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Preface

The Summer School has been dedicated to one of the proponents and first
Chairman of the Strategy Board of MACSI-net, the late Jacques Louis Lions
(see the dedication by Roland Glowinski).

MACSI-net is a European Network of Excellence, where both enterprises
and university institutions co-operate to solve challenging problems to their
mutual benefit. In particular the network focuses on strategies to enhance
interactions between industry and academia. The aim is to help industry (in
particular SMEs) alert academia about industrial needs in terms of advanced
mathematical and computational methods and tools. The network is multi-
disciplinary oriented, combining the power of applied mathematics, scientific
computing and engineering, for modeling and simulation. It was set up by a
joint effort of ECCOMAS and ECMI European associations.

This particular event, occurred during March 17-22, 2003, was a joint effort
of the Training Committee (chaired by VC) and Industrial Relations Commit-
tee (chaired by JP) to alert both Academia and Industry about the increasing
role of Multidisciplinary Methods and Tools for the design of complex prod-
ucts in various areas of industrial interest. This increasing complexity is driven
by societal constraints to be satisfied in a simultaneous and affordable way.
The mastering of complexity implies the sharing of different tools by different
actors which require much higher level of communication between culturally
different people. The school offered to young researchers the opportunity to
be exposed to the presentation of real industrial and societal problems and
the relevant innovative methods used; the need of further contributions from
mathematics to improve or provide better solutions had also been considered.

Important examples of such interdisciplinary needs came from Environ-
mental problems (pollution of coastal waters due to oil spill, air quality of big
cities, noise reduction, air/ocean interface, etc); Quality of Life (Bioengineer-
ing of tissues and prostheses, air traffic control for safety, Immunology, etc.);
Material science and metallurgy ( polymers, steel, etc); Aeronautics ( multi-
disciplinary design optimisation, including aerodynamic efficiency, drag re-
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duction, aero- and vibroacoustics, aeroelasticity - flutter, thermal flows, UAV
trajectory control, etc)

The need of facing multidisciplinary optimisation methods for multiphysics
problems raises hard problems with respect to the following aspects: Multiple
scales (homogenisation, boundary layers, asymptotics, etc); Variable stochas-
tic geometries (interfaces, domain decomposition, etc); Nonlinear reaction-
advection-diffusion systems; Stochastic differential systems; Innovative inverse
and optimisation algorithms because of multicriteria related to multisystem
approach (evolutionary algorithms such as genetic algorithms, ant systems,
game theory, hybrid methods, etc) ; Optimal control ( level set –Hamilton-
Jacobi– methods, nature inspired methods such as ant systems, hybrid meth-
ods, etc.); Strong coupling of several software (numerical analysis algorithms
and CAD /CAM geometry tools); Mathematical methods for visualisation.

This large spectrum of methods and tools presented during the school
had the scope to emphasise to young researchers, either mathematicians or
engineers, the need to deepen specific areas of competence with the added
value of communication in an interdisciplinary setting; i.e. the vertical exper-
tise in a single discipline has to be revisited in an horizontal multidisciplinary
application area .

This event has performed along the main scopes of MACSI net to stimulate
and increase communication among the academic and the industrial commu-
nities with respect to the strategic goals of EU Framework Programmes, and
in particular to anticipate preparation of young researchers in order to make
them ready to collaborate on multidisciplinary oriented projects.

With respect to the scientific and technological content, the school offered
an unexpected integration of scientific excellence of the speakers on multi-
disciplinary topics covered, and the class of participants who attended all the
lectures with great level of interaction. This brought to a pleasant atmosphere
for exchanging information and cross knowledge. This was also favoured by
the choice of the venue and local hospitality.

Fruitful links have been established between lecturers and young re-
searchers of different European universities for future collaboration.

The volume is divided in two parts; the first part including material of
the lectures delivered by the main lecturers mainly focussing on methods; the
second part including a series of case studies, illustrating the power of multi-
methods in facing challenging complex problems arising in real applications.

We are sure that the quality and diversity of the material presented here
for further dissemination, will be of great use and stimulus , especially among
young scientists.

We hope to have fulfilled the task of contributing to the implementation
of the vision expressed by Professor J.L.Lions in his written address to the
kick off meeting of the MACSInet pointing out the importance of interfaces
in challenging multidisciplinary problems of industry and society.
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Thanks are due to all participants, and in particular to the significant
number of speakers that have so enthusiastically participated in the event.
We are deeply sorry that, for independent bureaucratic reasons, a couple of
relevant contributions could not be included.

We will not forget to thank the Coordinator of the Network, Professor
Robert M. Mattheij, for his continued support (also in the nontrival manage-
ment of the administrative aspects), and of course the European Union for
the financial support of this successful event.

We also wish to thank the assistance of the staff of MIRIAM (the Milan
Research Centre for Industrial and Applied Mathematics), and in particular
of Dr Daniela Morale, without whom the school could impossibly have run so
smoothly.

Vincenzo Capasso (Milano)
May, 2004 Jacques Périaux (Paris)



Dedicated to Jacques-Louis Lions

Ladies and Gentlemen, Dear Mrs Lions

Thank you for attending the “Jacques-Louis Lions Summer School”. Con-
sidering the temperature we have known these last few days calling this event
a Winter School would have been more appropriate. Beside the participants
our thanks go the organizers, namely Vincenzo Capasso and Jacques Peri-
aux, and to their collaborators, for their choice of Montecatini and for the
warm atmosphere they have been able to built in such a very short time. As
many of you know, Professor Jacques-Louis Lions was very found of Italy.
Indeed, some of his most important scientific work was done in collaboration
with celebrated Italian mathematicians such as E. Magenes, G. Prodi, and G.
Stampacchia. He was also a member of the Italian Academy of Sciences and of
the Accademia Pontificia. Concerning J.L. Lions relations with MACSInet let
me say that he was one of the founders of MACSInet, being a strong believer of
the mutual benefits that Industry and Mathematics can bring to each other. I
have the privilege to have been his collaborator for more than thirty years and
I remember his pride when the group he was leading at IRIA (I was then his
deputy) got its first contract from Industry (by the way, it was about solving
the Maxwell equations in a car alternator by a finite element method). A most
famous Italian global scientist, Leonardo da Vinci, said something like: “True
science has to take inspiration from the real world and its results have to be
validated by experiments.” From that point of view, Jacques-Louis Lions was
a true follower of Leonardo in the sense that for him Mathematics (at least
the ones he was doing) had to be related to the real world and, if possible, ap-
plicable not only to one but to several important practical problems. Indeed,
J.L. Lions was a master at going from the particular to the general and the
other way back. At that stage, I cannot resist telling you what Professor J.L.
Lions, V. Capasso and I have in common. What we have in common is CER-
FACS ! (CERFACS stands for European Center for Research and Advanced
Training in Scientific Computing).

In the early 90’s Professor J.L. Lions was Chairman of the board of CER-
FACS and was looking for a new C.E.O. (Directeur General in French). Since
he liked very much V.Capasso for his warm personality and scientific talents,
he offered him the position. Professor Capasso almost said yes, but ultimately
had to say no for personal reasons. I was offered the position, accepted the
offer, and never regretted it (I kept it during three years after which I decided
to return to the U.S.; I was maybe missing the turbulence associated to the
U.S. president of that time).
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I am pretty sure that J.L. Lions would have loved the program of this
Summer / Winter School since it includes topics on Optimization, Control,
Atmospheric / Ocean coupling, Environmental Sciences, Aerospace, Fluid Dy-
namics, all topics to which he greatly contributed. Professor J.L. Lions’ son,
Pierre-Louis, was supposed to be with us this week, but could not do it for
several reasons, among them:

1) he will have today his first meeting at College de France, a prestigious
institution w here he was elected last year;

2) the second reason is that P.L. Lions has to meet this week with the
scientific advisor of the French president Jacques Chirac to discuss some im-
portant issues related to Science and Technology.

Professor P.L. Lions deeply apologizes for his absence and wishes us good
luck. We have, however, the pleasure and honor to have Mrs. J.L. Lions with
us this week.

A last word: I personally miss Professor Jacques-Louis Lions as do his
former collaborators, students, colleagues, friends, and indeed all of us, since
he was a kind of light-house, in fact a sun (or a star) illuminating the whole
field of Computational and Applied Mathematics.

Montecatini, March 20, 2003

Roland Glowinski
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Lectures



Nonlinear Inverse Problems: Theoretical
Aspects and Some Industrial Applications

Heinz W. Engl1,2 and Philipp Kügler2

1 Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, A–4040 Linz, Austria heinz.engl@oeaw.ac.at

2 Institut für Industriemathematik, Johannes Kepler Universität, A–4040 Linz,
Austria kuegler@indmath.uni-linz.ac.at

1 Introduction

Driven by the needs from applications both in industry and other sciences,
the field of inverse problems has undergone a tremendous growth within the
last two decades, where recent emphasis has been laid more than before on
nonlinear problems. This is documented by the wide current literature on reg-
ularization methods for the solution of nonlinear ill-posed problems. Advances
in this theory and the development of sophisticated numerical techniques for
treating the direct problems allow to address and solve industrial inverse prob-
lems on a level of high complexity.

Inverse problems arise whenever one searches for causes of observed or de-
sired effects. Two problems are called inverse to each other if the formulation
of one problem involves the solution of the other one. These two problems
then are separated into a direct and an inverse problem. At first sight, it
might seem arbitrary which of these problems is called the direct and which
one the inverse problem. Usually, the direct problem is the more classical
one. E.g., when dealing with partial differential equations, the direct problem
could be to predict the evolution of the described system from knowledge of
its present state and the governing physical laws including information on all
physically relevant parameters while a possible inverse problem is to estimate
(some of) these parameters from observations of the evolution of the system;
this is called ”parameter identification”. Sometimes, the distinction is not so
obvious: e.g., differentiation and integration are inverse to each other, it would
seem arbitrary which of these problems is considered the direct and the in-
verse problem, respectively. But since integration is stable and differentiation
is unstable, a property common to most inverse problems, one usually consid-
ers integration the direct and differentiation the inverse problem. Note also
that integration is a smoothing process, which is inherently connected with
the instability of differentiation.
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Other important classes of inverse problems are

• (Computerized) tomography (cf. [Nat86]), which involves the reconstruc-
tion of a function, usually a density distribution, from values of its line
integrals and is important both in medical applications and in nondestruc-
tive testing [ELR96b]. Mathematically, this is connected with the inversion
of the Radon transform.

• Inverse scattering (cf. [CK92], [Ram86]), where one wants to reconstruct
an obstacle or an inhomogeneity from waves scattered by those. This is a
special case of shape reconstruction and closely connected to shape opti-
mization [HN88]: while in the latter, one wants to construct a shape such
that some outcome is optimized, i.e., one wants to reach a desired effect,
in the former, one wants to determine a shape from measurements, i.e.,
one is looking for the cause for an observed effect. Here, uniqueness is a
basic question, since one wants to know if the shape (or anything else in
some other kind of inverse problem) can be determined uniquely from the
data (”identifiability”), while in a (shape) optimization problem, it might
even be advantageous if one has several possibilities to reach the desired
aim, so that one does not care about uniqueness there.

• Inverse heat conduction problems like solving a heat equation backwards
in time or “sideways” (i.e., with Cauchy data on a part of the boundary)
(cf. [ER95], [BBC85]).

• Geophysical inverse problems like determining a spatially varying density
distribution in the earth from gravity measurements (cf. [ELR96a]).

• Inverse problems in imaging like deblurring and denoising (cf. [BB98])
• Identification of parameters in (partial) differential equations from interior

or boundary measurements of the solution (cf. [BK89], [Isa98]), the latter
case appearing e.g. in impedance tomography. If the parameter is piecewise
constant and one is mainly interested in the location where it jumps, this
can also be interpreted as a shape reconstruction problem (cf. [IN99]).

Detailed references for these and many more classes of inverse problems can
be found e.g. in [EHN96], [Eng93], [EG87], [Gro93], [Lou899], [Kir96], [Hof99],
[CER90].

The mathematical formulation of inverse problems leads to models that typi-
cally are ill-posed: According to Hadamard, a mathematical problem is called
well-posed if

- for all admissible data, a solution exists,
- for all admissible data, the solution is unique and
- the solution depends continuously on the data.

If one of these properties is violated, the problem is called ill-posed. Neither
existence nor uniqueness of a solution to an inverse problem are guaranteed.
As mentioned, non-uniqueness is sometimes of advantage, then allowing to
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choose among several strategies for obtaining a desired effect. In practical
applications, one never has exact data, but only data perturbed by noise are
available due to errors in the measurements or also due to inaccuracies the
model itself. Even if their deviation from the exact data is small, algorithms
developed for well-posed problems then fail in case of a violation of the third
Hadamard condition if they do not address the instability, since data as well
as round-off errors may then be amplified by an arbitrarily large factor. In
order to overcome these instabilities one has to use regularization methods,
which in general terms replace an ill-posed problem by a family of neighboring
well-posed problems.

In this survey paper, we concentrate on regularization techniques for solv-
ing inverse and ill-posed problems that are nonlinear. We formulate these
problems in functional analytic terms as nonlinear operator equations. Nev-
ertheless, we start with the theory for linear problems in order to familiar-
ize the reader with basic properties and definitions, then also relevant for
the discussion of nonlinear problems. The latter will address both theoretical
and computational aspects of two popular classes of regularization methods,
namely Tikhonov regularization and iterative techniques. Finally, we present
in some detail examples for nonlinear inverse problems appearing in iron and
steel production as well as in quantitative finance and show how regularization
methods were used for solving them in a numerically stable way.

2 Regularization Methods

A prototype for linear inverse problems are linear integral equations of the
first kind such as ∫

G

k(s, t)x(t) dt = y(s) (s ∈ G) (1)

with k ∈ L2(G × G), y ∈ L2(G). A case of special importance is that k actu-
ally depends on s − t, i.e., y is a convolution of x and k; solving (1) is then
called deconvolution. For this and a collection of other linear inverse prob-
lems from various application fields we refer to [Eng93]. A simple parameter
identification problem serves as our prototype example of a nonlinear inverse
problem: In physical or technical applications, the physical laws governing the
process may be known in principle, while actual values of some of the phys-
ical parameters in these laws are often unknown. For instance, in describing
the heat conduction in a material occupying a three dimensional domain Ω
whose temperature is kept zero at the boundary, the temperature distribution
u after a sufficiently long time is modeled by

−∇ · (q(x)∇u) = f(x) x in Ω (2)
u = 0 on ∂Ω,



6 H. Engl, P. Kügler

where f denotes internal heat sources and q is the spatially varying heat con-
ductivity. If one cannot measure q directly, one can try to determine q from
internal measurements of the temperature u or from boundary measurements
of the heat flux q ∂u

∂n . One refers to this inverse problem also as an indirect mea-
surement problem. Parameter identification problems like (2) appear, e.g., in
geophysical applications and in non-destructive material testing. Note that (2)
with unknown q is nonlinear since the relation between this parameter and
the solution u, which serves as the data in the inverse problem, is nonlinear
even if the direct problem of computing u with given q is linear.

Both these inverse problems turn out to be ill-posed, for obtaining a solu-
tion in a (numerically) stable way, one has to develop regularization methods.
We will use (1) and (2) for illustrating regularization for linear and nonlinear
inverse problems, respectively. Regularization methods replace an ill-posed
problem by a family of well-posed problems, their solution, called regularized
solutions, are used as approximations to the desired solution of the inverse
problem. These methods always involve some parameter measuring the close-
ness of the regularized and the original (unregularized) inverse problem, rules
(and algorithms) for the choice of these regularization parameters as well as
convergence properties of the regularized solutions are central points in the
theory of these methods, since only they allow to finally find the right balance
between stability and accuracy (see below).

While the theory of regularization methods for linear ill-posed problems is
by now rather comprehensive, it is still evolving and far from complete in the
nonlinear case. Though we mainly focus on nonlinear inverse problems, we
begin our survey with the theory for linear problems in order to give a first
introduction into basic perceptions and terminologies.

2.1 Linear Inverse Problems

Starting point for our discussion is the operator equation

Tx = y, (3)

where T denotes a bounded linear operator acting between Hilbert spaces X
and Y . As concept of solution we use that of a best-approximate solution,
which is the minimizer of the residual ‖Tx− y‖ , i.e., a least squares solution,
that minimizes ‖x‖ among all minimizers of the residual. Our goal is to ap-
proximate the best-approximate solution of (3) in the situation that the exact
data y are possibly not known precisely and only perturbed data yδ with

‖y − yδ‖ ≤ δ (4)

are available. Here, δ is called the noise level. Note that we use a determin-
istic error concept by assuming a bound in the Hilbert space norm and also
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considering convergence there. A different approach which is followed recently
in connection with ”uncertainty” is to use a stochastic error concept and to
consider convergence with respect e.g. to the Prokhorov metric on a space of
probability measures, see e.g. [EW85], [BB01].

The operator T † which maps the exact data y ∈ D(T †) to the best-
approximate solution of (3) is known as the Moore-Penrose (generalized) in-
verse of T (see, e.g., [Gro77], [Nas76]) and its domain is given by

D(T †) = R(T )
·
+ R(T )⊥.

The Moore-Penrose inverse is bounded, i.e., the problem of determining the
best-approximate solution of (3) is stable if and only if R(T ) is closed. Other-
wise, solving (3) is ill-posed, the first and the third of Hadamard’s conditions
being violated even if we consider the best-approximate solution since D(T †)
is only dense in Y . The range R(T ) is non-closed especially if T is compact
with dimR(T ) = ∞, for which the injectivity of a compact operator T is a
sufficient condition if X is infinite dimensional. Since an integral operator like
the one in (1) is compact under the conditions on k mentioned there, integral
equations of the first kind with non-degenerate kernels are a prototype of ill-
posed problems.

In the ill-posed case, T †yδ cannot serve as a reliable approximation of T †y
due to the unboundedness. Instead, we are looking for a regularized solution
which depends continuously on the noisy data (such that it can be computed
in a stable way) and converges to T †y as the noise level tends to zero with
the regularization parameter properly chosen. We explain the construction of
a regularization method for the important special case of a compact operator
T and refer to [EHN96] for the non-compact situation.

If T is a compact operator, there exists a singular system (σi; ui, vi)i∈N , which
is defined as follows: With T ∗ : Y → X denoting the adjoint operator of T (in-
troduced via the requirement that for all x ∈ X and y ∈ Y , 〈Tx, y〉 = 〈x, T ∗y〉
holds), the (σ2

i )i∈N are the non–zero eigenvalues of the self–adjoint operator
T ∗T (and also of TT ∗), written down in decreasing order with multiplicity,
σi > 0. Furthermore, the (ui)i∈N are a corresponding complete orthonor-
mal system of eigenvectors of T ∗T (which spans R(T ∗) = R(T ∗T )), and the
(vi)i∈N are defined via

vi :=
Tui

‖Tui‖
.

As in the finite–dimensional situation (recall the singular value decomposition
of a matrix), the (vi)i∈N are a complete orthonormal system of eigenvalues of
TT ∗ and span R(T ) = R(TT ∗). This translates into the formulas
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Tui = σivi (5)
T ∗vi = σiui (6)

Tx =
∞∑

i=1

σi〈x, ui〉vi (x ∈ X) (7)

T ∗y =
∞∑

i=1

σi〈y, vi〉ui (y ∈ Y ), (8)

where these infinite series converge in the Hilbert space norms of X and Y ,
respectively; (7) and (8) are called “singular value expansion” and are the
infinite–dimensional analogues of the singular value decomposition.

If (and only if) T has a finite–dimensional range, T has only finitely many sin-
gular values, so that all infinite series involving singular values degenerate to
finite sums. However, if there are infinitely many singular values (the generic
case), they accumulate (only) at 0, i.e.,

lim
i→∞

σi = 0.

Since for y ∈ D(T †), which holds if and only if the Picard Criterion

∞∑
n=1

|〈y, vn〉|2
σ2

n

< ∞

is satisfied, the best-approximate solution of (3) has the series representation

T †y =
∞∑

n=1

〈y, vn〉
σn

un,

we see why (2.1) turns (3) into an ill-posed problem: errors in the Fourier
components of y with respect to vn, i.e., in 〈y, vn〉, are multiplied by 1

σn
, a

factor growing to infinity for n → ∞ due to (2.1) (if dimR(T ) = ∞). Thus,
especially errors in Fourier components of the data for large n, usually termed
as ”high frequency errors”, are strongly amplified. Also, the faster the decay of
the σn, the stronger the error amplification, which also allows to quantify ill-
posedness: one usually distinguishes between mildly, i.e., σn = O(n−α) (with
α > 1), and severely, i.e., σn = O(e−n), ill-posed problems. Although, as we
will see, the connection between the ill-posedness of a nonlinear problem and
of its linearization is not as close as one might expect, this is usually also used
as a (rough) quantification of ill-posedness in the nonlinear situation via the
decay rate of the singular values of the linearization.

Regularization methods now are techniques that can handle these problems.
In the linear compact case, they can be constructed and analyzed based on
the singular value expansion: From (5)–(8) and (2.1) we see that
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T †y =
∞∑

n=1

〈T ∗y, un〉
σ2

n

un

holds. The basic idea for deriving a regularization method is to replace the
amplification factors 1

σ2
n

by a filtered version U(α, σ2
n), where the filter function

U(α, ·) is piecewise continuous on [0, +∞[ for a regularization parameter α > 0
and converges to 1

λ as α → 0. This allows to introduce the regularized solution

xα :=
∞∑

n=1

U(α, σ2
n) · 〈T ∗y, un〉un

or

xδ
α :=

∞∑
n=1

U(α, σ2
n) · 〈T ∗yδ, un〉un

in case of perturbed data yδ fulfilling (4).

The conditions on the family {(U(α, λ), α > 0} under which xα in fact con-
verges to T †y are stated in

Theorem 1. Let, for an ε > 0, U : R+× [0, σ2
1 + ε] → R fulfill the following

assumptions

for all α > 0, U(α, .) is piecewise continuous; (9)
there is a C > 0 such that for all (10)
(α, λ), |λ · U(α, λ)| ≤ C holds

for all λ 	= 0, lim
α→0

U(α, λ) =
1
λ

. (11)

Then, for all y ∈ D(K†),

lim
α→0

U(α, T ∗T )T ∗y = T †y.

holds.

Furthermore, we have the following stability estimate for the regularized so-
lutions:

Theorem 2. Let U be as in Theorem 1, xα and xδ
α be defined by (2.1)–(2.1).

For α > 0, let

gU (α) := sup{|U(α, λ)|/λ ∈ [0, σ2
1 ]}.

Then

‖xα − xδ
α‖ ≤ δ ·

√
CgU (α)

holds.
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Different choices of the filter function U(α, λ) now lead to different regular-
ization methods. The probably simplest choice satisfying the assumptions of
Theorem 1 is

Uα(λ) :=
1

α + λ
,

then leading to Tikhonov regularization

xδ
α =

∞∑
n=1

σn

α + σ2
n

〈yδ, vn〉un = (αI + T ∗T )−1T ∗yδ.

Here, the regularized solution xδ
α can also be characterized in variational form

as minimizer of the functional

x → ‖Tx− yδ‖2 + α‖x‖2, (12)

which allows to carry this method over to nonlinear problems (although the
proofs of its properties are then different since the spectral theoretic founda-
tion is lacking there). Without the additional penalty term α‖x‖2, this would
be called ”output least squares minimization”, but would be unstable. Instead
of α‖x‖2, one uses also penalty terms of the more general form α‖Lx‖2 with
a suitable (usually differential) operator L; the method will then approximate
a least squares solution minimizing ‖Lx‖.

Another widely used method is the truncated singular value expansion with

U(α, λ) =
{

1
λ λ ≥ α
0 λ < α.

This yields

xδ
α =

∑
n=1σ2

n≥α

〈yδ, vn〉
σn

un,

where the small singular values (“high frequencies”) are filtered out by a “low–
pass filter”. This method is in some sense optimal (cf. [EHN96]), but can only
be used if the singular value expansion is readily available. Finally, we consider
the method of asymptotic regularization which is based on the initial value
problem

u′
δ(t) + T ∗Tuδ(t) = T ∗yδ, t ∈ R+

0 , (13)
uδ(0) = 0, (14)

where uδ : R+
0 → X . A motivation for looking at this initial value problem is

that when the solution becomes stationary, it solves the (Gaussian) normal
equation
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T ∗Tx = T ∗y. (15)

Thus, in the noise free case, one expects the solution u of this initial value
problem to tend, as t → ∞, to the best-approximate solution T †y, which is
characterized by (15). The regularized solution is now defined as

xδ
α = uδ(

1
α

)

and can be put into the general framework via

xδ
α = U(α, T ∗T )T ∗yδ

with

U(α, λ) =
∫ 1

α

0

e−λs ds.

The regularization effect in this method is obtained by integrating the initial
value problem not up to infinity but only up to an abscissa 1/α. The method
can also be understood as a continuous version of the iterative Landweber
method to be discussed in Section 2.2 since the latter can be derived from
solving (13) by the forward Euler method with step size α, i.e.,

uδ(t + α) ∼ uδ(t) + αT ∗(yδ − Tuδ(t)). (16)

We will see that there, the regularization is achieved by stopping the itera-
tion at a specific iteration index, which is a discrete analogue to stopping the
integration of (13) early.

In any regularization method, the regularization parameter α plays a cru-
cial role. As can be seen for instance from (2.1), its choice always represents a
compromise between accuracy and stability: if α is too large, the series (2.1)
is truncated too early, leading to a poor approximation of T †y. On the other
hand, if α is chosen too small, possible data errors may already be amplified
too strongly. For choosing the parameter, there are two general classes of op-
tions: A-priori rules define the regularization parameter as a function of the
noise level only, i.e., α = α(δ), while in a-posteriori rules, α depends both
on the noise level and the actual data, i.e., α = α(δ, yδ). An example for the
latter is the so-called discrepancy principle, where α is chosen such that

‖Txδ
α − yδ‖ = Cδ (17)

holds (with some C > 1). Note that in (17) the determination of the param-
eter amounts to solving a nonlinear equation.

One can show (see [EHN96]) that error-free strategies, where α = α(yδ) does
not depend on δ, cannot lead to convergence as δ → 0 in the sense that



12 H. Engl, P. Kügler

lim
δ→0

xδ
α = T †y for all yδ satisfying (4) and all y ∈ D(T †). Since this is only an

asymptotic statement, these techniques may still occasionally work well for a
fixed noise level δ > 0, see [HH93]. However, the knowledge and use of a bound
for the data error as in (4) is necessary for the construction of regularization
methods based on a sound theoretical foundation. The error-free strategies in-
clude the popular methods of generalized cross-validation ([Wah90]) and the
L-curve method ([HO93]); for its non–convergence, see [EG94] and [Vog96].

Crucial questions in applying regularization methods are convergence rates
and how to choose regularization parameters to obtain optimal convergence
rates. By convergence rates we mean rates for the worst-case error

sup{‖xδ
α − T †y‖ | ‖y − yδ‖ ≤ δ}

for δ → 0 and α = α(δ) or α = α(δ, yδ) chosen appropriately. For an ill–posed
problem, no uniform rate valid for all y ∈ Y can be given, convergence of any
method for an ill-posed problem can be arbitrarily slow ([Sch85]), rates can
only be obtained on compact subsets of X (cf. [LY98]), i.e., under additional
assumptions on the solution T †y. For instance, under a source condition (with
ν > 0)

T †y ∈ R((T ∗T )ν), (18)

which can be (due to the fact that usually T is smoothing) thought of as an
(abstract) a–priori smoothness condition, Tikhonov regularization converges
with the rate

‖xδ
α − T †y‖ = O(δ

2ν
1+2ν ) (19)

for the a–priori choice

α ∼ δ
2

1+2ν

and ν ≤ 1. This (as it turns out, optimal under (18)) rate is also achieved with
the a–posteriori parameter choice (17), but only for ν ≤ 1

2 . For a–posteriori pa-
rameter choice rules that always lead to optimal convergence rates see [EG88]
and [Rau84].

The typical total error behavior of a regularization method is shown in Figure
1: the regularization error ‖xα − T †y‖ goes to 0 as α → 0, while the propa-
gated data error ‖xα − xδ

α‖ grows without bound as α → 0. The difficulty in
optimally choosing the regularization parameter is that the curves in Figure
1 are not computable.

For numerically solving an inverse problem, any regularization method has
to be realized in finite-dimensional spaces. In fact, a regularization effect can



Nonlinear Inverse Problems 13

Fig. 1. Typical error behaviour

already be obtained by a finite-dimensional approximation of the problem,
where the approximation level plays the role of the regularization parame-
ter. Projection methods based on this regularizing property contain the least
squares projection, where the minimum norm solution of (3) is sought in
a finite-dimensional subspace Xn of X , and the dual least-squares method,
where (3) is projected onto a finite-dimensional subspace Yn of Y before the
minimum norm solution of the resulting equation is computed, see [Nat77],
[GN88], [Eng82]. However, error estimates for the case of noisy data and nu-
merical experience show that at least for severely ill-posed problems the di-
mension of the chosen subspace has to be low in order to keep the total error
small. Hence, for obtaining a reasonable accuracy, projection methods should
be combined with an additional regularization method, e.g., with one of those
discussed before, see [EN88], [PV90].

Methods which are closely related to regularization methods are mollifier
methods, where one looks for a smoothed version of the solution, cf. [LM90].
Based on these ideas, one can develop methods where solutions of linear in-
verse problems can be computed fast by applying an ”approximate inverse”,
which is usually an integral operator whose kernel, the ”reconstruction ker-
nel”, can be precomputed (see EHN184). This is in turn closely related to
the ”linear functional strategy” from e.g. [And86]. While these are still linear
methods, there are also nonlinear methods for solving linear ill–posed prob-
lems, e.g., the Backus–Gilbert method ([BG67], [KSB88]) and the conjugate
gradient method ([Bra87], [Lou87], [Han95]). For details about these methods
and other aspects we do not touch here (like the non–compact case and nu-
merical aspects in the framework of combining regularization in Hilbert space
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with projection into finite-dimensional spaces) see [EHN96]. We mention in
closing that there is a close connection between regularization and approxi-
mation by neural networks (cf. [BE00] and the references quoted there).

2.2 Nonlinear Inverse Problems

After this first introduction to the field of inverse and ill-posed problems we
now turn to the nonlinear situation. There we will again meet many of the top-
ics mentioned in the previous section, i.e., we will address rules for the choice
of the regularization parameter, observe again the typical error behavior from
Figure 1 and discuss convergence rates. However, since the tools of spectral
theory are no longer available, the construction and especially the analysis of
regularization methods for nonlinear ill-posed problems becomes much harder.

Nonlinear inverse problems can be cast into the abstract framework of non-
linear operator equations

F (x) = y, (20)

where F acts between two Hilbert spaces X and Y . The basic assumptions for
a reasonable theory are that F is continuous and is weakly sequentially closed,
i.e., for any sequence xn ⊂ D(F ), xn ⇀ x in X and F (xn) ⇀ y in Y imply
that x ∈ D and F (x) = y. (cf. [EKN89]). As opposed to the linear case, F is
usually not explicitly given, but represents the operator describing the direct
(also sometimes called ”forward”) problem. Considering for instance the pa-
rameter identification problem (2), the parameter-to-output map F maps the
parameter q onto the solution uq of the state equation or the heat flux q

∂uq

∂n .
In inverse scattering, the operator F maps the shape of a scattering body onto
the scattered far field pattern.

Neither existence nor uniqueness of a solution to (20) are guaranteed. As-
suming for simplicity that the exact data y are attainable ,i.e., that (20)
in fact admits a solution and that the underlying model is thus correct, we
again introduce a generalized solution concept (see [BEGNS94] for the non-
attainable case): For x∗ ∈ X , we call a solution x† of (20) which minimizes
‖x − x∗‖ among all solutions an x∗-minimum–norm solution (x∗ − MNS) of
(20). The element x∗ should include available a–priori information like posi-
tions of singularities in x if they happen to be available and will also be part
of solution algorithms, see below.

In the following, we slur over the issue of uniqueness and consider problem
(20) to be ill-posed if its solution does not depend continuously on the data
y. Although, as mentioned above, the degree of ill-posedness of a nonlinear
problem is frequently characterized via the decay of the singular values of its
linearization, this is not always appropriate: It is shown in [EKN89] that a
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nonlinear ill-posed problem may have a well-posed linearization and that well-
posed nonlinear problems may have ill-posed linearizations. If one accepts a
quantification of ill-posedness via the linearization, then, e.g., inverse scat-
tering is severely ill-posed with σn = O( 1

n!

(
k
n

)
), where k denotes the wave

number (cf. [CK92]). Since the linearization is used in most numerical algo-
rithms, this certainly makes sense.

As in the linear case, compactness of F , together with, e.g., the (local) injec-
tivity of the operator again serves as a sufficient condition for the ill-posedness
of (20), see [EKN89]:

Proposition 1. Let F be a (nonlinear) compact and continuous operator,
and let D(F ) be weakly closed. Furthermore, assume that F (x†) = y and
that there exists an ε > 0 such that F (x) = ŷ has a unique solution for all
ŷ ∈ R(F ) ∩ Uε(y). If there exists a sequence {xn} ⊂ D(F ) satisfying

xn ⇀ x† but xn 	→ x†

then F−1 - defined on R(F ) ∩ Uε(y) - is not continuous in y.

Note that if D(F ) happens to be compact then F−1 is continuous as soon as it
exists due to the Arzela-Ascoli Theorem. This property allows to regularize a
nonlinear ill-posed problem by simply restricting the domain of F to a compact
set; however, this usually does not yield qualitative stability estimates. In
the following, we survey two widely used approaches for solving nonlinear
inverse problems in a stable way, namely Tikhonov regularization and iterative
regularization methods.

Tikhonov Regularization

In Tikhonov regularization, problem (20) with data satisfying (4) is replaced
by the minimization problem

‖F (x) − yδ‖2 + α‖x − x∗‖2 → min, x ∈ D(F ), (21)

where x∗ ∈ X is an initial guess for a solution of (20), motivated from the
linear case, see (12). For a positive regularization parameter α, minimizers
always exist under the above-mentioned assumptions on F but need not be
unique, whence we call any global minimizer of (21) a regularized solution xδ

α.
One can show that xδ

α depends continuously on the data for α fixed and that
xδ

α converges towards a solution of (20) in a set-valued sense with α(δ) → 0
and δ2/α(δ) → as δ tends to zero, see [EKN89].

The basic result on convergence rates for Tikhonov regularization is

Theorem 3. Let x† be an element in the interior of the convex domain D(F ).
Furthermore, let F be Fréchet differentiable with
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‖F ′(x†) − F ′(x)‖ ≤ C‖x† − x‖

in a neighborhood of x†. If there exists an element w ∈ Y satisfying the source
condition

x† − x∗ = (F ′(x†)∗F ′(x†))νw (22)

for some ν ∈ [1/2, 1] with C‖w‖ < 1, then the (a priori) parameter choice

α ∼ δ
2

2ν+1 (23)

yields

‖xδ
α − x†‖ = O(δ

2ν
2ν+1 ).

In (22), F ′(x†)∗ denotes the Hilbert space adjoint of the Fréchet-derivative.
Formally, the source condition as well as the obtained rate correspond to (18)
and (19). Again, (22) is an abstract smoothness condition on the difference
between the true solution x† and the a-priori guess x∗ used in (21), once more
supporting the importance of the choice of the latter. Since (22) also plays
a crucial role in the convergence analysis of iterative regularization methods,
we postpone a further discussion. For the proof and variants of Theorem 3,
see [EHN96].

The disadvantage of rule (23) is that the parameter depends on the smooth-
ness index ν of the exact solution x† which is not known in practice. A slight
variant of Tikhonov regularization which allows to prove the (then no longer
always optimal) rate O(

√
δ) as long as (22) holds with ν ≥ 1/2 for the choice

α(δ) = O(δ2) (now independent of the unknown ν) can also be found in
[EHN96]. Turning to a-posteriori rules, the use of the discrepancy principle,
where α(δ, yδ) is defined as the solution of

‖F (xδ
α) − yδ‖ = Cδ, (24)

is rather problematic since - in the nonlinear situation - problem (24) only
admits a solution under severe additional assumptions, see [KS85]. For a
(quite complicated) a posteriori strategy that always leads to optimal rates
see [SEK93].

In (21), it is not obligatory to use the norm induced by the inner product
in X as penalty term. Other possibilities include maximum entropy regular-
ization

‖F (x) − yδ‖2 + α

∫
Ω

x(t) log
x(t)
x∗(t)

dt → min,

see [EL93], [Egg93], [EL96], [LA96], or bounded variation regularization
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‖F (x) − yδ‖2 + α

∫
Ω

|∇x(t)| dt → min, (25)

which enhances sharp features in x as needed in, e.g., image reconstruction,
see [Rud94], [NS98], [Sch02].

With respect to the numerical implementation of Tikhonov regularization one
can relax the task of exactly solving problem (21) to looking for an element
xδ

α,η satisfying

‖F (xδ
α,η) − yδ‖2 + α‖xδ

α,η − x∗‖2 ≤ ‖F (x) − yδ‖2 + α‖x − x∗‖2 + η

for all x ∈ D(F ) with η a small positive parameter, see [EKN89]. Tikhonov
regularization combined with finite dimensional approximation of X (and of
F , see also Section 2.2) is discussed e.g. in [Neu89], [NS90].

However, finding a global minimizer (even only approximately) to a nonlinear
optimization problem is in general not an easy task. Numerical experience
shows that the functional in (21), which is in general not convex (unlike (12)
in the linear case) has usually many local minima in which a descent method
tends to get stuck if the underlying problem is ill-posed. Since furthermore
the determination of an appropriate regularization parameter α can require
high computational efforts, iterative regularization methods are an attractive
alternative.

Iterative Methods

A first candidate for solving (20) in an iterative way could be Newton’s method

xk+1 = xk + F ′(xk)−1(y − F (xk)), (26)

starting from an initial guess x0. Even if the iteration is well-defined and F ′(·)
is invertible for every x ∈ D(F ), the inverse is usually unbounded for ill-posed
problems (e.g. if F is continuous and compact). Hence, (26) is inappropri-
ate since each iteration means to solve a linear ill-posed problem, and some
regularization technique has to be used instead. For instance, Tikhonov regu-
larization applied to the linearization of (20) yields the Levenberg Marquardt
method (see [Han97])

xk+1 = xk + (F ′(xk)∗F ′(xk) + αkI)−1F ′(xk)∗(y − F (xk)), (27)

where αk is a sequence of positive numbers. Augmenting (27) by the term

−(αkI + F ′(xk)∗F ′(xk))−1αk(xk − x∗)

for additional stabilization gives the iteratively regularized Gauss-Newton
method (see [Bak92], [BNS97])
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xk+1 = xk + (F ′(xk)∗F ′(xk) + αkI)−1[F ′(xk)∗(y − F (xk)) − αk(xk − x∗)].
(28)

Usually, x∗ is taken as x0, but this is not necessary. As (27) and (28), most
iterative methods for solving the nonlinear ill-posed problem (20) are based
on solving the normal equation

F ′(x)∗(F (x) − y) = 0 (29)

via successive iteration starting from x0. Equation (29) is the first-order op-
timality condition for the nonlinear output least-squares problem

1
2
‖y − F (x)‖2 → min, x ∈ D(F ). (30)

Alternatively to Newton type methods like (27) and (28), methods of steepest
descent like the Landweber iteration

xk+1 = xk + F ′(xk)∗(y − F (xk)), (31)

see [HNS95], are used, where the negative gradient of the functional in (30)
determines the update direction for the current iterate. From now on, we shall
use xδ

k in our notation of the iterates in order to take possibly perturbed data
yδ with (4) into account.

In the ill-posed case, due to the instability inherent in (20), it is common
to all iterative methods that the iteration must not be arbitrarily continued.
Instead, an iterative method only then can become a regularization method,
if it is stopped “at the right time”, i.e., only for a suitable stopping index k∗,
the iterate xδ

k∗ yields a stable approximation to the solution x† of (20). Due
to the ill-posedness, a mere minimization of (30), i.e., an ongoing iteration,
leads to unstable results and to a typical error behavior as shown in Figures
2 and 3, compare also to Figure 1. While the error in the output decreases as
the iteration number increases, the error in the parameter starts to increase
after an initial decay.
Again, there are two classes of methods for choosing the regularization pa-
rameter, i.e., for the determination of k∗, namely a-priori stopping rules with
k∗ = k∗(δ) and a-posteriori rules with k∗ = k∗(δ, yδ). Once more, the discrep-
ancy principle, where k∗ now is determined by

‖yδ − F (xδ
k∗)‖ ≤ τδ < ‖yδ − F (xδ

k)‖, 0 ≤ k < k∗, (32)

for some sufficiently large τ > 0 is a widely used representative for the latter.
As opposed to (24) for Tikhonov regularization, (32) now is a rule easy to
implement, provided that an estimate for the data error as in (4) is available.
The discrepancy principle for determining the index k∗ is based on stopping
as soon as the residual ‖yδ −F (xδ

k)‖ is in the order of the data error, which is
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somehow the best one should expect. For solving (20) when only noisy data yδ

with (4) are given, it would make no sense to ask for an approximate solution
x̃ with ‖yδ − F (x̃)‖ < δ, the price to pay would be instability.

Iterative regularization methods are also used for linear inverse problems such
as (3). Some of them then can even be analyzed by means of the general theory
provided by Theorems 1 and 2. For instance, the “linear version” of Landweber
iteration (31), i.e.,

xδ
k+1 = xδ

k + T ∗(yδ − Txδ
k),

see also (16), is represented by the filter function

U(k, λ) =
k−1∑
j=0

(1 − λ)j

with k−1 playing the role of α. However, for nonlinear problems (20) the in-
vestigation of an iterative method is much more complicated and has mostly
to be done for each class of methods individually. Some kind of general frame-
work is provided in [ES00].

Theoretical studies of iterative methods for nonlinear ill-posed problems based
on a fixed point formulation of the nonlinear problem (20) under contractiv-
ity and nonexpansivity assumptions on the fixed point operator can be found
in [Vas87], [Vas92], [VA95], [Vas98]. The Mann iteration and its variants, see
[Man53], [OG69], [Gro72] are further popular methods for solving fixed point
equations. There, the basic principle is to feed the fixed point operator with
an weighted average of the previous iterates. For ill-posed problems, it has
been analyzed in [EL01], [KL03].
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Though it is also possible to formulate the methods (31), (27) and (28)
as fixed point operations, the necessary assumptions on the corresponding
fixed point operators may become too restrictive for a reasonable theory (see
[Sch95], [ES00]) such that also alternative approaches for their investigation
are considered. In [HNS95], the convergence analysis of the Landweber itera-
tion (31) is carried out under the following assumptions: for a ball Bρ(x0) of
radius ρ around x0 with

Bρ(x0) ⊂ D(F ), (33)

the Fréchet-differentiable forward operator F is required to satisfy

‖F (x̃) − F (x) − F ′(x)(x̃ − x)‖ ≤ η‖F (x̃) − F (x)‖, x, x̃ ∈ Bρ(x0) (34)

with η < 1/2. If furthermore, the Fréchet derivative is locally bounded by one,
i.e.,

‖F ′(x)‖ ≤ 1, x ∈ Bρ(x0), (35)

at least local convergence of the iterates xk to a solution of (20) in Bρ/2(q0)
can be guaranteed. Together with (33) these assumptions also guarantee that
all iterates xk remain in D(F ), which makes the iteration well-defined. In
case of noisy data yδ not belonging to the range of F , the iterates xδ

k cannot
converge. Still, condition (34) again forces the iterates xδ

k to remain in D(F )
and allows a stable approximation xδ

k∗ of a solution to (20), provided that the
iteration is terminated after k∗ = k∗(δ, yδ) steps according to the discrepancy
principle (32) with τ satisfying

τ > 2
1 + η

1 − 2η
> 2. (36)

In order to fulfill (35) for a (locally) bounded Fréchet derivative, one eventually
has to rescale (20), i.e., instead to consider

λF (x) = λy. (37)

If λ is chosen appropriately, then (35) holds, while condition (34) is scaling
invariant, meaning that the requirement η < 1/2 cannot be weakened. At
the first glance, condition (34) looks like a standard closeness assumption. In
[HNS95] it is compared to the weaker Fréchet estimate

‖F (x̃) − F (x) − F ′(x)(x̃ − x)‖ ≤ C‖x̃ − x‖2

for a Lipschitz continuous F ′, in [Sch95] even a geometric interpretation is
given. Summarizing, (34) can be seen as a nonlinearity condition on F , actu-
ally requiring that the nonlinearity of F must not be too strong. Note that a
linear operator F clearly would satisfy this condition. However, the conditions
(35) and (34) only yield stability, i.e., the regularized solution xδ

k∗ depends
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continuously on yδ, and convergence, i.e., xδ
k∗ → x† for δ → 0, of the Landwe-

ber method, but not a convergence rate.

As already mentioned, for any iterative regularization method, the rate of
convergence of xk → x† for k → ∞ (in case of exact data) or xδ

k∗ → x† for
δ → 0 may be arbitrarily slow. As in Tikhonov regularization, convergence
rate estimates can only be obtained under a source condition accompanied by
additional assumptions. For Landweber iteration, a typical rate result reads
as (see [HNS95])

Theorem 4. Assume that x† is a solution of (20) in Bρ/2(x0) and that F
satisfies (35), (34) and

F ′(x) = RxF ′(x†), x ∈ Bρ(x0), (38)

where {Rx | x ∈ B(x0)} is a family of bounded linear operators Rx : Y → Y
with

‖Rx̃ − I‖ ≤ C‖x̃ − q†‖, x̃ ∈ Bρ(x0) (39)

for a positive constant C. If x†−x0 fulfills the source condition (22) with some
ν ∈ (0, 1/2] and ‖w‖ sufficiently small, then

‖x† − xδ
k∗‖ = O(δ

2ν
2ν+1 ), (40)

where xδ
k∗ is defined according to the discrepancy principle (32).

Conditions (38) and (39) mean that the derivative of F at any point x ∈
Bρ(x0) can be decomposed into F ′(x†) and an operator which is bounded and
boundedly invertible on the range of F ′(x†), such that for the linearized prob-
lem, the part which changes with the linearization point is well-posed. For a
linear operator F we would have Rx = I, therefore (38) can be considered as
a further restriction on the nonlinearity of F .

The convergence (rate) results for (31) given in [HNS95] are reproven in
[DES98], where the assumptions (38) and (39) are replaced by a Newton-
Mysovskii condition on F , i.e.,

‖(F ′(x) − F ′(x†))F ′(x†)�‖ ≤ CNM‖x − x†‖, x ∈ D(F ). (41)

Here F ′(x†)� denotes a left inverse of F ′(x†). Furthermore, a logarithmic type
source condition

∃w ∈ Y : x† − x0 = gp(F ′(x†)∗F ′(x†))w (42)

with

gp(λ) :=

{(
ln exp(1)

λ

)−p

for 0 < λ ≤ 1
0 else
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is used in [DES98] in order to derive the rate

‖x† − xδ
k∗‖ = O(− ln δ)−p).

The motivation for this is that source conditions of the type (22) are too re-
strictive for problems where the operator F ′(x) is strongly smoothing, i.e., for
severely ill-posed problems. There, (42) is more appropriate since it gives rise
to interpretable conditions and still allows to give a rate estimate, although a
slower one. Discussions of (42) and (2.2) are especially led in [Hoh97] in the
context of severely ill-posed inverse scattering problems. Further variants of
Landweber iteration are discussed in [Sch98] and [Sch95].

In the field of Newton type iteration methods, the Levenberg Marquardt itera-
tion (27) has been analyzed in [Han97]. There, convergence and stability of the
scheme in combination with the discrepancy principle was proven essentially
under the assumption that

‖F (x) − F (x̃) − F ′(x̃)(x − x̃)‖ ≤ C̃‖F (x) − F (x̃)‖‖x − x̃‖ x, x̃ ∈ B(x†),
(43)

if the parameter αk is chosen such that

‖yδ − F (xδ
k) − F ′(xδ

k)(xδ
k+1 − xδ

k)‖ ≤ ρ‖yδ − F (xδ
k)‖

is satisfied with some ρ < 1. A convergence rate result for (27) is still miss-
ing. This is different to the iteratively regularized Gauss-Newton method (28)
discussed [BNS97]. There, the source condition (22) already is needed in or-
der to obtain stability and convergence of the iterates with the sequence of
regularization parameters chosen as

αk > 0, 1 ≤ αk

αk+1
≤ r, lim

k→∞
= 0

for some r > 1. If the iteration is terminated a priori after k∗ steps with

δ ∼ α
ν+1/2
k∗ ,

the Lipschitz continuity of the Fréchet derivative F ′ suffices to prove conver-
gence (rates) with ν ∈ [1/2, 1] in (22) (and in (40)). Using the discrepancy
principle (32) as stopping rule, convergence (rates) for ν ∈ [0, 1/2] are ob-
tained if F satisfies

F ′(x̃) = R(x̃, x)F ′(x) + Q(x̃, x)
‖I − R(x̃, x)‖ ≤ CR x̃, x ∈ B2ρ(x0) (44)
‖Q(x̃, x)‖ ≤ CQ‖F ′(x†)(x̃ − x)‖

with ρ, CR and CQ sufficiently small. Similar to (38) and (39), these condi-
tions guarantee that the linearization is not too far away from the nonlinear
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operator. At first sight, Newton type methods would be considered to con-
verge much faster than Landweber iteration; this is of course true in the sense
that an approximation to a solution of (20) with a given accuracy can be ob-
tained by fewer iteration steps. However, since a single iteration step in (27)
or (28) is more expensive than in (31) and also since the instability shows its
effect earlier in Newton type methods so that the iteration has to be stopped
earlier, it cannot be said that Newton type methods are in general preferable
for ill-posed problems to the much simpler Landweber method.

Nearly all assumptions in the theory sketched above as well as the iteration
schemes themselves are formulated in terms of the Fréchet derivative and
its adjoint operator. We show how Landweber iteration is realized for our
prototype parameter identification problem (2). The ideas presented then also
apply in a similar way to other methods as (27) and (28).

In a first step, we translate the problem into a Hilbert space framework
and therefore consider the underlying partial differential equation in its weak
operator formulation

A(q)u = f̂ (45)

with A(q) : H1
0 (Ω) → H−1(Ω) and f̂ ∈ H−1(Ω) defined by

(A(q)u, v) =
∫

Ω

q(x)∇u∇v dx and(f̂ , v) =
∫

Ω

fv dx.

For a set D(F ) ⊂ X = Hs(Ω) (with s > d/2 where d is the dimension of Ω)
of admissible parameters q, the direct problem (45) admits a unique solution
A(q)−1f̂ ∈ H1

0 (Ω) which will be denoted by by uq in order to emphasize
its dependence on q. If we regard for simplicity the case of distributed L2-
temperature measurements, the parameter identification problem can put into
the form (20) with

F : D(F ) ⊂ X → Y = L2(Ω), q → Euq (46)

and y = Euq† , where E : H1
0 (Ω) → L2(Ω) is the embedding operator.

For given q ∈ D(F ), a formal linearization of the direct problem (45) in
direction p ∈ X yields

A(q)u′
qp = −A(p)uq, (47)

where the right-hand side is due to the linearity of A(·) with respect to q.
Therefore, the Fréchet derivative of (46) is given by

F ′(q) : X → Y, p → Eu′
qp,

where u′
qp ∈ H1

0 (Ω) denotes the solution of (47), i.e.,

u′
qp = −A(q)−1A(p)uq. (48)
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Hence, if we build the inner product in (31) with an arbitrary test function
p ∈ X , the k-th iteration step becomes (where we omit E for reasons of
readability)

(qδ
k+1, p) = (qδ

k, p) + (F ′(qδ
k)∗(yδ − uqδ

k
), p) (49)

(qδ
k+1, p) = (qδ

k, p) + (yδ − uqδ
k
, F ′(qδ

k)p)

(qδ
k+1, p) = (qδ

k, p) − (yδ − uqδ
k
, A(qδ

k)−1A(p)uqδ
k
). (50)

Because of

(yδ − uqδ
k
, A(qδ

k)−1A(p)uqδ
k
) = (A(qδ

k)−1∗(yδ − uqδ
k
), A(p)uqδ

k
),

the iteration can also be written as

(qδ
k+1, p) = (qδ

k, p) − (wk, A(p)uqδ
k
)

= (qδ
k, p) −

∫
Ω

p(x)∇wk∇uqδ
k

dx, (51)

where wk denotes the solution of the linear adjoint problem

A(qδ
k)∗wk = yδ − uqδ

k
. (52)

Hence, each iteration step in (31) requires to solve the direct problem (45) in
order to obtain uqδ

k
and the adjoint problem (52) with the residual yδ −uqδ

k
as

right-hand side. Eventually, the update according to (51) can be numerically
realized as follows: If {p1, p2, ..., pn} is an n-dimensional basis of the parameter
space Xn ⊂ X with qδ

k denoting the vectorial representation of qδ
k, then (51)

means to solve the linear system

Msδ
k = rδ

k,

where M is the Gramian Matrix

M(i, j) = (pi, pj)

and the vector rk is defined via

rδ
k(j) =

∫
Ω

pj(x)∇wk∇uqδ
k

dx,

and to update the parameter via

qδ
k+1 = qδ

k + sδ
k.

Note that the approach (50) would require to solve n linear problems (47),
clearly showing the advantages of (51) which gets by with solving a single
problem (52).
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Returning to our general discussion, we have already indicated with (13) that
some iterative regularization methods can also be derived from certain ini-
tial value problems, which are then in turn called continuous iteration meth-
ods. For nonlinear problems, some of these methods are analyzed and related
to their discrete analogues (especially (28)) in [ARS00] and [KNR02]. The
asymptotic regularization method

u′
δ(t) = F ′(uδ(t))∗(yδ − F (uδ(t)), (53)

see (13), is studied in the nonlinear setting in [Tau94]; it is also called inverse
scale-space method in the context of imaging problems, see [SG01], [Sch03],
[RSW00]. In [LS03], it is shown that (53) applied to (20), where F is the con-
catenation of a forward operator and a certain projection operator, can in fact
be considered as a level set method. Level set methods, see [OF02], [Set99]
have been successfully used for shape reconstruction problems e.g. in [San96],
[OS01], [Bur03], their role as regularization methods for inverse problems has
been analyzed in [Bur01].

As in Tikhonov regularization, a practical realization of an iterative method
requires to take into account that in general the forward operator F can-
not be exactly evaluated due to the nonlinearity and that only a sequence of
approximations Fn with

‖Fn(x) − F (x)‖ ≤ εn, x ∈ Bρ(x†),

is available, where εn denotes a (given) locally uniform approximation quality.
For instance, Fn could represent an iterative solver for the direct problem with
n denoting its iteration index. Then, an obvious question is how to link the
inner iteration, i.e., the approximation level εn, to the index k of the inverse
iteration in an efficient way. Such issues are explicitly addressed by multilevel
techniques, see [Sch98b], [DES98] and [Ram99]. The basic principle is to start
the iteration scheme on a rather rough approximation level in order to initially
keep the computational efforts low. Of course - for actually approximating a
solution of (20) - the quality of Fn has to be gradually increased, and in order
to guarantee the desired regularization properties, the choice of εn has to be
closely coupled to the outer iteration index k and the noise level of the data.
A methodically different approach that is also based on a hierarchy of differ-
ent approximation levels is to solve (20) (directly) via multigrid methods, see
[Kin92], [Kal01].

Not only the evaluation of F but also that of F ′ and of its adjoint opera-
tor may cause computational problems and hence call for modifications of
standard iteration methods. Especially in case of an already nonlinear direct
problem, the basic assumptions of the convergence theory, which all involve
F ′, may become too restrictive, or the adjoint problem gets too complicated
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though it is linear. Hence, one might think of replacing F ′ in the iteration
process by another linear operator which is easier to handle. Based on this
idea, the convergence analysis of an iterative method related to the Landwe-
ber method (31) has been performed in [Sch95] with a modification of the
nonlinearity condition (34). In the context of distributed parameter identifi-
cation, an iteration operator is constructed in [Küg03] such that the desired
regularization properties already follow from the unique solvability of the di-
rect problem and the differentiability assumptions on F get redundant. This
also might serve as a basis for the development of iterative routines for the
identification of parameters that appear in variational inequalities, which is a
prime example for a nonlinear and non-differentiable inverse problem.

3 Some Industrial Applications

In this section, we report about some inverse problems posed by industrial
partners; the companies involved in the first two projects, which are connected
with iron and steel making, were VOEST Alpine Stahl and VAI, both global
players based in Linz. We close with a current example from quantitative
finance. All problems are nonlinear inverse problems and have been attacked
with regularization methods as described in this paper. Although usually,
practical problems are too complicated for an application of a mathematical
theory in a way where all the assumptions can be checked, a sound theory is
indispensable in order to know what effects are to be expected and how to
tackle them. This is especially true for the instabilities associated with inverse
problems: only a sound theory can act as a guideline on how to solve inverse
problems in a stable and efficient way.

3.1 Determining the Inside Lining of an Iron Making Furnace

Our first example is concerned with the determination of the inside lining of
a furnace from temperature measurements in its wall (cf. [RW98]). The blast
furnace process is still the most important technology for producing iron from
ore, although more recent alternative like the COREX process are available
(cf. [Sch00] for a discussion of a mathematical model for this process, which
is an adaptation of the kinetic model of the blast furnace process discussed in
See [DZSKFES98], see also PATENT PCT/EP00/01463).

