to L∗, then
we obtain similarly that s ≥ s∗. The theorem is proved. �

4 Convergence of solutions

In this section we study convergence of solutions of elliptic problems in bounded
domains to solutions in unbounded domains. This convergence may not occur.
Some examples are discussed below. As before we assume that Conditions NS(seq)
and NS∗(seq) are satisfied. They provide the stabilization of the index. For the
convergence of solutions we need an additional condition: not only the indices but
also the dimensions of the kernels should stabilize.

Denote by uk1 , . . . , u
k
m ∈ E(Ωk) all linearly independent solutions of the equa-

tion Lku = 0 and by vk1 , . . . , vkp ∈ F ∗(Ωk) all linearly independent solutions of the
equation L∗

kv = 0. We suppose that m and p are independent of k. We recall
that E is a Hilbert space with the inner product [·, ·]. As before, 〈·, ·〉 denotes the
duality in the corresponding spaces.

Theorem 4.1. Let conditions NS(seq) and NS∗(seq) be satisfied. Consider the equa-
tions

Lku = fk, (4.1)

where fk ∈ F∞(Ωk), ‖fk‖F∞(Ωk) ≤ K and fk → f ∈ F∞(Ω) in Floc. Suppose that
the solvability conditions

〈fk, vki 〉 = 0, i = 1, . . . , p (4.2)

are satisfied and denote by uk the solution of equation (4.1) such that

[uk, uki ] = 0, i = 1, . . . ,m. (4.3)

If
dim KerL = dimKerLk, (4.4)

then uk converges in Eloc to the unique solution u0 of the equation

Lu = f (4.5)

for which
[u0, ui] = 0, i = 1, . . . ,m, (4.6)

where ui form a basis of the kernel of the operator L.
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Proof. Consider the solutions vk1 , . . . , vkp ∈ F ∗(Ωk) of the homogeneous adjoint
equations. From Lemma 2.5 it follows that there exist linearly independent solu-
tions v1, . . . , vp ∈ F ∗(Ω) of the equation L∗v = 0 such that vkj → vj , j = 1, . . . , p
locally in F∞. The convergence can take place along a subsequence.

Since the index of the operator L equals the indices of the operators Lk for
k sufficiently large and by virtue of (4.4) the dimensions of their kernels are also
equal, then

dimKerL∗ = dimKerL∗
k. (4.7)

Hence v1, . . . , vp form a basis in the kernel of the operator L∗.
We will show that we can pass to the limit in (4.2) to obtain

〈f, vi〉 = 0, i = 1, . . . , p. (4.8)

Indeed, suppose that for some i0 this equality does not hold. Then

|〈f, vi0 〉| = a (4.9)

for some a �= 0. Let a function φR(x) ∈ D be identically equal to 1 for |x| ≤ R
and 0 for |x| ≥ R+ 1. By virtue of the local convergence of the solutions, we have

〈fk, φRvki0 〉 → 〈f, φRvi0〉, k → ∞. (4.10)

To continue the proof we need the following estimate. Let f ∈ F (Ωk), v ∈
F ∗(Ωk), φi ∈ D be a partition of unity and ψi ∈ D equal to 1 on the support of
φi (D denotes infinitely differentiable functions with bounded supports). Then

|〈f, v〉| ≤
∑
i

|〈ψif, φiv〉| ≤ C1 sup
i

‖ψif‖F (Ωk)

∑
i

‖φiv‖F∗(Ωk)

≤ C2‖f‖F∞(Ωk)‖v‖(F∗(Ωk))1 .

Here C1 and C2 are some positive constants, (F ∗(Ωk))1 is a space of functions
introduced in Section 2.1. We use here its equivalent norm defined through the
partition of unity (Chapter 2). Using this estimate, we obtain

|〈fk, (1 − φR)vki0 〉| = |〈ψRω−1fk, ω(1 − φR)vki0〉|
≤ ‖ψRω−1fk‖F∞(Ωk)‖ω(1 − φR)vki0‖(F∗(Ωk))1

≤ ‖ψR‖Me−µ(R−1)‖fk‖F∞(Ωk)‖1 − φR‖M‖ωvki0‖(F∗(Ωk))1

≤ Ce−µ(R−1), (4.11)

where ψR(x) is an infinitely differentiable function equal to 1 for |x| ≥ R, that
is on the support of the function 1 − φR(x), ‖ · ‖M denotes the norm of the
multiplier in both spaces F∞(Ωk) and (F ∗(Ωk))∞. In the last estimate we take
into account that the norms ‖ψR‖M and ‖1 − φR‖M are bounded independently
of R for R sufficiently large, as well as that the norms ‖fk‖F∞(Ωk) are bounded
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independently of k according to the condition of the theorem. Finally, the norms
‖ωvki0‖(F∗(Ωk))1 are bounded independently of k. This follows from the exponential
estimates of solutions of the homogeneous adjoint equation (cf. Theorem 1.7).

We next obtain the estimate

|〈f, (1 − φR)vi0〉| ≤ Ce−µ(R−1). (4.12)

We use here the result on the exponential estimate of solutions of the homogeneous
adjoint equation (see Chapter 5). From estimates (4.11), (4.12) it follows that we
can choose R such that

|〈fk, (1 − φR)vki0 〉| ≤
a

4
, |〈f, (1 − φR)vi0 〉| ≤

a

4
. (4.13)

From (4.2),
〈fk, (1 − φR)vki0〉 + 〈fk, φRvki0〉 = 0.

Hence |〈fk, φRvki0〉| ≤ a
4 . Convergence (4.10) implies the estimate |〈f, φRvi0 〉| ≤ a

4 .
Together with the second estimate in (4.12) this gives |〈f, vi0 〉| ≤ a

2 . This estimate
contradicts (4.9) and proves (4.8).

It follows from (4.8) that there exists a solution of equation (4.5). Denote by
u0 the unique solution of this equation, which satisfies conditions (4.6). We will
show that solutions uk of equations (4.1) converge to u0. Consider first the case
where

‖uk‖E∞(Ωk) ≤ K, ∀k (4.14)

for some positive constant K. Then there exists a subsequence converging to some
limiting function u ∈ E∞(Ω) locally in a weaker norm. The limiting function is
a solution of equation (4.5). By virtue of Lemma 2.4 we can pass to the limit in
(4.3) to obtain

[u, ui] = 0, i = 1, . . . ,m.

Since there exists a unique solution of equation (4.5), which satisfies these equali-
ties, then u = u0. Moreover, since the limit is unique the convergence occurs along
the whole sequence uk.

We next consider the case where (4.14) does not hold. Without loss of gen-
erality we can assume that this sequence tends to infinity. Put

wk =
uk

‖uk‖E∞(Ωk)
, gk =

fk
‖uk‖E∞(Ωk)

.

Then
Lkwk = gk, ‖wk‖E∞(Ωk) = 1, ‖gk‖E∞(Ωk) → 0, k → ∞.

We note first of all that if wk → 0 locally, then it follows from Theorem 1.4 that
‖wk‖E∞(Ωk) → 0 as k → ∞. This contradiction shows that the sequence wk does
not converge locally to zero. Since it is bounded, then there exists a subsequence
that converges locally in a weaker norm to some w0 ∈ E∞(Ω), Lw0 = 0, w0 �≡ 0.
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From (4.3) it follows that [wk, uki ] = 0, i = 1, . . . ,m. The uniform exponential
estimate (Theorem 1.7) allows the passage to the limit in these equalities:

[w0, ui] = 0, i = 1, . . . ,m.

We obtain a contradiction with the assumption (4.4). The theorem is proved. �

Remark 4.2. Conditions NS(seq) and NS∗(seq) in the formulation of the theorem
are related to the invertibility of limiting operators. If a limiting operator L̂ is
invertible as acting from E1 into F1, then the adjoint operator L̂∗ : (F1)∗ → (E1)∗

is also invertible. Therefore the equation L̂∗v = 0 has only a trivial solution in
the space (F1)∗ = (F ∗)∞. This provides Condition NS∗(seq). Condition NS(seq)
implies the unique solvability of the equation L̂u = 0 in the space E∞. It is a
stronger condition than the unique solvability of this equation in the space E1

since E1 ⊂ E∞. The difference between these conditions is essential. The equation
u′′ = 0 has a nonzero solution in H2

∞(R1) but not in H2
1 (R1). If the Laplace

operator is among limiting operators for some operator L, the latter does not
satisfy the Fredholm property since Condition NS is not satisfied. Stabilization of
the index and convergence of solutions may not occur because Condition NS(seq)
is not satisfied.

We consider some examples to illustrate the theorem on the convergence of
solutions.

Convergence of solutions. Consider the problems

∆u− au = b, u|∂Ωk
= 0, (4.15)

where a and b are some positive constants, Ωk are bounded domains with uniformly
C2+δ boundaries. Each of them has a unique solution uk ∈ C2+δ(Ωk). It can be
easily verified that

− b

a
≤ uk ≤ 0, x ∈ Ωk.

Therefore the norms ‖uk‖C2+δ(Ωk) are bounded by a constant independent of k
(Theorem 1.4). Suppose that the sequence of domains Ωk locally converges to an
unbounded domain Ω. From the estimate of the norms of the solutions it follows
that there exist a subsequence converging to a limiting function u0 ∈ C2+δ(Ω),
which is a solution of the same problem in the limiting domain Ω. This result is
in agreement with Theorem 4.1.

Divergence of solutions. Consider the problems

∆u = b, u|∂Ωk
= 0, (4.16)

where Ωk is a ball of radius k with its center at the origin. Each problem has the
unique solution uk = b(|x|2 − k2)/(2n). Obviously this sequence does not have
a finite limit. In this case Condition NS(seq) is not satisfied. Indeed, one of the
limiting problems, ∆u = 0 in R2, has a nonzero bounded solution. Hence Theorem
4.1 is not applicable.
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Boundary layer. Consider the problem

ε2u′′ − a(x)u = b(x), u(0) = u(1) = 0 (4.17)

in the interval 0 ≤ x ≤ 1. Put x = εy, vε(y) = u(x). Then vε(y) satisfies the
problem

v′′ε − a(εy)vε = b(εy), vε(0) = vε(
1
ε
) = 0. (4.18)

According to Theorem 4.1 solution of (4.18) locally converges to the solution v0(y)
of the problem

v′′ − a(0)v = b(0), v(0) = 0

on the half-axis y ≥ 0. Therefore u(εy) → v0(y) locally in H2. In this and in the
following examples we suppose that the function a(x) is such that the conditions
of the theorem are satisfied. For example, it can be positive in the interval [0, 1].

Singular perturbations. If we put formally ε = 0 in problem (4.17), then we find
the so-called external solution ue(x) = −b(x)/a(x) (a(x) �= 0). To justify this
formal solution consider the change of variables x = x0 + εy for some x0 ∈ (0, 1).
Put vε(y) = u(x). Then

v′′ε − a(x0 + εy)vε = b(x0 + εy), vε

(−x0

ε

)
= vε

(
1 − x0

ε

)
= 0.

Assuming that we can use Theorem 4.1, we obtain the convergence of the solution
vε(y) to the solution ve(y) of the limiting problem

v′′ − a(x0)v = b(x0), y ∈ R
1.

If a(x0) > 0, then this equation has a unique solution ve(y) ≡ −b(x0)/a(x0). If
a(x0) ≤ 0, then Condition NS(seq) is not satisfied and the theorem cannot be
applied. This is in agreement with the condition a(x) �= 0 required to define the
formal solution.

Taking into account the solution obtained in the previous example (inter-
nal solution), we can write an approximate solution of the singular perturbation
problem in its conventional form

u(x) = v0

(x
ε

)
− b(x)
a(x)

+
b(0)
a(0)

.

The last term in the right-hand side is introduced because both, the internal
solution at infinity and the external solution at zero, are equal to −b(0)/a(0).

Oscillating coefficients. Consider the equation

ε2u′′ − a
(x
ε

)
u = b(x) (4.19)



324 Chapter 8. Index of Elliptic Operators

on the real axis. As above, we introduce the function vε(y) = u(x). It satisfies the
equation

v′′ − a(y)v = b(εy).

Under the conditions of Theorem 4.1 we obtain the convergence u(εy) → v0(y),
where v0(y) is the solution of the limiting equation

v′′ − a(y)v = b(0), y ∈ R
1.

We note that the function a(y) is not necessarily periodic as is often the case in
homogenization problems. The boundary layer for oscillating coefficients can be
considered in the same way as in the previous example.

Oscillating boundaries. Let h(ξ) ∈ C2+δ(R). Put

Ωε =
{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ h

(x
ε

)}
.

We suppose that the domain is smoothed at the corners and keep for it the same
notation. Consider the problem

ε2
∂2u

∂x2
+
∂2u

∂y2
− au = b

in the domain Ωε with the zero boundary conditions. Put x = εξ, vε(ξ, y) = u(x, y).
Under the conditions of Theorem 4.1, vε(ξ, y) will converge to the solution v0(ξ, y)
of the problem

∂2v

∂ξ2
+
∂2v

∂y2
− au = b

in the domain
Ω0 = {(ξ, y) : 0 ≤ y ≤ h(ξ)}

with the zero boundary conditions.

5 Cauchy-Riemann system

Consider the Hilbert problem for the Cauchy-Riemann system:

∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
+
∂v

∂x
= 0, (5.1)

a(s)u + b(s)v = f(s). (5.2)

We suppose that a2(s) + b2(s) = 1. It is known that the index of the operator
L = (A,B) for a bounded domain Ω equals 2N +1, where N is the rotation of the
vector (a, b) (see, e.g., [205] and Section 8 below). Instead of system (5.1) we will
consider the system

∂u

∂x
− ∂v

∂y
− λu = 0,

∂u

∂y
+
∂v

∂x
+ λv = 0 (5.3)
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where λ is a positive number. For bounded domains the corresponding operator
satisfies the Fredholm property, and its index is the same as for λ = 0. We introduce
the zero-order terms to ensure the Fredholm property in the case of unbounded
domains.

Consider system (5.3) in the half-plane R2
+ with the boundary condition

au+ bv = h, (5.4)

where a and b are some constants, h(x) is an infinitely differentiable function with
a bounded support. Applying the partial Fourier transform with respect to x to
system (5.3), we obtain the system

{
ũ′ + iξṽ + λṽ = 0,
ṽ′ − iξũ+ λũ = 0

on the half-axis y > 0. Here the tilde denotes the partial Fourier transform and
prime denotes the derivative with respect to y. There exists a bounded solution
for y > 0: (

ũ
ṽ

)
=
(
p1

p2

)
e−

√
ξ2+λ2y,

where
p2 =

λ− iξ√
ξ2 + λ2

· p1 .

From the boundary condition (5.4) we have
(
a+ b

λ− iξ√
ξ2 + λ2

)
p1 = h̃(ξ), (5.5)

where h̃ is the Fourier transform of the function h. If λ = 0, |ξ| = 1, then this
equation is solvable for any h̃. This means that the Lopatinskii condition is satis-
fied. Let |λ| + |ξ| = 1. Equation (5.5) is solvable for any such λ and ξ if a �= −b.
Hence the last condition provides the ellipticity with a parameter. Thus we have
the following proposition.

Proposition 5.1. Problem (5.3), (5.4) in the half-plane R2
+ satisfies the condition

of ellipticity with a parameter if a �= −b. The corresponding operator is invertible
for real positive and sufficiently large λ.

Corollary 5.2. The operator corresponding to problem (5.3), (5.4) is invertible for
any positive λ.

Proof. The homogeneous problem has only the zero solution for any positive λ.
Indeed, from (5.5) it follows that p1 = 0. The Fourier transform should be un-
derstood here in the generalized sense since the corresponding operator acts from
E∞(R2

+) to F∞(R2
+).



326 Chapter 8. Index of Elliptic Operators

We verify that Condition NS is satisfied. Problem (5.3), (5.4) has constant
coefficients. Therefore it has two limiting problems. One of them coincides with
problem (5.3), (5.4) in the half-space. Another one is the problem in R2. Applying
the Fourier transform to system (5.3) considered on the whole plane, we obtain(

iξ1 − λ , −iξ2
iξ2 , iξ1 + λ

)(
ũ
ṽ

)
= 0.

The determinant of the matrix in the left-hand side of this equality equals −|ξ|2−
λ2. Since it is different from zero for any positive λ, then the homogeneous problem
in R

2 has only the zero solution. Thus, both limiting problems have only trivial
solutions, and Condition NS is satisfied for all positive λ. Therefore, the operator
corresponding to problem (5.3), (5.4) is normally solvable for such λ.

By virtue of Proposition 5.1, the operator is invertible for large positive λ.
From this and from its normal solvability for all λ > 0 it follows that it satisfies
the Fredholm property and has the zero index for any positive λ. The unique
solvability of the homogeneous equation implies its invertibility. The corollary is
proved. �

We will verify the condition of ellipticity with a parameter at another point
of the boundary. Consider system (5.3) in the half-plane y1 ≥ 0, where the coordi-
nates (x1, y1) are obtained from (x, y) by rotation on the angle θ counterclockwise:

x = x1 cos θ − y1 sin θ, y = x1 sin θ + y1 cos θ.

Let
ũ(x1, y1) = u(x, y), ṽ(x1, y1) = v(x, y).

Then
∂ũ

∂x1
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
,
∂ũ

∂y1
= − sin θ

∂u

∂x
+ cos θ

∂u

∂y
,

∂ṽ

∂x1
= cos θ

∂v

∂x
+ sin θ

∂v

∂y
,

∂ṽ

∂y1
= − sin θ

∂v

∂x
+ cos θ

∂v

∂y
.

Multiplying the first equation in (5.3) by cos θ, the second equation by sin θ and
taking their sum, and then multiplying the first equation in (5.3) by − sin θ, the
second equation by cos θ and taking their sum, we obtain the system

∂ũ

∂x1
− ∂ṽ

∂y1
+ λ(−ũ cos θ + ṽ sin θ) = 0, (5.6)

∂ũ

∂y1
+

∂ṽ

∂x1
+ λ(ũ sin θ + ṽ cos θ) = 0. (5.7)

Boundary condition (5.2) becomes

aũ+ bṽ = f̃ , (5.8)

where f̃(x1, y1) = f(x, y).
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Applying the Fourier transform to system (5.6), (5.7), we obtain
(
iξ1 − λ cos θ , −iξ2 + λ sin θ
iξ2 + λ sin θ , iξ1 + λ cos θ

)(
ũ
ṽ

)
= 0.

As before, the determinant of the matrix in the left-hand side of this equality
equals −|ξ|2 − λ2. Therefore, the homogeneous system in R2 has only a trivial
solution for all λ �= 0.

We consider next problem (5.6)–(5.8) in the half-plane y1 ≥ 0. Applying the
partial Fourier transform with respect to x1, we obtain

û′ + λ sin θ û+ (iξ + λ cos θ)v̂ = 0, (5.9)
v̂′ + (−iξ + λ cos θ)û− λ sin θ v̂ = 0. (5.10)

It has a bounded solution for y1 > 0:
(
û
v̂

)
=
(
p1

p2

)
e−

√
ξ2+λ2y1 ,

where

p1 = 1, p2 =
λ cos θ − iξ√
ξ2 + λ2 + λ sin θ

, |ξ| + |θ − 3π/2| �= 0,

p1 = 0, p2 = 1, |ξ| + |θ − 3π/2| = 0 (λ > 0).

Boundary condition (5.8) cannot be satisfied if

ap1 + bp2 = 0,

that is
a+ b

cos θ
1 + sin θ

= 0, θ �= 3π/2,

a = 1, b = 0, θ = 3π/2.
(5.11)

Consider the equation

tan(α(θ)) = − cos θ
1 + sin θ

. (5.12)

For each θ between 0 and 2π it has two solutions, α1(θ) and α2(θ) (Figure 6).
The function α1(θ) is continuous, increasing, α1(0) = 3π/4, α1(2π) = 7π/4. The
function α2(θ) is continuous and increasing for θ �= π/2. For this value of θ it
jumps from 2π to 0, α2(0) = 7π/4, α2(2π) = 3π/4.

Let s denote the natural parameter along the boundary of the domain Ω,
(x1, y1) be local coordinates at the boundary, and ν(s) be the inner normal vector
to the boundary. Consider the vector (a, b) in the local coordinates and denote by
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Figure 6: Schematic representation of the functions α1(θ) and α2(θ) (left);
construction of the function α0(s) (right).

α0(s) the angle between this vector and the normal vector ν(s) (positive angle is
counterclockwise). Then

tan(α0(s)) =
a

b
. (5.13)

Proposition 5.3. For any bounded domain Ω there are points at its boundary where
the condition of ellipticity with a parameter is not satisfied.

Proof. If α0(s) = αi(θ(s)), i = 1, 2, where θ(s) is the angle between ν(s) and the
vertical direction, then (5.11) is satisfied. Therefore, problem (5.6)–(5.8) does not
satisfy the condition of ellipticity with a parameter at this point of the boundary.
Since the function α0(θ) is periodic and θ(s) takes all values between 0 and 2π,
α0(θ) will necessarily intersect one of the functions αi(θ(s)). The proposition is
proved. �

Remark 5.4. If the condition of ellipticity with a parameter were satisfied every-
where, the problem would have the zero index. However, the index should be odd.
This is in agreement with the assertion of the previous proposition.

Definition 5.5. We say that a vector (a, b), a2 + b2 �= 0 belongs to the half-plane
Π− if a+ b < 0. It belongs to the half-plane Π+ if a+ b > 0.

Proposition 5.6. If the vector (a(s), b(s)) belongs to the same half-plane for any
s ∈ R and has limits (a±(s), b±(s)) as s → ±∞, then problem (5.2), (5.3) in the
half-plane R

2
+ has the zero index.
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Proof. Consider the homotopy (continuous deformation)
(
aτ (s)
bτ (s)

)
=
(

cos θτ (s) , − sin θτ (s)
sin θτ (s) , cos θτ (s)

) (
a(s)
b(s)

)
,

where θτ (s) equals 0 for τ = 0, and equals the angle between (a(s), b(s)) and
(a−(s), b−(s)) for τ = 1. Therefore this homotopy rotates the vector (a(s), b(s))
to the vector (a−(s), b−(s)). Moreover, aτ (s) �= −bτ(s). In particular, this is true
for s = +∞. Therefore Condition NS remains satisfied during the homotopy. For
τ = 1 we have the operator with constant coefficients in the boundary condition.
It follows from Corollary 5.2 that for τ = 1 the operator is invertible. Hence for
τ = 0 its index equals zero. The proposition is proved. �

Remark 5.7. If we do not assume that the vector (a(s), b(s)) has limits as s→ ±∞,
then the operator is invertible for large positive λ. It follows from the ellipticity
with a parameter.

Construction of domains 5.8. Consider a circle Bn with radius rn and its center
at xn = 0, yn = rn. We translate the half-circle located at the half-plane x ≥ 0
to the right at the distance x = n, and the half-circle located at the half-plane
x ≤ 0 to the left, also at the same distance x = n. We denote by Ωn the domain
bounded by the two half-circles and by the intervals y = 0,−n ≤ x ≤ n and
y = 2rn,−n ≤ x ≤ n (Figure 7).

Figure 7: Domain Ωn.

Theorem 5.9. Consider problem (5.2), (5.3) in the half-plane R
2
+. Suppose that

there exist limits
a± = lim

s→±∞ a(s), b± = lim
s→±∞ b(s),

and a± �= b±. If the vectors (a−, b−) and (a+, b+) belong to different half-planes
in the sense of Definition 5.5, that is

(a+ + b+)(a− + b−) < 0,
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then the index of the problem equals 2N+1, where N is the number of rotations of
the vector (a(s), b(s)) along the boundary from −∞ to ∞ completed by the rotation
from (a+, b+) to (a−, b−) counterclockwise.

Proof. Let us take s0 with a sufficiently large modulus such that the vectors
(a(s0), b(s0)) and (a(−s0), b(−s0)) belong to different half-planes. Let, for cer-
tainty,

(a(s0), b(s0)) ∈ Π+, (a(−s0), b(−s0)) ∈ Π−.

Then there exists a function α0(θ) such that

α0(θ) �= αi(θ), 0 ≤ θ ≤ 2π, i = 1, 2, (5.14)
3π
4
< α0(0) <

7π
4
, 0 ≤ α0(2π) <

3π
4

or
7π
4
< α0(2π) < 2π,

tan(α0(0)) =
a(s0)
b(s0)

, tan(α0(2π)) =
a(−s0)
b(−s0) . (5.15)

Consider the domain Ωs0 constructed in 5.8 with the lower boundary y = 0,−s0 ≤
x ≤ s0. Let z be a variable along the boundary. We define the functions a(z), b(z)
at the boundary ∂Ωs0 as follows. At the lower part of the boundary they are the
same as in the boundary conditions (5.3). At the remaining part of the boundary
the vector (a(z), b(z)) forms the angle α0(θ(z)) with the inner normal vector ν(z),
where θ(z) is the angle between ν(z) and the vertical direction. Then

tanα0(θ(z)) =
a

b
.

Together with (5.15) this provides the continuity of the vector (a(z), b(z)) at the
boundary of the domain Ωs0 . On the other hand, from the last equality and (5.14)
it follows that (5.11) does not hold.

Therefore, problem (5.2), (5.3) in the domain Ωs0 with the constructed
boundary condition satisfies the condition of ellipticity with a parameter at all
points of the boundary ∂Ωs0 for which y > 0. The rotation N of the vector
(a(z), b(z)) along the boundary ∂Ωs0 does not depend on s0 if |s0| is sufficiently
large. The index of the problem equals 2N + 1.

It remains to verify that we can pass to the limit as s0 goes to infinity and that
the conditions of the stabilization of the index are satisfied. Consider the sequence
of domains Ωsj , where j → ∞. Let xj ∈ Ωsj and |xj | → ∞. If the distance from
the points xj to the boundary ∂Ωsj tends to infinity, then the limiting domain is
the whole R

2. The corresponding limiting operator is invertible.
If for some sequence this distance remains bounded, then we denote by zj

the point of the boundary closest to xj . If the points zj belong to the upper part
of the boundary, then the corresponding limiting domain is R2−. The boundary
conditions are constant, and the corresponding operator is invertible. If the points
zj belong to the right or to the left parts of the boundary (half-circles), we will
denote by θj the corresponding angles. For each sequence θj converging to some
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limiting value θ we obtain a limiting problem in the half-plane R2
θ obtained from

the half-plane R2
− by rotation on the angle θ. The corresponding limiting problem

has constant coefficients, and it is invertible. Therefore Conditions NS(seq) and
NS∗(seq) are satisfied and the results of Section 2 can be applied. The theorem is
proved. �

6 Laplace operator with oblique derivative

In this section we consider the problem

∆u − λ2u = 0, a(x)
∂u

∂x
− b(x)

∂u

∂y
= h(x). (6.1)

For λ = 0, it is a well-known problem for the Laplace operator with oblique
derivative. In the case of bounded domains, its index is determined by the rotation
of the vector (c(x), d(x)) along the boundary of the domain. It is independent of
λ. For unbounded domains and λ = 0, the corresponding operator does not satisfy
the Fredholm property because the limiting problems have a nonzero bounded
solution u =const. We will consider problem (6.1) in unbounded domains with
λ �= 0 and will find its index.

Consider first problem (6.1) in the half-plane R2
+ = {(x, y) : −∞ < x <

∞, y ≥ 0} with constant a and b. We apply the partial Fourier transform with
respect to x. For the homogeneous problem (h = 0) we have

ũ(ξ, y) = e−
√
ξ2+λ2y, y ≥ 0.

It follows from the boundary condition that
(
aiξ + b

√
ξ2 + λ2

)
ũ(ξ, y) = 0. (6.2)

We will suppose that λ �= 0 and b �= 0. Then the last equation has only a trivial
solution for all real ξ. Therefore the corresponding operator is elliptic with a
parameter.

Lemma 6.1. Let a and b be some constants, b �= 0. Then the operator L = (A,B),
where

Au = ∆u− λ2u = 0, Bu = a
∂u

∂x
− b

∂u

∂y
,

L : H2
∞(R2

+) → L2
∞(R2

+) ×H1/2
∞ (R1)

is invertible for all real λ �= 0.

Proof. We have verified that the operator L satisfies the condition of ellipticity
with a parameter. Therefore it is invertible for large λ. On the other hand, it
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satisfies Condition NS for all λ �= 0. Therefore, it is normally solvable with a
finite-dimensional kernel. Hence, its index does not change when λ decreases from
the large values for which the operator is invertible. Since the kernel of the operator
is empty for all λ �= 0, then it is invertible. The lemma is proved. �

Consider now the operator with variable coefficients and assume that they
have limits at infinity,

a± = lim
x→±∞a(x), b± = lim

x→±∞ b(x).

If
b± �= 0 (6.3)

then, as it is indicated in the proof of the previous lemma, the operator is normally
solvable with a finite-dimensional kernel for all λ �= 0. Therefore, its index is
independent of λ. If b(x) �= 0 for all x ∈ R1, then the operator satisfies the
condition of ellipticity with a parameter. Hence it is invertible for large λ and,
consequently, has the zero index for all λ �= 0. However, if b(x) = 0 for some x,
then the condition of ellipticity with a parameter is not satisfied. We will see that
the index can be different from zero.

We will assume that

a2(x) + b2(x) �= 0, x ∈ R
1. (6.4)

If this condition is not satisfied at some x = x0, then equation (6.2) with a =
a(x0), b = b(x0) has a nonzero solution, and the Lopatinskii condition is not sat-
isfied.

We can consider homotopy classes of continuous curves (a(x), b(x)) under
conditions (6.3), (6.4). Some examples are shown in Figure 8. Curves 1 and 3
belong to the same homotopy class. Curves 2 and 5 belong also to the same class,
but to another one. All these curves can be retracted to a single point, that is
to a problem with constant coefficients. Therefore the index of the corresponding

Figure 8: Examples of homotopy classes of curves (a(x), b(x)).
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operator equals zero. Thus, there are at least two homotopy classes of operators
with the zero index. All other curves belong to different homotopy classes. We
will find the index of the corresponding operators approximating the half-plane
by bounded domains.

Consider the problem

∆u− λ2u = 0, a
∂u

∂τ
− b

∂u

∂ν
= 0 (6.5)

in the half-plane y1 ≥ 0, where the coordinates (x1, y1) are obtained from (x, y)
by rotation on the angle θ counterclockwise:

x = x1 cos θ − y1 sin θ, y = x1 sin θ + y1 cos θ,

τ denotes the tangential vector to the boundary and ν the outer normal vector.
Since the Laplace operator is invariant with respect to this change of variables, then
problem (6.5) can be reduced to problem (6.1) (the y-direction in (6.1) corresponds
to the inner normal vector). Therefore, the corresponding operator is invertible if
b �= 0.

Definition 6.2. Let b+ > 0, b− > 0 or b+ < 0, b− < 0 and I be the interval
connecting the point (a+, b+) with the point (a−, b−). Denote by S the curve
(a(x), b(x)), x ∈ R1 completed by the interval I and considered from (a−, b−) in
the direction of growing values of x. Rotation κ of the vector (a(x), b(x)) is the
number of rotations of the curve S around the origin with its direction taken into
account. Positive direction is counterclockwise.

According to the definition, κ is an integer. It can be positive, negative or
zero. In the examples in Figure 8, it is zero for the curves 1–3, 5; it can be +1 or
−1 for the curve 4 depending on the direction along the curve. It is not defined
for the curves 6 and 7.

Theorem 6.3. Let conditions (6.3), (6.4) be satisfied and b+ > 0, b− > 0 or b+ <
0, b− < 0. Then the index of problem (6.1) equals 2κ.

Proof. We note first of all that the index of problem (6.1) is understood as the dif-
ference between the number of linearly independent solutions of the homogeneous
problem (h = 0) and the number of solvability conditions of the nonhomogeneous
problem (h �= 0). The index of the operator L introduced above (with variable
coefficients) is not exactly the same because the right-hand side of the equation in
(6.1) equals zero. However, the index of the operator and the index of the problem
are equal to each other. This question is discussed in the next section in more
detail.

We have discussed before that the operator L is normally solvable with a
finite-dimensional kernel if b± �= 0. If we change the values of the coefficients at
infinity in a continuous way with condition (6.3) being satisfied, then the index of
the operator does not change. Hence we can reduce problem (6.1) to the problem
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for which a− = a+ = 0, b− = b+. Moreover, we can assume that b(x) = b+ for
x ≥ x+, b(x) = b− for x ≤ x− for some x±.

Consider the domains Ωn, introduced in the previous section, assuming that
n ≥ |x±| and the problems

∆u− λ2u = 0, a(s)
∂u

∂x
− b(s)

∂u

∂y
= h(s), (x, y) ∈ Ωn (6.6)

where s is a parameter along the boundary ∂Ω. The coefficients a(s), b(s) at the
boundary are defined as follows. At the lower part of the boundary, where y = 0,
they are equal to a(x), b(x), respectively, for the corresponding values of x. At all
other parts of the boundary we put

a(s) = b± cosα(s), b(s) = −b± sinα(s),

where α(s) is the angle between the outer normal vector and the x-axis. This
means that the derivative in the boundary condition is taken along the direction
normal to the boundary of the domain. It is the outer normal derivative if b± > 0
and the inner normal derivative if b± < 0.

We verify that problems (6.6) satisfy Conditions NS(seq) and NS∗(seq). All
limiting operators have the form

L̂ = (Â, B̂), Âu = ∆u− λ2u, B̂u =
∂u

∂ν

in half-planes R
2
θ, where θ ∈ [0, 2π] is the angle between the normal vector to

the boundary and the vertical direction. Since λ �= 0, then the equation L̂u = 0
has only a trivial solution in the space H2∞(R2

θ). Therefore Condition NS(seq) is
satisfied.

The operator L̂ : E1 → F1, where

E1 = H2
1 (R2

θ), F1 = L2
1(R

2
θ) ×H

1/2
1 (R2

θ)

is invertible. Hence the adjoint operator L̂∗ : (F1)∗ → (E1)∗ is also invertible.
From this it follows that the equation L̂∗v = 0 has only a trivial solution in (F1)∗.
However, (F1)∗ = (F ∗)∞. Thus, Condition NS∗(seq) is satisfied.

From the results of Section 2 it follows that the index of problem (6.1) in the
half-plane R

2
+ equals the index of problems (6.6) for n sufficiently large. It remains

to find the index of these problems in bounded domains. We note that the index
of the problems in the bounded domains does not depend on λ. We put λ = 0
and obtain the Laplace operator with oblique derivative. Let γ be the rotation of
the vector (a(s), b(s)) along the boundary. Then the index of problem (6.6) equals
2γ+2. On the other hand, γ = κ−1. Therefore, the index of problem (6.6) equals
2κ. The lemma is proved. �
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Examples 6.4. If the coefficients in the boundary condition in (6.1) are constant,
then κ = 0, and the index of the problem equals zero. This follows from the
invertibility of the corresponding operator.

For the curve 4 in Figure 8, κ = 1 or κ = −1 depending on the direction
along the curve. Therefore the index of the problem equals ±2. Theorem 6.3 is
not applicable for the curves 6 and 7. In the next section we will show that in
this case the index can be found by reduction of the Laplace operator to the
Cauchy-Riemann system.

In the remaining part of this section we study the problem in an unbounded
strip. Let

Ω = {(x, y), x ∈ R
1, 0 ≤ y ≤ 1}.

Consider the problem

∆u− λ2u = 0, y = 0 : a(x)
∂u

∂x
− b(x)

∂u

∂y
= h(x),

y = 1 : c(x)
∂u

∂x
− d(x)

∂u

∂y
= g(x).

(6.7)

We begin with the case where a, b, c, and d are constants. Applying the partial
Fourier transform with respect to x, it can be easily verified that the homogeneous
problem does not have nonzero bounded solutions if b �= 0, d �= 0.

In the case of the problem with variable coefficients we assume that there
exist limits

a± = lim
x→±∞a(x), b± = lim

x→±∞ b(x), c± = lim
x→±∞ c(x), d± = lim

x→±∞ d(x)

and
a2(x) + b2(x) �= 0, c2(x) + d2(x) �= 0, b± �= 0, d± �= 0. (6.8)

Then the limiting operators are invertible, Conditions NS and NS∗ are satisfied,
and the operator corresponding to problem (6.7) satisfies the Fredholm property.
Moreover, the index of the problem does not change under a continuous defor-
mation of the coefficients of the operator in such a way that (6.8) is satisfied.
Therefore, we can reduce problem (6.7) to the case where

a± = 0, c± = 0, |b−| = |d−|, |b+| = |d+|.

Theorem 6.5. Suppose that

b− = −d−, b+ = −d+. (6.9)

Then the index of problem (6.7) equals 2(κ+ − κ−), where κ+ is the rotation of
the vector (a(x), b(x)) and κ− is the rotation of the vector (c(x), d(x)).
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Remark 6.6. We have defined the rotation of the vector (a(x), b(x)) in the case
where b+ and b− have the same sign (Definition 6.2). We do not impose this
condition in this theorem. If b− and b+ have opposite signs, then the rotation is
not integer. In this case we put κ+ = κ0 ± 1/2, where κ0 is the rotation of the
vector (a(x), b(x)) from x = −∞ to the maximal value x = x0 for which b(x)
has the same sign as b−. We add or subtract 1/2 depending on the direction of
rotation from x0 to +∞ (+ if the rotation is counterclockwise).

The rotation of the vector (c(x), d(x)) is defined similarly. If b− and b+ have
opposite signs, then, by virtue of condition (6.9), it is also true for d− and d+.
Hence, κ+ and κ− are both integer or both non-integer. Their difference is always
integer, and the index is even. We can conjecture that if (6.9) is not satisfied, then
the index may be also odd.

Proof. We approximate the infinite strip by the domains Ωn similar to those con-
structed in the previous section. The difference is that in this case their height is
constant and equals 1. Thus, the lower part of the boundary of the domain Ωn is
located at the straight line y = 0, the upper part of the boundary at y = 1. The
left and the right parts of the boundary are half-circles.

The boundary condition at the boundary of the domain Ωn is defined as
follows. At the lower and upper parts of the boundary the coefficients in the
boundary condition are the same as for problem (6.7). At the left and at the right
parts of the boundary the derivative in the boundary condition is taken in the
direction normal to the boundary, inner or outer depending on the sign of the
coefficients. We use here condition (6.9) without which the vectors at the lower
and at the upper parts of the boundary could not be connected without passing
through the tangential direction.

We should verify Conditions NS(seq) and NS∗(seq). There are three limiting
domains: the whole cylinder, the left half-cylinder and the right half-cylinder.
In all cases the derivative in the boundary condition is in the normal direction.
Therefore, the corresponding operators are invertible (λ �= 0), and the required
conditions are satisfied.

Thus, we can apply the theorem on the stabilization of the index. The index
of problem (6.7) equals the index of the problem in the domain Ωn for n sufficiently
large. The latter equals 2(κ+ − κ−). The theorem is proved. �

7 Cauchy-Riemann system and Laplace operator

7.1 Reduction of the problems to each other

In Section 5 we found the index of the Cauchy-Riemann problem in the case
where the limiting values (a−, b−) and (a+, b+) of the coefficients in the boundary
condition at ±∞ belong to different half-planes in the sense of Definition 5.5. On
the other hand, in the previous section we found the index for the Laplace operator
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with oblique derivative in the case where (a−, b−) and (a+, b+) belong to the same
half-plane. In this section we will show how the indices of these two problems are
related to each other. It will allow us to find the index for both problems for all
values of vectors (a−, b−) and (a+, b+) for which the index is defined.

In this section we establish an inter-connection between two problems:

∂u

∂x
− ∂v

∂y
− λu = 0,

∂u

∂y
+
∂v

∂x
+ λv = 0, (7.1)

r(x)u + s(x)v = h(x) (7.2)
and

∆w − λ2w = 0, r(x)
∂w

∂x
− s(x)

∂w

∂y
= h(x) (7.3)

considered in the half-plane R2
+ = {(x, y) : −∞ < x < ∞, y ≥ 0}. If λ = 0, the

first one is the Hilbert problem for the Cauchy-Riemann system, the second one is
the Laplace operator with oblique derivative. If we put u = ∂w/∂x, v = −∂w/∂y,
then we obtain (7.1), (7.2) from (7.3). However, if λ �= 0, this transition cannot
be made directly and requires several intermediate steps.

We begin with the operator L1 = (A1
1, A

2
1, B1), where

A1
1(u, v) =

∂u

∂x
− ∂v

∂y
− λu, A2

1(u, v) =
∂u

∂y
+
∂v

∂x
+ λv, B1(u, v) = r(x)u + s(x)v,

L1 : (E1)∞ = (W 1,2
∞ (R2

+))2 → (F 1)∞ = (L2
∞(R2

+))2 ×W 1/2,2
∞ (R2

+).

Assume that the coefficients of the operator have limits at infinity,

r(x) → r±, s(x) → s±, x→ ±∞,

and r±+s± �= 0. Then for positive λ the limiting problems L±
1 (u, v) = 0 have only

trivial solutions in the space (E1)∞. Therefore, Condition NS is satisfied and the
operator L1 is normally solvable. By virtue of the ellipticity with a parameter, for
large λ the limiting operators L±

1 are invertible as acting from (E1)1 into (F 1)1.
From normal solvability it follows that they are invertible for all λ > 0. Hence,
the adjoint operator (L±

1 )∗ : ((F 1)1)∗ → ((E1)1)∗ is also invertible. Consequently,
the homogeneous adjoint equation (L±

1 )∗(·) = 0 has only a trivial solution in the
space ((F 1)1)∗ = ((F 1)∗)∞. Thus, Condition NS∗ is satisfied, and the operator L1

satisfies the Fredholm property. Its index is defined and the solvability conditions
of the equation

A1
1(u, v) = p, A2

1(u, v) = q, B1(u, v) = h (7.4)

are given by the equalities φj(p, q, h) = 0, where φj ∈ ((F 1)∞)∗ are linearly
independent solutions of the equation (L1)∗φ = 0.

Consider the functionals φj = (φ1
j , φ

2
j , φ

3
j ) and the functionals ψj = (0, 0, φ3

j).
Suppose that there are N linearly independent functionals φj and M linearly
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independent functionals ψj . We show that M = N . Indeed, the inequality N ≥M
is obvious. If N > M , then there exists a linear combination

Ψ =
N∑
j=1

cjφj

such that Ψ = (Ψ1,Ψ2, 0), where at least one of the functionals Ψ1 and Ψ2 is
different from zero. Hence, there exist functions p and q such that Ψ(p, q, h) �= 0
for any h. System (7.4) is not solvable for such p, q and for any h. We will show
that this conclusion cannot hold. Consider some extensions p̃ and q̃, respectively,
of the functions p and q to L2(R2). The system

A1
1(u, v) = p̃, A2

1(u, v) = q̃

is solvable in W 1,2
∞ (R2). Denote by (ũ, ṽ) its solution and put û = u− ũ, v̂ = v− ṽ.

Then (û, v̂) satisfies the problem

A1
1(û, v̂) = 0, A2

1(û, v̂) = 0, B1(û, v̂) = h− ru0 − sv0,

where u0 is the trace of the function ũ and v0 the trace of ṽ. There exists some h
such that the last problem is solvable. This contradiction shows that M = N .

Lemma 7.1. The problem

∂u

∂x
− ∂v

∂y
− λu = 0,

∂u

∂y
+
∂v

∂x
+ λv = 0 , (7.5)

r(x)u + s(x)v = h, (7.6)

is solvable if and only if ψj(h) = 0, j = 1, . . . , N , where ψj are linearly independent
functionals.

Proof. We have proved before the lemma that the functionals ψj are linearly
independent. Since problem (7.4) is solvable if and only if φj(p, q, h) = 0, then
problem (7.5), (7.6) is solvable if and only if ψj(h) = 0. The lemma is proved. �

Corollary 7.2. The index of the operator L1 equals the index of problem (7.5),
(7.6), that is the difference between the number of linearly independent solutions
of the homogeneous problems and the number of solvability conditions of the non-
homogeneous problem.

Next, we consider the problem

∂f

∂x
+
∂g

∂y
+ λf = 0, −∂f

∂y
+
∂g

∂x
− λg = 0 , (7.7)

c(x)f + d(x)g = h. (7.8)

It can be obtained from problem (7.5), (7.6) if we replace x by −x and put c(x) =
r(−x), d(x) = s(−x).
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Lemma 7.3. Consider the problem

∂u

∂x
− ∂v

∂y
− λu = f,

∂u

∂y
+
∂v

∂x
+ λv = g , (7.9)

au+ bv = 0, (7.10)

in the half-plane R
2
+. Here a and b are constants, a+ b �= 0, (f, g) is a solution of

problem (7.7), (7.8). There exists a one-to-one correspondence between solutions
of problem (7.7)–(7.10) and of problem (7.7), (7.8).

Proof. It is sufficient to note that problem (7.9), (7.10) is uniquely solvable for
any f and g. The lemma is proved. �

Substituting f and g from (7.9) into (7.7), (7.8) we obtain:

∆u− λ2u = 0, (7.11)

∆v − λ2v = 0, (7.12)

c

(
∂u

∂x
− ∂v

∂y
− λu

)
+ d

(
∂u

∂y
+
∂v

∂x
+ λv

)
= h. (7.13)

Corollary 7.4. The index of problem (7.7)–(7.10) equals the index of problem (7.7),
(7.8). The index of problem (7.7)–(7.10) is understood as the difference between
the number of linearly independent solutions of the problem with h = 0 and the
number of solvability conditions on the function h.

Lemma 7.5. There exists a one-to-one correspondence between solutions of problem
(7.7)–(7.10) and of problem (7.10)–(7.13).

Proof. Let (u, v, f, g) be a solution of problem (7.7)–(7.10). Substituting f and g
from (7.9) into (7.7), (7.8), we obtain (7.11)–(7.13). We note that f and g belong
to W 1,2

∞ (R2
+) as a solution of (7.7), (7.8). Therefore, u and v belong to W 2,2

∞ (R2
+)

as a solution of (7.9), (7.10). Hence, expressions (7.11)–(7.13) are well defined.
Let (u, v) be a solution of problem (7.10)–(7.13). Put

f =
∂u

∂x
− ∂v

∂y
− λu, g =

∂u

∂y
+
∂v

∂x
+ λv.

Then
∂f

∂x
+
∂g

∂y
+ λf = ∆u− λ2u = 0,

−∂f
∂y

+
∂g

∂x
− λg = ∆v − λ2v = 0,

cf + dg = c

(
∂u

∂x
− ∂v

∂y
− λu

)
+ d

(
∂u

∂y
+
∂v

∂x
+ λv

)
= h.

The lemma is proved. �
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Corollary 7.6. The indices of problems (7.7)–(7.10) and (7.10)–(7.13) are equal to
each other.

We introduce the operator L2 corresponding to problem (7.10)–(7.13):

L2 = (A1
2, A

2
2, B

1
2 , B

2
2),

L2 : (E2)∞ = (W 2,2
∞ (R2

+))2 → (F 2)∞

= (L2
∞(R2

+))2 ×W 3/2,2
∞ (R2

+) ×W 1/2,2
∞ (R2

+),

A1
2(u, v) = ∆u− λ2u, A2

2(u, v) = ∆v − λ2v,

B1
2(u, v) = au+ bv,

B2
2(u, v) = c

(
∂u

∂x
− ∂v

∂y
− λu

)
+ d

(
∂u

∂y
+
∂v

∂x
+ λv

)
.

As above, we assume that a and b are some constants, a + b �= 0, c(x) and d(x)
have limits at infinity, c± + d± �= 0.

We prove first of all that the operator L2 satisfies the Fredholm property. We
use the same approach as for the operator L1. Consider the limiting operators L±

2 .
Since the limiting problems L±

2 (u, v) = 0 are equivalent to the limiting problems
for problem (7.7)–(7.10) with h = 0, then they have only a trivial solution for all
positive λ. Therefore, the operator L2 satisfies Condition NS for all λ > 0.

Next, we verify that the limiting operators satisfy the condition of ellipticity
with a parameter. Consider the problem

∆u− λ2u = p, ∆v − λ2v = q

in R
2. Applying the Fourier transform we obtain the unique solvability of this

system for any ξ and λ, |ξ| + |λ| = 1. For the problem

A1
2(u, v) = 0, A2

2(u, v) = 0, B1
2(u, v) = h1, B2

2(u, v) = h2

in the half-plane R2
+ we apply the partial Fourier transform with respect to x. We

have
ũ = k1e

−
√
ξ2+λ2y, ṽ = k2e

−
√
ξ2+λ2y.

We substitute these expressions into the boundary conditions:
(

a , b

ciξ + d
√
ξ2 + λ2 − cλ , diξ + c

√
ξ2 + λ2 + dλ

) (
ũ
ṽ

)
=
(
h̃1

h̃2

)
. (7.14)

The determinant of the matrix in the left-hand side satisfies

det = ad(iξ + λ) − bc(iξ − λ) + (bd+ ac)
√
ξ2 + λ2 �= 0, ∀ξ, λ > 0.

Therefore, the condition of ellipticity with a parameter is satisfied, and the limiting
operators L±

2 are invertible for large positive λ. From this and from Condition NS
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it follows that it is a Fredholm operator with the zero index for all positive λ.
Since its kernel is empty, then it is invertible for all λ > 0. Hence, this is also true
for the adjoint operator, which implies Condition NS∗. From Conditions NS and
NS∗ it follows that the operator L2 is Fredholm.

Lemma 7.7. The index of the operator L2 equals the index of problem (7.10)–(7.13).

Proof. The homogeneous equation L2(u, v) = 0 coincides with problem (7.10)–
(7.13) with h = 0. Therefore the dimensions of their kernels are the same.

It remains to verify that the codimensions of the images are also the same.
We prove this in the same way as for the operator L1. Let φj , j = 1, . . . , N
be linearly independent solutions of the homogeneous adjoint equation L∗

2φ = 0.
They can be represented in the form φj = (φ1

j , φ
2
j , φ

3
j , φ

4
j ). Consider the functionals

ψj = (0, 0, 0, φ4
j). Let M be the number of them that are linearly independent.

Then N ≥M .
We will show that N = M . Indeed, if N > M , then there exists a linear

combination

Ψ =
N∑
j=1

cjφj

such that Ψ = (φ1
j , φ

2
j , φ

3
j , 0), where at least one of the functionals φ1

j , φ
2
j , φ

3
j is

different from zero. Therefore, there exist some p, q, h1 such that the problem

A1
2(u, v) = p, A2

2(u, v) = q, B1
2(u, v) = h1, B2

2(u, v) = h2 (7.15)

is not solvable for any h2.
Denote by (u0, v0) a solution of the problem

∆u− λ2u = p, ∆v − λ2v = q, au+ bv = h1.

It can be constructed as follows. We extend the function p(x) to L2(R2) and denote
by u0 the solution of the equation

∆u− λ2u = p, x ∈ R
2.

Then v0 is a solution of the problem

∆v − λ2v = q, bv = h1 − aû,

where û is the trace of the function u0.
The functions ũ = u− u0, ṽ = v − v0 satisfy the problem

A1
2(ũ, ṽ) = 0, A2

2(ũ, ṽ) = 0, B1
2(ũ, ṽ) = 0, B2

2(ũ, ṽ) = h2 −B2
2(u0, v0).

The function h2 can be chosen in such a way that this problem has a solution.
Hence u = u0 + ũ, v = v0 + ṽ is a solution of problem (7.15). We obtain a contra-
diction with the assumption that it is not solvable for any h2. This contradiction
proves that M = N .
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Thus, there are N linearly independent functionals ψj . Since problem (7.15)
is solvable if and only if φj(p, q, h1, h2) = 0, j = 1, . . . , N and

φj(0, 0, 0, h2) = ψj(h2),

then problem (7.10)–(7.13) is solvable if and only if ψj(h2) = 0. The lemma is
proved. �

We introduce an operator Lτ which depends on the parameter τ ∈ [0, 1]. It
acts in the same spaces as the operator L2 and is given by the following relations:

Lτ = (A1
2, A

2
2, B

1
2 , B̂τ ),

A1
2(u, v) = ∆u− λ2u, A2

2(u, v) = ∆v − λ2v, B1
2(u, v) = au+ bv,

B̂τ (u, v) = c

(
∂u

∂x
−
(
τ
∂v

∂y
− (1 − τ)

a

b

∂u

∂y

)
− λu

)
+ d

(
∂u

∂y
+
∂v

∂x
+ λv

)
.

It coincides with the operator L2 for τ = 1 and with the operator

L̂2 = (A1
2, A

2
2, B

1
2 , B̂2)

for τ = 0. Here

B̂2 = c

(
∂u

∂x
+
a

b

∂u

∂y
− λu

)
+ d

(
∂u

∂y
+
∂v

∂x
+ λv

)
.

Similar to the operator L2, the operator Lτ satisfies Condition NS. Instead of the
matrix in (7.14), here we have another matrix but with the same determinant:

det
(

a , b

ciξ − ((1 − τ)cab + d)
√
ξ2 + λ2 − cλ , diξ + τc

√
ξ2 + λ2 + dλ

)

= ad(iξ + λ) − bc(iξ − λ) + (bd+ ac)
√
ξ2 + λ2 �= 0, ∀ξ, λ > 0.

Since the operator L2 is Fredholm, the operator Lτ is normally solvable with a
finite-dimensional kernel, then the operator L̂2 is also Fredholm. Its index equals
the index of the operator L2.

Lemma 7.8. The problem

∆u− λ2u = 0, ∆v − λ2v = 0, (7.16)
au+ bv = 0, (7.17)

c

(
∂u

∂x
− µ

∂u

∂y
− λu

)
+ d

(
∂u

∂y
+ µ

∂u

∂x
+ µλu

)
= h, (7.18)

where µ = −a/b, has the same index as the operator L̂2.

Proof. The proof is similar to the proof of the previous lemma. We use the relation
v = µu in the boundary condition. The lemma is proved. �
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Lemma 7.9. There exists a one-to-one correspondence between solutions of problem
(7.16)–(7.18) and of the problem

∆u− λ2u = 0, (7.19)

(c+ dµ)
∂u

∂x
+ (d− cµ)

∂u

∂y
+ λ(−c+ dµ)u = h. (7.20)

Proof. Obviously, any solution of problem (7.16)–(7.18) provides a solution of
problem (7.19), (7.20). Inversely, let u be a solution of problem (7.19), (7.20).
Then we can find a unique v that satisfies the problem

∆v − λ2v = 0, v = −a
b
u.

Then (u, v) is a solution of problem (7.16)–(7.18). The lemma is proved. �

Along with problem (7.19), (7.20) we consider the problem

∆u− λ2u = 0, (7.21)

(c+ dµ)
∂u

∂x
+ (d− cµ)

∂u

∂y
+ τλ(−c+ dµ)u = h, (7.22)

where τ ∈ [0, 1]. For τ = 1 we have problem (7.19), (7.20). For τ = 0 we obtain
the problem with oblique derivative. We will find conditions on c and d such that
the problem satisfies Condition NS during this deformation. In fact, we need to
introduce the operator that corresponds to problem (7.19), (7.20) and to show
that it has the same index. Then we construct a continuous deformation of this
operator in such a way that Condition NS is satisfied for all values of the parameter
τ . Then we can conclude that the index is preserved. After that, instead of the
operator with τ = 0 we consider the corresponding problem (7.21), (7.22) and
show that it has the same index. Since these intermediate steps are the same as
before for the operator Lτ2 , we will work directly with problem (7.21), (7.22).

We consider the limiting values of c and d at ±∞ and will keep for them
the same notation. We should verify that problem (7.21), (7.22) with constant
coefficients and with h = 0 does not have nonzero solutions. We apply the partial
Fourier transform with respect to x. We find from (7.21):

ũ(ξ, y) = ke−
√
ξ2+λ2y.

The problem will have a nonzero bounded solution if for some real ξ,

(c+ dµ) iξ −
√
ξ2 + λ2(d− cµ) + τλ(−c + dµ) = 0. (7.23)

We will find the value of µ for which this equality does not hold for any ξ, λ > 0,
and τ ∈ [0, 1]. We recall that µ = −a/b, where a and b some constants.
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If ξ �= 0, then c = −dµ. Therefore, since d �= 0 (otherwise, d = c = 0), then√
ξ2 + λ2

λ
=

2τµ
1 + µ2

.

The left-hand side of this equality is greater than or equal to 1. The right-hand
side is less than or equal to 1. The equality can take place only for τ = 1 and
µ = 1. We suppose however that µ �= 1. Therefore it cannot hold for any real ξ
and positive λ.

Consider now the case ξ = 0. Then from (7.23)

−(d− cµ) + τ(−c+ dµ) = 0. (7.24)

If we take for example µ = −1, then this equality cannot hold for any τ ∈ [0, 1]
since c+ d �= 0. We will use this example below.

We have proved the following lemma.

Lemma 7.10. For any limits c±, d± of the coefficients c(x) and d(x) at infinity,
c± +d± �= 0, there exists µ �= 1 such that d±− c±µ �= 0 and problem (7.19), (7.20)
has the same index as the problem

∆u− λ2u = 0, (7.25)

(c+ dµ)
∂u

∂x
+ (d− cµ)

∂u

∂y
= h. (7.26)

We note that the vector

(c+ dµ, d− cµ) = (c, d) + µ(d,−c)
is obtained from the vector (c, d) by rotation on a constant angle. Therefore the
rotation of these two vectors along the boundary is the same. Hence the index of
problem (7.25), (7.26) is the same as for the problem

∆u− λ2u = 0, c(x)
∂u

∂x
+ d(x)

∂u

∂y
= h. (7.27)

In this case we should assume additionally that d± �= 0.

We have proved the following theorem.

Theorem 7.11. Suppose that there exist the limits

c± = lim
x±∞ c(x), d± = lim

x±∞ d(x) and c± + d± �= 0, d± �= 0.

Then the index of problem (7.7), (7.8) equals the index of problem (7.27).

Corollary 7.12. The indices of problems (7.1), (7.2) and (7.3) are equal to each
other.

Proof. It is sufficient to replace x by −x in both problems and put r(x) =
c(−x), s(x) = d(−x). �
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7.2 Formula for index

In Section 5 we have found the index of problem (5.2), (5.3) in the half-plane
assuming that the quantities (a− + b−) and (a+ + b+) are different from zero and
have opposite signs. Its index equals 2N + 1, where N is the number of rotations
of the vector (a(x), b(x)) for x from −∞ to ∞ completed by the rotation from
(a+ + b+) to (a− + b−) counterclockwise. Some examples are shown in Figure 9:
N = 0 for the curve 1 and N = 1 for the curve 2.

Figure 9: Rotation of the vector (a(x), b(x)) in the boundary condition
of problem (5.2), (5.3).

The results of Section 5 are not applicable for the third example in the same
figure since (a− + b−) and (a+ + b+) have the same sign. In this case we use
the results of the present section that allow us to reduce problem (5.2), (5.3) to
problem (6.1) with the same rotation of the vector in the boundary condition.
They have the same index. Therefore it is sufficient to find the index of problem
(6.1). For this we need to verify that conditions of Theorem 6.3 are satisfied: the
limits b± of the function b(x) in (6.1) should have the same signs.

Therefore we have two conditions: (a− + b−) and (a+ + b+) have the same
sign; b− and b+ have the same sign. The second condition does not follow of course
from the first one. It is satisfied for the example in Figure 9 but it is not necessarily
the case. Hence the reduction to problem (6.1) can be done but Theorem 6.3 may
not be directly applicable.

We recall that when we reduce problem (7.7), (7.8) to problem (7.25), (7.26),
there is an additional parameter µ that appears in the latter problem. It should
satisfy certain conditions in order for the problems to have the same index. In
particular, it was indicated above that these conditions were satisfied if µ = −1.
Introduction of this value of µ in the boundary condition (7.26) signifies that the
vector (c(x), d(x)) is turned through an angle π/4 counterclockwise. This means
that the third curve in Figure 9 will also be turned through the same angle. Since
(a− + b−) and (a+ + b+) are different from zero and have the same sign, then after
this rotation we will obtain that b− and b+ are also different from zero and have
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the same sign. Hence we can apply Theorem 6.3. For the example in Figure 9, the
index equals 2.

Thus, we can find the index of the Cauchy-Riemann system directly (approx-
imating by bounded domains) if the index is odd. In the case of an even index we
can do it by reduction to the Laplace operator. Similarly, the index of problem
(6.1) can be found directly if it is even. If it is odd, it can be found by reduction
to the Cauchy-Riemann system (examples 6 and 7 in Figure 8).

8 General first-order systems on the plane

8.1 Reduction to canonical systems

Consider the problem

Au ≡ a(x)
∂u

∂x1
− ∂u

∂x2
+ c(x)u = f, x ∈ Ω, (8.1)

Bu ≡ b(x)u = g, x ∈ Γ. (8.2)

Here Ω is a bounded simply connected domain with a sufficiently smooth boundary
Γ, a(x) is a real square matrix of the order 2r, a ∈ Cl(Ω̄), b(x) is a real r × 2r
matrix. Problem (8.1), (8.2) is supposed to be elliptic.

Theorem 8.1. There exists a square matrix P (x) of the order 2r, P (x) ∈ Cl(Ω̄)
invertible for all x ∈ Ω̄ and such that its last r rows are complex conjugate for the
first r rows and the equality

P (x)a(x)P−1(x) =
(
a0(x) 0

0 a0(x)

)
(8.3)

holds, where a0(x) is a square complex matrix, for which all eigenvalues for any
x ∈ Ω̄ have positive imaginary parts.
The proof of this theorem is given in [547].

Put

ã(x) =
(
a0(x) 0

0 a0(x)

)
.

We set v = Pu. Then problem (8.1), (8.2) takes the form

ã
∂v

∂x1
− ∂v

∂x2
+ ã0v = f̃ , x ∈ Ω, (8.4)

b̃(x)u = g, x ∈ Γ, (8.5)
where

ã(x) = P (x)a(x)P−1(x), b̃(x) = b(x)P−1(x), f̃ = Pf,

ã0(x) = P

(
a
∂P−1

∂x1
− ∂P−1

∂x2
+ cP−1

)
.
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We will call problem (8.4), (8.5) canonical.

Proposition 8.2. Canonical problem (8.4), (8.5) remains canonical after an orthog-
onal change of the independent variables.

Proof. Consider the change of variables

y1 = α1x1 + α2x2, y2 = −α2x1 + α1x2,

where α1 = cos θ, α2 = sin θ. Then system (8.4) takes the form

â(y)
∂v

∂x1
− ∂v

∂x2
+ · · · ,

where

â(y) =
(
c 0
0 c̄

)
, c = (a0α2 + α1)−1(a0α1 − α2).

We have to prove that all eigenvalues of the matrix c have positive imaginary
parts. We suppose that x and θ are fixed. Suppose, first, that all eigenvalues of
the matrix a0 are different from each other. Let T be such that

Ta0T
−1 =


λ1 . . . 0
. . . . . . . . .
0 . . . λr


 .

We have Imλk ≥ ρ > 0, k = 1, . . . , r for some ρ,

TcT−1 =


φ(λ1) . . . 0

. . . . . . . . .
0 . . . φ(λr)


 , φ(λ) =

λα1 − α2

λα2 + α1
.

Since α2
1 + α2

2 = 1, then

Imφ(λk) =
Imλk

|λkα2 + α1|2 >
ρ

|λkα2 + α1|2 > 0.

Hence the proposition is proved in the case where all eigenvalues of the matrix a0

are different from each other. The general case can be reduced to this one by a
small perturbation. The proposition is proved. �

Theorem 8.3. The Lopatinskii condition for canonical system (8.4), (8.5) does not
depend on the matrix ã and on the normal vector to the boundary Γ. It has the
form

det b̃1(x) �= 0, det b̃1(x) �= 0 ∀x ∈ Γ, (8.6)

where b̃(x) = (b̃1(x), b̃2(x)).
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Proof. Consider, first, the case where Ω is the half-plane x2 > 0, and the coef-
ficients are constant. After the Fourier transform with respect to x1 we obtain,
assuming that f = 0, ã0 = 0, x2 = t:

ã i ξ ṽ − dṽ

dt
= 0, t > 0, (8.7)

b̃ṽ = g̃, t = 0. (8.8)

Let ṽ = (v1, v2)T . Then from (8.7)

dṽ1
dt

= a0 i ξ v1,
dṽ2
dt

= a0 i ξ v2. (8.9)

Suppose, first, that ξ > 0. Since all eigenvalues of the matrix a0 have positive
imaginary parts, we conclude that the stable (decaying at infinity) solution of
system (8.5) is

v1 = ea0iξt, v2 = 0.

Substituting it into (8.8), we get

b̃1c = g̃.

Here b̃ = (b̃1, b̃2). Therefore in the case ξ > 0 the Lopatinskii condition has the
form det b̃1 �= 0. Similarly, for ξ < 0, it is det b̃2 �= 0.

Consider now the general case of an arbitrary domain Ω with a smooth
boundary. Let x ∈ Γ, and ν be the inward normal vector to the boundary at the
point x. We consider the tangent half-plane and fulfil the corresponding orthogonal
change of the independent variables. According to Proposition 8.2, the problem
(8.4), (8.5) remains canonical in the new coordinates. Moreover, the boundary
condition (8.5) does not change. Therefore, the Lopatinskii condition is given by
(8.6). The theorem is proved. �

We now return to problem (8.1), (8.2) and will obtain for it the Lopatinskii
condition. Since the matrix P (x) in Theorem 8.1 has the property that its last r
rows are complex conjugate to the first ones, it is easy to see that

P−1(x) = (T (x), T (x)), (8.10)

where T (x) is a 2r× r matrix continuous in x, and T (x) is its complex conjugate.
From the definition of the matrix b̃(x) and of the matrices b̃i(x) (see Theorem 8.3)
it follows that

b̃1(x) = b(x)T (x), b̃2(x) = b(x)T (x).

The first condition in (8.7) has the form

det(b(x), T (x)) �= 0 ∀x ∈ Γ. (8.11)
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Since b(x) is a real matrix, then the second inequality in (8.7) follows from this
one. We have proved the following theorem.

Theorem 8.4. The Lopatinskii condition for problem (8.1), (8.2) does not depend
on the direction of the normal to the boundary and has the form (8.11).

To give an interpretation of the matrix T (x) we note that from (8.3) it follows
that

a(x)T (x) = T (x)a0(x). (8.12)

Suppose for simplicity that all eigenvalues of the matrix a(x) at the point x are
different from each other. Let λ1, . . . , λr be its eigenvalues with positive imaginary
parts. Then they constitute all eigenvalues of the matrix a0. Therefore it can be
reduced to the diagonal form,

a0(x) = RΛR−1, (8.13)

where R is an invertible matrix of order r, and Λ is a diagonal matrix with diagonal
elements λ1, . . . , λr. From (8.12), (8.13) we obtain

aTR = TRΛ.

Hence TR is a matrix whose columns are eigenvectors of the matrix a(x) cor-
responding to all its eigenvalues with positive imaginary parts. Therefore the
columns of the matrix T (x) are linear combinations of these eigenvectors.

Up to now we have considered problem (8.1), (8.2) with real coefficients. Con-
sider now the case where the matrices a(x), b(x), and c(x) are complex. Suppose
that there exists a matrix P (x) of the order 2r, P (x) ∈ Cl(Ω̄), invertible for all
x ∈ Ω̄, and such that

P (x)a(x)P−1(x) =
(
a+(x) 0

0 a−(x)

)
, (8.14)

where a+(x)(a−(x)) are square matrices of order r whose eigenvalues for all x ∈ Ω̄
have positive (negative) imaginary parts. In the case of a real matrix a(x) existence
of such a matrix is given by Theorem 8.1.

We set v = Pu. Then we obtain problem (8.1), (8.2) with matrix (8.14). This
problem is canonical. Hence the Lopatinskii condition is given by (8.6), where
b̃(x) = b(x)P−1(x).

Let P−1(x) = (T1(x), T2(x)), where T1 and T2 are some 2r×r matrices. Then
the Lopatinskii condition for problem (8.1), (8.2) is

det(b(x)T1(x)) �= 0, det(b(x)T2(x)) �= 0 ∀x ∈ Γ. (8.15)

We have proved the following theorem.

Theorem 8.5. If there exists such a matrix P (x) that condition (8.14) is satisfied,
then the Lopatinskii condition for problem (8.1), (8.2) with complex coefficients
has the form (8.15).
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8.2 Index in bounded domains

Consider problem (8.1), (8.2) with complex coefficients. We begin with canonical
systems, that is we assume that

a(x) =
(
a+(x) 0

0 a−(x)

)
,

where a+(x)(a)−(x)) are square matrices of order r whose eigenvalues for any
x ∈ Ω̄ have positive (negative) imaginary part. Let b(x) = (b1(x), b2(x)). It follows
from Theorem 8.3 that the Lopatinskii condition does not depend on the matrix
a(x) and on the normal direction to the boundary. It has the form

det b1(x) �= 0, det b2(x) �= 0 ∀x ∈ Γ. (8.16)

We assume that this condition is satisfied.
We can fulfil a continuous deformation of system (8.1) to the system with

a(x) =
(
iE 0
0 −iE

)
, c(x) = 0,

where E is the identity matrix of order r. Put u = (u1, u2). Then we obtain the
following problem (for f = 0):

i
∂u1

∂x1
− ∂u1

∂x2
= 0, −i∂u2

∂x1
− ∂u2

∂x2
= 0, (8.17)

b1(x)u1 + b2(x)u2 = g. (8.18)

Since the Lopatinskii condition is satisfied in the process of this deformation, then
the index of the corresponding operator does not change.

To find the index of the corresponding operator we suppose that Ω is a unit
disk with its center at the origin. The problem above can be reduced to this case
by a conformal mapping. Put z = x1 + ix2 and write u1(z) instead of u1(x1, x2).
Then u1(z) is an analytic function. Further, if u2(z) = u2(x1, x2), then its complex
conjugate ū2(z) is analytic.

Denote by Ω− the domain |z| > 1. Let v2(z) = u2(1/z̄). The function v2(z)
is analytic in Ω− and bounded (c.f. [532], p. 171). If z ∈ Γ, then

v2(z) = u2

(
1
z̄

)
= u2(z).

Therefore problem (8.17), (8.18) can be reduced to the problem to find an analytic
function u1(z) in Ω and another analytic function v2(z) in Ω− such that

b1(z)u+
1 (z) + b2(z)v−2 (z) = g(z), z ∈ Γ.
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Here the superscripts ± denote the values of the corresponding functions at the
boundary Γ. Setting

u(z) =

{
u1(z), z ∈ Ω

u2

(
1
z̄

)
, z ∈ Ω−

,

we obtain the following Hilbert problem: to find a piecewise holomorphic function
u(z) satisfying the condition

u+(z) = G(z)u−(z) + h(z), z ∈ Γ, (8.19)

where

G(z) = −b−1
1 (z)b2(z), h(z) = b−1

1 (z)h(z).

Consider first the case

u2(0) = 0. (8.20)

Then

lim
z→∞u(z) = 0.

In this case the index κ of problem (8.19) is given by the formula

κ =
1
2π

[arg det G(z)]Γ (8.21)

(see [532], pp. 41, 44).
It is easy to see that without condition (8.20) we obtain the following formula

for index:

κ =
1
2π

[arg det G(z)]Γ + r

or

κ =
1
2π

[arg det b2(x)]Γ − 1
2π

[arg det b1(x)]Γ + r. (8.22)

We have proved the following theorem.

Theorem 8.6. If problem (8.1), (8.2) is canonical and the Lopatinskii condition
(8.16) is satisfied, then the index of this problem is given by formula (8.22).

If the problem is not canonical, then we can use the result about the reduction to
the canonical form. In conditions of Theorem 8.5 the index is given by the formula

κ =
1
2π

[arg det (b(x)T2(x))]Γ − 1
2π

[arg det (b(x)T1(x))]Γ + r.
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8.3 Index in unbounded domains

In this section we consider the problem

i
∂u1

∂x1
− ∂u1

∂x2
+ λu2 = 0, −i ∂u2

∂x1
− ∂u2

∂x2
+ λu1 = 0, (8.23)

b1(x1)u1 + b2(x1)u2 = g (8.24)

in the half-plane x2 ≥ 0. The functions u1, u2, and the coefficients b1(x1), b2(x1)
are complex valued, λ is a real constant, λ ≥ 0. We suppose that bi(x1) �= 0,
i = 1, 2, x1 ∈ R1. It is shown in Section 8.1 that in this case the Lopatinskii
condition is satisfied.

Next, we verify that Conditions NS and NS∗ are also verified. For this we
consider limiting problems corresponding to problem (8.23), (8.24). We assume
that there exist limits b±i = limx1→±∞ b(x1), i = 1, 2. There are two types of
limiting problems: in R2 and in R2

+. Applying the Fourier transform, it is easy to
verify that the operator corresponding to the limiting problem in R2 is invertible in
the corresponding spaces (see Section 7). Consider the limiting problem in the half-
plane. Since there are limits of the coefficients at infinity, we obtain two problems
(at ±∞) with constant coefficients.

Applying the partial Fourier transform with respect to x1, we obtain from
(8.23)

ũ′1 = −ξũ1 + λũ2, ũ′2 = ξũ2 + λũ1, x2 ≥ 0.

We look for bounded solutions of this system in the form

ũ1(ξ, x2) = k1(ξ)eµx2 , ũ2(ξ, x2) = k2(ξ)eµx2 .

We obtain

µ = −
√
ξ2 + λ2, k2 =

ξ −
√
ξ2 + λ2

λ
k1.

From the boundary condition
(
b±1 +

ξ −
√
ξ2 + λ2

λ
b±2

)
k1(ξ) = 0.

Suppose that

b±1 +
ξ −√

ξ2 + λ2

λ
b±2 �= 0, ∀ξ ∈ R

1, λ ≥ 0, |ξ| + |λ| �= 0. (8.25)

Then the limiting problems have only the zero solution and Condition NS is sat-
isfied for all positive λ. It is not satisfied for λ = 0 because the limiting problems
have some constant nonzero solutions. From (8.25) it follows that the operators
corresponding to the limiting problems are elliptic with a parameter as acting from
E1(R2

+) into F1(R2
+) (see Section 1 for the definition of the spaces). Hence they are
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invertible for large λ. From Condition NS it follows that they are normally solv-
able with a finite-dimensional kernel, moreover their kernels are empty. Therefore,
they are invertible for all positive λ. Then Condition NS∗ is also satisfied. From
Conditions NS and NS∗ we conclude that the operator corresponding to problem
(8.23), (8.24) satisfies the Fredholm property. We will find its index approximating
the half-plane by bounded domains.

Since bi(x) �= 0, i = 1, 2, then, without loss of generality, we can assume that
b2(x) ≡ 1. In this case condition (8.25) means that b±1 are not real nonnegative
numbers. The limits b+1 and b−1 are not necessarily equal to each other. We can
use a continuous deformation of the problem, that is of the function b1(x1), in
such a way that it remains different from 0 for all x1 ∈ R1 and that condition
(8.25) is satisfied. Figure 10 shows two examples. The first curve can be retracted

Figure 10: Examples of homotopy classes for the function b1(x1).

to a point, that is to the case where b1(x1) ≡ const. The second curve cannot be
reduced to a point. It can be deformed to a closed curve where the limits at ±∞
coincide.

Consider the domains Ωn constructed in Section 6. The problems in the
bounded domains are defined as follows. We consider the same equations and
boundary conditions (8.23), (8.24). The function b2(x) in the boundary condition
is supposed to be identically 1 on the whole boundary. The function b1(x) on the
lower part of the boundary of the domain Ωn is the same as for the problem in the
half-plane. We should define it on the remaining part of the boundary in such a
way that the sequence of the problems satisfies Conditions NS(seq) and NS∗(seq).

Consider, first, an auxiliary problem for system (8.23), (8.24) with constant
coefficients b1 and b2 in the half-plane

R2
θ = {(x1, x2) : −x1 sin θ + x2 cos θ ≥ 0}

obtained by rotation on the angle θ counterclockwise. Consider the change of
variables

y1 = x1 cos θ + x2 sin θ, y2 = −x1 sin θ + x2 cos θ
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and put vi(y1, y2) = ui(x1, x2), i = 1, 2. We obtain

i
∂v1
∂y1

− ∂v1
∂y2

+
λ

a1
v2 = 0, −i ∂v2

∂y1
− ∂v2
∂y2

+
λ

a2
v1 = 0, (8.26)

b1v1 + b2v2 = g, (8.27)
where

a1 = cos θ + i sin θ, a2 = cos θ − i sin θ.

Instead of condition (8.25) we obtain

b1 + a1
ξ −

√
ξ2 + λ2

λ
b2 �= 0, ∀ξ ∈ R

1, λ ≥ 0, |ξ| + |λ| �= 0. (8.28)

For b2 = 1, this condition means that b1 does not belong to the half-ray R1
θ

obtained from the half-axis R1
+ by rotation on the angle θ counterclockwise.

We now return to problem (8.23), (8.24) in the domain Ωn. The function
b1(x) is defined as follows. At the lower part of the boundary, as indicated above,
it is the same as for the problem in the half-plane. Without loss of generality we
can suppose that b+1 = b−1 and b1(x1) = b±1 for |x1| ≥ N for N sufficiently large.
The general case can be reduced to this one by a continuous deformation.

We recall that the right and the left parts of the boundary ∂Ωn are half-
circles. Let x be at the right half-circle. Consider the tangent to the boundary
at this point and denote by θ its angle with the x1-axis. It varies from 0 to π at
the right part of the boundary and from π to 2π at the left part. We denote by
b̃1 the coefficient in the boundary condition at the part of the boundary where
x2 > 0 and define it as a function of the angle θ. It should be continuous (its
values for θ = 0 and θ = 2π are equal to each other and coincide with b±1 ) and
satisfy condition (8.28). We can put for example b̃1(θ) = a1b̃1(0), where a1 is the
same as in (8.28). Then this condition is satisfied and

1
2π

arg b̃1(x)|2π0 = 1. (8.29)

This equality is independent of the explicit form of the function b̃1(θ).
From Theorem 8.6 it follows that the index κ of problem (8.23), (8.24) in the

half-plane is determined by the argument of the function b1(x1):

κ = − 1
2π

arg b1(x)|∞−∞.

If the values b+1 and b−1 are not equal to each other, then this formula cannot be
directly applied. In this case we reduce the problem to the case where the limits
at infinity are the same.

We have proved the following theorem.
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Theorem 8.7. Let the function b(x1) = b1(x1)/b2(x1) intersect the real positive
half-axis in a finite number of points, n+ be the number of such points when its
argument increases and n− where it decreases. Then the index κ of problem (8.23),
(8.24) is given by the formula

κ = n− − n+.

