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Main Topics

Sobolev’s discoveries of the 1930’s have a strong influence on de-
velopment of the theory of partial differential equations, analysis,
mathematical physics, differential geometry, and other fields of math-
ematics. The three-volume collection Sobolev Spaces in Mathematics
presents the latest results in the theory of Sobolev spaces and appli-
cations from leading experts in these areas.

I. Sobolev Type Inequalities
In 1938, exactly 70 years ago, the original Sobolev inequality (an embed-
ding theorem) was published in the celebrated paper by S.L. Sobolev “On
a theorem of functional analysis.” By now, the Sobolev inequality and its
numerous versions continue to attract attention of researchers because of
the central role played by such inequalities in the theory of partial differ-
ential equations, mathematical physics, and many various areas of analysis
and differential geometry. The volume presents the recent study of different
Sobolev type inequalities, in particular, inequalities on manifolds, Carnot–
Carathéodory spaces, and metric measure spaces, trace inequalities, inequal-
ities with weights, the sharpness of constants in inequalities, embedding theo-
rems in domains with irregular boundaries, the behavior of maximal functions
in Sobolev spaces, etc. Some unfamiliar settings of Sobolev type inequalities
(for example, on graphs) are also discussed. The volume opens with the survey
article “My Love Affair with the Sobolev Inequality” by David R. Adams.

II. Applications in Analysis and Partial Differential Equations
Sobolev spaces become the established language of the theory of partial dif-
ferential equations and analysis. Among a huge variety of problems where
Sobolev spaces are used, the following important topics are in the focus of this
volume: boundary value problems in domains with singularities, higher order
partial differential equations, nonlinear evolution equations, local polynomial
approximations, regularity for the Poisson equation in cones, harmonic func-
tions, inequalities in Sobolev–Lorentz spaces, properties of function spaces in
cellular domains, the spectrum of a Schrödinger operator with negative po-
tential, the spectrum of boundary value problems in domains with cylindrical
and quasicylindrical outlets to infinity, criteria for the complete integrability
of systems of differential equations with applications to differential geome-
try, some aspects of differential forms on Riemannian manifolds related to the
Sobolev inequality, a Brownian motion on a Cartan–Hadamard manifold, etc.
Two short biographical articles with unique archive photos of S.L. Sobolev
are also included.



viii Main Topics

III. Applications in Mathematical Physics
The mathematical works of S.L. Sobolev were strongly motivated by particu-
lar problems coming from applications. The approach and ideas of his famous
book “Applications of Functional Analysis in Mathematical Physics” of 1950
turned out to be very influential and are widely used in the study of various
problems of mathematical physics. The topics of this volume concern mathe-
matical problems, mainly from control theory and inverse problems, describ-
ing various processes in physics and mechanics, in particular, the stochastic
Ginzburg–Landau model with white noise simulating the phenomenon of su-
perconductivity in materials under low temperatures, spectral asymptotics
for the magnetic Schrödinger operator, the theory of boundary controllabil-
ity for models of Kirchhoff plate and the Euler–Bernoulli plate with various
physically meaningful boundary controls, asymptotics for boundary value
problems in perforated domains and bodies with different type defects, the
Finsler metric in connection with the study of wave propagation, the electric
impedance tomography problem, the dynamical Lamé system with residual
stress, etc.
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Donatella Danielli, Nicola Garofalo, and Nguyen Cong Phuc

Sobolev Embeddings and Hardy Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
David E. Edmunds and W. Desmond Evans

Sobolev Mappings between Manifolds and Metric Spaces . . . . . . . . . . . . . . .185
Piotr Haj�lasz

A Collection of Sharp Dilation Invariant Integral Inequalities
for Differentiable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Vladimir Maz’ya and Tatyana Shaposhnikova

Optimality of Function Spaces in Sobolev Embeddings . . . . . . . . . . . . . . . . .249
Luboš Pick
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Università di Trieste
Via Valerio 12/1, 34127 Trieste
ITALY

e-mail: mitidier@units.it

Irina Mitrea
University of Virginia
Charlottesville, VA 22904

USA

e-mail: im3p@virginia.edu

Marius Mitrea
University of Missouri
Columbia, MO
USA

e-mail: marius@math.missouri.edu

Alexander Movchan
University of Liverpool
Liverpool L69 3BX
UK

e-mail: abm@liverpool.ac.uk

Sergey Nazarov
Institute of Problems in Mechanical Engineering
Russian Academy of Sciences
61, Bolshoi pr., V.O., St.-Petersburg 199178
RUSSIA

e-mail: serna@snark.ipme.ru

Janet Peterson
Florida State University
Tallahassee FL 32306-4120
USA

e-mail: peterson@scs.fsu.edu

Nguyen Cong Phuc
Purdue University
150 N. University Str.
West Lafayette, IN 47906
USA

e-mail: pcnguyen@math.purdue.edu



xx Sobolev Spaces in Mathematics I–III

Luboš Pick
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My Love Affair with the Sobolev
Inequality

David R. Adams

Abstract Reminiscence about different versions of the Sobolev inequality
obtained by the author and others.

Due to the fact that the Sobolev Inequality is
so central to much of mathematical analysis,
especially to partial differential equations, it is
not surprising that there are by now, 70 years
after Sobolev’s original paper, many different
versions of the Sobolev Inequality and by many
different authors. This paper is a tribute to
S.L. Sobolev.

David R. Adams

On a cold December morning shortly after Christmas 1969, a small group of
people were huddled against the cold near a limousine type bus parked in the
middle of the main street of a very small South Dakota farming community
in the central plains of the USA – my ancestral hometown. The bus, run by
the Greyhound Company, was the “east-west connector bus” and the middle
of Main Street was the usual passenger pick-up and drop-off spot in town.
Here Main Street consisted of just one block of store front businesses and it
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2 D. R. Adams

was wide enough for angular parking on each side and still with plenty of
room to accommodate car traffic on either side of the parked bus and the
waiting people. Most of these people were my relatives, gathered in town for
Christmas and now taking the opportunity to see me off. This bus will meet a
larger north-south bus at some highway crosswords out on the nearby prairie.
I am expecting to tranfer to that bus for the next stage of my journey.

When I boarded the small bus, there was only one other passenger, an
elderly woman. And as I sat down and waved a final farewell to my family,
the woman turned to me and asked, “where are you going, young man?” I
could have been very dramatic and responded, “into History!”, but I did not,
nor did it even cross my mind to say such a thing. I just said, “to Rome,
Italy”, which I am sure was dramatic enough. “My land”, she responded, “I
am only going to see my sister in Minnesota, you are going a long ways.”

And I guess it was, both physically and psychologically for all concerned.
And now I can confess that I was not very well prepared for my Italian
sojourn. Though I did eventually adjust and adapt to life in Rome (January–
August 1970), and even began to thrive there toward the end of my stay.
However my budding Italian speech never broke away from my American-
midwestern accent. Though if I kept my mouth shut, I eventually could pass
for Italian at least in dress and demeanor. Once an American tourist stopped
me on the street during my last days to ask, in English, where some place-
street was located. I responded by telling her where it was and how to get
there. “Wow, you speak good English!” she said. “Thank you” I replied and
walked away, leaving her with the illusion.

Thus with my initial bus trip, I began my mathematical odyssey – first to
the CNR in Rome as a Post Doc under the direction of Guido Stampacchia,
later as an instructor at Rice University, an acting Assistant Professor at the
University of California, San Diego, a visiting professor at Indiana University,
and finally a Professor at the University of Kentucky – for the past 30+ years.
When I left for Italy, I had just days earlier received my Ph.D. degree from
the University of Minnesota under the direction of N.G. Meyers. And I began
my Post Doc studies by tackling a question posed earlier by him and then
at the CNR under the watchful eye of Stampacchia. As it turned out, it
was this question of Meyers’ that essentially started me down the road of
looking at variations of the now classical Sobolev Inequality. For I did not
consciously look to that direction, but as it all transpired, I have over the
years returned again and again to this theme, eventually giving five or six
versions of the Sobolev Inequality during my career. And due to the fact
that the Sobolev Inequality is so central to much of mathematical analysis,
especially to partial differential equations, it is not surprising that there are
by now, 70 years after Sobolev’s original paper, many different versions of the
Sobolev Inequality and by many different authors. This paper is a tribute to
S.L. Sobolev. I do not pretend to review all of this literature, only at best,
part of my role in it. This is after all the story of my romance with the
Sobolev Inequality.
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The classical Sobolev Inequality that I refer to can take on one or two
equivalent forms. For example, if u(x) is a smooth function of compact sup-
port, then for 1 < p < n/m, there is a constant c depending only on n, m
and p such that

(∗) ||u||Lq(IRn) � c||Dmu||Lp(Rn),

where 1/q = 1/p − m/n1 Here Dmu denotes the vector of all mth order
derivatives of u. Or, if we use Riesz potentials, an equivalent form of (∗) is

(∗∗) ||Iαf ||Lq(Rn) � c′||f ||Lp(Rn)

with again q = np/(n− αp), where α = m. Here I have written

Iαf(x) =
∫

Rn

|x− y|α−nf(y) dy,

0 < α < n, 1 < p < n/α.
On the connection between the two, simply note |u(x)| � cIm (|Dmu|)(x)

and singular integrals obtained by differentiating Im f m-times.

So now I begin the story of my involvement with the Sobolev Inequality –
from my first struggle at the CNR to prove a trace inequality to my more
recent work on a vanishing mean exponential integrability condition with
R. Hurri-Syrjänen.

Some time lines are:

1971 – The trace inequality (Sect. 1)

1973 – An exponential trace inequality (Sect. 6)

1974 – A mixed norm inequality; with R. Bagby (Sect. 2)

1975 – A Morrey–Sobolev Inequality (Sect. 3)

1976 – A trace inequality with CSI, q = p (Sect. 1)

1982 – A Morrey–Besov inequality; with J. Lewis (Sect. 4)

1988 – Exponential integrability (Sect. 5)

1998 – Estimates for Mαf (Sect. 7, (4))

2003 – Vanishing exponential integrability; with R. Hurri-Syrjänen (Sect. 6)

2004 – Trace estimates for Morrey–Sobolev functions; with J. Xiao (Sect. 3)

1 Inequality (∗) also holds for p = 1 by the Gagliardo–Nirenberg estimates (see [55]).
However, (∗∗) does not hold for p = 1.
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1 The Trace Inequality

The struggle alluded to above was the question of finding necessary and suffi-
cient conditions on a Borel measures μ defined on subsets of R

n that insures,
in the language of N.G. Meyers, that μ has positive capacity. In the late
1960’s, Meyers wrote a paper (unpublished, to this date) titled: Capacities,
extremal length and traces of strongly differentiable functions. Here, to unify
the ideas of capacity and extremal length, among other ideas, he defined a
capacity of a set of measures on R

n. The usual capacity of a standard sub-
set K ⊂ R

n then reduced to taking the sets of Dirac measures {δx}x∈K . A
simplified version of this might be

Cα,p,q(K) = inf {||f ||pLp(Rn) : ||Iαf ||Lq(ν) � 1 ∀ν ∈ K and f � 0},

where K ⊂ M+ = all Borel measures on R
n. The question posed by Meyers

was to characterize all measures μ with positive capacity Cα,p,q({μ}) > 0.
This is clearly equivalent to the trace estimate

||Iαf ||Lq(μ) � c1||f ||Lp(Rn). (1.1)

What I eventually proved, in [1], was the simple and elegant necessary and
sufficient condition

μ(B(x, r)) � Ard (1.2)

for all r > 0 and all x ∈ R
n. Here B(x, r) is an open ball centered at x

and of radius r > 0. The conditions of equivalency are: 0 < d � n, q =
dp/(n−αp), 1 < p < q <∞. The coefficient A is a constant independent of
x and r. I worked this out in the Spring of 1970. At the time the only result
I was aware of along these lines was the trace estimate of Il’in [37] which is
(1.1) with μ = Lebesgue measure on a hyperplane. Later in [2], I found a
much simpler proof of the equivalency of (1.1) and (1.2). There, the result
followed easily from the weak type estimate

μ([Iαf > t]) �
(c
t
||f ||Lp(Rn)

)q
(1.3)

for f � 0, followed by an application of the Marcinkiewicz Interpolation
Theorem, since here 1/q < 1/p (see [11, Theorem 7.2.2] or [41, Theorem 1,
p. 52] or even [55, Theorem 4.7.2]).

Of course, it easily becomes clear that (1.1) and (1.2) are no longer equiv-
alent when q = p. Indeed, if d = n−αp in (1.2), then there is an f ∈ Lp+(Rn)
such that Iαf = +∞ on a set of positive finite μ measure, or to say it another
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way, Cα,p(K) ≡ Cα,p({δx : x ∈ K}) can be zero for a compact set K ⊂ R
n

with positive Hausdorff capacity (content) Hn−αp
∞ (K) > 0. Here

Hd
∞(K) = inf

⎧⎨
⎩
∑
i

rdi : K is covered by a countable
number of balls of radius ri > 0

⎫⎬
⎭ .

Left to right: V.P. Havin, V.G. Maz’ya, and D.R. Adams. Maz’ya
lecturing on the finer points of Potential Theory on the wall of a
building in Leningrad. Summer 1974.

All of my attempts to find a simple substitute for condition (1.2) when q =
p failed – until I made a pilgrimage to Leningrad (with L. Hedberg and
J. Brennan) to meet with V. Maz’ya (and V. Havin) in the summer of 1974.
Discussions with Maz’ya profoundly changed my view of the trace question.
The limiting case q = p needs the Maz’ya type capacity inequality

∞∫

0

Cα,p([Iαf > t]) dtp � c||f ||pLp(Rn) (1.4)

for f � 0 and 1 < p < n/α. In [4], I dubbed (1.4) a capacity strong type
inequality (or CSI) in analogy to the weak and strong type estimates for
singular integrals in Harmonic Analysis; note that the weak type estimate

Cα,p([Iαf > t]) � t−p||f ||pLp(Rn)
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is trivial. Maz’ya was the first to establish (1.4); the paper [39] treats the cases
α = 1 and 2. And then after my Leningrad meeting, I managed to prove (1.4)
for α a positive integer (see [4]). Later, Dahlberg [26] noted how to get (1.4)
in the remaining fractional α cases, and finally Hansson [34] gave a general
argument that extended (1.4) considerably (see also [11, p. 187f ]). Maz’ya
[40] proved a CSI for Besov spaces also around this time. The connection of
(1.4) to (1.1) is of course

μ(K) � c Cα,p(K) (1.5)

for all compact sets K ⊂ R
n. A similar condition: μ(K) � c Cα,p(K)q/p for

all compact K works to give (1.1) when 1 < p < q < ∞, but the advantage
of checking (1.2) for only balls is enormous. But as we have observed above
(1.1) does not hold simply by having (1.5) for K = B(x, r) only. There is a
ball condition in [38], but it is no longer so simple and a famous ball condition
of Fefferman–Phong in [27], but that one is only sufficient.

Another interesting sufficient condition for (1.5) is the boundedness of the
nonlinear potential Uμα,p(x) = Iα(Iαμ)p

′−1(x) or equivalently, for the Wolff
potential, where αp < n

Wμ
α,p(x) ≡

∞∫

0

[rαp−nμ(B(x, r))]p
′−1 dt

t
.

This last statement is a consequence of the Wolff inequality

||Iαμ||p
′

Lp′(Rn)
� c
∫

Rn

Wμ
α,p(x)dμ(x) (1.8)

and
μ(K) �

∫
Iαfdμ

K � ||f ||Lp(Rn)||IαμK ||Lp′(Rn)

� ||f ||Lp(Rn) c||Wμ
α,p||1/p

′

L∞ μ(K)1/p
′

or
μ(K) � c||Wμ

α,p||p−1
L∞ Cα,p(K).

Here I have written μK = μ∠K. Notice also that

||Iαμ||p
′

Lp′(Rn)
=
∫
Uμα,p dμ

and so a lower bound matching (1.8) for p′ norm of the potential Iαμ holds –
it is a simple estimate, whereas the Wolff inequality requires much heavier
work (see [11, p. 109] or [6]).
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Finally, I wish to say a few words about the case q < p, though I have
had little to do with it. The result that I find most interesting here is due
to Verbitsky et al [25]. Again, it involves the Wolff potential; the inequality
(1.1) holds, 0 < q < p, 1 < p < n/α if and only if

Wμ
α,p ∈ Lq(p−1)/(p−q)(μ). (1.9)

My small contribution to this case is for 0 < p � 1, where the Lp(Rn) spaces
are now replaced by the real Hardy spaces Hp(Rn). Here is what I can prove
for p = 1:

(1) (1.1) holds with p = 1 if and only if (1.2) holds,

q = d/(n− α), q > 1;

(2) (1.1) holds with p = 1 and q = 1 if and only if

μ(K) � cHn−α
∞ (K) (1.10)

holds for all compact set (K);

(3) (1.1) holds with p = 1 if and only if
∫

(Mαμ)q/(1−q) dμ <∞ (1.11)

for 0 < q < 1.
The first result follows from the Semmes inequality

|Iαf(x)| � c(s)[Iαs(f∗)s]1/s (1.12)

for 0 < s < 1. Here f∗ is the “grand maximal function” as used in Hp-
theory (see [51] or [20, p. 217]). The estimate (1.11) follows from a covering
argument; here

Mαμ(x) = sup
r > 0

rα−n
∫

|x−y|<r

dμ(y)

the fractional maximal function of the measure μ. There are also analogues
of (1)-(3) for the Hardy spaces Hp, 0 < p < 1, replacing H1, by similar
methods.

2 A Mixed Norm Inequality

In the early 1970’s, I had the idea to try to extend the Lp-capacity theory
to the case of parabolic Riesz potentials. One distinctive feature of these
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potentials is that there is no real reason why the Lp-space for the space
variable x should be the same as the Lp-space for the time variable t. But
then I needed to consult the literature on mixed norm estimates, i.e., mixed
norm Sobolev type inequalities. I knew only the papers [22] and [19] at the
time. Only later did I find the two volume translation [21] that also treats
mixed norm situations. Soon, I was working with R. Bagby, an expert on
parabolic potentials. However, we discovered early on that the mixed norm
estimates on (elliptic) Riesz potentials Iαf in [22] were far from complete,
especially with regard to limiting cases.

The result I am referring to is:

||Iαf ||Lq1
x L

q2
t

� c||f ||Lp1
x L

p2
t
, (2.1)

where α = 1/p1 + 1/p2 − 1/q1 − 1/q2, 0 < 1/qi < 1/pi < 1, i = 1, 2. Here
the mixed norm is

[ ∫

R

( ∫

R

|f(x, t)|p1 dx
)p2/p1

dt

]1/p2

= ||f ||Lp1
x L

p2
t
,

and I am confining myself to the situation (x, t) ∈ IR×R for simplicity – more
general results can easily be established with the same methods (see [10, 18]).
So Bagby and I dropped the parabolic considerations and sought to fill in
the gaps we thought were left by [22]. As we saw it, (2.1) is a translation-
dilation invariant estimate, so we wanted to prove (2.1) in as many cases as
it remains valid, and when false, to find a translation – dilation inequality
replacement. So here I list what we proved (using different notation) in [10]
and in [18]. An important consideration in all of this turned out to be the
mixed norm estimates of Fefferman–Stein [29] for the maximal functionM0f .
Here and throughout we are working with (1/q1, 1/q2) ∈ rectangle [0, 1/p1]×
[0, 1/p2], 0 < 1/pi < 1, i = 1, 2.

(1) (2.1) holds for α as above and

0 � 1/q1 � 1/p1, 0 < 1/q2 < 1/p2

or
1/q2 = 1/p2, 0 < 1/q1 < 1/p1;

(2) when 1/q2 = 0, α = 1/p1 + 1/p2 − 1/q1,

||Iαf ||L(q1,p2)
x L∞

t

� c||f ||Lp1
x L

p2
t
, (2.2)

where the x-norm on the left-hand side is a Lorentz norm:

g ∈ L(p,q) if and only if

[ ∞∫

0

(tp| [|g| > t] |)q/p dt
t

]1/q

= ||g||L(p,q) <∞.
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Here, it was interesting at the time that (2.2) was sharp, i.e., (2.1) is false
when 1/p2 < 1/q1 < 1/p1. Later, we realized that this makes sense when one
recalls that the trace of a Riesz potential on a hyperplane can be characterized
as a Besov function - and there were the known estimates of Herz [35] (see
also Sect. 4 below).

Next, consider the cases (1/q1, 1/q2) = (1/p1, 0), (0, 1/p2) and (0, 0). Here
I will use the notation: f ∈ LΦp(Q, dx|Q| ) for the Orlicz space

inf

{
λ : −
∫

Q

Φp

(f − fQ
λ

)
dx � 1

}
<∞, (2.3)

whereQ is a cube with sides parallel to the coordinate axes, the bared integral
denotes integral average, and fQ is the integral average of f over the cube
Q. Also, Φp(t) = exp (tp)− 1. With this it follows

(3) sup
Q
||Iαf(·, t)− Iαf(·, Q)||

L∞
x L

Φ
p′
2

t (Q, dt
|Q| )

� c||f ||Lp1
x L

p2
t

,

1/q1 = 1/q2 = 0, α = 1/p1 + 1/p2;

(4) sup
Q
||Iαf(·, t)− Iαf(·, Q)||

L
p1
x L

Φ
p′
2

t (Q, dt
|Q| )

� c||f ||Lp1
x L

p2
t

,

1/q2 = 0, 1/q2 = 1/p1, α = 1/p2;

(5) sup
Q
||Iαf(·, t)− Iαf(Q, t)||

L
Φ

p′
1

t (Q, dt
|Q| )L

p2
t

� c||f ||Lp1
x L

p2
t

,

1/q1 = 0, 1/p2 = 1/q2, α = 1/p1.

I used the notation Iαf(·, Q) to indicate that the integral average is taken
with respect to the second variable over the cube (an interval in this case).

Estimates (2)–(5) are one way of replacing the false estimate (2.1) in these
cases by translation-dilation invariant substitutes. Below (Sect. 5), the reader
should note that these estimates are a motivation for the space BMOp.

3 A Morrey–Sobolev Inequality

In 1938, C.B. Morrey introduced an Lp-growth condition on the gradient
of a function that insures the function itself satisfies a Holder continuity
condition. This became quite useful in proving the regularity of elliptic partial
differential equations and systems. I think Morrey used it mainly in two
dimensional situations. The condition, which now bears his name, is: f is a
member of the Morrey space Lp;λ if
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sup
r > 0, x

rλ−n
∫

B(x,r)

|f(y)|p dy ≡ ||f ||p
Lp;λ <∞ (3.1)

for 1 � p < ∞, 0 � λ � n, and B(x, r) a ball in R
n (or contained in

some subdomain Ω ⊂ R
n). The Morrey estimate referred to above is: for

λ < p <∞, 1 < p <∞,

||u||C0,γ � c||∇u||Lp;λ , (3.2)

where γ = 1− λ/p (see [31, Chapt. 7]).
While working at the CNR in 1970, Stampacchia called my attention to

his paper [52] where he treated the case 1 < p < λ; i.e., he attempted to
prove the corresponding Sobolev Inequality for functions u whose derivatives
belong to Lp;λ. Since Lp;n = Lp, one would hope that such a result would
simply become (∗), m = 1. But in his paper, he was only able to achieve
the corresponding weak type estimate. And since there is no Marcinkiewicz
Interpolation Theorem for the Morrey spaces, the result remained somewhat
unsatisfying. I tried at the time to tackle this question, but was unsuccessful.

Left to right (front row): L.I. Hedberg, J. Brennan, D.R. Adams,
and V.G. Maz’ya at Hedberg’s party on the occasion of his 60th
birthday. Summer 1996.

In 1972, L. Hedberg, in [33], while trying to verify some estimates of
N.G. Meyers and myself (from an advanced copy of [16]), came up with a
most remarkable proof of (∗∗). He showed that for f � 0,

Iαf(x) � c[M0f(x)]1−αp/n||f ||αp/nLp(Rn) (3.3)
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for αp < n. Thus raising the left-hand side to the p∗ = np/(n − αp) power
and integrating, shows that the real work in proving (∗∗) is showing the
Lp-maximal estimate

||M0f ||Lp(Rn) � c||f ||Lp(Rn) (3.4)

(see [48] or [11]). HereM0f is the standard Hardy–Littlewood maximal func-
tion of f .

So when I finally absorbed this idea, I began to wonder if a similar approach
could be given for potentials of functions f ∈ Lp;λ. I eventually proved, for
f � 0,

Iαf(x) � c[Mλ/pf(x)]αp/λ[M0f(x)]1−αp/λ (3.5)

for αp < λ. Of course, Mαf is the fractional maximal function

sup
r > 0

rα−n
∫

B(x,r)

|f(y)| dy.

Notice that the Morrey condition is: Mλf
p ∈ L∞, so clearly (3.5) implies

that under these conditions Iαf is at least locally p̃-integrable, with
p̃ = λp/(λ − α)p), p > 1. This then becomes the Sobolev exponent p∗ when
λ = n. The full Morrey–Sobolev Inequality now easily follows:

||Iαf ||Lp̃;λ � c||f ||Lp;λ (3.6)

1 < p < λ/α, 0 < λ � n (see [3]).
In a letter to me shortly before his death, Stampacchia mentioned again

his attempts to prove (3.6) and that of others and lamented the fact that he
had not thought to use the maximal function approach. I fully credit Hedberg
for basically pointing me in the right direction with his clever proof of (∗∗).
Stampacchia’s passing was a personal tragedy for me and a great loss to the
mathematical community.

One of my favorite anecdotes of Stampacchia is that one day I was arriving
at the CNR just as Stampacchia was leaving, “towing a dignitary.” We passed
in the parking lot, and as we passed I asked him if he would be in his office
later for I had some math questions about one of his papers. He said, “show
me” and so on the hood of a car, we spread out the papers and books and he
answered my questions there in the parking lot while his obviously annoyed
companion stood by. He treated us Post Doc’s very well and was always full
of life – he obviously enjoyed his role at the CNR, especially when he could
poke fun at some of his fellow rival mathematicians at the University of Rome
(nearby). I think, in fact, he had a long standing feud with G. Fichera.

There are two other inequalities that I might add to my list. The first is a
Morrey–Lorentz–Sobolev estimate

||Iαf ||L(p̃,r);λ � c||f ||L(p,q);λ , (3.7)
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where r = qp̃/p, 0 < q <∞ and p̃ = λp/(λ−αp), 1 < p < λ/α. In (3.7), the
Lp-norm is replaced by the Lorentz norm L(p,q). This result follows from the
usual Lorentz norm estimates for the maximal function.

A second inequality of the Morrey–Sobolev type is the estimate

||Iαf ||Lp̃;λ
r

� c||f ||Lp;λ
q
, (3.8)

where

||f ||Lp;λ
q

=

⎧⎪⎨
⎪⎩ sup
x

∞∫

0

(rλ−n
∫

B(x,r)

|f(y)|p dy)q/p dr
r

⎫⎪⎬
⎪⎭

1/q

<∞ (3.9)

and 0 < α < n, 0 < λ � n, 1 < p < λ/α, 1 < q � ∞ with p̃ = λp/(λ − αp)
and r = λq/(λ − αp); this was first established in my Ume̊a Notes [5]. Here
the usual Morrey space corresponds to q =∞ in (3.9).

Trace results akin to those of Sect. 1 for Riesz potentials of Morrey func-
tions can be obtained from capacity strong type estimates taken from the re-
sults of [17]. Here strong type estimates are found for certain Morrey–Sobolev
capacities, then one resorts to measures μ that satisfy inequalities like (1.5)
for these capacities. However, it should be noted that not all of these Morrey–
Sobolev capacities satisfy such strong type estimates: only Type I capacities
(see [17, Sect. 7]).

4 A Morrey–Besov Inequality

Early in the 1980’s, I received a preprint from a former graduate student col-
league of mine when we both attended the University of Minnesota: Jim Ross;
[47]. He had shown an inequality he called a Morrey–Nilol’skii inequality: the
function u(x) satisfies the Morrey–Nikol’skii condition on cubes Q if

∫

Q

|u(x+ t)− u(x)|p dx � c|t|αp|Q|1−λ/n (4.1)

whenever Q and Q + t = {x + t : x ∈ Q} are parallel subcubes of a given
fixed cube Q0. Then Ross showed that u ∈ Ls(Q0) for all s < p̃, 1 � p <
λ/α, 0 < α � 1, 0 < λ � n. The estimate (4.1) is to hold for all Q and all
such t with C a constant independent of Q and t.

Now, since I recognized the exponent p̃ and since I had recent success
with the Morrey–Sobolev case, I was drawn to this and immediately began
to think about what would happen if one replaced the Nikol’skii condition
(4.1) with the more general Besov type condition: assume u ∈ Lp(Rn) and
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[ ∫

Rn

( ∫

Q

|Δkt u(x)|p dx
)q/p
|t|−(n+αq) dt

]1/q
� c|Q|(1−λ/n)/p (4.2)

with (4.1) the case k = 1 and q = ∞. Here Δkt u is the k-th difference:
u(x+ t)− u(x) = Δtu(x) for k = 1 and Δkt u(x) = Δt(Δk−1

t u)(x), k � 2. In
my original attempts at an Lp̃-integrability result, I used balls rather than
cubes and tried to use the maximal function on a potential representation
given initially on R

2n and then restricted to R
n – since Besov functions can

be represented in that way. I had only partial success. This idea to look at
the restriction of a Riesz potential was useful, but now the maximal function
considerations were not. At this point, John Lewis stepped in and found the
nice argument that yielded: assume u(x) satisfies (4.2), then it follows that
the Lorentz norm condition

||u · χQ||L(p̃,r) � c|Q|(1−λ/n)/p̃ (4.3)

holds with r = qp̃/p. Furthermore, (4.3) is sharp – no exponent smaller than
r can replace r in (4.3) (see [15]). Notice that when q = ∞, (4.3) is also an
improvement of the result of Ross, for now s = p̃ is allowed.

At this point, I think a comment is in order about the cube vs. non-
cube conditions (or ball vs. non-ball conditions) from this and the previous
sections. Notice that in (3.7) when λ = n, we get the potential in the Lorentz
space L(p∗,p∗), p∗ = np/(n−αp), whereas it is well known that when f ∈ Lp,
the potential Iαf ∈ L(p∗,p), a Lorentz space improvement of the classical
Sobolev Inequality (∗∗); [23]. The same discontinuity occurs with (4.3), when
λ = n, for the result of Herz [35] gives u ∈ L(p∗,q) in this case, a space
strictly smaller than L(p∗,r), r = qp∗/p. Thus the sharpness of (4.3), for
λ < n is perhaps a bit surprising. This type of discontinuity also occurs in
the limiting case αp = λ; for λ < n vs. λ = n : exp (t) is improved to
exp (tp

′
), as becomes evident from the consideration of Sect. 5. Again the

example u(x) = log |x|, x ∈ IRn, shows that these Orlicz functions are sharp,
and that behavior is quite natural.

5 Exponential Integrability

In the Fall of 1972, I took a visiting position at the University of California-
San Diego, where I was very fortunate to be on the faculty with the distin-
guished mathematician Adriano M. Garsia. He already enjoyed an outstand-
ing reputation in analysis and he also had a slight reputation as a “simpli-
fier” – one who has had some success in providing simpler proofs of some
known results with rather original messy proofs. (In fact, I think his small
book [30] testifies to this elegance of his ideas.) In my “Post Doc world” –
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i.e., my first four years after my Ph.D. – I had three distinguished teachers
and Garsia was one of these (the other two were Stampacchia in Rome and
Frank Jones at Rice).

During my year at UCSD, I had many discussions with Garsia on topics
in analysis. One of these concerned his recent visit to the Courant Institute
in New York to lecture and meet with J. Moser – a trip in early ’72, I believe.
While there, Moser challenged Garsia to come up with a better proof of one
of the two exponential estimates from [43]. That result is the now famous
refinement of what is usually referred to as the Trudinger inequality, a limiting
case of (∗∗), when αp = n (see also [54]).

Trudinger : Assume the support of f ⊂ B, a ball in R
n, and ||f ||Lp � 1, then

there are constants, β and c, independent of f , such that

−
∫

B

exp (β|Iαf(x)|p′) dx � c (5.1)

for p = n/α > 1, p′ = p/(p− 1).

Moser : Assume the support u ⊂ B and ||∇u||Ln � 1, then

−
∫

B

exp (β|u(x)|n′
) dx � c (5.2)

for all β � β0 = nw1/(n−1)
n−1 , wn−1 = area of the surface of the n-ball. Fur-

thermore, (5.2) cannot hold for β > β0 with the constant c independent
of u.

Trudinger’s proof relied on estimates for the Lq-norms of the potentials
Iαf, αp = n, as q →∞, and then he summed the exponential series. Moser,
relying on the fact that he was dealing only with the first derivative case,
used decreasing rearrangements to reduce his estimate to a one dimensional
calculus lemma; i.e., he used the crucial inequality

||∇u∗||Lp � ||∇u||Lp , (5.3)

where u∗ is the decreasing rearrangement of u. Then one needs only prove
(5.2) for u∗.

So after Garsia returned to San Diego, he set to work, eventually devising
a new clever proof of Moser’s one dimensional calculus lemma used to prove
(5.2). And it was in a letter dated March 29, 1972 to Moser that Garsia
recorded this argument. I made a copy of that letter, dutifully studied it and
then filed it away. I did not see the possibilities it contained. It took me 15
years to wake up! Finally, in the late 1980’s, while working on a preliminary
version of one of the chapters of [11], I got out Garsia’s letter thinking that
I could use his argument to redo some of the results we wanted to include,
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especially Trudinger’s inequality. A bit earlier, L. Hedberg had shown that
(5.1) held with any β < n/wn−1, and was false for β larger than this value.
Also, it was clear that if one could achieve (5.1) with β = n/wn−1, then via
the representation ( u(x) smooth compact support)

u(x) =
1

nwn−1

∫

Rn

(x− y) · ∇u(y)
|x− y|n dy

one could produce the Moser result! This seemed interesting, but out of my
reach at the time.

Thus, as I worked with Garsia’s argument, I fully realized what the stakes
were. And hence it came as a complete surprise to me that the Garsia ap-
proach could, in fact, be adapted to give exactly the constant β = n/wn−1

in (5.1). So this is when my confidence began to grow that I was on my way
to producing a higher order Moser estimate; [7].

The amazing thing here is that one can just work with the potentials
Iαf, f � 0, to prove a sharp (5.2) and hence to get a higher order extension
of Moser. Of course, one cannot use the idea of decreasing rearrangements u∗

to treat the higher order case, for no inequality of the type (5.3) can hold for
higher order derivatives. But, one can rearrange the convolution Iαf , using
a known rearrangement lemma of O’Neil [46] for convolutions, and by this,
one can again reduce the result (5.1) to a one dimensional calculus inequality.
This produces

Higher order Moser : If m is a positive integer less than n, then there are
positive constants β0 and c0 depending only on m and n such that if u is a
smooth function with support in the ball B ⊂ IRn, with ||∇mu||Lp � 1, p =
n/m, then

−
∫

B

exp (β|u(x)|p′ ) dx � c0 (5.4)

for all β � β0. Here

∇m =

{
Δm/2u, m = even,

∇Δ(m−1)/2u, m = odd,

Δ = Laplacian ∇ = gradient. Furthermore, (5.4) is false for β > β0 in the
same way that (5.2) fails.

The exact value of β0 is given in [7] and its value has drawn some interest
for higher order and higher dimensional problems (see in particular [36] where
a nice article by A. Chang talks about the Moser–Trudinger inequality and
its applications to conformal geometry). Also, I might add that the best value
of c0 in (5.4) is not known; a good estimate has been made for it in the Moser
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case [24], where they also discuss the existence of an extremal function that
gives the best c0. They use it to estimate the size of c0.

A few years later, in the early 1990’s, I got a call from Washington Uni-
versity in St. Louis, Mo, that a student of A. Bernstien, L. Fontana, had
used my methods plus certain technical information about manifolds in R

n,
specifically about the sphere Sn−1, the boundary of the n-ball, to extend
Moser’s other exponential estimate from [43] for functions that live on such
manifolds. The reader can find this very nice paper at [28].

Also, I might mention that [7] also contains a sharp exponential estimate
for certain normalized Besov functions, an estimate similar to (5.4).

And, finally, I want to comment on the space that I will denote as
BMOp(Rn). The standard space BMO(Rn)-functions of bounded mean os-
cillation – is a well-known space in Harmonic Analysis that often plays a
pivotal role there together with its predual, the real Hardy space H1(Rn),
as a replacement for the spaces L∞ and L1, respectively. Using the now fa-
mous John–Nirenberg lemma, it is possible to give the functions of BMO an
exponential characterization:

Definition: f ∈ BMO if for all subcubes Q of R
n,

sup
Q
−
∫

Q

|f(x)− fQ| dx = ||f ||BMO <∞,

where fQ = average of f over Q.

John Nirenberg: f ∈ BMO if there are constants c1 and c2 independent of f
such that

|{x ∈ Q : |f(x)− fQ| > λ}| � c1e−c2λ |Q| (5.6)

for ||f ||BMO � 1.

Clearly (5.6) implies that BMO functions enjoy exponential integrability,
a fact one can express as

sup
Q
−
∫

Q

exp (β|f(x) − fQ|) dx <∞ (5.7)

for some constant β independent of f when ||f ||BMO � 1. Or in the previous
notation

sup
Q
||f − fQ||LΦ(Rn, dx

|Q| )
<∞,

where Φ(t) = et − 1. Thus it seems quite reasonable to introduce the natu-
rally occurring space, motivated by the exponential inequalities (5.1)–(5.4),
BMOp(IRn) as: f ∈ BMOp if

sup
Q
||f − fQ||LΦp (Rn, dx

|Q| )
<∞, (5.8)
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with now Φp(t) = exp (tp)− 1. The connection to the Sobolev Inequality, in
the limiting case αp = n, is that the potential Iαf , f of compact support,
belongs to BMOp′ , 1 < p <∞, when ||f ||Lp � 1.

I introduce this space for two reasons:

(1) If we let H1,p(Rn) denote the Hardy like space: g ∈ H1,p(IRn) if and only
if ||g∗||L(1,p)(Rn) = ||g||H1,p < ∞, where g∗ is the “grand maximal” function
of g from Harmonic Analysis and the norm is the standard Lorentz norm,
p � 1, then the Hardy space H1 corresponds to H1,1 (see [20, p. 201f ]).

Indeed, one can show that there is a constant c such that

||In/pf ||Lp′(Rn) � c||f ||H1,p′ (Rn) (5.9)

as a result of the extraordinary estimate of Semmes (1.12).
This strongly suggests that the predual of BMOp should be H1,p. For

example the function
(log |x|) · | log |x||1/p−1

belongs to BMOp in analogy to the p = 1 case and suggest the right order of
growth for duality. Also, the operators that replace the Calderón–Zygmund
singular integrals in the case p = 1, are now going to be translation invariant
operators of smoothness α : T ∈ Sα if and only if

T : Λβ → Λβ+α,

where Λβ denotes the space of Holder continuous functions of exponent β ∈
(0, 1) (see [1]), for example, T can be taken to be the composition Iα ◦ CZ,
Iα composed with a CZ-singular integral. T ∈ Sn/p maps H1,p′ into Lp

′
via

(5.9), and the limiting case p→∞ is then the standard: CZ : H1 → L1.

(2) This conjecture opens up a whole line of enquire in the analogy with the
theory associated with the spaces BMO and VMO. In particular one notes
that BMOp can be defined asymptotically as:

sup
Q
−
∫

Q

|f − fQ|q dx � λqΓ (q/p+ 1), (5.10)

as q → ∞. Here Γ is the standard gama function. A space VMOp could be
set as:

lim|Q| → 0
−
∫

Q

[exp (|f − fQ|p)− 1] dx = 0

in analogy with Sarason’s VMO. Now the analogous duality questions abound.
It just appears that many of the standard questions can be posed here and
that these spaces arise naturally and are ripe for further investigation.

Also, I should note that an extension of the trace estimates of Sect. 1 can
be given in the case αp = n. In particular one has the exponential estimate
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−
∫

B

exp (β(Iαf |p′) dμ � c

for supp f ⊂ ball, ||f ||Lp � 1 and μ a measure such that

μ(B(x0, r)) � Ard

for all x0 and r > 0 and some d > 0 (see [11], 7.6.4).

6 Vanishing Exponential Integrability

In my Ume̊a Notes [5], I showed that the exponential Lebesgue set for the
Sobolev functions when αp = n could be expressed as:

lim
r → 0

−
∫

B(x0,r)

[exp (β|Iαf − [Iαf ]B(x0,r)|p
′
)− 1] dx = 0 (6.1)

for some constant β independent of f as long as supp f is compact and
||f ||Lp � 1; this holds for Cα,p-a.e. x0. That is, (6.1) can be considered a
refinement of the limiting case of the Sobolev Inequality.

When R. Hurri-Syrjänen came to visit the University of Kentucky from
Finland, we looked around for something to work on together. In her recent
work with D. Edmunds, they had a double exponential condition extending
the Trudinger–Moser type estimate: now set Φα(t) = tn(log (e + t))α, t >
0, 0 � α � n− 1, and assume

∫

B

Φα(|∇u|) dx � 1. (6.2)

Then there are constants ci, i = 1, 2, 3 such that

−
∫

B

exp (c1|u− uB|n/(n−1−α)) dx � c2 (6.3)

when α < n− 1, and

−
∫

B

exp (c1 exp (c2|u− uB|n/(n−1))) dx � c3 (6.4)

when α = n− 1.
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Thus we set ourselves the challenge of finding the analogue of (6.1) for
the estimates (6.3) and (6.4). Soon it became clear that the key to such
improvements were the Maz’ya capacity type inequalities:

∞∫

0

CΦ({x : |u(x)| > t}) dΨ(t) � c
∫
Φ(|∇u|) dx, (6.5)

where CΦ is the capacity defined by

CΦ(E) = inf

{∫
Φ(|∇u|) dx : u ∈ C∞

0 (G), u � 1 on E

}

with E ⊂⊂ G = bounded open set, usually taken to be a large ball. Here
Φ is an Orlicz function as is Ψ , but the important observation here is that
we cannot generally take Ψ to be equal to Φ, as is the case in (1.4). Here we
want Φ = Φα and Ψ = Ψα(t) = tn(log (e + 1

t ))
−α, 0 � α � n − 1. (6.5) is

actually false if we try to replace Ψα with Φα, α > 0.
So in [12], we were able to show the following extensions of (6.1):

−
∫

B(x0,r)

[exp (c1Ψα(|u(x) − u(x0)|1/(n−1−α))− 1] dx = o(1), (6.6)

CΦα-a.e. x0 when α < n− 1 as r → 0, and

−
∫

B(x0,r)

[exp (c1 exp (c2Ψn−1(|u(x)− u(x0)|1/(n−1))− ec1 ] dx = o(1), (6.7)

CΦn−1-a.e. x0 when α = n − 1, as r → 0. The companion paper [13] deals
solely with properties of the capacities CΦ needed here.

R. Hurri-Syrjänen and I also looked at the same question with regard
to Besov functions. We achieved much the same results, but there the de-
scription of the exceptional sets was a bit more complicated. In the 1970’s,
Neugebauer, in [44] and [45], developed a pointwise differentiation result for
Besov functions that relied on a strange capacity set function – the melding of
Hausdorff capacity (content) and the standard capacity natural to the Besov
classes.

C(E) = inf {H(E1) +A(E2)}, (6.8)

where the infimum is over all disjoint partitions E = E1 ∪ E2. Here H is a
Hausdorff capacity and A is a Besov capacity. The problem is: there is often
no known relationship between H and A to simplify (6.8) (see [8] for a study
of the relations among the Besov capacities and Hausdorff capacities). This
later work is contained in [14].
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7 Concluding Remarks

In the 70 years since S.L. Sobolev published his now famous inequality, the
subject has truely undergone a tremendous explosion, both in form and ap-
plications. Each new variation has been cleverly devised to treat a new and
emerging area of research. My own efforts were only in part motivated by
applications, but mostly by a curiosity to see how far these ideas can be
extended. There is no doubt now that this area has become very rich and
technical. The reader will notice that there are a lot of Sobolev type inequal-
ities that I have not touched upon, even further estimates that I have worked
on that I feel compelled to pass over for this note. Such topics include:

(1) Sobolev–Poincaré inequalities

||u− uQ||Lp∗(Q) � C||∇u||Lp(Q) (7.1)

and variations on such where the average of u over Q, uQ, can be replaced by
a polynomial depending on the cube Q with the right side of (7.1) replaced
by the norm of certain higher order derivatives. Or uQ can be replaced by a
condition where u vanishes on a subset of Q and the constant on the right
reflects the size of this set in terms of its capacity – such inequalities have
been called Sobolev–Poincaré–Wirtinger type inequalities (see2 [42] and [11,
Chapt. 8]). Also, there is an estimate of this type for Besov function in [15].

(2) Estimates of the Sobolev type for Parabolic Riesz potentials and their
corresponding mixed norm, for example,

Pαf(x, t) =

t∫

0

∫

Rn

exp
[
−|x− y|

2

t− s
]
· s(α−n−2)/2f(y, s) dy ds,

where x and y ∈ R
n. Also generalizing this would include certain semi-groups

of operators on f , especially integral representations of the potential type
(see, for example, [3]).

2 This result was established earlier (even for higher derivatives) in: Maz’ya, V.G.: The
Dirichlet problem for elliptic equations of arbitrary order in unbounded regions. Dokl.
Akad. Nauk SSSR 150, 1221-1224 (1963); English transl.: Sov. Math., Dokl. 4, (1963),
860-863 (1963) (see also Maz’ya, V.G.: On (p, l)-capacity, imbedding theorems and the
spectrum of a selfadjoint elliptic operator. Izv. Akad. Nauk SSSR, Ser. Mat. 37, 356-385
(1973); English transl.: Math. USSR-Izv. 7, 357-387 (1973) and 357-387 and [41]). In the
cited papers, it is also shown that the constant C admits two-sided estimates in terms of
capacity if the capacity is small. In the opposite case, the constant C is equivalent to the
capacitary interior diameter of Q\F (see Maz’ya, V.G.: On the connection between two
kinds of capacity. Vestn. Leningr. Univ. Mat. Mekh. Astron. 7, 33-40 (1974); English transl.:
Vestn. Leningr. Univ. Math. 7, 135-145 (1974).) The fractional variant of the same result
can be found in Maz’ya, V.G., Otelbaev, M.: Imbedding theorems and the spectrum of a
pseudodifferential operator. Sib. Mat. Zh. 18, 1073-1087 (1977); English transl.: English
translation: Sib. Math. J. 18, 758-769 (1977). — Note of Ed.
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(3) Recently, I have been looking at certain hyperbolic and/or retarded
potentials of the type

∫

Rm

f(x− s, t− Φ(s)) |s|α−m ds,

t > 0. In this setting, solutions to the 3-dimensional wave equation can be
treated when Φ(s) = |s| and m = 3, α = 2. The corresponding Sobolev
inequalities here are usually called Strichartz inequalities. And here (s, Φ(s))
can be a more general function of finite type (see [49, Chapt. 11]).

(4) A whole set of Sobolev type estimates can be given with the fractional
maximal function Mαf replacing Iαf throughout. Of course Mαf � c · Iαf ,
for f � 0, so to make it interesting, one needs to “tighten up” such estimates
for Mαf in Lq in terms of the Lp-norm of f . Such estimates can be found,
for example, in [9].

(5) Several books have appeared recently on Sobolev Inequalities and their
applications. I mention only: [53, 32, 50] and the references contained there
in. All of these show some of the variety that has appeared in this area in
recent years. Thus it seems clear that many authors feel compelled to write
about and produce more and more variations on this Sobolev theme. Clearly,
my love and devotion to this subject is not only a personal matter, but a
general universal curiosity as well. I suspect it will continue for many more
years to come.

Acknowledgement. I want to thank Mike Elery for transforming an unruly
manuscript into something legible.
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Maximal Functions in Sobolev Spaces

Daniel Aalto and Juha Kinnunen

Abstract Applications of the Hardy–Littlewood maximal functions in the
modern theory of partial differential equations are considered. In particular,
we discuss the behavior of maximal functions in Sobolev spaces, Hardy in-
equalities, and approximation and pointwise behavior of Sobolev functions.
We also study the corresponding questions on metric measure spaces.

1 Introduction

The centered Hardy–Littlewood maximal function Mf : Rn → [0,∞] of a
locally integrable function f : Rn → [−∞,∞] is defined by

Mf(x) = sup
∫

B(x,r)

|f(y)| dy,

where the supremum is taken over all radii r > 0. Here
∫

B(x,r)

|f(y)| dy =
1

|B(x, r)|
∫

B(x,r)

|f(y)| dy

denotes the integral average and |B(x, r)| is the volume of the ball B(x, r).
There are several variations of the definition in the literature, for example,
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depending on the requirement whether x is at the center of the ball or not.
These definitions give maximal functions that are equivalent with two-sided
estimates.

The maximal function theorem of Hardy, Littlewood, and Wiener asserts
that the maximal operator is bounded in Lp(Rn) for 1 < p �∞,

‖Mf‖p � c‖f‖p, (1.1)

where c = c(n, p) is a constant. The case p = ∞ follows immediately from
the definition of the maximal function. It can be shown that for the centered
maximal function the constant depends only on p, but we do not need this
fact here. For p = 1 we have the weak type estimate

|{x ∈ Rn :Mf(x) > λ}| � cλ−1‖f‖1
for every λ > 0 with c = c(n) (see [64]).

The maximal functions are classical tools in harmonic analysis. They are
usually used to estimate absolute size, and their connections to regularity
properties are often neglected. The purpose of this exposition is to focus on
this issue. Indeed, applications to Sobolev functions and to partial differen-
tial equations indicate that it is useful to know how the maximal operator
preserves the smoothness of functions.

There are two competing phenomena in the definition of the maximal func-
tion. The integral average is smoothing but the supremum seems to reduce
the smoothness. The maximal function is always lower semicontinuous and
preserves the continuity of the function provided that the maximal function is
not identically infinity. In fact, if the maximal function is finite at one point,
then it is finite almost everywhere. A result of Coifman and Rochberg states
that the maximal function raised to a power which is strictly between zero
and one is a Muckenhoupt weight. This is a clear evidence of the fact that the
maximal operator may have somewhat unexpected smoothness properties.

It is easy to show that the maximal function of a Lipschitz function is again
Lipschitz and hence, by the Rademacher theorem is differentiable almost
everywhere. The question about differentiability in general is a more delicate
one.

Simple one-dimensional examples show that the maximal function of a
differentiable function is not differentiable in general. Nevertheless, certain
weak differentiability properties are preserved under the maximal operator.
Indeed, the Hardy–Littlewood maximal operator preserves the first order
Sobolev spacesW 1,p(Rn) with 1 < p �∞, and hence it can be used as a test
function in the theory of partial differential equations. More precisely, the
maximal operator is bounded in the Sobolev space and for every 1 < p �∞
we have

‖Mu‖1,p � c‖u‖1,p
with c = c(n, p). We discuss different aspects related to this result.
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The maximal functions can also be used to study the smoothness of the
original function. Indeed, there are pointwise estimates for the function in
terms of the maximal function of the gradient. If u ∈W 1,p(Rn), 1 � p �∞,
then there is a set E of measure zero such that

|u(x)− u(y)| � c|x− y|(M |Du|(x) +M |Du|(y))

for all x, y ∈ Rn\E. If 1 < p �∞, then the maximal function theorem implies
that M |Du| ∈ Lp(Rn). This observation has fundamental consequences in
the theory of partial differential equations. Roughly speaking, the oscillation
of the function is small on the good set where the maximal function of the
gradient is bounded. The size of the bad set can be estimated by the maximal
function theorem. This can also be used to define Sobolev type spaces in a
very general context of metric measure spaces. To show that our arguments
are based on a general principle, we also consider the smoothness of the
maximal function in this case. The results can be used to study the pointwise
behavior of Sobolev functions.

2 Maximal Function Defined on the Whole Space

Recall that the Sobolev space W 1,p(Rn), 1 � p � ∞, consists of functions
u ∈ Lp(Rn) whose weak first order partial derivatives Diu, i = 1, 2, . . . , n,
belong to Lp(Rn). We endow W 1,p(Rn) with the norm

‖u‖1,p = ‖u‖p + ‖Du‖p,

where Du = (D1u,D2u, . . . , Dnu) is the weak gradient of u. Equivalently, if
1 � p < ∞, the Sobolev space can be defined as the completion of smooth
functions with respect to the norm above. For basic properties of Sobolev
functions we refer to [17].

2.1 Boundedness in Sobolev spaces

Suppose that u is Lipschitz continuous with constant L, i.e.,

|uh(y)− u(y)| = |u(y + h)− u(y)| � L|h|

for all y, h ∈ Rn, where uh(y) = u(y + h). Since the maximal function com-
mutes with translations and the maximal operator is sublinear, we have



28 D. Aalto and J. Kinnunen

|(Mu)h(x)−Mu(x)| = |M(uh)(x)−Mu(x)| �M(uh − u)(x)

= sup
r>0

1
|B(x, r)|

∫

B(x,r)

|uh(y)− u(y)| dy � L|h|. (2.1)

This means that the maximal function is Lipschitz continuous with the same
constant as the original function provided that Mu is not identically infin-
ity [19]. Observe that this proof applies to Hölder continuous functions as
well [14].

It is shown in [33] that the Hardy–Littlewood maximal operator is bounded
in the Sobolev space W 1,p(Rn) for 1 < p �∞ and hence, in that case, it has
classical partial derivatives almost everywhere. Indeed, there is a simple proof
based on the characterization of W 1,p(Rn) with 1 < p < ∞ by integrated
difference quotients according to which u ∈ Lp(Rn) belongs to W 1,p(Rn) if
and only if there is a constant c for which

‖uh − u‖p � c‖Du‖p|h|

for every h ∈ Rn. As in (2.1), we have

|M(uh)−Mu| �M(uh − u)

and, by the Hardy–Littlewood–Wiener maximal function theorem, we con-
clude that

‖(Mu)h −Mu‖p = ‖M(uh)−Mu‖p � ‖M(uh − u)‖p
� c‖uh − u‖p � c‖Du‖p|h|

for every h ∈ Rn, from which the claim follows. A more careful analysis gives
even a pointwise estimate for the partial derivatives. The following simple
proposition is used several times in the sequel. If fj → f and gj → g weakly
in Lp(Ω) and fj(x) � gj(x), j = 1, 2, . . . , almost everywhere in Ω, then
f(x) � g(x) almost everywhere in Ω. Together with some basic properties of
the first order Sobolev spaces, this implies that the maximal function semi-
commutes with weak derivatives. This is the content of the following result
which was first proved in [33], but we recall the simple argument here (see
also [40, 41]).

Theorem 2.2. Let 1 < p <∞. If u ∈W 1,p(Rn), then Mu ∈W 1,p(Rn) and

|DiMu| �MDiu, i = 1, 2, . . . , n, (2.3)

almost everywhere in Rn.

Proof. If χB(0,r) is the characteristic function of B(0, r) and
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χr =
χB(0,r)

|B(0, r)| ,

then
1

|B(x, r)|
∫

B(x,r)

|u(y)| dy = |u| ∗ χr(x),

where ∗ denotes convolution. Now |u| ∗ χr ∈W 1,p(Rn) and

Di(|u| ∗ χr) = χr ∗Di|u|, i = 1, 2, . . . , n,

almost everywhere in Rn.
Let rj , j = 1, 2, . . . , be an enumeration of the positive rational numbers.

Since u is locally integrable, we may restrict ourselves to positive rational
radii in the definition of the maximal function. Hence

Mu(x) = sup
j

(|u| ∗ χrj )(x).

We define functions vk : Rn → R, k = 1, 2, . . . , by

vk(x) = max
1�j�k

(|u| ∗ χrj )(x).

Now (vk) is an increasing sequence of functions inW 1,p(Rn) which converges
to Mu pointwise and

|Divk| � max
1�j�k

|Di(|u| ∗ χrj )| = max
1�j�k

|χrj ∗Di|u||

�MDi|u| =MDiu,
i = 1, 2, . . . , n, almost everywhere in Rn. Here we also used the fact that
|Di|u|| = |Diu|, i = 1, 2, . . . , n, almost everywhere. Thus,

‖Dvk‖p �
n∑
i=1

‖Divk‖p �
n∑
i=1

‖MDiu‖p

and the maximal function theorem implies

‖vk‖1,p � ‖Mu‖p +
n∑
i=1

‖MDiu‖p

� c‖u‖p + c
n∑
i=1

‖Diu‖p � c <∞

for every k = 1, 2, . . . . Hence (vk) is a bounded sequence in W 1,p(Rn) which
converges to Mu pointwise. By the weak compactness of Sobolev spaces,
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Mu ∈ W 1,p(Rn), vk converges toMu weakly in Lp(Rn), and Divk converges
to DiMu weakly in Lp(Rn). Since |Divk| � MDiu almost everywhere, the
weak convergence implies

|DiMu| �MDiu, i = 1, 2, . . . , n,

almost everywhere in Rn. 
�
Remark 2.4. (i) The case p = 1 is excluded in the theorem because our argu-
ments fail in that case. However, Tanaka [66] proved, in the one-dimensional
case, that if u ∈ W 1,1(R), then the noncentered maximal function is differ-
entiable almost everywhere and

‖DMu‖1 � 2‖Du‖1.

For extensions of Tanaka’s result to functions of bounded variation in the one-
dimensional case we refer to [3] and [4]. The question about the counterpart
of Tanaka’s result remains open in higher dimensions (see also discussion in
[26]). Observe that

‖u‖n/n−1 � c‖Du‖1
by the Sobolev embedding theorem and Mu ∈ Ln/(n−1)(Rn) by the maxi-
mal function theorem. However, the behavior of the derivatives is not well
understood in this case.

(ii) The inequality (2.3) implies that

|DMu(x)| �M |Du|(x) (2.5)

for almost all x ∈ Rn. Fix a point at which the gradient DMu(x) exists.
If |DMu(x)| = 0, then the claim is obvious. Hence we may assume that
|DMu(x)| �= 0. Let

e =
DMu(x)
|DMu(x)| .

Rotating the coordinates in the proof of the theorem so that e coincides with
some of the coordinate directions, we get

|DMu(x)| = |DeMu(x)| �MDhu(x) �M |Du|(x),

where Deu = Du · e is the derivative to the direction of the unit vector e.

(iii) Using the maximal function theorem together with (2.3), we find

‖Mu‖1,p = ‖Mu‖p + ‖DMu‖p
� c‖u‖p + ‖M |Du|‖p � c‖u‖1,p, (2.6)

where c is the constant in (1.1). Hence
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M :W 1,p(Rn)→W 1,p(Rn)

is a bounded operator, where 1 < p <∞.

(iv) If u ∈ W 1,∞(Rn), then a slight modification of our proof shows that
Mu belongs to W 1,∞(Rn). Moreover,

‖Mu‖1,∞ = ‖Mu‖∞ + ‖DMu‖∞
� ‖u‖∞ + ‖M |Du|‖∞ � ‖u‖1,∞.

Hence, in this case, the maximal operator is bounded with constant one.
Recall that, after a redefinition on a set of measure zero, u ∈ W 1,∞(Rn) is a
bounded and Lipschitz continuous function.

(v) A recent result of Luiro [53] shows that

M :W 1,p(Rn)→W 1,p(Rn)

is a continuous operator. Observe that bounded nonlinear operators are not
continuous in general. Luiro employs the structure of the maximal operator.
He also obtained an interesting formula for the weak derivatives of the max-
imal function. Indeed, if u ∈W 1,p(R), 1 < p <∞, and R(x) denotes the set
of radii r � 0 for which

Mu(x) = lim sup
ri→r

∫

B(x,ri)

|u| dy

for some sequence (ri) with ri > 0, then for almost all x ∈ Rn we have

DiMu(x) =
∫

B(x,r)

Di|u| dy

for every strictly positive r ∈ R(x) and

DiMu(x) = Di|u|(x)

if 0 ∈ R(x). For this is a sharpening of (2.3) we refer to [53, Theorem 3.1]
(see also [55]).

(vi) Let 0 � α � n. The fractional maximal function of a locally integrable
function f : Rn → [−∞,∞] is defined by

Mαf(x) = sup
r>0
rα

∫

B(x,r)

|f(y)| dy.

For α = 0 we obtain the Hardy–Littlewood maximal function.
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Theorem 2.2 can be easily extended to fractional maximal functions. In-
deed, suppose that 1 < p < ∞. Let 0 � α < n/p. If u ∈ W 1,p(Rn), then
Mαu ∈ W 1,q(Rn) with q = np/(n− αp) and

|DiMαu| �MαDiu, i = 1, 2, . . . , n,

almost everywhere in Rn. Moreover, there is c = c(n, p, α) such that

‖Mαu‖1,q � c ‖u‖1,p.

The main result of [39] shows that the fractional maximal operator is smooth-
ing in the sense that it maps Lp-spaces into certain first order Sobolev spaces.

2.2 A capacitary weak type estimate

As an application, we show that a weak type inequality for the Sobolev
capacity follows immediately from Theorem 2.2. The standard proofs seem
to depend, for example, on certain extension properties of Sobolev functions
(see [17]). Let 1 < p < ∞. The Sobolev p-capacity of the set E ⊂ Rn is
defined by

capp(E) = inf
u∈A(E)

∫

Rn

(|u|p + |Du|p) dx,

where

A(E) =
{
u ∈ W 1,p(Rn) : u � 1 on a neighborhood of E

}
.

If A(E) = ∅, we set capp(E) = ∞. The Sobolev p-capacity is a monotone
and countably subadditive set function. Let u ∈ W 1,p(Rn). Suppose that
λ > 0 and denote

Eλ = {x ∈ Rn :Mu(x) > λ}.
Then Eλ is open and Mu/λ ∈ A(Eλ). Using (2.6), we get

capp
(
Eλ
)

� 1
λp

∫

Rn

(|Mu|p + |DMu|p) dx

� c

λp

∫

Rn

(|u|p + |Du|p) dx � c

λp
‖u‖p1,p.

This inequality can be used in the study of the pointwise behavior of Sobolev
functions by standard methods. We recall that x ∈ Rn is a Lebesgue point
for u if the limit
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u∗(x) = lim
r→0

∫

B(x,r)

u dy

exists and
lim
r→0

∫

B(x,r)

|u(y)− u∗(x)| dy = 0.

The Lebesgue theorem states that almost all points of a L1
loc(R

n) function
are Lebesgue points. If a function belongs to W 1,p(Rn), then, using the ca-
pacitary weak type estimate, we can prove that the complement of the set of
Lebesgue points has zero p-capacity (see [17]).

3 Maximal Function Defined on a Subdomain

Let Ω be an open set in the Euclidean space Rn. For a locally integrable
function f : Ω → [−∞,∞] we define the Hardy–Littlewood maximal function
MΩf : Ω → [0,∞] as

MΩf(x) = sup
∫

B(x,r)

|f(y)| dy,

where the supremum is taken over all radii 0 < r < δ(x), where

δ(x) = dist(x, ∂Ω).

In this section, we make the standing assumption that Ω �= Rn so that
δ(x) is finite. Observe that the maximal function depends on Ω. The maximal
function theorem implies that the maximal operator is bounded in Lp(Ω) for
1 < p �∞, i.e.,

‖MΩf‖p,Ω � c‖f‖p,Ω. (3.1)

This follows directly from (1.1) by considering the zero extension to the
complement. The Sobolev space W 1,p(Ω), 1 � p � ∞, consists of those
functions u which, together with their weak first order partial derivatives
Du = (D1u, . . . , Dnu), belong to Lp(Ω). When 1 � p < ∞, we may define
W 1,p(Ω) as the completion of smooth functions with respect to the Sobolev
norm.

3.1 Boundedness in Sobolev spaces

We consider the counterpart of Theorem 2.2 for the maximal operator MΩ.
It turns out that the arguments in the previous section do not apply mainly
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because the maximal operatorMΩ does not commute with translations. The
following result was proved in [35]. We also refer to [26] for an alternative
approach.

Theorem 3.2. Let 1 < p �∞. If u ∈ W 1,p(Ω), then MΩu ∈W 1,p(Ω) and

|DMΩu| � 2MΩ|Du|

almost everywhere in Ω.

Observe that the result holds for every open set and, in particular, we
do not make any regularity assumption on the boundary. The functions ut :
Ω → [−∞,∞], 0 < t < 1, defined by

ut(x) =
∫

B(x,tδ(x))

|u(y)| dy,

will play a crucial role in the proof of Theorem 3.2 because

MΩu(x) = sup
0<t<1

ut(x)

for every x ∈ Ω. We begin with an auxiliary result which may be of indepen-
dent interest.

Lemma 3.3. Let Ω be an open set in Rn, and let 1 < p �∞. Suppose that
u ∈W 1,p(Ω). Then for every 0 < t < 1 we have ut ∈W 1,p(Ω) and

|Dut(x)| � 2MΩ|Du|(x) (3.4)

for almost all x ∈ Ω.

Proof. Since |u| ∈ W 1,p(Ω) and |D|u|| = |Du| almost everywhere in Ω, we
may assume that u is nonnegative. Suppose first that u ∈ C∞(Ω). Let t,
0 < t < 1, be fixed. According to the Rademacher theorem, as a Lipschitz
function δ is differentiable almost everywhere in Ω. Moreover, |Dδ(x)| = 1
for almost all x ∈ Ω. The Leibnitz rule gives

Diut(x) =Di
( 1
ωn(tδ(x))n

)
·

∫

B(x,tδ(x))

u(y) dy

+
1

ωn(tδ(x))n
·Di

∫

B(x,tδ(x))

u(y) dy

for almost all x ∈ Ω, and, by the chain rule,
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Di

∫

B(x,tδ(x))

u(y) dy =
∫

B(x,tδ(x))

Diu(y) dy

+ t
∫

∂B(x,tδ(x))

u(y) dHn−1(y) ·Diδ(x)

for almost all x ∈ Ω. Here we also used the fact that

∂

∂r

∫

B(x,r)

u(y) dy =
∫

∂B(x,r)

u(y) dy.

Collecting terms, we obtain

Diut(x) = n
Diδ(x)
δ(x)

( ∫

∂B(x,tδ(x))

u(y) dHn−1(y)

−
∫

B(x,tδ(x))

u(y) dy
)

+
∫

B(x,tδ(x))

Diu(y) dy (3.5)

for almost all x ∈ Ω and every i = 1, 2, . . . , n.
In order to estimate the difference of the two integrals in the parentheses in

(3.5), we have to take into account a cancellation effect. To this end, suppose
that B(x,R) ⊂ Ω. We use the first Green identity

∫

∂B(x,R)

u(y)
∂v

∂ν
(y) dHn−1(y)

=
∫

B(x,R)

(
u(y)Δv(y) +Du(y) ·Dv(y)) dy,

where ν(y) = (y − x)/R is the unit outer normal of B(x,R), and we choose

v(y) =
|y − x|2

2
.

With these choices the Green formula reads∫

∂B(x,R)

u(y) dHn−1(y)−
∫

B(x,R)

u(y) dy
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=
1
n

∫

B(x,R)

Du(y) · (y − x) dy.

We estimate the right-hand side of the previous equality by
∣∣∣∣
∫

B(x,R)

Du(y) · (y − x) dy
∣∣∣∣ � R

∫

B(x,R)

|Du(y)| dy

� RMΩ|Du|(x).
Finally, we conclude that

∣∣∣∣
∫

∂B(x,R)

u(y) dHn−1(y)−
∫

B(x,R)

u(y) dy
∣∣∣∣ � RnMΩ|Du|(x). (3.6)

Let e be a unit vector. Using (3.5), (3.6) with R = tδ(x), and the Schwarz
inequality, we find

|Dut(x) · e|

� n |e ·Dδ(x)|
δ(x)

· tδ(x)
n
M |Du|(x) +

∣∣∣∣
∫

B(x,tδ(x))

e ·Du(y) dy
∣∣∣∣

� tM |Du|(x) +
∫

B(x,tδ(x))

|Du(y)| dy

� (t+ 1)MΩ|Du|(x)

for almost all x ∈ Ω. Since t � 1 and e is arbitrary, (3.4) is proved for
nonnegative smooth functions.

The case u ∈ W 1,p(Ω) with 1 < p < ∞ follows from an approximation
argument. Indeed, suppose that u ∈ W 1,p(Ω) for some p with 1 < p < ∞.
Then there is a sequence (ϕj) of functions in W 1,p(Ω) ∩ C∞(Ω) such that
ϕj → u in W 1,p(Ω) as j →∞.

Fix t with 0 < t < 1. We see that

ut(x) = lim
j→∞

(ϕj)t(x)

if x ∈ Ω. It is clear that

(ϕj)t(x) =
∫

B(x,tδ(x))

|ϕj(y)| dy �MΩϕj(x)
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for every x ∈ Ω. By (3.4), for smooth functions we have

|D(ϕj)t(x)| � 2MΩ|Dϕj |(x) (3.7)

for almost all x ∈ Ω and every j = 1, 2 . . . . These inequalities and the
maximal function theorem imply that

‖(ϕj)t‖1,p,Ω = ‖(ϕj)t‖p,Ω + ‖D(ϕj)t‖p,Ω
� c
(‖ϕj‖p,Ω + ‖Dϕj‖p,Ω

)
= c‖ϕj‖1,p,Ω.

Thus, ((ϕj)t)∞j=1 is a bounded sequence in W 1,p(Ω) and, since it converges
to ut pointwise, we conclude that the Sobolev derivative Dut exists and
D(ϕj)t → Dut weakly in Lp(Ω) as j → ∞. This is a standard argument
which gives the desired conclusion that ut belongs to W 1,p(Ω). To establish
the inequality (3.4), we want to proceed to the limit in (3.7) as j →∞. Using
the sublinearity of the maximal operator and the maximal function theorem
once more, we arrive at

‖MΩ|Dϕj | −MΩ|Du|‖p,Ω � ‖MΩ(|Dϕj | − |Du|)‖p,Ω
� c‖|Dϕj | − |Du|‖p,Ω.

Hence MΩ|Dϕj | →MΩ|Du| in Lp(Ω) as j →∞. To complete the proof, we
apply the proposition mentioned before Theorem 2.2 to (3.7).

Finally, we consider the case p = ∞. Slightly modifying the above proof,
we see that ut ∈ W 1,p

loc (Ω) for every 1 < p <∞ and the estimate (2.3) holds
for the gradient. The claim follows from the maximal function theorem. This
completes the proof. 
�

The proof of Theorem 3.2 follows now easily since the hard work has
been done in the proof of Lemma 3.3. Suppose that u ∈ W 1,p(Ω) for some
1 < p < ∞. Then |u| ∈ W 1,p(Ω). Let tj, j = 1, 2, . . . , be an enumeration
of the rational numbers between 0 and 1. Denote uj = utj . By the previous
lemma, we see that uj ∈ W 1,p(Ω) for every j = 1, 2, . . . and (3.4) gives us
the estimate

|Duj(x)| � 2MΩ|Du|(x)
for almost all x ∈ Ω and every j = 1, 2, . . . . We define vk : Ω → [−∞,∞],
k = 1, 2, . . . , as

vk(x) = max
1�j�k

uj(x).

Using the fact that the maximum of two Sobolev functions belongs to the
Sobolev space, we see that (vk) is an increasing sequence of functions in
W 1,p(Ω) converging to MΩu pointwise and

|Dvk(x)| = |D max
1�j�k

uj(x)| � max
1�j�k

|Duj(x)| � 2MΩ|Du|(x) (3.8)
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for almost all x ∈ Ω and every j = 1, 2, . . . . On the other hand,

vk(x) �MΩu(x)

for all x ∈ Ω and k = 1, 2, . . . . The rest of the proof goes along the lines of
the final part of the proof of Theorem 2.2. By the maximal function theorem,

‖vk‖1,p,Ω = ‖vk‖p,Ω + ‖Dvk‖p,Ω
� ‖MΩu‖p,Ω + 2‖MΩ|Du|‖p,Ω � c‖u‖1,p,Ω.

Hence (vk) is a bounded sequence in W 1,p(Ω) such that vk → MΩu ev-
erywhere in Ω as k → ∞. A weak compactness argument shows that
MΩu ∈ W 1,p(Ω), vk →MΩu, andDvk → DMΩu weakly in Lp(Ω) as k →∞.
Again, we may proceed to the weak limit in (3.8), using the proposition men-
tioned before Theorem 2.2.

Let us briefly consider the case p = ∞. Using the above argument, it is
easy to see that MΩu ∈ W 1,p

loc (Ω) and the claim follows from the maximal
function theorem.

Remark 3.9. Again, it follows immediately that

MΩ :W 1,p(Ω)→W 1,p(Ω)

is a bounded operator. Luiro [54] shows that it is also a continuous operator
for every open set Ω, with 1 < p � ∞. In [55], he gives examples of natural
maximal operators which are not continuous on Sobolev spaces.

3.2 Sobolev boundary values

We have shown that the local Hardy–Littlewood maximal operator preserves
the Sobolev spacesW 1,p(Ω) provided that 1 < p �∞. Next we show that the
maximal operator also preserves the boundary values in the Sobolev sense.
Recall that the Sobolev space with zero boundary values, denoted byW 1,p

0 (Ω)
with 1 � p <∞, is defined as the completion of C∞

0 (Ω) with respect to the
Sobolev norm.

We begin with some useful condition which guarantees that a Sobolev
function has zero boundary values in the Sobolev sense. The following result
was proved in [36], but we present a very simple proof by Zhong [70, Theorem
1.9]. With a different argument this result also holds in metric measure spaces
[32, Theorem 5.1].

Lemma 3.10. Let Ω �= Rn be an open set. Suppose that u ∈ W 1,p(Ω). If



Maximal Functions in Sobolev Spaces 39

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p
dx <∞,

then u ∈ W 1,p
0 (Ω).

Proof. For λ > 0 we define uλ : Ω → [0,∞] by

uλ(x) = min(|u(x)|, λdist(x, ∂Ω)).

We see that uλ ∈ W 1,p
0 (Ω) for every λ > 0.

Then we show that (uλ) is a uniformly bounded family of functions in
W 1,p

0 (Ω). Clearly, uλ � |u| and hence
∫

Ω

upλ dx �
∫

Ω

|u|p dx.

For the gradient estimate we define

Fλ = {x ∈ Ω : |u(x)| > λdist(x, ∂Ω)},

where λ > 0. Then
∫

Ω

|Duλ|p dx =
∫

Ω\Fλ

|Du|p dx+ λp
∫

Fλ

|D dist(x, ∂Ω)|p dx

�
∫

Ω

|Du|p dx+ λp|Fλ|,

where, by assumption,

λp|Fλ| �
∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p
dx <∞

for every λ > 0. Here we again used the fact that |D dist(x, ∂Ω)| = 1 for
almost all x ∈ Ω. This implies that (uλ) is a uniformly bounded family of
functions in W 1,p

0 (Ω).
Since |Fλ| → 0 as λ→∞ and uλ = |u| in Ω \Fλ, we have uλ → |u| almost

everywhere in Ω. A similar weak compactness argument that was used in the
proofs of Theorems 2.2 and 3.2 shows that |u| ∈W 1,p

0 (Ω). 
�
Remark 3.11. The proof shows that, instead of u/δ ∈ Lp(Ω), it is enough
to assume that u/δ belongs to the weak Lp(Ω). Boundary behavior of the
maximal function was studied in [37, 35]

Theorem 3.12. Let Ω ⊂ Rn be an open set. Suppose that u ∈ W 1,p(Ω) with
p > 1. Then
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|u| −MΩu ∈ W 1,p
0 (Ω).

Remark 3.13. In particular, if u ∈W 1,p
0 (Ω), then MΩu ∈ W 1,p

0 (Ω). Observe
that this holds for every open subset Ω.

Proof. Fix 0 < t < 1. A standard telescoping argument (see Lemma 4.1)
gives

∣∣|u(x)| − ut(x)∣∣ =

∣∣∣∣∣∣∣
|u(x)| −

∫

B(x,tδ(x))

|u(y)| dy

∣∣∣∣∣∣∣

� ct dist(x, ∂Ω)MΩ|Du|(x).
For every x ∈ Ω there is a sequence tj , j = 1, 2, . . . , such that

MΩu(x) = lim
j→∞

utj (x).

This implies that
∣∣|u(x)| −MΩu(x)

∣∣ = lim
j→∞

∣∣|u(x)| − utj (x)
∣∣

� c dist(x, ∂Ω)MΩ |Du|(x).
By the maximal function theorem, we conclude that

∫

Ω

(∣∣|u(x)| −MΩu(x)
∣∣

dist(x, ∂Ω)

)p
dx � c

∫

Ω

(MΩ|Du|(x))p dx

� c
∫

Ω

|Du(x)|p dx.

This implies that
|u(x)| −MΩu(x)

dist(x, ∂Ω)
∈ Lp(Ω).

By Theorem 3.2, we have MΩu ∈ W 1,p(Ω), and from Lemma 3.10 we con-
clude that |u| −MΩu ∈W 1,p

0 (Ω). 
�
Remark 3.14. We observe that the maximal operator preserves nonnegative
superharmonic functions; see [37]. (For superharmonic functions that change
signs, we may consider the maximal function without absolute values.) Sup-
pose that u : Ω → [0,∞] is a measurable function which is not identically ∞
on any component of Ω. Then it is easy to show that

MΩu(x) = u(x)
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for every x ∈ Ω if and only if u is superharmonic.
The least superharmonic majorant can be constructed by iterating the

maximal function. For short we write

M
(k)
Ω u(x) =MΩ ◦MΩ ◦ · · · ◦MΩu(x), k = 1, 2, . . . .

Since M (k)
Ω u, k = 1, 2, . . . , are lower semicontinuous, we see that

M
(k)
Ω u(x) �M (k+1)

Ω u(x), k = 1, 2, . . . ,

for every x ∈ Ω. Hence (M (k)
Ω u(x)) is an increasing sequence of functions and

it converges for every x ∈ Ω (the limit may be ∞). We denote

M
(∞)
Ω u(x) = lim

k→∞
M

(k)
Ω u(x)

for every x ∈ Ω. If M (∞)
Ω u is not identically infinity on any component of Ω,

then it is the smallest superharmonic function with the property that

M
(∞)
Ω u(x) � u(x)

for almost all x ∈ Ω. If u ∈ W 1,p(Ω), then the obtained smallest superhar-
monic function has the same boundary values as u in the Sobolev sense by
Theorem 3.12.

Fiorenza [18] observed that nonnegative functions of one or two variables
cannot be invariant under the maximal operator unless they are constant.
This is consistent with the fact that on the line there are no other concave
functions and in the plane there are no other superharmonic functions but
constants that are bounded from below (see also [42]).

4 Pointwise Inequalities

The following estimates are based on a well-known telescoping argument (see
[28] and [16]). The proofs are based on a general principle and they apply
in a metric measure space equipped with a doubling measure (see [25]). This
fact will be useful below.

Let 0 < β < ∞ and R > 0. The fractional sharp maximal function of a
locally integrable function f is defined by

f#
β,R(x) = sup

0<r<R
r−β

∫

B(x,r)

|f − fB(x,r)| dy,

If R =∞ we simply write f#
β (x).
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Lemma 4.1. Suppose that f is locally integrable. Let 0 < β <∞. Then there
is a constant c = c(β, n) and a set E with |E| = 0 such that

|f(x) − f(y)| � c|x− y|β(f#
β,4|x−y|(x) + f#

β,4|x−y|(y)
)

(4.2)

for all x, y ∈ Rn \ E.

Proof. Let E be the complement of the set of Lebesgue points of f . By
the Lebesgue theorem, |E| = 0. Fix x ∈ Rn \ E, 0 < r < ∞ and denote
Bi = B(x, 2−ir), i = 0, 1, . . . . Then

|f(x)− fB(x,r)| �
∞∑
i=0

|fBi+1 − fBi |

�
∞∑
i=0

μ(Bi)
μ(Bi+1)

∫

Bi

|f − fBi | dy

� c
∞∑
i=0

(2−ir)β(2−ir)−β
∫

Bi

|f − fBi | dy

� crβf#
β,r(x).

Let y ∈ B(x, r) \ E. Then B(x, r) ⊂ B(y, 2r) and we obtain

|f(y)− fB(x,r)| � |f(y)− fB(y,2r)|+ |fB(y,2r) − fB(x,r)|

� crβf#
β,2r(y) +

∫

B(x,r)

|f − fB(y,2r)| dz

� crβf#
β,2r(y) + c

∫

B(y,2r)

|f − fB(y,2r)| dz

� crβf#
β,2r(y).

Let x, y ∈ Rn \E, x �= y and r = 2|x− y|. Then x, y ∈ B(x, r) and hence

|f(x)− f(y)| � |f(x)− fB(x,r)|+ |f(y)− fB(x,r)|

� c|x− y|β(f#
β,4|x−y|(x) + f#

β,4|x−y|(y)
)
.

This completes the proof. 
�
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Let 0 � α < 1 and R > 0. The fractional maximal function of a locally
integrable function f is defined by

Mα,Rf(x) = sup
0<r<R

rα
∫

B(x,r)

|f | dy,

For R =∞, we writeMα,∞ =Mα. If α = 0, we obtain the Hardy–Littlewood
maximal function and write M0 =M .

If u ∈ W 1,1
loc (Rn), then, by the Poincaré inequality, there is a constant

c = c(n) such that
∫

B(x,r)

|u− uB(x,r)| dy � cr
∫

B(x,r)

|Du| dy

for every ball B(x, r) ⊂ Rn. It follows that

rα−1

∫

B(x,r)

|u− uB(x,r)| dy � crα
∫

B(x,r)

|Du| dy

and, consequently,
u#1−α,R(x) � cMα,R|Du|(x)

for every x ∈ Rn and R > 0. Thus, we have proved the following useful
inequality.

Corollary 4.3. Let u ∈ W 1,1
loc (Rn) and 0 � α < 1. Then there is a constant

c = c(n, α) and a set E ⊂ Rn with |E| = 0 such that

|u(x)− u(y)| � c|x− y|1−α(Mα,4|x−y||Du|(x) +Mα,4|x−y||Du|(y)
)

for all x, y ∈ Rn \ E.

If u ∈ W 1,p(Rn), 1 � p �∞, then

|u(x)− u(y)| � c|x− y|(M |Du|(x) +M |Du|(y))

for all x, y ∈ Rn \ E. If 1 < p � ∞, then the maximal function theorem
implies that g =M |Du| ∈ Lp(Rn) and, by the previous inequality, we have

|u(x)− u(y)| � c|x− y|(g(x) + g(y)
)

for all x, y ∈ Rn \E with |E| = 0. The following result shows that this gives
a characterization of W 1,p(Rn) for 1 < p � ∞. This characterization can
be used as a definition of the first order Sobolev spaces on metric measure
spaces (see [21, 24, 25]).

Theorem 4.4. Let 1 < p � ∞. Then the following four conditions are
equivalent.
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(i) u ∈ W 1,p(Rn).

(ii) u ∈ Lp(Rn) and there is g ∈ Lp(Rn), g � 0, such that

|u(x)− u(y)| � |x− y|(g(x) + g(y))

for all x, y ∈ Rn \ E with |E| = 0.

(iii) u ∈ Lp(Rn) and there is g ∈ Lp(Rn), g � 0, such that the Poincaré
inequality holds,

∫

B(x,r)

|u− uB(x,r)| dy � c r
∫

B(x,r)

g dy

for all x ∈ Rn and r > 0.

(iv) u ∈ Lp(Rn) and u#1 ∈ Lp(Rn).

Proof. We have already seen that (i) implies (ii). To prove that (ii) implies
(iii), we integrate the pointwise inequality twice over the ball B(x, r). After
the first integration we obtain

|u(y)− uB(x,r)| =

∣∣∣∣∣∣∣
u(y)−

∫

B(x,r)

u(z) dz

∣∣∣∣∣∣∣

�
∫

B(x,r)

|u(y)− u(z)| dz

� 2r

⎛
⎜⎝g(y) +

∫

B(x,r)

g(z) dz

⎞
⎟⎠ ,

which implies

∫

B(x,r)

|u(y)− uB(x,r)| dy � 2r

⎛
⎜⎝
∫

B(x,r)

g(y) dy +
∫

B(x,r)

g(z) dz

⎞
⎟⎠

� 4r
∫

B(x,r)

g(y) dy.

To show that (iii) implies (iv), we observe that
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u#1 (x) = sup
r>0

1
r

∫

B(x,r)

|u− uB(x,r)| dy � c sup
r>0

∫

B(x,r)

g dy = cMg(x).

Then we show that (iv) implies (i). By Theorem 4.1,

|u(x)− u(y)| � c|x− y|(u#1 (x) + u#1 (y))

for all x, y ∈ Rn \ E with |E| = 0. If we denote g = cu#1 , then g ∈ Lp(Rn)
and

|u(x)− u(y)| � |x− y|(g(x) + g(y))

for all x, y ∈ Rn \ E with |E| = 0. Then we use the characterization of
Sobolev spaces W 1,p(Rn), 1 < p < ∞, with integrated difference quotients.
Let h ∈ Rn. Then

|uh(x)− u(x)| = |u(x+ h)− u(x)| � |h|(gh(x) + g(x)),

from which we conclude that

‖uh − u‖p � |h|(‖gh‖p + ‖g‖p) = 2|h|‖g‖p,

which implies the claim. 
�
Remark 4.5. Haj�lasz [22] showed that u ∈ W 1,1(Rn) if and only if u ∈
L1(Rn) and there is a nonnegative function g ∈ L1(Rn) and σ � 1 such that

|u(x)− u(y)| � |x− y|(Mσ|x−y|g(x) +Mσ|x−y|g(y))

for all x, y ∈ Rn \ E with |E| = 0. Moreover, if this inequality holds, then
|Du| � c(n, σ)g almost everywhere.

4.1 Lusin type approximation of Sobolev functions

Approximations of Sobolev functions were studied, for example, in [2, 10, 11,
13, 20, 25, 52, 56, 58, 60, 69].

Let u ∈W 1,p(Rn) and 0 � α < 1. By Corollary (4.3),

|u(x)− u(y)| � c|x− y|1−α(Mα|Du|(x) +Mα|Du|(y)
)

for all x, y ∈ Rn \ E with |E| = 0. For p > n the Hölder inequality implies

Mn/p|Du|(x) � cMn|Du|p(x)1/p � c‖Du‖p
for every x ∈ Rn \ E with c = c(n, p). Hence
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|u(x)− u(y)| � c‖Du‖p|x− y|1−n/p

for all x, y ∈ Rn \ E and u is Hölder continuous with the exponent 1− n/p
after a possible redefinition on a set of measure zero. The same argument
implies that if Mα|Du| is bounded, then u ∈ C1−α(Rn). Even if Mα|Du| is
unbounded, then

|u(x)− u(y)| � cλ|x− y|1−α

for all x, y ∈ Rn \ Eλ, where

Eλ = {x ∈ Rn :Mα|Du|(x) > λ}

for λ > 0. This means that the restriction of u ∈ W 1,p(Rn) to the set Rn\Eλ
is Hölder continuous after a redefinition on a set of measure zero.

Recall that the (spherical) Hausdorff s-content, 0 < s <∞, of E ⊂ Rn is
defined by

Hs∞(E) = inf
{ ∞∑
i=1

rsi : E ⊂
∞⋃
i=1

B(xi, ri)
}
.

The standard Vitali covering argument gives the following estimate for the
size of the set Rn \ Eλ. There is a constant c = c(n, p, α) such that

Hn−αp∞ (Eλ) � cλ−p
∫

Rn

|Du|p dx (4.6)

for every λ > 0.

Theorem 4.7. Let u ∈W 1,p(Rn), and let 0 � α < 1. Then for every λ > 0
there is an open set Eλ and a function uλ such that u(x) = uλ(x) for every
x ∈ Rn \ Eλ, uλ ∈ W 1,p(Rn), uλ is Hölder continuous with the exponent
1− α, ‖u− uλ‖W 1,p(Rn) → 0 as λ→∞, and Hn−αp∞ (Eλ)→ 0 as λ→∞.

Remark 4.8. (i) If α = 0, then the theorem says that every function in the
Sobolev space coincides with a Lipschitz function outside a set of arbitrarily
small Lebesgue measure. The obtained Lipschitz function approximates the
original Sobolev function also in the Sobolev norm.

(ii) Since
capαp(Eλ) � cHn−αp∞ (Eλ),

the size of the exceptional set can also be expressed in terms of capacity.

Proof. The set Eλ is open since Mα is lower semicontinuous. From (4.6) we
conclude that

Hn−αp∞ (Eλ) � cλ−p ‖Du‖pp
for every λ > 0 with c = c(n, p, α).

We already showed that u|Rn\Eλ
is (1 − α)-Hölder continuous with the

constant c(n)λ.
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Let Qi, i = 1, 2, . . ., be a Whitney decomposition of Eλ with the following
properties: each Qi is open, the cubes Qi, i = 1, 2, . . ., are disjoint, Eλ =⋃∞
i=1Qi, 4Qi ⊂ Eλ, i = 1, 2, . . .,

∞∑
i=1

χ2Qi � N <∞,

and
c1 dist(Qi,Rn \ Eλ) � diam(Qi) � c2 dist(Qi,Rn \ Eλ)

for some constants c1 and c2.
Then we construct a partition of unity associated with the covering 2Qi,

i = 1, 2, . . . . This can be done in two steps. First, let ϕ̃i ∈ C∞
0 (2Qi) be such

that 0 � ϕ̃i � 1, ϕ̃i = 1 in Qi and

|Dϕ̃i| � c

diam(Qi)

for i = 1, 2, . . . . Then we define

ϕi(x) =
ϕ̃i(x)

∞∑
j=1

ϕ̃j(x)

for every i = 1, 2, . . .. Observe that the sum is taken over finitely many terms
only since ϕi ∈ C∞

0 (2Qi) and the cubes 2Qi, i = 1, 2, . . ., are of bounded
overlap. The functions ϕi have the property

∞∑
i=1

ϕi(x) = χEλ
(x)

for every x ∈ Rn.
Then we define the function uλ by

uλ(x) =

⎧⎨
⎩
u(x), x ∈ Rn \ Eλ,
∞∑
i=1

ϕi(x)u2Qi , x ∈ Eλ.