Due to variations in the working conditions of the furnace, slag may de-
posit on its sides and on its bottom, increasing the thickness of the lining. At
the same time, the wall of the blast furnace is subject to physical and chemical
wear, that the resulting erosion of the bricks causes the thickness of the lining
to decrease. Therefore, the inner contour of the furnace has to be observed
in order to avoid a breakthrough which would cause extensive damage and
would also be highly dangerous. On the other hand, one should not stop the
process before it is actually necessary for obvious economic reasons.
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A direct observation of the wall from the inside of the furnace is obviously
impossible, the temperatures inside being up to 1500◦C. Hence, one has to
reliably calculate the thickness of the wall in order to stop the process at the
right time. For that purpose, temperature and heat flux measurement devices
are placed inside the wall when the lining is bricked. Based on these measure-
ments, one wants to calculate the shape of the wall on the inner, inaccessible
side of the furnace.

The problem is an inverse heat conduction problem and is severely ill-posed.
The first step is the development of a mathematical model that allows the nu-
merical simulation of the process, i.e., a model for the direct problem. Since
the furnace is (essentially) rotationally symmetric, the wall of the furnace in
the region considered can be modeled in cylindrical coordinates. The (prac-
tically justified) assumptions of stationarity (due to the long time scales of
changes in the shape of the inner lining)and rotational symmetry lead to the
following nonlinear elliptic equation in the radial and height variables (the
temperature u does not depend on the angular variable):

∂

∂r
(λ

∂u

∂r
) +

λ

r
· ∂u

∂r
+

∂

∂z
(λ

∂u

∂z
) = 0 in Ω, (54)

where Ω denotes a radial cross-section of the wall (see Figure 4) with the
boundary Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.
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Fig. 4. Sketch of the furnace: two-dimensional, rotationally symmetric
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The heat conductivity depends on the material, which changes over Ω
(since Ω is covered by different types of brick and possibly slag), and hence
on position, and also on the temperature:

λ = λ(r, z, u).

This temperature-dependence cannot be neglected and makes even the direct
problem nonlinear. Due to rotational symmetry and the fact that the lining
continues past Γ3, we have the boundary conditions

∂u

∂n
= 0 on Γ1 and on Γ3.

The outer surface is cooled by water with temperature Tw, which leads to the
boundary condition

−λ
∂u

∂n
= α0 · (u − Tw) on Γ4

with a (measurable) heat transfer coefficient α0. At the inner surface of the
wall, an analogous condition

−λ
∂u

∂n
= α · (u − Ti) on Γ2 (55)

holds, where the heat transfer coefficient α depends on the actual material
present at Γ2 and Ti is the interior temperature of the furnace (i.e., of molten
iron).

Now, if Γ2, i.e., the shape of the inside lining, and hence Ω were known, we
could solve the direct problem (54)-(55) in order to compute the temperature
field u in Ω. Especially, we could predict the temperatures

ũj := u(xj), j ∈ {1, · · · , m} (56)

measured by thermo couples located at finitely many points xj ∈ Ω. In other
words, given Γ2, we could evaluate the nonlinear forward operator

F : Γ2 → ũ. (57)

The inverse problem now is to determine the inner contour Γ2 and hence Ω
from measurements of ũj .

For this problem, which could also be viewed as a shape reconstruction prob-
lem, the issue of uniqueness is of relevance since one wants to find a unique
inner lining which gives information about the current status of the furnace,
and not several (or even infinitely many) possible inner contours. In the setup
based on (57) uniqueness cannot be expected, since only finitely many data
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ũ1, · · · , ũm are available for the determination of the curve Γ2. One could con-
sider the corresponding infinite-dimensional problem of determining Γ2 from
temperature values at a whole curve inside Ω or, which is more practical, de-
scribe Γ2 by finitely many parameters. In [RW98], Γ2 has been described by
the distances pi from the outer contour Γ4 along the skeleton lines (see Figure
4). If we denote, for p = (p1, · · · , pn), by up the temperature field according to
(54)-(55) with Γ2 (and hence Ω) determined by p, then our inverse problem
can be reformulated as the least squares problem

Φ(p) :=
m∑

j=1

(up(xj) − ũj)2 → min ., p ∈ C, (58)

where C symbolizes constraints on p, see [RW98]. But even in this formula-
tion the lack of uniqueness remains: Figure 5 shows two domains Ω which
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Fig. 5. Two possible solutions, the first one being not very realistic, while the
second one is physically reasonable

are markedly different, but nearly yield the same value for Φ. This example
indicates not only non-uniqueness, but also the inherent instability of the prob-
lem. In order to deal with this situation, the optimization problem (58) has
to be regularized and - based on physical considerations - a-priori smoothness
requirements for Γ2 have to be incorporated. In [RW98], Tikhonov regular-
ization has been applied for stably solving the inverse problem and the least
squares minimization problem (58) has been replaced by

m∑
j=1

(up(xj) − ũj)2 + α

n+1∑
j≡1

(ψj(p) − ψj−1(p))2 → min ., p ∈ C.

Thereby, ψ0(p) = ψn+1(p) = π
2 and ψj(p)(j = 1, · · · , n) denotes the an-

gle between the j-tn skeleton line and Γ2 (see Figure 4). This regularization
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term penalizes oscillations in Γ2 as those shown in the left picture of Figure
5 and enforces uniqueness. Figure 6 illustrates the results obtained by this
regularization method for simulated data.

In each picture, the boxes show the measurement points, the dashed line
is the starting contour, the continuous line denotes the regularized solution
and the third line (-·-)is the “true solution ”. The latter was used to gener-
ate the data before they were corrupted by 10 % noise. These calculations,
which were done for tuning the regularization parameter by experiment, show
that without regularization, no useful solution can be obtained, while regular-
ization yields quite good results (in consideration of the high noise level).
The value α = 1225 has then been used for solving the inverse problem
with the real world data from the industrial company supposed to be of the
same noise level. Of course, this shows the discrepancy between theory and
practice: In the preceding sections, we wrote about strategies for determin-
ing the regularization parameter, and now we say that we used a value of
1225.
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Fig. 6. Solutions with simulated data and different regularization parameters, 10%
noise
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The fact is that in a real practical situation like here, one frequently has
too little information (especially about the noise level) to actually use the nice
methods provided by the theory. As said above in connection with ”error free
strategies”, one should not try to solve an inverse problem without any idea
about the noise level. In the problem just described, one might have and will
then use a rough upper bound for the noise level; but with such a rough bound,
a regularization parameter based on an a-posteriori strategy will probably
not be better than one determined by numerical experiments with simulated
data, which is what is frequently used in practice. In our opinion this does not
make the mathematical theory superfluous, since the theory indicates what is
important and in which way e.g. a tuning of the regularization parameter by
numerical experiment should be done.

We finally remark that the same practical problem was also treated in
[TMO98] for the simple case of a constant heat conductivity; instead of
Tikhonov regularization, Kalman filtering was used there.

3.2 An Inverse Solidification Problem in Continuous Casting
of Steel

Our example deals with the continuous casting process for the production of
steel, where liquid steel is solidified in a continuous way before the hot rolling
process. This process poses a lot of mathematical modelling and numerical
simulation problems, also inverse problems, about two of which we shortly
report here (cf. [GBEM95]). At the top end of a continuous caster, liquid steel
is cooled in a water–cooled mould to form a solidified shell which can support
the liquid pool at the mould exit. Typical temperatures at the end of the mould
are 1100 ◦C at the strand surface and 1550 ◦C in the center of the strand.
Since steel does not solidify at a fixed temperature, but over a temperature
interval, there is a mushy region where the steel is neither completely solid
nor completely liquid. After the mould, the cooling process is continued in
secondary cooling zones by spraying water onto the strand. Near the point
of final solidification, called the crater end, segregation and thermal stresses
may increasingly occur because of strongly different temperature gradients
in the interior and on the boundary of the strand. These effects would then
drastically decrease the quality of the final product. In order to counteract the
segregation, the strand thickness at the end of the crater is slightly reduced
by compression. For a successful application of this technique named soft-
reduction one has to ensure by an appropriate secondary cooling strategy
that the final solidification takes place within the soft-reduction zone.

Hence, in this inverse problem we have to find the cause, namely the sec-
ondary cooling of the strand by cooling water, for a desired effect, namely
the crater end to remain within the soft-reduction zone all the time or as
long as possible. Here, a unique solution is not necessary since it may even be
of advantage to choose among several cooling strategies. However, the main
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difficulty lies in the fact that in practice the casting speed is not always con-
stant; e.g., when the width is changed, the process is slowed down and then
accelerated again. If the speed changes, no cross-section of the steel strand
can be considered on its own, which significantly increases the complexity of
the problem even though only the location of the crater end has to be con-
trolled. For a constant casting speed, the more general inverse problem of
controlling the whole solidification front by secondary cooling was considered
already much earlier by several industries and their research partners, see e.g.
[EL88] for our contribution. As mentioned, the complexity of the direct (and
hence also the inverse) problem is much lower, since for a constant casting
speed, only one cross section needs to be considered as it runs through the
caster.

Again, the first step is to derive a mathematical model for the direct prob-
lem. In [GBEM95], it is described in Lagrangian coordinates: The strand of
thickness d moves in the casting direction z with the casting speed v(t), y is
the direction of width and x the direction of thickness of the strand in which
the spray cooling takes place. The amount of cooling water with temperature
Uw sprayed in the secondary cooling region enters into the boundary condition
via a heat transfer function g(z, t), furthermore the cooling due to radiation
is considered with Uα denoting the temperature of the surrounding air. The
material parameters of steel primarily relevant for the problem are the ther-
mal conductivity k(u), the density ρ(u) and the specific heat c(u), which all
depend on the temperature u = u(x, z, t). σ is the Stefan–Boltzmann constant
and ε a further material parameter that depends on the steel grade. Under
symmetry assumptions on the cooling and the initial temperature f and under
the (physically justified) neglection of the heat conduction in casting direction,
the temperature field is described by the following spatially two-dimensional
problem

[k(u)ux]x = ρ(u)c(u)ut (59)
u(x, z = −∫ t

0v(τ) dτ, t) = f(x, t) (60)
ux(d/2, z, t) = 0 (61)
k(u(0, z, t))ux(0, z, t) = g(z + ∫ t

0v(τ) dτ, t)(u(0, z, t) − Uw) (62)
+ σε(u4(0, z, t)− U4

a ).

Here, the Eulerian coordinate 0 describes the lower end of the mould which
is passed at time t by the cross–section with Lagrangian coordinate z =
−∫ t

0v(τ) dτ . The temperature f(x, t) at the end of the mould in (60) for this
cross–section can be computed by calculating the temperature in the mould.
It is assumed that at the beginning of the mould there is a constant initial
temperature. The function f depends on time since the casting speed is not
constant, so that different cross–sections remain in the mould for different
amounts of time and thus cool down in a different way. z + ∫ t

0v(τ) dτ is the
Eulerian coordinate of the cross–section with Lagrangian coordinate z at time
t. This is used to compute the cooling for the cross–section z in (62).
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If the material parameters k, ρ and c, the casting speed v and the initial
temperature f are known, the direct problem is to calculate the temperature
field u satisfying (59)–(62) for a given heat transfer function g(z, t). In fact,
the temperature and - as a consequence - the point of complete solidifica-
tion can be determined for each cross section z separately. For mathematical
questions like existence and uniqueness of a solution of (59)–(62) we refer to
[Gre98].

Given a prescribed soft-reduction zone, the inverse problem now is to find
a heat transfer function g such that with this cooling, the resulting solution
of the direct problem is such that the crater end of each cross–section of the
strand remains in the soft–reduction zone. The amount of water sprayed onto
the strand in the secondary cooling zones has to be constant in each cooling
zone (there are typically six cooling zones) for technical reasons but can vary
in time. Therefore, one has to admit piecewise constant, i.e., non–smooth heat
transfer functions g, which makes the mathematical theory even for the direct
problem a bit complicated (see [Gre98]). On the other hand, as a function of
time, g should not jump too often, since each jump reflects a change in the
cooling setup. Furthermore, upper and lower bounds for the total amount of
water sprayed onto the strand have to be taken into account.

Though in the direct problem each cross-section z can be considered sepa-
rately, they have to be treated simultaneously in the inverse problem due to
the varying casting speed. The basic idea now is to penalize cross-sections
that are not in the soft-reduction zone when they become solid, to integrate
the penalties (which are a function of z) over all relevant cross-sections and
then to minimize the resulting functional (which is a function of the heat
transfer function g) over all admissible heat transfer functions g. To make
things more tractable by approximating this non-differentiable functional by
a differentiable one, a differentiable function P with

P (s)
{

= 0 : s ≤ 0
> 0 : s > 0

is introduced; with t(z) denoting the time when the cross-section z passes the
end of the mould and t(z, g) the time of its complete solidification for a given
heat transfer function g, the functional

J(g) =
∫ z2

z1

{
P

(
Lb −

∫ t(z,g)

t(z)

v(τ) dτ

)
+ P

(∫ t(z,g)

t(z)

v(τ) dτ − Le

)}
dz

(63)

is minimized over all admissible heat transfer functions g. Here, Lb is the
beginning of the soft-reduction zone, Le is its end, z1 is the cross-section
that enters the mould at the time after which the casting speed remains



34 H. Engl, P. Kügler

constant again, and z2 is the cross-section that passes the end of the sec-
ondary cooling zone at the time when the casting speed starts to change. The

term P (Lb −
∫ t(z,g)

t(z)

v(τ) dτ) penalizes the cross-section z if it solidifies before

the soft-reduction zone, the second term penalizes a solidification after Le.
Note that computing J involves solving the direct problem and is hence time-
consuming:a single evaluation of the functional (63) requires to solve many
direct problems (59)–(62).

Since the practically relevant heat transfer functions are piecewise constant
both in space and time (there are only finitely many prescribed times when
a change in cooling can be made), the inverse problem finally leads a finite-
dimensional nonlinear optimization problem with bounds for the variables,
which also serves as some regularization of the problem. However, if the num-
ber of degrees of freedom is more than just a few, this regularization alone is
not enough to remove the instability. In [GBEM95], the optimization problem
was solved with a Quasi-Newton method, i.e., with an iterative method con-
sidered as a regularization method with an appropriate stopping rule, where
for the efficient computation of the search direction the adjoint method was
used. Figure 7 shows an example where the casting speed is increased from
1.8 to 3.2 m/min within about 10 minutes. At the beginning of the process
a rather low cooling rate suffices to keep the crater end in the soft-reduction
zone. After the acceleration of the strand speed, only a significantly higher
cooling rate allows to hold the crater end in the desired region.

Fig. 7. The strand and computed cooling strategies

The next question that arose in the practical problem was how the heat
transfer function g actually depends on the water flow rate - in the following
denoted by q - which is the quantity which can be used to control the process
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in practice, while g is only a mathematical quantity not directly available in
practice. While in the first phase of the project, g was considered as g =
g(z +

∫ t

0 v(τ)dτ, t) and values from the literature were used, this turned out
not to be accurate enough for practical purposes. Hence, we were asked to
consider the problem of actually determining the connection between g and
q, again an inverse problem about which we report in more detail in [CE00]:
The heat transfer function g in the boundary condition (62) is set up as

g = g(q) (64)

with the water flow rate having the form

q = q(z +
∫ t

0

v(τ)dτ, t),

and the main focus is laid on the determination of the dependence of g on q
in (64). As data, temperature measurements on the strand surface at differ-
ent cross-sections are available. Since the goal is to estimate a function that
appears in the boundary condition of a nonlinear parabolic equation from
boundary measurements at a later time, this inverse problem can be under-
stood as a combination of a sideways and backwards heat equation and hence
has to be expected to be severely ill-posed.

If we denote by u∗
i the temperature measured at the i-th cross-section and

by ui(g) those predicted by (59)–(62) (with the boundary condition modified
according to (64)) for given g at the measurement point, our problem can be
formulated as finding g ∈ V with

‖F (q)‖2 → min over V, (65)

where F is defined by

F (g) :=

⎛
⎝u1(g) − u∗

1

.
uN(g) − u∗

N

⎞
⎠

and V is a set of functions one considers admissible for g.

Now, the traditional approach in the engineering literature is to represent
g as

g(q) := a · qb

such that only two positive parameters a and b are left to be determined.
However, for real temperature data, i.e., in the presence of data noise, this
exponential ansatz is not appropriate, since it turns out that the parameters a
and b obtained in (65) are highly sensitive to noise and the data set used. Even
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the use of Tikhonov regularization does not improve the results significantly,
there are just too few parameters to match real data both in a reasonably
accurate and stable way. This instability is in fact not primarily associated
with the ill-posedness of the inverse problems, but results from the attempt
to match experimental data with just two parameters.

Hence, in the project reported about in [CE00], we increased the number
of parameters by subdividing the q-interval into M subintervals and to model
g as a piecewise cubic spline in q. But this increase in the number of param-
eters now gives rise to possible instability due to the ill-posed nature of the
inverse problem. Because of this and also since the data were very unevenly
distributed over the water flow rates, i.e., in the q-space, a mere minimization
of the functional in (65) turned out to be problematic. In order to compen-
sate resulting negative effects, more smoothness is enforced by solving the
regularized problem

‖F (g)‖2 + α‖g′′‖2 → min, g ∈ {cubic splines} .

Figure 8, taken from [CE00], indicates that satisfactory results can be obtained

100 200 300

100

200

300

400

500

600

g

q

Fig. 8. Exact (dotted line) and computed heat transfer functions

by this method. For this test using simulated data with simulated noise (inde-
pendent pseudo-random numbers normally distributed in the interval [−5, 5]
were added to the simulated data), M = 4, N = 40 and α = 14.1 were cho-
sen. The same remarks as in the first example apply concerning the relation
between mathematical theory and practice: Reasonable values for the regu-
larization parameter were determined by numerical experiments on carefully
(i.e., theory-based!) chosen examples. The method also worked reasonably
when applied to actual data, meaning that the results were reproducible for
different data sets.
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We close this section by mentioning that similar considerations concerning the
proper modeling of functions are also of relevance for the material parameters
of steel used in the direct problem (59)–(62). Usually, the thermal conductiv-
ity k(u), the density ρ(u) and the specific heat c(u) are either interpolated
between given discrete temperature values or adjusted to them via tuning
of some parameters in physical laws taken from literature. Alternatively, one
could make the full functional dependence of the material parameters on the
temperature u subject of a separate inverse problem. For recent work on the
identification of nonlinearities we refer to [KE02], [Küg03].

3.3 Inverse Problems in Quantitative Finance

One of the fastest growing fields in applied mathematics is computational fi-
nance. The modeling of the fair price of financial derivatives can by now be
considered classic (see [Wil98]). All these by now very refined models contain
parameters like the volatility of the underlying assets, and in recent years,
the problem of identifying such parameters from observed data (e.g., prices of
some derivative products observed in the market)) became .....

To make this presentation reasonably self-contained, we review some basic
facts about mathematical finance: A financial derivative is a contract where
payment is derived from some underlying benchmark like a stock, bond, inter-
est rate or exchange rate. For instance, a European call option on a stock gives
its owner the right (but not the obligation) to buy a specified amount of the
underlying stock at a given date (the maturity T ) for a given price (the strike
K). Similarly, a European put option gives the right to sell, while for Amer-
ican options, the strike cannot be done only at, but also before a specified
date. The correct pricing of such financial instruments requires mathematical
models which reasonably describe the stochastic processes of the underlying,
efficient methods for the calculation of fair prices, which are usually described
by a partial differential equation model (see [BES03] for one approach), and
robust estimates for the coefficients of these PDEs. The prices in the financial
markets, where the derivatives are traded, then serve as data for the identifi-
cation of these coefficients.

In the classical Black Scholes model, see [BS77], the spot price S of an equity
follows a random walk

dS(t) = µS(t)dt + σSdW,

where dW denotes the increment of a standard Wiener process and σ is the
so-called volatility. For the pricing of options on this underlying, the Black
Scholes trick constructs a portfolio whose value evolves risk-free such that the
same return r as that of a risk-free cash account has to be expected. Based
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on these considerations, the value V of a European option can then be shown
to satisfy the (by now famous) Black Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (66)

In order to completely describe the (direct) problem of calculating V for a
given σ, the parabolic differential equation (66) backwards in time is aug-
mented by an end condition and boundary conditions at zero and at infinity.
For the easiest case of European call or put (together called ”vanilla”)) op-
tions, characterized by the terminal conditions

V (T ) = max(S − K, 0) or V (T ) = max(K − S, 0),

analytic solutions of (66) are available. Once the volatility is known, a wide
range of derivatives with the same underlying S can be priced by the use of
equivalents to (66). Hence it is important to find the proper parameter σ.

Given the contract rules of a European vanilla option and its price, the volatil-
ity can even be directly calculated from the analytical solution formula of
(66). Using this implied volatility in (66) then yields exactly the given op-
tion price. However, the market typically observes that the such determined
implied volatility depends on the exercise price K of the option, which is un-
reasonable, and therefore cannot be constant. Based on a duality argument
from [Dup94], where this functional correlation of σ can also be expressed as
a dependence on the spot price S, one possible generalization of the Black
Scholes model is to put up the volatility in (66) as a deterministic function of
S, i.e., σ = σ(S), then denoted as local volatility. Other approaches are based
on modeling σ also as a stochastic process (”stochastic volatility”), see [Shr97].

Since the volatility is not directly observable in the markets, one has to face
the inverse problem of identifying σ from available data such as the prices of
liquidly traded derivatives. Option prices can be observed for different matu-
rities T and strike prices K, i.e., the data take the form Vmarket(Ti, Kj). Such
inverse problems have e.g. been considered in [AFHS97], [CCE00], [Cre03a],
[Cre03b], [BI99], [JSH99], [LO97], [LY01]. In [Egg01], the case of data available
only for single maturity T0 has been studied. With V (T0, Kj) denoting the
solution of the direct problem (66) for different Kj and given local volatility,
the output least squares problem is formulated as

n∑
j

(V (T0, Kj) − Vmarket(T0, Kj))2 → min over Σ. (67)

Here, Σ denotes the set of piecewise cubic interpolating splines used for the
representation of the volatility. As long as there is no noise in the data, the
approach (67) works quite well as indicated by Figure 9: The blue dotted line
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Fig. 9. Simulation results for the volatility

shows the volatility as a function of K recovered from n = 10 market prices of
a European vanilla option (simulated by using the red volatility function). As
expected, the identification is satisfactory as long as we are not too deep in
the money or to deep out of the money (for a call option, these terms refer to
an asset price above or below the strike price, respectively). At the extreme
ends, the option prices do not contain much information and therefore the so-
lution is mainly determined by the initial guess (green). For comparison, also
continuous market data have been used. The violet line demonstrates that the
error introduced by only using discrete data points (and interpolating between
them) is negligible.

However, in practice, there will always be noise in the data, at least in the
order of magnitude of the bid-offer spreads in the option prices. Then, the
situation becomes unstable without regularization as shown in Figure 10.

For (quite small) noise levels of 0.1 and 0.5 percent, the pure minimization
of the functional in (67) leads to oscillating results though the degrees of
freedom are kept low in the spline representation. In order to reduce these
oscillations, Tikhonov regularization is used in [Egg01], where the penalty
term

α(‖σ′‖2 + ‖σ′′‖2),

with ‖·‖ denoting the L2-norm, is added to the objective functional. Figure 11
now illustrates the influence of the regularization parameter: If α is chosen too
small, the main emphasis is still laid on the approximation of the noisy data
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Fig. 10. Simulation results for the volatility without regularization.

0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

goal
s

1
s

2
s

3

Fig. 11. Simulation results for the volatility with Tikhonov regularization.

only possible by means of an oscillating volatility (blue). On the other hand,
for a regularization parameter which is too large, variations in the volatility
are penalized too much (green), too little information is used from the data.
However, if parameter choice strategies like the ones described in the preceding
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sections, based on the noise level obtained e.g. from the bid-offer spread, are
used, a stable and accurate solution can be obtained (violet). In [Egg01], the
theory of Tikhonov regularization including results about convergence rates
is actually applied to this inverse problem, so that the gap between theory
and practice is not as big as in the two problems from iron and steel industry
described above. Similar techniques apply also to interest rates models. E.g.,
for a one-factor model, the underlying differential equation looks like

∂V

∂t
+

1
2
W 2 ∂2V

∂r2
+ (u − λW )

∂V

∂r
− rV = 0,

see e.g. [Wil98], [Reb98]. A special case is the Hull-White interest rate model,
where the ”short rate” r behaves according to

dr(t) = (a(t) − b(t)r(t))dt + σ(t)dW.

For such models, the term ”model calibration” is used for the inverse problem
of identifying some or all of the parameters a(t), b(t) and σ(t) from market
prices of swaps, caps, floors, and swaptions. Given the fast-moving field of
mathematical finance, it is not surprising that these methods have already
found their way into practice: e.g, the pricing software UnRisk (see [Unr])
uses discrete versions of bounded variation regularization, compare to (25) to
obtain robust interest rate model parameters. These parameters can then be
used to price more complex instruments like callable bonds or callable reverse
floaters.
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Introduction

The Navier–Stokes equations have been known for more than a century and
they still provide the most commonly used mathematical model to describe
and study the motion of viscous fluids, including phenomena as complicated
as turbulent flow. One can only marvel at the fact that these equations accu-
rately describe phenomena whose length scales (resp., time scale) range from
fractions of a millimeter (resp., of a second) to thousands of kilometers (resp.,
several years). Indeed, the Navier–Stokes equations have been validated by
numerous comparisons between analytical or computational results and ex-
perimental measurements; some of these comparisons are reported in Canuto
et al. [1], Lesieur [2], Guyon et al. [3], and Glowinski [4].

These notes do not have the pretension to cover the full field of finite ele-
ment methods for the Navier–Stokes equations; they are organized in sections
as follows:

1. The Navier–Stokes equations for incompressible viscous flow
2. Some operator splitting methods for initial value problems and applica-

tions to the Navier–Stokes equations
3. Iterative solution of the advection–diffusion sub–problems and the wave-

like equation method for the advection sub–problems
4. Iterative solution of the Stokes type sub–problems
5. Finite element approximation of the Navier–Stokes equations
6. Numerical results
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1 The Navier–Stokes Equations for Incompressible
Viscous Flow

1.1 Model

Let Ω be an open and connected region (i.e. a domain) of R
d (d = 2 or 3) filled

with a fluid. The generic point of R
d will be denoted by x = {xi}d

i=1 while dx
will denote dx1dx2 and dx1dx2dx3 for d = 2 and d = 3, respectively.

Derivations of the Navier–Stokes equations may be found in, e.g., Prager
[5], Batchelor [6], Guyon et al. [3], Chorin et al. [7], and Glowinski [4]. Here
skipping the details of derivation, we have the following so-called momentum
equation

∂u
∂t

+ (u · ∇)u − ν∆u + ∇p = f in Ω × (0, T ), (1)

and the continuity equation

∇ · u = 0 in Ω × (0, T ) (2)

for unsteady, isothermal flows of incompressible, viscous, Newtonian fluids. In
(1), (2) (and in the following),

1. u = {ui}d
i=1 is the velocity and p is the pressure;

2. ν(> 0) is the (kinematic) viscosity coefficient;

3. ∇ = { ∂

∂xi
}d

i=1, ∆ =
d∑

i=1

∂2

∂x2
i

, u · v =
d∑

i=1

uivi, ∀ u = {ui}d
i=1,

v = {vi}d
i=1,

∇u : ∇v =
d∑

i=1

d∑
j=1

∂ui

∂xj

∂vi

∂xj
, ∀ u, v, |v|2 = v · v, |∇v|2 = ∇v : ∇v;

4. ∇ · v =
d∑

i=1

∂vi

∂xi
, ∀ v, (v · ∇)w = {

d∑
j=1

vj
∂wi

∂xj
}d

i=1, ∀ v, w;

5. f = {fi}d
i=1 is a density of external forces.

Let Γ be the boundary of Ω (here we suppose that Ω is bounded) and let n
be the unit outward normal vector at Γ . Relations (1), (2) are not sufficient
to define a flow; we have to consider further conditions, such as the initial
condition

u(x, 0) = u0(x) (with ∇ · u0 = 0), (3)

and the boundary condition

u = g on Γ × (0, T ) (with

∫
Γ

g · n dΓ = 0). (4)
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The boundary condition (4) is of Dirichlet type; more complicated boundary
conditions are described in, e.g., Glowinski [8], Bristeau et al. [9], and Piron-
neau [10], among them, the following mixed boundary condition which occurs
often in applications

u = g0 on Γ0 × (0, T ), ν
∂u
∂n

− np = g1 on Γ1 × (0, T ), (5)

with
∂u
∂n

= {∂ui

∂n
}d

i=1

(
= {∇ui · n}d

i=1

)
; in (5), Γ0 and Γ1 are two subsets of

Γ satisfying Γ0 ∩ Γ1 = ∅, closure of Γ0 ∪ Γ1 = Γ . Another mixed boundary
condition is

u = g0 on Γ0 × (0, T ), σn = g1 on Γ1 × (0, T ), (6)

with the (stress) tensor σ = 2νD(u) − pI and 2D(u) = ∇u + (∇u)t. The
mixed boundary condition (5) is less physical than (6), but like (6), it is quite
useful to implement downstream boundary conditions for flow in unbounded
regions.

Remark 1. The Dirichlet conditions in (4), (5) and (6) are called no-slip con-
ditions if g = 0 (resp., g0 = 0) on Γ (resp., Γ0) if Γ (resp., Γ0) is not moving.
��

Remark 2. The decrease in the popularity of the solution methods for the
Navier-Stokes equations based on the stream function–vorticity formulation
has been seen in these last years. We see two main reasons for this trend:

(i) These methods are really convenient for two–dimensional flow. The gen-
eralization to three–dimensional flow, although possible, leads to compli-
cated formulations.

(ii) The treatment of the boundary conditions is more delicate than with
the velocity–pressure formulation, particularly for flow in multi–connected
regions.

In this note, we will not discuss the stream function–vorticity formulation for
the Navier-Stokes equations. ��

Remark 3. As today, it is not known if the time dependent Navier-Stokes equa-
tions modeling the unsteady flow of three-dimensional incompressible viscous
fluids have a unique solution. For those readers who may be surprised that
some decisive indications - in one direction or the other - have not been ob-
tained via laboratory or computational experiments we would like to make
the following comments:

(i) The Navier-Stokes equations are just mathematical models (obtained after
idealization) for some real life phenomena. Mathematical modeling cannot
reflect the full complexity of a laboratory experimentation; indeed, it is
practically impossible to reproduce exactly a given experiment in order to
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validate its results by those of another one. We also have to remember
that at large Reynolds numbers (the interesting case) small perturbations
in the data can imply very large differences in the ensuing results.

(ii) Unlike their two-dimensional counterparts, three-dimensional viscous flows
at large Reynolds numbers are not routine yet when it comes to numerical
simulation. They require a lot of computer resources in time and memory.
In order to explore the uniqueness issue it will be necessary to define
significant test problems and store in a large data base the results obtained
by solution methods using different type of space and time discretizations.
We anticipate that this program will take place in the near future and that
parallel computing will play an important role in this endeavor. ��

Remark 4. The mathematical theory of the Navier-Stokes equations for in-
compressible viscous fluids has inspired many investigators. The first rigorous
mathematical results were obtained by J. Leray who proved (in Leray [11])
the existence of solutions when the flow region Ω is the full space R

d with
d = 2 or 3. The Leray’s results were extended to flow regions with boundaries
by Leray himself [12] in 1934 and by E. Hopf [13] in 1951. The methods and
tools developed by the above two authors have proved to be very useful to the
solution of many problems in mechanics, physics, etc., modeled by linear or
nonlinear partial differential equations, many of these problems being outside
the field of fluid mechanics. The results of J. Leray and E. Hopf have been
improved and generalized by several authors (see Leray [14] for an historical
account), one of the most remarkable milestones in that direction being the
proof by J.L. Lions and G. Prodi [15] in 1959 that if the flow region is two-
dimensional (i.e. Ω ⊂ R

2), then the time-dependent Navier-Stokes equations
have a unique solution. The proof of these existence and uniqueness results
and of many others (on the regularity of the solutions, for example) can be
found in the books by, e.g., J.L. Lions (Chapter 10 of [16]), (Chapter 1 of [17]),
Ladysenskaya [18], Temam (Chapters 2 and 3 of [19]), Tartar [20], Kreiss and
Lorenz (Chapters 9 and 10 of [21]), and P.L. Lions (Chapters 2 and 3 of [22]).
Regarding the Handbook of Numerical Analysis an important source of results
(and of methods to obtain them) is the Chapter 1 of Marion and Temam [23].
The above list is far from complete, and the books and articles mentioned
above contain bibliographical references worth consulting. ��

1.2 Variational Formulations of the Navier-Stokes Equations

We return now to the Navier-Stokes equations for incompressible Newtonian
viscous flow. When using σ = 2νd(u) − pi, we have then

∂u
∂t

+ (u · ∇)u − ∇ · σ = f in Ω × (0, T ), (7)

∇ · u = 0 in Ω × (0, T ), (8)
u(0) = u0 (with ∇ · u0 = 0), (9)
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that we complete by the following boundary conditions

u = g0 on Γ0 × (0, T ), σn = g1 on Γ1 × (0, T ); (10)

with Γ0, Γ1 as in Section 1.1.
We define now the functional space V0 by

V0 = {v | v ∈ (H1(Ω))d,v = 0 on Γ0}. (11)

Space V0 is a Hilbert space for the scalar product and norm defined by

(v,w)V0 =
∑d

i=1(vi, wi)H1(Ω), ∀v = {vi}d
i=1,w = {wi}d

i=1 ∈ V0,

||v||V0 = (
∑d

i=1 ||vi||2H1(Ω))
1/2, ∀v = {vi}d

i=1 ∈ V0,

respectively. In the particular case where Γ0 	= ∅ (with
∫

Γ0

dΓ > 0) and Ω is

bounded, we can use over V0 the scalar product and norm defined by

{v,w} −→
d∑

i=1

d∑
j=1

∫
Ω

∂vi

∂xj

∂wi

∂xj
dx =

d∑
i=1

∫
Ω

∇vi · ∇wi dx,

v −→ (
d∑

i=1

∫
Ω

|∇vi|2 dx)1/2,

respectively. Suppose that R and S are two d×d tensors so that R = {rij}, S

= {sij}; from now on we shall use the notation R : S for
d∑

i=1

d∑
j=1

rijsij . With

this notation the above V0-scalar product and norm can be written as∫
Ω

∇v:∇w dx and (
∫

Ω

∇v:∇v dx)1/2,

respectively. For simplicity, we shall use in the sequel the notation |∇v|2 for
∇v:∇v. We suppose now that the functions occurring in the system (7)-(9)
are sufficiently smooth; taking the R

d-dot product of both sides of (7) with
v, an arbitrary element of V0, and then integrating over Ω we obtain from
Green’s formula that for almost any t on (0, T ) we have⎧⎪⎪⎨

⎪⎪⎩

∫
Ω

∂u(t)
∂t

· v dx +
∫

Ω

(u(t) · ∇)u(t) · v dx + 2ν

∫
Ω

d(u(t)) : d(v) dx

−
∫

Ω

p(t)∇ · v dx =
∫

Ω

f(t) · v dx +
∫

Γ1

g1(t) · v dΓ, ∀v ∈ V0,

(12)

to be completed by (8), (9) and
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u = g0 on Γ0 × (0, T ). (13)

The “Neumann” condition σn = g1 on Γ1 × (0, T ) is automatically enforced
by the formulation (12), which is known as a variational formulation of the
momentum equation (7). Actually, it can be shown that relation (12) implies
the momentum equation (7) and the “Neumann” condition σn = g1 on Γ1 ×
(0, T ).

Suppose now that instead of (10) the boundary conditions are given by

u = g0 on Γ0 × (0, T ), ν
∂u
∂n

− pn = g1 on Γ1 × (0, T ). (14)

Multiplying both sides of (1) by v ∈ V0, integrating over Ω and using Green’s
formula we obtain this time that for almost any t ∈ (0, T ) we have

⎧⎪⎨
⎪⎩

∫
Ω

∂u
∂t

(t) · v dx +
∫

Ω

(u(t) · ∇)u(t) · v dx + ν

∫
Ω

∇u(t) : ∇v dx

−
∫

Ω

p(t)∇ · v dx =
∫

Ω

f(t) · v dx +
∫

Γ1

g1(t) · vdΓ, ∀v ∈ V0.
(15)

Conversely, the variational formulation (15) implies the momentum equa-
tion (1) and the generalized Neumann condition ν ∂u

∂n −pn = g1 on Γ1×(0, T ).
The variational formulations (12) and (15) of the momentum equation will

play a fundamental role in the finite element approximation of the Navier-
Stokes problems (7)-(10) and (1)-(3), (5), respectively. We shall return to this
issue. Actually, for the finite element approximations of the above problems,
we shall take advantage of the fact that the incompressibility condition ∇·u =
0 is equivalent to ∫

Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω). (16)

2 Operator Splitting Methods for Initial Value
Problems: Application to the Navier–Stokes Equations

Solving the above Navier-Stokes equations is a non-trivial task for the follow-
ing reasons:

(i) the momentum equation is nonlinear;
(ii) the incompressibility condition ∇ · u = 0;
(iii)solving the Navier-Stokes equations amounts to solve a system of partial

differential equations (d + 1 if Ω ⊂ R
d) coupled through the nonlinear

term (u · ∇)u, the incompressibility condition ∇ · u = 0, and sometimes
through the viscous term and the boundary conditions (as it is the case in
(5) and (6)).
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In the following subsections we will only focus on time discretization by
operator-splitting schemes, mainly the θ–scheme and the Marchuk–Yanenko
scheme (the details of other well-known operator-splitting schemes, such as
Peaceman–Rachford, Douglas–Rachford, alternating directions etc., can be
found in, e.g., Glowinski [4]), which will partly overcome the above difficulties;
in particular, we will be able to decouple the difficulties associated to the
nonlinearity with those associated to the incompressibility condition.

2.1 A Family of Initial Value Problems

We consider the following initial value problem:

dϕ

dt
+ A(ϕ, t) = 0, ϕ(0) = ϕ0, (17)

where, for a given t, A is an operator (possibly nonlinear, and even multival-
ued) from a Hilbert space H into itself and where ϕ0 ∈ H .

Suppose now that operator A has the following nontrivial decomposition
A = A1 + A2 (by nontrivial we mean that A1 and A2 are individually simpler
than A). It is then quite natural to integrate the initial value problem (17) by
numerical methods taking advantage of the decomposition property, A = A1+
A2; such a goal can be achieved by the operator splitting schemes. discussed
in the following subsections.

2.2 A θ–scheme

This scheme, introduced in Glowinski [32] and [33], is a variation of schemes
discussed in Strang [34], Beale and Majda [35], Leveque and Oliger [36]; it is
discussed with further details in Glowinski and Le Tallec [31]. The θ–scheme
to be described below is in fact a variant of the Peaceman–Rachford scheme.

Let θ be a number of the open interval (0, 1
2 ) (in practice θ ∈ (0, 1

3 ));
the θ-scheme applied to the solution of the initial value problem (17), when
A = A1 + A2, is described as follows:

ϕ0 = ϕ0; (18)

then for n ≥ 0, ϕn being known, we compute ϕn+θ, ϕn+1−θ and ϕn+1 as
follows:

ϕn+θ − ϕn

θ∆t
+ A1

(
ϕn+θ, (n + θ)∆t

)
+ A2(ϕn, n∆t) = 0, (19)

ϕn+1−θ − ϕn+θ

(1 − 2θ)∆t
+ A1

(
ϕn+θ, (n + θ)∆t

)
+ A2

(
ϕn+1−θ, (n + 1 − θ)∆t

)
= 0, (20)

ϕn+1 − ϕn+1−θ

θ∆t
+ A1

(
ϕn+1, (n + 1)∆t

)
+ A2

(
ϕn+1−θ, (n + 1 − θ)∆t

)
= 0. (21)
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We consider now the simple situation where H = R
N , ϕ0 ∈ R

N , where A
is an N × N matrix, symmetric, positive definite and independent of t. The
solution of the corresponding autonomous system (17) is then

ϕ(t) = e−Atϕ0. (22)

If one projects (22) over a vector basis of R
N , consisting of eigenvectors of

A, we obtain - with obvious notation -

ϕi(t) = e−λitϕ0i, i = 1, ...N, (23)

where 0 < λ1 ≤ λ2... ≤ λN denote the eigenvalues of A.
In order to apply scheme (18)–(21), we consider the following decomposi-

tion of matrix A

A = αA + βA, (24)

with α + β = 1, 0 < α, β < 1. Applying (18)–(21) with A1 = αA, A2 = βA
yields

ϕn+1 = (I + αθ∆tA)−2(I − βθ∆tA)2(I + βθ′∆tA)−1(I − αθ′∆tA)ϕn,
(25)

where θ′ = 1 − 2θ, which implies

ϕn
i =

(1 − βθ∆tλi)2n(1 − αθ′∆tλi)n

(1 + αθ∆tλi)2n(1 + βθ′∆tλi)n
ϕ0i, ∀i = 1, ...N. (26)

Consider now the rational function R1 defined by

R1(ξ) =
(1 − βθξ)2(1 − αθ′ξ)
(1 + αθξ)2(1 + βθ′ξ)

. (27)

Since

lim
ξ→+∞

|R1(ξ)| = β/α, (28)

we should prescribe the condition

α > β (29)

which is a necessary one for the stiff A-stability of the θ–scheme (18)–(21). To
obtain the unconditional stability we need to have

|R1(ξ)| ≤ 1, ∀ξ ∈ R+;

actually, a closer inspection of the function R1 would show that
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|R1(ξ)| < 1, ∀ξ > 0, ∀θ ∈ [
1
4
,
1
2
), ∀α, β so that 0 <β < α < 1, α + β = 1,

(30)

which implies the unconditional stability of scheme (18)–(21) with respect to
∆t (the lower bound 1

4 in (30) is not optimal for θ, but we shall be satisfied
with it since, as we shall see below, the “optimal” value of θ is 1 − 1√

2
=

0.292893219... > 1
4 ).

Concerning now the accuracy of scheme (18)–(21), we can show that in
the neighborhood of ξ = 0, R1 satisfies:

R1(ξ) = 1 − ξ +
ξ2

2
[1 + (β − α)(2θ2 − 4θ + 1)] + O(1)ξ3. (31)

Comparing (31) to the expansion of e−ξ

e−ξ = 1 − ξ +
ξ2

2
− ξ3

6
+ O(1)ξ4, (32)

we obtain that scheme (18)–(21) is second order accurate if and only if

α = β(=
1
2

from α + β = 1), (33)

and/or

θ = 1 − 1/
√

2 = .292893219...; (34)

scheme (18)–(21) is first order accurate if neither (33) nor (34) holds. If one
takes α = β = 1

2 it follows from (26) and (27) that scheme (18)–(21) is
unconditionally stable, ∀θ ∈ (0, 1

2 ); however, we have (from (28))

lim
ξ→+∞

|R1(ξ)| = 1, (35)

implying that in that particular case scheme (18)–(21) is not stiff A-stable.
Relations (23) show that the larger λi, the faster ϕi(t) converges to zero
as t → +∞; considering now the discrete analogue of (23), namely (26) we
observe that for large values of λi∆t we have R1(λi∆t) ∼ 1, implying that,
in (26), ϕn

i converges slowly to zero as n → +∞; from this property (which is
also shared by the Peaceman–Rachford scheme scheme, the Douglas–Rachford
scheme scheme, and the Crank–Nicolson scheme) we can expect scheme (18)–
(21) with α = β = 1

2 and θ ∈ (0, 1
2 ) to be not well suited (unless ∆t is very

small) to simulate fast transient phenomena and to capture efficiently the
possible steady state solutions of (17) (i.e. the solutions of A(ϕ, +∞) = 0),
if operator A is stiff (the notion of stiffness is defined in, e.g., Crouzeix and
Mignot [30] (pages 86 to 88)).

Let us consider now the case where α and β have been chosen so that we
have the same matrix for all the partial steps of the θ−scheme; in that case
α, β, θ have to satisfy
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αθ = β(1 − 2θ), (36)

which implies

α = (1 − 2θ)/(1 − θ), β = θ/(1 − θ). (37)

Combining (29) and (37) yields

0 < θ < 1/3; (38)

for θ = 1/3, (37) implies α = β = 1/2, a situation which has been discussed
already.

If 0 < θ < 1/3 and if α and β are given by (37) we have

lim
ξ→+∞

|R1(ξ)| = β/α = θ/(1 − 2θ) < 1. (39)

Indeed, we can prove that if θ∗ ≤ θ ≤ 1/3 (with θ∗ = .087385580...)
and if α and β are given by (37), then scheme (18)-(21) is unconditionally
stable; moreover if θ∗ < θ < 1/3 (with α and β still given by (37)), property
(39) implies that scheme (18)-(21) is stiff A-stable and has therefore good
asymptotic properties as n → +∞, making it well suited to compute steady
state solutions.

If θ = 1 − 1/
√

2 (resp., θ = 1/4) we have α = 2 −
√

2, β =
√

2 − 1, β/α =
1/

√
2 (resp., α = 2/3, β = 1/3, β/α = 1/2).

Remark 5. We consider the case where in (17) we have

A(ϕ, t) = B(ϕ) − f(t) with B = B1 + B2. (40)

In order to decide how to decompose f when applying the θ-scheme (18)-(21)
to the solution of the initial value problem⎧⎨

⎩
dϕ

dt
+ B(ϕ) = f,

ϕ(0) = ϕ0,
(41)

we suppose that

f = f1 + f2 (42)

with f1 = αf , f2 = βf , 0 ≤ α, β ≤ 1, α + β = 1, and we assume that B = 0,
for simplicity.

Applying scheme (18)-(21) to the solution of

dϕ

dt
= f, ϕ(0) = ϕ0, (43)

we obtain (with θ′ = 1 − 2θ)
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ϕ0 = ϕ0, (44)

and for n ≥ 0,

ϕn+θ − ϕn

θ∆t
= αf ((n + θ)∆t) + βf(n∆t). (45)

ϕn+1−θ − ϕn+θ

θ′∆t
= αf ((n + θ)∆t) + βf ((n + 1 − θ)∆t) , (46)

ϕn+1 − ϕn+1−θ

θ∆t
= αf ((n + 1)∆t) + βf ((n + 1 − θ)∆t) , (47)

which imply that⎧⎪⎨
⎪⎩

ϕn = ϕ0 + ∆t

n−1∑
q=0

{βθf(q∆t) + α(1 − θ)f ((q + θ)∆t) +

β(1 − θ)f ((q + 1 − θ)∆t) + αθf ((q + 1)∆t)}.
(48)

Since βθ + α(1 − θ) + β(1 − θ) + αθ = 1, the numerical integration rule

which, in (48), approximates
∫ (q+1)∆t

q∆t

f(t)dt, is first-order accurate, at least;

actually, it is second-order accurate, if and only if

α(1 − θ)θ + β(1 − θ)2 + αθ =
1
2
,

or equivalently

(β − α)(2θ2 − 4θ + 1) = 0. (49)

Not surprisingly, we recover from (49) conditions (33) and (34), namely
scheme (44)-(47) is second-order accurate if and only if

α = β =
1
2

(50)

and/or

θ = 1 − 1/
√

2. (51)

Assuming that (51) holds, we can wonder if there are values of α and β for
which scheme (44)-(47) is third-order accurate; this will be the case if and only
if the numerical integration rule in (48) is exact for second degree polynomials,
i.e. if and only if

α(1 − θ)θ2 + β(1 − θ)3 + αθ =
1
3

(52)

with θ = 1 − 1/
√

2 in (52). Taking β = 1 − α into account, it follows from
(52) that
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α(2θ2 − 4θ + 1) = (1 − θ)3 − 1/3.

which implies in turn, since (51) holds, that

0 =
3 − 2

√
2

6
√

2
(53)

which makes no sense. Strictly speaking, therefore, if θ = 1 − 1/
√

2 scheme
(44)-(47) is never third-order accurate, ∀α, β, so that 0 ≤ α, β ≤ 1, α +β = 1.

However, since
3 − 2

√
2

6
√

2
� 2× 10−2 we can say that (52) is “almost” verified,

implying that scheme (44)-(47) is “not far” from being third-order accurate if
θ = 1 − 1/

√
2. Similarly, if α = β = 1/2, we can prove that there is no value

of θ in (0,1/2) so that scheme (44)-(47) is third-order accurate.
From the above results, we suggest to proceed as follows when applying

the θ-scheme (18)-(21) to the solution of the initial value problem (40):
1) If θ 	= 1 − 1/

√
2, use

ϕ0 = ϕ0, (54)

and for n ≥ 0

ϕn+θ − ϕn

θ∆t
+ B1(ϕn+θ) + B2(ϕn) =

1
2
(fn+θ + fn), (55)

ϕn+1−θ − ϕn+θ

(1 − 2θ)∆t
+ B1(ϕn+θ) + B2(ϕn+1−θ) =

1
2
(fn+θ + fn+1−θ), (56)

ϕn+1 − ϕn+1−θ

θ∆t
+ B1(ϕn+1) + B2(ϕn+1−θ) =

1
2
(fn+1 + fn+1−θ). (57)

2) If θ = 1 − 1/
√

2 we can still use scheme (54)-(57), but simpler choices
are provided by

ϕ0 = ϕ0, (58)

and for n ≥ 0

ϕn+θ − ϕn

θ∆t
+ B1(ϕn+θ) + B2(ϕn) = fn+θ, (59)

ϕn+1−θ − ϕn+θ

(1 − 2θ)∆t
+ B1(ϕn+θ) + B2(ϕn+1−θ) = fn+θ, (60)

ϕn+1 − ϕn+1−θ

θ∆t
+ B1(ϕn+1) + B2(ϕn+1−θ) = fn+1 (61)

(which corresponds to {α, β} = {1, 0}) and by

ϕ0 = ϕ0, (62)
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and for n ≥ 0

ϕn+θ − ϕn

θ∆t
+ B1(ϕn+θ) + B2(ϕn) = fn, (63)

ϕn+1−θ − ϕn+θ

(1 − 2θ)∆t
+ B1(ϕn+θ) + B2(ϕn+1−θ) = fn+1−θ, (64)

ϕn+1 − ϕn+1−θ

θ∆t
+ B1(ϕn+1) + B2(ϕn+1−θ) = fn+1−θ (65)

(which corresponds to {α, β} = {0, 1}). ��

2.3 Fractional–step scheme à la Marchuk–Yanenko

Among the many operator–splitting methods which can be employed to solve
(17), we also advocate (following, e.g., Marchuk [29]) the very simple one be-
low; it is only first order accurate, but its low order accuracy is compensated
by easy implementation, less cost in computation, good stability, and robust-
ness properties. We consider the initial value problem (17) with A = A1 + A2

where A1 and A2 are linear and independent of t; we have then (at least
formally)

ϕ(t) = e−(A1+A2)tϕ0. (66)

We consider a time discretization step ∆t(> 0) and denote (n+α)∆t by tn+α.
Then from (66) we have

ϕ(tn+1) = e−(A1+A2)∆tϕ(tn). (67)

Now we suppose that A1 and A2 do not commute. We have then

e−(A1+A2)∆t = e−A2∆te−A1∆t + O(∆t2). (68)

Relation (68) leads to the following first order scheme for the solution of
problem (17):

ϕ0 = ϕ0, (69)

for n ≥ 0, ϕn being known, we compute ϕn+1/2, ϕn+1 via the solution of two
initial value problems below:

dϕ/dt + A1ϕ = 0 on (tn, tn+1), ϕ(tn) = ϕn; ϕn+1/2 = ϕ(tn+1), (70)
dϕ/dt + A2ϕ = 0 on (tn, tn+1), ϕ(tn) = ϕn+1/2; ϕn+1 = ϕ(tn+1), (71)

We consider again the simple situation where H = R
N , ϕ0 ∈ R

N , where A
is an N×N matrix, symmetric, positive definite and independent of t. Applying
(70), (71) with A1 = αA, A2 = βA satisfying α + β = 1, 0 < α, β < 1 and
backward Euler method yields



62 R. Glowinski et al.

ϕn+1/2 − ϕn

∆t
+ αAϕn+1/2 = 0, (72)

ϕn+1 − ϕn+1/2

∆t
+ βAϕn+1 = 0, (73)

and

ϕn+1 = (I + β∆tA)−1(I + α∆tA)−1ϕn

which implies

ϕn
i =

ϕ0i

(1 + β∆tλi)n(1 + α∆tλi)n
, ∀i = 1, ...N.

Hence ϕn
i → 0 as n → ∞ for all α, β satisfying α + β = 1, 0 < α, β < 1. So

the scheme is unconditionally stable. Consider now the rational function R2

defined by

R2(ξ) = (1 + βξ)−1(1 + αξ)−1.

We have

R2(ξ) = 1 − ξ + ξ2(αβ + β2 + α2) + O(1)ξ3.

Comparing the above expansion of R2(ξ) to the expansion of e−ξ in (32), we
obtain that the Marchuk–Yanenko scheme is first order accurate (due to the
way we approximate problem (17) by the two problems (70) and (71)) and
unconditionally stable, at least for the above simple case under consideration.

Remark 6. A second order scheme can be obtained by symmetrization (see,
e.g., Dean and Glowinski [100] and Dean, Glowinski and Pan [101] for the
application of symmetrized splitting schemes to the solution of the Navier-
Stokes equations). ��

Generalizing (72) and (73) to problem (2.1) (with A = A1 + A2) leads us
to:

ϕ0 = ϕ0, (74)

for n ≥ 0, ϕn being known, we compute ϕn+1/2, ϕn+1 as follows:

ϕn+1/2 − ϕn

∆t
+ A1(ϕn+1/2, tn+1) = 0, (75)

ϕn+1 − ϕn+1/2

∆t
+ A2(ϕn+1, tn+1) = 0, (76)

Remark 7. We consider again the case where in (17) we have A(ϕ, t) = −f(t).
As before, we suppose that, that f = f1 + f2 with f1 = αf , f2 = βf and
0 ≤ α, β ≤ 1, α + β = 1.
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Applying scheme (74)-(76) to the solution of

dϕ

dt
= f, ϕ(0) = ϕ0,

we obtain

ϕ0 = ϕ0, (77)

and for n ≥ 0,

ϕn+1/2 − ϕn

∆t
= αf(tn+1), (78)

ϕn+1 − ϕn+1/2

∆t
= βf(tn+1). (79)

which imply that

ϕn = ϕ0 + ∆t
n∑

q=1

f(tq).

Hence the above scheme is first order accurate if f ′ is continuous. ��

2.4 Application to the Navier-Stokes equations

We discuss now the application of the time discretization schemes described
in the above sections to the solution of the time-dependent Navier-Stokes
equations (1)-(3), (5).

Actually, we shall consider application of the θ-scheme, since it is the one
which gives the best results regarding accuracy and convergence to steady-
state solutions. We obtain then the following time discretization scheme (with
0 < α < 1, 0 < β < 1 and α + β = 1) :

u0 = u0; (80)

then for n ≥ 0,un being known, we compute un+θ,un+1−θ and un+1 via the
solution of

un+θ − un

θ∆t
− αν∆un+θ + ∇pn+θ = fn+θ + βν∆un − (un · ∇)un

in Ω, (81)
∇ · un+θ = 0 in Ω, (82)

un+θ = gn+θ
0 on Γ0, αν

∂un+θ

∂n
− npn+θ = gn+θ

1 − βν
∂un

∂n
on Γ1, (83)

and then, of
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un+1−θ − un+θ

(1 − 2θ)∆t
− βν∆un+1−θ + (un+1−θ · ∇)un+1−θ = fn+θ + αν∆un+θ

−∇pn+θ in Ω, (84)

un+1−θ = gn+1−θ
0 on Γ0, βν

∂un+1−θ

∂n
= gn+θ

1 + npn+θ

−αν
∂un+θ

∂n
on Γ1, (85)

and finally, of

un+1 − un+1−θ

θ∆t
− αν∆un+1 + ∇pn+1 = fn+1 + βν∆un+1−θ

−(un+1−θ · ∇)un+1−θ in Ω, (86)
∇ · un+1 = 0 in Ω, (87)

un+1 = gn+1
0 on Γ0, αν

∂un+1

∂n
− npn+1 = gn+1

1

−βν
∂un+1−θ

∂n
on Γ1; (88)

the choice of α and β will be discussed below. We observe that using the
θ-scheme we have been able to decouple the nonlinearity and the incompress-
ibility in the Navier-Stokes equations (1)-(3), (5). We observe also that un+θ

and un+1 are obtained from the solution of linear problems very close to the
Stokes problem ⎧⎪⎪⎨

⎪⎪⎩
−ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g0 on Γ0, ν
∂u
∂n

− np = g1 on Γ1.

(89)

In Sections 3 and 4, we shall describe the specific treatment of the sub-
problems encountered at each step of scheme (80)-(88). Concerning now the
choice of α and β, we advocate the one given by (37); with such a choice many
computer subprograms are common to both the linear and nonlinear subprob-
lems, saving therefore quite a substantial amount of core memory. Concerning
θ, numerical experiments show that θ = 1 − 1/

√
2 seems to produce the best

results, even in those situations where the Reynolds number is large.