9 Examples

Hilbert problem for the Cauchy-Riemann system. Consider the Cauchy-Riemann
system

∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
+
∂v

∂x
= 0 (9.1)

in the unit circle x2 + y2 ≤ 1 with the boundary condition

a(s)u + b(s)v = f(s). (9.2)

Here s is the length of the arc of the circle, a(s), b(s), and f(s) are sufficiently
smooth functions, a2(s) + b2(s) > 0.The solution is supposed to be continuous in
the closed domains.

Consider the vector (a(s), b(s)) and denote by N the number of rotations
of this vector around the origin when s changes from 0 to 2π counterclockwise.
Positive values of N correspond to the counterclockwise rotation of the vector,
negative values to the clockwise rotation.

Theorem 9.1. If N ≥ 0, then problem (9.1), (9.2) has 2N + 1 linearly independent
solutions. If N < 0, then it is solvable if and only if −(2N + 1) conditions are
satisfied: ∫ 2π

0

f(s)φk(s)ds = 0, k = 1, 2, . . . , 2|N | − 1.

Here φk are linearly independent functions defined on the circle.

Thus, the difference between the number of solutions of the homogeneous
problem and the number of solvability conditions of the nonhomogeneous problem,
that is the index, equals 2N + 1. Direct proof of this theorem can be found in
[205]. More general problems on the plane can be studied by reduction to singular
integral equations (Section 8).

Laplace operator with oblique derivative. We consider the problem

∆w = 0, (9.3)

in the unit circle x2 + y2 ≤ 1 with the boundary condition

a(s)
∂w

∂x
− b(s)

∂w

∂y
= f(s). (9.4)
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Similar to the previous example, we follow here the presentation in [205]. If we
put

u =
∂w

∂x
, v = −∂w

∂y
,

then we reduce this problem to (9.1), (9.2). Conversely, from the solution of the
Hilbert problem we can determine the solution w of (9.3), (9.4) up to an arbitrary
constant. Therefore, if N ≥ 0, then problem (9.3), (9.4) is solvable and has 2N +
2 linearly independent solutions. If N < 0, then it is solvable under 2|N | − 1
conditions and it is determined up to an arbitrary constant. Therefore, in both
cases the index of the problem equals 2N + 2.

In the case of the Neumann boundary condition, a(s) = cos s, b(s) = − sin s.
Hence N = −1 and the index of problem (9.3), (9.4) equals 0. There is one
solvability condition and the solution is determined up to an arbitrary constant.

Poincaré problem. We follow the presentation in [532] which uses the results of
the paper [71]. Let Ω be a bounded simply connected domain in R2 with the
boundary ∂Ω which is a simple bounded contour with a finite curvature. Consider
the elliptic system

∆u+ A(x, y)
∂u

∂x
+B(x, y)

∂u

∂y
+ C(x, y)u = 0 (9.5)

with the boundary condition

D(s)
∂u

∂x
+ E(s)

∂u

∂y
+ F (s)u = G(s), (9.6)

where A, B, C, E, F , G are n×n matrices, G is a vector, s ∈ ∂Ω. All of them are
supposed to be sufficiently smooth real-valued functions of their arguments. We
look for solutions of this problem continuous together with the second derivatives
inside the domain and together with the first derivatives in the closure of the
domain.

It is shown that if

det(D(s) + iE(s)) �= 0, s ∈ ∂Ω, (9.7)

then the index κ of problem (9.5), (9.6) equals

κ =
1
π

[arg det(D − iE)]∂Ω + 2n.

If n = 1, we obtain the formula from the previous example.
The proof is based on the reduction of problem (9.5), (9.6) to singular integral

equations at the boundary for which the index is known. If condition (9.7) is
satisfied, then problem (9.5), (9.6) is equivalent to the equation

M(t)µ(t) +
∫
∂Ω

K(t, t1)µ(t1)dt1
t1 − t

= G(t),
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where M and K are some matrices expressed through the coefficients of the equa-
tion and of the boundary condition.

First-order systems in the canonical form. Consider the system of equations

A(z)
∂u

∂x
− ∂u

∂y
+B(z)u = f(z) (9.8)

in a bounded simply connected domain Ω ∈ R2 with a sufficiently smooth bound-
ary, with the boundary condition

a(t)u(t) = 0, t ∈ ∂Ω. (9.9)

Here z = x + iy, the matrix A is Hölder continuous in the closure of the domain
together with its first derivatives with respect to x and y, the matrix B and the
vector f(z) are Hölder continuous in Ω̄; A and B are square matrices of order 2r,
the order of the matrix a is r × 2r. It is supposed that the matrix A(z) can be
represented in the form

A(z) =
(
A(1)(z) −A(2)(z)
A(2)(z) A(1)(z)

)
,

where the matrix A(1)(z) + iA(2)(z) is such that all its eigenvalues have positive
imaginary parts. In this case system (9.8) is called canonical (cf. Section 8.1).

Let a = (a1, a2), where ai, i = 1, 2 are square matrices of order r. Then the
condition of normal solvability of problem (9.8), (9.9) is given by

det(a1(t) + ia2(t)) �= 0, ∀t ∈ ∂Ω, (9.10)

and its index
κ =

1
π

[arg det(a1 + ia2)]∂Ω + r

[547]. Condition (9.10) and the index formula are clearly related to those in the
previous example: second-order operator can be reduced to the first-order oper-
ator. General first-order systems can be reduced, under some conditions, to the
canonical systems.



Chapter 9

Problems in Cylinders

In the case of cylindrical domains, conditions which provide normal solvability
and the Fredholm property can be formulated in a more simple and explicit form.
Moreover, there are more direct methods to compute the index. In particular, we
will use spectral decomposition and reduction to one-dimensional problems for
which we can use fundamental solutions. Let us illustrate it with the following
example. Consider the following equation on the real axis:

u′(t) = r(t)u(t) + f(t).

Let us assume, for simplicity, that r(t) = r+ for t sufficiently large, r(t) = r− for
−t sufficiently large. The solution of this equation can be written explicitly:

u(t) = e
∫ t
0 r(s)ds

(∫ t

0

e−
∫ y
0 r(s)dsf(y)dy + u(0)

)
.

If r± �= 0, then there are four cases depending on the signs of r+ and r−. For
each of them we can easily find the number of linearly independent bounded
solutions of the homogeneous equation and the number of solvability conditions
of the nonhomogeneous equation. In particular, if r+ > 0 and r− < 0, then the
solvability condition is ∫ ∞

−∞
e−

∫
y
0 r(s)dsf(y)dy = 0.

The index κ of the problem is given by the following formula: κ = s++s−−1, where
s+ is the number of solutions of the equation du/dt = r+u which are bounded near
+∞, s− is the number of solutions of the equation du/dt = r−u which are bounded
near −∞. Obviously, s+ and s− are determined by the signs of r+ and r−. A similar
formula remains valid for systems of equations: κ = s+ + s− − p. Here s+ and s−
are the numbers of bounded solutions of the corresponding limiting equations at
+∞ and −∞, and p is the dimension of the system. In the other words, s+ is

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_9, © Springer Basel AG 2011 
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the number of eigenvalues of the matrix r+ with negative real parts, s− is the
number of eigenvalues of the matrix r− with positive real parts. We then use the
index of one-dimensional equations to determine the index of elliptic problems in
cylinders [114]. This method can be applicable in the cases where the method of
approximation by bounded domains, developed in the previous chapter, fails.

We finish this chapter with lower estimates of elliptic operators in cylinders.
These estimates determine their Fredholm property and allow construction of the
topological degree for nonlinear problems [561], [562].

1 Ordinary differential operators on the real line

1.1 Representation of solutions

Hereafter, for any integer l the notation Clb(R,R
p) denotes the space of functions

which are defined on R, take their values in Rp, and whose derivatives of all orders
up to l are continuous and bounded. In particular, the space C0

b (R,R
p) is a Banach

space for the uniform norm. Let M be a continuous matrix-valued function defined
on R, having limits at infinity:

M(t) → A± as t→ ±∞.

On C0
b (R,R

p) we consider the operator T defined by

u �→ u′ +Mu,

with domain D(T ) = C1
b (R,R

p). Together with T we consider the operator T̃
which has the same domain, and is associated to some continuous matrix-valued
function A (in place of M) such that

A(t) = A− for t ≤ −1, A+ for 1 ≤ t. (1.1)

We will denote by E± the spectral projector associated to the set of all
eigenvalues of A± having positive real part. We shall repeatedly use the fact that
E± commutes with any function of A± whenever the latter can be defined.

We will assume the following condition on the spectrum of A±:

σ(A±) ∩ iR = �. (1.2)

We wish to show that under this assumption the operator T̃ is Fredholm, and to
compute its index in terms of the projectors E± (see [206, 487, 231] for related
results on the half-line). The main tool we use is the variation of constants formula.

Let f ∈ C0
b (R,R

p) be given, and let u ∈ D(T̃ ) be a solution to the equation

du

dt
+Au = f. (1.3)
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Let us denote by Y = Y (t) the fundamental matrix associated to T̃ , defined by

dY

dt
+A(t)Y = 0, Y (−1) = I.

We remark that Y can be written explicitly:

for t ≤ −1 : Y (t) = e−(t+1)A− , (1.4)

for t ≥ 1 : Y (t) = e−(t−1)A+Λ, (1.5)

where Λ = Y (1) is an invertible p× p matrix. Therefore, in the range |t| ≥ 1, the
solution u is given by

for t ≤ −1 : u(t) = e−(t+1)A−u(−1)−
∫ −1

t

e−(t−s)A−f(s) ds,

for 1 ≤ t : u(t) = e−(t−1)A+Λu(−1) + e−(t−1)A+Λ
∫ 1

−1

Y (s)−1f(s) ds

+ e−(t−1)A+

∫ t

1

e(s−1)A+f(s) ds. (1.6)

Let us first consider the case t > 1. The formula defining u(t) yields

e(t−1)A+(I − E+)u(t) = (I − E+)Λu(−1) + (I − E+)Λ
∫ 1

−1

Y (s)−1f(s) ds

+
∫ t

1

e(s−1)A+(I − E+)f(s) ds. (1.7)

The left-hand side of (1.7) tends to 0 as t→ +∞, thus we get a first compatibility
relation:

(I − E+)Λu(−1) = − (I − E+)Λ
∫ 1

−1

Y (s)−1f(s) ds

−
∫ ∞

1

e(s−1)A+(I − E+)f(s) ds. (1.8)

Using this relation we can now express u(t) for t > 1 as follows:

u(t) = e−(t−1)A+E+Λ[u(−1) +
∫ 1

−1

Y (s)−1f(s) ds]

+
∫ t

1

e−(t−s)A+E+f(s) ds−
∫ ∞

t

e−(t−s)A+(I − E+)f(s) ds. (1.9)

Note that all integrals appearing in this expression are automatically finite. Simi-
larly for t < −1 we have the relation

e(t+1)A−E−u(t) = E−u(−1) −
∫ −1

t

e(s+1)A−E−f(s) ds, (1.10)
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which yields

E−u(−1) =
∫ −1

−∞
e(s+1)A−E−f(s) ds. (1.11)

This in turn gives the following expression of u(t) for t < −1:

u(t) = e−(t+1)A−(I − E−)u(−1) −
∫ −1

t

e−(t−s)A−(I − E−)f(s) ds

+
∫ t

−∞
e−(t−s)A−E−f(s) ds. (1.12)

To summarize, we have established the following proposition.

Proposition 1.1. Assume that (1.2) is satisfied. If the function f ∈ C0
b (R,R

p) is
such that f = T̃ u for some u ∈ D(T̃ ), then any such u is given by (1.9) for t > 1
and (1.12) for t < −1, for some u(−1) ∈ Rp satisfying (1.8) and (1.11).

1.2 Calculation of the index

In what follows, for any operator L we denote the null-space (kernel) by N(L),
the range by R(L), the α-characteristic of L is the dimension of N(L) and the
β-characteristic is the codimension of R(L).

If T̃ u = 0, then by setting f = 0 in (1.8) and (1.11) we obtain

u(−1) ∈ N(E−), Λu(−1) ∈ N(I − E+).

Noting that Λ is an isomorphism, we may conclude that

α(T̃ ) = dim[N(E−) ∩ Λ−1N(I − E+)].

For the sake of convenience, let us introduce the following notation for f ∈
C0
b (R,R

p):

I1(f) = (I − E+)Λ
∫ 1

−1

Y (s)−1f(s) ds+
∫ ∞

1

e(s−1)A+(I − E+)f(s) ds,

I2(f) =
∫ −1

−∞
e(s+1)A−E−f(s) ds.

Note that (I − E+)I1(f) = I1(f), and that E−I2(f) = I2(f). If f ∈ C0
b (R,R

p)
is in the range of T̃ , then from (1.8), (1.11) we obtain for some u(−1) ∈ R

p the
condition

E−u(−1) = I2(f), (I − E+)Λu(−1) = −I1(f). (1.13)

We first give an equivalent form of this condition.

Lemma 1.2. The last condition is equivalent to the requirement

ΛI2(f) + I1(f) ∈ N(I − E+) + ΛN(E−). (1.14)
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Proof. To prove necessity, assuming (1.13), we note that

(I − E+)(I1(f) + Λu(−1)) = 0, E−(I2(f) − u(−1)) = 0,

thus for some v1, v2 we must have

u(−1) = I2(f) + (I − E−)v2, Λu(−1) = −I1(f) − E+v1.

Multiplying the first equality by Λ and subtracting, we obtain (1.14). To prove
sufficiency, suppose that

I1(f) + ΛI2(f) = −Λ(I − E−)v2 − E+v1.

Define u(−1) by
u(−1) = I2(f) + (I − E−)v2. (1.15)

Then we have

Λu(−1) = ΛI2(f) + Λ(I − E−)v2
= −I1(f) − E+v1. (1.16)

Thus (1.15) and (1.16) respectively yield

E−(u(−1) − I2(f)) = 0,
(I − E+)(Λu(−1) + I1(f)) = 0.

Then (1.13) is satisfied, and this proves the lemma. �

We have seen that if f ∈ C0
b (R,R

p) is in the range of T̃ , then (1.14) is
satisfied. Conversely if (1.14) is satisfied, then for some u(−1) ∈ Rp, (1.13) is
satisfied. We may then define u by (1.9) for t > 1 and (1.12) for t < −1. To show
that f ∈ R(T̃ ), it remains to verify that we can define u in the interval [−1, 1] so
as to obtain a global solution. The Cauchy problem with initial data at t = −1
has a unique solution which satisfies

u(1) = Λ[u(−1) +
∫ 1

−1

Y (s)−1f(s) ds].

Thus from (1.9), we see that we can obtain a global solution if we have continuity
at t = 1, i.e., if the relation

E+Λ[u(−1) +
∫ 1

−1

Y (s)−1f(s) ds] −
∫ ∞

1

e(s−1)A+(I − E+)f(s) ds

= Λ
[
u(−1) +

∫ 1

−1

Y (s)−1f(s) ds
]
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holds true. This relation is an immediate consequence of the second equality in
(1.13), thus we obtain that f ∈ R(T̃ ).

Using condition (1.14) we can now compute the β-characteristic of T̃ . Define
a linear map

Φ : C0
b (R,R

p) −→ Rp

N(I − E+) + ΛN(E−)

by assigning to each f ∈ C0
b (R,R

p) the coset of I1(f)+ΛI2(f), denoted by [I1(f)+
ΛI2(f)]. From what we have seen, we have

R(T̃ ) = N(Φ).

Thus
β(T̃ ) = codimR(T̃ ) = dimR(Φ).

We now show that Φ is surjective. Pick x ∈ Rp, we need to find f ∈ C0
b (R,R

p)
such that

I1(f) + ΛI2(f) − x ∈ N(I − E+) + ΛN(E−).

If we were working with the space of (not necessarily continuous) bounded
functions we could take

f(t) = −A+x ∀t > 1, f(t) = 0 ∀t < 1.

This function f satisfies

I1(f) + ΛI2(f) − x = −E+x,

and therefore Φ(f) = [x]. However this f is not continuous, thus using this idea
we set

fk(t) = 0 for t ≤ 1,

k(1 − t)A+x for 1 ≤ t ≤ 1 +
1
k
,

−A+x for t ≥ 1 +
1
k
.

It is easy to compute that

I1(fk) + ΛI2(fk) − x = −E+x+ xk,

where
xk → 0 as k → ∞.

Since the projection map [·] is continuous we have

Φ(fk) → [x],



2. Second-order equations 365

and since the image of Φ (being finite-dimensional) is closed we conclude again
that it contains the point [x].

Summarizing, we have shown the following:

β(T̃ ) = p− dim[N(I − E+) + ΛN(E−)]

= p− dim[Λ−1N(I − E+) +N(E−)].

Note that to obtain the last equality we used the fact that Λ is an isomorphism.
Obviously, the operator T is Fredholm if and only if the operator T̃ is Fred-

holm. They have the same index since they can be reduced to each other by a
continuous deformation in the class of Fredholm operators. Finally we obtain the
index of the Fredholm operator T :

ind(T ) = dim Λ−1N(I − E+) + dimN(E−) − p

= dimN(I − E+) + dimN(E−) − p.

Therefore we have shown the following theorem.

Theorem 1.3. If condition (1.2) is satisfied then T is a Fredholm operator, and its
index is given by

ind(T ) = dimN(I − E+) − dimN(I − E−).

In particular, we see that the index is zero if E− = E+.

We note that the formula for the index can be also formulated in terms of the
number of linearly independent bounded solutions at infinity. Namely, the index
is equal to the sum of the numbers of bounded linearly independent solutions at
minus and plus infinity, minus the dimension of the system p.

2 Second-order equations

2.1 Reduction to first-order equations

We consider the operator

L : C2+δ(R,Rp) −→ Cδ(R,Rp) (2.1)

defined by the expression

Lu = a(x)u′′ + b(x)u′ + c(x)u.

Here a(x), b(x), and c(x) are smooth p× p matrices having respectively the limits
a±, b±, c± as x→ ±∞. We will use the results of the previous subsection to show
that under some appropriate condition L is a Fredholm operator, and to compute
its index. We begin with the following lemma.
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Lemma 2.1. Assume that

∀ξ ∈ R : T±(ξ) = −a±ξ2 + b±iξ + c± is an invertible matrix. (2.2)

Then the operator L is normally solvable with a finite-dimensional kernel.

Proof. If the condition of the lemma is satisfied, then the limiting equation

a±u′′ + b±u′ + c±u = 0

does not have nonzero bounded solutions. The lemma is proved. �

We first rewrite the system Lu = f as a first-order system, and consider the
first-order ordinary differential operators M and T :

M : C2+δ(R,Rp) × C1+δ(R,Rp) −→ C1+δ(R,Rp) × Cδ(R,Rp), (2.3)

T : C1
b (R,R

2p) −→ C0
b (R,R

2p), (2.4)

associated to the expression

(u, q) �−→ (u, q)′ +A(u, q).

Here A denotes the matrix

A(x) =
(

0 −Ip
a−1c a−1b

)
,

and Ip denotes the p× p identity matrix. The result in Section 1.2 (Theorem 1.3)
shows that if condition (1.2) is satisfied, then T is a Fredholm operator, and we
have a formula for its index in terms of the limit matrices A±. We remark that
condition (1.2) is equivalent to condition (2.2). We now proceed to show that under
this condition, the operatorsM and L are also Fredholm, and have the same index
as T .

Lemma 2.2. If T is Fredholm, then M also is, and has the same index.

Lemma 2.3. Assume that M is Fredholm, and that L is normally solvable. Then
L also is Fredholm, and has the same index as M .

Combining these three lemmas we immediately obtain the desired result.

Theorem 2.4. Assume that condition (2.2) is satisfied. Then L is a Fredholm op-
erator, and its index is given by

ind(L) = κ+ − κ−,

where κ+ and κ− are, respectively, the number of eigenvalues of the matrices A+

and A− with positive real part.
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Proof of Lemma 2.2. Let us consider the system of equations

u′ = p+ f1, p′ = a−1(bp+ cu+ f2).

If the solution of the homogeneous problem belongs to C1(R,Rp), then u′ = p ∈
C1+δ(R,Rp) (since the coefficients are Hölder continuous), and u(x) ∈ C2+δ(R,Rp).
Hence the dimension of the kernel remains the same. Now let f1 ∈ C1+δ(R,Rp),
f2 ∈ Cδ(R,Rp). If (f1, f2) satisfies the solvability conditions in C1, then there is a
solution u ∈ C1(R,Rp), p ∈ C1(R,Rp). As above, it follows that u ∈ C2+δ(R,Rp)
and p ∈ C1+δ(R,Rp). If (f1, f2) does not satisfy the solvability conditions in C1,
then obviously there are no solutions of this problem with u ∈ C2+δ(R,Rp) and
p ∈ C1+δ(R,Rp). Hence the solvability conditions and their number remain the
same. �

Proof of Lemma 2.3. We first consider the kernel of L. If u ∈ N(L), then we
have (u, u′) ∈ N(M). Conversely if (u, q) ∈ N(M), then q = u′, and u ∈ N(L).
This shows that the map u �→ (u, u′) realizes an isomorphism between N(L) and
N(M), thus we have α(L) = α(M). Let us now consider the range of L. For
fixed (f1, f2) ∈ C1+δ(R,Rp) × Cδ(R,Rp), from M(u, q) = (f1, f2) it follows that
Lu = af ′

1 + bf1 + af2. For convenience we define the map

π : C1+δ(R,Rp) × Cδ(R,Rp) −→ Cδ(R,Rp), (2.5)
(f1, f2) �−→ af ′

1 + bf1 + af2. (2.6)

Then clearly we have
π(R(M)) = R(L).

By assumption R(M) has finite codimension in C1+δ(R,Rp)×Cδ(R,Rp), and R(L)
is closed in Cδ(R,Rp). Our aim is to show that the codimensions of these two
spaces are equal. Define N1 = β(M) < ∞, and N2 = β(L) ≤ ∞, and denote by
{Φi, i = 1, . . . , N1} a basis of the annihilator of R(M). Each Φi is a bounded linear
functional on C1+δ(R,Rp) × Cδ(R,Rp). Similarly, denote by {Fk, k = 1, . . . , N2}
a basis of the annihilator of R(L). Then for fixed f = (f1, f2) ∈ C1+δ(R,Rp) ×
Cδ(R,Rp) we have the following equivalence:

f ∈ R(M) ⇔ Φi(f) = 0, i = 1, . . . , N1,

⇔ πf ∈ R(L) ⇔ Fk(πf) = 0, k = 1, . . . , N2.

Writing Gk = Fkπ, we thus have:

{f : Φi(f) = 0, i = 1, . . . , N1} = {f : Gk(f) = 0, k = 1, . . . , N2}.

The functionals Gk form a family of linearly independent bounded linear function-
als on the space C1+δ(R,Rp) × Cδ(R,Rp). Thus it follows that N1 = N2, i.e., the
β-characteristics of the operators L and M are the same. �
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Remarks 2.5.

• It is easy to verify that κ± is the number of solutions to the equation

det(a±λ2 − b±λ+ c±) = 0

which have positive real part. As for the case of first-order systems of equa-
tions, we can say that the index of the operator L is equal to the sum of the
numbers of linearly independent bounded solutions of the equation Lu = 0
at plus and minus infinity, minus 2p.

• α(L) and β(L) are determined by the projectors E+ and E−. These pro-
jectors are determined by the matrices A+ and A− and remain the same if
we consider the operator M as acting from C1+δ(R,Rp) × Cδ(R,Rp) or from
Cδ(R,Rp) × Cδ(R,Rp).
As an example we consider the case p = 1 where u(x) is a scalar-valued

function and suppose that a(x) ≡ 1, b is a positive constant. If c+ �= 0, c− �= 0,
then the operator is Fredholm. Its index equals 0 if c+ and c− have the same
sign, it is 1 for c+ > 0, c− < 0, and −1 for c+ < 0, c− > 0. The essential
spectrum of the operators consists of two parabolas on the complex plane. In the
case c+ < 0, c− < 0 both of them are completely in the left half-plane. In the
case c+ > 0, c− > 0 both of them are partially in the right half-plane having the
origin inside the region where the large negative numbers are. Obviously, these two
curves cannot be moved to the left half-plane by a continuous deformation such
that they do not intersect zero. Hence two elliptic operators with the same index
are not necessarily homotopic in the class of Fredholm operators of the same form.

2.2 Solvability conditions

2.2.1. Scalar equations. In Chapter 4 conditions of normal solvability are formu-
lated in terms of limiting problems. In the one-dimensional case it can be also
useful to apply another approach based on the integral representation of solu-
tions. Consider first the scalar equation

u′′ + b(x)u′ + c(x) = f(x) (2.7)

assuming that the coefficients belong to the Hölder space C1+δ(R) with some
0 < δ < 1. Denote by u1(x) and u2(x) two linearly independent solutions of the
homogeneous equation

u′′ + b(x)u′ + c(x)u = 0 (2.8)

and by v1(x) and v2(x) two linearly independent solutions of the adjoint homoge-
neous equation

v′′ − (b(x)v)′ + c(x)v = 0. (2.9)
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The solutions ui(x), vi(x), i = 1, 2 are not supposed to be bounded. It can be
directly verified that the functions

v1(x) =
−u2

u1u′2 − u′1u2
, v2(x) =

u1

u1u′2 − u′1u2
(2.10)

are linearly independent and satisfy equation (2.9). We have

u1v1 + u2v2 = 0, u′1v1 + u′2v2 = 1. (2.11)

The solution of equation (2.7) can be represented in the form

u(x) = u1(x)
∫ x

x1

v1(y)f(y) + u2(x)
∫ x

x2

v2(y)f(y), (2.12)

where x1 and x2 can be bounded or unbounded. This can be verified substituting
(2.12) to (2.7) with the use of (2.11).

Suppose that the solutions u1(x) and u2(x) behave exponentially at infinity,

ui(x) ∼ a±i e
λ±

i x, x→ ±∞, i = 1, 2,

a±i �= 0, λ±i �= 0. We assume here for simplicity that λ±1 �= λ±2 . Then from (2.10)

vi(x) ∼ b±i e
−λ±

i x, x→ ±∞, i = 1, 2

for some b±i �= 0. Depending on the signs of λ±i there are the following cases:

• u1(x) decays at ±∞, u2(x) grows at ±∞. Then v1(x) grows at ±∞, v2(x) decays
at ±∞. We put

u(x) = u1(x)
∫ x

x1

v1(y)f(y) + u2(x)
∫ x

−∞
v2(y)f(y), (2.13)

where x1 is bounded. For any bounded f , the first term in the right-hand side of
(2.13) is bounded. Consider the second term. If the lower limit in the integral was
different from −∞, then the integral did not necessarily converge to 0 as x→ −∞,
and this term would not be bounded since u2(x) grows at −∞. Similarly, the
integral should converge to 0 at +∞. Therefore we need the condition

∫ ∞

−∞
v2(y)f(y)dy = 0 (2.14)

in order for equation (2.7) to have a bounded solution.
If f(x) ∈ C0(R), then u(x) ∈ C2(R). If f(x) ∈ Cδ(R), then u(x) ∈ C2+δ(R).

The operator L,
Lu = u′′ + b(x)u′ + c(x)u

considered as acting in these spaces has zero index.
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• u1(x) decays at +∞, and grows at −∞, u2(x) grows at ±∞. Then v1(x) grows
at +∞, and decays at −∞, v2(x) decays at ±∞. We put

u(x) = u1(x)
∫ x

−∞
v1(y)f(y) + u2(x)

∫ x

−∞
v2(y)f(y). (2.15)

Solvability condition (2.14) should be satisfied. The index of L equals −1.

• u1(x) grows at +∞, and decays at −∞, u2(x) grows at ±∞. Then v1(x) decays
at +∞, and grows at −∞, v2(x) decays at ±∞. We put

u(x) = −u1(x)
∫ ∞

x

v1(y)f(y) + u2(x)
∫ x

−∞
v2(y)f(y). (2.16)

Solvability condition (2.14) should be satisfied. The index of L equals −1.

• u1(x) grows at ±∞, u2(x) grows at ±∞. Then v1(x) decays at ±∞, v2(x) decays
at ±∞. We put

u(x) = u1(x)
∫ x

−∞
v1(y)f(y) + u2(x)

∫ x

−∞
v2(y)f(y). (2.17)

Solvability condition ∫ ∞

−∞
vi(y)f(y)dy = 0, i = 1, 2 (2.18)

should be satisfied. The index of L equals −2.

• u1(x) decays at ±∞, u2(x) grows at −∞, decays at ∞. Then v1(x) grows at
±∞, v2(x) decays at −∞, grows at ∞. We put

u(x) = u1(x)
∫ x

x1

v1(y)f(y) + u2(x)
∫ x

−∞
v2(y)f(y), (2.19)

where x1 is bounded. Here we do not need solvability conditions. The index of L
equals 1.

• u1(x) decays at ±∞, u2(x) decays at ±∞. Then v1(x) grows at ±∞, v2(x) grows
at ±∞. We put

u(x) = u1(x)
∫ x

x1

v1(y)f(y) + u2(x)
∫ x

x2

v2(y)f(y), (2.20)

where x1 and x2 is bounded. Here we do not need solvability conditions. The index
of L equals 2.

Similarly other cases can be considered. We summarize them in the following
theorem.



2. Second-order equations 371

Theorem 2.6. Suppose that solutions u1(x) and u2(x) of the homogeneous equation
(2.8) behave exponentially at infinity with different exponents. Then the operator
L satisfies the Fredholm property and

indL = n− + n+ − 2,

where n− is the number of bounded solutions (among u1 and u2) at −∞ and n+

at ∞.

In the next theorem we do not explicitly assume the exponential behavior of
solutions of the homogeneous and of the homogeneous adjoint equation at infinity.
We will use the following notation:

Φi0(x) = |ui(x)|
∫ x

0

|vi(y)|dy, Φi∞(x) = |ui(x)|
∫ ∞

x

|vi(y)|dy,

Ψi
0(x) = |ui(x)|

∫ 0

x

|vi(y)|dy, Ψi
∞(x) = |ui(x)|

∫ x

−∞
|vi(y)|dy, i = 1, 2.

Theorem 2.7. Suppose that Φi0(x), i = 1, 2 is uniformly bounded for x ≥ 0 or, if
it is not uniformly bounded, then Φi∞(x) is defined and is uniformly bounded for
x ≥ 0. Similarly, suppose that Ψi

0(x), i = 1, 2 is uniformly bounded for x ≤ 0 or,
if it is not uniformly bounded, then Ψi∞(x) is defined and is uniformly bounded
for x ≤ 0. Then the operator L satisfies the Fredholm property. Equation (2.7)
is solvable if and only if conditions (2.18) are satisfied for those i for which each
component of the couple (Φi0,Ψ

i
0) is unbounded.

Proof. Suppose that Φi0 and Ψi
0 are bounded for i = 1, 2. Then the solution

u(x) = u1(x)
∫ x

0

v1(y)f(y)dy + u2(x)
∫ x

0

v2(y)f(y)dy

is uniformly bounded for all x ∈ R. If Φ1
0 is not uniformly bounded, and all other

functions are, then we put

u(x) = u1(x)
∫ ∞

x

v1(y)f(y)dy + u2(x)
∫ x

0

v2(y)f(y)dy. (2.21)

This function is uniformly bounded for any bounded f and for x ≥ 0 by virtue of
the assumptions on Φ1

∞ and Φ2
0. For x ≤ 0 we have

u(x) = u1(x)
∫ ∞

0

v1(y)f(y)dy + u1(x)
∫ 0

x

v1(y)f(y)dy + u2(x)
∫ 0

x

v2(y)f(y)dy.

Since Ψi
0 is bounded, then the last terms in the right-hand side are bounded.

Moreover, u1(x) is bounded for all x ≤ 0. Therefore the first term in the right-
hand side is also bounded.
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Let us next consider the case where Φ1
0 and Ψ1

0 are not bounded. We consider
u(x) given by (2.21). As above, it is uniformly bounded for x ≥ 0:. Since

∫ ∞

−∞
v1(y)f(y)dy = 0, (2.22)

then along with (2.21) we can use the representation

u(x) = u1(x)
∫ x

−∞
v1(y)f(y)dy + u2(x)

∫ x

0

v2(y)f(y)dy.

Hence u(x) is bounded for x ≤ 0.
We have verified that condition (2.22) is sufficient for the solvability of equa-

tion (2.7). Its necessity can be easily obtained by multiplication of equation (2.7)
by v1(x) and integration over R. Similarly we can consider the case where Φ2

0 or
Ψ2

0 are unbounded. Solvability condition (2.22) appears because both Φ1
0 and Ψ1

0

are not bounded. Therefore the codimension of the image equals the number of
unbounded couples.

Let us determine the dimension of the kernel. If Φ1
0 is bounded, then u1(x) is

bounded for x ≥ 0. If Ψ1
0 is bounded, then u1(x) is bounded for x ≤ 0. Therefore

each bounded couple provides a bounded solution of the homogeneous equation.
On the other hand, only bounded couples can provide a bounded solution. Indeed,
if Φ1

0 is not bounded, then Φ1
∞ is defined and bounded. This means that the integral∫∞

x |v1(y)|dy is defined, that is the integral
∫ x
0 |v1(y)|dy has limit as x→ ∞. Thus

the assumption that Φ1
0 is not bounded implies that |u1(x)| is not bounded for

x ≥ 0. The theorem is proved. �

2.2.2. Systems of equations. The integral representation of solutions for systems
of equations and the solvability conditions can be obtained similarly to the scalar
equation. Consider the system of equations

a(x)u′′ + b(x)u′ + c(x)u = f, (2.23)

where a, b, c are C1+δ(R), n×n matrices, u and f are n-vectors. Assuming that the
matrix a(x) is invertible for each x, and that its inverse is bounded uniformly in
x, we can reduce this system to the case where a(x) ≡ E, where E is the identity
matrix.

We will obtain first of all the representation of the solution through Green’s
function. Consider the homogeneous equation

u′′ + b(x)u′ + c(x)u = 0 (2.24)

and denote by u1, . . . , u2n its linearly independent solutions. Let U1 be an n× n
matrix whose columns are the first n solution, and U2 the matrix composed from
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the last n solutions. We will use the notation P i = (U i)′, i = 1, 2. System (2.24)
can be written as (

u
p

)′
=
(

0 E
−c(x) −b(x)

) (
u
p

)
. (2.25)

Its fundamental solution is

Φ(x) =
(
U1 U2

P 1 P 2

)
.

Consider next the system adjoint to (2.25):

(
q
v

)′
= −

(
0 −(c(x))T

E −(b(x))T

) (
q
v

)
. (2.26)

Here the superscript T denotes the transposed matrix. Then

q′ = (c(x))T v, v′ = −q + (b(x))T v.

Differentiating the second equation, we obtain

v′′ − ((b(x))T v)′ + (c(x))T v = 0, (2.27)

that is the system adjoint to (2.24).
Let us represent the inverse matrix (Φ(x))−1 as a block matrix

(Φ(x))−1 =
(
W 1 V 1

W 2 V 2

)
.

Then the fundamental matrix of system (2.26) is

Ψ(x) = ((Φ(x))−1)T =
(

(W 1)T (W 2)T

(V 1)T (V 2)T

)
.

Thus the columns of the matrices (V 1)T and (V 2)T provide 2n linearly indepen-
dent solutions of system (2.27). On the other hand,

U1V 1 + U2V 2 = 0, P 1V 1 + P 2V 2 = E.

Applying these equalities we can represent the solution u(x) of equation (2.23) in
the form

u(x) = U1(x)
∫ x

V 1(y)f(y)dy + U2(x)
∫ x

V 2(y)f(y)dy. (2.28)

The lower limits in the integrals will be specified below.
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We recall that the lines of the matrices V 1 and V 2 are solutions of system
(2.27). Therefore we can rewrite (2.28) as

u(x) =



u1

1 un1
... . . .

...
u1
n unn





F1(x)

...
Fn(x)


+



un+1

1 u2n
1

... . . .
...

un+1
n u2n

n





Fn+1(x)

...
F2n(x)


 (2.29)

where

Fi(x) =
∫ x

xi

(vi(y), f(y))dy, i = 1, . . . , 2n, vi(y) = (V i(y))T .

The lower limits xi can be finite or infinite and can be different from each other.
We will use the following notation:

Φijk0 (x) = |uji (x)|
∫ x

0

|vjk(y)|dy, Φijk∞ (x) = |uji (x)|
∫ ∞

x

|vjk(y)|dy,

Ψijk
0 (x) = |uji (x)|

∫ 0

x

|vjk(y)|dy, Ψijk
∞ (x) = |uji (x)|

∫ x

−∞
|vjk(y)|dy,

where i, k = 1, . . . , n, j = 1, . . . , 2n.

Theorem 2.8. Suppose that for each j fixed either all Φijk0 are bounded, that is
there exists a constant M such that

sup
x≥0

Φijk0 (x) ≤M, i, k = 1, . . . , n,

or all of them tend to infinity as x→ +∞. In this case all Φijk∞ are assumed to be
defined and

sup
x≥0

Φijk∞ (x) ≤M, i, k = 1, . . . , n.

Suppose next that for each j fixed either all Ψijk
0 are bounded, that is there exists

a constant M such that

sup
x≤0

Ψijk
0 (x) ≤M, i, k = 1, . . . , n,

or all of them tend to infinity as x→ −∞. In this case all Ψijk
∞ are assumed to be

defined and
sup
x≤0

Ψijk
∞ (x) ≤M, i, k = 1, . . . , n.

Then equation (2.23) has a bounded solution for a bounded function f if and only if
∫ ∞

−∞
(vj(y), f(y))dy = 0, (2.30)
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for all j for which both elements of the couple (Φijk0 ,Ψijk
0 ) are unbounded. The

number of linearly independent solutions of this equation equals the number of
couples with both bounded components.

The proof of this theorem is similar to the proof of Theorem 2.7. We note
that the solvability conditions appear in the case where ui is unbounded at both
infinities and vi is bounded. We can use this theorem to compute the index.

3 Second-order problems in cylinders

3.1 Normal solvability

We consider the operator

Lu = a(x)∆u +
m∑
i=1

bi(x)
∂u

∂xi
+ c(x)u, (3.1)

acting from the space of functions u ∈ C2+δ(Ω̄) satisfying the boundary condition

Λu ≡ α
∂u

∂ν
+ β(x′)u |S= 0 (3.2)

into the space Cδ(Ω̄). We suppose that the boundary of the cylinder belongs to
the class C2+δ and the coefficients of the operator to C1+δ(Ω̄). We assume also
that the ellipticity condition (a(x)q, q) ≥ σ | q |2, x ∈ Ω̄ is satisfied. Here q is a
constant vector, σ > 0, (·, ·) denotes the inner product in Rp. We assume that
there exist the limits

a±(x′) = lim
x1→±∞ a(x), b±(x′) = lim

x1→±∞ b(x), c±(x′) = lim
x1→±∞ c(x).

We consider the limiting operators

L±u = a±(x′)∆u +
n∑
i=1

b±i (x′)
∂u

∂xi
+ c±(x′)u

with the coefficients independent of x1.

Condition 3.1. The equation

L±u = 0, Λu = 0 (3.3)

has no nontrivial solution in C2+δ(Ω̄).

The operators L± are limiting operators for the operator L, and Condition
3.1 is a particular case of Condition NS (Chapter 4). We know that it is necessary
and sufficient for the operator L to be normally solvable and for the dimension
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of its kernel α(L) to be finite. Condition 1 can be written in a different form.
If we apply a formal Fourier transform with respect to the variable x1 to the
corresponding equations, we obtain the following condition:

Condition 3.1′. The equation

L̃±
ξ ũ = 0, Λũ = 0

has no nontrivial solution in C2+δ(G) for any real ξ. Here

L̃±
ξ ũ = −ξ2a±(x′)ũ+ a±(x′)∆′ũ+ iξb±1 (x′)ũ+

m∑
k=2

b±k (x′)
∂ũ

∂xk
+ c±(x′)ũ,

∆′ũ =
m∑
k=2

∂2ũ

∂x2
k

.

We now prove that Conditions 3.1 and 3.1′ are equivalent. We consider the
problem

a(x′)∆u+
m∑
j=1

bj(x′)
∂u

∂xj
+ c(x′)u = 0, (3.4)

α
∂u

∂ν
+ β(x′)u |∂Ω = 0. (3.5)

We suppose that the matrices a, bj , and c belong to Cδ(Ḡ) and β to C1+δ(Ḡ). If
we consider u(x) in the form

u(x) = eλx1v(x′), (3.6)

we obtain

a(x′)∆′v +
m∑
j=2

bj(x′)
∂v

∂xj
+ (a(x′)λ2 + b1(x′)λ+ c(x′))v = 0, (3.7)

α
∂v

∂ν
+ β(x′)v |∂G= 0. (3.8)

If problem (3.7), (3.8) has a solution for some λ = iξ with a real ξ, then (3.6) is a
bounded solution of (3.4), (3.5). The following theorem establishes the equivalence
between existence of solutions of problems (3.4), (3.5) and (3.7), (3.8) for λ = iξ.
In L2 spaces the Fourier transform may be used to study this connection. If we
consider the problem (3.4), (3.5) in Hölder spaces, then we cannot apply the
classical Fourier transform directly.

Theorem 3.2. The problem (3.4), (3.5) has a nontrivial bounded solution if and
only if the problem (3.7), (3.8) has a nontrivial solution for some λ = iξ.
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Proof. Let u(x) be a bounded solution of (3.4), (3.5). Consider the Laplace trans-
form of the function u(x) in the x1 variable,

v(x′) =
∫ ∞

0

e−px1u(x)dx1.

Here Re p > 0. Then

a(x′)∆′v +
m∑
j=2

bj(x′)
∂v

∂xj
+ (a(x′)p2 + b1(x′)p+ c(x′))v

= a(x′)(u(0, x′)p+ u′(0, x′)) + b1(x′)u(0, x′).

(3.9)

Here u′ = ∂u/∂x1. We consider the operator

Apv = a(x′)∆′v +
m∑
j=2

bj(x′)
∂v

∂xj
+ (a(x′)p2 + b1(x′)p+ c(x′))v

acting from C(2+δ)(Ḡ) with boundary conditions (3.8) into C(δ)(Ḡ) and suppose
that for any p = iξ, −∞ < ξ <∞ it does not have a zero eigenvalue. Let p0 = iξ0.
For each p = p0 + δ with small nonnegative δ, the equation

Apv = fp, (3.10)

where
fp(x′) = a(x′)(u(0, x′)p+ u′(0, x′)) + b1(x′)u(0, x′),

is uniquely solvable, and its solution depends continuously on p. Denote it by vp.
Then

vp(x′) =
∫ ∞

0

e−px1u(x)dx1, δ > 0

and ∫ ∞

0

e−px1u(x)dx1 → viξ0 (x
′), δ → 0. (3.11)

Similarly we put

w(x′) =
∫ 0

−∞
eqx1u(x)dx1, q = −iξ0 + δ,

Bqw = a(x′)∆′w +
m∑
j=2

bj(x′)
∂w

∂xj
+ (a(x′)q2 − b1(x′)q + c(x′))w,

gq(x′) = a(x′)(u(0, x′)q − u′(0, x′)) − b1(x′)u(0, x′).

The equation
Bqw = gq (3.12)
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has a unique solution for small δ,

wq(x′) =
∫ 0

−∞
eqx1u(x)dx1, δ > 0

and ∫ 0

−∞
eqx1u(x)dx1 → w−iξ0 (x

′), δ → 0. (3.13)

We note that viξ0(x′) = −w−iξ0 (x′). Then from (3.11), (3.13) we obtain

∫ 0

−∞
e(−iξ0+δ)x1u(x)dx1 +

∫ ∞

0

e(−iξ0−δ)x1u(x)dx1 → 0 , δ → 0. (3.14)

If we pass formally to the limit in the left-hand side of (3.14), we obtain that
the Fourier transform of the function u(x) in the x1 variable is zero since ξ0 is
arbitrary. It would contradict the assumption that u(x) is a nontrivial solution of
(3.4), (3.5) and prove that the operator Aiξ (or the same Biξ) has a zero eigenvalue
for some ξ. We now justify this passage to the limit.

For some bounded φ, and x′ ∈ G,
∫ +∞

−∞
u(x)φ(x1)dx1 �= 0. (3.15)

Then ∫
G

dx′
∣∣∣
∫ +∞

−∞
u(x)φ(x1)dx1

∣∣∣ �= 0. (3.16)

Set

uδ(x) =

{
u(x)e−δx1 , x1 > 0,

u(x)eδx1 , x1 < 0.

Then

2π
∫ +∞

−∞
uδ(x)φ(x1)dx1 =

∫ +∞

−∞
ũδ(ξ, x′)ψ(ξ)dξ, (3.17)

where

ũδ(ξ, x′) = 2π
∫ +∞

−∞
e−iξuδ(x)dx1,

and ψ is the Fourier transform of φ. Then
∫
G

dx′
∣∣∣
∫ +∞

−∞
uδ(x)φ(x1)dx1

∣∣∣ =
1
2π

∫
G

dx′
∣∣∣
∫ +∞

−∞
ũδ(ξ, x′)ψ(ξ)dξ

∣∣∣. (3.18)

The left-hand side in (3.18) tends to the integral in (3.16) as δ → 0. We now
show that the right-hand side in (3.18) tends to zero. From (3.14) it follows that
ũδ(ξ, x′) → 0, δ → 0 for each fixed ξ. Moreover this convergence is uniform in ξ
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on every bounded interval because the solutions vp and wq of the equations (3.10)
and (3.12) depend continuously on p and q, respectively. It remains to estimate
the behavior of the function ũδ(ξ, x′) for large ξ.

We have ũδ(ξ, x′) = 2π(vp(x′)+wq(x′)). So we should estimate the solutions
vp and wq , p = iξ + δ, q = −iξ+ δ for large ξ. Substituting p = iξ+ δ in (3.9), we
obtain

∆′v +
m∑
j=2

a(x′)−1bj(x′)
∂v

∂xj
− ξ2v +B(x′, ξ)v

= (u(0, x′)(iξ + δ) + u′(0, x′)) + a(x′)−1b1(x′)u(0, x′),

(3.19)

where

B(x′, ξ) = (2iξδ + δ2) + a(x′)−1b1(x′)(iξ + δ) + a(x′)−1c(x′).

Consider the problem

∆′v +
m∑
j=2

a(x′)−1bj(x′)
∂v

∂xj
− ξ2v = f(x), α

∂v

∂ν
+ β(x′)v |∂G= 0.

Its solution satisfies the estimate

‖v(x′)‖L2(G) ≤ K
‖f(x′)‖L2(G)

ξ2

for some constant K (for large ξ) because the operator which corresponds to the
problem (3.1), is sectorial in L2. Then for the solution of (3.19)

‖vp(x′)‖L2(G) ≤ K

(‖fp(x′)‖L2(G)

ξ2
+

‖B(ξ, x′)v‖L2(G)

ξ2

)

uniformly in δ, 0 ≤ δ ≤ δ0. Since the norm of the matrix B(ξ, x′)/ξ2 becomes less
than 1 for large ξ, then

‖vp(x′)‖L2(G) ≤
c

| ξ |
for some positive c. We obtain a similar estimate for wp. Hence we have, uniformly
in δ,

‖ũδ(ξ, x′)‖L2(G) ≤ c

| ξ | .

Here we use the same notation c for different constants. We have thus
∫
G

dx′
∣∣∣
∫ +∞

−∞
ũδ(ξ, x′)ψ(ξ)dξ

∣∣∣ ≤
∫
G

dx′
∣∣∣
∫
|ξ≤N

ũδ(ξ, x′)ψ(ξ)dξ
∣∣∣

+
∫
G

dx′
∣∣∣
∫
|ξ|≥N

ũδ(ξ, x′)ψ(ξ)dξ
∣∣∣.
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It remains to note that the second integral in the right-hand side of the last
inequality tends to zero uniformly in δ as N increases, the first integral goes to
zero as δ → 0 for any given N . It proves that the right-hand side of (3.18) goes to
zero and contradicts (3.16). This contradiction shows that the operator Aiξ has a
zero eigenvalue for some ξ. Thus, we have proved necessity. Sufficiency is obvious,
and this completes the proof of the theorem. �

3.2 Calculation of the index

1. Projection on the eigenvalues of the transversal Laplacian. We consider a linear
elliptic operator of the form

Lu = a(x)∆u +
n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u. (3.20)

Here x = (x1, . . . , xn) ∈ Ω, where Ω ⊂ R
n is an unbounded cylinder: Ω = R × Ω′,

and Ω′ is a bounded domain in Rn−1. Thus the axis of the cylinder is parallel to
the x1-direction, and we denote by x′ = (x2, . . . , xn) ∈ Ω′ the transversal variable.
The unknown function is vector valued: u = (u1, . . . , up), and a(x), bi(x), c(x)
are p× p matrices. The matrix a(x) is supposed to be positive definite,

(a(x)u, u) ≥ k(u, u)

for some k > 0, and any u ∈ R
p, x ∈ Ω̄. The boundary S of the cylinder Ω is

supposed to be of class C2+δ for some fixed 0 < δ < 1. We will use homogeneous
Dirichlet boundary conditions

u = 0 on S = R × ∂Ω′.

For any integer l, by Cl+δ(Ω̄,Rp) we denote the Banach space of functions
which are bounded and continuous in Ω̄, together with all partial derivatives up
to order l, and such that the partial derivatives of order l are uniformly Hölder
continuous with exponent δ.

We suppose that all the coefficients of the operator L belong to Cδ(Ω̄,R),
and have limits as x1 → ±∞:

a± = lim
x1→±∞ a(x), b±i = lim

x1→±∞ bi(x), c± = lim
x1→±∞ c(x).

Here a±, b±i , and c± are constant matrices.
In this section we compute the index of the operator defined by (3.20). We

assume that bk → 0, k = 2, . . . , n as x1 → ±∞. We consider L as acting between
the space

E := {u ∈ C2+δ(Ω̄,Rp) : u|S = 0}
and the space Cδ(Ω̄,Rp). The corresponding norms will be denoted by | · |2+δ,Ω and
|·|δ,Ω respectively. However to compute this index it will be more convenient to view
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L as an unbounded operator acting in Cδ(Ω̄,Rp), with domain D(L) = E. We do
so from now on. The index is the same, since the kernel and range are unchanged.
To compute ind(L) we connect L to the operator L̃ acting in Cδ(Ω̄,Rp), with the
same domain E, defined by

L̃u = ã(x1)∆u+ b̃(x1)
∂u

∂x1
+ c̃(x1)u. (3.21)

For the operator L̃ we take coefficients which only depend on the variable x1:

ã(x1) = a+ψ(x1) + a−(1 − ψ(x1)), b̃(x1) = b+1 ψ(x1) + b−1 (1 − ψ(x1)), (3.22)

c̃(x1) = c+ψ(x1) + c−(1 − ψ(x1)), (3.23)

where ψ(x1) is a sufficiently smooth function, equal to 1 for x1 ≥ 1 and to 0 for
x1 ≤ 0.

We note that during the deformation

τL̃+ (1 − τ)L, τ ∈ [0, 1],

Condition 3.1 is satisfied and the index of the operator does not change. Thus
instead of the operator (3.20) we will consider the operator (3.21). From now on
we omit the tilde and it is this operator which we denote by L.

Consider the (scalar) Laplace operator in the transverse domain:

∆′ : Cδ(Ω̄′,R) −→ Cδ(Ω̄′,R),

with domain
D(∆′) := {u ∈ C2+δ(Ω̄′,R) : u = 0 on∂Ω′}.

Since ∆′ is formally self-adjoint and Ω′ is bounded, the spectrum of this operator
consists of a countable sequence of eigenvalues. Let us consider these eigenvalues
in the following order (without repetition):

· · ·ωk < · · · < ω2 < ω1 < 0.

For each k, the multiplicity mk of ωk is finite, and we will denote by φki , i =
1, . . . ,mk an L2(Ω′) orthonormal basis of the associated eigenspace:

i = 1, . . . ,mk : φki (x
′) ∈ R, ∆′φki = ωkφ

k
i in Ω′, φki = 0 on ∂Ω′.

Now consider the (vector) Laplacian in the transverse domain:

∆′ : Cδ(Ω̄′,Rp) −→ Cδ(Ω̄′,Rp),

D(∆′) := E′ := {u ∈ C2+δ(Ω̄′,Rp) : u = 0 on ∂Ω′}. (3.24)

The spectrum of this self-adjoint operator is the same as for the scalar Lapla-
cian, but the multiplicity of ωk is now pmk. Denote by π′

k the spectral projector
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associated to the eigenvalue ωk of the vector Laplacian. Then π′
k is a bounded

operator acting in Cδ(Ω̄′,Rp), and takes its values in E′. We will use the fact that
π′
k is continuous for the C0(Ω̄′,Rp) norm. This is an immediate consequence of

the representation of π′
k as a Dunford integral over a bounded contour, see for

instance [206]. If u ∈ R(π′
k), then each component of u is a linear combination of

the functions φki , i = 1, . . . ,mk. Thus we obtain

u(x′) =
mk∑
i=1

piφ
k
i (x

′), (3.25)

with pi ∈ Rp for each i. From now on let s be a fixed integer. We set

P ′
s =

s∑
k=1

π′
k.

In particular, if Γ is a closed contour in the complex plane containing the first s
eigenvalues, for any v ∈ Cδ(Ω̄′,Rp) we have

P ′
sv =

1
2iπ

∫
Γ

(∆′ − λ)−1vdλ,

and the range of P ′
s is equal to the corresponding eigenspace which we denote by

E′
s. Finally, we define Q′

s as a bounded operator acting in Cδ(Ω̄′,Rp) by

Q′
su = u− P ′

su.

We have

E′
s = P ′

s[Cδ(Ω̄′,Rp)], Cδ(Ω̄′,Rp) = E′
s ⊕ Ẽ′

s, where Ẽ′
s := Q′

s[Cδ(Ω̄′,Rp)].

Remark 3.3. As we did for π′
k, we note that P ′

s and Q′
s are continuous for the

C0(Ω̄′,Rp) norm.
Let us set

Es = {u ∈ Cδ(Ω̄,Rp) : ∀x1 ∈ R : u(x1, ·) ∈ E′
s},

Ẽs = {u ∈ Cδ(Ω̄,Rp) : ∀x1 ∈ R : u(x1, ·) ∈ Ẽ′
s}.

We now define two operators Ps, Qs on Cδ(Ω̄,Rp) by

(Psu)(x1, ·) = P ′
s(u(x1, ·)), (Qsu)(x1, ·) = Q′

s(u(x1, ·)). (3.26)

We first show a preliminary result:

Lemma 3.4. Ps and Qs are bounded projectors acting in Cδ(Ω̄,Rp). Moreover for
any u ∈ E we have

Psu,Qsu ∈ E, and PsLu = LPsu, QsLu = LQsu. (3.27)



3. Second-order problems in cylinders 383

Proof. We first show that Ps (and therefore Qs) takes its values in Cδ(Ω̄,Rp). This
amounts to checking the regularity of Psu with respect to x1, for u ∈ Cδ(Ω̄,Rp).
For fixed x1 ∈ R, x′ ∈ Ω̄′, using Remark 3.3 we have

|(Psu)(x1 + h, x′) − (Psu)(x1, x
′)| ≤ ||P ′

s(u(x1 + h, ·)) − P ′
s(u(x1, ·))||0,Ω′

≤ K||u(x1 + h, ·) − u(x1, ·)||0,Ω′

≤ K||u||δ,Ωhδ.
(3.28)

Inequality (3.28) shows that Ps, Qs are bounded operators acting in Cδ(Ω̄,Rp).
Clearly (from the analogous relations for P ′

s, Q
′
s) we have

(Ps)2 = Ps, (Qs)2 = Qs, Ps +Qs = I.

Now since P ′
s takes its values in E′, it follows that for u ∈ C2+δ(Ω̄,Rp), the function

Psu satisfies the boundary condition Psu = 0 on S. To show that Psu ∈ E, again
we only need to check regularity with respect to x1. If u ∈ C1+δ(Ω̄,Rp) we have,
as h→ 0:

u(x1 + h, ·) − u(x1, ·)
h

→ ∂u

∂x1
(x1, ·) in C0(Ω̄′,Rp).

Thus, using Remark 3.3:

(Psu)(x1 + h, ·) − (Psu)(x1, ·)
h

= P ′
s

u(x1 + h, ·) − u(x1, ·)
h

→ P ′
s

∂u

∂x1
(x1, ·) =

(
Ps

∂u

∂x1

)
(x1, ·) in C0(Ω̄′,Rp).

We obtain for any u ∈ C1+δ(Ω̄,Rp):

∂

∂x1
(Psu) = Ps

(
∂u

∂x1

)
,

thus for u ∈ C2+δ(Ω̄,Rp):

∂2

∂x2
1

(Psu) = Ps

(
∂2u

∂x2
1

)
. (3.29)

This shows that E is invariant under Ps and Qs. Clearly P ′
s (as a spectral projector

of ∆′) commutes with ∆′, and with multiplication by functions of x1. Thus (3.27)
follows from (3.29), and this completes the proof of the lemma. �

Remark 3.5. R(Qs) is closed for the topology of uniform convergence on compact
subsets of Ω̄. Indeed if fn ∈ R(Qs) converges to f uniformly on compact subsets of
Ω̄, then for all x1, the function fn(x1, ·) converges to f(x1, ·) uniformly on Ω̄′. Then
it follows from Remark 3.3 that (P ′

sf)(x1, ·) = 0, which means that f ∈ R(Qs).



384 Chapter 9. Problems in Cylinders

To compute the index of L we now define two operators L1, L2 by restricting
L to R(Ps) and R(Qs) respectively, and with domains

D(L1) = D(L) ∩R(Ps), D(L2) = D(L) ∩R(Qs).

It follows from (3.27) that their ranges are given by

R(L1) = R(L) ∩R(Ps), R(L2) = R(L) ∩R(Qs).

This proves that if Condition 3.1 holds true, then the unbounded operators

L1, L2 : Cδ(Ω̄,Rp) −→ Cδ(Ω̄,Rp)

are normally solvable. We will use the following lemma.

Lemma on the index of a direct sum. Let X be a Banach space, and L : X → X
an unbounded normally solvable operator with domain D(L) = E. Let P,Q be two
bounded projectors acting in X, with P +Q = IX . Assume that for any x ∈ E

Px ∈ E, and LPx = PLx.

Define two (unbounded) operators L1, L2 by taking restrictions of L:

L1 : R(P ) → R(P ), L2 : R(Q) → R(Q),
D(L1) = R(P ) ∩ E, D(L2) = R(Q) ∩ E.

Then L1 and L2 are normally solvable, and ind(L) = ind(L1) + ind(L2).

Thus we obtain the following result.

Theorem 3.6. Assume the operator L satisfies Condition 3.1, and define the oper-
ators L1, L2 as above. If these two operators are Fredholm then L also is, and

ind(L) = ind(L1) + ind(L2).

2. Computation of ind(L1). Defining a map πk by

(πku)(x1, ·) = π′
k(u(x1, ·)),

we obtain (as we did with Ps, Qs) a bounded projector acting in Cδ(Ω̄,Rp). Also,
E is invariant under πk, and on E, the operators L and πk commute. We can
now define an unbounded operator Lk by restricting L to R(πk), with domain
D(Lk) = E ∩R(πk). By the same argument as above we have

ind(L1) =
s∑

k=1

ind(Lk).
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If u ∈ R(πk) we have u(x1, ·) ∈ R(π′
k) for each x1, thus in view of (3.25) we obtain

u(x1, x
′) =

mk∑
i=1

pi(x1)φki (x
′),

with pi ∈ Cδ(R,Rp) for each i. Then for a given f ∈ R(πk) written in the form

f(x1, x
′) =

mk∑
i=1

gi(x1)φki (x
′),

the equation Lku = f may be rewritten as

mk∑
i=1

(a(x1)pi′′ + b(x1)pi′ + (c(x1) + ωka(x1))pi − gi(x1))φki (x
′) = 0.

Multiplying by φki (x
′) and integrating over Ω′ we obtain the ordinary differential

system
api

′′ + bpi
′ + (c+ ωka)pi = gi.

The index of this one-dimensional problem (which is given by the results in the
previous section), which we denote by ind0

k does not depend on i, and we obtain

ind(Lk) = mk ind0
k .

3. Computation of ind(L2). We now show that if s is sufficiently large, then
ind(L2) = 0. We note that for µ large enough, the operator

L− µ : Cδ(Ω̄,Rp) −→ Cδ(Ω̄,Rp)

with domain E has a bounded inverse defined on all of Cδ(Ω̄,Rp), thus has index
0. Therefore it suffices to show that for all λ ≥ 0 the operator

L2 − λ : R(Qs) → R(Qs)

is normally solvable and has finite α characteristic (for then we may use again the
same method, with λ = τµ, τ ∈ [0, 1]). We first prove a preliminary lemma:

Lemma 3.7. If s is large enough, then for any λ with Re(λ) ≥ 0, any j ≥ s + 1
and ξ ∈ R:

det(−a±ξ2 + ib±ξ + c± + a±ωj − λ) �= 0.

Proof. We use the fact that ωj → −∞ as j → ∞. Consider an eigenvalue λ of the
matrix

(ξ2 − ωj)
(
−a± +

1
ξ2 − ωj

(ib±ξ + c±)
)
.
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Noting that ∥∥∥∥ 1
ξ2 − ωj

(ib±ξ + c±)
∥∥∥∥ ≤ 1

2
√−ωj ‖b

±‖ +
‖c±‖
−ωj ,

we obtain that any such λ (recall a± is positive definite) has negative real part,
provided j is large enough. This proves the claim. �

Therefore it only remains to prove the following two propositions.

Proposition 3.8. For all j, ξ, λ, define

E±
j (ξ, λ) = −a±ξ2 + ib±ξ + c± + a±ωj − λ.

If λ ∈ C is such that

∀ξ ∈ R, j ≥ s+ 1 : det(E±
j (ξ, λ)) �= 0, (3.30)

then the operator
L2 − λ : R(Qs) → R(Qs)

has finite α characteristic.

Proposition 3.9. Under the same assumption on λ, the operator L2−λ is normally
solvable.

Before proving these results we show the following lemma.

Lemma 3.10. Under the same assumption on λ, the problem

a±∆u+ b±
∂u

∂x1
+ c±u = λu, u|S = 0 (3.31)

has no nontrivial solution in R(Qs).

Proof. Proceeding by contradiction, let us assume that (3.30) holds true, and let
u ∈ R(Qs) be a nontrivial solution to (3.31). For fixed k > s and 1 ≤ i ≤ mk we
multiply (3.31) by φki (x

′) and integrate over Ω′. Defining pki by

pki (x1) =
∫

Ω′
u(x1, x

′)φki (x
′) dx′ ∈ R

p

we obtain after two integration by parts,

a±pki
′′

+ b±pki
′
+ (a±ωk + c± − λ)pki = 0.

Here the prime denotes derivation with respect to x1. Since pki is bounded we may
view it as a tempered distribution, thus we may apply the Fourier transform with
respect to x1. Since E±

k (ξ, λ) is invertible we obtain that p̂ki is identically zero,
thus by the inversion theorem pki also is, a contradiction. �
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Proof of Proposition 3.8. We prove that α(L2 − λ) is finite by showing that the
unit ball in the null space N(L2 − λ) is compact in Ẽs. Consider a sequence uk ∈
N(L2−λ), with |uk|2+δ,Ω = 1. Then we can find a subsequence (still denoted by uk)
which converges to some function u0 in the space C2(A)p for any compact subset
A of Ω̄. Note that u0 ∈ C2+δ(Ω̄,Rp). We are going to show that the convergence is
uniform on Ω̄. If this were not the case, we would have (again for some subsequence)

|uk(xk) − u0(xk)| ≥ δ > 0

for some xk ∈ Ω. Because of the uniform convergence on compact sets we have
|xk| → ∞. Consider now the following shifted functions:

wk(x) = uk(x1 + xk1 , x
′) − u0(x1 + xk1 , x

′).

Note that the sequence wk is bounded in C2+δ(Ω̄,Rp), and that

|wk(0, xk2 , ··, xkn)| ≥ δ.

Thus we can find a subsequence which converges to some w0 ∈ C2+δ(Ω̄,Rp), in
C2(A)p for any compact subset A of Ω̄. Passing to the limit k → ∞ in the relations

a(x1 + xk1)∆wk(x) + b(x1 + xk1)
∂wk
∂x1

(x) + c(x1 + xk1)wk(x) = λwk(x) x ∈ Ω,

wk(x) = 0 x ∈ ∂Ω,

we obtain that w0 is a nontrivial solution to the problem (3.31). We now show that
w0 ∈ R(Qs). Applying Remark 3.5 to uk we see that u0, and therefore uk − u0,
belong to R(Qs). Clearly any shift of an element of R(Qs) remains in R(Qs), thus
wk, w0 ∈ R(Qs). This contradicts the conclusion of Lemma 3.10, thus we have
shown that uk converges to u0 uniformly on Ω̄. It then follows from Schauder’s
estimates

‖u‖(2+δ) ≤ k1‖Lu‖(δ) + k2 max
x

| u |

(see Chapter 1) that the convergence also holds in C2+δ(Ω̄,Rp), and this completes
the proof of Proposition 3.8. �

Proof of Proposition 3.9. Pick a sequence fn = (L2−λ)un in R(L2−λ) = R(L)∩
R(Qs), converging to f in Cδ(Ω̄,Rp). Because Qs is a bounded operator we have
f ∈ R(Qs). From Proposition 3.8 it follows thatN(L2−λ) has a direct complement
W in R(Qs), thus we may write

un = vn + wn, vn ∈ N(L2 − λ), wn ∈W.

If wn is bounded in C2+δ(Ω̄,Rp), then as in the previous proof we can obtain a
subsequence (still denoted wn) which converges to some w0 ∈ E in C2(A,Rp) for
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any compact subset A of Ω̄. Thus fn = (L2 − λ)wn converges to (L2 − λ)w0, and
f ∈ R(L2 − λ). If wn is not bounded in C2+δ(Ω̄,Rp), then let us set:

w̃n =
wn

|wn|2+δ,Ω , f̃n =
fn

|wn|2+δ,Ω .

As above we extract a subsequence of w̃n converging in C2 on compact sets to
some w0 ∈ W . Then (L2 − λ)w̃n = f̃n converges to 0, thus (L2 − λ)w0 = 0, a
contradiction. This completes the proof of the proposition. �

Thus we have proved the following theorem.

Theorem 3.11. Consider the operator

L : Cδ(Ω̄,Rp) −→ Cδ(Ω̄,Rp), D(L) = {u ∈ C2+δ(Ω̄,Rp) : u|S = 0}
defined by

Lu = a(x)∆u +
n∑
j=1

bj(x)
∂u

∂xj
+ c(x)u.

Assume that for any j ≥ 2 we have bj(x) → 0 as x1 → ±∞, and assume Condition
3.1. Define the coefficients ã(x1), b̃(x1), and c̃(x1) by (3.22) (3.23), and let ωk
denote the eigenvalues of the Laplace operator in the section of the cylinder, with
the boundary condition u = 0 on ∂Ω′.

Then the operator L is Fredholm if and only if the operators

Lk : C2+δ(R,Rp) −→ Cδ(R,Rp)
defined by

Lkv = ã(x1)v′′ + b̃(x1)v′ + (c̃(x1) + ã(x1)ωk)v

are Fredholm for all k. This occurs if and only if for any integer k and all ξ ∈ R,
the matrices

Ek(ξ) := −a±ξ2 + ib±1 ξ + c± + a±ωk
are invertible. In this case only finitely many of the indices ind(Lk) are different
from zero and

ind(L) =
∞∑
k=1

mk ind(Lk),

where mk is the multiplicity of the eigenvalue ωk.

4 Lower estimates of elliptic operators

In this section we present another approach to study elliptic problems in cylinders.
It is based on lower estimates of elliptic operators. These estimates imply the
Fredholm property of linear operators and properness of nonlinear operators. They
also allow the construction of topological degree.
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4.1 Operators with constant coefficients

In this section we consider the operator

〈Lu, v〉 =
∫

Ω

(
m∑
k=1

(
a
∂u

∂xk
,
∂v

∂xk

)
− (bu, v)

)
dx

acting from W 1
2 (Ω) into the dual space (W 1

2 (Ω))∗. Here Ω is a cylindrical domain
with its axis along the x1-direction and with a bounded smooth cross-section D,
x = (x1, x

′), x′ ∈ D, a and b are constant matrices, a is positive definite, 〈Lu, v〉
denotes the action of the functional Lu on the element v ∈ W 1

2 (Ω). We will denote
by [·, ·] the inner product in W 1

2 (Ω),

[u, v] =
∫

Ω

(
m∑
k=1

(
∂u

∂xk
,
∂v

∂xk

)
+ (u, v)

)
dx

and by ‖ · ‖ the norm in this space.
We suppose that the following condition is satisfied. It is related to Condition

NS and to Conditions 3.1 and 3.1′ of the previous section.

Condition 4.1. All eigenvalues of the matrix b − aξ2 are in the left half-plane for
all real ξ.

Theorem 4.2. There exists a linear, bounded, symmetric, positive definite operator
T acting in W 1

2 (Ω), such that for any u ∈W 1
2 (Ω),

〈Lu, Tu〉 = ‖u‖2. (4.1)

To prove the theorem we begin with some auxiliary results. Consider the eigenvalue
problem in D:

−∆′g = λg,
∂v

∂n
|∂D = 0, (4.2)

where ∆′ is the Laplace operator in the section of the cylinder, and n is the outer
normal vector. Let gi be a complete orthonormal system of eigenfunctions of this
eigenvalue problem. Then for any u ∈W 1

2 (Ω) we have

u(x) =
∞∑
i=1

vi(x1)gi(x′), (4.3)

where vi are the coefficients of the expansion

vi(x1) =
∫
D

u(x)gi(x′)dx′.

The functions vi belong to L2(R). Indeed,
∫ ∞

−∞
v2
i dx1 ≤

∫ ∞

−∞
dx1

(∫
D

|u|2dx′
)(∫

D

|gi|2dx′
)

≤ ‖u‖2.
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Similarly,
‖v′i‖L2(R) ≤ ‖u‖.

Consequently, vi ∈ W 1
2 (R).

We introduce linear operators Ti, acting in W 1
2 (Ω) by the formula

T̃iw = Ri(ξ)w̃(ξ). (4.4)

Here tilde denotes the Fourier transform, Ri(ξ) is a symmetric positive definite
matrix, which satisfies the equality

((a(ξ2 + λi) − b)p,Ri(ξ)p) = ((1 + ξ2 + λi)p, p) (4.5)

for any vector p.
To construct the matrix Ri(ξ), put

ci(ξ) =
1

1 + ξ2 + λi
(−a(ξ2 + λi) + b).

Since λi ≥ 0, then this matrix is well defined. Thus

(ci(ξ)p,Ri(ξ)p) = −(p, p). (4.6)

We put

Ri(ξ) = 2
∫ ∞

0

ec
∗
i (ξ)seci(ξ)sds, (4.7)

where c∗i is the matrix conjugate to ci. The existence of the integral in the right-
hand side of (4.7) follows from Condition 4.1. Indeed, it implies that there exists
a contour Γ such that it contains the spectrum of the matrices ci(ξ) inside it for
all real ξ and all i, and it lies in the half-plane Re λ < −ω, where ω is a positive
number. Then

ec(ξ)s =
1

2πi

∫
γ

esλ(λI − c(ξ))−1dλ,

where I is the identity matrix. Hence

‖eci(ξ)s‖ ≤Me−ωs

with some positive constant M . Similarly,

‖ec∗i (ξ)s‖ ≤Me−ωs.

Therefore the integral in (4.7) exists, and Ri(ξ) is a bounded symmetric matrix.
Since

Rici + c∗iRi = 2
∫ ∞

0

d

ds

(
ec

∗
i (ξ)seci(ξ)s

)
ds = −2I,

then (4.5) holds.
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We define now the operator T :

Tu =
∞∑
i=1

Ti(vi)gi(x′), (4.8)

where u is given by (4.3).

Lemma 4.3. The operator T is a linear, bounded, symmetric and positive definite
operator in W 1

2 (Ω).

Proof. The linearity of T is obvious. We will show that it is bounded. From (4.3)
we have

∫
Ω

|u|2dx =
∞∑
i=1

∫ ∞

−∞
|vi(x1)|2dx1,

∫
Ω

∣∣∣∣ ∂u∂x1

∣∣∣∣
2

dx =
∞∑
i=1

∫ ∞

−∞
|v′i(x1)|2dx1.

Since
m∑
j=2

∫
Ω

∂gi
∂xj

∂gk
∂xj

dx = −
∫
D

∆′gigkdx′ = λiδ
k
i ,

where δki is the Kronecker symbol, then

m∑
j=2

∫
Ω

∣∣∣∣ ∂u∂xj
∣∣∣∣
2

dx =
∞∑
i=1

λi

∫ ∞

−∞
|vi(x1)|2dx1.

From these equalities and the estimate supξ,i ‖Ri(ξ)‖ ≤ K with some positive
constant K we obtain

∫
Ω

|Tu|2dx =
1
2π

∞∑
i=1

∫ ∞

−∞
|Ri(ξ)ṽi(x1)|2dξ ≤ K2

∞∑
i=1

∫ ∞

−∞
|vi(x1)|2dx1,

∫
Ω

∣∣∣∣∂(Tu)
∂x1

∣∣∣∣
2

dx =
1
2π

∞∑
k=1

∫ ∞

−∞
|iξRk(ξ)ṽk(x1)|2dξ ≤ K2

∞∑
i=1

∫ ∞

−∞
|v′i(x1)|2dx1,

m∑
j=2

∫
Ω

∣∣∣∣∂(Tu)
∂xj

∣∣∣∣
2

dx ≤ K2
∞∑
i=1

λi

∫ ∞

−∞
|vi(x1)|2dx1.

Thus ‖Tu‖ ≤ K‖u‖.
We now show that the operator T is symmetric. Let w ∈W 1

2 (Ω) and

w =
∞∑
i=1

ωigi, Tw =
∞∑
i=1

Ti(ωi)gi.
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We have

∫
Ω

(Tu,w)dx =
1
2π

∞∑
i=1

∫ +∞

−∞
(Riṽi, ω̃i)dξ,

∫
Ω

(u, Tw)dx =
1
2π

∞∑
i=1

∫ +∞

−∞
(ṽi, Riω̃i)dξ,

∫
Ω

(
∂(Tu)
∂x1

,
∂w

∂x1

)
dx =

1
2π

∞∑
k=1

∫ +∞

−∞
(iξRkṽk, iξω̃k)dξ,

∫
Ω

(
∂u

∂x1
,
∂(Tw)
∂x1

)
dx =

1
2π

∞∑
k=1

∫ +∞

−∞
(iξṽk, iξR̃kωk)dξ,

m∑
j=2

∫
Ω

(
∂(Tu)
∂xj

,
∂w

∂xj

)
dx =

∞∑
i=1

λi

∫ +∞

−∞
(Ti(vi), ωi)dx1,

m∑
j=2

∫
Ω

(
∂u

∂xj
,
∂(Tw)
∂xj

)
dx =

∞∑
i=1

λi

∫ +∞

−∞
(vi, T (ωi))dx1.

Since the matrices Ri are symmetric and real, we obtain

[Tu,w] = [u, Tw],

that is the operator T is symmetric in W 1
2 (Ω).

To prove that it is positive definite we note that all eigenvalues λ of the
matrices Ri(ξ) satisfy the inequality λ ≥ µ for some µ > 0 and for all ξ and i.
Therefore

(Ri(ξ)p, p) ≥ µ(p, p) ∀i, ξ.
Then

∫
Ω

(Tu, u)dx =
1
2π

∞∑
i=1

∫ +∞

−∞
(Riṽi, ṽi)dξ ≥ µ

∫
Ω

|u|2dx,
m∑
i=1

∫
Ω

(
∂(Tu)
∂xj

)
dx ≥ µ

m∑
j=1

∫
Ω

∣∣∣∣ ∂u∂xj
∣∣∣∣
2

dx.

Thus
[Tu, u] ≥ µ[u, u].

The lemma is proved. �

We note that the operator T is bounded, symmetric, and positive definite in L2(Ω)
also.
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Proof of Theorem 4.2. To prove the theorem it remains to verify (4.1). We have

〈Lu, Tu〉 =
∫

Ω

(
m∑
k=1

(
a
∂u

∂xk
,
∂(Tu)
∂xk

)
− (bu, Tu)

)
dx

=
1
2π

∞∑
k=1

∫ +∞

−∞
((aiξṽk, iξRkṽk) + λk(aṽk, Rkṽk) − (bṽk, Rkṽk))dξ

=
1
2π

∞∑
k=1

∫ +∞

−∞
((1 + ξ2 + λi)ṽi, ṽi)dξ = ‖u‖2.

The theorem is proved. �

4.2 Variable coefficients

Consider the operator

〈Lu, v〉 =
∫

Ω

(
m∑
k=1

(
a
∂u

∂xk
,
∂v

∂xk

)
− (b(x)u, v)

)
dx

acting in the same spaces as in the previous section. Here a is a constant, symmet-
ric, positive definite matrix, b(x) is a continuous matrix having limits at infinity,

b1 = lim
x1→−∞ b(x), b2 = lim

x1→∞ b(x)

uniformly with respect to x′. The constant matrices b1 and b2 are supposed to
satisfy Condition 4.1.

Theorem 4.4. There exists a linear, bounded, symmetric, positive definite operator
S0 acting in W 1

2 (Ω) such that the estimate

〈Lu, S0u〉 ≥ ‖u‖2 + θ(u)

holds. Here θ(u) is a functional defined on W 1
2 (Ω) and such that θ(un) → 0 as

un → 0 weakly.

Proof. We first consider the case where b(x) = b0(x) and

b0(x) = φ1(x)b1 + φ2(x1)b2,

φi(x), i = 1, 2 are smooth functions, 0 ≤ φi(x1) ≤ 1, φ1(x1) + φ2(x1) ≡ 1,
φ1(x1) = 0 for x1 > 1, φ2(x1) = 0 for x1 < −1.

