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Semyon Yakovlevich Khavinson
(May 17, 1927 – January 30, 2003)

V.P. Havin

1. Life

S.Ya. Khavinson was born in Moscow. His mother, M.B. Zucker, was a medicine
professor, his father, Ya.S. Khavinson, a well-known journalist; in 1940–1943 he
was the head of TASS (Telegraph Agency of the Soviet Union), and for a long time
the editor of the journal “World Economy and International Relations”. Brought
up in an atmosphere of the ubiquitous communist ideology, S.Ya. made a long way
to independent thinking (the sobering process was completely over when I met him
for the first time in 1957). Moved by romantic infatuation with aviation and the
trend of the epoch, after highschool in 1943, he entered MAI (Moscow Institute
of Aviation) where a new infatuation prevailed over the first one, and S.Ya. was
forever captivated by mathematics. He left MAI for the math department of MGU
(Moscow State University). This change was not an easy undertaking, but he
succeeded in catching up with the much more advanced mathematical program
and became a pure math student of the third year of MGU, the institution of a
very high level of teaching and research.

This episode confronted him for the first time with the difference in teaching
mathematics to pure and applied mathematicians, the problem he had to cope
with all his life: after he graduated from MGU in 1949, he taught in Yelets (a
small town in Lipetsk region) and then in Vladimir where his students were future
highschool teachers. From 1956 on he taught at MISI (Moscow Institute of Civil
Engineering) where he became the head of a huge “chair of higher mathematics”
(some 80 members!). All his life he had to combine intense and fruitful activity
of “a pure mathematician” proving new theorems, with the everyday worries and
headaches of a pedagogue and organizer of a complicated teaching process for
masses of students which did not consider math as their primordial task, but had
to overcome it according to the Russian tradition of educating engineers of any
speciality. And S.Ya. contrived to successfully agree both jobs, being at the same
time a bright and passionate complex analyst with an impressive output of results
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and ideas, and a teacher of mathematics for non-professionals, fully devoted to
this difficult duty.

S.Ya. started his scientific work as a student of MGU under the guidance of
A.I. Markushevich who also acted as S.Ya.’s adviser during his extramural grad-
uate student years in Yelets and Vladimir. He defended his first (“the candidate”
∼= PhD) thesis in 1953. The second (“the doctoral”) was defended in 1962 (the
title was “Duality method in extremal and approximation problems of function
theory”).

The starting point of his work were the duality relations (see Section 2 below)
first applied to some concrete problems by M.G. Krein (1938) and S.M. Nikolski
(1946). S.Ya. made the duality method a powerful tool of Complex Analysis. (The
same approach was found by Rogosinski & Shapiro in 1953, but the first articles of
S.Ya. devoted to this method appeared in 1949 and 1951). A more detailed survey
of his results follows (see Sections 2–6).

As I have mentioned, apart from pure mathematics, S.Ya. worked as the
leader of an unusually numerous collective, the chair of higher mathematics of
MISI. The common practice is to split such collectives into several smaller and
more manageable units. But due to some personal features of S.Ya., his wise,
tactful ways to contact people, everybody preferred to have him as a leader, and
it was eventually decided to let the chair as it was and not split it. The energy
of S.Ya. made the chair and its analysis seminar one of the centers of mathe-
matical work in Moscow. S.Ya. was a successful adviser of ten graduate students
in math; all of them had defended their theses, a result not very common for a
non-mathematical teaching institution. Two of former students of S.Ya., V.Ya. Ei-
derman and M.V. Samokhin, defended their second (“doctoral”) theses and are
full professors.

S.Ya. wrote a number of textbooks for his students, future engineers, and also
for mathematicians working in various universities of Russia who regularly come
to MISI for their sabbaticals and take special courses in math to maintain their
shape. S.Ya. was famous as a brilliant, thorough and very clear lecturer. His general
tendency in his lectures and texts was to convey the very essence, “the truth of
the subject” to his listeners and readers, minimizing all kinds of technicalities and
doctrinalities. The permissible degree of this minimization will forever remain a
theme of innumerable controversies, and I remember – with great pleasure – some
fervent disputes with S.Ya. on this point. (They are reflected in his inscription on
his gift to me, the book “Lectures on intregral calculus”: “To dear Vitya Havin for
the repetition of the live integral calculus which he somewhat forgot composing his
german-pedantical booklets on this subject, from the loving author. 30.11.1976”;
the books S.Ya. alluded at were intended for pure mathematicians). In any case,
books of S.Ya. are nicely written and deservedly popular.

∗ ∗ ∗
Life of S.Ya. Khavinson was not always easy. He had to live through some very
bitter moments. But for his friends and colleagues he invariably remained the same,
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with his kindness, readiness to help, unusual width of interests (one of them was
poetry: he could recite his favorite poems for hours). But I guess the main pivot of
his life enabling him to weather all kinds of personal crises was his mathematics.
His legacy is rich, both in content and volume (some 170 publications). Its detailed
survey would take a book. My modest aim in subsequent pages is just to order
Khavinson’s results according to their main guidelines and briefly orient the reader
in their highlights.

2. Linear Programming in Complex Analysis

The mathematical career of S.Ya. Khavinson started at the end of forties, in less
than twenty years after the publication of S. Banach’s “Théorie des opérations
linéaires” which opened the “Sturm und Drang” period of Functional Analysis. Its
methods and ideas were merging with classical, or “concrete”, analysis. Complex
Analysis was probably the last area to be conquered by the new approach, and
Khavinson was in the first ranks of its proponents. His impressive contribution
to this merging process was the application of the duality of linear spaces to
classical extremal problems of Complex Analysis. Its eternal and ubiquitous theme,
maximizing or minimizing a functional on a class of analytic functions, was given
a completely new interpretation in Khavinson’s work.

For a more specific discussion we need some notation: H∞(G) will denote
the space of all functions analytic and bounded in the domain G; the norm of an
f ∈ H∞(G) is ‖f‖∞ = sup

G
|f |; D will stand for the open unit disc.

2.1. A result of E. Landau

For a function f analytic in D put

ck(f) =
f (k)(0)

k!
,

the k-th Taylor coefficient of f . For a given N Landau computed

max
{∣∣∣∣ N∑

k=0

ck(f)
∣∣∣∣ : f ∈ H∞(D), ‖f‖∞ ≤ 1

}
.

In 1913 he found a quite explicit expression of this quantity (as a function of N) and
exhibited the maximizing f . This example is generic for the problems studied by
Khavinson for many years, starting from 1949. A short and very clear exposition
of Landau’s result is in §10 of [Kh111, Kh123]1 where one can find historical
information and a list of Landau’s successors. Note that in his early publication
[Kh5] Khavinson obtained an elegant generalization of Landau’s estimate (with
f (k)(a)/k!, in place of ck, a ∈ D). The gist of [Kh5] was a purely quantitative aspect
of the problem whereas Khavinson’s efforts in his subsequent works were mainly

1References [Kh1], [Kh2], etc., see in the section “S.Ya. Khavinson: Bibliography”, following the
present paper.
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concentrated on “qualitative” questions. Nevertheless we believe that Landau’s
result and his analogs combined with Functional Analysis were among the principal
incentives which had ignited Khavinson’s interest in extremal problems in spaces
of analytic functions.

2.2. Khavinson’s approach to extremal problems: a sketch

We will have to confine our description to a rather particular situation in order to
just allude at the possibilities of the method. The modest aim of this section is to
convey the flavor of Khavinson’s ideas. They first appeared in [Kh1], [Kh6] to be
largely developed in various directions in [Kh11], [Kh55], [Kh26], [Kh49], [Kh152],
[Kh161] (we quote only cornerstone papers where references to shorter publications
are available). For the first reading we recommend a very nicely written exposition
in [Kh123].

The duality of extremal problems, the main theme of this section, was implicit
in Landau’s argument as in many other classical works (see the information, e.g.,
in [Kh123]). But it appeared there as an experimental fact attached to a concrete
situation. Its presence could be discerned only a posteriori. The explanation of the
true underlying mechanism is due to Khavinson. It is rooted in quite general and
abstract facts.

2.2.1. Abstract scheme. Given a complex linear normed space X and its subspace
X0 we denote by X∗ the conjugate space of X and by X⊥

0 the polar set of X0,

X⊥
0 = {f ∈ X∗ : f |X0 = 0}.

Fix an f ∈ X∗ and put f0 = f |X0. Then

‖f − g‖X∗ ≥ ‖f0‖X∗
0

for any g ∈ X⊥
0 ,

and, by Hahn-Banach, the equality occurs for a g0 ∈ X⊥
0 . Thus

min{‖f − g‖X∗ : g ∈ X⊥
0 } = sup{|f(x)| : x ∈ X0, ‖x‖X ≤ 1}. (2.1)

Note that we write “min”, not just “inf” to the left, the infimum being attained
for a g0 ∈ X⊥

0 , a best approximant of f by the elements of X⊥
0 .

The general duality relation (2.1) applies to a vast class of concrete extremal
problems for analytic functions. As a zero order approximation to rigorous state-
ments imagine a space Y of functions analytic in a plane domain G. Due to the
maximum modulus principle and its numerous analogs Y can be very often identi-
fied (isometrically) with a subspace X0 of a normed space X consisting of functions
defined on the boundary Γ of G. A linear functional F on Y can be viewed as an
element f0 of X∗

0 , and we may apply the “minimax” (or, to be more precise, the
“minisup”) relation (2.1) to the problem of maximizing F on the unit ball of Y .
At the first glance, (2.1) does not yield any maximizing element in its right side
(and even does not guarantee its existence). Equality (2.1) just transforms the
maximization problem into a dual best approximation problem (see the left side
of (2.1)). But the very coincidence of these two problems is a powerful tool of
analysis of the extremal elements in both sides of (2.1).
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2.2.2. Relation (2.1) and extremal problems in H∞(G). To illustrate these vague
ideas let Y be the space H∞(G) of all functions analytic and bounded in G with
the usual uniform norm:

‖x‖H∞(G) = ‖x‖∞ = sup
G

|x|, x ∈ H∞(G).

We assume G is bounded and finitely connected,

Γ = Γ1 ∪ · · · ∪ Γn,

where the connected components Γj of the boundary Γ are rectifiable Jordan loops.
Any x ∈ H∞(G) has angular boundary values x̂(ξ) at s-almost all ξ ∈ Γ (w.r. to
the length s on Γ). Moreover,

‖x‖H∞(G) = vrai sup
ξ∈Γ

|x̂(ξ)|.

Identifying x ∈ Y = H∞(G) with x̂ we make Y a subspace X0 of X = L∞(Γ); we
denote this subspace by H∞(Γ).

2.2.3. Digression. Now we have to devote a paragraph to the Smirnov class E1(G)
whose participation in this context is unavoidable. It can be defined as the set of
all functions ϕ analytic in G possessing angular boundary values ϕ̂(ξ) at almost all
ξ ∈ Γ and such that ϕ̂ ∈ L1(Γ) (= L1(Γ, s)), and ϕ is representable by its Cauchy
integral:

ϕ(a) =
1

2πi

∫
Γ

ϕ̂(ξ) dξ

ξ − a
, a ∈ G.

The mapping ϕ �→ ϕ̂ of E1(G) into L1(Γ) is one-to-one, and putting

‖ϕ‖E1(G) = ‖ϕ̂‖L1(Γ),

we turn E1(G) to a normed space which we identify with the subspace E1(Γ) of
L1(Γ), the set of all functions ϕ̂ for ϕ ∈ E1(G).

We are now almost ready to explain the role played by E1(G) for our theme,
but first let us consider the subspace CA(G) of H∞(G) consisting of all elements
of H∞(G) continuously extendable to G∪Γ; by CA(Γ) we denote the subspace of
L∞(Γ) formed by all functions ϕ̂ with ϕ ∈ CA(G). We need the following identity:

E1(Γ) =
{

ω ∈ L1(Γ) :
∫
Γ

ω(ξ)ψ(ξ) dξ = 0 for any ψ ∈ H∞(Γ)
}

. (2.2)

The next assertion is a generalization of an important result due to F. and M. Riesz
who discovered it for G = D :

Theorem. Let µ be a complex Borel measure on Γ. The following are equivalent:
1)
∫
Γ

xdµ = 0 for any x ∈ CA(Γ);

2) µ is s-absolutely continuous, and dµ
ds

∈ E1(Γ).

A concise survey of the Smirnov classes is in [Kh123, p. 57–61].
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2.2.4. Let us return to our main theme, that is to a linear functional F ∈
(H∞(G))∗ and maximizing of

∣∣F (y)
∣∣ w.r. to y ∈ H∞(G), ‖y‖∞ ≤ 1; the maximum

is ‖F‖(H∞(G))∗ .
Many concrete problems of Complex Analysis (in particular, of Geometric

Function Theory, remember the Riemann mapping theorem) suggest the following
questions:

1) Is there an extremal element y∗ ∈ H∞(G) such that

‖y∗‖∞ ≤ 1, |F (y∗)| = ‖F‖(H∞(G))∗?

2) Suppose y∗ does exist, is it unique (up to a constant unimodular factor)?
3) Is y∗ unimodular on Γ (i.e., |ŷ∗| = 1 a.e. on Γ)?

The rich experience of concrete problems suggests that question 3) is natural and,
generically, the answer should be “yes”.

Note that in these questions we are dealing with “qualitative” problems: the
quantitative problem of computing ‖F‖(H∞(G))∗ is not primordial. The interest
of these questions is determined by the following experimental fact: for many
functionals F the maximizer y∗ turns out to possess some useful properties (e.g.,
to map G onto D); this is what makes its existence, uniqueness and description
very attractive aims.

Of course, the answers to questions 1)–3) depend on F . Identifying H∞(G)
with X0 = H∞(Γ) ⊂ L∞(Γ) = X (see 2.2.2) we may perceive F as f0 = f |H∞(Γ)
for an f ∈ (L∞(Γ))∗ which is, generally speaking, a mysterious object. But for
really interesting functionals F there is no loss in assuming that f is generated by
a function ω ∈ L1(Γ) :

f(x) =
∫
Γ

ω(ξ)x(ξ) dξ, x ∈ L∞(Γ). (2.3)

As an illustration we may use ω(ξ) = (ξ−a)−2/2πi for a fixed a ∈ G; the respective
F is just

y �→ y′(a), y ∈ H∞(G).

A direct application of relation (2.1) to our present pair X = L∞(Γ), X0 = H∞(Γ)
is hindered by a complicated nature of X∗. To avoid the analysis of X⊥

0 we replace
the pair (X, X0) = (L∞(Γ), H∞(Γ)) by (C(Γ), CA(Γ)), see 2.2.3; C(Γ) is the usual
space of all complex continuous functions on Γ, CA(Γ) is its subspace consisting
of boundary traces of functions continuous in G ∪ Γ and analytic in G. Unlike
(L∞(Γ))∗ the space (C(Γ))∗ can be conveniently and isometrically identified as
M(Γ), the space of all Borel complex measures on Γ whereas (CA(Γ))⊥ becomes

{µ ∈ M(Γ) : dµ = f(ξ) dξ for an f ∈ E1(Γ)},
see Theorem in 2.2.3.

Now we apply (2.1) to X = C(Γ), X0 = CA(Γ) and to the functional
x �→ ∫

Γ

x(ξ)ω(ξ) dξ generated on C(Γ) by measure ν ∈ M(Γ), dν = ω(ξ) dξ. We
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get a function ω0 ∈ E1(Γ) such that

‖f0|CA‖C∗
A

=
∫
Γ

|ω − ω0| ds = min
{∫

Γ

|ω − ω̃| ds : ω̃ ∈ E1(Γ)
}

. (2.4)

From now on we forget about C(Γ), CA(Γ) and return to the functional (2.3) on
L∞(Γ) and its restriction f0 onto H∞(Γ). By the Montel theorem there exist a
sequence (xn)∞n=1 and a function x∗ in H∞(G) such that

‖xn‖∞ ≤ 1, xn −→
n→∞ x∗ pointwise in G, |f(xn)| −→

n→∞ ‖f0‖(H∞(Γ))∗ .

It is not hard to see that lim
n→∞ f(xn) = f(x∗) (this is obvious for the functional

y �→ y′(a), y ∈ H∞(G)). Hence

|f(x∗)| = |f0(x∗)| = ‖f0‖(H∞(Γ))∗ ,

and the answer to the first of the three questions in 2.2.4 is positive. Now,

|f0(x∗)| = ‖f0‖(H∞(Γ))∗ ≥ ‖f0|CA(Γ)‖(CA(Γ))∗ =
∫
Γ

|ω − ω0| ds

≥
∫
Γ

|x∗| |ω − ω0| ds ≥
∣∣∣∣∫
Γ

x∗(ξ)(ω(ξ) − ω0(ξ)) dξ

∣∣∣∣
=
∣∣∣∣∫
Γ

x∗(ξ)ω(ξ) dξ

∣∣∣∣ = |f0(x∗)|

(we have used (2.4), the inclusion ω0 ∈ E1(G), and (2.2)). Thus the couple (ω0, x
∗)

of extremal functions satisfies the integral relation∣∣∣∣∫
Γ

x∗(ξ) (ω(ξ) − ω0(ξ)) dξ

∣∣∣∣ = ∫
Γ

|x∗(ξ)| |ω(ξ) − ω0(ξ)| ds. (2.5)

Rewrite dξ in the left integral as ξ′sds and recall the equality |ξ′s| = 1 a.e. on Γ.
Then from the integral relation (2.5) we obtain a pointwise relation connecting ω0

and x∗ : for an α ∈ R

x∗(ω − ω0)ξ′s = |x∗| |ω − ω0| eiα a.e. on Γ, (2.6)

a source of precious information on both functions ω0 and x∗.
We exclude the trivial case ω ∈ E1(Γ) corresponding to the zero functional

f . Then the length of the set

a = {ξ ∈ Γ : ω(ξ) − ω0(ξ) �= 0}
is positive, and, by (2.6),

|x∗| = 1 a.e. on a.

If, say, ω coincides on Γ with a function analytic in C \ (a compact set in G)
and vanishing at infinity (as is the case with ω(ξ) = (ξ − b)−2/2πi, b ∈ G), then
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s(Γ \ a) = 0, and |x∗| = 1 a.e. on Γ (cf. question 3)). In any case (2.6) can be
given the following form a.e. on Γ :

x∗(ω − ω0)ξ′s = eiα |ω − ω0|
whence x∗ is uniquely defined on a up to a constant factor eiβ , β ∈ R. By the
boundary uniqueness theorem for H∞(G), it is uniquely defined (with the same
accuracy) in the whole of G, whence we have a positive answer to question 2) in
2.2.4.

Function ω0, the best L1(Γ)-approximant of ω in E1(Γ), is, generally speak-
ing, not unique. It is unique if G is simply connected. This case can be reduced,
by conformal mapping, to G = D where (2.6) becomes

x∗(eit)(ω(eit) − ω0(eit))ieit = eiα|ω(eit) − ω0(eit)| (2.7)

for almost all t ∈ R. Denote the unit circle by T and suppose ω1 ∈ E1(T) = H1(T),
and

2π∫
0

|ω(eit) − ω0(eit)| dt =

2π∫
0

|ω(eit) − ω1(eit)| dt.

Then (2.7) holds with ω1 in place of ω0, so that Q(ξ) = e−iαx∗(ξ)(ω1(ξ)−ω0(ξ))iξ
is real a.e. on T. But Q as a function of the variable ξ ∈ D belongs to the Hardy
class H1(D) and is representable by its Poisson integral. Therefore Q ≡ const; but
Q(0) = 0 whence ω1 = ω0 in D and almost everywhere on T.

2.3. Concluding remarks

Here we have to stop our superficial survey of Khavinson’s approach to dual ex-
tremal problems in Complex Analysis. Due to the volume limitation we cannot
anymore afford an exposition as detailed as in 2.2. We have to emphasize that we
have not exploited the crucial pointwise relation (2.6) in its full depth. In fact in
Khavinson’s work it is applied to a much more thorough investigation of x∗ which
enabled him to trace the improvement of the boundary behavior of x∗ depend-
ing on the properties of ω, the number of zeros of x∗, representation of x∗ as a
product of canonical factors (which becomes especially explicit for G = D and ω
corresponding to some classical functionals F ) and, last but not least, mapping
properties of x∗. We restrict ourselves to a partial quotation from Theorem 7.1 of
[Kh123] shedding new light on classical results by Ahlfors, Grunsky and Garabe-
dian:

if ω coincides on Γ with a function meromorphic in a domain G̃ with exactly
m poles in G, then either x∗ is constant or maps G onto the k-sheeted unit disc
where

n ≤ k ≤ n + m − 2.

Returning to the example of ω(ξ) = (ξ − a)−2/2πi, a ∈ G (see 2.2.4), we get
k = n, a result due to Ahlfors.

In publications mentioned at the beginning of 2.2 the reader can find numer-
ous results based on analogs of the scheme sketched in 2.2 and adjusted to different
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spaces of analytic functions (in particular to Smirnov classes Ep(G), 1 ≤ p ≤ +∞,
also with some weights on Γ). These results form the ramified and efficient Khavin-
son’s theory of extremal problems. Our next section is devoted to one of its rami-
fications.

3. Extremal problems with supplementary restrictions

3.1. Introductory remarks

The norms of all spaces mentioned in Section 2 depend on the restrictions of
functions on Γ, the boundary of G. They were mainly weighted Lp-norms on
Γ, 1 ≤ p ≤ +∞; we call them boundary norms. The variant of the theory to be
described in the present section is aimed at norms measuring the restriction of a
function on a set including Γ and a part of G. This new setting entails considerable
complications. It is, however, not a mere formal generalization. To the contrary, it
is motivated by a class of very popular problems of Complex Analysis.

As a famous saying goes, an analytic function behaves as a live organism
reacting as a whole to a slightest local pressure. If, say, f ∈ H∞(G) is oppressed
on a part D ⊂ G, so that

sup
D

|f | < ε (3.1)

with a small ε > 0, then the effect of this oppression is felt throughout G, at
any of its points. This phenomenon is observed not only for the uniform norm
f �→ sup

D
|f |, but for many other norms as well. Its consequences are numerous

uniqueness theorems, one of the main themes of Complex Analysis. This explains
the permanent interest of complex analysts in global estimates of analytic functions
satisfying quantitative restrictions analogous to the local inequality (3.1).

If we are working in a space of analytic functions with a boundary norm,
then (3.1) is “a supplementary restriction” strengthening the general restriction
‖f‖Γ < ∞ whence the title of this section.

3.2. Examples. A duality relation

Let G be a domain as in 2.2.2 and D its compact subset carrying a non-negative
Borel measure µ. As in 2.2.4 we consider the functional (2.3) generated in H∞(G) ∼=
H∞(Γ) by an ω ∈ L1(Γ). But unlike 2.2.4 where we were interested in sup{|f(x)| :
x ∈ H∞(Γ), ‖x‖∞ ≤ 1}, we concentrate now on

sup{|f(x)| : x ∈ H∞(Γ), ‖x‖∞ ≤ 1, ‖x‖Lp(D,µ) ≤ ε}, (3.2)

involving a supplementary condition, that is the smallness of x expressed in terms
of the Lp(µ)-norm on D and a small number ε. This problem is interesting even
in the particular case of a finite D and p = ∞. On the other hand, the norms in
(3.2) could be made much more general replacing H∞(Γ) by Ep(Γ) ( = boundary
traces of functions of a Smirnov class in G endowed with a weighted Lp(Γ)-norm)
whereas the supplementary norm might include a number of derivatives of x (see
[Kh55]). The supremum in (3.1) can be given a form quite similar to the right
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side of (2.1), since (3.2) is just the norm of f0 = f |H∞(Γ), with one important
distinction: this time H∞(Γ) is endowed with a stronger norm ‖ ‖∞,p,µ,ε,

x �→ max(‖x̂‖L∞(Γ), ‖x‖Lp(D,µ)/ε). (3.3)

(Note that this norm is comparable with ‖ ‖∞,Γ due to the compactness of D.)
This new norm takes into account not only ‖x̂‖∞,Γ, but also the magnitude
of |x| on D. It is not a boundary norm (see the beginning of 3.1). This fact
complicates the answers to the main questions which remain essentially the same
as in 2.2.4. The general approach is nevertheless also the same as in 2.2. It is still
based on duality of extremal problems: the search of the supremum in (3.2) is
again equivalent to a (duly modified) best approximation problem. We avoid here
the most general statements of this kind, see [Kh55, Kh123], and illustrate the
new situation by an analog of (2.4) related to (3.1), i.e., to p = ∞ in (3.2); we
also omit generalizations involving norms of the derivatives of x on D. Avoiding
abstract preliminaries underlying the general scheme of [Kh55] we start with the
space X0 = CA(Γ) × C(D) which is a subspace of X = CΓ × C(D) normed by

(x, y) �→ max(‖x‖∞,Γ, (‖y‖∞,D)/ε).

As in (2.4), for an arbitrary F ∈ X∗ we get

‖F |X0‖X∗
0

= min{‖F − Φ‖X∗ : Φ ∈ X⊥
0 }. (3.4)

Now, F ∼= (µ, ν) where µ ∈ M(Γ), ν ∈ M(D), the spaces of complex Borel
measures, resp., on Γ and D, and

‖F‖X∗ = ‖µ‖M(Γ) + ε‖ν‖M(D), F (x, y) =
∫
Γ

xdµ +
∫
D

y dν.

A pair (ρ, σ) ∈ X∗ belongs to X⊥
0 iff∫

Γ

xdρ +
∫
D

xdσ = 0 for any x ∈ CA(G). (3.5)

Any compactly supported λ ∈ M(C) generates its Cauchy potential Cλ,

Cλ(a) =
1

2πi

∫
supp λ

d λ(ξ)
ξ − a

, a ∈ C\supp λ

and, by the Cauchy formula, in (3.5) we have x(a) = Cx̂dξ(a), a ∈ G, whence (3.5)
becomes ∫

Γ

x(ξ) dρ(ξ) −
∫
Γ

Cσ(ξ)x(ξ) dξ = 0 for any x ∈ CA(G),

or (see 2.2.3) dρ(ξ) − Cσ(ξ) dξ = ϕ(ξ) dξ on Γ for a ϕ ∈ E1(Γ).
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We are only interested in functionals F with dµ(ξ) = ω(ξ) dξ, ν = 0, where
ω ∈ L1(Γ), and (3.4) takes the following form:

‖F |X0‖X∗
0

=
∫
Γ

|ω − ϕ∗ − Cσ∗ | ds + ε

∫
D

|dσ∗|

for a pair (ϕ∗, σ∗) ∈ E1(Γ) × M(D). Following the pattern of 2.2.4 we get an
x∗ ∈ H∞(G), ‖x∗‖∞ ≤ 1, such that

sup
{∣∣∣∣∫

Γ

x̂(ξ)ω(ξ) dξ

∣∣∣∣ : x ∈ H∞(G), ‖x‖∞ ≤ 1
}

=
∣∣∣∣∫
Γ

x∗(ξ)ω(ξ) dξ

∣∣∣∣ = ∫
Γ

∣∣x∗(ξ)[ω(ξ) − ϕ∗(ξ) − Cσ∗
(ξ)]
∣∣ ds + ε

∫
D

|dσ∗|. (3.6)

Removing the integrals (as in 2.2.4) we end up with a pointwise relation connecting
x∗, ϕ∗ and σ∗. Then we may turn to its analysis with the same fruitful results:
dependence of local boundary properties of x∗ on the quality of ω, representation
of x∗ as a product of standard factors, location and number of zeros of x∗, and
geometric properties of x∗: in many important cases x∗ still maps G onto a k-
sheeted disk D, and k can be estimated from above and from below. An interesting
feature of the problem is its stability: x∗ ignores the presence of the “supplementary
term” sup

D
|x|/ε in the norm (3.3) and behaves as if it were absent (i.e., ε = +∞).

We have to emphasize that our discussion applies only to the case when
D ⊂ G is compact. The situation gets more complicated if D is not separated
from Γ. Some cases when D ∩ Γ �= ∅ are treated in Theorem 6.3 of [Kh55].

3.3. A Tchebyshev-like phenomenon

A curious effect was observed in [Kh55]. Let us denote the norm (3.3) by ‖ ‖∞,D,ε

stressing its dependence on D. For G = D and many compact sets D ⊂ D the
maximization problem of 3.1, i.e.,

max
{|F (x)| : x ∈ H∞(D), ‖x‖∞,D,ε ≤ 1

}
,

is shown to be equivalent to the same maximization, but with D replaced by a
finite subset DN of its boundary: the maximizing functions x∗

D and x∗
DN

coincide,
#DN = N. For some classical functionals F and sets D the information on DN

and estimates of N are quite precise and generalize earlier results by M. Heins.
The existence of DN reminds of the Tchebyshev theorem reducing the best

polynomial approximation on an interval I by a polynomial to the same problem
on a finite set IN ⊂ I.

3.4. Some quantitative results

The general approach to extremal problems with supplementary restrictions is
illustrated in [Kh55] by some classical situations (the Walsh problem concerning
the three circles problem by Hadamard, the Milloux and Heins problems, the
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Whittacker inequality etc.). The results are mainly qualitative (i.e., in the spirit of
questions posed in 2.2.4). But some are quantitative yielding very useful explicit
inequalities. Consider, e.g., a particular case of the problem discussed in 3.2: given
z0 ∈ D put f(x) = x(z0), x ∈ H∞(D), D = {α1, . . . , αn}, a finite set in D. In §11
of [Kh55] the duality relation (3.6) is a source of an explicit estimate of |x(z0)| for
x ∈ H∞(D) satisfying ‖x‖∞ ≤ 1, |x(αj)| ≤ εj, j = 1, . . . , N . This estimate, in
its turn, implies an interesting quantitative refinement of the classical uniqueness
theorem for H∞(D):

if a sequence (αj)∞j=1 in D satisfies

∞∑
j=1

(1 − |αj |) = ∞, (3.7)

then {x ∈ H∞(D) & x(αj) = 0, j = 1, 2, . . .} =⇒ x ≡ 0. In §12 of [Kh55] it
is shown that this uniqueness result is stable: x ∈ H∞(D) vanishes identically if
it decays fast enough along the sequence (αj)∞j=1, provided (3.7) is fulfilled, and
the sequence is rarefied (in a sense). This theorem was one of the first results of
this kind. It was developed in various directions by Ushakova, Lyubarski–Seip and
Eiderman.

We conclude this section with a remark on the role of the right side of the
duality relation (3.6). It seems to be a purely ancillary tool, since our main concern
was the maximizer x∗ figuring in the left side of (3.6). But the right side is
important as well. It contains an interesting extra term ε

∫ |dσ∗| responsible for the
magnitude of the charge σ∗ generating the Cauchy potential Cσ∗

approximating
(in cooperation with ϕ∗ ∈ E1(Γ)) the given L1(Γ)-function ω. Thus we arrive
in a compulsory way to an approximation problem taking into account not only
the accuracy of approximation (expressed by the first integral in the right side
of (3.6)), but also “the price of approximation” expressed by

∫
D

|dσ∗|. Following

S. Khavinson we return to this theme in Section 6 of this survey.

4. Spaces of analytic functions in multiply connected domains

4.1. Classes Ep

As in Section 2, G will denote a bounded domain in C with the boundary Γ =
Γ1 ∪ · · · ∪ Γm, Γj being disjoint Jordan rectifiable loops. We denote by Gj the
unbounded component of C \ Γj , j = 2, . . . , m; G1 is the bounded component of
C \ Γ1, so that

G = G1 ∩ G2 ∩ · · · ∩ Gm.

For a simply connected G (i.e., for m = 1) the Smirnov classes Ep(G) appeared in
Smirnov’s works (see [6, 7] and references therein). A set of (equivalent) definitions
of the class Ep(G) (for any m) is collected on pp. 132–133 of [5]. The shortest is
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due to Khavinson & Tumarkin: f ∈ Ep(G), p > 0, if

sup
j

∫
bGj

|f(ξ)|p ds < +∞ (4.1)

for an increasing sequence of subdomains Gj � G with rectifiable boundaries bGj

(like G itself) covering G. The rest of definitions (due to Smirnov and Keldysh
& Lavrentiev for a simply connected G) are not so simple. In fact there exists
a universal sequence (Gj) such that (4.1) holds for any f ∈ Ep(G). Thus the
definition looks very much like a formal reproduction of the definition of the Hardy
class Hp(D) = Ep(D). As it seems, the main incentive for the initial development
of the theory of spaces Ep was the desire to test the new possibilities opened in the
20ies and 30ies by the advent of the Lebesgue theory of integration created at the
beginning of the 20th century. But the classes Ep turned out to be a necessary tool
in many areas of Complex Analysis; these classes had to be discovered to satisfy
essential needs of this discipline.

One of the impressive examples is Khavinson’s theory of extremal problems
described in Sections 2 and 3. The definitions of the spaces CA(G) and H∞(G)
are simple and self-imposing and do not contain any integration. They preexisted
Lebesgue integration and Functional Analysis forming a natural context for many
classical problems. But the investigation even of the most popular maximization
problems in CA(G) and H∞(G) is equivalent to a best approximation problem just
in E1(G) ∼= E1(Γ). The spaces E1(Γ) emerge in a compulsory way in the general
schemes developed by Khavinson.

But the theory of the Smirnov classes was not ripe enough when he started:
its state was satisfactory only for simply connected domains G. The theory has
been completed in a series of joint works by S. Khavinson and G. Tumarkin. A
brief description of this series is the aim of the present section.

In [Kh18–Kh20] the definitions by Smirnov and Keldysh & Lavrentiev were
complemented by some equivalent definitions (for m = 1) and generalized to m >
1. These publications also contain some results for non rectifiable Γ’s.

Special attention is paid to the decompositions

f = f1 + · · · + fm

where fj are analytic in Gj (and vanish at infinity for j ≥ 2) and to the equivalence

f ∈ Ep(G) ⇐⇒ fj ∈ Ep(Gj), j = 1, 2, . . . , m

which becomes especially delicate for a non rectifiable Γ.
The representability of f ∈ Ep(G) by the Cauchy and Green formulas (with

integrals taken over Γ) is considered in [Kh19]. Another important theme is the
characterization of “polar sets” (Ep(Γ))⊥ in Lq(Γ), i.e., the formula

Ep(Γ) =
{

ω ∈ Lq(Γ) :
∫
Γ

ω(ξ)x(ξ) dξ = 0 for any x ∈ Ep(Γ)
}

, 1/p + 1/q = 1

(not excluding p = 1 or ∞, see [Kh33]).
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4.2. Class D(G). Smirnov domains

This important class is often denoted by N+(G) (to emphasize its close relation to
the Nevanlinna class N(G)). It was discovered by Smirnov (see [7, 5]). This class
plays an outstanding role: it appears in some necessary and sufficient conditions
of validity of the maximum modulus principle, in polynomial approximation, and
in the theory of conformal mapping. Khavinson and Tumarkin studied this class
in general domains and found a complete description of removable singularities
for this class. Removable sets turned out to be just the sets of zero logarithmic
capacity [Kh17]. This fact improves earlier results by Parreau and Rudin.

V.I. Smirnov introduced a class S of Jordan domains G with a rectifiable
boundary ([7]) which is now called “the Smirnov class of domains”: G ∈ S iff log |ω′|
is representable in D by the Poisson integral, where ω is a conformal mapping of
D onto G. Smirnov showed that some familiar properties of functions analytic in
“nice ” domains hold exactly in domains of the class S. At the beginning it was not
clear whether S coincides with the class of all Jordan domains with a rectifiable
boundary. A negative answer was obtain by Keldysh & Lavrentiev (see [6] and [5]
for further development).

In [Kh22] Khavinson and Tumarkin generalized Smirnov’s theory to multiply
connected domains and studied classes Ep(G) and D(G) in domains G ∈ S.

The culmination of the series of joint works by Khavinson and Tumarkin is
[Kh26] where their results on classes of analytic functions in multiply connected
domains are applied to a systematic study of dual extremal problems in the spirit
of our Section 2 for very general weighted boundary norms.

4.3. Factorization problems

A prominent role in Complex Analysis and many of its applications to Operator
Theory and Harmonic Analysis is played by the so-called inner-outer factorization
discovered by Nevanlinna, Szegö, and Smirnov (see historical information in [5]).
Any function f of the Hardy class Hp(D) is representable as the product of two
canonical factors O and I,

f = IO.

The first factor I is called “inner” and the second is “outer” (terminology of
Beurling, nowadays adopted by all complex analysts). The outer factor is defined
by the formula

O(a) = exp
1
2π

∫
|ξ|=1

log |f(ξ)| ξ + a

ξ − a
· dξ

iξ
, |a| < 1,

so that O does not vanish in D, and |Ô| = |f̂ | a.e. on the unit circle {|a| = 1}. The
inner factor is bounded in D, and |Î| = 1 a.e. on {|a| = 1}. In its turn, I can be
split into two more inner factors, a Blaschke product B responsible for the zeros
of f in D, and the so-called “singular inner factor” S which does not vanish in D.
The representation

f = BSO (4.2)
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is in fact applicable to any f ∈ D(D), the Smirnov class, and may serve as the defi-
nition of that class. It is often called the canonical parameterization of D(D), since
it involves certain (infinite dimensional) free parameters, a supple and convenient
tool to characterize important subclasses of D(D).

One of Khavinson’s favorite themes was the search of generalizations of (4.2)
to multiply connected domains. This case included serious difficulties absent in the
simply connected domains G where one can easily transplant (4.2) from the disc
by a conformal mapping, or proceed directly in G just copying the construction of
the factors for the disc. Let us briefly discuss two problems arising for the multiply
connected G.

1. We may try to copy the construction of outer factor in (4.2) starting with
the solution of the Dirichlet problem for G with the boundary data log |f |∣∣Γ. This
can be done replacing the Poisson kernel for the disc by the normal derivative of
the Green function for G, and we get a real harmonic function u in G satisfying
the condition

u
∣∣Γ = log |f |∣∣Γ a.e. on Γ

(we mean angular boundary values and drop ˆ). The next step would be to define
O as exp(u + iv) where v is the harmonic conjugate of u. Unfortunately, this idea
does not work, since, generally speaking, v is multivalued unlike the case of the
disc or a simply connected G.

2. Another obstacle is the lack of a natural “Blaschke factor”(
a �→ a − b

1 − ab̄
, |b| < 1, for G = D

)
:

any function analytic in G ∪ Γ and unimodular on Γ has at least n zeros in G.
Sections 4.1–4.2 dealt with the aspects of the theory of function spaces in

multiply connected domains which were subordinated to the needs of dual extremal
problems. In [Kh23] Khavinson and Tumarkin reverse this order and apply the
duality (as in Section 2) to construct (or rather to prove the existence) of a factor
O1 which makes the product exp(u + iv)O1 (see 1. above) one valued whereas its
modulus is still |f | a.e. on Γ.

As to the second difficulty and canonical factorization in general, we recom-
mend the article [Kh128] where a factorization theory is exposed. It is applicable
to classes of analytic functions on compact Riemann surfaces with border. This
article sums up a series of results by Khavinson and other analysts (including
Dmitry, Khavinson junior).

Another important source of information on factorization is the treatise
[Kh110]. It is, unfortunately, not easily available, being a Xerox edition of a book
which could by no means be published normally due to the peculiar publishing
policy in the USSR of the sixties, seventies, and early eighties. The same fate, alas,
struck the texts [Kh110–Kh112], [Kh115–Kh116]. Luckily, two of them ([Kh111–
Kh112]) are translated into English and published by the AMS [Kh123].
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5. Analytic capacity

5.1. Definition

Let K be a compact set in C, G be the unbounded component of its complement,

H∞
0 (G) :={x ∈ H∞(G) : x(∞) = 0}

={x ∈ H∞(G) : x(ξ) = c1(x)/ξ + O(1/ξ2), ξ → ∞}.
The analytic capacity of K is, by definition,

γ(K) := sup{|c1(x)| : x ∈ H∞
0 (G), ‖x‖∞ ≤ 1}

=sup
{∣∣∣∣ 1

2π

∫
bG

x(ξ) dξ

∣∣∣∣ : x ∈ H∞
0 (G), ‖x‖∞ ≤ 1

}
.

In other words, γ(K) is the norm of the functional x �→ c1(x) on the space H∞
0 (G).

The term “analytic capacity ” was coined in 1958 by V.D. Erokhin, but the notion
appeared earlier in [1], and from that moment on and until now it remains one
of the most frequent and popular objects of Complex Analysis. It plays a capital
role in the theory of removable singularities of analytic functions, and in the the-
ory of conformal mapping. A powerful impetus to the interest of analytic capacity
was a breakthrough in rational approximation by Mergelyan and Vitushkin. In
particular, Vitushkin showed that analytic capacity plays a crucial role in crite-
ria of approximation by rational functions. Last years are also marked by great
events in the study of analytic capacity (see a concise survey in [Kh161] where
one can find further references). The efforts were mainly concentrated on quanti-
tative aspects (relations of γ(K) with more palpable (“metric”) characteristics of
K, say, its length, semiadditivity of γ, etc). Khavinson’s interests, not ignoring the
quantitative problems (e.g., relations between γ and similar functionals adjusted
to Smirnov’s classes Ep, see below), were, nevertheless, directed at qualitative as-
pects (existence, uniqueness and special properties of extremal functions appearing
implicitly in the very definition of γ and its dual equivalents). Khavinson’s results
in this area form a considerable contribution to the subject. His main publications
on the theme of the present section are [Kh47, Kh123, Kh116, Kh152, Kh161].

5.2. The Schwarz lemma in arbitrary domains

Present in any textbook on Complex Analysis, the Schwarz lemma asserts that
max{|x′(0)| : x ∈ H∞(D), x(0) = 0, ‖x‖∞ ≤ 1} is attained only by x(ξ) ≡ cξ, for
a c ∈ C, |c| = 1. A natural generalization of the problem is to maximize |x′(ξ0)|
for x ∈ H∞(G), x(ξ0) = 0, ‖x‖∞ ≤ 1, where G is a domain and ξ0 its fixed point.
For a multiply connected G with a rectifiable boundary the maximizing function
x∗

ξ0,G was studied by Ahlfors [1] and Garabedian [2]. Returning to the situation
of 5.1 (i.e., of an arbitrary compact set K ⊂ C and the unbounded component G
of C \ K) we may connect γ(K) with the Schwarz lemma for G and ξ0 = ∞, the
substitute for x′(∞) being c1(x). The extremal function x∗

∞,G is called the Ahlfors



Semyon Yakovlevich Khavinson 17

function for G, if it is normalized by

x∗
∞,G(ξ) =

γ(K)
ξ

+
c2

ξ2
+ · · · for |ξ| � 1.

Its existence is obvious. In the case of K = K1∪K2∪. . .∪Km where Kj are disjoint
closed bounded Jordan domains with rectifiable boundaries Γj the uniqueness of
x∗
∞,G was proved in [1] and [2]. It was also shown that x∗

∞,G maps G onto the
m-sheeted unit disc.

Khavinson was the first to generalize and develop these results for an arbitrary
compact set K. They can be deduced for a multiply connected G from the general
scheme of Section 2 involving the duality relations

γ(K) =
1

2πi

∫
Γ

x∗
∞,G(ξ) dξ

= max
{∣∣∣∣ 1

2π

∫
Γ

x(ξ) dξ

∣∣∣∣ : x ∈ H∞
0 (G), ‖x‖∞ ≤ 1

}

= min
{

1
2π

∫
Γ

|1 + ϕ(ξ)| ds : ϕ ∈ E1(G), ϕ(ξ) = O(1/ξ) as ξ → ∞
} (5.1)

and the pointwise relation connecting x∗
∞,G with the minimizer ϕ∗

G in the last term
of (5.1):

x∗
∞,G(ξ)(1 + ϕ∗(ξ)) dξ = |x∗

∞,G(ξ)| |1 + ϕ∗
G(ξ)| ds (5.2)

a.e. on Γ = Γ1∪· · ·∪Γm. An important role is played by the so-called Garabedian
function LG of G,

LG := 1 + ϕ∗.

To adapt this approach to a general compact set K we need, first of all, an ap-
propriate definition of the Smirnov class E1(G) (classes Ep(G) with p > 1 will be
also needed). We won’t reproduce the definition given in [Kh47] and only mention
that it includes a sequence (Gn)∞n=1 of finitely connected domains with rectifiable
boundaries exhausting G from within. The duality relations (5.1), (5.2) are pre-
served in an approximate form (no integration over the boundary of G is possible);
a Garabedian function LG, a limit of LGn , can still be associated with G. It does
not vanish and, moreover, LG = exp ψG, where ψG is analytic in G. The approxi-
mate form of (5.1) and (5.2) is sufficient to prove the uniqueness of x∗

∞,G and to
derive many of its properties. E.g., x∗

∞,G(G) covers D with the exception of a set
of zero analytic capacity [Kh116, p. 73]; the zeros of x∗

∞,G, except infinity, all lie
in the convex hull of K.

5.3. Khavinson’s measure. Bounded analytic functions and Cauchy potentials

Applying the duality relation (5.1) to Gn and passing to the limit as n → ∞,
Khavinson proves in [Kh47] the existence of a unique non-negative measure
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µ∗ = µ∗
G concentrated on K and such that

x∗
∞,G(a)LG(a) =

∫
K

dµ∗(ξ)
ξ − a

(
= Cµ∗

(a)
)
, a ∈ G. (5.3)

I call µ∗
G the Khavinson measure of G. Note that µ∗

G(K) = γ(K).
Khavinson’s measure is important for representing bounded analytic func-

tions as Cauchy potentials. Let us recall that for many sets K any x ∈ H∞
0 (G) is

the Cauchy potential Cµ of a complex Borel measure µx on K:

x(a) =
∫
K

dµx(ξ)
ξ − a

= Cµx(a), a ∈ G. (5.4)

This is true, for instance, whenever the Painlevé length of Γ, the boundary of G,
is finite. But in general not every x ∈ H∞

0 (G) is a Cauchy potential (5.4). But a
theorem by Khavinson asserts that for any x ∈ H∞

0 (G) the product xLG is always
(i.e., for any K) a Cauchy potential:

xLG = Cµ̃x in G

for a complex Borel measure µ̃x on K. Moreover, µ̃x is absolutely continuous w.r.
to µ∗

G, and ∣∣∣∣dµ̃x

dµ∗

∣∣∣∣ ≤ ‖x‖∞, x ∈ H∞
0 (G).

This estimate can be given a local form. Suppose m is a non-negative number,
E ⊂ Γ (= the boundary of G), x ∈ H∞

0 (G), and limb |x| ≤ m for any b ∈ E. Then∫
E

|dµ̃x| ≤ mµ∗
G(E)

[Kh116, pp. 63–66].
Generally speaking, Khavinson’s measure µ∗

G is, in a sense, parallel to the
harmonic measure ωG of G on Γ (for the point at infinity), these two measures
being proportional when K is connected (a continuum); relations of µ∗

G with the
analytic capacity are similar to relations of ωG with the logarithmic capacity.

5.4. Ep-capacities and analytic capacity

Put Ep
0 (G) := {x ∈ Ep(G) : x(∞) = 0}. Each class Ep

0 (G) generates a new
kind of analytic capacity of K, i.e., a number γp(K) defined as the norm of the
same functional x �→ c1(x) w.r. to the Ep-norm in Ep

0 (G). The corresponding
maximizer x∗

∞,G,p satisfies a duality relation analogous to (2.4) and involving a
minimizer ϕ∗

G,p ∈ Eq(G), q = p/(p − 1). It is important that any such relation
characterizes the pair (x∗

∞,G,p, ϕ∗
G,p); the same is true for (x∗

∞,G, ϕ∗
G). Comparing

these duality relations (or rather their pointwise versions) for different values of p,
S. Khavinson arrived at equalities connecting γ(K) (see 5.1) with γp(K) [Kh47,
p. 9]. It may happen that H∞(G) (or Ep(G)) is trivial, that is, consists of the
zero function, in which case K is said to be removable for H∞(G) (resp. Ep(G)).
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An important theorem due to Khavinson says (roughly speaking) that the classes
H∞(G) and Ep(G), p > 1, are trivial or nontrivial simultaneously (for p = 2 this
statement is literally true, but for 1 < p �= 2 there are some subtle points which
we won’t discuss here). In order to be more precise we should write Ep((Gn)), not
Ep(G) and not forget the sequence (Gn) defining the class; the capacities γp(K),
however, depend only on G.

The problem of simultaneous triviality of Ep(G) and H∞(G) was of special
interest in the sixties due to the (then open) Denjoy problem posed in 1909: is it
possible for a K ⊂ Γ (= a rectifiable simple arc) to be removable for H∞(C \ K)
if length of K is positive? It was known long ago that γ2(K) > 0 would imply
γ(K) > 0 (Garabedian), whereas Khavinson’s results showed that γp(K) > 0 for
a p > 1 would suffice as well. On the other hand γp(K) > 0 would easily follow
from the (then also unknown) Lp-continuity of the singular integral operator with
the Cauchy kernel on Γ (see, e.g., [Kh46]). And, in fact, the negative answer to
Denjoy’s question turned out to be an almost direct corollary of Calderón’s famous
theorem on the Lp-continuity of the Cauchy singular integral operator on smooth
arcs (1977), see the discussions in [Kh116, §5] and [4].

5.5. Some set functions related to analytic capacity

In the theory of analytic capacity γ and neighboring problems some other set
functions naturally arise. It is, first of all, the Cauchy capacity γC . Denote by
M(K) the set of all Borel complex measures supported on K, and put

γC(K) = sup
{|µ(K)| : µ ∈ M(K), ‖Cµ‖∞,G ≤ 1

}
. (5.5)

The “real” and “positive” Cauchy capacities γR, γ+ can be defined exactly as in
(5.5) just replacing M(K) by MR(K) and M+(K) (resp., real and non-negative
measures on K). According to a remarkable result by Tolsa, the three set functions
γC , γR, γ+ are comparable with γ (but the coincidence of γ with γC is still an
open problem; see a brief survey with references in [Kh161] where a systematic
treatment of various relatives of γ can be found). Dual definitions of the three
Cauchy capacities (and some others) are studied there summing up and devel-
oping further some earlier results of Khavinson. They are connected with general
approximation problems “with size constraints” considered below in Section 6. Let
us quote here just one typical, but also the simplest, result discussed in [Kh161]:

γ(K) = inf
{

lim
n

∫
|LG| |dνn|

}
, (5.6)

infimum being taken over all sequences (νn) of finite linear combinations of unit
point masses in G such that

lim
n→∞max

K
|Cνn − 1| = 0.

If the Painlevé length of K is finite, then LG (the Garabedian function) in (5.6)
can be changed by one. Similar formulas hold for γR, γ+ as well.
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The study of various kinds of capacities and corresponding extremal problems
in [Kh161] is based on general duality relations like in Section 2, but this time they
have to be adjusted to approximation by the elements of a conical wedge, not just a
linear subspace. The necessary abstract result is due to Garkavi; see also [Kh158].

The results we are discussing yield new removability criteria for a compact
set K w.r. to the space H∞(G). E.g., this space turns out to be trivial iff for any
ε > 0 there exists a complex Borel measure ν with a compact support in G such
that var ν < ε, and

Cν ≡ 1 near K

(a big Cauchy potential can be induced on K by a negligible charge ν located off
K). This fact is just a simple representative of a series of deeper results of the
same kind in [Kh161].

An interesting new turn to this theme was given in [Kh152]. This article
contains, by the way, an excellent survey of the state of affairs with the analytic
capacity by 1999. Its new ingredients were the so-called Golubev sums

N∑
j=1

(Cµj )(j)

where µj denote measures with compact support (on these sums, including N = ∞,
see [3]). In [Kh152] some analogs of the Cauchy capacity related to the Golubev
sums are studied (among many other things).

6. Approximation

Approximation problems are present (be it implicitly) in any of the preceding
sections where they mostly appeared as a tool (e.g., in dual counterparts of maxi-
mization problems). But approximation also appears explicitly, as the main theme,
in many of Khavinson’s works. His contribution to approximation theory is, first
of all, marked by a special setting aimed not only at the deviation of the approxi-
mant from the function to be approximated, but also at the size of the approximant
measured in terms of a separate norm (say, directly depending on the moduli of
the coefficients of linear combinations which are the approximants). This “size”
can be interpreted as the price to be paid for the accuracy of approximation.

This setting is very clearly described and illustrated by concrete examples
in [Kh108] and [Kh121] where references to other publications of S. Khavinson on
this subject can be found. Let us briefly discuss this setting in a very general form.

Consider a continuous seminorm p in a linear topological space E with the
conjugate space E∗, and a seminorm p1 on Rn (if E is real; if it is complex, then
p1 is defined on Cn). For a linearly independent family (x1, x2, . . . , xn) in E and
a vector y ∈ E put

α = inf
λ1,...,λn

[
p
(
g −

n∑
k=1

λkxk

)
+ p1(λ1, . . . , λn

)]
.
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The last term is “the price of approximation” of y by the elements of the linear
span of x1, x2, . . . , xn. It turns out that

α = β

where

β = sup
{
|f(y)| : f ∈ E∗, |f(x)| ≤ p(x) ∀x ∈ E

&
∣∣∣∣ n∑
k=1

λkf(xk)
∣∣∣∣ ≤ p1(λ1, . . . , λn) for arbitrary scalars λ1, . . . , λn

}
.

This abstract fact (and some neighboring facts, as, e.g., the existence of extremiz-
ers for α and β and their interrelations) can be given a lot of concrete embodiments
making it a fact of classical (say, polynomial) approximation, or a moment prob-
lem (in the spirit of the Tchebyshev-Markov problem) or Complex Analysis. It is
shown (among other things) in [Kh108] that the usual Tchebyshev polynomial of
best approximation (corresponding to p1 ≡ 0) preserves its best approximation
property (i.e., minimizes α) if p1 = ηp0 where p0 is a given seminorm on Rn (or
Cn) and η > 0 is small enough. This article contains a list of elegant examples
of concrete situations where the general theory is a source of explicit and sharp
results concerning the moment problem, polynomial approximation, and sharp
interpolation inequalities for some classes of analytic functions.

Another important turn of this theme is based on the notions of O(p)- and
o(p)-completeness of a family of vectors. Let E be a (say, real) vector normed space
and p a continuous seminorm in the space R∞

0 of all finite sequences

(λ1, λ2, . . . , λn, 0, 0, 0 . . .), λj ∈ R.

A sequence (xk)∞k=1 of vectors in E is said to be O(p)-complete in E if for any
x ∈ E there exists a constant C(x) > 0 such that for any ε > 0 there exists a
λ ∈ R∞

0 satisfying ∥∥∥∥x −
n∑

k=1

λkxk

∥∥∥∥
E

< ε, p(λ) ≤ C(x). (6.1)

Replacing C(x) by ε in (6.1) we get an o(p)-complete sequence (xk)∞k=1. A sys-
tematic theory of O(p)- and o(p)-completeness is built in [Kh79] including some
stability problems (“an O(p)-complete system remains O(p)-complete under small
perturbations”). We again refer the reader to the list of publications in [Kh108,
Kh121], but we cannot resist temptation to quote separately an elegant application
of the theory given in [Kh71, Kh96] where the Weierstrass theorem on the uni-
form polynomial approximation on [0, 1] (and, in fact, the Lavrentiev theorem on
approximation on nowhere dense plane compacta) is complemented by exhaustive
information on the rate of growth of the coefficients of approximating polynomials.

Another aspect of approximation which attracted S. Khavinson is related to
the 13th Hilbert problem on representation of a continuous function of several
variables by linear compositions of functions of a lesser number of variables. From
the series of problems studied by S. Khavinson in this area we only mention here
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the passage from functions of two variables to a more difficult case of three or more
variables. To make this passage possible S. Khavinson had to overcome essential
difficulties discovering underway a number of new effects. His results in this area
are summed up in his monograph [Kh148].