Remark 8. Numerical experiments show that there is practically no loss in
accuracy and stability by replacing (un+1−θ ·∇)un+1−θ by (un+θ ·∇)un+1−θ

in (84). This observation has important practical consequences since the fol-
lowing problem
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⎪⎪⎪⎪⎩

un+1−θ − un+θ

(1 − 2θ)∆t
− βν∆un+1−θ + (un+θ · ∇)un+1−θ =

fn+θ + αν∆un+θ − ∇pn+θ in Ω,

un+1−θ = gn+1−θ
0 on Γ0, βν

∂un+1−θ

∂n
= gn+θ

1 + npn+θ − αν
∂un+θ

∂n
on Γ1,

(90)

being linear, is easier to solve than the nonlinear problem (84). ��

Remark 9. Operator splitting methods have always been popular tools for
the numerical simulation of incompressible viscous flow. To be more precise,
the so-called projection methods, which have been used for more than thirty
years now, for solving the Navier-Stokes equations can be viewed as operator
splitting methods. The projection methods can also be viewed as predictor-
corrector schemes, where a predicted value (not necessarily divergence-free)
of the approximate solution at time (n+1)∆t is projected in the L2(Ω)-sense
over an appropriate space of divergence-free functions. We will discuss a pro-
jection method obtained by the scheme à la Marchuk-Yanenko in Section 5.3.
To our knowledge, projection methods for solving the Navier-Stokes equations
have been introduced by Chorin [38] and [39] and Temam [40, 41]; the origi-
nal projection methods contained several drawbacks, concerning particularly
the quality of the approximate pressure at low Reynolds numbers, but, fortu-
nately, these flaws have been essentially eliminated in the modern projection
methods. A concise, but fairly complete introduction to projection schemes
can be found in Quarteroni and Valli [42] (Section 13.5), a more detailed one
being Marion and Temam [23] (Chapter 3). ��

3 Classical and Variational Formulations of the
Advection-Diffusion Subproblems Associated with
the Operator Splitting Schemes

At each full step of scheme (80)-(88) we have to solve a nonlinear elliptic
system of the following type (with Ω, Γ, Γ0 and Γ1 as in Section 1):⎧⎨

⎩
αu− ν∆u + (u · ∇)u = f in Ω,

u = g0 on Γ0, ν
∂u
∂n

= g1 on Γ1,
(91)

where α and ν are two positive constants, and f ,g0 and g1 are three given
functions, defined on Ω, Γ0 and Γ1, respectively. We shall not discuss here the
existence and uniqueness of solution for problem (91), which can be found
in, e.g., Glowinski [4] (Section 15). We consider now the following functional
spaces of Sobolev type:
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H1(Ω) = {ϕ|ϕ ∈ L2(Ω),
∂ϕ

∂xi
∈ L2(Ω), ∀i = 1, ...d}, (92)

H1
0 (Ω) = {ϕ|ϕ ∈ H1(Ω), ϕ = 0 on Γ}, (93)

V0 = {v|v ∈ (H1(Ω))d, v = 0 on Γ0}, (94)

Vg = {v|v ∈ (H1(Ω))d, v = g0 on Γ0}; (95)

if g0 is sufficiently smooth, then space Vg is nonempty.
Using Green’s formula we can prove that for sufficiently smooth functions

u and v belonging to (H1(Ω))d and V0, respectively, we have∫
Γ1

∂u
∂n

· vdΓ =
∫

Ω

∇u : ∇v dx +
∫

Ω

∆u · v dx. (96)

Taking now the dot-product with v of both sides of the first equation (91),
using (96) and taking the boundary conditions in (91) into account we obtain
that if u is a solution of problem (91) belonging to Vg, it is also a solution of
the following nonlinear variational problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u ∈ Vg; ∀v ∈ V0 we have

α

∫
Ω

u · v dx + ν

∫
Ω

∇u : ∇v dx +
∫

Ω

(u · ∇)u · v dx =
∫

Ω

f · v dx

+
∫

Γ1

g1 · vdΓ.

(97)

Actually, the reciprocal property is true and (97) implies (91). Problem
(91), (97) is not equivalent to a problem of the Calculus of Variations, since
v → (v · ∇)v is not the differential of a functional of v; using, however,
a convenient least squares formulation we shall be able to solve the above
advection-diffusion problem by iterative methods from Nonlinear Program-
ming, such as conjugate gradient algorithms.

3.1 Least–Squares Formulation of (91), (97)

Let v ∈ Vg; to v we associate the solution y = y(v) ∈ V0 of

⎧⎨
⎩

αy − ν∆y = αv − ν∆v + (v · ∇)v − f in Ω,

y = 0 on Γ0, ν
∂y
∂n

= ν
∂v
∂n

− g1 on Γ1.
(98)

We observe that y is obtained from v via the solution of d uncoupled linear
elliptic problems (one for each component of y); using (96), it is easily shown
that (98) is equivalent to the linear variational problem
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⎪⎪⎪⎪⎩

y ∈ V0; ∀z ∈ V0 we have

α

∫
Ω

y · z dx + ν

∫
Ω

∇y : ∇z dx = α

∫
Ω

v · z dx + ν

∫
Ω

∇v : ∇z dx

+
∫

Ω

(v · ∇)v · z dx −
∫

Ω

f · z dx −
∫

Γ1

g1 · zdΓ,

(99)

which has a unique solution.
Suppose now that v is a solution of the nonlinear problem (91), (97); the

corresponding y (obtained from the solution of (98), (99)) is clearly y = 0;
from this observation, it is quite natural to introduce the following (nonlinear)
least–squares formulation of (91), (97):{

find u ∈ Vg such that

J(u) ≤ J(v), ∀v ∈ Vg,
(100)

where the functional J : (H1(Ω))d → R is defined by

J(v) =
1
2

∫
Ω

{α|y|2 + ν|∇y|2} dx (101)

with y defined from v by (98), (99). Observe that if u is a solution of (100),
such that J(u) = 0, then it is also a solution of (91), (97).

3.2 Conjugate Gradient Methods for the Solution of Minimization
Problems in Hilbert Spaces

The main goal of this subsection is to discuss the iterative solution of min-
imization problems in Hilbert spaces by conjugate gradient algorithms. For
years, our main sources of information concerning conjugate gradient algo-
rithms have been Daniel [43] and Polak [44], the first reference in particular
since it is also concerned with infinite dimensional problems.

Conjugate gradient algorithms have been introduced by M. Hestenes and
E. Stiefel in the early fifties for the solution of finite dimensional linear systems
associated with symmetric and positive definite matrices (see Hestenes and
Stiefel [45] for details). Since then, these methods have enjoyed considerable
generalizations and have motivated a very large number of publications. The
interested reader may find abundant information on these methods and their
implementation in, e.g., the review articles Freund, Golub and Nachtigal [46],
Nocedal [47] and in the monographs of Kelley [48] (Chapter 2), Saad [49]
(see also the references therein, and Golub and O’Leary [50] for a historical
account).

Conjugate Gradient Solution of Linear Variational Problems in
Hilbert Spaces

We shall discuss first the conjugate gradient solution of the linear variational
problems in Hilbert spaces. We consider:
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(i) V is a real Hilbert space for the scalar product (·, ·) and the associated
norm || · ||;

(ii) a(·, ·) is a bilinear functional from V × V → R, continuous and V-elliptic
(i.e., ∃ α > 0 such that a(v, v) ≥ α||v||2, ∀v ∈ V );

(iii) L is linear and continuous over V .

In this section we make the following additional assumption on the bilinear
functional a(·, ·):{

the bilinear functional a(·, ·) is symmetric,

i.e., a(v, w) = a(w, v), ∀v, w ∈ V.
(102)

If the symmetry property (102) holds, then the linear variational problem{
u ∈ V,

a(u, v) = L(v), ∀v ∈ V,
(103)

has a unique solution by the Lax-Milgram theorem, which is also the solution
of the minimization problem{

u ∈ V,

J(u) ≤ J(v), ∀v ∈ V,
(104)

with
J(v) =

1
2
a(v, v) − L(v), ∀v ∈ V. (105)

Here is a typical example of an above like linear variational problem:
Example 3.1: We consider here the variational formulation of the the homo-
geneous Dirichlet problem, namely⎧⎨

⎩
u ∈ H1

0 (Ω),∫
Ω

∇u · ∇v dx =
∫

Ω

fv dx, ∀v ∈ H1
0 (Ω),

with f ∈ L2(Ω). In this example, we have V = H1
0 (Ω),

a(u, v) =
∫

Ω

∇u · ∇v dx, L(v) =
∫

Ω

fv dx

and
J(v) =

1
2

∫
Ω

|∇v|2 dx −
∫

Ω

fv dx.

Description of the conjugate gradient algorithm.

In order to solve problem (103), (104) we propose the following conjugate
gradient algorithm.
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Step 0: Initialization

u0 ∈ V is given; (106)

solve {
g0 ∈ V,

(g0, v) = a(u0, v) − L(v), ∀v ∈ V,
(107)

and set

w0 = g0.� (108)

For n ≥ 0, assuming that un, gn, wn are known with gn 	= 0 and wn 	= 0,
compute un+1, gn+1, wn+1 as follows

Step 1: Steepest descent
Compute

ρn = ||gn||2/a(wn, wn) (109)

and set

un+1 = un − ρnwn. (110)

Step 2: Testing the convergence and construction of the new descent direc-
tion

Solve {
gn+1 ∈ V,

(gn+1, v) = (gn, v) − ρna(wn, v), ∀v ∈ V.
(111)

If ||gn+1||/||g0|| ≤ ε take u = un+1; else, compute

γn = ||gn+1||2/||gn||2 (112)

and update wn by

wn+1 = gn+1 + γnwn. (113)

Do n = n + 1 and return to (109). �

Despite its apparent simplicity, algorithm (106)-(113) is one of the most
powerful tools of Scientific Computing; it is currently used to solve very com-
plicated problems from Science and Engineering which may involve many
millions of unknowns. Large scale application of the above algorithm will be
found in several parts of these notes.
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Convergence of algorithm (106) . . . (113)

Before discussing the convergence of algorithm (106)-(113), it can be shown
by using the Riesz theorem that problem (103), (104) is equivalent to

Au = l, (114)

where l ∈ V, A ∈ L(V, V ) and verify

L(v) = (l, v), ∀v ∈ V and a(v, w) = (Av, w), ∀v, w ∈ V ;

operator A is an automorphism of V (symmetric since a(·, ·) is symmetric).
Incidentally, we have

α||v||2 ≤ a(v, v) ≤ ||A||||v||2, ∀v ∈ V ; (115)

in (115), the best constant α (i.e., the largest one) is given by 1/||A−1||.
Concerning the convergence of algorithm (106)-(113), we are going to prove

the following:

Theorem 1. Suppose that ε = 0 in algorithm (106)-(113); we have then

lim
n→+∞

||un − u|| = 0, ∀u0 ∈ V, (116)

where u is the solution of problem (103), (104).

PROOF: For clarity, the proof has been divided in two parts.
Orthogonality properties: First, we are going to show that the following or-
thogonality properties hold, as long as we can iterate (i.e., as long as gn and
wn are different from 0 in (106)-(113)):

(gi, gj) = 0, ∀i, j, i 	= j, (117)
(gi, wj) = 0, ∀i, j, i > j, (118)
a(wi, wj) = 0, ∀i, j, i 	= j. (119)

We are going to proceed by induction, assuming first that relations (117)-(119)
hold up to n; let us show that they also hold up to n+1. We start with (117):

We have, from (111) and from (113) (with n replaced by n − 1)

(gn+1, gn) = ||gn||2 − ρna(wn, gn)
= ||gn||2 − ρna(wn, wn − γn−1w

n−1);

using (119) (true up to n) and (109) we obtain

(gn+1, gn) = ||gn||2 − ρna(wn, wn) = 0.

Similarly, we have for j < n
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(gn+1, gj) = (gn, gj) − ρna(wn, gj)

= (gn, gj) − ρna(wn, wj − γj−1w
j−1) = 0.

We have thus shown that if (117) holds up to n, it also holds up to n + 1. �

We consider now the relations (118); operating as above we have

(gn+1, wn) = (gn, wn) − ρna(wn, wn)
= (gn, gn + γn−1w

n−1) − ρna(wn, wn)
= ||gn||2 − ρna(wn, wn) = 0,

and for j < n
(gn+1, wj) = (gn, wj) − ρna(wn, wj) = 0.

We have shown, here also, that if (118) holds up to n, it holds up to n+1. �

Proving similar results for (119) is slightly more complicated; however,
using the relations in algorithm (106)-(113) and the fact that (117), (118)
(resp., (119)) hold up to n + 1 (resp., n) we have

a(wn+1, wn) = a(wn, wn+1) = ρ−1
n [(gn, wn+1) − (gn+1, wn+1)]

= ρ−1
n [(gn, gn+1 + γnwn) − (gn+1, gn+1 + γnwn)]

= ρ−1
n [γn(gn, wn) − ||gn+1||2]

= ρ−1
n [γn(gn, gn + γn−1w

n−1) − ||gn+1||2]
= ρ−1

n [γn||gn||2 − ||gn+1||2] = 0,

and then for j < n

a(wn+1, wj) = a(gn+1 + γnwn, wj) = a(gn+1, wj)
= a(wj , gn+1)
= ρ−1

j [(gj , gn+1) − (gj+1, gn+1)] = 0;

the above relations imply that (119) hold up to n + 1 if it holds up to n. �

To complete the proof of (117)-(119) it suffices to show that these relations
also hold for i = 1 and j = 0. Using the fact that w0 = g0, we have

(g1, g0) = ||g0||2 − ρ0a(w0, g0) = ||g0||2 − ρ0a(w0, w0) = 0,
(g1, w0) = 0.

Concerning now a(w1, w0), we have

a(w1, w0) = a(w0, w1) = ρ−1
0 [(g0, w1) − (g1, w1)]

= ρ−1
0 [(g0, g1 + γ0w

0) − (g1, g1 + γ0w
0)]

= ρ−1
0 [γ0(g0, w0) − ||g1||2]

= ρ−1
0 [γ0||g0||2 − ||g1||2] = 0,

which completes the proof of relations (117)-(119). �

Convergence: We can easily show (by induction, again) that

(gn+1, v) = a(un+1, v) − L(v), ∀v ∈ V.
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If gn+1 = 0 in algorithm (106)-(113), we have therefore un+1 = u (since
problem (103) has a unique solution). Suppose now that wn+1 = 0; it follows
from (113) that

gn+1 + γnwn = 0

which implies in turn (from (118)) that

||gn+1||2 + γn(gn+1, wn) = ||gn+1||2 = 0;

we have thus un+1 = u.
Suppose now that we have gn 	= 0 and wn 	= 0, ∀n ≥ 0; in order to show

that limn→+∞ un = u we consider the difference J(un)− J(un+1); we clearly
have (Taylor’s expansion)

J(un+1) = J(un − ρnwn) = J(un) − ρn(J ′(un), wn) + 1
2ρ2

na(wn, wn)
= J(un) − ρn[a(un, wn) − L(wn)] + 1

2ρ2
na(wn, wn)

= J(un) − ρn(gn, wn) + 1
2ρ2

na(wn, wn)
= J(un) − ρn(gn, gn + γn−1w

n−1) + 1
2ρ2

na(wn, wn)
= J(un) − ρn||gn||2 + 1

2ρ2
na(wn, wn)

which implies that

J(un) − J(un+1) = ρn||gn||2 − 1
2
ρ2

na(wn, wn) =
1
2
||gn||4/a(wn, wn), ∀n ≥ 0.

(120)

It follows from (120) that the sequence {J(un)}n≥0 is a decreasing one;
since it is bounded from below by J(u), it converges to some limit (≥ J(u))
which implies that

lim
n→+∞

[J(un) − J(un+1)] = 0.

We have thus shown (from (120)) that

lim
n→+∞

||gn||4/a(wn, wn) = 0. (121)

Since gn = wn − γn−1w
n−1, we have (from (119)) that

a(gn, gn) = a(wn, wn) + γ2
n−1a(wn−1, wn−1) ≥ a(wn, wn) > 0; (122)

we also have, from (115),

a(gn, gn) ≤ ||A||||gn||2. (123)

Combining (121), (122), (123) yields limn→+∞ ||gn|| = 0, which implies in
turn (since gn = Aun − l, ∀n ≥ 0)

lim
n→+∞

un = A−1l = u,

which completes the proof of the theorem.
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Remark 10. Suppose that V is finite dimensional with dimV = d; in that case
we have convergence in d iterations at most. Suppose that it is not the case,
then {g0, g1, . . . gd} will be a system of d+1 vectors of V , linearly independent
since all different from zero and mutually orthogonal (from (117)). Since this
is impossible there exists N ≤ d such that gN = 0, which implies in turn that
uN = u. ��

Remark 11. The above proof of Theorem 1 is a variant of the classical one
used to prove, in finite dimension, the finite termination property discussed
in Remark 10; these proofs completely rely on the orthogonality properties
(117)-(119). Computer implementations (necessarily finite-dimensional) of al-
gorithm (106)-(113) will suffer from the effects of round-off errors, one of the
effects being precisely the loss of the above orthogonality properties; we can
wonder, therefore, about the convergence properties of algorithm (106)-(113)
in practice. Actually they are quite good, in general, despite the fact that the
finite termination is lost, strictly speaking. This good behavior of algorithm
(106)-(113) is a direct consequence of the following estimate of its speed of
convergence (proved in, e.g., Daniel [43]):

a(un − u, un − u) ≤ 4a(u0 − u, u0 − u)
(√

νa − 1√
νa + 1

)2n

, ∀n ≥ 1, (124)

where, in (124), the condition number νa of the bilinear functional a(·, ·) is
defined by

νa = sup
v∈S

a(v, v)/ inf
v∈S

a(v, v), (125)

with S = {v|v ∈ V, ||v|| = 1} (we can easily show that νa = ||A||||A−1||, oper-
ator A being this element of L(V, V ) such that a(v, w) = (Av, w), ∀v, w ∈ V ).
We observe that the closer νa is to 1, the faster is the speed of convergence. For
problems of large dimension the convergence behavior associated with (124)
is much more important than the hypothetical finite termination property
mentioned above. ��

Using the following equivalence relations between the norms ||v|| and√
a(v, v)

||A−1||−1||v||2 ≤ a(v, v) ≤ ||A||||v||2, ∀v ∈ V,

we can easily show that (124) implies

||un − u|| ≤ 2
√

νa

(√
νa − 1√
νa + 1

)n

||u0 − u||, ∀n ≥ 1, (126)

which is less sharp than (124).
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Conjugate Gradient Methods for the Solution of Minimization
Problems in Hilbert Spaces.

Formulation of the Minimization Problems.

The minimization problems to be considered have the following formula-
tion: {

u ∈ V,

J(u) ≤ J(v), ∀v ∈ V,
(127)

where:
• V is a Hilbert space for the scalar product (·, ·) and the corresponding

norm || · ||; we do not assume, here, that V has been identified to its dual
space V ′.

• J : V → R is a differentiable functional whose differential is denoted by
J ′ (some authors use the notation∇J for the differential of J).

Since V has not been necessarily identified to V ′, it is convenient to in-
troduce the duality isomorphism S : V → V ′, which is the unique operator in
Isom (V, V ′) such that

< Sv, w >=< Sw, v >= (v, w), ∀v, w ∈ V, (128)

where < ·, · > denotes the duality pairing between V ′ and V ; operator S is
self-adjoint and strongly-elliptic over V since (128) implies

< Sv, v >= ||v||2, ∀v ∈ V. (129)

Actually, in addition to (129), relation (128) implies

||f ||2∗ =< f, S−1f >, ∀f ∈ V ′ (130)

(where the dual norm || · ||∗ is defined - classically - by

||f ||∗ = sup
v∈Σ

| < f, v > | with Σ = {v|v ∈ V, ||v|| = 1}),

and

(f, g)∗ =< f, S−1g >, ∀f, g ∈ V ′, (131)

where (·, ·)∗ denotes the scalar product in V ′, compatible with the norm || · ||∗.
Concerning now the differentiability of J , we shall assume that J is either

Fréchet-differentiable or Gâteaux-differentiable. We recall (see, e.g., Zeidler
[51] (Chapter 4)) that J is Fréchet-differentiable over V if, ∀v ∈ V , there
exists J ′(v) ∈ V ′, the derivative of J at v, such that

J(v + w) − J(v) =< J ′(v), w > +||w||ε(v, w), (132)
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with limw→0 ε(v, w) = 0. Similarly, (see again Zeidler [51], loc. cit.), J is
Gâteaux-differentiable over V , if, ∀v, w ∈ V , there exists J ′(v) ∈ V ′ such that

J(v + tw) − J(v) = t < J ′(v), w > +tε(t, v, w). (133)

with limt→0 ε(t, v, w, ) = 0. It is quite obvious that the Fréchet-differentiability
of J implies its continuity and its Gâteaux-differentiability.

Back to (127), if we suppose that the minimization problem has a solution
u, it necessarily verifies

J ′(u) = 0. (134)

Proving (134) is fairly obvious, but owing to the importance of this result, we
feel obliged to prove it. Observe, therefore, that (127) implies

J(u + tv) − J(u)
t

≥ 0, ∀v ∈ V and ∀t > 0; (135)

taking the limit in (135), as t → 0+, we obtain, from (133),

< J ′(u), v >≥ 0, ∀v ∈ V ,

which clearly implies (replace v by −v)

< J ′(u), v >= 0, ∀v ∈ V . (136)

Finally, to show (134) take v = S−1J ′(u) in (136) and use relation (130).
As already mentioned, the optimal condition (134) is sufficient if J is

convex; furthermore if J is strictly convex, i.e.{
J(tv + (1 − t)w) < tJ(v) + (1 − t)J(w),
∀t ∈ (0, 1), ∀v, w ∈ V, v 	= w,

(137)

then existence implies uniqueness.
We shall conclude this section by mentioning typical conditions which

imply the existence of a solution to the minimization problem (127); these
conditions are

lim
||v||→+∞

J(v) = +∞, (138)

J is weakly lower semi − continuous over V ; (139)

condition (139) means that:

If lim
n→+∞

vn = v weakly in V, then lim
n→+∞

inf J(vn) ≥ J(v).

Showing that (138), (139) implies the existence of a solution to problem (127)
is fairly easy.
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Remark 12. If J is convex and differentiable over V , condition (139) is auto-
matically satisfied. To show this result we observe that from the convexity of
J we have (by definition)

J((1 − t)v + tw) ≤ tJ(w) + (1 − t)J(v), ∀v, w ∈ V, ∀t ∈ (0, 1],

which can be rewritten as

J(v + t(w − v)) − J(v)
t

≤ J(w) − J(v), ∀v, w ∈ V, ∀t ∈ (0, 1]. (140)

Taking the limit in (140), as t → 0+ we obtain (from (133))

J(w) − J(v) ≥< J ′(v), w − v >, ∀v, w ∈ V. (141)

Condition (141) is in fact a celebrated characterization of the convexity of dif-
ferentiable functionals (as shown in, e.g., Ekeland and Temam [52]). Consider
now a sequence {vn}n≥0 in V such that limn→+∞ vn = v weakly in V ; we
have, from (141),

J(vn) − J(v) ≥< J ′(v), vn − v >, ∀n ≥ 0,

which implies at the limit, as n → +∞,

lim
n→+∞

inf J(vn) ≥ J(v),

which shows the weak lower semi-continuity of J . ��

Description of Conjugate Gradient Algorithm for the Solution of
Problem (127).

In order to solve problem (127) we shall use the following conjugate gra-
dient type algorithms:

Step 0: Initialization

u0 ∈ V is given; (142)

solve {
g0 ∈ V,

(g0, v) =< J ′(u0), v >,∀v ∈ V ,
(143)

and set

w0 = g0.� (144)

Then for n ≥ 0, assuming that un, gn, wn are known, compute un+1, gn+1, wn+1

as follows:
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Step 1: Steepest Descent
Solve {

ρn ∈ R,

J(un − ρnwn) ≤ J(un − ρwn), ∀ρ ∈ R
(145)

and set

un+1 = un − ρnwn. (146)

Step 2: Testing the convergence and construction of the new descent direc-
tion
Solve {

gn+1 ∈ V,

(gn+1, v) =< J ′(un+1), v >,∀v ∈ V ;
(147)

if ||gn+1||/||g0|| ≤ ε take u = un+1; else, compute either

γn = ||gn+1||2/||gn||2 (Fletcher − Reeves update) (148)

or

γn = (gn+1 − gn, gn+1)/||gn||2 (Polak − Ribière update) (149)

and then

wn+1 = gn+1 + γnwn. (150)

Do n = n + 1 and return to (145). �

Remark 13. Suppose that the functional J in (127) is given by (105). We can
easily show that

< J ′(v), w >= a(v, w) − L(w), ∀v, w ∈ V (151)

and that algorithm (142)-(150) applied to the minimization of J yields

ρn = (gn, wn)/a(wn, wn) in (145). (152)

Consider now algorithm (106)-(113): the orthogonality conditions (117)-(119)
imply that

ρn = ||gn||2/a(wn, wn) = (gn, wn)/a(wn, wn) in (109), (153)

γn = ||gn+1||2/||gn||2 = (gn+1, gn+1 − gn)/||gn||2 in (112). (154)

It follows from (151)-(154) that algorithms (106)-(113) and (142)-(150) coin-
cide if J is given by (105). ��
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The convergence properties of the Fletcher-Reeves and Polak-Ribière con-
jugate gradient algorithms have inspired many investigators; let us mention
among others Daniel [43], Ortega and Rheinboldt [53, 54, 55], Polak [44]
(Chapter 6), Avriel [56] (Chapter 10), Powell [57, 58], Girault and Raviart
[59] (Chapter 4) and also two recent references, namely Nocedal [47] and
Hiriart-Urruty and Lemarechal [60] (Chapter 2). We found the last two ref-
erences particularly interesting, since they contain a large number of further
references on conjugate gradient algorithms, and also very detailed advices
and recipes on the practical implementation of these algorithms, based on
three decades of theoretical investigations and computer experiments.

Application to the Advection-Diffusion Problem (91)

In order to solve problem (91) by the least-squares/conjugate gradient tech-
niques discussed in previous subsections, we need to equip V0 and Vg with an
appropriate Hilbertian structure; we chose as scalar product on V0 and Vg

{v,w} →
∫

Ω

(αv ·w + ν∇v : ∇w) dx,

the corresponding norm being, obviously,

v → (
∫

Ω

(α|v|2 + ν|∇v|2) dx)
1
2 .

To apply the Fletcher-Reeves algorithm (142)-(150) to the solution of the
problem (91), (100) we need, in principle, to take as unknown ũ = u − g̃0

with some g̃0 ∈ Vg so that g0 = g̃0|Γ0 , in order to transform the problem
(91), (100) into an equivalent problem in V0; actually, this is not necessary
and we can proceed directly with algorithm (142)-(150). We obtain then:

u0 ∈ Vg is given; (155)

solve ⎧⎨
⎩

g0 ∈ V0,∫
Ω

(αg0 · z + ν∇g0 : ∇z)dx =< J ′(u0), z >, ∀z ∈ V0,
(156)

and set

w0 = g0. (157)

For n ≥ 0, assuming that un,gn,wn are known, we obtain un+1,gn+1,wn+1

by:
Step 1: Steepest Descent
Solve
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ρn ∈ R,

J(un − ρnwn) ≤ J(un − ρwn), ∀ρ ∈ R
(158)

and set

un+1 = un − ρnwn. (159)

Step 2: Testing the convergence and construction of the new descent direction
Solve⎧⎨
⎩

gn+1 ∈ V0,∫
Ω

(αgn+1 · z + ν∇gn+1 : ∇z)dx =< J ′(un+1), z >, ∀z ∈ V0;
(160)

if
∫

Ω

(α|gn+1|2 + ν|∇gn+1|2) dx/

∫
Ω

(α|g0|2 + ν|∇g0|2) dx ≤ ε2, take u =

un+1; else, compute

γn =
∫

Ω

(α|gn+1|2 + ν|∇gn+1|2) dx/

∫
Ω

(α|gn|2 + ν|∇gn|2) dx (161)

and then

wn+1 = gn+1 + γnwn. (162)

Do n = n + 1 and return to (158). �

Calculations of J ′ and ρn when solving the non-linear problem (91),
(100).

To compute J ′(un) at each iteration in algorithm (155)-(162) when solving
the non-linear problem (91), (100), let us follow again the definition (133). For
v ∈ Vg and w ∈ V0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) ∈ V0; ∀z ∈ V0 we have

α

∫
Ω

y(t) · z dx + ν

∫
Ω

∇y(t) : ∇z dx

= α

∫
Ω

(v + tw) · z dx + ν

∫
Ω

∇(v + tw) : ∇z dx

+
∫

Ω

((v + tw) · ∇)(v + tw) · z dx −
∫

Ω

f · z dx −
∫

Γ1

g1 · z dΓ,

(163)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y ∈ V0; ∀z ∈ V0 we have

α

∫
Ω

y · z dx + ν

∫
Ω

∇y : ∇z dx = α

∫
Ω

v · z dx + ν

∫
Ω

∇v : ∇z dx

+
∫

Ω

(v · ∇)v · z dx −
∫

Ω

f · z dx −
∫

Γ1

g1 · z dΓ.

(164)
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Clearly we have y(t) � y + t δy(t) where δy(t) is the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δy(t) ∈ V0; ∀z ∈ V0 we have

α

∫
Ω

δy(t) · z dx + ν

∫
Ω

∇δy(t) : ∇z dx = α

∫
Ω

w · z dx + ν

∫
Ω

∇w : ∇z dx

+
∫

Ω

(v · ∇)w · z dx +
∫

Ω

(w · ∇)v · z dx + t

∫
Ω

(w · ∇)w · z dx

(165)

Hence we have the difference

J(v + tw) − J(v) =
1
2

∫
Ω

(α|y + t δy(t)|2 + ν|∇(y + t δy(t))|2) dx

−1
2

∫
Ω

(α|y|2 + ν|∇y|2) dx

= t

∫
Ω

(αy · δy(t) + ν∇y : ∇δy(t)) dx (166)

+
t2

2

∫
Ω

(α|δy(t)|2 + ν|∇δy(t)|2) dx

and

< J ′(v),w >= lim
t→0

J(v + tw) − J(v)
t

=
∫

Ω

(αy · δy(0) + ν∇y : ∇δy(0)) dx.

(167)

Since y ∈ V0, we set z = y and t = 0 in (165) and obtain

< J ′(v),w > = α

∫
Ω

y ·w dx + ν

∫
Ω

∇y : ∇w dx +
∫

Ω

(v · ∇)w · y dx

+
∫

Ω

(w · ∇)v · y dx. (168)

Therefore < J ′(v),w > has a purely integral representation, which is of major
importance in view of finite element implementation of algorithm (155)-(162).

Another problem of practical importance is the calculation of ρn in (158)
when solving the non-linear problem (91), (100). Let yn(ρ) be the solution of
(98), (99) with v = un − ρwn, then we have yn(0) = yn and yn(ρn) = yn+1

and

yn(ρ) = yn − ρyn
1 + ρ2yn

2 , (169)

where yn
1 and yn

2 are the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn
1 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αyn
1 · z + ν∇yn

1 : ∇z)dx = α

∫
Ω

wn · z dx + ν

∫
Ω

∇wn : ∇z dx

+
∫

Ω

(un · ∇)wn · z dx +
∫

Ω

(wn · ∇)un · z dx,

(170)
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⎩

yn
2 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αyn
2 · z + ν∇yn

2 : ∇z)dx =
∫

Ω

(wn · ∇)wn · z dx,
(171)

respectively. Since

J(un − ρwn) =
1
2

∫
Ω

{α|yn(ρ)|2 + ν|∇yn(ρ)|2} dx, (172)

the function jn(ρ) = J(un − ρwn) is a quartic polynomial in ρ; ρn is therefore
a solution of the cubic equation

j
′

n (ρ) = 0. (173)

We shall use the standard Newton’s method to compute ρn from (173), starting
from ρ = 0. The resulting algorithm is as follows:

ρ0 = 0, (174)

and for k ≥ 0, ρk being known,

ρk+1 = ρk − j
′

n (ρk)/j
′′

n (ρk). (175)

Conjugate gradient algorithm for the non-linear problem (91),
(100).

From the above results, algorithm (155)-(162) can be written as follows:

u0 ∈ Vg is given; (176)

solve⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y0 ∈ V0; ∀z ∈ V0 we have

α

∫
Ω

y0 · z dx + ν

∫
Ω

∇y0 : ∇z dx = α

∫
Ω

u0 · z dx + ν

∫
Ω

∇u0 : ∇z dx

+
∫

Ω

(u0 · ∇)u0 · z dx −
∫

Ω

f · z dx −
∫

Γ1

g1 · z dΓ,

(177)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g0 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αg0 · z + ν∇g0 : ∇z)dx = α

∫
Ω

y0 · z dx + ν

∫
Ω

∇y0 : ∇z dx

+
∫

Ω

(u0 · ∇)z · y0 dx +
∫

Ω

(z · ∇)u0 · y0 dx;

(178)



82 R. Glowinski et al.

and set

w0 = g0. (179)

For n ≥ 0, assuming that un, yn, gn, wn are known, we obtain un+1, yn+1,
gn+1, wn+1 by:
Solve⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn
1 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αyn
1 · z + ν∇yn

1 : ∇z)dx = α

∫
Ω

wn · z dx + ν

∫
Ω

∇wn : ∇z dx

+
∫

Ω

(un · ∇)wn · z dx +
∫

Ω

(wn · ∇)un · z dx,

(180)

⎧⎨
⎩

yn
2 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αyn
2 · z + ν∇yn

2 : ∇z)dx =
∫

Ω

(wn · ∇)wn · z dx.
(181)

Define

yn(ρ) = yn − ρyn
1 + ρ2yn

2 , (182)

jn(ρ) =
1
2

∫
Ω

{α|yn(ρ)|2 + ν|∇yn(ρ)|2} dx, (183)

and solve the cubic equation

j
′

n (ρn) = 0; (184)

we have then

un+1 = un − ρnwn, (185)
yn+1 = yn(ρn). (186)

Solve⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gn+1 ∈ V0; ∀z ∈ V0 we have∫
Ω

(αgn+1 · z + ν∇gn+1 : ∇z)dx = α

∫
Ω

yn+1 · z dx + ν

∫
Ω

∇yn+1 : ∇z dx

+
∫

Ω

(un+1 · ∇)z · yn+1 dx +
∫

Ω

(z · ∇)un+1 · yn+1 dx.

(187)

If
∫

Ω

(α|gn+1|2 + ν|∇gn+1|2) dx/

∫
Ω

(α|g0|2 + ν|∇g0|2) dx ≤ ε2, take u =

un+1; else, compute
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γn =
∫

Ω

(α|gn+1|2 + ν|∇gn+1|2) dx/

∫
Ω

(α|gn|2 + ν|∇gn|2) dx (188)

and then

wn+1 = gn+1 + γnwn. (189)

Do n = n + 1 and return to (180). �

Remark 14. The linearized advection–diffusion problem (90) can be also solved
by a least–squares conjugate gradient method close to the one discussed in this
section, but cheaper since the linearity of (90), we have to solve only 2 elliptic
systems associated to αI − ν� per iteration. An interesting alternative is
clearly to use a preconditioned GMRES algorithm to solve (90), with αI−ν�
as preconditioner. ��

Remark 15. We observe that each iteration of algorithm (176)-(189) requires
the solution of three systems of mixed Dirichlet-Neumann boundary value
problem associated with the elliptic operator αI−ν∆. This number is optimal
for a nonlinear problem, since the solution of a linear problem by a least-
squares conjugate gradient method requires the solution at each iteration of
two linear systems associated with the preconditioning operator.

Another important issue concerning algorithm (176)-(189) is their stopping
criterion; we have used

J(un)/J(u0) ≤ ε (190)

with ε of the order of 10−6. ��

3.3 Solution of Advection Subproblem

Now we would like to consider the pure advection problem⎧⎨
⎩

∂u
∂t

+ (V · ∇)u = 0 in Ω × (tn, tn+1),

u(tn) = u0, u = g on Γ− × (tn, tn+1).
(191)

with ∇·V = 0 and ∂V/∂t = 0 in Ω×(tn, tn+1), Γ− = {x | x ∈ Γ,V(x)·n(x) <
0} and ∂g/∂t = 0 on Γ− × (tn, tn+1). The above problem can be obtained
when applying to the Navier-Stokes equations an operator–splitting scheme à
la Marchuk-Yanenko to be discussed later.

Solving the pure advection problem is a more delicate issue. Clearly, prob-
lem (191) can be solved by a method of characteristics (see, e.g., Pironneau
[10] and Glowinski and Pironneau [103] and the references therein). An easy
to implement alternative to the method of characteristics is provided by the
wave-like equation method below. After translation and dilation on the time
axis, each component of u is a solution of a transport equation of the following
type:
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⎩

∂ϕ

∂t
+ V · ∇ϕ = 0 in Ω × (0, 1),

ϕ(0) = ϕ0, ϕ = g on Γ− × (0, 1).
(192)

Let us follow Dean, Glowinski and Pan [101] to discuss the solution of the
transport problem (192). Since each component of u, in equation (191) verifies
a transport equation such as (192), we shall focus on the solution of this last
equation. The properties ∇ · V = 0 and ∂V/∂t = 0 on Ω × (0, 1) (we also
have ∂g/∂t = 0 on Γ− × (0, 1)) imply that problem (192) is “equivalent” to
the (formally) well-posed problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2ϕ

∂t2
− ∇ · ((V · ∇ϕ)V) = 0 in Ω × (0, 1),

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −V · ∇ϕ0,

ϕ = g on Γ− × (0, 1), V · n (
∂ϕ

∂t
+ V · ∇ϕ) = 0 on (Γ \ Γ−) × (0, 1).

(193)

Solving the wave-like equation (193) by a classical finite element/time stepping
method is quite easy since a variational formulation of (193) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∂2ϕ

∂t2
v dx +

∫
Ω

(V · ∇ϕ)(V · ∇v) dx

+
∫

Γ\Γ−
V · nϕtv dΓ = 0, ∀v ∈ W0, a.e. on (0, T ),

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −V · ∇ϕ0,

ϕ = g on on Γ− × (0, 1),

(194)

with the test function space W0 defined by

W0 = {v|v ∈ H1(Ω), v = 0 on Γ−}.

We observe that V · n ≥ 0 on Γ \ Γ−, implying that the boundary term in
(194) is dissipative.

Let H1
h be a C0 - conforming finite element subspace of H1(Ω) as discussed

in, e.g., Ciarlet [24, 81]. We define W0h by W0h = H1
h ∩ W0; we suppose that

lim
h→0

W0h = W0 in the usual finite element sense (see Ciarlet [24, 81]). Next, we

define τ1 > 0 by τ1 = ∆t/Q1, where Q1 is a positive integer and we discretize
problem (194) by

ϕ0 = ϕ0h(� ϕ0), (195)

⎧⎨
⎩
∫

Ω

(ϕ−1 − ϕ1)v dx = 2τ1

∫
Ω

(Vh · ∇ϕ0)v dx, ∀v ∈ W0h,

ϕ−1 − ϕ1 ∈ W0h,
(196)
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and for q = 0, . . . , Q1 − 1,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕq+1 ∈ H1
h, ϕq+1 = gh on Γ−,∫

Ω

ϕq+1 + ϕq−1 − 2ϕq

τ2
1

v dx +
∫

Ω

(Vh · ∇ϕq)(Vh · ∇v) dx

+
∫

Γ\Γ−
Vh · n(

ϕq+1 − ϕq−1

2τ1
)v dΓ = 0, ∀v ∈ W0h,

(197)

where, in (196) and (197), Vh and gh approximate V and g respectively.
Scheme (195)-(197) is a centered scheme which is formally second-order ac-
curate with respect to space and time discretizations. To be stable, scheme
(195)-(197) has to verify a condition such as

τ1 ≤ ch, (198)

with c of the order of 1/||V||. If one chooses an appropriate numerical inte-
gration method to compute the first and third integrals in (197), the above
scheme becomes explicit, i.e. ϕq+1 is obtained via the solution of a linear
system with a diagonal matrix.

Remark 16. Scheme (195)-(197) does not introduce numerical dissipation, un-
like the upwinding schemes commonly used to solve transport problems like
(191) and (192). ��

Remark 17. Since the wave equation in (193) is, for arbitrary data, a model for
simultaneous transport phenomena in the directions V and −V, both playing
the same role, one has to be aware that the initial condition and the boundary
conditions have to be treated very accurately in order to keep at a small level
the transport phenomenon taking place in the −V direction, which is here a
numerical artifact. ��

Remark 18. In order to show that this projection/wave-like equation method
is closely related to the Chorin’s projection method [39]. Let us consider the
homogeneous boundary condition, u|Γ = 0 for all t and set Q1 = 1 in (195)-
(197). Then we have the following scheme:

u0 = u0h is given; (199)

for n ≥ 0, un being known,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

un+1/3 − un

�t
· v dx −

∫
Ω

pn+1/3∇ · v dx = 0, ∀v ∈ V0h,∫
Ω

q∇ · un+1/3 dx = 0, ∀q ∈ L2
h;

un+1/3 ∈ V0h, pn+1/3 ∈ L2
0h,

(200)
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⎪⎪⎪⎪⎩

∫
Ω

un+2/3 − un+1/3

�t
· v dx +

∫
Ω

(un+1/3 · ∇)un+1/3 · v dx

= −�t

2

∫
Ω

(un+1/3 · ∇)un+1/3(un+1/3 · ∇)v dx,

∀v ∈ V0h;un+2/3 ∈ V0h.

(201)

∫
Ω

un+1 − un+2/3

�t
· v dx + ν

∫
Ω

∇un+1 : ∇v dx = 0, ∀v ∈ V0h;un+1 ∈ V0h.

(202)

The difference between the above scheme and the Chorin’s projection
method is a right-hand-side term in (201) which is a naturally built-in diffu-
sion term only acting in the direction of streamlines. This extra term is also
close to the one introduced in streamline-diffusion methods (see, e.g.,Johnson
[104]). ��

4 Iterative Solution of the Stokes Type Sub–problem

At each full time step of scheme (80)-(88), we have to solve twice the following
generalized Stokes problem:⎧⎪⎪⎨

⎪⎪⎩
αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g0 on Γ0, ν
∂u
∂n

− np = g1 on Γ1

(203)

with α and ν two positive parameters. Our main goal in this section is to
discuss iterative methods for the solution of the generalized Stokes problem
(203).

4.1 Mathematical Properties of the Generalized Stokes Problem

We suppose that in (203), Ω is a bounded domain of R
d (with d = 2 or 3,

in practice), α ≥ 0, ν > 0, Γ0 ∩ Γ1 = ∅, Γ0 ∪ Γ1 = Γ ; we suppose also that
f ∈ (L2(Ω))d, g0 = g̃0|Γ0 with g̃0 ∈ (H1(Ω))d, g1 ∈ (L2(Γ1))d. If (203) has a
solution {u, p} belonging to (H1(Ω))d × L2(Ω), this solution verifies clearly⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ Vg0 , p ∈ L2(Ω),∫
Ω

(αu · v + ν∇u : ∇v)dx −
∫

Ω

p∇ · vdx =∫
Ω

f · vdx +
∫

Γ1

g1 · vdΓ, ∀v ∈ V0,

∇ · u = 0,

(204)
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where

V0 = {v|v ∈ (H1(Ω))d, v = 0 on Γ0}, (205)
Vg0 = {v|v ∈ (H1(Ω))d, v = g0 on Γ0}. (206)

Actually, things would be no more complicated if, in (204), one replaces
the linear functional

v →
∫

Ω

f · vdx +
∫

Γ1

g1 · vdΓ

by L : (H1(Ω))d → R, defined as follows

L(v) =
∫

Ω

f0 · vdx +
d∑

i=1

∫
Ω

fi ·
∂v
∂xi

dx +
∫

Γ1

g1 · vdΓ, (207)

with fi ∈ (L2(Ω))d, ∀i=0, 1, . . . d; functional L is clearly linear and contin-
uous over (H1(Ω))d. We have then the following theorem of uniqueness:

Theorem 2. Suppose that the above hypotheses on α, ν, L,g0,g1 hold and that
{u, p} is a solution to⎧⎪⎪⎨

⎪⎪⎩
u ∈ Vg0 , p ∈ L2(Ω),∫

Ω

(αu · v + ν∇u : ∇v)dx −
∫

Ω

p∇ · vdx = L(v), ∀v ∈ V0,

∇ · u = 0.

(208)

Then {u, p} is unique in Vg0×L2(Ω) (resp., in Vg0×(L2(Ω)/R)) if
∫

Γi

dΓ > 0,

∀i = 0, 1 (resp., if Γ0 = Γ , i.e., Γ1 = ∅).

The proof of the above theorem can be found in, e.g., Glowinski [4]. Existence
results for problem (208) will be discussed in Section 4.3.

Remark 19. If α > 0, then Theorem 2 still holds if Γ1 = Γ . ��

4.2 The Stokes Operator

We suppose from now on that in addition to Ω bounded, we also have ν > 0

and α ≥ 0 (resp., α > 0) if
∫

Γ0

dΓ > 0 (resp., Γ0 = ∅). We call, then, Stokes

operator the linear operator from L2(Ω) into L2(Ω) defined by

Aq = ∇ · uq, ∀q ∈ L2(Ω), (209)

where, in (209), uq is the unique solution (from the Lax-Milgram Theorem
(e.g., see Section 14 in Glowinski [4] or Ciarlet [24] (Chapter 1)) of the fol-
lowing linear variational problem in V0 (the space V0 is defined by (205)):
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uq ∈ V0,∫
Ω

(αuq · v + ν∇uq : ∇v)dx =
∫

Ω

q∇ · vdx, ∀v ∈ V0.
(210)

If function q is sufficiently smooth (say q ∈ H1(Ω)), then uq and q are related
by ⎧⎨

⎩
αuq − ν∆uq + ∇q = 0 in Ω,

uq = 0 on Γ0, ν
∂uq

∂n
− nq = 0 on Γ1

(211)

(use the divergence theorem to derive (211) from (210)).
Next, we define the (pressure) space P as follows:

P = L2
0(Ω)(= {q|q ∈ L2(Ω),

∫
Ω

qdx = 0}) if Γ0 = Γ, (212)

P = L2(Ω) if

∫
Γ1

dΓ > 0. (213)

One of the key results of this section is provided by the following:

Theorem 3. Operator A is a strongly elliptic, symmetric automorphism of P
(i.e., is a strongly elliptic, symmetric isomorphism from P onto itself).

PROOF: See, e.g., Glowinski [4].

Remark 20. The spectral properties of the Stokes operator A, and of related
operators, are thoroughly discussed (in the particular case α = 0 and Γ0 = Γ )
in two beautiful papers by Crouzeix [61, 62]; the main motivation of the above
two references is to provide a detailed analysis of the convergence properties
of some of the iterative methods, for solving (203), to be discussed in the
following subsections. ��

4.3 Existence Results for the Generalized Stokes Problem (208)

We can complete, now, the uniqueness Theorem 2; we have thus

Theorem 4. Suppose that the pressure space P is defined by (212) or (213);
suppose also that

α > 0 if Γ1 = Γ, (214)

∫
Γ

g0 · ndΓ = 0 if Γ0 = Γ. (215)

Then the generalized Stokes problem (208) has a unique solution in Vg0 × P .
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PROOF: Let us consider first the following linear variational problem⎧⎨
⎩

u0 ∈ Vg0 ,∫
Ω

(αu0 · v + ν∇u0 : ∇v)dx = L(v), ∀v ∈ V0;
(216)

problem (216) has a unique solution. Suppose now that problem (208) has a
solution {u, p} in Vg0 × P (necessarily unique, from Theorem 2) and define ū
by

ū = u− u0. (217)

By subtraction between (208) and (216), the pair {ū, p} verifies, necessarily⎧⎪⎪⎨
⎪⎪⎩

ū ∈ V0, p ∈ P,∫
Ω

(αū · v + ν∇ū : ∇v)dx =
∫

Ω

p∇ · vdx, ∀v ∈ V0,

∇ · ū = −∇ · u0;

(218)

system (217), (218) is clearly equivalent to the generalized Stokes problem
(208). Actually, it follows from (218) and from the results of previous subsec-
tion that the pressure p (if it exists) verifies

Ap = −∇ · u0. (219)

Conversely, if equation (219) has a solution p in P and if ū is the corresponding
solution of problem (210) (i.e., ū = up) then, the pair {ū+u0, p} is the unique
solution of problem (208) in Vg0 × P . Thus, the proof of the theorem will
be complete if we can show that equation (219) has a solution in P . Since
operator A is, from Theorem 3, an isomorphism from P onto P , equation
(219) will have a unique solution in P if we can show that its right hand
side −∇ · u0 belongs to P . If condition (213) holds, this is obviously the case
since u0 ∈ Vg0 ⊂ (H1(Ω))d implies ∇ · u0 ∈ L2(Ω)(= P , in that case). If
condition (212) holds we still have ∇ · u0 ∈ L2(Ω), and also, from (215),∫

Ω

∇ · u0dx =
∫

Γ

g0 · ndΓ = 0, i.e., ∇ · u0 ∈ L2
0(Ω)(= P , here). The proof of

the theorem is complete.

Remark 21. As we shall see in the following subsections, it is possible to solve
the generalized Stokes problem (208), via the iterative solution of equation
(219), without knowing explicitly operator A; similarly, it will not be necessary
to know the vector valued function u0, to solve (208), via (219). All we shall
need, is to be able to compute Aq + ∇ · u0, ∀q ∈ L2(Ω); this can be done
relatively easily since, from (216) and previous subsection, we have

Aq + ∇ · u0 = ∇ · Uq,

where Uq is the unique solution of
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Uq ∈ Vg0 ,∫
Ω

(αUq · v + ν∇Uq : ∇v)dx =
∫

Ω

q∇ · vdx + L(v), ∀v ∈ V0,

i.e., of an elliptic system for the operator αI − ν∆. ��

4.4 A Saddle-Point Interpretation of the Generalized Stokes
Problem

As we shall see in a moment, any pair {u, p} solution of the generalized Stokes
problem (208) can be viewed as a saddle-point of a well chosen Lagrangian
functional, defined over (H1(Ω))d×L2(Ω). This interpretation is not necessary
to prove the convergence of the various iterative methods to be discussed in
the following subsections; what matters really there are the properties of the
Stokes operator A defined in Section 4.2.

Let X and Y be two non-empty sets and let f be a mapping from X × Y
into R, where R = R∪{+∞}∪{−∞}. We suppose that f is proper, i.e., there
exists at least one pair {x, y} ∈ X × Y so that f(x, y) is finite.
Definition 19.1 A pair {a, b} is called a saddle-point of the functional f over
X × Y if {

{a, b} ∈ X × Y, f(a, b) ∈ R,

f(a, y) ≤ f(a, b) ≤ f(x, b), ∀{x, y} ∈ X × Y.
(220)

We associate with the generalized Stokes problem (208) the Lagrangian func-
tional

L(v, q) =
1
2

∫
Ω

(α|v|2 + ν|∇v|2)dx − L(v) −
∫

Ω

q∇ · vdx; (221)

functional L is C∞ on (H1(Ω))d × L2(Ω). We have then the following:

Theorem 5. Suppose that functional L has a saddle-point {u, p} over Vg0 ×
L2(Ω), i.e.,{

{u, p} ∈ Vg0 × L2(Ω),
L(u, q) ≤ L(u, p) ≤ L(v, p), ∀{v, q} ∈ Vg0 × L2(Ω).

(222)

Then {u, p} is a solution of the Stokes problem (208). Conversely, any solution
of (208) belonging to Vg0 × L2(Ω) is a saddle-point of L over Vg0 × L2(Ω).

4.5 A Gradient Method for the Generalized Stokes Problem

It follows from Theorem 5 of the previous subsection that any solution of the
generalized Stokes problem (208) is also a saddle–point over Vg0×L2(Ω) of the
Lagrangian functional defined by (221); conversely, any saddle-point of L over
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Vg0 × L2(Ω) is also a solution of the Stokes problem (208). This equivalence
property implies, among other things, that it makes sense to attempt solving
problem (208) by solving the saddle–point problem (222), by the following
Uzawa’s algorithm:

p0 ∈ L2(Ω), given; (223)

for n ≥ 0, pn ∈ L2(Ω) being known, we obtain un and pn+1 via⎧⎨
⎩

un ∈ Vg0 ,∫
Ω

(αun · v + ν∇un : ∇v)dx =
∫

Ω

pn∇ · vdx + L(v), ∀v ∈ V0,
(224)

pn+1 = pn − ρ∇ · un. (225)

Remark 22. Problem (224) is a system for the elliptic operator αI − ν∆. If

L(v) =
∫

Ω

f · vdx +
∫

Γ1

g1 · vdΓ,

with, for example, f ∈ (L2(Ω))d and g1 ∈ (L2(Γ1))d, respectively, then prob-
lem (224) is equivalent to solving in Vg0 the elliptic system⎧⎨

⎩
αun − ν∆un = f −∇pn in Ω,

un = g0 on Γ0, ν
∂un

∂n
= g1 + npn on Γ1

(226)

(the boundary condition on Γ1 makes sense only if pn has a trace on Γ1). ��

Concerning the convergence of algorithm (223)-(225) we have then

Theorem 6. Suppose that the parameter ρ in (225) satisfies

0 < ρ < 2ν/d. (227)

We have then the following convergence properties for algorithm (223)-(225):

lim
n→+∞

un = u in (H1(Ω))d, (228)

lim
n→+∞

pn = p in L2(Ω), if P = L2(Ω), (229)

lim
n→+∞

pn = p + (
∫

Ω

p0dx)/meas.(Ω) in L2(Ω), if P = L2
0(Ω), (230)

where, in (228)-(230), {u, p} is the unique solution of the generalized Stokes
problem (208) in Vg0 × P .
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The proof of the above theorem can be found in, e.g., Glowinski [4], or
Glowinski [8] (Theorem 5.11).

Algorithm (223)-(225) can be interpreted as a gradient method by using
operator A introduced in Section 4.2. If Γ0 = Γ , we suppose for simplicity
that, in (223), we take p0 ∈ L2

0(Ω)(= P in that case), implying (from (225),
(215)) that pn ∈ L2

0(Ω), ∀n ≥ 0. Proceeding as in Section 4.3, we define u0

by ⎧⎨
⎩

u0 ∈ Vg0 ,∫
Ω

(αu0 · v + ν∇u0 : ∇v)dx = L(v), ∀v ∈ V0.
(231)

Subtracting (231) to (224) we obtain⎧⎨
⎩

un − u0 ∈ V0,∫
Ω

[α(un − u0) · v + ν∇(un − u0) : ∇v]dx =
∫

Ω

pn∇ · vdx, ∀v ∈ V0,

which implies, from the definition of operator A (see Section 4.2) that

Apn = ∇ · (un − u0),

i.e.,
∇ · un = Apn + ∇ · u0,

which implies in turn that algorithm (223)-(225) is equivalent to

p0 ∈ P is given; (232)

then for n ≥ 0, pn ∈ P being known,

pn+1 = pn − ρ(Apn + ∇ · u0). (233)

Algorithm (232)-(233) is clearly a fixed point method for solving problem
(219), namely

Ap = −∇ · u0.

We introduce now the functional J∗ : P → R defined by

J∗(q) =
1
2

∫
Ω

(Aq)qdx +
∫

Ω

∇ · u0qdx, ∀q ∈ P. (234)

The differential J ′
∗ of functional J∗ is given by

J ′
∗(q) = Aq + ∇ · u0, (235)

implying that algorithms (223)-(225) and (232)-(233) can also be written as
follows:
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p0 ∈ P is given; (236)

and for n ≥ 0, pn ∈ P being known

pn+1 = pn − ρJ ′
∗(p

n); (237)

algorithm (236)-(237) is clearly a gradient algorithm, with constant step ρ,
applied to the solution of the minimization problem{

p ∈ P,

J∗(p) ≤ J∗(q), ∀q ∈ P.
(238)

Equation (219) is the Euler-Lagrange equation associated to the minimization
problem (238) and can also be written as

J ′
∗(p) = 0. (239)

Actually, the minimization problem (238) is the dual problem associated with
the saddle-point problem{

{u, p} ∈ Vg0 × P,

L(u, q) ≤ L(u, p) ≤ L(v, p), ∀{v, q} ∈ Vg0 × P,
(240)

with L still defined by (221); this follows from Glowinski [4] (Chapter 5,
Section 20), namely

Theorem 7. The minimization problem (238) and the dual problem associ-
ated with problem (240) coincide.

4.6 Conjugate Gradient Algorithms for the Generalized Stokes
Problem

To apply the conjugate gradient algorithm (106)-(113) to the solution of the
minimization problem (219), (238), we first equip the space P with the clas-
sical scalar product of L2(Ω), namely

{q, q′} →
∫

Ω

qq′dx, ∀{q, q′} ∈ P × P, (241)

and the corresponding norm and then obtain the following conjugate gradient
algorithm, a variant of the Uzawa’s algorithm (223)-(225):

p0 ∈ P is given; (242)

solve ⎧⎨
⎩

u0 ∈ Vg0 ; ∀v ∈ V0 we have∫
Ω

(αu0 · v + ν∇u0 : ∇v) dx = L(v) +
∫

Ω

p0∇ · vdx,
(243)
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compute

g0 = ∇ · u0 (244)

and set

w0 = g0. (245)

For n ≥ 0, assuming that pn, gn, wn are known, solve⎧⎨
⎩

ūn ∈ V0,∫
Ω

(αūn · v + ν∇ūn : ∇v) dx =
∫

Ω

wn∇ · vdx, ∀v ∈ V0,
(246)

compute

ḡn = ∇ · ūn, (247)

and then

ρn =
∫

Ω

|gn|2dx/

∫
Ω

ḡnwndx. (248)

Update pn and gn by

un+1 = un − ρnūn, (249)
pn+1 = pn − ρnwn, (250)
gn+1 = gn − ρnḡn. (251)

If ||gn+1||L2(Ω)/||g0||L2(Ω) ≤ ε take p = pn+1; else, compute

γn = ||gn+1||2L2(Ω)/||gn||2L2(Ω) (252)

and update wn via

wn+1 = gn+1 + γnwn. (253)

Do n = n + 1 and return to (246). �

The rate of convergence of the above conjugate gradient algorithm (242)-
(253) has been studied in Glowinski [4] (Chapter V, Section 21).