The function uλ is a Whitney type extension of u|Rn\Eλ
to the set Eλ.

First we claim that

‖uλ‖W 1,p(Eλ) � c‖u‖W 1,p(Eλ). (4.9)

Since the cubes 2Qi, i = 1, 2, . . ., are of bounded overlap, we have
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∫

Eλ

|uλ|p dx =
∫

Eλ

∣∣∣
∞∑
i=1

ϕi(x)u2Qi

∣∣∣p dx � c
∞∑
i=1

∫

2Qi

|u2Qi |p dx

� c
∞∑
i=1

|2Qi|
∫

2Qi

|u|p dx � c
∫

Eλ

|u|p dx.

Then we estimate the gradient. We recall that

Φ(x) =
∞∑
i=1

ϕi(x) = 1

for every x ∈ Eλ. Since the cubes 2Qi, i = 1, 2, . . ., are of bounded overlap,
we see that Φ ∈ C∞(Eλ) and

DjΦ(x) =
∞∑
i=1

Djϕi(x) = 0, j = 1, 2, . . . , n,

for every x ∈ Eλ. Hence we obtain

|Djuλ(x)| =
∣∣∣

∞∑
i=1

Djϕi(x)u2Qi

∣∣∣ =
∣∣∣

∞∑
i=1

Djϕi(x)(u(x) − u2Qi)
∣∣∣

� c
∞∑
i=1

diam(Qi)−1|u(x)− u2Qi |χ2Qi(x)

and, consequently,

|Djuλ(x)| � c
∞∑
i=1

diam(Qi)−p|u(x)− u2Qi |pχ2Qi(x).

Here we again used the fact that the cubes 2Qi, i = 1, 2, . . ., are of bounded
overlap.

This implies that for every j = 1, 2, . . . , n

∫

Eλ

|Djuλ| dx � c
∫

Eλ

( ∞∑
i=1

diam(Qi)−p|u− u2Qi |pχ2Qi

)
dx

�
∞∑
i=1

∫

2Qi

diam(Qi)−p|u− u2Qi |p dx
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� c
∞∑
i=1

∫

2Qi

|Du|p dx � c
∫

Eλ

|Du|p dx.

Then we show that uλ ∈ W 1,p(Rn). We know that uλ belongs toW 1,p(Eλ)
and is Hölder continuous in Rn. Moreover, u ∈ W 1,p(Rn) and u = uλ in
Rn \ Eλ by (i). This implies that w = u − uλ ∈ W 1,p(Eλ) and w = 0 in
Rn \ Eλ. By the ACL-property, u is absolutely continuous on almost every
line segment parallel to the coordinate axes. Take any such a line. Now w is
absolutely continuous on the part of the line segment which intersects Eλ.
On the other hand, w = 0 in the complement of Eλ. Hence the continuity of
w in the line segment implies that w is absolutely continuous on the whole
line segment.

We have

‖u− uλ‖W 1,p(Rn) = ‖u− uλ‖W 1,p(Eλ)

� ‖u‖W 1,p(Eλ) + ‖uλ‖W 1,p(Eλ) � c‖u‖W 1,p(Eλ).

We leave it as an exercise for the interested reader to show that the function
uλ is Hölder continuous with the exponent 1 − α (or see, for example, [27]
for details). 
�

5 Hardy Inequality

In this section, we consider the Hardy inequality, which was originally studied
by Hardy in the one-dimensional case. In the higher dimensional case, the
Hardy inequality was studied, for example, in [5, 46, 51, 59, 67, 68]. Our
approach is mainly based on more recent works [23, 36, 44, 47, 48, 61].

Suppose first that p > n, n < q < p, 0 � α < q, and Ω �= Rn is an open
set. Let u ∈ C∞

0 (Ω). Consider the zero extension to Rn \Ω. Fix x ∈ Ω and
take x0 ∈ ∂Ω such that

|x− x0| = dist(x, ∂Ω) = δ(x) = R.

Denote χ = χB(x0,2R). By Corollary 4.3,

|u(x)| = |u(x)− u(x0)|
� c|x− x0|1−n/q(Mn/q(|Du|χ)(x) +Mn/q(|Du|χ)(x0)),

where
Mn/q(|Du|χ)(x) � cMn(|Du|qχ)(x)1/q � ‖Duχ‖q,

and, by the same argument,
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Mn/q(|Du|χ)(x0) � ‖Duχ‖q.

This implies that

|u(x)| � c|x− x0|1−n/q
⎛
⎜⎝

∫

B(x0,2R)

|Du|q dy

⎞
⎟⎠

1/q

� cR1−α/q

⎛
⎜⎝Rα−n

∫

B(x,4R)

|Du|q dy

⎞
⎟⎠

1/q

� c dist(x, ∂Ω)1−α/q
(
Mα,4δ(x)|Du|q(x)

)1/q (5.1)

for every x ∈ Rn with c = c(n, q). This is a pointwise Hardy inequality. For
u ∈W 1,p

0 (Ω) this inequality holds almost everywhere. Integrating (5.1) with
α = 0 over Ω and using the maximal function theorem, we arrive at

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p
dx � c

∫

Ω

(
M |Du|q(x))p/q dx

� c
∫

Ω

|Du(x)|p dx (5.2)

for every u ∈ W 1,p
0 (Ω) with c = c(n, p, q). This is a version of the Hardy

inequality which is valid for every open sets with nonempty complement if
n < p <∞. The case 1 < p � n is more involved since then extra conditions
must be imposed on Ω (see [51, Theorem 3]). However, there is a sufficient
condition in terms of capacity density of the complement.

A closed set E ⊂ Rn is uniformly p−fat, 1 < p <∞, if there is a constant
γ > 0 such that

capp
(
E ∩B(x, r), B(x, 2r)

)
� γ capp

(
B(x, r), B(x, 2r)

)
(5.3)

for all x ∈ E and r > 0. Here capp(K,Ω) denotes the variational p−capacity

capp(K,Ω) = inf
∫

Ω

|Du(x)|p dx,

where the infimum is taken over all u ∈ C∞
0 (Ω) such that u(x) � 1 for every

x ∈ K. Here Ω is an open subset of Ω and K is a compact subset of Ω. We
recall that

capp(B(x, r), B(x, 2r)) = crn−p,
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where c = c(n, p).
If p > n, then all nonempty closed sets are uniformly p-fat. If there is a

constant γ > 0 such that E satisfies the measure thickness condition

|B(x, r) ∩ E| � γ|B(x, r)|

for all x ∈ E and r > 0, then E is uniformly p-fat for every p with 1 < p <∞.
If E is uniformly p-fat for some p, then it is uniformly q-fat for every q > p.

The fundamental property of uniformly fat sets is the following self improving
result due to Lewis [51, Theorem 1]. For another proof see [61, Theorem 8.2].

Theorem 5.4. Let E ⊂ Rn be a closed uniformly p−fat set. Then there is
1 < q < p such that E is uniformly q−fat.

In the case where Ω ⊂ Rn is an open set such that Rn \ Ω is uniformly
p−fat, Lewis [51, Theorem 2] proved that the Hardy inequality holds. We have
already seen that the Hardy inequality follows from pointwise inequalities
involving the Hardy–Littlewood maximal function if p > n. We show that
this is also the case 1 < p � n.

Theorem 5.5. Let 1 < p � n, 0 � α < p, and let Ω ⊂ Rn be an open set
such that Rn \ Ω is uniformly p−fat. Suppose that u ∈ C∞

0 (Ω). Then there
are constants c = c(n, p, γ) and σ > 1 such that

|u(x)| � c dist(x, ∂Ω)1−α/p
(
Mα,σδ(x)|Du|p(x)

)1/p (5.6)

for every x ∈ Ω.

Proof. Let x ∈ Ω. Choose x0 ∈ ∂Ω such that

|x− x0| = dist(x, ∂Ω) = δ(x) = R.

Then
|u(x)− uB(x0,2R)| � cR1−α/p(Mα,R|Du|p(x)

)1/p
for every x ∈ B(x0, 2R) with c = c(n, p), and hence

|u(x)| � |u(x)− uB(x0,2R)|+ |uB(x0,2R)|

� cR1−α/p(Mα,δ(x)|Du|p(x)
)1/p + |u|B(x0,2R)

for every x ∈ B(x0, 2R). Denote A = {x ∈ Rn : u(x) = 0}. Using a capacitary
version of the Poincaré inequality, we arrive at

1
|B(x0, 2R)|

∫

B(x0,2R)

|u| dy
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� c

⎛
⎜⎝capp

(
A ∩B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du|p dy

⎞
⎟⎠

1/p

� c
(
capp

(
(Rn \Ω) ∩B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du|p dy
)1/p

� c

⎛
⎜⎝Rp−n

∫

B(x,8R)

|Du|p dy

⎞
⎟⎠

1/p

� cR1−α/p(Mα,8δ(x)|Du|p(x)
)1/p
,

where c = c(n, p, γ). 
�
If Rn\Ω is p−fat, then, by Theorem 5.4, it is q−fat for some 1 < q < p � n.

Using (5.6) with α = 0, we get the pointwise q-Hardy inequality

|u(x)| � c dist(x, ∂Ω)
(
Mσδ(x)|Du|q(x)

)1/q

for every x ∈ Ω with c = c(n, q). Integrating and using the maximal function
theorem exactly in the same way as in (5.2), we also prove the Hardy inequal-
ity in the case 1 < p � n. Again, a density argument shows that the Hardy
inequality holds for every u ∈ W 1,p

0 (Ω). Thus, we have proved the following
assertion.

Corollary 5.7. Let 1 < p < ∞. Suppose that Ω ⊂ Rn is an open set such
that Rn \ Ω is uniformly p−fat. If u ∈ W 1,p

0 (Ω), then there is a constant
c = c(n, p, γ) such that

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p
dx � c

∫

Ω

|Du(x)|p dx.

In particular, if p > n, then the inequality holds for every Ω �= Rn.

Remark 5.8. The pointwise Hardy inequality is not equivalent to the Hardy
inequality since there are open sets for which the Hardy inequality holds for
some p, but the pointwise Hardy inequality fails. For example, the punctured
ball B(0, 1) \ {0} satisfies the pointwise Hardy inequality only in the case
p > n, but the usual Hardy inequality also holds when 1 < p < n. When
p = n, the Hardy inequality fails for this set. This example also shows that
the uniform fatness of the complement is not a necessary condition for an
open set to satisfy the Hardy inequality since the complement of B(0, 1)\{0}
is not uniformly p-fat when 1 < p < n. If p = n, then the Hardy inequality is
equivalent to the fact that Rn \Ω is uniformly p-fat (see [51, Theorem 3]).

A recent result of Lehrbäck [47] shows that the uniform fatness is not only
sufficient, but also necessary condition for the pointwise Hardy inequality
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(see also [50, 48, 49]). When n = p = 2, Sugawa [65] proved that the Hardy
inequality is also equivalent to the uniform perfectness of the complement of
the domain. Recently this result was generalized in [43] for other values of
p. The arguments of [43] are very general. It is also possible to study Hardy
inequalities on metric measure spaces (see [9, 32, 43]).

Theorem 5.4 shows that the p-fatness is a self improving result. Next we
give a proof of an elegant result of Koskela and Zhong [45] which states that
the Hardy inequality is self improving.

Theorem 5.9. Suppose that the Hardy inequality holds in Ω for some 1 <
p <∞. Then there exists ε > 0 such that the Hardy inequality holds in Ω for
every q with p− ε < q � p.

Proof. Let u be a Lipschitz continuous function that vanishes in Rn \Ω. For
λ > 0 denote

Fλ = {x ∈ Ω : |u(x)| � λdist(x, ∂Ω) and M |Du|(x) � λ}.

We claim that the restriction of u to Fλ ∪ (Rn \ Ω) is Lipschitz continuous
with a constant cλ, where c = c(n). If x, y ∈ Fλ, then

|u(x) − u(y)| � c|x− y|(M |Du|(x) +M |Du|(y)) � cλ|x − y|

by Corollary 4.3. If x ∈ Fλ and y ∈ Rn \Ω, then

|u(x)− u(y)| = |u(x)| � λdist(x, ∂Ω) � λ|x − y|.

This implies that u|Fλ∪(Rn\Ω) is Lipschitz continuous with the constant cλ.
We extend the function to the entire space Rn, for example, with the classical
McShane extension

v(x) = inf{u(y) + cλ|x− y| : y ∈ Fλ ∪ (Rn \Ω)}.

The function v is Lipschitz continuous in Rn with the same constant cλ as
u|Fλ∪(Rn\Ω). Let

Gλ = {x ∈ Ω : |u(x)| � λdist(x, ∂Ω)}

and
Eλ = {x ∈ Ω :M |Du|(x) � λ}.

Then Fλ = Gλ ∩Eλ, and we note that

|Dv(x)| � |Du(x)|χFλ
(x) + cλχΩ\Fλ

(x)

for almost all x ∈ Rn. By the Hardy inequality,
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∫

Fλ

( |v(x)|
dist(x, ∂Ω)

)p
dx � c

∫

Fλ

|Du(x)|p dx+ cλp|Ω \ Fλ|

and, consequently,
∫

Gλ

( |u(x)|
dist(x, ∂Ω)

)p
dx

� c
∫

Fλ

|Du(x)|p dx+ cλp|Ω \ Fλ|+
∫

Gλ\Eλ

( |u(x)|
dist(x, ∂Ω)

)p
dx

� c
∫

Eλ

|Du(x)|p dx + cλp(|Ω \Gλ|+ |Ω \Eλ|).

From this we obtain

1
ε

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p−ε
dx =

∞∫

0

λ−ε−1

∫

Gλ

( |u(x)|
dist(x, ∂Ω)

)p
dx dλ

� c
∞∫

0

λ−ε−1

∫

Eλ

|Du(x)|p dx dλ

+ c

∞∫

0

λp−ε−1|Ω \Gλ| dλ+ c

∞∫

0

λp−ε−1|Ω \ Eλ| dλ

� c
ε

∫

Ω

|Du(x)|p−ε dx+
1
p− ε

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p−ε
dx

+
c

p− ε
∫

Ω

(M |Du|(x))p−ε dx.

The claim follows from this by using the maximal function theorem, choosing
ε > 0 small enough, and absorbing the terms on the left-hand side. 
�

6 Maximal Functions on Metric Measure Spaces

In this section, we show that most of the results that we have discussed so
far are based on a general principle and our arguments apply in the context
of metric measure spaces.
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6.1 Sobolev spaces on metric measure spaces

Let X = (X, d, μ) be a complete metric space endowed with a metric d and
a Borel regular measure μ such that 0 < μ(B(x, r)) <∞ for all open balls

B(x, r) = {y ∈ X : d(y, x) < r}

with r > 0.
The measure μ is said to be doubling if there exists a constant cμ � 1,

called the doubling constant of μ, such that

μ(B(x, 2r)) � cμμ(B(x, r))

for all x ∈ X and r > 0. Note that an iteration of the doubling property
implies that, if B(x,R) is a ball in X , y ∈ B(x,R), and 0 < r � R < ∞,
then

μ(B(y, r))
μ(B(x,R))

� c
( r
R

)Q
(6.1)

for some c = c(cμ) and Q = log cμ/ log 2. The exponent Q serves as a coun-
terpart of dimension related to the measure.

A nonnegative Borel function g on X is said to be an upper gradient of a
function u : X → [−∞,∞] if for all rectifiable paths γ joining points x and
y in X we have

|u(x)− u(y)| �
∫

γ

g ds, (6.2)

whenever both u(x) and u(y) are finite, and
∫
γ

g ds = ∞ otherwise. The

assumption that g is a Borel function is needed in the definition of the path
integral. If g is merely a μ-measurable function and (6.2) holds for p-almost
every path (i.e., it fails only for a path family with zero p-modulus), then
g is said to be a p-weak upper gradient of u. If we redefine a p-weak upper
gradient on a set of measure zero we obtain a p-weak upper gradient of the
same function. In particular, this implies that, after a possible redefinition
on a set of measure zero, we obtain a Borel function. If g is a p-weak upper
gradient of u, then there is a sequence gi, i = 1, 2, . . . , of the upper gradients
of u such that ∫

X

|gi − g|p dμ→ 0

as i→∞. Hence every p-weak upper gradient can be approximated by upper
gradients in the Lp(X)-norm. If u has an upper gradient that belongs to
Lp(X), then it has a minimal p-weak upper gradient gu in the sense that for
every p-weak upper gradient g of u, gu � g μ-almost everywhere.

We define Sobolev spaces on the metric space X using the p-weak upper
gradients. For u ∈ Lp(X) we set
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‖u‖N1,p(X) =
( ∫

X

|u|p dμ+ inf
g

∫

X

gp dμ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Sobolev
space (sometimes called the Newtonian space) on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0. The notion of a p-weak upper
gradient is used to prove that N1,p(X) is a Banach space. For properties of
Sobolev spaces on metric measure spaces we refer to [30, 29, 62, 63, 6].

The p-capacity of a set E ⊂ X is the number

capp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E
[38]. We say that a property regarding points in X holds p-quasieverywhere
(p-q.e.) if the set of points for which the property does not hold has capacity
zero. If u ∈ N1,p(X), then u ∼ v if and only if u = v p-q.e. Moreover, if
u, v ∈ N1,p(X) and u = v μ-a.e., then u ∼ v. Hence the capacity is the
correct gauge for distinguishing between two Newtonian functions (see [8]).

To be able to compare the boundary values of Sobolev functions, we need
a Sobolev space with zero boundary values. Let E be a measurable subset of
X . The Sobolev space with zero boundary values is the space

N1,p
0 (E) = {u|E : u ∈ N1,p(X) and u = 0 p-q.e. in X \ E}.

The space N1,p
0 (E) equipped with the norm inherited from N1,p(X) is a

Banach space.
We say that X supports a weak (1, p)-Poincaré inequality if there exist

constants c > 0 and λ � 1 such that for all balls B(x, r) ⊂ X , all locally
integrable functions u on X and for all p-weak upper gradients g of u,

∫

B(x,r)

|u− uB(x,r)| dμ � cr
( ∫

B(x,λr)

gp dμ
)1/p

, (6.3)

where
uB(x,r) =

∫

B(x,r)

u dμ =
1

μ(B(x, r))

∫

B(x,r)

u dμ.

Since the p-weak upper gradients can be approximated by upper gradients in
the Lp(X)-norm, we could require the Poincaré inequality for upper gradients
as well.

By the Hölder inequality, it is easy to see that if X supports a weak (1, p)-
Poincaré inequality, then it supports a weak (1, q)-Poincaré inequality for
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every q > p. If X is complete and μ doubling then it is shown in [31] that a
weak (1, p)-Poincaré inequality implies a weak (1, q)-Poincaré inequality for
some q < p. Hence the (1, p)-Poincaré inequality is a self improving condition.
For simplicity, we assume throughout that X supports a weak (1, 1)-Poincaré
inequality, although, by using the results of [31], it would be enough to assume
that X supports a weak (1, p)-Poincaré inequality. We leave the extensions
to the interested reader. In addition, we assume that X is complete and μ
is doubling. This implies, for example, that Lipschitz functions are dense in
N1,p(X) and the Sobolev embedding theorem holds.

6.2 Maximal function defined on the whole space

The standard centered Hardy–Littlewood maximal function on a metric mea-
sure space X is defined as

Mu(x) = sup
r>0

∫

B(x,r)

|u| dμ.

By the Hardy–Littlewood maximal function theorem for doubling measures
(see [15]), we see that the Hardy–Littlewood maximal operator is bounded on
Lp(X) when 1 < p �∞ and maps L1(X) into the weak L1(X). However, the
standard Hardy–Littlewood maximal function does not seem to preserve the
smoothness of the functions as examples by Buckley [12] clearly indicate. In
order to have a maximal function which preserves, for example, the Sobolev
spaces on metric measure spaces, we construct a maximal function based on
a discrete convolution.

Let r > 0. We begin by constructing a family of balls which cover the
space and are of bounded overlap. Indeed, there is a family of balls B(xi, r),
i = 1, 2, . . . , such that

X =
∞⋃
i=1

B(xi, r)

and ∞∑
i=1

χB(xi,6r) � c <∞.

This means that the dilated balls B(xi, 6r) are of bounded overlap. The
constant c depends only on the doubling constant and, in particular, is inde-
pendent of r. These balls play the role of Whitney cubes in a metric measure
space.

Then we construct a partition of unity subordinate to the cover B(xi, r),
i = 1, 2, . . . , of X . Indeed, there is a family of functions ϕi, i = 1, 2, . . . , such
that 0 � ϕi � 1, ϕi = 0 on X \B(xi, 6r), ϕi � c on B(xi, 3r), ϕi is Lipschitz
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with constant c/ri with c depending only on the doubling constant, and

∞∑
i=1

ϕi = 1

in X . The partition of unity can be constructed by first choosing auxiliary
cutoff functions ϕ̃i so that 0 � ϕ̃i � 1, ϕ̃i = 0 on X \ B(xi, 6r), ϕ̃i = 1 on
B(xi, 3r) and each ϕ̃i is Lipschitz with constant c/r. We can, for example,
take

ϕ̃i(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈ B(xi, 3r),

2− d(x, xi)
3r

, x ∈ B(xi, 6r) \B(xi, 3r),

0, x ∈ X \B(xi, 6r).

Then we can define the functions ϕi, i = 1, 2, . . . , in the partition of unity by

ϕi(x) =
ϕ̃i(x)

∞∑
j=1

ϕ̃j(x)
.

It is not difficult to see that the defined functions satisfy the required prop-
erties.

Now we are ready to define the approximation of u at the scale of 3r by
setting

ur(x) =
∞∑
i=1

ϕi(x)uB(xi,3r)

for every x ∈ X . The function ur is called the discrete convolution of u. The
partition of unity and the discrete convolution are standard tools in harmonic
analysis on homogeneous spaces (see, for example, [15] and [57]).

Let rj , j = 1, 2, . . . , be an enumeration of the positive rational numbers.
For every radius rj we choose balls B(xi, rj), i = 1, 2, . . . , of X as above.
Observe that for each radius there are many possible choices for the covering,
but we simply take one of those. We define the discrete maximal function
related to the coverings B(xi, rj), i, j = 1, 2, . . . , by

M∗u(x) = sup
j
|u|rj (x)

for every x ∈ X . We emphasize the fact that the defined maximal operator
depends on the chosen coverings. This is not a serious matter since we obtain
estimates which are independent of the chosen coverings.

As the supremum of continuous functions, the discrete maximal function
is lower semicontinuous and hence measurable. The following result shows
that the discrete maximal function is equivalent with two-sided estimates to
the standard Hardy–Littlewood maximal function.
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Lemma 6.4. There is a constant c � 1, which depends only on the doubling
constant, such that

c−1Mu(x) �M∗u(x) � cMu(x)

for every x ∈ X.

Proof. We begin by proving the second inequality. Let x ∈ X , and let rj be
a positive rational number. Since ϕi = 0 on X \ B(xi, 6rj) and B(xi, 3rj) ⊂
B(x, 9rj) for every x ∈ B(xi, 6rj), we have, by the doubling condition,

|u|rj (x) =
∞∑
i=1

ϕi(x)|u|B(xi,3rj)

�
∞∑
i=1

ϕi(x)
μ(B(x, 9rj))
μ(B(xi, 3rj))

∫

B(x,9rj)

|u| dμ � cMu(x),

where c depends only on the doubling constant cμ. The second inequality
follows by taking the supremum on the left-hand side.

To prove the first inequality, we observe that for each x ∈ X there exists
i = ix such that x ∈ B(xi, rj). This implies that B(x, rj) ⊂ B(xi, 2rj) and
hence ∫

B(x,rj)

|u| dμ � c
∫

B(xi,3rj)

|u| dμ

� cϕi(x)
∫

B(xi,3rj)

|u| dμ � cM∗u(x).

In the second inequality, we used the fact that ϕi � c on B(xi, rj). Again,
the claim follows by taking the supremum on the left-hand side. 
�

Since the maximal operators are comparable, we conclude that the max-
imal function theorem holds for the discrete maximal operator as well. Our
goal is to show that the operatorM∗ preserves the smoothness of the function
in the sense that it is a bounded operator in N1,p(X). We begin by proving
the corresponding result for the discrete convolution in a fixed scale.

Lemma 6.5. Suppose that u ∈ N1,p(X) with p > 1. Let r > 0. Then
|u|r ∈ N1,p(X) and there is a constant c, which depends only on the dou-
bling constant, such that cM∗gu is a p-weak upper gradient of |u|r whenever
gu is a p-weak upper gradient of u.

Proof. By Lemma 6.4, we have |u|r � cMu. By the maximal function theorem
with p > 1, we conclude that |u|r ∈ Lp(X).
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Then we consider the upper gradient. We have

|u|r(x) =
∞∑
i=1

ϕi(x)|u|B(xi,3r)

= |u(x)|+
∞∑
i=1

ϕi(x)
(|u|B(xi,3r) − |u(x)|

)
.

Observe that, at each point, the sum is taken only over finitely many balls so
that the convergence of the series is clear. Let g|u| be a p-weak upper gradient
of |u|. Then

g|u| +
∞∑
i=1

gϕi(|u|B(xi,3r)−|u|)

is a p-weak upper gradient of |u|r. On the other hand,
( c
r

∣∣|u| − |u|B(xi,3r)

∣∣+ g|u|
)
χB(xi,6r)

is a p-weak upper gradient of ϕi(|u|B(xi,3r) − |u|). Let

gr = gu +
∞∑
i=1

( c
r

∣∣|u| − |u|B(xi,3r)

∣∣+ gu
)
χB(xi,6r).

Then gr is a p-weak upper gradient of |u|r. Here we used the fact that every
p-weak upper gradient of u will do as a p-weak upper gradient of |u| as well.

Then we show that gr ∈ Lp(X). Let x ∈ B(xi, 6r). Then B(xi, 3r) ⊂
B(x, 9r) and

∣∣|u(x)| − |u|B(xi,3r)

∣∣ � ∣∣|u(x)| − |u|B(x,9r)

∣∣+
∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣.
We estimate the second term on the right-hand side by the Poincaré inequality
and the doubling condition as

∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣ �
∫

B(xi,3r)

∣∣|u| − |u|B(x,9r)

∣∣ dμ

� c
∫

B(x,9r)

∣∣|u| − |u|B(x,9r)

∣∣ dμ � cr
∫

B(x,9r)

gu dμ.

The first term on the right-hand side is estimated by a standard telescoping
argument. Since μ-almost every point is a Lebesgue point for u, we have

∣∣|u(x)| − |u|B(x,9r)

∣∣ �
∞∑
j=0

∣∣|u|B(x,32−jr) − |u|B(x,31−jr)

∣∣
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� c
∞∑
j=0

∫

B(x,32−jr)

∣∣|u| − |u|B(x,32−jr)

∣∣ dμ

� c
∞∑
j=0

32−jr
∫

B(x,32−jr)

gu dμ � crMgu(x)

for μ-almost all x ∈ X . Here we used the Poincaré inequality and the doubling
condition again. Hence we have

∣∣|u(x)| − |u|B(xi,3r)

∣∣ � cr
∫

B(x,9r)

gu dμ+ crMgu(x) � crMgu(x)

for μ-almost all x ∈ X . From this we conclude that

gr = gu +
∞∑
i=1

( c
r

∣∣|u| − |u|B(xi,3r)

∣∣+ gu
)
χB(xi,6r) � cMgu(x)

for μ-almost all x ∈ X . Here c depends only on the doubling constant. This
implies that cMgu is a p-weak upper gradient of ur. The maximal function
theorem shows that gr ∈ Lp(X) since p > 1. 
�

Now we are ready to conclude that the discrete maximal operator preserves
Newtonian spaces. We use the following simple fact in the proof. Suppose that
ui, i = 1, 2, . . . , are functions and gi, i = 1, 2, . . . , are p-weak upper gradients
of ui respectively. Let u = supi ui, and let g = supi gi. If u < ∞ μ−almost
everywhere, then g is a p-weak upper gradient of u. For the proof, we refer to
[6]. The following result is a counterpart of Theorem 2.2 in metric measure
spaces.

Theorem 6.6. If u ∈ N1,p(X) with p > 1, then M∗u ∈ N1,p(X). In addi-
tion, the function cM∗gu is a p-weak upper gradient of M∗u whenever gu is
a p-weak upper gradient of u. The constant c depends only on the doubling
constant.

Proof. By the maximal function theorem, we see that M∗u ∈ Lp(X) and, in
particular, M∗u <∞ μ-almost everywhere. Since

M∗u(x) = sup
j
|u|rj (x)

and cM∗gu is an upper gradient of |u|rj for every j, we conclude that it is an
upper gradient of M∗u as well. The claim follows from the maximal function
theorem. 
�
Remark 6.7. (i) By Theorem 6.6 and the Hardy–Littlewood maximal the-
orem, we conclude that the discrete maximal operator M∗ is bounded in
N1,p(X).
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(ii) The fact that the maximal operator is bounded in N1,p(X) can be
used to prove a capacitary weak type estimate in metric spaces. This implies
that u ∈ N1,p(X) has Lebesgue points outside a set of p-capacity zero (see
[7] and [34]).

6.3 Maximal function defined on a subdomain

This subsection is based on [1]. We recall the following Whitney type covering
theorem (see [15] and [57]).

Lemma 6.8. Let Ω ⊂ X be an open set with a nonempty complement. Then
for every 0 < t < 1 there are balls B(xi, ri) ⊂ Ω, i = 1, 2, . . . , such that

∞⋃
i=1

B(xi, ri) = Ω,

for every x ∈ B(xi, 6ri), i = 1, 2, . . . , we have

c1ri � t dist(x,X \Ω) � c2ri
and the balls B(xi, 6ri), i = 1, 2, . . . , are of bounded overlap. Here the con-
stants c1 and c2 depend only on the doubling constant. In particular, the
bound for the overlap is independent of the scale t.

Let 0 < t < 1 be a rational number. We consider a Whitney type decompo-
sition of Ω. We construct a partition of unity and discrete convolution related
to the Whitney balls exactly in the same way as before. Let tj , j = 1, 2, . . . ,
be an enumeration of the positive rational numbers. of the interval (0, 1). For
every scale tj we choose a Whitney covering as in Lemma 6.8 and construct
a discrete convolution |u|tj . Observe that for each scale there are many pos-
sible choices for the covering, but we simply take one of those. We define the
discrete maximal function related to the discrete convolution |u|tj by

M∗
Ωu(x) = supj |u|tj (x)

for every x ∈ X . Again, the defined maximal operator depends on the chosen
coverings, but this is not a serious matter for the same reason as above. It
can be shown that there is a constant c � 1, depending only on the doubling
constant, such that

M∗
Ωu(x) � cMΩu(x)

for every x ∈ Ω.
Here,

MΩu(x) = sup
∫

B(x,r)

|u| dμ
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is the standard maximal function related to the open subset Ω ⊂ X and the
supremum is taken over all balls B(x, r) contained in Ω. There is also an
inequality to the reverse direction, but then we have to restrict ourselves in
the definition of the maximal function to such balls that B(x, σr) is contained
in Ω for some σ large enough. The pointwise inequality implies that the
maximal function theorem holds for M∗

Ω as well.
Using a similar argument as above, we can show that, if the measure μ is

doubling and the space supports a weak (1,1)-Poincaré inequality, then the
maximal operator M∗

Ω preserves the Sobolev spaces N1,p(Ω) for every open
Ω ⊂ X when p > 1. Moreover,

M∗
Ω : N1,p(Ω)→ N1,p(Ω)

is a bounded operator when p > 1. It is an interesting open question to study
the continuity of the operator and the borderline case p = 1.

Then we consider the Sobolev boundary values. The following assertion is
a counterpart of Theorem 3.12 in metric measure spaces.

Theorem 6.9. Let Ω ⊂ X be an open set. Assume that u ∈ N1,p(Ω) with
p > 1. Then

|u| −M∗
Ωu ∈ N1,p

0 (Ω).

Proof. Let 0 < t < 1. Consider the discrete convolution |u|t. Let x ∈ Ω with
x ∈ B(xi, ri). Using the same telescoping argument as in the proof of Lemma
4.1 and the properties of the Whitney balls we have∣∣|u|B(xi,3ri) − |u(x)|

∣∣ � criMΩgu(x) � ct dist(x, ∂Ω)MΩgu(x).

It follows that

∣∣|u|t(x) − |u(x)|∣∣ =
∣∣∣

∞∑
i=1

ψi(x)
(|u|B(xi,3ri) − |u(x)|

)∣∣∣

�
∞∑
i=1

ψi(x)
∣∣|u|B(xi,3ri) − |u(x)|

∣∣

� ct dist(x, ∂Ω)MΩgu(x).

For every x ∈ Ω there is a sequence tj , j = 1, 2, . . . , of scales such that

M∗
Ωu(x) = lim

j→∞
|u|tj (x)

This implies that
∣∣|u(x)| −M∗

Ωu(x)
∣∣ = lim

j→∞
||u(x)− |u|tj (x)||

� c dist(x, ∂Ω)MΩgu(x),
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where we used the fact that tj � 1. Hence, by the maximal function theorem,
we conclude that

∫

Ω

(∣∣|u(x)| −M∗
Ωu(x)

∣∣
dist(x, ∂Ω)

)p
dμ(x) � c

∫

Ω

(MΩgu(x))p dμ(x)

� c
∫

Ω

|gu(x)|p dμ(x).

This implies that
|u(x)| −M∗

Ωu(x)
dist(x, ∂Ω)

∈ Lp(Ω)

and from Theorem 5.1 in [32] we conclude that |u| −M∗
Ωu ∈ N1,p

0 (Ω). 
�

6.4 Pointwise estimates and Lusin type approximation

Let u be a locally integrable function in X , let 0 � α < 1, and let β = 1−α.
From the proof of Lemma 4.1 it follows that

|u(x)− u(y)| � c d(x, y)β(u#β,4d(x,y)(x) + u#β,4d(x,y)(y)
)

for every x �= y. By the weak Poincaré inequality,

u#β,4d(x,y)(x) � cMα,4λd(x,y)gu(x)

for every x ∈ X . Denote

Eλ = {x ∈ X :Mαgu(x) > λ},

where λ > 0. We see that u|X\Eλ
is Hölder continuous with the exponent

β. We can extend this function to a Hölder continuous function on X by
using a Whitney type extension. The Whitney type covering lemma (Lemma
6.8) enables us to construct a partition of unity as above. Let B(xi, ri),
i = 1, 2, . . . , be the Whitney covering of the open set Eλ. Then there are
nonnegative functions ϕi, i = 1, 2, . . ., such that ϕi = 0 in X \ B(xi, 6ri),
0 � ϕi(x) � 1 for every x ∈ X , every ϕi is Lipschitz with the constant c/ri
and ∞∑

i=1

ϕi(x) = χEλ
(x)

for every x ∈ X . We define the Whitney smoothing of u by



Maximal Functions in Sobolev Spaces 65

uλ(x) =

⎧⎪⎨
⎪⎩
u(x), x ∈ X \ Eλ,
∞∑
i=1

ϕi(x)uB(xi,3ri), x ∈ Eλ.

We obtain the following result by similar arguments as above. The exponent
Q refers to the dimension given by (6.1).

Theorem 6.10. Suppose that u ∈ N1,p(X), 1 < p � Q. Let 0 � α < 1.
Then for every λ > 0 there is a function uλ and an open set Eλ such that
u = uλ everywhere in X \ Eλ, uλ ∈ N1,p(X), and uλ is Hölder continuous
with the exponent 1 − α on every bounded set in X, ‖u − uλ‖N1,p(X) → 0,
and Hn−αp∞ (Eλ)→ 0 as λ→∞.
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Hardy Type Inequalities via Riccati
and Sturm–Liouville Equations

Sergey Bobkov and Friedrich Götze

Abstract We discuss integral estimates for domain of solutions to some
canonical Riccati and Sturm–Liouville equations on the line. The approach
is applied to Hardy and Poincaré type inequalities with weights.

1 Introduction

Given a function V = V (t) in t � 0, consider the Riccati equation

y′(t) = y(t)2 + V (t) (1.1)

with initial condition
y(0) = 0. (1.2)

A standard question about (1.1)–(1.2) is how to exactly determine or to es-
timate in terms of V the length of the maximal interval [0, t0), t0 > 0, on
which a (unique) solution y exists. Known results on estimates for t0 usu-
ally treat more general Cauchy’s problems, and being applied to the above
special situation, they depend upon the growth of the maximum of |V | on
intervals [0, t] with growing t. Throughout the paper, we assume that V is
nonnegative, continuous, and is not identically zero. In this case, an impor-
tant information can be derived by applying suitable comparison arguments,
which lead to more sensitive integrable estimates. In particular, we prove the
following
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Theorem 1.1. Define

V (t) =

t∫

0

V (u) du, t � 0.

The maximal value of t0 satisfies

1
4t0

� sup
0<s<1

[
(1− s)V (t0s)

]
� 1
t0
. (1.3)

For example, for V (t) = tα−1, α � 1, this gives

1
41/(α+1)

α+ 1
α(α−1)/(α+1)

� t0 � α+ 1
α(α−1)/(α+1)

.

In particular, t0 → 1 as α→ +∞.
Transforming (1.1) to second order linear differential equations, one may

give an equivalent formulation of Theorem 1.1 as a statement about the first
eigenvalue λ0 for the regular Sturm–Liouville equation

d

dt

(
q(t)
d

dt
z(t)
)

= λp(t)z(t), a � t � b, (1.4)

with boundary conditions z(a) = z′(b) = 0. Introduce the quantity

A(p, q) = sup
a<x<b

[ x∫

a

1
q(t)
dt

b∫

x

p(t) dt
]
.

Theorem 1.2. For all positive continuous functions p and q on [a, b]

A(p, q) � 1
λ0

� 4A(p, q). (1.5)

We consider the estimates (1.3) and (1.5) as another approach, from dif-
ferential equation point of view, to a result, obtained by Kac and Krein [7]
in 1959 and later by Artola [1], Talenti [14], and Tomaselli [15], about Hardy
type inequalities with weights. In these inequalities, one tries to determine
or estimate the best constant C = C(p, q) satisfying

b∫

a

f(x)2p(x) dx � C
b∫

a

f ′(x)2q(x) dx, (1.6)

where f is an arbitrary absolutely continuous function on [a, b) such that
f(a) = 0. Their result, including the case b = +∞ as well, asserts that
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A(p, q) � C(p, q) � 4A(p, q) (1.7)

(actually, they treated a more general Lα-norm in (1.6)). In 1972, Mucken-
houpt [11] gave a complete account on this result and extended it to arbi-
trary positive measures in place of p(x)dx and q(x)dx. In general (when the
interval is unbounded), it might occur that A(p, q) is infinite. The property
A(p, q) < +∞ is sometimes called the Muckenhoupt condition, although the
two-sided inequality (1.7) is associated with it, as well. For more general re-
sults and references we refer the interested reader to the monograph [9]. The
connection of (1.6) with (1.4) is as follows: in the regular case, the extremal
functions in Hardy type inequalities exist and satisfy the boundary value
problem of Theorem 1.2 with the smallest possible value of λ. In particular,
C(p, q) = 1/λ0. It should also be clear that, in (1.6) and (1.7), the regular
case easily implies the general case, where p and q are defined on the half-axis
(a,+∞).

In a more rigorous manner, we consider the corresponding variational prob-
lem in Sect. 4, where Theorem 1.2 is proved and is shown to imply (1.7). In
Sect. 2, we prove Theorem 1.1 and some related statements. In Sect. 3, we
consider a particular case of Theorem 1.2 with q ≡ 1. We finish the paper in
Section 5, where we derive an analogue of (1.5) for the boundary conditions
z′(a) = z′(b) = 0. These conditions turn out to be connected with another
important family of inequalities of Poincaré type. The reader may find some
results connecting Hardy type inequalities with weights with Poincaré and
logarithmic Sobolev inequalities in [2], where Muckenhoupt’s characterization
was essentially used (see also [10] for discrete analogues).

Theorems 1.1 and 1.2 can easily be extended to more general equations
such as y′(t) = y(t)β + V (t) and (qz′(t)β)′ = −λp(t)zβ respectively. We
will not study these equations in order to make easy the presentation of
main techniques in the basic case α = 2. It should however be noted that
these are precisely the equations which are needed for studying the Hardy
type inequalities (1.6) with respect to the norms in general Lebesgue spaces
(rather than in L2).

2 Riccati Equations

At first, it is convenient to consider the Riccati equation (1.1) in the semi-open
interval [0, 1) and assume that V is defined, is nonnegative and continuous on
this interval (and is not identically zero). One is looking for some conditions,
necessary and sufficient, which would guarantee the existence of a solution to
(1.1) on the whole interval [0, 1). If it exists (and is thus unique), it should
necessarily belong to the class C1[0, 1) of all continuously differentiable func-
tions on [0, 1). Introducing the integral operator
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Af(t) =

t∫

0

f(u)2 du+ V (t), 0 � t < 1,

we may reformulate our task as a problem on the existence of a solution
y = y(t) in C1[0, 1) to the nonlinear integral equation

Ay = y (2.1)

under the initial condition y(0) = 0.
A canonical way to construct a solution to the Cauchy problem y′(t) =

Ψ(t, y(t)) and, in particular, to the problem (1.1), where Ψ(t, y) = V (t) + y2,
is to start from a function y0, recursively defining the sequence

y1 = Ay0, y2 = Ay1, . . . , yn+1 = Ayn, n � 0.

Certain conditions on V guarantee the convergence of Ayn to a solution on
some interval [0, t1). One general sufficient condition for convergence (see,
for example, [5]) may be formulated as follows. Consider the maximum M =
maxD Ψ on the rectangle D = [0, α]× [0, β]. Then one can take

t1 = min
{
α,
β

M

}
= min

{
α,

β

‖V ‖C[0,α] + β2

}
,

where ‖V ‖C[0,α] = max0�t�α V (t). Optimizing over β so that to maximize
t1, we arrive at

t1(V ) = sup
0<α<1

min
{
α,

1
2
‖V ‖−1/2

C[0,α]

}
.

Although choosing some other domains D may improve this value t1 for
concrete V , we are in a typical situation where one has to require the bound-
edness of V on [0, 1) in order to reach the value t1 = 1. In particular, the
above formula gives t1(λV ) = 1 only if λ � 1/(4 supV ).

Now let us look at the convergence of Ayn by using some comparison
arguments and first derive the following

Lemma 2.1. A solution to (2.1) under the initial condition y(0) = 0 exists
if and only if for some nonnegative measurable function f on [0, 1) for all
t ∈ [0, 1)

f(t) � V (t) and Af(t) � f(t). (2.2)

Proof. Clearly, if y is a solution, then f = y satisfies (2.2). To prove the
converse, we assume that f satisfies (2.2). We start from y0 ≡ 0 and define a
sequence yn as above. In particular, y1 = V . We set

y(t) = sup
n
yn(t).
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Note that the operator A is monotone: if 0 � g1 � g2, then 0 � Ag1 � Ag2.
Since V � f , we get y2 = AV � Af � f . Repeating the argument (i.e., by
induction), we see that yn � f , for all n. Therefore, the function y is finite,
measurable, and satisfies y � f . In addition, for all n, Ay � Ayn = yn+1,
so that Ay � y. On the other hand, the sequence yn is nondecreasing: y2 =
Ay1 � Ay0 = y1, y3 = Ay2 � Ay1 = y2, and so on. Thus, yn(t) ↑ y(t) as n→
∞. Hence, by the Tonneli monotone convergence theorem, Ayn(t) ↑ Ay(t) for
all t ∈ [0, 1). Taking the limit in Ayn = yn+1 � y, we conclude that Ay � y.
The two estimates give Ay = y.

The function of the form Ay, as soon as it is finite, must be absolutely
continuous. Hence y is absolutely continuous, and this implies that y is in
C1[0, 1). 
�

Remark 2.2. According to the above proof, we may add to Lemma 2.1
another characterization. Consider a pointwise limit of the nondecreasing
sequence

yV (t) = lim
n→∞[AA . . . A︸ ︷︷ ︸

n times

y0](t), y0(t) ≡ 0,

which might be finite or not. Then the existence on the interval [0,1) of
a solution y to (2.1) under the initial condition (1.2) is equivalent to the
property that yV (t) < +∞, for all t ∈ [0, 1). In this case, y = yV provides
the solution.

In particular, since from 0 � V �W it follows that yV � yW , the existence
of a solution to (1.1) with a function W implies the existence of a solution
to (1.1) with any (continuous) function V �W . Such a comparison property
was given by Levin [8], who considered even more general situation, where V
is not necessarily nonnegative, but still satisfies |V | �W .

The above reformulation also holds when we consider the Riccati equation
on a larger interval or the whole half-axis [0,+∞). Then t0 = sup{t � 0 :
yV (t) < +∞}.

We need the following assertion.

Lemma 2.3. Any solution y to the Riccati equation (1.1) under the initial
condition y(0) = 0 satisfies for all t ∈ [0, 1)

y(t) <
1

1− t .

Proof. Set t1 = max{t ∈ [0, 1) : y(t) = 0}. Since y must be nondecreasing
and V is not identically zero, the point t1 is well defined and lies in [0, 1).
For t ∈ (t1, 1) we have y′(t) � y(t)2 > 0, which implies that the function
g(t) = 1

y(t) + t decreases in (t1, 1). In particular, g(t) > g(1−) � 1. 
�

Now, we are ready to estimate the supremum λ(V ) of all λ � 0, for which
there exists a solution y = y(t) to the Riccati equation
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y′(t) = y(t)2 + λV (t), 0 � t < 1, (2.3)

under the same initial condition y(0) = 0. As a consequence of the two
lemmas, we derive the following statement closely related to Theorem 1.1.

Theorem 2.4. We have

sup
0<t<1

[
(1− t)V (t)

]
� 1
λ(V )

� 4 sup
0<t<1

[
(1− t)V (t)

]
. (2.4)

In particular, λ(V ) > 0 if and only if V (t) = O( 1
1−t ) as t→ 1.

Proof. First, assume that y satisfies (2.3) with y(0) = 0. By Lemma 2.3,
1

1−t > y(t) in [0, 1). Since y′(t) � λV (t), we also have y(t) � λV (t). Hence

1
1− t > λV (t).

This gives the first inequality in (2.4). To prove the second one, we use Lemma
2.1 with respect to the function λV . Take any λ � 0 such that

1
λ

� 4 sup
0<t<1

(1− t)V (t),

so that
λV (t) � 1

4(1− t) , 0 � t < 1.

Then for the function f(t) = 1
2(1−t) we get

Af(t) ≡
t∫

0

f(u)2 du+ λV (t) =
t

4(1− t) + λV (t)

� t

4(1− t) +
1

4(1− t) � 1
2(1− t) = f(t).

Thus, Af(t) � f(t). On the other hand, f(t) � λV (t), so the sufficient
conditions of Lemma 2.1 are satisfied. Hence there is a solution y to (2.3)
with y(0) = 0. This gives the second inequality in (2.4). Hence Theorem 2.4
is proved. 
�

Proof of Theorem 1.1. It remains to explain why Theorem 1.1 is an immedi-
ate consequence of Theorem 2.4. Considering (1.1) on a finite interval [0, t1)
and introducing the functions z(s) = t1y(t1s), 0 � s < 1, we arrive at the
Riccati equation on [0, 1)

z′(s) = z(s)2 + t21V (t1s) (2.5)



Hardy Type Inequalities via Riccati and Sturm–Liouville Equations 75

under the same initial condition z(0) = 0. Now, apply Theorem 2.4 to
Vt1(s) = V (t1s). The existence of a solution z to (2.5) implies that

1
t21

� 1
λ(Vt1 )

� sup
0<s<1

[
(1− s)V t1(s)

]
=

1
t1

sup
0<s<1

[
(1− s)V (t1s)

]
.

This leads to the second inequality in (1.3) for any t1 such that (1.1) has a
solution on [0, t1) with the initial condition (1.2). Let t0 denote the maximal
value t1 with this property. By the second inequality in (2.4), a solution z to
the equation (2.5) exists on [0, 1) if

1
t21

� 4 sup
0<s<1

[(1− s)V t1(s)],

i.e., if
1
t1

� 4 sup
0<s<1

[(1− s)V (t1s)]. (2.6)

The right-hand side of (2.6) is nondecreasing and continuous in t1 > 0, so
there exists a unique point t2 which turns this inequality into equality; more-
over, for t > t2, we have the converse inequality

1
t
< 4 sup

0<s<1

[
(1 − s)V (ts)

]
.

Since t0 � t2, we thus obtain the left inequality in (1.3) and Theorem 1.1
follows. 
�

3 Transition to Sturm–Liouville Equations

One may equivalently reformulate Theorem 1.1 as a statement about the first
zero of solutions to a second order differential equation. Here, we consider
only the simplest equation

z′′(t) = −V (t)z(t), t � 0, (3.1)

under the initial conditions

z(0) = 1, z′(0) = 0 (3.2)

(the condition z(0) = 1 has a matter of normalization, only). As in Theorem
1.1, assume that V is a nonnegative continuous function on [0,+∞), which is
not identically zero. It is well known (see, for example, [12]) that any second
order linear differential equation with continuous coefficients and given initial
conditions has a unique nontrivial solution. Moreover, on every finite interval,
the solution has a finite number of zeros. In the case of (3.1), (3.2) with V � 0
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and V �= 0, we may define

t0 = min{t > 0 : z(t) = 0},

and one would like to estimate t0. Since z(0) > 0, the function z must be
positive on [0, t0), and we may introduce a new function

y(t) = −z
′(t)
z(t)
, 0 � t < t0.

It satisfies the Riccati equation (1.1) with initial condition (1.2). Conversely,
starting from a function y satisfying (1.1), (1.2) on [0, t0), one may define the

function z(t) = exp{−
t∫
0

y(s)ds}, which will satisfy (3.1), (3.2) on the same

interval. Thus, we may conclude:

Corollary 3.1. The minimal zero t0 of the solution z to the problem (3.1),
(3.2) satisfies

1
4t0

� sup
0<s<1

[
(1− s)V (t0s)

]
� 1
t0
.

Similarly, we have an equivalent analogue of Theorem 2.4. Assume that
V is now defined on [0, 1), is continuous, nonnegative and is not identically
zero. Consider in [0, 1) the equation

z′′(t) = −λV (t)z(t). (3.3)

Corollary 3.2. Let λ(V ) be the supremum of all λ � 0, for which a solution
z to the problem (3.2), (3.3) is positive in [0, 1). Then

sup
0<t<1

[
(1− t)V (t)

]
� 1
λ(V )

� 4 sup
0<t<1

[
(1− t)V (t)

]
. (3.4)

If the limit V (1−) = limt→1−0 V (t) exists and is finite, i.e., V is continuous
on [0,1], the solutions zλ to (3.2), (3.3) exist on the whole interval [0,1]. In
particular, this is true for λ = λ(V ), and moreover, zλ(V ) is still positive on
[0, 1). Indeed, zλ depends continuously on λ, and in particular, for all t ∈ [0, 1],
zλ(t) → zλ(V )(t) as λ → λ(V )−. But the functions zλ are concave on [0, 1]
and satisfy zλ(0) = 1, zλ(1) � 0, so zλ(V ) possesses the same properties.
Thus, the supremum in Corollary 3.2 is actually the maximum, and a similar
observation applies to Theorem 2.4.

In fact, zλ(V )(1) = 0 since otherwise we would get, by continuity, that
zλ(1) > 0, for some λ > λ(V ), which contradicts to the maximality of λ(V ).
Consequently, provided (3.2) holds, the following two conditions uniquely
determine the value λ = λ(V ): zλ is nonnegative and satisfies zλ(1) = 0.
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If V is additionally everywhere positive, one can further specify λ(V ) as the
smallest eigenvalue λ0 to the problem (3.2), (3.3) with boundary condition
z(1) = 0. Indeed (see, for example, [3, 13]), in the regular case, the boundary
value problem on [0,1]

z′′(t) = −λV (t)z(t), z′(0) = z(1) = 0, (3.5)

has an infinite sequence λ0 < λ1 < . . . of eigenvalues, and the correspond-
ing eigenfunctions zn have exactly n zeros in (0,1). Therefore, among these
eigenfunctions and up to a constant, only z0 does not vanish in (0,1). Getting
rid of the normalization condition z(0) = 1, we may conclude the following:

Corollary 3.3. Let V be continuous and positive on [0, 1]. Then the value
λ(V ) is the smallest eigenvalue λ0 for the boundary value problem (3.5). In
particular, λ0 admits the estimates (3.4).

4 Hardy Type Inequalities with Weights

As mentioned before, one may arrive at Sturm–Liouville equations starting
from Hardy type inequalities with weights. Here, we show how to treat the
constants in such inequalities using Corollary 3.3. To this end, consider the
functional

J(f) =

b∫

a

f ′(x)2q(x) dx

b∫

a

f(x)2p(x) dx

,

where p and q are positive continuous functions on a finite interval [a, b].
We denote byW 2

1 =W 2
1 [a, b] the Sobolev space of all absolutely continuous

functions f on [a, b] with square integrable (Radon–Nikodym) derivatives so
that J(f) is well defined for such functions provided that f �= 0 (identically).

Lemma 4.1. There exists a function f in W 2
1 , f �= 0, unique up to a con-

stant, where the functional J attains its minimum within W 2
1 under the re-

striction f(a) = 0.

The statement is well known (see, for example, [6] for related results). For
the sake of completeness, we include a proof of the following assertion.

Theorem 4.2. The quantity min{J(f) : f ∈W 2
1 , f �= 0, f(a) = 0} represents

the unique number λ > 0 such that the Sturm–Liouville equation

(f ′q)′ = −λfp (4.1)
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has a nontrivial nonnegative monotone solution on [a, b] with boundary con-
ditions

f(a) = f ′(b) = 0. (4.2)

Thus, it is equal to the smallest eigenvalue for this boundary value problem.

The argument consists of two parts.

Lemma 4.3. Assume that a function f in W 2
1 , f �= 0, minimizes J on W 2

1

under the restriction f(a) = 0. Then the derivative f ′ may be modified on a
set of Lebesgue measure zero such that the following properties are fulfilled:

1) f ∈ C1[a, b];
2) f is monotone, and moreover, f ′(x) �= 0, for all x ∈ [a, b);
3) f ′(b) = 0;
4) f ′q ∈ C1[a, b], and Equation (4.1) holds.

Proof. First note that, since f(a) = 0 and f �= 0, we have

b∫

a

f(x)2p(x) dx > 0 and

b∫

a

f ′(x)2q(x) dx > 0.

Now, we take an arbitrary h ∈ W 2
1 with h(a) = 0 and consider for small ε

the functions fε = f + εh. By the Taylor expansion, as ε→ 0,

J(fε)=J(f)

⎡
⎢⎢⎢⎣1+2ε

⎛
⎜⎜⎜⎝

b∫
a

f ′(x)h′(x)q(x) dx

b∫
a

f ′(x)2q(x) dx
−

b∫
a

f(x)h(x)p(x) dx

b∫
a

f(x)2p(x) dx

⎞
⎟⎟⎟⎠+O(ε2)

⎤
⎥⎥⎥⎦ .

Since J(fε) � J(f), the expression in the round brackets must be zero, i.e.,

b∫

a

(f ′(x)q(x))h′(x) dx = λ

b∫

a

(f(x)p(x))h(x) dx.

Using

h(x) =

x∫

a

h′(t) dt, a � x � b,

we rewrite the above expression as

b∫

a

(f ′(x)q(x))h′(x) dx =

b∫

a

(
λ

b∫

x

f(t)p(t) dt
)
h′(x) dx.
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Since h′ may be arbitrary in L2(a, b), we conclude that for almost all x ∈ (a, b)

f ′(x)q(x) = λ

b∫

x

f(t)p(t) dt. (4.3)

This equality may be regarded as a definition of f ′. Thus, we may assume that
(4.3) holds for all x ∈ [a, b], and as a result, immediately obtain properties
1), 3), and 4).

To get 2), we consider the function

g(x) =

x∫

a

|f ′(t)| dt.

Then g(a) = 0 and g′(x) = |f ′(x)| for almost all x ∈ (a, b), so that

b∫

a

g′(x)2q(x) dx =

b∫

a

f ′(x)2q(x) dx.

We also have g(x) � |f(x)| for all [a, b], which implies

b∫

a

g(x)2p(x) dx �
b∫

a

f(x)2p(x) dx

with equality possible only when g(x) = |f(x)|, for all x ∈ [a, b] (since both
g and f are continuous). This must be indeed the case since, otherwise,
J(g) < J(f) contradicts the basic assumption on f . Hence either f ′ � 0
almost everywhere or f ′ � 0 almost everywhere, and thus f is monotone.

Assume that f ′ � 0 almost everywhere, and thus f ′ � 0 everywhere by
the continuity of f ′. Since f(a) = 0 and f �= 0 (identically), we get f(b) > 0.
Hence f must be positive at least in a neighborhood of b, and this yields that
the right-hand side of (4.3) is positive whenever a � x < b. Hence f ′(x) > 0
on (a, b) according to (4.3). Lemma 4.3 follows. 
�

Lemma 4.4. Given λ > 0, assume that the boundary value problem (4.1),
(4.2) has a nontrivial monotone solution. Then for all f ∈ W 2

1 , f �= 0, we
have J(f) � λ.

The assumption about monotonicity is necessary. For example, in the case
p ≡ q ≡ 1, on the interval [0, 3π/2] there is solution f(x) = sinx to (4.1) with
λ = 1, which satisfies the boundary conditions (4.2). However, the infimum
of J is attained at ψ(x) = sin(x/3) and is equal to 1/9.
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Proof. The argument is not new; it was used, in particular, in [4]. Let ψ be a
nontrivial nondecreasing solution. In particular, ψ ∈ C1[a, b], ψ′q ∈ C1[a, b],
and ψ satisfies (4.1), (4.2). Integrating (4.1) over the interval (x, b) and using
ψ′(b) = 0, we obtain (4.3) for ψ,

ψ′(x)q(x) = λ

b∫

x

ψ(t)p(t) dt, a � x � b. (4.4)

Arguing as above, since ψ(a) = 0 and ψ �= 0 (identically), we get ψ(b) > 0,
and so ψ must be positive at least in a neighborhood of b. According to (4.4),
we get ψ′(x) > 0 whenever a � x < b.

Now, we take an arbitrary f in W 2
1 with f(a) = 0 and write for x ∈ (a, b)

f(x) =

x∫

a

f ′(t) dt =

x∫

a

f ′(t)√
ψ′(t)

√
ψ′(t) dt,

so that, by the Schwarz inequality,

f(x)2 �
x∫

a

f ′(t)2

ψ′(t)
dt

x∫

a

ψ′(t) dt =

x∫

a

f ′(t)2

ψ′(t)
dt ψ(x).

Hence, by (4.4),

λ

b∫

a

f(x)2p(x) dx � λ
b∫

a

⎛
⎝

x∫

a

f ′(t)2

ψ′(t)
dt ψ(x)

⎞
⎠ p(x) dx

=

b∫

a

f ′(t)2

ψ′(t)

⎛
⎝λ

b∫

t

ψ(x)p(x) dx

⎞
⎠ dt =

b∫

a

f ′(t)2q(t) dt.

The proof is complete. 
�

Proof of Theorem 4.2. We combine Lemmas 4.3 and 4.4 (recalling an argu-
ment before Corollary 3.3 about zeros of eigenfunctions). 
�

Now, let us state a certain duality between Hardy type inequalities.

Lemma 4.5. For every c > 0 the following two inequalities are equivalent:

c

b∫

a

f2 p dx �
b∫

a

f ′2 q dx, for all f ∈ W 2
1 with f(a) = 0; (4.5)
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c

b∫

a

f2/q dx �
b∫

a

f ′2/p dx, for all f ∈W 2
1 with f(b) = 0. (4.6)

In particular, the optimal constants c in (4.5) and (4.6) coincide.

Proof. It suffices to show that (4.5) implies (4.6). Denote by λ an optimal
constant in (4.5) so that c � λ. By Theorem 4.2, there is a nonzero monotone
function ψ ∈ C1[a, b] such that ψ′q ∈ C1[a, b], and ψ satisfies the equation
(ψ′q)′ = −λψp with boundary conditions ψ(a) = ψ′(b) = 0. In particular,
the equality (4.4) holds. Define

y(x) =

b∫

x

ψ(t)p(t) dt, a � x � b.

This function is monotone, belongs to C1[a, b], and satisfies the boundary
conditions y(b) = 0 and y′(a) = 0. In addition, y′/p = −ψ belongs to C1[a, b].
Moreover, the equality (4.4) can be rewritten in terms of y as

(y′
p

)′ = −λ y
q
,

which is again a Sturm–Liouville equation with respect to the functions 1/q
and 1/p (in place of previous p and q). By Theorem 4.2, we conclude that
(4.6) holds with constant λ in place c. 
�

As a consequence, we obtain Theorem 1.2 and the following assertion.

Corollary 4.6. The smallest constant C such that the inequality

b∫

a

f(x)2p(x) dx � C
b∫

a

f ′(x)2q(x) dx (4.7)

holds for all f in W 2
1 with f(a) = 0, satisfies

A(p, q) � C � 4A(p, q). (4.8)

Recall that

A(p, q) = sup
a<x<b

[ x∫

a

1
q(t)
dt

b∫

x

p(t) dt
]
.

Proof of Theorem 1.2 and Corollary 4.6. We use Lemma 4.5. Without loss of
generality, we assume that
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b∫

a

p(x) dx = 1.

Introduce the distribution function

F (x) =

x∫

a

p(t) dt

and its inverse F−1 : [0, 1] → [a, b]. Changing the variable x = F−1(t), we
rewrite (4.5) as

c

1∫

0

f(F−1(t))2 dt �
1∫

0

f ′(F−1(t))2
q(F−1(t))
p(F−1(t))

dt.

In terms of z(t) = f(F−1(t)), we again arrive at the Hardy type inequality
on [0, 1]

c

1∫

0

z(t)2 dt �
1∫

0

z′(t)2 p(F−1(t)) q(F−1(t)) dt

with boundary condition z(0) = 0. By Lemma 4.5, this is equivalent to

c

1∫

0

z(t)2
1

p(F−1(t)) q(F−1(t))
dt �

1∫

0

z′(t)2 dt (4.9)

in the class of all z ∈ W2[0, 1] such that z(1) = 0. Thus, the minimal constant
c = c(p, q) in (4.5) coincides with the optimal constant c = c(V ) in (4.9) on
[0,1] under the restriction z(1) = 0 and with respect to the weight function

V (t) =
1

p(F−1(t)) q(F−1(t))
.

On the other hand, by Theorem 4.2, c(p, q) is the smallest eigenvalue λ0 =
λ0(p, q) for the boundary value problem (4.1), (4.2), while c(V ) is the smallest
eigenvalue λ(V ) for the boundary value problem (3.5):

z′′ = −λV z, z′(0) = z(1) = 0.

Hence λ0(p, q) = λ(V ) = 1/C, where C is the optimal constant in (4.7). By
Corollary 3.3, all these quantities admit the estimates (3.4). However,

sup
0<t<1

(1 − t)V (t) = sup
0<t<1

(1 − t)
t∫

0

1
p(F−1(s)) q(F−1(s))

ds
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= sup
0<t<1

(1− t)
F−1(t)∫

a

1
q(x)

dx

= sup
a<r<b

(1− F (r))

r∫

a

1
q(x)

dx

= sup
a<r<b

b∫

r

p(x) dx

r∫

a

1
q(x)

dx.

Therefore, (3.4) turns into (4.8). Consequently, Theorem 1.2 and Corollary 4.6
are proved. 
�

5 Poincaré Type Inequalities

Similarly to Theorem 1.2, we consider here the Sturm–Liouville equation

(f ′q)′ = −λfp, (5.1)

but with boundary conditions

f ′(a) = f ′(b) = 0. (5.2)

As before, our case is regular, i.e., p and q are assumed to be positive contin-
uous functions on a finite interval [a, b]. Denote by m the (unique) number

in (a, b) such that

m∫

a

p(x) dx =

b∫

m

p(x) dx and introduce the quantities

A0 = sup
a<x<m

m∫

x

1
q(t)
dt

x∫

a

p(t) dt, A1 = sup
m<x<b

x∫

m

1
q(t)
dt

b∫

x

p(t) dt.

Theorem 5.1. The second smallest eigenvalue λ1 for the boundary value
problem (5.1)-(5.2) satisfies

1
2

min(A0, A1) � 1
λ1

� 4 min(A0, A1).

Recall that the smallest eigenvalue λ0 is zero (and corresponds to the
eigenfunction f ≡ 1). Often, λ1 is called the first nontrivial eigenvalue.
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Proof. As in Theorem 1.2, it is well known that λ1 represents the best con-
stant in the Poincaré type inequality

λ1

b∫

a

f(x)2p(x) dx �
b∫

a

f ′(x)2q(x) dx, (5.3)

where f is an arbitrary function in W 2
1 [a, b] such that

b∫

a

f(x)p(x) dx = 0. (5.4)

We connect (5.3) and (5.4) to Hardy type inequalities and then apply Corol-
lary 4.6. To this end, we observe that up to an absolute factor, in front of λ1
in (5.3), the restriction (5.4) can be replaced by

f(m) = 0. (5.5)

Indeed, without loss of generality, we may assume that

b∫

a

p(x) dx = 1

and denote by μ(dx) the measure p(x) dx on [a, b]. Then (5.3) and (5.4) can
be written as

λ1Varμ(f) ≡ λ1
[∫
f2 dμ−

(∫
f dμ

)2
]

�
b∫

a

f ′(x)2q(x) dx, (5.6)

which holds for all f in W 2
1 without any restrictions. Hence if

c

∫
f2 dμ �

b∫

a

f ′(x)2q(x) dx (5.7)

holds assuming (5.5), we obtain (5.6) with λ1 = c since Varμ(f) �
∫
f2 dμ.

Conversely, assume that (5.6) is fulfilled for a constant λ1. Take any func-
tion f in W 2

1 such that f = 0 on [a,m]. Then, by the Cauchy inequality,

(∫
f dμ

)2

=
(∫
f 1[a,m] dμ

)2

� 1
2

∫
f2 dμ,
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where 1[a,m] denotes the characteristic function of the interval [a,m]. Hence∫
f2 dμ � 1

2
Varμ(f) and, by (5.6), we obtain (5.7) for such a function f

with c = λ1/2. The same holds when f = 0 on [m, b]. At last, just assuming
(5.5), we can apply (5.7) to f0 = f 1[a,m] and f1 = f 1[m,b] with c = λ1/2.
Adding the two corresponding inequalities, we arrive at (5.7) for f . Thus,
the optimal constants in the Poincaré type inequality (5.6) and in the Hardy
type inequality (5.7) (the latter being considered under (5.5)) are connected
via

1
2c

� 1
λ1

� 1
c
. (5.8)

It is obvious that c = min(c0, c1), where c0 and c1 are optimal in

c0

m∫

a

f(x)2p(x) dx �
m∫

a

f ′(x)2q(x) dx,

c1

b∫

m

f(x)2p(x) dx �
b∫

m

f ′(x)2q(x) dx

under the restriction (5.5). Therefore, by Corollary 4.6, we have A0 � 1
c0

�
4A0 and A1 � 1

c1
� 4A1. In view of (5.8), we arrive at the inequality of

Theorem 5.1. 
�
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Quantitative Sobolev and Hardy
Inequalities, and Related
Symmetrization Principles

Andrea Cianchi

Abstract This survey paper deals with strengthened forms of classical
Sobolev inequalities, involving remainder terms depending on the distance
from the family of extremals, and with analogues for Hardy inequalities,
where extremals do not exist, but can be replaced by “virtual” extremals.
An account of the stability of isoperimetric and symmetrization inequalities,
on which these Sobolev and Hardy inequalities rely, is provided as well.

1 Introduction

Sobolev spaces and pertinent embedding inequalities are fundamental tools in
various branches of mathematical analysis, differential geometry and mathe-
matical physics, and especially in the theory of partial differential equations
and of the calculus of variations. In view of these applications, Sobolev type
inequalities have been the object of a vast literature since their discovery,
and a rich theory is now available on this topic, which includes a number
of extensions, refinements, different approaches. We refer to the monographs
[1, 2, 28, 15, 27, 51, 78, 93, 100] for accounts of some of the main contributions
to this field.

In this survey paper, we focus on a basic form of the Sobolev inequality,
which asserts that if n � 2 and 1 � p < n, then there exists a constant
C = C(n, p) such that

C‖u‖Lp∗(Rn) � ‖∇u‖Lp(Rn) (1.1)

for every real-valued weakly differentiable function u in R
n, decaying to 0 at

infinity, and such that its gradient ∇u belongs to Lp(Rn). Here, p∗ = np
n−p ,
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the Sobolev conjugate of p, and ‖∇u‖Lp(Rn) is an abridged notation for the
Lp(Rn) norm of the Euclidean length of ∇u.

The inequality (1.1) was established by Sobolev [86, 87] for p ∈ (1, n)
via Riesz potential techniques. Gagliardo [60] and Nirenberg [82] extended
(1.1) to the case where p = 1, by a different approach based on a clever
use of more elementary tools such as one-dimensional integration along lines,
Fubini’s theorem and Hölder’s inequality. Suitable versions of (1.1) for p > n,
with Lp

∗
(Rn) replaced by L∞(Rn), and even by spaces of Hölder continuous

functions, are also well known and go back to Morrey [81].
A quite subtle issue concerning the inequality (1.1) is that of the optimal

constant C. In the case where p = 1, this question was settled independently
by Federer and Fleming [52] and Maz’ya [77] at the very beginning of the
sixties of the last century, who pointed out the equivalence of the sharp ver-
sion of (1.1) for p = 1 and of the isoperimetric theorem in R

n by De Giorgi
[44]. In particular, extremals exist (and agree with characteristic functions
of balls) in such a Sobolev inequality if the class of admissible functions is
enlarged to include functions of bounded variation, and the right-hand side is
modified accordingly. The strict connection of more general Sobolev inequal-
ities with isoperimetric inequalities, and variants of them where perimeter is
replaced by capacity, has been extensively investigated by Maz’ya (see the
monograph [78]).

The best constant in the inequality (1.1) for p ∈ (1, n) was found only
about fifteen years later, again independently in two papers by Aubin [10]
and Talenti [89], where a family of extremal functions is also exhibited for
every p ∈ (1, n). The approach of these papers makes use of a symmetrization
argument which, in turn, relies upon the isoperimetric theorem. Owing to
more recent refinements of the underlying symmetrization techniques, one
can also show that the known extremals are, in fact, the only ones.

The purpose of the present paper is to report on some reinforcements of
these results, which amount to quantitative versions of Sobolev inequalities
with sharp constants, involving a remainder term depending on the distance
from the family of extremals. The problem of inequalities of this kind was
risen by Brezis and Lieb in [19], where remainder terms of a different nature
for the Sobolev inequality on subdomains of R

n were considered (see also
[49]). A positive answer to this question was given by Bianchi and Egnel [16]
in the special case where p = 2. The general case has been attacked only
recently in various papers, the main results of which will be described in
what follows.

Besides Sobolev inequalities, Hardy type inequalities will be taken into
account. In a broad sense, the expression Hardy inequality is usually referred
to an inequality in the spirit of (1.1), where the left-hand side is replaced by
a weighted norm of u (see, for example, the monographs [1, 73, 78, 83] and
the survey papers [79, 98]). Customary weights depend on the distance from
a (smooth) subset of R

n. In particular, a prototypal version of the Hardy
inequality, involving the distance from the origin, asserts that, if 1 � p < n,
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then a constant C = C(n, p) exists such that

C

∫

Rn

|u(x)|p
|x|p dx �

∫

Rn

|∇u|pdx (1.2)

for every function u as above (see, for example, [43]).
The optimal constant in (1.2), as well as in a modified limiting version

which holds when p = n (for functions with uniformly bounded supports), can
be exhibited, for instance via symmetrization. However, unlike the Sobolev
inequality, equality is never attained in these Hardy inequalities with sharp
constants. This notwithstanding, a result will be presented showing that,
when p > 1, it is still possible to add a remainder term depending on a
suitable distance from a family of “virtual extremals,” namely a family of
functions which can be properly truncated in such a way to produce an
optimizing sequence.

Results concerning the Sobolev inequality for p = 1, 1 < p < n and p > n
are contained in Sect. 3, whereas Hardy type inequalities for 1 < p < n
and p = n are discussed in Sect. 4. Their proofs are based on a common
strategy, which consists in combining quantitative forms of classical isoperi-
metric inequalities or symmetrization principles with quantitative forms of
the one-dimensional inequalities to which the Sobolev or Hardy inequalities
are reduced after symmetrizing. However, although the general philosophy is
similar, each inequality requires a different approach, and rests on a different
quantitative symmetrization inequality. The new symmetrization inequalities
coming into play are of independent interest, and are collected in Sect. 2, to-
gether with some basic definitions and properties concerning rearrangements
of functions and related function spaces.

2 Symmetrization Inequalities

2.1 Rearrangements of functions and function spaces

Let Ω be a measurable subset of R
n with respect to the Lebesgue measure

Ln. A measurable function u : Ω → R will be called admissible if

Ln ({x ∈ Ω : |u(x)| > t}) <∞ for t > 0. (2.1)

The distribution function of u is the function μu : [0,∞) → [0,∞], defined
by

μu(t) = Ln({x ∈ R
n : |u(x)| > t}) for t � 0 .

Functions having the same distribution function are said to be equidistributed
or equimeasurable. Equidistributed functions are called rearrangements of
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each other. The decreasing rearrangement of an admissible function u is the
function u∗ : [0,∞)→ [0,∞] obeying

u∗(s) = sup{t � 0 : μf (t) > s} for s � 0.

By u∗∗ : (0,∞)→[0,∞] we denote the function given by

u∗∗(s) =
1
s

s∫

0

u∗(r) dr

for s > 0. It is easy to see that u∗∗ is also nonincreasing and satisfies

u∗(s) � u∗∗(s) for s > 0. (2.2)

The spherically symmetric rearrangement u� : R
n → [0,∞] of u is defined

by
u�(x) = u∗(ωn|x|n) for x ∈ R

n , (2.3)

where ωn = πn/2/Γ (1 + n
2 ), the measure of the unit ball in R

n. Notice that
u∗(s) = 0 if s > Ln(Ω), and u�(x) = 0 if x /∈ Ω�, the ball centered at the
origin and having the same Lebesgue measure as Ω.

Clearly, u, u∗, and u� are equidistributed functions. Consequently,

∫

Rn

Φ(u�(x))dx =

∞∫

0

Φ(u∗(s))ds =
∫

Ω

Φ(u(x))dx (2.4)

for every nondecreasing function Φ : [0,∞)→ [0,∞). In particular,

∫

Rn

u�(x)pdx =

∞∫

0

u∗(s)pds =
∫

Ω

|u(x)|pdx (2.5)

for every p � 1, and hence Lebesgue norms turn out to be invariant under
the operations of decreasing rearrangement and of spherically symmetric re-
arrangement (and of any other rearrangement). An extension of this property
leads to the notion of rearrangement invariant norms and spaces.

A rearrangement invariant space X(Ω) is a Banach function space (in the
sense of Luxemburg) of real-valued measurable functions in Ω endowed with
a norm ‖ · ‖X(Ω) such that

‖u‖X(Ω) = ‖v‖X(Ω) if u∗ = v∗. (2.6)

For any rearrangement invariant space X(Ω) there exists a unique represen-
tation space X(0, |Ω|) on the interval (0, |Ω|) fulfilling

‖u‖X(Ω) = ‖u∗‖X(0,|Ω|) (2.7)
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for every u ∈ X(Ω). Note that for customary spaces X(Ω) an expression
for the norm in the representation space is immediately derived from the
definition of the original norm, via elementary properties of rearrangements.

By (2.5), the Lebesgue space Lp(Ω), with 1 � p � ∞, equipped with
the standard norm, is a rearrangement invariant space. Both Lorentz spaces
and Orlicz spaces provide generalizations of Lebesgue spaces in different di-
rections. The Lorentz space Lp,q(Ω) is defined as the set of all measurable
functions u in Ω for which the quantity

‖u‖Lp,q(Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∞∫

0

u∗(s)qd(s
q
p )
) 1

q

if 1 � p <∞ and 1 � q <∞,

sup
0<s<∞

s1/pu∗(s) if 1 � p �∞ and q =∞
(2.8)

is finite. In particular, one has Lp,p(Ω) = Lp(Ω) for every p ∈ [1,∞] and

‖u‖Lp,p(Ω) = ‖u‖Lp(Ω) for u ∈ Lp,p(Ω) . (2.9)

Lorentz spaces are monotone in the second exponent in the sense that, if
1 � q1 < q2, then

Lp,q1(Ω) � Lp,q2(Ω) (2.10)

and
‖u‖Lp,q2(Ω) � ‖u‖Lp,q1(Ω) (2.11)

for every u ∈ Lp,q1(Ω). Lorentz spaces are in turn a special instance (up to
equivalent norms) of the so–called Lorentz–Zygmund spaces Lp,q(LogL)γ(Ω),
corresponding to γ = 0. Given p, q ∈ [1,∞], γ ∈ R, and C > 0, such a space
is defined as the set of all measurable functions in Ω for which the quantity

‖u‖Lp,q (LogL)γ(Ω) = ‖s 1
p− 1

q (C + log(|Ω|/s))γu∗(s)‖Lq(0,|Ω|) (2.12)

is finite. Note that, replacing C by a different constant results in an equivalent
expression (up to multiplicative constants). Note also that the quantities
defined in (2.8) and (2.12) are only quasinorms in general since they fulfil the
triangle inequality only up to a multiplicative constant. The quantity ‖ ·‖Lp,q

is actually a rearrangement invariant norm if 1 � q � p, and ‖·‖Lp,q (LogL)γ(Ω)

is a rearrangement invariant norm for those p, q, γ, and C such that the
function s �→ s 1

p− 1
q (C + log(|Ω|/s))γ is nonincreasing. However, for every

p > 1 they are equivalent to rearrangement invariant norms obtained on
replacing u∗ by u∗∗ in their definitions.

Given any Young function A, namely a convex function from [0,∞) into
[0,∞] vanishing at 0, the Orlicz space LA(Ω) is the rearrangement invariant
space of those measurable functions u in Ω such that the Luxemburg norm
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‖u‖LA(Ω) = inf
{
λ > 0 :

∫

Ω

A
( |u(x)|
λ

)
dx � 1

}

is finite. Clearly, any Lebesgue space Lp(Ω), with 1 � p �∞, is reproduced
as an Orlicz space LA(Ω), with the choice A(t) = tp when 1 � p < ∞ and
A(t) = ∞χ(1,∞)(t) when p = ∞. Hereafter, χE stands for the characteristic
function of the set E. The Orlicz spaces of exponential type, denoted by
expLσ(Ω) for σ > 0, are built upon the Young function given by A(t) =
et

σ − 1 for t � 0.
In what follows, we work with a notion of Sobolev spaces slightly more

general than the usual one. Given an open set Ω ⊂ R
n, we define the Sobolev

type space V 1,p(Ω) by

V 1,p(Ω) = {u : u is a weakly differentiable function in Ω,
fulfilling (2.1), and such that |∇u| ∈ Lp(Ω)}. (2.13)

Accordingly, the subspace V 1,p
0 (Ω) of those functions which vanish on ∂Ω

is suitably defined by

V 1,p
0 (Ω) = {u : u is a real-valued function in Ω such that

the continuation of u by 0 outside Ω
belongs to V 1,p(Rn)}.

(2.14)

Functions of bounded variation will also come into play. We set

BV (Rn) = {u : u is a locally integrable function in Ω
fulfilling (2.1), whose distributional gradient
is a vector-valued Random measure Du with
finite total variation ‖Du‖(Ω) in Ω}.

2.2 The Hardy–Littlewood inequality

A standard, but crucial, property of the decreasing rearrangement, playing
a role in many applications, is the Hardy–Littlewood inequality. This very
classical result, whose prototypal version goes back to [66], asserts that

∫

Ω

u(x)v(x)dx �
Ln(Ω)∫

0

u∗(s)v∗(s)ds (2.15)

for any nonnegative admissible functions u and v in a measurable set Ω.
The inequality (2.15) was an object of a number of extensions, including
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those contained in [18, 22, 26, 47, 80]. Most of these contributions deal with
rearrangement inequalities involving more general integrands than just the
product of two functions. Here, we are concerned with an improvement of
(2.15) in a different direction. Indeed, based on applications to Hardy type
inequalities (see Sect. 4) a quantitative version of (2.15) with a remainder
term depending on a distance from the family of extremals will be exhibited.

We first briefly discuss the cases of equality in (2.15). To begin with, let
us mention that, fixed any admissible function v and a nonincreasing right-
continuous function ϕ : (0,Ln(Ω)) → [0,∞) fulfilling lim

s→Ln(Ω)−
ϕ(s) = 0,

there always exists a nonnegative admissible function u attaining equality in
(2.15) and satisfying u∗ = ϕ. The existence of such a function u is proved,
for example, in [14] when Ln(Ω) <∞. The general case follows via a rather
standard approximation argument.

As far as the identification of extremals in (2.15) is concerned, the following
basic result [7, 30] tells us that, whenever equality holds in (2.15), the level
sets of u and v are necessarily mutually nested.

Theorem 2.1 ([7, 30]). Let Ω be a measurable subset of R
n. Assume that

equality holds in (2.15) for some nonnegative admissible functions u and v
and that the common value of the two sides of (2.15) is finite. Then for every
t, τ > 0

either {u > t} ⊂ {v > τ} or {g > τ} ⊂ {f > t} (2.16)

up to a set of Lebesgue measure zero.

Functions attaining equality in (2.15) need not be fully characterized by
(2.16). In fact, fixed a nonnegative function v, extremal functions u in (2.15)
are not uniquely determined by their rearrangement in general. In other
words, given v, there may exist (infinitely) many functions u, with the same
decreasing rearrangement, yielding equality in (2.15). As shown by simple
examples, this always occurs in the case where the graph of v has a plateau,
namely if a number t > 0 exists such that

Ln ({x ∈ Ω : v(x) = t}) > 0. (2.17)

Indeed, if (2.17) holds for some t > 0, functions u achieving equality in
(2.15) can be easily constructed in such a way that they are alterable in

{x ∈ Ω : v(x) = t} while keeping u∗ and
∫

Ω

u(x)v(x)dx constant.

The existence of some t > 0 at which (2.17) holds is equivalent to the
existence of an interval in which v∗ attains the constant value t, and hence
to the nonstrict monotonicity of v∗. Thus, nonstrict monotonicity of v∗ is re-
sponsible for nonuniqueness of extremal functions u in (2.15) with prescribed
rearrangement. The next result ensures that lack of uniqueness can only occur
in this case. Actually, it tells us that if v∗ is strictly decreasing in (0,Ln(Ω)),
then extremal functions u in (2.15) can be uniquely recovered from u∗ and
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from v. A formula for the maximizing u is provided as well, which entails
that each level set of such a maximizer agrees with the level set of v having
the same measure.

Theorem 2.2 ([34]). Let Ω be a measurable subset of R
n, and let u and v

be nonnegative admissible functions. Assume that v∗ is strictly decreasing in
(0,Ln(Ω)). Define uv : Ω→[0,∞) by

uv(x) = u∗(μv(v(x))) for x ∈ Ω. (2.18)

Then
{x ∈ Ω : uv(x) > t} = {x ∈ Ω : v(x) > v∗(μu(t))} , (2.19)

up to a set of Lebesgue measure zero, for every t > 0, and

(uv)
∗ (s) = u∗(s) for s ∈ (0,Ln(Ω)). (2.20)

Moreover, equality holds in (2.15) if and only if

u(x) = uv(x) for a.e. x ∈ Ω. (2.21)

The uniqueness of a function attaining equality in (2.15) in classes of func-
tions with a prescribed rearrangement is proved in [28, Theorem 3] under the
additional assumption that Ln(Ω) < ∞ and u and v belong to Lebesgue
spaces which are duals of each other. Although no explicit representation
formula like (2.18) is provided in that theorem, it could be used, in conjunc-
tion with suitable truncation arguments, as a starting point for the proof of
Theorem 2.2. A direct argument relying on quite elementary properties of
rearrangements and of measure preserving maps can be found in [34], where
functions u and v defined on more general measure spaces are also considered.

A strengthened version of Theorem 2.2 is contained in [34] and ensures (in
a quantitative form) that u is necessarily close to uv if the two sides of (2.15)
are almost equal. More precisely, it provides an estimate for a Lebesgue norm
of u− uv in terms of the gap between the right-hand side and the left-hand
side of (2.15). This result requires more stringent hypotheses involving both
v∗ and u∗.

Firstly, plain strict monotonicity of v∗ has to be replaced by the stronger
assumption that its derivative v∗′ is different from 0 a.e. in (0,Ln(Ω)) and
that some negative power of v∗′ is locally integrable. Specifically, it is as-
sumed that there exists p ∈ [1,∞) such that the (nonincreasing) function
θp : [0,Ln(Ω))→[0,∞], given by

θp(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
s∫
0

(−v∗′(σ)
)− 1

p−1 dσ

)1/p′

if 1 � p <∞,

ess sup
σ∈[0,s)

1
−v∗′(σ)

if p = 1
(2.22)
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is finite for every s ∈ [0,Ln(Ω)). Note that, if 1 � p < ∞, then θp is lo-
cally absolutely continuous in [0,Ln(Ω)) and θp(0) = 0. Instead, θ1 need
not be absolutely continuous, nor continuous in (0,Ln(Ω)) – it is merely
left-continuous in general – and one may have θ1(0+) > 0, where

θ1(0+) = lim
s→0+

θ1(s).

Secondly, in a similar spirit, information on the size of u∗ in the set where
−v∗′ is small has to be retained. This is done by requiring that a number
q ∈ [1,∞) exists such that the Lorentz type quasinorm given by

‖u‖Λq
p(Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

Ln(Ω)∫

0

u∗(s)q θ′p(s)ds

⎞
⎟⎠

1/q

if 1 � p <∞,

⎛
⎜⎝

Ln(Ω)∫

0

u∗(s)qdθ1(s) + θ1(0+)‖u‖qL∞(Ω)

⎞
⎟⎠

1/q

if p = 1

(2.23)
is finite. Here, the integral on the right-hand side of (2.23) is extended to
the open interval (0,Ln(Ω)) when p = 1, and the second addend is missing
if θ1(0+) = 0. Moreover, a necessary condition for ‖u‖Λq

1
to be finite when

θ1(0+) > 0 is that u ∈ L∞(Ω).
Let us emphasize that no absolute continuity of v∗ is needed: in (2.22), v∗′

just denotes the standard pointwise derivative of the monotone function v∗,
which classically exists a.e. in (0,Ln(Ω)). Let us also note that the assumption
v∗′ �= 0 a.e. in (0,Ln(Ω)) is equivalent to the absolute continuity of μv in
(0,∞).

Theorem 2.3 ([34]). Let Ω be a measurable subset of R
n, and let u and v

be nonnegative admissible functions. Assume that p ∈ [1,∞) and q ∈ [1,∞)
exist such that θp(s) <∞ for every s ∈ [0,Ln(Ω)) and ‖u‖Λq

p(Ω) <∞. Set

r =
qp+ 1
p+ 1

. (2.24)

Then

∫

Ω

u(x)v(x)dx +
1

2p+1eq
‖u‖−qp

Λq
p(Ω)
‖u− uv‖1+qpLr(Ω) �

Ln(Ω)∫

0

u∗(s)v∗(s)ds. (2.25)

We conclude this section by specializing Theorems 2.2 and 2.3 in the cus-
tomary instance when the function v : R

n → [0,∞) is radially strictly de-
creasing about 0. Hence, in particular,
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v(x) = v�(x) for a.e. in R
n.

Since, in this case,

μv(v(x)) = ωn|x|n for a.e. x ∈ R
n,

one has
uv(x) = u�(x) for a.e. x ∈ R

n.

Thus, Theorem 2.2 recovers Theorem 3.4 in [74] and tells us that

∫

Rn

u�(x)v(x)dx =

∞∫

0

u∗(s)v∗(s)ds

and that, if ∫

Rn

u(x)v(x)dx =
∫

Rn

u�(x)v(x)dx,

then
u(x) = u�(x) for a.e. x ∈ R

n.

Moreover, under the assumptions of Theorem 2.3, the inequality (2.25) reads
∫

Rn

u(x)v(x)dx+
1

2p+1eq
‖u‖−qp

Λq
p(Rn)

‖u− u�‖1+qpLr(Rn) �
∫

Rn

u�(x)v(x)dx . (2.26)

2.3 The Pólya–Szegö inequality

A modern version of the classical Pólya–Szegö principle asserts that if u ∈
V 1,p(Rn), then u∗ is locally absolutely continuous in (0,∞), u� ∈ V 1,p(Rn),
and ∫

Rn

|∇u�|p dx �
∫

Rn

|∇u|p dx (2.27)

(see, for example, [23, 67, 70, 88, 89]).
The inequality (2.27), together with its several variants (see, for example,

[69]), is a powerful key to a number of variational problems of geometric and
functional nature, concerning extremal properties of domains and functions.
Besides optimal Sobolev embeddings, classical isoperimetric inequalities in
mathematical physics and sharp eigenvalue inequalities fall within these re-
sults; a priori estimates for solutions to elliptic problems in sharp form are
also a closely related topic. We refer to [72, 90, 94] for surveys on this matter.

Although alternative proofs of the Pólya–Szegö inequality are available in
the literature (see, for example, [11, 24, 71]), the standard – and probably
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geometrically most transparent – approach relies upon the standard isoperi-
metric inequality in R

n. Such an inequality tells us that

nω1/n
n Ln(E)1/n

′ � P (E) (2.28)

for every measurable set having finite measure and that equality holds in
(2.28) if and only if E is (equivalent to) a ball [44]. Here, P (E) stands for
the perimeter of E defined according to geometric measure theory (see, for
example, [9]) and n′ = n/(n− 1), the Hölder conjugate of n.

Equality trivially holds in (2.27) when u equals a translate of u�. However,
the converse is not true. The problem of the description of the cases of equality
in (2.27), already risen in [85], has been considered in the papers [70, 96, 23]
appeared some twenty years ago, and has been recently the object of new
contributions, including [24, 25, 38, 53, 54]. Minimal assumptions under which
equality in (2.27) entails the radial symmetry of u were found by Brothers
and Ziemer in [23], where the following result is established.