We conclude by just naming two more works devoted to “the pure approx-
imation theory”: [Kh21] is an essential development of earlier works by Jackson
and M. Krein on the uniqueness of the polynomial of best approximation in L1,
and [Kh162], the last publication of S. Khavinson, is devoted to the uniform ap-
proximation by elements of an interval (= {x ∈ C(T ) : a ≤ x ≤ b} where a, b
are given continuous functions on a compact space T ); the results are applied to
the uniform approximation of continuous functions of several variables by tensor
products.
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The Structural Formulae for
Extremal Functions in Hardy Classes
on Finite Riemann Surfaces

S.Ya. Khavinson and T.S. Kuzina

Let M be a finite (open) Riemann surface with n handles and boundary Γ con-
sisting of closed analytic curves γ1, . . . , γm; M ∪ Γ = M is a compact surface.
In this article we study some “natural” extremal problems in the Hardy classes
on M and give a qualitative description of extremal functions in such problems.
Extensions of classical theory of Hardy spaces and other related classes of analytic
functions in the unit disk or simply connected domains to Riemann surfaces be-
gan with an important article by Parreau [1] and continued in several directions
in a great many papers. We mention here the monograph by M. Heins [2] and the
paper by W. Rudin [3] (who however considered only arbitrary planar domains).
A number of topics were developed in a series of papers by S.Ya. Khavinson and
G.Ts. Tumarkin. For planar domains the relevant results are contained in [4], where
one could also find further references. In [5,6], the author developed factorization
theory for various classes of analytic functions on finite open Riemann surfaces
extending the classical results of R. Nevanlinna, V.I. Smirnov, F. & M. Riesz,
G. Szegö in the unit disk. The purpose of the present paper is – by using factor-
ization formulae from [5,6] – to obtain structural description of extremal functions
in a wide class of extremal problems. Extremal problems in the classes of analytic
functions in the disk were intensively studied in the last century, cf. [7–10]. The
most detailed description of the structure of extremal functions in Hardy spaces
in the disk is contained in [11–12]. Structural formulae for extremal functions in
multiply connected domains in the plane are obtained in [13]. These and other re-
sults and further references are contained in the monographs [14–15]. An extremal
problem for bounded analytic functions on a finite Riemann surface was first stud-
ied in L. Ahlfors’ paper [16]. The variational method used there, extended in a

This research was supported by the Ministry of Education of Russia (Grant E 00-1.0-199). The
first author was also supported by the Russian Foundation of Basic Research (Grant no 01-01-
00608).
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natural way the method used by the first author in an earlier paper [17]. The prob-
lem studied in [16–17] was rather special, similar to that in the Schwarz lemma.
In the paper [17] the author also pointed out connections of that extremal prob-
lem to Painlevé’s problem of characterizing removable singular sets for bounded
analytic functions. Later on, it led to the development of important theory of
analytic capacity of sets (cf., e.g., [18–21]). A. Read [22–23] and H. Royden [24]
applied the duality method based on the Hahn-Banach theorem to study similar
problems on finite Riemann surfaces not merely for bounded functions but also for
general Hardy spaces functions. Applications of this method to problems involv-
ing analytic functions was initiated in the papers of S.Ya. Khavinson [25–26] and
W.W. Rogosinski and H.S. Shapiro [12]. (This method provides the starting point
for study of extremal problems in the monographs [7–10], [14–15] cited above.)
Yet, the relevant study of dual extremal problems on finite Riemann surfaces,
was limited to establishing “smooth” properties of the extremal functions near
the boundary. Here, our goal is to describe the structure of extremal function in
relation to the basic potential-theoretic functions on such surfaces: the Green and
Neumann functions.

1. Preliminaries and notations

We shall denote the points on the surface M or its boundary Γ by p, q, etc. Recall,
that M is a finite Riemann surface with h handles and the boundary Γ consisting
of m closed analytic contours γ1, . . . , γm. The homological basis on M consists
of L = 2h + m − 1 cycles: choose any m − 1 boundary contours and meridians
and parallels on each handle. The number L, the first Betti number for M, also
defines genus of the closed surface M̂, the Shottky double of M (cf. [27]). Denote
by G(p, q) the Green function of M with pole at q. Fixing from now on a point
p0 ∈ M, define the Green kernel

P (p, q) =
1
2π

∂
∂nq

G(p, q)

∂
∂nq

G(p0, q)
, q ∈ Γ, p ∈ M. (1.1)

Here, ∂
∂nq

is the derivative in the inward normal direction to Γ at the point q ∈ Γ.

The Neumann function (cf. [27]) N(p, q1, q2) is a harmonic function of p on M
except for the logarithmic poles at q1, and q2: a positive pole at q1, negative at q2.
Its defining property is

∂

∂np
N(p, q1, q2) = 0, p ∈ Γ. (1.2)

The poles q1, q2 also may lie on Γ (one, or both of them), but then their order
is doubled. This is easily seen if one extends N(p, q1, q2) to the double M̂ by the
Schwarz symmetry principle.
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We denote by ∗u(p) the conjugate harmonic function of a harmonic function
u(p) on M. The function ∗N(p, q1, q2) does not have periods around boundary
contours. Moreover, in view of the Cauchy-Riemann equations,

∂

∂s
∗ N(p, q1, q2) = 0, p ∈ Γ (1.3)

(s is a parameter on Γ). Yet, ∗N(p, q1, q2) is not single-valued. In view of (1.3),
every branch of ∗N is constant on each boundary contour. The function

Ψ(p, q1, q2) = exp[N(p, q1, q2) + i ∗ N(p, q1, q2)] (1.4)

is meromorphic on M, has a single-valued modulus and every one of its single-
valued branches has a constant argument on every boundary contour. Ψ also has
a pole at q1 (simple if q1 ∈ M, and double when q1 ∈ Γ) and a zero at q2 (once
again, a simple zero when q2 ∈ M and a double when q2 ∈ Γ). Let D be a closed
domain on M, whose boundary ∂D consists of Jordan curves (in particular, D
may be M itself). By dω(p) we shall denote the harmonic measure (with respect
to the domain D) on ∂D evaluated at p ∈ D. The harmonic measure at p0 will
simply be denoted by dω.

2. Hardy classes and certain other classes of analytic functions
on the surface M

A single-valued analytic function f(p) on M belongs to the Hardy class Hδ(M),
δ > 0, if the subharmonic function |f(p)|δ has a harmonic majorant u(p) on M,
i.e.,

|f(p)|δ ≤ u(p). (2.1)
This is equivalent to existence of M > 0 such that for any Jordan domain D ⊂ M∫

∂D

|f(p)|δ dω ≤ M. (2.2)

A function f ∈ Hδ(M) has almost everywhere (with respect to dω) nontangential
boundary values f(q) on Γ. Moreover, a function f(p) ∈ H1(M) can be represented
by its boundary values f(q) by Green’s formula

f(p) =
∫
Γ

f(q)P (p, q) dω. (2.3)

(The equality (2.3) generalizes a well-known G.M. Fikhtengoltz’s theorem con-
cerning representation H1-functions by the Poisson integral.) Let Dρ be a domain
in M whose boundary is defined by the level set Γρ of the Green function:

Γρ = {p ∈ M : G(p, p0) = ρ} .

For all sufficiently small ρ, Γρ consists of contours γρ
1 , . . . , γρ

m homotopic to γ1, . . .,
γm respectively. From point q ∈ Γ drop the normal to Γ until it meets Γρ at qρ.
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Then, the following generalization of the classical F. Riesz theorem in the disk
holds: ∫

Γ

|f(q) − f(qρ)|δ dω → 0, when ρ → 0. (2.4)

In particular, ∫
Γ

|f(q)|δ dω < +∞. (2.5)

The integral (2.5) gives the value of the least harmonic majorant of the function
|f(p)|δ evaluated at p0. Property (2.4) is equivalent to uniform integrability with
respect to the measure dω of the integrals∫

E

|f(p)|δ dω, E ⊂ Γρ. (2.6)

In view of the Luzin-Privalov uniqueness theorem, the class Hδ(M) can be iden-
tified with the class Hδ(Γ) which consists of boundary values of functions in
Hδ(M). Inequality (2.5) then implies that Hδ(Γ) is a subspace of the Lebesgue
space Lδ(Γ, dω) of functions summable to the power δ with respect to the measure
dω on Γ. For δ ≥ 1, the norm

‖f‖δ =
{∫

Γ

|f(q)|δ dω

}1/δ

(2.7)

turns Hδ(Γ) into a subspace of the Banach space Lδ(Γ, dω). One can also show
that Hδ(Γ) is closed in Lδ. For δ = ∞, the class H∞(M) consists of bounded
and analytic functions on M. H∞(Γ) is a subspace of L∞(Γ, dω) of bounded
measurable functions on Γ equipped with the usual Vrai sup norm. The following
lemma of S.Ya. Khavinson is useful when one tries to justify taking the limits
under the integral sign for functions on M. Let H1

δ (Γ) denote the unit ball in the
space Hδ(Γ).

Lemma 2.1. Let a sequence of single-valued analytic on M functions {fn(p)} con-
verge uniformly on compact subsets F ⊂ M to the limit function f(p). Then the
following hold.

1. If {fn(p)} ⊂ H1∞, then f(p) ∈ H1∞(M) and for each Θ(q) ∈ L1(Γ, dω)

lim
n→∞

∫
Γ

fn(q)Θ(q) dω =
∫
Γ

f(q)Θ(q) dω. (2.8)

2. If {fn(p)} ⊂ H1
1 (M), then f(p) ∈ H1

1 (M) and (2.8) holds for every
continuous function Θ(q) on Γ.

3. If {fn(p)} ⊂ H1
δ (M), 1 < δ < ∞, then f(p) ∈ H1

δ (M) and (2.8) holds for all
Θ(q) ∈ Lη(Γ, dω), where δ−1 + η−1 = 1. In other words, for {fn(p)} ⊂ H1∞
weak (∗) convergence in L∞(Γ, dω) holds. For {fn(p)} ⊂ H1

δ , 1 < δ < ∞,
weak (∗) convergence in Lδ(Γ, dω) holds, while for {fn(p)} ⊂ H1

1 convergence



The Structural Formulae for Extremal Functions 41

in the weak (∗) topology of measures on Γ (weaker, than the weak topology
in L1) holds.

We shall also need the following classes of single-valued analytic functions on M.
A(Γ): this class consists of boundary values on Γ of functions analytic on

M and continuous on M. A(Γ) is viewed as the subspace of C(Γ) of continuous
functions on Γ with its usual max-norm. A1

1(Γ) is the unit ball in A(Γ).

N+(M) : f(p) ∈ N+ if
{∫

E

ln+ |f(p)| dω

}
, E ⊂ Γρ, (2.9)

are uniformly integrable with respect to the harmonic measure.

N++(M) : f(p) ∈ N++ if
{∫

E

| ln |f(p)|| dω

}
, E ⊂ Γρ, (2.10)

are uniformly integrable with respect to the harmonic measure.
For the disk, the class N+ was introduced by V.I. Smirnov [28] in connec-

tion with an important theorem of Polubarinova-Kochina. The class N++ was
introduced and studied by I.I. Privalov [29]. (Often, in Russian literature, N+ is
denoted by D, and N++ by C.) It is easily verified that Hδ(M) ⊂ N+(M) for all
δ > 0. The above-mentioned Polubarinova-Kochina theorem yields in our context
the following: if f(p) ∈ N+(M) and (2.5) holds, then f ∈ Hδ(M).

For more details concerning the topics discussed in this section the reader
is referred to books [2,4] and articles [5–6]. The exposition in [4] is reduced to
multiply connected domains, however boundary behavior of functions on M can
be easily reduced to that in multiply connected domains. Namely, take a con-
tour Γ1 on M, homologous to the boundary Γ and consider the “strip” domain
D ⊂ M whose boundary is Γ ∪ Γ1. This strip can be chosen so narrow that it
is conformally equivalent to a schlicht domain. Then, map D conformally onto a
multiply-connected domain Q ⊂ C. This reduces study of boundary behavior of a
function f(p) near Γ to that of a transmitted function in Q near ∂Q. (Remark in
passing that the classical version of the theory outlined in this section has been
treated in numerous monographs, e.g., [7–10], [29–30], to name a few.)

3. Annihilators of Hardy classes

The following theorem distinguishes Hδ(Γ) functions among Lδ(Γ, dω).

Theorem 3.1 (Direct and converse Cauchy’s theorems). Let 1 ≤ δ ≤ ∞. If f ∈
Hδ(Γ), then ∫

Γ

fα = 0 (3.1)

holds for any abelian differential α holomorphic on M. Conversely, if f ∈ Lδ(Γ, dω)
and (3.1) holds for all abelian differentials analytic on M then f ∈ Hδ(Γ). If,
further, f ∈ C(Γ), then f ∈ A(Γ).
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Analytic on M here means analytic in an open domain S, such that

M ⊂ S ⊂ M̂. (3.2)

Theorem 3.1 was proved by Read [22–23] and was used to study some extremal
problems. A simpler proof was given by Royden [24]. This theorem (with appro-
priate references) is contained in [2, p. 75, Theorem 6]. A more general case of
a surface with a “bad” boundary was treated in [31]. We extend Theorem 3.1
somewhat further. For that we shall need the following general fact.

Proposition 3.2. There exists an analytic differential α0 on M which does not
vanish anywhere on M.

Indeed, existence of such differential α0 on an open Riemann surface S is a
well-known fact in the theory of Riemann surfaces ([32, p. 205]). Suffices to take
for S a domain in M̂ satisfying (3.2). The differential α0 shall play an important
role in all of the following constructions.

Recall that if X is a Banach space, Y ⊂ X is a subspace of X and X∗ is
the dual of X, then the annihilator Y ⊥ of Y is the set of all functionals in X∗

vanishing on Y . If Z is a subspace of X∗, the annihilator ⊥Z is the subspace in X
that consists of all common zeros of functionals in Z.

Introduce the following classes of (abelian) differentials of the first kind on M:

H̃δ(M) = {β = fα0, f ∈ Hδ(M), 1 ≤ δ ≤ ∞}. (3.3)

H̃δ(Γ) then denotes boundary values of differentials (3.3) on Γ. Note, that H̃1(Γ)
is a subspace in C(Γ)∗. Indeed, the latter is the space of all finite Borel measures
on Γ, where the norm of a measure in C(Γ)∗ is its total variation. At the same
time, a differential β ∈ H̃1(Γ) obviously produces a measure on Γ and its total
variation ∫

|β| =
∫

|fα0|, f ∈ H1(Γ) (3.4)

is finite. To see this, consider the complex Green function on M :

T (p, p0) = G(p, p0) + i ∗ G(p, p0) (3.5)

(∗ stands for “conjugate” in the p-variable, of course.) Its differential dT (p, p0)
is a meromorphic differential on M and at points q ∈ Γ its values along Γ (with
respect to any parameterization) are:

d T =
(

∂G(q, p0)
∂s

+ i
∂ ∗ G(q, p0)

∂s

)
ds = −i

∂G(q, p0)
∂nq

ds = −i dω (3.6)

We have:
β = fα0 =

fα0

id T
dω. (3.7)

The ratio α0
id T

is a meromorphic function on M, analytic on Γ and, in view of
properties of G, α0 and Γ (i.e., analyticity of the boundary contours), satisfying

0 < m ≤ α0

id T
≤ M < +∞ (3.8)
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with some constants m, M. Hence

m

∫
Γ

|f | dω ≤
∫
Γ

|β| ≤ M

∫
Γ

|f | dω. (3.9)

This gives a two-sided estimate of (3.4) in terms of H1(Γ)-norm of f . In particular,
(3.9) implies that total variation of the measure associated with the differential β
is finite.

Proposition 3.3.

⊥H̃1(Γ) = A(Γ); (3.10)

A(Γ)⊥ = H̃1(Γ); (3.11)

⊥H̃∞(Γ) = H1(Γ); (3.12)

H1(Γ)⊥ = H̃∞(Γ); (3.13)

⊥H̃η(Γ) = Hδ(Γ); (3.14)

Hδ(Γ)⊥ = H̃η(Γ), (3.15)

where 1 < δ, η < ∞, δ−1 + η−1 = 1.

Proof. Let us prove (3.10)–(3.11).

1) Let ϕ ∈ A(Γ) and β = f α0 ∈ H̃1(Γ). Then,
∫
Γρ

ϕβ =
∫
Γρ

ϕf α0 = 0, ∀ρ > 0

since the differential ϕfα0 is analytic in Dρ. From this, by the F. Riesz theorem
applied to the function f in β, it follows∫

Γ

ϕβ = lim
ρ→0

∫
Γρ

ϕβ = 0.

Hence, ⊥H̃1(Γ) ⊃ A(Γ). Now, let ϕ ∈ C(Γ) ∩ ⊥H̃1(Γ) and β be an analytic differ-

ential on M. Then f = β
α0

is an analytic function on M, so f ∈ H1(Γ). Hence

analytic differentials β on M belong to H̃1(Γ). Since ϕ ∈ ⊥H̃1(Γ), ϕ annihilates
all differentials analytic on M. Then, the converse part of Theorem 3.1 of Cauchy-
Read yields ϕ ∈ A(Γ) and (3.10) is proved.

2) To prove (3.11), i.e., (
⊥H̃1(Γ)

)⊥
= H̃1(Γ),

it suffices, by the general theorem of functional analysis (cf. [33, Theorem 4.7]),
to show that H̃1(Γ) is weak (∗) closed in the space C(Γ)∗. Let a sequence of
differentials {βn = fnα0} ⊂ H̃1(Γ) converges weak (∗) in C(Γ)∗ to the measure µ
on Γ. Then, total variations of measures associated with the differentials βn are
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uniformly bounded. Then (3.9) implies, that there exists a constant M > 0 such
that

‖fn‖ =
∫
Γ

|fn| dω ≤ M < +∞. (3.16)

Show that the measures {fndω} also converge weak (∗). Take an arbitrary
ψ ∈ C(Γ). We have: ∫

Γ

fnψ dω =
∫
Γ

fnψα0
id T

α0
=
∫
Γ

βnψ
id T

α0

and, hence, there exists a finite limit

lim
n→∞

∫
Γ

fnψ dω.

In particular, ∀p ∈ M there exists a finite limit

lim
n→∞ fn(p) = lim

n→∞

∫
Γ

fn(q)P (p, q) dω.

(P (p, q) =
∂

∂nq
G(p,q)

∂
∂nq

G(p0,q)
is a continuous function on Γ.) Thus, the sequence {fn(p)} ⊂

H1(M) converges in M (on compact subsets) to an analytic function f(p). Estimate
(3.16) implies that f(p) ∈ H1(M). Therefore, S.Ya. Khavinson’s lemma from §2
implies that

lim
n→∞

∫
Γ

fnΘ dω =
∫
Γ

fΘ dω

for all functions Θ(q) continuous on Γ. Whence, we have∫
Γ

Θ dµ = lim
n→∞

∫
Γ

Θ βn = lim
n→∞

∫
Γ

fnα0 Θ

= lim
n→∞

∫
Γ

fn
α0

id T
Θ dω =

∫
Γ

f
α0

id T
Θ dω =

∫
Γ

fα0Θ.

Thus, the measure µ, the limit of measures generated by differentials βn, coincides
with the measure associated with the differential β = fα0 ∈ H̃1(Γ) since f ∈
H1(M). We have proved that H̃1(Γ) is weak (∗) closed, and hence (3.11).

Proofs of (3.12)–(3.13) are similar and we omit them. Proofs of (3.14)–(3.15)
are even simpler, because we can exploit reflexivity of the corresponding Lebesgue
spaces. �
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4. Extremal problems, duality, relations between
extremal functions

Below, we shall write max (min) instead of sup (inf) in those cases when the fact
that a corresponding extremum is attained is a part of the assertion.

Theorem 4.1.

1. Let µ be a Baire measure on Γ. Then

sup
f∈A1(Γ)

∣∣∣∣∫
Γ

f dµ

∣∣∣∣= min
β∈H̃1(Γ)

∫
Γ

|dµ − β|. (4.1)

2. Let Q(q) be a summable (wrt dω) function on Γ. Then

sup
f∈A1(Γ)

∣∣∣∣∫
Γ

fQ dω

∣∣∣∣= max
f∈H1∞(Γ)

∣∣∣∣∫
Γ

fQ dω

∣∣∣∣= min
ϕ∈H1(Γ)

∫
Γ

∣∣∣Q − ϕα0

id T

∣∣∣ dω. (4.2)

3. Let Q(q) be a bounded measurable (dω) function on Γ. Then

sup
f∈H1

1 (Γ)

∣∣∣∣∫
Γ

fQ dω

∣∣∣∣= min
ϕ∈H∞(Γ)

Vraimax
q∈Γ

∣∣∣Q − ϕα0

id T

∣∣∣ . (4.3)

(Vrai max is taken with respect to dω.) If Q(q) is a continuous function on
Γ, then the supremum in (4.3) can be replaced by max.

4. Let Q(q) ∈ Lη(Γ), 1 < η < ∞. Then

max
f∈H1

δ (Γ)

∣∣∣∣∫
Γ

fQ dω

∣∣∣∣ = min
ϕ∈Hη(Γ)

{∫
Γ

∣∣∣Q − ϕα0

id T

∣∣∣η dω

}1/η

, η−1 + δ−1 = 1. (4.4)

Proof. (4.1)–(4.4) are corollaries of the Hahn-Banach theorem and are justified
in a straightforward manner by making use of Proposition 3.3. In order to show
existence of the extremal functions in the left-hand sides of (4.2)–(4.4), one also
needs to use the lemma on the weak convergence of boundary values from §2 (cf.
also [14], where these statements are proved for the case of multiply connected
domains in great detail). �

Theorem 4.2. The extremal functions f∗ and ϕ∗ in the left and right sides of
(4.2)–(4.4) satisfy the following relations (θ denotes a real constant).

1. For (4.2):

f∗
[
Q − ϕ∗α0

id T

]
=
∣∣∣∣Q − ϕ∗α0

id T

∣∣∣∣ ei θ. (4.5)

2. For (4.3) (the case of a continuous function Q):

f∗
[
Q − ϕ∗α0

id T

]
= λ |f∗| ei θ, (4.6)

where λ is the value of both extrema in (4.3).
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3. For (4.4):

f∗
[
Q − ϕ∗α0

id T

]
=

ei θ

λη−1

∣∣∣∣Q − ϕ∗α0

id T

∣∣∣∣η = λ ei θ|f∗|δ, (4.7)

where θ is a real constant, λ is the value of both extrema in the left and right
sides of (4.3) and (4.4) respectively. (4.5)–(4.7) hold at almost all (dω) points
of Γ and represent necessary and sufficient conditions for the functions f∗

and ϕ∗ to be extremal in respective equalities of Theorem 4.1.

Let R be a meromorphic differential on M, analytic on the boundary Γ.
Consider the extremal problem

max
f∈H1

δ (Γ)

∣∣∣∣∫
Γ

fR

∣∣∣∣, 1 ≤ δ ≤ ∞. (4.8)

Then, for Q in (4.5)–(4.7), we take the function

Q =
R

idT
. (4.9)

This function is meromorphic on M and analytic on the boundary Γ. Moreover,
we have the following

Theorem 4.3. The function

P = f∗
[

R

idT
− ϕ∗α0

id T

]
, (4.10)

where f∗, ϕ∗ are extremals in (4.2)–(4.4) extends (by the Schwarz reflection prin-
ciple) to a meromorphic function on the double M̂ of the surface M. The number
of zeros on M of the function P equals to the number of its poles inside M (as
usual, zeros on Γ are counted with half multiplicity.) If n is the number of poles of
the differential R, then the (same) number of zeros or poles of the function P (on
M and M respectively) equals

N = n + L = n + 2h + m − 1. (4.11)

Proof. Extendibility of the function P to M̂ follows since by (4.5)–(4.7) this func-
tion has a constant argument θ on Γ. The latter, and the argument principle, also
implies equality of the numbers of zeros and poles of P (P does not have poles
on Γ and zeros on Γ are all of even orders.) The poles of P are at the poles of
the differential R and zeros of the (meromorphic) differential id T . Since by (3.6)
id T = dω > 0 on Γ, dT also extends by symmetry to the meromorphic differential
on the double M̂ which has genus L. The Riemann-Roch theorem implies that the
degree of any meromorphic differential on a compact surface of genus L is 2L − 2
([34, Theorem 10.11]). Whence, by symmetry, the degree of the divisor of id T on
M equals L − 1. Since id T has only one simple pole at p0, the number of zeros
id T on M is equal to L. This proves (4.11). �
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The main result, that we shall use to study the structure of extremals further,
is contained in the following theorem.

Theorem 4.4. Let q1, . . . , qN be the zeros of function P , and q̃1, . . . , q̃N be the poles.
Then,

P = c

N∏
1

ψ(p, q̃j , qj), (4.12)

where c is a constant.

Note once more that the set of poles {q̃1, . . . , q̃N} of the function P consists
of n poles of the differential R which defines the extremal problem and L zeros of
the differential dT (i.e., the critical points of the Green function G(p, p0)). Also,
the point p0, the pole of the differential dT belongs to the set {q1, . . . , qN} of zeros
of the function P .

Proof. Denote by S the product in (4.12) and let

σ =
P

S
. (4.13)

The function σ is analytic in M, does not have zeros or poles, but, a priori, could
turn out to be multi-valued. Of course, it does not have periods around boundary
cycles, but could have nonzero periods around some of the basis cycles on the
handles of our surface. This periods may occur because the function∑

j

∗N(p, q̃j, qj) (4.14)

could, in general, be multi-valued. If a period of (4.14) around the basis cycle
Ki, i = 1, . . . , 2h equals ai, then all periods of the sum (4.14) are given by the
formula

β = a1n1 + a2n2 + · · · + a2hn2h, (4.15)
where (n1, n2, . . . , n2h) is an arbitrary set of integers (positive, or negative). The
set of periods {β} is countable and we shall enumerate all the periods. If for
p ∈ M, σ(p) is one value of a multivalued function σ at p, then all other values are
given by σ(p) e−i βk , k = 1, . . . , where {βk} are all the periods (4.15). On every
boundary contour γj the arguments of all branches of σ are constant, hence bound-
ary contours γ1, . . . , γm are mapped by the function w = σ(p) onto a countable set
of segments that lie on the rays in the w-plane emanating from the origin w = 0.
Denote by A the set of all images of the boundary Γ under mappings by all the
branches of σ. The image of the surface M under the mapping w = σ(p) is an open
connected set. This set is also bounded since |σ(p)| is a single-valued continuous
function on M. Hence, the set A cannot exhaust the boundary of the image of
M. Let w0 be a boundary point of the image of M that does not belong to A.
Then, ∃{w1 = σ(p1), . . . , wk = σ(pk), . . .} ⊂ σ(M), wk → w0, k → ∞. Since M is
compact we can assume without loss of generality that pk → p̃, w0 ∈ σ{p̃}, p̃ /∈ Γ,
otherwise in view of continuity and single-valuedness of all branches of σ near the
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boundary Γ, w0 ∈ A. Let σ(p̃) = w0
0 be a value of σ at p̃. By analyticity of σ, we

can find a disk V centered at w0
0 such that V ⊂ σ(M). Let Z be a preimage of V .

Then {Vk = V e−i βk}, k = 1, . . ., is the set of all images of Z. Let w0
k be a “center”

of Vk. (It is an image of p̃ under the mapping by the corresponding branch of σ.)
We can assume that wk ∈ Vk since {pk} → p̃, |wk −wo

k| → 0. Therefore, because
wk → w0, w0

k → w0 as well. But then w0 is an interior point of Vk for all k ≥ k0.
Hence, w0 is an interior point of σ(M). But it was a boundary point. We have
reached a contradiction, hence σ(p) ≡ const = C. �

Let us yet give another, purely “analytic” proof. The function

u = ln |σ(p)| (4.16)

is a single-valued harmonic function on M. The function W = ∗u(p) is multi-
valued and its values on different branches differ by additive constants. Hence dW
is a well-defined harmonic differential. The differential

β = u dW

is then well defined on M. Moreover, since every branch of σ(p) has a constant
argument on every boundary contour,∫

Γ

β =
∫
Γ

u
∂W

∂s
ds = 0.

But then

0 =
∫
Γ

u
∂W

∂s
ds =

∫
Γ

u
∂u

∂n
ds =

∫∫
M

[(∂u

∂x

)2
+
(∂u

∂y

)2]
dx dy,

the Dirichlet integral calculated with respect to some coordinate atlas on M.
Hence, gradu = 0 on M, i.e., u ≡ const and W ≡ const, so σ(p) ≡ const = C.

5. Representation of extremal functions via Green’s function
and Neumann’s function

Let T (p, p̃) be the complex Green function of M with pole at p̃ ∈ M,

T (p, p̃) = G(p, p̃) + i ∗ G(p, p̃) (5.1)

(∗ as above denotes conjugate harmonic function with respect to the variable p.)
For p̃ = p0, (5.1) coincides with (3.5) and its differential dT has been a part of
many preceding formulas.

Theorem 5.1. Let q1, . . . , qk, k ≤ N = n+2h+m−1, be the zeros of the extremal
function f∗ in the problem (4.8) that lie inside M. Then the following hold.
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1) For δ = ∞,

f∗(p) = C exp
[
−

k∑
1

T (p, qi)
]
, (5.2)

where C : |C| = 1, is a constant.
2) For 1 ≤ δ < ∞,

f∗(p) = C1 exp
[
−

k∑
1

T (p, qi)
]{ N∏

1

ψ(p, q̃i, qi)
}1/δ

× exp
(
−

N∑
1

T (p, q̃i) +
N∑
1

T (p, qi)
)1/δ

, (5.3)

where q̃i are the poles of the function P as in Theorem 4.4 and C1 is a
constant such that ‖f∗‖δ = 1.

Proof. Consider on M the harmonic function

u(p) = ln |f∗(p)| +
k∑
1

G(p, qi). (5.4)

First show that the family of integrals∫
E

|u(p)| dω, E ⊂ ∂Dρ, (5.5)

is uniformly absolutely continuous with respect to harmonic measure dω for all
sufficiently small ρ > 0. Indeed, f∗ ⊂ Hδ(M) ⊂ N+(M), so the family∫

E

ln+ |f | dω (5.6)

is uniformly absolutely continuous with respect to dω. Moreover, (4.10) yields

1
f∗ =

[
R

idT
− ϕ∗αo

id T

]
· 1
P

. (5.7)

The function P is analytic on Γ and then as is easily seen the function 1/P belongs
to N+ in a sufficiently narrow strips adjacent to the boundary Γ. The functions
R

idT
and αo

id T
are also analytic on Γ while ϕ∗ ∈ Hη(M) ⊂ N+(M). Hence, the

function [
R

idT
− ϕ∗α0

id T

]
belongs to the class Hη in such boundary “strips” and, accordingly to N+. There-
fore, each one the two factors in the representation (5.7) for 1/f∗ belongs to N+ in
sufficiently narrow strips near the boundary and so does 1/f∗. Hence, the family∫

E

ln+

∣∣∣∣ 1f
∣∣∣∣ dω, E ⊂ ∂Dρ (5.8)
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is uniformly absolutely continuous with respect to dω for all sufficiently small ρ.
Combining (5.4), (5.5) and (5.8) with continuity of the Green function G(p, qi),
δ = 1, . . . , k near the boundary, we obtain that the family∫

E

|u(p)| dω, E ⊂ ∂Dρ (5.9)

is uniformly absolutely continuous with respect to dω for all small ρ > 0. This
suffices to claim that u(p) is representable by the Green integral of its boundary
values (cf. [4], [6]):

u(p) =
∫

E

u(q)P (p, q) dω =
∫

E

ln |f∗(q)|P (p, q) dω. (5.10)

When δ = ∞, |f∗(q)| ≡ 1 on Γ as is seen from (4.5), hence the last integral in
(5.10) is equal to zero identically. Then, from (5.4) we obtain

ln |f∗(p)| = −
k∑
1

G(p, qi). (5.11)

But this is equivalent to (5.2).
For 1 ≤ δ < ∞, (4.6), (4.7), (4.10), (4.12) and (5.4) imply that

u(q) = ln |f∗(q)| =
1
δ

k∑
1

N(q, q̃i, qi) + lnC1 (5.12)

on Γ, where C1 is a constant. Functions

vj(p) = N(p, q̃j , qj) − G(p, q̃j) + G(p, qj) (5.13)

are harmonic on M and representable by the Green integral of their boundary
values N(q, q̃j , qj). (In the case when the zero qj is on Γ, the corresponding term
G(p, qj) ≡ 0. The poles q̃j all lie inside M.) We obtain now from (5.4) and (5.10)–
(5.13):

ln |f∗(p)| = −
k∑
1

G(p, qi) +
∫
Γ

u(q)P (p, q) dω (5.14)

= −
k∑
1

G(p, qi) +
∫
Γ

(
1
δ

N∑
1

N(q, q̃i, qi) + lnC1

)
P (p, q) dω

= −
k∑
1

G(p, qi) +
1
δ

{ N∑
1

N(p, q̃j , qj) −
N∑
1

G(p, q̃j) +
k∑
1

G(p, qj)
}

+ lnC1.

The latter is equivalent to (5.3). �

Theorem 5.1 extends to finite Riemann surfaces the representation formulae
for extremal functions in planar multiply connected domains derived in [13, 14]. In
these papers it was also shown that the above formulae imply well-known earlier
representations of extremals in the disk and annulus (the latter were obtained
in [35]).



The Structural Formulae for Extremal Functions 51

6. Representations of extremal functions via Schwarz kernels
and Blaschke products

Formulas (5.2)–(5.3) represent a single-valued function f∗ as product of functions,
that are not in general single-valued. In this section we derive a different represen-
tation f∗, this time as product of single-valued functions. We shall make use of the
ideas in [5, 6], where the general theory of factorization of single-valued functions
on finite Riemann surfaces was developed.

Let ∗P (p, q) be the conjugate harmonic function to the Green kernel P (p, q)
(with respect to the variable p ∈ M), q ∈ Γ is fixed. Denote by yj(q), j = 1, . . . , L
its period around the basis cycle kj . [5, §1] and [6, §§3,5] contain explicit expressions
for yj(q) in terms of differentials of a particular basis in the space of abelian
differential of the first kind on M and the Green function (this basis is constructed
in [27, Ch. 4, §3]). In a nutshell, all formulas for yj(q) are given in terms of the
Green function ([5, formula (1.3)], [6, (3.5)]). We need not give here the precise
expressions. Choose on Γ open arcs ∆1, . . . ,∆L so that their closures ∆1, . . . ,∆L

do not intersect and let ωj(p) denote the harmonic measures of the arcs ∆j , j =
1, . . . , L. Denote by aij the period of ∗ωj(p) around the basis cycle Ki, i = 1, . . . , L.
Arcs ∆1, . . . ,∆L are chosen so that the period matrix

A = ‖aij‖, i = 1, . . . , L, j = 1, . . . , L (6.1)

is nondegenerate. The existence of such choice of arcs is proved in [5, Lemma 2.1]
and [6, Lemma 4.7]. Consider vector-functions y(q) = (y1(q), . . . , yL(q)), q ∈ Γ and
ω(p) = (ω1(p), . . . , ωL(p)), p ∈ M and define the vector λ(q) = (λ1(q), · · · , λL(q))
from the equation

λ(q)T = A−1 · y(q)T . (6.2)

(Here, T denotes the transpose.) The function

k(p, q) = P (p, q) − ω(p)A−1y(q)T = P (p, q) −
L∑
1

λj(q)ωj(p) (6.3)

has a single-valued conjugate ∗k(p, q) (with respect to p) for each q ∈ Γ. The
function

K(p, q) = k(p, q) + i ∗ k(p, q) (6.4)

defined on M×Γ possesses a number of properties similar to those of the Schwarz
kernel in the disk ([6, §5], [5, §3]). As in [5,6], we shall call it the Schwarz kernel
for M. We shall need the following identities∫

∆j

K(p, q) dω ≡ 0, p ∈ M, j = 1, . . . , L. (6.5)
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If we set

wj(p) = ωj(p) + i ∗ ωj(p), j = 1, . . . , L, (6.6)

then K(p, q) can be written as follows:

K(p, q) = P (p, q) + i ∗ P (p, q) −
L∑
1

λj(q)wj(p). (6.7)

Similarly, we can find real numbers d1, . . . , dL such that the function

∗
L∑
1

djωj(p) (6.8)

has the same periods around the basis cycles as the function ∗T (p, q) with a fixed
pole q ∈ M. Then, the function

B(p, q) = exp
[
−T (p, q) +

L∑
1

djwj(p)
]

(6.9)

is a single-valued analytic function of p on M that has one zero at p = q, is
bounded on M and continuous near the boundary Γ except for the end points of
arcs ∆j , j = 1, . . . , L. The boundary values of |B(p, q)| equal

|B(p, q)| =

⎧⎪⎨⎪⎩1, p ∈ Γ \ ∆, ∆ =
L⋃

j=1

∆j ,

exp dj , p ∈ ∆j , j = 1, . . . , L.

(6.10)

Following [5, §4 and 6, §6], we shall call function B(p, q) the Blaschke factor in M.
Convergence of infinite Blaschke products composed from such Blaschke factors
has been investigated in [5, 6]. But our products will only contain a finite number
of factors.

Theorem 6.1. Let q1, . . . , qk be interior zeros of the function f∗, the extremal in
the problem (4.8). Then, the following hold.

1. For δ = ∞,

f∗(p) = cB(p)Q(p), (6.11)

where c, |c| = 1, is a constant, and the single-valued functions B(p) and Q(p)
have the following form

B(p) =
k∏
1

B(p, qi); (6.12)

Q(p) = exp
( L∑

1

λjwj(p)
)

, (6.13)
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and also,

λj = −
k∑
1

di
j , (6.14)

where di
j are coefficients at wj(p) in the formula (6.9) for B(p, qi), i =

1, . . . , k, j = 1, . . . , L.

2. For 1 ≤ δ < +∞,

f∗(p) = cB(p)Q(p)
L∏
1

Fi(p), (6.15)

where c is a constant and B(p), Q(p), Fi(p), i = 1, . . . , L are single-valued
analytic functions. Moreover, B(p) has form (6.12), Q(p) has form (6.13)
with λj defined by (cf. (6.7)–(6.9))

λj =
∫
Γ

λj(q) ln
∣∣∣∣f∗(q)
B(q)

∣∣∣∣ dω, (6.16)

while Fi(p) has representation (6.25) below.

Proof. Consider the function

F (p) =
f∗(p)
B(p)

. (6.17)

In the proof of Theorem 5.1 we have verified that f∗ ∈ N++(M). Dividing it by
B(p), a function that is “nice” near Γ, does not violate its inclusion in N++, so
F ∈ N++(M). We have then for its boundary values:

|F (q)| =
|f∗(q)|
|B(q)| =

{
|f∗(q)|, q ∈ Γ \ ∆
|f∗(q)| exp(−dj), q ∈ ∆j , j = 1, . . . , L.

(6.18)

Here, the constants dj are defined by

dj =
k∑

i=1

di
j , j = 1, . . . , L, (6.19)

where di
j are the coefficients at wj(p) in the formula (6.9) for the Blaschke factor

B(p, qi). The inclusion F ∈ N++(M) means that the harmonic function ln |F (p)|
is representable by Green’s integral of its boundary values:

ln |F (p)| =
∫
Γ

P (p, q) ln |F (q)| dω. (6.20)
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Using (6.3)–(6.4) first and then (6.18) and (6.5), we obtain

ln |F (p)| =
∫
Γ

[
k(p, q) +

L∑
1

λj(q)ωj(p)
]

ln |F (q)| dω

= Re
∫
Γ

K(p, q) ln |F (q)| dω +
L∑
1

λjωj(p)

= Re
{ ∫
Γ\∆

K(p, q) ln |f∗(q)| dω +
L∑
1

∫
∆j

K(p, q)[ln |f∗(q)| − dj ]
}

+
L∑
1

λjωj(p)

= Re
∫
Γ

K(p, q) ln |f∗(q)| dω +
L∑
1

λjωj(p), (6.21)

where

λj =
∫
Γ

λj(q) ln |F (q)| dω,

as was claimed in (6.16).
For δ = ∞, ln |f∗(q)| ≡ 0 and we obtain

f∗(p) = F (p)B(p) =
k∏
1

B(p, qk)Q(p),

where Q(p) has the form (6.13), and also

λj = −
L∑
1

dj

∫
∆j

λj(q) dω.

(On the other hand, comparing (6.11) and (5.2) we see that

λj = −dj = −
k∑
1

di
j ,

as was stated in (6.14)).
For 1 ≤ δ < +∞, the above argument yields

f∗(p) = B(p)F (p) = B(p)Q(p) exp
∫
Γ

K(p, q) ln |f∗(q)| dω. (6.22)

So far we have not been keeping track of possible constants appearing when we
switch from ln |F (p)| to F (p). We shall continue this in the sequel and will only
write down possible multiplicative constants in the final formula (6.15). Starting
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out from the expression (5.12) for ln |f∗|, consider

Re
1
δ

∫
Γ

K(p, q)N(q, q̃i, qi) dω

=
1
δ

{∫
Γ

P (p, q)N(q, q̃i, qi) dω −
L∑
1

µi
jωj(p)

}

=
1
δ

{
N(p, q̃i, qi) − G(p, q̃i) + G(p, qi) −

L∑
1

µi
jωj(p)

}
,

(6.23)

where i, j = 1, . . . , L,

µi
j =
∫
Γ

λj(q)N(q, q̃i, qi) dω, i, j = 1, . . . , L (6.24)

and G(p, qi) ≡ 0 for k + 1 ≤ i ≤ N (i.e., when qi ∈ Γ). Then (6.24) leads to
single-valued analytic functions on M defined by

Fi(p) = exp
{1

δ

∫
Γ

K(p, q)N(q, q̃i, qi) dω
}

=
{

Ψ(p, q̃i, qi) exp
[
−T (p, q̃i) + T (p, qi) −

L∑
j=1

µi
jwj(p)

]}1/δ

.

(6.25)

Thus, we have arrived at the representation (6.15) and Theorem 6.1 is proved. �
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Abstract. In this paper, we study general extremal problems for non-vanishing
functions in Bergman spaces. We show the existence and uniqueness of solu-
tions to a wide class of such problems. In addition, we prove certain regularity
results: the extremal functions in the problems considered must be in a Hardy
space, and in fact must be bounded. We conjecture what the exact form of the
extremal function is. Finally, we discuss the specific problem of minimizing the
norm of non-vanishing Bergman functions whose first two Taylor coefficients
are given.
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1. Introduction

For 0 < p < ∞, let

Ap = {f analytic in D : (
∫

D

|f(z)|pdA(z))
1
p := ‖f‖Ap < ∞}

denote the Bergman spaces of analytic functions in the unit disk D. Here dA stands
for normalized area measure 1

π dxdy in D, z = x + iy. For 1 ≤ p < ∞, Ap is a
Banach space with norm ‖ ‖Ap . Ap spaces extend the well-studied scale of Hardy
spaces

Hp := {f analytic in D : ( sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ

2π
)

1
p := ‖f‖Hp < ∞}.
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For basic accounts of Hardy spaces, the reader should consult the well-known
monographs [Du, Ga, Ho, Ko, Pr]. In recent years, tremendous progress has been
achieved in the study of Bergman spaces following the footprints of the Hardy
spaces theory. This progress is recorded in two recent monographs [HKZ, DS] on
the subject.

In Hp spaces, the theory of general extremal problems has achieved a state of
finesse and elegance since the seminal works of S.Ya. Khavinson, and Rogosinski
and Shapiro (see [Kh1, RS]) introduced methods of functional analysis. A more
or less current account of the state of the theory is contained in the monograph
[Kh2]. However, the theory of extremal problems in Bergman spaces is still at a
very beginning. The main difficulty lies in the fact that the Hahn-Banach duality
that worked such magic for Hardy spaces faces tremendous technical difficulty in
the context of Bergman spaces because of the subtlety of the annihilator of the Ap

space (p ≥ 1) inside Lp(dA). [KS] contains the first more or less systematic study of
general linear extremal problems based on duality and powerful methods from the
theory of nonlinear degenerate elliptic PDEs. One has to acknowledge, however, the
pioneering work of V. Ryabych [Ry1, Ry2] in the 60s in which the first regularity
results for solutions of extremal problems were obtained. Vukotić’s survey ([Vu])
is a nice introduction to the basics of linear extremal problems in Bergman space.
In [KS], the authors considered the problem of finding, for 1 < p < ∞,

sup{|
∫

D

w̄fdA| : ‖f‖Ap ≤ 1}, (1.1)

where w is a given rational function with poles outside of D. They obtained a
structural formula for the solution (which is easily seen to be unique) similar to
that of the Hardy space counterpart of problem (1.1). Note here that by more or
less standard functional analysis, problem (1.1) is equivalent to

inf{‖f‖Ap : f ∈ Ap, li(f) = ci, i = 1, . . . , n}, (1.2)

where the li ∈ (Ap)∗ are given bounded linear functionals on Ap, p > 1. Normally,
for li one takes point evaluations at fixed points of D, evaluations of derivatives,
etc. . . More details on the general relationship between problems (1.1) and (1.2)
can be found in [Kh2, pp. 69-74]. For a related discussion in the Bergman spaces
context, we refer to [KS, p. 960]. In this paper, we focus our study on problem
(1.2) for nonvanishing functions. The latter condition makes the problem highly
nonlinear and, accordingly, the duality approach does not work. Yet, in the Hardy
spaces context, in view of the parametric representation of functions via their
boundary values, one has the advantage of reducing the nonlinear problem for
nonvanishing functions to the linear problem for their logarithms. This allows one
to obtain the general structural formulas for the solutions to problems (1.1) or
(1.2) for nonvanishing functions in Hardy spaces as well. We refer the reader to
the corresponding sections in [Kh2] and the references cited there. Also, some of
the specific simpler problems for nonvanishing Hp functions have recently been
solved in [BK]. However, all the above-mentioned methods fail miserably in the
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context of Bergman spaces for the simple reason that there are no non-trivial
Bergman functions that, acting as multiplication operators on Bergman spaces,
are isometric.

Let us briefly discuss the contents of the paper. In Section 2, we study problem
(1.2) for nonvanishing Bergman functions: we show the existence and uniqueness
of the solutions to a wide class of such problems. Our main results are presented in
Sections 2 and 3 and concern the regularity of the solutions: we show that although
posed initially in Ap, the solution must belong to the Hardy space Hp, and hence,
as in the corresponding problems in Hardy spaces in [Kh2], must be a product of
an outer function and a singular inner function. Further, we show that that the
solutions to such problems are in fact bounded. Moreover, led by an analogy with
the Hardy space case, we conjecture that the extremal functions have the form

f∗(z) = exp(
k∑

j=1

λj
eiθj + z

eiθj − z
)

2n−2∏
j=1

(1 − ᾱjz)
2
p

n∏
j=1

(1 − β̄jz)−
4
p , (1.3)

where |αj | ≤ 1, |βj | < 1, λj < 0, n ≥ 1, k ≤ 2n− 2. In Section 4, we sketch how, if
one knew some additional regularity of the solutions, it would be possible to derive
the form (1.3) for the solutions. In the context of linear problems, i.e., with the
nonvanishing restriction removed, duality can be applied and then, incorporating
PDE machinery to establish the regularity of the solutions to the dual problem,
the structural formulas for the solutions of (1.1) and (1.2) are obtained (see [KS]).
We must stress again that due to the nonlinear nature of extremal problems for
nonvanishing functions, new techniques are needed to establish the regularity of
solutions up to the boundary beyond membership in an appropriate Hardy class.
In the last section, we discuss a specific case of Problem 1.2 with l1(f) = f(0)
and l2(f) = f ′(0). The study of this simple problem was initiated by D. Aharonov
and H.S. Shapiro in unpublished reports [AhSh1, AhSh2], and B. Korenblum has
drawn attention to this question on numerous occasions.

2. Existence and regularity of solutions

Consider the following general problem.

Problem 2.1. Given n continuous linearly independent linear functionals l1, l2, . . . ,
ln on Ap and given n points c1, c2, . . . , cn in C − {0}, find

λ = inf{‖f‖Ap : f is zero-free, li(f) = ci, 1 ≤ i ≤ n}.
The set of zero-free functions satisfying the above interpolation conditions

can in general be empty, so we will assume in what follows that this set is non
void. Concerning existence of extremals, we have:

Theorem 2.2. The infimum in Problem 2.1 is attained.
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Proof. (The following argument is well known and is included for completeness.)
Pick a sequence fk of zero-free functions in Ap such that li(fk) = ci for every
1 ≤ i ≤ n and every k = 1, 2, . . . , and such that ‖fk‖Ap → λ as k → ∞. Since
these norms are bounded, there exists a subsequence {fkj} and an analytic function
f such that fkj → f as j → ∞. By Hurwitz’ theorem, f is zero-free. Moreover,
li(f) = ci for every 1 ≤ i ≤ n. By Fatou’s lemma,

(
∫

D

|f |pdA)
1
p ≤ λ,

but by minimality of λ, we must actually have equality. Therefore f is extremal
for Problem 2.1. �

Let us now consider the special case of point evaluation. More specifically,
let β1, . . . , βn ∈ D be distinct points and let li(f) = f(βi), for 1 ≤ i ≤ n. We will
assume that none of the ci is zero.

The following result shows that we need only solve the extremal problem in
A2 in order to get a solution in every Ap space (p > 0.)

Theorem 2.3. If g is minimal for the problem

inf{‖g‖A2 : g is zero-free, li(g) = bi, 1 ≤ i ≤ n},
where the bi are elements of D, then g

2
p is minimal for the problem

(∗) inf{‖f‖Ap : f is zero-free , li(f) = ci, 1 ≤ i ≤ n},
where ci = li(g

2
p ).

Proof. The function g
2
p is zero-free and∫

D

(|g(z)| 2p )pdA(z) =
∫
D

|g(z)|2dA(z) < ∞,

so g
2
p is in Ap. Moreover by definition, g

2
p satisfies the interpolation conditions

ci = li(g
2
p ).

Now suppose that g
2
p is not minimal for the problem (*). Then there exists

h ∈ Ap zero-free such that ci = li(h) and∫
D

|h(z)|pdA(z) <

∫
D

|g(z)|2dA(z).

The function h
p
2 is a zero-free A2 function such that

‖h p
2 ‖2 < ‖g‖2.

Moreover
li(h

p
2 ) = h

p
2 (βi) = c

p
2
i = (g

2
p (βi))

p
2 = g(βi) = bi.

This contradicts the minimality of g for the A2 problem. �
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Notice that by the same argument, the converse also holds; in other words,
if we can solve the extremal problem in Ap for some p > 0, then we can also solve
the extremal problem in A2. Therefore for the remainder of the paper, we will
consider only the case p = 2. Notice that if we consider Problem (1.2) without the
restriction that f must be zero-free, the solution is very simple and well known.
Considering for simplicity the case of distinct βj , the unique solution is the unique
linear combination of the reproducing kernels k(., βj) satisfying the interpolating
conditions, where

k(z, w) := 1/(1 − w̄z)2.

Since our functions are zero-free, we will rewrite a function f as f(z) =
exp(ϕ(z)), and solve the problem (relabelling the ci)

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}. (2.1)

Theorem 2.4. The extremal solution to Problem (2.1) is unique.

Proof. Suppose ϕ1 and ϕ2 are two extremal solutions to (2.1), that is

λ = ‖eϕ1‖A2 = ‖eϕ2‖A2

and
ϕ1(βi) = ϕ2(βi) = ci

for every 1 ≤ i ≤ n. Consider

ϕ(z) =
ϕ1(z) + ϕ2(z)

2
.

This new function satisfies ϕ(βi) = ci for every 1 ≤ i ≤ n, and therefore

λ2 ≤
∫

D

|eϕ(z)|2dA(z)

=
∫

D

|eϕ1(z)||eϕ2(z)|dA(z)

≤ ‖eϕ1‖A2‖eϕ2‖A2 (by the Cauchy-Schwarz inequality)
= λ2.

This implies that

|eϕ1(z)| = C|eϕ2(z)|
for some constant C. Since the function eϕ1/eϕ2 has constant modulus, it is a
constant, which must equal 1 because of the normalization. The extremal solution
to (2.1) is therefore unique. �

Remark. We can generalize this theorem to some other linear functionals li. For
instance, one may wish to consider linear functionals lij , i = 1, . . . , n, j = 0, . . . , ki,
that give the jth Taylor coefficients of f at βi.



64 D. Aharonov, C. Bénéteau, D. Khavinson and H.S. Shapiro

The next three lemmas are the technical tools needed to address the issue
of the regularity of the extremal function: we want to show that the extremal
function is actually a Hardy space function.

For integers m ≥ n, consider the class Pm of polynomials p of degree at most
m such that p(βi) = ci for every 1 ≤ i ≤ n. Let

λm = inf{‖ep(z)‖A2 : p ∈ Pm}. (2.2)

Lemma 2.5. lim
m→∞ λm = λ.

Proof. Notice that λm is a decreasing sequence of positive numbers bounded below
by λ, so

lim
m→∞λm ≥ λ.

On the other hand, let ϕ∗ be the extremal function for (2.1). Write

ϕ∗(z) = L(z) + h(z)g(z),

where L is the Lagrange polynomial taking value ci at βi, namely

L(z) =
n∑

i=1

ci

∏n
k=1,k �=i(z − βk)∏n
k=1,k �=i(βi − βk)

,

h(z) =
∏n

i=1(z − βi), and g is analytic in D. For each 0 < r < 1, define

ϕr(z) := ϕ∗(rz).

Let ε > 0. Notice that there exists δ > 0 such that if c̃i are complex numbers
satisfying |ci − c̃i| < δ for i = 1, . . . , n, then |L(z) − L̃(z)| < ε (for every z ∈ D),
where L̃ is the Lagrange polynomial with values c̃i at βi. We now pick r close
enough to 1 so that

‖eϕ∗ − eϕr‖A2 < ε

and
|ϕr(βi) − ϕ∗(βi)| <

δ

2
for i = 1, . . . , n.

Define pm,r to be the mth partial sum of the Taylor series of ϕr. Given any
integer N ≥ n, pick m ≥ N such that

‖epm,r(z) − eϕr(z)‖A2 < ε

and
|pm,r(βi) − ϕr(βi)| <

δ

2
for i = 1, . . . , n.

Let c̃i = pm,r(βi) for i = 1, . . . , n and let L̃ be the Lagrange polynomial taking
values c̃i at βi. Then we can write

pm,r(z) = L̃(z) + h(z)qm−n,r(z),

where qm−n,r is a polynomial of degree at most m−n. Notice that since |pm,r(βi)−
ϕ(βi)| < δ (for every i = 1, . . . , n),

|L(z) − L̃(z)| < ε for every z ∈ D.
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Define
pm(z) = L(z) + h(z)qm−n,r(z).

Then pm ∈ Pm, and

|epm(z) − epm,r(z)|2 ≤ |epm,r(z)|2(e|pm,r(z)−pm(z)| − 1)2

= |epm,r(z)|2(e|L̃(z)−L(z)| − 1)2

≤ |epm,r(z)|2(eε − 1)2

Therefore

‖epm − epm,r‖A2 ≤ ‖epm,r‖A2(eε − 1)
≤ C(eε − 1),

where C is a constant depending only on ‖eϕ∗‖A2 . Therefore

‖epm(z) − eϕ∗(z)‖A2 ≤ 2ε + C(eε − 1) = Cε,

which implies
λm ≤ ‖epm(z)‖A2 ≤ Cε + λ

for arbitrarily large m, where Cε → 0 as ε → 0. Therefore

lim
m→∞λm ≤ λ.

Since we already have the reverse inequality, we can conclude that

lim
m→∞λm = λ. �

Lemma 2.6. The extremal polynomial p∗m in (2.2) exists, and for every polynomial
ψm−n of degree at most m − n,∫

D

|ep∗
m(z)|2(z − β1) . . . (z − βn)ψm−n(z)dA(z) = 0.

Proof. To prove the existence of the extremal polynomial p∗m, consider the mini-
mizing sequence pk

m in (2.2). Without loss of generality, we can assume that the
functions epk

m converge on compact subsets, and hence pk
m converge pointwise in

D to a polynomial p∗m ∈ Pm. As above, applying Fatou’s lemma, we see that p∗m
is in fact the extremal.

Define

F (ε) = ‖ exp(p∗m(z) + ε

n∏
i=1

(z − βi)ψm−n(z))‖2
A2

where ψm−n is any polynomial of degree at most m−n. Then since p∗m is extremal,
F ′(0) = 0.

F (ε) =
∫

D

| exp(p∗m(z) + ε

n∏
i=1

(z − βi)ψm−n(z))|2dA(z)

=
∫

D

| exp(p∗m(z))|2 exp(2εRe(
n∏

i=1

(z − βi)ψm−n(z))dA(z)
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Therefore

F ′(0) =
∫

D

| exp(p∗m(z))|22Re(
n∏

i=1

(z − βi)ψm−n(z))dA(z) = 0.

Replacing ψm−n by iψm−n gives∫
D

| exp(p∗m(z))|22Re(
n∏

i=1

(z − βi)iψm−n(z))dA(z) = 0,

and therefore ∫
D

| exp(p∗m(z))|2
n∏

i=1

(z − βi)ψm−n(z)dA(z) = 0

for every polynomial ψm−n of degree at most m − n. �

Lemma 2.7. For each m ≥ n, ep∗
m ∈ H2, and these H2 norms are bounded.

Proof. Write
p∗m(z) = L(z) + h(z)qm−n(z),

where L(z) is the Lagrange polynomial taking value ci at βi (for i = 1, . . . , n),
h(z) =

∏n
i=1(z − βi), and qm−n is a polynomial of degree at most m− n. We then

have∫
T

|ep∗
m(eiθ))|2dθ = i

∫
T

|ep∗
m(z)|2zdz̄

= 2
∫

D

∂

∂z
(|ep∗

m(z)|2z)dA(z) (by Green’s formula)

=
∫

D

|ep∗
m(z)|2(p∗′

m(z)z + 1)dA(z).

We would like to show that this integral is bounded by C‖ep∗
m(z)‖2

A2 , where C is
a constant independent of m. First notice that

zp∗
′

m(z) = zL′(z) + zh′(z)qm−n(z) + zh(z)q′m−n(z).

Since zq′m−n(z) is a polynomial of degree at most m − n, Lemma 2.6 allows us to
conclude that ∫

D

|ep∗
m(z)|2zh(z)q′m−n(z)dA(z) = 0.

On the other hand, zL′(z) is bounded and independent of m, and therefore

|
∫

D

|ep∗
m(z)|2zL′(z)dA(z)| ≤ C1‖ep∗

m(z)‖2
A2 ,

where C1 is a constant independent of m. Therefore the crucial term is that in-
volving zh′(z)qm−n(z). Write

qm−n(z) = qm−n(βk) + (z − βk)qm−n−1(z),
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where qm−n−1 is a polynomial of degree at most m − n − 1. Then

zh′(z)qm−n(z) = z{
n∑

k=1

[
n∏

i=1,i�=k

(z − βi)]}{qm−n(βk) + (z − βk)qm−n−1(z)}

=
n∑

k=1

{z
n∏

i=1,i�=k

(z − βi)}qm−n(βk) +
n∑

k=1

{
n∏

i=1

(z − βi)}zqm−n−1(z).