Algorithms (223)-(225) and (242)-(253) may be slow in practice, particu-
larly for flow at large Reynolds number where α ∼ 1/�t is taken very large (to
follow the fast dynamics of such flow) and where ν is very small. To explain
this behavior let us recall that, from the definition of operator A (see Section
4.2), we have uq = −(αI − ν∆)−1∇q via (210) and

Aq = −∇ · (αI − ν∆)−1∇q, ∀q ∈ P. (254)
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Assuming that (αI − ν∆)−1 and ∇ commute (which is not strictly true, in
general) we obtain, from (254),

Aq = −∇ · ∇(αI − ν∆)−1q = −∆(αI − ν∆)−1q,

i.e., A = −∆(αI − ν∆)−1, which implies in turn that

A−1 = (αI − ν∆)(−∆)−1 = α(−∆)−1 + νI. (255)

Relation (255) shows that if

ν >> α (256)

operator A behaves, essentially, like I/ν, explaining why algorithm (242)-(253)
has good convergence properties if condition (256) holds. On the other hand,
if

α >> ν, (257)

we have A � − 1
α

∆ and therefore operator A is very far from being a multiple
of the identity operator, explaining the very slow convergence of the above
algorithms (we can expect operator A to have a condition number of the order
of h−2, after space discretization, if (257) holds). In Cahouet and Chabard [63],
one has considered the case (without boundary) where Ω = R

d and justified,
in some sense, relation (255), whose derivation was quite heuristical. On the
basis of these results, we shall assume that A−1 behaves like

νI, if ν >> α, (258)

and{
α(−∆)−1 (for the homogeneous Dirichlet condition on Γ1

and the homogeneous Neumann condition on Γ0), if α >> ν.
(259)

Relation (259) implies that preconditioning is necessary if α >> ν. In order
to have a preconditioning operator whose good properties remain uniform
when the ratio α/ν varies from 0 to +∞, we suggest to take as preconditioner
(as done in Cahouet and Chabard [63], for the case Γ0 = Γ, Γ1 = ∅) the
isomorphism S from P onto P defined by

S−1 = α(−∆)−1 + νI; (260)

in (260), the Green operator (−∆)−1 is associated to the boundary conditions
described in (259). The fact that the preconditioning operator S is defined
by its inverse does not create practical problems as shown in the following
section.
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A preconditioned conjugate gradient algorithm

As already observed above, it follows from the properties of operators A
that problems (219), (238) can be solved by conjugate gradient algorithms
when the Hilbert space P is the usual L2(Ω)-scalar product, namely

{q, q′} →
∫

Ω

qq′dx, ∀q, q′ ∈ P. (261)

In order to avoid the deterioration of the convergence properties, associated
with large values of the ratio α/ν, and to keep the convergence as uniform
as possible, we suggested to employ as scalar product on space P the one
advocated in Cahouet and Chabard [63], namely

{q, q′} →
∫

Ω

(Sq)q′dx, ∀q, q′ ∈ P, with operator S defined, via S−1, by (260).

(262)

Using the scalar product (262) leads to the following conjugate gradient algo-
rithm, a sophisticated variant of algorithm (242)-(253):

p0 ∈ P is given; (263)

solve ⎧⎨
⎩

u0 ∈ Vg0 ; ∀v ∈ V0,∫
Ω

[αu0 · v + ν∇u0 : ∇v] dx = L(v) +
∫

Ω

p0∇ · vdx,
(264)

and set

r0 = ∇ · u0. (265)

Solve now ⎧⎨
⎩
−∆ϕ0 = r0 in Ω,
∂ϕ0

∂n
= 0 on Γ0, ϕ0 = 0 on Γ1,

(266)

if
∫

Γi

dΓ > 0, ∀i = 0, 1; or

⎧⎨
⎩
−∆ϕ0 = r0 in Ω,
∂ϕ0

∂n
= 0 on Γ,

∫
Ω

ϕ0dx = 0,
(267)

if Γ0 = Γ ; or {
−∆ϕ0 = r0 in Ω,

ϕ0 = 0 on Γ,
(268)
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if Γ1 = Γ . Then set

g0 = νr0 + αϕ0, (269)

w0 = g0. (270)

Then, for n ≥ 0, assuming that pn, rn, gn, wn are known, compute
pn+1, rn+1, gn+1, wn+1 as follows:

Solve: ⎧⎨
⎩

ūn ∈ V0; ∀v ∈ V0,∫
Ω

[αūn · v + ν∇ūn : ∇v] dx =
∫

Ω

wn∇ · vdx,
(271)

and set

r̄n = ∇ · ūn. (272)

Compute

ρn =
∫

Ω

rngndx/

∫
Ω

r̄nwndx, (273)

and then

un+1 = un − ρnūn, (274)
pn+1 = pn − ρnwn, (275)
rn+1 = rn − ρnr̄n. (276)

Solve, next, ⎧⎨
⎩
−∆ϕ̄n = r̄n in Ω,
∂ϕ̄n

∂n
= 0 on Γ0, ϕ̄n = 0 on Γ1,

(277)

if
∫

Γi

dΓ > 0, ∀i = 0, 1; or

⎧⎨
⎩
−∆ϕ̄n = r̄n in Ω,
∂ϕ̄n

∂n
= 0 on Γ,

∫
Ω

ϕ̄ndx = 0,
(278)

if Γ0 = Γ ; or {
−∆ϕ̄n = r̄n in Ω,

ϕ̄n = 0 on Γ,
(279)
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if Γ1 = Γ . Then, compute

gn+1 = gn − ρn(νr̄n + αϕ̄n). (280)

If
∫

Ω

rn+1gn+1dx/

∫
Ω

r0g0dx ≤ ε2, take p = pn+1; else, compute

γn =
∫

Ω

rn+1gn+1dx/

∫
Ω

rngndx, (281)

and update wn by

wn+1 = gn+1 + γnwn. (282)

Do n = n + 1 and return to (271). �

Remark 23. Each iteration of algorithm (263)-(282) requires the solution of
one elliptic system for the operator v → αv − ν∆v. As already mentioned,
for flow at large Reynolds number where α ∼ 1/∆t is large and ν is small, the
discrete analogues to the above operator are fairly well conditioned, symmet-
ric and positive definite matrices, making the iterative solution of the corre-
sponding linear systems quite inexpensive. We also have to solve the Poisson
problems (one among (266), (267), and (268), and another one among (277),
(278), and (279)). We shall discuss this aspect of the practical implementa-
tion of algorithm (263)-(282) later. Actually, it follows from, e.g., Glowinski [4]
(Chapter III, Sections 14.4 and 14.5), that the Poisson problems (266), (268)
and (277), (279) are well-posed if Ω is bounded. Suppose now that Γ0 = Γ ;
assuming that relation (215) holds (which is necessary for problem (208) to
have a solution), it follows from, e.g., Glowinski [4] (Chapter III, Section 14.3),
that the Poisson-Neumann problem (267) is well-posed, since (215) implies∫

Ω

∇ · u0dx =
∫

Γ

g0 · ndΓ = 0.

A similar result holds for the Poisson-Neumann problem (278), since ūn ∈
V0(= (H1

0 (Ω))d, here) implies∫
Ω

∇ · ūndx =
∫

Γ

ūn · ndΓ = 0, ∀n ≥ 0. ��

Remark 24. Algorithm (263)-(282) has proved to be quite effective for solv-
ing a large variety of Navier-Stokes problems, for a large range of Reynolds
numbers. To be more precise, with ε of the order of 10−7 in the stopping crite-
rion, it is very rare that more than ten iterations of algorithm (263)-(282) are
needed to solve the generalized Stokes problem (208), even for complicated
three dimensional flow problems, requiring several million of grid points for
the space discretization. This high level of performances definitely justifies
the choice of the operator S defined by (260), as preconditioner. From this
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facts, we feel obliged to quote Dennis and Schnabel [64] on the convergence
of conjugate gradient algorithms (in this quotation p is the number of iter-
ations necessary to achieve the convergence and n is the dimension of the
optimization problem):

“It is not unusual for strictly convex quadratic arising from discretized
partial differential equations to be solved with p ∼ n/103. Such spec-
tacularly successful preconditioning nearly always comes from deep
insight into the problem and not from matrix theoretic considerations.
They often come from discretizing and solving a simplified problem.”

There is nothing to add to the above quotation. ��

5 Finite Element Approximation of the Navier-Stokes
Equations

We have discussed in Section 2 the time discretization by operator-splitting
of the Navier-Stokes equations modeling incompressible viscous flow, these
equations being completed by convenient initial and boundary conditions. In
order to implement on computers the solution methods described in Sections
2, 3, and 4, we still have to address the space discretization issue; in this
note we will focus on finite element methods. There exists a quite large liter-
ature concerning the finite element approximation of the Navier-Stokes equa-
tions; concentrating on books and review articles, let us mention Temam [19]
(Chapter 3), Thomasset [65], Peyret and Taylor [66] (Chapter 7), Glowinski
[8] (Chapter 7), Girault and Raviart [59], Cuvelier, Segal and Van Steen-
hoven [67], Gunzburger [69], Pironneau [10], Fletcher [70, 71], Gunzburger
and Nicolaides [72], Fortin [68], Quartapelle [73], Hebeker, Rannacher and
Wittum [74], Quarteroni and Valli [42] (Chapter 13), Brenner and Scott [26]
(Chapter 11), Marion and Temam [23], Gresho and Sani [75]; the above list is
far from complete. The basic reference on the mathematical analysis of finite
element approximations for the steady Navier-Stokes equations is still Girault
and Raviart [59], to be completed by Fortin [68], where finite element ap-
proximations not available in Girault and Raviart [59] are discussed. To our
knowledge, there is no book form analogue of Girault and Raviart [59], con-
cerning the finite element approximation of the time dependent Navier-Stokes
equations.

What about the mathematical analysis of solution methods for the Navier-
Stokes equations, combining finite element approximations and time dis-
cretization by operator-splitting?

There is clearly an abundance of such methods and, indeed, most mod-
ern Navier-Stokes solvers use some form of time discretization by operator-
splitting in order to treat the incompressibility condition. These splitting
methods can be roughly divided in two families:
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The first family of splitting methods for the Navier-Stokes equations is
related to those methods described in Section 2. The convergence and stability
properties of these methods are discussed in Fernandez–Cara and Beltran [76]
and Kloucek and Rys [77], the last article discussing mainly the θ-scheme
introduced in Section 2.

The second family is related to the splitting methods of Marchuk and
Yanenko - also known as fractional step methods - for which basic references are
Yanenko [27] and Marchuk [28, 29]. These methods have been applied to the
solution of the Navier-Stokes equations for incompressible viscous fluid flow
by, e.g., Chorin [38, 39] and Temam [40, 41], the space discretization being by
finite differences in the above references. A thorough discussion of fractional
step methods for the Navier-Stokes equations can be found in Temam [19]
(Chapter 3) and Marion and Temam [23] (Chapter 3) (see also the references
therein).

In the present section, we shall focus on implementation issues when the θ-
schemes of Section 2 is combined with low-order finite element approximations
à la Bercovier-Pironneau (see Bercovier and Pironneau [79]) and Hood-Taylor
(see Hood and Taylor [78]). In the later section, we will focus on implementa-
tion issues related to the splitting methods of Marchuk and Yanenko with the
Bercovier-Pironneau finite element method. We are giving a special attention
to the Hood and Taylor finite element methods for the following reasons:

(i) They are easy to implement, particularly in combination with the time dis-
cretizations by operator-splitting described in Section 2, the least-squares/
conjugate gradient algorithms described in Section 3 and the Stokes solvers
discussed in Section 4.

(ii) They are at the basis of some production codes for the simulation of in-
compressible viscous fluid flow, such as N3S developed by Electricité de
France (EDF) and FASTFLO developed by the CSIRO, in Australia.

5.1 Finite Element Methods for the Stokes Problem

Some observations.

It is a fairly general opinion that the main difficulty related to the space
approximation of the Navier-Stokes equations, in the pressure-velocity formu-
lation, is the treatment of the incompressibility condition

∇ · u = 0. (283)

In order to show that the boundary conditions play also a role in these diffi-
culties, let us consider first the periodic Stokes problem,⎧⎪⎨

⎪⎩
αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u, ∇u and p periodic at Γ,

(284)
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with α > 0, ν > 0, Ω = (0, 1)d and Γ = ∂Ω; in the present context, we say
that a function v is periodic at Γ if{

v(x1, ...xi−1, 0, xi+1, ...xd) = v(x1, ...xi−1, 1, xi+1, ...xd),
∀i = 1, ...d, ∀xj ∈ (0, 1), ∀j = 1, ...d, j 	= i.

(285)

Solving problem (284) is quite easy; we compute first the pressure p from{
∆p = ∇ · f in Ω,

p, ∇p periodic at Γ,
(286)

and then the velocity u from{
αu − ν∆u = f − ∇p in Ω,

u, ∇u periodic at Γ.
(287)

Suppose that f is sufficiently smooth and is also periodic at Γ ; then, problems
(286) and (287) are well-posed in H1(Ω)/R and (H1(Ω))d, respectively. Now,
denote ∇ · u by ϕ; it follows from (286), (287) that ϕ verifies{

αϕ − ν∆ϕ = 0 in Ω,

ϕ and ∇ϕ periodic at Γ,
(288)

whose unique solution is ϕ = 0, i.e., ∇ ·u = 0 on Ω. We have thus shown that
problem (284) has a unique solution in (H1(Ω))d × (H1(Ω)/R); this solution
can be obtained via the solution of problems (286), (287) which are quite
classical elliptic problems. Variational formulations for problems (286), (287)
are given by ⎧⎨

⎩
p ∈ H1

P (Ω),∫
Ω

∇p · ∇qdx =
∫

Ω

f · ∇qdx, ∀q ∈ H1
P (Ω),

(289)

⎧⎪⎪⎨
⎪⎪⎩

u ∈ (H1
P(Ω))d,

α

∫
Ω

u · vdx + ν

∫
Ω

∇u : ∇vdx =
∫

Ω

f · vdx +
∫

Ω

p∇ · vdx,

∀v ∈ (H1
P (Ω))d,

(290)

respectively, with, in (289), (290), H1
P defined by

H1
P (Ω) = {q|q ∈ H1(Ω), q periodic at Γ}. (291)

Solving problem (284), by Galerkin type methods, via the equivalent varia-
tional formulation (289), (290) is quite easy. We introduce first two families
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{Ph}h and {Vh}h of finite dimensional spaces; we suppose that these families
verify

Ph ⊂ H1
P (Ω), ∀h, Vh ⊂ (H1

P (Ω))d, ∀h, (292)
∀q ∈ H1

P (Ω), ∃{qh}h : qh ∈ Ph,

∀h, lim
h→0

||qh − q||H1(Ω) = 0, (293)

∀v ∈ (H1
P (Ω))d, ∃{vh}h : vh ∈ Vh,

∀h, lim
h→0

||vh − v||(H1(Ω))d = 0. (294)

Starting from the variational formulation (289), (290), we approximate prob-
lem (284) by ⎧⎨

⎩
ph ∈ Ph,∫

Ω

∇ph · ∇qhdx =
∫

Ω

fh · ∇qhdx, ∀qh ∈ Ph,
(295)

⎧⎪⎪⎨
⎪⎪⎩

uh ∈ Vh,∫
Ω

(αuh · vh + ν∇uh : ∇vh)dx =
∫

Ω

fh · vhdx +
∫

Ω

ph∇ · vhdx,

∀vh ∈ Vh,

(296)

where, in (295), (296), fh is an approximation of f such that lim
h→0

||fh −
f ||(L2(Ω))d = 0.

It is a fairly easy exercise to prove that problems (295) and (296) are
well-posed in Ph/R and Vh, respectively, and also that

lim
h→0

{uh,ph} = {u,p} in (H1(Ω))d+1, (297)

where, in (297), {u,p} is a solution of problem (284); to prove the convergence
result (297) we can use the techniques discussed in, e.g., Strang and Fix [80],
Ciarlet [24], Raviart and Thomas [37], Glowinski [8] (Appendix 1), Ciarlet
[81] (Chapter 3) and Brenner and Scott [26] (Chapter 5).

From the above results, it appears that approximating the ”periodic”
Stokes problem (284) is a rather simple issue. Indeed, we can combine any
pressure approximation to any velocity one, as long as properties (292)-(294)
are verified. Thus, pressure and velocity approximations can be of different
nature, use different meshes and/or basis functions, etc. On the other hand,
as we shall see in the following section, approximating the Stokes-Dirichlet
problem ⎧⎪⎪⎨

⎪⎪⎩
αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ (with
∫

Γ

g · ndΓ = 0),
(298)
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or the Stokes-Neumann problem⎧⎪⎪⎨
⎪⎪⎩

αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

ν
∂u
∂n

− np = g on Γ,

(299)

is a much more complicated matter, since compatibility conditions between
the velocity and pressure approximations seem to be required if one wants
to avoid spurious oscillations. In Glowinski [82] (Section 5.2), the mechanism
producing numerical instabilities has been investigated on a particular case
of the Stokes-Dirichlet problem (298) where Ω = (0, 1) × (0, 1) via Fourier
Analysis. To overcome these numerical instabilities we can use one of the
following approaches

(a) Use different type of approximations for pressure and velocity.
(b) Use the same type of approximation for pressure and velocity, combined

with a regularization procedure.

Fig. 5.1. Dividing T ∈ Th to define Th/2

Approach (a) is well known and will be further discussed in this section.
The main idea here is to construct pressure spaces which are ”poor” in high
frequency modes, compared to the velocity space. Figure 5.1 suggests an ob-
vious remedy to spurious oscillations which is to use a pressure grid which is
twice coarser than the velocity one, and then use approximations of the same
type on both grids. This observation makes sense for finite difference, finite
element, spectral, pseudo-spectral, and wavelet approximations of problem
(298); the well-known (and converging) finite element method (introduced in
Bercovier and Pironneau [79]) obtained by using a continuous piecewise lin-
ear approximation of the pressure (resp., of the velocity) on a triangulation
Th (resp., Th/2, obtained from Th by joining as shown in Figure 5.1 the mid-
points in any T ∈ Th) definitely follows the above rule. Beside the above
reference, this method is discussed in, e.g., Glowinski [8] (Chapter 7), Glowin-
ski [32, 33, 82], Bristeau, Glowinski, Mantel, Periaux and Perrier [9], Girault
and Raviart [59], Bristeau, Glowinski and Periaux [83], Dean, Glowinski and
Li [84], Pironneau [10], Gunzburger [69], Brezzi and Fortin [25], Glowinski
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and Pironneau [85], Fortin [68] (some of the above references show also nu-
merical results obtained with it). Actually, the Bercovier-Pironneau method
is a simple variation (easier to implement but less accurate) of the celebrated
Hood-Taylor method (introduced in Hood and Taylor [78]) where pressure and
velocity are approximated on the same triangulation by continuous approxi-
mations which are piecewise linear and piecewise quadratic, respectively.

Approach (b), introduced in Hughes, Franca and Balestra [86] (see also
Douglas and Wang [87], Fortin [68], Cai and Douglas [88] and the references
therein) leads essentially to Tychonoff regularization procedures, an obvious
one being to ”regularize” (one also says ”stabilize”) equation (219) by the
following problem (written in variational form)⎧⎨
⎩

pε ∈ H1(Ω),

ε

∫
Ω

∇pε · ∇qdx +
∫

Ω

(Apε)qdx = −
∫

Ω

∇ · u0qdx, ∀q ∈ H1(Ω),
(300)

where, in (300), ε is a positive parameter. Very good results have been obtained
with approach (b) (see, e.g., Hughes, Franca and Balestra [86]), however, we
prefer approach (a) for the following reasons:

(i) It is parameter free, unlike the second approach which requires the adjust-
ment of the regularization parameter.

(ii) Quite often, the mesh size is adjusted, globally or locally, on the basis of
the velocity behavior (boundary and shear layer thickness, for example).
Therefore, compared to approach (a), approach (b) will be four times more
costly (eight times for three-dimensional problems) from the pressure point
of view, without further gains in accuracy.

(iii)Tychonoff regularization procedures are systematic methods for stabilizing
ill-posed problems; in most cases, the adjustment of the regularization pa-
rameter is a delicate problem in itself, therefore, if there exist alternatives
which are parameter free, we definitely think that the latter are preferable,
particularly if they are based on an analysis of the mechanism producing
the unwanted oscillations. Actually, the author of this article is a strong
believer of Tychonoff regularization procedures when there is no alterna-
tive available to stabilize an ill-posed problem; indeed, we have been using
such a procedure to solve boundary control problems for the wave equation
(see Dean, Glowinski and Li [84], Glowinski, Li, and Lions [90]); however,
as a consequence of our investigations concerning the Stokes problem, we
have introduced, in Glowinski and Li [89], new solution methods for the
above control problems which are more efficient than those discussed in
Dean, Glowinski and Li [84], and Glowinski, Li, and Lions [90] (results
obtained with the new method are also shown in Glowinski and Lions
[91]).
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Discrete spaces

We suppose that Ω is a bounded polygonal domain of R
2 (cases where domain

has a curved boundary have been discussed in Glowinski [4] (Chapter 5)).
With Th a standard finite element triangulation of Ω (see, e.g., Ciarlet [24, 81],
Raviart and Thomas [37], Glowinski [8] (Appendix 1) for this notion) and h
the maximal length of the edges of Th, we introduce the following discrete
spaces (with Pk the space of the polynomials in two variables of degree ≤ k):

Ph = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ Th}, (301)
Vh = {vh|vh ∈ (C0(Ω))2,vh|T ∈ (P2)2, ∀T ∈ Th}. (302)

If the boundary conditions imply u = g0 on Γ0, we shall need the space V0h

defined by

V0h = {vh|vh ∈ Vh, vh = 0 on Γ}, if Γ0 = Γ, (303)

and by

V0h = {vh|vh ∈ Vh, vh = 0 on Γ0}, if

∫
Γ0

dΓ > 0, Γ0 	= Γ ; (304)

if we are in the situation associated with (303) it is of fundamental importance
to have the points at the interface of Γ0 and Γ1(= Γ\Γ0) as vertices of Th.

Another useful variant of Vh (and then V0h), the Bercovier-Pironneau ve-
locity space, is obtained as follows:

Vh = {vh|vh ∈ (C0(Ω))2, vh|T ∈ (P1)2, ∀T ∈ Th/2}. (305)

In (305), Th/2 is (as in previous subsection) the triangulation of Ω obtained
from Th by joining the mid-points of the edges of T ∈ Th (see Figure 5.1);
for the same triangulation Th, we have the same global number of degrees
of freedom if we use Vh defined by either (302) or (305), space Ph being the
same; however, the matrices encountered in the second case are more compact
and sparser.

Remark 25. For obvious reasons, the finite element approximations of the
Stokes problem based on the pair {Ph, Vh} defined by (301), (302) (resp.,
(301), (305)) is called a P1/P2 approximation (resp., a P1-iso-P2/P1 approxi-
mation). ��

Approximation of the Boundary Conditions

If the boundary conditions are defined by

u = g on Γ, with
∫

Γ

g · ndΓ = 0, (306)
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it is of fundamental importance to approximate g by gh so that∫
Γ

gh · ndΓ = 0. (307)

We shall discuss the simple case where Ω is polygonal domain. For the curved
boundary case, one can employ the methods discussed in Glowinski [3] (Chap-
ter 5) (actually these methods have proved useful when solving free surface
problems as shown in Glowinski and Juarez [102]).

We suppose that g is continuous on Γ . Then we have that n will be
piecewise constant on Γ . Starting from Vh defined by either (302) or (305),
we define the boundary space γVh by

γVh = {µh|µh = vh|Γ , vh ∈ Vh}, (308)

i.e., gammaVh is the space of the traces on Γ of the functions vh belonging to
Vh. Actually, if Vh is defined by (302), γVh is also the space of the functions
continuous over Γ , taking their values in R

2 and quadratic over the edges of
Th contained in Γ ; similarly, if Vh is defined by (305) we have

γVh = {µh|µh ∈ (C0(Γ ))2, µh is affine over the edges of (309)
Th/2 contained in Γ}. (310)

Our problem is to construct an approximation gh of g such that

gh ∈ gammaVh,

∫
Γ

gh · ndΓ = 0. (311)

If πhg is the unique unique element of γVh, obtained by piecewise linear or
piecewise quadratic interpolation of g over Γ , i.e., Γ , i.e., obtained from the
values taken by g at those vertices of Th (or Th/2) belonging to Γ , we usually

have
∫

Γ

πhg ·ndΓ 	= 0. To overcome this difficulty we may proceed as follows:

(i) We define an approximation nh of n as the solution of the following linear
variational problem in gammaVh

⎧⎨
⎩

nh ∈ gammaVh,∫
Γ

nh · µhdΓ =
∫

Γ

n · µhdΓ, ∀µh ∈ gammaVh.
(312)

Problem (312) is equivalent to a linear system whose matrix is sparse, sym-
metric positive definite, very well-conditioned and easy to compute (also,
problem (312) needs to be solved only once if the finite element mesh is
fixed). Observe also that the fact that n is constant, on each edge of Th

contained in Γ , makes the calculation of the right hand side of the above
equivalent linear system very easy (the details can be found in Glowinski
[4] (Chapter 5)).
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(ii) Define gh by

gh = πhg −
(∫

Γ

πhg · ndΓ/

∫
Γ

n · nhdΓ

)
nh. (313)

It is easy to check that (312), (313) imply that gh verifies the flux condition
(311).

Formulation of the Discrete Stokes Problem

In the following we shall denote by Ωh the computational domain and by Γh

its boundary even though we have considered here that Ω is polygonal and
hence Ωh = Ω and Γh = Γ .

The Dirichlet case.

The Stokes problem, considered here, has the following formulation:⎧⎪⎨
⎪⎩

αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

(314)

with f ∈ (H−1(Ω))d and g ∈ (H1/2(Γ ))d, with
∫

Γ

g ·ndΓ = 0. It follows from

Section 4, that problem (314) has a unique solution in Vg × (L2(Ω)/R), with

Vg = {v|v ∈ (H1(Ω))d, v = g on Γ}. (315)

Problem (314) can also be formulated as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ Vg, p ∈ L2(Ω),

α

∫
Ω

u · vdx + ν

∫
Ω

∇u :: ∇vdx −
∫

Ω

p∇ · vdx =< f ,v >, ∀v ∈ V0,∫
Ω

q∇ · udx = 0, ∀q ∈ L2(Ω),

(316)

where, in (316), the test function space V0 is defined by

V0 = (H1
0 (Ω))d, (317)

and where < ·, · > denotes the duality pairing between (H−1(Ω))d and V0.
Next, let us define V0h and Vgh

by

V0h = {vh|vh ∈ Vh, vh = 0 on Γh} (318)
Vgh

= {vh|vh ∈ Vh, vh = gh on Γh} (319)
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with, in (318) and (319), Vh and gh defined as in Sections 5.1 and 5.1, re-

spectively; we have in particular
∫

Γh

gh · n dΓh = 0. We approximate the

Stokes-Dirichlet problem (314) by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uh ∈ Vgh
, ph ∈ Ph,

α

∫
Ωh

uh · vhdx + ν

∫
Ωh

∇uh : ∇vhdx −
∫

Ωh

ph∇ · vhdx

=< fh,vh >h, ∀vh ∈ V0h,∫
Ωh

qh∇ · uhdx = 0, ∀qh ∈ Ph

(320)

with the space Ph as in Sections 5.1; in (320) fh is an approximation of f and
< ·, · >h denotes the duality pairing between (H−1(Ωh))d and (H1

0 (Ωh))d. The
well-posedness of problem (320) will be addressed in next subsection, which
will contain also some comments on the convergence of the pair {uh,ph} as
h → 0.

The case of the mixed boundary conditions.

The Stokes problem, considered now, has the following formulation⎧⎪⎪⎨
⎪⎪⎩

αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g0 on Γ0, ν
∂u
∂n

− np = g1 on Γ1.

(321)

In order to avoid too many technicalities we shall assume that, in (321), we
have g0 = g̃0|Γ0 with g̃0 ∈ (H1(Ω))d, g1 ∈ (L2(Γ1))d, and f ∈ (L2(Ω))d. A
variational formulation of problem (321) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ Vg0 , p ∈ L2(Ω),

α

∫
Ω

u · vdx + ν

∫
Ω

∇u : ∇vdx −
∫

Ω

p∇ · vdx

=
∫

Ω

f · vdx +
∫

Γ1

g1 · vdΓ, ∀v ∈ V0,∫
Ω

q∇ · udx = 0, ∀q ∈ L2(Ω),

(322)

where, in (322), Vg0 and V0 are defined by

Vg0 = {v|v ∈ (H1(Ω))d, v = g0 on Γ0}, (323)
V0 = {v|v ∈ (H1(Ω))d, v = 0 on Γ0}, (324)

respectively; if Γ0 = ∅, then V0 = Vg0 = (H1(Ω))d and Γ1 = Γ .
Following (322) we approximate the Stokes problem (321) by
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh ∈ Vg0h
, ph ∈ Ph; ∀vh ∈ V0h and qh ∈ Ph, we have

α

∫
Ωh

uh · vhdx + ν

∫
Ωh

∇uh : ∇vhdx−
∫

Ωh

ph∇ · vhdx

=
∫

Ωh

fh · vhdx +
∫

Γ1h

g1h · vhdΓh,∫
Ωh

qh∇ · uhdx = 0.

(325)

In (325) the space Ph is defined as in Section 5.1, while

Vg0h
= {vh|vh ∈ Vh, vh = g0h on Γ0h}, (326)

V0h = {vh|vh ∈ Vh, vh = 0 on Γ0h} (327)

with Vh defined as in Section 5.1. The functions fh, g0h and g1h are approxi-
mations of f , g0 and g1, respectively; Γih approximates Γi, ∀ i = 0, 1.

On the Convergence of the Finite Element Approximations of the
Stokes Problem

In this subsection, we are going to discuss the convergence - as h → 0 - of
the finite element approximations of the Stokes problems, introduced in the
preceding paragraphs. Convergence is, at the same time, a delicate and well-
documented issue. It is our opinion that the celebrated article by Crouzeix
and Raviart [92] was really the first one to address the convergence issues in
a systematic, rigorous and general way; also, this article introduced novel (at
the time) approximations of the Stokes problem which are still used nowa-
days by some practitioners. A very complete discussion of the convergence
properties of various finite element approximations to the Stokes and steady
Navier-Stokes equations can be found in the book by Girault and Raviart [59],
which is still a basic (if not the basic) reference on the subject. However, the
reader should also consult Brezzi and Fortin [25] (Chapter 6) and the review
article by Fortin [68] which discusses - among other things - finite element
approximations of the Stokes and Navier-Stokes equations not available in
the mid-eighties (the following references are also worth consulting: Temam
[19] (Chapter 1), Glowinski [8] (Chapter 7 and Appendix 3), Gunzburger [69]
(Part 1), Pironneau [10] (Chapter 4), Brenner and Scott [26] (Chapter 10)).

For simplicity, in the following we shall consider only the Stokes-Dirichlet
problem with g = 0 on Γ ; we have then, from (314),⎧⎪⎨

⎪⎩
αu − ν∆u + ∇p = f in Ω,

∇ · u = 0 on Ω,

u = 0 on Γ.

(328)

A variational formulation of problem (328) is given by
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⎪⎪⎪⎪⎩

u ∈ V0, p ∈ L2(Ω),

α

∫
Ω

u · vdx + ν

∫
Ω

∇u :: ∇vdx −
∫

Ω

p∇ · vdx =< f ,v >, ∀v ∈ V0,∫
Ω

q∇ · udx = 0, ∀q ∈ L2(Ω),

(329)

with V0 = (H1
0 (Ω))d and < ·, · > the duality pairing between (H−1(Ω))d and

(H1
0 (Ω))d. We know from Section 4, that problem (328), (329) is equivalent

to the following saddle-point problem in V0 × L2(Ω):{
Find {u,p} ∈ V0 × L2(Ω), so that
L(u,q) ≤ L(u,p) ≤ L(v,p), ∀{v,q} ∈ V0 × L2(Ω),

(330)

with the Lagrangian functional L defined, ∀{v, q} ∈ (H1(Ω))d × L2(Ω), by

L(v, q) =
1
2

∫
Ω

(α|v|2 + ν|∇v|2)dx −
∫

Ω

q∇ · vdx− < f ,v > . (331)

The saddle-point problem (329), (330) is a member of the following family of
generalized linear saddle-point problems⎧⎪⎨

⎪⎩
Find {u, λ} ∈ X × Λ so that

a(u, v) + b(v, λ) =< l, v >, ∀v ∈ X,

b(u, µ) =< X , µ >, ∀µ ∈ Λ,

(332)

where, in (332):

• X and Λ are two real Hilbert spaces, with X ′ and Λ′ their respective dual
spaces;

• a : X × X → R is bilinear and continuous (possibly non-symmetric);
• b : X × Λ → R is bilinear and continuous,
• < ·, · > denotes the duality pairing between either X ′ and X or Λ′ and Λ,
• l ∈ X ′ and X ∈ Λ′.

Using the Riesz Theorem we can associate to the bilinear functionals a(·, ·)
and b(·, ·) two operators A and B so that{

A ∈ L(X, X ′),
< Av, w >= a(v, w), ∀v, w ∈ X,{
B ∈ L(Λ, Λ′),
< Bv, µ >= b(v, µ), ∀v ∈ X, ∀µ ∈ Λ.

The generalized saddle-point problem (332) takes then the equivalent operator
formulation
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Au + B′λ = l,

Bu = X ,
(333)

where, in (333), B′(∈ L(Λ, X ′)) is the dual (transpose) operator of B, i.e.

< Bv, µ >=< B′µ, v >, ∀{v, µ} ∈ X × Λ.

Remark 26. If the bilinear functional a(·, ·) is symmetric problem (332), (333)
is equivalent to the genuine saddle-point problem{

{u, λ} ∈ X × Λ,

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), ∀{v, µ} ∈ X × Λ,
(334)

with, in (334), the Lagrangian L defined by

L(v, µ) =
1
2
a(v, v) + b(v, µ)− < X , µ > − < l, v >, ∀{v, µ} ∈ X × Λ.

��
We can also easily show (using the techniques employed in Section 4)

that the vector u in (334) is also the solution of the following constrained
minimization problem {

u ∈ V (X ),
j(u) ≤ j(v), ∀v ∈ V (X ),

(335)

with, in (335), the functional j(·) and the space V (X ) defined by

j(v) =
1
2
a(v, v)− < l, v >, ∀v ∈ X,

V (X ) = {v|v ∈ X, b(v, µ) = < X , µ >, ∀µ ∈ Λ},
respectively (we clearly have, for V (X ), the alternative definition

V (X ) = {v|v ∈ X, Bv = X}).
Vector λ can be seen as a Lagrange multiplier associated with the linear rela-
tion Bv = X .

Remark 27. We can easily show that the component u of the solution of prob-
lem (332), (333) is also a solution of the following linear variational problem
in V (X ) (V (X ) has been defined in the above remark):{

u ∈ V (X ),
a(u, v) =< l, v >, ∀v ∈ V0,

(336)

where V0 = ker(B), i.e.

V0 = {v|v ∈ X, b(v, µ) = 0, ∀µ ∈ Λ}.
��



112 R. Glowinski et al.

With space V0 still being the kernel of operator B, let us define π ∈ L(X ′, V ′
0)

by
< πf, v >=< f, v >, ∀f ∈ X ′, ∀v ∈ V0.

Concerning the uniqueness and the existence of a solution to problem (332),
(333) we have the following

Theorem 8. Problem (332), (333) is well-posed (i.e., operator
(

A B′

B 0

)
is an

isomorphism from X ×Λ onto X ′×Λ′) if and only if the following conditions
hold:

(i) operator πA is an isomorphism from V0 onto V ′
0 ;

(ii)there exists a constant β > 0 such that

inf
µ∈Λ\{0}

sup
v∈X\{0}

b(v, µ)
||v||X ||µ||Λ

geβ. (337)

(Condition (337) is known as an inf-sup condition).

For a proof of Theorem 8 see, e.g., Girault and Raviart [59] (Chapter 1,
Section 4); actually in the above reference one can also find a proof of the
following

Corollary 1. Suppose that the bilinear functional a(·, ·) is V -elliptic, i.e.,
there exists a constant α > 0 such that

a(v, v)geα||v||2X , ∀v ∈ X.

Then, problem (332), (333) is well-posed if and only if the bilinear functional
b(·, ·) satisfies the inf-sup condition (337).

Before going further, we think that it may be worthwhile to check if either
Theorem 8 or Corollary 1 apply to the solution of the Stokes-Dirichlet problem
(328), (329); it is indeed the case as shown by the following

Corollary 2. It follows from Corollary 1 that problem (328), (329) has a
unique solution in (H1

0 (Ω))d × L2
0(Ω), where

L2
0(Ω) = {q|q ∈ L2(Ω),

∫
Ω

qdx = 0}.

PROOF: The above result has been shown already in Section 4. The other
proof can be obtained as a direct consequence of Corollary 1 (see Glowinski
[4] (Chapter 5)).

Let us discuss now the approximation of the generalized saddle-point
problem (332). With h a discretization parameter, we introduce two finite-
dimensional spaces Xh and Λh, so that
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Xh ⊂ X and Λh ⊂ Λ. (338)

Next, to each X ∈ Λ′ we associate Vh(X ) - a discrete analogue of V (X ) -
defined by

Vh(X ) = {vh|vh ∈ Xh, b(vh, µh) =< X , µh >, ∀µh ∈ Λh}, (339)

and we denote Vh(0) by V0h, i.e.

V0h = {vh|vh ∈ Xh, b(vh, µh) = 0, ∀µh ∈ Λh}. (340)

We observe that, in general, Vh(X ) 	⊂ V (X ) and V0h 	⊂ V0 (with V0 as in
Remark 27).

We approximate, then, problem (332) by⎧⎪⎨
⎪⎩

Find {uh, λh} ∈ Xh × Λh so that

a(uh, vh) + b(vh, λh) =< l, vh >, ∀vh ∈ Xh,

b(uh, µh) =< X , µh >, ∀µh ∈ Λh.

(341)

If {uh, λh} is a solution of problem (341), we can easily show that uh is also
a solution of the following finite dimensional linear variational problem{

uh ∈ Vh(X ),
a(uh, vh) =< l, vh >, ∀vh ∈ V0h;

(342)

problem (342) is clearly a discrete analogue of problem (336). Define now the
norms ||a|| and ||b|| of the bilinear functionals a(·, ·) and b(·, ·) by

||a|| = sup
|a(v, w)|

||v||X ||w||X
, {v, w} ∈ (X\{0})2 (343)

and

||b|| = sup
|b(v, µ)|

||v||X ||µ||Λ
, {v, µ} ∈ (X\{0})× (Λ\{0}), (344)

respectively; concerning the approximation of the solutions {u, λ} of problem
(332) by the solutions {uh, λh} of problem (341), we have then the following

Theorem 9. 1. Assume that the following conditions are verified
(i) space Vh(X ) is not empty;
(ii)there exists a positive constant α∗ such that

a(vh, vh)geα∗||vh||2X , ∀vh ∈ V0h. (345)

Then, problem (342) has a unique solution uh ∈ Vh(X ) and there exists
a constant C1 depending only of α∗, ||a|| and ||b|| such that the following
error estimate holds:
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||u − uh||X ≤ C1

(
inf

vh∈Vh(X )
||u − vh||X + inf

µh∈Λh

||λ − µh||Λ
)

. (346)

2. Assume that hypothesis (ii) holds and, in addition, that:
(iii)there exists a positive constant β∗ such that

inf
µh∈Λh\{0}

sup
vh∈Xh\{0}

b(vh, µh)
||vh||X ||µh||Λ

geβ∗. (347)

Then, Vh(X ) 	= ∅ and there exists a unique λh in Λh such that {uh, λh} is
the unique solution of problem (341). Furthermore, there exists a constant C2,
depending only of α∗, β∗, ||a|| and ||b||, such that

||u − uh||X + ||λ − λh||Λ ≤ C2( inf
vh∈Xh

||u − vh||X + inf
µh∈Λh

||λ − µh||Λ). (348)

For a proof of the above theorem, see Girault and Raviart [59] (pp. 114-
116) (see also Roberts and Thomas [93] (Chapter 3) and Brezzi and Fortin
[25] (Chapter 2); actually, the two above references contain a discussion of
the effects of numerical integration on the error estimates, a most important
practical issue).

Before discussing the convergent results, we have to introduce some (fairly
classical) definitions, namely:
Definition 5.1: A family {Th}h of triangulations of Ω is said to be regular
if there exists θ0, 0 < θ0 ≤ π/3, such that

θT geθ0, ∀T ∈ Th, ∀h, (349)

where, in (349), θT is the smallest angle of triangle T .
Definition 5.2: A family {Th}h of triangulations of Ω is said to be uniformly
regular if it is regular and if there exists σ, σge1, such that

max
T∈Th

hT / min
T∈Th

hT ≤ σ, ∀h, (350)

where, in (350), hT is the length of the largest edge(s) of triangle T .

Remark 28. In Definitions 5.1 and 5.2, we have been assuming that Ω is a
polygonal domain of R

2 such that Ω =
⋃

T∈Th

T, ∀h. Actually, the above two

definitions can be generalized to two-dimensional domains with curved bound-
aries and also to three-dimensional domains with curved or polyhedral bound-
aries, as shown in, e.g., Ciarlet [81] (Chapter 6, Section 37). If Ω is a polyhedral
domain of R

3 and Th a “triangulation” of Ω (i.e., T ∈ ThRightarrowT is a
tetrahedron) so that Ω =

⋃
T∈Th

T , we say that the family {Th}h is regular if

there exists σ1 > 0 such that

hT /ρT ≤ σ1, ∀T ∈ Th, ∀h, (351)
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with hT the length of the largest edge(s) of tetrahedron T , and ρT the diam-
eter of the sphere inscribed in T . Similarly, we say that the family {Th}h is
uniformly regular if it is regular and if there exists σ2, σ2ge1, so that

max
T∈Th

hT / min
T∈Th

hT ≤ σ2, ∀T ∈ Th, ∀h, (352)

with hT as just above. ��

Following Girault and Raviart [59] (Chapter 2, Section 4), and Brezzi and
Fortin [25] (Chapter 6), we are going to provide convergence results for finite
element approximations of the Stokes-Dirichlet problem (328). We shall focus
our attention on the Hood-Taylor and Bercovier-Pironneau approximations
described in Section 5.1; convergence results concerning other finite element
approximations of the Stokes problem can be found in, e.g., the two above
references and in Fortin [68] (see also the references therein).

Since Ω is polygonal it follows from Section 5.1 that the Stokes problem
(328) is approximated by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{uh,ph} ∈ V0h × Ph; ∀{v,qh} ∈ V0h × Ph we have

α

∫
Ω

uh · vhdx + ν

∫
Ω

∇uh :: ∇vhdx −
∫

Ω

ph∇ · vhdx =< f ,vh >,∫
Ω

∇ · uhqhdx = 0,

(353)

with

Ph = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ Th} (354)

and

V0h = {vh|vh ∈ (C0(Ω))2, vh|T ∈ (P2)2, ∀T ∈ Th, vh = 0 on Γ}. (355)

In Girault and Raviart [59] (Chapter 2, Section 4.2), it is shown that the
approximate Stokes-Dirichlet problem (353) has a unique solution in V0h×P0h

if no triangle of Th has more than one edge contained in Γ and that the
following convergence theorem holds:

Theorem 10. Let Ω be a bounded polygonal domain of R
2 and suppose that

the solution {u,p} of the Stokes problem (328) verifies

u ∈ (Hk+1(Ω) ∩ H1
0(Ω))2, p ∈ Hk(Ω) ∩ L2

0(Ω), k = 1 or 2.

If the family {Th}h is regular and if, ∀h, no triangle of Th has more than one
edge contained in Γ , the solution {uh,ph} of problem (353), with Ph and V0h

defined by (354) and (355), respectively, verifies,
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||uh − u||(H1
0(Ω))2 + ||p− ph||L2(Ω) ≤ C1hk(||u||(Hk+1(Ω))2 + ||p||Hk(Ω)).

(356)

If Ω is convex, we also have

||uh − u||(L2(Ω))2 ≤ C2hk+1(||u||(Hk+1(Ω))2 + ||p||Hk(Ω)). (357)

Finally, if the family {Th}h is uniformly regular (but Ω not necessarily convex)
we also have

||ph − p||H1(Ω) ≤ C3h
k−1(||u||(Hk+1(Ω))2 + ||p||Hk(Ω)). (358)

In (356)-(358), C1, C2 and C3 are positive constants.

A first proof of the above theorem was given by Bercovier and Pironneau
[79]; this proof was improved by Verfurth [94] and further improved by Girault
and Raviart [59] (Chapter 2, Section 4.2) (see also Brezzi and Fortin [25]
(Chapter 6, Section 6)). We shall conclude this paragraph with the Bercovier-
Pironneau approximation of the Stokes problem (328); from Section 5.1, this
approximation is defined by (353), with Ph given by (354) and V0h by

V0h = {vh|vh ∈ (C0(Ω))2,vh|T ∈ (P1)2, ∀T ∈ Th/2, vh = 0 on Γ}, (359)

with, in (359), Th/2 obtained from Th by dividing each triangle T of Th in
four similar triangles, by joining the mid-points of the edges of T (as shown
in Figure 5.1). It follows from Girault and Raviart [59] (Chapter 2, Section
4.2) that if no triangle of Th has more than one edge contained in Γ , then
problem (353) has a unique solution in V0h×P0h and the following convergence
theorem holds:

Theorem 11. Let Ω and {Th}h be as in Theorem 10 and suppose that the
solution {u,p} of problem (328) verifies

u ∈ (H2(Ω) ∩ H1
0(Ω))2, p ∈ H1(Ω) × L2

0(Ω).

Then, the solution {uh,ph} of problem (353), with Ph and V0h defined by
(354) and (359), respectively, verifies

||uh − u||(H1
0(Ω))2 + ||ph − p||L2(Ω) ≤ C1h(||u||(H2(Ω))2 + ||p||H1(Ω)).

(360)

Moreover, if Ω is convex, we have the following L2-error estimate

||uh − u||(L2(Ω))d ≤ C2h2(||u||(H2(Ω))2 + ||p||H1(Ω)). (361)

In (360), (361), C1 and C2 are two positive constants.
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Remark 29. We have discussed several finite element approximations of the
Stokes problems (314) and (321) . Once a formulation such as (320) (or (325))
has been obtained, several practical issues still have to be addressed, among
them the derivation of the linear systems equivalent to the discrete Stokes
problems, and then the numerical solution of these systems. Those issues
have been discussed in details in Glowinski [4] (Chapter 5), especially when
deriving the equivalent linear systems how to obtain the accurate evaluation
of multiple integrals over the elements of Th (or Th/2), or over the element of
reference T̂ . The discussion starts from the finite element approximation of the
Stokes-Dirichlet problem (298) by the Hood-Taylor and Bercovier-Pironneau
methods, assuming that Ω is a bounded polygonal domain of R

2, and then
the mini-element of Arnold-Brezzi-Fortin, the case of curved boundaries and
finally the Stokes problem with other boundary conditions than Dirichlet. ��

5.2 Finite Element Implementation of the θ-Scheme

We are going to discuss in this section the full discretization of the Navier-
Stokes equations

∂u
∂t

− ν�u + (u · ∇)u + ∇p = f in Ω × (0, T ), (362)

∇ · u = 0 in Ω × (0, T ), (363)
u(0) = u0(with ∇ · u0 = 0), (364)

u = g0 on Γ0 × (0, T ), ν
∂u
∂n

− np = g1 on Γ1 × (0, T ). (365)

To approximate problem (362) – (365) we shall combine the finite element
methods discussed in the previous subsection with the θ-scheme described by
relations (80) - (88). We have seen in Section 2 that a ”good” choice for θ, α, β
is given by

θ = 1 − 1/
√

2, α = (1 − 2θ)/(1 − θ), β = θ/(1 − θ). (366)

A safe way to achieve the full discretization of the time dependent Navier-
Stokes equations (362) – (365) is to proceed as follows (this approach applies,
obviously, to other problems):

(i) Keeping time continuous we shall use the finite element spaces introduced
in the previous subsection to space discretize the Navier-Stokes equations.
We obtain then a system coupling ordinary differential equations and al-
gebraic equations.

(ii) We shall apply the operator splitting-methods of Section 2, to the time-
discretization of the above system of algebraic and ordinary differential
equations.

At first we shall consider the pure Dirichlet case (i.e., the particular case
of (365) where Γ1 = ∅) and, then, mixed boundary conditions such as (365).
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Space Approximation of the Time Dependent Navier-Stokes
Equations

The Dirichlet case.

The problem that we consider is defined by (362) – (364), completed by

u = g on ∂Ω × (0, T ). (367)

To have a well-posed problem we assume that∫
∂Ω

g(t) · ndΓ = 0 on (0, T ), (368)

and also, in principle,

u0 · n = g(0) · n on ∂Ω (369)

(we say “in principle” since some of the test problems does not verify (369),
without too much damage on the computational procedure and on the com-
puted solution).

Assuming that Ω ⊂ IR2, we space-approximate problem (362) – (364),
(367) by

Find {uh(t), ph(t)} ∈ Vh × Ph, ∀ t ∈ (0, T ), such that

⎧⎪⎪⎨
⎪⎪⎩

∫
Ωh

u̇h · vhdx + ν

∫
Ωh

∇uh : ∇vhdx +
∫

Ωh

(uh · ∇)uh · vhdx

−
∫

Ωh

ph∇ · vhdx =
∫

Ωh

fh · vhdx, ∀ vh ∈ V0h,
(370)

∫
Ωh

∇ · uhqhdx = 0, ∀ qh ∈ Ph, (371)

uh(t) = gh(t) on ∂Ωh(with gh(t) ∈ gammaVh), (372)
uh(0) = u0h(with u0h ∈ Vh). (373)

In (370) - (373):

• We have Ωh = Ω and ∂Ωh = ∂Ω if Ω is polygonal. For the cases where Ω
is not polygonal, see the discussion in Glowinski [4] for the isoparametric
generalization of the Hood-Taylor (resp., Bercovier-Pironneau) approxima-
tion.

• The finite element velocity and pressure spaces Vh and Ph are as in Section
5.1 and, here,

V0h = Vh ∩ (H1
0 (Ωh))2 = {vh|vh ∈ Vh,vh = 0 on ∂Ωh}.
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• We have used the notation u̇h for
∂uh

∂t
.

• The functions fh,u0h and gh are convenient approximations of f ,u0 and
g, respectively. Function gh has to verify

∫
∂Ωh

gh(t) · ndΓh = 0 on (0, T ); (374)

to construct, from g, an approximation gh verifying (374) we shall use the
methods discussed in Section 5.1.

• The boundary space gammaVh is defined as in Section 5.1.

The case of the mixed boundary conditions (365).

In this case the boundary conditions are given by

u = g0 on Γ0 × (0, T ), ν
∂u
∂n

− np = g1 on Γ1 × (0, T ),

leading to the following approximate problem:

Find {uh(t), ph(t)} ∈ Vh × Ph, ∀ t ∈ (0, T ), such that

⎧⎪⎪⎨
⎪⎪⎩

∫
Ωh

u̇h · vhdx + ν

∫
Ωh

∇uh : ∇vhdx +
∫

Ωh

(uh · ∇)uh · vhdx

−
∫

Ωh

ph∇ · vhdx =
∫

Ωh

fh · vhdx +
∫

Γ1h

g1h · vhdΓh, ∀ vh ∈ V0h,
(375)

∫
Ωh

∇ · uhqhdx = 0, ∀ qh ∈ Ph, (376)

uh(t) = g0h(t) on Γ0h, (377)
uh(0) = u0h(with u0h ∈ Vh); (378)

in (375) the space V0h is defined as in Section 5.1, the other notation being
self-explanatory.

Expanding uh and ph on vector bases of Vh and Ph, respectively, and tak-
ing for the test functions vh and qh all the elements of the vector bases of V0h

and Ph, formulations (370) – (373) and (375) – (378) will produce a system
of ordinary differential equations with respect to t coupled to the linear rela-
tions associated to the discrete incompressibility condition. Applying to these
algebraic-differential problems the time discretization methods by operator
splitting of Section 2 is straightforward, as we shall see hereafter, where we
shall focus on the θ-scheme of Section 2 in order to derive the fully discrete
analogs of schemes (80) - (88) including the particular case where Γ1 = ∅
(pure Dirichlet boundary conditions).
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Full discretization by the θ-scheme: Case of the Dirichlet boundary
conditions.

The algebraic-differential system to time-discretize is (370) – (373). We
obtain then

u0
h = u0h; (379)

then, for n ≥ 0,un
h being known, we compute {un+θ

h , pn+θ
h } ∈ Vh × Ph, then

un+1−θ
h ∈ Vh, and finally {un+1

h , pn+1
h } ∈ Vh × Ph by solving the following

discrete elliptic systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+θ
h − un

h

θ∆t
· vhdx + αν

∫
Ωh

∇un+θ
h : ∇vhdx −

∫
Ωh

pn+θ
h ∇ · vhdx =∫

Ωh

f n+θ
h · vhdx − βν

∫
Ωh

∇un
h : ∇vhdx −

∫
Ωh

(un
h · ∇)un

h · vhdx, ∀vh ∈ V0h,∫
Ωh

∇ · un+θ
h qhdx = 0, ∀qh ∈ Ph,

un+θ
h = gn+θ

h on ∂Ωh,

(380)

then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+1−θ
h − un+θ

h

(1 − 2θ)∆t
· vhdx + βν

∫
Ωh

∇un+1−θ
h : ∇vhdx

+
∫

Ωh

(un+1−θ
h · ∇)un+1−θ

h · vhdx =
∫

Ωh

f n+θ
h · vhdx

−αν

∫
Ωh

∇un+θ
h : ∇vhdx −

∫
Ωh

pn+θ
h · ∇vhdx, ∀vh ∈ V0h,

un+1−θ
h = gn+1−θ

h on ∂Ωh,

(381)

and finally⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+1
h − un+1−θ

h

θ∆t
· vhdx + αν

∫
Ωh

∇un+1
h : ∇vhdx

−
∫

Ωh

pn+1
h ∇ · vhdx =

∫
Ωh

f n+1
h · vhdx − βν

∫
Ωh

∇un+1−θ
h : ∇vhdx

−
∫

Ωh

(un+1−θ
h · ∇)un+1−θ

h · vhdx, ∀vh ∈ V0h,∫
Ωh

∇ · un+1
h qhdx = 0, ∀qh ∈ Ph,

un+1
h = gn+1

h on ∂Ωh,

(382)

respectively. In (379) – (382), the finite element spaces Vh, V0h, and Ph are as
in Section 5.1 for the Dirichlet case. For θ, α, β we advocate the values given
by (366).
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Full discretization by the θ-scheme : Case of the mixed boundary
conditions.

The time discretization of problem (375) – (378) leads to the following
scheme:

u0
h = u0h; (383)

then, for n ≥ 0,un
h being known, we compute {un+θ

h , pn+θ
h } ∈ Vh × Ph, then

un+1−θ
h ∈ Vh, and finally {un+1

h , pn+1
h } ∈ Vh × Ph by solving the following

discrete elliptic systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+θ
h − un

h

θ∆t
· vhdx + αν

∫
Ωh

∇un+θ
h : ∇vhdx −

∫
Ωh

pn+θ
h ∇ · vhdx =∫

Ωh

f n+θ
h · vhdx +

∫
Γ1h

gn+θ
1h · vhdΓh − βν

∫
Ωh

∇un
h : ∇vhdx

−
∫

Ωh

(un
h · ∇)un

h · vhdx, ∀vh ∈ V0h,∫
Ωh

∇ · un+θ
h qhdx = 0, ∀qh ∈ Ph,

un+θ
h = gn+θ

0h on Γ0h,

(384)

then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+1−θ
h − un+θ

h

(1 − 2θ)∆t
· vhdx + βν

∫
Ωh

∇un+1−θ
h : ∇vhdx

+
∫

Ωh

(un+1−θ
h · ∇)un+1−θ

h · vhdx =
∫

Ωh

f n+θ
h · vhdx

+
∫

Γ1h

gn+θ
1h · vhdΓh − αν

∫
Ωh

∇un+θ
h : ∇vhdx −

∫
Ωh

pn+θ
h ∇ · vhdx, ∀vh ∈ V0h,

un+1−θ
h = gn+1−θ

0h on Γ0h,

(385)

and finally⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+1
h − un+1−θ

h

θ∆t
· vhdx + αν

∫
Ωh

∇un+1
h : ∇vhdx

−
∫

Ωh

pn+1
h ∇ · vhdx =

∫
Ωh

f n+1
h · vhdx +

∫
Γ1h

gn+1
1h · vhdΓh

−βν

∫
Ωh

∇un+1−θ
h : ∇vhdx −

∫
Ωh

(un+1−θ
h · ∇)un+1−θ

h · vhdx, ∀vh ∈ V0h,∫
Ωh

∇ · un+1
h qhdx = 0, ∀qh ∈ Ph,

un+1
h = gn+1

0h on Γ0h,

(386)
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respectively. In (383)–(386), the finite element spaces Vh, V0h, and Ph are as
in Section 5.1 for the case of mixed boundary conditions and for θ, α, β we
advocate the values given by (366).

