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Main Topics

Sobolev’s discoveries of the 1930’s have a strong influence on de-
velopment of the theory of partial differential equations, analysis,
mathematical physics, differential geometry, and other fields of math-
ematics. The three-volume collection Sobolev Spaces in Mathematics
presents the latest results in the theory of Sobolev spaces and appli-
cations from leading experts in these areas.

I. Sobolev Type Inequalities
In 1938, exactly 70 years ago, the original Sobolev inequality (an embed-
ding theorem) was published in the celebrated paper by S.L. Sobolev “On
a theorem of functional analysis.” By now, the Sobolev inequality and its
numerous versions continue to attract attention of researchers because of
the central role played by such inequalities in the theory of partial differ-
ential equations, mathematical physics, and many various areas of analysis
and differential geometry. The volume presents the recent study of different
Sobolev type inequalities, in particular, inequalities on manifolds, Carnot–
Carathéodory spaces, and metric measure spaces, trace inequalities, inequal-
ities with weights, the sharpness of constants in inequalities, embedding theo-
rems in domains with irregular boundaries, the behavior of maximal functions
in Sobolev spaces, etc. Some unfamiliar settings of Sobolev type inequalities
(for example, on graphs) are also discussed. The volume opens with the survey
article “My Love Affair with the Sobolev Inequality” by David R. Adams.

II. Applications in Analysis and Partial Differential Equations
Sobolev spaces become the established language of the theory of partial dif-
ferential equations and analysis. Among a huge variety of problems where
Sobolev spaces are used, the following important topics are in the focus of this
volume: boundary value problems in domains with singularities, higher order
partial differential equations, nonlinear evolution equations, local polynomial
approximations, regularity for the Poisson equation in cones, harmonic func-
tions, inequalities in Sobolev–Lorentz spaces, properties of function spaces in
cellular domains, the spectrum of a Schrödinger operator with negative po-
tential, the spectrum of boundary value problems in domains with cylindrical
and quasicylindrical outlets to infinity, criteria for the complete integrability
of systems of differential equations with applications to differential geome-
try, some aspects of differential forms on Riemannian manifolds related to the
Sobolev inequality, a Brownian motion on a Cartan–Hadamard manifold, etc.
Two short biographical articles with unique archive photos of S.L. Sobolev
are also included.



viii Main Topics

III. Applications in Mathematical Physics
The mathematical works of S.L. Sobolev were strongly motivated by particu-
lar problems coming from applications. The approach and ideas of his famous
book “Applications of Functional Analysis in Mathematical Physics” of 1950
turned out to be very influential and are widely used in the study of various
problems of mathematical physics. The topics of this volume concern mathe-
matical problems, mainly from control theory and inverse problems, describ-
ing various processes in physics and mechanics, in particular, the stochastic
Ginzburg–Landau model with white noise simulating the phenomenon of su-
perconductivity in materials under low temperatures, spectral asymptotics
for the magnetic Schrödinger operator, the theory of boundary controllabil-
ity for models of Kirchhoff plate and the Euler–Bernoulli plate with various
physically meaningful boundary controls, asymptotics for boundary value
problems in perforated domains and bodies with different type defects, the
Finsler metric in connection with the study of wave propagation, the electric
impedance tomography problem, the dynamical Lamé system with residual
stress, etc.
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Università di Firenze
Piazza Ghiberti 27, 50122 Firenze
ITALY

e-mail: cianchi@unifi.it

Serban Costea
McMaster University
1280 Main Street West
Hamilton, Ontario L8S 4K1
CANADA

e-mail: secostea@math.mcmaster.ca

Stephan Dahlke
Philipps–Universität Marburg
Fachbereich Mathematik und Informatik
Hans Meerwein Str., Lahnberge 35032 Marburg
GERMANY

e-mail: dahlke@mathematik.uni-marburg.de

Donatella Danielli
Purdue University
150 N. University Str.
West Lafayette, IN 47906
USA

e-mail: danielli@math.purdue.edu

David E. Edmunds
School of Mathematics Cardiff University
Senghennydd Road CARDIFF
Wales CF24 4AG
UK

e-mail: davideedmunds@aol.com

W. Desmond Evans
School of Mathematics Cardiff University
Senghennydd Road CARDIFF
Wales CF24 4AG
UK

e-mail: EvansWD@cf.ac.uk



Contributors. Authors xvii

Andrei Fursikov
Moscow State University
Vorob’evy Gory, Moscow 119992
RUSSIA

e-mail: fursikov@mtu-net.ru

Victor Galaktionov
University of Bath
Bath, BA2 7AY
UK

e-mail: vag@maths.bath.ac.uk

Nicola Garofalo
Purdue University
150 N. University Str.
West Lafayette, IN 47906
USA

e-mail: garofalo@math.purdue.edu

Friedrich Götze
Bielefeld University
Bielefeld 33501
GERMANY

e-mail: goetze@math.uni-bielefeld.de

Vladimir Gol’dshtein
Ben Gurion University of the Negev
P.O.B. 653, Beer Sheva 84105
ISRAEL

e-mail: vladimir@bgu.ac.il

Alexander Grigor’yan
Bielefeld University
Bielefeld 33501
GERMANY

e-mail: grigor@math.uni-bielefeld.de

Max Gunzburger
Florida State University
Tallahassee, FL 32306-4120
USA

e-mail: gunzburg@scs.fsu.edu

Piotr Haj�lasz
University of Pittsburgh
301 Thackeray Hall, Pittsburgh, PA 15260
USA

e-mail: hajlasz@pitt.edu



xviii Sobolev Spaces in Mathematics I–III

Elton Hsu
Northwestern University
2033 Sheridan Road, Evanston, IL 60208-2730
USA

e-mail: ehsu@math.northwestern.edu

Victor Isakov
Wichita State University
Wichita, KS 67206
USA

e-mail: victor.isakov@wichita.edu

Victor Ivrii
University of Toronto
40 St.George Str., Toronto, Ontario M5S 2E4
CANADA

e-mail: ivrii@math.toronto.edu

Tünde Jakab
University of Virginia
Charlottesville, VA 22904
USA

e-mail: tj8y@virginia.edu

Nanhee Kim
Wichita State University
Wichita, KS 67206
USA

e-mail: kim@math.wichita.edu

Juha Kinnunen
Institute of Mathematics
Helsinki University of Technology
P.O. Box 1100, FI-02015
FINLAND

e-mail: juha.kinnunen@tkk.fi

Pier Domenico Lamberti
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Preface

Victor Isakov

This volume contains various results on partial differential equations where
Sobolev spaces are used. Their selection is motivated by the research inter-
ests of the editor and the geographical links to the places where S.L. Sobolev
worked and lived: St. Petersburg, Moscow, and Novosibirsk. Most of the
papers are written by leading experts in control theory and inverse prob-
lems. Another reason for the selection is a strong link to applied areas. In
my opinion, control theory and inverse problems are main areas of differen-
tial equations of importance for some branches of contemporary science and
engineering. S.L. Sobolev, as many great mathematicians, was very much
motivated by applications. He did not distinguished between pure and ap-
plied mathematics, but, in his own words, between “good mathematics and
bad mathematics.” While he possessed a brilliant analytical technique, he
most valued innovative ideas, solutions of deep conceptual problems, and not
mathematical decorations, perfecting exposition, and “generalizations.”

S.L. Sobolev himself never published papers on inverse problems or con-
trol theory, but he was very much aware of the state of art and he monitored
research on inverse problems. In particular, in his lecture at a Conference on
Differential Equations in 1954 (found in Sobolev’s archive and made available
to me by Alexander Bukhgeim), he outlined main inverse problems in geo-
physics: the inverse seismic problem, the electromagnetic prospecting, and the
inverse problem of gravimetry. While at that time one of the main achieve-
ments was the solution of the one-dimensional Sturm–Liouville and spectral
problems, he emphasized importance and possibilities of multi-dimensional
inverse problems.

I was a part of Sobolev Seminar at the Institute of Mathematics, Novosi-
birsk, the USSR, from 1971 to 1980, until he left for Moscow. When presenting

Victor Isakov
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2 V. Isakov

new results on inverse problems I was always aware that S.L. Sobolev followed
presentations very closely and liked new ideas and not technicalities.

Now it is hard to imagine papers on the theory of partial differential equa-
tions written without use of Sobolev spaces. The papers in this collection are
not an exception: almost all of them to some extent make use of these spaces.
Their collection shows a variety of situations where Sobolev spaces are used.
One of the main contributions of S.L. Sobolev is the introduction and use of
Sobolev spaces and generalized (weak) solutions to boundary value problems
to establish existence and uniqueness of generalized solutions to some ba-
sic boundary value problems (in particular, for hyperbolic and higher order
elliptic equations) and their relations to classical solutions. Together with
K.O. Friedrichs he can be viewed as a founding father of the contemporary
theory of partial differential equations.

Now we briefly review the contents of the volume.
M. Belishev exposes an approach to the problem of reconstruction of a

Riemannian Ω from the elliptic or hyperbolic Dirichlet-to-Neumann maps
based on representation of algebras of functions. The basic idea is that these
maps uniquely determine certain sufficiently large algebra of functions on
Ω, and hence the spectrum of this algebra which is isometric to Ω. This
approach applies to elliptic operators at least in the two-dimensional case,
where there are strong connections between (generalized) analytic functions
and elliptic partial differential equations. For second order hyperbolic equa-
tions the needed algebra is generated by the family of projection operators.
A projection operator in this case projects onto the L2(Ω)-closure of waves
sent from the boundary of Ω at times from 0 to θ < T . This approach shows
unusual aspects of the powerful and innovative Boundary Control Method
initiated by M. Belishev and has a strong promise for new applications.

The memoir of A. Fursikov, M. Gunzburger, and J Peterson is devoted to
the theory of boundary value problems for the stochastic Ginzburg–Landau
equation. This semilinear equation models the famous phenomenon of su-
perconductivity in materials under low temperatures. The authors introduce
into the Ginzburg–Landau model (complex-valued) white noise. This change
has some regularizing effect. In addition, the system enjoys some interesting
ergodic properties. They demonstrate existence and uniqueness of weak solu-
tions. The exposition contains a convenient definition and useful properties
of the Wiener measures and of the Wiener process, discusses the Ito integral
and the Ito formula. The existence of a weak solution is proved by obtaining a
priori estimates of solutions, including the mean modulus of continuity, some
special compactness theorems, and passing to limits when the size of spatial
grid goes to zero. Finally, the existence of the strong statistical solution is
established.

The paper of V. Isakov and N. Kim contains a first proof of Carleman
type estimate with two large parameters for a general second order partial
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differential operator with real-valued coefficients. Carleman estimates are es-
timates in an L2-space with the exponential weight containing a large pa-
rameter. They are the basic tool in proving uniqueness and stability of the
continuation of solutions to partial differential equations. The continuation
of solutions is of fundamental importance for boundary control theory and
inverse problems. While their theory is well developed for scalar operators,
systems of partial differential equations present currently a formidable chal-
lenge. Some classical isotropic systems can be principally diagonalized and
handled like scalar equations, but more general and important anisotropic in
some cases can be only transformed into principally triangular ones. Then
two large parameters are essential to achieve global results. As an example,
the classical Lamé system with residual stress is handled.

The paper of V. Ivrii, one of the best known students of Sobolev, discloses
more detail about his deep research on spectral asymptotics. He considers the
weighted integral of the spectral kernel of the magnetic Schrödinger operator.
The (singular) weight is the inverse of the distance to the diagonal, so this
integral can be interpreted as the Dirac correction term related to the ground
state energy of atoms or molecules. The goal is to justify the Weyl type
asymptotic behavior of this integral, i.e., to obtain best possible estimate for
the remainder. The basic technique is the microlocal analysis and the leading
idea is to make use of (micro)hyperbolicity. An essential tool of proofs is
splitting integration domains into special zones, somehow in the spirit of the
classical potential theory. Conditions for estimates of remainders include some
assumptions on the distribution of eigenvalues and on microhyperbolicity of
the Schrödinger operator.

In their contribution, I. Lasiecka and R. Triggiani develop a complete the-
ory of boundary controllability for important partial differential equations
modeling the Kirchhoff plate and the Euler–Bernoulli plate with various phys-
ically meaningful (linear and nonlinear) boundary controls. In addition, they
consider the Schrödinger equation with the Dirichlet and Neumann boundary
controls which is of significance for plates and shells equations due to their
factorization into products of Schrödinger operators. One of the main goals
is to achieve exact controllability (i.e., driving the system into zero final state
by boundary control in a finite time) and the feedback stabilization of solu-
tions for large times. The basic tool is the semigroup theory. Very delicate
related questions concern continuity of boundary operators in Sobolev spaces.
Several proofs are given and there are references to an extensive bibliography
on the subject.

V. Maz’ya and A. Movchan obtain and justify asymptotic expansions of
Green’s functions of the transmission and Neumann problems for the Laplace
equation in a domain with several holes. The important feature of their result
is the uniformity of the asymptotic expansions with respect to the arguments
of Green’s functions. The small parameter ε in these expansions is the average
size of the holes. The authors employ the potential theory and the theory of
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Sobolev spaces to obtain uniform bounds of the remainder in the asymptotic
expansion of quadratic order with respect to ε.

M. Taylor is discussing the use of the Finsler metric to study the wave
propagation. The Riemannian metric is a particular case of the Finsler met-
ric and its importance for the theory of elliptic and hyperbolic equations
is widely recognized. The author introduces the Finsler symbol, connects it
to pseudodifferential operators and hyperbolic partial differential equations,
and interprets a construction of the fundamental solution to the hyperbolic
Cauchy problem by using the Finsler symbol. He gives an example of a strictly
hyperbolic equation of the fourth order that gives rise to a non-Riemannian
Finsler metric. Finally, he describes some applications to the ergodic theory
and harmonic analysis. The main technique of this paper is the theory of
pseudodifferential operators.



Geometrization of Rings as a Method
for Solving Inverse Problems

Mikhail Belishev

To the memory of S.L. Sobolev

Abstract In the boundary value inverse problems on manifolds, it is required
to recover a Riemannian manifold Ω from its boundary inverse data (the
elliptic or hyperbolic Dirichlet-to-Neumann map, spectral data, etc). We show
that for a class of elliptic and hyperbolic problems the required manifold is
identical with the spectrum of a certain algebra determined by the inverse
data and, consequently, to recover the manifold it suffices to represent the
corresponding algebra in the relevant canonical form.

1 Introduction

1.1. About the paper. “Rings” is the original name of what is now called
“algebras” [10, 12], and “geometrization” is a representation of a commuta-
tive algebra in the form of a function algebra 1. By the Gelfand theorem, any
commutative Banach algebra (CBA) is canonically isomorphic to a subalge-
bra of the algebra C(Ω) of continuous functions on a compact Hausdorff space
Ω. The role of Ω is played by the algebra spectrum (a properly topologized
set of multiplicative functionals), whereas the canonical representation is re-
alized by the Gelfand transform which maps elements of algebra to functions
on Ω. Thus, being an abstract notion defined by axioms, a CBA contains
an intrinsic “geometric” object Ω. The appearance of such an object from
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axioms looks like a miracle and, perhaps, is one of most beautiful phenomena
in functional analysis.

A remarkable fact is that this phenomenon enables us to solve inverse
problems. Namely, the problem of determination of a Riemannian manifold
from its boundary data can be solved by the scheme

“inverse data” ⇒ proper CBA ⇒ CBA’s spectrum ≡ manifold

The last implication is realized by the Gelfand transform. In [4], this scheme
was applied for the first time to the 2D Calderon problem consisting in the
determination of a Riemann surface from its elliptic Dirichlet-to-Neumann
map. In [4], we also conjectured that the procedure recovering a manifold from
its hyperbolic Dirichlet-to-Neumann map (the boundary control method: see
[1, 3]) can be also interpreted as a version of the Gelfand transform. In this
paper, we justify this conjecture and provide such an interpretation.

What we propose is not an universal method for solving inverse problems
(such a method does not exist!), but a unified “view from a height” at a class
of very different problems. Our considerations are essentially based on facts
and ideas of functional analysis. Fruitful applications of functional analysis in
mathematical physics were perfectly demonstrated by the outstanding math-
ematician S.L. Sobolev in his celebrated book [13]. We dedicate this paper to
his memory.

1.2. Content. In Sect. 1, we shortly recall some basic facts about CBAs
and C∗-algebras and then specify this information for elliptic and hyperbolic
problems in Subsects. 2.1 and 3.1 respectively. In Sect. 2, we describe a re-
newed version of the approach [4] to the 2D elliptic (Calderon) problem. As
is shown, to recover a Riemann surface from its Dirichlet-to-Neumann (DN)
map is to determine the crown of a certain function algebra, determined by
the DN map, on the boundary. In Sect. 3, a hyperbolic dynamical system
with boundary control is introduced. Such a system can be realized in the
canonical form so that the realization possesses the features of “intuitive hy-
perbolicity:” its states propagate into a compact set with finite speed. To
construct the realization is to diagonalize a certain operator algebra deter-
mined by relevant “boundary inverse data.” The problem of determination of
a Riemannian manifold from its response operator or spectral data fits this
scheme and is considered as an example.

We use the following abbreviations:
CBA — commutative Banach algebra
cHs — compact Hausdorff space
DSBC — dynamical system with boundary control
G-transform — Gelfand transform
IP — inverse problem
DN — Dirichlet-to-Neumann
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Throughout the paper, “smooth” means “C∞-smooth.” All Hilbert spaces
are separable. The identity operator is denoted by I.

2 Algebra Handbook

2.1. CBAs, G-transform. We recall some facts about commutative Banach
algebras (see, for example, [9, 10] for details) and introduce the Gelfand
transform which is the main device for solving IPs.

(1) A CBA is a (complex or real) Banach space A equipped with the
multiplication operation ab satisfying ab = ba, ‖ab‖ � ‖a‖ ‖b‖, a, b ∈ A.
Until the otherwise is not specified, we consider algebras with the unit e ∈ A,
ea = ae = a. Example: The algebra C(X) of continuous functions on a cHs
X with the norm ‖a‖ = maxX |a(·)|. Subalgebras of C(X) are called function
algebras. A CBA is said to be uniform if ‖a2‖ = ‖a‖2. All function algebras
are uniform.

(2) Let A′ be the space of linear continuous functionals on A. A functional
δ ∈ A′ is called multiplicative if δ(ab) = δ(a)δ(b). Example: A Dirac measure
δx0 ∈ C′(X): δx0(a) = a(x0). Each multiplicative functional is of the norm 1.
The set of multiplicative functionals endowed with the ∗-week topology (in
A′) is called the spectrum of A and is denoted by ΩA. The spectrum is a cHs.

(3) The G–transform acts from a CBA A into C(ΩA) by the rule G : a �→
a(·), a(δ) := δ(a), δ ∈ ΩA and, consequently, maps A to a function algebra.
The passage from A to GA ⊂ C(ΩA) is referred to as geometrization.

Theorem 2.1 (Gelfand). If A is a uniform CBA, then G is an isometric
isomorphism from A onto GA, i.e., G(αa + βb + cd) = αGa + βGb + GcGd
and ‖Ga‖ = ‖a‖ for all a, b, c, d ∈ A and numbers α, β.

In what follows, we deal only with uniform CBAs.

(4) If two CBAs A and B are isometrically isomorphic (we write A ≡ B)
through an isometry j, then GA ≡ GB, whereas the conjugate isometry
j∗ : B′ → A′ is a homeomorphism between their spectra: j∗ΩB = ΩA (so,
denoting a homeomorphism by  , we have ΩA  ΩB).

(5) Let A(X) ⊂ C(X) be a closed function algebra. For each x0 ∈ X the
Dirac measure δx0 belongs to ΩA(X). Therefore, identifying x0 ≡ δx0 , we get
the canonical embedding X ⊂ ΩA(X).
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(6) In general, the passage from X to ΩA(X) can preserve or extend X .2

In the last case, the set ΩA(X) \X �= ∅ is called a crown of A(X), whereas
the G-transform extends functions of A(X) from X to the crown.

(7) An algebra A(X) is said to be generic if the Dirac measures exhaust
its spectrum: ΩA(X) = X . In other words, it is an algebra without crown.
A generic algebra is identical to its G-transform: GA(X) ≡ A(X). On the
other hand, any GA (as a subalgebra of C(ΩA)) is automatically generic, i.e.,
GG = G holds and implies ΩGA = ΩA.

2.2. C∗-algebras. For a subset S of an algebra we denote by
∨

S the (mini-
mal) subalgebra generated by S. In the case of an operator algebra, u-clos

∨

S,
s-clos

∨

S, and w-clos
∨

S denote the closures of this subalgebra in the uniform
(norm), strong, and week operator topologies respectively.

(8) A C∗-algebra is a Banach algebra endowed with an involution (∗)
satisfying (αa + βb + cd)∗ = αa∗ + βb∗ + d∗c∗ and ‖a∗a‖ = ‖a‖2. We assume
that a C∗-algebra contains the unit. Example: The algebra B(H) of bounded
operators in a Hilbert space H with the operator norm and conjugation.

Theorem 2.2 (Gelfand–Naimark). Any commutative C∗-algebra A is iso-
metrically isomorphic (through the G-transform) to C(ΩA), and G(a∗) = Ga.

(9) An operator algebra A ⊂ B(H) is said to be cyclic if there is a (cyclic)
element h ∈ H such that the set {Ah| A ∈ A} is dense in H.

2.3. Neumann algebras.

(10) A w-closed C∗-algebra N ⊂ B(H) is called a Neumann algebra. Ex-
ample: Let X be a cHs endowed with a finite Borel measure μ, H = L2, μ(X).
For m ∈ L∞, μ(X) we denote by ad m the operator multiplying functions by
m. The algebra of bounded multiplicators N = ad L∞, μ(X) is a commu-
tative cyclic Neumann algebra in H3. The following result shows that this
example is of universal character.

Theorem 2.3 (Gelfand–Naimark–Segal). 1. Any C∗-algebra is isometrically
isomorphic to a subalgebra of B(H).

2. Let N be a commutative cyclic Neumann algebra in H, I ∈ N . There
exists a cHs X, a measure μ on X, and a unitary operator U : H → L2, μ(X)
such that UNU∗ = ad L∞, μ(X).

Such a canonical representation of N is referred to as a diagonalization,
which is a synonym of “geometrization” for operator algebras.

2 See examples in [10, Chapt. III, Part 11, no 3].
3 Any h ∈ L2, μ(X) satisfying h(·) �= 0 a.e. can serve as a cyclic element.
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If H is a real Hilbert space and N is commutative, cyclic, and consisting of
the self-adjoint operators, then N is isometrically isomorphic to the algebra
of the bounded multiplicators in a real L2, μ(X).

(11) A Neumann algebra is determined by its projections: N = s-clos
∨

P ,
where P := {P ∈ N | P ∗ = P, P 2 = P}.

3 Elliptic Inverse Problem

3.1. Shilov’s boundary. We provide some additional facts about CBAs
which will be used in the treatment of elliptic IP.

(12) Let A be a CBA. A set B ⊂ ΩA is called a boundary if for every
a(·) ∈ GA the modulo |a(·)| attains the maximum on B. Let β[A] be the
set of boundaries, The minimal boundary ∂A :=

⋂

B∈β[A]

B does exist and is

called Shilov’s boundary of A. Shilov’s boundary is a compact subset in ΩA.
For generic A(X) we consider ∂A(X) as a subset of X .

(13) Introduce a trace map tr : a(·) �→ a(·)|∂A. By definitions, tr preserves
the algebraic operations and sup-norm. In other words, tr is an isometric
isomorphism from GA onto its image trGA which is a closed subalgebra of
C(∂A). Hence trGA ≡ GA, which yields ΩtrGA  ΩGA  ΩA (see (7)).
Moreover, if A(X) is generic (i.e., ΩA(X)  X), then

ΩtrGA(X)  X . (3.1)

(14) Let L be a linear space, and let r be a subspace of L×L. For a, b ∈ L
we write a r b if {a, b} ∈ r and call r a linear relation.

Any complex CBA A determines the relation

� := {{�a(·),�a(·)}| a(·) ∈ GA} ⊂ Creal(ΩA)× Creal(ΩA).

Therefore, the relation

h := {{�y,�y}| y ∈ trGA} = {{� tr a(·),� tr a(·)}| a(·) ∈ GA}
⊂ Creal(∂A)× Creal(∂A)

is well defined and determines the boundary algebra trGA as follows: y =
f + f∗i ∈ trGA if fhf∗. With a slight abuse of notation, we can write

h = tr � . (3.2)
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(15) Suppose that Ω is a cHs, A(Ω) is a generic algebra, Γ := ∂A(Ω) ⊂ Ω
is its Shilov’s boundary, A(Γ ) := trGA(Ω), and h ∈ Creal(Γ ) × Creal(Γ ).
Assume that Γ and h are given. Then we can recoverA(Ω) (up to an isometric
isomorphism) by the following scheme (see also Fig. 1):

Step 1. Determine A(Γ ) = {y ∈ C(Γ )| �y h�y}.
Step 2. Find ΩA(Γ )  〈see (3.1)〉  Ω. Identifying Γ � γ ≡ δγ ∈ ΩA(Γ ),

attach Ω to Γ .

Step 3. Determine GA(Γ ) ≡ A(Ω)4.
The bonus for so long and abstract introduction is that now we can solve

the 2D Calderon problem just by applying this scheme.

Fig. 1 Recovering A(Ω).

3.2. 2D Calderon problem. Suppose that Ω is a 2-dimensional smooth
compact orientable Riemannian manifold (surface) with boundary Γ := ∂Ω,
g is a metric tensor on Ω, Δ is the Beltrami–Laplace operator, ν = ν(γ),
γ ∈ Γ , is the outward normal. We assume that Ω is oriented and denote
by μ the volume form; μΓ := μ(ν, ·) is the induced form at the boundary.
Let d be the exterior derivative on forms, � the Hodge operator, and δ the
codifferential.

We consider the elliptic boundary value problem

Δu = 0 in Ω \ Γ, (3.3)
u = f on Γ, (3.4)

with a real-valued function f ∈ L2(Γ ). Let u = uf (x) be a solution. With
this problem it is possible to associate the DN map Λ : L2(Γ ) → L2(Γ ),
DomΛ = C∞(Γ ), Λf := ν · ∇uf = ∂uf

∂ν .

4 In fact, realizing this G-transform, we continue the functions y ∈ A(Γ ) from Γ onto the
crown Ω \ Γ of the algebra A(Γ ).
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The Calderon problem is to determine (Ω, g) from a given Λ. In applica-
tions, it is also known as the electric impedance tomography problem: deter-
mine the shape of a conducting shell from the measurements at its border,
uf being interpreted as an electric potential (voltage). The problem is solved
(see [8, 4]). Here, we describe a renewed version of the geometrization ap-
proach [4].

3.3. Algebras A(Ω) and A(Γ ). One of the basic objects of Riemann surface
theory is the algebra of analytic functions A(Ω) := {w = u + u∗i| u, u∗ ∈
Creal(Ω); du∗ = � du in Ω \ Γ} ([6]; see also [4]). It has the following proper-
ties.

• A linear relation u�u∗ determiningA(Ω) is the Cauchy–Riemann condition
du∗ = � du.

• A(Ω) is a generic algebra: ΩA(Ω) = Ω, GA(Ω) ≡ A(Ω) .

• By the maximum principle for analytic functions, Shilov’s boundary coin-
cides with the topological boundary: ∂A(Ω) = ∂Ω = Γ . Hence the algebra
A(Γ ) := trA(Ω) = {w|Γ | w ∈ A(Ω)} is isometrically isomorphic to A(Ω).

As a result, if Γ and the relation h determining A(Γ ) are given, then one can
recover Ω (up to a homeomorphism) and A(Ω) (up to an isometric isomor-
phism) by the scheme (15) in Subsect. 3.1.

3.4. Hilbert transform. We introduce an intrinsic operator associated with
the Calderon problem.

Let θ be a tangent vector field on Γ, |θ| = 1, μ(θ,−ν) = 1. Understanding
θ as a differentiation, for a smooth function f = f(γ) on Γ we denote by
df := θf the corresponding derivative.

Let L̇2(Γ ) := L2(Γ ) � {constants} be the subspace of zero mean value
functions. Denote by J : L̇2(Γ ) → L̇2(Γ ) the integration

d Jf = f ,

∫

Γ

Jf μΓ = 0 , J∗ = −J .

An operator H : L̇2(Γ ) → L̇2(Γ ), H := ΛJ , is called the Hilbert transform.
By elliptic theory, H is a well defined continuous operator.

A key point is that the Hilbert transform determines the trace algebra.
Namely, as is shown in [4], the following assertion holds.

Lemma 3.1. A smooth complex function y = f + f∗i belongs to A(Γ ) (i.e.,
y = w|

Γ
for a w ∈ A(Ω)) if and only if df, df∗ ∈ Ker(I+H2) and df∗ = Hdf .

In other words, H determines h which, in turn, does determine A(Γ ).

3.5. Solving the problem. If Λ is given, one can recover Ω by repeating
the procedure (15) in Subsect. 3.1. Namely:
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Step 1. Find H = ΛJ , determine the relation h, and recover the trace
algebra A(Γ ).

Step 2. Find ΩA(Γ )  〈 see (4.1) 〉  Ω5. Identifying Γ � γ ≡ δγ ∈ ΩA(Γ ),
attach Ω to Γ . Thus, the shell is determined up to a homeomorphism.

Step 3. Applying the G-transform, get GA(Γ ) ≡ A(Ω). Thus, analytic
functions on the shell are also recovered.

So, the shell is determined as the crown of the trace algebra. Extra efforts
are required to endow it with 2D-differentiable structure and Riemannian
metric¿ For this purpose, one can use {�w,�w}, w ∈ A(Ω) as local coordi-
nates on Ω (see [4] for details). Note that the metric can be determined not
uniquely, but up to a conformal deformation.

Another problem is to characterize the inverse data, i.e., to find necessary
and sufficient conditions for Λ to be a DN-map of a shell. An efficient analytic
characterization is proposed in [7]. Note that the description of h in terms
of operator H , which is given by Lemma 3.1, provides the sharp necessary
conditions of the algebraic nature on the Hilbert transform: the set {f +
f∗i| f∗hf} must be a proper subalgebra in C(Γ ).

3.6. System α. Diagonalization. Here, we present one more possible look
at the determination Λ⇒ Ω. We consider the problem (3.3), (3.4) as a system
α and equip it with the standard system theory attributes.

With a solution uf we associate a 1-form (state or electric field) ef :=
duf ∈ H, where H := {e = dψ| ψ ∈ H1(Ω), δe = 0} is the space of exact
harmonic fields (see, for example, [11]) regarded as a subspace of

⊕
∫

Ω

T ∗
x (Ω) μx

and endowed with the corresponding L2-metric

(e′, e′′)H :=
∫

Ω

e′ · e′′ μ .

The space H plays a role of an inner space of the system α. Note that the
Hodge star � is a unitary operator in H acting pointwise: (� e)(x) = �x e(x)
in T ∗

x (Ω), x ∈ Ω.
An outer space is F := Ker (I + H2) ⊂ L̇2(Γ ). An operator W : df �→ ef

realizes the “input → state” correspondence; it is a continuous map from F
to H. It is easy to see that the operator equality

�W = WH (3.5)

is just a relevant version of (3.2).

5 This is a key point: a cHs Ω appears as a result of the geometrization!
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Integrating by parts, we find

(ef , eg)H = (Wf,Wg)H =
∫

Ω

duf · dug μ

=
∫

Γ

(Λf) g μΓ =
∫

Γ

(Cdf) dg μΓ = (Cdf, dg)F , (3.6)

where C := W ∗W = J∗ΛJ = −JH is the so-called connecting operator of
the system α acting in its outer space.

The analytic function algebra A(Ω) determines an operator algebra in the
inner space H as follows. In T ∗

x (Ω), choose an orthonormal basis e1(x), e2(x) :
μ (e1(x), e2(x)) = 1 and represent e ∈ H as e(x) = c1(x)e1(x) + c2(x)e2(x),
x ∈ Ω. For w = a + a∗i ∈ A(Ω) we define6 ad w : H → H, (ad w)e :=
(ac1 − a∗c2)e1 + (a∗c1 + ac2)e2. Let ad A(Ω) ⊂ B(H) be the subalgebra
of such operators. It is easy to check that ad A(Ω) is a well-defined object,
and the correspondence w �→ ad w is an isometric isomorphism between the
CBAs A(Ω) and ad A(Ω).

In the outer space F , every trw = a|
Γ

+ a∗|Γ i determines an operator
ad

Γ
w : df �→ (a|

Γ
I + a∗|Γ H)df . It is easy to check that this operator is well

defined. Let adΓA(Ω) ⊂ B(F) be the subalgebra of such operators. The
relation

(ad w)W = W adΓ w, w ∈ A(Ω) (3.7)

follows from definitions, and (3.5) is its particular case for a = 0, a∗ = 1.
Assume that F is endowed with a new Hilbert metric (df, dg)

˜F :=
(Cdf, dg)F determined by the connecting operator. Then, by (3.6), W : ˜F →
H is an isometry. Taking into account (I + H2)df = 0, we have

(Hdf,Hdg)
˜F = (−JH Hdf,Hdg)F = (df,−JHdg)F

= (−JHdf, dg)F = (df, dg)
˜F .

Hence H is a unitary operator in ˜F (as � is in H), whereas (3.5) shows that
the operator W can be regarded as a transform that diagonalizes the Hilbert
transform H . In the mean time, W is, in fact, identical to the G-transform
of the algebra adΓA(Ω) � H determined by the inverse data.

3.7. Comments. So, to solve the Calderon problem, we construct a trans-
form W which diagonalizes the Hilbert transform and transfers it to the
Hodge operator. We stress this fact because all these objects do have the
natural multidimensional analogues (see [5]) and the relevant W makes the
same: it transfers H to �. However, the Calderon problem in dimension n � 3

6 With a slight abuse of the notation: ad w multiplies by not a function, but a matrix
(

a −a∗
a∗ a

)

.
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is so far open: roughly speaking, it is not clear, where Ω can be taken from.
The point is that, in the 2D case, Ω appears as the spectrum of a CBA,
i.e., as a result of diagonalizing not a single operator H , but an algebra
adΓA(Ω) � H (see (3.7)). Unfortunately, in the case of higher dimensions,
such a “surrounding algebra” is not found yet (if it exists).

4 Hyperbolic Inverse Problem

4.1. More about Theorem 2.3. It is important to note that the cHs
X in the representation N ≡ L∞, μ(X) is not determined by N up to a
homeomorphism. Analyzing the proof (see, for example, [10, Theorem 4.4.3]),
we see that X appears as the spectrum of an u-closed subalgebra A ⊂ N ,
A∗ = A provided that s-closA = N . Any A possessing these properties is
available, and it can be chosen in an arbitrary way. Once a choice has been
made, we apply the G-transform to A (in particular, find ΩA =: X), get
GA = C(X) (see Theorem 2.2), and only then realize N as ad L∞, μ(X) in
L2, μ(X), whereas A is transferred onto ad C(X) ⊂ ad L∞, μ(X). In other
words, one diagonalizes not N , but a pair {N ,A} by choosing A, which will
play the role of continuous functions. We say that A is a supporting algebra
for N . In the problem under consideration, the choice of A is well motivated.

A measure μ appears in the diagonalization process as follows. Assume that
a supporting algebra A ⊂ N is chosen. Let G : A → C(X) be its G-transform.
Choose a cyclic element h ∈ H7. For ϕ ∈ C(X) we define the integral (i.e., I ∈
C′(X) and ϕ � 0 implies I(ϕ) � 0) by the formula I(ϕ) :=

(

[G−1ϕ]h, h
)

[H]
.

By the Riesz–Kakutani theorem, there exists a unique measure μ on X such
that

I(ϕ) =
∫

X

ϕdμ.

Then

‖ϕ‖2L2, μ(X) =
∫

X

|ϕ|2dμ =
([

G−1(ϕϕ)
]

h, h
)

H

=
(

[G−1ϕ]∗[G−1ϕ]h, h
)

H = ‖[G−1ϕ]h‖2H .

Hence the map U : H → L2, μ(X), Dom U = {ah| a ∈ A}, U : ah �→ Ga is
a densely defined isometry and can be extended to a unitary operator from
H onto L2, μ(X), whereas UAU∗ = ad C(X) ⊂ ad L∞, μ(X) and UNU∗ =
ad L∞, μ(X). It is the transform U which diagonalizes N .

7 Since A is s-dense in N , h is also a cyclic element of A.
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4.2. System αT . All Hilbert spaces and algebras used in the rest of the
paper are assumed to be real. The object introduced below can be specified
as a version of an abstract dynamic system with boundary control (DSBC)
introduced in [2].

Let Γ be a set with measure λ. Denote G := L2, λ(Γ ) and FT :=
L2 ([0, T ];G). We say that Γ is a controlling set, t ∈ [0, T ] is a time (T > 0 is
a final moment), FT is an outer space, its elements are called controls.

Let H be a Hilbert space called an inner space, W : FT → C ([0, T ];H)
a linear continuous map; the images uf := Wf are called trajectories. A
“control→state” map (control operator) WT : FT → H, WT f := uf(T ) is
also well defined. The operator CT := (WT )∗WT acting in the outer space
FT , is called a connecting operator.

In addition, we assume that W is causal and possesses the steady state
property which means the following. Let DT, ξ be a delay operator acting on
functions of time y = y(t) by the rule

(DT, ξy)(t) :=

{

0, t ∈ [0, T − ξ),
y (t− (T − ξ)) , t ∈ [T − ξ, T ]

(ξ is a parameter, 0 � ξ � T ). The above-mentioned property means the
relation WDT, ξ = DT, ξW . It implies uf(ξ) = WTDT, ξf and hence, to know
WT is to know W .

All the above-introduced objects are determined by the set {Γ, λ;H;WT }
which will be referred to as the DSBC αT .

The example, which inspires these abstract definitions, is the following.
Let Ω be an n-dimensional smooth compact Riemannian manifold8, Γ := ∂Ω
the boundary, Δ the Beltrami–Laplace operator in Ω. The system αTRiem is
associated with the boundary value initial problem

utt −Δu = 0 in (Ω \ Γ )× (0, T ), (4.1)
u|t=0 = ut|t=0 = 0 in Ω, (4.2)
ν · ∇u = f on Γ × [0, T ] , (4.3)

where ν is the outward normal, u = uf (x, t) is the solution. Here, the inner
space is H = L2(Ω) (with measure vol), uf (·, t) ∈ H is a time dependent state
(wave), uf ∈ C ([0, T ];H) is a trajectory initiated by a Neumann boundary
control f ∈ FT = L2 ([0, T ];L2(Γ )), and WT f := uf (·, T ). The system
αTRiem is determined by the collection {Γ, volΓ ;L2(Ω);WT }. Regarding the
final moment, we assume that T > diam Ω.

4.3. Algebras N and T . We return to a general DSBC αT and recall that
a control f ∈ FT is a G-valued function of time: for each t, f(t) is an element
of L2, λ(Γ ).

8 The orientability of Ω is not necessary
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Denote Σ+
Γ := {σ ⊂ Γ | λ(σ) > 0}. With each σ ∈ Σ+

Γ we associate the
family of subspaces

FT, ξσ :=
{

f ∈ FT
∣

∣ f |[0,T−ξ] = 0, supp f(t) ⊂ σ
}

parametrized with ξ ∈ [0, T ] and formed by the delayed controls9 supported
in σ. The set of the corresponding states

Uξσ := WTFT, ξσ =
{

uf (ξ)
∣

∣ f ∈ FT , supp f(t) ⊂ σ
}

⊂ H

is said to be reachable (from σ, at the moment t = ξ). We denote by P ξ
σ the

(orthogonal) projection in H onto closUξσ. By definition, σ′ ⊆ σ′′, ξ′ � ξ′′

implies P ξ′
σ′ � P ξ′′

σ′′ .
The family of projections

P :=
{

P ξ
σ

∣

∣ σ ∈ Σ+
Γ , ξ ∈ [0, T ]

}

plays a central role in the further considerations. It determines a (real) Neu-
mann algebra

N := s-clos
∨

P ⊂ B(H)

consisting of self-adjoint operators.

An operator in H of the form τ̂σ :=
T
∫

0

ξ dP ξ
σ is called an eikonal.10 The

eikonals determine the subalgebra

T :=
[

u-clos
∨
{

τ̂σ
∣

∣ σ ∈ Σ+
Γ , ξ ∈ [0, T ]

}

]

∪ I ⊂ B(H)

which is also determined by the family P . By the well-known properties of the

operator integral

T
∫

0

g(ξ) dP ξ
σ , the algebra T is s-dense in N , which enables

one to use it as a supporting algebra of N .
Along with the family P , the pair {N , T } is a well-defined intrinsic object

of any DSBC αT belonging to the above-introduced class. It can be trivial: for
instance, in the analogue of system αTRiem governed by the heat conductivity
equation, owing to the infiniteness of the domain of dependence, one has
P ξ
σ = I for any ξ > 0 (G. Lebeau, L. Robbiano; 1994). Then, in this case,
N = T = {c I | c ∈ R}. However, the pair {N , T } does always exist.

4.4. Hyperbolicity. We will deal with the following class of systems.
A system αT is said to be hyperbolic (write αT ∈ Hyp) if

9 T − ξ is the value of delay, ξ is an action time.
10 This term will be motivated later.
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1. Continuity. Every P ξ
σ ∈ P is continuous with respect to ξ: lim

ξ→ξ′
P ξ
σ = P ξ′

σ

(in the sense of s-convergence).

2. Commutativity. P ξ′
σ′P

ξ′′
σ′′ = P ξ′′

σ′′P
ξ′
σ′ for all projections in P .

3. Cyclicity. P possesses a cyclic element in H.
4. Exhausting property. PT

σ = I for all σ.

Property 1 is principal: the continuously extending reachable sets corre-
spond to the intuitive image of the waves propagating with finite speed. By
properties 2 and 3, the algebra N is a commutative cyclic Neumann algebra,
which Theorem 2.3 can be applied to. Property 4 is rather technical and is
accepted just for the sake of simplicity: it describes the case where the waves
propagate into a bounded domain and exhaust the inner space for sufficiently
large times.

In addition, we note that, by continuity, each eikonal

τ̂σ =

T
∫

0

ξ dP ξ
σ

has a purely continuous spectrum filling the segment [ 0, ‖τ̂σ‖ ] ⊆ [0, T ].

4.5. Geometrization. The reason to single out the class Hyp is that any
hyperbolic system can be represented (realized) in a canonical form possessing
all features of “intuitive hyperbolicity.”

Let αT be a hyperbolic system, and let N and T be the operator algebras
of αT defined in Subsect. 4.3.

Step 1. Find the spectrum ΩT =: Ω11 and apply the G-transform to T .
The transform maps T onto C(Ω). The eikonals τ̂σ ∈ T are transferred to
the functions τσ(·) := Gτ̂σ , called eikonals.

By the definition of a supporting algebra, {τ̂σ}∪ I generates T . Hence the
set of eikonals {τσ(·)} supplemented with the unit function 1 = GI generates
C(Ω).

Each eikonal τσ is a continuous function on Ω. By the well-known prop-
erty of G-transform (see, for example, [9]), the values of τσ cover the seg-
ment spec τ̂σ = [ 0, ‖τ̂σ‖ ] ⊆ [0, T ]. Eikonals determine the subdomains
Ωξ
σ := {x ∈ Ω | τσ(x) � ξ} , ξ � 0.
Denote σ̃ := Ω0

σ = {x ∈ Ω| τσ(x) = 0} and ˜Γ := Ω0
Γ . These definitions

determine a map Γ ⊇ σ �→ σ̃ ⊆ ˜Γ from Σ+
Γ into a family of the closed subsets

on ˜Γ .12

11 This is a key point: the future “wave-guide set” Ω is appearing!
12 Under some additional assumptions in the definition of Hyp, one could make this map
to be a bijection between Γ and ˜Γ .
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Step 2. Choose a cyclic element h ∈ H and construct a unitary transform
U that diagonalizes the algebra N (see Subsect. 4.1) and represents the inner
space H in the form L2, μ(Ω) = ˜H := UH.

Thus, along with the original system αT , we get its isometric copy (realiza-
tion) α̃T determined by {Γ, λ; ˜H;˜WT } and governed by the control operator
˜WT : FT → ˜H, ˜WT := UWT (see the right upper corner of the diagram in
Fig. 2).

Fig. 2 Geometrization of αT .

By isometry, the copy is a hyperbolic system. The following properties of α̃T

motivate our notion of “hyperbolicity.”
By the definition of U (see Subsect. 3.1),

U

⎡

⎣

T
∫

0

ξ dP ξ
σ

⎤

⎦U∗ = Uτ̂σU
∗ = ad τσ =

T
∫

0

ξ d[ad χξσ] ,
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where χξσ is the indicator (characteristic function) of Ωξ
σ and the last equality

is the well-known representation of a continuous multiplicator in the form of
an operator integral. By standard functional calculus rules, for a function
g = g(s), s ∈ R, we have

U

⎡

⎣

T
∫

0

g(ξ) dP ξ
σ

⎤

⎦U∗ = ad [g ◦ τσ] =

T
∫

0

g(ξ) d[ad χξσ] .

In particular, taking g equal to the indicator of [ξ, T ], we arrive at ˜P ξ
σ :=

UP ξ
σU

∗ = ad χξσ. Thus, the projection ˜P ξ
σ cuts off functions on the subdomain

Ωξ
σ.
Correspondingly, for the reachable sets ˜Uξσ := ˜WTFT, ξσ = UUξσ of the

system α̃T we have

clos ˜Uξσ = UclosUξσ = UP ξ
σH = ˜P ξ

σ UH = [ad χξσ]L2, μ(Ω) .

Hence ˜Uξσ is supported in Ωξ
σ and is dense in L2, μ(Ωξ

σ).

Let us summarize the aforesaid. Take a control f ∈ FT such that
supp f(t) ⊂ σ. Let ũf(·, t) := U [uf(t)], t ∈ [0, T ], be the corresponding tra-
jectory of α̃T . For fixed t = ξ we have ũf (·, ξ) ∈ ˜Uξσ. As was shown, this leads
to supp ũf(·, ξ) ⊂ Ωξ

σ. Thus, in the process of evolution, a “wave” ũf(·, t) ap-
pears at the set σ̃ = Ω0

σ and, as t grows, fills the increasing subdomains Ωt
σ,

i.e., propagates from σ̃ into Ω with finite speed. Loosely speaking, the passage
from the original system to its U -image visualizes the evolution. Therefore,
α̃T is referred to as a geometrization of αT .

4.6. More about the example. We return to the system αTRiem on a man-
ifold. For σ ⊂ Γ := ∂Ω we define a metric eikonal13 (distant function)
dσ := dist( · , σ) ∈ C(Ω) and the family of the closed metric neighborhoods

Ωξ
σ :=

{

x ∈ Ω
∣

∣ dσ(x) � ξ
}

, ξ � 0 .

Let χξσ(·) be the indicator of Ωξ
σ. Note that these neighborhoods exhaust the

manifold: ΩT
σ = Ω since T > diam Ω.

Below we use the representation

dσ =

T
∫

0

ξ d[ad χξσ]1

which follows from definitions, and its operator version

13 This term is taken from applications (mechanics, geometrical optics, etc).
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ad dσ =

T
∫

0

ξ d[ad χξσ]

for the operator multiplying functions by dσ.
By the hyperbolicity of the wave equation (4.1), the inclusion f ∈ FT, ξσ

leads to suppuf(·, T ) ⊆ Ωξ
σ and hence to Uξσ ⊂ L2(Ωξ

σ). It is important
that the last embedding is dense: by the fundamental Holmgren–John–Tataru
uniqueness theorem, the equality closUξσ = L2(Ωξ

σ) holds14 (see [1]). This
equality leads to the coincidence of projections:

P ξ
σ = ad χξσ , (4.4)

whereas ΩT
σ = Ω implies PT

σ = I. It is evident that the family P = {P ξ
σ}

possesses properties 1–4 (see Subsect. 4.4) and we see that αTRiem ∈ Hyp.
The operator eikonals of the system αTRiem are of the form

τ̂σ =

T
∫

0

ξ dP ξ
σ = 〈 see (4.4) 〉 =

T
∫

0

ξ d[ad χξσ] = ad dσ, (4.5)

i.e., τ̂σ multiplies by a metric eikonal and τ̂σ1 = dσ.
A simple geometric fact is that metric eikonals distinguish points of Ω: if

dσ(x′) = dσ(x′′) for all σ, then x′ = x′′. Therefore, by the Stone–Weierstrass
theorem, the family {τ̂σ1| σ ∈ Σ+

Γ } supplemented with the unit function
generates C(Ω). Turning to the pair {N , T } of the system αTRiem, we find
T = ad C(Ω).

The last relation implies N = s-closT = s-clos ad C(Ω) = ad L∞(Ω).
Hence the pair {N , T } of the system αTRiem is {ad L∞(Ω), ad C(Ω)}.

Realizing αTRiem in the canonical form in accordance with the scheme of
Subsect. 4.5 (i.e., diagonalizing N ), we first find the G-transform of T =
ad C(Ω). By Theorem 2.2, the image GT is identical to T (namely, identifying
Ω � x0 ≡ δx0 ∈ ΩT , we get Ga ≡ a). Further, choosing h = 1 ∈ H as a cyclic
element ofN , we get U ≡ I, which leads to τσ = U [τ̂σ1] ≡ τ̂σ1 = 〈see (4.5)〉 =
dσ and justifies the term “eikonal”applied to the function τσ in advance. As
a consequence of the identity GT ≡ T , we get the identity of trajectories:
ũf = Uuf ≡ uf .

Summarizing the aforesaid, we conclude that the system αTRiem is identical
to its geometrization α̃TRiem.

4.7. Inverse problem. We return to the general case of DSBC αT (see
Subsect. 4.2) and associate with it a collection {Γ, λ;CT } referred to as the

14 In control theory, this equality is interpreted as the local approximate boundary control-
lability of the system αT

Riem: any function supported in the subdomain Ωξ
σ filled with waves

propagating from σ, can be approximated (in L2-metric) with a wave generated at σ.
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inverse data. A remarkable fact is that these data determine the system up
to an isometry of its inner space.

Indeed, representing the control operator in the form of the polar decom-
position, we have WT = ΦT |WT |, where |WT | :=

[

(WT )∗WT
] 1

2 = (CT )
1
2

and ΦT is an isometry from FT onto Hmod := clos Ran |WT | ⊂ FT . The
collection {Γ, λ;Hmod; |WT |} determines a DSBC αTmod whose trajectories
are connected with the trajectories of the original αT through an isometry:
ufmod(t) = (ΦT )∗[uf (t)], t ∈ [0, T ]. We say that the system αTmod is a model
of the system αT . The operator |WT | = (CT )

1
2 plays the role of its control

operator and its reachable sets are Uξmodσ = (CT )
1
2FT, ξσ ⊂ Hmod (we denote

by P ξ
modσ the corresponding projections). The connecting operators of the

original and the model automatically coincide (see the right lower corner in
Fig. 2).

At the given level of generality, the model solves the inverse problem con-
sisting in recovering a DSBC from its inverse data. More precisely, construct-
ing the model, we obtain a system possessing the prescribed inverse data.

The inverse data of a hyperbolic αT determine its geometrization α̃T .
Indeed, αT ∈ Hyp implies αTmod ∈ Hyp, whereas α̃T and α̃Tmod are identical
just by the isometry “system ↔ model” realized by the operator ΦT . In other
words, geometrizing the model (see the transform ˜U in Fig. 2), we obtain the
geometrization of the original.

For any hyperbolic αT (see Subsect. 4.4)

• CT is a positive operator in FT ,

• the family of projections Pmod = {P ξ
modσ | σ ∈ Σ+

Γ , ξ ∈ [0, T ]} possesses
properties 1–4.

It is easy to see that the same conditions are sufficient for {Γ, λ;CT }
to be the inverse data of a hyperbolic system (namely, of αTmod). So, we
obtain conditions characterizing the data; moreover, to improve or simplify
this characterization at such a level of generality is hardly possible.

4.8. Determination of manifolds. Recall two traditional settings of the
inverse problems for the system αTRiem.

The “input→ output” correspondence of the system (4.1)–(4.3) is realized
by a response operator RT : FT → FT , RT f := uf |Γ×[0,T ]. The dynamical
IP is to recover the manifold Ω15 from its response operator. Because of the
finiteness of the wave propagation speed, the response operator has to be
given for large enough T (see [1]) and, just for the sake of simplicity, we
assume that R2T is known for fixed T > diamΩ.

The second problem is formulated as follows. Let {λk}∞k=0 : 0 = λ0 �
λ1 � . . . and {ϕk}∞k=0 : (ϕi, ϕj)H = δij be the spectrum and the normalized
eigenfunctions of the Neumann spectral problem

15 i.e., to determine Ω up to isometry of Riemannian manifolds
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−Δϕ = λϕ in Ω \ Γ,
ν · ∇ϕ = 0 on Γ .

The set {λk;ϕk|Γ }∞k=0 is called the (Neumann) spectral data of the manifold
Ω. The spectral IP is to recover Ω from its spectral data.

Both IPs are solved by the boundary control method (see [1, 3]). From the
viewpoint of this paper, the role of the traditional data is just to compose
the connecting operator. Namely, we have the representations

CT = −1
2

(ST )∗R2TJ2TST =
∞
∑

k=0

( · , sTk )FT
sTk ,

where the map ST : FT → F2T extends the controls from Γ × [0, T ] to
Γ × [0, 2T ] as odd functions of t with respect to t = T ; J2T : F2T → F2T is

the integration (J2T f)(·, t) :=

t
∫

0

f(·, s) ds. In the second representation,

sTk = sTk (γ, t) := (λk)−
1
2 sin

[

(λk)
1
2 (T − t)

]

ϕk(γ)

are the functions on Γ × [0, T ]16 (see [1, 3]).
Thus, both dynamical and spectral data determine the collection

{Γ, volΓ ;CT }, which suffices for constructing the model of αTRiem and its
further geometrization. Since, in this case, the geometrization is identical to
the original, the manifold Ω is recovered (as a cHs, up to a homeomorphism).
Extra efforts are required to endow it with the Riemannian structure, but
these details are of technical character and we refer the reader to papers on
the BC-method.

4.9. Comments. 1. The assumption T > diamΩ is accepted for simplicity:
in fact, given R2T for a fixed T > 0, the BC-method recovers the subman-
ifold ΩT

Γ (see [1]). However, such a time optimal determination can be also
implemented in terms of geometrization.

2. For systems on manifolds, the following “characterization” of the dy-
namical data can be proposed. An operator R2T acting in the space F2T

is the response operator of a system αTRiem if and only if the operator
− 1

2 (ST )∗R2TJ2TST satisfies the conditions formulated at the end of Sub-
sect. 4.7. Surely, such a description can be hardly regarded to as efficient and
checkable, but we are rather sceptical of the possibility to obtain something
better. One more version of the characteristic conditions proposed in [2] also
uses P ξ

modσ. Then the following question arises: Whether it is possible to
characterize the data in terms of CT in itself, not invoking these projections.
This question is still open.

16 sT
0 is understood as (T − t)ϕ0|Γ
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3. The commutativity and cyclicity of the family P is a specific feature
of systems governed by scalar equations like (4.1), whose states are scalar
functions. In more complicated case of systems with vector states (electro-
dynamics, elasticity theory), the structure of the reachable sets, as well as
properties of the corresponding projections P ξ

σ , are poorly known. Anyway,
the cyclicity certainly does not hold and it is not reasonable to hope that
commutativity holds either. Most probably, the relevant algebra N is not
commutative, its spectrum is not a well-defined object,17 and geometrization
becomes problematic. This rises the following “philosophical” question: In
the case of vector systems, where can a cHs Ω appear from? As in the case
of the higher-dimensional Calderon problem (see Subsect. 3.7), the question
is open. A unified answer in terms of functional analysis could be evaluated
as a substantial progress in this area of IPs.
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The Ginzburg-Landau Equations
for Superconductivity with Random
Fluctuations

Andrei Fursikov, Max Gunzburger, and Janet Peterson

Dedicated to the memory of Sergey L’vovich Sobolev,
one of the greatest mathematicians of the twentieth century

Abstract Thermal fluctuations and material inhomogeneities have a large
effect on superconducting phenomena, possibly inducing transitions to the
non-superconducting state. To gain a better understanding of these effects,
the Ginzburg–Landau model is studied in situations for which the described
physical processes are subject to uncertainty. An adequate description of such
processes is possible with the help of stochastic partial differential equations.
The boundary value problem of Neumann type for the stochastic Ginzburg–
Landau equations with additive and multiplicative white noise is investigated.
We use white noise with minimal restriction on its independence property.
The existence and uniqueness of weak and strong statistical solutions are
proved. Our approach is based on using difference schemes for the Ginzburg–
Landau equations.

1 Introduction

This paper is dedicated to the memory of Sergey L’vovich Sobolev. His
outstanding contributions to the theory for the equations of mathematical
physics are extremely deep and influential. Indeed, since the 1960s, practi-
cally all investigations in the aforementioned field of mathematics use Sobolev
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spaces and, at the least, are thereby guided by Sobolev’s ideas. The present
paper, of course, is no exception to this common rule. Moreover, the use of
Sobolev spaces in complicated functional constructions for stochastic partial
differential equations is especially successful and effective. Note also that be-
ing the closest aide to I.V. Kurchatov in the realization of the nuclear project
in the Soviet Union after 1943, S.L. Sobolev took part in the numerical so-
lution of huge problems of mathematical physics. From that time on to the
end of his life, he had an invariable interest in the discrete approximation of
continuum objects, especially in cubature formulas. In the present paper, dis-
crete approximations are not only used, they play a crucial role in obtaining
the main results.

This paper is devoted to the mathematical study of a boundary value
problem for the stochastic Ginzburg–Landau model of superconductivity; we
hope it will promote a better understanding of the transitions that occur
between the superconducting and nonsuperconducting states.

In 1908, Kamerlingh–Onnes discovered that when metals such as mercury,
lead, and tin are cooled to an absolute temperature below some small but
positive critical value, their electrical resistivity completely disappears. This
was a great surprise since what was expected is that the resistivity of met-
als would smoothly tend to zero as the temperature also tended to zero. In
addition to this zero resistance property, superconductors are characterized
by the property of perfect diamagnetism. This phenomenon was discovered
in 1933 by Meissner and Ochsenfeld and is also known as the Meissner effect.
What they observed is that not only is a magnetic field excluded from a su-
perconductor, i.e., if a magnetic field is applied to a superconducting material
at a temperature below the critical temperature, it does not penetrate into
the material, but also that a magnetic field is expelled from a superconduc-
tor, i.e., if a superconductor subject to a magnetic field is cooled through the
critical temperature, the magnetic field is expelled from the material. One
of the consequences of the Meissner effect is that superconductors cannot be
“perfect conductors” which are idealized (and unattainable) materials that
have zero resistivity and that can be described by the linear Maxwell equa-
tions of electromagnetism. For such materials the magnetic field would not be
expelled from the material when it is cooled through the critical temperature.

Superconductivity was not adequately explained until, in 1957, Bardeen,
Cooper, and Schrieffer (BCS) [1] published their landmark paper describing
a microscopic theory of superconductivity. However, even earlier, several phe-
nomenological continuum theories were proposed, most notably by Ginzburg
and Landau [20] in 1950. The Ginzburg–Landau theory was itself based
on a general theory, introduced by Landau in 1937, for second-order phase
transitions in fluids. Ginzburg and Landau thought of conducting electrons
as being a “fluid” that could appear in two phases, namely superconduct-
ing and normal (non-superconducting). Through a stroke of intuitive genius,
Ginzburg and Landau added to the theory of phase transitions certain ef-
fects, motivated by quantum-mechanical considerations, to account for how
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the electron “fluid” motion is affected by the presence of magnetic fields.
In 1959, Gor’kov [21] showed that, in an appropriate limit, the macroscopic
Ginzburg–Landau theory can be derived from the microscopic BCS theory.
Details about the Ginzburg–Landau model can be found in [7, 13, 12, 41],
the last of which may also be consulted for details about the BCS model.

The dependent variables of the Ginzburg–Landau model are the complex-
valued order parameter ψ and the vector-valued magnetic potential A. Phys-
ically interesting variables such as the density of superconducting electrons,
the current, and the induced magnetic field can be easily deduced from ψ and
A. The Ginzburg–Landau model itself can be expressed as a system of two
coupled partial differential equations from which ψ and A can be determined.
One of these equations is a vector-valued, nonlinear Maxwell equation that
relates the supercurrent, i.e., the current that flows without resistance, to
a nonlinear function of ψ, ∇ψ, and A. The second equation is a complex-
valued equation that relates spatial and temporal variations of ψ to a nonlin-
ear potential energy term. After appropriate non-dimensionalizations, there
are two non-dimensional parameters appearing in the differential equations.
One is the ratio of the relaxation times of ψ and A, the other, known as the
Ginzburg–Landau parameter, is the ratio of the characteristic lengths over
which ψ and A vary. These two length scales are referred to as the coherence
and penetration lengths respectively.

In this paper, we consider a simplified Ginzburg–Landau system for ψ in
which A is assumed to be a given vector-valued field. There are two situations
of paramount practical interest for which the use of this simplified Ginzburg–
Landau system can be justified. First, for high values of the Ginzburg–
Landau parameter, it can be shown [6, 12] that, to leading order, the mag-
netic field in a superconductor is simply that given by the linear Maxwell
equations so that A may be determined from these equations. Thus, insofar as
the other component equation of the Ginzburg–Landau model is concerned,
A can be viewed as a given vector field. A similar uncoupling can be shown to
occur for thin film samples [5] for all values of the Ginzburg–Landau param-
eter. Most superconductors of practical interest are characterized by “high”
values of the Ginzburg–Landau parameter and superconducting films are of
very substantial technological interest; the simplified Ginzburg–Landau sys-
tem we study can be used to model both of these situations. Furthermore, in
the more general case where one has to consider the fully coupled Ginzburg–
Landau equations for ψ and A, random fluctuations enter into the system
in very much the same way as they do for the simplified system, so much of
what is learned about stochastic versions of the simplified system applies to
stochastic versions of the full system.

The Ginzburg–Landau theory is applicable only to highly idealized phys-
ical contexts that do not take into account factors such as material inhomo-
geneities and thermal fluctuations due to molecular vibrations. Both these
factors play a crucial role in practical superconductivity since the former
enables large currents to flow through a superconductor without resistance
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while the latter can have the opposite effect, especially at temperatures close
to critical transition temperature (see, for example, [30, 39]). In [22], it is
shown that, within the Ginzburg–Landau framework, thermal fluctuations
are properly modeled by an additive white noise term in the Ginzburg–
Landau equation for ψ; the amplitude of the noise term grows as the temper-
ature approaches the critical temperature. In [4, 30], it is shown that, again in
the Ginzburg–Landau framework, material inhomogeneities can be correctly
modeled through the coefficient of the linear (in ψ) term in the Ginzburg–
Landau equation for ψ; random variations in the material properties can
thus be modeled as random perturbations in this coefficient which results
in a multiplicative white noise term in the Ginzburg–Landau equations. In
this paper, we treat both the additive and multiplicative noise cases. Studies
of the physics of superconductors in the presence of white noise perturba-
tions can be found in [11, 15, 23, 35, 39, 42, 43]; computational studies of
the Ginzburg–Landau equations with additive and multiplicative noise are
given in [9, 10].

In this paper, we study the stochastic Ginzburg–Landau equation written
in the following dimensionless form:

dψ(t, x) +
(

(i∇+ A(x))2ψ − ψ + |ψ|2ψ
)

dt = r̂[ψ]dW, t > 0, x ∈ G ⊂ R
d ,

(1.1)
where G is a bounded domain, d = 2, 3, and an explanation of the notation
employed on the right-hand side of (1.1) is given below in (1.3) and (1.4). On
the boundary ∂G of G, we set

(

i∇+ A(x)
)

ψ(t, x) · n = 0, t > 0, x ∈ ∂G , (1.2)

where n denotes the unit outer normal vector to ∂G.
From the view of the general theory of dynamical systems, the supercon-

ducting state is a stable steady-state solution of (1.1) (with zero right-hand
side). The disappearance of the superconducting state (when some param-
eter of the system changes) means that some other steady-state solution of
(1.1) arises and becomes stable or either time-periodic or chaotic behavior is
realized.

We emphasize that when the dynamical system became unstable, the clas-
sical derivation of the equation for the superconducting state, rigorously
speaking, looses its correctness. Indeed, in that derivation, as well as in other
derivations of such a kind, only the main “forces” controlling the situation
are taken into account and all relatively small and unessential “forces” are
omitted, implicitly assuming stability in the sense that small fluctuations of
“forces” lead to small fluctuations of the state. In unstable situations, this
argument is evidently incorrect. The alternative is to replace, in the unstable
situation, all small and unessential “forces” by white noise forcing (additive
white noise) or perhaps by white noise multiplied by a function proportional
to the state (multiplicative white noise). The physical basis of this approach
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is that, since “values” of white noise at different times are statistically in-
dependent, white noise renders a “smoothing” influence on the dynamical
system. In more rigorous terms, this means the addition of white noise to the
right-hand side of (1.1) leads to the substitution of many steady-state solu-
tions of (1.1) by the unique (ergodic) statistical steady-state solution of (1.1)
that is stable, i.e., that satisfies the mixing property. We also note that, in
stable situations, replacing unessential “forces” by additive (multiplicative)
white noise means taking into account thermal (material inhomogenety) fluc-
tuations, as was noted above.

Very important arguments that can be used to justify the physical ade-
quateness of the aforementioned modeling of superconductivity effects with
the help of the stochastic problem (1.1) and (1.2) are given by recent re-
sults about ergodicity for abstract dynamical systems, including the two-
dimensional Navier–Stokes and Ginzburg–Landau equations with random
kick forces or additive white noise. The first results in this direction were
obtained in [14, 16, 29]. In these papers, ergodicity was proved in stable sit-
uations, i.e., when the corresponding dynamical system with random forces
omitted is stable. In the case of an unstable dynamical system, ergodicity was
established in [36, 37, 38]. A detailed exposition of this topic can be found
in [28].

Taking into account all of the above discussion, the following plan for
the mathematical investigation of the superconducting state and its possible
disappearance in industrial conditions is possible.

• Proof of the existence and uniqueness of weak and strong solutions of the
stochastic boundary value problem (1.1) and (1.2).

• Proof of the ergodicity property for the random dynamical system gener-
ated by (1.1) and (1.2).

• Investigation of the disappearance of the supercoducting state in terms of
the ergodic measure P that corresponds to the stochastic problem (1.1)
and (1.2).

This paper is devoted to the proof of the first of these assertions.
The list of investigations of stochastic parabolic partial differential equa-

tions is huge because equations of such type arise in many problems of mathe-
matics, physics, biology, and other applications. Here, we cite only the earliest
papers in this field and papers closely connected with our paper. Investiga-
tions of linear parabolic stochastic partial differential equations were begun in
the middle of 1960s [8]. Nonlinear stochastic parabolic equations were studied
in [2, 33] and the stochastic Navier–Stokes system was studied in [3, 44, 45].
The paper [27] and the book [34] contain many deep results on these topics
as well as a detailed historical review. Lastly, we note the works [25, 32].

In this paper, we study the stochastic boundary value problem (1.1) and
(1.2) for the Ginzburg–Landau equation. Note that the right-hand side in
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(1.1) should be written in a more detailed way as follows:

r̂[ψ]dW = r
(

Reψ(t, x)
)

dReW (t, x) + ir
(

Imψ(t, x)
)

dImW (t, x), (1.3)

where dW = dW (t, x) is a complex-valued white noise and, as usual, Re z and
Im z denote the real and imaginary parts of a complex number z respectively.
In addition, r(λ), λ ∈ R, is, roughly speaking,1 the following function:

r(λ) = max (ρ1, ρ2|λ|), ρ1 > 0, ρ2 � 0. (1.4)

In particular, when ρ2 = 0, (1.3) reduces to complex-valued additive white
noise. Note immediately that the main difficulties we are forced to overcome
in this paper are connected with the case ρ2 > 0 which results in some kind
of multiplicative white noise. The form (1.3) of the random fluctuations for
the Ginzburg–Landau equation is reasonable from our point of view when,
describing Ginzburg–Landau flow in instable situation, one replaces all small
and unessential “forces” by stochastically independent fluctuations, i.e., by
white noise. Indeed, since by the definition of complex-valued white noise
dW (t, x), its real (dReW (t, x)) and imaginary (dImW (t, x)) parts are mu-
tually independent white noises [19, Chapt. III, Sect. 1]), (1.3) gives the
maximal independent form of multiplicative white noise.

In this paper, we provide a detailed exposition of the proof of the exis-
tence and uniqueness of weak and strong statistical solutions of the stochastic
boundary value problem (1.1) and (1.2). The main feature of our exposition
is that, to prove the existence of a weak solution, we use, instead of Galerkin
approximations, approximations by method of lines, i.e., we introduce a finite
difference approximation of the Ginzburg–Landau equation with respect to
the spatial variables. Although the method of lines is more complicated in re-
alization than Galerkin’s method, it has one important advantage: method of
lines approximations inherit the structure of the Ginzburg–Landau equation
much better than do Galerkin ones and therefore we can obtain many esti-
mates for method of line approximations that cannot be obtained for Galerkin
approximations. All these estimates we essentially use in our proof in order
to overcome difficulties arising mostly because of the multiplicative structure
of white noise. Nevertheless, one important a priori estimate which can be
derived (formally) for the Ginzburg–Landau equation we cannot yet derive
for its method of lines approximation. That is why for the three-dimensional
Ginzburg–Landau equation with multiplicative white noise, we have proved
here only the existence of a weak solution. For the two-dimensional Ginzburg-
landau equation with multiplicative white noise as well as for the two- and
three-dimensional Ginzburg–Landau equation with additive white noise, we
can prove the existence and uniqueness of both weak and strong solutions.

1 In fact, r(λ), is the function (1.4) smoothed at points of discontinuity of its derivative.
See the exact definition given below in (3.19).
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The structure of the paper can be deduced from its content as described
above.

2 The Ginzburg–Landau Equation and Its Finite
Difference Approximation

In this section, we formulate the boundary value problem for the (simplified)
Ginzburg–Landau equations without fluctuations and define an approxima-
tion by the method of lines that will play an important role in our analysis.

2.1 Boundary value problem for the Ginzburg–Landau
equation

Let G ⊂ R
d, d = 2, 3, denote a bounded domain with C∞-boundary ∂G, and

let QT = (0, T ) × G denote a space-time cylinder. In QT , we consider the
Ginzburg–Landau equation for the complex-valued function ψ(t, x), referred
to as the order parameter,

∂ψ

∂t
+
(

i∇+ A
)2

ψ − ψ + |ψ|2ψ = 0 for (t, x) ∈ QT (2.1)

along with the boundary condition

(i∇+ A)ψ · n = 0 on (0, T )× ∂G (2.2)

and the initial condition

ψ(0, x) = ψ0(x) in G , (2.3)

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xd

) denotes the gradient operator and A(x) =
(A1, . . . , Ad), the magnetic potential, is a given real-valued vector field such

that divA =
d
∑

j=1

∂Aj

∂xj
= 0. Also, n = (n1, . . . , nd) denotes the unit outer nor-

mal vector to the boundary ∂G and ψ0(x) is a given initial condition. We
have

(i∇+ A)2ψ =
(

i∇+ A, i∇+ A
)

ψ

=
d
∑

j=1

(

i
∂

∂xj
+ Aj(x)

)(

i
∂ψ(x)
∂xj

+ Aj(x)ψ(x)
)

. (2.4)
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We assume that A(x) ∈ (C2(G))d and, for any fixed time, ψ(t, x) ∈ L2(G).
We want to introduce function spaces within which it is natural to look

for the solution of the problem (2.1)–(2.3). The Sobolev space of complex-
valued functions defined in G and square integrable there together with their
derivatives up to order k is denoted by Hk(G), k ∈ N. Here, N denotes the
set of positive integers. In addition, we define the space

H2
A(G) = {φ(x) ∈ H2(G) : (i∇+ A)φ · n = 0 on ∂G} . (2.5)

The space of solutions of (2.1)–(2.3) is defined as follows:

Y =
{

ψ(t, x) ∈ L2
(

0, T ;H2
A(G)

)

∩ L6(QT ) :
∂ψ

∂t
∈ L2(QT )

}

. (2.6)

We also study generalized solutions of the problem (2.1)–(2.3). To obtain
a weak formulation, we multiply (2.1) by the complex conjugate of φ, de-
noted by φ, and integrate over QT . Using the boundary condition (2.2) and
integration by parts, we obtain

∫

QT

[

∂ψ

∂t
φ +

(

i∇+ A
)

ψ ·
(

i∇+ A
)

φ− ψφ + |ψ|2ψφ

]

dxdt = 0 . (2.7)

Here, we will not make more precise the function space used for generalized
solutions, defined by (2.3) and (2.7) with arbitrary φ ∈ L2(0, T ;H1(G)), of
the problem (2.1)–(2.3) because just at this moment it is not necessary.

2.2 Approximation by the method of lines

The approximation of the solution of a partial differential equation by the
method of lines means that we approximate the continuous space variables
x = (x1, . . . , xd) by a discrete grid or mesh so that we approximate the partial
differential equation problem by a system of ordinary differential equations. In
our case, we use finite difference quotients to approximate spatial derivatives.
We assume that the grid is uniform and the scale of the grid, h > 0, is a fixed,
sufficiently small number. Let an arbitrary point on the grid be denoted by
kh, where k ∈ Z

d, kh = (k1h, . . . , kdh), and Z denotes the set of integers.
Since ψ(x) is a function of the continuous variable x, we let ψk, defined on
the given grid, denote the approximation to ψ at the point kh.

We now define the corresponding discrete “derivatives” or difference quo-
tients; we distinguish the discrete derivatives from the continuous derivatives
∂
∂xj

by using the notation ∂j,h. Let δjk denote the Kronecker delta, and let

ej = (δj1, . . . , δjd), j = 1, . . . , d. We can approximate the derivative ∂ψ
∂xj

by
the forward difference quotient ∂+

j,hψk = 1
h (ψk+ej − ψk) or by the backward
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difference quotient ∂−
j,hψk = 1

h (ψk−ψk−ej ). The discrete divergence operator
divh±, the discrete gradient operator ∇±

h , and the discrete Laplace operator
Δh = div−

h∇+
h are then defined in an obvious manner.

Analogous to (2.4), we define

(i∇h + Ak)2ψk = (i∇−
h + Ak, i∇+

h + Ak)ψk

=
d
∑

j=1

(

i∂−
j,h + Ajk

)(

i∂+
j,hψk + Ajkψk

)

,
(2.8)

where Ak = A(kh) and Ajk denotes the jth component of the vector Ak =
(A1(kh), . . . , Ad(kh)).

We now approximate the domain G and its boundary ∂G.

Definition 2.1. The approximate boundary ∂Gh is the subset of the grid
kh, k ∈ Z

d, that consists of two parts ∂Gh = ∂G+
h ∪ ∂G−

h , where

(i) ∂G−
h is the set of points kh ∈ G such that (k + ej)h ∈ R

d \ G or
(k − ej)h ∈ R

d \G for some j = 1, . . . , d

and

(ii) ∂G+
h the set of points kh ∈ R

d\G such that (k+ej)h ∈ G or (k−ej)h ∈
G for some j = 1, . . . , d.

Definition 2.2. The approximate domain Gh is the subset of points kh ∈ G,
k ∈ Z

d; we also set G0
h = Gh\∂G−

h .

We introduce the following subsets of the approximate boundary ∂Gh:

∂G+
h (−j) = {kh ∈ ∂G+

h : (k + ej)h ∈ ∂G−
h }

∂G+
h (+j) = {kh ∈ ∂G+

h : (k − ej)h ∈ ∂G−
h }

for j = 1, . . . , d (2.9)

and

∂G−
h (−j) = {kh ∈ ∂G−

h : (k + ej)h ∈ ∂G+
h }

∂G−
h (+j) = {kh ∈ ∂G−

h : (k − ej)h ∈ ∂G+
h }

for j = 1, . . . , d. (2.10)

The sets ∂G+
h (±j) and ∂G−

h (±j) are illustrated in Fig. 2.1 for a domain in
R

2. In addition, we note that the sets ∂G−
h (±j), j = 1, . . . , d, can possess

nontrivial pairwise intersections.
We now turn to the approximation of the boundary value problem (2.1)–

(2.3) by the method of lines. We have

∂ψk
∂t

+ (i∇h + Ak)2ψk − ψk + |ψk|2ψk = 0 for kh ∈ Gh (2.11)

and
ψk
∣

∣

t=0
= ψ0,k for kh ∈ Gh, (2.12)

where the notation (i∇h + Ak)2 is defined by (2.8).
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h (−2)

Fig. 2.1 The approximate boundary ∂G+
h is denoted by squares, and ∂G−

h is denoted by
circles.

In order to define the analogue of the boundary condition (2.2), we first
note that the key property of this condition is that it implies the following
formula for integration by parts:

∫

G

(i∇+ A)2ψ(x)φ(x) dx =
∫

G

(i∇+ A)ψ(x)(i∇ + A)φ(x) dx

∀ ψ ∈ H2
A(G), φ ∈ H1(G) .

(2.13)

Using (2.13), one can define a weak solution of our problem (2.1)–(2.3) with
the aid of (2.7). To define the weak solution for the system (2.11) and (2.12),
we need the following discrete analogue of (2.13):

hd
∑

kh∈Gh

(

i∇−
h + Ak, i∇+

h + Ak
)

ψkφk

= hd
d
∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

(i∂+
j,hψk + Ajkψk)(i∂+

j,hφk + Ajkφk) . (2.14)

We take this formula, which will be proved in the next subsection, as the
foundation for the definition of the discrete analogue of the boundary condi-
tion (2.2).
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2.2.1 Summation by parts formula

In this section, our goal is to prove the discrete analogue of (2.13) given by
(2.14).

Lemma 2.3. Let the discrete functions φk and ψk be defined for kh ∈ Gh ∪
∂G+

h . Assume that for each function φk

d
∑

j=1

(
∑

kh∈∂G+
h

(−j)

(iV j
k + hV j

k A
j
k)φk −

∑

kh∈∂G+
h

(+j)

iV j
k−ej

φk

)

= 0 , (2.15)

where

V j
k = i

ψk+ej − ψk

h
+ Ajkψk . (2.16)

Then (2.14) holds.

Proof. Using (2.16) and setting r = k − ej , we obtain

hd
∑

kh∈Gh

(i∇−
h + Ak, i∇+

h + Ak)ψkφk

= hd
∑

kh∈Gh

⎛

⎝

d
∑

j=1

i
V j
k − V j

k−ej

h
+ AjkV

j
k

⎞

⎠φk

= hd
d
∑

j=1

[

∑

kh∈∂G−
h

(+j)

(−i)
h

V j
k−ej

φk +
∑

kh∈∂G−
h

(−j)

(

i

h
V j
k + AjkV

j
k

)

φk

+
∑

rh∈Gh\∂G−
h (−j)

−i

h
V j
r φr+ej

+
∑

kh∈Gh\∂G−
h (−j)

(

i

h
V j
k + AjkV

j
k

)

φk

]

= hd−1
d
∑

j=1

[

∑

kh∈∂G−
h (−j)

(

iV j
k + hAjkV

j
k

)

φk −
∑

rh∈∂G+
h (−j)

iV j
r φr+ej

]

+hd
d
∑

j=1

∑

kh∈Gh\∂G−
h (−j)

V j
k

(

i
φk+ej − φk

h
+ Ajkφk

)

.

We add to the right-hand side of this relation the left-hand side of (2.15),
where in the second sum we use the change of variables r = k − ej. After
performing this substitution, we arrive at (2.14). ��
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Thus, the relation (2.15) contains the boundary conditions we need. We
only need to write these conditions in a more convenient form.

2.2.2 Boundary conditions for the system (2.11)

Since G ⊂ R
d, d = 2, 3, is a bounded domain with C∞-boundary ∂G, at each

point x ∈ ∂G the main curvatures of the surface ∂G are well defined. When
d = 2, the curve ∂G has at x ∈ ∂G one main curvature (usually called the
curvature). We denote the modulus of this curvature as κ(x). When d = 3,
we denote by κ(x) = max{|κ1(x)|, |κ2(x)|}, where κj(x), j = 1, 2, are the
main curvatures of ∂G at the point x. We set

κ̂ = max
x∈∂G

κ(x) .

We take a ball of radius r < 1/κ̂ and touch this ball at any x ∈ ∂G from each
of the two sides of the surface ∂G. Decreasing the radius r, we can position
this ball so that it will not intersect ∂G at any point other than the point
x of contact of the ball and ∂G. We denote such a radius r(x) by r0(x), set
r0 = min

x∈∂G
r0(x), and assume that

h <
r0

10
. (2.17)

Let kh ∈ ∂G+
h . The point �h ∈ ∂G−

h is called the closest to kh if
dist(�h, kh) = h. The following lemma holds.

Lemma 2.4. Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with C∞-boundary

∂G, and let h satisfy (2.17). Then, if d = 2, each point kh ∈ ∂G+
h has one or

two (not more) closest points �h ∈ ∂G−
h (as illustrated in Fig. 2.2.) If d = 3,

each point kh ∈ ∂G+
h has one, two, or three closest points �h ∈ ∂G−

h .

We have to make more precise what is needed to ensure that the relation
(2.14) is valid for every {φk, kh ∈ Gh∪∂G+

h }. For this relation, (2.15) should
be true for every {φk, kh ∈ ∂G+

h }, i.e., for each kh ∈ ∂G+
h the coefficient be-

fore φk in (2.15) should be equal to zero. First, we calculate these coefficients
and write down the boundary conditions for the d = 2 case.

(i) kh ∈ ∂G+
h possesses only one closest point from ∂G−

h . Then either
kh ∈ ∂G+

h (+j) or kh ∈ ∂G+
h (−j) for some j. In the first case, V j

k−ej
= 0 and,

by virtue of (2.16),

ψk = ψk−ej (1 + ihAjk−ej
), kh ∈ ∂G+

h (+j) with j = 1, 2 . (2.18)

In the second case, V j
k (i + hAjk) = 0 and therefore
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kh

G

∂G

kh

G

∂G

Fig. 2.2 In the figure on the left, the point kh ∈ ∂G+
h (filled circle) has one closest point


h ∈ ∂G−
h (open circle). In the figure on the right, the point kh ∈ ∂G+

h has two closest

points 
h ∈ ∂G−
h .

ψk =
ψk+ej

1 + ihAjk
, kh ∈ ∂G+

h (−j) with j = 1, 2 . (2.19)

(ii) kh ∈ ∂G+
h possesses two closest points from ∂G−

h . Then three different
cases are possible.

(1) kh ∈ ∂G+
h (+1) ∩ ∂G+

h (+2). In this case, V 1
k−e1 + V 2

k−e2 = 0 and, by
(2.16),

2ψk =
(

1 + ihA1
k−e1

)

ψk−e1 + (1 + ihA2
k−e2 )ψk−e2 . (2.20)

(2) kh ∈ ∂G+
h (−1)∩∂G+

h (−2). In this case, V 1
k (i+hA1

k)+V 2
k (i+hA2

k) = 0
and

ψk =
ψk+e1 (1 − ihA1

k) + ψk+e2 (1− ihA2
k)

2 + h2 ((A1
k)2 + (A2

k)2)
. (2.21)

(3) kh ∈ ∂G+
h (−j) ∩ ∂G+

h (+�) for 1 � j, � � 2, � �= j. In this case,
V j
k (1− ihAjk)− V 

k−e�
= 0 and

ψk =
ψk+ej (1− ihAjk) + ψk−e�

(1 + ihAk−ej
)

2 + h2(Ajk)2
. (2.22)

For the d = 3 case, the derivation of the boundary conditions is absolutely
the same, but the number of distinct cases is larger. Note that, for our pur-
poses, we need only two things from the boundary conditions. First, that the
formula (2.14) holds and second, that for each kh ∈ ∂G+

h , ψk is expressed in
terms of ψ, �h ∈ ∂G−

h . That is why it is quite enough for us to write down
boundary conditions for both the d = 2 and d = 3 cases as follows. We have
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ψk =
3
∑

j=1

(

a+
k,jψk+ej + a−k,jψk−ej

)

∀ kh ∈ ∂G+
h , (2.23)

where a±k,j are certain coefficients (that can be written down explicitly) such
that if a+

k,j �= 0, (a−k,j �= 0) then h(k+ej) ∈ ∂G−
h (correspondingly h(k−ej) ∈

∂G−
h ). Moreover, 0 <

3
∑

j=1

|a+
k,j |2 + |a−k,j |2 < c, where c does not depend on h.

3 The stochastic Ginzburg–Landau Equation

In this section, we provide the formal definition of the Wiener process, the
Wiener measure, and some related concepts. Then these results are used in
the formulation of the stochastic problem for the Ginzburg–Landau equation.

3.1 Wiener process

We have an abstract probability space (Ω,Σ,m(dω)), where Ω is the set of
elementary events; Σ is a σ-algebra of subsets of Ω (if Ω is a metric space,
Σ is a Borel σ-algebra, i.e., Σ = B(Ω) is the σ-algebra generated by all open
subsets of Ω); and m(dω) is a probability measure defined on Σ. Recall that
a set A is of m-measure zero if there exists B ∈ Σ such that m(B) = 0 and
A ⊂ B. The σ-algebra Σm is called the completion of Σ with respect to m if
Σm is the family of all subsets of the form A ∪ B, where A is of m-measure
zero and B ∈ Σ. In the sequel, we change Σ on Σm, i.e., we will consider the
σ-algebra Σ that is complete with respect to m.

Let
W : Ω → C(0,∞;L2(G)) ≡ C

be a measurable mapping, i.e., for all B ∈ B(C), {ω : W (·, ·, ω) ∈ B} ∈ Σ.
The probability distribution of W is the measure Λ defined on B(C) by the
formula

Λ(B) ≡ m
(

{ω ∈ Ω : W (·, ·, ω) ∈ B}
)

∀ B ∈ B(C) . (3.1)

W (t, x, ω) is called a Wiener process if Λ(B) is a Wiener measure. In the
following definition, we assume that C consists of real-valued functions.