Theorem 2.4 ([23]). Let p > 1, and let u be any function from V 1,p(Rn)
attaining equality in (2.27). Assume, in addition, that

Ln({∇u� = 0} ∩ {0 < u� < ess supu}) = 0 . (2.29)

Then
u = u� Ln−a.e. (up to translations). (2.30)

The condition (2.29), as well as the hypothesis p > 1, is indispensable to
conclude about the symmetry of u. Indeed, if p = 1, then, as a consequence
of the coarea formula, any nonnegative function u ∈ V 1,1(Rn) having (non
necessarily concentric) balls as level sets attains equality in (2.27). As far as
(2.29) is concerned, if at least one plateau {u = t0} with Ln({u= t0}) > 0 is
allowed for some t0 > 0, then equality holds in (2.27) for any function which
is not necessarily globally symmetric, but which is separately symmetric in
{0<u<t0} and in {t0<u}. More subtle examples of (smooth) non symmetric
minimal rearrangements u, not fulfilling (2.29), but yet with Ln({u = t}) = 0
for every t > 0, can also be worked out (see [23]).

In view of applications to quantitative Sobolev inequalities (see, for exam-
ple, Sects. 3.2 and 3.3), the problem of strengthening the inequality (2.27)

by relating the gap between
∫

Rn

|∇u|pdx and
∫

Rn

|∇u�|pdx to the deviation of

u from u� has been investigated. Two results, in a different spirit, will be
presented here. The first one deals with arbitrary functions from V 1,p(Rn). In
light of the picture sketched above, it is apparent that any remainder term,
which accounts for the deficit between the right-hand side and the left-hand
side of (2.27), has necessarily to depend not only on the deviation of u from
u�, but also on u� itself, and, specifically, on its gradient. Theorem 2.5 below
ensures that, up to translations, the distance in L1(Rn) of u from either u�
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or −u� can be estimated in terms of the (normalized) excess

E(u) =

∫

Rn

|∇u|pdx
∫

Rn

|∇u�|pdx
− 1 ,

under the assumption that

Ln ({|u| > 0}) <∞ . (2.31)

The relevant estimate involves either the (normalized complementary) distri-
bution function of |∇u�| defined by

Mu�(σ) =
Ln ({|∇u�| � σ} ∩ {0 < u� < ess supu})

Ln({|u| > 0}) for σ � 0 (2.32)

or the function Mu, which is defined as in (2.32) on replacing u� by |u|. For
simplicity of notation, we state our stability result for functions u normalized
and rescaled in such a way that

Ln ({|u| > 0}) = 1 (2.33)

and ∫

Rn

|∇u�|pdx = 1 . (2.34)

Theorem 2.5 ([33]). Let p > 1, and let n � 2. Then positive constants
r = r(n, p), s = s(n, p), and C = C(n, p), depending only on n and p, exist
such that for every u ∈ V 1,p(Rn) satisfying (2.33) and (2.34)

min± inf
x0∈Rn

∫

Rn

|u(x)± u�(x+ x0)| dx � C [Mu�
(
E(u)r

)
+ E(u)]s. (2.35)

Moreover, the inequality (2.35) continues to hold with Mu� replaced by Mu

provided that
∫

Rn

|∇u�|pdx is replaced by
∫

Rn

|∇u|pdx in (2.34).

The conditions (2.33) and (2.34) can be easily removed via a rescaling and
normalizing argument. An explicit form of the resulting estimate, in an even
somewhat stronger version, is contained in the following result.

Theorem 2.6 ([33]). Let p > 1, and let n � 2. Then positive constants
r1 = r1(n, p), r2 = r2(n, p), r3 = r3(n, p), and C = C(n.p), depending only
on n and p, exist such that for every u ∈ V 1,p(Rn) satisfying (2.31)



Quantitative Sobolev and Hardy Inequalities 99

min± inf
x0∈Rn

∫

Rn

|u(x)± u�(x+ x0)| dx

� C‖∇u�‖Lp(Rn)Ln({|u| > 0})1+ 1
n− 1

p

×
[
Mu�(σ) + E(u)r1 +

‖∇u�‖Lp(Rn)

σLn({|u| > 0}) 1
p

E(u)r2
]r3
, (2.36)

for σ > 0. Moreover, the inequality (2.36) continues to hold with Mu� and
‖∇u�‖Lp simultaneously replaced by Mu and ‖∇u‖Lp.

Theorem 2.5 recovers, in particular, Theorem 2.4 corresponding to the case
where E(u) = 0 and Mu�(0) = 0. Under the sole assumption that E(u) = 0,
the inequality (2.35) enables us to estimate the distance in L1(Rn) between
u and a suitable translated of u� in terms ofMu�(0), namely in terms of the
left-hand side of (2.29). This reproduces (a special case of) [38]. Note that,
in fact, Theorem 2.5 slightly improves these results in that, unlike [23] and
[38], functions are allowed which need not be positive. Theorem 2.5 is also
somehow related to a result of [25] which, however, only deals with qualitative
issues.

That the whole function Mu� comes into play in Theorem 2.5, instead of
just Mu�(0) is explained by the fact that large sets where |∇u�| and |∇u|
are small may allow u to be very asymmetric when E(u) > 0, in spite of∫

Rn

|∇u|pdx being very close to
∫

Rn

|∇u�|pdx. Apropos examples can be easily

exhibited, even when the dimension n equals one. For more details, we refer to
[39] dealing with a parallel issue for Steiner symmetrization (see also [29, 37]
for related results).

The estimate (2.35) can be somewhat enhanced, on replacing the L1(Rn

norm by a stronger norm on the left-hand side. Indeed, on exploiting standard
multiplicative Gagliardo–Nirenberg inequalities (see, for example, [78]), one
can easily infer from (2.35) that

min± inf
x0∈Rn

‖u(·)± u�(·+ x0)‖Lq(Rn) � C
[
Mu�

(
E(u)r

)
+ E(u)

]s
, (2.37)

where q ∈ [1, npn−p ) if 1 < p < n, q is any number � 1 if p = n, and q =∞ if
p > n (and r, s, and C are suitable constants).

On the other hand,Mu�(σ) andMu(σ) are unrelated in general for σ � 0,
in the sense that no estimate between the two functions can hold in ei-
ther direction. Actually, Mu(0) cannot be controlled just by Mu�(0) since
functions u can be exhibited such that Mu(0) is arbitrarily close to 1, but
Mu�(0) = 0 (see, for example, [5]). Note also that, although the reverse es-
timate Mu�(0) �Mu(0) holds for every u ∈W 1,p(Rn), a bound of this kind
fails for σ > 0. To see this, consider the one-dimensional function uk(x) given
by 1− (2k + 1)|x| if |x| < 1

2k+1 , k ∈ N, and extended periodically in [−1, 1].
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Obviously, u�
k (x) = 1 − |x| for x ∈ [−1, 1]. Therefore, Muk

(σ) = 0 if σ > 0
and k is sufficiently large, whereasMu�

k
(σ) = 1 if σ � 1 for every k ∈ N. The

next result shows that, nevertheless,Mu� andMu can be estimated in terms
of each other, if the extra information contained in E(u) is exploited as well.

Theorem 2.7 ([33]). Let p > 1, and let n � 2. Then there exist positive
constants r = r(n, p) and C = C(n, p) such that, if u is any function as in
Theorem 2.5, then

Mu(σ) � C
[
Mu�(4σ) + E(u)r +

E(u)r

σ

]
(2.38)

and

Mu�(σ) � C
[
Mu(4σ) + E(u)r +

E(u)r

σ

]
(2.39)

for σ > 0.

A key ingredient in the proofs of Theorems 2.5–2.7, which are given in [33],
is a quantitative version of (2.28) ensuring that a positive constant C = C(n)
exists such that

nω1/n
n Ln(E)1/n

′(
1 + Ca(E)2

)
� P (E) (2.40)

for every set E ⊂ R
n of finite measure and perimeter. Here, a(E) is the

asimmetry of E measured as

a(E) = inf
B is a ball,Ln(B)=Ln(E)

Ln(E�B)
Ln(E)

, (2.41)

where � stands for symmetric difference of sets. A weaker form of (2.40),
where the exponent 2 is replaced by 4, appears in [64]. The present version
is the object of the recent paper [58] (see also [55] for an alternative proof
including anisotropic notions of perimeter and sharpening a result of [50]). A
refined version of (2.40) for convex sets in the plane is contained in [6].

The second quantitative version of the Pólya–Szegö inequality is stated in
the next theorem and proved in [40]. It shows that, if functions u a priori
enjoying certain partial symmetry properties are taken into account, then
the distance of u from u� can actually be estimated in terms of the differ-
ence between the two sides of (2.27) without any extra information on the
measure of the level sets of |∇u| or |∇u�|. Precisely, a quantitative Pólya–
Szegö inequality holds for functions which are symmetric about n mutually
orthogonal hyperplanes containing the origin.

Theorem 2.8 ([40]). Let n � 2, and let 1 < p < n. Set q = max{p, 2}. Then
a positive constant C = C(n, p) exists such that
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∫

Rn

|u− u�|p∗dx �C
(∫

Rn

|u|p∗dx
)p/n(∫

Rn

|∇u�|pdx
)1/q′

×
(∫

Rn

|∇u|pdx−
∫

Rn

|∇u�|pdx
)1/q

(2.42)

for every nonnegative function u ∈ V 1,p(Rn) symmetric about n orthogonal
hyperplanes containing the origin.

Note that Theorem 2.8 continues to hold even if u is symmetric about n
arbitrary orthogonal hyperplanes, not necessarily containing 0, provided that
u� is replaced by a suitable translate.

3 Sobolev Inequalities

3.1 Functions of Bounded Variation

The sharp form of the Sobolev inequality for p = 1 goes back to [52, 77] and
asserts that

nω1/n
n ‖u‖Ln′(Rn) � ‖∇u ‖L1(Rn) (3.1)

for every u ∈ V 1,1(Rn). The constant nω1/n
n in (3.1) is the best possible,

witness a suitable sequence of functions u converging to the characteristic
function of a ball. Thus, in a sense, although equality is never attained in
(3.1) unless u vanishes identically, (multiples of) characteristic functions of
balls can be considered the virtual extremals. These functions turn into real
extremals in an extended version of the inequality (3.1) in BV (Rn), the space
of functions of bounded variation in R

n. The relevant inequality states us that

nω1/n
n ‖u‖Ln′(Rn) � ‖Du‖(Rn) (3.2)

for every u ∈ BV (Rn). Actually, equality holds in (3.2) whenever

u = λχB (3.3)

for some λ ∈ R and for some ball B ⊂ R
n. Moreover, functions given by (3.3)

are the only extremals in (3.2).
Theorem 3.4 below provides us with a quantitative version of the inequal-

ities (3.1)–(3.2). Loosely speaking, it tells us that the difference ‖Du‖(Rn)−
nω

1/n
n ‖u‖Ln′(Rn) is not merely nonnegative for every u ∈ BV (Rn) (and van-

ishing if and only if u obeys (3.3)), but can also be estimated from below in
terms of the distance in Ln

′
(Rn) between u and the (n+2)-parameter family
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of functions having the form (3.3). Precisely, on setting

dn′(u) = inf
λ,B

‖u− λχB‖Ln′(Rn)

‖u‖Ln′(Rn)

(3.4)

if u �= 0, and dn′(0) = 0, one has the following result.

Theorem 3.1 ([31]). Let n � 2. Then positive constants α = α(n) and C =
C(n) exist such that

nω1/n
n ‖u‖Ln′(Rn)

(
1 + Cdn′(u)α

)
� ‖Du‖(Rn) (3.5)

for every u ∈ BV (Rn).

Of course, the inequality (3.5) holds, in particular, for every u ∈ V 1,1(Rn),
and, in this case, ‖Du‖(Rn) agrees with ‖∇u‖L1(Rn).

The inequality (3.2) (and (3.1)) is closely related and, in fact, equivalent,
to the isoperimetric inequality (2.28). Indeed, the inequality (3.2) reduces
to (2.28) when u = χE , and, conversely, it quite easily follows from (2.28)
applied to the level sets {|u| > t}, via the coarea formula.

Similarly, Theorem 3.1 relies upon the quantitative version of (2.28) given
by (2.40). However, the derivation of (3.5) from an application of (2.40) to
the level sets of u is not entirely straightforward. In fact, the sole content of
(2.40) is not sufficient to deduce (3.5). This can be easily realized by noting
that any function u ∈ BV (Rn), whose level sets are balls, satisfies a({u >
t}) = 0 for every t > 0, whereas dn′(u) can be very large. The key additional
observation which, combined with (2.40), enables one to estimate dn′(u) in
terms of ‖Du‖(Rn) − nω1/n

n ‖u‖Ln′(Rn), is that, if the latter expression is
small, then ‖u‖Ln′(Rn) and ‖u‖Ln′,1(Rn) cannot differ too much. This is a
consequence of an enhanced version of (3.2) in Lorentz spaces, stating that

nω1/n
n ‖u‖Ln′,q(Rn) � ‖Du‖(Rn) (3.6)

for every q ∈ [1, n′] and for every u ∈ BV (Rn). In view of (2.10) and (2.11),
the inequality (3.6) improves (3.2), and, obviously, the constant nω1/n

n is the
best possible also in (3.6). Moreover, if 1 < q � n′, the extremals in (3.6) are
exactly those given by (3.3).

In fact, a quantitative version of (3.6), extending (3.5), can be established
for every q ∈ (1, n′]. This is stated in Theorem 3.2 below, where the normal-
ized distance defined by

dn′,q(u) = inf
λ,B

‖u− λχB‖Ln′,q(Rn)

‖u‖Ln′,q(Rn)

(3.7)

if u �= 0, and dn′,q(0) = 0, comes into play. Note that the conclusion of
Theorem 3.2 slightly strengthens (3.5) also in the case where q = n′, for it
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ensures that dn′(u) can be replaced by the stronger (normalized) distance
dn′,1(u).

Theorem 3.2 ([31]). Let n � 2, and let 1 < q � n′. Then positive constants
α = α(n) and C = C(n) exist such that

nω1/n
n ‖u‖Ln′,q(Rn)

(
1 + C

(
(q − 1)dn′,q(u)

)α) � ‖Du‖(Rn) (3.8)

for every u ∈ BV (Rn). Moreover, dn′,q(u) can be replaced by dn′,1(u) in (3.8).

Observe that the constant multiplying dn′,q(u) in (3.8) approaches 0 as
q → 1+. This is consistent with the fact that, since any function u ∈ BV (Rn)
whose level sets are (not necessarily concentric) balls attains equality in (3.6)
when q = 1, no estimate like (3.8) can hold in this case.

The quantitative Sobolev inequality, in the same spirit as (3.5), proved in
[16] for p = 2, involves the distance between gradients in L2(Rn). In view
of this fact, the question might be risen of whether (3.5) and (3.8) can be
augmented on replacing infλ,B ‖u−λχB‖Ln′,q(Rn) by infλ,B ‖D(u−λχB)‖(Rn)
in the definition of dn′,q(u). The answer turns out to be negative, as the
choice of a sequence of characteristic functions of ellipsoids converging to a
ball shows. A simple modification of this counterexample continues to work
even for functions from V 1,1(Rn).

The outline of the proof of Theorem 3.2 is roughly as follows. Under the
assumption that u is nonnegative, one can first prove that, if ‖Du‖(Rn) −
nω

1/n
n ‖u‖Ln′,q(Rn) is sufficiently small, then a level T > 0 exists enjoying the

following properties:

(i) a({u > T }) is small, i.e., {u > T } is almost a ball, say BT ;
(ii) |{u > t}| is nearly constant, in integral sense, for t ∈ (0, T ];
(iii) the contribution of |{u > t}| to ‖u‖Ln′,q(Rn) is small for t > T .

Next, all the level sets {u > t} are shown to be close to BT for t ∈ (0, T ].
A combination of these facts then ensures that u does not differ much from
TχBT in the Ln

′,1(Rn) norm. Finally, the sign assumption on u is removed
on splitting u as u = u+−u−, where u+ = max{u, 0} and u− = max{−u, 0},
and showing that either ‖u+‖Ln′,1(Rn) or ‖u−‖Ln′,1(Rn) can be bounded in

terms of ‖Du‖(Rn)− nω1/n
n ‖u‖Ln′,q(Rn).

Detailed proofs of the results of the present section can be found in [31],
where quantitative Sobolev inequalities involving non Euclidean norms of ∇u
are discussed as well. A refinement of the inequality (3.5), where the optimal
constant α is exhibited, is contained in [59].

3.2 The case 1 < p < n

The sharp Sobolev inequality for 1 < p < n tells us that
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S(p, n)‖u‖Lp∗(Rn) � ‖∇u‖Lp(Rn) (3.9)

for every u ∈ V 1,p(Rn), where

S(p, n) =
√
π n1/p

(
n− p
p− 1

)(p−1)/p(
Γ (n/p)Γ (1 + n− n/p)
Γ (1 + n/2)Γ (n)

)1/n

,

and is the best possible constant [10, 89]. A family of extremals in (3.9) is
given by the functions va,b,x0 : R

n → [0,∞) defined by

va,b,x0(x) =
a(

1 + b|x− x0|p′
)(n−p)/p for x ∈ R

n (3.10)

for some a �= 0, b > 0, x0 ∈ R
n. In fact, as recently pointed out in [41],

functions having the form (3.10) are the only ones attaining equality in (3.9).
Incidentally, note that, when p = 2, the classical result of [63], applied to the
Euler equation of the functional ‖∇u‖L2(Rn)

/‖u‖L2∗(Rn), can alternatively be
used to derive this characterization of the extremals in (3.9).

In this section, we present a result which strengthens the inequality (3.9)
by an additional term on the left-hand side which accounts for the deviation of
u from a suitably chosen extremal. More precisely, Theorem 3.3 below yields a
quantitative version of the inequality (3.9), with a remainder term depending
on the (normalized) distance of u from the family of extremals (3.10) given
by

dp∗(u) = inf
a, b, x0

‖u− va,b,x0‖Lp∗(Rn)

‖u‖Lp∗(Rn)

(3.11)

if u �= 0, and dp∗(0) = 0.

Theorem 3.3 ([40]). Let n � 2, and let 1 < p < n. Then positive constants
α = α(n, p) and C = C(n, p) exist such that

S(p, n)‖u‖Lp∗(Rn) (1 + Cdp∗(u)α) � ‖∇u‖Lp(Rn) (3.12)

for every u ∈ V 1,p(Rn).

The inequality (3.12) gives a positive answer to a question raised by
Brezis and Lieb in [19], which has been settled in [16] in the special case
where p = 2 in the even stronger form with ‖u− va,b,x0‖L2∗ (Rn) replaced by
‖∇u − ∇va,b,x0‖L2(Rn) in (3.11) (see also [13] for the case of higher order
derivatives). The method of [16] heavily rests upon the Hilbert space struc-
ture of W 1,2(Rn) and on eigenvalue properties of a weighted Laplacian in
R
n. Such an approach, which has been employed to deal with other related

problems involving Sobolev spaces endowed with a Hilbert space structure
[75], does not seem suitable for extensions to the general case where p �= 2.
Following the lines traced in [10] and [89], the proof of (3.12) given in [40]
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relies upon methods of geometric flavor, including isoperimetric inequalities
and symmetrizations.

To be more specific, the proof of Theorem 3.3 basically consists of three
steps, each step amounting to an extension of the inequality (3.12) to a
broader class of functions. After starting with spherically symmetric func-
tions, one proceeds with n-symmetric functions, namely functions which are
symmetric about n orthogonal hyperplanes, and one eventually concludes
with arbitrary Sobolev functions. This strategy can be clarified by the fol-
lowing considerations.

Since the operation of spherically symmetric rearrangement satisfies (2.5)
and (2.27), one has

‖∇u�‖Lp(Rn)−S(p, n)‖u�‖Lp(Rn) � ‖∇u‖Lp(Rn)−S(p, n)‖u‖Lp∗(Rn) (3.13)

and

‖∇u‖Lp(Rn) − ‖∇u�‖Lp(Rn) � ‖∇u‖Lp(Rn) − S(p, n)‖u‖Lp∗(Rn) (3.14)

for every u ∈ V 1,p(Rn). In view of (3.13) and (3.14), the idea in the proof
of (3.12) is to split the problem: first, establish the inequality in the class of
spherically symmetric functions; second, estimate the Lp

∗
distance of u from

(a suitable translated of) u� in terms of ‖∇u‖Lp(Rn) − ‖∇u�‖Lp(Rn).
Even in the special class of spherically symmetric functions, the deriva-

tion of (3.12) is not straightforward. Actually, standard proofs of the one-
dimensional Bliss inequality [17, 89] to which (3.9) reduces when restricted to
spherically symmetric functions, do not seem suitable for modifications yield-
ing stability results. A more flexible approach to the relevant one-dimensional
inequality, which can be successfully augmented to provide a quantitative
version, follows instead on specializing a mass transportation technique em-
ployed in [41] (see also [76]).

Major problems arise in the attempt at estimating the asymmetry of
u in terms of the left-hand side of (3.14). Indeed, this is just impossible,
without additional assumptions on u, as pointed out in Sect. 2.3. It is at
this stage that the class of n-symmetric functions comes into play. Indeed,
on the one hand, the distance of u from u� can actually be estimated by
‖∇u‖Lp(Rn)−‖∇u�‖Lp(Rn) if u is a priori assumed to be n-symmetric (The-
orem 2.8), thus enabling one to establish (3.12) in this class of functions. On
the other hand, any function u ∈ V 1,p(Rn) can be replaced, through careful
reflection arguments by a suitable n-symmetric function in such a way that
‖∇u‖Lp(Rn)−S(p, n)‖u‖Lp∗(Rn) and dp∗(u) do not increase and decrease, re-
spectively, too much. This fact, combined with the former step, easily leads
to the conclusion of Theorem 3.3.

We conclude this section by noting that the result of [16] leaves open
the problem of whether a version of Theorem 3.3 holds with the distance
of u from the family of extremals in Lp

∗
(Rn) replaced by the corresponding

distance between gradients in Lp(Rn).
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3.3 The case p > n

The present section is concerned with the Morrey–Sobolev embedding the-
orem stating that any function u ∈ V 1,p(Rn) for some p > n is essentially
bounded (and, in fact, locally Hölder continuous) in R

n (see, for example,
[2, 78, 100]).

A special form of this embedding tells us that ‖u‖L∞(Rn) can be estimated
in terms of ‖∇u‖Lp(Rn) under the assumption that

Ln(sprtu) <∞ , (3.15)

where sprtu denotes the support of u. In particular, an optimal version of
the relevant estimate yields

C1(n, p)Ln(sprtu)
1
p− 1

n ‖u‖L∞(Rn) � ‖∇u‖Lp(Rn) (3.16)

for every u ∈ V 1,p(Rn) fulfilling (3.15) (see, for example, [91]). Here,

C1(n, p) = n1/pω1/n
n

(p− n
p− 1

)1/p′ (3.17)

is the best possible constant since equality holds in (3.16) whenever u agrees
with any of the functions wa,b,x0 : R

n → [0,∞) given by

wa,b,x0(x) =

{
a
(
b

p−n
p−1 − |x− x0|

p−n
p−1
)

if |x− x0| � b,
0 otherwise

(3.18)

for some a ∈ R, b > 0 and x0 ∈ R
n. When the assumption (3.15) is dropped,

bounds for ‖u‖L∞(Rn) by ‖∇u‖Lp(Rn) are possible only in conjunction with
some other norm ‖u‖Lq(Rn), where q ∈ [1,∞). A sharp form of these bounds
is available in the endpoint case where q = 1. Actually, a result from [91] tells
us that

C2(n, p)‖u‖L∞(Rn) � ‖u‖1−ηL1(Rn)‖∇u‖ηLp(Rn) (3.19)

for every u ∈ V 1,p(Rn) ∩ L1(Rn). Here,

η =
np

np+ p− n (3.20)

and

C2(n, p) = (nω1/n
n )

np′
n+p′

( 1
n

+
1
p′
)−1( 1

n
− 1
p

)n−(n−1)p′
n+p′

×
(

Γ (2 + p′/n)
Γ (1 + p′)Γ (1− p′/n′)

)n/(n+p′)

. (3.21)
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Furthermore, a family of extremals in (3.19) is given by

wa,b,x0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a

b∫

|x−x0|

r
1−n
p−1 (bn − rn)

1
p−1 dr if |x− x0| � b,

0 otherwise

(3.22)

for a ∈ R, b > 0, and x0 ∈ R
n.

The inequalities (3.16) and (3.19) rely upon the properties (2.7) and (2.27)
of rearrangements. Moreover, the specification on (2.27) provided by Theorem
2.4 can be used to show that the (n + 2)-parameter families of functions
given by (3.18) and (3.22) yield, in fact, all the extremals in (3.16) and (3.19)
respectively.

We present quantitative versions of (3.16) and (3.19), which strengthen
the above results with a remainder term depending on the distance from
extremals. Loosely speaking, the distance of any function u from the family
of extremals wa,b,x0 in terms of the gap between the two sides of the inequality
(3.16) is estimated, and similarly for the inequality (3.19) and its extremals
wa,b,x0 . Actually, on setting

d∞(u) = inf
a, b, x0

‖u− wa,b,x0‖L∞(Rn)

‖u‖L∞(Rn)

if u �= 0, and d∞(0) = 0, one has the following result.

Theorem 3.4 ([32]). Let p > n. Then there exist positive constants α =
α(n, p) and C3 = C3(n, p) such that

C1(n, p)Ln(sprtu)
1
p− 1

n ‖u‖L∞(Rn)

[
1 + C3d∞(u)α

]
� ‖∇u‖Lp(Rn) (3.23)

for every u ∈ V 1,p(Rn) satisfying (3.15).

The counterpart of Theorem 3.4 for the inequality (3.19) is contained in
the next statement, where

d∞(u) = inf
a, b, x0

‖u− wa,b,x0‖L∞(Rn)

‖u‖L∞(Rn)

if u �= 0, and d∞(0) = 0.

Theorem 3.5 ([32]). Let p > n. Then there exist positive constants β =
β(n, p) and C4 = C4(n, p) such that

C2(n, p)‖u‖L∞(Rn)

[
1 + C4d∞(u)β

]
� ‖u‖1−ηL1(Rn)‖∇u‖ηLp(Rn) (3.24)

for every u ∈ V 1,p(Rn) ∩ L1(Rn).
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The approach to Theorem 3.4, whose proof can be found in [32], consists of
two steps. First, the inequality (3.23) is established for spherically symmetric
functions. Second, the (normalized) distance in L∞(Rn) of any u from a suit-
able translated of its Schwarz symmetral u� is estimated in terms of the gap
between the two sides of (3.16). In particular, a key tool in this second step
is the quantitative form of the inequality (2.27) given by Theorem 2.6. The
outline of the proof of Theorem 3.5 is similar, although some complications
arise, owing to the fact that it deals with a multiplicative inequality and that
functions whose support need not have finite measure are involved.

4 Hardy Inequalities

4.1 The case 1 < p < n

The basic Hardy inequality in R
n asserts that if 1 < p < n, then

(
n− p
p

)p ∫

Rn

|u(x)|p
|x|p dx �

∫

Rn

|∇u|pdx (4.1)

for every function u ∈ V 1,p(Rn). The constant
(
n−p
p

)p is optimal in (4.1),
as demonstrated by sequences obtained on truncating functions having the
form

va(x) = a|x| p−n
p for x ∈ R

n, (4.2)

with a ∈ R \ {0}, at levels 1/k and k, and then letting k→∞. However, it
is well known that equality is never achieved in (4.1), unless u is identically
equal to 0. In fact, the natural candidates va to be extremals in (4.1) have a
gradient which does not (even locally) belong to Lp(Rn).

The lack of extremals has inspired improved versions of (4.1) and of related
inequalities, in the spirit of [78, Sect. 2.1.6], where R

n is replaced by any
open bounded subset Ω containing 0 and u is assumed to belong to the
Sobolev space V 1,p

0 (Ω). Typically, these improvements of (4.1) amount to
extra terms on the left-hand side that either involve integrals of |u|p with
weights depending on |x| which are less singular than |x|−p at 0 or integrals
of |∇u|q with q < p (see [3, 4, 8, 12, 20, 36, 45, 46, 56, 57, 61, 62, 68, 92, 97]).

This section is concerned with an analogue of the results of the preceding
section for the inequality (4.1) in the whole of R

n. Such an improved version
contains a remainder term depending on a distance of u, in a suitable norm,
from the family of those functions which have the form (4.2) and can be
regarded as the virtual extremals in (4.1). In particular, this entails that any
optimizing sequence in the inequality (4.1) must approach the family (4.2).

In order to give a precise statement, we begin by noting that, via spher-
ically symmetric rearrangement, the inequality (4.1) is easily seen to be
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equivalent to the Lorentz-norm inequality

ω1/n
n

n− p
p
‖u‖Lp∗,p(Rn) � ‖∇u‖Lp(Rn) (4.3)

for u ∈ V 1,p(Rn). By (2.9) and (2.10), the inequality (4.3) improves the
standard Sobolev inequality where Lp

∗,p(Rn) is replaced by Lp
∗
(Rn) on the

left-hand side (and ω1/n
n

n−p
p is replaced by a different constant).

In view of (4.3), the norm ‖·‖Lp∗,p(Rn) could be considered the natural one
to measure the distance of any u from the family (4.2) in terms of the gap
between the two sides of (4.1). Unfortunately, this is not possible, since the
functions va, which do not belong to V 1,p(Rn), neither belong to Lp

∗,p(Rn).
They do not even belong to the larger space Lp

∗
(Rn), appearing in the usual

Sobolev inequality. In fact, the smallest rearrangement invariant space con-
taining va is the Marcinkievicz space Lp

∗,∞(Rn), also called the weak-Lp
∗

space. Thus, the Lp
∗,∞(Rn) norm appearing in the (normalized) distance

given by

dp∗,∞(u) = inf
a∈R

‖u− va‖Lp∗,∞(Rn)

‖u‖Lp∗,p(Rn)

(4.4)

if u �= 0, and dp∗,∞(0) = 0, which is employed in the following quantitative
Hardy inequality, is actually the strongest possible in this setting.

Theorem 4.1 ([35]). Let n � 2, and let 1 < p < n. Then constants α =
α(n, p) and C = C(n, p) exist such that

(
n− p
p

)p ∫

Rn

|u(x)|p
|x|p dx

[
1 + Cdp∗,∞(u)α

]
�
∫

Rn

|∇u|pdx (4.5)

for every u ∈ V 1,p(Rn).

Note that, although the Hardy inequality (4.1) holds also for p = 1, the
inequality (4.5) does not. Indeed, any spherically symmetric function can be
shown to attain equality in (4.1) when p = 1.

Of course, Theorem 4.1 continues to hold if R
n is replaced by any open set

Ω containing 0, provided that functions u ∈ V 1,p
0 (Ω) are taken into account.

Moreover, if Ln(Ω) <∞ and 1 � q < p∗, the space Lp
∗,∞(Ω) is continuously

embedded into Lq(Ω), and hence an inequality analogous to (4.5), with ‖u−
va‖Lp∗,∞(Rn) replaced by ‖u− va‖Lq(Ω) in the definition of dp∗,∞(u), follows
from Theorem 4.1. In fact, minor changes in the proof yield a version of
the inequality (4.5), where the functions va, which do not vanish on ∂Ω, are
replaced by the functions va : Ω → [0,∞) given by

va(x) = a(|x| p−n
p −Q)+ for x ∈ Ω.
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Here, Q is any positive number such that the support of va is contained in

Ω; namely Q > r
p−n

n

Ω , where

rΩ = sup{r > 0 : Br(0) ⊂ Ω} ,

and Br(0) denotes the ball centered at 0 and having radius r. Precisely, if
Ln(Ω) <∞ and 1 � q < p∗, then on setting

dq(u) = inf
a∈R

‖u− va‖Lq(Ω)

‖u‖Lp∗,p(Ω)

,

a constant C = C(p, q, n,Q,Ln(Ω)) exists such that

(
n− p
p

)p ∫

Ω

|u(x)|p
|x|p dx

[
1 + Cdq(u)2p

∗] �
∫

Ω

|∇u|pdx

for every u ∈ V 1,p
0 (Ω).

A quite simple proof of the inequality (4.1) relies upon symmetrization.
Actually, the Hardy–Littlewood inequality (2.15) implies that

∫

Rn

|u(x)|p
|x|p dx �

∫

Rn

u�(x)p

|x|p dx (4.6)

for every u as above. Owing to (4.6) and to the Pólya–Szegö principle (2.27),
the inequality (4.1) is reduced to the well-known one-dimensional Hardy in-
equality

(
1
p∗

)p ∞∫

0

ϕ(s)ps−p/nds �
∞∫

0

(−ϕ′(s))psp/n′
ds (4.7)

for every nonincreasing locally absolutely continuous function ϕ : (0,∞) →
[0,∞) such that lim

s→∞ϕ(s) = 0 (see, for example, [14, 83]).
Loosely speaking, the approach to Theorem 4.1 consists in proving the

stability of this argument. To be more specific, reinforced versions of inequal-
ities (4.6) and (4.7), containing quantitative information on the gap between
their two sides, come into play. The former of these quantitative inequalities
follows from (2.26), applied with u(x) replaced by |u(x)|p and v(x) replaced
by |x|−p, and enables one to show that, if the difference between the right-
hand side and the left-hand side of (4.1) is small, then u is close to u�. The
latter is used to prove that, in the same circumstance, u� is close to some
function having the form (4.2). The inequality (4.5) easily follows from these
two pieces of information. The full proof of Theorem 4.1 is contained in [35].
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4.2 The case p = n

The inequality (4.1) breaks down when p = n. In fact, no estimate like
(4.1) (with

(
n−p
p

)p replaced by any constant) can hold in this case since the
weight |x|−n is not (even locally) integrable in R

n. However, an inequality in
the same spirit can be restored if |x|−n is replaced by a suitable less singular
weight at 0, and R

n is replaced by any open bounded subset Ω. On defining

RΩ = sup
x∈Ω
|x|, (4.8)

the relevant inequality tells us that

(n− 1
n

)n ∫

Ω

|u(x)|n
|x|n(1 + log D

|x|
)n dx �

∫

Ω

|∇u|ndx (4.9)

for every D � RΩ and u ∈ V 1,n
0 (Ω). A similar phenomenon as in (4.1) occurs

in (4.9) in the sense that the constant
(
n−1
n

)n is the best possible for any
bounded Ω containing 0, but it is not attained. Again, the optimality is shown
by sequences of truncated (at levels k with k → ∞) of a suitable family of
functions, which in this case have the form

wa(x) = a
[(

1 + log
D

|x|
)1/n′

−Q
]
+

for x ∈ Ω (4.10)

for some a ∈ R \ {0}. Here, Q is any positive number fulfilling Q >
(
1 +

log D
rΩ

)1/n′
, so that the support of wa is contained in Ω.

A counterpart of Theorem 4.1 for the inequality (4.9) asserts that a re-
mainder term can be added to the left-hand side of (4.9), which depends on
the deviation of u from a suitable function of the form (4.10). Such a devia-
tion can now be controlled by an exponential estimate. Precisely, recall that
for each D � RΩ the expression

‖u‖Ln,∞(LogL)−1(Ω),D =

⎛
⎜⎝

|Ω|∫

0

u∗(s)n(
n+ log ωnDn

s

)n dss

⎞
⎟⎠

1/n

defines a norm in the Lorentz–Zygmund space Ln,∞(logL)−1(Ω), and set, for
C > 0,

dC,D,Q(u) = inf
a∈R

∫

Ω

(
exp

(
C|u(x) − wa(x)|n′

‖u‖n′
Ln,∞(logL)−1(Ω),D

)
− 1

)
dx (4.11)

if u �= 0, and dC,D,Q(0) = 0. Then the following theorem holds.
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Theorem 4.2 ([35]). Let Ω be an open bounded subset of R
n, n � 2, con-

taining 0. Let D > RΩ, and let Q >
(
1+log D

rΩ

)1/n′
. Then positive constants

α = α(n) and C = C(n,RΩ, D,Q) exist such that

(n− 1
n

)n ∫

Ω

|u(x)|n
|x|n(1 + log D

|x|
)n dx [1 + dC,D,Q(u)α

]
�
∫

Ω

|∇u|ndx (4.12)

for every u ∈ V 1,n
0 (Ω).

A few comments on Theorem 4.2 are in order. The presence of the norm
‖ · ‖Ln,∞(LogL)−1(Ω) in the definition of dC,D,Q(·) is related to the fact that,
in analogy with (4.1) and (4.3), the inequality (4.9) is equivalent to

ω1/n
n (n− 1)‖u‖Ln,∞(LogL)−1(Ω),D � ‖∇u‖Ln(Ω) (4.13)

for u ∈ V 1,n
0 (Ω). The inequality (4.13) goes back (apart from the constant)

to [21, 65, 78], and has recently been shown to be optimal as far as the norm
on the left-hand side is concerned [42, 48]. On the other hand, the norm
‖ · ‖Ln,∞(LogL)−1(Ω),D cannot be used to measure the distance of u from the
family (4.10) since wa /∈ Ln,∞(LogL)−1(Ω). The exponential term in (4.11)
serves as a replacement for this norm, in the same spirit as ‖ · ‖Lp∗,∞(Rn) re-
places ‖·‖Lp∗,p(Rn) in (4.4), and is related to the classical embedding theorem
of [84, 95, 99] which states that

∫

Ω

(
exp
(
C|u(x)|n′

‖∇u‖n′
Ln(Ω)

)
− 1
)
dx � 1 (4.14)

for some positive constant C = C(n,Ln(Ω)) and for every u ∈ V 1,n
0 (Ω).

Observe that (4.14) is equivalent to

‖u‖expLn′(Ω) � C‖∇u‖Ln(Ω) (4.15)

for some positive constant C = C(n,Ln(Ω)) and for every u ∈ V 1,n
0 (Ω). The

inequalities (4.14) and (4.15) are slightly weaker than (4.13) for

Ln,∞(LogL)−1(Ω) � expLn
′
(Ω) (4.16)

(with continuous embedding). However, the remainder dC,D,Q(u) appearing

in (4.12) is again optimal, in that the function et
n′ − 1 cannot be replaced

by any other Young function growing essentially faster at infinity. Indeed,
expLn

′
(Ω), unlike Lp

∗
(Ω), agrees with its corresponding weak space and is

the smallest rearrangement invariant space containing the family (4.10). The
scheme of the proof of Theorem 4.2, which can be found in [35], is analogous
to that of Theorem 4.1.
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54. Ferone, A., Volpicelli, R.: Convex rearrangement: equality cases in the Pólya–Szegö
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Inequalities of Hardy–Sobolev Type in
Carnot–Carathéodory Spaces

Donatella Danielli, Nicola Garofalo, and Nguyen Cong Phuc

Abstract We consider various types of Hardy–Sobolev inequalities on a
Carnot–Carathéodory space (Ω, d) associated to a system of smooth vector
fields X = {X1, X2, . . . , Xm} on R

n satisfying the Hörmander finite rank
condition rank Lie[X1, . . . , Xm] ≡ n. One of our main concerns is the trace
inequality

∫

Ω

|ϕ(x)|pV (x)dx � C
∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω),

where V is a general weight, i.e., a nonnegative locally integrable function
on Ω, and 1 < p < +∞. Under sharp geometric assumptions on the domain
Ω ⊂ R

n that can be measured equivalently in terms of subelliptic capacities
or Hausdorff contents, we establish various forms of Hardy–Sobolev type
inequalities.

1 Introduction

A celebrated inequality of S.L. Sobolev [49] states that for any 1 < p < n
there exists a constant S(n, p) > 0 such that for every function ϕ ∈ C∞

0 (Rn)
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⎛
⎝
∫

Rn

|ϕ| np
n−p dx

⎞
⎠

n−p
np

� S(n, p)

⎛
⎝
∫

Rn

|Dϕ|pdx
⎞
⎠

1
p

. (1.1)

Such an inequality admits the following extension (see [8]). For 0 � s � p
define the critical exponent relative to s as follows:

p∗(s) = p
n− s
n− p.

Then for every ϕ ∈ C∞
0 (Rn) one has

⎛
⎝
∫

Rn

|ϕ|p∗(s)

|x|s dx
⎞
⎠

1
p∗(s)

�
(
p

n− p
) s

p∗(s)

S(n, p)
n(p−s)
p(n−s)

⎛
⎝
∫

Rn

|Dϕ|pdx
⎞
⎠

1
p

.

(1.2)

In particular, when s = 0, then (1.2) is just the Sobolev embedding (1.1),
whereas for s = p we obtain the Hardy inequality

∫

Rn

|ϕ|p
|x|p dx �

(
p

n− p
)p ∫

Rn

|Dϕ|pdx. (1.3)

The constant
(
p

n− p
)p

on the right-hand side of (1.3) is sharp. If one

is not interested in the best constant, then (1.2), and hence (1.3), follows
immediately by combining the generalized Hölder inequality for weak Lp

spaces in [32] with the Sobolev embedding (1.1), after having observed that
| · |−s ∈ Ln

s ,∞(Rn) (the weak L
n
s space).

Inequalities of Hardy–Sobolev type play a fundamental role in analysis,
geometry, and mathematical physics, and there exists a vast literature con-
cerning them. Recently, there has been a growing interest in such inequalities
in connection with the study of linear and nonlinear partial differential equa-
tions of subelliptic type and related problems in CR and sub-Riemannian
geometry. In this context, it is also of interest to study the situation in which
the whole space is replaced by a bounded domain Ω and, instead of a one
point singularity such as in (1.2), (1.3), one has the distance from a lower
dimensional set. We will be particularly interested in the case in which such
a set is the boundary ∂Ω of the ground domain.

In this paper, we consider various types of Hardy–Sobolev inequalities on
a Carnot–Carathéodory space (Ω, d) associated to a system of smooth vector
fields X = {X1, X2, . . . , Xm} on R

n satisfying the Hörmander finite rank
condition [31]

rank Lie[X1, . . . , Xm] ≡ n. (1.4)
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Here, Ω is a connected, (Euclidean) bounded open set in R
n, and d is the

Carnot–Carathéodory (CC hereafter) metric generated by X . For instance,
a situation of special geometric interest is that when the ambient manifold is
a nilpotent Lie group whose Lie algebra admits a stratification of finite step
r � 1 (see [18, 20, 53]. These groups are called Carnot groups of step r. When
r > 1 such groups are non-Abelian, whereas when r = 1 one essentially has
Euclidean R

n with its standard translations and dilations.
For a function ϕ ∈ C1(Ω) we indicate with Xϕ = (X1ϕ, . . . , Xmϕ) its

“gradient” with respect to the system X . One of our main concerns is the
trace inequality

∫

Ω

|ϕ(x)|pV (x)dx � C
∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (1.5)

where V is a general weight, i.e., a nonnegative locally integrable function on
Ω, and 1 < p < +∞. This includes Hardy inequalities of the form

∫

Ω

|ϕ(x)|p
δ(x)p

dx � C
∫

Ω

|Xϕ|pdx, (1.6)

and ∫

Ω

|ϕ(x)|p
d(x, x0)p

dx � C
∫

Ω

|Xϕ|pdx, (1.7)

as well as the mixed form
∫

Ω

|ϕ(x)|p
δ(x)p−γd(x, x0)γ

dx � C
∫

Ω

|Xϕ|pdx. (1.8)

In (1.6), we denote by δ(x) = inf{d(x, y) : y ∈ ∂Ω} the CC distance of x
from the boundary of Ω. In (1.7), we denote by x0 a fixed point in Ω, whereas
in (1.8) we have 0 � γ � p.

Our approach to the inequalities (1.6)-(1.8) is based on results on subel-
liptic capacitary and Fefferman–Phong type inequalities in [13], Whitney
decompositions, and the so-called pointwise Hardy inequality

|ϕ(x)| � Cδ(x)
(

sup
0<r�4δ(x)

1
|B(x, r)|

∫

B(x,r)

|Xϕ|qdy
) 1

q

, (1.9)

where 1 < q < p. In (1.9), B(x, r) denotes the CC ball centered at x of
radius r.

We use the ideas in [25] and [37] to show that (1.9) is essentially equiv-
alent to several conditions on the geometry of the boundary of Ω, one of
which is the uniform (X, p)-fatness of R

n \Ω, a generalization of that of uni-
form p-fatness introduced in [38] in the Euclidean setting (see Definition 3.2
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below). The inequality (1.9) is also equivalent to other thickness conditions
of R

n \ Ω measured in terms of a certain Hausdorff content which is intro-
duced in Definition 3.5. For the precise statement of these results we refer to
Theorem 3.9.

We stress here that the class of uniformly (X, p)-fat domains is quite rich.
For instance, when G is a Carnot group of step r = 2, then every (Euclidean)
C1,1 domain is uniformly (X, p)-fat for every p > 1 (see [7, 43]). On the other
hand, one would think that the Carnot–Carathéodory balls should share this
property, but it was shown in [7] that this is not the case since even in the
simplest setting of the Heisenberg group these sets fail to be regular for the
Dirichlet problem for the relevant sub-Laplacian.

We now discuss our results concerning the trace inequality (1.5). In the
Euclidean setting, a necessary and sufficient condition on V was found by
Maz’ya [40] in 1962 (see also [41, Theorem 2.5.2]), i.e., the inequality (1.5)
with the standard Euclidean metric induced by X = { ∂

∂x1
, . . . , ∂

∂xn
} holds if

and only if

sup
K⊂Ω

K compact

∫
K

V (x)dx

capp(K,Ω)
< +∞, (1.10)

where capp(K,Ω) is the (X, p)-capacity K defined by

capp(K,Ω) = inf

⎧⎨
⎩
∫

Ω

|Xu|pdx : u ∈ C∞
0 (Ω), u � 1 on K

⎫⎬
⎭ .

Maz’ya’s result was generalized to the subelliptic setting by the first named
author in [13]. However, although Corollary 5.9 in [13] implies that V ∈
L

Q
p
,∞(Ω) is sufficient for (1.5), which is the case of an isolated singularity

as in (1.7), the Hardy inequality (1.6) could not be deduced directly from it
since δ(·)−p �∈ LQ

p ,∞(Ω). Here, 1 < p < Q, where Q is the local homogeneous
dimension of Ω (see Sect. 2). On the other hand, in the Euclidean setting the
Hardy inequality (1.6) was established in [1], [38] and [51] (see also [42] and
[3] for other settings) under the assumption that R

n \Ω is uniformly p-fat.
In this paper, we combine a “localized” version of (1.10) and the uniform

(X, p)-fatness of R
n\Ω to allow the treatment of weights V with singularities

which are distributed both inside and on the boundary ofΩ. More specifically,
we show that if R

n \Ω is uniformly (X, p)-fat, then the inequality (1.5) holds
if and only if

sup
B∈W

sup
K⊂2B

K compact

∫

K

V (x)dx

capp(K,Ω)
< +∞,
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where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2 below
(see Theorem 4.3). In the Euclidean setting, this idea was introduced in [26].
Moreover, a localized version of Fefferman–Phong condition

sup
B∈W

sup
x∈2B

0<r<diam(B)

∫

B(x,r)

V (y)sdy � C
|B(x, r)|
rsp

for some s > 1, is also shown to be sufficient for (1.5) (see Theorem 4.5).
With these general results in hands, in Corollaries 4.6 and 4.7 we deduce

the Hardy type inequalities (1.6), (1.7), and (1.8) for domains Ω whose com-
plements are uniformly (X, p)-fat. Note that in (1.7) and (1.8) one has to
restrict the range of p to 1 < p < Q(x0), where Q(x0) is the homogeneous
dimension at x0 with respect to the system X (see Sect. 2). It is worth
mentioning that in the Euclidean setting inequalities of the form (1.8) were
obtained in [16], but only for more regular domains, say, C1,α domains or
domains that satisfy a uniform exterior sphere condition. In closing we men-
tion that our results are of a purely metrical character and that, similarly to
[13], they can be easily generalized to the case in which the vector fields are
merely Lipschitz continuous and they satisfy the conditions in [23].

2 Preliminaries

Let X = {X1, . . . , Xm} be a system of C∞ vector fields in R
n, n � 3,

satisfying the Hörmander finite rank condition (1.4). For any two points x, y ∈
R
n a piecewise C1 curve γ(t) : [0, T ] → R

n is said to be sub-unitary with
respect to the system of vector fields X if for every ξ ∈ R

n and t ∈ (0, T ) for
which γ′(t) exists one has

(γ′(t) · ξ)2 �
m∑
i=1

(Xi(γ(t)) · ξ)2.

We note explicitly that the above inequality forces γ′(t) to belong to the
span of {X1(γ(t)), . . . , Xm(γ(t))}. The sub-unit length of γ is by definition
ls(γ) = T . Given x, y ∈ R

n, denote by SΩ(x, y) the collection of all sub-
unitary γ : [0, T ]→ Ω which join x to y. The accessibility theorem of Chow
and Rashevsky (see [46] and [9]) states that, given a connected open set
Ω ⊂ R

n, for every x, y ∈ Ω there exists γ ∈ SΩ(x, y). As a consequence, if
we pose

dΩ(x, y) = inf {ls(γ) | γ ∈ SΩ(x, y)},
we obtain a distance on Ω, called the Carnot–Carathéodory (CC) distance
on Ω, associated with the system X . When Ω = R

n, we write d(x, y) instead
of dRn(x, y). It is clear that d(x, y) � dΩ(x, y), x, y ∈ Ω, for every connected



122 D. Danielli et al.

open set Ω ⊂ R
n. In [44], it was proved that for every connected Ω ⊂⊂ R

n

there exist C, ε > 0 such that

C |x− y| � dΩ(x, y) � C−1 |x− y|ε, x, y ∈ Ω. (2.1)

This gives d(x, y) � C−1|x− y|ε, x, y ∈ Ω, and therefore

i : (Rn, | · |)→ (Rn, d) is continuous.

It is easy to see that also the continuity of the opposite inclusion holds [23],
hence the metric and the Euclidean topology are compatible. In particular,
the compact sets with respect to either topology are the same.

For x ∈ R
n and r > 0 we let B(x, r) = {y ∈ R

n | d(x, y) < r}. The basic
properties of these balls were established by Nagel, Stein and Wainger in
their seminal paper [44]. Denote by Y1, . . . , Yl the collection of the Xj ’s and
of those commutators which are needed to generate R

n. A formal “degree”
is assigned to each Yi, namely the corresponding order of the commutator.
If I = (i1, . . . , in), 1 � ij � l, is an n-tuple of integers, following [44] we

let d(I) =
n∑
j=1

deg(Yij ), and aI(x) = det (Yi1 , . . . , Yin). The Nagel–Stein–

Wainger polynomial is defined by

Λ(x, r) =
∑
I

|aI(x)| rd(I), r > 0. (2.2)

For a given compact set K ⊂ R
n we denote by

Q = sup{d(I) : |aI(x)| �= 0, x ∈ K} (2.3)

the local homogeneous dimension of K with respect to the system X and by

Q(x) = inf{d(I) : |aI(x)| �= 0} (2.4)

the homogeneous dimension at x with respect to X . It is obvious that 3 �
n � Q(x) � Q. It is immediate that for every x ∈ K, and every r > 0, one
has

tQΛ(x, r) � Λ(x, tr) � tQ(x)Λ(x, r) (2.5)

for any 0 � t � 1, and thus

Q(x) � rΛ
′(x, r)
Λ(x, r)

� Q. (2.6)

For a simple example consider in R
3 the system

X = {X1, X2, X3} =
{
∂

∂x1
,
∂

∂x2
, x1

∂

∂x3

}
.
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It is easy to see that l = 4 and

{Y1, Y2, Y3, Y4} = {X1, X2, X3, [X1, X3]}.

Moreover, Q(x) = 3 for all x �= 0, whereas for any compact set K containing
the origin Q(0) = Q = 4.

The following fundamental result is due to Nagel, Stein, and Wainger [44]:
For every compact set K ⊂ R

n there exist constants C,R0 > 0 such that for
any x ∈ K and 0 < r � R0 one has

CΛ(x, r) � |B(x, r)| � C−1Λ(x, r). (2.7)

As a consequence, there exists C0 such that for any x ∈ K and 0 < r <
s � R0 we have

C0

(r
s

)Q
� |B(x, r)|
|B(x, s)| . (2.8)

Henceforth, the numbers C0 and R0 above will be referred to as the local
parameters of K with respect to the system X . If E is any (Euclidean)
bounded set in R

n, then the local parameters of E are defined as those of E.
We mention explicitly that the number R0 is always chosen in such a way that
the closed metric balls B(x,R), with x ∈ K and 0 < R � R0, are compact
(see [23, 24]). This choice is motivated by the fact that in a CC space the
closed metric balls of large radii are not necessarily compact. For instance,
if one considers the Hörmander vector field on R given by X1 = (1 + x2) d

dx ,
then for any R � π/2 one has B(0, R) = R (see [23]).

Given an open set Ω ⊂ R
n, and 1 � p � ∞, we denote by S1,p(Ω), the

subelliptic Sobolev space associated with the system X is defined by

S1,p(Ω) = {u ∈ Lp(Ω) : Xiu ∈ Lp(Ω), i = 1, . . . ,m},

where Xiu is understood in the distributional sense, i.e.,

〈Xiu, ϕ〉 =
∫

Ω

uX∗
i ϕdx

for every ϕ ∈ C∞
0 (Ω). Here, X∗

i denotes the formal adjoint of Xi. Endowed
with the norm

‖u‖S1,p(Ω) =

⎛
⎝
∫

Ω

(|u|p + |Xu|p)dx
⎞
⎠

1
p

, (2.9)

S1,p(Ω) is a Banach space which admits C∞(Ω) ∩ S1,p(Ω) as a dense subset
(see [23, 21]). The local version of S1,p(Ω) is denoted by S1,p

loc (Ω), whereas
the completion of C∞

0 (Ω) under the norm in (2.9) is denoted by S1,p
0 (Ω).
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A fundamental result in [47] shows that for any bounded open set Ω ⊂ R
n

the space S1,p
0 (Ω) embeds into a standard fractional Sobolev space W s,p

0 (Ω),
where s = 1/r and r is the largest number of commutators which are needed
to generate the Lie algebra over Ω. Since, on the other hand, we have classi-
cally W s,p

0 (Ω) ⊂ Lp(Ω), we obtain the following Poincaré inequality:
∫

Ω

|ϕ|p dx � C(Ω)
∫

Ω

|Xϕ|p dx , ϕ ∈ S1,p
0 (Ω). (2.10)

Another fundamental result which plays a pervasive role in this paper is
the following global Poincaré inequality on metric balls due to Jerison [33].
Henceforth, given a measurable set E ⊂ R

n, the notation ϕE indicates the
average of ϕ over E with respect to Lebesgue measure.

Theorem 2.1. Let K ⊂ R
n be a compact set with local parameters C0 and

R0. For any 1 � p < ∞ there exists C = C(C0, p) > 0 such that for any
x ∈ K and every 0 < r � R0 one has for all ϕ ∈ S1,p(B(x, r))

∫

B(x,r)

|ϕ− ϕB(x,r)|pdy � C rp
∫

B(x,r)

|Xϕ|pdy. (2.11)

We also need the following basic result on the existence of cut-off functions
in metric balls (see [24] and also [21]). Given a set Ω ⊂ R

n, we indicate with
C0,1
d (Ω) the collection of functions ϕ ∈ C(Ω) for which there exists L � 0

such that
|ϕ(x) − ϕ(y)| � L d(x, y), x, y ∈ Ω.

We recall that, thanks to the Rademacher–Stepanov type theorem proved
in [24, 21], if Ω is metrically bounded, then any function in C0,1

d (Ω) belongs
to the space S1,∞(Ω). This is true, in particular, when Ω is a metric ball.

Theorem 2.2. Let K ⊂ R
n be a compact set with local parameters C0 and

R0. For every 0 < s < t < R0 there exists ϕ ∈ C0,1
d (Rn), 0 � ϕ � 1, such

that

(i) ϕ ≡ 1 on B(x, s) and ϕ ≡ 0 outside B(x, t),

(ii) |Xϕ| � C
t−s for a.e. x ∈ R

n,

for some C > 0 depending on C0. Furthermore, we have ϕ ∈ S1,p(Rn) for
every 1 � p <∞.

A condenser is a couple (K,Ω), where Ω is open and K ⊂ Ω is compact.
The subelliptic p-capacity of (K,Ω) is defined by

capp(K,Ω) = inf

⎧⎨
⎩
∫

Ω

|Xϕ|pdx : ϕ ∈ C0,1
d (Rn), supp ϕ ⊂ Ω,ϕ � 1 on K

⎫⎬
⎭ .
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As usual, it can be extended to arbitrary sets E ⊂ Ω by letting

capp(E,Ω) = inf
G⊂Ω open
E⊂G

sup
K⊂G

K compact

capp(K,Ω).

It was proved in [12] that the subelliptic p-capacity of a metric “annular”
condenser has the following two-sided estimate which will be used extensively
in the paper. Given a compact set K ⊂ R

n with local parameters C0 and R0,
and homogeneous dimension Q, for any 1 < p < ∞ there exist C1, C2 > 0
depending only on C0 and p such that

C1
|B(x, r)|
rp

� capp(B(x, r), B(x, 2r)) � C2
|B(x, r)|
rp

(2.12)

for all x ∈ K, and 0 < r � R0/2.
The subelliptic p-Laplacian associated to the system X is the quasilinear

operator defined by

Lp[u] = −
m∑
i=1

X∗
i (|Xu|p−2Xiu).

A weak solution u ∈ S1,p
loc (Ω) to the equation Lp[u] = 0 is said to be Lp-

harmonic in Ω. It is well-known that every Lp-harmonic function in Ω has a
Hölder continuous representative (see [4]). This means that, if C0 and R0 are
the local parameters of Ω, then there exist 0 < α < 1 and C > 0, depending
on C0 and p, such that for every 0 < R � R0 for which B4R(x0) ⊂ Ω one has

|u(x)− u(y)| � C

(
d(x, y)
R

)α⎛⎜⎝ 1
|B2R(x0)|

∫

B2R(x0)

|u|pdx

⎞
⎟⎠

1/p

. (2.13)

Given a bounded open set Ω ⊂ R
n and 1 < p <∞, the Dirichlet problem

for Ω and Lp consists in finding, for every given ϕ ∈ S1,p(Ω) ∩ C(Ω), a
function u ∈ S1,p(Ω) such that

Lp[u] = 0 in Ω, u− ϕ ∈ S1,p
0 (Ω). (2.14)

Such a problem admits a unique solution (see [12]). A point x0 ∈ ∂Ω is
called regular if for every ϕ ∈ S1,p(Ω) ∩ C(Ω),one has lim

x→x0
u(x) = ϕ(x0). If

every x0 ∈ ∂Ω is regular, then we say that Ω is regular. We need the following
basic Wiener type estimate proved in [12].

Theorem 2.3. Given a bounded open set Ω ⊂ R
n with local parameters C0

and R0, let ϕ ∈ S1,p(Ω) ∩ C(Ω). Consider the (unique) solution u to the
Dirichlet problem (2.14). There exists C = C(p, C0) > 0 such that for given
x0 ∈ ∂Ω and 0 < r < R � R0/3 one has with Ωc = R

n \Ω



126 D. Danielli et al.

osc {u,Ω ∩B(x0, r)} � osc {ϕ, ∂Ω ∩B(x0, 2R)}

+ osc (ϕ, ∂Ω) exp

⎧⎨
⎩− C

R∫

r

[
capp (Ωc ∩B(x0, t), B(x0, 2t))

capp (B(x0, t), B(x0, 2t))

]
dt

t

⎫⎬
⎭ .

Remark 2.4. It is clear from Theorem 2.3 that if Ω is thin at x0 ∈ ∂Ω, i.e.,
if one has

lim inf
t→0+

capp (Ωc ∩B(x0, t), B(x0, 2t))

capp (B(x0, t), B(x0, 2t))
> 0 ,

then x0 is regular for the Dirichlet problem (2.14).

A lower semicontinuous function u : Ω → (−∞,∞] such that u �≡ +∞ is
called Lp-superharmonic in Ω if for all open sets D such that D ⊂ Ω, and all
Lp-harmonic functions h ∈ C(D) the inequality h � u on ∂D implies h � u
in D. Similarly to what is done in the classical case in [30], one can associate
with each Lp-superharmonic function u in Ω a nonnegative (not necessarily
finite) Radon measure μ[u] such that −Lp[u] = μ[u]. This means that

∫

Ω

|Xu|p−2Xu ·Xϕ dx =
∫

Ω

ϕ dμ[u]

for all ϕ ∈ C∞
0 (Ω). Here, Xu is defined a.e. by

Xu = lim
k→∞

X(min{u, k}).

It is known that if either u ∈ L∞(Ω) or u ∈ S1,r
loc (Ω) for some r � 1, then

Xu coincides with the regular distributional derivatives. In general, we have
Xu ∈ Lsloc(Ω) for 0 < s < Q(p−1)

Q−1 (see, for example, [50] and [30]).
We need the following basic pointwise estimates for Lp-superharmonic

functions. This result was first established by Kilpeläinen and Malý [35] in
the elliptic case and extended to the setting of CC metrics by Trudinger and
Wang [50]. For a generalization to more general metric spaces we refer the
reader to [3]. We recall that for given 1 < p <∞ the p-Wolff’s potential of a
Radon measure μ on a metric ball B(x,R) is defined by

WR
p μ(x) =

R∫

0

[
μ(B(x, t))
t−p|B(x, t)|

] 1
p−1 dt

t
. (2.15)

Theorem 2.5. Let K ⊂ R
n be a compact set with relative local parameters

C0 and R0. If x ∈ K and R � R0/2, let u � 0 be Lp-superharmonic in
B(x, 2R) with associated measure μ = −Lp[u]. There exist positive constants
C1 and C2 depending only on p and C0 such that



Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces 127

C1WR
p μ(x) � u(x) � C2

{
W2R

p μ(x) + inf
B(x,R)

u

}
.

3 Pointwise Hardy Inequalities

We begin this section by generalizing a Sobolev type inequality that, in the
Euclidean setting, was found by Maz’ya [41, Chapt. 10].

Lemma 3.1. Let K ⊂ R
n be a compact set with local parameters C0 and R0.

For x ∈ K and r � R0/2 we set B = B(x, r). Given 1 � q <∞, there exists
a constant C > 0 depending only on C0 and q such that for all ϕ ∈ C∞(2B)

|ϕB | � C
⎛
⎝ 1

capq({ϕ = 0} ∩B, 2B)

∫

2B

|Xϕ|qdx
⎞
⎠

1
q

. (3.1)

Proof. We may assume that ϕB �= 0; otherwise, there is nothing to prove.
Let η ∈ C0,1

d (Rn), 0 � η � 1, supp η ⊂ 2B, η = 1 on B and |Xη| � C
r

be a cut-off function as in Theorem 2.2. Define ϕ = η(ϕB − ϕ)/ϕB. Then
ϕ ∈ C0,1

d (Rn), supp ϕ ⊂ 2B, and ϕ = 1 on {ϕ = 0}∩B. It thus follows that

capq({ϕ = 0} ∩B, 2B) �
∫

2B

|Xϕ|qdx (3.2)

� |ϕB |−q
∫

2B

|Xη|q|ϕ− ϕB |qdx + |ϕB|−q
∫

2B

|Xϕ|qdx

� C|ϕB |−qr−q
∫

2B

|ϕ− ϕB|qdx+ |ϕB|−q
∫

2B

|Xϕ|qdx.

On the other hand, by Theorem 2.1 and (2.8), we infer
∫

2B

|ϕ− ϕB |qdx � C
∫

2B

|ϕ− ϕ2B |qdx + C
∫

2B

|ϕB − ϕ2B|qdx

� Crq
∫

2B

|Xϕ|qdx+ C
∫

2B

|ϕ− ϕ2B |qdx

� Crq
∫

2B

|Xϕ|qdx.

Inserting the latter inequality in (3.2), we find
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capq({ϕ = 0} ∩B, 2B) � C|ϕB |−q
∫

2B

|Xϕ|qdx,

which gives the desired inequality (3.1). 
�
We now introduce the notion of uniform (X, p)-fatness. As Theorem 3.9

below proves, such a notion turns out to be equivalent to a pointwise Hardy
inequality and to a uniform thickness property expressed in terms of the
Hausdorff content.

Definition 3.2. We say that a set E ⊂ R
n is uniformly (X, p)-fat with

constants c0, r0 > 0 if

capp(E ∩B(x, r), B(x, 2r)) � c0 capp(B(x, r), B(x, 2r))

for all x ∈ ∂E and for all 0 < r � r0.

The potential theoretic relevance of Definition 3.2 is underscored in Re-
mark 2.4. From the latter it follows that if R

n \ Ω is uniformly (X, p)-fat,
then for every x0 ∈ ∂Ω one has for every ϕ ∈ S1,p(Ω) ∩ C(Ω)

osc {u,Ω ∩B(x0, r)} � osc {ϕ, ∂Ω ∩B(x0, 2R)}

and, therefore, Ω is regular for the Dirichlet problem for the subelliptic
p-Laplacian Lp.

Uniformly (X, p)-fat sets enjoy the following self-improvement property
which was discovered in [38] in the Euclidean setting. Such a property holds
also in the setting of weighted Sobolev spaces and degenerate elliptic equa-
tions [42]. The proof in [42] uses the Wolff potential and works also in the
general setting of metric spaces [3]. For the sake of completeness, we include
its details here.

Theorem 3.3. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. There exists a constant 0 < r0 � R0/100 such that whenever R
n \Ω

is uniformly (X, p)-fat with constants c0 and r0, then it is also uniformly
(X, q)-fat for some q < p with constants c1 and r0.

Proof. Let dist(x,Ω) = inf{d(x, y) : y ∈ Ω}. Denote by U ⊂ R
n the compact

set
U = {x ∈ R

n : dist(x,Ω) � R0},
with local parameters C1, R1. We show that if R

n \Ω is uniformly (X, p)-fat
with constants c0 and r0 = min{R0, R1}/100, then it is also uniformly (X, q)-
fat for some q < p with constants c1 and r0. To this end, we fix x0 ∈ ∂Ω and
0 < R � r0. Following [38], we first claim that there e xists a compact set
K ⊂ (Rn \ Ω) ∩ B(x0, R) containing x0 such that K is uniformly (X, p)-fat
with constants c1 > 0 and R. Indeed, let E1 = (Rn \ Ω) ∩ B(x0, R2 ), and
inductively let
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Ek = (Rn \Ω) ∩
⎛
⎝ ⋃
x∈Ek−1

B(x, R2k )

⎞
⎠ , k ∈ N.

Then it is easy to see that K can be taken as the closure of ∪kEk.
Let now B = B(x0, R). Denote by P̂K the potential of K in 2B, i.e., P̂K

is the lower semicontinuous regularization

P̂K(x) = lim
r→0

inf
Br(x)

PK ,

where PK is defined by

PK = inf{u : u is Lp-superharmonic in 2B, and u � χK}.

Let μ = −Lp[P̂K ]. Then supp μ ⊂ ∂K and

μ(K) = capp(K, 2B). (3.3)

Moreover, P̂K = PK except for a set of zero capacity capp(·, 2B) (see [50]).
Hence P̂K is the unique solution in S1,p

0 (2B) to the Dirichlet problem

Lp[u] = 0 in 2B \K, u− f ∈ S1,p
0 (2B \K)

for any f ∈ C∞
0 (2B) such that f ≡ 1 on K. Thus, by Theorem 2.3 and the

(X, p)-fatness of K, there are constants C > 0 and α > 0 independent of R
such that

osc (P̂K , B(x, r)) � CR−αrα (3.4)

for all x ∈ ∂K and 0 < r � R/2. From the lower Wolff potential estimate in
Theorem 2.5 we have

[
μ(B(x, r))
r−p|B(x, r)|

] 1
p−1

� CW2r
p μ(x) � C

(
P̂K(x)− inf

B(x,4r)
P̂K

)

� C osc (P̂K , B(x, 4r)).

Thus, from (3.4) it follows that

μ(B(x, r)) � CR−α(p−1)rα(p−1)−p|B(x, r)| (3.5)

for all x ∈ ∂K and 0 < r � R/8. Moreover, since supp μ ⊂ ∂K, we see from
the doubling property (2.8) that (3.5) holds also for all x ∈ B(x0, 2R) and
0 < r � R/16. In fact, it then holds for all R/16 < r � 3R as well since,
again by (2.8), the ball B(x, r) can be covered by a fixed finite number of
balls of radius R/16.

We next pick q ∈ R such that p− α(p − 1) < q < p and define a measure
ν = Rp−qμ. From (3.5) it follows that for all x ∈ B(x0, 2R),
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W3R
q ν(x) � CR

p−q−α(p−1)
q−1

3R∫

0

r
q−p+α(p−1)

q−1
dr

r
�M, (3.6)

where M is independent of R. Thus, by [2, Lemma 3.3], ν belongs to the
dual space of S1,q

0 (2B) and there is a unique solution v ∈ S1,q
0 (2B) to the

problem
− Lq[v] = ν in 2B
v = 0 on ∂(2B).

(3.7)

We now claim that
v(x) � c (3.8)

for all x ∈ 2B and for a constant c independent of R. To this end, it is enough
to show (3.8) only for x ∈ B since v is Lq-harmonic in 2B \B and v = 0 on
∂(2B). Fix now x ∈ B. By Theorem 2.5, we have

v(x) � C
{

W3R
q ν(x) + inf

B(x,R/4)
v

}
. (3.9)

To bound the term inf
B(x,R/4)

v in (3.9), we first use min{v, k}, k > 0, as a

test function in (3.7) to obtain
∫

2B

|X(min{v, k})|qdx =
∫

2B

|Xv|q−2Xv ·X(min{v, k})dx (3.10)

=
∫

2B

min{v, k}dν � k ν(K).

Consequently,

capq({v � k}, 2B) �
∫

2B

|X(min{v, k}/k)|qdx � k1−qν(K) (3.11)

for any k > 0. The inequality (3.11) with k = inf
B(x,R/4)

v then gives

R−q|B(x,R)| � C capq(B(x,R/4), B(x, 4R))
� C capq({v � k}, 2B)

� Ck1−qν(K),

which yields the estimate

inf
B(x,R/4)

v � C
(

ν(K)
R−q|B(x,R)|

) 1
q−1

. (3.12)



Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces 131

Combining (3.6), (3.9), and (3.12). we obtain (3.8), thus proving the claim.
Note that for any ϕ ∈ C∞

0 (2B) such that ϕ � χK , by the Hölder inequality
and by applying (3.10) with k = c, we have

ν(K) �
∫

2B

ϕdν =
∫

Ω

|Xv|q−2Xv ·Xϕdx

�

⎛
⎝
∫

2B

|Xv|qdx
⎞
⎠

q−1
q
⎛
⎝
∫

2B

|Xϕ|qdx
⎞
⎠

1
q

� [c ν(K)]
q−1

q

⎛
⎝
∫

2B

|Xϕ|qdx
⎞
⎠

1
q

.

Thus, minimizing over such functions ϕ, we obtain

ν(K) � cq−1 capq(K, 2B).

The latter inequality and (2.12) give

capq((R
n \Ω) ∩B, 2B) � capq(K, 2B) � C ν(K) = CRp−qμ(K)

= CRp−qcapp(K, 2B) � CRp−qcapp(B, 2B)

� CR−q|B| � C capq(B, 2B)

by (3.3) and the uniform (X, p)-fatness of K. This proves that R
n \ Ω is

uniformly (X, q)-fat, thus completing the proof of the theorem. 
�
In what follows, given f ∈ L1

loc(R
n), we denote by MR, 0 < R < ∞, the

truncated centered Hardy–Littlewood maximal function of f defined by

MR(f)(x) = sup
0<r�R

1
|B(x, r)|

∫

B(x,r)

|f(y)|dy, x ∈ R
n.

We note explicitly that if R1 < R2, then MR1(f)(x) �MR2(f)(x). The
first consequence of the self-improvement property of uniformly (X, p)-fat
set is the following pointwise Hardy inequality which generalizes a result
originally found by Haj�lasz [25] in the Euclidean setting.

Theorem 3.4. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n \ Ω is uniformly (X, p)-fat with constants c0 and

r0, where 0 < r0 � R0/100 is as in Theorem 3.3. There exist 1 < q < p and
a constant C > 0, both depending on C0 and p, such that the inequality

|u(x)| � Cδ(x)
(
M4δ(x)(|∇u|q)(x)

) 1
q

(3.13)
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holds for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

Proof. For x ∈ Ω with δ(x) < r0 we let B = B(x, δ(x)), where x ∈ ∂Ω is
chosen so that |x − x| = δ(x). By the fatness assumption and Theorem 3.3,
there exists 1 < q < p such that

cap1, q(B ∩ (Rn \Ω), 2B) � C|B|δ(x)−q .

Thus, by Lemma 3.1 above and Theorem 1.1 in [6],

u(x) � |u(x) − uB|+ |uB| (3.14)

� C
∫

2B

|Xu(y)| d(x, y)
|B(x, d(x, y))|dy + C

(
∫

2B

|Xu|qdx
|B|δ(x)−q

) 1
q

.

Note that by the doubling property (2.8),
∫

2B

|Xu(y)| d(x, y)
|B(x, d(x, y))|dy (3.15)

�
∫

B(x,4δ(x))

|Xu(y)| d(x, y)
|B(x, d(x, y))|dy

=
∞∑
k=0

∫

B(x,2−k4δ(x))\B(x,2−k−14δ(x))

|Xu(y)| d(x, y)
|B(x, d(x, y))|dy

� C
∞∑
k=0

2−k4δ(x)
|B(x, 2−k4δ(x))|

∫

B(x,2−k4δ(x))

|Xu(y)|dy

� Cδ(x)M4δ(x)(|Xu|)(x).

Also,

(
∫

2B

|Xu|qdx
|B|δ(x)−q

) 1
q � Cδ(x)

(
∫

B(x,4δ(x))

|Xu|qdx

|B(x, 4δ(x))|
) 1

q

(3.16)

� Cδ(x)
(
M4δ(x)(|Xu|q)(x)

) 1
q

.

From (3.14), (3.15), (3.16) and the Hölder inequality we now obtain

u(x) � Cδ(x)
(
M4δ(x)(|Xu|q)(x)

) 1
q

,

which completes the proof of the theorem. 
�
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As it turns out, the pointwise Hardy inequality (3.13) is in fact equivalent
to certain geometric conditions on the boundary of Ω that can be measured
in terms of a Hausdorff content. We introduce the relevant definition.

Definition 3.5. Let s ∈ R, r > 0 and E ⊂ R
n. The (X, s, r)-Hausdorff

content of E is the number

H̃sr(E) = inf
∑
j

rsj |Bj |,

where the infimum is taken over all coverings of E by balls Bj = B(xj , rj)
such that xj ∈ E and rj � r.

We next follow the idea in [37] to prove the following important conse-
quence of the pointwise Hardy inequality (3.13).

Theorem 3.6. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 � R0/100, q > 0, and a constant C > 0
such that the inequality

|u(x)| � Cδ(x)
(
M4δ(x)(|∇u|q)(x)

) 1
q

(3.17)

holds for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

There exists C1 > 0 such that the inequality

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) � C1δ(x)−q |B(x, δ(x))| (3.18)

holds for all x ∈ Ω with δ(x) < r0.

Proof. We argue by contradiction and suppose that (3.18) fails. We can thus
find a sequence {xk}∞k=1 ⊂ Ω with δ(xk) < r0 such that

H̃−q
δ(x)/4(B(xk, 5δ(xk)) ∩ ∂Ω) < k−1δ(xk)−q|B(xk, δ(xk))|.

Here, we used the fact that, by the continuity of the distance function δ
and the doubling property (2.8), the inequality (3.18), which holds for all
x ∈ Ω with δ(x) < r0, is equivalent to the validity of

H̃−q
δ(x)/4(B(x, 5δ(x)) ∩ ∂Ω) � C2δ(x)−q |B(x, δ(x))|

for all x ∈ Ω with δ(x) < r0 and for a constant C2 > 0. By com-
pactness, we can now find a finite covering {Bi}Ni=1, Bi = B(zi, ri) with
zi ∈ B(xk, 5δ(xk)) ∩ ∂Ω and 0 < ri < δ(xk)/4, such that

B(xk, 5δ(xk)) ∩ ∂Ω ⊂
N⋃
i=1

Bi (3.19)
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and
N∑
i=1

r−qi |Bi| < k−1δ(xk)−q|B(xk, δ(xk))|. (3.20)

Next, for each k ∈ N we define a function ϕk by

ϕk(x) = min{1, min
1�i�N

r−1
i dist(x, 2Bi)}

and let ϕk ∈ C0,1
d (B(xk, 5δ(xk))) be such that 0 � ϕk � 1 and ϕk ≡ 1 on

B(xk, 4δ(xk)). Clearly, the function uk = ϕkϕk belongs to C0,1
d (Ω) and, in

view of (3.19), it has compact support. Moreover, uk(xk) = 1 since from the
fact that zi ∈ ∂Ω we have

d(xk, zi) � δ(xk) > 4ri (3.21)

for all 1 � i � N . Also, since ϕk(x) = 1 for x �∈
N⋃
i=1

3Bi and ϕk(x) = 0 for

x ∈
N⋃
i=1

2Bi, it is easy to see that

supp (|Xuk|) ∩B(xk, 4δ(xk)) ⊂
N⋃
i=1

(3Bi \ 2Bi)

and that for a.e. y ∈ B(xk, 4δ(xk)) we have

|Xuk(y)|q �
N∑
i=1

r−qi χ3Bi\2Bi
(y). (3.22)

Hence, using (3.21) and (3.22), we can calculate

M4δ(xk)(|Xuk|q)(xk)

� C sup
1
4 δ(xk)�r�4δ(xk)

1
|B(xk, r)|

∫

B(xk,r)

|Xuk(y)|qdy

� C 1
|B(xk, δ(xk))|

∫

B(xk,4δ(xk))

|Xuk(y)|qdy

� C 1
|B(xk, δ(xk))|

N∑
i=1

|3Bi \ 2Bi|r−qi
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� C 1
|B(xk, δ(xk))|

N∑
i=1

|Bi|r−qi . (3.23)

From (3.20) and (3.23) we obtain

δ(xk)qM4δ(xk)(|Xuk|q)(xk) � Ck−1.

Since uk = 1 for any k, this implies that the pointwise Hardy inequality (3.17)
fails to hold with a uniform constant for all compactly supported u ∈ C0,1

d (Ω).
This contradiction completes the proof of the theorem. 
�

As in [37], from (3.18) we can also obtain the following thickness condition
on R

n \Ω.

Theorem 3.7. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 � R0/100, q > 0, and a constant C > 0
such that the inequality

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) � Cδ(x)−q |B(x, δ(x))| (3.24)

holds for all x ∈ Ω with δ(x) < r0. Then there exists C1 > 0 such that

H̃−q
r (B(w, r) ∩ (Rn \Ω)) � C1r

−q|B(w, r)| (3.25)

for all w ∈ ∂Ω and 0 < r < r0.

Proof. Let w ∈ ∂Ω and 0 < r < r0. If

|B(w, r2 ) ∩ (Rn \Ω)| � 1
2 |B(w, r2 )|,

then it is easy to see that (3.25) holds with C1 = 2−QC0/2. Thus, we may
assume that

|B(w, r2 ) ∩Ω| � 1
2 |B(w, r2 )|,

which, by (2.8), gives

|B(w, r2 ) ∩Ω| � 2−QC0 |B(w, r)|/2. (3.26)

Now, to prove (3.25), it is enough to show that

H̃−q
r (B(w, r) ∩ ∂Ω) � C1r

−q |B(w, r)|. (3.27)

To this end, let {Bi}∞i=1, Bi = B(zi, ri) with zi ∈ ∂Ω and 0 < ri � r be a
covering of B(w, r) ∩ ∂Ω. Then if

∑
i

|Bi| � (2−QC0)2|B(w, r)|/4,
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it follows that (3.27) holds with C1 = 1
4 (2−QC0)2. Hence we are left with

considering only the case
∑
i

|Bi| < (2−QC0)2|B(w, r)|/4. (3.28)

Using (2.8), (3.26), and (3.28), we can now estimate

|(B(w, r2 ) ∩Ω) \
⋃
i

2Bi| � |B(w, r2 ) ∩Ω| − 2QC−1
0

∑
i

|Bi|

� 2−QC0|B(w, r)|/2 − 2−QC0|B(w, r)|/4
= 2−QC0|B(w, r)|/4.

Thus, by a covering lemma (see [52, p. 9]), we can find a sequence of
pairwise disjoint balls B(xk, 6δ(xk)) with xk ∈ (B(w, r2 ) ∩ Ω) \ ⋃

i

2Bi such

that

|B(w, r)| � C|(B(w, r2 ) ∩Ω) \
⋃
i

2Bi| � C
∑
k

|B(xk, 30δ(xk))|.

This, together with (2.8) and (3.24), gives

|B(w, r)|r−q � C
∑
k

|B(xk, δ(xk))|δ(xk)−q (3.29)

� C
∑
k

H̃−q
δ(xk)(B(xk, 2δ(xk)) ∩ ∂Ω)

since δ(xk) < r
2 for all k.

We next observe that we can further assume that

δ(x) < r
4 for all x ∈ B(w, r2 ) ∩Ω. (3.30)

In fact, if there exits x ∈ B(w, r2 ) ∩ Ω such that δ(x) � r
4 , then there

exists x0 ∈ B(w, r2 ) ∩ Ω such that δ(x0) = r
4 by the continuity of δ. Thus,

B(x0, 2δ(x0)) ⊂ B(w, r) and, in view of the assumption (3.24), we obtain

H̃−q
r (B(w, r) ∩ ∂Ω) � CH̃−q

δ(x0)(B(x0, 2δ(x0) ∩ ∂Ω))

� Cδ(x0)−q|B(x0, δ(x0))| � Cr−q|B(w, r)| ,

which gives (3.27). Now, the inequality (3.30), in particular, implies that

B(xk, 2δ(xk)) ∩ ∂Ω ⊂ B(w, r) ∩ ∂Ω ⊂
⋃
i

Bi,

and hence for every k one has
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H̃−q
2δ(xk)(B(xk, 2δ(xk) ∩ ∂Ω)) �

∑
{i∈N|Bi∩B(xk,2δ(xk)) 
=∅}

|Bi|r−qi . (3.31)

Here, we used the fact that ri < 2δ(xk) since xk �∈ 2Bi. From (3.29) and
(3.31), after changing the order of summation, we obtain

|B(w, r)|r−q � C
∑
i

∑
{k∈N|Bi∩B(xk,2δ(xk)) 
=∅}

|Bi|r−qi (3.32)

� C
∑
i

C(i)|Bi|r−qi ,

where C(i) is the number of balls B(xk, 2δ(xk)) that intersect Bi. Note
that if Bi ∩ B(xk, 2δ(xk)) �= ∅, then, since ri < 2δ(xk), we see that
Bi ⊂ B(xk, 6δ(xk)). Hence C(i) � 1 for all i since, by our choice, the balls
B(xk, 6δ(xk)) are pairwise disjoint. This and (3.32) give

|B(w, r)|r−q � C
∑
i

|Bi|r−qi ,

and the inequality (3.27) follows as the coverings {Bi}i of B(w, r) ∩ ∂Ω are
arbitrary. This completes the proof of the theorem. 
�

The thickness condition (3.25) that involves the Hausdorff content will
now be shown to imply the uniform (X, p)-fatness of R

n \Ω. To achieve this
we borrow an idea from [29].

Theorem 3.8. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 � R0/100, 1 < q < p, and a constant
C > 0 such that the inequality

H̃−q
r (B(w, r) ∩ (Rn \Ω)) � Cr−q|B(w, r)| (3.33)

holds for all w ∈ ∂Ω and 0 < r < r0. Then there exists C1 > 0 such that the
R
n \Ω is uniformly (X, p)-fat with constants C1 and r0.

Proof. Let z ∈ ∂Ω, and let 0 < r < r0. We need to find a constant C1 > 0
independent of z and r such that

capp(K,B(z, 2r)) � C1r
−p|B(z, r)|, (3.34)

where K = (Rn \Ω) ∩B(z, r). From (3.33) we have

H̃−q
r (K) � Cr−q|B(z, r)|. (3.35)

Let ϕ ∈ C∞
0 (B(z, 2r)) be such that ϕ � 1 on K. If there is x0 ∈ K such

that
|ϕ(x0)− ϕB(x0,4r)| � 1/2,
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then

1 � ϕ(x0) � |ϕ(x0)− ϕB(x0,4r)|+ |ϕB(x0,4r)| � 1/2 + |ϕB(x0,4r)|.

By Lemma 3.1, the doubling property (2.8), and (2.12), we obtain

1/2 � |ϕB(x0,4r)| � C
(
rp|B(z, r)|−1

∫

B(z,2r)

|Xϕ|pdx
) 1

p

,

which gives (3.34). Thus, we may assume that

1/2 < |ϕ(x) − ϕB(x,4r)| for all x ∈ K.

Under such an assumption, using the covering argument in Theorem 5.9
in [29], the inequality (3.34) follows from (3.35) and Theorem 2.1. 
�

Finally, we summarize in one single theorem the results obtained in The-
orems 3.4, 3.6, 3.7, and 3.8.

Theorem 3.9. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0 and let 1 < p < ∞. There exists 0 < r0 � R0/100 such that the
following statements are equivalent:

(i) The set R
n \ Ω is uniformly (X, p)-fat with constants c0 and r0 for

some c0 > 0, i.e.,

capp((R
n \Ω) ∩B(w, r), B(w, 2r)) � c0r−p|B(w, r)|

for all w ∈ ∂Ω and 0 < r < r0.

(ii) There exists 1 < q < p and a constant C > 0 such that

|u(x)| � Cδ(x)
(
M4δ(x)(|∇u|q)(x)

) 1
q

for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

(iii) There exists 1 < q < p and a constant C > 0 such that

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) � Cδ(x)−q |B(x, δ(x))|

for all x ∈ Ω with δ(x) < r0.

(iv) There exists 1 < q < p and a constant C > 0 such that

H̃−q
r (B(w, r) ∩ (Rn \Ω)) � Cr−q|B(w, r)|

for all w ∈ ∂Ω and 0 < r < r0.
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Remark 3.10. As an example in [37] shows, we cannot replace the set R
n\Ω

in statement (iv) in Theorem 3.9 with the smaller set ∂Ω.

4 Hardy Inequalities on Bounded Domains

Our first result in this section is the following Hardy inequality which is a
consequence of Theorem 3.4 and the Ls boundedness of the Hardy–Littlewood
maximal function for s > 1. We remark that no assumption on the smallness
of the diameter of the domain is required, as opposed to the Poicaré inequality
(2.11) and Sobolev inequalities established in [23].

Theorem 4.1. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n\Ω is uniformly (X, p)-fat with constants c0 > 0 and

0 < r0 � R0/100. There is a constant C > 0 such that for all ϕ ∈ C∞
0 (Ω)

∫

Ω

|ϕ(x)|p
δ(x)p

dx � C

∫

Ω

|Xϕ|p dx. (4.1)

Proof. Let Ωr0 = {x ∈ Ω : δ(x) � r0}, and let ϕ ∈ C∞
0 (Ω). By Theorem 3.4,

we can find 1 < q < p such that
∫

Ω

|ϕ(x)|pδ(x)−pdx =
∫

Ωr0

|ϕ(x)|pδ(x)−pdx+
∫

Ω\Ωr0

|ϕ(x)|pδ(x)−pdx

� r−p0

∫

Ω

|ϕ(x)|pdx+ C
∫

Ω

(
M4r0(|Xϕ|q)(x)

) p
q

dx

� C
∫

Ω

|Xϕ(x)|pdx.

In the last inequality above, we used the Poincaré inequality (2.10) and
the boundedness property of M4r0 on Ls(Ω), s > 1 (see [52]). The proof of
Theorem 4.1 is then complete. 
�

To state Theorems 4.3 and 4.5 below, we need to fix a Whitney decompo-
sition of Ω into balls as in the following lemma, whose construction can be
found, for example, in [33] or [18].

Lemma 4.2. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. There exists a family of balls W = {Bj} with Bj = B(xj , rj) and a
constant M > 0 such that
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(a) Ω ⊂ ∪jBj ,
(b) B(xj ,

rj

4 ) ∩B(xk, rk

4 ) �= ∅ for j �= k,
(c) rj = 10−3 min{R0/diam(Ω), 1}dist(Bj , ∂Ω),

(d)
∑
j

χ4Bj (x) �MχΩ(x).

In (c),
diam(Ω) = sup

x,y∈Ω
d(x, y)

is the diameter of Ω with respect to the CC metric. In particular, we have
rj � 10−3R0.

We can now go further in characterizing weight functions V on Ω for which
the embedding ∫

Ω

|ϕ(x)|p V (x)dx � C
∫

Ω

|Xϕ|pdx

holds for all ϕ ∈ C∞
0 (Ω). Here, the condition on V is formulated in terms of

a localized capacitary condition adapted to a Whitney decomposition of Ω.
Such a condition can be simplified further in the setting of Carnot groups as
we point out in Remark 4.4 below. In the Euclidean setting, it was used in
[26] to characterize the solvability of multi-dimensional Riccati equations on
bounded domains.

Theorem 4.3. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Let V � 0 be in L1
loc(Ω). Suppose that R

n \Ω is uniformly (X, p)-fat
with 1 < p < Q. Then the embedding

∫

Ω

|ϕ(x)|p V (x)dx � C
∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (4.2)

holds if and only if

sup
B∈W

sup
K⊂2B

K compact

∫

K

V (x)dx

′⋂
limitsp(K,Ω)

� C, (4.3)

where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2.