Denote by T (i) the operator which is defined for the matrix bi as it is done
in Theorem 4.2, and

T (0) = φ1T
(1)φ1 + φ2T

(2)φ2.
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We have

∫
Ω

m∑
k=1

(
a
∂u

∂xk
,
∂(T (0)u)
∂xk

)
dx =

2∑
i=1

∫
Ω

m∑
k=1

(
a
∂(φiu)
∂xk

,
∂(T (i)φiu)

∂xk

)
dx

+
2∑
i=1

∫
Ω

m∑
k=1

((
a
∂u

∂x1
, φ′iT

(i)φiu

)
−
(
auφ′i,

∂(T (i)φiu)
∂x1

))
dx. (4.9)

The second summand in the right-hand side of (4.9) tends to zero as u→ 0 weakly
(see Lemma 4.5 below). We have further

∫
Ω

(bu, T (0)u)dx =
2∑
i=1

∫
Ω

(φibiu, φiT (i)φiu)dx+ θ(u)

=
2∑
i=1

∫
Ω

(φibiu, T (i)φiu)dx+ θ(u).

Here θ(u) denotes all functionals that satisfy the condition of the theorem. Thus

〈Lu, T (0)〉 =
2∑
i=1

∫
Ω

(
m∑
k=1

(
a
∂(φiu)
∂xk

,
∂(T (i)φiu)

∂xk

)
− (biφiu, T (i)φiu)

)
dx+ θ(u).

From Theorem 4.2 it follows that

〈Lu, T (0)u〉 = ‖φ1u‖2 + ‖φ2u‖2 + θ(u) ≥ 1
2
‖u‖2 + θ(u). (4.10)

Let now b(x) be an arbitrary matrix satisfying the conditions above. Then
from Lemma 4.5 below it follows that

∫
Ω

((b− b0))u, u)dx = θ(u).

To complete the proof of the theorem we should show that

T (0) =
1
2
S(0) +K, (4.11)

where S(0) is a symmetric, positive definite operator, K is a compact operator in
W 1

2 (Ω).
We note that the operator Ti defined by (4.4) satisfies the equality

∂(Tiu)
∂x1

= Ti
∂u

∂x1
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and, consequently, a similar equality is valid for the operator T and for the oper-
ators T (i). Since the operators T (i) are symmetric in L2 we have

∫
Ω

(φiT (i)φiu, v)dx =
∫

Ω

(u, φiT (i)φiv)dx,
∫

Ω

(
φiT

(i)φi
∂u

∂x1
,
∂v

∂x1

)
dx =

∫
Ω

(
∂u

∂x1
, φiT

(i)φi
∂v

∂x1

)
dx,

m∑
k=2

∫
Ω

(
∂

∂xk
(φiT (i)φiu),

∂v

∂xk

)
dx =

m∑
k=2

∫
Ω

(
∂u

∂xk
,
∂

∂xk
(φiT (i)φiv)

)
dx.

It is easy to verify now that

[T (0)u, v] − [u, T (0)v]

=
2∑
i=1

∫
Ω

((
φ′iT

(i)φiu+ φiT
(i)φ′iu,

∂v

∂x1

)
−
(
∂u

∂x1
, φ′iT

(i)φiv + φiT
(i)φ′iv

))
dx.

Denote the right-hand side of this equality by Φ(u, v). This is a bilinear bounded
functional in W 1

2 (Ω). Therefore

Φ(u, v) = [u,K(0)v], u, v ∈W 1
2 (Ω),

where K0 is a linear bounded operator. We will prove that it is compact. Indeed,
let vn → 0 weakly in W 1

2 (Ω). Denote yn = K0vn. Then

‖yn‖2 = [yn,K0vn] = Φ(yn, vn).

From Lemma 4.5 below it follows that Φ(yn, vn) → 0 since vn, yn → 0 weakly in
W 1

2 (Ω) and the derivatives ∂vn/∂x1, ∂yn/∂x1 are uniformly bounded in L2(Ω).
This proves the compactness of the operator K0 and, consequently, the compact-
ness of the operator

(T (0))∗ − T (0) = K0. (4.12)

We have further

[T (0)u, v] + [u, T (0)v] = Φ1(u, v) + Φ2(u, v),

where

Φ1(u, v) =
2∑
i=1

∫
Ω

m∑
k=1

((
∂

∂xk
(T (i)φiu),

∂

∂xk
(φiv)

)

+
(

∂

∂xk
(φiu),

∂

∂xk
(T (i)φiv)

))
dx

+ 2
2∑
i=1

∫
Ω

(T (i)φiu, φiv)dx,
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Φ2(u, v) =
2∑
i=1

∫
Ω

((
φ′iT

(i)φiu,
∂v

∂x1

)

−
(

∂

∂x1
(T (i)φiu), φ′iv

)
+
(
∂u

∂x1
, φ′iT

(i)φiv

))
dx

−
2∑
i=1

∫
Ω

(
φ′iu,

∂

∂x1
(T (i)φiv)

)
dx.

Since Φ1 and Φ2 are bounded bilinear functionals in W 1
2 (Ω) then

Φ1(u, v) = [S0u, v], Φ2(u, v) = [Bu, v],

where S0 and B are bounded linear operators. The operator S0 is symmetric and
positive definite since the functional Φ1(u, v) is symmetric and

[S0u, u] = Φ1(u, u) =
2∑
i=1

([T (i)φiu, φiu]+ [φiu, T (i)φiu]) ≥ 2µ
2∑
i=1

‖φiu‖2 ≥ µ‖u‖2.

From Lemma 4.5 it follows that the operator B is compact.
Equality (4.11) withK = (B−K0)/2 follows now from (4.12) and the equality

T 0 + (T 0)∗ = S0 +B.

The theorem is proved. �

We used the following lemma.

Lemma 4.5. Let a sequence of functions fn be uniformly bounded in L2(Ω) and a
sequence converge weakly to zero in W 1

2 (Ω). Let, further, ψ(x) be a bounded smooth
function which tends to zero as x1 → ±∞ uniformly with respect to x′. Then

∫
Ω

ψ(x)(fn(x), gn(x))dx → 0, n→ ∞.

Proof. We have
∣∣∣∣
∫

Ω

ψ(fn, gn)dx
∣∣∣∣ ≤

(∫
Ω

|fn|2dx
)1/2 (∫

Ω

ψ2|gn|2dx
)1/2

,

and it is sufficient to show that the second integral in the right-hand side of this
inequality tends to zero. We represent it in the form

∫
Ω

ψ2|gn|2dx =
∫
|x1|≥R

∫
D

ψ2|gn|2dx1dx
′ +

∫
|x1|<R

∫
D

ψ2|gn|2dx1dx
′. (4.13)

For any given ε > 0 we can choose R such that the first integral in the right-hand
side of (4.13) is less than ε/2 since ψ → 0 as x1 → ±∞. For R fixed the second
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integral tends to zero as n → ∞ since weak convergence of gn in W 1
2 (Ω) implies

strong convergence of φgn in L2(Ω) for any smooth function φ with a bounded
support, and hence strong convergence of gn in L2(ΩR). Here ΩR = D×{x1 < R}.
Thus there is an integer number N such that ‖ψgn‖2

L2(Ω) ≤ ε for n ≥ N . The
lemma is proved. �

4.3 Weighted spaces

We now consider the weighted space W 1
2,µ(Ω) with the inner product

[u, v]µ =
∫

Ω

(
m∑
k=1

(
∂u

∂xk
,
∂v

∂xk

)
+ (u, v)

)
µ(x1)dx.

The weight function µ depends on x1 only, and it is supposed to satisfy the fol-
lowing conditions:

1. µ(x1) ≥ 1, µ(x1) → ∞ as |x1| → ∞,
2. µ′/µ and µ′′/µ are continuous functions that tend to zero as |x1| → ∞.

For example we can take µ(x1) = 1 + x2
1.

We consider the operator L : W 1
2,µ(Ω) → (W 1

2,µ(Ω))∗ given by

〈Lu, v〉 =
∫

Ω

(
m∑
k=1

(
a
∂u

∂xk
,
∂v

∂xk

)
− (bu, v)

)
µdx,

where u, v ∈ W 1
2,µ(Ω), the matrices a and b satisfy the same conditions as in the

previous section.

Theorem 4.6. Let the matrices b1 and b2 satisfy Condition 4.1. Then there exists
a linear, bounded, symmetric, positive definite operator S acting in W 1

2,µ(Ω) such
that for any u ∈W 1

2,µ(Ω),

〈Lu, Su〉 ≥ ‖u‖2
µ + θµ(u),

where ‖ · ‖µ is the norm in W 1
2,µ(Ω), θµ(u) is a functional defined on W 1

2,µ(Ω) and
such that θµ(un) → 0 as un → 0 weakly.

Proof. We put
T = ω−1T (0)ω,

where ω =
√
µ and T (0) is defined in the previous section. Introducing the notation

w = ωu, we obtain

〈Lu, Tu〉 =
∫

Ω

(
m∑
k=1

(
a
∂w

∂xk
,
∂

∂xk
(T (0)w)

)
− (bw, T (0)w)

)
dx+ I,
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where

I =
∫

Ω

((
aω−1(ω−1)′

∂w

∂x1
, T (0)w

)
+ (a(ω−1)′w, (ω−1)′T (0)w)

)
ω2dx

+
∫

Ω

(
a(ω−1)′w, ω−1 ∂

∂x1
(T (0)w)

)
ω2dx .

It is easy to verify that the operator of multiplication by ω is a bounded operator
from W 1

2,µ(Ω) into W 1
2 (Ω), and the operator of multiplication by ω−1 is a bounded

operator from W 1
2 (Ω) into W 1

2,µ(Ω). Hence w ∈W 1
2 (Ω), and from (4.10) we have

∫
Ω

(
m∑
k=1

(
a
∂w

∂xk
,
∂

∂xk
(T (0)w)

)
− (bw, T (0)w)

)
dx

≥ 1
2
‖w‖2 + θ(w) ≥ c‖u‖2

µ + θµ(u),

where c = 1/(2N2), N is the norm of the multiplication operator ω−1.
From Lemma 4.5 it follows that I → 0 as w → 0 weakly in W 1

2 (Ω). Thus we
have shown that

〈Lu, Tu〉 ≥ c‖u‖2
µ + θµ(u).

We use the notation θµ here for all functionals which satisfy the condition of the
theorem.

To complete the proof of the theorem it is sufficient to show that

T = cS +K, (4.14)

where S is a symmetric positive definite operator, K is a compact operator in
W 1

2,µ(Ω). For this we construct the operators acting in W 1
2,µ(Ω) from the operators

acting in W 1
2 (Ω) in the following way. To each linear bounded operator A acting

in W 1
2 (Ω) we assign a linear operator Aµ in W 1

2,µ(Ω) by means of the equality

[u,Aµv]µ = [ωu,Aωv], u, v ∈ W 1
2,µ(Ω), (4.15)

where, as above, [·, ·]µ and [·, ·] are the inner products in W 1
2,µ(Ω) and in W 1

2 (Ω),
respectively. Going over in (4.11) to operators acting in W 1

2,µ(Ω) by this rule,

we obtain T
(0)
µ = 1

2S
(0)
µ + Kµ. From Lemma 4.7 below it follows that S(0)

µ is
a bounded symmetric, positive definite operator, Kµ is a compact operator. By
the same lemma and equation T = ω−1T (0)ω we have T (0)

µ = T + B, where B
is a compact operator in W 1

2,µ(Ω). Hence we obtain (4.14), where S = 1
2cS

(0)
µ ,

K = Kµ −B. The theorem is proved. �

Lemma 4.7. Let an operator Aµ acting in W 1
2,µ(Ω) be defined according to the

operator A acting in W 1
2 (Ω) by equality (4.15).

1. If A is a linear, bounded operator, then Aµ is also linear and bounded.
2. If A is compact, then Aµ is also compact.
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3. If A is symmetric, positive definite, then Aµ is also symmetric and positive
definite.

4. Aµ = ω−1Aω +B, where B is a linear compact operator in W 1
2,µ(Ω).

Proof. Assertions 1–3 can be verified directly. We shall prove assertion 4. Set
Ã = ω−1Aω. We have for u, v ∈W 1

2,µ(Ω):

[u, Ãv]µ =
∫

Ω

(
m∑
k=1

(
∂u

∂xk
,
∂(Ãv)
∂xk

)
+ (u, Ãv)

)
µdx.

Put y = ωu, z = ωv. Then we obtain

[u, Ãv]µ = [y,Az] + Φ(y, z),

where

Φ(y, z) =
∫

Ω

(
((ω−1)′ωy, (ω−1)′ωAz) +

(
∂y

∂x1
, (ω−1)′ωAz

)

+
(

(ω−1)′ωy,
∂(Az)
∂x1

))
dx.

We note that Φ(y, z) is a bilinear bounded form in W 1
2 (Ω). Therefore

Φ(y, z) = [y,Kz],

where K is a linear bounded operator in W 1
2 (Ω). From Lemma 4.5 it follows, as

above, that K is compact. Hence (see assertion 2) Kµ is compact in W 1
2,µ(Ω). We

have further
[u, Ãv]µ = [u,Aµv]µ + [u,Kµv]µ.

This means that Ã = Aµ +Kµ. The lemma is proved. �

4.4 Fredholm property and applications

The lower estimates of elliptic operators obtained above allow us to prove their
Fredholm property and the unique solvability for operators with a parameter.
Similar to Section 4.2, we consider the operator L : W 1

2 (Ω) → (W 1
2 (Ω))∗ defined

by the equality

〈Lu, v〉 =
∫

Ω

(
m∑
k=1

(
a
∂u

∂xk
,
∂v

∂xk

)
− (b(x)u, v)

)
dx,

and also the operator J ,

〈Ju, v〉 =
∫

Ω

(u, v)dx

acting in the same spaces.
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Theorem 4.8. Let Condition 4.1 be satisfied. Then for all λ ≥ 0 the operator L+λJ
is Fredholm. For all such λ, except possibly for a finite number, it has a bounded
inverse defined on the whole (W 1

2 (Ω))∗.

The proof of this theorem is similar to the proof of Theorem 1.4 of Chapter
2 in [568] and we will not present it here. The estimates of this type were first
obtained in [561] in the one-dimensional case. The theorem above remains valid
for the operators acting in weighted spaces (Section 4.3) and for more general
elliptic problems. Compared with the method of limiting operators developed in
Chapters 4 and 5, the method of lower estimates is more explicit but it uses the
specific form of the operators and of the domains and it cannot be used for general
elliptic problems.

The lower estimates of the same type hold for nonlinear elliptic problems
[562]. They provide Condition α introduced by Skrypnik [492], [493], which allows
construction of a topological degree. In the case of unbounded domains, we need to
use weighted spaces. Otherwise, the operators may not be proper and the degree
may not be defined (Chapter 11).



Chapter 10

Non-Fredholm Operators

The theory of elliptic problems is essentially based on their Fredholm property
which determines solvability conditions and a well-defined index. The Fredholm
property and index are preserved under small perturbations of the operators. The
situation is quite different if the Fredholm property is not satisfied. A general the-
ory of such problems does not exist, solvability conditions are generally not known,
and properties of such problems may not be preserved under small perturbations
of the operators.

In this chapter we introduce weakly non-Fredholm operators (Section 1). It
is a class of operators which satisfy the Fredholm property in spaces with a small
exponential weight. In this case we can formulate solvability conditions. They can
be similar to those for Fredholm operators or different, depending on function
spaces and on the right-hand side of the equation.

As we know, the Fredholm property is determined by Conditions NS and
NS∗ for limiting operators. If the set of limiting operators is finite, then “good”
limiting operators, which satisfy these conditions, preserve this property under
small perturbations. In this sense we can say that the structure of weakly non-
Fredholm operators is stable under small perturbations. In some cases, we can
use this spatial structuring and separate Fredholm and non-Fredholm parts of the
operator (Section 3).

In Section 2 we study ordinary differential equations on the real axis and
introduce some other solvability conditions. They involve solutions of homogeneous
adjoint equations but cannot be written as functionals from the dual space. For
some classes of strongly non-Fredholm operators, briefly discussed at the end of
this chapter, solvability conditions can be obtained by the spectral theory of self-
adjoint operators.

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_10, © Springer Basel AG 2011 
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1 Weakly non-Fredholm operators

It was shown in Chapter 5 that Conditions NS and NS∗ provide the Fredholm
property of elliptic operators in unbounded domains. Condition NS is necessary
and sufficient for normal solvability with a finite-dimensional kernel. Condition
NS∗ implies a finite codimension of the image. In the same chapter we have intro-
duced the operator Lµ = SµLS−µ, where Sµ is the operator of multiplication by
an exponential weight. If L is a Fredholm operator, then the operator Lµ satisfies
the Fredholm property for the values of µ in some domain G0 of the complex plane
which contains the origin. At the boundary of this domain, the operator Lµ is not
Fredholm. Thus, the complex plane can be represented as a union of a finite or
countable number of domains Gi, where the operator Lµ is Fredholm, and of a
complementary closed set, where the Fredholm property is not satisfied.

In this section we will study the operators which belong to the boundaries of
the domains Gi. More precisely, suppose that the operator L does not satisfy the
Fredholm property and the operator Lµ satisfies it for all µ sufficiently small. We
will call such operators weakly non-Fredholm operators. It appears that solvabil-
ity conditions for such operators can be determined. There are several different
situations. In the simplest case, the solvability conditions are the same as for Fred-
holm operators: the equation Lu = f is solvable if and only if (f, v) = 0 for all
solutions v of the homogeneous adjoint equation L∗v = 0. It is also possible that
this condition provides the existence of solutions in a weaker sense. We call them
solutions in the sense of sequence. This means that there exists a sequence un such
that Lun = fn → f as n → ∞ but this sequence is not necessarily convergent to
a solution u of the equation Lu = f . Finally, the expression (f, v) may not be de-
fined. We recall that v is exponentially decaying at infinity in the case of Fredholm
operators. However, this may not be the case for non-Fredholm operators resulting
in the fact that v does not belong to the dual space. Then we define solvability
conditions in the sense of sequence: (fn, v) = 0, n = 1, 2, . . . , where the sequence
fn is such that the last expressions are well defined and fn → f . This convergence
can be strong or local depending on the function spaces where the operator acts.
We illustrate these situations in Section 1.3 with the example of one-dimensional
operators.

1.1 Some properties of operators

Suppose that the convergence Luk → f takes place for some sequence of functions
uk. Is it possible to conclude that the equation Lu = f has a solution? This
question is directly related to normal solvability of the operator L. Furthermore, we
can use this convergence to generalize the notion of solution. We will call a sequence
u1, u2, . . . the solution in the sense of sequence of the equation Lu = f (or the
sequence solution) if Luk → f . The sequence u1, u2, . . . provides approximation of
the usual solution in the case of Fredholm operators. For non-Fredholm operators,
sequence solutions may not converge to usual solutions.
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We briefly recall here the notion of G-convergence (see, for example, [593],
[594]) which is related to the notion of sequence solutions but also differs from it. A
sequence of operators Ak G-converges to an operator A if for any right-hand side f
a sequence uk of solutions of the equations Aku = f converges to a solution of the
equation Au = f . Function spaces, and in what sense the sequence uk converges,
should be specified. Thus, G-convergence implies convergence of solutions for any
right-hand side. Convergence of sequence solutions depends on the right-hand side
and may not occur.

1.1.1. Solutions in the sense of sequence. Consider a bounded operator L : E → F ,
where E and F are Banach spaces, and the equation

Lu = f. (1.1)

Definition 1.1. A sequence u = (u1, u2, . . . ) such that uk ∈ E is called a solution of
equation (1.1) in the sense of sequence or a sequence solution if ‖Luk − f‖F → 0
as k → ∞. We say that this solution belongs to the space E if ‖uk‖E ≤ M for
some constant M and for all k. A sequence solution u = (u1, u2, . . . ) is strongly
convergent if there exists u0 ∈ E such that ‖uk − u0‖E → 0 as k → ∞. Two
sequence solutions u = (u1, u2, . . . ) and v = (v1, v2, . . . ) are equivalent if ‖uk −
vk‖E → 0 as k → ∞.

If a sequence solution is strongly convergent, then u0 is a solution of equation
(1.1) in the usual sense. Therefore, we can identify strongly convergent sequence
solutions with usual solutions. In this case, we will use the same notation u for the
function and for the sequence. If two sequence solutions are strongly convergent
and equivalent, then they correspond to the same usual solution.

A subsequence û = (uk1 , uk2 , . . . ) of a sequence solution u = (u1, u2, . . . ) will
be called a sub-solution of the solution u.

Proposition 1.2. Let u ∈ E be a sequence solution of equation (1.1). If L is a Fred-
holm operator, then f belongs to its image and there exists a strongly convergent
sub-solution û of the solution u, that is û is the usual solution of equation (1.1).

We recall that the image of the Fredholm operator L is closed, its kernel has
a finite dimension, the operator is invertible from the complement to its kernel
into its image. This provides the assertion of the proposition.

In what follows we consider elliptic operators and the corresponding function
spaces. In the case of bounded domains, sequence solutions approximate usual
solutions.

Example 1.3. Consider the Poisson equation with the Dirichlet boundary condition

∆u = f, u|∂Ω = 0, (1.2)

where f ∈ L2(Ω), Ω is a bounded domain with the C2+α boundary. Let fk be
infinitely differentiable functions converging to f in L2(Ω), and uk such that ∆uk =
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fk. Then u = (u1, u2, . . . ) is a sequence solution of problem (1.2). It converges in
H2(Ω) to the usual solution u of this problem.

In the case of bounded domains with sufficiently smooth boundaries, sequence
solutions are equivalent to usual solutions, and their introduction does not have
much sense. The difference between sequence solutions and usual solutions becomes
clear in the case of unbounded domains.

Theorem 1.4. Suppose that Condition NS is satisfied. If u ∈ E∞ is a sequence
solution of equation (1.1), then f ∈ F∞ belongs to the image of the operator, u
has a strongly convergent sub-solution and equation (1.1) is solvable in the usual
sense.

Proof. We know that Condition NS provides normal solvability of the operator and
a finite dimension of its kernel. The assertion of the theorem follows from this. It
can be also proved directly. Consider for certainty Sobolev spaces. Since u ∈ E∞,
then the sequence uk is uniformly bounded in the norm of this space. Therefore,
there exists a subsequence of this sequence which converges to some function
u0 ∈ E∞ locally in L2. Moreover, Lu0 = f . From Theorem 2.10 (Chapter 4), it
follows that this convergence is strong. The theorem is proved. �

Remark 1.5. To prove the existence of a usual solution, we do not need to assume
that the sequence solution belongs to the space E∞. If u = (u1, u2, . . . ), uk =
vk +wk, where wk belongs to the kernel of the operator and vk to its supplement,
then Lvk → f . Hence the sequence vk is uniformly bounded and converges to some
v0 ∈ E∞, Lv0 = f .

If Condition NS is not satisfied, that is one of the limiting problems has a
nonzero bounded solution in the corresponding space, then there exist a sequence
solution u ∈ E∞ of the equation Lu = 0 such that it does not have a strongly
convergent sub-solution. Such a sequence can be constructed as in the proof of
Theorem 2.15 (Chapter 4). Thus, any solution in the sense of sequence corresponds
to a usual solution if and only if Condition NS is satisfied.

The notion of solutions in the sense of sequence is related to approximation
of solutions. If we consider an operator equation Lu = f , then we conventionally
understand approximation of its solution u by a sequence of functions uk if this
sequence converges to u in some norm. We can also understand it in a different
way. Namely, if Luk converges to f . The discussion above shows that they may
not be equivalent.

1.1.2. Exponential dichotomy. We proved in Chapter 4 that all bounded solutions
of the equation Lu = 0 exponentially decay at infinity if the operator L is normally
solvable with a finite-dimensional kernel. In the previous chapter, we discussed the
converse assertion for one-dimensional problems: exponential decay or growth of
solutions at infinity ensure the Fredholm property. We will introduce the notion
of exponential dichotomy for solutions in the sense of sequence and will discuss its
relation with normal solvability.
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We recall the definition of the norm in the space E∞ for an unbounded
domain Ω:

‖u‖E∞(Ω) = sup
i

‖φiu‖E(Ω),

where φi is a partition of unity. We will suppose that supports of the functions φi
are unit balls Bi with their centers at some points xi.

Definition 1.6. A solution u = (u1, u2, . . . ) of the equation Lu = 0 in the sense
of sequence, where the operator L acts from E∞(Ω) into F∞(Ω), satisfies the
condition of exponential dichotomy in some sequence of domains Ωk ⊂ Ω if there
exist positive constants M and ε such that one of the following estimates

‖ukφi‖E ≤Meε(|xj|−|xi|)‖ukφj‖E , ∀xi, xj ∈ Ωk, |xi| > |xj |, (1.3)

‖ukφj‖E ≤Meε(|xj|−|xi|)‖ukφi‖E, ∀xi, xj ∈ Ωk, |xi| > |xj | (1.4)

holds for all k. Here M and ε are independent of the solution and of k.

This condition provides an exponential decay or growth of sequence solutions
with respect to local norms. It generalizes the conventional notion of exponential
dichotomy for solutions of ordinary differential systems of equations. We note
that the exponential estimate in (1.3) and (1.4) depends on the difference of the
modulus xi and xj and not on the distance between these points. This definition
is more convenient for what follows. Another definition is also possible.

We next define sectors Q(ξ, δ) in Rn. Let S be the unit sphere, S = {x ∈
Rn, |x| = 1}. We put Q(ξ, δ) = {x ∈ Rn, x = ζt}, for all t > 0 and ζ ∈ S,
|ζ − ξ| < δ. Let

Ω(ξ, δ, ρ) = Ω ∩Q(ξ, δ) ∩ {x ∈ R
n, |x| > ρ}.

Definition 1.7. The operator L : E∞(Ω) → F∞(Ω) satisfies the condition of expo-
nential dichotomy at infinity if, for any solution u = (u1, u2, . . . ) of the equation
Lu = 0 in the sense of sequence, there exist δ and ρ such that, for any ξ and any
sequence of domains Ωk ⊂ Ω(ξ, δ, ρ), the sequence solution u satisfies the condition
of exponential dichotomy in these domains.

Theorem 1.8. If the operator L : E∞(Ω) → F∞(Ω) satisfies the condition of expo-
nential dichotomy at infinity, then it is normally solvable with a finite-dimensional
kernel.

Proof. We will prove that the operator L satisfies Condition NS. Then the assertion
of the theorem will follow from Theorem 2.13 of Chapter 4. Suppose that this is
not the case and there exists a limiting operator L̂ : E∞(Ω̂) → F∞(Ω̂) such that
the equation L̂u = 0 has a nonzero solution û ∈ E∞(Ω̂). We then construct a
solution of the equation Lu = 0 in the sense of sequence, which does not satisfy
the condition of exponential dichotomy at infinity.
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Similar to Theorem 2.15 of Chapter 4, we can construct a sequence uk(x) =
ψk(x − hk)û(x − hk) such that Luk → 0 as k → ∞. Here hk is a sequence of
constant vectors for which |hk| → ∞ as k → ∞, ψx(x) is a C∞ function equal 1
for |x| ≤ rk and 0 for |x| ≥ Rk, where rk, Rk → ∞ as k → ∞.

We will verify that the sequence solution u = (u1, u2, . . . ) does not satisfy
the condition of exponential dichotomy at infinity. In order to do this, for any δ
and ρ fixed, we need to construct a sequence of domains Ωk ⊂ Ω(ξ, δ, ρ) such that
the sequence uk does not satisfy either (1.3) or (1.4).

First of all, we choose the value of ξ. Let us take projections ξk of the points
hk at the unit sphere S, and choose a convergent subsequence, for which we keep
the same notation, ξk → ξ0 as k → ∞. Consider the domain Ω(ξ0, δ0, ρ0) for some
δ0 and ρ0 and put Ωk = Ω ∩B(hk, r̂k), where B(hk, r̂k) is the ball with center at
hk and radius r̂k. The values r̂k can be chosen in such a way that r̂k < rk, r̂k → ∞
as k → ∞ and Ωk ⊂ Ω(ξ0, δ0, ρ0).

Suppose that the sequence uk satisfies inequality (1.3). Put xki = hk. We can
choose xkj in such a way that |xkj | = |xki | − r̂k and xkj ∈ Ωk. Then

‖ukφik‖E ≤Me−r̂k‖ukφjk‖E ≤MCe−r̂k‖û‖E∞(Ω).

Since uk is obtained by means of a shift of the function û, then the last inequality
and the choice of xki imply

‖ûφ0‖E ≤MCe−r̂k‖û‖E∞(Ω),

where φ0 is the function from the partition of unity in the definition of the E∞-
norm such that its support is the unit ball with center at the origin. Since r̂k →
∞, then ‖ûφ0‖E = 0. Similarly, it can be shown that ‖ûφi‖E = 0 for any i.
Therefore, û = 0. This contradicts the assumption that this is a nonzero solution.
The proof remains similar if the sequence uk satisfies inequality (1.4). The theorem
is proved. �

The condition of exponential dichotomy provides an exponential decay or
growth of solutions at infinity. In this case, limiting problems do not have nonzero
bounded solutions and the operator is normally solvable. Suppose that exponential
dichotomy does not hold and there is a limiting problem which has a nonzero
bounded solution. This solution can be isolated in the sense that all other solutions
decay or grow at infinity with the exponents separated from zero. Then the limiting
problem will not have nonzero bounded solutions in a weighted space, and the
operator will be normally solvable in this space. This is related to the structure of
non-Fredholm operators discussed in the next section and to solvability conditions
discussed in Section 1.2.

1.1.3. Structure of non-Fredholm operators. Let us consider general elliptic oper-
ators L : E∞(Ω) → F∞(Ω), where Ω is an unbounded domain. Denote by L(L)
the set of its limiting operators acting on functions defined in the corresponding
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limiting domains. We recall that if Condition NS is satisfied, that is if all limiting
problems L̂u = 0 have only zero solutions in the spaces E∞(Ω̂), then the operator
L is normally solvable with a finite-dimensional kernel. If, moreover, Condition
NS∗ is satisfied, then it satisfies the Fredholm property.

If one of the limiting problems has a nonzero solution, then the Fredholm
property is not satisfied. In other words, the origin belongs to the essential spec-
trum of the operator L. In some cases, a small exponential weight can move the
spectrum and the Fredholm property can be satisfied in the weighted space.

Denote by S the operator of multiplication by the function

ωµ(x) = exp(µ
√

1 + |x|2),

and consider the operator Lµ = SµLS
−1
µ acting from E∞(Ω) into F∞(Ω). Then

Lµ = L + µK(µ), where K(µ) is a bounded operator polynomial with respect to
µ. We consider here real exponents µ though they can also be complex.

Suppose for simplicity that the set L(L) contains a finite number of limiting
operators. We split this set into two subsets, L+(L) and L−(L). The operators
from the subset L+(L) satisfy Conditions NS and NS∗, and the operators from
the subset L−(L) do not satisfy at least one of them. Then for all µ sufficiently
small the limiting operators L̂µ = L̂ + µK̂(µ), where L̂ ∈ L+(L) will also satisfy
Conditions NS and NS∗ (see the proposition below). If the operators L̂µ = L̂ +
µK̂(µ) with L̂ ∈ L−(L) also satisfy these conditions, then the operator Lµ is
Fredholm.

We note that the set of limiting operators L(L̂) of a limiting operator L̂
belong to the set of limiting operators L(L) of the operator L.

Proposition 1.9. Suppose that the set L(L) is finite, and for any L̂ ∈ L+(L) the
following inclusion takes place:

L(L̂) ⊂ L+(L), (1.5)

that is for each limiting operator L̂ satisfying Conditions NS and NS∗, all its limit-
ing operators also satisfy them. Then for all µ sufficiently small, the corresponding
operators L̂µ satisfy these conditions, L̂µ ∈ L+(Lµ).

Proof. By virtue of (1.5), each operator L̂ ∈ L+(L) satisfies the Fredholm prop-
erty. Moreover, the operator L̂ is invertible. Indeed, its kernel is empty by virtue
of Condition NS. The equation L̂u = f is solvable if and only if φ(f) = 0 for any
solution φ ∈ (F∞(Ω))∗ of the equation L∗φ = 0. If there is a nonzero solution of
this equation, then it belongs to the space (F ∗(Ω))∞ (it follows from Lemma 2.8
of Chapter 5, Lemma 10.5 of Chapter 2 and from the inclusion (F ∗)1 ⊂ (F ∗)∞).
This contradicts Condition NS∗. Hence, the homogeneous adjoint equation has
only the zero solution and the equation L̂u = f is solvable for any right-hand side.
Thus, the operator L̂ is invertible.
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Therefore, the operator L̂µ = L̂ + µK̂(µ) is invertible for all µ sufficiently
small. Since there is a finite number of limiting operators, then we can choose
µ0 such that the invertibility of all operators occurs for 0 < µ < µ0. Hence the
operators L̂µ satisfy Condition NS for all 0 < µ < µ0.

We next verify that they satisfy Condition NS∗. Since the operator L̂ :
E∞(Ω̂) → F∞(Ω̂) satisfies the Fredholm property, then the same operator consid-
ered in other spaces, namely, L̂ : E1(Ω̂) → F1(Ω̂) also satisfies it (see the end of
Section 6, Chapter 5). Moreover, this operator is invertible. Indeed, its kernel is
empty since E1 ⊂ E∞. Its image coincides with F1 because (F1(Ω̂))∗ = (F ∗(Ω̂))∞
(Section 2, Chapter 5), and the equation L̂∗φ = 0 does not have nonzero solutions
in (F ∗(Ω̂))∞ according to Condition NS∗.

From the invertibility of the operator L̂ : E1(Ω̂) → F1(Ω̂) it follows that
the operator L̂µ : E1(Ω̂) → F1(Ω̂) is also invertible for all µ sufficiently small.
Hence, the equation L̂∗

µφ = 0 does not have nonzero solutions in (F ∗(Ω̂))∞. The
proposition is proved. �

In the proof of the proposition we do not use the particular structure of the
operator Lµ related to the introduction of weighted spaces. It remains valid for
any operator sufficiently close to the operator L. The assertion of the proposition
gives, in a certain sense, stability of the structure of non-Fredholm operators: the
limiting operators satisfying Conditions NS and NS∗ preserve these properties
under small perturbations of the operator. In particular, if all limiting operators
satisfy Conditions NS and NS∗, then we obtain the well-known result that the
Fredholm property is preserved under small perturbations of the operator.

1.2 Solvability conditions

In this section we discuss solvability conditions for weakly non-Fredholm operators.
We consider the operator Lµ = SµLS

−1
µ , where Sµ is the operator of multiplication

by the weight function ωµ(x) = exp(µ
√

1 + |x|2).

Definition 1.10. An operator L is called a weakly non-Fredholm operator if it does
not satisfy at least one of the Conditions NS and NS∗, and if these conditions are
satisfied for the operator Lµ for all positive µ sufficiently small.

For simplicity of presentation we suppose that µ is positive. This definition
implies that the operator L does not satisfy the Fredholm property while the
operator Lµ satisfies it for all positive µ sufficiently small. To verify the conditions
of the definition, we can use exponential dichotomy (Section 1.1.2) or consider
directly limiting problems. Everywhere below in this section we will assume that
the operator L is weakly non-Fredholm. Consider the equation

Lu = f, (1.6)
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where L : Eq(Ω) → Fq(Ω), 1 ≤ q ≤ ∞. We also consider the adjoint operator
L∗ : (Fq(Ω))∗ → (Eq(Ω))∗ and the homogeneous adjoint equation

L∗v = 0. (1.7)

Let vi, i = 1, . . . , k be its linearly independent solutions. Applying the functionals
vi to both sides of equality (1.6), we obtain necessary solvability conditions in
their conventional form. These solvability conditions remain valid for solutions in
the sense of sequence.

Proposition 1.11. If there exists a solution u = (u1, u2, . . . ) of equation (1.6) in
the sense of sequence, then

(f, v) = 0 (1.8)

for any solution v ∈ (Fq(Ω))∗ of equation (1.7).

Proof. By definition of the solution in the sense of sequence, Lui = fi, where
ui ∈ Eq(Ω), fi ∈ Fq(Ω) and fi → f in the norm of the space Fq(Ω). We have

(fi, v) = (Lui, v) = (ui, L∗v) = 0.

Equality (1.8) follows from the convergence fi → f . The proposition is proved. �

In the case of Fredholm operators, solutions of equation (1.7) exponentially
decay at infinity. Consequently, they belong to the spaces (Fq(Ω))∗ with any q,
1 ≤ q ≤ ∞. In the case of non-Fredholm operators, this may not be the case. If
there is a solution of equation (1.7), which belongs to the space F ∗∞(Ω) but not to
the dual space (Fq(Ω))∗, then the left-hand side of equality (1.8) may not be well
defined.

Set
w = Sµu, g = Sµf.

We assume that Sµ0f ∈ F∞(Ω) for some µ0 > 0. If µ < µ0, then g ∈ Fq(Ω) for all
q, 1 ≤ q ≤ ∞. Equation (1.6) can be written as

Lµw = g. (1.9)

Since the operator Lµ satisfies Conditions NS and NS∗, then it satisfies the Fred-
holm property. Hence, equation (1.9) is solvable if and only if

(g, z) = 0 (1.10)

for all solutions z of the homogeneous adjoint equation

L∗
µz = 0, z ∈ (Fq(Ω))∗. (1.11)

The last equation can be also written in the form

S−1
µ L∗Sµz = 0.
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If we compare it with equation (1.7), we can conclude that v = Sµz. Therefore,
from (1.10),

0 = (g, z) = (Sµf, S−1
µ v) = (f, v).

Thus, condition (1.8) is sufficient for solvability of equation (1.9) in the space
Eq(Ω). It can be easily verified that u = S−1

µ w is a solution of equation (1.6) (see
the proposition below).

Definition 1.12. A function f is said to be exponentially decaying at infinity if there
exists a positive µ such that Sµf ∈ F∞(Ω). A functional v is not exponentially
growing at infinity if S−µv ∈ F ∗∞(Ω) for any positive µ.

In what follows, we consider functionals from the space F ∗
∞(Ω) and function-

als that are not exponentially growing at infinity. The difference between them
is that there can exist functionals growing at infinity with the rate of growth
weaker than exponential. A priori, we cannot ignore them because, multiplied by
a decaying exponential weight function, they belong to the function spaces under
consideration and determine the solvability conditions. This is related to exponen-
tial dichotomy.

Proposition 1.13. Let f be exponentially decaying at infinity. Equation (1.6) is
solvable with a solution u exponentially decaying at infinity if and only if condition
(1.8) is satisfied for any solution v of equation (1.7), which is not exponentially
growing at infinity.

Proof. Let Sµ0f ∈ F∞(Ω) for some µ0 > 0. Then Sµf ∈ F1(Ω) for any µ such that
0 < µ < µ0. Since S−µv ∈ F ∗∞(Ω) = (F1(Ω))∗ (Theorem 10.2, Chapter 2), then
(f, v) = (Sµf, S−µv) is well defined.

On the other hand, if u is exponentially decaying at infinity, then taking
into account that L is a differential operator, direct calculations show that Lu
is also exponentially decaying at infinity. Then there exists µ′ > 0 such that
Sµ′Lu ∈ E1(Ω), S−µ′v ∈ F ∗

∞(Ω) = (F1(Ω))∗. Hence

(Lu, v) = (Sµ′Lu, S−µ′v) = (u, (Sµ′L)∗S−µ′v) = (u, L∗v) = 0.

Thus, we can apply the functional v to both sides of the equality (1.6). We obtain
(f, v) = 0. Necessity is proved.

To prove sufficiency, we show first of all that if v is not exponentially growing
at infinity, then S−µv ∈ (Fq(Ω))∗ for any µ > 0 and any q, 1 ≤ q ≤ ∞. Let
0 < µ1 < µ. By virtue of Definition 1.12, S−µ1v ∈ F ∗

∞(Ω) (= (F1(Ω))∗). Let
g ∈ Fq(Ω). Then

(S−µv, g) = (S−µ1v, S−νg),

where ν = µ − µ1 > 0. Since S−νg ∈ F1(Ω), then the right-hand side of the last
equality is well defined. Therefore, S−µv is a linear bounded functional over Fq(Ω).

Thus, any solution v of equation (1.7), which is not exponentially growing
at infinity, determines a solution z = S−µv ∈ (Fq(Ω))∗ of equation (1.11). Let us
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now show that the number of linearly independent solutions vi, i = 1, . . . , N of
equation (1.7), which are not exponentially growing at infinity, and of solutions
zi, i = 1, . . . ,M of equation (1.11) is the same. It remains to verify that N ≥ M .
Suppose that this is not true and N < M . It follows from Theorem 4.5 (Chapter 5)
that M is independent of µ. Consider the functionals vi = Sµzi, i = 1, . . . ,M for
some given µ. Since they are linearly independent and M > N , then some of them
do not satisfy conditions of Definition 1.12 being exponentially growing at infinity.
Let it be, for example, v1. Then there exists µ2 > 0 such that S−µv1 remains ex-
ponentially growing at infinity for 0 < µ < µ2 and, consequently, does not belong
to (Fq(Ω))∗. Hence, the linearly independent solutions of equation (1.11) for such
values of µ become w1, z2, . . . , zM , that is z1 is replaced by some other solution
w1. Obviously, w1 is linearly independent with respect to z2, . . . , zM and with re-
spect to S−µv1. On the other hand, each of the functionals S−µv1, w1, z2, . . . , zM
determines a solution of equation (1.11) for µ > µ2. There are M + 1 of them and
they are linearly independent. This contradiction proves the one-to-one correspon-
dence between solutions of equation (1.7), which are not growing at infinity, and
of equation (1.11).

Let f be exponentially decaying at infinity. According to the definition, there
exists µ0 > 0 such that Sµ0f ∈ F∞(Ω). Write g = Sµf for 0 < µ < µ0. Then
g ∈ Fq(Ω) for any q, 1 ≤ q ≤ ∞. Since the operator Lµ satisfies the Fredholm
property and conditions (1.10) are satisfied for all solutions of equation (1.11),
then equation (1.9) has a solution w ∈ Eq(Ω). Hence, u = S−µw is a solution of
equation (1.6). It decays exponentially at infinity. The proposition is proved. �

Theorem 1.14. Let L be a weakly non-Fredholm operator. Suppose that all solutions
v of equation (1.7), which are not exponentially growing at infinity, belong to the
dual space (Fq(Ω))∗. Then equation (1.6) with f ∈ Fq(Ω), 1 ≤ q <∞ is solvable in
Eq(Ω) in the sense of sequence if and only if equality (1.8) is satisfied for all such v.

Proof. Necessity follows from Proposition 1.11. To prove sufficiency, put fn =
S−µnf , where µn > 0, µn → 0 as n→ ∞, and consider the equation

Lu = fn. (1.12)

The functions fn are exponentially decaying at infinity and fn → f in the norm
of the space Fq(Ω) as n→ ∞. Here we use the assumption that q <∞. Therefore,
(fn, v) → 0.

If (fn, v) = 0, then equation (1.12) is solvable by virtue of the previous
proposition. If this equality is not satisfied, then we will modify the right-hand
side. Assume, for simplicity, that there is only one linearly independent solution v
of equation (1.7). Let ψ ∈ Fq(Ω) be a function with a bounded support and such
that (ψ, v) = 1. Put

f̃n = fn − (fn, v)ψ.

Then (f̃n, v) = 0, f̃n is exponentially decaying at infinity and f̃n → f since
(fn, v) → 0. Denote by un the solution of the equation Lu = f̃n. Then u =
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(u1, u2, . . . ) is a solution of equation (1.6) in the sense of sequence. We do not
affirm here that the norms of the functions ui are uniformly bounded. The theorem
is proved. �

If f ∈ Fq(Ω) and v �∈ (Fq(Ω))∗, then, generally speaking, the expression (f, v)
is not defined. However, it may be possible to approximate f by a sequence fn in
such a way that all (fn, v) are defined. Instead of solvability conditions (1.8), we
will formulate solvability condition in the sense of sequence.

Proposition 1.15. Suppose that there is a solution v of equation (1.7), which is
not exponentially growing at infinity and which does not belong to the dual space
(Fq(Ω))∗. If equation (1.6) with f ∈ Fq(Ω), 1 ≤ q <∞ is solvable in Eq(Ω), then
there exists a sequence fn of functions exponentially decaying at infinity such that
fn → f in Fq(Ω) and (fn, v) = 0.

Proof. Let u ∈ Eq(Ω) be a solution of equation (1.6). Put un = S−µnu, where µn
is a sequence of positive numbers converging to 0. Then un → u in the norm of
the space Eq(Ω). Set fn = Lun. Then

fn − f = L(un − u) → 0

in the norm of the space Fq(Ω) since L is a bounded operator.
Taking into account that L is a differential operator, we can easily verify that

L(S−µu) = S−µTu, where T : Eq(Ω) → Fq(Ω) is a bounded operator. Hence fn is
exponentially decaying at infinity and (fn, v) is well defined. Applying v to both
sides of the equality Lun = fn, we obtain (fn, v) = 0 (cf. the proof of necessity in
Proposition 1.13). The proposition is proved. �

Theorem 1.16. Let L be a weakly non-Fredholm operator. Then equation (1.6) with
f ∈ Fq(Ω), 1 ≤ q <∞ is solvable in Eq(Ω) in the sense of sequence if and only if
there exists a sequence fn of functions exponentially decaying at infinity such that
fn → f in Fq(Ω) and (fn, v) = 0 for all solutions v of equation (1.7) which are
not exponentially growing at infinity.

Proof. Suppose that there exists a solution of equation (1.6) in the sense of se-
quence, that is a sequence un ∈ Eq(Ω), 1 ≤ q < ∞ such that the sequence
fn = Lun converges to f in the norm of the space Fq(Ω). The functions fn are
not necessarily exponentially decaying at infinity. We will modify them in order
to satisfy this and other conditions. We put f̃n = L(S−µnun), where µn > 0 is
sufficiently small. As in the proof of the previous proposition, we conclude that
f̃n ∈ Fq(Ω), f̃n decay exponentially at infinity and f̃n → f in the norm of the
space Fq(Ω) under the proper choice of the sequence µn converging to zero. Fi-
nally, since the equation Lu = f̃n has a solution S−µnun exponentially decaying
at infinity, then we can apply the functional v to obtain (f̃n, v) = 0.

If there exists a sequence fn of functions exponentially decaying at infinity
such that fn → f in Fq(Ω) and (fn, v) = 0, then the equation Lu = fn is solvable
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by virtue of Proposition 1.13. Its solutions u1, u2, . . . form a solution in the sense
of sequence. The theorem is proved. �

Remark 1.17. We do not assume in this theorem that solutions v of equation (1.7),
which are not exponentially growing at infinity, belong to the space (Fq(Ω))∗. The
assumption that L is a weakly non-Fredholm operator, that is the operator Lµ
satisfies the Fredholm property, ensures that the number of linearly independent
solutions of equation (1.7), which are not growing at infinity, is finite.

We considered above the right-hand side f of equation (1.6) either assuming
that it was exponentially decaying at infinity or that it could be approximated
by functions exponentially decaying at infinity in the norm Fq(Ω). This assump-
tion imposes a restriction on the function spaces: q < ∞. Functions from the
space F∞(Ω) may not be approximated by exponentially decaying functions in
the F∞(Ω)-norm.

In the remaining part of this section, we discuss solvability conditions for
the operator L acting from E∞(Ω) into F∞(Ω). As before, we will approximate
functions f from this space by sequences fn of exponentially decaying at infinity
functions. However, the convergence fn → f in this case is local in the F∞(Ω)-
norm. This means that ‖(fn − f)φ‖F∞(Ω) → 0 for any C∞ function φ with a
bounded support.

Let us consider a partition of unity φi, i = 1, 2, . . . such that
∑∞
i=1 φ1 ≡ 1,

φi are C∞ functions, 0 ≤ φ(x) ≤ 1 for all x ∈ Rn, ‖φi‖Ck ≤ Mk for all i and any
k, and

φi(x) ≤Me−σ
√

1+|x−xi|2 , x ∈ R
n, i = 1, 2, . . .

for some positive constants M , σ and some xi. We will call such partition of unity
exponential. A particular case of an exponential partition of unity is the case
where the functions φi have bounded supports. We will suppose that the distance
between any two points xi is greater than some given positive number independent
of i. Then

sup
x∈Rn

∞∑
i=1

e−σ
√

1+|x−xi|2 <∞. (1.13)

Proposition 1.18. Suppose that there exists a solution u ∈ E∞(Ω) of equation
(1.6) with f ∈ F∞(Ω). Then there exists a sequence fn ∈ F∞(Ω) of exponentially
decaying at infinity functions such that fn → f locally in F∞(Ω) and (fn, v) = 0
for any solution v of equation (1.7), which is not exponentially growing at infinity.

Proof. Consider an exponential partition of unity φi. Set

un =
n∑
i=1

φiu, fn = Lun.

The functions un are exponentially decaying at infinity, and un → u locally in
E∞(Ω). Therefore, fn are also exponentially decaying at infinity and fn → f
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locally in F∞(Ω) since L is a bounded local operator. Applying v to both sides of
the equality Lun = fn we conclude that (fn, v) = 0. The proposition is proved.

�

This proposition gives a necessary solvability condition. An important ques-
tion is whether it is also sufficient. By virtue of Proposition 1.13, we can define
the sequence un of solutions of the equations Lu = fn. However, we do not know
whether this sequence is convergent. We discuss this question in the remaining
part of this section. Denote gi = φif , where φi is a function from the exponential
partition of unity, and consider the equation Lu = gi assuming that (gi, v) = 0 for
all solutions v of equation (1.7), which are not exponentially growing at infinity.
According to Proposition 1.13, this equation has a solution. Let us denote it by
wi. We know that it decays exponentially at infinity. This allows us to expect that
the sum u =

∑∞
i=1 wi determines a function from E∞(Ω). In order to prove this

assertion, we need some auxiliary results.
Denote by Sµ(h) the operator of multiplication by the function ω(x) =

eµ
√

1+|x−h|2 and
Lµ(h) = Sµ(h)LS−1

µ (h).

Thus, we consider a family of operators depending on the parameter h ∈ Ω. We will
define limiting operators with respect to both, the independent variable x and the
parameter h. We recall that the coefficients aαik(x), b

β
jk(x) of the elliptic operator L

belong to some Hölder spaces (Section 2.2.2, Chapter 4). The coefficients aαik,h(x),
bβjk,h(x) of the operators Lµ(h) belong to the same spaces with an estimate of the
norm independent of h.

Definition 1.19. Let hm, xm ∈ Ω and |hm| + |xm| → ∞. Consider the shifted
coefficients

ãαik,m(x) = aαik,hm
(x+ xm), b̃βjk,m(x) = bβjk,hm

(x+ xm)

and a subsequence of these coefficients locally convergent to some limiting func-
tions âαik(x), b̂

β
jk(x). Limiting operator L̂µ is an operator with the limiting coeffi-

cients in the limiting domain Ω̂ (Section 1, Chapter 4).

We note that for any fixed h, limiting operators of the operator Lµ(h) are
the same as for the operator Lµ = Lµ(0). Therefore, if the operator Lµ satisfies
Conditions NS and NS∗, then this is also true for the operators Lµ(h).

Lemma 1.20. Suppose that the equations

Lµ(h)u = 0, u ∈ E∞(Ω)

have only zero solutions for all finite h, and all limiting equations (in the sense of
Definition 1.19)

L̂µu = 0, u ∈ E∞(Ω̂)
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also have only zero solutions. If a family of functions gh, h ∈ R satisfies the
conditions

‖gh‖F∞(Ω) ≤M, ∀h (1.14)

and
(gh, zh) = 0 (1.15)

for all solutions zh of the equation

L∗
µ(h)z = 0, z ∈ (F∞(Ω))∗, (1.16)

then the equation
Lµ(h)w = gh, w ∈ E∞(Ω) (1.17)

has a solution wh and the norm ‖wh‖E∞(Ω) is independent of h.

Proof. Since the operator Lµ(h) satisfies Conditions NS and NS∗ for any h fixed,
then it is a Fredholm operator. Equation (1.17) is solvable due to solvability con-
ditions (1.15). Its solution is unique by virtue of the assumption that the homo-
geneous equation has only the zero solution.

We need to obtain an estimate of the solutions wh independent of h. Suppose
that the uniform estimate does not hold and ‖whi‖E∞(Ω) → ∞ for some sequence
hi. Put

w̃i =
whi

‖whi‖E∞(Ω)
, g̃i =

ghi

‖whi‖F∞(Ω)
.

Then ‖w̃i‖E∞(Ω) = 1, ‖g̃i‖F∞(Ω) → 0 and Lµ(hi)w̃i = g̃i. By our definition of the
norm (Chapter 2),

‖w̃i‖E∞(Ω) = sup
j

‖φjw̃i‖E,

where φj is a partition of unity. Therefore, for some j which may depend on
i, ‖φjw̃i‖E ≥ 1/2. Without loss of generality, we can assume that the supports
of the functions φj are unit balls Bj with centers at some points xj . We shift
the domain Ω and the coefficients of the operator in such a way that the point
xj is translated to the origin. Denote the corresponding domain by Ωi and the
corresponding operator by Li. Then

Liŵi = ĝi, (1.18)

where ŵi(x) = w̃i(x + xj(i)), ĝi(x) = g̃i(x+ xj(i)). It can be easily seen that

‖φ0ŵi‖E ≥ 1
2
, ‖ĝi‖F∞(Ωi) → 0. (1.19)

Here φ0 is a function of the partition of unity with its support at the ball with
center at the origin. We consider the coefficients of the operators Li and choose
their locally convergent subsequences. Denote the operator with the limiting co-
efficients by L̂ and the corresponding limiting domain by Ω̂. The sequence ŵi
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contains a subsequence locally convergent to some limiting function w0 ∈ E∞(Ω̂),
the convergence being in a weaker norm (Theorem 2.7, Chapter 4). It satisfies
the equation L̂w = 0 and ‖φ0w

0‖E ≥ 1/2 by virtue of (1.19). If |hi| + |xj(i)| are
uniformly bounded, then we obtain a nonzero solution of the equation Lµ(h)u = 0
for some h. If this sequence tends to infinity, then we obtain a nonzero solution of
the equation L̂µu = 0, where L̂µ is a limiting operator in the sense of Definition
1.19. In both cases we obtain a contradiction with the assumptions of the lemma.
The lemma is proved. �

Proposition 1.21. Suppose that L is a weakly non-Fredholm operator, and for all
positive µ sufficiently small, the operator Lµ(h) satisfies the assumptions of Lemma
1.20. Let φi be an exponential partition of unity, and for some f ∈ F∞(Ω), the
functions fi = φif satisfy the conditions

(fi, v) = 0, i = 1, 2, . . . (1.20)

for all solutions v of equation (1.7), which are not exponentially growing at infinity.
Then there exists a solution u ∈ E∞(Ω) of equation (1.6).

Proof. Consider the equations

Lu = fi, i = 1, 2, . . . . (1.21)

Set gi = Sµ(xi)fi, where 0 < µ < σ, σ is the exponent in the definition of
exponential partition of unity. Then ‖gi‖E∞(Ω) ≤M for some M and for any i.

Consider the equations

Lµ(xi)w = gi, i = 1, 2, . . . . (1.22)

The operators Lµ(xi) satisfy the Fredholm property since L is a weakly non-
Fredholm operator: the limiting operators do not depend on xi and satisfy Con-
ditions NS and NS∗. Therefore, these equations are solvable if and only if

(gi, z) = 0 (1.23)

for all solutions z of the equations

L∗
µ(xi)z = 0, z ∈ (F∞(Ω))∗.

All solutions of these equations have the form z = S−µ(xi)v, where v is a solution
of equation (1.7), which is not exponentially growing at infinity. Therefore,

(gi, z) = (Sµ(xi)fi, S−µ(xi)v) = (fi, v),

that is solvability conditions (1.23) have the form (1.20). The right-hand side of
the last equality is well defined since fi is exponentially decaying at infinity.
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Thus, there exists a solution wi of equation (1.22). By virtue of Lemma 1.20,
‖wi‖E∞(Ω) ≤ M for all i and for some M independent of i. The functions ui =
S−µ(xi)wi are solutions of equations (1.21). If the series u =

∑∞
i=1 ui converges,

then u is a solution of equation (1.6). To prove the convergence, put un =
∑n

i=1 ui.
Let ψj be a function from the partition of unity in the definition of the E∞(Ω)-
norm. Without loss of generality, we can assume that their supports are unit balls
Bj with the centers at some points xj . Then

‖un‖E∞(Ω) = sup
j

‖ψjun‖E ,

‖ψjun‖E ≤
n∑
i=1

‖ψjui‖E =
n∑
i=1

‖ψjS−µ(xi)wi‖E

≤
n∑
i=1

Ke−µ|xi−xj |‖ψjwi‖E ≤ KM

∞∑
i=1

e−µ|xi−xj|.

By virtue of (1.13), the right-hand side of the last inequality is bounded inde-
pendently of j. Hence, ‖ψjun − ψju‖E → 0 and u ∈ E∞(Ω). The proposition is
proved. �

We summarize solvability conditions obtained above in the following theorem.

Theorem 1.22. Let L be a weakly non-Fredholm operator. Then:

• If f ∈ F∞(Ω) is exponentially decaying at infinity, then equation (1.6) is
solvable with solutions u ∈ E∞(Ω) exponentially decaying at infinity if and
only if conditions (1.8) are satisfied for all solutions v of equation (1.7),
which are not exponentially growing at infinity,

• If f ∈ Fq(Ω), 1 ≤ q < ∞, then equation (1.6) is solvable in Eq(Ω) in
the sense of sequence if and only if there exists a sequence fn of functions
exponentially decaying at infinity such that fn → f in Fq(Ω) and (fn, v) = 0
for all solutions v of equation (1.7) which are not exponentially growing at
infinity,

• Let f ∈ F∞(Ω). If there exists a solution u ∈ E∞(Ω) of equation (1.6),
then there exists a sequence fn ∈ F∞(Ω) of exponentially decaying at infinity
functions such that fn → f locally in F∞(Ω) and (fn, v) = 0 for any solution
v of equation (1.7), which is not exponentially growing at infinity.
If assumptions of Lemma 1.20 are satisfied and (fi, v) = 0, i = 1, 2, . . . ,
where fi = φif , φi is an exponential partition of unity, and v are solutions
of equation (1.7), which are not exponentially growing at infinity, then there
exists a solution u ∈ E∞(Ω) of equation (1.6).
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1.3 Examples of weakly non-Fredholm operators

1.3.1. One-dimensional equations. Consider the equation

u′′ + cu = f, −∞ < x <∞, (1.24)

where c is a positive constant. Let us verify that

Lu = u′′ + cu

is a weakly non-Fredholm operator (Definition 1.10). We will consider it as act-
ing from Eq(R) into Fq(R), where E = H2 and F = L2. It is also possible to
consider Hölder spaces. The operator L coincides with its limiting operators. The
corresponding limiting equations have two linearly independent bounded solutions,
u1(x) = sin(

√
cx), u2(x) = cos(

√
cx). Therefore, it does not satisfy the Fredholm

property.
Consider now weighted spaces. Set

v = ueµ
√

1+x2
, g = feµ

√
1+x2

,

where µ > 0. Then v satisfies the equation

v′′ − 2µ
x√

1 + x2
v′ +

(
µ2 x2

1 + x2
− µ

1
(1 + x2)3/2

+ c

)
v = g. (1.25)

The operator Lµ = SµLS
−1
µ , where Sµ is the operator of multiplication by the

weight function ωµ(x) = eµ
√

1+x2 , is given by the left-hand side of the previous
equation,

Lµv = v′′ − 2µ
x√

1 + x2
v′ +

(
µ2 x2

1 + x2
− µ

1
(1 + x2)3/2

+ c

)
v.

Its limiting operators are

L±
µ v = v′′ ∓ 2µv′ + (µ2 + c)v.

The limiting problems L±
µ v = 0 do not have nonzero bounded solutions for µ �= 0.

Therefore the operator Lµ is normally solvable with a finite-dimensional kernel.
From the results of Chapter 9 it follows that it satisfies the Fredholm property
and its index equals −2. Indeed, ind(Lµ) = n+ + n− − 2, where n± is the number
of bounded solutions of the equation L±

µ u = 0 at ±∞. It can be easily verified
that n+ = n− = 0.

The dimension of its kernel is zero. Indeed, if there exists a bounded solution
v0 of the equation Lµv = 0, then there is the exponentially decaying solution
u0 = v0 exp(−µ√1 + x2) of the equation u′′ + cu = 0, which is not possible.
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Thus, the codimension of the image equals 2, and there are two solvability
conditions. In order to formulate them, consider the formally adjoint operator
L∗
µ : Eq(R) → Fq(R),

L∗
µv = v′′ + 2µ

(
x√

1 + x2
v

)′
+
(
µ2 x2

1 + x2
− µ

1
(1 + x2)3/2

+ c

)
v.

It can be written in a form similar to the operator Lµ where µ is replaced by −µ:

L∗
µv = v′′ + 2µ

x√
1 + x2

v′ +
(
µ2 x2

1 + x2
+ µ

1
(1 + x2)3/2

+ c

)
v.

The equation
L∗
µv = 0

has two linearly independent solutions

v1(x) = sin (
√
cx) e−µ

√
1+x2

, v2(x) = cos (
√
cx) e−µ

√
1+x2

.

Therefore, equation (1.25) is solvable if and only if
∫ ∞

−∞
g(x)vi(x)dx = 0, i = 1, 2 (1.26)

or ∫ ∞

−∞
f(x) sin(

√
cx)dx =

∫ ∞

−∞
f(x) cos (

√
cx)dx = 0. (1.27)

Thus, the operator L is weakly non-Fredholm. Equation (1.24) with f ∈ Fµ is
solvable in Eµ, where Eµ = {u : ueµ

√
1+x2 ∈ E∞(R)}, Fµ = {f : feµ

√
1+x2 ∈

F∞(R)}, if and only if conditions (1.27) are satisfied. The solvability conditions are
formulated here in terms of formally adjoint operators and not of adjoint operators
as in the previous section. We use here the results of Chapter 6.

We can also use the explicit representation of solutions

u(x) = u0
1(x)

∫ x

−∞
f(y)v0

1(y)dy + u0
2(x)

∫ x

−∞
f(y)v0

2(y)dy, (1.28)

where

u0
1(x) =

1√
c

sin(
√
cx), u0

2(x) =
1√
c

cos(
√
cx),

v0
1(y) = cos(

√
cy), v0

2(y) = − sin(
√
cy)

(Section 2.2, Chapter 9). If f is exponentially decaying at infinity then the inte-
grals above are well defined and u(x) is exponentially decaying at −∞. Solvability
conditions (1.27) allow us to replace the integrals

∫ x
−∞ f(y)v0

i (y)dy by the integrals∫∞
x f(y)v0

i (y)dy and to conclude that u(x) decays exponentially also at +∞.
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We next discuss solvability of equation (1.24) with a bounded f not neces-
sarily decaying exponentially at infinity. If f ∈ Fq(R), 1 ≤ q < ∞, then we can
approximate f by a sequence fk of exponentially decaying functions and consider
the sequence solution

uk(x) = u0
1(x)

∫ x

−∞
fk(y)v0

1(y)dy + u0
2(x)

∫ x

−∞
fk(y)v0

2(y)dy. (1.29)

Without additional conditions on f we cannot conclude that the sequence uk
converges. We recall that the homogeneous equations Lµv = 0 and L±

µ v = 0 do
not have nonzero bounded solutions. Therefore, we can apply Proposition 1.21.
Consider equation (1.24) with f(x) = cos(px) ∈ F∞(R), where p is an integer,
p �= 1 and c = 1. Put

fk(x) =
{

cos(px) , 2πk < x < 2π(k + 1),
0 , x ≤ 2πk, x ≥ 2π(k + 1).

Then f(x) =
∑∞

k=−∞ fk(x). Since fk satisfies solvability conditions (1.27), then
the equation

u′′ + cu = fk

has a solution. Explicit calculations with formula (1.29) give

uk(x) =
{

(cos(px) − cos(x))/(1 − p2) , 2πk < x < 2π(k + 1),
0 , x ≤ 2πk, x ≥ 2π(k + 1).

We note that uk is continuous with its first derivative. The second derivative is
discontinuous because the function fk is discontinuous. For simplicity of calcula-
tions, we use here discontinuous functions φk in the partition of unity, which are
characteristic functions of the corresponding intervals, fk = φkf .

Thus, equation (1.24) is solvable in E∞(R), and

u(x) =
∞∑

k=−∞
uk(x) =

1
1 − p2

(cos(px) − cos(x)).

Obviously, other solutions of this equation can be obtained as linear combinations
of u(x) with the solutions of the homogeneous equation.

Next, let us consider the equation

u′′ + bu′ = f, −∞ < x <∞. (1.30)

If
v = ueµ

√
1+x2

, g = feµ
√

1+x2
,

then

v′′ +
(
b− 2µ

x√
1 + x2

)
v′ +

(
µ2 x2

1 + x2
− µ

1
(1 + x2)3/2

− bµ
x√

1 + x2

)
v = g.

(1.31)
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Consider the operator

Lµv = v′′ +
(
b− 2µ

x√
1 + x2

)
v′ +

(
µ2 x2

1 + x2
− µ

1
(1 + x2)3/2

− bµ
x√

1 + x2

)
v

and the corresponding limiting operators

L±
µ v = v′′ + (b∓ 2µ)v′ + (µ2 ∓ bµ)v.

The operator Lµ satisfies the Fredholm property for sufficiently small µ �= 0. The
formally adjoint operator is

L∗
µv = v′′ −

(
b− 2µ

x√
1 + x2

)
v′ +

(
µ2 x2

1 + x2
+ µ

1
(1 + x2)3/2

− bµ
x√

1 + x2

)
v.

If b �= 0, then the homogeneous formally adjoint equation L∗
µv = 0 has a unique,

up to a constant factor, bounded solution

v1(x) = e−µ
√

1+x2
.

The index of the operator Lµ : C2+α(R) → Cα(R) equals −1, equation (1.31) is
solvable if and only if

∫ ∞

−∞
g(x)v1(x)dx =

∫ ∞

−∞
f(x)dx = 0.

If b = 0, then there are two solutions

v1(x) = e−µ
√

1+x2
, v2(x) = xe−µ

√
1+x2

,

two solvability conditions
∫ ∞

−∞
g(x)vi(x)dx = 0, i = 1, 2,

and the index of the operator equals −2.

In the case of variable coefficients with limits at infinity, limiting operators
can be easily found, solvability conditions can be obtained in the same way as
above. If the coefficients do not have limits at infinity, construction of limiting
operators and of solvability conditions is less explicit.

1.3.2. Cylindrical domains. In this section we consider the equation

∆u+ cu = f (1.32)

in an unbounded cylinder Ω ⊂ R
n with axis x1 and orthogonal variables x′ =

(x2, . . . , xn). Here c ≥ 0 is some constant. Consider the homogeneous Neumann
boundary condition

∂u

∂n
= 0, (1.33)
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where n is an outer normal vector. The corresponding operator L, acting from the
space

E =
{
W 2,2(Ω),

∂u

∂n
= 0

}

into the space F = L2(Ω), does not satisfy the Fredholm property since the limiting
problem

∆u+ cu = 0,
∂u

∂n
= 0 (1.34)

has a nonzero solution.
In order to solve this problem, let us put v(x) = p(x1)φ(x′), where φ(x′)

is an eigenfunction of the Laplace operator in the section of the cylinder with
the homogeneous Neumann boundary condition corresponding to an eigenvalue σ.
Then

p′′ + (c+ σ)p = 0. (1.35)

This equation has a bounded for all x1 ∈ R solution if c + σ ≥ 0. Denote the
eigenvalues of the Laplace operator in the section of the cylinder by σi, i = 0, 1, . . . ,
assuming for simplicity that they are simple, and suppose that

c+ σi > 0, i = 1, . . . , k, c+ σi < 0, i = k + 1, . . . .

Then bounded solutions of problem (1.34) are

u1
i (x) = cos(aix1)φi(x′), u2

i (x) = sin(aix1)φi(x′), i = 1, . . . , k, ai =
√
c+ σi.

Let us introduce the weighted spaces

Eµ = {u(x) : u(x)µ(x1) ∈ E}, Fµ = {u(x) : u(x)µ(x1) ∈ F},
where

µ(x1) = eµ
√

1+x2
1 .

Set
v(x) = u(x)eµ

√
1+x2

1 , g(x) = f(x)eµ
√

1+x2
1 .

Then v satisfies the equation

∆v − 2µ
x1√

1 + x2
1

∂v

∂x1
+
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

+ c

)
v = g. (1.36)

Consider the operator

Lµv = ∆v − 2µ
x1√

1 + x2
1

∂v

∂x1
+
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

+ c

)
v,

acting from E into F , and the corresponding limiting problems

L±
µ v = ∆v ∓ 2µ

∂v

∂x1
+ (µ2 + c)v,

∂v

∂n
= 0.
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Set
p(x1) =

∫
G

v(x)φ(x′)dx′,

where G is the cross-section of the cylinder. Multiplying the limiting equation
L±
µ v = 0 by φ(x′) and integrating over G, we obtain the equation

p′′ ∓ 2µp′ + (σ + c+ µ2)p = 0.

Here σ is the eigenvalue corresponding to the eigenfunction φ(x′). Since the eigen-
values of the Laplace operator in the section of the cylinder form a discrete set,
then σ+ c+µ2 �= 0 for all µ �= 0 sufficiently small. Hence the last equation cannot
have bounded solutions for such µ, and Condition NS is satisfied.

The same remains valid for the formally adjoint operator. Consequently, we
can use the results of Chapter 6 in order to conclude that the operator Lµ : E →
F satisfies the Fredholm property. Equation (1.36) is solvable if and only if the
solvability conditions ∫

Ω

g(y)v(y)dy = 0 (1.37)

are verified for any solution v of the formally adjoint equation

∆v + 2µ
∂

∂x1

(
x1√

1 + x2
1

v

)
+
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

+ c

)
v = 0.

If we write it in the form

∆v + 2µ
x1√

1 + x2
1

∂v

∂x1
+
(
µ2 x2

1

1 + x2
1

+ µ
1

(1 + x2
1)3/2

+ c

)
v = 0, (1.38)

we can easily see that it can be obtained from (1.36) replacing µ by −µ.
Any solution u ∈ Eµ of equation (1.32) has the form

u = exp(−µ
√

1 + x2
1) v,

where v ∈ E is a solution of equation (1.36). Any solution u ∈ E−µ of the equation
formally adjoint to (1.32) (it coincides with (1.32)) has the form

u = exp(µ
√

1 + x2
1) v,

where v ∈ E is a solution of equation (1.38). We have proved the following theorem.

Theorem 1.23. Problem (1.32), (1.33), where u ∈ Eµ, f ∈ Fµ satisfies the Fredholm
property for any real µ �= 0 such that µ2 + c+ σi �= 0 for all eigenvalues σi of the
Laplace operator in the section of the cylinder. This problem is solvable in Eµ for
f ∈ Fµ if and only if ∫

Ω

u0(x) f(x) dx = 0

for any solution u0 ∈ E−µ of the homogeneous problem (1.34).
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1.3.3. Problems in R2. Consider the operator

Lu = ∆u+ c
∂u

∂x2
+ b(x2)u

in R
2. Here c is some constant, the function b depends only on the variable x2,

b(±∞) < 0. Suppose that the operator

L0u = u′′ + cu′ + b(x2)u

has a zero eigenvalue, which is simple, with the corresponding eigenfunction u0(x2),
while all other points of its spectrum are in the left half-plane. Here ′ denotes the
differentiation with respect to x2.

There are three limiting problems,

∆u + c
∂u

∂x2
+ b(±∞)u = 0

and

∆u+ c
∂u

∂x2
+ b(x2)u = 0.

The last one has a nonzero bounded solution u(x) = u0(x2). Therefore, the oper-
ator L is not Fredholm. Consider the equation

Lu = f.

We will use the same notations v and g as in the previous example. Then

∆v + c
∂v

∂x2
− 2µ

x1√
1 + x2

1

∂v

∂x1
+
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

+ b(x2)
)
v = g.

(1.39)
The limiting problems

∆v + c
∂v

∂x2
∓ 2µ

∂v

∂x1
+
(
µ2 + b(±∞)

)
v = 0,

obtained as |x1|, |x2| → ∞, have constant coefficients. For sufficiently small µ they
have only zero solutions. Consider next the limiting problems (|x1| → ∞),

∆v + c
∂v

∂x2
∓ 2µ

∂v

∂x1
+
(
µ2 + b(x2)

)
v = 0.

We use the partial Fourier transform with respect to x1:

ṽ′′ + cṽ′ +
(
µ2 − ξ2 ∓ 2µiξ + b(x2)

)
ṽ = 0.

This equation can be written in the form

L0ṽ = − (
µ2 − ξ2 ∓ 2µiξ

)
ṽ.
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Since zero is a simple eigenvalue of the operator L0 and all other spectrum is in
the left half-plane, then this equation does not have nonzero solutions for small
positive µ and any real ξ.

For a fixed x1 and |x2| → ∞ we obtain another type of limiting problems
(x1 can be replaced here by x1 + h):

∆v + c
∂v

∂x2
− 2µ

x1√
1 + x2

1

∂v

∂x1
+
(
µ2 x2

1

1 + x2
1

− µ
1

(1 + x2
1)3/2

+ b(±∞)
)
v = 0.

Since b(±∞) < 0, then for sufficiently small µ this equation has only the zero
solution in the class of bounded functions.

Thus, Condition NS is satisfied. The formally adjoint operator can be studied
in the same way. The operator L considered in the weighted space satisfies the
Fredholm property.

1.3.4. Linearly dependent systems. Systems of equations can have some additional
features in comparison with the scalar equation. Consider the operator

L

(
u
v

)
=

{
u′′ + cu′ + a(x)u+ b(x)v
dv′′ + cv′ + a(x)u + b(x)v

on the whole axis. Here d and c are some constants, d is positive, the functions
a(x) and b(x) belong to Cδ(R). Suppose that they have limits a±, b± at ±∞.
Since the zero-order terms are the same in the first and in the second expressions,
then the limiting problems

{
u′′ + cu′ + a±u+ b±v = 0,
dv′′ + cv′ + a±u+ b±v = 0

have nonzero bounded solutions. Indeed, the constant vector u ≡ 1, v ≡ −a+/b+
satisfies this system. Therefore, the operator does not satisfy the Fredholm prop-
erty. Such operators arise in some applications to reaction-diffusion problems [137],
[138]. We will study them in the second volume.

Limiting equations for the weighted operator Lµ has the form

{
u′′ + (c+ 2µ)u′ + (a± + cµ+ µ2)u+ b±v = 0,

dv′′ + (c+ 2dµ)v′ + a±u+ (b± + cµ+ dµ2)v = 0.

It does not have nonzero bounded solutions for small µ �= 0 if (a± + b±)c �= 0.
Therefore Condition NS is satisfied. Similarly, Condition NS∗ can be verified for
the formally adjoint system. Hence the operator Lµ is Fredholm. Its index can be
computed using the results of Chapter 9.
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2 Non-Fredholm solvability conditions

Solvability conditions discussed in the previous section are similar to the usual
Fredholm type solvability conditions. The right-hand side f should be orthogonal
to the solutions v of the homogeneous adjoint equation, (f, v) = 0. In the cases
where this duality is not defined, we can approximate f by a sequence fn and
consider solvability conditions in the sense of sequence, (fn, v) = 0. In the case
of one-dimensional problems, a more explicit form of the solutions allows us to
introduce solvability conditions in a different form. These results can be generalized
for some problems in cylinders.

2.1 Example of first-order ODE

We begin with a simple example that illustrates the classical Fredholm type solv-
ability conditions and other type solvability conditions when the Fredholm prop-
erty is not satisfied. Consider the scalar equation

du

dt
= a(t)u+ f(t), t ∈ R. (2.1)

A solution of (2.1) can be written as

u(t) = u0(t)
∫ t

0

v0(τ)f(τ)dτ, (2.2)

where
u0(t) = e

∫
t
0 a(τ)dτ , v0(t) = e−

∫
t
0 a(τ)dτ =

1
u0(t)

,

u0(t) is a solution of the homogeneous equation, and v0(t) is a solution of the
homogeneous adjoint equation

du0

dt
= a(t)u0,

dv0
dt

= −a(t)v0.

Let us introduce the functions

Φ+(t) = |u0(t)|
∫ t

0

|v0(τ)|dτ, Ψ+(t) = |u0(t)|
∫ ∞

t

|v0(τ)|dτ, t > 0,

Φ−(t) = |u0(t)|
∫ 0

t

|v0(τ)|dτ, Ψ−(t) = |u0(t)|
∫ t

−∞
|v0(τ)|dτ, t < 0.

Condition 2.1. There exists a positive constant M such that:

– either Φ+(t) ≤M for all t ≥ 0 or the integral in the expressions for Ψ+(t) is
defined and Ψ+(t) ≤M for all t ≥ 0,

– either Φ−(t) ≤M for all t ≤ 0 or the integral in the expressions for Ψ−(t) is
defined and Ψ−(t) ≤M for all t ≤ 0.
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Proposition 2.2. Let Condition 2.1 be satisfied. If at least one of the functions
Φ+(t) and Φ−(t) is bounded, then equation (2.1) has a bounded solution for any
bounded function f . If both of them are not bounded, then a bounded solution exists
if and only if ∫ ∞

−∞
v0(t)f(t)dt = 0. (2.3)

Proof. Suppose that both functions Φ+(t) and Φ−(t) are bounded. Then the so-
lution of equation (2.1) is given by expression (2.2), and it is obviously bounded.

Suppose next that Φ+(t) is bounded and Φ−(t) is not bounded. Then Ψ−(t)
is defined. Put

u−(t) = u0(t)
∫ t

−∞
v0(τ)f(τ)dτ. (2.4)

It is easy to verify that u−(t) is bounded on the whole axis for any bounded f .
Moreover, since the integral in Ψ−(t) is bounded and the function Φ−(t) is not
bounded at −∞, then u0(t) is not bounded as t→ −∞. Hence the function u−(t)
is the only solution of (2.1) bounded as t → −∞ for any bounded f . Indeed, the
integral should converge to zero as t→ −∞. Therefore its lower limit is −∞.

The case where Φ−(t) is bounded and Φ+(t) is not, is similar. The bounded
solution is given by the formula

u+(t) = −u0(t)
∫ ∞

t

v0(τ)f(τ)dτ. (2.5)

This is the only solution bounded as t→ +∞.
If both functions Φ+(t) and Φ−(t) are not bounded but Ψ+(t) and Ψ−(t)

are bounded, then u0(t) is not bounded as t → ±∞. Therefore the functions u−

and u+ defined by (2.4) and (2.5) are the only solutions bounded as t→ −∞ and
t → +∞ respectively. The solution bounded on the whole axis exists if and only
if u+(0) = u−(0). This gives us equality (2.3) The proposition is proved. �

Example 2.3. Suppose that a(t) = a+ for t sufficiently large, and a(t) = a− for −t
sufficiently large. If a± �= 0, then u0(t) and v0(t) behave exponentially at infinity.
Then Condition 2.1is satisfied.