Definition 3.1. Λ(B) for B ∈ B(C) is called a Wiener measure if its Fourier
transform ˜Λ is of the form

˜Λ(v) =
∫

ei[w,v]Λ(dW ) = e−
1
2B(v,v) ∀ v ∈ C∞0 ≡ C∞

0 ((0,∞)×G) , (3.2)



The Ginzburg-Landau Equations 39

where

[w, v] =

∞
∫

0

∫

G

w(t, x)v(t, x) dxdt . (3.3)

Here, B(v, v) is the quadratic form

B(v, v) =

∞
∫

0

∞
∫

0

t ∧ s
〈

K
(

v(t, ·), v(s, ·
)

)
〉

dtds , (3.4)

where t ∧ s = min(t, s) and 〈f, g〉 =
∫

G

f(x)g(x) dx. Here, K is a self-adjoint,

nonnegative trace class operator in L2(G) called the correlation operator of
Λ; we have

K∗ = K � 0, S = SPK =
∞
∑

j=1

λj <∞ (SP is the spur-trace) , (3.5)

where λ1 � λ2 � · · · � λk � · · · � 0 is the set of all eigenvalues of the
operator K.

Evidently, (3.1)–(3.4) imply that
∫

W (t, x, ω)W (s, y, ω)m(dω) = t ∧ s K(x, y) , (3.6)

where W (t, x, ω) is a Wiener process and K(x, y) is the kernel of the operator
K from (3.4) and (3.5).

Lemma 3.2. The following conditions hold.

1. For any operator K : L2(G) → L2(G) satisfying (3.5) there exists a
unique Wiener measure Λ on C with the correlation operator K.

2. For any φ, ψ ∈ L2(G)
∫

C

〈W (t, ·)φ(·)〉〈W (s, ·)ψ(·)〉Λ(dW ) = t ∧ s〈Kφ, ψ〉. (3.7)

3. Let S = SPK be defined by (3.5). Then
∫

‖W (t, ·)‖2L2(G)Λ(dW ) = tS ∀ t > 0 . (3.8)

4. W (t, x, ω) is a process with independent increments, i.e., for any 0 �
τ � s � t,
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Λ({W : W (t, ·)−W (s, ·) ∈ B1,W (τ, ·) ∈ B2})

= Λ({W : W (t, ·)−W (s, ·) ∈ B1})Λ({W : W (τ, ·) ∈ B2})
∀ B1, B2 ∈ B(L2(G)) . (3.9)

For the proof, see [18].
Recall that, given a Wiener measure Λ(B), B ∈ B(C), one can easily con-

struct a Wiener process for which Λ(B) is a probability distribution. Indeed,
we take the probability space (Ω,Σ,m(dW )) = (C,B(C), Λ(dW )) and define
a Wiener process W (t, x, ω) as follows: for each W ∈ C, W (t, x, ω) = W (t, x).
Clearly, this map W (t, x, ω) satisfies the definition of a Wiener process.

Below we use Wiener processes W (t, x, ω) defined on the space C = C+ iC
of complex valued functions, where recall that C = C(0,∞;L2(G)). Taking
into account [19, Chapt. III, Sect. 1], we give the following definition.

Definition 3.3. The random process W (t, x, ω), t � 0, x ∈ G, ω ∈ Ω, is
called a complex Wiener process if

W (t, x, ω) = ReW (t, x, ω) + iImW (t, x, ω) , (3.10)

where ReW (t, x, ω) and ImW (t, x, ω) are real-valued Wiener processes on
(Ω,Σ,m(dω)) and W (t, x) satisfies the equality
∫

W (t, x, ω)W (s, y, ω)m(dω) ≡ 0 ∀ t � 0, s � 0, a.e. x, y ∈ G . (3.11)

It is clear that (3.11) is equivalent to the conditions

t ∧ s K11(x, y) ≡
∫

ReW (t, x, ω)Re W (s, y, ω)m(dω)

=
∫

ImW (t, x, ω)ImW (s, y, ω)m(dw)

(3.12)

and

t ∧ s K12(x, y) ≡
∫

ReW (t, x, ω)Im W (s, y, ω)m(dω)

= −
∫

ImW (t, x, ω)ReW (s, y, ω)m(dw) ,

(3.13)

where the first identities in (3.12) and (3.13) are the definitions of K11(x, y)
and K12(x, y) respectively. By virtue of (3.13), K12(x, x) ≡ 0 and therefore
the Wiener processes ReW (t, x) and ImW (t, x) are independent. Moreover,
(3.11) implies that

t ∧ s K(x, y) ≡
∫

W (t, x, ω)W (s, y, ω)m(dω)
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= 2t ∧ s
(

K11(x, y)− iK12(x, y)
)

, (3.14)

where the first identity is the definition of K(x, y). The function K(x, y) is a
non-negative definite kernel; this means that

∫

G

∫

G

K(x, y)z(y)z(x) dxdy � 0 ∀ z(x) ∈ L2(G) . (3.15)

Here, z(x) is a complex-valued function. As in the real-valued case, we sup-
pose that the operator Kz =

∫

G

K(x, y)z(y) dy is not only non-negative self-

adjoint, but is a trace class operator in L2(G), i.e.
∫

G

K(x, x) dx <∞. (3.16)

Moreover, we assume that the kernel K satisfies the inequality:

∫

G

(
d
∑

j=1

∂2K(x, y)
∂xj∂yj

)∣

∣

∣

y=x
dx <∞ . (3.17)

Finally, we denote by Λ(B), B ∈ B(C), the Wiener measure, i.e., the dis-
tribution of a complex Wiener process W (t, x) from (3.10) and by ΛR(BR),
BR ∈ B(C), and ΛI(BI), BI ∈ B(C), we respectively denote the Wiener mea-
sures of the Wiener processes ReW (t, x) and ImW (t, x). It was mentioned
above that the Wiener processes ReW and ImW are independent. Therefore

Λ(B) = ΛR(BR)ΛI(BI) ∀ B = BR + iBI , BR, BI ∈ B(C) . (3.18)

3.2 The stochastic problem for the Ginzburg–Landau
equation

Let r(λ) be the function max{ρ1, ρ2|λ|}, λ ∈ R
1, smoothed in a neighborhood

of the points λ = ±ρ1/ρ2, where ρ1 > 0 and ρ2 � 0 are given scalars. More
precisely, we define r(λ) as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r(λ) ∈ C2(R1), r(λ) = r(|λ|),

r′(λ) > 0 for λ >
ρ1

2ρ2
, r′′(λ) > 0 for

ρ1

2ρ2
< λ <

3ρ1

2ρ2
,

r(λ) = max{ρ1, ρ2|λ|} for λ ∈ R
1 \

{

ρ1

2ρ2
< |λ| < 3ρ1

2ρ2

}

.

(3.19)
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For each real-valued function f(λ), λ ∈ R
1, and complex number ψ = Reψ+

iImψ, we denote
f [ψ] = f(Reψ) + if(Imψ) . (3.20)

Moreover, we set, for each complex z = Re z + iIm z,

̂f [ψ]z = f(Reψ)Re z + if(Imψ)Im z . (3.21)

This notation will be used throughout the paper. Using this notation, the
stochastic Ginzburg–Landau equation we consider has the form

dψ(t, x) + (i∇+ A)2ψ − ψ + |ψ|2ψ = r̂[ψ(t, x)]dW (t, x) , (3.22)

where, as in (2.1), (t, x) ∈ QT ≡ (0, T ) × G and the operator (i∇ + A)2 is
defined in (2.4). W (t, x) on the right-hand side of (3.22) is a complex Wiener
process introduced in the previous subsection, i.e., W (t, x) = ReW (t, x) +
ImW (t, x) and dW (t, x) is the corresponding white noise. r(·) is the function
defined in (3.19). The solution ψ(t, x) of (3.22) is a complex-valued random
function defined on the same probability space (Ω,Σ,m) in which the Wiener
process W (t, x) ≡W (t, x, ω), ω ∈ Ω, is defined, i.e.,

ψ(t, x) = Reψ(t, x, ω) + iImψ(t, x, ω), ω ∈ Ω,

is a Σ-measurable function with respect to ω.
Note that we interpret the right-hand side r̂(ψ)dW of (3.22) in the sense

of (3.21), i.e.,

r̂
[

ψ(t, x)
]

dW (t, x)

= r
(

Reψ(t, x)
)

dReW (t, x) + ir
(

ImW (t, x)
)

dIm W (t, x) .
(3.23)

Each component of the random force should be proportional to the corre-
sponding component of the solution. We introduce ρ1 in the definition of
r(λ) given in (3.19) because, should the solution be sufficiently small, the
consideration of additive white noise as a random force is more natural. For-
mally, the function defined in (3.19) multiplying the white noise dW allows us
to consider the case of additive white noise (when ρ1 > 0, ρ2 = 0) and multi-
plicative white noise (when ρ1 > 0, ρ2 > 0). However, note that the majority
of the difficulties we are forced to overcome are connected with multiplicative
white noise.

Equation (3.22) is supplied with the boundary condition (2.2) and the
initial condition (2.3). In this case, the initial function ψ0(x) = ψ0(x, ω),
ω ∈ Ω, is a random function, defined on the same probability space as the
Wiener process W (t, x), that has values in L1(G); ψ0 : Ω → L1(G). Moreover,
we assume that ψ0(x, ω) and W (t, x, ω) are independent.

Finally, note that Equation (3.22) is understood as an Ito differential equa-
tion. This means that, by definition, (3.22) is equivalent to the equation



The Ginzburg-Landau Equations 43

ψ(t, x) +

t
∫

0

[

(i∇+ A)2ψ(s, x) − ψ(s, x) + |ψ|2ψ(s, x)
]

ds

=

t
∫

0

r̂
[

ψ(s, x)
]

dW (s, x) + ψ0(x) .

(3.24)

A more precise definition of the stochastic integral on the right-hand side of
(3.24) will be given later.

4 Discrete Approximation of the Stochastic Problem

To prove the main result about the existence of a solution for the stochastic
Ginzburg–Landau problem, we approximate this problem by the method of
lines. In this section, we study these approximations. We begin with the
approximation of the Wiener process defined in Sect. 3. For this we need
some preliminaries.

4.1 Definition of a projector Ph in L2(G)

For each point kh ∈ G0
h, k = (k1, . . . , kd), we define

Qk = {x = (x1, . . . , xd) ∈ G : h(kj −
1
2

) � xj < h(kj +
1
2

), j = 1, . . . , d} .
(4.1)

If kh ∈ ∂G−
h (−m) and kh �= ∂G−

h (±n) for each n �= m, we set

Qk = {x = (x1, . . . , xd) ∈ G :
xm ∈ [h(km − 1

2 ), h(km + 1)), xj ∈ [h(km − 1
2 ), h(km + 1

2 )), ∀j �= m} .
(4.2)

Analogously, for kh ∈ ∂G−
h (+m) such that kh �= ∂G−

h (±n) for all n �= m, we
set

Qk = {x = (x1, . . . , xd) ∈ G :
xm ∈ [h(km − 1), h(km + 1

2 )), xj ∈ [h(km − 1
2 ), h(km + 1

2 )), ∀j �= m} .
(4.3)

Remark 4.1. We note that the change from (4.1) to (4.2) consists of increasing
the interval xm ∈ [h(km − 1

2 ), h(km + 1
2 )) from the right and, in (4.3), this

interval is increased from the left.

For each kh ∈ ∂G−
h (−m)∩ ∂G−

h (−n), kh �= ∂G−
h (±p), if p �= n, p �= m, we

define
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Qk = {x = (x1, . . . , xd) ∈ G :
xj ∈ [h(kj − 1

2 ), h(kj + 1)), j = n,m; xp ∈ [h(kp − 1
2 ), h(kp + 1

2 ))} .
(4.4)

The sets Qk for kh ∈ ∂G−
h (+m) ∩ ∂G−

h (±n), kh �= ∂G−
h (±p) for p �= n,

p �= m, and for kh ∈ ∂G−
h (−m) ∩ ∂G−

h (+n), kh �= ∂G−
h (±p), p �= n, p �= m,

are defined analogously to (4.4), but with the changes noted in Remark 4.1.
Finally, if d = 3, then for each kh ∈ ∂G−

h (−m) ∩ ∂G−
h (−n) ∩ ∂G−

h (−p),
we set

Qk = {x = (x1, . . . , x3) ∈ G : xj ∈ (h(kj −
1
2

), h(kj + 1)), j = 1, 2, 3} .
(4.5)

In the other cases when kh ∈ ∂G−
h (±m)∩∂G−

h (±n)∩∂G−
h (±p), the set Qk is

defined analogously by taking into account Remark 4.1. Important properties
of the sets Qk defined in (4.1)–(4.5) are as follows:

a. for each k, � ∈ Z
p such that kh ∈ Gh, �h ∈ Gh, and k �= �, the relation

Qk ∩Q = ∅ is true;

b.
⋃

kh∈Gh

Qk = G.

For each set Qk defined in (4.1)–(4.5) we put

V (Qk) =
∫

Qk

dx .

Clearly, V (Qk) = hd for Qk defined in (4.1) and, if h is small enough, which
is the situation we consider, then

hd

4
� V (Qk) �

(

3
2

)2

hd for Qk defined by (4.2)–(4.4) (4.6)

and
hd

8
� V (Qk) �

(

3
2

)3

h3 for Qk defined by (4.5). (4.7)

The space L2,h ≡ L2,h(Gh) is defined as the set of lattice functions f =
{fk, kh ∈ Gh} supplied with the scalar product and norm given by

(f ,g)L2,h = hd
∑

kh∈Gh

fkgk and ‖f‖2L2,h = hd
∑

kh∈Gh

|fk|2 , (4.8)

respectively. We introduce the operator Ph as follows:

Ph : L2(G) → L2,h(Gh) such that (Phf)k = V −1(Qk)
∫

Qk

f(x) dx . (4.9)
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Then, taking into account (4.6) and (4.7), we obtain

‖Phf‖2L2,h = hd
∑

kh∈Gh

V −2(Qk)

∣

∣

∣

∣

∣

∣

∫

Qk

f(x) dx

∣

∣

∣

∣

∣

∣

2

� hd
∑

kh∈Gh

V −1(Qk)
∫

Qk

|f(x)|2 dx

� 8
∫

G

|f(x)|2 dx = 8‖f‖2L2(G) . (4.10)

4.2 Approximation of Wiener processes

Now let (Ω,Σ,m) be the probability space Ω � ω → W (t, x, ω) ∈ C, where
W (t, x, ω) is the complex-valued Wiener process introduced in Sect. 3.1; recall
that we defined C ≡ C(0,∞;L2(G)). In a similar manner, we let Ch denote
Ch = C(0,∞;L2,h(Gh)). Then the operator (4.9) defines the operator Ph :
C → Ch. Using this operator, we introduce the projection of the Wiener
process on the space Ch as follows:

W(t, ω) ≡ {Wk(t, ω), kh ∈ Gh} = PhW (t, ·, ω) , (4.11)

where W (t, ·, ω) = W (t, x, ω) is the initial Wiener process. We will show that
Wk(t, ω) is a scalar Wiener process and W(t, ω) is a vector-valued Wiener
process by calculating their probability distributions. Let Λ be the distribu-
tion defined by (3.1). Recall that, by definition (see [44]),2

PT
h Λ(Bh) ≡ P ∗

hΛ(Bh) = Λ(P−1
h Bh) ∀ Bh ∈ B(Ch) , (4.12)

where P−1
h Bh = {ω ∈ C : Phω ∈ Bh}. This definition is equivalent to the

expression
∫

Ch

F (W)P ∗
hΛ(dW) =

∫

C

F (PhW)Λ(dW) =
∫

Ω

F (PhW(·, ω))m(dω) (4.13)

for every F for which at least one integral from (4.13) is well-defined. Note
that the operator P ∗

h : L2,h(Gh) → L2(G) is the adjoint of the operator (4.9)
and is defined as

2 In addition to the standard notation P ∗
hΛ, we also introduce PT

h Λ in order to avoid
confusion in (4.15).
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(P ∗
h f)(x) = fh(x) =

∑

kh∈Gh

fkh
dV −1(Qk)XQk

(x), x ∈ G , (4.14)

where f = {fk} ∈ L2,h(Gh) and XQk
(x) is the characteristic function of the

set Qk, i.e., XQk
(x) = 1 for x ∈ Qk and XQk

(x) = 0 for x �= Qk.
Taking into account (3.2), (4.13), and (4.14), we have

˜PT
h Λ(v) ≡ ˜P ∗

hΛ(v) =
∫

Ch

e
i
∞
∫

0
(W(t),v(t))

L2,h dt
P ∗
hΛ(dW )

=
∫

Ch

e
i
∞
∫

0
(PhW)(t),v(t))

L2,h dt
Λ(dW ) =

∫

C

ei[W,P∗
hv]Λ(dW )

= e−
1
2B(P∗

hv,P∗
hv) .

(4.15)

By virtue of (3.4) and (4.14),

Bh(v,v) ≡ B(P ∗
hv, P ∗

hv) =

∞
∫

0

∞
∫

0

t ∧ s h2d
∑

jh∈Gh
kh∈Gh

Kjkvk(t)vj(s) dtds ,

(4.16)
where

Kjk = V −1(Qj)V −1(Qk)
∫

Qj

∫

Qk

K(x, y)XQj (x)XQk
(y) dxdy (4.17)

and K(x, y) is the kernel defined in (3.14). The corresponding correlation
operator K is defined by the equality

∫

G

∫

G

K(x, y)u(y)v(x) dxdy = (Ku, v)L2(G) ∀ u, v ∈ L2(G) . (4.18)

The equality K = K∗ implies that K(x, y) = K(y, x) and therefore Kjk = Kkj .
Formulas (4.15)–(4.18) show that W(t, ω) is defined. In other words, the ma-
trix ̂K = ‖hdKij‖ is reduced to diagonal form by the unitary transformation
̂Θ = ‖Θij‖, i.e.,

̂Θ∗
̂K ̂Θ = ̂L , where ̂L = ‖̂Lik‖ = ‖δjkμk‖ . (4.19)

Here, μk are the eigenvalues of the operator ̂K = ‖hdKij‖. Since (3.15) implies
the positive semidefiniteness of ̂K, the inequalities μk � 0 hold.

Lemma 4.1. The bound
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∑

jh∈Gh

μj � C

∫

G

K(x, x) dx <∞ (4.20)

holds, where K(x, y) is the kernel (3.14) and C > 0 does not depend on h.

Proof. By virtue of (4.17),

∑

j

μj = hd
∑

j

Kjj = hd
∑

j

V −2(Qj)
∫

Qj

∫

Qj

K(x, y)XQj (x)XQj (y) dxdy .

(4.21)
It is well known that

K(x, y) =
∞
∑

j=1

λjej(x)ej(y) , (4.22)

where ej(x), λj are the eigenfunctions and eigenvalues corresponding to
K(x, y). From this equality we have

|K(x, y)| �
∞
∑

j=1

λj |ej(x)| |ej(y)|

� 1
2

∞
∑

j=1

λj

(

|ej(x)|2 + |ej(y)|2
)

=
1
2

(

K(x, x) +K(y, y)
)

.

(4.23)

Substituting this inequality into (4.21), we find

∑

j

μj � hd
∑

j

V −1(Qj)
1
2

(

∫

Qj

K(x, x)Xj(x) dx +
∫

Qj

K(y, y)Xj(y) dy
)

� C

∫

G

K(x, x) dx <∞ .

(4.24)
The lemma is proved ��

We set

ṽ(t) = Θ∗v(t) and ˜W(t, ω) = Θ∗W(t, ω) . (4.25)

Since Θ∗ = Θ−1, we have, by (4.15), (4.16), and (4.19), that

˜P ∗
hΛ(v) = e

− 1
2

∞
∫

0

∞
∫

0
t∧s( ̂Kv(t),v(s))

L2,h dtds

= e
− 1

2

∞
∫

0

∞
∫

0
t∧s( ̂KΘṽ(t),Θṽ(s))

L2,h dtds
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= e
− 1

2

∞
∫

0

∞
∫

0
t∧s hd ∑

k

μkṽk(t)ṽk(s) dtds

=
∏

k

e
−hd

2

∞
∫

0

∞
∫

0
t∧sμkvk(t)ṽk(s) dtds

=
∏

k

∫

Ω

e
ihd

∞
∫

0

˜Wk(t,ω)ṽk(t)dt
m(dω) .

Hence,

∫

Ω

e
i
∞
∫

0
(˜W(t,ω),ṽ(t))dt

m(dω) =
∏

k

∫

Ω

e
ihd

∞
∫

0

˜Wk(t,ω)ṽk(t)dt
m(dω) . (4.26)

This equality implies that the scalar Wiener processes ˜Wk(t, ω) for kh ∈
Gh are independent. For the definition of independence of scalar Wiener
processes, see [26, p. 55].

4.3 The Ito integral

Together with the probability space (Ω,Σ,m) and the Wiener process W (t, x)
introduced in Sect. 3, we consider the increasing filtration Σt (see [26, p. 52]),
i.e., a collection of σ-fields Σt ⊂ Σ, defined for each t, such that Σs ⊂ Σt

for t � s. Also, we assume that W (t, ·) is Σt-measurable for every t and
W (t+h, ·)−W (t, ·) is independent on Σt. The last statement means that for
every A ∈ Σt and B ∈ B(L2(G))

m
(

A∩{W (t+h, ·)−W (t, ·) ∈ B}
)

= m(A)m
(

{W (t+h, ·)−W (t, ·) ∈ B}
)

.

Then W (t, x) is called the Wiener process relative to the filtration Σt and
the pair (W(t, ·), Σt) is called a Wiener process.

The operator Ph defined in (4.9) generates the operator Ph : B(L2(G)) →
B(L2,h(Gh)) and therefore generates the operator of filtrations

Ph : Σt → Σh,t , (4.27)

where, by definition, Bh ∈ Σh,t if there exists a set B ∈ Σt such that Bh =
PhB. It is clear that the pair (W(t), Σh,t) is a Wiener process.

Recall (see [26, p. 66]) that a vector-valued function f(t, ω) given on
(0,∞) × Ω is called Σh,t adapted if it is Σh,t-measurable for each t > 0.
By Υ we denote the set of all Σh,t adapted vector-valued functions which are
B(0,∞)⊗Σh measurable (recall that Σh = PhΣ) and satisfy
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E

∞
∫

0

f2(t) dt ≡
∫

Ω

∞
∫

0

f(t, ω)2 dt m(dω) <∞ ,

where we have used the definition of the mathematical expectation. Here
f = (f1, . . . , fK) where K is the number of points in the grid kh belonging
to Gh: K = #{k ∈ Z

d : kh ∈ Gh}.
It is well known (see [26, p. 68]) that the Ito integral of a Σh,t-adapted

function is defined as follows:

∞
∫

0

̂f (t)dW(t) = lim
∞
∑

j=0

f(tj)(W(tj+1)−W(tj)) , (4.28)

where supj |tj+1 − tj | → 0 and this limit is understood in the sense of the
space L2(Ω,m). Here, in accordance with (3.20) and (3.21),

̂f(t)dW =
K
∑

k=1

(Re fk(t)dRe Wk(t) + iImfk(t)dImWk(t)).

By the definition of Σh,t-adaptiveness of f(t), we have, since EW(t) = 0,

E

∞
∫

0

̂f(t)dW(t) = lim
∞
∑

i=0

E
(

̂f (tj)(W(tj+1)−W(tj))
)

=
∞
∑

i=0

E
(

̂f (tj)
)

E ((W(tj+1)−W(tj))) = 0 .

(4.29)

4.4 The discrete stochastic system

We consider the following discrete analogue of the stochastic Ginzburg–
Landau equation given in (3.22):

dψk(t) +
{

(i∇h + Ak)2ψk(t)− ψk(t) + |ψk(t)|2ψk(t)
}

dt

= r̂
[

ψk(t)
]

dWk(t) ,
(4.30)

where Wk(t) = Wk(t, ω) are the scalar Wiener processes introduced in
Sect. 4.2, dWk(t) is white noise, ψ(t) = {ψk(t), kh ∈ Gh} is the unknown
stochastic vector-valued process that we seek, and r(λ) is the function given
in (3.19). As was the case for (3.22), the right-hand side of (4.30) is inter-
preted in accordance with (3.20) and (3.21). If ψk(t) = Reψk(t) + iImψk(t)
and dWk(t) = dReWk(t) + idImWk(t), then, by definition, we have

r̂
[

ψk(t)
]

dWk(t) = r(Re ψk(t))dReWk(t) + ir(Imψk(t))dIm Wk(t) . (4.31)
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We assume that the solution ψ(t) = {ψk(t)} of the system (4.30) satisfies the
initial condition (2.12) and the boundary condition (2.23).

The problem (4.30), along with (2.12) and (2.23), is the differential form
of the Ito system that by definition is equivalent to the integral form

ψk(t) = ψ0,k −
t
∫

0

{

(i∇h + Ak)2ψk(τ) − ψk(τ) + |ψk(τ)|2ψk(τ)
}

dτ

+

t
∫

0

r̂
[

ψk(τ)
]

dWk(τ) kh ∈ Gh

(4.32)

combined with the boundary condition (2.23). The Ito integral from (4.32)
is defined by (4.28).

4.5 The Ito formula

To derive a priori estimates, we use the Ito formula written in convenient
form; it is formulated as follows. Let (W(t), Σh,t) be a Wiener process, where
W(t) is defined by (4.11) and Σh,t is defined by (4.27). Suppose that σ(t, ω)
is a K × K-matrix-valued function3 with elements σk,(t, ω) that are 2 × 2
real-valued matrices, i.e., σk,(t, ω) = σk,,i,j(t, ω), i, j = 1, 2. The functions
σk,,i,j(t, ω) are assumed to be Σh,t-adapted random functions, B(0,∞)×Σh

measurable, and satisfy

E

∞
∫

0

|σk,(t, ω)|2 dt ≡
∫

Ω

∞
∫

0

|σk,(t, ω)|2|dt m(dω) <∞ .

We set, by definition,

σ(t)d{W}(t) =
{
∑

h∈Gh

σ̂k,(t)dW(t), kh ∈ Gh

}

,

where

σ̂k,dW =
(

σk,,1,1dReW + σk,,1,2dImW

)

+ i
(

σk,,2,1dReW + σk,,2,2dImW

)

.

3 Recall that K = #{k ∈ Zd : kh ∈ Gh}.
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Let b(t, ω) be a K-dimensional vector-valued random process (with com-
plex components bi(t, ω)) that is jointly measurable in (t, ω), Σh,t-adapted,

and

T
∫

0

|bs| dx <∞ a.s.

Definition 4.2. A continuous, Σh,t-adapted C
K-valued random process

ψ(t, ω) = (ψ1, . . . , ψK) has the stochastic differential

dψ(t) = σ̂(t)dW(t) + b(t)dt (4.33)

if and only if, a.s. for all t,

ψ(t) = ψ0 +

t
∫

0

σ̂(s)dW(s) +

t
∫

0

b(s) ds . (4.34)

Theorem 4.3 (Ito’s formula). Let u(x) be a real-valued, twice continuously
differentiable function of x ∈ C

K , and let ψ(t) be the random process from
Definition 4.2. Then u(ψ(t)) has a stochastic differential and

du(ψ(t)) =
∑

j

∂u(ψ(t)
∂ψj

dψj +
∂u(ψ(t)

∂ψj
dψj

+
1
2

∑

j,n

(∂2u(ψ(t))
∂ψj∂ψn

dψjdψn +
∂2u(ψ(t))
∂ψj∂ψn

dψjdψn

+
∂2u(ψ(t))
∂ψj∂ψu

dψjdψn +
∂2u(ψ(t))
∂ψj∂ψn

dψjdψn

)

. (4.35)

In addition to calculating the products dψjdψn, dψjdψn, dψjdψn, and
dψjdψn, one has to take into account the following rules for calculating prod-
ucts of independent Wiener processes ˜Wj(t) ≡ Re ˜Wj + iIm ˜Wj :

dRe ˜Wj(t)dRe ˜Wk(t) = dIm ˜Wj(t)dIm ˜Wk(t) = μkδjkdt

dRe ˜Wj(t)dt = dIm ˜Wj(t)dt = 0, dRe ˜Wj(t)dIm ˜Wk(t) = 0 .

(4.36)

The proof of the Ito formula is given in [26] for the case of real-valued
functions. One can easily reduce the case of complex-valued functions to that
of real-valued functions by treating C

K as R
2K .

To derive a priori estimates, we will need the following corollary of (4.36).
(Below we will use the definition (4.31).)

Lemma 4.4. The following relationships hold:
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(

r̂[ψk]dWk

)2 =
(

r̂[ψk]dWk

)2 =
(

r2(Reψk)− r2(Imψk)
)
∑

j

|Θkj |2 μj (4.37)

and

(r̂[ψk]dWk)
(

r̂(ψk)dWk

)

=
(

r2(Reψk) + r2(Imψk)
)
∑

j

|Θkj |2 μj , (4.38)

where μk are the eigenvalues of the correlation operator (4.17) for the Wiener
process W(t) and Θkj are elements of the unitary matrix given in (4.19) that
reduces (4.17) to diagonal form.

Proof. We begin from the proof of the following corollaries of (4.36):

(dRe Wk)2 = (dIm Wk)2 =
∑

j

|Θkj |2μjdt and (dRe Wk)(dIm Wk) = 0 .

(4.39)
By virtue of (4.25), Wk =

∑

j

Θkjd˜Wj and therefore, using (4.36), we obtain

(dReWk)2 =
(
∑

j

(ReΘkjdRe ˜Wj − ImΘkjdIm ˜Wj)
)2

=
∑

j

(

(ReΘkj)2 + (ImΘkj)2
)

μjdt =
∑

j

|Θkj |2μjdt .

The second and third equalities in (4.39) are proved in the same manner.
By (4.31), (4.36), and (4.39), we have

(

r̂[ψk]dWk

)2
=
(

r(Re ψk)dReWk + ir(Im ψk)dImWk

)2

=r2(Reψk)(dReWk)2 − r2(Imψk)(dIm Wk)2

+ 2ir(Reψk)r(Im ψk)dRe WkdImWk

=
(

r2(Reψk)− r2(Imψk)
)
∑

j

|Θkj |2μjdt .

This equality and the fact that its right-hand side is a real function prove
(4.37). The relation (4.38) is proved analogously. ��

5 A Priori Estimates

In order to prove the solvability not only of the discrete stochastic system
(4.30), (2.12), and (2.23), but also of the main stochastic problem (3.22),
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(2.2), and (2.3), we have to establish a number of a priori estimates for the
system (4.30).

5.1 Application of the Ito formula

We take the function u(ψ) from Theorem 4.3 as

u(ψ) = hd
∑

hk∈Gh

|ψk(t)|2p ≡ ‖ψ(t)‖2p
L2p,h , (5.1)

where p = 1 or p = 2. Applying (5.1) in the Ito formula with the stochastic
differential du defined in (4.35) and using (4.37) and (4.38), we obtain

d‖ψ(t)‖2p
L2p,h = hd

∑

k

{

p|ψk|2p−2
(

ψkdψk + ψkdψk
)

+
1
2
p · (p− 1)|ψk|2(p−2)

(

ψ
2

kdψkdψk + ψ2
kdψkdψk

)

+p2|ψk|2(p−1)dψkdψk

}

= hd
∑

k

{

p|ψk|2p−2
{

(

−ψk(i∇+ Ak)2ψk + 2|ψk|2 − 2|ψk|4
)

dt

+ ψk r̂[ψk]dWk − ψk(i∇h + Ak)2ψkdt

+ ψk r̂[ψk]dWk

}

+
1
2
p(p− 1)|ψk|2(p−2)

(

ψ
2

k

{(

−(i∇h + Ak)2ψk + ψk − |ψk|2ψk
)

dt + r̂[ψk]dWk

}2

+ ψ2
k

{(

−(i∇h + Ak)2ψk + ψk − |ψk|2ψk
)

dt + r̂[ψk]dWk

}2)

+ p2|ψk|2(p−1)
{

(

−(i∇h + Ak)2ψk + ψk − |ψk|2ψk
)

dt

+ r̂[ψk]dWk

{(

−(i∇h + Ak)2ψk + ψk − |ψk|2ψk
)

dt + r̂[ψk]dWk

}}

so that
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d‖ψ(t)‖2p
L2p,h

= hd
∑

k

p|ψk|2p−2
{

(

−2Re (ψk(i∇h + Ak)2ψk) + 2|ψk|2 − 2|ψk|4
)

dt

+ 2Re (ψk r̂[ψk]dWk)
}

+ hd
∑

k

{

p(p− 1)|ψk|2(p−2)Re (ψ2
k)(r2(Reψk)

− r2(Im ψk))
∑

j

|Θkj |2μj

+ p2|ψk|2(p−1)
(

r2(Re ψk) + r2(Im ψk)]
)
∑

j

|Θkj |2μj
}

dt ,

(5.2)
where

∑

k

=
∑

kh∈Gh

. Applying (2.14) with φk = |ψk|2p−2ψk to the first term

on the right-hand side of (5.2) results in

−hd
∑

kh∈Gh

2p|ψk|2p−2Re
(

ψk(i∇h + Ak)2ψk
)

= −hd
˜

∑

jk

2pRe
{

(

(i∂+
j,h + Ajk)ψk, (i∂+

j,h + Ajk)(|ψk|2p−2ψk)
)

}

,

(5.3)

where, for brevity, we use the following notation:

˜

∑

jk

(

(i∂+
j,h + Ajk)ψk, (i∂+

j,h + Ajk)φk
)

=
d
∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

(

i∂+
j,hψk + Ajkψk

)(

i∂+
j,hφk + Ajkφk

)

.

(5.4)

Below, we will also use the notation ˜

∑

jk

when in (5.4), Ak = {Ajk} is

absent. Moreover, in the next subsection we use the following notation which
is closely related to (5.4):

‖∇+
hψ‖2L2,h =

˜

∑

j,k

|∂+
j,hψk|2 ≡

d
∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

|∂+
j,hψk|2 . (5.5)
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5.2 A priori estimate for p = 1

The following assertion holds.

Theorem 5.1. Let a random process {ψ(t)} = {ψk} have the stochastic dif-
ferential (4.30). Then ψ satisfies the estimate

E‖ψ(t)‖2L2,h + E
t
∫

0

(

‖∇+
hψ(τ)‖2L2,h + ‖ψ(τ)‖4L4,h

)

dτ

� C2

(

E‖ψ0‖2L2,h + 1
)

eC1t ,

(5.6)

where the constants C1 and C2 do not depend on h.

Proof. The equality (5.3) for p = 1 can be rewritten as follows:

−hd
∑

k

2Re
{

ψk(i∇h + Ak)2ψk
}

= −hd
˜

∑

jk

2
∣

∣

∣(i∂+
j,h + Ajk)ψk

∣

∣

∣

2

.

Here and in the sequel, we use the notation
∑

k

=
∑

kh∈Gh

as well as the notation

(5.4). We substitute this equality into the right-hand side of (5.2) to obtain

d‖ψ‖2L2,h

= −2hd

⎡

⎣

˜

∑

jk

∣

∣

∣(i∂+
j,h + Ajk)ψk)

∣

∣

∣

2

−
∑

k

(

|ψk|2 − |ψk|4
)

⎤

⎦ dt

+2hdRe
∑

k

(ψk r̂[ψk]dWk)

+hd
∑

k

(

r2(Reψk) + r2(Imψk)
)
∑

j

|Θkj |2μj dt .

(5.7)

By virtue of the definition (3.19) for the function r(λ) and (3.20), we have

|r[ψk]|2 ≡ |r(Re ψk)|2 + |r(Im ψk)|2 � C2(1 + |ψk(t)|)2 . (5.8)

An equivalent integral form of the Ito differential is written as

‖ψ(t)‖2L2,h + 2

t
∫

0

hd

⎛

⎝

˜

∑

jk

|(i∂+
j,h + Ajk)ψk|2 +

∑

k

|ψk|4
⎞

⎠ dτ

− 2

t
∫

0

hd
∑

k

Re (ψkr̂[ψk]dWk)
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=

t
∫

0

(

hd
∑

k

(2|ψk|2 +
∑

j

|Θkj |2μj |r[ψk]|2
)

dτ + ‖ψ0‖2L2,h . (5.9)

Thus, assuming that ψ(t) is a Σh,t adaptive vector function, we apply the
mathematical expectation to (5.9). Then, taking into account (5.8), (4.29),
the bound

∑

j

|Θkj |2μj �
∑

j

μj , and (4.23), we obtain

E‖ψ(t)‖2L2,h + 2E

t
∫

0

hd

⎛

⎝

˜

∑

jk

|(i∂+
j,h + Ajk)ψk(t)|2 +

∑

k

|ψk(t)|4
⎞

⎠ dτ

� E

t
∫

0

C
(

‖ψ(t)‖2L2,h + 1
)

dτ + E‖ψ0‖2L2,h .

(5.10)
Using the fact that

|(i∇+
h + Ak)ψk|2 � |∇+

h ψk|2 − C|ψk|2 , (5.11)

we obtain from (5.10) that

E‖ψ(t)‖2L2,h + 2E
t
∫

0

(

‖∇+
hψ‖2L2,h + ‖ψ(t)‖4L4,h

)

dτ

� C1

(

E
t
∫

0

‖ψ(t)‖2L2,h dτ + t

)

+ E‖ψ0‖2L2,h .

(5.12)

Note that the term |ψk|2 from (5.11) with kh ∈ ∂G+
h can be estimated by

‖ψ‖L2,h by virtue of (2.23) and the bounds following that inequality. Now,
by applying the Gronwall inequality to (5.12), we finally obtain the desired
estimate (5.6). ��

5.3 A priori estimate for p = 2

We now establish the following bound.

Theorem 5.2. Let a random process ψ(t) = {ψk} have the stochastic differ-
ential (4.30). Then ψ satisfies the estimate

E(‖ψ(t)‖4L4,h + E

t
∫

0

⎛

⎝‖ψ(t)‖6L6,h + hd
˜

∑

j,k

|∂+
j,hψk|

2|ψk|2
⎞

⎠ dτ
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� C1

(

1 + E‖ψ0‖4L4

)

eCt , (5.13)

where C and C1 do not depend on h.

Proof. Taking into account that

ψk+ej − ψk = h∂+
j ψk , (5.14)

we obtain

|ψk+ej |2ψk+ej
− |ψk|2ψk = |ψk+ej |2

(

ψk+ej
− ψk

)

+ ψk
(

|ψk+ej |2 − |ψk|2
)

= |ψk+ej |2h∂+
j ψk + ψk

(

ψk+ej
(ψk+ej − ψk) + ψk(ψk+ej

− ψk)
)

and therefore

Re
{

(

∂+
j ψk

)

∂+
j (|ψk|2ψk)

}

= |ψk+ej |2|∂+
j ψk|2 + Re ((∂+

j ψk)2ψkψk+ej
) + |ψk|2|∂+

j ψk|2

� |∂+
j ψk|2

(

|ψk+ej |2 + |ψk|2 − |ψk||ψk+ej |
)

� 3
4
|∂jψk|2|ψk|2 .

(5.15)

In addition,

Im
∑

j

(

Ajk(∂+
j ψk)|ψk|2ψk

)

� −|Ak||∇+ψk||ψk|3

� −Cε|ψk|4 − ε|∇+ψk|2|ψk|2
(5.16)

so that

Im
(

ψk(Ak,∇+
h )(|ψk|2ψk)

)

= Im
(

ψk
∑

j

Ajk
h

(|ψk+ej |2ψk+ej
− |ψk|2ψk)

)

= Im
(

ψk
∑

j

Ajk
h

(

(ψk+ej − ψk)ψ
2

k+ej

+ ψk(ψk+ej
− ψk)(ψk+ej

+ ψk)
)

)

(5.17)
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= Im
(
∑

j

Ajk
(

(∂+
j ψk)ψkψ

2

k+ej
+ ψ2

k∂
+
j ψk(ψk+ej

+ ψk)
)

)

� −C
∑

j

|∂+
j ψk||ψk|

(

|ψk+ej |2 + |ψk||ψk+ej |+ |ψk|2
)

� −ε
∑

j

|∂+
j ψk|2|ψk|2 − Cε

∑

j

(

|ψk+ej |4 + |ψk|4
)

.

Using (5.15)–(5.17), we obtain

Re
(

(i∇+
h + Ak)ψk, (i∇+

h + Ak)(|ψk|2ψk)
)

= Re (∇+
hψk,∇

+
h (|ψk|2ψk))− Im (∇+

h ψk, Ak|ψk|
2ψk)

+Im (ψk(Ak∇+
h )(|ψk|2ψk)) + |Ak|2|ψk|4

� 3
4

d
∑

j=1

|∂+
j ψk|2|ψk|2 − Cε(|ψk|4 +

d
∑

j=1

|ψk+ej |4)− ε|∇+
hψk|2|ψk|2 .

(5.18)
Now we substitute (5.18) into (5.3) and subsequently use this inequality in
(5.2). As a result, taking into account (5.8), we obtain the inequality

d‖ψ‖4L4,h � hd
˜

∑

jk

(

−(3− 4ε)|∂+
j,hψk|2|ψk|2

)

dt

+
∑

k

{

C|ψk|4 + ε|ψk|2 − 4|ψk|6
}

dt

+
∑

k

(

2Re (ψk r̂[ψk]dWk) + C
(

|ψk|2 + |ψk|4
)

dt
)

.

(5.19)

Rewriting (5.19) in integral form and taking the mathematical expectation
of the obtained inequality, we obtain the estimate

E‖ψ(t)‖4L4,h + E

t
∫

0

hd

⎛

⎝

˜

∑

jk

|∂+
j,hψk|2|ψk|2 +

∑

k

|ψk|6
⎞

⎠ dτ

� CE

t
∫

0

hd
∑

k

(

|ψk|4 + |ψk|2 + 1
)

dτ + E‖ψ0‖4L4 .

(5.20)
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Applying the bound (5.6) to the right-hand side of (5.20) and applying after
that the Gronwall inequality, we obtain the final estimate (5.13). ��

Note that, in addition to the estimates (5.6) and (5.13) corresponding to
the cases p = 1 and p = 2, one can prove by induction analogous estimates
for arbitrary natural p; specifically, we have

E‖ψ(t)‖2p
L2p,h +

t
∫

0

⎛

⎝‖ψ(τ)‖2(p+1)

L2(p+1),h + hd
˜

∑

jk

|∂+
j,hψk|

2|ψk|2(p−1)

⎞

⎠ dτ

� Cp
(

1 + E‖ψ0(t)‖p
Lp,h

)

eCt .
(5.21)

We will not prove the estimate (5.21) for p � 3 because, for our purposes,
the estimates (5.6) and (5.20) will suffice.

5.4 Auxiliary Wiener process

We will need a more general projection of the initial Wiener process than
(4.11). Roughly speaking, the new projection contains not only coordinates
from (4.11), but also their difference gradients at points kh. To be precise, in
a manner similar to (4.9), we define for, f(x) ∈ L2(G),

p0
k(f) = V −1(Qk)

∫

Qk

f(x) dx, for kh ∈ Gh , (5.22)

p0
k(f) for kh ∈ ∂G+

h is calculated by p0
k(f) with kh ∈ ∂G−

h using (2.23) ,
(5.23)

and

pjk(f) = i
p0
k+ej

(f)− p0
k(f)

h
+ Ajkp

0
k(f) for kh ∈ Gh ∪ ∂G+

h (−j) (5.24)

for j = 1, . . . , d. We denote

̂Gh = {(j, k) : j = 0, kh ∈ Gh; j = 1, . . . , d, kh ∈ Gh ∪ ∂G+
h (−j)}

and introduce the projector

PA
h : L2(G) → L2(̂Gh); PA

h (f) = {pjk(f), (j, k) ∈ ̂Gh} , (5.25)

where the scalar product in L2(̂Gh) is defined in the standard way:

for u = {ujk, (j, k) ∈ ̂Gh}, v = {vjk, (j, k) ∈ ̂Gh},
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(u, v)L2(̂Gh) = hd
∑

(j,k)∈̂Gh

ujkv
j
k .

Note that the components ujk of u ∈ L2( ̂Gh) with j �= 0 are expressed via the
components u0

m by the formula analogous to (5.24):

ujk =
u0
k+ej

− u0
k

h
+ Ajku

0
k for j = 1, . . . , d, kh ∈ Gh ∪ ∂G+

h (−j) .

We can calculate the operator (PA
h )∗ : L2(̂Gh) → L2(G) which is adjoint to

(5.25) using (2.14) which is summation by parts:

(PA
h f, g)

L2(̂Gh)
= hd

∑

(j,k)∈̂Gh

pjk(f)gjk

= hd
˜

∑

jk

(i∂+
j,h + Ajk)p0(f)(i∂+

j,h + Ajh)g0
k + hd

∑

kh∈Gh

p0
k(f)g0

k

= hd
∑

kh∈Gh

p0
k(f)

(

g0
k + (i∇−

h + Ak, i∇+
h + Ak)g0

k

)

(5.26)
so that
(

(PA
h )∗g

)

(x) =
∑

kh∈Gh

hdV −1(Qk)
(

g0
k + (i∇−

h + Ak, i∇+
h + Ak)g0

k

)

Xk(x) .

(5.27)
Analogous to (4.11), we introduce the vector-valued process

AW(t, ω) = PA
h W (t, ·, ω) = {pjk(W (t, ·, ω) ≡ AW j

k (t), (j, k) ∈ ̂Gh} . (5.28)

Here, p0
k(W (t, ·, ω)) = W k(t, ω) for kh ∈ Gh, where W k(t, ω) is the Wiener

process from (4.11). In order to define pjk(W (t, ·, ω)) by (5.24), one has to
know W k(t, ω) with kh ∈ ∂G+. These Wiener processes are defined by for-
mula (2.23) via Wm(t, ω) with mh ∈ Gh. Repeating the calculation in (4.13)
and (4.15), where the projector (4.9) is changed to the projector (5.25) and
L2h is changed to L2( ̂Gh), we find that the process (5.28) is a vector-valued
Wiener process. Moreover,

B
(

(PA
h )∗v, (PA

h )∗v
)

=

∞
∫

0

∞
∫

0

t ∧ s

∫

G×G

K(x, y)(PA
h )∗(v(s))(y)(PA

h )∗(v(t))(x) dxdydsdt
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=

∞
∫

0

∞
∫

0

t ∧ s
∑

(j1,k1)∈̂Gh

∑

(j2,k2)∈̂Gh

Kj1,j2k1,k2
vj1k1(t)vj2k2(s) dtds , (5.29)

where K0,0
j,k are defined by (4.17) with the upper indices (0,0) omitted,

Kj1,j2k1,k2
=
(

i∂+
j1,h

+ Aj1k1
)(

i∂+
j2,h

+ Aj2k2
)

K0,0
k1,k2

, (j, k) ∈ ̂Gh, j �= 0, � = 1, 2 ,
(5.30)

and Kj1,0k1,k2
and K0,j2

k1,k2
are defined similarly (correspondingly, the second or

first operator
(

i∂+
j,h + Ajk

)

in (5.30) should be omitted). It is clear that

s ∧ t Kj1,j2k1,k2
=
∫

AW j1
k1

(t, ω)AW j2
k2

(s, ω)m(dω) , (5.31)

where the scalar Wiener processes AW j
k (t, ω) are defined in (5.28). Defi-

nitions (4.17), (5.30), and (5.31) of the operator AK = {hdKj1,j2k1,k2
} imply

that Kj1,j2k1,k2
= Kj2,j1k2,k1

and therefore there exists a unitary transformation

Aθ = {θj1,j2k1,k2
} (i.e., Aθ∗ ≡ {θj2,j1k2,k1

} = (Aθ)−1) that reduces the operator AK
to diagonal form:

Aθ∗AKAθ = AL, where AL = {Lj1,j2k1,k2
} = {δj1,j2δk1,k2μj1k1} . (5.32)

We set
˜AW(t, ω) = Aθ∗AW(t, ω) = {˜W j

k (t, ω)} . (5.33)

Then calculations analogous to (4.25) and (4.26) show that the scalar Wiener
processes ˜W j

k (t, ω) are independent and therefore, for their differentials, the
following Ito table analogous to (4.36) is true:

⎧

⎪

⎨

⎪

⎩

dRe˜W j1
k1

(t)dRe˜W j2
k2

(t) = dIm˜W j1
k1

(t)dIm˜W j2
k2

(t) = μj1k1δj1,j2δk1,k2dt

dRe˜W j
k (t)dt = dIm W j

k (t)dt = dReW j1
k1

(t)dIm W j2
k2

(t) = 0 .

(5.34)
Now we are in a position to prove the following analogue of (4.39).

Lemma 5.3. For scalar Wiener processes AW j
k (t) defined in (5.28) the fol-

lowing relationships hold:

(dReAW j
k )2 = (dImAW j

k )2 =
∑

(m,)∈̂Gh

μm|θ
j
km|

2dt, dReAW j
k dImAW j

k = 0 .

(5.35)

Proof. By virtue of (5.33),
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AW j
k =

∑

(,m)∈̂Gh

θj,k,m
˜W 
m . (5.36)

Therefore, taking into account (5.34) and the fact that the transformation
Aθ = ‖θj,lk,m‖ is unitary, we obtain

(

dReAW j
k

)2 =
(
∑

,m

[

Re θj,k,mdRe˜W 
m − Im θj,k,mdIm˜W 

m

])2

=
∑

,m

∑

1,m1

(

Re θj,k,mRe θj,1k,m1
dRe˜W 

mdRe˜W 1
m1

+Im θj,k,mIm θj,1k,m1
dIm˜W 

mdIm˜W 1
m1

)

=
∑

,m

μm|θ
j,
k,m|2 dt .

(5.37)

The other relations in (5.35) are proved in a similar manner. ��

Lemma 5.4. The following equalities hold:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dReAW j
kdReAW 0

k = dIm AW j
kdImAW 0

k =
∑

l,m

μmRe
(

θj,k,mθ0,
k,m

)

dt

dReAW j
kdImAW 0

k = 0 ,
(5.38)

where j = 1, . . . , d.

Proof. Similar to (5.37), we find

dReAW j
kdReAW 0

k =
∑

,m

μm

(

Re θj,k,mRe θ0,
k,m + Im θj,k,mIm θ0,

k,m

)

dt

=
∑

,m

μmRe
(

θj,k,mθ0,
k,m

)

dt .

(5.39)

All the other equalities from (5.38) are proved in a similar manner. ��

We will need the following lemma.

Lemma 5.5. Let μm denote the eigenvalues from (5.32). Then μm � 0 and
the following estimates hold:

∑

(,m)∈̂Gh

μm|θ
j,
k,m|

2 �
∑

(,m)∈̂Gh

μm , (5.40)
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∑

(,m)∈̂Gh

μmRe
(

θj,k,mθ0,
j,m

)

�
∑

(,m)∈̂Gh

μm . (5.41)

Proof. To show that μm � 0, we have to prove that the operator AK =
{hdKj1,j2k1,k2

} is positive semi-definite. Let v = {vjk} ∈ L2(̂Gh). Then, by virtue
of (5.30) and (2.14), we obtain

h2d
∑

(j,k)∈̂Gh

∑

(,m)∈̂Gh

Kj,k,mvmvjk = h2d
∑

kh∈Gh
mh∈Gh

K0,0
k,mv0

mv0
k

+h2d˜
∑

j,k

˜

∑

,m

(

(i∂+
j,h + Ajk)(i∂+

,h + Am)K0,0
k,m

)

(i∂+
,h + Am)v0

m(i∂+
j,h + Ajk)v0

k

+h2d˜
∑

j,k

∑

mh∈Gh

(

(i∂+
jh + Ajk)K0,0

k,mv0
m(i∂+

j,h + Ajk)v0
k

+h2d
∑

kh∈Gh

˜

∑

,m

(i∂+
,h + Am)K0,0

k,m(i∂+
,h + Am)v0

mv0
k

= h2d
∑

kh∈Gh

∑

mh∈Gh

K0,0
k,m

(

1 + (i∇m + Am)2
)

v0
m

(

1 + (i∇k + Ak)2
)

v0
k

=
∫

G×G

K(x, y)
(

(PA
h )∗v

)

(y)(PA
h )∗v

)

(x) dxdy � 0

(5.42)

because the positive semi-definiteness of the operator K was assumed in (3.5).
To prove (5.40), it is enough to note that since the matrix {θj,k,m} is unitary,
we have

∑

(,m)∈̂Gh

∣

∣θj,k,m
∣

∣

2 =
∑

(,m)∈̂Gh

θj,k,m
(

θ,jm,k)∗ = 1

and therefore |θj,k,m|2 � 1 for each (j, k), (�,m). Thus

∣

∣Re
(

θj,k,mθ0,
k,m

)∣

∣ �
∣

∣θj,k,m
∣

∣

∣

∣θ0,
k,m

∣

∣ � 1

which implies (5.40) and (5.41). ��

Lemma 5.6. The following bound is valid:

∑

(,m)∈̂Gh

μm � C
(

∫

G

K(x, x) dx +
d
∑

j=1

∫

G

∂xj∂yjK(x, y)
∣

∣

∣

y=x
dx + 1

)

, (5.43)
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where the constant C does not depend on h and K(x, x) is the kernel (3.14).

Proof. By virtue of (4.17) and (5.30), we have
∑

(j,k)∈̂Gh

μjk = hd
∑

(j,k)∈̂Gh

Kj,jk,k = I1 + I2 , (5.44)

where
I1 = hd

∑

k

K0,0
k,k, I2 = hd

˜

∑

jk

Kj,jk,k . (5.45)

By virtue of Lemma 4.1, we have

I1 =
∑

jh∈Gh

μj � C

∫

G

K(x, x) dx . (5.46)

From (5.30), we have

I2 = hd
˜

∑

(j,k)

(

(

i∂+
j,h + Ajk

)(

i∂+
j,h + Ajm

)

K0,0
k,m

)∣

∣

∣

m=k
. (5.47)

Note that, in fact, the summation in (5.47) is performed over (j, k) such that
kh ∈ Gh and (k+ ej)h ∈ Gh because, by virtue of (5.23) and (2.15), all other
summands in (5.47) vanish. Therefore, taking into account that K0,0

k,m = Kkm
is defined by (4.17) and after changing variables in the integrals (4.17) in the
appropriate terms connected with i∂+

j,hK
0,0
k,m, we obtain

I2 =
∫

G0(h)

(

i∂−
j,h(x) + Aj(x)

)(

i∂−
j,h(y) + Aj(y)

)

K(x, y)
∣

∣

y=x
dx + J . (5.48)

Here, ∂−
j,h(x)K(x, y) =

(

K(x, y)−K(x−ejh, y)
)

/h, ∂−
j,h(y)K(x, y) =

(

K(x, y)−
K(x, y − ejh)

)

/h, and G0(h) =
∑

kh∈G0
h

Qk, where G0
h = Gh\∂−Gh (see Def-

inition 2.1 in Sect. 2.2), and Qk are the sets are defined in (4.1). The term
J arises because of the summation of some terms connected with K0

k,k with
kh ∈ ∂−Gh. It is easy to see that

|J | � C , (5.49)

where C does not depend on h. Using the representation

K(x, y) =
∑

r

λrer(x)er(y),

we obtain from (5.48) and (5.49)
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|I2| �
∑

r

λr

∫

G0(h)

|
(

i∇−
h + A(x)

)

er(x)|2 dx + |J |

� C
(

1 +
∑

r

λr

∫

G0(h)

(

|∇−
h e(x)|2 + |e(x)|2

)

dx
)

� C
(

1 +
∑

r

λr

∫

G

(

|∇e(x)|2 + |e(x)|2
)

dx
)

,

(5.50)

where the last inequality estimating the finite difference by the derivative can

be obtained by using the elementary equality u(x+h)−u(x) =
x+h
∫

x

u′(y) dy.

The bounds (5.46) and (5.50) imply (5.43). ��

5.5 A priori estimates for Δhψk

In addition to (5.1) and (5.5), we introduce the notation

‖Δhψ‖2L2,h =
∑

kh∈Gh

|Δhψk|2 , (5.51)

where the values ψk with kh ∈ ∂G+
h (we need these values to define Δhψk)

are defined with the help of (2.23). We will also need the following estimate.

Theorem 5.7. Let a random process ψ(t) = {ψk} have the stochastic differ-
ential (4.30). Then ψ satisfies the bound

E
(

‖∇+
hψ(t)‖2L2,h +

t
∫

0

‖Δhψ(τ)‖2L2,h dτ
)

� E(‖∇+
hψ0‖2L2,h) + C3e

Ct
(

E(‖ψ0‖4L4,h) + 1
)

,

(5.52)

with constants C3 and C independent of h.

Proof. We apply the Ito formula to the function u(ψ) = hd˜
∑

jk

|(i∂+
j,h+Ajk)ψ|2

to obtain

du(ψ) = hd
˜

∑

j,k

(

(i∂+
j,h + Ajk)dψk, (i∂+

j,h + Ajk)ψk
)
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+hd
˜

∑

j,k

(

(i∂+
j,h + Ajk)ψk, (i∂+

j,h + Ajk)dψk
)

+
hd

2
˜

∑

j,k

(

(i∂+
j,h + Ajk)dψk, (i∂+

j,h + Ajk)dψk
)

= I + I + II ,

(5.53)

where I, I, and II are the first, second and third terms of the right-hand
side of (5.53) respectively. Applying (2.14) and (4.30) and using the notation
(i∇−

h + Ak, i∇+
h + Ak) = (i∇h + Ak)2, we obtain

I = hd
∑

k

dψk(i∇+ Ak)2ψk =
{

− hd
∑

k

|(i∇+ Ak)2ψk|2

+hd
˜

∑

j,k

|(i∂+
j,h + Ajk)ψk|2 −

(

(i∂+
j,h + Ajk)(|ψk|2ψk), (i∂+

j,h + Ajk)ψk
)

}

dt

+hd
∑

k

{

r̂[ψk]dWk(i∇h + Ak)2ψk
}

.

(5.54)
Since I is the complex conjugate to I, we obtain from (5.54) that

I + I = −2hd
∑

kh∈Gh

|(i∇+ Ak)2ψk|2dt +
˜

∑

j,k

Cjk(ψk, ∂+
j,hψk)dt

+hd
∑

kh∈Gh

{

r̂[ψk]dWk(i∇h + Ak)2ψk
}

,
(5.55)

where Cjk(ψk, ∂+
j,hψk) admits the bound

|Cjk(ψk, ∂+
j,hψk)| � C

(

|ψk|6 + |∂+
j,hψk|2|ψk|2 + |∂+

j,hψk|2 + 1
)

(5.56)

with constant C independent of j, k, h.
Let us consider the term II. Applying (2.14), (4.30), and using the notation

Dkdt for the term with the differential dt in (4.30) and taking into account
(4.36) and (4.25), we have

2II = hd
˜

∑

jk

(

(i∂+
jh + Ajk)(Dkdt + r̂[ψk]dWk)



The Ginzburg-Landau Equations 67

(i∂+
jh + Ajk)(Dkdt + r̂[ψk]dWk)

)

= hd
˜

∑

jk

(

(

i∂+
jh + Ajk

)(

r̂[ψk]dWk

)(

i∂+
jh + Ajk

)(

r̂[ψk]dWk

)

)

.
(5.57)

Using the equality

ak+1bk+1 − akbk = ak+1(bk+1 − bk) + (ak+1 − ak)bk

and the definitions (3.20) and (3.21), we obtain

(i∂+
j,h + Ajk)(r̂[ψk]dWk)

= r̂[iψk+ej
](i∂+

j,h + Aik)dWk + (i∂+
j,hr̂[ψk]−Ajk r̂[iψk+ej

] + Ajk r̂[ψk])dWk .

(5.58)
Using (5.58) and the definition (5.28) of the scalar Wiener process AW j

k (t),
we obtain, from (5.57),

2II = hd
˜

∑

j,k

∣

∣

∣r̂[iψk+ej
]dAW j

k +
(

i∂+
j,hr̂[ψk]−Ajk r̂[iψk+ej

] + Ajk r̂[ψk]
)

dAW 0
k

∣

∣

∣

2

= J1 + J2 + J3 ,
(5.59)

where
J1 = hd

˜

∑

j,k

r̂[iψk+ej
]dAW j

k r̂[iψk+ej
]dAW j

k , (5.60)

J2 = hd
˜

∑

j,k

2Re
{

r̂[iψk+ej
]dAW j

k (i∂+
j,hr̂[ψk] −Ajk r̂[iψk+ej

] +Ajk r̂[ψk]
)

dAW 0
k

}

,

(5.61)

and

J3 = hd
˜

∑

j,k

∣

∣

(

i∂+
j,hr̂[ψk]−Ajk r̂[iψk+ej

] + Ajk r̂[ψk]
)

dAW 0
k

∣

∣

2
. (5.62)

By virtue of (3.20), (3.21), and (5.35), we obtain from (5.60) that

J1 = hd
˜

∑

j,k

(

r2(Imψk+ej ) + r2(Re ψk+ej )
)

∑

(,m)∈̂Gh

μm|θ
j,
k,m|

2dt . (5.63)

Similarly, (5.38) and (5.61) imply
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J2 = 2hd
˜

∑

j,k

{

r(Im ψk+ej )dReAW j
k

(

− (∂+
j,hr(Im ψk))dIm AW 0

k

+ Ajk(r(Re ψk)− r(Im ψk+ej ))dRe AW 0
k

)

+ r(Re ψk+ej )dIm AW j
k

·
(

− ∂+
j,hr(Re ψk)dReAW 0

k + Ajk(r(Im ψk)− r(Re ψk+ej ))dIm AW 0
k

)}

= 2hd
˜

∑

j,k

{

Ajk

(

r(Im ψk+ej )r(Re ψk)− r2(Im ψk+ej )

+ r(Re ψk+ej )r(Im ψk)− r2(Reψk+ej )
)

∑

(,m)∈̂Gh

μmRe (θj,k,mθ0,
k,m

)

}

dt .

(5.64)

In addition, by (5.35) and (5.62), we have

J3 = hd
˜

∑

j,k

{

(

− ∂+
j,hr(Im ψk)dImAW 0

k

+ Ajk
(

r(Re ψk)− r(Im ψk+ej )
)

dReAW 0
k

)2

+
(

∂+
j,hr(Re ψk)dReAW 0

k + Aik(r(Im ψk)− r(Re ψk+ej ))dImAW 0
k

)2
}

= hd
˜

∑

j,k

{

(

∂+
j,hr(Im ψk)

)2 +
(

∂+
j,hr(Re ψk)

)2

+ (Ajk)2
(

(r(Re ψk)− r(Im ψk+ej ))2

+ (r(Im ψk)− r(Re ψk+ej ))2
}
∑

,m

μm|θ
0,
k,m|2dt . (5.65)

Now relations (5.59), (5.63), (5.64), and (5.65) and Lemmas 5.5 and 5.6 imply
that

II =
˜

∑

j,k

djk(ψk, ψk+ej .∂
+
j,hψk)dt , (5.66)

where

|djk(ψk, ψk+ej , ∂
+
j,hψk)| � C

(

1 + |ψk|2 + |ψk+ej |2 + |∂+
j,hψk|2

)

(5.67)

with constant C independent of j, k, h.

Relations (5.53), (5.55), and (5.66) give
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d
(

hd
˜

∑

j,k

|(i∂+
j,h + Ajk)ψk|2

)

+ 2hd
∑

kh∈Gh

|(i∇+
h + Ak)2ψk|2

=
˜

∑

j,k

(

Cjk(ψk, ∂+
j,hψk) + djk(ψk, ψk+ej , ∂

+
j,hψk)

)

dt

+hd
∑

khGh

{

r̂[ψk]dWk(i∇h + Ak)2ψk
}

.

(5.68)

Writing the differential Ito formula (5.68) in integral form and applying the
mathematical expectation, we obtain

E
(

‖(i∇+
h + A)ψ(t)‖2L2,h + 2

t
∫

0

‖(i∇h + A)2ψ(τ)‖2L2,h dτ
)

= E
(

t
∫

0

hd
˜

∑

j,k

{

(Cjk(ψk, ∂+
j,hψk) + djk(ψk, ψk+ej , ∂

+
j,hψk)

}

dτ
)

+E
(

‖(i∇+
h + A)ψ0‖2L2,h

)

,

(5.69)

where A = {Ajk, kh ∈ Gh ∪ ∂G+
h (−j)}. Doing a simple transformation with

the first term on the left-hand side of (5.69), applying the bounds (5.56) and
(5.67) to the right-hand side of (5.69), and then applying to the result the
inequalities (5.6) and (5.13) results in (5.52). ��

6 Existence Theorem for Approximations

The aim of this section is to prove an existence theorem for the stochas-
tic system (4.30), (2.12), and (2.23). First, we recall a well-known existence
theorem for stochastic equations which we will use in our analysis.

6.1 Preliminaries

Recall the existence theorem for stochastic equations proved in [24, pp. 165-
173]. Let W (t) = W (t, ω) be a d1-dimensional real-valued Wiener process on
(Ω,Σ,m), Σt ⊂ Σ be the increasing filtration (see Sect. 4.3) complete with
respect to σ-algebra m-measurable sets Σm and coordinated with W (t), i.e.,
(W (t), Σt) is a Wiener process.

We consider the stochastic equation
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dξ(s) = σ(s, ξ(s))dW (s) + b(s, ξ(s))ds, s � t, and ξ(t) = ξ0(t) , (6.1)

where t � 0 is fixed and ξ0(t) is a Σt-measurable d-dimensional vector. The
integral form of (6.1) is

ξ(s) = ξ0(t) +

s
∫

t

σ(r, ξ(r)) dW (r) +

s
∫

t

b(r, ξ(r)) dr . (6.2)

By the solution of (6.2) we mean a d-dimensional process ξ(s) = ξ(s, ω)
that is Σs-measurable in ω for all s � t, is continuous in s and defined for
ω ∈ Ω and s ∈ (t,∞), and satisfies (6.2) for all s ∈ [t,∞) almost everywhere.
Additionally, σ(s, x) ∈ L2,loc (in s), b(s, x) ∈ L1,loc (in s), and they are
defined on Ω× (t,∞) for all x ∈ R

d and have values in (d× d1)-matrices and
in R

d correspondingly. We assume that σ and b are continuous on x for all
(s, ω) and, for each T,R ∈ [0,∞) and ω ∈ Ω, the bound

T
∫

0

sup
|x|�R

[

‖σ(s, x)‖2 + |b(s, x)|
]

ds <∞ (6.3)

holds.

Theorem 6.1 (see [24, p. 166]). Let the following conditions hold.

(i) Lipschitz condition: For any R > 0 there exists a function Kr(R) > 0
belonging to L1,loc as a function of (ω, r) such that for all |x|, |y| � R,
r > 0, and ω ∈ Ω,

2
(

x− y, b(r, x)− b(r, y)
)

+ ‖σ(r, x) − σ(r, y)‖2 � Kr(R)|x− y|2 . (6.4)

(ii) Growth condition: For all x ∈ Ed, r > 0, and ω ∈ Ω

2(x, b(r, x)) + ‖σ(r, x)‖2 � Kr(1)(1 + |x|2) . (6.5)

Then the stochastic equation (6.1) has a solution and any two solutions are
identical.

6.2 Bounded approximations

Theorem 6.1 is not applicable to the problem (4.30), (2.12), and (2.23) be-
cause (4.30) has the term |ψ(t)|2ψ(t) that does not satisfy the growth condi-
tion (6.5). Moreover, (4.30) holds for k ∈ Gh; due to the boundary conditions
(2.23), the function k → ψk(·) should be defined for k ∈ ∂G+

h as well.
The requirement that ψk is defined for kh ∈ ∂G+

h does not bring any
difficulties because it is enough for us to put into (4.30) an expression for ψk
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with kh ∈ ∂G+
h given in (2.23) and after that to solve the Cauchy problem

(4.30) and (2.12).
Temporarily, we modify (4.30) to an equation that satisfies the conditions

of Theorem 6.1. To this end, we introduce the function γN ∈ C∞(0,∞) such
that

γN (t) =

⎧

⎪

⎨

⎪

⎩

t, t ∈ [0, N ],
increases monotonically, t ∈ (N,N + 1),
N + 1, t � N + 1,

(6.6)

and consider the system

dψk(t) +
{

(i∇h + Ak)2ψk(t)− ψk(t) + γN (|ψk(t)|2)ψk(t)
}

dt

= r̂[ψk(t)]dWk(t)

(6.7)

instead of (4.30). We consider the problem (6.7) and (2.12). In this problem,
the functions ψk(t) and Wk(t) are complex-valued. (Recall that r̂[ψk(t)]Wk(t)
in (6.7) is understood in the sense of (4.31).) If we introduce the real and
imaginary parts of these functions, substitute them into (6.2), and separate
the real and imaginary parts of the resulting equations, we obtain a sys-
tem that satisfies all the conditions of Theorem 6.1. Therefore, the following
theorem holds.

Theorem 6.2. The problem (6.7) and (2.12) has a solution, and any two
solutions with identical initial data (2.12) are identical.

We apply to (6.7) the same arguments that were applied to (4.30) that led
us to the bound (5.6). Then we obtain the following bounds for the solution
ψk(t) ≡ ψNk (t) of (6.7) and (2.12):

‖ψN (t)‖2L2,h + 2

t
∫

0

[

‖(i∇h + A)ψN‖2L2,h

+hd
∑

k

γN
(

|ψNk (s)|2
)

|ψNk (s)|2
]

ds

−2

t
∫

0

hd
∑

k

Re
(

ψNk r̂[ψNk ]dWk

)

=

t
∫

0

hd
∑

k

⎛

⎝2|ψNk |2 +
∑

j

|Θkj |2μj |r̂[ψNk ]|2
⎞

⎠ ds + ‖ψ0‖2L2,h .

(6.8)

This is the analogue of (5.9); after some transformations, we obtain the final
inequality
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E‖ψN (t)‖2L2,h + E

t
∫

0

(

‖∇+
hψ

N‖2L2,h

+hd
∑

k

γN (|ψNk (τ)|2)|ψNk (τ)|2
)

dτ � C2e
C1t

(

E‖ψ0‖2L2,h + 1
)

.

(6.9)

6.3 Solvability of the discrete stochastic system

Recall (see [26, p. 54]) that a random variable τ = τ(ω), ω ∈ Ω, that takes
values in [0,∞] is called the stopping time (relative to Σt) if {ω : τ(ω) > t} ∈
Σt for every t ∈ (0,∞).

Let M < N . We introduce the (random) Markov moment

τM (ω) =

{

inf{τ > 0 : ‖ψN (τ, ω)‖2L2,h � M} for ω ∈ Ω

∞ if ‖ψN (τ, ω)‖L2,h � M ∀ τ > 0 .
(6.10)

Clearly, τM (ω) is the stopping time. For fixed t > 0 we set tM = tM (ω) =
t ∧ τM (ω), which is the stopping time as well.

We substitute t = tM (ω) with M/hd < N into (6.8) and obtain

‖ψNk (tM ))‖2L2,h + 2

tM
∫

0

(

‖(i∇+
h + A)ψN‖2L2,h + ‖ψN‖4L4,h

)

dt

− 2

tM
∫

0

∑

k

Re
(

ψNk r̂[ψNk ]dWk

)

(6.11)

=

tM
∫

0

∑

k

(

2|ψNk |2 + μk|r̂[ψNk ]|2
)

dt + ‖ψ0‖2L2,h .

We note that we have changed the term hd
∑

k

γN (|ψNk (s)|2)|ψNk (s)|2 to

‖ψN (s)‖4L2,h because, for s < tM , ‖ψN (s)‖2L2,h � M/hd < N and there-
fore for every k, |ψNk (s)|2 < N . This justifies the aforementioned change.
Therefore, repeating the derivation of (6.9) from (6.8), we find that (6.11)
implies the bound

E‖ψN (tM )‖2L2,h + E
tM
∫

0

(

‖∇hψN (s)‖2L2,h + ‖ψN (s)‖4L4,h

)

ds

� C2e
C1t

(

E‖ψ0‖2L2,h + 1
)

,

(6.12)
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where C1 and C do not depend on N .
Taking into account the definition of tM (ω) and the arguments written

before (6.12), we see that ψN (s) satisfies not only (6.7), but also the equation

ψNk (tM ) +

tM
∫

0

[

(i∇h + Ak)2ψNk (s)− ψNk (s) + |ψNk (s)|2ψNk (s)
]

ds

=

tM
∫

0

rk[ψn(s)]dWN
k (s) +ψ0 .

(6.13)

It is clear that for each N1 satisfying M < N < N1 the vector-valued function
ψN1(s) = ψN1(s, ω) (that evidently exists) satisfies (6.13) as well for almost
all ω ∈ Ω and s ∈ (0, tM (ω)). This implies that for almost all ω ∈ Ω

ψNk (s, ω) = ψN1
k (s, ω) ∀ kh ∈ Gh for s ∈ (0, tM (ω)) . (6.14)

Indeed, ψN (s), as well as ψN1(s), satisfies (6.13) in which the term
|ψNk (s)|2ψNk (s) is changed to γN1

(

|ψNk (s)|2
)

ψNk (s). But for this equation,
all solutions are indistinguishable.

The equality (6.14) permits us to define the vector-valued function ψ(s, ω)
as follows:

ψk(s, ω) = ψNk (s, ω), kh ∈ Gh ∀ N > M/hd, s ∈ (0, tM (ω)) . (6.15)

By virtue of (6.12), the function ψ(s, ω) defined in (6.15) satisfies

E‖ψ(tM )‖2L2,h + E
tM
∫

0

(

‖∇hψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)

ds

� C2e
C1tE

(

‖ψ0‖2L2,h + 1
)

(6.16)

and the inequality in (6.16) is true since, by definition, tM � t.

Lemma 6.3. For almost all ω ∈ Ω, tM ↗ t as M →∞.

Proof. The definitions of τM and tM imply that for each M1 > M the in-
equalities

τM � τM1 , tM � tM1 � t (6.17)

hold. Then, by the monotone convergence theorem, there exists t∞(ω) � t
and τ∞(ω) � ∞ such that τM (ω) → τ∞(ω) and tM (ω) → t∞(ω) � t as
M → ∞ for almost any ω ∈ Ω. Suppose that there exists a set b ⊂ Σ
satisfying m(b) > 0 such that t∞(ω) < t for all ω ∈ b. This means that for
each M > 0, τM (ω) = tM (ω) < t for ω ∈ b and therefore τ∞(ω) = t∞(ω),
ω ∈ b. The definition (6.15) of ψk(s, ω) and (6.8) imply that for almost all
ω ∈ Ω, ‖ψ(s)‖2L2,h is continuous for s ∈ (0, τ∞(ω)). Due to the continuity for
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almost all ω ∈ Ω, τM (ω) < τM+1(ω) < · · · < τM+K(ω) < · · · . Recall that for
ω ∈ b, τM (ω) → τ∞(ω) < t. Hence, by (6.10), we obtain

∫

b

‖ψ(τM (ω), ω)‖2L2,hm(dω) � (M − 1)
∫

b

m(dω) →∞ as M →∞ .

(6.18)
Since for ω ∈ b, τM (ω) = tM (ω), we obtain, by (6.16),

∫

b

‖ψ(τM (ω), ω)‖2L2,hm(dω) � E‖ψ(tM )‖2L2,h � C1e
Ct‖ψ0‖2L2,h (6.19)

for M →∞. But (6.19) contradicts (6.18) and therefore the proof is complete.
��

By Lemma 6.3, (6.10), and the fact that tM = t∧ τM for almost all ω ∈ Ω
the function

G(tM , ω) = ‖ψ(tM (ω), ω‖2L2,h +

tM (ω)
∫

0

(

‖∇+
hψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)

ds

increases monotonically as M →∞. By (6.16) and the Beppo Levi theorem,
the function G(t, ω) is well-defined for a nonrandom value t. Hence,

E‖ψ(t)‖2L2,h + E

t
∫

0

(

‖∇+
hψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)

ds � C2e
C1t‖ψ‖2L2,h .

(6.20)
Therefore, the function ψk(s, ω) defined in (6.15) can be extended up to a
function defined for every nonrandom t > 0, and this function satisfies (4.32)
and is equivalent to (4.30). Uniqueness of the obtained solution of (4.32)
follows from (6.15) and the uniqueness of ψNk (s, w). Applying the arguments
of Sects. 5.3 and 5.5 to ψk(s, ω), we find that ψk(s, ω) satisfies the estimates
(5.13) and (5.52).

Thus, we have proved the following theorem.

Theorem 6.4. There exists a continuous Σh,t-adapted random process
{ψ(t, ω)} = {ψk(t, ω), kh ∈ Gh} given for t � 0 and such that (4.32) holds
for all t � 0 with probability one. This process ψ(t, ω) satisfies the inequali-
ties (5.6), (5.13), and (5.52). The process ψ that satisfies the aforementioned
properties is unique.

Definition 6.5. The random process {ψ(t, ω)} = {ψk(t, ω), kh ∈ Gh} that
satisfies all the properties mentioned in Theorem 6.4 is called the strong so-
lution of (4.30), (2.12), and (2.23) or (what is equivalent) the strong solution
of (4.32).
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To prove the solvability of the stochastic problem for the Ginzburg–Landau
equation, we need certain additional bounds for the strong solution of (4.32).
These bounds will be proved in the next section.

7 Smoothness of the Strong Solution with respect to t

We establish two estimates for the solution of the problem (4.30), (2.23), and
(2.12). Specifically, we estimate the mean maximum and the mean modulus
of continuity. In both estimates we follow [44, pp. 352-360].

7.1 Estimate of the mean maximum

In this subsection, we present a result for the mean maximum of the solution
of the problem (4.30) and (2.12).

Proposition 7.1. Let ψ(t) be the strong solution of (4.30) and (2.12). Then

E(‖ψ(t)‖L∞(0,T ;L2,h)) � C(T ) <∞ for any T > 0, (7.1)

where C(T ) does not depend on h.

Proof. We obtain from (5.8) and (5.9) that

‖ψ(t)‖2L2,h � ‖ψ0‖2L2,h +

t
∫

0

2
(

‖ψ‖2L2,h + 1
)
∑

j

μj dτ

+2

t
∫

0

∑

Re (ψk r̂[ψk]dWk)

(7.2)

and from this estimate, along with the Gronwall inequality, we obtain

‖ψ(t)‖2L2,h � ‖ψ0‖2L2,he
2t
∑

j

μj

+ C

t
∫

0

e
2
∑

j

μj(t−τ)
(

Re
∑

k

(ψk r̂[ψk]dWk)(τ)

+
∑

j

μjτ
)

μj dτ .

(7.3)

Multiplying both sides of (7.3) by e
−2t

∑

j

μj

and taking the maximum over
t ∈ [0, T ], we obtain
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sup
t∈[0,T ]

(

e
−2t

∑

j

μj

‖ψ(t)‖2L2,h

)

� ‖ψ0‖2L2,h + C2 + sup
t∈[0,T ]

‖M‖ , (7.4)

where M = (Mk(t), kh ∈ Gh), and

Mk(t) = C

t
∫

0

e
−2τ

∑

j

μj

Re
(

ψk(τ)r[ψk]
)

dWk(τ) .

The process Mk(t) is a martingale with respect to the flirtation Σt (see [44,
p. 353]). This, due to the Birkholder-Gaudi inequality, implies

E sup
[0,T ]

|Mk(t)| � [C(T )]
1
2 ;

see [44, p. 353]. Therefore, taking the mathematical expectation of both sides
of (7.4), we obtain (7.1). ��

Similarly to Proposition 7.1, using (5.56), (5.67), and (5.68) (instead of
(5.8) and (5.9)), one can prove Proposition 7.1’. Let ψ(t) be the strong solu-
tion of (4.29) and (2.12). Then

E‖∇+
hψ‖L∞(0,T ;L2,h) � C(T ) <∞ for any T > 0 , (7.5)

where C(T ) does not depend on h.

7.2 Estimate of the auxiliary random process

We introduce the seminorm

‖ψ‖Cα
T,h

= sup
0�t1<t2�T

|t1−t2|�1

‖ψ(t1)−ψ(t2)‖L2,h

|t1 − t2|α
∀ T > 0 . (7.6)

Recall that the function r(λ) is defined in (3.19).
Now define

S(λ) =

λ
∫

0

dμ

r(μ)
. (7.7)

In accordance with the general definition (3.20) and (3.21), we denote

S[ψk(t)] = S(Reψk(t)) + iS(Imψk(t))

̂S[ψk]z = S(Reψk)Re z + iS(Im (ψk))Im z

(7.8)
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for each complex number z. Applying the Ito formula to S[ψ(t)], i.e., applying
the Ito formula to the function S(Reψk) and to the function S(Imψk), we
obtain

dS[ψk(t)] = −̂S′[ψk(t)]
(

(i∇h + Ak)2ψk(t)− ψk(t) + |ψk|2ψk
)

dt

+̂S′[ψk]r̂[ψk]dWk + 1
2
̂S′′[ψk]( ̂r2[ψk][dWk]2) .

(7.9)

Here,

̂S′[ψk]r̂[ψk]dWk

= S′(Reψk)r(Re ψk)dReWk + iS′(Im ψk)r(Im ψk)dImWk = dWk

(7.10)
and the last equality holds because of (7.7). Note that the first term on
the right-hand side of (7.9) should be understood in the same sense as was
indicated in the second relation of (7.8). Moreover, by virtue of (4.39) and
(7.7),

̂S′′[ψk]r̂[ψk]r̂[ψk](dReWk)2 =
1
2
S′′(Reψk)r2(Reψk)(dRe Wk)2

+
i

2
S′′(Imψk)r2(Imψk)(dIm Wk)2

= −1
2

(

r′(Reψk) + ir′(Imψk)
)
∑

jh∈Gh

|Θkj |2μjdt

= −1
2

∑

j

|Θkj |2μjr′[ψk]dt .

(7.11)

As a result, we obtain from (7.9)–(7.11) and (7.7) that

dS[ψk(t)] =
{

−̂r−1[ψk]
(

(i∇h + Ak)2ψk − ψk + |ψk|2ψk
)

−1
2
r′[ψk]

∑

j

|Θkj |2μj
}

dt + dWk ,

(7.12)

where the equality is understood in the sense of (3.20) and (3.21). Now using
the results from [44], we derive an estimate for ‖S(ψ)‖Cα

T,h
.

Denote Z(t) as
Z(t) = S[ψ(t)]−W(t) . (7.13)

Equalities (7.12) and (7.13) imply
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Żk(t) =
d

dt
Zk(t)

= −
(

̂r−1[ψk]
(

(i∇h + Ak)2ψk − ψk + |ψk|2ψk
)

− r′[ψk]
∑

j

|Θkj |2μj
)

.

(7.14)

Lemma 7.2. For any T > 0 the inequality

‖Z‖
C

1
2
T,h

� C
{

1 +
(

T
∫

0

(

‖Δhψ(t)‖2L2,h + ‖∇+
hψ(t)‖2L2,h + ‖ψ(t)‖2L2,h

+‖ψ(t)‖6L6,h

)

dt
)1/2}

(7.15)

holds, where C does not depend on h.

Proof. By virtue of (7.14) and (3.19), we have

‖Ż(t)‖2L2,h � C1

(

‖Δhψ(t)‖2L2,h + ‖∇+
hψ(t)‖2L2,h + ‖ψ(t)‖2L2,h + ‖ψ‖6L6,h + 1

)

and therefore

‖Ż(t)‖L2,h � C
1/2
1

(

‖Δhψ(t)‖L2,h + ‖∇+
hψ(t)‖L2,h

+‖ψ(t)‖L2,h + ‖ψ(t)‖3L6,h + 1
)

.

(7.16)

This inequality implies

‖Z(t2)− Z(t1)‖L2,h �
t2
∫

t1

‖Ż(t)‖L2,hdt

� C
1/2
1

t2
∫

t1

(

‖ψ(t)‖L2,h + ‖Δhψ(t)‖L2,h + ‖∇+
hψ(t)‖L2,h

+‖ψ‖3L6,h + 1
)

dt

� C
[(

t2
∫

t1

[

‖Δhψ(t)‖2L2,h + ‖∇+
hψ(t)‖2L2,h + ‖ψ(t)‖2L2,h

+‖ψ(t)‖6L6,h

]

dt
) 1

2
(t2 − t1)1/2 + (t2 − t1)

]

.

By using the definition (7.6), we obtain the desired result (7.15). ��
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Recall that the Levi modulus is the function ℵ(t) = |t ln t|1/2 and the norm
‖W‖CL,T,h

is defined as

‖W‖CL,T,h
= sup

0�t1<t2<T

|t1−t2|<1/e

‖W(t1)−W(t2)‖L2,h

ℵ(t2 − t1)
. (7.17)

Recall that Λh = P ∗
hΛ is the distribution of the Wiener process W(t) from

(4.11), where Λ is the distribution of the initial Wiener process (see (3.1)).
The measure Λh is defined on B(Ch), where Ch = C(0,∞;L2,h(Gh)). In [44,
p. 356] the following assertion was proved.

Lemma 7.3. There exist positive constants C1 and C2 independent of h (and
of Λh) such that for any α > 0

ΛhT,α ≡ Λh({W ∈ Ch : ‖W‖CL,T > C1α}) � C2T

√
Trh
α

2−α
2/2Trh , (7.18)

where Trh =
∑

jh∈Gh

μj is the trace of the correlation operator ̂K defined in

(4.17) and below (4.18) and corresponding to the Wiener process W(t).

Lemma 7.4. The process S[ψ(t)] with function S defined in (7.7) satisfies
the bound

‖S[ψ]‖2CL,T,h
� 2C1

[

1 +
T
∫

0

(

‖Δhψ(t)‖2L2,h + ‖∇+
hψ(t)‖2L2,h

+‖ψ(t)‖2L2,h + ‖ψ(t)‖6L6,h

)

dt
]

+ 2‖W‖2CL,T,h
,

(7.19)

where C1 does not depend on h.