Remark 4.4. In the setting of a Carnot group G with homogeneous dimen-
sion Q, we can replace capp(K,Ω) by capp(K,G) in (4.3) since, if B ∈ W
and K is a compact set in 2B, we have

c capp(K,Ω) � capp(K,G) � capp(K,Ω). (4.4)
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The second inequality in (4.4) is obvious. To see the first one, let ϕ ∈ C∞
0 (G),

ϕ � 1 on K, and choose a cut-off function η ∈ C∞
0 (4B) such that 0 � η � 1,

η ≡ 1 on 2B and |Xη| � C
rB

, where rB is the radius of B. Since ϕη ∈ C∞
0 (Ω),

ϕη � 1 on K, we have

capp(K,Ω) �
∫

Ω

|X(ϕη)|pdg

�
∫

G

|Xϕ|pdg + C
∫

4B\2B

|ϕ|p
rpB
dg

�
∫

G

|Xϕ|pdg + C
∫

G

|ϕ|p
ρ(g, g0)p

dg,

where g0 is the center of B, and we denoted by ρ(g, g0) the pseudo-distance
induced on G by the anisotropic Folland–Stein gauge (see [18, 20]). To bound
the third integral on the right-hand side of the latter inequality, we use the
following Hardy type inequality:

∫

G

ϕp

ρ(g, g0)p
dg � C

∫

G

|Xϕ|p dg, ϕ ∈ C∞
0 (G), (4.5)

which is easily proved as follows. Recall the Folland-Stein Sobolev embedding
(see [20])

⎛
⎝
∫

G

|ϕ| pQ
Q−p dg

⎞
⎠

Q−p
pQ

� Sp

⎛
⎝
∫

G

|Xϕ|p dg
⎞
⎠

1
p

, ϕ ∈ C∞
0 (G). (4.6)

Observing that for every g0 ∈ G one has g → 1
ρ(g, g0)p

∈ LQ/p,∞(G), from

the generalized Hölder inequality for weak Lp spaces due to Hunt [32] one
obtains with an absolute constant B > 0

∫

G

ϕp

ρ(g, g0)p
dg � B

⎛
⎝
∫

G

|ϕ| pQ
Q−p dg

⎞
⎠

Q−p
Q

||ρ(·, g0)−p||LQ/p,∞(G)

� C

∫

G

|Xϕ|p dg,

where in the last inequality we used (4.6). This proves (4.5). In conclusion,
we find

capp(K,Ω) � C
∫

G

|Xϕ|pdg,
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which gives the first inequality in (4.4).

Proof of Theorem 4.3. That the emdedding (4.2) implies the capacitary con-
dition (4.3) is clear. To prove the converse, let {ϕj} be a Lipschitz partition
of unity associated with the Whitney decomposition W = {Bj} (see [24]),
i.e., 0 � ϕj � 1 is Lipschitz with respect to the CC metric, supp ϕj � 2Bj ,
|Xϕj | � C/diam(Bj), and

∑
j

ϕj(x) = χΩ(x).

Moreover, by property (d) in Lemma 4.2, there is a constant C(p) such that
⎛
⎝∑

j

ϕj(x)

⎞
⎠
p

= C(p)
∑
j

ϕj(x)p.

Then for any ϕ ∈ C∞
0 (Ω) we have

∫

Ω

|ϕ(x)|p V (x)dx � C
∑
j

∫

Ω

|ϕjϕ(x)|p V (x)dx

� C
∑
j

∫

4Bj

|X(ϕjϕ)|pdx

by (4.3) and [13, Theorem 5.3]. Thus, from Theorem 4.1 and Lemma 4.2 we
obtain ∫

Ω

|ϕ(x)|p V (x)dx

� C
∑
j

∫

4Bj

|Xϕ|pdx+ C
∑
j

[diam(Bj)]−p
∫

4Bj

|ϕ|pdx

� C
∫

Ω

|Xϕ|pdx+ C
∫

Ω

|ϕ|pδ−p(x)dx

� C
∫

Ω

|Xϕ|pdx.

This completes the proof of the theorem. 
�
In view of [13, Theorem 1.6], the above proof also gives the following

Fefferman–Phong type sufficiency result [17].

Theorem 4.5. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Let V � 0 be in L1
loc(Ω). Suppose that R

n \Ω is uniformly (X, p)-fat
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with 1 < p < Q. Then the embedding
∫

Ω

|ϕ(x)|p V (x)dx � C
∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (4.7)

holds if for some s > 1, V satisfies the following localized Fefferman–Phong
type condition adapted to Ω:

sup
B∈W

sup
x∈2B

0<r<diam(B)

∫

B(x,r)

V (y)sdy � C
|B(x, r)|
rsp

(4.8)

where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2.

Let Ls,∞(Ω), 0 < s <∞, denote the weak Ls space on Ω, i.e.,

Ls,∞(Ω) =
{
f : ‖f‖Ls,∞(Ω) <∞

}
,

where
‖f‖Ls,∞(Ω) = sup

t>0
t |{x ∈ Ω : |f(x)| > t}| 1s .

Equivalently, one can take

‖f‖Ls,∞(Ω) = sup
E⊂Ω: |E|>0

|E| 1s− 1
r

⎛
⎝
∫

E

|f |rdx
⎞
⎠

1
r

for any 0 < r < s. For s =∞ we define

L∞,∞(Ω) = L∞(Ω).

From Theorem 4.8 we obtain the following corollary, which improves a
similar result in [16, Remark 3.7] in the sense that not only does it cover the
subelliptic case, but also require a milder assumption on the boundary.

Corollary 4.6. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n \Ω is uniformly (X, p)-fat for 1 < p < Q, where Q

is the homogeneous dimension of Ω. If v ∈ LQ
γ ,∞(Ω) for some 0 � γ � p,

then the embedding (4.7) holds for the weight V (x) = δ(x)−p+γv(x).

Proof. Let W = {Bj} is a Whitney decompositon of Ω as in Lemma 4.2. For
x ∈ 2B, B ∈ W , 0 < r < diam(B), and 1 < s < Q

γ we have

∫

B(x,r)

V (y)sdy � Cr−sp+sγ
∫

B(x,r)

v(y)sdy.
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It is then easily seen from the Hölder inequality and the doubling property
(2.8) that

∫

B(x,r)

V (y)sdy � Cr−sp|B(x, r)| ‖v‖s
L

Q
γ

,∞
(Ω)

(
r

|B(x, r)| 1Q

)sγ

� Cr−sp|B(x, r)| ‖v‖
L

Q
γ

,∞
(Ω)
.

By Theorem 4.5, we obtain the corollary. 
�
The results obtained in Corollary 4.6 do not in general cover the case in

which v(x) has a point singularity in Ω, such as V (x) = δ(x)−p+γd(x, x0)−γ ,
with 0 � γ � p and 1 < p < Q(x0) for some x0 ∈ Ω, where Q(x0) is
the homogeneous dimension at x0. The reason is that it may happen that
Q(x0) < Q and hence d(·, x0)−γ �∈ LQ

γ ,∞(Ω). However, by the upper estimate
in (2.5), we still can obtain the inequality (4.7) for such weights as follows.

Corollary 4.7. Let Ω ⊂ R
n be a bounded domain with local parameters

C0 and R0. Given x0 ∈ Ω, suppose that R
n \ Ω is uniformly (X, p)-fat for

1 < p < Q(x0). Then for any 0 � γ � p the embedding (4.7) holds for the
weight

V (x) = δ(x)−p+γd(x, x0)−γ .

Proof. Let W = {Bj} be a Whitney decomposition of Ω as in Lemma 4.2.
For x ∈ 2B, B ∈ W , 0 < r < diam(B), and 1 < s < Q(x0)

γ we have

∫

B(x,r)

V (y)sdy � C r−sp+sγ
∫

B(x,r)

d(y, x0)−γsdy. (4.9)

Thus, if x �∈ B(x0, 2r), then
∫

B(x,r)

V (y)sdy � C |B(x, r)|
rsp

since for such x we have d(y, x0) � r for every y ∈ B(x, r). On the other
hand, if x ∈ B(x0, 2r) then from (4.9) we find

∫

B(x,r)

V (y)sdy � C rsγ−sp
∫

B(x0,3r)

d(y, x0)−γsdy

= C rsγ−sp
∞∑
k=0

∫
3r

2k+1 �d(y,x0)<
3r

2k

d(y, x0)−γsdy
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�C rsγ−sp
∞∑
k=0

( r
2k
)−γs ∣∣B(x0, 3r

2k )
∣∣ .

Thus, in view of (2.5) and the doubling property (2.8), we obtain

∫

B(x,r)

V (y)sdy � C rsγ−sp
∞∑
k=0

( r
2k
)−γs( 1

2k
)Q(x0)

|B(x0, 3r)|

� C |B(x0, 3r)|
rsp

∞∑
k=0

( 1
2k
)Q(x0)−γs

� C(x0)
|B(x, r)|
rsp

.

Thus, by Theorem 4.5, we obtain the corollary. 
�

Remark 4.8. If we have γ = p in Corollary 4.7, then we do not need to
assume R

n \ Ω to be uniformly (X, p)-fat. In fact, to obtain the embedding
(4.7) in this case, we use [13, Theorem 1.6], the Poincaré inequality (2.10),
and a finite partition of unity for Ω.

5 Hardy Inequalities with Sharp Constants

In this section, we collect, without proofs, for illustrative purposes some the-
orems from the forthcoming article [15]. The relevant results pertain certain
Hardy–Sobolev inequalities on bounded and unbounded domains with a point
singularity which are included in them.

We begin by recalling that when X = {X1, . . . , Xm} constitutes an or-
thonormal basis of bracket generating vector fields in a Carnot group G,
then a fundamental solution Γp for −Lp in all of G was constructed in [14].
For any bounded open set Ω ⊂ R

n one can construct a positive fundamental
solution with generalized zero boundary values, i.e., a Green function, in the
more general situation of a Carnot–Carathéodory space. Henceforth, for a
fixed x ∈ Ω we denote by Γp(x, ·) such a fundamental solution with singular-
ity at some fixed x ∈ Ω. This means that Γp(x, ·) satisfies the equation

∫

Ω

|XΓp(x, y)|p−2 < XΓp(x, y), Xϕ(y) > dy = ϕ(x) (5.1)

for every ϕ ∈ C∞
0 (Ω).

We recall the following fundamental estimate, which is Theorem 7.2 in [5].
Let K ⊂ Ω ⊂ R

n be a compact set with local parameters C0 and R0. Given
x ∈ K, and 1 < p < Q(x), there exists a positive constant C depending on
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C0 and p such that for any 0 < r � R0/2, and y ∈ B(x, r) one has

C

(
d(x, y)p

Λ(x, d(x, y))

) 1
p−1

� Γp(x, y) � C−1

(
d(x, y)p

Λ(x, d(x, y))

) 1
p−1

. (5.2)

The estimate (5.2) generalizes that obtained by Nagel, Stein, and Wainger
[44] and independently by Sanchez-Calle [48] in the case p = 2.

For any given x ∈ K we fix a number p = p(x) such that 1 < p < Q(x)
and introduce the function

E(x, r)
def
=
(
Λ(x, r)
rp

) 1
p−1

. (5.3)

Because of the constraint imposed on p = p(x), we see that for every fixed
x ∈ K the function r → E(x, r) is strictly increasing, and thereby invertible.
We denote by F (x, ·) = E(x, ·)−1, the inverse function of E(x, ·), so that

F (x,E(x, r)) = E(x, F (x, r)) = r.

We now define for every x ∈ K

ρx(y) = F

(
x,

1
Γ (x, y)

)
. (5.4)

We emphasize that, in a Carnot group G, one has for every x ∈ G, Q(x) ≡
Q the homogeneous dimension of the group, and therefore the Nagel–Stein–
Wainger polynomial is, in fact, just a monomial, i.e., Λ(x, r) ≡ C(G)rQ. It
follows that there exists a constant ω(G) > 0 such that

E(x, r) ≡ ω(G) r(Q−p)/(p−1). (5.5)

Using the function E(x, r) in (5.3), it should be clear that we can recast
the estimate (5.2) in the following more suggestive form:

C

E(x, d(x, y))
� Γp(x, y) � C−1

E(x, d(x, y))
. (5.6)

As a consequence of (5.6) and (5.4), we obtain the following estimate: there
exist positive constants C and R0 depending on X1, . . . , Xm and K such that
for every x ∈ K and every 0 < r � R0 one has for y ∈ B(x, r)

C d(x, y) � ρx(y) � C−1 d(x, y). (5.7)

We can thus think of the function ρx as a regularized pseudo-distance
adapted to the nonlinear operator Lp. We denote by

BX(x, r) = {y ∈ R
n | ρx(y) < r},
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the ball centered at x with radius r with respect to the pseudo-distance ρx.
Because of (5.7), it is clear that

B(x,Cr) ⊂ BX(x, r) ⊂ B(x,C−1r).

Our main assumption is that for any p > 1 the fundamental solution of
the operator Lp satisfy the following

Hypothesis. For any compact set K ⊂ Ω ⊂ R
n there exist C > 0

and R0 > 0 depending on K and X1, . . . , Xm such that for every x ∈ Ω,
0 < R < R0 for which BX(x, 4R) ⊂ Ω, and a.e. y ∈ B(x,R) \ {x} one has

|XΓp(x, y)| � C−1

(
d(x, y)

Λ(x, d(x, y))

) 1
p−1

. (5.8)

We mention explicitly that, as a consequence of the results in [44] and [48],
the assumption (5.8) is fulfilled when p = 2. For p �= 2 it is also satisfied in
any Carnot group of Heisenberg type G. This follows from the results in [5],
where for every 1 < p < ∞ the following explicit fundamental solution of
−Lp was found:

−Γp(g) =

⎧⎪⎪⎨
⎪⎪⎩

p−1
Q−pσ

− 1
p−1

p N(g)−
Q−p
p−1 , p �= Q,

σ
− 1

Q−1
Q logN(g), p = Q,

(5.9)

where we denoted by N(g) = (|x(g)|4 + 16|y(g)|2)
1
4 the Kaplan gauge on G

(see [34]), and we set σp = Qωp with

ωp =
∫

{g∈G|N(g)<1}

|XN(g)|p dg.

We note that the case p = 2 of (5.9) was first discovered by Folland [19] for
the Heisenberg group and subsequently generalized by Kaplan [34] to groups
of Heisenberg type. The conformal case p = Q was also found in [28].

We stress that the hypothesis (5.8) is not the weakest one that could be
made, and that to the expenses of additional technicalities, we could have
chosen substantially weaker hypothesis.

We now recall the classical one-dimensional Hardy inequality [27]: let 1 <

p <∞, u(t) � 0, and ϕ(t) =

t∫

0

u(s)ds. Then

∞∫

0

(
ϕ(t)
t

)p
dt �

(
p

p− 1

)p ∞∫

0

ϕ′(t)pdt.
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Here is our main result.

Theorem 5.1. Given a compact set K ⊂ Ω ⊂ R
n, let x ∈ K and 1 <

p < Q(x). For any 0 < R < R0 such that BX(x, 4R) ⊂ Ω one has for
ϕ ∈ S1,p

0 (BX(x,R))

∫

BX (x,R)

|ϕ|p
{
E′(x, ρx)
E(x, ρx)

}p
|Xρx|p dy �

(
p

p− 1

)p ∫

BX(x,R)

|Xϕ|p dy.

When Λ(x, r) is a monomial (thus, for example, in the case of a Carnot group)
the constant on the right-hand side of the above inequality is best possible.

We do not present here the proof of Theorem 5.1, but refer the reader to the
forthcoming article [15]. Some comments are in order. First of all, concerning
the factor |Xρx|p on the left-hand side of the inequality in Theorem 5.1, we
emphasize that the hypothesis (5.8) implies that Xρx ∈ L∞loc. Secondly, as is
shown in [15], one has

(
Q(x)− p
p− 1

)p 1
ρpx

�
{
E′(x, ρx)
E(x, ρx)

}p
�
(
Q− p
p− 1

)p 1
ρpx
. (5.10)

As a consequence of Theorem 5.1 and (5.10) we thus obtain the following

Corollary 5.2. Under the same assumptions of Theorem 5.1, one has for
ϕ ∈ S1,p

0 (BX(x,R))

∫

BX (x,R)

|ϕ|p
ρpx
|Xρx|p dy �

(
p

Q(x)− p
)p ∫

BX (x,R)

|Xϕ|p dy. (5.11)

Thirdly, it is worth observing that, with the optimal constants, neither
Theorem 5.1 nor Corollary 5.2 can be obtained from Corollary 4.7.

We mention in closing that for the Heisenberg group Hn with p = 2 Corol-
lary 5.2 was first proved in [22]. The inequality (5.11) was extended to the
nonlinear case p �= 2 in [45]. For Carnot groups of Heisenberg type and also for
some operators of Baouendi–Grushin type the inequality (5.11) was obtained
in [11]. In the case p = 2, various weighted Hardy inequalities with optimal
constants in groups of Heisenberg type were also independently established in
[36]. An interesting generalization of the results in [45], along with an exten-
sion to nilpotent Lie groups with polynomial growth, was recently obtained
in [39]. In this latter setting, an interesting form of the uncertainty principle
connected to the case p = 2 of the Hardy type inequality (5.11) was estab-
lished in [10]. These latter two references are not concerned however with the
problem of finding the sharp constants.
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Sobolev Embeddings and Hardy
Operators

David E. Edmunds and W. Desmond Evans

Abstract Generalized ridged domains (GRD) are defined and examples of
domains with irregular (even fractal) boundaries are given. Embedding prob-
lems on GRD are reduced to analogous problems on the generalized ridge (a
tree in general). The latter problems involve Hardy type operators on trees
with weights depending on geometric properties of the original GRD. Ap-
proximation and other singular numbers of Hardy type operators, including
global bounds and asymptotic limits, are discussed.

1 Introduction

An important quantity in the study of properties of the embedding E :
W 1
p (Ω)→ Lp(Ω) is the measure of noncompactness

α(E) := inf{‖E − P‖ : P ∈ F(W 1
p (Ω), Lp(Ω))}, (1.1)

where F(W 1
p (Ω), Lp(Ω)) denotes the set of bounded linear maps of finite

rank from the Sobolev space W 1
p (Ω) defined on a connected open subset Ω

of R
n into Lp(Ω). We take the norm on W 1

p (Ω), 1 � p <∞, to be

‖f‖1,p,Ω :=
(
‖∇f‖pp,Ω + ‖f‖pp,Ω

)1/p

,
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where ‖ · ‖p,Ω is the standard Lp(Ω) norm and

‖∇f‖pp,Ω =
∫

Ω

n∑
j=1

|(∂/∂xj)f |pdx.

It follows that 0 � α(E) � 1 and clearly α(E) = 0 if and only if E is
compact. Furthermore, 0 � α(E) < 1 if and only if Ω is of finite volume |Ω|
and the Poincaré inequality holds, namely, there exists a positive constant K
(depending on Ω) such that for all f ∈W 1

p (Ω)

‖f − fΩ‖p,Ω � K‖∇f‖p,Ω, (1.2)

where fΩ is the integral mean

fΩ :=
1
|Ω|
∫

Ω

f(x)dx. (1.3)

The case p = 2 of this result was proved in [3], and the general case in [17]. In
[17], a class of domains (connected open sets) Ω called generalized ridged do-
mains (GRDs) was introduced for which manageable criteria could be given
to distinguish between the three cases α(E) = 0, 0 � α(E) < 1, α(E) = 1.
The definition is motivated by natural properties of general domains, and the
class includes a wide array of domains with irregular (even fractal) bound-
aries. A characteristic feature of GRDs is the so-called generalized ridge, a
Lipschitz curve which, roughly speaking, is an axis of symmetry of the do-
main. The technique developed in [17] for GRDs is to equate the problem
for α(E) with an analogous one on the generalized ridge. The generalized
ridge is a crude approximation of the central axis or skeleton of the domain,
but whereas, for domains with irregular boundaries, the latter is usually a
complex array of curves, the generalized ridge can often be selected to be rel-
atively easy to handle. It is this which makes GRDs so amenable to detailed
investigation.

In general, the generalized ridges will be trees, and before formally defining
the GRDs, it is necessary to prepare by studying the background analysis and,
in particular, Hardy operators on trees.

2 Hardy Operators on Trees

Let Γ be a tree, i.e., a connected graph without loops or cycles where the
edges are nondegenerate closed line segments whose end-points are vertices.
We assume that each vertex is of finite degree, i.e., only a finite number
of edges emanate from each vertex. For every x, y ∈ Γ there is a unique
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polygonal path in Γ which joins x and y. Its length is defined to be the
distance between x and y.

For a ∈ Γ we define t �a x (or equivalently x �a t) to mean that x ∈ Γ
lies on the path from a to t ∈ Γ ; t �a x and x ≺a t have the obvious meaning.
This is a partial ordering on Γ and the ordered graph so formed is referred
to as the tree rooted at a and denoted by Γ (a) when the root needs to be
exhibited. If a is not a vertex, we can make it one by replacing the edge on
which it lies by two. In this way, every rooted tree Γ is the unique finite union
of subtrees which meet only at a. Any connected subset of Γ is a subtree if
we adjoin its boundary points to the set of vertices, and hence form new
edges from existing ones. We shall adopt the convention of referring to all
connected subtrees as subtrees.

The path joining two points x, y ∈ Γ may be parameterized by s(t) =
dist(x, t), and for g ∈ L1,loc(Γ ) we have, with 〈x, y〉 = {t : x �a t �a y},

y∫

x

g =
∫

〈x,y〉

g(t)dt =

dist(x,y)∫

0

g[(t(s)]ds.

The space Lp(Γ ), 1 � p �∞, is defined in the natural way.
The Hardy type operator T to be considered is given by

Taf(x) := v(x)

x∫

a

u(t)f(t)dt, f ∈ Lp(Γ ), (2.1)

where Γ is rooted at a and u, v are prescribed real-valued functions defined
on Γ.

Definition 2.1. Let K be a connected subset of Γ = Γ (a) containing the
root a. Denote by ∂K the set of its boundary points. A point t ∈ ∂K is said
to be maximal if every x �a t lies in Γ \K. We denote by Ia(Γ ) (or simply
Ia when no confusion is likely) the set of all connected subsets K of Γ which
contain a and all of whose boundary points are maximal.

The main result proved in [20] (see also [9, Theorem 2.2.1]) on the bound-
edness of T in the case p � q is

Theorem 2.1. Let 1 � p � q � ∞. Suppose that for all relatively compact
K ∈ Ia(Γ )

u ∈ Lp′(K), v ∈ Lq(Γ \K), (2.2)

where p′ = p/(p− 1). Define

αK := inf{‖f‖p,Γ :

X∫

a

|u(t)f(t)|dt = 1 for all X ∈ ∂K}. (2.3)
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Then T in (2.1) is a bounded linear map from Lp(Γ ) into Lq(Γ ) if and only if

A := sup
K∈Ia

{‖vχΓ\K‖q,Γ
αK

}
<∞, (2.4)

where χ denotes the characteristic function of the set exhibited, in which case
we have

A � ‖T ‖ � 4A. (2.5)

Remark 2.1. If K in Theorem 2.1 is a single edge, say e, then αe = ‖u‖−1
p′,e.

For, by Hölder’s inequality, we have

1 �
∫

e

|f |u � ‖f‖p,Γ‖u‖p′,e

which yields αe � ‖u‖−1
p′,e. If p > 1, the reverse inequality is derived on

taking f(x) = up
′−1(x)‖u‖−p′p′,e; for the case p = 1 see [9, Theorem 2.2.1].

Consequently, if Γ is an interval [a, b), every K ∈ Ia is an interval [a, c) with
some c ∈ (a, b) and (2.4) becomes the well-known criterion

A = sup
c∈(a,b)

‖u‖p′,(a,c)‖v‖q,(c,b) <∞ (2.6)

(see [9, Sect. 2.2.8] for some historical remarks). In this case, Opic (see [29,
Comment 3.6, p. 27]) has shown that the constant 4A on the right-hand side
of (2.5) may be replaced by

(1 + q/p′)1/q(1 + p′/q)1/p
′
A,

which, when p = q ∈ (1,∞), gives the optimal constant p1/p(p′)1/p
′
A. When

1 < p < q < ∞, (a, b) = (0,∞), and u /∈ Lp′(0,∞), further improvement
was given by Manakov [27] and Read [31], who showed independently that
instead of 4A one may take

{
Γ (q/r)

Γ (1 + 1/r)Γ ((q − 1)/r)

}r/q
, r =

q

p
− 1,

where Γ denotes the gamma function. Moreover, if either p = 1 and q ∈
[1,∞], or q =∞ and p ∈ (1,∞], it is known that (see [28] and [29])

‖T ‖ = A.

Remark 2.2. Let Γ = Γa be a tree rooted at a. Define

A1 := sup
x∈Γ
‖u‖p′,(a,x)‖v‖q,(a,x)c , (2.7)

where (a, x)c = {y ∈ Γ : y �a x}, the shadow of the point x, and
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A2 := sup
K∈Ia

‖u‖p′,K‖v‖q,Γ\K . (2.8)

Then A in (2.4) satisfies
A1 � A � A2. (2.9)

For, with x ∈ Γ fixed and K = Γ \ (a, x)c, x is the only point in ∂K and
hence from Remark 2.1 it follows that

αK = ‖u‖−1
p′,(a,x),

whence A1 � A. Next, let K ∈ Ia and ∂K = {xj}m(K)
j=1 , where m(K) is a

natural number or infinity. Then K = Γ \
m(K)⋃
j=1

(a, xj)c. We have

αK � inf

⎧⎨
⎩‖f‖p,Γ :

xj∫

a

|f |u = 1

⎫⎬
⎭ = ‖u‖−1

p′,(a,xj)
,

and this yields A � A2.

Remark 2.3. It is proved in [20] that neither A1 nor A2 is, in general, com-
parable to A. In [19], they are shown to be comparable if it is assumed that

∫

x
at

vp(x)

⎡
⎣
∫

y
ax

vp(y)dy

⎤
⎦
−1/p′

dx � C

⎛
⎝
∫

y
ax

vp(y)dy

⎞
⎠

1/p

. (2.10)

The first to deal with the case p > q for an interval Γ = [a, b) was Maz’ya
[28], who established the following result.

Theorem 2.2. Let 1 � q < p � ∞, 1/s = 1/q − 1/p. Suppose that (2.2)
holds. Then Ta is a bounded linear map from Lp(Γ ) to Lq(Γ ) if and only if

B :=

⎧⎪⎨
⎪⎩

b∫

a

⎛
⎜⎝
⎛
⎝

b∫

x

|v(t)|q dt
⎞
⎠

1/q⎛
⎝

x∫

a

|u(t)|p′ dt
⎞
⎠

1/q′
⎞
⎟⎠
s

|u(x)|p′ dx

⎫⎪⎬
⎪⎭

1/s

(2.11)
is finite, in which case

q1/q(p′q/s)1/q
′
B � ‖Ta‖ � q1/q(p′)1/q′B. (2.12)

A characterization in the case p > q which holds for a tree Γ is given in [20,
Theorem 5.2]. To explain this, let Bi, i ∈ I, be nonempty disjoint subsets of
Γ which are such that Γ =

⋃
i∈I
Bi and Bi = Ki+1 \Ki, where Ki ∈ Ia(Γ ) and
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Ki ⊂ Ki+1. Denote the set of all such decompositions {Bi}i∈I by C(Γ ). In
the case where Γ is an interval [a, b], we take Γ =

⋃
i∈I
Bi and Bi = (ai, ai+1).

Theorem 2.3. Let 1 � q < p � ∞, 1/s = 1/q − 1/p. Suppose that (2.2)
holds. For {Bi}i∈I ∈ C(Γ ) define

αi := {‖f‖p,Γ : supp f ⊂ Bi−1,

X∫

a

|u(t)f(t)|dt = 1 for all X ∈ ∂Ki} (2.13)

and
βi := ‖v‖q,Bi/αi. (2.14)

Then Ta is a bounded linear map from Lp(Γ ) to Lq(Γ ) if and only if

B := sup
C(Γ )

‖{βi} | ls(I)‖ <∞, (2.15)

where ls(I) is the usual sequence space. If (2.15) holds, then

B � ‖Ta‖ � 4B. (2.16)

The constant A in Theorem 2.1 can also be expressed in the form

A = sup
C(Γ )

‖{βi}|�∞(I)‖

(see [20, Remark 3.4]).

3 The Poincaré Inequality, α(E) and Hardy Type
Operators

The Poincaré inequality associated with W 1
p (Ω), 1 � p <∞, is of the form

‖f − fΩ‖p,Ω � K(Ω, p, n)‖∇f‖p,Ω, f ∈W 1
p (Ω), (3.1)

where the constant K(Ω, p, n) depends only on Ω, p, and n. It holds, for
instance, if Ω is a bounded convex domain in which case K(Ω, p, n) =
K(p, n) diam(Ω). As noted in Sect. 1, there is an intimate connection be-
tween the Poincaré inequality for a domain (an open connected set) Ω and
the quantity α(E) : α(E) ∈ [0, 1) if and only if Ω has finite volume |Ω| and
the Poincaré inequality holds.

The value of α(E) depends on the nature of the boundary ∂Ω of Ω and
may be determined by the geometry of Ω in the neighborhood of a single
point on ∂Ω, as is the case, for example, in the “Rooms and Passages” domain
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analyzed in [17, Sect. 6] (see also Example 4.2 below). To deal with such cases,
the following refinement of the notion of the singular part of the boundary
was used in [17]. Let A be a filter base consisting of relatively closed subsets
of Ω which satisfy the following:

(1) for each A ∈ A, the embedding

W 1
p (Ω) ↪→ Lp(Ω \A) (3.2)

is compact;

(2) A is finer than the filter base

A0 := {A : A ∈ Ω \Ω′, Ω′ ⊂⊂ Ω}, (3.3)

where Ω′ ⊂⊂ Ω means that the closure of Ω′ is a compact subset of Ω.

The sets of the form A ∪ {∞}, A ∈ A0, are the closed neighborhoods of
the point at infinity in the one-point compactification of Ω. The family of all
relatively closed sets A satisfying (1) is a filter base if and only if E is not
compact, for then the empty set is not a member. The adherence of this filter
base in the Stone–Čech compactification of Ω is the set which can prevent E
from being compact. Note that each A ∈ A0 satisfies (3.2) since there exists
a bounded domain Ω0 with smooth boundary such that Ω \A ⊂ Ω0 ⊂ Ω.

Since it is a filter base, A is directed by reverse inclusion, i.e., by the order
relation �, where A1 � A2 if A1 ⊆ A2. We say that a family {ψA} of real
numbers indexed by A converges to a limit ψ ∈ R, written lim

A
ψA = ψ, if for

each neighborhood U of ψ in R there is an A0 ∈ A such that ψA ∈ U for all
A � A0 in A. It is proved in [17, Corollary 2.5] that

α(E) = lim
A
ψA, ψA = sup

f∈W 1
p (Ω)

{‖f +Hf‖p,A : ‖f‖1,p,Ω = 1}, (3.4)

where H is any (fixed) compact linear map from W 1
p (Ω) into Lp(Ω).

Suppose the Poincaré inequality holds, or equivalently α(E) < 1, and
define

W 1
M,p(Ω) := {f ∈ W 1

p (Ω) : fΩ = 0} (3.5)

with norm ‖f‖M,p,Ω := ‖∇f‖p,Ω. This norm is equivalent to the W 1
p (Ω)

norm on W 1
M,p(Ω), and we have the topological isomorphism

W 1
p (Ω) � C ⊕W 1

M,p(Ω),

where C denotes the set of constants and ⊕ the direct sum. We have the
embedding

EM :W 1
M,p(Ω)→ LM,p(Ω) := {f ∈ Lp(Ω) : fΩ = 0}. (3.6)
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This is bounded if and only if the Poincaré inequality holds, and so if and
only if α(E) < 1. The maps E,EM are compact together, and, setting

α(EM ) := inf{‖EM − P‖ : P ∈ F(W 1
M,p(Ω), Lp(Ω))},

we have from [17, Theorem 2.10] that if α(E) < 1, or equivalently, if EM is
bounded, then

α(EM )p

1 + ‖EM‖p � α(E)p � α(EM )p

1 + α(EM )p
.

These are the facts which enable the three cases α(E) = 0, α(E) ∈ (0, 1),
α(E) = 1 to be distinguished and motivate the strategy adopted in [17] and
[19] of working with the embedding EM rather than E directly. Of crucial
importance is Corollary 2.9 in [17], that

α(EM ) = lim
A
ϕA,

ϕA = sup{‖f +Hf‖p,A : f ∈W 1
M,p(Ω), ‖∇f‖p,Ω = 1},

(3.7)

where H is any fixed compact linear map from W 1
M,p(Ω) into LM,p(Ω).

Central to the analysis on GRDs to be discussed in the next section is an
inequality of Poincaré type on a tree Γ and a Hardy type operator Ta defined
by (2.1) with specific functions u, v determined by the geometry of Ω (see
(4.1) below). This operator Ta maps a space Lp(Γ ; dμ) into itself, where the
measure dμ is given by dμ(x) = vp(x)dx and Lp(Γ ; dμ) has norm defined by

‖F‖p,Γ ;dμ :=

⎧⎨
⎩
∫

Γ

|F (x)|pdμ(x)

⎫⎬
⎭

1/p

.

The functions u, v in (2.1) will be assumed to satisfy the conditions

u ∈ Lp′(K), (K ∈ Ia(Γ )) v ∈ Lp(Γ ), (3.8)

and so Γ has finite μ measure. Also, setting

Taf(x) = v(x)F (x), F (x) =

x∫

a

f(t)u(t)dt,

we have that Taf ∈ Lp(Γ ) if and only if F ∈ Lp(Γ ; dμ). The Poincaré in-
equality which has such an important role to play is

‖F − FΓ ‖p,Γ ;dμ � C‖f‖p,Γ , (3.9)

where FΓ is the integral mean of F on Γ, namely
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FΓ := (1/μ(Γ ))
∫

Γ

F (t)dμ(t).

We require two-sided bounds for

B(Γ ) := sup{: ‖F − FΓ ‖p,Γ ;dμ : ‖f‖p,Γ = 1}. (3.10)

These are given in terms of the norm of Ta under the assumption (3.8) and
hence of the related quantity A in (2.4).

First observe that Ta : Lp(Γ ) → Lp(Γ ) is bounded if and only if Tc is,
where

Tcf(x) = v(x)

x∫

c

f(t)u(t)dt

for any c ∈ Γ, for, by (3.8),

‖v
a∫

c

fudt‖p,Γ � (‖u‖p′,(a,c)‖v‖p,Γ )‖f‖p,Γ .

Let Γ ′ be a subtree of Γ such that Γ ′′ = Γ \ Γ ′ is also a tree, and let
Γ ′ ∩ Γ ′′ = {c}. Define

Ac(Γ ′) := sup{‖(Tcf)‖p,Γ ′ : ‖f‖p,Γ ′ = 1} (3.11)

and Ac(Γ ′′) similarly.

Lemma 3.1. The bound B(Γ ) in (3.10) is finite if and only if Ac(Γ ′) and
Ac(Γ ′′) are finite for every Γ ′, Γ ′′ of the above form. Also

(1− 2−1/p)A(Γ ) � B(Γ ) � 2A(Γ ), (3.12)

where
A(Γ ) := inf

c∈Γ
max (Ac(Γ ′), Ac(Γ ′′)) .

Proof. Set

Fc(x) =

x∫

c

f(t)u(t)dt,

so that ‖Tcf‖p,Γ = ‖Fc‖p,Γ ;dμ. Then F (x)− FΓ = Fc(x)− (Fc)Γ and

‖F − FΓ ‖p,Γ ;dμ � ‖Fc‖p,Γ ;dμ + |(Fc)Γ |μ(Γ )1/p � 2‖Fc‖p,Γ ;dμ

� 2{Apc(Γ ′)‖fχΓ ′‖p,Γ +Apc(Γ
′′)‖fχΓ ′′‖p,Γ }1/p

� 2 max (Ac(Γ ′), Ac(Γ ′′)) ‖f‖p,Γ .

Thus, B(Γ ) � 2 max (Ac(Γ ′), Ac(Γ ′′)) .
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Conversely, suppose that B(Γ ) < ∞ and let f have support in Γ ′. Then
Fc(x) = 0 for x ∈ Γ ′′ and

B(Γ )‖fχΓ ′‖p,Γ � ‖(Fc − (Fc)Γ )χΓ ′‖p,Γ ;dμ

� ‖FcχΓ ′‖p,Γ ;dμ

{
1−
[
μ(Γ ′)
μ(Γ )

]1/p}
.

Hence

Ac(Γ ′) � B(Γ )

{
1−
[
μ(Γ ′)
μ(Γ )

]1/p}−1

and similarly

Ac(Γ ′′) � B(Γ )

{
1−
[
μ(Γ ′′)
μ(Γ )

]1/p}−1

.

The lemma follows on choosing c ∈ Γ such that μ(Γ ′) = μ(Γ ′′) = (1/2)μ(Γ ).

�

4 Generalized Ridged Domains

The GRDs were introduced in [17] and [19] in the search for a class of do-
mains in R

n which is amenable to detailed analysis and wide enough to
contain domains with highly irregular, even fractal, boundaries which have
been the subject of interest and intensive study. Examples include, in partic-
ular, “Rooms and Passages,” “interlocking combs,” infinite horns and spirals,
and the Koch snowflake and analogues. An account of how the definition was
motivated by various properties of sets in R

n may be found in the original
papers, as well as in [9, Chapt. 5].

In what follows we define the “derivative” of a Lipschitz continuous func-
tion everywhere by

g′(t) := lim sup
n→∞

{n[g(t+ n−1)− g(t)]};

recall that by Rademacher’s theorem, a Lipschitz continuous function is dif-
ferentiable almost everywhere.

Definition 4.1. A domain Ω in R
n, n � 1, with |Ω| < ∞ is a generalized

ridged domain, GRD for short, if there exist real-valued functions u, ρ, τ, a
tree Γ , and positive constants α, β, γ, δ such that the following conditions
are satisfied:

(1) u : Γ → Ω, ρ : Γ → (0,∞) are Lipschitz;
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(2) τ : Ω → Γ is surjective and uniformly locally Lipschitz, i.e., for
each x ∈ Ω there exists a neighborhood V (x) such that for all y ∈ V (x),
|τ(y) − τ(x)|Γ � γ|x− y|, where | · |Γ denotes the metric on Γ ;

(3) |x− u ◦ τ(x)| � α(ρ ◦ τ(x)) for all x ∈ Ω;

(4) |u′(t)|+ |ρ′(t)| � β for all t ∈ Γ ;

(5) with Bt := B(u(t), ρ(t)), the ball with center u(t) and radius ρ(t) in
Ω, and C(x) := {y : sy + (1 − s)x ∈ Ω for all s ∈ [0, 1]}, we have that for
all x ∈ Ω, C(x)∩Bτ(x) contains a ball B(x) such that B(x)|/|Bτ(x)| � δ > 0.

The curve t �→ u(t) : Γ → Ω is a generalized ridge of Ω.

A positive Borel measure on Γ is defined by the map τ in the definition.
Since ∫

Ω

F ◦ τ(x)dx, F ∈ C0(Γ ),

is a positive linear functional on C0(Γ ), the set of continuous functions on Γ
with compact support, it follows from the Riesz representation theorem for
C0(Γ ) that there exists a positive finite measure μ on Γ such that

∫

Γ

F (t)dμ(t) :=
∫

Ω

F ◦ τ(x)dx, F ∈ C0(Γ ).

For any open subset Γ0 of Γ we have

μ(Γ0) = |τ−1(Γ0)|.

The map F �→ F ◦ τ : C0(Γ )→ Lp(Ω) extends by continuity to a map

T : Lp(Γ ; dμ)→ Lp(Ω)

which satisfies TF (x) = F ◦ τ(x) for a.e. x ∈ Ω. Also, T is an isometry:

‖TF‖p,Ω = ‖F‖p,Γ,dμ,

where

‖F‖p,Γ,dμ :=

⎧⎨
⎩
∫

Γ

|F (t)|pdμ(t)

⎫⎬
⎭

1/p

.

In fact, μ is given explicitly by the co-area formula (see [9, Theorem 1.2.4]).
For if ∇τ(x) �= 0, a.e.

∫

Ω

F ◦ τ(x)dx =
∫

Γ

F (t)
∫

τ−1(t)

|∇τ(x)|−1dHn−1(x)dt,
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where Hn−1 denotes (n − 1)-dimensional Hausdorff measure. Hence μ is
locally absolutely continuous with respect to Lebesgue measure and since
|∇τ(x)| � γ by Definition 4.1(2),

dμ

dt
=
∫

τ−1(t)

|∇τ(x)|−1dHn−1(x) � 1
γ
Hn−1(τ−1(t)).

Therefore, if |∇τ(x)| �= 0, a.e., dt is locally absolutely continuous with respect
to dμ : we always assume this hereafter. If n = 2, and τ−1(t) is a rectifiable
curve in Ω for a.e. t ∈ Γ , then its 1-dimensional Hausdorff measure is equal
to its length, l(t) say, and hence

dμ

dt
� γ−1l(t).

Consequently, dt is absolutely continuous with respect to dμ on any compact
subset of Γ on which l(·) is positive.

The Hardy operator associated with the GRD Ω is defined by (2.1) with

u(t) := (dt/dμ)1/p, v(t) := (dμ/dt)1/p (4.1)

and (3.8) is assumed. Recall that we are assuming throughout that dt is
locally absolutely continuous with respect to dμ.

From (5) it follows that for each ε > 0 the set

Ω(ε) := {x : x ∈ Ω, ρ ◦ τ(x) > ε}

lies in a bounded open subset Ωε of Ω which satisfies a cone condition, i.e.,
there is a cone C(ε) such that each x ∈ Ωε is the vertex of a cone congruent
to C(ε) which lies in Ωε. In view of Remark 6.3(4) in [2], this is enough to
ensure that the embedding W 1

p (Ω) ↪→ Lp(Ω(ε)) is compact. Therefore, if the
embedding E is not compact it is because of the nature of the set of points
where the generalized ridge meets the boundary of Ω.

Let
Mf(t) :=

1
|Bt|

∫

Bt

f(x)dx, f ∈W 1
p (Ω), (4.2)

where the Bt are the balls in Definition 4.1(5). Then, by [19, Sect. 3], M :
W 1
p (Ω) → L1

p(Γ ; dμ) is bounded, where L1
p(Γ ; dμ) is the set of functions F

which are Lipschitz continuous on Γ and F, F ′ ∈ Lp(Γ ; dμ). Also, for any
measurable subset Ω1 of Ω,

‖f − TMf‖p,Ω1 � Kk(Ω1)‖∇f‖p,Ω,

where K is a positive constant and
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k(Ω1) := sup
Ω1

{ρ ◦ τ(x)} <∞.

Hence, as Ω1 approaches any point on ∂Ω lying on the generalized ridge,
k(Ω1)→ 0. Since W 1

p (Ω) ↪→ Lp(Ω(ε)) is compact, it follows that EM − TM
is compact, so that T and M are approximate inverses.

We now select a specific filter base of subsets of Ω which will satisfy (3.2)
and (3.3). Let

A(Γ ) := {Λ : Λ ⊂ Γ nonempty and relatively closed, Γ \ Λ
a compact subtree of Γ} (4.3)

and
A(Ω) := {τ−1(Λ) : Λ ∈ A(Γ )}. (4.4)

A subset of Γ is compact if and only if it is closed and meets a finite number
of edges. Thus, if Γ has an infinite number of edges, the boundary of Γ \ Λ,
Λ ∈ A(Γ ), is finite and Λ is a finite union of closed disjoint subtrees Ai of Γ
which are rooted at the boundary points of Γ \ Λ : A =

⋃
i∈NA

Ai say. If Γ is

an interval [a, b), then the sets Λ are given by

Λ = Λ(ε) =
{

[b− ε, b) if b <∞,
[ε−1,∞) if b =∞

for suitable ε > 0. It is shown in [19, Lemma 4.1] that A(Ω) is a filter base
which satisfies (3.2) and (3.3). Thus, as noted in Sect. 4, α(EM ) = lim

A(Ω)
ϕA

where ϕA is given by (3.7) and A = τ−1(Λ) ∈ A(Ω).
The maps T and M and the filter bases A(Γ ),A(Ω) play a leading role

in the analysis of [17] and [19]. The strategy is based on the following steps.
We assume throughout that 1 < p <∞ and that (3.8) is satisfied.

(A) For A ∈ A(Ω) define

hAf :=
∑
i∈NA

χ(Ai)fAi

and set

ψA : sup{‖f − hAf‖p,A : f ∈W 1
M,p(Ω), ‖∇f‖p,Ω = 1}.

On choosing A = A(Ω) and H = hA0 in (3.7) with a fixed A0 ∈ A(Ω), it
follows from the fact that α(EM ) = lim

A
ϕA that

α(EM ) � inf
A(Ω)

ψA � lim sup
A(Ω)

ψA � 2α(EM ) (4.5)

and this yields, with A = τ−1(Λ) ∈ A(Ω),
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γ−1θΛ � ψA � K{k(A) + θΛ}, (4.6)

where

θΛ := sup{‖F − HΛF‖p,Λ,dμ : F ∈ L1
p(Γ ; dμ), ‖F ′‖p,Λ,dμ = 1},

HΛF :=
∑
i∈NA

χ(Λi)FΛi ,

FΛi :=
1
μ(Λi)

∫

Λi

F (t)dμ(t). (4.7)

(B) Set
θ+ := lim sup

A(Γ )

θΛ, θ− := lim inf
A(Γ )

θΛ.

Then

1
2γ
θ+ � α(EM ) � Kθ−.

This follows from (4.5) and (4.6), on showing that if lim
A(Ω)

k(A) �= 0, then

α(EM ) = θ+ = θ− = 0.

(C) The following Poincaré inequalities are equivalent:

‖f − fΩ‖p,Ω � C(Ω)‖∇f‖p,Ω (f ∈ W 1
p (Ω))

‖F − FΓ ‖p,Γ,dμ � c(Γ )‖F ′‖p,Γ,dμ (F ∈ L1
p(Γ ; dμ)).

Moreover, the optimal constants satisfy

γ−1c(Γ ) � C(Ω) � K{k(Ω) + c(Γ )}.

This equivalence of the two Poincaré inequalities lies at the heart of the tech-
nique and is what motivates the choice of the Hardy operator Ta associated
with the GRD Ω.

(D) If (2.10) is satisfied, then

α(EM ) � lim
A(Γ )

J(Λ), (4.8)

where

J(Λ) := sup
x∈Λ

⎧⎨
⎩[μ{t : t ∈ Λ, t �a x}]1/p

[ ∫

t�ax,t∈Λ
ψp

′/p(t)dt
]1/p′

⎫⎬
⎭ (4.9)

and ψ(t) := dt/dμ.
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(E) Under the above conditions, we have the following:

(1) α(E) < 1 if and only if J(Γ ) <∞;

(2) E and EM are compact if and only if lim
A(Γ )

J(Λ) = 0.

Example 4.1 (horn-shaped domain). Let x = (x1, x2, · · · , xn) ∈ R
n be written

as (x1,x′), where x′ = (x2, · · · , xn) ∈ R
n−1. A horn-shaped domain is of the

form
Ω := {x = (x1,x′) ∈ R

n : 0 < x1 <∞, |x′| < Φ(x1)}, (4.10)

where Φ is smooth and bounded. This is a GRD with a generalized ridge
(0,∞). In the notation of Definition 4.1, u(t) = (t, 0, · · · ) and τ(x1,x′) = x1.
Furthermore, with ωn−1 denoting the measure of the unit ball in R

n−1,

s∫

0

F (t)dμ(t) =

s∫

0

F (x1)dx1
∫

|x′|<Φ(x1)

dx′

= ωn−1

s∫

0

F (x1)Φ(x1)n−1dx1,

whence
μ′(t) = ωn−1Φ(t)n−1 (4.11)

and

{μ(∞)− μ(s)}1/p
⎛
⎝

s∫

c

ψ(t)p
′/pdt

⎞
⎠

1/p′

=

⎛
⎝

∞∫

s

Φ(r)n−1dr

⎞
⎠

1/p⎛
⎝

s∫

c

Φ(t)(1−n)/(p−1)dt

⎞
⎠

1/p′

. (4.12)

It follows that

Φ(t)n−1 = (t+ 1)−θ, θ > 1⇒ α(E) = 1;

Φ(t)n−1 = e−λt, λ > 0⇒ 0 < α(E) < 1;

Φ(t)n−1 = e−t
θ

, θ > 1⇒ α(E) = 0.

Example 4.2 (Rooms and Passages). Let {hk}k∈N and {δ2k}k∈N be sequences
of positive numbers such that

∞∑
k=1

hk = b <∞, 0 < const. � hk+1/hk � 1, 0 < δ2k � h2k+1, (4.13)
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and let Hk :=
k∑
k=1

hj, (k ∈ N). Then Ω is defined to be the union of the rooms

Rk and passages Pk+1 given by

Rk := (Hk − hk, Hk)× (−hk/2, hk/2)
Pk+1 = [Hk, Hk + hk+1]× (−δk+1, δk+1), (4.14)

for k = 1, 3, · · · . We choose the interval [0, b) to be a generalized ridge, with
u(t) = (t, 0), 0 � t < b. In [17, Sect. 6], it is shown that functions τ, ρ can be
chosen such that

J([c, b)) � sup
N�k<∞

⎧⎨
⎩

∞∑
j=k

h22j

[
k∑

i=N

(h2i/δ
p′/p
2i + h2i+2/δ

p′/p
2i+2)

]p−1
⎫⎬
⎭

1/p

,

when H2N − (1/2)h2N � c < H2N+1 + (1/2)h2N+2. This yields

α(EM ) � lim
N→∞

sup
N�k<∞

⎧⎨
⎩

∞∑
j=k

h22j

[
k∑

i=N

(h2i/δ
p′/p
2i + h2i+2/δ

p′/p
2i+2)

]p−1
⎫⎬
⎭

1/p

.

(4.15)
In the special case δ2i = chκ

2i, κ > 1, h2i = C−i, where c is a positive constant
and C > 1, we have the following:

κ � p+ 1⇒ α(E) = 1;

κ = p+ 1⇒ 0 < α(E) < 1;

κ < p+ 1⇒ α(E) = 0.

Example 4.3 (a snowflake type domain). We construct a domain in R
2 from

a succession of generations Θm of closed congruent rectangles Qm with
nonoverlapping interiors, having edge lengths 2αm × 2βm, where αm = cκm,
βm = cm (m ∈ N0), κ � 1, and to ensure nonoverlapping, suppose that
cκ + 2c2 < 1 and c1+κ/p+p/p′2 < 1/2 when κ > p/p′. The generation Θ0

consists of a single rectangle, as does Θ1, a short edge of Q1 being attached
to the middle portion of a long edge of Q0. For m � 1, Θm contains 2m−1

rectangles and to each long edge of Qm is attached a short edge of a rectangle
Qm+1, these 2m rectangles Qm+1 being the members of Θm+1. The domain
Ω is the interior of the connected set Θ constructed in this way:

Ω = Θo, Θ =
⋃
m∈N0

(∪{Qm : Qm ∈ Θm}) . (4.16)

The generalized ridge is the tree formed by the major and minor axes of the
rectangles. It is of finite degree and u : Γ → Ω is the identification map. For
Λ ∈ A(Γ ) we have Λ =

⋃
i∈NΛ

Λi(ai), where NΛ is a finite set and the Λi(ai)
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are subtrees rooted at ai. If ai ∈ Qki , then from [19, Sect. 6] it follows that

J(Λi(ai)) � sup
ki�s<∞

Jki,s,

where, as s→∞,

Jk,s :=

( ∞∑
m=s

2m−sαmβm

)1/p( s∑
m=k

βmα
−p′/p
m

)1/p′

�

⎧⎪⎨
⎪⎩
cs if κ > p/p′,
ck+(1+κ)(s−k)/p if κ < p/p′,
(s− k)1/p′c(1+κ)s/p if κ = p/p′.

Consequently, J(Λi(ai)) → 0 as ki → ∞ and lim
A(Γ )

J(Λ) = 0. Hence E is

compact. Note that, when κ = 1, Ω can be shown to be a quasidisc (see [28,
Sect. 1.5.1, Example 1]) and hence has the W 1

p -extension property, which in
turn implies that E is compact. However, if κ > 1, then βm/αm → ∞ as
m→∞ and so Ω is not a quasi-disc.

In [19, Sect. 6.2], the distribution of the approximation numbers (see the
next section for details of these) of E is also investigated, and in the case
p = 2, the precise growth rate of the error term in the spectral asymptotic
formula for the Neumann Laplacian on Ω is given. To state the last result,
we first need to define the following terms.

Let

(∂Ω)iδ := {x ∈ Ω : dist(x, ∂Ω) < δ},

(∂Ω)oδ := {x ∈ R
n \Ω : dist(x, ∂Ω) < δ},

Mi
d(∂Ω) := lim sup

δ→0
δ−(2−d)|(∂Ω)iδ|,

di := inf{t :Mi
t(∂Ω) <∞},

and define Mo
d(∂Ω), do similarly. Then Mi

d(∂Ω),Mo
d(∂Ω) are the upper

Minkowski contents of ∂Ω relative to Ω and R
n \ Ω respectively, and di, do

are respectively the inner and outer Minkowski dimensions of ∂Ω. By [19,
Sect. 6.2.2],

di =

{
1 if c � 1/2,
1 + log(2c)/κ log(1/c) if c > 1/2,

and
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do =

{
1 if c � 1/2,
1 + log(2c)/ log(1/c) if c > 1/2,

The upper Minkowski contentsMi
d(∂Ω) andMo

d(∂Ω) are both infinite when
c = 1/2 and finite otherwise.

Denoting the number of eigenvalues of the Neumann Laplacian −ΔΩ,N on
Ω which are less than λ by N (λ;−ΔΩ,N ), and with a similar notation for the
Dirichlet Laplacian −ΔΩ,D, it is proved in [19, Theorems 6.3 and 6.4] that

N (λ;−ΔΩ,N )− (1/4π)|Ω|λ

⎧⎪⎪⎨
⎪⎪⎩

= O(λ1/2) if c < 1/2,

= O(λ1/2 logλ) if c = 1/2,

� λdo/2 if c > 1/2,

and

N (λ;−ΔΩ,D)− (1/4π)|Ω|λ =

⎧⎪⎪⎨
⎪⎪⎩

O(λ1/2) if c < 1/2,

O(λ1/2 logλ) if c = 1/2,

O(λdi/2) if c > 1/2.

Note that ∂Ω is fractal when c > 1/2 in the sense that the inner and outer
Minkowski dimensions lie in (1, 2). It is particularly interesting that the pre-
cise growth rate of the Neumann error term is obtained in this case.

5 Approximation and Other s-Numbers of Hardy Type
Operators

The Hardy type maps T we consider in this section act between Lebesgue
spaces on an interval I = (a, b), where b may be infinite, and are of the form

Tf(x) = v(x)

x∫

a

u(t)f(t)dt, (5.1)

u and v being prescribed functions. Our restriction to intervals I rather than
trees is made to simplify the exposition: many of the results to follow have
natural analogues for trees. Throughout this section, we assume that −∞ <
a < b � ∞ and p, q ∈ [1,∞], while u and v are given real-valued functions
such that for all X ∈ I,

u ∈ Lp′(a,X) (5.2)

and
v ∈ Lq(X, b), (5.3)
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where 1/p′ = 1 − 1/p (cf. (2.2). Criteria for the boundedness of T as a map
from Lp(I) to Lq(I) were given earlier (see Remark 2.1 and Theorem 2.2).

Turning now to characterizations of the compactness of T,we see that there
is an even more remarkable difference between the cases p � q and p > q than
for boundedness. For the first of these we have the following result, the proof
of which is given in [29, Theorems 7.3 and 7.5] and [9, Theorem 2.3.1].

Theorem 5.1. Let 1 � p � q < ∞ or 1 < p � q = ∞. Suppose that (5.2)
and (5.3) hold. Put

A(c, d) = sup
c<X<d

{
‖u‖p′,(c,X) ‖v‖q,(X,d)

}
, a � c < d � b. (5.4)

Then if T is a bounded linear map from Lp(I) to Lq(I), T is compact if and
only if

lim
c→a+

A(a, c) = lim
d→b−

A(d, b) = 0. (5.5)

Remark 5.1. It will be seen that this result does not cover the case in which
p = 1 and q =∞. In fact, T : L1(I)→ L∞(I) is never compact. For this, see
Remark (b) after Theorem 4 in [12].

When p > q, the striking result given next, proved in [29, Theorem 7.5]
(see also [9, Theorem 2.3.4]) asserts that boundedness of T is equivalent to
compactness.

Theorem 5.2. Let 1 � q < p �∞. Suppose that (5.2) and (5.3) hold. Then
T is a compact map from Lp(a, b) to Lq(a, b) if and only if it is bounded.

Note that if u ∈ Lp′(I) and v ∈ Lq(I), then T : Lp(I)→ Lq(I) is compact
for all p, q ∈ [1,∞] with (p, q) �= (1,∞).

Given a compact map acting between two Banach spaces, it is often de-
sirable to have a quantitative means of assessing “how compact” it is, and
one way of doing this is by use of what are called s–numbers. The definition
that we give below applies to all bounded linear maps, not merely to compact
ones, and is of use in this wider context. We denote by B(X,Y ) the family of
all bounded linear maps from X to Y , abbreviating this to B(X) if X = Y.
Let BX stand for the closed unit ball in X . We write ‖·‖X for the norm in
X, omitting the subscript if no ambiguity is likely.

Definition 5.1. A map s which to each bounded linear map S from one
Banach space to another such space assigns a sequence (sn(S)) of nonnegative
real numbers is called an s–function if, for all Banach spaces W , X , Y and
Z, it has the following properties:

(i) ‖S‖ = s1(S) � s2(S) � . . . � 0 for all S ∈ B(X,Y );

(ii) for all S1, S2 ∈ B(X,Y ) and all n ∈ N,

sn(S1 + S2) � sn(S1) + ‖S2‖ ;
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(iii) for all S ∈ B(X,Y ), R ∈ B(Y, Z) and U ∈ B(Z,W ) and n ∈ N,

sn(URS) � ‖U‖ sn(R) ‖S‖ ;

(iv) for all S ∈ B(X,Y ) with rank S < n ∈ N,

sn(S) = 0;

(v) sn(In) = 1 for all n ∈ N; here In is the identity map of ln2 := {x ∈ l2 :
xj = 0 if j > n} to itself.

For all n ∈ N, sn(S) is called the nth s–number of S. An s–function is
called additive if for all m,n ∈ N and all S1, S2 ∈ B(X,Y ), where X and Y
are arbitrary Banach spaces,

sm+n−1(S1 + S2) � sm(S1) + sn(S2);

it is said to be multiplicative if for all m,n ∈ N and all S ∈ B(X,Y ) and
R ∈ B(Y, Z), where X, Y and Z are arbitrary Banach spaces,

sm+n−1(RS) � sm(R)sn(S).

All s–numbers coincide for operators acting between Hilbert spaces. Some
of the most widely used s–numbers are the following:

(i) the approximation numbers an(S) given by

an(S) = inf {‖S − F‖ : F ∈ B(X,Y ), rank F < n} ;

(ii) the Kolmogorov numbers dn(S) defined by

dn(S) = inf
{∥∥QYMS∥∥ :M is a linear subspace of Y, dim M < n

}
,

where QYM is the canonical map of Y onto Y/M ;

(iii) the Gelfand numbers cn(S), where

cn(S) = inf
{∥∥SJXM∥∥ :M is a linear subspace of X, codim M < n

}
,

where JXM is the embedding map from M to X ;

(iv) the Bernstein numbers bn(S) defined by

bn(S) = sup
{

inf
x∈Xn\{0}

‖Sx‖Y
‖x‖X

: Xn is an n-dimensional subspace of X} .
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The numbers in (i), (ii), and (iii) form additive and multiplicative s–
functions; the approximation numbers are the largest s–numbers and satisfy
the inequalities an(S∗) � an(S) � 5an(S∗) with an(S) = an(S∗) if S is
compact; and the Gelfand and Kolmogorov numbers are related by

cn(S) = dn(S∗), dn(S) � cn(S∗),

with equality if S is compact.
In addition to the s–numbers, there are the entropy numbers, which play

a most useful rôle in connection with the compactness properties of a map.
Given any n ∈ N, the nth entropy number of a map S ∈ B(X,Y ) is defined
by

en(S) = inf {ε > 0
: S(BX) can be covered by 2n−1 balls in Y of radius ε

}
.

These numbers are monotonic decreasing as n increases, and also have the
additive and multiplicative properties mentioned above; but they are not s–
numbers as they do not have property (iv) required of such numbers. Indeed,
if X is real with dim X = m <∞ and I : X → X is the identity map, then
for all n ∈ N,

1 � 2(n−1)/men(I) � 4.

Since the en(S) are nonnegative and have the monotonicity property, β(S) :=
lim
n→∞ en(S) exists and is the so-called (ball) measure of noncompactness of S.

The terminology is justified since β(S) = 0 if and only if S is compact. Of
course, every s–number also has the property that lim

n→∞ sn(S) exists, but a

similar characterization of compactness is not possible: for example, α(S) :=
lim
n→∞ an(S) may well be positive even though S is compact. The difficulty
is that for some spaces X and Y there is a compact map S from X to Y
that cannot be approximated arbitrarily closely in the norm sense by finite-
dimensional linear maps. However, if the target space Y is an Lp space with
1 � p <∞, this difficulty disappears and α(S) = 0 if and only if S is compact.
In fact, we then have α(S) = β(S) for all S ∈ B(X,Lp). The linkage with
the measure of noncompactness defined in the Introduction is thus complete.
Further details and proofs of the assertions made above can be found in [8]
and [30].

Given a compact map S with α(S) = 0, the speed at which the an(S)
approach zero as n → ∞ is of obvious interest from the point of view of
approximation theory. The same is true for the entropy numbers, with the
additional spectral connection brought about by Carl’s inequality. To explain
this, recall that if S is a compact linear map from X to itself, then its spec-
trum, apart from the point 0, consists solely of eigenvalues of finite algebraic
multiplicity: let (λn(S)) be the sequence of all nonzero eigenvalues of S, re-
peated according to their algebraic multiplicity and ordered by decreasing
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modulus. If S has only m (< ∞) distinct eigenvalues and M is the sum of
their multiplicities, put λn(S) = 0 for all n ∈ N with n > M. Carl’s inequality
([6]; see also [8]) asserts that for all n ∈ N,

|λn(S)| � √2en+1(S).

Together with the multiplicative properties of the entropy numbers, this strik-
ing result enables information about the behavior of eigenvalues of (possibly
degenerate) elliptic operators to be obtained provided that sharp two-sided
estimates are available for the entropy numbers of embedding maps between
function spaces. A very considerable amount of work has been done on this
topic, leading to the availability of these sharp estimates for embeddings
between spaces of Sobolev, Besov and Lizorkin–Triebel type, for example.
We refer to [16] for further information concerning these estimates and their
applications.

We now return to the map T : Lp(I)→ Lq(I) given by (5.1), namely

Tf(x) = v(x)

x∫

a

u(t)f(t)dt,

where I = (a, b) and p, q ∈ [1,∞]. For simplicity of exposition, we assume
henceforth that b <∞ and u, v are positive functions with

u ∈ Lp′(I), v ∈ Lq(I). (5.6)

Under these conditions on u and v, it follows from (2.6) and Theorem 2.2 that
T is bounded; moreover, by Theorems 5.1 and 5.2, T is compact provided
that

p, q ∈ [1,∞] with (p, q) �= (1,∞). (5.7)

Our first objective is to obtain upper and lower bounds for the approximation
numbers of T, and with this in mind we introduce a quantity A(J) = A(J, u, v)
defined, for any interval J ⊂ I and any c ∈ (a, b], by

A(J) = sup
f∈Lp(J)\{0}

inf
α∈C

‖Tc,Jf − αv‖q,J / ‖f‖p,J , (5.8)

where

Tc,Jf(x) := v(x)χJ (x)

x∫

c

f(t)u(t)χJ(t)dt

and

μ(J) =

⎧⎪⎪⎨
⎪⎪⎩

∫

J

|v(t)|q dt, 1 � q <∞,

sup
J
|v(t)| , q =∞.
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It is clear that the boundedness of T implies that A(I) <∞. Note also that,
as is easily shown, A(J) is independent of the particular choice of c. We
summarize in the following proposition some of the basic properties of A(J),
referring to [9] for their proofs.

Proposition 5.1. (i) When u and v are constant over an interval J with
length |J |,

A(J, u, v) =
1
2
uvγpq, (5.9)

where

γpq = r1/r−1(p′)1/pq1/q
′
/B(1/p′, 1/q), 1/r = 1 + 1/q − 1/p, (5.10)

and B is the beta function, given in terms of the gamma function Γ by
B(s, t) = Γ (s)Γ (t)/Γ (s+ t).

(ii) If u1, u2 ∈ Lp′(J) and v1, v2 ∈ Lq(J), then

|A(J, u1, v)− A(J, u2, v)| � ‖v‖q,J ‖u1 − u2‖p′,J (5.11)

and
|A(J, u, v1)− A(J, u, v2)| � 2 ‖v1 − v2‖q,J ‖u‖p′,J . (5.12)

(iii) If K1, K2 are subintervals of I with K1 ⊂ K2, then

|A(K1, u, v)− A(K2, u, v)| → 0 as |K2\K1| → 0.

The constant γpq determines the norm of the particular form of the opera-
tor T obtained when the functions u and v are identically 1. In fact, denoting
by H this particular operator, so that

Hf(x) =

x∫

a

f(t)dt (f ∈ Lp(I), x ∈ I),

it turns out that

‖H : Lp(I)→ Lq(I)‖ = (b− a)1/p′+1/qγpq. (5.13)

The special case of this when p = q is denoted by γp. Thus,

γp = π−1p1/p
′
(p′)1/p sin(π/p). (5.14)

Now suppose that 1 < p � q <∞ and for any ε > 0 define

N(I, ε) = N(I, ε, u, v) = min

⎧⎨
⎩n : I =

n⋃
j=1

Ij ,A(Ij) � ε

⎫⎬
⎭ , (5.15)
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where the Ij are nonoverlapping subintervals of I. Note that since T is com-
pact, N(I, ε) < ∞. The properties of A guaranteed by Proposition 5.1 en-
sure that given any small enough ε > 0, there are intervals Ij = (cj , cj+1)
(j = 1, . . . , N) such that a = c1 < c2 < . . . < cN+1 = b and

A(Ij) = ε (j = 1, . . . , N − 1), A(IN ) � ε. (5.16)

The decomposition of the interval I given by the Ij enables us to construct
a finite-dimensional linear approximation to T that leads to the inequality

aN+1(T ) � ε, where N = N(I, ε). (5.17)

Another useful quantity is M(I, ε) = M(I, ε, u, v), defined to be the max-
imum m ∈ N such that there are nonoverlapping intervals Jj ⊂ I (j =
1, 2, . . . ,m) with A(Jj) � ε for each j. Evidently,

M(I, ε) � N(I, ε)− 1. (5.18)

In fact, if J1, . . . , JM are nonoverlapping subintervals of I such that A(Jj) � ε
for each j, then use of the definition of A(Jj) quickly leads to an estimate
from below of the norm of the difference between T and an arbitrary linear
map of rank < M, and hence to the lower bound

aM (T ) � εM1/q−1/p. (5.19)

Combination of (5.17)-(5.19) now gives

Theorem 5.3. Let 1 < p � q <∞. Then given ε > 0,

aN+1(T ) � ε and aM (T ) �M1/q−1/pε, (5.20)

where N = N(I, ε) and M � N − 1.

Estimates similar to these were first derived in [10]. The corresponding
estimates can be obtained when p = 1 or q = ∞, and also for the case
1 � q < p � ∞; we summarise the position as follows, referring to [21] and
[1] for details.

Theorem 5.4. (i) Let 1 � p � q �∞, and let N = N(I, ε). Then

aN+1(T ) � κqε and a[N/2]−1(T ) � ε, (5.21)

where κ2 = 1 and κq = 2 if q �= 2.

(ii) Suppose that 1 � q < p �∞ and put N = N(I, ε). Then

aN+2(T ) � (N + 1)1/q−1/pε and aN−1(T ) � νqε. (5.22)

where ν2 = 1 and νq = 1/2 if q �= 2.
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The next task is to sharpen these results and obtain more precisely the
dependence of an(T ) upon n. It turns out that striking results can be obtained
when p = q ∈ (1,∞), for then asymptotic estimates are available. In fact, we
have

Theorem 5.5. Suppose that 1 < p < ∞. Then the approximation numbers
of the map T : Lp(I)→ Lp(I) satisfy

lim
n→∞nan(T ) =

1
2
γp

b∫

a

u(t)v(t)dt. (5.23)

The idea of the proof is to show that

lim
ε→0+

εN(I, ε) =
1
2
γp

b∫

a

u(t)v(t)dt,

and then to use Theorem 5.3. The special case of this when p = 2 was
first obtained in [11]. For an arbitrary p ∈ (1,∞) it was established in [22]
as a particular instance of the corresponding result in which the interval
I is replaced by a tree. Equation (5.23) also holds with the approximation
numbers an(T ) replaced by the Gelfand numbers cn(T ), the Kolmogorov
numbers dn(T ) and the Bernstein numbers bn(T ) (see [24]). Appropriate
extra conditions on u and v lead to the next result, which sharpens Theorem
5.5 by obtaining remainder estimates.

Theorem 5.6. Let 1 < p <∞. In addition to the standing assumptions that
u ∈ Lp′(I) and v ∈ Lp(I), suppose that u, v have continuous derivatives u′, v′

respectively that satisfy the conditions u′ ∈ Lp′/(p′+1)(I), v′ ∈ Lp/(p+1)(I).
Let ρn(T ) stand for an(T ), bn(T ), cn(T ) or dn(T ). Then

lim sup
n→∞

n1/2

∣∣∣∣∣∣nρn(T )− 1
2
γp

b∫

a

u(t)v(t)dt

∣∣∣∣∣∣ �
3
2
γp

b∫

a

u(t)v(t)dt + c(p)R,

(5.24)
where

R =
(
‖u′‖p′/(p′+1),I + ‖v′‖p/(p+1),I

)(
‖u‖p′,I + ‖v‖p,I

)

and c(p) is a constant that depends only on p.

For this we refer to [24], which refines the techniques used in [13] for
the case p = 2, ρn(T ) = an(T ). In fact, in [24] it is also shown that if u
and v satisfy the standard conditions u ∈ Lp′(I), v ∈ Lp(I), together with
v′/v, u′/u ∈ L1(I) ∩ C(I), then
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lim sup
n→∞

n

∣∣∣∣∣∣nρn(T )− 1
2
γp

b∫

a

u(t)v(t)dt

∣∣∣∣∣∣

�
b∫

a

u(t)v(t)
{
‖u′/u‖1,I + ‖v′/v‖1,I + 2γp + ‖u′/u‖1,I ‖v′/v‖1,I

}
dt,

(5.25)

from which we see that

ρn(T ) =
γp
2n

b∫

a

u(t)v(t)dt +O(n−2). (5.26)

These results show that when p = q, the state of knowledge of various
s–numbers of T is reasonably satisfactory. Greater difficulties are presented
when p �= q, but substantial progress has been made, as we now indicate. In
[26], it is shown that, under appropriate conditions on u and v, the approx-
imation numbers of T satisfy, for all n ∈ N and some positive constants c1
and c2 (independent of n),

c1 ‖uv‖r,I � lim inf
n→∞ nλan(T ) � lim sup

n→∞
nλan(T ) � c2 ‖uv‖r,I , (5.27)

where 1/r = 1 − 1/p + 1/q > 0, λ = min{1, 1/r}, and p > 1, with either
1 � q � p � ∞, 1 � p � q � 2 or 2 � p � q � ∞. This was established by
means of techniques quite different from those sketched above; for similar
results derived by procedures closer to those of this paper we refer to [25].
The paper [26] also gives estimates for the entropy numbers of T, namely

c1 ‖uv‖r,I � lim inf
n→∞ nen(T ) � lim sup

n→∞
nen(T ) � c2 ‖uv‖r,I , (5.28)

valid for all p, q ∈ [1,∞] with 1/r = 1−1/p+1/q > 0, under certain conditions
on u and v.

The results just mentioned do not give asymptotic formulas for the vari-
ous numbers; these are not to be expected in the case of the entropy num-
bers. Some advances have been made by way of sealing this gap and we now
describe briefly recent work leading to genuine asymptotic results for the
Bernstein numbers, when p � q, and for the approximation and Kolmogorov
numbers when q � p.

Theorem 5.7. Let 1 � p � q <∞, and let 1/r = 1/q + 1/p′. Then

lim
n→∞nbn(T ) = C

⎛
⎝

b∫

a

(u(t)v(t))r dt

⎞
⎠

1/r

, (5.29)
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where
C =

1
2

(p′)1/qq1/p
′
(p′ + q)1/p−1/q/B(1/q, 1/p′).

This is proved in [15]. To indicate some of the main features of the proof,
we begin with certain generalizations of the trigonometric functions. For σ ∈
[0, q/2] we write

Fp,q(σ) =
q

2

2σ/q∫

0

(1 − sq)−1/pds, πp,q = 2Fp,q(q/2) = B(1/q, 1/p′)

and denote by sinp,q the inverse of the strictly increasing function Fp,q on
[0, πp,q/2]. We continue to denote by sinp,q the extension of this inverse func-
tion to R by evenness about πp,q/2 to [0, πp,q], then by oddness to [−πp,q, πp,q],
and finally to R by 2πp,q–periodicity. With B representing the closed unit ball
in Lp(I), the problem of determining

sup
g∈T (B)

‖g‖q,I

leads to the nonlinear integral problem

g(x) = (Tf)(x), ϕp(f)(x) = λ (T ∗ϕq(g))(x), (5.30)

where ϕr(h) = |h|r−2 h (h �= 0), ϕr(0) = 0, and T ∗ is the map defined by

(T ∗f)(x) = u(x)

b∫

x

v(t)f(t)dt;

λ is to be thought of as an eigenvalue parameter. When u and v are both
identically equal to 1 on I, this integral problem may be transformed into
the p, q–Laplacian equation

− (ϕp(w′))′ = λϕq(w), (5.31)

with the boundary condition w(a) = 0. What emerges is that given any
α ∈ R\{0}, the set of all eigenvalues λ of (5.31) under the conditions

w(a) = 0, w′(a) = α, (5.32)

is given by (see [7])

λn(α) =
(

2(n− 1/2)πp,q
b− a

)q
· |α|

p−q

p′qq−1
(n ∈ N), (5.33)

with the corresponding eigenfunctions
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wn,α(t) =
α(b− a)

(n− 1/2)πp,q
sinp,q

(
(n− 1/2)πp,q
b− a t

)
(t ∈ I). (5.34)

In addition, when u and v are both identically equal to 1 on I, a result
of ([4]; see also [5]) gives a connection between the Bernstein numbers and
these eigenvalues from which the Bernstein numbers bn(T ) can be determined
precisely and are given by

bn(T ) =
α(b− a)

(n− 1/2)πp,q

(
p′qq−1

|α|p−q
)1/q

(5.35)

where α is so chosen that∥∥∥∥∥
α(b− a)

(n− 1/2)πp,q

(
sinp,q

(
(n− 1/2)πp,q
b− a t

))′∥∥∥∥∥
p,I

= 1.

The procedure from this point onwards resembles that outlined for the ap-
proximation numbers when p = q in that the interval I is cut up into subin-
tervals to facilitate calculation, but this time, instead of the function A, we
now require two functions, C0 and C+, defined for all subintervals J = [c, d]
of I by

C0(J) = sup{‖Tf‖q,J / ‖f‖p,J : f ∈ Lp(J)\{0}, (Tf)(c) = (Tf)(d) = 0}

and

C+(J) = sup{‖Tf‖q,J / ‖f‖p,J : f ∈ Lp(J)\{0}, (Tf)(c) = 0}.

For the approximation and Kolmogorov numbers we have the following
assertion (see [14]).

Theorem 5.8. Suppose that 1 < q � p < ∞. Let r = 1/q + 1/p′, and let
ρn(T ) stand for either an(T ) or dn(T ). Then

lim
n→∞nρn(T ) = C

⎛
⎝

b∫

a

(u(t)v(t))1/r dt

⎞
⎠
r

, (5.36)

where C is as in the previous theorem.

So far as the estimates of the approximation numbers (from above and
below) and those of the Kolmogorov numbers from above are concerned, the
pattern of the proof is a natural adaptation of that used for the Bernstein
numbers. However, to estimate the Kolmogorov numbers from below, we use
the following result due to Makavoz (see [5, Sect. 3.11]):

Let Un ⊂ {Tf : ‖f‖p,I � 1} be a continuous and odd image of the unit
sphere Sn in R

n+1 endowed with the l1–norm. Then
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dn(T ) � inf{‖x‖q,I : x ∈ Un}.

This enables it to be shown that

lim inf
n→∞ ndn(T ) �

⎛
⎝

b∫

a

|u(t)v(t)|1/r dt
⎞
⎠
r

.

6 Approximation Numbers of Embeddings on
Generalized Ridged Domains

In [9, Chapt. 6], relationships between the approximation numbers of EM for
a GRD Ω and those of the associated Hardy type operator Ta were derived:
the approximation numbers of other embedding maps for related spaces on Ω
and Γ were also investigated. Of particular interest for the present discussion
are the following results. A consequence of Lemma 6.2.3, Lemma 6.2.4 and
Theorem 6.4.1 is

am(EM ) � K{k(Ω) + am(IM )}, (6.1)

where k(Ω) = sup
x∈Ω

(ρoτ)(x) and IM is the embedding L1
M,p(Γ ; dμ) →

LM,p(Γ ; dμ), where

L1
M,p(Γ ; dμ) := {F ∈ L1

p(Γ, dμ), FΓ = 0}

with norm ‖F‖M,p;dμ = ‖F ′‖p,Γ ;dμ and

LM,p(Γ ; dμ) := {F ∈ Lp(Γ ; dμ), FΓ = 0}.

Furthermore, from Lemma 6.2.4 and Theorem 6.4.3 in [9] it follows that

(1/2)am+1(Ta) � am(IM ) � 2am(Ta). (6.2)

For GRDs, upper and lower bounds for the approximation numbers ak(E)
of the embedding E :W 1

p (Ω)→ Lp(Ω), 1 < p <∞, were also obtained in [18,
Theorem 5.1]. On applying the results to Examples 4.1 and 4.2, the outcomes
are as follows:

Example 6.1 (horn-shaped domain). For this domain Ω, the embedding E is
compact in the case

Φn−1(t) = e−t
θ

, θ > 1.

In [18, Example 6.1], it is shown that

ak(E) � k−1/ν , ν = max{ θ
θ − 1

, n}. (6.3)
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Example 6.2 (Rooms and Passages). In the case δ2j = chκ

2j , h2j = C−j ,
1 � κ < p+ 1, C > 1, the embedding E is compact and from [18, Example
6.2] it follows that

ak(E) � k−1/2. (6.4)

In [19], a partial analogue of the Dirichlet–Neumann bracketing technique,
which is so effective in determining the asymptotic limit of the eigenvalue
distribution functions in the case p = 2, was developed for estimating the
approximation numbers ak(E), and, in particular, for the function

νM (ε,Ω) := max{k : ak(EM ) � ε}

in LM,p(Ω) (see also [9, Chapt. 6]). In [23], this technique is applied to a wide
class of domains, including GRDs which are not unduly pathological, and the
results illustrated by a detailed analysis of the horn-shaped domain and also
of the snowflake type domain of Example 4.3 (see also [9, Example 6.4.4]).
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Sobolev Mappings between Manifolds
and Metric Spaces

Piotr Haj�lasz

Abstract In connection with the theory of p-harmonic mappings, Eells and
Lemaire raised a question about density of smooth mappings in the space
of Sobolev mappings between manifolds. Recently Hang and Lin provided a
complete solution to this problem. The theory of Sobolev mappings between
manifolds has been extended to the case of Sobolev mappings with values
into metric spaces. Finally analysis on metric spaces, the theory of Carnot–
Carathéodory spaces, and the theory of quasiconformal mappings between
metric spaces led to the theory of Sobolev mappings between metric spaces.
The purpose of this paper is to provide a self-contained introduction to the
theory of Sobolev spaces between manifolds and metric spaces. The paper
also discusses new results of the author.

1 Introduction

For Ω ⊂ R
n and 1 � p <∞ we denote by W 1,p(Ω) the usual Sobolev space

of functions for which ‖u‖1,p = ‖u‖p + ‖∇u‖p < ∞. This definition can
easily be extended to the case of Riemannian manifolds W 1,p(M). Let now
M and N be compact Riemannian manifolds. We can always assume that
N is isometrically embedded in the Euclidean space R

ν (Nash’s theorem).
We also assume that the manifold N has no boundary, while M may have
boundary. This allows one to define the class of Sobolev mappings between
the two manifolds as follows:

W 1,p(M,N) = {u ∈W 1,p(M,Rν)| u(x) ∈ N a.e.}
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W 1,p(M,N) is equipped with the metric inherited from the norm �(u, v) =
‖u − v‖1,p. The space W 1,p(M,N) provides a natural setting for geometric
variational problems like, for example, weakly p-harmonic mappings (called
weakly harmonic mappings when p = 2). Weakly p-harmonic mappings are
stationary points of the functional

I(u) =
∫

M

|∇u|p for u ∈W 1,p(M,N).

Because of the constrain in the image (manifold N) one has to clarify how the
variation of this functional is defined. Let U ⊂ R

ν be a tubular neighborhood
of N , and let π : U → N be the smooth nearest point projection. For ϕ ∈
C∞

0 (M,Rν), and u ∈ W 1,p(M,N) the mapping u+ tϕ takes on values into U
provided that |t| is sufficiently small. Then we say that u is weakly p-harmonic
if

d

dt

∣∣∣
t=0
I(π(u + tϕ)) = 0 for all ϕ ∈ C∞

0 (M,Rν).

The condition that the mappings take values into the manifold N is a con-
strain that makes the corresponding Euler-Lagrange system

−div (|∇u|p−2∇u) = |∇u|p−2A(u)(∇u,∇u), (1.1)

very nonlinear and difficult to handle. Here, A is a second fundamental form
of the embedding of N into the Euclidean space (see, for example, [4, 16, 34,
41, 42, 48, 65, 69, 79, 80, 83, 84]). There is a huge and growing literature
on the subject, and it is impossible to list here all relevant papers, but the
reader can easily find other papers following the references in the papers cited
above.

Our main focus in this paper is the theory of Sobolev mappings between
manifolds, and later, the theory of Sobolev mappings between metric spaces,
rather than applications of this theory to variational problems, and the above
example was just to illustrate one of many areas in which the theory applies.

In connection with the theory of p-harmonic mappings, Eells and Lemaire
[18] raised a question about density of smooth mappings C∞(M,N) in
W 1,p(M,N). If p � n = dimM , then smooth mappings are dense in
W 1,p(M,N) [73, 74], but if p < n, the answer depends on the topology of
manifolds M and N . Recently, Hang and Lin [39] found a necessary and suf-
ficient condition for the density in terms of algebraic topology. Their result is
a correction of an earlier result of Bethuel [3] and a generalization of a result
of Haj�lasz [26]. To emphasize the connection of the problem with algebraic
topology, let us mention that it is possible to reformulate the Poincaré conjec-
ture (now a theorem) in terms of approximability of Sobolev mappings [25].
The theory of Sobolev mappings between manifolds has been extended to the
case of Sobolev mappings with values into metric spaces. The first papers on
this subject include the work of Ambrosio [2] on limits of classical variational
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problems and the work of Gromov and Schoen [24] on Sobolev mappings into
the Bruhat–Tits buildings, with applications to rigidity questions for discrete
groups. Later, the theory of Sobolev mappings with values into metric spaces
was developed in a more elaborated form by Korevaar and Schoen [55] in
their approach to the theory of harmonic mappings into Alexandrov spaces
of nonpositive curvature. Other papers on Sobolev mappings from a manifold
into a metric space include [12, 17, 49, 50, 51, 52, 70, 76]. Finally, analysis on
metric spaces, the theory of Carnot–Carathéodory spaces, and the theory of
quasiconformal mappings between metric spaces led to the theory of Sobolev
mappings between metric spaces [46, 47, 58, 81], among which the theory of
Newtonian–Sobolev mappings N1,p(X,Y ) is particularly important.

In Sect. 2, we discuss fundamental results concerning the density of smooth
mappings in W 1,p(M,N). Section 3 is devoted to a construction of the class
of Sobolev mappings from a manifold into a metric space. We also show there
that several natural questions to the density problem have negative answers
when we consider mappings from a manifold into a metric space. In Sect. 4,
we explain the construction and basic properties of Sobolev spaces on metric
measure spaces and, in final Sect. 5, we discuss recent development of the
theory of Sobolev mappings between metric spaces, including results about
approximation of mappings.

The notation in the paper is fairly standard. We assume that all manifolds
are compact (with or without boundary), smooth, and connected. We always
assume that such a manifold is equipped with a Riemannian metric, but
since all such metrics are equivalent, it is not important with which metric
we work. By a closed manifold we mean a smooth compact manifold without
boundary. The integral average of a function u over a set E is denoted by

uE =
∫
−
E

u dμ = μ(E)−1

∫

E

u dμ .

Balls are denoted by B and σB for σ > 0 denotes the ball concentric with
B whose radius is σ times that of B. The symbol C stands for a general
constant whose actual value may change within a single string of estimates.
We write A ≈ B if there is a constant C � 1 such that C−1A � B � CA.

2 Sobolev Mappings between Manifolds

It is easy to see and is well known that smooth functions are dense in the
Sobolev spaceW 1,p(M). Thus, if N is isometrically embedded into R

ν , it fol-
lows that every W 1,p(M,N) mapping can be approximated by C∞(M,Rν)
mappings and the question is whether we can approximate W 1,p(M,N) by
C∞(M,N) mappings. It was answered in the affirmative by Schoen and Uh-
lenbeck [73, 74] in the case p � n = dimM .
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Theorem 2.1. If p � n = dimM , then the class of smooth mappings
C∞(M,N) is dense in the Sobolev space W 1,p(M,N).

Proof.1 Assume that N is isometrically embedded in some Euclidean space
R
ν . If p > n, then the result is very easy. Indeed, let uk ∈ C∞(M,Rν) be a

sequence of smooth mappings that converge to u in theW 1,p norm. Since p >
n, the Sobolev embedding theorem implies that uk converges uniformly to u.
Hence for k � k0 values of the mappings uk belong to a tubular neighborhood
U ⊂ R

ν of N from which there is a smooth nearest point projection π : U →
N . Now π ◦ uk ∈ C∞(M,N) and π ◦ uk → π ◦ u = u in the W 1,p norm.
If p = n, then we do not have uniform convergence, but one still can prove
that the values of the approximating sequence uk whose construction is based
locally on the convolution approximation belong to the tubular neighborhood
of N for all sufficiently large k. This follows from the Poincaré inequality. To
see this, it suffices to consider the localized problem where the mappings
are defined on an Euclidean ball. Let u ∈ W 1,n(Bn(0, 1), N), and let u be
the extension of u to a neighborhood of the ball (by reflection). We define
uε = u∗ϕε, where ϕε is a standard mollifying kernel. The Poincaré inequality
yields

⎛
⎜⎝

∫
−

Bn(x,ε)

|u(y)− uε(x)|n dy

⎞
⎟⎠

1/n

� Cr

⎛
⎜⎝

∫
−

Bn(x,ε)

|∇u|n
⎞
⎟⎠

1/n

= C′

⎛
⎜⎝

∫

Bn(x,ε)

|∇u|n
⎞
⎟⎠

1/n

. (2.1)

The right-hand side (as a function of x) converges to 0 as ε→ 0 uniformly
on Bn(0, 1). Since

dist (uε(x), N) � |u(y)− uε(x)|

for all y, from (2.1) we conclude that

dist (uε(x), N)→ 0 as ε→ 0

uniformly on Bn(0, 1). Hence for ε < ε0 values of the smooth mappings uε
belong to U and thus π ◦ uε → π ◦ u = u as ε→ 0. 
�

Arguments used in the above proof lead to the following result.

1 See also Theorems 3.7 and 5.5.
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Proposition 2.2. If u ∈ W 1,p(M,N) can be approximated by continuous
Sobolev mappings C0 ∩W 1,p(M,N), then it can be approximated by smooth
C∞(M,N) mappings.

Proof. Indeed, if v ∈ C0 ∩W 1,p(M,N), then vε ⇒ v uniformly and hence
π ◦ vε → π ◦ v = v in W 1,p. 
�

A basic tool in the study of Sobolev mappings between manifolds is a
variant of the Fubini theorem for Sobolev functions. Let us illustrate it in
a simplest setting. Suppose that u, ui ∈ W 1,p([0, 1]n), ‖u − ui‖1,p → 0 as
i → ∞. Denote by (t, x), where t ∈ [0, 1], x ∈ [0, 1]n−1, points in the cube.
Then ∫

[0,1]n

|u− ui|p + |∇u−∇ui|p

=

1∫

0

⎛
⎜⎝

∫

[0,1]n−1

|u− ui|p + |∇u−∇ui|p dx

⎞
⎟⎠ dt

=

1∫

0

Fi(t) dt
i→∞−→ 0 .

Hence Fi → 0 in L1(0, 1) and so there is a subsequence uij such that Fij (t)→
0 for almost all t ∈ (0, 1). That means that for almost all t ∈ [0, 1] we
have u(t, ·), uij (t, ·) ∈W 1,p([0, 1]n−1) and uij (t, ·)→ u(t, ·) inW 1,p([0, 1]n−1).
Clearly, the same argument applies to lower dimensional slices of the cube.

As was already pointed out, if p < n = dimM , then density of smooth
mappings does not always hold. The first example of this type was provided by
Schoen and Uhlenbeck, and it is actually quite simple. A direct computation
shows that the radial projection

u0(x) = x/|x| : Bn(0, 1) \ {0} → Sn−1

belongs to the Sobolev space W 1,p(Bn, Sn−1) for all 1 � p < n. Shoen and
Uhlenbeck [73, 74] proved the following assertion.

Theorem 2.3. If n−1 � p < n, then the mapping u0 cannot be approximated
by smooth mappings C∞(Bn, Sn−1) in the W 1,p norm.