Condition (2.3) is a typical Fredholm type solvability condition. It may not be
sufficient for solvability of equation (2.1) if Condition 2.1 is not satisfied. Indeed,
suppose that v0(t) is integrable. We can choose such t0 that for the function

f(t) =
{

1, t ≥ t0,
−1, t < t0

equality (2.3) is satisfied. From integrability of v0(t) it follows that u0(t) is not
bounded as t → ±∞. Therefore, the functions Φ+(t) and Φ−(t) are not bounded
either. If Condition 2.1 is not satisfied, then at least one of the functions Ψ+(t)
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and Ψ−(t) is not bounded. Hence there is no bounded solution of equation (2.1)
with such f . Thus, (2.3) does not provide solvability of equation (2.1). Condition
2.1 is not satisfied for polynomial u and v: u(t) ∼ |t|k, v(t) ∼ 1/|t|k, k > 1 as
t→ ±∞.

To illustrate another type of solvability conditions suppose that the function

b(t) =
∫ t

0

a(s)ds

is uniformly bounded. Then v0(t) is bounded and |u0(t)| ≥ ε > 0 for some ε.
Therefore the solution given by (2.2) is bounded if and only if

sup
t

∣∣∣∣
∫ t

0

v0(s)f(s)ds
∣∣∣∣ <∞. (2.6)

As above, the solvability condition is given in terms of bounded solutions of the
homogeneous adjoint equation. The principal difference is that condition (2.6),
contrary to Fredholm type solvability conditions, cannot be formulated in the
form φ(f) = 0, where φ is a functional from the dual space.

2.2 Ordinary differential systems on the real line

In this section we discuss solvability conditions for non-Fredholm operators in
the case of ordinary differential systems of equations. We will obtain solvability
conditions similar to those in the previous section. We follow here the presentation
in [279] where these results are also used to study elliptic operators in cylinders.

Let u ∈ Rn. Denote by | · | the Euclidian vector norm in Rn and the corre-
sponding matrix norm and by 〈·, ·〉 the scalar product in Rn. Consider the linear
system

u′ = P (x)u (2.7)

where the matrix P (x) is defined, bounded and continuous on the interval (a, b) ⊂
R. Here a is a real number or −∞ and b is a real number or +∞. Let Φ(x, t) be
the Cauchy matrix of system (2.7).

Definition 2.4. ([417]) Let I be a closed convex subset of R. Consider an n × n
matrix P (x), continuous and bounded on I. System (2.7) is dichotomic on I if
there exist positive constants c and λ, and subspaces U s(x) and Uu(x) of Rn,
defined for all x ∈ I and such that

1. Φ(x, ξ)Us,u(ξ) = Us,u(x) for all x, ξ ∈ I;
2. Us(x) ⊕ Uu(x) = Rn for every x ∈ I;
3. |Φ(x, ξ)u0| ≤ c exp(−λ(x− ξ))|u0| for all x, ξ ∈ I: x ≥ ξ, u0 ∈ Us(ξ);
4. |Φ(x, ξ)u0| ≤ c exp(λ(x − ξ))|u0|, if x, ξ ∈ I: x ≤ ξ, u0 ∈ Uu(ξ).

This property is also called hyperbolicity and the corresponding system is
called hyperbolic. Nevertheless, we shall always call it dichotomic in order not to
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confuse this notion with hyperbolicity of partial differential equations. Note that
Definition 2.4 coincides with the definition of exponential dichotomy given by Cop-
pel [115, p. 10] with the additional assumption of the boundedness of the matrix P .

Definition 2.5. System (2.7) is almost dichotomic on (a, b) with positive constants
c and λ if for every x ∈ (a, b) there exist three spaces MS(x) (stable space), MU (x)
(unstable space) and MB(x) (zero space), satisfying the following conditions:

1. MS(x) ⊕MU (x) ⊕MB(x) = Rn for all x ∈ (a, b);
2. Φ(x, t)Mσ(t) = Mσ(x) for all σ ∈ {S,U,B}, x, t ∈ (a, b);
3. |Φ(x, t)u0| ≤ c exp(−λ(x− t))|u0| for all x ≥ t, x, t ∈ (a, b), u0 ∈MS(t);
4. |Φ(x, t)u0| ≤ c exp(λ(x− t))|u0| for all x ≤ t, x, t ∈ (a, b), u0 ∈MU (t);
5. |Φ(x, t)u0| ≤ c|u0| for all x, t ∈ (a, b), u0 ∈MB(t);

The following statement is evident.

Lemma 2.6. Let matrix P (x) be constant, i.e., P (x) ≡ P . System (2.7) is almost
dichotomic if and only if for every purely imaginary eigenvalue λ of the matrix P
the number of linearly independent eigenvectors corresponding to λ is equal to the
multiplicity of λ.

Remark 2.7. In other words, the condition is the following: for every λ ∈ iR
every block in the Jordan form of the matrix A corresponding to λ is simple.
The statement of the lemma holds true if the matrix P does not have purely
imaginary eigenvalues at all. In this case the space MB is trivial and system (2.7)
is dichotomic.

Definition 2.8. ([2]) Consider the change of variables

u = L(x)v, x ∈ R. (2.8)

It is called a Lyapunov transform if the matrix L(x) is C1-smooth invertible and
all matrices L(x), L−1(x) and L′(x) are bounded.

Lemma 2.9. Let system (2.7) be almost dichotomic and let the dimensions of the
corresponding spaces MS(x), MU (x) and MB(x) be nS, nU and nB, respectively.
Then for every x there exist continuous projectors ΠS(x), ΠU (x) and ΠB(x) on the
spaces MS(x), MU (x) and MB(x) respectively, such that ΠS(x)+ΠU (x)+ΠB(x) ≡
id . These projectors are uniformly bounded. Also, there exists a Lyapunov trans-
form (2.8), which reduces system (2.7) to the form

v′ = P̃ (x)v, (2.9)

where v = (vS , vU , vB), P̃ (x) = diag(PS(x), PU (x), PB(x)), and system (2.9) splits
into three subsystems:

vS
′ = PS(x)vS , (2.10)

vU
′ = PU (x)vU , (2.11)

vB
′ = PB(x)vB . (2.12)
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Systems (2.10)–(2.12) satisfy the following properties:

1. System (2.10) is steadily dichotomic, i.e., it is dichotomic and the corre-
sponding stable space coincides with the space RnS for all x.

2. System (2.11) is unsteadily dichotomic, i.e., it is dichotomic and the corre-
sponding unstable space coincides with the space RnU for all x.

3. Every solution of system (2.12) is bounded.

Remark 2.10. The matrix P̃ (x) can be found by the formula

P̃ (x) = L−1(x)P (x)L(x) − L−1(x)L′(x). (2.13)

Since the matrix P (x) is bounded, the matrix P̃ (x) is also bounded. If for a certain
δ ≥ 0, P (x) ∈ Cδ and L(x) ∈ C1+δ, then P̃ (x) ∈ Cδ.

The proof of Lemma 2.9 is the same as the proof for dichotomic (hyperbolic)
ordinary differential systems [115, Lemma 3, p. 41], [418, Theorem 0.1, p. 14].

Lemma 2.11. If system (2.7) is steadily dichotomic, the dual system

u′ = −PT (x)u, (2.14)

is unsteadily dichotomic. If (2.7) is an unsteadily dichotomic system, then system
(2.14) is steadily dichotomic. If system (2.7) is almost dichotomic with all solutions
bounded, the dual system also is.

The lemma above follows from the fact that for every fundamental matrix Φ(x) of
system (2.7), the matrix (Φ−1)T (x) is fundamental for system (2.14). The following
statement is evident.

Lemma 2.12. Any system (2.7), which splits into almost dichotomic blocks, is al-
most dichotomic. The stable, unstable and bounded spaces are direct products of
the corresponding spaces for blocks.

Having fixed a number δ ≥ 0, define spaces X = Cδ(R → Rn), Y =
C1+δ(R → Rn) and consider a function f ∈ X .

Theorem 2.13. Let system (2.7) be almost dichotomic on R, and the matrix P (x)
be bounded in Cδ(R → R

n2
). Then for any f ∈ X the system

u′ = P (x)u + f(x) (2.15)

has a solution υ(x) ∈ Y if and only if

sup
x∈R

∣∣∣∣
∫ x

0

〈ϕ(s), f(s)〉 ds
∣∣∣∣ < +∞ (2.16)

for every bounded solution ϕ(s) of system (2.14).
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Proof. Transformation (2.8), which exists due to Lemma 2.9, reduces system (2.15)
to the form

v′ = P̃ (x)v + g(x) (2.17)

where P̃ (x) satisfies (2.13), and g(x) = L−1(x)f(x). If f(x) ∈ X , then g(x) ∈ X
and vice versa. System (2.17) splits into three subsystems:

vS
′ = PS(x)vS + gS(x), (2.18)

vU
′ = PU (x)vU + gU (x), (2.19)

vB
′ = PB(x)vB + gB(x). (2.20)

Here g(x) = (gS(x), gU (x), gB(x)). Systems (2.15) and (2.17) have bounded solu-
tions if and only if each system (2.18), (2.19), and (2.20) has a bounded solution.

Let Ψ(x, t) be the Cauchy matrix of system (2.9). It can be written in the
form

Ψ(x, t) = diag (ΨS(x, t),ΨU (x, t),ΨB(x, t))

where ΨS(x, t), ΨU (x, t) and ΨB(x, t) are the Cauchy matrices for systems (2.10),
(2.11) and (2.12), respectively. Since systems (2.10) and (2.11) are dichotomic, the
nonhomogeneous systems (2.18) and (2.19) have, for every g, bounded solutions
of the form

vS(x) =
∫ x

−∞
ΨS(x, t)gS(t) dt; vU (x) = −

∫ ∞

x

ΨU (x, t)gU (t) dt.

All solutions of the system (2.20) have the form

ΨB(x)C +
∫ x

0

ΨB(x, t)gB(t) dt.

Here ΨB(x) = ΨB(x, 0). Every solution of system (2.12) is bounded. Therefore the
matrix ΨB(x) is also bounded. Hence, it is sufficient to verify that the solution

vB(x) =
∫ x

0

ΨB(x, t)gB(t) dt = ΨB(x)
∫ x

0

Ψ−1
B (t)gB(t) dt

is bounded. Let c be the constant from Definition 2.5 for system (2.7), and K > 0
be such that max(‖L(x)‖C1+δ , ‖L−1(x)‖C1+δ ) < K. Then every column of the
matrices ΨB(x) and Ψ−1

B (x) is bounded by cK. Hence

max(‖ΨB(x)‖C1+δ , ‖Ψ−1
B (x)‖C1+δ ) ≤ √

ncK.

Thus, vB(x) is bounded if and only if the integral

I(x) =
∫ x

0

Ψ−1
B (t)gB(t) dt
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is bounded. Consider the matrix Ξ(x) which is obtained from Ψ−1
B by adding

nU + nS zero rows. It follows from Lemmas 2.11 and 2.12 that every bounded
solution of the system

v′ = −P̃T (x)v (2.21)

is a linear combination of columns of Ξ(x). Hence I(x) is bounded if and only if
the condition

sup
x∈R

∣∣∣∣
∫ x

0

〈η(t), g(t)〉 dt
∣∣∣∣ < +∞ (2.22)

is satisfied for every bounded solution η(x) of (2.21).
On the other hand, Φ(x) = L(x)Ψ(x) is a fundamental matrix of system (2.7).

Then Ψ−1(x) = Φ−1(x)L(x). Hence every bounded solution η(x) of system (2.21)
can be written in the form η(x) = LT (x)ϕ(x), where ϕ(x) is a bounded solution
of (2.14). It is easy to see that this correspondence is one-to-one. Consequently,
we can rewrite the integral in (2.22) in the form

∫ x

0

〈LT (t)ϕ(t), L−1(t)f(t)〉 dt =
∫ x

0

〈ϕ(t), f(t)〉 dt. (2.23)

Thus, there exists a bounded solution of system (2.15) if and only if expression
(2.23) is uniformly bounded. The theorem is proved. �

2.3 Second-order equations

Consider the scalar equation

u′′ + b(x)u′ + c(x)u = f(x) (2.24)

assuming that the coefficients belong to the Hölder space C1+δ(R) with some δ,
0 < δ < 1. Denote by u1(x) and u2(x) two linearly independent solutions of the
homogeneous equation

u′′ + b(x)u′ + c(x)u = 0 (2.25)

and by v1(x) and v2(x) two linearly independent solutions of the homogeneous
adjoint equation

v′′ − (b(x)v)′ + c(x)v = 0 (2.26)

such that
u1v1 + u2v2 = 0, u′1v1 + u′2v2 = 1. (2.27)

The solution of equation (2.24) can be represented in the form

u(x) = u1(x)
∫ x

0

v1(y)f(y) + u2(x)
∫ x

0

v2(y)f(y) (2.28)

(cf. Section 2.2 of Chapter 9). If the functions ui and vi are exponentially decaying
or growing at infinity, then such behavior is specific for Fredholm operators. Let
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us suppose that the functions ui and vi, i = 1, 2 are bounded on R. It follows from
(2.27) that not all of them can be exponentially decaying. Therefore, the operator
is not Fredholm.

Theorem 2.14. Suppose that the solutions ui and vi, i = 1, 2 of equations (2.25) and
(2.26) are bounded. Let f ∈ Cδ(R). Then equation (2.24) is solvable in C2+δ(R)
if and only if the following solvability conditions are satisfied:

sup
x

∣∣∣∣
∫ x

0

f(y)vi(y)dy
∣∣∣∣ <∞, i = 1, 2. (2.29)

Proof. Existence of a bounded solution follows from representation (2.28), condi-
tion (2.29) and from the assumption that the functions ui are bounded. From the
equalities

u′(x) = u′1(x)
∫ x

0

v1(y)f(y) + u′2(x)
∫ x

0

v2(y)f(y),

u′′(x) = u′′1(x)
∫ x

0

v1(y)f(y) + u′′2(x)
∫ x

0

v2(y)f(y) + f(x)

and regularity of solutions of the homogeneous equation, ui ∈ C2+δ(R), we con-
clude that u ∈ C2+δ(R).

We next prove necessity. Suppose that equation (2.24) has a solution u ∈
C2+δ(R). We multiply this equation by vi and integrate. Taking into account that
vi is a solution of the homogeneous adjoint equation, we obtain

∫ x

0

f(y)vi(y)dy = u′vi|x0 − uv′i|x0 + buvi|x0 .

It remains to note that the right-hand side of this equality is uniformly bounded.
The theorem is proved. �

Corollary 2.15. If ui and vi, i = 1, 2 are bounded, then equation (2.24) has a
solution u ∈ C2+δ(R) for any f ∈ Cδ(R) ∩ L1(R).

Example 2.16. Consider the equation

u′′ + c(x)u = f(x), (2.30)

where

c(x) =
{
c+ , x ≥ N,
c− , x ≤ −N,

for some N and for some positive constants c±.

All solutions of the homogeneous equation

u′′ + c(x)u = 0
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for |x| ≥ N have the form

u(x) = k1 sin(
√
c±x) + k2 cos(

√
c±x),

where k1 and k2 are some constants. Since the equation is self-adjoint, then the
solutions ui and vi are bounded. For any bounded function f , the integrals

Ii(x) =
∫ x

0

f(y)vi(y)dy, i = 1, 2

are bounded for |x| ≤ N . Condition (2.29) is satisfied if the integrals∫ x

N

f(y) sin(
√
c+y)dy,

∫ x

N

f(y) cos(
√
c+y)dy, x ≥ N,

∫ −N

x

f(y) sin(
√
c−y)dy,

∫ −N

x

f(y) cos(
√
c−y)dy, x ≤ −N

are bounded uniformly in x. If c(x) ≡ c, where c is a positive constant, then
conditions (2.29) become

sup
x

∣∣∣∣
∫ x

0

f(y) sin(
√
cy)dy

∣∣∣∣ <∞, sup
x

∣∣∣∣
∫ x

0

f(y) cos(
√
cy)dy

∣∣∣∣ <∞.

These solvability conditions are satisfied for the function f(x) = sin(kx), where
k �= √

c±. (cf. Section 1.3.1).

It can be verified that the image of the operator is not closed. Indeed, let
c = 1 and v(x) = cosx, fk(x) = (φk(x) cos x)/

√
1 + x2, where φk(x) is a smooth

function equal to 1 for |x| ≤ k and 0 for |x| ≥ k+1, f(x) = (cosx)/
√

1 + x2. Then
fk → f in Cδ(R) and

sup
x

∣∣∣∣
∫ x

0

fk(y)v(y)dy
∣∣∣∣ <∞, sup

x

∣∣∣∣
∫ x

0

f(y)v(y)dy
∣∣∣∣ = ∞.

The integrals with v(x) = sinx have the same properties. Thus, the functions fk
satisfy the solvability conditions and belong to the image of the operator while f
does not belong to it.

The results of this section can be generalized for one-dimensional systems
of equations and for some special classes of multi-dimensional problems, e.g., in
unbounded cylinders. Applicability of such solvability conditions for general multi-
dimensional problems is not clear.

3 Space decomposition of operators

In the previous section, solvability conditions for non-Fredholm operators were
formulated in the one-dimensional case. In this section, we will consider multi-
dimensional elliptic operators in the whole space and will use some space de-
composition in order to reduce non-Fredholm properties to some one-dimensional
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operator. This is related to the structure of non-Fredholm operators discussed in
Section 1. Consider the operator

Lu = a(x)∆u +
n∑
j=1

bj(x)
∂u

∂xj
+ c(x)u (3.1)

acting from C2+α(Rn) into Cα(Rn). Here u = (u1, . . . , up), a(x), bj(x), c(x) are
real-valued p × p matrices with Cα(Rn) entries, and a(x) is symmetric positive
definite,

(a(x)ξ, ξ) ≥ a0|ξ|2
for any vector ξ ∈ Rp, x ∈ Rn with a constant a0 > 0. To simplify the presentation,
we consider the case n = 2 with the independent variables x and y.

In order to determine explicitly the location of the essential spectrum, we
make some simplifying assumptions. We assume existence of the limits

a(x, y) → a±(y), bj(x, y) → b±j (y), c(x, y) → c±(y)

as x→ ±∞. This convergence is uniform with respect to y on every bounded set
in R1. If y → ±∞, then

a(x, y) → a0
± , bj(x, y) → b0j±, c(x, y) → c0±

uniformly on every bounded set. Here a0
±, b

0
j±, and c0± are constant matrices,

a0
± = lim

y→±∞ a±(y), b0j± = lim
y→±∞ b±j (y), c0± = lim

y→±∞ c±(y).

These assumptions allow us to define the limiting operators

L±u = a±(y)∆u + b±1 (y)
∂u

∂x
+ b±2 (y)

∂u

∂y
+ c±(y)u, (3.2)

L0
±u = a0

±∆u+ b1
0
±
∂u

∂x
+ b2

0
±
∂u

∂y
+ c0±u. (3.3)

Consider the problems
L±u = λu, L0

±u = λu. (3.4)

If one of them has a nonzero solution in C2+α(R2), then the corresponding value
of λ belongs to the essential spectrum of the operator L, i.e., the operator L− λI
is not Fredholm.

We suppose that the last problem in (3.4) does not have nonzero solutions
for any λ with nonnegative real part and that there exists a nonzero solution of
at least one of the limiting problems

L+u = 0, (3.5)

L−u = 0, (3.6)
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in C2+α(R2). Then the operator L is not Fredholm. We will reduce the operator
to a subspace where its image is closed and the kernel is finite-dimensional. This
allows us to localize the non-Fredholm properties of the operator in a complemen-
tary subspace.

3.1 Normal solvability on a subspace

Suppose for certainty that both problems (3.5) and (3.6) have nonzero solutions
and impose the following conditions.

Condition 3.1. Problems (3.5) and (3.6) have unique nonzero solutions v+ ∈
C2+α(R1) and v− ∈ C2+α(R1), respectively, which are functions of the variable y.

Condition 3.2. The coefficients of the limiting operators are sufficiently smooth,
and the formally adjoint problems

L̂±u ≡ ∆(â±(y)u) − ∂(b̂±1 (y)u)
∂x

− ∂(b̂±2 (y)u)
∂y

+ ĉ±(y)u = 0 (3.7)

have nonzero solutions v̂± ∈ C2+α(R1)∩L1(R1) which depend only on y and such
that ∫

R1
(v+(y), v̂+(y)) dy �= 0,

∫
R1

(v−(y), v̂−(y)) dy �= 0.

Here â±, b̂±j , ĉ
± are the matrices transposed to a±, b±j , c

±, respectively and ( , )
denotes the inner product in R2.

Condition 3.3. Let

a11 =
∫

R1
(v+(y), v̂+(y))dy, a12 =

∫
R1

(v−(y), v̂+(y))dy,

a21 =
∫

R1
(v+(y), v̂−(y))dy, a22 =

∫
R1

(v−(y), v̂−(y))dy.

Then a11a22 �= a12a21.

Condition 3.4. The limiting problems

L0u ≡ a0
±∆u+ b01±

∂u

∂x
+ b02±

∂u

∂y
+ c0±u = 0

do not have nonzero solutions in C2+α(R2).

Let us introduce one-dimensional operators

L±
1 u = a±(y)

∂2u

∂y2
+ b±2 (y)

∂u

∂y
+ c±(y)u
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acting from C2+α(R1) into Cα(R1). Due to the assumptions above, L±
1 v

± =
0, (L±

1 )∗v̂± = 0. The essential spectrum λ(ξ) of these operators, which is also
a part of the essential spectrum of the operator L, is a set of all complex numbers
λ such that

det(−a0
±ξ

2 + ib02±ξ + c0± − λ) = 0, ξ ∈ R
1.

If it lies in the left half-plane, then the operators L±
1 are Fredholm with zero index

(Chapter 9). According to Conditions 3.1 and 3.2, the operators L±
1 have a simple

zero eigenvalue.
Set E = C2+α(R2), E′ = Cα(R2) and

E0 =
{
u ∈ E :

∫
R1
u(x, y)v̂+(y)dy =

∫
R1
u(x, y)v̂−(y)dy = 0, ∀x ∈ R

1

}
.

Lemma 3.5. For any u ∈ E the following representation holds:

u(x, y) = u0(x, y) + c+(x)v+(y) + c−(x)v−(y),

where u0 ∈ E0, c± ∈ C2+α(R1).

Proof. Consider the system

a11c
+(x) + a12c

−(x) =
∫

R1
u(x, y)v̂+(y)dy, (3.8)

a21c
+(x) + a22c

−(x) =
∫

R1
u(x, y)v̂−(y)dy. (3.9)

The integrals in the right-hand sides of (3.8), (3.9) are well defined. They belong to
C2+α(R1) as functions of x. By virtue of Condition 3.3 we can find a solution of this
system, c± ∈ C2+α(R1). The function u0(x, y) = u(x, y)−c+(x)v+(y)−c−(x)v−(y)
belongs to E0. The lemma is proved. �

Thus we can represent the space E as a direct sum of E0 and of the comple-
mentary subspace

Ê =
{
u ∈ E : u = c+(x)v+(y) + c−(x)v−(y), c± ∈ C2+α(R1)

}
.

Remark 3.6. If v+(y) ≡ v−(y), then Condition 3.3 is not satisfied. Instead of the
representation in Lemma 3.5, in this case we have u(x, y) = u0(x, y) + c(x)v(y).

Lemma 3.7. Let a sequence uk ∈ E0 be bounded in the norm of E. If uk → u0

uniformly on every bounded set, then u0 ∈ E0.

The proof of the lemma is obvious.

Lemma 3.8. The kernel of the operator L : E0 → E′ is finite dimensional.
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Proof. Consider a sequence uk ∈ E0, ‖uk‖ ≤ 1 in the kernel of the operator L,

Luk = 0. (3.10)

We will show that it has a converging subsequence. Then we will conclude that
the unit sphere in the kernel of the operator is compact and the kernel is finite
dimensional. Since uk is bounded in C2+α(R2), there exists a subsequence, still
denoted by uk, which converges to some u0 ∈ E in C2 uniformly on every bounded
set. Passing to the limit in (3.10), we obtain Lu0 = 0. Set vk = uk − u0. Then
Lvk = 0.

We show that the convergence vk → 0 is uniform in R2. Suppose that it is not
and there exists a sequence (xk, yk) such that |vk(xk, yk)| ≥ ε > 0. By virtue of
the local convergence of this sequence of functions to zero, we have x2

k + y2
k → ∞.

Consider first the case where the values yk are uniformly bounded. Without
loss of generality, we can assume that yk → y0 and that xk converges to +∞. Put
wk(x, y) = vk(x+ xk, y + yk). Then

a(x+ xk, y + yk)∆wk + b1(x+ xk, y + yk)
∂wk
∂x

+ b2(x+ xk, y + yk)
∂wk
∂y

+ c(x + xk)wk = 0,

|wk(0)| ≥ ε, and wk converges to some w0 in C2 uniformly on every bounded set.
Therefore

a+(y + y0)∆w0 + b+1 (y + y0)
∂w0

∂x
+ b+2 (y + y0)

∂w0

∂y
+ c+(y + y0)w0 = 0.

By virtue of Condition 3.1, w0(x, y) ≡ v+(y + y0). On the other hand∫
R1
vk(x+ xk, y + yk)v̂+(y + yk) dy

=
∫

R1
(uk(x + xk, y + yk) − u0(x+ xk, y + yk))v̂+(y + yk)dy = 0, ∀x ∈ R

1,

for all k, because uk and u0 belong to E0, and∫
R1
w0(x, y)v̂+(y + y0) dy = lim

k→∞

∫
R1
vk(x+ xk, y + yk)v̂+(y + yk) dy.

We obtain a contradiction with Condition 3.2. Therefore, vk → 0 uniformly in R2.
The Schauder estimate implies the convergence vk → 0 in C2+α(R2). Hence the
unit sphere in the kernel of the operator is compact.

Suppose now that |yk| is unbounded. As above, we obtain a nonzero solution
of one of the limiting problems

a0
±∆u+ b01±

∂u

∂x
+ b2

0
±
∂u

∂y
+ +c0±u = 0.

This contradicts Condition 3.4. The lemma is proved. �



3. Space decomposition of operators 439

Lemma 3.9. The image of the operator L : E0 → E′ is closed.

Proof. Let
Luk = fk, (3.11)

fk ∈ E′, fk → f0, uk ∈ E0. We will show that there exists u0 ∈ E0 such that
Lu0 = f0. Consider first the case where the sequence uk is bounded in E. Since
the functions uk are uniformly bounded in the norm C2+α(R), then we can choose
a subsequence converging to some u0 ∈ E in C2 uniformly on every bounded set.
Therefore u0 ∈ E0. Passing to the limit in (3.11), we obtain Lu0 = f0.

Suppose now that the sequence uk is unbounded. Since the kernel of the
operator L in E0 is finite dimensional, we can represent E0 as a direct sum of KerL
and a complementary subspace Ê0. Then uk = ûk + u0

k, where ûk ∈ Ê0, u0
k ∈

KerL. Then Lûk = fk. If the sequence ûk is bounded, we can proceed as above to
obtain a function û0 ∈ E0 such that Lû0 = f0.

If ûk is not bounded, then we write vk = ûk/‖ûk‖E, gk = fk/‖ûk‖E. Hence

Lvk = gk. (3.12)

We will show that there exists a subsequence of vk converging to some v0 ∈ Ê0

in E and such that Lv0 = 0. This will contradict the definition of Ê0. Since vk
is bounded, there exists a subsequence, denoted again by vk, converging to some
v0 ∈ E in C2 uniformly on every bounded set. Let us show that this convergence
is uniform in R2. Passing to the limit in (3.12), we obtain Lv0 = 0 and, for
wk = vk − v0, Lwk = gk. The sequence wk converges to 0 uniformly on every
bounded set. If this convergence is not uniform in R2 then there exists a sequence
(xk, yk) such that |wk(xk, yk)| ≥ ε and x2

k + y2
k → ∞. If yk is unbounded, then we

obtain a nonzero solution of one of the limiting problems

a0
±∆u+ b01±

∂u

∂x
+ b02±

∂u

∂y
+ c0±u = 0.

This contradicts Condition 3.4. If yk is bounded, then we can assume that yk → y0,
xk → +∞. Put ωk(x, y) = wk(x + xk, y + yk). We can choose a subsequence ωk
converging to some ω0 in C2 uniformly on every bounded set. From the equation

a(x+ xk, y + yk)∆ωk + b1(x+ xk, y + yk)
∂ωk
∂x

+ b2(x+ xk, y + yk)
∂ωk
∂y

+ c(x+ xk, y + yk)ωk = gk(x+ xk, y + yk)

we obtain

a+(y + y0)∆ω0 + b+1 (y + y0)
∂ω0

∂x
+ b+2 (y + y0)

∂ω0

∂y
+ c+(y + y0)ω0 = 0.
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Hence ω0(x, y) = v+(y + y0). As in the previous lemma we have
∫
R1
ω0(x, y)v̂+(y + y0) dy

= lim
k→∞

∫
R1

(vk(x+ xk, y + yk) − v0(x+ xk, y + yk))v̂+(y + yk) dy = 0.

This contradicts Condition 3.2. Thus we have proved that vk → v0 uniformly
on R2. From the Schauder estimate we obtain the convergence in E. Therefore
v0 ∈ Ê0 and Lv0 = 0. This contradiction proves the lemma. �

These results can be generalized for the subspaces

Er,s =
{
u ∈ E :

∫
R1
u(x, y)v̂+(y) dy = 0, ∀x ≥ r,

∫
R1
u(x, y)v̂−(y) dy = 0, ∀x ≤ s

}
.

Theorem 3.10. For any r and s the operator L : Er,s → E′ has a finite-dimensional
kernel and a closed image.

3.2 Scalar equation

In this section we consider a scalar equation in R2. We will obtain more complete
solvability conditions. Consider the operator

Lu = ∆u+ b(y)u (3.13)

acting from C2+δ(R2) into Cδ(R2). According to Condition 3.1, the equation

u′′(y) + b(y)u(y) = 0 (3.14)

has a solution v(y). We assume that b(±∞) < 0 and that the principal eigenvalue
of the operator L is zero. We will use here that the principal eigenfunction is
positive, that is v(y) > 0, y ∈ R1. For scalar second-order elliptic operators in
bounded domains this follows from the Krein-Rutman type theorems. They are not
directly applicable for operators in unbounded domains. However, this property
remains valid under the assumption that the essential spectrum of the operator is
located in the left half-plane [563], [568]. Consider the equation

Lu = g, g ∈ Cδ(R2), (3.15)

and write

k(x) =
∫ ∞

−∞
g(x, y)v(y) dy. (3.16)
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This integral is well defined since v(y) decays exponentially as |y |→ ∞. Moreover,
k ∈ Cδ(R2). We can represent g(x, y) in the form

g(x, y) = k(x)v(y) + g0(x, y). (3.17)

Without loss of generality we can assume that
∫∞
−∞ v2(y) dy = 1. Then

∫ ∞

−∞
g0(x, y)v(y) dy = 0, ∀x ∈ R

1. (3.18)

Thus we can represent the space E = C2+δ(R2) as a direct sum E = E0 + E1,
where E0 is the subspace of functions satisfying (3.18) and E1 is the subspace of
functions of the form k(x)v(y). We will now consider the restriction of the operator
L to E0. Let u ∈ E0. It is easy to note that

∫ ∞

−∞
Lu(x, y)v(y)dy = 0.

Indeed,
∫ ∞

−∞

∂2u

∂x2
v(y) dy =

∂2

∂x2

∫ ∞

−∞
u(x, y)v(y) dy = 0,

∫ ∞

−∞

(
∂2u

∂y2
+ b(y)

)
v(y) dy =

∫ ∞

−∞
u(x, y)

(
∂2

∂y2
+ b(y)

)
v(y) dy = 0.

Hence we can consider L as acting from E0 into

Ê0 =
{
g ∈ Cδ(R2) :

∫ ∞

−∞
g(x, y)v(y) dy = 0

}
.

Obviously, L is a bounded operator. Solvability of equation (3.15) is given by the
following theorem. Its proof can be found in [559].

Theorem 3.11. The operator L : E0 → Ê0 has a bounded inverse. Equation (3.15)
is solvable in C2+δ(R2) if and only if the equation φ′′ = k, where k(x) is given by
(3.16), is solvable in C2+δ(R1).

The simple model example considered in this section shows how we can re-
duce the dimension of the problem. The invertibility of the operator L on the
subspace allows us to reduce equation (3.15) to the one-dimensional equation
with a non-Fredholm operator. Solvability of the equation φ′′ = k was discussed
in the examples above (Section 1.3). We will finish this section with one more
example. Let k(x) be given as a Fourier series, k(x) =

∑∞
j=1 a(ξj) cos(ξjx). Then

φ(x) = −∑∞
j=1 (a(ξj) cos(ξjx))/ξ2j . If ξj → 0, then the first series can be conver-

gent while the second divergent. In this case, partial sums correspond to a solution
in the form of sequence (Section 1.1), which is not a solution in the usual sense.
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4 Strongly non-Fredholm operators

Let us call non-Fredholm operators that do not satisfy Definition 1.10 strongly non-
Fredholm operators. A simple example is given by the Laplace operator. Consider
the equation

∆u = f (4.1)

in R2. Let
v = eµ

√
1+x2

1+x
2
2 u, g = eµ

√
1+x2

1+x
2
2 f.

Then

∆v − 2µ
(
x1

r

∂v

∂x1
+
x2

r

∂v

∂x2

)
+
(
−µ 1 + r2

r5/2
+ µ2 r

2 − 1
r2

)
v = g, (4.2)

where r =
√

1 + x2
1 + x2

2. The operator Lµ = SµLS
−1
µ corresponds to the left-

hand side of (4.2), L is the Laplacian. There is a family of limiting operators of
the form

L̂µv = ∆v − 2µ
(
a
∂v

∂x1
+ b

∂v

∂x2

)
+ µ2v,

where a and b are arbitrary real numbers such that a2 + b2 = 1. Equation L̂µv = 0
has nonzero bounded solutions for any positive µ. Indeed, substituting v(x1, x2) =
exp(i(ξ1x1 + ξ2x2)), we obtain

aξ1 + bξ2 = 0, ξ21 + ξ22 = µ2.

This system has a solution for any a, b, and µ. Therefore, Lµ does not satisfy the
Fredholm property.

The operator Lu = ∆u + au considered in R
n, where a is a positive con-

stant, is also a strongly non-Fredholm operator. Since the equation ∆u + au = f
has constant coefficients, we can apply the Fourier transform. It has a solution
u ∈ L2(Rn) if and only if f̂(ξ)/(a − ξ2) ∈ L2(Rn), where ̂ denotes the Fourier
transform. The solvability conditions are given by the equality

∫
Rn

e−iξxf(x)dx = 0 (4.3)

for any ξ ∈ Rn such that |ξ|2 = a. Formally, they are similar to solvability condi-
tions for Fredholm operators: the right-hand side is orthogonal to all solutions of
the homogeneous formally adjoint problem.

It should be noted that the left-hand side in (4.3) is not a bounded functional
over L2(Rn). Therefore, these orthogonality conditions do not imply the closeness
of the range of the operator. Indeed, we can construct a sequence fn ∈ L2(Rn) such
that it converges in L2(Rn) to some f0; then all functions fn satisfy the solvability
conditions while f0 does not satisfy them. In order to construct such a sequence,
we consider the Fourier transforms f̂n(ξ) and assume that they vanish at |ξ|2 = a.
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These functions can converge in L2(Rn) to a function f̂0 which does not vanish at
|ξ|2 = a. Hence, f0 does not belong to the range of the operator. Thus, the range
of the operator is not closed and similarity with Fredholm solvability conditions
is only formal.

Schrödinger equation. In the case of the Schrödinger equation

∆u+ V (x)u + au = f, (4.4)

instead of the usual Fourier transform in the example above, we can apply a
generalized Fourier transform. It allows us to prove the following theorem [573].

Theorem 4.1. Suppose that

|V (x)| ≤ C/(1 + |x|3.5+ε), x ∈ R
3

for some positive C and ε, and the norms ‖V ‖L∞(R3), ‖V ‖L3/2(R3), ‖V ‖L4/3(R3)

are sufficiently small1. Assume further that f(x) ∈ L2(R3) and |x|f(x) ∈ L1(R3).
Then equation (4.4) with a ≥ 0 is solvable in L2(R3) if and only if

∫
R3
f(x)φ(x)dx = 0 (4.5)

for all bounded solutions φ of the equation

∆u+ V (x)u + au = 0. (4.6)

Equation (4.6) is self-adjoint. Therefore solvability conditions (4.5) represent
orthogonality to solutions of the homogeneous adjoint equation. As before, this
similarity to Fredholm solvability conditions is only formal. Some generalizations
of these results are given in [574].

Diffusion-convection equation. The diffusion equation with convective terms

∆u+ v.∇u+ c(x)u = f, (4.7)

where v = −∇p is the velocity vector and p is the pressure (Darcy’s law), can be
reduced to the Schrödinger equation by the change of variables z = e−p/2u. We
have

∆z +W (x)z = g, (4.8)

where
W (x) = c(x) +

1
2

∆p− 1
4
|∇p|2, g(x) = f(x) e−p(x)/2.

Assuming thatW and g satisfy conditions of Theorem 4.1, we obtain the solvability
conditions ∫

Rn

g(x)ψ(x)dx = 0 (4.9)

1Exact bounds for the norms are given in [573].
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for all bounded solutions ψ of the homogeneous equation

∆z +W (x)z = 0. (4.10)

Set φ = ψep/2. If φ is a solution of the equation

∆u + v.∇u+ c(x)u = 0, (4.11)

then ψ is a solution of (4.10). Condition (4.9) can be written as
∫

Rn

f(x)φ(x) e−p(x)dx = 0. (4.12)

Set Φ(x) = φ(x) e−p(x). Then Φ(x) satisfies the equation

∆y −∇.(vy) + c(x)y = 0 (4.13)

adjoint to (4.11). Thus solvability conditions for equation (4.7) are given by the
equality ∫

Rn

f(x)Φ(x)dx = 0 (4.14)

for all bounded solutions Φ(x) of equation (4.13) adjoint to (4.11). If the pressure
is bounded, then there is one-to-one correspondence between bounded solutions
Φ(x) of equation (4.13) and bounded solutions ψ(x) of equation (4.10).



Chapter 11

Nonlinear Fredholm Operators

The theory of linear Fredholm operators will be used in this chapter to study
nonlinear elliptic problems. Nonlinear operators are called Fredholm operators if
the corresponding linearized operators satisfy this property.

We will introduce general nonlinear elliptic problems first in Hölder spaces
and then in Sobolev spaces. In Section 2 we will study properness of elliptic op-
erators. It signifies that the inverse image of a compact set is compact in any
bounded closed set. In particular, this implies that the set of solutions of operator
equations is compact in bounded closed sets. In the case of unbounded domains,
we need to introduce special weighted spaces and to impose Condition NS which
provides normal solvability of elliptic problems. Otherwise, the operators may not
be proper.

We construct the topological degree for Fredholm and proper operators. This
construction is devised for abstract operators but keeping in mind elliptic problems
in bounded or unbounded domains. As before, in the case of unbounded domains
we need to introduce weighted spaces. Otherwise, the degree with the required
properties may not exist.

Topological degree is a powerful tool of nonlinear analysis. We will discuss
some of its applications to existence and bifurcation of solutions of operator equa-
tions.

V. Volpert, Elliptic Partial Differential Equations: Volume 1: Fredholm Theory of Elliptic
Problems in Unbounded Domains, Monographs in Mathematics 101,  
DOI 10.1007/978-3-0346-0537-3_11, © Springer Basel AG 2011 
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1 Nonlinear elliptic problems

Let β = (β1, . . . , βn) be a multi-index, βi nonnegative integers, |β| = β1 + · · · +
βn, Dβ = Dβ1

1 . . . Dβn
n , Di = ∂/∂xi. We consider the operators

Aiu =
p∑

k=1

∑
|β|≤βik

aβik(x)D
βuk (i = 1, . . . , p), x ∈ Ω, (1.1)

Biu =
p∑

k=1

∑
|β|≤γik

bβik(x)D
βuk (i = 1, . . . , r), x ∈ ∂Ω. (1.2)

According to the definition of elliptic problems in the Douglis-Nirenberg sense,
there are some integers s1, . . . , sp; t1, . . . , tp; σ1, . . . , σr such that

βij ≤ si + tj , i, j = i, . . . , p; γij ≤ σi + tj , i = 1, . . . , r, j = 1, . . . , p, si ≤ 0.

We suppose that the number m =
∑p
i=1(si + ti) is even and put r = m/2.

We assume that the problem is elliptic, i.e., the ellipticity condition

det


 ∑

|β|=βik

aβik(x)ξ
β



p

ik=1

�= 0, βik = si + tk

is satisfied for any ξ ∈ Rn, ξ �= 0, x ∈ Ω̄, as well as the condition of proper
ellipticity and the Lopatinskii conditions. Here ξ = (ξ, . . . , ξn), ξβ = ξβ1 . . . ξ

β
n . The

system is uniformly elliptic if the last determinant is bounded from below by a
positive constant for all |ξ| = 1 and x ∈ Ω̄. Exact definitions are given in the
introduction (Section 2.2).

In this section we work with Hölder spaces. Nonlinear elliptic problems in
Sobolev spaces will be discussed in Section 2.5. Everywhere below Ck+α(Ω) de-
notes the standard Hölder space of functions bounded in Ω together with their
derivatives up to order k, and the latter satisfies the Hölder condition uniformly
in x.

Denote by E0 a space of vector-valued functions u(x) = (u1(x), . . . , up(x)),
uj ∈ Cl+tj+α (Ω), j = 1, . . . , p, where l and α are given numbers, l ≥ max(0, σi),
0 < α < 1. Therefore

E0 = Cl+t1+α(Ω) × · · · × Cl+tp+α(Ω).

The domain Ω can be bounded or unbounded. To avoid uncertainty, from
now on we will consider only unbounded domains unless it is explicitly indicated.
The results about degree construction and its applications remains valid, and
usually much simpler for bounded domains. The boundary ∂Ω of the domain Ω is
supposed to be of the class Cl+λ+α, where λ = max(−si, −σi, tj), and to satisfy
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Condition D (Chapter 4, Section 1). The coefficients of the operator satisfy the
following regularity conditions:

aβij ∈ Cl−si+α(Ω), bβij ∈ Cl−σi+α(∂Ω).

The operator Ai acts from E0 into Cl−si+α(Ω), and Bi from E0 into Cl−σi+α(∂Ω).
Write A = (A1, . . . , Ap), B = (B1, . . . , Br). Then

A : E0 → E1, B : E0 → E2, (A,B) : E0 → E,

where E = E1 × E2,

E1 = Cl−s1+α(Ω)× · · · ×Cl−sp+α(Ω), E2 = Cl−σ1+α(∂Ω)× · · · ×Cl−σr+α(∂Ω).

We will consider weighted Hölder spaces E0,µ and Eµ with the norms

‖u‖E0,µ = ‖uµ‖E0, ‖u‖Eµ = ‖uµ‖E.

We use also the notation Ck+αµ for a weighted Hölder space with norm
‖u‖Ck+α

µ
= ‖uµ‖Ck+α .

We suppose that the weight function µ is a positive infinitely differentiable
function defined for all x ∈ R

n, µ(x) → ∞ as |x| → ∞, x ∈ Ω, and

| 1
µ(x)

Dβµ(x)| → 0, |x| → ∞, x ∈ Ω (1.3)

for any multi-index β, |β| > 0. In fact, we will use its derivative only up to a
certain order.

Operator (A,B), considered in weighted Hölder spaces, acts from E0,µ

into Eµ.

We consider general nonlinear elliptic operators

Fi(x,Dβi1u1, . . . , D
βipup) = 0, i = 1, . . . , p, x ∈ Ω (1.4)

with nonlinear boundary operators

Gj(x,Dγj1u1, . . . , D
γjpup) = 0, j = 1, . . . , r, x ∈ ∂Ω (1.5)

in Ω ⊂ R
n.

Here Dβikuk is a vector with components Dαuk = ∂|α|uk/∂xα1
1 . . . ∂xαn

n

where the multi-index α = (α1, . . . , αn) takes all values such that 0 ≤ |α| =
α1 + · · · + αn ≤ βik, βik are given integers. The vectors Dγjkuk are defined simi-
larly. The regularity of the real-valued functions Fi, Gi, u = (u1, . . . , up), and of
the domain Ω is determined by βik, γjk, i, k = 1, . . . , p, j = 1, . . . , r (see below).
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In what follows we will also use the notation

Fi(x,Diu) = Fi(x,Dβi1u1, . . . , D
βipup),

Gj(x,Db
ju) = Gj(x,Dγj1u1, . . . , D

γjpup).

The corresponding linear operators are

Ai(v, ηi) =
p∑
k=1

∑
|α|≤βik

aαik(x, ηi)D
αvk, i = 1, . . . , p, x∈ Ω, (1.6)

Bj(v, ζi) =
p∑
k=1

∑
|α|≤γjk

bαjk(x, ζi)D
αvk, j = 1, . . . , r, x ∈ ∂Ω, (1.7)

where

aαik(x, ηi) =
∂Fi(x, ηi)
∂ηαik

, bαjk(x, ζi) =
∂Gj(x, ζj)
∂ζαjk

,

ηi ∈ R
ni and ζj ∈ R

mj are vectors with components ηαik and ζαjk, respectively,
ordered in the same way as the derivatives in (1.4), (1.5).

The system (1.4), (1.5) is called elliptic if the corresponding system (1.6),
(1.7) is elliptic for all values of parameters ηi, ζj . When we mention the Lopatin-
skii condition for operators (1.4), (1.5) we mean the corresponding condition for
operators (1.6), (1.7) for any ηi ∈ Rni and ζj ∈ Rmj .

We suppose that the functions Fi (Gi) satisfy the following conditions: for any
positive number M and for all multi-indices β and γ: |β+γ| ≤ l−si+2 (|β+γ| ≤
l−σi+2), |β| ≤ l−si (|β| ≤ l−σi) the derivativesDβ

xD
γ
ηFi(x, η) (Dβ

xD
γ
ζGi(x, ζ))

as functions of x ∈ Ω, η ∈ Rni , |η| ≤ M (x ∈ V, ζ ∈ Rmi , |ζ| ≤ M) satisfy
the Hölder condition in x uniformly in η (ζ) and the Lipschitz condition in η (ζ)
uniformly in x (with constants possibly depending on M). Write F = (F1, . . . , Fp),
G = (G1, . . . , Gr). Then (F,G) acts from E0,µ into Eµ.

2 Properness

We recall that an operator A acting from a Banach space E0 into another Banach
space E is called proper on bounded closed sets if for any bounded closed set
D ⊂ E0 the intersection of the inverse image of any compact set in E with D is
compact. For the sake of brevity, we will call such operators proper.

2.1 Lemma on properness of operators in Banach spaces

Let E0 and E be two Banach spaces. Suppose that a topology is introduced in
E0 such that the convergence in this topology, which we denote by ⇀, has the
following property: for any sequence {un}, un ∈ E0, bounded in the E0-norm there
is a subsequence {unk

} : unk
⇀ u0 ∈ E0.
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We consider an operator T (u) : D → E, where D ⊂ E0. Suppose that this
operator is closed with respect to the convergence ⇀ in the following sense: if
T (uk) = fk, uk ∈ D, fk ∈ E and uk ⇀ u0 ∈ E0, fk → f0 in E, then u0 ∈ D and
T (u0) = f0.

Lemma 2.1. Suppose that D is a bounded closed set in E0, the operator T (u) is
closed with respect to the convergence ⇀ and for any u0 ∈ D there exists a linear
bounded operator S(u0) : E0 → E,which has a closed range and finite-dimensional
kernel, such that for any sequence {vk}, vk ∈ D, vk ⇀ u0 ∈ D we have

||T (u0) − T (vk) − S(u0)(u0 − vk)||E → 0.

Then T (u) is a proper operator.

Proof. Consider a sequence {un} in D such that fn = T (un) → f0 in E. We
have to prove that there exists a subsequence of {un} which is convergent in E0.
Consider a subsequence {uni} such that uni ⇀ u0 ∈ E0. Then since T (u) is
closed, we have u0 ∈ D and T (u0) = f0. Set vi = uni −u0 and hi = S(u0)vi. Then
hi = [S(u0)(uni−u0)−(T (uni)−T (u0))]+(T (uni)−T (u0)) → 0 in E. Suppose that
w1, . . . , wk is a basis of kerS(u0) and {ϕi} is a biorthogonal sequence of functionals
in the dual to E0 space. Write E1 = {u ∈ E0, < ϕi, u >= 0, i = 1, . . . , k}. Then
we have

vi =
k∑
j=1

< ϕj , vi > wj + v1
i , v1

i ∈ E1. (2.1)

Denote by S1 the restriction of S(u0) on E1. Then S1v
1
i = hi. By the Banach

theorem, S1 has a bounded inverse. So v1
i is a convergent in E0 sequence. Since

uni ∈ D and so vi is a bounded sequence in E0, it follows from (2.1) that we can
find a convergent subsequence of vi. The lemma is proved. �

2.2 Properness of elliptic operators in Hölder spaces

We will prove properness of elliptic problems in unbounded domains. The proof
remains valid and becomes even simpler for bounded domains. In this case we do
not need to introduce weighted spaces and to impose additional conditions which
provide normal solvability of linearized operators.

We will show that the operator T = (F,G) : E0,µ → Eµ defined above
satisfies conditions of Lemma 2.1 under the assumptions formulated below. The
convergence ⇀ is convergence in the space E0,µ(ΩR) for α = 0 and any R > 0.
Here ΩR is the intersection of Ω with a ball BR in Rn with radius R and center at
0. It is clear that any bounded in E0,µ sequence has a ⇀ convergent subsequence.

As a domainD we take a closed ball in E0,µ with its center at zero. Obviously
the operator T = (F,G) is closed with respect to the convergence ⇀.
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We construct below the operator S introduced in Lemma 2.1. Let F =
(F1, . . . , Fp), where Fi is the operator (1.4),

ηi = (ηi1, . . . , ηini), and η0
i = (η0

i1, . . . , η
0
ini

)

are two vectors in Rni . Then by Taylor’s formula we can write

Fi(x, ηi) = Fi(x, η0
i ) +

ni∑
j=1

F ′
iηij

(x, η0
i ) (ηij − η0

ij)

+
∫ 1

0

(1 − s)
ni∑

j,k=1

F ′′
iηijηik

(x, η0
i + s(ηi − η0

i ))ds (ηij − η0
ij)(ηik − η0

ik).

Therefore for any u, u0 ∈ E0,µ we have

Fi(x,Diu) − Fi(x,Diu0) = Ai(u− u0,Diu0) + Φi(u, u0),

where Ai is given by (1.6) and

Φi(u, u0) =
∫ 1

0

(1 − s)
ni∑

j,k=1

F ′′
ivjvk

(x, v0 + s(v − v0))ds (vj − v0
j )(vk − v0

k),

v(x) = Diu(x), v0(x) = Diu0(x).

Lemma 2.2. ||Φi(um, u0)||
C

l−si+α
µ (Ω)

→ 0 if um ⇀ u0 and ||um||E0,µ is bounded.

Proof. It is sufficient to prove that

||Dβ (F ′′
ivjvk

(x, v0 + s(vm − v0)) (vmj − v0
j )(v

m
k − v0

k)µ)||Cα(Ω) → 0

for |β| ≤ l − si. Here vm(x) = Dium(x). We will prove that

||Dβ F ′′
ivjvk

(x, v0 + s(vm − v0))||Cα(Ω) ≤M, |β| ≤ l − si, (2.2)

where M is a constant and

||Dβ((vmj − v0
j )(v

m
k − v0

k)µ)||Cα(Ω) → 0, |β| ≤ l − si as m→ ∞. (2.3)

We begin with (2.2). Let um = (um1 , . . . , u
m
p ). By assumption

||umk ||
C

l+tk+α
µ (Ω)

≤M1 (k = 1, . . . , p).

Here and below M with subscripts denotes constants independent of u and v. It
follows that

||umk ||Cl+tk+α(Ω) ≤M2. (2.4)
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Indeed, write w = µumk . Then ||w||Cl+tk+α(Ω) ≤ M1, umk = 1
µw, and (2.4) follows

easily from the properties of the function µ(x) since by (1.3), Dβ 1
µ is bounded for

any multi-index β.
Obviously, (2.4) implies

||vm||Cl−si+α(Ω) ≤M3. (2.5)

Inequality (2.2) follows from this inequality and from the conditions of smoothness
of the functions Fi.

We now prove (2.3). Set wmj = vmj − v0
j . Obviously Dβ(wmj wmk µ) is a sum

of expressions of the form

Dγwmj Dτwmk Dσµ = [µDγwmj ] [µDτwmk ]
1
µ

(
1
µ
Dσµ

)
(2.6)

with constant coefficients, where γ, τ, σ are multi-indices, γ+ τ +σ ≤ β. The last
factor in (2.6) is bounded by virtue of (1.3). From the properties of the function
µ we conclude that 1

µ and Di
1
µ (i = 1, . . . , n) tend to 0 as |x| → ∞, x ∈ Ω. So

|| 1
µ
||Cα(Ω−

R) → 0 as R → ∞. (2.7)

Here Ω−
R is the intersection of Ω with the ball |x| > R.

We prove next that

||µ Dγwmj ||Cα(Ω) ≤M4, (2.8)

where |γ| ≤ l − si. Set ymk = umk − u0
k. Then wmj has the form Dσymk with |σ| ≤

si + tk. So Dγwmj has the form Dσ+γymk with |σ + γ| ≤ l + tk. By conditions of
the lemma ||ymk ||

C
l+tk+α
µ (Ω)

≤M5, and (2.8) follows from this.

From (2.7) and (2.8) we obtain the convergence ||Dβ (wmj w
m
k µ)||Cα(Ω−

R) → 0
as R→ ∞. So to prove (2.3) it is sufficient to verify that ||Dβ (wmj w

m
k µ)||Cα(ΩR) →

0 for any R as m→ ∞. This follows from (2.6) and the fact that ||µDβ wmj ||Cα(ΩR)

is bounded and ||µDβ wmj ||C(ΩR) → 0 as m → ∞ for |β| ≤ l − si since um ⇀ u0.
Therefore the Hölder norm of the product of the first two factors in the right-hand
side of (2.6) converges to zero. The lemma is proved. �

Lemma 2.2 implies the convergence

||Fi(x,Dium) − Fi(x,Diu0) − Ai(um − u0,Diu0)||
C

l−si+α
µ (Ω)

→ 0 (2.9)

if um ⇀ u0 and ||um||E0,µ is bounded.
Similarly we have for the operators Gj(x,Db

ju(x)) (j = 1, . . . , r):

||Gj(x,Db
ju
m) −Gj(x,Db

ju
0) −Bj(um − u0,Db

ju
0)||

C
l−σj+α
µ (∂Ω)

→ 0 (2.10)

if um ⇀ u0 and ||um||E0,µ is bounded.
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Consider the operator

S(u0)u = (A1(u,D1u0), . . . , Ap(u,Dpu0),

B1(u,Db
1u0), . . . , Br(u,Db

ru0)) : E0,µ → Eµ.

We are interested in limiting operators for S(u0) in the sense of the previous
section. We consider also the operator

S0u = (A1(u, 0), . . . , Ap(u, 0), B1(u, 0), . . . , Br(u, 0)) : E0,µ → Eµ,

which does not depend on u0.

Lemma 2.3. For any u0 ∈ E0,µ the limiting operators for S(u0) and S0 coincide.

Proof. Consider first the operator Ai(u; ηi) defined by (1.6). Since u0 ∈ E0,µ, then
µDβu0k(x) ∈ Cα(Ω) for |β| ≤ l + tk. So µDiu0 ∈ Cα(Ω) and therefore

|Diu0(x)| ≤ M

µ(x)
→ 0. (2.11)

Let |xm| → ∞, xm ∈ Ω. Then |x + xm| → ∞ for all x ∈ BR. So there exists m0

such that for all m > m0 and all x ∈ Ω∗
⋂
BR the inequality |Diu0(x + xm)| ≤ 1

holds. Here Ω∗ is a limiting domain which corresponds to the sequence xm.
Set fβik(x, ηi) = ∂Fi(x,ηi)

∂ηβ
k

. It follows from the properties of the function Fi

that for m > m0 we have

|fβik(x+xm, 0)−fβik(x+xm,Diu0(x+xm))| ≤ K |Diu0(x+xm)| ≤ K M

µ(x+ xm)
→ 0

as |xm| → ∞, x ∈ BR. Therefore if one of the functions

fβik(x+ xm, 0), fβik(x+ xm,Diu0(x+ xm))

has a limit as |xm| → ∞, then the same is true for another one and the limits
coincide. Thus the lemma is proved for the operator (1.6). The proof is similar for
the operator (1.7). The lemma is proved. �

Theorem 2.4. Suppose that the system of operators (1.4) is uniformly elliptic and
for the system of operators (1.4), (1.5) Lopatinskii conditions are satisfied. Assume
further that all limiting operators for the operator S0 satisfy Condition NS. Then
the operator (F,G) : E0,µ → Eµ is proper.

Proof. We use Lemma 2.1 for the operator T = (F,G). For any u0 ∈ E0,µ we take

S(u0) = (A1(u0,D1u0), . . . , (Ap(u0,Dpu0),

B1(u0,Db
1u0), . . . , Br(u0,Db

ru0)) : E0,µ → Eµ.
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From (2.9) and (2.10) we obtain

||T (u0) − T (um) − S(u0)(u0 − um)||Eµ → 0

if um ⇀ u0 and ||um||E0,µ is bounded. If all limiting operators for S0 satisfy
Condition NS, then according to Lemma 2.3 the same is true for all limiting
operators for S(u0) for any u0 ∈ E0,µ. The results of the previous section imply
that S(u0) has a closed range and a finite-dimensional kernel. The theorem is
proved. �

Remark 2.5. Functions from the weighted space E0,µ tend to zero at infinity. If
we look for solutions, which are not zero at infinity, we can represent them in the
form u+ ψ, where ψ is a given function with a needed behavior at infinity, and u
belongs to E0,µ.

2.3 Operators depending on a parameter

Consider an operator T (u, t) : D × [0, 1] → E, D ⊂ E0 depending on parameter
t ∈ [0, 1]. We suppose here as in Section 2.1 that E0 and E are arbitrary Banach
spaces. We will obtain conditions of its properness with respect to both variables u
and t. First of all, we modify the definition of closed operators given in Section 2.1:

Let T (uk, tk) = fk, tk → t0, uk ∈ D, fk ∈ E, uk ⇀ u0 ∈ E0, fk → f0 in E,
then u0 ∈ D and T (u0, t0) = f0.

Lemma 2.1′. Suppose that D is a bounded set in E0, the operator T (u, t) is closed,
and for any u0 ∈ D there exists a linear bounded operator S(u0) : E0 → E, which
has a closed range and a finite-dimensional kernel, such that for any sequence
{vk}, vk ∈ D, vk ⇀ u0 ∈ D and tk → t0 we have

||T (u0, t0) − T (vk, tk) − S(u0)(u0 − vk)||E → 0.

Then T (u, t) is a proper operator.

The proof of the lemma remains the same as above. Suppose now that the operator
T (u, t) satisfies the conditions of Lemma 2.1′ for any t ∈ [0, 1] fixed, and it depends
on t continuously in the operator norm, i.e.,

‖T (u, t)− T (u, t0)‖E ≤ c(t, t0), ∀u ∈ D,

where c(t, t0) → 0 as t→ t0. Then

||T (u0, t0) − T (vk, tk) − S(u0)(u0 − vk)||E
≤ ||T (u0, t0) − T (vk, t0) − S(u0)(u0 − vk)||E + ||T (vk, t0) − T (vk, tk)||E .

Therefore, if the conditions of Lemma 2.1 are satisfied for each t fixed and the
operator depends continuously on a parameter, then Lemma 2.1′ holds.
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On the other hand, if the operator T (u, t) is closed in the sense of Section
2.1 for each t fixed, and if it depends continuously on a parameter, then it is also
closed in the sense of the definition given in this section. Thus, under conditions
of Section 2.2 elliptic operators depending continuously on a parameter are proper
with respect to two variables.

2.4 Example of non-proper operators

Properness of an operator A : E0 → E implies that the set of solutions of the
equation A(u) = 0 is compact in any bounded closed set D ⊂ E0. In the proof of
properness of elliptic operators in unbounded domains, we used weighted spaces.
In the spaces without weight this property may not be satisfied.

Consider the operator

Aτ (u) = u′′ + Fτ (u)

acting from C2+α(R) into Cα(R), 0 < α < 1. Here

F (u) = u(u− τ)(1 − u),

where 0 < τ < 1/2. We look for a positive solution of the equation A(u) = 0 with
zero limits at infinity, u(±∞) = 0. It can be found explicitly by reduction of the
second-order equation to a system of two first-order equations:

u′ = p, p′ = −F (u) (2.12)

and by integration of this system. Denote this solution by uτ (x). We note that it
is invariant with respect to translation in space, that is uτ (x+h) is also a solution
for any real h. The set of solutions uτ (x+ h), h ∈ R is not compact in C2+α(R).
Hence the operator A is not proper. However, the invariance of the solution with
respect to translation is mostly a technical difficulty. There are various methods
to get rid of it. In particular, we can consider the problem on the half-axis x ≥ 0
with the boundary condition u′(0) = 0. It is equivalent to choose such a shift that
the solution attains its maximum at x = 0.

The absence of properness of such operators is not a technical but a principal
problem related to unbounded domains. In order to show this, we will construct
another set of solutions, which is uniformly bounded but not compact. We will
consider that such solutions uτ (x) have their maxima at x = 0. Write µτ = uτ (0).
It can be verified that ∫ µτ

0

F (u)du = 0.

Since τ < 1/2, then τ < µτ < 1.
The phase plane of system (2.12) is shown in Figure 11. The homoclinic

trajectory corresponds to the solution uτ (x). There are also two heteroclinic tra-
jectories going from the point (0, 0) to (1, 0) and from (1, 0) to (0, 0).



2. Properness 455

Figure 11: Trajectories of system (2.12).

Consider now a sequence τn ↑ 1/2 and the corresponding solutions uτn(x).
Then µτn → 1, and the homoclinic trajectory tends to the heteroclinic ones. The
sequence of functions uτn(x) converges to 1 uniformly in any bounded interval. On
the other hand, they tend to zero at infinity. Hence, this sequence is not compact
in C2+α(R), and the operator A(u) is not proper.

Suppose now that the operator A(u) acts in weighted spaces, from the space
C2+α
µ (R) into the space Cαµ (R). The norms in these spaces are defined by the

equality
‖u‖Ck+α

µ (R) = ‖uµ‖Ck+α
µ (R), k = 0, 2.

The weight function µ(x) =
√

1 + x2 grows at infinity. The sequence of functions
uτn(x) is not uniformly bounded in the norm of the space C2+α

µ (R). Therefore,
there can exist only a finite number of elements of this sequence in any bounded
closed set D ⊂ C2+α

µ (R). The operator is proper in the weighted spaces.

2.5 Properness in Sobolev spaces

The proof of properness of elliptic problems in Sobolev spaces is close to that for
Hölder spaces. However, we need to specify the function spaces and the conditions
on the operators. For simplicity of presentation, we restrict ourselves here to scalar
elliptic problems. As before, we carry out the proof for the case of unbounded
domains. We consider nonlinear elliptic operators

F (x,D2mu), x ∈ Ω, (2.13)

where D2m is a vector with the components Dα, 0 ≤ |α| ≤ 2m, and nonlinear
boundary operators

Gj(x,Dmju), x ∈ ∂Ω, j = 1, . . . ,m, (2.14)
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where Dmj is a vector with the components Dα, 0 ≤ |α| ≤ mj . The regularity
conditions of the functions F , Gj and of the domain Ω is determined by m and
mj (see below).

The corresponding linear operators are

A(v, η) =
∑

|α|≤2m

aα(x, η)Dαv, x ∈ Ω, (2.15)

Bj(v, ξ) =
∑

|α|≤mj

bαj (x, ξj)Dαv, x ∈ ∂Ω, j = 1, . . . ,m, (2.16)

where

aα(x, η) =
∂F (x, η)
∂ηα

, bαj (x, ξj) =
∂Gj(x, ξj)

∂ξαj
,

η and ξj are vectors with the components ηα, ξαj , respectively, ordered in the same
way as the derivatives in (2.13), (2.14).

Operators (2.13), (2.14) are called elliptic if the corresponding operators
(2.15), (2.16) are elliptic for all values of the parameters η, ξj . When we mention
the Lopatinskii condition for operators (2.13), (2.14), we mean the corresponding
condition for operators (2.15), (2.16) for any η and ξj .

Let l be an integer, l > max(2m,mj + 1) and p be a real number, p > n.
We introduce the space E0 = E0(Ω) = W l,p∞ (Ω) and the corresponding weighted
space E0,µ = W l,p

∞,µ(Ω) with the norm ‖u‖E0,µ = ‖uµ‖E0. The weight function µ
is supposed to satisfy the conditions of Section 1.

We impose the following smoothness conditions on the functions F and Gj :

– The derivatives

Dα
xD

β
ηF (x, η), |α| ≤ l− 2m, |β| ≤ l − 2m+ 2 (2.17)

exist, they are bounded for x ∈ Ω, |η| ≤ R for any R > 0 (with constants
depending on R), and they satisfy the Hölder condition.

– The functions Gj are supposed to be extended on the domain Ω̄ in such a
way that the derivatives

Dα
xD

β
ξGj(x, ξ), |α| ≤ l −mj, |β| ≤ l−mj + 2 (2.18)

exist, they are bounded for x ∈ Ω, |ξ| ≤ R for any R > 0 (with constants
depending on R), and they satisfy the Hölder condition.

– Moreover it is supposed that µ(x)Dα
xF (x,0), |α|≤ l−2m and µ(x)Dα

xGj(x,0),
|α| ≤ l −mj, j = 1, . . . ,m are bounded in Ω.

– The domain Ω is supposed to be of the class Cl+θ and to satisfy Condition D
(Chapter 4).
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Lemma 2.6. The operator F (x,D2mu) acts from the space E0,µ(Ω) into

W l−2m,p
∞,µ (Ω).

Proof. Let v = D2mu, vα = Dαu, 0 ≤ |α| ≤ 2m. We will prove that

F (x, v) ∈W l−2m,p
∞,µ (Ω),

or
Dα(µF (x, v)) ∈ Lp∞(Ω), 0 ≤ |α| ≤ l− 2m. (2.19)

We have for 0 ≤ |α| ≤ l − 2m:

Dα(µF (x, v)) =
∑

β+γ≤α
cβγD

βµDγF (x, v),

where cβγ are constants. Then for y ∈ Ω,

‖Dα(µF (x, v))‖Lp(Ω∩Qy) ≤
∑

β+γ≤α
cβγ‖D

βµ

µ
µDγF (x, v)‖Lp(Ω∩Qy)

≤M
∑

γ≤l−2m

‖µDγF (x, v)‖Lp(Ω∩Qy)

since |Dβµ|/µ is bounded.
We use the following formula of differentiation of a superposition:

D̄α
xF (x, v(x)) = Dα

xF (x, v(x)) +
s∑
i=1

∂F (x, v(x))
∂vi

Dα
x vi(x) + T|α|(v;F ), (2.20)

where
T|α|(v;F ) =

∑
cβσγ1...γsD

σ
xD

β
vF (x, v(x))Πs

τ=1D
γτ
x vτ (x)

and the sum is taken over all 0 ≤ |β| ≤ |α|, 0 ≤ |σ| < |α|, 0 ≤ |γ1| < |α|,
. . . , 0 ≤ |γs| < |α|. Here D̄α

xF (x, v(x)) is the full derivative in x, Dα
xF (x, v(x))

is a partial derivative in x (for fixed v), Dβ
vF (x, v) is a partial derivative in v,

v = (v1, . . . , vs); α = (α1, . . . , αn), β = (β1, . . . , βs), γτ = (γτ1 , . . . , γτs) are multi-
indices, cβσγ1...γs are constants.

According to the assumptions on F , all derivatives in the right-hand side of
(2.20) exist. Formula (2.20) can be proved directly by induction in |α|.

If u ∈ W l,p
∞,µ(Ω) and v = D2mu, then

Dαv ∈ Lp∞,µ(Ω) for |α| ≤ l − 2m. (2.21)
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Indeed, denote w = µu. For |γ| ≤ 2m we have

Dγu =
∑

σ+τ≤γ
cστD

σ 1
µ
Dτw,

µDα+γu =
∑

σ+τ≤γ
cστµD

α

(
Dσ 1

µ
Dτw

)

=
∑

σ+τ≤γ
cστµ

∑
ρ+ν≤α

cρν

(
Dρ+σ 1

µ
Dτ+νw

)
.

From the properties of the weight function µ we obtain that µDρ+σ 1
µ is bounded.

Since w ∈W l,p∞ (Ω), we get (2.21).
It follows from (2.21) that

Dα(µv) ∈ Lp∞(Ω), |α| ≤ l− 2m,

and the embedding theorems imply

µv ∈ Cl−2m−1(Ω). (2.22)

To prove (2.19) we multiply (2.20) by µ and estimate the right-hand side.
From (2.22) and (2.17) we conclude that Dα

xF (x, v) satisfies the Lipschitz
condition in v. Hence

|µDα
xF (x, v(x))| ≤ µ|Dα

xF (x, 0)| + µK|v(x)|

with some constant K. Therefore µDα
xF (x, v(x)) is bounded and, consequently,

belongs to Lp∞(Ω).
For the second term in the right-hand side of (2.20) we get

µ

s∑
i=1

∂F (x, v(x))
∂vi

Dα
x vi(x) ∈ Lp∞(Ω)

since ∂F (x,v(x))
∂vi

is bounded and µDα
xvi(x) ∈ Lp∞(Ω) by virtue of (2.21). Finally,

µT|α|(v;F ) is bounded and, consequently, belongs to Lp∞(Ω). Thus (2.19) is proved.
The lemma is proved. �

Lemma 2.7. The operator Gj(x,Dmju), j = 1, . . . ,m acts from the space E0,µ(Ω)
into the space W l−mj−1/p,p

∞,µ (∂Ω).

Proof. Similarly to the proof of the previous lemma, we obtain that Gj(x,Dmju)
acts from E0,µ into W l−mj+p∞,µ (Ω). It is sufficient to consider the trace of Gj on ∂Ω.
The lemma is proved. �
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We consider the operator T = (F,G), where G = (G1, . . . , Gm). It acts from
E0,µ into Eµ, where

Eµ = W l−2m,p
∞,µ (Ω) ×W l−m1−1p,p

∞,µ (∂Ω) × · · · ×W l−mm−1/p,p
∞,µ (∂Ω).

We will prove in this section that the operator T = (F, F ) : E0,µ → Eµ defined
above satisfies the conditions of Lemma 2.1 under the assumptions formulated
below.

The convergence ⇀ is a local weak convergence in the space E0,µ. More
precisely, we say that a sequence uk, uk ∈ E0,µ converges locally weakly to an
element u0 ∈ E0,µ and write uk ⇀ u0 if for any R > 0, uk → u0 in E0,µ(ΩR)
weakly.

Here we use the same notation for a function from E0,µ(Ω) and for its re-
striction to E0,µ(ΩR), ΩR = Ω ∩ {|x| < R}.
Lemma 2.8. Let uk ∈ E0,µ(Ω) be a bounded sequence, ‖uk‖E0,µ(Ω) ≤ M , where
M does not depend on k. Then there exists a subsequence uki and a function
u0 ∈ E0,µ(Ω) such that uki ⇀ u0.

Proof. It is sufficient to prove the lemma for the space E0(Ω) without weight.
Indeed, if ‖uk‖E0,µ(Ω) ≤ M , then ‖vk‖E0(Ω) ≤ M , where vk = µuk. For any
functional f(v) ∈ (E0,µ(ΩR))∗ we conclude that f( vµ) ∈ (E0(ΩR))∗. Hence if vki

converges locally weakly in E0 to v0 ∈ E0, then uki = vki/µ converges locally
weakly in E0,µ to u0 = v0/µ ∈ E0,µ.

Therefore we will prove the lemma for the space E0(Ω). Let ‖vk‖E0(Ω) ≤M .
We can extend the functions vk(x) on Rn in such a way that ‖vk‖E0(Rn) ≤M1. We
will prove that there exists v0 ∈ E0(Rn) such that a subsequence vki of vk tends
to v0 locally weakly in E0(Rn). Then it will follow that vki tends to the restriction
of v0 on E0(Ω) locally weakly.

Let N = 1, 2, . . . . Denote by BN the ball {x : |x| < N}. For N = 1 we can
find a subsequence v1

k of vk such that v1
k → v1 in E0(B1) weakly. For N = 2 we

find a subsequence v2
k of v1

k such that v2
k → v2 in E0(B2) weakly. Proceeding in

this manner we construct a sequence vNk for any N , and then by the diagonal
process we find a subsequence wk of vk and a function v0(x), which belongs to
E0(BN ) for all N , such that wk → v0 weakly in E0(BN ) for any N .

We now prove that v0 ∈ E0(Rn) and that wk tends to v0 locally weakly in
E0(Rn). Let B be an arbitrary ball in Rn. Then wk → v0 weakly in E0(B). Indeed,
suppose that it is not so. Then there exists ε > 0, a functional f ∈ (E0(B))∗ and
a subsequence wki of wk such that

|f(wki) − f(v0)| > ε. (2.23)

Since ‖wki‖E0(B) ≤ M1, there exists a subsequence w̃k of wki such that w̃k → w̃
weakly in E0(B).
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Let φ belong to the spaceD of infinitely differentiable functions with compact
support, suppφ ⊂ B. Then g(u) =

∫
u(x)φ(x)dx is a bounded functional in E0(B).

Therefore
g(w̃k) → g(w̃). (2.24)

If N is so large that B ⊂ BN , then g is also a bounded functional in E0(BN ).
Hence

g(w̃k) → g(v0). (2.25)

Taking into account that φ can be arbitrary, we obtain from (2.24) and (2.25)
that w̃ = v0 as elements of E0(B). Therefore w̃k → v0 weakly in E0(B). This
contradicts (2.23). This contradiction proves that wk → v0 weakly in E0(B).

It remains to prove that v0 ∈ E0(Rn). For any ball Qa = {x : |x − a| < 1}
we consider the shifted functions wak(x) = wk(x+ a) in the ball Q0. We have

wak → wa0 ∈ E0(Q0) weakly. (2.26)

We prove next that the set of all wa0 , a ∈ Rn is bounded in E0(Q0). Suppose
that it is not so. Then since any weakly bounded set is strongly bounded, there
exists f ∈ (E0(Q0))∗ and a sequence wai

0 such that

f(wai
0 ) → ∞ as i→ ∞. (2.27)

From (2.26) it follows that f(wai

k ) → f(wai
0 ) as k → ∞. This and (2.27) imply

that there exists a subsequence wai

ki
of wai

k such that

f(wai

ki
) → ∞ as i→ ∞. (2.28)

On the other hand, since wai

ki
(x) = wki(x+ ai), we have from the estimate

‖vk‖E0(Rn) ≤M1

that ‖wai

ki
‖E0(Q0) ≤ M1, which contradicts (2.28). This contradiction proves that

v0 ∈ E0(Rn). The lemma is proved. �

We now return to the operator T = (F,G) : E0,µ → Eµ.

Lemma 2.9. The operator T is closed with respect to the convergence ⇀ in the
following sense: if T (uk) = fk, uk ∈ E0,µ, fk ∈ Eµ, and uk ⇀ u0 ∈ E0,µ, fk → f0
in Eµ, then T (u0) = f0.

Proof. Let uk ⇀ u0. This means that uk → u0 in E0,µ(ΩR) weakly for any R > 0.
Write vk = µuk, v0 = µu0. Then obviously vk → v0 weakly in E0(ΩR) = W l,p

∞ (ΩR).
Since the embedding operator W l,p(ΩR) → Cl−1(ΩR) is compact, it follows that
vk → v0 strongly in Cl−1(ΩR). From this we obtain the strong convergence uk →
u0 in Cl−1(ΩR). Consider the operator (2.13). Since l − 1 ≥ 2m, it follows that

F (x,D2muk(x)) → F (x,D2mu0(x)) as k → ∞
uniformly in ΩR. This convergence proves the lemma for operator (2.13). Similarly
it can be proved for the operator (2.14). The lemma is proved. �
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We begin construction of the operator S introduced in Lemma 2.1. Consider
the function F (x, η), which corresponds to the operator (2.13). Here η is a vector,
η ∈ Rs, where s is the number of components ηα. Let η0 ∈ Rs be another vector.
By Taylor’s formula we can write

F (x, η) = F (x, η0) +
s∑
j=1

F ′
ηj

(x, η0) (ηj − η0
j )

+
∫ 1

0

(1 − τ)
s∑

j,k=1

F ′′
ηjηk

(x, η0 + τ(η − η0))dτ (ηj − η0
j )(ηk − η0

k).

Therefore for any u, u0 ∈ E0,µ we have

F (x,D2mu) − F (x,D2mu0) = A(u− u0, D2mu0) + Φ(u, u0),

where A is given by (2.15) and

Φ(u, u0) =
∫ 1

0

(1 − τ)
s∑

j,k=1

F ′′
vjvk

(x, v0 + τ(v − v0))dτ (vj − v0
j )(vk − v0

k),

v(x) = D2mu(x), v0(x) = D2mu0(x).

Lemma 2.10. Let ui ∈ E0,µ be a bounded sequence, ui ⇀ u0. Then

||Φ(ui, u0)||W l−2m,p
∞,µ (Ω) → 0

as i→ ∞.

Proof. We will prove that

‖Dα(µΦ(ui, u0))‖Lp
∞(Ω) → 0 as i→ ∞, |α| ≤ l − 2m.