Proof. The bound (7.19) directly follows from (7.13) and Lemma 7.2 if we

take into account that |t2 − t1|1/2 � ℵ(t2 − t1) ≡
∣

∣(t2 − t1) ln |t2 − t1|
∣

∣

1
2 for

|t2 − t1| < 1
e . ��

Theorem 7.5. Let ψ(t) be the solution of the stochastic problem (4.30),
(2.23), and (2.12). Then the bound

E‖S[ψ]‖2CL,T,h
� C(T ) , (7.20)

holds, where C(T ) does not depend on h.

Proof. We take the mathematical expectation of both sides of (7.19) and, to
estimate the right-hand side, we use Lemma 7.3 and the bounds (5.6), (5.13),
and (5.52). As a result, we obtain (7.20). ��
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7.3 Estimate of the mean modulus of continuity

We define the norm

‖ψ‖CL(0,T ;L1,h(Gh)) = sup
0�t1<t2<T
|t1−t2|<1/e

‖ψ(t1)−ψ(t2)‖L1,h

ℵ(t1 − t2)
, (7.21)

where
‖ψ‖L1,h = hd

∑

kh∈Gh

|ψk| . (7.22)

Note that by virtue of definitions (7.7) and (3.19), the function S(λ) possesses
the inverse function R(S)

R(S(λ)) = λ . (7.23)

Lemma 7.6. There exists a constant C > 0 such that

|λ1 − λ2| � C(1 + |λ1|+ |λ2|) |S(λ1)− S(λ2)| ∀ λ1, λ2 ∈ R
1 . (7.24)

Proof. Let λ1 > λ2. Then S(λ1) > S(λ2). By virtue of (7.23) and (7.7),
R′(S(λ)) = r(λ) > 0. Therefore, using the Lagrange theorem, we obtain

λ1 − λ2 = R(S(λ1))−R(S(λ2))

� sup
μ∈[λ2,λ1]

R′(S(μ))|S(λ1)− S(λ2)| � R′(S(λ1)) |S(λ1)− S(λ2)|

� C(1 + |λ1|+ |λ2|) |S(λ1)− S(λ2)| .
(7.25)

��

Theorem 7.7. Let ψ(t) be the strong solution of the stochastic problem
(4.30), (2.23), and (2.12). Then the following estimate holds:

E‖ψ‖CL(0,T ;L1,h(Gh)) � C(T ) . (7.26)

Proof. It is enough to prove the bound

‖ψ‖CL(0,T ;L1,h(Gh)) � C

(

1 + sup
0�t�T

‖ψ(t)‖2 + ‖S(ψ)‖2CL,T,h

)

(7.27)

because, after taking the mathematical expectation of both sides of (7.27)
and using (7.20) and (7.1), we obtain (7.26). Substituting λi = Reψk(ti),
i = 1, 2, or λi = Imψk(ti), i = 1, 2, into (7.25) gives

hd
∑

kh∈Gh

|ψk(t1)− ψk(t2)|
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� C(1 + ‖ψ(t1)‖L2,h + ‖ψ(t2)‖L2,h)‖S[ψ(t1)]− S[ψ(t2)]‖L2,h .

Dividing both parts of this bound by the Levi modulus and taking into ac-
count the definitions (7.17) and (7.21), we obtain

‖ψ‖CL(0,T ;L1,h(Gh)) � C(1 + sup
t∈[0,T ]

‖ψ(t)‖L2,h)‖S[ψ(t)]‖CL,T,h
.

This inequality clearly implies (7.27). ��

8 Compactness Theorems

In order to pass to the limit in the stochastic equation (4.30), we need some
compactness theorems which we present in this section.

8.1 On compact sets in L2(G)

For almost all ω ∈ Ω the strong solution ψ(t) of Equation (4.30) belongs to
L2(0, T ;L2,h(Gh)), where L2,h(Gh) = PhL

2(G) is the space defined before
(4.8). Let 1 � p < ∞. Similarly to the space L2,h(Gh), we can introduce
the space Lp,h(Gh) of vector-valued functions ψ = {ψk : kh ∈ Gh} supplied
with the norm

‖ψ‖p
Lp,h(Gh)

= hd
∑

kh∈Gh

|ψk|p . (8.1)

Clearly, Lp,h(Gh) = PhL
p(G), where the operator Ph is defined as well as

the operator Ph from (4.9). As in (4.10), one can prove that the operator
Ph : Lp(G) → Lp,h(Gh) is bounded. We define the space

H1
A,h(Gh) = {ψ ∈ L2,h(Gh), ψ is defined on ∂G+

h by (2.23)} (8.2)

and the norm (see (5.5)):

‖ψ‖2H1
A,h

= hd˜
∑

j,k

(|∂+
j,hψk|2 + |ψk|2)

≡ hd
d
∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

(|∂+
j,hψk|2 + |ψk|2) .

(8.3)

We can identify the space Lp,h(Gh) (as well as the space (8.2) ) with
subspaces of functions belonging to Lp(G) by the operator (4.14):

Lp,h � ψ = {ψk} → ψh(x) =
∑

kh∈Gh

h−dψkXQk
(x) ∈ Lp(G) , (8.4)
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where XQk
(x) is the characteristic function of the set Qk (i.e., XQk

(x) = 1,
for x ∈ Qk, XQk

(x) = 0 for x �= Qk) and the sets Qk are defined by (4.1)–
(4.5). We denote by ̂Lp,h(G) the subspace of Lp(G) formed by identifying
(8.4). The following assertion follows from (4.6)–(4.7) and a bound similar to
(4.10).

Proposition 8.1. The spaces Lp,h(Gh) and ̂Lp,h(G) are isomorphic (so the
norm (8.1) is equivalent to the norm of ̂Lp,h(G) ⊂ Lp(G)) and the isomor-
phism is defined by (8.4).

In the space ̂L2,h(G), the norm (8.3) generates the norm

‖ψh‖2
̂H1

A,h

=
∫

G

⎛

⎝

d
∑

j=1

|ψh(x + ejh)− ψh(x)|2
h2

+ |ψh(x)|2
⎞

⎠ dx . (8.5)

To calculate the finite difference in (8.5), we assume that ψh(x) is defined
on

⋃

kh∈Gh∪∂G+
h

Qk and, on sets Qk, kh ∈ G+
h , ψh(x) is defined with the help

of (2.23).
More precisely, in order to determine the finite difference quotient (ψh(x+

ejh)− ψh(x))/h, we use the polyhedra

Qk = {x = (x1, . . . , xd) ∈ R
d : xj ∈ [h(kj −

1
2

)), h(kj +
1
2

)), j = 1, . . . , d}
(8.6)

for each kh ∈ Gh ∪ ∂G+
h , defining ψh(x) for x ∈ Qk with kh ∈ ∂G+

h (±m)
by (2.23). Then for kh ∈ ∂G−

h (±m) we change the polyhedra (8.6) in the
definition of the quotient (ψh(x+emh)−ψh(x))/h on the appropriate set Qk

from (4.2)–(4.5).
We denote by ̂H1

A,h(G) = P ∗
hH

1
A,h(Gh), where P ∗

h is the operator (4.14)
and H1

A,h(Gh) is the space (8.2) with the norm given by (8.3). Similar to
Proposition 8.1, the following assertion holds.

Proposition 8.2. The operator (4.14) establishes an isomorphism between
H1
A,h(Gh) and ̂H1

A,h(G), i.e., the norms (8.3) and (8.5) are equivalent with
constants independent of h.

Proof. One can easily obtain the necessary estimates with the help of the
explanation near (8.6) and the relations (4.6) and (4.7). ��

Below, we assume that h = hn = 2−nh0 → 0 as n → ∞. For each R > 0
we set

BR( ̂H1
A,h) = {ψ ∈ ̂L2,h(G) : ‖ψ‖

̂H1
A,h

� R} (8.7)

and
BR(H1) = {ψ ∈ H1(G) : ‖ψ‖1 � R} . (8.8)
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Lemma 8.3. For each R > 0 the set

ΘR ≡
∞
⋃

n=1

BR( ̂H1
A,hn

) ∪BR(H1) (8.9)

is compact in L2(G) and in L1(G).

Proof. We choose from an arbitrary sequence ψm ∈ ΘR a subsequence con-
verging in L2(G). Two cases are possible: (i) there exists n0 > 0 such that

ψm ∈
n0
⋃

n=1
BR( ̂H1

A,hn
) ∪ BR(H1) for each m; (ii) there exists a subsequence

{m′} of the sequence {m} such that ψm′ ∈ BR( ̂H1
A,hn

m′
) and nm′ → ∞ as

m′ →∞.
In the first case, we can choose a subsequence {m′} ⊂ {m} such that

(a) ψm′ ∈
n0
⋃

n=1
BR( ̂H1

A,hn
) for all m′ ∈ {m′} or (b) ψm′ ∈ BR(H1) for all

m′ ∈ {m′}. For case (a), we can choose a converging subsequence {ψm′′}
from {ψm′} because

n0
⋃

h=1

BR( ̂H1
A,hn

) is a finite dimensional closed bounded

set. For case (b), we can choose a converging subsequence {ψm′′} because, as
is well known, the embedding H1(G) ⊂ L2(G) is compact.

In the second case, we can choose a subsequence {ψm′′} ⊂ {ψm′} weakly
converging to ˜ψ(x) in L2(G) as m′′ → ∞. Moreover, by virtue of the defini-
tions (8.7) –(8.9), for each ε there exists δ > 0 and N > 0 such that for all h
satisfying ‖h‖ < δ and for all n � N ,

∫

|ψn(x) − ψn(x− h)|2 < ε . (8.10)

Then, by (8.10), we use standard arguments to choose a subsequence {ψq} ⊂
{ψm} such that ‖ψq− ˜ψ‖L2(G) → 0 as q →∞ (see [40, Chapt. 1, Sect. 4]. ��

8.2 Compact sets in the space of time-dependent
functions

Let E0, E, and E1 denote reflexive Banach spaces such that the embeddings
E0 ⊂ E ⊂ E1 are continuous and the embedding E0 ⊂ E is compact. Then
the Dubinsky theorem (see [44, p. 131-132]) can be stated as follows.

Theorem 8.4. Let 1 < q, q1 <∞, and let M be a bounded set in Lq(0, T ;E0)
consisting of functions u(t) equicontinuous in C(0, T ;E1). Then M is rela-
tively compact in Lq1(0, T ;E) and C(0, T ;E1).

We establish some variants of this theorem which we will need. First, let
us apply this theorem to the following situation. We introduce the space
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W = {ψ(t, x) ∈ L2(0, T ;H1(G)) ∩ CL(0, T ;L1(G))} , (8.11)

where

CL(0, T ;L1(G)) =
{

ψ(t, x), (t, x) ∈ (0, T )×G :

‖ψ‖CL,T,1 = sup
0�t1<t2�T

|t1−t2|<e−1

‖ψ(t1, ·)− ψ(t2, ·)‖L1(G)

ℵ(t2 − t1)

+ sup
0�t�T

‖ψ(t, ·)‖L1(G) <∞
}

,

(8.12)
where again ℵ(t) = |t ln t| 12 for t > 0.

Theorem 8.5. The set

BR(W) = {ψ(t, x) ∈ W : ‖ψ‖W � R} (8.13)

is compact in the space L4((0, T )×G) ∩ C(0, T ;L1(G)).

Proof. To apply Theorem 8.4, we take E0 = H1(G), E = L4(G), E1 = L1(G),
and M = BR(W). Clearly, M consists of functions that are equicontinuous
in C(0, T ;E1). ��

Let

Wh =
{

ψ(t, x) ∈ L2(0, T ; ̂H1
A,h(G)) : ‖ψ‖CL,T,1

= sup
0�t1<t2<T

|t1−t2|<e−1

‖ψ(t1, ·)− ψ(t2, ·)‖L1(G)

ℵ(t2 − t1)
+ sup

0�t�T
‖ψ(t, ·)‖L1(G) <∞

}

(8.14)
and

BR(Wh) = {ψ ∈ Wh : ‖ψ‖CL,T,1 + ‖ψ‖L2(0,T ; ̂H1
A,h(G)) � R} . (8.15)

Since Wh consists of functions equicontinuous in C(0, T ;L1(G)), the fol-
lowing assertion holds.

Proposition 8.6. The set (8.15) is compact in the space L4((0, T ) × G) ∩
C(0, T ;L1(G)).

The following theorem then holds.

Theorem 8.7. For each R > 0 the set

ΘR =
∞
⋃

n=1

BR(Whn) ∪BR(W) (8.16)
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is compact in ZT ≡ L2((0, T )×G) ∩ C(0, T ;L1(G)). Here, hn = h02−n and
BR(Wh) and BR(W) are the sets (8.15) and (8.13) respectively.

Proof. By virtue of Theorem 8.5 and Proposition 8.6, the sets BR(Whn) and
BR(W) are compact in L4((0, T ) × G). Now, to complete the theorem, we
apply the proof sketched in Lemma 8.3. ��

9 Weak Solution of the Discrete Stochastic Problem

Our aim here is to pass to the limit as h→ 0 in the problem (4.30), (2.12), and
(2.23) in order to prove an existence theorem for the boundary value problem
(3.22), (2.2), and (2.3) for the stochastic Ginzburg–Landau equation. For this
purpose, we need the definition of a weak solution of (4.30), (2.12), and (2.23).

9.1 Definition of the weak solution for the discrete
problem

Recall that we suppose that the initial condition from (2.3) is a random
process, i.e., ψ0(x) = ψ0(x, ω) , x ∈ G, ω ∈ Ω, and we suppose that the map
ψ0 : Ω → L2(G) is measurable, i.e., ψ0 : Σ → B(L2(G)) where (Ω,Σ,m) is
the initial probability space. Moreover, we assume that the random value ψ0

and the Wiener process W (t, x, ω) defined in Sect. 3 are independent, i.e., for
each B ∈ B(C(0,∞;L2(G)) and b ∈ B(L2(G)),

m
(

{ω : W (·, ·, ω) ∈ B,ψ0(·, ω) ∈ b}
)

= m
(

{ω : W (·, ·, ω) ∈ B}
)

m
(

{ω : ψ0(·, ω) ∈ b}
)

.

(9.1)

Now we construct certain projections of ψ0(·, ω) and W (·, ·, ω). Using the
projection Ph : L2(G) → L2,h(Gh) defined in (4.9), we can define the pro-
jection Phψ0(ω) and PhW (t, ω) defined on (Ω,Σ,m) and taking the values
Phψ0(ω) ∈ L2,h(Gh) and PhW (t, ω) ∈ C(0,∞; ̂L2,h(G)) respectively. More-
over, using the projection P ∗

h : L2,h(Gh) → ̂L2,h(G) ⊂ L2(G) defined in
(4.14), we can define the projections P ∗

hPhψ((·, ω)), ω ∈ Ω, with values be-
longing to C(0,∞; ̂L2,h(G)) ⊂ C(0,∞;L2(G)). So, using the notation

̂Ph = P ∗
hPh , (9.2)

where Ph is the operator (4.9) and P ∗
h is the operator (4.14), we define the

random value
Ω � ω → ̂Phψ0(·, ω) ∈ ̂L2,h(G) ⊂ L2(G) (9.3)
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and the Wiener random process

Ω � ω → ( ̂PhW )(·, ·, ω) ∈ C(0,∞; ̂L2,h(G)) ⊂ C(0,∞;L2(G)) . (9.4)

The relationship (9.1) for ψ0(·, ω) and W (·, ·, ω) implies the independence of
̂Ph(ψ0(·, ω)) and ̂PhW (·, ·, ω).

Note that the increasing filtration Σt corresponding to the Wiener process
W (t, x, ω) corresponds to the Wiener process ̂PhW (t, x, ω) as well.

We define the space of functions

Uh = L2,loc(0,∞; ̂H1
A,h(G)) ∩ CL(0,∞;L1(G)) ∩ L6,loc(0,∞;L6(G)) , (9.5)

where the index L means the Levi modulus |t ln t|1/2 for t ∈ (0, 1/e). It is
clear that Uh is a Frechet space with seminorms

‖ψ‖Uh,T
= ‖ψ‖L2(0,T ; ̂H1

A,h(G)) + ‖ψ‖CL(0,T ;L1(G)) + ‖ψ‖L6((0,T )×G) . (9.6)

With the aid of the solution ψ(t, ω) of the problem (4.30) and (2.12), we
can define the random process

Ω � ω → (P ∗
hψ)(·, ·, ω) ≡ ψh(·, ·, ω) ∈ Uh . (9.7)

The space Uh from (9.5) is well connected with the solution ψh but we will
need also in the following a more extensive separable Frechet space for the
solution; we have

Z = L2,loc(0,∞;L2(G)) ∩C(0,∞;L1(G)) (9.8)

with finite seminorms given by

‖ψ‖ZT ≡ ‖ψ‖L2(0,T ;L2(G)) + ‖ψ‖C(0,T ;L1(G)) , T > 0. (9.9)

We will also use the spaces

ZT = L2(0, T ;L2(G)) ∩ C(0, T ;L1(G)),

Uh,T = L2(0, T ; ̂H1
A,h(G)) ∩ CL(0, T ;L1(G)) ∩ L6((0, T )×G)

(9.10)

supplied with the norms (9.9) and (9.6) correspondingly.
Recall that B(Z) is a Borel σ-algebra of the space Z and BUh

(Z) = B(Z)∩
Uh. By virtue of Theorem 2.1 from [44, Chapt. 2], BUh

(Z) ⊂ B(Uh).

Definition 9.1. The weak statistical solution of (4.30), (2.12), and (2.23) is
the probability distribution of the random process (9.7), i.e.,

νh(B) = m
(

{ω : ψh(·, ·, ω) ∈ B}
)

∀ B ∈ BUh
(Z) . (9.11)
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9.2 The equation for the weak solution of the discrete
problem

Taking the integral form of the Ito equation (7.12) and applying the operator
P ∗
h from (4.14) we obtain

Lh(ψh) ≡ S[ψh(t, x)]− S[ψh,0(·)]

+

t
∫

0

{

̂r−1[ψh(τ, x)]
(

(i∇h + ̂PhA(x))2ψh(τ, x) − ψh + |ψh|2ψh
)

−1
2
̂r′[ψh]

∑

j,k

|Θkj |2μjXQk
(x)V (Qk)−1

}

dτ = ̂PhW (t, x) .

(9.12)

Let γ0 be the restriction operator of functions f(t, ·) at t = 0, i.e., γ0f =
f(0, ·). We consider the operator

Ah ≡ (γ0, Lh) : Uh → L1(Ω)× Z , (9.13)

where Lh is the operator given in (9.12).

Proposition 9.2. The operator (9.13) is continuous.

Proof. The proof of this assertion is obvious because the space ̂H1
A,h(G) form-

ing the space Uh is finite dimensional. ��

We want to use the operator (9.13) to rewrite the weak solution (9.11)
in some other form. Recall that the full preimage of the set B × B0, where
B ∈ Z, B0 ∈ L1(G), is defined as follows:

A−1
h (B0 ×B) = {ψ ∈ Uh : Ahψ = (γ0ψ,Lhψ) ∈ B0 ×B} . (9.14)

By virtue of Proposition 9.2, A−1
h (B0 × B) ∈ B(Uh). This full preimage is

strictly connected to the solution ψh(t, x) of the problem (9.12). Indeed, we
have

ψh(t, x, ω) = ψh(t, x, ψ0(·, ω),W (τ ∈ (0, t), ·, ω))

= A−1
h (t, x, ψ0(·, ω),W (τ ∈ (0, t), ·, ω)) ,

(9.15)

where, in contrast to (9.14), A−1
h is the inverse (i.e., uniquely valued) operator

of the operator Ah. The domain of the operator (9.15) is the set of initial
conditions and right-hand sides, where the solution of (4.30), (2.12), and
(2.23) exists and is unique and therefore the solution of (9.12) possesses the
same property. This domain is given by

D(A−1
h ) = ( ̂PhL1(G), ̂PĥW ) , (9.16)
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where ̂W is the image of the Wiener process defined in Sect. 3:

̂W = {W (·, ·, ω), ω ∈ Ω}, W (·, ·, ω) is a Wiener process. (9.17)

Definition (9.17) implies that

̂W is a Λ-measurable set . (9.18)

Now for each B0 ∈ B(L1(G)) and B ∈ B(Z), we can write (see [44, p. 343])

(A∗
hνh)(B0 ×B) = νh(A−1

h (B0 ×B))

= νh({ψh ∈ Uh : Ahψh ∈ ̂PhB0 × ̂PhB})

= m
(

{ω : ̂Phψ0(·, ω) ∈ ̂PhB0, ̂PhW (·, ·, ω) ∈ ̂PhB}
)

= ̂P ∗
hμ(B0)× ̂P ∗

hΛ(B) = μh(B0)Λh(B) .
(9.19)

The relation

(A∗
hνh)(B0 ×B) = μh(B0)Λh(B) ∀ B0 ∈ B(L1(G)), B ∈ B(Z) (9.20)

is the desired equation for the weak statistical solution νh defined in (9.11).

10 Passage to the Limit in a Family of νhn

To take this limit, we need certain additional compactness results which we
present here.

10.1 Compactness of the family of measures νhn

Recall that hn = h02−n. First, we establish some estimates for νhn We denote
by ΓT the restriction operator on the interval (0, T ), i.e.,

ΓTψ = ψ|(0,T ) . (10.1)

Let ZT = ΓTZ and

νhT (C) = νh(Γ−1
T C) ∀ C ∈ B(UT ) . (10.2)
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Theorem 10.1. Suppose that the distribution μ(dψ0) of the initial condition
ψ0(x, ω) satisfies the inequality

∫

(

‖ψ0‖2L2(G) + ‖∇ψ0‖2L2(G) + ‖ψ0‖4L4(G)

)

μ(dψ0) <∞ . (10.3)

Then the measure νhT satisfies the estimates

∫

ZT

(

‖ψ(t, ·)‖2L2(G) +

t
∫

0

(‖∇+
hψ(t, ·)‖2L2(G) + ‖ψ(t, ·)‖4L4(G))dt

)

νhT (dψ)

� C1e
CT
(

1 +
∫

L2(G)

‖ψ0‖2μ(dψ0)
)

,

(10.4)
∫

ZT

(

‖ψ(t, ·)‖4L4(G) +
t
∫

0

‖ψ(t, ·)‖6L6(G))dτ
)

νhT (dψ)

� C2e
Ct(1 +

∫

L2(G)

‖ψ0‖4μ(dψ0) ,

(10.5)

and
∫

ZT

(

‖ψ‖2L∞((0,T );L2(G)) + ‖ψ‖CL,T,1

)

νhT dt � C(T ) , (10.6)

where the constants C1, C2, and C do not depend on h and T and C(T ) does
not depend on h.

Proof. From the usual definition (10.2) and (9.11) of the measure νhT and
Propositions 8.1 and 8.2, we can immediately derive (10.4) from (5.6), (10.5)
from (5.13), and (10.6) from the bounds given in (7.1) and (7.26). ��

Our goal is to prove the weak compactness of the measures νhn . For this
purpose, we use the following well-known theorem which is proved, for ex-
ample, in [19] .

Theorem 10.2 (Prokhorov). A family M of measures defined on the Borel
σ-algebra B(Z) of a separable Banach space Z is weakly compact if

(a) sup{μ(Z) : μ ∈ M} <∞,

(b) for any ε > 0 there exists a compact set K ⊂ Z such that sup{μ(Z\K) :
μ ∈ M} < ε.

Lemma 10.3. The set of measures νhnT , n ∈ N, is weakly compact on
ZT = L2((0, T )×G) ∩ C(0, T ;L1(G)).
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Proof. We use Theorem 10.2. Since νhnT are probability measures, the con-
dition (a) of the Prokhorov theorem is satisfied. We must check condition
(b) of the theorem. For a compact set K we take the set ΘR introduced in
(8.16). By Theorem 8.7, ΘR is compact in ZT . Note that the measure νhkT

is concentrated in L2(0, T ; ̂L2,hk(G)) and therefore

supp νhk
∩ΘR = BR(Whk

) ∩ supp νhkT . (10.7)

Therefore, using (10.7) and the Chebyshev inequality as well as the bounds
(10.4)–(10.6), we obtain

∫

L2(0,T×G)\ΘR

νhkT (dψ) =
∫

L2(0,T ;̂L2,hk (G))\BR(Whk
)

νhkT (dψ)

� 1
R

∫

(

‖ψ‖L2(0,T ; ̂H1
A,hk

(G) + ‖ψ‖CL,T,1

)

νhk,T (dψ) � C

R
,

(10.8)

where C does not depend on k. The inequality (10.8) implies that the measure
νhm satisfies condition (b). Therefore, the assertion of the lemma follows from
Prokhorov’s theorem. ��

10.2 Passage to the limit

In this section, we demonstrate that the set of measures νhn , n ∈ N, is weakly
compact on Z and thus we can choose a subsequence that converges weakly
to ν in Z.

Theorem 10.4. The set of measures νhn, n ∈ N, is weakly compact on Z.

Proof. The proof is similar to the proof given in [44, p. 361]. ��

By virtue of Theorem 10.4, we can choose from the sequence of measures
{νhn} the subsequences {νhj} that converges weakly to ν on Z, i.e.,

νhj → ν as j →∞ weakly on Z. (10.9)

We will show that the measure ν is the weak solution (see Definition 12.1
below) of the stochastic problem (3.22), (2.2), and (2.3).

11 Estimates for the Weak Solution

We first prove an estimate for νh.
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11.1 An estimate for νh

In order to prove the analogue of the estimate given in (5.52), we have to
define the second finite difference Δhψh(x) for ψh(x) ∈ ̂L2,h(G).

Assuming that the lattice function ψ = {ψk} satisfies (2.23), we can then
define the norm

‖ψ‖2H2
A,h(Gh) = hd

∑

kh∈Gh

(

|Δhψk|2 + |∇+
hψk|2 + |ψk|2

)

. (11.1)

We set

H2
A,h(Gh) = {ψ ∈ L2,h(Gh),

ψ satisfies (2.23), supplied with the norm (11.1) } .
(11.2)

We also define the space ̂H2
A,h(G) along with its norm as

̂H2
A,h(G) = P ∗

hH
2
A,h(Gh) ,

‖ψh‖2
̂H2

A,h

=
∫

G

(

|Δhψh(x)|2 + |∇+
hψh(x)|2 + |ψh(x)|2

)

dx .
(11.3)

Note that in a neighborhood of ∂G, the finite difference |Δhψh(x)|2 is calcu-
lated as was explained near (8.5). More precisely, to calculate the difference
|Δhψh(x)|2, we use the polyhedra Qk from (8.6) and, after these calculations,
we change these polyhedra in a neighborhood of ∂Ω on appropriate polyhe-
dra; see (4.2)–(4.5). The value of ψh(x) on this polyhedra Qk is defined by
(2.23).

The following assertion which is analogous to Propositions 8.1 and 8.2 can
be proved .

Proposition 11.1. The spaces H2
A,h(Gh) and ̂H2

A,h(G) are isomorphic and
the norms in (11.3) and (11.1) are equivalent.

The following theorem easily results from the estimate (5.52) .

Theorem 11.2. The measure νhT satisfies the estimate

∫

ZT

(

‖∇+
hψ(t)‖2L2(G) +

t
∫

0

‖Δhψ(τ, ·)‖2L2(G) dτ
)

νh,T (dψ)

� C1e
Ct
(

1 +
∫

(

‖∇+
hψ0‖2L2(G) + ‖ψ0‖4L4(G)

)

μ(dψ0)
)

.

(11.4)
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Recall that hn = 2−nh0. Below we will need modifications of Theo-
rems 10.1 and 11.2, where on the left-hand sides of the inequalities in these
theorems we need to replace ∇+

h and Δh with ∇+
hm

and Δhm respectively.
In addition, νh,T (dψ) must be changed to νhn,T (dψ) for n > m. To establish
such estimates, we prove some preliminary lemmas in the next section.

11.2 Preliminary lemmas

In this section, we provide several preliminary results which will be needed
to prove estimates for the measure ν.

Lemma 11.3. Let uk, k = 1, . . . , N , h > 0, be a lattice function. Then

N−n
∑

k=1

∣

∣

∣

∣

uk+n − uk
nh

∣

∣

∣

∣

2

�
N
∑

k=1

∣

∣

∣

∣

uk+1 − uk
h

∣

∣

∣

∣

2

. (11.5)

Proof. Since (a1 + · · · + aj)2 � j(a2
1 + · · · + a2

j) for positive a1, . . . , aj, we
have

N−n
∑

k=1

∣

∣

∣

∣

uk+n − uk
nh

∣

∣

∣

∣

2

=
1
n2

N−n
∑

k=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

uk+j − uk+j−1

h

∣

∣

∣

∣

∣

∣

2

� 1
n

N−n
∑

k=1

n
∑

j=1

∣

∣

∣

∣

uk+j − uk+j−1

h

∣

∣

∣

∣

2

�
N
∑

k=1

∣

∣

∣

∣

uk+1 − uk
h

∣

∣

∣

∣

2

,

where to obtain the last inequality we have taken into account that the previ-
ous sum can be represented as the sum of groups of identical summands and
the number of identical summands in each group are not more than n. ��

Lemma 11.4. Let uk, k = 0, . . . , N , h > 0, be a lattice function. Then

N−n
∑

k=n

∣

∣

∣

∣

uk+n − 2uk + uk−n
(nh)2

∣

∣

∣

∣

2

� 4
N−1
∑

k=1

∣

∣

∣

∣

uk+1 − 2uk + uk−1

h2

∣

∣

∣

∣

2

. (11.6)

Proof. For k = 1, . . . , N−1 we set Δhuk = uk+1−2uk+uk−1. One can prove
that

uk+n − 2uk + uk−n =
n
∑

j=1

jΔhuk+n−j +
n−1
∑

j=1

(n− j)Δhuk−j .
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Therefore,

N−n
∑

k=n

∣

∣

∣

∣

uk+n − 2uk + uk−n
(nh)2

∣

∣

∣

∣

2

� 2n
(nh)4

N−n
∑

k=n

(
n
∑

j=1

j2 |Δhuk+n−j |2 +
n−1
∑

j=1

(n− j)2 |Δhuk−j |2
)

� 2
nh4

N−n
∑

k=n

(
n
∑

j=1

|Δhuk+n−j |2 +
n−1
∑

j=1

|Δhuk−j |2
)

� 4
N−1
∑

k=1

∣

∣

∣

∣

Δhuk
h2

∣

∣

∣

∣

2

because the maximal number of elements in each group of identical summands
in the penultimate sum is 2n. ��

For the approximate domain Ghn ∪∂G+
hn

we intend to define the first and
second finite difference quotients ∇+

hm
and Δhm with m < n. For j = 1, . . . , d

denote

Ghn(+j;hm) =
{

k ∈ Z
d : khn ∈ Ghn , (k + 2n−mej)hn ∈ Ghn ∪ ∂G+

hn

}

.

Clearly, for each khn ∈ Ghn(+j;hm), the difference quotient ∂+
j,hm

uk =
(uk+2n−mej

− uk)/hm is well defined. In an analogous manner, we denote

Ghn(−j;hm) =
{

k ∈ Z
d : khn ∈ Ghn , (k − 2n−mej)hn ∈ Ghn ∪ ∂G+

hn

}

.

Let

Ghn(+;hm) =
d
⋂

j=1

Ghn(+j;hm), Ghn(−;hm) =
d
⋂

j=1

Ghn(−j;hm) (11.7)

and

Ghn(hm) =
d
⋂

j=1

(Ghn(+j;hm) ∩Ghn(−j, hm)) . (11.8)

It is clear that the subsets (11.7) and (11.8) of Ghn∩∂G+
hn

satisfy the following
properties: for all khn ∈ Ghn(+;hm), the operator∇+

hm
uk is well defined and,

for khn ∈ Ghn(hm), the operator Δhmuk is well defined.
We are now in a position to prove the following lemma.

Lemma 11.5. For each ψ ∈ L2,hn(Ghn)

hdn
∑

khn∈Ghn(+;hm)

∣

∣∇+
hm

ψk
∣

∣

2 � ‖∇+
hn
ψ‖2L2,hn(Ghn ) (11.9)

and
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hdn
∑

khn∈Ghn (hm)

|Δhmψk|2 � 4‖Δhnψ‖2L2,hn(Ghn ) . (11.10)

Proof. The bound (11.9) is a direct corollary of Lemma 11.3 and the bound
(11.10) follows directly from Lemma 11.4. ��

Denote
G(hm) =

⋃

khn∈Ghn (hm)

Qk , (11.11)

where the sets Qk are defined by (4.1) with h = hn. Then, using the operator
P ∗
hn

defined in (4.14), we immediately obtain from Lemma 11.5 the following
assertion.

Lemma 11.6. For each ψ(x) ∈ ̂H2
A,hn

(G)
∫

G(hm)

∣

∣∇+
hm

ψ(x)
∣

∣

2
dx � C

∫

G

∣

∣∇+
hn

ψ(x)
∣

∣

2
dx (11.12)

and
∫

G(hn)

|Δhmψ(x)|2 dx � C

∫

G

|Δhnψ(x)|2 dx , (11.13)

Recall that calculation of the functions from (11.12) and (11.13) near the
boundaries of G and G(hm) should be made as was explained near (8.5) and
(11.3) with h = hn. where C does not depend on ψ, n, or m.

At last we are now able to prove the following corollary of Proposition 7.1
and Theorems 10.1 and 11.2.

Theorem 11.7. Let the distribution μ(dψ0) of the initial condition ψ0(x, ω)
satisfy (10.3). Then for each m < n the measures νhn,T (dψ) satisfy the esti-
mates

∫

ZT

(

T
∫

0

(

‖Δhmψ(τ, ·)‖2L2(G(hm)) + ‖∇+
hm

ψ(τ, ·)‖2L2(G(hm))

)

dτ
)

νhnT (dψ)

� CT

(

1 +
∫

L2(G)

(

‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)

μ0(dψ0) ,

(11.14)
where the constant CT depends only on T . Moreover,
∫

ZT

sup
t∈(0,T )

‖∇+
hm

ψ(t, ·)‖L2(G(hm))νhn,T (dψ) � C(T ) <∞ ∀T > 0 , (11.15)

where the constant C(T ) does not depend on hm or hn,T .
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Proof. The theorem follows immediately from Lemma 11.6, Proposition 7.1,
and Theorems 10.1 and 11.2. ��

11.3 Estimates for the measure ν

We are now in a position to prove the main theorem of this section. We set

H1
Δ(G) =

{

u(x) ∈ H1(G) : Δu(x) ∈ L2(G),

‖u‖2H1
Δ(G) =

∫

G

(

|Δu|2 + |∇u|2 + |u|2
)

dx <∞
}

.
(11.16)

Theorem 11.8. Let the distribution μ(dψ0) of the initial condition ψ0 satisfy
(10.3). Then the statistical solution ν constructed in (10.9) is supported on
the space

supp ν ⊂ L2,loc(0,∞;H1
Δ(G)) ∩ L6,loc(0,∞;L6(G)) ∩ CL(0,∞;L1(G)) .

(11.17)
Moreover, the following estimates hold. For every T > 0 there exists a con-
stant CT depending only on T such that

∫

UT

(

T
∫

0

‖Δψ‖2L2(G) + ‖∇ψ‖2L2(G) + ‖ψ‖6L6(G)dτ
)

νT (dψ)

� CT

[

1 +
∫

L2(G)

(

‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)

μ(dψ0)
]

(11.18)
∫

UT

(‖ψ‖2L∞(0,T ;L2(G)) + ‖∇ψ‖2L∞(0,T ;L2(G)))νT (dψ) � C(T ) <∞ ∀T > 0

(11.19)
and

∫

ZT

‖ψ‖CL(0,T ;L1(G))ν(dψ) � C(T ) <∞ ∀T > 0 . (11.20)

Proof. Let φR(λ) ∈ C∞(R+), φR(λ) = λ for λ < R, and φR(λ) = R + 1 for
λ � R + 1. Then the bound (11.14) implies the inequality

∫

φR

(

T
∫

0

(

‖∇+
hm

ψ(τ, ·)‖2L2(G(hm)) + ‖Δhmψ(τ, ·)‖2L2(G(hm))
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+‖ψ(τ, ·)‖2L2(G)

)

dτ
)

νhnT (dψ) � ̂CT

≡ CT (1 +
∫

L2(G)

(

‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)

μ(dψ0) .

(11.21)
Since the functional under the integral on the left-hand side of (11.21) is

bounded and continuous on the space Z from (9.8), we can pass to the limit
as n→∞ in (11.21). As a result, we obtain

∫

φR

(

T
∫

0

(

‖∇+
hm

φ(τ, ·)‖2L2(G(hm)) + ‖Δhmψ(τ, ·)‖2L2(G(hm))

+‖ψ(τ, ·)‖2L2(G)

)

dτ
)

νT (dψ) � ̂CT .

(11.22)

Using the Beppo Levi theorem, we can pass to the limit in (11.22) as R→∞
to obtain

∫

(

T
∫

0

(

‖∇+
hm

ψ(τ, ·)‖2L2(G(hm)) + ‖Δhmψ(τ, ·)‖2L2(G(hm))

+‖ψ(τ, ·)‖2L2(G)

)

dτ
)

νT (dψ) � ̂CT .

(11.23)

It is easy to prove that

‖Δhmu‖L2(G(hm)) → ‖Δu‖L2(G) <∞

‖∇+
hm

u‖L2(G(hm)) → ‖∇u‖L2(G) <∞
(11.24)

as hm → 0 if and only if u ∈ H1
Δ(G). Passing to the limit in (11.23) as

hm → 0, with the help of the Fatou theorem and taking into account (11.24),
we find that the measure νT (dψ) satisfies the inequality

∫
T
∫

0

‖ψ(τ, ·)‖2H1
Δ(G)dτ νT (du) � ̂CT (11.25)

and therefore it is supported on the space L2(0, T ;H1
Δ(G)). Since the em-

beddings H1
Δ(G) ⊂ H1(G) ⊂ L6(G) are continuous when the dimension of

G = d � 3, the norm ‖u‖L6 is continuous on H1
Δ(G). Therefore, using as the

above function φR(λ), we can pass to the limit as n→∞ in the term of the
inequality (10.5) containing ‖ψ‖6L6(G). As a result, we obtain
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∫
T
∫

0

‖ψ(τ, ·)‖6L6(G)dτ νT (dψ) � ̂CT . (11.26)

The inequality (11.19), as well as the bound (11.20) can be obtained with the
help of the method used in [44, p. 363]. ��

12 The Equation for the Weak Solution of the
Stochastic Ginzburg–Landau Problem

Roughly speaking, the weak solution is a measure satisfying a certain equa-
tion. We begin with the formal derivation of this equation.

12.1 Definition of the weak solution

The stochastic Ginzburg–Landau equation can be written as the Ito differ-
ential equation (3.22) with boundary and initial conditions (2.2) and (2.3)
respectively. We let dW (t, x) denote the white noise corresponding to the
Wiener process defined in Sect. 3.1, ψ0(x) = ψ0(x, ω) ∈ L4(G) ∩H1(G) is a
random initial condition with distribution μ(dψ0), and ψ0(x) and W (t, x) are
independent. Let S(λ) be the function given in (7.7). Applying formally the
Ito formula to the function S(ψ(t, x)) and writing the resulting Ito differential
in integral form, we obtain

L(ψ) ≡ S[ψ(t, x)]− S[ψ0(x)]

+

t
∫

0

(

̂r−1[ψ(τ, x)]
{

(i∇+ A(x))2ψ(τ, x)− ψ(τ, x) + |ψ|2ψ(τ, x)
}

+
1
2
̂r′[ψ]K11(x, x)

)

dτ = W (t, x) ,

(12.1)
where K11(x, x) is defined in (3.14).

We introduce the spaces

UT = L2(0, T ;H2
A(G))∩CL(0, T ;L1(G))∩L6((0, T )×G), T > 0 , (12.2)

and

U = L2,loc(0,∞;H2
A(G)) ∩ CL(0,∞;L1(G)) ∩ L6,loc(0,∞;L6(G)) (12.3)
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with the norm for space (12.2)

‖ψ‖U ,T = ‖ψ‖L2(0,T ;H2
A(G)) + ‖ψ‖CL(0,T :L1(G)) (12.4)

and with the topology for the space (12.3) defined by the seminorms (12.4)
with arbitrary T > 0.

Similarly, we consider the continuous operator

A = (γ0, L) : U → L1(G)× Z . (12.5)

Repeating formally the derivation of the equation for the weak statistical
solution of the approximation for the Ginzburg–Landau equation, we obtain
the following analogue of (9.20):

(A∗ν)(B0 ×B) = μ(B0)Λ(B) ∀ B0 ∈ B(L1(G)), B ∈ B(Z) . (12.6)

Definition 12.1. The probability measure ν on B(U) is called the weak
statistical solution of the stochastic Ginzburg–Landau equation (3.22) if it
is concentrated on U , satisfies the inequalities (11.18), (11.19), and (11.20),
and satisfies (12.6), where A is the operator from (12.5) and (12.1).

12.2 The first steps of the proof for ν to satisfy (12.6)

We will show that the measure ν defined in (10.9) satisfies (12.6). Since the
other properties in Definition 12.1 are already proven for ν, this gives that
ν is a weak statistical solution of the stochastic Ginzburg–Landau equation.
We can show that (12.6) is equivalent to the equality

∫

η(γ0ψ)φ(L(ψ))ν(dψ) =
∫

η(ψ0)μ(dψ0)
∫

φ(W )Λ(dW ) (12.7)

for all η ∈ Cb(L2(G)) and φ ∈ Cb(C(0,∞;L1(G)) (recall that Cb(H) is the
space of bounded, continuous functions on the Banach space H) in the same
way as the analogous assertion was proved in [44, p. 364].

We already proved that there exists a strong stochastic solution of the
problem (9.12). Therefore, (9.12) implies (9.20) and (9.20) implies that

E(η(γ0ψh)φ(Lh(ψh)) =
∫

η(̂Phψ0)μ(dψ0)
∫

φ(̂PhW )Λ(dW ) , (12.8)

where ̂Ph is the operator defined in (9.2). Performing a change of variables
on the left-hand side of (12.8), we obtain

∫

η(γ0
̂Phψ)φ(Lh(̂Phψ)νh(dψ)
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=
∫

η(̂Phψ0)μ(dψ0)
∫

φ(̂PhW )Λ(dW ) . (12.9)

We derive (12.7) by passing to the limit in (12.9) as h = hj → 0.
Since for each ψ0 ∈ L2(G) and W ∈ C(0,∞;L1(G)) we have ̂Phψ0 → ψ0

as h→ 0 in L2(G) and ̂PhW →W as h→ 0 in C(0,∞;L1(G)), we have the
following formulas:

∫

η(̂Phψ0)μ(dψ0) →
∫

η(ψ0)μ(dψ0)

∫

φ(̂PhW )Λ(dW ) →
∫

φ(W )Λ(dW )

(12.10)

as h→ 0.
We now pass to the limit on the left-hand side of (12.9). By virtue of the

arguments in [44, p. 364], it is enough to prove (12.7) only for cylindrical
functionals φ, i.e., for φ that actually depend only on a finite number of
arguments and is constant with respect an infinite part of the arguments.
But each such functional φ(u) can be approximated by a finite sum of the
form

φ(u) ≈
∑

k

ei[u,vk],

where

[u, vk] =

∞
∫

0

∫

G

uvkdxdt.

Consequently, we can modify φ(Lh(̂Phψ)) in (12.9) using ei[Lh(̂Phψ),v]. We
can now write
∫

η(γ0
̂Phψ)φ(Lh(̂Phψ))νh(dψ) �

∫

η(γ0
̂Phψ)ei[Lh(̂Phψ),v]νh(dψ) . (12.11)

We pass to the limit as h→ 0 on the right-hand side of (12.11).
Taking v ∈ L2(0,∞;H2(G)), v(t, x) = 0 for t > tv, where H2(G) is the

usual Sobolev space, we can rewrite (9.12) as follows:

[Lh(ψ), v] = f1,h(ψ) + f2,h(ψ) + f3,h(ψ) with ̂Phψ changed on ψ , (12.12)

where

f1,h(ψ) =

∞
∫

0

∫

G

{

S(ψ(t, x)− S(γ0
̂Phψ(·, x))
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+

t
∫

0

(

̂r−1[ψ(τ, x)]|ψ|2ψ(τ, x)− ψ(τ, x)
)

dτ
}

v(t, x) dxdt , (12.13)

f2,h(ψ) =
1
2

∞
∫

0

∫

G

t
∫

0

r′[ψ(τ, x)]

(
∑

kh,jh∈Gh

XQj (x)V (Qk)−1|Θjk|2μk
)

dτ v(t, x) dxdt ,

(12.14)

and

f3,h(ψ) =

∞
∫

0

∫

G

t
∫

0

̂r−1[ψ(τ, x)]
(

(i∇h + ̂PhA(x))2ψ(τ, x)
)

v(t, x) dτdxdt ,

(12.15)

where recall that ̂r−1[ψ(τ, x)]z, z ∈ C, is understood in the meaning of (3.20)
and (3.21). First of all, we rewrite f3,h(ψ) by summing by parts. We suppose
that each v(x) ∈ H2(G) is extended onto G(ε) = {x ∈ R

d : ρ(x,G) =
infy∈G |x − y| < ε}, where ε > 0 is fixed, by a fixed extension operator
E : H2(G) → H2(G(ε)) and we denote this extension Ev(x) by v(x). Thus,
for small enough h, the difference quotients ∂+

hj
v(x) = 1

h (v(x + ejh)− v(x)),
j = 1, . . . , d, are well defined for almost all x ∈ G.

Lemma 12.2. The expression (12.15) is equivalent to

f3,h(ψ)

=

∞
∫

0

∫

G

t
∫

0

{

̂r−1[ψ(τ, x)]
(

(∇+
h − îPhA(x)

)

ψ(τ, x))∇+
h v(t, x)

+̂r−1[ψ(τ, x)]
(

(i∇+
h + ̂PhA(x))ψ(τ, x)

)

̂PhA(x)v(t, x)

+
d
∑

j=1

(

∂−
hj

̂r−1[ψ(τ, x)]
)

(

∇+
h − îPhA(x− hej)ψ(τ, x− hej)

)

v(t, x)
}

dτdxdt

(12.16)

for each ψ(τ, x) = ̂Phψ(τ, x) ∈ L2(0,∞; ̂H2
A,h(G) with the space ̂H2

A,h(G)
defined in (11.3), v(t, x) ∈ L2(0,∞;H2(G(ε)), and v(t, x) = 0 for t > t0.

Proof. We denote
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φ(τ, x) = (∇+
h − i ̂PhA(x))ψ(τ, x)

≡ {∂+
hj
− i ̂PhA

j(x))ψ(τ, x), j = 1, . . . , d} = {φj(τ, x), j = 1, . . . , d}

and rewrite (12.15) as

f3,h(ψ) = −
∞
∫

0

∫

G

t
∫

0

̂r−1[ψ(τ, x)]

(
d
∑

j=1

(∂−
hj
− i ̂PhA

j(x))φj(τ, x)
)

v(t, x) dτdxdt .

(12.17)

Taking into account the identity

f(x)∂−
hj

g(x) = ∂−
hj

(f(x)g(x)) − (∂−
hj

f(x))g(x − hej)

and summing by parts, we obtain

−
d
∑

j=1

∞
∫

0

∫

G

t
∫

0

̂r−1[ψ(τ, x)](∂−
hj

φj(τ, x))v(t, x) dτdxdt

= −
d
∑

j=1

∞
∫

0

∫

G

t
∫

0

{

∂−
hj

(̂r−1[ψ(τ, x)](φj(τ, x)))v(t, x)

−(∂−
hj

̂r−1[ψ(τ, x)])(φj(x− hej))v(t, x)
}

dτdxdt

= −
d
∑

j=1

∞
∫

0

∫

G

t
∫

0

{

̂r−1[ψ(τ, x)](φj(τ, x))∂+
hj

v(t, x)

+(∂−
hj

̂r−1[ψ(τ, x)])(φj(x− hej))v(t, x) dτdxdt .

(12.18)

Note that the term with the integral over ∂G is equal to zero because ψ(τ, x) ∈
̂H2
A,h(G) and by virtue of Lemma 2.3. The relations (12.17) and (12.18) imply

(12.16). ��

Now we have to pass to the limit as h→ 0 in the integral
∫

η(γ0ψ)ei[Lh(ψ)v]νh(dψ) =
∫

η(γ0ψ)ei(f1(ψ)+f2,h(ψ)+f3,h(ψ))νh(dψ) .

(12.19)
To do this, we first have to study f2,h(ψ) and f3,h(ψ).
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12.3 Investigation of f2,h(ψ)

For f2,h(ψ) we prove the following result.

Lemma 12.3. The following relation holds:
∑

kh,jk∈Gh

XQj (x)|Θjk |2μk

=
∑

r

KrrXQr (x) → K(x, x) as h→ 0 a.e. x ∈ G ,
(12.20)

where K(x, y) = 2(K11(x, y)− iK12(x, y)) is the correlation function (3.14) of
the Wiener process W (t, x) and K(x, x) = 2K11(x, x).

Proof. Recall that the matrix Θj from (4.19) is unitary, i.e.,
∑

k

ΘmkΘik = δmi and
∑

k

ΘkmΘki = δmi . (12.21)

We can rewrite (4.19) as follows:
∑

lr

ΘljKlrΘrk = δjkμk . (12.22)

Multiplying both parts of (12.22) by Θmj , summing over j, and using (12.21),
we obtain

∑

r

KmrΘrk = Θmkμk . (12.23)

Multiplying both sides of (12.23) by Θjk, summing over k, and using (12.21),
we obtain

Kmj =
∑

k

ΘmkΘjkμk . (12.24)

Multiplying both sides of (12.24) by XQm(x)XQj (y) and summing on m, j
such that mh ∈ Gh and jh ∈ Gh, we obtain

∑

m,j

KmjXQm(x)XQj (y) =
∑

k

μk
∑

m,j

ΘmkΘjkXQm(x)XQj (y) . (12.25)

Setting y = x in (12.25) and using (4.17), we obtain
∑

k

μk
∑

m

|Θmk|2XQm(x) =
∑

m

KmmXQm(x)

=
∑

m

XQm(x)V −2(Qm)
∫

Qm

∫

Qm

K(x, y) dxdy .

(12.26)
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Clearly, the right-hand side of (12.26) tends to 2K11(x, x) for almost all x ∈ G
as h→ 0. ��

12.4 Subspaces of piecewise linear functions

The investigation of f3,h(ψ) is more difficult. First, we introduce the space
of piecewise linear functions on G. For kh ∈ Gh we consider the piecewise
linear function

εk(x) =

⎧

⎪

⎨

⎪

⎩

1, x = kh,

0, x �∈ cube with tops (k ± ej)h, j = 1, . . . , d,
piecewise linear otherwise.

(12.27)
We define PLh(G) as the linear space of functions generated by the basis
{εk(x), kh ∈ Gh} and restricted to G. If this space is supplied with the norm
of L2(G), we use the notation PLh(G) as well. If PLh(G) is supplied with
the norm

‖u‖2PL1
h

= ‖∇+
h u‖2L2(G) + ‖u‖2L2(G) ,

we denote this space as PL1
h(G). If it is supplied with the norm

‖u‖2PL2,h = ‖Δhu‖2L2(G) + ‖∇+
h u‖2L2(G) + ‖u‖2L2(G) ,

then we denote this space as PL2
h(G). (For the calculation of ∇+

h u and Δhu
in these norms the functions εk(x) with kh ∈ ∂G+

h and with coefficients from
(2.23) should also be used.)

Theorem 12.4. There exist constants C1 and C2, independent of h, such
that for every u ∈ PL1

h(G)

C1‖∂ju‖2L2(G) � ‖∂+
j,hu‖2L2(G) � C2‖∂ju‖2L2(G), j = 1, . . . , d . (12.28)

Proof. The estimates are established with the help of direct calculations. ��

Note that the second estimate in (12.28) holds for each u ∈ H1(G), where,
in the definition of ∂+

j,hu, a certain extension operator Eδ : H1(G) → H1(G(δ)
is used, where G(δ) is a neighborhood of G with dist(∂G, ∂G(δ)) = δ with
δ > 0 is fixed.

Theorem 12.5. There exists a topological isomorphism

Rh : ̂L2,h(G) → PLh(G) . (12.29)

Moreover, the following estimates for the operator Rh hold:
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‖Rhu‖PL1
h(G) � C1‖u‖ ̂H1

A,h(G) � C2‖Rhu‖PL1
h(G) (12.30)

‖Rhu‖PL2
h(G) � C1‖u‖ ̂H2

A,h
(G) � C2‖Rhu‖PL2

h(G) . (12.31)

Proof. The isomorphism Rh is established as follows. For each u(x) ∈ ̂L2,h(G)
we take

Ru(kh) = u(kh) ∀ kh ∈ Gh ∪ ∂G+
h . (12.32)

(For calculating u(kh) for kh ∈ ∂G+
h we use the boundary conditions (2.23).)

Since in both the spaces ̂L2,h(G) and PLh(G) the values of the points kh ∈
Gh ∪ ∂G+

h define the function uniquely for each x ∈ G, (12.32) establishes
the isomorphism. The estimates (12.30) and (12.31) are proved by direct
calculations. ��

12.5 The measures ν̂hn and their weak compactness

We need the following analogue of the compactness lemma given in Lemma 8.3.

Lemma 12.6. For each R > 0 the set

ΘR =
∞
⋃

n=1

BR(PL2
hn

(G)) ∪BR(H2
A(G)) (12.33)

is compact in H1(G) if BR(H) = {x ∈ H : ‖x‖H � R} for each Hilbert
space H.

Proof. Similarly to Lemma 8.3, it suffices to choose from the sequence uh ∈
BR(PL2

hn
) a subsequence convergent in H1(G). Clearly, we can choose a

subsequence um → û weakly in H1(G) because, by virtue of (12.30) and
(12.31), un ∈ BR(PL2

hn
) ⊂ BR(H1(G)). The following bound holds:

∫

G

∣

∣∂−
jh∂hψ(x)

∣

∣

2
dx � C

∫

G

∣

∣∂−
j,h∂

+
hψ(x)

∣

∣

2
dx � C1‖ψ‖PL2

h(G) , (12.34)

where C and C1 do not depend on h. Indeed, the first inequality follows
clearly from (12.28) and the second is a corollary of the discrete analogue of
the elliptic theory. Recall that by the definition of ‖ψ‖PL2

h
(G), the boundary

condition for ψ is fixed by (2.23). Since the right-hand side of (12.34) with
ψ = un is bounded by C1R, (12.34) implies that for each ε > 0 there exists
δ > 0 such that for h < δ
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∫

|
(

∇um(x− ejh)−∇um(x)
)2

dx < ε.

By this inequality we can choose a subsequence {uk} ⊂ {um} strongly con-
verging in H1(G). ��

Using Lemma 12.6 analogously to Theorem 8.7, we can prove the following
theorem.

Theorem 12.7. For each R > 0 the set

̂ΘR =
∞
⋃

n=1

BR(Wh,T ) ∪BR(WT ) (12.35)

is compact in L2(0, T ;H1(G)) ∩ L4(0, T : L4(G)) ∩ C(0, T ;L1(G)), where

Wh,T = L2(0, T ;PL2
hn

(G)) ∩ CL(0, T ;L1(Ω)),

WT = L2(0, T ;H1
Δ(G)) ∩CL(0, T ;L1(Ω)) ∩ L6(0, T : L6(G))

(12.36)

and where H1
Δ(G) is the space defined in (11.16).

Clearly, the isomorphism (12.29) generates the isomorphism

Rh : L2(0, T ; ̂H1
A,h(G)) → L2(0, T ;PL1

h(G)) . (12.37)

Using (12.37) and the weak solution νhn(dψ) defined in (9.11), we can define
the following measure ν̂h,T on L2(0, T ;PL1

h(G)):

ν̂hT (B) = νhT (R−1
h B) ∀ B ∈ B(L2(0, T ;PL1

h(G))) . (12.38)

The definition (12.38), the estimates (10.4) and (10.6) for νhT , and the in-
equalities (11.14) and (12.31) imply the following inequality for the measures
ν̂hnT :

∫

(

T
∫

0

‖ψ(t, ·)‖2PL2
h(G)dt + ‖ψ‖CL(0,T ;L1(G))

)

ν̂hnT � CT (12.39)

with CT independent of h.
Using this estimate, the compactness result in Theorem 12.7, and the

Prokhorov theorem (see Theorem 10.2), by following the proof of Lemma 10.3,
we obtain the following result.

Theorem 12.8. The measures ν̂hnT (ω) are weakly compact on L2(0, T ;
H1(G)). Moreover,

ν̂hk,T → νT as k →∞ weakly on L2(0, T ;H1(G)) , (12.40)
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where hk is a subsequence of the sequence hj in (10.9), νT = Γ ∗T ν, where νT
is the measure (12.40), ν is the measure (10.9), and ΓT is the operator (10.1).

Proof. It was already explained that ν̂hk,T → ν̂T weakly on L2(0, T ;H1(G)),
where ν̂T is a certain measure. To prove Γ ∗T ν = ν̂T , we have to take into
account the fact that

Rh ̂Phu→ u as h→ 0 ∀ u ∈ L2(G) . (12.41)

Indeed, by virtue of (12.38),
∫

f(u)ν̂h,T (du) =
∫

f(Rh ̂Phv)νh,T (du)

if f(u) is continuous on L2
(

(0, T )×G
)

. Passing to the limit as h → 0, with
the help of (12.41), we obtain ν̂T = νT = Γ ∗T ν. ��

12.6 The final steps for passage to the limit

Now we are in a position to pass to the limit in (12.19). Let Nh = R−1
h be

the operator inverse to (12.29). The equality (12.38) can be rewritten as

νhT (B) = ν̂h,T (N−1
h B) ∀ B ∈ B(L2(0, T ;L2(G)) (12.42)

and using this, we can rewrite (12.19) in the form
∫

η(γ0ψ)ei[Lh(ψ),v]νh(dψ) =
∫

η(γ0Nhu)ei[Lh(Nhu),v]ν̂h(du) . (12.43)

The most difficult term for passing to the limit in (12.19) as h → 0 is the
term f3,h(Nhu) from (12.16). In that integral, u(τ, x) ∈ L2(0, T ;PL1

h(G)).
But as follows from the lemma formulated below, the operator Nh can be
extended from PL1

h(G) to H1(G).

Lemma 12.9. The operator Nh can be extended from PL1
h(G) to H1(G).

Moreover, for each u ∈ H1(G)

‖∇+
h u−∇u‖L2(G) → 0 as h→ 0 . (12.44)

Proof. In addition to the basis {εk(x), kh ∈ Gh∪∂G+
h }, we introduce in PLh

an associated basis {ε∗k(x), kh ∈ Gh ∪ ∂G+
h } that is defined by the condition

∫

G(δ)

εj(x)ε∗k(x) dx = δkj , (12.45)
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where δkj is the Kronecker symbol and G(δ) = {x ∈ R
d : ρ(x,G) =

infy∈G |x− y| < δ} is a neighborhood of G containing the set
⋃

kh∈Gh∪∂G+
h

Qk

with Qk defined in (4.1)-(4.5) and (8.6). To construct {ε∗k(x)}, we look for
these functions in the form

ε∗k(x) =
∑

jh∈Gh∪∂G+
h

αkjεj(x) , (12.46)

where αkj is the solution of the system of linear algebraic equations obtained
after substitution (12.46) into (12.45). By the definition of the operator Nh,

Nhf(x) =
∑

jh∈Gh∪∂G+
h

fjXQj (x), where f(x) =
∑

kh∈Gh∪∂G+
h

fkεk(x) ∈ PLh

and XQj (x) is the characteristic function of the set Qj. The extension of this
operator on H1(G(δ)) is defined as follows:

Nhf(x) =
∑

kh∈Gh∪∂G+
h

XQj (x)
∫

G(δ)

f(x)ε∗j (x) dx . (12.47)

The relation (12.44) is verified by direction calculations. ��

Using Lemma 12.9, it is easy to prove the following result.

Lemma 12.10. (a) For each sufficiently small h the functional f3,h(Nhu)
defined in (12.16) is continuous in u ∈ L2,loc(0,∞;H1(G)).

(b) For each u ∈ L2,loc(0,∞;H1(G))

f3,h(Nhu) →h→0

∞
∫

0

∫

G

t
∫

0

{

̂r−1[u(τ, x)]
(

(∇− iA(x))u(τ, x)
)

∇v(t, x)

−̂r−1[u(τ, x)]
(

(i∇+ A(x))u(τ, x)
)

A(x)v(t, x)

+
d
∑

j=1

(

∂ĵr−1[u(τ, x)]
)(

(∇− iA(x))u(τ, x))v(t, x)
}

dτdxdt .

(12.48)

Lemmas 12.3 and 12.10 imply the following assertion.

Lemma 12.11. (a) For each sufficiently small h the functional [Lh(Nhu), v]
is continuous in u ∈ L2,loc(0,∞;H1(G)) ∩ L4,loc(0,∞;L4(G)).

(b) For each u ∈ L2,loc(0,∞;H1(G)) ∩ L4,loc(0,∞;L4(G))

[Lh(Nhu), v] → [Lw(u), v] as h→ 0 , (12.49)
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where

[Lw(u), v] =

∞
∫

0

∫

G

{

(

S(u(t, x)− S(γ0u(·, x))

+

t
∫

0

̂r−1[u(τ, x)](|u|2u(τ, x)− u(τ, x)) dτ
}

v(t, x)

+

t
∫

0

1
2
r′[u(τ, x)] dτK(x, x)v(t, x)

+

t
∫

0

{

̂r−1[u(τ, x)]
(

(∇− iA(x))u(τ, x)
)

∇v(t, x)

+̂r−1[u(τ, x)]
(

(i∇+ A(x))u(τ, x)
)

A(x)v(t, x)

+
d
∑

j=1

(

∂ĵr−1[u(τ, x)]
)(

(∇− iA(x))u(τ, x)
)

v(t, x)
}

dτ

}

dxdt

(12.50)
and where the index w in [Lw(u), v] means that (12.50) is the weak form of
the operator L.

Now we are in a position to prove the main lemma.

Lemma 12.12. The following relation holds:
∫

η(γ0ψ)ei[Lh(ψ),v]νh(dψ) →h→0

∫

η(γ0ψ)ei[Lw(ψ),v[ν(dψ) , (12.51)

where ν(dψ) is the measure from (10.9) and [Lw(ψ, v] is defined in (12.50).

Proof. By virtue of (12.42), it is sufficient to prove
∫

η(γ0Nhu)ei[Lh(Nhu),v]ν̂h(du) →h→0

∫

η(γ0u)ei[Lw(u),v]ν(du) . (12.52)

Theorem 12.8 and the continuity on L2,loc(0,∞;H1(G)) ∩C(0,∞;L1(G))∩
L4,loc(0,∞;L4(G)) of the functional u→ ei[Lw(u),v]γ0(u) imply
∫

η(γ0u)ei[Lw(u),v]ν̂h(du) →
∫

η(γ0, u)eiLw(u),v]ν(du), h→ 0 . (12.53)

By virtue of Theorem 12.7, for each R, the set ̂ΘR defined in (12.35) is
compact in L2(0, T ;H1(G)) ∩ L4((0, T ) × G) ∩ C(0, T ;L1(G)), where T is
chosen in such a way that v(t, x) ≡ 0 for t > T . Thus, by Lemma 12.11, for
each R > 0,

γ0(Nhu)ei[Lh(Nhu),v] → γ0(u)ei[Lw(u),v] as h→ 0 (12.54)
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uniformly over u ∈ ̂ΘR. In addition, for every ε > 0 there exists R > 0 such
that

∫

QR

∣

∣γ0(Nhu)ei[Lh(Nhu),v]
∣

∣ν̂h(du) < ε ∀ h , (12.55)

where Qk = L2(0, T ;H1(G))\ ̂ΘR. The relations (12.53)–(12.55) imply (12.52).
��

Thus, we obtain from (12.9)–(12.11) and (12.51) the equality
∫

η(γ0ψ)ei[Lw(ψ),v]ν(dψ) =
∫

η(ψ0)μ(dψ0)
∫

ei[W,v]Λ(dW ) (12.56)

for each v(t, x) ∈ L2(0,∞;H1(G)), v(t, x) ≡ 0 for t > tv. Now we are in a
position to prove (12.7).

12.7 Proof of the equality (12.7)

By virtue of Theorem 11.8, the statistical solution ν(dψ) (more precisely, its
restriction νT (dψ) on the time interval (0, T )) is supported on the space WT

defined in (12.36).

Theorem 12.13. The weak statistical solution ν(dψ) satisfies Equation (12.7)
for each η ∈ Cb(L2(G)) and φ ∈ Cb(0,∞;L2(G)).

Proof. The main step of the proof is to show that, besides (12.56), the weak
statistical solution ν(dψ) satisfies the equality

∫

η(γ0ψ)ei[L(ψ),v]ν(dψ) =
∫

η(ψ0)μ(dψ0)
∫

ei[w,v]Λ(dW ) (12.57)

for each v(t, x) ∈ L2(0,∞;H1(G)) with v(t, x) = 0 for t > tv, where L(ψ)
is the strong form of the operator L defined in (12.1). Recall that H1

0 (G) =
{u(x) ∈ H1(G) : u|∂G = 0}; we must prove that

[Lw(ψ), v] = [L(ψ), v] ∀ v ∈ L2(0,∞;H1
0 (G)), v = 0 for t > tv. (12.58)

By virtue of definitions (12.1) and (12.50) of L(ψ) and [Lw(ψ), v], to prove
(12.58) we have to establish the equality

∞
∫

0

∫

G

t
∫

0

̂r−1[ψ(τ, x)]
(

(i +∇A(x))2ψ(τ, x) dτ v(t, x) dxdt
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=

∞
∫

0

∫

G

t
∫

0

{

̂r−1[ψ(τ, x)]
(

(∇− iA(x))ψ(τ, x)∇v(t, x)

+̂r−1[ψ(τ, x)]
(

i∇+ A(x))ψ(τ, x)
)

A(x)v(t, x)

+
d
∑

j=1

(

∂ĵr−1[ψ(τ, x)]
(

(∂j − iA(x))ψ(τ, x)
)

v(t, x)
}

dτdxdt .

(12.59)

To prove this equality, one has to integrate by parts in the first term on
the right-hand side and take into account that v|∂G = 0. This integration
by parts is well justified because ν(dψ) = νtv (dψ) is supported on Wtv and
therefore, in (12.58), ψ ∈ Wtv .

Consequently, (12.56) with v ∈ L2(0,∞;H1
0 (G)) and (12.58) imply (12.57).

Since both parts of equality (12.57) are continuous functionals with respect
to v ∈ L2((0, T ) ×G) with v = 0 for t > T for arbitrary T > 0, (12.57) can
be extended by continuity of v ∈ L2((0, T )×G) ( v = 0 for t > T ) for each
T > 0. Now (12.7) follows from (12.57) for each cylindrical η and φ and, after
that, for arbitrary η ∈ Cb(L2(G)) and φ ∈ Cb(0,∞;L2(G)). ��

13 Certain Properties of the Weak Statistical Solution ν

In this section, we show that the statistical solution ν(dψ) is supported on
solutions ψ of Equation (12.1) and these solutions ψ satisfy the boundary
condition (2.2) on ∂G.

13.1 Boundary conditions

The following easy assertion is true.

Lemma 13.1. Let H1
Δ(G) and H2

A(G) denote the spaces defined in (11.16)
and (2.5) respectively. Then

H2
A(G) = {ψ ∈ H1

Δ(G) : (i∇+ A)ψ · n|∂G = 0} ≡ ˜H , (13.1)

where n is the unit outer normal to ∂G and the last identity is the definition
of ˜H.

Proof. It is enough to prove the inclusion ˜H ⊂ H2
A(G) because the inverse

inclusion is evident. If ψ ∈ ˜H , then
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Δψ = f ∈ L2(G), (i∇+ A)ψ · n|∂G = 0 . (13.2)

This boundary value problem is elliptic because its boundary condition sat-
isfies the Lopatinsky condition. That is why the inequality

‖ψ‖H2(G) � C‖f‖L2(G) = C‖Δψ‖L2(G)

holds, where C does not depend on ψ. This inequality implies ˜H ⊂ H2
A(G).

��

Recall that the space UT is defined in (12.2).

Theorem 13.2. For each T > 0 the restriction νT (dψ) of the statistical so-
lution ν(dψ) on the time interval (0, T ) is supported on the space UT .

Proof. Since νT (dψ) is supported on the space WT defined in (12.36), we have
to prove, by virtue of Lemma 13.1, that there exists a νT (dψ)-measurable set
F ⊂WT such that νT (F) = 1 and (i∇+A)ψ·n|∂G = 0 for each ψ ∈ F . Taking
η ≡ 1 in (12.56), we differentiate this equality twice on v ∈ L2(0,∞;H1(G))
such that v(t, x) ≡ 0 for t � T . As a result, we obtain

∫

[Lw(ψ)u]2ei[Lw(ψ),v]νT (dψ) =
∫

[W,u]2ei[w,v]ΛT (dW ) , (13.3)

where u ∈ L2(0, T ;H1(G)) is arbitrary. We take v ≡ 0 in (13.3) and
then integrate by parts on the left-hand side of this equality as we did
in (12.59). This integration by parts is well-justified because the inclu-
sion u ∈ L2(0, T ;H1(G)) implies that u|∂G ∈ L2(0, T ;H1/2(∂G)) and, as
is well-known (see [17, 31]), the inclusion ψ ∈ L2(0, T ;H1

Δ(G)) implies
(i∇+ A)ψ · n|∂G ∈ L2(0, T : H−1/2(∂G)).

Since u|∂G �= 0, in contrast to (12.58), after integration by parts we obtain

∫

(

T
∫

0

∫

∂G

t
∫

0

̂r−1[ψ(τ, x)](∇− iA(x))ψ(τ, x)) · n u(t, x) dτdxdt

+[L(ψ), u]
)2

νT (du) =
∫

[W,u]2ΛT (dW ) .

(13.4)

Instead of u(t, x)in (13.4), we now take the sequence un(t, x) that satisfies
the properties:

a. un(t, x) → 0 in L2((0, T )×G);
b. for each n, un(t, x)|∂G = ∂tv(t, x), where v(t, x) ∈ H1

0 (0, T ;H1/2(∂G)
is fixed.

Passing to the limit in (13.4) as n → ∞ and after that integrating by parts
on the left-hand side of the resulting equality, we obtain
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∫

(

T
∫

0

∫

∂G

r−1[ψ(t, x)]
(

(∇− iA(x))ψ(t, x) · n
)

v(t, x) dxdt
)2

νT (du) = 0 .

(13.5)
Now we choose a countable dense set {vn} in L2(0, T ;H1/2(G)) and, for each
n, put vn in (13.5). As a result, for each n we obtain the measurable set
Fn ⊂WT such that

νT (Fn) = 1 ,

T
∫

0

∫

∂G

r−1[ψ(t, x)]
(

(∇− iA)ψ(t, x) · n
)

vn(t, x) dxdt = 0 ∀ ψ ∈ Fn .

(13.6)

We take F =
⋂

n
Fn. Clearly, νT (F) = 1 and

̂r−1[ψ(t, x)]
(

(∇− iA(x))ψ(t, x) · n
)

|(0,T )×∂G = 0 ∀ ψ ∈ F . (13.7)

Since r−1(Reψ(t, x)) > 0 and r−1(Imψ(t, x)) > 0 for all (t, x) ∈ (0, T )×G,
(13.7) implies

νT (F) = 1, (i∇+ A)ψ(t, x) · n|(0,T )×∂G = 0 ∀ ψ ∈ F .

These equalities complete the proof of the theorem. ��

13.2 Solvability for almost all data

Recall that the initial measure μ is supported on the space H1(G) and the
Wiener measure Λ is supported on the set ̂W defined in (9.17).

Theorem 13.3. (a) For μ×Λ-almost all data (ψ0,W ) there exists a solution
ψ ∈ U of the problem (12.1).

(b) The weak statistical solution ν is supported on solutions of the problem
(12.1) and (2.2).

Proof. Since U defined in (12.3) is a separable Frechet space, by the Riesz
theorem (see [19]), for any N > 0 there exists a compact set KN ⊂ U such
that

ν(KN ) � 1− 1
N

. (13.8)

The continuity of the operator (12.5) implies that AKN is compact in L1(G)×
Z and therefore AKN ∈ B(L1(G)× Z). We set
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FN = AKN ∩ {H1(G) ×̂W}, F =
∞
⋃

N=1

FN . (13.9)

Since H1(G) ∈ B(L1(G)) (see [44, Theorem 2.1]) and the set ̂W is Λ-
measurable, each set from (13.9) is μ× Λ-measurable. By virtue of (12.6),

ν(A−1(H1(G)×̂W )) = μ(H1(G)) · Λ(̂W ) = 1 . (13.10)

Thus, taking into account (13.8)-(13.10), we obtain

μ× Λ(F ) = ν(A−1F ) � ν(A−1(H1(G) ×̂W ) ∩
∞
⋃

N=1

KN)

= ν(
∞
⋃

N=1

KN) � lim
N→∞

ν(KN ) = 1 .

(13.11)

Directly from the definition A−1F = {ψ ∈ U : Aψ ∈ F}, we obtain

F ∈ AU . (13.12)

The relations (13.11) and (13.12) prove statement (a) of the theorem. We set

K =
(

∞
⋃

N=1

KN

)

∩A−1(H1(G) ×̂W ) . (13.13)

The relations (13.8), (13.10), and (13.13) imply ν(K) = 1, and the relations
(13.9) and (13.12) imply that AK = F . The last two relations prove statement
(b) of the theorem. ��

14 Uniqueness of the Weak Statistical Solution

The main step in proving the uniqueness of a weak statistical solution for the
stochastic Ginzburg–Landau problem is a proof of uniqueness for (12.1) with
fixed (non-stochastic) data (ψ0(x),W (t, x)).

14.1 Reduction of uniqueness for statistical solution ν
to uniqueness of the solution for (12.1)

Let F and K be the sets (13.9) and (13.13) respectively. In Theorem 13.3,
we proved that the set F is μ× Λ-measurable, K is ν-measurable,



114 A. Fursikov et al.

(μ× Λ)(F ) = 1, ν(K) = 1, and AK = F , (14.1)

where A is the operator (12.5), ν is a weak statistical solution, μ is the initial
measure, and Λ is the Wiener measure.

Lemma 14.1. If, for each initial datum (ψ0,W ) ∈ F , an individual solution
ψ of the problem (12.1) and (2.2) is unique in K, then the statistical solution ν
of the stochastic Ginzburg–Landau problem (3.22), (2.2), and (2.3) is unique.

Proof. In Theorem 13.3, we proved that each weak statistical solution ν cor-
responding to the given initial measure μ and the Wiener measure Λ is sup-
ported on the set K defined in (13.13). Since for each datum (ψ0,W ) ∈ F ,
the solution ψ of (12.1) and (2.2) is unique in K, the full preimage

A−1F = {ψ ∈ K : Aψ ∈ F} (14.2)

consists of the unique element ψ ∈ K for each given datum (ψ0,W ) ∈ F .
Therefore, a weak statistical solution ν(dψ) is defined uniquely by the formula

ν(B) = ν(B ∩K) = μ(γ0B)Λ(LB) ∀ B ∈ B(U) . (14.3)

��

14.2 Proof of the uniqueness of the solution of (12.1)
and (2.2): the first step

Suppose that for a given datum (ψ0,W ) ∈ F there exist two solutions
ψi(t, x) ∈ K, i = 1, 2, of the problem (12.1) and (2.2). Then

L(ψ1)− L(ψ2) = 0, (ψ1 − ψ2)|t=0 = 0 , (14.4)

where L is the operator defined in (12.1). Denote

σ(t, x) = S[ψ1(t, x)]− S[ψ2(t, x)] . (14.5)

Since ψi ∈ K ⊂ U , i = 1, 2, where U is the space (12.3), the relations
(12.1) and (14.4) imply that for each T > 0, σ(t, x) ∈ H1(0, T ;L2(G)), i.e.,
σ is differentiable in t. Thus, we can differentiate both parts of (14.4) with
respect to t. Doing this, we obtain by (12.1):

∂tσ(t, x) + ̂r−1[ψ1]{(i∇+ A)2ψ1 − ψ1 + |ψ1|2ψ1}

−̂r−1[ψ2]{(i∇+ A)2ψ2 − ψ2 + |ψ2|2ψ2)}

+(r′[ψ1]− r′[ψ2])K11(x, x) = 0 .

(14.6)
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Multiplying (14.6) by σ(t, x) and integrating over G, we obtain

1
2
∂t‖σ(t, ·)‖2L2(G) + T1 + T2 + T3 + T4 = 0 , (14.7)

where

T1 =
∫

G

(

̂r−1[ψ1]{(i∇+ A)2ψ1} −̂r−1[ψ2]{(i∇+ A)2ψ2}
)

σ dx , (14.8)

T2 = −
∫

G

(

̂r−1[ψ1]ψ1 −̂r−1[ψ2]ψ2

)

σ dx , (14.9)

T3 =
∫

G

(

r′[ψ1]− r′[ψ2]
)

{K11(x, x)}σ dx , (14.10)

and

T4 =
∫

G

(

̂r−1[ψ1]{|ψ1|2ψ1} −̂r−1[ψ2]{|ψ2|2ψ2}
)

σ dx . (14.11)

Taking into account

∇xS[ψ(t, x)] = ̂r−1[ψ(t, x)]∇xψ(t, x) (14.12)

and performing a transformation analogous to the one in (12.59), we obtain

T1 =
∫

G

|∇xσ(t, x)|2 dx + T5 + T6 + T7 + T8 + T9 , (14.13)

where

T5 =
∫

G

(

̂r−1[ψ2]{iAψ2} −̂r−1[ψ1]{iAψ1}
)

· ∇σ dx , (14.14)

T6 =
∫

G

(

̂r−1[ψ1]{i∇ψ1} −̂r−1[ψ2]{i∇ψ2} ·A(x)σ dx , (14.15)

T7 =
∫

G

(

̂r−1[ψ1]{Aψ1} −̂r−1[ψ2]{A(x)ψ2} · A(x)σ dx , (14.16)

T8 =
∫

G

(
d
∑

j=1

∂̂jr−1[ψ1]{∂jψ1} −
d
∑

j=1

∂̂jr−1[ψ2]{∂jψ2}
)

σ dx , (14.17)

and
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T9 =
∫

G

(
d
∑

j=1

∂̂jr−1[ψ1]{iAjψ1} −
d
∑

j=1

∂̂jr−1[ψ2]{iAjψ2}
)

σ dx . (14.18)

We estimate these terms in the following three subsections.

14.3 Estimation of the terms T2 to T5, T7, and T9

We begin with a generalization of the bound (7.25). Let r(λ), S(λ), and R(λ)
be the functions (3.19), (7.7), and (7.23) respectively. Since by (7.23) we have
λ = R(S(λ)), we obtain

1 = R′(S(λ))S′(λ) =
R′(S(λ))

r(λ)
⇒ R′(S(λ)) = r(λ) , (14.19)

where we have used (7.7). Therefore, for a real-valued function f(λ) ∈
C1(R1), we obtain, by the Lagrange theorem and (14.19),

f(λ2)− f(λ1) = f(R(S2))− f(R(S1)) � sup
λ∈[λ1,λ2]

|f ′(λ)r(λ)| |S2 − S1| ,

(14.20)
where we have used the notation Si = S(λi), i = 1, 2. For f(λ) = λ/r(λ) the
function f ′(λ)r(λ) is bounded and therefore, by (14.20), (3.20), and (3.21),
the term (14.9) admits the bound

|T2| � C

∫

G

|σ(t, x)|2 dx . (14.21)

Since A(x) ∈ C2(G), we obtain in an analogous manner that

|T7| � C

∫

G

|σ(t, x)|2 dx (14.22)

and
|T3| � C

∫

|K11(x, x)||σ(t, x)|2 dx . (14.23)

We impose on the correlation function K11(x, x) the following additional con-
dition:4

4 Note that when dimG = 2, condition (14.24) follows from condition (3.17). Indeed, using

the well-known representation K(x, y) =
∞
∑

j=1
λjej(x)ej(y) of the trace class kernel, one can

easily derive from (3.17) that K(x, x) ∈ W 1
1 (G) ⊂ L2(G) (the last enclosure follows from

Sobolev embedding theorem).
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K11(x, x) ∈ Lp(G) with p > 1 if dim G = 2 and

with p > 3
2 if dim G = 3.

(14.24)

Suppose that d = dim G = 2. Using the Sobolev embedding theorem
(Hs(G) ⊂ Lq(G) for s � d(1

2 −
1
q )), the interpolation inequality ‖u‖Hs �

C‖u‖1−sL2 ‖u‖sH1 for 0 < s < 1, and the notation 1
q = 1 − 1

p , we obtain from
(14.23) that

|T3| � C‖K11‖Lp‖σ‖2L2q � C‖K11‖Lp‖σ‖2
H1−1/q

� C‖K11‖Lp‖σ‖2/qL2 ‖σ‖2−2/q
H1 � ε‖σ‖2H1 + Cε‖K11‖qLp‖σ‖2L2 .

(14.25)

The proof of (14.25) in the case d = dim G = 3 is absolutely the same. Do-
ing elementary algebraic transformations and using (14.20) and the Sobolev
embedding theorem (C(G) ⊂ H2(G) for d � 3), we obtain

|T4| �
∫

(

∣

∣̂r−1[ψ1]ψ1 −̂r−1[ψ2]ψ2

∣

∣ |ψ1|2

+
∣

∣̂r−1[ψ2]ψ2

∣

∣(|ψ1|2 − |ψ2|2)
)

|σ| dx

� C

∫

(

|ψ1|2|σ|2 + (|ψ1|2 + |ψ2|2)|σ|2
)

dx

� C
(

1 + ‖ψ1‖2H2 + ‖ψ2‖2H2

) ∫

|σ|2 dx

(14.26)

if d = dim G � 3.
After elementary transformations, we obtain by (14.20) and the Sobolev

embedding theorem

|T5| � C

∫

G

(

∣

∣

∣

∣

Imψ2

r(Re ψ2)
− Imψ1

r(Re ψ1)

∣

∣

∣

∣

+
∣

∣

∣

∣

Reψ2

r(Im ψ2)
− Reψ1

r(Im ψ1)

∣

∣

∣

∣

)

|A · ∇σ| dx

� C

∫

G

(

|Imψ2 − Imψ1|
r(Re ψ2)

+ |Imψ1|
∣

∣

∣

∣

1
r(Re ψ1)

− 1
r(Re ψ2)

∣

∣

∣

∣

+
|Reψ2 − Reψ1|

r(Im ψ1)
+ |Reψ1|

∣

∣

∣

∣

1
r(Im ψ1)

− 1
r(Im ψ2)

∣

∣

∣

∣

)

|∇σ| dx
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� C

∫

G

(1 + |ψ1|+ |ψ2|)(|S(Reψ1)− S(Re (ψ2)|

+|S(Imψ1)− S(Im (ψ2)|
)

|∇σ| dx

� C(1 + ‖ψ1‖H2(G) + ‖ψ2‖H2(G))
∫

|σ| |∇σ| dx

� ε‖∇σ‖2L2(G) + Cε(1 + ‖ψ1‖H2(G) + ‖ψ2‖H2(G))
∫

|σ|2 dx .

(14.27)

To bound T9, we first do some simple transformations using (14.12) to obtain

T9 = −
∫

G

{(r′(Reψ1)
r(Re ψ1)

(

∇S(Reψ1) · A
)

Imψ1

−r′(Reψ2)
r(Reψ2)

(

∇S(Reψ2) ·A
)

Imψ2

)

−i
r′(Im ψ1)
r(Imψ1)

(

∇S(Im ψ1) ·A
)

Reψ1

−i
r′(Im ψ2)
r(Imψ2)

(

∇S(Im ψ2) ·A
)

Reψ2

)}

σ dx

so that

T9 = −
∫

G

({(r′(Reψ1)
r(Reψ1)

∇Reσ · A Imψ1 +∇S(Reψ2)·

A
[(r′(Reψ1)

r(Reψ1)
− r′(Reψ2)

r(Re ψ2)

)

Imψ1+
r′(Reψ2)
r(Reψ2)

(Im ψ1 − Imψ2)
]}

−i
{r′(Im ψ1)

r(Im ψ1)
∇Im σ · AReψ1

+∇S(Imψ)·A
[(r′(Imψ1)

r(Im ψ1)
− r′(Imψ2)

r(Im ψ2)

)

Reψ1

+
r′(Imψ2)
r(Imψ2)

(Re ψ1 − Reψ2)
]})

σ dx .

(14.28)
A simple bound of the right-hand side of (14.28) and the use of (14.20) gives
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|T9| � C

∫

G

|∇σ| |ψ1| |σ|+ |∇ψ2| (1 + |ψ1|+ |ψ2|) |σ|2 dx . (14.29)

Using the same tools as in (14.25), we have (when dim G � 3)
∫

(1 + |ψ1|+ |ψ2|)|∇ψ2| |σ|2 dx

� C
(

1 + ‖ψ1‖L6 + ‖ψ2‖L6

)

‖∇ψ2‖L3‖σ‖2L4

� C
(

1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)

‖∇ψ2‖H1/2‖σ‖2H3/4

� C
(

1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)

‖∇ψ2‖1/2L2 ‖ψ2‖1/2H2 ‖σ‖1/2L2 ‖σ‖3/2H1

� ε‖∇σ‖2L2

+Cε
(

1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)4‖∇ψ2‖2L2‖ψ2‖2H2‖σ‖2L2 .

