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Preface

In January 2010, the Council of Young Scientists of the Belarusian State University
organized the 3rd International Winter School “Modern Problems of Mathematics
and Mechanics”. Young researchers, graduate, master and post-graduate students
from Belarus, Lithuania, Poland and Ukraine participated in this school. They
attended lectures of well-known experts in Analysis and its Applications. Six cy-
cles of 3–4 lectures each were presented by Dr. V. Kisil (Leeds University, UK),
by Prof. A. Laurinčikas (Vilnius University, Lithuania), Prof. Yu. Luchko (Beuth
Technical University of Applied Sciences, Berlin, Germany), Prof. V.Mityushev
(Krakow Pedagogical Academy, Poland), Prof. S. Plaksa (Institute of Mathemat-
ics, National Academy of Sciences, Ukraine) and Dr. S. Rogosin (Belarusian State
University, Minsk, Belarus).

The book is made up of extended texts of the lectures presented at the
School. These lectures are devoted to different problems of modern analysis and
its applications. Below we briefly outline the main ideas of the lectures. Since they
have an advanced character, the authors tried to make them self-contained.

A cycle of lectures by Dr. V. Kisil “Erlangen Program at Large: An Overview”
describes a bridge between modern analysis and algebra. The author introduces
objects and properties that are invariant under a group action. He begins with con-
formal geometry and develops a special functional calculus. He uses, as a charac-
teristic example, a construction of wavelets based on certain algebraic techniques.

Prof. A. Laurinčikas deals with the notion of universality of functions. His cy-
cle is called “The Riemann zeta-function: approximation of analytic functions”. He
shows that one of the best examples of universality is the classical Riemann zeta-
function. So this lecture can be considered as describing the connection between
Analysis and Number Theory.

A cycle of lectures by Prof. Yu. Luchko “Anomalous diffusion: models, their
analysis, and interpretation” presents a model of anomalous diffusion. This model
is given in terms of differential equations of a fractional order. The obtained equa-
tions and their generalizations are analyzed with the help of both the Laplace-
Fourier transforms (the Cauchy problems) and the spectral method (initial-bound-
ary-value problems).

Prof. V. Mityushev presents in his cycle “R-linear and Riemann–Hilbert prob-
lems for multiply connected domains” elements of constructive analysis related to
the solution of boundary value problems for analytic functions. He pays partic-
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ular attention to further application of the obtained results in the theory of 2D
composite materials and porous media.

Another type of applications are presented in the cycle of lectures by Prof. S.
Plaksa “Commutative algebras associated with classic equations of mathematical
physics”. In his work he develops a technique for application of the theory of
monogenic functions in modern problems of mathematical physics. In particular,
he studies axial-symmetric problems of the mechanics of continuous media.

Dr. S. Rogosin describes some modern ideas that can be applied to the study
of certain free boundary problems (“2D free boundary value problems”). In partic-
ular, he develops an illustrative example dealing with so-called Hele-Shaw bound-
ary value problem. This problem is reduced to a couple of problems, namely, an
abstract Cauchy–Kovalevsky problem and a Riemann–Hilbert–Poincaré problem
for analytic functions.

The book is addressed to young researchers in Mathematics and Mechanics.
It can also be used as the base for a course of lectures for master-students.
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Erlangen Program at Large:
An Overview

Vladimir V. Kisil

Dedicated to Prof. Hans G. Feichtinger on the occasion of his 60th birthday

Abstract. This is an overview of the Erlangen Program at Large. Study of
objects and properties, which are invariant under a group action, is very
fruitful far beyond traditional geometry. In this paper we demonstrate this on
the example of the group SL2(ℝ). Starting from the conformal geometry we
develop analytic functions and apply these to functional calculus. Finally we
link this to quantum mechanics and conclude by a list of open problems.

Mathematics Subject Classification (2010). Primary 30G35; Secondary 22E46,
30F45, 32F45, 43A85, 30G30, 42C40, 46H30, 47A13, 81R30, 81R60.

Keywords. Special linear group, Hardy space, Clifford algebra, elliptic, par-
abolic, hyperbolic, complex numbers, dual numbers, double numbers, split-
complex numbers, Cauchy-Riemann-Dirac operator, Möbius transformations,
functional calculus, spectrum, quantum mechanics, non-commutative geome-
try.

A mathematical idea should not be petrified
in a formalised axiomatic setting, but should
be considered instead as flowing as a river.

Sylvester (1878)

1. Introduction

The simplest objects with non-commutative (but still associative) multiplication
may be 2×2 matrices with real entries. The subset of matrices of determinant one
has the following properties:

∙ form a closed set under multiplication since det(𝐴𝐵) = det𝐴 ⋅ det𝐵;
∙ the identity matrix is the set; and
∙ any such matrix has an inverse (since det𝐴 ∕= 0).

On leave from the Odessa University.

http://maths.leeds.ac.uk/~kisilv/
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In other words those matrices form a group, the SL2(ℝ) group [97] – one of the
two most important Lie groups in analysis. The other group is the Heisenberg
group [42]. By contrast the 𝑎𝑥+ 𝑏 group, which is often used to build wavelets, is
only a subgroup of SL2(ℝ), see the numerator in (1.1).

The simplest non-linear transforms of the real line – linear-fractional or
Möbius maps – may also be associated with 2× 2 matrices [8, Ch. 13]:

𝑔 : 𝑥 �→ 𝑔 ⋅ 𝑥 =
𝑎𝑥+ 𝑏

𝑐𝑥+ 𝑑
, where 𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
, 𝑥 ∈ ℝ. (1.1)

An enjoyable calculation shows that the composition of two transforms (1.1) with
different matrices 𝑔1 and 𝑔2 is again a Möbius transform with matrix the product
𝑔1𝑔2. In other words (1.1) it is a (left) action of SL2(ℝ).

According to F. Klein’s Erlangen program (which was influenced by S. Lie)
any geometry is dealing with invariant properties under a certain transitive group
action. For example, we may ask:What kinds of geometry are related to the SL2(ℝ)
action (1.1)?

The Erlangen program has probably the highest rate of praised
actually used among

mathematical theories, due not only to the big numerator but also due to the
undeservingly small denominator. As we shall see below, Klein’s approach provides
some surprising conclusions even for such over-studied objects as circles.

1.1. Make a guess in three attempts

It is easy to see that the SL2(ℝ) action (1.1) makes sense also as a map of complex
numbers 𝑧 = 𝑥 + i𝑦, i2 = −1 assuming the denominator is non-zero. Moreover,
if 𝑦 > 0 then 𝑔 ⋅ 𝑧 has a positive imaginary part as well, i.e., (1.1) defines a map
from the upper half-plane to itself. Those transformations are isometries of the
Lobachevsky half-plane.

However there is no need to be restricted to the traditional route of complex
numbers only. Moreover in Subsection 2.1 we will naturally come to a necessity
to work with all three kinds of hypercomplex numbers. Less-known double and
dual numbers, see [128, Suppl. C], have also the form 𝑧 = 𝑥 + 𝜄𝑦 but different
assumptions on the hypercomplex unit 𝜄: 𝜄2 = 0 or 𝜄2 = 1 correspondingly. We will
write 𝜀 and j instead of 𝜄 within dual and double numbers respectively. Although
the arithmetic of dual and double numbers is different from the complex ones, e.g.,
they have divisors of zero, we are still able to define their transforms by (1.1) in
most cases.

Three possible values −1, 0 and 1 of 𝜎 := 𝜄2 will be referred to here as
elliptic, parabolic and hyperbolic cases respectively. We repeatedly meet such a
division of various mathematical objects into three classes. They are named by
the historically first example – the classification of conic sections – however the
pattern persistently reproduces itself in many different areas: equations, quadratic
forms, metrics, manifolds, operators, etc. We will abbreviate this separation as
EPH-classification. The common origin of this fundamental division of any family
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with one parameter can be seen from the simple picture of a coordinate line split
by zero into negative and positive half-axes:

+− 0

↑
parabolic

elliptichyperbolic (1.2)

Connections between different objects admitting EPH-classification are not
limited to this common source. There are many deep results linking, for example,
the ellipticity of quadratic forms, metrics and operators, e.g., the Atiyah-Singer
index theorem. On the other hand there are still a lot of white spots, empty cells,
obscure gaps and missing connections between some subjects as well.

To understand the action (1.1) in all EPH cases we use the Iwasawa decom-
position [97, § III.1] of SL2(ℝ) = 𝐴𝑁𝐾 into three one-dimensional subgroups 𝐴,
𝑁 and 𝐾: (

𝑎 𝑏
𝑐 𝑑

)
=

(
𝛼 0
0 𝛼−1

)(
1 𝜈
0 1

)(
cos𝜙 − sin𝜙
sin𝜙 cos𝜙

)
. (1.3)

Subgroups 𝐴 and 𝑁 act in (1.1) irrespectively to value of 𝜎: 𝐴 makes a
dilation by 𝛼2, i.e., 𝑧 �→ 𝛼2𝑧, and 𝑁 shifts points to left by 𝜈, i.e., 𝑧 �→ 𝑧 + 𝜈.

1

1

1

1

1

1

The corresponding orbits are circles,
parabolas and hyperbolas shown by
thick lines. Transverse thin lines are
images of the vertical axis under the
action of the subgroup 𝐾. Grey ar-
rows show the associated derived ac-
tion.

Figure 1. Action of the subgroup 𝐾.

By contrast, the action of the third matrix from the subgroup 𝐾 sharply
depends on 𝜎, see Figure 1. In elliptic, parabolic and hyperbolic cases 𝐾-orbits are
circles, parabolas and (equilateral) hyperbolas correspondingly. Thin traversal lines
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in Figure 1 join points of orbits for the same values of 𝜙 and grey arrows represent
“local velocities” – vector fields of derived representations. We will describe some
highlights of this geometry in Section 2.

1.2. Erlangen Program at Large

As we already mentioned the division of mathematics into areas is only apparent.
Therefore it is unnatural to limit the Erlangen program only to “geometry”. We
may continue to look for SL2(ℝ) invariant objects in other related fields. For
example, transform (1.1) generates unitary representations on certain 𝐿2 spaces,
cf. (1.1) and Section 3:

𝑔 : 𝑓(𝑥) �→ 1

(𝑐𝑥+ 𝑑)𝑚
𝑓

(
𝑎𝑥+ 𝑏

𝑐𝑥 + 𝑑

)
. (1.4)

For 𝑚 = 1, 2, . . . the invariant subspaces of 𝐿2 are Hardy and (weighted)
Bergman spaces of complex analytic functions. All main objects of complex anal-
ysis (Cauchy and Bergman integrals, Cauchy-Riemann and Laplace equations,
Taylor series etc.) may be obtained in terms of invariants of the discrete series
representations of SL2(ℝ) [69, § 3]. Moreover two other series (principal and com-
plimentary [97]) play similar rôles for hyperbolic and parabolic cases [69,82]. This
will be discussed in Sections 4 and 5.

Moving further we may observe that transform (1.1) is defined also for an
element 𝑥 in any algebra 𝔄 with a unit 1 as soon as (𝑐𝑥+ 𝑑1) ∈ 𝔄 has an inverse.
If 𝔄 is equipped with a topology, e.g., is a Banach algebra, then we may study a
functional calculus for element 𝑥 [75] in this way. It is defined as an intertwining
operator between the representation (1.4) in a space of analytic functions and a
similar representation in a left 𝔄-module. We will consider this in Section 6.

In the spirit of the Erlangen program, such a functional calculus is still a
geometry, since it deals with invariant properties under a group action. However
even for a simplest non-normal operator, e.g., a Jordan block of the length 𝑘, the
obtained space is not like a space of points but is rather a space of 𝑘th jets [75].
Such non-point behaviour is oftenly attributed to non-commutative geometry and
the Erlangen program provides an important input on this fashionable topic [69].

It is noteworthy that ideas of F. Klein and S. Lie are spread more in physics
than in mathematics: it is a common viewpoint that laws of nature shall be invari-
ant under certain transformations. Yet systematic use of the Erlangen approach
can bring new results even in this domain as we demonstrate in Section 7. There
are still many directions to extend the present work, thus we will conclude by a
list of some open problems in Section 8.

Of course, there is no reason to limit the Erlangen program to the SL2(ℝ)
group only; other groups may be more suitable in different situations. However
SL2(ℝ) still possesses a big unexplored potential and is a good object to start
with.
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2. Geometry

We start from the natural domain of the Erlangen Program – geometry. Systematic
use of this ideology allows us to obtain new results even for very classical objects
like circles.

2.1. Hypercomplex numbers

Firstly we wish to demonstrate that hypercomplex numbers appear very naturally
from a study of SL2(ℝ) action on the homogeneous spaces [85]. We begin from the
standard definitions.

Let 𝐻 be a subgroup of a group 𝐺. Let 𝑋 = 𝐺/𝐻 be the corresponding
homogeneous space and 𝑠 : 𝑋 → 𝐺 be a smooth section [55, § 13.2], which is a left
inverse to the natural projection 𝑝 : 𝐺 → 𝑋 . The choice of 𝑠 is inessential in the
sense that, by a smooth map 𝑋 → 𝑋 , we can always reduce one to another. We
define a map 𝑟 : 𝐺→ 𝐻 associated to 𝑝 and 𝑠 from the identities

𝑟(𝑔) = (𝑠(𝑥))
−1

𝑔, where 𝑥 = 𝑝(𝑔) ∈ 𝑋. (2.1)

Note that 𝑋 is a left homogeneous space with the 𝐺-action defined in terms of 𝑝
and 𝑠 as follows:

𝑔 : 𝑥 �→ 𝑔 ⋅ 𝑥 = 𝑝(𝑔 ∗ 𝑠(𝑥)). (2.2)

Example 2.1 ([85]). For 𝐺 = SL2(ℝ), as well as for other semisimple groups, it is
common to consider only the case of 𝐻 being the maximal compact subgroup 𝐾.
However in this paper we admit 𝐻 to be any one-dimensional subgroup. Then 𝑋
is a two-dimensional manifold and for any choice of 𝐻 we define [64, Ex. 3.7(a)]:

𝑠 : (𝑢, 𝑣) �→ 1√
𝑣

(
𝑣 𝑢
0 1

)
, (𝑢, 𝑣) ∈ ℝ2, 𝑣 > 0. (2.3)

Any continuous one-dimensional subgroup 𝐻 ∈ SL2(ℝ) is conjugated to one of the
following:

𝐾 =

{(
cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

)
= exp

(
0 𝑡
−𝑡 0

)
, 𝑡 ∈ (−𝜋, 𝜋]

}
, (2.4)

𝑁 ′ =
{(

1 0
𝑡 1

)
= exp

(
0 0
𝑡 0

)
, 𝑡 ∈ ℝ

}
, (2.5)

𝐴′ =
{(

cosh 𝑡 sinh 𝑡
sinh 𝑡 cosh 𝑡

)
= exp

(
0 𝑡
𝑡 0

)
, 𝑡 ∈ ℝ

}
. (2.6)

Then [85] the action (2.2) of SL2(ℝ) on 𝑋 = SL2(ℝ)/𝐻 coincides with Möbius
transformations (1.1) on complex, dual and double numbers respectively.