Since zqm−n−1(z) is a polynomial of degree at most m − n, by Lemma 2.6, the
contribution of the second big sum above, when integrated against |ep∗

m(z)|2, is zero.
On the other hand, it is not hard to see that the polynomials qm−n are (uniformly)
bounded on the set {βk : k = 1, . . . , n}, and therefore their contribution is a
bounded one, that is, there exists a constant C2 such that∫

D

|ep∗
m(z)|2zh′(z)qm−n(z)dA(z) ≤ C2‖ep∗

m(z)‖2
A2 .

We have therefore shown that there exist constants C and M , independent of m,
such that ∫

T

|ep∗
m(eiθ)|2dθ ≤ C‖ep∗

m(z)‖2
A = Cλm ≤ CM.

Thus the functions ep∗
m have uniformly bounded H2 norms. �

Theorem 2.8. eϕ∗ ∈ H2.

Proof. By an argument similar to that of Theorem 2.2 and by uniqueness of the
extremal function for (2.1), there exists a subsequence {p∗mk

} of {pm} such that

ep∗
mk → eϕ∗

pointwise as k → ∞. For each fixed radius r, 0 < r < 1, by Fatou’s lemma,∫
T

| exp(ϕ∗(reiθ))|2dθ ≤ lim inf
k→∞

∫
T

| exp(p∗mk
(reiθ))|2dθ.

By Lemma 2.7, the right-hand side is bounded for all 0 < r < 1, and therefore
eϕ∗ ∈ H2. �

The following corollary follows from Theorems 2.8 and 2.3.

Corollary 2.9. Let 0 < p < ∞, and let eϕ∗
be the extremal function that minimizes

the norm

λ = inf{‖ exp(ϕ(z))‖Ap : ϕ(βi) = ci, 1 ≤ i ≤ n}.
Then eϕ∗

is in Hp.
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3. Another approach to regularity

In the following, we present a very different approach to showing the a priori regu-
larity of the extremal function. It was developed by D. Aharonov and H.S. Shapiro
in 1972 and 1978 in two unpublished preprints ([AhSh1, AhSh2]) in connection
with their study of the minimal area problem for univalent and locally univalent
functions. See also [ASS1, ASS2].

Given n points β1, . . . , βn of D, and complex numbers c1, . . . , cn recall that
L denotes the unique (Lagrange interpolating) polynomial of degree at most n− 1
satisfying

L(βj) = cj , j = 1, 2, . . . , n. (3.1)
As above, the polynomial h is defined by

h(z) := (z − β1) . . . (z − βn).

We are considering, as before, Problem (1.2) when the functionals li are point
evaluations at βi, in A2.

Recall that in order to get a nonvacuous problem, we assume that none of
the cj is zero. For a holomorphic function f in D, let L(f) denote the unique
polynomial of degree at most n− 1 satisfying (3.1), with cj := f(βj). Then, there
is a unique function g analytic in D such that

f = hg + L(f).

Of course, L(f) is bounded on D by C max |f(βj)|, where C is a constant depending
on the {βj} and the {cj}, but not on f .

Suppose now for each s in the interval (0, s0), as denotes a univalent function
in D satisfying

as(0) = 0 and (3.2)
|as(z)| < 1 for z ∈ D. (3.3)

(Thus, by Schwarz’ lemma,

|as(z)| ≤ |z| for z ∈ D.)

Let Gs denote the image of D under the map z → as(z).
Let now f be an extremal function for Problem (1.2), that is, it is a zero-free

function in A2 satisfying the interpolating conditions

f(βj) = cj , j = 1, . . . , n, (3.4)

and having the least norm among such functions. Then, denoting

gs(z) := f(as(z))a′
s(z), (3.5)

we observe that the function fs defined by

fs(z) := gs(z)L(f/gs)(z) (3.6)

is in A2 and satisfies the interpolating conditions, since

fs(βj) = gs(βj)[f(βj)/gs(βj)] = f(βj).
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Moreover, gs is certainly zero-free, and hence so is fs if we can verify that the
polynomial L(f/gs) has no zeros in D.

Now, we shall impose some further restrictions on the maps as. We assume
that

|as(z) − z| ≤ B(z)c(s) and (3.7)
|a′

s(z) − 1| ≤ B(z)c(s) (3.8)

where B is some positive continuous function on D, and c is a continuous function
on (0, s0] such that

c(s) → 0 as s → 0. (3.9)
With these assumptions, as(z) → z and a′

s(z) → 1 for each z in D, as s → 0. Thus,
f(βj)/gs(βj) → 1 as s → 0, for each j. Thus, the polynomials

Ls := L(f/gs)

of degree at most n− 1 tend to 1 on the set {β1, . . . , βn} as s → 0, and hence they
tend uniformly to 1 on D. It follows that for s sufficiently near 0, Ls has no zeros
in D, and consequently fs is zero-free.

Hence, for sufficiently small s, say s < s1, fs is a “competing function” in
the extremal problem, and we have:

‖f‖A2 ≤ ‖fs‖A2 . (3.10)

Note that L(f/gs) differs from 1, uniformly for all z in D, by a constant times the
maximum of the numbers

{|(f(βj)/gs(βj)) − 1|, j = 1, 2, . . . , n}. (3.11)

Now,
f(z)/gs(z) − 1 = (f(z) − gs(z))/gs(z)

and since
|gs(z)| = |f(as(z)||a′

s(z)| → |f(z)| as s → 0,

by virtue of (3.7), (3.8), and (3.9) the numbers |gs(βj)| remain greater than some
positive constant as s → 0. Consequently, the numbers (3.11) are, for small s,
bounded by a constant times the maximum of the numbers

{|f(βj) − gs(βj)|, j = 1, 2, . . . , n}. (3.12)

But,

|f(z) − gs(z)| = |f(z) − f(as(z))a′
s(z)|

≤ |f(z) − f(as(z))| + |f(as(z))||1 − a′
s(z)|

Using the estimates (3.7), (3.8) we find that the numbers (3.12) are bounded by a
constant times c(s), and therefore

L(f/gs) = 1 + O(c(s)),

uniformly for z in D, as s → 0. Hence, from (3.10) and (3.6),

‖f‖A2 ≤ ‖gs‖A2(1 + Mc(s))
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for some constant M , thus∫
D

|f(z)|2dA ≤
∫

D

|fs(z)|2dA + Nc(s)

for some new constant N . Since∫
D

|fs(z)|2dA =
∫

D

|f(as(z)|2|a′
s(z)|2dA

=
∫

Gs

|f(z′)|2dA(z′) (changing variables by z′ = as(z))

and combining the two integrals yields:
(∗) Under the assumptions made thus far, the area integral of |f |2 over the do-

main Ds complementary to Gs = as(D) in D does not exceed Nc(s), where
N is a constant and c(s) is as in (3.7) and (3.8).

To see the usefulness of (∗), let us first consider an almost trivial choice of as,
namely

as(z) = (1 − s)z and a′
s(z) = 1 − s.

Then, (3.7) and (3.8) hold with c(s) = s. Here Gs is the disk {|z| < 1− s} , so (∗)
asserts (denoting t := 1 − s): the integral of |f |2 over the annulus {t < |z| < 1},
for all t sufficiently close to 1, is bounded by a constant times 1− t. Consequently,
the mean value of |f |2 over these annuli remains bounded. This, however, easily
implies that f is in the Hardy class H2 of the disk! So, we have given another
proof of Theorem 2.8: extremals for the zero-free A2 problem (1.2) always belong
to H2.

We can extract a bit more, namely that extremals are bounded in D, with a
more recondite choice of a(s).

Let w denote a point of the unit circle T, and s a small positive number. Let
Gs,w denote the crescent bounded by T and a circle of radius s internally tangent to
T at w. (This circle is thus centered at (1−s)w.) Let as,w be the unique conformal
map of D onto Gs,w mapping 0 to 0 and the boundary point w to (1 − 2s)w, and
bs,w the z-derivative of as,w. We are going to show

Lemma 3.1. With as,w and bs,w in place of as, a′
s respectively, (3.7) and (3.8) hold,

with c(s) = s2, uniformly with respect to w.

Assuming this for the moment, let us show how the boundedness of extremals
follows. Applying (*), we see that if f is extremal, the area integral of |f |2 over
the disk centered at (1− s)w of radius s does not exceed a constant (independent
of w and s) times the area of this disk. Since |f((1 − s)w)|2 does not exceed
the areal mean value of |f |2 over this disk, we conclude |f((1 − s)w)| is bounded
uniformly for all w in T and sufficiently small s, i.e., |f | is bounded in some annulus
{1 − s0 < |z| < 1}, and hence in D. We therefore have the following:

Theorem 3.2. The extremal function f∗ for Problem 2.1 is in H∞.

It only remains to prove Lemma 3.1.
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Proof. First note that the arguments based on (3.7 and 3.8) leading to (*) only
rely on the boundedness of the function B on compact subsets of D, and more
precisely on a compact subset containing all interpolation points βj , j = 1, . . . , n.
Since clearly (3.8) follows (with a different choice of B(.)) from (3.7), we have only
to verify (3.7). Also, by symmetry, it is enough to treat the case w = 1. We do so,
and for simplicity denote as,1, Gs,1 by as, Gs respectively. Thus, as maps D onto
the domain bounded by T and the circle of radius s centered at 1 − s. Moreover
as(0) = 0, and as(1) = 1 − 2s. Thus, we have a Taylor expansion

as(z) = c1,sz + c2,sz
2 + · · ·

convergent for |z| < 1. Moreover, it is easy to see from the symmetry of Gs that
all the coefficients cj,s are real.

Under the map Z = 1/(1−z), Gs is transformed to a vertical strip S in the Z
plane bounded by the lines {Re Z = 1/2} and {Re Z = 1/2s}. Thus, the function

hs := 1/(1 − as)

maps D onto S and carries 0 into 1, and the boundary point 1 to ∞. Hence
us(eit) := Re(hs(eit)) satisfies

us(eit) = 1/2 for |t| > t0, and
= 1/2s for |t| < t0,

where t0, 0 < t0 < π is determined from

1 =
1
2π

∫
T

us(eit)dt =
1
2

+
1 − s

2πs
t0

hence
t0 = (s/(1 − s))π. (3.13)

Now, we have a Taylor expansion

hs(z) = 1 + b1,sz + b2,sz
2 + · · · (3.14)

where the bj,s are real, and so determined from

us(eit = 1 + b1,s cos t + b2,s cos 2t + · · · ,

i.e.,

bn,s =
2
π

∫ π

0

us(eit) cos(nt)dt

hence

bn,s = sin nt0/nt0 n = 1, 2, . . . (3.15)

where t0 is given by (3.13).
We are now prepared to prove Lemma 3.1, i.e.,

|as(z) − z| ≤ B(z)s2. (3.16)

We have

hs(z) − 1
1 − z

=
1

1 − as(z)
− 1

1 − z
=

as(z) − z

(1 − z)(1 − as(z))
,



72 D. Aharonov, C. Bénéteau, D. Khavinson and H.S. Shapiro

so

|as(z) − z| ≤ 4|hs(z) − 1
1 − z

| ≤ 4
∞∑

n=1

|bn,s − 1||z|n. (3.17)

But, from (3.15)

|bn,s − 1| = | sin nt0
nt0

− 1|.
Since the function

(sin x)/x − 1
x2

is bounded for x real, we have for some constant N :

| sin nt0
nt0

− 1| ≤ N(nt0)2 ≤ N ′n2s2

for small s, in view of (3.13), where N ′ is some new constant. Thus, finally, inserting
this last estimate into (3.17),

|as(z) − z| ≤ N ′′s2B(z),

where

B(z) :=
∞∑

n=1

n2|z|n,

which is certainly bounded on compact subsets of D, and the proof is finished. �
Remark. This type of variation can be used to give another proof of the regularity
and form of extremal functions in the non-vanishing Hp case, which were originally
established in [Kh1, Kh2]. In what follows, we shall only discuss the case p = 2,
since the case of other p follows at once via an analogue of Theorem 2.3 in the Hp

setting.
For the sake of brevity, we only consider the following problem. Given complex

constants c0, c1, . . . , cm with c0 not zero (w.l.o.g. we could take c0 = 1), let A be
the subset of H2 consisting of “admissible functions” f , i.e., those functions zero-
free in D whose first m+1 Taylor coefficients are the cj . We consider the extremal
problem , to minimize ‖f‖2 := ‖f‖H2 in the class A. The following argument is
again an adaptation of a variational argument used by Aharonov and Shapiro in
([AhSh1, AhSh2]) for a different problem.

Proposition 3.3. Every extremal is in the Dirichlet space, that is, satisfies∫
D

|f ′(z)|2dA < ∞.

Proof. Let f be extremal, and 0 < t < 1. Then,

f(z) = tf(tz)[f(z)/tf(tz)] = tf(tz)[S(z; t) + R(z; t)] (3.18)

where S denotes the partial sum of order m of the Taylor expansion of f(z)/tf(tz)
=: E(z; t) and R denotes the remainder E − S. Now,

|f(z) − f(tz)| ≤ C(1 − t),
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uniformly for |z| ≤ 1/2, where C is a constant depending on f , and this implies
easily

|1 − E(z; t)| ≤ C(1 − t)

for those z, and some (different) constant C. From this it follows easily that

S(z; t) = 1 + O(1 − t), uniformly for z ∈ D. (3.19)

Moreover, from (3.18) we see that tf(tz)S(z; t) has the same Taylor coefficients as
f , through terms of order m. Also, (3.19) shows that S does not vanish in D for t
near 1. We conclude that, for t sufficiently close to 1, tf(tz)S(z; t) is admissible,
and consequently its norm is greater than or equal to that of f , so we have∫

T

|f(eis)|2ds ≤ (
∫

T

|tf(teis)|2ds)(1 + O(1 − t)),

or, in terms of the Taylor coefficients an of f ,∑
|an|2 ≤ [

∑
|an|2t2n+2](1 + O(1 − t))

so ∑
(1 − t2n+2)/(1 − t)|an|2

remains bounded as t → 1, which implies f has finite Dirichlet integral. �

Corollary 3.4. The extremal must be a polynomial of degree at most m times a
singular function whose representing measure can only have atoms located at the
zeros on T of this polynomial.

Proof. As usual, for every h ∈ H∞, (1 + wzm+1h)f (where f is extremal, and w
a complex number) is admissible for small |w|. Hence, as in the proof of Lemma
2.6, we obtain that f is orthogonal (in H2!) to zm+1hf . If f = IF , where I is
a singular inner function and F is outer, since |I| = 1 a.e. on T, it follows that
F is orthogonal to zm+1FH∞. Now, F is cyclic, so FH∞ is dense in H2, i.e.,
F is orthogonal to zm+1H2. Hence, F is a polynomial of degree at most m. For
the product FI to have a finite Dirichlet norm, the singular measure for I must
be supported on a subset of the zero set of F on T as claimed. Indeed, for any
singular inner function I and any point w ∈ T where the singular measure for I
has infinite Radon-Nikodym derivative with respect to Lebesgue measure,∫

D∩{|z−w|<c}
|I ′|2dA = ∞,

because the closure of the image under I of any such neighborhood of w is the
whole unit disk (cf. [CL, Theorem 5.4]). �
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4. A discussion of the conjectured form of extremal functions

In this section we provide certain evidence in support of our overall conjecture and
draw out possible lines of attack that would hopefully lead to a rigorous proof in
the future. Recall that the extremal function f∗ in the problem (2.1):

λ = inf{‖ exp(ϕ(z))‖A2 : ϕ(βi) = ci, 1 ≤ i ≤ n}
is conjectured to have the form (1.3):

f∗(z) = C

∏2n−2
j=1 (1 − ᾱjz)

2
p exp(

∑k
j=1 λj

eiθj +z

eiθj −z
)∏n

j=1(1 − β̄jz)
4
p

,

where C is a constant, |αj | ≤ 1, j = 1, . . . , 2n − 2, |βj | < 1, j = 1, . . . , n, λj ≤ 0,
j = 1, . . . k, k ≤ 2n−2. As in the previous sections, we shall focus the discussion on
the case p = 2, since the Ap extremals are simply the 2/pth powers of those in A2.

First, let us observe that if the solution to the problem for p = 2 in the whole
space A2, i.e.,

λ = inf{‖f(z)‖A2 : f(βj) = exp(cj), 1 ≤ j ≤ n} (4.1)

happens to be non-vanishing in D, then it solves Problem (2.1.) The solution to
Problem (4.1) is well known and is equal to a linear combination of the reproducing
Bergman kernels at the interpolation points. That is,

f∗(z) =
n∑

j=1

aj

(1 − β̄jz)2
, (4.2)

where the aj are constants, which does have the form (1.3) with singular inner
factors being trivial.

Recall that a closed subset K of the unit circle T is called a Carleson set if∫
T

log ρK(eiθ)dθ > −∞,

where ρK(z) = dist (z, K) (cf., e.g., [DS, p. 250].)
Now, if we could squeeze additional regularity out of the extremal function

f∗ in (2.1),the following argument would allow us to establish most of (1.3) right
away. Namely

Theorem 4.1. Assume that the support of the singular measure in the inner factor
of the extremal function f∗ in (2.1) is a Carleson set. Then the outer part of f∗

is as claimed in (1.3).

Remark. The regularity assumption for the singular factor of f∗ is not unreason-
able. In fact, some a priori regularity of extremals was the starting point in ([KS])
for the investigation of linear extremal problems in Ap, i.e., Problem 2.1 but with-
out the non-vanishing restriction. There, the authors have been able to achieve
the a priori regularity by considering a dual variational problem whose solution
satisfied a nonlinear degenerate elliptic equation. Then, the a priori regularity re-
sults for solutions of such equations (although excruciatingly difficult) yielded the
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desired Lipschitz regularity of the extremal functions. Surprisingly, as we show at
the end of the paper, even in the simplest examples of problems for non-vanishing
functions in A2, if the extremals have the form (1.3), they fail to be even contin-
uous in the closed disk. This may be the first example of how some extremals in
Ap and Hp differ qualitatively. Of course, the extremal functions for Problem 2.1
in the Hp context are all Lipschitz continuous (cf. Corollary 3.4). Unfortunately,
in the context of highly nonlinear problems for non-vanishing functions (since the
latter do not form a convex set) the direct duality approach fails at once. (Below,
however, we will indicate another line of reasoning which may allow one to save
at least some ideas from the duality approach.)

Proof. From the results of the previous sections, it follows that

f∗ = FS, (4.3)

where F is outer and S is a singular inner function whose associated measure
µ ≤ 0, µ ⊥ dθ is concentrated on the Carleson set K. Note that

S′(z) = S(z)
1
2π

∫ 2π

0

2dµ(θ)
(eiθ − z)2

,

where

S(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ).

So
|S′(z)| = O(ρ−2

K (z)), (4.4)
where ρK is the distance from z to the set K. By a theorem of Carleson (see
[DS], p. 250), there exists an outer function H ∈ C2(D̄) such that K ⊂ {ζ ∈ T :
H(j)(ζ) = 0, j = 0, 1, 2}, and hence

H(j)(z) = O(ρK(z)2−j), j = 0, 1, 2 (4.5)

when z → K. (4.4) and (4.5) yield then that

(HS)′ = H ′S + HS′ = hS, (4.6)

where h ∈ H∞(D). Recall from our discussions in Sections 2 and 3 that the
extremal function f∗ must satisfy the following orthogonality condition:∫

D

|f∗|2
n∏

j=1

(z − βj)gdA = 0 (OC)

for all, say, bounded analytic functions g. Rewriting (OC) as

0 =
∫

D

F̄ S̄FS

n∏
j=1

(z − βj)gdA (4.7)

and noting that F is cyclic in A2, so that we can find a sequence of polynomials pn

such that Fpn → 1 in A2 (F is “weakly invertible” in A2 in an older terminology),
we conclude from (4.7) that FS = f∗ is orthogonal to all functions in the invariant
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subspace [S] of A2 generated by S that vanish at the points β1, β2, . . . , βn. In
particular, by (4.6), f∗ is orthogonal to all functions ∂

∂z (H
∏n

j=1(z − βj)2Sg) for
all polynomials g, i.e.,

0 =
∫

D

f̄∗ ∂

∂z
(H

n∏
j=1

(z − βj)2Sg)dA. (4.8)

Applying Green’s formula to (4.8), we arrive at

0 =
∫

T

f̄∗H
n∏

j=1

(z − βj)2Sgdz̄ =
∫

T

F̄H

n∏
j=1

(z − βj)2g
dz

z2
, (4.9)

since |S| = 1 on T. Finally, since H is outer and hence cyclic in H2, there exists a
sequence of polynomials qn such that Hqn → 1 in H2. Also there exists a sequence
of polynomials pn such that pn → F in H2, so replacing g by pnqng, we obtain

0 =
∫

T

|F |2
n∏

j=1

(z − βj)2g
dz

z2
(4.10)

for all polynomials g. F.&M. Riesz’ theorem (cf. [Du, Ga, Ho, Ko]) now implies
that

|F |2 =
z2h∏n

j=1(z − βj)2
a.e. on T (4.11)

for some h ∈ H1(D). The rest of the argument is standard (see for example [Du],
Chapter 8.) Since

r(z) :=
z2h(z)∏n

j=1(z − βj)2
≥ 0

on T, it extends as a rational function to all of Ĉ and has the form

r(z) = C
z2
∏2n−2

j=1 (z − αj)(1 − ᾱjz)∏n
j=1(z − βj)2(1 − β̄jz)2

(4.12)

where |αj | ≤ 1, j = 1, . . . , 2n − 2, are the zeros of r in D̄ (zeros on T have even
multiplicity) and C > 0 is a constant. Thus, remembering that F is an outer
function and so

log F (z) =
1
4π

∫ 2π

0

eiθ + z

eiθ − z
log |F (eiθ)|2dθ,

we easily calculate from (4.11) and (4.12) that

F (z) = C

∏2n−2
j=1 (1 − ᾱjz)∏n
j=1(1 − β̄jz)2

, |αj | ≤ 1, (4.13)

as claimed. �
Several remarks are in order.

(i) If the inner part S of f∗ is a cyclic vector in A2, or, equivalently, by the
Korenblum-Roberts theorem (see [DS], p. 249), its spectral measure puts no mass
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on any Carleson set K ⊂ T, then (4.7) implies right away that f∗ is orthogonal to
all functions in A2 vanishing at β1, β2, . . . , βn, and hence

f∗ =
n∑

j=1

aj

(1 − β̄jz)2

is a linear combination of reproducing kernels. Thus, we have the corollary already
observed in ([AhSh1, AhSh2]):

Corollary 4.2. If f∗ is cyclic in A2, it must be a rational function of the form (4.2).

(ii) On the other hand, if we could a priori conclude that the singular part S
of f∗ is atomic (with spectral measure consisting of at most 2n − 2 atoms), then
instead of using Carleson’s theorem, we could simply take for the outer function
H a polynomial p �= 0 in D vanishing with multiplicity 2 at the atoms of S. Then
following the above argument, once again we arrive at the conjectured form (1.3)
for the extremalf∗.

Now, following S.Ya. Khavinson’s approach to the problem (2.1) in the Hardy
space context (see [Kh2, pp. 88 ff]), we will sketch an argument, which perhaps,
after some refinement, would allow us to establish the atomic structure of the inner
factor S, using only the a priori H2 regularity.

For that, define subsets Br of spheres of radius r in A2 :

Br := {f = eϕ : ‖f‖A2 ≤ r},
where

ϕ(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ), (4.14)

dν = log ρ(θ)dθ + dµ, (4.15)

and ρ ≥ 0, ρ, log ρ ∈ L1(T), dµ is singular and dµ ≤ 0. Consider the map Λ that
maps the subsets Br into Cn, defined by

Λ(f) = (ϕ(βj))n
j=1.

More precisely, each ϕ is uniquely determined by the corresponding measure ν and
vice versa. Hence, Λ maps the set of measures

Σr := {ν : ν = s(θ)dθ + dµ}
satisfying the constraints

dµ ≤ 0 and dµ is singular (4.16)
exp(s(θ)), s(θ) ∈ L1(T) (4.17)
‖ exp(P (dν))‖L2(D) ≤ r, (4.18)

where

P (dν)(reiα) =
1
2π

∫ 2π

0

1 − r2

1 + r2 − 2r cos(θ − α)
dν(θ)
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is the Poisson integral of ν, into Cn by

Λ(ν) = (S(ν)(βj))n
j=1.

Here

S(ν)(z) =
1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ) (4.19)

stands for the Schwarz integral of the measure ν. Let us denote the image Λ(Σr)
in Cn by Ar. Repeating the argument in [Kh2] essentially word for word, we easily
establish that for all r > 0, the sets Ar are open, convex, proper subsets of Cn.
(Convexity of Ar, for example, follows at once from the Cauchy-Schwarz inequality
as in the proof of the uniqueness of f∗ in Section 2.) If we denote by �c = (c1, . . . , cn)
the vector of values we are interpolating in (2.1), then the infimum there is easily
seen to be equal to

r0 = inf{r > 0 : �c ∈ Ar}.
Hence, our extremal function f∗ (or equivalently ϕ∗ = log f∗) corresponds to a
measure dν∗ ∈ Σr0 for which Λ(ν∗) ∈ ∂Ar0 . So, to study the structure of extremal
measures ν∗ defining the extremals ϕ∗ or f∗ = eϕ∗

, we need to characterize those
ν∗ ∈ Σr : Λ(ν) ∈ ∂Ar. From now on, without loss of generality, we assume that
r = 1 and omit the index r altogether. Let �w = (w1, . . . , wn) be a finite boundary
point of A. Then there exists a hyperplane H defined by Re

∑n
j=1 ajzj = d such

that for all �z ∈ A,

Re

n∑
j=1

ajzj ≤ d while Re

n∑
j=1

ajwj = d. (4.20)

Let ν∗ denote a preimage Λ−1(�w) in Σ. Using (4.14 and 4.15) we easily rephrase
(4.20) in the following equivalent form:∫

T

R(eiθ)dν(θ) ≤ d (4.21)

for all ν satisfying (4.16), (4.17) and (4.18), (r = 1) with equality holding for

ν∗ = s∗dθ + dµ∗ ∈ Λ−1(�w).

Then (4.14, 4.15 and 4.19) yield

R(eiθ) =
1
2π

Re(
n∑

j=1

aj
eiθ + βj

eiθ − βj
), (4.22)

a rational function with 2n poles at β1, . . . , βn and 1/β̄1, . . . , 1/β̄n that is real-
valued on T. Note the following (see [Kh2]):

Claim. For d in (4.21) to be finite for all measures ν satisfying (4.16), (4.17) and
(4.18), it is necessary that R ≥ 0 on T.
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Indeed, if R(eiθ) (which is continuous on T) were strictly negative on a subarc
E ⊂ T, by choosing dν = sdθ with s negative and arbitrarily large in absolute
value on E and fixed on T − E, we would make the left-hand side of (4.21) go
to +∞ while still keeping the constraints (4.16), (4.17) and (4.18) intact, thus
violating (4.21).

Now, if we knew that R(eiθ) had at least one zero at eiθ0 , we could easily
conclude that the extremal measure ν∗ in (4.21) can only have an atomic singular
part with atoms located at the zeros of R(eiθ) on T. Then, by the argument
principle, since R(eiθ) cannot have more than n double zeros on T, the argument
sketched in Remark (ii) following Theorem 4.1 establishes the desired form of the
extremal function f∗.

To see why a zero of R at eiθ0 would yield the atomic structure of the singular
part dµ∗ of the extremal measure ν∗ in (4.16), (4.17) and (4.18), simply note
that if µ∗ puts any mass on a closed set E ⊂ T where R > 0, we could replace
µ∗ by µ1 = µ∗ − µ∗|E while compensating with a large negative weight at eiθ0

not to violate (4.18). This will certainly make the integral in (4.21) larger, thus
contradicting the extremality of ν∗. Unfortunately, however, we have no control
over whether R(eiθ) vanishes on the circle or not, so this reasoning runs aground
if we are dealing with (4.21) for R > 0 on T. In order to establish the atomic
structure of the singular part of the extremal measure ν∗ in (4.21) for R > 0 on
T, we must come up with a variation of ν∗ which would increase

∫
T

R(eiθ)dν(θ)
without violating (4.18). This is precisely the turning point that makes problems in
the Bergman space so much more difficult than in their Hardy space counterparts.
For the latter, if we had simply gotten rid of the singular part µ∗ in ν, i.e., divided
our corresponding extremal function f∗ by a singular inner function defined by µ∗,
then we would not have changed the Hardy norm of f∗ at all (while we would have
dramatically increased the Bergman norm of f∗). This observation in addition to
the elementary inequality u lnu − u > u ln v − v for any u, v > 0, allowed S.Ya.
Khavinson (see [Kh2]) to show that in the context of Hardy spaces, when (4.18)
is replaced by a similar restriction on the Hardy norm of exp(S(ν)), if R > 0,
the extremal measure ν∗ is simply a constant times log R(eiθ)dθ, and an easy
qualitative description of extremals follows right away.

Now, in view of the above discussion, we cannot expect that for our problem,
when R > 0 on T, the extremal measure ν∗ in (4.21) satisfying (4.16), (4.17)
and (4.18) is absolutely continuous. But where should we expect the atoms of the
singular part µ∗ of the extremal ν∗ to be located? We offer here the following
conjecture.

Conjecture. If R > 0 on T, then the singular part µ∗ of the extremal measure ν∗

in (4.21) is supported on the set of local minimum points of R on T.

In other words, the singular inner part of the extremal function f∗ for Prob-
lem 2.1 corresponding to the boundary point of A defined by the hyperplane (4.20)
is atomic with atoms located at the local minima of R on T.
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The conjecture is intuitive in the sense that in order to maximize the integral
in (4.21), we are best off if we concentrate all the negative contributions from the
singular part of ν at the points where R > 0 is smallest. Note that this conjecture
does correspond to the upper estimate of the number of atoms in the singular
inner part of the extremal function f∗ in (1.3). Indeed, R is a rational function of
degree 2n and hence has 4n − 2 critical points (i.e., where R′(z) = 0) in Ĉ. Since
the number of local maxima and minima of R on T must be the same (consider
1/R instead), we easily deduce that R cannot have more than 2n−2 local minima
(or maxima) on T. (At least two critical points symmetric with respect to T must
lie away from T.)

One possible way to attempt to prove the conjecture using a variation of the
extremal measure ν∗ in (4.21) might be to divide the function f∗ by a function G
that would diminish the singular part µ∗ of ν∗. Of course, a natural candidate for
such a G would be the contractive divisor associated with the invariant subspace
[J ] in A2 generated by a singular inner function J built upon a part µ0 of µ∗ such
that µ0 ≥ µ∗ (recall that µ∗ ≤ 0), such that the support of µ0 is a subset of the
part of the circle that does not contain the local minima of R. Then (cf. [DuKS])
G = hJ , where h is a Nevanlinna function and ‖f∗/G‖A2 ≤ ‖f∗‖, so (4.18) is
preserved. Unfortunately, |h| > 1 on T − supp(µ0), so the resulting measure ν
defined by log(f∗/G) = S(ν) may at least a priori actually diminish the integral
in (4.21) instead of increasing it.

Finally, we remark that for the special case when the βj = 0 and instead of
Problem 2.1 we have the problem of finding

inf{‖f‖Ap : f �= 0, f (j)(0) = cj , j = 0, . . . , n}, (4.23)

the conjectured general form of the extremal function f∗ collapses to

f∗(z) = C
n∏

j=1

(1 − ᾱjz)
2
p exp(

k∑
j=1

λj
eiθj + z

eiθj − z
), (4.24)

where |αj | ≤ 1, j = 1, . . . , n, k ≤ n, λj ≤ 0. The difference in the degree of the
outer part in (4.24) versus the rational function in (1.3) appears if one follows the
proof of Theorem 4.1 word for word arriving at

|F |2 =

∏n
j=1(z − αj)(1 − ᾱjz)

zn

instead of (4.12).
We shall discuss Problem 4.23 for n = 2 in great detail in the last section.

5. The minimal area problem for locally univalent functions

In this section we shall discuss a particular problem arising in geometric function
theory and first studied by Aharonov and Shapiro in [AhSh1, AhSh2]. The problem



Extremal Problems for Nonvanishing Functions 81

is initially stated as that of finding

inf{
∫

D

|F ′(z)|2dA : F (0) = 0, F ′(0) = 1, F ′′(0) = b, F ′(z) �= 0 in D}. (5.1)

Problem (5.1) has the obvious geometric meaning of finding, among all locally
univalent functions whose first three Taylor coefficients are fixed, the one that
maps the unit disk onto a Riemann surface of minimal area. Setting f = F ′ and
c = 2b immediately reduces the problem to a particular example of problems
mentioned in (4.23), namely that of finding

inf{
∫

D

|f |2dA : f �= 0 in D, f(0) = 1, f ′(0) = c}. (5.2)

Assuming without loss of generality that c is real, we find that the conjectured
form of the extremal function f in (5.2) is

f(z) = C(z − A)eµ0
z+1
z−1 , (5.3)

where µ0 ≥ 0, and C, A, and µ0 are uniquely determined by the interpolating
conditions in (5.2). Of course, if |c| ≤ 1 in (5.2), the obvious solution is

f∗ = 1 + cz,

and hence, F ∗ = z + c
2z2 solves (5.1), mapping D onto a cardioid. The nontrivial

case is then when |c| > 1. All the results in the previous sections apply, so we know
that the extremal for (5.2) has the form

f∗ = hS,

where h is a bounded outer function and S is a singular inner function. As in Sec-
tion 2, a simple variation gives us the orthogonality conditions (OC) as necessary
conditions for extremality:∫

D

|f∗|2zn+2dA = 0, n = 0, 1, 2, . . . . (5.4)

From now on, we will focus on the non trivial case of Problem 5.2 with c > 1.
Thus, the singular inner factor of f∗ is non trivial (cf. Corollary 4.2). In support
of the conjectured extremal (5.3), we have the following proposition.

Proposition 5.1. If the singular factor S of f∗ has associated singular measure dµ
that is atomic with a single atom, then

f∗(z) = C(z − 1 − µ0)eµ0
z+1
z−1 (5.5)

where C and the weight µ0 are uniquely determined by the interpolating conditions.

Remark. Although we have been unable to show that the singular inner factor
for the extremal f∗ is atomic, we offer some remarks after the proof that do
support our hypothesis. If this is indeed the case, this would be, to the best of
our knowledge, the first example of a “nice” extremal problem whose solution
fails to be Lipschitz continuous or even continuous in the closed unit disk. All
solutions to similar or even more general problems for non-vanishing Hp functions
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are Lipschitz continuous in D̄ (cf. [Kh2] and the discussion in Section 4). Also,
solutions to similar extremal problems in Ap without the non-vanishing restriction
are all Lipschitz continuous in D̄ (cf. [KS]).

Proof. Our normalization (c ∈ R+) easily implies that the only atom of S is located
at 1. So, f∗ = hS, where S is a one atom singular inner function with mass µ0 at
1, and h is outer. By Caughran’s theorem ([Ca]), the antiderivative F ∗ of f∗ has
the same singular inner factor S and no other singular inner factors, i.e.,

F ∗ = HS, (5.6)

where H is an outer function times perhaps a Blaschke product. Writing the or-
thogonality condition (5.4) in the form∫

D

f̄∗f∗z2p dA = 0

for any arbitrary polynomial p, and applying Green’s formula, we obtain∫
T

F̄ ∗f∗z2p dz = 0 (5.7)

for any arbitrary polynomial p. Using (5.6) and SS̄ = 1 a.e. on T yields∫
T

H̄hz3p dθ = 0. (5.8)

Since h is outer, hence cyclic in H2, we can find a sequence of polynomials qn such
that hqn → 1 in H2. Replacing p by qnp and taking a limit when n → ∞ yields∫

T

H̄z3p dθ = 0 (5.9)

for all polynomials p. This last equation immediately implies that H is a quadratic
polynomial. Now, f∗ = hS = (HS)′ = H ′S + HS′, and S′ = 2µ0

(z−1)2 S. Since
f∗ ∈ H2, H must have a double zero at 1 to cancel the pole of S′! Hence H(z) =
C(z − 1)2, F (z) = C(z − 1)2S(z), and f∗(z) = C(z − 1 − µ0) exp(µ0

z−1
z+1 ) as

claimed. �

We want to offer several additional remarks here.
(i) Obviously, the above calculations are reversible, so the function (5.5) does

indeed satisfy the orthogonality condition (5.4) for the extremal.
(ii) The proof of Proposition 5.1 can be seen from a slightly different per-

spective. From Theorem 4.1, it already follows (assuming the hypothesis) that
the outer part of f∗ is a linear polynomial. Moreover, (5.7) implies that the an-
tiderivative F ∗ of f∗ is a noncyclic vector for the backward shift and hence has
a meromorphic pseudocontinuation to Ĉ − D ([DSS]). Accordingly, F ∗ must be
single-valued in a neighborhood of its only singular point {1}. This implies that
f∗ = hS must have a zero residue at 1. (Otherwise F would have a logarithmic
singularity there.) Calculating the residue of f∗ at 1 for a linear polynomial h and
an atomic singular factor S yields (5.5).
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(iii) The only remaining obstacle in solving the extremal problem (5.2) is
showing a priori that the singular inner factor of the extremal function is a one
atom singular function. If one follows the outline given in Section 4, we easily
find that for the problem (5.2), the function R(eiθ) in (4.22) becomes a rational
function of degree 2, and since R ≥ 0 on T,

R(eiθ) = const
(eiθ − a)(1 − āeiθ)

eiθ
= const |eiθ − a|2, (5.10)

where |a| ≤ 1. Thus, as we have seen in Section 4, we would be done if we could
show that the one atom measure is the solution of the extremal problem

max{
∫

T

R(eiθ)dµ(θ) : µ ≤ 0, µ ⊥ dθ} (5.11)

where µ satisfies the constraint∫
D

|h|2|Sµ|2dA ≤ 1 (5.12)

for a given outer function h and R is given by (5.10). (Recall that Sµ is the singular
inner function with associated singular measure µ.) Again, as noted previously, it
is almost obvious when |a| = 1, since then we simply concentrate as much charge
as needed at a to satisfy the constraint without changing the integral (5.11). Yet,
in general, we have no control over where in D a appears.

(iv) Let k(z) denote the orthogonal projection of |f∗|2 onto the space of L2

integrable harmonic functions in D. The orthogonality condition (5.4) implies that
k(z) is a real harmonic polynomial of degree 1. Moreover, due to our normaliza-
tion of the extremal problem (i.e., c ∈ R), we can easily show that f∗ in fact
has real Taylor coefficients. Indeed, f1(z) := f∗(z) satisfies the same interpolating
conditions and has the same L2-norm over D, thus by the uniqueness of the ex-
tremal function, f1 must be equal to f∗. Since f∗ has real Taylor coefficients, the
projection of |f∗|2 is an even function of y, and thus

k(z) = A + Bx, (5.13)

where A =
∫

D
|f∗|2dA and B = 4

∫
D

z|f∗|2dA. The orthogonality condition (5.4)
now implies that the function |f∗|2−k is orthogonal to all real-valued L2 harmonic
functions in D. Using the integral formula in [DKSS2] (or [DS, Chapter 5, Section
5.3]), it follows that ∫

D

(|f∗(z)|2 − k(z))sdA ≥ 0 (5.14)

for all functions s that are smooth in D̄ and subharmonic. The following corollary of
(5.14) offers an unexpected application of the conjectured form of the extremal f∗.

Corollary 5.2. Let w ∈ T, and assume that |f∗|2/|z −w|2 ∈ L1(D). (Note that the
conjectured extremal satisfies this condition at the point w = 1.) Then k(w) ≤ 0.
Thus, if f∗ has the form (5.5), B ≤ −A in (5.13).
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Proof. Choose s(z) = 1/|rw−z|2 for r > 1. Applying (5.14) as r → 1+, we see that
if k(w) > 0, the integral on the left must tend to −∞, which violates (5.14). �

Calculating the classical balayage U(eiθ) of the density |f∗|2dA to T, i.e.,

U(eiθ) = Re
1
2π

∫
D

|f∗|2 eiθ + z

eiθ − z
dA, (5.15)

expanding the Schwarz kernel eiθ+z
eiθ−z into the power series with respect to z and

using the orthogonality condition (5.4) allows us to cancel all the terms containing
powers of z of degree 2 and higher, so we arrive at

U(eiθ) = A +
B

2
cos θ,

where A and B are as in (5.13). Since U > 0 on T (it is a “sweep” of a positive
measure!), it follows that

Corollary 5.3. A >
|B|
2

, i.e.,
∫

D

|f∗|2dA > 2|
∫

D

z|f∗|2dA|.

A calculation confirms that for f∗ as in (5.5), Corollary 5.3 does hold.

(v) If we denote the value of the minimal area in (5.1) by A = A(b) and
by a3 the coefficient of z3 in the Taylor expansion of the extremal function F ∗

(i.e, F ∗(z) = z + bz2 + a3z
3 + · · · , where F ∗ is the anti-derivative of our extremal

function f∗) then as was shown in ([AhSh2], Theorem 4, p. 21), the following
equality must hold:

(3a3 − 2b2 − 1)A′(b) + 4bA(b) = 0. (5.16)

An involved calculation yields that the conjectured extremal function F ∗ =
∫

f∗,
where f∗ is as in (5.5), does indeed satisfy (5.16). This serves as yet one more
justification of the conjectured form of the extremal. A number of other necessary
properties of the extremal function are discussed in [AhSh1, AhSh2].
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Generalization of Carathéodory’s Inequality
and the Bohr Radius for
Multidimensional Power Series

Lev Aizenberg

Abstract. In the present paper we generalize Carathéodory’s inequality for
functions holomorphic in Cartan domains in Cn. In particular, in the case of
functions holomorphic in the unit disk in C, this generalization of Carathéo-
dory’s inequality implies the classical inequalities of Carahtéodory and Lan-
dau. As an application, new results on multidimensional analogues of Bohr’s
theorem on power series are obtained. Furthermore, the estimate from below
of Bohr radius is improved for the domain D = {z ∈ C2 : |z1| + |z2| < 1}.
Mathematics Subject Classification (2000). 32A05.

Keywords. Carathéodory’s inequality, Bohr’s theorem, Cartan domains, power
series.

1. Carathéodory’s inequality in several complex variables

Let D ⊂ Cn be a circular domain, that is, a Cartan domain, characterized by
the fact that if z ∈ D then zeiφ ∈ D, where z = (z1, . . . , zn) and 0 ≤ φ ≤ 2π.
Furthermore, we also assume that the domain D is a strongly starlike domain, that
is, for every homothetic transformation λD ⊂ D, where 0 < λ < 1.

It is a well-known fact that in domains of this type every holomorphic function
can be expanded into a series of homogeneous polynomials. Now, we are ready to
formulate our first lemma.

Lemma 1.1. Let D be a Cartan, strongly starlike domain. Let f be a holomorphic
function in D, with expansion into homogeneous polynomials given by

f(z) =
∞∑

k=0

Pk(z), z ∈ D, (1.1)

During the preparation of this work the author was supported by the Israel-Slovenia grant. Part
of the work was completed in January-February 2001 during the author’s stay at the Institute
of Mathematics, Physics and Mechanincs, Ljubljiana, Slovenia.
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where Pk(z) is a homogeneous polynomial of degree k. If �f(z) > 0 for every
z ∈ D then for every k ≥ 1 the following inequality holds

|Pk(z)| ≤ 2�P0(z), ∀z ∈ D. (1.2)

Proof. It is known that for every k = 1, 2, . . . , the polynomials Pk(z) in the ex-
pansion (1.1) are given by

Pk(z) = lim
r→1−0

1
2πrk

2π∫
0

f(zreiφ)e−ikφdφ

= lim
r→1−0

1
2πrk

2π∫
0

(
f(zreiφ) + f(zreiφ)

)
e−ikφdφ.

Therefore

|Pk(z)| ≤ lim
r→1−0

1
2πrk

2π∫
0

2�f(zreiφ)dφ = lim
r→1−0

1
rk

2�f(0)

= lim
r→1−0

1
rk

2�P0(z) = 2�P0(z).

This completes the proof of the lemma. �

Lemma 1.1 and the simple fact that every convex domain in the complex
plane C is intersection of half-planes allow us to deduce the following theorem.

Theorem 1.1. Let D be a Cartan domain and f be a function holomorphic in D. If
in the domain D the expansion (1.1) for the function f is valid and f(D) ⊂ G ⊂ C,
then for every z ∈ D the following inequality holds for every k ≥ 1

|Pk(z)| ≤ 2 dist(P0(z), ∂G̃),

where G̃ is the convex hull of G.

Remark 1.1. We point out here that in the above theorem G̃ cannot be replaced
by G.

Theorem 1.1 has a number of interesting corollaries.

Corollary 1.1. Let D be a Cartan domain and f be a function holomorphic in D.
If |f(z)| < 1 for every z ∈ D, then for every k ≥ 1 the following holds

|Pk(z)| ≤ 2(1 − |P0(z)|), ∀z ∈ D. (1.3)

Corollary 1.2. Let D be a complete, bounded, Reinhardt domain. Let f be a function
holomorphic in D with the corresponding multidimensional power series

f(z) =
∑
|α|≥0

cαzα, z ∈ D, (1.4)
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where α = (α1, . . . , αn), |α| = α1 + · · · + αn, zα = zα1
1 . . . zαn

n , and all αi are
nonnegative integers. If f(D) ⊂ G ⊂ C, then for every α such that |α| ≥ 1 the
following holds

|cα| ≤ 2 dist(c0, ∂G̃)
dα(D)

,

where dα(D) = maxD |zα|.
We point out here that the proof of Corollary 1.2 follows from Theorem 1.1

and the Cauchy estimates in the case of power series taken from [5].
In one complex variable Theorem 1.1 leads to

Corollary 1.3. If in the unit disk K = {z1 ∈ C : |z1| < 1} the function f is a
power series, that is,

f(z1) =
∞∑

k=0

ckzk
1 , (1.5)

and f(K) ⊂ G, then for every k ≥ 1 we have

|ck| ≤ 2 dist(c0, ∂G̃).

The following result is the known Carathéodory’s inequality [11]:

Corollary 1.4. If in the unit disk K = {z1 ∈ C : |z1| < 1} the equality (1.5) holds
and if �f(z1) > 0 for every z1 ∈ K then for all k ≥ 1

|ck| ≤ 2�c0.

Another classical inequality, known as Landau’s inequality [15], is also de-
duced from Theorem 1.1:

Corollary 1.5. If in the unit disk K = {z1 ∈ C : |z1| < 1} the equality (1.5) holds
and if |f(z1)| < 1 for every z1 ∈ K then for all k ≥ 1

|ck| ≤ 2(1 − |c0|).

2. Bohr’s theorem in several complex variables

Let us recall the theorem of H. Bohr [10], proven at the beginning of the 20th
century.

Theorem 2.1. If a power series (1.5) converges in the unit disk K and its sum has
modulus less than 1, then

∞∑
k=0

|ckzk
1 | < 1

in the disk {z1 ∈ C : |z1| < 1
3}. Moreover the constant 1

3 cannot be improved.
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Formulations of Bohr’s theorem in several complex variables appeared very
recently. We recall some of them.

Given a complete Reinhardt domain D, we denote by R(D) the largest non-
negative number r with the property that if the power series (1.4) converges in D
and its sum has modulus less than 1, then∑

|α|≥0

|cαzα| < 1, (2.1)

in the homothetic domain rD. In [9] the following result is proved in the case when
D is the unit polydisk

Un = {z ∈ Cn : |zj | < 1, j = 1, . . . , n}.
Theorem 2.2. For n > 1 one has

1
3
√

n
< R(Un) <

2
√

log n√
n

.

We see from Theorem 2.2 that R(Un) → 0 as n → ∞.
If D is the hypercone

Dn
1 = {z ∈ Cn : |z1| + · · · + |zn| < 1},

then the situation is quite different as the following theorem, taken from [1], shows.

Theorem 2.3. For n > 1 one has
1

3e
1
3

< R(Dn
1 ) ≤ 1

3
.

For further estimates of R(D) in the domains

Dn
p = {z ∈ Cn : |z1|p + · · · + |zn|p < 1},

where 1 ≤ p < ∞, we refer the reader to [7]. For other generalizations of Bohr’s
theorem see [2], [3], [4], [6], [14], [8]. It is noteworthy that in [13] the lower bound

from Theorem 2.2 is refined and is
√

log n
n log log n times a constant.

As it was pointed out already in [1], it seems more natural to consider not
a single number in the Bohr problem in Cn, but the largest subdomain DB of
D, such that (2.1) holds. At this stage, we state the following new result in this
direction.

Theorem 2.4. If the power series (1.4) converges in the unit ball

Dn
2 = {z ∈ Cn : |z1|2 + · · · + |zn|2 < 1}

and the modulus of its sum is less than 1, then (2.1) holds in the hypercone
1
3
Dn

1 = {z ∈ Cn : |z1| + · · · + |zn| < 1}
and the constant 1

3 cannot be improved.

The proof of Theorem 2.4 is based on the following lemma.
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Lemma 2.1. If Pk(z) is the homogeneous polynomial

Pk(z) =
∑
|α|=k

cαzα

and |Pk(z)| < 1 in the ball Dn
2 , then∑

|α|=k

|cαzα| < 1

for every z in the hypercone Dn
1 .

Proof. Using induction, one can prove the inequality√
|α||α|

αα1
1 . . . ααn

n
≤ |α|!

α1! . . . αn!
. (2.2)

It follows from Corollary 1.2 that

|cα| ≤ 1
dα(Dn

2 )
=

√
|α||α|

αα1
1 . . . ααn

n
.

From this, the relation (2.2) implies that for every z ∈ Dn
1 we have∑

|α|=k

|cαzα| ≤
∑
|α|=k

|α|!
α1! . . . αn!

|z1|α1 . . . |αn|αn

= (|z1| + · · · + |zn|)k < 1.

The proof of the lemma is now complete. �

We remark here that the condition |Pk(z)| < 1 in the ball Dn
2 cannot be

replaced by the analogous inequality in the hypercone Dn
1 . To see that, we consider

the second-order homogeneous polynomial

Q(z) =
√

3
2

(z2
1 + z2

2) + 3iz1z2.

Then for z ∈ D2

1, we have |Q(z)| ≤ 1, but

max
D2

1

[√3
2

(|z1|2 + |z2|2) + 3|z1z2|
]

=
3 +

√
3

4
> 1.

Now, we are ready to return to the proof of Theorem 2.4.

Proof of Theorem 2.4. From the assumption |f(z)| < 1 in the ball Dn
2 and the

Corollary 1.1 we get that for every k ≥ 1 the estimate∣∣∣∣ ∑
|α|=k

cαzα

∣∣∣∣ ≤ 2(1 − |c0|)
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holds for every z ∈ Dn
2 . From this inequality and Lemma 2.1 we deduce that∑

|α|=k

|cαzα| ≤ 2(1 − |c0|)

for every z ∈ Dn
1 . Now, if z ∈ 1

3Dn
1 , then∑

|α|≥0

|cαzα| ≤ |c0| + 2(1 − |c0|)
∞∑

k=1

1
3k

= 1.

The fact that the constant 1
3 is sharp can be seen if we consider a function of the

type f(z1, 0, . . . , 0). This completes the proof of the theorem. �

In order to improve the estimate R(Dn
1 ) > 1

3e
1
3

= 0.238844 taken from The-
orem 2.3 in the case n = 2, we use the following lemma from [12], [16].

Lemma 2.2. Let

F (t) =
n∑

j=−n

aje
ijt

be a real trigonometric polynomial. Then for k > n
2 the following inequality holds

|ao| + |a−k| + |ak| ≤ max
t

|F (t)|.
The last theorem of the paper is the following one.

Theorem 2.5.

R(D2
1) > 0.304236.

Proof. If for every z ∈ D2

1 one has that

|Pk(z)| =
∣∣∣∣ ∑
|α|=k

cαzα

∣∣∣∣ ≤ 1,

then in particular this holds for the points of the form (1
2 , 1

2eit) and we obtain∣∣∣∣ k∑
α2=0

ck−α2,α2e
itα2

∣∣∣∣ ≤ 2k.

From this we deduce that

22k

∣∣∣∣Pk

(
1
2
,
eit

2

)∣∣∣∣2 =
∑

α1+α2=k

|cα1,α2 |2 + c0,kc̄k,0e
ikt

+ c̄0,kck,0e
−ikt + . . . ≤ 22k.

Lemma 2.2 implies ∑
α1+α2=k

|cα1,α2 |2 + 2|c0,k||ck,0| ≤ 22k,
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or

k−1∑
α1=1

|cα1,k−α1 |2 + (|c0,k| + |ck,0|)2 ≤ 22k. (2.3)

We now want to compute

max
x1+x2≤1
x1,x2≥0

∑
α1+α2=k

|cα1,α2 |xα1
1 xα2

2 = Ak

under conditions (2.3) and |ck,0| ≤ 1, |c0,k| ≤ 1. It is not very difficult to show
that

Ak =
1 +
√

(k − 1)(22(k−1) − 1)
2k−1

.

Furthermore, we now consider the equation

∞∑
k=1

Akxk =
∞∑

k=1

1 +
√

(k − 1)(22(k−1) − 1)
2k−1

xk =
1
2
. (2.4)

Using the program Mathematica 3.0 [17], we estimated that the equation (2.4) has
a root greater than x0 = 0.304236. In addition, if z ∈ x0D2

1 then

∞∑
|α|=0

|cα||zα| < |c0| +
( ∞∑

k=1

Akxk

)
2(1 − |c0|) < 1.

This completes the proof of the theorem. �

Remark 2.1. The paper by Boas and Khavinson [9] contains essentially the follow-
ing result (Remark 4 in [1]): If the power series (1.4) converges in the unit polydisk
Un and the modulus of its sum is less than 1, then (2.1) holds in the ball 1

3Dn
2 and

the constant 1
3 cannot be improved.

Remark 2.2. The estimates of Bohr radius from the Theorem 2.3 hold also for
every Reinhardt domain of the type

D = {z ∈ Cn : φ(|z1|, . . . , |zn|) < 0},
where φ is a convex function, that is, D is the union of hypercones

{z ∈ Cn : a1|z1| + · · · + an|zn| < 1}.
The same holds about the estimates from Theorem 2.5.

Acknowledgement. The author thanks J. Globevnik, E. Liflyand, and A. Vidras
for their help during the preparation of this paper.
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[8] C. Bénéteau, A. Dahlner, D. Khavinson, Remarks on the Bohr phenomenon, Comput.
Methods Func. Theory 4 (2004), 1–19.

[9] H.P. Boas, D. Khavinson, Bohr’s power series theorem in several variables, Proc.
Amer. Math. Soc. 125 (1997), 2975–2979.

[10] H. Bohr, A theorem concerning power series, Proc. London Math.Soc. 13 (1914),
1–5.
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Remarks on the Value Distribution
of Meromorphic Functions

J.M. Anderson

In memory of S.Ya. Khavinson

1. Introduction

Let f(z) be a meromorphic function in the complex plane C. We assume acquain-
tance with the standard definitions of the Nevanlinna theory as given in [2]. Define
the spherical derivative ρ (f(z)) of f(z) by

ρ (f(z)) =
|f ′(z)|

1 + |f(z)|2
and set

µ(r, f) = sup{ρ(f(z)) : |z| = r}.
We also let D(w, r) be the radius of the largest disk centred on w with |w| = r in
which f(z) does not assume the values 0, 1,∞. We set

D(r) = min{D(w, r) : |w| = r}.
The following lemma is due to Pommerenke [4].

Lemma 1. Let f(z) be analytic and �= 0, 1 in |z| < r where r > 0. Then

rρ(f(0)) ≤ 4
√

2.

Applying this Lemma to the point on |z| = r where µ(r) is attained we see
that

D(r)µ(r) ≤ 4
√

2.

In [1] the following theorems have been proved (among others).

Theorem 1. Suppose that f(z) is a meromorphic function such that

lim inf
r→∞

T (r, f)
rσ

≤ K
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for some σ > 0 and 0 < K < ∞. Then

lim sup
r→∞

rσ−1

µ(r)
≥
(
24

√
2Kσ2

)−1

. (1.1)

Theorem 2. Suppose that f(z) is a meromorphic function of lower order b for some
b > 0. Then

lim sup
r→∞

T (r, f)
rµ(r)

≥
(
126

√
2b2
)−1

. (1.2)

Theorem 3. Suppose that f(z) is a meromorphic function such that

lim inf
r→∞

T (r, f)
(log r)2

= ∞,

but, for some b ≥ 2,

lim inf
r→∞

log T (r, f)
log log r

= b.

Then

lim sup
r→∞

T (r, f)
rµ(r)(log r)2

≥
(
96

√
2b2
)−1

. (1.3)

An examination of the proofs of these theorems shows that, in fact, (1.1),
(1.2) and (1.3) can be replaced by the stronger conclusions

lim sup
r→∞

rσ−1D(r) ≥ (6σ2K)−1, (1.4)

lim sup
r→∞

T (r, f)D(r)
r

≥
(

63
2

b2

)−1

, (1.5)

lim sup
r→∞

T (r, f)D(r)
r(log r)2

≥ (24b2)−1, (1.6)

respectively. We then apply Lemma 1 to points on |z| = r at which µ(r) is attained
and the theorems follow immediately.