(14.30)

Using (14.29) and (14.30), we obtain

|T9| � ε‖∇σ‖2L2 + Cε
(

1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)4‖∇ψ2‖2L2‖ψ2‖2H2‖σ‖2L2 .
(14.31)

14.4 Estimation of T6 and T8

Using (14.12), we obtain

T6 =
∫

G

(

(

∇Imψ2

r(Re ψ2)
− ∇Imψ1

r(Re ψ1)

)

+i

(

∇Reψ1

r(Im ψ1)
− ∇Reψ2

r(Im ψ2)

)

)

· Aσ dx

so that

T6 =
∫

G

{

(r(Im ψ2)
r(Re ψ2)

∇S(Imψ2)− r(Im ψ1)
r(Re ψ1)

∇S(Imψ1)
)
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−i
(r(Re ψ2)
r(Im ψ2)

∇S(Reψ2)− r(Re ψ1)
r(Im ψ1)

∇S(Reψ1)
)

}

·Aσ dx

=
∫

G

{

(−r(Imψ2)
r(Reψ2)

∇Imσ +
(r(Im ψ2)
r(Reψ2)

− r(Im ψ1)
r(Reψ1)

)

∇S(Imψ1)
)

−i
(−r(Re ψ2)

r(Im ψ2)
∇Reσ

+
(r(Re ψ2)
r(Im ψ2)

− r(Re ψ1)
r(Im ψ1)

)

∇S(Reψ1)
)

·Aσ dx .

(14.32)

Estimating with the help of (14.20), we obtain the bound

|T6| �
∫

G

{

(1 + |ψ2|)|∇σ|+ |r(Im ψ2)r(Re ψ1)

−r(Reψ2)r(Im ψ1)| |∇ψ1|
}

|σ| dx

�
∫

G

{

(1 + |ψ2|)|∇σ|+
(

|r(Im ψ2)− r(Im ψ1)|r(Re ψ1)

+r(Im (ψ1)|r(Re ψ1)− r(Re (ψ2)|
)

|∇ψ1|
}

|σ| dx

� C

∫

G

(1 + |ψ2|)|∇σ| |σ|+ (1 + |ψ1|2 + |ψ2|2)|∇ψ1| |σ|2 dx .

(14.33)

We assume now that d = dimG � 2. Then
∫

(1 + |ψ1|2 + |ψ2|2)|∇ψ1| |σ|2 dx

� C
(

1 + ‖ψ1‖2L12 + ‖ψ2‖2L12

)

‖∇ψ1‖L3‖σ‖2L4

� C
(

1 + ‖ψ1‖2H1 + ‖ψ2‖2H1

)

‖ψ1‖H4/3‖σ‖2H1/2

� C
(

1 + ‖ψ1‖2H1 + ‖ψ2‖2H1

)

‖ψ1‖2/3H1 ‖ψ1‖1/3H2 ‖σ‖L2(‖∇σ‖L2 + ‖σ‖L2)

� ε‖∇σ‖2L2 + Cε
(

1 + ‖ψ1‖H1 + ‖ψ2‖H1

)16/3‖ψ1‖2/3H2 ‖σ‖2L2 .
(14.34)

Now (14.33) and (14.34) imply
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|T6| � ε‖∇σ‖2L2

+Cε

{

(

1 + ‖ψ1‖H1 + ‖ψ2‖H1

)16/3‖ψ2‖H2)2/3
}

‖σ‖2L2 .

(14.35)

Finally we estimate the term T8. By virtue of (3.20), (3.21), and (14.5)
and through the use of the notation [∇S]2 = |∇ReS|2 + i|∇ImS|2, we can
write

T8 =
∫

G

(

̂r′[ψ1][∇S[ψ1]]2 − ̂r′[ψ2][∇S[ψ2]]2
)

σ dx

=
∫

G

(

̂(r′[ψ1]− r′[ψ2][∇S[ψ1]]2+̂r′[ψ2]([∇S[ψ1]]2 − [∇S[ψ2]]2)
)

σ dx .

(14.36)
Bounding (14.36) with the help of (14.20) and (14.5), we obtain

|T8| �
∫

G

(

|σ|2|∇ψ1|2 + |∇σ| |σ|(|∇ψ1|+ |∇ψ2|)
)

dx . (14.37)

Assume that d =dim G � 2. Then
∫

G

|σ|2|∇ψ1|2 dx � ‖σ‖2L4‖∇ψ1‖2L4 � ‖σ‖2H1/2‖∇ψ1‖2H1/2

� ‖σ‖L2‖σ‖H1‖∇ψ1‖L2‖ψ1‖H2

� ε(‖∇σ‖2L2 + ‖σ‖2L2) + Cε‖σ‖2L2‖∇ψ1‖2L2‖ψ1‖2H2

and
∫

G

|∇σ| |σ|(|∇ψ1|+ |∇ψ2|) dx � ‖σ‖L6‖∇σ‖L2(‖∇ψ1‖L3 + ‖∇ψ2‖L3)

� ‖σ‖H2/3‖∇σ‖L2

(

‖∇ψ1‖H1/3 + ‖∇ψ2‖H1/3

)

�
(

‖σ‖1/3L2 ‖∇σ‖5/3L2 + ‖∇σ‖L2‖σ‖L2

)

(

‖∇ψ1‖2/3L2 ‖ψ1‖1/3H2 + ‖∇ψ2‖2/3L2 ‖ψ2‖1/3H2

)

� ε‖∇σ‖2L2 + Cε‖σ‖2L2

(

‖∇ψ1‖4L2‖ψ1‖2H2 + ‖∇ψ2‖4L2‖ψ2‖2H2 + 1
)

.

The last two inequalities and (14.37) imply
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|T8| � ε‖∇σ‖2L2 + Cε‖σ‖2L2

(

‖∇ψ1‖4L2‖ψ1‖2H2 + ‖∇ψ2‖4L2‖ψ2‖2H2 + 1
)

.

(14.38)

Remark 14.1. We estimated all the terms except T6 and T8 under the as-
sumption that d = dim G � 3. We cannot estimate the terms T6 and T8

under this assumption. We are forced to assume that d = dim G � 2 when
we bound T6 and T8.

14.5 Uniqueness theorems

We are now in a position to prove a uniqueness theorem for individual solu-
tions of the problem (12.1) and (2.2).

Theorem 14.2. Let d = dim G = 2, and let the correlation function
K11(x, x) for the Wiener measure Λ belong to Lp(G) with a certain p > 1.5

Then for each datum (ψ0,W ) ∈ F a solution ψ ∈ K of the problem (12.1)
and (2.2) is unique. (Here F and K are the sets defined in (13.9) and (13.13)
respectively.)

Proof. Assume that, for a datum (ψ0,W ) ∈ F there exist two solutions ψ1

and ψ2. Then for the function σ defined in (14.5) the following estimate is
derived from (14.7) and (14.13):

1
2
∂t‖σ(t, ·)‖2L2 +

∫

G

|∇xσ(t, x)|2 dx � |T2|+ · · ·+ |T9| . (14.39)

Using the estimates (14.21), (14.22), (14.25)–(14.27), (14.31), (14.35), and
(14.38), we obtain

∂t‖σ(t, ·)‖2L2 + ‖∇σ(t, ·)‖2L2 � ε
(

‖∇σ(t, ·)‖2L2 + ‖σ‖2L2

)

+
(

Cε + C
(

1 + ‖ψ1‖2H2 + ‖ψ2‖2H2

)(

1 + ‖∇ψ1‖6L2 + ‖∇ψ2‖6L2

)

)

‖σ‖2L2 .

(14.40)

By virtue of (11.18) and (11.19), for each T > 0 the following inclusions
hold:

ψ1 ∈ L∞(0, T ;L2(G)), ∇ψi ∈ L∞(0, T ;L2(G)), Δψi ∈ L2(0, T ;L2(G))
(14.41)

for i = 1, 2. Since the ψi satisfy the boundary condition (2.2), we have, by
virtue of the estimates for the solution of the elliptic boundary value problem,

5 The last condition follows from the assumptions (3.16) and (3.17).
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‖ψi‖2H2(G) � C
(

‖Δψi‖2L2(G) + ‖∇ψi‖2L2(G) + ‖ψi‖2L2(G)

)

for i = 1, 2 .
(14.42)

The bounds (14.41) and (14.42) imply that for each T > 0 the following
estimate for the expression from the right-hand side of (14.40) holds:

T
∫

0

(

Cε+C
(

1+‖ψ1‖2H2+‖ψ2‖2H2

)

(1+‖∇ψ1‖6L2+‖∇ψ2‖6L2

)

)

dt <∞ . (14.43)

Therefore, moving the term ε‖∇σ‖2L2 from the right-hand side of (14.40) to
the left-hand side and applying to the result the Gronwall inequality, we find
that σ(t, x) ≡ 0. ��

Lemma 14.1 and Theorem 14.2 imply the following result.

Theorem 14.3. Let the assumptions of Theorem 14.2 hold. Then the weak
statistical solution ν of the Ginzburg–Landau equation (3.22) is uniquely de-
fined by the initial measure μ and the Wiener measure Λ.

We consider now the case of additive white noise when d = dim G = 3.

Theorem 14.4. Let d = dim G = 3 and r(λ) ≡ ρ1, and let K11(x, x) ∈
Lp(G) with p > 3

2 , where K11(x, y) is the correlation f unction for the Wiener
measure Λ. Then for each datum (ψ0,W ) ∈ F a solution ψ ∈ K of the
problem (12.1) and (2.2) is unique. (Here, F and K are the sets defined in
(13.9) and (13.13) respectively.)

Proof. Taking into account the proof of Theorem 14.2, it is enough to es-
tablish the bound (14.40) that follows from (14.39) and the estimates for
|Tj |, j = 2, . . . , 9. Recall that, except for j = 6 and 8, estimates for all |Tj |
were obtained for d = dim G � 3. So we have to estimate |T6| and |T8|. Since
r(λ) ≡ constant, the equality ∂jr

−1 ≡ 0 holds and therefore, by (14.17),
T8 = 0. By virtue of (14.5), (14.12), and (14.15), we obtain for r(λ) ≡ ρ1:

|T6| =
∣

∣

∣

∫

G

i∇σ ·A(x)σ dx
∣

∣

∣ � ε‖∇σ‖2L2(G) + Cε‖σ‖2L2(G) .

This complete the proof of estimate (14.40) and the proof of the theorem. ��

Lemma 14.1 and Theorem 14.4 imply the following result.

Theorem 14.5. Let the assumptions of Theorem 14.4 hold. Then the weak
statistical solution ν of the Ginzburg–Landau equation (3.22) is uniquely de-
fined by the initial measure μ and the Wiener measure Λ.
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15 The Strong Statistical Solution of the Stochastic
Ginzburg–Landau Equation

Here, we construct the strong statistical solution, prove its uniqueness, and
show that it satisfies not only Equation (12.1), but the problem (3.22), (2.2),
and (2.3) as well.

15.1 Existence and uniqueness of a strong statistical
solution

Recall that, in Sect. 3, an abstract probability space (Ω,Σ,m(dω)), a ran-
dom Wiener process W : Ω → C(0,∞;L2(G)), and a random initial condition
ψ0 : Ω → L1(G) were introduced such that ψ0(t, ω) and W (t, x, ω) are inde-
pendent. In addition, the Wiener measure Λ(dW ) is a probability distribution
of W (t, x, ω) and μ(dψ0) is a probability distribution of the initial condition
ψ0(t, ω). Above, we proved the existence of a weak statistical solution ν(Γ ),
Γ ∈ B(U), that satisfies (12.6) with the operator A defined in (12.1) and
(12.5). Based on this existence theorem, we proved in Theorem 13.3 that
there exists an μ× Λ-measurable set F , defined in (13.9), such that for each
datum (ψ0,W ) ∈ F there exists a solution ψ ∈ K of (12.1) (the set K is
defined in (13.13)). Moreover, in Theorem 14.2, we proved that this solution
ψ is unique in K. This means that the operator

A−1 ≡ (L, γ0)−1 : F → K , (15.1)

where L is defined in (12.1), is uniquely defined. We introduce the set

Ω0 = {ω ∈ Ω : (ψ0(·, ω);W (·, ·, ω) ∈ F} . (15.2)

Since, by (13.11), μ× Λ(F ) = 1 we obtain

m(Ω0) = 1 . (15.3)

We define the random function

ψ(t, x, ω) =

{

(L, γ0)−1
(

ψ0(·, ω),W (·, ·, ω)(t, x), ω ∈ Ω0,

0, ω ∈ Ω \Ω0 .
(15.4)

Analogous to the approach in [44, Chapt. 10, Proposition 4.3], one can
prove the measurability of the map

ψ : (Ω,Σ) → (U ,B(U)) . (15.5)
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The relations (15.4) and (12.6) imply that the weak statistical solution ν(dψ)
is a probability distribution of the random map (15.4). By definition, the
random map (15.4) satisfies (12.1) for m-almost all ω ∈ Ω. Theorem 14.2
implies that the solution (15.4) and (15.5) is defined uniquely by the random
datum (ψ0(·, ω),W (·, ·, ω)).

Note that the assumption (10.3) on the initial measure μ(dψ0) implies that
the initial random value ψ0(t, ω) satisfies

∫

(

‖ψ0‖2L2(G) + ‖∇ψ0‖L2(G) + ‖ψ0‖4L4(G)

)

m(dω) <∞ . (15.6)

Moreover, Theorem 11.8, (2.5), and (13.1) imply that the following inequali-
ties hold:

∫

UT

(

‖ψ‖2L∞(0,T ;H1(G)) +

T
∫

0

(

‖ψ‖2H2(G) + ‖ψ‖6L6(G)

)

dt
)

m(dω)

� CT

(

1 +
∫

(

‖ψ0‖2H1(G) + ‖ψ0‖4L4(G)

)

)

m(dω)

(15.7)

and
∫

UT

‖ψ‖CL(0,T ;L1(G))m(dω) � CT

(

1 +
∫

(

‖ψ0‖2H1(G)+‖ψ0‖4L4(G)

)

m(dω)
)

.

(15.8)
Thus, we have proved the following result.

Theorem 15.1. Assume that the random initial value ψ0(x, ω) and the
Wiener process W (t, x, ω) are independent and ψ0 satisfies (15.6). Then the
definition (15.2) and (15.4) of the strong statistical solution ψ(t, x, ω) is cor-
rect. ψ(x, ω) satisfies (12.1) for m-almost all ω and, by virtue of this equation,
ψ is defined uniquely by the datum (ψ0(·, ω),W (·, ·, ω)). Moreover, ψ satisfies
the bounds (15.7) and (15.8).

15.2 On one family of scalar Wiener processes

In order to complete our investigation, we have to prove that the random
process (15.4) satisfies the stochastic Ginzburg–Landau equation (3.22) or
(what is equivalent) (3.24). To do this, we have to provide some preliminary
results.

Since the function K(x, y) from (3.14) is the kernel of the correlation
operator for the complex Wiener process W (t, x, ω) and this operator is
self-adjoint non-negative and of trace-class one, the set of all eigenfunctions
{ej(x), j = 1, 2, . . .} of this operator composes an orthonormal basis in the
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complex space L2(G). Moreover, if λ1 � λ2 � · · · � λk � · · · � 0 are the
corresponding eigenvalues, then the following identity holds:

K(x, y) =
∞
∑

j=1

λjej(x)ej(y) . (15.9)

We introduce the following family of scalar (complex-valued) Wiener pro-
cesses:

Wj(t, ω) =
∫

G

W (t, x, ω)ej(x) dx for j = 1, 2, . . .. (15.10)

Then, evidently,

W (t, x, ω) =
∞
∑

j=1

Wj(t, ω)ej(x) . (15.11)

Recall that for each random function f(ω) the following notation is used:

Ef =
∫

Ω

f(ω)m(dω) . (15.12)

Lemma 15.2. For the Wiener processes (15.10) the following identities hold:

EWj(t)Wm(s) = 0 ∀ j,m ∈ N (15.13)

and
EWj(t)Wm(s) = t ∧ s λmδjm , (15.14)

where δjm is the Kronecker delta symbol.

Proof. To prove (15.13), we substitute (15.11) into (3.11), multiply the re-
sulting inequality by ej(x)em(y), and integrate with respect to x and y. To
prove (15.14), we substitute (15.11) into (3.14) and repeat the steps indicated
above. ��

As is well-known, (15.13) and (15.14) are equivalent to the independence
of Wj(t) and Wm(s) for each j and m and to Wj(t) and Wm(s) for j �= m.

Consider now the question of the independence of ReWj(t) and ImWm(s)
that are defined by

Wj(t) = ReWj(t) + iImWj(t) . (15.15)

Lemma 15.3. For the Wiener processes ReWj(t) and ImWm(s) the follow-
ing identities hold:

E ReWj(t)ReWm(s) = E ImWj(t)Im Wn(s) =
1
2
t ∧ s δjmλm (15.16)
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and
E ReWj(t)Im Wm(s) = 0 . (15.17)

Proof. Substitution of (15.15) into (15.13) and (15.14) gives

E ReWj(t)ReWm(s)− E ImWj(t)Im Wm(s)

+iE ReWj(t)Im Wm(s) + iE ImWj(t)Re Wm(s) = 0
(15.18)

and

E ReWj(t)ReWm(s) + E ImWj(t)Im Wm(s)

−iE ReWj(t)Im Wm(s) + iE ImWj(t)Re Wm(s) = λj t ∧ s δjm ,
(15.19)

respectively. In fact, (15.18) and (15.13) are four linear algebraic equations in
terms of four unknown quantities. Solving these equations, we obtain (15.16)
and (15.17). ��

15.3 Equation for a strong statistical solution

We are now in a position to prove that the strong statistical solution ψ(t, x),
constructed in Sect. 15.1, satisfies the Ginzburg–Landau equation (3.22) or,
what is equivalent, (3.24). Here, we understand the Ito integral in (3.24) using
the decomposition (15.11):

ψ(t, x) +

t
∫

0

(

(i∇+ A)2ψ(s, x)− ψ(s, x) + |ψ(s, x)|2ψ(s, x)
)

ds

=
∞
∑

j=1

t
∫

0

r̂[ψ(s, x)]{ej(x)dWj(t)}
)

+ ψ0(x) .

(15.20)

The integral on ds in (15.20) is understood as a Bochner integral for a function
with values in L2(G). To explain the meaning of the stochastic integral in
(15.20), we first write, using (3.20) and (3.21), the identity

t
∫

0

r̂[ψ(s, x)]
{

ej(x) dWj(t)
}

= Re ej(x)

t
∫

0

r(Re ψ(s, x)) dReWj(s)

− Im ej(x)

t
∫

0

r(Re ψ(s, x) dImWj(s)
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+i
{

Re ej(s)

t
∫

0

r(Im ψ(s, x)) dIm Wj(s)

+Im ej(s)

t
∫

0

r(Im ψ(s, x)) dReWj(s)
}

.

(15.21)

The stochastic integrals on the right-hand side of (15.21) are understood in
the usual classical sense (see, for example, [26]) for each fixed x ∈ G because
ψ(s, x) ∈ L2(0, T ;H2(G)) ⊂ L2(0, T ;C(G)).

Multiplying both parts of (15.21) by an arbitrary v(x, ω) ∈ L2(G × Ω),
integrating on x over G, squaring, applying Doob’s inequality (see [26, p.
174], and taking into account (15.16), we obtain, for each T > 0,

E sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

∫

G

v(x)

t
∫

0

r̂[ψ(s, x)]
{

ej(x)dWj(s)
}

dx

∣

∣

∣

∣

∣

∣

2

= E sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

t
∫

0

∫

G

v(x)r̂[ψ(s, x)]
{

ej(x)dxdWj(s)
}

∣

∣

∣

∣

∣

∣

2

� CλjE

T
∫

0

(

∫

G

|v(x)| |ej(x)| |r[ψ(s, x)]| dx
)2

ds

� CλjE‖v‖2L2

(

1 + E‖ψ‖2L2(0,T ;H2(G))

)

,

(15.22)

where C does not depend on j. Since
∑

j

λj � C, the inequality (15.22)

proves that the series on the right-hand side of (15.20) converges weakly in
L2(G×Ω). Thus, all terms in (15.20) are well-defined.

Theorem 15.4. Let the conditions of Theorem 15.1 be fulfilled. Then the
random process ψ(t, x, ω) defined in (15.4) satisfies Equation (15.20).

Proof. We apply the Ito formula (see [26, Chapt. 6, Sect. 5]) 6 to the stochas-
tic integral S[ψ(t, x)] that is defined by (12.1). Note that, by (15.11), the
stochastic integral from (12.1) can be rewritten as follows

6 In [26], the Ito formula has been proved for a finite-dimensional vector-valued Wiener
process W(t) = (Wj(t)), j = 1, . . . , n. In order to extend this proof to a stochastic integral
with an infinite-dimensional vector-valued Wiener processes as in (15.20), it is enough to
apply the arguments that were used above to explain the meaning of the stochastic integral
in (15.20).
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dS[ψ(t, x)] + ̂r−1[ψ(t, x)]
{

(i∇+ A)2ψ(t, x)− ψ(t, x) + |ψ|2ψ(t, x)
}

+
1
2
̂r′[ψ]K11(x, x) =

∞
∑

j=1

ej(x)dWj(t) .

(15.23)
By virtue of (15.16) and (15.17), for the calculation of dWj(t)dWm(t) in the
Ito formula, we can use the identities

dReWjdReWm = dIm WjdImWm =
1
2
λjδjmdt (15.24)

and

dReWjdIm Wm = dReWjdt = dImWmdt = 0 ∀ m, j . (15.25)

Recall that the functions r(λ), S(λ), and R(λ) are defined in (3.19), (7.7),
and (7.23) respectively. We apply Ito’s formula to the functional

∫

G

R[S(t, x)] ·

v(x) dx, where v(x) ∈ L2(G). We have

d

∫

R[S[ψ(t, x)]] · v(x) dx =
∫

̂R′[S[ψ]]{dS} · v(x) dx

+
1
2
̂R′′[S[ψ]]{dS, dS}v(x) dx .

(15.26)

By (7.7) and (7.23), R′(S(λ)) = r(λ). Using this and (15.23), we obtain

∫

̂R′[S[ψ]]{dS} · v(x) dx =
∫

r̂[ψ]{dS} · v dx

= −
∫

G

r̂[ψ]
{

̂r−1[ψ]
(

(i∇+ A)2ψ(t, x)− ψ + |ψ|2ψ
)

+
1
2
r′[ψ]K11(x, x)

}

· v(x) dxdt +
∞
∑

j=1

∫

r̂[ψ]{ej(x)dWj(t)}

= −
∫

G

(

(i∇+ A)2ψ(t, x)− ψ + |ψ|2ψ

+
1
2
r̂[ψ]{r′[ψ]}K11(x, x)

)

v(x) dt +
∞
∑

j=1

∫

r̂[ψ]{ej(x)dWj(t)} .

(15.27)

This term can be rewritten by using (3.20) and (3.21) as
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∫

R′[S[ψ]]{dS}v(x) dx =
∫

r̂[ψ]{dS}v dx

=
∫

(

r(Re ψ)dRe S + ir(Imψ)dIm S
)

v dx .

(15.28)

By virtue of (15.23)–(15.25) and (15.28), we can rewrite the second term on
the right-hand side of (15.26) as

1
2

∫

̂R′′[S[ψ]]{dS, dS}v(x) dx

=
1
2

∫

(

∂ReSr
(

R(ReS)
)

dReSdReS + i∂ImSr
(

R(ImS)
)

dIm S dIm S
)

v dx

=
1
2

∫

(

r′(Re ψ)r(Re ψ)dReW dReW

+ir′(Im ψ)r(Im ψ)dIm W dImW
)

v dx

=
1
2

∫

(

r′(Reψ)r(Re ψ)
∑

j

(

dReWjRe ej − dImWJ Im ej
)

·
(
∑

m

(

dReWmRe em − dImWmIm em
)

)

+ir′(Im ψ)r(Im ψ)
(
∑

j

dIm WjRe ej + dReWjIm ej

)

·
(
∑

m

dImWmRe em + dReWmIm em

))

v(x) dx

=
1
2

∫

(

r′(Reψ)r(Re ψ)
1
2

∑

j

λj |ej(x)|2

+ir′(Im ψ)r(Im ψ)
1
2

∑

j

λj |ej(x)|2
)

v(x) dxdt ≡ T .

(15.29)
By (15.9) and (3.14),

∑

j

λj |ej(x)|2 = 2K11(x, x) and therefore the right-

hand side of (15.29) is equal to the expression

T =
∫

̂r′[ψ]{r[ψ]K11(x, x)}v(x) dxdt . (15.30)
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Taking into account that, on the left-hand side of (15.26), R[S[ψ(t, x)]] =
ψ(t, x), we obtain from (15.26), (15.27), (15.29), and (15.30) the final formula

d

∫

G

ψ(t, x)v(x) dx +
∫

G

(

(i∇+ A)2ψ(t, x) − ψ + |ψ|2ψ
)

v(x) dx

=
∞
∑

j=1

∫

r̂[ψ]{ej(x)dWj(t)}v dx .

(15.31)

This equality holds for each v(x) ∈ L2(G). Clearly, this equality is equiva-
lent to

dψ(t, x) +
{

(i∇+ A)2ψ(t, x)− ψ(t, x) + |ψ(t, x)|2ψ(t, x)
}

dt

= r̂[ψ]
{

∞
∑

j=1

ej(x)dWj(t)
} (15.32)

and (15.32) is equivalent to (15.20). ��
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Carleman Estimates with Second
Large Parameter for Second Order
Operators

Victor Isakov and Nanhee Kim

Abstract We prove Carleman type estimates with two large parameters for
general linear partial differential operators of second order. Using the second
large parameter, from results for scalar equations we derive Carleman esti-
mates for dynamical Lamé system with residual stress. These estimates are
used to prove the Hölder and Lipschitz stability for the continuation of solu-
tions under pseudoconvexity assumptions. So, the first uniqueness and sta-
bility of the continuation results are established for an important anisotropic
system of elasticity without the assumption that this anisotropic system is
close to an isotropic system.

1 Introduction

While the main idea to use special exponential weight in energy integrals
belongs to Carleman, the language and technique of this paper heavily use
Sobolev spaces and their properties. Also the more general idea of exploit-
ing various concepts of energy in mathematical physics (in particular, in
the elasticity theory) leads naturally to weak solutions and it was pioneered
by Sobolev in the 1930s. So our work is deeply influenced by discoveries of
Sobolev.

We consider the general partial differential operator of second order

A =
n
∑

j,k=1

ajk∂j∂k +
∑

bj∂j + c
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in a bounded domain Ω of the space R
n with real-valued coefficients ajk ∈

C1(Ω), bj , c ∈ L∞(Ω). The principal symbol of this operator is

A(x; ζ) =
∑

ajk(x)ζjζk. (1.1)

We use the following conventions and notation: sums are taken over
repeated indices j, k, l,m = 1, . . . , n; ∂ = (∂1, . . . , ∂n), D = −i∂, α =
(α1, . . . , αn) is a multiindex with integer components, ζα = ζα1

1 · · · ζαn
n , Dα

and ∂α are defined similarly; ν is the outward normal to the boundary of a
domain; C denotes generic constants (different at different places) depend-
ing only on the operators A or AR, the function ψ, and the domain Ω. The
dependence on additional parameters will be indicated. We recall that

‖u‖(k)(Ω) =
(

∑

|α|�k

∫

Ω

|∂αu|2
) 1

2

is the norm in the Sobolev space H(k)(Ω) and ‖‖2 = ‖‖(0) is the L2-norm.
A function ψ is called pseudoconvex on Ω with respect to A if ψ ∈ C2(Ω),

A(x,∇ψ(x)) �= 0, x ∈ Ω, and

∑

∂j∂kψ(x)
∂A

∂ζj

∂A

∂ζk
(x; ξ)

+
∑

( ∂A

∂ζk
∂k

∂A

∂ζj
− ∂kA

∂2A

∂ζj∂ζk

)

∂jψ(x, ξ) � K|ξ|2 (1.2)

for some positive constant K, any ξ ∈ Rn, and any point x of Ω provided
that

A(x; ξ) = 0,
∑ ∂A

∂ζj
(x, ξ)∂jψ(x) = 0. (1.3)

We use the weight function

ϕ = eγψ. (1.4)

Let σ = γτϕ and Ωε = Ω ∩ {ψ(x) > ε}.

Theorem 1.1. Let ψ be pseudoconvex with respect to A in Ω. Then there are
constants C and C0(γ) such that

∫

Ω

σ3−2|α|e2τϕ|∂αu|2 � C

∫

Ω

e2τϕ|Au|2 (1.5)

for all u ∈ C2
0 (Ω), |α| � 1, C < γ, and C0(γ) < τ .

The weighted energy type estimates with large parameter τ were first in-
troduced by Carleman in 1939 to prove the first uniqueness of continuation
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results for elliptic systems with nonanalytic coefficients in the plane. The idea
of Carleman turned out to be extremely fruitful; in the 1950-70s, this idea
was applied to many important partial differential equations. Hörmander [6]
linked it to the pseudoconvexity condition for the theory of functions of sev-
eral complex variables and to energy estimates for general hyperbolic equa-
tions. At present, there are several interesting (and, in some cases, complete)
results on Carleman estimates and the uniqueness of continuation for second
order equations, including elliptic, parabolic, Schrödinger type, and hyper-
bolic equations [10, 15].

However, systems of partial differential equations still remain a serious
challenge. The only available general result is the celebrated theorem of
Calderon in 1958 which is applicable mainly to some elliptic systems. There is
a progress for the classical dynamical isotropic Maxwell and elasticity systems
[5, 8]. The uniqueness of continuation results for some anisotropic systems
(including thermoelasticity system) was first obtained by Albano and Tataru
[1] and Isakov [9]. In these papers, it was crucial to use Carleman type es-
timates with two large parameters (1.5) first introduced and applied to the
classical elasticity system in [8]. In [3], Theorem 1.1 (for C∞-coefficients) was
stated without proof, and, in [4], there are not complete proofs for isotropic
hyperbolic equations.

As an important application of Theorem 1.1, we consider an elasticity
system with residual stress R [11, 12, 16]. This system is anisotropic. At
present, there are results on the uniqueness of continuation and identification
of its coefficients under the assumption that the residual stress is “small”
(without a quantitative estimate of smalnness). In [17], there are theorems
about the uniqueness of identification for some coefficients of the residual
stress under quite complicated conditions and from all possible boundary
data. We derive the global uniqueness of continuation in Ω0 ⊂ Ω under some
pseudoconvexity conditions on a weight function ψ defining Ω0. In Theorems
1.2–1.4 below, x ∈ R

3 and (x, t) ∈ Ω ⊂ R
4. The residual stress is modeled

by a symmetric second rank tensor R(x) = (rjk(x))3j,k=1 ∈ C2(Ω) which is
divergence free: ∇ · R = 0. We denote by u(x, t) = (u1, u2, u3)	 : Ω → R

3

the displacement vector in Ω and introduce the operator of linear elasticity
with the residual stress

ARu = ρ∂2
t u−μΔu− (λ+μ)∇(div u)−∇λdiv u−2ε(u)∇μ−div ((∇u)R),

(1.6)
where ρ ∈ C1(Ω) is the density and λ, μ ∈ C2(Ω) are the Lamé parameters
depending only on x, ε(u) = (1

2 (∂iuj + ∂jui)). Let

�(μ;R) = ∂2
t −

∑

jk

μδjk + rjk
ρ

∂j∂k

and σ = τγϕ.
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Theorem 1.2. Let ψ be pseudoconvex with respect to �(μ;R); �(λ + 2μ;R)
in Ω. Then there are constants C and C0(γ) such that

∫

Ω

(σ(|∇x,tu|2 + |∇x,t div u|2 + |∇x,t curl u|2)

+ σ3(|u|2 + | div u|2 + | curl u|2))e2τϕ

� C

∫

Ω

(|ARu|2 + |∇(ARu)|2)e2τϕ (1.7)

for all u ∈ H0
(3)(Ω), C < γ, C0 < τ .

In [11], this result was obtained for “small” R.
We consider the Cauchy problem

ARu = f in Ω, u = g0, ∂νu = g1 on Γ ⊂ ∂Ω, (1.8)

where Γ ∈ C3. By standard arguments [10, Sect. 3.2], the Carleman estimate
in Theorem 1.2 implies the following conditional Hölder stability estimate for
(1.8) in Ωδ (and, consequently, the uniqueness in Ω0).

Theorem 1.3. Suppose that all the coefficients λ, μ, ρ, R are in C2(Ω). Let
ψ be pseudoconvex with respect to �(μ;R); �(λ + 2μ;R) in Ω0. Assume that
Ω0 ⊂ Ω ∪ Γ . Then there exist C(δ), κ(δ) ∈ (0, 1) such that for a solution
u ∈ H(3)(Ω) to (1.8)

‖u‖(2)(Ωδ) � C(F + M1−κFκ), (1.9)

where

F = ‖f‖(1)(Ω0) + ‖g0‖( 5
2 )(Γ ) + ‖g1‖( 3

2 )(Γ ), M = ‖u‖(2)(Ω).

In Theorem 1.4, we assume that Ω = G × (−T, T ) and the system (1.8)
is t-hyperbolic. Using the known theory [2], one can derive the sufficient
condition

0 � λ, 0 < 2μI3 + R on Ω.

This condition is satisfied when any eigenvalue of the matrix R is strictly

greater than−2μ. Such a situation happens when, for example,
3
∑

i,j=1

r2
ij < 4μ2

on Ω. We use the conventional energy integral

E(t; u) =
∫

G

(|∂tu|2 + |∇u|2 + |u|2)(, t).
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Theorem 1.4. Suppose that λ, μ, ρ, R are in C2(Ω). Let ψ be pseudoconvex
with respect to �(μ;R); �(λ + 2μ;R) in Ω. Assume that

ψ < 0 on G× {−T, T }, 0 < ψ on G× {0}.

Then there exists C such that for a solution u ∈ H(3)(Ω) to (1.8)

E(t; u) + E(t;∇u) � C(‖f‖(1)(Ω) + ‖g0‖( 5
2 )(Γ ) + ‖g1‖( 3

2 )(Γ )). (1.10)

The paper is organized as follows. In Sect. 2, we describe two kinds of
known sufficient conditions of pseudoconvexity for two kinds of functions ψ
with respect to a general anisotropic hyperbolic operator A. Also, we give a
simple new condition of pseudoconvexity in the case, where R is small rel-
ative to constants ρ, μ, λ, and explicitly describe this smallness condition.
Section 3 is central. Here, we prove Theorem 1.1 by using an explicit form
of pseudoconvexity conditions for second order operators such that one can
trace the dependence on the second large parameter γ. The crucial part of
the proof is Lemma 3.2 which gives a bound on the symbol of a differential
quadratic form. To find a suitable form of this bound was a decisive step in
deriving Theorem 1.1. In the remaining part of Sect. 3, we complete the proof
by applying the standard Fourier analysis methods augmented by proper lo-
calization and the use of large parameter τ . In Sects. 4–6, we modify methods
in [10, Chapt. 3], [11], and [12] to derive from Theorem 1.1 the Carleman es-
timates, as well as local (Hölder type) and global (Lipschitz type) stability
estimates for the lateral Cauchy problems for the system (1.6). Finally, we
discuss open problems and their possible solutions.

2 Pseudoconvexity Condition

It is not easy to find pseudoconvex functions ψ with respect to a gen-
eral anisotropic operator, in particular, the hyperbolic operator A = ∂2

t −
n
∑

j,k=1

ajk∂j∂k. In the isotropic case, explicit and verifiable conditions for

ψ(x, t) = |x − β|2 − θ2t2 were found by Isakov in 1980 and their simplifiica-
tions were given in [10, Sect. 3.4]. In the case of general hyperbolic equations,
Khaidarov [14] showed that the same function ψ is pseudoconvex if the prop-
agation speed determined by A is monotone in a certain direction. The most
suitable choice of ψ is ψ(x, t) = d2(x, β)− θ2t2, where d is the distance in the
Riemannian metrics determined by the spatial part of A. This choice leads, in
many cases, to an exact description of the uniqueness domain. Lasiecka, Trig-
giani, and Yao [15] showed that this function is indeed pseudoconvex when d2

is convex in the Riemannian metric. Romanov [18] gave a simple independent
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proof and emphasized that the negativity of sectional curvatures is sufficient.
The known conditions of pseudoconvexity in the anisotropic case are hard

to verify. For example, the conditions in [15, 18] impose restrictions on the
second partial derivatives of ajk. In applications, residual stress is relatively
small [16]. Motivated by these reasons, we give a simple sufficient condition
of pseudoconvexity for R, where the “smallness” of R is explicit, contrary to
the conditions in [11, 12].

We use the matrix norm

‖R‖ =
(

3
∑

j,k=1

r2
jk

) 1
2
.

Lemma 2.1. Let θ, s be some numbers, β ∈ Rn, ρ, λ, μ constants, Assume
that a matrix R is symmetric positive at any point of Ω and

2μρθ2 + 3‖R + μI‖‖∇R‖|x− β| < 2μ2 on Ω. (2.1)

Let
θ2 <

μ

ρ
(2.2)

Then the function ψ(x, t) = |x− β|2 − θ2t2 − s2 is pseudoconvex with respect
to the anisotropic wave operator A = �(μ;R) in Ω ∩ {|x− β|2 > θ2t2}.

Proof. By definition, we need the positivity of the quadratic form

H =
n
∑

j,k=0

∂j∂kψ
∂A

∂ξj

∂A

∂ξk
+

n
∑

j,k=0

((

∂k
∂A

∂ξj

) ∂A

∂ξk
− ∂kA

∂2A

∂ξj∂ξk

)

∂jψ.

A direct calculation with

A(x, ζ) = ζ2
0 −

μ

ρ
ζ · ζ −

n
∑

j,k=1

rjk
ρ

ζjζk

yields

H = −8θ2ξ2
0 + 8

n
∑

j=1

(1
ρ

(
n
∑

k=1

rjkξk + μξj

))2

+
n
∑

j,k=1

{(

− 2
ρ

n
∑

l=1

∂krjlξl

)(

− 2
ρ

(
n
∑

m=1

rkmξm + μξk

))

(2(x− β)j)
}

−
3
∑

j,k=1

{(

− 1
ρ

3
∑

l,m=1

∂krlmξlξm

)(

− 2
ρ

(rjk + μδjk)
)

(2(x− β)j)
}



Carleman Estimates 141

= −8
ρ
μθ2|ξ|2 − 8

ρ
θ2

n
∑

j,k=1

rjkξjξk +
8
ρ2

n
∑

j=1

((
n
∑

k=1

rjkξk

)2

+ 2μξj
(

n
∑

k=1

rjkξk

)

+ μ2ξ2
j

)

+
8
ρ2

n
∑

j,k=1

{(
n
∑

l=1

∂krjlξl

)(
n
∑

m=1

rkmξm + μξk

)

((x − β)j)
}

− 4
ρ2

n
∑

j,k=1

{(
n
∑

l,m=1

∂krlmξlξm

)(

rjk + μδjk

)

((x − β)j)
}

.

Hence

H � −8
ρ
μθ2|ξ|2 − 8

ρ
θ2

n
∑

j,k=1

rjkξjξk

+
8
ρ2

n
∑

j=1

(
n
∑

k=1

rjkξk)2 +
16
ρ2

μ
n
∑

j,k=1

rjkξjξk

)

+
8
ρ2

μ2|ξ|2

− 8
ρ2

∣

∣

∣

n
∑

j,k=1

{(
n
∑

l=1

∂krjlξl

)(
n
∑

m=1

rkmξm + μξk

)

((x− β)j)
}∣

∣

∣

− 4
ρ2

∣

∣

∣

n
∑

j,k=1

{(
n
∑

l,m=1

∂krlmξlξm

)(

rjk + μδjk

)

((x− β)j)
}∣

∣

∣

� 8
ρ

(μ2

ρ
− μθ2

)

|ξ|2 +
8
ρ

(2μ
ρ
− θ2

)
n
∑

j,k=1

rjkξkξk

− 8
ρ2

n
∑

k=1

‖∂kR‖|ξ||x− β|
n
∑

m=1

|rkm + μδkm||ξm|

− 4
ρ2

n
∑

j,k=1

‖∂kR‖|ξ|2|rjk + μδjk||(x− β)j |,

where we used the relation

∣

∣

∣

n
∑

j,k=1

rjkξjηk

∣

∣

∣ � ‖R‖|ξ||η|

which follows from the Cauchy–Schwartz inequality. Using this inequality
again, we conclude that
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H � 8
ρ

(μ2

ρ
− μθ2

)

|ξ|2 − 12
ρ2
‖R + μI‖‖∇R‖|x− β||ξ|2.

Hence the positivity of H follows from (2.1).
Since |x− β|2 > θ2t2, we have

A(x,∇ψ(x)) = 4θ4t2 − μ

ρ
4|x− β|2 −

n
∑

j,k=1

rjk
ρ

4(x− β)j(x− β)k

< 4((θ2 − μ

ρ
)|x− β|2 −

n
∑

j,k=1

rjk
ρ

(x− β)j(x− β)k) < 0

on Ω ∩ {|x− β|2 > θ2t2} by the condition (2.2) and the definition of Ω0. So,
∇ψ is not characteristic on this set. ��

3 Proof of Carleman Estimates for Scalar Operators

In the following, ζ(ϕ)(x) = ξ + iτ∇ϕ(x). We introduce the differential
quadratic form

F(x, τ,D,D)vv = |A(x,D + iτ∇ϕ(x))v|2 − |A(x,D − iτ∇ϕ(x))v|2. (3.1)

This quadratic form is of order (3, 2) since the coefficients of the principal
part of A are real valued. By [6, Lemma 8.2.2], there exists a differential
quadratic form G(x, τ,D,D) of order (2, 1) such that

∫

Ω

G(x,D,D)vv =
∫

Ω

F(x,D,D)vv (3.2)

with the symbol

G(x, τ, ξ, ξ) =
1
2

∑ ∂2

∂xk∂ηk
F(x, τ, ζ, ζ), ζ = ξ + iη, at η = 0,

where

F(x, τ, ζ, ζ)=A(x, ζ+iτ∇ϕ)A(x, ζ − iτ∇ϕ)−A(x, ζ − iτ∇ϕ)A(x, ζ + iτ∇ϕ).

Lemma 3.1. We have

G(x, τ, ξ, ξ) = 2τ
∑ ∂A

∂ζj

∂A

∂ζk
∂j∂kϕ + 2�

∑

∂kA
∂A

∂ζk
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+ 2�
∑

A
( ∂2A

∂ζk∂xk
− iτ

∂2A

∂ζj∂ζk
∂j∂kϕ

)

, (3.3)

where A, ∂kA, . . . are taken at (x, ζ(ϕ)(x)).

Proof. Indeed, at η = 0

1
2

∑ ∂2

∂xk∂ηk
F(x, ξ + iη, ξ − iη)

=
1
2

∑

∂k

(

i
∂A

∂ζk
(x, ξ + iτ∇ϕ)A(x, ξ − iτ∇ϕ)

− iA(x, ξ + iτ∇ϕ)
∂A

∂ζk
(x, ξ − iτ∇ϕ)

− i
∂A

∂ζk
(x, ξ − iτ∇ϕ)A(x, ξ + iτ∇ϕ)

+ iA(x, ξ − iτ∇ϕ)
∂A

∂ζk
(x, ξ + iτ∇ϕ)

)

= i
∑

∂k

( ∂A

∂ζk
(x, ζ(ϕ))A(x, ζ(ϕ)) − ∂A

∂ζk
(x, ζ(ϕ))A(x, ζ(ϕ))

)

.

Using the fact that i(zw − zw) = −2�(zw), we yield

G(x, τ, ξ, ξ) = −2�
∑

∂k

( ∂A

∂ζk
(x, ζ(ϕ)(x))A(x, ζ (ϕ(x))

)

=−2�
∑

(( ∂2A

∂xk∂ζk
(x, ζ(ϕ)) + iτ∂j∂kϕ

∂2A

∂ζj∂ζk
(x, ζ(ϕ))

)

A(x, ζ(ϕ))

+
∂A

∂ζk
(x, ζ(ϕ))

∂A

∂xk
(x, ζ(ϕ))− iτ∂j∂kϕ

∂A

∂ζk
(x, ζ(ϕ))

∂A

∂ζj
(x, ζ(ϕ))

)

(3.4)

by the chain rule and
∂ζj
∂xk

= iτ∂j∂kϕ. Observing that, in the notation of

Lemma 3.1, A(, ζ(ϕ)) = A, −�(zw) = �(zw) and reminding that the coeffi-

cients of A are real-valued and, consequently,
∑

∂j∂kϕ
∂A

∂ζk

∂A

∂ζj
is real-valued,

we obtain (3.3) from (3.4). ��

The following differentiation formulas are obtained from (1.4) and are used
in the proofs below:

∂jϕ = γϕ∂jψ , ∂j∂kϕ = γϕ∂j∂kψ + γ2ϕ∂jψ∂kψ. (3.5)

By these formulas and Lemma 3.1, a standard calculation yields
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τ−1G(x, τ, ξ, ξ) = G1(x, τ, ξ, ξ) + G2(x, τ, ξ, ξ) + G3(x, τ, ξ, ξ) + G4(x, τ, ξ, ξ),
(3.6)

where

G1(x, τ, ξ, ξ) = 8γϕ
∑

ajmakl(ξmξl + σ2∂mψ∂lψ)∂j∂kψ,

G2(x, τ, ξ, ξ) = 4γϕ
∑

alk∂ka
jm(σ2∂jψ∂mψ∂lψ + 2ξmξl∂jψ − ξjξm∂lψ),

G3(x, τ, ξ, ξ) = 4γϕ(2
∑

akm∂ja
lj∂kψξlξm

−
∑

ajk(∂malm∂lψ + alm∂l∂mψ)(ξjξk − σ2∂jψ∂kψ)),

G4(x, τ, ξ, ξ) = 4γ2ϕ
((

2
∑

ajmξm∂jψ
)2

+ 2σ2
(
∑

ajm∂jψ∂mψ
)2

−
(
∑

alm(ξlξm − σ2∂lψ∂mψ)
)(

∑

ajk∂jψ∂kψ
))

.

Note that the terms of τ−1G with highest powers of λ are collected in G4.

Proof of Theorem 1.1. First, make the substitution u = e−τϕv. It is obvious
that Dk(e−τϕv) = e−τϕ(Dk + iτ∂kϕ)v. Hence

∑

ajkDjDk(e−τϕv) =
∑

ajke−τϕ(Dj + iτ∂jϕ)(Dk + iτ∂kϕ)v.

Accordingly, the bound (1.5) is transformed into

∑

∫

Ω

σ3−2|α||∂αv|2 � C

∫

Ω

|A(, D + iτ∇ϕ)v|2. (3.7)

Lemma 3.2. Under the assumptions of Theorem 1.1, for any ε0 there is C
such that

γϕ(x)(2K − ε0)|ζ(ϕ)(x))|2 � τ−1G(x, τ, ξ, ξ) + γϕ(x)Cγ2 |A(x, ζ(ϕ)(x))|2
|ζ(ϕ)(x)|2

(3.8)
for all C < γ, ξ ∈ R

n, and x ∈ Ω.

Proof. By homogeneity, we can assume that |ζ(ϕ)|(x) = 1. In the proof, we
use the relation

A(x, ζ(ϕ)(x)) =
n
∑

j,k=1

ajk(ξjξk − σ2∂jψ∂kψ) + 2i
n
∑

j,k=1

ajkσξj∂kψ

= A(x, ξ) − σ2A(x,∇ψ(x)) + 2iσ
∑ ∂A

∂ζj
(x, ξ)∂jψ(x). (3.9)
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To show (3.8), we use the pseudoconvexity of ψ and consider four cases.
Case 1.

σ = 0, A(x, ξ) = 0,
∑ ∂A

∂ζj
(x, ξ)∂jψ(x) = 0. (3.10)

Then
σ = 0,

∑

ajkξjξk = 0,
∑

ajkξj∂kψ = 0,

and from (3.6) we find

τ−1G(x, 0, ξ, ξ)

= 2γϕ
∑

∂j∂kψ2ajmξm2aklξl + 4γϕ
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ)

=2γϕ
∑

∂j∂kψ
∂A

∂ζj

∂A

∂ζk
+2γϕ

∑
((

∂k
∂A

∂ζj

) ∂A

∂ζk
− (∂kA)

∂2A

∂ζj∂ζk

)

∂jψ(x, ξ)

� 2γϕK

by the pseudoconvexity of ψ (1.2).

Case 2.
σ < δ, |γ(A(x, ξ) − σ2A(x,∇ψ(x)))| < δ, (3.11)

where δ is a (small) positive number to be chosen later.
Using (3.6) as in Case 1, bounding the terms with σ2 by −Cγϕδ, and

dropping the second (positive) term in G4, we obtain

τ−1G(x, τ, ξ, ξ) � 2γϕ
∑

2ajmξm2aklξl∂j∂kψ − Cγϕδ2

+ 4γϕ
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ) + 4γϕ2

∑

∂ja
ljξl(akm∂kψξm)

− 4γϕ
∑

ajk(ξjξk − σ2∂jψ∂kψ)
∑

(∂malm∂lψ + alm∂l∂mψ)

+ 8γ2ϕ
(
∑

ajmξm∂jψ
)2

− γϕ
(

γ
∑

ajk(ξjξk − σ2∂jψ∂kψ)
)(

∑

alm∂lψ∂mψ
)

� 2γϕ
(
∑

∂j∂kψ2ajmξm2aklξl + 2
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ)

)

− Cγϕδ + 8γϕγ
(
∑

ajkξj∂kψ
)2

, (3.12)

due to (3.9) and (3.11).
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In addition to (3.11), we assume that

∣

∣

∣

∑ ∂A

∂ζj
(x, ξ)∂jψ(x)

∣

∣

∣ < δ. (3.13)

Then

h(x, ξ, σ) =
∑

∂j∂kψ(x)2ajm(x)ξm2akl(x)ξl

+ 2
∑

alk∂ka
jm(x)(2ξlξm∂jψ(x)− ξjξm∂lψ(x))

� K − ε(δ) (3.14)

by the continuity arguments, compactness of the set

M = {(x, ξ, σ) : x ∈ Ω, |ξ|2 + σ2|∇ψ(x)|2 = 1},

and (3.11). Here, ε(δ) → 0 as δ → 0.
Indeed, assuming the opposite of (3.14), we yield a positive number ε1 and

a sequence (x(k), ξ(k), σ(k)) ∈M such that h((x(k), ξ(k), σ(k)) � K−ε1 and
(3.11), (3.13) hold with δ = k−1. Since M is compact (by extracting a subse-
quence, if necessary), we may assume that (x(k), ξ(k), σ(k)) → (x, ξ, 0) ∈M
as k → +∞. By continuity, h(x, ξ, 0) � K − ε1. On the other hand, by the
choice of the sequence, using that 1 � γ, we find that (x, ξ, 0) satisfies (3.10).
Hence, by case 1, h(x, ξ, 0) � K and we obtain a contradiction.

Because of (3.14), the right-hand side of (3.12) is greater than

γϕ(2K − ε(δ)− Cδ) � γϕ(2K − ε0).

Here, we let δ < 1
C , so that ε(δ) + Cδ < ε0. From now on, we fix such δ and

denote it by δ0. We can choose δ0 to be dependent on the same parameters
as C.

If
∣

∣

∣

∑ ∂A

∂ζj
(x, ξ)∂jψ(x)

∣

∣

∣ � δ0,

then, using (3.11) with δ = δ0, we conclude that the right-hand side of (3.12)
is greater than

−Cγϕ + 8γϕγδ2
0 � γϕ2K

when γ > 8−1δ−2
0 (C + 2K).

Finally, the condition (3.11) with δ = δ0 implies (3.8).
To conclude the proof, we observe that, by (3.9), in addition to (3.11) only

the following cases 3 and 4 are possible.

Case 3. σ > δ0, |γ�A(x, ζ(ϕ)(x))| < δ0.
Using (3.6), as above we yield
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τ−1G(x, τ, ξ, ξ) � −Cγϕ(x) + G4(x, τ, ξ, ξ)
[by dropping the first (positive) term in G4, using that ∇ψ is non-
characteristic, and bounding the last term in G4 from (3.9) and the
δ0-smallness of |γ�A|]
� −Cγϕ(x) + 8C−1γ2ϕδ2

0 � 2γϕ(x)K,

when we choose γ > C2.

Case 4. |γA(x, ζ(ϕ)(x)| > δ0.
From (3.6) we similarly have

τ−1G(x, τ, ξ, ξ) + γϕ(x)C1|γA(x, ζ(ϕ)(x))|2

� −Cγϕ(x) − Cγ2ϕ|A(x, ζ(ϕ)(x))| + γϕC1|γA(x, ζ(ϕ)(x))|2

� −Cγϕ(x) − Cγϕ(x)|γA(x, ζ(ϕ)(x))| + γϕC1|γA(x, ζ(ϕ)(x))|2

� −Cγϕ(x) + Cγϕ(x)|γA(x, ζ(ϕ)(x))|
( C1

2C
|γA(x, ζ(ϕ)(x))| − 1

)

+ γϕ(x)
C1

2
|γA(x, ζ(ϕ)(x))|2

� −Cγϕ(x) + Cγϕ(x)|γA(x, ζ(ϕ)(x))|
(C1δ0

2C
− 1

)

+ γϕ(x)
C1

2
δ2
0

� Kγϕ(x)

if C1 >
2C
δ0

+
C + 2K

2δ2
0

. ��

We fix x0 ∈ Ω, introduce the norm

|||v|||−1 =
(

∫ |v̂(ξ)|2
|ξ|2 + τ2γ2ϕ2(x0)|∇ψ(x0)|2 dξ

)

1
2

, (3.15)

and observe that
|||v|||−1 � Cτ−1||v||2. (3.16)

Lemma 3.3. There is a function ε(δ; γ) → 0, as δ → 0 and γ is fixed, and
C(γ) such that

τ−1|(G(x0, τ,D,D)− G(, τ,D,D))vv| � ε(δ; γ)
∑

|α|�1

τ2−2|α||∂αv|2, (3.17)

|||A(x0, D + iτ∇ϕ(x0))v −A(, D + iτ∇ϕ)v|||2−1

� (ε(δ; γ) + C(γ)τ−1)
∑

|α|�1

(γτϕ(x0))2−2|α|
∫

|∂αv|2 (3.18)
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for all v ∈ C2
0 (B(x0; δ)).

Proof. By (3.6), we have

τ−1(G(x0, τ,D,D)− G(, τ,D,D))vv

=
∑

(γ(ϕ(x0)ajk1 (x0)− ϕ(x)ajk1 (x))∂jv(x)∂kv(x))

+ γ3τ2(ϕ(x0)2ajk2 (x0)− ϕ(x0)2ajk2 )v(x)v(x)

+ γ2
∑

((ϕ(x0)ajk3 (x0)− ϕ(x)ajk3 (x))∂jv(x)∂kv(x))

+ γ4τ2(ϕ(x0)2ajk4 (x0)− ϕ(x0)2ajk4 (x))v(x)v(x),

where ajkl are continuous functions determined only by A and ψ. Since
|ϕ(x0)majkl (x0) − ϕ(x)majkl (x)| � ε(δ; γ) for |x − x0| < δ, (3.17) follows
by the triangle inequality.

We have

|||A(x0, D + iτ∇ϕ(x0))v −A(, D + iτ∇ϕ)v|||−1

�
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

(ajk(x0)− ajk)(∂j − τ∂jϕ(x0))(∂k − τ∂kϕ(x0))v
∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

� C(δ + τ−1)||(∂ − τ∂ϕ)v||2

� (ε(δ; γ) + C(γ)τ−1)
∑

|α|�1

τ1−|α|||∂αv||2 (3.19)

by [6, Lemma 8.4.1].
Furthermore,

|||A(, D+iτ∇ϕ(x0))v −A(, D + iτ∇ϕ)v|||−1

=
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

ajk((∂j − τ∂jϕ(x0))(∂k − τ∂kϕ(x0))

− (∂j − τ∂jϕ)(∂k − τ∂kϕ))v
∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

�
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

ajk(τ2(∂jϕ(x0)∂kϕk(x0)− ∂jϕ∂kϕ)

+ 2τ(∂jϕ−∂jϕ(x0))∂k + τ(∂j∂kϕ)v)
∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

�
∑

τ2|||ajk(∂jϕ∂kϕ− ∂jϕ(x0)∂kϕ(x0))v|||−1

+ 2
∑

τ |||(∂jϕ− ∂jϕ(x0))∂kv|||−1 + τ
∑

|||∂j∂kϕv|||−1.

Using the property of the norm (3.15), we find
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|||A(, D + iτ∇ϕ)v −A(, D + iτ∇ϕ(x0))v|||−1

� Cτ
∑

||ajk(∂jϕ∂kϕ− ∂jϕ(x0)∂kϕ(x0))v||2

+ 2
∑

||(∂jϕ− ∂jϕ(x0))∂kv||2 +
∑

||∂j∂kϕv||2

� τε(δ; γ)||v||2 + ε(δ; γ)
∑

||∂kv||2 + C(γ)||v||2

� (ε(δ; γ) + C(γ)τ−1)
∑

|α|�1

τ1−|α|||∂αv||2

Using (3.19), we have

|||A(x0, D + iτ∇ϕ(x0))v −A(x,D + iτ∇ϕ(x))v|||−1

� |||A(x0, D + iτ∇ϕ(x0))v −A(x,D + iτ∇ϕ(x0))v|||−1

+ |||A(x,D + iτ∇ϕ(x0))v −A(x,D + iτ∇ϕ(x))v|||−1

� (ε(δ; γ) + C(γ)τ−1)
∑

|α|�1

τ1−|α|||∂αv||2.

The proof of the lemma is complete. ��

Now, we continue the proof of Theorem 1.1. By the Parseval identity,

(τ2|∇ϕ(x0)|2)m−|α|
∫

|∂αv|2dx � (2π)−n
∫

|ζ|2m(ϕ)(x0)|v̂(ξ)|2dξ.

Hence, multiplying the inequality (3.8) by |v̂(ξ)|2, v ∈ C2
0 (Ωε), and integrat-

ing over Rn, we yield

C−1γϕ(x0)
∑

|α|�1

∫

(γτϕ(x0))2−2|α||∂αv|2

� τ−1

∫

G(x0, τ,D,D)vv + γϕ(x0)γ2

∫ |A(x0, ζ(ϕ)(x0))|2
|ζ(ϕ)(x0)|2 |v̂(ξ)|2dξ

� τ−1

∫

G(x0, τ,D,D)vv + γϕ(x0)γ2|||A(x0, D + iτ∇ϕ(x0))v|||2−1

� τ−1

∫

G(x, τ,D,D)vv + ε(δ; γ)
∑

|α|�1

τ2−2|α|
∫

|∂αv|2

+ γϕ(x0)γ2|||A(, D + iτ∇ϕ)v|||2−1

+ (ε(δ; γ) + C(γ)τ−2)
∑

|α|�1

τ3−2|α|
∫

|∂αv|2 (3.20)
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for v ∈ C2
0 (Ωε ∩ B(x0, δ)). Here, we used Lemma 3.3 and the elementary

inequality a2 � 2b2 + 2(b− a)2. Choosing δ > 0 small and τ large enough so
that (2C)−1γϕ(x0)(γτϕ(x0))2−2|α| > (ε(δ; γ) + C(γ)τ−2)τ2−2|α|, we absorb
the second and fourth terms on the right-hand side of the inequality (3.20)
to arrive at the inequality

∑

|α|�1

∫

(γτϕ(x0))3−2|α||∂αv|2

� C(
∫

G(, τ,D,D)vv + τγϕ(x0)γ2|||A(, D + iτ∇ϕ)v|||2−1).

As above, by choosing large τ > C(γ), one can replace ϕ(x0) on the left-hand
side of this inequality by ϕ. Using (3.1), (3.2), and the property (3.16) of the
norm ||| |||−1, we conclude that

∑

|α|�1

∫

(γτϕ)3−2|α||∂αv|2

� C||A(, D + iτ∇ϕ)v||22 + C(γ)τ−1||A(, D + iτ∇ϕ)v||22

for v ∈ C2
0 (B(x0; δ)). Choosing τ > C(γ), we eliminate the second term on

the right-hand side. Now, the bound (3.7) follows by the partition of unity
argument. Since our choice of δ0 depends on γ, we give this argument in some
detail.

The balls B(x0; δ0) form an open covering of the compact set Ω. Hence
we can find a finite subcovering B(x0j ; δ0) and a special partition of unity
χj(; γ) subordinated to this subcovering. In particular, χj ∈ C2

0 (B(x0j ; δ0),
0 � χj � 1, and

∑

χ2
j = 1 on Ω. By the Leibniz formula,

∂α(χjv) = χj∂
αv + (∂αχj)v,

A(, D + iτ∇ϕ)(χjv) = χjA(, D + iτ∇ϕ)v) +
∑

|β|�1

aβτ1−|β|∂βv

with |aβ| � C(γ). Hence, applying the Carleman estimate (3.7) to χjv and
using the elementary inequality |a + b|2 � 1

2a
2 − b2, we obtain

1
2

∑

|α|�1

∫

σ3−2|α||χj∂αv|2 −
∑

|α|=1

∫

σ3|(∂α(χj))v)|2

� C||χjA(, D + iτ∇ϕ)v||22 + C(γ)
∑

|β|�1

τ2−2|β|||∂βv||22.

Summing up over j = 1, . . . , J and using that
∑

χ2
j = 1, we yield



Carleman Estimates 151

1
2

∑

|α|�1

∫

σ3−2|α||∂αv|2 −
∑

|α|=1,j�J

∫

σ|(∂α(χj))v)|2

� C||A(, D + iτ∇ϕ)v||22 + C(γ)
∑

|β|�1

τ2−2|β|||∂βv||22.

Since the highest powers of τ are in the first term on the left-hand side,
choosing C(γ) < τ , we absorb by this term the second term on the left-hand
side and the second term on the right-hand side. ��

4 Proof of Carleman Estimates for Elasticity System

Lemma 4.1. Let |∇ψ| > 0 on Ω. Then for a second order elliptic operator
A there are constants C and C0(γ) such that

γ

∫

Ω

σ4−2|α|e2τϕ|∂αv|2 � C

∫

Ω

σe2τϕ|Av|2 (4.1)

for all v ∈ C2
0 (Ω), |α| � 2, C < γ, and C0(γ) < τ .

Proof. We apply the Carleman estimate in [4]
∑

|α|�2

√
γ ||σ 3

2−|α|eτϕ∂αu|| � C ||eτϕA(x,D)u|| (4.2)

to u = σ
1
2 v. By the Leibniz formula,

∂α(σ
1
2 v) = σ

1
2 ∂αv + τ

1
2A|α|−1(x,D)v, |α| = 1, 2,

A(x,D)(σ
1
2 v) = σ

1
2 A(x,D)v + τ

1
2 A1(x,D)v,

where Am is a linear partial differential operator of order m with coefficients
bounded by C(γ). Using these relations with |α| = 1 and the triangle in-
equality, from (4.2), we get

√
γ ||σeτϕ∇v||−C(γ)||τeτϕv||�C ||σ 1

2 eτϕA(x,D)v||+C(γ)
∑

|α|�1

||τ 1
2 eτϕ∂αv||.

Similarly, when |α| = 2,
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√
γ ||eτϕ∂αv|| − C(γ)

∑

|α|�1

||eτϕ∂αv||

� C ||σ 1
2 eτϕA(x,D)v|| + C(γ)

∑

|α|�1

||τ 1
2 eτϕ∂αv||.

Summing the inequalities over |α| � 2, we yield

√
γ
∑

|α|�2

||σ2−|α|eτϕ∂αv|| − C(γ)
∑

|α|�1

τ1−|α|||eτϕ∂αv||

� C ||σ 1
2 eτϕAv||+ C(γ)||τ 1

2 eτϕ∂αv||.

Since σ = τγϕ, 1 � γ, 1 � ϕ, the second terms on the left-hand side and on
the right-hand side are absorbed by the first term on the left-hand side by
choosing τ > C(γ). ��

Proof of Theorem 1.2. We want to apply Carleman estimates to the system
ARu = f . Unfortunately, we have no Carleman estimates for systems. To
use Carleman estimates for scalar equations, we extend this system to a new
principally triangular system. By the standard substitution (u, v = div u,
w = curl u), the system (1.6) can be reduced [11, Proposition 2.1] to a new
system, where the leading part is a special lower triangular matrix differential
operator with the wave operators on the diagonal:

�(μ;R)u =
f
ρ

+ A1;1(u, v),

�(λ + 2μ;R)v = div
f
ρ

+
∑

jk

∇
(rjk

ρ

)

· ∂j∂ku + A2;1(u, v,w), (4.3)

�(μ;R)w = curl
f
ρ

+
∑

jk

∇
(rjk

ρ

)

× ∂j∂ku + A3;1(u, v,w),

where Aj;1 are first order differential operators.
Applying Theorem 1.1 to each of seven scalar differential operators forming

the extended system (4.3) and summing up seven Carleman estimates, we get

∫

Ω

(σ|∇x,tu|2 + σ|∇x,tv|2 + σ|∇x,tw|2 + σ3|u|2 + σ3|v|2 + σ3|w|2)e2τϕ

� C

∫

Ω

(|ARu|2 + |∇(ARu)|2)e2τϕ + C

∫

Ω

3
∑

j,k=1

|∂j∂ku|2e2τϕ



Carleman Estimates 153

+C

∫

Ω

(|∇u|2 + |∇u|2 + |∇w|2 + |u|2 + v2 + |w|2)e2τϕ.

Taking τ > 2C, we can absorb the third integral on the right-hand side by
the left-hand side arriving at the inequality

∫

Ω

(σ|∇x,tu|2 + σ|∇x,tv|2 + σ|∇x,tw|2 + σ3|u|2 + σ3|v|2 + σ3|w|2)e2τϕ

� C

∫

Ω

(|ARu|2 + |∇(ARu)|2)e2τϕ + C

∫

Ω

3
∑

j,k=1

|∂j∂ku|2e2τϕ. (4.4)

To eliminate the second order derivatives on the right-hand side, we need
the second large parameter γ. By Lemma 4.1,

γ

∫

Ω

3
∑

j,k=1

|∂j∂ku|2e2τϕ � C

∫

Ω

σ|Δu|2e2τϕ

� C

∫

Ω

σ(|∇v|2 + |∇w|2)e2τϕ

� C

∫

Ω

(|f |2 + |∇f |2)e2τϕ + C

∫

Ω

|∂j∂ku|2e2τϕ,

where we used the known identity Δu = ∇v − curl w and (4.4). Choosing
γ > 2C, we see that the second order derivatives term on the right-hand side
is absorbed by the left-hand side. This yields

γ

∫

Ω

3
∑

j,k=1

|∂j∂ku|2e2τϕ � C

∫

Ω

(|f |2 + |∇f |2)e2τϕ.

Using again (4.4), we complete the proof of (1.7). ��

5 Hölder Type Stability in the Cauchy Problem

Proof of Theorem 1.3. Since the surface Γ ∈ C3 is noncharacteristic for AR,
we can uniquely solve ARu = f on Γ for ∂2

νu in terms of f , g0, g1, and their
tangential derivatives. Moreover,

‖∂2
νu‖( 1

2 )(Γ ) � C(‖f‖( 1
2 )(Γ ) + ‖g0‖( 5

2 )(Γ ) + ‖g1‖( 3
2 )(Γ )).

By extension theorems, for f ∈ H( 1
2 )(Γ ) we can find u∗ ∈ H(3)(Ω) such that
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u∗ = g0, ∂νu∗ = g1, ∂2
νu

∗ = ∂2
νu on Γ

and
‖u∗‖(3)(Ω) � CF. (5.1)

Let
v = u− u∗. (5.2)

The function v solves the Cauchy problem

ARv = f −ARu∗ in Ω, v = 0, ∂νv = 0 on Γ ⊂ ∂Ω. (5.3)

Moreover, due to our construction of u∗, we have

∂2
νv = 0 on Γ. (5.4)

To apply the Carleman estimates of Theorem 1.2, we need the zero Cauchy
data on the whole boundary. To achieve it, we introduce a cut-off function
χ ∈ C∞(Ω) such that χ = 1 on Ω δ

2
and χ = 0 on Ω \ Ω0. By the Leibniz

formula,
AR(χv) = χARv + A1v,

∇xAR(χv) = χ∇xARv + A2v,

where A1,A2 are matrix linear partial differential operators with bounded
coefficients of orders 1, 2 depending on χ. Moreover, A1 = 0, A2 = 0 on Ω δ

2
.

Using the Cauchy data (5.3), (5.4), we conclude that v ∈ H0
(3)(Ω). Hence, by

the Carleman estimate of Theorem 1.2, we have
∫

Ω

(|∇x,t div (χv)|2 + |∇x,t curl (χv)|2 + |χv|2)e2τϕ

� C

∫

Ω

(|f |2 + |(ARu∗)|2 + |∇xf |2 + |∇(ARu∗)|2 + |A1v|2 + |A2v|2)e2τϕ

for C < γ,C0 < τ . Shrinking integration domain on the left side to Ω 3δ
4

(where χ = 1) and splitting integration domain of |A2v|2 into Ω δ
2

and its
complement we yield

∫

Ω 3δ
4

(|∇x,t div (v)|2 + |∇x,t curl (v)|2) + |v|2)e2τϕ

� C

∫

Ω

(|f |2 + |(ARu∗)|2 + |∇xf |2 + |∇x(ARu∗)|2)e2τϕ
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+ C

∫

Ω\Ω δ
2

(|A1v|2 + |A2v|2)e2τϕ � CF 2e2τΦ + C‖v‖2(2)(Ω)e2τΦ2 ,

where we used the definition (1.9) of F and bound (5.1). Let Φ = supϕ over
Ω and Φ2 = supϕ over Ω \Ω δ

2
. Letting Φ1 = infϕ over Ω 3δ

4
and replacing ϕ

on the left-hand side of the preceding inequality by Φ1, we yield

(||v||2(0)(Ω 3δ
4

) + ||∇div v||2(0)(Ω 3δ
4

) + ||∇ curl v||2(1)(Ω 3δ
4

))e2τΦ1

� CF 2e2τΦ + C‖v‖2(2)(Ω)e2τΦ2 . (5.5)

Note that Φ2 < Φ1.
We remind an interior Schauder type estimate for elliptic equations with

zero Dirichlet data on Γ :

‖v‖(2)(Ωδ) � C‖Δv‖(0)(Ω 3δ
4

) + C‖v‖(0)(Ω 3δ
4

).

Using, in addition, the equality Δ = ∇ div − curl curl , we obtain

||v||2(2)(Ωδ) � C(||v||2(0)(Ω 3δ
4

) + ||∇div v||2(0)(Ω 3δ
4

) + ||∇ curl v||2(1)(Ω 3δ
4

)).

Hence from (5.5) we have

||v||2(2)(Ωδ) � CF 2e2τ(Φ−Φ1) + C‖v‖2(2)(Ω)e2τ(Φ2−Φ1). (5.6)

If ‖v‖(2)(Ω)F−1 < C, then ‖v‖(2)(Ω) � CF . Otherwise, we let τ = (Φ +
Φ1 − Φ2)−1log(‖v‖(2)(Ω)F−1). Then the bound (5.6) implies

||v||(2)(Ωδ) � C‖v‖(2)(Ω)1−κFκ

with κ =
Φ1 − Φ2

Φ + Φ1 − Φ2
. Combining both cases, we yield

||v||(2)(Ωδ) � C(F + ‖v‖(2)(Ω)1−κFκ).

Using the equality u = v + u∗, the triangle inequality, (5.1), and the
elementary inequality (a + b)κ � aκ + bκ, we obtain (1.9) and complete the
proof. ��

6 Lipschitz Stability in the Cauchy Problem

Proof of Theorem 1.4. As the proof of Theorem 1.3, we introduce functions
u∗,v and we use the relations (5.1) and (5.3). We introduce the following
energy integrals for the hyperbolic system of elasticity with residual stress:
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E(t; v) =
∫

G

(

(∂tv)2 + |∇v|2 + |v|2
)

(, t), E(t) = E(t; v) + E(t;∇v).

Dividing the system (1.8) by ρ and differentiating with respect to the spatial
variables, we obtain the extended system with the same principal part

ρ−1ARv = ρ−1f∗,

ρ−1AR∂jv = ∂jρ
−1f∗ − (∂jρ−1AR)v in Ω = G× (−T, T ), j = 1, 2, 3,

where f∗ = f −ARu∗, with the zero boundary value conditions

v = 0, ∂jv = 0 on Γ = ∂G× (−T, T ).

By standard energy estimates for hyperbolic systems (see, for example, [2]),

C−1(E(0)− ||f∗||(1)(Ω)) � E(t) � C(E(0) + ||f∗||(1)(Ω)), t ∈ (−T, T ).
(6.1)

We choose a smooth cut-off function 0 � χ(t) � 1 such that χ0(t) = 1 for
−T + 2δ < t < T − 2δ and χ(t) = 0 for |t| > T − δ. It is clear that

AR(χv) = χf∗ + 2ρ∂tχ∂tv + ρ∂2
t χv,

∇AR(χv) = χ∇f∗ + 2ρ∂tχ∂t∇v + ρ∂2
t χ∇v.

(6.2)

As in the proof of Theorem 1.3, χv ∈ H0
(3)(Ω). Hence, by Theorem 1.2 (with

fixed γ),

∫

Ω

(

σ(|∇x,t(χv)|2 + |∇x,t div (χv)|2 + |∇x,t curl (χv)|2)

+ σ3(|χv|2 + | div (χv)|2 + | curl (χv)|2)
)

e2τϕ

� C

∫

Ω

(|AR(χv)|2 + |∇AR(χv)|2)e2τϕ

� C
(

∫

Ω

(|f∗|2 + |∇f∗|2)e2τϕ +
∫

G×{T−2δ<|t|<T}

(|∂tv|2 + |v|2 + |∂t∇v|2 + |∇v|2)e2τϕ
)

in view of (5.3).
Shrinking the integration domain Ω on the left-hand side to G × (0, δ)

where χ = 1 and choosing ψ by e2τ(1−δ) < e2τϕ since 1− δ < ϕ on G× (0, δ)
and e2τϕ < e2τ(1−2δ) since ϕ < 1− 2δ on G× (T − δ, T ), we have
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e2τ(1−δ)
δ
∫

0

E(t)dt � C
(

∫

Ω

(|f∗|2 + |∇f∗|2)e2τϕ + Ce2τ(1−2δ)

×
T
∫

T−2δ

∫

G

(|∂tv|2 + |v|2 + |∂t∇v|2 + |∇v|2)
)

.

Hence

e2τ(1−δ)
δ
∫

0

E(t)dt � C
(

∫

Ω

(|f∗|2 + |∇f∗|2)e2τϕ + Ce2τ(1−2δ)

T
∫

T−2δ

E(t)dt
)

.

Choosing Φ = sup
Ω

ϕ and using (6.1), we find

e2τ(1−δ) δ

C
E(0)− Ce2τΦ||f∗||2(1)(Ω)) � Cδe2τ(1−2δ)E(0) + Ce2τΦ||f∗||2(1)(Ω)).

To eliminate the first term on the right-hand side, we choose τ (depending
on C) so large that e−2τδ < 1

C2 and, using the energy estimates (6.1), we
finally get

E(t; v) + E(t;∇v) � C||f∗||(1)(Ω).

As in the proof of Theorem 1.3,

E(t; u) + E(t;∇u) � C
(

||f∗||(1)(Ω) + E(t; u∗) + E(t;∇u∗)
)

� C
(

||f∗||(1)(Ω) + ||ARu∗||(1)(Ω) + ||u∗||( 5
2 )(Γ ) + ||∂νu∗||( 3

2 )(Γ )
)

� C
(

||f ||(1)(Ω) + ||g0||( 5
2 )(Γ ) + ||g1||( 3

2 )(Γ )
)

.

The proof is complete. ��

7 Conclusion

We believe that the Carleman estimates in Theorem 1.1 can be applied to
other important systems of mathematical physics, for example, to transver-
sally isotropic elasticity system and some anisotropic Maxwell systems. We
expect that by using an appropriate version of Theorem 1.1 (with norms in
Sobolev spaces of negative order), as in [7], one can obtain the Carleman
estimate (1.7) without terms with div u and curl u on the left-hand side and
∇ARu on the right-hand side. It is probably challenging to obtain Theorems
1.1 and 1.2 with boundary terms (i.e., without assuming that the functions
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u are zero at the boundary). However, such a generalization seems feasible
and it would be quite useful for applications. In particular, then in Theo-
rems 1.3 and 1.4, one can replace ‖f‖(1)(Ω0) + ‖g0‖( 5

2 )(Γ ) + ‖g1‖( 3
2 )(Γ ) by

‖f‖(0)(Ω0) + ‖g0‖(1)(Γ ) + ‖g1‖(0)(Γ ) and reduce the regularity of Γ to C2.
It is realistic to combine the proof of Theorem 1.1 and that of Carleman es-

timates for general anisotropic operators [9, Sect. 3.2] (including Schrödinger
type operators) to obtain such estimates with two large parameters. In par-
ticular, one has to adjust the concepts of the principal symbol and the pseu-
doconvexity condition. Possible applications would imply the uniqueness of
continuation, controllability, and inverse problems for anisotropic systems of
partial differential equations for plates and shells. Currently, there are no
theoretical results in this important area.

Next we will apply Theorems 1.1 and 1.2 to identification of elastic param-
eters (ρ, μ, λ and rjk) with arbitrary residual stress from additional boundary
data, as it was done in [12, 13] for small residual stress.
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Sharp Spectral Asymptotics for Dirac
Energy

Victor Ivrii

To the Memory of my Teacher Sergey Sobolev

Abstract I derive sharp semiclassical asymptotics of
∫

|eh(x, y, 0)|2ω(x, y) dx dy,

where eh(x, y, τ) is the Schwartz kernel of the spectral projector and ω(x, y)
is singular as x = y. I also consider asymptotics of more general expressions.

1 Introduction

In the series of papers [7, 3, 5, 4] devoted to the sharp asymptotics of the
ground state energy of heavy atoms and molecules, it was needed to calculate
Dirac correction term1 which in that approximation was equal to

I
def=

∫∫

|e(x, y, τ)|2|x− y|−1 dx dy, (1.1)

where e(x, y, τ) is the Schwartz kernel of the spectral projector E(τ) of the
(magnetic) Schrödinger operator
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1 Representing Coulomb interaction of electrons with themselves which should not to
be counted in the energy calculation and should be subtracted from the Thomas–Fermi
expression.
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A =
1
2

(
∑

j,k

Pjg
jk(x)Pk − V

)

, Pj = hDj − μVj , (1.2)

τ ≈ 0 and h → +0 (while either μ → +∞ or remains constant). Actually,
the corresponding part of these papers was originally more complicated, but
it was reduced to the problem above.

Then I  h−d−1, where d is the dimension (d = 3 in the above papers),
and it was needed to prove that I = I + O(h−d−1+δ) with I defined by the
same formula, but with e(x, y, τ) replaced by

eW
y (x, y, τ) def= (2πh)−d

∫

g(y,ξ)�V (y)+2τ

eih
−1〈x−y,ξ〉 dξ (1.3)

and with a small exponent δ > 0; for the magnetic Schrödinger operator
it was needed to prove as μ � h−δ only. The expression (1.3) is a Weyl
expression for e(x, y, τ) for operator with coefficients frozen at point y.

However, I believe that the asymptotics of the expression (1.1) or more
general one is interesting by itself and that there are sharp asymptotics. Still
my attempts to derive it were not very successful and, in [2], I made some
claims which I could not sustain at that time. So, in this paper, I just want
to bring some degree of the order to this matter.

I am going to consider a matrix h-differential operator A(x, hD) and find
asymptotics of

I
def=

∫∫

ω(x, y)e(x, y, τ)ψ2(x)e(y, x, τ)ψ1(y) dx dy (1.4)

with a matrix-valued function ω(x, y) such that

ω(x, y) def= Ω(x, y;x − y), where the function Ω is smooth
in B(0, 1)×B(0, 1)×B(Rd \ 0) and homogeneous of degree
−κ (0 < κ < d) with respect to its third argument2

(1.5)

and with smooth cut-off functions ψ1, ψ2.

The main part of asymptotics should have a magnitude of h−d−κ, and I
would like to get a remainder estimate O(h1−d−κ).

One can also consider a more general expression

Im
def=

∫∫

ω(x1, . . . , xm)e(x1, x2, τ)ψ2(x1)

× e(x2, x3, τ) · · · e(xm, x1, τ)ψm+1(x0)dx1 · · · dxm (1.6)

2 In other words, it is the Michlin–Calderon–Zygmund kernel.
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with xm+1 = x1, ψm+1
def= ψ1 etc., and

ω(x1, . . . , xm) def= Ω(x1, . . . , xm; {xj −xj+1}1�j�m), where
the function Ω is smooth in B(0, 1)m × B(Rd \ 0)m−1 and
homogeneous of degree −(m − 1)κ with respect to {xj −
xk}1�j<k�m. Moreover,

|Dβ
z D

ν
x Ω| � Cβ,ν |z1|−κ−|β1| · · · |zm|−κ−|βm|

as
∑

k

|zk|2 = 1,
∑

k

zk = 0,

where x = (x1, . . . , xm), z = (z1, . . . , zm−1), etc.

(1.7)

However, I will leave it for another paper since not of all my arguments I
was able to implement in this case.

The main part of asymptotics should have a magnitude of h−d−(m−1)κ (see
Theorem 2.6), and I would like to get a remainder estimate O(h1−d−(m−1)κ).

I am also leaving for another paper a similar, but much more delicate and
difficult analysis for the 2-dimensional magnetic Schrödinger operator(1.2)
with trajectories having many loops.

Remark 1.1. (i) To avoid the necessity to cut-off with respect to hD, one
needs to assume that its symbol satisfies

|a(x, ξ)|−1 � C|ξ|−m as |ξ| � C0 (1.8)

as a ∈ Ψm (one can weaken this condition, but I leave it to the reader).

(ii) One needs to assume that a is semibounded from below which under (1.8)
is equivalent to

〈a(x, ξ)v, v〉 � c−1|v|2 as |ξ| � C0; (1.9)

otherwise, instead of E(τ), one should consider E(τ1, τ2) def= E(τ2) − E(τ1);
I leave it to the reader as well.

The problem studied here is not exactly microlocal due to singular kernel
ω. However microlocal methods (see f.e. [6]) play a crucial role. Microlo-
cal methods telling us where and in what direction distribution belongs to
Sobolev space Hs. The other application of Sobolev spaces is more explicit
since we need to apply imbedding theorems just to estimate properly contri-
bution of zone near diagonal x = y.

This paper consist of three sections. In Sect. 2, I derive asymptotics with
the sharp remainder estimate, but with the implicit Tauberian approximation
for e(x, y, 0). In Sect. 3, I replace it by the expression (1.3) without deterio-
rating the remainder estimate for scalar operators under mild nondegeneracy
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condition (Theorem 3.19) and for certain matrix operators (Theorem 3.20(i))
and with some not sharp remainder estimates for other matrix operators
(Theorem 3.20(ii)). I just mention that for larger κ we need less restrictive
conditions to operator.

2 Estimates

2.1 Special case

Let us assume first that ω = 1 but relax conditions to ψ1, . . . , ψm, assuming
only that ψ1, . . . , ψm ∈ L∞. This is definitely not the case I am interested in,
but one needs to make few clarifications first. Then

Im
def= TrE(τ)ψ2E(τ)ψ3E(τ) · · ·E(τ)ψm+1 (2.1)

containing m factors E(τ).
Under the condition (1.9), it is known (see, for example, [6]) that if the

L∞ norms and diameters of supports of ψ and ψ1 are bounded, then

|||ψE(τ)ψ1|||1 � Ch−d as |τ | � c, (2.2)

where ||| · |||∞ and ||| · |||1 denote the operator and trace norms respectively.
Then, since the operator norm of E(τ) does not exceed 1, I conclude that
|Im| � ch−d. So,

If ψj ∈ L∞ and Im is given by (2.1), then |Im| � Ch−d. (2.3)

Further, let us assume that

a(x, ξ) is microhyperbolic on energy level 0. (2.4)

Then as (2.4) is fulfilled on supports of ψ, ψ1, it is known (see, for example,
[6]) that

|||ψ
(

E(τ)−E(τ ′)
)

ψ1||| � C(|τ − τ ′|+ hT−1)h−d as |τ | � ε1, |τ ′| � c. (2.5)

Here and for a while, T  1, but I want to keep a track of it.
Since this property holds under wider assumptions than microhyperbolic-

ity, I will assume so far only that (2.5) holds.
Then
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∣

∣

∣Tr′
(

(

E(τ) − E(τ ′)
)

ψ2E(τ2)ψ3E(τ3) · · ·E(τm)ψm+1

)∣

∣

∣ (2.6)

does not exceed the right-hand expression of (2.5) either, as |τ | � ε1 and
therefore, due to the standard Tauberian arguments (second part; see, for
example, [6]) the following inequality holds:

∣

∣

∣Tr′
(

(

E(0)− h−1

0
∫

−∞

Ft→h−1τ

(

χT (t)U(t)
)

dτ
)

ψ2E(τ2)

× ψ3E(τ3) · · ·E(τm)ψm+1

)

∣

∣

∣ � CT−1h1−d, (2.7)

where I use my standard notation χ and χ in the future and χ(t) = χ(t/T )
etc. (see, for example, [1]). Here and below, Tr′ is the “scalar trace” of an
operator and does not include taking the matrix trace tr.

Here and below, U(t) = eih
−1tA is the propagator of A and u(x, y, t) is its

Schwartz’ kernel.
So, with O(T−1h1−d) error one could replace one copy of E(0) in Im by

its standard implicit Tauberian approximation

h−1

0
∫

−∞

Ft→h−1τ

(

χT (t)U(t)
)

dτ (2.8)

and in by the virtues of the same arguments, I can do it with another copy
of E(0). Therefore,

Proposition 2.1. Under the condition (2.5), with an error O(T−1h1−d) Im
is equal to

h−mTr′
∫

τ∈R−,m

Ft→h−1τ

(

χT (t1)U(t1)ψ2χT (t2)U(t2)ψ3 · · ·U(tm)ψm+1)
)

dτ

(2.9)
with t = (t1, . . . , tm), τ = (τ1, . . . , τm).