Proof. Suppose that there is a sequence uk ∈ C∞(Bn, Sn−1) such that ‖uk−
u0‖1,p → 0 as k → ∞ for some n − 1 � p < n. Then from the Fubini
theorem it follows that there is a subsequence (still denoted by uk) such that
for almost every 0 < r < 1
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uk|Sn−1(0,r) → u0|Sn−1(0,r)

in the W 1,p(Sn−1(0, r)) norm. If n− 1 < p < n, then the Sobolev embedding
theorem into Hölder continuous functions implies that uk restricted to such
spheres converges uniformly to u0

uk|Sn−1(0,r) ⇒ u0|Sn−1(0,r),

which is impossible because the Brouwer degree2 of uk|Sn−1(0,r) is 0 and
the degree of u0|Sn−1(0,r) is 1. The case p = n − 1 needs a different, but
related argument. The degree of a mapping v :M → N between two oriented
(n− 1)-dimensional compact manifolds without boundary can be defined by
the integral formula

deg v =
∫

M

detDv/volN,

and from the Hölder inequality it follows that the degree is continuous in the
W 1,n−1 norm. This implies that if uk → u0 in W 1,n−1(Sn−1(0, r)), then the
degree of uk|Sn−1(0,r) which is 0 converges to the degree of u0|Sn−1(0,r) is 1.
Again we obtain a contradiction. 
�

It turns out, however, that for 1 � p < n − 1 smooth maps are dense
in W 1,p(Bn, Sn−1). Indeed, the following result was proved by Bethuel and
Zheng [5].

Theorem 2.4. For 1 � p < k smooth mappings C∞(M,Sk) are dense in
W 1,p(M,Sk).

Proof. Let u ∈W 1,p(M,Sk). It is easy to see that for every x ∈ Sk and δ > 0
there is a Lipschitz retraction πx,δ : Sk → Sk \ B(x, δ), i.e., πx,δ ◦ πx,δ =
πx,δ, with the Lipschitz constant bounded by Cδ−1. Now we consider the
mapping ux,δ = πx,δ ◦ u. Since ux,δ maps M into the set Sk \ B(x, δ) which
is diffeomorphic with a closed k dimensional ball, it is easy to see that ux,δ
can be approximated by smooth maps from M to Sk \ B(x, δ) ⊂ Sk. Thus,
it remains to prove that for every ε > 0 there is δ > 0 and x ∈ Sk such that
‖u− ux,δ‖1,p < ε.

There are Cδ−k disjoint balls of radius δ on Sk. Such a family of balls is
denoted by B(xi, δ), i = 1, 2, . . . , Nδ, whereNδ ≈ δ−k. Note that the mapping
uxi,δ differs from u on the set u−1(B(xi, δ)) and this is a family of Nδ ≈ δ−k
disjoint subset of M . Therefore, there is i such that

∫

u−1(B(xi,δ))

|u|p + |∇u|p � Cδk‖u‖p1,p.

2 The degree is 0 because uk has continuous (actually smooth) extension to the entire ball.
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Using the fact that the Lipschitz constant of πxi,δ is bounded by Cδ−1, it is
easy to see that

∫

u−1(B(xi,δ))

|∇uxi,δ|p � Cδ−p
∫

u−1(B(xi,δ))

|∇u|p � Cδk−p‖u‖p1,p

Since u = uxi,δ on the complement of the set u−1(B(xi, δ)), we have

‖∇u−∇uxi,δ‖p =

⎛
⎜⎝

∫

u−1(B(xi,δ))

|∇u−∇uxi,δ|p
⎞
⎟⎠

1/p

�

⎛
⎜⎝

∫

u−1(B(xi,δ))

|∇u|p
⎞
⎟⎠

1/p

+

⎛
⎜⎝

∫

u−1(B(xi,δ))

|∇uxi,δ|p
⎞
⎟⎠

1/p

� C(δk/p + δ(k−p)/p)‖u‖1,p .

Since k − p > 0, this implies that for given ε > 0 there is δ > 0 and x ∈ Sk
such that ‖∇u−∇ux,δ‖1,p < ε. It remains to note that the mappings u and
ux,δ are also close in the Lp norm. Indeed, they are both uniformly bounded
(as mappings into the unit sphere) and they coincide outside a set of very
small measure. 
�

The above two results show that the answer to the problem of density of
smooth mappings in the Sobolev space W 1,p(M,N) depends of the topology
of the manifold N and perhaps also on the topology of the manifold M . We
find now necessary conditions for the density of C∞(M,N) in W 1,p(M,N).

The density result (Theorem 2.1) implies that ifM and N are two smooth
oriented compact manifolds without boundary, both of dimension n, then
we can define the degree of mappings in the class W 1,n(M,N). Indeed, if
u ∈ C∞(M,N), then the degree is defined in terms of the integral of the
Jacobian and then it can be extended to the entire space W 1,n(M,N) by the
density of smooth mappings. Thus,

deg : W 1,n(M,N)→ ZZ

is a continuous function and it coincides with the classical degree on the
subclass of smooth mappings. It turns out, however, that not only degree,
but also homotopy classes can be defined. This follows from the result of
White [85].
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Theorem 2.5. Let M and N be closed manifolds, and let n = dimM . Then
for every f ∈ W 1,n(M,N) there is ε > 0 such that any two smooth mappings
g1, g2 :M → N satisfying ‖f − gi‖1,n < ε for i = 1, 2 are homotopic.

Note that Theorem 2.5 is also a special case of Theorem 2.8 and Theo-
rem 5.5 below.

We use the above result to find the first necessary condition for the density
of smooth mappings in the Sobolev space. The following result is due to
Bethuel and Zheng [5] and Bethuel [3]. A simplified proof provided below is
taken from [25]. Let [p] denote the largest integer less than or equal to p. In
the following theorem, πk stands for the homotopy group.

Theorem 2.6. If π[p](N) �= 0 and 1 � p < n = dimM , then the smooth
mappings C∞(M,N) are not dense in W 1,p(M,N).

Proof. It is easy to construct a smooth mapping f : B[p]+1 → S[p] with two
singular points such that f restricted to small spheres centered at the singu-
larities have degree +1 and −1 respectively and f maps a neighborhood of
the boundary of the ball B[p]+1 into a point. We can model the singularities
on the radial projection mapping as in Theorem 2.3 so the mapping f belongs
toW 1,p. Let now g : B[p]+1×Sn−[p]−1 → S[p] be defined by g(b, s) = f(b). We
can embed the torus B[p]+1 × Sn−[p]−1 into the manifold M and extend the
mapping on the completion of this torus as a mapping into a point. Clearly,
g ∈W 1,p(M,S[p]). Let ϕ : S[p] → N be a smooth representative of a nontriv-
ial homotopy class. We prove that the mapping ϕ◦g ∈ W 1,p(M,N) cannot be
approximated by smooth mappings from C∞(M,N). By contrary, suppose
that uk ∈ C∞(M,N) converges to ϕ ◦ f in the W 1,p norm. In particular,
uk → ϕ◦g inW 1,p(B[p]+1×Sn−[p]−1, N). From the Fubini theorem it follows
that there is a subsequence of uk (still denoted by uk) such that for almost
every s ∈ Sn−[p]−1, uk restricted to the slice B[p]+1 × {s} converges to the
corresponding restriction of ϕ ◦ g in the Sobolev norm. Take such a slice and
denote it simply by B[p]+1. Again, by the Fubini theorem, uk restricted to
almost every sphere centered at the +1 singularity of f converges to the cor-
responding restriction of ϕ ◦ g in the Sobolev norm. Denote such a sphere by
S[p]. Hence uk|S[p] → ϕ ◦ g|S[p] in the space W 1,p(S[p], N). Now the mapping
uk|S[p] : S[p] → N is contractible (because it has a smooth extension to the
ball), while ϕ ◦ g|S[p] : S[p] → N is a smooth representative of a nontrivial
homotopy class π[p](N), so uk|S[p] cannot be homotopic to ϕ ◦ g|S[p] , which
contradicts Theorem 2.5. 
�

It turns out that, in some cases, the condition π[p](N) = 0 is also suffi-
cient for the density of smooth mappings. The following statement is due to
Bethuel [3].

Theorem 2.7. If 1 � p < n, then smooth mappings C∞(Bn, N) are dense
in W 1,p(Bn, N) if and only if π[p](N) = 0.



Sobolev Mappings between Manifolds and Metric Spaces 193

Actually, Bethuel [3] claimed a stronger result that π[p](N) = 0 is a nec-
essary and sufficient condition for the density of C∞(M,N) mappings in
W 1,p(M,N) for any compact manifold M of dimension dimM = n > p.
This, however, turned out to be false: Hang and Lin [38] provided a coun-
terexample to Bethuel’s claim by demonstrating that despite the equality
π3(CIP2) = 0, C∞(CIP3,CIP2) is not dense in W 1,3(CIP3,CIP2). Bethuel’s
claim made people believe that the problem of density of smooth mappings
in the Sobolev space has a local nature. However the example of Hang and
Lin and Theorem 2.7 shows that there might be global obstacles. Indeed, the
mapping constructed by Hang and Lin cannot be approximated by smooth
mappings C∞(CIP3,CIP2), however, since π3(CIP2) = 0, Theorem 2.7 shows
that this mapping can be smoothly approximated in a neighborhood of any
point in CIP3.

Therefore, searching for a necessary and sufficient condition for the den-
sity of smooth mappings, one has to take into account the topology of both
manifolds M and N , or rather the interplay between the topology of M and
the topology of N . Now we find such a necessary condition for the density
of smooth mappings. Before we start, we need to say a few words about the
behavior of Sobolev mappings on k-dimensional skeletons of generic smooth
triangulations.

Let the manifold M be equipped with a smooth triangulation Mk, k =
0, 1, 2, . . . , n = dimM . Since the skeletons of the triangulation are piecewise
smooth, it is not difficult to define the Sobolev space on skeletonsW 1,p(Mk).
There is no problem with the definition of Sobolev functions in the interiors of
the simplexes, but one needs to clarify how the Sobolev functions meet at the
boundaries, so that the function belongs to the Sobolev space not only in each
of the simplexes, but on the whole skeleton Mk. One possibility is to define
the Sobolev norm ‖u‖1,p for functions u that are Lipschitz continuous on
Mk and then define W 1,p by completion. Suppose now that u ∈ W 1,p(M). If
v ∈ W 1,p([0, 1]n), then, in general, it is not true that the function v restricted
to each slice {t}× [0, 1]n−1 belongs to the Sobolev space W 1,p([0, 1]n−1), but
it is true for almost all t ∈ [0, 1]. By the same reason, u restricted to Mk

does not necessarily belong to the Sobolev space W 1,p(Mk). This problem
can, however, be handled. Indeed, faces of the k dimensional skeletonMk can
be translated in the remaining directions which form an n − k dimensional
space. Hence, roughly speaking, with each skeleton Mk we can associate an
n − k dimensional family of skeletons.3 Now u restricted to almost every
skeleton in this family belongs to the Sobolev space W 1,p on that skeleton
by the Fubini theorem. We briefly summarize this construction by saying
that if u ∈ W 1,p(M), then u restricted to a generic k dimensional skeleton
Mk belongs to the Sobolev space W 1,p(Mk). Moreover, if u, ui ∈ W 1,p(M),
‖u − ui‖1,p → 0, then there is a subsequence uij such that uij → u in

3 This is not entirely obvious because we translate different faces in different directions
and we have to make sure that after all the faces glue together, so that we still have a
k-dimensional skeleton. This, however, can be done and there are no unexpected surprises.
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W 1,p(Mk) on generic k-dimensional skeletons. This follows from the Fubini
theorem argument explained above.

We say that two continuous mappings f, g : M → N are k-homotopic,
0 � k � n = dimM , if the restrictions of both mappings to the k-dimensional
skeleton of a triangulation of M are homotopic. Using elementary topology,
one can prove that the above definition does not depend on the choice of a
triangulation of M (see [39, Lemma 2.1]). Theorem 2.5 is a special case of a
more general result of White [85].

Theorem 2.8. Let M and N be closed manifolds, and let n = dimM . Then
for every f ∈ W 1,p(M,N), 1 � p � n, there is ε > 0 such that any two
Lipschitz mappings g1, g2 : M → N satisfying ‖f − gi‖1,p < ε, i = 1, 2 are
[p]-homotopic.

Another result that we frequently use is the homotopy extension theorem.
We state it only in a special case.

Theorem 2.9. Let M be a smooth compact manifold equipped with a smooth
trinagulation Mk, k = 0, 1, 2, . . . , n = dimM . Then for any topological space
X every continuous mapping

H : (M × {0}) ∪ (Mk × [0, 1])→ X

has a continuous extension to H̃ :M × [0, 1]→ X.

In particular, the theorem implies that if f : M → N is continuous and
g :Mk → N is homotopic to f |Mk , then g admits a continuous extension to
g̃ :M → N . We apply this observation below.

In the proof of the necessity of the condition π[p](N) = 0, we constructed
a map with the (n − [p] − 1)-dimensional singularity. The condition we will
present now will actually imply π[p](N) = 0 and, not surprisingly, our ar-
gument will also involve a construction of a map with the (n − [p] − 1)-
dimensional singularity.

Let 1 � p < n = dimM . Suppose that smooth mappings C∞(M,N)
are dense in W 1,p(M,N). Assume that M is endowed with a smooth tri-
angulation. Let h : M [p] → N be a Lipschitz mapping. Observe that if
f ∈ W 1,p(Sk, N), then the integration in spherical coordinates easily im-
plies that the mapping f(x) = f(x/|x|) belongs to W 1,p(Bk+1, N) provided
that p < k+1. Clearly, the ball Bk+1 can be replaced by a (k+1)-dimensional
simplex and Sk by its boundary. By this reason, the mapping h :M [p] → N
can be extended to a mapping in W 1,p(M [p]+1, N). The extension will have
singularity consisting of one point in each ([p] + 1)-dimensional simplex in
M [p]+1. Next, we can extend the mapping to W 1,p(M [p]+2, N). Now, the sin-
gularity is one dimensional. We can continue this process by extending the
mapping to higher dimensional skeletons. Eventually, we obtain a mapping
h ∈ W 1,p(M,N) with the (n − [p]− 1)-dimensional singularity located on a
dual skeleton to M [p].
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Let ui ∈ C∞(M,N) be such that ‖h − ui‖1,p → 0 as i → ∞. From the
Fubini theorem it follows that there is a subsequence uij such that uij → h
in W 1,p on generic [p]-dimensional skeletons, so

uij → h in W 1,p(M̃ [p], N) ,

where M̃ [p] is a “tilt” ofM [p]. Since h and uij are Lipschitz, from Theorem 2.8
it follows that uij is homotopic to h on M̃ [p] for all j � j0. Now, from the
homotopy extension theorem (see Theorem 2.9) it follows that the mapping
h|
M̃ [p] admits an extension to a continuous mapping h :M → N . Hence also
h :M [p] → N can be extended to a continuous mapping h′ :M → N .

We proved that every Lipschitz mapping h : M [p] → N admits a contin-
uous extension h′ : M → N . Since every continuous mapping f : M [p] → N
is homotopic to a Lipschitz mapping, another application of the homotopy
extension theorem implies that also f has continuous extension. We proved
the following assertion.

Proposition 2.10. If 1 � p < n = dimM and C∞(M,N) is dense in
W 1,p(M,N), then every continuous mapping f : M [p] → N can be extended
to a continuous mapping f ′ :M → N .

The following result provides a characterization of the property described
in the above proposition.

We say thatM has (k−1)-extension property with respect to N if for every
continuous mapping f ∈ C(Mk, N), f |Mk−1 has a continuous extension to
f̃ ∈ C(M,N).

Proposition 2.11. If 1 � k < n = dimM , then every continuous mapping
f : Mk → N can be extended to a continuous mapping f ′ : M → N if and
only if πk(N) = 0 and M has the (k − 1)-extension property with respect
to N .

Proof. Suppose that every continuous mapping f :Mk → N has a continuous
extension to f ′ :M → N . Then it is obvious thatM has the (k−1)-extension
property with respect to N . We need to prove that πk(N) = 0. Suppose that
πk(N) �= 0. LetΔ be a (k+1)-dimensional simplex inMk+1, and let ∂Δ be its
boundary. It is easy to see that there is a continuous retraction π :Mk → ∂Δ.
Let ϕ : ∂Δ→ N be a representative of a nontrivial element in the homotopy
group πk(N). Then ϕ cannot be extended to Δ. Hence f = ϕ ◦ π :Mk → N
has no continuous extension to M . We obtain a contradiction.

Now, suppose that πk(N) = 0 and M has the (k − 1)-extension property
with respect to N . Let f : Mk → N be continuous. We need to show that
f can be continuously extended to M . Let f̃ : M → N be a continuous
extension of f |Mk−1 .

The setMk×[0, 1] is the union of (k+1)-dimensional cells Δ×[0, 1], where
Δ is a k-dimensional simplex in Mk. Denote by (x, t) the points in Δ× [0, 1]
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and define the mapping on the boundary on each cell as follows:

H(x, 0) = f̃(x) for x ∈ Δ,

H(x, 1) = f(x) for x ∈ Δ,

H(x, t) = f̃(x) = f(x) for x ∈ ∂Δ.

Because πk(N) = 0, H can be continuously extended to the interior of each
cell. Denote by H :Mk× [0, 1]→ N the extension. Now, from the homotopy
extension theorem it follows that f :Mk → N admits a continuous extension
f ′ :M → N . 
�

Thus, if f ∈ W 1,p(M,N), 1 � p < n = dimM , can be approximated
by smooth mappings, then π[p](N) = 0 and for every continuous mapping
g :M [p] → N , g|M [p]−1 has a continuous extension to M .

Actually, this property was used by Hang and Lin [38] to demonstrate
that C∞(CIP3,CIP2) mappings are not dense in W 1,3(CIP3,CIP2) (despite
the fact that π3(CIP2) = 0).

Since the extension property is of topological nature, it is easier to work
with the natural CW structure of CIPn rater than with the triangulation and
the extension property can be equivalently formulated for CW structures.

It is well known that CIPn has a natural CW structure

CIP0 ⊂ CIP1 ⊂ . . . ⊂ CIPn.

If M = CIP3, then M2 = M3 = CIP1. Now, from the elementary algebraic
topology it follows that the identity mapping

i :M3 = CIP1 ⊂ CIP2

cannot be continuously extended to ĩ : CIP3 → CIP2 and since M2 = M3

we also have that i|M2 has no continuous extension. Thus, C∞(CIP3,CIP2)
mappings are not dense in W 1,p(CIP3,CIP2) (see [38, pp. 327-328] for more
details).

It turns out that the above necessary condition for density is also sufficient.
Namely, the following result was proved by Hang and Lin [39].

Theorem 2.12. Assume that M and N are compact smooth Riemannian
manifolds without boundary. If 1 � p < dimM , then smooth mappings
C∞(M,N) are dense in W 1,p(M,N) if and only if π[p](N) = 0 and M has
the ([p]− 1)-extension property with respect to N .

The following two corollaries easily follow from the theorem (see [39]).

Corollary 2.13. If 1 � p < n = dimM , k is an integer such that 0 � k �
[p] − 1, πi(M) = 0 for 1 � i � k, and πi(N) = 0 for k + 1 � i � [p], then
C∞(M,N) is dense in W 1,p(M,N).



Sobolev Mappings between Manifolds and Metric Spaces 197

Corollary 2.14. If 1 � p < n = dimM , πi(N) = 0 for [p] � i � n− 1, then
C∞(M,N) is dense in W 1,p(M,N).

In particular, Corollary 2.13 with k = 0 gives the following result that was
previously proved in [26].

Corollary 2.15. If 1 � p < n = dimM and π1(N) = π2(N) = . . . =
π[p](N) = 0, then C∞(M,N) is dense in W 1,p(M,N).

The reason why we stated this corollary in addition to Corollary 2.13 is
that, in the case of Sobolev mappings from metric spaces supporting Poincaré
inequalities into Lipschitz polyhedra, the homotopy condition from Corol-
lary 2.15 turns out to be necessary and sufficient for density (see Theo-
rem 5.6).

Another interesting question regarding density of smooth mappings is the
question about the density in the sequential weak topology. We do not discuss
this topic here and refer the reader to [26, 36, 37, 39, 40, 66, 67].

3 Sobolev Mappings into Metric Spaces

There were several approaches to the definition of the class of Sobolev map-
pings from a manifold, or just an open set in R

n into a metric space (see, for
example, [2, 24, 49, 55, 70]). The approach presented here is taken from [35]
and it is an elaboration of ideas of Ambrosio [2] and Reshetnyak [70]. One
of the benefits of the construction presented here is that the Sobolev space
of mappings into a metric space is equipped in a natural way with a metric,
so one can ask whether the class of Lipschitz mappings is dense. In the case
of mappings into metric spaces, it does not make sense to talk about smooth
mappings, so we need to consider Lipschitz mappings instead.

Since every metric space X admits an isometric embedding into a Banach
space4 V , the idea is to define the Sobolev space of functions with values into
a Banach space V and then define the Sobolev space of mappings with values
into X as

W 1,p(M,X) = {f ∈W 1,p(M,V )| f(M) ⊂ X} .
Since W 1,p(M,V ) is a Banach space, this approach equips W 1,p(M,X) with
a natural metric inherited from the norm of W 1,p(M,V ), just like in the
case of Sobolev mappings between manifolds. With this metric at hand, we
can ask under what conditions the class of Lipschitz mappings Lip (M,X) is
dense in W 1,p(M,X).

On the other hand, the approach described above depends on the isometric
embedding ofX into V , so it is useful to find another, equivalent and intrinsic

4 Every metric space admits an isometric embedding into the Banach space V = �∞(X)
of bounded functions on X. If, in addition, X is separable, then X admits an isometric
embedding into �∞.
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approach independent of the embedding. In this section, we describe both
such approaches. In our approach, we follow [35], where the reader can find
detailed proofs of results stated here.

For the sake of simplicity, we consider Sobolev functions defined on a
domain in R

n rather than on a manifold, but all the statements can easily
be generalized to the case of Sobolev functions defined on manifolds.

Before we define the Sobolev space of functions with values into a Banach
space, we need briefly recall the notion of the Bochner integral (see [15]).

Let V be a Banach space, E ⊂ R
n a measurable set, and 1 � p �∞. We

say that f ∈ Lp(E, V ) if

(1) f is essentially separable valued, i.e., f(E \ Z) is a separable subset of
V for some set Z of Lebesgue measure zero,

(2) f is weakly measurable, i.e., for every v∗ ∈ V ∗, 〈v∗, f〉 is measurable;

(3) ‖f‖ ∈ Lp(E).

If f =
k∑
i=1

aiχEi : E → V is a simple function, then the Bochner integral

is defined by the formula

∫

E

f(x) dx =
k∑
i=1

ai|Ei|

and for f ∈ L1(E, V ) the Bochner integral is defined as the limit of integrals
of simple functions that converge to f almost everywhere. The following two
properties of the Bochner integral are well known:

∥∥∥∥∥∥
∫

E

f(x) dx

∥∥∥∥∥∥ �
∫

E

‖f(x)‖ dx

and
〈
v∗,
∫

E

f(x) dx

〉
=
∫

E

〈v∗, f(x)〉 dx for all v∗ ∈ V ∗. (3.1)

In the theory of the Bochner integral, a measurable set E ⊂ R
n can be

replaced by a more general measure space. We need such a more general
setting later, in Sect. 5.

Let now Ω ⊂ R
n be an open set, and let V be a Banach space. It is natural

to define the Sobolev space W 1,p(Ω, V ) using the notion of weak derivative,
just like in the case of real valued functions. We say that f ∈ W 1,p(Ω, V )
if f ∈ Lp(Ω, V ) and for i = 1, 2, . . . , n there are functions fi ∈ Lp(Ω, V )
such that
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∫

Ω

∂ϕ

∂xi
(x)f(x) dx = −

∫

Ω

ϕ(x)fi(x) dx for all ϕ ∈ C∞
0 (Ω).

We denote fi = ∂f/∂xi and call these functions weak partial derivatives. We
also write ∇f = (∂f/∂x1, . . . , ∂f/∂xn) and

|∇f | =
(

n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥

2
)1/2

.

The space W 1,p(Ω, V ) is equipped with the norm

‖f‖1,p =

⎛
⎝
∫

Ω

‖f‖p
⎞
⎠

1/p

+

⎛
⎝
∫

Ω

|∇f |p
⎞
⎠

1/p

.

It is an easy exercise to show that W 1,p(Ω, V ) is a Banach space.
The problem with this definition is that it is not clear what conditions are

needed to guarantee that Lipschitz functions belong to the Sobolev space.
Indeed, a Lipschitz function f : [0, 1] → V need not be differentiable in
the Fréchet sense at any point, unless V has the Radon–Nikodym property
(see [61, p. 259]). Since we want to work with Sobolev mappings from the
geometric point of view, it is a very unpleasant situation.

There is another, more geometric, definition of the Sobolev space of func-
tions with values in Banach spaces which we describe now. The definition
below is motivated by the work of Ambrosio [2] and Reshetnyak [70].

Let Ω ⊂ R
n be an open set, V a Banach space, and 1 � p <∞. The space

R1,p(Ω, V ) is the class of all functions f ∈ Lp(Ω, V ) such that

(1) for every v∗ ∈ V ∗, ‖v∗‖ � 1 we have 〈v∗, f〉 ∈W 1,p(Ω);

(2) there is a nonnegative function g ∈ Lp(Ω) such that

|∇〈v∗, f〉| � g a.e. (3.2)

for every v∗ ∈ V ∗ with ‖v∗‖ � 1.

Using arguments similar to those in the proof of the completeness of Lp,
one can easily show that R1,p(Ω, V ) is a Banach space with respect to the
norm

‖f‖R1,p = ‖f‖p + inf ‖g‖p
where the infimum is over the class of all functions g satisfying the inequality
(3.2). Using the definitions and the property (3.1), one can easily prove the
following result (see [35]).

Proposition 3.1. If Ω ⊂ R
n is open and V is a Banach space, then

W 1,p(Ω, V ) ⊂ R1,p(Ω, V ) and ‖f‖R1,p � ‖f‖1,p for all f ∈ W 1,p(Ω, V ).
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However, we can prove the opposite inclusion only under additional as-
sumptions about the space V (see [35]).

Theorem 3.2. If Ω ⊂ R
n is open, V = Y ∗ is dual to a separable Banach

space Y , and 1 � p < ∞, then W 1,p(Ω, V ) = R1,p(Ω, V ) and ‖f‖R1,p �
‖f‖1,p � √n‖f‖R1,p.

Idea of the proof. One only needs to prove the inclusion R1,p ⊂ W 1,p along
with the estimate for the norm. Actually, the proof of this inclusion is quite
long and it consists of several steps. In the sketch provided below, many
delicate steps are omitted.

By the canonical embedding Y ⊂ Y ∗∗ = V ∗, elements of the Banach
space Y can be interpreted as functionals on V . Observe that if u : [0, 1] →
V is absolutely continuous, then for every v∗ ∈ Y the function 〈v∗, u〉 is
absolutely continuous, so it is differentiable almost everywhere and satisfies
the integration by parts formula. Since the space Y is separable, we have
almost everywhere the differentiability of 〈v∗, u〉 and the integration by parts
for all v∗ from a countable and dense subset of Y . This implies that the
function u : [0, 1]→ V is differentiable in a certain weak sense known as the
w∗-differentiability. Moreover, the w∗-derivative u′ : [0, 1] → V satisfies the
integration by parts formula

1∫

0

ϕ′(t)u(t) dt = −
1∫

0

ϕ(t)u′(t) dt.

Using this fact and the Fubini theorem, one can prove that a function
f ∈ Lp(Ω, V ) that is absolutely continuous on almost all lines parallel
to coordinate axes and such that the w∗-partial derivatives of f satisfy
‖∂f/∂xi‖ � g almost everywhere for some g ∈ Lp(Ω) belongs to the Sobolev
space W 1,p(Ω, V ), ‖f‖1,p � ‖f‖p +

√
n‖g‖p. This fact is similar to the well-

known characterization of the Sobolev space W 1,p(Ω) by absolute continuity
on lines.

At the last step, one proves that if f ∈ R1,p(Ω, V ), then f is absolutely con-
tinuous on almost all lines parallel to the coordinate axes and the w∗-partial
derivatives satisfy ‖∂f/∂xi‖ � g, where the function g ∈ Lp(Ω) satisfies
(3.2).

The above facts put together easily imply the result. 
�

One can prove the following more geometric characterization of the space
R1,p(Ω, V ) which is very useful (see [35]).

Theorem 3.3. Let Ω ⊂ R
n be open, V a Banach space and 1 � p < ∞.

Then f ∈ R1,p(Ω, V ) if and only if f ∈ Lp(Ω, V ) and there is a nonnegative
function g ∈ Lp(Ω) such that for every Lipschitz continuous function ϕ :
V → R, ϕ ◦ f ∈W 1,p(Ω) and |∇(ϕ ◦ f)| � Lip (ϕ)g almost everywhere.
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Idea of the proof. One implication is obvious. Indeed, if a function f sat-
isfies the condition described in the above theorem, then it belongs to the
space R1,p(Ω, V ) because for v∗ ∈ V ∗, ‖v∗‖ � 1, ϕ(v) = 〈v∗, v〉 is 1-Lipschitz
continuous and hence 〈v∗, f〉 ∈ W 1,p(Ω) with |∇〈v∗, f〉| � g almost every-
where.

In the other implication, we use the fact that R1,p(Ω, V ) functions are
absolutely continuous on almost all lines parallel to coordinate axes. This
implies that if ϕ : V → R is Lipschitz continuous, then also ϕ ◦ f is ab-
solutely continuous on almost all lines and hence ϕ ◦ f ∈ W 1,p(Ω) by the
characterization of W 1,p(Ω) in terms of absolute continuity on lines. �

Now we are ready to define the Sobolev space of mappings with values
into an arbitrary metric space. Let Ω ⊂ R

n be open, and let X be a metric
space. We can assume that X is isometrically embedded into a Banach space
V . We have now two natural definitions

W 1,p(Ω,X) = {f ∈W 1,p(Ω, V )| f(Ω) ⊂ X}

and
R1,p(Ω,X) = {f ∈ R1,p(Ω, V )| f(Ω) ⊂ X}

Both spaces W 1,p(Ω,X) and R1,p(Ω,X) are endowed with the norm metric.
Since every Lipschitz function ϕ : X → R can be extended to a Lipschitz

function ϕ̃ : V → R with the same Lipschitz constant (McShane extension),
we easily see that if X is compact and Ω is bounded, then f ∈ R1,p(Ω,X)
if and only if there is a nonnegative function g ∈ Lp(Ω) such that for every
Lipschitz continuous function ϕ : X → R we have ϕ ◦ f ∈ W 1,p(Ω) and
|∇(ϕ ◦ f)| � Lip (ϕ)g almost everywhere.

We assume here the compactness of X and boundedness of Ω to avoid
problems with the Lp integrability of f .

Observe that the last characterization of the space R1,p(Ω,X) is indepen-
dent of the isometric embedding of X into a Banach space.

As a direct application of Theorem 3.2, we have

Theorem 3.4. If Ω ⊂ R
n is open, V = Y ∗ is dual to a separable Banach

space Y , 1 � p <∞, and X ⊂ V , then W 1,p(Ω,X) = R1,p(Ω,X).

The most interesting case is that where the space X is separable. In this
case, X admits an isometric embedding to V = �∞ which is dual to a sepa-
rable Banach space, �∞ = (�1)∗ and hence Theorem 3.4 applies.

With a minor effort one can extend the above arguments to the case of
Sobolev spaces defined on a manifold, which leads to the spaces W 1,p(M,X)
and R1,p(M,X).

The following theorem is the main result in [35].
Suppose that any two points x, y ∈ X can be connected by a curve of finite

length. Then d�(x, y) defined as the infimum of lengths of curves connecting
x to y is a metric. We call it the length metric. Since d�(x, y) � d(x, y), it
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easily follows that if X is compact with respect to d�, then X is compact
with respect to d.

Theorem 3.5. Let X be a metric space, compact with respect to the length
metric. If n � 2, then there is a continuous Sobolev mapping f ∈ C0 ∩
W 1,n([0, 1]n, X) such that f([0, 1]n) = X.

3.1 Density

Once the space of Sobolev mappings with values into metric spaces has been
defined, we can ask under what conditions Lipschitz mappings Lip (M,X)
are dense in W 1,p(M,X) or in R1,p(M,X). In this section, we follow [30] and
provide several counterexamples to natural questions and very few positive
results. For the sake of simplicity, we assume that the metric space X is
compact and admits an isometric embedding into the Euclidean space. Thus,
X ⊂ R

ν and we simply define

W 1,p(M,X) = {f ∈W 1,p(M,Rν)| f(M) ⊂ X}.

If M and N are smooth compact manifolds, dimM = n, then, as we know
(Theorem 2.1), smooth mappings are dense inW 1,n(M,N). The key property
of N used in the proof was the existence of a smooth nearest point projection
from a tubular neighborhood of N . The proof employed the fact that the
composition with the smooth nearest point projection is continuous in the
Sobolev norm. It turns out that the composition with a Lipschitz mapping
need not be continuous in the Sobolev norm [30].

Theorem 3.6. There is a Lipschitz function ϕ ∈ Lip (R2) with compact
support such that the operator Φ : W 1,p([0, 1],R2) → W 1,p([0, 1]) defined as
composition Φ(f) = ϕ ◦ f is not continuous for any 1 � p <∞.

The proof of the continuity of composition with a smooth function ϕ is
based on the chain rule and continuity of the derivative ∇ϕ. If ϕ is just
Lipschitz continuous, then ∇ϕ is only measurable, so the proof does not work
and the existence of the example as in the theorem above is not surprising
after all (see, however, [64]).

Although the composition with a Lipschitz mapping is not continuous in
the Sobolev norm, we can still prove that Theorem 2.1 is true if we replace
N by a compact Lipschitz neighborhood retract.

We say that a closed set X ⊂ R
ν is a Lipschitz neighborhood retract if there

is an open neighborhood U ⊂ R
ν of X , X ⊂ U , and a Lipschitz retraction

π : U → X , π ◦ π = π.
The following result was proved in [30].
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Theorem 3.7. Let X ⊂ R
ν be a compact Lipschitz neighborhood retract.

Then for every smooth compact n-dimensional manifold M Lipschitz map-
pings Lip (M,X) are dense in W 1,p(M,X) for p � n.

Sketch of the proof. If f ∈ W 1,p(M,X) and fi ∈ C∞(M,Rν) is a smooth
approximation based on the mollification, then ‖fi − f‖1,p → 0 and for all
sufficiently large i the values of fi belong to U (Sobolev embedding for p > n
and Poincaré inequality for p = n), but there is no reason to claim that
π ◦fi → π ◦f = f . To overcome this problem, one needs to construct another
approximation ft ∈ Lip (M,Rν) such that

(1) Lipschitz constant of ft is bounded by Ct;

(2) tp|{f �= ft}| → 0 as t→∞;

(3) supx∈M dist (ft(x), X)→ 0 as t→∞.

The construction of such an approximation is not easy, but once we have it,
a routine calculation shows that ‖f − π ◦ ft‖1,p → 0 as t→∞. Indeed,

⎛
⎝
∫

M

|∇f −∇(π ◦ ft)|p
⎞
⎠

1/p

�

⎛
⎜⎝

∫

{f 
=ft}

|∇f |p
⎞
⎟⎠

1/p

+

⎛
⎜⎝

∫

{f 
=ft}

|∇(π ◦ ft)|p
⎞
⎟⎠

1/p

�

⎛
⎜⎝

∫

{f 
=ft}

|∇f |p
⎞
⎟⎠

1/p

+ Ct|{f �= ft}|1/p → 0 as t→∞.

The proof is complete. 
�

The class of Lipschitz neighborhood retracts contains Lipschitz submani-
folds of R

ν [63, Theorem 5.13].
In the following example, X is replaced by an n-dimensional submanifold

of the Euclidean space such that it is smooth except for a just one point, and
we no longer have the density of Lipschitz mappings [30].

Theorem 3.8. Let M ⊂ R
ν be a closed n-dimensional manifold. Then there

is a homeomorphism Φ ∈ C∞(Rν ,Rν) which is a diffeomorphism in R
ν \ {0}

which is identity outside a sufficiently large ball and has the property that
Lipschitz mappings Lip (M, M̃) are not dense in W 1,n(M, M̃), where M̃ =
Φ−1(M).
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Clearly, M̃ cannot be a Lipschitz neighborhood retract. The derivative of
the mapping Φ is zero at 0 and hence derivative of Φ−1 is unbounded in a
neighborhood of 0. This causes M̃ to have highly oscillating smooth “wrin-
kles” which accumulate at one point. In a neighborhood of that point, M̃ is
the graph of a continuous function which is smooth everywhere except for
this point. Actually, the construction is done in such a way that M̃ is W 1,n-
homeomorphic toM , but, due to high oscillations, there is no Lipschitz map-
ping fromM onto M̃ , and one proves that thisW 1,n-homeomorphism cannot
be approximated by Lipschitz mappings. This actually shows that there is
a continuous Sobolev mapping from M onto M̃ which cannot be approxi-
mated by Lipschitz mappings, a situation which never occurs in the case of
approximation of mappings between smooth manifolds (see Proposition 2.2).

Another interesting question is the stability of density of Lipschitz map-
pings with respect to bi-Lipschitz modifications of the target.

Assume that X and Y are compact subsets of R
ν that are bi-Lipschitz

homeomorphic. Assume that M is a closed n-dimensional manifold and Lip-
schitz mappings Lip (M,X) are dense in W 1,p(M,X) for some 1 � p < ∞.
Are the Lipschitz mappings Lip (M,Y ) dense in W 1,p(M,Y )?

Since bi-Lipschitz invariance is a fundamental principle in geometric anal-
ysis on metric spaces, one expects basic theorems and definitions to remain
unchanged when the ambient space is subject to a bi-Lipschitz transforma-
tion. Although the composition with a Lipschitz mapping is not continuous
in the Sobolev norm, there are several reasons to expect a positive answer to
remain in accordance with the principle.

First, if Φ : X → Y is a bi-Lipschitz mapping, then T (f) = Φ ◦ f induces
bijections

T :W 1,p(M,X)→W 1,p(M,Y ), T : Lip (M,X)→ Lip (M,Y ).

Second, have the following positive result [31].

Theorem 3.9. If Lipschitz mappings Lip (M,X) are dense in W 1,p(M,X)
in the following strong sense: for every ε > 0 there is fε ∈ Lip (M,X) such
that |{x| fε(x) �= f(x)}| < ε and ‖f − fε‖1,p < ε, then Lipschitz mappings
are dense in W 1,p(M,Y ).

The strong approximation property described in the theorem is quite natu-
ral because if f ∈ W 1,p(M,Rν), then for every ε > 0 there is a Lipschitz map-
ping fε ∈ Lip (M,Rν) such that |{x| fε(x) �= f(x)}| < ε and ‖f − fε‖1,p < ε.
Such an approximation argument was employed in the proof of Theorem 3.7.

The above facts are convincing reasons to believe that the answer to the
stability question should be positive. Surprisingly it is not. The following
counterexample was constructed in [30].

Theorem 3.10. Fix an integer n � 2. There is a compact and connected set
X ⊂ R

n+2 and a global bi-Lipschitz homeomorphism Φ : R
n+2 → R

n+2 with
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the property that for any closed n-dimensional manifold M smooth mappings
C∞(M,X) are dense in W 1,n(M,X), but Lipschitz mappings Lip (M,Y ) are
not dense in W 1,n(M,Y ), where Y = Φ(X).

By smooth mappings C∞(M,X) we mean smooth mappings from M to
R
n+2 with the image contained in X .
The space X constructed in the proof is quite irregular: it is the closure

of a carefully constructed sequence of smooth submanifolds that converges
to a manifold with a point singularity and all the manifolds are connected
by a fractal curve. The space X looks like a stack of pancakes. The proof
involves also a construction of a mapping f ∈ W 1,p(M,X) which can be
approximated by Lipschitz mappings, but the mappings that approximate f
do not coincide with f at any point, so the strong approximation property
from Theorem 3.9 is not satisfied.

4 Sobolev Spaces on Metric Measure Spaces

In order to define the space of Sobolev mappings between metric spaces, we
need first define Sobolev spaces on metric spaces equipped with so-called dou-
bling measures. By the end of the 1970s, it was discovered that a substantial
part of harmonic analysis could be generalized such spaces [14]. This included
the study of maximal functions, Hardy spaces and BMO, but it was only the
zeroth order analysis in the sense that no derivatives were involved. The
study of the first order analysis with suitable generalizations of derivatives,
fundamental theorem of calculus, and Sobolev spaces, in the setting of met-
ric spaces with a doubling measure was developed since the 1990s. This area
is growing and plays an important role in many areas of the contemporary
mathematics [43].

We recommend the reader a beautiful expository paper of Heinonen [44],
where the significance and broad scope of applications of the first order anal-
ysis on metric spaces is carefully explained.

We precede the definition of the Sobolev space with auxiliary definitions
and results. The material of Sects. 4.1–4.5 is standard by now. In our presen-
tation, we follow [29], where the reader can find detailed proofs.

4.1 Integration on rectifiable curves

Let (X, d) be a metric space. By a curve in X we mean any continuous
mapping γ : [a, b]→ X . The image of the curve is denoted by |γ| = γ([a, b]).
The length of γ is defined by
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�(γ) = sup

{
n−1∑
i=0

d(γ(ti), γ(ti+1))

}
,

where the supremum is taken over all partitions a = t0 < t1 < . . . < tn = b.
We say that the curve is rectifiable if �(γ) <∞. The length function associated
with a rectifiable curve γ : [a, b] → X is sγ : [a, b] → [0, �(γ)] given by
sγ(t) = �(γ|[a,t]). Not surprisingly, the length function is nondecreasing and
continuous.

It turns out that every rectifiable curve admits the arc-length parametriza-
tion.

Theorem 4.1. If γ : [a, b]→ X is a rectifiable curve, then there is a unique
curve γ̃ : [0, �(γ)]→ X such that

γ = γ̃ ◦ sγ . (4.1)

Moreover, �(γ̃|[0,t]) = t for every t ∈ [0, �(γ)]. In particular, γ̃ : [0, �(γ)]→ X
is a 1-Lipschitz mapping.

We call γ̃ parametrized by the arc-length because �(γ̃|[0,t]) = t for t ∈
[0, �(γ)].

Now we are ready to define the integrals along the rectifiable curves. Let
γ : [a, b] → X be a rectifiable curve, and let � : |γ| → [0,∞] be a Borel
measurable function, where |γ| = γ([a, b]). Then we define

∫

γ

� :=

�(γ)∫

0

�(γ̃(t)) dt,

where γ̃ : [0, �(γ)]→ X is the arc-length parametrization of γ.
It turns out that we can nicely express this integral in any Lipschitz

parametrization of γ.

Theorem 4.2. For every Lipschitz curve γ : [a, b]→ X the speed

|γ̇|(t) := lim
h→0

d(γ(t+ h), γ(t))
|h| ,

exists almost everywhere and

�(γ) =

b∫

a

|γ̇|(t) dt. (4.2)

Theorem 4.3. Let γ : [a, b]→ X be a Lipschitz curve, and let � : |γ| → [0,∞]
be Borel measurable. Then



Sobolev Mappings between Manifolds and Metric Spaces 207

∫

γ

� =

b∫

a

�(γ(t))|γ̇|(t) dt.

4.2 Modulus

In the study of geometric properties of Sobolev functions on Euclidean spaces,
the absolute continuity on almost all lines plays a crucial role. Thus, there
is a need to define a notion of almost all curves also in the setting of metric
spaces. This leads to the notion of the modulus of the family of rectifiable
curves, which is a kind of a measure in the space of all rectifiable curves.

Let (X, d, μ) be a metric measure space, i.e., a metric space with a Borel
measure that is positive and finite on every ball.

Let M denote the family of all nonconstant rectifiable curves in X . It may
happen that M = ∅, but we are interested in metric spaces for which the
space M is sufficiently large.

For Γ ⊂ M, let F (Γ ) be the family of all Borel measurable functions
� : X → [0,∞] such that

∫

γ

� � 1 for every γ ∈ Γ .

Now for each 1 � p <∞ we define

Mod p(Γ ) = inf
�∈F (Γ )

∫

X

�p dμ.

The number Mod p(Γ ) is called p-modulus of the family Γ .
The following result is easy to prove.

Theorem 4.4. Mod p is an outer measure on M.

If some property holds for all curves γ ∈ M \ Γ , where Mod p(Γ ) = 0,
then we say that the property holds for p-a.e. curve.

The notion of p-a.e.curve is consistent with the notion of almost every line
parallel to a coordinate axis. Indeed, if E ⊂ [0, 1]n−1 is Borel measurable and
we consider straight segments passing through E

ΓE = {γx′ : [0, 1]→ [0, 1]n : γx′(t) = (t, x′), x′ ∈ E}

then Mod p(ΓE) = 0 if and only if the (n−1)-dimensional Lebesgue measure
of E is zero. This fact easily follows from the definition of the modulus and
the Fubini theorem.
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4.3 Upper gradient

As before, we assume that (X, d, μ) is a metric measure space. Let u : X → R

be a Borel function. Following [46], we say that a Borel function g : X →
[0,∞] is an upper gradient of u if

|u(γ(a))− u(γ(b))| �
∫

γ

g (4.3)

for every rectifiable curve γ : [a, b] → X . We say that g is a p-weak upper
gradient of u if (4.3) holds on p-a.e. curve γ ∈M.

If g is an upper gradient of u and g̃ = g, μ-a.e., is another nonnegative Borel
function, then it may be that g̃ is no longer upper gradient of u. However,
we have the following assertion.

Lemma 4.5. If g is a p-weak upper gradient of u and g̃ is another nonnega-
tive Borel function such that g̃ = g μ-a.e., then g̃ is a p-weak upper gradient
of u too.

It turns out that p-weak upper gradients can be approximated in the Lp

norm by upper gradients.

Lemma 4.6. If g is a p-weak upper gradient of u which is finite almost
everywhere, then for every ε > 0 there is an upper gradient gε of u such that

gε � g everywhere and ‖gε − g‖Lp < ε.

We do not require here that g ∈ Lp.
The following result shows that the notion of an upper gradient is a natural

generalization of the length of the gradient to the setting of metric spaces
(see also Theorem 4.10).

Proposition 4.7. If u ∈ C∞(Ω), Ω ⊂ R
n, then |∇u| is an upper gradient

of u. This upper gradient is the least one in the sense that if g ∈ L1
loc(Ω) is

another upper gradient of u, then g � |∇u| almost everywhere.

4.4 Sobolev spaces N1,p

Let Ñ1,p(X, d, μ), 1 � p < ∞, be the class of all Lp integrable Borel
functions on X for which there exists a p-weak upper gradient in Lp. For
u ∈ Ñ1,p(X, d, μ) we define

‖u‖Ñ1,p = ‖u‖Lp + inf
g
‖g‖Lp,

where the infimum is taken over all p-weak upper gradients g of u.
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Lemma 4.6 shows that in the definition of Ñ1,p and ‖ ·‖Ñ1,p , p-weak upper
gradients can be replaced by upper gradients.

We define the equivalence relation in Ñ1,p as follows: u ∼ v if and only
if ‖u − v‖Ñ1,p = 0. Then the space N1,p(X, d, μ) is defined as the quotient
Ñ1,p(X, d, μ)/ ∼ and is equipped with the norm

‖u‖N1,p := ‖u‖Ñ1,p .

The space N1,p was introduced by Shanmugalingam [77].

Theorem 4.8. N1,p(X, d, μ), 1 � p <∞, is a Banach space.

One can prove that functions u ∈ N1,p(X, d, μ) are absolutely continuous
on almost all curves in the sense that for p-a.e. γ ∈ M, u ◦ γ̃ is absolutely
continuous, where γ̃ is the arc-length parametrization of γ. This fact, Propo-
sition 4.7, and the characterization of the classical Sobolev space W 1,p(Ω),
by the absolute continuity on lines, lead to the following result.

Theorem 4.9. If Ω ⊂ R
n is open and 1 � p <∞, then

N1,p(Ω, | · |,Ln) =W 1,p(Ω)

and the norms are equal.

Here, we consider the space N1,p on Ω regarded as a metric space with re-
spect to the Euclidean metric |·| and the Lebesgue measure Ln. The following
result supplements the above theorem.

Theorem 4.10. Any function u ∈W 1,p(Ω), 1 � p <∞, has a representative
for which |∇u| is a p-weak upper gradient. On the other hand, if g ∈ L1

loc is
a p-weak upper gradient of u, then g � |∇u| almost everywhere.

Both above theorems hold also when Ω is replaced by a Riemannian
manifold, and also, in this case, |∇u| is the least p-weak upper gradient of
u ∈W 1,p. Actually, one can prove that there always exists a minimal p-weak
upper gradient.

Theorem 4.11. For any u ∈ N1,p(X, d, μ) and 1 � p < ∞ there exists the
least p-weak upper gradient gu ∈ Lp of u. It is smallest in the sense that if
g ∈ Lp is another p-weak upper gradient of u, then g � gu μ-a.e.

4.5 Doubling measures

We say that a measure μ is doubling if there is a constant Cd � 1 (called
doubling constant) such that 0 < μ(2B) � Cdμ(B) < ∞ for every ball
B ⊂ X .
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We say that a metric space X is metric doubling if there is a constant
M > 0 such that every ball in X can be covered by at most M balls of half
the radius.

If μ is a doubling measure on X , then it easily follows that X is metric
doubling. In particular, bounded sets in X are totally bounded. Hence, if X
is a complete metric space equipped with a doubling measure, then bounded
and closed sets are compact.

The following beautiful characterization of metric spaces supporting dou-
bling measures was proved by Volberg and Konyagin [62, 82].

Theorem 4.12. Let X be a complete metric space. Then there is a doubling
measure on X if and only if X is metric doubling.

The doubling condition implies a lower bound for the measure of a ball.

Lemma 4.13. If the measure μ is doubling with the doubling constant Cd
and s = log2 Cd, then

μ(B(x, r))
μ(B0)

� 4−s
(
r

r0

)s
(4.4)

whenever B0 is a ball of radius r0, x ∈ B0 and r � r0.

The lemma easily follows from the iteration of the doubling inequality.
The exponent s is sharp as the example of the Lebesgue measure shows.

Metric spaces equipped with a doubling measure are called spaces of ho-
mogeneous type and s = log2 Cd = logCd/ log 2 is called homogeneous dimen-
sion.

An important class of doubling measures is formed by the so-called n-
regular measures5, which are measures for which there are constants C � 1
and s > 0 such that C−1rs � μ(B(x, r)) � Crs for all x ∈ X and 0 < r <
diam X . The s-regular measures are closely related to the Hausdorff measure
Hs since we have the following assertion.

Theorem 4.14. If μ is an s-regular measure, then there is a constant C �
1 such that C−1μ(E) � Hs(E) � Cμ(E) for every Borel set E ⊂ X. In
particular, Hs is s-regular too.

The proof is based on the so-called 5r-covering lemma.
For a locally integrable function g ∈ L1

loc(μ) we define the Hardy–
Littlewood maximal function

Mg(x) = sup
r>0

∫
−

B(x,r)

|g| dμ .

5 Called also Ahlfors–David regular measures.
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Theorem 4.15. If μ is doubling, then

1) μ({x : Mg(x) > t}) � Ct−1

∫

X

|g|dμ for every t > 0;

2) ‖Mg‖Lp � C‖g‖Lp, for 1 < p <∞.

4.6 Other spaces of Sobolev type

There are many other definitions of Sobolev type spaces on metric spaces that
we describe now (see [19, 27, 29, 32, 33]). Let (X, d, μ) be a metric measure
space with a doubling measure.

Following [27], for 0 < p < ∞ we define M1,p(X, d, μ) to be the set of all
functions u ∈ Lp(μ) for which there is 0 � g ∈ Lp(μ) such that

|u(x)− u(y)| � d(x, y)(g(x) + g(y)) μ-a.e. (4.5)

Then we set
‖u‖M1,p = ‖u‖p + inf

g
‖g‖p

where the infimum is taken over the class of all g satisfying (4.5). For p � 1,
‖ · ‖1,p is a norm and M1,p(X, d, μ) is a Banach space.

For a locally integrable function u we define the Calderón maximal func-
tion

u#1 (x) = sup
r>0
r−1

∫
−

B(x,r)

|u − uB| dμ .

Following [32], we define C1,p(X, d, μ) to be the class of all u ∈ Lp(μ) such
that u#1 ∈ Lp(μ). Again, for p � 1, C1,p(X, d, μ) is a Banach space with
respect to the norm

‖u‖C1,p = ‖u‖p + ‖u#1 ‖p .
Following [33], for 0 < p < ∞ we say that a locally integrable function u ∈
L1

loc belongs to the space P 1,p(X, d, μ) if there are σ � 1 and 0 � g ∈ Lp(μ)
such that

∫
−
B

|u− uB| dμ � r

⎛
⎝
∫
−
σB

gp dμ

⎞
⎠

1/p

for every ball B of radius r. (4.6)

We do not equip the space P 1,p with a norm.
To motivate the above definitions, we observe that u ∈W 1,p(Rn) satisfies

the pointwise inequality

|u(x)− u(y)| � C|x− y|(M|∇u|(x) +M|∇u|(y)) a.e.,
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where M|∇u| is the Hardy–Littlewood maximal function, so g = M|∇u| ∈
Lp for p > 1, and actually one can prove [27] that u ∈ W 1,p(Rn), p > 1,
if and only if u ∈ Lp and there is 0 � g ∈ Lp such that |u(x) − u(y)| �
|x− y|(g(x) + g(y)) almost everywhere. Moreover, ‖u‖1,p ≈ ‖u‖p + infg ‖g‖p.
Thus, for p > 1, W 1,p(Rn) = M1,p(Rn). In the case p = 1, M1,1(Rn) is not
equivalent with W 1,1(Rn) [28] (see, however, [57] and Theorem 4.16 below).

The classical Poincaré inequality
∫
−

B(x,r)

|u− uB(x,r)| � Cr
∫
−

B(x,r)

|∇u| (4.7)

implies that for u ∈W 1,p(Rn) the Calderón maximal function is bounded by
the maximal function of |∇u| and hence it belongs to Lp for p > 1. Calderón
[10] proved that for p > 1, u ∈ W 1,p(Rn) if and only if u ∈ Lp and u#1 ∈ Lp.
Moreover, ‖u‖1,p ≈ ‖u‖p + ‖u#1 ‖p. Thus, for p > 1, W 1,p(Rn) = C1,p(Rn).

The inequality (4.7) also implies that for p � 1, σ � 1, and u ∈W 1,p(Rn)
we have

∫
−
B

|u− uB| dx � Cr

⎛
⎝
∫
−
σB

|∇u|p dx
⎞
⎠

1/p

.

Thus, W 1,p(Rn) ⊂ P 1,p∩Lp. On the other hand, it was proved in [56, 19, 28]
that W 1,p(Rn) = P 1,p ∩ Lp for p � 1.

In the case of general metric spaces, we have the following assertion.

Theorem 4.16. If the measure μ is doubling and 1 � p <∞, then

C1,p(X, d, μ) =M1,p(X, d, μ) ⊂ P 1,p(X, d, μ) ∩ Lp(μ) ⊂ N1,p(X, d, μ) .

For a proof see [29, Corollary 10.5 and Theorem 9.3], [32, Theorem 3.4
and Lemma 3.6], and [71].

The so-called telescoping argument (infinite iteration of the inequality
(4.6) on a decreasing sequence of balls) shows that if u ∈ P 1,p(X, d, μ), then

|u(x)− u(y)| � Cd(x, y)((Mgp(x))1/p + (Mgp(y))1/p) a.e. (4.8)

(see [33]). A version of the same telescoping argument shows also that for
u ∈ L1

loc

|u(x)− u(y)| � Cd(x, y)(u#1 (x) + u#1 (y)) a.e.

(see [32, Lemma 3.6]). This implies that C1,p ⊂M1,p for p � 1. On the other
hand, if u ∈ M1,p and |u(x) − u(y)| � d(x, y)(g(x) + g(y)), then a direct
integration with respect to x and y yields
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∫
−
B

|u− uB| dμ � 4r
∫
−
B

g dμ � 4r

⎛
⎝
∫
−
B

gp dμ

⎞
⎠

1/p

.

Hence M1,p ⊂ P 1,p ∩ Lp and also

u#1 � 4Mg,

which shows that M1,p ⊂ C1,p for p > 1. Thus, C1,p = M1,p for p > 1. The
case p = 1 of this equality is more difficult (see [29, Theorem 9.3] and [71]).

For the proof of the remaining inclusion P 1,p ∩ Lp ⊂ N1,p see [29, Corol-
lary 10.5].

If a metric space X has no nonconstant rectifiable curves, then g = 0 is
an upper gradient of any u ∈ Lp and hence N1,p(X, d, μ) = Lp(μ). On the
other hand, the theory of Sobolev spaces M1,p, C1,p, and P 1,p is not trivial
in this case. Indeed, a variant of the above telescoping argument leads to
the estimate of |u− uB| by a generalized Riesz potential [33], and hence the
fractional integration theorem implies Sobolev embedding theorems. Many
results of the classical theory of Sobolev spaces extend to this situation (see,
for example, [27, 33, 29]), and we state just one of them.

Theorem 4.17. Let μ be a doubling measure, and let s = logCd/ log 2 be the
same as in Lemma 4.13. If u ∈ L1

loc(μ), σ � 1, and 0 � g ∈ Lp(μ), 0 < p < s
are such that the p-Poincaré inequality

∫
−
B

|u− uB| dμ � r

⎛
⎝
∫
−
σB

gp dμ

⎞
⎠

1/p

holds on every ball B of radius r, then for any p < q < s the Sobolev–Poincaré
inequality

⎛
⎝
∫
−
B

|u− uB|q∗ dμ
⎞
⎠

1/q∗

� Cr

⎛
⎝
∫
−

5σB

gq dμ

⎞
⎠

1/q

holds on every ball B of radius r, where q∗ = sq/(s − q) is the Sobolev
exponent.

This result implies Sobolev embedding for the spaces C1,p,M1,p, and P 1,p,
but not for N1,p.

Other results for C1,p,M1,p, and P 1,p spaces available in the general case of
metric spaces with doubling measure include Sobolev embedding into Hölder
continuous functions, Trudinger inequality, compact embedding theorem, em-
bedding on spheres, and extension theorems.
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4.7 Spaces supporting the Poincaré inequality

Metric spaces equipped with doubling measures are too general for the theory
ofN1,p spaces to be interesting. Indeed, if there are no nonconstant rectifiable
curves in X , then, as we have already observed, N1,p(X, d, μ) = Lp(μ). Thus,
we need impose additional conditions on the metric space that will imply,
in particular, the existence of many rectifiable curves. Such a condition was
discovered by Heinonen and Koskela [46].

We say that (X, d, μ) supports a p-Poincaré inequality, 1 � p <∞, if the
measure μ is doubling and there exist constants CP and σ � 1 such that
for every ball B ⊂ X , every Borel measurable function u ∈ L1(σB), and
every upper gradient 0 � g ∈ Lp(σB) of u on σB the following Poincaré type
inequality is satisfied:

∫
−
B

|u− uB| dμ � CP r

⎛
⎝
∫
−
σB

gp dμ

⎞
⎠

1/p

. (4.9)

Note that this condition immediately implies the existence of rectifiable
curves. Indeed, if u is not constant, then g = 0 cannot be an upper gradient
of u; otherwise, the inequality (4.9) would not be satisfied. More precisely,
we have the following assertion (see, for example, [33, Proposition 4.4]).

Theorem 4.18. If a space X supports a p-Poincaré inequality, then there is
a constant C > 0 such that any two points x, y ∈ X can be connected by a
curve of length less than or equal to Cd(x, y).

Clearly, R
n supports the p-Poincaré inequality for all 1 � p <∞. Another

example of spaces supporting Poincaré inequalities is provided by Riemannian
manifolds of nonnegative Ricci curvature [8, 72]. There are, however, many
examples of spaces supporting Poincaré inequalities which carry some mild
geometric structure, but do not resemble Riemannian manifolds [7, 45, 46, 59,
60, 75]. An important class of spaces that support the p-Poincaré inequality is
provided by the so-called Carnot groups [23, 68, 9] and more general Carnot–
Carathéodory spaces [22, 23]. For the sake of simplicity, only the simplest case
of the Heisenberg group is described here.

The Heisenberg group H1 can be identified with R
3 ≡ C×R equipped with

the noncommutative group law (z1, t1)·(z2, t2) = (z1+z2, t1+t2+2Im (z1z2)).
It is equipped with a non-Riemannian metric d(x, y) = ‖a−1 · b‖, where
‖(z, t)‖ = (|z|4 + t2)1/2. This metric is bi-Lipschitz equivalent to another
so-called Carnot–Carathéodory metric. The metric d is quite exotic because
the Hausdorff dimension of (H1, d) is 4, while topological dimension is 3.
The applications of the Heisenberg group include several complex variables,
subelliptic equations and noncommutative harmonic analysis [78]. More re-
cently, it was a subject of an intense study from the perspective of geometric
measure theory [21, 9].
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If a space (X, d, μ) supports the p-Poincaré inequality, u ∈ N1,p(X, d, μ),
and 0 � g ∈ Lp(μ) is an upper gradient of u, then the p-Poincaré inequality
(4.9) is satisfied and hence the Sobolev embedding (Theorem 4.17) holds.
One can actually prove that, in this case, we can take q = p, i.e.,

⎛
⎝
∫
−
B

|u− uB|p∗ dμ
⎞
⎠

1/p∗

� Cr

⎛
⎝
∫
−

5σB

gp dμ

⎞
⎠

1/p

on every ball B of radius r, where 1 � p < s and p∗ = sp/(s− p) (see [33]).
A direct application of the Hölder inequality shows that if a space supports

a p-Poincaré inequality, then it also supports a q-Poincaré inequality for all
q > p. On the other hand, we have the following important result of Keith
and Zhong [54].

Theorem 4.19. If a complete metric measure space supports a p-Poincaré
inequality for some p > 1, then it also supports a q-Poincaré inequality for
some 1 � q < p.

This important result implies that, in the case of spaces supporting the
p-Poincaré inequality, other approaches to Sobolev spaces described in the
previous section are equivalent.

Theorem 4.20. If the space supports the p-Poincaré inequality, 1 < p <∞,
then C1,p(X, d, μ) =M1,p(X, d, μ) = P 1,p(X, d, μ) ∩ Lp(μ) = N1,p(X, d, μ).

Indeed, prior to the work of Keith and Zhong it was known that the spaces
are equal provided that the space supports the q-Poincaré inequality for some
1 � q < p (see, for example, [29, Theorem 11.3]).

Spaces supporting Poincaré inequalities play a fundamental role in the
modern theory of quasiconformal mappings [46, 47], geometric rigidity prob-
lems [7], nonlinear subelliptic equations (see, for example, [11, 22, 20, 33, 34]),
and nonlinear potential theory [1, 6].

Although the known examples show that spaces supporting a Poincaré
inequality can be very exotic, surprisingly, one can prove that such spaces
are always equipped with a weak differentiable structure [13, 53].

5 Sobolev Mappings between Metric Spaces

Throughout this section, we assume that (X, d, μ) is a metric measure space
equipped with a doubling measure. Let Y be another metric space. The con-
struction of the space of Sobolev mappings between metric spaces N1,p(X,Y )
is similar to that in Sect. 3 with the difference that the classical Sobolev space
is replaced by the Sobolev space N1,p. The space N1,p(X,Y ) was introduced
in [47].
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Let V be a Banach space. Following [47], we say that F ∈ Ñ1,p(X,V )
if F ∈ Lp(X,V ) (in the Bochner sense) and there is a Borel measurable
function 0 � g ∈ Lp(μ) such that

‖F (γ(a))− F (γ(b))‖ �
∫

γ

g

for every rectifiable curve γ : [a, b] → X . We call g an upper gradient of F .
We also define

‖F‖1,p = ‖F‖p + inf
g
‖g‖p,

where the infimum is taken over all upper gradients of F . Now we define
N1,p(X,V ) = Ñ1,p(X,V )/ ∼, where F1 ∼ F2 when ‖F1 − F2‖1,p = 0.

As in the case ofN1,p(X, d, μ) spaces, the p-upper gradient can be replaced
by p-weak upper gradient in the above definition. The following two results
were proved in [47] (see also [31] for Theorem 5.2).

Theorem 5.1. N1,p(X,V ) is a Banach space.

Theorem 5.2. Suppose that the space (X, d, μ) supports the p-Poincaré in-
equality for some 1 � p <∞. Then for every Banach space V the pair (X,V )
supports the p-Poincaré inequality in the following sense: there is a constant
C > 0 such that for every ball B ⊂ X, for every F ∈ L1(6σB, V ), and for
every 0 � g ∈ Lp(6σB) being a p-weak upper gradient of F on 6σB the
following inequality is satisfied:

∫
−
B

‖F − FB‖ dμ � C(diam B)

⎛
⎝
∫
−

6σB

gp dμ

⎞
⎠

1/p

. (5.1)

The Poincaré inequality (5.1) and the standard telescoping argument im-
plies the following pointwise inequality: if F ∈ N1,p(X,V ) and 0 � g ∈ Lp(μ)
is a p-weak upper gradient of F , then

‖F (x)− F (y)‖ � Cd(x, y)((Mgp(x))1/p + (Mgp(y))1/p)

almost everywhere, where, on the right-hand side, we have the maximal func-
tion, just like in the case of the equality (4.8).

In particular, F restricted to the set Et = {x : Mgp < tp} is Lipschitz
continuous with the Lipschitz constant Ct. Using the Lipschitz extension
of F |Et to the entire space X (McShane extension), one can prove [31] the
following assertion.

Theorem 5.3. Suppose that the space (X, d, μ) supports the p-Poincaré in-
equality for some 1 � p < ∞ and V is a Banach space. If F ∈ N1,p(X,V ),
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then for every ε > 0 there is a Lipschitz mapping G ∈ Lip (X,V ) such that
μ{x : F (x) �= G(x)} < ε and ‖F −G‖1,p < ε.

As we have seen in the previous section, the Poincaré inequality plays a
crucial role in the development of the theory of Sobolev spaces on metric
spaces. Since such an inequality is also valid for N1,p(X,V ) spaces, Theo-
rem 5.2, many results true for N1,p(X, d, μ) like, for example, Sobolev em-
bedding theorems can be generalized to N1,p(X,V ) spaces (see [47]).

Now, if Y is a metric space isometrically embedded into a Banach space
V , Y ⊂ V , we define

N1,p(X,Y ) = {F ∈ N1,p(X,V ) : F (X) ⊂ Y } .

Since N1,p(X,V ) is a Banach space, N1,p(X,Y ) is equipped with a norm
metric.

If X is an open set in R
n or X is a compact manifold, then the space

N1,p(X, d, μ) is equivalent with the classical Sobolev space (see Theorem 4.9).
Hence, in this case, the definition of N1,p(Ω, Y ) (or N1,p(M,Y )) is equivalent
with that of R1,p(Ω, Y ) (or R1,p(M,Y )) described in Sect. 3 (see [47]).

If F ∈ N1,p(X,Y ), then, according to Theorem 5.3, F can be approxi-
mated by Lipschitz mappings Lip (X,V ) and the question is: Under what
conditions F can be approximated by Lip (X,Y ) mappings?

This is a question about extension of the theory described in Sect. 2 to the
case of Sobolev mappings between metric spaces and it was formulated ex-
plicitly by Heinonen, Koskela, Shanmugalingam, and Tyson [47, Remark 6.9].

An answer to this question cannot be easy because, as soon as we leave the
setting of manifolds, we have many unpleasant counterexamples like those in
Sect. 3. A particularly dangerous situation is created by the lack of stability
with respect to bi-Lipschitz deformations of the target (Theorem 3.10). In-
deed, in most situations, there is no canonical way to choose a metric on Y
and we are free to choose any metric in the class of bi-Lipschitz equivalent
metrics.

An example of spaces supporting the p-Poincaré inequality is provided
by the Heisenberg group and, more generally, Carnot groups and Carnot–
Carathéodory spaces. In this setting, Gromov [23, Sect. 2.5.E] stated as an
open problem the extension of the results from Sect. 2 to the case of map-
pings from Carnot–Carathéodory spaces to Riemannian manifolds. Thus, the
question of Heinonen, Koskela, Shanmugalingam, and Tyson can be regarded
and a more general form of Gromov’s problem.

The following result was proved in [31] (see Theorem 3.9 above).

Theorem 5.4. Suppose that (X, d, μ) is a doubling metric measure space
of finite measure μ(X) < ∞ and Y1, Y2 are two bi-Lipschitz homeomorphic
metric spaces of finite diameter isometrically embedded into Banach spaces
V1 and V2 respectively. Suppose that Lipschitz mappings Lip (X,Y1) are dense
in N1,p(X,Y1), 1 � p < ∞, in the following strong sense: for any f ∈
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N1,p(X,Y1) and ε > 0 there is fε ∈ Lip (X,Y1) such that μ({x : f(x) �=
fε(x)}) < ε and ‖f − fε‖1,p < ε. Then the Lipschitz mappings Lip (X,Y2)
are dense in N1,p(X,Y2).

This result shows that, in the case in which we can prove strong density,
there is no problem with the bi-Lipschitz invariance of the density.

It turns out that also White’s theorem (Theorem 2.5) and the density
result of Schoen and Uhlenbeck (Theorems 2.1 and 3.7) can be generalized to
the setting of mappings between metric spaces. Theorem 5.4 plays a crucial
role in the proof.

Theorem 5.5. Let (X, d, μ) be a metric measure space of finite measure
μ(X) <∞ supporting the p-Poincaré inequality. If p � s = logCd/ log 2 and
Y is a compact metric doubling space which is bi-Lipschitz homeomorphic to
a Lipschitz neighborhood retract of a Banach space, then for every isometric
embedding of Y into a Banach space Lipschitz mappings Lip (X,Y ) are dense
in N1,p(X,Y ). Moreover, for every f ∈ N1,p(X,Y ) there is ε > 0 such that
if f1, f2 ∈ Lip (X,Y ) satisfy ‖f − fi‖1,p < ε, i = 1, 2, then the mappings f1
and f2 are homotopic.

5.1 Lipschitz polyhedra

By a simplicial complex we mean a finite collection K of simplexes in some
Euclidean space R

ν such that

1) if σ ∈ K and τ is a face of σ, then τ ∈ K;

2) if σ, τ ∈ K, then either σ∩ τ = ∅ or σ∩ τ is a common face of σ and τ .

The set |K| =
⋃
σ∈K σ is called a rectilinear polyhedron. By a Lipschitz

polyhedron we mean any metric space which is bi-Lipschitz homeomorphic to
a rectilinear polyhedron. The main result of [31] reads as follows.

Theorem 5.6. Let Y be a Lipschitz polyhedron, and let 1 � p <∞. Then the
class of Lipschitz mappings Lip (X,Y ) is dense in N1,p(X,Y ) for every met-
ric measure space X of finite measure that supports the p-Poincaré inequality
if and only if π1(Y ) = π2(Y ) = . . . = π[p](Y ) = 0.

Observe that the density of Lipschitz mappings does not depend on the
particular choice of the metric in Y in the class of bi-Lipschitz equivalent met-
rics, only on the topology of Y . This is because, in the proof of Theorem 5.6,
one shows the strong approximation property described in Theorem 5.4. The-
orem 5.6 can be regarded as a partial answer to the problems of Heinonen,
Koskela, Shanmugalingam, and Tyson and also to the problem of Gromov.
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(JEMS) 5, 1–40 (2003)

12. Capogna, L., Lin, F.-H.: Legendrian energy minimizers. I. Heisenberg group target.
Calc. Var. Partial Differ. Equ. 12 , 145–171 (2001)

13. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom.
Funct. Anal. 9, 428–517 (1999)

14. Coifman, R., Weiss, G.: Analyse Harmonique sur Certains Espaces Homogenes. Lect.
Notes Math. 242, Springer (1971)

15. Diestel, J., Uhl, J.J., Jr.: Vector Measures. Am. Math. Soc., Providence, RI (1977)

16. Duzaar, F., Mingione, G.: The p-harmonic approximation and the regularity of p-
harmonic maps. Calc. Var. Partial Differ. Equ. 20, 235–256 (2004)

17. Eells, J., Fuglede, B.: Harmonic Maps between Riemannian Polyhedra. Cambridge
Univ. Press, Cambridge (2001)

18. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10, 1–68
(1978)

19. Franchi, B.; Haj�lasz, P.; Koskela, P.: Definitions of Sobolev classes on metric spaces.
Ann. Inst. Fourier (Grenoble) 49, 1903–1924 (1999)

20. Franchi, B., Gutiérrez, C.E., Wheeden, R.L.: Weighted Sobolev–Poincaré inequalities
for Grushin type operators. Commun. Partial Differ. Equ. 19, 523–604 (1994)

21. Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the
Heisenberg group. Math. Ann. 321, 479–531 (2001)

22. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-
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Abstract We find best constants in several dilation invariant integral in-
equalities involving derivatives of functions. Some of these inequalities are
new and some were known without best constants. In particular, we deal
with an estimate for a quadratic form of the gradient, weighted G̊arding
inequality for the biharmonic operator, dilation invariant Hardy’s inequali-
ties with remainder term, a generalized Hardy–Sobolev inequality with sharp
constant, and the Hardy inequality with sharp Sobolev remainder term.

1 Introduction

The classical integral inequality

‖u‖Lq(Rn) � C ‖∇lu‖Lp(Rn), (1.1)

where u is an arbitrary function in C∞
0 (Rn), obtained by Sobolev [48] for
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possesses the property of invariance under dilations x→ λx with λ = const �=
0. This property obviously ensures that the above value of q is the only
possible one. The best constant C was found in [18] and [33] (see also [37,
Sect. 1.4.2]) for l = 1, p = 1 and in [47, 4, 50] for l = 1, p > 1.

The present article consists of five independent sections dealing with vari-
ous dilation invariant integral inequalities with optimal constants. We briefly
describe the contents, starting with Sect. 1.

Let us recall the Gagliardo–Nirenberg inequality [25, 46]

‖v‖L2(R2) � C ‖∇v‖L1(R2), v ∈ C∞
0 (R2). (1.2)

Setting v = |∇u|, we observe that the Dirichlet integral of u admits the
estimate ∫

R2

|∇u|2dx � C
(∫

R2

|∇2u| dx
)2

, (1.3)

where
|∇2u|2 = |ux1x1 |2 + 2|ux1x2 |2 + |ux2x2 |2.

One can see that it is impossible to improve (1.3), replacing |∇2u| on the
right-hand side by |Δu|. Indeed, it suffices to put a sequence of mollifications
of the function x → η(x) log |x|, where η ∈ C∞

0 (R2), η(0) �= 0, into the
estimate in question in order to check its failure.

However, we show that the estimate of the same nature

∣∣∣
∫

R2

2∑
i,j=1

ai,j uxi uxj dx
∣∣∣ � C

(∫

R2

|Δu| dx
)2

,

where ai,j = const and u is an arbitrary complex-valued function in C∞
0 (R2),

may hold if and only if a11 +a22 = 0. We also find the best constant C in the
last inequality. This is a particular case of Theorem 2.1 proved in Sect. 1.

In Sect. 2, we establish a new weighted G̊arding type inequality
∫

R2

|∇2u|2 log(e2|x|)−1dx � Re
∫

R2

Δ2u · u log |x|−1dx (1.4)

for all u ∈ C∞
0 (R2\{0}). Estimates of such a kind proved to be useful in the

study of boundary behavior of solutions to elliptic equations (see [36, 43, 38,
39, 16, 32]).

Before turning to the contents of the next section, we introduce some
notation. By R

n
+ we denote the half-space {x = (x1, . . . xn) ∈ R

n, xn > 0}.
Also let R

n−1 = ∂Rn+. As usual, C∞
0 (Rn+) and C∞

0 (Rn+) stand for the spaces
of infinitely differentiable functions with compact support in R

n
+ and Rn+

respectively.
In Sect. 3, we are concerned with the inequality
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∫

R
n
+

xn |∇u|2dx � Λ
∫

R
n
+

|u|2
(x2n−1 + x2n)1/2

dx, u ∈ C∞
0 (Rn+). (1.5)

It was obtained in 1972 by one of the authors and proved to be useful in the
study of the generic case of degeneration in the oblique derivative problem
for second order elliptic differential operators [34].

Substituting u(x) = x−1/2
n v(x) into (1.5), one deduces with the same Λ

that ∫

R
n
+

|∇v|2dx � 1
4

∫

R
n
+

|v|2dx
x2n

+ Λ
∫

R
n
+

|v|2dx
xn(x2n−1 + x2n)1/2

(1.6)

for all v ∈ C∞
0 (Rn+) (see [37, Sect. 2.1.6]).

Another inequality of a similar nature obtained in [37] is
∫

R
n
+

|∇v|2dx � 1
4

∫

R
n
+

|v|2
x2n
dx+ C ‖xγn v ‖2Lq(Rn

+). (1.7)

(This is a special case of the inequality (2.1.6/3) in [37].)
Without the second term on the right-hand sides of (1.6) and (1.7), these

inequalities reduce to the classical Hardy inequality with the sharp constant
1/4 (see [13]). An interesting feature of (1.6) and (1.7) is their dilation in-
variance.

Variants, extensions, and refinements of (1.6) and (1.7), usually called
Hardy’s inequalities with remainder term, became the theme of many subse-
quent studies [2, 1, 3, 8, 5, 6, 7, 9, 10, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24,
27, 29, 51, 52, 53, 54, 55, 56] et al).

In Theorem 4.1 proved in Sect. 3, we find a condition on the function q
which is necessary and sufficient for the inequality
∫

R
n
+

|∇v|2dx− 1
4

∫

R
n
+

|v|2dx
x2n

� C
∫

R
n
+

q
( xn

(x2n−1 + x2n)1/2

) |v|2dx
xn (x2n−1 + x2n)1/2

,

(1.8)
where v is an arbitrary function in C∞

0 (Rn+). This condition implies, in par-
ticular, that the right-hand side of (1.6) can be replaced by

C

∫

R
n
+

|v|2dx
x2n

(
1− log

xn
(x2n−1 + x2n)1/2

)2 .

The value Λ = 1/16 in (1.5) obtained in [34] is not the best possible.
Tidblom [54] replaced it by 1/8. As a corollary of Theorem 4.1, we find an
expression for the optimal value of Λ.

Let a measure μb be defined by
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μb(K) =
∫

K

dx

|x|b (1.9)

for any compact set K in R
n. In Sect. 4 we obtain the best constant in the

inequality

‖u‖Lτ,q(μb) � C
(∫

Rn

|∇u(x)|p dx|x|a
)1/p

,

where the left-hand side is the quasinorm in the Lorentz space Lτ,q(μb), i.e.,

‖u‖Lτ,q(μb) =
( ∞∫

0

(
μb{x : |u(x)| � t})q/τd(tq))1/q

.

As a particular case of this result, we obtain the best constant in the Hardy–
Sobolev inequality

⎛
⎝
∫

Rn

|u(x)|q dx|x|b

⎞
⎠

1/q

� C
(∫

Rn

|∇u(x)|p dx|x|a
)1/p

, (1.10)

first proved by Il’in [30, Theorem 1.4] in 1961 without discussion of the value
of C. Our result is a direct consequence of the capacitary integral inequality
from [39] combined with an isocapacitary inequality. For particular cases, the
best constant C was found in [11] (p = 2), [35, Sect. 2] (p = 1, a = 0), [26]
(p = 2, n = 3, a = 0), [31] (p = 2, n � 3, a = 0), and [45] (1 < p < n, a = 0),
where different methods were used.

The topic of the concluding section (Sect. 5) is the best constant C in the
inequality (1.7), where u ∈ C∞(Rn+) and u = 0 on R

n−1.
Recently, Tertikas and Tintarev [51] obtained (among other results) the

existence of an optimizer in (1.7) in the case γ = 0, q = 2n/(n− 2), n � 4.
However, for these values of γ, q, and n the best value of C is unknown.
In the case n = 3, γ = 0, q = 6 Benguria, Frank, and Loss [7] proved the
nonexistence of an optimizer and found the best value of C by an ingenious
argument.

We note in Sect. 5 that a similar problem can be easily solved for the
special case q = 2(n+ 1)/(n− 1) and γ = −1/(n+ 1).

2 Estimate for a Quadratic Form of the Gradient

Theorem 2.1. Let n � 2, and let A = ‖aij‖ni,j=1 be an arbitrary matrix with
constant complex entries. The inequality
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∣∣∣
∫

Rn

〈A∇u,∇u〉Cn dx
∣∣∣ � C

(∫

Rn

∣∣(−Δ)
n+2

4 u
∣∣ dx
)2

, (2.1)

where C is a positive constant, holds for all complex-valued u ∈ C∞
0 (Rn) if

and only if the trace of A is equal to zero. The best value of C is given by

C =
(4π)−n/2

Γ
(
n
2 + 1

) max
ω∈Sn−1

∣∣∣ ∑
1�i,j�n

aij ωiωj

∣∣∣, (2.2)

where Sn−1 is the (n− 1)-dimensional unit sphere in R
n.

(The notation (−Δ)s in (2.1) stands for an integer or noninteger power of
−Δ.)

Proof. By F we denote the unitary Fourier transform in R
n defined by

Fh(ξ) = (2π)−n/2
∫

Rn

h(x) e−i x·ξ dx. (2.3)

We set h = (−Δ)(n+2)/4u and write (2.1) in the form

∣∣∣
∫

Rn

|Fh(ξ)|2
〈
A
ξ

|ξ| ,
ξ

|ξ|
〉

Cn

dξ

|ξ|n
∣∣∣ � C

(∫

Rn

|h(x)| dx
)2

. (2.4)

The singular integral on the left-hand side exists in the sense of the Cauchy
principal value since

∫

Sn−1

〈Aω, ω〉Cn dsω = n−1|Sn−1|TrA = 0,

where TrA is the trace of A (see, for example, [44, Chapt. 9, Sect. 1] or [49,
Theorem 4.7]). Let

k(ξ) = |ξ|−n
〈
A
ξ

|ξ| ,
ξ

|ξ|
〉

Cn
.

The left-hand side of (2.4) is equal to

∣∣∣
∫

Rn

F−1
(
k(ξ)

(Fh)(ξ))(x)h(x) dx
∣∣∣ = (2π)−n/2

∣∣∣
∫

Rn

(
(F−1k) ∗ h)(x)h(x) dx

∣∣∣

with ∗ meaning the convolution. Thus, the inequality (2.4) becomes

∣∣∣
∫

Rn

(
(F−1k) ∗ h)(x)h(x) dx

∣∣∣ � (2π)n/2 C
(∫

Rn

|h(x)| dx
)2

. (2.5)

We note that for ξ ∈ R
n
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k(ξ) = |ξ|−n−2
( n∑
j=1

ajj
(
ξ2j − n−1|ξ|2)+

n∑
i,j=1
i�=j

aijξiξj

)
. (2.6)

Hence for n > 2

k(ξ) =
1

n (n− 2)

n∑
i,j=1

aij
∂2

∂ξi∂ξj
|ξ|2−n, (2.7)

and for n = 2

k(ξ) =
1
2

2∑
i,j=1

aij
∂2

∂ξi∂ξj
log |ξ|−1. (2.8)

Applying F−1 to the identity

−Δξ
( ∂2

∂ξi∂ξj

|ξ|2−n
|Sn−1| (n− 2)

)
=

∂2

∂ξi∂ξj
δ(ξ),

where n > 2 and δ is the Dirac function, from (2.7) we obtain

(F−1k
)
(x) =

−|Sn−1|
n (2π)n/2

n∑
i,j=1

aij
xixj
|x|2 . (2.9)

Here, |Sn−1| stands for the (n− 1)-dimensional measure of Sn−1:

|Sn−1| = 2π
n
2

Γ (n2 )
. (2.10)

Hence (F−1k
)
(x) =

−2−n/2

Γ (1 + n
2 )

n∑
i,j=1

aij
xixj
|x|2 . (2.11)

Similarly, from (2.8) we deduce that (2.11) holds for n = 2 as well. Now, (2.1)
with C given by (2.2) follows from (2.11) inserted into (2.5).

Next, we show the sharpness of C given by (2.2). Let θ denote a point on
Sn−1 such that ∣∣(F−1k

)
(θ)
∣∣ = max

ξ∈Rn\{0}
|F−1k(ξ)|. (2.12)

In order to obtain the required lower estimate for C, it suffices to set

h(x) = η(|x|) δθ
( x
|x|
)
,

where η ∈ C∞
0 [0,∞), η � 0, and δθ is the Dirac measure on Sn−1 concen-

trated at θ, into the inequality (2.5). (The legitimacy of this choice of h can
be easily checked by approximation.) Then the estimate (2.5) becomes
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∣∣∣
∞∫

0

∞∫

0

(F−1k
)( ρ− r
|ρ− r|θ

)
η(r) rn−1 η(ρ) ρn−1drdρ

∣∣∣

� (2π)n/2 C
( ∞∫

0

η(ρ) ρn−1dρ
)2

. (2.13)

In view of (2.9) and (2.11),
(F−1k

)
(±θ) =

(F−1k
)
(θ)

which, together with (2.12), enables one to write (2.13) in the form

max
ξ∈Rn\{0}

|F−1k(ξ)| � (2π)n/2 C.

By (2.9) and (2.11), this can be written as

|Sn−1|
n (2π)n/2

max
ω∈Sn−1

∣∣∣ ∑
1�i,j�n

aij ωiωj

∣∣∣ � (2π)n/2 C.

The result follows from (2.10). 
�

Remark 2.1. Let P and Q be functions, positively homogeneous of degrees
2m and m+n/2 respectively, m > −n/2. We assume that the restrictions of
P , Q, and P |Q|−2 to Sn−1 belong to L1(Sn−1), By the same argument as in
Theorem 2.1, one concludes that the condition

∫

Sn−1

P (ω)
|Q(ω)|2 dsω = 0 (2.14)

is necessary and sufficient for the inequality
∣∣∣
∫

Rn

P (D)u · u dx
∣∣∣ � C

(∫

Rn

∣∣Q(D)u
∣∣ dx
)2

(2.15)

to hold for all u ∈ C∞
0 (Rn). Moreover, using the classical formula for the

Fourier transform of a positively homogeneous function of degree −n (see
[49, Theorem 4.11]1), one finds that the best value of C in (2.15) is given by

sup
ω∈Sn−1

∣∣∣
∫

Sn−1

( iπ
2

sgn(θ · ω) + log |θ · ω|
) P (θ)
|Q(θ)|2 dsθ

∣∣∣. (2.16)

1 Note that the definition of the Fourier transform in [49] contains exp(−2πi x · ξ) unlike
(2.3).
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In particular, if P (ω)/|Q(ω)|2 is a spherical harmonic, the best value of C in
(2.15) is equal to

(4π)−n/2Γ (m)
Γ
(
n
2 +m

) max
ω∈Sn−1

|P (ω)|
|Q(ω)|2 , (2.17)

which coincides with (2.2) for m = 1, P (ξ) = Aξ · ξ, and Q(ξ) = |ξ|1+n/2. �

One can notice that the argument used in the proof of (2.15) leads to the
stronger estimate

∣∣∣
∫

Rn

P (D)u · v dx
∣∣∣ � C ‖Q(D)u‖L1(Rn) ‖Q(D)v‖L1(Rn) (2.18)

for all u and v in C∞
0 (Rn).

Next, we discuss one more inequality of a similar nature. Let A be a sym-
metric 2×2-matrix with constant real entries which generates the hyperbolic
operator P (D) = div(A∇). Then for all u and v in C∞

0 (R2) the following
sharp inequality holds:
∣∣∣
∫

R2

P (D)u · v dx
∣∣∣ � 8−1|detA|−1/2 ‖P (D)u‖L1(R2) ‖P (D)v‖L1(R2). (2.19)

This is almost a special case of (2.15). The only difference is that the
integral on the left-hand side of (2.14) should be understood as the Cauchy
principal value. A more direct way to (2.18) is through the inequality

∣∣∣
∫

R2

ux1 vx2 dx
∣∣∣ � 4−1‖ux1x2‖L1(R2) ‖vx1x2‖L1(R2), (2.20)

which follows from the obvious sharp estimate

‖w‖L∞(R2) � 4−1 ‖wx1x2‖L1(R2)

for w ∈ C∞
0 (R2).

3 Weighted G̊arding Inequality for the Biharmonic
Operator

We start with an auxiliary Hardy type inequality.

Lemma 3.1. Let u ∈ C∞
0 (R2). Then the following sharp inequality holds:

∣∣∣Re
∫

R2

(
x1ux1 + x2ux2

)
Δu
dx

|x|2
∣∣∣ �
∫

R2

|Δu|2dx. (3.1)
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Proof. Let (r, ϕ) denote polar coordinates in R
2, and let

u(r, ϕ) =
∞∑

k=−∞
uk(r)eikϕ.

Then (3.1) is equivalent to the sequence of inequalities

∣∣∣Re

∞∫

0

(
v′′ +

1
r
v′ − k

2

r2
v
)
v′ dr

∣∣∣ �
∞∫

0

∣∣∣v′′ +
1
r
v′ − k

2

r2
v
∣∣∣2r dr, k = 0, 1, 2, . . . ,

(3.2)
where v is an arbitrary function on C∞

0 ([0,∞)). Putting t = log r−1 and
w(t) = v(e−t), we write (3.2) in the form

∣∣∣Re
∫

R1

(
w′′ − k2w)w′ e2t dt

∣∣∣ �
∫

R1

∣∣w′′ − k2w∣∣2 e2t dt

which is equivalent to the inequality
∣∣∣Re
∫

R1

(
g′′ − 2g′ + (1− k2)g

)(
g′ − g)dt

∣∣∣ �
∫

R1

∣∣g′′ − 2g′ + (1− k2)g
∣∣2dt, (3.3)

where g = etw. Making use of the Fourier transform in t, we see that (3.3)
holds if and only if for all λ ∈ R

1 and k = 0, 1, 2 . . .
∣∣∣Re
(−λ2 + 1− k2 − 2iλ

)(
1− iλ)

∣∣∣ � (λ2 − 1 + k2
)2 + 4λ2,

which is the same as
∣∣3x− 1 + k2

∣∣ � x2 + 2(k2 + 1)x+ (k2 − 1)2

with x = λ2. This elementary inequality becomes equality if and only if k = 0
and x = 0. 
�

Remark 3.1. In spite of the simplicity of its proof, the inequality (3.1) deserves
some interest. Let us denote the integral over R

2 on the left-hand side of (3.1)
by Q(u, u) and write (3.1) as

|ReQ(u, u)| � ‖Δu‖L2(R2).