2. Remarks

The purpose of this note, which is purely expository, is to point out the connection
between the results and the much deeper-lying results of [3]. In that paper the
functions which are considered are entire and the disks are centred on the points
of maximum modulus. The disks, moreover, are disks where the value 0 alone is
omitted. The results are expressed in terms of a proximate order function, rather
than directly with T (r), but have the advantage of being of a lim inf nature.
Moreover the corresponding results to (1.4), for example, depends only on σ and
not on σ2.
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3. Proof of (1.4)

The proofs of Theorems 1, 2, 3 depend on an increasingly more complicated selec-
tion of sequences along which the lim sup is attained. To prove (1.4) we set

n(r) = n(r, 0, f) + n(r, 1, f) + n(r,∞, f),

N(r) = N(r, 0, f) + N(r, 1, f) + N(r,∞, f),

so that by Nevanlinna’s first fundamental theorem,

N(r) ≤ 3T (r, f) + O(1), r → ∞. (3.1)

Suppose that for some a there is an integer p0 with

n
(
a(p + 1)

1
σ

)
− n(ap

1
σ ) ≥ 1

for all integers p ≥ p0. This implies that

n(r) ≥
( r

a

)σ

+ O(1), r → ∞,

which in term implies that

T (r, f) ≥ (3σaσ)−1rσ + O(log r), r → ∞,

by (3.1). This contradicts the assumption of Theorem 1 unless

a ≤ (3σK)−
1
σ . (3.2)

For such a choice of a there is a sequence {ps} of integers tending to ∞ as
s → ∞ such that

n
(
a(ps + 1)

1
σ

)
− n
(
ap

1
σ
s

)
= 0.

Putting

ts =
1
2

[
a(ps + 1)

1
σ + ap

1
σ
s

]
, ds =

1
2

[
a(ps + 1)

1
σ − ap

1
σ
s

]
,

we see that any circle centred on the circle |z| = ts of radius ds can have no 0, 1
or ∞ points of f(z). Thus

lim sup
r→∞

rσ−1D(r) ≥ lim sup
s→∞

(ts)σ−1ds.

But ts ∼ ap
1
σ
s , ds ∼ a

2σp
1
σ −1
s as s → ∞, which yields that

lim sup
s→∞

(ts)σ−1ds =
aσ

2σ
.

Since a is any number satisfying (3.2) we get

lim sup
r→∞

rσ−1D(r) ≥ (6σ2K)−1

which is (1.4). The proofs of (1.5) and (1.6) are similar but more complicated.
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4. A lemma

In view of the remarks at the end of [1] it is perhaps desirable to give a proof of
the following lemma.

Lemma 2. Let h(x) be a positive non-decreasing function for x > 0 and set

H(x) =
∫ x

0

h(t)dt.

Suppose that for some b > 1

lim inf
x→∞

log H(x)
log x

= b. (4.1)

Then, for p ∈ N

lim inf
p→∞ p2

{
H(p + 1) − H(p) − h(p)

H(p)

}
≤ b(b − 1), (4.2)

and the right-hand side is best possible.

Proof. If the lim inf above is denoted by α then, arguing as in [1] p. 298 we see
that

lim inf
x→∞

log H(x)
log x

≥ 1
2

{
1 + (1 + 4α)

1
2

}
.

This contradicts (4.1) if
1
2

{
1 + (1 + 4α)

1
2

}
> b,

i.e., if α > b(b − 1).
If we take h(x) = xb−1 for b > 1 then the lim inf in (4.2) is b(b−1)

2 . The
necessary counterexample is

h(x) = (p + 1)b − pb, p < x ≤ p + 1, H(x) = pb, p < x ≤ p + 1.

Then the lim inf becomes

lim inf
p→∞ p2

[
(p + 1)b + (p − 1)b − 2pb

pb

]
= b(b − 1)

as required. �

5. Concluding Remarks

In view of Lemma 2 above we have

Theorem 3′. Suppose that f(z) is a meromophic function such that

lim inf
p→∞

T (r, f)
(log r)2

= ∞,

but for some b ≥ 2

lim inf
r→∞

log T (r, f)
log log r

= b.
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Then

lim sup
r→∞

T (r)D(r)
r(log r)2

≥ (24b(b − 1))−1.

Proof. The proof follows as in Theorem 6 of [1]. For any p ∈ N we set

dp =
[
4
(
1 + n

(
ep+ 1

2

)
− n(ep)

)]−1

and choose tp so that

p + dp ≤ log tp < p +
1
2
− dp and n(tpe−dp) = n(tpedp).

Then as before we conclude that

lim sup
r→∞

T (r)D(r)
r(log r)2

≥
[
24 lim inf

p→∞ p2 N(ep+1) − N(ep) − n(ep)
N(ep)

]−1

and the result follows from Lemma 2. �
It would be of interest to study whether there is an analogue of Theorem 1

of [3] for functions of zero order, with some suitable substitute for the notion of
proximate order. In many cases the critical growth rate is O(log r)2 and this might
also be the case here. Further investigation is required.
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c© 2005 Birkhäuser Verlag Basel/Switzerland

Approximation Problems
on the Unit Sphere in C2
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Dedicated to the memory of S.Ya. Khavinson

1. Introduction

Let X be a compact subset of Cn. We denote by R0(X) the algebra of all functions
P
Q where P and Q are polynomials on Cn and Q �= 0 on X , and we denote by R(X)
the uniform closure of R0(X) in the space C(X) of continuous functions on X .
We are interested in finding conditions on X that imply that R(X) = C(X), i.e.,
that each continuous function on X is the uniform limit of a sequence of rational
functions holomorphic in a neighborhood of X .

We denote by hr(X) the rationally convex hull of X , defined as the set of
points y ∈ Cn such that every polynomial Q with Q(y) = 0 vanishes at some point
of X . The following is a necessary condition for the equality R(X) = C(X):

hr(X) = X. (1)

If (1) holds, we say that X is rationally convex. Rational convexity is invisible
when studying rational approximation on plane sets, since every compact plane
set satisfies (1).

In this article we shall be concerned with the special case of this question
when X is a closed subset of the unit sphere ∂B := {(z, w) : |z|2+ |w|2 = 1} in C2.

The first result on this problem was obtained by Richard Basener [4] in 1972.
Basener constructed a family of rationally convex sets XE ⊂ ∂B for which R(X) �=
C(X). Let E be a compact subset of the open unit disk D := {z ∈ C : |z| < 1}.
For each z ∈ D we put

γz = {w ∈ C : |z|2 + |w|2 = 1}.
Definition 1. XE = {(z, w) : z ∈ E and w ∈ γz}.
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Definition 2. A Jensen measure for a point z ∈ E, relative to the algebra R(E),
is a probability measure σ on E such that

log |f(z)| ≤
∫

E

log |f | dσ for all f ∈ R(E).

For information on Jensen measures, see [6].

Definition 3. The set E is of type (β) if for all z ∈ E, the only Jensen measure for
z relative to R(E) is the point mass δz.

Theorem 1 (Basener, [4]). Let E be a compact subset of the open unit disk. Assume
that R(E) �= C(E), and that E is of type (β). Then XE is rationally convex and
R(XE) �= C(XE).

In the converse direction, Basener showed the following (see Section 3 of [5]):
if XE is rationally convex, then E is of type (β). We note that if a compact plane set
E is of type (β) and R(E) �= C(E), then E has empty interior and the complement
of E is infinitely connected. Sets E with property (β) satisfying R(E) �= C(E) are
known to exist; see the remarks on the “Swiss cheese” sets below.

Corollary. Let E be of type (β). Then each closed subset Y of XE is rationally
convex.

Proof. Fix a point x ∈ C2 \Y . If x lies outside XE , then there exists a polynomial
P with P (x) = 0 and P �= 0 on XE , hence P �= 0 on Y . If x lies in XE , then x
belongs to ∂B \ Y . It follows that there exists a linear function L with L(x) = 1
and |L| < 1 on ∂B \ {x}. Then L − 1 vanishes at x but not on Y . �

This corollary provides us with a large collection of rationally convex subsets
of ∂B on which to test the question: what is required of a subset Y of ∂B, beyond
rational convexity, in order that the equality R(Y ) = C(Y ) may hold? We make
the following conjecture:

Conjecture. Let E be a set of type (β) and let f be a continuous complex-valued
function defined on E such that |f(z)| =

√
1 − |z|2 for all z ∈ E. Denote by Γf

the graph of f in C2:
Γf = {(z, f(z)) : z ∈ E}

Then R(Γf ) = C(Γf ).

In Section 2 we shall prove a special case of this conjecture in Theorem 2.

Swiss Cheeses. The classical example of a compact plane set E without interior
such that R(E) �= C(E) is the so-called “Swiss cheese” of S. Mergelyan and A.
Roth (see [6]). Fix a closed disk D0 ⊂ D and choose a countable family of disjoint
open disks Dj , j = 1, 2, . . . contained in D0, in such a way that

E ≡ D0 \
∞⋃

j=1

Dj
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has empty interior. We assume that
∑∞

1 rj < ∞, where rj is the radius of Dj. It
follows that R(E) �= C(E) (see [6]). McKissick and others have constructed Swiss
cheeses with property (β).

At the end of this article, in the Appendix, we show that XE can be regarded
as a three-dimensional “Swiss Cheese”.

2. Rational approximation on graphs in ∂B

In our paper [3], entitled “Rational Approximation on the Unit Sphere in C2”, we
treated cases of the conjecture stated in the Introduction. To obtain the equality
R(X) = C(X) for certain subsets X of ∂B, we imposed on X a strengthening of
the rational convexity condition which we called the “hull-neighborhood property”
(see Theorem 2.5 of [3]).

It turns out that for a graph Γf in ∂B, where f is a function defined on a set
of type (β) and satisfying a mild regularity condition, we can dispense with the
assumption of the hull-neighborhood condition. We have the following:

Theorem 2. Let E be a set of type (β) and let f be a continuous function defined
on the open unit disk D and satisfying a Hölder condition

|f(z) − f(z′)| ≤ M |z − z′|α, for all z, z′ ∈ D

where M and α are constants, 0 < α < 1, and assume |f(z)| =
√

1 − |z|2 for all
z ∈ D. Let Γf denote the graph of f over E. Then R(Γf ) = C(Γf ).

Before beginning the proof, we give some preliminaries. Our proof will be
based on a transform of measures on ∂B, given by G. Henkin in 1977 in [7], which
generalizes the Cauchy transform of measures on plane sets. Let µ be a complex
measure on ∂B. In [7], Henkin defined the kernel

H(ζ, z) =
ζ1z2 − ζ2z1

|1 − 〈z, ζ〉|2 (2)

on ∂B × ∂B \ {z = ζ}, where 〈, 〉 denotes the standard Hermitian inner product
in C2. Henkin’s transform is the function

Kµ(ζ) =
∫

∂B

H(ζ, z)dµ(z).

Then Kµ ∈ L1(∂B) and Kµ is smooth on ∂B \ supp(µ) (see also [10]).
If µ is orthogonal to polynomials, Henkin showed that∫

φ dµ =
1

4π2

∫
∂B

Kµ ∂φ ∧ ω, where ω(z) = dz1 ∧ dz2 (3)

for all φ ∈ C1(∂B). It follows that if X is a closed subset of ∂B and µ is a measure
supported on X with µ orthogonal to R(X), then (3) holds. In [9] H.P. Lee and
J. Wermer proved that in this setting if X is rationally convex, then Kµ extends
from ∂B \X to the interior of B as a holomorphic function, again denoted Kµ, by
abuse of language.
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For each a ∈ C we put as earlier

γa = {w ∈ C : |a|2 + |w|2 = 1} and we put ∆a = {(a, w) : |a|2 + |w|2 < 1}.
So ∆a is the disk on the complex line {z = a} bounded by the circle {(a, w) :
w ∈ γa}. For each a, Kµ restricted to ∆a is analytic. Without loss of generality
we shall assume E ⊂ D0 := {z : |z| < 1 − ε0} for some ε0 > 0.

In the proof of Theorem 2 we shall make use of the following four results in
our paper [3] (proved as Lemma 2.3, Lemma 2.2, Lemma 2.6, and formula (14) of
Section 4 of that paper, respectively):

Lemma 2.1. Let µ be a measure on ∂B and put X = supp(µ). Then for all a ∈ D
and for all w ∈ γa, we have

|Kµ(a, w)| ≤ 4‖µ‖
dist4((a, w), X)

. (4)

Here ‖µ‖ denotes the total variation of the measure µ. In the next lemma,
m3 refers to three-dimensional Hausdorff measure.

Lemma 2.2. Let X be a rationally convex subset of ∂B with m3(X) = 0. Let µ be
a measure on X with µ ⊥ R(X). If the holomorphic extension of Kµ to B belongs
to the Hardy space H1(B), then µ ≡ 0.

Lemma 2.3. With the notations of the preceding lemma, assume that for some
s > 0, the restriction of Kµ to ∆a lies in Hs(∆a) for almost all a ∈ D0. Then
Kµ ∈ H1(B) and so, by Lemma 2.2, µ = 0.

Lemma 2.4. Let f and Γf be as in Theorem 2. Fix a measure µ orthogonal to
R(Γf ). There exists a constant c, depending on only on µ, such that for all a ∈ D
and for all w ∈ γa, we have

|w − f(a)|2/α ≤ c · dist2((a, w), Γf ). (5)

We are now ready to begin the proof of Theorem 2.

Lemma 2.5. Let f be as in Theorem 2 and let µ be a measure on Γf orthogonal
to R(Γf ). There exists a constant κ depending only on µ such that for all a ∈ D0,
setting r =

√
1 − |a|2, we have∫ 2π

0

|Kµ(a, reiφ)|α/8 dφ ≤ κ. (6)

Proof. Fix a ∈ D0, φ ∈ [0, 2π] and put w = reiφ. By (5),

1
dist4((a, w), Γf )

≤ c2

|w − f(a)|4/α
.

The estimate (4) then gives

|Kµ(a, w)| ≤ 4‖µ‖c2

|w − f(a)|4/α
and so |Kµ(a, w)|α/8 ≤ c2

|w − f(a)|1/2
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where c2 is a constant depending only on µ. Thus∫ 2π

0

|Kµ(a, reiφ)|α/8 dφ ≤ c2

∫ 2π

0

dφ

|reiφ − f(a)|1/2
.

We write f(a) = reiφ0 . Then the right-hand side equals

c2

∫ 2π

0

dφ

r1/2|eiφ − eiφ0 |1/2
≤ c2

r1/2

∫ 2π

0

dθ

|eiθ − 1|1/2
.

Note that the integral on the right-hand side of the last inequality is finite. Also,
since |a| < 1 − ε0, there exists r0 > 0 such that r > r0 for every a ∈ D0. So∫ 2π

0

|Kµ(a, reiφ)|α/8 dφ ≤ c2

r
1/2
0

∫ 2π

0

dθ

|eiθ − 1|1/2
.

Denoting this last expression by κ, we get (6). �

Lemma 2.6. Fix a ∈ D0 \ E. Put r =
√

1 − |a|2. For R < r we have∫ 2π

0

|Kµ(a, Reiθ)|α/8 dφ ≤ κ (7)

where κ is the constant in (6).

Proof. Since a lies outside E, ∆a is disjoint from Γf , so the restriction of Kµ to
∆a extends continuously to ∆a. It is well known that the function

R →
∫ 2π

0

|Kµ(a, Reiφ)|α/8 dφ

is monotonic on 0 < R < r and continuous on 0 ≤ R ≤ r. So (6) implies (7). �

Lemma 2.7. Fix a0 in E. Fix R <
√

1 − |a0|2. Then∫ 2π

0

|Kµ(a, Reiθ)|α/8 dφ ≤ κ (8)

where κ is the constant in (6).

Proof. Choose a sequence {an} converging to a0 such that an ∈ D0 \ E for each
n. For n large, then, R <

√
1 − |an|2. By Lemma 2.6,∫ 2π

0

|Kµ(an, Reiθ)|α/8 dφ ≤ κ, n � 1.

Also Kµ(an, Reiθ) → Kµ(a0, Reiθ) uniformly on 0 ≤ φ ≤ 2π as n → ∞ since Kµ

is continuous on int(B). By continuity, then, we get (8). �

Lemmas 2.6 and 2.7 say that for all a0 ∈ D0, Kµ restricted to ∆a0 lies in
Hα/8(∆a0). Lemma 2.3 then yields that µ ≡ 0. Since this holds for each µ ortho-
gonal to R(Γf ), we conclude that R(Γf ) = C(Γf ), and so Theorem 2 is proved. �
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Appendix: Geometric interpretation of the sets XE

We shall show that the sets XE lying in ∂B can be seen as three-dimensional
analogues of the Swiss cheese E in C. We denote k-dimensional Hausdorff measure
by mk.

The Swiss cheese E is constructed by removing a countable family of disjoint
open disks Dj from a closed disk D0. The following properties hold:

(i)
∑∞

j=1 m1(∂Dj) < ∞
(ii) m2(E) > 0
(iii) The measure dz restricted to the union of the circles ∂Dj (properly oriented)

is finite on E and is orthogonal to R(E).
It follows immediately from (iii) that R(E) �= C(E).
Let us now start with a family of disks Dj in C as above and let us replace

each Dj by the open solid torus Tj = {(z, w) ∈ ∂B|z ∈ Dj}, j = 1, 2, . . . , with
T0 = {(z, w) ∈ ∂B|z ∈ D0}. Set

E∗ = T0 \
∞⋃

j=1

Tj .

Then E∗ is a compact subset of ∂B with the following properties:
(i′)
∑∞

j=1 m2(∂Tj) < ∞
(ii′) m3(E∗) > 0
(iii′) The measure µ = dz ∧ dw restricted to the union of the boundaries ∂Tj

(properly oriented) is finite on E∗ and is orthogonal to R(E∗).
Properties (i′) and (ii′) follow immediately from Fubini’s Theorem and prop-

erties (i) and (ii) of the Swiss Cheese. As for (iii′), the finiteness of µ = dz ∧ dw
follows from assumption (i′) together with the following assertion.

Claim. Let M be a smooth two (real-) dimensional submanifold of C2, S a Borel
subset of M , and m2 two-dimensional Hausdorff measure. Then

‖µ‖(S) ≤ m2(S).

Here ‖µ‖ denotes the total variation measure of µ.

Proof. Identify C2 with R4 using coordinates

z = x + iy, w = u + iv.

We may assume that near S, M is given parametrically, i.e., is the image of a
smooth map Φ from a neighborhood of the origin in R2 to M . Using coordinates
(ξ, η) in R2, let E1, E2 be the images of the tangent vectors ∂/∂ξ and ∂/∂η under
the differential of Φ, so

E1 = (xξ, yξ, uξ, vξ), E2 = (xη, yη, uη, vη)

as vectors in R4, where subscripts denote partial derivatives. It is standard that
the two-dimensional volume form on M is given by (the area of the parallelogram
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spanned by E1, E2):

dV =
√

det(g) dξdη

where g is the 2× 2 matrix with entries gij = Ei ·Ej , i, j = 1, 2 and · is the usual
inner product in R4. It is also well known that

m2(S) =
∫

S

dV.

On the other hand, writing dx = xξdξ + xηdη, etc., we obtain

dz ∧ dw = (dx + idy) ∧ (du + idv) = (A + iB) dξ ∧ dη

where
A = xξuη − xηuξ − yξvη + yηvξ

and
B = xξvη − xηvξ + yξuη − yηuξ.

To establish the claim it suffices to show that

det(g) ≥ A2 + B2. (9)

A calculation gives

det(g) − (A2 + B2) = (xξyη − xηyξ + vηuξ − vξuη)2

which establishes (9) and completes the proof of the claim. �

To prove the assertion of (iii′) that dz ∧dw is orthogonal to R(E∗), we argue
as follows: fix a rational function f = P/Q, where P, Q are polynomials with Q �= 0
on E∗. The set {Q = 0} ∩ T0 is contained in

⋃∞
j=1 Tj. By Heine-Borel, there exists

an integer such that this set is contained in
⋃n

j=1 Tj. We put Ωn = T0 \
⋃n

j=1 Tj .
Then f is holomorphic on Ωn. By Stokes’ Theorem applied to the form fdz ∧ dw
on Ωn, we have ∫

∂Ωn

fdz ∧ dw =
∫

Ωn

∂̄f ∧ dz ∧ dw.

The right-hand side of this equation vanishes, since f is analytic on a neighborhood
of Ω0. The left-hand side approaches

∫
E∗ f dµ as n → ∞. So

∫
E∗ f dµ = 0. Thus

µ is orthogonal to f . Since this holds for each f ∈ R0(E∗), we have µ orthogonal
to R(E∗).

Finally, we remark that R(E∗) �= C(E∗) clearly follows from (iii′).
It is clear that E∗ coincides with XE, by the definition of XE in the Intro-

duction. For an arbitrary Swiss cheese E, XE will not be rationally convex.
There is a substantial literature related to the approximation questions trea-

ted in this article. The references below list some of the relevant papers, as well as
those papers specifically cited in this article.
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polynomials and polyanalytic rational functions on compact subsets of the
complex plane.
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1. Introduction

In this paper we deal with some problems of uniform approximation by polyan-
alytic polynomials and polyanalytic rational functions on compact subsets of the
complex plane C.

Let U ⊂ C be an open set. Denote by Hol(U) the space of all holomorphic
functions in U . We recall that a function f is called polyanalytic of order n (or,
shorter, n-analytic) in U if it is of the form

f(z) = zn−1fn−1(z) + · · · + zf1(z) + f0(z), (1.1)

where n ∈ N and f0, . . . , fn−1 ∈ Hol(U). Denote by Holn(U) the space of all n-
analytic functions in U . Notice, that Holn(U) consists of all continuous functions
f on U such that ∂

n
f = 0 in U in the distributional sense, where ∂ is the standard

Cauchy-Riemann operator in C (i.e., ∂ = ∂/∂z = 1
2 (∂/∂x + i∂/∂y)).

In what follows a polynomial and a rational function will mean a complex-
valued polynomial and a rational function in the complex variable z respectively.
By n-analytic polynomials and by n-analytic rational functions we mean the func-
tions of the form (1.1) where f0, . . . , fn−1 are polynomials and rational functions

The first author was partially supported by grants 2000SGR-00059, 2001SGR-00172 of General-
itat de Catalunya and BFM 2002-04072-C02-02 of Ministerio de Ciencia y Tecnologia.
The second author was partially supported by grants NSh-2040.2003.1 of the Program “Leading
Scientific Schools”, YSF 2001/2-16 Renewal of INTAS and 04-01-00720 of RFBR.
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respectively. Denote by Pn the set of all n-analytic polynomials. Also for a com-
pact set X ⊂ C we denote by Rn(X) the set of all n-analytic rational functions
f such that the corresponding rational functions f0, . . . , fn−1 in (1.1) have their
poles outside X . Put P := P1 and R(X) := R1(X).

In the most general form the problem we are interested in can be formulated
as follows: given a compact set X ⊂ C, which conditions on X are necessary and
sufficient in order that each function which is continuous on X and n-analytic on
its interior can be uniformly on X approximated (with an arbitrary accuracy) by
n-analytic polynomials or by n-analytic rational functions with poles outside some
appropriately chosen compact set Y ⊇ X?

The investigation of this problem was started in 1980-th (see [TW, Ca, Wa],
where some sufficient approximability conditions were obtained). In 1990-th sev-
eral results on approximability of functions by polyanalytic polynomials have been
obtained using the concepts of Nevanlinna and locally Nevanlinna domains which
were introduced in [Fe1] and [CFP] and turned out to be fairly useful. The recent
progress in the themes under consideration is related with usage of some concepts
analogous to the concept of a Nevanlinna domain and a “reductive” approach (see
[BGP1, BGP2, Za]). The last approach allows us to conclude (under some suit-
able assumptions) that one approximability property takes place on a compact
set X whenever one has certain similar properties on some appropriately chosen
(and more simple) compact subsets of X . Some other bibliographical notes con-
cerning the matter may be found in [Fe2]. Our investigation of the problem under
consideration is based on studying of special properties of conformal mappings of
Carathéodory domains onto the unit disk and on some special results concerning
the structure of measures that are orthogonal to rational functions on certain type
of compact sets in C.

The paper is organized as follows. In Section 2 we explain some properties
of Carathéodory domains and obtain one useful generalization of Carathéodory
extension theorem (see Theorem 1 and Corollary 1). In Section 3 we study the
structure of measures being orthogonal to rational functions with poles outside
some kind of compact sets in C (see Theorem 2, Propositions 3 and 4). In Section 4
we obtain (see Theorems 3 and 4) new approximability conditions in the problem
under consideration for some special unions X of compact sets. These conditions
have a reductive nature and are substantially based on the concepts of a Nevanlinna
and locally Nevanlinna domains. In Theorem 5 we present one interesting rigidity
property of Nevanlinna domains.

We need to fix some notation. Denote by C the standard one-point com-
pactification of C, that is C = C ∪ {∞}. Put D := {w ∈ C : |w| < 1} and
T := {ξ ∈ C : |ξ| = 1}. We also denote by [a, b] the closed line segment, joining
two points a and b in C and by B(a, r) the open disk with center at a ∈ C and radius
r > 0. For a set E we denote by E◦ its interior, by E its closure, by ∂E its bound-
ary and by S(E) the set of all connected components of E◦. By a continuum one
means a non-empty connected compact set in C and by a contour a closed Jordan
curve in C. For a contour Γ we denote by D(Γ) the Jordan domain bounded by Γ.
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If X is a compact set, then X̂ means the union of X and all bounded con-
nected components of its complementary. Usually, X̂ is called the polynomial con-
vex hull of X , because X̂ = {z ∈ C : for each p ∈ P one has |p(z)| ≤ max

x∈X
|p(x)|}.

We recall, that a compact set X is called a Carathéodory compact set if ∂X = ∂X̂.
As usual, H1(D) and H∞(D) are the standard Hardy spaces in D. By Fatou’s

theorem for each f ∈ H1(D) and for almost all ξ ∈ T there exists the angular
boundary value f(ξ) of f at ξ. We denote by F (f) the set of all such points ξ ∈ T.
This set is called the Fatou set of f . In view of [Po1, Proposition 6.5] F (f) is a
Borel set. Also, for an open set U we denote by H∞(U) the set of all bounded
holomorphic functions in U .

2. Some properties of the Carathéodory domains

In what follows, if Ω is some bounded simply connected domain in C, then we will
always assume that ϕ is a fixed conformal mapping from D onto Ω and ψ is its
inverse.

Let Ω be a bounded simply connected domain. We start with the following
question which have appeared naturally in the theory of conformal mappings and
which will be one of the central points in the further consideration: what it is
possible to say about extension of ϕ onto D and about extension of ψ onto Ω?

The well-known Carathéodory extension theorem [Po1, Theorem 2.6] gives
an answer to both questions in the case of Jordan domains: ϕ can be extended to
a homeomorphism of D onto Ω if and only if Ω is a Jordan domain. If we only
ask about continuous (not necessary homeomorphic) extension of ϕ the answer
is given by [Po1, Theorem 2.1] that says: ϕ has a continuous extension to D if
and only if ∂Ω is locally connected. We always will keep the notation ϕ for the
extension to D if it exists.

In the general case, the Carathéodory prime end theorem [Po1, pag. 18]
guarantee the existence of the extension of ϕ to a homeomorphism of D onto the
union of Ω and the space of prime ends of Ω (see [Po1, pag. 30]), but this union
differs from Ω in any admissible geometrical and/or topological sense.

Put
∂aΩ := {ϕ(ξ) : ξ ∈ F (ϕ)}.

This set is called an accessible part of ∂Ω. By [Po1, Propositions 2.14 and 2.17]
∂aΩ is the set of all points in ∂Ω which are accessible from Ω by some curve and
therefore, ∂aΩ depends only on Ω, but not on the choice of ϕ. Mazurkiewich [Ma,
Theorem 2] proved the following result: let E be a compact subset of C and let
Ea be the set of all points of E which are accessible from C \ E by some curve;
then Ea is a Borel set. Applying this result to the set E = C \ Ω and taking into
account that ∂aΩ = (C \ Ω)a we conclude that ∂aΩ is a Borel set.

Recall, that a bounded domain Ω is called a Carathéodory domain if ∂Ω =
∂Ω∞, where Ω∞ is the unbounded connected component of the set C \ Ω. In



112 J.J. Carmona and K.Yu. Fedorovskiy

particular, each Carathéodory domain Ω is simply connected and possesses the
property Ω = (Ω)◦.

Proposition 1. Let Ω be a Carathéodory domain and ζ ∈ ∂aΩ. Then there exists a
unique point t = t(ζ) ∈ F (ϕ) ⊆ T such that ζ = ϕ(t(ζ)).

Proof. Take a point ζ ∈ ∂aΩ. There exists at least one point t ∈ F (ϕ) such that
ϕ(t) = ζ. Assume that there exist t1, t2 ∈ F (ϕ), t1 �= t2 but ϕ(t1) = ϕ(t2) = ζ.
Let �j = [0, tj], j = 1, 2. Then γ = ϕ(�1 ∪ �2) is a contour in Ω ∪ {ζ}. The
continuum �1 ∪ �2 separates D onto two open circular sectors ∆1 and ∆2 (i.e.,
∆1 ∪∆2 = D \ (�1 ∪ �2)). Since γ is a contour in Ω∪{ζ}, then one of these sectors,
says ∆1, possesses the property ϕ(∆1) ⊂ D(γ).

The existence of radial limits of ϕ almost everywhere on the nondegenerate
arc ∆1 ∩T, implies that D(γ)∩ ∂Ω �= ∅. Therefore, there exists at least one point
ζ′ ∈ D(γ)∩ ∂Ω. Since Ω is the Carathéodory domain, then ζ′ ∈ D(γ)∩ ∂Ω∞. One
has that there exists at least one point z′ ∈ D(γ) ∩ Ω∞. Since Ω∞ is connected,
then it is possible to find an infinite polygonal line �∞ ⊂ Ω∞ which goes from z′

to ∞. It follows from the Jordan curve theorem, that �∞ ∩ γ �= ∅. But this is a
contradiction because γ ⊂ Ω ∪ {ζ}. Hence t1 = t2 = t(ζ). �

Let Ω be a Carathéodory domain in C and assume that ϕ has the following
normalization: ϕ(0) = z0 ∈ Ω and ϕ′(0) > 0.

Fix a sequence of a rectifiable contours {Γm}∞m=1 such that Ω ⊂ D(Γm) ⊂
D(Γm−1) so that Γm tends to ∂Ω as m → ∞. The existence of such sequence
is proving by consideration of a fixed conformal map h from D onto Ω∞ with
h(0) = ∞ and setting Γm := h({t : |t| = 1 − 1

m+1}). Take a sequence of
the conformal maps {ϕm}∞m=1 from D onto D(Γm) such that ϕm(0) = z0 and
ϕ′

m(0) > 0. Since each D(Γm) is a Jordan domain, then each ϕm can be extended to
a homeomorphism of D onto D(Γm) (which we also denote by ϕm). The following
convergence properties of {ϕm}m are consequences of the Carathéodory kernel
theorem (see [Go, Chapter II, Section 5, Theorem 1]):

ϕm ⇒ ϕ on compact subsets of D as m → ∞,
ϕ−1

m ⇒ ϕ−1 on compact subsets of Ω as m → ∞.

For each ζ ∈ ∂aΩ the point t(ζ) that appears in Proposition 1 will be denoted
by ϕ−1(ζ).

Theorem 1. Let Ω be a Carathéodory domain and {Γm}m and {ϕm}m be as above.

(1) For each ζ ∈ ∂aΩ one has ϕ−1
m (ζ) → ϕ−1(ζ) as m → ∞.

(2) For each bounded connected component G of C \ Ω one has |ϕ−1
m (z)| → 1

uniformly on G.

Proof. Let us prove the assertion (1). Take a point ζ0 ∈ ∂aΩ and put t0 = t(ζ0) =
ϕ−1(ζ0). Denote by � the radius [0, t0] and put L = ϕ(�). Then L is a Jordan arc
which goes, in Ω, from z0 to ζ0.



Conformal Maps and Uniform Approximation by Polyanalytic Functions 113

For each m we consider a point ζm ∈ Γm which is a nearest point to ζ0. For
each m ≥ 1 we put Lm := L ∪ [ζ0, ζm] and �m := ϕ−1

m (Lm). Put tm = ϕ−1
m (ζm)

and note, that each �m = ϕ−1
m (L) ∪ ϕ−1

m ([ζ0, ζm]) is the union of two consecutive
Jordan arcs in D ∪ {tm}. It is clear, that the sequence {�m}m accumulates to a
subset Λ of D. It means that Λ is the set of all points w ∈ D such that there exists
a sequence {wmj}j with the following properties: wmj ∈ �mj and wmj → w as
j → ∞.

The set Λ possesses some special properties. Namely, one has:

(i) Λ is a continuum. Since Λ is a compact set let us prove that Λ is connected.
Indeed, otherwise would exist two open sets U1 and U2 such that Λ ⊂ U1 ∪ U2,
U1 ∩U2 = ∅, Λ∩Uj �= ∅ for j = 1, 2 and suppose 0 ∈ U1. Consider the first point
wm ∈ �m such that wm ∈ U1 \ U1 (such point wm exists because �m is the union
of two Jordan arcs and �m �⊂ U1 for big enough m). If w is an accumulation point
of {wm}m, then w ∈ U1 \ U1 and w �∈ U2 because U1 ∩ U2 = ∅, but w ∈ Λ and
this is a contradiction.

(ii) Λ ⊂ � ∪ T. This is consequence of the following arguments. If there exists
w ∈ Λ, w /∈ � ∪ T, then we can find zmj ∈ Lmj and ε > 0, such that

B(w, ε) ∩ (� ∪ T) = ∅, wj := ϕ−1
mj

(zmj) ∈ B(w, ε) and w = lim
j→∞

wj .

Since ϕmj → ϕ uniformly on B(w, ε) as j → ∞, one has

lim
j→∞

zmj = lim
j→∞

ϕmj (wj) = lim
j→∞

ϕ(wj) = ϕ(w).

This means that ϕ(w) belongs to the closure of L∪ (⋃j [ζ0, ζj ]
)
, but this is impos-

sible since ϕ(w) ∈ Ω \ L.

(iii) � ⊂ Λ. Really, for each ε > 0, we consider the segment �ε = [0, (1−ε)t0]. Since
ϕ−1

m ⇒ ϕ−1 uniformly on ϕ(�ε), then one has �ε ⊂ Λ for each ε > 0. Therefore
� ⊂ Λ.

(iv) The set Λ∩T is connected. Indeed, otherwise, Λ∩T = E1∪E2, where E1 ⊂ T
and E2 ⊂ T are nonempty, closed and disjoint. Assume that t0 ∈ E1. Then,
Λ = (� ∪ E1) ∪ E2 and hence Λ is not connected, which gives a contradiction.
Therefore, Λ = � ∪ α, where α is some closed subarc of T.

In order to prove (1) we need to show that Λ = �. If Λ �= �, then α �= {t0}.
Let w′

m ∈ �m be a nearest point to t0 and let �′m be the subcontinuum ϕ−1
m (L′

m)
where L′

m is [ϕm(w′
m), ζm] if ϕm(w′

m) /∈ L and L′′
m ∪ [ζ0, ζm] otherwise, where L′′

m

is the subarc of L that joints ϕm(w′
m) with ζ0.

We claim that ϕm(w′
m) → ζ0. If this would be not true, then there exists

some partial sequence {w′
mj

}j such that z′mj
:= ϕmj (w′

mj
) → z′ �= ζ0. Since

z′mj
∈ Lmj = L ∪ [ζ0, ζmj ] and ζmj → ζ0 as j → ∞, then z′ ∈ L \ {ζ0}. Since
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ϕ−1
mj

⇒ ϕ−1 in Ω, then one has

t0 = lim
j→∞

w′
mj

= lim
j→∞

ϕ−1
mj

(z′mj
) = lim

j→∞
ϕ−1(z′mj

) = ϕ−1(z′) ∈ D,

but this is a contradiction. Since ϕm(�′m) is a subcontinuum of Lm and its extremes
converge to ζ0 we obtain, that

diam (ϕm(�′m)) → 0 as m → ∞.

By [Po1, Corollary 1.4] we have, that

sup
z∈D

(1 − |z|2)|ϕ′
m(z)| ≤ A < ∞

for all m, where A is an absolute constant. Notice that �′m is either a Jordan arc
or the union of two consecutive Jordan arcs. Then, by [Po2, Theorem 9.2] applied
to �′m or to each of the arcs that form �′m, we conclude, that

diam (�′m) → 0 as m → ∞, (2.1)

which means, that tm → t0 as m → ∞ and hence, α = {t0}.
Finally, taking into account (2.1), we have

lim
m→∞ϕ−1

m (ζ0) = lim
m→∞ϕ−1

m (ζm) = t0 = ϕ−1(ζ0),

which ends the proof of (1).
We are going to prove the assertion (2). Let G be a bounded connected

component of C \ Ω. Assume that |ϕ−1
m | does not converge uniformly to 1 on G.

This implies the existence of a sequence {zk}k in G and a subsequence {ϕ−1
mk

}k of
{ϕ−1

k }k such that |ϕ−1
mk

(zk)| ≤ r < 1 for all k. Let wk := ϕ−1
mk

(zk). Considering a
subsequence of {wk}k if it is necessary we may assume that wk → w0, |w0| ≤ r < 1.
Since ϕmk

converge uniformly on the compact set
⋃∞

k=0{wk} we obtain

ϕ(w0) = lim
k→∞

ϕmk
(wk) ∈ G.

But ϕ(w0) ∈ Ω and G ∩ Ω = ∅ and we arrive to a contradiction. �

Remind, that ψ is the inverse mapping for ϕ. Proposition 1 and Theorem 1
allow us to state the following corollary which will be frequently and implicitly
used later.

Corollary 1. Let Ω be a Carathéodory domain. Then ϕ and ψ can be extended to
Borel measurable functions (denoted also by ϕ and ψ) on D ∪ F (ϕ) and Ω ∪ ∂aΩ
respectively and such that

ψ(ϕ(ξ)) = ξ for all ξ ∈ F (ϕ)
ϕ(ψ(ζ)) = ζ for all ζ ∈ ∂aΩ.

(2.2)

Indeed, the function ϕ is a Borel function on D ∪ F (ϕ) because of [Po2,
pag. 331] and ψ is a Borel function on Ω ∪ ∂aΩ in view of Theorem 1(1).
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Example 1. Let us give an example of a Carathéodory domain Ω such that ∂Ω =
∂aΩ and Ω is not a Jordan domain.

Ω := D \
∞⋃

n=1

{
z : (2n + 1)−1 ≤ Re z ≤ (2n)−1, Im z ≥ 0

}
.

Let f be some conformal mapping from D onto Ω. Observe that there exists a
point ξ ∈ T such that [0, i] = C(f, ξ) (where C(g, a) means the total cluster set of
a function g at a point a), and for each ζ ∈ [0, i] there exists some point t ∈ T such
that ζ = f(t). So it is clear that ∂Ω = ∂aΩ and that Ω is not a Jordan domain.

Example 1 shows how Theorem 1 generalize the Carathéodory extension theo-
rem for the sufficiently wide class of non Jordan domains. Notice, that if ∂Ω = ∂aΩ,
then ϕ−1

m (ζ) → ϕ−1(ζ) for all ζ ∈ ∂Ω and therefore, ϕ−1 extends to the function
belonging to the first Baire class in Ω. It is worth to compare this fact with [Go,
Chapter II, Section 3, Theorem 1].

The Carathéodory domain possesses the following property, which seems
fairly interesting and useful.

Proposition 2. Let Ω be a Carathéodory domain in C and let G be a bounded
connected component of C \Ω. Then the set ∂aΩ∩ ∂G consists of at most 1 point.

Proof. Assume the opposite, which means, that there exists at least two different
points, says ζ1 and ζ2 in ∂aΩ∩ ∂G. Then there exist two different points t1 and t2
in F (ϕ) ⊂ T such that ζs = ϕ(ts) for s = 1, 2. Denote by �1 and �2 the radii [0, t1]
and [0, t2] respectively and put Ls = ϕ(�s) for s = 1, 2. Set Bs(r) := B(ζs, r) for
any r > 0 and for s = 1, 2.

Take some δ > 0 such that B1(δ) ∩ B2(δ) = ∅. Denote by ζ∗s (δ) for s = 1, 2
the first intersection point of Ls with Bs(δ) and by Ls(δ) the subarc of Ls from
z0 to ζ∗s (δ). Let λ(δ) ⊂ G be some polygonal line in G that connects B1(δ) with
B2(δ) and such that λ(δ) ∩ Bs(δ) = {ζ∗∗s (δ)} for s = 1, 2.

Denote by M(δ) the continuum L1(δ)∪L2(δ)∪B1(δ)∪B2(δ)∪λ(δ). It follows
from the Jordan curve theorem, that C\M(δ) has only two connected components,
says U(δ) the bounded one. Indeed, U(δ) is the bounded connected component of
the complementary of the Jordan curve which is the union of Ls(δ) (for s = 1, 2),
λ(δ) and appropriately chosen subarcs of ∂Bs, joining the points ζ∗s (δ) and ζ∗∗s (δ)
for s = 1, 2 respectively.

The continuum �1 ∪ �2 separates D onto two open sectors. The image by ϕ
of one of them cuts U(δ). Therefore, there exists ζ ∈ ∂Ω ∩ U(δ) and r > 0 such
that B(ζ, r) ⊂ U(δ). Since Ω is a Carathéodory domain, it is possible to find some
point z ∈ B(ζ, r)∩Ω∞. Then, there exists an infinite polygonal line Π ⊂ Ω∞ joints
the point z with ∞. Since Π is connected, then Π ∩ M(δ) ⊂ B1(δ) ∪ B2(δ).

Now let us choose δ1 < δ such that Bs(δ1)∩Π = ∅ for s = 1, 2 and repeat the
construction of M(·) and U(·) using δ1 instead of δ. Observe, that z ∈ B(ζ, r) ⊂
U(δ1). Therefore we reach to a contradiction, because Π ∩ M(δ1) �= ∅, which is
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possible only if Π∩ (B1(δ1) ∪B2(δ1)) �= ∅. But Π ∩ (B1(δ1) ∪B2(δ1)) = ∅ by the
election of δ1. �
Example 2. It is worth to note, that there exists a Carathéodory domain Ω having
a bounded component G of C \ Ω such that ∂aΩ ∩ ∂G consists only of one point.
Indeed, if

Ω1 :=
( ∞⋃

n=1

{
z : 1

2n+1 < Re z < 1
2n , |Im z| < π − 1

n

})
∪ {z : |Im z| < Re z, 0 < Re z < 1

2},
then the desired example may be obtained as Ω := exp Ω1 and G = D.

Corollary 2. If Ω be a Carathéodory domain in C with ∂Ω = ∂aΩ, then C \ Ω is
connected.

3. Structure of measures orthogonal to rational functions

Let X ⊂ C be a compact set. Denote by C(X) the space of all complex-valued
continuous functions on X endowed with the uniform norm ‖f‖X = max

z∈X
|f(z)|.

Put A(X) = C(X) ∩ Hol(X◦). Define P(X) and R(X) to be the closures in C(X)
of the subspaces {p|X : p ∈ P} and {g|X : g ∈ R(X)} respectively.

In what follows, a measure means a finite complex-valued Borel measure
on C. By Supp (µ) one denotes the support of the measure µ, and by |µ| – the
corresponding variational measure. If µ is a measure and E is a Borel set then
µ|E means the restriction of µ to the set E, i.e., µ|E(E1) = µ(E ∩ E1) for each
Borel set E1. The notation µ � ν (respectively, µ ⊥ ν) means, as usual, that the
measure µ is absolutely continuous with respect to ν (respectively, that µ and ν
are mutually singular).

If µ is some measure on X , then one says that µ is orthogonal to some subclass
V ⊆ C(X) if

∫
f dµ = 0 for each f ∈ V and writes this fact as µ ⊥ V .

For a rectifiable contour or arc γ one writes dζ|γ , or dζ if it is clear from the
context what γ we deal with, for the measure on γ which acts (as a functional in
the space C(γ)) by the formula dζ|γ(f) =

∫
γ

f(ζ) dζ. In the case when γ is some
subarc of T we use the complex parameters ξ or t (instead of ζ). We denote by dA
the planar Lebesgue measure in C.

Let Ω be a Carathéodory domain. Take a function u ∈ L1(T) so that τ := u dξ
is a measure on T. Define the measure ϕ(τ) on ∂Ω by the formula

ϕ(τ)(E) := τ(ψ(E ∩ ∂aΩ))

for every Borel set E ⊂ ∂Ω or, equivalently,∫
g(ζ) dϕ(τ)(ζ) =

∫
F (ϕ)

g(ϕ(ξ))u(ξ) dξ =
∫

T

g(ϕ(ξ))u(ξ) dξ (3.1)

for every g ∈ C(Ω).



Conformal Maps and Uniform Approximation by Polyanalytic Functions 117

In the sequel ω will denote the measure ω := ϕ(dξ). In fact, ω is a measure
on ∂aΩ and has no atoms. Furthermore, it follows from (2.2) and (3.1), that

ϕ(u dξ) = (u ◦ ψ)ω. (3.2)

Let U be a bounded not empty open set, E ⊂ ∂U be a Borel set and z ∈ U be
a point. Then, as usual, ω(z, E, U) denotes the harmonic measure of E evaluated
with respect to U and z. Remind, that ω(z1, ·, U) � ω(z2, ·, U) for all z1, z2 that
belong to the same connected component of U .

Observe, that ω(ϕ(0), ·, Ω) = ϕ(|dξ|/(2π)). Using the definitions of ω(z, ·, Ω)
and ω(·) and the fact that |dξ(E)| ≥ c(δ)|dξ|(E) for each Borel set E ⊂ T such
that diam (E) ≤ δ, where c(δ) → 1 as δ → 0, it is possible to show, that

ω(ϕ(0), ·, Ω) = |ω(·)|/(2π).

E. Bishop had provided in [Bi1, Bi2] a fruitful investigation of the structure of
certain measures orthogonal to rational functions on Carathéodory compact sets.
The following results are essentially (but only implicitly) stated in [Bi1, Bi2].

Theorem 2.

(1) Let Ω be a Carathéodory domain in C and µ be a measure on ∂Ω such that
µ ⊥ R(Ω). Then there exists a function h ∈ H1(D) such that

µ = (h ◦ ψ)ω. (3.3)

(2) Let X be a Carathéodory compact set in C such that X◦ �= ∅ and µ be the
measure on ∂X such that µ ⊥ R(X). Then

µ =
∑

Ω∈S(X)

µΩ, (3.4)

where µΩ = µ|∂Ω ⊥ R(Ω) and the series converges in norm in the space of
measures on ∂X.

The proof of Theorem 2 may be obtained, passing throughout both papers
[Bi1, Bi2] which are based on studies of the concept of an analytic differential
that represents a measure. We recall, that an analytic differential in a domain Ω
is the differential form g(z) dz where g ∈ Hol(Ω). The analytic differential g(z) dz
represents the measure µ on ∂Ω if the sequence of measures {g(ζ) dζ|γj

}j, where
{γj}j is some sequence of rectifiable contours such that D(γj) ⊂ D(γj+1) ⊂ Ω and
D(γj) ↑ Ω as j → ∞, converges in the weak-star topology of the space of measures
on Ω to µ. Observe, that the analytic differential g(z) dz in Ω is defined even in
the case when ∂Ω is not rectifiable. We consider that it is interesting to present a
direct, and free from the concept of analytic differentials, proof of Theorem 2.

The Cauchy transform of a measure µ is the function defined as

µ̂(z) =
1

2πi

∫
dµ(ζ)
ζ − z
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for dA-almost all z ∈ C. It is well known, that µ̂ is holomorphic off Supp (µ) and
∂µ̂ = i

2µ in the distributional sense.

Proof of Theorem 2. Let us denote by Ωj , where j ∈ J and J is some finite or
countable set of indexes, all elements of the set S(X). It is clear, that each Ωj

with j ∈ J , is a Carathéodory domain.

Step 1. There exists a Carathéodory continuum Y such that X ⊆ Y and X◦ = Y ◦.

Proof. In order to prove this assertion we consider for each integer k ≥ 1 the
family Dk of the dyadic squares of the generation k, i.e.,

Dk =
{

Q =
[ j1
2k

,
j1 + 1

2k

)
×
[ j2
2k

,
j2 + 1

2k

)
: j1, j2 ∈ Z

}
.

Define the subfamily Dk(X) that consists of all squares Q ∈ Dk such that X∩Q �=
∅, put Fk :=

⋃
Q∈Dk(X) Q and suppose Fk,1, . . . , Fk,rk

to be the closures of the
polynomial hulls of the connected components of Fk. In such a case one has that
X ⊂ F ◦

1,1 ∪· · · ∪F ◦
1,r1

. For each k and j = 1, . . . , rk we choose a point zk,j ∈ ∂Fk,j .
Set F ∗

k :=
⋃rk

j=1 Fk,j . Denote by Ik+1,j the set of indexes s = 1, . . . , rk such that
Fk+1,s ⊂ Fk,j and set F ∗

k+1,j :=
⋃

s∈Ik+1,j
Fk+1,s.

In what follows by a tree we mean a connected polygonal line T such that
C \ T is connected.

Let us construct a sequence of trees {Tk}k with Tk−1 ⊂ Tk by induction.
Take a point z /∈ X and choose a tree T1 such that T1 connects z with all points
z1,j, j = 1, . . . , r1 and such that the set C \ (F ∗

1 ∪ T1

)
is connected. Suppose now

that the trees T1, . . . , Tk are already constructed. Let us show how to construct
the tree Tk+1. Since Fk,j for j = 1, . . . , rk contains a finite number of {Fk+1,s}
(where s = 1, . . . , rk+1), then we can choose a new tree Tk,k+1,j that connects
zk,j with all zk+1,s for s ∈ Ik+1,j such that the domain Gk := C \ (Tk ∪ Yk

)
,

where Yk =
⋃rk

j=1

(
F ∗

k+1,j ∪ Tk,k+1,j

)
is simply connected. Now we put Tk+1 =

Tk ∪ (⋃rk

j=1 Tk,k+1,j

)
.

Finally we take T =
⋃∞

k=1 Tk and let Y = X∪T . Then Y is a compact set such
that X◦ = Y ◦. Since all Gk are simply connected domains and C \ Y =

⋃
k Gk,

then Y is connected and finally, Y is a Carathéodory compact set because of
∂Y = ∂X ∪ T . �
Step 2. If Ω ∈ S(X) and Φ is some conformal mapping D onto Ω, then hΩ :=
(µ̂ ◦ Φ)Φ′ ∈ H1(D).

Proof. By Step 1 we construct the Carathéodory connected compact set Y such
that X ⊂ Y and X◦ = Y ◦. Take a point zΩ ∈ Ω and consider the sequence
{Γm}∞m=1 of rectifiable contours such that Y ⊂ D(Γm) ⊂ D(Γm−1) and D(Γm)
converges to Y as m → ∞. Therefore, the kernel of the sequence {D(Γm)}m with
respect to the point zΩ is exactly Ω. From this moment the proof of the present step
may be obtained by the word-to-word repetition of the proof of [CFP, Lemma 2.3]
with the clear replacements in notations. �
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For each j ∈ J we put hj := hΩj and define the measure µj by setting
µj := ϕj(hj dξ) = (hj ◦ ψj)ωj , where ϕj is some conformal mapping from D onto
Ωj , ψj is the inverse map for ϕj and ωj = ϕj(dξ) (see (3.2)).

Step 3.

(i) µ̂j(z) = µ̂(z) for all z ∈ Ωj;

(ii) µ̂j(z) = 0 for all z /∈ Ωj (which means that µj ⊥ R(Ωj)).

Proof. Take a point z /∈ ∂Ωj . Then

µ̂j(z) =
1

2πi

∫
∂Ωj

hj(ψj(ζ)) dωj(ζ)
ζ − z

=
1

2πi

∫
T

hj(ξ) dξ

ϕj(ξ) − z
.

If z /∈ Ωj , then the function hj(w)/(ϕj(w) − z) is a bounded analytic function in
D, so that ∫

T

hj(ξ) dξ

ϕj(ξ) − z
= 0,

which gives (ii).
If z ∈ Ωj , then there exists w0 ∈ D such that z = ϕj(w0) and the function

H(w, w0) =

⎧⎪⎪⎨⎪⎪⎩
w − w0

ϕj(w) − ϕj(w0)
, w �= w0

1
ϕ′

j(w0)
, w = w0

is a bounded analytic function in D. Therefore,
1

2πi

∫
T

hj(ξ) dξ

ϕj(ξ) − ϕj(w0)
=

1
2πi

∫
T

hj(ξ)H(ξ, w0) dξ

ξ − w0
= hj(w0)H(w0, w0) =

hj(w0)
ϕ′

j(w0)
.

It gives, that for z ∈ Ωj we have

µ̂j(z) =
hj(w0)
ϕ′

j(w0)
=

µ̂(ϕj(w0))ϕ′
j(w0)

ϕ′
j(w0)

= µ̂(ϕj(w0)) = µ̂(z). �

The assertion (1) is the consequence of the following arguments. In such a
case X = Ω and the set of connected components of X◦ consists of only one domain
Ω1 := Ω (and J = {1}). It follows from Step 3, that µ̂(z) = µ̂1(z) for all z /∈ ∂Ω,
consequently µ − µ1 ⊥ R(∂Ω). By Mergelyan’s theorem (see [Me, Theorem 4.4])
one has R(∂Ω) = C(∂Ω) if Ω is a Carathéodory domain, then µ = µ1 which is
exactly our assertion in (1).

Let us go to prove the assertion (2). Let I ⊂ J be some finite set of indexes.
Put

WI :=
⋃

j∈I Ωj .

The following assertion is the consequence of [Bi2, Lemma 7] and Runge’s theorem.

Step 4. There exists a sequence of functions {fk}∞k=1 ⊂ R(X) such that ‖fk‖X ≤ 1,
fk ⇒ 1 on compact subsets of WI and fk ⇒ 0 on compact subsets of X◦ \ WI .
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Therefore, for the sequence of measures {fkµ}∞k=1 on ∂X we have ‖fkµ‖ ≤
‖µ‖. Hence, this sequence has a limit point µI in the weak-star topology (of the
space of measures on ∂X). Since µ ⊥ R(X) and fk ∈ R(X), then µI ⊥ R(X).

Step 5.

(i) µ̂I(z) = µ̂(z) for all z ∈ WI ;

(ii) µ̂I(z) = 0 for all z ∈ X◦ \ WI .

Proof. Considering if it is necessary some subsequence (for which we preserve the
initial notation) of the sequence {fkµ}k we can say that the sequence {fkµ}k

converges to µI in the weak-star topology of the space of measures on ∂X . Let
z /∈ ∂X . The desired assertion is the consequence of the following computation:

µ̂I(z) = lim
k→∞

( 1
2πi

∫
(fk(ζ) − fk(z)) dµ(ζ)

ζ − z
+

fk(z)
2πi

∫
dµ(ζ)
ζ − z

)
= µ̂(z) lim

k→∞
fk(z).

�

It follows from Steps 3 and 5, that µ̂I(z) =
∑

j∈I µ̂j(z) for all z /∈ ∂X and
using the fact that R(∂X) = C(∂X) (as in the proof of (1)) we conclude that

µI =
∑
j∈I

µj . (3.5)

Step 6 (see [Bi2, Lemma 10]). ωj ⊥ ωk for j �= k.

Taking into account (3.5), Step 6 and the fact that µj = (hj ◦ ψj)ωj � ωj

we conclude, that µj ⊥ µk for j, k ∈ J , j �= k. Hence we have∑
j∈I

‖µj‖ =
∥∥∥∑

j∈I

µj

∥∥∥ = ‖µI‖ ≤ ‖µ‖,

which means that
∑

j∈J ‖µj‖ < ∞. Then, the series
∑

j∈J µj converges in the
space of measures on ∂X to some measure σ. It is clear, that σ ⊥ R(X). For each
j ∈ J we have σ̂(z) = µ̂j(z) for all z ∈ Ωj and applying the result of Step 3 we
conclude that σ̂(z) = µ̂(z) on X . Then, σ = µ.

Take k ∈ J . Since µj ⊥ µk for j ∈ J \ {k}, then for each Borel set E ⊂ ∂X
we have

µ|∂Ωk
(E) = µ(E ∩ ∂Ωk) =

∑
j∈J

µj(E ∩ ∂Ωk) = µk(E ∩ ∂Ωk) = µk(E). �

Moreover, it is possible to find out in [Bi2] the following facts, concerning the
objects that were introduced in the proof of Theorem 2. These facts do not needed
for the proof of Theorem 2 but seems to be fairly interesting and important.

Remark 1. One has ∑
j∈J

∫
ϕj(rT)

|µ̂(ζ)| dζ ≤ C‖µ‖,
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for each r ∈ (0, 1) and ∑
j∈J

‖hj‖H1(D) ≤ C‖µ‖.

where C > 0 is some absolute constant.