2.2. Cycles as invariant families

We wish to consider all three hypercomplex systems at the same time, the following
definition is very helpful for this.
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Definition 2.2. The common name cycle [128] is used to denote circles, parabolas
and hyperbolas (as well as straight lines as their limits) in the respective EPH
case.

(a) (b)

Figure 2. 𝐾-orbits as conic sections: circles are sections by the plane
𝐸𝐸′; parabolas are sections by 𝑃𝑃 ′; hyperbolas are sections by 𝐻𝐻 ′.
Points on the same generator of the cone correspond to the same value
of 𝜙.

It is well known that any cycle is a conic section and an interesting obser-
vation is that corresponding 𝐾-orbits are in fact sections of the same two-sided
right-angle cone, see Figure 2. Moreover, each straight line generating the cone, see
Figure 2(b), crosses corresponding EPH 𝐾-orbits at points with the same value of
parameter 𝜙 from (1.3). In other words, all three types of orbits are generated by
the rotations of this generator along the cone.

𝐾-orbits are 𝐾-invariant in a trivial way. Moreover since actions of both
𝐴 and 𝑁 for any 𝜎 are extremely “shape-preserving” we find natural invariant
objects of the Möbius map:

Theorem 2.3. The family of all cycles from Definition 2.2 is invariant under the
action (1.1).

According to Erlangen ideology we should now study invariant properties of
cycles.

Figure 2 suggests that we may get a unified treatment of cycles in all EPH
cases by consideration of higher dimension spaces. The standard mathematical
method is to declare objects under investigation (cycles in our case, functions in
functional analysis, etc.) to be simply points of some bigger space. This space
should be equipped with an appropriate structure to hold externally information
which was previously considered as inner properties of our objects.
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A generic cycle is the set of points (𝑢, 𝑣) ∈ ℝ2 defined for all values of 𝜎 by
the equation

𝑘(𝑢2 − 𝜎𝑣2)− 2𝑙𝑢− 2𝑛𝑣 +𝑚 = 0. (2.7)

This equation (and the corresponding cycle) is defined by a point (𝑘, 𝑙, 𝑛,𝑚) from
a projective space ℙ3, since for a scaling factor 𝜆 ∕= 0 the point (𝜆𝑘, 𝜆𝑙, 𝜆𝑛, 𝜆𝑚)
defines an equation equivalent to (2.7). We call ℙ3 the cycle space and refer to the
initial ℝ2 as the point space.

In order to get a connection with Möbius action (1.1) we arrange numbers
(𝑘, 𝑙, 𝑛,𝑚) into the matrix

𝐶𝑠
𝜎̆ =

(
𝑙 + ı̆𝑠𝑛 −𝑚

𝑘 −𝑙+ ı̆𝑠𝑛

)
, (2.8)

with a new hypercomplex unit ı̆ and an additional parameter 𝑠 usually equal
to ±1. The values of 𝜎̆ := ı̆2 are −1, 0 or 1 independently from the value of
𝜎. The matrix (2.8) is the cornerstone of an extended Fillmore–Springer–Cnops
construction (FSCc) [19].

The significance of FSCc in the Erlangen framework is provided by the fol-
lowing result:

Theorem 2.4. The image 𝐶𝑠
𝜎̆ of a cycle 𝐶𝑠

𝜎̆ under transformation (1.1) with 𝑔 ∈
SL2(ℝ) is given by similarity of the matrix (2.8):

𝐶𝑠
𝜎̆ = 𝑔𝐶𝑠

𝜎̆𝑔
−1. (2.9)

In other words FSCc (2.8) intertwines Möbius action (1.1) on cycles with linear
map (2.9).

There are several ways to prove (2.9): either by a brute force calculation
(fortunately performed by a CAS) [82] or through the related orthogonality of
cycles [19], see the end of the next Subsection 2.3.

The important observation here is that our extended version of FSCc (2.8)
uses a hypercomplex unit ı̆, which is not related to 𝜄 defining the appearance of
cycles on a plane. In other words any EPH type of geometry in the cycle space ℙ3

admits drawing of cycles in the point space ℝ2 as circles, parabolas or hyperbolas.
We may think of points of ℙ3 as ideal cycles while their depictions on ℝ2 are only
their shadows on the wall of Plato’s cave.

Figure 3(a) shows the same cycles drawn in different EPH styles. We note the
first-order contact between the circle, parabola and hyperbola in their intersection
points with the real line. Informally, we can say that EPH realisations of a cycle
look the same in a vicinity of the real line. It is not surprising since cycles are
invariants of the hypercomplex Möbius transformations, which are extensions of
SL2(ℝ)-action (1.1) on the real line.

Points 𝑐𝑒,𝑝,ℎ = ( 𝑙𝑘 ,−𝜎̆𝑛
𝑘 ) are the respective e/p/h-centres of drawn cycles.

They are related to each other through several identities:

𝑐𝑒 = 𝑐ℎ, 𝑐𝑝 =
1

2
(𝑐𝑒 + 𝑐ℎ). (2.10)

http://arxiv.org/abs/cs.MS/0512073
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(a)

ce

cp
ch

r0

ce

cp

ch

r1

(b)

ce

fe

fp

fh

ce

fe

fp

fh

Figure 3. (a) Different EPH implementations of the same cycles de-
fined by quadruples of numbers.
(b) Centres and foci of two parabolas with the same focal length.

Figure 3(b) presents two cycles drawn as parabolas; they have the same focal
length 𝑛

2𝑘 and thus their e-centres are on the same level. In other words concentric
parabolas are obtained by a vertical shift, not scaling as an analogy with circles
or hyperbolas may suggest.

Figure 3(b) also presents points, called e/p/h-foci:

𝑓𝑒,𝑝,ℎ =

(
𝑙

𝑘
,−det𝐶𝑠

𝜎̆

2𝑛𝑘

)
, (2.11)

which are independent of the sign of 𝑠. If a cycle is depicted as a parabola then
h-focus, p-focus, e-focus are correspondingly geometrical focus of the parabola, its
vertex, and the point on the directrix nearest to the vertex.

As we will see, cf. Theorems 2.6 and 2.8, all three centres and three foci are
useful attributes of a cycle even if it is drawn as a circle.

2.3. Invariants: algebraic and geometric

We use known algebraic invariants of matrices to build appropriate geometric in-
variants of cycles. It is yet another demonstration that any division of mathematics
into subjects is only illusive.

For 2 × 2 matrices (and thus cycles) there are only two essentially different
invariants under similarity (2.9) (and thus under Möbius action (1.1)): the trace
and the determinant . The latter was already used in (2.11) to define a cycle’s foci.
However due to the projective nature of the cycle space ℙ3 the absolute values of
trace or determinant are irrelevant, unless they are zero.

Alternatively we may have a special arrangement for normalisation of quad-
ruples (𝑘, 𝑙, 𝑛,𝑚). For example, if 𝑘 ∕= 0 we may normalise the quadruple to
(1, 𝑙

𝑘 ,
𝑛
𝑘 ,

𝑚
𝑘 ) with a highlighted cycle’s centre. Moreover in this case det𝐶𝑠

𝜎̆ is
equal to the square of the cycle’s radius, cf. Section 2.6. Another normalisation
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det𝐶𝑠
𝜎̆ = 1 is used in [58] to get a nice condition for touching circles. Moreover,

the Kirillov normalisation is preserved by the conjugation (2.9).

We still get important characterisation even with non-normalised cycles, e.g.,
invariant classes (for different 𝜎̆) of cycles are defined by the condition det𝐶𝑠

𝜎̆ = 0.
Such a class is parametrised only by two real numbers and as such is easily attached
a to certain point of ℝ2. For example, the cycle 𝐶𝑠

𝜎̆ with det𝐶𝑠
𝜎̆ = 0, 𝜎̆ = −1 drawn

elliptically represents just a point ( 𝑙𝑘 ,
𝑛
𝑘 ), i.e., (elliptic) zero-radius circle. The same

condition with 𝜎̆ = 1 in hyperbolic drawing produces a null-cone originated at
point ( 𝑙

𝑘 ,
𝑛
𝑘 ):

(𝑢− 𝑙
𝑘 )

2 − (𝑣 − 𝑛
𝑘 )

2 = 0,

i.e., a zero-radius cycle in hyperbolic metric.

Figure 4. Different 𝜎-implementations of the same 𝜎̆-zero-radius cycles
and corresponding foci.

In general for every notion there are (at least) nine possibilities: three EPH
cases in the cycle space times three EPH realisations in the point space. Such nine
cases for “zero radius” cycles is shown in Figure 4. For example, p-zero-radius
cycles in any implementation touch the real axis.

This “touching” property is a manifestation of the boundary effect in the
upper half-plane geometry. The famous question on hearing a drum’s shape has a
sister:

Can we see/feel the boundary from inside a domain?

Both orthogonality relations described below are “boundary aware” as well. It is
not surprising after all since SL2(ℝ) action on the upper half-plane was obtained
as an extension of its action (1.1) on the boundary.

According to the categorical viewpoint internal properties of objects are of
minor importance in comparison to their relations with other objects from the
same class. As an illustration we may cite the proof of Theorem 2.4 sketched at
the end of the next section. Thus from now on we will look for invariant relations
between two or more cycles.
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2.4. Joint invariants: orthogonality

The most expected relation between cycles is based on the following Möbius in-
variant “inner product” built from a trace of product of two cycles as matrices:〈

𝐶𝑠
𝜎̆, 𝐶

𝑠
𝜎̆

〉
= tr(𝐶𝑠

𝜎̆𝐶
𝑠
𝜎̆). (2.12)

By the way, an inner product of this type is used, for example, in GNS construction
to make a Hilbert space out of a 𝐶∗-algebra. The next standard move is given by
the following definition.

Definition 2.5. Two cycles are called 𝜎̆-orthogonal if
〈
𝐶𝑠
𝜎̆, 𝐶

𝑠
𝜎̆

〉
= 0.

The orthogonality relation is preserved under the Möbius transformations,
thus this is an example of a joint invariant of two cycles. For the case of 𝜎̆𝜎 = 1,
i.e., when geometries of the cycle and point spaces are both either elliptic or hyper-
bolic, such an orthogonality is the standard one, defined in terms of angles between
tangent lines in the intersection points of two cycles. However in the remaining
seven (= 9 − 2) cases the innocent-looking Definition 2.5 brings unexpected rela-
tions.

a
b

c

d

σ = −1, σ̆ = −1

1

1 a
b

c

d

σ = −1, σ̆ = 0

1

1 a
b

c

d

σ = −1, σ̆ = 1

1

1

Figure 5. Orthogonality of the first kind in the elliptic point space.
Each picture presents two groups (green and blue) of cycles which are
orthogonal to the red cycle 𝐶𝑠

𝜎̆. Point 𝑏 belongs to 𝐶𝑠
𝜎̆ and the family of

blue cycles passing through 𝑏 is orthogonal to 𝐶𝑠
𝜎̆. They all also intersect

in the point 𝑑 which is the inverse of 𝑏 in 𝐶𝑠
𝜎̆. Any orthogonality is

reduced to the usual orthogonality with a new (“ghost”) cycle (shown by
the dashed line), which may or may not coincide with 𝐶𝑠

𝜎̆. For any point
𝑎 on the “ghost” cycle the orthogonality is reduced to the local notion in
the terms of tangent lines at the intersection point. Consequently such
a point 𝑎 is always the inverse of itself.

Elliptic (in the point space) realisations of Definition 2.5, i.e., 𝜎 = −1 is
shown in Figure 5. The left picture corresponds to the elliptic cycle space, e.g.,
𝜎̆ = −1. The orthogonality between the red circle and any circle from the blue
or green families is given in the usual Euclidean sense. The central (parabolic in
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the cycle space) and the right (hyperbolic) pictures show the non-local nature of
the orthogonality. There are analogous pictures in parabolic and hyperbolic point
spaces as well, see [82, 90].

This orthogonality may still be expressed in the traditional sense if we will
associate to the red circle the corresponding “ghost” circle, which is shown by
the dashed line in Figure 5. To describe a ghost cycle we need the Heaviside
function 𝜒(𝜎):

𝜒(𝑡) =

{
1, 𝑡 ≥ 0;
−1, 𝑡 < 0.

(2.13)

Theorem 2.6. A cycle is 𝜎̆-orthogonal to cycle 𝐶𝑠
𝜎̆ if it is orthogonal in the usual

sense to the 𝜎-realisation of “ghost” cycle 𝐶𝑠
𝜎̆, which is defined by the following

two conditions:

i. 𝜒(𝜎)-centre of 𝐶𝑠
𝜎̆ coincides with 𝜎̆-centre of 𝐶𝑠

𝜎̆.

ii. Cycles 𝐶𝑠
𝜎̆ and 𝐶𝑠

𝜎̆ have the same roots, moreover det𝐶1
𝜎 = det𝐶

𝜒(𝜎̆)
𝜎 .

The above connection between various centres of cycles illustrates their mean-
ingfulness within our approach.

One can easily check the following orthogonality properties of the zero-radius
cycles defined in the previous section:

i. Due to the identity ⟨𝐶𝑠
𝜎̆, 𝐶

𝑠
𝜎̆⟩ = det𝐶𝑠

𝜎̆, zero-radius cycles are self-orthogonal
(isotropic) ones.

ii. A cycle 𝐶𝑠
𝜎̆ is 𝜎-orthogonal to a zero-radius cycle 𝑍𝑠

𝜎̆ if and only if 𝐶𝑠
𝜎̆ passes

through the 𝜎-centre of 𝑍𝑠
𝜎̆.

As we will see, in the parabolic case there is a more suitable notion of an
infinitesimal cycle which can be used instead of zero-radius ones.