Note that here one can take any T ∈ [Ch1−δ, c] (but then the error depends
on T ). Further, note that as dist(suppψj , suppψj+1) � (c0 + ε)T , where here
and below c0 is the upper bound of the propagation speed on energy level
0 and xm+1 def= x1, the expression (2.9) as m = 2 or a similar expression as
m � 3 become negligible, and I arrive at

Corollary 2.2.If, in the frames of Proposition 2.1, dist(suppψj , suppψj+1)�
(c0 + ε)T for some j = 1, . . . ,m, then |Im| does not exceed CT−1h1−d.
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2.2 Smooth case

The next step is to assume that ω is a smooth function. Without any loss of
generality, one can assume that ω is also compactly supported (since ψ, ψ1

are). Then from

ω(x1, . . . , xm) =
∫

ω(y1, . . . , ym)δ(y1 − x1, . . . , ym − xm) dy

=
∫

ω′(y1, . . . , ym)θ(y1 − x1) · · · θ(ym − xm) dy1 · · · dym (2.10)

one arrives at

Im =
∫

ω′(y1, . . . , ym)J2(y1, . . . , ym) dy1 · · · dym (2.11)

with J2(y1, . . . , ym) defined by ω = 1 and ψj(x) redefined as ψj(x)θ(yj − x),
where here and below θ(x) = θ(x1) · · · θ(xd). Then I immediately arrive at

Proposition 2.3. Let ω and ψ1, . . . , ψm be smooth functions, and let the
condition (1.9) be fulfilled. Then |Im| � Ch−d.

Remark 2.4. As m = 2 and ω, ψ1, ψ2 ∈ L∞ |I2| � Ch−d obviously (it
follows from the estimate |||ψEψ|||2 � Ch−d/2, where ||| · |||2 is the Hilbert–
Schmidt norm). Can one prove the similar result for m � 3?

Proposition 2.5. Let ω and ψ1, . . . , ψm be smooth functions, and let the
conditions (1.9) and (2.5) be fulfilled. Then

(i) with an error O(T−1h1−d) Im is equal to

Im = h−m
∫ ∫

τ∈R−,m

ω(x1, . . . , xm)Ft→h−1τ

(

χT (t1)u(x1, x2, t1)ψ2(x2)

× χT (t2)u(x2, x3, t2)ψ3(x3) · · ·U(tm)ψm+1(xm+1)
)

dτ dx1 · · · dxm (2.12)

with xm+1 def= x1.

(ii) Further, if dist(suppψj , suppψj+1) � (c0 + ε)T for some j = 1, . . . ,m,
then |Im| does not exceed CT−1h1−d, where so far T  1.

2.3 Singular homogeneous case

Theorem 2.6. Let the conditions (1.9) and (1.7) be fulfilled. Then |Im| �
Ch−d−(m−1)κ.
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Proof. Let us replace Ω(x, z) by Ω(x, z)β(z1/γ1) · · ·β(zm/γm), where γj � h
and β, β are functions (on R

d) similar to χ, χ respectively. Then, similarly to
the analysis of the smooth case, one can estimate the contribution of such a
partition element to Im by

Ch−d(γ1 · · · γm)−1(γ1 + · · ·+ γm)1−κ (2.13)

and the summation with respect to γj � γ = h results in the value of this
expression as γj = γ and the total estimate becomes what is claimed.

However, one needs to consider the other partition elements when some of
β(zj/γj) are replaced by β(zj/γ). So we get “sandwiches” consisting of the
factors

e(xk, xk+1, τ)β(zk+1/γk+1) · · ·β(zj/γj)e(xj , xj+1, τ)

with j � k and in between them the factors β(zk/γ).
Let J be the set of indices appearing in β(zk/γ) (for a given type of a

“sandwich”). One can see easily that the contribution of each “sandwich” to
Im does not exceed

Ch−dr
∏

j /∈J
γ−κ
j ×

(

∫

{|z|�γ}

|z|−κ dz
)r−1

 Ch−dr
∏

j /∈J
γ−κ
j × γ(d−κ)(r−1),

where r is the number of factors of each type. Then, after the summation
with respect to γj � γ, one gets the same expression with γj = γ, i.e.,
Ch−drγκ(m−r)+(d−κ)(r−1) = Ch−drγ−κ(m−1)+d(r−1) which is exactly what
we want as γ  h. ��

It immediately follows from the proof of a stronger condition

Proposition 2.7. Let the conditions (1.9) and (1.7) be fulfilled. Then replac-
ing Ω(x, z) by Ω(x, z)β(z1/γ) · · ·β(zm/γ) results in the error not exceeding

Ch−d−(m−2)κγ−κ. (2.14)

Now, let us assume, instead of the condition (2.4) or (2.5), that

a(x, ξ) is microhyperbolic on the energy level 0 and micro-
hyperbolicity directions are (at each point) �ξ · ∂ξ 3 with
�ξ = �ξ(x, ξ).

(2.15)

Proposition 2.8. Let the conditions (1.9), (1.7), and (2.15) be fulfilled. Then
replacing Ω(x, z) by Ω(x, z)β(z1/γ) · · ·β(zm/γ) results in the error not ex-
ceeding

Ch1−d−(m−2)κγ−1−κ. (2.16)

3 So, 
x = 0.
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This is equivalent to taking T  γ in (2.8) and plugging the Schwartz kernel
of it instead of e(x, y, 0) in the definition of Im.

Proof. Proof follows from the combined arguments of the proofs of Theorem
2.6 and Proposition 2.1; in this case, one needs to consider only “sandwiches”
containing at least one factor β(xj/γj) with γj � γ which accounts for a factor
h/γj and the summation with respect to partition results in an extra factor
h/γ. ��

So, one needs to study the expression (2.12) with some T = T ∗; I remind
that the remainder estimate contains the factor T ∗−1. One can decompose
χT∗(t) into the sum of χT (t) and χT (t) with T running between T and T ∗

and also one can take T = Ch. Then the expression (2.12) becomes the sum
of similar expressions with χT (t) (with T = T ∗) replaced by φjTj (t) where
either φj = χ and T � Tj � T ∗ or φj = χ and Tj = T .

In this expression, as φj = χ one can replace
0
∫

−∞
(. . . ) dτ by (. . . )|τ=0

simultaneously replacing h−1χT (t) by it−1χT (t) = T−1φT (t) with φ(t) =
it−1χ(t); so we get a modified expression (2.12) with r factors χT (tj) and
τj snapped to 0 for j ∈ J , r = #J and the integration over R

− (m−r) and
(m − r) factors φT (tk), k /∈ J ; furthermore, the factor h−m is replaced by
h−r∏

k/∈J T−1
k .

Proposition 2.9. Let the conditions (1.9) and (2.15) be fulfilled, and let ω
be a smooth function,

ω = O
(

(|x1 − x2|+ · · ·+ |xm − x1|)K
)

. (2.17)

Then Im = O(h1−d) as K > 1 and Im = O(h1−d| log h|) as K = 1.

Proof. Proof follows from the combined arguments of the proofs of Theorem
2.6 and Proposition 2.1 like in Proposition 2.8. Here, however, the main
contribution (as K � 1) is delivered by the zone {|x1−x2|+ · · ·+ |xm−x1| 
1}. ��

One can consider certain generalizations, but I will do it later.

3 Calculations

Now, our purpose is to go from the implicit Tauberian expression (2.12) to a
more explicit one.
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3.1 Constant coefficients case

Let us first consider the case A(x, ξ) = A(ξ). In this case,

e(x, y, τ) = (2πh)−d
∫

eih
−1〈x−y,ξ〉E(ξ) dξ, (3.1)

where E(ξ, τ) is the matrix projector corresponding to A(ξ). Then

Im = (2πh)−dm
∫ ∫

ω(x1, . . . , xm)E(ξ1, 0) · · ·E(ξm, 0)

× eih
−1
(

〈x1−x2,ξ1〉+〈x2−x3,ξ2〉+···+〈xm−x1,ξm〉
)

dx1 · · · dxm dξ1 · · · dξm. (3.2)

From now and until the end of the paper I am assuming
that m = 2.

(3.3)

Without any loss of generality, one can assume that either ω(x, y) is of the
form

ω(x, y) = Ω
(1

2
(x + y), x− y

)

. (3.4)

or it is of the same singular type as before, but multiplied by (xk − yk).
However, in the latter case (under microhyperbolicity condition), one can
apply a Tauberian approximation for e(x, y, τ) equal 0 with the remainder
estimate O(h1−d|x− y|−1) (in the same trace class as before) which leads to
I ≈ 0 with the sought remainder estimate O(h1−d−κ).

In the former case (3.4), we get

I
def= I2 =

∫

J (x) dx, (3.5)

where

J (x) = 2(2πh)−2d

∫∫∫

Ω(x, z)E(ξ, 0)E(η, 0)eih
−1〈z,ξ−η〉 dzdξdη

= G(x)h−d−κ, (3.6)

with

G(x) =
∫∫

̂Ω(x, ξ − η)E(ξ, 0)E(η, 0) dξdη, (3.7)

and
̂Ω(x, ζ) = 2(2π)−2d

∫

Ω(x, z)ei〈z,ζ〉 dz. (3.8)
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One always can take Ω having compact support with respect to x (since we
had originally cutoffs ψ1(x1), . . . , ψm(xm).

Remark 3.1. (i) One can easily generalize (3.5)–(3.8) to m > 2.
(ii) The integral (3.8) converges as |z| � 1 since κ < d. On the other hand,
it defines a distribution with respect to ζ which is positively homogeneous of
degree κ − d and also is smooth as ζ �= 0; thus, ̂Ω ∈ L1

loc and (3.7) is well
defined. However, generalization to m > 2 is not that easy.

3.2 General microhyperbolic case

Note first that, due to the microhyperbolicity condition (2.15), one should
take T  γ as m = 2 4. Otherwise, as T ∈ [Ch1−δ, T ∗], T ∗ is a small constant,
the contribution of [T/2, T ]∪ [−T,−T/2] would be negligible.

To calculate u, let us apply the successive approximation method on the
time interval [−T, T ] with h1−δ � T . Then, plugging the successive approxi-
mation into any copy on that interval, we arrive at an error in u in the trace
norm equal to O(h−d(T 2/h)n), where n is the number of the first dropped
term (starting from 0). This leads to the error in I O

(

h−d−κ(T 2/h)nγ−κ)

as T � γ. Since, under the microhyperbolicity assumption (2.15), we need
to consider only T  γ, the error is O(h−d(T 2/h)nT−κ). However, if we just
take u = 0, then we get an error O(h1−dT−1−κ).

Finding T from the equation

h−d(T 2/h)n = h1−dT−1,

we get
T = h(n+1)/(2n+1) (3.9)

(which is greater than h1−δ with δ > 0) and this leads to an error

O
(

h1−d−(n+1)(κ+1)/(2n+1)
)

. (3.10)

Proposition 3.2. Let the conditions (1.9), (1.7), and (2.15) be fulfilled. Then

(i) Using successive approximation as |t| � T given by (3.2) and taking u = 0
otherwise, we get I with an error given by (3.10).

(ii) In particular, this is the sharp remainder estimate O(h1−d−κ) as

κ � (n + 1)/n; (3.11)

in particular, as κ � 2, one can skip all perturbation terms and get the same
answer (3.4)–(3.7).

4 And Tj � |xj − xj+1| in the general case.
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On the other hand, if we cannot skip some term, then this is given by the
same formulas (3.4)–(3.7) as before, but with the factor h−d−κ+s instead of
h−d−κ and with Ω replaced by Ωs positively homogeneous of degree −κ + s
(provided that these formulas have sense!). Then, as long as s < κ, one can
see that these terms are less than the remainder estimate and we arrive at

Proposition 3.3. Let the conditions (1.9), (1.7), and (2.15) be fulfilled. Then

(i) As κ > 1, formulas (3.4)–(3.7) provide an answer with the remainder
estimate O(h1−d−κ).

(ii) As κ � 1, formulas (3.4)–(3.7) provide an answer with the remainder
estimate O(h

1
2 (1+κ)−d−κ−δ) with an arbitrarily small exponent δ > 0.

3.3 Scalar case

Let us completely analyze the case of a scalar operator A.

3.3.1 Assume first that ω = 1 and ψ1, ψ2 are smooth functions. Then one
can rewrite (2.9) with m = 2

h−2Tr
∫

(τ1,τ2)∈R−,2

Ft1→h−1τ1,t2→h−1τ2

(

χT (t1)χT (t2)ψ1U(t1)ψ2U(t2)
)

dτ

(3.12)
with T = T ∗ which is the largest value for which the remainder estimate
O(T−1h1−d) for the standard asymptotics was derived; here, T ∗  1.

If we replace some copies of χT (tk) by χTk
(tk) with Ch � Tk � T ∗, then

one can replace also the operator h−1

0
∫

−∞

(

. . .
)

dτk by T−1
(

. . .
)

|τk=0 and χ

by it−1χ.
If we do it with both k = 1, 2, then we get a term O(h−d) (the better

estimate is actually possible) and the summation with respect to all partitions
with respect to T1, T2 results in O(h−d| log h|2) which differs from the proper
estimate by | log h|2 factor. If we replace some copies of χT (tk) by χh(tk),
then we do not make a transformation with respect to these factors, but we
gain a factor h due to the size of the support. So, after the summation with
respect to partition, we arrive at estimate O(h−d| log h|2−r) for I, where r is
the number of χh(tk) factors.

On the other hand, the expression (3.12) is equal to

h−2Tr
∫

(τ1,τ2)∈R−,2

Ft1→h−1τ1,t2→h−1τ2

(

χT (t1)χT (t2)ψ1ψ2,t1U(t1 + t2))
)

dτ

(3.13)
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with ψt = U(t)ψU(−t).
Applying a standard approach, we arrive at

I ∼
∑

n�0

κnh
−d+n, (3.14)

where I = I2 is defined by (2.12).
Let us replace in (3.13) ψ2,t1 by ψ2. Plugging t1,2 = 1

2 t± z, τ1,2 = τ ± τ ′,
we arrive at

h−1Tr

0
∫

∞

(

∫

R

ρT (t, τ)ψ1ψ2U(t)e−ih
−1tτ dt

)

dτ, (3.15)

where ρT (t, τ) = ρ(t/T, τ), τ < 0,

ρ(t, τ) = −π−1h−1

∫

R

χT (
1
2
t + z)χT (

1
2
t− z)z−1 sin(h−1Tzτ) dz (3.16)

is C∞
0 ([−2, 2]) and one can prove easily that

|∂nt
(

ρ(t, τ)∓ χ2(t/2)
)

| � Cnm(1 + |τ |Th−1)−m ∀m,n ∀τ ≶ 0. (3.17)

Then, due to (3.17), only the zone {|τ | � h1−δ} gives a nonnegligible
contribution to this error and due to the microhyperbolicity condition there
|Trψ1ψ2U(t)| � Ch−d(1 + |t|h−1)−m which, together with (3.17), implies

Under the microhyperbolicity condition (2.4), the expres-
sion (3.15) is equal modulo O(h1−d) to the same expression
with ρ replaced by χ2(t/2).

(3.18)

On the other hand, if we replace ψ2,t1 by ψ2,t1 −ψ2 = t1ψ
′
2,t1 , then we can

apply the same transformation as before just getting rid of one factor h−1

and the integration with respect to τ1, which simply snaps to 0, resulting in
expression, similar to (3.15), but with ρψ2 replaced by

ρ′(t, τ, x) = (2π)−1i

∫

R

χT (z)χT (t− z)eih
−1τzψ′

2,z dz (3.19)

which satisfies an inequality similar to (3.17)

|∂nt ρ(t, τ)| � Cnm(1 + |τ |Th−1)−m ∀m,n ∀τ ≶ 0. (3.20)

and therefore,
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Under the microhyperbolicity condition (2.4), this new
(3.15)-type expression is O(h1−d). (3.21)

So, we are left with the expression (3.15) with ρ(t) = χ2(t/2), but due to
the standard theory, we get modulo O(h1−d) the expression

Trψ1ψ2E(0) ≡ (2πh)−d
∫∫

{a(x,ξ)<0}
ψ1ψ2 dx dξ. (3.22)

So, I is given by (3.22) modulo O(h1−d) and therefore,

κ0 = (2π)−d
∫ ∫∫

{a(x,ξ)<0}
ψ1ψ2 dx dξ in (3.14). (3.23)

3.3.2 Then, in the general smooth case, we get

Proposition 3.4. Let ω and ψ1, . . . , ψm be smooth functions, and let (1.9)
and the microhyperbolicity condition (2.4) be fulfilled. Then with an error
O(T−1h1−d), where T  1 here, the decomposition (3.14) holds with

κ0 = (2π)−d
∫∫

{a(x,ξ)<0}
ω(x, x)ψ1(x)ψ2(x) dx dξ. (3.24)

Proof. The proof follows from the standard decomposition (2.10)–(2.11). ��

3.3.3 Consider now the case of singular homogeneous ω. First, let us consider
Iγ defined by (2.12) with ω = 1 and ψ1, ψ2 replaced by ψ1,γ , ψ2,γ which are
some smooth functions scaled at some point z with the scaling parameter
γ ∈ (h1−δ, hδ). To have the microhyperbolicity condition sustain scaling, we
replace it by (2.15). Then (3.14) implies

I′ ∼
∑

n,m�0

κnmh−d+nγm−n+d (3.25)

and, obviously,

(2π)−d
∫∫

{a(x,ξ)<0}
ψ1,γ(x)ψ2,γ(x) dx dξ ∼

∑

m�0

κ
′
mγm+d. (3.26)

One can see easily that, in (3.25), the terms with m = 0 would be the same
for the operator A0

z = a0(z, hD), where a0(x, ξ) is the principal symbol of
A; this z is not necessarily the original one, but the distance between them
should not exceed cγ; similarly, in (3.26), the term with m = 0 coincides with
the left-hand expression with a(x, ξ) replaced by a(z, ξ).

What is more, under the condition (2.15), the integration with respect to
x is not needed, so all these results would hold (without factor γd in the
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decomposition and estimates) without it; thus one can take z = x (or y, does
not matter).

Thus, we arrive at

Proposition 3.5. Let I ′ be defined by (2.12) with ω = 1 and ψ1, ψ2 replaced
by ψ1,γ , ψ2,γ which are the same smooth functions scaled at some point z with
the parameter γ ∈ (h1−δ, hδ). Let I0′ be defined the same way, but with U(t)
replaced by U0(t) = eih

−1tA0
, where A0 = a(z, hD) and later z is set to x.

Then I ′ − I0′
m = O(h1−dγd)

Now, we can calculate I in the scalar case:

Proposition 3.6. In the frames of Proposition 3.5, as ω satisfies (2.7) and
κ > 0 I − I0 = O(h1−d−κ), where I0 is defined for constant-coefficient
operator obtained by freezing coefficients of A at point x (or y, does not
matter).

Proof. Consider three zones: {|x− y| � γ1} with γ1  hδ, {γ � |x− y| � γ1}
with γ0  h1−δ, and {|x − y| � γ}. Then the contribution of the first zone
to the reminder for I and I0 does not exceed Ch1−dγ−1−κ

1 = O(h1−d−κ)
(while the main parts are 0); in virtue of Proposition 3.5 and decomposition
of Subsect. 2.2, the contribution of the second zone to I−I0 does not exceed
O(h1−dγ−κ) = o(h1−d−κ).

In the third zone, one can apply the method of successive approximations
resulting in

I − I0 ∼ h−d
∑

m+n+k�1

κ
′′
mnkh

−d+n−m+k−κγ2m−n.

However, since a final answer does not depend on γ, only the terms with
2m = n are posed to survive just resulting in

(

κ + o(1)
)

h−d+1−κ. ��

Summarizing the results of Sect. 2, Proposition 3.6, and formulas (3.5)–
(3.8), we arrive at

Theorem 3.7. Let A be a scalar operator satisfying the conditions (1.9) and
(2.15). Then

I =
∫

J (x)ψ1(x)ψ2(x) dx + O(h1−d−κ), (3.27)

where

J (x) = 2(2πh)−2d

∫∫∫

E(x, ξ, 0)Ω(x, z)E(x, η, 0)eih
−1〈z,ξ−η〉 dzdξdη

= 2(2πh)−2d

∫∫∫

{a(x,ξ)<0, a(x,η)<0}
Ω(x, z)eih

−1〈z,ξ−η〉 dzdξdη

= G(x)h−d−κ, (3.28)

with
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G(x) =
∫∫

E(x, ξ, 0) ̂Ω(x, ξ − η)E(x, η, 0) dξdη

=
∫∫

{a(x,ξ)<0, a(x,η)<0}
̂Ω(x, ξ − η) dξdη, (3.29)

and ̂Ω is defined by (3.8).

Remark 3.8. (i) Alternatively, one can prove this theorem using oscillatory
integral representation of u(x, y, t) as |t| � T = ε.

(ii) Alternatively, one can replace one or both copies of x in E(x, ., .) or in
a(x, 0) by y.

Remark 3.9. We refer to formulas (3.27)–(3.29), (3.8) as to the standard
Weyl expression even in the matrix case. However, in this case, the third
parts of (3.27),(3.28) should be skipped.

3.4 Schrödinger operator

Now, my goal is to weaken and eventually to get rid off the microhyperbolicity
condition for scalar operators. I start from the Schrödinger operator.

For the Schrödinger operator the condition of microhyperbolicity (2.15)
means that

V � ε0. (3.30)

If this condition is violated, let us introduce scaling functions ρ(x), γ(x) in
the usual way γ = ε|V | and ρ = γ1/2.

Then, the contribution of B(x, γ(x))2 to the remainder does not exceed

C(h/ργ)1−d−κγ−κ  Ch1−d−κρd−1−κγd−1 (3.31)

with ρ = ρ(x) and γ = γ(x) and then the contribution of the zone
{

(x, y) : |x− y| � εγ(x)
}

(3.32)

(where, automatically, γ(x)  γ(y)) to the remainder does not exceed

Ch1−d−κ
∫

ρd−1+κγ−1 dx (3.33)

and with ρ = γ1/2 here it becomes

Ch1−d−κ
∫

γ(d−3+κ)/2 dx; (3.34)

obviously, it is O(h1−d−κ) provided that either d + κ � 3 or
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|V |+ |∇V | � ε0. (3.35)

and d + κ > 1 (which is surely the case).

Remark 3.10. (i) Note that (3.35) is the microhyperbolicity condition (2.4).

(ii) Actually, one should take ργ � Ch and thus to add Ch1/3 and Ch2/3 to
ρ,γ respectively (but it does not affect our conclusion due to the standard
fact that if ργ  h, then heff  1) and the condition (3.35) is not needed.

Consider now the complement of the zone (3.32). Let us redefine there γ(x)
as γ(x, y) = 1

2 |x− y| and, in this zone, the condition (3.35) is not needed as
one can see easily after rescaling B(x, γ(x, y)) to B(0, 1) due to Proposition
2.5.

Therefore, as γ � γ(x) the contribution of B(x, γ)2 \ {zone (3.32)} to the
remainder does not exceed the same expression (3.31) with ρ = γ1/2. Then
the contribution of the complement of the zone (3.32) to the remainder does
not exceed

Ch1−d−κ
∫∫

{|x−y|�εmax(γ(x),γ(y))}
|x− y|(d−1+κ)/2−1−d dx dy. (3.36)

One can see easily that the expression (3.36) is O(h1−d−κ) as d + κ > 3 (so
this case is already covered).

Further, the expression (3.36) does not exceed the expression (3.34) with
γ = γ(x) and the expression

Ch1−d−κ
∫

(| log γ(x)|+ 1) dx (3.37)

as d + κ < 3 and d + κ = 3 respectively and both these expressions are
O(h1−d−κ) under the condition (3.35).

Again, we get O(h1−d−κ) provided that either d + κ > 3 or the condition
(3.35) is fulfilled. So, we arrive at

Proposition 3.11. Consider the Schrödinger operator. Let either d + κ >
3 or the condition (3.35) be fulfilled. Then the standard Weyl asymptotics
(3.27)–(3.29), (3.8) holds with the remainder estimate O(h1−d−κ).

This completely covers the case d � 3. Furthermore, after Proposition 3.11
is proved, we can introduce scaling functions γ = ρ = ε(|V | + |∇V |2)1/2 +
Ch1/2 and then, applying the same arguments, we arrive at

Proposition 3.12. Consider the Schrödinger operator. Let either d + κ > 2
or the condition

|V |+ |∇V |+ |∇2V | � ε (3.38)

be fulfilled. Then the standard Weyl asymptotics (3.27)–(3.29), (3.8) holds
with the remainder estimate O(h1−d−κ).
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This completely covers the case d = 2. As d = 1 we get the required
remainder estimate under the condition (3.38).

Now, combining this with the arguments of the proof of Theorem 4.4.9 of
[6], we get5

Proposition 3.13. Consider the Schrödinger operator with d = 1, κ >
0. Then the standard Weyl asymptotics (3.27)–(3.29), (3.8) holds with the
remainder estimate O(h1−d−κ).

Remark 3.14. Actually, all above results hold as κ = 0 as well with the
singular exception of d = 1 when the remainder estimate O(1) is recovered
under the condition

∑

|β|�K
|∇βxV | � ε; (3.39)

without it the remainder estimate is O(h−δ) with arbitrarily small δ > 0.

3.5 Scalar case. II

3.5.1 Let us consider general scalar operators.

Remark 3.15. (i) Actually, instead of the condition (1.9), one can make
a cut-off with respect to ξ replacing functions ψj(x) by pseudodifferential
operators ψj(x, hD) with smooth compactly supported symbols;

(ii) Alternatively, we can replace E(0) by E(τ, τ ′) = E(τ) − E(τ ′) with con-
ditions satisfied for a− τ and a− τ ′ instead of a.

(iii) Alternatively, we can replace E(0) by

E′(τ) =
∫

R

E(0, τ ′)ϕ(τ ′) dτ ′ (3.40)

with smooth function ϕ s.t.
∫

R

ϕ(τ ′) dτ ′ = 1.

In all these cases, obvious modifications of the final formulas are needed.

Now, we can introduce scaling functions

γ(x, ξ) = ε
(

|∇ξa|2 + |a|
)

+ Ch2/3, ρ(x, ξ) = γ1/2(x, ξ) (3.41)

and repeat arguments of the previous subsection; then the expression (3.33)
will be replaced by Ch1−d−κM with

M =
∫

ρκ−1γ−1 dxdξ 
∫

(

|∇ξa|2 + |a|
)(κ−3)/2

dxdξ (3.42)

5 I am leaving easy details to the reader; see also the proof of Theorem 3.19.
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(in the zone {ργ � Ch}). Therefore, we arrive at the remainder estimate
O(h1−d−κ) provided that M = O(1) as now the integral in M is taken over
B(0, 1).

This is definitely the case as κ � 3. Assume now that the microhyperbol-
icity condition (2.4) is fulfilled. Then M = O(1) as κ > 1; otherwise, this
condition becomes

∫

Σ

|∇ξa|κ−1 dμ <∞ as 0 < κ < 1,
∫

Σ

| log |∇ξa|| dμ <∞ (3.43)

with Σ = {a(x, ξ) = 0} and dμ = dxdξ : da measure on Σ.
Thus, we arrive at the following generalization of Proposition 3.11:

Proposition 3.16. Let A be a scalar operator satisfying the condition (1.9).
Assume that the uniform version of the condition6

a = ∇ξa = 0 =⇒ rank Hessξξa � r (3.44)r

is fulfilled. Then

(i) As r + κ > 3 the standard Weyl asymptotics (3.27)–(3.29), (3.8) holds
with the remainder estimate O(h1−d−κ);

(ii) Under the condition (2.4), as r + κ > 1 the standard Weyl asymptotics
(3.27)–(3.29), (3.8) holds with the remainder estimate O(h1−d−κ).

Proof. In contrast to standard asymptotics, we need to consider not points
(x, ξ), but pairs (x, ξ; y, η) and the pure standard arguments work in the zones

{

(x, ξ; y, η) : |x− y| � εγ(x, ξ), |ξ − η| � ερ(x, ξ)
}

(3.45)

where also γ(y, η)  γ(x, ξ) and ρ(y, η)  ρ(x, ξ). Analysis in the complimen-
tary zone I postpone until the proof of Theorem 3.19, where it will be done
in more general settings. ��

Now, introducing scaling functions

γ(x, ξ) = ε
(

|∇x,ξa|2 + |a|
)1/2 + Ch1/2, ρ(x, ξ) = γ(x, ξ) (3.46)

and repeating the same arguments we arrive at the following generalization
of Proposition 3.12:

Proposition 3.17. Let A be a scalar operator satisfying the condition (1.9).
Assume that the uniform version of the condition (3.44)r is fulfilled. Then as
r + κ > 2, the standard Weyl asymptotics (3.27)–(3.29), (3.8) holds with the
remainder estimate O(h1−d−κ).

6 I.e., |a| + |∇ξa| � ε implies that Hessξξa has r eigenvalues which absolute values are
greater than ε.
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Again, combining this with the arguments of Theorem 4.4.9 of [6] we arrive
at the following generalization of Proposition 3.12.

Proposition 3.18. Let A be a scalar operator satisfying the conditions (1.9)
and (3.44)1, and let κ > 0. Then the standard Weyl asymptotics (3.27)–(3.29),
(3.8) holds with the remainder estimate O(h1−d−κ).

3.5.2 Now, we can prove our main result for scalar operators:

Theorem 3.19. Consider scalar operator. Let the conditions (1.9) and
∑

0�k�n
|∇kξa| � ε0 (3.47)n

with some n be fulfilled. Let ω satisfy (2.7) and κ > 0. Then the stan-
dard Weyl asymptotics (3.27)–(3.29), (3.8) holds with the remainder estimate
O(h1−d−κ).

Proof. Part I. In this part of the proof, we consider at each step only the
zone (3.45), where γ will be defined in different ways later. The treatment of
the complementary zone will be described in Part II.

So, we proved the statement of the theorem under the condition (3.44)1
which is equivalent to (3.47)2.

Let us apply an induction with respect to n. Assume that, under the con-
dition (3.47)n, the required estimate is proved .

In the general case (without the condition (3.47)n), we can introduce scal-
ing functions in the manner similar to (3.41):

γ(x, ξ) = ε
(

∑

0�k�n
|∇kξa|N/(n−k+1)

)(n+1)/N

+ Ch(n+1)/(n+2),

ρ(x, ξ) = γ1/(n+1)(x, ξ) (3.48)n

with N = (n + 1)!.
Therefore, under assumption of induction, we get again the remainder

estimate Ch1−d+κM with M given by (3.42), where this time the right-hand
expression becomes

M =
∫

γ(κ−n−2)/(n+1) dxdξ; (3.49)n

under the condition (2.4) this expression becomes

M 
∫

Σ

γ(κ−1)/(n+1) dμ 
∫

Σ

(
∑

1�k�n
|∇kξa|1/(n−k+1)

)κ−1
dμ (3.50)n
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which is O(1) under assumption |∇n+1
ξ a| � ε0 (as lower order derivatives

with respect to ξ are close to 0). This is exactly the condition (3.47)n+1.
So, now we have a proper estimate under the condition (3.47)n+1 instead

of (3.47)n, but now we also need the condition (2.4).
Without the condition (2.4), we would need something different; for ex-

ample, ignoring the integration with respect to x, one should assume that
rank(∇n+1

ξ a) + κ > n + 2, where the rank of multilinear symmetric m-form
G is d − dim KerG; KerG = {x : G(x, x2, . . . , xm) = 0 ∀x2, . . . , xm}. This is
rather unusable.

Instead, I want to weaken the condition (2.4), replacing it by
∑

2�j�n+1, l:m+j:(n+1)�1

|∇lx∇
j
ξ| � ε0 (3.51)n+1,m

for some m > 0 which is not necessarily an integer. Obviously in our assump-
tions (2.4) coincides with (3.51)n+1,1.

Let us run a kind of nested induction. So, let us assume that, under the
conditions (3.47)n+1 and (3.51)n+1,m, the remainder estimate O(h1−d−κ) is
proved.

Now, we can go to something similar (3.46):

γ(x, ξ) = ε
(

∑

k,l:k:n+l:m�1

|∇kξ∇lxa|Nskl

)1/N

+ γ,

γ = Ch(n+1)/(m+n+2), ρ(x, ξ) = γ(m+1)/(n+1)(x, ξ),

skl =
n + 1

(m + 1)(n + 1)− (m + 1)k − (n + 1)l
.

(3.52)n,m

Then we recover the remainder estimate Ch1−d−κM with M defined by (3.42)
which is now

M 
∫

γ−1+(m+1)(κ−1)/(n+1) dxdξ 
∫

ρ−(n+1)/(m+1)+(κ−1) dxdξ.

(3.53)nm
Under the condition (3.47)n+1, we can assume without any loss of generality
that

a(x, ξ) =
∑

0�j�n+1

bj(x, ξ′)ξ
n+1−j
1 , b0 = 1, b1 = 0; (3.54)

we can always reach it by change of coordinates and multiplication of A by
an appropriate positive pseudo-differential factor. Then

ρ  |ξ1|+ ρ̃, ρ̃ = γ̃(x, ξ′)(m+1)/(n+1),

γ̃ =
∑

j,k,l:(k+j):n+(l:m)�1

|∇kξ′∇lxbj |s(k+j)l + γ.
(3.55)
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Then

M 
∫

ρ̃−(n+1)/(m+1)+κ dxdξ′ 
∫

γ̃−1+(m+1)κ/(n+1) dxdξ′ (3.56)nm

(with an extra logarithmic factor as the power is 0). Then M = O(1) as

(m + 1)κ/(n + 1) > 1. (3.57)

Moreover, M = O(1) provided that there exists (j, k, l) with |∇kξ′∇lxbj | �
ε0 and either k � 1, (k + j − 1) : n + l : m � 1, sk+j−1,l < 1 or l � 1,
(k + j) : n + (l − 1) : m � 1, sk+j,l−1 < 1.

Therefore, one can derive easily

If the remainder estimate O(h1−d−κ) holds under the con-
dition (3.51)n+1,m′ for every m′ < m, then it also holds
under the condition (3.51)n+1,m.

(3.58)

On the other hand, there exists a discrete set {mν}ν=1,2,... with m1 <
m2 < . . . such that if the condition (3.51)n+1,m is fulfilled for m = mν , then
it is fulfilled for all m ∈ (mν ,mν+1) as well.

This justifies induction with respect to m running this set and therefore,
the remainder estimate O(h1−d−κ) holds under the condition (3.51)n+1,m no
matter how large m is. However, if m is large enough, the condition (3.57) is
fulfilled and we do not need the condition (3.51)n+1,m anymore.

This concludes induction with respect to n. ��

Proof. Part II. However, in contrast to standard asymptotics, we need to con-
sider not points (x, ξ), but pairs (x, ξ; y, η) and the pure standard arguments
work in the zone (3.45).

It follows from the standard theory that if Qx and Qy have symbols sup-
ported in ε(ρx, γx)- and ε(ρy, γy)-vicinities of (x, ξ) and (y, η) respectively,
then

‖QxEQy‖1 � Ch−d(ρxγx)d/2(ρyγy)d/2; (3.59)

moreover, if either |x− y| � ε0γx or |ξ − η| � ε0ρx, then

‖QxEQy‖1 � Ch1−d(ρxγx)d/2−1(ρyγy)d/2. (3.60)

Surely, the same will be true with (x, ξ) and (y, η) permuted.
Then the contribution of such a pair to the error estimate does not exceed

Ch1−d(ρxγx)d/2−1(ρyγy)d/2|x− y|−κ (3.61)

if |x− y| � ε0γx.
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Otherwise, the contribution of the pair ψxQx and Qy to the error esti-
mate does not exceed Ch1−d(ρxγx)d/2−1(ρyγy)d/2γ−κ, where ψ1, (1 − ψx)
are supported in {|x− y| � γ} and {|x− y| � 2γ} and γ � hρ−1

x .
Furthermore, since

|QxEQy| � Ch1−dρd/2−1
x γ−1

x ρd/2y (3.62)

due to the standard arguments, the contribution of the pair (I − ψx)Qx and
Qy to the error does not exceed Ch2−2dρd−2

x ρdyγ
−2
x γdyγ

d−κ Plugging γ = hρ−1
x ,

we estimate the contribution of the pair Qx, Qy by

Ch1−d−κ(ρxγx)d/2−1(ρyγy)d/2ρκx + Ch2−d−κρ−2+κ
x γ−2

x ρdyγ
d
y (3.63)

which is larger than (3.61).
In these estimates, we do not need nondegeneracy condition and therefore,

as (y, η) and (x, ξ) are given, we can take

ρx = ρy = |x− y|σ + |ξ − η|, γx = γy|x− y|+ |ξ − η|1/σ, (3.64)

where ρ = γσ on the corresponding step of our analysis. Then as (z, ζ) are
fixed contribution of {|x− z| � γ, |y− z| � γ, |ξ− ζ| � ρ, |η− ζ| � ρ, |x− y|+
|ξ − η|1/σ � εγ} to the error does not exceed this expression

Ch1−d−κ(ργ)d−1ρκ + Ch2−d−κ(ργ)d−2ρκ, (3.65)

where the second term is less than the first one.
Then the total contribution of the zone in question to the error does not

exceed

Ch1−d
∫∫∫

γσκ−σ−1 dydη γ−1dγ (3.66)

where equation is taken over {γ � γx} and the integral in question is equiv-
alent to Mh1−d, where M = 1 as σ(κ− 1) > 1,

M =
∫∫∫

| log γ(y, η)| dydη (3.67)

as σ(κ− 1) = 1 and, due to (3.47)n, M  1 as well,

M =
∫∫∫

γ(y, η)σκ−σ−1 dydη (3.68)

as σ(κ − 1) < 1, and, on each step of the induction, we already proved that
M  1. ��
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3.6 General microhyperbolic case. II

Let us consider a matrix operator. Let λj(x, ξ) be eigenvalues of its principal
part. Then |∇x,ξλj | � c and microhyperbolicity with respect to � means that

|λj(x, ξ)| � ε0 =⇒ (�λj)(x, ξ) � ε0 ∀j. (3.69)

Let us consider the zone

Uj =
{

(x, ξ) : |λj | � min
k �=j

|λk|
}

, (3.70)

and let us define here

γ
def= min

k �=j
|λk|+

1
2
γ (3.71)

and ρ = γ. Consider the zone

{

γ � |x− y|+ |ξ − η|+ γ
}

(3.72)

and rescale x �→ x/γ, ξ �→ ξ/γ, λk �→ λk/γ, h �→ h/γ2 preserving the micro-
hyperbolicity condition (2.15) and simultaneously making an operator with
|λk| � 1 for k �= j and therefore, the analysis of this operator is not dif-
ferent from the scalar one. Unfortunately, we cannot use the nondegeneracy
conditions of Subsects. 3.4–3.5 which would not survive this, but the micro-
hyperbolicity condition survives and we assume that (2.15) is fulfilled .

Then as the main part of the asymptotics is given by the standard Weyl
expression (3.27)–(3.29), the contribution of the zone (3.72) (intersected with
{γ � C0γ}) to the remainder does not exceed

Rj =
∫

Σj∩{γ�Cγ}

C
(

hγ−2
)1−d−κ

γ−κ−2d d℘j

 Ch1−d−κ
∫

Σj∩{γ�γ}

γ−2+κ d℘j (3.73)

with Σj = {(x, ξ) : λj = 0} and d℘i = dxdξ : dλj density on it.
Let us fix γ = Ch1/2. Then, in the complementary zone, ∪k �=j{|λj|+|λk| �

Cγ} one needs just to make a rescaling x �→ x/γ, ξ �→ ξ/γ which sends h to
1 and no microhyperbolicity condition would be needed and the contribution
of this zone would not exceed

R′
jk = Ch−d−κ/2meas

{

|λj |+ |λk| � Ch1/2
}

. (3.74)
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So, the total contribution of the zone ∪jUj to the remainder is given by
∑

j Rj +
∑

j,k:j �=k R
′
jk.

Assuming that

℘j
(

Σj : |λk| � t
)

+ t−1meas{|λj |+ |λk| � t} = O(tr), (3.75)

we get, under the additional assumption r + κ > 2 (which is always fulfilled
as r � 2), that Rj = O(h1−d−κ) while R′

jk = O(hq) with

q = −d− 1
2
κ +

r

2
, (3.76)

which is O(h1−d−κ) as well.
On the other hand, as r + κ < 2 we get that Rj = O(hq), R′

jk = O(hq)
with q given by (3.77).

Finally, as r+κ = 2 we get Rj = O(h1−d−κ| log h|) and Rjk = O(h1−d−κ).
Assume temporarily that no more than two eigenvalues can be close to 0

simultaneously. Then we are already done since, in the zone complimentary
to (3.72), we redefine γ = ε(|x− y|+ |ξ− η|) and apply the same rescaling as
before and one does not need microhyperbolicity condition.

Let us apply the induction by m assuming that no more than m eigenvalues
can be close to 0 simultaneously. Then we can define on each step

γ(x, ξ) = ε max
J:#J=m

min
k �∈J

|λk(x, ξ)| + γ (3.77)

and repeat all above arguments. We arrive at

Theorem 3.20. Let the conditions (1.9), (1.7), (2.15), and (3.75) be fulfilled.
Then the standard Weyl asymptotics (3.27)–(3.29) holds with the remainder
estimate

(i) which is O(h1−d−(m−1)κ) as r + κ > 2;

(ii) which is O(hq) with q defined by (3.76) as r+qκ < 2 and O(h1−d−κ| log h|)
as r + κ = 2.

Remark 3.21. The condition (3.75) is fulfilled provided that Λjk = {λj =
λk = 0} are smooth manifolds of codimension r and |λj |  |λk| 
dist((x, ξ), Λjk) in its vicinity; this assumption should be fulfilled for all j �= k.
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Abstract Uniform stabilization with nonlinear boundary feedback is asserted
for classes of hyperbolic and Petrowski type multidimensional partial differ-
ential equations with variable coefficients (in space), as a consequence of the
continuity (boundedness) of the corresponding purely boundary control →
boundary observation open-loop map of dissipative character, of interest in
its own right. The interior is assumed inaccessible. There are explicit hyper-
bolic/Petrowski type dynamical PDE classes where such a property holds
and classes where it fails. When available, it has a number of attractive and
unexpected consequences. In particular, when accompanied by exact control-
lability of the corresponding open-loop linear model, it implies uniform stabi-
lization with optimal decay rates—when a nonlinear function of the boundary
observation closes up the loop, to generate the corresponding boundary feed-
back dissipative problem.
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Hyperbolic/Petrowski Type PDEs with Boundary
Control
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Sobolev spaces are the established and universal language of partial differ-
ential equations: they permeate the settings within which partial differential
equations are studied and analyzed. This is, in particular, the case of the mod-
ern control theory of partial differential equations. Here, desired behaviors of
the solutions of dynamical systems are actively synthesized by an appropriate
choice of input or control functions, in order to achieve the pre-determined
goals. In the case of partial differential equations, control functions are typi-
cally, and most challengingly, sought to act on the boundary of the bounded
spatial domains, whereby the precise link between the Sobolev regularity of
boundary control function and the Sobolev interior regularity, or Sobolev
boundary regularity of a suitable trace, of the solution becomes critical. The
present paper fits in the aforementioned framework.

1.1 A key open-loop boundary control–boundary
observation map: orientation

In this paper, we focus on a suitable open-loop boundary control → bound-
ary observation regularity property of dissipative character for linear (second
order and first order) hyperbolic and Petrowski type multidimensional PDEs.
Besides being of interest in itself, this property—when it holds —opens the
door to a variety of optimal control/min-max purely boundary problems;
and, moreover, it has unexpected links and consequences. This will be elab-
orated below with more details. Thus, in this paper, we revisit a boundary
→ boundary regularity issue already studied in our past efforts [48, 49]. Now
we complement these references by providing new insight, new positive and
negative examples, new connections. Moreover, we extend these references’
setting (by considering equations with variable coefficients in space in the
principal part), as well as their scope (by encompassing a markedly larger
class of nonlinear boundary feedbacks with no a priori assumptions near the
origin). Indeed, here we choose to pursue the link between the validity of this
open-loop boundary control → boundary observation regularity property of
the original linear problem and its consequences on the uniform stabilization
of a corresponding closed-loop problem with nonlinear dissipative bound-
ary feedback. We do so, both at the abstract level, as well as for several
“concrete” and explicit classes of hyperbolic and Petrowski type multidimen-
sional PDEs, with variable coefficients (in the space variable). Within such
dynamics, there are explicit PDE classes—originally identified in [48, 49],
and further expanded here—where such a property holds and classes where
it fails. As indicated above, when such (strong and desirable) boundary con-
trol → boundary observation regularity property is established, a number of
attractive and unexpected consequences follow. First, it permits the setting,
and consequent study, of the optimal control, or min-max game theory prob-
lem with a purely boundary control/boundary observation cost functional.
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Second, it implies (but generally it is not implied by) a desirable interior
regularity result, from the boundary control to the solution in the interior,
of the type that has been shown for first order hyperbolic systems [15, 71],
and for second order hyperbolic equations with Dirichlet boundary control
[26, 27, 22], [31]–[38], [41]–[44], [63, 46, 87], and their numerous successors.
Third, it provides an explicit link between two open-loop controls—the one
for the original conservative system and the one for the dissipative system—
that steer the same initial condition to rest, along their respective dynamics.

Finally, when accompanied by exact controllability (equivalently, contin-
uous observability) of the corresponding linear model, it implies uniform
stabilization with optimal decay rates—according to the strategy laid out
in [24] in the case of wave equations and exported to many other dynam-
ics [47] (shells), [51] (Schrödinger equations)—when a nonlinear function of
the “open-loop dissipative” boundary observation closes up the loop, to gen-
erate a corresponding boundary feedback, closed-loop, dissipative nonlinear
problem. A distinctive feature of said uniform stabilization strategy of the
nonlinear boundary problem is that optimal decay rates for the energy of
the closed-loop boundary nonlinear feedback system can be derived via an
explicitly constructed, nonlinear, monotone, first order, separable ordinary
differential equation, without any a priori knowledge of the behavior of the
dissipation at, or near, the origin (which is the region responsible for the
decay rates).

In our presentation here, we opt to emphasize, at first, the desirable con-
tinuity property of the aforementioned boundary control → boundary obser-
vation open-loop map, and to reveal its dissipative character, in the context
of concrete PDE models, where it has, moreover, a physically attractive in-
terpretation. For each class given here where such boundary → boundary
linear map is bounded (continuous), we then present the ultimately sought-
after nonlinear stabilization result for the corresponding closed-loop bound-
ary dissipative problem. This is obtained by simply taking the open-loop
map, applying a suitable nonlinear function to it (in particular, the identity),
and closing up the associated loop.

We begin with the most challenging case: second order wave equations
with variable coefficients (in the space variable). Here, we provide and put
together a clean, consequential presentation of the results of [48, 49] (as they
stand in references difficult to retrieve, as the publication of that journal
has been discontinued for over a year due to a change of publishing policy,
it is not handy to utilize [49] to correct an erroneous statement which oc-
curred in [48], which, however, required a minor correction in the proof to
reach the opposite conclusion). As already noted, for this class of wave equa-
tions under Dirichlet-boundary control, establishing the desired continuity
property of the (Dirichlet-) boundary control → (Neumann-) boundary ob-
servation is a challenging task of regularity theory, which goes well beyond
the results and techniques of the otherwise comprehensive treatment of reg-
ularity of [22, 26, 27]. In our proof presented in Sect. 4, it requires, in fact,
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an additional pseudodifferential analysis in the “elliptic sector” of the dual
(or Fourier) variables. We also provide—at the end of Sect. 2—classes of
PDEs where the aforementioned boundary control → boundary observation
open-loop map fails to be bounded (continuous): typically, these PDE models
involve the Neumann boundary control, and thus fail to satisfy the Lopatin-
ski condition. See, however, Sect. 9, involving the Schrödinger equation with
Neumann boundary control with respect to two state spaces Hε(Ω), ε > 0,
and L2(Ω).

Throughout the paper, the PDE classes will be based on the following
second order differential expression

Aw =
n
∑

i,j=1

∂

∂xi

(

aij(x)
∂w

∂xj

)

with
n
∑

i,j=1

aij(x)ξiξj � a

n
∑

i,j=1

ξ2
i , x ∈ Ω, a > 0,

(1.1.0)

with real coefficients aij = aji, of class C2, satisfying the uniform ellipticity
condition for some positive constant a > 0. When supplied with suitable
homogeneous boundary conditions (such as in (4.1.6)), A becomes a negative,
self-adjoint operator. We recover (Δ) in the case of constant coefficients.

1.2 An historical overview on regularity, exact
controllability, and uniform stabilization of
hyperbolic and Petrowski type PDEs under
boundary control

At first, naturally, PDE boundary control theory for evolution equations tack-
led the most established of the PDE classes—parabolic PDEs—whose Hilbert
space theory for mixed problems was already available in close to an optimal
book-form [60, 65] since the early ’70s. Next, in the early ’80s, when the study
of boundary control problems for (linear) PDEs began to address hyperbolic
and Petrowski type systems on a multidimensional bounded domain [28, 8]
(see the books [5, 39, 46] for overview), it faced at the outset an altogether
new and fundamental obstacle, which was bound to hamper any progress.
Namely, that an optimal, or even sharp, theory on the preliminary, founda-
tional questions of well-posedness and global regularity (both in the interior
and on the boundary, for the relevant solution traces) was generally miss-
ing in the PDEs literature of Mixed (Initial and Boundary Value) Problems
for hyperbolic and Petrowski type systems [60]. Available results were often
explicitly recognized as definitely non-optimal [65, Vol. 2, p. 141]
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Hard analysis energy methods.

A happy and quite challenging exception was the optimal—both interior and
boundary—regularity theory for mixed, non-symmetric, non-characteristic
first order hyperbolic systems, culminated through repeated efforts in the
early ’70s [15, 70, 71]. Its final, full success required eventually the use of
pseudodifferential energy methods (Kreiss’ symmetrizer). Apart from this
isolated case, mathematical knowledge of global optimal regularity theory
of hyperbolic and Petrowski type mixed problems was scarce, save for some
trivial one-dimensional cases. Thus, in this first incipient phase, one may say
that optimal control theory [28, 8, 60] provided a forceful impetus in seeking
to attain an optimal global regularity theory for these classes of mixed PDE
problems. To this end, PDE (hard analysis) energy methods—both in differ-
ential and pseudodifferential form—were introduced and brought to bear on
these problems. The case of second order hyperbolic equations under Dirich-
let boundary control was tackled first. The resulting theory that turns out to
be optimal and does not depend on the space dimension [26, 27, 45, 22, 61].
It was best achieved by the use of energy methods in differential form. The
case of second order hyperbolic equations, this time under Neumann bound-
ary control, proved far more recalcitrant and challenging (in space dimension
strictly greater than one), and was conducted in a few phases. The additional
degree of difficulties for this mixed PDE class stems from the fact that the
Lopatinski condition is not satisfied for it. Unlike the Dirichlet boundary con-
trol, the Neumann boundary control case requires pseudodifferential analysis.
Final results depend on the geometry [34, 36, 38, 45, 76].

Naturally, in investigative efforts which moved either in a parallel or in a
serial mode, the conceptual and computational “tricks” that had proved suc-
cessful in obtaining an optimal, or sharp, regularity theory for second order
hyperbolic equations, were exported, with suitable variations and adapta-
tions, to certain Petrowski type systems (see, for example, [31, 32, 35, 40,
41, 43, 44, 62, 64]. The lessons learned with second order equations served
as a guide and a benchmark study for these other classes. To be sure, not
all cases have been, to date, completely resolved. The problem of optimal
regularity of some Petrowski systems with “high” boundary operators is not
yet fully solved. However, a large body of optimal regularity theory has by
now emerged, dealing with systems such as: Schrödinger equations; plate-
like equations of both hyperbolic (Kirchhoff model) and non-hyperbolic type
(Euler–Bernoulli model), etc. Subsequently, additional more complicated dy-
namics followed, such as: system of elasticity, Maxwell equations, dynamic
shell equations, etc. A rather broad account of these issues under one cover
may be found in [39, 62, 64, 45], [46, Vol. 2], etc.
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Abstract models of PDE mixed problems.

Simultaneously, and in parallel fashion, the aforementioned investigative ef-
forts since the mid-70’s also produced “abstract models” for mixed PDE
problems, subject to control either acting on the boundary of, or else as
a point control, within a multidimensional bounded domain: [2, 93, 94] for
parabolic problems; [80, 26, 27] for hyperbolic problems. Though, in particu-
lar, operators arising in the abstract model depend on both the specific class
of PDEs and on its specific homogeneous and nonhomogeneous boundary
conditions, one cardinal point reached in this line of investigation was the
following discovery: that most of them—but by no means all [7, 23, 86]—are
encompassed and captured by the abstract model:

ẏ = Ay + Bu, in [D(A∗)]′, y(0) = y0 ∈ Y, (1.2.1)

where U and Y are, respectively, control and state Hilbert spaces, and where:

(i) the operator A : Y ⊃ D(A) → Y is the infinitesimal generator of a
strongly continuous (s.c.) semigroup eAt on Y , t � 0;

(ii) B is an “unbounded” operator U → Y satisfying B ∈ L(U ; [D(A∗)]′) or
equivalently, A−1B ∈ L(U ;Y ). Above, as well as in (1.2.1), [D(A∗)]′ denotes
the dual space with respect to the pivot space Y , of the domain D(A∗) of the
Y -adjoint A∗ of A. Without loss of generality, we take A−1 ∈ L(Y ).

Many examples of these abstract models are given under one cover in
[5, 39] and [46, Vols. 1-2]. They include the case of first order hyperbolic sys-
tems quoted before, where again the need for an abstract model came from
boundary PDE control theory, and was not available in the purely PDE the-
ory per se. See [46, Subsect. 10.6] and [48, Subsect. 4.1]. Accordingly, having
accomplished a first abstract unification of many dynamical PDE mixed prob-
lems, it was natural to attempt to extract—wherever possible—additional,
more in-depth, common ‘abstract properties,’ shared by sufficiently many
classes of PDE mixed problems. For the purpose of this note, we focus on
three “abstract properties:” (optimal) regularity, exact controllability, and
uniform stabilization.

Regularity.

The variation of the parameter formula for (1.2.1) is

y(t) = eAty0 + (Lu)(t); (1.2.2a)
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(Lu)(t) =

t
∫

0

eA(t−τ)Bu(τ)dτ ;

LTu = (Lu)(T ) =

T
∫

0

eA(T−t)Bu(t)dt.

(1.2.2b)

Per se, the abstract differential equation (1.2.1) is not the critical object of
investigation. It is good to have it, inasmuch as it yields (1.2.2). The key
element that defines the crucial feature of a particular PDE mixed problem,
is, however, the regularity of the operators L and LT . This is what was
referred to above as “interior regularity:” the control u acts on the boundary,
while Lu is the corresponding solution acting in the interior. Accordingly,
this pursued line of investigation brought about a second, abstract realization
[26, 27, 28, 45]: that of determining the “best” function space Y for each class
of mixed hyperbolic and Petrowski type problems, such that the following
interior regularity property holds:

L : continuous L2(0, T ;U)→ C([0, T ];Y ), (1.2.3)

for one, hence for all positive, finite T . Presently, such space Y is explicitly
identified in most (but by no means all) of the mixed PDE problems of
hyperbolic or Petrowski type. [The case Y = [D(A∗)]′ is always true in the
present setting, and not much informative, save for offering a back-up result
for (1.2.1).] An equivalent (dual) formulation is given in (1.2.4) below [27,
28, 8].

For the mixed PDE classes under considerations, achieving the regularity
property (1.2.3) with the “best” function space Y is the accomplishment
of hard analysis PDE energy methods, tuned to the specific combination of
PDE and boundary control, which first produce, for each such individual
combination, a PDE-estimate for the corresponding dual PDE problem. The
precursor was the multidimensional wave equation with Dirichlet control [26,
27, 22]. All such a priori estimates thus obtained on an individual basis admit
the following “abstract version:”

L∗
T ≡ B∗eA

∗t : continuous Y → L2(0, T ;U), (1.2.4)

where LT is defined by (1.2.2b) [26, 27, 22].
In PDE mixed problems, property (1.2.4) is a (sharp) ‘trace regularity

property’ of the boundary homogeneous problem, which is dual to the corre-
sponding map LT in (1.2.2b): from the L2(0, T ;U)-boundary control to the
PDE solution at time T , see many examples in the books [39, 46]. Indeed,
such a PDE estimate is both nontrivial and unexpected, and typically yields
a finite gain (often 1

2 ) in the space regularity of the solution trace over a
formal application of trace theory to the optimal interior regularity of the
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PDE solution. Some PDE circles have come to call it “hidden regularity,”
and with good reasons. It was first discovered in the case of the wave equa-
tion with Dirichlet control [27]. It should be referred to, more precisely, as
“hidden sharp regularity.”

Only after the fact, if one so wishes, functional analytic methods can be
brought into the analysis to show that, in fact, the abstract trace regularity
(1.2.4) is equivalent to the interior regularity property (1.2.3) [27, 28, 8].
[Needless to say, this can actually be done also on a case-by-case basis for
each PDE class.] This is the spirit of abstract, unifying treatments of optimal
control problems for PDE subject to boundary (and point) control, that can
be found in books such as [39, 5] and [46, Vol. 2]. As mentioned above, the
regularity (1.1.4) is equivalent to the regularity (1.2.3) by a duality argument
[27, 28, 8].

Surjectivity of LT , or exact controllability.

In a similar vein, we can describe the second abstract dynamic property of
model (1.2.1) or (1.2.2); namely, the property that the input-solution operator
LT , defined in (1.2.2b), satisfies

LT be surjective : L2(0, T ;U)→ onto Y1, (1.2.5)

where Y1 ⊂ Y. In the most desirable case Y1 is the same space Y as in
(1.2.3). This is, in fact, often the case with hyperbolic and Petrowski type
systems, but is by no means always true [example, second order hyperbolic
equations with Neumann control, Euler–Bernoulli plate equations with con-
trol in “high” boundary conditions]. For time reversible dynamics such as the
hyperbolic and Petrowski type systems under consideration, the functional
analytic property (1.2.5) is re-labelled “exact controllability in Y1 at t = T ”
in the PDE control theory literature. By a standard functional analysis result
[77, p. 237], property (1.2.5) is equivalent by duality to the following so-called
“abstract continuous observability” estimate:

‖L∗
T z‖ � CT ‖z‖ or

T
∫

0

‖B∗eA
∗tx‖2Udt � CT ‖x‖2Y1

∀ x ∈ Y1, (1.2.6)

perhaps only for T sufficiently large in hyperbolic problems with finite speed
of propagation, which we recognize as being the reverse inequality of (1.2.4),
at least when Y1 = Y , and T is large.

The crux of the matter begins now: How does one establish the validity of
characterization (1.2.6) for exact controllability in the appropriate function
spaces U and Y1—in particular, if we can take Y1 = Y —for the classes of
multidimensional hyperbolic and Petrowski type PDE with boundary con-
trol? The answer is: by appropriate PDE-energy methods, tuned to each
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special class/problem. Negative results on exact controllability are given in
[79, 85].

Uniform stabilization.

One may repeat the same set of considerations, in the same spirit, when
it comes to establishing uniform stabilization of an originally conservative
hyperbolic or Petrowski type system, by means of a suitable boundary dis-
sipation. The abstract characterization is an inverse type inequality such as
(1.2.6), except that it refers now to the boundary dissipative mixed PDE
problem, not the boundary homogeneous conservative PDE problem. The
particular abstract inequality will be given below in (1.3.12), in the context
under discussion. Typically, establishing the uniform stabilization inequality
for the class of hyperbolic, or Petrowski type PDEs under discussion is more
challenging, sometimes by much, than obtaining the corresponding special-
ization of the continuous observability inequality (1.2.6). Negative results on
uniform stabilization are given in [82, 84].

Constant coefficients versus variable coefficients.

Here the situation regarding the aforementioned three properties is clear:

(1) Regularity of solutions (PDE specialization of the “abstract trace regu-
larity” (1.2.4)): variable coefficients (in time and space) in the principal part
and in the lower order terms are benign (provided they are suitably smooth).
That is, the PDE tricks (energy methods) which work in the case of constant
coefficients in the principal part and no lower order terms, when applied to
the more general variable coefficient case, produce lower order terms that can
be readily absorbed in the sought-after estimates. This has been known since
the 1986 paper [22] on second order hyperbolic equations.

(2) Continuous observability and uniform stabilization estimates (PDE
specialization of (1.2.6) and (1.3.12)). Here, the situation is drastically dif-
ferent. Even the presence of energy-level terms, particularly with variable
coefficients, represents a major additional difficulty. A further serious level
of difficulty is encountered in the case of variable coefficients (in space) in
the principal part. To overcome these serious challenges, a few new methods
have been introduced. The authors have favored energy methods in a suitable
Riemannian metric defined in terms of the coefficients aij(x) of the principal
part A in (1.1.0). For Riemannian geometric methods in exact controllability
and uniform stabilization, we refer to [10], [53]–[55], [89, 91, 92], [95]–[97].
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1.3 Abstract setting encompassing the second order
and first order (in time) hyperbolic and Petrowski
type PDEs of the present paper

The correct abstract setting for the present classes of PDE-problems here
considered was given in [19], [46, Chapt. 7, p. 663], and used in [48].

A second order equation setting.

Let H , U be Hilbert spaces, and let

(h.1) A : H ⊃ D(A) → H be a positive self-adjoint operator;

(h.2) B ∈ L(U ; [D(A 1
2 )]′); equivalently, A− 1

2B ∈ L(U ;H).

We consider the open-loop control system

vtt +Av = Bu, v(0) = v0, vt(0) = v1, (1.3.1)

as well as the corresponding closed-loop, dissipative feedback system

wtt +Aw + BB∗wt = 0, w(0) = w0, wt(0) = w1. (1.3.2)

We rewrite (1.3.1) and (1.3.2) as first order systems of the form (1.2.1) in the
space Y = D(A 1

2 )×H :

d

dt

[

v(t)
vt(t)

]

= A

[

v(t)
vt(t)

]

+ Bu;
d

dt

[

w(t)
wt(t)

]

= AF

[

w(t)
wt(t)

]

; (1.3.3)

A =
[

0 I
−A 0

]

; AF =
[

0 I
−A −BB∗

]

= A−BB∗, B =
[

0
B

]

, (1.3.4)

with obvious domains. The operator AF is maximal dissipative and thus the
generator of a s.c. contraction semigroup eAF t, t � 0, on Y [46, Proposition
7.6.2.1, p. 664].

Setting y(t) = [w(t), wt(t)], y0 = [w0, w1], we have that the variation of
parameter system for the w-problem is

[

w(t)
wt(t)

]

= y(t) = eAF ty0 = eAty0 −
t
∫

0

eA(t−τ)BB∗eAF τy0dτ

= eAty0 − {L(B∗eAF · y0)}(t),

(1.3.5a)

(1.3.5b)

recalling the operator L defined in (1.2.2b).
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A first order equation setting

We now consider a first order model with skew-adjoint generator. Let Y and
U be two Hilbert spaces. The basic setting is now as follows:

(a.1) A = −A∗ is a skew-adjoint operator Y ⊃ D(A) → Y , so that A = iS,
where S is a self-adjoint operator on Y , which (essentially without loss
of generality) we take positive definite (as in the case of the Schrödinger
equation of Sect. 6 below).

Accordingly, the fractional powers of S, A, A∗ are well defined.

(a.2) B is a linear operator U → [D(A∗ 1
2 )]′, duality with respect to Y as a

pivot space; equivalently, Q ≡ A− 1
2B ∈ L(U ;Y ) and B∗A∗− 1

2 ∈ L(Y ;U).

The first order setting under (a.1) and (a.2), includes the second order
setting under (h.1) and (h.2).

Under assumptions (a.1) and (a.2), we consider the operator AF : Y ⊃
D(AF ) → Y defined by

AFx = [A−BB∗]x; x ∈ D(AF ) = {x ∈ Y : [A−BB∗]x ∈ Y }. (1.3.6)

Proposition 1.3.1. Under assumptions (a.1) and (a.2) above, we have, with
reference to (1.3.6):

(i) We have

D(AF ) = A− 1
2 [I − iQQ∗]−1A− 1

2Y ⊂ D(A
1
2 ) ⊂ D(B∗);

A−1
F = A− 1

2 [I − iQQ∗]−1A− 1
2 ∈ L(Y ).

(1.3.7a)

(1.3.7b)

(ii) The operator AF is dissipative; in fact, maximal dissipative, and hence
the generator of a s.c. contraction semigroup eAF t on Y , t � 0. [Similarly,
the Y -adjoint A∗

F is the generator of a s.c. contraction semigroup on Y , with
A∗−1
F given by the same expression (2.7b) with “+” sign rather than “−” sign

for the operator in the middle.]

(iii) Hence the abstract first order, closed-loop equation

ẏ = (A−BB∗)y, y(0) = y0 ∈ Y (1.3.8a)

(obtained from the open-loop equation

η̇ = Aη + Bu (1.3.8b)
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with feedback u = −B∗y) admits the unique solution y(t) = eAF ty0, t � 0,
satisfying the energy identity

‖y(t)‖2Y + 2

t
∫

s

‖B∗y(τ)‖2Udτ = ‖y0(s)‖2U , 0‘s � t. (1.3.8c)

In particular,
∞
∫

0

‖B∗y(τ)‖2Udτ =
1
2
‖y0‖2Y . (1.3.8d)

Proof. (i) Let x ∈ D(AF ). Then we can write

AFx = [A−BB∗]x = A
1
2 [I − (A− 1

2 B)(B∗A− 1
2 )]A

1
2x

= A
1
2 [I − iQQ∗]A− 1

2 x = f ∈ Y, (1.3.9)

with Q ≡ A− 1
2B ∈ L(U ;Y ) by assumption, and A∗ ≡ B∗A∗− 1

2 ∈ L(Y ;U),
its dual or conjugate. Here, we have used (a.1): A∗ = −A, so that A∗ 1

2 = iA
1
2 ,

hence A− 1
2 = iA− 1

2 , finally B∗A− 1
2 = iB∗A∗− 1

2 = iQ∗. It is clear that the
operator [I − iQQ∗], where QQ∗ ∈ L(Y ) is nonnegative, self-adjoint on Y , is
boundedly invertible on Y . Thus, (1.3.9) yields

x = A−1
F f = A− 1

2 [I − iQQ∗]−1A− 1
2 f ∈ D(AF ), f ∈ Y, (1.3.10)

and (1.3.7a–b) is proved. Then the identity in (1.3.7a) plainly shows that
D(AF ) ⊂ D(A

1
2 ), while D(A

1
2 ) ⊂ D(B∗) by assumption (a.2). Part (i) is

proved.

(ii) We next show that AF is dissipative. Let x ∈ D(AF ). Thus, x ∈
D(A

1
2 ) = D(A∗ 1

2 ) ⊂ D(B∗) by part (i). Hence we can write if ( , ) is the
Y -inner product:

Re(AFx, x) = Re([A−BB∗]x, x) = Re(x, x) − ‖B∗x‖2

� −‖B∗x‖2 � 0 ∀ x ∈ D(AF ),

(1.3.11a)

(1.3.11b)

since Re(Ax, x) = Re{−i‖A 1
2 x‖2} = 0, where each term in (1.2.11a-b) is

well-defined. Thus, AF is dissipative.
Finally, since A−1

F ∈ L(Y ) by part (i), then (λ0−AF )−1 ∈ L(Y ) as well for
a suitable small λ0 > 0, and then the range condition: range(λ0−AF ) = Y is
satisfied, so that AF is maximal dissipative. By the Lumer–Phillips theorem
[69, p. 14], AF is the generator of a s.c. contraction semigroup on Y . The
same argument shows that A∗

F is maximal dissipative.
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(iii) A standard energy method: one takes the Y -inner product of (1.3.8a)
with y, uses 1

2
d
dt‖y(t)‖2Y = Re(yt, y)Y , as well as Re(Ay, y) = 0 for A skew-

adjoint, and integrates in time. ��

Remark 1.3.1. One can, of course, extend the range of Proposition 1.3.1, by
adding to A a suitable perturbation P : either P ∈ L(Y ) or else P relatively
bounded dissipative perturbations as in known results [69, Corollary 3.3,
Theorem 3.4, p. 82–83] for instance, and still obtain that [(A+ P )−BB∗] is
the generator of a s.c. semigroup (of contractions in the last two cases). �

The main thrust of references [48, 49].

The main thrust of authors’ prior efforts in [48, 49] (two references very diffi-
cult to obtain, due to problems of the journal, which was also discontinued for
some time) dealt with a question which was raised in [9, Theorem 3] only in
connection with the second order system (1.3.1), (1.3.2) subject to assump-
tions (h.1) and (h.2) that precede (1.3.1). However, in view of [48, Propo-
sition 1.3.1] likewise extended the same question to the first order systems
(1.3.8a-b) subject to assumptions (a.1) and (a.2) that precede Proposition
1.3.1. For both problems we have A∗ = −A, the skew-adjoint property of
the free dynamics generator. With reference to the systems (1.3.1), (1.3.2),
the question was: Is it true that exact controllability of (1.3.1) on the state
space Y = D(A 1

2 ) × H by means of L2(0, T ;U)-controls is equivalent to
uniform stabilization of (1.3.2) on the same space Y ? Reference [48] ex-
tended this question also in reference to the systems (1.3.8a-b), in order to in-
clude, for instance, also the Schrödinger equation case of Sect. 4. Henceforth,
{A,B,AF , Y, U} refer either to (1.3.5) or to (1.3.8), indifferently. Quantita-
tively, we may reformulate the above equation as follows: Is the continuous
observability inequality (1.2.6) [which characterizes exact controllability of
(1.2.1) with A and B as in (1.3.4) or as in (1.3.8b)] equivalent to the inequal-
ity

T
∫

0

‖B∗eAF tx‖2Udt � cT ‖eAFTx‖2Y ∀ x ∈ Y, (1.3.12)

which characterizes the uniform stability of the w-problem (1.3.2) or the
y-problem (1.3.8a)? In our case, A is skew-adjoint A∗ = −A. Thus, exact
controllability of {A,B} (that is of (1.3.1) or (1.3.8a)) over [0, T ] is equivalent
to exact controllability of {A∗, B} over [0, T ]. In other words, in our case, the
inequality (1.2.6) is equivalent to

T
∫

0

‖B∗eAtx‖2Udt � cT ‖x‖2Y ∀ x ∈ Y. (1.3.13)
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Thus, the present question is rephrased now as follows: Is the inequality
(1.3.12) equivalent to the inequality (1.3.13)?

In one direction, the implication: uniform stabilization of (1.3.1) or (1.3.8b)
[i.e., (1.3.12)] → exact controllability of (1.3.1) or (1.3.8b) [i.e., (1.3.13)] was
shown by Russell [72, 73] some 30 years ago, by virtue of a clean soft argu-
ment.

In the opposite direction, we have the following:

Claim 1.3.1 ([48]). With reference to the second order equations (1.3.1),
(1.3.2) [respectively, the first order equations (1.3.8a-b), assume the preced-
ing assumptions (h.1) and (h.2) [respectively, (a.1) and (a.2)]. Then, the
implication: the exact controllability of (1.3.1) or (1.3.8b) [i.e., (1.3.13)] ⇒
uniform stabilization of (1.3.2) or of (1.3.8a) [i.e., (1.3.12)] holds, if one adds
the assumption that

the operator B∗L: continuous L2(0, T ;U)→ L2(0, T ;U). (1.3.14)

Remark 1.3.2. We remark that if B is, in particular, a bounded operator,
B ∈ L(U ;Y ), then [condition (1.2.3) and] condition (1.3.14) is, a fortiori,
satisfied. Thus, in this case, exact controllability of (1.3.1) or (1.3.8b) implies
(and is implied by [72, 73]) uniform stabilization. We recover (with the simple
proof of Sect. 3) a 30-year-old well-known result of [74] (based on the same
finite-dimensional proof of [66]). �

Reference [48] gave an extension of Claim 1.3.1, which involved a nonlinear
feedback version. This is reported below.

A first nonlinear extension of Claim 1.3.1.

In place of Equation (1.3.8a) (hence (1.3.2)), we consider the following non-
linear version

yt = Ay −Bf(B∗y), y(0) = y0 ∈ Y, (1.3.15a)

under the same assumptions (a.1) for A and (a.2) for B, where f is a
monotone increasing, continuous function on U . It is known [19, 21] that
A − Bf(B∗) generates a nonlinear semigroup of contractions—say SF (t)—
which yield the following variation of parameter formula for (1.3.15):

yt = Sf (t)y0 = eAty0 − {L(f(B∗SF ( · )y0)}(t), (1.3.15b)

and obeys the energy identity

‖SF (T )y0‖2Y = ‖y(T )‖2Y = ‖y(0)‖2Y − 2

T
∫

0

(f(B∗y), B∗y)Udt. (1.3.16)
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Proposition 1.3.2. In addition to the standing assumptions, we assume that

(i) The operator B∗L is continuous L2(0, T ;U) → L2(0, T ;U), as in
(1.3.14);

(ii) m‖u‖2U � (f(u), u)U ; ‖f(u)‖U � M‖u‖U for all u ∈ U.

Then the exact controllability of (A,B) implies the exponential stability of
SF (t), i.e., there exist positive constants C, ω > 0 such that the solution of
(1.3.14) satisfies

‖y(t)‖2Y � Ce−ωt‖y0‖2Y . (1.3.17)

Proof. Step 1. We first show that for any y0 ∈ Y , we have via assumption (i)
= (1.3.14) and (ii),

‖B∗eA·y0‖L2(0,T ;U) � (1 + kTM)‖B∗SF ( · )y0‖L2(0,T ;U), (1.3.18)

where kT = |||B∗L||| in the uniform operator norm of L(L2(0, T ;U)). Indeed,
(1.3.18) stems readily from (1.3.15), which yields

B∗eAty0 = B∗SF (t)y0 + {[B∗L]f(B∗SF ( · )y0}(t). (1.3.19)

Hence, invoking assumption (1.3.14) on B∗L, we see that (1.3.19) along with
the upper bound on f in the RHS of (ii) at once implies (1.3.18).

Step 2. The exact controllability assumption on the pair {A,B}, equiva-
lently on the pair {A∗, B}, guarantees characterization (1.3.13). This, com-
bined with (1.3.18), yields then, for any y0 ∈ Y :

‖SF (T )y0‖Y � ‖y0‖2Y � CT

T
∫

0

‖B∗eAty0‖2Udt

� CT (1 + kTM)

T
∫

0

‖B∗SF (t)y0‖2Udt, (1.3.20)

where the first inequality is due to (1.3.16). [In the linear case, f(u) = u, the
proof stops here, see (1.3.12).]

Step 3. The energy identity (1.3.16), when combined with (1.3.20) and (i),
gives

‖SF (T )y0‖2Y

� CT (1 + kTM)

T
∫

0

‖B∗SF (t)y0‖2Udt + 2

T
∫

0

(B∗SF (t)y0, f(B∗SF (t)y0))Udt
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�
(

CT (1 + kTM)m−1 + 2
)

T
∫

0

(B∗SF (t)y0, f(B∗SF (t)y0))U dt

=
(

CT (1 + kTM)m−1 + 2
) (

‖SF (0)y0‖2Y − ‖SF (t)y0‖2Y
)

. (1.3.21)

The above identity implies that ‖SF (T )‖Y � γ < 1, which, in turn, im-
plies exponential decays for the semigroup. The proof of Proposition 1.3.2 is
complete. ��

References [48, 49] argued convincingly, on the base of a wealth of explicit
hyperbolic or Petrowski PDE illustrations, that showing uniform boundary
stabilization for such classes can be done more conveniently directly, by estab-
lishing the concrete version (on a case-by-case basis) of the abstract inequal-
ity (1.3.12) [which characterizes the uniform stabilization of the w-problem
(1.3.2), or the y-problem (1.3.8a)], rather than seeking to first establish the
boundedness (1.3.14) of the operator B∗L and then invoke (even in the linear
case f(u) = u = identity) Proposition 1.3.2. This is so since showing (1.3.14)
for B∗L is either a more challenging task [as in the case of the wave equation
with Dirichlet boundary control of the subsequent Sect. 4]; or else the proof
of a result such as (1.3.14), or technically comparable to it and very close
to it, is actually built in to existing proofs of regularity/exact controllabil-
ity/uniform stabilization of some (surely, not all) Petrowski type systems,
for example, the case of the Schrödinger equation with Dirichlet control of
Sect. 6 below].

More critically, there are hyperbolic/Petrowski type PDE problems (as
those identified in [48, 49], and at the end of Sect. 2), where the boundedness
condition (1.3.14) on B∗L fails, yet the corresponding uniform stabilization
results hold, and had been known since the early ’80s. In short: assump-
tion (1.3.14) is far from being a necessary condition for uniform stabilization
within the hyperbolic/Petrowski classes of PDEs. Negative examples include:

(i) the wave equation with feedback dissipation in the Neumann boundary
condition in the finite energy space H1(Ω)× L2(Ω) [48, Sect. 6];

(ii) the Schrödinger equation with feedback dissipation also in the Neu-
mann boundary condition in the state space H1(Ω) [48, Sect. 8], and the
present Sects. 9.1 and 9.2.

As explained in the introductory Subsect. 1.1, our main aim in the present
paper is different : Having established [48, 49] that a PDE problem possesses
the property that the boundary control→ boundary observation map B∗L is
bounded as asserted in (1.3.14), what is the physical/control-theoretic mean-
ing; what are the positive implications that can be derived? The next sections
answer these questions on a case-by-case basis.
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2 Open Loop Problem (1.2.1): From B∗L Bounded to L
Bounded, Equivalently B∗eA∗ · Bounded

We return to the abstract equation (1.2.1)

ẏ = Ay + Bu, in [D(A∗)]′, y(0) = y0 ∈ Y, (2.1)

where U and Y are the control and the state (Hilbert) spaces, in the setting
of Subsect. 1.3 which encompasses second order models (for hyperbolic and
Petrowski type PDEs) under the abstract assumptions (h.1) and (h.2) spec-
ified there, as well as first order models (such as the Schrödinger equation
and first order hyperbolic systems) under the abstract assumptions (a.1) and
(a.2). The star ∗ in the adjoint B∗ refers to the assigned spaces U and Y .
Thus, the operator B∗L, per se, refers unequivocally to the space U and Y ,
which have helped its definition. The present section is devoted to the follow-
ing set of implications for the open-loop problem. The operators L and LT
are defined in (1.2.2b), and provide the solution to (2.1) according to formula
(1.2.2a).

Theorem 2.1 ([49]). We consider the problem (2.1) either under assump-
tions (h.1) and (h.2), or else (a.1), (a.2) of Subsect. 1.3, with respect to the
control space U and the state space Y . Explicitly, this means that A = −A∗

is skew-adjoint operator Y ⊃ D(A) → Y , thus generator of a unitary group
on Y with eA

∗t = e−At, t ∈ R, and A− 1
2 B ∈ L(U ;Y ).

Moreover, assume that

B∗L ∈ L(L2(0, T ;U)). (2.2)

Then, in fact,

L is continuous: L2(0, T ;U)→ C([0, T ];Y ), (2.3)

where (2.3) is equivalent to

B∗eA
∗t = B∗e−At : continuous Y → L2(0, T ;U). (2.4)

Proof. We report two proofs [49].

Proof #1. Start with u smooth, say u ∈ C1([0, T ];U), u(0) = 0, so that by
parts

x(t) =

t
∫

0

e−AsBu(s)ds ∈ C1([0, T ];D(A
1
2 )). (2.5)

By skew-adjointness of A = −A∗, as well as by (2.2), we then estimate from
(2.5), recalling (1.1.2):
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CT ||u||2L2(0,T ;U)

�
T
∫

0

((B∗Lu)(t), u(t))U dt =

T
∫

0

⎛

⎝

t
∫

0

eA(t−s)Bu(s)ds,Bu(t)

⎞

⎠

Y

dt (2.6)

=

T
∫

0

⎛

⎝

t
∫

0

e−AsBu(s)ds, e−AtBu(t)

⎞

⎠

Y

dt =

T
∫

0

(

x(t),
d

dt
x(t)

)

Y

dt (2.7)

=
1
2

T
∫

0

d

dt
(x(t), x(t))Y dt =

1
2
‖x(T )‖2Y =

1
2

∥

∥

∥

∥

∥

∥

T
∫

0

e−AsBu(s)ds

∥

∥

∥

∥

∥

∥

2

Y

(2.8)

=
1
2

∥

∥

∥

∥

∥

∥

e−AT
T
∫

0

eA(T−s)Bu(s)ds

∥

∥

∥

∥

∥

∥

2

Y

∼

∥

∥

∥

∥

∥

∥

T
∫

0

eA(T−s)Bu(s)ds

∥

∥

∥

∥

∥

∥

2

Y

(2.9)

= cT ‖LTu‖2Y . (2.10)

Then the estimate in (2.10) can be extended to all u ∈ L2(0, T ;U),

‖LTu‖2Y � constT ‖u‖2L2(0,T ;U) ∀ u ∈ L2(0, T ;U). (2.11)

Then it is well known [8, 30], [46, p. 648] that (2.11) yields (2.3). �

Remark 2.3. Theorem 2.1 can be extended to A of the form A = iS + kI,
with S a self-adjoint operator on Y and k ∈ R, so that A∗ = −A + 2kI, and
eA

∗t = e−Ate2kt. In this case, we start with (B∗Lu, u1)U , with u1 = e−2ktu(t),
u ∈ L2(0, T ;U). �

Proof #2. An alternative, perhaps more insightful, proof of Theorem 2.1 is
as follows. For L in (1.2.2b) and its adjoint L∗ we have [46] for u smooth

(B∗Lu)(t) =

t
∫

0

B∗eA(t−τ)Bu(τ)dτ ; (2.12)

(L∗Bu)(t) =

T
∫

t

B∗eA
∗(τ−t)Bu(τ)dτ =

T
∫

t

B∗eA(t−τ)Bu(τ)dτ, (2.13)

using the skew-adjoint assumption A∗ = −A. Thus, adding up (2.12) and
(2.13) yields, using again skew-adjointness:
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(B∗Lu)(t) + (L∗Bu)(t) =

T
∫

0

B∗eA(t−τ)Bu(τ)dτ (2.14)

= B∗eA(t−T )

T
∫

0

eA(T−τ)Bu(τ)dτ (2.15)

= B∗eA(T−t)
T
∫

0

eA(T−τ)Bu(τ)dτ. (2.16)

Finally, recalling LT from (1.2.2b) and its adjoint [46], we rewrite (2.16)
in the following form:

B∗Lu + L∗Bu = L∗
TLTu, u ∈ L2(0, T ;U). (2.17)

[We note that by taking the L2(0, T ;U)-inner product of (2.17) with u, we
obtain

2(Lu,Bu)L2(0,T ;U) = ‖LTu‖2Y , u ∈ L2(0, T ;U), (2.18)

thus recovering the identity buried in (2.9).] Equation (2.18) shows, again,
the implication (2.2) ⇒ (2.11), hence (2.3), as is well known [30], [46, p. 648].
The proof #2 is complete. �

Finally, the equivalence between (2.3) and (2.4) is well known [8, 30, 46]
(by duality). The proof of Theorem 2.1 is complete. ��

Corollary 2.1. Assume that the assumptions of Theorem 2.1 regarding the
open-loop problem (2.1) (= (1.2.1)) hold. Then the following regularity result
holds: The map

{y0, u} ∈ Y × L2(0, T ;U)
→ B∗y = B∗Lu + B∗eAty0 ∈ L2(0, T ;U) (2.19)

is continuous.

Consequences.

PDE mixed problems where the regularity (2.3) of L is false: a fortiori, the
regularity (2.2) of B∗L is false (yet uniform stabilization of the corresponding
dissipative problem holds). Alternative strategy for uniform stabilization of the
corresponding nonlinear boundary dissipative problems.
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u ∈ L2(0, T ; U)

y0 ∈ Y

ẏ = Ay + Bu B∗y ∈ L2(0, T ; U)
(boundary observation)�

�

�

Fig. 1 Open-loop regularity {I.C., boundary control} → boundary observation, under
the assumption B∗L ∈ L(L2(0, T ;U), for the system (1.2.1), in the setting (a.1), (a.2) of
Subsect. 1.3

These PDE-mixed problems were already noted in [48, Sect. 6 (Examples
6.2 and 6.3) and Sect. 8] and [49, Remark 4.5]. These are all PDE-mixed prob-
lems where B∗L fails a fortiori to satisfy the regularity property (2.2), yet
uniform stabilization (under appropriate geometrical conditions) does hold
in each case, as has been known since the early 80’s. This re-confirms one
of the points of [48] that assumption (2.3) for B∗L made in Theorem 3.1 to
yield uniform stabilization (generalizing Claim 1.3.1 of Subsect. 1.3) is gener-
ally too strong (and no advantage to check, when it holds); even in the linear
case. In these (and other PDE) cases, there is, however, an alternative strategy
to obtain uniform stabilization with nonlinear boundary feedback: namely,
along the general approach of [24], originally carried out for waves, which
was already exported to other dynamics: shells [47], Schrödinger equations
on the state space L2(Ω) with Neumann feedback dissipative control [51].
(See subsequent Sect. 9.) We briefly indicate the list of the aforementioned
PDE problems.