Next we obtain two propositions concerning the structure of all measures
that are orthogonal to rational functions and which are supported on some special
compacts sets.

In [CFP, Lemma 4.1] it was shown, that if Ω is a Jordan domain with rectifi-
able boundary and µ is a measure with Supp (µ) ⊂ Ω, then the measure µ+µ̂ dζ|∂Ω

is orthogonal to P. In view of the term µ̂ dζ|∂Ω it is not clear how to generalize this
fact to domains with non rectifiable boundaries. The following proposition gives
an appropriate generalization of [CFP, Lemma 4.1].

Proposition 3. Let Ω be a Carathéodory domain in C.

(1) Take a measure µ with Supp (µ) ⊂ Ω and put ν = ϕ−1(µ). Then the measure

µ∗ := µ + (ν̂ ◦ ψ)ω,

is orthogonal to A(Ω).

(2) Let K ⊂ Ω be some compact set and σ be a measure on K ∪ ∂Ω such that
σ ⊥ R(Ω). Then there exists a function h ∈ H1(D) such that

σ = (σ|K)∗ + (h ◦ ψ)ω.

Proof. (1) Put M := Supp (ν). Since ν̂ is analytic outside M , then ν̂ dξ is a measure
on T and η := ϕ(ν̂ dξ) is a measure on ∂Ω. Take g ∈ A(Ω), so that g ◦ϕ ∈ H∞(D).
Using Fubini and Cauchy theorems and the definition of ν̂ we have:∫

g dη =
∫

T

g(ϕ(ξ))ν̂(ξ) dξ =
∫

M

[
1

2πi

∫
T

g(ϕ(ξ)) dξ

w − ξ

]
dν(w) =

−
∫

M

g(ϕ(w)) dν(w) = −
∫

g dµ,

so that
∫

g(z) dµ∗(z) =
∫

g(z) dµ(z) +
∫

g(ζ) dη(ζ) = 0.

In order to prove (2) we need to observe that σ − (σ|K)∗ is a measure on ∂Ω
orthogonal to R(Ω). Then we can apply (3.3) which gives the desired result. �

Corollary 3. Let Y be a Carathéodory compact set, Y ◦ �= ∅ and K ⊂ Y ◦ be a
compact set. Then for every measure µ on K ∪ ∂Y such that µ ⊥ R(Y ) one has:

µ =
∑

Ω∈S(Y )

µΩ,

where µΩ = µ|Ω ⊥ R(Ω) and the series converges in norm in the space of measures
on Y .
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Proof. Since K ⊂ Y ◦, then the set SK := {Ω ∈ S(Y ) such that K ∩ Ω �= ∅}
is finite. Hence, applying Theorem 2(2) to the measure µ −∑Ω∈SK

(µ|K∩Ω)∗ we
obtain the desired result. �

In order to formulate the next proposition we need the following topological
definition:

Definition 1. Let U be a bounded open set in C and let γ ⊂ ∂U be a closed Jordan
arc. One says, that γ is a gate for U if there exists an open connected set V such
that V \ γ = V1 ∪ V2, where V1 and V2 are non empty open connected sets such
that V1 ⊂ U and V2 ⊂ C \ U .

Using the concept of a free arc (see [Po3]) we can say, that γ is a gate for a
domain Ω if and only if γ is a free arc for Ω and for C\Ω. If Ω is a Jordan domain,
then any closed subarc γ ⊂ ∂Ω is a gate for Ω.

Proposition 4. Let U be a bounded not empty open set in C and µ be a measure,
such that Supp (µ) ⊂ U and µ ⊥ R(U).

(1) If there exists a gate γ for U , then µ|γ � ω(z, ·, U)|γ for any point z ∈ U .

(2) If γ is a rectifiable gate for U , then µ|γ � dζ|γ .

Proof. Let z ∈ U be an arbitrary point. Take a conformal mapping Φ from D onto
C \ γ with Φ(0) = ∞. Since γ is rectifiable, then Φ has a continuous extension
(denoted also by Φ) on D and this extension can be chosen such that Φ(λ±) = γ,
where λ± =

{
ξ ∈ T : Im ξ ≥

≤ 0
}
. Let Ψ denotes the inverse mapping for Φ on

C \ γ. Since γ is a gate for U , then the function Ψ|U has a continuous extension
Ψ0 on U ∪ γ.

Take a Borel set E ⊂ γ such that ω(z, E, U) = 0 in the case (1), and |dζ|(E) =
0 in the case (2), and take a compact subset Y of E. We need to prove that
µ(Y ) = 0.

One has that there exist two compact sets, says Y ± ⊂ T, such that Y ± ⊂ λ±

and Φ(Y ±) = Y . Without loss of generality we suppose that Ψ0(Y ) = Y +.
Let us show that |dξ|(Y +) = 0. In the case (2) γ is rectifiable and the desired

property of Y + follows from [Po2, Theorem 10.11]. In the case (1) let us assume
that |dξ|(Y +) > 0. Then there exists a compact set Y1 ⊂ Y + such that |dξ|(Y1) > 0
and such that Y1 ⊂ ∂G, where G ⊂ D is a domain whose boundary is the union
of an arc of T and some circle orthogonal to this arc and such that G ⊂ Ψ0(U).
Therefore,

0 = ω(z, Y, U) ≥ ω(z, Φ(Y1), U) = ω(Ψ0(z), Y1, Ψ0(U)) ≥ ω(Ψ0(z), Y1, G) > 0.

This contradiction shows that |dξ|(Y +) = 0 in both cases under consideration.
Then, by [Ga, pag. 59], Y + is a peak set for the algebra P(D). Then there

exists a function f ∈ P(D) such that

f(w) = 1, as w ∈ Y +;
|f(w)| < 1, as w �∈ Y +.

(3.6)
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Denote by W the union of all bounded connected components of C\U except
the component V such that γ ⊂ ∂V and consider the function

g =
{

f ◦ Ψ0 on U,
f ◦ Ψ|W on W.

Since Ψ0 ∈ C(U) and Ψ|W is holomorphic in neighborhood of W , then g ∈ A(F ),
where F = U ∪ W . It follows from Mergelyan’s theorem (see [Me, Theorem 4.4])
that A(F ) = R(F ) ⊂ R(U). Then g ∈ R(U). It follows from (3.6), that

g(z) = 1, as z ∈ Y ;
|g(z)| < 1, as z �∈ Y.

Applying the Lebesgue dominated convergence theorem to the sequence {gm(·)}
and taking into account µ ⊥ R(U) we obtain:

0 = lim
m→∞

∫
gm(z) dµ(z) =

∫
Y

dµ(ζ) = µ(Y ).

So, for all compact sets Y ⊂ E one has µ(Y ) = 0. This means, that |µ|(E) = 0. �

4. Approximation by polyanalytic functions

Let X ⊂ C be a compact set in C and n ∈ N. Put An(X) = C(X)∩Holn(X◦) and
define the spaces Pn(X) and Rn(X, Y ) (where Y ⊇ X is some compact set in C)
as the closures in C(X) of the subspaces {p|X : p ∈ Pn} and {g|X : g ∈ Rn(Y )}
respectively. One has Pn(X) ⊂ An(X).

We recall the concept of a Nevanlinna domain, that has been introduced in
[Fe1, CFP], which is a useful tool for the study of uniform polyanalytic polynomial
approximation.

Definition 2. Let Ω be a bounded simply connected domain in C. One says that
Ω is a Nevanlinna domain if there exist u, v ∈ H∞(Ω), v �= 0 such that

F(ζ) := u(ζ)/v(ζ) = ζ (4.1)

on ∂Ω almost everywhere in the sense of conformal mapping. This means that the
following equality of angular boundary values

ϕ(ξ) = (F ◦ ϕ)(ξ) = (u ◦ ϕ)(ξ)/(v ◦ ϕ)(ξ)

holds for almost all points ξ ∈ T, where ϕ is some conformal mapping from
D onto Ω.

Respectively, one says that Ω is a locally Nevanlinna domain if there exist a
compact set Σ ⊂ Ω and u, v ∈ H∞(Ω \Σ) such that the equality (4.1) holds on ∂Ω
almost everywhere in the sense of conformal mapping.

We denote by N and Nloc the sets of all Nevanlinna and locally Nevanlinna
domains respectively. If Ω is a locally Nevanlinna domain, then there are many
different possibilities to define the desired compact set Σ. We will write Ω(F, Σ)
in order to show which F and Σ we are deal with.
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The following proposition is the direct consequence of the boundary unique-
ness theorem of Luzin-Privalov [Pr, Chapter 4, Section 2.5]:

Proposition 5. If Ω ∈ Nloc, Ω = Ω(F1, Σ1) and Ω = Ω(F2, Σ2), then F1 = F2 in
Ω \ Σ̂1 ∪ Σ2.

It is always possible to assume, that Σ is minimal, which means that the
function F cannot be meromorphically continued from Ω \ Σ to Ω \ Σ1 for any
proper compact subset Σ1 of Σ. The election of a such minimal Σ is also not
unique, and we always need to find some appropriate Σ in order to apply the
forthcoming results.

Remark 2. If Ω is Jordan domain with rectifiable boundary, then (4.1) holds dζ-
almost everywhere on ∂Ω (see [Go, Chapter 10, Section 5]).

Moreover, if Ω ∈ Nloc and if there exists a rectifiable gate γ for Ω, then the
functions u and v which are taken from Definition 2 have angular boundary values
u(ζ) and v(ζ) for almost all ζ ∈ γ and (4.1) holds dζ|γ-almost everywhere on γ.

Let Y be a Carathéodory compact set in C and K ⊆ Y be a compact set.
Put X := K ∪ ∂Y and take some integer n ≥ 2. In this section we establish some
conditions in order that Rn(X, Y ) = An(X) and Pn(X) = An(X). We remaind,
that in [CFP] the following situations have been considered:

(1) if Ω is a Carathéodory domain, Y = Ω and K = ∅, then R2(∂Ω, Ω) = C(∂Ω)
if and only if Ω /∈ N (see [CFP, Theorem 2.2(1)]);

(2) if K = Y , then Pn(Y ) = An(Y ) if and only if each bounded connected
component of C\Y is not a Nevanlinna domain (see [CFP, Theorem 2.2(2)]).

The first main result in this section gives a useful generalization of [CFP,
Theorem 4.3].

Theorem 3. Let Y be a Carathéodory compact set in C, Y ◦ �= ∅ and K ⊂ Y ◦ be a
compact set. Put KΩ := K∩Ω for each Ω ∈ S(Y ); SK := {Ω ∈ S(Y ) : KΩ �= ∅}.

If Pn(K) = An(K) for some integer n ≥ 2, Ω /∈ N for each Ω ∈ S(Y ), and
for each Ω ∈ SK one of the following assumptions:

(1) Ω /∈ Nloc;

(2) Ω = Ω(F, Σ) ∈ Nloc and F cannot be meromorphically continued from Ω \
Σ̂ ∪ KΩ to Ω \ K̂Ω;

holds, then for X := K ∪ ∂Y one has An(X) = Rn(X, Y ).

If, moreover, each bounded connected component of C\Y is not a Nevanlinna
domain, then An(X) = Pn(X).

Define the function z as z(z) := z. The proof of Theorem 3 is essentially based
on the following lemma.
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Lemma 1. Let Ω be a Carathéodory domain and K ⊂ Ω be a compact set. Assume
that there exists a measure σ on K ∪ ∂Ω such that σ|∂Ω �≡ 0 and σ ⊥ R2(Ω). Then
there exist some compact set Σ̃, K̂ ⊂ Σ̃ ⊂ Ω and ũ, ṽ ∈ H∞(Ω \ Σ̃), ṽ �= 0, such
that Ω = Ω(F̃, Σ̃) ∈ Nloc, where F̃ = ũ/ṽ and such that ũ, ṽ ∈ Hol(Ω \ K̂).

Proof. For s = 0, 1 we define σs := zsσ, µs := σs|K and νs := ψ(µs). Since σs ⊥
R(Ω) for s = 0, 1, then, by Proposition 3, there exist two functions h0, h1 ∈ H1(D)
such that

σ0 = µ0 + (ν̂0 ◦ ψ + h0 ◦ ψ)ω, σ1 = µ1 + (ν̂1 ◦ ψ + h1 ◦ ψ)ω

and in view of the relation σ1 = zσ0 we have

z(ν̂0 ◦ ψ + h0 ◦ ψ)ω = (ν̂1 ◦ ψ + h1 ◦ ψ)ω.

Since σ0|∂Ω �≡ 0, then ν̂0 + h0 �≡ 0 in D \ ψ̂(K) and therefore

ϕ(ξ) =
ν̂1(ξ) + h1(ξ)
ν̂0(ξ) + h0(ξ)

for almost all ξ ∈ T. Since h0, h1 ∈ H1(D) ⊂ N(D) (the Nevanlinna class) and
(according to [Pr, Chapter 2, Section 2.1]) each function in the Nevanlinna class
is the ratio of two functions in H∞(D), then it is clear that there exist u1, v1 ∈
Hol(D \ ψ̂(K)), u1, v1 are bounded outside a neighborhood of ψ̂(K) and such that

ν̂1(w) + h1(w)
ν̂0(w) + h0(w)

=
u1(w)
v1(w)

for all w ∈ D \ ψ̂(K). Observe, that ϕ
(
ψ̂(K)

)
= K̂. These facts allow us to define

the functions ũ, ṽ and F̃ in Ω\K̂ by the formulas ũ(z) := u1(ψ(z)), ṽ(z) := v1(ψ(z))
and F̃ := ũ/ṽ respectively. �

Proof of Theorem 3. At the beginning we prove the equality An(X) = Rn(X, Y ).
Proceeding by contradiction, assume that Rn(X, Y ) �= An(X). Then there exists
a measure σ �≡ 0 on X such that σ ⊥ Rn(X, Y ) but σ �⊥ An(X).

Since σ ⊥ Rn(Y ), then σ, zσ ⊥ R(Y ). By Corollary 3 one has

σ =
∑

Ω∈S(Y )

σΩ and zσ =
∑

Ω∈S(Y )

σ1,Ω,

where σΩ = σ|Ω ⊥ R(Ω), σ1,Ω = (zσ)|Ω ⊥ R(Ω) for every Ω ∈ S(Y ). Since σΩ is
the restriction of σ to Ω and σ1,Ω is the restriction of zσ to Ω, then σ1,Ω = zσΩ

and therefore, σΩ ⊥ R2(Ω) for every Ω ∈ S(Y ).
Since K ⊂ Y ◦, then the set SK is finite. Take Ω ∈ S(Y )\SK so that Ω /∈ N.

We have σΩ is a measure on ∂Ω which gives (in view of [CFP, Theorem 2.2(1)]
and the properties σΩ ⊥ R2(Ω) and Ω /∈ N) that σΩ ≡ 0.

Therefore,
σ =

∑
Ω∈SK

σΩ =
∑

Ω∈SK

σ|Ω.
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Put Γ :=
⋃

Ω∈SK
∂Ω. If σ|Γ ≡ 0, then σ is supported on K but it gives a con-

tradiction with the assumption that Pn(K) = An(K). Therefore, there exists at
least one component Ω ∈ SK such that σ|∂Ω �≡ 0. Suppose that Ω is one of them.
Applying Lemma 1 for Ω, KΩ and σΩ we conclude, that Ω ∈ Nloc. Since Ω ∈ SK ,
then Ω possesses the condition (1) or (2). If Ω possesses the condition (1), then
Ω /∈ Nloc and this contradiction implies, that σΩ ≡ 0.

Let Ω possesses the condition (2) and let Σ̃, ũ and ṽ are taken from Lemma 1

for Ω, KΩ and σΩ under consideration. By Proposition 5, F = F̃ in Ω \ Σ̂ ∪ Σ̃ and
since ũ, ṽ ∈ Hol(Ω \ K̂Ω), then u/v can be continued meromorphically to Ω \ K̂Ω.
This fact contradicts to the condition (2) and therefore, σΩ ≡ 0.

Hence, we have that σΩ ≡ 0 for any Ω ∈ SK . Thus, σΩ ≡ 0 for any Ω ∈ S(Y )
which means that σ ≡ 0. But we have assumed that σ �≡ 0 and this contradiction
ends the proof of the equality Rn(X, Y ) = An(X).

Suppose now that each bounded connected component of C \ Y is not a
Nevanlinna domain. In order to prove that Pn(X) = An(X) we need to show that
Pn(X) = Rn(X, Y ). This fact may be verified repeating word-to-word the first part
of the proof of [CFP, Theorem 2.2(2)] (from the beginning until Proposition 2.5).
Therefore, the proof is completed. �

Corollary 4. Let Y be a Carathéodory compact set such that Y ◦ �= ∅. Then
C(∂Y ) = R2(∂Y, Y ) if and only if each connected component of Y ◦ is not a Nevan-
linna domain.

Theorem 4. Let Ω be a bounded simply connected domain in C and Γ := ∂Ω.

(1) If Ω ∈ N, then Rn(Γ, Ω) �= C(Γ) for every integer n ≥ 1.

(2) If Ω ∈ Nloc \ N and there exists a rectifiable gate γ for Ω, then R2(Γ, Ω) =
C(Γ).

(3) Let Ω and γ be as in (2). Let X ⊂ Ω be a compact set such that Γ ⊆ X. Put
K := X \ Γ and assume, that

(i) Ω \ K̂ is connected and γ is a gate for Ω \ K̂.

(ii) Ω = Ω(F, Σ) and F cannot be meromorphically continued from Ω\K̂ ∪ Σ
to Ω \ K̂;

(iii) Rn(K, Ω) = An(K) for some integer n ≥ 2.

Then, Rn(X, Ω) = An(X).

Proof. (1) Since Ω ∈ N, then there exist u, v ∈ H∞(Ω), v �= 0 such that (4.1)
holds. Following the scheme using in the proof of the same implication in [CFP,
Theorem 2.2(1)] it is possible to show that for each rational function g having at
least one pole in {z ∈ Ω : v(z) �= 0} one has g|Γ /∈ Rn(Γ, Ω) for every integer
n ≥ 1.

(2) This case is included in (3) when X = Γ.
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(3) Suppose that Rn(X, Ω) �= An(X). Then there exists a nonzero measure
µ on X such that µ ⊥ Rn(X, Ω) but µ �⊥ An(X). Consider the function

Tµ(z) :=
1

2πi

∫
X

ζ − z

ζ − z
dµ(ζ).

which has the following properties (see [TW]): Tµ is continuous except countable
many points (that are the atoms of µ), Tµ(z) = 0 for all z /∈ Ω and ∂

2
Tµ = i

2µ in
the distributional sense.

By the continuity property of Tµ mentioned above Tµ(ζ) = 0 for all ζ ∈ Γ
except the atoms of µ. Since γ is a rectifiable gate for Ω, then, by Proposition 4,
µ|γ � dζ|γ , so that µ has no atoms on γ and hence Tµ(ζ) = 0 for all ζ ∈ γ. Put
η := zµ and observe that

Tµ(z) = η̂(z) − zµ̂(z)

for all z ∈ C \ X . So that, in order to obtain some further conclusions we need
an additional information about behavior of holomorphic components η̂ and µ̂ of
the bianalytic function Tµ in C \X . It turns out, that η̂ and µ̂ have for almost all
ζ ∈ γ the finite angular limits η̂(ζ) and µ̂(ζ) from Ω. This fact (it can be found in
[Dn, Theorem 2.22]) is the result of a long-time difficult investigation of behavior
of Cauchy transforms of measures (see [Dn, Ve]). Therefore, for almost all ζ ∈ γ
we have

Tµ(ζ) = η̂(ζ) − ζµ̂(ζ) = η̂(ζ) − F̃(ζ)µ̂(ζ) = 0. (4.2)

Let us show that µ̂(z) �≡ 0 in Ω\ K̂. Otherwise, µ̂(ζ) = 0 for almost all ζ ∈ γ.
By (4.2), η̂(ζ) = 0 for almost all ζ ∈ γ, so that η̂ = 0 in Ω \ K̂. This gives Tµ = 0
in Ω \ K̂. Since ∂

2
Tµ = i

2µ (in distributional sense), then µ is supported on K.
Reminding the initial assumptions about µ we have µ �≡ 0, µ ⊥ Rn(K, Ω) and
µ �⊥ An(K) which is a contradiction with (iii).

Then µ̂ �= 0 in Ω \ K̂ and therefore µ̂(ζ) �= 0 for almost all ζ ∈ γ. This fact
and (4.2) imply that for almost all ζ ∈ γ we have F(ζ) = η̂(ζ)/µ̂(ζ). Then, by
Luzin-Privalov theorem, F must coincides with η̂/µ̂ in Ω\K̂ ∪ Σ. Therefore, F can
be meromorphically continued from Ω \ K̂ ∪ Σ to Ω \ K̂ which gives the desired
contradiction. �

Let Γa,b be the ellipse with semi-axes a and b focused at points ±1. As
it was shown in [CFP, § 3], D(Γa,b) ∈ Nloc \ N and the respective Σ may be
chosen as Σ = [−1, 1]. By [CFP, Example 4.5] for X0 := Γa,b ∪ [−1, 1] one has
P2(X0) �= C(X0) = P3(X0).

Example 3.

(1) Put X1 := Γa,b ∪ {z ∈ D(Γa,b) : |Im z| ≥ (b/2))}. Then, by Theorem 4(3),
Pn(X1) = An(X1) for every integer n ≥ 2.

(2) Take X2 := Γa,b ∪ [−a, a] and X3 := Γa,b ∪ [−ib, ib]. Since X0 ⊂ X2, then
P2(X2) �= C(X2), but, by Theorem 4(3), P2(X3) = C(X3).
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Example 4. Paramonov have showed us the example of the domain Ω1 = ϕ1(D),
where ϕ1(w) := (w +

√
2)4. It follows from [CFP, Proposition 3.1], that Ω1 ∈ N.

Therefore, by Theorem 4(1) one has Rn(∂Ω1, Ω1) �= C(∂Ω1) for every integer
n ≥ 1. Following the same idea we consider the domain Ω2 = ϕ2(D(Γ√

2,1)),
where ϕ2(w) = (w +

√
3)4, which is in Nloc \ N and hence, by Theorem 4(2),

R2(∂Ω2, Ω2) = C(∂Ω2). Observe, that Ω1 and Ω2 are not a Carathéodory domains
so that we need to refer Theorem 4 in order to conclude the desired approximability
properties.

We end this section establishing one rigidity property of Nevanlinna do-
mains. Usually, an algebraic curve is the set in C2 of the form {(w1, w2) ∈ C2 :
Q(w1, w2) = 0}, where Q ∈ C[w1, w2], but here we mean by an algebraic planar
curve the set {z ∈ C : (z, z) ∈ L}, where L is an algebraic curve in the usual
sense.

Recall that an arc γ is analytic if it is the image of [0, 1] under a map which is
conformal in some neighborhood of [0, 1]. In such a case there exist a neighborhood
U of γ and a function S ∈ Hol(U) such that ζ = S(ζ) on γ. This function S is
called the Schwarz function of γ (see [Da]).

Theorem 5. Let Ω be a bounded simply connected domain and L be an algebraic
planar curve. If

(i) Ω ∈ N and

(ii) there exists an arc λ ⊂ L ∩ ∂Ω such that ω(z, λ, Ω) > 0 (for some z ∈ Ω),

then ∂Ω is analytic and ∂Ω ⊂ L.

Proof. Since L is an algebraic planar curve, then there exists Q ∈ C[w1, w2] such
that L = {z ∈ C : Q(z, z) = 0}. By [Se, Corollary 6.4], L has at most a finite
number of singular points. Then it is possible to find a subarc λ1 of λ such that
ω(z, λ1, Ω) > 0 and all points of λ1 are regular for L. Take a point z0 ∈ λ1.
Without loss of generality we assume that ∂Q/∂w2(z0, z0) �= 0. By the implicit
function theorem there exists an open set U ! z0 and a function S ∈ Hol(U) such
that

U ∩ λ1 = {z ∈ U : z = S(z), and S′(z) �= 0}
which means that there exists an arc λ2 ⊂ U ∩ λ1 such that λ2 is an analytic arc
having the Schwarz function S and ω(z, λ2, Ω) > 0. In particular, L is analytic
except at most finite number of points.

If F is taken for Ω from Definition 2, then for almost all ζ ∈ λ2 we have
F(ζ) = ζ = S(ζ) and, consequently,

Q(ζ, F(ζ)) = Q(ζ, ζ) = Q(ζ, S(ζ)) = 0.

Since ω(z, λ2, Ω) > 0, then, by Luzin-Privalov theorem, the meromorphic function
Q(z, F(z)) = 0 for all z ∈ Ω. Hence, for all ζ ∈ ϕ(E), where E = F (ϕ) ∩ F (ϕ ◦
u) ∩ F (ϕ ◦ v) and u and v are taken for Ω from Definition 2, one has Q(ζ, ζ) =
Q(ζ, F(ζ)) = 0. Since |dξ|(E) = 2π, then ϕ(E) = ∂Ω and then Q(ζ, ζ) = 0 for all
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ζ ∈ ∂Ω. This means that ∂Ω ⊂ L, so that ∂Ω is analytic except at most finite
number of singular points.

For each such point a, by [Ba, Corollary 2.1], there exists an open set U ! a
such that L ∩ U is a finite union of at least two analytic arcs passing through a.
Take two such arcs having the Schwarz functions S1 and S2. Since Ω ∈ N, then
S1 and S2 are analytically continuations of each other which is impossible because
the respective arcs are intersected. Then, ∂Ω is locally analytic and Ω ∈ N implies
that ∂Ω is analytic. �

If in Theorem 5 we additionally assume, that L is a contour in C, then we
have Ω = D(L).
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Capacities of Generalized Cantor Sets

V.Ya. Eiderman

In memoriam of my teacher Semyon Yakovlevich Khavinson

1. Introduction

Our main goal is to obtain sharp estimates of capacities of Cantor sets in Rm,
m ≥ 1, that are obtained as the Cartesian product of one-dimensional (in general,
different) Cantor sets. As an application we deduce the criterion for vanishing of
the capacity for such sets.

Let K(t), t ∈ (0,∞), be a nonnegative, non-increasing and continuous func-
tion. The capacity CK(E) of a bounded Borel set E ⊂ Rm is defined by

CK(E) = sup µ(E),

where the supremum is taken over all nonnegative measures µ supported in E such
that Uµ(x) :=

∫
Rm K(|x − y|) dµ(y) ≤ 1, x ∈ E. This definition is meaningful if

K(t) → +∞ as t → 0+ and ∫
0

K(t)tm−1dt < ∞. (1.1)

Now we define Cantor sets. Suppose that sequences {k(s)
j }∞j=0, s = 1, . . . , m,

of positive integers and sequences {l(s)j }∞j=0, s = 1, . . . , m, of positive numbers are

given with k
(s)
0 = 1, s = 1, . . . , m, and

k
(s)
j ≥ 2, k

(s)
j l

(s)
j ≤ l

(s)
j−1, j ≥ 1, s = 1, . . . , m.

Fix s and let E
(s)
0 = [0, l

(s)
0 ]. Suppose that the set E

(s)
n−1, n ≥ 1, has already been

constructed and this set consists of k
(s)
0 · · · · · k(s)

n−1 closed intervals of length l
(s)
n−1.

The author was partially supported by the Russian Foundation of Basic Research (Grant no
01-01-00608).
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For n ≥ 1, the set E
(s)
n is obtained from E

(s)
n−1 by replacement of each of these

intervals (say, [at, bt]) by the union of k
(s)
n equidistant intervals of length l

(s)
j :

[at, at + l
(s)
j ], . . . , [bt − l

(s)
j , bt].

It is possible that E
(s)
n = E

(s)
n−1, but the intersection of the intervals of E

(s)
n can

only contain some of the endpoints of these intervals. We set

En = En({k(s)
j }, {l(s)j }) = E(1)

n × E(2)
n × · · · × E(m)

n ,

and

E =
∞⋂

n=0

En. (1.2)

If E
(1)
n = · · · = E

(m)
n for all n the set E is called a generalized symmetric Cantor

set. In this case we omit the upper index (s) in k
(s)
j , l

(s)
j .

Estimation of the capacity CK(E) of Cantor sets is an important ingredient
of investigation in various problems in analysis (see for example [2], [4], [6], [7]).
Ohtsuka [8] obtained the criterion for vanishing of CK(E) which is equivalent to
the following theorem:

Theorem A. [8] Let E be a generalized symmetric Cantor set and let either K(t) =
t−α, 0 < α < m, or K(t) = log(1/t). Then,

CK(E) = 0 ⇐⇒
∞∑

j=0

(k0 · · · · · kj)−mK(lj) = ∞. (1.3)

In [3, Lemma 3.3] it was shown that the criterion (1.3) does not take place in
general (even under condition (1.1)). On the other hand, if kj ≡ 2 then (1.3) holds
without any additional conditions on K [2]. For m = 1 and kj ≡ const the same
criterion was established in [1]. In [3, Corollary 3.1] we proved that (1.3) holds for
all K and for bounded sequences {kj}. A refinement of these results was given in
[5]. In this paper we obtain the estimates and the criterion for vanishing of the
capacity CK(E) which is valid without any additional assumptions on a kernel K

and sequences {k(s)
j }. As a corollary we deduce the results mentioned above.

Remark in passing that Monterie [7] considered a more general class of Cantor
sets than the Cartesian product of one-dimensional Cantor sets, and obtained
certain necessary as well as sufficient conditions of positivity of the capacity in
the case K(t) = log 1

t . In the special cases there have also been obtained some
necessary and sufficient conditions. These results and our theorems do not imply
each other.
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2. Main results

For each s = 1, 2, . . . , m we introduce the function

ϕs,n(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(k(s)
0 · · · · · k(s)

n l
(s)
n )−1t, 0 ≤ t < l

(s)
n ,

(k(s)
0 · · · · · k(s)

j+1)
−1, l

(s)
j+1 ≤ t ≤ l

(s)
j /k

(s)
j+1,

(k(s)
0 · · · · · k(s)

j l
(s)
j )−1t, l

(s)
j /k

(s)
j+1 ≤ t ≤ l

(s)
j ,

j = n − 1, n − 2, . . . , 0,

1, l
(s)
0 ≤ t < ∞.

Clearly, ϕs,n(t) is a continuous non-decreasing function for 0 ≤ t < ∞. We set

Φn(t) = ϕ1,n(t) · · · · · ϕm,n(t).

Theorem 2.1. Suppose that K(t), t > 0, is a nonnegative, non-increasing and
continuous function satisfying (1.1) and such that K(t) → +∞ as t → 0+. There
exists a constant A > 1 depending only on the dimension m, for which

A−1

[∫ ∞

0

K(t) dΦn(t)
]−1

≤ CK(En) ≤ A

[∫ ∞

0

K(t) dΦn(t)
]−1

. (2.1)

In other words,

CK(En) ≈
[∫ ∞

0

K(t) dΦn(t)
]−1

.

Proof. Let µn be the probability measure uniformly distributed on En. Fix x =
(x(1), . . . , x(m)) ∈ En and t > 0 and show that

µn(B(x, t)) ≈ Φn(t), 0 < t < ∞, (2.2)

where B(x, t) = {ζ ∈ Rm : |ζ −x| < t}. Fix s ∈ [1, m] and suppose that l
(s)
j+1 ≤ t <

l
(s)
j with some j ∈ [0, n− 1]. Let M

(s)
j+1, N

(s)
j+1 be the numbers of intervals of length

l
(s)
j+1 forming E

(s)
j+1 and intersecting or contained in the interval [x(s) − t, x(s) + t],

respectively. Then

M
(s)
j+1 ≈ N

(s)
j+1 ≈

{
1, l

(s)
j+1 ≤ t ≤ l

(s)
j /k

(s)
j+1,

tk
(s)
j+1/l

(s)
j , l

(s)
j /k

(s)
j+1 ≤ t ≤ l

(s)
j ,

with absolute constants of comparison. Every interval from E
(s)
j+1, j +1 = 0, 1, . . . ,

n − 1, contains k
(s)
j+2 · · · · · k

(s)
n intervals of length l

(s)
n . Denoting by Hp(G) the

p-dimensional Hausdorff measure of a set G, we have

H(s)(t) := H1(E(s)
n ∩ [x(s) − t, x(s) + t]) ≈ N

(s)
j+1k

(s)
j+2 · · · · · k(s)

n l(s)n

= k
(s)
0 · · · · · k(s)

n l(s)n ϕs,n(t) = H1(E(s)
n )ϕs,n(t), l

(s)
j+1 ≤ t < l

(s)
j .

Obviously,

H(s)(t) ≈
{

t = H1(E(s)
n )ϕs,n(t), 0 ≤ t < l

(s)
n ,

k
(s)
0 · · · · · k(s)

n l
(s)
n = H1(E(s)

n )ϕs,n(t), l
(s)
0 ≤ t < ∞.
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Thus,
H(s)(t) ≈ H1(E(s)

n )ϕs,n(t), 0 ≤ t < ∞.

Clearly,
Hm(En ∩ B(x, t)) ≈ H(1)(t) · · · · · H(m)(t),

where constants of comparison depend only on m. The density of the measure µn

is equal to 1/Hm(En) = [H1(E(1)
n ) · · · · · H1(E(m)

n )]−1. Therefore,

µn(B(x, t)) = Hm(En ∩ B(x, t))/Hm(En) ≈ Φn(t),

and (2.2) is proved.
Without loss of generality we may assume that K(t) → 0 as t → +∞. The

condition (1.1) implies that K(t)tm → 0 as t → 0+. Hence,

lim
t→0+

K(t)µn(B(x, t)) = lim
t→0+

K(t)Φn(t) = 0,

lim
t→∞ K(t)µn(B(x, t)) = lim

t→∞K(t)Φn(t) = 0.

Integrating by parts we obtain

Uµn(x) :=
∫

En

K(|x − y|) dµn(y) =
∫ ∞

0

K(t) dµn(B(x, t))

= −
∫ ∞

0

µn(B(x, t)) dK(t) ≈ −
∫ ∞

0

Φn(t) dK(t) =
∫ ∞

0

K(t) dΦn(t).

(2.3)
This relation directly implies the first inequality in (2.1).

In order to obtain the second inequality in (2.1) we consider a measure νn

concentrated on En and such that Uνn(x) ≤ 1 on En. By (2.3),

1 < cPnUµn(x) ∀x ∈ En,

where Pn = [
∫∞
0 K(t) dΦn(t)]−1 and the constant c depends only on m. Hence,

νn(En) < cPn

∫
En

Uµndνn = cPn

∫
En

Uνndµn ≤ cPn.

It follows from this estimate that CK(En) ≤ cPn, and the proof of Theorem 2.1 is
complete. �
Corollary 2.2. Suppose that K(t) satisfies the conditions of Theorem 2.1 and that
E is a Cantor set defined by (1.2). Then

CK(E) ≈
[∫ ∞

0

K(t) dΦ(t)
]−1

, (2.4)

where Φ(t) = ϕ1(t) · · · · · ϕm(t) and

ϕs(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(k(s)

0 · · · · · k(s)
j+1)

−1, l
(s)
j+1 ≤ t ≤ l

(s)
j /k

(s)
j+1,

(k(s)
0 · · · · · k(s)

j l
(s)
j )−1t, l

(s)
j /k

(s)
j+1 ≤ t ≤ l

(s)
j ,

j = 0, 1, . . . ,

1, l
(s)
0 ≤ t < ∞.
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Proof. By definitions of functions Φn and Φ,

Φn(t) ≤ Φ(t) for t > 0 and n = 1, 2, . . .

Hence,

Pn :=
[∫ ∞

0

K(t) dΦn(t)
]−1

≥
[∫ ∞

0

K(t) dΦ(t)
]−1

=: P.

This inequality and the first inequality in (2.1) yield

A−1P ≤ CK(E).

Indeed, it is enough to take the equilibrium measures ν∗
n of compact sets En and

to extract a weakly convergent subsequence.
Let ν be a measure supported in E such that Uν(x) ≤ 1 for all x ∈ E. By

the generalized maximum principle [9] Uν(x) ≤ dm ∀x ∈ Rm, where dm depends
only on m. Hence,

CK(E) ≤ dmCK(En), n = 0, 1, . . .

Moreover, limn→∞ Pn = P . These relations and the second inequality in (2.1)
imply

CK(E) ≤ AdmP,

as required. �

Corollary 2.3. Under assumptions of Corollary 2.2

CK(E) = 0 ⇐⇒
∫ ∞

0

K(t) dΦ(t) = ∞. (2.5)

3. The case of generalized symmetric Cantor sets

In this section we assume that

k
(1)
j = · · · = k

(m)
j =: kj , l

(1)
j = · · · = l

(m)
j =: lj , j = 0, 1, . . . (3.1)

Theorem 2.1 and Corollary 2.2 immediately give the following

Theorem 3.1. Suppose that K(t) satisfies the conditions of Theorem 2.1 and (3.1)
holds. Then

CK(En) ≈
[
(k0 · · · · · knln)−m

∫ ln

0

K(t) dtm

+
n−1∑
j=0

(k0 · · · · · kj lj)−m

∫ lj

lj/kj+1

K(t) dtm
]−1

,

(3.2)

CK(E) ≈
[ ∞∑

j=0

(k0 · · · · · kj lj)−m

∫ lj

lj/kj+1

K(t) dtm
]−1

. (3.3)

Since lj+1 ≤ lj/kj+1, trivial estimates of integrals in (3.2), (3.3) imply the
following inequalities.
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Corollary 3.2. Under assumptions of Theorem 3.1

c−1

[
(k0 · · · · · knln)−m

∫ ln

0

K(t) dtm +
n−1∑
j=0

(k0 · · · · · kj)−mK(lj+1)
]−1

≤ CK(En) ≤ c

[ n∑
j=0

(k0 · · · · · kj)−mK(lj)
]−1

,

(3.4)

c−1

[ ∞∑
j=0

(k0 · · · · · kj)−mK(lj+1)
]−1

≤ CK(E) ≤ c

[ ∞∑
j=0

(k0 · · · · · kj)−mK(lj)
]−1

,

(3.5)
where c depends only on m.

Corollary 3.3. Suppose that∫ r

0

K(t) dtm ≤ δK(r)rm, 0 < r ≤ r0 (3.6)

for some δ > 0 and r0 > 0. If l0 ≤ r0 then

δ−1c−1Ln ≤ CK(En) ≤ cLn, where Ln =
[ n∑

j=0

(k0 · · · · · kj)−mK(lj)
]−1

, (3.7)

and c depends only on m.

Proof. Inequalities (3.7) follow directly from (3.2) and (3.6). �

Corollary 3.4. Suppose that at least one of the following conditions holds:
1. a kernel K(t) satisfies (3.6);
2. a sequence {kj} is bounded: kj ≤ M, j = 1, 2, . . .

Then

QL ≤ CK(E) ≤ cL, where L =
[ ∞∑

j=0

(k0 · · · · · kj)−mK(lj)
]−1

, (3.8)

Q = δ−1c−1 in Case 1, Q = M−mc−1 in Case 2, and c depends only on m.

Proof. In Case 1 inequalities (3.8) follow from (3.3). In Case 2 we have
∞∑

j=0

(k0 · · · · · kj)−mK(lj+1) ≤ Mm
∞∑

j=0

(k0 · · · · · kj+1)−mK(lj+1)

< Mm
∞∑

j=0

(k0 · · · · · kj)−mK(lj).

This estimate and (3.5) imply (3.8) with Q = M−mc−1. �

From Corollary 3.4 we immediately deduce the criterion for vanishing of the
capacity for generalized symmetric Cantor sets.
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Corollary 3.5. Suppose that at least one of the conditions 1, 2 in Corollary 3.4
holds. Then

CK(E) = 0 ⇐⇒
∞∑

j=0

(k0 · · · · · kj)−mK(lj) = ∞. (3.9)

Since the functions K(t) = t−α, 0 < α < m, and K(t) = log(1/t) satisfy
(3.6), Corollary 3.5 generalizes Theorem A and other related results mentioned in
the introduction. As we noted above, the criterion (3.9) is not correct without ad-
ditional conditions on K(t) or {kj}. Hence the same remark concerns Corollary 3.4
as well. In the general situation we have the weaker estimates (3.5).

4. Another application of Theorem 2.1

An important ingredient of the proof of the main result in [6] is the following
lemma which is of independent interest.

Lemma B. [6, Lemma 2.2] Let E(1) be a linear Cantor set with k
(1)
j = 2, j =

1, 2, . . . Then there exists a linear Cantor set E(2) such that Clog(1/t)(E(2)) = 0
and Clog(1/t)(E(1) × E(2)) > 0.

As an application of our results in Section 2 we deduce a generalization of
this statement. Our proof will be simpler than the original proof in [6].

Lemma 4.1. For every m-dimensional Cantor set E, m ≥ 1, defined by (1.2)
and for every kernel K(t) satisfying conditions of Theorem 2.1 with m = 1 there
exists a linear Cantor set G with kj = 2, j = 1, 2, . . . , such that CK(G) = 0 and
CK(E × G) > 0.

Proof. Let Φ(t) and ϕ(t) be the functions associated with E and G respectively
and defined in Corollary 2.2. Clearly, Φ(t) ↓ 0 as t → 0+. It is enough to construct
a sequence {lj} such that 0 < lj+1 ≤ 2lj,

∞∑
j=0

K(lj)2−j = ∞, (4.1)

∞∑
j=0

K(lj+1)Φ(lj)2−j < ∞. (4.2)

Indeed, (4.1) implies that CK(G) = 0 (see (3.9) with m = 1 and kj = 2, j =
1, 2, . . . ). Moreover,∫ ∞

0

K(t) d[Φ(t)ϕ(t)] =
∞∑

j=0

∫ lj

lj+1

K(t) d[Φ(t)ϕ(t)]

<

∞∑
j=0

K(lj+1)Φ(lj)ϕ(lj) < ∞,

since ϕ(lj) = 2−j. The criterion (2.5) yields CK(E × G) > 0.
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In view of the condition
∫
0
K(t) dt < ∞ (i.e., (1.1) with m = 1),

∞∑
j=0

K(2−j)2−j < ∞ and tK(t) → 0 as t → 0 + .

Fix x ∈ (0, 1]. Let k ≥ 0 be such that 2−k−1 < x ≤ 2−k. Since K(t) is a non-
increasing function, for each m ∈ N we have

∞∑
j=m

K(x2−j)x2−j ≤
∞∑

j=m

K(2−k−12−j)2−k2−j = 2
∞∑

p=k+m+1

K(2−p)2−p

≤ 2
∞∑

p=m

K(2−p)2−p := εm → 0 as m → ∞.

Hence, the series
∑∞

j=0 K(x2−j)x2−j converges uniformly for x ∈ [0, 1]. We see
that

S(x) =
∞∑

j=0

K(x2−j)2−j

is a continuous function for x ∈ (0, 1]. Obviously, S(x) ↑ ∞ as x → 0+. We choose
j1 such that

j1∑
j=0

K(2−j)2−j ≥ 1
2
S(1), Φ(2−j1) <

1
2
.

Set j0 = −1 and lj = 2−j, j0 + 1 ≤ j ≤ j1. By continuity of S(x) there exists a
positive number lj1+1 such that

2−j1−1S(lj1+1) =
∞∑

j=j1+1

K(lj1+12j1+1−j)2−j = S(1).

Since

2−j1−1S(2−j1−1) =
∞∑

j=j1+1

K(2−j1−12j1+1−j)2−j ≤ S(1),

we have lj1+1 ≤ 2−j1−1 = lj1/2. Continuing in this way, we take j2 for which
j2∑

j=j1+1

K(lj1+12j1+1−j)2−j ≥ 1
2
S(1), Φ(2−j2) <

1
22

,

set lj = lj1+12j1+1−j , j1 + 1 ≤ j ≤ j2, etc. We have
∞∑

j=0

K(lj)2−j =
∞∑

k=0

jk+1∑
j=jk+1

K(lj)2−j ≥
∞∑

k=0

1
2
S(1) = ∞,

∞∑
j=0

K(lj+1)Φ(lj)2−j = 2
∞∑

j=1

K(lj)Φ(lj−1)2−j ≈
∞∑

k=0

1
2k

< ∞.

Thus, (4.1), (4.2) are satisfied and Lemma 4.1 is proved. �
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Abstract. This paper is devoted to investigation of some Banach spaces Ap
ω,γ

of functions holomorphic in the upper half-plane. The functions from the
considered spaces can have arbitrary growth near the finite points of the
real axis. The canonical representations of functions from these classes are
established by an approach based on the use of Fourier–Laplace transform
apparatus.
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It is well known that rotation-invariant growth conditions and the Fourier–Taylor
expansions apparatus are the most natural ones in problems related to classes and
spaces of functions regular in the unit disc. The geometric feature of the half-plane
is the existence of the non-finite boundary point ∞, which makes similar problems
in the half-plane essentially different. Particularly, parallel shift-invariant growth
conditions and the Fourier–Laplace transform apparatus turn out to be the most
natural ones in the half-plane. One has to note that the known shift-invariant
growth conditions mainly consider the finite boundary points equivalently and
mean a different requirement at ∞. This is evident in view of the theory of Hardy
spaces in the half-plane, Nevanlinna’s factorization and uniqueness theorem and
Phragmén–Lindelöf principle. On the other hand, the growth description of the
whole set of subharmonic functions possessing nonnegative harmonic majorants
in the half-plane [4] and some other results show that some times it is natural to
complement a shift-invariant growth condition by a local condition in the neigh-
borhood of ∞. This makes natural the below definition of the general spaces Ap

ω,γ

in the half-plane.

1. The spaces Ap
ω,γ

1.1. We define Ap
ω,γ (0 < p < +∞, −∞ < γ ≤ 2) as the set of those functions f(z)

holomorphic in the upper half-plane G+ = {z : Im z > 0}, which for sufficiently
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small ρ > 0 satisfy the Nevanlinna condition

lim inf
R→+∞

1
R

∫ π−β

β

log+ |f(Reiϑ)|
(

sin
π(ϑ − β)
π − 2β

)1−π/κ

dϑ = 0 (1.1)

where β = arcsin ρ
R = π

2 − κ and, simultaneously,

‖f‖p
p,ω,γ ≡

∫∫
G+

|f(z)|p dµω(z)
(1 + |z|)γ

< +∞, (1.2)

where dµω(x+ iy) = dxdω(2y) and it is supposed that ω(t) ∈ Ωα (−1 ≤ α < +∞),
i.e., ω(t) is given in [0, +∞) and such that

(i) ω(t) ↗ (is non-decreasing) in (0, +∞), ω(0) = ω(+0) and there exists a
sequence δk ↓ 0 such that ω(δk) ↓ (is strictly decreasing);

(ii) ω(t) % t1+α for ∆0 ≤ x < +∞ and some ∆0 ≥ 0

(f(t) % g(t) means that m1f(t) ≤ g(t) ≤ m2f(t) for some constants m1,2 > 0).
One can see that if ω(t) ∈ Ωα (α ≥ −1) then (ii) is true for any ∆ ∈ (0, ∆0].

We shall assume that Lp
ω,γ is the Lebesgue space defined solely by (1.2).

Remark 1.1. It is obvious that

Ap
ω,γ = (i + z)γ/pAp

ω,0.

Remark 1.2. For ω(t) = t1+α (α > −1), γ = 0 and p ≥ 1 the spaces Ap
ω,γ coincide

with the well-known Ap
α in the half-plane (see [1], [2], [3]). In this case (1.2) implies

(1.1), and this implication is true even in the somehow more general case when
ω(t) is continuously differentiable in (0, +∞) and such that ω′(t) ≥ Mtα (α > −1)
for almost all t > 0, where M > 0 is a constant.

Indeed, if f(z) ∈ Ap
ω,0, where p ≥ 1, ω(t) is continuously differentiable in (0, +∞)

and ω′(t) ≥ Mtα (α > −1) for almost all t > 0, then by (1.2)∫∫
G+

|f(ζ)|p(Im ζ)αdσ(ζ) < +∞,

where σ(z) is the Lebesgue surface measure, i.e., f(z) ∈ Ap
α. Thus, the well-known

representation is true:

f(z) =
1
2π

∫∫
G+

f(ζ)(Im ζ)α

[i(ζ − z)]2+α
dσ(ζ), z ∈ G+,

where σ(ζ) is Lebesgue’s area measure. Hence (1.1) holds since for Im z ≥ ρ > 0
and p > 1

|f(z)|p ≤ C1‖f‖p
Ap

α

{∫∫
G+

(Im ζ)αdσ(ζ)
(|Re ζ − x| + Im ζ + ρ)(2+α)q

}1/q

≤ C2‖f‖p
Ap

α

{∫ +∞

0

ηαdη

(η + ρ)(2+α)q−1

}1/q

= C3‖f‖p
Ap

α
ρ−(2+α)/p,

where C1,2,3 are constants and 1/p + 1/q = 1. For p = 1 the proof is more simple.
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Note that in the general case the condition (1.1) can not be derived from (1.2).
We shall return to the necessity of (1.2) in the last section of the paper.

1.2. Before analyzing the spaces Ap
ω,γ , we recall some properties [4] of the holo-

morphic Hardy spaces

Hp
γ ≡ Hp

(
dx

(1 + |x|)γ

)
= (z + i)γ/pHp

0 (1.3)

(0 < p < +∞, −∞ < γ ≤ 2), where Hp
0 is the Hille-Tamarkin’s Hardy space in

the upper half-plane G+ = {z : Im z > 0}, defined as the set of those f(z) for
which

sup
y>0

∫ +∞

−∞
|f(x + iy)|pdx < +∞.

Hp
γ coincides with the set of those functions f(z) holomorphic in G+, for which

|f(z)|p have harmonic majorants in G+ (i.e., f(z) is from the conformal image of
Hardy’s Hp in |z| < 1) and

f(x) ∈ Lp

(
dx

(1 + |x|)γ

)
≡ Lp

γ

on the real axis. Hp
γ (1 ≤ p < +∞,−∞ < γ ≤ 2) is a Banach space with the norm

‖f(z)‖Hp
γ

= ‖f(x)‖Lp
γ
. For γ = 2 the space Hp

γ coincides with the conformal image
of Hardy’s Hp and for γ = 0 with Hp

0 . Besides, it follows from the results of [4]
that Hp

γ (0 < p < +∞, −∞ < γ ≤ 2) coincides with the set of those functions
holomorphic in G+, which satisfy (1.1) for any ρ > 0 and

lim inf
y→+0

∫ +∞

−∞
|f(x + iy)|p dx

(1 + |x|)γ
< +∞. (1.4)

One can observe that in [4] the half-plane G+ could be exhausted by disc segments,
and hence under (1.4) the condition (1.1) is equivalent to

lim inf
R→+∞

1
R

∫ π−β

β

|f(Reiϑ)|p
(

sin
π(ϑ − β)
π − 2β

)1−π/κ

dϑ < +∞ (1.1′)

for any ρ > 0. Besides, if f(z) ∈ Hp
γ (−∞ < γ ≤ 2, 0 < p < +∞), then for any

0 < M < +∞
sup

0<y<M

∫ +∞

−∞
|f(x + iy)|p dx

(1 + |x|)γ
< +∞. (1.5)

Checking (1.4), one can easily show that for any p > 1 and γ < 1

Hp
γ ⊂ H1

γ′ , 1 − 1 − γ

p
< γ′ < 1. (1.6)

1.3. Note that if f(z) ∈ Ap
ω,γ (0 < p < +∞, ω ∈ Ωα, −1 ≤ α < +∞, −∞ < γ < 1),

then f(z + iρ) belongs to Hp
γ for any ρ > 0. Moreover, the following assertion is

true.
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Proposition 1.1. For any p > 0 and γ ∈ (−∞, 2] the sum
⋃

ω∈Ωα
Ap

ω,γ coincides
with the set of all those functions which belong to Hp

γ in any half-plane G+
ρ = {z :

Im z > ρ} (ρ > 0).

Proof. Assuming that f(z) ∈ Hp
γ in any half-plane G+

ρ (ρ > 0), one can put

ωf(t) =
∫ t/2

0

dρ

1 + Mp(ρ)
, Mp(ρ) =

∫ +∞

−∞
|f(x + iρ)|p dx

(1 + |x|)γ
,

for 0 < t ≤ 1 and define ωf (t) ≡ ωf (1) for 1 ≤ t < +∞, then (1.2) obviously
becomes true. Thus, f(z) ∈ Ap

ω,γ . �

Proposition 1.2. Ap
ω,γ (1 ≤ p < +∞, −∞ < γ < 1, ω ∈ Ωα, α ≥ −1) is a Banach

space with the norm (1.2).

Proof. As Lp
ω,γ (which we have defined solely by (1.2)) is a Banach space, it suffices

to show that Ap
ω,γ is a closed subspace of Lp

ω,γ . Thus, assuming that {fn}∞1 ⊂ Ap
ω,γ

is a sequence convergent in the norm of Lp
ω,γ (fn → f ∈ Lp

ω,γ) we shall prove that
f ∈ Ap

ω,γ . Obviously∫ 1/2

0

dω(2y)
∫ +∞

−∞
|fn(x + iy) − f(x + iy)|p dx

(1 + |x|)γ
→ 0

as n → ∞. Hence, by Fatou’s lemma
∫ 1

0
g(t)dω(t) = 0 for

g(2y) ≡ lim inf
n→∞

∫ +∞

−∞
|fn(x + iy) − f(x + iy)|p dx

(1 + |x|)γ
. (1.7)

As ω(t) ∈ Ωα, there exists a sequence ηk ↓ 0 such that ω(ηk+1) < ω(ηk). Introduc-
ing the measure ν(E) =

∨
E ω we conclude that ν([ηk+1, ηk]) > 0 for any k ≥ 1

and obviously g(t) = 0 in [ηk+1, ηk] almost everywhere with respect to the mea-
sure ν. On the other hand, f(x+ it) ∈ Lp((1 + |x|)−γdx) for almost every t > 0 in
respect to the measure ν. Thus, there exists at least a sequence yk ↓ 0 such that
simultaneously g(2yk) = 0 and f(x + iyk) ∈ Lp((1 + |x|)−γdx).

Now choose a subsequence of {fn}, for which the limit (1.7) is attained for
y = y1. From this subsequence choose another one, for which (1.7) is attained for
y = y2, etc. Then, by diagonal operation, choose a subsequence (for which we keep
the same notation {fn}) over which

g(2yk) ≡ lim
n→∞

∫ +∞

−∞
|fn(x + iyk) − f(x + iyk)|p dx

(1 + |x|)γ
= 0 (1.8)

for all k ≥ 1. Then observe that fn(z + iρ) ∈ Hp
γ (n ≥ 1) for any ρ > 0 and

particularly for ρ = yk (k = 1, 2, . . .). By (1.8), for any fixed k ≥ 1 the sequence
{fn(z + iyk)}∞n=1 is fundamental in Hp

γ and consequently fn(z + iyk) (as n → ∞)
tends to some F form Hp

γ taken over G+
yk

, and hence fn(z) tends to F (z) uniformly
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inside G+ and F ∈ Hp
γ in any half-plane G+

ρ . Thus, we conclude that for F (z) (1.1)
is true and, in addition, for any number A > 0∫∫

|x|<A, 1
A <y<A

|F (z) − f(z)|p dµω(z)
(1 + |z|)γ

≤ 2p−1

{∫∫
|x|<A, 1

A <y<A

|F (z) − fn(z)|p dµω(z)
(1 + |Rez|)γ

+
∫∫

|x|<A, 1
A <y<A

|f(z) − fn(z)|p dµω(z)
(1 + |Rez|)γ

}
→ 0

as n → ∞. Letting A → +∞ we conclude that ‖F − f‖Lp
ω,γ

= 0. �

2. Representation over a strip

2.1. Assuming that ω(t) ∈ Ωα (α ≥ −1), we shall deal with the following continuous
analog of M.M. Djrbashian’s Cauchy-type kernel:

Cω(z) =
∫ +∞

0

eitz dt

Iω(t)
, Iω(t) =

∫ +∞

0

e−txdω(x). (2.1)

The function Cω(z) is holomorphic in G+ since for any k ≥ 1 the integral (2.1) is
uniformly convergent in G+

δk
in virtue of the obvious estimate

Iω(t) ≥ t

∫ +∞

δk

e−tx[ω(x) − ω(0)]dx ≥ e−δkt[ω(δk) − ω(0)], k ≥ 1.

Note that for the first time the kernel (2.1) has been used in [5] (see also [6]),
where it was constructed in the multidimensional case of tube domains. Besides,
one can see that for the simple scale ω(t) = t1+α (−2 < α < +∞)

Iω(t) = Γ(2 + α)t−(1+α) and Cω(z) = (−iz)−(2+α).

2.2. For proving the canonical representations of Ap
ω,γ a new approach in using

Fourier-Laplace transforms and differing from S.M.Gindikin’s [9] one is revealed.
We shall need an auxiliary statement on representation by Cauchy integral in Hp

γ

and a somehow simple estimate for Cω(z).