2.5. Higher-order joint invariants: f-orthogonality

With appetite already whetted one may wish to build more joint invariants. Indeed
for any polynomial 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) of several non-commuting variables one may
define an invariant joint disposition of 𝑛 cycles 𝑗𝐶𝑠

𝜎̆ by the condition

tr 𝑝(1𝐶𝑠
𝜎̆,

2𝐶𝑠
𝜎̆, . . . ,

𝑛𝐶𝑠
𝜎̆) = 0.

However it is preferable to keep some geometrical meaning of constructed notions.
An interesting observation is that in the matrix similarity of cycles (2.9) one

may replace element 𝑔 ∈ SL2(ℝ) by an arbitrary matrix corresponding to another

cycle. More precisely the product 𝐶𝑠
𝜎̆𝐶

𝑠
𝜎̆𝐶

𝑠
𝜎̆ is again the matrix of the form (2.8) and

thus may be associated to a cycle. This cycle may be considered as the reflection
of 𝐶𝑠

𝜎̆ in 𝐶𝑠
𝜎̆.

Definition 2.7. A cycle 𝐶𝑠
𝜎̆ is f-orthogonal (focal orthogonal) to a cycle 𝐶𝑠

𝜎̆ if the

reflection of 𝐶𝑠
𝜎̆ in 𝐶𝑠

𝜎̆ is orthogonal (in the sense of Definition 2.5) to the real line.
Analytically this is defined by:

tr(𝐶𝑠
𝜎̆𝐶

𝑠
𝜎̆𝐶

𝑠
𝜎̆𝑅

𝑠
𝜎̆) = 0. (2.14)
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Due to invariance of all components in the above definition f-orthogonality
is a Möbius invariant condition. Clearly this is not a symmetric relation: if 𝐶𝑠

𝜎̆ is

f-orthogonal to 𝐶𝑠
𝜎̆ then 𝐶𝑠

𝜎̆ is not necessarily f-orthogonal to 𝐶𝑠
𝜎̆.

a
b

c

d

σ = −1, σ̆ = −1

1

1 a
b

c

d

σ = −1, σ̆ = 0

1

1 a
b

c

d

σ = −1, σ̆ = 1

1

1

Figure 6. Focal orthogonality for circles. To highlight both similari-
ties and distinctions with the ordinary orthogonality we use the same
notation as that in Figure 5.

Figure 6 illustrates f-orthogonality in the elliptic point space. By contrast
with Figure 5 it is not a local notion at the intersection points of cycles for all
𝜎̆. However it may be again clarified in terms of the appropriate s-ghost cycle, cf.
Theorem 2.6.

Theorem 2.8. A cycle is f-orthogonal to a cycle 𝐶𝑠
𝜎̆ if it is orthogonal in the tradi-

tional sense to its f-ghost cycle 𝐶 𝜎̆
𝜎̆ = 𝐶

𝜒(𝜎)
𝜎̆ ℝ𝜎̆

𝜎̆𝐶
𝜒(𝜎)
𝜎̆ , which is the reflection of the

real line in 𝐶
𝜒(𝜎)
𝜎̆ and 𝜒 is the Heaviside function (2.13). Moreover

i. 𝜒(𝜎)-centre of 𝐶 𝜎̆
𝜎̆ coincides with the 𝜎̆-focus of 𝐶𝑠

𝜎̆, consequently all lines
f-orthogonal to 𝐶𝑠

𝜎̆ are passing the respective focus.

ii. Cycles 𝐶𝑠
𝜎̆ and 𝐶𝜎̆

𝜎̆ have the same roots.

Note the above intriguing interplay between cycle’s centres and foci. Although
f-orthogonality may look exotic it will naturally reappear at the end of the next
section.

Of course, it is possible to define another interesting higher-order joint in-
variants of two or even more cycles.

2.6. Distance, length and perpendicularity

Geometry in the plain meaning of this word deals with distances and lengths. Can
we obtain them from cycles?

We mentioned already that for circles normalised by the condition 𝑘 = 1 the
value det𝐶𝑠

𝜎̆ = ⟨𝐶𝑠
𝜎̆, 𝐶

𝑠
𝜎̆⟩ produces the square of the traditional circle radius. Thus

we may keep it as the definition of the 𝜎̆-radius for any cycle. But then we need
to accept that in the parabolic case the radius is the (Euclidean) distance between
(real) roots of the parabola, see Figure 7(a).
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(a)

z1
z2 z3 z4

(b)

z1

z2

z3

z4

de

dp

Figure 7. (a) The square of the parabolic diameter is the square of
the distance between roots if they are real (𝑧1 and 𝑧2), otherwise the
negative square of the distance between the adjoint roots (𝑧3 and 𝑧4).
(b) Distance as extremum of diameters in elliptic (𝑧1 and 𝑧2) and par-
abolic (𝑧3 and 𝑧4) cases.

Having radii of circles already defined we may use them for other measure-
ments in several different ways. For example, the following variational definition
may be used:

Definition 2.9. The distance between two points is the extremum of diameters of
all cycles passing through both points, see Figure 7(b).

If 𝜎̆ = 𝜎 this definition gives in all EPH cases the following expression for a
distance 𝑑𝑒,𝑝,ℎ(𝑢, 𝑣) between endpoints of any vector 𝑤 = 𝑢+ i𝑣:

𝑑𝑒,𝑝,ℎ(𝑢, 𝑣)
2 = (𝑢+ i𝑣)(𝑢 − i𝑣) = 𝑢2 − 𝜎𝑣2. (2.15)

The parabolic distance 𝑑2𝑝 = 𝑢2, see Figure 7(b), algebraically sits between 𝑑𝑒 and
𝑑ℎ according to the general principle (1.2) and is widely accepted [128]. However
one may be unsatisfied by its degeneracy.

An alternative measurement is motivated by the fact that a circle is the set
of equidistant points from its centre. However the choice of “centre” is now rich:
it may be either point from three centres (2.10) or three foci (2.11).

Definition 2.10. The length of a directed interval
−−→
𝐴𝐵 is the radius of the cycle

with its centre (denoted by 𝑙𝑐(
−−→
𝐴𝐵)) or focus (denoted by 𝑙𝑓 (

−−→
𝐴𝐵)) at the point 𝐴

which passes through 𝐵.

This definition is less common and has some unusual properties like non-

symmetry: 𝑙𝑓(
−−→
𝐴𝐵) ∕= 𝑙𝑓(

−−→
𝐵𝐴). However it comfortably fits the Erlangen program

due to its SL2(ℝ)-conformal invariance:
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Theorem 2.11 ([82]). Let 𝑙 denote either the EPH distances (2.15) or any length
from Definition 2.10. Then for fixed 𝑦, 𝑦′ ∈ ℝ𝜎 the limit

lim
𝑡→0

𝑙(𝑔 ⋅ 𝑦, 𝑔 ⋅ (𝑦 + 𝑡𝑦′))
𝑙(𝑦, 𝑦 + 𝑡𝑦′)

, where 𝑔 ∈ SL2(ℝ),

exists and its value depends only on 𝑦 and 𝑔 and is independent of 𝑦′.

A

B

εC⃗D

Figure 8. Perpendicular as the shortest route to a line.

We may return from distances to angles recalling that in the Euclidean space
a perpendicular provides the shortest root from a point to a line, see Figure 8.

Definition 2.12. Let 𝑙 be a length or distance. We say that a vector
−−→
𝐴𝐵 is 𝑙-

perpendicular to a vector
−−→
𝐶𝐷 if function 𝑙(

−−→
𝐴𝐵 + 𝜀

−−→
𝐶𝐷) of a variable 𝜀 has a local

extremum at 𝜀 = 0.

A pleasant surprise is that 𝑙𝑓 -perpendicularity obtained thought the length
from focus (Definition 2.10), already defined in Section 2.5, coincides with f-ortho-
gonality as follows from Theorem 2.8(i). It is also possible [59] to make SL2(ℝ)
action isometric in all three cases.

Further details of the refreshing geometry of Möbius transformation can be
found in the paper [82]and the book [90].

All these studies are waiting to be generalised to high dimensions; quaternions
and Clifford algebras provide a suitable language for this [82, 109].

3. Linear representations

For consideration of symmetries in analysis, it is natural to start from linear rep-
resentations . The previous geometrical actions (1.1) can be naturally extended
to such representations by induction [55, § 13.2; 64, § 3.1] from a representation
of a subgroup 𝐻 . If 𝐻 is one-dimensional then its irreducible representation is a
character, which is always supposed to be complex valued. However hypercom-
plex numbers naturally appeared in the SL2(ℝ) action (1.1), see Subsection 2.1
and [85]. Why then should we admit only i2 = −1 to deliver a character?
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3.1. Hypercomplex characters

As we already mentioned, the typical discussion of induced representations of
SL2(ℝ) is centred around the case 𝐻 = 𝐾 and a complex-valued character of 𝐾.
A linear transformation defined by a matrix (2.4) in 𝐾 is a rotation of ℝ2 by the
angle 𝑡. After identification ℝ2 = ℂ this action is given by the multiplication 𝑒i𝑡,
with i2 = −1. The rotation preserves the (elliptic) metric given by

𝑥2 + 𝑦2 = (𝑥+ i𝑦)(𝑥− i𝑦). (3.1)

Therefore the orbits of rotations are circles; any line passing the origin (a “spoke”)
is rotated by the angle 𝑡, see Figure 9.

Dual and double numbers produce the most straightforward adaptation of
this result.

q

p

q

p

q

p

Figure 9. Rotations of algebraic wheels, i.e., the multiplication by 𝑒𝜄𝑡:
elliptic (𝐸), trivial parabolic (𝑃0) and hyperbolic (𝐻). All blue orbits
are defined by the identity 𝑥2− 𝜄2𝑦2 = 𝑟2. Thin “spokes” (straight lines
from the origin to a point on the orbit) are “rotated” from the real axis.
This is symplectic linear transformation of the classical phase space as
well.

Proposition 3.1. The following table shows correspondences between three types of
algebraic characters:

Elliptic Parabolic Hyperbolic

i2 = −1 𝜀2 = 0 j2 = 1
𝑤 = 𝑥+ i𝑦 𝑤 = 𝑥+ 𝜀𝑦 𝑤 = 𝑥+ j𝑦
𝑤̄ = 𝑥− i𝑦 𝑤̄ = 𝑥− 𝜀𝑦 𝑤̄ = 𝑥− j𝑦

𝑒i𝑡 = cos 𝑡+ i sin 𝑡 𝑒𝜀𝑡 = 1+ 𝜀𝑡 𝑒j𝑡 = cosh 𝑡+ j sinh 𝑡

∣𝑤∣2𝑒 = 𝑤𝑤 = 𝑥2 + 𝑦2 ∣𝑤∣2𝑝 = 𝑤𝑤 = 𝑥2 ∣𝑤∣2ℎ = 𝑤𝑤 = 𝑥2 − 𝑦2

arg𝑤 = tan−1 𝑦
𝑥 arg𝑤 = 𝑦

𝑥 arg𝑤 = tanh−1 𝑦
𝑥

unit circle ∣𝑤∣2𝑒 = 1 “unit” strip 𝑥 = ±1 unit hyperbola ∣𝑤∣2ℎ = 1

Geometrical action of multiplication by 𝑒𝜄𝑡 is drawn in Figure 9 for all three cases.
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Explicitly parabolic rotations associated with e𝜀𝑡 act on dual numbers as
follows:

e𝜀𝑥 : 𝑎+ 𝜀𝑏 �→ 𝑎+ 𝜀(𝑎𝑥+ 𝑏). (3.2)

This links the parabolic case with the Galilean group [128] of symmetries of clas-
sical mechanics, with the absolute time disconnected from space.

The obvious algebraic similarity and the connection to classical kinematic
is a wide spread justification for the following viewpoint on the parabolic case,
cf. [40, 128]:

∙ the parabolic trigonometric functions are trivial:

cosp 𝑡 = ±1, sinp 𝑡 = 𝑡; (3.3)

∙ the parabolic distance is independent of 𝑦 if 𝑥 ∕= 0:

𝑥2 = (𝑥+ 𝜀𝑦)(𝑥− 𝜀𝑦); (3.4)

∙ the polar decomposition of a dual number is defined by [128, App. C(30’)]:

𝑢+ 𝜀𝑣 = 𝑢(1 + 𝜀
𝑣

𝑢
), thus ∣𝑢+ 𝜀𝑣∣ = 𝑢, arg(𝑢+ 𝜀𝑣) =

𝑣

𝑢
; (3.5)

∙ the parabolic wheel looks rectangular, see Figure 9.

Those algebraic analogies are quite explicit and widely accepted as an ulti-
mate source for parabolic trigonometry [40, 98, 128]. Moreover, those three rota-
tions are all non-isomorphic symplectic linear transformations of the phase space,
which makes them useful in the context of classical and quantum mechanics [87,88],
see Section 7. There exist also alternative characters [79] based on Möbius transfor-
mations with geometric motivation and connections to equations of mathematical
physics.

3.2. Induced representations

Let 𝐺 be a group, 𝐻 be its closed subgroup with the corresponding homogeneous
space 𝑋 = 𝐺/𝐻 with an invariant measure. We are using notations and definitions
of maps 𝑝 : 𝐺→ 𝑋 , 𝑠 : 𝑋 → 𝐺 and 𝑟 : 𝐺→ 𝐻 from Subsection 2.1. Let 𝜒 be an
irreducible representation of𝐻 in a vector space 𝑉 , then it induces a representation
of 𝐺 in the sense of Mackey [55, § 13.2]. This representation has the realisation 𝜌𝜒
in the space 𝐿2(𝑋) of 𝑉 -valued functions by the formula [55, § 13.2.(7)–(9)]:

[𝜌𝜒(𝑔)𝑓 ](𝑥) = 𝜒(𝑟(𝑔−1 ∗ 𝑠(𝑥)))𝑓(𝑔−1 ⋅ 𝑥), . (3.6)

where 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋 , ℎ ∈ 𝐻 and 𝑟 : 𝐺 → 𝐻 , 𝑠 : 𝑋 → 𝐺 are maps defined above;
∗ denotes multiplication on 𝐺 and ⋅ denotes the action (2.2) of 𝐺 on 𝑋 .