Example #1. The open-loop wave equation in Ω, dim Ω � 2, with Neu-
mann boundary control g ∈ L2(0, T ;L2(Γ1)) ≡ L2(Σ1), and its corresponding
closed-loop dissipative system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

vtt = Δv

v(0, · ) = v0, vt(0, · ) = v1

v|Σ0 = 0

∂v

∂ν

∣

∣

∣

∣

Σ1

= g

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wtt = Δw in Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ0 = 0

∂w

∂ν

∣

∣

∣

∣

Σ1

= wt in Σ,

(2.20a)

(2.20b)

(2.20c)

(2.20d)

with Q = (0, T ] × Ω, Σi = (0, T ] × Γi, i = 0, 1; Γ = Γ0 ∪ Γ1, Γ0 �= φ,
Γ 0 ∩ Γ 1 = φ; h · ν � on Γ0 for a coercive smooth vector field h on Ω. For
the theory of sharp/optimal regularity of the mixed v-problem we refer to
[34, 36, 38, 45], [46, Subsect. 9.4, p. 857 for dim Ω = 1], [76].
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In particular, for dim Ω � 2, g ∈ L2(0, T ;L2(Γ )) does NOT imply v ∈
C[0, T ];H1(Ω)), not even v ∈ H

3
4+ε(Q), for all ε > 0 [and ε = 0 only for flat

boundary (parallelepiped)]. In fact, {v, vt} ∈ C([0, T ];H
2
3 (Ω) ×H− 1

3 (Ω)) is
the best result, for general Ω. See counterexample in [36, p. 294]. Uniform
stabilization of the w-problem is given in [83]. Exact controllability of the
corresponding nonlinear problem is given in [88]. Exact controllability for
the corresponding boundary value problem is given in [88].

Example #2. The Euler–Bernoulli plate model in dim Ω = 2, with free
boundary condition:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

vtt + Δ2v + v = 0 in (0, T ]×Ω ≡ Q;

v(0, · ) = v0, vt(0, · ) = v1 in Ω;

[Δv + (1− η)B1v]Σ = 0 in (0, T ]× Γ ≡ Σ;

[

∂Δv

∂ν
+ (1− η)B2v

]

Σ

= g in Σ,

(2.21a)

(2.21b)

(2.21c)

(2.21d)

where 0 < η < 1 is the Poisson modulus and B1 and B2 are the usual bound-
ary operators, defined, say, in [16, 17], [46, Vol. 1, p. 249]. Here, with reference
to the problem (2.21a–d), the space of finite energy is Y ≡ H2(Ω) × L2(Ω).
Yet, for dim Ω � 2 the map g → Lg = {v, vt} defined by the problem (2.2.1a–
d) is not continuous L2(Σ) → C([0, T ];H2(Ω)×L2(Ω)). Nevertheless, exact
controllability/uniform stabilization results for the corresponding dissipative
problem on such a space H2(Ω)×L2(Ω) of finite energy are given in [16, 17],
with geometrical conditions relaxed or eliminated by virtue of the sharp trace
results in [44].

Example #3. Another negative example where uniform stabilization
is known, yet the operator B∗L ∈ L(L2(0, T ;U)), is given by the Euler–
Bernoulli plate equation with boundary control only in the ‘moment’ Δw|Σ ,
as considered in [40, 14]. Here, the class of controls is L2(0, T ;H

1
2 (Γ )),

and the space of exact controllability and uniform stabilization is Y =
[H2(Ω) ∩ H1

0 (Ω)] × L2(Ω). Exact controllability (without geometrical con-
ditions) is established in [40], while uniform stabilization is proved in [40]
(under geometrical conditions), and in [14] (without geometrical conditions).
Optimal regularity of L is given in [46, pp. 1023 and 1029]: it shows that it
would take the class H

1
2 ,

1
2 (Σ) of controls—thus with an extra 1

2 -derivative
in time—to obtain L continuous into C([0, T ]; [H2(Ω) ∩ H1

0 (Ω)] × L2(Ω)).
Thus, by Theorem 2.1, B∗L /∈ L(L2(0, T ];H

1
2 (Γ )).

A further class of examples (Schrödinger equation with Neumann bound-
ary controls) is deferred to Sect. 9.
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3 Closed-Loop Nonlinear Feedback System: Uniform
Stabilization with Optimal Decay Rates

We return to the closed-loop nonlinear version (1.3.15),

yt = Ay −Bf(B∗y), y(0) = y0 ∈ Y, (3.1)

under the same assumptions (a.1) for A and (a.2) for B of Subsect. 1.2 (which
also covers the second order setting of Subsect. 1.3 under assumptions (h.1)
and (h.2).

Preliminary assumptions (for well-posedness).

(H.1) The operator A satisfies assumption (a.1) of Subsect. 1.3; the opera-
tor B satisfies assumption (a.2) of Subsect. 1.3.

(H.2) The function f , f(0) = 0, is continuous U → U and monotone in-
creasing

(f(u1)− f(u2), u1 − u2)U � 0 ∀ u1, u2 ∈ U.

Under these assumptions, as noted below (1.3.15), it is known [19, 21] that
A − Bf(B∗) generates a nonlinear semigroup of contractions—say SF (t)—
which yields the following variation of parameter formula (3.1):

y(t) = SF (t)y0 = eAty0 − {L(f(B∗SF ( · )y0)}(t), (3.2)

and obeys the energy identity

‖y(T )‖2Y = ‖y0‖2Y − 2

T
∫

0

(f(B∗y), B∗y)Udt. (3.3)

Additional assumptions (for uniform stabilization).

(H.3) The function f satisfies f(0) = 0 and there exists a (real-valued)
continuous, concave function h : R

+ → R
+, strictly increasing, with h(0) =

0, such that

‖f(u)‖2U + ‖u‖2U � h((f(u), u)U ) ∀ u ∈ U. (3.4)
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See the end of the present Sect. 3: in the case of a substitution (Nemytski)
operator, (H.3) is a property, not an assumption.

We next rescale h by setting

˜h( · ) = h
( ·
T

)

. (3.5)

In order to state our main result on stabilizations, we need to introduce some
functions. As in [24, 51], we set (with CT = max{2, 4kT}, with kT = |||B∗L|||;
see (3.11) below)

H(x) =x +
T

2
CTh

( x

T

)

:

positive for x > 0,continuous, strictly increasing, H(0) = 0; (3.6)

p(x) =H−1(x) :

positive for x > 0, continuous,strictly increasing, p(0) = 0; (3.7)

q(x) =x− (I + p)−1(x) = p(I + p)−1(x) = (I + p)−1p(x) :

positive for x > 0, continuous, strictly increasing, q(0) = 0. (3.8)

In particular, H , p, q, do not depend on the initial energy ‖u0‖Y . We can
now state the main uniform stabilization result of the present paper in the
direction of [24, 25, 51]. Subsequent sections will provide a set of several PDE
illustrations.

Theorem 3.1. With reference to the nonlinear problem (3.1), assume the
structural hypotheses (H.1), (H.2) on {A,B, f} for well-posedness, as well as
(H.3). Moreover, assume that

(H.4) the linear open-loop problem (1.1.1) (= (2.1) is exactly controllable
on the state space Y , over the interval [0, T ], 0 < T <∞, within the class
of L2(0, T ;U)-controls u;

(H.5) the open-loop, boundary → boundary map B∗L is continuous
(bounded) on L2(0, T ;U).

Then the semigroup solution SF ( · ) in (3.2) describing the solution of the
closed-loop dissipative nonlinear problem (3.1) (as guaranteed by [19, 21] by
virtue of (H.1), (H.2)) decays to zero on the space Y as T → +∞ uniformly
with respect to all initial data y0 in Y . More precisely, its decay rate is de-
scribed by the following nonlinear ODE in the scalar function s(t) (nonlinear
contraction)
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d

dt
s(t) + q(s(t)) = 0, s(0) = ‖y(0)‖Y , (3.9)

where q is defined in (3.8), and hence does not depend on the initial energy
‖y0‖Y . This means that the solutions SF (t)y0 of (3.1) satisfy

‖SF (t)y0‖Y � s(t)(‖y0‖Y ) ↘ 0 as t↗ +∞, (3.10)

uniformly in y0 ∈ Y . [Paper [24, Theorem 2, p. 511] also provides uniform
decay rates in the presence of only the boundary damping]

Proof. We start as in the proof of Proposition 1.3.2, and then modify the
argument as to fall in the original treatment of [24], refined in [51].

Step 1. We apply B∗ on both sides of the solution formula (3.2), and obtain
for y0 ∈ Y :

B∗eAty0 = B∗SF (t)y0 + {[B∗L]f(B∗SF ( · )y0)}(t). (3.11)

We next invoke assumption (H.5): Setting kT = |||B∗L||| in the uniform
operator norm of L(L2(0, T ;U)), we estimate from (3.11),

‖B∗eA · y0‖2L2(0,T ;U)

� 2‖B∗SF ( · )y0‖2L2(0,T ;U) + 2k2
T ‖f(B∗SF ( · )y0)‖2L2(0,T ;U) (3.12)

� CT

T
∫

0

[

‖B∗SF (t)y0‖2U + ‖f(B∗SF (t)y0)‖2U
]

dt (3.13)

(by (3.4)) � CT

T
∫

0

h ((f(B∗SF (t)y0), B∗SF (t)y0)U dt (3.14)

� TCTh

⎛

⎝

1
T

T
∫

0

(f(B∗SF (t)y0), B∗SF (t)y0)Udt

⎞

⎠ . (3.15)

In going from (3.14) to (3.15) we have invoked the Jensen inequality [18,
p. 38]. Thus, recalling (3.5), we rewrite (3.15) as

T
∫

0

‖B∗eAty0‖2Udt � TCT˜h

⎛

⎝

T
∫

0

(f(B∗SF (t)y0), B∗SF (t)y0)Udt

⎞

⎠ , y0 ∈ Y.

(3.16)
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Step 2. The exact controllability assumption on the open-loop problem
(1.2.1), in short, on the pair {A,B}, equivalently on the pair {A∗, B}, guar-
antees characterization (1.3.13). This, combined with (3.16), yields then, for
any y0 ∈ Y :

‖y0‖2Y � CT

T
∫

0

‖B∗eAty0‖2Udt

� TCT˜h

⎛

⎝

T
∫

0

(f(B∗SF (t)y0), B∗SF (t)y0)Udt

⎞

⎠ . (3.17)

Step 3. From the energy inequality (3.3) with y(t) = SF (t)y0, we have by
virtue of the estimate (3.17),

‖SF (T )y0‖2Y

� ‖y0‖2Y + 2

T
∫

0

(f(B∗SF (t)y0), B∗SF (t)y0)Udt (3.18)

(by (3.17)) � [2I + TCT˜h( · )]

⎛

⎝

T
∫

0

(f(B∗SF (t)y0), B∗SF (t)y0

⎞

⎠

U

dt (3.19)

(by (3.3)) �
[

I +
T

2
CT˜h( · )

]

[

‖y0‖2Y − ‖SF (T )y0‖2Y
]

(3.20)

= H
[

‖y0‖2Y − ‖SF (T )y0‖2Y
]

, (3.21)

with the map H defined in (3.6). Thus, as the map H is invertible on R
+,

from (3.21) we obtain

H−1(‖SF (T )y0‖2Y ) � ‖y0‖2Y − ‖SF (T )y0‖2Y , (3.22)

or with y(T ) = SF (T )y0:

‖y(T )‖2Y + H−1(‖y(T )‖2Y ) � ‖y0‖2Y . (3.23)

Step 4. To the inequality (3.24), we can now apply [24, Lemma 5.1], with
p = H−1 and q as (3.7), (3.8), to obtain (3.9), (3.10), as desired. ��
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In the case of a Nemytski operator, (H.3) is a property, not an
assumption.

In the case where the function f is a Nemytski operator (operator of sub-
stitution), assumption (H.3) automatically follows from monotonicity of the
feedback f and the imposed growth condition. Thus, in this case, (H.3) is
really a property, not an assumption.

To be more specific, we apply assumption (H.3) with

U = L2(Γ ), f : U → U given by f(u)(x) = g(u(x)), (3.24)

where the scalar function g(s) satisfies the following two conditions:

(i) g ∈ C(R), g(0) = 0, g is monotone increasing;

(ii)
m|s|2 � g(s)s � Ms2, for |s| � 1. (3.25)

Lemma 3.1. Under assumptions (i) and (ii) above, the function f : U → U
satisfies hypothesis (H.3).

Proof. Since g is monotone increasing and satisfies (i), we have [24, 25, 51]:
there exists a function h0 monotone, h0(0) = 0, concave such that [24, 25, 51]

s2 + g2(s) � h0(sg(s)), |s| � 1. (3.26)

We next claim that the function h in assumption (H.3) is given by

h(s) ≡ (meas Γ )h0

( s

meas Γ

)

+
(

1 + M2

m

)

s, (3.27)

where h0 is a function constructed below from g. This follows by direct com-
putations. In fact ([24, 25, 51]),

‖f(u)‖2U + ‖u‖2U =
∫

Γ

[u2 + |f(u)|2]dΓ =
∫

Γ

[u2(x) + |g(u(x)|2]dΓ. (3.28)

We split the last integral into two complementary parts. By use of both
inequalities in (3.25), we have:

∫

{x∈Γ :u2(x)�1}

[u2(x) + |g(u(x))|2]dx �
∫

Γ

(1 + M2)|u(x)| |u(x)|dΓ (3.29)

� 1 + M2

m

∫

Γ

u(x)g(u(x))dΓ. (3.30)
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By (i), there exists (and is computable [24, 51]) a continuous, monotone
increasing, concave function h0, h0(0) = 0, such that

s2 + g2(s) � h0(sg(s)), |s| � 1. (3.31)

Hence, by (3.31),
∫

{x∈Γ :u2(x)�1}

[u2(x) + |g(u(x))|2]dx �
∫

Γ

h0(u(x)g(u(x))dΓ (3.32)

� (meas Γ )h0

⎛

⎝

1
meas Γ

∫

Γ

u(x)g(u(x))dΓ

⎞

⎠ , (3.33)

where, in the last step, we have again invoked the Jensen inequality [18, p. 38].
Combining (3.30) and (3.33) on the RHS of (3.28) yields

‖f(u)‖2U + ‖u‖2U �
[

(meas Γ )h0

( ·
mes Γ

)

+
1 + M2

m

]∫

Γ

u(x)g(u(x))dΓ,

(3.34)

and (3.4) of assumption (H.3) is verified, via (3.24), with the function f
defined in (3.27). ��

4 A Second Order in Time Hyperbolic Illustration: The
Wave Equation with Dirichlet Boundary Control and
Suitably Lifted Velocity Boundary Observation

4.1 From the Dirichlet boundary control g for the wave
solution {v, vt} to the boundary observation ∂z

∂ν
|Γ ,

via the Poisson equation lifting z = A−1vt

Let A be the differential expression defined in (1.1.0).

Linear open-loop and nonlinear closed-loop dissipative systems.

In this subsection, let Ω be an open bounded domain in R
n, n � 1, with

sufficiently smooth boundary Γ . We consider the open-loop linear wave
equation on Ω (with variable coefficients) with Dirichlet boundary control
g ∈ L2(0, T ;L2(Γ )) ≡ L2(Σ), and its corresponding nonlinear closed-loop
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boundary dissipative system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vtt = Av;

v(0, · ) = v0, vt(0, · ) = v1;

v|Σ = g;

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

wtt = Aw in Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ = f

[

∂(A−1wt)
∂ν

∣

∣

∣

∣

Γ

]

in Σ,

(4.1.1a)

(4.1.1b)

(4.1.1c)

with Q = (0, T ]×Ω; Σ = (0, T ]× Γ . Moreover, the operator A is defined by
(4.1.6) below: Aψ = −Aψ, D(A) = H2(Ω) ∩ H1

0 (Ω). Here, ∂
∂ν denotes the

co-normal derivative w.r.t. A. The nonlinear function f will be specified in
Subsect. 4.4 below.

Regularity, exact controllability of the v-problem; uniform
stabilization of the w-problem for f ≡ identity.

References for this subsection include [3, 12, 26, 27, 29, 42, 63, 64, 22, 56, 91,
95, 53].

We begin by introducing the (state) space of optimal regularity

Y ≡ L2(Ω)× [D(A 1
2 )]′ ≡ L2(Ω)×H−1(Ω). (4.1.2)

Theorem 4.1.1 (regularity [26, 27, 22]). Regarding the v-problem (4.1.1),
with y0 = {v0, v1} = 0, the following regularity result holds for each T > 0
(the definition of L given here is i n line with the abstract definition of the
operator L throughout this paper) : the map

L : g → Lg ≡ {v, vt} is continuous

L2(Σ) → C([0, T ];Y ≡ L2(Ω) ×H−1(Ω)).
(4.1.3)

Theorem 4.1.2 (exact controllability [12, 29, 81, 64, 91, 95, 37, 50, 53]).
Given any initial condition {v0, v1} ∈ Y and T > 0 sufficiently large, there
exists a g ∈ L2(Σ) such that the corresponding solution of the v-problem
(4.1.1) satisfies {v(T ), vt(T )} = 0.

Theorem 4.1.3 (uniform stabilization [29, 41, 91]). With reference to the
w-problem (4.1.1), with f(u) = u, u ∈ Γ (identity), we have

(i) the map {w0, w1} ∈ Y ≡ L2(Ω) × [D(A 1
2 )]′ → {w(t), wt(t)} defines a

s.c. contraction semigroup eAt on Y ;

(ii)

w|Σ =
∂(A−1wt)

∂ν
∈ L2(0,∞;L2(Γ )) (4.1.4)
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continuously in {w0, w1} ∈ Y ;

(iii) there exist constants M � 1 and δ > 0 such that
∥

∥

∥

∥

[

w(t)
wt(t)

]∥

∥

∥

∥

Y

=
∥

∥

∥

∥

eAt
[

w0

w1

]∥

∥

∥

∥

Y

� Me−δt
∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

Y

, t � 0. (4.1.5)

All three theorems above are obtained by PDE hard analysis energy meth-
ods (suitable energy multipliers). As usual, the most challenging result to
prove is Theorem 4.1.3 on uniform stabilization: this, in addition, requires
a shift of topology from L2(Ω) × H−1(Ω) (the space of the final result) to
H1

0 (Ω) × L2(Ω) (the space where the energy method works). This shift of
topology is implemented by a change of variable: this is the same change of
variable that is noted below in (4.1.10).

Abstract model of v-problem.

With reference to (1.1.0), we let

Af = −Af, D(A) = H2(Ω) ∩H1
0 (Ω); D : Hs(Γ ) → Hs+ 1

2 (Ω), s ∈ R,

ϕ = Dg ⇐⇒ {Aϕ = 0 in Ω; ϕ|Γ = g in Γ}.
(4.1.6)

The abstract model for the v-problem in (4.1.1) is [29, 26, 27, 80]

vtt = −Av +ADg;
d

dt

[

v
vt

]

= A

[

v
vt

]

+ Bg; (4.1.7a)

A =
[

0 I
−A 0

]

; Bg =
[

0
ADg

]

, B∗
[

x1

x2

]

= D∗x2, (4.1.7b)

where ∗ for B and D refer to different topologies, and where the Dirich-
let map D is defined in (4.1.6). Moreover, with B∗ defined by (Bg, x)Y =
(g,B∗x)L2(Γ ), with respect to the Y -topology in (4.1.2), we readily find the
expression in (4.1.7).

A ‘dissipative-like,’ open-loop, boundary control → boundary
observation linear problem. The operator B∗L.

Given the v-problem in (4.1.1a-b-c) (LHS) with open-loop Dirichlet-control
g, the argument below introduces a lifting of the velocity vt : z ≡ A−1vt.
Indeed, with y0 = {v0, v1} = 0, we show below that
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B∗Lg=B∗

[

v(t; y0 =0)

vt(t; y0 =0)

]

= D∗vt(t; y0 =0)=D∗AA−1vt(t; y0 =0) (4.1.8)

= − ∂

∂ν
A−1vt(t; y0 = 0) = − ∂z(t)

∂ν
; (4.1.9)

z(t) ≡ A−1vt(t; y0 = 0) ∈ C([0, T ];D(A 1
2 ) ≡ H1

0 (Ω))
continuously in g ∈ L2(Σ).

(4.1.10)

Indeed, to obtain (4.1.8), (4.1.9), one uses the definition of L in (4.1.3)
followed by the definition of B∗ in (4.1.7) and the usual property D∗A = − ∂

∂ν
on H1

0 (Ω) [29, Equation (1.10)]. Finally, the regularity of z in (4.1.10) follows
from the regularity (4.1.3) on vt with H−1(Ω) = [D(A 1

2 )]′. The new variable
z(t) defined in (4.1.10) satisfies the following dynamics: abstract equation,
and corresponding PDE-mixed problem

ztt = −Az + Dgt

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ztt = Az + Dgt in Q;

z(0, · ) = 0, zt(0, · ) = z1 in Ω;

z|Σ ≡ 0 in Σ.

(4.1.11a)

(4.1.11b)

(4.1.11c)

Indeed, the abstract z-equation in (4.1.11) (left) is readily obtained from the
abstract v-equation in (4.1.7), after applying throughout A−1 and d

dt to it,
and using the definition of z(t) in (4.1.10). Moreover, since z(t) ∈ H1

0 (Ω)
from (4.1.10), then z satisfies the Dirichlet boundary condition in (4.1.11c).
Moreover, in addition to the a priori regularity for z in (4.1.10), we also have
that for zt:

zt = A−1vtt = A−1[−Av +ADg] = −v + Dg ∈ L2(0, T ;L2(Ω))

continuously in g ∈ L2(Σ),
(4.1.12)

as it follows from v ∈ C([0, T ];L2(Ω)) by (4.1.3) and Dg ∈ L2(0, T ;H
1
2 (Ω))

by (4.1.6) with s = 0. We next provide an interpretation of the new variable
z via the Poisson equation. From (4.1.10) we have

Az = vt(t; y0 = 0); or

⎧

⎨

⎩

Az = −vt(t, x; y0 = 0) in Ω;

z|Γ = 0 on Γ.

(4.1.13a)

(4.1.13b)

z(t;x0) = − 1
2π

∫

Ω

G(x, t;x0)vt(t, x; y0 = 0)dx, (4.1.14)
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G( ) being the associated Green function on Ω (with t a parameter) [11].
Thus, z is the solution of the corresponding Poisson equation with zero Dirich-
let boundary data and with −vt as a forcing term.

� �
z
� � ∂z

∂ν
|Γ = ∂A−1vt

∂ν
|Γg

wave

v-problem
(4.1.1)

v

vt

Poisson
Equation

∂ ·
∂ν

∣
∣
∣
∣
Γ

Fig. 2 Open-loop boundary control g → boundary observation ∂z
∂ν

|Γ .

� �
z
�

� �

�
∂z

∂ν

g
wave

v-problem
(4.1.1)

v

vt

Poisson
Equation

∂ ·
∂ν

∣
∣
∣
∣
Γ

Nonlinear
Feedback f

Fig. 3 The corresponding closed-loop boundary dissipative {w,wt}.

Key boundary → boundary regularity question.

With the optimal regularity of the variable z given by (4.1.10), we consider the
corresponding Neumann trace (boundary observation) and ask the question
(recalling (4.1.8)–(4.1.9)):

Does
∂z

∂ν

∣

∣

∣

∣

Γ

∈ L2(0, T ;L2(Γ ))?

i.e.,

Is B∗L continuous L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ ))?

(4.1.15)

The question is not trivial when dim Ω � 2. For dim Ω = 1 it holds readily
(see [48]).

In general, a positive answer to question (4.1.15) does not follow directly
by trace theory from the optimal interior regularity (4.1.10) of z. In fact,
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a positive answer to question (4.1.15) would correspond to a “ 1
2 gain” in

Sobolev-space regularity (in the space variable) over a formal application of
trace theory to (4.1.10).

It turns out that the answer to question (4.1.15) is in the affirmative [49].
However, this sharp result does not follow entirely from the wealth of opti-
mal regularity results and techniques for Mixed Problems (Initial Boundary
Value Problems) for second order hyperbolic equations with Dirichlet homo-
geneous and nonhomogeneous boundary conditions, as given in [22, 26, 27],
even though reference [22] provides a critical part of the proof (see Remark
4.1.1 below). The remaining part of the proof is also critical and challenging
and is obtained by using a pseudodifferential analysis in the corresponding
“elliptic sector” in the dual (Fourier) variables.

Main result.

The main result of the present Subsect. 4.1 is the following:

Theorem 4.1.4. Let Ω be a sufficiently smooth bounded domain in R
n, n �

2. We consider the v-problem in (4.1.1a–c) (LHS), and zero initial conditions:
v(0, ·) = vt(0, ·) = 0 on Ω. Then the regularity in (4.1.15) holds. This is to
say, the open-loop map

g → B∗Lg = D∗vt = − ∂z

∂ν
is bounded on L2(Σ), z = A−1vt. (4.1.16)

Remark 4.1.1. We note the marked contrast between the seriously challenging
result (4.1.15) or (4.1.16) of the open-loop map g → − ∂A−1vt

∂ν |Γ of the v-
problem (4.1.1a–c) on the one hand, and on the other hand, the much easier
counterpart result of the corresponding closed-loop map given by (4.1.14)
for the closed-loop boundary dissipative w-problem in (4.1.1a–c) (RHS) with
f = identity, which may be thought of as being obtained from the v-problem
by closing up the loop, whereby the output − ∂A−1vt

∂ν is required to coincide
with the input g. (Compare Figs. 2 and 3.) �

The energy method on the mixed PDE z-problem (4.1.11) fails to
show that ∂z

∂ν
∈ L2(0, T ;L2(Γ )), continuously in

g ∈L2(0, T ;L2(Γ )), except in the 1-dimensional case.

To make our point, it will suffice to consider the case A = Δ. See the end
of Subsect. 1.2. As in [22], multiplying the PDE problem (4.1.11) by h · ∇z,
with h a C2-vector field on Ω, with h|Γ = ν on Γ , and using the boundary
condition (4.1.11c), we obtain the identity [22, Equation (2.27), p. 157]
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1
2

∫

Σ

(T − t)
(

∂z

∂ν

)2

dΣ

=
∫

Q

(T − t)H∇z · ∇z dQ +
1
2

∫

Q

(T − t)[z2
t − |∇z|2]div h dQ

+
∫

Q

zth · ∇z dQ−
∫

Q

(T − t)Dgth · ∇z dQ. (4.1.17)

[Since zt is only L2 in time (see (4.1.12)), we have used the multiplier (T −
t)h · ∇z, to eliminate the terms at t = 0 and t = T . Otherwise, one takes
preliminarily g in the class (4.1.19) below, and uses just the multiplier h ·∇z.]

Thus, the a priori regularity of {z, zt} in (4.1.10) and (4.1.12) guarantee
that all first three integral terms on the RHS of (4.1.12) are well defined,
continuously in g ∈ L2(Σ). Hence from (4.1.12) we obtain

1
2

∫

Σ

(T − t)
(

∂z

∂ν

)2

dΣ = O
(

‖g‖2L2(Σ)

)

−
∫

Q

(T − t)Dgt h · ∇z dQ. (4.1.18)

Letting now g be (temporarily) in the class

g ∈ C([0, T ];L2(Γ )) g(T ) = g(0) = 0, (4.1.19)

dense in L2(Σ), we see by integration by parts in t with use of (4.1.19),
followed by the usual divergence theorem, that

−
∫

Q

(T − t)Dgt h · ∇z dQ =

T
∫

0

∫

Ω

Dg h · ∇zt dΩ dt + l.o.t. (4.1.20)

=

T
∫

0

∫

Γ
�����
Dg zth · ν dΓ dt−

T
∫

0

∫

Ω

zth · ∇(Dg)dΩ dt

−
T
∫

0

∫

Ω

Dg ztdiv h dΩ dt + l.o.t., (4.1.21)

in view of zt|Γ = 0 by (4.1.11c). The last integral term in the RHS of
(4.1.21) is well-defined continuously in g ∈ L2(Σ), by (4.1.12) on zt and
Dg ∈ L2(0, T ;H

1
2 (Ω)). Thus, from (4.1.18) we obtain via (4.1.21)
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∫

Σ

(

∂z

∂ν

)2

dΣ = O
(

‖g‖2L2(Σ)

)

+

T
∫

0

∫

Ω

zth · ∇(Dg)dΩ dt. (4.1.22)

One-dimensional case.

In the one-dimensional case, say Ω = (0, 1), with A = Δ = ∂xx, and boundary
conditions v|x=0 = g, v|x=1 = 0, we then have that (Dg)(x) is a linear
function of x: (Dg)(x) = −gx+ g, g ∈ R, 0 � x � 1. Thus, we have ∇(Dg) ≡
−g (constant), and we get

∫

Σ

(

∂z

∂ν

)2

dΣ = O
(

‖g‖2L2(Σ)

)

, (4.1.23)

thus re-proving— in a more complicated way!—the result of [26, Subsect. 4.7].

Multidimensional case: dim Ω � 2.

In this case, the a priori regularity of zt ∈ L2(0, T ;L2(Ω)) and Dg ∈
L2(0, T ;H

1
2 (Ω)), hence |∇(Dg)| ∈ L2(0, T ; (H

1
2
00(Ω))′) [65, p. 85] show that,

roughly speaking, “ 1
2” space derivative is apparently missing in order to have

the integral term on the RHS of (4.1.22) well defined.

Remark 4.1.2. The above Theorem 4.1.4 was first stated in [1] (see the esti-
mate (2.7) in p. 121). We believe that the proof that we give in Subsect. 4.2
below is essentially self-contained and much simpler than the sketch given
in [1]. The idea pursued in [1] is based on a full microlocal analysis of the
fourth order operator Δ(D2

t − Δ) [where the extra Δ is used to eliminate
Dg from the z-dynamics ztt = Δz + Dgt (see (4.1.11a)), as ΔDgt ≡ 0]. The
subsequent microlocal analysis of [1] considers, as usual [1], three regions: the
hyperbolic region, the elliptic region, and the “glancing rays” region. The lat-
ter is the most demanding, and it is unfortunate that no details are provided
in [1] for the analysis in the glancing region, except for reference to author’s
Ph.D. thesis.

By contrast, our proof in Subsect. 2.2 below [49] invokes, for the most
critical part, the sharp regularity of the wave equation from [22]—which is
obtained via differential, rather than pseudo-differential/micro-local analysis
methods. In addition, standard elliptic (interior and) trace regularity of the
Dirichlet map D is used. Thus, by simply invoking these results in Equation
(4.1.12) above for zt, we obtain—by purely differential methods, the critical
result on ∂zt

∂ν of Step 1, Equation (4.2.3). This then provides automatically
the desired regularity of ∂z

∂ν microlocally outside the elliptic sector of the
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D’Alambertian � = D2
t−Δ, where the time variable dominates the tangential

space variable in the Fourier space (see (4.2.11) below).
Thus, the rest of the proof follows from PDO elliptic regularity of the

localized problem. �

4.2 Proof of Theorem 4.1.4

Step 1. Let g ∈ L2(Σ). Then the following interior and boundary sharp
regularity for the v-problem (4.1.1a–c) (LHS) is known [22, Theorem 2.3,
p. 153; or else Theorem 3.3, p. 176 (interior regularity) plus Theorem 3.7,
p. 178 (boundary regularity)]

{v, vt} ∈ C([0, T ];L2(Ω)×H−1(Ω));
∂

∂ν
v

∣

∣

∣

∣

Σ

∈ H−1(Σ) (4.2.1)

continuously in g (as noted in (4.1.3)). Moreover, elliptic regularity of the
Dirichlet map gives Dg ∈ L2(0, T ;H

1
2 (Ω)), and thus

∂

∂ν
Dg ∈ L2(0, T ;H−1(Γ )). (4.2.2)

[This result can be proved by interpolation between
{

Δh = 0 in Ω

h|Γ = g ∈ H
1
2 (Γ )

⇒ h ∈ L2(Ω) and
∂h

∂ν

∣

∣

∣

∣

Γ

∈ H− 3
2 (Γ ),

and
{

Δh = 0 in Ω

h|Γ = g ∈ H
1
2 (Γ )

⇒ h ∈ H1(Ω) and
∂h

∂ν

∣

∣

∣

∣

Γ

∈ H− 1
2 (Γ ). ]

Next, using (4.2.1) and (4.2.2) in (4.1.12) yields

∂

∂ν
zt = − ∂

∂ν
v +

∂

∂ν
Dg ∈ H−1(Σ). (4.2.3)

The above relation provides us with the desired regularity of ∂z
∂ν microlocally

outside the elliptic sector of the D’Alambertian � = D2
t −Δ; i.e., when the

dual Fourier variable σ (corresponding to time) dominates the dual Fourier
variable |η| (corresponding to the space tangential variable). A quantitative
statement of this is given in (4.2.11) below.

Step 2. It remains to show that the L2 regularity of ∂z
∂ν holds also in

the elliptic sector. This is done by standard arguments using localization of
the PDO symbols. We use standard partition of unity procedure and local
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change of coordinates by which Ω and Γ can be identified (locally) with
˜Ω ≡ {(x, y) ∈ R

n, x � 0, y ∈ R
n−1}, ˜Γ ≡ {(x, y) ∈ R

n, x = 0, y ∈
R
n−1}. The second order elliptic operator Δ is identified in local coordinates

(Melrose-Sjostrand) with ˜Δ = D2
x + r(x, y)D2

y + lot, where lot (which result
from commutators) are first order differential operators and r(x, y)D2

y stands
for the second order tangential (in the y variable) strongly elliptic operator.
Since solutions v satisfy zero initial data, we can also extend v(t) by zero
for t < 0. For t > T we multiply the solution by a smooth cutoff function
φ(t) = 0, t � 3

2T, φ(t) = 1, t � T . Thus, in order to obtain the desired
solution, it amounts to consider the following problem:

wtt = ˜Δw = Δ0w + lot(v) in ˜Q, w|
˜Γ = g; w(0, · )

= wt(0, · ) = 0 in ˜Ω, supp w ∈ [0, 2T ]
(4.2.4a)

[the solution w in (4.2.4a) should not be confused with the solution w of
the closed-loop dissipative problem in (4.1.1a–c) (RHS)]. Here, Δ0 = D2

x +
r(x, y)D2

y is the principal part of ˜Δ and v is the original solution v = Lg of
the v-problem on the LHS of (4.1.1a–c). Below, we write w = u + y, where
u, y satisfy (4.2.5) and (4.2.6), respectively. As a consequence, we obtain

{w,wt} ∈ C([0, T ];L2( ˜Ω)×H−1( ˜Ω)) continuously in g ∈ L2( ˜Σ). (4.2.4b)

Here and below, we call u the solution of

utt = Δ0u in ˜Q, u|
˜Σ = g; u(0, · ) = ut(0, · ) = 0 in ˜Ω, (4.2.5a)

{u, ut} ∈ C([0, T ];L2( ˜Ω)×H−1( ˜Ω)) continuously in g ∈ L2( ˜Σ), (4.2.5b)

the counterpart regularity statement of (4.2.1) for v in Ω. Likewise, we in-
troduce the following nonhomogenous problem:

ytt = Δ0y + f in ˜Q, y|
˜Σ = 0, y(0, · ) = yt(0, · ) = 0 in ˜Ω, (4.2.6)

where f = lot (v) results from the presence of the lower order terms applied
to the original variable v in (4.2.1). Thus, recalling that v ∈ C([0, T ];L2(Ω))
by (4.2.1), we obtain

f ∈ C([0, T ];H−1( ˜Ω)), hence {y, yt} ∈ C([0, T ];L2( ˜Ω)×H−1( ˜Ω)) (4.2.7)

[22, Theorem 2.3, p. 153] continuously in g ∈ L2(Σ).
By the principle of superposition, we have w = u+y, as announced above.

Step 3. In this step, we handle the y-problem (4.2.6). We first recall from
(4.1.16) that our original objective is showing that D∗vt ∈ L2(Σ) contin-
uously in g ∈ L2(Σ). Moreover, we recall that v in Ω is transferred into
w = u + y, on the half-space ˜Ω (locally). Thus, by (4.2.6), (4.2.7), what
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suffices to show for y is the following regularity property

f → D∗yt : continuous L2(0, T ;H−1( ˜Ω)) → L2(0, T ;L2( ˜Γ )), (4.2.8)

whereby D∗yt is ultimately continuous in g ∈ L2(Σ). However, the above
property (4.2.8) is known from [22, Theorem 3.11, p. 182] and has been used
in the past several times. In fact, set A = −Δ0, with D(A) = H2( ˜Ω)∩H1

0 ( ˜Ω)
and rewrite (4.2.6) abstractly as: ytt = −Ay + f . Apply A−1 through-
out and set Ψ = A−1y ∈ C([0, T ];D(A)) via (4.2.7). Moreover, A−1f ∈
L2(0, T ;H1

0( ˜Ω)), again by (4.2.7). Thus, Ψ solves the problem

Ψtt = Δ0Ψ + A−1f in ˜Q, Ψ |
˜Σ = 0, Ψ(0, · ) = Ψt(0, · ) = 0 in ˜Ω. (4.2.9)

We further have that A−1yt ∈ C([0, T ];H1
0 ( ˜Ω)), again by (4.2.7). Finally

we recall that D∗AA−1yt = − ∂
∂νΨt [46, (4.1.9)]. One can simply quote [22,

Theorem 3.11, p. 182] or [46, Equation (10.5.5.11), p. 952] to obtain the
desired regularity (4.2.8):

D∗yt = − ∂

∂ν
Ψt ∈ L2( ˜Σ), continuously in g ∈ L2(Σ). (4.2.10)

Step 4. Having accounted for the lot(v) in Step 3—which are responsible
for the y-problem—we may in this step set y ≡ 0 and thus identify w with
u : w ≡ u. Thus, it remains to consider the problem (4.2.5) in u, involving
only the principal part of the D’Alambertian. Let X ∈ S0( ˜Q) denote the
PDO operator X (x, y, t) with smooth symbol of localization χ(x, y, t, σ, η)
supported in the elliptic sector of � ≡ D2

t − D2
x − r(x, y)D2

y , where the
principal part of the D’Alambertian is written in local coordinates. The dual
variables σ ∈ R

1, η ∈ R
n−1 correspond to the Fourier variables of t → iσ,

y → iη. Thus, supp χ ∈ {(x, y, t, σ, η) ∈ ˜Q×R
1×R

n−1, σ2− r(0, y)|η|2 < 0}.
The established regularity (4.2.3) and the fact that |σ| � c|η| on supp χ imply

(I −X )
∂

∂ν
z ∈ L2(Σ), (4.2.11)

a statement that |σ| ∂z∂ν , and thus a fortiori |η| ∂z∂ν , are in L2 in time and space
in the (hyperbolic) sector |σ| � c|η|. On the other hand, returning to the
problem (4.2.5) for u, rewritten as �u = 0 and applying X , we see that the
variable Xu satisfies

�Xu = −[X ,�]u ∈ H−1( ˜Q). (4.2.12)

where henceforth we take for ˜Q an extended cylinder based on ˜Ω× [−T, 2T ].
Indeed, this last inclusion follows from [X ,�] ∈ S1( ˜Q) and the priori reg-
ularity (4.2.5b) for u implying u ∈ L2( ˜Q), which jointly lead to [X ,�]u ∈
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H−1( ˜Q). Moreover, Xu|Γ = Xg ∈ L2( ˜Σ). Furthermore, still by (4.2.5b) and
the fact that supp u ∈ [0, 3

2T ] we have, by the pseudo-local property of pseu-
dodifferential operators, that (Xu)(2T ) ∈ C∞( ˜Ω), (Xu)(−T ) ∈ C∞( ˜Ω). We
conclude that Xu|∂ ˜Q ∈ L2(∂ ˜Q), a boundary condition to be associated to
(4.2.12). Since �X is a pseudodifferential elliptic operator, classical elliptic
theory, applied to

�Xu ∈ H−1( ˜Q), Xu|∂ ˜Q ∈ L2(∂ ˜Q)

—the elliptic problem obtained above—yields

Xu ∈ H
1
2 ( ˜Q) + H1( ˜Q) ⊂ H

1
2 ( ˜Q), (4.2.13)

where the first containment on the RHS of (4.2.13) is due to the boundary
term, and the second to the interior term. Next, we return to the elliptic
problem: Az = −vt in Q, z|Σ = 0 from (4.1.13), with a priori regularity
noted in (4.1.10). The counterpart of the above elliptic problem in the half-
space ˜Q (locally) is: ˜Δz = −ut in ˜Q, z|

˜Σ = 0 (we retain the symbol z in ˜Q),
as we are identifying w with u in the present Step 4 (due to the results of
Step 3). Applying X throughout yields

˜ΔX z = −Xut + [ ˜Δ,X ]z = − d

dt
Xu +

[

d

dt
,X
]

u + [ ˜Δ,X ]z. (4.2.14)

Note [ ˜Δ,X ] ∈ S1( ˜Q) and [ ddt ,X ] ∈ S0( ˜Q). Hence, by the a priori regularity
in (4.2.5b) for u and in (4.1.13) for z, we conclude

[

d

dt
,X
]

u + [ ˜Δ,X ]z ∈ L2( ˜Q). (4.2.15)

Moreover, by (4.2.13), d
dtXu ∈ H(0,− 1

2 )( ˜Q) where we have used the

anisotropic Hörmander spaces [13, Vol. III, p. 477], H(m,s)( ˜Q), where m is
the order in the normal direction to the plane x = 0 (which plays a distin-
guished role) and (m + s) is the order in the tangential direction in t and y.
Via (4.15), we are thus led to solving the problem

˜ΔX z ∈ H(0,− 1
2 )( ˜Q) + L2( ˜Q), (X z)|

˜Γ = 0. (4.2.16)

By elliptic regularity (note that ˜ΔX is elliptic in ˜Q), we obtain again

X z ∈ H
3
2 ( ˜Q),

∂

∂ν
X z ∈ L2( ˜Σ). (4.2.17)

Combining (4.2.17) and (4.2.11) yields the final conclusion
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∂

∂ν
z = (I −X )

∂

∂ν
z + X ∂

∂ν
z ∈ L2( ˜Σ), (4.2.18)

and Theorem 4.1.1 is proved. �

Remark 4.2.1. Having established Theorem 4.1.4, we may then return to iden-
tity (4.1.22). Since its LHS is finite by Theorem 4.1.4, we conclude that

T
∫

0

∫

Ω

zth · ∇(Dg)dΩ dt <∞,

a result that is not apparent, save for the 1-dimensional case as in (4.1.23).

4.3 The half-space problem: A direct computation

In this subsection, we consider the wave equation defined on a 2-dimensional
half-space, with Dirichlet boundary control. So let

Ω ≡ R
+
2 = {(x, y) : x � 0, y ∈ R

n−1},
Γ = {(0, y) : y ∈ R

n−1} = Ω|x=0.
(4.3.1)

On Ω we consider the wave equation with Dirichlet boundary control:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vtt = vxx + D2
yv in Q ≡ (0,∞]×Ω;

v(0, · ) = 0, vt(0, · ) = 0 in Ω;

v|Σ = g in Σ ≡ (0,∞)× Γ,

(4.3.2a)

(4.3.2b)

(4.3.2c)

where g ∈ L2(0,∞;L2(Γ )) and D2
yv =

n−1
∑

j=1

∂2

∂y2
j
v, y = [y1, . . . , yn−1]. We have

seen in Subsect. 4.1, Equation (4.1.8), that for the problem (4.3.2) we have

B∗Lg = D∗vt. (4.3.3)

Theorem 4.3.1. With reference to the half-space problem (4.3.2a–c), we
have in the notation of (4.3.3), (5.1.8), (5.1.9):

g → B∗Lg = D∗vt(t; y0 = 0) = −∂z

∂ν

∣

∣

∣

∣

Γ

is continuous on L2(Σ), Σ = (0, T )× Γ.

(4.3.4a)
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Proof of (4.3.3). Our proof is inspired by [36, Counterexample, p. 294], for a
different type of result.

Goal : Given T > 0 and g ∈ L2(0, T ;L2(Γ )), we extend g by zero for t > T .
It will then suffice to show that

e−γt(B∗Lg)(t) ∈ L2(0,∞;L2(Γ )), (4.3.4b)

for a fixed constant γ > 0.

Step 1. Let v̂(τ, x, η) denote the Laplace–Fourier transform of v(t, x, y):
Laplace in time t → τ = γ + iσ, γ > 0, σ ∈ R, and Fourier in y → iη,
η ∈ R

n−1, leaving x � 0 as a parameter. We then obtain for the solution of
(4.3.2) vanishing at x = ∞:

τ2v̂ = v̂xx − |η|2v̂; or v̂(τ, x, η) = ĝ(τ, η)e−
√
τ2+|η|2x, x � 0;

τ2 + |η|2 = (γ2 + |η|2 − σ2) + 2iγσ. (4.3.5)

Step 2. Let ϕ ∈ L2(0,∞;L2(Γ )). We consider the Laplace equation in
Ω, with Dirichlet boundary condition on Γ given by ϕ a.e. in t, i.e., in the
notation for D in (4.1.6):

u = Dϕ, where uxx + D2
yu = 0 in Ω; u|Γ = ϕ in Γ. (4.3.6)

The solution u = Dϕ of the problem (4.3.5) is given by the well-known
formula in the transformed variables [11, Subsect. 9.7.3, p. 375]:

û(τ, x, η) = ̂Dϕ(τ, x, η) = ϕ̂(τ, η)e−|η|x ∀ (τ, η) ∈ R× R
n−1, x � 0. (4.3.7)

Step 3. According to (4.3.4), it suffices to show that, for a fixed constant
γ > 0, we have with L2(Σ∞) = L2(0,∞;L2(Γ )):
(

e−2γtB∗Lg, u
)

L2(Σ∞)
=
(

e−2γtD∗vt( · ; y0 = 0), u
)

<∞ ∀ g, u ∈ L2(Σ∞).
(4.3.8)

Step 3(i). First, we establish that: for all g, u ∈ L2(0,∞;L2(Γ )) = L2(Σ∞),
we have

(

e−2γtB∗Lg, u
)

L2(Σ∞)

=
1

2π

∫

Rn
σ,η

⎛

⎝τ

∞
∫

0

e−
√
τ2+|η|2xe−|η|xdx

⎞

⎠ ĝ(τ, η)û(τ, η)dσ dη,
(4.3.9)

where R
n
ση denotes the n-dimensional Euclidean space in the variables σ and

η ∈ R
n−1. ��
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Proof of (4.3.9). Recalling (4.3.3), the Parseval identity for Laplace trans-
forms [6, Theorem 31.8, p. 212] and (4.3.5), (4.3.7), we compute (∼ indicates
the Laplace transform in (4.3.12)), where τ = γ + iσ:

(

e−2γt(B∗Lg)(t), u(t)
)

L2(0,∞;L2(Γ ))

=

∞
∫

0

e−2γt(B∗Lg, u)L2(Γ )dt (4.3.10)

(by (4.3.3)) =

∞
∫

0

e−2γt(D∗vt, u)L2(Γ )dt =

∞
∫

0

e−2γt(vt, Du)L2(Ω)dt

(4.3.11)

(by [6, p. 212]) =
1

2π

∞
∫

−∞

(ṽt(τ, x, y), ˜Du(τ, x, y))L2(Ω)dσ (4.3.12)

=
1

2π

∫∫

Rn
ση

∞
∫

0

τ v̂(τ, x, η)̂Du(τ, x, η)dx dσ dη (4.3.13)

(by (4.3.5),(4.3.7)) =
1

2π

∫∫

Rn
ση

∞
∫

0

τ ĝ(τ, η)e−
√
τ2+|η|2x û(τ, η)e−|η|xdx dσ dη

(4.3.14)

=
1

2π

∫∫

Rn
ση

⎛

⎝

∞
∫

0

e−
√
τ2+|η|2xe−|η|xdx

⎞

⎠ ĝ(τ, η)û(τ, η)dσ dη,

(4.3.15)

and (4.3.15) establishes (4.3.9), as desired. In (4.3.12), (4.3.13), we have in-
voked Parseval formula for Laplace t → τ [6, p. 212] and Fourier transform
y → iη; while in (4.3.14), we have recalled (4.3.5) and (4.3.7) with ϕ = g.

Step 3(ii). With τ = γ + iσ, let

H(σ, η) ≡ σ

∞
∫

0

e−
√
τ2+|η|2xe−|η|xdx. (4.3.16)
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It is immediate to show that |H(σ, η)| is uniformly bounded for all (σ, η) ∈
R
n
σ,η:

|H(σ, η)| � C <∞, for all σ ∈ R
1, η ∈ R

n−1. (4.3.17)

Indeed, set

A + iB ≡
√

τ2 + |η|2, A2 −B2 = γ2 + |η|2 − σ2, AB = 2γσ. (4.3.18)

Then we first note from (4.3.18) that

|H(σ, η)| ≡

∣

∣

∣

∣

∣

∣

σ

∞
∫

0

e−
√
τ2+|η|2xe−|η|xdx

∣

∣

∣

∣

∣

∣

� c
|σ|

|A|+ |η|+ |B| ≡ c h(σ, η). (4.3.19)

In the elliptic region, say {|σ| � 2|η|, σ2 + |η|2 � 1}, we readily have from
(4.3.19) that h(σ, η) � |σ|

|η| � 2. On the other hand, solving the system in
(4.3.18) by elementary computations, we obtain

A2 =
8γ2σ2

{(σ2 − |η|2 − γ2)2 + 16γ2σ2} 1
2 + (σ2 − |η|2 − γ2)

∼ | σ/η|2

| σ/η|2
= 1, (4.3.20)

say for σ2 + |η|2 � 1, whereby then (4.3.18) gives: B ∼ σ. Hence, by (4.3.19),

h(σ, η) � |σ|
|B| ∼

|σ|
|σ| = 1.

Thus,
|H(σ, η)| � C <∞, for all σ ∈ R

1, η ∈ R
n−1. (4.3.21)

Then (4.3.9) and (4.3.21) yield the desired conclusion:

|(e−2γtB∗Lg, u)L2(Σ∞)| � C‖g‖L2(Σ∞)‖u‖L2(Σ∞), (4.3.22)

and thus (4.3.3) holds for the wave equation on the n-dimensional half-space
n � 2. ��

The argument above is very transparent and shows exactly what is go-
ing on in order to gain the additional derivative on the boundary in the
present case.
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4.4 Implication on the uniform feedback stabilization
of the boundary nonlinear dissipative feedback
system w in (4.1.1a–c)

We return to the feedback dissipative nonlinear system w defined on the RHS
of (4.1.1a–c) which we rewrite here for convenience

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

wtt = Aw in Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ = f

[

∂(A−1wt)
∂ν

∣

∣

∣

∣

Γ

]

in Σ.

(4.4.1a)

(4.4.1b)

(4.4.1c)

We now specialized the abstract uniform stabilization Theorem 3.1 to the
present boundary dissipative feedback problem (4.4.1). To this end, we note
that:

(i) the structural assumption (H.1) holds in the setting of Subsect. 4.1;

(ii) the required exact controllability assumption (H.4) of the linear open-
loop v-problem (4.1.1a–c) (LHS) also holds on the space Y in (4.1.2) within
the class of L2(0, T ;U)-controls, U = L2(Γ ), T > 0 sufficiently large, by
virtue of Theorem 4.1.2;

(iii) the boundedness assumption (H.5) of the open-loop boundary →
boundary map B∗L is guaranteed by the (nontrivial) Theorem 4.1.4.

Thus, under assumptions (H.2) and (H.3) (Sect. 3) on the nonlinear func-
tion f , with U = L2(Γ ), we obtain a nonlinear uniform stabilization result.

Theorem 4.4.1. Let the function f in (4.4.1c) satisfy assumptions (H.2)
and (H.3) of Sect. 3, with U = L2(Γ ). Then the conclusion of Theorem 3.1
applies to the nonlinear feedback w-problem (4.1.1a–c) (RHS). Thus, if s(t)
is the solution of the nonlinear ODE with q explicitly constructed in terms of
the data of the problem, we have
∥

∥

∥

∥

∥

[

w(t)

wt(t)

]∥

∥

∥

∥

∥

L2(Ω)×H−1(Ω)

� s(t)

∥

∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

∥

L2(Ω)×H−1(Ω)

↘ 0 as t↗ +∞.

(4.4.2)

Remark 4.4.1. The above result can be extended to the case where the equa-
tion also contains an interior dissipative term

wtt = Aw + R(w), (4.4.3)
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along with (4.4.1b–c). With H−1(Ω) ≡ [D(A 1
2 )]′, see (4.1.2), we have

(u1, u2)H−1(Ω) = (A−1u1, u2)L2(Ω). The nonlinear operator R is assumed
to satisfy two assumptions:

(r.1)
R : continuous L2(Ω) → H−1(Ω). (4.4.4)

(r.2) There exists a Frechet differentiable operator Π : L2(Ω) → real line,
with Π(ω) � 0, ω ∈ L2(Ω), such that

(R(w), z)H−1(Ω) = (A−1
R(ω), z)L2(Ω) = −(Π ′(ω), z)L2(Ω), (4.4.5)

where Π ′ is the Frechet derivative of Π . Next, re-labelling R as R =
(RA)A−1 = R0A−1, R0 ≡ RA, we can rewrite (4.4.5) since A is (positive)
self-adjoint, as

(R(ω), z)H−1(Ω) = (R0(A−1ω),A−1z)L2(Ω) = −(Π ′(ω), z)L2(Ω), (4.4.6)

and then, if we let R0 = (˜R0)′, with ˜R0 : L2(Ω) → real line, we can take

Π(ω) = −˜R0(A−1ω) so that (Π ′(ω), z) = −(R0(A−1ω),A−1z)L2(Ω),
(4.4.7)

as required. A class of examples includes

(˜R0)(s) =
∫

Ω

|s|qdΩ =
∫

Ω

|s|q−2|s|2dΩ, (4.4.8)

whereby then

R0(s) ≡ (˜R0)′(s) = q|s|q−2s, R(ω) = q|A−1ω|q−2A−1ω. (4.4.9)

For n = 2, 3, we can allow any q ∈ [1,∞) (on the strength of Sobolev
embedding).

Remark 4.4.2. The nonlocal character of R (containing the term A−1w) is in
line with the nonlocality of the feedback A−1. For the case of the Kirchhoff
equation of Subsect. 5.2, the corresponding R will be local. �

The proof of uniform stabilization of (4.4.3), (4.4.1b–c) under the assump-
tions of the nonlinear term R(w) of the present remark will be given in [52].
It depends, among other things, on a unique continuation property of the
wave equation with a time-space-dependent potential [56, 91]. �
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4.5 Implication on exact controllability of the (linear)
dissipative system under boundary control

We return to the w-dissipative hyperbolic problem (in the linear case f(u) ≡
u ∈ L2(Γ )) on the RHS of (4.1.1a–c), which we now turn into a controlled
problem under boundary control. Thus, we consider

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ytt = Ay in Q;

y(0, · ) = y0, yt(0, · ) = y1 in Ω;

y|Σ =
∂(A−1yt)

∂ν

∣

∣

∣

∣

Γ

+ u in Σ,

(4.5.1a)

(4.5.1b)

(4.5.1c)

with A defined by (1.1.0) and A defined by (4.1.6). In (4.5.1c), u is the
Dirichlet boundary control. As an immediate consequence of Theorem 4.1.4
and (1.3.8d), we have the following corollary.

Corollary 4.5.1. Consider the open-loop v-problem on the LHS of (4.1.1a–
c). Let T > 0 be sufficiently large. Given any I.C. {v0, v1} ∈ L2(Ω)×H−1(Ω),
let g be the L2(0, T ;L2(Γ ))-Dirichlet control that steers {v0, v1} to rest {0, 0}
at time T , i.e., g is such that the corresponding solution of the v-problem
satisfies v(T ) = vt(T ) = 0. [This is guaranteed by Theorem 4.1.2.] Then, with
reference to the y-problem (4.5.1a–c), the Dirichlet boundary control

u = g − ∂(A−1vt)
∂ν

∣

∣

∣

∣

Γ

∈ L2(0, T ;L2(Γ )) (4.5.2)

steers the initial condition {y0, y1} ≡ {v0, v1} ∈ L2(Ω) × H−1(Ω) to rest
{0, 0} at the same time T , i.e., u is such that the corresponding solution of
the dissipative controlled y-problem in (4.5.1a–c) satisfies y(T ) = yt(T ) = 0.

Proof. For u = 0 and {y0, y1} ∈ Y , the closed-loop boundary regularity

∂(A−1yt)
∂ν

|Γ ∈ L2(0, T ;L2(Γ ))

is the easy result (1.3.8d). For the open-loop v-problem on the LHS of (4.1.1a–
c) with g ∈ L2(0, T ;L2(Γ )) and {v0, v1} = 0, the property that ∂(A−1vt)

∂ν |Γ ∈
L2(0, T ;L2(Γ )) is precisely statement (4.1.16) of Theorem 4.1.4. Then the v-
problem in (4.1.1a–c) and the y-problem (4.5.1a–c) with {y0, y1} = {v0, v1}
and u as in (4.5.2) coincide. ��
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5 Corollary of Section 4: The Multidimensional
Kirchhoff Equation with ‘Moments’ Boundary Control
and Normal Derivatives of the Velocity as Boundary
Observation

In this section, we consider the hyperbolic Kirchhoff equation on an open
bounded domain Ω, dim Ω � 1, with boundary control acting on the ‘mo-
ment’ boundary conditions. Because of the special nature of the boundary
conditions, this mixed PDE problem can be converted into a wave equa-
tion problem—more precisely, the z-problem (5.1.11) in Subsect. 5.1—modulo
lower order terms. Thus, the positive results of Subsect. 5.1 can be invoked.
As a result, we likewise obtain that B∗L ∈ L(L2(0, T ;U)) for the present
class of Kirchhoff equations.

5.1 Preliminaries. The operator B∗L

Linear open-loop and nonlinear closed-loop dissipative systems.

Let A be the second order differential expression in (1.1.0). In this subsection,
Ω is an open bounded domain in R

n, n � 1, with sufficiently smooth bound-
ary Γ . We consider the open-loop Kirchhoff equation in Ω, with boundary
control acting in the ‘moment’ boundary condition (actually, the physical
moment, in dim Ω � 2, is a slight modification of our boundary condition),
and its corresponding closed-loop dissipative system:

vtt − γAvtt + A
2v = 0; wtt−γAwtt + A

2w = 0 in Q;

v(0,·)=v0, vt(0,·)=v1; w(0,·)=w0, wt(0,·)=w1 in Ω;

v|Σ ≡ 0, Av|Σ = g; w|Σ≡0,Aw|Σ=f
(

− ∂wt
∂ν

∣

∣

Γ

)

in Σ,

(5.1.1a)

(5.1.1b)

(5.1.1c)

with Q ≡ (0, T ] × Ω; Σ ≡ (0, T ] × Γ . In (5.1.1a), γ is a positive constant,
γ > 0 (this is critical to make (5.1.1) hyperbolic). By ∂

∂ν we actually denote
the co-normal derivative with respect to A, as in Subsect. 4.1.

Regularity, exact controllability of the v-problem; uniform
stabilization of the w-problem for f ≡ identity.

References for this subsection include [41, 14]. We begin by introducing the
(state) space of optimal regularity
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Y ≡ D(A) ×D(A 1
2 ) ≡ [H2(Ω) ∩H1

0 (Ω)] ×H1
0 (Ω), (5.1.2)

where Aψ = −Aψ as in (4.1.6). For the stabilization result, we topologize Y
with an equivalent norm, in which case we use the notation

Yγ ≡ D(A) ×D(A
1
2
γ ); (5.1.3a)

(f1, f2)
D(A

1
2
γ )

= ((I + γA 1
2 )f1, f2)L2(Ω), f1, f2 ∈ D(A 1

2 ) = H1
0 (Ω). (5.1.3b)

Theorem 5.1.1 (regularity [41]). Regarding the v-problem (5.1.1), with y0 =
{v0, v1} = 0, the following regularity result holds for each T > 0 : the map

L : g → Lg ≡ {v, vt} is continuous

L2(Σ) → C([0, T ]; Y ≡ [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω)).
(5.1.4)

(The definition of L given here is in line with the abstract definition of the
operator L throughout this paper.)

Theorem 5.1.2 (exact controllability [41, 14]). Given any initial condi-
tion {v0, v1} ∈ Y and T > 0 sufficiently large, then there exists a g ∈
L2(Σ) such that the corresponding solution of the v-problem (5.1.1) satisfies
{v(T ), vt(T )} = 0.

Theorem 5.1.3 (uniform stabilization [41, 14]). With reference to the w-
problem (5.1.1), we have

(i)

the map {w0, w1} ∈ Yγ ≡ D(A) ×D(A
1
2
γ ) → {w(t), wt(t)} (5.1.5)

defines a s.c. contraction semigroup eAt on Yγ ;

(ii)

Aw|Σ = − ∂wt
∂ν

∈ L2(0,∞;L2(Γ )) (5.1.6)

continuously in {w0, w1} ∈ Yγ ;

(iii) there exist constants M � 1 and δ > 0 such that
∥

∥

∥

∥

[

w(t)
wt(t)

]∥

∥

∥

∥

Yγ

=
∥

∥

∥

∥

eAt
[

w0

w1

]∥

∥

∥

∥

Yγ

� Me−δt
∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

Yγ

, t � 0. (5.1.7)

This result was first shown in [41] for Ω strictly convex. Then this geomet-
rical condition was eliminated in [14]. All three theorems above are obtained
by PDE hard analysis energy methods (energy multipliers). As usual, the
most challenging result to prove is Theorem 5.1.3 on uniform stabilization.
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Abstract model of v-problem [41].

Let A and D be the operators in (4.1.6). Then the abstract model for the
v-problem in (5.1.1) is [41, Equations (2.7) and (2.9), p. 70]

vtt = −(I + γA)−1A2[v +A−1Dg];
d

dt

[

v
vt

]

= A

[

v
vt

]

+ Bg; (5.1.8)

A =
[

0 I
−(I + γA)−1A2 0

]

;

Bg =
[

0
−(I + γA)−1ADg

]

; B∗
[

x1

x2

]

= D∗Ax2.

(5.1.9)

With B∗ defined by (Bg2, x)Yγ = (g2, B
∗x)L2(Γ ) with respect to the Yγ-

topology in (5.1.3), we readily find the expression in (5.1.9).

Reduction of v-model to a wave equation model, modulo lower
order terms.

The operator B∗L.

With y0 = {v0, v1} = 0, we see that B∗L : g2 → ∂vt

∂ν :

B∗Lg2 = B∗
[

v(t; y0 = 0)
vt(t; y0 = 0)

]

= −D∗Avt(t; y0 = 0)

=
∂vt
∂ν

(t; y0 = 0), (5.1.10)

recalling the standard property that D∗A = − ∂
∂ν on H1

0 (Ω).

� � �
g Kirchhof

v-problem

(5.1.1)

v

vt

Co-normal
∂
∂ν
|Γ

∂vt

∂ν

∣
∣
∣
∣
Γ

Fig. 4 Open-loop boundary control → boundary observation ∂vt
∂ν

∣

∣

∣

Γ
.
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� � �

� �

−∂vt

∂ν

∣
∣
∣
∣
Γ

g Kirchhof
v-problem

(5.1.1)

v

vt

Co-normal
∂
∂ν
|Γ

Nonlinear
Feedback f

Fig. 5 The corresponding closed-loop boundary dissipative nonlinear problem {w,wt}.

Goal.

Our goal in this section is to show the following result.

Theorem 5.1.4. For the v-problem (5.1.1) we have

B∗L ∈ L(L2(0, T ;L2(Γ )). (5.1.11)

Proof. Reduction of v-model to a wave-model. Using [41, (C.3), p. 100]

(I + γA)−1A2 =
A
γ
− 1

γ2
I +

1
γ2

(I + γA)−1 on D(A) (5.1.12)

in the v-equation (5.1.8), we find

vtt = − Av

γ
− Dg

γ
+
[

I

γ2
− (I + γA)−1

γ2

]

(v +A−1Dg), (5.1.13)

where v|Σ ≡ 0 by (5.1.4). Motivated by (5.1.13), we then introduce the
abstract equation

utt = − Au

γ
− Dg

γ
, or

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

utt = 1
γ Au− 1

γ Dg in Q;

u(0, · ) = 0, ut(0, · ) = 0 in Ω;

u|Σ = 0 in Σ.

(5.1.14a)

(5.1.14b)

(5.1.14c)

We note that the u-problem in (5.1.14) differs from the v-problem in (5.1.13)
only by lower order terms in v, and smoother terms in g. Thus, the u-problem
and the v-problem possess the same regularity. In particular, recalling (5.1.4),
we have

{u, ut} ∈ C([0, T ]; [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω))
continuously in g ∈ L2(Σ).

(5.1.15)
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Thus, in light of (5.1.10), in order to prove (5.1.11), we equivalently establish
that: with reference to the u-problem (5.1.14), we have

the map g → ∂ut
∂ν

is continuous L2(Σ) → L2(Σ). (5.1.16)

Indeed, statement (5.1.16) follows at once, if we introduce the new variable
z = ut ∈ C([0, T ];H1

0 (Ω)), continuously in g ∈ L2(Σ). Then the u-PDE prob-
lem in (3.1.14) becomes essentially the z-PDE problem in (4.1.11), rewritten
here for convenience:

ztt = −Az + Dgt

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ztt = Az + Dgt in Q;

z(0, · ) = 0, zt(0, · ) = z1 in Ω; z = ut

z|Σ ≡ 0 in Σ.

(5.1.17a)

(5.1.17b)

(5.1.17c)

with same a priori regularity as in (5.1.10): z = ut ∈ C([0, T ];H1
0 (Ω)). For

this z-problem, the statement

the map g → ∂z

∂ν
is continuous L2(Σ) → L2(Σ), (5.1.18)

equivalent to (5.1.16) has been proved in Subsect. 4.1, Theorem 4.1.4. Hence
the desired conclusion (5.1.11) is established and Theorem 5.1.4 is proved. ��

5.2 Implication on the uniform feedback stabilization
of the boundary nonlinear dissipative feedback
system w in (5.1.1a–c)

In this subsection, we focus on the w-problem (5.1.1a–c). We seek to specialize
to it the abstract uniform stabilization Theorem 3.1. To this end, we note
that

(i) the structural assumption (H.1) holds in the setting of Subsect. 5.1;

(ii) the required exact controllability assumption (H.4) of the linear open-
loop v-problem (5.1.1a–c) (LHS) also holds on the space Yγ in (5.1.3a) within
the class of L2(0, T ;U)-controls with U = L2(Γ ), T > 0 sufficiently large, by
virtue of Theorem 5.1.2;

(iii) the boundedness assumption (H.5) of the open-loop boundary →
boundary map B∗L is guaranteed by the (heavy) Theorem 5.1.4.
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Thus, under assumptions (H.2) and (H.3) (Sect. 3) on the nonlinear func-
tion f , with U = L2(Γ ), we obtain the following nonlinear uniform stabiliza-
tion result.

Theorem 5.2.1. Let the function f in (5.1.1c) satisfy assumptions (H.2) and
(H.3) of Sect. 3 with U = L2(Γ ). Then the conclusion of Theorem 3.1 applies
to the nonlinear feedback w-problem (5.1.1a–c) (RHS). Thus, if s(t) is the
solution of the nonlinear ODE with q explicitly constructed in terms of the
data of the problem, we have
∥

∥

∥

∥

∥

[

w(t)

wt(t)

]∥

∥

∥

∥

∥

D(A)×D(A
1
2
γ )

� s(t)

∥

∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

∥

D(A)×D(A
1
2
γ )

↘ 0 as t↗ +∞. (5.2.1)

Remark 5.2.1. The above result can be extended to the case where the equa-
tion also contains an interior dissipative term

wtt − γAwtt + A
2w = R(w), (5.2.2)

along with (5.1.1b–c) (see [52]). The inner product of the second component
space is:

(u1, u2)
D(A

1
2
γ )

= (Aγu1, u2)L2(Ω) (duality pairing). (5.2.3)

The nonlinear operator R is assumed to satisfy two assumptions:

(r.1)
R continuous D(A) → D(A

1
2
γ ) ≡ D(A 1

2 ); (5.2.4)

(r.2) There exists a Frechet differentiable operator Π : D(A) → real line,
with Π(ω) � 0, ω ∈ D(A), such that

(A−1
γ R(ω), z)

D(A
1
2
γ )

= (R(ω), z)L2(Ω) = −(Π ′(ω), z)L2(Ω), (5.2.5)

where Π ′ is the Frechet derivative of Π .
Thus, in the case, we can take

Π(ω) = −
∫

Ω

˜R(ω)dΩ; (˜R)′ = R. (5.2.6)

For instance,

R(s) = q|s|q−2s; ˜R(s) = |s|q � 0, 1 � q <∞. (5.2.7)

As in the case of the wave equation of Subsect. 4.4, this result depends on a
unique continuation result. �
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5.3 Implication on exact controllability of the (linear)
dissipative system under boundary control

We return to the w-dissipative hyperbolic problem (in the linear case f(u) =
u ∈ L2(Γ )) on the RHS of (5.1.1c), which we now turn into a controlled
problem under boundary control. Thus, we consider

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ytt − γAytt + A
2y = 0 in Q;

y(0, · ) = y0, yt(0, · ) = y1 in Ω;

y|Σ ≡ 0,Ay|Σ = f

(

−∂yt
∂ν

∣

∣

∣

∣

Γ

)

in Σ,

(5.3.1a)

(5.3.1b)

(5.3.1c)

with A defined by (1.1.0) and A defined by (4.1.6), γ > 0. In (5.3.1c), u
is a boundary control. As an immediate consequence of Theorem 5.1.4 and
(1.3.8d), we have the following corollary.

Corollary 5.3.1. Consider the open-loop v-problem on the LHS of (5.1.1a–
c). Let T > 0 be sufficiently large. Given any I.C. {v0, v1} ∈ [H2(Ω) ∩
H1

0 (Ω)] × H1
0 (Ω), let g be the L2(0, T ;L2(Γ ))-boundary control that steers

{v0, v1} to rest {0, 0} at time T , i.e., g is such that the corresponding solution
of the v-problem satisfies v(T ) = vt(T ) = 0 [this is guaranteed by Theorem
5.1.2]. Then, with reference to the y-problem (5.3.1a–c), the boundary control

u = g +
∂yt
∂ν

∣

∣

∣

∣

Γ

∈ L2(0, T ;L2(Γ )) (5.3.2)

steers the initial condition {y0, y1} = {v0, v1} ∈ Y ≡ [H2(Ω) ∩ H1
0 (Ω)] ×

H1
0 (Ω) to rest {0, 0} at the same time T , i.e., u is such that the corresponding

solution of the dissipative controlled y-problem in (5.1.1a–c) satisfies

y(T ) = yt(T ) = 0.

Proof. For u = 0 and {y0, y1} ∈ Y , the closed-loop boundary regularity

∂yt
∂ν
|Γ ∈ L2(0, T ;L2(Γ ))

is the easy result (1.3.8d). For the open-loop v-problem on the LHS of
(5.1.1a–c), with g ∈ L2(0, T ;L2(Γ )) and {v0, v1} = 0, the property that
∂vt
∂ν
|Γ ∈ L2(0, T ;L2(Γ )) is precisely statement (5.1.16) = (5.1.11) of The-

orem 5.1.4. then, the v-problem in (5.1.1a–c) and the y-problem (5.3.1a–c)
with {y0, y1} = {v0, v1}, and u as in (5.3.2) coincide. ��
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6 A First Order in Time PDE Illustration: The
Schrödinger Equation under Dirichlet Boundary
Control and Suitably Lifted Solution as Boundary
Observation

In this section, we provide a program parallel to that of Sect. 4 or 5, this
time, however, involving the first order in time Schrödinger equation with
Dirichlet control. Here, the solution does not encounter the challenge of the
wave equation with Dirichlet control of Sect. 4. This means that for wave
equation with Dirichlet control, the complete regularity theory of the corre-
sponding mixed problem [22] (direct estimate), as well as the corresponding
exact controllability/uniform stabilization theories (reverse estimates) of the
literature [29, 81, 64], are not sufficient. Consequently, an ad hoc nontriv-
ial proof is needed to establish the continuity of the boundary control →
boundary observation map B∗L, as in Sect. 4. In the present case of the
Schrödinger equation, the situation is quite different. The available literature
already contains the key result that the present boundary control → bound-
ary observation map B∗L is bounded [19, 32, 48], albeit explicitly in the
case of constant coefficients in the principal part (A = Δ in (1.1.0)). As well
known since the 1986 paper [22] on wave equations—and as explicitly noted
a few times in [48], the same proof of the constant coefficient case such as A

in (1.1.0) only produces lower order terms which are then readily absorbed
in the estimates. Moreover, unlike the case of the wave equation treated in
Sect. 4, we can provide in this section an addition system-theoretic result
on the corresponding transfer function ̂B∗L(λ) [here ̂ denotes Laplace
transform], which admits a direct, operator-theoretic, independent proof, in
particular not invoking the PDE-based proof for the continuity of B∗L (see
Subsect. 6.4 below).

6.1 From the Dirichlet boundary control u for the
Schrödinger equation solution y to the boundary
observation ∂z

∂ν
|Γ , via the Poisson equation lifting

z = A−1y

Let A be the differential expression defined in (1.1.0).

Linear open-loop and nonlinear closed-loop feedback dissipative
systems.

Let Ω be an open bounded domain in R
n, with sufficiently smooth C1-

boundary Γ . We consider the following open-loop problem of the Schrödinger
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equation defined on Ω, with Dirichlet-control u ∈ L2(0, T ;L2(Γ )) ≡ L2(Σ),
and its corresponding boundary dissipative version

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

yt = −iAy;

y(0, · ) = y0;

y|Σ = u ∈ L2(Σ);

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

wt = −iAw in Q;

w(0, · ) = w0 in Ω;

w|Σ = if

[

∂(A−1w)
∂ν

∣

∣

∣

∣

Γ

]

in Σ,

(6.1.1a)

(6.1.1b)

(6.1.1c)

with Q ≡ (0, T ] × Ω; Σ ≡ (0, T ] × Γ . Moreover, the operator A is defined
below in (6.1.4) as Aw = −Aw, D(A) = H2(Ω) ∩H1

0 (Ω). Here, ∂
∂ν denotes

the co-normal derivative w.r.t. A. The nonlinear function f will be specified
in Subsect. 6.2 below.

Regularity, exact controllability of the y-problem; uniform
stability of the w-problem.

Paper [32] gives a full account of the (optimal) regularity and exact controlla-
bility of the open-loop y-problem in (6.1.1), as well as the uniform stabiliza-
tion of the corresponding closed-loop w-problem. Regularity issues of interest
here are also contained in [20, pp. 175-177] and [46, Chapter 10].

Theorem 6.1.1 (regularity [32, Theorem 1.2]). Regarding the y-problem
(6.1.1) with y0 = 0, for each T > 0 the following interior regularity holds
(the definition of L given here is in line with the abstract definition of the
operator L throughout this paper) :

the map L : u→ Lu = y textiscontinuous L2(Σ) → C([0, T ];H−1(Ω)).
(6.1.2)

Theorem 6.1.2 (exact controllability [32, Theorem 1.3], [91]). Let T > 0.
Given y0 ∈ H−1(Ω), there exists u ∈ L2(0, T ;L2(Γ )) such that the corre-
sponding solution to the y-problem (6.1.1) satisfies y(T ) = 0.

Theorem 6.1.3 (uniform stabilization [32, Theorems 1.4 and 1.5], [91]).
With reference to the w-problem in (6.1.1) with f(g) = g ∈ L2(Γ ) (iden-
tity), we have

(i) the map w0 ∈ H−1(Ω) → w(t) defines a s.c. contraction semigroup on
[D(A

1
2 )]′ ≡ H−1(Ω);

(ii) w|Σ ∈ L2(0,∞;L2(Γ )) continuously for w0 ∈ H−1(Ω);

(iii) there exist constants M � 1 and δ > 0 such that



Linear Hyperbolic and Petrowski Type PDEs 241

‖w(t)‖ � Me−δt‖w0‖, t � 0, (6.1.3)

with ‖ ‖ the H−1(Ω)-norm.

All three theorems above are obtained by PDE hard analysis energy meth-
ods (suitable energy multipliers). The most challenging result to prove is
Theorem 6.1.3 on uniform stabilization: this, in addition, requires a shift of
topology from H−1(Ω) (the space of the final result) to H1

0 (Ω) (the space
where the energy method works). This shift of topology is implemented by a
change of variable: this is the same change of variable that is noted below in
(6.1.8), and that is needed to establish the desired regularity of B∗L.

Abstract model of y-problem.

We let
Aψ = −Aψ, D(A) = H2(Ω) ∩H1

0 (Ω);
ϕ ≡ Dg ⇐⇒ {Aϕ = 0 in Ω; ϕ|Γ = g on Γ}.

(6.1.4)

Then the abstract model (in additive form) of the y-problem (6.2.1) is [32,
Equation (1.2.2)]

ẏ = iAy− iADu = iAy+Bu, y(0) = y0 ∈ Y ≡ [D(A
1
2 )]′ ≡ H−1(Ω); (6.1.5)

B = −iAD hence B∗ = iD∗, (6.1.6)

where the ∗ for B and D refer actually to different topologies, as the following
computation yielding B∗ in (6.1.6) shows. Let u, y ∈ Y . Then

(Bu, y)Y = −i(ADu, y)
[D(A

1
2 )]′

= −i(Du, y)L2(Ω)

= −i(u,D∗y)L2(Γ ) = (u,B∗y)L2(Γ ). (6.1.7)

A ‘dissipative-like,’ open-loop, boundary control → boundary
observation linear problem. The operator B∗L.

With reference to the y-problem in (6.1.1), we show that B∗L : u→ −i ∂z∂ν |Γ :

B∗Lu = B∗y(t; y0 = 0) = −i
∂z

∂ν

∣

∣

∣

∣

Γ

,

z(t) ≡ A−1y(t; y0 = 0) ∈ C([0, T ];D(A
1
2 ) ≡ H1

0 (Ω)),

(6.1.8a)

(6.1.8b)

where z satisfies the following dynamics—abstract equation, and correspond-
ing PDE-mixed problem:
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ż = iAz − iDu

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

zt = −iΔz − iDu in Q;

z(0, · ) = z0 = 0 in Ω;

z|Σ ≡ 0 in Σ.

(6.1.9a)
(6.1.9b)
(6.1.9c)

Indeed, to obtain (6.1.8)–(6.1.9), one uses the definitions in (6.1.8) and
(6.1.6),

B∗Lu ≡ B∗y(t; y0 = 0) = iD∗AA−1y(t; y0 = 0)

= iD∗Az(t) = −i
∂z

∂ν
, (6.1.10)

as well as the usual property D∗A = − ∂
∂ν on D(A

1
2 ) = H1

0 (Ω) from [32,
Equation (1.21)]. The abstract z-equation in (6.1.9) follows from the abstract
y-equation in (6.1.5) after applying A−1 and using the definition of z(t) in
(6.1.8b). Since u(t) ∈ H1

0 (Ω), then the abstract z-equation yields its PDE
version in (6.1.9b).

We next provide an interpretation of the new variable z via the Poisson
equation. From (6.1.8b) we have

Az = y(t; y0 = 0); or

{

Az = −y(t; y0 = 0) in Ω;
z|Γ = 0 on Γ.

(6.1.11a)
(6.1.11b)

z(t;x0) = − 1
2π

∫

Ω

G(x, t;x0)y(t, x; y0 = 0)dx, (6.1.12)

G( ) being the associated Green function on Ω (with t a parameter) [11].
Thus, z is the solution of the corresponding Poisson equation with zero Dirich-
let boundary data and with −y as a forcing term.

� �
z
� � i ∂z

∂ν
|Γ = i∂A−1y

∂ν
|Γu ySchrödinger

y-problem
(6.1.1)

Poisson
Equation

∂ ·
∂ν

∣
∣
∣
∣
Γ

Fig. 6 Open-loop boundary control u → boundary observation ∂z
∂ν

|Γ .

Key boundary → boundary regularity question.

With the optimal regularity of the variable z given by (6.1.8b), we con-
sider the corresponding Neumann trace (boundary observation) and ask the
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� �
z
�

� �

� i ∂z
∂ν

u y
Schrödinger

Poisson
Equation

∂ ·
∂ν

∣
∣
∣
∣
Γ

Nonlinear
Feedback f

Fig. 7 The corresponding closed-loop boundary dissipative nonlinear problem.

question (recalling (6.1.10)):

Does
∂z

∂ν

∣

∣

∣

∣

Γ

∈ L2(0, T ;L2(Γ ))?

i.e.,

Is B∗L continuous L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ ))?

(6.1.13)

The answer is affirmative. It does not follow directly by trace theory from
the optimal interior regularity (6.1.8b) of z. In fact, a positive answer to
question (6.1.13) would correspond to a “ 1

2 gain” in Sobolev-space regularity
(in the space variable) over a formal application of trace theory to (6.1.8b).

Theorem 6.1.4. With reference to (6.1.8) and (6.1.13), we have

B∗L : continuous L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ )); (6.1.14a)

equivalently, with reference to (6.1.10),

the map u→ ∂z

∂ν
is continuous L2(0, T ;L2(Γ ))→L2(0, T ;L2(Γ )). (6.1.14b)

This result (6.1.14) is explicitly stated and proved in [20, Proposition 4.2,
p. 175], explicitly in the case of constant coefficients A = −Δ. Here, the reg-
ularity (6.1.8) for z is established in [20, Equation (4.14)] by energy methods
(via the multiplier h · ∇z, h|Γ = ν) without first establishing the y-regularity
(6.1.2) in Theorem 6.1.1. This result (6.1.14) also follows from [43, iden-
tity (2.1), Lemma 2.1] (built with the multiplier h · ∇z) with f = −iDu ∈
L2(0, T ;D(A

1
4−ε)) and the a priori regularity z ∈ C([0, T ];H1

0 (Ω)) in (6.1.8)
for z: the latter uses, by contrast, the y-regularity (6.1.2) in Theorem 6.1.1.
The two avenues chosen in [20] and [32] are very closely related and based on
the same energy method and duality. The expression “double duality” was
used in [20] as duality was used twice.
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As noted in the introduction of Sect. 6, the case of variable coefficients (op-
erator A) can be proved in exactly the same way as in the case of constant
coefficients, as the presence of variable coefficients only contributes lower
order terms that can then be readily absorbed in the estimates. This obser-
vation is well known since the 1986 paper [22] on wave equations, and was
also noted several times in [48, Remark 4.1, statement just below Equation
(4.2.3), etc.].

6.2 Implication on the uniform feedback stabilization
of the boundary nonlinear dissipative feedback
system w in (6.1.1a–c)

In this subsection, we focus on the w-problem (6.1.1a–c). We seek to specialize
to it the abstract uniform stabilization Theorem 3.1. To this end, we note
that

(i) the structural assumption (H.1) holds in the setting of Subsect. 6.1;

(ii) the required exact controllability assumption (H.4) of the linear open-
loop y-problem (6.1.1a–c) (LHS) also holds on the space Y = H−1(Ω) in
(6.1.5) within the class of L2(0, T ;U)-controls, with U = L2(Γ ), T > 0
arbitrary, by virtue of Theorem 6.1.2;

(iii) the boundedness assumption (H.5) of the open-loop boundary →
boundary map B∗L is guaranteed by Theorem 6.1.4.

Thus, under assumptions (H.2) and (H.3) (Sect. 3) on the nonlinear func-
tion f , with U = L2(Γ ), we obtain the following nonlinear uniform stabiliza-
tion result.

Theorem 6.2.1. Let the function f in (6.1.1c) satisfy assumptions (H.2)
and (H.3) of Sect. 3, with U = L2(Γ ). Then the conclusion of Theorem 3.1
applies to the nonlinear feedback w-problem (6.1.1a–c) (RHS). Thus, if s(t)
is the solution of the nonlinear ODE with q explicitly constructed in terms of
the data of the problem, we have

‖w(t)‖H−1(Ω) � s(t)‖w0‖H−1(Ω) ↘ 0 as t↗ +∞. (6.2.1)

6.3 Implication on exact controllability of the (linear)
dissipative system under boundary control

We return to the w-dissipative Schrödinger problem (in the linear case f(u) ≡
u ∈ L2(Γ )) on the RHS of (6.1.1a–c), which we now turn into a controlled



Linear Hyperbolic and Petrowski Type PDEs 245

problem under boundary control. Thus, we consider
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

vt = −iAv in Q;

v(0, · ) = v0 in Ω;

v|Σ = i
∂(A−1v)

∂ν
+ μ in Σ,

(6.3.1a)

(6.3.1b)

(6.3.1c)

with A defined by (1.1.0) and A defined by (6.1.4). In (6.3.1c), μ is the
Dirichlet boundary control. As an immediate consequence of Theorem 6.1.4
and (1.3.8d), we have the following corollary.

Corollary 6.3.1. Consider the open-loop y-problem on the LHS of (6.1.1a–
c). Let T > 0 be arbitrary. Given any I.C. y0 ∈ H−1(Ω), let u ∈ L2(0, T ;
L2(Γ )) be the Dirichlet control that steers y0 to rest {0} at time T, i.e., u
is such that the corresponding solution of the y-problem satisfies y(T ) = 0.
[This is guaranteed by Theorem 4.1.2.] Then, with reference to the v-problem
(6.3.1a–c), the Dirichlet-boundary control

μ = u− i
∂(A−1y)

∂ν

∣

∣

∣

∣

Γ

∈ L2(0, T ;L2(Γ )) (6.3.2)

steers the initial condition v0 = y0 ∈ H−1(Ω) to rest {0} at the same time
T , i.e., μ is such that the corresponding solution of the dissipative controlled
v-problem in (6.3.1a–c) satisfies v(T ) = 0.

Proof. (Same as the proof of Corollary 4.5.1, mutatis mutandi.) For u = 0 and
y0 ∈ H−1(Ω), the closed-loop boundary regularity ∂A−1y

∂ν |Γ ∈ L2(0, T ;L2(Γ ))
is the (easy) result (1.3.8d). For the open-loop y-problem on the LHS
of (6.1.1a–c), with u ∈ L2(0, T ;L2(Γ )) and y0 = 0, the property that
∂(A−1y)

∂ν |Γ ∈ L2(0, T ;L2(Γ )) is precisely statement (6.1.14b) of Theorem
6.1.4. Then the y-problem in (6.1.1a–c) and the v-problem (6.3.1a–c) with
v0 = y0 and μ as in (6.3.2) coincide. ��

6.4 Asymptotic behavior of the transfer function:

( ̂B∗L)(λ) = O(λ−(1
2
−ε)), as positive λ ↗ +∞. A

direct, independent proof

In this subsection, we provide a decay rate of the transfer function H(λ) ≡
̂B∗L(λ) as positive λ ↗ +∞. The proof is operator-theoretic and direct;
in particular, it does not invoke the PDE-based result on B∗L of Theorem
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6.1.4. If ̂ denotes the Laplace transform, define via (1.2.2b) on L and the
convolution theorem

H(λ) ≡ ̂B∗L(λ) = B∗R(λ, iA)B = iD∗R(λ; iA)(−iAD), λ > 0 (6.4.1)

=
(

D∗A
1
4−ε

) [

A
1
2+2εR(λ, iA)

] (

A
1
4−εD

)

, (6.4.2)

with ε > 0 arbitrary, where we have recalled (1.2.2b) for ̂L(λ) = R(λ,A)B,
and (6.1.6) for B∗ and B.