Lemma 2.1. If f(z) ∈ Hp
γ (p ≥ 1, γ < 1), then for any z ∈ G+

f(z) =
1

2πi

∫ 2π

0

f(t)
t − z

dt and
1

2πi

∫ 2π

0

f(t)
t − z

dt = 0. (2.2)

Proof. By (1.6), it suffices to consider only the case p = 1. Fixing any z ∈ G+ and
any ρ > 0, for arbitrary R > |z| one can write a representation over the boundary
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of a shifted semidisc:

f(z + iρ) =
1

2πi

∫
∂[G+(R)+iρ]

f(ζ)dζ

ζ − (z + iρ)
(2.3)

=
1

2πi

∫ R

−R

f(t + iρ)
t − z

dt+
1

2πi

∫ π

0

f(Reiϑ + iρ)
Reiϑ − z

dReiϑ

≡ I1(R) + I2(R),

where G+(R) = {z ∈ G+ : |z| < R}. It is obvious that

lim
R→+∞

I1(R) =
1

2πi

∫ +∞

−∞

f(t + iρ)
t − z

dt. (2.4)

For proving that I2(R) → 0 as R → +∞, observe that f(z) = (z + i)γf1(z), and
both formulas of (2.2) are true for the function f1(z) ∈ H1(dx). Hence

I2(R) =
1

2πi

∫ π

ϑ=0

(Reiϑ + i(ρ + 1))γ

Reiϑ − z

(
1

2πi

∫ +∞

−∞

f1(t)dt

t − (Reiϑ + iρ)

)
dReiϑ

=
1

4π2

∫ +∞

−∞
f1(t)dt

∫ π

ϑ=0

(Reiϑ + i(ρ + 1))γdReiϑ

(Reiϑ − z)(Reiϑ + iρ − t)
(2.5)

≡ 1
4π2

∫ +∞

−∞
f1(t)J(R, t)dt,

where for large enough R

|J(R, t)| ≤ CRγ−1

∫ π

0

dϑ∣∣eiϑ − t−iρ
R

∣∣ ≡ A(R, t),

and C > 0 is a constant independent of t and R. For evaluating of the latter
integral, one can use the inequalities 2

π x ≤ sin x (0 < x < π
2 ) and a2 + b2 ≥

1
2 (a + b)2 and derive

∣∣eiϑ − t−iρ
R

∣∣ > 1
2

(∣∣1 − t
R

∣∣+ 2
π

√
t
Rϑ +

√
2 ρ

R

)
for t > 0 and

any ϑ ∈ (0, π). Hence

|J(R, t)| ≤ πCRγ−1

√
R

t
log

∣∣1 − t
R

∣∣+ √
2 ρ

R + 2
√

t
R∣∣1 − t

R

∣∣+ √
2 ρ

R

(t > 0). (2.6)

If t > R, then

|J(R, t)| ≤ πCRγ−1 log
(

max
x≥1

g(x)
)

, g(x) =
x − 1 + 2

√
x +

√
2 ρ

R

x − 1 +
√

2 ρ
R

,

where g(1) = 1 +
√

2R
ρ , g(+∞) = 1 and g′(x) < 0 for large enough R. Hence, for

any ε > 0

|J(R, t)| < πCRγ−1 log
(

1 +
√

2
R

ρ

)
< 2πCRγ−1+ε (t > R).
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If 0 < t < R, then using (2.6) for x = t/R ∈ (1/2, 1) we find that

|J(R, t)| <
√

2πCRγ−1 log

(
1 +

2
√

x

1 − x +
√

2 ρ
R

)

<
√

2πCRγ−1 log
(

1 +
√

2
R

ρ

)
< 4πRγ−1+ε

for any ε > 0 and large enough R. The same estimate is true also for x = t/R ∈
(0, 1/2). Observing that A(R, t) = A(R, |t|), for t < 0 we conclude that |J(R, t)| <
4πCRγ−1+ε for any ε ∈ (0, 1 − γ) provided R is large enough. Hence I2(R) → 0
as R → +∞ since f1(t) ∈ L1(dx) in (2.5), and by (2.3) and (2.4)

f(z + iρ) =
1

2πi

∫ +∞

−∞

f(t + iρ)
t − z

dt, z ∈ G+, ρ > 0.

Letting ρ → 0 we arrive at the first formula of (2.2). Indeed, for any fixed z ∈ G+∣∣∣∣ 1
2πi

∫ +∞

−∞

f(t + iρ)
t − z

dt − 1
2πi

∫ +∞

−∞

f(t)
t − z

dt

∣∣∣∣
≤ C′ 1

2πi

∫ +∞

−∞

|f(t + iρ) − f(t)|
1 + |t| dt ≤ C′

2π
‖f(z + iρ) − f(z)‖H1

γ
= o(1).

The second formula of (2.2) is proved in the same way, starting by (2.3) with z
instead of z and zero at the left-hand side. �

Lemma 2.2. Let ω(t) satisfy the condition (i) (Subsection 1.1) and let ω(t) = ω(∆)
for some ∆ > 0 and all ∆ < t < +∞. Then for large enough k there exists some
constant M ≡ Mk depending solely on k, such that for any δ ∈ [0, δk+1]

|Cωδ
(z)| ≤ M |z|−1, z ∈ G+

3δk
, (2.7)

where ωδ(t) = ω(t + δ) (0 < t < +∞).

Proof. If k is large enough to provide 2δk < ∆, then for any δ ∈ [0, δk+1]

Iωδ
(t) ≡ Iδ(t) =

∫ ∆−δ

0

e−txd[ω(x + δ) − ω(δ)]

≥ e−t(∆−δ)[ω(∆) − ω(δ)] + t

∫ ∆−δ

δk

e−tx[ω(x + δ) − ω(δ)]dx

≥ e−t(∆−δ)[ω(∆) − ω(δ)] + [e−tδk − e−t(∆−δ)][ω(δk + δ) − ω(δ)]

≥ e−tδk [ω(δk + δ) − ω(δ)] ≥ e−tδk [ω(δk) − ω(δk+1)] > 0.

Besides,

|I ′δ(t)| =
∫ ∆−δ

0

e−txxdω(x + δ) ≤
∫ ∆−δ

0

xdω(x + δ) ≤ ∆ω(∆).
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Consequently, for z = x + iy ∈ G+
3δk

(y > 3δk)

Cωδ
(z) =

1
iz

∫ +∞

0

deitz

Iδ(t)
=

1
iz

eitz

Iδ(t)

∣∣∣∣+∞

t=0

+
1
iz

∫ +∞

0

eitz I ′δ(t)
[Iδ(t)]2

dt ≡ A + B,

where

|A| ≤ 1
|z|[ω(δk) − ω(δk+1)]

and |B| ≤ ∆ω(∆)
|z|δk[ω(δk) − ω(δk+1)]2

.

�

2.3. Theorem 2.1. Let f(z) ∈ Ap
ω,γ(G+) for some 1 ≤ p < +∞, −∞ < γ < 1 and

ω(x) satisfying the condition (i) and such that ω(t) = ω(∆) < +∞ (∆ < t < +∞)
for some ∆ > 0. Then

f(z) =
1
2π

∫∫
G+

f(w)Cω(z − w)dµω(w), z ∈ G+, (2.8)

f(z) =
1
π

∫∫
G+

{Re f(w)}Cω(z − w)dµω(w), z ∈ G+, (2.9)

where both integrals are absolutely and uniformly convergent inside G+.

Proof. First, note that in our assumption dω(2y) = 0, ∆/2 < y < +∞, similar to
(1.6)

Ap
ω,γ ⊂ A1

ω,γ′ , 1 − 1 − γ

p
< γ′ < 1,

for any p > 1 and γ < 1. Thus, the uniform convergence of the integrals (2.8) and
(2.9) in any compact lying inside G+ is obvious by (2.7). Besides, by the above
inclusion it suffices to prove the representations (2.8) and (2.9) only for p = 1. So,
let f(z) ∈ A1

ω,γ(G+) where ω(t) and γ are as required. Then f(z + iρ) ∈ H1
γ for

any ρ > 0. Hence, by Lemma 2.1

f(z + iρ) =
1

2πi

∫ +∞

−∞

f(ξ + iρ)
ξ − z

dξ

for any fixed point z = x + iy ∈ G+. Consequently, for any δ ∈ (0, y0)

f(z + iρ) = lim
a→−∞
b→+∞

1
2π

∫ +∞

0

eiτzdτ

∫ b

a

e−iτξf(ξ + iρ)dξ

= lim
a→−∞
b→+∞

1
2π

∫ +∞

0

eiτz

(∫ ∆−δ

0

e−τxdω(x + δ)

)(∫ b

a

e−iτξf(ξ + iρ)dξ

)
dτ

Iδ(τ)

= lim
a→−∞
b→+∞

1
2π

∫ ∆/2

δ/2

dω(2v)
∫ +∞

0

eiτ(z+2iv−iδ) dτ

Iδ(τ)

∫ b

a

e−iτξf(ξ + iρ)dξ

≡ lim
a→−∞
b→+∞

∫ ∆/2

δ/2

Ja,b(v)dω(2v),
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where

Ja,b(v) =
1
2π

∫ +∞

0

(
e−τv

∫ b

a

e−iτξf(ξ + iρ)dξ

)(
e−iτ(z−v+iδ)

Iδ(τ)

)
dτ

≡ 1
2π

∫ +∞

−∞
Aa,b(τ)B(τ)dτ,

and it is assumed that Aa,b(τ) ≡ B(τ) ≡ 0 for τ ≤ 0. One can see that Aa,b(τ) and
B(τ) are bounded functions of L1(−∞, +∞), which are continuous in (−∞, +∞)\
{0}. Therefore, the following well-known formula on Fourier transforms of such
functions is valid (see, for instance, [6], Ch. I, §3, p. 39, Theorem 1.12(2◦))

Ja,b(v) =
1
2π

∫ +∞

−∞
F [Aa,b](u) F [B](u) du,

where F [ϕ] stands for the Fourier transform of ϕ ∈ L1(−∞, +∞). Using this
formula we conclude that

Ja,b(v) =
1
2π

∫ +∞

−∞

[
1
2π

∫ b

a

f(ξ + iρ)dξ

∫ +∞

0

eiτ(−u+iv−ξ)dτ

]

×
[∫ +∞

0

eit(u+z+iv−iδ) dt

Iδ(t)

]
du

=
1
2π

∫ +∞

−∞

(
1

2πi

∫ b

a

f(ξ + iρ)
ξ − (u + iv)

dξ

)
Cωδ

(z − (u − iv) − iδ)du.

The latter integral is absolutely convergent even for a = −∞ and b = +∞ provided
δ is small enough. Indeed, choosing k great enough so that y > 4δk and assuming
that δ ∈ (0, δk+1), for v ∈ (δ/2, ∆/2) we shall have y + v− δ ≥ y− δk/2 > 3δk and
consequently by (2.7)

I1 ≡
∫ +∞

−∞

(∫ +∞

−∞

|f(ξ + iρ)|
|ξ − (u + iv)|dξ

)
|Cωδ

(z − (u − iv) − iδ)|du

≤ 2M

∫ +∞

−∞
|f(ξ + iρ)|Φ(ξ)dξ,

where

Φ(ξ) =
∫ +∞

−∞

dσ

(|σ| + 3δk)(|ξ − x − σ| + δ/2)

is a continuous function in (−∞, +∞). Besides, one can show that

Φ(ξ) ≤ C

1 + |ξ| log(1 + |ξ|) <
C′

(1 + |ξ|)γ
, −∞ < ξ < +∞,
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where C and C′ are some constants depending on x, δ and γ. Hence I1 < +∞,
and consequently

lim
a→−∞
b→+∞

Ja,b(v) =
1
2π

∫ +∞

−∞

(
1

2πi

∫ +∞

−∞

f(ξ + iρ)dξ

ξ − (u + iv)

)
Cωδ

(z−(u−iv)−iδ)du

=
1
2π

∫ +∞

−∞
f(u + iv + iρ)Cωδ

(z − (u − iv) − iδ)du

=
1
2π

∫ +∞

−∞

(
1

2πi

∫ +∞

−∞

f(t + iv)dt

t − (u + iρ)

)
Cωδ

(z − (u − iv) − iδ)du

=
1
2π

∫ +∞

−∞
f(u + iv)

(
1

2πi

∫ +∞

−∞

Cωδ
(t + z + iv − iδ)
t − (−u + iρ)

dt

)
du

=
1
2π

∫ +∞

−∞
f(u + iv)Cωδ

(z − (u − iv) + iρ − iδ)du

since

I2 ≡
∫ +∞

−∞
|f(u + iv)|du

∫ +∞

−∞

|Cωδ
(z − (t − iv) − iδ)|
|u − t − iρ| dt < +∞

and Cωδ
(z + i(y + v − δ)) ∈ H1

γ in G+. The latter inclusion simply follows from
(2.7), and I2 < +∞ holds in the same way as I1 < +∞ above. Thus, for any fixed
z ∈ G+ and small enough δ > 0

f(z) =
1
2π

∫∫
δ/2<v<∆/2

f(w)Cωδ
(z − w − iδ)dµω(w).

For letting δ → +0, we fix any ε > 0 and use the following two estimates

I1 ≡ 1
2π

∫∫
δ/2<v<∆/2

|u|>A

|f(w)||Cωδ
(z − w − iδ)|dµω(w) <

ε

4
,

I2 ≡ 1
2π

∫∫
δ/2<v<∆/2

|u|>A

|f(w)||Cωδ
(z − w)|dµω(w) <

ε

4

which are true for large enough A > 0. Besides, we use the following two estimates
which are true for fixed A and small enough δ > 0:

I3 ≡ 1
2π

∫∫
0<v<δ/2

|f(w)||Cωδ
(z − w)|dµω(w) <

ε

4
,

I4 ≡ 1
2π

∫∫
δ/2<v<∆/2

|u|<A

|f(w)||Cωδ
(z − w − iδ) − Cωδ

(z − w)|dµω(w) <
ε

4
.

Hence we conclude that for small enough δ > 0∣∣∣∣∣f(z) − 1
2π

∫∫
0<v<∆/2

f(w)Cω(z − w)dµω(w)

∣∣∣∣∣ < ε,
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and the representation (2.8) holds. Note that the above inequalities for I1,2,3 obvi-
ously follow from (2.7) (where M does not depend on δ). For proving the remaining
estimate for I4, one can use the estimate of Iδ given in the Proof of Lemma 2.2
and obtain that

I4 ≤ ω(δ) − ω(0)
2π

∫∫
δ/2<v<∆/2

|u|<A

|f(w)|
(∫ +∞

0

e−t(y+v) dt

[Iδ(t)]2

)
dµω(w)

≤ ω(δ) − ω(0)
[ω(δk) − ω(δk+1)]2

(1 + A)γ

πy
‖f‖1,ω,γ → 0 as δ → +0.

For proving (2.9), it suffices to repeat the above proof starting by

1
2πi

∫ +∞

−∞

f(ξ + iρ)
ξ − z

dξ =
1

2πi

∫ +∞

−∞

f(ξ + iρ)
ξ − z

dξ ≡ 0, z ∈ G+.

This will lead to the identity

0 ≡ 1
2π

∫∫
G+

f(w)Cω(z − w)dµ(w), z ∈ G+.

Adding this identity to (2.8) we come to (2.9). �

3. General representations

3.1. The following two lemmas will be used for letting ∆ → +∞ in (2.8) and (2.9)
and obtaining a representation of Ap

ω,γ by some integrals which can be taken over
the whole half-plane. In the below Lemma 3.1 D−a will stand for the Riemann–
Liouville’s integro-differentiation:

D−au(x) ≡ 1
Γ(α)

∫ x

0

(x − t)a−1u(t)dt, a > 0,

D0u(x) ≡ u(x),

Dau(x) =
dp

dxp
D−(p−a)u(x), a > 0, p − 1 < a ≤ p.

Lemma 3.1. Let ω(x) ∈ Ωα for some α ≥ −1. Then for any non-integer β ∈
([α] − 1, α)

Cω(z) =
1

(−iz)2+β

∫ +∞

0

eitz
{
D2+β [Iω(t)]−1

}
dt, z ∈ G+, (3.1)

where the right-hand side integral is absolutely convergent. Besides, for any ρ > 0
there exists a constant M ≡ Mρ,β > 0 such that

|Cω(z)| ≤ M

|z|2+β
, z ∈ G+

ρ . (3.2)
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Proof. Let m ≥ 1 be the integer deduced from m−1 < 2+α ≤ m (m−1 < β < m).
Then the function D−(m−2+β)[Iω(t)]−1 is infinitely differentiable in (0, +∞) (i.e.,
is of C∞(0, +∞)). Indeed, the function Iω(t) (Iω(t) > 0, Iω(t) ↘, Iω(+∞) = 0)
has holomorphic continuation in Re z > 0. Hence [Iω(z)]−1 is holomorphic in a
neighborhood of (0, +∞) and the function

D−(m−2−β)[Iω(t)]−1 =
tm−2−β

Γ(m − 2 − β)

∫ 1

0

(1 − x)m−3−β [Iω(tx)]−1dx

is of C∞(0, +∞). Consequently, integration by parts leads to (3.1):∫ +∞

0

eitz
{
D2+β[Iω(t)]−1

}
dt =

∫ +∞

0

eitzd
{
Dm−1D−(m−β−2)[Iω(t)]−1

}
(3.3)

= eitz
m−1∑
n=0

(−iz)nDm−1−nD−(m−β−2)[Iω(t)]−1

∣∣∣∣∣
+∞

t=0

+ (−iz)m

∫ +∞

0

eitz
{
D−(m−β−2)[Iω(t)]−1

}
dt

=
(−iz)m

Γ(m − β − 2)

∫ +∞

0

dλ

Iω(λ)

∫ +∞

λ

eitz(t − λ)m−β−3dt = (−iz)β+2Cω(z)

provided all integrals which arise in the above operations are convergent and

e−tyDnD−(m−β−2)[Iω(t)]−1
∣∣∣
t=0, +∞

= 0 (3.4)

for any y > 0 and 0 ≤ n ≤ m − 1. For proving (3.4), first we shall verify that our
condition ω(x) % x1+α (0 ≤ ∆0 < x < +∞) implies∣∣∣∣ dk

dtk
[Iω(t)]−1

∣∣∣∣ ≤ M1e
1+α−k, 0 < t < 1, 0 ≤ k ≤ m, (3.5)

where M1 is a constant. Indeed, for k = 0 we obviously have

Iω(t) % t−(1+α)

∫ +∞

∆0t

e−xx1+αdx, 0 < t < 1,

and it suffices to see that successively differentiating any summand in the ex-
pression of

(
dλ
/

dtλ
)
[Iω(t)]−1 (λ ≥ 0) we either differentiate the nominator (and

this adds the multiplier t−1 to the estimate of the summand) or we multiply this
summand by (λ + 1)I ′ω(t)/ Iω(t) = O(t−1) (t → +0). By (3.5), for 0 < t < +∞

DnD−(m−β−2)[Iω(t)]−1 =
dn

dtn
tm−β−2

Γ(m − β − 2)

∫ 1

0

(1 − σ)m−β−3[Iω(tσ)]−1dσ (3.6)

=
n∑

k=0

Ck
n

m − β − 2
Γ(m − β − 1 − n + k)

tm−β−2−n+k

×
∫ 1

0

(1 − σ)m−β−3 ∂k

∂tk
[Iω(tσ)]−1dσ, 0 ≤ n ≤ m,
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where Ck
n are the binomial coefficients and all integrals are absolutely convergent.

Hence the case t → +0 of (3.4) follows. Further, it is obvious that for any k ≥ 0
the derivative

∣∣(dk
/

dtk
)
Iω(t)

∣∣ is bounded as 1 ≤ t < +∞ and for any y > 0 and
any k ≥ 0

Iω(t) ≥ t

∫ 1+ y
2(k+1)

y
2(k+1)

e−tx[ω(x) − ω(0)]dx

≥
(

1 − 1
e

)[
ω

(
y

2(k + 1)

)
− ω(0)

]− ty
2(k+1)

, 1 ≤ t < +∞.

Consequently, for any y > 0, k ≥ 0 and 1 ≤ t < +∞∣∣∣∣ dk

dtk
[Iω(t)]−1

∣∣∣∣ ≤ M2e
ty/2

[
ω

(
y

2(k + 1)

)
− ω(0)

]−(k+1)

, (3.7)

where M2 is a constant independent of t and y. The case t → +∞ of (3.4) follows
from (3.6) and (3.7).

It remains to see that in virtue of (3.6) and (3.5), (3.7) for any y > 0 and
any n(0 ≤ n ≤ m) there exists a constant M3 such that∣∣DnDm−β−2[Iω(t)]−1

∣∣ ≤ M3e
ty/2tα−β−1, 0 < t < +∞. (3.8)

Hence the absolute convergence of all integrals appearing in the operations of (3.3)
holds. The estimate (3.2) follows from (3.1) and (3.8). �

Lemma 3.2. If ω ∈ Ωα for some α ≥ −1,

ω∆(t) =

{
ω(t) for 0 ≤ t ≤ ∆
ω(∆) for ∆ < t < +∞ and C∆(z) ≡ Cω∆(z), (3.9)

then there exists a constant M ≡ Mω depending solely on ω and such that

|Cω(z) − C∆(z)| ≤ M

∆2+α
, z ∈ G+, 1 < ∆ < +∞. (3.10)

Proof. It is obvious that for z = x + iy (y > 0)

|Cω(z) − C∆(z)| ≤
∫ +∞

0

e−yt I1(t)
I2(t)[I1(t) + I2(t)]

dt, (3.11)

where

I1(t) =
∫ +∞

∆

e−txdω(x) and I2(t) =
∫ ∆

0

e−txdω(x).

Besides, one can see that

I1(t) = e−t∆

∫ +∞

0

e−tx[ω(x + ∆) − ω(∆)]dt < M ′
ωe−t∆t

∫ +∞

0

e−tx(x + ∆)1+αdx

= M ′
ωe−t∆t∆2+α

∫ +∞

0

e−tx∆(1 + x)1+αdx,
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where the constant M ′
ω depends only on ω. Hence, there exists another constant

M ′′
ω such that

I1(t) < M ′′
ωe−t∆∆1+α, t∆ > 1.

Further,

I2(t) = e−t∆[ω(∆) − ω(0)] + t∆
∫ ∆

0

e−tx∆[ω(x∆) − ω(0)]dx.

Hence, for t∆ > 1

I2(t) > t∆
∫ 1

1/4

e−tx∆[ω(x∆) − ω(0)]dx≥
[
ω

(
∆
4

)
− ω(0)

]
e−

t∆
4

(
1−e−

3t∆
4

)
> M ′′′

ω e−
t∆
4 ∆1+α 3t∆

4 + 3t∆
>

3
7
M ′′′

ω e−
t∆
4 ∆1+α

and I2(t) > e−t∆[ω(∆)−ω(0)] > M IV
ω ∆1+α for 0 < t∆ < 1. By these inequalities,

I1(t)
I2(t)[I1(t) + I2(t)]

<

⎧⎪⎪⎨⎪⎪⎩
I1(t)

[I2(t)]2
< MV

ω e−
t∆
2 ∆−(1+α), t∆ > 1

1
I2(t)

<
∆−(1+α)

M IV
ω

< MV I
ω e−

t∆
2 ∆−(1+α), 0 < t∆ < 1.

Hence by (3.11) we come to (3.10). �

3.2. Theorem 3.1. Let f(z) ∈ Ap
ω,γ for some 1 ≤ p < +∞ and −∞ < γ <

1 − (1 + α)(p − 1). Then

f(z) =
1
2π

∫∫
G+

f(w)Cω(z − w)dµω(w), z ∈ G+, (3.12)

f(z) =
1
π

∫∫
G+

{Re f(w)}Cω(z − w)dµω(w), z ∈ G+, (3.13)

where both integrals are absolutely and uniformly convergent inside G+.

Proof. The absolute and uniform convergence of the integrals in (3.12) and (3.13)
inside G+ is obvious by (3.2). Further, one can verify that under our assumptions

Ap
ω,γ ⊂ A1

ω,γ′ , max
{

1 − 1 − γ

p
,

γ + (2 + α)(p − 1)
p

}
< γ′ < 1. (3.14)

Thus, it suffices to prove the representation (3.12) only for p = 1. We shall omit
the proof of (3.13) since it holds similarly, by the same passage ∆ → +∞ in (2.9).

We start by proving that for any ∆ > ∆0, ρ > 0 and any δ ∈ (0, 1]

|C∆(z)| ≤ Mρ

|z|1−δ
, z ∈ G+

ρ , (3.15)



On Ap
ω,γ Spaces in the Half-Plane 155

where the constant Mρ depends only on ρ and δ, and C∆ is that of (3.9). Indeed,
ω∆(t) ∈ Ω−1. Hence, if 0 < δ < 1, then by (3.1)

C∆(z) =
1

(−iz)1−δ

∫ +∞

0

eitzϕ∆,δ(t)dt, z ∈ G+, (3.16)

where ϕ∆,δ(t) = d
dtD

−δ[I∆(t)]−1 ≥ 0 and the right-hand side integral of (3.16) is
convergent. On the other hand, for any y > 0

C∆(iy) =
1

y1−δ

∫ +∞

0

e−tyϕ∆,δ(t)dt =
∫ +∞

0

e−ty dt

I∆(t)
,

where the right-hand side integral decreases by ∆ (for any fixed y and δ). Hence∫ +∞

0

e−tyϕ∆,δ(t)dt

has the same property. Consequently, for y > ρ and ∆ > ∆0∫ +∞

0

e−tyϕ∆,δ(t)dt ≤
∫ +∞

0

e−tρϕ∆0,δ(t)dt ≡ Mρ < +∞,

and (3.15) holds by (3.16). For δ = 1 (3.15) is obvious.
Now fix any z ∈ G+ and choose a number A1 enough large to provide

I1 ≡ 1
2π

∫∫
0<v<∆/2
|u|>A1

|f(w)||C∆(z − w)|dµω(w) <
ε

4
, ∆ > ∆0. (3.17)

This choice of A1 is possible by (3.15). Indeed, using (3.15) with 1 − δ = γ+ we
come to the following inequalities which imply (3.17):

I1 ≤ My

2π

∫∫
0<v<∆/2
|u|>A1

|f(w)| dµω(w)
(1 + |w|)γ+ ≤ My

2π

∫∫
0<v<+∞
|u|>A1

|f(w)| dµω(w)
(1 + |w|)γ

.

Using (3.2), choose A2 > A1 enough large to provide that

I2 ≡ 1
2π

∫∫
0<v<+∞
|u|>A2

|f(w)||Cω(z − w)|dµω(w) <
ε

4
, ∆ > ∆0. (3.18)

Now, using (3.10) choose ∆1 > ∆0 enough large to provide that

I3 ≡ 1
2π

∫∫
0<v<∆/2
|u|<A2

|f(w)||Cω(z − w) − C∆1(z − w)|dµω(w) <
ε

4
. (3.19)

This choice of ∆1 is possible since by (3.10)

I3 ≤ 1
2π

M

∆2+α
1

∫∫
0<v<∆1/2

|u|<A2

|f(w)|dµω(w) ≤ M(A2 + ∆1)γ+

∆2+α
1

‖f‖1,p,γ.

At last, using (3.2) choose ∆ > ∆1 enough large to provide that

I4 =
1
2π

∫∫
∆/2<v<+∞

|u|<A2

|f(w)||Cω(z − w)|dµω(w) <
ε

4
. (3.20)
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Taking ∆ enough large in the representation (2.8) of f(z), by (3.17)-(3.20) we get∣∣∣∣f(z) − 1
2π

∫∫
G+

f(w)Cω(z − w)dµω(w)
∣∣∣∣ < ε,

and (3.12) holds by the arbitrariness of ε. �

4. Final remarks

Theorem 4.1. Let f(z) ∈ Lp
ω,γ (1 ≤ p < +∞, −∞ < γ < 1), and let ω(x) be

as required in Theorem 2.1 or Theorem 3.1. Then the right-hand side integrals in
formulas (2.8), (2.9) or (3.12), (3.13) represent functions which are holomorphic
in G+ and satisfy (1.1).

Proof. Under the mentioned requirements, the right-hand side integrals in (2.8),
(2.9) and (3.12), (3.13) obviously are absolutely and uniformly convergent inside
G+ and hence, these integrals represent holomorphic functions in G+.

Let ω(x) be as required in Theorem 3.1, and let

F (z) =
1
2π

∫∫
G+

f(w)Cω(z − w)dµω(w), z ∈ G+.

If z = Reiϑ and Im z = R sin ϑ ≥ ρ, where ρ > 0 is a fixed number, then by (3.2)

|F (Reiϑ)| ≤ M

∫∫
G+

|f(w)| dµω(w)
|Reiϑ − w|2+β

,

where β ∈ ([α]−1, α) is any fixed non-integral number and M ≡ Mρ,β is a constant
depending on ρ and β. One can verify that in the above inequality

|Reiϑ − w| >
1√
2

(
|R − |w|| + ρ√

R

√
|w|
)

.

Hence

|F (Reiϑ)| ≤ M ′
∫∫

G+

|f(w)|dµω(w)(
|R − |w|| + ρ√

R

√|w|
)2+β

, (4.1)

where f(w) ∈ Lp
ω,γ ⊂ L1

ω,γ′ with some γ′ ∈ (0, 1) (see (3.14)).

If |w| ≤ R/2, then 1 ≤ (1 + |w|)−(1+β/2)R(γ′)+ , and∫∫
w∈G+

|w|≤R/2

|f(w)|dµω(w)(
|R − |w|| + ρ√

R

√|w|
)2+β

(4.2)

≤
∫∫

w∈G+
|w|≤R/2

|f(w)| dµω(w)

(|R − |w||)2+β

≤
(

2
R

)2+β ∫∫
w∈G+

|w|≤R/2

|f(w)|dµω(w) ≤ 22+β

R2+β−(γ′)+ ‖f‖L1
ω,γ′ .
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If |w| > R/2 and R > 2, then

1
|w|1+β/2

<
21+β/2

(1 + |w|)1+β/2
and

1
(1 + |w|)1+β/2−γ′ <

R(1+β/2−γ′)−

2(1+β/2−γ′)+ ,

and ∫∫
w∈G+

|w|>R/2

|f(w)|dµω(w)(
|R − |w|| + ρ√

R

√|w|
)2+β

(4.3)

≤ R1+β/2

ρ2+β

∫∫
w∈G+

|w|>R/2

|f(w)|
|w|1+β/2

dµω(w)

≤ 21+β/2−(1+β/2−γ′)+R1+β/2+(1+β/2−γ′)−ρ−(2+β)‖f‖L1
ω,γ′ .

The validity of (1.1) for the left-hand side integral of (3.12) follows from (4.1),
(4.2) and (4.3). This proof makes obvious the validity of (1.1) for the left-hand
side integral of (3.13).

If ω(x) is as required in Theorem 2.1, then the above argument is remains
valid for any β ∈ (−2,−1), and again we come to (1.1) for the right-hand side
integrals in (2.8) and (2.9). �

Remark 4.1. In view of the above Theorem 4.1, the representations (2.8), (2.9)
and (3.12), (3.13) along with the kernel estimates of [7] can be used in proving
projection theorems from Lp

ω,γ to Ap
ω,γ and revealing the duals of Ap

ω,γ spaces, in
the same manner as it is done in [8] for the case of the unit disc.
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c© 2005 Birkhäuser Verlag Basel/Switzerland

Estimate of the Cauchy Integral
over Ahlfors Regular Curves

Mark Melnikov and Xavier Tolsa

Abstract. We obtain the complete characterization of those domains G ⊂ C
which admit the so-called estimate of the Cauchy integral, that is to say,∣∣∣∫∂G

f(z) dz
∣∣∣ ≤ C(G) ‖f‖∞ γ(E) for all E ⊂ G and f ∈ H∞(G \ E), where

γ(E) is the analytic capacity of E. The corresponding result for continuous
functions f and the continuous analytic capacity α(E) is also proved.

1. Introduction

The problem of estimating the Cauchy integral over the boundary of a domain
was posed by Vitushkin in connection with the theory of uniform rational ap-
proximation on compact subsets of the complex plane. The problem consists of
characterizing those bounded domains G ⊂ C with rectifiable boundary for which
there exists a constant C1(G) such that for any compact set E ⊂ G and any
function f bounded and holomorphic on G \ E the following estimate holds:∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C1(G) ‖f‖∞γ(E), (1)

where γ(E) is the analytic capacity of E (see next section for the precise meaning of
the notions appearing in this section). Vitushkin also raised the analogous question
for functions f continuous on Ḡ and holomorphic on G \E, changing γ(E) by the
continuous analytic capacity α(E).

The estimate (1) was proved in 1966 in [Me1] for G being a disk, and more
generally, for G with analytic boundary. Later on, Vitushkin [Vi1] proved the
estimate (1) for domains G bounded by piecewise Lyapunov curves (i.e., piecewise
C1+ε curves). In [De], Davie generalized the result to the case of hypolyapunov
curves (i.e., curves satisfying a Dini type condition).

In [Vi2, Section III.1], Vitushkin showed an example of a domain G with
rectifiable boundary such that the estimate of the integral (1) does not hold (that

The authors were partially supported by grants MTM2004-00519, HPRN-2000-0116, and 2001-
SGR-00431.
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is, rectifiability of the boundary alone does not imply (1)), and he conjectured that
(1) holds if G is a Jordan domain such that

γ(F ) ≥ C2(G)H1(F ) for all closed subsets F ⊂ ∂G, (2)

for some constant C2(G) > 0 (H1 denotes the one-dimensional Hausdorff measure,
or arc length). In the present paper we prove that this conjecture is true.

Let us remark that when ∂G is a curve, condition (2) is equivalent to the fact
∂G is Ahlfors regular, that is to say,

H1(B(x, r) ∩ ∂G) ≤ Cr for all x ∈ C, r > 0.

This follows from a theorem of David [Dd] which asserts that the Cauchy integral
operator is bounded in L2 on Ahlfors regular curves.

Now we state our result in detail.

Theorem 1. Let G be a bounded open set in C whose boundary ∂G is a finite
disjoint union of Jordan rectifiable (closed) curves. Then, the following conditions
are equivalent:

(a) There exists some constant C2(G) > 0 such that for any closed set F ⊂ ∂G,

γ(F ) ≥ C2(G)H1(F ).

(b) The Cauchy integral operator CH1|∂G is bounded on L2(H1
|∂G).

(c) There exists some constant C1(G) such that for any compact set E ⊂ G and
any function f ∈ H∞(G \ E), we have∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C1(G)‖f‖∞γ(E). (3)

(d) There exists some constant C3(G) such that for any compact set E ⊂ G and
any function f ∈ H∞(G \ E) ∩ C(Ḡ), we have∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C3(G)‖f‖∞α(E). (4)

The constants C1(G) and C3(G) depend only on C2(G), or equivalently, on the
L2(H1

|∂G) norm of CH1|∂G, and conversely.

Notice that in Theorem 1 we consider a more general setting than G being
a Jordan domain. Moreover, we show that Vitushkin’s condition (2) is not only
sufficient, but also necessary for the estimate of the Cauchy integral.

Vitushkin’s original motivation for studying estimates like (1) was to obtain
necessary and sufficient conditions for uniform rational approximation. Let X ⊂
C be compact and, as usual, let R(X) be the algebra of uniform on X limits
of rational functions with poles out of X , and A(X) the algebra of functions

continuous on X and holomorphic on
◦
X (this is the interior of X). Given f ∈ A(X)

one asks when f also belongs to R(X). A direct consequence of Theorem 1 is that
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such function f has to satisfy the following estimate, for any Jordan domain G
with Ahlfors regular boundary:∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C(G)ωf

(
diam(G)

)
γ(G \ X), (5)

where C(G) depends only on the Ahlfors regularity constant of ∂G and ωf (·) is
the modulus of continuity of f . Conversely, condition (5) is also sufficient for f to
be in R(X). Indeed, it is enough that (5) holds either for all the squares G ⊂ C
[Vi2] or for all the disks G ⊂ C [Pa].

In the proof of Theorem 1 we use the quite recent results and ideas involved
in the proof of the semiadditivity of γ [To4] and α [To5].

The plan of the paper is the following. In Section 2 we recall some preliminary
definitions and results. In Section 3 we prove the equivalence (a) ⇔ (b) of Theorem
1. The main implications are (b) ⇒ (c) and (b) ⇒ (d), and they are proved in
Sections 4 and 5 respectively. In Section 6 we show that (c) ⇒ (a) and, finally, in
Section 7 that (d) ⇒ (a).

2. Preliminaries

Throughout all the paper, the letter C will stand for an absolute constant that
may change at different occurrences. Constants with subscripts, such as C1, will
retain its value, in general.

The notation A ≈ B means that there exists an absolute constant C > 0
such that C−1A ≤ B ≤ CA.

2.1. Analytic capacity, the Cauchy transform, and curvature of measures

The analytic capacity of a compact set E ⊂ C is

γ(E) = sup |f ′(∞)|, (6)

where the supremum is taken over all holomorphic functions f : C \ E−→C with
|f | ≤ 1 on C \ E, and f ′(∞) = limz→∞ z(f(z) − f(∞)).

The continuous analytic capacity of E is

α(E) = sup |f ′(∞)|,
where the supremum is taken over all complex functions which are continuous in
C, holomorphic on C \ E, and satisfy |f(z)| ≤ 1 for all z ∈ C.

A positive Radon measure µ is said to have linear growth if there exists some
constant C such that µ(B(x, r)) ≤ Cr for all x ∈ C, r > 0. The linear density of
µ at x ∈ C is (if it exists)

Θµ(x) = lim
r→0

µ(B(x, r))
r

.

Given a complex Radon measure ν on C, the Cauchy transform of ν is

Cν(z) =
∫

1
ξ − z

dν(ξ).
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This definition does not make sense, in general, for z ∈ supp(ν), although one
can easily see that the integral above is convergent at a.e. z ∈ C (with respect
to Lebesgue measure). This is the reason why one considers the truncated Cauchy
transform of ν, which is defined as

Cεν(z) =
∫
|ξ−z|>ε

1
ξ − z

dν(ξ),

for any ε > 0 and z ∈ C. Given a µ-measurable function f on C (where µ is some
fixed positive Radon measure on C), the Cauchy integral operator Cµ is defined by

Cµf := C(f dµ).

The ε-truncated version of Cµ is Cµ,εf := Cε(f dµ). We say the Cauchy integral
operator is bounded on L2(µ) if the operators Cµ,ε are bounded on L2(µ) uniformly
on ε > 0.

The maximal Cauchy transform of a complex measure ν is

C∗ν(x) = sup
ε>0

|Cεν(x)|.

We also set Cµ,∗(f) = C∗(f dµ).
If in the supremum (6) which defines γ(E), additionally we ask the functions

f to be Cauchy transforms of positive measures supported in E, we get the capacity
γ+ of E. The definition of α+ is analogous.

Given three pairwise different points x, y, z ∈ C, their Menger curvature is

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circumference passing through x, y, z (with
R(x, y, z) = ∞, c(x, y, z) = 0 if x, y, z lie on the same line). If two among these
points coincide, we let c(x, y, z) = 0. For a positive Radon measure µ, we set

c2
µ(x) =

∫ ∫
c(x, y, z)2 dµ(y)dµ(z),

and we define the curvature of µ as

c2(µ) =
∫

c2
µ(x) dµ(x) =

∫ ∫ ∫
c(x, y, z)2 dµ(x)dµ(y)dµ(z). (7)

The notion of curvature of measures was introduced in [Me2], where some estimates
of analytic capacity in terms of curvature were obtained.

Curvature of measures is connected to the Cauchy transform too. Indeed,
Melnikov and Verdera [MV] proved that if µ has linear growth, then

‖Cεµ‖2
L2(µ) =

1
6
c2
ε(µ) + O(µ(C)), (8)

where c2
ε(µ) is an ε-truncated version of c2(µ) (defined as in the right-hand side of

(7), but with the triple integral over {x, y, z ∈ C : |x − y|, |y − z|, |x − z| > ε}).
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In [To4], the following result has been proved:

Theorem A. For any compact set E, we have

γ(E) ≈ γ+(E)

≈ sup
{
µ(E) : supp(µ) ⊂ E, µ(B(x, r)) ≤ r ∀x ∈ E, r > 0 and c2(µ) ≤ µ(E)

}
≈ sup

{
µ(E) : supp(µ) ⊂ E, µ(B(x, r)) ≤ r ∀x ∈ E, r > 0 and

‖Cµ‖L2(µ),L2(µ) ≤ 1
}
, (9)

with absolute constants.

The corresponding result for α was obtained in [To5].

Theorem B. For any compact set E, we have

α(E) ≈ α+(E)

≈ sup
{
µ(E) : supp(µ) ⊂ E, Θµ(x) = 0 ∀x ∈ E,

µ(B(x, r)) ≤ r ∀x ∈ E, r > 0 and c2(µ) ≤ µ(E)
}

≈ sup
{
µ(E) : supp(µ) ⊂ E, Θµ(x) = 0 ∀x ∈ E,

µ(B(x, r)) ≤ r ∀x ∈ E, r > 0 and ‖Cµ‖L2(µ),L2(µ) ≤ 1
}
,

(10)

with absolute constants.

A direct consequence of the Theorems A and B is that γ and α are semiad-
ditive. That is, for all compact sets E, F ⊂ C,

γ(E ∪ F ) ≤ C
(
γ(E) + γ(F )

)
,

and
α(E ∪ F ) ≤ C

(
α(E) + α(F )

)
.

The following potential was introduced by Verdera in [Ve]:

Uµ(x) := Mµ(x) + cµ(x), (11)

where M is the maximal radial Hardy-Littlewood operator:

Mµ(x) = sup
r>0

µ(B(x, r))
r

,

and cµ(x) =
(
c2
µ(x)
)1/2. We remark that γ can be characterized in terms of this

potential:

γ(E) ≈ sup{µ(E) : supp(µ) ⊂ E, Uµ(x) ≤ 1 ∀x ∈ C}.
An analogous characterization for α and α+ exists. See [To5] for the details.
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2.2. Vitushkin’s localization operator Vϕ

Given f ∈ L1
loc(C) and ϕ ∈ C∞ compactly supported, we set

Vϕf := ϕf − 1
π
C(f ∂̄ϕ) =

1
π
C(ϕ ∂̄f).

Here ∂̄f should be understood in the sense of distributions. Recall that if the
support ϕ is contained in a ball of radius r, ‖ϕ‖∞ ≤ C4, and ‖∇ϕ‖∞ ≤ C4/r,
then Vϕf has the following properties (see [Ga, Lemma VIII-7.1], for example):

• ‖Vϕf‖∞ ≤ C5‖f‖∞,
• ‖Vϕf‖∞ ≤ C6 ωf (r), where ωf stands for the modulus of continuity of f ,
• Vϕf is holomorphic outside supp(∂̄f) ∩ supp(ϕ),
• if f is continuous on C, then Vϕf is also continuous in C.

The constants C5 and C6 depend only on C4.

3. Proof of the equivalence (a) ⇔ (b)

The implication (b) ⇒ (a) is well known. It follows from the fact that the L2

boundedness of the Cauchy integral operator implies that it is of weak type (1, 1)
(see [NTV1] or [To2], for example), and from a dualization of the weak (1, 1)
inequality. It can also be proved using the estimate of analytic capacity in terms
of curvature obtained in [Me2].

We consider now the other implication. So we assume that

γ(F ) ≥ C−1 H1(F ) for all closed sets F ⊂ ∂G. (12)

This condition implies that H1
|∂G has linear growth, because for any closed ball

B̄(x, r) we have

H1(B̄(x, r) ∩ ∂G) ≤ Cγ(B̄(x, r) ∩ ∂G) ≤ Cr.

In [To3] it has been shown that there is an absolute constant C7 such that for any
complex Radon measure ν and any λ > 0 the following holds:

γ+

{
x ∈ C : C∗ν(x) > λ

}
≤ C7

‖ν‖
λ

. (13)

Then, by (12) and the comparability between γ and γ+, we get

H1
{
x ∈ ∂G : C∗ν(x) > λ

}
≤ Cγ

{
x ∈ ∂G : C∗ν(x) > λ

}
≤ C

‖ν‖
λ

.

Thus the Cauchy integral operator is bounded from the space of complex Radon
measures M(C) into L1,∞(H1

|∂G). In particular, it is of weak type (1, 1) (with
respect to arc length measure on ∂G). This is equivalent to the L2 boundedness
on ∂G (see [To1] or [NTV1], for example).

Let us remark that one can prove the implication (a) ⇒ (b) by different
arguments. For example, instead of using the inequality (13), one can use the local
T (b) theorem of Nazarov, Treil and Volberg [NTV2].
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4. Proof of the implication (b) ⇒ (c)

4.1. A preliminary lemma

The following result will play a key role in the proof of (b) ⇒ (c).

Lemma 2. Let E ⊂ C be compact. There exists an open set Ω containing E with
a Whitney decomposition Ω =

⋃
i∈I Qi, where {Qi}i∈I are Whitney squares such

that γ+(Ω) ≈ γ+(E) and ∑
i∈I

γ+(E ∩ 2Qi) ≤ Cγ+(E).

Let us remark that, unless stated otherwise, we assume that all the squares
are closed and have sides parallel to the axes.

Proof. In (a) and (b) in Lemma 5.1 of [To4] the same result has been proved
assuming that E is a finite union of segments. To prove it for this type of sets, it
has been shown in [To4, Lemma 4.1] that there exists a measure σ supported on
E, with linear growth, such that σ(E) ≈ γ+(E) and Uσ(x) ≥ 1 for all x ∈ E. If E
is an arbitrary compact set, then we have

γ+(E) ≈ inf{µ(C) : µ ∈ M+(C), Uµ(x) ≥ 1 ∀x ∈ E},
where M+(C) stands for the set of all positive Radon measures, by [To3, Theorem
3.3]. As a consequence, in this case there also exists some measure σ (which in
general will not be supported on E and will not have linear growth) such that
σ(E) ≈ γ+(E) and Uσ(x) ≥ 1 for all x ∈ E.

Now the same arguments used to prove (a) and (b) of [To4, Lemma 5.1] work
since it can be checked that the assumptions concerning the support and linear
growth of σ are not necessary. �

4.2. Proof of the implication (b) ⇒ (c)

Suppose that the Cauchy integral operator CH1
|∂G

is bounded on L2(H1
|∂G). We

want to show that (3) holds. We assume that f vanishes on C \ Ḡ and also, by
homogeneity, that ‖f‖∞ ≤ 1.

Let Ω be the open set containing E in Lemma 2, and Ω =
⋃

i∈I Qi a Whitney
decomposition into squares satisfying the conditions mentioned in the same lemma.
Now we consider a partition of unity: let {ϕi}i∈I be a family of C∞ functions such
that 0 ≤ ϕi ≤ 1, ‖∇ϕi‖∞ ≤ C/�(Qi) and supp(ϕi) ⊂ 3

2Qi for each i ∈ I, so that∑
i∈I ϕi = 1 on Ω.

Consider the (finite) subfamily of squares {Qj}j∈J , J ⊂ I, such that 2Qj ∩
E �= ∅. Notice that ψ :=

∑
j∈J ϕj = 1 on a neighborhood of E. Moreover, ψ is a

compactly supported C∞ function because J is finite. Then we have

f =
∑
j∈J

Vϕj f + V1−ψf.
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The function V1−ψf is bounded on G, although its L∞ norm may depend on #J .
Also, it is holomorphic in G because

∂̄(V1−ψf) = (1 − ψ) ∂̄f = 0 in G,

since 1−ψ vanishes in a neighborhood of E and f is holomorphic in G \E. Thus,∫
∂G

f(z) dz =
∑
j∈J

∫
∂G

Vϕj f(z) dz. (14)

Let J1 ⊂ J be the set of indices such that 2Qj ∩ ∂G = ∅ if j ∈ J1, and
J2 = J \ J1. By the definition of γ, for j ∈ J1 we have∣∣∣∣∫

∂G

Vϕj f(z) dz

∣∣∣∣ ≤ Cγ(E ∩ 2Qj),

because E ∩ 2Qi ⊂ G and ‖Vϕjf‖∞ ≤ C. Therefore, using Lemma 2 and the fact
that γ ≈ γ+, we obtain∣∣∣∣∑

j∈J1

∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ C
∑
j∈J1

γ(E ∩ 2Qj) ≤ Cγ(E). (15)

For j ∈ J2 we will show below that∣∣∣∣∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ C
(
γ(E ∩ 2Qj) + H1(∂G ∩ 3Qj)

)
. (16)

Before proving this estimate, let us see that (3) follows from (14), (15), and (16).
Indeed, using Lemma 2 again, by the finite overlap of the Whitney squares Qj , we
get ∣∣∣∣∑

j∈J2

∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ C
(∑

j∈J

γ(E ∩ 2Qj) +
∑
j∈J

H1(∂G ∩ 3Qj)
)

≤ C
(
γ(E) + H1(∂G ∩ Ω)

)
.

Because of the L2(H1
|∂G) boundedness of the Cauchy integral operator, we have

H1(∂G ∩ Ω) ≤ Cγ+(∂G ∩ Ω) ≤ Cγ+(Ω) ≤ Cγ+(E).

Thus, ∣∣∣∣∑
j∈J2

∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ Cγ(E),

which, jointly with (15), yields (3).
It only remains to prove (16) for j ∈ J2. Let Dj be a disk with radius �(Qj)/4

whose center zj coincides with the center of Qj. Consider the following measure:

νj :=
−1

πH2(Dj)

(∫
f∂̄ϕj dm

)
H2|Dj .

We want to compare Vϕj f with the function gj := Cνj. Notice that

1
π

∫
f∂̄ϕj dm = (Vϕj f)′(∞) = g′j(∞).
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Then, using the definition of γ, the fact that ‖Vϕjf‖∞ ≤ C, and the semiadditivity
of γ, we get∣∣∣∣ 1π

∫
f∂̄ϕj dm

∣∣∣∣ ≤ Cγ
(
(E ∪ ∂G) ∩ 2Qj

) ≤ C
(
γ(E ∩ 2Qj) + γ(∂G ∩ 2Qj)

)
≤ C

(
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

)
. (17)

As a consequence,

‖gj‖∞ ≤
∣∣∣∣ C

�(Qj)

∫
f∂̄ϕj dm

∣∣∣∣ ≤ C
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

�(Qj)
≤ C. (18)

In the last inequality we used the fact that the arc length measure on ∂G has linear
growth, because the Cauchy integral operator is bounded on L2(H1

|∂G). Since gj

and Vϕj f are bounded by C and (Vϕj f)′(∞) = g′j(∞), the following estimate holds
for z �∈ 3Qj:

|Vϕj f(z) − gj(z)| ≤ C�(2Qj)γ
(
(E ∪ ∂G) ∩ 2Qj

)
dist(z, 2Qj)2

≤ C�(Qj)
[
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

]
|z − zj |2 . (19)

Let us estimate the integral∫
∂G

|Vϕj f(z)− gj(z)| dH1(z) =
∫

∂G∩3Qj

+
∫

∂G\3Qj

=: I1 + I2.

From the uniform boundedness of gj and Vϕj f , it follows immediately that I1 ≤
CH1(∂G ∩ 3Qj). To deal with I2 we use (19) and the fact that the arc length
measure on ∂G has linear growth. Then we get

I2 ≤
∫

∂G\3Qj

C�(Qj)
[
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

]
|z − zj|2 dH1(z)

≤ C
(
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

)
.

As a consequence,∣∣∣∣∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ C
(
γ(E ∩ 2Qj) + H1(∂G ∩ 3Qj)

)
+
∣∣∣∣∫

∂G

gj(z) dz

∣∣∣∣.
By Fubini and (17) we obtain∣∣∣∣∫

∂G

gj(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂G

Cνj(z) dz

∣∣∣∣ = C|νj(G)| ≤ C
(
γ(E ∩ 2Qj) + H1(∂G ∩ 2Qj)

)
.

So (16) holds, and the theorem follows.
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5. Proof of the implication (b) ⇒ (d)

5.1. The capacities γh

The capacity γh of a compact set E ⊂ C, introduced in [To5], is defined as follows.
We consider a continuous function h : (0, +∞) → (0, +∞) such that h(r)/r is
non-decreasing in r,

h(r) ≤ r and h(2r) ≤ 4h(r) for all r > 0, (20)

and moreover

lim
r→0+

h(r)
r

= 0. (21)

We set
γh(E) = sup |f ′(∞)|,

where the supremum is taken over all functions f ∈ L∞(C) which are holomorphic
in C \ E, with f(∞) = 0, ‖f‖L∞(C) ≤ 1, such that∣∣∣∣∫ f ∂̄ϕ dL2

∣∣∣∣ ≤ h(r)r‖∇ϕ‖∞ (22)

for any real function ϕ ∈ C∞
c supported on some ball of radius r. If f satisfies all

these properties we say that f is admissible for γh and E, and we write f ∈ Ah(E).
The capacity γh

+(E) is defined in an analogous way, but we ask an additional
condition on the functions in the supremum above. Namely, f should be the Cauchy
transform of some positive Radon measure supported on E.

Let us remark that the doubling property h(2r) ≤ 4h(r), for r > 0, implies
that

h(λt) ≤ 4λ2h(t) for all λ > 1 and t > 0. (23)

In [To5], the following result has been proved:

Theorem C. For any compact set E, we have

α(E) ≈ sup
h

γh(E),

with the supremum over all continuous functions h : (0, +∞)−→(0, +∞) satisfying
(20) and (21), with h(r)/r non-decreasing. Moreover, for any fixed h fulfilling these
properties,

γh(E) ≈ γh
+(E)

≈ sup
{
µ(E) : supp(µ) ⊂ E, µ(B(x, r)) ≤ h(r) ∀x ∈ E, r > 0 and c2(µ) ≤ µ(E)

}
≈ sup

{
µ(E) : supp(µ) ⊂ E, µ(B(x, r)) ≤ h(r) ∀x ∈ E, r > 0 and

‖Cµ‖L2(µ),L2(µ) ≤ 1
}
, (24)

with absolute constants (independent of E and h, in particular). As a consequence,
γh and α are countably semiadditive.
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The next lemma asserts that the localization operator Vϕ behaves well with
respect to the capacity γh:

Lemma 3 ([To5]). Let E ⊂ C be compact and f ∈ Ah(E). Let ϕ be a C∞ function
supported on B̄(x0, r), such that ‖ϕ‖∞ ≤ C8 and ‖∇ϕ‖∞ ≤ C8r

−1. Then there
exists some constant C depending on C8 such that C−1Vϕf ∈ Ah(E ∩ B̄(x0, r)).

5.2. Estimate of the Cauchy integral in terms of γh

We will prove the following result, which may have some independent interest.

Theorem 4. Let G be a bounded open set in C such that its boundary ∂G is a
finite disjoint union of Jordan rectifiable curves. Suppose that the Cauchy integral
operator CH1|∂G is bounded on L2(H1

|∂G). Then there exists a constant C9(G),
which only depends on the L2(H1

|∂G) norm of CH1|∂G, such that for any compact
set E ⊂ C and any function f ∈ C(C̄) ∩ H∞(G \ E), we have∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C9(G)γh(E), (25)

where h(r) = r ωf (r).

The implication (b) ⇒ (d) in Theorem 1 follows easily from the preceding
theorem. Indeed, given f ∈ C(Ḡ) ∩ H∞(G \ E), we may extend it continuously to
the whole complex plane without increasing ‖f‖∞. Then we apply Theorem 4 to
f/‖f‖∞, and we get∣∣∣∣∫

∂G

f(z) dz

∣∣∣∣ ≤ C9(G)‖f‖∞γh(E) ≤ C‖f‖∞α(E)

(observe that C9(G) does not depend on h).
Let us remark that the condition f ∈ C(C̄)∩H∞(G\E), implies that C−1f ∈

Ah(E) for some absolute constant C and h(r) = r ωf (r) (see [To5, Lemma 4.1].
The converse implication seems to be false in general (as far as we know).

5.3. Preliminary lemmas for the proof of Theorem 4
The following lemma will play an essential role in the proof of Theorem 4.

Lemma 5. Let E ⊂ C be compact. There exists an open set Ω containing E with
a Whitney decomposition Ω =

⋃
i∈I Qi, where {Qi}i∈I are Whitney squares such

that γh
+(Ω) ≈ γh

+(E) and ∑
i∈I

γh
+(E ∩ 2Qi) ≤ Cγh

+(E).

The proof of this result is similar to the one of Lemma 2. See Lemma 7.2 of
[To5] for the details.

We will also need next lemma.
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Lemma 6. Consider f ∈ C(C̄) and set h(r) = rωf (r). Let ϕ be a C∞ function
supported on a square Q such that ‖ϕ‖∞ ≤ 1 and ‖∇ϕ‖∞ ≤ C10/�(Q). Let Γ be
an Ahlfors regular closed Jordan curve which intersects Q. We have∣∣∣∣∫

Γ

Vϕf(z) dz

∣∣∣∣ ≤ C11h(diam(Γ ∩ 2Q)),

where C11 only depends on C10 and the Ahlfors regularity constant of Γ.

Proof. We consider first the case Γ ⊂ 2Q. We take z0 ∈ Γ. Notice that Vϕf =
Vϕ(f − f(z0)), because Vϕ1 = 0. So if we set f̃(z) := f(z) − f(z0), we have∫

Γ

Vϕf(z) dz =
∫

Γ

Vϕf̃(z) dz =
∫

Γ

ϕ(z)f̃(z) dz − 1
π

∫
Γ

C(f̃ ∂̄ϕ)(z) dz =: I1 + I2.

First we estimate I1:

|I1| ≤
∫

Γ

|ϕ(z)f̃(z)| dH1(z) ≤ ‖f̃‖∞,Γ H1(Γ)

≤ Cωf (diam(Γ))H1(Γ) ≤ Ch(diam(Γ)).