Set vi(x) = D2mui(x), v0(x) = D2mu0(x),

yi(x) = F ′′
vjvk

(x, v0 + τ(vi(x) − v0(x)), zi(x) = (vij(x) − v0
j (x))(v

i
k(x) − v0

k(x)).
(2.29)

We have to prove that

‖Dα(µyizi)‖Lp
∞(Ω) → 0, i→ ∞. (2.30)

We have
Dα(µyizi) =

∑
β+γ≤α

cβγD
βyiDγ(µzi). (2.31)

We estimate the terms in the right-hand side. Consider first the case |β| ≤ l −
2m− 1. We prove that

‖Dβyi‖C(Ω) ≤M, (2.32)

‖Dγµzi‖Lp
∞(Ω) → 0 as i→ ∞. (2.33)
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By the assumption of the lemma, ‖ui‖Ŵ l,p
µ (Ω) ≤M1. Here and in what follows M

with subscripts denote constants independent of i. Then

‖vi‖W l−2m,p
∞,µ (Ω) ≤M2. (2.34)

Using the embedding theorem and the properties of the weight function µ we get

‖vi‖Cl−2m−1(Ω) ≤M3, v0 ∈ Cl−2m−1(Ω). (2.35)

From the smoothness assumptions imposed above on the function F and from
(2.35) we obtain (2.32).

To prove (2.33) write wij(x) = vij(x) − v0
j (x). We show that

‖Dγ(µwijw
i
k)‖Lp

∞(Ω) → 0 as i→ ∞, (2.36)

where |γ| ≤ l − 2m. We have

Dγ(µwijw
i
k) =

∑
ρ+σ+τ≤γ

cρστD
ρµDσwijD

τwik, (2.37)

where cρστ are constants. Hence we should estimate

DρµDσwijD
τwik =

1
µ

(
1
µ
Dρµ

)(
µDσwij

) (
µDτwik

)
. (2.38)

Since (Dρµ)/µ is bounded, we have

‖DρµDσwijD
τwik‖Lp(Ω∩Qy) ≤M4 sup

x∈Ω∩Qy

1
µ
‖ (µDσwij

) (
µDτwik

) ‖Lp(Ω∩Qy).

(2.39)
Here |σ|+ |τ | ≤ l− 2m. Hence at least one of the numbers |σ| and |τ | is less than
or equal to l − 2m− 1. Suppose for definiteness that |σ| ≤ l − 2m− 1. Since

‖µui‖W l,p
∞ (Ω) ≤M5, (2.40)

it follows from the embedding theorem that

‖µui‖Cl−1(Ω) ≤M6.

Then
‖µDσwij‖C(Ω) ≤M7.

Therefore (2.39) implies

‖DρµDσwijD
τwik‖Lp(Ω∩Qy) ≤M8 sup

x∈Ω∩Qy

1
µ
‖µDτwik‖Lp(Ω∩Qy), (2.41)
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where |τ | ≤ l − 2m. By (2.40) we get

‖µDτwik‖Lp(Ω∩Qy) ≤M9. (2.42)

From (2.37), (2.41), (2.42) we obtain

‖Dγ(µwijw
i
k)‖Lp(Ω∩Qy) ≤M10 sup

x∈Ω∩Qy

1
µ
.

To prove (2.36) it is sufficient to show that

sup
y∈ΩR

‖Dγ(µwijw
i
k)‖Lp(Ω∩Qy) → 0 as i→ ∞ (2.43)

for any R > 0, |γ| ≤ l − 2m.
By the assumption of the lemma, ui ⇀ u0. This means that

ui → u0 weakly in W l,p
µ (ΩR) (2.44)

for any R > 0. Since for y ∈ Ω(R), ‖ · ‖Lp(Ω∩Qy) ≤ ‖ · ‖Lp(ΩR+1), then (2.43) will
follow from the convergence

‖Dγ(µwijw
i
k)‖Lp(ΩR) → 0 as i→ ∞

for any R > 0, or, according to (2.37), (2.38) from the convergence

‖(µDσwij)(µD
τwik)‖Lp(ΩR) → 0 as i→ ∞, (2.45)

where |σ| + |τ | ≤ l − 2m. Let for definiteness |σ| ≤ l − 2m − 1. From (2.42) it
follows that ‖µDτwik‖Lp(ΩR) ≤ M11. Therefore to prove (2.45) we should verify
that

‖µDσwij‖C(ΩR) → 0 as i→ ∞. (2.46)

From (2.44) we conclude that µui → µu0 weakly in W l,p(ΩR) and, consequently,
this convergence is strong in Cl−1(ΩR). Then ‖µwij‖Cl−2m−1(ΩR) → 0 as i → ∞,
and (2.46) follows from the assumption |σ| ≤ l− 2m− 1. Thus (2.43), (2.36), and
(2.33) are proved.

Let us return to (2.30). We have studied the terms in (2.31) with |β| ≤
l− 2m− 1. Since

|β| + |γ| ≤ |α| ≤ l − 2m,

we have to consider |β| = l − 2m, |γ| = 0. We will prove that

‖Dβyi‖L̂p(Ω) ≤M12, (2.47)

‖Dγ(µzi)‖C(Ω) → 0 as i→ ∞. (2.48)

We begin with (2.47). According to (2.34) we have for |β| ≤ l − 2m,

λ‖Dβvi‖L̂p(Ω) ≤ ‖µDβvi‖L̂p(Ω) ≤M13. (2.49)
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Here 0 < λ ≤ µ(x). We recall that yi is defined by (2.29). We use the formula
(2.20) of differentiation of superposition to the function F ′′

vjvk
. We have

Dβyi = Dβ
xF

′′
vjvk

(x, v0(x) + τ(vi(x) − v0(x))

+
κ∑
s=1

∂F ′′
vjvk

(x, v0(x) + τ(vi(x) − v0(x))
∂vs

×Dβ
x(v0

s (x) + τ(vis(x) − v0
s(x)) + T|β|(v;F ′′

vjvk
).

(2.50)

Here κ is the number of components of the vector v. From (2.49) by the embedding
theorem we get

‖vi‖Cl−2m−1(Ω) ≤M14. (2.51)

From the smoothness conditions imposed above on the function F we conclude
that the first term in the right-hand side of (2.50) is bounded in the C-norm and,
consequently, in the Lp∞(Ω)-norm.

Consider the second term in the right-hand side of (2.50).
The factor ∂F ′′

vjvk
/∂vs is bounded in the C-norm, which follows from (2.51)

and from the smoothness conditions on F . Hence from (2.49) it follows that the
second term in the right-hand side of (2.50) is bounded in the Lp∞(Ω)-norm. It is
easy to verify that the last term on the right in (2.50) is bounded in the C-norm
and so in the Lp∞(Ω)-norm. Therefore (2.47) is proved.

Consider now (2.48). Since |γ| = 0 we have to prove the convergence

‖µzi‖C(Ω) → 0 as i→ ∞
or

‖µwijwik‖C(Ω) → 0 as i→ ∞. (2.52)

This can be written in the form

‖ 1
µ

(µwij)(µw
i
k)‖C(Ω) → 0 as i→ ∞.

We have wij(x) = vij(x) − v0
j (x), and from (2.49) it follows that

‖Dβ(µwij)‖Lp
∞(Ω) ≤M15.

From the embedding theorem we have

‖µwij‖C(Ω) ≤M16. (2.53)

To prove (2.52) it is sufficient to verify that

‖wik‖C(Ω) → 0 as i→ ∞. (2.54)

By the assumptions of the lemma, ui ⇀ u0 as i → ∞. This means that ui → u0

in W l,p
∞,µ(ΩR) weakly. From the embedding theorem it follows that µui → µu0
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strongly in Cl−1(ΩR). Therefore ui → u0 in Cl−1(ΩR). Since vi(x) = D2mui(x),
v0(x) = D2mu0(x), wik = vik − v0

k, then

‖wik‖Cl−2m−1(ΩR) = ‖vik − v0
k‖Cl−2m−1(ΩR) → 0 as i→ ∞.

Together with the estimate

|wik(x)| ≤
M17

µ(x)
→ 0 as |x| → ∞,

which follows from (2.53), it proves (2.54). Therefore (2.48) is proved. From (2.31),
(2.47), (2.48) we obtain (2.30). The lemma is proved. �

Consider now the boundary operators (2.14). As it was supposed above, the
function Gj(x, ξ) was given for x ∈ Ω̄, ξ ∈ Rsj , where sj was the number of
components of the vector ξ. We study Gj(x, ξ) similarly to F (x, η). Let ξ, ξ0 be
vectors in Rsj . By Taylor’s formula

Gj(x, ξ) = Gj(x, ξ0) +
sj∑
k=1

G′
j,ξk

(x, ξ0)(ξk − ξ0k)

+
∫ 1

0

(1 − τ)
sj∑

k,l=1

G′′
j,ξkξl

(x, ξ0 + τ(ξ − ξ0))dτ(ξk − ξ0k)(ξl − ξ0l ),

where ξk and ξl are the components of the vector ξ.
Therefore for any u, u0 ∈ E0,µ we have

Gj(x,Dmju) −Gj(x,Dmju0) = Bj(u − u0, Dmju0) + Φj(u, u0), (2.55)

where Bj is given by (2.16) and

Φj(u, u0) =
∫ 1

0

(1 − τ)
sj∑

k,l=1

G′′
j,ξkξl

(x, v0 + τ(v − v0))dτ(vj − v0
j )(vk − v0

k),

v(x) = Dmju(x), v0(x) = Dmju0(x).

Lemma 2.11. Let ui be a sequence, ui ∈ E0,µ, such that ‖ui‖E0,µ is bounded and
ui ⇀ u0. Then

‖Φj(ui, u0)‖
W

l−mj,p
∞,µ (Ω)

→ 0

as i→ ∞.

The proof of the lemma is the same as the proof of the previous lemma. It follows
from Lemma 2.10 that

‖F (x,D2mui) − F (x,D2mu0) −A(ui − u0, D2mu0)‖W l−2m,p
∞,µ (Ω) → 0 (2.56)
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if ui ⇀ u0 and ‖ui‖W l,p
∞,µ

is bounded. Similarly Lemma 2.11 implies that

‖Gj(x,Dmjui)−Gj(x,Dmju0)−Bj(ui−u0, Dmju0)‖
W

l−mj−1/p,p
∞,µ (∂Ω)

→ 0 (2.57)

if ui ⇀ u0 and ‖ui‖W l,p
∞,µ

is bounded. Indeed, from Lemma 2.11 we have this
convergence in the norm ‖ · ‖

W
l−mj,p
∞,µ (Ω)

. Convergence (2.57) follows from the em-
bedding theorem.

Consider the operators

S(u0)u = (A(u,D2mu0), B1(u,Dm1u0), . . . , Bm(u,Dmmu0)) : E0,µ → Eµ

and
S0u = (A(u, 0), B1(u, 0), . . . , Bm(u, 0)) : E0,µ → Eµ.

Lemma 2.12. For any u0 ∈ E0,µ the limiting operators for S(u0) and S0 coincide.

Proof. Consider first the operator F (x,D2mu0). We will prove that

|D2mu0(x)| ≤ M

µ(x)
, x ∈ Ω, (2.58)

where M does not depend on x. Indeed, we have u0 ∈ E0,µ = W l,p∞,µ(Ω). It follows
that µu0 ∈ W l,p

∞ (Ω). By the embedding theorem we have µu0 ∈ Cl−1(Ω). Then
D2m(µu0) ∈ Cl−2m−1. Since l ≥ 2m + 1, we have D2m(µu0) ∈ C(Ω). Write
v0 = µu0. We have for |α| ≤ 2m:

|Dαv0| ≤M1, (2.59)

Dαu0 = Dα(
1
µ
v0) =

∑
β+γ≤α

cβγD
β 1
µ
Dγv0 =

∑
β+γ≤α

cβγ
1
µ

(
µDβ 1

µ

)
Dγv0.

The estimate (2.58) follows from (2.59).

Let |xk| → ∞, xk ∈ Ω. Then |y + xk| → ∞ for all y ∈ Ωk ∩BR, where Ωk is
the shifted domain. Then x = y + xk ∈ Ω. It follows from (2.58) that

|D2mu0(y + xk)| ≤ M

µ(y + xk)
→ 0 as |xk| → ∞

uniformly in y ∈ Ωk ∩ BR. Then for k > k0 we have |D2mu0(y + xk)| ≤ 1 for all
y ∈ Ωk ∩BR. By the smoothness conditions on F we have

|aα(x,D2mu0(x)) − aα(x, 0)| ≤ K|D2mu0(x)|
for x ∈ Ω, |D2mu0(x)| ≤ 1. Hence for y ∈ Ωk ∩BR we get

|aα(y + xk, D
2mu0(y + xk)) − aα(y + xk, 0)| ≤ K|D2mu0(y + xk)|

≤ KM

µ(y + xk)
→ 0 as |xk| → ∞, xk ∈ Ω

(2.60)

uniformly in y ∈ Ωk ∩BR.
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Consider now the limiting coefficients for the operators S(u0) and S0. Denote
them by âα(x) and a0,α(x), respectively. By definition, for any y ∈ Ω̄∗ ∩ BR we
have

âα(y) = lim
k→∞

aαk (y), a0,α(y) = lim
k→∞

a0,α
k (y), (2.61)

where

aαk = aα(y + xk, D
2mu0(y + xk)), y ∈ BR,

a0,α
k (y) = aα(y + xk, 0), y ∈ BR

and aαk (y) and a0,α
k (y) are supposed to be extended from Ωk to Rn. If the limit in

(2.61) exists, it is uniform in y ∈ BR.
Now, we show that

âα(y) = a0,α(y), ∀y ∈ Ω̄∗ ∩BR. (2.62)

Indeed, according to (2.60) we have

|aαk (y) − a0,α
k (y)| ≤ KM

µ(y + xk)
→ 0 as |xk| → ∞, xk ∈ Ω (2.63)

uniformly in y ∈ Ωk ∩BR. For any y0 ∈ Ω̄∗∩BR we can find yk ∈ Ω̄k ∩BR in such
a way that yk → y0. We have

|âα(y0) − a0,α(y0)|
≤ |âα(y0) − aαk (yk)| + |a0,α

k (yk) − a0,α(y0)| + |aαk (yk) − a0,α
k (yk)|.

(2.64)

For the first term in the right-hand side we can write

|âα(y0) − aαk (yk)| ≤ |âα(y0) − âα(yk)| + |âα(yk) − âαk (yk)|.

The first term on the right in this inequality tends to 0 since âα(y) is continuous.
The second term converges to 0 since the limit in (2.61) is uniform. Therefore the
first term in the right-hand side in (2.64) converges to 0 as k → ∞. The same is
true for the second term. Finally, for the last term we have from (2.60)

|aαk (yk) − a0,α
k (yk)| ≤ KM

µ(yk + xk)
→ 0 as |xk| → ∞

since the limit in (2.60) is uniform in y. Thus (2.62) is proved.
It is also clear that if one of the limits in (2.61) exists, then the second limit

also exists and coincides with the first one. Indeed, suppose that there exists the
first limit in (2.61). Then

|âα(y) − a0,α
k (y)| ≤ |âα(y) − aαk (y)| + |aαk (y) − a0,α

k (y)|, y ∈ Ω∗.
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The first term in the right-hand side of this inequality tends to 0 as k → ∞ by
virtue of the first equality in (2.61); the second term converges to a limit by virtue
of (2.63) since we can approximate y by yk ∈ Ωk ∩BR.

The operator Gj(x,Dmju) can be studied similarly. The lemma is proved.
�

The main result of this section is given by the following theorem.

Theorem 2.13. Suppose that the operator F (x,D2m) is uniformly elliptic and that
the Lopatinskii condition is satisfied for the operators (2.13), (2.14). Assume fur-
ther that all limiting operators for the operator S0 satisfy Condition NS. Then the
operator (F,G) : E0,µ → Eµ is proper.

3 Topological degree

Topological degree for infinite-dimensional operators was introduced by Leray and
Schauder in the case of compact perturbations of the identity operator. It can be
generalized for Fredholm and proper operators.

Topological degree is an integer which depends on the operator and on the
domain in the Banach space. This integer is supposed to satisfy three conditions:
homotopy invariance, additivity, normalization (see below). The existence of such
characteristics is not a priori known and should be verified. If the degree can be
defined, it provides a powerful tool to study solutions of operator equations.

The degree constructed in this section is adapted for elliptic problems. In
particular, even in the abstract setting we will work with pairs of operators. In the
context of elliptic problems, one of them corresponds to the operators inside the
domains while another one to the boundary operators. Another way to do it is to
include boundary conditions in function spaces (see [567] and the bibliographical
comments).

In Section 3.2 we introduce the notion of orientation of linear operators used
for construction of the topological degree. In Section 3.3 a topological degree is
constructed for Fredholm and proper operators with the zero index and with some
additional conditions on the essential spectrum. All these conditions can be verified
for elliptic problems in bounded or unbounded domains. We will prove that the
degree, which satisfies the three conditions mentioned above, is unique. It appears
that the topological degree may not exist for certain operators and spaces. An
example is presented in Section 3.6.

3.1 Definition and main properties of the degree

We recall the definition of a topological degree. Let E0 and E be two Banach
spaces. Suppose we are given a class F of operators acting from E0 into E and a
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class H of homotopies, i.e., mappings

Aτ (u) : E0 × [0, 1] → E, τ ∈ [0, 1], u ∈ E0

such that Aτ (u) ∈ F for any τ ∈ [0, 1]. Assume moreover that for any bounded
open set D ⊂ E0 and any operator A ∈ F such that

A(u) �= 0, u ∈ ∂D

(∂D denotes the boundary of D ) there is an integer γ(A,D) satisfying the fol-
lowing conditions:

(i) Homotopy invariance. Let Aτ (u) ∈ H and

Aτ (u) �= 0, u ∈ ∂D, τ ∈ [0, 1].

Then

γ(A0, D) = γ(A1, D).

(ii) Additivity. LetD ⊂ E0 be an arbitrary bounded open set in E0, andD1, D2 ⊂
D be open sets such that D1

⋂
D2 = �. Suppose that A ∈ F and

A(u) �= 0, u ∈ D̄\(D1

⋃
D2).

Then

γ(A,D) = γ(A,D1) + γ(A,D2).

(iii) Normalization. There exists a bounded linear operator J : E0 → E with
a bounded inverse defined on all of E such that for any bounded open set
D ⊂ E0 with 0 ∈ D,

γ(J,D) = 1.

The integer γ(A,D) is called a topological degree.

Some of the properties of the degree easily follow from its definition. In
particular, if there are no solutions of the equation A(u) = 0 in D, then γ(A,D) =
0. Hence, if γ(A,D) �= 0, then there are some solutions u ∈ D of this equation.
This argument is used to prove existence of solutions (Section 4).

Another property of the degree provides the persistence (structural stability)
of solutions. If u0 is an isolated solution, that is there are no other solutions in
its small neighborhood U , and γ(A,U) �= 0, then the solution will persist under
small perturbations of the operator. Some other properties and applications will
be discussed below in Section 4.
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3.2 Orientation of operators

Let E0, E1 and E2 be Banach spaces. We suppose that E0 ⊂ E1. This means that
if u ∈ E0, then u ∈ E1 and ‖u||E1 ≤ K||u||E0 , where K does not depend on u.
Write E = E1 × E2. We consider linear operators A1 : E0 → E1, A2 : E0 →
E2, A = (A1, A2) : E0 → E, and the following class of operators.

Class O is a class of bounded operators A : E0 → E satisfying the following
conditions:

(i) Operator (A1 + λI,A2) : E0 → E is Fredholm with index 0 for all λ ≥ 0.
(ii) Equation A1u = 0, A2u = 0 (u ∈ E0) has only the zero solution.
(iii) There exists λ0 = λ0(A) such that the equation

(A1 + λI)u = 0, A2u = 0 (u ∈ E0)

has only the zero solution for all λ > λ0. Here I is the identity operator in
E0.

Proposition 3.1. Let operator A = (A1, A2) belong to class O. Then the eigenvalue
problem

A1u+ λu = 0, A2u = 0 (u ∈ E0) (3.1)

has only a finite number of positive eigenvalues λ. Each of them has a finite mul-
tiplicity.

Remark 3.2. Instead of the eigenvalue problem (3.1) we can consider the eigenvalue
problem

A1,2u+ λu = 0, u ∈ E0,2, (3.2)

where E0,2 is the space of all u ∈ E0 such that A2u = 0, and A1,2 is the restriction
of A1 on the space E0,2. By multiplicity of λ in (3.1) we mean the multiplicity of
λ in (3.2).

Proof of Proposition 3.1. Since A ∈ O, the operator A1,2 + λI is Fredholm with
index 0 for all λ ≥ 0 and invertible for λ = 0 and λ > λ0. The proposition follows
from known properties of Fredholm operators. �

Definition 3.3. The number
o(A) = (−1)ν,

where ν is the sum of multiplicities of all positive eigenvalues of problem (3.1),
is called orientation of the operator A. Operators A belonging to the class O are
called orientable.

Definition 3.4. Operators A0 ∈ O and A1 ∈ O are said to be homotopic if there
exists an operator A(τ) : E0 × [0, 1] → E such that A(τ) ∈ O for all τ ∈ [0, 1],
A(τ) is continuous in the operator norm with respect to τ , λ0(A(τ)) is bounded,
and

A(0) = A0, A(1) = A1.
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Theorem 3.5. If A0 and A1 are homotopic, then

o(A0) = o(A1). (3.3)

Proof. Let τ0 ∈ [0, 1]. It is sufficient to prove that

o(A(τ)) = o(A(τ0)) (3.4)

for τ in some neighborhood of τ0. Indeed, covering the interval [0, 1] by such
neighborhoods and taking a finite subcovering we get (3.3).

To prove (3.4) consider the eigenvalue problems

A1(τ0)u+ λu = 0, A2(τ0)u = 0, u ∈ E0 (3.5)
and

A1(τ)u + λu = 0, A2(τ)u = 0, u ∈ E0. (3.6)

We should prove that for τ close to τ0 the sum of multiplicities of positive eigen-
values λ of problems (3.5) and (3.6) coincide modulo 2. It is convenient to consider
the problem

A1(τ0)u+ λu = 0, A2(τ)u = 0, u ∈ E0 (3.7)

and to compare (3.5) and (3.6) with (3.7).
Consider first problems (3.5) and (3.7). Consider also operators A1,2(τ0) and

A1,2(τ), the restrictions of A1(τ0) on the spaces

E0,2(τ0) = {u : u ∈ E0, A2(τ0)u = 0}
and

E0,2(τ) = {u : u ∈ E0, A2(τ)u = 0}, (3.8)

respectively. By (i) and (ii) of Definition of Class O, A1,2(τ0) is invertible.
It is easy to see that for τ sufficiently close to τ0 the operator A1,2(τ) is

also invertible and has a uniformly bounded inverse. Indeed, denote K(τ) =
(A1(τ0), A2(τ)) : E0 → E. Obviously ||K(τ)−K(τ0)|| ≤ ||A2(τ)−A2(τ0)||. Since
K(τ0) is invertible, we conclude that if τ is sufficiently close to τ0, then K(τ)
has uniformly bounded inverse. Consider the equation A1,2(τ)u = f, u ∈ E0,2(τ)
or A1(τ0)u = f, A2(τ)u = 0, u ∈ E0, f ∈ E1. Since K(τ) is invertible, this
equation has a unique solution for any f ∈ E1. So A1,2(τ) is invertible and
||A−1

1,2(τ)|| ≤ ||K−1(τ)||.
Set

J = A−1
1,2(τ)A1,2(τ0) : E0,2(τ0) → E0,2(τ).

The problems (3.5) and (3.7) can be written as

A1,2(τ0)v + λv = 0, v ∈ E0,2(τ0) (3.9)
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and
A1,2(τ)u + λu = 0, u ∈ E0,2(τ). (3.10)

Let u = Jv, v ∈ E0,2(τ0), u ∈ E0,2(τ). Then from (3.10)

1
λ
v + S1v = 0, v ∈ E0,2(τ0), (3.11)

where S1 = J−1A−1
1,2(τ)J = A−1

1,2(τ0)A
−1
1,2(τ)A1,2(τ0). We have from (3.9)

1
λ
v + S0v = 0, v ∈ E0,2(τ0), (3.12)

where S0 = A−1
1,2(τ0).

We will prove that for any ε > 0 there exists δ > 0 such that

||S1 − S0|| < ε if |τ − τ0| < δ. (3.13)

Consider the problems

A1(τ0)u = f, A2(τ0)u = 0, u ∈ E0, f ∈ E1 (3.14)
and

A1(τ0)u1 = f, A2(τ)u1 = 0, u1 ∈ E0, f ∈ E1 (3.15)
or

A1,2(τ0)u = f, A1,2(τ)u1 = f, u ∈ E0,2(τ0), u1 ∈ E0,2(τ). (3.16)

Let B = A2(τ0) −A2(τ). Write w = u− u1. Then from (3.14) and (3.15)

A1(τ0)w = 0, A2(τ0)w = −Bu1.

We have from (3.16)

A1(τ0)w = 0, A2(τ0)w = −BA−1
1,2(τ)f. (3.17)

Set
L = (A1(τ0), A2(τ0)) : E0 → E.

Then (3.17) implies

||w||E0 ≤ ||L−1|| ||B|| ||A−1
1,2|| ||f ||E1 . (3.18)

By (3.16) we have

||A−1
1,2(τ0)f −A−1

1,2(τ)f ||E0 ≤ ||L−1|| ||B|| ||A−1
1,2|| ||f ||E1 .

Therefore
||A−1

1,2(τ0) −A−1
1,2(τ)|| ≤ ||L−1|| ||B|| ||A−1

1,2(τ)||. (3.19)
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Since A2(τ) → A2(τ0) as τ → τ0 in the operator norm, we get ||B|| → 0 as
τ → τ0, and from (3.19) we obtain (3.13).

Using (3.13) we will prove that if τ is sufficiently close to τ0, then the sum
of multiplicities of the negative eigenvalues of the operator S1 coincides modulo
2 with the sum of multiplicities of the negative eigenvalues of the operator S0.
Indeed, taking into account that ||S1|| and λ0(A(τ)) are uniformly bounded, we
conclude that there exists an interval [α, β], α < β < 0 such that all negative
eigenvalues of the operators S1 and S0 lie in this interval. Let Γ be a rectifiable
contour in the λ-plane which contains the interval [α, β] and such that all points
inside this contour, except for negative eigenvalues of the operator S0, are regular
points of this operator. From the known results on root spaces (see [207]) it follows
that the sum of multiplicities of all eigenvalues of S1 lying inside Γ coincides with
the sum of the multiplicities of the negative eigenvalues of S0 if δ in (3.13) is
sufficiently small. Therefore the sum of multiplicities of negative eigenvalues of S0

and S1 coincide modulo 2. It follows that the sum of the multiplicities of positive
eigenvalues of the problems (3.9) and (3.10), and consequently of the problems
(3.5) and (3.7) coincide modulo 2.

We obtain now the same results for problems (3.6) and (3.7). Denote by B(τ0)
and B(τ) the restrictions of A1(τ0) and A1(τ) on the space E0,2(τ) (see(3.8)),
respectively. Then obviously

||B(τ) −B(τ0)|| ≤ ||A(τ) −A(τ0)|| → 0

as τ → τ0. By the same arguments that we used for the operators S0 and S1 above
we prove that the sum of multiplicities of the negative eigenvalues of the operators
B(τ) and B(τ0) coincide modulo 2. The theorem is proved. �

Remark 3.6. The requirement that λ0(A(τ)) is bounded in Definition 3.4 can be
omitted if we replace (iii) in class O by the following:

(iii∗) There exists λ0 = λ0(A) such that the operator (A1 + Iλ,A2) : E0 → E
has an inverse for λ > λ0 which is uniformly bounded.

Indeed, let A(τ, λ) = (A1(τ) + Iλ,A2(τ)). Let τ0 ∈ [0, 1]. Then A(τ, λ) =
A(τ0, λ) +B(τ), where B(τ) = A(τ) −A(τ0). For λ > λ0(A(τ0)) we have

A(τ, λ) = A(τ0, λ)[I +A−1(τ0, λ)B(τ)].

Since ‖B(τ)‖ → 0 as τ → τ0, we can take δ(τ0) > 0 such that ||A−1(τ0, λ)B(τ)|| ≤
1/2 for all λ > λ0(A(τ0)), |τ − τ0| < δ(τ0). So for these values of τ and λ
the operator A(τ, λ) has a uniformly bounded inverse. Taking the corresponding
covering of the interval [0, 1] and choosing a finite subcovering, we obtain that
λ0(A(τ)) is bounded for τ ∈ [0, 1].

Class O with the property (iii∗) instead of (iii) will be used in construction
of the topological degree.
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3.3 Degree for Fredholm and proper operators

Let E0, E1, E2 and E = E1×E2 be the same spaces as in Section 3.2, G ⊂ E0 be
an open bounded set. We consider the following classes of linear (Φ) and nonlinear
(F ) operators.

Class Φ is a class of bounded linear operators A = (A1, A2) : E0 → E satisfying
the following conditions:

(i) Operator (A1 + Iλ, A2) : E0 → E is Fredholm for all λ ≥ 0.
(ii) There exists λ0 = λ0(A) such that operators (A1 + Iλ, A2) : E0 → E have

inverses which are uniformly bounded for all λ > λ0.

Class F is a class of proper operators f ∈ C1(G, E) such that for any x ∈ G the
Fréchet derivative f ′(x) belongs to Φ.

We introduce also the following class of homotopies.

Class H is a class of proper operators f(x, t) ∈ C1(G × [0, 1], E) which for any
t ∈ [0, 1] belong to class F .

Two operators f0(x) : G → E and f1(x) : G → E are said to be homotopic
if there exists f(x, t) ∈ H such that

f0(x) = f(x, 0), f1(x) = f(x, 1). (3.20)

In this section we will construct a topological degree for the classes F and
H . In what follows D will denote an open set such that D ⊂ G.

Let a ∈ E, f ∈ C1(G, E),

f(x) �= a (x ∈ ∂D), (3.21)

where ∂D is the boundary of D. Suppose that the equation

f(x) = a (x ∈ D) (3.22)

has a finite number of solutions x1, . . . , xm and f ′(xk) (k = 1, . . . ,m) are invertible
operators belonging to the class Φ. Then the orientation of these operators is
defined. We shall use the notation

γ(f,D; a) =
m∑
k=1

o(f ′(xk)). (3.23)

If equation (3.22) does not have solutions, it is supposed that γ(f,D; a) = 0.

Lemma 3.7. Let f(x, t) ∈ H, a ∈ E be a regular value of f(., 0) and f(., 1). Suppose
that

f(x, t) �= a (x ∈ ∂D, t ∈ [0, 1]). (3.24)

Then
γ(f(., 0), D; a) = γ(f(., 1), D; a). (3.25)
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Proof. The main part of the proof of the lemma is done under the assumption
that a is a regular value of the homotopy under consideration. Since this is not
supposed in the formulation of the lemma, we replace f(x, t) by a close function
g(x, t) for which a is a regular value and

γ(g(., 0), D; a) = γ(f(., 0), D; a), (3.26)
γ(g(., 1), D; a) = γ(f(., 1), D; a) (3.27)

(see [404]). Then we prove that
γ(g(., 0), D; a) = γ(g(., 1), D; a). (3.28)

To construct the function g(x, t) we use the following result (see [404]). For
any η > 0 an operator h ∈ C1(G× [0, 1]× [0, 1], E) with the following properties
can be constructed:

(i) ||h(., τ) − f ||1,G×[0,1] < η for any τ ∈ [0, 1].
(ii) h is proper.
(iii) For τ ∈ [0, 1], h(., τ) is Fredholm of index 1.
(iv) h(., 0) = f and a is a regular value of h(., 1).

Here we use the notation ||f ||1,G×[0,1] = sup ||f(x, t)|| + sup ||f ′(x, t)|| for
f ∈ C1(G× [0, 1], E) (the supremum is taken over (x, t) ∈ G× [0, 1] and f ′ is the
Fréchet derivative of f).

We can now put g(x, t) = h(x, t, 1), x ∈ G, t ∈ [0, 1]. From (3.24) it follows
that η > 0 can be taken such that

g(x, t) �= a (x ∈ ∂D, t ∈ [0, 1]). (3.29)

We will prove that for a proper choice of η > 0 the equality (3.26) holds. Since a
is a regular value of f(x, 0), f(x, 0) �= a, x ∈ ∂D and f(x, 0) is a proper operator,
it follows that the equation

f(x, 0) = a, x ∈ D (3.30)

has a finite number of solutions.
If equation (3.30) does not have solutions, then taking η sufficiently small we

conclude that the equation

g(x, 0) = a, x ∈ D (3.31)

does not have solutions either. In this case both parts of the equality (3.26) equal
0.

Suppose that equation (3.30) has solutions. We denote them by x1, . . . , xm.
Let Bk (k = 1, . . . ,m) be open balls with centers at xk and radius r. We suppose
that r is taken such that the closures of the balls are disjoint and belong to D.
If η > 0 is taken sufficiently small, then equation (3.31) has exactly m solutions
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and moreover the equation g(x, 0) = a, x ∈ Bk has one and only one solution
(k = 1, . . . ,m) (see [404]). Denote this solution by ξk.

Taking into account that f ′
x(xk, 0) belongs to Φ and that it is invertible, it

is easy to prove for a proper choice of r and η that g′x(ξk, 0) also belongs to Φ
and is invertible. So the orientation of this operator is defined. Moreover applying
Theorem 3.5 to the homotopy (1 − τ)f ′

x(xk, 0) + τg′x(ξk, 0), τ ∈ [0, 1] we obtain

o(g′x(ξk, 0)) = o(f ′
x(xk, 0))

and (3.26) follows from this. Decreasing η, if necessary, we obtain (3.27) in the
same way.

We prove now (3.28). If both of the equations

g(x, 0) = a, g(x, 1) = a (x ∈ D) (3.32)

have no solutions, then (3.28) is true: both parts of the equality are equal to 0.
Suppose that at least one of the equations (3.32) has a solution. Then the

set S = g−1(a)
⋂
D × [0, 1] is not empty. Since a is a regular value of g, g−1(a)

is a one-dimensional submanifold of D̄ × [0, 1]. The set S is compact since the
map is proper. Because of (3.29) the set S cannot have joint points with the set
∂D × [0, 1]. Suppose that the equation g(x, 0) = a has m solutions (m > 0) :
ξ1, . . . , ξm,

g(ξk, 0) = a (k = 1, . . . ,m). (3.33)

We denote by lk the connected component of S which contains the point (ξk, 0).
The set lk is homeomorphic to a closed interval ∆ = [0, 1]. We denote the endpoints
of lk by P0 = (ξk, 0) and P1 and suppose that P0 corresponds to the point 0 in ∆
and P1 to 1.

Write y = (x, t) (x ∈ G, t ∈ [0, 1]). We introduce local coordinates on lk by
a finite number of sets {Ui} such that each of them is homeomorphic to an open or
half-open interval ∆i. Moreover we can suppose that Ui is given by the equation

y = y(s) (s ∈ ∆i) (3.34)

and that there exists a derivative in the norm ||y|| = ||x||+|t|. We have g(y(s)) = a
and therefore

g′(y(s))y′(s) = 0. (3.35)

Since a is a regular value, then the range of the operator g′(y(s)) coincides
with E. Moreover, the index of g′(y(s)) is 1. So y′(s) is the only (up to a real
factor) solution of equation (3.35). We have y(s) = (x(s), t(s)), where x(s) ∈ E0,
t(s) is a real-valued function. It is easy to see that we can construct a functional
φ(s) ∈ E∗

0 which is continuous with respect to s ∈ ∆i and

〈φ(s), x′(s)〉 > 0 if ||x′(s)|| > 0, (3.36)

where 〈 , 〉 denotes the action of a functional.
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We can find η in (i) such that for all y satisfying the equation g(y) = a, the
operators g′x(y) belong to Φ, and λ0(g′x(y)) are uniformly bounded. Indeed, denote
by T the set of all solutions of the equation f(y) = a. From (i) and properness
of f it follows that for any ε > 0 we can find η > 0 such that all solutions of the
equation g(y) = a belong to an ε-neighborhood of T . Since T is compact, ε and η
can be found such that g′x(y) has the mentioned property.

We represent g in the form g = (g1, g2), where g1 : G × [0, 1] → E1, g2 :
G× [0, 1] → E2. Denote by g′ix(x, t) and g′it(x, t) (i = 1, 2) the partial derivatives
in x and t, respectively.

Consider the operators

A1(s) =
[
g′1x(y(s)) g′1t(y(s))
φ(s) t′(s)

]
, A2(s) = (g′2x(y(s)), g′2t(y(s)),

where A1(s) : E0 × R → E1 × R, A2(s) : E0 × R → E2, R is the space of real
numbers.

Set A(s) = (A1(s), A2(s)) : E0 × R → (E1 ×R) × E2. It is easy to see that
A is a Fredholm operator of index 0.

The equation A(s)w = 0, w ∈ E0 × R has only a zero solution. Indeed, let
w = (u, v), u ∈ E0, v ∈ R. Then

g′(y(s))w = 0, 〈φ(s), u〉 + t′(s)v = 0.

It follows that

w = α(s)y′(s) : u = α(s)x′(s), v = α(s)t′(s).

So
〈φ(s), u〉 + t′(s)v = α(s)

(〈φ(s), x′(s)〉 + t′2(s)
)
.

Since y′(s) �= 0, then 〈φ(s), x′(s)〉 + t′2(s) �= 0, and therefore α(s) = 0.
Let J be the identity operator in E1 × R. Then the operator

(A1(s) + λJ, A2(s)) : E0 × R → (E1 × R) × E2

is a Fredholm operator of index 0 for λ ≥ 0.
Let s ∈ ∆i. We will prove that there exists λ0 > 0 such that for λ > λ0

the operator (A1(s) + λJ, A2(s)) has a uniformly in λ bounded inverse. Indeed,
consider the equation

(A1(s) + λJ, A2(s))w = ψ, w ∈ E0 × R, ψ ∈ (E1 × R) × E2.

Let w = (w1, w2), ψ = (ψ1, ψ2, ψ3), w1 ∈ E0, w2 ∈ R, ψ1 ∈ E1, ψ2 ∈ R, ψ3 ∈
E2. We have

(g′1x + λI)w1 + g′1tw2 = ψ1, (3.37)
(φ, w1) + (t′ + λ)w2 = ψ2, (3.38)

g′2xw1 + g′2tw2 = ψ3. (3.39)
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We can find w1 from (3.37) and (3.39) for λ > λ0 since (g′1x + λI, g′2x) has a
uniformly bounded inverse, and substitute in (3.38). Obviously the equation so
obtained for w2 can be solved for λ > λ0 if λ0 is sufficiently large. It is clear that
the solution w1, w2 of (3.37)–(3.39) is unique and can be estimated by a constant
independent of λ. So we have proved that (A1(s) + λJ, A2(s)) has an inverse
uniformly bounded for λ > λ0.

Operator A(s) satisfies conditions formulated in the previous subsection. So
the orientation o(A(s)) of operatorA(s) can be constructed, and it does not depend
on s. By standard arguments we can prove that the orientation does not depend
on the choice of covering of lk.

Suppose now that for some s the operator g′x(y(s)) : E0 → E is invertible
and t′(s) �= 0. We will prove the formula

o(A(s)) = o(g′x(y(s))) sgn t′(s). (3.40)

Consider the operator A(s; τ) = (A1(s; τ), A2(s; τ)), 0 ≤ τ ≤ 1,

A1(s; τ) =
[
g′1x(y(s)) τg′1t(y(s))
τφ(s) t′(s)

]
, A2(s; τ) = (g′2x(y(s)), τg′2t(y(s)).

As before we prove that this operator satisfies conditions of the previous subsection
and, consequently,

o(A(s)) = o(A(s; 0)).

The equality (3.40) easily follows from the definition of orientation.
Consider now the operator A(s) at the endpoints of the line lk : P0 = (ξk, 0)

and P1. We begin with the point P0. The operator g′x(ξk, 0) is invertible. For small
t we can take s = t. Then t′(s) = 1.

There are two possibilities for the point P1:

P1 = (ξl, 0) (l �= k), (3.41)
and

P1 = (x̄, 1), (3.42)

where (x̄, 1) is a solution of the equation

g(x̄, 1) = a. (3.43)

Consider first the case (3.41). We can take s = 1 − t in the neighborhood of the
point P1 (this corresponds to the positive orientation), and so t′(s) = −1. From
(3.40) it follows that

o(g′x(P0)) = −o(g′x(P1)).

In the case (3.42) by the same reasoning we have

o(g′x(P0)) = o(g′x(P1)).

The proof of (3.28) follows directly from these equalities. The lemma is proved.
�
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Remark 3.8. According to Remark 3.6, we have replaced condition (iii) by condi-
tion (iii*) (Section 3.2). In the proof of Lemma 3.7, it is verified that the operator
(A1(s) + λJ,A2(s)) has a uniformly bounded inverse. If we return to condition
(iii), then we should verify that the corresponding homogeneous equation has only
a zero solution for all λ sufficiently large. In this case, we put ψ = 0 in equations
(3.37)–(3.39). In order to prove that this system has only a zero solution, we can
impose a condition, which is slightly weaker than condition (iii*) (and a similar
condition (ii) in the definition of the class Φ in the beginning of this section).

Suppose that there exist Banach spaces E′
0 and E′ such that E0 ⊂ E′

0,
E ⊂ E′, the operator (A1 + λI,A2) can be considered as acting from E′

0 into
E′, and it has a uniformly bounded inverse in these spaces for all λ sufficiently
large. This means that we replace condition (iii*) by a similar condition in weaker
spaces. Then, as in the proof of Lemma 3.7, we can express w1 ∈ E′

0 from (3.37),
(3.39) and substitute into (3.38). The term 〈φ,w1〉 has an estimate independent of
λ for λ sufficiently large. Therefore, equation (3.38) has only a zero solution if λ is
large enough. Thus, equation (A1(s) + λJ,A2(s)) = 0 has only a zero solution in
E′

0 and, consequently, in E0. The remaining part of the proof of Lemma 3.7 does
not change.

This generalization, though it is not very significant, will be used to construct
a topological degree for elliptic operators in Hölder spaces.

Theorem 3.9. Let f ∈ F and B be a ball ||a|| < r, a ∈ E such that f(x) �=
a (x ∈ ∂D) for all a ∈ B. Then for all regular values a ∈ B, γ(f,D; a) does not
depend on a.

Proof. Let a0 and a1 be two regular values belonging to B. Set at = a0(1 − t) +
a1t, t ∈ [0, 1] and consider the operator f(x, t) = f(x) − at. It is easy to see that
all conditions of Lemma 3.7 are satisfied for this operator if we set a = 0 in this
lemma. So the equality (3.25) is valid. From (3.23) we get γ(f,D; a0) = γ(f,D; a1).
The theorem is proved. �

Using this theorem we can give the following definition of the topological degree
γ(f,D).

Definition 3.10. Let f ∈ F and f(x) �= 0 (x ∈ ∂D). Let B be a ball ||a‖ < r in E
such that f(x) �= a (x ∈ ∂D) for all a ∈ B. Then

γ(f,D) = γ(f,D; a) (3.44)

for any regular value a ∈ B.

Existence of regular values a ∈ B of f follows from the Sard-Smale theorem ([496],
[432]).

Theorem 3.11. (Homotopy invariance). Let f(x, t) ∈ H and (3.20) hold. Suppose
that

f(x, t) �= 0 (x ∈ ∂D, t ∈ [0, 1]) (3.45)
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for an open set D, D ⊂ G. Then

γ(f0, D) = γ(f1, D). (3.46)

Proof. We take a number ε > 0 so small that

f(x, t) �= a (x ∈ ∂D, t ∈ [0, 1])

for all a such that ‖a‖ < ε. Let a be a regular value for both f0(x) and f1(x).
Consider the function f̃(x, t) = f(x, t) − a. This function satisfies the conditions
of Lemma 3.7 if we set a = 0 in this lemma. So

γ(f̃(., 0), D; 0) = γ(f̃(., 1), D; 0)

and therefore
γ(f0, D; a) = γ(f1, D; a).

This implies (3.46). The theorem is proved. �

Additivity of the topological degree follows from (3.23). We suppose that
the class F is not empty. Let f ∈ F , x ∈ G, f ′(x) = (A1, A2), where A1 :
E0 → E1, A2 : E0 → E2. Suppose that λ > 0 is so large that operator J =
(A1 + λI,A2) : E0 → E is invertible. Then the operator J can be taken as a
normalization operator. Thus the topological degree for the class F of operators
and class H of homotopies is constructed.

3.4 Uniqueness of the degree

The uniqueness of the degree will be proved here for more general classes of oper-
ators compared with the existence proved in the previous section.

Let Ψ be a set of linear Fredholm operators L : E1 → E2. We suppose that
Ψ is connected. This means that for any two operators L0 ∈ Ψ and L1 ∈ Ψ there
exists a homotopy Lτ : E1 × [0, 1] → E2 which connects them. We suppose that
Lτ is continuous with respect to τ in the operator norm. We also assume that
the class Ψ is complete with respect to finite-dimensional linear operators, i.e.,
for any L ∈ Ψ we have L + K ∈ Ψ, where K is an arbitrary finite-dimensional
operator from E1 into E2. We consider the following classes of nonlinear operators
and homotopies.

Class F′ is the set of all proper operators A(u) acting from E0 into E2 which are
continuous, have Fréchet derivative A′(u) at any point u ∈ E0 and A′(u) ∈ Ψ.
Here E0 is a given open bounded set in E1.

Class H′ is the set of all proper operators Aτ (u) : E0 × [0, 1] → E2 which are
continuous with respect to u and τ , and belong to F ′ for any τ ∈ [0, 1].

Theorem 3.12. For the classes F ′ and H ′ and a given normalization operator J
the topological degree satisfying conditions (i)–(iii) is unique.
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We begin with some auxiliary results. Denote by Ψ0 the set of all invertible
operators A ∈ Ψ. We use also the following notation. E∗

1 is a space dual to E1,
< u, φ > is the value of the functional φ ∈ E∗

1 at the element u ∈ E1.
As usual, the index of an isolated stationary point u0 ∈ E1 is defined as

the degree of a small ball centered at this point, ind(A, u0) = γ(A,B), where
B = {u : ‖u− u0‖1 < r} for r sufficiently small. Here ‖ · ‖1 is the norm in E1.

Lemma 3.13. Let A ∈ Ψ0, A−K ∈ Ψ0, where

Ku = 〈u, φ〉 e, u ∈ E1, φ ∈ E∗
1 , e ∈ E1.

Let f(u) = A(u − u0), f̃(u) = (A − K)(u − u0), where u0 ∈ D ⊂ E1. Then〈
A−1e, φ

〉 �= 1 and for any topological degree γ,

γ(f̃ , D) = γ(f,D) if
〈
A−1e, φ

〉
< 1, (3.47)

γ(f̃ , D) = −γ(f,D) if
〈
A−1e, φ

〉
> 1. (3.48)

Proof. Consider first the case
〈
A−1e, φ

〉
= 0. Let

fτ (u) = A(u − u0) − τ 〈u− u0, φ〉 e, 0 ≤ τ ≤ 1.

For all τ ∈ [0, 1] the equation fτ (u) = 0 has only one solution u = u0. So γ(fτ , D)
does not depend on τ and consequently γ(f,D) = γ(f̃ , D). Hence (3.47) is proved.

Suppose now that
〈
A−1e, φ

〉 �= 0. Define β =
〈
A−1e, φ

〉
, ψ = φ/β. Then

〈
A−1e, ψ

〉
= 1, 〈u− u0, φ〉 = β 〈u− u0, ψ〉 .

So f̃(u) = A(u − u0) − β 〈u− u0, ψ〉 e. Consider the function g(u) = A(u − u0) −
µ̂(〈u− u0, ψ〉)e, where µ̂(ξ) is a smooth function of the real variable ξ. It is easy
to see that u is a solution of the equation

g(u) = 0 (3.49)

if and only if c = µ̂(< u− u0, ψ >) is a solution of the equation

c = µ̂(c). (3.50)

For any solution c of (3.50), u = u0 + cA−1e, is a solution of (3.49). Suppose that
µ̂(ξ) = ξ2 + ξ − α, where α is a real number. Then equation (3.50) has the form
c2 = α. If α > 0, then equation (3.49) has two solutions u = u0±

√
αA−1e. Denote

by B the ball ‖u− u0‖1 < r, where r =
√
α‖A−1e‖1 + δ, δ > 0 is a given number.

Then
γ(g,B) = 0. (3.51)

We suppose that α and δ are so small that B ⊂ D. To prove (3.51) consider the
function

µ̂τ (ξ) = ξ2 + ξ + (2τ − 1)α, τ ∈ [0, 1].
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Define
gτ (u) = A(u − u0) − µ̂τ (〈u− u0, ψ〉)e.

The equation gτ (u) = 0 has the solution

u = u0 ±
√

(1 − 2τ)αA−1e (3.52)

for 0 ≤ τ ≤ 1/2, and does not have any solution for 1/2 < τ ≤ 1. For the
solutions (3.52) we have ‖u−u0‖1 < r. Therefore, γ(gτ , D) does not depend on τ ,
γ(g,B) = γ(g1, B) = 0 and (3.51) is proved. Let u± = u0 ±√

αA−1e. From (3.51)

ind(g, u+) = − ind(g, u−). (3.53)

For the derivative g′(u) of g we have

g′(u±)u = Au− (1 ± 2
√
α) 〈u, ψ〉 e.

Define
f̂σ(u) = Au− σ 〈u, ψ〉 e.

Let T be the translation operator, T (y)f̂σ(x) = f̂σ(x − y). Then we have for the
ball B+ = {u : ‖u− u+‖1 < ρ}, where ρ is sufficiently small,

ind(g, u+) = γ(g,B+) = γ(T (u+)f̂2√α+1, B+)

= γ(T (u+)f̂2√α+1, D) = γ(T (u0)f̂2√α+1, D) = γ(f̃ , D)
(3.54)

if β > 1. Similarly,

ind(g, u−) = γ(T (u0)f̂−2
√
α+1, D) = γ(f,D). (3.55)

We have used the fact that γ(T (u0)f̂σ, D) does not depend on σ for all σ > 1 and
for all σ < 1. From (3.54), (3.55), and (3.53) we obtain (3.48). The equality (3.47)
follows from the fact that γ(T (u0)f̂σ, D) does not depend on σ for all σ < 1. The
lemma is proved. �

Lemma 3.14. Let A ∈ Ψ0, A−K ∈ Ψ0, where K is a finite-dimensional operator
acting from E1 into E2. Define

f(u) = A(u − u0), f̃(u) = (A−K)(u− u0),

where u0 ∈ D ⊂ E1. Then

γ(f̃ , D) = ±γ(f,D), (3.56)

where the sign + or − does not depend on choice of the topological degree γ.



3. Topological degree 483

Proof. If K is one-dimensional, then the assertion of the lemma follows from the
previous lemma. We can use induction with respect to the dimension n of K. If
K is n-dimensional, we can represent it in the form K = K0 + K1, where K0 is
(n− 1)-dimensional and

K1u = 〈u, φ〉 e, u ∈ E1, φ ∈ E∗
1 , e ∈ E1.

Consider the operator Aρ = A−ρK0−K1, where ρ is a real number. The operator
A− ρK0 is invertible for all ρ ∈ (1− δ, 1+ δ) if δ is positive and sufficiently small,
with the possible exception ρ = 1. Indeed, A − ρK0 = ρA( 1

ρI − A−1K0) and the
operator 1

ρI −A−1K0 is not invertible only for a discrete set of ρ.

Let fρ(u) = Aρ(u − u0), ρ ∈ (1 − δ, 1 + δ). Obviously f1 = f̃ and if δ is
sufficiently small, we have

γ(fρ, D) = γ(f̃ , D). (3.57)

If we choose ρ such that A− ρK0 is invertible, then Lemma 3.13 implies

γ(fρ, D) = εγ(gρ, D), (3.58)

where gρ(u) = (A− ρK0)(u− u0) and ε = ±1 does not depend on the choice of γ.
By the induction assumption

γ(gρ, D) = ε1γ(f,D), (3.59)

where ε1 = ±1 does not depend on the choice of γ. From (3.57)–(3.59) follows
(3.56). The lemma is proved. �

Lemma 3.15. Let A ∈ Ψ0. Write f(u) = A(u − u0), u0 ∈ E0. Then

ind(f, u0) = ±1, (3.60)

where the sign + or − does not depend on the choice of the topological degree γ
and the point u0.

Proof. Since Ψ is a connected set, there exists an operator Aτ : E1 × [0, 1] → E2

such that Aτ ∈ Ψ for any τ ∈ [0, 1], Aτ is continuous in τ in the operator norm,
and A0 = J, A1 = A, where J is the normalization operator. For any τ0 ∈ [0, 1]
there exists a finite-dimensional operator Kτ0 : E1 → E2 such that Aτ0 + Kτ0

is invertible. Consequently, there exists a neighborhood ∆(τ0) of the point τ0 in
[0, 1] such that the operator Aτ + Kτ0 is invertible for τ ∈ ∆(τ0). We can cover
the interval [0, 1] with such neighborhoods and choose a finite subcovering. Define
fτ0,τu = (Aτ+Kτ0)(u−u0). Obviously ind(fτ0,τ , u0) does not depend on τ ∈ ∆(τ0).
If ∆(τ0) and ∆(τ1) have a common point τ̄ , then Aτ̄ + Kτ0 and Aτ̄ + Kτ1 differ
only by a finite-dimensional operator. By Lemma 3.13,

ind(fτ0,τ̄ , u0) = ε ind(fτ1,τ̄ , u0),
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where ε = ±1 does not depend on the choice of γ. Therefore,

ind(fτ0,τ0 , u0) = ε ind(fτ1,τ1, u0).

It follows that

ind(A(u − u0), u0) = ε ind(J(u − u0), u0) = ε,

where ε = ±1 does not depend on the choice of γ. The fact that (3.60) does not
depend on u0 follows from the construction. The lemma is proved. �

Lemma 3.16. If A ∈ F ′ and u0 is a regular point of A, A(u0) = 0, then

ind(A, u0) = ±1,

where the sign + or − does not depend on the choice of the topological degree.

The proof is obvious.

Proof of Theorem 3.12. Let D ⊂ E be an open set, A ∈ F ′,

A(u) �= 0, u ∈ ∂D.

Since A is a proper operator, we have

A(u) �= a, u ∈ ∂D

for ‖a‖ < ε, if ε is sufficiently small. We can suppose that a is a regular value of
A (see [22]). Then the equation

A(u) = a

has only finitely many solutions u = uk, k = 1, . . . , n in D. Set Ã(u) = A(u) −
a, Aτ (u) = A(u) − τa, τ ∈ [0, 1]. Then Aτ (u) �= 0, u ∈ ∂D, τ ∈ [0, 1]. Then

γ(A,D) = γ(Ã,D) =
n∑
k=1

ind(Ã, uk)

does not depend on the choice of γ by virtue of Lemma 3.16. The theorem is
proved. �

3.5 Degree for elliptic operators

A topological degree is constructed above under the conditions presented in the
beginning of Section 3.3. The nonlinear operator is supposed to be of the class
C1 and to be proper. This imposes certain conditions on the function spaces.
In particular, in the case of unbounded domains they should be weighted spaces
(Section 2).
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The linearized operator A = (A1, A2) is such that Aλ = (A1+λI,A2) is Fred-
holm for all λ ≥ 0 and has a uniformly bounded inverse operator for λ sufficiently
large. The invertibility for large λ and the estimate of the inverse operator should
be verified using the results on an elliptic operator with a parameter (Chapter 8).

The condition that the operator Aλ is Fredholm can be replaced by the
condition of normal solvability with a finite-dimensional kernel. Indeed, if this is
the case for all λ ≥ 0 and if the operator is invertible for large λ, then it satisfies
the Fredholm property and has the zero index for all non-negative λ. Thus, we
should require that the operator Aλ satisfies Condition NS for all non-negative
λ. Normal solvability and the Fredholm property in weighted spaces is proved in
Section 3.4 (Chapter 4) and in Section 7 (Chapter 5).

Consider as an example a nonlinear second-order operator,

F (D2u,Du, u, x, t), x ∈ Ω, G(Du, u, x, t), x ∈ ∂Ω

depending on parameter t ∈ [0, 1] and acting from a domain D ⊂ E0 into E. In
the case of Hölder spaces, the conditions on the functions F (η, x, t) and G(ξ, x, t)
are given in Section 1, and for Sobolev spaces in Section 2.5. Here the vector η (ξ)
corresponds to the variables D2u,Du, u (Du, u) of the function F (G). We also
consider the corresponding linear operators:

A1(v, η, t) = −
n∑

i,j=i

aij(η, x, t)
∂2v

∂xi∂xj
+

n∑
i=i

ai(η, x, t)
∂v

∂xi
+ a(η, x, t)v, x ∈ Ω,

A2(v, ξ, t) =
n∑
i=1

bi(ξ, x, t)
∂v

∂xi
+ b(ξ, x, t)v, x ∈ ∂Ω,

where the coefficients aij , ai, a are partial derivatives of the function F with respect
to the corresponding variables, and the coefficients bi, b are partial derivatives of
the function G. The operator A is supposed to be uniformly elliptic:

n∑
ij=1

aij(η, x, t)τiτj ≥ a0|τ |2, |η| ≤ R, x ∈ Ω̄, t ∈ [0, 1],

where τ = (τ1, . . . , τn), a0 > 0. The constant R depends on the domain D. It is
such that for any u ∈ D, the estimate

sup
x∈Ω̄

(|u|, |Du|, |D2u|) ≤ R

holds. In the case of Sobolev spaces, we use here their embedding into C.
In the case of the oblique derivative in the boundary condition, it is supposed

that
n∑
i=1

bi(ξ, x, t)νi(x) �= 0, |η| ≤ R, x ∈ ∂Ω, t ∈ [0, 1],
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where ν = (ν1, . . . , νn) is the normal vector to the boundary. In the case of the
Dirichlet boundary condition, A2(v, ξ, t) = v.

Consider first the case of a bounded domain Ω and, for certainty, the Dirichlet
boundary condition. As function spaces, we can take

E0 = C2+α(Ω̄), E1 = Cα(Ω̄), E2 = C2+α(∂Ω), (3.61)
above 0 < α < 1, or

E0 = W 3,p(Ω), E1 = W 1,p(Ω), E2 = W 3−1/p,p(∂Ω), (3.62)

where p > n.
Under the conditions imposed on the functions F and G, the nonlinear op-

erator (F,G) is proper. The linear operator (A1 + λI,A2) satisfies the Fredholm
property for all real λ ≥ 0. Instead of the condition that the operator (A1+λI,A2)
has a uniformly bounded inverse for all λ ≥ λ0 in spaces (3.61), we impose the
same condition in the spaces

E′
0 = W 2,2(Ω), E′

1 = L2(Ω), E′
2 = W 3/2,2(∂Ω) (3.63)

(Remark 3.8). The value of λ0 and the estimate of the norm of the inverse operator
should be independent of η, ξ, t. For some fixed values of the parameters η0, ξ0, t0,
ellipticity with a parameter follows from some algebraic conditions. They will be
also satisfied in some neighborhood of η0, ξ0, t0. It remains to note that η, ξ, t vary
on a compact set.

In the case of spaces (3.62), the invertibility of the operator (A1 + λI,A2)
can be established directly or in some weaker spaces similar to (3.63).

Suppose now that the domain Ω is unbounded. We consider weighted spaces
E0,µ and Eµ with a polynomial weight. It can be for example µ(x) =

√
1 + |x|2.

If u ∈ C2+α
µ (Ω), then it converges to zero at infinity. If we need to study a prob-

lem with nonhomogeneous limits at infinity, then subtracting the corresponding
function we can reduce this case to the homogeneous case. In the case of Sobolev
spaces, E0,µ = W l,p

q (Ω), where q = ∞ or 1 < q <∞.
In the case of unbounded domains, normal solvability of the operator (A1 +

λI,A2) is provided by Condition NS, that is all limiting problems are supposed to
have only zero solutions in the corresponding spaces.

When the degree is defined, we may need to find its value in order to study
the existence of solutions (Section 4). The most natural way to do it is to use
the definition of the degree through orientation. Consider a nonlinear operator
T : E0 → E. Suppose that the equation T (u) = 0 has a finite number of isolated
solutions uk, k = 1, . . . ,m in some domain D ⊂ E0, and that the linearized oper-
ators B′(uk) does not have zero eigenvalues. Then the degree can be determined
by the formula

γ(T,D) =
m∑
k=1

(−1)νk , (3.64)

where νk is the number of positive eigenvalues of the operator T ′(uk).



3. Topological degree 487

We will finish this section with some remarks about the relation of the index
of Fredholm operators and the topological degree. The topological degree discussed
in this section is constructed for a Fredholm and proper operator with the zero
index. It is based on Smale’s generalization of Sard’s lemma about critical values.
It says that if f : M → V is a Cq Fredholm map with q > max(index f, 0), then
the regular values of f are almost all of V [496]. Almost all here means “except
for a set of first category”.

It follows that for Fredholm maps with the zero index, equation f = a has a
discrete set of solutions for almost all a, which is crucial for degree construction.
If the index is negative, then the image of the map contains no interior points.
Hence, even if the degree can be defined, it does not make sense because its value
should be zero. Finally, if the index is positive, then for almost all a, f−1(a) has a
dimension equal to the index or is empty. Therefore, the manifold of solutions has
a positive dimension, the corresponding linearized operators have zero eigenvalues,
and the orientation in the sense of Section 3.2 is not defined. We will discuss some
approaches to prove existence of solutions in the case of a nonzero index in Section
4.2.3.

3.6 Non-existence of the degree

Similar to Section 2.4, consider the operator Tτ (u) = u′′ +F (u) and suppose that
it acts from the space

E0 = {u ∈ C2+α(R+), u′(0) = 0, u(∞) = 0}

into the space E = Cα(R+). Here R+ denotes the half-axis x ≥ 0, F (u) = u(u−
τ)(1 − u), 0 < τ < 1/2. It is shown in Section 2.4 that the equation T (u) = 0 has
a unique nonzero solution uτ (x). It can be constructed explicitly. We will show
that the operator linearized about this solution does not have zero eigenvalues.

Lemma 3.17. The linearized equation

v′′ + F ′(uτ (x))v = 0 (3.65)

does not have nonzero solutions in E0.

Proof. The function v0(x) = u′τ (x) satisfies equation (3.65) but not the boundary
condition v′0(0) = 0. Indeed, if v′0(0) = 0, then u′′τ (0) = 0 and, by virtue of
the equation, F (uτ (0)) = 0, which is not true since the value uτ (0) satisfies the
equality

∫ uτ (0)

0 F (u)du = 0. Hence, v0 �∈ E0.
Suppose that equation (3.65) has a nonzero solution v1 ∈ E0. We note that

v1(0) > 0. Indeed, if v1(0) = 0, then v′1(0) �= 0 (see, e.g., [200], Lemma 3.4), which
contradicts the boundary condition.

Consider first the case where v1(x) > 0 for 0 ≤ x < ∞. Put ws = sv1 with
some positive constant s. We can choose s sufficiently large such that ws(x0) >
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v0(x0), where x0 is an arbitrary value for which F ′(uτ (x0)) < 0. Then ws(x) ≥
v0(x) for all x ≥ x0. Indeed, suppose that this is not the case and ws(x1) < v0(x1)
for some x1 > x0. Set z = ws − v0. Then

z′′ + F ′(uτ (x))z = 0, z(x0) > 0, z(∞) = 0. (3.66)

Since z(z1) < 0, then it has a negative minimum at some point x2 > x0. This
gives a contradiction in signs in the equation at x = x2.

Hence, for s sufficiently large, ws(x) > v0(x) for all x, 0 ≤ x < ∞. Let us
now decrease s till its first value s0 such that

ws0 (x) ≥ v0(x), 0 ≤ x <∞, ∃ x2 > 0 such that ws0(x2) = v0(x2).

The existence of such x2 contradicts the positiveness theorem. Indeed, the dif-
ference z1 = ws0 − v0 satisfies the equation in (3.66), it is non-negative and not
identically zero. According to the positiveness theorem, it should be strictly pos-
itive. This contradiction shows that there are no positive solutions of equation
(3.65) in E0.

Suppose now that there exists a solution of this equation which belongs to
E0 and which has a variable sign. As above, denote it by v1(x). Since v1(0) �= 0,
then, multiplying this function by −1 if necessary, we can assume that v1(0) < 0.
Then for some x > 0, v1(x) is positive. We consider the function ws = sv0,
where s is some positive constant. As above, we can prove that for s sufficiently
large, ws(x) > v1(x) for all x. Decreasing s, we can choose a value s0 such that
ws0(x) ≥ v1(x) for all x and that this inequality is not strict. As before, we obtain
a contradiction with the positiveness theorem. The lemma is proved. �

Let BR be a ball in E0 of the radius R. If R is sufficiently large, then

‖uτ‖C2+α(R) < R. (3.67)

Indeed, it can be easily verified that supx |u(x)| < 1 (Figure 11). Then the second
derivative is bounded by virtue of the equation. The estimate of the Hölder norm
of the second derivative can also be obtained from the equation.

We can now compute the degree by formula (3.64). If 0 < τ < 1/2, then there
are two solutions of equation (3.65) in BR, u = uτ and u = 0. For both of them,
the corresponding linearized operator does not have zero eigenvalues. Therefore,
the right-hand side in (3.64) is well defined. The value of the degree γ(A,BR) is
an even number.

We recall that topological degree is homotopy invariant. This means that if
the operator depends continuously on the parameter and A(u) �= 0 at the boundary
∂BR, that is (3.67) holds, then the degree does not change.

On the other hand, for τ = 1/2, solution uτ (x) with zero limits at infinity
does not exist. The corresponding homoclinic trajectory tends to two heteroclinic
trajectories as τ → 1/2 (Figure 11). In the limit, the homoclinic trajectory does
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not exist. Hence, there is only one solution of equation (3.65) in D for τ = 1/2,
u = 0. The value of the degree becomes odd. Homotopy invariance of the degree
is not preserved.

This example shows that the degree with the required properties may not
exist. This is related to the absence of properness of the corresponding operators.
The degree is defined in the appropriate weighted spaces where the operators are
proper.

4 Existence and bifurcations of solutions

4.1 Methods of nonlinear analysis

In this section we recall some results of nonlinear analysis which will be used to
study nonlinear elliptic problems. They are closely related to the properties of lin-
ear operators (Fredholm property, spectrum, solvability conditions, invertibility)
and to some properties of nonlinear operators discussed in this chapter (properness,
topological degree). Detailed presentation of these results can be found elsewhere.

4.1.1. Fixed point theorems. Let E be a complete metric space and D ⊂ E be a
closed set. Suppose that there is a map A from D into itself. A point u0 ∈ D is a
fixed point of the map A if A(u0) = u0. Therefore, it is a solution of the equation

A(u) = u. (4.1)

The mapping is contracting if there is a number α < 1 such that

ρ(A(u1), A(u2)) ≤ αρ(u1, u2)

for any u1, u2 ∈ D. Here ρ denotes the distance between two points.

Theorem 4.1 (Banach [47]). If an operator A is contracting, then there exists a
unique solution u0 of equation (4.1) in D.

We suppose now that E is a Banach space and formulate another classical
fixed point theorem. Various generalizations are known (see, e.g., [276]).

Theorem 4.2. (Schauder [463]). Let a continuous operator A map a convex closed
set D of a Banach space E into a compact subset of D. Then A has at least one
fixed point in D, that is a solution u ∈ D of the equation A(u) = u.

4.1.2. Implicit function theorem. The presentation of this section and of Section
4.1.3 follows the book by Kantorovich, Akilov [254]. Let E1, E2 and F be Banach
spaces. Consider an operator A(u, v) : E1 × E2 → F , u ∈ E1, v ∈ E2 and the
operator equation

A(u, v) = 0. (4.2)
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Theorem 4.3. Suppose that the operator A is given in a neighborhood D of a point
(u0, v0) ∈ E1 × E2, it maps it into the space F , and it is continuous at (u0, v0).
If, moreover, the following conditions are satisfied:

1. (u0, v0) satisfies equation (4.2).
2. The partial derivative A′

v exists in D, and it is continuous at (u0, v0).
3. A′

v(u0, v0) is a bounded operator from E2 into F , and it has a bounded in-
verse.

Then there exists an operator Φ given in some neighborhood G ⊂ E1 of the point
u0 such that it maps this neighborhood into the space E2 and satisfies the following
properties:

1. (u,Φ(u)) satisfies equation (4.2) in G.
2. Φ(u0) = v0.
3. Φ is continuous at u0.

The operator Φ is uniquely determined by these properties.

Under the conditions of the theorem, if A is continuous everywhere in D,
then the operator Φ is continuous in some neighborhood of the point u0. If we
assume, moreover, that the partial derivative A′

u exists in D and is continuous at
(u0, v0), then the operator Φ is differentiable at u0 and

Φ′(u0) = −(A′
v(u0, v0))−1A′

u(u0, v0).

4.1.3. Approximate methods. In this section we briefly recall some approximate
methods of solutions of operator equations (see, e.g., [254], [275], [276]).

1. Projection methods. Consider Banach spaces E and F and the equation

Lu = f, (4.3)

where L is a linear operator (bounded or unbounded) with the domain Dom(L) ⊂
E and the image R(L) ⊂ F . Two sequences of subspaces En and Fn are considered
such that

En ⊂ Dom(L) ⊂ E, Fn ⊂ F, n = 1, 2, . . . .

Let Pn : F → F be projectors: P 2
n = Pn, PnF = Fn, n = 1, 2, . . . . Instead of

equation (4.3) we consider the equation

Pn(Lun − f) = 0 (4.4)

where its solution un is sought in En. If E = F and En = Fn this projection
method is called the Galerkin method.

In the case of Hilbert spaces, consider two complete sequences φj∈Dom(L)⊂
E and ψj ∈ F , j = 1, 2, . . . and look for an approximate solution in the form
un =

∑n
j=1 cjφj . We assume that Lun − f ∈ F/Fn, that is

n∑
j=1

(Lφj , ψi)cj = (f, ψi), i = 1, . . . , n.
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These conditions allow us to find the coefficients cj and the approximate solu-
tion un.

Consider next the Galerkin method in the case of nonlinear operators. Let A
be a completely continuous operator acting in a Banach space E, D be a bounded
domain, D ⊂ E. We look for solutions of the equation

u = A(u), u ∈ D. (4.5)

Along with the operator A, consider a sequence of completely continuous operators
An acting in E and the approximate equations

u = An(u), n = 1, 2, . . . . (4.6)

The following theorem provides convergence of the approximations [276].

Theorem 4.4. Suppose that equation (4.5) does not have solutions at the boundary
∂D of the domain Ω and the degree γ(I −A,D) is different from 0. If

lim
n→∞ sup

u∈D̄
‖An(u) −A(u)‖ = 0,

then equations (4.6) have solutions in D for all n sufficiently large and these
solutions converge to some solutions of equation (4.5).

The proof of this theorem is based on properties of the topological degree.
It can be also proved for more general operators for which the degree is defined
[492].

2. Newton’s method. Consider the operator A : E → F and the equation

A(u) = 0. (4.7)

Newton’s method consists in the approximation of its solution by the iterations

un+1 = un − (A′(un))−1A(un), n = 0, 1, . . . .

It is assumed here that the linearized operator is invertible. In the modified New-
ton’s method, the inverse operator in the right-hand side is taken at the initial
approximation u = u0:

un+1 = un − (A′(u0))−1A(un), n = 0, 1, . . . .

The convergence of these methods is given by the following theorem [254]. We will
use the notations:

BR(u0) = {u ∈ F, ‖u− u0‖ < R}, Br(u0) = {u ∈ F, ‖u− u0‖ ≤ r}, r < R.

Theorem 4.5. Suppose that the operator A(u) is defined in BR(u0) and has a
continuous second derivative in Br(u0). Assume that:
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1. There exists a continuous inverse operator (A′(u0))−1.
2. ‖(A′(u0))−1A(u0)‖ ≤ η.
3. ‖(A′(u0))−1A′′(u)‖ ≤ K, u ∈ Br(u0).

If

h = Kη ≤ 1
2
, r ≥ r0 =

1 −√
1 − 2h
h

η,

then equation (4.7) has a solution u∗; Newton’s method and modified Newton’s
method converge to it. Moreover, ‖u∗ − u0‖ ≤ r0.

If

h <
1
2

(
h =

1
2

)
, r < r1 =

1 +
√

1 − 2h
h

η (r ≤ r1),

then the solution u∗ is unique in Br(u0).

4.1.4. Leray-Schauder method. Consider a bounded and continuous nonlinear op-
erator A : E → F . We are interested in the existence of solutions of the operator
equation (4.7) in some domain D ⊂ E. Let us assume that there exists an operator
Aτ (u) which depends continuously on the parameter τ ∈ [0, 1] and which satisfies
the following conditions:

1. Topological degree γ(Aτ , D) is defined.
2. There are no solutions at the boundary of the domain:

Aτ (u) �= 0, u ∈ ∂D, τ ∈ [0, 1]. (4.8)

3. The homotopy Aτ connects the operator A = A1 with an operator A0 for
which the degree is different from zero, γ(A0, D) �= 0.

Then there exists a solution u of equation (4.7) in D. Indeed, from the prop-
erties of the degree and by virtue of (4.8), it follows that γ(A,D) = γ(A0, D) �= 0.
Since the degree is different from zero, then (4.7) has a solution in D (principle of
nonzero rotation).

Suppose that solutions of the equation Aτ (u) = 0 admit a priori estimates,
that is for any such solution ‖u‖E < R, where a positive constant R does not
depend on τ and on solution. If we put D = BR1 where BR1 is a ball with radius
R1 > R, then condition (4.8) will be satisfied.

Thus, if we can construct a continuous deformation of the operator to a
model operator with nonzero degree and obtain a priori estimates of solutions,
then the existence of solutions will be proved. This is the Leray-Schauder method
[303] widely used for elliptic problems and for other operator equations. This is
how it was formulated by Leray and Schauder:

Théorème. Soit l’équation
x−F(x, k) = 0. (1)

Faisons les trois séries d’hypothèses:
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(H1) L’inconnue x et toutes les valeurs de F appartiennent à un espace linéaire,
normé et complet, E .
L’ensemble de valeur du paramètre k constitue en segment K de l’axe des
nombres réels.
F(x, k) est définie pour tous les couples (x, k) où x est un élément quel-
conque de E , k est un élément quelconque de K.
En chaque point k de K, F(x, k) est complétement continue1; ceci signifie
que F(x, k) transforme tout ensemble borné de points x de E en un en-
semble compact.
Sur tout sous-ensemble de E borné, F(x, k) est uniformément continue par
rapport à k.

(H2) En un point particulier k∗ de K toutes les solutions sont connues et l’on
peut étudier leurs indice par l’intermédiaire du Chapitre II; nous supposons
la somme de ces indices non nulle.

(H3) Enfin nous supposons démontré par un procédé quelconque que les solu-
tions de (1) sont bornées dans leurs ensemble. (Limitation a priori indé-
pendante de k.)

Conclusion. Alors il existe sûrement dans l’espace [E ×K] un continu de solutions
le long duquel k prend toutes les valeurs de K.

4.2 Existence of solutions

Existence of solutions of nonlinear problems is one of the main topics in the theory
of elliptic equations. We can refer to the monographs by Miranda [352], Ladyzhen-
skaya and Uraltseva [285], Gilbarg and Trudinger [200], Temam [514], Skrypnik
[493], Krylov [278], Caffarelli and Cabre [99], Gasinski and Papageorgiou [192],
Ambrosetti and Malchiodi [18]. In this section we illustrate application of the
methods of nonlinear analysis to study existence of solutions of elliptic problems.
The proof of the existence of solutions is often based on a priori estimates. This
method was first suggested in the works by Bernstein (see Historical notes) and
was further developed by Leray and Schauder. Nowadays, this is one of the most
widely used methods to prove existence of solutions of operator equations.

4.2.1. Second-order equations

Semi-linear equations. Consider the linear second-order operator

Lu = −
n∑

i,j=i

aij(x)
∂2u

∂xi∂xj
+

n∑
i=i

ai(x)
∂u

∂xi
+ a(x)u

in a bounded domain Ω ⊂ R
n and the semi-linear operator

T (u) = Lu+ F (Du, u, x)
1Here and below italic by the authors.
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with the Dirichlet boundary condition u|∂Ω = 0. Here Du denotes the first deriva-
tives of u. We suppose that the operators L and T act from C2+α(Ω̄) into Cα(Ω̄).
The coefficients of the operator L belong to Cα(Ω̄), the function F (η1, η2, x) (η1
here is a vector) has second derivatives with respect to η1, η2 which satisfy the
Hölder condition in x uniformly in η = (η1, η2) and the Lipschitz condition in η
uniformly in x. Then the topological degree can be defined. In order to obtain a
priori estimates of solutions we assume that the operator L is invertible and

|F (η1, η2, x)| ≤M

for all real η1, η2, and x ∈ Ω̄ and for some positive constant M . This condition
is restrictive but we will use it for the sake of simplicity. Other examples will be
considered below.

Suppose that the problem

T (u) = 0, u|∂Ω = 0 (4.9)

has a solution in C2+α(Ω̄). Denote f(x) = F (Du, u, x). Then f ∈ Lp(Ω) for any p
and from the equation Lu = −f we obtain the estimate

‖u‖W 2,p(Ω) ≤ ‖L−1‖p ‖f‖Lp(Ω) ≤M‖L−1‖p |Ω|1/p. (4.10)

Here ‖L−1‖p is the norm of the operator inverse to the operator L : W 2,p(Ω) →
Lp(Ω), |Ω| is the measure of the domain. For p sufficiently large, from the last esti-
mate and from embedding theorems, we obtain an estimate of the norm ‖u‖C1+α(Ω̄)

and, consequently, of the norm ‖f‖Cα(Ω̄). Since the operator L is invertible from
C2+α(Ω̄) into Cα(Ω̄), we obtain an estimate of the norm ‖u‖C2+α(Ω̄).

Consider now the operator depending on a parameter,

Tτ (u) = Lu+ τF (Du, u, x).

A priori estimates of solutions of the operator equation Tτ (u) = 0 can be obtained
as before. If τ = 0, then T (u) = Lu. From the invertibility of the operator it follows
that the equation Lu = 0 has a unique solution u0 = 0 and γ(T0, u0) = ±1. Here
γ(T0, u0) is the index of the stationary point u0, that is the topological degree
taken with respect to a small neighborhood of u0 in the function space.

Thus, all conditions of the Leray-Schauder method are satisfied. This proves
the existence of solutions of problem (4.9). This approach can be applied for other
semi-linear equations and systems.