Remark 30. In order to solve the discrete Stokes problems (380), (382), (384),
(386) and the discrete-advection diffusion problems (381), (385), one can use
discrete variants of the conjugate gradient algorithms discussed in Sections
3 and 4. The implementation of these algorithms, which boils down to the
solution of sequences of linear systems for symmetric and positive definite
matrices, will be further discussed later. ��

Remark 31. If we replace the nonlinear problem (381) by the following (lin-
earized) one⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωh

un+1−θ
h − un+θ

h

(1 − 2θ)∆t
· vhdx + βν

∫
Ωh

∇un+1−θ
h : ∇vhdx

+
∫

Ωh

(un+θ
h · ∇)un+1−θ

h · vhdx =
∫

Ωh

f n+θ
h · vhdx

−αν

∫
Ωh

∇un+θ
h : ∇vhdx −

∫
Ωh

pn+θ
h · ∇vhdx, ∀vh ∈ V0h,

un+1−θ
h = gn+1−θ

h on ∂Ωh,

the new scheme is essentially as stable and accurate as the original scheme
(379) – (382); on the other hand, it is less costly to solve the linearized one
than problem (381) (for the same value of ∆t, at least). Similar replacement
can be done in (385).

The numerical integration of the advection term in (379)–(382) and (383)–
(386) (also in the linearized ones) for the Hood-Taylor, Bercovier-Pironneau
and Arnold-Brezzi-Fortin approximations of the Navier-Stokes equations have
been discussed in Glowinski [4] (Chapter 5, Section 27). ��

5.3 Finite Element Implementation of the L2-Projection/wave-like
Equation Method

This section is dedicated to the numerical solution of the Navier-Stokes equa-
tions modeling incompressible viscous fluid flow by a methodology combining
time discretization by a first order accurate operator-splitting, Stokes solvers
à la Uzawa and a wave-like equation treatment of the advection. The goal is to
apply this approach to simulate more complicated flow problems, such as rigid
bodies moving freely in the fluid (see, e.g., Glowinski et al. [95, 96, 97, 98].

Following Chorin [38, 39], most “modern” Navier-Stokes solvers are based
on operator splitting algorithms (see, e.g., in Marchuk [29] and Turek [99])
in order to force the incompressibility condition via a Stokes solver or a L2-
projection method.

Applying scheme à la Marchuk–Yanenko discussed in Section 2.3, we have
the following scheme for the Dirichlet case (370) - (373) (after dropping some
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of the subscripts h and applying the backward Euler’s method for time dis-
cretization):

u0 = u0h is given; (387)

for n ≥ 0, un being known,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

un+1/3 − un

�t
· v dx −

∫
Ω

pn+1/3∇ · v dx = 0, ∀v ∈ V0h,∫
Ω

q∇ · un+1/3 dx = 0, ∀q ∈ L2
h;

un+1/3 ∈ Vn+1
gh

, pn+1/3 ∈ L2
0h,

(388)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

∂u(t)
∂t

· v dx +
∫

Ω

(un+1/3 · ∇)u(t) · v dx = 0 on (tn, tn+1),

∀v ∈ V n+1,−
0h ,

u(tn) = un+1/3,

u(t) ∈ Vh, u(t) = gh(tn+1) on Γn+1
− × (tn, tn+1),

(389)

un+2/3 = u(tn+1), (390)

⎧⎨
⎩
∫

Ω

un+1 − un+2/3

�t
· v dx + ν

∫
Ω

∇un+1 : ∇v dx = 0,

∀v ∈ V0h; un+1 ∈ Vn+1
gh

,

(391)

with:

(a) V n+1
gh

= Vgh(tn+1),
(b) Γ n+1

− = {x | x ∈ Γ, gh(x, tn+1) · n(x) < 0},
(c) Vh = {vh | vh ∈ (C0(Ω))2, vh|T ∈ P1 × P1, ∀T ∈ Th},
(d) V n+1,−

0h = {v | v ∈ Vh,v = 0 on Γ n+1
− }.

Problem (388) can be viewed as a degenerated (zero viscosity) discrete
Stokes problem for which efficient solution methods already exist (e.g., the
discrete analogue of the preconditioned conjugate gradient algorithm for the
generalized Stokes problems discussed in Section 4.6). Problem (389) can be
solved by a wave-like equation method discussed in Section 3.3. Similarly
problem (391) is a discrete elliptic system whose iterative or direct solution is
quite a classical problem.

5.4 On the Numerical Solution of the Discrete Subproblems

The solution of the subproblems, encountered at each time step of the op-
erator splitting schemes described in Sections 5.2 and 5.3, can be computed
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by iterative methods which are the discrete analogues of the conjugate gra-
dient methods discussed in Sections 3 and 4. In particular, we shall have to
solve quite systematically the linear systems approximating the elliptic sys-
tems associated to the Helmholtz operator αI−ν�. Also, some of the Stokes
solvers discussed in Section 4 require the solution of Poisson problems for
preconditioning purposes. From the above observations, it makes sense to dis-
cuss with some detail the numerical solution of the discrete Helmholtz and
Poisson problems encountered at each step of the operator splitting schemes.

On the solution of the discrete Helmholtz equations.

If the boundary conditions are of the Dirichlet type only (i.e., if Γ0 =
Γ (= ∂Ω)), we shall have to solve problems like

αu − ν�u = f in Ω,u = g on Γ. (392)

Fig. 5.2. An example of a regular triangulation.

Paradoxically, solving problem (392) is not very expensive for flow at high
Reynolds numbers. Why? Because for such flow, the viscosity ν is small, and
their fast dynamics requires small �t, i.e., large values of α. Suppose for sim-
plicity that Ω = (0, 1)2, and also that one uses over Ω a regular triangulation
like the one in Figure 5.2 where h = 1/(I + 1) (I a positive integer). Sup-
pose also that one uses continuous and piecewise linear approximations of the

velocity over the above triangulation, and that integrals like
∫

Ω

v · wdx are

approximated using the trapezoidal rule. One obtains then the approxima-
tion of problem (392) associated to the traditional five point finite difference
scheme, namely (with obvious notation)
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⎪⎪⎩

αuij +
ν

h2
(4uij − ui+1j − ui−1j − uij+1 − uij−1) = fij ,

1 ≤ i, j ≤ I,

ukl = gkl if {kh, lh} ∈ Γ.

(393)

It is well known that the matrix in (393) has for smallest and largest eigen-
values

λmin = α +
8ν

h2
sin2 πh

2
, λmax = α +

8ν

h2
sin2 Iπh

2
,

respectively. For small values of h, we clearly have

λmin ≈ α + 2π2ν, λmax ≈ α + 8ν/h2,

implying that the condition number N of the above matrix verifies

N = λmax/λmin ≈ (α + 8ν/h2)/(α + 2π2ν).

Suppose now that ν = 10−3, h = 10−2,�t = 10−2(Rightarrowα = 102); we
have then

N ≈ 1.8. (394)

Suppose now that we solve the linear system (393) by a nonpreconditioned
conjugate gradient algorithm. It follows then from (394) and from (126)
that the distance, between the solution of problem (393) and the nth iterate,
converges to zero at least as fast as(√

1.8 − 1√
1.8 + 1

)n

= (.145898 . . . )n,

which corresponds to a high speed of convergence. A similar conclusion would
hold for the successive over-relaxation method with optimal parameter. Actu-
ally, the convergence of the above methods is sufficiently fast (in that partic-
ular case, at least) that it makes useless further speeding up (by a multigrid
method for example).

Remark 32. Suppose now that the finite element mesh used to solve problem
(392) is unstructured (or at least less structured than the mesh shown on
Figure 5.2). We advocate, then, to solve the discrete analogue of (392), namely
(with obvious notation)

AhUh = Fh, (395)

by a conjugate gradient algorithm, preconditioned by the diagonal Dh of matrix
Ah. ��



126 R. Glowinski et al.

On the solution of the pressure related discrete Poisson problems.

The solution of the discrete Stokes problems (380), (382), (384), (386), by
the discrete analogues of the preconditioned conjugate gradient algorithms
discussed in Section 4, requires – at each iteration – the solution of a linear
system approximating Poisson problems of the following types

⎧⎨
⎩−�ϕ = f in Ω,

∂ϕ

∂n
= 0 on Γ,

∫
Ω

ϕdx = 0,

if Γ0 = Γ (Stokes− Dirichlet case),
(396)

and⎧⎪⎨
⎪⎩
−�ϕ = f in Ω,

∂ϕ

∂n
= 0 on Γ0, ϕ = 0 on Γ1,

if

∫
Γi

dΓ > 0, ∀i = 0, 1(Stokes problem with mixed boundary conditions).

(397)

The matrices approximating the Laplace operators occurring in (396)
and (397) do not enjoy the nice properties of the elliptic operator αI − ν�
discussed above, concerning their condition number, and therefore the ap-
proximate solution of problems (396) and (397) may be costly (for three-
dimensional problems, particularly). For two−dimensional problems, we ad-
vocate direct methods (à la Cholesky, for example) for solving these discrete
Poisson problems. For three−dimensional flow problems, multigrid methods
seem to be well-suited to solve problems (396) and (397); the multigrid solu-
tion of problems such as (396) and (397) has been discussed in, e.g., Glowinski
[4] (Chapter 5).

Remark 33. The condition number of the finite element matrices approximat-
ing the Laplace operator in (396) and (397) behaves like h−2. ��

Remark 34. To solve the linear system approximating (396), by the method of
Cholesky, we shall proceed as follows:

(i) We delete one equation and set to zero the corresponding unknown.
(ii) We solve the remaining system by the method of Cholesky.
(iii)Let ϕ∗

h be the element of the pressure space Ph associated to the solution
of the above linear system. Compute (via the trapezoidal rule) mh =∫

Ωh

ϕ∗
hdx/meas.(Ωh) and denote by ϕh the function defined by

ϕh = ϕ∗
h − mh;

we clearly have
∫

Ωh

ϕhdx = 0. ��
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Remark 35. The discrete Poisson problems, approximating problems (396)
and (397), have to be solved in the discrete pressure space Ph; if one uses
the approximations defined by (301), (302) (Hood − Taylor), (301), (305)
(Bercovier − Pironneau), we have 8 times more unknowns for velocity than
for pressure (16 times more for three-dimensional flow). ��

6 Numerical Experiments

In this section we have considered two– and three–dimensional wall-driven
cavity problems. The finite element spaces for the velocity field and pressure
are P1-iso-P2 and P1, respectively. The operator splitting scheme used in the
simulation is the Marchuk–Yanenko scheme, i.e., the numerical results have
been obtained via the algorithm (387)–(391). Numerical results obtained via
the θ–scheme have been presented in Glowinski [82].

6.1 The Wall-driven Cavity Problem

The first test problem that we consider is the celebrated wall-driven cavity
flow problem. We consider this specific test problem since it is very well doc-
umented, a basic (if not the basic) reference being Ghia, Ghia and Shin [105]
(see also Schreiber and Keller [106]). We have then Ω = (0, 1) × (0, 1) and
g(x, t) defined by

g(x, t) =

{
(f(x1), 0)T on {x | x = (x1, 1)T , 0 < x1 < 1},
0 elsewhere on ∂Ω

(398)

where

f(x) =

⎧⎪⎨
⎪⎩

sin(xπ/2a), if 0 < x ≤ a,

1, if a ≤ x ≤ 1 − a,

sin((1 − x)π/2a), if 1 − a ≤ x < 1.

(399)

The above Dirichlet data has been smoothed very locally in the two upper
corners (the parameter a is 1/32 in all simulations reported in this section). In
order to avoid possible difficulties associated to a genuine impulsive start we
have multiplied g(x, t) in (398) by θ(t) defined by θ(t) = 1−e−50t if t ∈ (0, .15)
and θ(t) = 1 for t ≥ .15.

In Ghia, Ghia and Shin [105] uniform grids were also chosen. Another
reason we have chosen regular triangulations is that we wanted to use di-
rect solvers like fast elliptic solvers based on cyclic reduction to solve elliptic
problems from (388) and (391). When computing steady state solutions, we



128 R. Glowinski et al.

Re = 100, hv = 1/128. Re = 400, hv = 1/128.
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Fig. 6.1. Streamlines.
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Re = 100, hv = 1/128. Re = 400, hv = 1/128.
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Fig. 6.2. Vorticity contours.
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Re = 100, hv = 1/128. Re = 400, hv = 1/128.
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Fig. 6.3. Isobars.
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Re = 100, hv = 1/128. Re = 400, hv = 1/128.
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Fig. 6.4. Comparison between the computed u1-velocity (resp., u2-velocity) along
the line x1 = 1/2 (resp., x2 = 1/2) (solid lines) and the results reported in Ghia,
Ghia and Shin [105] (denoted by “+”).
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Fig. 6.5.The history of ‖un
h‖2 for the flow at Re = 8500 with hv = 1/256 and

�t = 0.0005.

have taken hv = 1/128 as mesh size for the velocity field for Reynolds numbers
(Re = 1/ν) up to 7500 and hv = 1/256 for the range of Reynolds number from
5000 to 7500. Same mesh sizes were used in Ghia, Ghia and Shin [105]. For
the time discretization we have taken �t = 0.0005 and Q1 = 5 in (195)-(197).

In the simulation when the relative change, ‖un − un−1‖2/‖un‖2, is less
than 10−7, un is taken as steady state. With hv = 1/128, we computed the
Re = 100 case with u0 = 0 and then used the steady state of Re = 100 as the
initial flow field condition for the Re = 400 case, and repeated this process
up to the Re = 8500 case. We also used the steady state result at Re = 5000,
obtained with hv = 1/128, as the initial flow field condition for the case at
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Fig. 6.6. One complete cycle of streamline contours at time interval of 2.27 at
Re = 8500 with hv = 1/256 (from left to right and from top to bottom).
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Fig. 6.7. The history of ‖un
h‖2 for the flow at Re = 8343 (left) Re = 8375 (right)

with hv = 1/128 and �t = 0.0005.
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Re ψmin location ψ∗
min location∗

100 –0.10343 (0.617, 0.734) –0.10342 (0.617, 0.734)

400 –0.11391 (0.555, 0.609) –0.11391 (0.555, 0.605)

1000 –0.11917 (0.531, 0.562) –0.11793 (0.531, 0.562)

3200 –0.12177 (0.516, 0.539) –0.12038 (0.516, 0.547)

5000 –0.12122 (0.516, 0.535) –0.11897 (0.512, 0.532)

7500 –0.12082 (0.516, 0.531) –0.11998 (0.512, 0.532)

Table 6.1. Location at which the minimum ψmin of the stream function is attained
and minimal value of the stream function (ψ∗

min and location∗ are values taken from
Ghia, Ghia and Shin [105]).

Re = 5000 with hv = 1/256, and repeated this process up to the Re = 8500
case.

On Figures 6.1–6.3, we have visualized the streamlines, the vorticity con-
tours and the isobars of the steady state solutions computed at Re = 100,
400, 1000, 3200, 5000, and 7500 respectively. Those values used to draw the
streamlines and the vorticity contours are taken from Table III in Ghia, Ghia
and Shin 1131. The values used to draw the isobars are from −0.1 to 0.1 with
increment 0.01. In Figure 6.4, we have compared the computed u1-velocity
(resp., u2-velocity) along the line x1 = 1/2 (resp., x2 = 1/2) with those re-
sults reported in Tables I and II in Ghia, Ghia and Shin [105]. In Table 6.1, we
have the minimum of the stream function and the location at which the min-
imum is attained at Re = 100, 400, 1000, 3200, 5000, and 7500 respectively
from the numerical experiments and Ghia, Ghia and Shin [105]. These re-
sults agree remarkably well with those obtained in Ghia, Ghia and Shin [105]
using the stream function-vorticity formulation of the steady Navier-Stokes
equations.

At Re = 8500, we are beyond a Hopf bifurcation point. In order to ensure
that the computed periodic solution is not a numerical artifact, we have run
simulations with three sets of mesh size and time step, namely (hv,�t) =
(1/128, 0.0005), (hv,�t) = (1/128, 0.00025) and (hv,�t) = (1/256, 0.0005).
For the local time step in (195)-(197), we still have taken Q1 = 5. For the case
where (hv,�t) = (1/128, 0.0005), we started from a steady state solution at
Re = 7500 with hv = 1/128 and run it till t = 1500. It took about 0.18 second
per time step on a DEC personal workstation 500au. For the second case
where (hv,�t) = (1/128, 0.00025), we started from a solution of the previous
case and run it till t = 1650. It took about 0.146 second per time step. For the
third case where (hv,�t) = (1/256, 0.0005), we started from a steady state
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solution at Re = 7500 with hv = 1/256 and run it till t = 1500. It took about
0.76 second per time step.

The period of the Hopf bifurcated flow, at Re = 8500, is 2.24, 2.22, and
2.27 for the simulations done with (hv,�t) = (1/128, 0.0005), (hv,�t) =
(1/128, 0.00025) and (hv,�t) = (1/256, 0.0005), respectively. In Figure 6.5
the history of ‖un

h‖2 for the flow at Re = 8500 with (hv,�t) = (1/256, 0.0005)
is presented. We can see, clearly, in Figure 6.5 that the solution reaches
its asymptotic periodic state at t = 1500. In Figure 6.6, we have plot-
ted a series of nine streamline contours for the flow at Re = 8500 with
(hv,�t) = (1/256, 0.0005) during a time interval of length 2.27 so that the
nine plots make one complete period. We observe that there are persistent
oscillations for all the secondary and tertiary vortices. The most significant
changes during one period are the periodic appearance and disappearance of
two tertiary vortices at the bottom left and at the top left. In Bruneau and
Jouron [107], a transition to turbulence in the unit driven cavity flow was
found for Reynolds number between 5000 and 10000 by solving the steady
Navier-Stokes equations with a 512×512 grid. In Shen [108] due to the use of
a regularized boundary condition f(x) = 16x2(1 − x)2, the critical Reynolds
number for Hopf bifurcation is in the (10, 000, 10, 500] range which is higher
than the one for the less smooth boundary conditions used in Bruneau and
Jouron [107] and Goyon [109], and the one in this article. In Goyon [109] the
critical Reynolds number for the Hopf bifurcation is in the (7, 500, 10, 000]
range. A periodic solution was found at Re = 10, 000 with period 2.41. Our
results indicate that the critical Reynolds number is between 7500 and 8500.
We then did use the flow field at Re = 8500 with (hv,�t) = (1/128, 0.0005) as
initial condition to roughly locate the critical Reynolds number for the Hopf
bifurcation. At Re = 8343, we have obtained steady state and the history of
‖un

h‖2 is shown in Figure 6.7. At Re = 8375, we have obtained Hopf bifurcated
flow and the period is 2.235, whose the history of ‖un

h‖2 is shown in Figure 6.7.
Thus the critical Reynolds number (when using (hv,�t) = (1/128, 0.0005))
is between 8343 and 8375. Actually, using a spectral approximation, Auteri,
Parolini and Quartapelle [110] have been able to locate the critical Reynolds
number at Re ≈ 8020.

6.2 A Three-dimensional Wall-driven Cavity Problem

In this section we consider a three-dimensional wall-driven cavity flow prob-
lem. We have Ω = (0, 1) × (0, 1) × (0, 1) and g(x, t) defined by

g(x, t) =

{
(f(x1)2f(x2)2θ(t), 0, 0)T on {x | x = (x1, x2, 1)T , 0 < x1, x2 < 1},
0 elsewhere on ∂Ω

(400)

where f(x) and θ(t) are defined in the previous section but with a = 1/20.
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Fig. 6.8. An example of a regular tetrahedrization Th of Ω.

The velocity u has been approximated by continuous piecewise affine
vector-valued functions defined from a regular uniform “tetrahedrization” Th

with mesh size hv (see Figure 6.8). The pressure p has been approximated
by continuous piecewise affine functions, defined over a tetrahedrization T2h.
Thus the mesh size for the pressure is hp = 2hv.

In the numerical experiments dedicated to steady flow computations, we
have used two mesh sizes hv = 1/60 and 1/80 for Re = 400, 1000 and 1500.
For the time discretization we have taken �t = 0.001 and Q1 = 2 in (195)-
(197). Following the criterion used in Fujima, Tabata and Fukasawa [111],
when the change in the simulation, ‖un − un−1‖∞/�t, is less than 10−4, un

is taken as steady state. The initial condition of fluid field for Re = 400 (resp,
1000 and 1500) is the steady-state solution of un obtained at Re = 100 (resp.,
400 and 1000) using the same mesh size and time step.

Figures 6.9 and 6.10 show the comparison of the our computational results
at Re = 400 and 1000 with results obtained by Fujima, Tabata and Fukasawa
[111] and Ku, Hirsh and Taylor [112], and Chiang, Sheu, Hwang [113]. All
numerical results are in good agreement.

Velocity vectors of the steady flows obtained in the case of Re = 400, 1000,
and 1500 are shown in Figures 6.11-6.13. Those vectors are projected orthog-
onally to the three planes, x2 = 0.5, x1 = 0.5, and x3 = 0.5, and the length of
the vectors has been doubled in the two later planes to observe the flow more
clearly. We observe that the center of the primary vortex moves down as the
Reynolds increases and secondary vortices appear in two lower corners, which
is similar, in some sense, to what happens for the two-dimensional wall-driven
cavity flow. At x1 = 0.5, a pair of secondary vortices moves toward the lower
corners when the Reynolds increases. Also another pair of vortices appears at
the top corners at Re = 1000 and 1500.

At Re = 3200, the initial condition of fluid field is the steady-state solution
of un obtained at Re = 1500 obtained with mesh size hv = 1/80 and time step
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�t = 0.001. In Figure 6.14 the two- and three-minute averaged values of the
3D cavity central plane velocity profiles are compared with the experimental
values by Prasad and Koseff [114]. The agreement is good. The vectors of
velocity field at t = 420 are projected orthogonally to the three planes, x2 =
0.5, x1 = 0.8125, and x3 = 0.5, and the length of the vectors has been doubled
in the two later planes to observe the flow more clearly. A well developed pair
of Taylor–Göertler–like vortices can be first observed at t = 12 (at least t = 9
there is no sign of it at x = 0.8125). The meandering of Taylor–Görtler–like
vortices and its interaction with corner vortices is shown in Figures 6.16-6.17.
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Fig. 6.9. 3D cavity central plane velocity profiles for Re = 400 obtained using
�t = 0.001 and mesh size hv = 1/60 (left) and 1/80 (right).
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Fig. 6.10. 3D cavity central plane velocity profiles for Re = 1000 obtained using
�t = 0.001 and mesh size hv = 1/60 (left) and 1/80 (right).
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Fig. 6.11. Velocity vector for Re =400 at t = 20.352 on the planes (a) x2 = 0.5,
(b) x1 = 0.5, and (c) x3 = 0.5 obtained with mesh size hv = 1/80.
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Fig. 6.12. Velocity vector for Re =1000 at t = 35.409 on the planes (a) x2 = 0.5,
(b) x1 = 0.5, and (c) x3 = 0.5 obtained with mesh size hv = 1/80.
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Fig. 6.13. Velocity vector for Re =1500 at t = 64.511 on the planes (a) x2 = 0.5,
(b) x1 = 0.5, and (c) x3 = 0.5 obtained with mesh size hv = 1/80.
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Fig. 6.14. 3D cavity central plane velocity profiles for Re = 3200. The simulation
results are averaged values obtained from t = 220 second to t = 340 second (left)
and t = 220 second to t = 400 second (right).
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Fig. 6.15. Velocity vector for Re =3200 at t = 420 on the planes (a) x2 = 0.5, (b)
x1 = 0.8125, and (c) x3 = 0.5 obtained with mesh size hv = 1/80.
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t = 280.0 t = 292.0

t = 282.5 t = 295.0

t = 284.0 t = 297.0

t = 286.0 t = 299.0

t = 290.0 t = 302.0

Fig. 6.16. Flow filed projected to the plane x1 = 0.8125 near the downstream
sidewall at t =280, 282.5, 284, 286, 290 92, 295, 297, 299 and 302 second (from top
to bottom and then from left to right) for Re = 3200.
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t = 304.0 t = 317.0

t = 305.5 t = 320.0

t = 308.0 t = 322.0

t = 311.5 t = 324.5

t = 313.0 t = 328.0

Fig. 6.17. Flow filed projected to the plane x1 = 0.8125 near the downstream
sidewall at t =304, 305.5, 308, 311.5, 313 317, 320, 322, 324.5, and 328 second (from
top to bottom and then from left to right) for Re = 3200.
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1 Introduction

Hybrid systems theory lies at the intersection of the two traditionally distinct
fields of computer science verification and engineering control theory. It is
loosely defined as the modeling and analysis of systems which involve the
interaction of both discrete event systems (represented by finite automata)
and continuous time dynamics (represented by differential equations). The
goals of this research are in the design of verification techniques for hybrid
systems, the development of a software toolkit for efficient application of these
techniques, and the use of these tools in the analysis and control of large scale
systems. In this paper, we present a summary of recent research results, and
a detailed set of references, on the development of tools for the verification
of hybrid systems, and on the application of these tools to some interesting
examples.

The problem that has received much recent research attention has been
the verification of the safety property of hybrid systems, which seeks a mathe-
matically precise answer to the question: is a potentially unsafe configuration,
or state, reachable from an initial configuration? For discrete systems, this
problem has a long history in mathematics and computer science and may be
solved by posing the system dynamics as a discrete game [1, 2]; in the contin-
uous domain, control problems of the safety type have been addressed in the
context of differential games [3]. For systems involving continuous dynamics,
it is very difficult to compute and represent the set of states reachable from
some initial set. In this lecture, we present recent solutions to the problem,
including a method, based on the level set techniques of Osher and Sethian
[4], which determines an implicit representation of the boundary of this reach-
able set. This method is based on the theorem, which is proved in [5] using
two-person zero-sum game theory for continuous dynamical systems, that the
solution to a particular Hamilton-Jacobi partial differential equation corre-
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sponds exactly to the boundary of the reachable set. In addition, we show
that useful information for the control of such systems can be extracted from
this boundary computation.

Much of the excitement in hybrid system research stems from the potential
applications. With techniques such as the above, it is now possible to verify,
and design safe, automated control schemes for low dimensional systems. We
present two interesting examples in the verification of protocols for aircraft
collision avoidance, and of mode switching logic in autopilots. We survey other
applications that have been studied in this framework.

We conclude with a discussion of problem complexity and new directions
that will enable treatment of problems of higher dimension.

The material in this paper is based on the hybrid system algorithm of
[6], the level set implementation of [5, 7], the aircraft landing example of [8],
and the interface analysis example of [9, 10]. It was presented as a lecture in
the “Summer School Jacques Louis Lions”, held during March 17-22 2003 in
Montecatini, Italy.

2 Hybrid Model and Verification Methodology

2.1 Continuous, Discrete, and Hybrid Systems

Much of control theory is built around continuous-state models of system
behavior. For example, the differential equation model given by

ẋ = f(x, u, d) (1)

describes a system with state x ∈ R
n that evolves continuously in time ac-

cording to the dynamical system f(·, ·, ·), a function of x, u ∈ U ⊆ R
nu ,

d ∈ D ⊆ R
nd . In general, u is used to represent parameters that can be con-

trolled, called control inputs, and d represents disturbance inputs, which are
parameters that cannot be controlled, such as the actions of another system
in the environment. The initial state x(0) = x0 is assumed to belong to a
set X0 ⊆ R

n of allowable initial conditions. A trajectory of (1) is represented
as (x(t), u(t), d(t)), such that x(0) ∈ X0, and x(t) satisfies the differential
equation (1) for control and disturbance input trajectories u(t) and d(t). We
recommend [11, 12] as current references for continuous-state control systems.

Discrete-state models, such as finite automata, are also prevalent in con-
trol. The finite automaton given by

(Q, Σ, Init, R) (2)

models a system with is a finite set of discrete state variables Q, a set of input
variables Σ = Σu ∪ Σd which is the union of control actions σu ∈ Σu and
disturbance actions σd ∈ Σd, a set of initial states Init ⊆ Q, and a transition
relation R : Q × Σ → 2Q which maps the state and input space to subsets of
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the state space (2Q). A trajectory of (2) is a sequence of states and inputs,
written as (q(·), σ(·)), where q(0) ∈ Init and q(i + 1) ∈ R(q(i), σ(i)) for index
i ∈ Z. The original work of Ramadge and Wonham [13] brought the use of
discrete state systems to control, though parallels can be drawn between this
work and that of Church, Büchi and Landweber [2, 14] who originally analyzed
the von Neumann-Morgenstern [1] discrete games. A comprehensive reference
for modeling and control of discrete state systems is [15].

Control theory is concerned with the design of a signal, either a continuous
or discrete function of time, which when applied to the system causes the
system state to exhibit desirable properties. These properties should hold
despite possible disruptive action of the disturbance. A concrete example of
a continuous-state control problem is in the control of an aircraft: here the
state (position, orientation, velocity) of the aircraft evolves continuously over
time in response to control inputs (throttle, control surfaces), as well as to
disturbances (wind, hostile aircraft).

A hybrid automaton combines continuous-state and discrete-state dynamic
systems, in order to model systems which evolve both continuously and ac-
cording to discrete jumps. A hybrid automaton is defined to be a collection:

(S, Init, In, f,Dom, R) (3)

where S = Q ∪ R
n is the union of discrete and continuous states; Init ⊆ S is

a set of initial states; In = (Σu ∪ Σd) ∪ (U ∪ D) is the union of actions and
inputs; f is a function which takes state and input and maps to a new state,
f : S × In → S; Dom ⊆ S is a domain; and R : S × In → 2S is a transition
relation.

The state of the hybrid automaton is represented as a pair (q, x), describ-
ing the discrete and continuous state of the system. The continuous-state
control system is “indexed” by the mode and thus may change as the system
changes modes. Dom describes, for each mode, the subset of the continuous
state space within which the continuous state may exist, and R describes the
transition logic of the system, which may depend on continuous state and
input, as well as discrete state and action. A trajectory of this hybrid sys-
tem is defined as the tuple: ((q(t), x(t)), (σu(t), σd(t)), (u(t), d(t))) in which
q(t) ∈ Q evolves according to discrete jumps, obeying the transition rela-
tion R; for fixed q(t), x(t) evolves continuously according to the control sys-
tem f(q(t), x(t), (σu(t), σd(t)), (u(t), d(t))). The introduction of disturbance
parameters to both the control system defined by f and the reset relation
defined by R will allow us to treat uncertainties, environmental disturbances,
and actions of other systems.

This hybrid automaton model presented above allows for general nonlinear
dynamics, and is a slight simplification of the model used in [6]. This model
was developed from the early control work of [16, 17, 18, 19]. The emphasis
of this work has been on extending the standard modeling, reachability and
stability analyses, and controller design techniques to capture the interaction
between the continuous and discrete dynamics. Other approaches to modeling
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hybrid systems involve extending finite automata to include simple continuous
dynamics: these include timed automata [20], linear hybrid automata [21, 22,
23, 24], and hybrid input/output automata [25].

2.2 Safety Verification

Much of the research in hybrid systems has been motivated by the need to
verify the behavior of safety critical system components. The problem of safety
verification may be encoded as a condition on the region of operation in the
system’s state space: given a region of the state space which represents unsafe
operation, prove that the set of states from which the system can enter this
unsafe region has empty intersection with the system’s set of initial states.

This problem may be posed as a property of the system’s reachable set of
states. There are two basic types of reachable sets. For a forward reachable
set, we specify the initial conditions and seek to determine the set of all states
that can be reached along trajectories that start in that set. Conversely, for
a backward reachable set we specify a final or target set of states, and seek to
determine the set of states from which trajectories start that can reach that
target set. It is interesting to note that the forward and backward reachable
sets are not simply time reversals of each other. The difference is illustrated

target set initial set
forwards reachable
set

backwards
reachable
set

Fig. 1. Difference between backwards and forwards reachable sets.

in Figure 1 for generic target and initial sets, in which the arrows represent
trajectories of the system. Figure 2 illustrates how a backwards reachable set
may be used to verify system safety.

Powerful software tools for the automatic safety verification of discrete
systems have existed for some time, such as Murφ [26], PVS [27], SMV [28],
and SPIN [29]. The verification of hybrid systems presents a more difficult
challenge, primarily due to the uncountable number of distinct states in the
continuous state space. In order to design and implement a methodology for
hybrid system verification, we first need to be able to represent reachable sets
of continuous systems, and to evolve these reachable sets according to the
system’s dynamics.
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unsafe
target set

initial
conditions

backwards

set
reachable

unsafe initialization

Fig. 2. Using the backwards reachable set to verify safety.

It comes as no surprise that the size and shape of the reachable set depends
on the control and disturbance inputs in the system: control variables may
be chosen so as to minimize the size of the backwards reachable set from an
unsafe target, whereas the full range of disturbance variables must be taken
into account in this computation. Thus, the methodology for safety verification
has two components. The first involves computing the backward reachable set
from an a priori specified unsafe target set; the second involves extracting
from this computation the control law which must be used on the boundary
of the backwards reachable set, in order to keep the system state out of this
reachable set. Application of this methodology results in a system description
with three simple modes (see Figure 3). Outside of the backwards reachable
set, and away from its boundary, the system may use any control law it likes
and it will remain safe (labeled as “safe” in Figure 3). When the system state
touches the reachable set or unsafe target set boundary, the particular control
law which is guaranteed to keep the system from entering the interior of
the reachable set must be used. Inside the reachable set (labeled as “outside
safe set” in Figure 3), there is no control law which will guarantee safety,
however application of the particular optimal control law used to compute
the boundary may still result in system becoming safe, if the disturbance is
not playing optimally for itself.

In the following section, we first summarize different methods for comput-
ing reachable sets for continuous systems. We then provide an overview of
our algorithm, which uses an implicit surface function representation of the
reachable set, and a differential game theoretic method for its evolution. In
the ensuing sections, we illustrate how this reachable set computation may be
embedded as the key component in safety verification of hybrid systems.
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boundary
of safe 
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target set
unsafebackwards
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safe (under

control)
appropriate

reachable

inside
safe set

Fig. 3. A discrete abstraction with appropriate control information.

3 Verifying Continuous Systems

In this section, we review our methodology for computing reachable sets for
continuous dynamic games. The backwards reachable set is the set of initial
conditions giving rise to trajectories that lead to some target set. More for-
mally, let G0 be the target set, G(τ) be the backwards reachable set over finite
horizon τ < ∞, x(·) denote a trajectory of the system, and x(τ) be the state
of that trajectory at time τ . Then G(τ) is the set of x(0) such that x(s) ∈ G0

for some s ∈ [0, τ ]. The choice of input values over time influences how a
trajectory x(t) evolves. For systems with inputs, the backwards reachable set
G(τ) is the set of x(0) such that for every possible control input u there exists
a disturbance input d that results in x(s) ∈ G0 for some s ∈ [0, τ ] (where we
abuse notation and refer interchangeably to the input signal over time and its
instantaneous value).

The solution to the pursuit evasion game described in the previous section
is a backwards reachable set. Let the target set be the collision set

G0 =
{

x ∈ R
3|
√

x2
1 + x2

2 ≤ d0

}
. (4)

Then G(τ) is the set of initial configurations such that for any possible control
input chosen by the evader, the pursuer can generate a disturbance input that
leads to a collision within τ time units.

We use the very general implicit surface function representation for the
reachable set: for example, consider the cylindrical target set (4) for the col-
lision avoidance example. We represent this set as the zero sublevel set of a
scalar function φ0(x) defined over the state space
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φ0(x) =
√

x2
1 + x2

2 − d0,

G0 =
{
x ∈ R

3|φ0(x) ≤ 0
}

.

Thus, a point x is inside G0 if φ0(x) is negative, outside G0 if φ0(x) is posi-
tive, and on the boundary of G0 if φ0(x) = 0. Constructing this signed dis-
tance function representation for G0 is straightforward for basic geometric
shapes. Using negation, minimum, and maximum operators, we can construct
functions G0 which are unions, intersections, and set differences. For exam-
ple, if Gi is represented by gi(x), then, min[g1(x), g2(x)] represents G1 ∪ G2,
max[g1(x), g2(x)] represents G1∩G2, and max[g1(x),−g2(x)] represents G1\G2.

In [5] we proved that an implicit surface representation of the backwards
reachable set can be found by solving a modified HJI PDE. Using ∇φ to
represent the gradient of φ, the modified HJI PDE is

∂φ(x, t)
∂t

+ min [0, H(x,∇φ(x, t))] = 0, (5)

with Hamiltonian

H(x, p) = max
u∈U

min
d∈D

p · f(x, u, d) (6)

and terminal conditions

φ(x, 0) = φ0(x). (7)

If G0 is the zero sublevel set of φ0(x), then the zero sublevel set of the viscosity
solution φ(x, t) to (5)–(7) specifies the backwards reachable set as

G(τ) =
{
x ∈ R

3|φ(x,−τ) ≤ 0
}

.

Notice that (5) is solved from time t = 0 backwards to some t = −τ ≤ 0.
There are several interesting points to make about the HJI PDE (5)–

(7). First, the min [0, H ] formulation in (5) ensures that the reachable set
only grows as τ increases. This formulation effectively “freezes” the system
evolution when the state enters the target set, which enforces the property that
a state which is labeled as “unsafe” cannot become “safe” at a future time.
Second, we note that the maxu mind operation in computing the Hamiltonian
(6) results in a solution which is not necessarily a “no regret”, or saddle,
solution to the differential game. By ordering the optimization so that the
maximum occurs first, the control input u is effectively “playing” against an
unknown disturbance – it is this order which produces a conservative solution,
appropriate for the applicaton to system verification under uncertainty. Third,
it is proven in [5] that out of many possible weak solutions, the viscosity
solution [30] of (5)–(7) yields the reachable set boundary. The significance of
this last point is that it enables us to draw from the well developed numerical
schemes of the level set literature to compute accurate approximations of
φ(x, t).
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To compute numerical approximations of the viscosity solution to (5)–(7),
we have developed a C++ implementation based on high resolution level set
methods (an excellent introduction to these schemes can be found in [31]).
We use a fifth order accurate weighted, essentially non-oscillatory (WENO)
stencil [32, 33] to approximate ∇φ(x, t), although we have also implemented
a basic first order scheme for speed [4, 34]. We use the well studied Lax-
Friedrichs (LF) approximation [35] to numerically compute Hamiltonian (6).
Finally, we treat the time derivative in (5) with the method of lines and a
second order total variation diminishing (TVD) Runge-Kutta scheme [36].
Numerical convergence of our algorithm is demonstrated and validated in
[37, 5].

4 Verifying Hybrid Systems

In the previous section, we demonstrated the concept illustrated in Figure
3, in which the problem of verification of safety for continuous systems may
be solved by a reachable set computation. This computation abstracts an
uncountable number of states into the three classes: inside safe set, boundary
of safe set, and outside safe set. We showed that this implicit surface function
representation contains information which may be used for designing a safe
control law. This safe control law could be used to filter any other control law
as the system state approaches the reachable set boundary.

We now consider the problem of computing reachable sets for hybrid sys-
tems. Assuming that tools for discrete and continuous reachability are avail-
able, computing reachable sets for hybrid systems requires keeping track of the
interplay between these discrete and continuous tools. Fundamentally, reach-
ability analysis in discrete, continuous or hybrid systems seeks to partition
states into two categories: those that are reachable from the initial condi-
tions, and those that are not. Early work in this area focussed on decidable
algorithms: it was shown that decidability results exist for timed and some
classes of linear hybrid automata [38]. Software tools were designed to auto-
matically compute reachable sets for these systems: Uppaal [39] and Kronos
[40] for timed automata, and HyTech [41, 42] for linear hybrid automata.
Some of these tools allow symbolic parameters in the model, and researchers
began to study the problem of synthesizing values for these parameters in or-
der to satisfy some kind of control objective, such as minimizing the size of the
backwards reachable set. The procedure that we describe here was motivated
by the work of [43, 44] for reachability computation and controller synthesis
on timed automata, and that of [45] for controller synthesis on linear hybrid
automata. Tools based on the analysis of piecewise linear systems, using math-
ematical programming tools such as CPLEX[46] have found success in several
industrial applications.

Our hybrid system analysis algorithm [6] is built upon our implicit reach-
able set representation and level set implementation for continuous systems.
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Thus, we are able to represent and analyze nonlinear hybrid systems, with
generally shaped sets. In this sense, our work is related to that of the viability
community [47, 48], which has extended concepts from viability to hybrid sys-
tems [49]; though the numerical techniques presented here differ from theirs.
Other hybrid system reachability algorithms fall within this framework; the
differences lie in their discrete and continuous reachability solvers and the
types of initial conditions, inputs, invariants and guards that they admit.
Tools such as d/dt, Checkmate, and VeriSHIFT have been designed using
the different methods of continuous reachable set calculation surveyed in the
previous section [50, 51, 52, 53, 54]: the complexity of these tools is essen-
tially the complexity of the algorithm used to compute reachable sets in the
corresponding continuous state space.

Methods for hybrid system verification listed above have found applica-
tion in automotive control problems [46, 55], experimental industrial batch
plants [56], vehicle collision avoidance problems [57, 58], as well as envelope
protection problems [8, 59]. The problems that have been solved to date are
generally of low dimension: to the best of our knowledge, the even the over-
approximative methods to date have not been directly applied to systems of
continuous dimension greater than 6. In the next section, we present results
for envelope projection on nonlinear, hybrid systems with three continuous di-
mensions, representing the longitudinal dynamics of jet aircraft under hybrid
control.

4.1 Computing Reachable Sets for Hybrid Systems

We describe the algorithm first with a picture, and then present the details of
a few key components. The full details of the algorithm are in [6], with new
implementation results presented in [7].

Consider the sequence of eight diagrams in Figure 4. We draw the hy-
brid automaton as a set of discrete states {q1, . . . , q7} with a transition logic
represented by R (the arrows indicate the possible discrete state transitions,
the dependence on continuous state and input variables is implied but not
shown in the Figure). Associated to each discrete state qi are the continuous
dynamics ẋ = f(qi, x, (σu, σd), (u, d)) and domain Dom ⊆ qi × R

n, neither of
which are shown on the diagram. For illustrative purposes, we consider only
one step of our algorithm applied in state q1, from which there exist transi-
tions to states q2 and q3 (shown in diagram 2). We initialize with the unsafe
target sets (shown as sets in q1 and q2 in diagram 3), and sets which are
known to be safe (shown as the “safe” set in q3 in diagram 4). We augment
the unsafe target set in q1 with states from which there exists an uncontrolled
transition to the unsafe set in q2 (which is represented as a dashed arrow
on diagram 5). Uncontrolled transitions may be caused by reset relations af-
fected by disturbance actions. In the absence of other transitions out of state
q1, the set of states backwards reachable from the unsafe target set in q1 may
be computed using the reachable set algorithm of Section 3 on the dynamics
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ẋ = f(qi, x(t), (σu(t), σd(t)), (u(t), d(t))) (diagram 6). However, there may ex-
ist regions of the state space in q1 from which controllable transitions exist –
these transitions could reset the system to a safe region in another discrete
state. This is illustrated in diagram 7, with the region in which the system
may “escape” to safety from q1. Thus, the backwards reachable set of interest
in this case is the set of states from which trajectories can reach the unsafe
target set, without hitting this safe “escape” set first. We call this reachable
set the reach-avoid set, and it is illustrated in diagram 8.

The algorithm illustrated above is implemented in the following way. The
target set G0 ⊆ Q × R

n can include different subsets of the continuous state
space for each discrete mode:

G0 = {(q, x) ∈ Q × R
n|g(q, x) ≤ 0} (8)

for a level set function g : Q×R
n → R. We seek to construct the largest set of

states for which the control, with action/input pair (σu, u) can guarantee that
the safety property is met despite the disturbance action/input pair (σd, d).

For a given set K ⊆ Q×R
n, we define the controllable predecessor Preu(K)

and the uncontrollable predecessor Pred(Kc) (where Kc refers to the comple-
ment of the set K in Q × R

n) by

Preu(K) ={(q, x) ∈ K : ∃(σu, u) ∈ Σu × U
∀(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ⊆ K}

Pred(Kc) ={(q, x) ∈ K : ∀(σu, u) ∈ Σu × U
∃(σd, d) ∈ Σd ×D R(q, x, σu, σd, u, d) ∩ Kc 	= ∅} ∪ Kc

(9)

Therefore Preu(K) contains all states in K for which controllable actions
(σu, u) can force the state to remain in K for at least one step in the discrete
evolution. Pred(Kc), on the other hand, contains all states in Kc, as well as
all states from which uncontrollable actions (σd, d) may be able to force the
state outside of K.

Consider two subsets G ⊆ Q × R
n and E ⊆ Q × R

n such that G ∩ E = ∅.
The reach-avoid operator is defined as:

Reach(G, E) = {(q, x) ∈ Q × R
n | ∀u ∈ U ∃d ∈ D and t ≥ 0 such that

(q, x(t)) ∈ G and (q, x(s)) ∈ Dom \ E for s ∈ [0, t]}
(10)

where (q, x(s)) is the continuous state trajectory of ẋ(s) = f(q, x(s), σu, σd, u(s),
d(s)) starting at (q, x).

Now, consider the following algorithm:
initialization: W 0 = Gc

0, W+1 = ∅, i = 0
while W i 	= W i+1 do
W i−1 = W i \ Reach

(
Pred((W i)c), Preu(W i)

)
i = i − 1
end while
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Fig. 4. An illustration of our algorithm for computing reachable sets for hybrid
systems.
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In the first step of this algorithm, we remove from Gc
0 (the complement of

G0), all states from which a disturbance forces the system either outside Gc
0 or

to states from which a disturbance action may cause transitions outside Gc
0 ,

without first touching the set of states from which there is a control action
keeping the system inside Gc

0. Since at each step, W i−1 ⊆ W i, the set W i

decreases monotonically in size as i decreases. If the algorithm terminates, we
denote the fixed point as W ∗. The set W ∗ is used to verify the safety of the
system. Recall once more from Figure 3: if the system starts inside W ∗, then
there exists a control law, extractable from our computational method, for
which the system is guaranteed to be safe.

Returning to our pictorial description of the algorithm in Figure 4, and
concentrating on the result of one step of the algorithm detailed in Figure 5,
we note that, for iteration i: Pred((W i)c) = G1 ∪ G2, E1 ⊂ Preu(W i), and
Reach

(
Pred((W i)c), Preu(W i)

)
= G3.

1E2G

1G
G3

Fig. 5. Detail of the reach-avoid set from diagram 8 of Figure 4.

To implement this algorithm, we need to compute Preu, Pred, and Reach.
The computation of Preu and Pred requires inversion of the transition relation
R subject to the quantifiers ∃ and ∀; existence of this inverse can be guaranteed
subject to conditions on the map R. In our examples, we perform this inversion
by hand. The algorithm for computing Reach(G, E) is a direct modification
of the reachable set calculation of Section 3, the details are presented in [7].

5 Flight Management System Example

In this section, we demonstrate our hybrid systems analysis on an interesting
and current example, the landing of a civilian aircraft. This example is dis-
cussed in detail in [8] and [10]. In addition to the examples presented here,
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we have solved a range of multi-mode aircraft collision avoidance examples.
Please refer to [7, 57] for these examples.

The autopilots of modern jets are highly automated systems which assist
the pilot in constructing and flying four-dimensional trajectories, as well as
altering these trajectories online in response to Air Traffic Control directives.
The autopilot typically controls the throttle input and the vertical and lat-
eral trajectories of the aircraft to automatically perform such functions as:
acquiring a specified altitude and then leveling, holding a specified altitude,
acquiring a specified vertical climb or descend rate, automatic vertical or lat-
eral navigation between specified way points, or holding a specified throttle
value. The combination of these throttle-vertical-lateral modes is referred to
as the flight mode of the aircraft. A typical commercial autopilot has several
hundred flight modes – it is interesting to note that these flight modes were
designed to automate the way pilots fly aircraft manually: by controlling the
lateral and vertical states of the aircraft to set points for fixed periods of time,
pilots simplify the complex task of flying an aircraft. Those autopilot func-
tions which are specific to aircraft landing are among the most safety critical,
as reliable automation is necessary when there is little room for altitude devi-
ations. Thus, the need for automation designs which guarantee safe operation
of the aircraft has become paramount. Testing and simulation may overlook
trajectories to unsafe states: “automation surprises” have been extensively
studied [60] after the unsafe situation occurs, and “band-aids” are added to
the design to ensure the same problem does not occur again. We believe that
the computation of accurate reachable sets inside the aerodynamic flight en-
velope may be used to influence flight procedures and may help to prevent
the occurrence of automation surprises.

5.1 Flap Deflection in a Landing Aircraft

In this example, we examine a landing aircraft, and we focus our attention
on the flap setting choices available to the pilot. While flap extension and
retraction are physically continuous operations, the pilot is presented with
a button or lever with a set of discrete settings and the dynamic effect of
deflecting flaps is assumed to be minor. Thus, we choose to model the flap
setting as a discrete variable. The results in this section are taken from [37].

A simple point mass model for aircraft vertical navigation is used, which
accounts for lift L, drag D, thrust T , and weight mg (see [61] and references
therein). We model the nonlinear longitudinal dynamics⎡

⎣ mV̇
mV γ̇

ḣ

⎤
⎦ =

⎡
⎣−D(α, V ) + T cosα − mg sin γ

L(α, V ) + T sin α − mg cos γ
V sin γ

⎤
⎦ (11)

in which the state x = [V, γ, h] ∈ R
3 includes the aircraft’s speed V , flight

path angle γ, and altitude h. We assume the control input u = [T, α], with



164 C.J. Tomlin et al.

clean wing (0u) 0u → 25d 25 d 25d → 50d 50 d

Fig. 6. Discrete transition diagram of flap deflection settings. Clean wing represents
no deflection, 25 d represents a deflection of 25◦, and 50 d, a deflection of 50◦. The
modes 0u → 25d and 25d → 50d are timed modes to reflect deflection time: if the
pilot selects mode 25 d from clean wing, for example, the model will transition into
an “intermediate” mode for 10 seconds, before entering 25 d. Thus, the transitions
from clean wing to 0u → 25d and from 25 d to 25d → 50d are controlled transitions
(σu) in our analysis, the others are uncontrolled transitions (σd).

aircraft thrust T and angle of attack α. The mass of the aircraft is denoted m.
The functions L(α, V ) and D(α, V ) are modeled based on empirical data [62]
and Prandtl’s lifting line theory [63]:

L(α, V ) = 1
2ρSV 2CL(α), D(α, V ) = 1

2ρSV 2CD(α) (12)

where ρ is the density of air, S is wing area, and CL(α) and CD(α) are the
dimensionless lift and drag coefficients.

In determining CL(α) we will follow standard autoland procedure and
assume that the aircraft switches between three fixed flap deflections δ =
0◦, δ = 25◦ and δ = 50◦ (with slats either extended or retracted), thus
constituting a hybrid system with different nonlinear dynamics in each mode.
This model is representative of current aircraft technology; for example, in civil
jet cockpits the pilot uses a lever to select among four predefined flap deflection
settings. We assume a linear form for the lift coefficient CL(α) = hδ + 4.2α,
where parameters h0◦ = 0.2, h25◦ = 0.8 and h50◦ = 1.25 are determined from
experimental data for a DC9-30 [62]. The value of α at which the vehicle stalls
decreases with increasing flap deflection: αmax

0◦ = 16◦, αmax
25◦ = 13◦, αmax

50◦ =
11◦; slat deflection adds 7◦ to the αmax in each mode. The drag coefficient is
computed from the lift coefficient as [63] CD(α) = 0.041 + 0.045C2

L(α) and
includes flap deflection, slat extension and gear deployment corrections. Thus,
for a DC9-30 landing at sea level and for all α ∈ [−5◦, αmax

δ ], the lift and drag
terms in (11) are given by

L(α, V ) = 68.6 (hδ + 4.2α)V 2 D(α, V ) = (2.7 + 3.08 (hδ + 4.2α)2)V 2

In our implementation, we consider three operational modes: 0u, which rep-
resents δ = 0◦ with undeflected slats, 25d, which represents δ = 25◦ with
deflected slats, and 50d, for δ = 50◦ with deflected slats.

Approximately 10 seconds are required for a 25◦ degree change in flap
deflection. For our implementation, we define transition modes 0u → 25d and
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25d → 50d with timers, in which the aerodynamics are those of (11) with
coefficients which interpolate those of the bounding operational modes. The
corresponding discrete automaton is shown in Figure 6. Transition modes have
only a timed switch at t = tdelay, so controlled switches will be separated by
at least tdelay time units and the system is nonzeno. For the executions shown
below, tdelay = 10 seconds.

The aircraft enters its final stage of landing close to 50 feet above ground
level ([62, 64]). Restrictions on the flight path angle, aircraft velocity and
touchdown (TD) speed are used to determine the initial safe set W0:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h ≤ 0 landing or has landed

V > V stall
δ faster than stall speed

V < V max
slower than limit speed

V sin γ ≥ ż0 limited TD speed

γ ≤ 0 monotonic descent

∪

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h > 0 aircraft in the air

V > V stall
δ faster than stall speed

V < V max
slower than limit speed

γ > −3◦ limited descent flight path

γ ≤ 0 monotonic descent

(13)

We again draw on numerical values for a DC9-30 [62]: stall speeds V stall
0u = 78

m/s, V stall
25d = 61 m/s, V stall

50d = 58 m/s, maximal touchdown speed ḣ0 = 0.9144
m/s, and maximal velocity V max = 83 m/s. The aircraft’s input range is
restricted to a fixed thrust at 20% of its maximal value T = 32KN , and
α ∈ [0◦, 10◦].

The results of our fixed point computation are shown in Figures 7 and 8.
The interior of the surface shown in the first row of Figure 7 represents the ini-
tial envelopes W0 for each of the 0u, 25d and 50d modes. The second row of the
figure shows the maximally controllable subset of the envelope for each mode
individually, as determined by the reachable set computation for continuous
systems. The clean wing configuration 0u becomes almost completely uncon-
trollable, while the remaining modes are partially controllable. The subset
of the envelope that cannot be controlled in these high lift/high drag con-
figurations can be divided into two components. For low speeds, the aircraft
will tend to stall. For values of h near zero and low flight path angles γ, the
aircraft cannot pull up in time to avoid landing gear damage at touchdown.
The third row shows the results for the hybrid reachable set computation.
Here, both modes 0u and 25d are almost completely controllable, since they
can switch instantaneously to the fully deflected mode 50d. However, no mode
can control the states h near zero and low γ, because no mode can pull up in
time to avoid landing gear damage. Figure 8 shows a slice through the reach
and avoid sets for the hybrid analysis at a fixed altitude of h = 5m, for each
of the 0u, 25d and 50d modes. Here, the grey-scale represents the following:
dark grey is the subset of the initial escape set that is also safe in the current
mode, mid-grey is the initial escape set, light grey is the known unsafe set,
and white is the computed reach set, or those states from which the system
can neither remain in the same mode nor switch to safety.
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Fig. 7. Maximally controllable safe envelopes for the multimode landing example.
From left to right the columns represent modes 0u, 25d and 50d.
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Fig. 8. Slices through the reach and avoid sets for the hybrid analysis at a fixed
altitude of h = 5m. From left to right the columns represent modes 0u, 25d and 50d.
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5.2 Take Off / Go Around Interface Analysis

We now examine another aircraft landing example with the goal of using hy-
brid system verification in order to prove desirable qualities about the pilot’s
display. Naturally, only a subset of all information about the aircraft is dis-
played to the pilot – but how much information is enough? When the pilot
does not have the required information at his disposal, and becomes confused
by the cockpit automation, automation surprises and mode confusion can oc-
cur. Automation surprises are contributing factors in many aircraft incidents,
commonly regarded as indicators of future aircraft accidents. Currently, ex-
tensive flight simulation and testing are used to validate autopilot systems and
their displays. However, discovering design errors as early as possible in the
design process is important for aircraft manufacturers as well as pilots, and
hybrid verification tools can aid in this process. The results in this section are
taken from [9], which uses the same form of longitudinal dynamic model (11)
as the previous section, with new parameters for a large commercial aircraft
[9].

In modeling CL(α) and CD(α) as in (12), we define CL(α) = CL0 + CLαα
and CD(α) = CD0 + KC2

L(α). The constants CL0 , CD0 , and K represent a
particular aircraft configuration, as indicated in Table 1. CLα = 5.105 in all
modes. The aircraft has mass m = 190000 kg, wing surface area S = 427.80
m/s2, and maximum thrust Tmax = 686700 N.

Table 1. Aerodynamic constants for autoland modes indexed by ẋ = fi(x, u).

i CL0 CD0 K Flaps Landing
Setting Gear

1 0.4225 0.024847 0.04831 Flaps-20 Down
2 0.7043 0.025151 0.04831 Flaps-25 Down
3 0.8212 0.025455 0.04831 Flaps-30 Down
4 0.4225 0.019704 0.04589 Flaps-20 Up
5 0.7043 0.020009 0.04589 Flaps-25 Up
6 0.8212 0.020313 0.04589 Flaps-30 Up

The model for this example also varies from the previous example in that
we directly account for the user’s actions in the hybrid system. We assume
that the pilot operates the aircraft according to strict procedure, shown in
Figure 9. During landing, if for any reason the pilot or air traffic controller
deems the landing unacceptable (debris on the runway, a potential conflict
with another aircraft, or severe wind shear near the runway, for example), the
pilot must initiate a go-around maneuver. A go-around can be initiated at any
time after the glideslope has been captured and before the aircraft touches
down. Pushing the go-around button engages a sequence of events designed
to make the aircraft climb as quickly as possible to a preset missed-approach
altitude, halt = 2500 feet.