Now we turn our attention to I2. Observe that by Cauchy’s formula we have

I2 = C

∫
Int(Γ)

f̃(z)∂̄ϕ(z) dH2(z),

where Int(Γ) stands for the bounded component of C \ Γ. Then we get

|I2| ≤ C

�(Q)
‖f̃‖∞,Int(Γ) H2(Int(Γ))2 ≤ C ωf (diam(Γ)) diam(Γ)2

�(Q)
≤ Ch(diam(Γ)).

Thus the lemma holds in this case.
Suppose now that Γ �⊂ 2Q. From the fact that Γ ∩ Q �= ∅, we deduce

diam(Γ ∩ 2Q) ≥ �(Q)
2

. (26)

Let zQ be the center of Q. Notice that the ball B(zQ, 2�(Q)) contains supp(ϕ).
We consider the curve Γ̃ := ∂

(
B(zQ, 2�(Q)) ∩ Int(Γ)

)
. Since Vϕf is holomorphic

outside B(zQ, 2�(Q)), by Cauchy’s theorem we have∫
Γ

Vϕf(z) dz =
∫

Γ̃

Vϕf(z) dz. Therefore,
∣∣∣∣∫

Γ

Vϕf(z) dz

∣∣∣∣ ≤ C‖Vϕf‖∞H1(Γ̃).

Recall that from the identity

Vϕf(z) =
1
π

∫
f(z) − f(ξ)

z − ξ
∂̄ϕ(ξ) dH2(ξ),

one easily infers that ‖Vϕf‖∞≤Cωf(�(Q))=Ch(�(Q))/�(Q). On the other hand,
from the Ahlfors regularity of Γ, it easily follows that H1(Γ̃) ≤ C�(Q). Thus,∣∣∫

ΓVϕf(z)dz
∣∣≤Ch(�(Q)) and so the lemma also holds in this situation, by (26).

�
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5.4. Proof of Theorem 4
Let Ω be the open set containing E described in Lemma 5, and Ω =

⋃
i∈I Qi

the corresponding Whitney decomposition into squares Qi. We consider the same
family of C∞ functions ϕi, i ∈ I, used in the proof of the implication (b) ⇒ (c)
of Theorem 1, with supp(ϕi) ⊂ 3

2Qi, and also the same finite subfamily of squares
Qj , j ∈ J ⊂ I (recall that these are the squares such that 2Qj ∩E �= ∅). Arguing
as in the proof of (b) ⇒ (c), we have again∫

∂G

f(z) dz =
∑
j∈J

∫
∂G

Vϕj f(z) dz. (27)

Let J1 ⊂ J be the set of indices such that 2Qj ∩ ∂G = ∅ if j ∈ J1, and
J2 = J \ J1. By Lemma 3 and the definition of γh, for j ∈ J1 we have∣∣∣∣∫

∂G

Vϕj f(z) dz

∣∣∣∣ ≤ Cγh(E ∩ 2Qj),

since E ∩ 2Qi ⊂ G and C−1Vϕj f ∈ Ah(E ∩ 2Qj), for some constant C. Therefore,
by Lemma 5 and the fact that γh ≈ γh

+,∣∣∣∣∑
j∈J1

∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ C
∑
j∈J1

γh(E ∩ 2Qj) ≤ Cγh(E). (28)

Now we have to deal with the squares Qj such that 2Qj ∩ ∂G = ∅. Let Γk,
k ∈ K, denote the family of disjoint closed Jordan curves such that ∂G =

⋃
k∈K Γk.

Using Lemma 6 and the definition of γh, for j ∈ J2, we have∣∣∣∣∫
∂G

Vϕj f(z) dz

∣∣∣∣ ≤ ∑
k:Γk∩2Qj �=∅

∣∣∣∣∫
Γk

· · ·
∣∣∣∣+ ∣∣∣∣ ∑

k:Γk∩2Qj=∅

∫
Γk

· · ·
∣∣∣∣

≤ C
∑

k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

)
+ Cγh

(
[E ∪ Gc] ∩ 2Qj

)
.

To estimate the last term we use the (countable) semiadditivity of γh and the fact
that γh(F ) ≤ Ch(diam(F )) for any compact set F ⊂ C:

γh
(
[E ∪ Gc] ∩ 2Qj

) ≤ Cγh
(
E ∩ 2Qj

)
+ Cγh

(
Gc ∩ 2Qj

)
≤ Cγh

(
E ∩ 2Qj

)
+ C

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

)
.

Therefore, by Lemma 5 again,∣∣∣∣∫
∂G

f(z) dz

∣∣∣∣ ≤ C
∑
j∈J2

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

)
+ Cγh(E). (29)

Our next objective consists of showing that the first term on the right-hand side in
the preceding inequality is bounded above by γh(E). To this end, for each j ∈ J2

and k ∈ K such that Γk ∩ 2Qj �= ∅, we consider a square P j
k ⊂ 4Qj with side

length diam(Γk ∩ 4Qj)/2 such that P j
k ∩ Γk �= ∅. By Vitali’s covering theorem,
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there exists a subfamily {Pm
n }(m,n)∈S of the squares P j

k such that the squares
2Pm

n , (m, n) ∈ S, are pairwise disjoint, and any square P j
k is contained in some

square 6Pm
n , with (m, n) ∈ S. Now we consider the measure

µ :=
∑

(m,n)∈S

h(�(Pm
n ))

H2(Pm
n )

H2
|P m

n
.

Observe that supp(µ) ⊂ Ω. We claim that µ satisfies

µ(Ω) ≥ C−1
∑
j∈J2

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

)
, (30)

µ(B(z, r)) ≤ Ch(r) for all z ∈ C, r > 0, (31)

and also that the Cauchy integral operator Cµ is bounded on L2(µ), with constants
depending only on the norm of the Cauchy integral operator CH1|∂G on L2(H1

|∂G).
Observe that using the characterization of γh in terms of the L2 norm of the
Cauchy integral operator in (24), from our claims we deduce∑

j∈J2

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

) ≤ Cµ(Ω) ≤ Cγh(E),

and then, by (29), the theorem follows.
Let us see that (30) holds. Notice that for j ∈ J2, and k such that Γk∩2Qj �=

∅, we have

�(P j
k ) =

1
2

diam(Γk ∩ 4Qj) ≤ CH1(Γk ∩ 4Qj).

Taking into account that h(r)/r is non-decreasing, if 2P j
k ⊂ 6Pm

n , we get

h
(
diam(Γk ∩ 4Qj)

) ≤ Ch(�(P j
k )) ≤ Ch(3�(Pm

n ))
�(P j

k )
3�(Pm

n )

≤ Ch(�(Pm
n ))

H1(Γk ∩ 4Qj)
�(Pm

n )
.

Therefore,∑
j∈J2

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

) ≤ ∑
(m,n)∈S

∑
j,k:j∈J2,

Γk∩2Qj �=∅,

2P j
k⊂6P m

n

h
(
diam(Γk ∩ 4Qj)

)

≤ C
∑

(m,n)∈S

∑
j,k:j∈J2,

2P j
k⊂6P m

n

h(�(Pm
n ))

H1(Γk ∩ 4Qj)
�(Pm

n )
.

(32)

To estimate the last sum notice that, by construction, if 2P j
k ⊂ 6Pm

n , then we have

Γk ∩ 4Qj ⊂ 6P j
k ⊂ 18Pm

n .
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Thus, using the finite overlap of the Whitney squares Qj, for each fixed (m, n) ∈ S,
we obtain∑

j,k:j∈J2,

2P j
k⊂6P m

n

H1(Γk ∩ 4Qj) ≤
∑

k

∑
j∈J2

H1(18Pm
n ∩ Γk ∩ 4Qj)

≤ C
∑

k

H1(18Pm
n ∩ Γk) = H1(18Pm

n ∩ ∂G) ≤ C�(Pm
n ).

If we plug this estimate into (32), (30) follows:∑
j∈J2

∑
k:Γk∩2Qj �=∅

h
(
diam(Γk ∩ 4Qj)

) ≤ C
∑

(m,n)∈S

h(�(Pm
n )) = Cµ(Ω).

Now we will prove (31). Observe that it is enough to prove it for z ∈ supp(µ).
So take a fixed Pm

n , (m, n) ∈ S, and z ∈ Pm
n . Suppose first that r ≤ �(Pm

n )/2.
Since 2Pm

n does not intersect any other square Pm′
n′ , (m′, n′) ∈ S, and on 2Pm

n µ
coincides with the Lebesgue measure times h(�(Pm

n ))/�(Pm
n )2, we have

µ(B(z, r)) ≤ C
h(�(Pm

n ))
�(Pm

n )2
r2.

From the property (23) of the function h, setting λ = �(Pm
n )/(2r), (31) follows

(for 0 < r ≤ �(Pm
n )/2).

Assume now that r > �(Pm
n )/2. We set T = {(p, q) ∈ S : P p

q ∩ B(z, r) �= ∅}.
Since 2Pm

n ∩ 2P p
q = ∅ if (m, n) �= (p, q), we have r ≥ �(P p

q )/2 for any (p, q) ∈ T .
So there exists some constant C12 such that⋃

(p,q)∈T

P p
q ⊂ B(z, C12r).

Recall that

�(P p
q ) =

1
2

diam(Γq ∩ 4Qp) ≤ CH1(Γq ∩ 4Qp),

because Γq ∩ 2Qp �= ∅. Then, by the finite overlap of the squares 4Qp, p ∈ J2

(recall that the Qp’s are Whitney squares), we get∑
(p,q)∈T

�(P p
q ) ≤ C

∑
(p,q)∈T

H1(Γq ∩ 4Qp) ≤ C
∑

(p,q)∈S

H1(B(z, C12r) ∩ Γq ∩ 4Qp)

≤ CH1(B(z, C12r) ∩ ∂G) ≤ Cr.

Taking into account that h(t)/t is non-decreasing, we obtain

µ(B(z, r)) ≤
∑

(p,q)∈T

h(�(P p
q )) =

∑
(p,q)∈T

h(�(P p
q ))

�(P p
q )

�(P p
q )

≤ h(2r)
2r

∑
(p,q)∈T

�(P p
q ) ≤ Ch(2r) ≤ Ch(r).
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The L2(µ) boundedness of the Cauchy integral operator Cµ follows from the
L2 boundedness of the Cauchy integral operator on L2(H1

|∂G) by comparison, and
using the linear growth of µ (which is a consequence of (31)). We leave the details
for the reader.

Remark 7 The implication (b) ⇒ (c) of Theorem 1 can be proved using arguments
closer to the ones used to prove Theorem 4 than the ones in Subsection 4.2. More
precisely, one can obtain a variant of Lemma 6 suitable for L∞ functions, and use
it to estimate

∫
∂G Vϕj f(z) dz for j ∈ J2. Recall that, instead, in Subsection 4.2 the

integral
∫

∂G Vϕj f(z) dz was estimated with the help of some auxiliary function gj

holomorphic outside some disk Dj .

6. Proof of the implication (c) ⇒ (a)

We want to prove that if the estimate of the integral (3) holds, then for any set
F ⊂ ∂G we have

γ(F ) ≥ C−1H(F ).

Given n ≥ 1, let δ > 0 be such that γ(Uδ(F )) ≤ γ(F )+1/n. Using Vitali’s covering
theorem, it is easy to check that there exists a finite family of pairwise disjoint
balls {B(xj , rj)}j∈J with xj ∈ ∂G, B(xj , rj) ⊂ Uδ(F ), such that

H1(F ) ≤ CH1
(⋃

j∈J

B(xj , rj) ∩ F
)
.

Moreover, using well-known elementary properties of the one-dimensional Haus-
dorff measure, since H1(F ) < ∞, we may assume that the radii rj are small enough
so that H1(B(xj , rj) ∩ F ) ≤ 3rj , and then we have

H1(F ) ≤ C
∑
j∈J

rj . (33)

Given any ε, with 0 < ε ≤ minj∈J rj/10, for each fixed j ∈ J there are points
a+

j , b+
j , a−

j , b−j ∈ C which satisfy the following properties:

(a) a+
j , b+

j ∈ B(xj , rj/3) ∩ G and a−
j , b−j ∈ B(xj , rj/3) ∩ C \ Ḡ,

(b) rj/3 ≤ |a+
j − b+

j | and rj/3 ≤ |a−
j − b−j |,

(c) |a+
j − a−

j | ≤ ε and |b+
j − b−j | ≤ ε, and

(d) there exists a simple rectifiable arc σ+
j contained in B(xj , rj/2) ∩ G whose

endpoints are a+
j , b+

j , and another simple rectifiable arc σ−
j contained in

B(xj , rj/2) ∩ C \ Ḡ whose endpoints are a−
j , b−j .

Notice that from (33) and the properties (a) and (b), we deduce

H1(F ) ≤ C
∑
j∈J

|a+
j − b+

j | ≈
∑
j∈J

|a−
j − b−j |. (34)
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For each j ∈ J , consider the univalued branch of the function

f+
j (z) :=

−(b+
j − a+

j )2

|b+
j − a+

j |3
(
z − a+

j + b+
j

2
+
√

(z − a+
j )(z − b+

j )
)
,

which is holomorphic on C \ σ+
j and vanishes at ∞. Let also f−

j be the univalued
branch, holomorphic on C \ σ−

j , of the analogous function f−
j , vanishing at ∞,

defined like f+
j , interchanging a+

j , b+
j by a−

j , b−j . Then we have

‖f+
j ‖∞ = ‖f−

j ‖∞ ≤ C13

and ∫
∂G

f+
j (z) dz = (f+

j )′(∞) = |a+
j − b+

j |,
∫

∂G

f−
j (z) dz = 0. (35)

We set
f :=

∑
j∈J

(f+
j − f−

j ). (36)

It is easy to check that

‖f+
j − f−

j ‖∞,C\B(xj,rj) = C(ε) → 0 as ε → 0,

Thus, we deduce
‖f‖∞ ≤ 2C13 + C(ε) · #J.

If we choose ε such that C(ε) ≤ 1/#J , we have ‖f‖∞ ≤ 2C13 + 1, and then using
(34), (35), and (3), we get

H1(F ) ≤ C
∑
j∈J

|a+
j − b+

j | =
∫

∂G

∑
j∈J

f+
j (z) dz =

∫
∂G

f(z) dz

≤ Cγ
(⋃

j∈J

σ+
j

)
≤ Cγ

(
Uδ(F )) ≤ C

(
γ(F ) +

1
n

)
.

Since this estimate holds for any n ≥ 1, we are done.

7. Proof of the implication (d) ⇒ (a)

The proof is analogous to the one of the implication (c) ⇒ (a). We only have to
change the function f defined in (36) by a continuous function f̃ which coincides
with f outside some small neighborhood of

⋃
j∈J (σ+

j ∪ σ−
j ), so that f = f̃ on ∂G,

and then we apply the estimate of the integral (4) for f̃ .
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Quasinormal Families
of Meromorphic Functions II

Xuecheng Pang, Shahar Nevo and Lawrence Zalcman

Abstract. Let F be a quasinormal family of meromorphic functions on D, all
of whose zeros are multiple, and let ϕ be a holomorphic function univalent on
D. Suppose that for any f ∈ F , f ′(z) �= ϕ′(z) for z ∈ D. Then F is quasi-
normal of order 1 on D. Moreover, if there exists a compact set K ⊂ D such
that each f ∈ F vanishes at two distinct points of K, then F is normal on D.

Mathematics Subject Classification (2000). 30D45.

1. Introduction

In this paper, we are concerned with the order of quasinormality of families of
meromorphic functions on plane domains, all of whose zeros are multiple.

Recall that a family F of functions meromorphic on a plane domain D ⊂ C
is said to be quasinormal on D [2] if from each sequence {fn} ⊂ F one can
extract a subsequence {fnk

} which converges locally uniformly with respect to the
spherical metric on D \ E, where the set E (which may depend on {fnk

}) has no
accumulation point in D. If E can always be chosen to satisfy |E| ≤ ν, F is said
to quasinormal of order ν on D. Thus a family is quasinormal of order 0 on D if
and only if it is normal on D. The family F is said to (quasi)normal at z0 ∈ D
if it is (quasi)normal on some neighborhood of z0; thus F is quasinormal on D if
and only if it is quasinormal at each point z ∈ D. On the other hand, F fails to
be quasinormal of order ν on D precisely when there exist points z1, z2, . . . , zν+1

in D and a sequence {fn} ⊂ F such that no subsequence of {fn} is normal at zj ,
j = 1, 2, . . . , ν + 1.

Our point of departure is the following classical result of Gu [4].

Theorem A. Let F be a family of functions meromorphic on D, and let k ≥ 1 be
an integer. If for each f ∈ F and z ∈ D, f(z) �= 0 and f (k)(z) �= 1, then F is
normal on D.

The authors were supported by the German-Israeli Foundation for Scientific Research and Devel-
opment, G.I.F. Grant No. G-643-117.6/1999. The first author was also supported by the NNSF
of China Approved No. 10271122.
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Theorem A has been generalized in a number of different directions; cf., for
instance, [1], [5], [9], [10]. In the present work, we continue our study [7] of the
situation in which the condition f �= 0 is replaced by the assumption that all zeros
of f are multiple and F is assumed to be quasinormal on D. Our main result in
[7] was

Theorem B. Let F be a quasinormal family of meromorphic functions on D, all
of whose zeros are multiple. If for any f ∈ F , f ′(z) �= 1 for z ∈ D, then F is
quasinormal of order 1 on D.

That F need not be normal on D is shown by the following example.

Example 1.1. Let D = {z : |z| < 1} and F = {fα}, where

fα(z) =
(z + α)2

z + 2α
= z +

α2

(z + 2α)
, α ∈ C \ {0}.

Then all zeros of fα are multiple and f ′
α(z) �= 1. However, fα takes on the values

0 and ∞ in any fixed neighborhood of 0 if α is sufficiently small, so F fails to be
normal at 0.

In certain generalizations of Gu’s Theorem, the requirement that f ′(z) �= 1
can be weakened to f ′(z) �= ψ(z), where ψ(z) is some fixed analytic function on
D [5], [9], which in some cases may be required not to vanish on D. Theorem B
does not admit such an extension.

Example 1.2. Consider the family F = {fn} on D = {z : |z| < 1}, where

fn(z) =

(
z − n+2

2n

)2
z − 1/2

.

Then F fails to be normal at z = 1/2 but is quasinormal of order 1 on D. Let
ϕ(z) = e(z+1)/(z−1). Then ϕ(D) ⊂ D; ϕ′(z) �= 0 on D; and, for each w ∈ D \ {0},
ϕ−1(w) consists of countably many points of D accumulating at z = 1. Consider
the family F̃ = {Fn} on D, where Fn = fn ◦ϕ. Then F̃ is a quasinormal family of
meromorphic functions on D, all of whose zeros are multiple. Also, for any F ∈ F̃ ,
F ′(z) = f ′(ϕ(z))ϕ′(z) �= ϕ′(z) since f ′(z) �= 1 for any f ∈ F . However, F̃ is not
quasinormal of any finite order on D as no subsequence of F̃ is normal at any
point of ϕ−1(1/2).

On the other hand, we do have the following

Theorem. Let F be a quasinormal family of meromorphic functions on D, all of
whose zeros are multiple, and let ϕ be a holomorphic function univalent on D.
Suppose that for any f ∈ F , f ′(z) �= ϕ′(z) for z ∈ D. Then F is quasinormal
of order 1 on D. Moreover, if there exists a compact set K ⊂ D such that each
f ∈ F vanishes at two distinct points of K, then F is normal on D.

Acknowledgment. This work was done while the first author (X.P.) held a research
position at Bar-Ilan University. He thanks the Mathematics Department of that
institution and his collaborators for their warm hospitality.
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2. Notation and preliminary results

Let us set some notation. We denote by ∆ the open unit disc in C. For z0 ∈ C
and r > 0, ∆(z0, r) = {z : |z − z0| < r} and ∆′(z0, r) = {z : 0 < |z − z0| < r}.
We write fn

χ
=⇒ f on D to indicate that the sequence {fn} converges to f in the

spherical metric uniformly on compact subsets of D and fn =⇒ f on D if the
convergence is in the Euclidean metric.

We require the following known results.

Lemma 2.1. Let F be a family of functions meromorphic on ∆, all of whose ze-
ros have multiplicity at least k, and suppose that there exists A ≥ 1 such that
|f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not normal at z0, there exist, for
each 0 ≤ α ≤ k,

a) points zn ∈ ∆, zn −→ z0;
b) functions fn ∈ F ; and
c) positive numbers ρn −→ 0

such that ρ−α
n fn(zn + ρnζ) = gn(ζ)

χ
=⇒ g(ζ) on C, where g is a nonconstant

meromorphic function on C, all of whose zeros have multiplicity at least k, such
that g#(ζ) ≤ g#(0) = kA + 1. In particular, g has order at most 2.

Here, as usual, g#(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.
This is the local version of [8, Lemma 2] (cf. [5, Lemma 1], [11, pp. 216–217]).

The proof consists of a simple change of variable in the result cited from [8]; cf.
[6, pp. 299–300].

Lemma 2.2. Let f be a meromorphic function on C such that f(z) �= 0 and
f ′(z) �= c on C, where c �= 0. Then f is constant

This is a special case of Hayman’s alternative; cf. [3, Theorem 3].

Lemma 2.3. Let F be a family of functions meromorphic on ∆, all of whose zeros
and poles are multiple. If for each f ∈ F , f ′(z) �= 1, z ∈ D, then F is normal
on D.

This is the case n = 2, k = 1 of Theorem 5 in [10].

Lemma 2.4. Let f be a nonconstant meromorphic function of finite order on C,
all of whose zeros are multiple. If f ′(z) �= c on C for c �= 0, then

f(z) =
c(z − a)2

z − b

for some a and b (�= a) in C.

This follows from Lemma 6 (with j = 1 and k = 2) and Lemma 8 (with
k = 1) of [10].
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3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results. The first
of these is a slight extension of Theorem A.

Lemma 3.1. Let {fn} be a sequence of meromorphic functions on ∆ and {ψn}
a sequence of holomorphic functions on ∆ such that ψn =⇒ ψ, where ψ(z) �= 0
on ∆. If for each n, fn(z) �= 0 and f ′

n(z) �= ψn(z) for z ∈ ∆, then {fn} is normal
on ∆.

Proof. Suppose not. Then by Lemma 2.1, there exist points zn → z0 ∈ ∆, numbers
ρn → 0+ and a subsequence of {fn} (which, renumbering, we continue to denote
{fn}) such that

gn(ζ) =
fn(zn + ρnζ)

ρn

χ
=⇒ g(ζ),

where g is a nonconstant meromorphic function on C. Clearly, gn(ζ) �= 0 and
g′n(ζ) = f ′

n(zn + ρnζ) �= ψn(zn + ρnζ) =⇒ ψ(z0) �= 0. Since g is nonconstant, it
follows from Hurwitz’ Theorem that g(ζ) �= 0 on C and then that g′(ζ) �= ψn(z0).
By Lemma 2.2, this implies that g is constant, a contradiction.

Lemma 3.2. Let {ak} be a sequence in ∆ which has no accumulation points in ∆
and let {ψn} be a sequence of holomorphic functions on ∆ such that ψn =⇒ ψ
on ∆, where ψ(z) �= 0,∞ on ∆. Let {fn} be a sequence of functions meromorphic
on ∆, all of whose zeros are multiple, such that f ′

n(z) �= ψn(z) for all n and all
z ∈ ∆. Suppose that
(a) no subsequence of {fn} is normal at a1;
(b) there exists δ > 0 such that each fn has a single (multiple) zero on ∆(a1, δ);

and
(c) fn

χ
=⇒ f on ∆ \ {ak}∞k=1.

Then
(d) there exists η0 > 0 such that for each 0 < η < η0, fn has a single simple pole

on ∆(a1, η) for all sufficiently large n; and
(e) f(z) =

∫ z

a1
ψ(ζ)dζ.

Remark. Since no subsequence of {fn} is normal at a1, a1 is the unique accumu-
lation point of zeros in (b) as well as poles in (d).

Proof. It suffices to prove that each subsequence of {fn} has a subsequence which
satisfies (d) and (e). So suppose we have a subsequence of {fn}, which (to avoid
complication in notation) we again call {fn}.

Since {fn} is not normal at a1, it follows from Lemma 2.1 that we can extract
a subsequence (which, renumbering, we continue to call {fn}), points zn −→ a1,
and positive numbers ρn −→ 0 such that

gn(ζ) =
fn(zn + ρnζ)

ρn

χ
=⇒ g(ζ), (1)
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where g is a nonconstant meromorphic function of finite order on C, all of whose
zeros are multiple. Since g′n(ζ) = f ′

n(zn + ρnζ) �= ψn(zn + ρnζ) ⇒ ψ(a1) and
g′n =⇒ g′ on the complement of the poles of g, either g′ �= ψ(a1) or g′ ≡ ψ(a1),
by Hurwitz’ Theorem. In the latter case, g(ζ) = ψ(a1)ζ + c, which does not have
multiple zeros. Thus g′(ζ) �= ψ(a1) on C; so by Lemma 2.4,

g(ζ) = ψ(a1)
(ζ − a)2

(ζ − b)
(2)

for distinct complex numbers a and b. It now follows from the argument principle
that there exist sequences ξn −→ a and ηn −→ b such that, for sufficiently large
n, gn(ξn) = 0 and gn(ηn) = ∞. Thus, writing zn,0 = zn + ρnξn, zn,1 = zn + ρnηn,
we have zn,j −→ a1 (j = 0, 1), fn(zn,0) = 0 and fn(zn,1) = ∞.

Let us now assume that (d) has been shown to hold. It follows from Lemma 2.3
that the pole of fn at zn,1 is simple. The limit function f from (c) is either
meromorphic on ∆ \ {ak}∞k=1 or identically infinite there. Suppose first that it
is meromorphic on ∆ \ {ak}∞k=1. There exists δ0 > 0 such that f has no poles on
Γ = {z : |z − a1| = δ0} and f ′

n converges uniformly to f ′ on Γ. We claim that
f ′ ≡ ψ on ∆′(a1, δ0). Indeed, otherwise by Hurwitz’ Theorem, f ′(z) �= ψ(z) on
∆′(a1, δ0). Now 1/(f ′

n − ψn) is analytic on ∆(a1, δ0) and converges uniformly on
Γ to 1/(f ′ − ψ). By the maximum principle, 1/(f ′

n − ψn) converges uniformly on
∆(a1, δ0), so {f ′

n} is normal at a1. However, since f ′
n(zn,0) = 0 and f ′

n(zn,1) = ∞
and zn,j −→ a1 (j = 0, 1), {f ′

n} is not equicontinuous at a1, a contradiction.
Thus f has no poles on ∆′(a1, δ0) and f ′

n =⇒ ψ on ∆′(a1, δ0). Hence for any
z, z0 ∈ ∆′(a1, δ0)

fn(z) − fn(z0) =
∫ z

z0

f ′
n(ζ) dζ −→

∫ z

z0

ψ(ζ)dζ = Ψ(z) − Ψ(z0),

where Ψ′ = ψ. Taking a subsequence if necessary, we may suppose that
fn(z0) − Ψ(z0) −→ α. We claim that α = −Ψ(a1). For otherwise, taking r < δ0

such that
max

|z−a1|=r
|Ψ(z) − Ψ(a1)| < |α + Ψ(a1)|,

we have, for large n,

1
2πi

∫
|z−a1|=r

f ′
n(z)

fn(z)
dz

=
1

2πi

∫
|z−a1|=r

dz

Ψ(z) − Ψ(a1) + [fn(z0) − Ψ(z0) + Ψ(a1)]
= 0.

However, by the argument principle, the left-hand side is the number of zeros
minus the number of poles (counting multiplicities) of fn in ∆(a1, r), which for
large n is at least 2 − 1 = 1. It follows that f(z) = Ψ(z) − Ψ(a1).

Suppose now that f ≡ ∞ on ∆ \ {ak}∞k=1. Let

Fn(z) = fn(z)
z − zn,1

(z − zn,0)2
.
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By (b), Fn(z) �= 0 on ∆(a1, δ). Applying the maximum principle to the sequence
{1/Fn} of analytic functions, we see that Fn =⇒ ∞ on ∆(a1, δ). We have

fn(zn + ρnζ)
ρn

=
Fn(zn + ρnζ)

ρn

(ρnζ + zn − zn,0)2

(ρnζ + zn − zn,1)

= Fn(zn + ρnζ)
(ζ − ξn)2

ζ − ηn
.

(3)

It follows from (1), (2), and (3) that Fn(zn + ρnζ) −→ ψ(a1), which contradicts
Fn =⇒ ∞ near a1. Thus the possibility f ≡ ∞ may be ruled out.

We have shown that when (d) obtains, (e) does as well. Now let us show that
(d) must hold. Suppose not. Then, taking a subsequence and renumbering, we may
assume that on any neighborhood of a1, fn has at least two poles for sufficiently
large n. Keeping the notation established above, let zn,2 �= zn,1 be such that
fn(zn,2) = ∞ and fn has no poles in ∆′(zn,1, |zn,1−zn,2|). Write zn,2 = zn +ρnη∗

n.
Then zn,2 −→ a1 but η∗

n −→ ∞ since the right-hand side of (2) has but a single
simple pole. Set

Gn(ζ) =
fn(zn,1 + (zn,2 − zn,1)ζ)

zn,2 − zn,1
.

Since zn,2− zn,1 −→ 0, Gn(ζ) is defined for any ζ ∈ C if n is sufficiently large; and
G′

n(ζ) �= 1. Now Gn(1) = ∞. Also,

Gn(0) = ∞, Gn

(
zn,0 − zn,1

zn,2 − zn,1

)
= 0

and
zn,0 − zn,1

zn,2 − zn,1
=

ξn − ηn

η∗
n − ηn

−→ 0,

so {Gn} is not normal at 0. On the other hand, for n sufficiently large, Gn has only
a single zero (which tends to 0 as n −→ ∞) on any compact subset of C. Since
G′

n(ζ) �= ψ(zn,1 + (zn,2 − zn,1)ζ) =⇒ ψ(a1), it follows from Lemma 3.1 that {Gn}
is normal on C\{0}. Taking a subsequence and renumbering, we may assume that
Gn

χ
=⇒ G on C \ {0}. Since G has only a single pole on ∆, conditions (a), (b),

(c), and (d) hold for the sequence {Gn} (defined, say, on ∆(0, 2)) with a1 = 0
and δ = 1. Thus, by the first part of the proof, G(ζ) = Ψ(ζ) − Ψ(a1). But this
contradicts G(1) = ∞. This completes the proof of Lemma 3.1.

Definition. Let z1, z2 ∈ C and put z̃ = (z1 + z2)/2. We say that (z1, z2) is a
nontrivial pair of zeros of f if

(i) f(z1) = f(z2) = 0 and
(ii) there exists z3 such that |z3 − z̃| < |z1 − z2| and |f ′(z3)| > 1.

Note that (ii) is equivalent to



Quasinormal Families of Meromorphic Functions II 183

(ii′) there exists z∗ such that |z∗| < 1 and |h′(z∗)| > 1, where

h(z) =
f(z̃ + (z1 − z2)z)

z1 − z2
.

Since |h′(z)| ≥ h#(z), it suffices to have h#(z∗) > 1 in (ii′).

Our next result deals with the situation in which the functions fn have more
than a single zero in each neighborhood of a point of non-normality.

Lemma 3.3. Let {fn} be a sequence of functions meromorphic on ∆, all of whose
zeros are multiple; and let {ψn} be a sequence of holomorphic functions on ∆ such
that ψn =⇒ ψ on ∆, where ψ(z) �= 0,∞ on ∆. Suppose that f ′

n(z) �= ψn(z) for
all n and all z ∈ ∆. Suppose further that

(a) no subsequence of {fn} is normal at z0; and
(b) for each δ > 0, fn has at least two distinct zeros on ∆(z0, δ) for sufficiently

large n.
Then for each δ > 0, fn has a nontrivial pair (an, cn) of zeros on ∆(z0, δ) for
sufficiently large n, and {

fn(dn + (an − cn)ζ)
an − cn

}
is not normal on ∆. Here dn = (an + cn)/2.

Proof. As in the proof of the previous lemma, it follows from (a) and Lemmas
2.1 and 2.4 that for each subsequence of {fn} there exists a (sub)subsequence
(which, renumbering, we continue to denote by {fn}), points zn −→ z0, numbers
ρn −→ 0+, and distinct a, b ∈ C such that

gn(ζ) =
fn(zn + ρnζ)

ρn

χ
=⇒ g(ζ) = ψ(z0)

(ζ − a)2

ζ − b
on C. (4)

Thus there exist ξn −→ a, ηn −→ b so that an = zn + ρnξn −→ z0, bn =
zn + ρnηn −→ z0 and gn(ξn) = fn(an) = 0, gn(ηn) = fn(bn) = ∞ for n sufficiently
large.

By assumption, there also exist cn �= an, cn −→ z0, such that fn(cn) = 0.
Thus cn = zn + ρnξ∗n and ξ∗n −→ ∞ by (4). Setting dn = (an + cn)/2, we see that
the function

hn(ζ) =
fn(dn + (an − cn)ζ)

an − cn

is defined for any ζ ∈ C if n is sufficiently large. We claim that {hn} is not normal
at ζ = 1/2. Indeed, we have

an − dn

an − cn
−→ 1

2
,

bn − dn

an − cn
−→ 1

2
,

hn

(
an − dn

an − cn

)
= fn(an) = 0, hn

(
bn − dn

an − cn

)
= fn(bn) = ∞,
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so {hn} fails to be equicontinuous in a neighborhood of 1/2. It follows from Marty’s
Theorem that

lim
n−→∞ sup

|ζ− 1
2 |≤ 1

4

h#
n (ζ) = ∞.

Thus (an, cn) is a nontrivial pair of zeros of fn for n sufficiently large.

Lemma 3.4. Let {fn} be a sequence of functions meromorphic on ∆, all of whose
zeros are multiple; and let {ψn} be a sequence of holomorphic functions on ∆ such
that ψn =⇒ ψ on ∆, where ψ(z) �= 0 on ∆. Suppose that f ′

n(z) �= ψn(z) for all
n and all z ∈ ∆. Suppose further that
(a) there exist d ∈ ∆, an −→ d, cn −→ d, and z0 ∈ C such that for every δ > 0,

hn(z) =
fn(dn + (an − cn)z)

an − cn

has at least two distinct zeros on ∆(z0, δ) for sufficiently large n, where
dn = (an + cn)/2; and

(b) no subsequence of {hn} is normal at z0.
Then for n sufficiently large, fn has a nontrivial pair of zeros (z∗n,1, z

∗
n,2) such that

z∗n,j −→ d (j = 1, 2) and |z∗n,1 − z∗n,2| < |an − cn|.
Proof. As before, it follows from Lemmas 2.1 and 2.4 that to each subsequence
of {hn} there corresponds a subsequence (which we continue to write as {hn}),
zn −→ z0, and ρn −→ 0+ such that

gn(ζ) =
hn(zn + ρnζ)

ρn

χ
=⇒ ψ(z0)

(ζ − a)2

ζ − b
on C.

Thus there exist ξn,0 −→ b, ξn,1 −→ a so that zn,j = zn + ρnξn,j −→ z0 (j = 0, 1)
and gn(ξn,0) = hn(zn,0) = ∞, gn(ξn,1) = hn(zn,1) = 0. By (a), there exist
zn,2 −→ z0, zn,2 �= zn,1, such that hn(zn,2) = 0. Setting zn,2 = zn + ρnξn,2, we
have ξn,2 −→ ∞. Now put

z∗n,j = dn + (an − cn)zn + ρn(an − cn)ξn,j j = 0, 1, 2.

Clearly z∗n,j −→ d, j = 0, 1, 2. Define

Gn(ζ) =
fn

(
z∗

n,1+z∗
n,2

2 + (z∗n,1 − z∗n,2)ζ
)

z∗n,1 − z∗n,2

.

Then {Gn} is not normal at ζ = 1/2. Indeed,

Gn

(
2ξn,0 − ξn,1 − ξn,2

2(ξn,1 − ξn,2)

)
= ∞, Gn(1/2) = 0.

Since (2ξn,0 − ξn,1 − ξn,2)/2(ξn,1 − ξn,2) −→ 1/2, {Gn} is not equicontinuous at
ζ = 1/2. As before, it follows from Marty’s Theorem that (z∗n,1, z

∗
n,2) is a nontrivial

pair of zeros of fn. Now |z∗n,1 − z∗n,2| = |an − cn| |zn,1 − zn,2|; therefore, since
zn,j −→ z0 (j = 1, 2), we have |z∗n,1 − z∗n,2| < |an − cn| for large enough n, as
required.
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Lemma 3.5. Let {fn} be a sequence of functions meromorphic on ∆, all of whose
zeros are multiple, such that f ′

n(z) �= 1 for all n and all z ∈ ∆. Suppose that
(a) {fn} is normal on ∆′(0, 1), but no subsequence of {fn} is normal at 0; and
(b) there exists δ > 0 such that fn has a single (multiple) zero on ∆(0, δ) for all

sufficiently large n.
Then there exists a subsequence of {fn} (which we continue to call {fn}) such that
for any a ∈ C, fn − a has at most two zeros (counting multiplicity) on ∆(0, 1/2).

Proof. Taking a subsequence and renumbering, we may assume that fn
χ

=⇒ f on
∆′(0, 1). By Lemma 3.2, f(z) = z. Suppose that |a| ≤ 2/3. Taking Γ to be the
circle {|z| = 3/4} traversed once in the positive direction, we have

1
2πi

∫
Γ

f ′
n(z)

fn(z) − a
dz −→ 1

2πi

∫
Γ

1
z − a

dz = 1.

However, the left-hand side is the number of a-points of fn minus the num-
ber of poles of fn inside Γ, counting multiplicities. By Lemma 3.2, there exists
0 < δ < 3/4 such that fn has a single simple pole on ∆(0, δ) for n sufficiently
large. Since fn converges uniformly to z on {z : δ ≤ |z| ≤ 3/4}, there exists N1

such that if n ≥ N1 fn has a single simple pole in ∆(0, 3/4). Hence for n ≥ N1, fn

takes on the value a (counting multiplicities) exactly twice on ∆(0, 3/4).
Suppose now that |a| > 2/3. Let Γ′ be the circle {|z| = 5/9} traversed in the

positive direction. Then

1
2πi

∫
Γ′

f ′
n(z)

fn(z) − a
dz −→ 1

2πi

∫
Γ′

1
z − a

= 0,

so the number of a-points minus the number of poles of fn (counting multiplicity)
inside Γ′ is 0 for large n. It follows as before that there exists N2 such that fn

takes on the value a exactly once (counting multiplicities) on ∆(0, 5/9) if n ≥ N2.
Dropping the elements fn with n < max(N1, N2) and renumbering, we obtain the
desired sequence.

Lemma 3.6. Let f be a meromorphic function on C, all of whose zeros are multiple,
such that f ′(z) �= 1, z ∈ C. Then either

(i) f is rational; or
(ii) there exist nontrivial pairs (an, cn) of zeros of f such that |an − cn| −→ 0

and a sequence of functions

hn(ζ) =
f(dn + (an − cn)ζ)

an − cn

which is not normal on ∆; here dn = (an + cn)/2.

Proof. Suppose f is not rational. Then by Lemma 2.4, f has infinite order, so
there exist zn → ∞ and εn → 0 such that

S(∆(zn, εn), f) =
1
π

∫∫
|z−zn|≤εn

[f#(z)]2dxdy −→ ∞. (5)
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Indeed, otherwise there would exist ε > 0 and M > 0 such that S(∆(ζ, ε), f) ≤ M
for all ζ ∈ C. From this follows

S(r) =
1
π

∫∫
|z|<r

[f#(z)]2 dxdy = O(r2),

so that (cf. [11, p. 217]) f would have order at most 2, a contradiction. In particular,
there exist z∗n ∈ ∆(zn, εn) such that f#(z∗n) −→ ∞. Let fn(z) = f(z + z∗n). Then
no subsequence of {fn} is normal at 0.

Suppose there exists δ > 0 such that fn has only a single (multiple) zero ξn

on ∆(0, δ). Since no subsequence of {fn} is normal at 0, ξn −→ 0 by Theorem A.
Thus, again by Theorem A, {fn} is normal on ∆′(0, δ). It follows from Lemma 3.5
that there exist n1 < n2 < · · · such that for any a ∈ C, fnk

− a has at most two
zeros (counting multiplicity) on ∆(0, δ/2). Thus, for large enough k,

S(∆(znk
, εnk

), f) ≤ S(∆(0, δ/2), fnk
) ≤ 2

which contradicts (5).
Thus, for each δ > 0, fn has at least two distinct zeros on ∆(0, δ) for suffi-

ciently large n. The result now follows immediately from Lemma 3.3.

Lemma 3.7. Let {fn} be a sequence of functions meromorphic on ∆, all of whose
zeros are multiple, and let ψ be a non-vanishing holomorphic function on ∆. Sup-
pose that

(a) {fn} is quasinormal on ∆;
(b) f ′

n(z) �= ψ(z) for z ∈ ∆ and n = 1, 2, 3, . . . ;
(c) no subsequence of {fn} is normal at 0.

Then there exists δ > 0 such that fn has only a single (multiple) zero on ∆(0, δ)
for sufficiently large n.

Proof. For otherwise, we may suppose that for any δ > 0, fn has at least two
distinct zeros on ∆(0, δ) for sufficiently large n. By Lemma 3.4, fn has a nontrivial
pair of zeros in ∆(0, δ) for n large enough. Therefore, some subsequence of {fn}
(which, as usual, we continue to call {fn}) has a nontrivial pair of zeros (zn, wn)
such that |zn| < 1/n, |wn| < 1/n. There exists δ′ > 0 such that fn

χ
=⇒ f on

∆′(0, δ′). We claim that f �≡ 0. Otherwise, f ′
n − ψ ⇒ −ψ on ∆′(0, δ′). But no

subsequence of {f ′
n} is normal at 0. Since 1/(f ′

n − ψ) is holomorphic, f ′
n ⇒ ψ on

∆′(0, δ′) , a contradiction.
Thus there exist δ0 > 0 and 1 < s < 2 such that f does not vanish on

{δ0 ≤ |z| ≤ sδ0}. For 1/n < δ0, let (an, cn) be a nontrivial pair of zeros of fn in
∆(0, δ0) whose distance is minimal. Clearly, an − cn −→ 0. Set dn = (an + cn)/2.
Then dn ∈ ∆(0, δ0); and, passing to a subsequence, we may assume that dn −→ a,
so |a| ≤ δ0. Since f and fn have no zeros on {z : δ0 ≤ |z| ≤ sδ0} if n is large
enough, (an, cn) is a nontrivial pair of zeros of fn on ∆(0, sδ0) whose distance is
minimal.
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Set

hn(ζ) =
fn(dn + (an − cn)ζ)

an − cn
.

Then for each ζ ∈ C, hn(ζ) is defined if n is sufficiently large. Clearly, all zeros of
hn are multiple and h′

n(ζ) �= ψ(dn + (an − cn)ζ). We claim that no subsequence
of {hn} is normal on C. Otherwise, taking a subsequence and renumbering, we
would have hn

χ
=⇒ h on C. Since (an, cn) is a nontrivial pair of zeros of fn,

hn(±1/2) = h′
n(±1/2) = 0, and sup

∆
|h′

n(z)| > 1. It follows easily that h′(ζ) �= ψ(a)

on C and that h is nonconstant. Since all zeros of h are multiple, Lemma 2.4
shows that h must be transcendental. It then follows from Lemma 3.6 that there
exist infinitely many nontrivial pairs (ξk, ηk) of zeros of h such that ξk −→ ∞ and
ξk − ηk −→ 0, and z∗k with |z∗k − (ξk + ηk)/2| < |ξk − ηk| and h#(z∗k) −→ ∞.

Fix k such that h#(z∗k) ≥ 2 and |ξk − ηk| < 1. Then there exist ξn,k −→ ξk

and ηn,k −→ ηk such that for n sufficiently large, hn(ξn,k) = hn(ηn,k) = 0 and
|z∗k − (ξn,k + ηn,k)/2| < |ξn,k − ηn,k|. Put

ξ∗n,k = dn + (an − cn)ξn,k, η∗
n,k = dn + (an − cn)ηn,k, z∗n,k = dn + (an − cn)z∗k.

Then ∣∣∣∣z∗n,k − ξ∗n,k + η∗
n,k

2

∣∣∣∣ = |an − cn|
∣∣∣∣z∗k − ξn,k + ηn,k

2

∣∣∣∣
< |an − cn| |ξn,k − ηn,k| = |ξ∗n,k − η∗

n,k|,
where ξ∗n,k −→ a, η∗

n,k −→ a and |a| < sδ0; also, for n sufficiently large,
|f ′

n(z∗n,k)| = |h′
n(z∗k)| ≥ h#

n (z∗k) > 1. We conclude that (ξ∗n,k, η∗
n,k) is a nontriv-

ial pair of zeros of fn on ∆(0, sδ0). However,

|ξ∗n,k − η∗
n,k| = |an − cn| |ξn,k − ηn,k| < |an − cn|

if n is sufficiently large. This contradicts the fact that (an, cn) is a nontrivial pair
of zeros of fn in ∆(0, sδ0) whose distance is minimal.

Thus no subsequence of {hn} is normal on C. Let E be the set on which {hn}
is not normal. Suppose that for each ζ ∈ E, there is a neighborhood on which hn

has only a single (multiple) zero for sufficiently large n. Then by Lemma 3.1, {hn}
is quasinormal at each point of E and hence on all of C. Let ζ0 ∈ E. Taking a
subsequence, we may assume that no subsequence of {hn} is normal at ζ0 and
that {hn} converges locally spherically uniformly on C \ E0, where E0 ⊂ E is a
discrete set containing ζ0. By Lemma 3.2, hn

χ
=⇒ ψ(a)(ζ − ζ0) on C \ E0. Taking

additional subsequences and diagonalizing, we may assume that no subsequence
of {hn} is normal at any point of E0. We claim that E0 = {ζ0}. Indeed, otherwise
there exists ζ1 ∈ E0, ζ1 �= ζ0; then, as before, it follows from Lemma 3.2 that
hn(ζ)

χ
=⇒ ψ(a)(ζ − ζ0) on C \ E0, so that ζ1 = ζ0, E0 = {ζ0}, and hn(ζ)

χ
=⇒

ψ(a)(ζ − ζ0) on C \ {ζ0}. But this contradicts h(±1/2) = 0.
Thus there exists ζ0 ∈ E such that for each δ > 0, there exists a subsequence

of {hn} (which we continue to call {hn}) such that each hn has at least two distinct
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zeros in ∆(ζ0, δ) for sufficiently large n. Then by Lemma 3.4, for n sufficiently large,
fn has a nontrivial pair of zeros (w∗

n,1, w
∗
n,2) such that w∗

n,j −→ a (j = 1, 2) and
|w∗

n,1−w∗
n,2| < |an − cn|. This contradicts the fact that (an, cn) is a nontrivial pair

of zeros of fn in ∆(0, sδ0) whose distance is minimal.

4. Proof of the theorem

We may assume that D = ∆. Suppose that F is quasinormal on ∆ but not quasi-
normal of order 1 there. Then there exists a sequence {a∗

k} ⊂ ∆ with no accumu-
lation point in ∆ such that a∗

1 �= a∗
2 and a sequence {fn} ⊂ F such that fn

χ⇒ f on
∆ \ {a∗

k} but no subsequence of {fn} is normal at a∗
1 or a∗

2. By Lemma 3.7, there
exists δ > 0 such that fn has a single (multiple) zero on ∆(a∗

j , δ) for all sufficiently
large n and j = 1, 2. By Lemma 3.2,

f(z) =
∫ z

a∗
j

ϕ′(ζ)dζ = ϕ(z) − ϕ(a∗
j )

for z ∈ ∆ \ {ak}. Since ϕ is univalent, a∗
1 = a∗

2, a contradiction.
To prove the second assertion of the theorem, suppose that F is quasinormal,

but not normal, on ∆. By the previous paragraph, F is quasinormal of order 1
on ∆, so there exist z0 ∈ ∆ and {fn} ⊂ F such that fn

χ⇒ f on ∆ \ {z0} but no
subsequence of {fn} is normal at z0. As before, it follows from Lemma 3.7 that
there exists δ > 0 such that fn has a single (multiple) zero on ∆(z0, δ) for all large
n and from Lemma 3.2 that fn(z)

χ⇒ f(z) =
∫ z

z0
ϕ′(ζ)dζ on ∆ \ {z0}. In fact, since

ϕ is analytic on ∆, the convergence is uniform on compact subsets of ∆ \ {z0}.
Since all zeros of fn are multiple and fn ⇒ f on ∆ \ {z0}, any zero of f must also
be multiple. It follows that for any compact subset K ⊂ ∆, at most finitely many
fn can vanish more than once on K. For otherwise, there would exist z1 ∈ K,
z1 �= z0, such that f(z1) = f ′(z1) = 0, which contradicts f ′(z1) = ϕ′(z1) �= 0. This
completes the proof.
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1. Introduction

In this semi-expository paper, we examine the backward shift operator

Bf :=
f − f(0)

z
on the classical Hardy space Hp. Though there are many aspects of this operator
worthy of study [20], we will focus on the description of its invariant subspaces
by which we mean the closed linear manifolds E ⊂ Hp for which BE ⊂ E . When
1 < p < ∞, a seminal paper of Douglas, Shapiro, and Shields [8] describes these
invariant subspaces by using the important concept of a pseudocontinuation de-
veloped earlier by Shapiro [26]. When p = 1, the description is the same [1] except
that in the proof, one must be mindful of some technical considerations involving
the functions of bounded mean oscillation.

The p � 1 case involves heavy use of duality and especially the Hahn-Banach
separation theorem where one gets at E by first looking at E⊥, the annihilator of
E , and then returning to E by ⊥(E⊥). On the other hand, when 0 < p < 1, Hp

is no longer locally convex and the Hahn-Banach separation theorem fails [12]. In
fact, as we shall see in § 4, there are invariant subspaces E �= Hp, 0 < p < 1, for
which ⊥(E⊥) = Hp. Despite these difficulties, an ingenious tour de force approach
of Aleksandrov [1] (see also [6]), using such tools as distribution theory and the
atomic decomposition theorem, characterizes these invariant subspaces.

The first several sections of this paper are a leisurely, non-technical, treat-
ment of the Douglas-Shapiro-Shields and Aleksandrov results. In § 5, we focus on
some new results, based on techniques in [4], which give an alternative description
of certain invariant subspaces of Hp. As a consequence, we eventually wind up
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characterizing the weakly closed invariant subspaces of Hp. In § 6, we make some
remarks about the invariant subspaces of the standard Bergman spaces Lp

a when
0 < p < 1.

2. Preliminaries

We begin with some basic definitions and well-known results about the Hardy
spaces Hp. A detailed treatment can be found in [11]. For 0 < p < ∞, let Hp

denote the space of analytic functions f on the open unit disk D = {z ∈ C : |z| < 1}
whose Lp integral means ∫ 2π

0

|f(reiθ)|p dθ

2π

are uniformly bounded for r ∈ (0, 1). These means increase as r ↗ 1 and we define

‖f‖p := lim
r→1−

(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

.

For almost every (with respect to Lebesgue measure on the unit circle T := ∂D)
eiθ, the radial limit

lim
r→1−

f(reiθ)

exists and we denote its value by f(eiθ), or perhaps f∗(eiθ) when we want to
emphasize this almost everywhere defined boundary function. Moreover,

‖f‖p =
(∫ 2π

0

|f∗(eiθ)|p dθ

2π

)1/p

.

One can show that f ∈ Hp satisfies the pointwise estimate

|f(z)| � 21/p‖f‖p(1 − |z|)−1/p, z ∈ D.

As a result, for 1 � p < ∞, the quantity ‖f‖p defines a norm that makes Hp a
Banach space while for 0 < p < 1, ‖f − g‖p

p defines a translation invariant metric
that makes Hp a complete metric space. In either case, f(reiθ) → f∗(eiθ) almost
everywhere and in the norm (metric) of Lp. When p = ∞, H∞ will denote the
bounded analytic functions on D with the sup-norm ‖f‖∞ := sup{|f(z)| : z ∈ D}.

Since f → f∗ is an isometry of Hp to Lp, one can regard Hp as a closed
subspace of Lp. In fact, at least when 1 � p < ∞, we can think of Hp in the
following way

Hp = {f ∈ Lp : f̂(n) = 0 for all n < 0},
where f̂(n) is the nth Fourier coefficient of f . This follows from the F. and M.
Riesz theorem [11, p. 41].

Every function f ∈ Hp can be factored as f = φΘ, where φ ∈ H∞ with
|φ∗(eiθ)| = 1 almost everywhere (such functions are called ‘inner functions’) and
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Θ ∈ Hp has no zeros on D and satisfies

log |Θ(0)| =
∫ 2π

0

log |Θ∗(eiθ)| dθ

2π

(such functions are called ‘outer functions’). Moreover, except for a unimodular
constant, this factorization is unique.

Identifying the dual, (Hp)∗, of Hp with a space of analytic functions on D is
often, but not always, the key to understanding the structure of its invariant sub-
spaces. The dual pairing between Hp and (Hp)∗, as a space of analytic functions,
is the following ‘Cauchy pairing’. For analytic functions

f(z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn

on the disk D, define

〈f, g〉 := lim
r→1−

∞∑
n=0

anbnrn, (2.1)

whenever this limit exists. A simple computation with power series shows that if
〈f, g〉 exists, then

〈f, g〉 = lim
r→1−

∫ 2π

0

f(reiθ)g(reiθ)
dθ

2π
.

For 1 < p < ∞, the dual of Hp can be identified with Hq, where q is the
conjugate index to p, and this comes somewhat easily. Notice that for f ∈ Hp and
g ∈ Hq, we have fr → f in Hp and gr → g in Hq, where fr(z) := f(rz). Thus, by
Hölder’s inequality,

〈f, g〉 =
∫ 2π

0

fg
dθ

2π
.

Certainly, the linear functional f → 〈f, g〉 is continuous on Hp for fixed g ∈ Hq.
On the other hand, if � ∈ (Hp)∗, the Hahn-Banach extension theorem says that

�(f) =
∫ 2π

0

fg
dθ

2π
(2.2)

for some g ∈ Lq. Using the continuity of the Riesz projection operator P : Lq → Hq

P

( ∞∑
n=−∞

ĝ(n)einθ

)
=

∞∑
n=0

ĝ(n)einθ

and the identities ∫ 2π

0

fg
dθ

2π
=
∫ 2π

0

fPg
dθ

2π
= 〈f, Pg〉,

one can replace, in (2.2) and hence (2.1), the above g ∈ Lq with a unique function
in Hq. A little technical detail shows that norm of the linear functional f → 〈f, g〉
is equivalent to the Hq norm of g. Thus (Hp)∗ can be identified with Hq via the
dual pairing in (2.1).
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When p = 1, the above analysis breaks down. Certainly if � ∈ (H1)∗, then

�(f) =
∫ 2π

0

fg
dθ

2π

for some g ∈ L∞. However, when one tries to imitate the above analysis and
replace g with Pg in the above integral, there are problems. For one, P (L∞) =
BMOA � H∞, where BMOA are the analytic functions of bounded mean oscil-
lation1. Secondly, there are f ∈ H1 and g ∈ BMOA, for which fg �∈ L1. These
technical problems are not insurmountable since, for f ∈ H1 and g ∈ BMOA, the
quantity 〈f, g〉 (as in (2.1)) does indeed exist and f → 〈f, g〉 defines a continuous
linear functional on H1. In fact, these are all the linear functionals on H1. Another
technical detail says that the norm of f → 〈f, g〉 is equivalent to the BMOA norm
of g. In summary, we can identify the dual of H1 with BMOA via the dual pairing
in (2.1). See [13, Ch. 6] for more details on all this.

When 0 < p < 1, surprisingly, there are non-trivial bounded linear functionals
on Hp. Surprisingly since when 0 < p < 1, (Lp)∗ = (0) [7]. The theorem here is
one of Duren, Romberg, and Shields [12] and says that if � is a bounded linear
functional on Hp, then there is a unique g belonging Op, a subspace of the disk
algebra, so that �(f) = 〈f, g〉. Conversely, for g ∈ Op, f → 〈f, g〉 defines an element
of (Hp)∗. The space Oβ , for β > 0, is the set of analytic functions g on the disk
for which

‖g‖β := sup
|z|<1

|g[1/β](z)|(1 − |z|) < ∞,

where, if g(z) =
∑

anzn,

g[α](z) :=
∞∑

n=0

Γ(n + 1 + α)
Γ(n + 1)

anzn

is the fractional derivative of g of order α. The classes Oβ can be equivalently
characterized as Lipschitz or Zygmund spaces. For example, if 1/2 < p < 1, then
Op is the space of analytic functions on D which have continuous extensions to D−

and such that

sup
θ �=t

|g(eiθ) − g(eit)|
|θ − t|1/p−1

< ∞.