Let us now discuss the case where the domain Ω is unbounded. The approach
described above is not applicable because of estimate (4.10). We will use here
the method of approximation of unbounded domains by a sequence of bounded
domains. For linear problems, it was discussed in Chapter 8. Let Ωk be a sequence
of bounded domains with uniformly C2+α boundaries, converging to the domain Ω.
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This is a local convergence defined in Section 1 of Chapter 4. For each of the
domains Ωk we can use the existence result obtained above. Consider the operators

Lku = −
n∑

i,j=i

akij(x)
∂2u

∂xi∂xj
+

n∑
i=i

aki (x)
∂u

∂xi
+ ak(x)u,

T k(u) = Lku+ F k(Du, u, x)

and denote by uk a solution of the problem

T k(u) = 0, u|∂Ωk
= 0. (4.11)

It exists if the operators Lk are invertible. If we obtain uniform estimates of the
functions uk in an appropriate norm, then we can choose a convergent subsequence
and obtain a solution of problem (4.9).

Let us extend the coefficients of the operator L to the whole Rn in such a
way that their norms are preserved. As the coefficients of the operator Lk, we can
take their restrictions to the domain Ωk. We define the functions F k in a similar
way and suppose that

sup
η,x

|F k(η1, η2, x)| ≤M ∀k. (4.12)

Consider the equations Lku = fk, where fk(x) = F k(Duk, uk, x). From The-
orem 1.3 (Section 1.3, Chapter 8) we obtain the estimate

‖uk‖W 2,p
∞ (Ωk) ≤ c1

(‖fk‖Lp
∞(Ω) + ‖uk‖Lp

∞(Ω)

)
, (4.13)

where the constant c1 is independent of uk and Ωk. Suppose that there exists a
constant m such that

sup
x

|uk| ≤ m ∀k. (4.14)

This assumption together with (4.12) provides an estimate of the norm
‖uk‖W 2,p

∞ (Ωk) independently of k. From this estimate and embedding theorems
we obtain an estimate of the norm ‖u‖C1+α(Ω̄) and, consequently, of the norm
‖f‖Cα(Ω̄). Then we can use the estimate

‖uk‖C2+α(Ω̄k) ≤ c2
(‖fk‖α(Ω̄k) + ‖uk‖C0(Ω̄)

)
, (4.15)

where the constant c2 is independent of k. From the sequence uk, we can choose
a subsequence locally convergent in C2 to a limiting function u. It belongs to
C2+α(Ω̄) and satisfies (4.9). We will consider some other examples in Section 4.3.

Quasi-linear equations. Consider the quasi-linear equation

n∑
i,j=1

aij(Du, u, x)
∂2u

∂xi∂xj
= F (Du, u, x) (4.16)
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in a bounded domain Ω ⊂ Rn with the Dirichlet boundary conditions. Here Du is
the vector of the first partial derivatives; the coefficients of the operator and the
boundary of the domain are sufficiently smooth.

Let v ∈ C2+α(Ω̄). Following [303], consider the linear equation

n∑
i,j=1

aij(Dv, v, x)
∂2u

∂xi∂xj
= F (Dv, v, x)

with respect to u. Its solvability is known. Therefore, we obtain an operator A
which puts in correspondence a solution u of this equation to each function v. A
fixed point of this operator, that is a solution of the equation A(u) = u, gives
a solution of equation (4.16). The existence of solutions of this equation can be
studied by fixed point theorems or with the use of the topological degree. The main
difficulty here is to obtain a priori estimates of solutions. They were obtained by
Schauder [470] who generalized the results of Bernstein previously obtained in the
case of analytical solutions. The authors prove the existence theorem in the 2D
case which is formulated, in the original version, as follows.

Toute équation

a

(
x1, x2; z;

∂z

∂x1
,
∂z

∂x1

)
∂2z

∂x2
1

+ 2b
(
x1, x2; z;

∂z

∂x1
,
∂z

∂x1

)
∂2z

∂x1∂x2

+ c

(
x1, x2; z;

∂z

∂x1
,
∂z

∂x1

)
∂2z

∂x2
2

= 0

du type elliptique admet au moins une solution qui soit définie dans un domaine
convexe donné, ∆, et qui prenne des valeurs données sur sa frontière ∆′. (Rap-
pelons que nous avons dû faire des hypothèses concernant la régularité de la courbe
∆′, des valeurs frontières et des fonctions a, b, c.)

This result is generalized in [285] in the first theorem for uniformly, and in
the second theorem for non-uniformly, elliptic equations.

Theorem 4.6 (Ladyzhenskaya, Uraltseva [285]). Let all solutions u(x, τ) ∈ C2+α(Ω̄)
of the problems

2∑
i,j=1

aij(Du, u, x)
∂2u

∂xi∂xj
+ τa(Du, u, x) = 0, u|∂Ω = 0, τ ∈ [0, 1] (4.17)

in a bounded domain Ω ⊂ R
2 satisfy the estimate maxΩ |u(x, τ)| ≤ M, and ∂Ω ∈

C2+α. Suppose that the functions aij(p, u, x) and a(p, u, x) belong to Cα for x ∈
Ω̄, |u| ≤M, |p| ≤M1 and satisfy the following conditions:

ν(|u|)|ξ|2 ≤ aij(p, u, x)ξiξj ≤ µ(|u|)|ξ|2,
|a(p, u, x)| ≤ δ(M)|p|2 + µ1(M)(1 + |p|2−δ1).
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Then problem (4.17) with τ = 1 has at least one solution in C2+α(Ω̄). Here ν(t)
and µ(t) are positive continuous functions defined for t ≥ 0, ν non-increasing, µ
non-decreasing; δ1 > 0, Mδ(M) is sufficiently small, (2 +

√
2)cMδ(M) < 1, c =

2µ(M)ν−2(M).

Theorem 4.7 (Ladyzhenskaya, Uraltseva [285]). The problem

2∑
i,j=1

aij(Du, u, x)
∂2u

∂xi∂xj
= 0, u|∂Ω = φ|∂Ω (4.18)

has at least one solution u ∈ C2+α(Ω̄) if Ω is a strictly convex domain, φ ∈
C2+α(Ω̄), ∂Ω ∈ C2+α,

aij(p, u, x)ξiξj > 0,

and aij(p, u, x) satisfies the Hölder condition with α > 0 with respect to (p, u, x) for
x ∈ Ω̄, |u| ≤ M, |p| ≤ M1, where M = max∂Ω |φ|, M1 some constant determined
only by φ and ∂Ω.

The existence results for quasi-linear equations in the case n ≥ 2, for other
boundary value problems and for quasi-linear systems can be found in [285], [200].

Fully non-linear equations. Following [200], consider the equation

F [u] ≡ F (D2u,Du, u, x) = 0, (4.19)

where F (r, p, z, x) is a real-valued function, Du denotes the vector of the first par-
tial derivatives of the function u, and D2 of the second derivatives, r ∈ Rn×n, p ∈
Rn, z ∈ R, x ∈ Ω. Here Rn×n denotes real symmetric square matrices of the order
n. The set of all such (r, p, z, x) is denoted by Γ.

If F is linear with respect to the variables r then the operator is quasi-linear,
otherwise it is fully nonlinear. The operator F is called elliptic if the matrix with
the elements Fij = ∂F

∂rij
is positive definite. Suppose that the following conditions

are satisfied:

0 < λ|ξ|2 ≤ Fijξiξj ≤ Λ|ξ|2, (4.20)
|Fp|, |Fz|, |Frx|, |Fpx|, |Fzx| ≤ µλ, (4.21)
|Fx|, |Fxx| ≤ µλ(1 + |p| + |r|) (4.22)

for all nonzero ξ ∈ Rn, (r, p, z, x) ∈ Γ, λ is a non-increasing and Λ, µ are non-
decreasing functions of |z|. We recall that the condition of external sphere implies
that for any point x ∈ ∂Ω there exists a ball B such that B̄ ∩ Ω̄ = {x}.
Theorem 4.8 (Gilbarg, Trudinger [200]). Let Ω ⊂ Rn be a bounded domain sat-
isfying the condition of an external sphere at each boundary point. Suppose that
the function F ∈ C2(Γ) is concave (or convex) with respect to all variables z, p, r,
it is non-increasing in z and satisfies conditions(4.20)–(4.22). Then the classical
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Dirichlet problem F [u] = 0 in Ω, u = φ on ∂Ω is uniquely solvable in C2(Ω)∩C0(Ω̄)
for any φ ∈ C0(∂Ω).

Solvability of nonlinear problems has been discussed by Leray and Schauder
[303], and later in [352] and [493]. The method of viscosity solutions is used in
[99]. Other references can be found in the cited monographs.

4.2.2. Navier-Stokes equations. There is an extensive literature devoted to exis-
tence of solutions of the Navier-Stokes equations. In this section we follow the
presentation in [284]. Consider the Navier-Stokes equations

−ν∆vi +
3∑

k=1

vk
∂vi
∂xk

= − ∂p

∂xi
+ fi(x), i = 1, 2, 3 (4.23)

for the incompressible fluid,

div v ≡
3∑

k=1

∂vk
∂xk

= 0, (4.24)

in a domain Ω ⊂ R
3, which can be bounded or unbounded. Here v = (v1, v2, v3)

is the velocity, p is the pressure, ν the viscosity. We consider the homogeneous
Dirichlet boundary condition

v|∂Ω = 0. (4.25)

If the domain is unbounded, the same condition is imposed at infinity

v|x=∞ = 0. (4.26)

Denote by H(Ω) the Hilbert space of functions v obtained as a closure of the set
J(Ω) of all solenoidal (that is div v = 0) smooth vector-functions with support in
Ω in the norm corresponding to the scalar product

[u, v] =
∫

Ω

3∑
k=1

∂u

∂xk

∂u

∂xk
dx.

We define a generalized solution of problem (4.23)–(4.26) as a function v ∈ H(Ω)
which satisfies the equality

∫
Ω

(
ν
∂v

∂xk

∂Φ
∂xk

+ vk
∂v

∂xk
Φ
)
dx =

∫
Ω

fΦdx (4.27)

for any Φ ∈ J(Ω). Here the repeated subscript k implies summation, the product
of two vectors signifies the inner product in R3.

Theorem 4.9 ([284]). Problem (4.23)–(4.25) in a bounded domain Ω has at least
one generalized solution for any f for which the integral

∫
Ω fΦdx determines a

linear functional in H(Ω).



4. Existence and bifurcations of solutions 499

The proof of this theorem is based on the Leray-Schauder method. The prob-
lem is represented as an equation with respect to v:

v − 1
ν

(Av + F ) = 0,

where A is a nonlinear compact operator acting in H(Ω). A priori estimates of
solutions allow one to prove the existence of solutions of this equation.

If ν is sufficiently large, which corresponds to small Reynolds numbers, then
the solution is unique. The existence can also be proved in the case of unbounded
domains. In this case, we consider a sequence of bounded domains converging to the
unbounded domain Ω and the corresponding sequence of solutions. Its weak limit
is a generalized solution of problem (4.23)–(4.26). The existence theorem remains
valid in the case of inhomogeneous Dirichlet boundary condition v|∂Ω = a|∂Ω under
some conditions on the function a and on the smoothness of the domain. We note
that the regularity of the solution is determined by the regularity of the data. In
particular, if f in (4.23)–(4.25) satisfies the Hölder condition, then the solution
also satisfies it together with its second derivatives.

4.2.3. Operators with nonzero index. The topological degree constructed in this
chapter is applicable for Fredholm and proper operators with zero index. Degree
can also be constructed in the case of positive index. However, its application to
elliptic problems in this case is rather complex and only a few examples have been
studied [383], [448]. In this section we discuss another approach to study existence
of solutions of some classes of elliptic problems with nonzero index.

Positive index. Let A(u) = Lu − B(u), where L : E → F is a linear Fredholm
operator and B(u) : E → F is a nonlinear continuous compact operator. Suppose
that the dimension of the kernel E0 of the operator L equals n, and its image
coincides with the space F . Let E1 be a complementary subspace, E = E0 ⊕ E1.
The restriction L̂ of the operator L to E1 has a bounded inverse. Put u = v + w,
where v ∈ E0 and w ∈ E1. The equation A(u) = 0 can be written as w = L̂−1B(u).
We can now use a fixed point theorem or the Leray-Schauder degree to find its
solution.

Let us illustrate the application of this approach to the two-dimensional
problem with oblique derivative:

∆u+ F (u, x, y) = 0, (x, y) ∈ Ω, (4.28)

a(x, y)
∂u

∂x
− b(x, y)

∂u

∂y
= 0, (x, y) ∈ ∂Ω. (4.29)

Here Ω is a bounded domain, a2 + b2 = 1. The coefficients, the nonlinearity and
the boundary of the domain satisfy conditions of Sections 1 or 2.5. Consider also
the linear equation

∆u = f(x) (4.30)
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and the operator L : W 2,2(Ω) → L2(Ω) ×W 1/2,2(∂Ω) corresponding to problem
(4.29), (4.30). The index κ of this operator equals 2N +2, where N is the number
of rotations of the vector (a, b) counterclockwise (Chapter 8). If κ > 0, then the
dimension of the kernel E0 of the operator L equals κ, the image of the operator
is the whole space F . The operator L̂ : E1 → F has a bounded inverse.

Denote by T the operator which puts in correspondence a solution w ∈
E1 of problem (4.29), (4.30) with f(x) = −F (z, x, y) to a function z, T (z) =
−L̂−1F (z, ·). A fixed point of the mapping w = T (z) gives a solution of problem
(4.28), (4.29). An appropriate choice of function spaces and of conditions on F
allows us to use the Schauder fixed point theorem. Let, for example, F be a
bounded function,

|F (u, x, y)| ≤M, ∀u ∈ R, (x, y) ∈ Ω̄.

Then ‖w‖W 2,2(Ω) ≤ KM |Ω|, where K is the norm of the inverse operator L̂−1,
|Ω| is the measure of the domain Ω. From the embedding of the space Cα(Ω̄)
into W 2,2(Ω) for some α, 0 < α < 1 we conclude that ‖w‖Cα(Ω̄) ≤ K1, where the
constant K1 is independent of the function z. Consider the ball Br = {‖z‖Cβ(Ω̄) ≤
r} in the Hölder space Cβ(Ω̄) with some positive β < α. If r > K1, then T (z) maps
the ball Br in its compact part. Hence there exists a fixed point of this mapping.

We note that each solution of problem (4.28), (4.29) originates a family of
solutions with the dimension equal to the index (cf. [496]). The approach discussed
above is applicable for other problems and in the case of less restrictive conditions
on the function F .

Negative index. In the case of a negative index, the operator equation may not
have solutions since the image of the linear part of the operator is not the whole
space. Let us consider the operator depending on the vector parameter τ , Aτ (u) =
Lu−B(u, τ). We should choose the value of the parameter in such a way that the
equation Aτ (u) = 0 has a solution.

We suppose that the index κ of the operator L is negative and that its kernel
is empty. The linear equation Lu = f is solvable if and only if (φi, f) = 0 for some
functionals φi ∈ F ∗, i = 1, . . . ,m, where m = |κ|. Consider the equation

Lu = B(z, τ) (4.31)

for a given function z. In order to satisfy the solvability conditions

(φi, B(z, τ)) = 0, i = 1, . . . ,m,

we introduce some functionals τ(z) = (τ1(z), . . . , τm(z)) instead of the given real-
valued constant vector τ = (τ1, . . . , τm). Its dimension is supposed to be the same
as the number of solvability conditions. This is the so-called functionalization of
the parameters (see, e.g., [276]). Let us assume, for the sake of simplicity, that the
dependence on the parameters is linear:

B(z, τ) = B0(z) + τ1(z)B1(z) + · · · + τm(z)Bm(z).
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From the solvability conditions we obtain the linear algebraic system of equations
with respect to τi:

ai1τ1 + · · · + aimτm = bi, i = 1, . . . ,m,

where
aij = (φi, Bj(z)), bi = −(φi, B0(z)), i, j = 1, . . . ,m.

It has a solution if the determinant of the matrix (aij)mi,j=1 is different from zero. In
this case we can determine the functionals τi(z) in such a way that the solvability
conditions are satisfied.

Consider a domain D ⊂ E. If

det((φi, Bj(z)))mi,j=1 �= 0, ∀z ∈ D,

then we can introduce such functionals τi(z) that equation (4.31) is solvable for
any z ∈ D. Since the operator L is an isomorphism between the space E and
its image, then we can consider the mapping u = L−1B(z, τ(z)) defined on the
domain D. Similar to the case of positive index, a fixed point of this mapping is
a solution of the equation Aτ (u) = 0, where τ = τ(u).

4.3 Elliptic problems in unbounded domains

Most of the results of this book, a priori estimates, Fredholm property, index, op-
erators with a parameter for linear elliptic problems, properness and topological
degree for nonlinear problems are applicable both for bounded and unbounded do-
mains. In the case of unbounded domains, there can be some additional conditions
on the operators. In particular, the Fredholm property requires the invertibility of
limiting operators while properness and topological degree demand the introduc-
tion of weighted spaces.

Existence of solutions of nonlinear elliptic problems in unbounded domains
can be studied either by approximation of the unbounded domain by a sequence of
bounded domains or directly in the unbounded domain. There is a vast literature
devoted to the existence of positive solutions (see, e.g., [319] and the references
therein), to various properties of solutions such as monotonicity and symmetry
(see [58]–[61]), bifurcations, symmetry breaking, decay and growth (see the bib-
liographical comments), to some specific solutions including travelling waves (see
[568] and the references therein).

4.3.1. Approximation by bounded domains. We have already discussed this ap-
proach in Section 4.2.1 and will briefly describe here the general framework. Con-
sider a sequence of bounded domains Ωk locally convergent to an unbounded
domain Ω in the sense of Section 1.1 of Chapter 8. For each domain Ωk, we define
function spaces E(Ωk) and F (Ωk) and the operators Ak : E(Ωk) → F (Ωk). The
operator A acts from E(Ω) into F (Ω). The coefficients of the operators Ak and A
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are extended to the whole Rn, both for the operators in domains and for boundary
operators. We assume that the coefficients of the operators Ak locally converge to
the coefficients of the operator A in Cα(Rn) or in another norm determined by
the operators and function spaces.

Suppose that each equation Ak(u) = 0 has a solution uk and the uniform
estimate

‖uk‖E∞(Ωk) ≤M, k = 1, 2, . . . (4.32)

holds. Then from the properties of the operators and function spaces it may be
possible to verify that a subsequence of the sequence uk is locally convergent
in some weaker norm to a solution u of the equation A(u) = 0. For example, if
E = Cs+α, then there exists a subsequence of the sequence uk locally convergent in
Cs to some limiting function u ∈ Cs+α(Ω̄) which satisfies the equation A(u) = 0.

The key point here is to prove estimates (4.32). If these are a priori estimates,
then it can be possible to prove existence of solutions of the equations Ak(u) = 0
by the Leray-Schauder method. In this case, we may not assume the existence of
solutions in bounded domains.

A priori estimates of solutions of linear elliptic problems independent of the
domains (Chapter 8) can be used to obtain estimates (4.32). In particular, in the
case where Ak(u) = Lku + Bk(u), Lk are linear operators and Bk are nonlinear
operators such that ‖Bk(u)‖F∞(Ωk) ≤ K for all u ∈ E∞(Ωk) and with a constant
K independent of k (cf. Section 4.2.1). If the operators Lk : E(Ωk) → F (Ωk) are
invertible with the norms of the inverse operators bounded independently of k,
then we have a uniform estimate of uk:

‖uk‖E∞(Ωk) ≤ ‖L−1‖ ‖Bk(u)‖F∞(Ωk).

If the operators Lk do not have uniformly bounded inverse operators but the
functions uk are uniformly bounded in a weaker norm, for example if

sup
k,x∈Ω̄k

|uk(x)| ≤ m,

then we can use the estimate

‖uk‖E∞(Ωk) ≤ c
(‖Bk(u)‖F∞(Ωk) + ‖uk‖E0∞(Ωk)

)
,

where E0∞ can be Lp∞ or C0 depending on the spaces E and F .

Laplace operator with nonlinear terms. Consider the problem

−∆u+ F (Du, u, x) = 0, u|∂Ω = 0, (4.33)

which is a particular case of the semi-linear problem discussed in Section 4.2.1.
It has been studied by Picard and Bernstein, Schauder [463] used the Brower
fixed point theorem and Nemytiskii [374] proved the existence of solutions for
domains with a sufficiently small measure. The review of old works can be found
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in Lichtenshtein [315], Miranda [352]. More recent results and literature reviews
are presented in the monographs [450], [192].

We will not assume here, as in Section 4.2.1, that the function F is bounded.
The principle of contracting mapping, fixed point theorems or the topological
degree can be used to study the existence of solutions. We will present one of the
possible approaches. Put

F (Du, u, x) = cu+ F0(Du, u, x).

We will suppose that c is a positive constant, F0(η1, η2, x) is a sufficiently smooth
function of its arguments (see Section 4.2.1), and

|F0(η1, η2, x)| ≤ a|η1| + b|η2| + d(x), (4.34)

d(x) is a non-negative function from L2(Ω).

Bounded domains. We begin with the case of a bounded domain Ω with a C2+α

boundary. Suppose that u ∈ C2+α(Ω̄). Multiplying equation (4.33) by u, integrat-
ing over Ω, and taking into account (4.34), we obtain

∫
Ω

|∇|2dx+ c

∫
Ω

u2dx ≤ a

∫
Ω

|∇u||u|dx+ b

∫
Ω

u2dx +
∫

Ω

|u|d(x)dx

≤ a

2

∫
Ω

|∇|2dx+
(a

2
+ b

)∫
Ω

u2dx+
(∫

Ω

u2dx

)1/2 (∫
Ω

d2dx

)1/2

.

Hence

(
1 − a

2

) ∫
Ω

|∇|2dx+
(
c− a

2
− b

)∫
Ω

u2dx ≤
(∫

Ω

u2dx

)1/2 (∫
Ω

d2dx

)1/2

.

If a < 2 and b + 1 < c, then this inequality allows us to estimate, first, the
norm ‖u‖L2(Ω) and then ‖u‖H1(Ω). Hence, using (4.34), we can estimate the norm
‖F0(Du, u, x)‖L2(Ω). Put f(x) = −F0(Du, u, x). Then from a priori estimates of
solutions of the linear equation

−∆u+ cu = f, (4.35)

where f ∈ L2(Ω), we obtain an estimate of the norm ‖u‖H2(Ω). From the equalities

∂f

∂xi
= −

n∑
j=1

∂F0

∂η1j

∂2u

∂xi∂xj
− ∂F0

∂η2

∂u

∂xi
− ∂F0

∂xi

we can now estimate the norm ‖f‖H1(Ω) assuming that the first partial derivatives
of the function F0 are bounded. Then from equation (4.35) we obtain an estimate of
the norm ‖u‖H3(Ω). If the dimension of the space n ≤ 3, then from the embedding
theorems follows an estimate of the norm ‖u‖C1+α(Ω̄) for some α ∈ (0, 1) and,
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consequently, of the norm ‖f‖Cα(Ω̄). From equation (4.35), we estimate the norm
‖u‖C2+α(Ω̄). If n = 4, we should continue with similar estimates,

‖u‖H3(Ω) → ‖f‖H2(Ω) → ‖u‖H4(Ω) → ‖u‖C1+α(Ω̄) → ‖f‖Cα(Ω̄) → ‖u‖C2+α(Ω̄),

which require additional conditions on the derivatives of the function F0.
Thus, we finally obtain an a priori estimate of the norm ‖u‖C2+α(Ω̄). We can

now apply the topological degree and the Leray-Schauder method. In order to do
this, consider the operator

Aτ (u) = −∆u+ cu+ τF0(Du, u, x)

acting from the space E0 into E,

E0 = {u ∈ C2+α(Ω̄), u|∂Ω = 0}, E = Cα(Ω̄).

A priori estimates of solutions for τ ∈ [0, 1] can be obtained in a similar way. For
τ = 0, the equation Aτ (u) = 0 has a unique solution u = 0. The index of this
stationary point equals 1, since the corresponding linearized operator has only
positive eigenvalues. Hence, γ(A0, B) = 1, where B is a ball in E0 of a sufficiently
big radius determined by a priori estimates. Therefore, γ(A1, B) = 1, and there
exists at least one solution of problem (4.33) in the ball B.

Unbounded domains. Suppose that the domain Ω is unbounded with the uni-
formly C2+α boundary satisfying Condition D (Chapter 4). Let φi, i = 1, 2, . . .
be a partition of unity which satisfies the conditions in the definition of ∞-spaces
(Chapter 2) and

0 ≤ φi ≤ 1, sup
x,i,j

|∂φi
∂xj

| ≤ m

for some positive constant m. Suppose that the norm ‖d‖L2∞(Ω) = supi ‖dφi‖L2(Ω)

is bounded. Let us multiply equation (4.33) by uφ2
i and integrate over Ω:

∫
Ω

|∇u|2φ2
i dx+c

∫
Ω

u2φ2
i dx+

∫
Ω

u∇u ·∇(φ2
i )dx = −

∫
Ω

F0(Du, u, x)φ2
i dx. (4.36)

We have, further,

∫
Ω

|u∇u · ∇(φ2
i )|dx ≤ Km

∫
Ω

|∇u||u|φidx ≤ Km

∫
Ω

|∇u||u|φi
N∑
j=1

φjdx,

where we denote by K all constants which depend only on the dimension n of
the space, the sum in the right-hand side is taken with respect to all functions
φj from the partition of unity such that

∑N
j=1 φj(x) = 1 at the support of the

function φi. This sum does not include the functions equal to zero at the support
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of φi. According to the assumptions on the partition of unity, the number of such
functions is bounded by a constant N independent of i. Then

∫
Ω

|u∇u · ∇(φ2
i )|dx ≤ KmNε

∫
Ω

|∇u|2φ2
i dx+Km

1
ε

N∑
j=1

∫
Ω

|u|2φ2
jdx

≤ KmN

(
ε sup

i

∫
Ω

|∇u|2φ2
i dx+

1
ε

sup
i

∫
Ω

|u|2φ2
i dx

)
.

Here ε is some positive constant which will be specified below. From (4.36) and
(4.34),
∫

Ω

|∇u|2φ2
i dx+ c

∫
Ω

u2φ2
i dx−KmN

(
ε sup

i

∫
Ω

|∇u|2φ2
i dx+

1
ε

sup
i

∫
Ω

|u|2φ2
i dx

)

≤ a

∫
Ω

|∇u||u|φ2
i dx+ b

∫
Ω

u2φ2
i dx+

∫
Ω

|u|d(x)φ2
i dx.

Hence
(
1 − a

2

) ∫
Ω

|∇u|2φ2
i dx+

(
c− a

2
− b

) ∫
Ω

u2φ2
i dx

≤ ‖u‖L2∞(Ω)‖d‖L2∞(Ω) +KmN

(
ε sup

i

∫
Ω

|∇u|2φ2
i dx+

1
ε
‖u‖2

L2∞(Ω)

)
≡ T.

Suppose that a < 2 and c > b+ 1. Since the last inequality holds for any i, then
(
c− a

2
− b

)
‖u‖2

L2∞(Ω) ≤ T,
(
1 − a

2

)
sup
i

∫
Ω

|∇u|2φ2
i dx ≤ T.

Therefore (
ε sup

i

∫
Ω

|∇u|2φ2
i dx+

1
ε
‖u‖2

L2∞(Ω)

)
≤ RT,

where
R =

ε

1 − a/2
+

1
ε(c− a/2 − b)

.

From the last estimate and the definition of T it follows that

(1 −KmNR)
(
ε sup

i

∫
Ω

|∇u|2φ2
i dx+

1
ε
‖u‖2

L2∞(Ω)

)
≤ R‖u‖L2∞(Ω)‖d‖L2∞(Ω).

If KmNR < 1, then we obtain an estimate of the norm ‖u‖L2∞(Ω) and then of the
norm ‖u‖H1∞(Ω). Next, we use the estimate

‖u‖H3∞(Ω) ≤ k
(‖f‖H1∞(Ω) + ‖u‖L2∞(Ω)

)

of the solution of equation (4.35) (Theorem 2.2, Chapter 3). We proceed as in the
case of bounded domains and obtain an estimate of the norm ‖u‖C2+α(Ω̄). Similar
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estimates can be obtained for other boundary value problems for scalar and vector
operators.

Contrary to the case of bounded domains, for unbounded domains such es-
timates are not sufficient to conclude the existence of solutions. We can use the
method of approximation by a sequence of bounded domains. In order to do this,
we should consider a sequence of bounded domains Ωk locally convergent to the
domain Ω. If the domains satisfy Condition D uniformly and if there exists a
solution uk for the problem in each domain, then it can be possible to obtain
an estimate of the norm ‖uk‖C2+α(Ω̄k) independent of k. This is the case for the
example under consideration. Then we can chose a locally convergent in C2 sub-
sequence from the sequence uk. The limiting function u ∈ C2+α(Ω̄) is a solution
of the problem in the domain Ω.

Another approach is to use the topological degree and the Leray-Schauder
method. It requires the introduction of weighted spaces (Section 3). In this case,
we need to obtain an a priori estimate of solutions in the norm ‖u‖C2+α

µ (Ω̄) with a
polynomially growing at infinity weight function µ. We will return to this question
in Section 4.3.3.

4.3.2. Solutions in the sense of sequence. Consider a bounded and continuous
nonlinear operator A acting from a Banach space E into another Banach space F .
Similar to the case of linear non-Fredholm operators, we can introduce here the
notion of solutions in the sense of sequence.

Definition 4.10. A sequence of functions uk ∈ E is called a solution in the sense
of sequence if ‖A(uk)‖F → 0 as k → ∞. This solution is uniformly bounded if
‖uk‖ ≤M for some positive constant M independent of k.

If the operator A is proper on closed bounded sets, then from the existence of
a uniformly bounded solution in the sense of sequence, it follows that there exists
a solution in the usual sense, that is a function u ∈ E such that A(u) = 0. Indeed,
in this case the sequence uk is compact since it is an inverse image of the compact
set composed by the functions fk = A(uk). Therefore, there exists a subsequence
unk

convergent to some u0 ∈ E, A(u0) = 0.
If the operator A is not proper, then, generally speaking, the existence of a

solution in the sense of sequence does not necessarily imply the existence of the
usual solution (see the example in Section 2.4).

In the case of elliptic operators in unbounded domains, the operators are
proper in weighted spaces and may not satisfy this property in the spaces without
weight (Section 2). Specific features of the operators and spaces allow us to affirm
the existence of usual solutions even in the case where the operator is not proper.

Theorem 4.11. Suppose that nonlinear elliptic operator A(u) : E(Ω) → F (Ω) acts
in Hölder spaces (see Section 1 for the definition of spaces and operators). If there
exists a uniformly bounded solution uk ∈ E(Ω) of the equation A(u) = 0 in the
sense of sequence, then there exists a solution u0 ∈ E(Ω) in the usual sense.
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To prove the theorem, it is sufficient to note that if a sequence of functions
uk is bounded in a Hölder norm Cs+α(Ω̄), then there exists a subsequence locally
convergent in Cs to some limiting function u0 ∈ Cs+α(Ω̄) which satisfies the
equation. Similar results can be obtained for Sobolev spaces.

We should emphasize that in the case of proper operators, the convergence
unk

is strong, that is in the norm of the space E(Ω). If the operator is not proper,
then this convergence is local and in a weaker norm. This difference can be essential
for the behavior of solutions at infinity. For example, all functions uk can converge
to zero at infinity while the limiting function may not converge to zero.

Solutions in the sense of sequence can be naturally introduced in the case of
a sequence of bounded domains locally convergent to an unbounded domain (see
the previous section) and for small perturbations of the operator. If the equations
A(u) + τkB(u) = 0, where τk → 0 as k → 0, have solutions for all k such that
their norms are uniformly bounded, and the operator B is bounded, then uk is a
uniformly bounded solution of the equation A(u) = 0 in the sense of sequence.

The elements uk of the solution in the sense of sequence can be considered
as approximate solutions. This does not necessarily mean that they approximate
the exact solution but that the values of the operator on such functions are close
to zero.

4.3.3. Weighted spaces. In order to use properness and the topological degree
constructed in Section 3, we need to introduce weighted spaces. As we discussed
above, elliptic operators in unbounded domains are not generally proper in spaces
without weight, and the topological degree may not exist. The weight function µ(x)
is polynomially growing at infinity. The fact that growth is polynomial allows us to
preserve solutions exponentially decaying at infinity, which is a specific behavior
in the case of Fredholm operators.

Elliptic problems in unbounded domains may possess families of solutions
uniformly bounded in Sobolev or Hölder spaces but not being compact. One of
the simplest examples is provided by the problem

u′′ + F (u) = 0, u(±∞) = 0

in R. Under certain conditions on the function F (Section 2.4) it has a bounded
nontrivial solution u0(x) exponentially decaying at infinity. We can take for ex-
ample F (u) = u(u−1/2). The solution belongs to the conventional spaces, H2(R)
and C2+α(R). All shifted functions uh(x) = u0(x + h), h ∈ R are also solutions
of this problem. The norm in these spaces does not depend on h, that is all these
solutions are uniformly bounded. On the other hand, this family of solutions is
not compact. As a consequence, the operator is not proper.

Let hk be a sequence such that hk → ∞ as k → ∞. The functions uhk
form

a solution in the sense of sequence defined in the previous section. If we choose a
locally convergent subsequence of this sequence, we obtain in the limit the trivial
solution u ≡ 0. Its existence is obvious and is not interesting for applications.
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This example explains the origin of the difficulties in the study of elliptic
problems in unbounded domains. The situation is different if we consider weighted
spaces. Let C2+α

µ (R) be the space of functions from C2+α(R) for which the norm
‖u‖C2+α

µ (R) = ‖uµ‖C2+α(R) is bounded. Here µ(x) =
√

1 + x2. In the example
above, the family of solutions uh(x) becomes unbounded in the norm of the space
C2+α
µ (R). Therefore, for each bounded domain D in the function space, uh ∈ D

only for a finite interval of h. This provides properness in the weighted spaces and
the possibility to define topological degree.

The advantages of the weighted spaces should be payed off by the necessity
to obtain a priori estimates of solutions in a stronger norm. We will consider two
possible situations. In the next section we will discuss problems with solutions in-
variant with respect to translation in space. In this section, we will briefly consider
non-autonomous problems without space invariance. We will restrict ourselves to
a particular class of operators, which gives a simple illustration of a general situ-
ation.

Consider a nonlinear elliptic operator A(u) : E(Ω) → F (Ω) in an unbounded
domain Ω ⊂ Rn. Suppose that there are a priori estimates of solutions in the
E∞(Ω) norm. We can impose additional conditions in order to provide a priori
estimates in the weighted space Eµ,∞(Ω). Let us illustrate it with the following
example:

A(u) = u′′ + F (u, x),

where F is a sufficiently smooth function of both variables such that

F (u, x)

{
< 0, u > 1, x ∈ R,

> 0, u < −1, x ∈ R.

From the maximum principle it follows that |u(x)| ≤ 1, −∞ < x < ∞ for any
bounded solution u(x) such that u(±∞) = 0. Suppose that the function F is linear
for x sufficiently large:

F (u, x) = −a2u, |x| ≥ N

with some positive constants a andN . Since the solution is exponential for |x| ≥ N ,
then

|u(x)|
{

≤ e−a(|x|−N), |x| ≥ N,

≤ 1, |x| < N.

An estimate of the norm ‖u‖C2+α
µ (R) follows from this inequality.

This example characterizes the general situation. If the operator is linear or
close to linear for x in an exterior domain, then the behavior of solutions there is
exponential. Together with the estimate in the E∞(Ω), it can provide the estimate
in the Eµ,∞(Ω) norm.
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4.3.4. Travelling waves

Definitions. A travelling wave solution of the parabolic equation

∂u

∂t
=
∂2u

∂x2
+ F (u)

considered for −∞ < x < ∞, is a solution of the form u(x, t) = w(x − ct). Here
c is a constant called the wave speed. It is unknown together with the function
w(x) which satisfies the equation

w′′ + cw′ + F (w) = 0. (4.37)

We look for solutions of this equation with some given limits at infinity,

w(±∞) = w±, w+ �= w−, (4.38)

where F (w±) = 0. Similar definitions can be given for systems of equations and
in the multi-dimensional case.

There is an extensive literature devoted to travelling wave solutions of para-
bolic systems (see, e.g., [568] and the references therein). Our purpose here is to
discuss some properties of problem (4.37), (4.38) in relation with elliptic problems
in unbounded domains.

We recall the classification of nonlinearities. If F ′(w±) < 0, then it is called
the bistable case, if F ′(w±) > 0 then it the unstable case, if one of the deriva-
tives F ′(w+) and F ′(w−) is positive and another one is negative, then it is the
monostable case. This classification is related to the stability of the stationary
points w± with respect to the equation dw/dt = F (w). It is also possible that
some of these derivatives equal zero. For the sake of simplicity, we suppose here
that F ′(w±) �= 0.

This classification does not include the case where w+ = w− and F ′(w+) < 0
where a nonconstant solution can exist for c = 0.

Fredholm property of linearized operators. Let (w0(x), c0) be a solution of prob-
lem (4.37), (4.38). Consider the operator linearized about this solution

Lu = u′′ + cu′ + b(x)u,

where b(x) = F ′(w0(x)), acting from E = C2+α(R) into E′ = Cα(R). Its essential
spectrum consists of two parabolas on the complex plane:

λ(ξ) = −ξ2 + c0iξ + F ′(w±).

In the bistable case, both of them lie in the left half-plane. The operator satisfies
the Fredholm property, and its index equals zero.

In the unstable case, since F ′(w±) > 0, both of them are partially in the right
half-plane. If c0 = 0, then the essential spectrum passes through the origin and
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the operator does not satisfy the Fredholm property. If c �= 0, then this property
is satisfied and the index of the operator is also zero. Though we do not discuss
here the existence of solutions, it should be noted that solutions of problem (4.37),
(4.38) in the unstable case do not exist. So the considerations about the Fredhom
property and index are justified for a function b(x) with positive limits at infinity
but they do not have sense for the operator linearized about the wave.

Consider, finally, the monostable case. Let us suppose for certainty that
F ′(w+) > 0 and F ′(w−) < 0. It is known that c0 is positive in this case. The
operator satisfies the Fredholm property and its index equals 1.

It can be easily verified that the operator L has a zero eigenvalue with the
eigenfunction w′

0(x). This is related to the invariance of solutions with respect to
translation in space.

Persistence of solutions. Suppose that the nonlinearity F depends continuously
on the parameter τ and consider the problem

w′′ + cw′ + Fτ (w) = 0, w(±∞) = w±. (4.39)

We suppose that it has a solution (w0(x), c0) for τ = 0. Is it possible to affirm
that the solution persists under small variation of the parameter? A conventional
tool to study this question is the implicit function theorem. However, it cannot
be directly applied for the problem under consideration because the linearized
operator has a zero eigenvalue and is not invertible. We will show how it can be
applied after certain rearrangement of the problem. We will use the solvability
conditions formulated in term of formally adjoint operators.

Let us begin with the bistable case. Suppose that the wave w0(x) exists and
that it is monotone with respect to x. In fact, the monotonicity of the solution
can be proved. Its existence holds under certain conditions on the function Fτ . It
can be for example Fτ (w) = w(w − 1/2 − τ)(1 − w) with w+ = 0, w− = 1.

The principal eigenvalue of the operators L and of the homogeneous, formally
adjoint, operator L∗,

L∗v ≡ v′′ − c0v
′ + b(x)v

is zero. It is simple and the corresponding eigenfunctions v0(x) = w′
0(x) and v∗0(x)

are positive up to a constant factor [568]. Equation

Lu ≡ u′′ + c0u
′ + b(x)u = f (4.40)

is solvable if and only if ∫ ∞

−∞
f(x)v∗0(x)dx = 0.

Consider, next, the linearization of the operator A with respect to both variables,
w and c:

M(u, c) = u′′ + c0u
′ + b(x)u + cw′

0.
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The operator M acts from E × R into E′. We write the equation

M(u, c) = f, (4.41)
as

u′′ + c0u
′ + b(x)u = f − cw′

0

and apply the same solvability condition as above. This equation is solvable if and
only if ∫ ∞

−∞
f(x)v∗0(x)dx = c

∫ ∞

−∞
w′

0(x)v
∗
0 (x)dx.

The integral in the right-hand side is different from zero since both functions
under the integral are positive up to a constant factor. Therefore, we can choose
a value of c such that the solvability condition is satisfied. Hence, equation (4.41)
is solvable for any right-hand side. In fact, it has a one-dimensional family of
solutions u(x)+ tv0(x) and, consequently, the operator M is not invertible. Let us
consider the subspace

E0 = {u ∈ E,

∫ ∞

−∞
u(x)v∗0(x)dx = 0}.

Then the solution of equation (4.41) becomes unique on this subspace, and the
operator M : E0 × R → E′ is invertible.

Let us now return to the nonlinear operator A(u, c) which corresponds to the
left-hand side of (4.39):

Aτ (u, c) = (u+ w0)′′ + c(u + w0)′ + Fτ (u+ w0).

We consider it as acting from E0 × R into E′. The operator equation

Aτ (u, c) = 0 (4.42)

has a solution u = 0, c = c0 for τ = 0. The operator satisfies the conditions of the
implicit function theorem. Therefore, there exists a solution (uτ , cτ ) of equation
(4.42) for all τ sufficiently small. If the dependence of the nonlinearity on the
parameter is differentiable, then this is also true for the dependence of the solution
on the parameter.

Thus, if problem (4.39) has a solution for some value of τ , then it persists
for close values of the parameter. The value of the speed also depends on the
parameter. The persistence of travelling waves for the scalar parabolic equation can
be directly verified by means of the existence results. It remains true for systems
of equations and in the multi-dimensional case where the existence may not be
proved by other methods. We recall that we use the bistability which determines
the Fredholm property and the zero index of the operator, and the simplicity of
the zero eigenvalue from which it follows that the inner product (v0, v∗0)L2(R) of
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the zero eigenfunctions for the direct and adjoint operators is different from zero.
The latter ensures the solvability of equation (4.41) under the variation of the
parameter. We use the zero index of the operator in order to conclude that the
codimension of the image, which equals the dimension of the kernel of the formally
adjoint operator, equals 1. Therefore, there exists a unique linearly independent
solvability condition.

The solvability conditions are formulated here in terms of orthogonality to
solutions of a homogeneous formally adjoint equation. In Chapter 6 they are ob-
tained for Sobolev spaces. They remain the same for Hölder spaces.

Let us now discuss the monostable case. The operator L satisfies the Fredholm
property, its index equals 1, the dimension of its kernel is greater than or equal to
1 because w′

0 is the eigenfunction corresponding to the zero eigenvalue. It can be
verified that the kernel of the operator L∗ is empty. Indeed, the solutions of the
equation L∗v = 0 behave exponentially at +∞,

v(x) ∼ keµx, µ =
c0
2

±
√(c0

2

)2

− F ′(w+).

Since c0 > 0 and F ′(w+) > 0, then µ is positive (or have a positive real part) and
there are no bounded solutions. Thus, the dimension of the kernel of the operator
L equals 1, the codimension of the image equals 0, and equation (4.40) is solvable
for any right-hand side for the fixed value of c = c0. This is the difference with
respect to the bistable case where we need to vary c in order to provide solvability.

We note that the subspace E0 here should be defined in a different way since
the eigenfunction corresponding to the zero eigenvalue of the formally adjoint
operator does not exist. We can consider the subspace of functions orthogonal in
the sense of L2 to the eigenfunction v0.

We have discussed here the simplest examples of the persistence of solu-
tions under small variations of the problem. More complex examples can involve
reaction-diffusion systems with non-Fredholm operators [137], [138] and reaction-
diffusion problems with convection [52].

Topological degree. A topological degree for travelling waves was introduced in
[561] (see also [562], [568], [567]). Some particular features of travelling waves are
related to the invariance of solutions with respect to translation in space. This
signifies that the solutions are not isolated and the usual degree constructions are
not directly applicable. Moreover, this results in the existence of a zero eigenvalue
of the linearized problem. One of the possibilities to deal with such families of
solutions is to introduce a functionalization of the parameter c. This means that
instead of an unknown constant c we consider some given functional c(w). The
translation of the solution w(x) changes the value of the functional. Hence, if
(w(x), c(w(·)) is a solution of problem (4.39), then (w(x+ h), c(w(·+ h)) does not
satisfy it. Thus, we can eliminate the translational invariance.

We will discuss here the application of the Leray-Schauder method to trav-
elling waves from the point of view of a priori estimates of solutions in weighted
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spaces. Consider, as before, problem (4.39) with the nonlinearity Fτ (w) which
satisfies the following conditions: Fτ (w±) = 0, F ′

τ (w±) < 0 and

Fτ (w) < 0 for w+ < w < w0, Fτ (w) > 0 for w0 < w < w−

with some w0 ∈ (w+, w−). This means that we consider the bistable case where the
essential spectrum of the linearized operator is completely in the left half-plane
and all conditions for the degree construction are satisfied. In the monostable
case, the essential spectrum is partially in the right half-plane and the conditions
of the degree construction are not satisfied. In some cases, we can introduce special
weighted spaces with an exponential weight which moves the essential spectrum
to the left half-plane.

It follows from the maximum principle that any solution of problem (4.39)
satisfies the estimate 0 < w(x) < 1,−∞ < x < ∞. Therefore, we can estimate
the norm ‖w‖C2+α(R) for some α ∈ (0, 1). However, in order to use the topological
degree, we need to obtain a priori estimates in the weighted space C2+α

µ (R). It
appears that it is a special type of a priori estimates determined by the global
behavior of solutions. We explain it below.

First of all, we introduce the representation w(x) = ψ(x) + u(x), where ψ(x)
is a C∞ function such that

ψ(x) =

{
w+, x ≤ −1,
w−, x ≥ 1.

This allows us to work with functions u(x) converging to zero at infinity. Since
F ′(w±) < 0, then a solution u(x) of the equation

(u + ψ)′′ + c(u+ ψ)′ + Fτ (u+ ψ) = 0

decays exponentially at infinity. This means that for some positive constants N ,
k, and δ we have the estimate

|u(x)| ≤ ke−|δ|x, |x| ≥ N.

It holds if u(x) is sufficiently small such that Fτ (u + ψ) can be approximated
by linear functions F ′(w±)u. Therefore the value of N is such that the solution
|u(x)| ≤ ε for |x| ≥ N and for some positive ε, that is w = u + ψ is sufficiently
close to w±. The exponential estimate at infinity allows us to estimate |uµ| for
|x| ≥ N . The estimate of |uµ| for |x| ≤ N depends on N .

We can see here the principal difference of travelling waves in comparison
with non-autonomous problems discussed in Section 4.5.3 where the value of N
was fixed by the assumptions on the nonlinearity. Here the value of ε is fixed but
not N which is not a priori known and can depend on the solution and on the
value of the parameter τ . Moreover, it is possible that N(τ) → ∞ as τ → τ0 for
some τ0. In this case, the norm ‖u‖C2+α

µ (R) becomes unbounded.
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Thus, in order to obtain a priori estimates of solutions, we need to show
that the value of N(τ) is bounded. We recall that it is chosen in such a way that
wτ (x) remains outside some given ε-neighborhoods of the points w+ and w− for
−N(τ) < x < N(τ). If N(τ) tends to infinity, then this means that the solution
wτ (x) is “attracted” by an intermediate stationary point or by another invariant
manifold. Such global behavior is difficult to control and there are few results of
this type. However, there are some classes of reaction-diffusion systems for which
such estimates can be obtained [561], [568]. In this case, it is possible to use the
topological degree and the Leray-Schauder method to prove the existence of trav-
elling waves. Some other methods to prove the existence of waves are known, such
as phase space analysis or limiting passage from problems in bounded intervals
to the whole axis. In spite of the difference in the approaches, the main difficulty
remains to control the global behavior of solutions.

4.3.5. Decay and growth of solutions We proved in Chapters 4 and 5 that solutions
of the homogeneous equation Lu = 0 with a normally solvable operator L : Eq →
Fq decay exponentially at infinity. Let us now return to this question and study
linear nonhomogeneous equations and nonlinear equations. Consider an infinitely
differentiable positive function µ(x) and assume that

Dβµ(x)
µ(x)

→ 0, |x| → ∞ (4.43)

for any multi-index β = (β1, . . . , βn) such that |β| = β1 + · · · + βn > 0. This con-
dition is satisfied if µ(x) has polynomial decay or growth at infinity. We introduce
the operator Lµ = 1

µLµ : E∞ → F∞ acting in the same spaces as the operator L.
Since

1
µ
Dk(uµ) = Dku+

1
µ

∑
α+β=k,|β|>0

aαβD
αuDβµ,

and the second term in the right-hand side tends to 0 by virtue of (4.43), then
limiting operators for the operators L and Lµ are the same. Therefore, if Condition
NS is satisfied for the operator L and, as a consequence, it is normally solvable
with a finite-dimensional kernel, then this is also true for the operator Lµ.

Let Conditions NS and NS∗ be satisfied for the operator L. Then the equation

Lu = f (4.44)

is solvable if and only if (v, f) = 0 for any solution v of the homogeneous adjoint
equation L∗v = 0. We recall that such solutions v are exponentially decaying at
infinity. Denote uµ = u/µ, fµ = f/µ. Then L(µuµ) = µfµ or

Lµuµ = fµ. (4.45)

Assume that fµ ∈ F∞. Then this equation is solvable if and only if (w, fµ) = 0
for all solutions w of the equation L∗

µw = 0. Since L∗
µ = µL∗(1/µ), then w = µv,
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where L∗v = 0. Hence
(w, fµ) = (µv, f/µ) = (v, f)

and solvability conditions for equations (4.44) and (4.45) coincide. We note that
w = vµ ∈ (F∞)∗ since v decays exponentially and µ grows slower than any
exponential. The homogeneous adjoint equations L∗v = 0 and L∗

µw = 0 have
the same number of linearly independent solutions. We can now formulate the
following theorem.

Theorem 4.12. If the operator L : E∞ → F∞ satisfies the Fredholm property, then
it is also true for the operator Lµ : E∞ → F∞ where the weight function µ satisfies
(4.43). If f, fµ ∈ F∞, then equation (4.45) is solvable in E∞ if and only if equation
(4.44) has a solution u ∈ E∞ and uµ = u/µ ∈ E∞ is a solution of equation (4.45).

Proof. It remains to show that uµ ∈ E∞. Suppose that this is not the case. Since
uµ = u/µ, u ∈ E∞, then uµ has at most polynomial growth. More precisely, there
exists a function ν(x) ≥ 1, ν(x) → ∞ as |x| → ∞, which satisfies (4.43) and such
that the function uµ/ν belongs to the space E∞ but does not converge to 0 as
|x| → ∞.

On the other hand, we know that equation (4.45) has a solution ũ ∈ E∞.
Write z = uµ − ũ. Then Lµz = 0. Let zν = z/ν. Then zν ∈ E∞ and zν does not
converge to 0 since ũ/ν → 0 as |x| → ∞. Let us introduce the operator Lν = 1

νLµν.
We have

Lνzν =
1
ν
Lµνzν =

1
ν
Lµz = 0.

Thus, equation Lνz = 0 has a solution zν ∈ E∞, which does not converge to
zero at infinity. This contradicts the Fredholm property of the operator Lν . The
theorem is proved. �

From this theorem we immediately obtain an estimate of the decay rate of so-
lutions at infinity. If f ∈ F∞ satisfies solvability conditions and f(x)(1+|x|k) ≤M1

for all x and some constant M1, then u(x)(1+ |x|k) ≤M2 for all x and some other
constant M2. Indeed, put µ(x) = 1/(1 + |x|k). Then fµ = f/µ ∈ F∞. Hence uµ =
u/µ ∈ E∞ is a solution of equation (4.45). Therefore, u(x)(1 + |x|k) = u/µ ∈ E∞.

Suppose now that f ∈ F∞ but at least one of the solvability conditions is not
satisfied. Then equation (4.44) does not have solutions in E∞. Suppose that it has
an unbounded solution u such that uµ = u/µ ∈ E∞, where µ(x) = 1+|x|k, |k| > 0.
Then fµ = f/µ ∈ F∞. Thus Lµuµ = fµ, that is equation (4.45) is solvable in E∞.
On the other hand, fµ does not satisfy at least one solvability condition. This
contradiction shows that equation (4.44) cannot have solutions with polynomial
growth, that is solutions for which u/µ ∈ E∞. The same reasoning can be used for
a small exponential weight since it preserves the Fredholm property and solvability
conditions. It allows us to prove exponential growth of solutions if the solvability
conditions are not satisfied. In fact, exponential weight may not be necessarily
small. The restriction on the weight is that the operator Lµ should belong to
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the same connected component of Fredholm operators as the operator L (see
Chapter 5, Section 4).

Thus, solutions of equation (4.44) with f ∈ F∞ can be either bounded, if the
solvability conditions are satisfied, or grow exponentially, if they are not satisfied.
Let us illustrate this property with the example of the second-order operator

Lu = a(x)u′′ + b(x)u′ + c(x)u.

Assume that the formally adjoint equation has two bounded linearly independent
solutions v1 and v2. Then solution u(x) of equation (4.44) can be represented in
the form

u(x) = u1(x)
∫ x

−∞
v1(y)f(y)dy + u2(x)

∫ x

−∞
v2(y)f(y)dy.

Here u1 and u2 are exponentially growing solutions of the equation Lu = 0. If the
solvability conditions

∫ ∞

−∞
vi(y)f(y)dy = 0, i = 1, 2

are satisfied, then the solution is bounded. Otherwise, if at least one of the integrals
is different from zero, then u(x) grows exponentially at infinity.

Thus, we have an alternative of Phragmén-Lindelöf type: either the solution is
bounded or exponentially growing (see Historical and bibliographical comments).
As we discussed above, it is related to the Fredholm alternative. These results do
not hold if the Fredholm property is not satisfied. This can be already seen for the
simplest example of the equation u′′ = 0 where the solution u(x) = x is neither
bounded nor exponentially growing.

The results presented above allow us to study behavior of solutions of non-
linear equations. Let us consider the operator

A(u) = Lu+B(u),

where L : E∞ → F∞ is a linear Fredholm operator, B(u) is nonlinear. Suppose
that the equation A(u) = 0 has a solution u0 ∈ E∞ such that u0 → 0 as |x| → ∞,
and |B(u0(x))| ≤ K|u0(x)|2 for some positive constant K and for |x| sufficiently
large. We will estimate the decay rate of the solution at infinity.

Consider the equation Lu = f , where f = −B(u0) ∈ F∞. It has a solution
u = u0. We note that |f | ≤ K|u0|2 for large |x|. Let us choose an infinitely
differentiable function µ(x) ≤ 1 such that µ(x) → 0 as |x| → ∞, fµ = f/µ ∈ F∞
but fµ(x) does not converge to zero at infinity. Suppose that µ satisfies (4.43).
Then Theorem 4.12 is applicable and the function uµ = u0/µ ∈ E∞ is a solution
of the equation Lµu = fµ. We have

fµ =
f

µ
≤ K

|u0|2
µ

= Kµ
|u0|2
µ2

≤ K1µ.
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Hence, fµ converges to zero at infinity. This contradicts the assumption above.
Hence the function µ(x), which determines the decay rate of f , cannot satisfy
(4.43). Therefore the decay of f should be faster than polynomial.

In fact, we can obtain a stronger result. It is not necessary to assume that
µ(x) satisfies (4.43). We use this condition in order to prove that the operator Lµ
satisfies the Fredholm property, has the same index and the same dimension of the
kernel. This is true for exponential weights with some restrictions on the exponent
(Chapter 5, Section 4).

4.3.6. Non-Fredholm operators. We have discussed in Chapter 10 solvability con-
ditions for some classes of linear elliptic operators without the Fredholm property.
Even if such conditions can be established, usually it is not clear how to apply
them for nonlinear problems because the nonlinearity does not preserve them.
We present here a rare example of nonlinear operators for which we can apply
non-Fredholm solvability conditions.

Consider the integro-differential operator

A(u) = −∆u− au+
∫

Rn

s(x − y)F (u(y), y)dy

acting from H2(Rn) into L2(Rn). Here a is a positive constant. The operator

Lu = −∆u− au

does not satisfy the Fredholm property. Indeed, the unique limiting operator coin-
cides with the operator L, and the limiting problem Lu = 0 has nonzero bounded
solutions. Nevertheless, solvability of the equation Lu = g in L2(Rn) can be easily
obtained due to the particular form of the operator. Since it has constant coeffi-
cients, we can apply the Fourier transform and conclude that it is solvable if and
only if ĝ/(|ξ|2 − a) ∈ L2(Rn), where ĝ is the Fourier transform of the function g.

We suppose that s ∈ L2(Rn), F (u, x) satisfies the Lipschitz condition with
respect to u uniformly in x,

|F (u1, x) − F (u2, x)| ≤ κ|u1 − u2| ∀x ∈ R
n

and
|F (u, x)| ≤ K|u| + h(x) ∀x ∈ R

n. (4.46)

Here κ and K are some positive constants, h(x) ∈ L2(Rn).
Let v ∈ L2(Rn). Consider the linear equation

∆u+ au =
∫

Rn

s(x− y)F (v(y), y)dy. (4.47)

By virtue of (4.46), F (v(y), y) ∈ L2(Rn). Denote by ŝ the Fourier transform of
the function s. Suppose that for some positive constant M ,∣∣∣∣ ŝ(ξ)

a− |ξ|2
∣∣∣∣ ≤M, ∀ξ ∈ R

3. (4.48)



518 Chapter 11. Nonlinear Fredholm Operators

Applying the Fourier transform to (4.47), we conclude that this equation has a
solution u ∈ L2(Rn).

Thus, we can define the operator T acting in L2(Rn) which puts in corre-
spondence the unique solution u of equation (4.47) to each function v. Fixed points
of this operator are solutions of the equation A(u) = 0. We will show that under
some conditions the existence of fixed points can be proved by the principle of
contracting mappings.

Let v1, v2 ∈ L2(Rn) and u1, u2 be the corresponding solutions of equation
(4.47). We have

û1(ξ) − û2(ξ) =
ŝ(ξ)

a− |ξ|2 (f̂1(ξ) − f̂2(ξ)),

where f̂i(ξ) is the Fourier transform of F (vi(y), y). Then

‖u1 − u2‖L2(Rn) ≤M

(∫
R3

|F1(v1(y), y) − F2(v2(y), y)|2dy
)1/2

≤ κM‖v1 − v2‖L2(Rn).

Thus we have proved the following theorem.

Theorem 4.13. If condition (4.48) is satisfied and κM < 1, then equation A(u) = 0
has a unique solution in L2(Rn).

This approach can be applied for other operators, which represent a sum of
a linear operator with constant coefficients and a convolution.

4.4 Bifurcations

4.4.1. Local bifurcations. One of the applications of the topological degree concerns
local bifurcations of solutions. The degree construction presented in this chapter
allows us to use it for general elliptic problems in bounded or unbounded domains.
Consider the operator equation

Aτ (u) = 0 (4.49)

depending on the parameter τ , Aτ : E → F . Suppose that it has the solution u = 0
for all values of the parameter, Aτ (0) ≡ 0. The value τ = τ0 of the parameter is
called the bifurcation point if for any ε > 0 there exists such τ ∈ (τ0 − ε, τ0 + ε)
that equation (4.49) has a solution u(τ) �= 0 for this value of the parameter, and
‖u(τ)‖E ≤ ε.

The implicit function theorem (Section 4.1.2) gives a necessary condition of
bifurcation. The value τ0 can be a bifurcation point only if the linearized operator
A′
τ0(0) is not invertible.

Theorem 4.14. Suppose that the operator Aτ (u) : E → F satisfies the conditions
of the implicit function theorem (Theorem 4.3). If A′

τ0(0) is a Fredholm operator
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with the zero index and τ0 is a bifurcation point, then the operator A′
τ0(0) has zero

eigenvalue.

In the case of elliptic operators in unbounded domains, their Fredholm prop-
erty follows from Conditions NS and NS∗, and their zero index from the ellipticity
with a parameter. This theorem does not require the existence of the degree. In
order to formulate sufficient condition of bifurcation, let us introduce the notion
of the index of a solution. Suppose that the topological degree for the operator
Aτ (u) is defined and that the ball Bε = {‖u‖E ≤ ε} contains the unique solution
u = 0. Then the degree γ(Aτ , Bε) is called the index of the solution u = 0. We
denote it by ind(τ). Similarly, the index is defined for nonzero solutions.

Theorem 4.15. If the index ind(τ) of the solution u = 0 of equation (4.49) changes
at τ0, then it is a bifurcation point.

Proof. Suppose that τ0 is not a bifurcation point. Then there exists a positive ε
such that the ball Bε contains only the solution u = 0 of equation (4.49) in some
neighborhood of the point τ0. Therefore the degree γ(Aτ , Bε) does not change at
τ0. This contradicts the assumption of the theorem that the index ind(τ) changes
for this value of the parameter. The theorem is proved. �

In the case of elliptic operators the index of a solution can be expressed
through the number of positive eigenvalues (or negative, depending on the defi-
nition of the operator) of the linearized operator, ind(τ) = (−1)ν (Section 3.5).
If a simple real eigenvalue crosses the origin, then the index changes, and the
corresponding value of the parameter is a bifurcation point. Let us consider some
examples of local bifurcations.

Second-order equation in a bounded interval. Consider the Dirichlet problem in
the interval 0 ≤ x ≤ 1:

u′′ + Fτ (u) = 0, u(0) = u(1) = 0, (4.50)

where Fτ (u) is a sufficiently smooth function of u such that Fτ (0) = 0 for all
τ ∈ [0, 1] and

|F ′
τ1(u) − F ′

τ2(u)| ≤ K|τ1 − τ2|,
whereK is some positive constant. The function u = 0 is a solution of this problem
for all τ . In order to study bifurcations of solutions, we introduce the operator

Aτ (u) = u′′ + Fτ (u)

acting from the space E0 of functions from C2+α[0, 1] with the zero boundary
condition into the space E = Cα[0, 1]. This operator is continuous with respect to
the parameter τ in the operator norm. The spectrum of the operator linearized
about the trivial solutions

Lτv = v′′ + F ′
τ (0)v



520 Chapter 11. Nonlinear Fredholm Operators

consists of real simple eigenvalues which can be easily found explicitly. Let λ(τ)
be an eigenvalue of the operator Lτ such that λ(τ0) = 0 and λ′(τ0) �= 0. Then it
is a bifurcation point.

In the case of the Neumann boundary condition, this assertion remains the
same. It should be modified in the case of the periodic boundary condition since
the eigenvalues have multiplicity 2. If λk = F ′

τ (0) − (2πk)2 with an integer k is
the eigenvalue, which crosses the origin, and the corresponding eigenfunctions are
sin(2πkx) and cos(2πkx), then we consider the subspace of functions orthogonal
to one of the eigenfunctions,

Ê0 =
{
u ∈ E,

∫ 1

0

u(x) sin(2πkx)dx = 0
}
.

We can apply the construction described above for the operator Aτ : Ê0 → E and
prove bifurcation of nontrivial solutions in the subspace Ê0.

Second-order equation on the axis. The example considered above illustrates bi-
furcation of solutions when a simple eigenvalue crosses the origin. This is applicable
for general elliptic problems when the degree is defined. In the case of unbounded
domains, we should take into account the essential spectrum of the corresponding
operator and introduce appropriate function spaces. Consider the operator

Aτ (u) = u′′ + Fτ (x, u)

acting from the space E0 = C2+α
µ (R) into the space E = Cαµ (R), where µ =√

1 + x2 is a weight function. We assume that the function Fτ (x, u) is sufficiently
smooth with respect to the variables x and u and to the parameter τ . Exact
conditions are given in Sections 1–3.

Consider, as example, Fτ (x, u) = −au + τφ(x)f(u), which is convenient for
what follows. Here a is a positive constant, φ(x) ≥ 0 has a bounded support,
f(0) = 0 and f(u) > 0 for u > 0. The essential spectrum of the linearized operator
fills the negative half-axis, λ ≤ −a. Hence the degree can be defined. Consider the
operator Lτ linearized about the trivial solution:

Lτv = v′′ − av + τφ(x)f ′(0)v.

It can be shown that the principal eigenvalue of this operator, that is the eigenvalue
with the maximal real part, crosses the origin for some positive τ = τ0. This result
is based on the characterization of the principal eigenvalue of second-order scalar
elliptic operators [563]. As in the previous example, τ = τ0 is a bifurcation point.

Some additional aspects should be taken into account for bifurcations of trav-
elling waves. Travelling waves are solutions of problem (4.37), (4.38) on the whole
axis (Section 4.3.4). They are invariant with respect to translation in space. There-
fore, the linearized operator has a zero eigenvalue. In order to study bifurcations
of solutions, we need to remove it. This can be done by functionalization of the
parameter [561], [568] or by introduction of an appropriate subspace orthogonal
to the corresponding eigenfunction.
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Turing structures. Turing structures (diffusion instability, dissipative structures)
are spatially inhomogeneous solutions, which appear due to the diffusion terms
[522]. Such structures cannot be observed for the single reaction-diffusion equation.
Let us consider the following example of two equations starting directly with the
eigenvalue problem:

u′′ + a11u+ a12v = λu,

dv′′ + a21u+ a22v = λv.

If we consider it in a bounded interval with the periodic boundary condition, then
we can extend its solution to the whole axis by periodicity and look for the solution
in the form p exp(iξx), where p is a two-dimensional vector and ξ ∈ R. Therefore,
we need to find eigenvalues of the matrix

A(ξ) =
(
a11 − ξ2 , a12

a21 , a22 − dξ2

)
.

Suppose that the matrix A(0) has both eigenvalues with a negative real part,
that is

a11 + a22 < 0, detA(0) > 0. (4.51)

Then the homogeneous in space solution is stable without diffusion. Can it lose
stability due to diffusion? In this case, the matrix A(ξ) should have one zero and
one negative eigenvalue for some ξ �= 0. Hence

detA(ξ) ≡ dξ4 − (da11 + a22)ξ2 + detA(0) = 0.

If d = 1, then this equation does not have real solutions by virtue of (4.51).
However, if d �= 1, such solutions can exist. Exact conditions are well known and
can be easily found.

Nonlocal reaction-diffusion equations. Another interesting example of the emer-
gence of spatial structures is given by the integro-differential equation

du′′ + u

(
a−

∫ +∞

−∞
φ(x− y)u(y)dy

)
= 0. (4.52)

Here φ(x) is a bounded function such that
∫ +∞
−∞ φ(x)dx = 1, a and d are positive

constants. This equation has a homogeneous in space solution u = a. Linearizing
the corresponding operator about this solution, we obtain the eigenvalue problem

dv′′ − a

∫ +∞

−∞
φ(x − y)v(y)dy = λv.

Applying the Fourier transform, we find the explicit expression for the spectrum:

λ(ξ) = −dξ2 − aφ̃(ξ),
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where φ̃(ξ) is the Fourier transform of the function φ. It can be verified that
λ(0) < 0 and λ(ξ) is negative for |ξ| sufficiently large. Depending on the function
φ, there can exist intermediate values of ξ for which λ(ξ) becomes positive [25],
[83], [208], [194]. This results in the emergence of spatial structures. They have
interesting applications in population dynamics.

Natural convection. One of the classical problems in hydrodynamics is related to
convection in a layer of an incompressible liquid heated from below. It is also called
the Rayleigh-Benard problem. It is described by the Navier-Stokes equations and
the heat equation. In the two-dimensional case:

u
∂u

∂x
+ v

∂u

∂y
= − ∂p

∂x
+ ∆u, (4.53)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∆v +Rθ, (4.54)

u
∂θ

∂x
+ v

∂θ

∂y
= ∆θ, (4.55)

∂u

∂x
+
∂v

∂y
= 0. (4.56)

Here u is the horizontal and v the vertical component of the velocity, θ the di-
mensionless temperature, p the pressure, R the Rayleigh number. This system of
equations is considered in the two-dimensional strip {0 ≤ y ≤ 1, −∞ < x < ∞}
with the boundary conditions

y = 0 : θ = 0,
∂u

∂y
= 0, v = 0; y = 1 : θ = 1,

∂u

∂y
= 0, v = 0. (4.57)

Other boundary conditions can also be considered. Linearizing problem (4.53)–
(4.57) about the solution θ(x, y) = y, u = v = 0, we obtain an eigenvalue problem,
which can be explicitly solved. When the principal eigenvalue crosses the origin,
another solution with a nonzero velocity field bifurcates.

4.4.2. Branches of solutions. Analysis of the index of solutions can give some
information about their number and stability.

Suppose that the index of the solution u = 0 equals 1 for τ < τ0 and −1 for
τ > τ0. If we consider all solutions for each value of the parameter, then the sum
of their indices should be independent of τ by virtue of the homotopy invariance of
the degree. Figure 12 presents some examples of bifurcation diagrams. Solutions
with ind = 1 are shown by solid lines while solutions with ind = −1 by dashed
lines. In the case of the supercritical bifurcation (Figure 12 a)), the sum of the
indices equals 1, in the case of the subcritical bifurcation −1, in the last case it is 0.

Assume that the whole spectrum of the operator A′
τ (0) lies in the left half-

plane for τ < τ0 and that the bifurcation occurs due to the principal eigenvalue,
that is the eigenvalue with the maximal real part, crossing the origin. Then the
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Figure 12: Three types of local bifurcations: a) supercritical, b) subcrit-
ical, c) change of stability; |u| denotes a norm of the solution.
Solid lines ind = 1, dashed lines ind = −1.

operator linearized about the solutions with the index 1 has the whole spectrum
in the left half-plane. If the index equals −1, then it has one eigenvalue in the right
half-plane. In the first case, the stationary solution of the corresponding evolution
problem is stable, in the second case unstable.

The sets of solutions of equation (4.49) can form continuous branches. This
should be understood in the following sense. Suppose that Aτ (u) is a Fredholm and
proper operator with the zero index, and the conditions of the degree construc-
tion are satisfied (Section 3). Let un be a sequence of solutions of this equation
corresponding to the values τn of the parameter, ‖un‖E ≤ K for some positive
constant K. Assume that τn → τ∗. Then there exists a solution u∗ of this equation
for τ = τ∗ and a subsequence unk

→ u∗ as nk → ∞. Indeed, this follows from the
properness of the operator.

Let further u(τ) be a branch of solutions of equation (4.49) defined for τ ≤ τ∗,
the index of the solution u(τ∗) be defined and different from zero. Then this branch
can be continued for larger values of τ . This means that for any δ > 0 sufficiently
small there exists ε > 0 such that the solution u(τ) exists for τ∗ < τ < τ∗ + ε
and belongs to the δ-neighborhood of the solution u(τ∗). Indeed, since the index
of the solution u(τ∗) is defined, then for any δ > 0 sufficiently small, the ball
Bδ = {u ∈ E, ‖u−u(τ∗)‖E ≤ δ} does not contain other solutions of equation (4.49)
for τ = τ∗. Therefore, there exists a positive ε such that there are no solutions at
the boundary of the ball for τ∗ < τ < τ∗+ ε. Hence the degree γ(Aτ , Bδ) is defined
for these values of τ and it is different from zero. Consequently, there exists a
solution of equation (4.49) inside the ball for each such τ .

Similarly, the branches of solutions can be extended for smaller values of the
parameter. If the index of a solution is zero, then it may disappear and the branch
may not be extended.

Equation of branching. Properties of Fredholm operators allow us to derive the
equation of branching in the vicinity of the bifurcation point. Let L : E → F be
a linear Fredholm operator, E and F Banach spaces. Denote by n the dimension
of its kernel E0, and by u1, . . . , un its basis. Suppose that the equation Lu = f is
solvable if and only if (f, ψi) = 0, i = 1, . . . ,m, where ψi ∈ F ∗.
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We can introduce a system of functionals φi ∈ E∗, i = 1, . . . , n biorthog-
onal to the functions ui: (ui, φj) = δij , i, j = 1, . . . , n and the projector P on
the subspace E0: Pu =

∑n
i=1(u, φi)ui. This projector determines the representa-

tion E = E0 ⊕ E1 of the space E as a direct sum of the kernel E0 and of the
complementary subspace E1.

Similarly, we can introduce a system of functions f1, . . . , fm ∈ F biorthogonal
to the functionals ψi: (fi, ψj) = δij , i, j = 1, . . . ,m and the projector Qf =∑m
i=1(f, ψi)fi. It determines the representation of the space F as a direct sum

of the image F1 of the operator L and of the complementary finite-dimensional
subspace F0 spanned on the functions fi. The restriction L̂ : E1 → F1 of the
operator L is an isomorphism. Due to the Banach theorem it has a bounded
inverse.

Let us now return to equation (4.49) with a Fredholm operator Aτ . As above,
we assume that Aτ (0) = 0 for all τ , and τ = τ0 is a bifurcation point. The operator
L = A′

τ0(0) is not invertible. Put B(u, τ) = −Aτ (u) + Lu and u = v + w, where
v ∈ E0 and w ∈ E1. Then we can write equation (4.49) as Lu = B(u, τ) or

L̂w = B(v + w, τ), QB(v + w, τ) = 0, (4.58)

where Q is the projector introduced above. If v = 0, τ = τ0, then w = 0. From the
implicit function theorem it follows that the first equation in (4.58) has a unique
solution w = w(v, τ) for sufficiently small v and τ − τ0. Then from the second
equation in (4.58) we obtain the equation

QB(v + w(v, τ), τ) = 0

with respect to v. This is the Liapunov-Schmidt equation which determines behav-
ior of solutions in a small neighborhood of the bifurcation point. We note that the
index of the operator L can be different from zero. Moreover, this construction does
not use properness or topological degree. Therefore we do not need to introduce
weighted spaces when considering elliptic problems in unbounded domains.

Example. Consider the scalar reaction-diffusion equation

u′′ + Fτ (u, x) = 0

in R. We suppose that the function Fτ is sufficiently smooth with respect to u, x
and τ , and Fτ (0, x) ≡ 0. The operator Aτ (u) corresponds to the left-hand side
of this equation and acts from the Hölder space E = C2+α

0 (R) of functions with
zero limit at infinity into the space F = Cα0 (R), 0 < α < 1. We assume that the
linearized operator

Lτv = v′′ + F ′
τ (0, x)v

satisfies Conditions NS and NS∗ and has its essential spectrum in the left half-
plane. Then it is a Fredholm operator with zero index. Let it have a simple zero
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eigenvalue for τ = τ0 and v0 be the corresponding eigenfunction. Then the ker-
nel E0 of the operator L = Lτ0 is a one-dimensional subspace composed by the
functions u = cv0, where c is a real constant. Since the operator L is formally
self-adjoint, then v0 is the eigenfunction of the formally adjoint operator L∗ cor-
responding to the zero eigenvalue. The equation Lu = f is solvable if and only if

∫ ∞

−∞
f(x)v0(x)dx = 0.

The integral here is well defined since v0 decays exponentially at infinity. The first
equation in (4.58) can be written as

w′′ + Fτ0(0)w = B(cv0 + w, τ),

where B(u, τ) = −Fτ (u) + F ′
τ0(0)u. Its solution w = w(c, τ) exists for sufficiently

small c and τ − τ0. From the solvability condition we obtain the equation
∫ ∞

−∞
B(cv0 + w(c, τ), τ)v0dx = 0,

which gives the relation between c and τ . This is the equation of branching. Tay-
lor’s expansion of the function Fτ can be used in order to simplify it and to find
an approximate analytical solution.



Supplement. Discrete Operators

Infinite systems of algebraic equations can arise in some applications or as a re-
sult of discretization of differential equations in unbounded domains. Though the
results obtained for elliptic problems in unbounded domains cannot be directly
applied to infinite-dimensional discrete operators, the methods developed in this
book can be adapted for them. In particular, we will define limiting problems in
order to formulate conditions of normal solvability. We will discuss solvability con-
ditions and some other properties of discrete operators. One of the results concerns
the generalization of the Perron-Frobenius theorem about the principal eigenvalue
of the matrices with non-negative off-diagonal elements to infinite matrices. We
will also see that conditions of normal solvability are related to stability of fi-
nite difference approximations of differential equations. The representation below
follows the works [28]–[30]. Some related questions are discussed in [443].

1 One-parameter equations

1.1 Limiting operators and normal solvability

Let E be the Banach space of all bounded real sequences

E =
{
u = {uj}∞j=−∞ , uj ∈ R, sup

j∈Z

|uj| <∞
}

(1.1)

with the norm
‖u‖ = sup

j∈Z

|uj | ,

and L : E → E be the linear difference operator

(Lu)j = aj−muj−m + · · · + aj0uj + · · · + ajmuj+m, j ∈ Z, (1.2)

where m ≥ 0 is an integer and aj−m, . . . , a
j
0, . . . , a

j
m ∈ R are given coefficients. In

some cases, it will be also convenient for us to consider complex coefficients. This
operator acts on sequences of numbers depending on one integer parameter j. In
this sense, we call such operators and the corresponding equations one-parameter
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operators and equations. They can arise as a result of discretization of differential
equations on the real axis.

Denote by L+ : E → E the limiting operator
(
L+u

)
j

= a+
−muj−m + · · · + a+

0 uj + · · · + a+
muj+m, j ∈ Z, (1.3)

where
a+
l = lim

j→∞
ajl , l ∈ Z, −m ≤ l ≤ m. (1.4)

We are going to define the associated polynomial for the operator L+. To
do this, we are looking for the solution of the equation L+u = 0 under the form
uj = exp (µj), j ∈ Z and obtain

a+
−me

−µm + · · · + a+
−1e

−µ + a+
0 + a+

1 e
µ + · · · + a+

me
µm = 0.

Let σ = eµ and

P+ (σ) = a+
mσ

2m + · · · + a+
0 σ

m + · · · + a+
−m. (1.5)

We present without proof the following auxiliary result (see [28]).

Lemma 1.1. The equation L+u = 0 has nonzero bounded solutions if and only if
the corresponding algebraic polynomial P+ has a root σ with |σ| = 1.

We will find conditions in terms of P+ for the limiting operator L+ to be
invertible. We begin with an auxiliary result concerning continuous deformations
of the polynomial P+. Without loss of generality, we can assume that a+

m = 1.
Consider the polynomial with complex coefficients

P (σ) = σn + a1σ
n−1 + · · · + an−1σ + an. (1.6)

Lemma 1.2. Suppose that a polynomial P (σ) does not have roots with |σ| = 1 and
it has k roots with |σ| < 1, 0 ≤ k ≤ n. Then there exists a continuous deformation
Pτ (σ) 0 ≤ τ ≤ 1, such that

P0(σ) = P (σ), P1(σ) = (σk − a)(σn−k − λ),

and the polynomial Pτ (σ) does not have roots with |σ| = 1 for any 0 ≤ τ ≤ 1.
Here λ > 1 and a < 1 are real numbers.