Consider this scheme for representations of SL2(ℝ) induced from characters of
its one-dimensional subgroups. We can notice that only the subgroup 𝐾 requires
a complex-valued character due to the fact of its compactness. For subgroups
𝑁 ′ and 𝐴′ we can consider characters of all three types – elliptic, parabolic and
hyperbolic. Therefore we have seven essentially different induced representations.
We will write explicitly only three of them here.
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Example 3.2. Consider the subgroup𝐻 = 𝐾; due to its compactness we are limited
to complex-valued characters of 𝐾 only. All of them are of the form 𝜒𝑘:

𝜒𝑘

(
cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

)
= 𝑒−i𝑘𝑡, where 𝑘 ∈ ℤ. (3.7)

Using the explicit form (2.3) of the map 𝑠 we find the map 𝑟 given in (2.1) as
follows:

𝑟

(
𝑎 𝑏
𝑐 𝑑

)
=

1√
𝑐2 + 𝑑2

(
𝑑 −𝑐
𝑐 𝑑

)
∈ 𝐾.

Therefore

𝑟(𝑔−1 ∗ 𝑠(𝑢, 𝑣)) = 1√
(𝑐𝑢+ 𝑑)2 + (𝑐𝑣)2

(
𝑐𝑢+ 𝑑 −𝑐𝑣
𝑐𝑣 𝑐𝑢+ 𝑑

)
,

where 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℝ). Substituting this into (3.7) and combining with

the Möbius transformation of the domain (1.1) we get the explicit realisation 𝜌𝑘
of the induced representation (3.6):

𝜌𝑘(𝑔)𝑓(𝑤) =
∣𝑐𝑤 + 𝑑∣𝑘
(𝑐𝑤 + 𝑑)𝑘

𝑓

(
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑

)
, where 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
, 𝑤 = 𝑢+i𝑣. (3.8)

This representation acts on complex-valued functions in the upper half-plane ℝ2
+ =

SL2(ℝ)/𝐾 and belongs to the discrete series [97, § IX.2]. It is common to get rid

of the factor ∣𝑐𝑤 + 𝑑∣𝑘 from that expression in order to keep analyticity and we
will follow this practise for a convenience as well.

Example 3.3. In the case of the subgroup 𝑁 there is a wider choice of possible
characters.

i. Traditionally only complex-valued characters of the subgroup 𝑁 are consid-
ered, they are

𝜒
ℂ

𝜏

(
1 0
𝑡 1

)
= 𝑒i𝜏𝑡, where 𝜏 ∈ ℝ. (3.9)

A direct calculation shows that

𝑟

(
𝑎 𝑏
𝑐 𝑑

)
=

(
1 0
𝑐
𝑑 1

)
∈ 𝑁 ′.

Thus

𝑟(𝑔−1 ∗ 𝑠(𝑢, 𝑣)) =
(

1 0
𝑐𝑣

𝑑+𝑐𝑢 1

)
, where 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
. (3.10)

A substitution of this value into the character (3.9) together with the Möbius
transformation (1.1) gives us the next realisation of (3.6):

𝜌
ℂ

𝜏 (𝑔)𝑓(𝑤) = exp

(
i

𝜏𝑐𝑣

𝑐𝑢+ 𝑑

)
𝑓

(
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑

)
,
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where 𝑤 = 𝑢 + 𝜀𝑣 and 𝑔−1 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℝ). The representation acts on

the space of complex -valued functions on the upper half-plane ℝ2
+, which is

a subset of dual numbers as a homogeneous space SL2(ℝ)/𝑁 ′. The mixture
of complex and dual numbers in the same expression is confusing.

ii. The parabolic character 𝜒𝜏 with an algebraic flavour is provided by multipli-
cation (3.2) with the dual number

𝜒𝜏

(
1 0
𝑡 1

)
= 𝑒𝜀𝜏𝑡 = 1 + 𝜀𝜏𝑡, where 𝜏 ∈ ℝ.

If we substitute the value (3.10) into this character, then we receive the
representation

𝜌𝜏 (𝑔)𝑓(𝑤) =

(
1 + 𝜀

𝜏𝑐𝑣

𝑐𝑢+ 𝑑

)
𝑓

(
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑

)
,

where 𝑤, 𝜏 and 𝑔 are as above. The representation is defined on the space of
dual-numbers-valued functions on the upper half-plane of dual numbers. This
expression contains only dual numbers with their usual algebraic operations.
Thus it is linear with respect to them.

All characters in the previous example are unitary. Then the general scheme
of induced representations [55, § 13.2] implies their unitarity in proper senses.

Theorem 3.4 ([85]). Both representations of SL2(ℝ) from Example 3.3 are unitary
on the space of function on the upper half-plane ℝ2

+ of dual numbers with the inner
product

⟨𝑓1, 𝑓2⟩ =
∫
ℝ2

+

𝑓1(𝑤)𝑓2(𝑤)
𝑑𝑢 𝑑𝑣

𝑣2
, where 𝑤 = 𝑢+ 𝜀𝑣, (3.11)

and we use the conjugation and multiplication of function values in algebras of

complex and dual numbers for representations 𝜌
ℂ

𝜏 and 𝜌𝜏 respectively.

The inner product (3.11) is positive defined for the representation 𝜌
ℂ

𝜏 but
is not for the other. The respective spaces are parabolic cousins of the Krein
spaces [5], which are hyperbolic in our sense.

3.3. Similarity and correspondence: ladder operators

From the above observation we can deduce the following empirical principle, which
has a heuristic value.

Principle 3.5 (Similarity and correspondence). i. Subgroups 𝐾, 𝑁 ′ and 𝐴′ play
a similar rôle in the structure of the group SL2(ℝ) and its representations.

ii. The subgroups shall be swapped simultaneously with the respective replacement
of hypercomplex unit 𝜄.

The first part of the Principle (similarity) does not appear to be sound alone.
It is enough to mention that the subgroup 𝐾 is compact (and thus its spectrum is
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discrete) while two other subgroups are not. However in a conjunction with the sec-
ond part (correspondence) the Principle has received the following confirmations
so far, see [85] for details:

∙ The action of SL2(ℝ) on the homogeneous space SL2(ℝ)/𝐻 for 𝐻 = 𝐾, 𝑁 ′

or 𝐴′ is given by linear-fractional transformations of complex, dual or double
numbers respectively.

∙ Subgroups 𝐾, 𝑁 ′ or 𝐴′ are isomorphic to the groups of unitary rotations of
respective unit cycles in complex, dual or double numbers.

∙ Representations induced from subgroups 𝐾, 𝑁 ′ or 𝐴′ are unitary if the inner
product spaces of functions with values are complex, dual or double numbers.

Remark 3.6. The Principle of similarity and correspondence resembles supersym-
metry between bosons and fermions in particle physics, but we have similarity
between three different types of entities in our case.

Let us give another illustration of the Principle. Consider the Lie algebra 𝔰𝔩2 of
the group SL2(ℝ). Pick up the following basis in 𝔰𝔩2 [120, § 8.1]:

𝐴 =
1

2

(−1 0
0 1

)
, 𝐵 =

1

2

(
0 1
1 0

)
, 𝑍 =

(
0 1
−1 0

)
. (3.12)

The commutation relations between the elements are

[𝑍,𝐴] = 2𝐵, [𝑍,𝐵] = −2𝐴, [𝐴,𝐵] = −1

2
𝑍. (3.13)

Let 𝜌 be a representation of the group SL2(ℝ) in a space 𝑉 . Consider the derived

representation 𝑑𝜌 of the Lie algebra 𝔰𝔩2 [97, § VI.1] and let 𝑋̃ = 𝑑𝜌(𝑋) for 𝑋 ∈ 𝔰𝔩2.
To see the structure of the representation 𝜌 we can decompose the space 𝑉 into

eigenspaces of the operator 𝑋̃ for some 𝑋 ∈ 𝔰𝔩2, cf. the Taylor series in Section 5.4.

3.3.1. Elliptic ladder operators. It would not be surprising that we are going to
consider three cases: Let 𝑋 = 𝑍 be a generator of the subgroup𝐾 (2.4). Since this

is a compact subgroup the corresponding eigenspaces 𝑍𝑣𝑘 = i𝑘𝑣𝑘 are parametrised
by an integer 𝑘 ∈ ℤ. The raising/lowering or ladder operators 𝐿± [97, § VI.2;
120, § 8.2] are defined by the following commutation relations:

[𝑍,𝐿±] = 𝜆±𝐿±. (3.14)

In other words 𝐿± are eigenvectors for operators ad𝑍 of adjoint representation of
𝔰𝔩2 [97, § VI.2].
Remark 3.7. The existence of such ladder operators follows from the general prop-
erties of Lie algebras if the element 𝑋 ∈ 𝔰𝔩2 belongs to a Cartan subalgebra. This
is the case for vectors 𝑍 and 𝐵, which are the only two non-isomorphic types of
Cartan subalgebras in 𝔰𝔩2. However the third case considered in this paper, the
parabolic vector 𝐵 + 𝑍/2, does not belong to a Cartan subalgebra, yet a sort of
ladder operator is still possible with dual number coefficients. Moreover, for the
hyperbolic vector 𝐵, besides the standard ladder operators an additional pair with
double number coefficients will also be described.
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From the commutators (3.14) we deduce that 𝐿+𝑣𝑘 are eigenvectors of 𝑍 as
well:

𝑍(𝐿+𝑣𝑘) = (𝐿+𝑍 + 𝜆+𝐿
+)𝑣𝑘 = 𝐿+(𝑍𝑣𝑘) + 𝜆+𝐿

+𝑣𝑘 = i𝑘𝐿+𝑣𝑘 + 𝜆+𝐿
+𝑣𝑘

= (i𝑘 + 𝜆+)𝐿
+𝑣𝑘. (3.15)

Thus action of ladder operators on respective eigenspaces can be visualised by the
diagram

. . .
𝐿+

�� 𝑉i𝑘−𝜆
𝐿−

��
𝐿+

�� 𝑉i𝑘
𝐿−

��
𝐿+

�� 𝑉i𝑘+𝜆
𝐿−

��
𝐿+

�� . . . .
𝐿−

�� (3.16)

Assuming 𝐿+ = 𝑎𝐴+𝑏𝐵̃+𝑐𝑍 from the relations (3.13) and defining condition (3.14)
we obtain linear equations with unknowns 𝑎, 𝑏 and 𝑐:

𝑐 = 0, 2𝑎 = 𝜆+𝑏, −2𝑏 = 𝜆+𝑎.

The equations have a solution if and only if 𝜆2+ + 4 = 0, and the raising/lowering

operators are 𝐿± = ±i𝐴+ 𝐵̃.

3.3.2. Hyperbolic ladder operators. Consider the case 𝑋 = 2𝐵 of a generator of
the subgroup𝐴′ (2.6). The subgroup is not compact and eigenvalues of the operator

𝐵̃ can be arbitrary, however raising/lowering operators are still important [44,

§ II.1; 102, § 1.1]. We again seek a solution in the form 𝐿+ℎ = 𝑎𝐴 + 𝑏𝐵̃ + 𝑐𝑍 for

the commutator [2𝐵̃, 𝐿+ℎ] = 𝜆𝐿+ℎ. We will get the system

4𝑐 = 𝜆𝑎, 𝑏 = 0, 𝑎 = 𝜆𝑐.

A solution exists if and only if 𝜆2 = 4. There are obvious values 𝜆 = ±2 with the
ladder operators 𝐿±ℎ = ±2𝐴+ 𝑍, see [44, § II.1; 102, § 1.1]. Each indecomposable
𝔰𝔩2-module is formed by a one-dimensional chain of eigenvalues with a transitive
action of ladder operators.

Admitting double numbers we have an extra possibility to satisfy 𝜆2 = 4
with values 𝜆 = ±2j. Then there is an additional pair of hyperbolic ladder op-
erators 𝐿±j = ±2j𝐴 + 𝑍, which shift eigenvectors in the “orthogonal” direction

to the standard operators 𝐿±ℎ. Therefore an indecomposable 𝔰𝔩2-module can be
parametrised by a two-dimensional lattice of eigenvalues on the double number
plane, see Figure 10.

3.3.3. Parabolic ladder operators. Finally, consider the case of a generator 𝑋 =
−𝐵+𝑍/2 of the subgroup 𝑁 ′ (2.5). According to the above procedure we get the
equations

𝑏+ 2𝑐 = 𝜆𝑎, −𝑎 = 𝜆𝑏,
𝑎

2
= 𝜆𝑐,

which can be resolved if and only if 𝜆2 = 0. If we restrict ourselves with the only
real (complex) root 𝜆 = 0, then the corresponding operators 𝐿±𝑝 = −𝐵̃ + 𝑍/2
will not affect eigenvalues and thus are useless in the above context. However the
dual number roots 𝜆 = ±𝜀𝑡, 𝑡 ∈ ℝ lead to the operators 𝐿±𝜀 = ±𝜀𝑡𝐴− 𝐵̃ + 𝑍/2.
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Figure 10. The action of hyperbolic ladder operators on a 2D lattice
of eigenspaces. Operators 𝐿±ℎ move the eigenvalues by 2, making shifts

in the horizontal direction. Operators 𝐿±j change the eigenvalues by 2j,
shown as vertical shifts.

These operators are suitable to build an 𝔰𝔩2-module with a one-dimensional chain
of eigenvalues.

Remark 3.8. The following rôles of hypercomplex numbers are noteworthy:

∙ the introduction of complex numbers is a necessity for the existence of ladder
operators in the elliptic case;

∙ in the parabolic case we need dual numbers to make ladder operators useful ;
∙ in the hyperbolic case double numbers are not required either for the existence
or for the usability of ladder operators, but they do provide an enhancement.

We summarise the above consideration with a focus on the Principle of sim-
ilarity and correspondence:

Proposition 3.9. Let a vector 𝑋 ∈ 𝔰𝔩2 generate the subgroup 𝐾, 𝑁 ′ or 𝐴′, that is
𝑋 = 𝑍, 𝐵 − 𝑍/2, or 𝐵 respectively. Let 𝜄 be the respective hypercomplex unit.

Then raising/lowering operators 𝐿± satisfying to the commutation relation
[𝑋,𝐿±] = ±𝜄𝐿±, [𝐿−, 𝐿+] = 2𝜄𝑋 are

𝐿± = ±𝜄𝐴+ 𝑌 .

Here 𝑌 ∈ 𝔰𝔩2 is a linear combination of 𝐵 and 𝑍 with the properties:

∙ 𝑌 = [𝐴,𝑋 ].
∙ 𝑋 = [𝐴, 𝑌 ].
∙ Killings form 𝐾(𝑋,𝑌 ) [55, § 6.2] vanishes.

Any of the above properties defines the vector 𝑌 ∈ span{𝐵,𝑍} up to a real constant
factor.