Proposition 6.4.1. With reference to the transfer function H(λ) in (6.4.2),
the following asymptotic estimate holds with ε > 0 arbitrary:

‖H(λ)‖L(L2(Γ )) =
∥

∥

∥

̂B∗L(λ)
∥

∥

∥

L(L2(Γ ))

= O
(

1
λ

1
2−ε

)

, as positive λ↗ +∞. (6.4.3)

Proof. Step 1. Recalling the basic regularity A
1
4−εD ∈ L(L2(Γ );L2(Ω)) of

the Dirichlet map, we obtain from (6.4.2), where in the present proof ‖ · ‖ is
the L(L2(Ω))-norm:

‖H(λ)‖L(L2(Γ )) =
∥

∥

∥

̂B∗L(λ)
∥

∥

∥

L(L2(Γ ))

= O
(

‖A 1
2+2εR(λ, iA)‖

)

, λ > 0. (6.4.4)

Step 2. Since (iA) is the generator of a s.c. contraction group on the space
L2(Ω), the Hille–Yosida theorem yields the resolvent bound

‖R(λ, iA)‖ � 1
λ
, λ > 0. (6.4.5)

Moreover, since (iA)R(λ, iA) = λR(λ, iA)−I, λ > 0, the above bound (6.4.5)
implies:

‖AR(λ, iA)‖ � const, λ > 0. (6.4.6)

Step 3. By interpolation between (6.4.5) and (6.4.6) [65], we then deduce

‖AθR(λ, iA)‖ � C

λ1−θ , 0 � θ � 1; ‖A 1
2 +2εR(λ, iA)‖ � C

λ
1
2−2ε

, λ > 0.

(6.4.7)
Then, substituting (6.4.7) into the RHS of (6.4.4), we obtain the estimate
(6.4.3) (with 2ε replaced by ε), as desired. ��
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This is, apparently, a sought-after result in “system theory.”

7 Euler–Bernoulli Plate with Clamped Boundary
Controls. Neumann Boundary Control and Velocity
Boundary Observation

The present section deals with the Euler–Bernoulli plate equation with
“clamped” boundary controls (in any dimension), while “hinged” boundary
controls will be considered in Sect. 8. In either case, the corresponding results
of optimal regularity, exact controllability and uniform stabilization—all ob-
tained by PDE energy methods—have been known since the late 80’s–early
90’s. Moreover, the regularity result B∗L ∈ L(L2(0, T ;U)) is also true for
each of the aforementioned Euler–Bernoulli mixed problems. This was noted
in [48], explicitly in the case of constant coefficients (which, as noted several
times in [48] and in the present paper, admits a direct and straightforward
extension to the (space) variable coefficient case, where additional lower order
terms are readily absorbed in the estimates). This result is contained in the
treatments of the aforementioned literature cited as a built-in block, rather
than singled out in an explicit statement. Below, we extract the necessary
details from the literature, as done in [48]. After this, on the basis of Theorem
3.1, we provide a new closed-loop feedback stabilization result with nonlinear
boundary feedback.

7.1 From the Neumann boundary control of the
Euler–Bernoulli plate to the boundary observation
−Az|Γ , via the Poisson lifting z = A−1vt

Let A be the differential expression defined in (1.1.0).

Linear open-loop and nonlinear closed-loop feedback
dissipative systems.

Let Ω be an open bounded domain in R
n (n = 2, in the physical case of

plates) with sufficiently smooth boundary Γ . We consider the following open-
loop problem of the Euler–Bernoulli equation defined on Ω, with Neumann
boundary control g2 ∈ L2(0, T ;L2(Γ )) ≡ L2(Σ), as well as its corresponding
boundary dissipative version:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

vtt + A
2v = 0;

v(0,·)=v0, vt(0,·)=v1;

v|Σ ≡ 0;

∂v

∂ν

∣

∣

∣

∣

Σ

= g2;

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wtt + A
2w = 0 in Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ ≡ 0 in Σ;

∂w

∂ν

∣

∣

Σ
=[f(A(A−1wt)]Σ) in Σ,

(7.1.1a)

(7.1.1b)

(7.1.1c)

(7.1.1d)

with Q = (0, T ] × Ω; Σ = (0, T ] × Γ . Moreover, the operator A is defined
below in (7.1.6) as Aw = A

2w, D(A) ≡ H4(Ω) ∩H2
0 (Ω). Here, ∂

∂ν denotes
the co-normal derivative w.r.t. A. The nonlinear function f will be specified
in Subsect. 7.2 below.

Regularity, exact controllability of the v-problem; uniform
stabilization of the w-problem.

References for this subsection include [62, 64, 31] for the v-problem and [68]
for the w-problem. These references give a full account of these three prob-
lems. We begin by introducing the (state) space (of optimal regularity)

X ≡ L2(Ω) × [D(A 1
2 )]′; [D(A 1

2 )]′ ≡ H−2(Ω); D(A 1
2 ) ≡ H2

0 (Ω). (7.1.2)

Theorem 7.1.1 (regularity [62, 64]). Regarding the v-problem (7.1.1), with
y0 = {v0, v1} = 0, the following regularity result holds for each T > 0 (recall
the definition of L in (1.2.2b)): the map

L : g2 → Lg2 = {v, vt} is continuous

L2(Σ) → C([0, T ];X ≡ L2(Ω)×H−2(Ω)).
(7.1.3)

Theorem 7.1.2 (exact controllability [63, 64, 68]). Given any initial condi-
tion {v0, v1} ∈ X and T > 0, there exists g2 ∈ L2(Σ) such that the corre-
sponding solution of the v-problem (7.1.1) satisfies {v(T ), vt(T )} = 0.

Theorem 7.1.3 (uniform stabilization [68]). With reference to the w-problem
(7.1.1), we have

(i) the map {w0, w1} ∈ X = L2(Ω) × [D(A 1
2 )]′ → {w(t), wt(t)} defines a

s.c. contraction semigroup eAt on X ;
(ii)

∂w

∂ν

∣

∣

∣

∣

Σ

= [A(A−1wt)]Σ ∈ L2(0,∞;L2(Γ ))

continuously in {w0, w1} ∈ X ; (7.1.4)
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(iii) there exist constants M � 1 and δ > 0 such that
∥

∥

∥

∥

[

w(t)
wt(t)

]∥

∥

∥

∥

X

=
∥

∥

∥

∥

eAt
[

w0

w1

]∥

∥

∥

∥

X

� Me−δt
∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

X

, t � 0. (7.1.5)

All three theorems above are obtained by PDE hard analysis energy meth-
ods (suitable energy multipliers). As usual, the most challenging result to
prove is Theorem 7.1.3 on uniform stabilization: this problem, in addition,
requires a shift of topology from X ≡ L2(Ω)×H−2(Ω) (the space of the final
result) to H2

0 (Ω)× L2(Ω) (the space where the energy method works). This
shift of topology is implemented by a change of variable: this is the same
change of variable, noted below in (7.1.10), that is needed to establish the
desired regularity of B∗L.

Abstract model of v-problem.

We let
Aψ = A

2ψ, D(A) = H4(Ω) ∩H2
0 (Ω);

G2 : Hs(Γ ) → Hs+ 3
2 (Ω), s ∈ R;

(7.1.6a)

ϕ = G2g2 ⇐⇒
{

A
2ϕ = 0 in Ω; ϕ|Γ = 0,

∂ϕ

∂ν

∣

∣

∣

∣

Γ

= g2

}

. (7.1.6b)

Then the second order, respectively first order, abstract models (in additive
form) of the v-problem (7.1.1) are [68, 31]

vtt +Av = AG2g2;
d

dt

[

v
vt

]

= A

[

v
vt

]

+ Bg2; (7.1.7)

A =
[

0 I
−A 0

]

; Bg2 =
[

0
AG2g2

]

; B∗
[

x1

x2

]

= G∗
2x2, (7.1.8)

where ∗ for B and G2 refer actually to different topologies. With B∗ defined
by (Bg2, x)X = (g2, B

∗x)L2(Γ ) with respect to the X-topology, we readily
find the expression in (7.1.8), since the second component of the space X is
[D(A 1

2 )]′.

A ‘Dissipative-Like,’ Open-Loop, Boundary Control → Boundary
Observation Linear Problem. The operator B∗L.

With y0 = {v0, v1} = 0, we show that
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B∗Lg2 = B∗
[

v(t; y0 = 0)
vt(t; y0 = 0)

]

= G∗
2vt(t; y0 = 0) = −[Az(t)]Γ ; (7.1.9)

z(t) ≡ A−1vt(t; y0 = 0) ∈ C([0, T ];D(A 1
2 ) ≡ H2

0 (Ω))
continuously in g2 ∈ L2(Σ).

(7.1.10)

The new variable z(t) defined in (7.1.10) satisfies the following dynamics:
abstract equation, and corresponding PDE-mixed problem

ztt +Az = G2g2t

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ztt + A
2z = G2g2t in Q;

z(0, · ) = z0 = 0; zt(0, · ) = z1 in Ω;

z|Σ ≡ 0,
∂z

∂ν

∣

∣

∣

∣

Σ

≡ 0 in Σ.

(7.1.11a)

(7.1.11b)

(7.1.11c)

Indeed, to establish (7.1.9) (right), (7.1.10), one uses the definition in (7.1.9)
(left), followed by (7.1.8) for B∗, to obtain

B∗Lg2 = G∗
2vt(t; y0 = 0) = G∗

2AA−1vt(t; y0 = 0)

= G∗
2Az(t) = −Az(t)|Γ , (7.1.12)

where, in the last step, we have recalled the usual property G∗
2A = −A · |Γ on

D(A 1
2 ) ≡ H2

0 (Ω) [68, Equation (1.11)] and [4, Equation (1.20), p. 49]. The
abstract z-equation is readily obtained from the abstract v-equation, after
applying throughout A−1 and d

dt to it, and using the definition of z(t) in
(7.1.10), whose a priori regularity in (7.1.10) follows from (7.1.3), (7.1.2).
Since z(t) ∈ H2

0 (Ω), both boundary conditions are satisfied and the abstract
z-equation leads to its corresponding PDE-version. By (7.1.19) below, and
within the class (7.1.20), we can take z1 = 0.

Interpretation of z.

We next provide an interpretation of the new variable z via an elliptic
problem-lifting. From (7.1.10), we have

Az = vt(t; y0 = 0); or

⎧

⎪

⎨

⎪

⎩

A
2 = vt(t; y0) in Ω

z|Γ = 0,
∂z

∂ν

∣

∣

∣

∣

Γ

= 0.

Remark 7.1.1. As already noted, the change of variable vt → z in (7.1.10)
and the resulting z-problems in (7.1.11) are precisely the same that were used
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� �

z = A−1vt
� �

−Az|Γg2 E-B

v-problem

v

vt

Elliptic
Equation

(−A · )|Γ

Fig. 8 Open-loop boundary control g2 → boundary observation −Az|Γ .

� � �

� �

�

−Az|Γg E-B
v-problem

v

vt

z=A−1vtElliptic
Equation

(−A · )|Γ

Nonlinear
Feedback f

Fig. 9 The corresponding closed-loop boundary dissipative nonlinear problem {w,wt}.

in [68, Subsect. 2.1] in obtaining the uniform stabilization, Theorem 7.1.3,
directly; the only difference is the specific form of the right-hand side term
(thus, the letter p was used in [68, Equation (2.11)], while the letter z is used
now for a closely related, yet not identical system). In both cases, however,
a time-derivative term occurs (in our case G2g2t), which will require—in [O-
T.1] as well as in Step 6 in the proof of Lemma 7.1.1 below, an integration
by parts in t, to obtain the sought-after estimate. �

Theorem 7.1.4. With reference to (7.1.9), we have

B∗L : continuous L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ )) (7.1.13a)

equivalently, with reference to (7.1.11),

the map g2 →Az|Σ is continuous
L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ )).

(7.1.13b)

As pointed out in [48], this result, though not explicitly stated, is built-in
in the treatments of [68] of Theorem 7.1.3.

Proof. Step 1. Basic energy identity. As mentioned repeatedly, it suffices to
confine to the constant coefficient case A = Δ. We return to the basic identity
of the energy methods [68, Equation (2.24), p. 287], which we use with a
vector field h satisfying (as usual in obtaining trace regularity results [22])
the additional condition h|Γ = ν. Thus, with h · ν = 1 on Γ , for the solution
z of a priori regularity z ∈ C([0, T ];H2

0 (Ω)) as in (7.1.10), we have
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1
2

∫

Σ

(Δz)2dΣ = RHS1 + RHS2 + b0,T ; (7.1.14)

RHS1 =
∫

Q

Δz div[(H + HT )∇z]dQ +
1
2

∫

Q

zΔzΔ(div h)dQ; (7.1.15)

RHS2 = −
∫

Q

G2g2t h · ∇z dQ− 1
2

∫

Q

G2g2tz div h dQ; (7.1.16)

b0,T = [(zt, h · ∇z)Ω]T0 +
1
2

[(zt, z div h)Ω]T0 . (7.1.17)

Step 2. Estimate for RHS1. From the a priori regularity (7.1.10) for z, we
immediately find that

RHS1 = O
(

‖g2‖2L2(Σ)

)

∀ g2 ∈ L2(Σ). (7.1.18)

Step 3. Regularity of zt. To handle RHS2 (by integration by parts in t,
precisely as in the proof of the uniform stabilization Theorem 7.1.3 given in
[68, p. 283-289], we need the regularity of zt. By (7.1.10) and the v-equation
(7.1.7), we obtain

zt(t) = A−1vtt = A−1[−Av +AG2g2]

= −v + G2g2 ∈ L2(0, T ;L2(Ω)) continuously in g2 ∈ L2(Σ), (7.1.19)

by recalling that v ∈ C([0, T ];L2(Ω)) (see (7.1.3)) and that G2g2 ∈
L2(0, T ;H

3
2 (Ω)), by virtue of (7.1.6a) with s = 0 on G2 and g2 ∈ L2(Σ).

Step 4. Estimates for RHS2 and b0,T for smoother g2. Henceforth, to esti-
mate both RHS2 and b0,T , we at first take g2 within the smoother class

g2 ∈ C([0, T ];L2(Γ )), g2(0) = g2(T ) = 0. (7.1.20)

This initial restriction is dictated by the fact that zt in (7.1.19) is only in L2

in time.

Lemma 7.1.1. In the present setting, we have

RHS2 = O
(

‖g2‖2L2(Σ)

)

; b0,T = O
(

‖g2‖2L2(Σ)

)

, (7.1.21)

for all g2 in the class (7.1.20).
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Step 5. Proof of (7.1.21) for b0,T . First from (7.1.10) and (7.1.3), (7.1.2),
we have since vt(0) = v1 = 0:

z(0) = 0, z(T ) = A−1vt(T ;y0 = 0) ∈ D(A 1
2 ) ≡ H2

0 (Ω),

continuously in g2 ∈ L2(Σ). (7.1.22)

Next, for g2 in the class (7.1.20) used in (7.1.19), we compute since v(0) =
v0 = 0:

zt(0) = 0, zt(T ) = −v(T ) ∈ �L2(Ω), continuously in g2 ∈ L2(Σ), (7.1.23)

where the regularity follows from (7.1.3). Using (7.1.22), (7.1.23) in (7.1.17),
we readily obtain, as desired:

b0,T = (zt(T ), h·∇z(T ))Ω+
1
2

(zt(T ), z(T ) div h)Ω = O(‖g2‖2L2(Σ)), (7.1.24)

for all g2 in the class (7.1.20). Thus, (7.1.21) (right) is proved.

Step 6. Proof of (7.1.21) for RHS2. The most critical terms of RHS2 to
estimate is the first term in (7.1.16). As in the direct proof of the uniform
stabilization Theorem 7.1.3 given in [68, p. 287], we integrate by parts in t,
with g2 in the class (7.1.20), thus obtaining

∫

Q

G2g2t h · ∇z dQ =

⎡

⎣

∫

Ω

G2g2�����h · ∇z dΩ

⎤

⎦

T

0

−
∫

Q

G2g2 h · ∇ztdQ, (7.1.25)

where the first term on the right-hand side of (7.1.25) vanishes, since g2(0) =
g2(T ) = 0. Moreover, the usual divergence theorem [68, Equation (2.31),
p. 288] yields with h · ν = 1:

T
∫

0

∫

Ω

G2g2h · ∇ztdΩ dt

=

T
∫

0

∫

Γ

G2�����g2zth · ν dΓ dt−
T
∫

0

∫

Ω

zth · ∇(G2g2)dΩ dt

−
T
∫

0

∫

Ω

G2g2zt div h dΩ dt = O(‖g2‖2L2(Σ)), (7.1.26)

for all g2 in the class (7.1.20). The indicated estimate in terms of g2 in
(7.1.26) follows by virtue of zt ∈ L2(0, T ;L2(Ω)) (see (7.1.19)); G2g2 ∈
L2(0, T ;H

3
2 (Ω)) by (7.1.6a) with s = 0 on G2; and thus |∇(G2g2)| ∈
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L2(0, T ;H
1
2 (Ω)), all bounded by the L2(Σ)-norm of g2. A similar estimate as

(7.1.26) holds, a fortiori, for the more regular second term in the definition
of RHS2 in (7.1.16). Accordingly, we obtain (7.1.21) for RHS2.

Step 7. We can then extend the estimates (7.1.21) for RHS2 and b0,T to all
g2 ∈ L2(Σ), by density, starting from the class (7.1.20). Using these extended
estimates, as well as (7.1.18) in (7.1.14), we finally obtain

∫

Σ

(Δz)2dΣ = O(‖g2‖2L2(Σ)) ∀ g2 ∈ L2(Σ), (7.1.27)

and (7.1.13b) is proved. The proof of Theorem 4.3.4 is complete. ��

7.2 Implication on the uniform feedback stabilization
of the boundary nonlinear dissipative feedback
system w in (7.1.1a–d)

In this subsection, we focus on the w-problem (7.1.1a–c). We seek to specialize
to it the abstract uniform stabilization Theorem 3.1. To this end, we note
that

(i) the structural assumption (H.1) holds in the setting of Subsect. 7.1 (see
Subsect. 1.2);

(ii) the required exact controllability assumption (H.4) of the linear open-
loop v-problem (7.1.1a–d) (LHS) also holds on the space X = L2(Ω) ×
H−2(Ω) in (7.1.2) within the class of L2(0, T ;U)-controls, with U = L2(Γ ),
T > 0 arbitrary, by virtue of Theorem 7.1.2;

(iii) the boundedness assumption (H.5) of the open-loop boundary →
boundary map B∗L is guaranteed by Theorem 7.1.4.

Thus, under assumptions (H.2) and (H.3) (Sect. 3) on the nonlinear func-
tion f , with U = L2(Γ ), we obtain the following nonlinear uniform stabiliza-
tion result.

Theorem 7.2.1. Let the function f in (7.1.1d) satisfy assumptions (H.2)
and (H.3) of Sect. 3, with U = L2(Γ ). Then the conclusion of Theorem 3.1
applies to the nonlinear feedback w-problem (7.1.1a–d) (RHS). Thus, if s(t)
is the solution of the nonlinear ODE with q explicitly constructed in terms of
the data of the problem, we have
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∥

∥

∥

∥

∥

[

w(t)

wt(t)

]∥

∥

∥

∥

∥

L2(Ω)×H−2(Ω)

�
∥

∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

∥

L2(Ω)×H−2(Ω)

↘ 0 as t↗ +∞. (7.2.1)

7.3 Implication on exact controllability of the (linear)
dissipative system under boundary control

We return to the w-dissipative Euler–Bernoulli problem (in the linear case
f(u) = u ∈ L2(Γ )) on the RHS of (7.1.1a–d), which we now turn into a
controlled problem under boundary control.

Thus, we consider
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ytt + A
2y = 0 in Q;

y(0, · ) = y0, yt(0, · ) = y1 in Ω;
y|Σ ≡ 0 in Σ;
∂y

∂ν

∣

∣

∣

∣

Σ

= [A(A−1yt)]Σ) + u in Σ,

(7.3.1a)
(7.3.1b)
(7.3.1c)
(7.3.1d)

with A defined by (1.1.0), andA defined by (7.1.6). In (7.3.1d), u is the bound-
ary control. As an immediate consequence of Theorem 7.1.4 and (1.3.8d), we
have the following corollary.

Corollary 7.3.1. Consider the open-loop v-problem on the LHS of (7.1.1a–
d). Let T > 0 be arbitrary. Given any I.C. {v0, v1} ∈ X ≡ L2(Ω)×H−2(Ω),
let g2 ∈ L2(0, T ;L2(Γ )) be the Neumann-boundary control that steers {v0, v1}
to rest {0, 0} at time T , i.e., g2 is such that the corresponding solution of the
v-problem satisfies v(T ) = vt(T ) = 0 [this is guaranteed by Theorem 7.1.2].
Then, with reference to the y-problem (7.3.1a–d), the boundary control

u = g2 − A(A−1yt)|Γ ∈ L2(0, T ;L2(Γ )), (7.3.2)

steers the I.C. {y0, y1} = {v0, v1} ∈ X to rest {0, 0} at the same time T ,
i.e., u is such that the corresponding solution of the dissipative controlled
y-problem in (7.3.1a–d) satisfies y(T ) = yt(T ) = 0.

Proof. Similar to that of Corollary 6.3.1, Corollary 5.3.1, Corollary 4.5.1,
mutatis mutandi.

��
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8 Euler–Bernoulli Plate with Hinged Boundary
Controls. Boundary Control in the ‘Moment’
Boundary Condition and Suitably Lifted Velocity
Boundary Observation

The present section deals with the Euler–Bernoulli plate equation with ‘mo-
ment’ boundary controls (in any dimension). Here also the corresponding
results of optimal regularity, exact controllability, and uniform stabilization—
all obtained by PDE energy methods (suitably multipliers)—have been
known since the late 80’s, at least in the constant coefficient case, with fur-
ther advances in exact controllability/uniform stabilization also in the vari-
able coefficient case, where the passage from constant coefficient to variable
coefficient is critical and challenging (unlike the case of optimal regularity)
[96, 55, 10].

8.1 From the ‘moment’ boundary control of the
Euler–Bernoulli plate to the boundary observation
∂zt

∂ν
|Γ , via an elliptic lifting zt = A−1vt

Linear open-loop and nonlinear closed-loop feedback dissipative
systems.

Let, again, Ω be an open bounded domain in R
n (n = 2 in the physical case

of plates) with sufficiently smooth C?-boundary Γ . We consider the follow-
ing open-loop problem of the Euler–Bernoulli equation defined on Ω), with
boundary control g2 ∈ L2(0, T ;L2(Γ )) ≡ L2(Σ), in the ‘moment’ boundary
condition, as well as its corresponding boundary dissipative version:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

vtt + A
2v = 0;

v(0,·)=v0, vt(0,·)=v1;

v|Σ ≡ 0;

Av

∣

∣

∣

∣

Σ

= g2;

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wtt + A
2w = 0 in Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ ≡ 0 in Σ;

Aw

∣

∣

∣

∣

Σ

=f

(

∂

∂ν
(A−1wt)

∣

∣

Γ

)

in Σ,

(8.1.1a)

(8.1.1b)

(8.1.1c)

(8.1.1d)

with Q = (0, T ] × Ω; Σ = (0, T ] × Γ . Moreover, the operator A is defined
below in (8.1.6) as Af = −Af ; D(A) = H2(Ω) ∩H1

0 (Ω). Here, ∂
∂ν denotes

the co-normal derivative w.r.t. A. The nonlinear function f will be specified
in Subsect. 8.2 below.
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Regularity, exact controllability of the v-problem; uniform
stabilization of the w-problem.

References for this subsection include [32, 35, 40, 63, 64, 59, 20]. We begin
by introducing the (state) space of optimal regularity

Y ≡ D(A 1
2 )× [D(A 1

2 )]′ ≡ H1
0 (Ω)×H−1(Ω). (8.1.2)

Theorem 8.1.1 (regularity [32, Theorem 1.3, Equations (1.22) and (1.23),
p. 203]). Regarding the v-problem (8.1.1) with y0 = {v0, v1} = 0, the following
regularity result holds for each T > 0 (recall the definition of L in (1.2.2b)):
the map

L : g2 →Lg2 = {v, vt} is continuous L2(Σ) → C([0, T ];
H1

0 (Ω) ×H−1(Ω));

→ vtt continuous L2(Σ) → L2(0, T ; [D(A 3
2 )]′ ≡ V ′);

(8.1.3a)

(8.1.3b)

V = D(A 3
2 ) = {h ∈ H3(Ω) : h|Γ = Ah|Γ = 0} (8.1.4)

[warning: the operator A in [32, Theorem 1.3] is A = A2 in our present
notation for A, see [32, Equations (1.5) and (1.6)]].

Theorem 8.1.2 (exact controllability [20, 59]). Given any initial condition
{v0, v1} ∈ Y and T > 0, there exists a g2 ∈ L2(Σ) such that the corresponding
solution of the v-problem (8.1.1) satisfies {v(T ), vt(T )} = 0.

Remark 8.1.1. Exact controllability of the v-problem (8.1.1) with two bound-
ary controls: v|Σ = g1 and Δv|Σ = g2, g1 ∈ H1

0 (0, T ;L2(Γ )), g2 ∈ L2(Σ) was
previously obtained in [35, Theorem 1.2], [63, 64]. A different exact boundary
controllability result with g1 = 0 and g2 ∈ L2(0, T ;H

1
2 (Γ )), however, in the

space [H2(Ω) ∩H1
0 (Ω)]× L2(Ω) was obtained in [40, Theorem 1.1]. �

Theorem 8.1.3 (uniform stabilization [20]). With reference to the w-problem
(8.1.1), we have

(i) the map {w0, w1} ∈ Y = D(A 1
2 ) × [D(A 1

2 )]′ → {w(t), wt(t)} defines a
s.c. contraction semigroup eAt on Y ;

(ii)

Aw|Σ =
∂A−1wt

∂ν
∈ L2(0,∞;L2(Γ )) (8.1.5)

continuously in {w0, w1} ∈ Y ;

(iii) there exist constants M � 1 and δ > 0 such that
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∥

∥

∥

∥

[

w(t)
wt(t)

]∥

∥

∥

∥

Y

=
∥

∥

∥

∥

eAt
[

w0

w1

]∥

∥

∥

∥

Y

� Me−δt
∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

Y

, t � 0. (8.1.6)

All three theorems above are obtained by PDE hard analysis energy meth-
ods (suitable energy multipliers). As usual, the most challenging result to
prove is Theorem 8.1.3 on uniform stabilization.

Abstract model of v-problem.

We let
Aψ = −Aψ, D(A) = H2(Ω) ∩H1

0 (Ω);

; 1mm]G2 : Hs(Γ ) → Hs+ 5
2 (Ω), s ∈ R,

(8.1.7)

ϕ = G2g2 ⇐⇒ {A2ϕ = 0 in Ω; ϕ|Γ = 0, Aϕ|Γ = g2 on Γ}, (8.1.8)

and we recall the Dirichlet map D : Hs(Γ ) → Hs+ 1
2 (Ω) defined in (6.1.4):

ϕ = Dg2 ⇐⇒ {Aϕ = 0 in Ω; ϕ|Γ = g2 on Γ}; G2 = −A−1D, (8.1.9)

where the last relationship is taken from [32, Remark 3.2, p. 211]. Then the
second order, respectively first order, abstract models (in additive form) of
the v-problem (8.1.1) are [32, 35]

vtt +A2v = A2G2g2 = −ADg2;
d

dt

[

v
vt

]

= A

[

v
vt

]

+ Bg2; (8.1.10)

A =
[

0 I
−A2 0

]

; Bg2 =
[

0
A2G2g2

]

; B∗
[

x1

x2

]

= G∗
2Ax2 = −D∗x2, (8.1.11)

where ∗ for B, and G2 and D, refer to different topologies. With B∗ defined by
(Bg2, x)Y = (g2, B

∗x)L2(Γ ) with respect to the Y -topology defined in (8.1.2),
we readily find the expression in (8.1.11) also by virtue of G2 = −A−1D.

‘Dissipative-like,’ open-loop, boundary control → boundary
observation linear problem. The operator B∗L.

With y0 = {v0, v1} = 0, we show that
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B∗Lg2 = B∗

[

v(t; y0 = 0)
vt(t; y0 = 0)

]

= G∗
2Avt(t; y0 = 0) = −D∗vt(t; y0)

=
∂

∂ν
A−1vt(t; y0 = 0) =

∂

∂ν
zt(t);

(8.1.12a)

(8.1.12b)

z(t) = A−1v(t; y0 = 0) ∈ C([0, T ];D(A 3
2 ) ≡ V )

continuously in g2 ∈ L2(Σ).
(8.1.13)

Indeed, to obtain (8.1.12a–b), one uses the definition in (8.1.11) for B∗, fol-
lowed by the usual property that G∗

2A2 = ∂
∂ν on D(A 1

2 ) [32, Lemma 3.1,
Equation (3.7), p. 212] or D∗A = − ∂

∂ν on D(A 1
2 ) = H1

0 (Ω) [43, Equation
(1.21)].

The regularity of z(t) noted in (8.1.13) follows from (8.1.3a) for v, and
D(A 1

2 ) ≡ H1
0 (Ω). The new variable z(t) defined in (8.1.13) satisfies the fol-

lowing dynamics: abstract equation, and corresponding PDE-mixed problem

ztt +A2z = AG2g2

= −Dg2

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ztt + Δ2z = AG2g2 = −Dg2 in Q;

z(0, · ) = 0, zt(0, · ) = 0 in Ω;

z|Σ ≡ 0, Δz|Σ ≡ 0 in Σ.

(8.1.14a)

(8.1.14b)

(8.1.14c)

The abstract z-equation in (8.1.14) (left) is readily obtained from the abstract
v-equation in (8.1.10), after applying A−1 and using the definition of z(t) in
(8.1.13). Since z(t) ∈ D(A 3

2 ) ≡ V (see (8.1.4)), both boundary conditions are
satisfied and the abstract z-equation leads to its corresponding PDE-version.

Interpretation of z.

We next provide an interpretation of the new variable z via an elliptic
problem-lifting. From (8.1.13), we have

Azt = vt(t; y0 = 0); or

{

A
2zt = vt(t; y0 = 0);

zt|Γ = Azt|Γ = 0.

Remark 8.1.2. As already noted, the change of variable v → z in (8.1.13)
and the resulting z-problems in (8.1.14) are precisely the same that were
used in [20, Equations (2.7), (2.8), (4.3)] in obtaining there the uniform sta-
bilization, Theorem 4.5.3, directly; the only difference is that, in [20, Equa-
tions (2.8), (4.3)], g2 is expressed in feedback form: g2 = D∗Apt = ∂

∂ν pt ∈
L2(0,∞;L2(Γ )) in the notation of [20]. Thus, the letter p was used in [20],
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� � � �

∂zt

∂ν
|Γg2 E-B

v-problem

v

vt

zt = A−1vtElliptic
Lifting

∂ ·
∂ν

∣
∣
∣
∣
Γ

Fig. 10 Open-loop boundary control g2 → boundary observation ∂zt
∂ν

∣

∣

∣

Γ

� � �

� �

�

∂zt

∂ν
|Γg2 E-B

v-problem

v

vt

z=A−1vtElliptic
Lifting

∂ ·
∂ν

∣
∣
∣
∣
Γ

Nonlinear
Feedback f

Fig. 11 The corresponding closed-loop boundary dissipative nonlinear problem {w,wt}

while the letter z is used now. Thus, the techniques in the proof of the next,
sought-after result are contained in [20] and indeed in [35, 64]. �

Theorem 8.1.4. With reference to (8.1.12), we have

B∗L : continuous L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ )), (8.1.15)

equivalently, with reference to (8.1.14),

the map g2 →
∂zt
∂ν

∣

∣

∣

∣

Σ

is continuous

L2(0, T ;L2(Γ )) → L2(0, T ;L2(Γ )).
(8.1.16)

We will see in the proof below that this result, though not explicitly stated,
is built-in in the treatments of [20, 32, 35, 63, 64] of Theorem 8.1.1.

Proof. Step 1. Basic energy identity. As mentioned repeatedly, it suffices (for
regularity purposes) to confine to the constant coefficient case A = Δ. We
return to the basic identity of the energy method [20, 32, 35, 64], which we
use with a vector field h satisfying (as usual in obtaining trace regularity
results [22]) the additional condition h|Γ = ν. Thus, with h · ν = 1 on Γ , for
the solution z of a priori regularity z ∈ C([0, T ];D(A 3

2 ) ≡ V ) as in (8.1.13),
we have (for example, [35, Equations (2.29) and (2.32)] and [32, Equations
(2.1) and (2.4)])
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1
2

∫

Σ

[

(

∂Δz

∂ν

)2

+
(

∂zt
∂ν

)2
]

dΣ = RHS1 + RHS2 + b0,T ; (8.1.17)

RHS1 =
∫

Q

H∇Δz · ∇Δz dQ +
∫

Q

H∇zt · ∇zt dQ

+
1
2

∫

Q

(

|∇zt|2 − |∇Δz|2
)

div h dQ +
∫

Q

zt∇(div h) · ∇ztdQ; (8.1.18)

RHS2 = −
∫

Q

Dg2∇Δz dQ; (8.1.19)

b0,T = −
[

(zt, h · ∇Δz)L2(Ω)

]T

0
. (8.1.20)

Step 2. Regularity of zt. To handle RHS1, we need the a priori regularity
of zt,

zt = A−1vt(t; y0 = 0) ∈ C([0, T ];D(A 1
2 ) ≡ H1

0 (Ω))
continuously in g2 ∈ L2(Σ),

(8.1.21)

as it follows from (8.1.13), (8.1.3a), and H−1(Ω) = [D(A 1
2 )]′ (see (8.1.2)).

Step 3. Estimate of RHS1. By (8.1.13) for z and (8.1.21) for zt, we obtain

|∇Δz|, |∇zt| ∈ C([0, T ];L2(Ω)), continuously in g2 ∈ L2(Σ). (8.1.22)

Using (8.1.22) in (8.1.18) readily yields

RHS1 = O
(

‖g2‖2L2(Σ)

)

∀ g2 ∈ L2(Σ). (8.1.23)

Step 4. Estimates of RHS2 and b0,T . From (8.1.19) and (8.1.20), by virtue
of (8.1.21), (8.1.22), we readily obtain

RHS2 + b0,T = O
(

‖g2‖2L2(Σ)

)

∀ g2 ∈ L2(Σ). (8.1.24)

Step 5. Final estimate. Using (8.1.23)–(8.1.24) in (8.1.17) yields

1
2

∫

Σ

[

(

∂Δz

∂ν

)2

+
(

∂zt
∂ν

)2
]

dΣ = O
(

‖g2‖2L2(Σ)

)

∀ g2 ∈ L2(Σ), (8.1.25)

and (8.1.25) a fortiori proves (8.1.16), as desired. The proof of Theorem 8.1.4
is complete. ��
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Remark 8.1.3. In this case, the proof of Theorem 8.1.4 is easier than the
proof of uniform stabilization in [20]. But Claim 1.3.1 or Theorem 3.1 (the
nonlinear version) require also exact controllability.

8.2 Implication on the uniform feedback stabilization
of the boundary nonlinear dissipative feedback
system w in (8.1.1a–d)

In this subsection, we focus on the w-problem (8.1.1a–d). We seek to specialize
to it the abstract uniform stabilization Theorem 3.1. To this end, we note
that

(i) the structural assumption (H.1) holds in the setting of Subsect. 8.1 (see
Subsect. 1.2);

(ii) the required exact controllability assumption (H.4) of the linear open-
loop v-problem (8.1.1a–d) (LHS) also holds on the space Y ≡ H1

0 (Ω) ×
H−1(Ω) in (8.1.2) within the class of L2(0, T ;U)-controls with U = L2(Γ ),
T > 0 arbitrary, by virtue of Theorem 8.1.2;

(iii) the boundedness assumption (H.5) of the open-loop boundary →
boundary map B∗L is guaranteed by Theorem 8.1.4.

Thus, under assumptions (H.2) and (H.3) (Sect. 3) on the nonlinear func-
tion f , with U = L2(Γ ), we obtain the following nonlinear uniform stabiliza-
tion result.

Theorem 8.2.1. Let the function f in (8.1.1d) satisfy assumptions (H.2)
and (H.3) of Sect. 3, with U = L2(Γ ). Then the conclusion of Theorem 3.1
applies to the nonlinear feedback w-problem (8.1.1a–d) (RHS). Thus, if s(t)
is the solution of the nonlinear ODE with q explicitly constructed in terms of
the data of the problem, we have
∥

∥

∥

∥

∥

[

w(t)

wt(t)

]∥

∥

∥

∥

∥

H1
0 (Ω)×H−1(Ω)

� s(t)

∥

∥

∥

∥

∥

[

w0

w1

]∥

∥

∥

∥

∥

H1
0 (Ω)×H−1(Ω)

↘ 0 as t↗ +∞.

(8.2.1)

8.3 Implication on exact controllability of the (linear)
dissipative system under boundary control

We return to the w-dissipative Euler–Bernoulli problem (in the linear case
f(u) = u ∈ L2(Γ )) on the RHS of (8.1.1a–d), which we turn into a controlled
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problem under boundary control. Thus, we consider
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ytt + A
2y = 0 in Q;

y(0, · ) = y0, yt(0, · ) = y1 in Ω;

y|Σ = 0 in Σ;

Ay|Σ =
∂

∂ν
(A−1yt|Γ ) + u in Σ,

(8.3.1a)

(8.3.1b)

(8.3.1c)

(8.3.1d)

with A defined by (1.1.0) andA defined by (8.1.7). In (8.3.1d), u is the bound-
ary control. As an immediate consequence of Theorem 8.1.4 and (1.3.8d), we
have the following corollary.

Corollary 8.3.1. Consider the open-loop v-problem on the LHS of (8.1.1a–
d). Let T > 0 be arbitrary. Given any I.C. {v0, v1} ∈ Y ≡ H1

0 (Ω)×H−1(Ω),
let g2 ∈ L2(0, T ;L2(Γ )) be the ‘moment’ boundary control that steers {v0, v1}
to rest {0, 0} at time T > 0, i.e., g2 is such that the corresponding solution
of the v-problem satisfies v(T ) = vt(T ) = 0 [this is guaranteed by Theorem
8.1.2]. Then, with reference to the y-problem (8.3.1a–d), the boundary control

u = g2 −
∂

∂ν
(A−1yt) ∈ L2(0, T ;L2(Γ )), (8.3.2)

steers the I.C. {y0, y1} = {v0, v1} ∈ Y ≡ H1
0 (Ω) ×H−1(Ω) to rest {0, 0} at

the same time T > 0, i.e., u is such that the corresponding solution of the
dissipative controlled y-problem in (8.3.1a–d) satisfies y(T ) = yt(T ) = 0.

Proof. (See the proof of Corollaries 7.3.1, 6.3.1, 5.3.1, 4.3.1, mutatis mu-
tandi) For u ≡ 0 and {y0, y1} ∈ H1

0 (Ω)×H−1(Ω), the closed-loop boundary
regularity ∂A−1yt

∂ν |Γ ∈ L2(0, T ;L2(Γ )) is the (easy) result (1.3.8d). For the
open-loop v-problem in the LHS of (8.1.1a–d), with g2 ∈ L2(0, T ;L2(Γ )) and
{v0, v1} = {0, 0}, the property that ∂A−1yt

∂ν |Γ ∈ L2(0, T ;L2(Γ )) is precisely
statement (8.1.16) of Theorem 8.1.4. Then the v-problem (8.1.1a–d) and the
y-problem (8.3.1a–d) with {y0, y1} = {v0, v1} and u as in (8.3.2) coincide. ��

8.4 Asymptotic behavior of the transfer function

( ̂B∗L)(λ) = O(λ−(1
2
+ε)), as positive λ ↗ +∞. A

direct, independent proof

In this subsection (as in Subsect. 6.4 for the Schrödinger equation with Dirich-
let control), we provide a decay rate of the transfer function H(λ) = ̂B∗L(λ)
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as positive λ ↗ +∞. The proof is operator-theoretic and direct; in partic-
ular, it does not invoke the PDE-based result on B∗L of Theorem 8.1.4. If
̂ denotes Laplace transform, define via (1.1.2b) on L and the convolution
theorem:

H(λ) = ̂B∗L(λ) = B∗(λ,A)B, λ > 0, (8.4.1)

where A, B, B∗ are the operators in (8.1.11).

Proposition 8.4.1. With reference to the transfer function H(λ) in (8.4.1),
the following asymptotic estimate holds, where ε > 0 arbitrary:

‖H(λ)‖L(L2(Γ )) = ‖̂B∗L(λ)‖L(L2(Γ )) = O
(

1
λ

1
2−ε

)

as positive λ↗ +∞.

(8.4.2)

Proof. Step 1. From A in (8.1.11), we readily obtain

R(λ,A) =

[

λ(λ2 +A2)−1 (λ2 +A2)−1

−A2(λ2 +A)−1 λ(λ2 +A2)−1

]

, λ > 0. (8.4.3)

Combining (8.4.2) with the definition of B in (8.1.11) yields

R(λ,A)B =

⎡

⎣

−(λ2 +A2)−1AD

−λ(λ2 +A2)−1AD

⎤

⎦ , λ > 0. (8.4.4)

Finally, combining (8.4.3) with the definition of B∗ in (8.1.11) yields

H(λ) = B∗R(λ,A)B = λD∗A(λ2 +A2)−1D, λ > 0 (8.4.5)

= λ(D∗A 1
4−ε)A 1

2 +2ε(λ2 +A2)−1(A 1
4−εD), (8.4.6)

ε > 0, whereA is defined in (8.1.7). [Compare with (6.4.2) for the Schrödinger
equation with Dirichlet control.]

Step 2. Recalling the basic regularity A 1
4−εD ∈ L(L2(Γ );L2(Ω)) of the

Dirichlet map, we then obtain from (8.4.6), where ‖ · ‖ is the L(L2(Ω))-norm:

‖H(λ)‖L(L2(Γ )) = ‖̂B∗L(λ)‖L(L2(Γ )) = λO
(

‖A 1
2+2ε(λ2 +A2)−1‖

)

, λ > 0.
(8.4.7)

[Compare with (6.4.4).] Next, we use that: (−A2) is a negative, self-adjoint
operator on L2(Ω), hence the generator of a self-adjoint contraction semi-
group on L2(Ω). Hence

‖R(μ,−A2)‖ = ‖(μI +A2)−1‖ � 1
μ
, μ = λ2 > 0, λ > 0. (8.4.8)
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‖A2R(μ,−A2)‖ � const, (8.4.9)

where (8.4.9) follows from (8.4.8) and A2R(μ,−A2) = I − μR(μ,−A2).

Step 3. By interpolation between (8.4.8) and (8.4.9) [65], we then deduce

‖(A2)θR(μ,−A2)‖ � C

μ1−θ , μ = λ2 > 0, 0 � θ � 1. (8.4.10)

Thus, for our case of interest 2θ = 1
2 + 2ε, and λ > 0, μ = λ2, we obtain

‖A 1
2+2εR(λ2,−A2)‖ � C

(λ2)1−θ
=

C

λ
3
2−2ε

, λ > 0. (8.4.11)

Substituting (8.4.11) into (8.4.7) yields (8.4.2) (with 2ε replaced by ε), as
desired. ��

This is, apparently, a sought-after result in ‘system theory.’

9 The Multidimensional Schrödinger Equation with
Neumann Boundary Control on the State Space
H1(Ω) and on the State Space L2(Ω)

9.1 Exact controllability/uniform stabilization in
H1(Ω), dimΩ � 1

Here, to make our point, it suffices to consider the canonical case of the
multidimensional Schrödinger equation:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iyt −Δy = 0;

y(0, · ) = y0;

y|Σ0 ≡ 0;

∂y

∂ν

∣

∣

∣

∣

Σ1

= u ∈ L2(Σ1);

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iwt −Δw = 0 in Q;

w(0, · ) = w0 in Ω;

w|Σ0 ≡ 0 in Σ0;

∂w

∂ν

∣

∣

∣

∣

Σ1

= −wt in Σ1,

(9.1.1a)

(9.1.1b)

(9.1.1c)

(9.1.1d)

where Γ = Γ0 ∪ Γ1, Γ 0 ∩ Γ 1 = φ, Γ0 �= 0, h · ν � 0 in Γ0 for a coercive
smooth vector field h(x) on Ω. We then leave more general situations (vari-
able coefficients in the principal part; energy level H1(Ω)-terms with variable
coefficients, etc.) to the literature [87, 91], etc. We focus on the exact con-
trollability/uniform stabilization results.
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Theorem 9.1.1 (exact controllability [67, 59, 87, 90, 91]). Let T > 0 be
arbitrary. Then the y-problem in (9.1.1) is exactly controllable on the state
space H1

Γ0
(Ω), with L2(Σ1)-controls, Σ1 = (0, T ]× Γ1.

Theorem 9.1.2 (uniform stabilization [67, 59, 87, 91]). (i) The w-problem
in (9.1.1) is well-posed in the semigroup sense on the space H1

Γ0
(Ω); i.e., the

map w0 → w(t) = eAF tw0 defines a s.c. semigroup eAF t on H1
Γ0

(Ω), which
is contraction in the equivalent norm of D((−AF )

1
2 ).

(ii) Moreover, the w-problem is uniformly stable on H1
Γ0

(Ω) : there exist
constants M � 1, δ > 0 such that ‖eAF t‖ � Me−δt, t � 0, in the uniform
operator norm.

Remark 9.1.1. First, Lebeau [59] shows the result under more general “ge-
ometric optics” conditions. Next, the case where ·|Σ0 = 0 is replaced by
∂ ·
∂ν |Σ0 = 0 for both the y and the w-problem is much more challenging, it
requires an additional geometrical condition [57]. �

9.2 Exact controllability/uniform stabilization in
L2(Ω), dim Ω � 1

In this subsection, the state space will be L2(Ω). Thus, along with the open-
loop y-problem in (9.1.1a–d), we consider the following closed-loop boundary
dissipative linear problem [58] and its corresponding nonlinear version [51]:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ivt + Δv = 0,

v(0,·)=v0,

v|Σ0≡0;
∂v

∂ν

∣

∣

Σ1
= iv;

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

iut+Δu in Q=(0, T ]×Ω;

u(0, · ) = u0 in Ω;

u|Σ0≡ 0;
∂u

∂ν
= ig(u) in Σ,

(9.2.1a)

(9.2.1b)

(9.2.1c)

Σi = (0, T ]×Γk, k = 0, 1. These problems were introduced in [58] (linear case)
and [51] (nonlinear case) and deal with (well-posedness and) uniform stabi-
lization results on the state space L2(Ω), a much more demanding task than
the state space H1(Ω) of Subsect. 9.1. It requires an a priori energy estimate
at the L2(Ω)-level [58], while the natural energy space for the Schrödinger
equation (where energy methods work) is H1(Ω). The passage from H1(Ω)
to L2(Ω) is accomplished by a pseudodifferential change of variable [58]. Sub-
sequently, [89] provided a direct analysis of the exact controllability property
of the open-loop Schrödinger equation with L2(0, T ;L2(Γ1))-Neumann con-
trol, for a much more general problem than the y-problem in (9.1.1a–c) and
on a Riemannian manifold.
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Theorem 9.2.1 (exact controllability, special case of [89]). Let T > 0. As-
sume that ∇d · ν � 0 on Γ0, for a strictly convex function d (or, more gen-
erally, h · ν � 0 on Γ0 for a coercive vector field h). Then the y-problem
(9.1.1a–c) is exactly controllable on the state space L2(Ω), within the class of
L2(0, T ;L2(Γ1))-controls.

Theorem 9.2.2 (uniform stabilization [58, Sect. 11]). With reference to the
closed-loop linear dissipative v-problem in (9.2.1a–c), we have

(a) the map v0 → v(t) defines a s.c. contraction semigroup on L2(Ω);

(b) assume h·ν � 0 on Γ0 as in Theorem 9.2.1; then the strongly continuous
semigroup of part (a) is uniformly (exponentially) stable on L2(Ω) : there exist
constant M � 1 and δ > 0 such that

‖v(t)‖L2(Ω) � Me−δt‖v0‖L2(Ω), t � 0. (9.2.2)

Theorem 9.2.1 of the present subsection improves by one unit in the scale
of Sobolev space regularity Theorem 9.1.1 of Subsect. 9.1. In the next sub-
sections, we analyze the regularity of the operator L and the regularity of
the operator B∗L corresponding to the open-loop y-problem (9.1.1a–c). A
full statement of well-posedness and uniform stabilization of the nonlinear
boundary feedback problem u is given in [51] (following and refining the
strategy of [24] for wave equations.

The regularity result is considered (at least in the negative sense for dim
Ω � 2) in Subsect. 9.3 below.

9.3 Counterexample for the multidimensional
Schrödinger equation with Neumann boundary
control: L �∈ L(L2(0, T ;L2(Γ ); L2(0, T ;Hε(Ω)),
ε > 0. A fortiori: B∗L �∈ L(L2(0, T ;U)), with B∗

related to the state space Hε(Ω) and control space
U = L2(Γ )

The present subsection complements Subsects. 9.1 and 9.2. Here, the focus
will be on the multidimensional case dim Ω � 2. Two main results of negative
character are given, with the second being implied by the first by virtue of
Theorem 2.1.

(1) With reference to the boundary → interior map L defined in (1.3),
we show by means of a counterexample that L �∈ L(L2(Σ); L2(0, T ;H1(Ω)),
though H1(Ω) is the space of exact controllability/uniform stabilization, as
seen in Subsect. 9.1. Even more drastically, we show that

L �∈ L(L2(Σ); L2(0, T ;Hε(Ω)) ∀ ε > 0. (9.3.1)
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This negative result is the counterpart of the negative result for wave equa-
tions with L2(Σ)-Neumann control given in [36, Counterexample, p. 294]
which was already invoked in Sect. 6. The present proof is an adaptation of
that given in [36].

(2) As a consequence of part (1) via Theorem 2.1, we deduce that B∗L �∈
L(L2(0, T ;U)) in the present case, where the star ∗ in B∗ refers to the control
space U = L2(Γ ) and the state space Hε(Ω).

Counterexample.

It suffices to consider the Schrödinger equation on a 2-dimensional half-space,
the setting of Subsect. 4.3, with Neumann boundary control. Hereafter, let
Ω ≡ R

+
2 and Γ = Ω|x=0 as in (4.3.1). On Ω, we consider the problem

ivt = vxx + vyy in Q ≡ (0,∞)×Ω;
v(0, · ) = 0 in Ω;
vx|x=0 = g in Σ ≡ (0,∞)× Γ.

(9.3.2a)
(9.3.2b)
(9.3.2c)

Goal : We want to show that: given T > 0, there exists some g ∈
L2(0, T ;L2(Γ )) such that

Lg = v �∈ L2(0, T ;Hε(Ω)) ∀ ε > 0. (9.3.3)

To this end, it suffices to show that there exists g ∈ L2(0,∞;L2(Γ )) such
that

e−γt(Lg)(t) = e−γtv(t) /∈ L2(0,∞;Hε(Ω)), (9.3.4)

no matter which constant γ > 0 we choose.

Proof of (9.3.4.). Step 1. Let v̂(τ, x, η) be the Laplace-Fourier transform of
v(t, x, y): Laplace in time t → τ = γ + iσ, γ > 0, σ ∈ R, and Fourier in
y → iη, η ∈ R, leaving x � 0 as a parameter. We then obtain for the solution
of (9.3.2), where η2 + iτ = (η2 − σ) + iγ:
{

iτ v̂ = v̂xx − η2v̂

v̂x(τ, 0, η) = ĝ(τ, η)
or v̂(τ, x, η) = − ĝ(τ, η)

√

(η2 − σ) + iγ
e−
√

(η2−σ)+iγ x.

(9.3.5)

Step 2. For fixed γ > 0, we define (by adaptation of [36, Equation (2.18)])
the (bad) region Bγση of the first quadrant of the (σ, η)-plane by

Bγση ≡ {(σ, η) ∈ R
2 : σ2 + η � 1 : |η2 − σ| � 1}, (9.3.6)

comprised between the two parabolas η2 − σ = ±1 in the first quadrant,
around the parabola η2 = σ. We note that in Bγση we have
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in Bγση : σ ∼ η2; |(η2−σ)+iγ| ∼ 1 γ � |(η2−σ)+iγ| �
√

1 + γ2; (9.3.7a)

√

(η2 − σ) + iγ = α + iβ; η2 − σ = α2 − β2; 2αβ = γ;

α = Re
√

(η2 − σ) + iγ ∼ 1. (9.3.7b)

Step 3. In order to establish the negative result (9.3.4), it is sufficient to
prove that: there exists g ∈ L2(0,∞;L2(Γ )) such that, recalling (9.3.5), we
have

|η|ε|v̂| = |η|ε |ĝ(τ, η)|
|
√

(η2 − σ) + iγ|
e−Re

√
(η2−σ)+iγ x �∈ L2(0,∞;L2(Ω)). (9.3.8)

To this end, we compute as |z 1
2 | = |z| 12 ; z = ρeiθ:

∫ ∫

Bγ
ση

∞
∫

0

|η|2ε|v̂|2dBγση

=
∫ ∫

Bγ
ση

∞
∫

0

|η|2ε |ĝ(τ, η)|2
|(η2 − σ) + iγ| e

−Re
√

(η2−σ)+iγ xdx dσ dη

(9.3.9)

=
∫ ∫

Bγ
ση

|η|2ε |ĝ(σ, η)|2
|(η2 − σ) + iγ|

1
Re
√

(η2 − σ) + iγ
dσ dη (9.3.10)

(by (9.3.7)) ∼
∫ ∫

Bγ
ση

|η|2ε|ĝ(σ, η)|2dσ dη, (9.3.11)

where in the last step we have invoked (9.3.7a–b). Thus, it suffices to take a
function ĝ(σ, η) which is L2(Bγση), and no better, on Bγση, and zero elsewhere,
to obtain for the corresponding solution v:

∫ ∫

Bγ
ση

∞
∫

0

|η|2ε|v̂|2dBγση = ∞ ∀ ε > 0; (9.3.12)

hence such a g is the sought-after function producing the negative conclusion
(9.3.4). ��



270 I. Lasiecka and R. Triggiani

9.4 The operator B∗L, with U = L2(Γ ) and state space
L2(Ω) of the open-loop y-problem (9.1.1a–d)

In this subsection, we return to the open-loop y-problem in (9.1.1a–d) and
compute the corresponding boundary control → boundary observation oper-
ator B∗L with respect to the control space L2(Γ ) and the state space L2(Ω).
Then we establish that B∗L is bounded on L2(0, T ;L2(Γ )), at least in the
(computable) case of the half-space.

Abstract model [43, 46], [58, Subsect. 11.2]

. The abstract model of the open-loop y-problem in (9.1.1a–c) is

iyt = A(y −Nu); yt = −iAy −ANu on [D(A)]′, (9.4.1)

where A is the positive, self-adjoint operator: L2(Ω ⊃ D(A) → L2(Ω),

Aψ = −Δψ, −Δψ, D(A) =

{

f ∈ H2(Ω) : f |Γ0 = 0,
∂f

∂ν

∣

∣

∣

∣

Γ1

= 0

}

, (9.4.2)

and N is the Neumann map [46],

h = Ng ⇐⇒
{

Δh = 0 in Ω; h|Γ0 = 0,
∂h

∂ν

∣

∣

∣

∣

Γ1

= g

}

; (9.4.3)

⎧

⎨

⎩

N : Hs(Γ ) → Hs+ 3
2 (Ω), s ∈ R;

N : L2(Γ ) → H
3
2 (Ω) ⊂ H

3
2−2ε(Ω) ≡ D(A

3
4−ε), ε > 0;

(9.4.4a)

(9.4.4b)

N∗A∗ϕ = N∗Aϕ =

{

0 on Γ0;

−ϕ on Γ1,
ϕ ∈ D(A) [26]; (9.4.5)

B = −AN ; B∗g = −N∗Ag = g, (Bu, g)L2(Ω) = (u,B∗g)L2(Γ ), (9.4.6)

so that the star ∗ of the adjoint refers now to the control space L2(Γ ) and the
state space L2(Ω). Accordingly, with reference to the y-problem with y0 = 0
we have by (9.4.6)

Lu = y, B∗Lu = −N∗Ay|Γ1 = y|Γ1 . (9.4.7)

Is the operator B∗L bounded on L2(0, T ;L2(Γ ))? The answer is in the
affirmative (unlike the case of Subsect. 9.3 on the state space Hε(Ω)), at
least for the Schrödinger problem defined on the half-space.
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The half-space case.

We return to the problem (9.3.2a–c) with control now called g ∈ L2(0, T ;
L2(Γ ) which we extend by zero for t > T . In Laplace (in time)-Fourier (in
the tangential variable) the solution is given by (9.3.5)). Thus, we have (with
Γ1 = Γ ):

̂B∗Lg|Γ = v̂(τ, x = 0, η) = − ĝ(τ, η)
√

(η2 − σ) + iγ
. (9.4.8)

Since
√

(η2 − σ) + iγ � γ > 0, we readily obtain

∫ ∫

first
quadrant

|v̂(τ, x = 0, η)|2dσ dη =
∫ ∫

first
quadrant

|ĝ(τ, η)|2
√

(η2 − σ) + iγ|2
dσ dη (9.4.9)

� 1
γ

∫ ∫

first
quadrant

|ĝ(τ, η)|2dσ dη <∞, (9.4.10)

and then

eγtB∗Lg = v|Γ ∈ L2(0,∞;L2(Γ )), γ > 0, g ∈ L2(0,∞;L2(Γ )), (9.4.11)

and hence

B∗Lg = v|Γ ∈ L2(0,∞;L2(Γ )), for g ∈ L2(0,∞;L2(Γ )), (9.4.12)

as desired. It is likely that the boundedness of B∗L in the present case holds
for any bounded domain, but this needs to be established.
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Uniform Asymptotics of Green’s
Kernels for Mixed and Neumann
Problems in Domains with Small Holes
and Inclusions

Vladimir Maz’ya and Alexander Movchan

To the memory of S.L. Sobolev

Abstract Uniform asymptotic approximations of Green’s kernels for the har-
monic mixed and Neumann boundary value problems in domains with sin-
gularly perturbed boundaries are obtained. We consider domains with small
holes (in particular, cracks) or inclusions. Formal asymptotic algorithms are
supplied with rigorous estimates of the remainder terms.

1 Introduction

There is a wide range of applications in physics and structural mechanics
involving perforated domains and bodies with defects of different types. Di-
rect numerical treatment of such problems is sometimes inefficient, especially
for situations where the right-hand sides in the equations and/or boundary
conditions have singularities. Asymptotic approximations are important for
problems of this kind and sometimes can be directly incorporated into com-
putational algorithms if desirable.

Asymptotic formulas for Green’s kernels of several classical boundary value
problems under small variations of a domain were obtained in the pioneering
paper [2] by Hadamard. These asymptotic approximations are related to the
case of a regularly perturbed domain, when the boundary ∂Ωε of the perturbed
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domain approximates the limit boundary ∂Ω in such a way that the angle
between the outward normals at nearby points of ∂Ω and ∂Ωε is small.

Asymptotic approximations in [2] are not uniform with respect to the inde-
pendent variables. Results on uniform asymptotic approximations of Green’s
kernels in various singularly perturbed domains are formulated in [5]. De-
tailed derivation and analysis of uniform asymptotic formulas for Green’s
functions of the Dirichlet problem for the operator −Δ in n-dimensional
domains with small holes are given in [6]. In particular, the asymptotic ap-
proximation, obtained in [6], for Green’s function of the Dirichlet problem in
a two-dimensional domain Ωε with an inclusion Fε = {x : ε−1x ∈ F} has the
form

Gε(x,y) = G(x,y) + g(ξ,η) + g(ξ,∞) + g(∞,η) +
1

2π
log

|ξ − η|
rF

− 2π
log(εrFRΩ−1)

(

G(x, 0) +
1

2π
log

|ξ|
rF
− g(ξ,∞)

)

×
(

G(0,y) +
1

2π
log

|η|
rF
− g(∞,η)

)

+ O(ε), (1.1)

where ξ = ε−1x, η = ε−1y, G and g are Green’s functions of “model”
interior and exterior Dirichlet problems in “limit” domains Ω and R2 \ F ,
independent of ε; RΩ and rF are the inner (with respect to O) and outer
conformal radii of Ω and F respectively (see [8, Appendix G]).

Approximations of this type are readily applicable to numerical simula-
tions. For example, in Fig. 1 we show the regular part of Green’s function Gε

in a two-dimensional domain with a small circular inclusion. The results on
two diagrams are practically indistinguishable, while in Fig. 1a the data are
obtained via the uniform asymptotic approximation, whereas Fig. 1b presents
the result of independent finite element computations produced in COMSOL
(courtesy of Dr. M. Nieves).

The aim of the present paper is to derive and justify asymptotic approxi-
mations of Green’s kernels for singularly perturbed domains whose boundary,
or some part of it, supports the Neumann boundary condition. Although the
corresponding asymptotic formulas to be obtained and (1.1) are of similar na-
ture, the former have some new features and require individual treatments.
We also derive simpler asymptotic formulas, which become efficient when
certain constraints are imposed on the independent variables.

Sections 2 and 3 deal with the Dirichlet–Neumann problems in two-
dimensional domains with small holes, inclusions or cracks. Section 4 gives
the uniform approximation of Green’s function for the Neumann problem in a
domain of the same type. Finally, in Sect. 5 we formulate similar asymptotic
approximations of Green’s kernels in three-dimensional domains with small
holes or small inclusions.
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(a)

(b)

Fig. 1 (a) Regular part of Green’s function, computed via the asymptotic formula (1.1).
(b) A finite element computation (in COMSOL) for the regular part of Green’s function.
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2 Green’s Kernel for a Mixed Boundary Value Problem
in a Planar Domain with a Small Hole or a Crack

Let Ω be a bounded domain in R
2, which contains the origin O, and let F be a

compact set in R
2, O ∈ F . We suppose that the boundary ∂Ω is smooth. This

constraint is not essential and can be considerably weakened. We assume,
without loss of generality, that diam F = 1/2 and dist(O, ∂Ω) = 1. We
also introduce the set Fε = {x : ε−1x ∈ F}, with ε being a small positive
parameter. The boundary ∂F is required to be piecewise smooth, with the
angle openings from the side of R

2 \ F belonging to (0, 2π]. In the case of a
crack, ∂F and ∂Fε are treated as two-sided. We assume that Ωε = Ω \ Fε is
connected, and in the sequel we refer to it as a domain with a small hole (or
possibly a small crack).

Let G
(N)
ε denote Green’s function of the operator −Δ with the Neumann

data on ∂Fε and the Dirichlet data on ∂Ω. In other words, G(N)
ε is a solution

of the problem

ΔxG
(N)
ε (x,y) + δ(x− y) = 0, x,y ∈ Ωε, (2.1)

G(N)
ε (x,y) = 0, x ∈ ∂Ω, y ∈ Ωε, (2.2)

∂G
(N)
ε

∂nx
(x,y) = 0, x ∈ ∂Fε, y ∈ Ωε. (2.3)

Here and elsewhere, the Neumann condition is understood in the varia-
tional sense.

In this section, we construct an asymptotic approximation of G
(N)
ε (x,y),

uniform with respect to x and y in Ωε.

2.1 Special solutions of model problems

While constructing the asymptotic approximation of G
(N)
ε , we use the vari-

ational solutions G(x,y),D(ε−1x), ζ(ε−1x) and N (ε−1x, ε−1y) of certain
model problems in the limit domains Ω and R

2 \ F. It is standard that all
solutions, introduced in this subsection, exist and are unique. We describe
these solutions.

1. Let G be Green’s function for the Dirichlet problem in Ω:

G(x,y) = (2π)−1 log |x− y|−1 −H(x,y), (2.1)

where H is the regular part of G, i.e., a unique solution of the Dirichlet
problem

ΔxH(x,y) = 0, x,y ∈ Ω, (2.2)
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H(x,y) = (2π)−1 log |x− y|−1, x ∈ ∂Ω, y ∈ Ω. (2.3)

2. We introduce the scaled coordinates ξ = ε−1x and η = ε−1y. The
notation ζ is used for a unique special solution of the Dirichlet problem:

Δζ(ξ) = 0 in R
2 \ F, (2.4)

ζ(ξ) = 0 for ξ ∈ ∂F, (2.5)

ζ(ξ) = (2π)−1 log |ξ|+ ζ∞ + O(|ξ|−1) as |ξ| → ∞, (2.6)

where ζ∞ is constant.
Also, it can be shown that ζ is the limit of Green’s function G of the

exterior Dirichlet problem in R
2 \ F

ζ(η) = lim
|ξ|→∞

G(ξ,η), (2.7)

where

ΔξG(ξ,η) + δ(ξ − η) = 0, ξ,η ∈ R
2 \ F, (2.8)

G(ξ,η) = 0, ξ ∈ ∂F, η ∈ R
2 \ F, (2.9)

G(ξ,η) is bounded as |ξ| → ∞ and η ∈ R
2 \ F. (2.10)

The representation (2.7) follows from Green’s formula applied to ζ and G.
Here and elsewhere, BR = {X ∈ R

2 : |X| < R}. We derive

ζ(η) = − lim
R→∞

∫

BR\F

ζ(ξ)ΔξG(ξ,η)dξ

= lim
R→∞

∫

|ξ|=R

(

G(ξ,η)
∂ζ(ξ)
∂|ξ| − ζ(ξ)

∂G(ξ,η)
∂|ξ|

)

dSξ

= (2π)−1 lim
R→∞

∫

|ξ|=R

G(ξ,η)|ξ|−1dSξ = G(∞,η), (2.11)

which yields (2.7).

3. Let N (ξ,η) be the Neumann function in R
2 \ F defined by

N (ξ,η) = (2π)−1 log |ξ − η|−1 − hN(ξ,η), (2.12)

where hN is the regular part of N subject to

ΔξhN (ξ,η) = 0, ξ,η ∈ R
2 \ F, (2.13)
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∂hN
∂nξ

(ξ,η) =
1

2π
∂

∂nξ
(log |ξ − η|−1), ξ ∈ ∂F, η ∈ R

2 \ F, (2.14)

hN (ξ,η) → 0 as |ξ| → ∞, η ∈ R
2 \ F. (2.15)

We note that the Neumann function N used here, is symmetric. This
follows from Green’s formula applied to U(X) := N (X, ξ) and V (X) :=
N (x,η), where ξ and η are arbitrary fixed points in R

2 \ F . We have

U(η)− V (ξ) = lim
R→∞

∫

BR\F

{

V (X)ΔxU(X)− U(X)ΔXV (X)
}

dX

= lim
R→∞

∫

|X|=R

{V (X)
∂

∂|X|U(X)− U(X)
∂

∂|X|V (X)}dSX

= − lim
R→∞

(4π2R)−1

∫

|X|=R

{

(log |X− η|−1 + O(R−1))
(X · (X− ξ)
|X− ξ|2 + O(R−2)

)

− (log |X− ξ|−1 + O(R−1))
(X · (X− η)
|X− η|2 + O(R−2)

)}

dSx = 0.

Thus,
0 = U(η)− V (ξ) = N (η, ξ)−N (ξ,η).

4. The vector of dipole fields D(ξ) = (D1(ξ),D2(ξ))T is a solution of the
exterior Neumann problem

ΔD(ξ) = 0 in R
2 \ F, (2.16)

∂Dj
∂n

(ξ) = nj for ξ ∈ ∂F, j = 1, 2, (2.17)

Dj(ξ) → 0 as |ξ| → ∞, j = 1, 2, (2.18)

where n1 and n2 are components of the unit normal on ∂F.

2.2 The dipole matrix P

The dipole fields Dj , j = 1, 2, defined in (2.16)–(2.18), allow for the asymp-
totic representation (see, for example, [8])

Dj(ξ) =
1

2π

2
∑

k=1

Pjkξk
|ξ|2 + O(|ξ|−2), (2.1)
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where |ξ| > 2, and P = (Pjk)2j,k=1 is the dipole matrix.
The symmetry of P can be verified as follows. Let BR be a disk of suf-

ficiently large radius R centered at the origin. We apply Green’s formula to
ξj −Dj(ξ) and Dk(ξ) in BR \ F , and deduce

∫

∂BR

{

(ξj −Dj(ξ))
∂Dk(ξ)
∂|ξ| −Dk(ξ)

∂

∂|ξ| (ξj −Dj(ξ))
}

dS

= −
∫

∂F

(ξj −Dj(ξ))
∂Dk(ξ)

∂n
dS, (2.2)

where ∂/∂n is the normal derivative in the direction of the interior normal
with respect to F . In the limit, as R→∞, the integral on the left-hand side
of (2.2) tends to −Pkj , whereas the integral on the right-hand side becomes

−
∫

∂F

ξj
∂ξk
∂n

dS +
∫

∂F

Dj(ξ)
∂Dk(ξ)

∂n
dS

= δjkmeas(F ) +
∫

R2\F

∇Dj(ξ) · ∇Dk(ξ) dξ,

where meas(F ) stands for the two-dimensional Lebesgue measure of the set
F . Thus, the representation for components of the dipole matrix takes the
form

Pkj = −δjkmeas(F )−
∫

R2\F

∇Dj(ξ) · ∇Dk(ξ) dξ, (2.3)

which implies that the dipole matrix P for the hole F is symmetric and
negative definite.

2.3 Pointwise estimate of a solution to the exterior
Neumann problem

In this subsection, we make use of the function spaces L1
2(R2 \ F ), W 1

p (R2 \
F ) and W

−1/p
p (∂F ). The first of them is the space of distributions whose

gradients belong to L2(R2 \ F ). The second one is the usual Sobolev space
consisting of functions in Lp(R2 \ F ) with distributional first derivatives in
Lp(R2 \F ). Finally, W−1/p

p (∂F ) stands for the dual of the space of traces on
∂F of functions in W 1

p′(R
2 \ F ), p + p′ = pp′.

The following pointwise estimate will be used repeatedly in the sequel.
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Lemma 2.1. Let U ∈ L1
2(R2 \ F ) be a solution of the exterior Neumann

problem
ΔU(ξ) = 0, ξ ∈ R

2 \ F, (2.1)

∂U

∂n
(ξ) = ϕ(ξ), ξ ∈ ∂F, (2.2)

U(ξ) → 0 as |ξ| → ∞, (2.3)

where ∂/∂n is the normal derivative on ∂F, outward with respect to R
2 \ F,

and ϕ ∈ L∞(∂F ),
∫

∂F

ϕ(ξ)dsξ = 0. (2.4)

We also assume that
∫

∂F

U(ξ)
∂ζ

∂n
(ξ)dsξ = 0, (2.5)

where ζ is the same as in (2.7). Then

sup
ξ∈R2\F

{(|ξ|+ 1)|U(ξ)|} � C‖ϕ‖L∞(∂F ), (2.6)

where C is a constant depending on ∂F .

Proof. Let Br denote the disk of radius r centered at O, and let W 1
2 (Br \F )

be the space of restrictions of functions in W 1
2 (R2 \F ) to Br \F . By the W 1

p

local coercivity result [7], U ∈W 1
p (B2 \ F ) for any p ∈ (1, 4), and

‖U‖W 1
p (B2\F ) � C

(

‖ϕ‖
W

−1/p
p (∂F )

+ ‖U‖L2(B3\F )

)

. (2.7)

The first term on the right-hand side of (2.7) satisfies

‖ϕ‖
W

−1/p
p (∂F )

� C‖ϕ‖L∞(∂F ). (2.8)

From (2.1) and (2.2) it follows that

‖∇U‖2L2(R2\F ) =
∫

∂F

U(ξ)ϕ(ξ)dS � ‖U‖L2(∂F )‖ϕ‖L2(∂F ). (2.9)

Note that, by the Sobolev trace theorem,

‖U‖Lq(∂F ) � C‖U‖W 1
2 (B2\F ) (2.10)

for any q <∞ (see, for instance, [4, Theorem 1.4.5]). From our assumptions
on F it follows that

∣

∣

∣

∂ζ(ξ)
∂n

∣

∣

∣ � C(δ(ξ))−1/2, (2.11)
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where δ(ξ) is the distance from ξ ∈ ∂F to the nearest angle vertex on ∂F .
Hence

∣

∣

∣

∫

∂F

U(ξ)
∂ζ(ξ)
∂n

dS
∣

∣

∣ � C‖U‖Lq(∂F ) (2.12)

for any q > 2. This inequality, together with (2.10), shows that the left-hand
side in (2.12) is a semi-norm, continuous in W 1

2 (B2 \ F ). Moreover,
∫

∂F

∂ζ

∂n
(ξ)dS = lim

R→∞
(2π)−1

∫

|ξ|=R

∂

∂|ξ| log |ξ| dS = 1.

Now, the Sobolev equivalent normalizations theorem [4, Sect. 1.1.15] implies
that the norm in W 1

2 (B2 \ F ) is equivalent to the norm

‖∇U‖L2(B2\F ) +
∣

∣

∣

∫

∂F

U(ξ)
∂ζ

∂n
(ξ)dS

∣

∣

∣.

Combining this fact with (2.10) and using (2.5), we arrive at

‖U‖L2(∂F ) � C‖∇U‖L2(R2\F ). (2.13)

Then, (2.9) and (2.13) yield

‖∇U‖L2(R2\F ) + ‖U‖L2(∂F ) � C‖ϕ‖L2(∂F ). (2.14)

By (2.10), the norm in W 1
2 (B3 \ F ) is equivalent to the norm

‖∇U‖L2(B3\F ) + ‖U‖L2(∂F ).

Hence
‖U‖L2(B3\F ) � C

(

‖∇U‖L2(R2\F ) + ‖U‖L2(∂F )

)

, (2.15)

which, together with (2.14), gives

‖U‖L2(B3\F ) � C‖ϕ‖L2(∂F ). (2.16)

Substituting the estimates (2.8) and (2.16) into (2.7), we arrive at

‖U‖W 1
p (B2\F ) � C‖ϕ‖L∞(∂F ). (2.17)

Recalling that W 1
p (B2 \F ) is embedded into C(B2 \ F ) for p > 2, by another

Sobolev theorem (see [4, Theorem 1.4.5]), we obtain

sup
B2\F

|U | � C‖ϕ‖L∞(∂F ). (2.18)

Since U(ξ) → 0 as |ξ| → ∞ (see (2.4) and (2.5)), we have the Poisson formula
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U(ξ) =
1
π
�

2π
∫

0

U(1, θ′)
ρei(θ−θ′) − 1

dθ′, ξ = ρeiθ, (2.19)

which, together with (2.18), implies for |ξ| > 1 that
(

1 + |ξ|
)

|U(ξ)| � C max
ξ∈∂B1

|U(ξ)| � C‖ϕ‖L∞(∂ω). (2.20)

Applying (2.18) once more, we complete the proof. ��

2.4 Asymptotic properties of the regular part of the
Neumann function in R

2 \ F

Lemma 2.1 proved in the previous section enables one to describe the asymp-
totic behavior of the function hN defined in (2.13)–(2.15).

Lemma 2.1. The solution hN (ξ,η) of the problem (2.13)–(2.15) satisfies the
estimate

∣

∣

∣hN(ξ,η)− D(η) · ξ
2π|ξ|2

∣

∣

∣ � Const (1 + |η|)−1|ξ|−2 (2.1)

as |ξ| > 2 and η ∈ R
2 \ F .

Proof. The leading-order approximation of the harmonic function hN (ξ,η),
as |ξ| → ∞, is sought in the form

(2π)−1|ξ|−2(C1ξ1 + C2ξ2).

Applying Green’s formula in BR \ F to hN (ξ,η) and Dj(ξ)− ξj , and taking
the limit, as R→∞, we obtain

lim
R→∞

∫

|x|=R

{

hN (ξ)
∂(Dj(ξ)− ξj)

∂|ξ| + (ξj −Dj(ξ))
∂hN (ξ)
∂|ξ|

}

dSξ

=
∫

∂F

(Dj(ξ)− ξj)
∂hN (ξ)

∂n
dSξ, (2.2)

where ∂/∂n is the normal derivative in the direction of the inward normal
with respect to F . As R→∞, the left-hand side of (2.2) becomes

1
2π

lim
R→+∞

∫

|x|=R

{

− 2
(C1ξ1 + C2ξ2)ξj

R3

}

dSξ
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= − 1
π

lim
R→+∞

2π
∫

0

(C1 cos θ + C2 sin θ)R−1ξjdθ = −Cj . (2.3)

Taking into account the definition of the dipole fields Dj (see (2.16)–(2.18))
and the definition of the regular part hN of the Neumann function (see (2.13)–
(2.15)) in R

2 \F , we can reduce the integral I on the right-hand side of (2.2)
to the form

I =
1

2π

{

∫

∂F

(

Dj(ξ)
∂

∂nξ

(

log |ξ − η|−1
)

− log |ξ − η|−1 ∂

∂nξ
Dj(ξ)

)

dSξ

+
∫

∂F

(

nj log |ξ − η|−1 − ξj
∂

∂nξ

(

log |ξ − η|−1
))

dSξ

}

. (2.4)

The second integral in (2.4) equals zero. Applying Green’s formula to the
first integral in (2.4), we obtain

1
2π

∫

∂F

(

Dj(ξ)
∂

∂nξ

(

log |ξ − η|−1
)

− log |ξ − η|−1 ∂

∂nξ
Dj(ξ)

)

dSξ = −Dj(η). (2.5)

Hence from (2.3)–(2.5) it follows that

Cj = Dj(η), j = 1, 2. (2.6)

We note that the function

hN(ξ,η) + D(η) · ∇ξ
( 1

2π
log |ξ|−1

)

(2.7)

is harmonic in R
2 \ F , both in ξ and η, and it vanishes at infinity. Using

(2.17) and (2.14), we obtain

∂

∂nη

(

hN (ξ,η) + D(η) · ∇ξ
( 1

2π
log |ξ|−1

))

=
∂

∂nη
hN (ξ,η) + n · ∇ξ

( 1
2π

log |ξ|−1
)

= −n · ∇ξ
{ 1

2π
log(|ξ||ξ − η|−1)

}

= − 1
2π|ξ|2 n ·

{

η − 2ξ · η
|ξ|2 ξ + O(|ξ|−1)

}

(2.8)
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as η ∈ ∂F and |ξ| > 2. We also note that
∫

∂F

∂

∂nη

(

hN (ξ,η) + D(η) · ∇ξ(
1

2π
log |ξ|−1)

)

dSη = 0.

Consider the problem (2.1)–(2.3) in the formulation of Lemma 2.1, where
the variable ξ is replaced by η, the differentiation is taken with respect to
components of η, and the function U is changed for (2.7), with fixed ξ. In
this case, the right-hand side ϕ in (2.2) is replaced by

∂

∂nη
hN (ξ,η) + n · ∇ξ

( 1
2π

log |ξ|−1
)

.

Then using (2.8) and applying Lemma 2.1, we obtain (2.1). ��

Using the notion of the dipole matrix, from (2.1) and Lemma 2.1. we derive
the following asymptotic representation of hN .

Corollary 2.1. Let |ξ| > 2, and |η| > 2. Then

hN (ξ,η) =
1

4π2

2
∑

j,k=1

Pjkξjηk
|ξ|2|η|2 + O

( |ξ|+ |η|
|ξ|2|η|2

)

. (2.9)

2.5 Maximum modulus estimate for solutions to the
mixed problem in Ωε with the Neumann data on
∂Fε

In the sequel, when estimating the remainder term in the asymptotic repre-
sentation of Gε(x,y), we use the following assertion.

Lemma 2.1. Let u be a function in C(Ωε) such that ∇u is square integrable
in a neighborhood of ∂Fε. Also, let u be a solution of the mixed boundary
value problem

Δu(x) = 0, x ∈ Ωε, (2.1)

u(x) = ϕ(x), x ∈ ∂Ω, (2.2)

∂u

∂n
(x) = ψε(x), x ∈ ∂Fε, (2.3)

where ϕ ∈ C(∂Ω), ψε ∈ L∞(∂Fε), and
∫

∂Fε

ψε(x)ds = 0. (2.4)
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Then there exists a positive constant C, independent of ε and such that

‖u‖C(Ωε) � ‖ϕ‖C(∂Ω) + εC‖ψε‖L∞(∂Fε). (2.5)

Proof. (a) We introduce the inverse operator

N : ψ → v (2.6)

for the boundary value problem

Δv(ξ) = 0, ξ ∈ R
2 \ F, (2.7)

∂v

∂n
(ξ) = ψ(ξ), ξ ∈ ∂F, (2.8)

v(ξ) → 0 as |ξ| → ∞, (2.9)

where ψ ∈ L∞(∂F ), and
∫

∂F

ψ(ξ)dsξ = 0. (2.10)

In the scaled coordinates ξ = ε−1x, the operator Nε is defined by

(Nεψε)(x) = (Nψ)(ξ), (2.11)

where ψε(x) = ε−1ψ(ε−1x).

(b) We look for the solution u of (2.1)–(2.4) in the form

u = V (x) + W (x), (2.12)

where V = Nεψε, and the function W satisfies the problem

ΔW (x) = 0, x ∈ Ωε, (2.13)

∂W

∂n
(x) = 0, x ∈ ∂Fε, (2.14)

W (x) = ϕ(x) − V (x), x ∈ ∂Ω. (2.15)

By Lemma 2.1, we have

max
Ωε

|V | = max
Ωε

|Nεψε| � εC‖ψε‖L∞(∂Fε). (2.16)

Hence, as follows from (2.15) and (2.16),

max
∂Ω

|W | � ‖ϕ‖C(∂Ω) + εC‖ψε‖L∞(∂Fε), (2.17)
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and, by the weak maximum principle for variational solutions (see, for exam-
ple, [1, pp. 215–216]) of (2.13)–(2.15), we obtain

max
Ωε

|W | � ‖ϕ‖C(∂Ω) + εC‖ψε‖L∞(∂Fε). (2.18)

The result follows from (2.16), (2.18) combined with (2.12). ��

2.6 Approximation of Green’s function G(N)
ε

The required approximation of G
(N)
ε is given in the next theorem.

Theorem 2.1. Green’s function G
(N)
ε (x,y) for the boundary value problem

(2.1)–(2.3) with the Neumann data on ∂Fε and the Dirichlet data on ∂Ω has
the asymptotic representation

G(N)
ε (x,y) = G(x,y) +N (ε−1x, ε−1y) + (2π)−1 log(ε−1|x− y|)

+εD(ε−1x) · ∇xH(0,y) + εD(ε−1y) · ∇yH(x, 0) + rε(x,y), (2.1)

where
|rε(x,y)| � Const ε2 (2.2)

uniformly with respect to x,y ∈ Ωε. Here, G, N , D, and H are the same as
in Sect. 2.1.

Proof. We begin with the formal argument leading to (2.1). First, we note
that

N(ε−1x, ε−1y) + (2π)−1 log(ε−1|x− y|) = −hN(ε−1x, ε−1y),

and then represent G
(N)
ε (x,y) in the form

G(N)
ε (x,y) = G(x,y) − hN (ε−1x, ε−1y) + ρε(x,y). (2.3)

By the direct substitution of (2.3) into (2.1)–(2.3) and using Lemma 2.1, we
deduce that ρε(x,y) satisfies the boundary value problem

Δxρε(x,y) = 0, x,y ∈ Ωε,

ρε(x,y) = hN (ε−1x, ε−1y)

=
ε

2π
D
(y
ε

)

· x
|x|2 + O(ε2) for x ∈ ∂Ω,y ∈ Ωε, (2.4)

and
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∂ρε
∂nx

(x,y) =
∂

∂nx
H(x,y)

= n · ∇xH(0,y) + O(ε) for x ∈ ∂Fε,y ∈ Ωε. (2.5)

Hence, by (2.2), (2.3) and (2.16)–(2.18), the leading-order approximation of
ρε is

εD(ε−1x) · ∇xH(0,y) + εD(ε−1y) · ∇yH(x, 0),

which, together with (2.3), leads to (2.1).
Now, we prove the remainder estimate (2.2). The direct substitution of

(2.1) into (2.1)–(2.3) yields the boundary value problem for rε:

Δxrε(x,y) = 0 for x,y ∈ Ωε, (2.6)

rε(x,y) = hN (ε−1x, ε−1y)

−εD(ε−1x) · ∇xH(0,y)− εD(ε−1y) · ∇yH(x, 0) (2.7)

for x ∈ ∂Ω, y ∈ Ωε,

∂rε(x,y)
∂nx

= n · ∇xH(x,y) − ε
∂

∂nx

(

D(ε−1x) · ∇xH(0,y)
)

−ε
∂

∂nx

(

D(ε−1y) · ∇yH(x, 0)
)

(2.8)

for x ∈ ∂Fε, y ∈ Ωε.

We note that every term on the right-hand side of (2.8) has zero average on
∂Fε, and hence

∫

∂Fε

∂rε(x,y)
∂nx

dSx = 0. (2.9)

From Lemma 2.1 it follows that

|hN (ε−1x, ε−1y)− εD(ε−1y) · ∇yH(x, 0)| � Const ε2 (2.10)

uniformly with respect to x ∈ ∂Ω and y ∈ Ωε. Since |D(ξ)| � Const |ξ|−1,
as |ξ| → ∞, and ∇xH(0,y) is smooth on Ωε, we deduce

|εD(ε−1x) · ∇xH(0,y)| � Const ε2 (2.11)

uniformly with respect to x ∈ ∂Ω and y ∈ Ωε. By (2.10) and (2.11), the
modulus of the right-hand side in (2.7) is bounded by Const ε2 uniformly in
x ∈ ∂Ω and y ∈ Ωε.