However, the absolute value of the corresponding sesquilinear form Q(u, v)
cannot be majorized by C‖Δu‖L2(R2)‖Δv‖L2(R2). Indeed, the opposite asser-
tion would yield an upper estimate of ‖r−1∂u/∂r‖L2(R2) by the norm of Δu
in L2(R2), which is wrong for a function linear near the origin. �
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Remark 3.2. Note that, under the additional orthogonality assumption

2π∫

0

u(r, ϕ)dϕ = 0 for r > 0, (3.4)

the above proof of Lemma 3.1 provides the inequality (3.1) with the sharp
constant factor 3/4 on the right-hand side. Moreover, (3.4) implies

Re
∫

R2

(
x1ux1 + x2ux2

)
Δu
dx

|x|2 � 0. �

Using (3.1), we establish a new weighted G̊arding type inequality.

Theorem 3.1. Let u ∈ C∞
0 (R2\{0}). Then the inequality (1.4) holds.

Proof. Clearly, the right-hand side of (1.4) is equal to

Re
∫

R2

ΔuΔ (u log |x|−1) dx

=
∫

R2

|Δu|2 log |x|−1dx+ 2Re
∫

R2

Δu · ∇u · ∇ log |x|−1dx.

Combining this identity with (3.1), we arrive at the inequality
∫

R2

|Δu|2 log(e2 |x|)−1dx � Re
∫

R2

ΔuΔ(u log |x|−1) dx. (3.5)

Note that ∫

R2

Δu ·Δu · log |x|−1 = −
∫

R2

∇u · ∇(Δu · log |x|−1) dx

= Re
∫

R2

2∑
j=1

(
∇ ∂u
∂xj
· ∂
∂xj
∇u · log |x|−1 +∇u · ∂

∂xj
∇u · ∂

∂xj

(
log |x|−1

))
dx,

which is equal to

∫

R2

(
2∑

j,k=1

∣∣∣ ∂2u

∂xj∂xk

∣∣∣2 log |x|−1 +
1
2

2∑
j=1

∂

∂xj
|∇u|2 · ∂

∂xj

(
log |x|−1

))
dx.

Integrating by parts in the second term, we see that it vanishes. Thus, we
conclude that
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∫

R2

|Δu|2 log |x|−1dx =
∫

R2

|∇2u|2 log |x|−1dx

which, together with (3.1) and the obvious identity
∫

R2

|Δu|2dx =
∫

R2

|∇2u|2dx,

completes the proof of (1.4).
In order to see that no constant less than 1 is admissible in front of the

integral on the right-hand side of (1.4), it suffices to put

u(x) = ei〈x,ξ〉 η(x)

with η ∈ C∞
0 (R2)\{0} into (1.4) and take the limit as |ξ| → ∞. 
�

Remark 3.3. If the condition u = 0 near the origin in Theorem 3.1 is removed,
the above proof gives the additional term

π
(
|∇u(0)|2 − 2 Re

(
u(0)Δu(0)

))

on the right-hand side of (1.4). �

4 Dilation Invariant Hardy’s Inequalities with
Remainder Term

Theorem 4.1. (i) Let q denote a locally integrable nonnegative function on
(0, 1). The best constant in the inequality

∫

R
n
+

xn |∇u|2dx � C
∫

R
n
+

q
( xn

(x2n−1 + x2n)1/2

) |u|2
(x2n−1 + x2n)1/2

dx, (4.1)

for all u ∈ C∞
0 (Rn+), which is equivalent to (1.8), is given by

λ := inf

π/2∫

0

(∣∣y′(ϕ)
∣∣2 +

1
4

∣∣y(ϕ)
∣∣2) sinϕdϕ

π/2∫

0

∣∣y(ϕ)
∣∣2q(sinϕ) dϕ

, (4.2)

where the infimum is taken over all smooth functions on [0, π/2].
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(ii) The inequalities (4.1) and (1.8) with positive C hold if and only if

sup
t∈(0,1)

(1− log t)

t∫

0

q(τ) dτ <∞. (4.3)

Moreover,

λ ∼
(

sup
t∈(0,1)

(1− log t)

t∫

0

q(τ) dτ
)−1

, (4.4)

where a ∼ b means that c1a � b � c2a with absolute positive constants c1
and c2.

Proof. (i) Let U ∈ C∞
0 (R2

+), ζ ∈ C∞
0 (Rn−2), x′ = (x1, . . . xn−2), and let

N = const > 0. Putting

u(x) = N (2−n)/2ζ(N−1x′)U(xn−1, xn)

into (4.1) and passing to the limit as N →∞, we see that (4.1) is equivalent
to the inequality
∫

R
2
+

x2
(|Ux1 |2 + |Ux2 |2

)
dx1dx2 � C

∫

R
2
+

q
( x2

(x21 + x22)1/2

) |U |2dx1dx2
(x21 + x22)1/2

, (4.5)

where U ∈ C∞
0 (R2

+). Let (ρ, ϕ) be the polar coordinates of (x1, x2) ∈ R
2
+.

Then (4.5) can be written as

∞∫

0

π∫

0

(
|Uρ|2 + ρ−2|Uϕ|2

)
sinϕdϕρ2dρ � C

∞∫

0

π∫

0

|U |2q(sinϕ) dϕdρ.

By the substitution U(ρ, ϕ) = ρ−1/2v(ρ, ϕ), the left-hand side becomes

∞∫

0

π∫

0

(
|ρvρ|2 + |vϕ|2 +

1
4
|v|2
)

sinϕdϕ
dρ

ρ
− Re

π∫

0

∞∫

0

v vρ dρ sinϕdϕ. (4.6)

Since v(0) = 0, the second term in (4.6) vanishes. Therefore, (4.5) can be
written in the form

∞∫

0

π∫

0

(
|ρvρ|2 + |vϕ|2 +

1
4
|v|2
)

sinϕdϕ
dρ

ρ
� C

∞∫

0

π∫

0

|v|2q(sinϕ) dϕ
dρ

ρ
. (4.7)

Now, the definition (4.2) of λ shows that (4.7) holds with C = λ.



Sharp Dilation Invariant Integral Inequalities 235

In order to show the optimality of this value of C, put t = log ρ and
v(ρ, ϕ) = w(t, ϕ). Then (4.7) is equivalent to

∫

R1

π∫

0

(|wt|2 + |wϕ|2 +
1
4
|w|2) sinϕdϕdt � C

∫

R1

π∫

0

|w|2q(sinϕ)dϕdt. (4.8)

Applying the Fourier transform w(t, ϕ)→ ŵ(s, ϕ), we obtain

∫

R1

π∫

0

(
|ŵϕ|2 +

(
|s|2 +

1
4

)
|ŵ|2
)

sinϕdϕds � C
∫

R1

π∫

0

|ŵ|2q(sinϕ)dϕds. (4.9)

Putting here
ŵ(s, ϕ) = ε−1/2η(s/ε)y(ϕ),

where η ∈ C∞
0 (R1), ‖η‖L2(R1) = 1, and y is a function on C∞([0, π]), and

passing to the limit as ε→ 0, we arrive at the estimate

π∫

0

(
|y′(ϕ)|2 +

1
4
|y(ϕ)|2

)
sinϕdϕ � C

π∫

0

|y(ϕ)|2q(sinϕ)dϕ, (4.10)

where π can be changed for π/2 by symmetry. This, together with (4.2),
implies Λ � λ. The proof of (i) is complete.

(ii) Introducing the new variable ξ = log cot ϕ2 , we write (4.2) as

λ = inf
z

∞∫

0

(
|z′(ξ)|2 +

|z(ξ)|2
4 (cosh ξ)2

)
dξ

∞∫

0

|z(ξ)|2 q
( 1

cosh ξ

) dξ

cosh ξ

. (4.11)

Since

|z(0)|2 � 2

1∫

0

(|z′(ξ)|2 + |z(ξ)|2)dξ

and
∞∫

0

|z(ξ)|2 e2ξ

(1 + e2ξ)2
dξ � 2

∞∫

0

|z(ξ)− z(0)|2 dξ
ξ2

+ 2 |z(0)|2
∞∫

0

e2ξ

(1 + e2ξ)2
dξ

� 8

∞∫

0

|z′(ξ)|2dξ + |z(0)|2,
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from (4.11) it follows that

λ ∼ inf
z

∞∫

0

|z′(ξ)|2dξ + |z(0)|2

∞∫

0

|z(ξ)|2 q
( 1

cosh ξ

) dξ

cosh ξ

. (4.12)

Setting z(ξ) = 1 and z(ξ) = min{η−1ξ, 1} for all positive ξ and fixed η > 0
into the ratio of quadratic forms in (4.12), we deduce that

λ � min
{( ∞∫

0

q
( 1

cosh ξ

) dξ

cosh ξ

)−1

,
(

sup
η>0
η

∞∫

η

q
( 1

cosh ξ

) dξ

cosh ξ

)−1}
.

Hence

λ � c
(

sup
t∈(0,1)

(1− log t)

t∫

0

q(τ) dτ
)−1

.

In order to obtain the converse estimate, note that

∞∫

0

|z(ξ)|2 q
( 1

cosh ξ

) dξ

cosh ξ

� 2 |z(0)|2
∞∫

0

q
( 1

cosh ξ

) dξ

cosh ξ
+ 2

∞∫

0

|z(ξ)− z(0)|2 q
( 1

cosh ξ

) dξ

cosh ξ
.

The second term on the right-hand side is dominated by

8 sup
η>0

(
η

∞∫

η

q
( 1

cosh ξ

) dξ

cosh ξ

) ∞∫

0

|z′(ξ)|2dξ

(see, for example, [37, Sect. 1.3.1]). Therefore,

∞∫

0

|z(ξ)|2 q
( 1

cosh ξ

) dξ

cosh ξ
� 8 max

{ ∞∫

0

q
( 1

cosh ξ

) dξ

cosh ξ
,

sup
η>0
η

∞∫

η

q
( 1

coshσ

) dσ

coshσ

}( ∞∫

0

|z′(ξ)|2dξ + |z(0)|2
)

which, together with (4.12), leads to the lower estimate
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λ � min
{( ∞∫

0

q
( 1

cosh ξ

) dξ

cosh ξ

)−1

,
(

sup
η>0
η

∞∫

η

q
( 1

cosh ξ

) dξ

cosh ξ

)−1}
.

Hence

λ � c
(

sup
t∈(0,1)

(1− log t)

t∫

0

q(τ) dτ
)−1

.

The proof of (ii) is complete. 
�
Since (4.3) holds for q(t) = t−1(1− log t)−2, Theorem 4.1 (ii) leads to the

following assertion.

Corollary 4.1. There exists an absolute constant C > 0 such that the in-
equality
∫

R
n
+

|∇v|2dx − 1
4

∫

R
n
+

|v|2dx
x2n

� C
∫

R
n
+

|v|2dx
x2n

(
1− log

xn
(x2n−1 + x2n)1/2

)2 (4.13)

holds for all v ∈ C∞
0 (Rn+). The best value of C is equal to

λ := inf

π∫

0

[∣∣y′(ϕ)
∣∣2 +

1
4

∣∣y(ϕ)
∣∣2] sinϕdϕ

π∫

0

∣∣y(ϕ)
∣∣2(sinϕ)−1

(
1− log sinϕ)−2dϕ

, (4.14)

where the infimum is taken over all smooth functions on [0, π/2]. By numer-
ical approximation, λ = 0.16 . . .

A particular case of Theorem 4.1 corresponding to q = 1 is the following
assertion.

Corollary 4.2. The sharp value of Λ in (1.5) and (1.6) is equal to

λ := inf

π∫

0

[∣∣y′(ϕ)
∣∣2 +

1
4

∣∣y(ϕ)
∣∣2] sinϕdϕ

π∫

0

∣∣y(ϕ)
∣∣2dϕ

, (4.15)

where the infimum is taken over all smooth functions on [0, π]. By numerical
approximation, λ = 0.1564 . . .
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Remark 4.1. Let us consider the Friedrichs extension L̃ of the operator

L : z → −((sinϕ)z′
)′ +

sinϕ
4
z (4.16)

defined on smooth functions on [0, π]. It is a simple exercise to show that the
energy space of L̃ is compactly imbedded into L2(0, π). Hence the spectrum
of L̃ is discrete and λ defined by (4.15) is the smallest eigenvalue of L̃. �

Remark 4.2. The argument used in the proof of Theorem 4.1 (i) with obvious
changes enables one to obtain the following more general fact. Let P and Q
be measurable nonnegative functions in R

n, positive homogeneous of degrees
2μ and 2μ− 2 respectively. The sharp value of C in

∫

Rn

P (x)|∇u|2dx � C
∫

Rn

Q(x)|u|2dx, u ∈ C∞
0 (Rn), (4.17)

is equal to

λ := inf

∫

Sn−1

P (ω)
(
|∇ωY |2 +

(
μ− 1 +

n

2
)2|Y |2

)
dsω

∫

Sn−1

Q(ω)|Y |2dsω
,

where the infimum is taken over all smooth functions on the unit sphere
Sn−1. �

A direct consequence of this assertion is the following particular case of
(4.17).

Remark 4.3. Let p and q stand for locally integrable nonnegative functions
on (0, 1], and let μ ∈ R

1. If n > 2, the best value of C in
∫

Rn

|x|2μp(xn|x|
)|∇u|2dx � C

∫

Rn

|x|2μ−2q
(xn
|x|
)|u|2dx, (4.18)

where u ∈ C∞
0 (Rn), is equal to

inf

π∫

0

(
|y′(θ)|2 +

(
μ− 1 +

n

2
)2|y(θ)|2)p(cos θ)(sin θ)n−2dθ

π∫

0

|y(θ)|2q(cos θ)(sin θ)n−2dθ

, (4.19)

with the infimum taken over all smooth functions on the interval [0, π].
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Formula (4.19) enables one to obtain a necessary and sufficient condition
for the existence of a positive C in (4.18). Let us assume that the function

θ → (sin θ)2−n

p(cos θ)

is locally integrable on (0, π). We make the change of variable ξ = ξ(θ), where

ξ(θ) =

θ∫

π/2

(sin τ)2−n

p(cos τ)
dτ,

and suppose that ξ(0) = −∞ and ξ(π) = ∞. Then (4.19) can be written in
the form

λ = inf
z

∫

R1

|z′(ξ)|2dξ +
(
μ− 1 +

n

2
)2 ∫

R1

|z(ξ)|2(p(cos θ(ξ)) (sin θ(ξ))n−2
)2
dξ

∫

R1

|z(ξ)|2 p(cos θ(ξ)) q(cos θ(ξ))(sin θ(ξ))2(n−2) dξ

,

where θ(ξ) is the inverse function of ξ(θ). By [42, Theorem 1],

λ ∼ inf
ξ∈R1

d>0,δ>0

1
δ

+

θ(ξ+d+δ)∫

θ(ξ−d−δ)

p(cos θ) (sin θ)n−2 dθ

θ(ξ+d)∫

θ(ξ−d)

q(cos θ) (sin θ)n−2 dθ

. (4.20)

Here, the equivalence a ∼ b means that c1b � a � c2b, where c1 and c2 are
positive constants depending only on μ and n. Hence (4.18) holds with a
positive Λ if and only if the infimum (4.20) is positive. �

Remark 4.4. In the case n = 2, the best constant in (4.18) is equal to

λ := inf
y

2π∫

0

(
|y′(ϕ)|2 + μ2|y(ϕ)|2

)
p(sinϕ)dϕ

2π∫

0

|y(ϕ)|2q(sinϕ)dϕ

, (4.21)

where the infimum is taken over all smooth functions on the interval [0, 2π].
Note that (4.2) is a particular case of (4.21) with μ = 1/2 and p(t) = t.
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As another application of (4.21), we obtain the following special case of the
inequality (4.18) with n = 2.

For all u ∈ C∞
0 (R2) the inequality

∫

R2

x22 |u(x)|2 dx
(x21 + x22)

(π2

4
−
(

arcsin
x1

(x21 + x22)1/2

)2)

� 1
2

∫

R2

x22 |∇u(x)|2dx (4.22)

holds, where 1/2 is the best constant.
In order to prove (4.22), we choose p(t) = t2 and μ = 1 in (4.21), which

becomes

λ = inf
y

2π∫

0

(
|y′(ϕ)|2 + |y(ϕ)|2

)
(sinϕ)2dϕ

2π∫

0

|y(ϕ)|2q(sinϕ)dϕ

, (4.23)

where y is an arbitrary smooth 2π-periodic function. Putting η(ϕ)=y(ϕ) sinϕ,
we write (4.23) in the form

λ = inf
η

2π∫

0

|η′(ϕ)|2dϕ

2π∫

0

|η(ϕ)|2q(sinϕ)(sinϕ)−2dϕ

(4.24)

with the infimum taken over all 2π-periodic functions satisfying η(0) =
η(π) = 0. Let

q(sinϕ) =
(sinϕ)2

ϕ(π − ϕ)
.

In view of the well-known sharp inequality

1∫

0

|z(t)|2
t(1− t)dt �

1
2

1∫

0

|z′(t)|2dt

(see [28, Theorem 262]), we have λ = 2 in (4.24). Therefore, (4.18) becomes
(4.22). �
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5 Generalized Hardy–Sobolev Inequality with Sharp
Constant

Let Ω denote an open set in R
n, and let p ∈ [1,∞). By the (p, a)-capacity of

a compact set K ⊂ Ω we mean the set function

capp,a(K,Ω) = inf
{∫

Ω

|∇u|p|x|−a dx : u ∈ C∞
0 (Ω), u � 1 onK

}
.

In the case a = 0, Ω = R
n, we write simply capp(K).

The following inequality is a particular case of a more general one obtained
in [41], where Ω is an open subset of an arbitrary Riemannian manifold and
|Φ(x,∇u(x)| plays the role of |∇u(x)| |x|−a/p.

Theorem 5.1. (see [35] for q = p and [41] for q � p) (i) Let q � p � 1, and
let Ω be an open set in R

n. Then for an arbitrary u ∈ C∞
0 (Ω),

⎛
⎝

∞∫

0

(
capp,a(Mt, Ω)

)q/p
d(tq)

⎞
⎠

1/q

� Ap,q
⎛
⎝
∫

Ω

|∇u(x)|p|x|−adx
⎞
⎠

1/p

, (5.1)

where Mt = {x ∈ Ω : |u(x)| � t} and

Ap,q =
( Γ

(
pq
q−p
)

Γ
(

q
q−p
)
Γ
(
p q−1
q−p
))1/p−1/q

(5.2)

for q > p, and
Ap,p = p(p− 1)(1−p)/p. (5.3)

(ii) The sharpness of this constant is checked by a sequence of radial func-
tions in C∞

0 (Ω). Moreover, there exists a radial optimizer vanishing at infin-
ity if Ω = R

n.

Being combined with the isocapacitary inequality

μ(K)γ � Λp,γ capp,a(K,Ω) (5.4)

where μ is a Radon measure in Ω, (5.1) implies the estimate

( ∞∫

0

(
μ(Mt)

)γq/p
d(tq)

)1/q

� Ap,qΛ1/p
p,γ

⎛
⎝
∫

Ω

|∇u(x)|p|x|−adx
⎞
⎠

1/p

(5.5)

for all u ∈ C∞
0 (Ω).

This estimate of u in the Lorentz space Lp/γ,q(μ) becomes the estimate in
Lq(μ) for γ = p/q:
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‖u‖Lq(μ) � Ap,qΛ1/p
p,γ

⎛
⎝
∫

Ω

|∇u(x)|p|x|−adx
⎞
⎠

1/p

.

In the next assertion, we find the best value of Λp,γ in (5.4) for the measure
μ = μb defined by (1.9).

Lemma 5.1. Let

1 � p < n, 0 � a < n− p, and a+ p � b � an

n− p. (5.6)

Then

⎛
⎝
∫

Rn

dx

|x|b

⎞
⎠

n−p−a
n−b

�
( p− 1
n− p− a

)p−1 |Sn−1| b−p−a
n−b

(n− b) n−p−a
n−b

capp,a(K). (5.7)

The value of the constant factor in front of the capacity is sharp and the
equality in (5.7) is attained at any ball centered at the origin.

Proof. Introducing spherical coordinates (r, ω) with r > 0 and ω ∈ Sn−1, we
have

capp,a(K) = inf
u|K�1

∫

Sn−1

∞∫

0

(∣∣∣∂u
∂r

∣∣∣2 +
1
r2
|∇ωu|2

) p
2
rn−1−adrdsω . (5.8)

Let us put here r = ρ1/κ , where

κ =
n− p− a
n− p

and y = (ρ, ω). The mapping (r, ω)→ (ρ, ω) will be denoted by σ. Then (5.8)
takes the form

capp,a(K) = κ
p−1 inf

v

∫

Rn

(∣∣∣∂u
∂ρ

∣∣∣2 + (κρ)−2|∇ωu|2
) p

2
dy, (5.9)

where the infimum is taken over all v = u ◦ σ−1. Since 0 � κ � 1 owing to
the conditions p < n, 0 < a < n− p, and a � 0, the inequality (5.9) implies

capp,a(K) � κ
p−1 inf

v

∫

Rn

|∇u|pdy � κ
p−1capp(σ(K)) (5.10)

which, together with the isocapacitary property of capp (see [37, Corollary
2.2.3/2]), leads to the estimate
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capp(σ(K)) �
(n− p
p− 1

)p−1

|Sn−1| pnnn−p
n

(
mesn(σ(K)

) n−p
n . (5.11)

Clearly,

μb(K) =
1
κ

∫

σ(K)

dy

|y|α

with

α = n− n− b
κ

=
b(n− p)− an
n− p− a � 0. (5.12)

Furthermore, one can easily check that

μb(K) � n
1−α

n

n− b |S
n−1|αn (mesn(σ(K)

)1−α
n (5.13)

(see, for example, [40, Example 2.2]). Combining (5.13) with (5.11), we find

(
μb(K)

)n−p−a
n−b �

( p− 1
n− p

)p−1 |Sn−1| b−p−a
n−b

(n− b) n−p−a
n−b

capp(σ(K)) (5.14)

which, together with (5.10), completes the proof of (5.7). 
�
The main result of this section is as follows.

Theorem 5.2. Let the conditions (5.6) hold, and let q � p. Then for all
u ∈ C∞

0 (Rn)

( ∞∫

0

(
μb(Mt)

) (n−p−a)q
(n−b)p d(tq)

) 1
q � Cp,q,a,b

(∫

Rn

|∇u(x)|p dx|x|a
) 1

p

, (5.15)

where

Cp,q,a,b=
( Γ

(
pq
q−p
)

Γ
(

q
q−p
)
Γ
(
p q−1
q−p
))

1
p− 1

q
( p− 1
n−p−a

)1− 1
p
( Γ (n2 )

2π
n
2 (n− b) n−p−a

p+a−b

) p+a−b
(n−b)p

.

(5.16)
The constant (5.16) is best possible which can be shown by constructing a
radial optimizing sequence in C∞

0 (Rn).

Proof. The inequality (5.15) is obtained by substitution of (5.2) and (5.7)
into (5.5). The sharpness of (5.16) follows from part (ii) of Theorem 5.1 and
the fact that the isocapacitary inequality (5.7) becomes equality for balls. 
�

The last theorem contains the best constant in the Il’in inequality (1.10) as
a particular case q = (n− b)p/(n− p− a). We formulate this as the following
assertion.
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Corollary 5.1. Let the conditions (5.6) hold. Then for all u ∈ C∞
0 (Rn)

⎛
⎝
∫

Rn

|u(x)| (n−b)p
(n−p−a)

dx

|x|b

⎞
⎠

n−p−a
n−b

� Cp,a,b
(∫

Rn

|∇u(x)|p dx|x|a
) 1

p

, (5.17)

where

Cp,a,b=
( p− 1
n−p−a

)1− 1
p
( Γ (n2 )

2π
n
2 (n− b) n−p−a

p+a−b

) p+a−b
(n−b)p

×
( Γ

(p(n−b)
p−b

)
Γ
(
n−b
p−b
)
Γ
(
1 + (n−b)(p−1)

p−b
)
) p−b

p(n−b)
.

This constant is best possible, which can be shown by constructing a radial
optimizing sequence in C∞

0 (Rn).

6 Hardy’s Inequality with Sharp Sobolev Remainder
Term

Theorem 6.1. For all u ∈ C∞(Rn+), u = 0 on R
n−1, the following sharp

inequality holds:
∫

R
n
+

|∇u|2dx

� 1
4

∫

R
n
+

|u|2
x2n
dx+

πn/(n+1)(n2 − 1)

4
(
Γ
(
n
2 + 1

))2/(n+1)
‖x−1/(n+1)

n u ‖2L2(n+1)
n−1

(Rn
+). (6.1)

Proof. We start with the Sobolev inequality
∫

Rn+1

|∇w|2dz � Sn+1‖w‖2L 2(n+1)
n−1

(Rn+1) (6.2)

with the best constant (see [47, 4, 50])

Sn+1 =
π(n+2)/(n+1)(n2 − 1)

4n/(n+1)
(
Γ
(
n
2 + 1

))2/(n+1)
. (6.3)

Let us introduce the cylindrical coordinates (r, ϕ, x′), where r � 0, ϕ ∈
[0, 2π), and x′ ∈ R

n−1. Assuming that w does not depend on ϕ, we write
(6.2) in the form
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2π
∫

Rn−1

∞∫

0

(∣∣∣∂w
∂r

∣∣∣2 + |∇x′w|2
)
r drdx′

� (2π)(n−1)/(n+1)Sn+1

( ∫

Rn−1

∞∫

0

|w|2(n+1)/(n−1)r drdx′
)(n−1)/(n+1)

.

Replacing r by xn, we obtain
∫

R
n
+

|∇w|2xn dx � (2π)−2/(n+1)Sn+1

(∫

R
n
+

|w|2(n+1)/(n−1)xn dx
)(n−1)/(n+1)

.

It remains to set w = x1/2n v and use (6.3). 
�

Acknowledgement. The first author was partially supported by the USA
National Science Foundation (grant DMS 0500029) and the UK Engineering
and Physical Sciences Research Council (grant no. EP/F005563/1).

References

1. Adimurthi: Hardy–Sobolev inequalities in H1(Ω) and its applications. Commun. Con-
temp. Math. 4, no. 3, 409–434 (2002)

2. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy–Sobolev inequality
and its applications. Proc. Am. Math. Soc. 130 no. 489–505 (2002)

3. Adimurthi, Grossi, M., Santra, S.: Optimal Hardy–Rellich inequalities, maximum
principle and related eigenvalue problems. J. Funct. Anal. 240, no.1, 36–83 (2006)
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Optimality of Function Spaces in
Sobolev Embeddings

Luboš Pick

Abstract We study the optimality of function spaces that appear in Sobolev
embeddings. We focus on rearrangement-invariant Banach function spaces.
We apply methods of interpolation theory.

It is a great honor for me to contribute to this volume dedicated to the
centenary of S.L. Sobolev, one of the greatest analysts of the XXth century.
The paper concerns a topic belonging to an area bearing the name, called
traditionally Sobolev inequalities or Sobolev embeddings. The focus will be on
the sharpness or optimality of function spaces appearing in these embeddings.
The results presented in this paper were established in recent years. Most of
them were obtained in collaboration with Ron Kerman and Andrea Cianchi.

1 Prologue

Sobolev embeddings, or Sobolev inequalities, constitute a very important part
of the modern functional analysis.

Suppose that Ω is a bounded domain in R
n, n � 2, with Lipschitz bound-

ary. In the classical form, the Sobolev inequality asserts that, given 1 < p < n
and setting p∗ = np

n−p , there exists C > 0 such that

Luboš Pick
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( ∫

Ω

|u(x)|p∗ dx
) 1

p∗

� C
( ∫

Ω

|(∇u)(x)|p + |u(x)|p dx
) 1

p

for all W 1,p(Ω).

(Throughout the paper,C denotes a constant independent of important quan-
tities, not necessarily the same at each occurrence.) We can restate this result
in the form of a Sobolev embedding, namely,

W 1,p(Ω)↪→Lp∗(Ω), 1 < p < n, (1.1)

where W 1,p(Ω) is the classical Sobolev space, i.e., a collection of weakly dif-
ferentiable functions on Ω such that u ∈ Lp(Ω) and |∇u| ∈ Lp(Ω), endowed
with the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω),

and ‖ · ‖Lp(Ω) is the usual Lebesgue norm.
We say that the space on the left-hand side of (1.1) is a Sobolev space built

upon Lp(Ω). In this sense, we recognize Lp(Ω) as the domain space of the
embedding and the space Lp∗(Ω) on the right-hand side as its range space.

We focus on the following question: How sharp are the domain space and
the range space in the Sobolev embedding?

First thing we note is that this question is dependent on an environment
within which it is investigated. For example, the embedding (1.1) cannot be
improved within the environment of Lebesgue spaces. This should be under-
stood as follows: if we replace the domain space Lp(Ω) in (1.1) by a larger
Lebesgue space, say, Lq(Ω) with q < p, then the resulting embedding

W 1,q(Ω)↪→Lp∗(Ω)

can no longer be true. Likewise, if we replace the range space Lp∗(Ω) by
a smaller Lebesgue space, say, Lr(Ω), r > p∗, then again the resulting em-
bedding

W 1,p(Ω)↪→Lr(Ω)

does not hold any more. In this sense, the embedding (1.1) is, at least within
the environment of Lebesgue spaces, sharp (or optimal), and it cannot be
effectively improved. In other words, if we want to improve the embedding
and to get thereby a finer result, we need to use classes of function spaces
finer than the Lebesgue scale.

The fact that the Lebesgue scale is simply not delicate enough in order
to describe all the interesting details about embeddings, is perhaps best il-
lustrated by the so-called limiting or critical case of the embedding (1.1)
corresponding to the case p = n. When we let p tend to n from the left, then,
of course, p∗ tends to ∞. However, the limiting embedding

W 1,n(Ω)↪→L∞(Ω)
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is unfortunately not true. It is well known that one can have unbounded
functions (typically, with logarithmic singularities) in W 1,n(Ω). Therefore,
the only information which we can formulate in the Lebesgue spaces environ-
ment for the limiting embedding is

W 1,n(Ω)↪→Lq(Ω) for every q <∞. (1.2)

Again, this information is optimal within the environment of Lebesgue spaces,
where no improvement is available. However, it is quite clear that this result is
very unsatisfactory as it does not provide any definite range function space.
Such a space can be obtained, but not among Lebesgue spaces. We need
a refinement of the Lebesgue scale. One of the most well-known and most
widely used such refinements of Lebesgue spaces are Orlicz spaces. We first
shortly recall their definition.

Given any Young function A : [0,∞) → [0,∞), namely a convex increas-
ing function vanishing at 0, the Orlicz space LA(Ω) is the rearrangement-
invariant space of all measurable functions u in Ω such that the Luxemburg
norm

‖u‖LA(Ω) = inf

{
λ > 0;

∫

Ω

A

(
|u(x)|
λ

)
dx � 1

}

is finite. Of course, if A(t) = tp, then we recover Lebesgue spaces. Other
important examples of Orlicz spaces are the logarithmic Zygmund classes
Lp(logL)α(Ω), generated by the Young function

A(t) = tp(log(e+ t))α, t ∈ (1,∞),

with p ∈ [1,∞) and α ∈ R, and the exponential Zygmund classes expLα(Ω),
generated by the Young function

A(t) = exp(tα), t ∈ (1,∞), α > 0.

Equipped with Orlicz spaces, we can formulate the following limiting case
of the Sobolev embedding:

W 1,n(Ω)↪→ expLn
′
(Ω), (1.3)

where
n′ =

n

n− 1
.

This result is traditionally attributed to Trudinger [44], however, in a certain
modified form, it appeared earlier in works of Yudovich [45], Peetre [37], and
Pokhozhaev [40].

We can now, again, ask how sharp this result is. It turns out, that, re-
markably, the range space expLn

′
(Ω) is sharp within the environment of

Orlicz spaces. In other words, it is the smallest possible Orlicz space that
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still renders this embedding true. This optimality result is due to Hempel,
Morris, and Trudinger [24].

In this context, it might be of interest to ask whether also the classical
Sobolev embedding (1.1) has the optimal Orlicz range space. Of course, as
we already know, it is the optimal Lebesgue range space, but now we are
asking about optimality in a much broader sense, so the question is sensible.
The answer is positive, as follows from the result of Cianchi [11].

However, it turns out that nontrivial improvements of both (1.1) and (1.3)
are still available. To this end, we have to introduce function spaces whose
norms involve the so-called nonincreasing rearrangement.

We denote by M(Ω) the class of real-valued measurable functions on Ω
and by M+(Ω) the class of nonnegative functions in M(Ω). Given f ∈
M(Ω), its nonincreasing rearrangement is defined by

f∗(t) = inf{λ > 0; |{x ∈ Ω; |f(x)| > λ}| � t}, t ∈ [0,∞).

We also define the maximal nonincreasing rearrangement of f by

f∗∗(t) = t−1

t∫

0

f∗(s) ds, t ∈ [0,∞).

We note that below we use the rearrangements defined only on (0, |Ω|), but
it can be as well defined on [0,∞), extended by zero for t > |Ω|.

We work with several classes of function spaces defined with the help of
the operation f �→ f∗. The first such an example will be the scale of the
two-parameter Lorentz spaces.

Assume that 0 < p, q �∞. The Lorentz space Lp,q(Ω) is the collection of
all f ∈M(Ω) such that ‖f‖Lp,q(Ω) <∞, where

‖f‖Lp,q(Ω) = ‖t 1p− 1
q f∗(t)‖Lq(0,1).

The Lorentz spaces are nested in the following sense. For every p ∈ (0,∞]
and 0 < q < r �∞ we have

Lp,q(Ω)↪→Lp,r(Ω), (1.4)

and this embedding is strict.
With the help of Lorentz spaces, we have the following refinement of (1.1):

W 1,p(Ω)↪→Lp∗,p(Ω), 1 < p < n. (1.5)

Note that, thanks to (1.4) and the obvious inequality p < p∗, this is a non-
trivial improvement of the range space in (1.1). The embedding (1.5) is due
to Peetre [37], and it can be also traced in works of O’Neil [35] and Hunt [26].
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A natural question arises, whether a similar Lorentz-type refinement is
possible also for the limiting embedding (1.3). The answer is positive again,
but we need to introduce a yet more general function scale.

Let 0 < p, q �∞ and α ∈ R. The Lorentz–Zygmund space Lp,q;α(Ω) is the
collection of all f ∈M(Ω) such that ‖f‖Lp,q;α(Ω) <∞, where

‖f‖Lp,q;α(Ω) := ‖t 1p− 1
q logα(e/t)f∗(t)‖Lq(0,1).

Occasionally, we have to work with a modification of Lorentz–Zygmund
spaces in which f∗ is replaced by f∗∗. We denote such a space by L(p,q;α)(Ω).
Hence

‖f‖L(p,q;α)(Ω) := ‖t 1p− 1
q logα(e/t)f∗∗(t)‖Lq(0,1).

These spaces were introduced and studied by Bennett and Rudnick [4].
Equipped with Lorentz–Zygmund spaces, we have the following refinement

of the Trudinger embedding (1.3):

W 1,n(Ω)↪→L∞,n;−1(Ω). (1.6)

The first one to note this fact was Maz’ya who formulated it in a somewhat
implicit form involving capacitary estimates (see [34, pp. 105 and 109]). Ex-
plicit formulations were given by Hansson [25] and Brézis–Wainger [6], the
result can be also traced in the work of Brudnyi [7]. A more general assertion
was proved by Cwikel and Pustylnik [18].

The range space in (1.6) is a very interesting function space. It is not
a Zygmund class of neither logarithmic nor exponential type. Moreover, as
the relations between Lorentz–Zygmund spaces from [4] show, it satisfies

L∞,n;−1(Ω)↪→ expLn
′
(Ω),

and this inclusion is strict. We thus get a nontrivial improvement of (1.3).
The embedding (1.6) can be viewed in some sense as the limiting case

of (1.5) as p → n+. Indeed, both these results allow us a unified approach,
as shown in [33] (again, restricted to functions vanishing on the boundary),
where it was noticed that, for 1 < p < n, we have

1∫

0

t
p

p∗ −1u∗(t)p dt � C
∫

Ω

|∇u(x)|p dx

for all u ∈W 1,p
0 (Ω), while, in the limiting case, we have

1∫

0

(
u∗(t)

log
(
e
t

)
)n
dt

t
� C

∫

Ω

|∇u|n(x) dx
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for all u ∈ W 1,n
0 (Ω). Both these results were proved in an elementary way

by first establishing a weak version of the Sobolev–Gagliardo–Nirenberg em-
bedding, namely

λ (|{|u| � λ}|) 1
n′ � C

∫

Ω

|∇u| dx, u ∈W 1,1
0 (Ω), λ > 0,

and then using a truncation argument due to Maz’ya.
In the course of the proof it turned out that yet the further improvement

of (1.6) is possible, Namely, it was shown that

W 1,n
0 (Ω) ↪→ Wn(Ω),

where, for 0 < p � ∞, the space Wp(Ω) is defined as the family of all
measurable functions on Ω for which

‖u‖Wp(Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1∫

0

(
u∗(
t

2
)− u∗(t)

)p dt
t

) 1
p

<∞ when p <∞;

sup
0<t<1

(
u∗( t2 )− u∗(t)

)
when p =∞.

It was shown that the space Wp(Ω) has some interesting properties, for ex-
ample:

(i) ‖χE‖Wp(Ω) = (log 2)
1
p for every measurable E ⊂ Ω and p ∈ (0,∞);

(ii) L∞ =W1(Ω);

(iii) for p ∈ [1,∞) each integer-valued u ∈ Wp(Ω) is bounded;

(iv) for p ∈ (1,∞), Wp(Ω) is not a linear set;

(v) for p ∈ (1,∞), Wp(Ω) � L∞,p;−1(Ω);

(vi) Wp(Ω) �Wq(Ω) for every 0 < p < q �∞.

The norm of the space Wp(Ω) involves the functional f∗( t2 )− f∗(t). Bas-
tero, Milman, and Ruiz [2] showed that it can be equivalently replaced with
f∗∗(t) − f∗(t). The quantity f∗∗(t) − f∗(t), which measures, in some sense,
the oscillation of f , was used in the theory of function spaces before. Func-
tion spaces involving this functional have been particularly popular since
1981 when Bennett, DeVore and Sharpley [3] introduced the “weak L∞,”
the rearrangement-invariant space of functions for which f∗∗(t) − f∗(t) is
bounded.

The problem of optimality of function spaces in Sobolev embeddings can
be also viewed from a reversed angle. So far we have focused solely on the
question of optimality of the range space in various contexts. However, one
can also ask whether the domain space is optimal. For example, it is clear
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that (1.1) and (1.5) have the best possible Lebesgue domain spaces. We can
however ask whether these domain spaces are also optimal as Orlicz spaces.
The answer is interesting and perhaps even surprising. While, in the nonlim-
iting embedding (1.1), the space Lp(Ω) is indeed the optimal Orlicz range
for Lp∗(Ω) ([39, Corollary 4.9]), the situation in the limiting case is quite
different. Not only that Ln(Ω) is not the largest Orlicz space for which the
Trudinger inequality (1.3) holds, but, oddly enough, there is no such an opti-
mal Orlicz space at all. This should be understood as follows: for every Orlicz
space LA(Ω) such that

W 1LA(Ω)↪→ expLn
′
(Ω),

there exists another, strictly larger Orlicz space LB(Ω) such that

W 1LB(Ω)↪→ expLn
′
(Ω).

A construction of the Young function B which generates such an Orlicz space
LB(Ω) from a given A can be found in [39, Theorem 4.5]. In a way, this result
resembles the unsatisfactory situation with Lebesgue range partners in the
limiting embedding (1.2), where one has an “open set of range spaces,” and
illustrates thereby that not even the (apparently rather fine) class of Orlicz
spaces is delicate enough to provide satisfactory answers. We can use this as
a motivation to look for optimal function spaces in a broader general context.

The last example shows that the investigation of the optimality of domain
spaces in well-known embeddings can bring unexpected surprises. Another
such a situation, although quite different by nature, occurs when we ask
about the optimality of the domain Ln(Ω) in the Trudinger embedding (1.3).
Indeed, it was shown in [21] that, interestingly, from the scaling property of
Lorentz–Zygmund spaces one can deduce the following embedding:

W 1
(
Ln,1;− 1

n′ + Ln,∞; 1
n

)
(Ω)↪→ expLn

′
(Ω).

Complemented with

Ln(Ω)↪→
(
Ln,1;− 1

n′ + Ln,∞; 1
n

)
(Ω),

the inclusion being strict, this gives a rather unexpected nontrivial improve-
ment of the domain space in the Trudinger embedding, quite different from
the above-mentioned one, built on Orlicz spaces.

All these examples call for considering some reasonable common environ-
ment that would provide a roof for all or, at least, most of the function spaces
mentioned so far and for considering global optimality within this context.
For us, such an environment is that of the so-called rearrangement-invariant
(r.i.) spaces.
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Furthermore, we should be interested also in higher order Sobolev embed-
dings (note that all the illustrative examples mentioned so far were first order
embeddings). Higher order embeddings are important in applications and, as
it turns out, considerably more difficult to handle than the first order ones.
This is caused by the fact that for the first order embedding one has the
Pólya–Szegö inequality for which there is, regrettably, no equally powerful
analogue for higher order embeddings.

2 Preliminaries

The context of function spaces in which we study the optimality of Sobolev
embeddings is that of the so-called rearrangement-invariant spaces. Before
stating exact definitions, let us just mention that most of the function spaces
mentioned above, namely, those of Lebesgue, Orlicz, Zygmund, Lorentz and
Lorentz-Zygmund, are, at least for some reasonable parameters, r.i. spaces,
with a notable exception of the spaceWp(Ω), which is not even linear. There-
fore, r.i. spaces constitute a common roof for many important classes of func-
tions, it is a rich collection of general function spaces, yet they are pleasantly
modeled upon the example of Lebesgue spaces, inheriting many of their won-
derful properties.

Throughout the paper, we assume, unless stated otherwise, that Ω is
a bounded domain having Lipschitz boundary and satisfying |Ω| = 1. (If
the measure is finite and different from 1, everything can be easily modified
in an obvious way by the change of variables t �→ |Ω|t.)

A Banach space X(Ω) of functions defined on Ω, equipped with the norm
‖ · ‖X(Ω), is said to be rearrangement-invariant if the following axioms hold:

0 � g � f a.e. implies ‖g‖X(Ω) � ‖f‖X(Ω); (P1)

0 � fn ↗ f a.e. implies ‖fn‖X(Ω) ↗ ‖f‖X(Ω); (P2)

‖χΩ‖X(Ω) <∞, where χE denotes the characteristic function of E; (P3)

for every E ⊂ Ω,with |E| <∞, there exists a constant CE (P4)

such that
∫

E

f(x) dx � CE‖f‖X(Ω) for every f ∈ X(Ω);

‖f‖X(Ω) = ‖g‖X(Ω) whenever f∗ = g∗. (P5)

A basic tool for working with rearrangement-invariant spaces is the Hardy–
Littlewood–Pólya (HLP) principle treated in [5, Chapt. 2, Theorem 4.6]). It
asserts that f∗∗(t) � g∗∗(t) for every t ∈ (0, 1) implies ‖f‖X(Ω) � ‖g‖X(Ω)

for every r.i. space X(Ω).
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The Hardy–Littlewood inequality states that

∫

Ω

|f(x)g(x)| dx �
1∫

0

f∗(t)g∗(t) dt, f, g ∈M(Ω). (2.1)

Given an r.i. space X(Ω), the set

X ′(Ω) =

{
f ∈ M(Ω);

∫

Ω

|f(x)g(x)| dx <∞ for every g ∈ X(Ω)

}
,

equipped with the norm

‖f‖X′(Ω) = sup
‖g‖X(Ω)�1

∫

Ω

|fg|,

is called the associate space of X(Ω). Then always X ′′(Ω) = X(Ω) and the
Hölder inequality

∫

Ω

|f(x)g(x)| dx � ‖f‖X(Ω)‖g‖X′(Ω)

holds.
For every r.i. space X(Ω) there exists a unique r.i. space X(0, 1) on (0, 1)

satisfying ‖f‖X(Ω) = ‖f∗‖X(0,1). Such a space, endowed with the norm

‖f‖X(0,1) = sup
‖g‖X(Ω)�1

1∫

0

f∗(t)g∗(t) dt,

is called the representation space of X(Ω).
Let X(Ω) be an r.i. space. Then the function ϕX : [0, 1]→ [0,∞) given by

ϕX(t) =

{
‖χ(0,t)‖X(0,1), for t ∈ (0, 1],
0 for t = 0

is called the fundamental function of X(Ω). For every r.i. space X(Ω) its
fundamental function ϕX is quasiconcave on [0, 1], i.e., it is nondecreasing on
[0, 1], ϕX(0) = 0, and ϕX(t)

t is nonincreasing on (0, 1]. Moreover,

ϕX(t)ϕX′(t) = t for t ∈ [0, 1].

Given an r.i. space X(Ω), we can define the Marcinkiewicz space MX(Ω)
corresponding to X(Ω) as the set of all f ∈M(Ω) such that
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‖f‖MX(Ω) := sup
t∈[0,1]

ϕX(t)f∗∗(t) <∞.

Then again, MX(Ω) is an r.i. space whose fundamental function is ϕX , and
it is the largest such an r.i. space. In particular, when Z(Ω) is any other
r.i. space whose fundamental function is also ϕX , then necessarily

Z(Ω)↪→MX(Ω).

For a comprehensive treatment of r.i. spaces we refer the reader to [5].

3 Reduction Theorems

Recall that Ω is a bounded domain in R
n having Lipschitz boundary and

satisfying |Ω| = 1 and m is an integer satisfying 1 � m � n− 1 . The basic
idea is, again, to compare the size of u with t hat of its mth gradient |Dmu|
in norms of two function spaces, where Dmu =

(
∂αu
∂xα

)
0�|α|�m and |Dmu| is

its Euclidean length. More precisely, we are interested in determining those
r.i. spaces X(Ω) and Y (Ω) for which

‖u‖Y (Ω) � C ‖|Dmu|∗(t)‖X(0,1) , u ∈WmX(Ω)

or, written as a Sobolev embedding,

WmX(Ω)↪→Y (Ω). (3.1)

More specifically, we would like to know that X(Ω) and Y (Ω) are optimal
in the sense that X(Ω) cannot be replaced by an essentially larger r.i. space
and Y (Ω) cannot be replaced by an essentially smaller one.

The principal idea of our approach to embeddings can be formulated as
follows. Our goal is to reduce everything to a one-dimensional inequality in-
volving certain integral operator and then use the available knowledge about
weighted inequalities for one-dimensional Hardy type operators on various
function spaces. For the first order embedding this was done in [20].

Although the results in [20] are formulated only for Sobolev spaces of
functions vanishing on the boundary of Ω, by the combination of the Stein
extension theorem [1, Theorem 5.24] with an interpolation argument based on
the DeVore–Scherer theorem [19] or [5, Chapt. 5, Theorem 5.12, p. 360], they
can be relatively easily extended to bounded domains with Lipschitz bound-
ary. In this approach, the Sobolev spaceWmX(Ω) is extended to WmX(Rn)
and then restricted again to WmX(Ω1) with Ω1 ⊃ Ω. The details can be
found in [28, proof of Theorem 4.1].

The key result in [20] is the following reduction theorem.
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Theorem 3.1. Let X(Ω) and Y (Ω) be r.i. spaces. Then, in order that the
Sobolev embedding

W 1X(Ω)↪→Y (Ω)

holds, it is necessary and sufficient that there exist C > 0 for which

∥∥∥∥∥
1∫

t

f(s)s
1
n−1 ds

∥∥∥∥∥
Y (0,1)

� C ‖f‖X(0,1) , f ∈ M+(0, 1).

This theorem concerns only the first order embeddings. A natural impor-
tant question now is, how to obtain a higher order version of the reduction the-
orem. While the “only if” part is rather straightforward and easily adaptable,
the proof of the “if” part of Theorem 3.1 involves a version of the Pólya–Szegö
inequality due to Talenti [43], whose higher order version is unavailable with-
out certain restrictions. In 2004, Cianchi [12] obtained the reduction theorem
for the case m = 2 by overcoming certain considerable technical difficulties
and using some special estimates for second order derivatives. Finally, in [28],
the following general version of the reduction theorem was obtained by a new
method using interpolation techniques and properties of special Hardy type
operators involving suprema (see the operator T n

m
treated below).

Theorem 3.2. Let X(Ω) and Y (Ω) be r.i. spaces. Then the Sobolev embed-
ding (3.1) holds if and only if

∥∥∥∥∥
1∫

t

f(s)s
m
n −1 ds

∥∥∥∥∥
Y (0,1)

� C ‖f‖X(0,1) , f ∈M+(0, 1).

The proof of Theorem 3.2 is quite involved. We first define the weighted
Hardy operator H n

m
, given as

(H n
m
f)(t) :=

1∫

t

f(s)s
m
n −1 ds

and its dual operator with respect to the L1 pairing, defined by

(H n
m

′f)(t) := t
m
n −1

t∫

0

f(s) ds, t ∈ (0, 1), f ∈ M+(0, 1).

Note that when applied to a nonincreasing function f∗, we get

(H n
m

′f∗)(t) = t
m
n f∗∗(t) t ∈ (0, 1), f ∈M(Ω).

We observe that the functional
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∥∥tm
n g∗∗(t)

∥∥
X

′
(0,1)
, g ∈M(Ω),

is an r.i. norm on (Ω). This is easy to verify as the only nontrivial part is the
triangle inequality, which follows from the well-known subadditivity of the
operation g → g∗∗. Therefore, given an r.i. space X(Ω), we can define the
space Xω(Ω) determined by the functional

‖f‖Xω(Ω) :=
∥∥∥H n

m

′f∗
∥∥∥
X(0,1)

=
∥∥tm

n f∗∗(t)
∥∥
X(0,1)

, f ∈M(Ω).

Using the same ideas as in [20, Theorem 4.5], it can be shown that Xω(Ω)
is also an r.i. space, being, in fact, essentially the largest r.i. space Y (Ω)
satisfying ∥∥H n

m

′f
∥∥
X(0,1)

� C‖f‖Y (0,1), f ∈ M+(0, 1).

By duality, (X ′)′ω(Ω), the associate space of (X ′)ω(Ω), is essentially the
smallest r.i. space Z(Ω) satisfying

∥∥H n
m
f
∥∥
Z(0,1)

� C‖f‖X(0,1), f ∈M+(0, 1).

Next, we introduce a special supremum operator T n
m

by

(
T n

m
f
)

(t) := t−
m
n sup
t�s<1

s
m
n f∗(s), f ∈M(0, 1), t ∈ (0, 1).

One readily shows that T n
m

is bounded on L1(0, 1) and also on the Lorentz
space L n

m
,∞(0, 1). The key result concerning this operator is that it is

bounded on Xω(0, 1) for absolutely arbitrary r.i. space X(Ω). As a conse-
quence, we conclude that for any r.i. space X(Ω)

H n
m

:= X(0, 1)→ (X ′
ω)′(0, 1)

and (X ′
ω)′(Ω) is the optimal (smallest) such an r.i. space. The proof of The-

orem 3.2 is then completed by combining the obtained estimates with the
inequality

t∫

0

s−
m
n u∗(s) ds � C

t∫

0

s−
m
n

1∫
s
2

|Dmu|∗(y)y
m
n −1 dy ds,

t ∈ (0, 1), u ∈WmX(Ω),

which follows from the endpoint Sobolev embeddings, the Holmstedt formulae
and the DeVore-Scherer expression for the K-functional between Sobolev
spaces.
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4 Optimal Range and Optimal Domain of
Rearrangement-Invariant Spaces

Now, we show how Theorem 3.2 can be used to characterize the largest r.i. do-
main space and the smallest r.i. range space in the Sobolev embedding (3.1).
Note that Theorem 3.2 implies the following chain of equivalent statements:

WmX(Ω)↪→Y (Ω) ⇔ H n
m

: X(0, 1)→ Y (0, 1)

⇔ H n
m

′ : Y
′
(0, 1)→ X ′

(0, 1)

⇔ ∥∥tm
n g∗∗(t)

∥∥
X

′
(0,1)

� C ‖g‖Y ′(Ω) , g ∈ M(Ω).

The first equivalence is Theorem 3.2 and the second one is duality. The
last equivalence is not entirely obvious; the implication “⇒” is restriction
to monotone functions, while the converse one follows from the estimate

t∫

0

g(s) ds �
t∫

0

g∗(s) ds,

which is just a special case of (2.1). It is of interest to note that when we
replace the operator H n

m

′ by H n
m

, then the corresponding equivalence is no
longer true. More precisely, the inequality

∥∥H n
m
g
∥∥
Y (0,1)

� C‖g‖X(0,1), g ∈M(0, 1)

implies ∥∥H n
m
g∗
∥∥
Y (0,1)

� C‖g‖X(0,1), g ∈ M(0, 1),

but not vice versa. This illustrates that a Sobolev embedding is a rather
delicate process that does not permit a direct duality.

All these ideas are summarized in the following theorem.

Theorem 4.1. Let X(Ω) be an r.i. space. Let Y (Ω) be the r.i. space whose
associate space Y ′(Ω) has the norm

‖f‖Y ′(Ω) := ‖tm
n f∗∗(t)‖X′

(0,1), f ∈ M(Ω).

Then the Sobolev embedding (3.1) holds, and Y (Ω) is the optimal (i.e., the
smallest possible) such an r.i. space.

Theorem 4.1 constitutes an important and rather nice theoretical break-
through in our search for optimal Sobolev embeddings. On the other hand,
it does not easy apply to special examples. Generally speaking, in or-
der to determine Y (Ω), we have to be able to characterize the associate
space of the space whose norm is given by a rather complicated functional
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g �→ ∥∥tm
n g∗∗(t)

∥∥
X

′
(0,1)

. That does not have to be easy. Even in the simplest
possible instance when X(Ω) = Lp(Ω), we can get an explicit formula for
Y (Ω) only by using the duality argument of Sawyer [42], which is highly
nontrivial. When X(Ω) is, for instance, an Orlicz space, the task becomes
nearly impossible (however, see Cianchi [13]). In [20], the class of the so-
called Lorentz–Karamata spaces was introduced and the explicit formulas for
the optimal range space were given in the case where the domain space is
one of these. The Lorentz–Karamata spaces are a generalization of Lorentz–
Zygmund spaces which instead of logarithmic functions involve more general
slowly-varying functions.

Now, we apply Theorem 4.1 to a particular example, a higher order version
of the Maz’ya–Hansson–Brézis–Wainger embedding (1.6).

Example 4.2. Let X(Ω) = L n
m

(Ω). Then, by Theorem 4.1, its optimal
range partner Y (Ω) is the associate space of Y ′(Ω) determined by the norm

‖g‖Y ′(Ω) = ‖f∗∗(t)t
m
n ‖L n

n−m
(0,1) = ‖f‖L(1, n

n−m
)(Ω).

Now, by the duality principle of Sawyer [42], we obtain

Y (Ω) = L∞, n
m

;−1(Ω).

For m = 1 we recover (1.6). We add a new information that this range space
is the best possible among r.i. spaces. As mentioned above already, Wn(Ω)
is still a slightly better range, but it is not an r.i. space for not being linear.
The optimality of the range space in a yet broader context was proved by
Cwikel and Pustylnik [18].

Another achievement of the reduction theorem is the following character-
ization of the optimal domain space in a Sobolev embedding.

Theorem 4.3. Let Y (Ω) be an r.i. space such that Y (Ω)↪→L n
n−m

,1(Ω). Then
the function space X(Ω) generated by the norm

‖f‖X(Ω) = sup
h∗=f∗

∥∥H n
m
h
∥∥
Y (0,1)

, f ∈M(Ω), h ∈ M(0, 1), (4.1)

is an r.i. space such that

H n
m

: X(0, 1)→ Y (0, 1)

(hence WmX(Ω)↪→Y (Ω)). Moreover, it is an optimal (largest) such a space.

The requirement of the embedding of Y (Ω) into L n
n−m ,1(Ω) is not restric-

tive as the space L n
n−m ,1(Ω) is the range partner for the space L1(Ω), the

largest of all r.i. spaces. Therefore, larger spaces than L n
n−m

,1(Ω) are not
interesting range candidates.
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Likewise Theorem 4.1, Theorem 4.3 can hardly be directly applied to a par-
ticular example since to evaluate X(Ω) from the quite implicit formula (4.1)
involving the supremum over equimeasurable functions is practically impos-
sible. In the search of a simplification, several methods have been applied.
Among functions in M(0, 1) that are equimeasurable to a given function f
in M(Ω), there is one with an exceptional significance, namely f∗ itself. So,
a natural question arises: Under what conditions one can replace in (4.1)
suph∗=f∗

∥∥H n
m
h
∥∥
Y (0,1)

by
∥∥H n

m
f∗
∥∥
Y (0,1)

? If we could do that without loos-
ing, it would mean a great simplification of the formula (4.1). Of course, only
the inequality

sup
h∗=f∗

∥∥H n
m
h
∥∥
Y (0,1)

� C
∥∥H n

m
f∗
∥∥
Y (0,1)

is in question, the converse one is trivial. However, this idea contains one
hidden danger: the quantity on the right is not necessarily a norm (recall
that the operation f �→ f∗ is not subadditive, so the triangle inequality is
not guaranteed), and, indeed, there are r.i. spaces Y (Ω) for which it is not.
Probably, the simplest example of such Y (Ω) is L1(Ω); it is easy to verify that∥∥H n

m
f∗
∥∥
L1(0,1)

is not a norm. In [20], a sufficient condition was established,
namely ∥∥H n

m
f∗∗
∥∥
Y (0,1)

� C
∥∥H n

m
f∗
∥∥
Y (0,1)

. (4.2)

Replacing f∗ with f∗∗ immediately solves the triangle inequality problem
since the operation f �→ f∗∗ is subadditive, but the condition is unsatisfac-
tory (too strong) because it rules out important limiting cases. (It is easy
to see that, for example for Y (Ω) = L n

n−m
(Ω), (4.2) is not true.) In [38],

another approach using special operators was elaborated. Finally, in [29], it
was shown that a reasonable sufficient condition is the boundedness of the
supremum operator T n

m
on an associate space of Y (0, 1).

Theorem 4.4. Let Y (Ω) be an r.i. space satisfying

T n
m

: Y
′
(0, 1)→ Y ′

(0, 1). (4.3)

In this case, the optimal domain r.i. space X(Ω) corresponding to Y (Ω)
in (3.1), satisfies

‖f‖X(Ω) ≈
∥∥∥∥∥

1∫

t

f∗(s)s
m
n −1 ds

∥∥∥∥∥
Y

′
(0,1)

, f ∈M(Ω).

Here and below, we denote by ≈ the comparability of norms.
The condition (4.3) is reasonable and it does not rule out important lim-

iting examples. Moreover, as we shall see, it is quite natural.
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Example 4.5. Let us return to the Maz’ya–Hansson–Brézis–Wainger em-
bedding (1.6) or, more precisely, to its higher order modification. Starting
with X(Ω) = L n

m
(Ω), then the corresponding optimal range r.i. space Y (Ω)

is L∞, n
m

;−1(Ω), as it was shown in Example 4.2. In order to be able to
apply Theorem 4.4, we must show that T n

m
is bounded on the associate

space of Y (0, 1), which, as already observed in Example 4.2, happens to be
L(1, n

n−m )(0, 1). In order to prove the boundedness of T n
m

on L(1, n
n−m )(0, 1), we

first note that T n
m

is bounded on L1, n
n−m

(0, 1), which is easier and which can
be done either by a standard interpolation argument or by using conditions for
the weighted norm inequalities involving the supremum operators from [14]
or [22]. Next we show that (T n

m
g)∗∗ is comparable to T n

m
(g∗∗). Combining

these two facts, we get the desired boundedness of T n
m

on L(1, n
n−m )(0, 1),

which is Y
′
(0, 1). Hence, according to Theorem 4.4, the optimal r.i. domain

partner space X̃(Ω) has the norm

‖g‖X̃(Ω) = ‖H n
m
g∗‖L∞, n

m
;−1(0,1).

Now, several interesting facts can be observed about this space. First, it
indeed is strictly larger than X(Ω) = L n

m
(Ω). In fact, it even has an essen-

tially different fundamental function. Moreover, it is a qualitatively new type
of function space. In [39], several interesting properties of this space were es-
tablished, for example its incomparability to several related known function
spaces of Orlicz and Lorentz–Zygmund type.

5 Formulas for Optimal Spaces Using the Functional
f∗∗ − f∗

In practice, one often wants to solve the following problem: given m and
an r.i. space X(Ω), find its optimal range r.i. partner, let us call it YX(Ω),
so that the Sobolev embedding

WmX(Ω)↪→YX(Ω) (5.1)

holds and YX(Ω) is the smallest possible such an r.i. space. A less frequent
task, but also of interest, is the converse one; given m and an r.i. space Y (Ω),
find its optimal domain r.i. partner, let us call it XY (Ω), for Y (Ω) so that

WmXY (Ω)↪→Y (Ω)

holds and XY (Ω) is the largest possible such an r.i. space.
At this stage, we have formulas for both YX(Ω) and XY (Ω) given by

Theorems 4.1 and 4.3 respectively. As we have already noticed, these formulas
are too implicit to allow for some practical use. Theorem 4.3 is particularly
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bad. In this section, we show that significant simplifications of these formulas,
such as the one given by Theorem 4.4, are possible if we a priori know that
the given space has been chosen in such a way that it is an optimal partner
for some other r.i. space.

We first need to introduce one more supremum operator. Let
(
S n

m
f
)

(t) := t
m
n −1 sup

0<s�t
s1−

m
n f∗(s), f ∈M(0, 1), t ∈ (0, 1).

Then S n
m

has the following endpoint mapping properties:

S n
m

: L n
n−m ,∞(0, 1)→ L n

n−m ,∞(0, 1) and S n
m

: L∞(0, 1)→ L∞(0, 1).

Our point of departure will be the following result from [29].

Theorem 5.1. Let X(Ω) be an r.i. space, whose associate space satisfies
X ′(Ω)↪→L n

n−m
,∞(Ω). Then

‖f‖YX(Ω) ≈ sup
‖S n

m
g‖

X′(0,1)�1

1∫

0

t−
m
n [f∗∗(t)− f∗(t)] g∗(t) dt+ ‖f‖L1(Ω), (5.2)

where f ∈ M(Ω), g ∈M+(0, 1).

The most innovative part of Theorem 5.1 is the new formula (5.2). The L1-
norm has just a cosmetic meaning, its role is to guarantee that the resulting
functional is a norm. The main term is formulated as some kind of duality
involving the operator S n

m
. In the case where S n

m
can be peeled off, the whole

expression is considerably simpler.

Theorem 5.2. An r.i. space X(Ω) is the optimal domain partner in (3.1)
for some other r.i. space Y (Ω) if and only if

S n
m

: X
′
(0, 1)→ X ′

(0, 1).

In this case,

‖f‖YX(Ω) ≈
∥∥t−m

n [f∗∗(t)− f∗(t)]
∥∥
X(0,1)

+ ‖f‖L1(Ω), f ∈M(Ω).

Again, an r.i. space Y (Ω) is the optimal range partner in (3.1) for some
other r.i. space X(Ω) if and only if T n

m
: Y

′
(0, 1)→ Y ′

(0, 1).

In this case,

‖f‖XY (Ω) ≈
∥∥∥∥∥

1∫

t

f∗(s)s
m
n −1 ds

∥∥∥∥∥
Y (0,1)

, f ∈ M(Ω).
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This result enables us to apply a new approach. We start with a given
r.i. space X(Ω). We find the corresponding optimal range r.i. partner YX(Ω).
Now, the embedding (5.1) has an optimal range, but it does not necessarily
have an optimal domain, as Example 4.5 clearly shows. We thus take one more
step in order to get the optimal domain r.i. partner for YX(Ω), let us call it
X̃(Ω). At this stage however, instead of the rather unpleasant Theorem 4.3,
we can use the far more friendly Theorem 4.4 because YX(Ω) is now already
known to be the optimal range partner for X(Ω), and Theorem 5.2 tells
us that this is equivalent to the required boundedness of T n

m
on YX

′
(0, 1).

Altogether, we have

WmX(Ω) ⊂WmX̃(Ω)↪→Y (Ω),

and X̃(Ω) now can be either equivalent to X(Ω) or strictly larger. In any
case, after these two steps, the couple (X̃(Ω), Y (Ω)) forms an optimal pair
in the Sobolev embedding and no further iterations of the process can bring
anything new.

The functional f∗∗(t) − f∗(t) appearing in (5.2) should cause some nat-
ural concern. It is known [9] that function spaces whose norms involve this
functional often do not enjoy nice properties such as linearity, lattice prop-
erty, or normability. For example, for X(Ω) = L n

m
(Ω) (see [9, Remark 3.2])

all these properties for YX(Ω) are lost. It is instructive to compare this
fact with Theorem 4.4, where this case is ruled out by the assumption
S n

m
: X

′
(0, 1)→ X ′

(0, 1). This makes the significance of the supremum opera-
tor more transparent; S n

m
is bounded on L n

n−m ,∞(0, 1) but not on L n
n−m

(0, 1).
This example is typical, and it illustrates the general principle: the bound-
edness of S n

m
on X

′
(0, 1) guarantees that YX(Ω) is a norm.

Incidentally, certain care must be exercised always when the norm of
a given function space depends on f∗ (for illustration of this fact see [17]).
Let us just add that a detailed study of weighted function spaces based on
the functional f∗∗ − f∗ can be found in [9, 10].

Theorem 5.2 can be used to obtain a new description of the space X̃(Ω).

Theorem 5.3. Let X(Ω) be an r.i. space, and let X̃(Ω) be defined as above.
Define the space Z(Ω) by

‖g‖Z(Ω) := ‖S n
m
g∗∗‖X′

(0,1), g ∈M(Ω).

Then
X̃(Ω) = Z ′(Ω).

The proofs of Theorems 5.2 and 5.3 reveal a very interesting link between
the optimality of r.i. spaces in Sobolev embeddings and their interpolation
properties. It is obtained through the following theorem.
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Theorem 5.4. Let X(Ω) be an r.i. space. Then the operator T n
m

is bounded
on X

′
(0, 1) if and only if X(Ω) is an interpolation space with respect to the

pair (L n
n−m

,1(Ω), L∞(Ω)), a fact which is written as

X(Ω) ∈ Int (L n
n−m

,1(Ω), L∞(Ω)).

Similarly, the operator S n
m

is bounded on X(0, 1) if and only if

X(Ω) ∈ Int (L n
n−m ,∞(Ω), L∞(Ω)).

In other words, r.i. spaces in a Sobolev embedding can be optimal (domains
or range) partners for some other r.i. spaces if and only if they satisfy certain
interpolation properties. Of course, for example, a very large space, which
does not satisfy the interpolation property, can also be a range in a Sobolev
embedding, but not the optimal one.

The formulas for optimal spaces given by Theorems 5.2 and 5.3 are still
not as explicit as one would desire, but, at least, they show the problem in
a new light. They also enable us to obtain explicit formulas for some examples
such as Orlicz spaces, previously unavailable. We complete this section by
an example that can be computed by using Theorem 5.2.

Theorem 5.5. Let A be a Young function for which there exists r > 1 with

Ã(rt) � 2r
n

n−m Ã(t), t � 1.

Then the r.i. spaces X(Ω) = LA(Ω) and Y (Ω) whose norm is given by

‖f‖Y (Ω) := ‖t−m
n [f∗∗(t)− f∗(t)]‖LA(0,1) + ‖f‖L1(Ω), f ∈ M(Ω)

are optimal in (3.1).

6 Explicit Formulas for Optimal Spaces in Sobolev
Embeddings

Our goal in this section is to establish explicit formulas for the spaces YX(Ω)
and X̃(Ω), given an r.i. space X(Ω). We recall that the formulas for these
spaces which we have so far, are expressed in terms of their associate spaces,
namely,

‖f‖Y ′
X(Ω) := ‖f∗∗(t)t

m
n ‖X′

(0,1), f ∈M(Ω), (6.1)

and
‖g‖X̃′(Ω) := ‖S n

m
g∗∗‖X′

(0,1), g ∈ M(Ω). (6.2)

Our focus is now on the problem how to get these constructions explicit.
We first note that the expression for Y ′

X(Ω) turns out to be unsatisfactory in
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that the function

t→ tm
n −1

t∫

0

g∗(s) ds, t ∈ [0,∞), g ∈M(Ω),

need not be nonincreasing. This complicates the construction of explicit for-
mulas for YX(Ω). (However, see [20, Sect. 4] and [29, Sect. 4].) Our next
theorem from [31] overcomes this difficulty.

Theorem 6.1. Suppose that X(Ω) is an r.i. space satisfying

X(Ω) ⊃ L n
m
,1(Ω).

Define the space ZX(Ω) by

‖g‖ZX(Ω) :=

∥∥∥∥∥t
m
n −1

t∫

0

g∗(s)s−
m
n ds

∥∥∥∥∥
X

′
(0,1)

, g ∈ M(Ω).

Then
‖f‖YX(Ω) ≈

∥∥t−m
n f∗(t)

∥∥
Z

′
X(0,1)

, f ∈M(Ω).

We note that this eliminates the above-mentioned problem since the func-
tion

t �→ tm
n −1

t∫

0

g∗(s)s−
m
n ds, t ∈ [0,∞),

is nonincreasing, being a weighted average of a nonincreasing function.
Theorem 6.1 is, again, rather involved. The proof uses delicate estimates

and previously obtained optimality results for various integral and supremum
operators.

Hence the remaining task is to compute associate spaces of X̃ ′(Ω) and
Y ′
X(Ω). To this end, we use the Brudnyi–Kruglyak duality theory [8] and the

interpolation methods using the k-functional, elaborated recently in [27].
The main result reads as follows.

Theorem 6.2. Suppose that X(Ω) is an r.i. space. Define the space VX(Ω)
by

‖g‖VX(Ω) := ‖g∗∗(t1−
m
n )‖X′

(0,1), g ∈M(Ω).

Then

‖g‖X̃(Ω) ≈
(
k(t, g∗;L1(0, 1), L n

m
,1(0, 1))

∥∥
V

′
X (0,1)

, g ∈M(Ω).

Moreover,

‖f‖YX(Ω) ≈
∥∥k(t, s−m

n f∗(s);L1(0, 1), L n
m
,∞(0, 1))

∥∥
V

′
X (0,1)

, f ∈M(Ω).
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Theorem 6.2 can be applied to construct the spaces YX(Ω) and X̃(Ω)
explicitly.

Let us now briefly indicate how the interpolation K-method comes in.
Let X1 and X2 be Banach spaces, compatible in the sense that they are

embedded in a common Hausdorff topological vector space H . Suppose that
x ∈ X1 +X2 and t ∈ [0,∞). The Peetre K-functional is defined by

K(t, x;X1, X2) := inf
x=x1+x2

(‖x1‖X1 + t‖x2‖X2) , t > 0.

It is an increasing concave function of t on [0,∞), so that

k (t, x;X1, X2) :=
d

dt
K (t, x;X1, X2)

is nonincreasing on [0,∞).
Given an r.i. space Z on M+([0,∞)), for which

∥∥∥ 1
1+t

∥∥∥
Z
< ∞, the space

X , with ‖x‖X defined at x ∈ X1 +X2 by

‖x‖X :=
∥∥t−1K (t, x;X1, X2)

∥∥
Z

satisfies
X1 ∩X2 ⊂ X ⊂ X1 +X2;

moreover, for any linear operator T defined on X1 +X2

T : Xi → Xi, i = 1, 2, implies T : X → X.

We say that the space X is generated by the K-method of interpolation.
The asserted connection of the duality theory for the K-method with our

task is through certain reformulations of (6.1) and (6.2), namely

‖f‖Y ′
X(Ω) ≈ ‖tm

n −1K(t1−
m
n , f ;L n

n−m ,∞(0, 1), L∞(0, 1))‖X′
(0,1), f ∈ M(Ω),

and

‖g‖X̃′(Ω) ≈ ‖t
m
n −1K(t1−

m
n , g;L n

n−m
,1(0, 1), L∞(0, 1))‖X′

(0,1), g ∈M(Ω).

We complete with an example involving Orlicz spaces.

Theorem 6.3. Let A be a Young function. Assume that A(t) = tq near 0
and

t
m
n −1 /∈ LÃ([0,∞)).

Define B through the equation

B(γ(t)) :=
(m
n
− 1
)
Ã
(
t

m
n −1
) γt)
tγ′(t))

where
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γ(t) := t−
m
n

∞∫

t

Ã(s
m
n −1) ds, t ∈ [0,∞).

Define the space Z(Ω) by

‖g‖Z(Ω) := ‖tm
n −1

t1−
m
n∫

0

g∗(s) ds‖LÃ(0,1), g ∈M(Ω).

Then B is a Young function and

‖f‖Z′(Ω) ≈
∥∥t−m

n f∗
(
t1−

m
n

)∥∥
X(0,1)

, f ∈M(Ω).

It is of interest to compare this result with that of Cianchi [13] who ob-
tained a description of YX(Ω) different from ours by the use of techniques
specific to the Orlicz context.

We note that the results of this section can be applied also to other ex-
amples of function spaces such as classical Lorentz spaces of type Gamma
and Lambda (details can be found in [31]). However, the formulas are rather
complicated and therefore omitted here.

7 Compactness of Sobolev Embeddings

The most important characteristics of Sobolev spaces is not only whether they
embed into other function spaces, but also whether they embed compactly.

Let X(Ω) and Y (Ω) be two r.i. spaces. We say thatWmX(Ω) is compactly
embedded into Y (Ω) and write

WmX(Ω) ↪→ ↪→ Y (Ω)

if for every sequence {fk} bounded in WmX(Ω) there exists a subsequence{
fkj

}
which is convergent in Y (Ω).

In the case whereX(Ω) and Y (Ω) are Lebesgue spaces, we have a theorem,
which originated in a lemma of Rellich [41] and was proved specifically for
Sobolev spaces by Kondrachov [32], and which asserts that

Wm,p(Ω)↪→ ↪→Lq(Ω) (7.1)

if q < p∗ = np
n−mp . Standard examples (see [1]) show that it is not compact

when q = np
n−mp .

As for embeddings into Orlicz spaces, Hempel, Morris, and Trudinger [24]
showed that the embedding (1.3) is not compact. By a standard argument
using a uniform absolute continuity of a norm, it can be proved that
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W 1,n(Ω)↪→ ↪→LB(Ω)

whenever B is a Young function satisfying, with A(t) := exp(tn
′
) for large

values of t,

lim
t→∞

A(λt)
B(t)

=∞

for every λ > 0.
Considering Lorentz spaces, it is of interest to notice that even the Sobolev

embedding
Wm,p(Ω)↪→ ↪→Lp∗,∞(Ω)

is still not compact. (This is not difficult to verify; in fact, standard examples
that demonstrate the noncompactness of (7.1) with q = p∗ (see, for example,
[1]) are sufficient.) The space Lp∗,∞(Ω) is of course considerably larger than
Lp∗(Ω), but it simply is not “larger enough.” This observation is a good point
of departure since it raises interesting questions.

For example, we may ask whether the space Lp∗,∞(Ω) is the “gateway to
compactness” in the sense that every strictly larger space is already a compact
range for Wm,p(Ω). It even makes a good sense to formulate this problem in
a broader context of r.i. spaces. (Recall that when the Lebesgue space Lp∗(Ω)
is replaced by an arbitrary r.i. space Y (Ω), the role of Lp∗,∞(Ω) is taken over
by the endpoint Marcinkiewicz space MY (Ω).)

We can formulate the following general question (which we have answered
for the particular example above).

Let X(Ω) be an r.i. space, and let YX(Ω) be the corresponding optimal
range r.i. space. Let MYX (Ω) be the Marcinkiewicz space corresponding to
YX(Ω). Then, of course, WmX(Ω)↪→MYX (Ω). Can this embedding ever be
compact? If not, is the Marcinkiewicz space the gateway to compactness in
the above-mentioned sense?

It is clear that in order to obtain satisfactory answers to these and other
questions we need a reasonable characterization of pairs of spacesX(Ω), Y (Ω)
for which we have the compact Sobolev embedding

WmX(Ω)↪→ ↪→Y (Ω).

From various analogous results in less general situations it can be guessed that
one such a characterization might be the compactness of H n

m
from X(0, 1)

to Y (0, 1), and another one might be the uniform absolute continuity of the
norms of the H n

m
-image of the unit ball of X(0, 1) in Y (0, 1). This guess turns

out to be reasonable, but the proof is deep and difficult and contains many
unexpected pitfalls. Moreover, the case where the range space is L∞(Ω) must
be treated separately.

Theorem 7.1. Let X(Ω) and Y (Ω) be r.i. spaces. Assume that Y (Ω) �=
L∞(Ω). Then the following three statements are equivalent:
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WmX(Ω)↪→ ↪→Y (Ω); (7.2)

H n
m

: X(0, 1)→→ Y (0, 1); (7.3)

lim
a→0+

sup
‖f‖X(0,1)�1

∥∥∥∥∥χ(0,a)(t)

1∫

t

f∗(s)s
m
n −1 ds

∥∥∥∥∥
Y (0,1)

= 0. (7.4)

The case Y (Ω) = L∞(Ω) is different and, as such, is treated in

Theorem 7.2. Let X(Ω) be an r.i. space. Then the following three state-
ments are equivalent:

WmX(Ω)↪→ ↪→L∞(Ω);

H n
m

: X(0, 1)→→ L∞(0, 1);

lim
a→0+

sup
‖f‖X(0,1)�1

a∫

0

f∗(t)t
m
n −1 dt = 0.

The most important and involved part is the sufficiency of (7.4) for (7.2).
When trying to prove this implication, we discovered an unpleasant technical
difficulty. All the methods which we tried to apply, and which would naturally
solve the problem, seemed to require

Y (0, 1) ∈ Int (L n
n−m

,1(0, 1), L∞(0, 1)),

a restriction that does not offer any obvious circumvention. Such a require-
ment, however, is simply too much to ask. A candidate for a compact range
can be as large as it pleases (consider L1(Ω)) and, in particular, it may by
all means lay far outside from the required interpolation sandwich. This ob-
stacle proved to be surprisingly difficult. At the end, it was overcome by
the discovery of a useful fact that, given an r.i. space Y (Ω), we can always
construct another one, Z(Ω), possibly smaller than Y (Ω), such that the con-
dition (7.4) is still valid, but which already has the required interpolation
properties. We formulate this result as a separate theorem because it is of
independent interest.

Theorem 7.3. Let X(Ω) and Y (Ω) be r.i. spaces satisfying (7.4). Then
there exists another r.i. space Z(Ω) with

Z(0, 1) ∈ Int (L n
n−m

,1(0, 1), L∞(0, 1))

such that Z(Ω)↪→Y (Ω) and

lim
a→0+

sup
‖f‖X(Ω)�1

∥∥∥∥∥χ(0,a)(t)

1∫

t

f∗(s)s
m
n −1 ds

∥∥∥∥∥
Z(Ω)

= 0.
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The rest of the proof of the main results uses sharp estimates for supremum
operators, various optimality results from the preceding sections, and the
Arzela–Ascoli theorem. The proof of Theorem 7.3 is very involved and delicate
and requires extensive preparations. The details can be found in [30].

At one stage of the proof, the necessity of the vanishing Muckenhoupt
condition is shown.

Theorem 7.4. Let X(Ω) and Y (Ω) be r.i. spaces. Assume that Y (Ω) �=
L∞(Ω). Then each of (7.2), (7.3), and (7.4) implies

lim
a→0+

∥∥χ(0,a)

∥∥
Y (0,1)

∥∥tm
n −1χ(a,1)(t)

∥∥
X

′
(0,1)

= 0.

This result shows that a candidate Y (Ω) for a compact range must have
an essentially smaller fundamental function than the optimal embedding
space YX(Ω), hence also than the Marcinkiewicz space MYX (Ω). In other
words, we must have

lim
t→0+

ϕY (t)
ϕYX (t)

= 0.

This solves the above question: the embedding

WmX(Ω)↪→MYX (Ω)

is always true, but never (for any choice of X(Ω)) compact.
Likewise, the “gateway” problem has the negative answer: a counterex-

ample is easily constructed by taking appropriate fundamental functions and
using corresponding Marcinkiewicz spaces. It turns out that not even a space
which contains MYX (Ω) properly and whose fundamental function is strictly
smaller than that of YX(Ω) guarantees compactness.

The connection between a candidate Y (Ω) for a compact range for a given
Sobolev spaceWmX(Ω) and the optimal range YX(Ω) that does imply com-
pactness can be found, but it has to be formulated in terms of a uniform
absolute continuity.

Theorem 7.5. Suppose that X(Ω) and Y (Ω) are two r.i. spaces. Assume
that Y (Ω) �= L∞(Ω). Let YX(Ω) be the optimal r.i. embedding space for
WmX(Ω). Then (7.2) holds if and only if the functions in the unit ball of
YX(Ω) have uniformly absolutely continuous norms in Y (Ω) or, what is the
same,

lim
a→0+

sup
‖f‖YX (Ω)�1

∥∥χ(0,a)f
∗∥∥
Y (0,1)

= 0, f ∈M(Ω). (7.5)

Theorem 7.5 gives a necessary and sufficient condition for the compactness
of a Sobolev embedding. However, an application of the criterion would in-
volve examination of a uniform absolute continuity of many functions, which
may be difficult to verify. It is thus worth looking for a more manageable
condition, sufficient for the compactness of the embedding and not too far
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from being also necessary, which could be used in practical examples. Such
a condition is provided by our next theorem. In some sense, it substitutes the
negative outcome of the gateway problem.

Theorem 7.6. Let X(Ω) and Y (Ω) be r.i. spaces. Set

ϕR(t) :=
dc

dt
,

where c(t) is the least concave majorant of

t‖sm
n −1χ(t,1)(s)‖X′

(0,1).

Then the condition
lim
a→0+

∥∥χ(0,a)ϕR
∥∥
Y (0,1)

= 0 (7.6)

suffices for
WmX(Ω)↪→ ↪→Y (Ω).

Observe that the condition (7.6) can be simply verified in particular ex-
amples since it requires to consider just one function rather than the whole
unit ball as in (7.5).

Among many examples that can be extracted from these results, we present
just one, concerning Orlicz spaces.

Theorem 7.7. Suppose that A and Ã are complementary Young functions
and ∞∫

1

Ã(s)
s1+

n
n−m

ds =∞.

Define the Young function AR(t) for t large by

A−1
R (t) :=

t1−
m
n

E−1(t)

with

E(t) := t
n

n−m

t∫

1

Ã(s)
s1+

n
n−m

ds, t � 1.

Then
WmLA(Ω)↪→ ↪→LB(Ω)

for a given Young function B if and only if

lim
t→∞

AR(λt)
B(t)

=∞ (7.7)

for every λ > 0.
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We finally note that, in terms of the explicitly known functions B and
E, (7.7) can be expressed by

lim
t→∞

B
(
(λt)−1E(t)1−

m
n

)
E(t)

= 0 for every λ > 0.

8 Boundary Traces

One of the main applications of Sobolev space techniques is in the field of
traces of functions defined on domains. The theory of boundary traces in
Sobolev spaces has a number of applications, especially to boundary-value
problems for partial differential equations, in particular when the Neumann
problem is studied. The trace operator defined by

Tr u = u|∂Ω

for a continuous function u onΩ can be extended to a bounded linear operator

Tr :W 1,1(Ω)→ L1(∂Ω),

where L1(∂Ω) denotes the Lebesgue space of summable functions on ∂Ω
with respect to the (n−1)–dimensional Hausdorff measure Hn−1. There exist
many powerful methods for proving trace embedding theorems for the trace
operator Tr, usually however quite dependent on a particular norms involved.
For specific limiting situations other (for example, potential) methods were
used, but there does not seem to exist a unified flexible approach that would
cover the whole range of situations of interest in applications.

In [15], we developed a new method for obtaining sharp trace inequalities
in a general context based on the ideas elaborated in the preceding sections.

Again, the key result is a reduction theorem.

Theorem 8.1. Let X(Ω) and Y (∂Ω) be r.i. spaces. Then

∥∥∥∥∥
1∫

tn′

f(s)s
m
n −1 ds

∥∥∥∥∥
Y (0,1)

� C‖f‖X(0,1), f ∈M+(0, 1),

if and only if
‖Tru‖Y (∂Ω) � C‖u‖WmX(Ω) (8.1)

for every u ∈WmX(Ω).
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Thus, when dealing with boundary traces, the role of the operator H n
m

is

taken over by the operator

1∫

tn′

f(s)s
m
n −1 ds. Using appropriate interpolation

methods, we can characterize the optimal trace range on ∂Ω.

Theorem 8.2. Let X(Ω) be an r.i. space. Then the r.i. space Y (∂Ω) whose
associate norm is given by

‖g‖Y ′(∂Ω) =
∥∥∥tm−1

n g∗∗(t
1

n′ )
∥∥∥
X

′
(0,1)

for every Hn−1–measurable function g on ∂Ω is optimal in (8.1).

Our trace results recover many known examples, prove their optimality
that had not been known before, and bring new ones (see [15] for details).

9 Gaussian Sobolev Embeddings

In connection with some specific problems in physics such as quantum fields
and hypercontractivity semigroups, it turns out that it would be of interest to
extend classical Sobolev embeddings in R

n to an infinite-dimensional space.
The motivation for such things stems from the fact that, in certain circum-
stances, the study of quantum fields can be reduced to operator or semigroup
estimates which are in turn equivalent to inequalities of Sobolev type in in-
finitely many variables (see [36] and the references therein). However, when
we let n→∞, we have then np

n−p → p+ and so the gain in integrability will
apparently be lost. Even more serious, the Lebesgue measure on an infinite-
dimensional space is meaningless.

These problems were overcome in the fundamental paper of Gross [23]
who replaced the Lebesgue measure by the Gauss one. Note that the Gauss
measure γ is defined on R

n by

dγ(x) = (2π)−
n
2 e

−|x|2
2 dx.

Now, γ(Rn) = 1 for every n ∈ N, hence the extension as n→∞ is meaningful.
The idea was then to seek a version of the Sobolev inequality that would hold
on the probability space (Rn, γ) with a constant independent of n. Gross
proved [23] an inequality of this kind, which, in particular, entails that

‖u− uγ‖L2LogL(Rn,γ) � C‖∇u‖L2(Rn,γ) (9.1)

for every weakly differentiable function u making the right-hand side finite,
where
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uγ =
∫

Rn

u(x)dγ(x),

the mean value of u, and L2LogL(Rn, γ) is the Orlicz space of those functions
u such that |u|2| log |u|| is integrable in R

n with respect to γ. Interestingly,
(9.1) still provides some slight gain in integrability from |∇u| to u, even
though it is no longer a power-gain.

In [16], we studied problems concerning the optimality of function spaces
in first order Sobolev embeddings on the Gaussian space, namely

‖u− uγ‖Y (Rn,γ) � C‖∇u‖X(Rn,γ). (9.2)

As usual, we start with a reduction theorem. This time, the role of the
operator H n

m
is taken by the operator

1∫

t

f(s)
s
√

1 + log(1/s)
ds.

The reduction theorem then reads as follows.

Theorem 9.1. Let X(Rn, γ) and Y (Rn, γ) be r.i. spaces. Then

‖u− uγ‖Y (Rn,γ) � C ‖∇u‖X(Rn,γ)

for every u ∈W 1X(Rn, γ) if and only if

∥∥∥∥∥
1∫

t

f(s)
s
√

1 + log(1/s)
ds

∥∥∥∥∥
Y (0,1)

� C ‖f‖X(0,1)

for every f ∈ X(0, 1).

Then the characterization of the optimal range r.i. space for the Gaussian
Sobolev embedding when the domain space is obtained via the usual scheme.

Theorem 9.2. Let X(Rn, γ) be an r.i. space, and let Z(Rn, γ) be the
r.i. space equipped with the norm

‖g‖Z(Rn,γ) :=
∥∥∥ g∗∗(s)√

1 + log 1
s

∥∥∥
X

′
(0,1)

for any measurable function u on R
n. Let Y (Rn, γ) = Z ′(Rn, γ). Then

Y (Rn, γ) is the optimal range space in the Gaussian Sobolev embedding (9.2).

The role of the operator T n
m

is in the Gaussian setting taken over by the
operator
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(Tf)(t) =

√
1 + log

1
t

sup
t�s�1

f∗(s)√
1 + log 1

s

for t ∈ (0, 1).

With the help of the operator T , we can characterize the optimal domain
space.

Theorem 9.3. Let Y (Rn, γ) be an r.i. space such that

expL2(Rn, γ)↪→Y (Rn, γ)↪→L (logL)
1
2 (Rn, γ)

and

c̄enterlineT is bounded on Y
′
(0, 1).

Let X(Rn, γ) be the r.i. space equipped with the norm

‖u‖X(Rn,γ) =

∥∥∥∥∥
1∫

t

u∗(s)

s
√

1 + log 1
s

ds

∥∥∥∥∥
Y (0,1)

.

Then X(Rn, γ) is the optimal domain space for Y (Rn, γ) in the Gaussian
Sobolev embedding (9.2).

We now collect the basic examples.

Example 9.4. (i) Let 1 � p < ∞. Then the spaces X(Rn, γ) = Lp(Rn, γ)
and Y (Rn, γ) = Lp(logL)

p
2 (Rn, γ) form an optimal pair in the Gaussian

Sobolev embedding (9.2).
(ii) The spaces X(Rn, γ) = L∞(Rn, γ), Y (Rn, γ) = expL2(Rn, γ) form

an optimal pair in the Gaussian Sobolev embedding (9.2).

(iii) Let β > 0. Then the spaces (expLβ(Rn, γ), expL
2β

2+β (Rn, γ)) form
an optimal pair in the Gaussian Sobolev embedding (9.2).