The usability of the Principle of similarity and correspondence will be illus-
trated by more examples below.
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4. Covariant transform

A general group-theoretical construction [2, 18, 29, 32, 66, 93, 111] of wavelets (or
coherent state) starts from an irreducible square integrable representation – in
the proper sense or modulo a subgroup. Then a mother wavelet is chosen to be
admissible. This leads to a wavelet transform which is an isometry to 𝐿2 space
with respect to the Haar measure on the group or (quasi)invariant measure on a
homogeneous space.

The importance of the above situation shall not be diminished, however an
exclusive restriction to such a setup is not necessary, in fact. Here is a classical
example from complex analysis: the Hardy space 𝐻2(𝕋) on the unit circle and
Bergman spaces 𝐵𝑛

2 (𝔻), 𝑛 ≥ 2 in the unit disk produce wavelets associated with
representations 𝜌1 and 𝜌𝑛 of the group SL2(ℝ) respectively [64]. While representa-
tions 𝜌𝑛, 𝑛 ≥ 2 are from square integrable discrete series, the mock discrete series
representation 𝜌1 is not square integrable [97, § VI.5; 120, § 8.4]. However it would
be natural to treat the Hardy space in the same framework as Bergman spaces.
Some more examples will be presented below.

4.1. Extending wavelet transform

To make a sharp but still natural generalisation of wavelets we give the following
definition.

Definition 4.1. [83] Let 𝜌 be a representation of a group 𝐺 in a space 𝑉 and 𝐹 be
an operator from 𝑉 to a space 𝑈 . We define a covariant transform 𝒲 from 𝑉 to
the space 𝐿(𝐺,𝑈) of 𝑈 -valued functions on 𝐺 by the formula

𝒲 : 𝑣 �→ 𝑣(𝑔) = 𝐹 (𝜌(𝑔−1)𝑣), 𝑣 ∈ 𝑉, 𝑔 ∈ 𝐺. (4.1)

Operator 𝐹 will be called a fiducial operator in this context.

We borrow the name for operator 𝐹 from fiducial vectors of Klauder and
Skagerstam [93].

Remark 4.2. We do not require that fiducial operator 𝐹 shall be linear. Sometimes
the positive homogeneity, i.e., 𝐹 (𝑡𝑣) = 𝑡𝐹 (𝑣) for 𝑡 > 0, alone can be already
sufficient, see Example 4.14.

Remark 4.3. Usefulness of the covariant transform is in reverse proportion to the
dimensionality of the space 𝑈 . The covariant transform encodes properties of 𝑣
in a function 𝒲𝑣 on 𝐺. For a low-dimensional 𝑈 this function can be ultimately
investigated by means of harmonic analysis. Thus dim𝑈 = 1 (scalar-valued func-
tions) is the ideal case, however, it is unattainable sometimes, see Example 4.11
below. We may have to use higher dimensions of 𝑈 if the given group 𝐺 is not rich
enough.

Moreover, the relation between the dimensionality of 𝑈 and usefulness of
the covariant transform should not be taken dogmatically. Paper [91] gives an
important example of a covariant transform which provides a simplification even
in the case of dim𝑈 = dim𝑉 .
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As we will see below the covariant transform is a close relative of the wavelet
transform. The name is chosen due to the following common property of both
transformations.

Theorem 4.4. The covariant transform (4.1) intertwines 𝜌 and the left regular
representation Λ on 𝐿(𝐺,𝑈):

𝒲𝜌(𝑔) = Λ(𝑔)𝒲 .

Here Λ is defined as usual by

Λ(𝑔) : 𝑓(ℎ) �→ 𝑓(𝑔−1ℎ). (4.2)

Proof. We have a calculation similar to wavelet transform [66, Prop. 2.6]. Take
𝑢 = 𝜌(𝑔)𝑣 and calculate its covariant transform:

[𝒲(𝜌(𝑔)𝑣)](ℎ) = [𝒲(𝜌(𝑔)𝑣)](ℎ) = 𝐹 (𝜌(ℎ−1)𝜌(𝑔)𝑣)

= 𝐹 (𝜌((𝑔−1ℎ)−1)𝑣)

= [𝒲𝑣](𝑔−1ℎ)

= Λ(𝑔)[𝒲𝑣](ℎ). □

The next result follows immediately:

Corollary 4.5. The image space 𝒲(𝑉 ) is invariant under the left shifts on 𝐺.

Remark 4.6. A further generalisation of the covariant transform can be obtained if
we relax the group structure. Consider, for example, a cancellative semigroup ℤ+

of non-negative integers. It has a linear presentation on the space of polynomials
in a variable 𝑡 defined by the action 𝑚 : 𝑡𝑛 �→ 𝑡𝑚+𝑛 on the monomials. Application
of a linear functional 𝑙, e.g., defined by an integration over a measure on the real
line, produces umbral calculus 𝑙(𝑡𝑛) = 𝑐𝑛, which has a magic efficiency in many
areas, notably in combinatorics [67,96]. In this direction we also find it fruitful to
expand the notion of an intertwining operator to a token [71].

4.2. Examples of covariant transform

In this subsection we will provide several examples of covariant transforms. Some
of them will be expanded in subsequent sections, however a detailed study of all
aspects will not fit into the present work. We start from the classical example of
the group-theoretical wavelet transform:

Example 4.7. Let 𝑉 be a Hilbert space with an inner product ⟨⋅, ⋅⟩ and 𝜌 be a
unitary representation of a group 𝐺 in the space 𝑉 . Let 𝐹 : 𝑉 → ℂ be a functional
𝑣 �→ ⟨𝑣, 𝑣0⟩ defined by a vector 𝑣0 ∈ 𝑉 . The vector 𝑣0 is often called the mother
wavelet in areas related to signal processing or the vacuum state in a quantum
framework.

Then the transformation (4.1) is the well-known expression for a wavelet
transform [2, (7.48)] (or representation coefficients):

𝒲 : 𝑣 �→ 𝑣(𝑔) =
〈
𝜌(𝑔−1)𝑣, 𝑣0

〉
= ⟨𝑣, 𝜌(𝑔)𝑣0⟩ , 𝑣 ∈ 𝑉, 𝑔 ∈ 𝐺. (4.3)
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The family of vectors 𝑣𝑔 = 𝜌(𝑔)𝑣0 is called wavelets or coherent states. In this case
we obtain scalar-valued functions on 𝐺, thus the fundamental rôle of this example
is explained in Remark 4.3.

This scheme is typically carried out for a square integrable representation
𝜌 and 𝑣0 being an admissible vector [2, 18, 29, 32, 111]. In this case the wavelet
(covariant) transform is a map into the square integrable functions [26] with respect
to the left Haar measure. The map becomes an isometry if 𝑣0 is properly scaled.

However square integrable representations and admissible vectors do not
cover all interesting cases.

Example 4.8. Let 𝐺 = Aff be the “𝑎𝑥+ 𝑏” (or affine) group [2, § 8.2]: the set of
points (𝑎, 𝑏), 𝑎 ∈ ℝ+, 𝑏 ∈ ℝ in the upper half-plane with the group law

(𝑎, 𝑏) ∗ (𝑎′, 𝑏′) = (𝑎𝑎′, 𝑎𝑏′ + 𝑏) (4.4)

and left invariant measure 𝑎−2 𝑑𝑎 𝑑𝑏. Its isometric representation on 𝑉 = 𝐿𝑝(ℝ) is
given by the formula

[𝜌𝑝(𝑔) 𝑓 ](𝑥) = 𝑎
1
𝑝 𝑓 (𝑎𝑥+ 𝑏) , where 𝑔−1 = (𝑎, 𝑏). (4.5)

We consider the operators 𝐹± : 𝐿2(ℝ)→ ℂ defined by:

𝐹±(𝑓) =
1

2𝜋𝑖

∫
ℝ

𝑓(𝑡) 𝑑𝑡

𝑥∓ i
. (4.6)

Then the covariant transform (4.1) is the Cauchy integral from 𝐿𝑝(ℝ) to the

space of functions 𝑓(𝑎, 𝑏) such that 𝑎−
1
𝑝 𝑓(𝑎, 𝑏) is in the Hardy space in the up-

per/lower half-plane 𝐻𝑝(ℝ
2
±). Although the representation (4.5) is square inte-

grable for 𝑝 = 2, the function 1
𝑥±i used in (4.6) is not an admissible vacuum vector.

Thus the complex analysis becomes decoupled from the traditional wavelet the-
ory. As a result the application of wavelet theory shall rely on extraneous mother
wavelets [47].

Many important objects in complex analysis are generated by inadmissible
mother wavelets like (4.6). For example, if 𝐹 : 𝐿2(ℝ) → ℂ is defined by 𝐹 : 𝑓 �→
𝐹+𝑓+𝐹−𝑓 then the covariant transform (4.1) reduces to the Poisson integral . If 𝐹 :
𝐿2(ℝ)→ ℂ2 is defined by 𝐹 : 𝑓 �→ (𝐹+𝑓, 𝐹−𝑓) then the covariant transform (4.1)
represents a function 𝑓 on the real line as a jump:

𝑓(𝑧) = 𝑓+(𝑧)− 𝑓−(𝑧), 𝑓±(𝑧) ∈ 𝐻𝑝(ℝ
2
±) (4.7)

between functions analytic in the upper and the lower half-planes. This makes a
decomposition of 𝐿2(ℝ) into irreducible components of the representation (4.5).

Another interesting but non-admissible vector is the Gaussian 𝑒−𝑥
2

.

Example 4.9. For the group 𝐺 = SL2(ℝ) [97] let us consider the unitary represen-
tation 𝜌 on the space of square integrable function 𝐿2(ℝ

2
+) on the upper half-plane

through the Möbius transformations (1.1):

𝜌(𝑔) : 𝑓(𝑧) �→ 1

(𝑐𝑧 + 𝑑)2
𝑓

(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
, 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
. (4.8)
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This is a representation from the discrete series and 𝐿2(𝔻) and irreducible invariant
subspaces are parametrised by integers. Let 𝐹𝑘 be the functional 𝐿2(ℝ

2
+)→ ℂ of

pairing with the lowest/highest 𝑘-weight vector in the corresponding irreducible
component (Bergman space)𝐵𝑘(ℝ

2
±), 𝑘 ≥ 2 of the discrete series [97, Ch. VI]. Then

we can build an operator 𝐹 from various 𝐹𝑘 similarly to the previous example.
In particular, the jump representation (4.7) on the real line generalises to the
representation of a square integrable function 𝑓 on the upper half-plane as a sum

𝑓(𝑧) =
∑
𝑘

𝑎𝑘𝑓𝑘(𝑧), 𝑓𝑘 ∈ 𝐵𝑛(ℝ
2
±)

for prescribed coefficients 𝑎𝑘 and analytic functions 𝑓𝑘 in question from different
irreducible subspaces.

Covariant transforms are also meaningful for principal and complementary
series of representations of the group SL2(ℝ), which are not square integrable [64].

Example 4.10. Let 𝐺 = SU(2) × Aff be the Cartesian product of the groups
SU(2) of unitary rotations of ℂ2 and the 𝑎𝑥 + 𝑏 group Aff. This group has a
unitary linear representation on the space 𝐿2(ℝ,ℂ2) of square-integrable (vector)
ℂ2-valued functions by the formula

𝜌(𝑔)

(
𝑓1(𝑡)
𝑓2(𝑡)

)
=

(
𝛼𝑓1(𝑎𝑡+ 𝑏) + 𝛽𝑓2(𝑎𝑡+ 𝑏)
𝛾𝑓1(𝑎𝑡+ 𝑏) + 𝛿𝑓2(𝑎𝑡+ 𝑏)

)
,

where 𝑔 =

(
𝛼 𝛽
𝛾 𝛿

)
× (𝑎, 𝑏) ∈ SU(2) × Aff. It is obvious that the vector Hardy

space, that is functions with both components being analytic, is invariant under
such action of 𝐺.

As a fiducial operator 𝐹 : 𝐿2(ℝ,ℂ2)→ ℂ we can take, cf. (4.6),

𝐹

(
𝑓1(𝑡)
𝑓2(𝑡)

)
=

1

2𝜋𝑖

∫
ℝ

𝑓1(𝑡) 𝑑𝑡

𝑥− i
. (4.9)

Thus the image of the associated covariant transform is a subspace of scalar-
valued bounded functions on 𝐺. In this way we can transform (without a loss of
information) vector-valued problems, e.g., matrix Wiener–Hopf factorisation [12],
to scalar questions of harmonic analysis on the group 𝐺.

Example 4.11. A straightforward generalisation of Example 4.7 is obtained if 𝑉 is
a Banach space and 𝐹 : 𝑉 → ℂ is an element of 𝑉 ∗. Then the covariant transform
coincides with the construction of wavelets in Banach spaces [66].

Example 4.12. The next stage of generalisation is achieved if 𝑉 is a Banach space
and 𝐹 : 𝑉 → ℂ𝑛 is a linear operator. Then the corresponding covariant transform
is a map 𝒲 : 𝑉 → 𝐿(𝐺,ℂ𝑛). This is closely related to M.G. Krein’s works on
directing functionals [94], see also multiresolution wavelet analysis [14], Clifford-
valued Fock–Segal–Bargmann spaces [20] and [2, Thm. 7.3.1].
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Example 4.13. Let 𝐹 be a projector 𝐿𝑝(ℝ) → 𝐿𝑝(ℝ) defined by the relation

(𝐹𝑓 )̂ (𝜆) = 𝜒(𝜆)𝑓 (𝜆), where the hat denotes the Fourier transform and 𝜒(𝜆) is
the characteristic function of the set [−2,−1]∪ [1, 2]. Then the covariant transform
𝐿𝑝(ℝ) → 𝐶 (Aff , 𝐿𝑝(ℝ)) generated by the representation (4.5) of the affine group
from 𝐹 contains all information provided by the Littlewood–Paley operator [34,
§ 5.1.1].
Example 4.14. A step in a different direction is a consideration of non-linear op-
erators. Take again the “𝑎𝑥+ 𝑏” group and its representation (4.5). We define 𝐹
to be a homogeneous but non-linear functional 𝑉 → ℝ+:

𝐹 (𝑓) =
1

2

1∫
−1
∣𝑓(𝑥)∣ 𝑑𝑥.

The covariant transform (4.1) becomes:

[𝒲𝑝𝑓 ](𝑎, 𝑏) = 𝐹 (𝜌𝑝(𝑎, 𝑏)𝑓) =
1

2

1∫
−1

∣∣∣𝑎 1
𝑝 𝑓 (𝑎𝑥+ 𝑏)

∣∣∣ 𝑑𝑥 = 𝑎
1
𝑝
1

2𝑎

𝑏+𝑎∫
𝑏−𝑎

∣𝑓 (𝑥)∣ 𝑑𝑥.