For other p’s, one requires the derivatives (depending on p) of g to have certain
smoothness on T. In general, the smaller the p, the more derivatives of g that need
to satisfy a Lipschitz or Zygmund condition on T in order for g to belong to Op.
One can show that the norm of the functional f → 〈f, g〉 is equivalent to the Op

1g ∈ L1 is of bounded mean oscillation BMO if

‖g‖ = ‖g‖L1 + sup
I

1

|I|
∫

I
|g − gI |dθ < ∞,

where gI = |I|−1
∫

I
gdθ and |I| is the length of an arc I ⊂ T. BMOA := BMO ∩ H1 .
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norm of g 2. Thus we identify (Hp)∗ with Op when 0 < p < 1 via (2.1). Again,
consult [12] for the details.

3. The backward shift on Hp for 1 � p < ∞
If 1 < p < ∞, notice that the backward shift B on Hp is the Banach space adjoint
of the forward shift operator Sf = zf on Hq, that is to say

〈Bf, g〉 = 〈f, Sg〉, f ∈ Hp, g ∈ Hq.

Thus if E � Hp is an invariant subspace for B, then

E⊥ := {g ∈ Hq : 〈f, g〉 = 0 ∀f ∈ E},
the ‘annihilator’ of E , is an S-invariant subspace of Hq. A celebrated theorem of
Beurling [11, p. 114] says that E⊥ = φHq for some non-constant inner function φ.
By the Hahn-Banach separation theorem,

E = ⊥(E⊥) = ⊥(φHq),

where for A ⊂ Hq, ⊥A := {f ∈ Hp : 〈f, g〉 = 0, ∀g ∈ A} is the ‘pre-annihilator’ of
A. So the problem of describing E is reduced to characterizing, in some function-
theoretic way, this pre-annihilator ⊥(φHq).

The function theoretic tool, the concept of a pseudocontinuation, used here
was developed by Shapiro in some earlier work [26] and we now take a few moments
to point out some basic facts about pseudocontinuations. Suppose that h is a
meromorphic function on D and H is a meromorphic on De. There is no a priori
reason why the non-tangential limits of h (from D) and H (from De) need to
exist. But if they do, and they are equal almost everywhere, we say that H
is a ‘pseudocontinuation’ of h. Two representative examples of functions with a
pseudocontinuation are the following.

Example 3.1.

1. If h is an inner function, then

H(z) =
1

h(1/z)

is a pseudocontinuation of h. This follows from that fact that h∗h∗ = 1 almost
everywhere. Also notice, for example, that if h is a Blaschke product whose
zeros accumulate on all of the circle, then h, although a pseudocontinuable
function, will not have an analytic continuation across any point of the unit
circle.

2Technically ‖g‖β is only a semi-norm on Oβ . One can make this a true norm by adding in

|g(0)| + |g′(0)| + · · · + |g(�1/β�), where �x� is the greatest integer less than x.
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2. Another example of a pseudocontinuation is when h is a Cauchy integral

h(z) :=
∫

1
1 − e−iθz

dµ(eiθ),

where µ is a finite Borel measure on T that is singular with respect to
Lebesgue measure. If H is the above Cauchy integral but with z ∈ De, one can
show that h and H are Hp functions (for 0 < p < 1) on their respective do-
mains [11, p. 39]3 and so have finite non-tangential limits almost everywhere.
Notice that

h(z) − h(1/z) =
∫ 2π

0

Pz(eiθ)dµ(eiθ),

where Pz(eiθ) is the Poisson kernel. Using a classical theorem of Fatou [11,
p. 39], which says that∫ 2π

0

Pz(eiθ)dµ(eiθ) → 2πµ
′
(eiθ)

for almost every eiθ as z → eiθ, and the fact that µ is singular (and so µ′ = 0
almost everywhere), one can show that the non-tangential limits of h and H
are equal almost everywhere.

Let us make a few general comments about pseudocontinuations. The first
is that they are unique. Indeed, if H1 and H2 are two pseudocontinuations of
h, then H1 − H2 is a meromorphic function on De that has zero non-tangential
limits almost everywhere. A classical theorem of Privalov [16, p. 62] says that any
meromorphic function that has zero non-tangential limits on a subset of T with
positive Lebesgue measure must be identically zero. Hence h can have only one
pseudocontinuation. Here is why we use non-tangential limits rather than radial
limits in the definition of a pseudocontinuation. If radial limits were used, then
pseudocontinuations would not be unique. Indeed, there are non-trivial analytic
functions on D which have radial limits equal to zero almost everywhere [5] - thus
the zero function would be a pseudocontinuation without the original function
being the zero function. Certainly, when we are talking about Hp functions this
cannot happen since the non-tangential limits exist almost everywhere anyway.
But in general, we need to make this important distinction.

Another consequence of Privalov’s uniqueness theorem is that if h has an
analytic continuation to a neighborhood U of eiθ and a pseudocontinuation H ,
then h = H on U ∩ De, that is to say, pseudocontinuation is compatible with the
classical notion of analytic continuation.

The point at infinity is important. The function h(z) = ez certainly has an
analytic continuation across T. However, it does not have a pseudocontinuation as
we have defined it above since H(z) = ez has an essential singularity at infinity.

3The Hardy space of the extended exterior disk De := {z ∈ Ĉ : 1 < |z| � ∞} is defined by

Hp(De) := {f(1/z) : f ∈ Hp}. Note that if f ∈ Hp, then f(eiθ) is the boundary function for a

function belonging to Hp(De), the function being f(1/z).
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The interested reader is invited to consult [23] for a more detailed discussion of
pseudocontinuations.

The function theoretic description of ⊥(φHq) is the following well-known
theorem.

Proposition 3.2 (Douglas-Shapiro-Shields). Let φ be an inner function and 1 <
p < ∞. For f ∈ Hp, the following are equivalent:

1. f ∈ ⊥(φHq)
2. f∗ ∈ Hp ∩ φHp

0 , where Hp
0 = {f ∈ Hp : f(0) = 0}.

3. The meromorphic function f/φ on D has a pseudocontinuation to a function
f̃φ ∈ Hp(De) with f̃φ(∞) = 0.

It is important to note that the space

Hp ∩ φHp
0 = {f ∈ Hp : f∗ = φ∗h∗, h ∈ Hp

0}4 (3.3)

must be understood as a space of functions on the circle and not on the disk.
For fixed 1 < p < ∞ and inner function φ, we let Ep(φ) be the collection of Hp

functions that satisfy one of the equivalent conditions in Proposition 3.2. Since
Ep(φ) is an annihilating subspace, it is closed in Hp. It also follows from the above
argument that Ep(φ) is invariant. Combining this with what was said above, we
have the following summary theorem.

Theorem 3.4 (Douglas-Shapiro-Shields). For 1 < p < ∞, a subspace E � Hp, is
invariant if and only if E = Ep(φ) for some inner function φ.

Before proceeding to the p = 1 case, we mention a few other items of interest.
Using a Morera type argument, one can show that every f ∈ Ep(φ) has an analytic
continuation to the set

Ĉ \ {1/z : z ∈ σ(φ)}, where σ(φ) :=
{

z ∈ D− : lim inf
λ→z

|φ(λ)| = 0
}

5.

Note that φ has an analytic continuation to Ĉ \ {1/z : z ∈ σ(φ)} [13, p. 75–76].
Furthermore, by the compatibility of pseudocontinuation with analytic continua-
tion, the analytic continuation of f/φ to De \ {1/z : z ∈ σ(φ)} must be equal to
f̃φ, the pseudocontinuation of f/φ.

Another interesting item is that if f = Bφ, then

[f ]Hp :=
∨

{Bnf : n = 0, 1, 2, . . .} = Ep(φ),

where
∨

is the closed linear span in the Hp norm. This says that Ep(φ) is a ‘cyclic
invariant subspace’ generated by f = Bφ. While we are mentioning cyclic vectors,
there is a celebrated result that determines exactly when a particular f ∈ Hp is
‘cyclic’, that is to say [f ]Hp = Hp.

4Recall from the preliminaries that f∗(eiθ) = limr→1− f(reiθ) almost everywhere.
5A basic fact about inner functions is that if φ = bsµ, where b is a Blaschke product and sµ is a
singular inner function with associated positive singular measure µ on T (all inner functions can
be factored this way), then σ(φ) is the closure of the zeros of b together with the support of µ.
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Theorem 3.5 (Douglas-Shapiro-Shields). For 1 � p < ∞, a vector f ∈ Hp is non-
cyclic for the backward shift if and only if f has a pseudocontinuation of bounded
type, i.e., there is a meromorphic function f̃ on De, that can be written as a
quotient of two bounded analytic functions on De, such that f̃ is a pseudocontin-
uation of f .

Though this theorem is both necessary and sufficient, the hypothesis (having
a pseudocontinuation of bounded type) is not something easily tested. There are
some obvious examples of cyclic vectors like

e1/(z−2) and ez

which are not meromorphic on De, and

f =
∞∑

n=1

2−n

z − (1 + 1/n)

which has a pseudocontinuation, but not of bounded type (too many poles). Notice
that we are using the uniqueness of pseudocontinuations here and the fact that
if a function has an analytic continuation across a point of the circle, then the
analytic continuation must agree with its pseudocontinuation. Along these lines,
the vector

√
1 − z is a cyclic vector since its pseudocontinuation, which must be√

1 − z, can not have a branch cut. Less obvious examples of cyclic vectors are Hp

functions given by Hadamard gap series [27] such as

f(z) =
∞∑

n=0

2−nz2n

or Fabry gap series [2] f(z) =
∞∑

n=0

2−nzn2
.

Actually, both of these gap series have the following stronger pathological property:
There exists no 1 < R < ∞ and no meromorphic function f̃ on {z : 1 < |z| < R}
such that the nontangential limits of f̃ and f agree almost everywhere. See also
[23] for further details and other pathological examples of this type.

The p = 1 case is a bit pesky and poses some technical challenges that were
overcome by Aleksandrov (see [1] or [6, p. 101]). If E ⊂ H1 is invariant, then E⊥ is
an S-invariant subspace of BMOA, closed in the weak-* topology BMOA inherits
by being the dual of H1. However, the description of these S-invariant subspaces
is not as simple as φBMOA (φ inner), as in Beurling’s theorem for Hp. In fact,
φBMOA may not even be a subset of BMOA. That is to say, φ may not be a
‘multiplier’ of BMOA [30]. The second technical challenge is that the dual pairing
between H1 and BMOA is

lim
r→1−

∫ 2π

0

fgr
dθ

2π
(3.6)

and not simply ∫ 2π

0

fg
dθ

2π
. (3.7)
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This may not seem like a major difference but the proof of the Douglas-Shapiro-
Shields theorem makes use of the F. and M. Riesz theorem [11, p. 40–41]∫

[0,2π]

einθdµ(θ) = 0 n = 0, 1, 2, . . . ⇔ dµ(θ) = f(eiθ)
dθ

2π
, f ∈ H1, (3.8)

for which we need to write the dual pairing 〈f, g〉 as an integral, as in (3.7), and
not as a limit of integrals, as in (3.6). Nevertheless, one can show that E ∩ H2 is
not equal to H2, is closed in the norm of H2, and is invariant and hence takes
the form E2(φ) (Theorem 3.4). Using the (H1, BMOA) duality, one can show that
E2(φ) is dense in E1(φ). Here E1(φ) := H1 ∩φH1

0 , or equivalently, the space of H1

functions f such that f/φ has a pseudocontinuation to a function f̃φ ∈ H1(De)
that vanishes at infinity. Thus E1(φ) ⊂ E . The other inclusion is also a bit tricky
but nevertheless true. The summary theorem here is the following.

Theorem 3.9 (Aleksandrov).

1. A subspace E � H1 is invariant if and only if E = E1(φ) for some inner
function φ.

2. If f = Bφ, then [f ]H1 = E1(φ), that is to say E1(φ) is cyclic.
3. A vector f ∈ H1 is non-cyclic, i.e., [f ]H1 �= H1, if and only if f has a

pseudocontinuation of bounded type.

4. The backward shift on Hp for 0 < p < 1

Characterizing the invariant subspaces of Hp when 0 < p < 1 poses special chal-
lenges. For example, Hp (0 < p < 1), with its metric topology, is no longer locally
convex and the Hahn-Banach separation theorem, a key tool in understanding the
p � 1 case, fails6.

Example 4.1. For each θ ∈ [0, 2π], the function (1 − e−iθz)−1 belongs to Hp for
all 0 < p < 1 and so we can consider the following subspace of Hp:

E :=
∨{ 1

1 − e−iθz
: 0 � θ < 2π

}
.

When z is on the unit circle, we have

1
1 − e−iθz

=
z

z − e−iθ
∈ Hp

0

and so E ⊂ Hp ∩ Hp
0 �= Hp. As an aside, one can show that indeed E = Hp ∩ Hp

0

(see [1] or [6, p. 116]). Again we remind the reader that Hp ∩ Hp
0 is a space

6The Hahn-Banach extension theorem also fails in Hp (0 < p < 1). Indeed, there is a closed
subspace A of Hp and a continuous linear functional on A which cannot be extended continuously
to all of Hp [12].
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of functions on the unit circle (see (3.3)). We claim that E⊥ = (0). Indeed, if
g =
∑

n bnzn ∈ Op = (Hp)∗ belongs to E⊥, then for all θ,

0 =
〈

1
1 − e−iθz

, g

〉
= lim

r→1

∞∑
n=0

e−inθbnrn = lim
r→1−

g(reiθ) = g(eiθ),

making g the zero function.

Example 4.1 shows that describing an invariant subspace E of Hp (0 < p < 1)
by first examining E⊥ and then returning to E via the Hahn-Banach separation
theorem E = ⊥(E⊥) is of no use here. In the above example, E �= Hp, but ⊥(E⊥) =
⊥(0) = Hp. As it turns out though, the invariant subspaces of Hp (0 < p < 1)
can be characterized but the description is not the same as before (namely Ep(φ)
spaces) and the proof is much more difficult, involving many advanced tools in
analysis. This complicated but beautiful characterization was accomplished by
Aleksandrov [1] and we spend a few moments stating his result.

With the use of duality out, one must discover what functions belong to
a given invariant subspace almost by hand. Given 0 < p < 1 and an invariant
subspace E ⊂ Hp, we notice that E ∩ H2 is a closed (in the H2 norm) invariant
subspace of H2 which, by the Douglas-Shapiro-Shields theorem (Theorem 3.4),
equals E2(φ) for some inner function φ. If E ∩ H2 = (0), which can indeed be the
case by Example 4.1, we take the φ to be the constant function φ = 1. This makes
sense since E2(1) = H2 ∩ H2

0 = (0) (F. and M. Riesz theorem – (3.8)).
Let F ⊂ T be the following set

F :=
{

eiθ ∈ T :
1

1 − e−iθz
∈ E
}

.

One can show that F is a closed subset of T and that σ(φ)∩T ⊂ F . Also consider
a function

k : F → N ∩ [1, np],
where

np := max{n ∈ N ∩ [1, 1/p)}, (4.2)
defined by

k(eiθ) := max
{

j ∈ N ∩ [1, np] :
1

(1 − e−iθz)j
∈ E
}

.

Note that a simple integral calculation shows that (1 − e−iθz)−j ∈ Hp for all
j ∈ N ∩ [1, np]. One can show that if F0 is the set of isolated points of F , then
k(eiθ) = np whenever eiθ ∈ (F \ F0) ∪ (σ(φ) ∩ T).

With these three parameters φ, F, k, form the space Ep(φ, F, k) of functions
f ∈ Hp such that

1. f∗ ∈ Hp ∩ φHp
0 , or equivalently f/φ has a pseudocontinuation to a function

f̃φ ∈ Hp(De) that vanishes at infinity;
2. f has an analytic continuation to a neighborhood of T \ F ;
3. At each eiθ ∈ F0 \ σ(φ), f has a pole of order at most k(eiθ).
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Before moving on, let us give a non-trivial example of a function belonging
to Ep(φ, F, k). This example will become important later on.

Example 4.3. Suppose F ⊂ T is a closed set of Lebesgue measure zero. We assume,
as usual, that σ(φ) ∩ T ⊂ F . Consider the function

(Kµ)(z) :=
∫

dµ(eiθ)
1 − e−iθz

,

where µ is a finite Borel measure on T whose support is exactly F . As mentioned
earlier in Example 3.1, Kµ|D ∈ Hp and Kµ|De ∈ Hp(De) and moreover, since µ is
singular with respect to Lebesgue measure, these two functions are pseudocontin-
uations of each other. Furthermore, Kµ has an analytic continuation across T \F
and at each isolated point of F , Kµ has a pole of order one. Finally, note from
Example 3.1, that the inner function φ has a pseudocontinuation

φ̃(z) =
1

φ(1/z)
, z ∈ De

and so Kµ/φ has a pseudocontinuation Kµ/φ̃ which belongs to Hp(De) and van-
ishes at infinity. Thus Kµ ∈ Ep(φ, F, k), at least when F has Lebesgue measure
zero.

Though somewhat involved to prove, one can show that Ep(φ, F, k) is a non-
trivial closed invariant subspace of Hp (invariance is clear, closed is what is difficult
to prove). Furthermore,

E ⊂ Ep(φ, F, k).
To obtain the reverse inclusion, Aleksandrov defines the space

ep(φ, F, k) := E2(φ)
∨{ 1

(1 − e−iθz)j
: eiθ ∈ F ; j = 1, 2, . . . , k(eiθ)

}
. (4.4)

From the very definition of the parameters φ, F and k, it follows that

ep(φ, F, k) ⊂ E .

What is very difficult to prove here is that

ep(φ, F, k) = Ep(φ, F, k). (4.5)

Aleksandrov’s proof of this fact is quite involved and uses, among other tricks,
distribution theory and the Coifman atomic decomposition theorem for Hp. To
summarize, we have the following.

Theorem 4.6 (Aleksandrov). For fixed 0 < p < 1 and parameters φ, F , and k
above, the space Ep(φ, F, k) is an invariant subspace of Hp. Moreover, every proper
invariant subspace of Hp is of the form Ep(φ, F, k).

We close this section with a few remarks. The characterization of the cyclic
vectors remains the same: f is non-cyclic if and only if f has a pseudocontinuation
of bounded type. One can also show, as in the Hp case when p � 1 but with a
more complicated vector, that Ep(φ, F, k) is a cyclic subspace (i.e., generated by
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one vector). Later on (Theorem 5.6) we will give an alternative characterization
of Ep(φ, F, k). The curious reader might be wondering why the parameters F and
k are not needed in the 1 � p < ∞ case. Notice that (1 − e−iθz)−j �∈ H1 for any
θ ∈ [0, 2π) and j ∈ N.

5. A closer look at Aleksandrov’s theorem

Aleksandrov’s theorem says that when 0 < p < 1, a non-trivial invariant subspace
of Hp takes the form Ep(φ, F, k) (as described in §4). In this section, we show that
under certain natural conditions, there is an alternative description of Ep(φ, F, k).
To do this, we will characterize the weakly closed invariant subspaces of Hp.

Let us say a few words about the weak topology on Hp (0 < p < 1). The
reader can refer to [12] for further details and examples. Recall from § 2 that (Hp)∗

can be identified (with equivalent norm) with a Lipschitz or Zygmund space Op

by means of the pairing

〈f, g〉 = lim
r→1−

∞∑
n=0

anbnrn.

A set U ⊂ Hp is ‘weakly open’ if given any f0 ∈ U , there is an ε > 0 and
g1, . . . , gn ∈ Op so that

n⋂
j=1

{f ∈ Hp : |〈f − f0, gj〉| < ε} ⊂ U.

Since the family of semi-norms

{ρg(f) := |〈f, g〉| : g ∈ Op}
on Hp separates points, standard functional analysis says that (Hp, wk) (Hp en-
dowed with the weak topology) is a locally convex topological vector space [24, p.
64]. Furthermore, (Hp, wk)∗ = Op. As a consequence, a linear manifold E ⊂ Hp

is weakly closed if and only if it satisfies the Hahn-Banach separation property: If
f �∈ E, there is a g ∈ Op so that g ⊥ E but 〈f, g〉 = 1, i.e., each point not in E
can be separated from E by a bounded linear functional [24, p. 60]. Viewing this
another way,

clos(Hp,wk)E = ⊥(E⊥), (5.1)

where, for C ⊂ Op, ⊥C := {f ∈ Hp : 〈f, c〉 = 0 ∀c ∈ C} is the pre-annihilator of
C. Finally notice that if E is weakly closed then E is closed in the metric topology.

There is a containing Banach space Bp of Hp namely, the weighted Bergman
space of analytic functions f on D for which the quantity

‖f‖Bp :=
∫ 2π

0

∫ 1

0

|f(reiθ)|(1 − r)1/p−2dr
dθ

2π

is finite. Certain standard facts about Bp are that Hp is a dense subset of Bp and

‖f‖Bp � Ap‖f‖Hp , f ∈ Hp,
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that is to say, the containment Hp ⊂ Bp is continuous. Moreover, Bp is a Banach
space and (Bp)∗ can be identified (with equivalent norm) with the space Op via
the dual pairing in (2.1), i.e.,

〈f, g〉 = lim
r→1−

∞∑
n=0

anbnrn.

Thus Bp and Hp have the same continuous linear functionals. Using this fact along
with the Hahn-Banach separation theorem, applied to the Banach space Bp, one
can show that if E is a linear manifold in Hp, then

clos(Hp,wk)E =
(
closBpE

) ∩ Hp.

See [12, Lemma 8] for details.
For the rest of this section we will assume that 1/2 < p < 1. For other values

of p, most of the results are still true but the notation becomes cumbersome
since the description of Op changes very much with p. That being said, we fix
1/2 < p < 1, an inner function φ, and a closed set F ⊂ T. Without loss of
generality, we assume that σ(φ) ∩ T ⊂ F . Define

I(φ, F ) := {g ∈ Op : g ∈ φH∞, g|F = 0}7.

One can easily observe that I(φ, F ) is an ideal of Op. What is more difficult to
prove is that when Op is endowed with the weak-* topology it naturally inherits
by being the dual of Bp, then I(φ, F ) is weak-* closed. In fact, every non-zero
weak-* closed ideal of Op is of the form I(φ, F ). There is a direct proof of this
result (with an equivalent weak-* topology on Op) in [21]. Another, perhaps more
indirect, proof is found in [4, Thm. 3.2]8 Also, I(φ, F ) �= (0) if and only if∫ 2π

0

log dist(eiθ, σ(φ) ∪ F )
dθ

2π
> −∞ (5.2)

(see [32]). In fact, if (5.2) holds, then there is a g ∈ A∞ (g(k) has a continuous
extension to D− for all k) such that g ∈ I(φ, F ) \ (0) and g generates I(φ, F )
in the sense that the smallest weak-* closed ideal containing g is I(φ, F ). In this
case, φg, the inner part of g, must be φ and g−1({0}) ∩ T must be F [15].

It is worth repeating here that we are assuming, to avoid technical details,
that 1/2 < p < 1. In this case, np = 1 (see (4.2)) and so for φ, F, k as before,

Ep(φ, F, k) = Ep(φ, F, 1).

Proposition 5.3. Ep(φ, F, 1)⊥ = I(φ, F ).

7Recall that functions in Op have a continuous extension to D− and so the notation g|F = 0

makes sense.
8The characterization of the ideals of functions ‘smooth up to the boundary’ has been well worked
over [15, 17, 18, 19, 25, 31].
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Proof. Let g ∈ I(φ, F ). Then g ∈ φH∞ and so g annihilates E2(φ) (being the
annihilator of φH2 in H2). Also, for eiθ ∈ F ,〈

1
1 − e−iθz

, g

〉
= g(eiθ) = 0.

Recalling the definition of ep(φ, F, 1) from (4.4), we see that g annihilates ep(φ, F, 1)
and hence, by Aleksandrov’s approximation (4.5), Ep(φ, F, 1). For the other direc-
tion, suppose g ∈ Op annihilates Ep(φ, F, 1). Then g annihilates E2(φ) as well as
(1 − e−iθz)−1 for all eiθ ∈ F . It follows now that g ∈ I(φ, F ). �

This proposition yields the following corollary.

Corollary 5.4. The following are equivalent.
1. Ep(φ, F, 1) is weakly closed.
2. Condition (5.2) is satisfied.
3. Ep(φ, F, 1) is not weakly dense.

Before getting into the proof, let us set some notation. For f ∈ Hp, let [f ]
denote the linear span of {Bnf : n = 0, 1, . . .}, [f ]Hp the closure of [f ] in the Hp

metric, and [f ]w denote the weak-closure of [f ]. From the definitions of the metric
and weak topologies follow the inclusions

[f ] ⊂ [f ]Hp ⊂ [f ]w. (5.5)

Proof of Corollary 5.4. We will show that (1) ⇔ (2) and (2) ⇔ (3). If Ep(φ, F, 1)
is weakly closed, it is not weakly dense and so by Proposition 5.3,

(0) �= Ep(φ, F, 1)⊥ = I(φ, F ).

Since I(φ, F ) �= (0), then (5.2) must be satisfied. So (1) ⇒ (2).
For the other direction, we assume (5.2) is satisfied. We will show that

Ep(φ, F, 1) is weakly closed by showing it has the Hahn-Banach separation prop-
erty. Let f0 ∈ Hp \ (0) satisfy 〈f0, g〉 = 0 for all g ∈ Ep(φ, F, 1)⊥ = I(φ, F ). We
will show that f0 ∈ Ep(φ, F, 1).

Since I(φ, F ) is an ideal, then znI(φ, F ) ⊂ I(φ, F ) and, by using the identity

〈Bnf0, g〉 = 〈f0, z
ng〉 = 0, n = 0, 1, 2, . . . , g ∈ I(φ, F ),

we see that
〈f, g〉 = 0 for all g ∈ I(φ, F ) and f ∈ [f0].

But since [f0]⊥ �= (0) (since I(φ, F ) �= (0)), then [f0]w �= Hp and hence, by (5.5),
[f0]Hp �= Hp.

It follows now, by Aleksandrov’s theorem (Theorem 4.6), that

[f0]Hp = Ep(ψ, H, 1) = ep(ψ, H, 1) = E2(ψ)
∨{ 1

1 − e−iθz
: eiθ ∈ H

}
,

where ψ is inner and H is a closed subset of T. We assume, as always, that
σ(ψ) ∩ T ⊂ H . Let g1 ∈ I(φ, F ) so that φg1 (the inner part of g1) is equal to φ
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and g−1
1 ({0})∩T = F . This is possible since we are assuming (5.2) and so we can

invoke a result in [15] (the ideals are singly generated).
Since g1 ⊥ [f0]Hp , then g1 ⊥ E2(ψ) and so g1 ∈ ψH∞. It follows now, since

φg1 = φ, that ψ divides φ and so E2(ψ) ⊂ E2(φ). Notice again that g1 ⊥ [f0]Hp

and so

g1 ⊥
∨{ 1

1 − eiθz
: eiθ ∈ H

}
.

This means that 〈
1

1 − e−iθz
, g1

〉
= g1(eiθ) = 0, eiθ ∈ H.

Since g−1({0}) ∩ T = F , then H ⊂ F and so, again using Aleksandrov’s approxi-
mation theorem Ep(φ, F, 1) = ep(φ, F, 1) and Ep(ψ, H, 1) = ep(ψ, H, 1),

f0 ∈ [f0]Hp = Ep(ψ, H, 1) ⊂ Ep(φ, F, 1).

Thus Ep(φ, F, 1) satisfies the Hahn-Banach separation property and hence is weakly
closed. Hence (2) ⇒ (1).

Finally, from (5.1) and Proposition 5.3, notice that for any φ and F , the weak
closure of Ep(φ, F, 1) is

⊥(Ep(φ, F, 1)⊥) = ⊥I(φ, F ).

Thus Ep(φ, F, 1) is not weakly dense if and only if (5.2) is satisfied. Hence (2) ⇔ 3).
�

The following is our alternative description of Ep(φ, F, 1). The theorem and
proof is very similar to a result for weighted Bergman spaces in [4] but, for the
sake of completeness, and since there are enough differences, we include it anyway.

Theorem 5.6. If (5.2) is satisfied, then Ep(φ, F, 1) is the space of functions f ∈ Hp

such that
1. fg ∈ H1

2. f/φ has a pseudocontinuation to an f̃φ ∈ Hp(De) with f̃φ(∞) = 0,
where g ∈ A∞ with φg = φ and g−1({0}) ∩ T = F .

Proof. Since Ig (the weak-* closed ideal generated by g) is equal to I(φ, F ), then,
by the equality Ep(φ, F, 1) = ⊥I(φ, F ), we need to show that an f ∈ Hp satisfies
the two hypotheses of the theorem if and only if f ∈ ⊥Ig.

Let φΘ = g be the inner-outer factorization of g. If f ∈ Hp satisfies the two
hypotheses of the theorem, then for almost every θ,

(fg)(eiθ) = f̃φ(eiθ)Θ(eiθ).

The right-hand side of the above equation is the boundary function for

f̃φ(z)Θ(1/z)

which belongs to Hp(De). Moreover, by the assumption that fg ∈ H1, this bound-
ary function belongs to L1 and so, by a classical theorem of Smirnov [11, p. 28],
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(fg)(eiθ) is the boundary function for a function belonging to H1(De). Hence, by
the F. and M. Riesz theorem (3.8),∫ 2π

0

(fg)(eiθ)e−inθ dθ

2π
= 0, n = 0, 1, 2, . . .

By our dual pairing between Hp and Op, and the fact that fg ∈ H1, we conclude
that

〈f, zng〉 =
∫ 2π

0

(fg)(eiθ)e−inθ dθ

2π
= 0, n = 0, 1, 2, . . . 9

This shows that f annihilates the weak-* closed S-invariant subspace of Op con-
taining g. One can prove (see [4, Thm. 3.2]) that any weak-* closed S-invariant
subspace of Op is an ideal and so f ∈ ⊥Ig (the weak-* closed ideal generated by g).

Conversely, suppose f ∈ ⊥Ig, or equivalently f ∈ Ep(φ, F, 1). By the defi-
nition of Ep(φ, F, 1), f satisfies the second (pseudocontinuation) condition of the
theorem and so we just need to show that fg belongs to H1. To this end note that
for any integer n � 1,

〈f, g〉 = n!
∫

f(zn+1g)(n+1)(1 − |z|2)n dA

π
,

where dA is area measure on the disk D. For ease in notation, let

gn := (zn+1g)(n+1).

We also assume that n > 1/p so that fgn(1 − |z|2)n is bounded on D. This is
possible since gn is bounded on D, since we are assuming that g ∈ A∞, and all Hp

functions f satisfy the growth estimate |f(z)| � Cf (1 − |z|)−1/p (recall this from
§ 2).

With this fixed n, let λ ∈ D and note, using the definition of Ep(φ, F, 1), that

f − f(λ)
z − λ

∈ Ep(φ, F, 1)

and so, since g annihilates Ep(φ, F, 1),

0 = 〈f − f(λ)
z − λ

, g〉 = n!
∫

f − f(λ)
z − λ

gn(1 − |z|2)n dA

π
. (5.7)

Let

G(λ) := n!
∫

gn(1 − |z|2)n

z − λ

dA

π
, H(λ) := n!

∫
fgn(1 − |z|2)n

z − λ

dA

π
.

Elementary facts about Cauchy transforms of bounded functions on the plane [33,
p. 40] show that G and H are continuous functions on C and satisfy the Lipschitz-
type condition

|G(λ1) − G(λ2)| � CG|λ1 − λ2| log
1

|λ1 − λ2| . (5.8)

9Note, by the dominated convergence theorem and the fact that fg ∈ H1 and so frgr → fg as
r → 1, that frgr − fg = (frgr − fg)gr/gr + fg(gr/gr − g/g) converges to zero as r → 1.
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Furthermore, by (5.7),
f(λ)G(λ) = H(λ), λ ∈ D. (5.9)

A computation with power series shows that for 0 < r < 1

G(eiθ/r) = re−iθg(reiθ)

and so for r > 1/2,

|(fg)(reiθ)| � C
[|f(reiθ)G(reiθ)| + |f(reiθ)| ∣∣G(reiθ) − G(eiθ/r)

∣∣] . (5.10)

By (5.9), the first term on the right-hand side of the above is equal to |H(reiθ)|
which is uniformly bounded in r and θ. For the second term, notice from (5.8)
that ∣∣G(reiθ) − G(eiθ/r)

∣∣ � CG(1 − r) log
1

1 − r

and so, by (5.10),

|(fg)(reiθ)| � C1 + C2|f(reiθ)|(1 − r) log
1

1 − r
. (5.11)

Since Hp ⊂ Bp then, for any 0 < r < 1,

‖f‖Bp �
∫ 1

r

(1 − s)1/p−2

∫ 2π

0

|f(seiθ)| dθ

2π
ds

�
∫ 1

r

(1 − s)1/p−2

∫ 2π

0

|f(reiθ)| dθ

2π
ds

� (1/p − 1)−1(1 − r)1/p−1

∫ 2π

0

|f(reiθ)| dθ

2π

and so ∫ 2π

0

|f(reiθ)| dθ

2π
� Cp(1 − r)1−1/p.

Combining this with (5.11) along with the fact that 1/2 < p < 1 (and so

(1 − r)2−1/p log
1

1 − r

is bounded in r), we conclude that∫ 2π

0

|(fg)(reiθ)| dθ

2π

is uniformly bounded in r. Hence fg ∈ H1. �

For other p, not in (1/2, 1), the above theorem is still true, though the proof
is more technical since the resulting ideal Ep(φ, F, k)⊥ will involve the zeros of
the derivatives of g on the circle. The proof presented here needs to be changed
slightly and for this we refer the reader to [4] where there is a similar result for the
invariant subspaces of Bp. Notice that since every weakly closed invariant subspace
is also closed in the metric of Hp, we have shown the following corollary.
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Corollary 5.12. For 0 < p < 1 and φ, F, k satisfying the condition∫ 2π

0

log dist(eiθ, σ(φ) ∪ F )
dθ

2π
> −∞, (5.13)

Ep(φ, F, k) is a non-trivial weakly closed invariant subspace of Hp. Conversely,
every non-trivial weakly closed invariant subspace of Hp takes the form Ep(φ, F, k)
for some φ, F, k satisfying (5.13).

6. The Bergman spaces Lp
a, 0 < p < 1

We end with some remarks about the invariant subspaces of the Bergman spaces10

Lp
a (0 < p < ∞) of analytic functions f on D for which

‖f‖p :=
(∫

D

|f |pdA

)1/p

< ∞.

The quantity ‖f − g‖p defines a norm when 1 � p < ∞ while ‖f − g‖p
p defines

a translation invariant metric when 0 < p < 1. In either case, one can use the
pointwise estimate

|f(z)| � π−1/p‖f‖p(1 − |z|)−2/p, z ∈ D

to show that Lp
a is an F -space [9, p. 51]. For f ∈ Lp

a, routine integral estimates
show that Bf ∈ Lp

a. Using the above pointwise estimate, one proves that the graph
of B is closed and so, by the closed graph theorem (which is valid in an F -space
[9, p. 57]), B is continuous on Lp

a.
When 1 � p < ∞, one can make heavy use of duality to show that if E is a

non-trivial invariant subspace of Lp
a, then every f ∈ E has a pseudocontinuation

of bounded type. Moreover, when 1 � p < 2, there is a complete description of
E [3, 4, 22]. We pause for a moment to remark that in order for f ∈ E to have a
pseudocontinuation, it must first have non-tangential limits almost everywhere on
T. This is automatic for Hp but not for Lp

a. There are indeed examples of functions
in Lp

a (or in any of the weighted Bergman spaces such as Bp) which do not even
have radial limits almost everywhere [11, p. 86]. Such poorly behaved functions do
not belong to non-trivial invariant subspaces of Lp

a.
When 0 < p < 1, can we say anything about the invariant subspaces of Lp

a? In
this case, Lp

a is not locally convex and so, as in Hp (0 < p < 1), duality is of little
use. J. Shapiro [28, 29] showed, assuming 0 < p < 1 as we will do from now on,
that Lp

a ⊂ Bp/2 and this containment is continuous. Moreover, Lp
a and Bp/2 have

the same set of continuous linear functionals (via the same ‘Cauchy duality’ as in
(2.1)), namely Op/2. As in the Hp case, there is a corresponding weak topology on
Lp

a induced by Op/2 and if A is a linear manifold in Lp
a, then

clos(Lp
a,wk)A =

(
closBp/2A

) ∩ Lp
a. (6.1)

10Two nice references about Bergman spaces are the following books [10, 14].
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If E is a norm-closed invariant subspace of Bp/2, then E⊥ is an S-invariant
subspace of Op/2 and hence a weak-* closed ideal which, as before (see also [4,
Thm. 3.2]), is of the form Ig (the weak-* closed ideal generated by g) for some
g ∈ A∞. By the Hahn-Banach theorem, which is applicable here since Bp/2 is a
Banach space, we have E = ⊥Ig. One can prove [4] that f ∈ Bp/2 belongs to
⊥Ig if and only if (i) fg ∈ H1; (ii) f/φg (where φg is the inner part of g) has a
pseudocontinuation f̃φg ∈ N+(De) 11 which vanishes at infinity. Combining this
with (6.1) we have the following result.

Theorem 6.2. Let 0 < p < 1 and E be a non-trivial weakly closed invariant subspace
of Lp

a. Then there is a g ∈ A∞ such that E is the set of f ∈ Lp
a such that

1. fg ∈ H1.
2. f/φg has a pseudocontinuation f̃φg ∈ N+(De) which vanishes at infinity.

Certainly if E is a weakly closed invariant subspace of Lp
a, then E is closed in

the metric of Lp
a. Is every closed invariant subspace weakly closed? In Hp, this is

not the case (see Corollary 5.12). Though we do not have a proof, we conjecture
that every closed invariant subspace of Lp

a is indeed weakly closed. In Hp, the
space E =

∨{(1− e−iθz)−1 : 0 � θ < 2π}, where
∨

is the closed linear span in the
metric topology of Hp, is a proper closed invariant subspace that is weakly dense.
This same example, with the linear span in Hp replaced by the closed linear span
in the metric topology of Lp

a, is certainly weakly dense. However, since L1
a ⊂ Lp

a

with continuous inclusion, and since the linear span of {(1−e−iθz)−1 : 0 � θ < 2π}
is norm dense in L1

a, we see that E is dense in the metric topology of Lp
a. We end

with the following open question.

Question 6.3. For 0 < p < 1, what are the closed (in the metric topology) invariant
subspaces of Lp

a?
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we obtain the estimate of the remainder term. We also consider the modifi-
cation of these operators in order to improve the degree of approximation of
twice differentiable functions.

Mathematics Subject Classification (2000). 41A10, 41A25.

Keywords. approximation, q-Bernstein polynomials, central moments, inequal-
ities.

1. Introduction

The classical Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(f, x) =
n∑

k=0

f

(
k

n

)
pnk(x), (1.1)

pnk(x) =
(

n

k

)
xk(1 − x)n−k. (1.2)

This construction is due to S. Bernstein [1]. These polynomials possess many re-
markable properties and are the leading special case in the theory of approximation
by positive linear operators (p.l.o.) (cf., e.g., [8, 9, 10]).
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In 1997 G. M. Phillips [6] generalized the Bernstein polynomials in the fol-
lowing way. Let 0 < q ≤ 1 and denote by

[n]q = [n] = 1 + q + · · · + qn−1 for n ∈ N; [0] = 0; (1.3)

[n]! = [1][2] . . . [n] for n ∈ N; [0]! = 1; (1.4)(
n

k

)
q

=
[n]!

[k]![n − k]!
, k = 0, 1, . . . , n; (1.5)

if k < 0 or k > n then
(
n
k

)
q

= 0. The notation (1.5) is due to Gauss [3, p. 16]. The
q-Bernstein polynomials G.M. Phillips defined by formulas

Bn(f, x, q) =
n∑

k=0

f

(
[k]
[n]

)
pnk(x, q), (1.6)

pnk(x, q) =
(

n

k

)
q

xk(1 − x)(1 − xq) . . . (1 − xqn−k−1). (1.7)

For the special case q = 1 we have Bn(f, x, 1) = Bn(f, x). As pn(x, q) ≥ 0 on [0, 1]
therefore Bn(f, x, q) is p.l.o.

2. Main identities

From (1.3)–(1.5) we have

[k] + qk[n − k] = [n], (2.1)(
n − 1
k − 1

)
q

+ qk

(
n − 1

k

)
q

=
(

n

k

)
q

, (2.2)

[k]
[n]

(
n

k

)
q

=
(

n − 1
k − 1

)
q

, (2.3)

[n − k]
[n]

(
n

k

)
q

=
(

n − 1
k

)
q

. (2.4)

In order to consider the approximation properties of p.l.o. Bn(f, x, q) we shall
derive the following identities:

Bn(1, x, q) = 1, (2.5)

Bn(t, x, q) = x, (2.6)

Bn(t2, x, q) = x2 +
x(1 − x)

[n]
. (2.7)

These formulas are the generalization of those for classical Bernstein polynomi-
als. Our proofs are based on (2.1)–(2.4) and are essentially different from the
proofs in [6].



On Some Classes of q-parametric Positive Linear Operators 215

3. Proofs of relations (2.5)–(2.7)

We shall obtain (2.5) by induction. The case n = 1 is immediate. In fact,

B1(1, x, q) = p10(x, q) + p11(x, q) = (1 − x) + x = 1.

Assume that (2.5) is true for n − 1, in other words Bn−1(1, x, q) = 1. Using (2.2)
we get

pnk(x, q) =

{(
n − 1
k − 1

)
q

+ qk

(
n − 1

k

)}
xk(1 − x) . . . (1 − xqn−k−1)

= xpn−1,k−1(x, q) + (1 − x)pn−1,k(qx, q).

Then because of the induction hypothesis we have

Bn(1, x, q) =
n∑

k=0

pnk(x, q) = xBn−1(1, x, q) + (1 − x)Bn−1(1, qx, q) = 1.

The equality (2.6) is readily derived from (2.5) with the help of (2.3). Indeed,

Bn(t, x, q) =
n∑

k=0

[k]
[n]

pnk(x, q) = x

n∑
k=1

pn−1,k−1(x, q) = x.

We shall prove now the following recurrence formula

Bn(tm+1, x, q) = Bn(tm, x, q) − [n − 1]m

[n]m
(1 − x)Bn−1(tm, xq, q). (3.1)

In the special case m = 1 we shall obtain (2.7) from (3.1). We write explicitly

Bn(tm+1, x, q) =
n∑

k=0

[k]m+1

[n]m+1

(
n

k

)
q

xk(1 − x)(1 − xq) . . . (1 − xqn−k−1) (3.2)

and transform the first factor using (2.1) and (2.4) in the following manner:

[k]m+1

[n]m+1

(
n

k

)
q

=
[k]m

[n]m

(
1 − qk [n − k]

[n]

)(
n

k

)
q

=
[k]m

[n]m

(
n

k

)
q

− [n − 1]m

[n]m
[k]m

[n − 1]m

(
n − 1

k

)
q

qk. (3.3)

Finally, if we substitute (3.3) in (3.2) we get (3.1). In fact, according to (2.6) and
(3.1) we find for m = 1

Bn(t2, x, q) = x − [n − 1]
[n]

(1 − x)xq = x2 +
x(1 − x)

[n]
.

We conclude from (3.1) that for m ≤ n

deg Bn(tm, x, q) = m. (3.4)

Possibly the recurrence formula (3.1) is new even for the classical Bernstein
polynomials. Another recurrence relation for Bn(tm, x) is stated in [9, p. 28].
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4. Approximation theorem

If 0 < q < 1 then by (2.7)

lim
n→∞{Bn(t2, x, q) − x2} = (1 − q)x(1 − x).

Consequently, the polynomials Bn(t2, x, q) do not converge to x2 in (0, 1) as n →
∞. In what follows it is assumed that 0 < qn < 1. It is easy to see that if qn → 1
for n → ∞ then

lim
n→∞[n]qn = +∞.

In fact, there exists for every q0, 0 < q0 < 1, such a number n0 that [n0]q0 >
2−1(1− q0)−1. But for n > n0 such that qn > q0 we have [n]qn > [n0]q0 . Therefore,
if qn → 1 then

lim
n→∞Bn(t2, x, qn) = x2.

It should be noted that as [n]qn < n then

Bn(t2, x, qn) − x2 > Bn(t2, x) − x2 (0 < x < 1).

Consequently, the degree of approximation of t2 by Bn(t2, x, qn) for arbitrary rate
of convergence of qn to the unity is worse than the degree of approximation of t2

by Bn(t2, x).
So-called central moments of p.l.o. play a significant role in the theory of

approximation by sequence of p.l.o. For the q-Bernstein polynomials let us denote
them by

Snm(x, q) = Bn((t − x)m, x, q). (4.1)

For m = 2 using (2.5)–(2.7) we find immediately

Sn2(x, q) =
x(1 − x)

[n]
. (4.2)

As the conditions (2.5) and (4.2) take place then by a well-known general result
due to Popoviciu (see [8, p. 13]) we obtain:

Theorem 4.1. For any f ∈ C[0, 1] the following inequality holds

|Bn(f, x, qn) − f(x)| ≤ 2ω(f,
√

Sn2(x, qn)) ≤ 2ω(f, 2−1[n]−
1
2

qn ), (4.3)

where ω(f, s) denotes the modulus of continuity of the function f on the segment
[0, 1].

Therefore, the sequence Bn(f, x, qn) converges uniformly to f for each con-
tinuous function f if and only if

lim
n→∞ qn = 1. (4.4)
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5. Generalization of Voronovskaya’s theorem

In this section we will follow the method due to S. Bernstein [2] (see also [9, §6]).
First of all we shall find the explicit formula for Sn3(x, q). Using (3.1) and taking
into account (2.5)–(2.7) we obtain

Bn(t3, x, q) = x2 +
x(1 − x)

[n]
− x(1 − x)

[n]

(
1 − 1

[n]

)
(1 + q2[n − 2]x). (5.1)

On the other hand, if we express t3 at the following form

t3 = x3 + 3x2(t − x) + 3x(t − x)2 + (t − x)3

and use the q-Bernstein polynomial, then we get

Bn(t3, x, q) = x3 + 3
x2(1 − x)

[n]
+ Sn3(x, q). (5.2)

By (5.1) and (5.2) we finally obtain the explicit expression

Sn3(x, q) =
x(1 − x)(1 − Qnx)

[n]2
, (5.3)

where Qn = 2 + q(1 − qn−1). Therefore,

Bn(t3, x, q) = x3 + 3
x2(1 − x)

[n]
+

x(1 − x)(1 − Qnx)
[n]2

. (5.4)

The analogous calculation can be applied to Sn4(x, q). Substituting (5.4) in (3.1)
and comparing the obtained result with the formula

Bn(t4, x, q) = x4 + 6
x3(1 − x)

[n]
+ 4

x2(1 − x)(1 − Qnx)
[n]2

+ Sn4(x, q), (5.5)

similar to (5.2), we easily receive the important inequality

Sn4(x, q) ≤ K
x(1 − x)

[n]2
. (5.6)

Here and further K denotes a positive absolute constant.

Theorem 5.1. For any f ∈ C(2)[0, 1] the following inequality holds∣∣∣∣Bn(f, x, qn) − f(x) − f ′′(x)
2

x(1 − x)
[n]qn

∣∣∣∣ ≤ Kx(1 − x)
[n]qn

ω(f ′′, [n]−
1
2

qn ). (5.7)

Let f ∈ C(2)[0, 1] and x ∈ [0, 1] is fixed. By Taylor’s formula we may write

f(t) = f(x) +
f ′(x)

1!
(t − x) +

f ′′(ξt)
2!

(t − x)2

= f(x) +
f ′(x)

1!
(t − x) +

f ′′(x)
2!

(t − x)2 + r2(f, t, x), (5.8)

r2(f, t, x) =
f ′′(ξt) − f ′′(x)

2
(t − x)2, (5.9)
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where ξt is situated between x and t, therefore, |ξt − x| < |t − x|. Applying p.l.o.
Bn(f, x, q) to (5.8) we obtain∣∣∣∣Bn(f, x, qn) − f(x) − f ′′(x)

x(1 − x)
2[n]qn

∣∣∣∣ ≤ Bn(|r2|, x, qn),

because Sn1(x, q) = 0. For the estimate of the remainder r2 we shall use the
well-known inequality ω(f, λδ) ≤ (1 + λ2)ω(f, δ). We have

|f ′′(ξt) − f ′′(x)| ≤ ω(f ′′, |ξt − x|) ≤ ω(f ′′, |t − x|)
≤ ω(f ′′, [n]−

1
2

qn )(1 + [n]qn(t − x)2).

Hence,

Bn(|r2|, x, qn) ≤ 1
2
ω(f ′′, [n]−

1
2

qn )(Sn2(x, qn) + [n]qnSn4(x, qn))

≤ 1
2
ω(f ′′, [n]−

1
2

qn )
x(1 − x)

[n]qn

(1 + K).

The proof is complete. �

Corollary 5.2. If f ∈ C(2)[0, 1] and qn → 1 as n → ∞, then

lim
n→∞[n]qn{Bn(f, x, qn) − f(x)} =

f ′′(x)
2

x(1 − x) (5.10)

uniformly on [0, 1].

It is of interest the fact that for the function f(t) = t2 takes place the exact
equality

[n]qn{Bn(t2, x, qn) − x2} =
1
2
(x2)′′x(1 − x)

without passing to the limit.

Corollary 5.3. If the function f is convex on [0, 1] then

Bn(f, x, q) ≥ f(x). (5.11)

Evidently, it suffices to verify (5.11) for f ∈ C(2)[0, 1]. Using the first line of
(5.8) we get

Bn(f, x, q) = f(x) +
1
2

n∑
k=0

f ′′(ξk)
(

[k]
[n]

− x

)2

pnk(x, q) ≥ f(x)

as f ′′(x) ≥ 0 for every x.
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6. Modification of q-Bernstein polynomials

Let f ∈ C(2)[0, 1] and let

Dn(f, x, q) = Bn(f, x, q) − x(1 − x)
2[n]

Bn(f ′′, x, q) (6.1)

denote the linear operator which represents some modification of p.l.o. Bn(f, x, q).
The special case q = 1 is due to S. Bernstein [2] (see also [9, §7]). Applying
Dn(f, x, q) instead of Bn(f, x, q) to f ∈ C(2)[0, 1] we are able to improve consider-
ably the degree of approximation. In this connection we shall prove the following
theorem.

Theorem 6.1. If f ∈ C(2)[0, 1] then

|Dn(f, x, qn) − f(x)| ≤ Kx(1 − x)
[n]qn

ω(f ′′, [n]−
1
2

qn ). (6.2)

Combining (5.7) and (4.3) we get immediately (6.2). Obviously,

|Dn(f, x, q) − f(x)|

≤
∣∣∣∣Bn(f, x, q) − f(x) − f ′′(x)

x(1 − x)
2[n]

∣∣∣∣+ x(1 − x)
2[n]

|f ′′(x) − Bn(f ′′, x, q)|.

This establishes the statement.
Concerning the modification of the classical Bernstein polynomials for f ∈

C(ν)[0, 1], ν ≥ 3, see [9, §7]. For the further application of our idea of modification
to Bn(f, x, q) in the case f ∈ C(ν)[0, 1], ν ≥ 3, we have need of bounds for the
central moments Sn,2m(x, q) for every natural number m. For our purpose it suffices
to show that

Sn,2m(x, q) ≤ Km
x(1 − x)

[n]m
. (6.3)

These inequalities take place for the classical Bernstein polynomials for all m. If
0 < q < 1 then (6.3) holds in the special cases m = 1 and m = 2 according to (4.2)
and (5.6). It would be of interest to know if (6.3) is true in general case. (See [10]).

Recently, S. Ostrovska [5] has published very interesting paper concerning
the approximation of an analytic function f in the z-plane by Bn(f, z, q) if it is
assumed that q ∈ (1,∞).

7. P.l.o. introduced by S. Ostrovska and A. Il’inskii

In 2001 A. Il’inskii and S. Ostrovska [4] introduced a certain new set of p.l.o.
and denoted it by B∞(f, x, q), 0 < q < 1. These p.l.o. were derived by means of
Bn(f, x, q) with the help of an informal passing to the limit for n → ∞. As we
shall see the behavior of B∞(f, x, q) is very similar to that of Bn(f, x, q). In [4]
the investigation is based on some probabilistic considerations as in the original
basic note [1] due to S. Bernstein. Our method is different from the authors’ one
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and is similar to the discussion in §§2–6. For a sake of simplicity we shall apply
the notation Aq(f, x) instead of B∞(f, x, q).

Let 0 < q < 1; it is valid the following Euler’s identity:
∞∑

k=0

xkψ(x)
(1 − q) . . . (1 − qk)

= 1, 0 ≤ x < 1, (7.1)

where

ψ(x) =
∞∏

s=0

(1 − xqs). (7.2)

In order to deduce (7.1) we may use the expansion of the function ϕ(x) = (1/ψ(x))
in the power series for 0 ≤ x < 1.

Obviously, we have

ψ(x) = (1 − x)ψ(qx), ϕ(qx) = (1 − x)ϕ(x). (7.3)

Hence,

ϕ(0) = 1,
ϕ(k)(0)

k!
=

ϕ(k−1)(0)
(k − 1)!(1 − qk)

=
1

(1 − q) . . . (1 − qk)
. (7.4)

Thus (7.1) is established and the series in the left-hand side converges uniformly
to the unity in [0, 1 − ε]. P.l.o. in question Aq(f, x) for f ∈ C[0, 1] is defined by

Aq(f, x) =
∞∑

k=0

f(1 − qk)pqk(x), (7.5)

pqk(x) =
xkψ(x)

(1 − q) . . . (1 − qk)
. (7.6)

On account of (7.1) the equality

Aq(1, x) =
∞∑

k=0

pqk(x) = 1 (7.7)

holds. It is easy to see also that

Aq(t, x) =
∞∑

k=0

(1 − qk)pqk(x) = x
∞∑

k=1

pq,k−1(x) = x. (7.8)

It is not difficult to verify the following recurrence formula

Aq(tm+1, x) = Aq(tm, x) − (1 − x)Aq(tm, qx). (7.9)

Indeed, it suffices to observe that

qkpqk(x) = (1 − x)pqk(qx).

Hence,

(1 − qk)m+1pqk(x) = (1 − qk)mpqk(x) − (1 − x)(1 − qk)mpqk(qx).

Let us note that it is possible to obtain (7.7)–(7.9) as limits of (2.5), (2.6)
and (3.1) for n → ∞.
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It follows from (7.9) that for any positive integer m the analytic function
Aq(tm, x) is a polynomial of exact degree m.

Putting m = 1 into (7.9) we get immediately

Aq(t2, x) = x2 + (1 − q)x(1 − x). (7.10)

If we denote a central moment of p.l.o. Aq by

Sm(Aq, x) = Aq((t − x)m, x) (7.11)

then by (7.7), (7.8) and (7.10) we have

S0(Aq , x) = 1, S1(Aq, x) = 0, S2(Aq, x) = (1 − q)x(1 − x). (7.12)

Later we shall establish results analogous to the preceding theorems on ap-
proximation by q-Bernstein polynomials.

8. Approximation by p.l.o. Aq

We shall consider an approximation of the function f ∈ C[0, 1] by Aqf assuming
that 0 < q < 1 and q tends to the unity. Taking into account (7.12) and applying
the general Popoviciu’s theorem we obtain

Theorem 8.1. If f ∈ C[0, 1] then

|Aq(f, x) − f(x)| ≤ 2ω(f,
√

S2(Aq , x)) ≤ 2ω(f,
1
2

√
1 − q). (8.1)

Consequently, according to (7.10) and (8.1) the sequence {Aqnf} converges
uniformly to any f ∈ C[0, 1] if and only if qn → 1 for n → ∞. In order to establish a
theorem of Voronovskaya’s type it is enough to estimate the fourth central moment
S4(Aq, x). Now the consideration is easier then in §5. Using (7.9) and (7.11) we
get immediately

S3(Aq, x) = (1 − q)2x(1 − x)(1 − (q + 2)x). (8.2)

Further, applying (7.9) for m = 4 and taking into account (8.2) we obtain required
inequality

S4(Aq, x) ≤ K(1 − q)2x(1 − x). (8.3)

Theorem 8.2. If f ∈ C(2)[0, 1] then∣∣∣∣Aq(f, x) − f(x) − 1 − q

2
f ′′(x)x(1 − x)

∣∣∣∣ ≤ K(1 − q)x(1 − x)ω(f ′′,
√

1 − q). (8.4)

For the proof of (8.4) a slight variation of the argument of §5 may be made.
We have just to apply (8.3) instead of (5.6).

Corollary 8.3. If f ∈ C(2)[0, 1] then

lim
q→1

Aq(f, x) − f(x)
1 − q

=
f ′′(x)

2
x(1 − x) (8.5)

uniformly on [0, 1].
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Of course, for f(t) = t2 we have because of (7.10) the exact equality

Aq(t2, x) − x2 = (1 − q)
(x2)′′

2
x(1 − x).

Corollary 8.4. If the function f is convex on [0, 1] then Aq(f, x) ≥ f(x).

For f ∈ C(2)[0, 1] we define the modification of p.l.o. Aq(f, x) by the formula

Cq(f, x) = Aq(f, x) − 1 − q

2
x(1 − x)Aq(f ′′, x). (8.6)

The following statement is similar to Theorem 6.1 and is the immediate conse-
quence of Theorems 8.1 and 8.2.

Theorem 8.5. If f ∈ C(2)[0, 1] then

|Cq(f, x) − f(x)| ≤ K(1 − q)x(1 − x)ω(f ′′,
√

1 − q). (8.7)
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