168 C.J. Tomlin et al.

Toga-Max Toga-Up Altitude

T ∈ [0, Tmax]T ∈ [0, Tmax]T = Tmax

ẋ = f1(x, u) ẋ = f4(x, u) ẋ = f1(x, u)

ḣ ≥ 0 h ≥ halt

Flare

ẋ = f3(x, u)

T = 0

Rollout

ẋ = 0
T = 0

σTOGA

h = 0

Fig. 9. Hybrid procedural automaton Hprocedure. The dynamics fi(x, u) = f(qi, x, u)
differ in the values of aerodynamic coefficients affecting lift and drag.

The initial state of the procedural model Hprocedural (Figure 9) is Flare,
with flaps at Flaps-30 and thrust fixed at idle. When a pilot initiates a go-
around maneuver (often called a “TOGA” due to the “Take-Off/Go-Around”
indicator on the pilot display), the pilot changes the flaps to Flaps-20 and the
autothrottle forces the thrust to Tmax (Toga-Max). When the aircraft obtains
a positive rate of climb, the pilot raises the landing gear, and the autothrottle
allows T ∈ [0, Tmax] (Toga-Up). The aircraft continues to climb to the missed
approach altitude, halt, then automatically switches into an altitude-holding
mode, Altitude, to prepare for the next approach (with the landing gear down).
If a go-around is not initiated from Flare, the aircraft switches to Rollout when
it lands. (We do not model the aircraft’s behavior after touchdown.)

Although go-arounds are unpredictable and may be required at any time
during the autoland prior to touchdown, we model σTOGA as a controlled
transition because the pilot must initiate the go-around for it to occur. Certain
events occur simultaneously: changing the flaps to Flaps-30 and event σTOGA,
raising the landing gear and ḣ ≥ 0, and lowering the landing gear and h ≥ halt.

Each mode in the procedural automaton is subject to state and input
bounds, due to constraints arising from aircraft aerodynamics and desired
aircraft behavior. These bounds, shown in Table 2, form the boundary of the
initial envelope W0. Bounds on V and α are determined by stall speeds and
structural limitations for each flap setting. Bounds on γ and T are determined
by the desired maneuver [65]. Additionally, at touchdown, θ ∈ [0◦, 12.9◦] to
prevent a tail strike, and ḣ ≥ −1.829 m/s to prevent damage to the landing
gear.

We separate the hybrid procedural model (Figure 9) across the user-
controlled switch σTOGA, into two hybrid subsystems: HF and HT. HF en-
compasses Flare and Rollout, H ◦

T
encompasses Toga-Max, Toga-Up, and Alti-

tude. Computationally, automatic transitions are smoothly accomplished by
concatenating modes across automatic transitions, so that the change in dy-
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Table 2. State bounds for autoland modes of Hprocedural.

Mode V [m/s] γ [degrees] α [degrees]

Flare [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦]
Toga-Max [63.79, 97.74] [−6.0◦, 0.0◦] [−8◦, 12◦]
Toga-Up [63.79, 97.74] [0.0◦, 13.3◦] [−8◦, 12◦]
Altitude [63.79, 97.74] [−0.7◦, 0.7◦] [−8◦, 12◦]

namics across the switching surface is modeled as another nonlinearity in the
dynamics. Additionally, we assume in H ◦

T
that if the aircraft leaves the top of

the computational domain (h = 20 m) without exceeding its flight envelope,
it is capable of reaching Altitude mode, which we consider to be completely
safe.

The initial flight envelopes for HF and HT, (WF)0 and (WT)0, are de-
termined by state bounds on each mode given in Table 2. We perform the
reachable set computation on HF and HT separately to obtain the safe flight
envelopes WF and WT . Figure 10 shows WF, and Figure 11 shows WT in
Toga-Up and Toga-Max modes. (Note that the boundary of WF along γ = 0
corresponds with the transition boundary of WT between Toga-Up and Toga-
Max, ḣ = 0.)

Fig. 10. Safe region WF ; the outer box
is (WF )0.

Fig. 11. Safe region WT : the outer box
is (WT )0.

Figure 12 shows the continuous region WF ∩WT from which we can guar-
antee both a safe landing and a safe go-around. Notice that this set is smaller
than WF, the region from which a safe landing is possible: the pilot is further
restricted in executing a go-around. There are states from which a safe landing
is possible, but a safe go-around is not.

Verification within a hybrid framework allows us to account for the inher-
ently complicated dynamics underlying the simple, discrete representations
displayed to the pilot. In this example, in order to safely supervise the sys-
tem, the pilot should have enough information to know before entering a
go-around maneuver whether or not the aircraft will remain safe: thus the
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Fig. 12. The solid shape is the safe region WF ∩ WT , from which safe landing and
safe go-around is possible. The meshes depict WF and WT.

pilot could respond to this information by increasing speed, decreasing ascent
rate, or decreasing angle of attack.

Further details on how hybrid system verification is used to verify infor-
mation contained in user-interfaces can be found in [9].

6 Summary

We have presented a method and algorithm for hybrid systems analysis, specif-
ically, for the verification of safety properties of hybrid systems. We have also
given a brief summary of other available methods. All techniques rely on the
ability to compute reachable sets of hybrid systems, and they differ mainly
in the assumptions made about the representation of sets, and evolution of
the continuous state dynamics. We have described and demonstrated our al-
gorithm, which represents a set implicitly as the zero sublevel set of a given
function, and computes its evolution through the hybrid dynamics using a
combination of constrained level set methods and discrete mappings through
transition functions.

Many directions for further work are available, and we are pursuing several
of them. Our algorithm is currently constrained by computational complexity:
examples with four continuous dimensions take several days to run on our
standard desktop computers, five dimensions takes weeks. We are working on
a variant of our algorithm which first projects the high dimensional target into
a set of lower dimensional subspaces of the state space, computes the reachable
sets of these projections (quickly, as they are in low dimensions), and then
“backprojects” these sets to form, in high dimensions, an overapproximation of
the actual reachable set. The actual reachable set need never be computed, and
overapproximations of unsafe sets can be used to verify safety, as we showed in
the last lecture. We are also developing methods to compute tight polyhedral
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overapproximations of the reachable set for general nonlinear hybrid systems
[66] – these methods scale well in continuous dimension, as they do not require
gridding the state space.
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1 Introduction

The dynamics of the oceans play a major role in the knowledge of our envi-
ronment and especially in the Earth’s climate. Over the past twenty years,
the new satellite techniques for observing the oceans, and especially the use of
altimeter measurements, have greatly improved our knowledge of the oceans
by allowing synoptic monitoring of the surface. The measurements of the sea-
surface height have clearly demonstrated the feasibility and the usefulness of
satellite altimetry. It was with the availability of Topex/Poseidon data since
1992, that the oceanographic community began intensive exploitation of this
new observational source. It has already given incomparable information to
study the general circulation of the ocean, to estimate the energy levels of
the upper ocean, and to examine the local dynamics of different regions of
particular interest, such as the Gulf Stream area, the Kuroshio extension, the
Antarctic circumpolar current and the tropical oceans.
At the interface between the two major components of oceanographic science,
i.e. observations and models, lies the domain of so-called data assimilation
(DA). DA covers all the mathematical and numerical techniques which allow
us to blend as optimally as possible all the sources of information coming from
theory, models and other types of data. Clearly these techniques may not only
apply in oceanography but also to other environmental disciplines. DA allows
us to recreate the time-space structure of a system from a set of information
which has, in general, a large disparity in nature, in space-time distribution
and in accuracy. There are two main categories of DA methods: variational
methods based on the optimal control theory [Lio68] and statistical methods
based on the theory of optimal statistical estimation. The prototype of the first
class which is actually of interest here is the optimal control method which was
first introduced in meteorology (see [Lew85], [LeD86], [Tal87]) and more re-
cently for the ocean (see [Tha88], [She90], [Moo91], [Sch93], [Nec94], [Luo98]).
The prototype of statistical methods is the Kalman filter whose introduction
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in oceanography dates back roughly a decade (see, for example, [Ghi89] and
[Ghi91]). The Kalman filter was extended to nonlinear cases ([Jaz70], [Gel74])
but it has been mostly applied in oceanography to quasi-linear situations of
the tropical oceans ([Gou92], [Fuk95], [Fuk93], [Can96], [Ver99]). We also refer
to the recent book of Bennett [Ben02] on inverse methods, both for oceanog-
raphy and meteorology.
All DA techniques encounter major difficulties in practice for computing rea-
sons: memory size and computing costs. The full Kalman filter would, in
principle, require the manipulation of (N ×N) matrices where N is the state
vector dimension which is typically 107 or 108 in an oceanic problem. The
optimal control adjoint method often requires several hundred iterations of
the minimization process to converge, thus implying an equivalent number of
model runs.
In this paper, we first focus our interest on the use of the variational ad-
joint method in a relatively simple ocean model in order to try to reconstruct
the four-dimensional ocean system from altimetric surface observations of the
ocean. The variational method uses the strong constraint hypothesis, i.e. the
ocean circulation model is assumed to be exact. The assimilation process is
carried out by an identification of the initial state of the dynamical system
which minimizes a cost function. This cost function is the mean-square dif-
ference between the observations and the corresponding model variables. The
functional will be minimized using a numerical unconstrained optimization
method such as the limited memory BFGS algorithm (see [Gil89]). The gra-
dient vector is obtained analytically from the adjoint state, which can be
interpreted as the Lagrange multiplier of the model equations. We then use
a dual method, which consists in considering the model as a weak constraint.
The use of an observation vector as a Lagrange multiplier for this constraint
allows us to consider the minimization problem in a dual way. The dual cost
function, measuring the difference between the data and the model state corre-
sponding to a vector of the observation space, is minimized in the observation
space, still using the BFGS algorithm.
In section 2, we introduce the physical model used for the theorical and nu-
merical results. The primal and dual methods applied to our ocean model are
introduced in sections 3 and 4 respectively. Some numerical results are given
in section 5. A few conclusions will be given in section 6.

2 Physical Model

2.1 Quasi-geostrophy

The system which governs the behaviour of the ocean is called the primitive
equation system, constituted by the conservation laws of mass, momentum
(Navier-Stokes equations), temperature and salinity. Most large-scale geo-
physical flows are based on the geostrophic equilibrium between the rotational
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effect due to the Coriolis force and the horizontal pressure gradient.
We will use here a simplified quasi-geostrophic ocean model. This model arises
from the primitive equations, assuming first that the rotational effect (Corio-
lis force) is much stronger than the inertial effect. This can be quantified by
the fact that the ratio between the characteristic time of the rotation of the
Earth and the inertial time is small. This ratio is called the Rossby number.
The quasi-geostrophic model also assumes that the size of the ocean is small
compared to the size of the Earth, and that this ratio is close to the Rossby
number. Quasi-geostrophy finally assumes that the depth of the basin is small
compared to its width (the ocean is supposed to be a thin layer of the Earth).
In the case of the Atlantic Ocean, all these assumptions are not valid, but it
has been shown that this approximate model reproduces quite well the ocean
circulations at intermediate latitudes, such as the Gulf Stream.
The thermodynamic effects are neglected, and we also assume that the forc-
ing is due to the wind at the surface of the ocean and that the dissipation is
essentially due to bottom and lateral friction.

2.2 Equations of the Model

The ocean is supposed to be stratified in n layers, each of them having a
constant fluid density [Hol78]. The quasi-geostrophic model is obtained by
making a first order expansion of the Navier-Stokes equation with respect to
the Rossby number [Ped79]. The model system is then composed of n coupled
equations resulting from the conservation law of the potential vorticity. The
equations can be written as :

D1 (θ1(Ψ) + f)
Dt

− β∆2Ψ1 = F1 in Ω×]0, T [, (1)

at the surface layer (k = 1),

Dk (θk(Ψ) + f)
Dt

− β∆2Ψk = 0 in Ω×]0, T [, (2)

at intermediate layers (k = 2, . . . , n − 1), and

Dn (θn(Ψ) + f)
Dt

+ α∆Ψn − β∆2Ψn = 0 in Ω×]0, T [, (3)

at the bottom layer (k = n), where

• Ω ⊂ R
2 is the circulation basin and ]0, T [ is the time interval,

• n is the number of layers,

• Ψk is the stream function at layer k, Ψ is the vector (Ψ1, . . . , Ψn)T ,
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• θk is the sum of the dynamical and thermal vorticity at layer k :

θk(Ψ) = ∆Ψk − (WΨ)k,

with −(WΨ)k =
f2
0ρ

Hkg

(
Ψk+1 − Ψk

ρk+1 − ρk
− Ψk − Ψk−1

ρk − ρk−1

)
.

• f is the Coriolis force (f0 is the Coriolis force at the reference latitude of
the ocean).
In the β-plane approximation, the Coriolis force varies linearly with respect
to the latitude.

• g represents the gravity, ρk the fluid density at layer k (and ρ the average
fluid density), and Hk the depth of the layer k,

• Dk

Dt
is the Lagrangian particular derivative :

Dk

Dt
=

∂

∂t
+ J(Ψk, .),

where J is the Jacobian operator J(f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
,

• ∆Ψn represents the bottom friction dissipation, ∆2Ψk represents the lat-
eral friction dissipation,

• and F1 is the forcing term, the wind stress applied to the ocean surface.

2.3 Boundary Conditions

The tridiagonal matrix W (used to couple the stream functions at different
layers) can be diagonalized :

W = P.diag(λ1, . . . , λn).P−1, (4)

where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues, and P is the transformation
matrix. We can then define the mode vector of the stream functions Φ =
(Φ1, . . . , Φn)T :

Φ = P−1Ψ.

The first mode Φ1 corresponds to the eigenvalue 0 and is called the barotropic
mode. The next modes ares the baroclinic modes. The boundary conditions
result from the mass conservation law (Holland 1978), and can then be written
as :

Φ1 = 0 in ∂Ω×]0, T [,∫
Ω

Φk(t)dσ = 0 ∀t ∈ [0, T ], ∀k ≥ 2,
(5)

and

∆Ψk(t) = 0 in ∂Ω×]0, T [, ∀k. (6)

The initial conditions Ψk(0) complete the equations of the direct model.
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3 Primal Variational Method

We suppose that the data we want to assimilate come from satellite measure-
ments of the sea-surface height, which is directly related to the upper layer

stream function Ψ1 by h =
f0

g
Ψ1. Thus, we assume that we have an observa-

tional stream function Ψobs
1 . These observations are only available at times ti,

i = 1 . . .N , over the data assimilation period [0, T ], and are also discrete in
space. We consider then that the vector Ψobs

1 (ti) represents the observations
of the ocean surface available at time ti.
The control vector u (which has to be determined) is the initial state of the
stream functions at all layers (Ψk(0))k=1...n.

3.1 Cost Function

We can define a cost function

J (u) =
1
2

N∑
i=1

〈R−1
i

(
HiΨ1(ti) − Ψobs

1 (ti)
)
, HiΨ1(ti) − Ψobs

1 (ti)〉

+
1
2
〈P−1

0 u, u〉,

(7)

where P0 and Ri are covariance matrices, Hi are (linear) observation opera-
tors connecting observations Ψobs

1 and model solutions Ψ1, and 〈 . , . 〉 is the
canonical real scalar product.
The first part of the cost function quantifies the difference between the obser-
vations and the state function, and the second part is a regularisation term.
The inverse problem which consists in the minimization of J is then well-
posed.

3.2 Adjoint Model

In order to minimize the cost function, we need its gradient ∇J . Because
of the large dimension of the model state vector (more than 106), it is not
possible to compute directly the gradient by using finite difference methods.
The gradient vector of the functional is then obtained by solving backwards
in time the adjoint model ([LeD86]). The quasi-geostrophic adjoint equations
are :

∂θT
1 (Λ)
∂t

− ∆J(Ψ1, Λ1) − (WT J(Ψ, Λ))1 − J (Λ1 , θ1(Ψ) + f)

−β∆2Λ1 = E1

(8)

at the surface layer,
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∂θT
k (Λ)
∂t

− ∆J(Ψk, Λk) − (WT J(Ψ, Λ))k − J (Λk , θk(Ψ) + f)

−β∆2Λk = 0
(9)

at the intermediate layers, and

∂θT
n (Λ)
∂t

− ∆J(Ψn, Λn) − (WT J(Ψ, Λ))n − J (Λn , θn(Ψ) + f)

+α∆Λn−β∆2Λk = 0
(10)

at the bottom layer, in Ω×]0, T [, where

• Λ1, . . . , Λn is the adjoint vector,

• θT
k (Λ) = −∆Λk + (WT Λ)k is the vorticity corresponding to the adjoint

state,

• and E1 is the derivative of J with respect to Ψk :

E1(t) =
N∑

i=1

R−1
i (HiΨ1(t) − Ψobs

1 (t)) δ(t − ti).

If we denote by χ = (χ1, . . . , χn)T the modal adjoint vector :

χ = PT Λ,

the space boundary conditions satisfied by the adjoint state Λ are :

χ1 = 0 in ∂Ω×]0, T [,∫
Ω

χk(t)dσ = 0 ∀t ∈ [0, T ], ∀k ≥ 2,
(11)

and

∆Λk(t) = 0 in ∂Ω×]0, T [, ∀k. (12)

The gradient of the first part of J is obtained by solving equations (8-12) with
a final condition of nullity of the adjoint state. The gradient of the second part
of J is obtained directly by deriving it with respect to u, and we obtain :

∇J = H(−∆ + W )H−1

⎛
⎜⎝

Λ1(0)
...

Λn(0)

⎞
⎟⎠+ P−1

0 u (13)

where H is the diagonal matrix with the layers’ depths Hk on the diagonal.
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3.3 Minimization Process

The numerical minimization of the cost function J can be realized using
a quasi-Newton method. The Newton class of minimization algorithms is
based on an iterative process, using at iteration k the descent direction
dk = −H−1

k .∇J (xk), where Hk = ∇2J (xk) is the Hessian matrix of the
cost function. The direct computation of the Hessian matrix is impossible (its
dimension being too large), but it is possible to evaluate it, using the second
order adjoint equations. However, the inversion of H is nearly impossible. The
quasi-Newton algorithms consist in replacing the inverse of the Hessian ma-
trix by a succession of matrices (Wk)k∈N which are symmetric positive definite
approximations to H−1.
The BFGS algorithm ([Bro69]) uses the following update formula :

Wk+1 = U(Wk, sk, ηk) :=
(
I − sk ⊗ ηk

〈ηk, sk〉
)
Wk

(
I − ηk ⊗ sk

〈ηk, sk〉
)

+
sk ⊗ sk

〈ηk, sk〉

with sk = xk+1 − xk, ηk = ∇J (xk+1) −∇J (xk) and a ⊗ b : c �→ 〈b, c〉a. The
disadvantage of this formula is the need to store all pairs (sk, ηk).
The L-BFGS algorithm ([Liu89]) is a limited memory version of the previous
algorithm. Only the last M pairs are stored, M being often equal to 5. The
update formula is then :

Wk = U(Wk−1, sk−1, ηk−1), 1 ≤ k ≤ M,

and ⎧⎪⎨
⎪⎩

W 0
k = Dk,

W i+1
k = U(W i

k, sk−M+i, ηk−M+i), i = 0 . . .M − 1,

Wk = WM
k ,

for k ≥ M +1, where Dk is a diagonal matrix. The update formula for Dk is :

D
(i)
k+1 =

(
1

D
(i)
k

+
η
(i)
k

2

〈ηk, sk〉
− s

(i)
k

2

(D(i)
k )2〈D−1

k sk, sk〉

)−1

.

4 Dual Method

4.1 General Description

The primal method has many disadvantages. First, the minimization process
is often stopped before convergence to the minimum, because of the size of
the state vector. Moreover, it is also impossible to take into account a model
error : in the previous section, we have supposed that the model and the
equations were perfect. This is obviously not the case (for example, not all
parameters are well known). The only solution to incorporate the model error
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into the minimization process is to add corrective terms to the model, consider
them as part of the control vector, and add a third term to the cost function.
This is not computationally realistic because the size of the control vector
would be multiplied by the number of time steps. Therefore, it is not possible
to take into account in a straightforward way the model error in the primal
variational approach.
A new approach to data assimilation problems has been recently introduced
([Amo95], [Ben92], [Cou97]). Rather than minimizing a cost function on the
state space, the dual method consists in working in the observation space
(which is smaller than the state space).

4.2 Dual Algorithm

Instead of solving first the direct equations and then the adjoint equations in
the primal variational approach, the dual method consists in solving first the
adjoint equations in order to use the information contained in the observation
vector, and then the direct equations in order to reconstruct a trajectory. The
dual algorithm for the quasi-geostrophic model can be constructed as follows :

• Let m be an observation vector that can be directly related to Ψ1 (assume
that m is a vector containing an observation of a part of the ocean surface
at different times ti),

• Solve the adjoint equations (with a final condition equal to zero) :

∂θT
1 (Λ)
∂t

− ∆J(Ψ1, Λ1) − (WT J(Ψ, Λ))1 − J (Λ1, θ1(Ψ) + f)

− β∆2Λ1 = Ẽ1(m),

∂θT
k (Λ)
∂t

− ∆J(Ψk, Λk) − (WT J(Ψ, Λ))k − J (Λk, θk(Ψ) + f)

− β∆2Λk = 0, 1 < k < n,

∂θT
n (Λ)
∂t

− ∆J(Ψn, Λn) − (WT J(Ψ, Λ))n − J (Λn, θn(Ψ) + f)

+ α∆Λn − β∆2Λk = 0,

(14)

where

Ẽ1(m)(t) =
N∑

i=1

HT
i R−1

i (m(t) − Ψobs
1 (t)) δ(t − ti).

• Solve the direct equations
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D1 (θ1(Ψ) + f)
Dt

− β∆2Ψ1 = F1 + (QΛ)1,

Dk (θk(Ψ) + f)
Dt

− β∆2Ψk = (QΛ)k, 1 < k < n

Dn (θn(Ψ) + f)
Dt

+ α∆Ψn − β∆2Ψn = (QΛ)n,

(15)

with the initial conditions

Ψk(0) = Ψe
k (0) + (P0Λ(0))k,

where Q and P0 are statistical preconditioning matrices, and Ψe
k (0) is an

a priori estimation of Ψk(0).

• Define the operator D : (Dm)(t) =
N∑

i=1

HiΨ1(ti) δ(t − ti).

We can then define the dual cost function as follows :

JD(m) =
1
2
〈Dm, m〉 − 〈Ψobs

1 , m〉. (16)

JD measures the difference between Dm and Ψobs
1 , i.e. between the trace (in

the observation space) of a solution of the direct model and the observation
vector.
As D is a linear symmetric positive definite operator, the gradient is obviously
given by

∇JD(m) = Dm − Ψobs
1 . (17)

It is therefore easy to perform the minimization of JD, given its gradient,
simply by using a quasi-Newton method such as a BFGS algorithm. Once
the minimum has been found, it is easy to reconstruct the corresponding
trajectory in the state space by solving (14-15).
We can observe that the minimization of the dual cost function takes place
over a smaller space than the minimization of the primary one. Moreover,
this method also takes into account the model error, which was numerically
impossible in the classical approach.

5 Numerical Results

5.1 Model Parameters

The numerical experiments are performed for a square three-layered ocean.
The basin has horizontal dimensions of 4000 km × 4000 km and its depth is
5 km. The layers’ depths are 300 meters for the surface layer, 700 meters for
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the intermediate layer, and 4000 meters for the bottom layer. The ocean is
discretized by a Cartesian mesh of 200 × 200 ×3 grid zones. The time step is
1.5 hour. The initial conditions are chosen equal to zero for a six-year ocean
spin-up phase, the final state of which being then the initial state for the data
assimilation period. Then the assimilation period starts (time t = 0) with this
initial condition (Ψk(0)), and lasts 5 days (time t = T ), i.e. 80 time steps. The
numerical method used to minimize the cost functions is a limited memory
BFGS quasi-Newton method. The M1QN3 code by Gilbert and Lemaréchal
([Gil89]) is used for our experiments.
The experimental approach consists in performing twin experiments with sim-
ulated data. First, a reference experiment is run and the corresponding data
are extracted. This reference trajectory will be further called the exact solu-
tion. Experimental surface data are supposed to be obtained on every fifth
gridpoint of the model, with a time sampling of 7.5 hours (every 5 time steps).
Simulated surface data are then noised with a blank Gaussian distribution,
and provided as observations for the cost function. The first guess of the as-
similation experiments is chosen as the reference state of the ocean one year
before the assimilation period. The results of the identification process are
then compared to the reference experiment.

5.2 Exact Solution, Noised Observations

Figure 1 represents the stream function Ψ1 at the surface layer, at the begin-
ning and at the end of the assimilation period. These fields will be useful to
measure the identification of the initial state, and also the reconstruction of
the stream function at the final time. One can observe the turbulent structure

Fig. 1. Exact solution at the beginning (a), resp. the end (b), of the assimilation
period.
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Fig. 2. Noised extracted data at the surface layer (a) and corresponding state at
the end of the assimilation period (b)

of the ocean, with a main current simulating a Gulf Stream type configura-
tion.
The first part of Fig. 2 represents the noised data extracted from the ref-
erence run, still at the surface layer. The second part of this figure is the
corresponding state after a model run using the noised data as initial condi-
tion. This experiment clearly shows the importance of data assimilation. The
model will indeed not smooth the trajectory, and it is not possible to obtain
good predictions by simply integrating the model with observation data as
initial conditions.

5.3 Primal Method

The initial estimated vector to start the minimization process is chosen to be
the reference state of the ocean one year before the assimilation period. The
minimization process is stopped after 40 iterations, each iteration consisting
of one integration of the forward direct model (in order to compute J ) and
one integration of the backward adjoint model (in order to compute ∇J ).
The result of the minimization is shown on Fig. 3-a. The direct model is
then integrated over the assimilation period, using the computed minimizer
as initial condition, and the corresponding state of the ocean at the end of
the assimilation period is shown on Fig. 3-b.
We can notice that the stream function of the solution at time t = 0 at the
surface layer is comparable to the exact solution at the same time, but to a
lesser extent at time t = T . This can be explained by the fact that the primal



190 D. Auroux, J. Blum

Fig. 3. Result of the minimization of the primal cost function. Solution at the
beginning (a) and the end (b) of the assimilation period

algorithm gives more importance to the state at t = 0 than to any other time,
as it is the control vector.

5.4 Dual Method

The initial estimated vector is the same. The minimization process is still
stopped after 40 iterations, each iteration consisting now of one integration
of the backward adjoint equations and one integration of the direct equations
(in order to compute JD and ∇JD).

The result of the minimization process is shown on Fig. 4-a at time t = 0
and Fig. 4-b at time t = T .
The stream function appears to be less smooth than in the primal case. This
is due to the fact that the observations are noised and the dual algorithm
works over the observation space. The corresponding state at the end of the
assimilation period is closer to the exact solution than in the primal case.
The dual algorithm looks indeed for a global acceptable solution : the control
vector is a set of observations all over the assimilation period.

5.5 Comparison between the two Methods

Figure 5 represents the root mean square (RMS) error over the entire assimila-
tion period between the exact solution and an identified solution, using either
the observations, the primal solution, or the dual one.

The RMS error at time t for one of these solutions is :
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Fig. 4. Result of the minimization of the dual cost function. Solution at the begin-
ning (a) and the end (b) of the assimilation period
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Fig. 5. RMS errors of the different methods versus number of time steps over the
assimilation period, using as initial conditions: the first noised observation (thin
line), the primal algorithm (bold line) and the dual algorithm (dot line).



192 D. Auroux, J. Blum

rms(t) =

∫
Ω

[
Ψ sol

1 (t) − Ψ exact
1 (t)

]2
dσ∫

Ω

[
Ψ exact

1 (t)
]2

dσ

.

The error reaches nearly 10% in the case of the trajectory resulting from the
observations, and increases in time. This is due to the inherent non-linearities
of the model.
In the case of the two data assimilation methods, the RMS error is clearly
smaller (by a factor of more than 5). This proves once again the usefulness
of data assimilation, which makes it possible to reconstruct a trajectory with
less than 2% RMS error using noised observations with a 10% RMS error.
The RMS error of the primal method tends to increase in time. This is in
agreement with the remark concerning the resemblance between the stream
function of the primal solution and that of the exact solution at initial time,
and the loss of this similarity at final time. The RMS error of the dual solution
is a little larger, but it tends to remain constant (and even decrease a little
bit sometimes) in time. Moreover, as the dimension of the control vector u in
the primal variational approach is 121203 (201 × 201 × 3), versus 28577 in
the dual one (41 × 41 × 17), the minimization of the dual cost function is
faster than for the primal approach.

6 Conclusion

As a matter of fact, the oceanic circulation model is governed by complex
equations and behave as certain typical characteristics of the turbulent flow.
Besides, in practice, the observation data are of various nature and should
be combined together in the same functional to be minimized. In the present
work, synthetic data are sampled using the whole surface layer. Generally, in
the framework of the realistic oceanic data assimilation, the data are available
only along ground tracks for time intervals corresponding to the satellite re-
peat period. Therefore, the optimal initial state would not be as well estimated
because of the relatively small number of observations and their heterogeneous
spatial distribution. Also, we notice that the performances of these methods
have been assessed with a quasi-geostrophic model. It is necessary to apply
them to a more complicated model such as the primitive equation model.
The dual data assimilation method is promising taking into account the com-
puting time which is smaller than the primal optimal control method because
of the smaller dimension of the observation space. Moreover, it enables to in-
troduce an error in the model and not to consider the equations of the fluid
as a strong constraint. The non linear character of the equations remains a
problem for the proof of convergence of the dual method.
It remains a promising step towards operational oceanography.
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dérivées partielles. Dunod (1968)

[Liu89] Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale
optimization. Math. Prog., 45, 503–528 (1989)

[Luo98] Luong, B., Blum, J., Verron, J.: A variational method for the resolution
of a data assimilation problem in oceanography. Inverse Problems, 14, 979–997
(1998)



194 D. Auroux, J. Blum

[Moo91] Moore, A.M.: Data assimilation in a quasigeostrophic open-ocean model of
the Gulf-Stream region using the adjoint model. J. Phys. Oceanogr., 21, 398–427
(1991)

[Nec94] Nechaev, V., Yaremchuk, M.I.: Application of the adjoint technique to pro-
cessing of a standard section data set: world ocean circulation experiment section
S4 along 67S in the Pacific ocean. J. Geophys. Res., 100(C1), 865–879 (1994)

[Ped79] Pedlosky, J.: Geophysical fluid dynamics. Springer-Verlag, New-York (1979)
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1 Introduction

A widespread interest has arisen in recent years regarding systems of many
individuals (cells, insects, human beings, etc.) that exhibit a collective be-
havior, such as swarming, schooling, herding etc [24]. Among those a very
interesting impact on models of distributed computing, and optimization of
highly complex systems derives from the so called Ant Colonies (AC), so that
the corresponding paradigm of optimization is known as ACO [11]. For a pre-
sentation of applications to ACO’s we refer also to [18] and the references
therein. A nice popular presentation at the same topic may be found in [4, 5]

Attention to AC’s has a long tradition in manuals and treatises on orga-
nization of groups/armies [29]:”A clear and familiar example of natural orga-
nization is the ant colony... the ant colony is totally information centered ...
the fundamental activities of an information-centered organization are gath-
ering processing using and giving out information...” [Sun Tzu, 500 BC, ][29]
A remarkable aspect of these global organizations is that individuals move
altogether in a coordinated (though random) fashion even though interac-
tion among them via relevant senses (sight, smell, hearing, etc) are typically
limited to much shorter distances than the size of the group.

Over the past couple of decades, a large amount of literature has been
devoted to the mathematical modelling of self-organizing populations, based
on the concepts of short range/long range ”social interaction” among different
individuals of a biological population.

A fruitful approach suggested since long by various authors [9, 23, 24]
is based on the modelling of the ”movement” of each individual ”particle”
embedded in the total population of similar particles (the so called individual
based model - IBM).

Often a multiple scale approach is preferable: the global behavior of the
population is described, at the macroscopic scale, by a continuum density
whose evolution in terms of integro-differential equations is derived by a limi-
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ting process from the empirical distribution associated with a large number
of particles. The large knowledge available on nonlinear PDE’s often helps in
providing the qualitative behavior of a global ”swarm”.

In this report we follow the above scheme starting from the mathematical
modelling of N ∈ N social individuals as a system of N stochastic differential
equations (i.e. ODE’s subject to Wiener noise).

This allows the use of methods of stochastic calculus for obtaining evolu-
tion equations for the global behavior of the system via Itô formulas. More
informative models would allow, as noise, more general processes such as Levy
processes that include both Wiener and Poisson jump processes [8, 27].

We present few applications: an aggregation model for the modelling of
armies of ants; a model of vasculogenesis based on chemotaxis; a model of
price herding in economics, in order to show the variety of different fields that
may be modelled by an AC paradigm.

2 Particles as Social Individuals

From a Lagrangian point of view, the state of a system of N particles may
be described as a (stochastic) process {Xk

N(t)}t∈R+ in
(
R

d,BRd

)
on a suitable

probability space (Ω,F , P ), where Xk
N (t) models the state of the k-th particle

out of N .
In another way, the state of the k-th particle may be modelled as a Dirac-

random measure in M(Rd)

εXk
N (t). (1)

The localizing measure (1) is defined as follows

εXk
N (t)(B) =

⎧⎨
⎩

1 if Xk
N (t) ∈ B

0 if Xk
N (t) /∈ B

∀B ∈ R
d, (2)

and for any sufficiently smooth f : R
d → R∫

Rd

f(y)εXk
N (t)(dy) = f

(
εXk

N (t)

)
.

From an Eulerian point of view, the collective behavior of the discrete
(in the number of particles) system, may be given in terms of the spatial
distribution of the system at time t, expressed in term of an empirical measure

XN (t) =
1
N

N∑
k=1

εXk
N (t) ∈ M(Rd), (3)
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such that ∀B ∈ B(Rd),

(XN (t)) (B) =
1
N

N∑
k=1

εXk
N (t)(B) =

�particles in B at time t

N
.

This means that XN (t) measures the spatial relative frequency of the particles.
The whole history of the system is described by the following empirical process
XN

XN : t ∈ R+ → XN (t) ∈ M(Rd).

Given a description of the state of the system, one is interested in its dynam-
ics, i.e. the time evolution of the state (1) of the single particle and of the
empirical distribution (3). Here we are interested in those systems where each
particle acts as a social individual. This means that the change of the state
Xk

N (t) during the time interval (t, t+dt] in addition to some individual factors
and random factors, depends significatively on the mutual interaction among
individuals. Collective behavior may be related to individual decisions, and it
is assumed that the ”motion” of an individual is a combined result of both
population-independent and population-dependent decisions. This idea comes
out from the observation of natural populations, but it may be used in many
other fields [11, 21, 1] as we will see in the applications.

The motion of cells, grouping of animals, self organization of molecules
cannot be purely random. Pure random dispersal of individuals may explain
phenomena of spatial homogeneization of a population; organization must be
due to relevant mechanisms of interaction among individuals. There is always
an element of choice in location. So interaction contrasts diffusion and on the
other way round, dispersion contrasts possible crowding effect.

This leads to a system of N stochastic differential equations. The source
of stochasticity could be either due to the randomness in the environment or
given by other factors, so that we may model the velocity as following

dXk
N (t) = hN (XN (t), Bt, t) dt, k = 1, 2, . . . , N, (4)

where hN : M(Rd) × M(Rd) × R+ → R is generally a smooth function.
The random perturbing function Bt models a random forcing factor. A simple
way to model randomness is to consider an independent additive noise, acting
on each particle; so that (4) becomes

dXk
N (t) =

[
fk

N(t) + FN [XN(t)]
(
Xk

N (t)
)]

dt

+ σ(XN (t), t)dW k(t), k = 1, . . . , ΛN (t); (5)

the functional FN defined on M(Rd), i.e. the deterministic drift term de-
pending on the empirical measure (3), describes the interaction of the k-th
particle with other particles in the system; the function fk

N : R+ → R describes
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the individual dynamics which may depend only on time or on the state of the
particle itself; {W k, k = 1, . . . } is a family of independent standard Wiener
processes.

The number of particles may be either constant over time, say ΛN (t) =
N, ∀t ∈ R+, or a dynamical variable itself described e.g. by a birth and death
process whose intensities may be strongly coupled with the particle popula-
tion. In this case N represents only a scaling parameter [10].

The functional form of the interaction term FN is related to the mathe-
matical modelling of the interaction among individuals.

It is clear that the limit dynamics of the population will depend on the
particular mathematical structure of the interaction term.

3 Modelling Interaction

Here let us consider in (5) ΛN (t) = N, ∀t ∈ R+. We want to discuss the
expression of the functional FN [XN (t)].
In the system there are three main scales (cf. Fig. 1):

a. the macroscopic scale regarding the typical volume occupied by the total
population;

b. the microscopic scale, regarding the typical volume of each individual;
c. the mesoscale, which is in between the previous two; the typical distance is

much larger with respect to the distance between particles, but it is much
smaller with respect the whole space.

B

E

macroscale

mesoscale

microscale

Fig. 1. Different scales.

If we consider a system of N particles located in R
d, in the macroscopic

space-time coordinates the typical distance between neighboring particles is
is O(N−1/d) and the order of the size of the whole space O(1).

The interaction among particles is mathematically modelled by an inter-
action potential depending on the distance between two particles. The range
of the potential kernel gives the ”size” of the interaction.
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We may distinguish three main type of interactions:

a. McKean-Vlasov interaction: any particle interacts with O(N) other par-
ticles; collective long-range forces are predominant and the particles are
weakly interacting; the range of the interaction is not restricted to a small
neighborhood: any particle or individual can interact with essentially any
other members of the population, i.e. the range gets very large in com-
parison with the typical distance between neighboring particles, and its
strength decreases fast, like 1/N .

b. hydrodynamic interaction: any particle interacts with O(1) other particles
in a very small neighborhood with volume O(1/N). The interaction gets
short-ranged and rather strong for large N .

c. moderate interaction : any particle interacts with many O (N/α(N)) other
particles is a small volume O (1/α(N)) where both α(N) and (N/α(N))
tend to infinity as N → ∞;

As said above, the interaction is described via a potential kernel. The three
types of interaction may be obtained from a reference function V1 by means
of an appropriate rescaling. In the rescaling fundamental roles are played by
two parameters: the total number of particles N and a parameter β ∈ [0, 1].

Suppose the particles are located in R
d, and assume that for a system of

size N the interaction between two particles located in x and y respectively
is determined by

1
N

VN (x − y), (6)

where

VN (z) = NβV1(Nβ/dz), (7)

for some sufficiently regular function V1 and a scaling exponent β ∈ [0, 1]. So
in (5)

FN [XN(t)](Xk
N (t)) = (XN (t) ∗ VN )(Xk

N (t))

=
N∑

i=1

1
N

VN

(
X i

N (t) − Xk
N (t)

)

=
N∑

i=1

N1−β V1

(
Nβ/d

(
X i

N(t) − Xk
N (t)

))
(8)

We have

a′. McKean-Vlasov interaction, if β = 0;
b′. hydrodynamic interaction, if β = 1;
c′. moderate interaction, if β ∈ (0, 1).
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Obviously, it would be possible also to consider interacting particle systems
rescaled by β > 1. This means that the range of interaction decreases much
faster than the typical distance between neighboring particles. So most of the
time the particles do not approach sufficiently close to feel the interaction.
The interactions under study here are the McKean-Vlasov and the moderate
interaction.

Observe that for the moderate interaction c., the function α(N) = Nβ ,
so that any particle can react with other particles located in a volume of
order O(N−β) and the interaction range (the so called mesoscale) is suffi-
ciently small with respect to the macroscale (order of the size of the whole
space) and large enough with respect to the microscale (typical distance be-
tween particles). As a consequence each small interval at the mesoscale, when
N is sufficiently large, may contain a large number of particles. So from a
mathematical point of view laws of large numbers may be applied.

4 Diffusion

In this model randomness may be due to both external sources and “social”
reasons. The external sources are, for example, unpredictable irregularities
of the environment. On the other hand the innate need of interaction with
similars is a social reason. As a consequence, randomness is modeled by a
multidimensional Brownian motion W t; the coefficient of dW t is a matrix
function depending upon the distribution of particles or some environmental
parameters. In the example presented here, we take into account just the in-
trinsic stochasticity due to the need of each particle of interacting with others.
Hence, we consider just one Brownian motion dWt and the variance of each
particle σN depending on the number of particles, not on their distribution,
i.e. in (5)

σ(XN (t), t) = σN , ∀t.

We could interpret this as a rough approximation of the model by consi-
dering all the stochasticities (also the ones due to the environment) modeled
by

σNdWt. (9)

If σN expresses the intrinsic randomness of each individual due to its need
of socializing, it might be allowed to consider σN reducing as N increases,
and in particular to assume it vanishing. Indeed if the number of particles is
large, the mean free path of each particle may reduce up to a limiting value
that may eventually be zero

lim
N→∞

σN = σ∞ ≥ 0. (10)
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5 Time Evolution at the Macroscopic Scale

System (5) and (8) model the time evolution of the system from the La-
grangian point of view. By an Eulerian approach, one has to find the time
evolution for the empirical spatial distribution (3) of the particles.

A fundamental tool for the limiting procedure is Itô’s formula which es-
tablishes the time evolution of some function f(Xk

N (t), t), f ∈ C2
b (Rd × R+),

of the trajectory {Xk
N(t), t ∈ R+} of the individual particle given the sde (5)

[8, 17]:

f(Xk
N(t), t) = f(Xk

N (0), 0)

+
∫ t

0

{
fk

N (t) + FN [XN (s)](Xk
N (s))

}
∇f(Xk

N (s), s)ds

+
∫ t

0

[
∂

∂s
f(Xk

N(s), s) +
σ2

N

2
∆f(Xk

N (s), s)
]

ds

+ σN

∫ t

0

∇f(Xk
N (s), s)dWs. (11)

From (11), we get the following weak formulation of the time evolution of
XN (t), for any f ∈ C2,1

b (Rd × [0,∞)):

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉

+
∫ t

0

〈XN (t),
{
fk

N (t) + FN [XN (s)](Xk
N (s))

}
· ∇f(·, s)〉ds

+
∫ t

0

〈
XN (t),

σ2
N

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σN

N

∫ t

0

∑
k

∇f(Xk
N (s), s)dW k(s). (12)

In (12) we have introduced the following quantity

gN(x, t) = (XN (t) ∗ VN )(x). (13)

Furthermore, we have denoted the integration of any (sufficiently smooth)
function f : R

d −→ R with respect of a measure µ on
(
R

d,BRd

)
as

〈µ, f〉 =
∫

f(x)µ(dx). (14)

Let observe that the only explicit dependence on the stochasticity in (12)
is in the last term
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MN(f, t) =
σN

N

∫ t

0

∑
k

∇f(Xk
N (s), s)dW k(s). (15)

It is a zero mean martingale with respect to the natural filtration of the
process {XN (t), t ∈ R +}.

We may apply Doob’s inequality [17] to get an upper bound for the second
variation of (15)

E

[
sup
t≤T

|MN(f, t)|
]2

≤ 4σ2
N‖∇f‖2

∞T

N
. (16)

This means that as N increases to ∞, (16) decreases to zero. This will be
important later on. Just observe by now that when N → ∞, MN (t) vanishes
in probability, i.e. the random part of (12) vanishes and the dynamics of XN

gets deterministic.

6 Individual Based Models. Applications

In the next we consider some examples of individual based models. In dif-
ferent context the concept of interacting individuals may be applied and the
dynamics of the whole system may be described by (5). We differentiate the
drift part, because of the different interactions.

6.1 An Example in Ecology: an Army of Ants. An Aggregation
Model

System (5) may well describe the collective behaviour of individuals in herds,
swarms, etc. [12, 15, 16, 24, 28]. Now we consider a specific model studied to
describe the aggregative behavior of an army of ants [3].

Aggregation is due to “social” forces induced by the interaction of each
individual with other individuals in the population which belong to a suitable
neighborhood.

We assume a short range repulsion among individuals that prevents their
accumulation in a single point in space [19].

Hence we consider the following basic biological assumptions :

(i) particles tend to aggregate subject to their interaction within a range of
size R > 0 (finite or not). This corresponds to the assumption that each
particle is capable of perceiving the others only within a suitable sensory
range; in other words each particle has a limited knowledge of the spatial
distribution of its neighbors.

(ii) particles are subject to repulsion when they come ”too close” to each other.
(iii)particles are subject to random dispersal with a diffusion coefficient σN

possibly depending upon the total number of particles.
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We may express assumptions (i) and (ii) by introducing in the drift term
FN in (5) two additive components: FN,1, responsible of aggregation, and
FN,2, responsible of repulsion, such that

FN = FN,1 + FN,2,

both of the type (8).

The Aggregation Term FN,1

Aggregation range depends on the range of visibility, due to the environment.
This means that each particle acts upon the knowledge of the neighboring
spatial distribution of the population within a limited range of the same size.

So in (8) there is not any rescaling, i.e. β = 0. So the aggregation is
modeled by a McKean-Vlasov interaction kernel.

G : R
d −→ R+

having a support confined to the ball centered at 0 ∈ R
d and radius

R ∈ R̄ + as the range of sensitivity for aggregation. A “generalized” gradi-
ent operator is obtained as follows. Given a measure µ on R

d we define the
function

[∇G ∗ µ] (x) =
∫

Rd

∇G(x − y)µ(dy), x ∈ R
d

as the classical convolution of the gradient of the kernel G with the measure
µ. Furthermore, G is such that

G(x) = Ĝ(|x|), (17)

with Ĝ decreasing function in R+.
We assume that the aggregation term FN,1 depends on such a generalized

gradient of XN (t) at Xk
N (t):

FN,1[XN (t)]
(
Xk

N (t)
)

= [∇G ∗ XN (t)]
(
Xk

N (t)
)
. (18)

Each individual feels this generalized gradient of the measure XN (t) with
respect to the kernel G; the positive sign for FN,1 and (17) expresses a force
of attraction of the particle in the direction of increasing concentration of
individuals.

We emphasize the great generality included in this definition of genera-
lized gradient of a measure µ on R

d. By using particular shapes of G, one may
include angular ranges of sensitivity, asymmetries, etc. at a finite distance [16].
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Fig. 2. Different aggregation profiles: aggregation is stronger as the support of G
gets smaller.

The Repulsion Term FN,2

As far as repulsion is concerned we proceed in a similar way by introducing a
convolution kernel

VN : R
d −→ R+,

which describe a moderate interaction between particles, i.e. the FN,2 is of
the type (8), with β ∈ (0, 1).

We define

FN,2[XN (t)](Xk
N (t)) = − (∇VN ∗ XN (t)) (Xk

N (t))

= − 1
N

∑N
m=1 ∇VN (Xk

N (t) − Xm
N (t)).

(19)

Each individual feels the gradient of the population in a small neighbor-
hood; the negative sign for FN,2 expresses a drift towards decreasing concen-
tration of individuals. In this case the range of the repulsion kernel decreases
to zero as the size N of the population increases to infinity.

So the dynamics of the system of N ants is modelled by the following
system of SDEs

dXk
N (t) =

[
(XN (t) ∗ ∇G) (Xk

N (t)) − (XN (t) ∗ ∇VN ) (Xk
N (t))

]
dt

+ σ(XN (t), t)dW k(t), k = 1, . . . , N. (20)
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We may see from Fig. 2 that the model well describes an aggregation
phenomenon. The aggregating force gets stronger as the interaction range of
G gets smaller.

By (12), (18) and (19) we have the following equation for the empirical
measure:

〈XN (t), f(·, t)〉 = 〈XN (0), f(·, 0)〉

+
∫ t

0

〈XN (t), (XN (s) ∗ ∇G) · ∇f(·, s)〉ds

−
∫ t

0

〈XN (t),∇gN (·, s) · ∇f(·, s)〉ds

+
∫ t

0

〈
XN(t),

σ2
N

2
�f(·, s) +

∂

∂s
f(·, s)

〉
ds

+
σN

N

∫ t

0

∑
k

∇f(Xk
N (s), s)dW k(s). (21)

Fig. 3. Different aggregation profiles for the empirical distribution of particles.

In Fig. 3 we see the density distribution of particles. The aggregation is qual-
itatively similar to the one highlighted in the density profiles of a particular
family of ants. Indeed, in Fig. 4 four profiles of the section transversal to the
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Fig. 4. “Field”-experiments: the pictures show the density profile in a cross section
of an army of Polyergus rufescens on different type of terrain: the number of obstacles
is increasing, from a concrete plane terrain at the upper left (where only one half of
the army is represented) to a high grass field at the bottom right. The width of the
distribution gets narrower, from about 40 cm to 10 cm.

direction of the motion of an army of ants are shown. The theoretical hypoth-
esis, confirmed by model (21) is that the aggregation depends on the range
of visibility of the environment: more the obstacles are, lower is the visibility,
stronger is the aggregation.

6.2 An Example in Medicine: Vasculogenesis

In this section we consider a stochastic particle model for describing the first
step of the process of formation of vascular type networks.

From a mathematical point of view, we introduce here a new element: a
multiple scale approach. Indeed, a spatial point process for the seeding of new
cells, and a system of stochastic differential equation for the movement of
cells are strongly coupled with the faster dynamic of as chemotactic factor,
the evolution is described by a PDE.

Vasculogenesis is a typical example of a self-organization phenomenon me-
diated by systems of underlying fields. In particular a process of cellular or-
ganization occurs at a microscopic scale, while diffusion of chemoattractants
occurs at a macroscopic scale. Indeed soluble mediators (VGEF,...) are on
one side released by the cells themselves and on the other side play the role
of attractors by chemotaxis.
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Endothelial cells are cultured on a protein matrix (Matrigel), which is
plunged into a liquid. By means of a pipette, a number N of cell is released;
they ”swim” across the liquid and seed on the matrigel. Then they start to
migrate and aggregate, building up a network, composed, at a macroscopic
level, by nodes and cords.

a b c

Fig. 5. The process of formation of endothelial cells networks (Courtesy by F.
Bussolino et al., Candiolo Institute, Torino, Italy)

The whole process is observed through videomicroscopy. It is composed by
three main steps:

1. endothelial cells randomly seed on the matrigel surface, and start moving
in different directions, interact and adhere to their neighbors. Their form
is essentially symmetric and one may assume each cell to sit at a single
point of the space (Fig. 5, a);

2. the network undergoes a slight modification: neighbor cells stretch out and
stick (Fig. 5, b);

3. individual cells fold up to form tubes (capillaries), so that a three dimen-
sional structure is created (Fig. 5, c).

We describe the ”seeding” and the aggregation processes for the cells, i.e.
the formation of the so called ”pre-pattern” of the network (Fig. 5, a). It
seems natural to consider a stochastic component in both processes, since
endothelial cells by themselves exhibit a random movement.

Let be Xk
N (t), vk

N (t) the position and the velocity of the k-th cell. In this
case (5) becomes

dXk
N (t) = vk

N (t)dt

dvk
N (t) = FN [XN (t), C(·, t)](Xk

N (t), vk
N (t))dt + σdW k(t), (22)

where {W k, k = 1, . . . , N} is a family of independent standard Wiener pro-
cesses. The drift in (22) depends also on C(x, t), the concentration of the
chemoattractor released by the cells.
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We consider the following assumptions:

a. a microscale for the particle dynamics and a macroscale for the chemoat-
tractor, due to the fact that the latter evolves much faster than the move-
ment of the particle

b. each cell goes towards higher concentration of the chemical substrate, the
interaction occurring via a nonlocal gradient associated via a suitable ker-
nel G; furthermore cells do not overlap.

c. the chemical underlying field C, produced by the particles, diffuses and
degrades.

By hypotheses a. and b., the drift term may be modelled as the following

FN [XN (t), C(·, t)](Xk
N (t), vk

N (t)) =
[
αk

vk
N (t)

|vk
N (t)| + [C(t, ·) ∗ ∇G] (Xk

N (t))dt

− [XN (t, ·) ∗ ∇V ] (Xk
N (t))

]

×
(

1 − N

∫
δAk

N (t)(x)XN (t)(dx)
)

(23)

In (23) we have introduced the concept of preferred direction or inertia, by
means of the term fk(t) = αkvk

N (t)/|vk
N (t)|: cells do not turn very often; the

choice of the new direction is the output of the balance between the weight
of the last direction and the attraction weight. Besides they cannot occupy a
spatial position where another cell sits. This exclusion principle is modelled
by the term 1 −∑k

j=1 δAk
N (t)(X

j
N (t)).

Furthermore the aggregative component is given by the underlying field
C(t, x) of the chemoattractor. So this is not a population-dependent model.

By hypothesis c., we consider the following PDE for the density C

∂C

∂t
(t, x) = ∆C(t, x) + η

k∑
j=1

δXk
N (t)(x) − 1/γC(t, x), (24)

where η is the rate of release and γ is the characteristic time of the soluble
factor.

Initial conditions

Since, in vitro experiments, chemotaxis occurs also in the vertical direction,
while endothelial cells reach the matrigel, we do not consider an initial uni-
form distribution of the N cells. A first group of n << N cells is uniformly
distributed on the matrigel; the remaining N−n cells are allocated as a spatial
point process with the same rate of the chemotaxis process

[C(t, ·) ∗ ∇G] (x)dxdt

⎛
⎝1 −

k∑
j=1

δXk
N (t)(x)

⎞
⎠ .
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Fig. 6. Left: EC pre-pattern; Right: simulations; the darker grey points represent
the endothelial cells; the lighter grey is the chemotactic substance.

In Fig. 6.2, we may qualitatively compare the equilibrium structure ob-
tained by simulation with the distribution of cells in the first step of the in
vitro experiment (right). We may see a pre-pattern has been created, which
exhibits aggregating clusters with holes.

6.3 An Example from Economics: Price Herding

In this section we consider a cooperative particle system in a completely dif-
ferent setting. We show how we may apply the basic ideas used above.

Let us consider a market formed by N sellers competing for the trade
of similar goods. Let be Xk

N (t) the price of a good of the k-th seller. The
questions we want to answer are the following:

i) how may different prices influence each other?
ii) how may we introduce a concept of cooperation?
iii) which are the basic aspects of the dynamics of a system of prices?

We have to take into account general effects like inflation and random
fluctuations of prices due to unexpected events, as well as possible interactions
among prices themselves.

We consider the following assumptions on the rates of change of prices:

a) in general, prices of similar products follow a process of imitation and tend
”to aggregate” themselves;

b) the influence between prices which are significantly different is lower;
c) sellers do not influence each other in the same way; in general, their ”im-

portance” is given from the share of their sales;
d) prices are subject to inflation;
e) rates are subject to Wiener noise.

We may then model the evolution of prices, in the framework of (5) as
follows:
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dXk
N (t)

Xk
N(t)

=
[
f̃k

N (t) + F̃N [XN (t)]
]
dt + σk

N dW k(t), k = 1, . . . , N, (25)

From assumption d) the drift term f̃k
N (t) in (25) becomes

f̃k
N (t) = βkα(t), (26)

where α(t) ∈ R is the inflation function and βk ∈ R+ represents the sensibility
of the k-th price, i.e. the k-th seller to the inflation.

Assumption a) and b) introduce in the model the concept of interaction,
well described by (8), with β = 0. In particular from assumption b), we choose
the following form for the interaction kernel VN :

VN (x) = ∇Kε(x),

Kε(x) =
1√
2πε2

exp
(
−
( x

2ε

)2
)

, x ∈ R
d. (27)

Assumption c) states that the response force of the k-th price to the inter-
action with the j-th prices depends on the ratio of the share of the two sellers.
So we introduce a weight for the interaction kernel. Let Ik(t), k = 1, . . . , N
represent the share of sales of the k-th seller at time t. We assume that
Ik(t) > 0 ∀ t ≥ t0, ∀ i = 1, ..., N.

For the interaction of the k-th price with the j-th price we choose the
following weight:

Ij(t)
Ik(t)

so that the final system of SDEs for the rates is, for βj,k, γj,k ∈ R+.

dXk
N (t)

Xk
N (t)

=

⎡
⎣βkα(t) +

1
N

N∑
j=1

βj,k

(
Ij(t)
Ik(t)

)γj,k

∇Kε(X
j
N (t) − Xk

N (t))

⎤
⎦ dt

+ σk
N dW k(t), k = 1, . . . , N. (28)

For n = 1, we may think that the evolution of price X(t) is uniquely
determined by inflation. In fact, (28) reduces to the linear equation

dX(t)
X(t)

= α dt + εdW (t), (29)

where α(t) ∈ R represents the inflation.
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In order to validate the model (28), we have compared the simulation
results with real time series for a family of car prices (Fig. 7, right) . We
have collected some data relative to Italian car market in the 90’s. These data
concern the most important vehicle characteristics (price, mass, dimensions,
max speed, acceleration, power, sale period) as well as information about
quantities of sales and inflation. We have selected a number of trademarks.
They are representative of the whole Italian car trading, since they cover
about the 90-percent of the total quantity of sales. All these data have been
ordered in time series.
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Fig. 7. Left: Real price time series from 1/1/1991 until 12/31/1999 (Euro). The
general increase is principally due to inflation. The largest part of them constitutes
a band included between 8000− 17000 Euro, which seems to follow Fiat’s price. On
the contrary, Mercedes, Alfa Romeo and Lancia evolve independently (Courtesy of
Quattroruote Pubb.); Right: Simulated price evolution.