Proof. Let us represent the polynomial P (σ) in the form

P (σ) = (σ − σ1) . . . (σ − σn),

where the roots σ1, . . . , σk are inside the unit circle, and the other roots are outside
it. Consider the polynomial

Pτ (σ) = (σ − σ1(τ)) . . . (σ − σn(τ))
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that depends on the parameter τ through its roots. This means that we change
the roots and find the coefficients of the polynomial through them. We change the
roots in such a way that for τ = 0 they coincide with the roots of the original
polynomial, for τ = 1 it has the roots σ1, . . . , σk with (σi)k = a, i = 1, . . . , k (inside
the unit circle) and n−k roots σk+1, . . . , σn such that (σi)n−k = λ, i = k+1, . . . , n
(outside of the unit circle). This deformation can be done in such a way that there
are no roots with |σ| = 1. The lemma is proved. �

Using the associated polynomials P+ and P− of L+ and L−, we can study
normal solvability of operator L.

Theorem 1.3. The operator L is normally solvable with a finite-dimensional kernel
if and only if the corresponding algebraic polynomials P+ and P− do not have
roots σ with |σ| = 1.

Proof. Suppose that the polynomials P+, P− do not have roots σ with |σ| = 1.
Let {fn} be a sequence in the image ImL of the operator L such that fn → f
and let {un} be such that Lun = fn.

Suppose in the beginning that {un} is bounded in E. We construct a conver-
gent subsequence. Since ||un|| = supj∈Z

|unj | ≤ c, then for every positive integer
N , there exists a subsequence {unk} of {un} and u = {uj} ∈ E such that

sup
−N≤j≤N

∣∣unk
j − uj

∣∣ → 0, (1.7)

that is unk → u as k → ∞ uniformly on each bounded interval of j. Using a
diagonalization process, we extend uj to all j ∈ Z. It is clear that supj∈Z

|uj| ≤ c,
that means u ∈ E. Passing to the limit as k → ∞ in the equation Lunk = fnk , we
get Lu = f , so that f ∈ ImL.

We show that the convergence in (1.7) is uniform with respect to all j ∈ Z.
If, by contradiction, there exists jk → ∞ such that

∣∣unk
jk

− ujk
∣∣ ≥ ε > 0, then the

sequence ykj = unk

j+jk
− uj+jk verifies the inequality

∣∣yk0 ∣∣ = |unk

jk
− ujk | ≥ ε and the

equation

aj+jk−m ykj−m + · · · + aj+jk0 ykj + · · · + aj+jkm ykj+m = fnk
j+jk

− fj+jk , j ∈ Z. (1.8)

Since the sequence
{
yk
}

is bounded in E, there exists a subsequence
{
ykl

}
which

converges to some y0 ∈ E uniformly with respect to j on bounded intervals. We
pass to the limit as kl → ∞ in (1.8) and obtain

a+
−my

0
j−m + · · · + a+

0 y
0
j + · · · + a+

my
0
j+m = 0, j ∈ Z.

Thus, the limiting equation L+u = 0 has a nonzero bounded solution and Lemma
1.1 leads to a contradiction. Therefore the convergence unk

j − uj → 0 is uniform
with respect to all j ∈ Z. Since Lu = f , then ImL is closed.
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We note that in order to prove that kerL has a finite dimension, it suffices
to show that every sequence un from B ∩ kerL (where B is the unit ball) has a
convergent subsequence. We prove this using the same reasoning with fn = 0.

We analyze now the case where {un} is unbounded in E. Then we write
un = xn + yn, with {xn} ∈ KerL and {yn} in the supplement of KerL. Then
Lyn = fn. If {yn} is bounded in E, then it follows as above that ImL is closed.
If not, then we repeat the above reasoning for zn = yn/||yn|| and gn = fn/||yn||.
Passing to the limit on a subsequence nk (such that znk → z0) in the equality
Lznk = gnk and using the convergence gnk → 0, one obtains that z0 belongs to
the kernel of the operator L and to its supplement. This contradiction finishes the
proof of the closeness of the image.

Assume now that ImL is closed and dim KerL is finite. Suppose, by con-
tradiction, that one of the polynomials, for certainty P+, has a root on the unit
circle. Then there exists a solution u = {uj}∞j=−∞ of the equation L+u = 0, where
uj = eiξj , ξ ∈ R, j ∈ Z.

Let α = {αj}∞j=−∞, βN =
{
βNj

}∞
j=−∞, γN =

{
γNj

}∞
j=−∞ be a partition of

unity (αj + βNj + γNj = 1) given by

αj =

{
1, j ≤ 0
0, j ≥ 1

, βNj =

{
1, 1 ≤ j ≤ N

0, j ≤ 0, j ≥ N + 1
, γNj =

{
1, j ≥ N + 1
0, j ≤ N

.

Consider a sequence εn → 0 as n→ ∞. For a fixed εn, put

unj = ei(ξ+εn)j , vnj = (1 − αj)
(
unj − uj

)
, fnj = Lvnj , j ∈ Z.

It is clear that unj → uj as n → ∞ uniformly on every bounded interval of
integers j.

It is sufficient to prove that fn → 0. Indeed, in this case, since the image of
the operator is closed and the kernel is finite dimensional, then vn → 0. But this
is in contradiction with

‖vn‖ = sup
j>0

∣∣∣ei(ξ+εn)j − eiξj
∣∣∣ ≥ m > 0,

for some m.
In order to show that fn → 0 as n→ ∞, we represent fnj in the form

fnj =
(
αj + βNj + γNj

) (
L
[(
βN + γN

)
(un − u)

])
j

= αj
(
L
[(
βN + γN

)
(un − u)

])
j
+ βNj

(
L
[(
βN + γN

)
(un − u)

])
j

+ γNj
(
L
[
βN (un − u)

])
j
+ γNj

((
L− L+

)
[γN (un − u)]

)
j

+ γNj
(
L+[γN (un − u)]

)
j
. (1.9)
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A simple computation shows that the first three terms in the right-hand side of
the last equality tend to zero as n→ ∞ uniformly with respect to all integer j.

Next, condition (1.4) and the boundedness of the norms ||un|| and ‖u‖ lead
to the convergence

|γNj
((
L− L+

)
[γN (un − u)]

)
j
| ≤ |γN (

L− L+
) |0 · ‖γN (un − u) ‖ → 0,

as N → ∞, where |·|0 is the norm of the operator. For a given N , one estimates
the last term in the right-hand side of (1.9). Since uj = eiξj , j ∈ Z is a solution
of the equation L+u = 0, then

(L+ (un − u))j = (L+un)j = (L+un)j − eiεnj
(
L+u

)
j

= ei(ξ+εn)j [a+
−me

−iξm (
e−iεnm − 1

)
+ · · · + a+

−1e
−iξ(e−iεn − 1)

+ a+
1 e

iξ
(
eiεn − 1

)
+ · · · + a+

me
iξm(eiεnm − 1)],

so that

(L+(un − u))j = iεne
i(ξ+εn)j [a+

−m (−m) e−iξmeib−m + · · · + (−1)a+
−1e

−iξeib−1

+ a+
1 e

iξ.eib1 + · · · + a+
mme

iξmeibm ], j ∈ Z,

where bj, j = 0,±1, . . . ,±m are some numbers. Thus, the last term in (2.9) goes
to zero as n→ ∞ and, therefore, fn → 0. This completes the proof. �

We are now ready to establish the invertibility of L+.

Theorem 1.4. If the operator L+ is such that the corresponding polynomial P+(σ)
does not have roots with |σ| = 1, then it is invertible.

Proof. Lemma 1.2 applied for P+(σ) implies the existence of a continuous defor-
mation Pτ (σ), 0 ≤ τ ≤ 1, from the polynomial P0 = P+ to

P1 (σ) =
(
σk − a

) (
σ2m−k − λ

)

such that Pτ (σ) does not admit solutions with |σ| = 1. Here λ > 1, a < 1 are
given. The operator which corresponds to P1 is L+

1 defined by the equality
(
L+

1 u
)
j

= uj+k − auj − λuj+2k−2m + aλuj+k−2m.

Indeed, looking for the solution of the equation L+
1 u = 0 in the form uj = eµj , we

obtain
eµk − a− λeµ(2k−2m) + aλeµ(k−2m) = 0.

We put σ = eµ and get
(
σk − a

) (
σ2m−k − λ

)
= 0,
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so P1 is the above polynomial. Taking a = 1/λ, we have
(
L+

1 u
)
j

= (Mu)j − (1/λ)uj,

where
(Mu)j = uj+k − λuj+2k−m + uj+k−2m.

The operator M is invertible for large λ ≥ 0. Indeed,

M = −λ(T − 1
λ
S),

where (Tu)j = uj+2k−m, (Su)j = uj+k + uj+k−2m. Since T is invertible, then
T − S/λ is also invertible for λ large enough.

Hence L+
1 is also invertible for sufficiently large λ and its index is zero. Since

the polynomial Pτ does not have solutions σ with |σ| = 1, for any 0 ≤ τ ≤ 1, then
the corresponding continuous deformation of the operator L+

τ does not admit
nonzero bounded solutions (see Lemma 1.1). By Theorem 1.3, one obtains that
L+
τ is normally solvable with a finite-dimensional kernel. From the general theory

of Fredholm operators, we know that the index does not change in the process of
such deformation. Since the index of L+

1 is κ
(
L+

1

)
= 0, we deduce that κ (L+) = 0.

This, together with the fact that the kernel of the operator L+ is empty, implies
that it is invertible. The theorem is proved. �

A similar result can be stated for L−. As a consequence, we can study the
Fredholm property of L with the help of the polynomials P+ and P−.

Corollary 1.5. If the limiting operators L+ and L− for an operator L are such that
the corresponding polynomials P+(σ) and P−(σ) do not have roots with |σ| = 1
and have the same number of roots inside the unit circle, then L is a Fredholm
operator with the zero index.

Proof. We construct a homotopy of L in such a way that L+ and L− are reduced
to the operator in Theorem 1.4. This is a homotopy in the class of the normally
solvable operators with finite-dimensional kernels. Since the operators L+ and L−

coincide, we finally reduce L to an operator with constant coefficients. According
to Theorem 1.4, it is invertible. Therefore L is a Fredholm operator and has the
index 0, as claimed. �

We note that if the polynomials P±(σ) do not have roots with |σ| = 1, then
solutions of the equation Lu = 0 decay exponentially at infinity. This can be
proved employing the properties of the holomorphic operator-functions similar to
the proof in the case of elliptic operators (cf. Section 4, Chapter 5).
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1.2 Solvability conditions

In this section, we establish solvability conditions for the equation

Lu = f. (1.10)

Let α (L) = dimKerL and β (L) = codim ImL, (u, v) the inner product in l2,

(u, v) =
∞∑

j=−∞
ujvj .

We define the formally adjoint L∗ of the operator L by the equality

(Lu, v) = (u, L∗v).

Let L± and L∗
± be the limiting operators associated with L and L∗, respectively.

We suppose that the following condition is satisfied.

(H) The polynomials P+, P− corresponding to L+ and L− do not have roots
with |σ| = 1 and have the same number of roots with |σ| < 1. Similarly for
the polynomials P ∗

+ and P ∗
− corresponding to L∗

+ and L∗
−.

Corollary 1.5 implies that L and L∗ are Fredholm operators with the index
zero.

Lemma 1.6. If Condition H is satisfied, then β (L) ≥ α (L∗).

Proof. By the definition of Fredholm operators, equation (1.10) is solvable if and
only if

ϕk (f) = 0, k = 1, . . . , β (L) (1.11)

for some linearly independent functionals ϕk ∈ E∗, k = 1, . . . , β (L). On the other
hand, consider the functionals ψl given by

ψl (f) =
∞∑

j=−∞
fjv

l
j , l = 1, . . . , α (L∗) , (1.12)

where vl, l = 1, . . . , α (L∗) are linearly independent solutions of the homogeneous
equation L∗v = 0. Since vlj are exponentially decreasing with respect to j, then
the functionals ψl are well defined.

In order to prove that β (L) ≥ α (L∗), suppose that it is not true. Then among
the functionals ψl there exists at least one functional (say ψ1) which is linearly
independent with respect to all ϕk, k = 1, . . . , β (L). This means that (∃) f ∈ E
such that (1.11) holds, but

ψ1 (f) =
∞∑

j=−∞
fjv

1
j �= 0. (1.13)
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From (1.11) it follows that equation (1.10) is solvable. We multiply it by v1 and
find

(
Lu, v1

)
=

(
f, v1

)
. By (1.13) observe that the right-hand side is different

from zero. But since v1 is a solution of the equation L∗v = 0, we deduce that(
Lu, v1

)
=
(
u, L∗v1

)
= 0. This contradiction proves the lemma. �

Since L is formally adjoint to L∗, then similarly to the lemma we obtain
β (L∗) ≥ α (L). Therefore, if κ (L) = α (L) − β (L) is the index of the operator L,
then

κ (L) + κ (L∗) ≤ 0. (1.14)

Since in our case κ (L) = κ (L∗) = 0, then it follows that

β (L) = α (L∗) , β (L∗) = α (L) . (1.15)

Theorem 1.7. Equation (1.10) is solvable if and only if

∞∑
j=−∞

fjv
l
j = 0, l = 1, . . . , α (L∗) , (1.16)

where vl = {vlj}∞j=−∞, l = 1, . . . , α (L∗) are linearly independent solutions of the
equation L∗v = 0.

Proof. Equation (1.10) is solvable if and only if (1.11) holds for some functionals
ϕk ∈ E∗, k = 1, . . . , β (L). Consider the subspaces Φ and Ψ of E∗ generated
by the functionals ϕk, k = 1, . . . , β (L) and by ψl from (1.12), l = 1, . . . , α (L∗),
respectively. By (1.15) we deduce that their dimensions coincide. We show that
actually Φ = Ψ. We first verify that Ψ ⊆ Φ. Indeed, if it is not the case, then
there exists ψ ∈ Ψ, ψ /∈ Φ. Then ∃f ∈ E such that (1.11) holds, but at least
one ψl (f) �= 0, so we get the same contradiction as in the proof of Lemma 1.6.
Therefore, Ψ ⊆ Φ and since they have the same dimensions, we get that Ψ = Φ.
The theorem is proved. �

1.3 Spectrum of difference and differential operators

Consider the difference operator

(Lu)j = aj(uj+1 − 2uj + uj−1) + bj (uj+1 − uj) + cjuj ,

where aj, bj , cj are real numbers. It can be considered as a discretization of the
second-order differential equation on the real axis:

Mu = a(x)u′′ + b(x)u′ + c(x)u.

We will discuss how the essential spectrum of the difference and of the differential
operators are related to each other. Let us assume that the sequences aj, bj , cj



2. First-order systems 535

converge to a, b, c, respectively, as i → ∞, and consider the infinite system of
equations

a(uj+1 − 2uj + uj−1) + b(uj+1 − uj) + cuj = λuj .

We substitute uj = eiξj and obtain

λ(ξ) = (2a+ b) cos ξ + ib sin ξ − 2a− b+ c.

Here ξ is a real parameter, λ(ξ) is the essential spectrum. If it crosses the origin,
the operator L does not satisfy the Fredholm property.

Let a = η2α, b = ηβ,

λ(ξ, η) = (2ηα+ β)η cos ξ + iηβ sin ξ − 2η2α− ηβ + c.

Here η is a large parameter. This scaling corresponds to a finite difference ap-
proximation of the first and second derivatives. If we consider λ as a function of ξ
for a fixed η, then, as before, we obtain the essential spectrum of the operator L.
We will now consider λ as a function of η and will show that it converges to the
essential spectrum of the operator M as η → ∞. Put λ = µ + iν. Equating real
and imaginary parts in the last equality, we can express µ through ν and λ and
exclude ξ:

ν = bη

√
− (c− µ)2

(2aη2 + bη)2
+

2(c− µ)
2aη2 + bη

.

In the limit of large η, we obtain

ν = b

√
c− µ

a
.

Therefore, µ = c− aν2/b2,

λ = µ+ iν = −a ν
2

b2
+ iν + c.

We finally put η = ν/b and obtain

λ = −aη2 + ibη + c.

If the coefficients of the operator M converge to a, b, and c at infinity, then the
last formula gives the essential spectrum of the operator M .

2 First-order systems

Consider the linear algebraic system of equations

U(j) − U(j − 1) = A(j)U(j), (2.1)
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where A(j) are n× n matrices, U(j) are n-vectors, j ∈ Z. We call such a system,
for which only two consecutive values of the parameter j are present, first-order
systems. Denote by Φ(j) the fundamental matrix of this system, that is the matrix
whose columns are linearly independent solutions of (2.1). Suppose that there are
n linearly independent solutions. Let

Ψ(j) = (Φ−1(j))T ,

where the superscript T denotes the transposed matrix. Therefore, Ψ(j) is the
fundamental matrix of the system

V (j) − V (j − 1) = −A(j)TV (j − 1), (2.2)

which is adjoint to system (2.1). We note that V in the right-hand side of (2.2) is
taken at j − 1, while U in (2.1) is taken at j.

Consider next the nonhomogeneous equation

W (j) −W (j − 1) = A(j)W (j) + f(j − 1). (2.3)

Its solution can be given by the formula

W (j) = Φ(j)
j−1∑
i=0

Ψ(i)T f(i). (2.4)

We will also use another form of the solution:

W (j) = −Φ(j)
∞∑
i=j

Ψ(i)T f(i). (2.5)

2.1 Solvability conditions

Assume that the elements ϕhk (j) (h, k = 1, . . . , n) of the fundamental matrix Φ (j)
(j ∈ Z) of the homogeneous system behave exponentially at infinity: ϕhk (j) ∼
a±hke

λ±
k
·j as j → ±∞, where λ±k �= 0, λ±k are different for different k and a±hk are

such that the limit matrix of Φ (j) is invertible for all j. Therefore,

Φ(j) = (ϕhk(j))h,k=1,n ∼




a±11e
λ±
1 j a±12e

λ±
2 j . . . a±1ne

λ±
n j

a±21e
λ±
1 j a±22e

λ±
2 j . . . a±2ne

λ±
n j

. . . . . . . . . . . .

a±n1e
λ±
1 j a±n2e

λ±
2 j . . . a±nne

λ±
n j


 (2.6)

as j → ±∞. Then

Ψ(j) = (Φ−1(j))T ∼




b±11e
−λ±

1 j b±12e
−λ±

2 j . . . b±1ne
−λ±

n j

b±21e
−λ±

1 j b±22e
−λ±

2 j . . . b±2ne
−λ±

n j

. . . . . . . . . . . .

b±n1e
−λ±

1 j b±n2e
−λ±

2 j . . . b±nne−λ
±
n j


 , (2.7)
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as j → ±∞. If fm (j) (m = 1, . . . , n) are the elements of f (j), it follows that
Ψ (i)T f (i) behaves like




s±1 (i) e−λ
±
1 i

s±2 (i) e−λ
±
2 i

. . .

s±n (i) e−λ
±
n i


 ,where s±p (i) = b±1pf1 (i) + · · · + b±npfn (i) , p = 1, . . . , n.

Let k, h, l, q be integers, 0 ≤ k, h, l, q ≤ n, such that k + h+ l + q = n and:

(i) λ+
p < 0, λ−p > 0, (∀) p = 1, . . . , k;

(ii) λ+
p < 0, λ−p < 0, (∀) p = k + 1, . . . , k + h;

(iii) λ+
p > 0, λ−p > 0, (∀) p = k + h+ 1, . . . , k + h+ l;

(iv) λ+
p > 0, λ−p < 0, (∀) p = k + h+ l + 1, . . . , k + h+ l + q(= n).

If this is not the case, we can rearrange the order of the numbers λp in such a way
that (i)–(iv) hold. If one or several of the numbers k, h, l, q is zero, then we omit
the corresponding line.

Denote by A1 (j) , . . . , An (j) the columns of Φ (j) and by B1 (j) , . . . , Bn (j)
the columns of Ψ (j). Then A1 (j) , . . . , Ak (j) are bounded at +∞ and −∞,
Ak+1 (j) , . . . , Ak+h (j) are bounded at +∞ and grow at −∞, Ak+h+1 (j), . . . ,
Ak+h+l (j) grow at +∞ and decay at −∞, while Ak+h+l+1 (j) , . . . , An (j) grow
at both +∞ and −∞. Since kerL is the subspace generated by the bounded (at
both +∞ and −∞) columns of Φ (j), we find that dimkerL = k.

As a consequence of the behavior of A1 (j) , . . . , An (j), we conclude that
B1 (j) , . . . , Bk (j) are exponentially growing at +∞ and −∞, Bk+1 (j), . . . ,
Bk+h (j) are unbounded at +∞ and bounded at −∞ (decaying to 0), Bk+h+1 (j),
. . . , Bk+h+l (j) are bounded at +∞ and unbounded at −∞, and Bk+h+l+1 (j),
. . . , Bn (j) are bounded at both +∞ and −∞.

We put

W (j) = Φ (j) [
j−1∑
i=0

Ψ1,k (i)T f (i) +
j−1∑
i=−∞

Ψk+1,k+h (i)T f (i)

−
∞∑
i=j

Ψk+h+1,k+h+l (i)
T
f (i) +

j−1∑
i=−∞

Ψk+h+l+1,n (i)T f (i)], (2.8)

where Ψα,β (i)T is the n × n matrix which has the lines α, α + 1, . . . , β (α ≤ β)
as the matrix Ψ (i)T and all the other lines zero. If one of the numbers k, l, h, q is
zero, then the corresponding Ψα,β (i)T is considered zero.
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We verify that W (j) is a solution of (2.3). Indeed, denoting by S (j) the
square bracket in (2.8), we can write

W (j) −W (j − 1) = (Φ (j) − Φ (j − 1))S (j) + Φ (j − 1) (S (j) − S (j − 1))

= A (j) Φ (j)S (j) + Φ (j − 1)Ψ (j − 1)T f (j − 1)
= A (j)W (j) + f (j − 1) .

Remark that for every p = 1, . . . , n and j → ±∞,

Bp(j)T f(j) ∼ s±p (j) e−λ
±
p j =

(
n∑

m=1

b±mpfm (j)

)
e−λ

±
p j . (2.9)

From (2.8), we can easily see that for each m = 1, . . . , n, the elements wm (j)
of the vector

W (j) =




w1 (j)
w2 (j)
. . .

wn (j)




are given by

wm (j) =
k∑
p=1

ϕmp(j)
j−1∑
i=0

Bp(i)T f(i) +
k+h∑
p=k+1

ϕmp(j)
j−1∑
i=−∞

Bp(i)T f(i)

−
k+h+l∑

p=k+h+1

ϕmp(j)
∞∑
i=j

Bp(i)T f(i) +
n∑

p=k+h+l+1

ϕmp(j)
j−1∑
i=−∞

Bp(i)T f(i).

(2.10)

If k or h or l or q is zero, then the corresponding sum is zero.
By hypothesis (i) and (2.9), observe that for the first k terms of wm (j), we

have the estimates



j−1∑
i=0

|Bp(i)T f(i)| ≤Me−λ
+
p j , ∀j ≥ 0

j−1∑
i=0

|Bp(i)T f(i)| ≤Me−λ
−
p j , ∀j ≤ 0

, (2.11)

p = 1, . . . , k. Here |·| means the matrix norm. Therefore the sum

k∑
p=1

(ϕmp(j)
j−1∑
i=0

Bp(i)T f(i))

from (2.10) is bounded for any bounded f .
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We now study the second sum from (2.10). For any p from k + 1 to k + h,
condition (ii) holds. So ϕmp (j) ∼ a±mpe

λ±
p j are bounded at +∞ and grow at −∞

and s±p (i) e−λ
±
p i are exponentially growing at +∞ and exponentially decaying at

−∞. It follows that the sum
j−1∑
i=−∞

Bp(i)T f(i) is well defined and, using estimates

similar to (2.11), we conclude that the sum

k+h∑
p=k+1

(ϕmp(j)
j−1∑
i=−∞

Bp(i)T f(i))

is bounded for all bounded f .
For p = k + h + 1, . . . , k + h + l, by hypothesis (iii), remark that a±mpe

λ±
p j

are unbounded at +∞ and bounded at −∞, while
∞∑
i=j

Bp(i)T f(i) is well defined.

Estimates similar to (2.11) hold again and therefore the sum

k+h+l∑
p=k+h+1

(ϕmp (j)
∞∑
i=j

Bp(i)T f(i))

in (2.10) is bounded for all bounded f .
If p = k + h + l + 1, . . . , k + h + l + q(= n), by (iv) we get that the sum

j−1∑
i=−∞

Bp(i)T f(i) is well defined and estimates of (2.11) type hold. Hence,

n∑
p=k+h+l+1

(ϕmp (j)
j−1∑
i=−∞

Bp(i)T f(i))

is bounded if and only if

∞∑
i=−∞

Bp(i)T f(i) = 0, p = k + h+ l + 1, . . . , k + h+ l + q(= n). (2.12)

These equalities provide solvability conditions for (2.3).
Consequently, if the solvability conditions (2.12) hold, then equation (2.3) is

solvable. The solution is given by (2.8). The codimension of the operator is q and
the index is k − q. All the reasoning remains valid also when one or more of the
numbers k, h, l, q is zero. Therefore we have proved the following theorem.

Theorem 2.1. Suppose that the fundamental matrix Φ (j) = (ϕhk (j))h,k=1,...,n of

system (2.1) is invertible and behaves exponentially at ±∞, ϕhk (j) ∼ a±hke
λ±

k ·j as
j → ±∞, where a±hk �= 0, λ±k �= 0 and λ±k are different for different k. Then the
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operator L corresponding to system (2.1) is Fredholm. If there are k values of λp
with λ+

p < 0, λ−p > 0 and q values of λp with λ+
p > 0, λ−p < 0 (0 ≤ k, q ≤ n), then

the index of L is k − q and the solvability conditions for (2.3) are

∞∑
i=−∞

Bp(i)T f(i) = 0,

for p corresponding to the q values for which λ+
p > 0, λ−p < 0.

2.2 Higher-order equations

In Section 1.1 we proved normal solvability of higher-order difference operators.
We can reduce them to first-order systems in order to use for them the solvability
conditions obtained in the previous section. They are applicable not only in the
case of zero index considered in Section 1.2. Consider the operator

(Lu)j = aj0uj + aj1uj−1 + · · · + aj2muj−2m, j ∈ Z,

where m ∈ N∗ and the coefficients ajk ∈ R (0 ≤ k ≤ 2m) are given.
We show that the equation Lu = 0 can be transformed into a first-order

difference system of the form (2.1). Indeed, writing

uj − uj−1 = v1
j , v

1
j − v1

j−1 = v2
j , . . . , v

2m−2
j − v2m−2

j−1 = v2m−1
j ,

one easily observes that




uj − uj−1 = v1
j

(v1
j − v1

j−1 =)v2
j = uj − 2uj−1 + uj−2

. . . . . . . . . . . .

(v2m−2
j − v2m−2

j−1 =)

v2m−1
j = uj − C1

2m−1uj−1 + C2
2m−1uj−2 − · · · − C2m−1

2m−1uj−2m+1

v2m−1
j − v2m−1

j−1 = uj − C1
2muj−1 + C2

2muj−2 − · · · + C2m
2muj−2m.

We want to write the right-hand side of the last formula as a function of uj ,
v1
j , . . . , v

2m−1
j . To do this, remark that the above equalities imply that uj−1 =

uj−v1
j , uj−2 = v2

j −uj+2
(
uj − v1

j

)
and so on. Analogously, from the penultimate

equation, it follows that uj−2m+1 can be written as

uj−2m+1 = −v2m−1
j + αj0uj + αj1v

1
j + · · · + αj2m−2v

2m−2
j ,
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for some αjk ∈ R (0 ≤ k ≤ 2m−2). This, together with the equation Lu = 0, leads
to a first-order difference system of the form




uj − uj−1 = v1
j

v1
j − v1

j−1 = v2
j

. . . . . . . . . . . .

v2m−2
j − v2m−2

j−1 = v2m−1
j

v2m−1
j − v2m−1

j−1 = Aj0uj +Aj1v
1
j + · · · +Aj2m−1v

2m−1
j ,

for some coefficients Ajk, 0 ≤ k ≤ 2m− 1, j ∈ Z. Writing

U (j) =




uj
v1
j

. . .
v2m−1
j


 , A (j) =




0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
Aj0 Aj1 Aj2 . . . Aj2m−1


 ,

we conclude that the equation Lu = 0 can be written in the form (1.1). Therefore
we can apply the solvability conditions obtained above.

3 Principal eigenvalue

Finite matrices with non-negative off-diagonal elements possess some special spec-
tral properties given by the Perron-Frobenius theorem. Their eigenvalue with the
maximal real part is real and the corresponding eigenvector is positive. We discuss
here similar properties for infinite matrices. We will use the solvability conditions
obtained above.

Consider the Banach space E of infinite sequences u = (. . . , u−1, u0, u1, . . . )
with the norm

‖u‖ = sup
j

|uj|

and the operator L acting in E,

(Lu)j = aj−muj−m + · · · + aj0uj + · · · + ajmuj+m, j = 0,±1,±2, . . . ,

where m is a positive integer and ajk ∈ R, −m ≤ k ≤ m are given coefficients. We
assume that there exist the limits

a±k = lim
j→±∞

ajk, k = 0,±1, . . . ,±m. (3.1)

Consider the limiting operators L±,

(L±u)j = a±−muj−m + · · · + a±0 uj + · · · + a±muj+m, j = 0,±1,±2, . . . .
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Let
a±−m �= 0, a±m �= 0, (3.2)

and suppose that the equations

L±u− λu = 0

do not have nonzero bounded solutions for any real λ ≥ 0. We will call it Condition
NS(λ). If it is satisfied, then from the results of Section 1 it follows that L is a
Fredholm operator with the zero index.

Consider the polynomials

P±
λ (σ) = a±mσ

2m + · · · + a±1 σ
m+1 + (a±0 − λ)σm + a±−1σ

m−1 + · · · + a±−m.

From Lemma 1.1 it follows that Condition NS(λ) is satisfied if and only if the
polynomials P±

λ (σ) do not have roots with |σ| = 1. As a consequence we can
obtain the following result.

Lemma 3.1. If Condition NS(λ) is satisfied, then

a±−m + · · · + a±m < 0,

that is L±q < 0, where q is a sequence with all elements equal to 1.

Proof. Suppose that the assertion of the corollary does not hold. Then P±
0 (1) ≥ 0.

On the other hand, for λ sufficiently large P±
λ (1) < 0. Therefore for some λ,

P±
λ (1) = 0. We obtain a contradiction with Lemma 1.1. �

We recall that the formally adjoint operator L∗ is defined by the equality

(Lu, v) = (u, L∗v).

If we consider L as an infinite matrix, then L∗ is the adjoint matrix. Let α (L∗)
be the dimension of kerL∗ and f = {fj}∞j=−∞ ∈ E. In Section 1.2 we proved that
the equation Lu = f is solvable if and only if

∞∑
j=−∞

fjv
l
j = 0, l = 1, . . . , α (L∗) ,

where vl are linearly independent solutions of the equation L∗v = 0.

In what follows we say that u is positive (non-negative) if all elements of this
sequence are positive (non-negative). From now on we suppose that

ajk > 0, k = ±1,±2, · · · ,±m, j = 0,±1,±2, . . . (3.3)

and that there exists a positive solution w of the equation

Lu = 0. (3.4)
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This means that L has a zero eigenvalue and the corresponding eigenvector is
positive. We will show that the zero eigenvalue is simple and all other eigenvalues
lie in the left half-plane. Moreover, the homogeneous adjoint equation has a posi-
tive solution, which is unique up to a constant factor. It is a generalization of the
Perron-Frobenius theorem for infinite matrices. The method of the proof follows
the method developed for elliptic problems in unbounded domains. Similarly to
elliptic problems it is assumed that the essential spectrum lies to the left of the
eigenvalue with a positive eigenvector. We note that the operator L can be consid-
ered as an infinite-dimensional (2m+1)-diagonal matrix with positive elements in
all nonzero diagonals except for the main diagonal where the signs of the elements
are not prescribed.

3.1 Auxiliary results

Suppose conditions (3.1)–(3.3) are satisfied. We begin with the positiveness of the
solution of the equation Lu = f for f ≤ 0. We will use the notation

U−(N) = (uN−m, . . . , uN−1), U+(N) = (uN+1, . . . , uN+m).

Lemma 3.2. Let Lu = f , where f ≤ 0, u ≥ 0, u �≡ 0. Then u > 0.

Proof. Suppose that uj = 0 for some j. Since u �≡ 0, there exists i such that ui = 0,
and either ui+1 �= 0 or ui−1 �= 0. The equation (Lu)i = fi gives a contradiction in
signs. The lemma is proved. �

Lemma 3.3. If the initial condition u0 of the problem

du

dt
= Lu, u(0) = u0 (3.5)

is non-negative, then the solution u(t) is also non-negative for all t ∈ (0,∞).

Proof. Consider the auxiliary problem

dui
dt

= (Lu)i, −N ≤ i ≤ N, t ≥ 0,

U−(−N) = 0, U+(N) = 0, t ≥ 0,

u(0) = u0,

where the unknown function is u = (u−N , u−N+1, . . . u0, . . . , uN−1, uN).
Since u0 ≥ 0 and Lu has non-negative off-diagonal coefficients, it follows

that the solution uN =
(
uN−N , u

N
−N+1, . . . u

N
0 , . . . , u

N
N−1, u

N
N

)
of the above problem

is non-negative.
If we compare the solution uN at the interval [−N,N ] and the solution uN+1

at the interval [−N − 1, N + 1], we find uN+1 ≥ uN . Indeed, the difference uN+1−
uN verifies a problem similar with the above one, but with a non-negative initial
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condition and with zero boundary conditions. The solution of this problem is
non-negative, i.e., uN+1 ≥ uN . So the sequence is monotonically increasing with
respect to N . The sequence is also bounded with respect to N : ||uN (t) || ≤M , for
all N and t ∈ [0, T ], where T is any positive number, M > 0 depends on u0 and
on the coefficients aik of L, which are bounded. Being bounded and monotone, uN

is convergent as N → ∞ in C ([0, T ] ;E) to some u. Then u verifies problem (3.5)
and u ≥ 0, as claimed. �

Corollary 3.4. (Comparison theorem). Let u1(t) and u2(t) be solutions of the equa-
tion

du

dt
= Lu

with the initial conditions u1(0) and u2(0), respectively. If u1(0) ≤ u2(0), then
u1(t) ≤ u2(t) for t ≥ 0.

Lemma 3.5. If the initial condition u0 of the problem

du

dt
= L+u, u(0) = u0 (3.6)

is constant (independent of j), then the solution u(t) is also constant. For any
bounded initial condition the solution of problem (3.6) converges to the trivial
solution u = 0.

The proof of this lemma follows from Lemma 3.1 and Corollary 3.4.

Lemma 3.6. If u is a solution of the problem

Lu = f, j ≥ N, U−(N) ≥ 0, (3.7)

where f ≤ 0, uj → 0 as j → ∞, and N is sufficiently large, then uj ≥ 0 for
j ≥ N .

Proof. By virtue of Lemma 3.1 there exists a constant ε > 0 such that L+q < −ε.
Let us take N large enough such that

|((L− L+)q)j | ≤ ε

2
, j ≥ N. (3.8)

Suppose that uj < 0 for some j > N . Due to the assumption that uj → 0 as
j → ∞, we can choose τ > 0 such that vj = uj + τqj ≥ 0 for all j ≥ N , and there
exists i > N such that vi = 0. Since V−(N) > 0 and vj > 0 for all j sufficiently
large, there exists k > N such that vk = 0 and either vk+1 �= 0 or vk−1 �= 0 (that
is vk+1 > 0 or vk−1 > 0).

We have

Lv = Lu+ τL+q + τ(L − L+)q = f + τL+q + τ(L − L+)q. (3.9)

In view of (3.8), L+q < −ε and f ≤ 0, the right-hand side of this equality is less
than or equal to 0 for j ≥ N . We obtain a contradiction in signs in the equation
corresponding to k. The lemma is proved. �
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Remark 3.7. The assertion of the lemma remains true if we replace (3.7) by

Lu ≤ αu, j ≥ N, U−(N) ≥ 0, (3.10)

for some positive α. Indeed, one obtains Lv ≤ αu + τL+q + τ(L − L+)q instead
of (3.9) where (Lv)k > 0 and αuk + τL+qk + τ (L− L+) qk < αuk − ετ/2 =
−τ (α+ ε/2) < 0 because vk = 0.

3.2 Location of the spectrum

The main result of this section is given by the following theorem.

Theorem 3.8. Let Condition NS(λ) be satisfied and equation (3.4) have a positive
bounded solution w. Then:

1. The equation
Lu = λu (3.11)

does not have nonzero bounded solutions for Re λ ≥ 0, λ �= 0.
2. Each solution of equation (3.4) has the form u = kw, where k is a constant.
3. The equation

L∗u = 0 (3.12)

has a positive solution unique up to a constant factor.

Proof. We first consider the case where λ = α + iβ, α ≥ 0, β �= 0. Suppose by
contradiction that there exists a bounded nonzero solution u = u1 + iu2 of this
equation. Then Lu1 = αu1 − βu2 and Lu2 = βu1 + αu2. Consider the equation

dv

dt
= Lv − αv, v(0) = u1. (3.13)

Its solution is
v(t) = u1 cosβt− u2 sinβt. (3.14)

For the sequence u = {uj} = {u1
j + iu2

j}, we write û = {|uj|}. Let us take
the value of N as in Lemma 3.6 and choose τ > 0 such that

ûj ≤ τwj , |j| ≤ N, (3.15)

where at least for one j0 with |j0| ≤ N , we have the equality

ûj0 = τwj0 . (3.16)

For j ≥ N consider the problem


dy

dt
= Ly − αy,

yN−k(t) = ûN−k, k = 1, . . . ,m, y∞(t) = 0,
(3.17)

y(0) = û, (3.18)
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and the corresponding stationary problem

Lȳ − αȳ = 0, ȳN−k = ûN−k, k = 1, . . . ,m, ȳ∞ = 0. (3.19)

The operator corresponding to problem (3.19) satisfies the Fredholm prop-
erty and has the zero index. Indeed, its normal solvability can be proved similar
to Theorem 1.3. Condition NS(λ) implies that its index is zero. Moreover, the
corresponding homogeneous problem has only the zero solution. It follows from
Lemma 3.6 applied to u and −u. Therefore problem (3.19) is uniquely solvable.

We show that the solution y (t) of problem (3.17), (3.18) converges to ȳ as
t → ∞. For this we consider the solution y∗(t) of problem (3.17) with the initial
condition y∗(0) = ρq, where ρ is such that

ρqj ≥ ûj , j ≥ N.

By Lemma 3.1, we have L±q < 0. Since L+ is close to L for j ≥ N , with N large
enough, it follows that (Lq)j < 0, j ≥ N . Then y∗(t) monotonically decreases in
t for each j ≥ N fixed. From the positiveness and the decreasing monotonicity
of y∗, we deduce that y∗ (t) converges as t → ∞ to some x = limt→∞ y∗ (t) ≥ 0.
It satisfies the equation Lx − αx = 0. Taking the limit also in the boundary
conditions, one obtains that xN+k = ûN+k, for k = 1, . . . ,m and x∞ = 0, so x is
a solution of problem (3.19). By the uniqueness, we get x = y, i.e., there exists
the limit limt→∞ y∗(t) = ȳ.

On the other hand, let y∗ be the solution of (3.17) with the initial condition
y∗(0) = 0. It can be shown that y∗ increases in time and it has an upper bound.
As above, we can deduce that y∗ converges to ȳ. Therefore

lim
t→∞ y∗(t) = lim

t→∞ y∗(t) = ȳ.

By virtue of the comparison theorem applicable in this case (because 0 ≤ ûj ≤ ρqj ,
j ≥ N), we have

y∗(t) ≤ y(t) ≤ y∗(t), j ≥ N.

Hence
lim
t→∞ yj(t) = ȳj , j ≥ N.

One can easily verify that

vj(t) ≤ ûj for all j ∈ Z. (3.20)

Then it follows from the comparison theorem that

vj(t) ≤ yj(t), j ≥ N, t ≥ 0.

From this we have

vj(t) = vj(t+ 2πn/β) ≤ yj(t+ 2πn/β).
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Passing to the limit as n→ ∞, we obtain

vj(t) ≤ ȳj , j ≥ N, t ≥ 0.

Observe that L (τw − y) ≤ α (τw − y), j ≥ N and τwN − yN ≥ 0. We can
apply Remark 3.7 to τw − ȳ. Therefore

ȳj ≤ τwj , j ≥ N.

Hence
vj(t) ≤ τwj (3.21)

for j ≥ N, t ≥ 0. A similar estimate can be obtained for j ≤ −N . Together with
(3.15), these prove (3.21) for all j ∈ Z.

The sequence z(t) = τw − v(t) is a solution of the equation

dz

dt
= Lz − αz + ατw.

Since z(t) ≥ 0 (via (3.21) for all j ∈ Z), z is not identically zero, and is periodic in
t, it follows that zj(t) > 0 for all j and t ≥ 0. Indeed, suppose that for some t = t1
and j = j1, zj1(t1) = 0. Consider first the case where α > 0. Since (dzj1/dt)(t1) ≤ 0
and wj1 > 0 we obtain a contradiction in signs in the equation for zj1 . If α = 0,
then the equation becomes

dz

dt
= Lz. (3.22)

Assuming that z(t) is not strictly positive, we easily obtain that it is iden-
tically zero for all j. We have (dzj1/dt)(t1) ≤ 0 and (Lz)j1 (t1) ≥ 0. Then
(Lz)j1 (t1) = 0, so all zj (t1) = 0. Since zj1 verifies dzj1/dt = (Lz)j1 , zj1 (t1) = 0,
by the uniqueness we find zj1 (t) = 0, t ≥ t1. Combining this with zj (t1) = 0,
(∀) j ∈ Z, we get zj (t) = 0, (∀) j ∈ Z, (∀) t ∈ (0,∞).

Thus, in both cases zj(t) is positive for all j and t. We take t ≥ 0 such that

e−iβt =
uj0
|uj0 |

,

with j0 from (3.16), i.e., cosβt = u1
j0/|uj0 | and sinβt = −u2

j0/|uj0 |. Then, vj0 (t) =
u1
j0

cosβt − u2
j0

sinβt = |uj0 |, hence with the aid of (3.16) we obtain the contra-
diction

zj0(t) = τwj0 − |uj0 | = 0.

The first assertion of the theorem is proved for nonreal λ.

Assume now that λ ≥ 0 is real and that u is a nonzero bounded solution
of (3.11). We suppose that at least one of the elements of the sequence {uj}
is negative. Otherwise we could change the sign of u. We consider the sequence
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v = u + τw, where τ > 0 is chosen such that v ≥ 0 for |j| ≤ N , but vj0 = 0 for
some j0, |j0| ≤ N . We have

Lv = λv − λτw, (3.23)

and therefore vj ≥ 0 for all j by virtue of Lemma 3.6. Indeed, for |j| ≤ N ,
the inequality holds because of the way we have chosen τ . For j ≥ N , one applies
Lemma 3.6 for (3.23) written in the form (L− λI) v = −λτw, j ≥ N , with vN ≥ 0.
If j ≤ −N , the reasoning is similar.

If λ > 0, then the equation for vj0 leads to a contradiction in signs. Thus
equation (3.11) cannot have different from zero solutions for real positive λ.

2. If λ = 0, then we define v = u + τw as above. Here u is the solution of (3.11)
with λ = 0, i.e., Lu = 0. Using the above reasoning for λ ≥ 0, we have vj ≥ 0,
(∀) j ∈ Z, but it is not strictly positive (at least vj0 = 0). In addition, v satisfies the
equation Lv = 0. It follows from Lemma 3.2 that v ≡ 0. This implies uj = −τwj ,
(∀) j ∈ Z.

3. The limiting operators L± are operators with constant coefficients. The corre-
sponding matrices are (2m + 1)-diagonal matrices with constant elements along
each diagonal. The matrices associated to the limiting operators L∗

± of L∗ are the
transposed matrices, which are composed by the same diagonals reflected sym-
metrically with respect to the main diagonal. Therefore the polynomials (P ∗

λ )±(σ)
for the operator L∗ will be the same as for the operator L. As indicated in the
beginning of Section 3, the operator L∗ satisfies the Fredholm property and it has
the zero index.

We note first of all that equation (3.12) has a nonzero bounded solution v.
Indeed, if such solution does not exist, then by virtue of the solvability conditions,
the equation

Lu = f (3.24)

is solvable for any f . This implies ImL = E and hence codim (ImL) = 0. Since the
index of L is zero, it follows that dim (kerL) = 0. But by part two of the theorem,
we get dim (kerL) = 1. This contradiction shows that a nonzero bounded solution
v of equation (3.12) exists. Moreover, it is exponentially decreasing at infinity (see
the end of Section 1.1).

We recall next that equation (3.24) is solvable if and only if

(f, v) = 0. (3.25)

If v ≥ 0, then from Lemma 3.2 for equation L∗v = 0, it follows that v is strictly
positive, as claimed.

If we assume that a non-negative solution of equation (3.12) does not exist,
then it has an alternating sign. Then we can find a bounded sequence f < 0 such
that (3.25) is satisfied.

Let u be the corresponding solution of (3.24). There exists a τ (not necessarily
positive), such that ũ = u + τw ≥ 0 for |j| ≤ N , but not strictly positive. Since
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Lũ = f and f < 0, ũN ≥ 0, and ũj → 0 as j → ∞, by virtue of Lemma 3.6, one
finds ũ ≥ 0 for all j. But for those j where ũ vanish, this leads to a contradiction
in signs in the equation. Therefore ũ > 0. The theorem is proved. �

4 Stability of finite difference schemes

Finite difference approximation of differential equations in R2 leads to infinite-
dimensional difference operators acting on sequences uij that depend on two in-
dices i and j. In this sense, we call the corresponding equations multi-parameter
equations. Consider the problem

m∑
k=−m

n∑
l=−n

ai+k,j+lui+k,j+l = fij , −∞ < i, j <∞, (4.1)

where m and n are some given integers. Let us introduce the notation

U = {uij, −∞ < i, j <∞}, F = {fij , −∞ < i, j <∞},

(LU)ij =
m∑

k=−m

n∑
l=−n

ai+k,j+lui+k,j+l.

Then equation (4.1) can be written as LU = F . We consider the function space

E = {U = (uij), sup
ij

|uij | <∞}

with the norm ‖U‖ = supij |uij |. We will suppose that supij |aij | < ∞. It can
be easily seen that if this condition is satisfied, then the operator L : E → E is
bounded.

Definition 4.1. Let (in, jn) be a sequence such that |in|+|jn| → ∞ as n→ ∞. Write
anij = ai+in,j+jn . Suppose that anij converges locally, that is on every bounded set
of the indices i, j to some âij . Then the operator

(L̂U)ij =
m∑

k=−m

n∑
l=−n

âi+k,j+lui+k,j+l

is called the limiting operator.

Condition NS. Any limiting problem L̂U = 0 does not have nonzero solutions in E.

Theorem 4.2. The operator L is normally solvable with a finite-dimensional kernel
if and only if Condition NS is satisfied.

The proof is similar to the proof in the case of one-parameter operators.
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Condition NS can be formulated explicitly if limiting operators have con-
stant (independent of i, j) coefficients. We restrict ourselves to the example of the
difference operator obtained as a discretization of the elliptic equation ∆u = f ,
x ∈ R

2:

ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1 = fij , −∞ < i, j <∞. (4.2)

Put

v(ξ) =
∞∑

i,j=−∞
ei(iξ1+jξ2)uij , g(ξ) =

∞∑
i,j=−∞

ei(iξ1+jξ2)fij ,

where ξ1, ξ2 ∈ [0, 2π) and i is the imaginary unit. We multiply each equation in
(4.2) by exp(i(iξ1 + jξ2)) and take the sum with respect to i, j:

(eiξ1 + eiξ2 − 4 + e−iξ1 + e−iξ2)v(ξ) = g(ξ).

We will call the expression

P0(ξ1, ξ2) =
(
eiξ1/2 − e−iξ1/2

)2

+
(
eiξ2/2 − e−iξ2/2

)2

= −4
(
sin2(ξ1/2) + sin2(ξ2/2)

)

the symbol of the operator

(L0U)ij = ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1.

For |ξ| = |ξ1| + |ξ2| sufficiently small,

P0(ξ1, ξ2) ≈ −(ξ21 + ξ22),

that is the symbol of the difference operator is approximated by the symbol of the
corresponding differential operator.

The operator L0 coincides with its unique limiting operator. Since the lim-
iting problem L0U = 0 has nonzero solutions, which correspond to solutions of
the equation P0(ξ1, ξ2) = 0, then the operator L0 is not normally solvable with a
finite-dimensional kernel. Consequently, it does not satisfy the Fredholm property.
The operator L0 − σ, where σ is a positive constant is invertible.

Consider next the operator

(L1U)ij = −ui,j + ui,j−1 + a(ui−1,j − 2ui,j + ui+1,j) − σui,j ,

where a and σ are some positive constants. We have

P1(ξ1, ξ2) = eiξ2 − 1 + a
(
eiξ1/2 − e−iξ1/2

)2

− σ

= −4a sin2(ξ1/2) + cos(ξ2) + i sin(ξ2) − 1 − σ,

Re P1(ξ1, ξ2) < 0 ∀ ξ1, ξ2 ∈ R.
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If σ = 0, then the symbol P1 has zeros and the operator does not satisfy the
Fredholm property. We note that the operator L1 corresponds to the finite different
approximation of the parabolic equation

∂u

∂t
=
∂2u

∂x2
− δu

implicit with respect to time. Here a = ht/(hx)2, σ = δ ht, where ht is the time
step and hx is the space step.

For the operator

(L2U)ij = −ui,j+1 + ui,j + a(ui−1,j − 2ui,j + ui+1,j) − σui,j

we obtain

P2(ξ1, ξ2) = −e−iξ2 + 1 + a
(
eiξ1/2 − e−iξ1/2

)2

− σ

= −4a sin2(ξ1/2)− cos(ξ2) + i sin(ξ2) + 1 − σ.

If a < 1/2, then for all σ > 0 sufficiently small, P (ξ1, ξ2) �= 0. The operator L2

arises as an explicit finite difference approximation of the same parabolic equation.
The implicit scheme is unconditionally stable while the explicit scheme is stable
if a < 1/2. Therefore, Condition NS is related to stability of the finite difference
approximation.

The last example is related to discretization of the equation

∂u

∂t
=
∂2u

∂x2
+ c

∂u

∂x
− δu.

The symbol of the operator

(L3U)ij = −ui,j + ui,j−1 + a(ui−1,j − 2ui,j + ui+1,j) + c(ui+1,j − ui,j) − σui,j

is

P3(ξ1, ξ2) = −4a sin2(ξ1/2) + c(cos(ξ1)− i sin(ξ1)− 1) + cos(ξ2) + i sin(ξ2)− 1− σ.

If c > 0, then P3(ξ1, ξ2) �= 0. This corresponds to stability of the upwind dis-
cretization scheme. If c < 0, this is not the case.

Thus, in the examples above stability of finite difference schemes occurs when
the corresponding difference operator is normally solvable with a finite-dimensional
kernel.



Historical and
Bibliographical Comments

The theory of elliptic equations was developed over more than two centuries.
Various methods were suggested in the framework of this theory or came from
other areas of mathematics. The theory of potential, the method of Green’s func-
tions, applications of holomorphic functions, and variational methods were used
or developed in relation with elliptic equations already in the XIXth century.
An important development started at the end of the XIXth beginning of the
XXth centuries. Several methods were suggested to prove existence of solutions
(Schwarz’s method, method of successive approximations, some others); it was the
beginning of the spectral theory, of the method of Fredholm integral equations,
singular integral equations and boundary problems for analytical functions, and
the method of a priori estimates, which received further development from the
1930s. Then the Leray-Schauder method and other topological methods, develop-
ment of functional analysis and of the theory of function spaces formed our actual
understanding of elliptic boundary value problems. Methods of numerical analysis
were strongly developed in relation with computer simulations. We can also men-
tion various asymptotic methods, the maximum principle, and some others. Many
types of equations have been introduced and studied. Among them Laplace and
Poisson equations, biharmonic, Navier-Stokes, Monge-Ampere, minimal surface,
reaction-diffusion, Cauchy-Riemann, various degenerate or mixed equations, and
some others. Combined with different boundary conditions, Dirichlet, Neumann,
Robin, mixed, nonlinear boundary conditions, this creates a big variety of elliptic
problems. Existence, uniqueness or nonuniqueness of solutions, and regularity are
among traditional questions about solutions of elliptic problems. Another range
of questions concerns solvability conditions, Fredholm property, and index. Fur-
thermore, spectral properties and bifurcations of solutions; decay and growth,
positiveness and various properties specific for particular applications.

All these methods, types of problems and the questions to study form the
structure of the theory of elliptic boundary value problems. Historical and bib-
liographical comments presented below can help to follow its development (see
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also the reviews by Brezis and Browder [80], Nirenberg [385], the monographs by
Miranda [352] and Sologub [501]2, the historical essay by Grattan-Guinness [211]).

1 Historical Notes

1.1 Beginning of the theory

Studies of gravimetrical problems prepared the way for appearance of the theory
of potential and of the theory of elliptic partial differential equations. In 1686
Newton solved the problem of attraction between various bodies: a homogeneous
ball and a ball composed of spherical layers, an ellipsoid and a material point at
its axis [379]. In 1742 Maclaurin continued to study attraction of material points
by ellipsoids [331]. Lagrange [287] (1773) and Laplace [296] (1782) investigated
gravimetrical problems in a more general formulation and introduced the notion
of potential. Euler [157], [159] (1736, 1765) and Bernoulli [62] (1748) were close to
the notion of potential in their works on the motion of material points under the
action of some forces even before it was introduced by Lagrange.

The second-order partial differential equation, later called the Laplace equa-
tion,

∂2S

∂x2
+
∂2S

∂y2
+
∂2S

∂z2
= 0 (1.1)

was first written by Euler in 1756 [158] when he studied potential motion of an in-
compressible fluid3; S is the velocity potential, which is related to the components
of the velocity:

u =
∂S

∂x
, v =

∂S

∂y
, w =

∂S

∂z
.

He looked for solutions of this equation in the form of polynomials, S = (Ax +
by + Cz)n. Later, similar problems in fluid mechanics were studied by Lagrange
(1788).

Laplace derived this equation in 1782 when he studied the properties of poten-
tials in the problems of gravimetry [296]. First he wrote it in spherical coordinates
and later in Descartes coordinates [297] (1787). He was mistaken in the derivation
and considered this equation not only in the case where the point was outside the
attracting body but also inside it. This was corrected later by Poisson. In [427]
(1813) he derived the equation

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −4πρ, (1.2)

2Sologub referred to [42], [93], [502] as to the only other general works devoted to the development
of the theory of potential and elliptic equations in the XVIII–XIXth centuries.
3Euler used the notation dd/dx2 for the second derivative [501].
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where ρ is the mass density distribution. Later he gave other derivations of this
equation [428], [429]. Existing theory at that time could not treat a singularity
under the integral which was necessary to justify the derivation. This equation
was studied by Green, Ostrogradskii, Gauss. The first rigorous investigation was
done by Gauss in 1840 [193]. He derived this equation in the case of continuous
density, studied the properties of the potential and obtained the relation between
the volume and surface integrals.

In 1828 Green published his “Essay on the application of mathematical anal-
ysis to the theory of electricity and magnetism” [212], [171] where he introduced
his formulas and function. Green formulated the first boundary value problem
for the Laplace equation and suggested a method of its solution. For a long time
his work was unknown to the scientific community. In 1845 Thomson fortuitously
obtained two copies of Green’s work and sent it to Crelle for publication in his
journal where it appeared in three parts from 1850 to 1854. Among the first who
used Green’s method were B. Riemann and Helmholtz [31].

Thomson investigated properties of the potentials and solutions of elliptic
equations. In [516] (1847) he formulated theorems on the existence and uniqueness
of solutions of the equation ∇. (α2∇V ) = 4πζ in the whole space and of the Laplace
equation ∆V = 0 in a bounded domain with the boundary condition ∂V

∂n = F .
The proofs, which may not exactly correspond to nowadays standards, are based
on the variational method. Gauss already used a similar method before [193] for
the Laplace equation with a given value of the function at the boundary.

Further investigations of the first boundary value problem were carried out
by Dirichlet. He proved the following assertion [301]. For any bounded domain D
in R3 there exists a unique function u(x, y, z) continuous together with its first
partial derivatives, which satisfies the equation ∆u = 0 inside the domain and
takes some given values at the boundary of the domain. He considered the integral

U =
∫
D

((
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂u

∂z

)2
)
dxdydz.

Assuming that there exists at least one function which minimizes the integral,
Dirichlet proved that it is unique and that it is a solution of the boundary value
problem. The Dirichlet principle of minimization was used by Riemann when he
developed the theory of analytical functions [454].

A variational principle based on minimization of some functionals and used
by Gauss, Thomson, Dirichlet, Riemann was postulated and not proved. In 1870
Weierstrass showed that it may not be true [578], that is that the minimizing
function may not exist. His counterexample shocked the mathematical world of
that time. Only in 1900 could Hilbert justify some of the existence results based
on this approach [234].

As before, when Green formulated the first boundary problem for the Laplace
equation studying some problems in electrostatics, problems of electrodynamics
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led Kirchhoff in 1845–1848 to introduce boundary value problems of the second
type [261]. Later F. Neumann formulated them in the form as it is used now and
gave a solution based on Green’s formula [377]. Similar to Green, he was more
interested in physical aspects and some mathematical details were ignored.

The third boundary value problem, together with the first one, was formu-
lated by Fourier in his works on heat conduction [180], [181]. He gave their solution
in the form of trigonometrical series4.

Thus, at the first stage of the development of the theory of elliptic equations,
boundary value problems for the Laplace and Poisson equations were formulated
and some approaches to their solution were suggested. They were not yet rigorously
justified from the mathematical point of view.

1.2 Existence of solutions of boundary value problems

In the second part of the XIXth century, existence of solutions of boundary value
problems for the Laplace equation was investigated by Schwarz [476, 481] and
Neumann [376] who gave the first rigorous proofs, Poincaré [420], Harnack [227]
and other authors. In 1888, J. Riemann summarized and generalized preceding
works by Schwarz and Harnack [453] (see also Paraf [400]). We briefly discuss
below some of the methods developed at the time.

At the same time, the theory of potential experienced further development.
In 1861 C. Neumann introduced logarithmic potential in order to study the first
boundary value problem for the Laplace equation in plane domains [375], [376].
Laplace and Lame had used it before as a Newton potential of an infinite cylinder.
Double layer potential was introduced in 1853 by Helmholtz in relation with some
problems in electrodynamics [229]. It was later investigated by Lipschitz [320] and
C. Neumann [376]. C. Neumann used the double layer potential in his method
of arithmetic means which he developed to solve first and second boundary value
problems. This method is based on successive approximations.

Let us describe in more detail two methods which had an important influence
on further development of the theory of elliptic equations.

Schwarz’s method. Schwarz applied conformal mappings in order to study exis-
tence of solutions of elliptic boundary value problems. However, he had to begin
with a rigorous proof of Riemann’s theorem. The proof given by his teacher was not
complete because of the counterexample of Weierstrass to the variational princi-
ple. First of all, he proved that a polygon and then an arbitrary simply connected
convex domain can be mapped to a circle [476] (1869), [477] (1870). As a con-
sequence of these results, boundary value problems for the Laplace equation in
simply connected convex domains were reduced to similar problems in the circle.
Next, he gave an explicit solution for the first boundary problem in the circle in

4The method of representation of solutions in trigonometrical series was first used by Bernoulli
for the problem of cord oscillation.
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the form of the Poisson integral [481]:

u(r, φ) =
1
2π

∫ 2π

0

f(ψ)
(1 − r2)dψ

1 − 2r cos(ψ − φ) + r2
, 0 ≤ r ≤ 1, u(1, φ) = f(φ),

where f(φ) is a continuous periodic function given at the boundary of the circle.
He used Fourier series. Similar results were obtained before by C. Neumann with
the method of Green’s function.

The next step of his construction deals with existence of solutions in domains
which are not convex [478]. LetD1 andD2 be two convex domains with a nonempty
intersection and with the boundaries S1 and S2. Schwarz’s method allows the proof
of the existence of solutions in the domain D = D1 ∪D2. Denote by Γ1 the part
of the boundary S1 inside D2 and by Γ2 the part of the boundary S2 inside D1.
The method is based on successive approximation where at each step the problems
in domains D1 and D2 are solved by the method indicated above. Denote these
solutions by u

(1)
i and u

(2)
i . In order to solve the problem at the next step we

complete the boundary conditions at the parts S1 and S2. The values of u(2)
i at

S1 and u(1)
i at S2 are taken. Schwarz proved convergence of these approximations.

A similar approach can be used for a union of several convex domains.

Successive approximations (Picard). In 1890 Picard published his study of nonlin-
ear elliptic problems where he developed the method of successive approximations
[411]. He considered the Dirichlet problem for the equation

A(x, y)
∂2u

∂x2
+ 2B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
= F

(
u,
∂u

∂x
,
∂u

∂y
, x, y

)

assuming that B2 −AC �= 0. If we denote the linear operator in the left-hand side
by L, then the method of successive approximations can be written as

Lun = F

(
un−1,

∂un−1

∂x
,
∂un−1

∂y
, x, y

)
.

At each step, this linear equation completed by the boundary conditions can be
solved. The main question is, of course, about convergence of the sequence of
functions un. At this point, probably for the first time in the theory of elliptic
equations, Picard came by necessity to use estimates of solutions. He obtained
estimates of solutions together with their second derivatives in the case of small
domains or for general domains (including unbounded) under more restrictive con-
ditions on F . To pass from small to big domains, he used the method of Schwarz.
Thus he proved the existence of solutions of a nonlinear elliptic boundary value
problem.

The method of successive approximations was later used and generalized by
Picard [412, 413], Le Roy [302], Lindeberg [317] (Neumann boundary condition),
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Giraud [201, 202, 203] (in Rm), and other authors. We note that Bernstein also
used this method in order to prove analyticity of solutions [63] (see below).

The estimates obtained by Picard were not yet a priori estimates, which
would appear later in the works by Bernstein. At each step of successive approx-
imations he used existence of a solution in a more or less explicit form through
Green’s function. An interesting point to be emphasized is that to estimate second
derivatives of solutions of the linear equation ∆u = f , Picard assumed that f had
continuous first derivatives [411]. After this assumption he remarked, with a ref-
erence to Harnack [227], who in his turn referred to Hölder, that this assumption
was excessive and it would be sufficient to require that f satisfied the Hölder con-
dition. On the other hand, it is not sufficient to assume that f is continuous. The
estimate of the Hölder norm of the second derivative was obtained only in 1934 in
the work by Schauder [470]. This “small” improvement of the estimate appeared
to be crucial.

Other methods. Poincaré developed méthode de balayage (sweeping method) [420]
based on construction of equivalent potentials. Let D be a bounded domain with
the boundary S and with a point mass m at some point P ∈ D. Is it possible to
construct a simple layer potential with some density ρ given on S in such a way
that the value of the potential outsideD equalsm/r? Poincaré suggested a method
of construction of such potential and used it to solve the Dirichlet problem for the
Laplace equation. We will not discuss here this construction but will only mention
that existence of such potential is equivalent to existence of Green’s function [501].
If ρ is the desired density of the simple layer potential, then

G =
1
r
−
∫
S

ρ

r
dσ

is Green’s function of the Dirichlet problem. Hence it ensures the existence of
a solution. Let us also mention that Poincaré generalized Neumann’s method of
arithmetic means for nonconvex domains.

Studying some problems of electrostatics, Robin came to the integral equation

ρ =
1
2π

∫
S

ρ cosφ
r2

dσ,

where φ is the angle between the inner normal vector to the surface S at a given
point P and a straight line connecting P with a point of the element dσ. He gave a
solution of this equation based on the method of successive approximations [455],
[456] (1886–1887). It is possible that Robin’s method stimulated Fredholm in his
method of integral equations [501].

We can also indicate the method by Kirchhoff for the first boundary value
problem for convex domains [262], the works by Liapunov [313] (1898–1902) who
justified the methods by Green, C. Neumann, Robin and the works by Steklov
[505]–[508] (1897–1902) who obtained further generalizations of the existence re-
sults.
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1.3 Other elliptic equations

Helmholtz equation. The equation

∆u+ k2u = 0

with various boundary conditions was intensively studied in relation with heat
conduction problems. Ostrogradskii [393] (1828–1829) used the Fourier method
and looked for a solution of the equation

∂v

∂t
= a∆v

in the form of series,

v(x, y, z, t) =
∞∑
i=1

Aie
−ak2

i tui(x, y, z).

He assumed the existence of an infinite sequence of eigenvalues ki and eigenfunc-
tions ui. Though Ostrogradskii had not yet introduced these notions precisely, he
proved the orthogonality of eigenfunctions corresponding to different eigenvalues
[501].

Helmholtz studied this equation in relation with propagation of sound [228]
(1860). He introduced oscillating potentials, proved an analogue of Green’s for-
mula and represented the solution as a sum of oscillation and Newton poten-
tials. These works were continued by Mathieu [335] in 1872. Weber studied the
Helmholtz equation in the two-dimensional case [577] (1869). He proved existence
of solutions of boundary value problems and existence of an infinite sequence of
eigenvalues and eigenfunctions. His results were not completely justified because
he used variational methods assuming the existence of functions minimizing the
Dirichlet integral. Further important contributions to investigation of eigenvalues
and eigenfunctions were made by Schwarz [480] (1885) and Poincaré in [420], [425]
(1890, 1895).

Equation ∆u + p(x, y)u = 0. This equation was first studied by Schwarz in 1872
for a particular form of the function p [479]. In 1885 he studied it for an arbitrary
positive function p and with the boundary condition u = 1 at the boundary S
of the domain T [480]. He considered a sequence of functions u0 = 1, u1, u2, . . .
which satisfy the equations

∆ui + pui−1 = 0, u|S = 0, i = 1, 2, . . . .

Then he proved that under certain conditions the series u = u0+u1+· · · converges
and it gives a solution of the problem. For this purpose, he considered the integrals

Wn =
∫
T

pundxdy, n = 1, 2, . . .
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and the ratios
c1 =

W1

W0
, c2 =

W2

W1
, . . . , cn =

Wn

Wn−1
, . . . .

He proved that this sequence grows and tends to some c. If c < 1, then the
series u converges and represents a solution continuous in T together with its first
derivatives. For an arbitrary c, the series

u = u0 + tu1 + t2u2 + · · · (1.3)

converges for |t| < 1/c, and u is a solution of the equation

∆u+ tp(x, y)u = 0

satisfying the boundary condition u|S = 1. If |t| = 1/c, then the series diverges.
In this case there exists an eigenfunction of the problem

∆u + k2p(x, y)u = 0, u|S = 0,

where k2 = 1/c. Schwarz obtained also a variational representation of the eigen-
value and proved that its dependence on the domain T is continuous.

This equation was also studied by Picard and Poincaré. Picard showed that
a wide class of elliptic equations can be reduced to this form by a change of
variables. Poincaré used the method developed by Schwarz to prove existence of
all eigenfunctions.

The equation ∆u − k2u = 0 was first studied by Mathieu in relation with
the Helmholtz equation [336], [337]. He used the variational principle to prove
existence of solutions of the first boundary value problem.

Classification of the equations. Classification of second-order equations

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ F = 0

was introduced by Dubois-Reymond in 1889 [136]. Depending on the relation
between the coefficients,

B2 −AC > 0, B2 −AC = 0, B2 −AC < 0,

this equation is hyperbolic, parabolic or elliptic. It can be reduced to the corre-
sponding canonical form by a change of variables.

Biharmonic equations. The biharmonic equation ∆2u = 0 was first introduced
and studied by Mathieu [334], [335], [337] (1869–1885) to solve some problems of
elasticity. He proved existence and uniqueness of solutions of the corresponding
boundary value problems. In the 1890s these works were continued for the bihar-
monic and n-harmonic equations by Almansi [14], [15], Boggio [73], [74], Gutzmer
[224], Lauricella [298], Levi-Civita [307], [308], Venske [534].
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1.4 Analyticity

During the Mathematical Congress in Paris in 1900, Hilbert formulated the fol-
lowing problem.

Let z be a function of x and y bounded and continuous together with its derivatives
up to the third order. If z is a solution of the equation

F

(
x, y, z,

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂x∂y
,
∂2z

∂y2

)
= 0, (1.4)

where the function F is analytic and satisfies the inequality

4F ′
∂2z
∂x2

F ′
∂2z
∂y2

−
(
F ′

∂2z
∂x∂y

)2

> 0,

then z is also analytic.

This problem was solved by Bernstein in 1904 [63] (a short communication
was published in Note des Comptes Rendus, 1903). By that time, Picard [411] had
proved analyticity of the solution of the linear equation

∂2z

∂x2
+
∂2z

∂y2
+ a

∂z

∂x
+ b

∂z

∂y
+ cz = 0,

and for some other equations (1895), Lutkemeyer (Göttingen, Dissertation 1902)
and Holmgren (Mathemat. Annalen 1903), studied independently of each other
the case where

F =
∂2z

∂x2
+
∂2z

∂y2
− f

(
x, y, z,

∂z

∂x
,
∂z

∂y

)
. (1.5)

Bernstein’s works were important not only because of the proof of analyticity
of the solution but, even more, because they influenced further development of the
theory of elliptic problems and operator equations. Let us first briefly discuss the
proof of analyticity. At each step of successive approximations, we need to solve a
linear equation. Following Picard [413], Bernstein started with the equation

∆v = F (x, y)

in a circle of radius R with zero boundary conditions. He also used this example
to explain the difference of his approach. The right-hand side and the solution are
represented in the form of trigonometrical series:

F (x, y) = A0(ρ) +
∑
n

An(ρ) cos(nθ) +
∑
n

Bn(ρ) sin(nθ),

v(x, y) = C0(ρ) +
∑
n

Cn(ρ) cos(nθ) +
∑
n

Dn(ρ) sin(nθ).
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Here (ρ, θ) are polar coordinates,

An(ρ) = ρn
∞∑
p=0

αnpρ
2p, Bn(ρ) = ρn

∞∑
p=0

βnpρ
2p.

Then

Cn(ρ) =
ρn

Rn−2

∞∑
p=0

(
ρ2p+2

R2p+2
− 1

)
αpn

(2p+ 2)(2p+ 2n+ 2)
,

Dn(ρ) =
ρn

Rn−2

∞∑
p=0

(
ρ2p+2

R2p+2
− 1

)
βpn

(2p+ 2)(2p+ 2n+ 2)
.

These representations allow one to estimate the solution and its first derivative. In
the semi-linear problem (1.5), this proves convergence of the series for the solution
and its derivatives and proves its analyticity. However, this is not sufficient for the
nonlinear problem (1.4) because the series for the second derivatives of solutions
may not converge. This is why Bernstein introduced what he called normal series
instead of the usual Taylor expansion above:

An(ρ) = ρn
∞∑
p=0

∞∑
q=0

αpqρ
2p(R2 − ρ2)q, Bn(ρ) = ρn

∞∑
p=0

∞∑
q=0

βpqρ
2p(R2 − ρ2)q.

Then he obtained

Cn(ρ) = ρn
∞∑
p=0

∞∑
q=0

cpqρ
2p(R2 − ρ2)q, Dn(ρ) = ρn

∞∑
p=0

∞∑
q=0

dpqρ
2p(R2 − ρ2)q.

The difference with the previous expressions is that R2p+2 − ρ2p+2 ∼ R − ρ as
ρ → R, while (R2 − ρ2)q ∼ (R − ρ)q. This more rapid convergence to 0 near the
boundary allowed him to obtain more precise estimates and also estimates of the
second derivatives. This is important because they enter the right-hand sides in the
method of successive approximations for the nonlinear equation. Thus, the proof
is based on investigation of convergence of trigonometrical series with a special
form of expansion for the coefficients.

This approach can be simplified if the circle is replaced by an annulus [67].
Much later, in 1959, Bernstein proved a priori estimates of solutions in Sobolev
spaces [68] and remarked that they followed from his early works.

In the next work [64], Bernstein came back to these questions with a slightly
modified approach. He developed and formulated more precisely some ideas which
appeared already in the previous work. Namely, about a priori estimates of so-
lutions and about introduction of a parameter in the equation. He proved the
following theorem.
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Theorem. Given an analytic equation

F (r, s, t, p, q, z, x, y, α) = 0,

where F ′
rF

′
z ≤ 05, the Dirichlet problem is solvable for any α between α0 and

α1 if it is solvable for α = α0 and if, assuming a priori existence of solution,
it is possible to obtain a priori estimate of the modulus of z and of its first two
derivatives by the boundary values.

In order to understand this result, we can think about the solution in the form of
series with respect to the powers of α−α0. A priori estimates provide convergence
of the series with the radius of convergence independent of α0. Hence, by a finite
number of steps we can move from α0 to α1.

Bernstein formulated these results not only for analytic but also for regular
and even irregular solutions. So the question was not already about analyticity
but about a general method to study existence of solutions. He expected that it
would open a wide field of research. This was confirmed in the 1930s when Leray
and Schauder defined topological degree and applied it for elliptic equations. The
Leray-Schauder method, which employs Bernstein’s idea about deformation of a
given problem to some model problem with a priori estimates of solutions, is now
one of the most powerful and widely used methods to study operator equations.

1.5 Eigenvalues

Linear elliptic equations were intensively studied in the last years of the XIXth
century in works by Poincaré, Neuman, Lyapunov, Steklov and other authors.
The basis of the spectral theory was developed. Its beginning can be related to
the work by Weber (1869) who studied the Dirichlet problem for the equation
∆u = λu. He stated the existence of a sequence of numbers λi for which this
problem has a nonzero solution [577] (see also Mathieu [336]). Rigorous proof
of the existence of one eigenvalue was first given by Schwarz (Fenn. Acta, XV,
1885). Picard proved existence of a second eigenvalue (C.R. CXVII, 1893) and
Poincaré of infinity of eigenvalues (Rendiconti Palermo, VIII, 1894). The proof is
based on the method of successive approximations. These works were continued by
Poincaré, Steklov, Le Roy, and Zaremba. Expansion in the series with respect to
eigenfunctions was obtained (Steklov [506, 507], Zaremba [588, 589], see [508] and
the references therein). The solvability condition for the Laplace equation with
the Neumann boundary condition was formulated by Zaremba and Steklov in the
works cited above. All these questions had important development several years
later due to the work by Fredholm on integral equations.

Let us briefly described the works by Poincaré where he proved the existence
of all eigenvalues of the Laplace operator [423], [424]. Following Schwarz [480], he

5Technical condition which, according to Bernstein, can be removed though the proof becomes
more complex.
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considered the equation
∆u+ tu+ f = 0,

which depends on a complex parameter t. He studied the first boundary value
problem in a 3D domain with an analytical boundary. He looked for the solu-
tion in the form of series (1.3) and proved that it is a meromorphic function.
Its poles k2

1 , k
2
2 , . . . are the eigenvalues, the residues U1, U2, . . . correspond to the

eigenfunctions.

1.6 Fredholm theory

Fredholm in his work [183] (1900) suggested a new method to study integral equa-
tions and applied it to the Dirichlet problem for the Laplace equation. In the first
part of the work he considered the equation

φ(x) + λ

∫ 1

0

f(x, s)φ(s)ds = ψ(x), (1.6)

called later the Fredholm equation. Here λ is a real parameter, f and ψ are con-
tinuous functions of their arguments. The expression

D(λ) = 1 + λ

∫ 1

0

f(x1, x1)dx1 +
λ2

2

∫ 1

0

∫ 1

0

f

(
x1, x2

x1, x2

)
dx1dx2 + · · ·

=
∞∑
n=0

λn

n!

∫ 1

0

. . .

∫ 1

0

f

(
x1, x2, . . . , xn
x1, x2, . . . , xn

)
dx1dx2 . . . dxn,

where

f

(
x1, x2, . . . , xn
y1, y2, . . . , yn

)
=

∣∣∣∣∣∣∣∣

f(x1, y1) f(x1, y2) . . . f(x1, yn)
f(x2, y1) f(x2, y2) . . . f(x2, yn)

. . . . . .
f(xn, y1) f(xn, y2) . . . f(xn, yn)

∣∣∣∣∣∣∣∣
is called the determinant of the equation. From the estimate∣∣∣∣f

(
x1, x2, . . . , xn
y1, y2, . . . , yn

)∣∣∣∣ <
√
nn sup |f(x, y)|

follows the convergence of the series in the definition of D(λ) for all λ. The series

D1(ξ, η) = f(ξ, η) + λ

∫ 1

0

f

(
ξ, x1

η, x1

)
dx1

+
λ2

2

∫ 1

0

∫ 1

0

f

(
ξ, x1, x2

η, x1, x2

)
dx1dx2 + · · ·

=
∞∑
n=0

λn

n!

∫ 1

0

. . .

∫ 1

0

f

(
ξ, x1, x2, . . . , xn
η, x1, x2, . . . , xn

)
dx1dx2 . . . dxn
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also converges for all λ. Fredholm proved the following relation:

D1(ξ, η) = f(ξ, η)D(λ) − λ

∫ 1

0

f(ξ, τ)D1(τ, η)dτ.

From this formula it follows that the function

Φ(x) = ψ(x)D(λ) − λ

∫ 1

0

D1(x, t)ψ(t)dt (1.7)

satisfies the equation

Φ(x) + λ

∫ 1

0

f(x, s)Φ(s)ds = ψ(s)D(λ). (1.8)

Therefore, if D(λ) �= 0, then equation (1.6) has a unique continuous solution

φ(x) =
Φ(x)
D(λ)

= ψ(x) − λ

∫ 1

0

D1(x, t)ψ(t)
D(λ)

dt.

Next, assuming that λ0 is a zero of D(λ) of multiplicity ν, that is D(λ) = (λ −
λ0)νD0(λ), Fredholm obtained D1(ξ, η) = (λ − λ0)ν1D1(ξ, η), where ν ≥ ν1 + 1.
Hence, from (1.7) it follows that Φ(x) = (λ − λ0)ν1Φ1(x), and from (1.8) that
Φ1(x) is a solution of the homogeneous equation

φ(x) + λ0

∫ 1

0

f(x, s)φ(s)ds = 0.