These examples demonstrate a surprising phenomenon: while there is
a gain in integrability when the domain space is a Lebesgue space, there
is actually a loss near L∞. This fact is caused by the nature of the Gaussian
measure which rapidly decreases at infinity.
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On the Hardy–Sobolev–Maz’ya
Inequality and Its Generalizations

Yehuda Pinchover and Kyril Tintarev

Abstract The paper deals with natural generalizations of the Hardy–
Sobolev–Maz’ya inequality and some related questions, such as the optimality
and stability of such inequalities, the existence of minimizers of the associ-
ated variational problem, and the natural energy space associated with the
given functional.

1 Introduction

The term “inequalities of Hardy–Sobolev type” refers, somewhat vaguely, to
families of inequalities that in some way interpolate the Hardy inequality
∫

Ω

|∇u(x)|p dx � C(N, p,K,Ω)
∫

Ω

|u(x)|p
dist(x,K)p

dx, u ∈ C∞
0 (Ω \K),

(1.1)
where Ω ⊂ R

N is an open domain and K ⊂ Ω is a nonempty closed set, and
the Sobolev inequality

∫

Ω

|∇u(x)|p dx � C

⎛
⎝
∫

Ω

|u(x)|p∗ dx

⎞
⎠
p/p∗

, u ∈ C∞
0 (Ω), (1.2)
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where 1 < p < N and p∗ def= pN/(N − p) is the corresponding Sobolev expo-
nent. Throughout the paper, we repeatedly consider the following particular
case.

Example 1.1. Let Ω = R
N = R

n × R
m, where 1 < m � N , and let

K = R
n×{0}. We denote by y and z the variables of R

n and R
m respectively

and set R
N
0

def= R
n × (Rm \ {0}). It is well known that the Hardy inequality

(1.1) holds with the best constant

C(N, p,Rn × {0},RN) =
∣∣∣∣m− pp

∣∣∣∣
p

. (1.3)

An elementary family of Hardy–Sobolev inequalities can be obtained by
Hölder interpolation between the Hardy inequality and the Sobolev inequal-
ity. More significant inequalities of Hardy–Sobolev type with the best con-
stant in the Hardy term can be derived as consequences of Caffarelli–Kohn–
Nirenberg inequality [5, 13] that provides estimates in terms of the weighted

gradient norm
∫
|ξ|α|∇u|pdξ. The substitution u = |y|βv into the Caffarelli–

Kohn–Nirenberg inequality can be used to produce inequalities that combine
terms with the critical exponent and with the Hardy potential. Such inequal-
ities are known as Hardy–Sobolev–Maz’ya inequalities (HSM inequalities for
brevity). In particular, Maz’ya [16, Sect. 2.1.6, Corollary 3] proved the HSM
inequality

∫

R
N
0

|∇u|2 dy dz −
(
m− 2

2

)2 ∫

R
N
0

|u|2
|y|2 dy dz

� C

⎛
⎜⎝
∫

R
N
0

|u|2∗
dy dz

⎞
⎟⎠

2/2∗

, u ∈ C∞
0 (RN0 ), (1.4)

where 2 < N and 1 � m < N . This HSM inequality is false for m = N and
reduces to the Sobolev inequality for m = 2. Since the left-hand side of (1.4)
induces a Hilbert norm, the inequality holds on D1,2(RN0 ), the completion of
C∞

0 (RN0 ) in the gradient norm, which coincides with D1,2(RN ) for all m > 1,
in particular, C∞

0 (RN0 ) may be replaced by C∞
0 (RN ) unless m = 1.

The joint paper [8] by Filippas, Maz’ya, and Tertikas gives the following
generalization of the HSM inequality (1.4).

Example 1.2. Let 2 � p < N , p �= m < N , and let Ω ⊂ R
N be a bounded

domain. Let K be a compact C2-manifold without boundary embedded in
R
N of codimension m such that K � Ω for 1 < m < N (i.e., K is compact

in Ω) or K = ∂Ω for m = 1. Assume further that
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−Δp dist (·,K)(p−m)/(p−1) � 0 in Ω \K, (1.5)

where Δp(u)
def= ∇ · ( |∇u|p−2∇u) is the p-Laplacian.

Then for all u ∈ C∞
0 (Ω \K) we have

∫

Ω

|∇u(x)|p dx−
∣∣∣∣m− pp

∣∣∣∣
p ∫

Ω

|u(x)|p
dist (x,K)p

dx

� C

⎛
⎝
∫

Ω

|u(x)|p∗ dx

⎞
⎠
p/p∗

. (1.6)

For N = 3 Benguria, Frank, and Loss [3] have shown recently that the
best constant C in (1.4) is the Sobolev constant S3. Mancini and Sandeep
[14] have studied the analog of HSM on the hyperbolic space and its close
connection to the original HSM inequality.

In the present paper, we consider a nonnegative functional Q of the form

Q(u) def=
∫

Ω

(|∇u|p + V |u|p) dx, u ∈ C∞
0 (Ω), (1.7)

where Ω ⊆ R
N is a domain, V ∈ L∞loc(Ω), and 1 < p <∞. We study several

questions related to extensions of the inequalities (1.4) and (1.6). In Sect. 2,
we deal with generalizations of these HSM inequalities for the functional Q.
It turns out that, in the subcritical case, a weighted HSM inequality holds,
where the weight appears in the Sobolev term. In the critical case, one needs
to add a Poincaré type term (a one-dimensional p-homogeneous functional),
and we call it the Hardy–Sobolev–Maz’ya–Poincaré inequality. We show that
under “small” perturbations such Hardy–Sobolev–Maz’ya type inequalities
are preserved (with the original Sobolev weight). We also address the ques-
tion concerning the optimal weight in the generalized Hardy–Sobolev–Maz’ya
inequality.

In Sect. 3, we study a natural energy space D1,2
V (Ω) for nonnegative sin-

gular Schrödinger operators and discuss the existence of minimizers for the
Hardy–Sobolev–Maz’ya inequality in this space, i.e., minimizers of the equiv-
alent Caffarelli–Kohn–Nirenberg inequality. Finally, in Sect. 4, we prove that
a related functional Q̂ which satisfies C−1Q � Q̂ � CQ for some C > 0
induces a norm on the cone of nonnegative C∞

0 (Ω)-functions. For p = 2 this
norm coincides (on the above cone) with the D1,2

V (Ω)-norm defined in [18]. It
is our hope that this approach paves the way to circumvent the general lack
of convexity of the nonnegative functional Q for p �= 2.
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2 Generalization of the Hardy–Sobolev–Maz’ya
Inequality

We need the following definition.

Definition 2.1. Let Ω ⊆ R
N be a domain, V ∈ L∞loc(Ω), and 1 < p < ∞.

Assume that the functional

Q(u) =
∫

Ω

(|∇u|p + V |u|p) dx (2.1)

is nonnegative on C∞
0 (Ω). A function ϕ ∈ C1(Ω) is a ground state for the

functional Q if ϕ is an Lploc-limit of a nonnegative sequence {ϕk} ⊂ C∞
0 (Ω)

satisfying

Q(ϕk)→ 0 and
∫

B

|ϕk|p dx = 1

for some fixed B � Ω (such a sequence {ϕk} is called a null sequence). The
functional (1.7) is called critical if Q admits a ground state and subcritical
or weakly coercive if it does not.

The following statement (see [20]) is a generalization of the Hardy–
Sobolev–Maz’ya inequality. The inequality (2.4) might be called a Hardy–
Sobolev–Maz’ya–Poincaré type inequality.

Theorem 2.2. Let Q be a nonnegative functional on C∞
0 (Ω) of the form

(1.7), and let 1 < p < N .

(i) The functional Q does not admit a ground state if and only if there
exists a positive continuous function W such that

Q(u) �

⎛
⎝
∫

Ω

W |u|p∗dx

⎞
⎠
p/p∗

, u ∈ C∞
0 (Ω). (2.2)

(ii) If Q admits a ground state ϕ, then ϕ is a unique global positive (super)-
solution of the Euler–Lagrange equation

Q′(u) def= −Δp(u) + V |u|p−2u = 0 in Ω. (2.3)

Moreover, there exists a positive continuous function W such that for every
function ψ ∈ C∞

0 (Ω) with ∫

Ω

ψϕdx �= 0

the following inequality holds:
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Q(u) + C

∣∣∣∣∣∣
∫

Ω

ψu dx

∣∣∣∣∣∣
p

�

⎛
⎝
∫

Ω

W |u|p∗dx

⎞
⎠
p/p∗

, u ∈ C∞
0 (Ω) (2.4)

for some suitable constant C > 0.

Remark 2.3. For relationships between the criticality of Q in Ω and the
p-capacity (with respect to the functional Q) of closed balls see [20, Theo-
rem 4.5] and [24, 25].

Theorem 2.2 applies to the case of Ω = R
N
0 and the Hardy potential (see

Example 1.1 and, in particular, (1.4)), but it does not specify that the weight
W in the Sobolev term is the constant function. We note that Example 1.2
provides another Hardy type functional satisfying the Hardy–Sobolev–Maz’ya
inequality with the weight W = constant.

On the other hand, let Ω = R
N
0 with m = N . Then the corresponding

Hardy functional admits a ground state ϕ(x) = |x|(p−N)/p, and therefore the
Hardy–Sobolev–Maz’ya inequality does not hold with any weight. Moreover,
the Hardy–Sobolev–Maz’ya–Poincaré inequality (2.4) which, by Theorem 2.2,
holds with some weight W is false with the weightW = constant (see [9] and
Example 2.5 below).

Let us present few other examples which illustrate further the question of
admissible weights in the Hardy–Sobolev–Maz’ya inequality and the Hardy–
Sobolev–Maz’ya–Poincaré inequality. The first two examples are elementary,
but general. In the first one, the Hardy–Sobolev–Maz’ya inequality (2.2) holds
with the constant weight function, while in the second example (Example 2.5
below) such an inequality is false.

Example 2.4. Consider a nonnegative functional Q of the form (1.7), where
V ∈ L∞loc(Ω) is a nonzero function and 1 < p < N . For λ ∈ R we denote

Qλ(u) def=
∫

Ω

(|∇u|p + λV |u|p) dx.

Then for every λ ∈ (0, 1) there exists C > 0 such that

Qλ(u) � C‖u‖pp∗ , u ∈ C∞
0 (Ω), (2.5)

where C = C(N, p, λ) > 0. This HSM inequality follows from

Qλ(u) = (1 − λ)
∫

Ω

|∇u|p dx+ λQ(u) � (1− λ)
∫

Ω

|∇u|p dx

and the Sobolev inequality.
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Example 2.5. Let Q � 0 be of the form (1.7), where 1 < p < N . Suppose
that Q admits ground state ϕ /∈ Lp∗(Ω). Let {ϕk} be a null sequence (see
Definition 2.1) such that ϕk → ϕ locally uniformly in Ω (for the existence
of a locally uniform convergence null sequence see [20, Theorem 4.2]). Let
V1 ∈ L∞(Ω) be a nonzero nonnegative function with compact support. Then

Q(ϕk) +
∫

Ω

V1|ϕk|p dx→
∫

Ω

V1|ϕ|p dx <∞,

while the Fatou lemma implies that ‖ϕk‖p∗ →∞. Therefore, the subcritical
functional

QV1(u) def= Q(u) +
∫

Ω

V1|u|p dx

does not satisfy the HSM inequality (2.2) with the constant weight. A similar
argument shows that the critical functional Q does not satisfy the Hardy–
Sobolev–Maz’ya–Poincaré inequality with the constant weight.

Remark 2.6. Example 2.5 can be slightly generalized by replacing the as-
sumption ϕ /∈ Lp∗(Ω) with ϕ /∈ Lp∗(Ω,W dx), where W is a continuous pos-
itive weight function. Under this assumption it follows that the functionals
QV1 and Q do not satisfy the Hardy–Sobolev–Maz’ya inequality and respec-
tively the Hardy–Sobolev–Maz’ya–Poincaré inequality with the weight W .

Example 2.7. Filippas, Tertikas, and Tidblom [10, Theorem C] proved that
a nonnegative functional Q of the form (1.7) with p = 2 and N > 1 satisfies
the HSM inequality in a smooth domain Ω withW = constant if the equation
Q′(u) = 0 has a positive C2-solution ϕ such that the following L1-Hardy type
inequality holds:
∫

Ω

ϕ2(N−1)/(N−2)|∇u| dx � C
∫

Ω

ϕN/(N−2)|∇ϕ| |u| dx, u ∈ C∞
0 (Ω).

Example 2.8. Consider the function

X(r) def= (| log r|)−1 , r > 0.

Let Ω ⊂ R
N , N > 2, be a bounded domain, and let D def= supx∈Ω |x|. The

following inequality is due to Filippas and Tertikas [9, Theorem A]:
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∫

Ω

|∇u|2 dx−
(
N − 2

2

)2 ∫

Ω

|u|2
|x|2 dx

� C

⎛
⎝
∫

Ω

|u|2∗
X(|x|/D)1+N/(N−2) dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω). (2.6)

Moreover, the exponent 1 + N/(N − 2) in (2.6) cannot be decreased. In
particular, in this case, the HSM inequality does not hold withW = constant
(cf. Example 2.5 and Remark 2.6).

We now consider the question whether the weightW in the HSM inequality
(2.2) is preserved (up to a constant multiple) under small perturbations.

Theorem 2.9. Let Ω be a domain in R
N , N > 2, and let V ∈ L∞loc(Ω).

Assume that the following functional Q satisfies the HSM inequality

Q(u) def=
∫

Ω

(|∇u|2 + V |u|2) dx �

⎛
⎝
∫

Ω

W |u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω)

(2.7)
with some positive continuous function W . Let Ṽ ∈ L∞loc(Ω) be a nonzero
potential satisfying

|Ṽ |N/2W (2−N)/2 ∈ L1(Ω). (2.8)

Consider the one-parameter family of functionals Q̃λ defined by

Q̃λ(u) def= Q(u) + λ
∫

Ω

Ṽ |u|2 dx,

where λ ∈ R.

(i) If Q̃λ is nonnegative on C∞
0 (Ω) and does not admit a ground state,

then

Q̃λ(u) � C

⎛
⎝
∫

Ω

W |u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω), (2.9)

where C is a positive constant.

(ii) If Q̃λ is nonnegative on C∞
0 (Ω) and admits a ground state v, then for

every ψ ∈ C∞
0 (Ω) such that

∫

Ω

ψv dx �= 0 we have
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Q̃λ(u) + C1

⎛
⎝
∫

Ω

ψu dx

⎞
⎠

2

� C

⎛
⎝
∫

Ω

W |u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω)

(2.10)
with suitable positive constants C,C1 > 0.

(iii) The set
S

def= {λ ∈ R | Q̃λ � 0 on C∞
0 (Ω)}

is a closed interval with nonempty interior which is bounded if and only if Ṽ
changes its sign on a set of positive measure in Ω. Moreover, λ ∈ ∂S if and
only if Q̃λ is critical in Ω.

Proof. (i)–(ii) Let D1,2

λṼ
(Ω) denote the completion of C∞

0 (Ω) with respect to

the norm defined by the square root of the left-hand side of (2.9) if Q̃λ does
not admit a ground state, and by the square root of the left-hand side of
(2.10) if Q̃λ admits a ground state (see [18]). Similarly, we denote by D1,2

V (Ω)
the completion of C∞

0 (Ω) with respect to the norm defined by the square
root of the left-hand side of (2.7). We denote by ‖ · ‖D1,2

λṼ

and ‖ · ‖D1,2
V

the

norms on D1,2

λṼ
(Ω) and D1,2

V (Ω) respectively.
Assume that (2.9) (respectively, (2.10)) does not hold. Then there exists

a sequence {uk} ⊂ C∞
0 (Ω) such that

‖uk‖D1,2
λṼ

→ 0 and
∫

Ω

W |uk|2∗
dx = 1. (2.11)

By [18, Proposition 3.1], the space D1,2

λṼ
(Ω) is continuously imbedded into

W 1,2
loc (Ω). Therefore, uk → 0 in W 1,2

loc (Ω). Consequently, for any K � Ω we
have

lim
k→∞

∫

K

|Ṽ ||uk|2 dx = 0. (2.12)

On the other hand, (2.8) and the Hölder inequality imply that for any
ε > 0 there exists Kε � Ω such that

∣∣∣∣∣∣∣
∫

Ω\Kε

Ṽ |uk|2 dx

∣∣∣∣∣∣∣
�

⎛
⎜⎝

∫

Ω\Kε

|Ṽ |N/2W (2−N)/2 dx

⎞
⎟⎠

2/N⎛
⎝
∫

Ω

W |uk|2∗
dx

⎞
⎠

2/2∗

< ε.

(2.13)

Since
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‖uk‖D1,2
V

� ‖uk‖D1,2
λṼ

+

∣∣∣∣∣∣
∫

Ω

λṼ |uk|2 dx

∣∣∣∣∣∣
1/2

,

from (2.11)–(2.13) it follows that uk → 0 in D1,2
V (Ω). Therefore, (2.7) implies

that ∫

Ω

W |uk|2∗
dx→ 0,

which contradicts the assumption
∫

Ω

W |uk|2∗
dx = 1.

Consequently, (2.9) (respectively, (2.10)) holds.

(iii) From [19, Proposition 4.3] it follows that S is an interval and that
λ ∈ intS implies that Qλ is subcritical in Ω. The claim concerning the
boundedness of S is trivial and is left to the reader.

On the other hand, suppose that for some λ ∈ R the functional Q̃λ is
subcritical. By part (i), Q̃λ satisfies the HSM inequality with the weight W .
Therefore, (2.13) (with Kε = ∅) implies that

Q̃λ(u) � C

⎛
⎝
∫

Ω

W |u|2∗
dx

⎞
⎠

2/2∗

� C1

∣∣∣∣∣∣
∫

Ω

Ṽ |u|2 dx

∣∣∣∣∣∣ , u ∈ C∞
0 (Ω).

(2.14)
Therefore, λ ∈ intS. Consequently, λ ∈ ∂S implies that Q̃λ is critical in Ω.
In particular, 0 ∈ intS. 
�

Example 2.10. Let Ω = R
N , where N � 3, and let V ∈ LN/2(RN ) such

that V � 0 (so, V is a short range potential). Fix μ < (N − 2)2/4. Then
the classical Hardy inequality, together with Example 2.4 and Theorem 2.9,
implies that there exists λ∗ > 0 such that for λ < λ∗ we have the following
HSM inequality:

∫

RN

|∇u|2 dx− μ
∫

RN

|u|2
|x|2 dx+ λ

∫

RN

V (x)|u|2 dx

� Cλ

⎛
⎝
∫

RN

|u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (RN ). (2.15)

On the other hand, if λ = λ∗, then the associated functional is critical and
satisfies the corresponding Hardy–Sobolev–Maz’ya–Poincaré inequality with
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the weight function W = constant. Recall that the Hardy–Sobolev–Maz’ya
inequality and Hardy–Sobolev–Maz’ya–Poincaré inequality for μ = (N −
2)2/4 are false with the weight W = constant (see Example 2.5 and [9]).

Example 2.11. Consider again Example 1.2 with p = 2 < N and 2 �= m <
N . By [8, Theorem 1.1], there exists M � 0 such that the following HSM
inequality holds:

Q(u) def=
∫

Ω

|∇u|2 dx−
(
m− 2

2

)2 ∫

Ω

|u|2
dist (x,K)2

dx−M
∫

Ω

|u|2 dx

� C

⎛
⎝
∫

Ω

|u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω \K). (2.16)

We note that if (1.5) is satisfied, then (2.16) holds with M = 0.
Let V ∈ L∞

loc(Ω) ∩ LN/2(Ω) be a nonzero function. Consider the one-
parameter family of functionals Qλ defined by

Qλ(u) def= Q(u) + λ
∫

Ω

V |u|2 dx,

where λ ∈ R. By Theorem 2.9, the set S of all λ such that Qλ is nonnegative
on C∞

0 (Ω) is a nonempty closed interval with nonempty interior. Moreover,
for λ ∈ intS there exists a positive constant cλ such that

Qλ(u) � cλ

⎛
⎝
∫

Ω

|u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω \K). (2.17)

On the other hand, if λ ∈ ∂S, then Qλ admits a ground state v. Therefore,

Theorem 2.9 implies that for every ψ ∈ C∞
0 (Ω \K) satisfying

∫

Ω

ψv dx �= 0

there exist constants C,C1 > 0 such that

Qλ(u) + C

⎛
⎝
∫

Ω

uψ dx

⎞
⎠

2

� c1

⎛
⎝
∫

Ω

|u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω \K).

We note that if K = ∂Ω is smooth (i.e., m = 1) and V = 1, one actually
deals with the case considered by Brezis and Marcus in [4, Theorem 1.1]. In
particular, let λ∗ be the supremum of all λ ∈ R such that the inequality
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∫

Ω

|∇u|2 dx−1
4

∫

Ω

|u|2
dist (x, ∂Ω)2

dx−λ
∫

Ω

|u|2 dx � 0, u ∈ C∞
0 (Ω), (2.18)

holds (λ∗ > −∞ and is attained by [4, Theorem 1.1]). Then Theorem 2.9
implies that for each λ < λ∗ there exists Cλ > 0 such that

∫

Ω

|∇u|2 dx− 1
4

∫

Ω

|u|2
dist (x, ∂Ω)2

dx− λ
∫

Ω

|u|2 dx

� Cλ

⎛
⎝
∫

Ω

|u|2∗
dx

⎞
⎠

2/2∗

, u ∈ C∞
0 (Ω). (2.19)

Moreover, Theorem 2.9 implies that for λ = λ∗, the functional defined by the
left-hand side of (2.19) is critical and satisfies the Hardy–Sobolev–Maz’ya–
Poincaré inequality with the weight W = constant. In particular, the corre-
sponding Euler–Lagrange equation Q′

λ∗(u) = 0 in Ω admits a unique positive
(super)-solution.

Theorem 1.1 in [4] was extended by Marcus and Shafrir in [15, The-
orem 1.2] to the case 1 < p < ∞ and a perturbation 0 < V (x) =
O(dist (x, ∂Ω)γ), where γ > −p (cf. our assumption (2.8), where p = 2).
Following [15], let λ∗ be the supremum of all λ ∈ R such that the following
inequality holds:
∫

Ω

|∇u|2 dx− 1
4

∫

Ω

|u|2
dist (x, ∂Ω)2

dx− λ
∫

Ω

V (x)|u|2 dx � 0, u ∈ C∞
0 (Ω).

(2.20)
It follows that Theorem 2.9 with the constant weight applies also to this
functional if, in addition, V ∈ L∞

loc(Ω) ∩ LN/2(Ω).

Remark 2.12. We note that even under the less restricted assumptions of
[15, Theorem 1.2] with p = 2 and λ = λ∗, one can show that the positive
solution u∗ of Equation (1.14) in [15] is actually a ground state. Therefore,
u∗ is a unique (up to a multiplicative constant) global positive supersolution
of that equation and the corresponding functional is critical.

Indeed, Lemma 5.1 of [15] implies that any positive supersolution of [15,
Equation (1.14)] satisfies

Cu(x) � dist (x, ∂Ω)1/2, x ∈ Ω. (2.21)

On the other hand, Theorem 1.2 in [15] implies that the positive solution
u∗ satisfies

u∗(x) � dist (x, ∂Ω)1/2, x ∈ Ω, (2.22)
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where f � g means that there exists a positive constant C such that C−1 �
f/g � C in Ω. Now, we take a positive supersolution u. Let ε be the maximal
positive number such that u−εu∗ � 0 in Ω. Note that, by (2.21) and (2.22), ε
is well defined. By the strong maximum principle, either u = εu∗ or u−εu∗ >
0. Consequently, (2.21) and (2.22) imply that there exists a positive constant
C1 such that

u− εu∗ � Cdist (x, ∂Ω)1/2 � C1u∗ in Ω,

which contradicts the definition of ε.

3 The Space D1,2
V (Ω) and Minimizers for the

Hardy–Sobolev–Maz’ya Inequality

Consider again the Hardy–Sobolev–Maz’ya inequality (1.4). This inequality
clearly extends to D1,2(RN ) for m > 2 and to D1,2(RN0 ) for m = 1, but since
the quadratic formQ(u) on the left-hand side of (1.4) induces a scalar product
on C∞

0 (RN0 ), the natural domain of Q is the completion of C∞
0 (RN0 ) with

respect to the norm Q(·)1/2. Recall [18] that for a given general subcritical
functional Q of the form (1.7) (with p = 2) such a completion is denoted by
D1,2
V (Ω). Similarly to the standard definition of D1,2(RN ) for N = 1, 2, when
Q admits a ground state, one appends to Q(u) a correction term of the form

⎛
⎝
∫

Ω

ψu dx

⎞
⎠

2

.

Hence, by (2.2) and (2.4), the space D1,2
V (Ω) is continuously imbedded into

a weighted L2∗
-space.

In the particular case (1.4), V is the Hardy potential [(m − 2)/2]2|y|−2.
By (1.4), the space D1,2

V (RN0 ) is continuously imbedded into L2∗
(RN0 ). Thus,

its elements can be identified as measurable functions. The substitution u =
|y|(2−m)/2v transforms the Hardy–Sobolev–Maz’ya inequality (1.4) into the
following inequality of Caffarelli–Kohn–Nirenberg type:

∫

RN

|y|2−m|∇v|2 dy dz

� C

⎛
⎝
∫

RN

|y|(2−m)2∗/2|v|2∗
dy dz

⎞
⎠

2/2∗

, v ∈ D1,2(RN0 , |y|2−m dy dz).

(3.1)
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The left-hand side of (3.1) defines a Hilbert space isometric to D1,2
V (RN0 ).

However, the Lagrange density

|∇u|2 −
(
m− 2

2

)2 |u|2
|y|2 (3.2)

is no longer integrable for an arbitrary u ∈ D1,2
V (RN0 ). The integrable La-

grange density of (3.1), |y|2−m|∇(u|y|(m−2)/2)|2 can be equated to (3.2) by
partial integration when u ∈ C∞

0 (RN0 ), but this connection does not extend
to the whole of D1,2

V (RN0 ) as the terms that mutually cancel in the partial
integration on C∞

0 (RN0 ) might become infinite. In particular, it should not
be expected a priori that the minimizer for the Hardy–Sobolev–Maz’ya in-
equality in D1,2

V (RN0 ) would have a finite gradient in L2(RN0 , dx).
The existence of minimizers for the variational problem associated with

(3.1) is proved in [23] for all codimensions 0 < m < N , where N > 3. The
existence proof is based on the concentration compactness argument which
utilizes invariance properties of the problem. Similarly to other problems,
where lack of compactness stems from a noncompact equivariant group of
transformations, some general domains and potentials admit minimizers and
some do not, and an analogy with similar elliptic problems in D1,2(RN ) pro-
vides useful insights (see, for example, [21]).

4 Convexity Properties of the Functional Q for p > 2

The definition ofD1,2
V (Ω) cannot be applied to other values of p since for p �= 2

the positivity of the functional Q on C∞
0 (Ω) does not necessarily imply its

convexity, and thus it does not give rise to a norm. For the lack of convexity
when p > 2 see an elementary one-dimensional counterexample at the end of
[6] and also the proof of Theorem 7 in [12]. For p < 2 see [11, Example 2].

On the other hand, by [19, Theorem 2.3], the functional Q is nonnegative
on C∞

0 (Ω) if and only if the equation Q′(u) = 0 in Ω admits a positive global
solution v. With the help of such a solution v, one has the identity [7, 1, 2]

Q(u) =
∫

Ω

Lv(w) dx, u ∈ C∞
0+(Ω),

where w def= u/v, the Lagrangian Lv(w) is defined by

Lv(w) def= |v∇w + w∇v|p − wp|∇v|p − pwp−1v|∇v|p−2∇v · ∇w � 0,
w ∈ C∞

0+(Ω),
(4.1)

and C∞
0+(Ω) denotes the cone of all nonnegative functions in C∞

0 (Ω).
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The following proposition claims that the nonnegative Lagrangian Lv(w),
which contains indefinite terms, is bounded from above and from below by
multiples of a simpler Lagrangian.

Proposition 4.1 ([17, Lemma 2.2]). Let v be a positive solution of the equa-
tion Q′(u) = 0 in Ω. Then

Lv(w) � v2|∇w|2 (w|∇v| + v|∇w|)p−2 ∀w ∈ C∞
0+(Ω). (4.2)

In particular, for p � 2

Lv(w) � L̂v(w) def= vp|∇w|p+v2|∇v|p−2wp−2|∇w|2 ∀w ∈ C∞
0+(Ω). (4.3)

Define the simplified energy Q̂ by

Q̂(u) def=
∫

Ω

L̂v(w) dx, w = u/v ∈ C∞
0+(Ω). (4.4)

It is shown in [17] that for p > 2 neither of the terms in the simplified energy
Q̂ is dominated by the other.

From Proposition 4.1 it follows that

Q(u) = Q(|u|) � Q̂(|u|), u ∈ C∞
0 (Ω).

In [22], the solvability of the equation Q′(u) = f is proved in the class
of functions u satisfying Q∗∗(u) < ∞, where Q∗∗ � Q is the second convex
conjugate (in the sense of Legendre transformation) of Q. If the inequality
Q � CQ∗∗ is true, then Q∗∗1/p(u) would define a norm and Q would extend
to a Banach space, which should be regarded as the natural energy space for
the functional Q.

On the other hand, if p > 2, it is not clear whether the functional Q̂
is convex due to the second term in (4.3). It has, however, the following
convexity property.

Proposition 4.2. Assume that p � 2. Let v ∈ C1
loc(Ω) be a fixed positive

function. Consider the functional

Q(ψ) def= Q̂(vψ2/p), ψ ∈ C∞
0+(Ω),

where Q̂ is defined by (4.3) and (4.4). Then the functional Q is convex on
C∞

0+(Ω).

Proof. We first split each of the functionals Q̂ and Q into the sum of two
functionals

Q̂1(u)def=
∫

Ω

vp|∇w|pdx, Q̂2(u)def=
∫

Ω

v2|∇v|p−2wp−2|∇w|2dx, w=u/v∈C∞
0+(Ω),
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Q1(ψ) def= Q̂1(vψ2/p) =
∫

Ω

vp|∇(ψ2/p)|p dx, ψ ∈ C∞
0+(Ω),

Q2(ψ) def= Q̂2(vψ2/p) =
∫

Ω

v2|∇v|p−2ψ2(p−2)/p|∇(ψ2/p)|2 dx, ψ ∈ C∞
0+(Ω).

Thus, Q̂ = Q̂1 + Q̂2 and Q = Q1 +Q2.
For t ∈ [0, 1] and w0, w1 ∈ C∞

0+(Ω) let

wt
def=
[
(1− t)wp/20 + twp/21

]2/p
.

Then

∇wt =
(1 − t)wp/2−1

0 ∇w0 + twp/2−1
1 ∇w1[

(1− t)wp/20 + twp/21

]1−2/p
.

Therefore,

|∇wt| � [(1− t)2/pw0]p/2−1(1 − t)2/p|∇w0|+ (t2/pw1)p/2−1t2/p|∇w1|[
(1− t)wp/20 + twp/21

]1−2/p
.

(4.5)
Applying the Hölder inequality to the sum in the numerator of (4.5) (with
the terms (1− t)2/p|∇w0| and t2/p|∇w1| raised to the power p/2) and taking
into account that the conjugate of p/2 is reciprocal to 1− 2/p, we have

|∇wt|p/2 � (1− t)|∇w0|p/2 + t|∇w1|p/2. (4.6)

From (4.6) it easily follows that

|∇wt|p � (1− t)|∇w0|p + t|∇w1|p.

Setting ψt
def= wp/2t , t ∈ [0, 1], we immediately conclude that Q1 is convex as

a function of ψ. The same conclusion extends to Q2 once we note that

wp−2|∇w|2 = (2/p)2|∇wp/2|2

and use (4.6) for p = 4. 
�
Let

N(ψ) def= [Q(ψ)]1/2 =
[
Q̂(vψ2/p)

]1/2
, ψ ∈ C∞

0+(Ω). (4.7)

It is immediate that N(ψ) > 0 for ψ ∈ C∞
0+(Ω), unless ψ = 0, and that

N(λψ) = λN(ψ) for λ � 0. By Proposition 4.2, the functional N(·) satisfies
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the triangle inequality

N(ψ1 + ψ2) � N(ψ1) +N(ψ2), ψ1, ψ2 ∈ C∞
0+(Ω).

Thus, we equipped the cone C∞
0+(Ω) with a norm. For p = 2 the functional

Q = Q̂ is a positive quadratic form, and thus convex. Consequently, in the
subcritical case, Q1/2 extends the functional N to a norm on the whole
C∞

0 (Ω) and then, by completion, to the Hilbert space D1,2
V (Ω). It would

be interesting to introduce D1,p
V (Ω) for p > 2, once one finds an extension of

N to C∞
0 (Ω).
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Sobolev Inequalities in Familiar and
Unfamiliar Settings

Laurent Saloff-Coste

Abstract The classical Sobolev inequalities play a key role in analysis in
Euclidean spaces and in the study of solutions of partial differential equations.
In fact, they are extremely flexible tools and are useful in many different
settings. This paper gives a glimpse of assortments of such applications in a
variety of contexts.

1 Introduction

There are few articles that have turned out to be as influential and truly im-
portant as S.L. Sobolev 1938 article [93] (the American translation appeared
in 1963), where he introduces his famed inequalities. It is the idea of a func-
tional inequality itself that Sobolev brings to life in his paper, as well as the
now so familiar notion of an a priori inequality, i.e., a functional inequality
established under some strong hypothesis and that might be extended later,
perhaps almost automatically, to its natural domain of definition. (These
ideas are also related to the theory of distributions which did not exist at
the time and whose magnificent development by L. Schwartz was, in part,
anticipated in the work of S.L. Sobolev.)

The most basic and important applications of Sobolev inequalities are to
the study of partial differential equations. Simply put, Sobolev inequalities
provide some of the very basic tools in the study of the existence, regularity,
and uniqueness of the solutions of all sorts of partial differential equations, lin-
ear and nonlinear, elliptic, parabolic, and hyperbolic. I leave to others, much
better qualified than me, to discuss these beautiful developments. Instead, my
aim in this paper is to survey briefly an assortments of perhaps less familiar
applications of Sobolev inequalities (and related inequalities) to problems and
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in settings that are not always directly related to PDEs, at least not in the
most classical sense. The inequalities introduced by S.L. Sobolev have turned
out to be extremely useful flexible tools in surprisingly diverse settings. My
hope is to be able to give to the reader a glimpse of this diversity. The reader
must be warned that the collection of applications of Sobolev inequalities
described below is very much influenced by my own interest, knowledge, and
limitations. I have not tried at all to present a complete picture of the many
different ways Sobolev inequalities have been used in the literature. That
would be a very difficult task.

2 Moser’s Iteration

2.1 The basic technique

This section is included mostly for those readers that are not familiar with
the use of Sobolev inequalities. It illustrates some aspects of one of the basic
techniques associated with their use. To the untrained eyes, the fundamental
nature of Sobolev inequalities is often lost in the technicalities surrounding
their use. Indeed, outside analysis, Lp spaces other than L1, L2, and L∞ still
appear quite exotic to many. As the following typical example illustrates, they
play a key role in extracting the information contained in Sobolev inequalities.

Recall that Hölder’s inequality states that
∫
|fg|dx � ‖f‖p‖g‖q

as long as 1 � p, q � ∞ and 1/p + 1/q = 1 (these are called conjugate
exponents). A somewhat clever use of this inequality yields

‖f‖r � ‖f‖θs‖f‖1−θt

as long as 1 � r, s, t �∞ and 1/r = θ/s+ (1− θ)/t. These basic inequalities
are used extensively in conjunction with Sobolev inequalities.

Let Δ =
∑

(∂/∂xi)2 be the Laplacian in R
n. Consider a bounded domain

Ω ⊂ R
n, λ � 0, and the (Dirichlet) eigenfunction/eigenvalue problem:

Δu = −λu in Ω, u
∣∣
∂Ω

= 0. (2.1)

Our goal is to show how the remarkable inequality

sup
Ω
{|u|2} � Anλn/2

∫

Ω

|u|2dx (2.2)
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(for solutions of (2.1)) follows from the most classical Sobolev inequality,
namely, the inequality (2.5) below. For a normalized eigenfunction u with
‖u‖2 = 1 the inequality (2.2) bounds the size of u in terms of the associated
eigenvalue. The technique illustrated below is extremely flexible and can be
adapted to many situations.

In fact, we only assume that u ∈ H1
0 (Ω), i.e., u is the limit of smooth

compactly supported functions in Ω in the norm

‖u‖ =

⎛
⎝
∫

Ω

[|u|2 +
n∑
1

|∂u/∂xi|2]dx

⎞
⎠

1/2

and that ∫

Ω

n∑
1

∂u

∂xi

∂v

∂xi
dx = λ

∫

Ω

uvdx (2.3)

for any v ∈ H1
0 (Ω). We set ∇u = (∂u/∂xi)n1 , |∇u|2 =

n∑
1

|∂u/∂xi|2. To avoid

additional technical arguments, we assume a priori that u is bounded on Ω.
For 1 � p <∞ we take v = |u|2p−1(u/|u|) in (2.3). This yields

λ

∫

Ω

|u|2p = (2p− 1)
∫

Ω

|u|2p−2|∇u|2dx =
2p− 1
p2

∫

Ω

|∇|u|p|2dx. (2.4)

As our starting point, we take the most basic Sobolev inequality

∀ f ∈ H1(Rn),
(∫
|f |2qndx

)1/qn

� C2
n

∫
|∇f |2dx, qn = n/(2−n). (2.5)

If kn = (1 + 2/n), then 1/kn = θn/qn + (1 − θn) with θn = n/(n + 2), and
Hölder’s inequality yields

∫
|f |2kndx �

(∫
|f |2qndx

)1/qn
(∫
|f |2dx

)2/n

.

Together with the previous Sobolev inequality, we obtain

∫
|f |2(1+2/n)dx � C2

n

∫
|∇f |2dx

(∫
|f |2dx

)2/n

. (2.6)

For a discussion of this type of “multiplicative” inequality see, for example,
[75, Sect. 2.3].

Now, for a solution u of (2.1) the inequalities (2.6) and (2.4) yield

∫
|u|2p(1+2/n)dx � C2

npλ

(∫
|u|2pdx

)1+2/n

.
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This inequality can obviously be iterated by taking pi = (1 + 2/n)i, and we
get

(∫
|u|2pidx

)1/pi

� (1 + 2/n)
i∑
1

(j−1)p−1
j (

3C2
nλ
) i∑

1
p−1

j

∫
|u|2dx.

Note that
∞∑
1

p−1
j = n/2 and lim

p→∞ ‖|u|
2‖p = ‖u2‖∞. The desired conclusion

(2.2) follows.

2.2 Harnack inequalities

The technique illustrated above is the simplest instance of what is widely
known as Moser’s iteration technique. In a series of papers [77]–[80], Moser
developed this technique as the basis for the study of divergence form uni-
formly elliptic operators in R

n, i.e., operators of the form (we use ∂i = ∂/∂xi)

La =
∑
i,j

∂i(ai,j(x)∂j)

with real matrix-valued function a satisfying the ellipticity condition

∀x ∈ Ω,

⎧⎪⎨
⎪⎩

∑
i,j

ai,j(x)ξiξj � ε|ξ|2,
∑
i,j

ai,j(x)ξiξ′j � ε−1|ξ||ξ′|,

where ε > 0 and the coefficients ai,j are simply bounded real measurable func-
tions. Because of the low regularity of the coefficients, the most basic question
in this context is that of the boundedness and continuity of solutions of the
equation Lau = 0 in the interior of an open set Ω. This was solved earlier
by De Giorgi [34] (and by Nash [81] in the parabolic case), but Moser pro-
posed an alternative method, squarely based on the use of Sobolev inequality
(2.5). To understand why one might hope this is possible, observe that the
argument given in the previous section works without essential changes if, in
(2.1), one replaces the Laplacian Δ by La.

Let u be a solution of Lau = 0 in a domain Ω, in the sense that for any
open relatively compact set Ω0 in Ω, u ∈ H1(Ω0) and for all v ∈ H1

0 (Ω0)
∫

Ω

∑
i,j

ai,j
∂u

∂xi

∂v

∂xj
dx = 0.

In [77], Moser observed that the interior boundedness and continuity of such
a solution follow from the Harnack inequality that provides a constant C(n, ε)
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such that if u as above is nonnegative in Ω and the ball B satisfies 2B ⊂ Ω,
then

sup
B
{u} � C(n, ε) inf

B
{u} (2.7)

(a priori, the supremum and infimum should be understood here as essential
supremum and essential infimum. The ball 2B is concentric with B with
twice the radius of B). He then proceeded to prove this Harnack inequality
by variations on the argument outlined in the previous section. In his later
papers [78]–[80], Moser obtained a parabolic version of the above Harnack
inequality. Namely, he proved that there exists a constant C(n, ε) such that
any nonnegative solution u of the heat equation (∂t−La)u = 0 in a time-space
cylinder Q = (s− 4r2, s)× 2B satisfies

sup
Q−
{u} � C(n, ε) inf

Q+
{u}, (2.8)

where Q− = (s− 3r2, s− 2r2)×B and Q+ = (s− r2/2, s)×B.
Moser’s iteration technique has been adapted and used in hundreds of

papers studying various PDE problems. Some early examples are [2, 3, 90].
The books [42, 69, 76] contain many applications of this circle of ideas, as
well as further references. The survey paper [83] deals specifically with the
heat equation and is most relevant for the purpose of the present paper.

The basic question we want to explore in the next two subsections is: what
exactly are the crucial ingredients of Moser’s iteration? This question is moti-
vated by our desire to use this approach in other settings such as Riemannian
manifolds or more exotic spaces. Early uses of Moser’s iteration technique on
manifolds as in the influential papers [22, 23] were actually limited by a mis-
understanding of what is really needed to run this technique successfully.
Interesting early works that explored the flexibility of Moser’s iteration be-
yond the classical setting are related to degenerated elliptic operators as in
[56]–[58] (see also [39] and the references therein).

2.3 Poincaré, Sobolev, and the doubling property

Moser’s technique in R
n uses only three crucial ingredients:

(1) The Sobolev inequality in the form (2.6), i.e.,

∀ f ∈ C∞0 (Rn),
∫
|f |2(1+2/n)dx � C2

n

∫
|∇f |2dx

(∫
|f |2dx

)2/n

.

(2) The Poincaré inequality in the unit ball B, i.e.,
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f ∈ C∞(B),
∫

B

|f − fB|2dx � Pn
∫

B

|∇f |2dx,

where fB stands for the average of f over B.

(3) Translations and dilations.

Some might be surprised that the interesting John–Nirenberg inequality
that appears to be a crucial tool in [77, 78] is not mentioned above. However,
as Moser himself pointed out in [80], it can be avoided altogether by using
a clever, but very elementary observation of Bombieri and Giusti. Somewhat
unfortunately, this important simplification has been ignored by a large part
of the later literature!

Obviously, in order to use the method in a larger context, one wants to
replace the use of translations and dilations by hypotheses that are valid at
all scales and locations. For instance, the needed Poincaré inequality takes
the form

∀ z, ∀ r > 0, f ∈ C∞(B(z, r)),
∫

B(z,r)

|f − fB(z,r)|2dx � Pnr2
∫

B(z,r)

|∇f |2dx,

where fB stands for the average of f over B. A correct generalization is less
obvious in the case of the Sobolev inequality. As stated, the inequality (2.6)
turns out to be too restrictive and not strong enough, both at the same time!

For instance, consider a complete Riemannian manifold (M, g) of dimen-
sion n. We set |∇f |2 = g(∇f,∇f), where the gradient ∇f is the vector field
defined by gx(∇f,X) = df(X) for any tangent vector X at x. Let μ be the
Riemannian measure, B(x, r) the geodesic ball with center x and radius r,
and

V (x, r) = μ(B(x, r)).

If we assume that the inequality analogous to (2.6) holds on M , i.e.,

∀ f ∈ C∞0 (M),
∫
|f |2(1+2/n)dμ � C2

M

∫
|∇f |2dμ

(∫
|f |2dμ

)2/n

, (2.9)

then it turns out that this implies the existence of a constant cM > 0 such
that

∀x ∈M, ∀ r > 0, μ(B(x, r)) = V (x, r) � cMrn

(see [17, Proposition 2.4] and [87, Theorem 3.15]). This rules out simple
manifolds such as R

n+k/Zk or R
n−k × S

k (on which, for other reasons, one
knows that the above-mentioned analogs of the Harnack inequalities (2.7),
(2.8) hold). Let us observe that when n � 3, (2.9) is, in fact, equivalent to
the more standard Sobolev inequality
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∀ f ∈ C∞0 (M),
(∫
|f |2qndμ

)1/qn

� C2
M

∫
|∇f |2dμ, qn = n/(n− 2),

(2.10)
where the constant CM may be different in (2.9) and in (2.10).

In the other direction, (2.10) and thus (2.9) holds in the case of hyperbolic
spaces (with dimension n > 2 for (2.10)), but the desired Harnack inequalities
fail to hold uniformly at large scale in such spaces.

Definition 2.1. We say that a complete Riemannian manifold M satisfies a
scale invariant family of Sobolev inequalities if there is a constant CM and
a real number q = ν/(ν − 2) > 1 such that for any x ∈ M , r > 0, and
B = B(x, r) we have

∀ f ∈ C∞0 (B),

⎛
⎝
∫

B

|f |2qdμ
⎞
⎠

1/q

� CMr
2

μ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dμ. (2.11)

Remark 2.1. The inequality (2.11) can be written in the form: for all f ∈
C∞0 (B)

⎛
⎝ 1
μ(B)

∫

B

|f |2qdμ
⎞
⎠

1/q

� CMr2
⎛
⎝ 1
μ(B)

∫

B

[|∇f |2 + r−2|f |2] dμ
⎞
⎠ .

Remark 2.2. In this definition, the exact value of q is not very important
and ν appears here as a technical parameter. If (2.11) holds for some q =
ν/(ν − 2) > 1, then the Jensen inequality shows that it also holds for all
1 < q′ = ν′/(ν′ − 2) � q, i.e., for all finite ν′ � ν.

Remark 2.3. In general, (2.10) does not imply (2.11). However, (2.10) does
imply (2.11) with ν = n when the manifoldM has an Euclidean type volume
growth, i.e., there exists 0 < vM � VM < ∞ such that vMrn � V (x, r) �
VMr

n for all x ∈ M and r > 0. This is obviously a very restrictive and
undesirable hypothesis. This is exactly the point that restricted the use of
Moser’s iteration technique to very local results in some early applications of
the technique to analysis on Riemannian manifolds as in [22, 23].

Remark 2.4. There are many equivalent forms of (2.11). We mention three.
The first one is analogous to (2.6) and reads

∫

B

|f |2(1+2/ν)dμ � CMr
2

μ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dμ
⎛
⎝
∫

B

|f |2dμ
⎞
⎠

2/ν

.

The second is in the form of the so-called Nash inequality and reads
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∫

B

|f |2(1+2/ν)dμ � CMr
2

μ(B)2/ν

∫

B

[|∇f |2 + r−2|f |2] dμ
⎛
⎝
∫

B

|f |dμ
⎞
⎠

4/ν

(see [81] and [75, Sect. 2.3]). The third is often referred to as a Faber–Krahn
inequality (see [44]) and reads

λD(Ω) � cM
r2

(
μ(Ω)
μ(B)

)2/ν

,

where λD(Ω) is the lowest Dirichlet eigenvalue in Ω, an arbitrary subset of
the ball B of radius r. In each case, r is the radius of B and the inequality
must hold uniformly for all geodesic balls B. The exact value of the constants
varies from one type of inequality to another. Many results in the spirit of
these equivalences can be found in [75] in the context of Euclidean domains.
A discussion in a very general setting is in [4] (see also [87, Chapt. 3]).

The following theorem describes some of the noteworthy consequences
of (2.11). Let ΔM be the Laplace operator on M , and let h(t, x, y) be the
(minimal) fundamental solution of the heat equation (∂t −ΔM )u = 0 on M ,
i.e., the kernel of the heat semigroup etΔM . For complete discussions, surveys,
and variants, see [43, 44, 45, 46, 48, 85, 86, 87].

Theorem 2.1. Assume that (M, g) is a complete Riemannian manifolds
which satisfies the scale invariant family of Sobolev inequalities (2.11) (with
some parameter ν > 2). Then the following properties hold.

• There exists a constant VM such that for any two concentric balls B ⊂ B′

with radii 0 < r < r′ <∞

μ(B′) � VM (r′/r)νμ(B). (2.12)

• There exists a constant CM such that for all x ∈ M and r > 0 any
positive subsolution u of the heat equation in a time-space cylinder Q =
(s− 4r2, s)×B(x, 2r) satisfies

sup
Q′
{u2} � CM

1
r2μ(B)

∫

Q

|u|2dμds, (2.13)

where Q′ = (s− r2, s)×B(x, r).

• For any integer k � 0 there is a constant A(M,k) such that for all points
x, y ∈M and t > 0

|∂kt h(t, x, y)| �
A(M,k)
tkV (x,

√
t)

(
1 + d(x, y)2/t

)ν+k
exp
(
−d(x, y)

2

4t

)
. (2.14)
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Remark 2.5. The inequality (2.13) can be obtained by a straightforward ap-
plication of Moser’s iteration technique. One of many possible applications
of (2.13) is (2.14).

Remark 2.6. The volume inequality (2.12), together with the heat kernel
bound

∀x ∈M, t > 0, h(t, x, x) <
AM

V (x,
√
t)
,

implies the Sobolev inequality (2.11).

Definition 2.2. A complete Riemannian manifold has the doubling volume
property if there exists a constant VM such that

∀x ∈M, r > 0, V (x, 2r) � VMV (x, r).

Remark 2.7. It is easy to see that the doubling property implies (2.12) with
ν = log2 VM .

Definition 2.3. A complete Riemannian manifold admits a scale invariant
Poincaré inequality (in L2) if there exists a constant PM such that

∀x ∈M, r > 0,
∫

B

|f − fB|2dμ � PMr2
∫

B

|∇f |2dμ, (2.15)

where B = B(x, r) and fB is the average of f over B.

Remark 2.8. This Poincaré inequality can be stated in terms of the spectrum
of minus the Neumann Laplacian in geodesic balls. For minus the Neumann
Laplacian (understood in an appropriate sense) in a ball B, the lowest eigen-
value is 0 (associated with constant functions). The L2 Poincaré inequality
above is equivalent to say that the second eigenvalue λN (B(x, r)) is bounded
from below by cr−2, where r is the radius of B.

Remark 2.9. Keeping Moser’s iteration in mind, it is a very important and
remarkable fact that if M satisfies both the doubling property and a scale
invariant Poincaré inequality, then it satisfies (2.11) (see [85]–[87]). In this
case, one can take ν to be an arbitrary number greater than 2 and such that
(2.12) holds.

Definition 2.4. A complete Riemannian manifold admits a scale invariant
parabolic Harnack inequality if there exists a constant CM such that for any
x ∈ M , r > 0, and s ∈ R and for any nonnegative solution u of the heat
equation in the time-space cylinder Q = (s− 4r2, s)×B(x, 2r)

sup
Q−
{u} � CM inf

Q+
{u}

with Q− = (s− 3r2, s− 2r2)×B(x, r) and Q+ = (s− r2, s)×B(x, r).
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In this setting, a version of Moser’s iteration methods gives one half of the
following result (see [43, 85] and a detailed discussion in [87, Sect. 5.5]).

Theorem 2.2. Let (M, g) be a complete Riemannian manifold. The following
properties are equivalent.

• The doubling property and a scale invariant L2 Poincaré inequality.

• The scale invariant parabolic Harnack inequality.

• The two-sided heat kernel bound

c

V (x,
√
t)

exp
(
−Ad(x, y)

2

t

)
� h(t, x, y) � C

V (x,
√
t)

exp
(
−ad(x, y)

2

t

)

for constants 0 < a,A, c, C <∞.

One may asked how the above properties are related to the elliptic version
of Harnack inequality. This is not entirely understood, but the following result
involving the Sobolev inequality (2.11) sheds some light on this question (see
[61]).

Theorem 2.3. Let M be a complete manifold satisfying the Sobolev inequal-
ity (2.11) for some q > 1. Then the following properties are equivalent.

• The scale invariant L2 Poincaré inequality.

• The scale invariant elliptic Harnack inequality.

• The scale invariant parabolic Harnack inequality.

We conclude with results concerning global harmonic functions.

Theorem 2.4. Let M be a manifold satisfying the doubling volume property
and a scale invariant L2 Poincaré inequality.

• Any harmonic functions on M that is bounded from below must be con-
stant.

• There exists a0 > 0 such that for any fixed point x ∈ M any harmonic
function satisfying sup

y
{u(y)/(1 + d(x, y))a0} <∞ must be constant.

• For any a > 0 and a fixed point x ∈ M the space of harmonic functions
on M satisfying sup

y
{u(y)/(1 + d(x, y))a} <∞ is finite dimensional.

Remark 2.10. The first two statements are standard consequences of the
(scale invariant) elliptic Harnack inequality which follows from the assump-
tions of the theorem. The last statement is a recent result due to Colding and
Minicozzi [24, 25, 72, 71]. The proof of the last statement makes explicit the
use of the Poincaré inequality and the doubling volume property. A number
of interesting variations on this result are discussed in [24, 25, 72, 71]. A
different viewpoint concerning Liouville theorems, restricted to some special
circumstances, but very interesting nonetheless is developed in [68].
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Example 2.1. Euclidean spaces are the model examples for manifolds that
satisfy both the doubling condition and the Poincaré inequality. Larger classes
of examples will be described in the next section. Interesting examples where
the Poincaré inequality fails are obtained by considering manifolds M that
are the connected sum of two (or more) Euclidean spaces. Here, we writeM =
R
n#R

n to mean a complete Riemannian manifold that can be decomposed in
the disjoint union E1∪K∪E2, where E1, E2 are each isometric to the outside
of some compact domain with smooth boundary in R

n and K is a smooth
compact manifold with boundary. In words, R

n#R
n is made of two copies

of R
n smoothly attached together through a compact “collar.” The following

facts (that are not too difficult to check) make these examples interesting.

• M = R
n#R

n has the doubling property. In fact, obviously, V (x, r) � rn.

• M = R
n#R

n satisfies (2.11) with ν being any positive real that is both at
least n and greater than 2. In fact, (2.9) holds on R

n#R
n for any n, and

(2.10) holds if n > 2. This means that Theorem 2.1 applies.

• Except for the trivial case n = 1, the scale invariant Poincaré inequality
(2.15) does not hold on R

n#R
n. More precisely, if o is a fixed point in the

collar of R
n#R

n and Br = B(o, r), then for large r % 1, we have

λN (Br) �
{

(r2 log r)−1 if n = 2,

r−n if n > 2,

where λN (Br) is the second lowest eigenvalue of the Neumann Laplacian
in Br. This means that the best Poincaré inequality in Br has a constant
that is in r2 log r if n = 2 and rn if n � 3 (instead of the desired r2).

• For n > 1, M = R
n#R

n does not satisfy the elliptic Harnack inequality
(again, it fails for nonnegative harmonic functions in the balls Br as above,
when r tends to infinity).

• For n � 2 there are no nonconstant positive harmonic functions, but for
n � 3 there are nonconstant bounded harmonic function onM = R

n#R
n.

• For n � 2 let o be a point in the collar of M = R
n#R

n, and let x and
y be, respectively, in the first and second copies of R

n constituting M ,
at distance about r =

√
t from o. Then the heat kernel h(t, x, y) satisfies

h(t, x, y) � t−n+1. This should be compare with the Euclidean heat kernel
at time t for points x, y about

√
t apart which is of size about t−n/2. For

more on this we refer the reader to [49]–[51].
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2.4 Examples

We briefly discuss various examples that illustrate the above-described re-
sults.

Example 2.2 (manifolds with nonnegative Ricci curvature). The Ricci cur-
vature Ric is a symmetric (0, 2)-tensor (obtained by contraction of the full
curvature tensor) that contains a lot of useful information. Two well-known
early examples of that are:

(1) Meyers’ theorem (more on this later) stating that a complete Rieman-
nian manifold with Ric � Kg with K > 0 must be compact and

(2) Bishop’s volume inequality asserting that if Ric � Kg for some k ∈ R,
then the volume function onM , V (x, r), is bounded from above by the volume
function VK/(n−1)(r) of the simply connected space of the same dimension
and constant sectional curvature K/(n− 1) (see, for example, [20, p.73], [21,
Theorem 3.9] and [41, 3.85; 3.101]).

Theorem 2.5 ([14, 22, 74]). A complete Riemannian manifold (M, g) with
nonnegative Ricci curvature satisfies the equivalent properties of Theorem 2.2.

It is interesting to note that the equivalent properties of Theorem 2.2
where proved independently for manifolds with nonnegative Ricci curvature.
The doubling property follows from the more precise Bishop–Gromov volume
inequality of [22]. Namely, if Ric � k(n− 1)g, then

∀x ∈M, s > r > 0,
V (x, s)
V (x, r)

� Vk(s)
Vk(r)

. (2.16)

If k = 0, this gives V (x, s) � (s/r)nV (x, r) for all x ∈ M , s > r > 0. The
Poincaré inequality follows from the result in [14] (see also [21, Theorems
3.10 and 6.8] and [87, Theorem 5.6.5]). The Harnack inequality and two-
sided heat kernel estimate follow from the gradient estimate of Li and Yau
[74]. Of course, these results imply that the various conclusions of Theorem
2.4 hold for Riemannian manifolds with nonnegative Ricci curvature. In this
setting, the last statement in Theorem 2.4 (due to Colding and Minicozzi)
solves a conjecture of Yau (see [24, 25, 72, 71]).

Example 2.3. Let G be a connected real Lie group equipped with a left-
invariant Riemannian metric g. Note that the Riemannian measure is also a
left-invariant Haar measure. We say that G has polynomial volume growth if
there exist C, a ∈ (0,∞) such that V (e, r) � Cra for all r � 1. A groupG with
polynomial volume growth must be unimodular (left-invariant Haar measures
are also right-invariant) and, by a theorem of Guivarc’h [55], there exists an
integer N such that c0 � r−NV (e, r) � C0 for all r � 1. It follows that (G, g)
satisfies the volume doubling property. By a simple direct argument (see, for
example, [87, Theorem 5.6.1]), the scale invariant Poincaré inequality also
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holds. Hence one can apply Theorem 2.2. In fact, in this setting, one has the
following result.

Theorem 2.6. Let G be a connected real unimodular Lie group equipped with
a Riemannian metric g. The following properties are equivalent.

• The group G has polynomial volume growth.

• Any positive harmonic function on G is constant.

• The scale invariant elliptic Harnack inequality holds.

• The scale invariant Sobolev inequality (2.11) holds for some q > 1.

• The scale invariant parabolic Harnack inequality holds.

Proof. Connected Lie groups have either strict polynomial growth V (e, r) �
rN for all r � 1 for some integer N or exponential volume growth (see [55]).
Thus, if the volume growth is polynomial, it must be strictly polynomial and
the doubling volume property follows. As already mentioned, it is also very
easy to prove the scale invariant Poincaré inequality on a connected Lie group
of polynomial growth (see, for example, [87, Theorem 5.6.2]). By Theorem
2.2, this shows that polynomial volume growth implies the parabolic Harnack
inequality in this context. The parabolic Harnack inequality implies all the
other mentioned properties (see Theorem 2.2 and the various remarks in the
previous section). The Sobolev inequality (2.11) implies the doubling volume
property, hence polynomial volume growth in this context. The elliptic Har-
nack property implies the triviality of positive harmonic functions. This, in
turns, implies polynomial volume growth by [13, Theorem 1.4 or 1.6]. The
stated theorem follows. 
�

For more general results in this setting see [103]. Harmonic functions of
polynomial growth on Lie groups of polynomial growth are studied in [1].

Example 2.4 (coverings of compact manifolds). Let (M, g) be a complete Rie-
mannian manifold such that there exists a discrete group of isometries Γ
acting freely and properly on (M, g) with compact quotient N . The discrete
group Γ must be finitely generated. Its volume growth is defined by using
the word metric and counting measure.

Theorem 2.7. Let (M, g) be a complete Riemannian manifold such that
there exists a discrete group of isometries Γ acting freely and properly on
(M, g) with compact quotient M/Γ . The following properties are equivalent.

• The group Γ has polynomial volume growth.

• The scale invariant elliptic Harnack inequality holds.

• The scale invariant Sobolev inequality (2.11) holds for some q > 1.

• The scale invariant parabolic Harnack inequality holds.
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For a complete discussion see [88, Theorem 5.15]. Note the similarity and
differences between this result and Theorem 2.6. The main difference is that,
for coverings of a compact manifold, there is no known criterion based on
the triviality of positive harmonic functions. This is due to the fact that the
group Γ may not be linear (or close to a linear group) (see [13, 88]).

3 Analysis and Geometry on Dirichlet Spaces

3.1 First order calculus

One of the recent developments in the theory of Sobolev spaces concerns the
definitions and properties of such spaces under minimal hypotheses. The most
general setting is that of metric measure spaces. There are very good reasons
to try to understand what can be done in that setting including important
applications to problems coming from different areas of mathematics and
even to questions concerning classical Sobolev spaces. In what follows, I only
discuss a very special class of metric measure spaces, but it is useful to keep in
mind the more general setting. Indeed, the theory of Sobolev spaces on metric
measure spaces is also of interest because of the many similar, but different
setting it unifies. We refer the reader to the entertaining books [59, 62, 89]
and the review paper [63] for glimpses of the general viewpoint on “first order
calculus.”

There are many interesting natural metric spaces (of finite dimension type)
on which one wants to do some analysis and that are not Riemannian mani-
folds. Some appear as limit of Riemannian manifolds, for example, manifolds
equipped with sub-Riemannian structures and more exotic objects appearing
through various geometric precompactness results. Others are very familiar
(polytopal complexes seem to appear in real life as often, if not more often,
than true manifolds), but have not been studied in much detail as far as
analysis is concerned. One natural structure that captures a good number of
such examples and provides many natural analytic objects to study (beyond
first order calculus) is the structure of Dirichlet spaces. The earliest detailed
reference on Dirichlet spaces is [36]. We refer the reader to [40] for a detailed
introduction to Dirichlet spaces.

3.2 Dirichlet spaces

This subsection describes a restricted class of Dirichlet spaces that provides
nice metric measure spaces. There are several interesting possible variations
on this theme, and we only discuss here the strongest possible version.
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We start with a locally compact separable metric space M equipped with
a Radon measure μ such that any open relatively compact nonempty set has
positive measure. The original metric will not play any important role.

In addition, we are given a symmetric bilinear form E defined on a dense
subset D(E) of L2(M,dμ) such that (u, u) � 0 for any u ∈ D(E). We assume
that E is closed, i.e., D(E) equipped with the norm

E1(u, u)1.2 =
√
‖u‖22 + E(u, u)

is complete (i.e., is a Hilbert space). In addition, we assume that the unit
contraction

u �→ vu = inf{1, sup{0, u}}
operates on (E ,D(E)) in the sense that

u ∈ D(E) =⇒ vu ∈ D(E) and E(vu, vu) � E(u, u).

Such a form is called a Dirichlet form and is associated with a self-adjoint
strongly continuous semigroup of contractions Ht, t > 0, on L2(M,dμ) with
the additional property that 0 � u � 1 implies 0 � Htu � 1. Namely, if A is
the infinitesimal generator so that Ht = etA (in the sense of spectral theory,
say), then D(E) = Dom((−A)1/2) and E(u, v) = 〈(−A)1/2u, (−A)1/2v〉.

We assume that the form E is strongly local, i.e., E(u, v) = 0 if u, v ∈ D(E)
have compact support and v is constant on a neighborhood of the support of
u. Finally, we assume that (M, E ,D(E)) is regular. This means that the space
Cc(M) of continuous compactly supported functions on M has the property
that D(E)∩Cc(M) is dense in Cc(M) in the sup norm ‖u‖∞ = sup

M
{|u|} and is

dense in D(E) in the norm E1/2
1 . Note that this is a hypothesis that concerns

the interaction between E and the topology of M . We call (M,μ, E ,D(E)) a
strictly local regular Dirichlet space.

Under these hypotheses, there exists a bilinear form Γ defined on D(E)×
D(E) with the values in signed Radon measures on M such that

E(u, v) =
∫

M

dΓ (u, v).

For u ∈ D(E) ∩ L∞(M), Γ (u, u) is defined by

∀ϕ ∈ D(E) ∩ Cc(M),
∫

M

ϕdΓ (u, u) = E(u, ϕu)− (1/2)E(u2, ϕ).

Although the measure Γ (u, v) might be singular with respect to μ, it behaves
much like g(∇u,∇v)dx on a Riemannian manifold. For instance, versions
of the chain rule and Leibnitz rule apply. In what follows, we work under
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additional assumptions that imply that the set of those u in D(E) such that
dΓ/dμ exists is rich enough (see [10, 97] for further details).

We now introduce a key ingredient to our discussion: the intrinsic distance.

Definition 3.1. Let (M,μ, E ,D(E)) be a strictly local regular Dirichlet
space. For x, y in M we set

ρ(x, y) = sup{u(x)− u(y) : u ∈ D(E) ∩ Cc(M), dΓ (u, u) � dμ}.

Here, the condition dΓ (u, u) � dμ means that the measure Γ (u, u) is abso-
lutely continuous with respect to μ with Radon–Nykodim derivative bounded
by 1 almost everywhere. It is obvious that ρ is symmetric in x, y and satisfies
the triangle inequality. It might well be either 0 or ∞ for some x, y. If ρ is
finite and ρ(x, y) = 0 only if x = y, then ρ is a distance function.

Qualitative hypotheses.

Throughout the paper, we assume that

(A1) The function ρ :M ×M → [0,∞] is finite, continuous, satisfies

ρ(x, y) = 0⇒ x = y,

and defines the topology of M .

(A2) The metric space (M,ρ) is a complete metric space.

With these hypotheses, one can show that the metric space (M,ρ) is a
length space (i.e., ρ(x, y) can be computed as the minimal length of con-
tinuous curves joining x to y, where the length of a curve is defined using
ρ in a natural manner). Denote by B(x, r) the open balls in (M,ρ). Each
B(x, r) is precompact with compact closure given by the associated closed
ball. Set V (x, r) = μ(B(x, r)). For each fixed x ∈ M , r > 0 the function
δ(y) = max{0, r−ρ(x, y)} is in D(E)∩Cc(M) and satisfies dΓ (δ, δ) � dμ (see
[10, 11, 12, 94, 95, 96, 97] for details).

3.3 Local weak solutions of the Laplace and heat
equations

Recall that A is the infinitesimal generator of the semigroup of operators
associated to our Dirichlet form. Identify L2(M,μ) with its dual using the
scalar product.

Let V be a nonempty open subset of M . Consider the subspace Fc(V ) ⊂
D(E) of those functions with compact support in V . Note that Fc(V ) ⊂
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D(E) ⊂ L2(M,μ) and consider their duals L2(X,μ) ⊂ D(E)′ ⊂ Fc(V )′. We
use the brackets 〈·, ·〉 to denote duality pairing between these spaces. Let
Floc(V ) be the space of functions u ∈ L2

loc(V ) such that for any compact
set K ⊂ V there exists a function uK ∈ D(E) that coincides with u almost
everywhere on K.

Definition 3.2. Let V be a nonempty open subset of X . Let f ∈ Fc(V )′. A
function u : V �→ R is a weak (local ) solution of Au = f in V if

1. u ∈ Floc(V );

2. for any function ϕ ∈ Fc(V ) we have E(ϕ, u) = 〈ϕ, f〉.
Remark 3.1. If f can be represented by a locally integrable function in V
and u is such that there exists a function u∗ ∈ Dom(A) (the domain of the
infinitesimal generator A) satisfying u = u∗|V , then u is a weak local solution
of Au = f if and only if Au∗|V = f a.e in V .

Remark 3.2. The notion of weak local solution defined above may contain
implicitly a Neumann type boundary condition ifM has a natural boundary.
Consider, for example, the case whereM is the closed upper-half plane P+ =
R2

+ equipped with its natural Dirichlet form

E(f, f) =
∫ ∫

R
2
+

(∣∣∣∣∂f∂x
∣∣∣∣
2

+
∣∣∣∣∂f∂y

∣∣∣∣
2
)
dxdy, f ∈ W 1(R2

+).

Let V = {z = (x, y) : x2 + y2 < 1; y � 0} ⊂ P+. Note that V is open in P+.
Let u be a local weak solution of Δu = 0 in V . Then it is easy to see that u
is smooth in V and must have vanishing normal derivative along the segment
(−1, 1) of the real axis.

Next, we discuss local weak solutions of the heat equation ∂tu = Au in a
time-space cylinder I × V , where I is a time interval and V is a nonempty
open subset of X . Given a Hilbert space H , let L2(I → H) be the Hilbert
space of functions v : I �→ H such that

‖v‖L2(I→H) =

⎛
⎝
∫

I

‖v(t)‖2Hdt
⎞
⎠

1/2

<∞.

Let W 1(I → H) ⊂ L2(I → H) be the Hilbert space of those functions
v : I �→ H in L2(I → H) whose distributional time derivative v′ can be
represented by functions in L2(I → H), equipped with the norm

‖v‖W 1(I→H) =

⎛
⎝
∫

I

(‖v(t)‖2H + ‖v′(t)‖2H)dt

⎞
⎠

1/2

<∞.
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Given an open time interval I, we set

F(I ×X) = L2(I → D(E)) ∩W 1(I → D(E)′).

Given an open time interval I and an open set V ⊂ X (both nonempty), let

Floc(I × V )

be the set of all functions v : I × V → R such that for any open interval
I ′ ⊂ I relatively compact in I and open subset V ′ relatively compact in V
there exists a function u# ∈ F(I × X) satisfying u = u# a.e. in I ′ × V ′.
Finally, let

Fc(I×V ) = {v ∈ F(I×X) : v(t, ·) has compact support in V for a.a. t ∈ I}.

Definition 3.3. Let I be an open time interval. Let V be an open subset in
X , and let Q = I ×V . A function u : Q �→ R is a weak (local) solution of the
heat equation (∂t −A)u = 0 in Q if

1. u ∈ Floc(Q);

2. for any open interval J relatively compact in I and ϕ ∈ Fc(Q)
∫

J

∫

V

ϕ∂tudμdt+
∫

J

E(ϕ(t, ·), u(t, ·))dt = 0.

As noted in the elliptic case, this definition may contain implicitly some
Neumann type boundary condition along a natural boundary of X (see [94,
96] for a detailed discussion).

3.4 Harnack type Dirichlet spaces

The following is the main definition of this section.

Definition 3.4. We say that a regular strictly local Dirichlet form (E ,D(E))
on L2(M,μ) is of Harnack type if the distance ρ satisfies the qualitative
conditions (A1), (A2), and the following scale invariant parabolic Harnack
inequality holds. There exists a constant C such that for any z ∈ M , r > 0
and weak nonnegative solution u of the heat equation (∂t − A)u = 0 in
Q = (s− 4r2, s)×B(z, 2r) we have

sup
(t,x)∈Q−

u(t, x) � C inf
(t,x)∈Q+

u(t, x), (3.1)

where Q− = (s− 3r2, s− 2r2)×B(z, r), Q+ = (s− r2, s)×B(z, r) and both
sup and inf are essential, i.e. are computed up to sets of measure zero.
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Any Harnack type Dirichlet form (E ,D(E)) obviously satisfies the following
elliptic Harnack inequality (with the same constant C as in (3.1)). For any
z ∈ X and r > 0 and weak nonnegative solution u of the equation Lu = 0 in
B(z, 2r) we have

sup
B(z,r)

u � C inf
B(z,r)

u. (3.2)

This elliptic Harnack inequality is weaker than its parabolic counterpart.
One of the simple, but important consequences of the Harnack inequal-

ity (3.1) is the following quantitative Hölder continuity estimate (see, for
example, [87, Theorem 5.4.7] and [94]).

Theorem 3.1. Assume that (E ,D(E)) is a Harnack type Dirichlet form on
L2(M,μ). Then there exists α ∈ (0, 1) and A > 0 such that any local (weak)
solution of the heat equation (∂t − A)u = 0 in Q = (s − 4r2, s) × B(x, 2r),
x ∈ X, r > 0 has a continuous representative and satisfies

sup
(t,y),(t′,y′)∈Q′

{ |u(y, t)− u(y′, t′)|
[|t− t′|1/2 + ρE(y, y′)]α

}
� A
rα

sup
Q
|u|,

where Q′ = (s− 3r2, s− r2)×B(x, r).

A crucial consequence of this is that, on a Harnack type Dirichlet space,
local weak solutions of the Laplace equation or the heat equation are contin-
uous functions (in the sense that they admit a continuous representative).

Definition 3.5. Let (M,μ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2).

• We say that the doubling volume property holds if there is a constant D0

such that V (x, 2r) � D0V (x, r) for all x ∈M and r > 0.

• We say that the scale invariant L2 Poincaré inequality holds if there is a
constant P0 such that for any ball B = B(x, r) in (M,ρ)

∀u ∈ Floc(B(x, r),
∫

B

|u− uB|2dμ � Por2
∫

B

dΓ (u, u),

where uB denotes the average of u over B.

• We say that these properties hold uniformly at small scales if they hold
under the restriction that r ∈ (0, 1).

We can now state the main result of this section which is a direct general-
ization of Theorem 2.2 in the setting of strictly local regular Dirichlet spaces
(see [94]).

Theorem 3.2. Let (M,μ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). The following properties are
equivalent.
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• The space (M,μ, E ,D(E)) is a Harnack type Dirichlet space.

• The doubling volume property and the scale invariant Poincaré inequality
are satisfied on (M,μ, E ,D(E)).

• The heat semigroup etA admits a transition kernel h(t, x, y) satisfying the
two-sided bound

c

V (x,
√
t)

exp
(
−Aρ(x, y)

2

t

)
� h(t, x, y) � C

V (x,
√
t)

exp
(
−aρ(x, y)

2

t

)

for constants 0 < a,A, c, C <∞.

As in the classical case, if one uses Moser’s iteration techniques, one of
the first steps of the proof that the doubling property and Poincaré inequal-
ity imply the parabolic Harnack inequality is that they imply the family of
Sobolev inequalities

∀ f ∈ Fc(B),

⎛
⎝
∫

B

|f |2qdμ
⎞
⎠

1/q

� CMr
2

μ(B)2/ν

⎛
⎝
∫

B

dΓ (f, f) +
∫

B

r−2|f |2dμ
⎞
⎠

(3.3)
for some q > 1 and ν > 2 related to q by q = ν/(ν − 2). This inequality
implies the volume estimate

∀x ∈M, r > s.0, V (x, r) � C(r/s)νV (x, s).

Furthermore, a precise analog of Theorem 2.1 holds in this setting, as well as
the following version of Theorem 2.3 (see [61]).

Theorem 3.3. Let (M,μ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2) and (3.3). The following prop-
erties are equivalent.

• The scale invariant L2 Poincaré inequality.

• The scale invariant elliptic Harnack inequality.

• The scale invariant parabolic Harnack inequality.

3.5 Imaginary powers of −A and the wave equation

This section is merely a pointer to some interesting related results and liter-
ature regarding the wave equation. In the classical setting of R

n, the wave
equation is the PDE (∂2

t − Δ)u = 0. One of its main properties is the fi-
nite propagation speed property which asserts that if a solution u has sup-
port in the ball B(x0, r0) at time t0, then, at time t, its has support in
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B(x0, r0 + (t − t0)). Although this property can be proved in a number of
elegant ways in R

n, its generalization to other settings is not quite straight-
forward. Basic solutions of the wave equation can be obtain as follows. Using
Fourier transform, consider the operator cos(t

√−Δ) acting on L2(Rn). Then
for any smooth ϕ with compact support

u(t, ·) = cos(t
√−Δ)ϕ

is a solution of the wave equation with u(0, ·) = ϕ. This construction gen-
eralizes using spectral theory to any (nonpositive) self-adjoint operator, in
particular, to the infinitesimal generator A of a Markov semigroup associated
with a strictly local regular Dirichlet space (M,μ, E ,D(E)). In this general
setting, it is not entirely clear how to discuss the finite speed propagation
property of the wave equation

(∂2
t −A)u = 0.

Given a distance function d on M ×M (assumed, at the very least, to be a
measurable function onM×M), one says that the wave equation (associated
to A) has unit propagation speed with respect to d if for any functions u1, u2 ∈
L2(M,μ) compactly supported in S1, S2, respectively, with

d(S1, S2) = min{d(s1, s2) : s1 ∈ S1, s2 ∈ S2} > t

we have
〈cos(t

√−A)u1, u2〉μ = 0.

The following theorem follows from the techniques and results in [91, 92].

Theorem 3.4. Let (M,μ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). Then the associated wave
equation has unit propagation speed with respect to the distance ρ introduced
in Definition 3.1.

This result plays an important role in the study of continuity properties on
Lp spaces of various operators defined via spectral theory by the functional
calculus formula

m(−A) =

∞∫

0

m(λ)dEλ,

where Eλ stands for a spectral resolution of the self-adjoint operator−A. This
formula defines a bounded operator on L2(M,μ) for any bounded functionm.
The question then is to examine what further properties ofm imply additional
continuity properties of m(−A). The finite speed propagation property is
very helpful in the study of these questions. We refer the reader to [37, 38,
92], where earlier references and detailed discussions of the literature can
be found. As an illustrative example, we state the following result. For a



320 L. Saloff-Coste

function m defined on [0,∞) we set mt(u) = m(tu) and ‖m‖(s) = ‖(I −
(d/du)2)s/2m‖∞.

Theorem 3.5. Let (M,μ, E ,D(E)) be a regular strictly local Dirichlet space
satisfying the qualitative conditions (A1), (A2). Assume that the Sobolev in-
equality (3.3) holds for some q > 1 and ν given by q = ν/(ν − 2).

Fix a function η ∈ C∞c ((0,∞)), not identically 0. Ifm is a bounded function
such that

sup
t>0
‖ηmt‖(s) <∞

for some s > ν/2, then the operator m(−A) is bounded on Lp(M,μ) for each
p ∈ (1,∞). The operators (−A)iα, α ∈ R, are all bounded on Lp(M,μ),
1 < p < ∞, and there exists a constant C such that the norm of (−A)iα on
Lp(M,μ) is at most C(1 + |α|)ν/2, for all α ∈ R and 1 < p <∞.

3.6 Rough isometries

One of the strengths of the techniques and results discussed in this paper
is their robustness. In the present context, the idea of rough isometry was
introduced by Kanai [64, 66, 65] and developed further in [32]. It has also been
made very popular by the work of M. Gromov. Note that rough isometries
as defined below do not preserve the small scale structure of the space.

Definition 3.6. Let (Mi, ρi, μi), i = 1, 2, be two measure metric spaces. We
say that they are roughly isometric (or quasiisometric) as metric measure
spaces if there are two maps ϕk :Mi →Mj , k = (i, j) ∈ {(1, 2), (2, 1)} and a
constant A such that for k′ = (j, i) we have the following.

1. ∀x ∈Mi, ρi(x, ϕk′ ◦ ϕk(x)) � A.
2. Mj = {y ∈Mj : ρj(y, ϕk(Mi)) � A}.
3. ∀x, x′ ∈Mi, A−1(ρi(x, x′)−A) � ρj(ϕk(x), ϕk(x′)) � A(1 + ρi(x, x′)).

4. ∀x ∈Mi, A
−1V (x, 1) � V (ϕk(x), 1) � AV (x, 1).

Condition 3 requires that each of the maps ϕk roughly preserves large
enough distances (larger than 2A, say). Condition 2 requires that each of
the maps ϕk is almost surjective, in a quantitative metric sense. The first
condition says that the maps ϕk and ϕ′k are almost inverse of each other.
The last condition concerns volume transport and is obviously specific to the
setting of measure metric spaces. This definition is nicely symmetric (as an
equivalence relation should be!), but is redundant. It is enough to require the
existence of one map, say from M1 to M2 with the last three properties. The
existence of an almost inverse with the desired properties follows from the
axiom of choice.
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The relevance of rough isometries in the study of Harnack type Dirichlet
space lies in the following stability theorem from [32, Theorem 8.3] (although
[32] does not explicitly cover the setting of Dirichlet spaces, the same proof
applies).

Theorem 3.6. Let (Mi, μi, Ei,D(Ei)), i = 1, 2, be two regular strictly lo-
cal Dirichlet spaces satisfying the qualitative conditions (A1), (A2). Assume
further that these two spaces satisfy the volume doubling property and the L2

Poincaré inequality, uniformly at small scales. If (M1, ρ1, μ1) and (M2, ρ2, μ2)
are roughly isometric as metric measure spaces, then (M1, μ1, E1,D(E1)) is of
Harnack type if and only if (M2, μ2, E2,D(E2)) is of Harnack type.

Example 3.1. In a sense, the following example illustrates in the simplest non-
trivial possible way the results of this section. Consider the two-dimensional
cubical complex obtained as the subset M of R

3 of those point (x, y, z) with
at least one coordinate in Z. In other words, M is the union of the planes
{x = k}, {y = k}, {z = k}, k ∈ Z. It is also the union M =

⋃
k

Qk, where Qk

is the two-dimensional boundary of the unit cube with lower left back corner
k ∈ Z

3. This space is equipped with its natural measure μ (Lebesgue measure
on each of the planes above). To describe the natural Dirichlet form and its
domain, we recall that if F is a face on a unite cube Qk and if a function
f in L2(F ) has distributional first order partial derivatives in L2(F ) (i.e., is
in the Sobolev space H1(F )), then the trace of f along the one dimensional
edges of the face F are well defined, say, as an L2 function on the edges.
Taking into account this remark, we set (the factor of 1/2 is to account for
the appearance of each face in exactly two cubes)

E(f, g) =
1
2

∑
k

∫

Qk

∇f · ∇g dμ

for all f, g ∈ D(E), where D(E) is the space of those functions f ∈ L2(M)
which have distributional first order partial derivatives in L2(F ) on each face
F of any cube Qk, satisfy E(f, f) <∞, and have the property that for each
pair of faces F1, F2 sharing an edge I, the restrictions of f |F1 and f |F2 to the
edge I coincide. In the above formula, ∇f refers to the Euclidean gradient
of f viewed as a function defined on each of the square faces of the cube Qk.
Because of the above-mentioned trace theorem for Sobolev functions, it is
easy to see that (E ,D(E)) is a Dirichlet space. It is local, and one can show
(although this is not entirely obvious) that it is regular (see, for example,
[82]). The distance ρ associated to this Dirichlet form on M coincides with
the natural shortest path distance on this cubical complex. It is not hard to
check that

• The uniform small scale doubling property holds.

• The uniform small scale Poincaré inequality holds.



322 L. Saloff-Coste

• The metric measure space (M,ρ, μ) is roughly isometric to R
3.

Thus, from Theorem 3.6 it follows that this Dirichlet space is a Harnack
type Dirichlet space.

4 Flat Sobolev Inequalities

In the previous sections, we discussed the role of the family of localized
Sobolev inequalities (2.11) in Moser’s iteration and related techniques. In
some sense, the need to consider (2.11) instead of the more classical inequal-
ity (2.10) comes from looking at situations that are inhomogeneous either at
the level of location or at the level of scales, or both. Because of this one some-
times refers to a global Sobolev inequality that do not require localization
as a “flat” Sobolev inequality. For instance, one might ask: What complete
n-dimensional Riemannian manifolds satisfy a Sobolev inequality of the form

∀ f ∈ Cc(M), ‖f‖2n/(n−2) � S‖∇f‖2?

It turns out that this inequality is satisfied by a variety of manifolds not hav-
ing much in common with each others, including manifolds with nonnegative
Ricci curvature and maximal volume growth, as well as simply connected
manifolds with nonpositive sectional curvature (see [60, Theorem 8.3] and
the references therein for this result).

In this section, we discuss such inequalities: how to prove them and what
are they good for?

4.1 How to prove a flat Sobolev inequality?

There are many interesting approaches to proving Sobolev inequalities and
we will, essentially, discuss only one of them here. One useful aspect of this
approach is its robustness. One weakness, among others, is that it never
produces best constants.

Definition 4.1. Let (M, g) be a complete Riemannian manifolds. We say
that it satisfies an Lp pseudo-Poincaré inequality if

∀ f ∈ C∞c (M), ‖f − fr‖p � Ar‖∇f‖p
for all r > 0, where fr is a function such that fr(x) is the average of f over
the ball B(x, r).

Theorem 4.1 ([4, Theorem 9.1]). Let (M, g) be a complete Riemannian man-
ifolds satisfying the Lp pseudo-Poincaré inequality. Assume that there exists
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N > 0 such that V (x, r) � crN for all x ∈M and r > 0. Then the inequality

∀ f ∈ C∞c (M),
∫

M

|f |p(1+1/N)dμ � C(M,p)

⎛
⎝
∫

M

|∇f |pdμ
⎞
⎠
⎛
⎝
∫

M

|f |dμ
⎞
⎠
p/N

holds. If N > p, then

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) � S(M,p)‖∇f‖p.

Remark 4.1. The paper [4] shows that a great number of other interesting
Sobolev type inequalities follow as a corollary of the above result.

Remark 4.2. The above definition and theorem hold unchanged for p = 2 in
the context of strictly local regular Dirichlet spaces satisfying the qualitative
conditions (A1), (A2).

Remark 4.3. The volume condition V (x, r) � crN is sharp in the sense that
it follows from the validity of any of the two stated inequalities.

Remark 4.4. The same result holds if one replaces fr in the pseudo-Poincaré
inequality by Mrf and replaces the volume hypothesis by ‖Mrf‖∞ �
Cr−N‖f‖1. For instance, Mr could be averages over sets different from balls
or some more sophisticated operators. As an example, let Mr = Hr2 = er

2Δ

be the heat semigroup on (M, g) at time t = r2. Then, if one knows that for
all t > 0, ‖f − Htf‖p � C

√
t‖∇‖p and ‖Ht‖1→∞ � Ct−N/2, then one can

conclude that the inequalities stated in the above theorem hold on M . The
first of these two hypotheses is always satisfied if p = 2.

Example 4.1. Riemannian manifolds with nonnegative Ricci curvature satisfy
the pseudo-Poincaré inequality of Definition 4.1 for any 1 � p � ∞. They
satisfy the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) � S(M,p)‖∇f‖p
if and only if V (x, r) � crN and N > p � 1 (see [87, Sect. 3.3.5]). On
these manifolds, the volume is bounded by V (x, r) � Cnrn, where n is the
topological dimension. Hence V (x, r) � crN for all r > 0 is possible only if
N = n and V (x, r) � rn.

Example 4.2. Let (M, g) be a connected unimodular Lie group equipped with
a left-invariant Riemannian metric. Then the pseudo-Poincaré inequality of
Definition 4.1 holds for any 1 � p �∞ (see [31] or [87, 3.3.4]). The inequality

∀ f ∈ C∞c (M), ‖f‖pN/(N−p) � S(M,p)‖∇f‖p
holds if and only if V (r) � crN for all r > 0. For instance, ifM is the group of
upper-triangular 3 by 3 matrices with 1’s on the diagonal (i.e., the Heisenberg
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group), then for any left-invariant Riemannian metric, V (x, r) � crN for all
r > 0 and N ∈ [3, 4].

4.2 Flat Sobolev inequalities and semigroups of
operators

Sobolev inequalities can be generalized in useful ways in many contexts one
of which involves the infinitesimal generator A of a strongly continuous semi-
group of operator etA jointly defined on the spaces Lp(M,μ), 1 � p <∞. One
of the most straightforward results in this context is the following theorem
from [26] which extends an earlier result of Varopoulos [100] (see also [103]).
For α > 0 we set

(−A)−α/2 = Γ (α/2)−1

∞∫

0

t−1+α/2etAdt.

Theorem 4.2. Fix p ∈ (1,∞). Assume that etA is a bounded holomorphic
semigroup of operator on Lp(M,μ) which extends as an equicontinuous semi-
group on both L1(M,μ) and L∞(M,μ). Then for any N > 0 the following
two properties are equivalent.

• There exists C1 such that

∀ f ∈ L1(M,μ), ‖etAf‖∞ � C1t
−N/2‖f‖1.

• There exists C2 such that for one pair (equivalently, for all pairs) (α, q)
with 0 < αp < N and 1/q = 1p− α/N , we have

∀ f ∈ Lp(M,μ), ‖(−A)−α/2f‖q � C2‖f‖p.

Remark 4.5. The first property is known as a form of ultracontractivity
(boundedness of etA from L1 to L∞ for all t > 0). The second property
states that a Sobolev type inequality holds, namely, ‖f‖q � C2‖(−A)α/2f‖p,
f ∈ Dom((−A)α/2.

Remark 4.6. A semigroup etA is bounded holomorphic on Lp(X,μ) if

t‖AetAf‖p � C‖f‖p
for all f ∈ Lp(M,μ) and t > 0. This implies that for any α ∈ (0, 1] and f in
the domain of (−A)α/2

∀ t > 0, ‖f − etAf‖p � Cαtα/2‖(−A)α/2f‖p.
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This can be viewed as a form of pseudo-Poincaré inequality.

Theorems such as Theorem 4.2 apply nicely in the context of Dirichlet
spaces because the associated semigroups are self-adjoint on L2(M,μ) and
contract each Lp(M,μ), 1 � p � ∞. Semigroups of self-adjoint contractions
on L2(M,μ) are automatically bounded holomorphic on L2(M,μ). Moreover,
in the regular strictly local Dirichlet space context described earlier, the gen-
erator A is related to the form E and the energy form Γ by

‖(−A)1/2f‖22 = E(f, f) =
∫

M

dΓ (f, f), f ∈ Dom((−A)1/2) = D(E).

For the following result see [15, 100, 103] and also [33].

Theorem 4.3. Fix N > 0. Let (M,μ, E ,D(E)) be a Dirichlet space with as-
sociated semigroup etA. The following properties are equivalent.

• There exists C1 such that

∀ f ∈ L1(M,μ), t > 0, ‖etAf‖∞ � C1t
−N/2‖f‖1.