(4.10)
Obviously 𝑀𝑓 (𝑏) = max𝑎[𝒲∞𝑓 ](𝑎, 𝑏) coincides with the Hardy maximal function,
which contains important information on the original function 𝑓 . From Corol-
lary 4.5 we deduce that the operator 𝑀 : 𝑓 �→ 𝑀𝑓 intertwines 𝜌𝑝 with itself
𝜌𝑝𝑀 = 𝑀𝜌𝑝.

Of course, the full covariant transform (4.10) is even more detailed than 𝑀 .
For example, ∥𝑓∥ = max𝑏[𝒲∞𝑓 ](12 , 𝑏) is the shift invariant norm [48].

Example 4.15. Let 𝑉 = 𝐿𝑐(ℝ
2) be the space of compactly supported bounded

functions on the plane. We take 𝐹 be the linear operator 𝑉 → ℂ of integration
over the real line:

𝐹 : 𝑓(𝑥, 𝑦) �→ 𝐹 (𝑓) =

∫
ℝ

𝑓(𝑥, 0) 𝑑𝑥.

Let 𝐺 be the group of Euclidean motions of the plane represented by 𝜌 on 𝑉 by
a change of variables. Then the wavelet transform 𝐹 (𝜌(𝑔)𝑓) is the Radon trans-
form [39].

4.3. Symbolic calculi

There is a very important class of covariant transforms which map operators to
functions. Among numerous sources we wish to single out works of Berezin [10,11].
We start from the Berezin covariant symbol.

Example 4.16. Let a representation 𝜌 of a group 𝐺 act on a space 𝑋 . Then there is
an associated representation 𝜌𝐵 of 𝐺 on a space 𝑉 = 𝐵(𝑋,𝑌 ) of linear operators
𝑋 → 𝑌 defined by the identity [11, 66]:

(𝜌𝐵(𝑔)𝐴)𝑥 = 𝐴(𝜌(𝑔−1)𝑥), 𝑥 ∈ 𝑋, 𝑔 ∈ 𝐺, 𝐴 ∈ 𝐵(𝑋,𝑌 ). (4.11)
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Following Remark 4.3 we take 𝐹 to be a functional 𝑉 → ℂ, for example 𝐹 can be
defined from a pair 𝑥 ∈ 𝑋 , 𝑙 ∈ 𝑌 ∗ by the expression 𝐹 : 𝐴 �→ ⟨𝐴𝑥, 𝑙⟩. Then the
covariant transform is

𝒲 : 𝐴 �→ 𝐴(𝑔) = 𝐹 (𝜌𝐵(𝑔)𝐴).

This is an example of covariant calculus [10, 66].

There are several variants of the last example which are of separate interest.

Example 4.17. A modification of the previous construction is obtained if we have
two groups 𝐺1 and 𝐺2 represented by 𝜌1 and 𝜌2 on 𝑋 and 𝑌 ∗ respectively. Then
we have a covariant transform 𝐵(𝑋,𝑌 )→ 𝐿(𝐺1 ×𝐺2,ℂ) defined by the formula

𝒲 : 𝐴 �→ 𝐴(𝑔1, 𝑔2) = ⟨𝐴𝜌1(𝑔1)𝑥, 𝜌2(𝑔2)𝑙⟩ .
This generalises the above Berezin covariant calculi [66].

Example 4.18. Let us restrict the previous example to the case when 𝑋 = 𝑌 is
a Hilbert space, 𝜌1 = 𝜌2 = 𝜌 and 𝑥 = 𝑙 with ∥𝑥∥ = 1. Then the range of the
covariant transform,

𝒲 : 𝐴 �→ 𝐴(𝑔) = ⟨𝐴𝜌(𝑔)𝑥, 𝜌(𝑔)𝑥⟩ ,
is a subset of the numerical range of the operator 𝐴. As a function on a group,

𝐴(𝑔) provides a better description of 𝐴 than the set of its values – numerical range.

Example 4.19. The group SU(1, 1) ≃ SL2(ℝ) consists of 2×2 matrices of the form(
𝛼 𝛽
𝛽 𝛼̄

)
with the unit determinant [97, § IX.1]. Let 𝑇 be an operator with spectral

radius less than 1. Then the associated Möbius transformation

𝑔 : 𝑇 �→ 𝑔 ⋅ 𝑇 =
𝛼𝑇 + 𝛽𝐼

𝛽𝑇 + 𝛼̄𝐼
, where 𝑔 =

(
𝛼 𝛽
𝛽 𝛼̄

)
∈ SL2(ℝ), (4.12)

produces a well-defined operator with spectral radius less than 1 as well. Thus we
have a representation of 𝑆𝑈(1, 1).

Let us introduce the defect operators 𝐷𝑇 = (𝐼 − 𝑇 ∗𝑇 )1/2 and 𝐷𝑇∗ = (𝐼 −
𝑇𝑇 ∗)1/2. For the fiducial operator 𝐹 = 𝐷𝑇∗ the covariant transform is, cf. [118,
§ VI.1, (1.2)],

[𝒲𝑇 ](𝑔) = 𝐹 (𝑔 ⋅ 𝑇 ) = −𝑒i𝜙Θ𝑇 (𝑧)𝐷𝑇 , for 𝑔 =

(
𝑒i𝜙/2 0
0 𝑒−i𝜙/2

)(
1 −𝑧
−𝑧 1

)
,

where the characteristic function Θ𝑇 (𝑧) [118, § VI.1, (1.1)] is
Θ𝑇 (𝑧) = −𝑇 +𝐷𝑇∗ (𝐼 − 𝑧𝑇 ∗)−1 𝑧 𝐷𝑇 .

Thus we approached the functional model of operators from the covariant trans-
form. In accordance with Remark 4.3 the model is most fruitful for the case of
operator 𝐹 = 𝐷𝑇∗ being one-dimensional.
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The intertwining property in the previous examples was obtained as a conse-
quence of the general Theorem 4.4 about the covariant transform. However it may
be worth selecting it as a separate definition:

Definition 4.20. A covariant calculus , also known as symbolic calculus , is a map
from operators to functions, which intertwines two representations of the same
group in the respective spaces.

There is a dual class of covariant transforms acting in the opposite direction:
from functions to operators. The prominent examples are the Berezin contravariant
symbol [10, 66] and symbols of a pseudodifferential operator (PDO) [43, 66].

Example 4.21. The classical Riesz–Dunford functional calculus [27, § VII.3; 106,
§ IV.2] maps analytical functions on the unit disk to the linear operators; it is
defined through a Cauchy-type formula with a resolvent. The calculus is an in-
tertwining operator [75] between the Möbius transformations of the unit disk,
cf. (5.22), and the actions (4.12) on operators from Example 4.19. This topic will
be developed in Subsection 6.1.

In line with Definition 4.20 we can directly define the corresponding calculus
through the intertwining property [62, 75]:

Definition 4.22. A contravariant calculus , also know as functional calculus , is a
map from functions to operators, which intertwines two representations of the
same group in the respective spaces.

The duality between co- and contravariant calculi is the particular case of the
duality between covariant transform and the inverse covariant transform defined
in the next subsection. In many cases a proper choice of spaces makes covariant
and/or contravariant calculus a bijection between functions and operators. Subse-
quently only one form of calculus, either co- or contravariant, is defined explicitly,
although both of them are there in fact.

4.4. Inverse covariant transform

An object invariant under the left action Λ (4.2) is called left invariant. For ex-
ample, let 𝐿 and 𝐿′ be two left invariant spaces of functions on 𝐺. We say that a
pairing ⟨⋅, ⋅⟩ : 𝐿× 𝐿′ → ℂ is left invariant if

⟨Λ(𝑔)𝑓,Λ(𝑔)𝑓 ′⟩ = ⟨𝑓, 𝑓 ′⟩ , for all 𝑓 ∈ 𝐿, 𝑓 ′ ∈ 𝐿′. (4.13)

Remark 4.23. i. We do not require the pairing to be linear in general.
ii. If the pairing is invariant on space 𝐿 × 𝐿′ it is not necessarily invariant (or

even defined) on the whole of 𝐶 (𝐺) × 𝐶 (𝐺).
iii. In a more general setting we shall study an invariant pairing on a homo-

geneous space instead of the group. However due to length constraints we
cannot consider it here beyond Example 4.26.

iv. An invariant pairing on 𝐺 can be obtained from an invariant functional 𝑙 by
the formula ⟨𝑓1, 𝑓2⟩ = 𝑙(𝑓1𝑓2).
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For a representation 𝜌 of 𝐺 in 𝑉 and 𝑣0 ∈ 𝑉 we fix a function 𝑤(𝑔) = 𝜌(𝑔)𝑣0.
We assume that the pairing can be extended in its second component to this
𝑉 -valued function, say, in the weak sense.

Definition 4.24. Let ⟨⋅, ⋅⟩ be a left invariant pairing on 𝐿×𝐿′ as above, let 𝜌 be a
representation of 𝐺 in a space 𝑉 ; we define the function 𝑤(𝑔) = 𝜌(𝑔)𝑣0 for 𝑣0 ∈ 𝑉 .
The inverse covariant transform ℳ is a map 𝐿→ 𝑉 defined by the pairing:

ℳ : 𝑓 �→ ⟨𝑓, 𝑤⟩ , where 𝑓 ∈ 𝐿. (4.14)

Example 4.25. Let 𝐺 be a group with a unitary square integrable representation
𝜌. An invariant pairing of two square integrable functions is obviously done by
integration over the Haar measure:

⟨𝑓1, 𝑓2⟩ =
∫
𝐺

𝑓1(𝑔)𝑓2(𝑔) 𝑑𝑔.

For an admissible vector 𝑣0 [2, Chap. 8; 26] the inverse covariant transform
is known in this setup as a reconstruction formula.

Example 4.26. Let 𝜌 be a square integrable representation of 𝐺 modulo a sub-
group 𝐻 ⊂ 𝐺 and let 𝑋 = 𝐺/𝐻 be the corresponding homogeneous space with a
quasi-invariant measure 𝑑𝑥. Then integration over 𝑑𝑥 with an appropriate weight
produces an invariant pairing. The inverse covariant transform is a more general
version [2, (7.52)] of the reconstruction formula mentioned in the previous example.

Let 𝜌 be not a square integrable representation (even modulo a subgroup) or
let 𝑣0 be an inadmissible vector of a square integrable representation 𝜌. An invari-
ant pairing in this case is not associated with an integration over any non-singular
invariant measure on 𝐺. In this case we have a Hardy pairing . The following ex-
ample explains the name.

Example 4.27. Let 𝐺 be the “𝑎𝑥 + 𝑏” group and its representation 𝜌 (4.5) from
Example 4.8. An invariant pairing on 𝐺, which is not generated by the Haar
measure 𝑎−2𝑑𝑎 𝑑𝑏, is

⟨𝑓1, 𝑓2⟩ = lim
𝑎→0

∞∫
−∞

𝑓1(𝑎, 𝑏) 𝑓2(𝑎, 𝑏) 𝑑𝑏. (4.15)

For this pairing we can consider functions 1
2𝜋𝑖(𝑥+𝑖) or 𝑒−𝑥

2

, which are not admis-

sible vectors in the sense of square integrable representations. Then the inverse
covariant transform provides an integral resolution of the identity.

Similar pairings can be defined for other semi-direct products of two groups.
We can also extend a Hardy pairing to a group, which has a subgroup with such
a pairing.

Example 4.28. Let 𝐺 be the group SL2(ℝ) from Example 4.9. Then the “𝑎𝑥+ 𝑏”
group is a subgroup of SL2(ℝ), moreover we can parametrise SL2(ℝ) by triples
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(𝑎, 𝑏, 𝜃), 𝜃 ∈ (−𝜋, 𝜋] with the respective Haar measure [97, III.1(3)]. Then the
Hardy pairing

⟨𝑓1, 𝑓2⟩ = lim
𝑎→0

∞∫
−∞

𝑓1(𝑎, 𝑏, 𝜃) 𝑓2(𝑎, 𝑏, 𝜃) 𝑑𝑏 𝑑𝜃 (4.16)

is invariant on SL2(ℝ) as well. The corresponding inverse covariant transform
provides even a finer resolution of the identity which is invariant under conformal
mappings of the Lobachevsky half-plane.

5. Analytic functions

We saw in the first section that an inspiring geometry of cycles can be recovered
from the properties of SL2(ℝ). In this section we consider a realisation of function
theory within the Erlangen approach [64, 65, 68, 69]. The covariant transform will
be our principal tool in this construction.

5.1. Induced covariant transform

The choice of a mother wavelet or fiducial operator 𝐹 from Section 4.1 can signif-
icantly influence the behaviour of the covariant transform. Let 𝐺 be a group and
𝐻 be its closed subgroup with the corresponding homogeneous space 𝑋 = 𝐺/𝐻 .
Let 𝜌 be a representation of 𝐺 by operators on a space 𝑉 ; we denote by 𝜌𝐻 the
restriction of 𝜌 to the subgroup 𝐻 .

Definition 5.1. Let 𝜒 be a representation of the subgroup 𝐻 in a space 𝑈 and
𝐹 : 𝑉 → 𝑈 be an intertwining operator between 𝜒 and the representation 𝜌𝐻 :

𝐹 (𝜌(ℎ)𝑣) = 𝐹 (𝑣)𝜒(ℎ), for all ℎ ∈ 𝐻, 𝑣 ∈ 𝑉. (5.1)

Then the covariant transform (4.1) generated by 𝐹 is called the induced covariant
transform.

The following is the main motivating example.

Example 5.2. Consider the traditional wavelet transform as outlined in Exam-
ple 4.7. Choose a vacuum vector 𝑣0 to be a joint eigenvector for all operators 𝜌(ℎ),
ℎ ∈ 𝐻 , that is 𝜌(ℎ)𝑣0 = 𝜒(ℎ)𝑣0, where 𝜒(ℎ) is a complex number depending of ℎ.
Then 𝜒 is obviously a character of 𝐻 .

The image of wavelet transform (4.3) with such a mother wavelet will have
a property:

𝑣(𝑔ℎ) = ⟨𝑣, 𝜌(𝑔ℎ)𝑣0⟩ = ⟨𝑣, 𝜌(𝑔)𝜒(ℎ)𝑣0⟩ = 𝜒(ℎ)𝑣(𝑔).