7 Dynamics for Large Populations

In the previous sections we have always considered a large, but finite number
N of particles.

An interesting question is how the dynamics (12) changes as the population
becomes large and dense, so that densities may be considered. Mathematically
it is possible to consider continuum models only when it is possible to perform
a law of large numbers.

We may conjecture that a limiting measure valued deterministic process
{X∞(t), t ∈ R +} exists whose evolution equation (in weak form) should be
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〈X∞(t), f(·, t)〉 = 〈X∞(0), f(·, 0)〉

+
∫ t

0

〈X∞(s), F [(X∞(s)](·)∇f(·, s)〉ds

+
∫ t

0

〈
X∞(s),

σ2
∞
2

�f(·, s) +
∂

∂s
f(·, s)

〉
ds. (30)

for σ2
∞ ≥ 0.

Actually various nontrivial mathematical problems arise in connection
with the existence of a limiting measure valued process {X∞(t), t ∈ R +},
above all for the case β ∈ (0, 1] in (8). Indeed, for β > 0 the support of VN

tends to localize at 0 for N tending to infinity. The space variation of VN and
worse of ∇VN become larger and larger in a neighborhood of 0. So we need
some regularity on VN , claiming also small variations for small time intervals.
Here the concept of mesoscale becomes important: in order to perform a law
of large numbers a neighborhood at the mesoscale should contain a sufficiently
large number of particles; roughly speaking, this is equivalent to the fact that
VN converges to a Delta-dirac function sufficiently slow. From the mathemat-
ical point of view this is equivalent to properties of relative compactness for
the process XN [2, 20, 26].

The typical programme for the proof of the convergence includes the fol-
lowing [20, 25]

a) prove existence of a deterministic limiting measure values process {X∞(t),
t ∈ R +}.

b) prove absolute continuity of the limiting measure with respect to the usual
Lebesgue measure on R

d

c) provide an evolution equation for the density ρ(x, t)

We will not go into further details; but here we confine ourselves to a
formal convergence procedure for the model (21).

Let us now suppose that indeed the empirical process {XN(t), t ∈ R+}
tends, as N → ∞, to a deterministic process {X(t), t ∈ R+}, which is for any
t ∈ R+ absolutely continuous with respect to the Lebesgue measure on R

d,
with density ρ(x, t):

lim
N→+∞

〈XN (t), f(·, t)〉 = 〈X(t), f(·, t)〉

=
∫

f(x, t)ρ(x, t)dx, t ≥ 0.
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As a formal consequence we get

lim
N→+∞

gN(x, t) = lim
N→+∞

(XN (t) ∗ VN )(x) = ρ(x, t),

lim
N→+∞

∇gN(x, t) = ∇ρ(x, t),

lim
N→+∞

(XN (t) ∗ ∇G)(x) = (X(t) ∗ ∇G(x))

=
∫
∇G(x − y)ρ(y, t)dy.

Hence, by applying the above limits, from (21) we get

∫
Rd

f(x, t)ρ(x, t)dx =
∫

Rd

f(x, 0)ρ(x, 0)dx

+
∫ t

0

ds

∫
Rd

dx[(∇G ∗ ρ(·, s))(x) −∇ρ(x, s)] · ∇f(x, s)ρ(x, s)

+
∫ t

0

ds

∫
Rd

dx

[
∂

∂s
f(x, s)ρ(x, s) +

σ2
∞
2

�f(x, s)ρ(x, s)
]
, (31)

where σ∞ is defined in (10).
We recognize that (31) is a weak version of the following equation for the

spatial density ρ(x, t):

∂

∂t
ρ(x, t) =

σ2
∞
2

�ρ(x, t) + ∇ · (ρ(x, t)∇ρ(x, t))

− ∇ · [ρ(x, t)(∇G ∗ ρ(·, t))(x)], x ∈ R
d, t ≥ 0,

ρ(x, 0) = ρ0(x), x ∈ R
d. (32)

In the degenerate case, i.e. if in the (10) the equality holds, (32) becomes

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t)∇ρ(x, t)) − ∇ · [ρ(x, t)(∇G ∗ ρ(·, t))(x)],

x ∈ R
d, t ≥ 0,

ρ(x, 0) = ρ0(x), x ∈ R
d, (33)

By this limiting procedure, we see how when a particle system becomes
large, one may describe it via the density. In this case the individuality is
lost and in particular, and the system becomes deterministic, even though a
memory of the individual randomness is in the diffusion term in (32).
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1 Introduction

We discuss theoretical study to clarify phenomena involving multi-phase flow
arising near a tidal flat. Hereafter, we state the reason why an applied math-
ematics group of Chiba University including the author started this study.

In 1994, an environment study group of Hiroshima University started a
study of tidal flat. Based on fieldwork, they found the importance of fluid
flow to understand the biological activities inside tidal flat and sandy beach.
They found that number of bacteria inside seabed has a strong correlation to
the amount of silt (fine sand less than 50 micron). Larger slope gives smaller
amount of silt. They noticed the importance of appropriate slope for a tidal
flat where sound biological activities are made inside seabed.

On the other hand, independently in 1992, an applied mathematics group
of Chiba University was studying on a sliding problem of two different media.
In 1993, they extended the work to explain a penetration problem from one
side to the other side in different phases. Then, in 1994, the study was ex-
tended to a study of wave motion on the sloping sandy beach. At this moment
this mathematics group did not notice yet their potential to explore coastal
environmental problems.

The environmental experiment group needed rationalization of their ex-
perimental results by theoretical standpoint. Then, the flow phenomenon ob-
served by the experiment was informed to Chiba University mathematics
group by one of the environment study group in 1998, and this experimental
results attracted and inspired the mathematics group to recognize a large po-
tential to explore the flow phenomenon inside seabed, and then they extended
their analysis to a unified treatment of fluid flow in various regions such as
air, water, wetted sand and dry sand. It was found that mathematically simu-
lated flow behavior inside sloping beach well explained observed phenomena.
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Thus, the flow phenomena observed by the environment study group have
been rationalized.

The environment study group continued work further and found that
stranded spilled oil over sloping beach prevent the infiltration of fresh sea-
waters into seabed. This brings shortage of oxygen. Therefore, benthos suffers
from surviving there. The mathematics group extended their work to sim-
ulating behavior and decomposition of stranded spilled oil based on unified
Navier-Stokes equations with Bingham fluid model for oil. Multi-phase flow
analyses were made. In this study, decomposition of spilled oil into soluble
components by bacteria is simulated as a chemical reaction. Furthermore, in
order to represent phenomena of gas nucleus generation accompanied by oil de-
composition, compressible fluid phase was added to the obtained multi-phase
formulation.

2 The Strategy for the Research

The strategy to be applied is;

1. To grasp the global image of the concerned phenomena based on physical
evidence.
• Conservation of mass and momentum for multi-phase flow in 3.2 and

3.3.
2. To represent the local structure by use of mathematical concept.

• Description of interfacial interactions due to Signorini type boundary
conditions and reactivity condition in 3.4 [3][4][5].

3. To justify effectiveness of mathematical concept through mathematical
analysis.
• Distribution theoretic approach to multi-phase flow in 3.5 [6].

4. To construct mathematical model describing the concerned phenomena
according to the procedures stated in 1, 2 and 3.
• Unified flow equations for total flow system in 3.6.

5. To select numerical method suited for solving mathematical model.
• Finite difference method with time-independent mesh in 4.1.

6. To develop solution algorithm for obtaining discrete solutions.
• Anti-smearing device for numerical free surface in 3.7.
• Modification of density distribution in [15].

7. To estimate an error between a solution of mathematical model and dis-
crete one.
• Error estimation of finite element problem issued from fictitious do-

main techniques [16].
8. To visualize numerical results in the form of animation.

• Various visualization techniques to understand unsteady complex phe-
nomena [7].

9. To evaluate mathematical model by comparing to physical evidence.
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• Decription of model evaluations in [12], [14] and [18].
10. To predict natural phenomena related with unrealizable physical experi-

ments.
• Visualization of oil decomposition phenomena in [17].

3 Mathematical Model

3.1 Notations

xi : Cartesian coordinates(i = 1, 2, 3)
ui : Velocity vector(i = 1, 2, 3)
un : Normal component of velocity on boundaries
uT : Tangential component of velocity on boundaries
p : Pressure
ρ : Density
η : Yield value of Bigham fluid
t : Time
Dij : Rate of strain tensor
DΠ : An invariant of rate of strain tensor
Ωα : domain
Ω = ∪

α
Ωα : Total domain

Γα,β : Boundary between α-phase and β-phase
να : Kinematic viscosity of α-phase
µα : Viscosity of α-phase
χα : Characteristic function representing a domainα
σα

ij : Stress tensor of α-phase
ρα : Density of α-phase
c : Coefficient of registance force receiving from sand
[A]α,β :

(
Aα − Aβ

)∣∣
Γα,β

3.2 Conservation of Mass for Multi-phase Flow

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, in Ω. (1)

Here, ρ =
6∑

l=1

ρ(l)χ(l), ui =
6∑

l=1

u
(l)
i χ(l) and l means {a, w, f, as, ws, fs}.

Fluids for each phase are assumed to be incompressible, i.e., ρ(l) =const.

• Incompressibility conditions for constant density phases

∂u
(l)
j

∂xj
= 0 in Ωl, for each l, t > 0 (2)
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Fig. 1. Geometry

• Motion equations of interfaces between different phases

∂χ(l)

∂t
+ u

(l)
j

∂χ(l)

∂xj
= 0 in Ω, for each l, t > 0 (3)

3.3 Conservation of Momentum for Multi-phase Flow

• Navier-Stokes equations for water and air phases

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρw

∂p

∂xi
+ νw

∂Dij

∂xj
+ Ki. (4)

• Bingham equations for oil phase

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρf

∂p

∂xi
+

1
ρf

∂

∂xj

{(
µf +

τ√
4DΠ + εb

)
Dij

}
+ Ki,(5)

where τ = η
ρf

and DΠ = 1
2DijDij .

• Unification of the above mentioned equations

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ Ki (6)

+
1
ρ

∂

∂xj

[{
µairχair + µwχw +

(
µf +

τ√
4DΠ + εb

)
χf

}
Dij

]
. (7)

3.4 Interfacial Interactions

Simplified Coulomb Law for Friction

Description of adhesion, sliding and infiltration phenomena of oil in sand using
Signorini type boundary conditions.
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|[σT ]| ≤ gT ,
gT · |uT | + [σT ] · uT = 0,

on ΓB. (8){
|[σT ]| < gT �−→ uT = 0 (Adhesion)
|[σT ]| = gT �−→ uT = 0 or uT 	= 0 (Sliding) (9)

where gT is the friction coefficient.

− [σT ] = gT · ∂ (|uT |) on ΓB. (10)

Regularization;

−
[
σTj

]
= gT · uTj√

|uT |2 + ε2
g

on ΓB, (j = 1, 2). (11)

Reactivity Condition

Description of oil decomposition by bacteria using reactivity condition.
Here, kf and kw mean the rate of consumption for oil and the rate of produc-
tion for water, respectively. Therefore, kf is a negative constant and kw is a
positive constant. χ(b) is characteristic function of Ωb.

The noseparation of oil and water phases shows;

u
(fs)
j + kfn

(fs)
j χ(b) = u

(ws)
j + kwn

(ws)
j χ(b) on ΓB, (j = 1, 2, 3), (12)

Reactivity condition;[
u · n(ws)

]
= u(ws)n(ws) − u(fs)n(ws) = −(kf + kw)χ(b) on ΓB, (13)[

u · T (fs)
]

= u(fs)T (fs) − u(ws)T (fs) = 0 on ΓB. (14)

3.5 Distribution Theoretic Approach to Multi-phase Flow

Let us note that the interfacial interactions stated in 3.5 are represented by
the jump boundary conditions for the Dirichlet type (the reactivity condition)
and the Neumann type (the frictional condition). In order to introduce such
jump conditions into an unified model for multi-phase flow system, we have
developed distribution theoretic approach to multi-phase flow. For simplicity,
we discuss the case of steady Stokes problem defined in Ω ⊂ R3. Ω is divided
into subdomains Ω1 and Ω2, whose interface is denoted by Γ . (See figure 2.)
The two phase Stokes problem (S1) with jump boundary conditions on Γ is
defined as follows.
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(S1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u(1) + ∇p(1) = f (1) in Ω1,

div u(1) = 0 in Ω1,
−�u(2) + ∇p(2) = f (2) in Ω2,

div u(2) = 0 in Ω2,

[σn] = σ
(1)
n − σ

(2)
n = a on Γ,[

σTj

]
= σ

(1)
Tj

− σ
(2)
Tj

= bj (j = 1, 2) on Γ,

[un] = u
(1)
n − u

(2)
n = c on Γ,[

uTj

]
= u

(1)
Tj

− u
(2)
Tj

= dj (j = 1, 2) on Γ,

u(1) = 0, on ∂Ω,

(15)

Fig. 2. Geometry for Stokes problem

Let χ be the characteristic function of Ω2 in Ω and assume a, bj, c and dj

be constants. Then (S1) is settled into a single equation (S2) in the following
way;

(S2)

⎧⎪⎪⎨
⎪⎪⎩

−�u + ∇p + a · ∇χ + b1 · Σ1χ + b2 · Σ2χ
+c · n · �χ + d1 · T1 · �χ + d2 · T2 · �χ = f, in Ω,

divu = 0, in Ω\Γ,
u = 0, on ∂Ω,

(16)

where

f = (1 − χ)f (1) + χf (2), (17)

and
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∇χ =
(

∂χ

∂x1
,

∂χ

∂x2
,

∂χ

∂x3

)
, (18)

Σ1χ =
(

∂χ

∂x2
, − ∂χ

∂x1
, 0

)
, (19)

Σ2χ =

(
∂χ

∂x1

∂χ

∂x3
,

∂χ

∂x2

∂χ

∂x3
,

(
∂χ

∂x3

)2

− |∇χ|2
)

, (20)

n = − ∇χ

|∇χ| , T1 =
Σ1χ

|Σ1χ|
, T2 =

Σ2χ

|Σ2χ|
. (21)

Here,
∂χ

∂xj
(j = 1, 2, 3) is a distribution supported on Γ , multiplication and

division of them are defined by convolution of distribution with support. Sum-
marizing the above mentioned facts, we have

Theorem 1
(S1) is equivalent to (S2).

Remark 1
The surface distribution of the dipole moment with the normal direction to

the surface brings about the jump of the normal component of velocity for the
fluid flowing across the interface.

Proof of Theorem 1

The case of the jump condition for the Dirichlet type
Let us consider the problem (Pr)c to generate [un] = c. For simplicity, let

us put c = 1.

(Pr)c

⎧⎨
⎩

�u −∇p = ñ�χ in Ω,
divu = 0 in Ω,
u = 0 on ∂Ω.

(22)

where �χ = ∂
∂ν δ(Γ ) is a dipole moment, Γ = ∂Ω2 is smooth and ñ is smoothly

extended into R3 so as to satisfy
∂ñj

∂ν

∣∣∣∣
Γ

= 0 (j = 1, 2, 3) and �ñ = 0 in Ω2.

Step 1. Potential flow is defined to satisfy

(Pr)c1

{
�U −∇P = ñ · �χ in R3,
div U = 0 in R3.

(23)

We define fundamental solution: Ek =
{
Ek

j

}3

j=1
(k = 1, 2, 3) s.t.
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�Ek −∇qk = δ(x − y) · ek in R3,

div Ek = 0 in R3,
(24)

where ek is an unit vector of kth axis (k = 1, 2, 3) and x = (x1, x2, x3), y =
(y1, y2, y3). ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Ek

j (x, y) = −
δk
j

4π |x − y| +
(xk − yk)(xj − yj)

|x − y|3
= δk

j E(x − y) + F k
j (x − y) ∈ L1

y(R3),

qk(x, y) =
∂

∂xk
E(x − y) ∈ L1

y(R3).

(25)

Potential {U, P} is represented in the following way;{
U(x) = E ∗ ñ�χ = E ∗ �(ñχ) in D′(R3),
P (x) = q ∗ ñ�χ = q ∗ �(ñχ) in D′(R3). (26)

Uj(x) =
∫
Ω2

�y

(
Ek

j (x − y) · ñk(y)
)
dΩy,

=
∫
Ω2

divy∇y

(
Ek

j (x − y) · ñk(y)
)
dΩy,

=
∫
Γ

∂

∂ny
Ek

j (x − y) · ñk(y)dσy ,

=
∫
Γ

∂

∂ny
E(x − y) · ñj(y)dσy +

∫
Γ

∂

∂ny
F k

j (x − y) · ñk(y)dσy . (27)

The second term of the right hand side dose not contribute to make the jump
because

F k
j = E ∗ ∂2

∂xk∂xj
δ =

∂2

∂xk∂xj
E. (28)

The first term is a double layer potential. Then U satisfies

[U ] = U |Γ+ − U |Γ− = n, (29)
n · [U ] = n · n = 1. (30)

Similarly, P satisfies

P (x) =
∫
Ω2

�
{
qk(x, y) · ñk(y)

}
dΩy, (31)

=
∫
Γ

∂

∂ny
qk(x, y) · nk(y)dσy , (32)

=
∂

∂xk

∫
Γ

nk(y)
∂

∂ny
E(x − y)dσy. (33)
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Then there holds

[P ] = P |Γ+ − P |Γ− = 0. (34)

Let us note that U and P are real analytic in R3\Γ .

Step 2.
Let u = U + ũ and p = P + p̃. Then (ũ, p̃) satisfies

(Pr)c2

⎧⎪⎨
⎪⎩

�ũ −∇p̃ = 0 in Ω,
divũ = 0 in Ω,

ũ = −U ∈
{
H

1
2 (∂Ω)

}2

.

(35)

where
∫
Ω

divU dΩ =
∫
Γ

U · n dσ = 0. Note that there exists a unique solution

{ũ, p̃} for (Pr)c2 satisfying

1. ũ ∈
{
H1(Ω)

}2,
2. p̃ ∈ L2(Ω)\R.

Then n · [u] = n [U ] + n [ũ] = n [U ] = 1 in
{

H
1
2 (Γ )

}2

.

Theorem 2
The solution of (Pr)c satisfies that n · [u] = 1 in

{
H

1
2 (Γ )

}2

.

The case of the jump condition for the type of [σn] = a

Let us consider the problem (Pr)a to generate [σn] = a(= 1).

(Pr)a

⎧⎨
⎩

�u −∇p = ∇χ in Ω,
divu = 0 in Ω,
u = 0 on ∂Ω.

(36)

[1st step] Potential flow is defined to satisfy,

(Pr)a1

{
�U −∇P = ∇χ in R3,
div U = 0 in R3.

(37)

It is obvious that {
U(x) = 0 in R3,
P (x) = −χ in R3.

(38)

is the solution of (Pr)a1.

[2nd step]
u = U and p = P satisfies (Pr)a. Then we have
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Theorem 3 [
∂un

∂n
− p

]
= 1 in

{
H− 1

2 (Γ )
}2

. (39)

The case of the jump condition for the type of [σT ] = b(= 1)
Let us consider the problem (Pr)b to generate [σT ] = b.

(Pr)b

⎧⎨
⎩

�u −∇p = Σχ in Ω,
divu = 0 in Ω,
u = 0 on ∂Ω.

(40)

[1st step] Potential flow is defined to satisfy

(Pr)b1

{
�U −∇P = Σχ in R3,
div U = 0 in R3.

(41)

Then we have

Uj(x) =
∫
R3

Ek
j (x − y) · Tk(y) · δ(y − Γ ) dy

=
∫
Γ

Ek
j (x − y) · Tk(y) dσy (42)

and

UT̃ (x) =
∫
Γ

Ek
j (x − y) · Tj(x) · Tk(y) dσy. (43)

from which follows

(ñ · ∇)UT̃ = −
∫
Γ

∂

∂ny
E(x − y) · Tj(x) · Tj(y) dσy + · · · . (44)

By use of non contribution of F k
j to make the jump, we have[
∂

∂n
UT

]
= −1. (45)

[2nd step]
Repeating similar arguments as before, we have

Theorem 4

[
∂uT

∂n

]
= −1 in

{
H− 1

2 (Γ )
}2

. (46)
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The Stokes Equation with a Variable Viscosity

In this section, we shall deal with Stokes equation with a variable viscosity in
place of the one with a constant viscosity discussed in 3.5.1 as follows;⎧⎪⎪⎨

⎪⎪⎩
∂

∂xj

(
ν(x)

∂ui

∂xj

)
− ∂p

∂xi
= fi in Ω for i = 1, 2,

∂uj

∂xj
= 0 in Ω,

(47)

where ν(x) = ν1(x)(1 − χ) + ν2(x)χ and νj(x) ∈ C(Ωj) (j = 1, 2).
According to the replacement of the Laplacian with the divergence form,

the jumped boundary conditions defined on Γ should be modified;

[σn] = ν1
∂u1n

∂n
− p1 −

(
ν2

∂u2n

∂n
− p2

)
, (48)

[σT ] = ν1
∂u1T

∂n
− ν2

∂u2T

∂n
, (49)

[un] = ν1u1n − ν2u2n, (50)
[uT ] = ν1u1T − ν2u2T . (51)

However, if the relation u1n − u2n = c on Γ is required in place of [un] = c,
then n · �χ should be replaced with n · ∂

∂xj

(
H ∂

∂xj
χ
)
. In fact,

ν1u1n − ν2u2n = ν1(u1n − u2n) + (ν1 − ν2)u2n on Γ. (52)

Then H should be defined on Γ in the following way;

H = cν1 + (ν1 − ν2)u2n on Γ. (53)

The additional terms except n · �χ in (S2) brings about the same jumps as
in the statement of Theorem 1.

Remark 2 Distribution theoretic approach to multi-phase flow for Stokes
equation with a variable viscosity is proved by treating the transmission prob-
lem defined on Γ under the weak formulation of the equation, that will be
shown in the succeeding paper.
Remark 3 In the case of time dependent Stokes equations, we can show the
same result as obtained in the steady case.

3.6 Unified Flow Equations for Total Flow System

Coupling unified flow equations for all phases with interfacial interactions due
to Discontinuous interface generating method.
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• Incompressibility condition for multi-phase flow system;

∂uj

∂xj
+

2(ρw − ρf )
ρw + ρf

kf χb
∂χ(fl)

∂n(fl)
= 0, inΩ, t > 0. (54)

An existence of the second term in the left hand side is due to the reactivity
condition.

• Conservation of momentum for multi-phase flow system;

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
+ c(χws + χfs)ui = − ∂p

∂xi

−χ(b) ∂

∂xj

(
H

∂

∂xj
χfs

)
· n(fs)

i +
∂

∂xj

{
(µairχair

+ µwtχwt +

(
µf +

η√
4DΠ + ε2

b

)
χfl

)(
∂ui

∂xj
+

∂uj

∂xi

)}

+ ρχsgT

⎛
⎝ uT1√

|uT |2 + ε2
g

(Σ1χfl)i +
uT2√

|uT |2 + ε2
g

(Σ2χfl)i

⎞
⎠ + ρg δi,3

inΩ, t > 0, (55)

where H = −µwt(kf + kw) +
{

µwt −
(

µf + η√
4DΠ+ε2

b

)}
uj .

The second term means the dipole moment distribution along the reaction
surface included in the bacteria zone, which plays an important role to
satisfy the reactivity condition. The fourth term in the right hand side
represents the adhesion and sliding phenomena occured on the interface
between oil and sand.

• Motion equation of free surface for oil is;

∂χ(fl)

∂t
+ u

(fl)
j

∂χ(fl)

∂xj
= kf ·

∣∣∣∇χ(fl)
∣∣∣χ(b) + (Double well potential);(56)

inΩ, t > 0, (57)

• Outer boundary conditions are prescribed as follows;{
un = u0sinωt,
uT = 0,

on ΓIN (t),

{
un = 0,
∂uT
∂n

= 0,
on ΓR, (58)

{
un = 0,
uT = 0,

on ΓQ,

{
σn = 0,
uT = 0,

on ΓA.(59)

3.7 Anti-smearing Device for Numerical Free Surface

Introduction of Double well potential to interfacial motion equations in order
to avoid smearing of free surfaces (H. Kawarada and H. Suito, 1997)
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∂χwf

∂t
+

∂

∂xj
(χwfuj) = −G′(χwf ), (60)

∂χfl

∂t
+

∂

∂xj
(χfluj) = −G′(χfl), (61)

where G(χ) is a double-well potential defined as follows;

G(χ) =

⎧⎪⎨
⎪⎩

+∞ χ < 0,
h2

16
χ2(χ − 1)2 0 < χ < 1,

+∞ 1 < χ.

(62)

By this potential, the value of χ is confined to the vicinities of 0 and 1. It
should be noted that this technique should be used carefully so that mass
conservation is satisfied.

4 Discretization of Mathematical Model

4.1 Discretized Mathematical Model Based on Finite Difference
Approximation

• Third order upwind scheme for convection term in order to stabilize the
computation

• GP-BiCG method for solving accurately the Poisson equation for the pres-
sure

4.2 Harmonic Averaging Mapping (HAM) to Density Distribution

Modification of density distribution by HAM in order to avoid violation of
incompressibility condition for two-phase flow with large density discrepancy
(H. Kawarada, T. Kumaki and H. Suito, 2000)

5 Visualization of Numerical Results

• Various visualization methods for understanding mechanisms of phenom-
ena

• Animations for understanding unsteady phenomena
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1 Introduction

Ant Colony Systems are constructive metaheuristics ([6],[10]), which itera-
tively expand partial solutions eventually achieving complete, feasible and
possibly good quality problem solutions. When constructing, an estimation of
the quality of each possible extension of the incumbent partial solution is to
be computed. The issue arises of how to determine the quality of each exten-
sion given a partial solution, where the quality of one same extension could be
different for any different partial solution, thus for an exponentially increas-
ing number of cases. This issue is not relevant in the case of the Travelling
Salesman Problem (TSP), the problem for which ant systems were originally
presented [11], but arises in many cases, such as the Quadratic Assignment
Problem (QAP) [22] or the Two-Dimensional Finite Bin Packing Problem
(2BP). In this paper we use the 2BP as a benchmark for studying this impor-
tant issue.

The 2BP consists of determining the minimum number of large identical
rectangles, bins, that are required for allocating without overlapping a given
set of rectangular items. The items are allocated with their edges parallel or
orthogonal to the bin edges and for each of them it is given the size and a
parameter specifying whether it has a fixed orientation or it can be rotated
by 90◦.

The 2BP is a generalization of the well known one-dimensional Bin Packing
Problem (1BP), where n items of given weight wi have to be packed into the
minimum number of bins of capacity W . Therefore, the 2BP is strongly NP-
hard as well as the 1BP (see Garey and Johnson [19]).

The 2BP finds many practical applications as the cutting of standardized
steel plates or wood sheets into smaller pieces to produce panels or furniture,
the packing on shelves in warehousing or on truck beds in transportation, the
paging of articles and advertisings in newspapers, etc.
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In practical applications there exist many versions of the 2BP. The problem
considered in this paper contains as special cases the oriented and non-oriented
versions of the 2BP that, according to the classification of Lodi, Martello
and Vigo [21], are called 2BP|O|F and 2BP|R|F, respectively. Following this
classification scheme Boschetti and Mingozzi [3] denote with 2BP|M|F the
problem considered in this paper.

For the 2BP|O|F heuristic algorithms have been proposed by Chung,
Garey and Johnson [5], Frenk and Galambos [18], Berkey and Wang [2], Lodi,
Martello and Vigo [21], Faroe, Pisinger and Zachariasen [16] and Boschetti
and Mingozzi [4]. Lower bounds for the 2BP|O|F are described in Martello
and Vigo [23], Fekete and Schepers [17] and Boschetti and Mingozzi [3]. Exact
methods are presented by Martello and Vigo [23] and Pisinger and Sigurd [24].

For the 2BP|R|F heuristic algorithms have been proposed by Bengtsson [1],
El-Bouri, Popplewell, Balakrishnan and Alfa [15], Lodi, Martello and Vigo [21]
and Boschetti and Mingozzi [4]. While lower bounds for 2BP|R|F presented
in the literature are due to Dell’Amico, Martello and Vigo [7] and Boschetti
and Mingozzi [4].

For the more general 2BP|M|F a heuristic algorithm and a lower bound
have been proposed by Boschetti and Mingozzi [4].

Extensive survey on cutting and packing problems can be found in
Dowsland and Dowsland [12], Dyckhoff and Finke [13] and Lodi, Martello
and Monaci [20]. Moreover, an annotated bibliography is given in Dyckhoff,
Scheithauer and Terno [14].

In this paper we consider an Ant-based heuristic for the 2BP|M|F. Ant
systems have been proposed in widely varied forms since their presentation in
1991 [6], in the case of this study we preliminarily consider a very basic ant
heuristic, much alike that presented in 1991. The issue addressed by this paper
is how to assess the quality of an extension of a partial solution, when there
is the possibility of having an exponential number of partial solution which
differently affect the quality of the same extension. It is obviously necessary
to partition the partial solutions space into a manageable number of subsets
of solutions, here we propose an ordering based possibility.

We designed an algorithm which constructs solutions essentially according
to the ant schema proposed in [6], then uses the local optimization proposed
by Boschetti and Mingozzi [4] to permit to search only in the space of local
optima.

The paper is structured as follows. Section 2 briefly introduces ant-based
systems and outlines the variant used in this paper. Section 3 describes the
problem addressed by this research and the local search heuristic by Boschetti
and Mingozzi [4]. Section 4 presents the specific issues of our ant system
for the 2BP|M|F, section 5 shows the preliminary computational results so
far obtained and, finally, section 6 proposes our conclusions drawn from the
current state of this research.
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2 Ant Colony Optimization

Combinatorial optimization algorithms based on ideas derived from the obser-
vation of ant colony behaviors were initially proposed by Colorni, Dorigo and
Maniezzo [6], [8], [9] with their Ant System. The main underlying idea was
that of parallelizing search over several constructive computational threads,
all based on a dynamic memory structure incorporating information on the
effectiveness of previously obtained results and in which the behavior of each
single agent is inspired by the behavior of real ants.

A combinatorial optimization problem is defined over a set C = {c1, . . . , cn}
of basic components. A subset S of components represents a solution of the
problem and F ⊆ 2C is the subset of feasible solutions. Thus a solution S is
feasible if and only if S ∈ F. A cost function z is defined over the solution
domain, i.e., z : 2C → R, and the objective is to find a minimum cost feasible
solution S∗, i.e., to find S∗ ∈ F such that z(S∗) ≤ z(S), ∀S ∈ F. Failing this,
the algorithm anyway returns the best feasible solution found, S̄.

The Ant System (AS) was the first algorithm of a class, eventually named
Ant Colony Optimization (ACO) algorithms. The main common feature of
all algorithms of the class is to modify a constructive heuristic so that the
ordering of the components could be recalculated at each iteration taking into
account not only the a priori expectation, ηj , of the usefulness of a particular
component cj , but also an a posteriori measure, τj , of the goodness of solutions
constructed using that particular component. The general framework can be
schematized as follows.

General Framework

Step 1. (Initialization)
Initialize a set A of partial solutions: ai = Ø, i = 1, . . . , m.

Step 2. (Expansion of the partial solutions)
For each partial solution i = 1, . . . , m choose a component cj to
append to solution ai with probability given as a function of ai, ηj , τj .

Step 3. (Check if all solutions are completed)
If the solutions in A are not complete, go to step 2.

Step 4. (Evaluation of the solution)
Evaluate z(ai), i = 1, . . . , m, and update τj , for every component cj ,
accordingly.

Step 5. (End condition)
If the end conditions are not satisfied go to step 1.
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Step 4 can be conveniently integrated with a local search starting from
each ai solution in A.

The importance of this original Ant System resides mainly in being the
prototype of a number of ant algorithms which have found interesting and
successful applications.

An ant is the “computational agent” managed at step 2 of the general
framework, which iteratively constructs a solution for the problem to solve.
Partial problem solutions are seen as states; each ant moves from a state ι
to another one ψ, corresponding to a more complete partial solution. At each
step σ, each ant k computes a set Aσ

k (ι) of feasible expansions to its current
state, and moves to one of these in probability, according to a probability
distribution defined in the following.

For each ant k, the probability pk
ιψ of moving from state ι to state ψ

depends on the combination of two values:

1. the attractiveness η of the move, as computed by some heuristic indicating
the a priori desirability of that move;

2. the trail level τ of the move, indicating how proficient it has been in the
past to make that particular move: it represents therefore an a posteriori
indication of the desirability of that move.

Trails are updated at each iteration, increasing the level of those that fa-
cilitate moves that were part of “good” solutions, while decreasing all other
ones. The specific formula for defining the probability distribution at each
move makes use of a set tabuk which indicates a problem-dependent set of
infeasible moves for ant k. Different authors use different formulae, according
to [22] probabilities are computed as follows: pk

iψ is equal to 0 for all moves
which are infeasible (i.e., they are in the tabu list), otherwise it is computed
by means of the following formula:

pk
ιψ =

α · τιψ + (1 − α) · ηιψ

Σ(ιν)/∈tabuk
(α · τιν + (1 − α) · ηιν)

(1)

where parameter α is a user-defined parameter (0 ≤ α ≤ 1) which defines the
relative importance of trail with respect to attractiveness. After each iteration
t of the algorithm, that is when all ants have completed a solution, trails are
updated as follows:

τιψ(t) = ρτιψ(t − 1) + ∆τιψ (2)

where ρ is a user-defined coefficient and ∆τiψ represents the sum of the con-
tributions of all ants that used move (ι, ψ) to construct their solution. The
ants’ contributions are proportional to the quality of the achieved solutions,
i.e., the better an ant solution, the higher will be the trail contribution added
to the moves it used. The general structure of an ACO algorithm is as follows.
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ACO Framework

Step 1. (Initialization)
Initialize τιψ, for every move (ι, ψ).

Step 2. (Construction)
For each ant k repeat the following operations until ant k has com-
pleted its solution:
a) compute ηιψ, for every move (ι, ψ);
b) choose the state to move into, with probability given by (1);
c) append the chosen move to the k-th ant’s set tabuk.
Carry each solution to its local optimum.

Step 3. (Trail update)
For each ant move (ι, ψ) compute ∆τιψ and update the trail matrix
by means of equation (2).

Step 4. (Terminating condition)
If the end conditions are not satisfied go to step 2.

3 Problem Description

An unlimited stock of rectangular bins of size (W, H) are given and n rect-
angular items of sizes (wj , hj), j ∈ J = {1, ..., n}, are required to be placed
into the bins. We assume that with each item j ∈ J is associated an input
parameter ρj , which is equal to 1 if item j can be rotated of 90◦ and is equal
to 0 if the item j cannot be rotated.

Figure 1 shows an example where the four items at the left are to be
positioned in the gray master shown at the right.

1

1

2
2 3

4
3

4

Fig. 1. Example of a 2BP instance.
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The objective is to allocate without overlapping all items into the minimum
number of bins. Notice that problem 2BP|M|F corresponds to 2BP|O|F when
ρj = 0, ∀j ∈ J , while corresponds to 2BP|R|F when when ρj = 1, ∀j ∈ J .

We denote with A = W × H the area of the bin and with aj = wj × hj

the area of item j ∈ J .
We assume that each bin is located in the positive quadrant of the Carte-

sian coordinate system with its origin, the bottom left-hand corner, placed in
position (1, 1) and with its bottom and left-hand edges parallel to the x-axis
and the y-axis, respectively. Moreover, we assume that the sizes of bins and
of items are integers satisfying wj ≤ W and hj ≤ H , for every item j ∈ J .

3.1 A local search for the 2BP|M|F
In this subsection we describe the local search of Boschetti and Mingozzi [4],
henceforth called LS, for building a feasible solution for the problem 2BP|M|F.
Given a list of items ordered using a given criterion, LS builds a feasible solu-
tion trying to allocate in turns the items, following the given order, considering
a bin at a time. When no more items can be allocated in the current bin, LS
closes such bin and opens a new one. The process stops when all items have
been allocated. The heuristic proposed by Boschetti and Mingozzi repeat LS
changing the order of the items until the number of bins used is equal to a
known lower bound or a maximum number of iterations is reached. At each
iteration the order of the items is changed applying some pricing rules.

A feasible solution is represented by specifying for each item j ∈ J the bin
index πj where j is located, the coordinates (pj , qj) of its bottom left-hand
corner, referred to as the origin of the item, and its rotation rj , where rj = 0,
if the item is not rotated, and rj = 1, if the item is rotated by 90◦.

The general framework of LS is the following.

Algorithm LS(J ′,AC)

Step 1. (Erase the current solution)
Let i = 1 be the index of the current empty bin.
Define π′

j = n, ∀j ∈ J .
Step 2. (Filling up bin i)

Consider the items of J ′ in sequence and for the current item j ∈ J ′

find the best position (p′j , q
′
j) and rotation r′j for placing j into the

current bin i using the allocation criterion AC (see section 3.2).
If a feasible position exists, then place item j in solution by setting
π′

j = i and J ′ = J ′ \ {j}.
Step 3. (Check if all items have been allocated)

Let z = i the cost of the emerging solution.
If J ′ = Ø, then Stop.
If J ′ 	= Ø and i < z∗ − 1 (where z∗ is the best solution found so far),
then open a new bin by setting i = i + 1 and go to step 2, otherwise
Stop.
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Procedure LS requires in input the ordered set of items J ′ and a parameter
AC which specifies the allocation criterion to use in step 2. In the following
section 3.2 we describe two criterion AC1 and AC2 for allocating an item into
a bin.

3.2 Item Allocation

The general criteria used at step 2 of LS to allocate an item j into a bin is to
choose a position where j does not overlap with the items already allocated
into the bin and such that it is not possible to move it to the left and/or
downward as its left-hand edge and its bottom edge are both adjacent to the
edges of other items and/or to the bin edges.

In the following each feasible position for item j is represented by the
triplet (p, q, r), where the pair (p, q) represents the coordinates of the origin of
the item, while r = 1 if the item must be rotated by 90◦ and r = 0 if the item
must not be rotated. We define two triplets (p, q, 0) and (p, q, 1) to indicate
that item j having ρj = 1 can be located in position (p, q) either without
rotation or rotating it by 90◦.

We denote with F (j, Bi) the set of all feasible triplets, satisfying the crite-
ria described above, for locating item j into bin i, where Bi = {j ∈ J : π′

j = i}
is the subset of items already located into the bin.

1

2

3

Fig. 2. Example of feasible positions for locating item j with (wj , hj) = (5, 2) and
ρj = 1: F (j, Bi) = {(1, 7, 0), (5, 4, 0), (5, 4, 1), (7, 1, 1)}.
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In Fig. 2 it is shown the example reported in [4], where an item j of
size (wj , hj) = (6, 2) and ρj = 1 have to be placed into a bin i of size
(W, H) = (10, 9) containing items Bi = {1, 2, 3} of sizes (w1, h1) = (6, 3),
(w2, h2) = (3, 1) and (w3, h3) = (4, 2) located in positions (p′1, q

′
1, r

′
1) =

(1, 1, 0), (p′2, q′2, r′2) = (1, 4, 0) and (p′3, q′3, r′3) = (1, 5, 0). For the example
reported in Fig. 2 we have F (j, Bi) = {(1, 7, 0), (5, 4, 0), (5, 4, 1), (7, 1, 1)}.

If only a feasible triplet exists, i.e. |F (j, Bi)| = 1, then item j is allocated
in position (p, q, r) ∈ F (j, Bi) by setting p′j = p, q′j = q and r′j = r. If
|F (j, Bi)| > 1, then the best position is chosen according to the criteria that
the bin layout which is more likely for item j is obtained by allocating item j
in the position where the not occupied area under it and at its left hand side
is minimum.

We denote with f(p, q, r) the amount of area of the two rectangular regions
under and at the left-hand side of the item j located in position (p, q, r) not
occupied by the items in Bi. In Fig. 3 it is given an example of function
f(p, q, r) for the problem of Fig. 2.

1

2

3

j

Fig. 3. Example: the hatched regions correspond to the not occupied area under
and at the left-hand side of the item j in position (5, 4, 0), i.e. f(5, 4, 0) = 10.

Let f∗ = min{f(p, q, r) : (p, q, r) ∈ F (j, Bi)} and F ′(j, Bi) = {(p, q, r) ∈
F (j, Bi) : f(p, q, r) = f∗}. Procedure LS uses the following two rules AC1 and
AC2 for allocating item j at step 2:

AC1: Locate j in position (p′j , q
′
j , r

′
j) by defining in sequence p′j , q′j and r′j

as follows: p′j = min{p : (p, q, r) ∈ F ′(j, Bi)}, q′j = min{q : (p′j , q, r) ∈
F ′(j, Bi)} and r′j = min{r : (p′j , q

′
j , r) ∈ F ′(j, Bi)}.
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AC2: Locate j in position (p′j , q
′
j , r

′
j) by defining in sequence q′j , p′j and r′j

as follows: q′j = min{q : (p, q, r) ∈ F ′(j, Bi)}, p′j = min{p : (p, q′j , r) ∈
F ′(j, Bi)} and r′j = min{r : (p′j , q

′
j , r) ∈ F ′(j, Bi)}.

In the example reported in Fig.3 we have f(1, 7, 0) = 7, f(5, 4, 0) = 13,
f(5, 4, 1) = 13 and f(7, 1, 1) = 7, therefore, the item j is located in posi-
tion (p′j , q

′
j , r

′
j) = (1, 7, 0) by method AC1, while it is located in position

(p′j , q
′
j , r

′
j) = (7, 1, 1) by method AC2.

4 An ant Metaheuristic Applied to the 2BP|M|F
As mentioned in section 2, in order to completely specify the ant heuristic it
is necessary to define how to compute the visibility η and the trail update ∆τ .

Obviously the two are conceptually interlinked, and a major problem with
respect to more straightforward TSP or related applications is that an item
j ∈ J is not per se more or less desirable than another item i, neither does
the opportunity of the insertion of one or the other depend substantially from
the item which was last inserted. Unfortunately, it is the whole of the partial
solution to extend which determines the greater opportunity of one or the
other choice.

This dependency from the whole of the partial solution is not a charac-
teristic feature of the 2BP, but rather the opposite: the exception are the
problems like the TSP or the sequential ordering, for which it is sufficient to
know the last inserted elements (thus in the case of the TSP the last node of
the path) in order to evaluate desirabilities.

In the case of the 2BP we addressed the problem as follows. The Boschetti-
Mingozzi local search LS is based on an ordering of the items. We designed
an ant algorithm which adaptively updates the ordering and leave to the LS
algorithm the task to construct a feasible solution.

Specifically, we maintain implicit solutions in the form of permutations
of the set of items, which will be directly translated into the corresponding
explicit solutions as detailed in section 3.1. Unfortunately, we cannot lay trail
as in the TSP, which would correspond to reinforcing pairs of items, as there
is in general no advantage to consider items in pairs. However, since there
is a loose correspondence between positions in the ordering and bin where
the corresponding item will be allocated into, we decided to reinforce the
item/position pairs. Trail τij thus reflect the average quality of solutions where
item j was positioned in i. Building blocks consisting of a subset of several
items to be allocated together can emerge by reinforcing contiguous positions
of the item subset.

Visibility values ηj are associated with each item j ∈ J , and are defined
by means of the pricing rules described in section 4.1.

The complete ant algorithm is therefore the following.
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Algorithm 2BPants

Step 1. (Initialization)
Initialize trail values to constant τinit and visibilities ηj as in section
4.1.
Initialize the best solution S∗ by allocating each item j ∈ J into a
different bin πj = j in position (pj , qj) = (1, 1) and rotation rj = 0.
Set z∗ = n and iter = 1.

Step 2. (Set up ant solutions)
Initialize each ant solution Sk = Ø, k ∈ K.

Step 3. (Ant Solution Construction)
For each ant k ∈ K repeat the following operations until ant k has
completed its solution:
a) choose by means of formula (1) the next item to append to Sk;
b) append the chosen move to the k-th ant’s set tabuk.

Step 4. (Local Search)
For each solution Sk construct the corresponding 2BP solution Ŝk, of
cost z(Ŝk), by means of procedure LS.

Step 5. (Trail update)
Update trails by means of formula (2) using the positions of Sk eval-
uated according to the costs of Ŝk.

Step 6. (Update the best solution)
Let k′ be an ant for which z(Ŝk′) = min{z(Ŝk) : k ∈ K}.
If z(Ŝk′) < z∗ then z∗ = z(Ŝk′), and S∗ = Ŝk′ .

Step 7. (Stop condition)
If z∗ is equal to a known lower bound or iter = MaxIter then Stop,
otherwise go to Step 2.

The following algorithm AntBP has been used in the computational tests
reported in section 5.

Algorithm AntBP

Step 1. Set UBM = ∞.
Step 2. For each item allocation method AC1 and AC2 (see section 3.2), for

each initial pricing rule IP1, ..., IP4(see section 4.1) perform step 3.
Step 3. Execute algorithm 2BPants using the selected rules and update the

upper bound UBM = max{z∗, UBM}.

4.1 Updating Visibilities

At each iteration of AntBP we use a different pricing function for defining
the visibilities ηj , j ∈ J . These are the same as those introduced in [4] for
defining item prices, which in fact play the same role as visibilities here, i.e.,
they are the basis for defining the item ordering which, in turns, will lead to
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a complete solution. The general idea is to give high prices to items which are
more difficult to locate. We alternatively use four item elements for defining
the initial visibilities ηj :

IP1: The area, ηj = aj ; IP2: The width, ηj = wj ;
IP3: The height, ηj = hj; IP4: The perimeter, ηj = 2wj + 2hj .

Visibilities are never changed during an ants execution. At the end of each
iteration of 2BPants we update the trails τij , i, j ∈ J , by means of formula
(2). This corresponds to consider in turns each ant solution, read the ordering
which originated that solution (item j in position i, for each j ∈ J) and
increase or decrease the value τij depending on the quality of the resulting
ant solution.

Trails are initialized to a value τinit, which in our application was defined
to be a fraction of the average of all η values.

5 Computational Results

The algorithm presented in this paper was implemented in FORTRAN 77
and run on a Pentium 3 Intel at 933 MHz. Since no computational results for
the 2BP|M|F have been presented in the literature, computational results are
only given for the special case 2BP|O|F in order to compare the quality of the
ants solutions with the best ones presented in the literature.

The benchmark instances are the same as those used in [4], that is ten
classes of randomly generated test problems, where every class contains five
groups of ten instances each. The first 6 classes of problems were originally
proposed by Berkey and Wang [2], while the last four classes have been intro-
duced by Martello and Vigo [23]. All test problems are available on the web
page “http://www.or.deis.unibo.it/∼research.html”.

These instances were used to permit comparison with alternative problem-
specific heuristics, even though they are not typical benchmarks for meta-
heurstics. These last algorithms in fact find their reason for being in the need
to devote substantial computational effort to explore the search space look-
ing for elusive good quality solutions, therefore they are not on their own in
finding solutions to a high number of instances, with minimal CPU time to
devote to each of them. However, when comparing the results obtained by the
ants with those obtained by the local search alone, without ants initialization,
it appears that ants global search contributes to the quality of the solutions
found, albeit inducing a much higher CPU cost.

Table 5 show our current preliminary results. The columns show:
• class: problem class;
• cat: problem category;
• L: master length;
• W : master width;
• N : number of items;
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Table 1. Compared computational results of ants and LS

class cat L W N GapLB TimeLB Ants N.BinA T.Ants LS N.BinLS T.LS
I 1 10 10 20 1.000 0.000 10 6.60 0.044 9 6.70 0.006

2 10 10 40 1.027 0.000 7 13.00 25.002 7 13.00 0.005
3 10 10 60 1.016 0.011 7 19.80 50.658 7 19.80 0.011
4 10 10 80 1.011 0.000 8 27.20 58.830 8 27.20 0.016
5 10 10 100 1.016 0.017 6 31.50 205.516 6 31.50 0.028

1.014 0.005 38 68.010 37 0.013
II 1 30 30 20 1.000 0.000 10 1.00 0.006 10 1.00 0.005

2 30 30 40 1.100 0.005 9 2.00 96.619 9 2.00 0.022
3 30 30 60 1.000 0.011 10 2.50 0.021 10 2.50 0.017
4 30 30 80 1.033 0.012 9 3.20 191.261 9 3.20 0.055
5 30 30 100 1.000 0.011 10 3.90 0.039 10 3.90 0.054

1.026 0.007 48 57.589 48 0.030
III 1 40 40 20 1.000 0.000 10 4.70 0.137 7 5.00 0.011

2 40 40 40 1.048 0.000 6 9.40 56.408 6 9.50 0.028
3 40 40 60 1.047 0.016 4 13.80 172.580 4 13.80 0.050
4 40 40 80 1.040 0.016 4 18.80 294.298 4 18.80 0.056
5 40 40 100 1.050 0.031 3 22.50 542.449 3 22.50 0.079

1.037 0.012 27 213.174 24 0.049
IV 1 100 100 20 1.000 0.004 10 1.00 0.004 10 1.00 0.011

2 100 100 40 1.000 0.021 10 1.90 0.032 10 1.90 0.033
3 100 100 60 1.100 0.054 8 2.50 422.827 8 2.50 0.099
4 100 100 80 1.066 0.062 8 3.20 641.094 8 3.20 0.133
5 100 100 100 1.033 0.092 9 3.80 718.030 9 3.80 0.170

1.040 0.047 45 356.397 45 0.089
V 1 100 100 20 1.000 0.016 10 5.90 0.148 9 6.00 0.016

2 100 100 40 1.025 0.022 8 11.50 41.764 6 11.70 0.038
3 100 100 60 1.062 0.059 3 17.90 291.823 2 18.00 0.109
4 100 100 80 1.029 0.120 5 24.20 357.157 5 24.20 0.164
5 100 100 100 1.054 0.184 1 28.60 993.969 1 28.60 0.259

1.034 0.080 27 336.972 23 0.117
VI 1 300 300 20 1.000 0.005 10 1.00 0.011 10 1.00 0.011

2 300 300 40 1.200 0.051 8 1.70 381.310 8 1.70 0.089
3 300 300 60 1.000 0.132 10 2.10 34.910 10 2.10 0.175
4 300 300 80 1.000 0.248 10 3.00 0.293 10 3.00 0.279
5 300 300 100 1.066 0.371 8 3.40 1757.315 8 3.40 0.527

1.053 0.161 46 434.768 46 0.216
VII 1 100 100 20 1.110 0.010 5 5.20 23.793 4 5.30 0.012

2 100 100 40 1.106 0.032 1 10.70 169.565 0 10.90 0.055
3 100 100 60 1.112 0.062 0 15.60 404.272 0 15.80 0.127
4 100 100 80 1.121 0.109 0 22.20 702.463 0 22.30 0.182
5 100 100 100 1.122 0.176 0 26.80 1091.646 0 27.00 0.275

1.114 0.078 6 478.348 4 0.130
IIX 1 100 100 20 1.080 0.010 6 5.30 18.910 5 5.40 0.0220

2 100 100 40 1.113 0.024 1 10.70 163.800 1 11.00 0.061
3 100 100 60 1.112 0.078 0 15.70 400.528 0 16.20 0.115
4 100 100 80 1.112 0.121 0 21.90 700.273 0 22.10 0.198
5 100 100 100 1.124 0.192 0 27.20 1086.338 0 27.30 0.290

1.108 0.085 7 473.970 6 0.137
IX 1 100 100 20 1.000 0.010 10 14.30 0.010 9 14.40 0.011

2 100 100 40 1.000 0.021 10 27.50 0.026 8 27.70 0.034
3 100 100 60 1.000 0.039 10 43.50 0.046 9 43.60 0.055
4 100 100 80 1.000 0.072 10 57.30 0.077 10 57.30 0.077
5 100 100 100 1.000 0.103 10 69.30 0.124 9 69.40 0.142

1.000 0.049 50 0.057 45 0.063
X 1 100 100 20 1.100 0.000 8 4.10 17.008 7 4.20 0.010

2 100 100 40 1.061 0.027 6 7.30 104.832 6 7.30 0.033
3 100 100 60 1.076 0.069 3 10.10 385.102 3 10.10 0.098
4 100 100 80 1.064 0.114 2 13.00 720.517 2 13.10 0.161
5 100 100 100 1.045 0.165 3 16.00 989.090 3 16.00 0.240

1.069 0.075 22 443.310 21 0.108
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• GapLB: gap of the lower bound;
• T imeLB: time to compute the lower bound;
• Ants: cost of the ants solution;
• N.BinA: number of bins used in the ants solution;
• T.Ants: time needed by the ants solution;
• LS: cost of the local search solution (1 iteration);
• N.BinLS: number of bins used in the LS solution (1 iteration);
• T.LS: time needed by the LS solution (1 iteration).

As mentioned, results are still preliminary in that the ants algorithm used
is still very basic. We believe that using a more sophisticates framework, such
as for example ANTS [22], will further improve the results obtained. From
table 5 it appears in fact that ants help to improve the quality of the solutions
proposed by the local search alone (both in terms of average solution quality
and of number of optimal solutions found), but the results proposed here are
still inferior to those obtained by the sophisticated tailored heuristic presented
by Boschetti and Mingozzi [4].

6 Conclusions

In this paper we have described a basic ant system for solving the two-
dimensional finite bin-packing problem where items can be rotated for al-
location. The problem was chosen for its high industrial interest and for being
representative of combinatorial problems for which the whole of a partial
solution affects the evaluation of the quality of each further item as a new
insertion.

The drawback to face is that for this problem very effective tailored heuris-
tics exist, and standard benchmark consist of typical industrial size instances,
which can usually be solved to optimality in short CPU time.

Face to this, the proposed ant system proved able to devise solutions of
quality comparable to that of those reported in [4], which represent the state
of the art for the 2BP.

The results reported here must be considered still preliminary in that the
ant system used is a very basic one. Better results, albeit paying more compu-
tational efforts, can be obtained by means of more advanced ant algorithms,
such as for example ANTS [22].
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1 Introduction

No problem in engineering can be solved exactly. As engineers we are forced to
introduce simplifying assumptions into the nature of problems that are posed
to us, so that the problems can then be solved by the methods available. The
primary solution tool used by engineers today is still intuition; that is to say
that when posed with a certain problem (be it in design, analysis, optimisa-
tion, control, manufacture or some other field), a certain understanding of the
problem is brought to bear and a potential solution is arrived at rather rapidly.
When intuition fails, or when it is insufficient in determining the solution in
finer detail, we are then faced with the dilemma of how to proceed.

Today, many ingenious automated processes can be utilised that are able
to significantly refine a design from its starting point. Together with this opti-
misation, modern automated processes require fewer simplifying assumptions
when determining the nature of the problem, and this is evident in the in-
creasing sophistication of available analysis tools.

In this paper a portion of a relatively new field of automated design
and optimisation processes called evolutionary algorithms (EAs) is addressed.
Broadly speaking, an EA is essentially an automated designer or optimiser
that operates in a manner which mimics a natural evolutionary process. These
algorithms have been arrived at after considering the way in which nature
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works to solve the difficult problem which Charles Darwin originally described
as natural selection, or ’the survival of the fittest’. The reason why such algo-
rithms are considered today is that they have been able to automatically solve
design and optimisation problems which could not be hitherto solved by any
previously available mathematical technique. Evolutionary algorithms exhibit
many unique features that make them extremely useful in the solution of a
wide range of different engineering problems.

The major drawback to the widespread use of evolutionary algorithms
today is that they remain computationally expensive. In other words, the so-
lution to a given problem often requires the evaluation of a large number of
candidate designs. In most cases, for similar convergence to a solution, this
evaluation cost is at least two orders of magnitude larger than that of a conven-
tional optimiser. However there are methods for reducing this penalty, and it
will be seen that the newer evolutionary methods available can now make this
cost at least bearable. Conversely, the benefits of using evolution techniques
for design or optimisation are that they are robust towards multimodal fitness
landscapes (problems with more than one local minima) and noise (whether
derived via experiment or simulation error). Further, they generally only re-
quire payoff information to run, that is, they only require a relative fitness
to be assigned to each candidate solution and not supplemental information
such as first or higher order derivatives of the fitness function.

A question arises as to when evolutionary algorithms should be used. Evo-
lutionary computation should not be used in design or optimisation when the
problem can be posed in a closed form, when it can have its merit evaluated
directly without error, and when only one local optima (corresponding to a
unique global optima) is known to exist. This implies that the usage of EAs in
design or optimisation should be considered a possibility when the following
conditions exist:

• The problem can not be posed in a closed form or even in an entirely
mathematical form.

• The evaluation of each candidate solution is subject to noise or error.
These may be experimental noise, error involved in a computational ap-
proximation if such a computational scheme is used, or some other form
of uncertainty which may be known to exist.

• The problem is known to have more than one (or possible many) local
optima; possible types of candidate solution where the gradient of the
fitness function is zero. One or more of these local optima will correspond
to one or more global optima.

• The problem may change over time. This is also known as a ’non-stationary
environment’.

Overview

After an introduction to evolutionary algorithms (section 1.1) and aerody-
namic optimisation (section 1.2), we will introduce some new concepts re-
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lating to parallel asynchronous function evaluation (section 2.1), hierarchical
optimisation (section 2.2) and multiobjective optimisation using game theory
(sections 2.3 and 2.4). All these additions extend and enhance the applica-
bility of evolutionary methods. Following this, we present five test cases in
aeronautics:

• A two-objective inverse aerofoil design (section 3.1).
• A two-objective aerofoil direct design for cruise and loiter conditions (sec-

tion 3.2).
• A two-objective aerofoil direct design for cruise and takeoff conditions with

a flap (section 3.3).
• A transport aircraft conceptual design with one objective (section 3.4).
• An Unmanned Combat Air Vehicle (UCAV) conceptual design with two

objectives, computed with Pareto and Nash approaches (section 3.5).