• For one (equivalently, all) (α, q) with 1 < α < N/2 and q = 2N/(N − 2α)
there exists C(α) such that

∀ f ∈ Dom((−A)α/2), ‖f‖q � C(α)‖(−A)α/2f‖2.

• There exists C2 such that

∀ f ∈ L1(M,μ) ∩D(E), ‖f‖2(1+2/N)
2 � C2E(f, f)‖f‖4/N1 .

Remark 4.7. The first property is a particular type of ultracontractivity. The
second property is a Sobolev type inequality. If N > 2, one can take α = 1,
q = 2N/(N − 2) and the inequality takes the form ‖f‖q � C1E(f, f). The
third property is a Nash inequality.

Example 4.3. Let (M, g) be an n-dimensional complete Riemannian manifold
that is simply connected and has nonpositive sectional curvature. By a simple
comparison argument (see, for example, [20, Theorem 6] and the references
therein), the heat kernel on M is bounded from above by the Euclidean heat
kernel. In particular, for all t > 0,

sup
x,y∈M

{h(t, x, y)} � cnt−n/2.

This implies that for all t > 0 we have ‖etΔM f‖∞ � cnt−n/2‖f‖1. Hence the
above theorem gives the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖2n/(n−2) � SM‖(−Δ)1/2f‖2.
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Of course, ‖(−Δ)1/2f‖2 = ‖∇f‖2, so that this inequality can be written as

∀ f ∈ C∞c (M), ‖f‖2n/(n−2) � SM‖∇f‖2.

There is an open conjecture that this inequality should holds with SM
being the same constant as in the Euclidean n-space.

The first property in Theorem 4.3 obviously calls for a more general for-
mulation. The following general elegant result was obtained by Coulhon [27]
(after many attempts by different authors). A smooth positive function Φ
defined on [0,∞) satisfies condition (D) if there exists ε ∈ (0, 1) such that
ϕ′(s) � εϕ′(t) for all t > 0 and s ∈ [t, 2t], where ϕ(s) = − logΦ(s).

Theorem 4.4 ([27]). Let (M,μ, E ,D(E)) be a Dirichlet space with associated
semigroup etA. Let Φ be a positive smooth decreasing function on [0,∞) sat-
isfying condition (D), and let Θ = −Φ′ ◦ Φ−1. The following properties are
equivalent.

• There exists a constant c1 ∈ (0,∞) such that

∀ f ∈ L1(M,μ), t > 0, ‖etAf‖∞ � Φ(c1t)‖f‖1.

• The exists a constant C1 ∈ (0,∞) such that for all f ∈ L1(M,μ) ∩ D(E)
with ‖f‖1 � 1 we have

Θ(‖f‖22) � CE(f, f).

We refer the reader to [4, 8, 9, 27] for explicit examples and further results.

4.3 The Rozenblum–Cwikel–Lieb inequality

One of the surprising aspects of the Sobolev inequality

‖f‖22N/(N−2) � S2E(f, f)

is how many different equivalent form it takes (hence the title “Sobolev in-
equalities in disguise” of [4]). Despite the equivalence of this different forms,
some appear “stronger” than other. For instance, on one hand, deducing from
the above inequality the Nash inequality

‖f‖2(1+2/N)
2 � S2E(f, f)‖f‖4/N1

only involves a simple use of Hölder’s inequality (and the constant remains
the same). On the other hand, recovering the Sobolev inequality from its
Nash form involves some more technical arguments. The constant S changes



Sobolev Inequalities in Familiar and Unfamiliar Settings 327

in the process (the two inequalities in R
N have different best constants) and

one needs to assume that N > 2.
In 1972, Rozenblum proved a remarkable spectral inequality showing that,

in R
N with N � 3, if V is a nonnegative measurable function and N−(−Δ−

V ) denotes the number of negative eigenvalues of −Δ− V , then there exists
a constant C(N) such that

N−(−Δ− V ) � C(N)
∫

RN

V (x)N/2dx.

Very different proofs were later given by Cwikel and by Lieb, and this inequal-
ity is known as the Rozenblum–Cwikel–Lieb inequality. We refer the reader to
the review of the literature in [70, 84]. The following elegant result is taken
from [70] and is based on the technique used in [73] in Euclidean space.

Theorem 4.5 ([70]). Let (M,μ, E ,D(E)) be a Dirichlet space with associated
semigroup etA. Assume that the Sobolev inequality

∀ f ∈ D(E), ‖f‖22N/(N−2) � S2E(f, f)

holds for some N > 2. Then for any measurable function V � 0

N−(−A− V ) � C(N)
∫

M

V N/2dμ.

In [84], this result is generalized in a number of useful ways. In particular,
the following version related to Theorem 4.4 is obtained.

Theorem 4.6 ([84]). Fix a nonnegative convex function Q on [0,∞), growing
polynomially at infinity and vanishing in a neighborhood of 0. Set

q(u) =

∞∫

0

v−1Q(v)e−v/udv.

Let (M,μ, E ,D(E)) be a Dirichlet space with associated semigroup etA. As-
sume that

∀ f ∈ L1(M,μ), t > 0, ‖etAf‖∞ � Φ(t)‖f‖1

with Φ continuous, integrable at infinity
( ∞∫
ϕ(t)dt <∞

)
, and satisfying

Φ(t) = O(t−α) at 0 for some α > 0 . Then for any measurable function
V

N−(−A− V ) � 1
q(1)

∞∫

0

⎛
⎝
∫

M

Q(tV (x))dμ(x)

⎞
⎠ Φ(t)
t
dt.
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Remark 4.8. One can take Q(u) = (u − 1)+. In this case,

∞∫

0

⎛
⎝
∫

M

Q(tV (x))dμ(x)

⎞
⎠ Φ(t)
t
dt �

∫
M

⎛
⎜⎝V (x)

∞∫

1/V (x)

Φ(t)dt

⎞
⎟⎠ dμ(x)

so that if

Ψ(u) =

∞∫

u

Φ(t)dt,

then
N−(−A− V ) � C

∫

M

V (x)Ψ(1/V (x))dμ(x).

In particular, if Φ(t) � t−N/2, t > 0 for some N > 2, then Ψ(u) � u−N/2+1,
u > 0, and

N−(−A− V ) � C
∫

M

V N/2dμ.

Example 4.4. Let (G, g) be an amenable connected Lie group of topological
dimension n equipped with a left-invariant Riemannian metric with Laplace
operator Δ. In this case, there are two possible behaviors for the function Φ.
If G has polynomial volume growth, then

Φ(t) �
{
t−n/2 for t ∈ (0, 1],

t−N/2 for t ∈ (1,∞),

where N is some integer. If that is not the case, then G has exponential
volume growth and

Φ(t) � C ×
{
t−n/2 for t ∈ (0, 1]
e−ct

1/3
for t ∈ (1,∞)

for some c, C ∈ (0,∞) (a similar lower bound holds as well).
In the case of polynomial volume growth, application of Theorem 4.6 re-

quires N > 2. Assuming that N > 2, the function Ψ introduced in the above
remark is given by Ψ(u) � u−N/2+11u>1 + (1 + u−n/2+1)1u�1. Hence

N−(−Δ− V ) � C
( ∫

{V�1}

V (1 + V n/2−1)dμ+
∫

{V <1}

V N/2dμ
)
.

In the case of exponential volume growth, one gets
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N−(−Δ− V ) � C
∫

{V �1}

V (1 + V n/2−1)dμ+ C
∫

{V <1}

e−cV
−1/3
dμ.

In this case, since the volume growth is exponential, we see that for a smooth
positive potential with V (x) � (1+ρ(e, x))−γ , N−(−Δ−V ) is finite if γ > 3.

4.4 Flat Sobolev inequalities in the finite volume case

Recall that a flat Sobolev inequality of the form ∀ f ∈ C∞c (M), ‖f‖2q �
SM‖∇f‖2, with q > 1, on a complete Riemannian manifolds (M, g), implies
that the volume grows at least as rν with q = ν/(ν − 2). In particular,
the volume of M cannot be finite. In order to allow for some finite volume
manifolds, one needs to consider inequalities of the form

∀ f ∈ C∞c , ‖f‖22q � aM‖f‖22 + C2
M‖∇f‖22. (4.1)

If we assume that the volume of M is finite, we can normalize the measure
so that μ(M) = 1 and then it is easy to see that the above inequality can
hold only if aM � 1. Moreover, if the global Poincaré inequality ‖f−fM‖2 �
AM‖∇f‖2 holds for all f ∈ C∞(M), then (4.1) implies

∀ f ∈ C∞c , ‖f‖22q � ‖f‖22 + S2
M‖∇f‖22. (4.2)

The aim of this section is to point out a beautiful consequence of this in-
equality obtained by Bakry and Ledoux [5]. We refer the reader to [5] for a
complete discussion and detailed references.

Theorem 4.7 ([5, Theorem 2]). Assume that (M, g) is a complete Rieman-
nian manifold with finite volume. Assume that, equipped with its normalized
Riemannian measure, (M, g) satisfies (4.2) for some q > 1 and SM ∈ (0,∞).
Then M is compact with

Diam(M) � π
√
q

q − 1
SM .

This result is a form of a well-known theorem of Meyers that asserts that
an n-dimensional Riemannian manifold whose Ricci curvature is bounded
from below by Ric � kg with k > 0 must be compact with diameter at most
π
√

(n− 1)/k. Indeed, Ilias proved that, on a manifold of dimension n, the
hypothesis Ric � kg for some k > 0 implies the Sobolev inequality (4.2) with
q = n/(n−2) and S2

M = 4(n−1)/n(n−2)k. Hence Meyers’ result follows from
Ilias’ inequality and the above theorem. The upper bound in the theorem is
sharp and is attained when M is a sphere.
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The above theorem of Bakry and Ledoux is, in fact, obtained in a much
more general setting of strictly local Dirichlet spaces (see [5] for a precise
description).

4.5 Flat Sobolev inequalities and topology at infinity

We complete this section on flat Sobolev inequalities by pointing out the
relevance of the Sobolev inequality in some problems concerning topology.
The following result due to Carron [18] is actually closely related to the
results concerning the Rozenblum–Cwikel–Lieb inequality.

Theorem 4.8 ([18, Theorem 0.4]). Let (M, g) be a complete Riemannian
manifold (hence, connected) satisfying the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖22ν/(ν−2) � S2
M

∫
|∇f |2dμ

for some ν > 2. Assume that the smallest negative eigenvalue ric− of the
Ricci tensor is in Lν/2(M). Then M has only finitely many ends. In fact,
there exists a constant C(ν) such that the number of ends is bounded by

1 + C(ν)S2
M

∫

M

|ric−|ν/2dμ.

For more sophisticated results in this direction see, for example, [16, 18, 19]
and the references therein.

5 Sobolev Inequalities on Graphs

All the ideas and techniques discussed in this paper can be developed and used
in the discrete context of graphs, sometimes to great advantage. To a large
extend, the context of graph is actually harder to work with than the context
of manifolds (and strictly local Dirichlet spaces), but the new difficulties that
appear are mostly of a technical nature and can often be overcome. This short
section provides pointers to the literature and explains in some detail one of
the first applications of Sobolev inequalities on graphs, namely, Varopoulos’
solution of Kesten’s conjecture regarding random walks on finitely generated
groups. We refer to [47] for a short survey and to [98, 105] for a detailed
treatment of some aspects.
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5.1 Graphs of bounded degree

In what follows, a graph is a pair (V,E), where E is a symmetric subset of
V × V and V is finite or countable. Elements of V are vertices and elements
of E are (oriented) edges. For x, y ∈ V we write x ∼ y if (x, y) ∈ E and we
say that x, y are neighbors. A path in V is a sequence of vertices such that
consecutive points are neighbors. The length of a path is the number of edges
it crosses. The distance ρ(x, y) between two points x, y ∈ V is the minimal
length of a path joining them. The degree μ(x) of x ∈ V is the number of
y ∈ V such that (x, y) ∈ E. Throughout the paper, we assume that our
graphs are connected, i.e., ρ(x, y) < ∞ for all x, y ∈ V and have uniformly
bounded degree, i.e., there exists D ∈ [1,∞) such that sup

x
{μ(x)} = D.

Moreover, we equip V with the measure μ defined by μ(A) = D−1
∑
x∈A
μ(x).

A graph is regular if μ(x) = D for all x. In this case, the measure μ is a
counting measure. Let B(x, r) be the (closed) ball of radius r around x, and
let V (x, r) = μ(B(x, r)). For a book treatment of various aspects of the study
the volume growth in Cayley graphs see [35].

Given a function f on V , we set df(x, y) = f(y)− f(x) and

|∇f(x)| =
(
μ(x)−1

∑
y∼x
|df(x, y)|2

)1/2

.

Also, set fr(x) = V (x, r)−1
∑

B(x,r)

f(z)μ(z).

We now have all the ingredients to consider whether or not the graph
(V,E) satisfies the Sobolev inequality

∀ f ∈ Cc(V ), ‖f‖2q � S‖∇f‖2 (5.1)

for some q > 1, and related inequalities. Here, Cc(V ) is the space of functions
with finite support. Moreover, according to our notation, we have

‖f‖2q2q =
∑
x∈V
|f(x)|2qμ(x) and ‖∇f‖22 =

∑
x∈V

∑
y∼x
|f(y)− f(x)|2.

In what follows, we concentrate on the simple case of flat Sobolev inequalities
because this case is quite interesting and important and does avoid most
technical difficulties. For developments paralleling the ideas and results of
Sect. 2 we refer the reader to [28, 29, 30, 52, 53, 98] and the references
therein.
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5.2 Sobolev inequalities and volume growth

We start with the following two theorems.

Theorem 5.1. Fix ν > 0. For a graph (V,E) as above, the following proper-
ties are equivalent.

• ∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 � N‖∇f‖2‖f‖2/ν1 .

• ∀ f ∈ Cc(V ) with support in a finite set Ω, ‖f‖2 � Cμ(Ω)1/ν‖∇f‖2.

Moreover, if ν > 2, these properties are equivalent to (5.1) with q = ν/
(ν − 2). Finally, any of these inequalities implies the existence of c > 0 such
that

∀x ∈ V, r > 0, V (x, r) � crν .

Remark 5.1. The first inequality is a Nash inequality, the second is a Faber–
Krahn inequality. For a proof of this theorem see, for example, [4].

The next results gives two Nash inequalities under the volume growth
hypothesis that V (x, r) � crν . The first inequality requires no additional
hypotheses, whereas the second one depends on the validity of a pseudo-
Poincaré inequality. Under that extra hypothesis, the Nash inequality one
obtains is, in fact, equivalent to the volume lower bound. Both results are
optimal (see [6]).

Theorem 5.2 ([6, 31]). Fix ν > 0 and assume that a graph (V,E) has volume
growth bounded from below:

∀x ∈ V, r > 0, V (x, r) � crν .

• In all the cases,

∀ f ∈ Cc(V ), ‖f‖(1+1/γ)
2 � N‖∇f‖2‖f‖1/γ1 , γ = ν/(ν + 1).

• Assume that the pseudo-Poincaré inequality ∀ f ∈ Cc(V ), ‖f − fr‖2 �
Cr‖∇f‖2 holds on (V,E). Then

∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 � N‖∇f‖2‖f‖2/ν1 .

Proof. First statement. Fix a finite set Ω. For each x ∈ Ω let r(x) be the
distance between x and V \ (Ω). If f has support in Ω, by a simple use of
the Cauchy–Schwarz inequality, for all x ∈ Ω, |f(x)|2 � r(x)‖∇f‖22. Also
Ω ⊃ B(x, r(x) − 1) for each x ∈ Ω. Hence, by hypothesis,

μ(Ω) � V (x, r(x) − 1) � c(r(x) − 1)ν � c′r(x)ν .
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This yields |f(x)|2 � Cμ(Ω)1/ν‖∇f‖22. Summing over Ω, we find

‖f‖2 � C1/2μ(Ω)(ν+1)/2ν‖∇f‖2.

The desired result follows from Theorem 5.1.

Second statement. Observe that the volume hypothesis yields

‖fr‖∞ � c−1r−ν‖f‖1.

Writing ‖f‖22 = 〈f, f − fr〉+ 〈f, fr〉 and using the hypotheses, we obtain

‖f‖22 � Cr‖f‖2‖∇f‖2 + c−1r−ν‖f‖21.

Picking r � (‖f‖21‖f‖−1
2 ‖∇f‖−1

2 )1/(1+ν), we find

‖f‖22 � C1‖f‖ν/(1+ν)2 ‖∇f‖ν/(1+ν)2 ‖f‖2/(1+ν)1

or
‖f‖(2+ν)/(1+ν)2 � C1‖∇f‖ν/(1+ν)2 ‖f‖2/(1+ν)1 .

Taking the (1+ν)/νth power of both sides, we arrive at the desired inequality.

�

5.3 Random walks

In the context of graphs, one of the possible natural definitions of the “Lapla-
cian” (and the one we will use) is

ΔEf(x) = μ(x)−1
∑
y∼x

(f(y)− f(x)) = (K − I)f(x),

where I is the identity operator and K is the Markov kernel

K(x, y) =

{
μ(x)−1 if y ∼ x,
0 otherwise,

and Kf(x) = μ(x)−1
∑
y∼x
f(y). The random walk interpretation of K is as

follows. Think of a particle whose current position at a (discrete) time t ∈ N,
is at x ∈ V with some probability p(t)({x}) = p(t, x). At time t + 1, the
particle picks uniformly one of the neighboring sites and moves there. Hence
the probability of the particle to be at a site x at time t+ 1 is

p(t+ 1, x) =
∑
y∼x

p(t, y)μ(y)−1 = p(t)K(x),
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where the action ofK on a measure p is defined naturally by pK(f) = p(Kf).
It follows immediately that the operator K is a self-adjoint contraction on
L2(V, μ) and the function

u(t, x) = μ(x)−1p(t, x)

is a solution of discrete time discrete space heat equation

u(t+ 1, ·)− u(t, ·) = ΔEu(t, ·).

In this context, the heat kernel h(t, x, y) is obtained by setting

h(t, x, y) = ux(t, y) = μ(y)−1px(t, y), px(0, y) = δx(y).

It is a symmetric function of x, y, and for any f with finite support on V

u(t, x) =
∑
y∈V
h(t, x, y)f(y)μ(y)

is a solution of the heat equation with the initial value f . Finally, by definition,

px(t, y) = h(t, x, y)μ(y)

is the probability that our particle is at y at (discrete) time t given that it
started at x at time 0.

The idea of applying Sobolev type inequalities in this context was intro-
duced by Varopoulos [101] and produced a remarkable breakthrough in the
study of random walks on graphs and finitely generated groups. The book
[105] gives a detailed treatment of many aspects of the resulting develop-
ments. The following theorem is the most basic result (see [15, 101, 103, 105]).

Theorem 5.3. Fix ν > 0. Let (V,E) be a connected graph with bounded
degree as above. The following properties are equivalent.

• ∀ f ∈ Cc(V ), ‖f‖(1+2/ν)
2 � N‖∇f‖2‖f‖2/ν1 .

• ∀ t ∈ N, x, y ∈ V, h(t, x, y) � C(1 + t)−ν/2.

Example 5.1. A rather interesting family of examples is as follows. Assume
that the graph (V,E) has no loops (i.e., is a tree) and there exists ν > 0 such
that V (x, r) � rν . Such a tree must have many leaves (vertices of degree 1).
For examples of such trees see [6]. Applying Theorems 5.2 and 5.3, we obtain
the estimate h(t, x, y) � C(1 + t)−ν/(1+ν). As is proved in [7], this estimate
is optimal in the sense that

h(2t, x, x) � (1 + t)−ν/(ν+1).

Much more generally, the following assertion similar to Theorem 4.4 holds
as well.
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Theorem 5.4 ([27]). Let (V,E) be as above. Let Φ be a positive smooth de-
creasing function on [0,∞) satisfying condition (D), and let Θ = −Φ′ ◦ Φ−1.
The following properties are equivalent.

• There exists a constant c1 ∈ (0,∞) such that

∀ t ∈ N, x, y ∈ V, h(t, x, y) � Φ(c1t).

• The exists a constant C1 ∈ (0,∞) such that for all fCc(V ) with ‖f‖1 � 1

Θ(‖f‖22) � C‖∇f‖22.

Example 5.2. A case of interest is when Φ(t) = ce−t
γ

for some γ ∈ (0, 1). Then
−Φ′(t) = ctγ−1e−t

γ

, Φ−1(s) = (c+log 1/s)1/γ , andΘ(s) = s(c+log 1/s)1−1/γ .

5.4 Cayley graphs

A Cayley graph is a graph (V,E) as above, where V = G is a finitely generated
group equipped with a finite generating set S and (x, y) ∈ V ×V is in E if and
only if y = xs with s ∈ S ∪ S−1. Hence one can assume that S is symmetric,
i.e., S = S−1. These graphs are regular of degree D = #S, and thus the
measure μ used earlier is just a counting measure. Denote by e the identity
element in G.

The random walk on a Cayley graph can be described as follows. Let
ξ1, ξ2, . . . be independent uniform picks in the finite symmetric generating set
S. Then for t ∈ N and x, y ∈ G, px(t, y) is the probability that the product
Xt = xξ1 · · · ξt is equal to y. It is oblivious that px(t, y) = pe(t, x−1y) (left-
invariance). For general finitely generated groups the study of such random
walks originated in H. Kesten’s thesis. Later, Kesten considered the natural
question of when such a random walk is recurrent. Recall that recurrence
here means that, with probability 1, the walk returns infinitely often to its
starting point. A walk that is not recurrent is called transient and has the
property that, with positive probability, it never returns to it starting point.
By a celebrated result of Polya, the random walk on the integer lattices Z

n is
recurrent if n = 0, 1, 2 and is transient otherwise. One of Kesten’s questions
about the recurrence of random walks can be formulated as follows: What are
the groups that admit recurrent random walks (with generating support). For
a long time, the conjectural answer known as Kesten’s conjecture was that
the only groups that admit recurrent random walks are the finite extensions
of Z

n, n = 0, 1, 2 (i.e., those groups that contain {0} or Z or Z
2 with finite

index).
A basic result around this question (see, for example, [105]) is that recur-

rence is equivalent to
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∞∑
t=1

pe(t, e) =∞.

Indeed,
∞∑
t=1

px(t, y) can be understood as the mean number of returns to y

starting from x. Thus, the question is really a question about the behavior
of the associated heat kernel h(t, x, x).

Theorem 5.5 ([31]). Fix p ∈ [1,∞]. Let (V,E) be the Cayley graph associ-
ated to a finitely generated group G equipped with a finite symmetric gener-
ating set S. Then the pseudo-Poincaré inequality

‖f − fr‖p � Cr‖∇f‖p (5.2)

holds, as well as the Poncaré type inequality

∑
B

|f − fB|p � Crp V (2r)
V (r)

∑
2B

|∇f |p, (5.3)

where B = B(e, r), 2B = B(e, 2r), V (r) = #B(e, r), and fB is the average
of f over B.

Remark 5.2. The paper [31] treats mostly the case p = 1 (and the case p = 2,
briefly, towards the end), partly because the other cases are obvious variations
on the same argument. The inequality (5.2) with p = 1 is contained in [31,
p. 296]. The inequality (5.3) with p = 1 and p = 2 is contained in [31,
pp. 308–310] because, on a Cayley graph and under an invariant choice of
paths, the constants K(x, n) and K2(x, n) appearing in [31] can be of order
nV (2n)/V (n) and n2V (2n)/V (n) respectively. Below, we give a complete
proof of the case p = 2, emphasizing the great similarity between these two
inequalities.

Proof. We treat the case p = 2 (other cases are similar except for p = ∞
which is trivial and has little content). The crucial observation is that for
any set A ⊂ G

∑
x∈A

∑
y∈B(e,s)∩x−1A

|f(xy)− f(x)|2 � (#S)s2V (s)
∑
As/2

|∇f |2.

Here, Aτ = {z ∈ G : ρ(z,A) � τ}. To prove this inequality, for each y denote
by γy a fixed path of minimal length from e to y and use the Cauchy–Schwarz
inequality to get

|f(xy)− f(x)|2 � (#S)|y|
∑
z∈γy

|∇f |(xz)2,

where |y| = ρ(e, y) is the graph distance between e and y (i.e., the length
of y). Note that ρ(xz,A) � min{ρ(e, z), ρ(z, y)} � |y|/2 � s/2. Moreover,
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and this is the crucial point of the argument, y being fixed, a given vertex
ξ = xz can appear for at most |y| different points x. Hence

∑
x∈A

∑
y∈B(e,s)∩x−1A

|f(xy)− f(x)|2 � (#S)s2V (s)
∑
As/2

|∇f |2.

Taking A = G, r = s and dividing both sides by V (r), we obtain the pseudo-
Poincaré inequality ‖fr− f‖2 � (#S)1/2r‖∇f‖2. Taking A = B(e, r), s = 2r
and dividing both sides by V (r), we find

∑
B

|f − fB|2 � Cr2 V (2r)
V (r)

∑
2B

|∇f |2.


�
Theorem 5.6. Let (V,E) be the Cayley graph associated to a finitely gener-
ated group G equipped with a finite symmetric generating set S. Assume that
V (r) � crν , r > 0. Then there are constants N and C such that

∀ f ∈ Cc(G), ‖f‖(1+2/ν)
2 � N‖∇f‖2‖f‖2/ν1

and
∀ t ∈ N, x, y ∈ G, h(t, x, y) � C(1 + t)−ν/2.

In addition, if the doubling volume property V (2r) � DV (r) holds, then the
scale invariant Poincaré inequalities

∀B = B(x, r),
∑
B

|f − fB|p � Pprp
∑
B

|∇f |p

are satisfied for all p ∈ [1,∞].

Proof. The first two properties are equivalent and follow from Theorems 5.2,
5.3, and 5.5. The last statement follows from Theorem 5.5 and a well-known,
but somewhat subtle argument to get rid of the doubling of the ball over
which one integrates the gradient (see, for example, [87, Sect. 5.3]). 
�
Remark 5.3. The statement that V (r) � crν implies h(t, x, x) � Cε(1 +
t)−(ν−ε)/2, ε > 0, was first proved by Varopoulos [104, 102] by different,
but related methods.

Returning to Kesten’s conjecture, let us observe that the above theorem
implies that if a finitely generated group G satisfies V (r) � crν with ν > 2,
then ∞∑

t=1

h(t, e, e) =
∞∑
t=1

pe(t, e) <∞, (5.4)

i.e., the random walks on the Cayley graphs of G are transient (it is easy to
see that different generating sets S always yield comparable growth functions
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V ). This means that a group carrying a recurrent random walk must have a
volume growth function satisfying

∀ε > 0, lim inf
r→∞ r−(2+ε)V (r) <∞.

By the celebrated theorem of Gromov [54] (and its extension in [99]), the
condition

∃A > 0, lim inf
r→∞ r−AV (r) <∞ (5.5)

implies that G contains a nilpotent subgroup of finite index. Since a subgroup
of finite index in G has volume growth comparable to that of G and, by a
theorem due to Bass, nilpotent groups have volume growth of type rν for some
integer ν (see, for example, [35]), we see that a group carrying a recurrent
walk must contain a nilpotent subgroup of finite index and volume growth
of type r0 or r1 or r2. It is easy to check that this means that G is a finite
extension of {0} or Z or Z

2, as desired.

Theorem 5.7 (solution of Kesten’s conjecture, [104]). If a finitely generated
group G admits a finite symmetric generating set S such that the associated
random walk is recurrent, then G is a finite extension of {0} or Z or Z

2.

Remark 5.4. In a recent preprint [67], Kleiner gave a new proof of Gromov’s
theorem on groups of polynomial volume growth. His argument is quite sig-
nificant since it avoids the use of the Montgomery–Zippin–Yamabe structure
theory of locally compact groups (and of the solution of Hilbert fifth prob-
lem). It is also very significant from the viewpoint of the present paper and
in relation to Theorem 5.7, as we will explain. The proof of Theorem 5.7 is
based on two main results: the theorem of Gromov on groups of polynomial
growth (albeit, only in the “small growth” case (5.4)) and Varopoulos’ re-
sult that links volume growth to the decay of the probability of return of a
random walk as expressed in Theorem 5.6. Until Kleiner’s work on Gromov’s
theorem, these two corner stones of the proof of Theorem 5.7 appeared to be
rather unrelated. However, it is remarkable that one of the key ingredients of
Kleiner’s proof is the Poincaré inequality (5.3). Recall that, in Theorem 2.4,
we stated a result of Colding and Minicozzi to the effect that, on complete
manifolds, the Poincaré inequality and the doubling property imply the fi-
nite dimensionality of the spaces of harmonic functions of polynomial growth.
One of Kleiner’s main ideas in [67] is to show that, because one has (5.3),
the Colding–Minicozzi finite dimensionality results for harmonic functions of
polynomial growth does hold for Cayley graphs under the (weak) polynomial
volume growth hypothesis (5.5). This makes Theorem 5.5 central for each of
the two main ingredients of the proof of Kesten’s conjecture.

We complete with what can be seen as a generalization of Theorem 5.7
which involves Sobolev’s inequalities. Because of the relation between the
Sobolev inequality and the Nash inequality and the decay of the probabil-
ity of return in Theorem 5.3, it is possible to formulate Theorem 5.7 in
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an equivalent way as follows: a Cayley graph always satisfies the inequality
‖f‖5/32 � N‖∇f‖2‖f‖2/31 unless the group is a finite extension of a nilpotent
group of growth degree at most 2. More generally, the following assertion
holds.

Theorem 5.8. Fix a positive integer ν. On the Cayley graph of a finitely
generated group G, the Nash inequality

∀ f ∈ Cc(G), ‖f‖1+2/ν
2 � N‖∇f‖2‖f‖2/ν1

always holds for some constant N ∈ (0,∞) (depending on ν, G and the
Cayley graph structure) unless G is a finite extension of a nilpotent group of
volume growth degree at most ν − 1.

Similarly, the Sobolev inequality

∀ f ∈ Cc(G), ‖f‖pν/(ν−p) � S‖∇f‖p
always holds for all ν > p � 1 and some constant S ∈ (0,∞) (depending
on p, ν,G and the Cayley graph structure) unless G is a finite extension of a
nilpotent group of volume growth degree at most ν − 1.
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A Universality Property of Sobolev
Spaces in Metric Measure Spaces

Nageswari Shanmugalingam

Abstract Current research on analysis in metric measure spaces has used
alternative notions of Sobolev functions on metric measure spaces. We show
that, under some mild geometric assumptions on the metric measure space,
all these notions give the same class of functions.

1 Introduction

Motivated by the goal of understanding geometry of singular (non-Riemanni-
an) spaces, the study of analysis on metric measure spaces in recent years
has seen significant development. The metric spaces obtained as Gromov–
Hausdorff limits of Riemannian manifolds may be non-Riemannian in nature,
and the study of smooth analysis may be insufficient in understanding the
geometry of such singular spaces. Furthermore, analysis on fractal type sets
would be incomplete if one is restricted to studying only smooth functions.
Thus, the current research on metric spaces utilizes notions of first order
Sobolev space and an appropriate formulation of Poincaré inequalities. In
metric spaces where this machinery is available, some of the current research
considers variational problems, partial differential equations, potential theory,
and other aspects of analysis.

The theory of Sobolev spaces of functions in Euclidean domains is now well
understood (see, for example, a standard reference [20]). Currently, there ex-
ist various approaches to defining Sobolev type spaces of functions in metric
measure spaces. The geometric construction using the notion of upper gradi-
ents from [11] was first studied independently in [5] and [22]; this construction
yields the classical first order Sobolev space W 1,p(Ω) for 1 � p < ∞ when
Ω is an Euclidean domain or a Riemannian manifold, and under additional
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assumptions such as Poincaré inequality, allows for a comprehensive first-
order theory of variational methods in potential theory and partial differen-
tial equations [16]. These Sobolev type spaces are called Newtonian spaces.
A second notion of Sobolev type spaces, due to Haj�lasz [8], gives an almost
everywhere pointwise control of Sobolev type functions in terms of a function
that plays the role of a maximal function of the gradient. A third avenue of
development of first order calculus in metric measure spaces is due to Kore-
vaar and Schoen [17]. The approaches of [8, 9, 17] yield notions of gradients
that are not local; i.e., from the fact that a Sobolev function is constant on
a Borel set one cannot conclude that the corresponding notion of gradient is
zero almost everywhere on that set. However, the Newtonian space, where
the notion of gradient is the concept of upper gradient, has this locality prop-
erty. Another concept of Sobolev type space is obtained via a probabilistic
approach using a symmetric bilinear form called a Dirichlet form. This con-
cept yields a version of the Sobolev space W 1,2 which is naturally endowed
with a Hilbert-space structure. The standard reference for this approach is
[6], and has been developed in the setting of fractals in [1, 14, 15]. The lit-
erature on Dirichlet forms on self-similar sets is rapidly expanding, and we
cannot hope to provide a bibliography which does justice to the field here.
Concurrently, the abstract theory of Dirichlet forms on general metric spaces
has been studied, for example, in [21, 3, 4, 25, 26, 27, 12] and the references
therein.

By examining the analytic properties satisfied by the above various no-
tions of Sobolev spaces in metric measure spaces, Gol’dshtein and Troyanov
[7] developed the foundational theory of axiomatic Sobolev spaces. Of the
different approaches to the notion of Sobolev functions in metric measure
spaces, in this paper we focus on the Newtonian spaces of [22], the axiomatic
Sobolev spaces of Gol’dshtein and Troyanov [7], and the Dirichlet forms de-
veloped in [6, 12]. Under suitable conditions such as strong locality of the
Sobolev type spaces, doubling property of the measure, and the satisfaction
of a Poincaré inequality, we show that these three spaces are isomorphic. For
an expository description of connections between the Haj�lasz–Sobolev spaces,
the Sobolev spaces of Korevaar–Schoen, and the Newtonian spaces we refer
the interested reader to [24].

This paper is structured as follows. Section 2 provides the background
material and basic concepts used in the main theorems. There are two main
results in this paper. The first, demonstrating that under certain conditions
that are standard in analysis of Dirichlet forms, the domain of such a Dirich-
let form, called the Dirichlet domain, coincides with the Newtonian space
N1,2(X). Section 3 begins with a description of Dirichlet forms, and then
provides a proof of Theorem 3.7. The final section gives a definition of the
axiomatic Sobolev spaces of Gol’dshtein–Troyanov and proves that under
strong locality assumptions these spaces coincide with the Newtonian spaces
(Theorem 4.3).
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2 Background

In this paper, (X, d, μ) denotes a set X equipped with a metric d and a
Borel measure μ such that nonempty open sets have positive measure and
bounded sets have finite measure. We also assume that X is complete and
μ is doubling, i.e., there is a constant C > 0 such that whenever B(x, r) =
{y ∈ X : d(x, y) < r} is a ball in X ,

μ(B(x, 2r)) � C μ(B(x, r)).

It is easy to see that such a metric space X is proper, i.e., closed and bounded
subsets of X are compact.

Heinonen and Koskela [11] proposed the following substitute for gradients
in metric spaces.

Definition 2.1. Given a function u : X → [−∞,∞], we say that a nonneg-
ative Borel measurable function ρ on X is an upper gradient of u if whenever
γ is a compact rectifiable path in X ,

|u(x)− u(y)| �
∫

γ

ρ ds,

where x, y denote the endpoints of γ. If u(x) or u(y) is not finite, the above
inequality is interpreted to mean that

∫

γ

ρ ds =∞.

We say that ρ is a p-weak upper gradient of u for some 1 � p <∞ if there is
a nonnegative Borel measurable function ρ0 ∈ Lp(X) such that whenever γ
does not satisfy the above inequality,

∫

γ

ρ0 ds =∞.

The uniform convexity of Lp(X) when 1 < p <∞ implies that if u has a p-
weak upper gradient ρ ∈ Lp(X), then u has a minimal p-weak upper gradient
ρu ∈ Lp(X) (see [22]). If u is constant on a Borel set A and ρ ∈ Lp(X) is a
p-weak upper gradient of u, then ρχX\A is also a p-weak upper gradient of u;
for a proof of this fact we refer the interested reader to [23]. Such a property
is called the strong locality property.

For functions u ∈ Lp(X) with upper gradients ρ ∈ Lp(X) we define

‖u‖N1,p(X) = ‖u‖Lp(X) + inf
ρ
‖ρ‖Lp(X),
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where the infimum is taken over all upper gradients of u. The function space
N̂1,p(X) is the collection of all functions u on X such that u ∈ Lp(X) and u
has an upper gradient in Lp(X). It is easy to see that N̂1,p(X) is a vector space
with a lattice structure. The Newtonian spaceN1,p(X) = N̂1,p(X)/ ∼, where
the equivalence relation ∼ is given by the rule u ∼ v if ‖u− v‖N1,p(X) = 0.

Observe that ifX is a domain in an Euclidean space, equipped with the Eu-
clidean metric and the standard Lebesgue measure, thenN1,p(X) =W 1,p(X)
(see, for example, [22]).

Definition 2.2. We say that X supports a (1, p)-Poincaré inequality for
Newtonian functions if there are constants C > 0 and τ � 1 such that for all
u ∈ N1,p(X), upper gradients ρ of u, and balls B(x, r) ⊂ X

∫

B(x,r)

|u− uB(x,r)| dμ � Cr
( ∫

B(x,τr)

ρp dμ
)1/p

. (2.1)

Here, ∫

B(x,r)

u dμ = uB(x,r) = μ(B(x, r))−1

∫

B(x,r)

u dμ.

The following deep result, due to Cheeger [5], was proved for a Sobolev type
spaceH1,p(X) that appears on the surface to be different from the Newtonian
space. However, when 1 < p < ∞, it can be seen that H1,p(X) = N1,p(X);
we direct the interested reader to [22].

Proposition 2.3 ([5, Sect. 6]). If the measure on X is doubling and supports
a (1, p)-Poincaré inequality for Newtonian functions with p > 1, and u is a
Lipschitz function on X, then

Lipu(x) := lim sup
y→x

|u(y)− u(x)|
d(y, x)

is the unique (up to sets of μ-measure zero) minimal p-weak upper gradient
of u.

The following result, due to Keith, is a key tool in proving that the three
candidate Sobolev spaces are isomorphic under certain conditions.

Proposition 2.4 ([13, Theorem 2]). Let X be a complete metric measure
space equipped with a doubling measure, and let p � 1. The following are
equivalent.

1. X supports a (1, p)-Poincaré inequality for all measurable functions.

2. X supports a (1, p)-Poincaré inequality for all compactly supported Lips-
chitz functions with compactly supported continuous upper gradients.

3. X supports a (1, p)-Poincaré inequality for all Newtonian functions.
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In proving one of the two focal theorems of this paper (Theorem 3.7), we
need the auxiliary candidate space called the Korevaar–Schoen space, first
given in [17] and also studied in [18]. The Korevaar–Schoen space KS1,2(X)
is defined to be the collection of all functions f ∈ L2(X) for which the
approximating energies

e2ε(x; f) =
∫

B(x,ε)

dY (f(x), f(y))2

ε2
dμX(y)

converge to a finite energy

EKS(f) := sup
balls B

lim sup
ε→0

∫

B

e2ε(x; f) dμX(x) <∞.

3 Dirichlet Forms and N1,2(X)

We follow the spirit of [12] in defining Dirichlet forms. Recall that L2(X) =
L2(X,μ) is a Hilbert space endowed with the inner product

(u, v) :=
∫

X

uv dμ.

Definition 3.1. A symmetric bilinear form E : L2(X)×L2(X)→ R
+∪{∞}

is a Dirichlet form if the following conditions are satisfied:

1. Quadratic contraction property If E(u, u) < ∞ and ϕ : R → R is L-
Lipschitz with ϕ(0) = 0, then

E(ϕ ◦ u, ϕ ◦ u) � L2E(u, u). (3.1)

2. Closedness If {un} is a Cauchy sequence in L2(X) such that E(un) <∞ for
all n and E(un−um, un−um)→ 0 as n,m→∞, then E(un−u, un−u)→ 0
as n→∞. Here, u denotes the L2-limit of the Cauchy sequence {un}.

3. Density condition The domain D(E) of the bilinear form, consisting of
all functions u in L2(X) for which E(u, u) < ∞, is dense in L2(X) with
respect to its norm and is dense in the space C0(X) of continuous functions
with compact support with respect to the supremum norm.

4. For every u, v ∈ L2(X), we have the Minkowski inequality
√
E(u+ v, u+ v) �

√
E(u, u) +

√
E(v, v). (3.2)



350 N. Shanmugalingam

The approach of [6] begins with a Markovian condition which is weaker
than the quadratic contraction property. However, as much of the current
research on Dirichlet forms also require them to satisfy the quadratic con-
traction property, we include it as part of the definition.

It can be seen by the quadratic contraction property that D(E) is a vector
space, and indeed is a normed space when equipped with the norm

‖u‖E := ‖u‖L2(X) +
√
E(u, u).

The closability condition implies that if {un} is a sequence which is Cauchy in
this norm with L2-limit u, then E(u, u) = lim

n→∞ E(un, un) is finite. Moreover,
as a consequence of the closedness condition and the Minkowski inequality,
the normed space (D(E), ‖ · ‖E) is a Hilbert space equipped with the norm
‖ · ‖E .

Using the fact that L2(X) is a Hilbert space, Beurling and Deny [2] con-
struct a unique signed Radon measure-valued symmetric bilinear form asso-
ciated with E :

η : D(E)×D(E)→M(X)

(where M(X) is the collection of all finite signed Radon measures on X)
which satisfies

E(u, v) =
∫

X

dη(u, v).

The measure η(u, u) plays the role of the (square of the norm of the) pointwise
derivative of u in the general setting, satisfying the quadratic contraction
property

dη(ϕ ◦ u, ϕ ◦ u) � L2dη(u, u)

whenever ϕ is an L-Lipschitz function on R, and for all Borel sets E ⊂ X

|η(u, v)(E)| �
√
η(u, u)(E) η(v, v)(E). (3.3)

If E is strongly local, then for all u, v ∈ D(E) the singular (jump) part of
η(u, v) with respect to μ is zero.

For more discussion about Dirichlet forms, we refer the reader to [12, 2,
25, 26, 21] and the text [6].

Definition 3.2. We say that E is local if whenever u, v ∈ D(E) such that the
support of u and the support of v are disjoint compact sets, then E(u, v) = 0.
We say that E is strongly local if whenever U ⊂ X is an open set and u ∈ D(E)
is constant on U , then for all v ∈ D(E), η(u, v) is supported in X \ U .

If X is a Euclidean domain, the form

E(u, v) =
∫

X

〈∇u,∇v〉 dx
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is a strongly local Dirichlet form in the above sense. Bilinear Dirichlet forms
on certain fractals and more general self-similar sets were constructed by
Barlow–Bass [1] and Kigami [14, 15]; these are not strongly local in gen-
eral. If X is a metric measure space equipped with a doubling measure sup-
porting a (1, 2)-Poincaré inequality for Newtonian functions, then by a deep
Rademacher type theorem of [5], it follows that N1,2(X) = D(E) for some
strongly local Dirichlet form on X . Sturm [27] proved that the Korevaar–
Schoen space KS1,2(X) (a definition of this space is provided at the end of
Sect. 2) is a Dirichlet domain corresponding to a local Dirichlet form.

In considering Dirichlet forms, traditionally the underlying space is only a
Hausdorff topological space equipped with a Borel measure, and the Poincaré
inequality for such a Dirichlet form E is typically expressed using the so-called
intrinsic metric associated with E .

A subspace Γ of D(E) ∩ C0(X) is a μ-separating core if it is dense in
C0(X) with respect to the supremum norm, is dense in D(E) with respect
to the norm ‖ · ‖E , and has the following separation property: for every pair
of distinct points x, y in X there is a function ϕ ∈ Γ such that ϕ(x) �= ϕ(y)
and dη(ϕ, ϕ) � dμ. The intrinsic metric dE is defined as follows:

dE(x, y) = sup{ϕ(x)− ϕ(y) : ϕ ∈ Γ, dη(ϕ, ϕ) � dμ}, x, y ∈ X. (3.4)

Following [12, 3], we make the standing assumption that the topology induced
by dE coincides with the underlying topology on X and that the measure μ
is doubling for balls in the new metric, i.e., there exists a constant C � 1
such that

μ(2BE) � Cμ(BE )

for every ball BE in X . A change in the underlying metric results in a change
in the corresponding Newtonian spaces. Hence from now on we also assume
that dE = d and every 1-Lipschitz function ϕ on X is in the μ-separating
core Γ with dη(ϕ, ϕ) � dμ. Given a Lipschitz function ϕ on X , let

Lip(u, x) := lim
r→0+

sup
y,z∈B(x,r),y 
=z

|ϕ(y) − ϕ(z)|
d(y, z)

. (3.5)

Standard measure theoretical arguments show that Lip(u, ·) is a bounded
μ-measurable function on X .

Lemma 3.3. Let E be a strongly local Dirichlet form such that every com-
pactly supported 1-Lipschitz function ϕ on X is in D(E) with dη(ϕ, ϕ) � dμ.
Then whenever u is a compactly supported Lipschitz function on X, u ∈ D(E)
and for μ-almost every x ∈ X,

dη(u, u)(x) � Lip(u, x)2 dμ(x).

Proof. Fix x ∈ X and r > 0. Let
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Lu(x; r) := sup
y,z∈B(x,r),y 
=z

|ϕ(y)− ϕ(z)|
d(y, z)

.

Then Lip(u, x) = lim
r→0+

Lu(x; r). Restricting u to the ball B(x, r), it is easy

to see that this restriction is Lu(x; r)-Lipschitz continuous on this ball.
We can find a Lipschitz extension ϕ of the restriction of u to X (for ex-
ample, via a McShane construction [10]) such that ϕ is Lu(x; r)-Lipschitz
on X . By modifying ϕ outside B(x, r) (by multiplying ϕ by a compactly
supported Lipschitz function that is 1 on B(x, r) if necessary), we can
ensure that ϕ is compactly supported. Hence Lu(x; r)−1ϕ ∈ D(E) with
dη(Lu(x; r)−1ϕ,Lu(x; r)−1ϕ) � dμ by hypothesis. Now, by the quadratic
contraction property, dη(ϕ, ϕ) � Lu(x; r)2 dμ.

Since E is strongly local, by (3.3) we have dη(ϕ, ϕ) = dη(u, u) on B(x, r).
Hence dη(u, u) � Lu(x; r)2 dμ on B(x, r). Now, letting r → 0 completes the
proof for x ∈ X that are Lebesgue points for Lip(u, ·). 
�

Definition 3.4. We say that X supports a weak (1, 2)-Poincaré inequality
for the form E if there are constants τ � 1 and C > 0 such that for all
u ∈ D(E) and balls B(x, r) ⊂ X

∫

B(x,r)

|u− uB(x,r)| dμ � Cr
√
η(u, u)(B(x, τr))
μ(B(x, τr))

. (3.6)

Remark 3.5. The paper [19] studies metric space-valued Sobolev type spaces
and Dirichlet domains, and demonstrates that if a strongly local Dirichlet
form satisfies a Poincaré inequality and for all Lipschitz functions ϕ on X ,
dη(ϕ, ϕ)(x) ≈ Lip(ϕ, x) dμ(x), then the corresponding Dirichlet domain em-
beds isomorphically into the Korevaar–Schoen spaceK1,2(X) (see [19, Propo-
sition 4.2]). The condition that dη(ϕ, ϕ)(x) ≈ Lip(ϕ, x) dμ(x) for all Lipschitz
functions ϕ on X was used there only to ensure that the underlying metric
used in constructing the Korevaar–Schoen space is bi-Lipschitz equivalent to
the intrinsic metric of the Dirichlet form. We need this result of [19], but as
we consider only the intrinsic metric on the space (dE = d), this condition on
the measures η will not be needed by us. The main theorem of this section,
Theorem 3.7, is an improvement of Proposition 4.2 of [19].

Recall that X is said to be quasiconvex if there is a constant C > 0 such
that whenever x, y ∈ X there is a curve γ connecting x to y with length no
more than Cd(x, y).

Lemma 3.6. Let (X, d, μ) be a complete metric measure space such that μ is
doubling and supports the following Poincaré inequality: for every Lipschitz
function ϕ on X, whenever B(x, r) is a ball in X,
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∫

B(x,r)

|u− uB(x,r)| dμ � Cr
( ∫

B(x,τr)

Lip(u, y)2 dμ(y)
)1/2

.

Then X is quasiconvex.

Proof. The proof of this lemma is along the lines of a proof of Semmes on
quasiconvexity (see [5, Appendix]). For ε > 0 and x, y ∈ X we say that
x ∼ε y if there is a finite collection of points x1, . . . , xk in X such that
d(x1, x) < ε, d(xk, y) < ε, and for j = 1, . . . , k − 1, d(xj , xj+1) < ε. An easy
topological argument shows that the equivalence relation ∼ε partitions X
into pairwise disjoint closed sets. If U1 and U2 are such sets, then if both are
nonempty, the distance between them is at least ε, and hence these sets are
open as well. Hence the characteristic function u = χU1 of U1 is 1/ε-Lipschitz,
with Lip(u, ·) = 0. Since U2 is nonempty and open, for sufficiently large balls
B in X the integral ∫

B

|u− uB| dμ

is positive, thus violating the above version of Poincaré inequality. Hence
every x, y ∈ X have x ∼ε y.

For ε > 0 and x ∈ X , let ρε : X → R be the function given by

ρε(y) = inf
(x1,...,xk)

d(x, x1) + d(xk, y) +
k−1∑
j=1

d(xj , xj+1).

If y1, y2 ∈ X such that d(y1, y2) < ε, then

|ρε(y1)− ρε(y2)| � d(y1, y2),

i.e., Lip(ρε, y) � 1 on X . Hence an employment of the above version of
Poincaré inequality together with the telescoping argument given in [5,
Sect. 4] shows that (ρε)ε is a bounded sequence of continuous functions in
L1(B(x,R)) for all R > 0. Since ρε increases as ε decreases, lim

ε→∞ ρε exists,
and by the above boundedness converges to a finite-valued function ρ∞ on X .
The final part of the argument of [5, Appendix] now completes the proof. 
�

The main theorem of this section is the following result.

Theorem 3.7. Let E be a strongly local Dirichlet form on X such that the
intrinsic metric d induced by E is compatible with the topology of X. Sup-
pose that X supports a Borel measure μ that is doubling (with respect to the
metric d). If every compactly supported 1-Lipschitz function on X is in D(E)
with dη(ϕ, ϕ) � dμ and E satisfies a weak (1, 2)-Poincaré inequality, then
X supports a weak (1, 2)-Poincaré inequality for Newtonian functions and
D(E) = N1,2(X) as a Banach space isomorphism.
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Proof. By Proposition 2.4, it suffices to prove the Poincaré inequality for com-
pactly supported Lipschitz functions u with compactly supported Lipschitz
upper gradients ρ.

Since E satisfies a Poincaré inequality, by Lemma 3.3, whenever B(x, r) is
a ball in X ,

∫

B(x,r)

|u− uB| dμ � Cr
( ∫

B(x,τr)

Lip(u, y)2 dμ(y)
)1/2

.

Let ρ be a compactly supported Lipschitz upper gradient of u. By quasicon-
vexity of X (see Lemma 3.6), whenever z, y ∈ B(x, r), there is a curve γ
connecting z and y in B(x,Cr) with length

�(γ) � CQd(z, y).

Hence
|u(z)− u(y)| �

∫

γ

ρ ds � �(γ)ρ(wγ) � CQd(z, y)ρ(wγ)

for some wγ in the trajectory of γ. Hence

|u(z)− u(y)|/d(z, y) � CQρ(wγ).

Therefore,
Lu(x; r) � CQ sup

w∈B(x,Cr)

ρ(w).

Letting r → 0 and noting that ρ is continuous, we obtain

Lip(u, x) � CQρ(x).

It now follows that
∫

B(x,r)

|u− uB| dμ � CCQr
( ∫

B(x,τr)

ρ2 dμ
)1/2

.

Since E supports a weak (1, 2)-Poincaré inequality, by [19, Proposition 4.2]
(see Remark 3.5 above), D(E) embeds via a Banach space isomorphism into
the Korevaar–Schoen space KS1,2(X). Since X supports a (1, 2)-Poincaré
inequality for Newtonian functions, KS1,2(X) = N1,2(X) as a Banach space
isomorphism. Therefore, D(E) is embedded isomorphically in N1,2(X).

It suffices now to prove that N1,2(X) embeds into D(E). For ε > 0 we can
cover X by countably many balls Bi = B(xi, ε) such that

sup
x∈X

∑
i∈N

χ5Bi(x) � C
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and obtain a partition of unity ϕi subordinate to this cover; 0 � ϕi � 1, ϕi
is supported on Bi,

∑
i∈N
ϕi = 1, and ϕi is C/ε-Lipschitz (see [10] or [18]).

As in the proof of [18, Lemma 4.6], we obtain a discrete convolution of u ∈
N1,2(X) = KS1,2(X) as follows:

uε(x) =
∑
i∈N

uBiϕi(x).

By Lemma 4.6 of [18] and Hölder’s inequality, whenever y, z ∈ X with
d(y, z) < ε,

|uε(y)− uε(z)|
d(y, z)

� C
( ∫

B(y,2ε)

e25ε(w;u) dμ(w)
)1/2

,

and hence if x ∈ X and r < ε/2, we have

Lipuε
(x; r) � C

( ∫

B(x,4ε)

e25ε(w;u) dμ(w)
)1/2

.

It follows that

Lip(uε, x) � C
( ∫

B(x,4ε)

e25ε(w;u) dμ(w)
)1/2

,

and hence, by Lemma 3.3,

η(uε, uε)(Bi) � C
∫

Bi

∫

B(x,4ε)

e25ε(w;u) dμ(w) dμ(x) � C
∫

Bi

e25ε(x;u) dμ(x).

Hence, by the bounded overlap property of the cover Bi,

η(uε, uε)(X) � C
∫

X

e25ε(x;u) dμ(x),

i.e., for sufficiently small ε > 0

E(uε, uε) � CEKS(u).

By the fact that X supports (1, 2)-Poincaré inequality for Newtonian func-
tions, as in [18] we see that uε → u in KS1,2(X) = N1,2(X). Thus, by the
closability property of the Dirichlet form, we see that

E(u, u) � C‖u‖2N1,2(X),

i.e., N1,2(X) ⊂ D(E). 
�
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4 Axiomatic Sobolev Spaces and N1,p(X)

The focus of this section is the axiomatic theory of Gol’dshtein–Troyanov [7].
The starting point for this theory is the assumption of a class of “derivatives”
in the metric space setting, called a D structure, which associates with each
u ∈ Lploc(X) a class D[u] of nonnegative measurable functions on X such that
the following five axioms are satisfied:

1. Nontriviality If u is a nonnegative L-Lipschitz function supported on a set
A ⊂ X , then LχA ∈ D[u].

2. Upper linearity If ρ1 ∈ D[u1], ρ2 ∈ D[u2], and α, β ∈ R, and g � |α|ρ1 +
|β|ρ2, then g ∈ D[αu1 + βu2].

3. Leibnitz rule If g ∈ D[u] and ϕ is a bounded L-Lipschitz function on X ,
then ‖ϕ‖L∞(X)g + L|u| ∈ D[ϕu].

4. Lattice property If ρ1 ∈ D[u1], ρ2 ∈ D[u2], then

max{ρ1, ρ2} ∈ D[max{u1, u2}] ∩D[min{u1, u2}].

5. Completeness If gi ∈ D[ui] for i ∈ N, ui → u in Lp(X), and gi → g in
Lp(X), then g ∈ D[u].

The axiomatic Sobolev space L1,p(X) consists of all u ∈ Lp(X) for which
there exists g ∈ D[u] ∩ Lp(X). This space, equipped with the norm

‖u‖L1,p(X) = ‖u‖Lp(X) + inf
g∈D[u]

‖g‖Lp(X)

is a Banach space by the axioms above.
It was shown in [7] that if 1 < p < ∞, then for every u ∈ L1,p(X) there

is a unique function gu ∈ D[u], called the minimal pseudogradient of u, such
that

inf
g∈D[u]

‖g‖Lp(X) = ‖gu‖Lp(X).

Definition 4.1. We say that the D structure supports a (1, p)-Poincaré
inequality if there are constants C > 0 and τ � 1 such that whenever
u ∈ Lploc(X) and g ∈ D[u], for all balls B(x, r) in X

∫

B(x,r)

|u− uB(x,r)| dμ � Cr
( ∫

B(x,τr)

gp dμ
)1/p

.

We say that the D structure is strongly local if whenever u1, u2 ∈ L1,p(X)
and u1 = u2 on a Borel set A ⊂ X , then for all g1 ∈ D[u1] and g2 ∈ D[u2]

g1χA + g2χX\A ∈ D[u2].
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The axiomatic regularity theory developed in [28] would not be applicable
to solutions to variational problems based on the axiomatic Sobolev space
theory without the assumption of the support of Poincaré inequality and
strict locality. Hence the hypotheses of the following main theorem of this
section are reasonable.

Lemma 4.2. If the D structure is strongly local and 1 < p < ∞, then
whenever u ∈ L1,p(X) and g ∈ D[u], g � gu μ-a.e. in X (gu is the minimal
pseudogradient of u).

The proof is a direct application of the strong locality of the D structure,
and is left to the reader.

Theorem 4.3. Suppose that L1,p(X) is an axiomatic Sobolev space on a
complete metric measure space with doubling measure. If the associated D
structure supports a (1, p)-Poincaré inequality and is strongly local, then X
supports a (1, p)-Poincaré inequality for Newtonian functions, and L1,p(X) =
N1,p(X) as a Banach space isomorphism.

Proof. First we show that, under the strict locality assumption, whenever
ϕ : X → R is a Lipschitz function on X , Lip(ϕ, ·) ∈ D[ϕ]. Without loss
of generality, we assume that ϕ is compactly supported, and hence, by the
nontriviality axiom, ϕ ∈ L1,p(X). Fix r > 0. For x ∈ X let ψx,r be a Lipschitz
extension (given by McShane for example, see [10]) of ϕ|B(x,r) to X . Then
the global Lipschitz constant of ψx,r is given as follows:

Lψx,r = sup
y,z∈X:y 
=z

|ψx,r(y)− ψx,r(z)|
d(y, z)

= sup
y,z∈B(x,r):y 
=z

|ϕ(y)− ϕ(z)|
d(y, z)

= Lipϕ(x; r).

By the nontriviality axiom, Lψx,r ∈ D[ψx,r]. Note that

Lip(ϕ, x) = lim sup
r→0+

Lipϕ(x; r).

Since ϕ = ψx,r on the open ball B(x, r), by the strong locality property, if
gϕ is the minimal pseudogradient of ϕ, then gϕ � Lψx,r on B(x, r) (see the
lemma above).

Let Z be the collection of all non-Lebesgue points of gϕ. Then μ(Z) = 0
and for all x ∈ X \ Z

1
μ(B(x, r))

∫

B(x,r)

gϕ dμ � Lipϕ(x; r)

and hence
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gϕ(x) = lim
r→0+

1
μ(B(x, r))

∫

B(x,r)

gϕ dμ � lim sup
r→0+

Lipϕ(x; r) = Lip(ϕ, x),

i.e., gϕ � Lip(ϕ, ·) almost everywhere on X . Hence Lip(ϕ, ·) ∈ D[ϕ] by the
upper linearity axiom.

Now, if the axiomatic space satisfies a (1, p)-Poincaré inequality, then
whenever ϕ is a Lipschitz function on X , for all balls B ⊂ X

1
μ(B)

∫

B

|ϕ− ϕB| dμ � C rad(B)
(∫

τB

Lip(ϕ, y)p dμ(y)
)1/p

,

and then, as in the proof of Theorem 3.7, we conclude that X supports a
(1, p)-Poincaré inequality for Newtonian functions and N1,p(X) = L1,p(X),
thus concluding the proof. 
�

Acknowledgement. We wish to thank Marc Troyanov and Sergey Timoshin
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Cocompact Imbeddings and Structure
of Weakly Convergent Sequences

Kiril Tintarev

Abstract The concentration compactness method is a powerful technique for
establishing the existence of minimizers for inequalities and critical points of
functionals. We give a functional-analytic formulation for the method in a
Banach space. The key object is a dislocation space, i.e., a triple (X,F,D),
where F is a convex functional defining a norm on a Banach space X and D
is a group of isometries on X . Bounded sequences in dislocation spaces admit
a decomposition into an asymptotic sum of “profiles” w(n) ∈ X dislocated by
the actions of D. This decomposition allows to extend the weak convergence
argument from variational problems with compactness to problems, where X
is cocompactly (relatively to D) imbedded into a Banach space Y . We prove
a general statement on the existence of minimizers in cocompact imbeddings
that applies, in particular, to Sobolev imbeddings which lack compactness
(an unbounded domain, a critical exponent) including the subelliptic Sobolev
spaces and spaces over Riemannian manifolds.

1 Introduction

Minimizers for an inequality in a functional space often do not exist or cannot
be obtained by a straightforward compactness reasoning since, in general, one
may expect that a minimization sequence converges only weakly. The concen-
tration compactness method presented in the celebrated papers by P.-L.Lions
[8]–[11]) uses a detailed structural information about the minimization se-
quences in order to verify the convergence in problems that a priori lack
compactness. The core idea of the concentration compactness is that if the
problem possesses a noncompact invariance group G, lack of convergence can
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be attributed to the action of G, and thus a given sequence becomes conver-
gent only after the terms (“profiles”), dislocated by the transformations, are
“factored out.” Elaborations of the original classification of weak convergent
sequences by Lions into tight, vanishing and dichotomous, which are often
called splitting lemmas, were given for specific cases by Struwe [14], Brezis
and Coron [4], Lions [12], and numerous authors afterwards. The “splitting
lemmas,” which were originally established for critical sequences of specific
functionals in specific functional spaces, were later summarized by the au-
thor in a structural statement that holds in the general Hilbert space (see [15]
and references therein) by using the asymptotic orthogonality of dislocated
profiles: if gk ∈ D, where D is a fixed group of unitary operators, uk ⇀ w,
gkuk ⇀ w2, and vk=uk − w1 − g−1

k w2, then uk = w1 + g−1
k w2 + vk is the

asymptotically orthogonal sum in the sense that the scalar product of any two
terms of the sum converges to zero. Furthermore, this construction may be
iterated. Under general conditions, the subtraction of all dislocated profiles
of a bounded sequence (nonzero weak limits of sequences gkuk with different
sequences gk) amounts to a sequence that weakly converges to zero under
all dislocations (the D-weak convergence). In fact, this construction is use-
ful only to an extent that the D-weak convergence is meaningful. One may
say that the Hilbert space is cocompactly (relatively to D) imbedded into
a Banach space Y if the D-weak convergence in X implies the convergence
in Y . For example, subcritical Sobolev imbeddings on complete Riemannian
manifolds are cocompact with respect to the action of any subgroup of the
isometry group of a manifold if the manifold itself is cocompact with respect
to this subgroup.

In the present paper, we give a tentative formulation of this framework
for Banach spaces, where one can no longer rely on the notion of asymptotic
orthogonality. Its natural counterpart is asymptotic additivity or subadditiv-
ity of energy functionals with respect to dislocated profiles [it makes sense
indeed to call a functional with such an additivity property an energy, in-
dicating that it is asymptotically additive over asymptotically separate (for
example, with asymptotically disjoint supports) clusters of the physical sys-
tem that it models]. Such an asymptotic additivity is realized, in particular,
in Brezis–Lieb lemma [3]

Many applications of the concentration compactness method, such as the
existence of minimizers in isoperimetric problems or the compactness of
imbeddings of subspaces of functions with symmetries, are realized already on
the functional-analytic level, with immediate applications to Sobolev spaces
Wm,p over Riemannian (and sub-Riemannian) manifolds and their flask sub-
domains.

In Sect. 2 we prove the main structural theorem. Section 3 deals with
functional-analytic statements on the existence of minimizers in isoperimetric
problems. Section 4 extends the results of two previous cases to noninvariant
subspaces, and in Sect. 5 some compactness results are given.
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2 Dislocation Space and Weak Convergence
Decomposition

In this section, we prove a structural theorem for bounded sequences in a
class of Banach spaces associated with convex functionals.

Lemma 2.1. Let X be a vector space, and let F ∈ C1(X) be an even non-
negative convex function with F−1(0) = {0}. Then the map λ : X → [0,∞),

λ(u) = inf{λ > 0 : F (λ−1u) � 1}, (2.1)

is a norm on X and λ = ‖u‖ for any u ∈ X \ {0} is a unique solution of
F (λ−1u) = 1.

Proof. The homogeneity of λ(u) is immediate from definition. If u = 0, then
F (λ−1u) = 0 for all λ > 0 and thus λ(0) = 0. Since F−1(0) = {0}, for
every u ∈ X \ {0} the even convex function t ∈ R+ �→ F (tu) is strictly
monotone and unbounded from above. In particular, λ(u) > 0, whenever
u �= 0. Furthermore, by strict monotonicity, F (λ−1u) = 1 has a unique
solution λ1 and, since F (λ−1u) > 1 for λ < λ1, the infimum in (2.1) is
attained at λ1 = λ(u). It remains to prove the triangle inequality. By the
convexity of F , we have

F

(
u+ v

λ(u) + λ(v)

)
= F

(
λ(u)

λ(u) + λ(v)
u

λ(u)
+

λ(v)
λ(u) + λ(v)

v

λ(v)

)

� λ(u)
λ(u) + λ(v)

F

(
u

λ(u)

)
+

λ(v)
λ(u) + λ(v)

F

(
v

λ(v)

)

=
λ(u)

λ(u) + λ(v)
+

λ(v)
λ(u) + λ(v)

= 1.

The lemma is proved. 
�

Definition 2.2. A dislocation space is a triple (X,F,D), where the pair (X,F )
is the same as in Lemma 2.1, F ∈ C1(X) is uniformly continuous on bounded
sets, a Banach space X is separable and reflexive, and D is a group of linear
operators on X , closed with respect to the strong (elementwise) convergence,
satisfying F ◦ g = F for all g ∈ D and such that

gk ∈ D, gk �⇀ 0, uk ⇀ 0⇒ gkuk ⇀ 0 on a subsequence. (2.2)

Moreover, if sequences {g(n)
k }k∈N ⊂ D, n = 1, . . . ,M , M ∈ N, satisfy

g
(m)
k

−1
g
(n)
k ⇀ 0, m �= n, (2.3)
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and uk ∈ X is a bounded sequence such that g(n)
k

−1
uk ⇀ w

(n), n = 1, . . . ,M ,
then

lim inf F (uk) �
M∑
n=1

F (w(n)) (2.4)

and

F
( M∑

n=1

g
(n)
k w

(n)
)
→

M∑
n=1

F (w(n)). (2.5)

Remark 2.3. It is easy to see that the conditions (2.4) and (2.5) are satisfied
if F satisfies the Brezis–Lieb property

uk ⇀ u⇒ F (uk)− F (u)− F (uk − u)→ 0.

In particular, if X is a Hilbert space and F (u) = ‖u‖2, then

‖uk‖2 − ‖uk − u‖2 − ‖u‖2 = 2(uk, u)− 2‖u‖2 → 0.

When F (u) =
∫
ϕ(u)dμ with ϕ from a class of functions on a measure space

that includes ϕ(t) = |t|p, p ∈ (1,∞), Brezis–Lieb property was verified in [3]
under the additional condition uk → 0 a.e., although, since L2 is a Hilbert
space, this condition redundant when p = 2.

Examples of dislocation spaces

1. (H,F,D), where H is a separable Hilbert space; F (u) = ‖u‖2; and the
group D of unitary operators satisfies (2.2), in particular, as in any of the
examples below with p = 2. This case is elaborated in [15].

2. (W 1,p(M), ‖·‖p, D), whereM is a complete ( sub- ) Riemannian manifold,
W 1,p(M), p > 1, is a Sobolev space associated with the p-( sub- )Laplacian
and D = {u �→ u ◦ η}η∈Iso (M). In particular, (W 1,p(RN ), ‖ · ‖p, D) with
the group of shifts D = {u �→ u(·+ y)}y∈RN}.

3. (D1,p(G), ‖√L(u)‖pp, D′), where G is a Carnot group of homogeneous di-
mension Q with invariant subelliptic Lagrangian L(u) =

∑
i

|du(Xi)|, Xi
are generators of the correspondent Lie algebra, 1 < p < Q, and D′ is
a product group of the actions of left group shifts and of the group of
dilation actions u �→ tQ−p

p u ◦ δt, t > 0, where δt : G → G, t ∈ (0,∞)
are homogeneous dilations on G. In particular, (D1,p(RN ), ‖∇ · ‖pp, D′),
1 < p < N , where D′ is a product group of Euclidean shifts and of the
group of dilation actions u �→ tN−p

p u(t·), is a dislocation space.
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Definition 2.4. Let X be a Banach space, and let D be a group of linear
isometries on X . A sequence uk ∈ X converges D-weakly to u ∈ X (denoted
as uk

D
⇀u) if for any sequence gk ∈ D we have gk(uk − u)⇀ 0.

Lemma 2.5. Let (X,F,D) be a dislocation space. If F (uk)→ 0 then uk
D
⇀0.

Proof. Since F (uk) � 1, for all k sufficiently large ‖uk‖ � 1. On every weakly
convergent renumbered subsequence of uk, F (w-limuk) � limF (uk) = 0 and,
consequently, uk ⇀ 0. Since D preserves F , the same conclusion applies to
gku for any sequence gk ∈ D. 
�

Theorem 2.6. Let (X,F,D) be a dislocation space. If uk ∈ X is a bounded
sequence, then there exists a set N0 ⊂ N, w(n) ∈ X, sequences {g(n)

k }k∈N ⊂ D
with g(1)k = id satisfying (2.3), n ∈ N0, such that for a renumbered subse-
quence

w(n) = w-lim g(n)
k

−1
uk, (2.6)

∑
n∈N0

F (w(n)) � lim supF (uk), (2.7)

uk −
∑
n∈N0

g
(n)
k w

(n) D⇀0, (2.8)

where the series
∑
n∈N0

g
(n)
k w

(n) converges uniformly in k in the sense that

sup
k∈N

F
( ∑

n�m
g
(n)
k w

(n)
)
→ 0 as m→∞. (2.9)

Proof. 1. Once (2.3) is proved and w(n) satisfy (2.6), the inequality (2.4) in
Definition 2.2 holds for every M ∈ N and thus the series in (2.7) converges.

2. Observe that if uk
D
⇀0, then the theorem is verified with N0 = ∅. Oth-

erwise, we consider expressions of the form

w(1) =: w-lim g(1)k

−1
uk. (2.10)

The sequence uk is bounded, D is a set of isometries, so the sequence in (2.10)
is bounded and thus, for any choice of gk ∈ D, it has a weakly convergent
subsequence. Since we assume that uk does not converge D-weakly to zero,
there exists necessarily a renumbered sequence g(1)k that yields a nonzero
limit in (2.10).
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Let
v
(1)
k = uk − g(1)k w

(1).

By (2.10),

g
(1)
k

−1
v
(1)
k = g(1)k

−1
(uk − w(1))⇀ 0. (2.11)

If v(1)k
D
⇀0, the theorem is verified with N0 = {1}. Otherwise (we repeat the

argument above), there exists necessarily a sequence g(2)k ∈ D and w(2) �= 0
such that, on a renumbered subsequence,

g
(2)
k

−1
v
(1)
k ⇀ w(2).

We set
v
(2)
k = v(1)k − g(2)k w

(2).

Then we obtain an obvious analog of (2.11):

g
(2)
k

−1
v
(2)
k = g(2)k

−1
(v(1)k − w(2))⇀ 0. (2.12)

If we assume that
g
(1)
k

−1
g
(2)
k �⇀ 0,

then, by (2.12) and (2.2),

g
(1)
k

−1
(v(1)k − g(2)k w

(2))⇀ 0,

which, by (2.11), yields

g
(1)
k

−1
g
(2)
k w

(2) ⇀ 0. (2.13)

We now use (2.2) again to replace in (2.13) g(1)k

−1
with g(2)k

−1
, which results

in
w(2) ⇀ 0, (2.14)

which cannot be true since we assumed that w(2) �= 0. From this a contra-
diction follows:

g
(1)
k

−1
g
(2)
k ⇀ 0. (2.15)

Then
g
(2)
k

−1
g
(1)
k ⇀ 0.

Indeed, if this were false, then from (2.2) and (2.15) we have on a subsequence

id = g(2)k

−1
g
(1)
k g

(1)
k

−1
g
(2)
k ⇀ 0,

which is obviously false.
We define recursively:
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v
(n)
k =v(n−1)

k − g(n)
k w

(n) = uk − g(1)k w
(1) − · · · − g(n)

k w
(n), (2.16)

where
w(n) = w-lim g(n)

k

−1
v
(n−1)
k

calculated on a successively renumbered subsequence. We subordinate the
choice of g(n)

k and thus the extraction of this subsequence for every given n
to the following requirements. For every n ∈ N we set

Wn = {w ∈ H \ {0} : ∃gj ∈ D, {kj} ⊂ N : g−1
j v

(n)
kj
⇀ w}

and
tn = sup

w∈Wn

F (w).

Note that tn <∞ since all the operators involved at all the steps leading to
the definition of Wn have uniform bounds.

If tn = 0 for some n, the theorem is proved with N0 = {1, . . . , n − 1}.
Otherwise, we choose w(n+1) ∈ Wn such that

F (w(n+1)) � 1
2
tn (2.17)

and the sequence g(n+1)
k is chosen so that on a subsequence that we renumber

g
(n+1)
k

−1
v
(n)
k ⇀ w(n+1). (2.18)

As above, for n = 1 we have

g
(p)
k

−1
g
(q)
k ⇀ 0 whenever p �= q, p, q � n. (2.19)

This allows us to deduce immediately (2.6) from (2.18), as well as (2.7). From
(2.4) and(2.17) if follows that

∑
n�2

tn � 2F (uk).

Let ϕi, i ∈ N, be a normalized basis for X∗. By the definition of Wn,

lim sup
k

∑
i

2−i sup
g∈D
〈gv(n)

k , ϕi〉2 � 4t2n, n ∈ N.

Let k(n) be such that
∑
i

2−i sup
g∈D
〈gv(n)

k(n), gϕi〉2 � 8t2n, n ∈ N. (2.20)

This implies that
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sup
g∈D
〈gv(n)

k(n), ϕ〉 → 0

for any ϕ that is a linear combination of ϕi, and an elementary density
argument extends this relation to any ϕ ∈ X∗, so that

v
(n)
k(n)

D
⇀0

as n→∞. Instead of k(n) selected for each n from the index set of a renum-
bered subsequence of uk (that was produced by successive extractions), we
now use the correspondent index (preserving the notation k(n)) from the orig-
inal enumeration of uk. (This change of enumeration affects also the terms
g
(j)
k(n), j = 1, . . . , n, in the definition (2.16) of v(n)

k(n).) Then

v
(n)
k(n) = uk(n) −

∑
j�n
g
(j)
k(n)w

(j) D⇀0.

Since the final extraction is a subsequence of the sequence in (2.19), we obtain
(2.3).

Note that k(n) can be chosen in (2.20) arbitrarily large and, in particular,
such that the series

∑
j

g
(j)
k(n)w

(j) is uniformly convergent in the sense of (2.9)

due to (2.7) and (2.3), and therefore (2.8) follows. Indeed, one can always
choose a subsequence of g(m+1)

k such that, by (2.5),
∣∣∣∣∣F
( m+1∑

n=1

g
(n)
k w

(n)
)
− F

( m∑
n=1

g
(n)
k w

(n)
)
− F (w(m+1))

∣∣∣∣∣ � 2−k−m.

Finally, if w(1) = w-limuk �= 0, we could have chosen g(1)k = id at the first
step. If w-limuk = 0, we renumber terms in the expansion by n = 2, 3, . . .
and set g(1)k = id, w(1) = 0. 
�

3 Cocompactness and Minimizers

In this section, we give a functional-analytic formalization of the minimization
reasoning of Lions ([8]) in cocompactly imbedded dislocation spaces.

Definition 3.1. A continuous imbedding of a Banach spaceX into a Banach
space Y is cocompact relatively to a group D of isometric linear operators on
X if every D-weakly convergent sequence uk ∈ X converges in Y .

Note that it does not follow from this definition that the quotient X/D is
compactly imbedded into Y . If D = {id}, the cocompact imbedding becomes
compact.
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Examples of cocompact imbeddings

1. W 1,p(RN ), is cocompactly imbedded into Lq(RN ) relatively to the group
of lattice shifts u �→ u(· + y), y ∈ Z

N , when p < q < Np
N−p for N > p or

q > p for N � p.

2. Let M be a complete N -dimensional Riemannian manifold, cocompact
with respect to a subgroupG of its isometry group Iso (M), i.e., there exists
a compact set V ⊂ M such that

⋃
η∈G
ηV = M . Then W 1,p(M) with the

invariant norm ‖u‖p =
∫

(|du|p + |u|p)dμ is cocompactly imbedded into

Lp(M) for the same values of p as above, relatively to the group {u �→
u ◦ η}η∈G.

3. Let G be a Carnot group of homogeneous dimension Q. Then D1,p(G), p <
Q, is cocompactly imbedded into Lp

∗
(G), where p∗ = pQ

Q−p , relatively to a

product group of left shifts and discrete dilation action u �→ 2
Q−p

p ju ◦ δ2j ,
j ∈ Z. In particular, D1,p(RN ) is cocompactly imbedded into Lp

∗
(RN ) for

p < N .

The Euclidean case of the statements above, with the group of R
N -shifts,

and, in the limit Sobolev case, with the continuous dilation group, is due to
Lieb [7] and Lions ([8, 10]). The proof in the case of a manifold and of discrete
dilations can be found in [15] for p = 2. The general case can be proved in a
similar way.

In what follows, we assume that the following condition holds:

(A) (X,F,D) is a dislocation space, (Y,G) is the same as in Lemma 2.1,
G ∈ C(X), X is continuously imbedded into Y , and D has an extension
into Y such that G ◦ g = G for all g ∈ D. Moreover, G satisfies the
Brezis–Lieb property

G(uk)−G(u)−G(u− uk)→ 0 whenever uk ⇀ u in X. (3.1)

Lemma 3.2. Let (Y,G,D) satisfy assumption (A). Then the function G is
continuous in Y .

Proof. Let uk → u in Y . By Lemma 2.1, G(uk − u)→ 0. By (3.1),

limG(uk)−G(u) = limG(uk − u) = 0.

The lemma is proved. 
�
Let

ct= inf
u∈X:G(u)=t

F (u), t > 0. (3.2)
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Proposition 3.3. Assume that (A) and the following condition hold:

(B) D contains a subsequence gk ⇀ 0.

Then for any τ ∈ [0, t],
ct � cτ + ct−τ . (3.3)

Proof. Fix ε > 0. Let v, w ∈ X satisfy G(v) = τ , F (v) � cτ + ε/2 and
G(w) = t − τ , F (w) � ct−τ + ε/2 respectively. Let gk ⇀ 0, and let uk =
v + gkw. Then G(uk) → G(v) + G(w) = t by (3.1). On the other hand,
F (uk) → F (v) + F (w) � cτ + ct−τ + ε by (2.5). Since ε is arbitrary, this
implies (3.3). 
�

We show the existence of constrained minima under assumptions of the
strict inequality in (3.3) and cocompactness. This is a functional-analytic
formalization of analogous results due to Lions.

Lemma 3.4. Assume that (A) holds. Let the embedding of X into Y be
cocompact. Then for all a, b > 0

inf
G(au)>b

F (u) > 0. (3.4)

Proof. Assume that there is a sequence uk ∈ X such that F (uk)→ 0, while
G(auk) > b. By Lemma 2.5, auk

D
⇀0 and, by the cocompactness of imbedding,

auk → 0 in Y . By Lemma 3.2, G is continuous. Therefore, G(auk)→ 0 and
we arrive at a contradiction. 
�

Theorem 3.5. Assume that (A) and (B) hold. Then for every minimizing
sequence uk for (3.2), t > 0, there exists a sequence gk ∈ D such that gkuk
converges D-weakly to a point of minimum if and only if for every τ ∈ (0, t)

ct < cτ + ct−τ . (3.5)

Proof. Note that ct > 0 by (3.4).

Sufficiency. Assume that (3.5) holds. Let uk ∈ X be a minimizing se-
quence, i.e., F (uk) = ct and G(uk) → t. If uk

D
⇀0, then uk → 0 in Y by

cocompactness and G(uk) → 0 by Lemma 3.2, which contradicts ct > 0.
Consequently, there exists a sequence gk ∈ D such that, on a renamed sub-
sequence, gkuk ⇀ w(1) �= 0 in X . By the invariance of the problem, gkuk is
also a minimizing sequence that we now rename as uk. Let g(n)

k , w(n) be as
provided by Theorem 2.6. By (2.7), we have

∑
n

F (w(n)) � c(t),
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and from the iteration of (3.1) and cocompactness of imbedding it follows
that ∑

n

G(w(n)) = t.

Let G(w(n)) = τn. Then ∑
n

cτn � ct,

which, by (3.5), is false unless all but one of the values τn is zero. Since
τ1 �= 0, we conclude that uk − w(1) D⇀0. By cocompactness, uk → w(1) in Y
and, by the continuity of G, G(w(1)) = t. By the weak lower semicontinuity,
F (u) � ct. Since ct is the infimum over functions with G(u) = t, w(1) is
necessarily a minimizer.

Necessity. Assume that (3.5) does not hold for some 0 < τ < t. By (3.3),
this implies cτ + ct−τ = ct. Let vn, wn ∈ X satisfy respectively G(vn) = τ ,
F (vn) � cτ +1/n and G(wn) = t−τ , F (wn) � ct−τ +1/n, n ∈ N. Let gk ⇀ 0,
and let unk = vn+gkwn. Then for every n there exists kn such that for all k �
kn we have supk�kn

|G(unk)− t| → 0 by (3.1) and supk�kn
|F (unk)− ct| → 0

by (2.5) as n→∞. Without loss of generality, vn ⇀ v �= 0 and wn ⇀ w �= 0
(if one of vn and wn is D-weakly convergent to zero, then τ = 0 or τ = t).
Let ψj , j ∈ N be a basis for X∗. Then

∑
j∈N

|〈ψj , gk′nwn〉|2
2j

→ 0

if k′n � kn are sufficiently large. This implies gk′nwn ⇀ 0. A similar argument
allows us to select a further subsequence such that g−1

k′′n
vn ⇀ 0. Consequently,

w-lim(vn+gk′′nwn) = v �= 0, while w-lim(g−1
k′′n
vn+wn) = w �= 0. Thus, we have

constructed a minimization sequence that is not D-weakly convergent. 
�
Note that the proof of sufficiency does not require assumption (B).

Theorem 3.6. Let (X,F,D) be a dislocation space. Assume that (3.5), (A),
and (B) hold. Let f, g : X → R be nonnegative weakly continuous functions,
at least one of them is positive for u �= 0, and let

c′t= inf
G(u)+g(u)=t

(F (u)− f(u)), t > 0. (3.6)

If for every τ ∈ (0, t)
c′t < c

′
τ + ct−τ , (3.7)

then every minimizing sequence for (3.6) converges D-weakly to a point of
minimum.
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Using an argument repetitive of that in Proposition 3.3, we see that c′t �
c′τ + ct−τ for any τ ∈ (0, t), t > 0, so the role of the condition (3.7) is similar
to that of (3.5).

Proof. The proof is analogous to that of Theorem 3.5 and of the similar
statement in [8]. Let uk ∈ X be a minimizing sequence, i.e., (F − f)(uk) = c′t
and (G + g)(uk)→ t. Let g(n)

k , w(n) be as provided by Theorem 2.6. By the
iteration of (3.1), taking into account cocompactness, we have

g(w(1)) +
∑
n

G(w(n)) = t.

Let G(w(1)) + g(w(1))=τ1, and let G(w(n))=τn, n � 2, so that
∑
τn � t. By

(2.7), we have ∑
n

F (w(n))− f(w(1)) � c′(t),

which implies
c′τ1 +

∑
n�2

cτn � c′t.

This contradicts (3.5) and (3.5) unless all but one of the values τn is zero.
Assume that τm = 1 for some m � 2. Then ct � c′t, which is false (the
opposite strict inequality follows by substituting the minimizer of (3.2) into
(3.6)). Consequently, uk−w(1) D⇀0, (G+g)(w(1)) = t, and (F −f)(w(1)) � c′t,
so w(1) is necessarily a minimizer. 
�

4 Flask Subspaces

Theorem 2.6 can be extended to certain subspaces of a dislocation space
which are not D-invariant.

Definition 4.1. Let (X,F,D) be a dislocation space. A subspace X0 of X
is a flask subspace if gkuk ⇀ u, gk ∈ D, uk ∈ X0, implies that gu ∈ X0 for
some g ∈ D.

Proposition 4.2. Let (X,F,D) be a dislocation space with a flask subspace
X0, and let uk ∈ X0 be a bounded sequence. Then Theorem 2.6 holds with
w(n) ∈ X0.

Proof. Since X0 is a flask subspace, gnw(n) ∈ X0 for some gn ∈ D, n ∈ N.
Set w̃(n)=gnw(n) and g̃(n)

k =g(n)
k g

−1
n , so that (2.8) holds with w̃(n) and g̃(n)

k .
It is easy to see that sequences g̃(n)

k satisfy (2.3). 
�
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Corollary 4.3. Proposition 3.3, Lemma 3.4, and Theorems 3.5 and 3.6 re-
main valid if X in (3.2) and (3.6) is replaced by a flask subspace X0.

Flask subspaces are a functional-analytic generalization of H1
0 (Ω) with a

flask domain Ω ⊂ R
N in the sense of del Pino–Felmer [13].

Proposition 4.4. Let M be a complete Riemannian manifold, cocompact
with respect to a subgroup G of its isometry group Iso (M). Let Ω ⊂ M be
an open set with a piecewise smooth boundary. If for every sequence ηk ∈ G
there exists η ∈ Iso (M) such that

lim inf ηk(Ω) ⊂ η(Ω), (4.1)

then W 1,p
0 (Ω), p > 1, is a flask subspace of W 1,p(M) relatively to the group

{u �→ u ◦ η}η∈G.

Proof. First observe that for arbitrary functions if uk(x)→ u(x) and u(x) �=
0, then necessarily uk(x) �= 0 for all k sufficiently large. In other words,

{u �= 0} ⊂ lim inf{uk �= 0}.

If uk ◦ ηk ⇀ u in W 1,p(M), then uk ◦ ηk converges almost everywhere as
well, and from (4.1) we conclude that for some η ∈ Iso (M), u = 0 a.e. on
M \ η(Ω). In order to apply the Hedberg trace theorem [2] (to regularized
u), it remains to note that u = 0 on M \ (η(Ω) and, since ∂Ω is sufficiently
smooth, u = 0 on η(∂Ω) as well, which yields u ∈ W 1,p

0 (η(Ω)). 
�

5 Compact Imbeddings

This section deals with abstract analogs of sufficient conditions for the com-
pactness of Sobolev imbeddings on unbounded domains (see, for example,
[1, 5]).

Proposition 5.1. Let (X,F,D) be a dislocation space, cocompactly imbedded
into a Banach space Y . Assume that (B) holds. Let X0 be a subspace of X.
If for every sequence uk ∈ X0

{gk} ⊂ D, gk ⇀ 0⇒ gkuk ⇀ 0, (5.1)

then the imbedding of X0 into Y is compact.

Proof. By (B), a sequence gk ⇀ 0 exists. Then, since the sequence gkuk is
bounded and gk are isometries, uk is a bounded sequence. Without loss of
generality, it suffices to assume that uk has the form (2.8). Then (5.1) implies
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uk−w-limuk
D
⇀0. Since the imbedding of X into Y is cocompact, this implies

uk − w-limuk → 0 in Y . 
�

Corollary 5.2. Let M be a sub-Riemannian manifold of homogeneous di-
mension Q cocompact with respect to Iso (M). If Ω ⊂ M is an open set and
for any sequence ηk ∈ Iso (M) such that, for some x0 ∈ M , ηk(x0) has no
convergent subsequence,

lim inf ηk(Ω) has measure zero,

then W 1,p
0 (Ω) is compactly imbedded into Lq(Ω), 1 < p < q < p∗.

Proof. Since the imbedding in question is cocompact, the statement follows
from Proposition 5.1 once we observe that the operator sequence u �→ u ◦ ηk,
with ηk as above, is weakly convergent to zero. Indeed, if it does not, then,
necessarily, there exists a compact set V ⊂ M such that, for a renamed
subsequence,

⋃
k

ηkV is a bounded set. Since ηk are isometries, this yields,

by Arzela–Ascoli theorem, that a subsequence of ηk is convergent uniformly
on compact sets and, in particular, ηk(x0) is convergent, and we arrive at a
contradiction. 
�

The following statement generalizes the well-known compactness for sub-
spaces of radial functions (see, for example, [6]).

Theorem 5.3. Let (X,F,D) be a dislocation space, cocompactly imbedded
into a Banach space Y . Let C be the group of linear automorphisms of X
that preserves F such that for every c ∈ C \ {id} and every sequence gk ∈ D,
gk ⇀ 0, we have

g−1
k cgk ⇀ 0. (5.2)

Let
XC={u ∈ X : cu = u, c ∈ C}.

Then the imbedding of the subspace XC into Y is compact.

Proof. Let uk be a bounded sequence in XC . Consider its expansion (2.8).
Then for any c ∈ C we have c−1uk = uk and, consequently,

uk −
∑
n

cg
(n)
k w

(n) (5.3)

Assume that there is at least one term w(n) �= 0 with n � 2, say, with n = 2.
Then, by (5.2),

g
(2)
k

−1
cg

(2)
k ⇀ 0, c ∈ C \ {id},

for every c, c′ ∈ C, c′ �= c
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(c′g(2)k )−1cg
(2)
k ⇀ 0;

furthermore,
(cg(2)k )−1uk ⇀ w

(2), c ∈ C.
Let M ∈ N, and let CM be any subset of C with M elements. By (2.4),

F (uk) �
∑
c∈CM

F (w(2)) =MF (w(2)).

Since M is arbitrary and the left-hand side is bounded, we arrive at a con-
tradiction. Consequently, uk

D
⇀w(1). Since the imbedding of XC into Y is

cocompact, uk → w(1) in Y . 
�
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