Thus the wavelet transform is uniquely defined by cosets on the homogeneous space
𝐺/𝐻 . In this case we previously spoke about the reduced wavelet transform [65].
A representation 𝜌0 is called square integrable mod 𝐻 if the induced wavelet
transform [𝒲𝑓0](𝑤) of the vacuum vector 𝑓0(𝑥) is square integrable on 𝑋 .
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The image of an induced covariant transform has a similar property:

𝑣(𝑔ℎ) = 𝐹 (𝜌((𝑔ℎ)−1)𝑣) = 𝐹 (𝜌(ℎ−1)𝜌(𝑔−1)𝑣) = 𝐹 (𝜌(𝑔−1)𝑣)𝜒(ℎ−1). (5.2)

Thus it is enough to know the value of the covariant transform only at a single
element in every coset 𝐺/𝐻 in order to reconstruct it for the entire group 𝐺 by
the representation 𝜒. Since coherent states (wavelets) are now parametrised by
points of homogeneous space 𝐺/𝐻 , they are referred to sometimes as coherent
states which are not connected to a group [92], however this is true only in a very
narrow sense as explained above.

Example 5.3. To make it more specific we can consider the representation of
SL2(ℝ) defined on 𝐿2(ℝ) by the formula, cf. (3.8):

𝜌(𝑔) : 𝑓(𝑧) �→ 1

(𝑐𝑥+ 𝑑)
𝑓

(
𝑎𝑥+ 𝑏

𝑐𝑥+ 𝑑

)
, 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
.

Let 𝐾 ⊂ SL2(ℝ) be the compact subgroup of matrices ℎ𝑡 =

(
cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

)
.

Then for the fiducial operator 𝐹± (4.6) we have 𝐹± ∘ 𝜌(ℎ𝑡) = 𝑒∓i𝑡𝐹±. Thus we
can consider the covariant transform only for points in the homogeneous space
SL2(ℝ)/𝐾, moreover this set can be naturally identified with the 𝑎𝑥 + 𝑏 group.
Thus we do not obtain any advantage of extending the group in Example 4.8 from
𝑎𝑥+ 𝑏 to SL2(ℝ) if we will be still using the fiducial operator 𝐹± (4.6).

Functions on the group 𝐺, which have the property 𝑣(𝑔ℎ) = 𝑣(𝑔)𝜒(ℎ) (5.2),
provide a space for the representation of 𝐺 induced by the representation 𝜒 of the
subgroup 𝐻 . This explains the choice of the name for induced covariant transform.

Remark 5.4. Induced covariant transform uses the fiducial operator 𝐹 which passes
through the action of the subgroup𝐻 . This reduces information which we obtained
from this transform in some cases.

There is also a simple connection between a covariant transform and right
shifts:

Proposition 5.5. Let 𝐺 be a Lie group and 𝜌 be a representation of 𝐺 in a space
𝑉 . Let [𝒲𝑓 ](𝑔) = 𝐹 (𝜌(𝑔−1)𝑓) be a covariant transform defined by the fiducial
operator 𝐹 : 𝑉 → 𝑈 . Then the right shift [𝒲𝑓 ](𝑔𝑔′) by 𝑔′ is the covariant transform
[𝒲 ′𝑓 ](𝑔) = 𝐹 ′(𝜌(𝑔−1)𝑓)] defined by the fiducial operator 𝐹 ′ = 𝐹 ∘ 𝜌(𝑔−1).

In other words the covariant transform intertwines right shifts on the group
𝐺 with the associated action 𝜌𝐵 (4.11) on fiducial operators.

Although the above result is obvious, its infinitesimal version has interesting
consequences.

Corollary 5.6 ([84]). Let 𝐺 be a Lie group with a Lie algebra 𝔤 and 𝜌 be a smooth
representation of 𝐺. We denote by 𝑑𝜌𝐵 the derived representation of the associated
representation 𝜌𝐵 (4.11) on fiducial operators.



32 V.V. Kisil

Let a fiducial operator 𝐹 be a null-solution, i.e., 𝐴𝐹 = 0, for the operator

𝐴 =
∑

𝐽 𝑎𝑗𝑑𝜌
𝑋𝑗

𝐵 , where 𝑋𝑗 ∈ 𝔤 and 𝑎𝑗 are constants. Then the covariant transform
[𝒲𝑓 ](𝑔) = 𝐹 (𝜌(𝑔−1)𝑓) for any 𝑓 satisfies

𝐷𝐹 (𝑔) = 0, where 𝐷 =
∑
𝑗

𝑎̄𝑗𝔏
𝑋𝑗 .

Here 𝔏𝑋𝑗 are the left invariant fields (Lie derivatives) on 𝐺 corresponding to 𝑋𝑗.

Example 5.7. Consider the representation 𝜌 (4.5) of the 𝑎𝑥 + 𝑏 group with the
𝑝 = 1. Let 𝐴 and 𝑁 be the basis of the corresponding Lie algebra generating
one-parameter subgroups (𝑒𝑡, 0) and (0, 𝑡). Then the derived representations are

[𝑑𝜌𝐴𝑓 ](𝑥) = 𝑓(𝑥) + 𝑥𝑓 ′(𝑥), [𝑑𝜌𝑁𝑓 ](𝑥) = 𝑓 ′(𝑥).

The corresponding left invariant vector fields on 𝑎𝑥+ 𝑏 group are

𝔏𝐴 = 𝑎∂𝑎, 𝔏𝑁 = 𝑎∂𝑏.

The mother wavelet 1
𝑥+i is a null solution of the operator 𝑑𝜌𝐴+i𝑑𝜌𝑁 = 𝐼+(𝑥+i) 𝑑

𝑑𝑥 .

Therefore the covariant transform with the fiducial operator 𝐹+ (4.6) will consist
with the null solutions to the operator 𝔏𝐴− i𝔏𝑁 = −i𝑎(∂𝑏+i∂𝑎), that is in essence
the Cauchy-Riemann operator in the upper half-plane.

There is a statement which extends the previous corollary from differential
operators to integro-differential ones. We will formulate it for the wavelets setting.

Corollary 5.8. Let 𝐺 be a group and 𝜌 be a unitary representation of 𝐺, which can
be extended to a vector space 𝑉 of functions or distributions on 𝐺. Let a mother
wavelet 𝑤 ∈ 𝑉 ′ satisfy the equation∫

𝐺

𝑎(𝑔) 𝜌(𝑔)𝑤 𝑑𝑔 = 0,

for a fixed distribution 𝑎(𝑔) ∈ 𝑉 and a (not necessarily invariant) measure 𝑑𝑔.
Then any wavelet transform 𝐹 (𝑔) =𝒲𝑓(𝑔) = ⟨𝑓, 𝜌(𝑔)𝑤0⟩ obeys the condition:

𝐷𝐹 = 0, where 𝐷 =

∫
𝐺

𝑎̄(𝑔)𝑅(𝑔) 𝑑𝑔,

with 𝑅 being the right regular representation of 𝐺.

Clearly, Corollary 5.6 is a particular case of Corollary 5.8 with a distribu-
tion 𝑎, which is a combination of derivatives of Dirac’s delta functions. The last
corollary will be illustrated at the end of Section 6.1.

Remark 5.9. We note that Corollaries 5.6 and 5.8 are true whenever we have an
intertwining property between 𝜌 with the right regular representation of 𝐺.
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5.2. Induced wavelet transform and Cauchy integral

We again use the general scheme from Subsection 3.2. The 𝑎𝑥+ 𝑏 group is isomor-
phic to a subgroup of SL2(ℝ) consisting of the lower-triangular matrices:

𝐹 =

{
1√
𝑎

(
𝑎 0
𝑏 1

)
, 𝑎 > 0

}
.

The corresponding homogeneous space 𝑋 = SL2(ℝ)/𝐹 is one-dimensional and can
be parametrised by a real number. The natural projection 𝑝 : SL2(ℝ)→ ℝ and its
left inverse 𝑠 : ℝ → SL2(ℝ) can be defined as follows:

𝑝 :

(
𝑎 𝑏
𝑐 𝑑

)
�→ 𝑏

𝑑
, 𝑠 : 𝑢 �→

(
1 𝑢
0 1

)
. (5.3)

Thus we calculate the corresponding map 𝑟 : SL2(ℝ)→ 𝐹 , see Subsection 2.1:

𝑟 :

(
𝑎 𝑏
𝑐 𝑑

)
�→
(
𝑑−1 0
𝑐 𝑑

)
. (5.4)

Therefore the action of SL2(ℝ) on the real line is exactly the Möbius map (1.1):

𝑔 : 𝑢 �→ 𝑝(𝑔−1 ∗ 𝑠(𝑢)) = 𝑎𝑢+ 𝑏

𝑐𝑢+ 𝑑
, where 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
.

We also calculate that

𝑟(𝑔−1 ∗ 𝑠(𝑢)) =
(
(𝑐𝑢+ 𝑑)−1 0

𝑐 𝑐𝑢+ 𝑑

)
.

To build an induced representation we need a character of the affine group.
A generic character of 𝐹 is a power of its diagonal element:

𝜌𝜅

(
𝑎 0
𝑐 𝑎−1

)
= 𝑎𝜅.

Thus the corresponding realisation of induced representation (3.6) is:

𝜌𝜅(𝑔) : 𝑓(𝑢) �→
1

(𝑐𝑢+ 𝑑)𝜅
𝑓

(
𝑎𝑢+ 𝑏

𝑐𝑢+ 𝑑

)
where 𝑔−1 =

(
𝑎 𝑏
𝑐 𝑑

)
. (5.5)

The only freedom remaining by the scheme is in a choice of a value of number
𝜅 and the corresponding functional space where our representation acts. At this
point we have a wider choice of 𝜅 than it is usually assumed: it can belong to
different hypercomplex systems.

One of the important properties which would be nice to have is the unitarity
of the representation (5.5) with respect to the standard inner product:

⟨𝑓1, 𝑓2⟩ =
∫
ℝ2

𝑓1(𝑢)𝑓2(𝑢) 𝑑𝑢.

A change of variables 𝑥 = 𝑎𝑢+𝑏
𝑐𝑢+𝑑 in the integral suggests the following property is

necessary and sufficient for that:

𝜅+ 𝜅̄ = 2. (5.6)
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A mother wavelet for an induced wavelet transform shall be an eigenvector for
the action of a subgroup 𝐻̃ of SL2(ℝ), see (5.1). Let us consider the most common

case of 𝐻̃ = 𝐾 and take the infinitesimal condition with the derived representation:
𝑑𝜌𝑍𝑛𝑤0 = 𝜆𝑤0, since 𝑍 (3.12) is the generator of the subgroup𝐾. In other words the
restriction of 𝑤0 to a𝐾-orbit should be given by 𝑒𝜆𝑡 in the exponential coordinate 𝑡
along the 𝐾-orbit. However we usually need its expression in other “more natural”
coordinates. For example [86], an eigenvector of the derived representation of 𝑑𝜌𝑍𝑛
should satisfy the differential equation in the ordinary parameter 𝑥 ∈ ℝ:

− 𝜅𝑥𝑓(𝑥) − 𝑓 ′(𝑥)(1 + 𝑥2) = 𝜆𝑓(𝑥). (5.7)

The equation does not have singular points, the general solution is globally defined
(up to a constant factor) by:

𝑤𝜆,𝜅(𝑥) =
1

(1 + 𝑥2)𝜅/2

(
𝑥− i

𝑥+ i

)i𝜆/2

=
(𝑥− i)(i𝜆−𝜅)/2

(𝑥 + i)(i𝜆+𝜅)/2
. (5.8)

To avoid multivalent functions we need 2𝜋-periodicity along the exponential co-
ordinate on 𝐾. This implies that the parameter 𝑚 = −i𝜆 is an integer. Therefore
the solution becomes:

𝑤𝑚,𝜅(𝑥) =
(𝑥+ i)(𝑚−𝜅)/2

(𝑥 − i)(𝑚+𝜅)/2
. (5.9)

The corresponding wavelets resemble the Cauchy kernel normalised to the invariant
metric in the Lobachevsky half-plane:

𝑤𝑚,𝜅(𝑢, 𝑣;𝑥) = 𝜌𝐹𝜅 (𝑠(𝑢, 𝑣))𝑤𝑚,𝜅(𝑥) = 𝑣𝜅/2
(𝑥− 𝑢+ i𝑣)(𝑚−𝜅)/2

(𝑥− 𝑢− i𝑣)
(𝑚+𝜅)/2

.

Therefore the wavelet transform (4.3) from a function on the real line to functions
on the upper half-plane is

𝑓(𝑢, 𝑣) =
〈
𝑓, 𝜌𝐹𝜅 (𝑢, 𝑣)𝑤𝑚,𝜅

〉
= 𝑣𝜅̄/2

∫
ℝ

𝑓(𝑥)
(𝑥 − (𝑢+ i𝑣))(𝑚−𝜅)/2

(𝑥 − (𝑢− i𝑣))(𝑚+𝜅)/2
𝑑𝑥.

Introduction of a complex variable 𝑧 = 𝑢+ i𝑣 allows us to write it as

𝑓(𝑧) = (ℑ𝑧)𝜅̄/2
∫
ℝ

𝑓(𝑥)
(𝑥− 𝑧)(𝑚−𝜅)/2

(𝑥 − 𝑧)(𝑚+𝜅)/2
𝑑𝑥. (5.10)

According to the general theory this wavelet transform intertwines representations
𝜌𝐹𝜅 (5.5) on the real line (induced by the character 𝑎𝜅 of the subgroup 𝐹 ) and
𝜌𝐾𝑚 (3.8) on the upper half-plane (induced by the character 𝑒i𝑚𝑡 of the subgroup𝐾).