Finally we present a conclusion, including perspectives on the work.

1.1 Evolutionary Algorithms

Evolutionary algorithms are design and optimisation algorithms that mimic
the natural process of ’survival of the fittest’. Broadly speaking they oper-
ate simply through the iterated mapping of one population of solutions to
another population of solutions. This is contrasted with conventional deter-
ministic search techniques which proceed from one given sub-optimal solution
to another, until an optimum solution is reached. Evolutionary algorithms fall
into the category of stochastic (randomised) optimisation methods whereby
repeated application of the method to the same initial starting conditions
may yield different results. Evolutionary algorithms work by exploiting pop-
ulation statistics to some extent, so that when newer individual solutions or
offspring are generated from parents, some will have inferior characteristics
and some will have superior characteristics. The general working principles of
the iterated mapping then reduces to generating an offspring population, re-
moving a certain number of inferior individuals, and obtaining the subsequent
population.

1.2 Aerodynamic Optimisation

Regarding aerodynamics, the necessity of optimisation is clear, given that
even very small improvements in performance can yield large reductions in
operating costs, lowering of undesirable environmental pollution (such as ni-
trous oxides, carbon dioxide and noise), shorten travel times, improve payload
capacity and improve performance. Because aircraft are being operated over
longer and longer lifetimes, any improvements achieved during the design and
development stage are rewarded with large gains.
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Aerodynamic optimisation is an intensive area of research, however the
tools most commonly used in industry today are still intuition and conven-
tional optimisers. An expert in aerodynamics can often decide upon a very
efficient configuration or geometry using only analysis tools, with no opti-
misation process whatsoever. Aircraft have been designed in this way until
quite recently. The conventional optimisation techniques used today fall into
a number of categories:

• Trade studies, which simply consider a large number of proposed config-
urations, and of these the best is selected. In this case, normally Com-
putational Fluid Dynamics (CFD) is used to ’screen’ a number of good
configurations that are then wind tunnel tested.

• Conventional optimisers, which work on well understood mathematical
principles derived from numerical analysis. In this field there are deriva-
tive estimation methods by perturbation, parameter sensitivity analyses,
solver-optimiser coupled schemes, inverse methods (where a good pres-
sure or Mach distribution is known in advance), multi-point conventional
methods and variable fidelity methods.

• The adjoint method, which is derived from control theory [Jam95]. This is
probably the most popular area of research at the present time – it allows
a deterministic-type optimisation using very few iterations (or equivalent
iterations) of the flow analysis code. This can often require less than ten
complete flowfield analyses for good convergence. This technique has pro-
duced very low drag solutions to constrained problems when provided with
a good starting point.

For many aerodynamic optimisation problems, the wide bounds required
and novel constraints would be prohibitive to conventional optimisers. In many
cases it has been shown that the evolutionary approach often replicates the
result found by a conventional optimiser, albeit in a much longer time. How-
ever, when unusual configurations or multiobjective tradeoffs are explored,
the answer is supplied forthwith – whereas a conventional optimiser would be
unable to return any answer at all.

2 Modern Techniques and Extensions

In this section, some extensions to standard evolutionary algorithms are dis-
cussed. These extensions allow the algorithm to:

• Utilise a cheap, readily available parallel processing capability running
variable-time iterative solvers on desktop computers, through asynchronous
solution.

• Allow for the exploitation of variable-fidelity or multi-physics solvers,
through a hierarchical population topology.

• Be applied to more varied types of engineering problems in one or many
objectives, through Pareto tournament selection.
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2.1 Asynchronous Solution

The design of an optimisation algorithm for asynchronous solution of candi-
date problems can be broadly defined as the non-dependence of an optimi-
sation procedure on the speed of a given solver. The need for asynchronous
fitness function evaluation arises from the fact that many methods of solution
used in engineering today may take variable times to complete their operation.
The classic example of this is the modern CFD solver. In a typical industrial
code used for external aerodynamic analysis of aeroplanes, the time for the
residual of the solution to converge to a specified level (either machine zero
or an arbitrarily selected higher value) can vary over a significant range. If as
an example, we are given an unstructured mesh based Navier-Stokes solver,
a number of factors have a significant effect on the execution time:

• The number of cells involved, and the simplicity of their connectivity.
• The skewness and aspect ratio of the cells, especially considering that in

our case we are normally forced to use automatic mesh generation.
• The presence of unforeseen large gradients in the flow such as confluent

boundary layers, merged shocks and flow separation.
• The degree of mesh anisotropy in the area of large flow gradients, which

will probably have to be automatically adapted.

With all of these factors considered, it should seem obvious that the optimi-
sation algorithm used to drive the design process should be designed with this
possibility in mind. The previous generation of evolutionary algorithms have
generally used a generation based approach, where a newly created offspring
population is sent to a parallel computer to be solved as a unit. A problem
with generational models is that they create an unnecessary bottleneck when
used on parallel computers. If the population size is approximately equal to the
number of processors, and most candidate offspring sent for solution can be
successfully evaluated, then some processors will complete their task quickly
with the remainder taking more time. With a generational approach, those
processors that have already completed their solutions will remain idle until
all processors have completed their work.

A final and most important need for asynchronous evaluation is that it
provides an ideal method of using existing desktop computers for problem
solving. The need for asynchronicity arises due to the fact that many of these
machines will have different operating speeds, and may be added or removed
from the parallel task when they are needed for other work; meaning that no
correct number or combination of resources can be known in advance.

Implementation and Advantages

The approach used in this paper, is to ignore any concept of generation based
solution. This approach is similar to work done by Wakunda and Zell [WZ00],
however the method for choosing good offspring (the selection operator) is
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quite different from normal evolutionary algorithms (refer to section 2.3).
Whilst a parent population exists, offspring are not sent as a complete ’block’
to the parallel slaves for solution. Instead one candidate is generated at a
time, and is sent to any idle processor, where it is evaluated at its own speed.
When candidates have been evaluated, they are returned to the optimiser and
either accepted by insertion into the main population or rejected. This requires
a new method for selecting superior offspring, because they cannot now be
compared one against the other, which is the standard selection technique used
in generational algorithms. In fact, a single offspring must compete against
a previously established benchmark and if successful must replace (according
to some rule) an individual pre-existing in the population.

We implement this benchmarking via a separate evaluation buffer, which
provides a statistical ’background check’ on the comparative fitness of the
solution. The length of the buffer should represent a reasonable statistical
sample size, but need not be too large; approximately twice the population
size is more than ample. When an individual has had a fitness assigned, it is
then compared to past individuals (both accepted and rejected) to determine
whether or not it should be inserted into the main population. If it is to be
accepted, then some acceptance rule is invoked and it replaces a member of
the main population.

A Short Simulation

To demonstrate the effectiveness of the asynchronous evaluation method, we
give a short simulation. We solve the simple sphere function f =

∑N
i=1 x2

i on
a single computer. In simulation, we offer two methods of evaluation; for the
asynchronous case we assign a small fictitious delay to each function evalua-
tion, and for the synchronous case we assign the same delay to all individuals
in advance but we wait until the slowest evaluation has completed – in exactly
the same manner that this would occur in practice over a cluster of comput-
ers. The result is presented for both asynchronous and synchronous runs in
figure 1. The results are scaled vertically so that when no asynchronicity ex-
ists ( tslowest

tfastest
= 1), the workload factor is also unity; in any case it can be seen

that both algorithms perform identically in this situation just as expected.
Configurations up to tslowest

tfastest
= 5 are explored. It is obvious from figure 1

that the synchronous approach fares poorly when a higher variability exists
in execution time, when compared to the asynchronous approach.

2.2 Hierarchical Population Topology

A hierarchical population topology, when integrated into an evolution algo-
rithm, means that a number of separate populations are established in a hi-
erarchical layout to solve the given problem, rather than a single ’cure-all’
type single population layout. This method was first proposed by Sefrioui
[SP00, SSP00], and is shown in figure 2.
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Fig. 1. Execution time variation between asynchronous and synchronous evaluation.
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Fig. 2. Hierarchical population topology.

The purpose of utilising a hierarchical topology is to exploit the possibility
of using incomplete or rapid function evaluation information during optimi-
sation progression. In other words, perfect (or the most compete available)
evaluation of the fitness function is not required all the time in order to solve
a given problem. The advantage of the hierarchical method is predominantly
speed; to achieve a given quality level for the solution a much shorter wall-
clock time is required.

Implementation and Advantages

The advantage of the hierarchical layout is that it is quite suitable for en-
gineering type problems, where the fitness function can be evaluated with
varying levels of precision. The layers are arranged so that the uppermost
layer uses the most precise solver available for fitness function optimisation.
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The next layer (or layers) are assigned intermediate quality solvers, and the
lower-most layer uses the least accurate solver available. The task of the lower
layers is predominantly exploration, where large jumps in design variables are
expected and the population is not too particular about small improvements
in fitness. The middle layer is a compromise position between the top and bot-
tom layers. The top layer is tasked with exploitation, using very small steps in
the search space and fine-tuning the final result. As an example we can take
the aerodynamic optimisation of a transonic aircraft wing. A first attempt at
dividing the workload into three layers might proceed as follows:

1. Use a full compressible Navier-Stokes solver with turbulence modeling on
the top layer;

2. Use an Euler solver with coupled boundary layer on a second layer;
3. Use a full potential solver on the lowest layer.

The full potential solver would provid initial guesses at good solutions
to the Euler layer, where they can be rechecked and further evolved. Good
solutions from the Euler layer would progress up to the top level where they
are again checked and further evolved. In this manner no time is wasted using
the Navier-Stokes solver to explore large parts of the search space, which
would be almost impossible in any reasonable time.

2.3 Game Theory – Pareto Tournament Selection

The purpose of a multiobjective optimiser is to provide answers to problems
which can not or should not be posed in single objective form. To this end, a
number of approaches have been developed for use in evolutionary algorithms,
and the two that we consider are:

• Pareto fronts: Originally proposed by Vilfredo Pareto, a solution to a given
multiobjective problem is the Pareto optimal set found using a cooperative
game, and this spans the complete range of compromise designs between
each objective.

• Nash equilibria: Originally proposed by John F. Nash [Nas50, Nas51], a
Nash equilibrium point is the position in a competitive (or non-cooperative)
game whereby no player can improve his position at the expense of the
other, with each player optimising one fitness function over a subset of the
objective variables.

The merit of our approach is in applicability; deterministic optimisers have
difficult computing concave Pareto fronts, and methods utilising Pareto front
gradients are still incapable of computing mixed-type and discontinuous fronts
[Deb98]. A Pareto optimal set does however give the practicing engineer great
insight into the variations in a design that exist between optima for each
design objective. Formally, the Pareto optimal set can be defined as the set
of solutions that are non-dominated with respect to all other points in the
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search space, or that they dominate every other solution in the search space
except fellow members of the Pareto optimal set. For two solutions x and y
(in minimisation form):

rel(x,y) = x dominates y if : fi(x) ≤ fi(y) : ∀i ∈ 1 . . .M
rel(x,y) = x nondominated w.r.t. y if : fi(x) ≤ / ≥ fi(y) : ∀i ∈ 1 . . .M

rel(x,y) = y dominates x if : fi(x) ≥ fi(y) : ∀i ∈ 1 . . .M

(1)

For a problem in M objectives. This is called the ’relationship’ operator.
In practice we compute an approximation to the continuous set, by assembling
ParetoSet =

[
x∗

1,x
∗
2, . . . ,x∗

µ

]
. Figure 3 shows (for a two objective case) the

regions where a particular point either dominates other solutions, is dominated
by other solutions or has non-dominance with other solutions.

DOMINATED

DOMINATES

PARETO OPTIMAL FRONT

NON−DOMINATED

NON−DOMINATED

F
1

2
F

Fig. 3. Pareto relationship between one point and other regions of the fitness space
(minimisation problem).

To implement an optimisation algorithm that is equally applicable to both
single and multiobjective problems, a suitable selection operator capable of
handling either situation must be developed. We propose the Pareto tourna-
ment selection operator, which is an extension of the standard tournament
operator popular in many approaches [Gol98, Mic92]. Most evolutionary al-
gorithms configured for multiobjective optimisation currently used the non-
dominated sorting approach; This is a straightforward way to adapt an al-
gorithm that is designed as a single objective optimiser into a multiobjective
optimiser, and is used by many researchers.

The problem with sorting approaches is that the method is not a fully
integrated one. Briefly, a sorting method works by computing the set of non-
dominated solutions amongst a large statistical sampling (either a large pop-
ulation or previous data), and assigning these solutions rank 1. Then ignoring
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these points, the process is repeated until a ’second’ Pareto front is found,
and this is assigned rank 2. This process continues until all points are ranked,
and then the value of the rank is assigned to the individual as a now single
objective fitness. An example of this ranking is shown in figure 4.

RANK THREE

RANK FOUR

RANK TWO

RANK ONE

2
F

1
F

Fig. 4. The Pareto ranking process.

A problem arises when considering whether it is fair to assign individuals
in the second rank half the fitness of the first, and whether the third rank
deserves a third of the fitness of the first. This poses a dilemma about the level
of equality present amongst the solutions, as often solutions with excellent
information may lie adjacent to, but not in, rank 1. To solve this ’artificial
parameter’ problem, it is possible to introduce scaling, sharing and niching
schemes, however all of these introduce problem-specific parameters. It is of
course always desirable to compose an algorithm that does not introduce such
unnecessary parameters.

The current operator is a novel approach in that it requires no additional
’tuning’ parameters, works seamlessly with the asynchronous selection buffer
(section 2.1), and is very easy to encode. Simply, to determine whether a new
individual x′ is to be accepted into the population µ, we compare it with
the selection buffer B by assembling a small subset of the buffer called the
tournament Q = [q1,q2, . . . ,qQ]. We assemble Q by selecting individuals
from the buffer, exclusively at random, until it is full. We then simply ensure
that the new individual is not dominated by any in the tournament:

rel(x′,qj) 	= (qj dominates x′) : ∀j ∈ Q (2)

If this is the case, then it is immediately accepted, and is inserted according
to given replacement rules. The only parameter that needs to be determined
in advance is the tournament size, a parameter which would exist in a single
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objective optimisation anyway. Selection of this parameter requires a small
amount of problem specific knowledge, and should vary between Q = 1

2B
(strong selective pressure) and Q = 1

6B (weak selective pressure). Optimisa-
tion success is not overly sensitive to this value, provided the user errs on the
side of weak selective pressure (smaller tournaments) in the absence of better
information. The egalitarian approach to the tournament (by selecting indi-
viduals at random) ensures good diversity amongst the selected individuals,
and no niching or forced separation of individuals has been found necessary.
It can also be seen that in the event that the fitness vectors have only one ele-
ment (a single objective optimisation), this operator simplifies to the standard
tournament selection operator.

2.4 Game Theory – Nash Solutions

A well known concept from game theory for multiobjective or multidisci-
plinary optimisation is the Nash equilibrium [Nas50]. The Nash equilibrium is
determined by n players competing symmetrically for n criteria, where each
player optimises a unique set of optimisation variables, and all other variables
are determined by the other players. For example, for player i the vector of
problem variables is X = ((x1, x̄2, x̄3,...., x̄i,xi+1, ....x̄n) where all parameters
x̄j , j 	= i are ’locked’ by the other players. Player i is interested only in the
objective, namely fi = fi(X) where F (X) = (f1(X), f2(X), ...., fn(X)) is the
entire multi-objective problem.

A Nash solution to a given problem can only find a single point solution,
rather than the entire Pareto front. While this point may form part of the
Pareto front, in most cases it will be suboptimal in the Pareto sense. How-
ever, the advantage of Nash computation is that the answer is arrived at
rather quickly compared to the computation of the complete Pareto front. In
addition, it is useful to consider the manner in which the variables are split
between the players. Generally, the variables for each player can be selected
due to their expected influence on the objective for that player, and thus it
is clear from the outset that the solution can match the expectations of the
design engineer.

Using evolutionary algorithms, we implement this using one population
(or population hierarchy) for each player, whereby information is exchanged
between the EAs after a migration period has occurred, and this is shown in
figure 5.

There are two migrations present when using the hierarchical EA-Nash
scheme, first there is a circulation of solutions up and down (as per usual
hierarchical solution), whereby the best solutions progress from the bottom
layer to the top layer where they are refined. After a certain predefined larger
number of function evaluations, there is a ’Nash’ migration where information
(the ’locked’ variables) between the players is exchanged between correspond-
ing nodes on each hierarchical tree.
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Fig. 5. Information exchange for Nash solutions.

3 Test Cases

3.1 Case I: Two Dimensional Subsonic Inverse Aerofoil
Reconstruction

In this test case, we present an inverse aerofoil reconstruction where we com-
pute a geometry which best fits two given pressure distributions. The pressure
distributions were previously generated by a Navier-Stokes solver, but in this
case we recompute the problem using a panel method with a coupled viscous
boundary layer. The fact that the original and reconstruction solvers are dif-
ferent implies that we will not be able to find the solution exactly, and also
that we will in fact finish with a Pareto front of solutions rather than a single
correct and unique point.

Problem Definition

We are given target pressure distributions for the two flow conditions at dis-
crete surface points i: P ∗1

i and P ∗2
i . To compute the two fitness functions, we

use a least-squares approach applied separately for each objective:

f1 = 1
N1

∑N1
i=1 (P ∗1

i − P 1
i )2

f2 = 1
N2

∑N2
i=1 (P ∗2

i − P 2
i )2

(3)
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Where N1 and N2 are the number of prescribed pressure points for each
case. Two two flow conditions are given in table 1.

Table 1. Inverse aerofoil design flow conditions..

Objective One Objective Two

M∞ 0.18 0.54

Re 14.0 × 106 14.0 × 106

Flow Solver

The flow solver used is XFOIL written by M. Drela [Dre01]. This code is a
panel method potential solver with a sophisticated two-equation boundary
layer model that handles laminar, turbulent and thinly-separated regions (in-
cluding finite separation bubbles). Free or fixed boundary layer transitions
can be specified, and in this case we allow for free transitions assuming a rela-
tively smooth construction method will be used in practice. Because the code
can only correctly model subsonic flows, after the solution of every candidate
geometry the reported surface cp values are inspected to ensure that no por-
tion of the surface is supersonic. In other words, we ensure that ∀i : cpi < c∗p
where c∗p is the sonic value, given by:

c∗p =
2

γM2
∞

{[
1 + 1

2 (γ − 1)M2
∞

1 + 1
2 (γ − 1)

] γ
γ−1

− 1

}
(4)

Where γ = 1.4 for standard air. If any candidate is found to have a surface
cp exceeding this value, it is rejected immediately. In addition, any individual
that does not have a converged boundary layer solution (produced by the in-
ternal iterative solver in XFOIL) is also rejected immediately. Since the solver
is command-line based, it was implemented ’as is’ by automatically generating
a UNIX script an calling the solver directly. No internal modification of the
source code was necessary.

Individual Representation

The aerofoil geometry is represented by two Bézier curves, one for the mean
line and one for the thickness distribution. The mean line-thickness distri-
bution is a standard method for representing aerofoils [AD80], as it closely
couples the representation with the results; the mean line has a powerful effect
on cruise lift coefficient and pitching moment, while the thickness distribution
has a powerful effect on the cruise drag. Put simply, the aerofoil is obtained
by perpendicular offset of the thickness distribution about the mean line. For



262 J. Périaux et al.

a given mean line point (xm, ym) and matching thickness distribution height
yt, an upper and lower surface point can be obtained:

xu,l = xm ∓ yt sin(θ) (5)
yu,l = ym ± yt cos(θ) (6)

Where θ is the angle of the mean line at (xm, ym). This is shown in figure
6. We select the x−positions of the Bézier control points in advance; the
y−positions remain as the unknowns. The only restrictions are that the first
and last points are fixed to (0, 0) and (1, 0) to provide leading and trailing
edges respectively, and that the first control point on the thickness distribution
must be directly above the leading edge (i.e. (0, yc,1)) to provide a rounded
geometry3. We bound the vertical heights to range yc ∈ [0.01, 0.12] giving a
very wide range of possible geometries (theoretically spanning aerofoils from
2% to 24% thick). The advantage of using single high-order Bézier curves for
the representation rather than piecewise splines or others is their geometric
stability. A Bézier curve must by definition always be contained within the
bounding envelope of control points. Furthermore, if the bounding envelope
is not re-entrant, then the curve will also have this property. Also, Bézier
curves do not ’kink’ like a piecewise spline, and the defining equations are not
stiff. Therefore, a small change in control point location will always result in
a small change in surface representation. This provides a favourable interface
between the optimiser and the flow solver.

Implementation

We implement this case using a single population of size 20. We use six evenely
spaced control points on the thickness distribution and six on the mean line.
Remembering that the angle of attack for each objective is unknown, the
problem therefore consists of fourteen unknowns.

Results

The solver was allowed to converge for a fixed period of time. If we track
the convergence of the objective one optimal point as shown in figure 7, we
can see that the optimisation ran for over 60000 function evaluations, but
converged after approximately 35000. Figure 8 shows the Pareto front, with
most points lying bunched in a compromise position, with just a few outside
points representing the complete span. We select one of the aerofoils from the
middle of the Pareto front for analysis, and this is shown in figure 9. The
surface pressures of this aerofoil for both flow conditions given by XFOIL
3 Bézier curves are by definition always tangent to the extreme edges of their defin-

ing envelopes.
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CONTROL POINTS

THICKNESS DISTRIBUTION

RESULTING AEROFOIL

BOUNDING ENVELOPE

MEAN LINE

Fig. 6. Aerofoil representation using two Bézier curves.

are shown in figure 10. It is important to note that this conventional aerofoil
geometry was obtained with no initial guess or prior knowledge of camber,
thickness, style or any other geometric property. It can be seen that the pres-
sures match very well except at two particular points; the leading edge lower
surface for objective one, and the leading edge upper surface for case two. The
cause of this is the different way in which the boundary layer is captured by
the Navier-Stokes solver as compared to the panel method, which results in
the reconstructed aerofoil operating at a slightly incorrect lift as well as the
difference in leading edge spike resolution.

3.2 Case II: Two Dimensional Subsonic Aerofoil With Transit and
Loiter Objectives

Problem Definition

Unmanned Aerial Vehicle (UAV) systems are ever increasingly becoming im-
portant topics for aerospace research and industrial institutions. There are
difficulties in these new concepts because of the compromising nature of the
missions to be performed, like high- or medium-altitude surveillance, combat
environments (UCAV) and many others. Particular care must especially be
taken in aerodynamic optimisation, due to the often very long endurance and
high speed dash requirements; even small improvements in drag can represent
large weight savings over an entire mission.
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This case represents an aerofoil design study for a hypothetical low-cost
UAV. The objective is to design an aerofoil that provides low drag at two sepa-
rated design points; both high speed transit and loiter. The high speed transit
condition is representative of the flow conditions that would ordinarily be en-
countered by a UAV when moving rapidly from takeoff to a reconnaissance
loiter area, or from one reconnaissance area to another. The loiter condition
is representative of the flow conditions that would be encountered once at the
given reconnaissance area. A compromise situation exists, because the high
speed transit requires a low operating lift coefficient at high Reynolds and
Mach numbers, whereas the low speed loiter requires moderate a lift coeffi-
cient at low Reynolds and Mach numbers. The operating conditions are given
in table 2.

Table 2. UAV Transit and loiter flow conditions.

Transit Loiter

cl 0.05 0.78

M∞ 0.60 0.15

Re 14.0 × 106 3.5 × 106

The form of the problem is stated simply:

min(f1) : f1 = cdtransit (7)
min(f2) : f2 = cdloiter

(8)

In addition, the thickness of the aerofoil must exceed 12% ( t
c ≥ 0.12) and

the pitching moment must not be more severe than−0.065 (cm ≥ −0.065).
Both constraints are applied by equally penalising both fitness values via a
linear penalty method. In addition, aerofoils generated outside the thickness
bounds of 10% to 15% are rejected immediately, before analysis.

Implementation

This case is solved via the hierarchical method, using a three level tree with
varying panel densities. The three levels are established as follows:

• A population size of 20 and 119 panels used on the aerofoil surface.
• A population size of 20 and 99 panels used on the aerofoil surface.
• A population size of 10 and 79 panels used on the aerofoil surface.

Four this case we use four control points on the mean-line and six on the
thickness distribution. This problem was solved on a single laptop computer
running at 1.0 GHz. The case was halted when no further progress could be
seen; 5300 head node function evaluations were completed, and the run took
approximately four hours.
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Results

The resulting Pareto set is shown in figure 11. It is clear that three discon-
tinuous regions have been found for the Pareto set, a fact alone that would
make application of a conventional optimiser to this problem difficult.

The ensemble of aerofoils comprising the Pareto front are shown in figure
12. It can be seen that classical aerodynamic shapes have been evolved, even
considering that the optimisation was started completely from random and the
evolution algorithm had no problem specific knowledge of appropriate solution
types. We select three aerofoils for consideration from the Pareto front of 20
members (numbers 2, 10 and 20) to illustrate the two objective extremes and a
compromise geometry. Figure 13 shows an objective one optimal aerofoil in the
transit flow regime, and it can be seen that it has evolved a conventional low-
drag pressure distribution and standard sleek form. Figure 14 and 15 show the
compromise aerofoil, having a very pronounced S-shaped camber distribution.
The pressure distribution is again seen to be relatively conventional, with a
marked favourable gradient on the lower surface in both flow regimes. Figure
16 shows the objective two optimal aerofoil in the loiter regime, and finally
it can be seen that the pressure distribution is of the classical ’rooftop’ type
on the upper surface while having an almost constant favourable pressure
gradient on the lower surface.

Concluding this case, it is observed that all aerofoils easily satisfy the
design constraints. Without any problem specific knowledge, the evolution
algorithm has discovered forms (figures 13 and 16) that would have been
designed by an expert in aerodynamics, as well as an unusual but effective
compromise form (figures 14 and 15).

3.3 Case III: Two Dimensional Subsonic Aerofoil With Transit
and Takeoff Objectives

Problem Definition

For the second case we again consider the design of a single element aerofoil
for the same low-cost UAV using the same flow solver, but considering both
the transit cruise and takeoff points together. Because the UAV is a low-cost,
simplified project, only a plain flap is considered. This facilitates the design
and optimisation process, because there is no deployed flap the same single
element aerofoil code can be applied directly. The first design point is the
same as proposed in subsection 3.2. The design points are given in table 3.

The problem is again:

min(f1) : f1 = cdtransit (9)
min(f2) : f2 = cdtakeoff

(10)
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Fig. 11. Pareto set of UAV Transit-Loiter design.
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Fig. 12. Ensemble of Pareto set aerofoils – UAV Transit-Loiter design.
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Fig. 13. Objective one optimal aerofoil – Transit flow conditions.

Fig. 14. Compromise aerofoil – Transit flow conditions.

Table 3. UAV Transit and takeoff flow conditions.

Transit Takeoff

cl 0.05 1.40

M∞ 0.60 0.11

Re 14.0 × 106 2.46 × 106

F lap None 30% Chord, Deflected δf = 10◦
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Fig. 15. Compromise aerofoil – Loiter flow conditions.

Fig. 16. Objective two optimal aerofoil – Loiter flow conditions.
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The thickness of the aerofoils must exceed 12% ( t
c ≥ 0.12), however the

pitching moment requirement (cm ≥ −0.065) is only enforced for the flaps-up
(objective one) case.

Individual Representation

The two Bézier curve approach is used, similar to subsection 3.1, however
for more variability in the surface geometry that may be required due to the
specialised nature of the flap, the number of control points in increased. In
this case we use six free control points on the mean line and eight on the
thickness distribution, giving a problem in fourteen unknowns.

Implementation

The optimiser is configured as a single population with a population size of
20, intermediate recombination is used between two parents and 139 panels
used by the solver. The higher number of panels is indicative of the resolu-
tion required to correctly model the flap-joint region, where there is a rapid
direction change (a kind of pseudo-discontinuity) on the body surface. This
problem was solved on a single laptop computer running at 1.0 GHz. The case
was halted after 7700 function evaluations (only one node exists), and took
approximately eight hours to run.

Results

The resulting Pareto set is shown in figure 17. The aerofoils comprising the
Pareto front are shown in figure 18. In this case, some unusual aerodynamic
forms are found, all possessing rather pronounced S-shaped mean lines and
thin trailing edges. In a similar manner, we select three aerofoils representing
objective one optimal (number 1, figure 19), objective two optimal (number
17, figure 22) and compromise (number 13, figures 20 and 21) geometries.

While some quite low drag shapes have resulted, they are quite different
to the ones found in the first problem. In fact, the evolution algorithm has
discovered a small inherent modeling limitation in the solver. It has been ex-
ploited because the Pareto method is a cooperative game, and all geometries
must by definition be checked against both objectives (have both fitnesses
fully computed). Because the boundary layer model in the solver can often
have difficulty converging when there are severe (separation inducing) adverse
pressure gradients, the aerofoils associated with the first test case would or-
dinarily have been rejected (subsection 3.2) if they had a deflected flap. The
pressure spike with the flap down is plainly evident in figures 21 and 22 at
the 70% chord position. Instead, the evolution process has produced shapes
that almost return to normal aerofoil geometries when the flap is deflected
δf = 10◦, in effect bypassing a true flaps-down analysis.
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In concluding this case, it is seen that low drag aerofoils have been pro-
duced that satisfy the design constraints, but that would otherwise not be
considered optimal. They result purely because of difficulty in converging
the boundary layer, and this problem can be considered as specific to high-
curvature surface perturbations (common to plain flaps) and the software
resolving only thinly separated boundary layers. The correct way to approach
this case in the future would be to use a full Navier-Stokes approach with
turbulence modeling; bearing in mind that this is considerably more compu-
tationally expensive.
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Fig. 17. Pareto set of UAV Transit-Takeoff design.

3.4 Case IV: Subsonic Transport Design

The objective in this case is to find an optimum set of design variables for a
subsonic medium size transport aircraft as given in [Mcc03]. The aircraft has
two wing mounted engines, and the number of passengers and crew is fixed to
200 and 8 respectively. The design requirements are specified in table 4. The
mission profile is represented in figure 23.
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Optimum Aerofoils

Fig. 18. Ensemble of Pareto set aerofoils – UAV Transit-Takeoff design.

Fig. 19. Objective one optimal aerofoil – Transit flow conditions.

Table 4. Design Requirements.

Description Value

Range [R, Nm] 2500

Ultimate Load Factor [nult] 4.2

Maximum Takeoff Field Length [sto, ft] 6000
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Fig. 20. Compromise aerofoil – Transit flow conditions.

Fig. 21. Compromise aerofoil – Takeoff flow conditions.
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Fig. 22. Objective two optimal aerofoil – Takeoff flow conditions.

Design Variables

The design variables for optimisation and their upper and lower bounds are
represented in table 5.

Table 5. Design variables for a subsonic medium size transport aircraft.

Description Lower Bound Upper Bound

Aspect Ratio [ARw] 7.0 13.1

Engine Thrust [T , lbf] 30500 50000

Wing Area [Sw, sq ft] 1927 2872

Sweep [Λw , deg] 25 40

Thickness [ t
c
] 0.091 0.235

Fitness Functions and Design Constraints

This case is a single objective minimisation problem, the fitness function de-
vised for this problem is toward minimum fuel weight required to complete
the mission.

f = min(Wf )
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Constraints in this case are minimum takeoff distance, moment coefficient
for stability and control and range required. Violation of these constraints are
treated with an adaptive penalty criteria.

Solver

The solver used to evaluate the aircraft configuration is FLOPS (FLight OP-
timisation System). FLOPS [Mcc03] is a workstation based code with capabil-
ities for conceptual and preliminary design and evaluation of advanced design
concepts. The sizing and synpaper analysis in FLOPS are multidisciplinary
in nature. It has a numerous modules for noise, detailed takeoff, performance,
structures, control, aerodynamics and other capabilities, it is used in some
universities for MDO development as well as aerospace firms and government.
The aerodynamics module uses a modified version of the the EDET (Empir-
ical Drag Estimation Technique), and modifications to include smoothing of
the drag polars. Different hierarchical levels could be adapted for drag build
up using higher fidelity models that evaluate full Navier-Stokes flow and wake.
FLOPS has capabilities for optimisation but in this case it was used only for
analysis and adapted to the EAs optimiser. Details on the solver can be found
in [Mcc03].

Implementation

The solution to this problem has been implemented using a single population
and parallel asynchronous evaluation, varying number of population sizes and
EAs specific parameter were investigated. A small population size of 10 pro-
duced good results.

Results

The algorithm was allowed to run for 1500 functions evaluations. Table 6 shows
the design variables and results for the best configuration found as compared
to a conventional conjugate gradient based (Polak-Ribiere) algorithm and
a conventional Broyden-Fletcher-Goldfarb-Shano (BFGS) algorithm [Mcc03].
Through this approach the EA gives a 3.5% and a 2.4% improvement in gross
weight respectively.

3.5 Case V: Air Superiority Unmanned Combat Air Vehicle
(UCAV) With Gross Weight and Cruise Efficiency Objectives

Problem definition

The goal in the following is to address the issue of multidisciplinary aircraft
conceptual design optimisation. Aerodynamic performance, cost minimisation
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Table 6. Design variables and results for best configuration found after optimisa-
tion.

Description EA Best BFGS CG

Aspect Ratio [ARw] 13.1 13.0 12.8

Engine Thrust [T , lbf] 34770 38852 39021

Wing Area [Sw, sq ft] 1929 2142 2218

Sweep [Λw, deg] 27.0 28.4 27.32

Thickness [ t
c
] 0.091 0.112 0.096

Fuel Weight [Wf , lbs] 34337 37342 36092

Gross Weight [Wg, lbs] 216702 222154 224618

Fig. 23. Mission profile for a subsonic medium size transport aircraft.

and range might be improved if a multi-criteria multi-point optimisation can
be developed that considers numerous separate design points. In this case
the objectives are maximisation of the cruise efficiency (M∞ × L

D )cruise and
minimisation of gross weight. Two different approaches were run for compar-
ison, one using the concept of Pareto optimality and the other using Nash
equilibrium. The mission profile is represented in figure 24.

Table 7. Design Requirements for UCAV

Variable Requirement

Range [R, Nm] 1000

Cruise Mach Number [Mcruise] 1.6

Cruise Altitude [hcruise, ft] 40000

Ultimate Load Factor [nult] 12

Takeoff Field Length [sto, ft] 7000
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Design Variables

The design variables after optimisation and the upper and lower bounds are
represented in table 8.

Table 8. Design Variables for optimisation of the UCAV.

Description Lower Bound Upper Bound Best

Aspect Ratio [ARw] 3.1 5.3 5.14

Engine Thrust [T , lbf] 32000 37000 32923

Wing Area [Sw , sq ft] 600 1400 625

Sweep [Λw , deg] 22 47 30.7

Thickness [ t
c
] 0.02 0.09 0.023

Taper Ratio [λw, deg] 0.15 0.55 0.19

Fitness Functions

This case is a multi-objective problem where the fitness functions to be opti-
mised are gross weight and cruise efficiency:

f1 = min(Wg)

f2 = min(1/(M∞ × L
D )cruise)

Design constraints

The performance constraints are: 6 G sustained at Mach 0.6 at 10000 feet, 5
G sustained at Mach 0.9 at 30000 feet, an acceleration from Mach 0.9 to 1.5
at 20000 feet in 30 seconds, maintaining a turn rate of 15 deg/sec at Mach 0.9
at 20000 feet and an excess energy = 50 ft/sec at Mach 0.9, 30000 feet and 4
G’s. Violation of these constraints is again treated with an adaptive penalty
criteria.

Implementation

In the Nash approach we split the variables between two players; Player
One optimises for (M∞ × L

D )cruise maximisation using variables, (X1) =
(ARw, t

c , Λw), while Player Two optimises Wg using variables (X2) = (Sw, T, λw).
We exchange locked variables between the EAs after an epoch equal to five
times the population size in evaluations. The Pareto optimality approach in-
volves one level and population size 15.
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Results

The algorithm was allowed to run for 600 functions evaluations but converged
after 300. Table 8 shows the parameters for the best configuration found.
Figure 25 shows an example of convergence history of one of the Players. The
final population (including the Pareto optimal front) and comparison with
the Nash equlibrium result are shown in figure 26, as we can see the point
obtained by the Nash equilibrium is a suboptimal in the Pareto sense.

Fig. 24. Mission profile for the UCAV.

4 Conclusions

This paper has presented an single evolutionary algorithm for the solution of
a wide range of problems in aerodynamics. The fundamental reason for the
use of an evolutionary algorithm is because a single conventional (determin-
istic) optimiser is incapable of solving the wide variety of problems stated
herein. Deterministic optimisers are not easily parallelised, are difficult and
often impossible to apply to multiobjective problems and do not handle noise
or multimodal problems well. Therefore, the need for a fast, robust and broad
evolutionary technique has become apparent. All of the extensions are intro-
duced to improve the efficiency, robustness and applicability of the methods
to problems in aeronautics.

The algorithm has been shown to find both conventional and novel aero-
dynamic solutions to the stated problems, and in each case this was without
any problem specific knowledge, using a vanilla-flavoured solver without mod-
ification. None of the solutions presented herein take more than half-a-day to
compute on a modest parallel cluster.

In the future, it will be necessary to couple real solvers from different
disciplines to compute true multidisciplinary solutions. Especially important
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Fig. 25. Optimisation progress of player one.

Fig. 26. Pareto front and Nash equilibrium obtained for the UCAV.
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are the coupling of aerodynamic solvers to structural methods for weight re-
duction, as well as electromagnetic methods for radar cross-section (RCS)
minimisation. The only hinderance to this at the present is the effective inte-
gration of several solvers with a single model – essentially a computer science
issue. The future is bright.
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Multi Objective Robust Design Optimization
of Airfoils in Transonic Field
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1 Introduction

The present research propose optimization methods that are robust in the
sense that they produce solutions insensitive to changes in the input param-
eters: these optimization methods are known as Robust Design Techniques.
The need for Robust Design method appears in many contests: during the
preliminary design process, the exact value of some input parameters is not
known, consequently the aim is try to look for a solution as less dependent
on the unknown input parameters as possible. The concept of robust opti-
mization is demonstrated by using a 2-D airfoil shape optimization problem.
It has been observed [2] that minimizing drag at a single design point has
unintended consequences at nearby off-design points. Hicks and Vanderplaats
demonstrate that a direct optimization approach that minimizes drag at one
mach number (e.g., M=0,75) actually increases drag at nearby Mach num-
ber (e.g., M=0,70). To avoid this consequence the airfoil drag minimization
problem could be faced by means of an inverse optimization approach but
the final result could be almost the same of the single point design [7]. The
conclusion is that the latter techniques produce solutions that perform well in
correspondence of the design point but have poor off-design characteristics.

The present research shows a optimization method that look for solutions
which are insensitive to fluctuations of the operative conditions. Starting from
the statistical definition of stability (related to the definition of variance), the
method finds, at the same time, good solutions for performance and stability.
The goal of robust optimization is to find the airfoil shape that minimizes the
mean of the drag coefficient over a range of free-stream Mach numbers and
angle of attack and keeps the performance fluctuations as low as possible. The
robust optimization model of minimizing the mean and the variance can be
used for this purpose:

min
∆D,∆α

(E(cd), σ2(cd)) (1)
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subject to:

E(cl) ≥ E(cl)∗

σ2(cl) ≤ σ2(cl)∗

}
(2)

for αmin ≤ α ≤ αmax & Mmin ≤ M ≤ Mmax.
E(cl)∗ and σ2(cl)∗ are respectively the mean and the variance of the lift

required, D is a set of m airfoil geometric design variables, (cl) and (cd) are
respectively the lift and drag coefficient (of the current airfoil shape). The
mean and variance of (cd) are defined as follows:

E(cd) =
∫

α

∫
M

cd(D, α, M)p(M)p(α)dMdα (3)

σ2(cd) =
∫

α

∫
M

(cd(D, α, M) − E(cd))2p(M)p(α)dMdα (4)

Where p(M) and p(α) are respectively the probability density function of
M and α. In this research we choose a uniform distribution (e.g., p(M) =
1/(Mmax − Mmin)): it means that any fluctuation of the free-stream Mach
number has the same probability to happen. Furthermore in the optimization
process we consider a discrete evaluation of the mean and variance, so that
the robust optimization model is the same proposed in 1 and 2, but the mean
and variance of (cd) are:

cd =

n∑
i=1

cd(D, α, M)i

n
(5)

σ2(cd) =

n∑
i=1

(cd(D, α, M)i − E(cd))2

(n − 1)
(6)

Setting the robust optimization method as mentioned above in eqs. (5)
and (6) a very high time machine could be required in order to get a good
estimation of the objective functions (mean and variance); the methods must
be able to find solutions by using a moderate number of high-fidelity disci-
plinary analysis. This last requirement acknowledges the fact that disciplinary
analysis (e.g., computational fluid dynamics (CFD)) can be computationally
expensive: for this purpose an interpolation modelling technique known as
Kriging is used. Sacks, et al. [11] proposed the Kriging method, developed
in the fields of spatial statistics and geostatistics, in order to approximate
the results of deterministic computer analysis. With the Kriging method the
interpolation of the sampled data is carried out using a maximum likelihood
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estimation (MLE) procedure [13], which allows for the capturing of multiple
local extrema. Just as any approximation model, the accuracy of a Kriging
model depends greatly on the number of sample data points used and their
locations in multidimensional space. In order to fully exploit the advantages
of Kriging models using as small number of samples as possible without sig-
nificantly sacrificing the accuracy of the approximation, an adaptive approach
of the location of the samples is proposed. These methods are deeply related
to the techniques for improving and quantifying the accuracy of the approx-
imations used in various Multidisciplinary Design Optimization (MDO) pro-
cedures, while reducing the amount of design space information required to
develop the approximations.

In order to develop the robust design techniques described so far, a real
multi-objective approach is performed. A Multi Objective Genetic Algorithm
(MOGA, [10]) is used during the optimization phase. In Ref. [9] and [6]
an attractive option for solving the 2-D airfoil problem with robust design is
presented, which uses the CFD analysis of Ref. [1]. The former researches
demonstrate the potential importance of robust airfoil optimization, but the
Kriging method proposed [3] does not exploit a Gaussian stochastic process
in order to get the maximum likelihood estimation.

Overview of Kriging Method

Originally developed and used in mining engineering and geostatistics, the
Kriging method is an approach for curve fitting and response surface approxi-
mation. In the 1980s, statisticians developed Design and Analysis of Computer
Experiments (D.A.C.E.) for deterministic computer-generated data based on
the Kriging method [11]. The Kriging method used in this study is based on
the D.A.C.E. approach.

Suppose we have evaluated a deterministic function of k variables at n
points. Denote sampled point i by xxx(i) = (x(i)

1 , . . . , x
(i)
k ) and the associated

function value by y(i) = y(xxx(i)), for i = 1, . . . , n, the Kriging (D.A.C.E.)
technique is based on the follow stochastic process model:

d(xxx(i),xxx(j)) =
k∑

h=1

θh|x(i)
h − x

(j)
h |

ph

(θh ≥ 0, ph ∈ [1, 2]) (7)

Corr[ε(xxx(i)), (xxx(j))] = exp[−d(xxx(i)),xxx(j))] (8)

y(xxx(i)) = µ + ε(xxx(i)) (i = 1, . . . , n) (9)

where eq. (7) is the weighted distance formula between the sample points
xxx(i) and xxx(j), eq. (8) is the correlation between the errors at xxx(i) and xxx(j). Eq.



286 C. Poloni et al.

(9) is the model we use in the stochastic process approach: µ is the mean of the
stochastic process, ε(xxx(i)) is Normal(0,σ2); the latter term is the realization
of a stationary Gaussian random function that creates a localized deviation
from the global model [4]. The parameter θh in the distance formula (7) can
be interpreted as measuring the importance or ’activity’ of the variable xh.
The exponent ph is related to the smoothness of the function in coordinate
direction h, with ph = 2 corresponding to smooth functions and values near
1 corresponding to less smoothness [8]. The stochastic process model in Eqs.
(7)-(9) is essentially a generalized least squares (GLS) [12] model with a
simple set of regressors (just a constant term) and a special correlation ma-
trix that has unknown parameters and depends upon distances between the
sampled point.

The Kriging approximation presented by Schonlau [12] used the best linear
unbiased predictor (BLUP) of y at the point at which we are predicting, xxx∗.
Let rrr denote the n − vector of correlations between the error term at xxx∗

and the error at the previously sampled points. That is, element i of rrr is
ri(xxx∗) ≡ Corr[ε(xxx∗), (xxx(i))], computed using the formula for the correlation
function in Eqs. (7) and (8). The estimated model of Eq. (9) can be expressed
by the BLUP of y(xxx∗):

y(xxx∗) = µ̂ + rrrTRRR−1(yyy − 111µ̂) (10)

where yyy = (y(1), . . . , y(n))T denote the n-vector of observed function val-
ues, RRR denote the n×n matrix whose (i,j) entry is Corr[ε(xxx(i)), (xxx(j))], and 111
denote an n-vector of ones. The value for µ̂ is estimated using the generalized
least squares method as:

µ̂ = (111TRRR−1111)−1111TRRR−1yyy (11)

The estimates of θ̂h and p̂h, end hence an estimate of the correlation matrix
RRR, are obtained by maximizing the following function:

−n ln(σ̂2) + ln |RRR|
2

(12)

where

σ̂2 =
(yyy − 111µ̂)TRRR−1(yyy − 111µ̂)

n
(13)

The mean squared error (MSE) of ŷ(xxx) can be derived as:

s2(xxx∗) = σ2[1 − rrrTRRR−1rrr] +
(1 − 111TRRR−1rrr)2

111TRRR−1111
(14)
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eq. (14) provides an estimate of the variance of the stochastic process
component of the Kriging approximation.

Earlier studies imply that including the parameter pi as part of maximum
likelihood estimation did little to improve to the Krigin approximation, thus
in the current study pi = 2 was used for all design variables. Regarding the
MLE we used MOGA [10]: in fact, the likelihood function can be very discon-
tinuous. Initially we tried with Simplex but many times this algorithm stops
the searching prematurely. Even if MOGA needs a lot of computations, given
a set of samples the time required for the MLE is negligible.

Adaptive Kriging

Before we build an approximation we require a systematic means of selecting
the set of inputs (called Design Of Experiments, or DOE) at which to perform
a computational analysis. One popular choice for generating experimental
design for computational experiments is the Latin Hypercube [5]. Instead to
use this latter technique we propose an adaptive arrangement of the available
set of samples (data base) exploiting the value of the MSE. The value of MSE
depends on the correlation of the landscape as well as on the local density of
points.
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Fig. 1. Compare of the extrapolation of sin(x/2) (left) and sin(x) (right) by means
Kriging

In Fig. (1) has been illustrated an example of extrapolation by means
Kriging. It is possible to note that the higher is the number of maxima and
minima of the function and the lower is the accuracy of Kriging (exploiting
the same data base of samples). We have reported the behavior of RMSE too
(Root Mean Squared Error): the RMSE tell us the accuracy of the prediction
and it is very low corresponding to the coordinates of the samples. It is possible
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to understand that the approximation is more precise in regions with high
point density. In the same figure we represent further functions:

IEA = y(xxx) · RMSE (IEA = Index of Absolute Error) (15)

abs(IEA) = |(y(xxx) − Ymin)/(Ymax − Ymin)|
+RMSEy(xxx)/(RMSEmax − RMSEmin) (16)

Eqs. (15) and (16) represents the index we use to set the adaptive arrange-
ment of the samples. In fact we try to exploit the value of RMSE to understand
where the extrapolation is not accurate, taking care at the same time of the
extrapolated value associated. For example, applying Kriging given a data
base of samples, according to the values of IEA or abs(IEA) it is possible to
know where the extrapolation is not accurate. Eq. 16 has the same meaning
of Eq. 15 but it is normalized. The Ymax and Ymin values are respectively the
highest and lowest values of the extrapolated function while the same mean-
ing have RMSEmax and RMSEmin regarding RMSE. In the same way it is
possible to define:

IER = RMSE/y(xxx) (IEA = Index of Relative Error) (17)

abs(IER) = |(y(xxx) − Ymax)/(Ymax − Ymin)|
+RMSEy(xxx)/(RMSEmax − RMSEmin) (18)

The Eqs. 15-18 can be used separately or together coupled (15 and 17 or
16 and 18). For example eq. 15 assumes high values corresponding to high
values of the function and RMSE, instead eq. 16 assumes high values in cor-
respondence of low values of the function and high values of RMSE. In this
way we can localize the accuracy of the extrapolation.

An example on how the adaptive method works is shown in Fig. (2): the
studied function is the Test 1 function [10]. We show how Kriging perform us-
ing a Latin Hypercube and adaptive distribution of the samples. It is possible
to note that both distributions allow a good estimation of the function studied
but in this case higher accuracy is reached trough the adaptive Kriging. We
have used abs(IEA) and abs(IER) alternatively: starting from the samples
that belongs to the corner of the dominion studied, we add a new samples
in the current data base iteratively. The use of the indexes in Eqs. (15-18)
could be exploit in order to get an higher local accuracy: in fact if we have
used the IEA (or abs(IEA)) the extrapolation would have been more accurate
corresponding to the neighborhood of the maxima value of the function. In
the same way we could exploit IER or abs(IER).

Results

The 2-D airfoil optimization problem stated in Eqs. 1 and 2 is used to test
the robust optimization approach. The achievable configurations have been
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reached by modifying an initial baseline configuration that correspond to the
supercritical airfoil RAE2822 designed by the Royal Aircraft Establishment.
The present research is tested by solving a fully turbulent Navier-Stokes CFD
analysis code and in particular the MUFLO code and AIRFOIL [1] as mesh
generator have been used. The Reynolds number is set to Re = 1, 5 · 106.
Regarding the parameterization the baseline configuration has been modified
exploiting two B-splines, one for the intrados and one for the extrados (Figure
3). Eight-teen bounded geometric design variables, Dj , shown as circles, are
the B-spline control points used to create a wide variety of 2-D airfoil shapes;
a geometric constraint is set. Since the RAE2822 has an maximum thickness
value slightly higher than the 12% of the chord length, in the optimization
process the thickness is fixed to be higher than 11.95%.

0 0.5 1
x

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

0 0.25 0.5 0.75 1
x/c

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y/
c

RAE 2822

Configuration x

Control polygon

BWP

Fig. 3. One of the possible meshes around the RAE2822 achievable with airfoil (left
side) and parameterization (right side)

The aim of the Robust Design Optimization shown in this paper is to
find an airfoil shape that behaves better than the RAE2822 within a range
of Mach number and angle of attack corresponding to M = 0.73 ± 0.03 and
α = 2◦ ± 0.5◦. Altogether, according to the principles of Robust Design de-
scribed previously, we take care of four objective functions during the opti-
mization process: cl and STDcl are constrained, while cd and STDcd will
be minimized. MOGA [10] (Multi Objective Genetic Algorithm) is used to
solve the Multi Objective Robust Design Optimization of airfoils in transonic
conditions and modeFRONTIER is the software used to implement MOGA.
The general strategy to achieve the objective functions given a configuration
(airfoil shape) by means of the Kriging method consists of the following steps:

(1) set an starting data base of 4 or 5 training data (evaluating CFD analysis);
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(2) extrapolate the cl and cd functions by means of Kriging and evaluate the
objective functions (cl, cd, STDcl, STDcd); get the location (star-location)
of the extrapolated value where the index (Eqs. 15-18) assumes the highest
value (step 1 is concluded: now iteratively);

(3) evaluate an CFD analysis corresponding to the star-location and update
the data base;

(4) achieve the studied functions through the data base updated and compare
the objective functions of two consecutive steps; get the new star-location
(step n);

(5) the process stops if the differences between the objective values achieved
in two consecutive steps is lower than an defined error;
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Fig. 4. Convergency of the objective functions of the RAE2822

Paying attention to the former scheme it is possible to understand that
thanks to the adaptive method, in automatic way, we can define the minimum
number of the samples in order to achieve the best extrapolated function. The
more complicate the function is and the more samples we need in order to ex-
trapolate a correct function. Facing any kind of problem we don’t know how
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complex the function is, but through the adaptive method it is possible to
recognize when it is worth to apply many high fidelity analysis. Fig. (4) shows
how many samples kriging needs to reach a good accuracy of the objective
functions regarding the RAE2822: by means not so high number of samples
a good accuracy is reached. Fig. (5) shows the histories of the objective func-
tions during the optimization process: it is possible to note the improvements
of the RAE2822s’ performances underlined through an horizontal line. Fig. (6)
(left) shows the Pareto front: there’s no high spread of the solutions, in fact
seems that the solutions collapses in to one point. Probably the complexity of
the problem needs a longer seeking in order to get a spreader Pareto front; the
target of the next research will be to find a spreader Pareto front within a rea-
sonable number of high fidelity analysis. Fig. (7) (left) shows the cd functions
of the RAE2822 and solution 1 within the dominion of operating conditions
studied: it is possible to see the meaning of the stability of one solution at a
glance. Fig. (7) (right) shows the pressure distributions on RAE2822 and one
good solution.
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Conclusions

This paper uses a 2-D airfoil optimization problem to illustrate how it is
possible to set an optimization under uncertainty: such kind of problems are
recognized as Robust Design Optimization. In fact the aim is to find solutions
that are insensitive to fluctuations of the input parameters, and consequently
Robust solutions. According to the principles of Robust Design, the stability
of the magnitude is associated to each magnitude that define the performances
of the subject studied (in this case the airfoil). Consequently the Robust De-
sign problem is always characterized by more than one objective function,
and GA is recommended in order to reach all the possible solutions. In this
paper MOGA has been used and 4 objective function have been considered.
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To reduce the high number of expensive disciplinary analysis necessary to im-
plement Robust Design, an extrapolator method known as Kriging has been
used. Through Kriging, thanks to an adaptive method, it has been possible
to define the minimum number of direct simulations to achieve good values of
the objective functions. This method is very helpful above all when the un-
certain parameters have a strong nonlinear effect on the objective functions.
Consequently for each configuration, in automatic way, it is possible to un-
derstand when it is worth or no to compute several computations.

It is concluded that Robust optimization is an important tool for multi-
disciplinary design. It is needed when some of the design variables, like op-
erating conditions, are fluctuating in randomly way or under uncertainty of
the design specifications and above all when the uncertain parameters have
a strong nonlinear effect on the objective functions. The authors believe that
this strategy could be extended to a wide range of problems characterized by
non linear behavior of the objective functions subject to fluctuations of the
input parameters.

References

1. Haase, W.;Wagner, B.;Jamenson, A., Development of a Navier-Stokes method
based on a finite volume technique for unstady Euler equations, in Proceeding of
the 5th GAMM conference on Numerical Methods in Fluid Mechanics, Friedrich
Viewer und Sohn, Braunschweigh Wiesbaden, 1983.

2. Hichs, R. M.;Vanderplaats, G. N.; 1977 Application of Numerical Optimization
to the Design of Supercritical Airfoil Without Drag-Creep. SAE Paper 770440,
Business Aircraft Meeting, Wichita, Kansas, March 29-April 1, 1977.

3. Isaaks and Srivastava An Introduction to Applied Geostatistics, Oxford Univer-
sity Press, 1989.

4. J. R. Koehler and A. B. Owen Computer Experiments, Handbook of Statistics,
Vol. 13, pp. 261-308, Elsevier Science, New York, eds. S. Ghosh and C. R. Rao.

5. McKay, M.D.; Beckman, R. J. and Conover, W. J., A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a com-
puter code, Technometrics 21, pp. 239-245, 1979.

6. Padovan L., Pediroda V., Poloni C., Multi Objective Robust Design Optimiza-
tion of airfoils in transonic conditions, International Congress on Evolutionary
Methods for Design, Optimization and Control with Applications to Industrial
Problems, EUROGEN 2003, G. Bugeda, J.A.- Désidéri, J. Periaux, M. Schoe-
nauer and G. Winter (Eds), c©CIMNE, Barcelona, September 2003.

7. Padula, S. L.; Wu Li 2002 Options for robust design optimization under uncer-
taintly. AIAA Conference 2002.

8. Parzen, E.(1963) A new approach to the synthesis of optimal smoothing and pre-
diction systems, in R. Bellman, (ed.), Mathematical Optimization Techniques,
pp. 75-108, University of California Press, Berkeley.

9. Poloni C., Pediroda V., Padovan L., Multi Objective Robust Design Optimiza-
tion of airfoils in transonic field (M.O.R.D.O.), 9th MPS Symposium (IPSJ
Symposium Series Vol. No.2), Kyoto, January 2003.



Multi objective robust design optimization 295

10. Poloni C., Pediroda V., 1997, GA coupled with computationally expensive simu-
lations: tool to improve efficiency, in Genetic Algoritms and Evolution Strategies
in Engeneering and Computer Science, edited by Wiley Sons, 1997.

11. J. Sacks, W. J. Welch, T. J. Michell, and H. P. Wynn, Design and Analysis of
Computer Experiments Statistical Science, Vol 4 No.4, pp. 409-453,1989.

12. Schonlau. M. Computer Experiments and Global Optimization, Ph D. Disserta-
tion, University of Waterloo, 1997.

13. Timothy W. Simpson, Timothy M. Mauery, John J. Korte and Farrokh Mistree,
Comparison of Response Surface and Kriging Models in the Multidisciplinary
Design of an Aerospike Nozzle, 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, AIAA 98-
4755, September 1998.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