Thus, either equation (1.6) has a unique solution or the homogeneous equation
has a nonzero solution.

In the second part of the work [183], Fredholm applied this result to study
the first boundary value problem for the Laplace equation in plane domains. Let L
be a closed curve given parametrically by the functions ξ = ξ(s), η = η(s), where s
is the length of the arc. It is assumed that these functions are sufficiently smooth
and the length of L equals 1. Fredholm formulated the problem to find a double
layer potential w such that it satisfies the relation

v − v′ = λ(v + v′) + 2ψ

on L. Here v and v′ are the limiting values of the potential from inside and outside
of the curve, respectively, and ψ is a continuous function given on L. The value
λ = −1 corresponds to the internal problem, λ = 1 to the external one. Denote
by φ(s)/π the density of the potential. Then

w(x, y) =
1
π

∫ 1

0

φ(s)d
(

arctan
η − y

ξ − x

)
,

v = φ(s0) +
1
π

∫ 1

0

φ(s)
∂

∂s

(
arctan

η(s) − η(s0)
ξ(s) − ξ(s0)

)
,

v′ = φ(s0) − 1
π

∫ 1

0

φ(s)
∂

∂s

(
arctan

η(s) − η(s0)
ξ(s) − ξ(s0)

)
.
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Writing

f(s0, s) =
1
π

∂

∂s

(
arctan

η(s) − η(s0)
ξ(s) − ξ(s0)

)
,

Fredholm obtained the integral equation

φ(s0) − λ

∫ 1

0

φ(s)f(s0, s)ds = ψ(s0).

Hence the results on the solvability of equation (1.6) become applicable to the first
boundary problem for the Laplace equation. This work had an important influence
on further development of the theory of elliptic equations.

In 1903, Fredholm published his work [184] devoted to the integral equation

φ(ξ, η) + λ

∫ b

a

∫ b

a

f(ξ, η, x, y)φ(x, y)dxdy = ψ(ξ, η), (1.9)

where λ is a parameter, ψ and f are bounded functions. Determinant D of this
equation is defined as

D = 1 +
∞∑
k=1

dkλ
k,

where

dk =
1
k!

∫ b

a

. . .

∫ b

a

Fk(x1, . . . , xk, y1, . . . , yk) dx1 . . . dxk dy1 . . . dyk,

Fk =

∣∣∣∣∣∣∣∣

f(x1, y1, x1, y1) f(x1, y1, x2, y2) f(x1, y1, x3, y3) . . . f(x1, y1, xk, yk)
f(x2, y2, x1, y1) f(x2, y2, x2, y2) f(x2, y2, x3, y3) . . . f(x2, y2, xk, yk)

. . . . . . . . . . . . . . .
f(xk, yk, x1, y1) f(xk, yk, x2, y2) f(xk, yk, x3, y3) . . . f(xk, yk, xk, yk)

∣∣∣∣∣∣∣∣
.

Another function of λ,

Mn =
∞∑
k=1

δnkλ
k+n,

is called the minor of order n. The coefficients δnk are explicitly given by formulas
similar to the coefficients dk. He proved the following theorem.

Theorem. Nonzero solutions of the homogeneous equation

φ(ξ, η) + λ

∫ b

a

∫ b

a

f(ξ, η, x, y)φ(x, y)dxdy = 0

exist if and only if λ is a root of D. If n is the order of the first minor which
does not vanish for this value of λ, then there are n linearly independent solutions
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Φm,m = 1, . . . , n of this equation. In this case, nonhomogeneous equation (1.9)
has a solution if and only if the right-hand side ψ satisfies the equalities6

∫ b

a

∫ b

a

ψ(x, y)Ψm(x, y)dxdy = 0, m = 1, . . . , n.

Hilbert generalized this result for the case where the function f had a log-
arithmic singularity7. This generalization, used by Mason in the paper [333], ap-
peared in 1904 in order to apply these results for elliptic equations. He studied
the equation

∆u+ λA(x, y)u = f(x, y) (1.10)

in a bounded domain Ω with the boundary condition u = σ(s) at the boundary S.
The functions A and f are supposed to be bounded, the boundary S is composed
by a finite number of arcs of analytic curves. It was known that in this case
there exists Green’s function G of the Laplace operator with the zero boundary
condition. Applying Green’s formula, he obtained the equation

u(ξ, η) + λ

∫ b

a

∫ b

a

A(x, y)
2π

G(x, y, ξ, η)u(x, y)dxdy = F (ξ, η), (1.11)

where
F (ξ, η) = − 1

2π

∫
S

σ
∂G

∂n
ds− 1

2π

∫
Ω

f(x, y)G(x, y, ξ, η)dxdy.

Domain Ω contains in the square [a, b] × [a, b] and Green’s function is extended
by zero. Fredholm’s theorem can now be applied to equation (1.11). It gives the
following result.

Theorem. There exists a unique solution of equation (1.10) for any λ different from
the roots of the function D. If λ is a root of this function and n is the order of the
first nonzero minor, then there are n linearly independent solutions Φk(x, y) of the
homogeneous problem (f = 0, σ = 0). The nonhomogeneous problem is solvable if
and only if the following conditions are satisfied8:

∫
Ω

f(x, y)Φk(x, y)dxdx −
∫
S

σ
∂Φk
∂n

ds = 0, k = 1, 2, . . . , n.

Mason proved existence of an infinite number of λi for which the homogeneous
problem has a nonzero solution. Other boundary conditions were also considered.
Picard used reduction to Fredholm equations in [414]–[416] (see Section 2.2.1 for
other references).
6Explicit expressions for the functions Φm, Ψm and for the solution are given. We do not present
them here because of their complexity.
7Mason [333] referred to Hilbert’s lectures in Göttingen in 1901–1902 and to the dissertations of
Kellog (1902) and Andrae (1903) who generalized Hilbert’s proof for the case of n variables.
8Since the problem is self-adjoint, solvability conditions are formulated in terms of solutions of
the homogeneous equation which coincides with the homogeneous adjoint equation
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2 Linear equations

2.1 A priori estimates

In 1929 Hopf published the work [238] devoted to the elliptic system of the first
order

au′x + bu′y − v′y = f, bu′x + cu′y + v′x = g,

where ac− b2 > 0 and the coefficients a, b, and c satisfy Hölder’s condition. Using
Green’s formula, he obtained an interior estimate of the first derivatives of the
solution through the Hölder norms of the right-hand sides and the maxima of |u|
and |v|. In his notation,

|u′x|, |u′y| ≤ β1R
−1([u] + [v]) + β2([f ] + [g]) + β3R

α(Hα[f ] +Hα[g]),

where R ≤ d, and d is the distance to the boundary. In his next work, [239], he
proved that certain derivatives of the solution of a linear second-order equation
are Hölder continuous. More precisely, it is assumed that the coefficients and the
right-hand side of the equation (notation is changed)

Lu =
∑

aik(x1, . . . , xn)
∂2u

∂xi∂xk
+
∑

bj(x1, . . . , xn)
∂u

∂xj
+ c(x1, . . . , xn)u = f

(2.1)
arem-Hölder continuous, that is have continuous derivatives up to orderm and the
mth derivatives satisfy the Hölder condition. Then the solution is (m+ 2)-Hölder
continuous. The estimates of the Hölder norm of the solution were not given.

The same year, in [467], among other results Schauder presented the estimate

‖ω‖2,α ≤M (‖ρ‖α + ‖φ‖2,α)

for the equation

A(x, y)
∂2ω

∂x2
+B(x, y)

∂2ω

∂x∂y
+ C(x, y)

∂2ω

∂y2
= ρ(x, y)

with the boundary condition ω = φ. The coefficients satisfy the Hölder condition
with the exponent α, and 4AC − B2 > 0. He did not give the proof and referred
to the work by L. Lichtenstein [314]. In this work, the estimate was not explicitly
formulated but followed from the method of proof of the existence of a solution
which used the results by Levi [306]. In the next work [468], Schauder proved a
similar estimate for the same equation in Rn.

In 1934 Schauder published his work [470] devoted specifically to a priori
estimates for the second-order linear elliptic equation (2.1) in a bounded domain G
with the boundary R of the class C2+α and with the Dirichlet boundary condition,
u = φ at R. The coefficients bj and c are α-Hölder continuous as well as the
function f , the coefficients aik satisfy Hölder condition with the exponent α + ε,
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det(aik) = 1. He proved that if a solution u is twice α-Hölder continuous then the
following estimate holds:

‖u‖G2,α ≤ K
(
‖f‖Gα + ‖φ‖Rα,2 + max

G
|u|

)
.

The method of proof is based on the estimates of the potentials in the (2 + α)-
Hölder norm. Commented analysis of original Schauder’s proof (with English
translation) is presented by Barrar [49].

These works by Hopf and Schauder, based on the prevailing theory of ellip-
tic boundary value problems at that time, determined to some extent its further
development, emphasizing the role of a priori estimates. In subsequent works, Mor-
rey obtained estimates of Hölder norms for second-order equations and systems
[355, 356, 357] (see also Miranda [352], [353], Yudovich [584]), interior estimates
for general elliptic systems were proved by Douglis and Nirenberg [134], interior
estimates for second-order systems by Nash [370] and Morrey [358], interior and
boundary estimates for higher-order equations by Browder [85] and by Agmon,
Douglis, Nirenberg [7]; estimates in maximum norms, Miranda [354], Agmon [6];
second-order equations in unbounded domains, Oskolkov [395]. This cycle of works
was concluded by Agmon, Douglis, Nirenberg [8] who studied general elliptic sys-
tems in bounded or unbounded domains.

In parallel to these works, estimates in Sobolev spaces were investigated.
Second-order or higher-order equations and systems with the Dirichlet or other
types of boundary conditions, interior and boundary estimates in Lp-norms with
p = 2 or p �= 2 were studied by Ladyzhenskaya [283], Guseva [220], Nirenberg
[380, 381], Browder [85, 86], Koselev [267]–[270], Hörmander [241], Slobodetskii
[495], Agmon, Douglis, Nirenberg [7, 8] Peetre [402], Yudovich [584]–[586], Volevich
[542]. Estimates for general elliptic systems were obtained in [8] and [542].

Further investigations of a priori estimates were devoted to various general-
izations: non-smooth and unbounded domains and coefficients, degenerate equa-
tions, more general notions of elliptic problems.

Weighted spaces. Consider the equation u′′ = f on the real line. Suppose that
|f(x)| ∼ |x|p as |x| → ∞ for p �= −1,−2. Then it follows from the equation that
|u′(x)| ∼ |x|p+1 and |u(x)| ∼ |x|p+2. The values p = −1,−2 are singular because
integration of 1/x gives lnx and not a power of x. Such behavior of solutions
suggests that we introduce weighted spaces with polynomial weights different for
u and for f . Similar to Chapter 4, a priori estimates of solutions in these spaces
allow us to prove that the operator is normally solvable with a finite-dimensional
kernel. It is important to note that the operator satisfies the Fredholm property
in the properly chosen weighted spaces while this is not true in the spaces without
weight. The dimension of the kernel and the codimension of the image of the
operator L0 = u′′ can be found explicitly. If the operator contains lower-order
terms, Lu = u′′ +Bu, where Bu = a(x)u′ + b(x)u, with the coefficients a(x) and
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b(x) decaying at infinity, and the decay is sufficiently fast, then the operator B is
compact. If L0 satisfies the Fredholm property, then it is also valid for the operator
L, and it has the same index.

Consider now the class of operators A = A∞ + A0 in Rn, where A∞ is a
homogeneous elliptic operator with constant coefficients and A0 contains lower-
order terms with the coefficients converging to zero at infinity. Then this operator
does not satisfy the Fredholm property in the usual Sobolev or Hölder spaces.
Indeed, the limiting problem A∞u = 0 in Rn has a nonzero solution u =const.
However, it can be satisfied in some special weighted spaces. In [386] the following
a priori estimate is obtained:

∑
|α|≤m

∣∣∣∣
∣∣∣∣ |x||α|+ρ ∂

αu

∂xα

∣∣∣∣
∣∣∣∣
p

≤ C0

∣∣∣∣ |x|m+ρA∞u
∣∣∣∣
p
.

Herem is the order of the operator, ||·||p denotes the Lp(Rn) norm, u ∈ Hm.p(Rn),
A∞u ∈ Lp(Rn). This estimate holds if and only if −n/p < ρ < r −m + n/p and
ρ + m − n/p′ is not a nonnegative integer, where r is the smallest nonnegative
integer greater than (m− n/p′), p′ is determined by the equality 1/p+ 1/p′ = 1.

This estimate allows the authors to obtain the estimate
∑

|α|≤m

∣∣∣∣
∣∣∣∣ σ|α|+ρ ∂

αu

∂xα

∣∣∣∣
∣∣∣∣
p

≤ C
(∣∣∣∣ σm+ρAu

∣∣∣∣
p

+ ||σρu||p
)

for the operator A and to prove that its kernel has a finite dimension. Here σ(x) =
(1 + |x|2)1/2 and the coefficients of the operator A0 have certain decay rate at
infinity.

The Fredholm property of this class of operators is studied in [323], [324]. It
is assumed that if ρ > −n/p then ρ+m− n/p′ �∈ N (cf. above), if ρ ≤ −n/p then
−(ρ + n/p) �∈ N. The kernel and cokernel of the operator consist of polynomials
and their dimensions equal to d(−ρ−n/p)−d(−ρ−m−n/p) and d(ρ+m−n/p′)−
d(ρ − n/p′), respectively. Here d(k) is the dimension of the space of polynomials
of degree less than or equal to k. It is supposed to be 0 if k < 0. Similar problems
for elliptic operators in Hölder spaces are investigated in [57], [75], [255]. Exterior
problems for the Laplace operator in weighted Sobolev spaces are considered in
[20], [21] (see also [524]), and for more general operators in Hölder spaces in [76].
The dimension of the kernel and the Fredholm property are studied in [575], [576]
in the case where A∞ is a first-order operator and the coefficients of the operator
A0 vanish outside of some ball. Invertibility of the operator (−1)m∆mu + V (x)u
in weighted spaces was studied by Kondratiev [265].

2.2 Normal solvability and Fredholm property

2.2.1. Reduction to integral equations. After publication of Fredholm’s papers, the
theory of integral equations and its applications to elliptic problems had an im-
portant development. Several monographs appeared: Heywood and Fréchet [230],
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Hilbert [236], Lalescu [288] (all three published in 1912), Volterra et al. [572]
(1913), Goursat [209] (1917), Muskhelisvili [364] (1922). Later these methods were
presented in numerous papers and monographs (see, e.g., [528], [406], [78], [145]).
Let us recall a method of reduction of elliptic boundary value problems to Fred-
holm equations (cf. Section 1.6). Consider the Dirichlet problem

∆u = 0, u|S = f(s) (2.2)

or the Neumann problem for the Laplace equation

∆u = 0,
∂u

∂n
|∂Ω = g(x). (2.3)

Here Ω ⊂ R
2 is either a bounded simply connected domain with a sufficiently

smooth boundary9 S, or the exterior domain. Consider the simple layer potential
V (x) and the double layer potential W (x) defined by the equalities

V (x) =
∫
S

ρ(s)
r
ds, W (x) =

∫
S

σ(s)
∂ ln r
∂n

ds,

where ρ and σ are the densities of the potentials, r = |x−s|, n is the outer normal
vector, ds the element of the arc’s length. Then

Wi(x) = −πσ(x) −
∫
S

σ(s)
cos(r, n)

r
ds, We(x) = πσ(x) −

∫
S

σ(s)
cos(r, n)

r
ds,

∂Vi
∂n

= πρ(x) +
∫
S

ρ(s)
cos(r, n)

r
ds,

∂Ve
∂n

= −πρ(x) +
∫
S

ρ(s)
cos(r, n)

r
,

where the subscript i signifies the limit of the corresponding function or of the
derivative from inside of the domain, e from outside. Looking for the solution of
the Dirichlet problem in the form of the double layer potential and taking into
account the boundary condition, we obtain the integral equations

σ(x) ± 1
π

∫
S

σ(s)
cos(r, n)

r
ds = ∓ 1

π
f(x), x ∈ S (2.4)

with respect to the density of the potential. The upper sign corresponds to the
interior problem, the lower sign to the exterior one. Similarly, for the Neumann
problem

ρ(x) ∓ 1
π

∫
S

ρ(s)
cos(r, n)

r
ds = ∓ 1

π
f(x), x ∈ S. (2.5)

9In fact, it is supposed to be a Liapunov contour defined by the following conditions: 1. there
exists a tangent and a normal vector at each point of the boundary, 2. the angle θ between the
normal vectors at two points can be estimated by Arα, where r, the distance between the points
A, is a positive constant, 0 < α ≤ 1, 3. The boundary can be represented as a univocal function
in a δ-neighborhood with the same δ for each point.
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Since | cos(r, n)/r| < c/r1−α, where α is the constant in the definition of Liapunov’s
contour, then the kernel has a weak singularity, and the theory of Fredholm equa-
tions is applicable. The interior Dirichlet and exterior Neumann problems are
adjoint to each other, the same as the exterior Dirichlet problem and interior
Neumann problem. This allows one to obtain solvability conditions. This method
has numerous generalizations including multiple connected domains, multi-dimen-
sional problems and so on.

2.2.2 Singular integral equations. Singular integral equations were introduced by
Poincaré when he studied some problems in fluid mechanics (rising tides) [426] and
by Hilbert in his works on boundary problems for analytical function [235], [236].
Normal solvability and index of one-dimensional singular integral equations were
obtained by Nöther [389] in 192110. Normal solvability for systems of equations
was proved by Giraud [204] in 1939 and several years later by Muskheleshvili and
Vekua [365] who also obtained a formula for the index (see also [366], [532]).

Elliptic boundary value problems can be reduced to singular integral equa-
tions. If we look for the solution of the Dirichlet problem in the form of the double
layer potential, as it is done in the previous section, then we obtain an integral
equation of Fredholm type. If we look for the solution of this problem in the form
of the simple layer potential, then we obtain the singular integral equation

∫
S

ρ(t)
cos α(x, t)

r
ds = f(x), (2.6)

where x and t are points on the contour S, r the distance between them, and α(x, t)
the angle between the vector xt and the positive tangent at t. This equation can
also be written in the complex form

∫
S

ρ(t)
t− x

dt− i

∫
S

ρ(t)
cos(r, n)

r
ds = f(x)

with the singular part given by the Cauchy integral and its regular part similar
to the integral term in equation (2.5). Equation (2.6) was obtained by Bertrand
[69] in 1923. Its complete study was possible only later [366] due to development
of the theory of singular integral equations.

Reduction of some second-order elliptic equations and systems of equations
to singular integral equations is discussed in the monograph by I.N. Vekua [528]
(see also [527], [529], [530]). Normal solvability and a formula for the index of gen-
eral elliptic boundary value problems in bounded plane domains were obtained in
the 1950s by A.I. Volpert [544]–[552]. Agranovich and Dynin proved normal solv-
ability, homotopy invariance of index and its reduction to the index of singular

10Normally solvable operators with a finite-dimensional kernel and a finite codimension of the
image were called Nötherian operators, while Fredholm operators were used for the particular
case of zero index. Nowadays the term Fredholm operators is more often used independently of
the value of the index.
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integral equations for multi-dimensional problems [9], [10], [12]. Dzhuraev studied
multiple connected domains [146]. Reduction of elliptic boundary value problems
to integral equations are also discussed in more recent papers and monographs
[419], [583], [344].

Boundary problems. Elliptic boundary value problems can be reduced to bound-
ary problems for analytical functions directly (see, e.g., Section 8.2 in Chapter 8) or
through singular integral equations. The method of reduction of singular integral
equations to boundary problems for analytical functions was suggested by Carle-
man [105]. It was later developed and generalized by Gakhov, Muskhelishvili, and
many other authors (see [190], [366], [532] and the references therein). Consider
the singular integral equation

a(t)u(t) +
b(t)
πi

∫
S

u(ζ)
ζ − t

dζ = f(t), (2.7)

where S is a closed simple contour, the coefficients a(t), b(t) satisfy the Lipschitz
condition. Denote by D+ the domain inside the contour, by D− outside it and
consider the Cauchy integral

Φ(z) =
1

2πi

∫
S

u(ζ)
ζ − z

dζ.

It determines two holomorphic functions Φ+ and Φ−, respectively in the inner and
outer domains. Taking into account their limiting values at the contour, we reduce
equation (2.7) to the equation

Φ+(t) − a(t) − b(t)
a(t) + b(t)

Φ−(t) =
f(t)

a(t) + b(t)
, t ∈ S. (2.8)

Thus, the singular integral equation (2.7) is reduced to the Hilbert problem11: find
two holomorphic functions Φ+ and Φ− defined in the domains D+ and D− and
satisfying some linear relation at the contour S.

The Riemann-Hilbert problem is to find a holomorphic function Φ(z) = u+iv
in a bounded or unbounded domain D continuous up to the boundary S and
satisfying the boundary condition au − bv = c on S12. Here a, b, and c are real-
valued continuous functions, the contour S is closed and simple. It can be reduced
to the Hilbert problem and it is clearly related to the Dirichlet problem (b =
0, c = f). Solvability conditions and index of these boundary problems and of
their various generalizations are known. Solvability conditions are formulated in
terms of adjoint problems. The index is expressed as a rotation of some vector
field at the contour S (cf. Chapter 8).

Some other examples which show the connection between elliptic problems,
singular integral equations and boundary problems for analytical functions are
11It is sometimes also called the Riemann problem. It was introduced by Hilbert in 1905 (see
[236]). He referred to it as the Riemann problem.
12It is a particular case of the problem formulated by Riemann in his dissertation [454].
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presented in Section 9 of Chapter 8. More detailed presentation of this topic can
be found elsewhere. We will return to multi-dimensional singular integral equations
below when we discuss the index of elliptic problems.

2.2.3 Elliptic operators. A priori estimates of solutions of elliptic boundary value
problems determine their normal solvability. Consider an operator L acting from
a Banach space E into another Banach space F and suppose that the following
estimate holds:

‖u‖E ≤ K (‖Lu‖F + ‖u‖E0) (2.9)

for any u ∈ E and with a constant K independent of u. Here E0 is a wider
space such that E is compactly embedded in it. To be more specific, let L be a
second-order elliptic operator, E = C2+α(Ω̄) and F = Cα(Ω̄), E0 = C2(Ω̄), Ω be
a bounded domain with a C2+α boundary. In this case (2.9) is equivalent to the
Schauder estimate by virtue of the estimate

‖u‖E0 ≤ ε‖u‖E + Cε‖u‖C0(Ω̄),

where ε is positive and arbitrarily small, the constant Cε depends on ε.
If un is a bounded sequence in E, then it has a subsequence unk

, which
converges to some u0 in the C2-norm. It can be easily verified that u0 ∈ E. Indeed,
it is sufficient to pass to the limit in the estimate |D2unk

(x1)−D2unk
(x2)|/|x1 −

x2|α ≤M as k tends to infinity.
We can now verify that the image of the operator is closed. If Lun = fn and

fn → f0 in F for some f0, then Lu0 = f0. By virtue of (2.9), unk
→ u0 in E. This

simple proof remains valid for general elliptic problems (see Chapter 4 for more
detail). In order to show that the kernel is finite dimensional, it is sufficient to note
that it follows from compactness of the unit ball in the subspace of functions for
which Lu = 0. This can be proved in a similar way. A priori estimates for adjoint
or formally adjoint operators imply the finite codimension of the image.

In addition to the works devoted to a priori estimates cited above in Section
2.1, let us indicate the papers by Vishik [536], [537] where he introduced strongly
elliptic operators and proved their Fredholm property. Related questions were
studied later by Browder [84]. Schechter obtained solvability conditions for nor-
mal systems (Section 1, Chapter 6) in terms of formally adjoint problems [473].
Agranovich and Dynin proved normal solvability in Sobolev spaces and showed
that the index of elliptic problems equals the index of some singular integral op-
erator [12].

2.2.4 Limiting problems and unbounded domains. In the case of unbounded do-
mains, the usual a priori estimates (Section 2.1) are not sufficient for normal
solvability. We need to obtain some stronger estimates (Section 2.5 of Chapter 1
and Chapter 4) or, equivalently, to impose Condition NS in addition to the usual
estimates.

Elliptic operators in the sense of Petrovskii in the whole Rn were studied
by Mukhamadiev [360]–[362]. The author introduced the notion of limiting op-
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erators and proved that the Fredholm property and solvability conditions were
satisfied if and only if all limiting operators are invertible. Solvability conditions
were formulated in terms of orthogonality to solutions of the homogeneous adjoint
problem. These results were generalized for operators with bounded measurable
coefficients except for the coefficients of the principal terms which were supposed
to be Hölder continuous. Mukhamadiev introduced a priori estimates where the
norm in the right-hand side was taken with respect to some bounded domain (Sec-
tion 3.5 of Chapter 1 and Chapter 4). Such estimates imply normal solvability in
unbounded domains (see also [523]). They follow from Condition NS. This condi-
tion allows also a direct proof of normal solvability, without proving first a priori
estimates.

Limiting operators and their inter-relation with solvability conditions and
with the Fredholm property were first studied by Favard [160], Levitan [309], [310]
(see also Shubin [491]) for differential operators on the real axis, and later for some
classes of elliptic operators in Rn (Mukhamadiev [361], [362], Barillon, Volpert
[48]), in cylindrical domains (Collet, Volpert [114], [567]), or in some specially
constructed domains (Bagirov and Feigin [45], [46]). Some of these results were
obtained for the scalar case, some others for the vector case, under the assumption
that the coefficients of the operator stabilize at infinity or without this assumption.
Limiting operators were also used for some classes of pseudo-differential operators
[153], [295], [440]–[442], [475], [490], discrete operators [28]–[30], [443], and some
integro-differential equations [26], [27].

Limiting domains and operators for general elliptic problems and the corre-
sponding function spaces are introduced in [564], [566], [570]. The presentation of
a priori estimates, normal solvability and the Fredholm property in Chapters 3–5
follows these papers. The method to obtain a priori estimates of solutions is based
on an isomorphism of pseudo-differential operators obtained as a modification of
elliptic differential operators.

2.2.5 Other studies of the Fredholm property. Elliptic boundary value problems
in domains with non-smooth boundary were studied by Eskin [154], Kondratiev
[264], Feigin [168], Grisvard [214], [215], Moussaoui [359], Mazya and Plamenevskii
[342]. These first works were followed by numerous papers (see, e.g., [462], [372],
[141], [444], [213]) and several monographs [216], [217], [124], [373], [341].

Investigation of degenerate elliptic problems begins in the 1920s with the
works by Tricomi [521], Holgrem [237]; see the literature review in the monograph
by Smirnov [497]. Let us mention the cycle of works by Vishik (see [538] and [540]
among them), more recent works by Levendorskii [304], [305], and by other authors
[225], [247], [113], [259], [125], [260], [535].

Problems with the tangential derivative in the boundary conditions were
studied by Egorov and Kondratiev [147], [148], Hörmander [242], Paneah [397],
[398] (see also more recent papers [407], [582], [580] and monographs [431], [399]).
Fredholm property of various nonlocal problems was investigated in [222], [494],
[272], [581], [221], [219].
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2.3 Index

2.3.1 Problems in the plane. Elliptic boundary value problems in the plane can
be studied by reduction to singular integral equations in one space dimension.
This method was developed by I.N. Vekua for certain classes of elliptic problems
[528], [530], [531]. It allowed him to prove normal solvability of boundary value
problems and to find their index. Further development of these works was due
to A.I. Volpert [544]–[546]. He used fundamental matrices of elliptic systems of
equations constructed by Ya.B. Lopatinskii [325], [326]. In [547] normal solvability
was proved and the index was computed for general first-order systems and in [552]
for general higher-order systems in the plane (see also [550]–[553]). The Dirichlet
problem for elliptic systems was studied in [546]. It was shown that the index of
this problem can be equal to an arbitrary even number and a formula for the index
was given. It was proved that the index is a homotopy invariant and the formula
for the index was obtained in terms of this invariant [547]. A class of canonical
matrices was suggested for which 1) the elliptic system of first-order equations
can be reduced to the Cauchy-Riemann system by a continuous deformation of
the coefficients in such a way that the number of linearly independent solutions
of the homogeneous direct and adjoint problems and the index do not change,
2) any elliptic first-order system with smooth coefficients can be reduced to the
canonical system by a linear nonsingular transformation [547]. The index of a
two-dimensional elliptic problem is discussed in a more recent work by Rowley
[460].

2.3.2 Multi-dimensional problems. The formula for the index of boundary value
problems for systems of harmonic functions in a three-dimensional domain was
obtained by A.I. Volpert in 1960 [553] (see also [555]). It was also related to the
index of multi-dimensional singular integral equations and to elliptic systems on
a sphere. The method consists of several steps. First of all, the index of first-order
elliptic systems on the two-dimensional sphere is found by reduction to a bound-
ary value problem in a plane domain. This allows a computation of the index
for some special class of elliptic boundary value problems in three-dimensional
domains. This last result is used to find the index of two-dimensional singular
integral equations [554] and of multi-dimensional equations [556]. Finally, the in-
dex of boundary value problems for harmonic functions is found by reduction to
singular integral equations. Let us present these results in more detail since they
are important for understanding of the index theories.

First-order elliptic systems on a sphere. Consider the first-order system

A1(ξ)
∂u

∂ξ1
+A2(ξ)

∂u

∂ξ2
+A0(ξ)u = f(ξ), (2.10)

where (ξ1, ξ2) are local coordinates on the surface S (see [555] for the exact
definitions) in R3 homeomorphic to a two-dimensional sphere, Aj(ξ), j = 0, 1, 2
are continuous complex square matrices of the order p, u and f are vectors



2. Linear equations 577

of the order p. It is assumed that the ellipticity condition is satisfied, that is
det(A1(ξ)α1 +A2(ξ)α2) �= 0 for any nonzero vectors (α1, α2) and ξ ∈ S.

In order to find the index of this system, it is reduced to a Dirichlet problem
in a plane region. Let us briefly describe this construction. The surface S is rep-
resented as a union of two simply connected parts S1 and S2. They are projected
to the unit disc D = {x2

1 + x2
2 ≤ 1}. Then we obtain two elliptic systems in D,

B1(x)
∂v

∂x1
+B2(x)

∂v

∂x2
+B0(x)v = g(x), x ∈ D, (2.11)

C1(x)
∂w

∂x1
+ C2(x)

∂w

∂x2
+ C0(x)w = h(x), x ∈ D, (2.12)

where the matrices Bj and Cj , j = 0, 1, 2 and the vectors g, h can be expressed
through the matrices Aj and the vector f and the corresponding mappings. So-
lutions v and w of these two systems have the same values at the boundary ∂D.
Therefore, we obtain the Dirichlet problem for the system of 2p equations:

T 1(x)
∂z

∂x1
+ T 2(x)

∂z

∂x2
+ T 0(x)z = q(x), x ∈ D, (2.13)

b z = 0, x ∈ ∂D. (2.14)

Here

T j =
(
Bj , 0
0 , Cj

)
, z =

(
v
w

)
, q =

(
g
h

)
, b = (Ep,−Ep),

Ep is the unit matrix of the order p. The index of problem (2.13), (2.14) can be
found (see the previous section and Section 8 of Chapter 8). In order to give an
explicit formula the for index, let us consider the following ordinary differential
systems of equations, which correspond to the principal terms of (2.11), (2.12):

iB1(x)ω +B2(x)
dω

dt
= 0, −iC1(x)ω + C2(x)

dω

dt
= 0. (2.15)

Let ω1(x, t) be a continuous stable fundamental matrix of the first system in (2.15).
This means that the columns of this matrix form a linearly independent system
of solutions and they tend to zero as t → +∞. Moreover, ω1(x, 0) is continuous
for x ∈ D. Denote by ω2(x, t) continuous stable fundamental matrix of the second
system in (2.15). Put

χ =
1
2π

(
arg det

(
ω′

2(x, 0)ω1(x, 0)
))

γ
,

where γ is the contour x2
1 + x2

2 = 1 with a positive orientation. Prime denotes
transposed matrix and bar complex conjugate. Then the value of the index κ of
system (2.10) is given by the formula κ = −2χ+ p. Let us mention two important
properties of an index: two homotopic systems have the same index; for any given
integer, there is a system with this value of the index.
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Boundary value problems in R3. Consider the elliptic boundary value problem

∆u = 0, x ∈ Ω, (2.16)

B

(
x,

∂

∂x

)
u ≡

3∑
j=1

Bj(x)
∂u

∂x
= f(x), x ∈ S (2.17)

in a domain Ω ⊂ R3 with a sufficiently smooth boundary S homeomorphic to a
sphere. Bj(x), j = 1, 2, 3 are sufficiently smooth complex square matrices of the
order p. The Lopatinskii condition

detB(x, ν(x) + iτ) �= 0, x ∈ S (2.18)

is supposed to be satisfied. Here ν(x) is the normal vector at the point x ∈ S, τ is
any tangent vector.

Let us begin with the particular case where p is even and B(x, ν(x)) = 0
for all x ∈ S, that is the normal component of the derivative in the boundary
condition is zero. Under this assumption, we can introduce in a natural way a
first-order system of equations on S. In order to define it, we cover the surface
S with a finite number of subsets S′ of the surface S homeomorphic to a plane
domain D′ with a homeomorphism φ : D′ → S′. For each such subset we obtain
the system

A1(ξ)
∂û

∂ξ1
+A2(ξ)

∂û

∂ξ2
= f̂(ξ), ξ ∈ D′, (2.19)

where û(ξ) = u(φ(ξ)), f̂(ξ) = f(φ(ξ)),

3∑
k=1

Bk(x)
∂u

∂xk
= A1(ξ)

∂û

∂ξ1
+A2(ξ)

∂û

∂ξ2
.

By virtue of the Lopatinskii condition for the boundary value problem, the ellip-
ticity condition for the first-order system is satisfied. Therefore its index is well
defined and it can be found by the formula given above, κ = −2χ+ p.

There is a one-to-one correspondence between solutions of problem (2.16),
(2.17) and of system (2.19). Indeed, if u(x) is a solution of problem (2.16), (2.17),
then û(ξ) = u(φ(ξ)) is a solution of system (2.19). Conversely, if û(ξ) is a solution
of system (2.19), then the function U(x) = û(φ−1(x)) satisfies boundary conditions
(2.17). Then solution of problem (2.16), (2.17) can be found as a solution of the
following Dirichlet problem: ∆u = 0, u|S = U . Hence, we can determine the index
of problem (2.16), (2.17).

Singular integral equations. Consider the system of singular integral equations

a(x)µ(x) +
∫
S

b(x, y − x)µ(y)dyS + Tµ = f(x), (2.20)
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where S is a surface in R3 homeomorphic to a sphere, the functions a, b and
the surface S satisfy conventional regularity conditions, T is a regular integral
operator. The symbol Φ(τ) of this system is a square matrix of order p, defined
and continuous on the set P of all unit tangent vectors τ to the surface S. If

det Φ(τ) �= 0, τ ∈ P, (2.21)

then system (2.20) is normally solvable, the dimensions of the kernel of the homo-
geneous and homogeneous adjoint systems are finite [346], [347]. Hence its index
is well defined.

Boundary value problem (2.16), (2.17) can be reduced to a singular integral
equation with the simple layer potential,

u(x) =
1
2π

∫
S

1
r
µ(y)dyS,

where r = |x−y|. Substituting it in the boundary condition, we obtain the equation

B(x, ν(x))µ(x) +
1
2π

∫
S

1
r3

B(x, y − x)µ(y)dyS = f(x). (2.22)

The symbol of this system is Φ(τ) = B(x, ν(x) + iτ). Therefore conditions (2.18)
and (2.21) are equivalent. Hence, using the results on the singular integral equa-
tions, we conclude that problem (2.16), (2.17) has a finite-dimensional kernel and a
finite number of solvability conditions. Its index equals the index of system (2.22).

The index κ(Φ) of the singular integral equation (2.20) is a homotopy in-
variant. This means that if two symbols Φ1 and Φ2 can be reduced to each other
by a continuous deformation in such a way that condition (2.21) is satisfied, then
κ(Φ1) = κ(Φ2). The symbol of the product of two operators equals the product
of the symbols. Since the index of the product of two operators equals the sum of
their indices, then κ(Φ1Φ2) = κ(Φ1) + κ(Φ2).

Let us construct a function l(A) defined on invertible matrices A of order
p. Consider first an invertible complex matrix A(τ) of order 2. Let (a1(τ) +
ia2(τ), a3(τ) + ia4(τ)) be one of its rows. Put

a(τ) = (a1(τ), a2(τ), a3(τ), a4(τ)), a0(τ) =
a(τ)
|a(τ)| ,

where |a| denotes the length of the vector a. Thus, a0 maps the space of unit vectors
tangent to S to the unit three-dimensional sphere. We define l(A) as the degree of
this mapping. We note first of all that this function does not depend on the choice
of the row of the function A. Indeed, if ã0 is the mapping corresponding to the
second row, it is sufficient to consider the linear homotopy σa0 + (1− σ) ã0. Since
the matrix A is invertible, then this mapping does not vanish for any σ, 0 ≤ σ ≤ 1.
Hence the value of the degree does not depend on σ.
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We define next this function for p > 2. It can be reduced by a continuous

deformation which preserves invertibility to the matrix
(
E 0
0 A0(τ)

)
, where E

is the unit matrix of the order p − 2, A0(τ) is a matrix of the second order. By
definition, l(A) = l(A0). This function possesses the following three properties: 1.
if A and B are homotopic, then l(A) = l(B), 2. L(AB) = l(A) + l(B), 3. l can
take any integer values.

We can now express the function κ(Φ) through l(Φ). If l(Φ) = 0, that is Φ is
homotopic to a constant matrix, then κ(Φ) = 0. This and the group properties of
these functions indicated above allow one to affirm that κ(Φ) = γl(Φ) where γ is
an integer number. Therefore, in order to determine the index, we need to specify
the value of γ. Let p = 2. Consider a first-order system on S with sufficiently
smooth coefficients and such that χ = 0. It can be directly verified that for the
corresponding mapping Φ, l(Φ) = 2. On the other hand, consider the singular
integral equation (2.22) and the corresponding boundary value problem (2.16),
(2.17) in the particular case where B(x, ν(x)) = 0. It was shown above that κ(Φ) =
2. Hence γ = 1.

Thus, we obtain the index of the singular integral equation (2.20), κ = l(Φ),
and of the boundary value problem (2.16), (2.17), κ = l(B).

Further works. Index of multi-dimensional singular integral equations was studied
by Michlin [348], Boyarski [79], Seeley [482], Calderon [101]. Normal solvability and
index of elliptic boundary value problems and of singular integral operators were
studied by Agranovich and Dynin. In [142], [12] it was shown that the index of
elliptic boundary value problems could be reduced to the index of singular integral
operators, the homotopic invariance of the index was discussed in [9], [142].

Important development of the index theory was due to the works by Atiyah
and Singer [36], Atiyah and Bott [37] (see also [38], [39], [40]). They were followed
by many other publications (see [143], [144], [396] and the references therein).

2.3.3 Other methods. The method of computation of the index using regularizors
of elliptic operators was developed by Fedosov. If A : H1 → H2 is a Fredholm
operator and R : H2 → H1 is its regularizor such that I1 − RA and I2 − AR are
nuclear operators, then the abstract formula indA = tr (I1 −RA) + tr (I2 −AR)
can provide an analytic expression for the index [161], [162], [163], [164]. This
method was also used to find the index for random elliptic operators [167] and for
operators on a wedge [166]. Rabier generalized this approach for elliptic operators
in Rn under weaker assumptions on the coefficients [434].

This approach is applicable for some problems in unbounded domains. For
the boundary value problem

−∆u+ u = g (y ≥ 0), cosα(x)
∂u

∂y
+ sinα(x)

∂u

∂x
= h (y = 0)

in the half-plane, where cosα(x) = 1 for |x| sufficiently large, the index equals
− 1
πα(x)|∞−∞ [162] (cf. Section 6 of Chapter 8). The construction of a regularizor
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and application of this approach can be less clear if the coefficients of the operator
at infinity are not constant. In the example above, this is the case if cosα(x) = 1
for x sufficiently large and cosα(x) = −1 for −x sufficiently large. This case
is essentially different. The index cannot be computed directly by the method
of expanding domains presented in Chapter 8. We need to use reduction to the
Cauchy-Riemann system.

The index theories are discussed in the recent monographs [165], [451], [579].
The index of some classes of elliptic operators in weighted spaces is found in
[323], [324], [57], [75]. Computation of the index of elliptic problems in unbounded
cylinders is carried out in [114] (see Chapter 9).

2.4 Elliptic problems with a parameter

After the first papers by Agmon [5] and by Agranovich, Vishik [13] ellipticity with
a parameter for the problem

A(x, λ,D)u = f, x ∈ Ω, (2.23)
B(x, λ,D)u = g, x ∈ ∂Ω, (2.24)

or for some of its special cases in bounded domains Ω, was studied by Geymonat,
Grisvard [196], Roitberg [457], Agranovich [11], and Denk, Volevich [129]. The
most general problem considered in unbounded domains Ω, which was studied
before [571], is the following problem:

Au :=
∑

|α|≤2m

aα(x)Dαu− λ2mu = f in Ω, (2.25)

Bu :=
∑

|α|≤mj

bjα(x)Dαu = g on ∂Ω, j = 1, . . . , r, (2.26)

where m and mj are some integers, and the sector S is of the form:

S = {λ : | arg λ| ≤ θ}. (2.27)

These results embrace parameter-elliptic problems, which are obtained from para-
bolic systems in the sense of Petrovskii, but some important classes of parameter
elliptic problems are excluded, for example, first-order systems (m = 1/2), in
which case the sector S is

S =
{
λ : | arg λ| ≤ θ, |π − arg λ| ≤ θ, θ <

π

2

}
.

There are three known methods to prove existence of solutions of problem
(2.23), (2.24). The first method uses formally adjoint problems, the second one
is based on the theory of sectorial operators, and the third method relies on the
direct construction of the inverse operator.
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The first method stems from the paper [5]. In the case of scalar equation
(N = 1) it is supposed that the boundary conditions are normal. This means that
the boundary ∂Ω is non-characteristic with respect to the boundary operator Bj ,
mj < 2m, and the orders of the boundary operators are distinct. The operator A
with domain

D(A) = {u ∈W 2m,p(Ω), Bj = 0, j = 1, . . . , r, 1 < p <∞}
is considered and a priori estimates with a parameter are obtained. It follows from
these estimates that the operator A has a zero kernel and a closed range. As it
was proved by Schechter [471], then there exists a formally adjoint elliptic problem
with normal boundary conditions. By the above arguments it is obtained that the
formally adjoint operator has a zero kernel and hence the range of A coincides
with Lp(Ω).

A priori estimates and existence theorems in the case of unbounded domains
are proved for these problems by Higuchi [233] and by Freeman, Schechter [186].

For systems of equations (N ≥ 1) a priori estimates and existence results for
problem (2.25), (2.26) were obtained by Amann [16] under the assumption that
u ∈ W 2m+s,p(Ω), where s is a real nonnegative number. Instead of the normality
mentioned above in the scalar case in the proof of the existence he supposed that
the operator A was uniformly strongly elliptic and the boundary operators had
the form

Bju =
∂k+j−1u

∂βk+j−1
j

, j = 1, . . . ,m, k = 0, . . . ,m

with the lower-order boundary operators, where

(βj(x), ν(x)) ≥ c > 0, ∀x ∈ Γ, j = 1, . . . ,m,

and ν(x) was the normal vector. It is shown in Chapter 7 that the existence
results hold true without these restrictions though this class of operators may be
interesting in other considerations.

There is a large number of works devoted to sectorial operators in rela-
tion with elliptic problems (2.25), (2.26) (see [329], [128], [121] and the references
therein). In the paper by Denk, Hieber and Prüs [128] problem (2.25), (2.26) is
considered for equations with operator coefficients. Using methods based on the
theory of sectorial operators, they have obtained existence results for the case
where Ω = Rn, Ω = Rn+, and Ω ⊂ Rn is a domain with a compact boundary.
It is supposed that the sector S is of the type (2.27) and that there are some
restrictions on the function spaces (for example, in the case of W l,p the domain of
the operator belongs to W 2m,p; l > 2m is excluded).

The third of the methods mentioned above is the method introduced by
Agranovich and Vishik [13] for bounded domains Ω. This method does not require
restrictions which are needed for other methods. In Sobolev spaces they introduced
norms depending on the parameter, obtained a priori estimates with constants
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independent of the parameter and proved existence of solutions of problem (2.25),
(2.26) (the parameter λ entered the operator in a more general way) by a direct
construction of the inverse operator. A generalization of these results for mixed-
order systems in bounded domains has been obtained by Agranovich [11].

The presentation of Chapter 7 follows the work [571]. The Agranovich-Vishik
method is developed for unbounded domains. We note that these results are ob-
tained for general mixed-order parameter-elliptic problems in uniformly regular
unbounded domains Ω without any additional restrictions. Compared with the
theory of sectorial operators (for the case (2.25), (2.26)) the boundary ∂Ω is not
supposed to be compact and the operators are proved to be sectorial in the spaces
Lpq(1 < p < ∞, 1 ≤ q ≤ ∞), which are more flexible than the spaces Lp = Lpp.
We note that a priori estimates do not take place in the space W 2m,p for p = 1
and p = ∞ (see, e.g., [487] for counterexamples even for the Laplace operator).
However they are obtained for the spaces W 2m,p

q (1 < p < ∞, 1 ≤ q ≤ ∞). The
behavior of the functions u ∈ W 2m,p

q at infinity is determined by the value of q.
For example, the behavior at infinity of the functions from Lp1(1 < p < ∞) is
similar to that in L1.

3 Decay and growth of solutions

We discussed decay and growth of solutions of elliptic boundary value problems in
Chapters 4, 5 and 11 [566]. We can briefly summarize them as follows. If the Fred-
holm property is satisfied, then solutions of linear homogeneous equations decay
exponentially at infinity. Decay rate of solutions of nonhomogeneous equations is
determined by the right-hand side.

Consider the equation Lu = f , where the operator L acts from a space E∞
into F∞. The Fredholm alternative affirms that either f satisfies solvability con-
ditions, and then this equation has a solution, or it does not satisfy the solvability
conditions, in which case there is no solution in E∞. Taking into account the re-
sults of Section 4.3.5 of Chapter 11, we can reformulate this alternative: either
the solution is bounded or it grows exponentially at infinity. This shows the re-
lation between the Fredholm property and Phragmén and Lindelöf type results.
The latter are intensively studied for elliptic boundary value problems.

Phragmén and Lindelöf wrote in their work [410] published in 1908:

On connâıt le rôle que joue dans l’Analyse le principe suivant: Soient dans le plan
de la variable complexe x un domaine connexe, T , et une fonction monogène13,
f(x), régulière à l’intérieur de ce domaine. Supposons que le module |f(x)| est
uniforme dans le domaine T et vérifie pour tout point ξ de son contour cette
condition:

13holomorphic
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(A) Quelque petit qu’on se donne le nombre positive ε l’inégalité

|f(x)| < C + ε,

où C désigne une constante, est vérifié dès que x, restant à l’intérieur de T ,
est suffisamment rapproché du point ξ.

Dans ces conditions on aura, pour tout point pris dans l’intérieur de T ,

(I) |f(x)| ≤ C,

l’égalité étant d’ailleurs exclue si la fonction ne se réduit pas à une constante.

After that they generalized this assertion:

Principe général. Admettons que le module de la fonction monogène f(x), qui
est supposée rélulière à l’intérieur du domaine T , soit uniforme dans ce domains
et vérifie la condition (A) sur son contour, en exceptant les points d’un certain
ensemble E.

Admettons d’autre part qu’il existe une fonction monogène, ω(x), rélulière et
différente de zéro dans T et jouissant en outre les propriétés suivantes:

(a) A l’intérieur de T le module |ω(x)| est uniforme et vérifie la condition

|ω(x)| ≤ 1.

(b) En désingant par σ, ε des nombres positifs aussi petits qu’on voudra et par ξ
un point quelconclue de l’ensemble E, on aura

|ωσf(x)| < C + ε,

dès que x restant à l’intérieur de T , sera suffisamment rapproché du point ξ.

Dans ces conditions, la conclusion (I) rests valable pour tout point x intérieur au
domaine T .

As example of applications of this principle given in the paper, let us present the
following theorem:

Soient un domaine connexe, T , faisant partie d’une bande de largeur π/α, et une
fonction monogène, f(x), régulièe á l’intérieur de ce domaine, dont le module est
uniforme dans T et vérifie la condition (A) sur son contour (à distance finie). On
suppose d’ailleurs que l’expression exp(−εear)f(x) quelque petit que soit le nombre
positif ε, tend uniformément vers zéro dans le domaine en question lorsque r crôıt
indéfiniment. Cela étant, on aura |f(x)| ≤ C pour tout point intérieur à T .

This theorem indicates the connection between growth rate of a holomor-
phic function with the facts that it is bounded and that it has its maximum at the
boundary. Results by Phragmén and Lindelöf [410] attracted much attention in the
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theory of elliptic partial differential equations beginning from the 1950s. Gilbarg
[199] studied the inequality Lu ≤ 0 for the operator L(u) = auxx+2buxy+ cuyy+
dux + euy in an unbounded domain D. He proved that if u is nonnegative at the
boundary and lim infr→∞m(r)/r = 0, where m(r) = min|z|=r u(z), then u(z) ≥ 0
in D. Related problems were studied by Huber [245], Serrin [483], Hopf [240],
Friedman [187], Lax [299]. In the 1960s, there was a number of works devoted to
various estimates of growth rate of solutions of linear second-order elliptic equa-
tions in unbounded domains (Cegis [108], Arson and Evgrafov [34], Arson and
Iglickii [35], Fife [173]), first-order elliptic systems were considered in [33]. Max-
imum principle in connection with the growth rate of solutions was studied by
Landis [290], Solomencev [500], Oddson [390]. Second-order systems with periodic
coefficients were studied by Landis and Panasenko [294], the degenerate equation
was studied by Mamedov and Guseynov [332].

Theorems of Phragmén-Lindelöf type for higher-order linear elliptic equa-
tions were proved by Landis [291]–[293] and later by Doncev [132], [133]. They
studied uniformly elliptic operators P (x,D) =

∑
|α|≤m aα(x)Dα in cylinders. A

typical result says that the solution is either bounded or exponentially growing.
Nadirashvili [367], [368] considered the same operator in Rn. Oleinik and Iosifyan
[391] generalized the Saint-Venant principle for the two-dimensional biharmonic
equation and used it to prove a Phragmén-Lindelöf theorem for energy. Cai and
Lin [100] studied the biharmonic operator in an infinite strip and proved that the
energy either decays or grows exponentially.

Liouville and Phragmén-Lindelöf type theorems for general elliptic problems
in the Douglis-Nirenberg sense were studied by Oleinik and Radkevich [392]. The
typical result is that if a solution u(x) of the homogeneous problem in Rn or in an
unbounded cylinder admits some exponential estimate |u(x)| ≤ exp(δ|x|), then it
is identically zero. This result is obviously related to the uniqueness of solutions
of elliptic boundary value problems. It is interesting to discuss how it is related
to the Fredholm property. Even the simplest equation ∆u = 0 has a nonzero
solution, which is not exponentially growing. This is because the corresponding
operator does not satisfy the Fredholm property. The operators considered in [392]
are operators with parameters. In the example above this gives ∆u−µ2u = 0 with
certain conditions on µ which provide the unique solvability.

A semi-linear second-order equation was considered by Herzog [232]. Many
works devoted to Phragmén-Lindelöf theorems for semi-linear and quasi-linear
second-order elliptic equations appear beginning from the 1980s (Mikljukov [350],
Gubachev [218], Granlund [210], Novruzov [388], Aviles [41] and the others; see
also Jin and Lancaster [251] and the references therein). Phragmén-Lindelöf type
theorems for the minimal surface equation

div (∇u/
√

1 + |∇u|2) = 0

were studied by Nitsche [387], Miklyukov [351], Hsieh et al. [244] and other au-
thors. Maximum principle and positive solutions for equations with the p-Laplacian
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∆pu = div(|∇u|p−2∇u) were studied by Kurta [281], Liskevich et al. [321] (see also
the references therein). Maximum principle and Phragmén-Lindelöf theorems for
the fully nonlinear second-order equation were studied by Capuzzo and Vitolo
[103], [104]. Energy estimates for higher-order quasi-linear elliptic equations in
unbounded domains were obtained by Shishkov [488], [489] and Gadzhiev [189];
semilinear equations of the fourth order were considered by Celebi et al. [106].

To summarize this literature, it estimates growth and decay of solutions at
infinity and relates these estimates to the maximum and comparison principles,
boundedness, positiveness and uniqueness of solutions of linear and nonlinear equa-
tions. The methods of energy estimates and of sub- and super-solutions are often
used and are not necessarily related to Phragmén-Lindelöf and Liouville theorems
or the Saint-Venant principle.

Decay rate of positive solutions of semi-linear and quasi-linear second-order
equations in Rn is studied by Johnson et al. [252], [253], Kawano et al. [257],
Ren and Wei [452], Flucher and Muller [179], Bae et al. [44], Deng et al. [130]; in
unbounded cylinders by Payne et al. [401]; for a system of two equations by Hulshof
and van derVorst [246]. Egorov and Kondratiev study linear second-order elliptic
operators in various unbounded domains with nonlinear boundary conditions [149],
[150]. It is shown that if growth of solutions at infinity is not too fast, then they
converge to zero. Growth rate and uniqueness of solutions of a semi-linear second-
order equation in Rn are studied by Diaz and Letelier [131] and Dai [122]; McKenna
and Reichel [343] prove multiplicity of radial solutions of biharmonic equations
with different growth rates.

4 Topological degree

In his book published in 1955 [352], Miranda wrote that the beginning of the
modern theory of nonlinear elliptic equations could be related to the International
Mathematical Congress in Paris in 1900 where Hilbert suggested, among other
problems, that any solution of an analytical elliptic equation was analytical (the
19th problem). This problem had initiated numerous works. Several years after
that Bernstein had proved this theorem in the case of two space variables and
continued the investigation of the Dirichlet problem for nonlinear equations. His
basic idea was that the existence of solutions followed from appropriate a priori
estimates. Only in the 1930s did the real meaning of these results and their ap-
plicability become clear due to works by Schauder, Leray, Caccioppoli where they
developed new approaches on the basis of functional analysis in abstract spaces
and of new a priori estimates. These works resulted in the development of the topo-
logical degree theory. “The class of Fredholm and proper mappings was the first
class of nonlinear mappings in infinite-dimensional spaces for which it appeared to
be possible to generalize the degree theory by Brouwer-Hopf in finite-dimensional
spaces” [276].
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In the general setting, topological degree γ(A,Ω) is an integer which de-
pends on the operator A : E → F and on the domain Ω ⊂ E. It should satisfy
certain properties, namely, homotopy invariance, additivity, normalization. There
exist different degree constructions adapted to some particular function spaces and
operators. Various degree constructions and reviews are given by Nagumo [369],
Zeidler [590], Krasnoselskii, Zabreiko [276], Mawhin [340], Skrypnik [493] and by
other authors.

Finite-dimensional spaces. The degree theory for finite-dimensional mappings
comes back to Kronecker, Poincaré, Brouwer, Hopf. Let Ω be a bounded domain
in Rn and Φ a mapping acting from the closure Ω̄ of the domain Ω into Rn. The
degree γ(Φ,Ω) can be first defined for smooth mappings Φ. Its definition is based
on the notion of regular points. A point y is regular if its inverse image Φ−1(y) con-
tains a finite number of points x1, . . . , xn in Ω (it can be empty) and the Jacobian
matrices Φ′(xi) are non-degenerate. A point is singular if it is not regular.

Assuming that Φ(x) �= 0 at the boundary ∂Ω and y = 0 is a regular point,
we put by definition,

γ(Φ,Ω) =
n∑
i=1

sign detΦ′(xi) (4.1)

for all xi ∈ Ω such that Φ(xi) = 0. According to Sard’s lemma, the Lebesgue
measure of singular points is zero in the image space. Hence, if y = 0 is singular,
then it can be approximated by regular points. This allows definition of the degree
in the case where y is not regular. Finally, if the mapping is not smooth but
continuous, then it can be approximated by a smooth mapping, and the degree
can also be defined. This is the so-called Brouwer degree.

Consider the following example of its application. Suppose that the function
Fτ (u) : Rn → Rn is continuous with respect to u and τ , Fτ (0) = 0 for all τ ∈ [0, 1],
and for some R > 0,

Fτ (u) �= 0 if |u| = R, τ ∈ [0, 1]. (4.2)

Suppose, next, that for τ < τ0 the equation Fτ (u) = 0 has a unique solution u = 0
in the ball BR : {|u| ≤ R}, and all eigenvalues of the matrix F ′

τ (0) have negative
real parts; for τ = τ0 a simple real eigenvalue crosses zero and becomes positive.
Then for τ < τ0,

γ(Fτ , BR) = sign detF ′
τ (0) = (−1)n.

The value sign detF ′
τ (0) is called the index of the stationary point u = 0. For

τ > τ0 the index is different, sign detF ′
τ (0) = (−1)n−1. On the other hand, the

degree γ(Fτ , BR) remains the same because of the condition (4.2). From (4.1) we
conclude that there are other solutions of the equation F (u) = 0 for τ > τ0. The
value τ0 of the parameter τ is called the bifurcation point.
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The index of stationary points is related to their stability with respect to
ordinary differential systems of equations du/dt = F (u).

Another application of the degree concerns the existence of solutions. If, for
example, all vectors Fτ (u) at the boundary of the ball BR are directed inside the
ball (or outside it), then the degree γ(Fτ , BR) is different from zero. From the
principle of nonzero rotation it follows that there exists a solution of the equation
Fτ (u) inside BR. Here we do not assume that Fτ (0) = 0.

Leray-Schauder degree. Consider a real Banach space E and an operator A =
I + B, where I is the identity operator and B : E → E is a continuous compact
operator. Let Ω ⊂ E be a bounded domain.

The operator B can be approximated by a finite-dimensional operator B. We
consider a finite-dimensional subspace E0 which contains some internal points of
the domain Ω, Ω0 = Ω ∩ E0, B0 is the restriction of the operator B to E0. We
suppose that B0Ω0 ⊂ E0.

We assume next that A(u) �= 0 for u ∈ ∂Ω. Then for appropriately chosen
approximating operators, A0(u) = u + B0(u) �= 0 for u ∈ ∂Ω0. Therefore we can
define the degree γ(A0,Ω0). By definition, the value of the degree γ(A,Ω) equals
the degree of the approximating finite-dimensional mappings. It can be verified
that the definition is correct, that is the value of the degree does not depend on
the choice of approximating operators.

This is the Leray-Schauder degree [303]. One of its applications is related to
elliptic problems in bounded domains. Consider, as example, the problem

∆u + F (u) = 0, u|∂D = 0

in a bounded domain D ∈ Rn. Here the function F (u) and the boundary of the
domain are sufficiently smooth. We can introduce the operator A = I + ∆−1F
acting in the Hölder space Cα(Ω̄) for some 0 < α < 1. Here ∆−1 corresponds to
the resolution of the Poisson equation with the Dirichlet boundary condition. This
is a compact operator in Cα(Ω̄). Therefore, the operator A represents compact
perturbation of the identity operator. Its relation to the elliptic boundary value
problem is obvious. The Leray-Schauder degree can be used to study existence
and bifurcations of solutions.

This approach cannot be used if the domain D is unbounded since the oper-
ator ∆−1 is not compact.

Generalized monotone operators. Consider an operator A acting from a real sep-
arable reflexive Banach space E into its dual E∗. Then we can define monotone
and pseudo-monotone mappings and some other classes of mappings related to the
notion of monotonicity. The definitions and the references can be found, e.g., in
[493]. Following [88], [492], [493] we introduce the class of operators which satisfy
the condition:



4. Topological degree 589

Condition 4.1. Let Ω be a domain in E, A : Ω → E∗ and for each sequence un ∈ Ω
from the weak convergence un ⇀ u0 and from the inequality

limn→∞〈Aun, un − u0〉 ≤ 0

it follows that the convergence un to u0 is strong.

Let vi, i = 1, 2, . . . be a complete system of the space E and suppose that
v1, . . . , vn are linearly independent for any n. Denote by En the linear hull of these
elements and by An the finite-dimensional approximation of the operator A:

Anu =
n∑
i=1

〈Au, vi〉vi, u ∈ Ωn,

where Ωn = Ω ∩ En.
We consider a class of operators satisfying Condition 4.1. Suppose that

A(u) �= 0 for u ∈ ∂Ω. Then it can be shown that, for n sufficiently large, Anu �= 0
if u ∈ ∂Ωn. Hence we can define the degree γ(An,Ωn) for the finite-dimensional
mapping An. It is proved that it does not depend on n for n sufficiently large. The
degree γ(A,Ω) is defined as γ(An,Ωn) for large n. The degree can also be defined
in the case of nonseparable spaces [492].

This construction is applied in [493] in order to define the degree for general
scalar nonlinear elliptic problems

F (x, u, . . . , D2mu) = f(x), x ∈ Ω, (4.3)
Gj(x, u, . . . , Dmju) = gj(x), j = 1, . . . ,m, x ∈ ∂Ω. (4.4)

Here Ω ⊂ Rn is a bounded domain with the boundary of the class Cl, F and Gj are
some given functions having continuous derivatives with respect to all arguments
up to orders l− 2m+ 1 and l− 2mj + 1, respectively, l is an integer number such
that l ≥ l0 +n0, l0 = max(2m,m1 +1, . . . ,mm+1), n0 = [n/2]+1. The boundary
value problem (4.3), (4.4) is considered in the space H l(Ω) with f ∈ H l−2m(Ω),
gj ∈ H l−mj−1/2(∂Ω). The operator corresponding to this problem is introduced
as acting from H l(Ω) into (H l(Ω))∗. It is proved that it satisfies Condition 4.1
([493], Theorem 2.4, p. 76), which allows one to define the degree.

Fredholm and proper operators. Fredholm and proper mappings was the first class
of nonlinear mapping in infinite-dimensional spaces for which it was possible to
generalize the Brouwer-Hopf theory developed for finite-dimensional spaces ([276],
p. 285). This was done by Caccioppoli (see the bibliography in [352]) who defined
the degree modulus 2. The important development of this theory was due to the
work by Smale [496] who generalized Sard’s lemma for Fredholm operators and
defined the degree as the number of solutions of the operator equation f(x) = y
modulus 2. For almost all y these solutions are regular and their number is finite.
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Based on the results by Smale, Elworthy and Tromba [151], [152] defined the
oriented degree for Fredholm and proper operators of the zero index as

deg f =
∑

x∈f−1(y)

sgnTxf, (4.5)

where sgnTxf = ±1 depending on whether the orientation on the manifold is
preserved. This degree is homotopy invariant modulus 2.

Various notions of orientation were used for the degree construction for Fred-
holm and proper mappings in [77], [54], [55], [174]–[178]. A simple description of
the orientation can be given following [54]. Let E and F be real vector spaces,
L : E → F be a Fredholm operator. A linear operator A : E → F is called a correc-
tor if its range is finite dimensional and L+A is an isomorphism. For two different
correctors A and B, it is possible to define the operator K = I− (L+B)−1(L+A)
with a finite-dimensional range. If E0 ⊂ E is a finite-dimensional subspace which
contains the range of K, then the determinant det(I −K)|E0 is well defined. The
two correctors are called equivalent if the determinant is positive. Orientation
of Fredholm operators with the zero index is defined as one of two equivalence
classes. This approach comes back to the work [339] where correctors are defined
with the help of projectors onto the kernel of the operator L. In [405] (and subse-
quent works [174]–[178]) correctors are compact operators. Therefore, I −K is a
compact perturbation of the identity operator, and the Leray-Schauder degree is
used to define the orientation. When the orientation is introduced, the degree can
be defined similar to (4.5).

Another approach to define the orientation is suggested in [170], [123], [248].
Assuming that the operator L + λI satisfies the Fredholm property for all real
λ ≥ 0 and that it has only a finite number ν of positive eigenvalues (together with
their multiplicities), we can define the orientation as (−1)ν . This construction is
well adapted for elliptic boundary value problems because it is naturally related to
the spectrum of the linearized operator. Similar to other degree constructions, this
one requires a precise specification of operators and function spaces [567], [565].

Degree can also be defined in the case of operators with a positive index. In
this case it is not an integer number but a cobordism class [151], [152], [77], [382].
It has limited applications to elliptic problems [448], [595], [382], [384].

Properness of elliptic boundary value problems is studied in [595] for bounded
domains and in [438], [564]–[566] for unbounded domains. Various approaches to
the construction of the topological degree and its application for elliptic problems
in unbounded domains were used in [123], [509], [510], [518] in the one-dimensional
case. In [561], [562] the degree was constructed in the one-dimensional case and
for elliptic problems in cylinders using the method of [493]; in [567] the degree
for Fredholm and proper operators is constructed for elliptic problems in cylin-
ders; [438] uses the degree construction of [177], [178] for elliptic problems in Rn.
Finally, topological degree for general elliptic problems in unbounded domains is
constructed in [565]. The presentation of Chapter 11 follows the ideas of this work.
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Approximation-proper mappings. The class of A-proper mappings was introduced
by Petryshyn [408]. Browder and Petryshyn constructed a multi-valued degree for
such mappings [89], [90], [409].

Let X and Y be separable real Banach spaces, Xn ⊂ X and Yn ⊂ Y their
finite-dimensional subspaces, dimXn = dimYn, Pn : Xn → X and Qn : Yn → Y
be continuous, generally nonlinear mappings.

Suppose that G ⊂ X is an open set. A mapping T : Ḡ→ Y is called A-proper
if for any y ∈ Y and any sequence xnj such that

xnj ∈ Xnj , Pnjxnj ∈ Ḡ, ‖QnjTPnjxnj −Qnjy‖Y → 0 as nj → ∞
there exists x ∈ X and a subsequence xnjk

such that Tx = y and Pnjk
xnjk

→ x.
We can define the degree γn for the finite-dimensional mapping Tn=QnTPn :

Ḡn→Yn, where Gn = P−1
n (G). A convergent subsequence of the sequence γn is

taken, by definition, as the degree of mapping T . Since the limiting value γ may not
be unique, the degree is multi valued. It possesses the property of nonzero rotation,
that is if its value is different from zero, then there exists a solution of the corre-
sponding operator equation, and homotopy invariance. This construction is appli-
cable to elliptic boundary value problems ([493], p. 67). It is established that A-
proper operators are proper and satisfy the Fredholm property ([409], pp. 26, 27).

5 Existence and bifurcation of solutions

Bifurcations of solutions. Bifurcation theory developed under the influence of nu-
merous applications. It brings together the theory of Fredholm operators, spec-
tral theory, methods of small parameter, variational methods, topological degree.
Branching of solutions was investigated already by Newton who studied the ques-
tion of determination of all solutions of the equation f(x, y) = 0 in the vicinity of a
point (x0, y0) where f ′

y(x0, y0) = 0. He looked for the solution in the form of power
series [378]. Later Lagrange invented the method of small parameter [286]. In the
beginning of the XXth century Lyapunov [330] and Schmidt [474] developed the
theory of branching of solutions of functional equations (see also Poincaré [421],
[422]). They showed that bifurcations of solutions of nonlinear integral equations
could be reduced to the analogous problems for implicit functions. Further de-
velopment of this theory is presented in the monographs by Lichtenstein [316],
Vainberg and Trenogin [525], and in the collection of papers edited by Keller and
Antman [258].

Application of the topological degree to study bifurcations of solutions begins
in the 1950s with works by Cronin [118]–[120] and Krasnoselskii [273]. It was used
by Velte [533] and Yudovich [587] for some problems in hydrodynamics and later
by many authors for various functional equations and elliptic problems (see [258],
[276], [340] and references therein). Topological degree for continuous branches
of solutions was first applied probably by Krasnoselskii [274], some time later by
Rabinowitz [445], [446] and other authors.
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Development of the methods of the bifurcation theory initiated, beginning
from the 1970s, numerous works on bifurcations of solutions of elliptic problems14.
The works by Crandall and Rabinowitz [117], Rabinowitz [445], Ambrosetti and
Prodi [19], Brezis and Turner [82], P.-L. Lions [319], Brezis and Nirenberg [81]
devoted to local bifurcations, global branches and multiplicity of solutions were
followed by many others (see recent papers [56], [95], [109], [300], [447], [592] and
monographs [18], [135] and the references therein). Symmetry of solutions and sym-
metry breaking were studied by Gidas [198], Smoller and Wasserman [498],[499],
Vanderbauwhede [526], Shih [486], Budd [92] (see also [94] [169], [485] and the
references therein). Bifurcation of solutions of elliptic equations in Rn were in-
vestigated by Toland [519], Stuart [512], Rumbos and Edelson [461], Brown and
Stavrakakis [91], Cingolani and Gamez [112], Deng and Y. Li [127], Stavrakakis
[503], H. Jeanjean et al [250], Polacik [430], del Pino [126]; in particular, bifircations
from the essential spectrum by Stuart [511], Benci and Fortunato [53], Cao [102],
Rother [458], L. Jeanjean [249], Badiale [43]. Problems in exterior domains or in
unbounded cylinders were considered by Furusho [188], Lachand-Robert [282], Sun
[513]. Bifurcations of travelling waves, which are solutions of elliptic problems in
unbounded domains, have some specific features because these are families of so-
lutions invariant with respect to translation (see [568] and the references therein).

Let us also mention that bifurcations of solutions are studied in the case
of nonlinear boundary conditions, for systems of equations, for various problems
arising in hydrodynamics, combustion, elasticity and other applications, for de-
generate equations, and in some other cases.

Existence of solutions. Investigation of nonlinear elliptic equations begins with
works by Picard who developed the method of successive approximations (see
Section 1, Historical Notes). Bernstein used this method to prove analyticity of
solutions and invented, in fact, the method of a priori estimates of solutions and
continuation with respect to a parameter. This approach was fully developed later
in the Leray-Schauder method.

Topological methods to prove existence of solutions were first used by Birkhoff
and Kellog [70]. The main idea of their method was formulated by Schauder as
a fixed point theorem [466]. It was generalized by Tikhonov for linear topological
spaces [517]. Fixed point theorems were used by Nemytskii, and then by many
other authors, to prove existence of solutions of nonlinear integral equations (see
[273] and the references therein).

The works by Birkhoff and Kellog [70], Levy [311], Schauder [463]–[467],
Leray and Schauder [303], Caccioppoli [96]–[98] published in the 1920–30s intro-
duced topological methods in analysis and were applied to integral equations and
to partial differential equations. After these works, analysis of the existence of
solutions is reduced, in the appropriate functional setting where some fix point
theorems or the topological degree can be used, to obtain a priori estimates of
14There are hundreds of papers devoted to bifurcations of solutions of elliptic equations. This
short literature review is necessarily incomplete
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solutions. Topological degree for compact perturbations of the identity operator
was constructed in [303] and was applied to elliptic problems. A detailed review
of the existence results obtained by the 1950s is given in the monograph by Mi-
randa [352]. Further development of this field is presented in the monographs by
Ladyzhenskaya and Uraltseva [285], Gilbarg and Trudinger [200], Skrypnik [493],
[492], Temam [514], [515], Krylov [278], Koshelev [271], Begehr and Wen [51],
Chen and Wu [110], Caffarelli and Cabre [99], Gasinski and Papageorgiou [192],
Ambrosetti and Malchiodi [18], Apreutesei [24], Drabek and Milota [135].

It should be noted that during the last several decades the number of papers
devoted to nonlinear elliptic problems has grown exponentially, doubling every ten
years (see the concluding remarks below). The order of magnitude for the next
decade can be thousands of papers every year. A possible way to face this situation
is to introduce a unified system of key words used in all papers.

6 Concluding remarks

The theory of elliptic partial differential equations developed over about two and
a half centuries. After some initial period when the foundation of this theory
was established, it had an important development from the last quarter of the
XIXth century till the middle of the XXth century: new methods of analysis were
suggested and the theory of linear equations was basically created. The next stage
of this development, which continues nowadays, is characterized by the intensive
investigation of various nonlinear problems. The main methods to study nonlinear
problems were proposed already in the 1930s. However, a boisterous development
of this field began in the 1960s. Taking into account the exponential growth of the
number of papers (see the tables below), we can expect that it will continue for
at least several decades more.

Mathscinet, the database of the American Mathematical Society provides an
interesting tool to analyze the evolution of this field. The following tables show
the number of publications in all fields of mathematics and in elliptic equations
(as of February 2010).

years all mathematics ell. eq. (∗) 35J prim/second % of all math.

1960–69 161169 1514 37 (∗∗) −
1970–79 316336 3419 3390 1.08
1980–89 474302 5910 7572 1.60
1990–99 600225 7483 11419 1.90
2000–09 776871 9220 17385 2.24

(∗) “elliptic equation” or “elliptic system” or “elliptic operator” or “elliptic problem”

(∗∗) such a low number is probably because this classification was only recently intro-
duced
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The number of mathematical papers published in 1960–1969 and in 2000–2009
increased almost five times. At the same time, the world population increased
only twice, from 3 bln in 1960 to 6 bln in 2000. From 1970–1979 to 2000–2009 the
number of all mathematical papers increased about 2.5 times, the number of papers
on elliptic equations (35J) about 5.5 times. Thus, the number of mathematical
papers grows approximately twice as fast as the world population, the number of
papers on elliptic equations twice as fast as of all mathematical papers.

One of the most rapidly expanding topics in mathematics is nonlinear elliptic
equations.

years 35J primary 35J6* primary (∗) 35J ‘and’ nonlinear

1960–69 35 3 2
1970–79 2286 456 356
1980–89 4087 1506 1026
1990–99 5551 2889 1653
2000–09 9493 5802 3089

(∗) 35J60 – Nonlinear elliptic equations,
35J61 – Semilinear elliptic equations,
35J62 – Quasilinear elliptic equations,
35J65 – Nonlinear boundary value problems for linear elliptic equations,
35J66 – Nonlinear boundary value problems for nonlinear elliptic equations,
35J67 – Boundary values of solutions to elliptic equations.

The AMS subject classification 35J6* contains almost exclusively nonlinear
equations. The classification number 35J67 (primary), for which this may not
be the case, concerns only about one hundred papers for all years. It does not
have much influence on the statistics. Though 35J6* is not the only classification
number for nonlinear equations, its evolution shows the general tendency. The
number of papers from 1970–1979 to 2000–2009 increased about 13 times. During
the last three decades the number of papers has approximately doubled every ten
years. A system of unified key words can help to structure and to manage this
avalanche of works.

The number of publications or citations in a given field are not the only
criteria of its importance. If the theory of Fredholm operators has been almost
completely developed, properties of linear and nonlinear non-Fredholm operators
are not yet sufficiently well studied and will require further investigations. It seems
to be one of the most important open questions in analysis.
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analytique des solutions des équations du type elliptique sans l’emploi des
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[183] I. Fredholm. Sur une nouvelle méthode pour la résolution du problème de
Dirichlet. Öfversigt af Kongl. Vetenskaps–Akad. Förhandlingar, Arg.57, No.
1, Stockholm, 39–46.

[184] I. Fredholm. Sur une classe d’équations fonctionnelles. Acta Math., 27
(1903), 365–390.

[185] R.S. Freeman. On the spectrum and resolvent of homogeneous elliptic dif-
ferential operators with constant coefficients. Bull. Amer. Math. Soc., 72
(1966), 538–541.

[186] R.S. Freeman, M. Schechter. On the existence, uniqueness and regularity
of solutions to general elliptic boundary-value problems. J. Diff. Equat., 15
(1974), 213–246.

[187] A. Friedman, On two theorems of Phragmén-Lindelöf for linear elliptic and
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planètes. Hist. et Mém. Acad. Sci. Paris, 1782 (1785), 113–196. Oeuvres,
t. 10, Paris, 1894, 341–419.
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[317] J.W. Lindeberg. Sur l’intégration de l’équation ∆u = fu. Annales Scien-
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Nauk SSSR, 109 (1956), 701–703.

[350] V.M. Mikljukov. Asymptotic properties of subsolutions of quasilinear equa-
tions of elliptic type and mappings with bounded distortion. Mat. Sb. (N.S.),
111 (153) (1980), no. 1, 42–66, 159 (Russian).

[351] V.M. Miklyukov. Some peculiarities of the behavior of solutions of minimal
surface type equations in unbounded domains. Mat. Sb. (N.S.), 116 (158)
(1981), no. 1, 72-86 (Russian).

[352] C. Miranda. Equazioni alle derivate parziale di tipo elliptico. Springer-
Verlag, Berlin, 1955.

[353] C. Miranda. Sul problema misto per le equazioni lineari ellittiche. Ann. Mat.
Pura Appl., Ser., 4, 39 (1955), 279–303.

[354] C. Miranda. Teorema del massimo modulo e teorema di esistenza e di unicità
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problems. Colloq. Anal. Fonct. Liège Centre Belge de Rech. Math., 1971,
57–73.

[383] L. Nirenberg. An application of generalized degree to a class of nonlinear
elliptic equations. J. Anal. Math., 37 (1980), 248–275.

[384] L. Nirenberg. Variational and topological methods in nonlinear problems.
Bulletin of the AMS, 4 (1981), No. 3, 267–302.

[385] L. Nirenberg. Partial differential equations in the first half of the cen-
tury. Development of mathematics 1900-1950 (Luxembourg, 1992), 479–515,
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[389] F. Nöther. Über eine Klasse singulärer Integralgleichungen. Math. Ann., 82
(1921), 42–63.

[390] J. Oddson. Phragmén-Lindelöf and comparison theorems for elliptic equa-
tions with mixed boundary conditions. Arch. Rat. Mech. Anal., 26 (1967),
316-334.

[391] O.A. Oleinik, G.A. Iosifyan. The Saint-Venant principle in two-dimensional
theory of elasticity and boundary problems for a biharmonic equation in
unbounded domains. Sib. Mat. Zh., Vol. 19 (1978), No. 5, 1154–1165.

[392] O.A. Oleinik, E.V. Radkevich. Analyticity and theorems of Liouville and
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et appliquées, 4e série, tome 6 (1890), 145–210.

[412] E. Picard. Sur l’équation ∆u = eu. Journal de mathématiques pures et
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