It also follows from the definition of the dipole fields Dj(ξ), j = 1, 2, and
the smoothness of the function H(x,y) for all x ∈ ∂Fε, y ∈ Ωε that

∣

∣

∣n · ∇xH(x,y)− ε
∂

∂nx

(

D(ε−1x) · ∇xH(0,y)
)

∣

∣

∣ � Const ε (2.12)
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and
∣

∣

∣ε
∂

∂nx

(

D(ε−1y) · ∇yH(x, 0)
)

∣

∣

∣ � Const ε (2.13)

uniformly with respect to x ∈ ∂Fε, y ∈ Ωε. These estimates imply that the
modulus of the right-hand side in (2.8) is bounded by Const ε uniformly in
x ∈ ∂Fε and y ∈ Ωε.

Using the estimates on ∂Fε and ∂Ω, just obtained, together with the
orthogonality condition (2.9), we deduce that the right-hand sides of the
problem (2.6)–(2.8) satisfy the conditions of Lemma 2.1. Applying Lemma
2.1, we find that ‖rε‖L∞(Ωε) is dominated by Const ε2, which completes the
proof. ��

2.7 Simpler asymptotic formulas for Green’s function
G(N)

ε

Here, we formulate two corollaries of Theorem 2.1. They contain simpler
asymptotic formulas, which are efficient for the cases when both x and y are
distant from Fε or both x and y are sufficiently close to Fε.

Corollary 2.1. Let min{|x|, |y|} > 2ε. Then the asymptotic formula holds

G(N)
ε (x,y) = G(x,y) − ε2

4π2

xT

|x|2 P y
|y|2

+
ε2

2π

{ xT

|x|2 P∇xH(0,y) +
yT

|y|2 P∇yH(x, 0)
}

+ ε2O(|x|−2 + |y|−2), (2.1)

where H is the regular part of Green’s function G in Ω, and P is the dipole
matrix for F , as defined in (2.1).

Proof. Using (2.9) for the regular part hN of the Neumann function in R
2\F ,

together with the asymptotic representation (2.1) of the dipole fields Dj in
R

2 \ F , we obtain

G(N)
ε (x,y) = G(x,y) − ε2

4π2

2
∑

j,k=1

Pjkxjyk
|x|2|y|2 + O

(

ε3 |x|+ |y|
|x|2|y|2

)

+
1

2π

2
∑

j,k=1

{

ε2Pjk
( xk
|x|2

∂H

∂xj
(0,y) +

yk
|y|2

∂H

∂yj
(x, 0)

)

+ ε2O(|x|−2 + |y|−2)
}

+ O(ε2). (2.2)
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Combining the remainder terms and adopting the matrix representation in-
volving the dipole matrix P, we arrive at (2.1). ��

Formula (2.1) becomes efficient when both x and y are sufficiently distant
from the small hole Fε. Compared to (2.1), formula (2.1) does not involve
special solutions of model problems in R

2 \F , while the influence of the hole
F is seen through the dipole matrix P.

Corollary 2.2. The following asymptotic formula for Green’s function G
(N)
ε

of the boundary value problem (2.1)–(2.3) holds:

G(N)
ε (x,y) = (2π)−1 log |x− y|−1 − hN (ε−1x, ε−1y) −H(0, 0)

− (x − εD(ε−1x)) · ∇xH(0,y)− (y − εD(ε−1y)) · ∇yH(x, 0)

+ O(ε2 + |x|2 + |y|2) (2.3)

for x,y ∈ Ωε. (Needless to say, ε2 in the remainder can be omitted if the
interior of F is nonempty and contains the origin.)

Proof. Using the Taylor expansion of H(x,y) in a neighborhood of the origin,
we obtain

G(N)
ε (x,y) = −H(0, 0)− x · ∇xH(0,y)− y · ∇yH(y, 0) + O(|x|2 + |y|2)

+ N (ε−1x, ε−1y) − (2π)−1 log ε

+ εD(ε−1x) · ∇xH(0,y)

+ εD(ε−1y) · ∇yH(x, 0) + O(ε2). (2.4)

By substituting

N (ε−1x, ε−1y) = (2π)−1 log |x− y|−1 + (2π)−1 log ε− hN (ε−1x, ε−1y)

into (2.4) and rearranging the terms, we arrive at (2.3). ��

3 Mixed Boundary Value Problem with the Dirichlet
Condition on ∂Fε

In the present section, the meaning of the notation Ω, F , and Fε, already
used in Sect. 2, will be slightly altered. Hopefully, this will not lead to any
confusion. Let Ω be a bounded domain with smooth boundary, and let F
stand for an arbitrary compact set in R

2 of positive logarithmic capacity [3].
As in Sect. 2, it is assumed that diam F = 1/2, and dist(O, ∂Ω) = 1. We
also set Fε = {x : ε−1x ∈ F}.
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We consider the mixed boundary value problem in a two-dimensional do-
main Ωε = Ω \ Fε with the Dirichlet data on ∂Fε and the Neumann data
on ∂Ω.

Green’s function G
(D)
ε of this problem is a weak solution of

ΔxG
(D)
ε (x,y) + δ(x− y) = 0, x,y ∈ Ωε, (3.1)

G(D)
ε (x,y) = 0, x ∈ ∂Fε, y ∈ Ωε, (3.2)

∂G
(D)
ε

∂nx
(x,y) = 0, x ∈ ∂Ω, y ∈ Ωε. (3.3)

Before deriving an asymptotic approximation of G(D)
ε (x,y), uniform with

respect to x,y ∈ Ωε, we outline the properties of solutions of auxiliary model
problems in limit domains.

3.1 Special solutions of model problems

1. Let N(x,y) be the Neumann function in Ω, i.e.,

ΔN(x,y) + δ(x− y) = 0, x,y ∈ Ω, (3.1)

∂

∂nx

(

N(x,y) + (2π)−1 log |x|
)

= 0, x ∈ ∂Ω, y ∈ Ω, (3.2)

and
∫

∂Ω

N(x,y)
∂

∂nx
log |x|dsx = 0. (3.3)

The condition (3.3) implies the symmetry of N(x,y). In fact, let U(x) =
N(x, z) and V (x) = N(x,y), where z and y are fixed points in Ω. Then,
applying Green’s formula to U and V and using (3.1)–(3.3), we deduce

U(y)− V (z) =
∫

Ω

(

V (x)ΔxU(x)− U(x)ΔxV (x)
)

dx

=
1

2π

∫

∂Ω

(

U(x)
∂

∂nx
(log |x|)− V (x)

∂

∂nx
(log |x|)

)

dSx

=
1

2π

{

∫

∂Ω

N(x, z)
∂

∂nx
(log |x|)dSx −

∫

∂Ω

N(x,y)
∂

∂nx
(log |x|)

)

dSx

}

= 0,

where ∂/∂nx is the normal derivative in the direction of the outward normal
on ∂Ω. Hence N(y, z) = N(z,y).

The regular part of the Neumann function is defined by
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R(x,y) = (2π)−1 log |x− y|−1 −N(x,y). (3.4)

Note that
R(0,y) = −(2π)−2

∫

∂Ω

log |x| ∂
∂n

log |x|dsx, (3.5)

which is verified by applying Green’s formula to R(x,y) and (2π)−1 log |x|
as follows:

R(0,y) =
1

2π

∫

Ω

R(x,y)Δx(log |x|)dx

=
1

2π

∫

∂Ω

(

R(x,y)
∂

∂nx
(log |x|)− log |x| ∂

∂nx
R(x,y)

)

dsx, (3.6)

where ∂/∂nx is the normal derivative in the outward direction on ∂Ω. Taking
into account (3.2), (3.3), and (3.4), we can write (3.6) in the form

R(0,y) =
1

4π2

∫

∂Ω

(

log |x− y|−1 ∂

∂nx
(log |x|)− log |x| ∂

∂nx
(log |x− y|−1)

)

dsx

+
1

2π

∫

∂Ω

log |x| ∂

∂nx
(N(x,y))dsx. (3.7)

The first integral in (3.7) is equal to zero, while the second integral in (3.7)
is reduced to (3.5) because of the boundary condition (3.2).

As in Sect. 2, the notation ξ and η will be used for the scaled coordinates
ξ = ε−1x and η = ε−1y. The corresponding limit domain is R

2 \ F .

2. Green’s function G(ξ,η) for the Dirichlet problem in R
2 \F is a unique

solution to the problem (2.8)–(2.10). The regular part h(ξ,η) of Green’s
function G(ξ,η) is

h(ξ,η) = (2π)−1 log |ξ − η|−1 − G(ξ,η). (3.8)

3. Here and in the sequel, D(ξ) denotes a vector function, whose compo-
nents Dj, j = 1, 2, satisfy the model problems

ΔDj(ξ) = 0, ξ ∈ R
2 \ F, (3.9)

Dj(ξ) = ξj , ξ ∈ ∂F, (3.10)

Dj(ξ) is bounded as |ξ| → ∞. (3.11)

We use the notation D∞
j = lim|ξ|→∞ Dj(ξ) and D∞ = (D∞

1 , D∞
2 )T .

Application of Green’s formula to Dj and the function ζ, defined in (2.4)–
(2.6), gives
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D∞
j = −

∫

∂F

ξj
ζ(ξ)
∂n

dSξ. (3.12)

Here and in other derivations of this section, ∂/∂n on ∂F is the normal
derivative in the direction of the inward normal with respect to F .

We also find an additional connection between Dj and ζ by analyzing the
asymptotic formula (compare with (2.6))

ζ(ξ) = (2π)−1 log |ξ|+ ζ∞ +
1

2π

2
∑

k=1

αkξk
|ξ|2 + O(|ξ|−2), |ξ| → ∞, (3.13)

and showing that
αk = −D∞

k . (3.14)

Let us apply Green’s formula to ξj and ζ:
∫

∂F

ξj
∂ζ(ξ)
∂n

dSξ =
∫

∂F

{

ξj
∂ζ(ξ)
∂n

− ζ(ξ)
∂ξj
∂n

}

dSξ

= − lim
R→∞

∫

|ξ|=R

{

ξj
∂ζ(ξ)
∂|ξ| − ζ(ξ)

∂ξj
∂|ξ|

}

dSξ

=
1
π

lim
R→∞

∫

|ξ|=R

2
∑

k=1

αkξkξj
|ξ|3 dSξ = αj . (3.15)

Then formulas (3.15) and (3.12) lead to (3.14).

3.2 Asymptotic property of the regular part of Green’s
function in R

2 \ F

Asymptotic representation at infinity for the regular part of Green’s function
in R

2 \ F is given by the following lemma.

Lemma 3.1. The regular part (3.8) of G satisfies the estimate

∣

∣

∣h(ξ,η)− (2π)−1 log |ξ|−1 + ζ(η)− 1
2π

2
∑

j=1

Dj(η)ξj
|ξ|2

∣

∣

∣ � Const
|ξ|2 , (3.1)

as |ξ| > 2, and η ∈ R
2 \ F.

Proof. Let
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β(ξ,η) = h(ξ,η)− (2π)−1 log |ξ|−1 + ζ(η)− 1
2π

2
∑

j=1

Dj(η)ξj
|ξ|2 .

We have
Δηβ(ξ,η) = 0, η ∈ R

2 \ F,

and

β(ξ,η) = − 1
4π

log
(

1− 2
ξ · η
|ξ|2 +

|η|2
|ξ|2

)

− ξ · η
2π|ξ|2

= − 1
4π|ξ|2

{

|η|2 − 2
(ξ · η)2

|ξ|2 + O(|ξ|−1)
}

(3.2)

for η ∈ ∂F. By (2.4)–(2.6) and Green’s formula,

β(ξ,∞) = −
∫

∂F

β(ξ,η)
∂ζ(η)
∂nη

dSη,

which, together with (3.2) and (2.11), implies

|β(ξ,∞)| � C |ξ|−2.

Hence the maximum principle gives (3.1). ��

3.3 Maximum modulus estimate for solutions to the
mixed problem in Ωε with the Dirichlet data on ∂Fε

Lemma 3.1. Let u be a function in C(Ωε) such that ∇u is square integrable
in a neighborhood of ∂Ω. Let u be a solution of the mixed problem

Δu(x) = 0, x ∈ Ωε, (3.1)

∂u

∂n
(x) = ψ(x), x ∈ ∂Ω, (3.2)

u(x) = ϕε(x), x ∈ ∂Fε, (3.3)

where ψ ∈ C(∂Ω), ϕε ∈ C(∂Fε), and
∫

∂Ω

ψ(x)ds = 0. (3.4)

Then there exists a positive constant C such that

‖u‖C(Ωε) � ‖ϕε‖C(∂Fε) + C‖ψ‖C(∂Ω). (3.5)
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Proof. (a) First, we introduce the inverse operator

NΩ : ψ → w (3.6)

for the interior Neumann problem in Ω

Δw(x) = 0, x ∈ Ω, (3.7)

∂w

∂n
(x) = ψ(x), x ∈ ∂Ω, (3.8)

with ψ ∈ C(∂Ω) and
∫

∂Ω

ψ(x)dSx = 0 and
∫

∂Ω

w(x)
∂

∂n

(

log |x|
)

dSx = 0. (3.9)

Applying Green’s formula to w(x) and N(x,y) in Ω, we obtain

w(y) =
∫

∂Ω

(

N(x,y)ψ(x) +
1

2π
w(x)

∂

∂nx
(log |x|)

)

dSx.

Then the unique solution of (3.7)–(3.9) is given by

w(x) =
∫

∂Ω

N(x,y)ψ(y)dSy , (3.10)

and
max
Ω
|w| � C‖ψ‖C(∂Ω). (3.11)

(b) The solution u of (3.1)–(3.3) is sought in the form

u(x) = w(x) + v(x), (3.12)

where w = NΩψ is defined by (3.10), whereas the second term v satisfies the
problem

Δv(x) = 0, x ∈ Ωε, (3.13)

∂v

∂n
(x) = 0, x ∈ ∂Ω, (3.14)

v(x) = ϕε(x)− w(x), x ∈ ∂Fε. (3.15)

According to the estimate (3.11) and the maximum principle for variational
solutions of (3.13)–(3.15) (see, for example, [1]), we have

max
Ωε

|v| � ‖ϕε‖C(∂Fε) + C‖ψ‖C(∂Ω). (3.16)
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Finally, using the representation (3.12), together with the estimates (3.11)
and (3.16), we obtain the result (3.5). This completes the proof. ��

3.4 Approximation of Green’s function G(D)
ε

We give a uniform asymptotic formula for Green’s function solving the prob-
lem (3.1)-(3.3).

Theorem 3.1. Green’s function G
(D)
ε (x,y) for problem (3.1)–(3.3) admits

the asymptotic representation

G(D)
ε (x,y) = G(ε−1x, ε−1y) + N(x,y) − (2π)−1 log |x− y|−1 + R(0, 0)

+εD(ε−1y) · ∇yR(x, 0) + εD(ε−1x) · ∇xR(0,y) + rε(x,y), (3.1)

where G, N,R,D are defined in (2.8)–(2.10), (3.1)–(3.3), (3.4), (3.9)–(3.11),
and

|rε(x,y)| � Const ε2,

which is uniform with respect to x,y ∈ Ωε.

Proof. First, we describe the formal argument leading to (3.1). Let ρε(x,y) =
G

(D)
ε (x,y) − G(ε−1x, ε−1y). This function satisfies the problem

Δxρε(x,y) = 0, x,y ∈ Ωε, (3.2)

ρε(x,y) = 0 when x ∈ ∂Fε, y ∈ Ωε, (3.3)

and

∂ρε
∂nx

(x,y) = − ∂

∂nx

( 1
2π

log |x− y|−1 − h(ε−1x, ε−1y)
)

(3.4)

= − ∂

∂nx

( 1
2π

log |x− y|−1 −N(x,y)
)

+
∂

∂nx

( 1
2π

log |x|+ h(ε−1x, ε−1y)
)

,

where x ∈ ∂Ω, y ∈ Ωε. Here, h(ξ,η) is the regular part of Green’s function
G in R2 \ F . Taking into account (3.4), we deduce that

ρε(x,y) = −R(x,y) + R(0, 0) +Rε(x,y), (3.5)

where R(x,y) is the regular part of the Neumann function N(x,y) in Ω, and
Rε is harmonic in Ωε and satisfies the boundary conditions
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∂Rε
∂nx

(x,y) =
∂

∂nx

( 1
2π

log |x|+ h(ε−1x, ε−1y)
)

for x ∈ ∂Ω, y ∈ Ωε, (3.6)

Rε(x,y) = x · ∇xR(0,y) + O(ε2) for x ∈ ∂Fε, y ∈ Ωε. (3.7)

The asymptotics of h(ξ,η) given by Lemma 3.1, can be used in evaluation
of the right-hand side in (3.6).

The boundary condition (3.7) can be written as

Rε(x,y) − εD(ξ) · ∇xR(0,y) = O(ε2),

for x ∈ ∂Fε, y ∈ Ωε. In turn, the boundary condition (3.6) is reduced to

∂

∂nx

{

Rε(x,y) − εD(η) · ∇yR(x, 0)
}

= O(ε2),

when x ∈ ∂Ω, y ∈ Ωε. Hence the representation (3.5) of ρε can be updated
to the form

ρε(x,y) = −R(x,y) + R(0, 0) (3.8)

+ εD(ξ) · ∇xR(0,y) + εD(η) · ∇yR(x, 0) +R(1)
ε (x,y),

where the principal part of R(1)
ε (x,y) compensates for the leading term

of the discrepancy ε2ξ · ∇x
(

D(η) · ∇yR(x, 0)
)∣

∣

x=0
brought by the term

εD(η) · ∇yR(x, 0) into the boundary condition (3.3) on ∂Fε. This leads to
the required formula (3.1).

For the remainder rε(x,y) in the asymptotic formula (3.1) we verify by
the direct substitution that

Δxrε(x,y) = 0, x,y ∈ Ωε, (3.9)

and that the boundary condition (3.2) implies

rε(x,y) = R(0,y)−R(0, 0) + x · ∇xR(0,y)

−εD(x/ε) · ∇xR(0,y) + O(ε2) = O(ε2) for x ∈ ∂ωε, y ∈ Ωε, (3.10)

where D(x/ε) = ε−1x for x ∈ ωε, and formula (3.5) was used to state that
R(0,y) is independent of y. In turn, the second boundary condition (3.3),
together with formula (3.1), yields

∂rε
∂nx

(x,y) =
∂

∂nx

(

h(ε−1x, ε−1y) − 1
2π

log |x|−1
)

−εD(ε−1y) · ∂

∂nx

(

∇yR(x, 0)
)

+ O(ε2)
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= −ε

2
∑

j=1

Dj(ε−1y)
∂

∂nx

( xj
2π|x|2

)

−εD(ε−1y) · ∂

∂nx

(

∇yR(x, 0)
)

+ O(ε2) = O(ε2), (3.11)

for x ∈ ∂Ω, y ∈ Ωε.
It can also be verified that

∫

∂Ω

∂

∂nx
rε(x,y)dSx = 0.

Indeed,

−
∫

∂Ω

∂

∂nx
rε(x,y)dSx =

∫

∂Ω

∂

∂nx

{

G(ε−1x, ε−1y) +
1

2π
log

|x− y|
|x|

+ εD(ε−1y) · ∇yR(x, 0) + εD(ε−1x) · ∇xR(0,y)
}

dSx

= ε

∫

∂Ω

∂

∂nx

{

D(ε−1y) · ∇y
(

(2π)−1 log |x− y|−1 −N(x,y)
)∣

∣

∣

y=0

}

dSx

=
ε

2π

∫

∂Ω

∂

∂nx

{

D(ε−1y) · x
|x|2

}

dSx = 0.

Using (3.10), (3.11), together with Lemma 3.1, we complete the proof. ��

3.5 Simpler asymptotic representation of Green’s
function G(D)

ε

Two corollaries, which will be formulated here, follow from Theorem 3.1.
They include simplified asymptotic formulas for Green’s function, which are
efficient for the cases where both x and y are distant from Fε or both x and
y are sufficiently close to Fε.

Corollary 3.1. Let min{|x|, |y|} > 2ε. Then the asymptotic formula (3.1) is
simplified to the form

G(D)
ε (x,y) = N(x,y) − (2π)−1 log ε + ζ∞ + R(0, 0)

+ (2π)−1 log(|x||y|) − ε

2π
D∞ · (x|x|−2 + y|y|−2)
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+ εD∞ · (∇xR(0,y) +∇yR(x, 0)) + O(ε2|x|−1|y|−1), (3.1)

where R is the regular part of the Neumann function N in Ω.

Proof. The estimate (3.1) can be written in the form

h(ξ,η) = (2π)−1 log(|ξ||η|)−1 − ζ∞

+
ε

2π

2
∑

j=1

D∞
j

( xj
|x|2 +

yj
|y|2

)

+ O(ε2|x|−1|y|−1). (3.2)

Using (3.8), (3.1), and (3.2), we obtain

G(D)
ε (x,y) = − 1

2π
log ε +

1
2π

log
|x||y|
|x− y| + ζ∞

− ε

2π

∞
∑

j=1

D∞
j

( xj
|x|2 +

yj
|y|2

)

+ O(ε2|x|−1|y|−1)

+ N(x,y) − (2π)−1 log |x− y|−1 + R(0, 0)

+ εD∞ ·
(

∇yR(x, 0) +∇xR(0,y)
)

(3.3)

+ ε2O(|x|−1 + |y|−1).

Rearranging the terms in (3.3) and taking into account that the remainder
terms in the above formula are O(ε2|x|−1|y|−1), we arrive at (3.1). ��

Formula (3.1) is efficient when both x and y are sufficiently distant
from Fε.

The next corollary of Theorem 3.1 gives the representation of G(D)
ε , which

is effective for the case where both x and y are sufficiently close to Fε.

Corollary 3.2. The following asymptotic formula for Green’s function G
(D)
ε

of the boundary value problem (3.1)–(3.3) holds

G(D)
ε (x,y) = G(ε−1x, ε−1y) − (x− εD(ε−1x)) · ∇xR(0,y)

− (y − εD(ε−1y)) · ∇yR(x, 0) (3.4)

+ O(|x|2 + |y|2 + ε2),

for x,y ∈ Ωε. (The term ε2 in the remainder can be omitted if the interior
of F is nonempty and contains the origin.)

Proof. Using the Taylor expansion of R(x,y) in a neighborhood of the origin,
we reduce the formula (3.1) to the form
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G(D)
ε (x,y) = G(ε−1x, ε−1y)−R(x,y) + R(0, 0)

+ εD(ε−1y) · ∇yR(x, 0) + εD(ε−1x) · ∇xR(0,y) + O(ε2)

= G(ε−1x, ε−1y) (3.5)

− x · ∇xR(0,y)− y · ∇yR(x, 0) + O(|x|2 + |y|2)

+ εD(ε−1y) · ∇yR(x, 0) + εD(ε−1x) · ∇xR(0,y) + O(ε2).

By rearranging the terms in the above formula, we arrive at (3.4). ��

4 The Neumann Function for a Planar Domain with a
Small Hole or Crack

It is noted in the previous sections that boundary conditions of Dirichlet type
were set at a part of the boundary of Ωε. Now, we consider the case where
∂Ωε is subject to the Neumann boundary conditions. Here, the set Fε is the
same as in Sect. 2.

The Neumann function Nε(x,y) for Ωε ⊂ R
2 is defined as a solution of

the boundary value problem

ΔxNε(x,y) + δ(x− y) = 0, x,y ∈ Ωε, (4.1)

∂

∂nx

(

Nε(x,y) + (2π)−1 log |x|
)

= 0, x ∈ ∂Ω, y ∈ Ωε, (4.2)

∂Nε

∂nx
(x,y) = 0, x ∈ ∂Fε, y ∈ Ωε. (4.3)

In addition, we require the orthogonality condition, which provides the sym-
metry of Nε(x,y)

∫

∂Ω

Nε(x,y)
∂

∂n
log |x|dSx = 0. (4.4)

The regular part Rε(x,y) of the Neumann function is defined by

Rε(x,y) =
1

2π
log |x− y|−1 −Nε(x,y).

4.1 Special solutions of model problems

As in the previous sections, we consider two limit domains independent of the
small parameter ε: the domain Ω (with no hole), and the unbounded domain
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R
2 \F that represents scaled exterior of the small hole. As always, the scaled

coordinates ξ = ε−1x and η = ε−1y will be used.
The Neumann function N(x,y) of Ω is defined by (3.1)–(3.3), and the

regular part R(x,y) of N(x,y) is the same as in (3.4).
We use the vector function D already defined in Sect. 2.
Another model field to be used is the Neumann function N (ξ,η) in R

2\F ,
as in (2.12), whose regular part hN satisfies the problem (2.13)–(2.15).

4.2 Maximum modulus estimate for solutions to the
Neumann problem in Ωε

First, we formulate and prove an auxiliary lemma required for the forthcom-
ing estimate of the remainder term in the approximation of Nε.

Lemma 4.1. Let u be a function in C(Ωε) such that ∇u is square integrable
in a neighborhood ∂Ωε. Also, let u be a solution of the Neumann boundary
value problem

Δu(x) = 0, x ∈ Ωε, (4.1)

∂u

∂n
(x) = ψ(x), x ∈ ∂Ω, (4.2)

∂u

∂n
(x) = ϕε(x), x ∈ ∂Fε, (4.3)

where ψ ∈ C(∂Ω), ϕε ∈ L∞(∂Fε), and
∫

∂Fε

ϕε(x)ds = 0 and
∫

∂Ω

ψ(x)ds = 0. (4.4)

We also assume that
∣

∣

∣

∫

∂Ω

u(x)
∂

∂n

(

log |x|
)

ds
∣

∣

∣ � const {‖ψ‖C(∂Ω) + ε‖ϕε‖L∞(∂Fε)}. (4.5)

Then there exists a positive constant C independent of ε and such that

‖u‖C(Ωε) � C
{

‖ψ‖C(∂Ω) + ε‖ϕε‖L∞(∂Fε)

}

. (4.6)

Proof. (a) We use the operators N and NΩ of the model problems (2.7)–(2.9)
and (3.7)–(3.9) introduced in Sects. 2 and 3.

(b) We begin with the case of the homogeneous boundary condition on
∂Ω, i.e.,
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Δu1(x) = 0, x ∈ Ωε, (4.7)

∂u1

∂n
(x) = 0, x ∈ ∂Ω, (4.8)

∂u1

∂n
(x) = ϕε(x), x ∈ ∂Fε, (4.9)

where the right-hand side ϕε is such that
∫

∂Fε

ϕε(x)ds = 0.

The operator Nε is defined as in (2.11), so that

(Nεϕε)(x) = (Nϕ)(ξ),

where ξ = ε−1x and ϕε(x) = ε−1ϕ(ε−1x).
The solution u1 is sought in the form

u1 = Nεgε −NΩ

( ∂

∂n
(Nεgε)∂Ω

)

, (4.10)

where gε is an unknown function such that
∫

∂F

g(ξ)dsξ = 0.

By Lemma 2.1, we have

|Ng(ξ)| � Cε‖g‖L∞(∂F ) (4.11)

and
max
Ωε

|Nεgε| � Cε‖gε‖L∞(∂F ). (4.12)

From (4.10) it follows that ∂
∂nu1(x) = 0 when x ∈ ∂Ω, and on the bound-

ary ∂Fε we have
ϕε = gε + Sεgε, (4.13)

where
Sεgε = − ∂

∂n

(

NΩ

( ∂

∂n
(Nεgε)∂Ω

)

)

on ∂Fε. (4.14)

Taking into account Lemma 2.1 and the definitions of NΩ and Nε, as in (3.6)
and (2.6), (2.11), we deduce that

max
∂Ω

|∇(Nεgε)| � const ε2‖gε‖L∞(∂Fε)

and
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‖Sεgε‖L∞(∂Fε) � const ε2‖gε‖L∞(∂Fε).

Owing to the smallness of the norm of the operator Sε we can write

‖gε‖L∞(∂Fε) � const ‖ϕε‖L∞(∂Fε).

Following (3.10), (3.11), (4.10), and (4.12), we deduce (4.5) and

max
Ωε

|u1| � const ε‖ϕε‖L∞(∂Fε). (4.15)

(c) Next, we consider the problem (4.1)–(4.4) with the homogeneous data
on ∂ωε. The corresponding solution u2 is written in the form

u2 = NΩψ + v, (4.16)

where the harmonic function v satisfies zero boundary condition on ∂Ω,
whereas the condition (4.9) is replaced by

∂

∂n
v(x) = − ∂

∂n

(

NΩψ
)

(x), x ∈ ∂Fε,

and, by part (b),
max
Ωε

|v| � const ‖ψ‖C(∂Ω).

The function v and hence u2 satisfies (4.5).
Following (3.10), (3.11), and (4.16), we deduce

max
Ωε

|u2| � const ‖ψ‖C(∂Ω). (4.17)

Combining the estimates (4.15) and (4.17), we complete the proof. ��

4.3 Asymptotic approximation of Nε

Now, we state the theorem, which gives a uniform asymptotic formula for the
Neumann function Nε.

Theorem 4.1. The Neumann function Nε(ξ,η) of the domain Ωε defined in
(4.1)–(4.4) satisfies

Nε(x,y) = N(x,y) − hN(ε−1x, ε−1y)

+εD(ε−1x) · ∇xR(0,y)

+εD(ε−1y) · ∇yR(x, 0) + rε(x,y), (4.1)

where
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|rε(x,y)| � Const ε2 (4.2)

uniformly with respect to x,y ∈ Ωε.

Proof. We begin with a formal argument leading to the approximation (4.1).
Consider the first three terms on the right-hand side of (4.1). Let

r(1)
ε (x,y) = Nε(x,y) −N(x,y) + hN (ξ,η)− εD(ξ) · ∇xR(0,y). (4.3)

The function r
(1)
ε is harmonic in Ωε, and the direct substitution into the

boundary conditions (4.2) and (4.3) gives

∂r
(1)
ε

∂nx
(x,y) = − ∂

∂nx

( 1
2π

log |x− y|−1
)

+
∂

∂nx

(

hN(ε−1x, ε−1y)
)

+n · ∇xR(0,y)− ε
∂

∂nx
D(ε−1x) · ∇xR(0,y) + O(ε)

= O(ε) for x ∈ ∂Fε, y ∈ Ωε, (4.4)

and

∂r
(1)
ε

∂nx
(x,y) =

∂

∂nx

(

hN (ε−1x, ε−1y)
)

+ O(ε2)

= εD(ε−1y) · ∂

∂nx
∇yR(x, 0) + O(ε2)

for x ∈ ∂Ω, y ∈ Ωε. (4.5)

Thus, r(1)
ε can be approximated as

r(1)
ε (x,y) = εD(ε−1y) · ∇yR(x, 0) + O(ε2),

and, together with the representation (4.3), this leads to the required formula
(4.1).

Finally, the direct substitution of (4.1) into (4.1)–(4.3) yields that the
remainder term rε(x,y) satisfies the problem (4.1)–(4.4), with

max
x∈∂Ω

|ψ(x,y)| � Const ε2

and
max
x∈∂Fε

|ϕε(ε−1x, ε−1y)| � Const ε

for all y ∈ Ωε. Then the estimate (4.2) follows from Lemma 4.1. ��
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4.4 Simpler asymptotic representation of the
Neumann function Nε

Two corollaries, formulated in this section, follow from Theorem 4.1. They
include asymptotic formulas for the Neumann function, which are efficient
when either both x and y are distant from Fε or both x and y are sufficiently
close to Fε.

Corollary 4.1. Let min{|x|, |y|} > 2ε. Then

Nε(x,y) = N(x,y)− ε2

4π2

xT

|x|2 P yT

|y|2

+
ε2

2π

{ xT

|x|2 P∇xR(0,y) +
yT

|y|2 P∇yR(x, 0)
}

(4.1)

+ ε2O(|x|−2 + |y|−2),

where R is the regular part of the Neumann function N in Ω, and P is the
dipole matrix for F , as defined in (2.1).

Proof. The proof is similar to that of Corollary 2.1, and it uses formula (2.9)
for the regular part hN of the Neumann function in R

2 \F , together with the
asymptotic representation (2.1) of the dipole fields Dj in R

2 \ F . ��

Next, we state a proposition similar to Corollaries 2.2 and 3.2 formulated
earlier for Green’s functions G

(D)
ε and G

(N)
ε .

Corollary 4.2. The Neumann function Nε, defined by (4.1)–(4.4), satisfies
the asymptotic formula

Nε(x,y) = (2π)−1 log |x− y|−1 −R(0, 0)− hN (ε−1x, ε−1y) (4.2)

− (x− εD(ε−1x)) · ∇xR(0,y)− (y − εD(ε−1y)) · ∇yR(x, 0)

+ O(|x|2 + |y|2 + ε2),

for x,y ∈ Ωε. (As in Corollaries 2 and 4, ε2 in the remainder can be omitted
if the interior of F is nonempty and contains the origin.)

Proof. The proof is similar to that of Corollary 2.2 and employs the linear
approximation of the regular part R of the Neumann function in a neighbor-
hood of the origin. ��

Although the formulation of Corollary 4.2 is valid for all x,y ∈ Ωε, the
asymptotic formula (4.2) becomes effective when both x and y are sufficiently
close to Fε.
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5 Asymptotic approximations of Green’s kernels for
mixed and Neumann problems in three dimensions

This section includes asymptotic formulas for Green’s kernels G
(D)
ε , G

(N)
ε and

Nε in Ωε ⊂ R
3. The special solutions of model problems differ from the cor-

responding solutions used for the two-dimensional case. The uniform asymp-
totic formulas of Green’s kernels are accompanied by simpler representations,
which are efficient when certain constraints are imposed on the independent
variables. The proofs, which do not require new ideas compared with the
two-dimensional case, are omitted.

5.1 Special solutions of model problems in limit
domains

Here, we describe the functions G, G, N , and N defined in the limit domains
and used for the approximation of Green’s kernels.

1. The notation G is used for Green’s function of the Dirichlet problem
in Ω ⊂ R

3:
G(x,y) = (4π|x− y|)−1 −H(x,y). (5.1)

Here, H is the regular part of G, and it is a unique solution of the Dirichlet
problem

ΔxH(x,y) = 0, x,y ∈ Ω, (5.2)

H(x,y) = (4π|x− y|)−1, x ∈ ∂Ω, y ∈ Ω. (5.3)

2. Green’s function G for the Dirichlet problem in R
3 \ F is defined as a

unique solution of the problem

ΔξG(ξ,η) + δ(ξ − η) = 0, ξ,η ∈ R
3 \ F, (5.4)

G(ξ,η) = 0, ξ ∈ ∂F, η ∈ R
3 \ F, (5.5)

G(ξ,η) → 0 as |ξ| → ∞ and η ∈ R
3 \ F. (5.6)

Here, F is a compact set of positive harmonic capacity.
The regular part h of Green’s function G is

h(ξ,η) = (4π|ξ − η|)−1 − G(ξ,η). (5.7)

3. The components of the vector field D(ξ) = (D1(ξ), D2(ξ), D3(ξ)) (com-
pare with (3.9)–(3.11)), for ξ ∈ R

3 \ F , satisfy the problem

ΔDj(ξ) = 0, ξ ∈ R
3 \ F, (5.8)



310 V. Maz’ya and A. Movchan

Dj(ξ) = ξj , ξ ∈ ∂F, (5.9)

Dj(ξ) → 0 as |ξ| → ∞. (5.10)

We use the matrix T = (Tjk)3j,k=1 of coefficients in the asymptotic repre-
sentation of Dj at infinity

Dj(ξ) =
1

4π

3
∑

k=1

Tjkξk
|ξ|3 + O(|ξ|−3). (5.11)

The symmetry of T is verified by applying Green’s formula in BR \ F to
ξj −Dj(ξ) and Dk(ξ) and taking the limit R→∞. We have

∫

∂BR

{

(ξj −Dj(ξ))
∂Dk(ξ)
∂|ξ| −Dk(ξ)

( ξj
|ξ| −

∂Dj(ξ)
∂|ξ|

)}

dS

+
∫

∂F

Dk(ξ)
(∂Dj(ξ)

∂n
− nj

)

dS = 0, (5.12)

where ∂/∂n is the normal derivative in the direction of the interior normal
with respect to F . As R→∞, the first integral I(∂BR) on the left-hand side
of (5.12) gives

lim
R→∞

I(∂BR) = lim
R→∞

∫

∂BR

{

ξj
∂Dk(ξ)
∂|ξ| −Dk(ξ)

ξj
|ξ|

}

dS

= − 3
4π

∫

∂B1

3
∑

q=1

TkqξqξjdS = −Tkj . (5.13)

The second integral I(∂F ) on the left-hand side of (5.12) becomes

I(∂F ) = −
∫

∂F

ξknjdS +
∫

∂F

Dk(ξ)
∂Dj(ξ)

∂n
dS

= δjk meas3(F ) +
∫

R3\F

∇Dk(ξ) · ∇Dj(ξ)dξ, (5.14)

where meas3(F ) is the three-dimensional Lebesgue measure of F . Using (5.13)
and (5.14), we deduce

Tkj = δjk meas3(F ) +
∫

R3\F

∇Dk(ξ) · ∇Dj(ξ)dξ, (5.15)
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which implies that T is symmetric and positive definite.

4. The Neumann function N(x,y) in Ω ⊂ R
3 and its regular part are

defined as follows:

ΔN(x,y) + δ(x− y) = 0, x,y ∈ Ω ⊂ R
3, (5.16)

∂

∂nx

(

N(x,y) − (4π)−1|x|−1
)

= 0, x ∈ ∂Ω, y ∈ Ω, (5.17)

and
∫

∂Ω

N(x,y)
∂

∂nx
|x|−1dsx = 0, (5.18)

where the last condition (3.3) implies the symmetry of N(x,y). The regular
part of the Neumann function in three dimensions is defined by

R(x,y) = (4π)−1|x− y|−1 −N(x,y). (5.19)

5. In this section, the notation N (ξ,η) is used for the Neumann function
in R

3\F , where F is a compact closure of a domain with a smooth boundary,
and N is defined by

N (ξ,η) = (4π)−1|ξ − η|−1 − hN (ξ,η), (5.20)

where hN is the regular part of N subject to

ΔξhN (ξ,η) = 0, ξ,η ∈ R
3 \ F, (5.21)

∂hN
∂nξ

(ξ,η) =
1

4π
∂

∂nξ
(|ξ − η|−1), ξ ∈ ∂F, η ∈ R

3 \ F, (5.22)

hN (ξ,η) → 0 as |ξ| → ∞, η ∈ R
3 \ F. (5.23)

The smoothness assumption on ∂F here and in the sequel is introduced for
the simplicity of proofs and can be considerably weakened. In particular, the
case of a piece-wise smooth planar crack can be included.

We note that the Neumann function N just defined is symmetric, i.e.,
N (ξ,η) = N (η, ξ).

6. The definition of the dipole vector field D(ξ) = (D1(ξ),D2(ξ),D3(ξ))
is similar to (2.16)–(2.18) with ξ ∈ R

3 \ F . The components of the three-
dimensional dipole matrix P = (Pjk)3j,k=1 appear in the asymptotic repre-
sentation of Dj(ξ) at infinity

Dj(ξ) =
1

4π

3
∑

k=1

Pjkξk
|ξ|3 + O(|ξ|−3). (5.24)
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Similar to Sect. 2.2, it can be proved that the dipole matrix P for the hole
F is symmetric and negative definite.

5.2 Approximations of Green’s kernels

The following assertions hold for uniform asymptotic approximations in
three-dimensional domains with small holes (or cracks) or inclusions.

Theorem 5.1. Green’s function G
(N)
ε (x,y) for the mixed problem with the

Neumann data on ∂Fε and the Dirichlet data on ∂Ω has the asymptotic
representation

G(N)
ε (x,y) = G(x,y) + ε−1N (ε−1x, ε−1y) − (4π)−1|x− y|−1

+εD(ε−1x) · ∇xH(0,y) + εD(ε−1y) · ∇yH(x, 0) + rε(x,y), (5.1)

where D is the three-dimensional dipole vector function in R
3 \ F , and N is

the Neumann function in R
3 \ F , vanishing at infinity. Here,

|rε(x,y)| � Const ε2 (5.2)

uniformly with respect to x,y ∈ Ωε.

The proof follows the same algorithm as in Theorem 2.1.
Now, we give analogues of Corollaries 2.1 and 2.2 formulated earlier in

Sect. 2.7.

Corollary 5.1. Let min{|x|, |y|} > 2ε. Then the asymptotic formula (5.1) is
simplified to the form

G(N)
ε (x,y) = G(x,y)

+
ε3

4π

{ xT

|x|3 P∇xH(0,y) +
yT

|y|3 P∇yH(x, 0)
}

− ε3

(4π)2
xT

|x|3 P y
|y|3

+ O(ε2 + ε4(|x|+ |y|)|x|−3|y|−3), (5.3)

where H is the regular part of Green’s function G in Ω, and P is the dipole
matrix for F , as defined in (5.24).

The next assertion is similar to Corollary 2.2 of Sect. 2.7.

Corollary 5.2. The following asymptotic formula for Green’s function G
(N)
ε

holds
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G(N)
ε (x,y) = ε−1N (ε−1x, ε−1y)−H(0, 0)

− (x − εD(ε−1x)) · ∇xH(0,y)− (y − εD(ε−1y)) · ∇yH(x, 0)

+ O(ε2 + |x|2 + |y|2) (5.4)

for x,y ∈ Ωε. (As in Corollary 2.2, ε2 in the remainder can be omitted if the
interior of F is nonempty and contains the origin.)

In turn, for the case where the Neumann and Dirichlet boundary conditions
are set on ∂Ω and ∂Fε respectively, the modified version of formula (3.1) is
given by

Theorem 5.2. The Green’s function G
(D)
ε (x,y) for the mixed problem with

the Dirichlet data on ∂Fε and the Neumann data on ∂Ω, admits the asymp-
totic representation

G(D)
ε (x,y) = ε−1G(ε−1x, ε−1y) + N(x,y) − (4π)−1|x− y|−1 + R(0, 0)

+εD(ε−1y) · ∇yR(x, 0) + εD(ε−1x) · ∇xR(0,y) + rε(x,y), (5.5)

where
|rε(x,y)| � Const ε2,

which is uniform with respect to x,y ∈ Ωε.

The proof is similar to that of Theorem 3.1. We note that unlike the two-
dimensional case, in three dimensions no orthogonality condition is required
to ensure the decay of the solution of the exterior Dirichlet problem in R

3\F .
The analogues of Corollaries 3.1 and 3.2 are formulated as follows.

Corollary 5.3. Let min{|x|, |y|} > 2ε. Then the asymptotic formula (5.5) is
simplified to the form

G(D)
ε (x,y) = N(x,y) + R(0, 0)

+
ε3

4π

{ xT

|x|3 T ∇xR(0,y) +
yT

|y|3 T ∇yR(x, 0)
}

− ε3

(4π)2
xT

|x|3 T y
|y|3

+ O(ε2 + ε4(|x|+ |y|)|x|−3|y|−3), (5.6)

where R is the regular part of the Neumann function N in Ω, and T is the
matrix of coefficients in (5.11).

The next assertion is similar to Corollary 3.2 of Sect. 3.5.

Corollary 5.4. The following asymptotic formula for Green’s function G
(D)
ε

holds
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G(D)
ε (x,y) = ε−1G(ε−1x, ε−1y)

− (x− εD(ε−1x)) · ∇xR(0,y)− (y − εD(ε−1y)) · ∇yR(x, 0)

+ O(ε2 + |x|2 + |y|2) (5.7)

for x,y ∈ Ωε. (The term ε2 in the remainder can be omitted if the interior
of F is nonempty and contains the origin.)

Finally, we consider the Neumann function Nε(x,y) for Ωε ⊂ R
3. Here,

Ωε = Ω \ Fε, and Fε is the small hole with a smooth boundary. We define
Nε as a solution of the following boundary value problem

ΔxNε(x,y) + δ(x− y) = 0, x,y ∈ Ωε, (5.8)

∂

∂nx

(

Nε(x,y) − (4π)−1|x|−1
)

= 0, x ∈ ∂Ω, y ∈ Ωε, (5.9)

∂Nε

∂nx
(x,y) = 0, x ∈ ∂Fε, y ∈ Ωε. (5.10)

In addition, we require the orthogonality condition, which provides the sym-
metry of Nε(x,y)

∫

∂Ω

Nε(x,y)
∂

∂n
|x|−1dSx = 0. (5.11)

The asymptotic approximation of Nε is given by

Theorem 5.3. The Neumann function Nε(ξ,η) for the domain Ωε, defined
in (5.8)–(5.11) satisfies the asymptotic formula

Nε(x,y) = N(x,y)− ε−1hN (ε−1x, ε−1y) + εD(ε−1x) · ∇xR(0,y)

+εD(ε−1y) · ∇yR(x, 0) + rε(x,y), (5.12)

where
|rε(x,y)| � Const ε2 (5.13)

uniformly with respect to x,y ∈ Ωε. Here, D is the three-dimensional dipole
vector function in R

3\F , and hN is the regular part of the Neumann function
N in R

3 \ F , vanishing at infinity. The Neumann function N in Ω and its
regular part R are the same as in (5.16)–(5.19).

The proof follows the same algorithm as in Theorem 4.1.
At last, we formulate analogues of Corollaries 4.1 and 4.2 for the Neumann

problem in Ωε.

Corollary 5.5. Let min{|x|, |y|} > 2ε. Then Nε(x,y) is approximated in the
form
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Nε(x,y) = N(x,y)− ε3

(4π)2
xT

|x|3 P yT

|y|3

+
ε3

4π

{ xT

|x|3 P∇xR(0,y) +
yT

|y|3 P∇yR(x, 0)
}

(5.14)

+ O(ε2 + ε4(|x|+ |y|)|x|−3|y|−3),

where R is the regular part of the Neumann function in Ω, and P is the
dipole matrix for F , as defined in (5.24).

When both x and y are sufficiently close to Fε, the asymptotic approxi-
mation of Nε is given in the next assertion.

Corollary 5.6. The Neumann function Nε satisfies the asymptotic formula

Nε(x,y) = ε−1N (ε−1x, ε−1y)−R(0, 0)

− (x − εD(ε−1x)) · ∇xR(0,y)

− (y − εD(ε−1y)) · ∇yR(x, 0)

+ O(ε2 + |x|2 + |y|2) (5.15)

for x,y ∈ Ωε. The term ε2 in the remainder can be omitted if the interior of
F is nonempty and contains the origin.
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Finsler Structures and Wave
Propagation

Michael Taylor

Dedicated to the memory of
the Great Analyst S.L. Sobolev

Abstract We discuss connections between the study of wave propagation for
general classes of hyperbolic PDEs (beyond the “standard wave equation”)
and aspects of Finsler geometry. In particular, we investigate how understand-
ing of the behavior of differential operators (and pseudodifferential operators)
arising in such study can enhance one’s understanding of Finsler geometry.
We also discuss a problem in harmonic analysis motivated by a construction
of Katok in Finsler geometry, which gives rise to an interesting variant of the
Pinsky phenomenon, for pointwise Fourier inversion.

1 Introduction

A Finsler metric on a smooth manifold M is a C∞ function

F : TM \ 0 −→ (0,∞) (1.1)

with the following properties:

F (x, λv) = λF (x, v) ∀ v ∈ TxM \ 0, λ ∈ (0,∞), (1.2)

and, if we set

f(x, v) =
1
2
F (x, v)2, (1.3)
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then
D2
vf(x, v) is positive definite, (1.4)

as a symmetric bilinear form on TxM , for each x ∈ M and each nonzero
v ∈ TxM . The hypotheses (1.2)–(1.4) say that F (x, ·) defines a “Minkowski
norm” on TxM for each x ∈M .

An example of a Finsler metric is F (x, v) = gx(v, v)1/2, where g is a Rie-
mannian metric tensor on M . Many objects studied in Riemannian geometry
are of interest in the broader context of Finsler geometry. For example, one
looks for “length minimizing” curves γ : [a, b] →M , extrema for

L(γ) =

b
∫

a

F (γ(t), γ′(t)) dt, (1.5)

with fixed endpoints. As is the case for Riemannian geometry, L(γ) is invari-
ant under reparametrization of γ; one normalizes by demanding that γ have
constant speed, i.e., F (γ(t), γ′(t)) = c. Furthermore, as in the Riemannian
case, it is effective to look at the problem of extremizing

E(γ) =

b
∫

a

f(γ(t), γ′(t)) dt. (1.6)

There is a standard technique for converting the Euler–Lagrange equation
for extrema of (1.6) to Hamiltonian form, via a Legendre transform

Ξ : TM \ 0 −→ T ∗M \ 0. (1.7)

The hypothesis (1.4) serves to guarantee that Ξ is a diffeomorphism (extend-
ing to a bi-Lipschitz map Ξ : TM → T ∗M). The geodesic flow on TM \ 0 is
carried by Ξ to the flow on T ∗M \ 0 generated by the Hamiltonian field HΦ,
or Hϕ = ΦHΦ, where

Φ = F ◦ Ξ−1, ϕ =
1
2
Φ2 = f ◦ Ξ−1. (1.8)

Details on this are given in Sect. 2.
It is shown that Φ(x, ξ) satisfies analogues of 1.2–1.4, i.e., Φ(x, ·) defines

a Minkowski norm on T ∗
xM for each x ∈ M . We call such Φ(x, ξ) a Finsler

symbol. Calculations done in Sect. 2 show that the correspondence F �→ Φ is
reversible; not only does each Finsler metric determine a Finsler symbol, but
also each Finsler symbol determines a Finsler metric.

Thus, there are two approaches to defining a Finsler structure. One is to
specify directly a Finsler metric F (x, v). The other is to specify directly a
Finsler symbol Φ(x, ξ). The correspondence
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F (x, v) ↔ Φ(x, ξ) (1.9)

has been the object of some study. R. Miron and colleagues call M equipped
with a Finsler symbol Φ(x, ξ) on T ∗M a “Cartan space,” and the correspon-
dence (1.9) the “Finsler–Cartan L-duality.” See [6], particularly Chapt. 7,
for a discussion. This correspondence is also very much in evidence in Ziller’s
presentation [13] of a construction of Katok [5].

One purpose of this note is to point out how the approach of specifying and
studying a Finsler symbol arises naturally in the analysis of problems in wave
propagation. The connection between Finsler symbols and wave equations
is readily explained. Finsler symbols are principal symbols of first order,
elliptic, self-adjoint pseudodifferential operators, and such pseudodifferential
operators arise in the analysis of various hyperbolic PDEs. For the standard
wave equation for u = u(t, x) defined on R×M :

utt −Δu = 0, (1.10)

where Δ is the Laplace–Beltrami operator defined by a Riemann metric ten-
sor on M , the solution is given in terms of e±it

√
−Δ, and the symbol of

√
−Δ

is Φ(x, ξ), the length of ξ ∈ T ∗
xM given by the inner product on T ∗

x induced
by the Riemann metric tensor. This is all within the Riemannian geometry
setting. However, other hyperbolic PDEs give rise to first order pseudodif-
ferential operators whose symbols are frequently other Finsler symbols (see
Sect. 3 for further development of this theme).

In Sect. 4, we recall some Finsler metrics on spheres, produced by Katok
[5] to have geodesic flows with notably few closed orbits. We embark on our
second main goal of this note, which is to study the spectral behavior of
the pseudodifferential operators associated with these Finsler metrics. We
consider eigenfunction expansions of certain piecewise smooth functions, in
terms of the eigenfunctions of these operators, and examine their pointwise
behavior. We find that interesting variants of the Pinsky phenomenon arise,
producing in some cases infinite sets of points at which such an eigenfunction
expansion has an oscillatory divergence.

Sobolev introduced methods of functional analysis that transformed the
theory of partial differential equations. He was particularly instrumental in
applying his new ideas to the theory of linear hyperbolic equations. These
ideas have a strong influence on the analytical techniques of this paper.

2 Finsler Metrics and Finsler Symbols

As stated in Sect. 1, here we work out the application of the Legendre trans-
form to converting the problem of extremizing (1.6) to a Hamiltonian differ-
ential equation. The standard recipe (see [10, Chapt. I, Sect. 12]) for defining
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the Legendre transform Ξ in (1.3) is Ξ(x, v) = (x, ξ), with

ξ = Dvf(x, v). (2.1)

Then the Euler–Lagrange equation for (x, v) is converted to the Hamiltonian
equation

(x′, ξ′) = (Dξϕ,−Dxϕ) = Hϕ, (2.2)

where
ϕ(x, ξ) = Dvf(x, v)v − f(x, v) = f(x, v). (2.3)

The first identity in (2.3) is the general prescription (see [10, Chapt. I,
(12.17)]) and the second is a consequence of Euler’s identity Dvf(x, v)v =
2f(x, v), valid when f(x, v) is positively homogeneous of degree 2 in v.
Note that since ϕ is constant on each integral curve of Hϕ, it follows that
f(γ(t), γ′(t)) is constant on the image (γ(t), γ′(t)) under Ξ−1 of such a inte-
gral curve. Such a curve is then a constant-speed extremum for (1.5).

It is easily verified that the hypothesis (1.4) of strong convexity implies
that (2.1) provides a diffeomorphism Ξ : TM\0→ T ∗M\0. Note in particular
that

Dvξ(x, v) = D2
vf(x, v) ∈ T ∗

x ⊗ T ∗
x ≈ Hom(Tx, T ∗

x ). (2.4)

We also note that
v(x, ξ) = Dξϕ(x, ξ). (2.5)

This follows from the first part of (2.2) since also v = x′. We can also deduce
(2.5) directly from (2.3) and (2.4), as follows. First, differentiate ϕ(x, ξ) =
f(x, v), obtaining

Dξϕ(x, ξ) Dvξ(x, v) = Dvf(x, v). (2.6)

Then plug in (2.4), to get

Dξϕ(x, ξ) D2
vf(x, v) = Dvf(x, v). (2.7)

On the other hand, Euler’s identity gives

v D2
vf(x, v) = Dvf(x, v). (2.8)

Comparing the left-hand sides of (2.7) and (2.8) and noting that D2
vf(x, v)

is invertible, by (1.4), we have the asserted identity (2.5).
Having the function ϕ(x, ξ) on T ∗M \ 0, we define Φ(x, ξ) : T ∗M \ 0 →

(0,∞) by

ϕ(x, ξ) =
1
2
Φ(x, ξ)2. (2.9)

Clearly, Φ is C∞ on T ∗M \ 0, and, parallel to (1.2),

Φ(x, λξ) = λΦ(x, ξ) ∀ ξ ∈ T ∗M \ 0, λ ∈ (0,∞). (2.10)
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We also claim the following analogue of (1.4) holds:

D2
ξϕ(x, ξ) is positive definite, (2.11)

as a symmetric bilinear form on T ∗M , for each x ∈ M and each nonzero
ξ ∈ T ∗

xM . In other words, Φ(x, ξ) produces a Minkowski norm on each space
T ∗
xM . To see this, write

D2
ξϕ(x, ξ) = Dξv(x, ξ)

=
(

Dvξ(x, v)
)−1

=
(

D2
vf(x, v)

)−1
,

(2.12)

where the first identity follows by differentiating (2.5), the second by the
chain rule, and the third by (2.4).

3 Finsler Symbols, Pseudodifferential Operators, and
Hyperbolic PDEs

A smooth function p(x, ξ) on T ∗M \ 0, homogeneous of degree m in ξ, is
the principal symbol of a pseudodifferential operator p(x,D), uniquely de-
termined up to an operator of degree m− 1, given in local coordinates by a
Fourier integral representation:

p(x,D)u = (2π)−n
∫∫

p(x, ξ)u(y)ei(x−y)·ξ dy dξ. (3.1)

Here, p(x, ξ) is possibly regularized for small |ξ|. One says p(x,D) is elliptic
if |p(x, ξ)| � C|ξ|m for large |ξ|, and strongly elliptic if Re p(x, ξ) � C|ξ|m for
large |ξ|. In particular, a Finsler symbol Φ(x, ξ) is the principal symbol of a
special sort of strongly elliptic, first order, pseudodifferential operator, which
can furthermore be taken to be self-adjoint.

Real-valued, first order symbols arise in the analysis of strictly hyperbolic
PDEs, as we now briefly describe. Let

P (x,Dt, Dx) = Dm
t +

m−1
∑

k=0

Ak(x,Dx)Dk
t (3.2)

be a differential operator of order m, in this case a positive integer. (One
could have t-dependent coefficients, but for simplicity we take coefficients
independent of t.) Here, Dt = (1/i)∂t, Dx = (1/i)∂x, and Ak(x,Dx) is a
differential operator of order m− k. The principal symbol of P (x,Dt, Dx) is
a polynomial in (τ, ξ), homogeneous of order m:



322 M. Taylor

Pm(x, τ, ξ) = τm +
m−1
∑

k=0

Abk(x, ξ)τk . (3.3)

The operator (3.2) is said to be strictly hyperbolic if for each ξ �= 0 the symbol
Pm has m roots τ = λk(x, ξ), all real and distinct, so

Pm(x, τ, ξ) = (τ − λ1(x, ξ)) · · · (τ − λm(x, ξ)),
λ1(x, ξ) < · · · < λm(x, ξ).

(3.4)

The functions λk(x, ξ) are smooth on T ∗M \0 and homogeneous of degree 1 in
ξ, hence are the principal symbols of first order pseudodifferential operators.
The analysis of solutions to the partial differential equations P (x,Dt, Dx)u =
0 is essentially equivalent to the analysis of the pseudodifferential evolution
equations

∂u

∂t
= iλk(x,D)u. (3.5)

In either case, short-time approximate solution operators (known as para-
metrices) can be constructed in the form

Sk(t)f = (2π)−n
∫∫

f(y)ak(t, x, y, ξ)eiθk(t,x,y,ξ) dy dξ. (3.6)

The phase functions θk solve eikonal equations:

∂θk
∂t

= λk(x, dxθk), θk(0, x, y, ξ) = (x− y) · ξ, (3.7)

and the amplitudes ak(t, x, y, ξ) are symbols of order zero, with asymptotic
expansions whose terms solve a succession of transport equations. For details
one can see [9, Chapt. 8].

The standard Hamilton–Jacobi approach to solving (3.7) brings in the
flow generated by the Hamiltonian vector field Hλk

. In particular, when the
symbol λk(x, ξ) (or its negative) is elliptic and λk(x, ξ)2 is strongly convex,
the integral curves of this flow correspond to geodesics of the Finsler metric
associated to λk(x, ξ), by the correspondence defined in Sect. 2.

The flow generated by Hλk
defines the way the solution operator Sk(t)

in (3.6) moves singularities of f . More precisely, f has a “wave front set,”
WF(f), a closed, conic subset of T ∗M \ 0, whose projection onto M is the
singular support of f , and the wave front set of Sk(t)f is obtained from
WF(f) by applying the flow generated by Hλk

. (Details can be found in [9,
Chapt. 8], [10, Chapt. 7], or [4, Vol. 3].) In particular, if λk(x, ξ) is a Finsler
symbol, and if f = δp, the point mass concentrated at p ∈ M , then the
singular support of eitλk(x,D)δp is equal to the “sphere” Σ|t|(p), of points
of Finsler distance |t| from p, for small |t| (with modifications once caustics
form).
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The symbols λ(x, ξ) that can arise in (3.4) from hyperbolic PDEs need
not be elliptic, and even if such λ(x, ξ) is elliptic, λ(x, ξ)2 need not be
strongly convex. However, when these properties hold, the wave propagation
has particularly nice properties. One indication of this, the tame behavior of
eitλ(x,D)δp, for small |t|, was described above. The operator λ(x,D) (typically
taken to be self-adjoint) also has nicer spectral properties when λ(x, ξ) is a
Finsler symbol than one finds in more general cases. We mention one example
here. The following result is Theorem 5.2.1 in [8], though the term “Finsler
symbol” was not used there.

Proposition 3.1. Let A be a first order, self-adjoint pseudodifferential opera-
tor on a compact manifold M , whose principal symbol is a Finsler symbol. Let
{ϕk : k ∈ Z

+} be an orthonormal basis of eigenfunctions of A, Aϕk = λkϕk,
and consider the Riesz means of order δ:

Σδ
Rf(x) =

∑

λk�R

(

1− λk
R

)δ
̂f(k)ϕk, (3.8)

where ̂f(k) = (f, ϕk)L2 . Then, given

p ∈
[

1, 2
n + 1
n + 3

]
⋃
[

2
n + 1
n− 1

,∞
)

, (3.9)

and
δ > δ(p) = max

{

n
∣

∣

∣

1
p
− 1

2

∣

∣

∣−
1
2
, 0
}

, (3.10)

one has

Σδ
Rf −→ f in Lp-norm as R→∞ ∀ f ∈ Lp(M), (3.11)

and more generally Σδ
Rf → f in Lq-norm for all f ∈ Lq(M), as long as

q ∈ [p, p′] (and q �= ∞).

Remark 3.1. Since A in Proposition 3.1 is elliptic, if p ∈ (1,∞),

(A2 + 1)−s/2 : Lp(M) → Hs,p(M), isomorphically, (3.12)

where Hs,p(M) is the Lp-Sobolev space. Since these operators commute with
Σδ
R, we have the following corollary. In the setting of Proposition 3.1, if p

and δ satisfy (3.9)–(3.10) and p > 1, then

Σδ
Rf −→ f in Hs,p-norm as R→∞ ∀ f ∈ Hs,p(M), (3.13)

and more generally such convergence holds in Hs,q-norm, for f ∈ Hs,q(M)
provided that q ∈ [p, p′].

We next present a simple class of examples of fourth order, strictly hyper-
bolic PDEs that give rise to non-Riemannian Finsler symbols. Namely, we
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consider operators whose symbols have the form

Pa(τ, ξ) =
(

τ2 − g(ξ)
)(

τ2 − h(ξ)
)

+ aq(ξ). (3.14)

Here, g(ξ) and h(ξ) are positive definite quadratic forms:

g(ξ) = gjkξjξk, h(ξ) = hjkξjξk, (3.15)

q(ξ) is a real-valued polynomial in ξ, homogeneous of degree 4, and a ∈ R.
We assume that

g(ξ)− h(ξ) � C|ξ|2 (3.16)

for some C > 0. Then the roots τ = λ(ξ) of Pa satisfy

τ2 = λ(ξ)2 =
g(ξ) + h(ξ)

2
± 1

2

√

(

g(ξ)− h(ξ)
)2 − 4aq(ξ). (3.17)

It is clear that as long as a ∈ R is sufficiently small one has four distinct, real
roots, which are small perturbations of the 4 roots at a = 0:

−
√

g(ξ) < −
√

h(ξ) <
√

h(ξ) <
√

g(ξ). (3.18)

It is also clear that as long as a ∈ R is small enough, then each λ(ξ)2 is
strongly convex.

By contrast, here is a construction of some symbols of third order, strictly
hyperbolic PDE, at least one of whose roots is a non-Finsler symbol. Namely,
we consider symbols of the form

Qa(τ, ξ) = τ
(

τ2 − g(ξ)
)

+ aq(ξ). (3.19)

Here, g(ξ) is a positive definite quadratic form, as in (3.15), and q(ξ) is a
real-valued polynomial in ξ, homogeneous of degree 3. At a = 0, the three
roots are

−
√

g(ξ) < 0 <
√

g(ξ), (3.20)

and for small real a we get real roots that are small perturbations of these.
A calculation shows that λ2(ξ) = 0 perturbs to

λ2(ξ) = a
q(ξ)
g(ξ)

+ O(a2|ξ|). (3.21)

Thus, for small a, λ2(ξ) is a small perturbation of a constant multiple of
q(ξ)/g(ξ). For example, we can pick q(ξ) = ξ3

2 and g(ξ) = |ξ|2, and get small
perturbations of

λ(ξ) =
ξ3
2

|ξ|2 =
ξ3
2

ξ2
1 + ξ2

2

, if n = 2. (3.22)

Figure 1 represents a graph of the singular support of eitλ(D)δ, for some fixed
t > 0, when λ(ξ) is given by (3.22).
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Fig. 1 Singular support of eitλ(D)δ, λ(ξ) = |ξ|−2ξ32 .

The singular supports for different values of t are dilates of each other. The
three cusps form immediately, in contrast to the behavior of eitAδp when A
has a Finsler principal symbol.

The symbol λ(ξ) in (3.22) is also nonelliptic. The following is an elliptic,
non-Finsler symbol:

λ(ξ) =
ξ3
2

|ξ|2 +
11
10
|ξ|. (3.23)

Figure 2 shows the singular support of eitλ(D)δ for such λ(ξ), at a fixed t > 0.

Fig. 2 Singular support of eitλ(D)δ, λ(ξ) = |ξ|−2ξ32 + (11/10)|ξ|.

4 Katok’s Construction and Its Harmonic Analysis
Counterpart

Katok [5] constructed Finsler metrics on the sphere Sn whose geodesic flows
have remarkable properties, further explored in [13]. Here, we recall these
metrics, bring in the associated pseudodifferential operators, and discuss a
problem in harmonic analysis that arises in investigating these operators.
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The Finsler metrics that arise here belong to a special class known as
“Randers metrics.” Generally, a Randers metric on a manifold M has the
form

F (x, v) = gx(v, v)1/2 + gx(v,X), (4.1)

where gx is a Riemannian metric tensor on M and X a real vector field on
M , satisfying gx(X,X) < 1. (This condition on X is necessary and sufficient
for strong convexity (1.4).) In such a case, the correspondence (1.9) yields a
“Randers symbol” on T ∗M , having the form

Φ(x, ξ) = hx(ξ, ξ)1/2 + 〈Y, ξ〉 = λ(x, ξ) + η(x, ξ), (4.2)

where hx is a positive definite quadratic form on T ∗
xM and Y a real vector field

on M , satisfying 〈Y, ξ〉 = hx(y, ξ), hx(y, y) < 1. For the reader convenience we
sketch the calculation establishing this fact in Appendix (Sect. 5). If X �= 0,
then hx is not the form on T ∗

xM dual to gx.
The symbol (4.2) is the symbol of a pseudodifferential operator of the form

A =
√
−Δ + c− iY = Λ − iY, (4.3)

where Δ is the Laplace–Beltrami operator on M for the metric tensor dual
to h, and c is a nonnegative constant. One can take c = 0, but sometimes
another choice of c will be more interesting.

The Katok examples are most naturally described by directly specifying
Φ(x, ξ). Let hx be the quadratic form on T ∗Sn dual to the standard metric
tensor (which we denote g) on the unit sphere Sn, and let Y generate a
rotation. We require gx(Y, Y ) < 1 on Sn. We assume furthermore that

Y = αY0, −1 < α < 1, (4.4)

where Y0 generates a periodic group of rotations R0(t), of minimum period
2π. (If n = 2, Y necessarily has this form.)

The analysis of the geodesic flow of such a Finsler metric is equivalent to
the analysis of the flow generated by HΦ, with Φ given by (4.2). In the present
case, this is simplified by the fact that HΦ = Hλ + Hη, and the vector fields
Hλ and Hη commute; hence their flows commute. In other words, if F tΦ is
the flow generated by HΦ, then, with obvious notation,

F tΦ = F tη ◦ F tλ. (4.5)

Now, F tλ corresponds to the geodesic flow on the standard sphere Sn, which
is very well understood. Meanwhile F tη is simply the flow on T ∗Sn induced by
the action of R0(αt) on Sn, and that is also a straightforward object. Putting
these together, we certainly have some good hold of the flow generated by HΦ.

Here is one notable phenomenon. The flow generated by Hλ is “perfectly
focusing” at times t = kπ, k ∈ Z. For k odd one has geodesics from p focusing
at the antipodal point −p ∈ Sn, and for k even the geodesics focus back at
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p. Now, for the flow generated by HΦ, we see that orbits arising over p ∈ Sn

focus at time t = π at R0(πα)(−p). If R0(t) leaves p and −p invariant, this
point is −p. Otherwise, it is some other point, as long as α ∈ (−1, 1), but
α �= 0. One gets a second focusing, at time 2π and location R0(2πα)p, and
generally a kth focusing, at time kπ and location R0(kπα)((−1)kp).

An obvious dichotomy arises according to whether α ∈ (−1, 1) is rational
or irrational. In the former case, the flow F tΦ is periodic, and in the latter
case it is not. Part of the thrust of [5] and [13] lay in showing that, in the
latter case, F tΦ has remarkably few closed orbits. We refer to these papers
for more on the dynamical properties of F tΦ, and turn our attention to the
spectral properties of the operator A, given by (4.3).

In the case we are considering, with Δ the Laplace–Beltrami operator on
the standard sphere Sn, it is natural to take c in (4.3) to be

c =
(n− 1

2

)2

. (4.6)

This produces the following pleasant result (see. for example, [10, Chapt. 8,
Sect. 4]):

Spec Λ =
{n− 1

2
+ k : k = 0, 1, 2, . . .

}

. (4.7)

Also, under the hypothesis (4.4) on Y , we have

Spec (−iY ) = αZ (4.8)

since Spec iY0 = Z.
Furthermore, the operators Λ =

√
−Δ + c and iY commute. This fact

carries more information than the fact that the Hamiltonian vector fields Hλ

and Hη commute; the latter result is equivalent to the statement that the
commutator [Λ, iY ] is a pseudodifferential operator of order zero. Since Λ
and iY commute, iY preserves each eigenspace of Λ, and we have

Spec A ⊂ Spec Λ + Spec (−iY ) =
(n− 1

2
+ Z

+
)

+ αZ. (4.9)

Also we have
eitA = eitΛetY . (4.10)

The dichotomy of α being rational or irrational is seen here to be mani-
fested on an operator level. The rational case yields periodicity:

α =
μ

ν
∈ Q =⇒ Spec 2νA ⊂ Z =⇒ ei(t+4πν)A = eitA, (4.11)

while the irrational case does not.
In the remainder of this section, we discuss how the dynamical and op-

erator theoretical results described above bear on the question of conver-
gence of the eigenfunction expansion of a function f on Sn, in terms of the
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eigenfunctions of the operator A given by (4.3), with Y given by (4.4). As we
will see, separate analyses are required according to whether α is rational or
irrational.

The object of our study is

SRf(x) =
∑

λj�R
(f, ϕj)ϕj(x), (4.12)

where {ϕj : j � 0} is an orthonormal basis of L2(Sn) consisting of eigenfunc-
tions of A, Aϕj = λjϕj . We can write (4.12) as

SRf = χR(A)f, (4.13)

where χR(λ) = 1 for |λ| � R, 0 for |λ| > R. (It is sometimes convenient to
set χR(λ) = 1/2 for |λ| = 1, and to adjust (4.12) accordingly.)

A broad class of functions ψ(A) of the operator A can be analyzed as

ψ(A) =
1

2π

∞
∫

−∞

̂ψ(t)eitA dt, (4.14)

where

̂ψ(t) =

∞
∫

−∞

ψ(λ)e−iλt dλ. (4.15)

In particular, (4.13) can be rewritten as

SRf(x) =
1
π

∞
∫

−∞

sinRt

t
eitAf(x) dt. (4.16)

Applications of such a formula to the pointwise behavior of SRf(x) as R→∞
have been given in [7, 1, 2, 11, 12], amongst other places. The emphasis has
been on A =

√
−Δ + c in these papers, but many of the results carry over in

a straightforward manner to A of the form (4.3).
A good understanding of the behavior of u(t, x) = eitAf(x), which satisfies

an evolution equation of the form (3.5), leads to results on the behavior of
(4.16) as R→∞. This works neatly when u(t, x) is a wave on R×M , where
M is noncompact and the waves scatter off to infinity. When M is compact,
as it is here (M = Sn) the fact that the range of integration in (4.16) is
t ∈ (−∞,∞) requires further work. The case A = Λ was handled in [7,
Sect. 6], by the following device. When A = Λ, the spectrum, given by (4.7),
consists of integers (if n is odd) or half-integers (if n is even), so we have
periodicity:

ei(t+2πν)A = eitA, (4.17)
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with ν = 1 for odd n and ν = 2 for even n. In such a case, one can replace
(4.14) by

ψ(A) =
1

2πν

∫

R/(2πνZ)

̂ψ(t)eitA dt, (4.18)

where now
̂ψ(t) =

∞
∑

k=−∞
ψ
(k

ν

)

e−ikt/ν . (4.19)

In particular, with ψ(k/ν) = χR(k/ν), we have

̂ψ(t) =
Rν
∑

k=−Rν
e−ikt/ν =

sin
(

R + 1
2ν

)

t

sin t
2ν

, (4.20)

at least as long as Rν is an integer. Thus, we can replace (4.16) by

SRf(x) =
1

2πν

∫

R/(2πνZ)

sin
(

R + 1
2ν

)

t

sin t
2ν

eitAf(x) dt. (4.21)

Now, we are integrating over t on a circle, which is compact, so local analysis
of waves suffices to treat the behavior of (4.21) as R→∞ (with Rν integral).

Formula (4.21) works more generally, as long as A has the form (4.3)–
(4.4) with α rational, as a consequence of (4.11) (we might have to double
ν). Thus, the analysis in [7, Sect. 6] applies with little change to this more
general situation.

To illustrate the results, let us take n = 3, pick p ∈ S3, a ∈ (0, π), and let

f(x) = 1, dist(x, p) < a,
1
2 , dist(x, p) = a,

0, dist(x, p) > a.

(4.22)

In the case α = 0, analyzed in [7, Sect. 6], one has pointwise convergence
SRf(x) → f(x) for all x ∈ S3, with two exceptions, namely x = p and
x = −p. At these two points, SRf(p) and SRf(−p) exhibit an oscillatory
divergence. This type of behavior, discovered first for Euclidean space Fourier
inversion when f is the characteristic function of a ball in R

3 by Pinsky, is
called the Pinsky phenomenon. The analysis of this Pinsky phenomenon as
carried out in [7] involves the analysis of the focusing of the wave u(t, x) =
eitAf(x). An analysis of the behavior, valid uniformly in a neighborhood of
such a focus, is contained in results in [12, Sect. 8]. One also has a Gibbs
phenomenon, on a neighborhood of the sphere {x : dist(x, p) = a}, analyzed
(in a more general context) in [7, Sect. 11].

In the more general situation where A is given by (4.3)–(4.4) with α
rational, the same results hold, except that now the Pinsky phenomenon
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is manifested at all the points R0(kπα)((−1)kp) of focusing for the wave
u(t, x) = eitAf(x). For α rational this is a finite set of points in S3. There are
analogous results for other functions f , and also results in other dimensions,
as one can see by adapting results in [7] and [11, 12].

If α is irrational, the periodicity (4.17) fails. Such a situation also holds
for the analogue of SRf = χR(A)f when A =

√
−Δ + c on a typical compact

Riemannian manifold. These cases are harder to analyze when the compacti-
fication trick is not available, but some successful techniques have been devel-
oped. An approach initiated in [1] and further developed in [2] and [11, 12],
amongst other places, involves breaking SRf into two pieces:

SRf(x) = SβRf(x) + T βRf(x), (4.23)

where we pick β ∈ C∞
0 (R) with β(t) = 0 for |t| � a, 0 for |t| � a + 1 (given

some a > 0) and define

SβRf(x) =
1
π

∫

sinRt

t
β(t) eitAf(x) dt. (4.24)

The following result is Proposition 1 of [11]. In that paper, we took A =
√
−Δ,

but the analysis is the same for any positive, self-adjoint elliptic pseudodif-
ferential operator of order 1, on a compact manifold M , of dimension n.

Proposition 4.1. Fix x ∈M and assume that, for R > 1, ε ∈ (0, 1],
∑

R�λj�R+ε

|ϕj(x)|2 � δ(ε)Rn−1 + γ(ε,R)Rn−1, (4.25)

with
lim
R→∞

γ(ε,R) = 0 ∀ ε > 0; lim
ε→0

δ(ε) = 0. (4.26)

Assume that f ∈ Π−(n−3)/2(M), i.e.,
∑

R�λj�R+1

|(f, ϕj)|2 � CR−(n−1). (4.27)

Furthermore, assume that there exists T0 ∈ (0,∞) such that u(t, x) =
eitAf(x) satisfies

u(·, x) ∈ L1
loc(R \ [−T0, T0]). (4.28)

Then for each β ∈ C∞
0 (R) such that β(t) = 1 for |t| � T0 + 1, we have

lim
R→∞

∣

∣SRf(x)− SβRf(x)
∣

∣ = 0. (4.29)

There are three conditions to verify, and we claim they can be verified
when M = S3, A is given by (4.3)–(4.4), and f is given by (4.22) (with some
exceptions, when R0(t) is given by (4.38), as we will discuss below). First we
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address the issue of when (4.25) holds. The following result, inspired by [3],
is Proposition 2 of [11].

Proposition 4.2. Fix x ∈ M . Assume that the Hamilton flow-out (via HΦ,
where Φ is the principal symbol of A) of T ∗

xM \0 lies over x for only a discrete
set of times t. Assume that, except for t = 0, any caustic of this flow-out lying
over x has order < (n− 1)/2. Then we have

∑

R�λj�R+ε

|ϕj(x)|2 � CεRn−1 + γ(ε,R)Rn−1, (4.30)

for ε ∈ (0, 1], R ∈ (1,∞), with

lim
R→∞

γ(ε,R) = 0 ∀ ε ∈ (0, 1]. (4.31)

Let us return to the setting M = S3, and let A be given by (4.3)–(4.4).
Let us suppose that R0(t) acts on S3 ⊂ R

4 as

R0(t) =
(

ρ0(t)
ρ0(t)

)

, ρ0(t) =
(

cos t − sin t
sin t cos t

)

. (4.32)

In such a case, the hypotheses of Proposition 4.2 hold for each x ∈ S3, so
(4.25)–(4.26) hold. As for (4.27), it is a general fact that if M is a compact
Riemannian manifold and Ω ⊂M is a smoothly bounded set, then

χΩ ∈ Π0(M), i.e.,
∑

R�λj�R+1

|(χΩ, ϕj)|2 � CR−2. (4.33)

This is a special case of results proved in [2] (see also [11, Sect. 4]). This
yields (4.27), when n = 3.

As for (4.28), when f is given by (4.22), then for xk = R0(kπα)((−1)kp)
one sees that u(·, xk) will not be L1 in an interval about t±k = ±kπ, due to
focusing, but u(·, xk) ∈ L1

loc(R\{−kπ, kπ}) (if α is irrational), since there will
not be any other focusing at xk. (If α is rational, there will be other focusing
at xk, infinitely many times, but the previous analysis has taken care of the
behavior of SRf(x) in that case.) If x /∈ {xk : k ∈ Z}, then u(·, x) ∈ L1

loc(R).
Consequently, (4.28) holds for all x ∈ S3 when f is given by (4.22), as long as
α is irrational. Thus, the conclusion (4.29) holds, and the pointwise behavior
of SRf(x) as R→∞ is controlled by the behavior of SβRf(x), with

β ∈ C∞
0 (R), β(t) = 1 for |t| � T0(x) + 1, (4.34)

and with T0(x) as described above.
As mentioned, the methods of [7] apply to SβRf(x). The behavior is as

follows. Let
O(p) = {R0(kπα)((−1)kp) : k ∈ Z}. (4.35)
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For α irrational and R0(t) given by (4.32), this set is dense in the circle

C(p) = {R0(t)p : t ∈ R}. (4.36)

We have pointwise convergence

SRf(x) → f(x) ∀ x /∈ O(p). (4.37)

On the other hand, if x = xk ∈ O(p) and β satisfies (4.34), then the Pinsky
phenomenon is manifested for SβRf(x). Since (4.29) holds, this implies that
SRf(xk) does not converge to f(xk), but has an oscillatory divergence.

Results are similar, up to a point, when instead of (4.32) one has

R0(t) =
(

ρ0(t)
I

)

, I =
(

1 0
0 1

)

. (4.38)

In this case, the points in

F = {(0, 0, a, b)t ∈ R
4 : a2 + b2 = 1} (4.39)

are fixed points for the action of R0. The compactification trick still works if
α ∈ Q, so from here on we concentrate on the case α /∈ Q. In this case, the
hypotheses of Proposition 4.2 hold for x ∈ S3 if and only if x /∈ F . Hence
(4.25) holds for x ∈ S3 \ F , but we do not have this result for x ∈ F . To
be sure, (4.27) still holds, if f is given by (4.22). In such a case, (4.28) holds
unless

p ∈ F and x ∈ O(p), (4.40)

where O(p) is given by (4.35), but we do not have (4.28) if (4.40) holds. (Note
that p ∈ F ⇒ O(p) = {±p}.) Hence, in this situation, we conclude that

x ∈ S3 \ F , x /∈ O(p) =⇒ SRf(x) → f(x), (4.41)

as R→∞, when f is given by (4.41). Furthermore, the Pinsky phenomenon
is manifested if x ∈ S3\F and x ∈ O(p). However, if x ∈ F , then Proposition
4.1 is not applicable, and at this point the behavior of SRf(x) as R →∞ is
not known (at least, not to this author).

Remark 4.1. When A is given by (4.3)–(4.4) and Δ is the Laplace–Beltrami
operator on Sn, then the eigenfunction expansions (4.12) are expansions in
spherical harmonics, whatever the value of α. However, the order in which
these spherical harmonics enter the expansion is strongly affected by the
choice of α. One might compare this situation with phenomena discussed in
[12, Sect. 10].

Remark 4.2. As noted in [13], the Katok construction can be extended, re-
placing Sn by any compact, rank-one symmetric space, such as a complex
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or quaternionic projective space. It turns out that spectral behavior similar
to (4.7) also holds for these other cases, and our analysis of SRf(x) can be
carried out in this greater generality. See [7, Sect. 7] for the case α = 0.

5 Appendix. Randers–Randers Duality

Here, we show that if Φ(x, ξ) is a Finsler symbol of Randers type, then the
associated Finsler metric F (x, v) is also of Randers type (and conversely).
This recovers part of Theorem 7.4.3 in [6].

There is no need to record x dependence, and we can consider without loss
of generality ϕ(ξ) = Φ(ξ)2/2, of the form

ϕ(ξ) =
1
2
(

|ξ|+ b · ξ
)2 =

1
2
|ξ|2 +

1
2

(b · ξ)2 + |ξ|(b · ξ), (5.1)

with |ξ|2 = ξ · ξ, |b| < 1. A calculation gives

v = Dξϕ(ξ) =
(

|ξ|+ b · ξ
)

(

b +
ξ

|ξ|

)

=
√

2ϕ(ξ)
(

b +
ξ

|ξ|

)

. (5.2)

Our task is to write f(v) = ϕ(ξ) explicitly as a function of v. To begin, we
have from (5.2) that

b +
ξ

|ξ| =
v

√

2f(v)
. (5.3)

Subtracting b gives a vector of length one, hence the identity

1 =
( v
√

2f(v)
− b

)

·
( v
√

2f(v)
− b

)

=
|v|2

2f(v)
− 2

b · v
√

2f(v)
+ |b|2. (5.4)

This gives for F (v) =
√

2f(v) the quadratic equation

(1 − |b|2)F 2 + 2(b · v)F − |v|2 = 0, (5.5)

and hence

F (v) = − b · v
1− |b|2 +

1
1− |b|2

√

(b · v)2 + (1− |b|2)|v|2. (5.6)

In other words,
F (v) =

√

v ·Qv + c · v, (5.7)

where
c = − b

1− |b|2 (5.8)

and
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v ·Qv =
(1− |b|2)|v|2 + (b · v)2

(1− |b|2)2
. (5.9)

The strong convexity of f(v) is already known, so we see that F (v) is of
Randers type.
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4. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vols. 3-4.
Springer-Verlag, New York (1985)

5. Katok, A.B.: Ergodic perturbations of degenerate integrable Hamiltonian systems
(in Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 37, 539-576 (1973); English transl.:
Math. USSR Izv. 7, 535-571 (1974)

6. Miron, R., Hrimiuc, D., Shimada, H., Sabau, S.: The Geometry of Hamilton and
Lagrange Spaces. Kluwer, Boston (2001)

7. Pinsky, M., Taylor, M.: Pointwise Fourier inversion: a wave equation approach. J.
Fourier Anal. Appl. 3, 647-703 (1997)

8. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Univ. Press, Cambrdige
(1993)

9. Taylor, M.: Pseudodifferential Operators. Princeton Univ. Press, Princeton, NJ (1981)

10. Taylor, M.: Partial Differential Equations. Vols. 1-3. Springer-Verlag, New York
(1996)

11. Taylor, M.: Eigenfunction expansions and the Pinsky phenomenon on compact man-
ifolds. J. Fourier Anal. Appl. 7, 507-522 (2001)

12. Taylor, M.: The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigen-
function expansions. Commun. Parital Differ. Equ. 27, 565-605 (2002)

13. Ziller, W.: Geometry of the Katok examples. Ergod. Theor. Dyn. Sys. 3, 135-157
(1982)



Index

Approximate boundary 33
approximate domain 33
approximation discrete 43

Boundary control 187

Calderon problem 10
Carleman estimate 135
Cauchy problem 138

Diagonalization 12
differential stochastic 51
Dirac correction term 161
Dirac energy 161
Dirac measure 7
Dirichlet boundary control 189, 213
Dirichlet-to-Neumann map 5

Elasticity system 151
Euler–Bernoulli plate 247
exact controllability theorem 214,

233, 240, 248, 257, 265, 266

Finsler metric 317
Finsler symbol 318
Finsler–Cartan L-duality 319

function pseudoconvex 136

Gelfand theorem 7
Gelfand–Naimark theorem 8
Gelfand–Naimark–Segal theorem 8
Ginzburg–Landau equation 25
— stochastic 38

Green kernel 277

Hilbert transform 11

Inverse problem 5
— elliptic 9
— hyperbolic 14

Ito formula 51
Ito integral 48

Katok construction 325
Kirchhoff equation 232
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