5.3. The Cauchy–Riemann (Dirac) and Laplace operators

Ladder operators 𝐿± = ±i𝐴 + 𝐵 act by raising/lowering indexes of the 𝐾-eigen-
functions 𝑤𝑚,𝜅 (5.8), see Subsection 3.3. More explicitly [86]:

𝑑𝜌
𝐿±
𝜅 : 𝑤𝑚,𝜅 �→ − i

2
(𝑚± 𝜅)𝑤𝑚±2,𝜅. (5.11)
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There are two possibilities here: 𝑚 ± 𝜅 is zero for some 𝑚 or not. In the first
case the chain (5.11) of eigenfunction 𝑤𝑚,𝜅 terminates on one side under the
transitive action (3.16) of the ladder operators; otherwise the chain is infinite
in both directions. That is, the values 𝑚 = ∓𝜅 and only those correspond to
the maximal (minimal) weight function 𝑤∓𝜅,𝜅(𝑥) = 1

(𝑥±i)𝜅 ∈ 𝐿2(ℝ), which are

annihilated by 𝐿±:

𝑑𝜌
𝐿±
𝜅 𝑤∓𝜅,𝜅 = (±i𝑑𝜌𝐴𝜅 + 𝑑𝜌𝐵𝜅 )𝑤∓𝜅,𝜅 = 0. (5.12)

By Corollary 5.6 for the mother wavelets 𝑤∓𝜅,𝜅, which are annihilated
by (5.12), the images of the respective wavelet transforms are null solutions to

the left-invariant differential operator 𝐷± = 𝔏𝐿± :

𝐷± = ∓i𝔏𝐴 + 𝔏𝐵 = − i𝜅
2 + 𝑣(∂𝑢 ± i∂𝑣). (5.13)

This is a conformal version of the Cauchy–Riemann equation. The second-

order conformal Laplace-type operators Δ+ = 𝔏𝐿−𝔏𝐿+
and Δ− = 𝔏𝐿+

𝔏𝐿− are

Δ± = (𝑣∂𝑢 − i𝜅
2 )

2 + 𝑣2∂2𝑣 ± 𝜅
2 . (5.14)

For the mother wavelets 𝑤𝑚,𝜅 in (5.12) such that 𝑚 = ∓𝜅 the unitarity
condition 𝜅+ 𝜅̄ = 2, see (5.6), together with 𝑚 ∈ ℤ implies 𝜅 = ∓𝑚 = 1. In such
a case the wavelet transforms (5.10) are

𝑓+(𝑧) = (ℑ𝑧) 1
2

∫
ℝ

𝑓(𝑥) 𝑑𝑥

𝑥− 𝑧
and 𝑓−(𝑧) = (ℑ𝑧) 1

2

∫
ℝ

𝑓(𝑥) 𝑑𝑥

𝑥− 𝑧
, (5.15)

for 𝑤−1,1 and 𝑤1,1 respectively. The first one is the Cauchy integral formula up

to the factor 2𝜋i
√ℑ𝑧. Clearly, one integral is the complex conjugation of another.

Moreover, the minimal/maximal weight cases can be intertwined by the following
automorphism of the Lie algebra 𝔰𝔩2:

𝐴→ 𝐵, 𝐵 → 𝐴, 𝑍 → −𝑍.
As explained before, 𝑓±(𝑤) are null solutions to the operators 𝐷± (5.13) and

Δ± (5.14). These transformations intertwine unitary equivalent representations on
the real line and on the upper half-plane, thus they can be made unitary for proper
spaces. This is the source of two faces of the Hardy spaces: they can be defined
either as square-integrable on the real line with an analytic extension to the half-
plane, or analytic on the half-plane with square-integrability on an infinitesimal
displacement of the real line.

For the third possibility, 𝑚± 𝜅 ∕= 0, there is no an operator spanned by the
derived representation of the Lie algebra 𝔰𝔩2 which kills the mother wavelet 𝑤𝑚,𝜅.
However the remarkable Casimir operator 𝐶 = 𝑍2−2(𝐿−𝐿++𝐿+𝐿−), which spans
the centre of the universal enveloping algebra of 𝔰𝔩2 [97, § X.1; 120, § 8.1], produces
a second-order operator which does the job. Indeed from the identities (5.11) we get

𝑑𝜌𝐶𝜅𝑤𝑚,𝜅 = (2𝜅− 𝜅2)𝑤𝑚,𝜅. (5.16)
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Thus we get 𝑑𝜌𝐶𝜅𝑤𝑚,𝜅 = 0 for 𝜅 = 2 or 0. The mother wavelet 𝑤0,2 turns out to
be the Poisson kernel [34, Ex. 1.2.17]. The associated wavelet transform

𝑓(𝑧) = ℑ𝑧
∫
ℝ

𝑓(𝑥) 𝑑𝑥

∣𝑥− 𝑧∣2 (5.17)

consists of null solutions of the left-invariant second-order Laplacian, image of the
Casimir operator, cf. (5.14):

Δ(:= 𝔏𝐶) = 𝑣2∂2𝑢 + 𝑣2∂2𝑣 .

Another integral formula producing solutions to this equation delivered by the
mother wavelet 𝑤𝑚,0 with the value 𝜅 = 0 in (5.16):

𝑓(𝑧) =

∫
ℝ

𝑓(𝑥)

(
𝑥− 𝑧

𝑥− 𝑧

)𝑚/2

𝑑𝑥. (5.18)

Furthermore, we can introduce higher-order differential operators. The func-

tions 𝑤∓2𝑚+1,1 are annihilated by 𝑛th power of operator 𝑑𝜌
𝐿±
𝜅 with 1 ≤ 𝑚 ≤ 𝑛.

By Corollary 5.6 the image of wavelet transform (5.10) from a mother wavelet∑𝑛
1 𝑎𝑚𝑤∓2𝑚,1 will consist of null-solutions of the 𝑛th power 𝐷𝑛

± of the conformal
Cauchy–Riemann operator (5.13). They are a conformal flavour of polyanalytic
functions [6].

We can similarly look for mother wavelets which are eigenvectors for other
types of one-dimensional subgroups. Our consideration of subgroup𝐾 is simplified
by several facts:

∙ The parameter 𝜅 takes only complex values.
∙ The derived representation does not have singular points on the real line.

For both subgroups 𝐴′ and 𝑁 ′ this will not be true. Further consideration will be
given in [86].

5.4. The Taylor expansion

Consider an induced wavelet transform generated by a Lie group 𝐺, its represen-
tation 𝜌 and a mother wavelet 𝑤 which is an eigenvector of a one-dimensional

subgroup 𝐻̃ ⊂ 𝐺. Then by Proposition 5.5 the wavelet transform intertwines 𝜌

with a representation 𝜌𝐻̃ induced by a character of 𝐻̃ .

If the mother wavelet is itself in the domain of the induced wavelet transform,
then the chain (3.16) of 𝐻̃-eigenvectors 𝑤𝑚 will be mapped to the similar chain of

their images 𝑤̂𝑚. The corresponding derived induced representation 𝑑𝜌𝐻̃ produces
ladder operators with the transitive action of the ladder operators on the chain of
𝑤̂𝑚. Then the vector space of “formal power series”,

𝑓(𝑧) =
∑
𝑚∈ℤ

𝑎𝑚𝑤̂𝑚(𝑧), (5.19)

is a module for the Lie algebra of the group 𝐺.
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Coming back to the case of the group 𝐺 = SL2(ℝ) and subgroup 𝐻̃ = 𝐾,
images 𝑤̂𝑚,1 of the eigenfunctions (5.9) under the Cauchy integral transform (5.15)
are

𝑤̂𝑚,1(𝑧) = (ℑ𝑧)1/2 (𝑧 + i)(𝑚−1)/2

(𝑧 − i)(𝑚+1)/2
.

They are eigenfunctions of the derived representation on the upper half-plane
and the action of ladder operators is given by the same expressions (5.11). In
particular, the 𝔰𝔩2-module generated by 𝑤̂1,1 will be one-sided since this vector
is annihilated by the lowering operator. Since the Cauchy integral produces an
unitary intertwining operator between two representations we get the following
variant of Taylor series:

𝑓(𝑧) =

∞∑
𝑚=0

𝑐𝑚𝑤̂𝑚,1(𝑧), where 𝑐𝑚 = ⟨𝑓, 𝑤𝑚,1⟩ .

For two other types of subgroups, representations and mother wavelets this scheme
shall be suitably adapted and detailed study will be presented elsewhere [86].

5.5. Wavelet transform in the unit disk and other domains

We can similarly construct analytic function theories in unit disks, including par-
abolic and hyperbolic ones [82]. This can be done simply by an application of the
Cayley transform to the function theories in the upper half-plane. Alternatively
we can apply the full procedure for properly chosen groups and subgroups. We
will briefly outline such a possibility here, see also [64].

Elements of SL2(ℝ) can also be represented by 2× 2-matrices with complex
entries such that, cf. Example 4.21:

𝑔 =

(
𝛼 𝛽
𝛽 𝛼̄

)
, 𝑔−1 =

(
𝛼̄ −𝛽
−𝛽 𝛼

)
, ∣𝛼∣2 − ∣𝛽∣2 = 1.

These realisations of SL2(ℝ) (or rather 𝑆𝑈(2,ℂ)) is more suitable for function
theory in the unit disk. It is obtained from the form, which we used before for the
upper half-plane, by means of the Cayley transform [82, § 8.1].

We may identify the unit disk 𝔻 with the homogeneous space SL2(ℝ)/𝕋 for
the unit circle 𝕋 through the important decomposition SL2(ℝ) ∼ 𝔻 × 𝕋 with
𝐾 = 𝕋 – the compact subgroup of SL2(ℝ):(

𝛼 𝛽
𝛽 𝛼̄

)
= ∣𝛼∣

(
1 𝛽𝛼̄−1

𝛽𝛼−1 1

)( 𝛼
∣𝛼∣ 0

0 𝛼̄
∣𝛼∣

)
(5.20)

=
1√

1− ∣𝑢∣2
(
1 𝑢
𝑢̄ 1

)
,

(
𝑒𝑖𝑥 0
0 𝑒−𝑖𝑥

)
where

𝑥 = arg𝛼, 𝑢 = 𝛽𝛼̄−1, ∣𝑢∣ < 1.
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Each element 𝑔 ∈ SL2(ℝ) acts by the linear-fractional transformation (the Möbius
map) on 𝔻 and 𝕋 𝐻2(𝕋) as follows:

𝑔 : 𝑧 �→ 𝛼𝑧 + 𝛽

𝛽𝑧 + 𝛼̄
, where 𝑔 =

(
𝛼 𝛽
𝛽 𝛼̄

)
. (5.21)

In the decomposition (5.20) the first matrix on the right-hand side acts by trans-
formation (5.21) as an orthogonal rotation of 𝕋 or 𝔻; and the second one – by a
transitive family of maps of the unit disk onto itself.

The representation induced by a complex-valued character 𝜒𝑘(𝑧) = 𝑧−𝑘 of 𝕋
according to Section 3.2 is:

𝜌𝑘(𝑔) : 𝑓(𝑧) �→ 1

(𝛼− 𝛽𝑧)𝑘
𝑓

(
𝛼̄𝑧 − 𝛽

𝛼− 𝛽𝑧

)
where 𝑔 =

(
𝛼 𝛽
𝛽 𝛼̄

)
. (5.22)

The representation 𝜌1 is unitary on square-integrable functions and irreducible on
a Hardy space on the unit circle.

We choose [66, 68] 𝐾-invariant function 𝑣0(𝑧) ≡ 1 to be a vacuum vector.
Thus the associated coherent states

𝑣(𝑔, 𝑧) = 𝜌1(𝑔)𝑣0(𝑧) = (𝑢− 𝑧)−1

are completely determined by the point on the unit disk 𝑢 = 𝛽𝛼̄−1. The family of
coherent states considered as a function of both 𝑢 and 𝑧 is obviously the Cauchy
kernel [64]. The wavelet transform [64,66]𝒲 : 𝐿2(𝕋)→ 𝐻2(𝔻) : 𝑓(𝑧) �→ 𝒲𝑓(𝑔) =
⟨𝑓, 𝑣𝑔⟩ is the Cauchy integral

𝒲𝑓(𝑢) =
1

2𝜋𝑖

∫
𝕋

𝑓(𝑧)
1

𝑢− 𝑧
𝑑𝑧. (5.23)

This approach can be extended to an arbitrary connected simply-connected
domain. Indeed, it is known that the set of Möbius maps is the whole group of
biholomorphic automorphisms of the unit disk or upper half-plane. Thus we can
state the following corollary from the Riemann mapping theorem:

Corollary 5.10. The group of biholomorphic automorphisms of a connected simply-
connected domain with at least two points on its boundary is isomorphic to SL2(ℝ).

If a domain is non-simply connected, then the group of its biholomorphic
mapping can be trivial [9, 103]. However we may look for a rich group acting
on function spaces rather than on geometric sets. Let a connected non-simply
connected domain 𝐷 be bounded by a finite collection of non-intersecting contours
Γ𝑖, 𝑖 = 1, . . . , 𝑛. For each Γ𝑖 consider the isomorphic image 𝐺𝑖 of the SL2(ℝ) group
which is defined by Corollary 5.10. Then define the group 𝐺 = 𝐺1×𝐺2× ⋅ ⋅ ⋅×𝐺𝑛

and its action on 𝐿2(∂𝐷) = 𝐿2(Γ1) ⊕ 𝐿2(Γ2) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐿2(Γ𝑛) through the Möbius
action of 𝐺𝑖 on 𝐿2(Γ𝑖).

Example 5.11. Consider an annulus defined by 𝑟 < ∣𝑧∣ < 𝑅. It is bounded by two
circles: Γ1 = {𝑧 : ∣𝑧∣ = 𝑟} and Γ2 = {𝑧 : ∣𝑧∣ = 𝑅}. For Γ1 the Möbius action
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of SL2(ℝ) is (
𝛼 𝛽
𝛽 𝛼̄

)
: 𝑧 �→ 𝛼𝑧 + 𝛽/𝑟

𝛽𝑧/𝑟 + 𝛼̄
, where ∣𝛼∣2 − ∣𝛽∣2 = 1,

with the respective action on Γ2. Those actions can be linearised in the spaces
𝐿2(Γ1) and 𝐿2(Γ2). If we consider a subrepresentation reduced to analytic function
on the annulus, then one copy of SL2(ℝ) will act on the part of functions analytic
outside of Γ1 and another copy – on the part of functions analytic inside of Γ2.

Thus all classical objects of complex analysis (the Cauchy-Riemann equation,
the Taylor series, the Bergman space, etc.) for a rather generic domain 𝐷 can also
be obtained from suitable representations similarly to the case of the upper half-
plane [64, 68].

6. Covariant and contravariant calculi

Functional calculus, spectrum, and the spectral mapping theorem, united in a
trinity, play an exceptional rôle in functional analysis and could not be substituted
by anything else. Many traditional definitions of functional calculus are covered
by the following rigid template based on the algebra homomorphism property:

Definition 6.1. A functional calculus for an element 𝑎 ∈ 𝔄 is a continuous linear
mapping Φ : 𝒜 → 𝔄 such that:

i. Φ is a unital algebra homomorphism

Φ(𝑓 ⋅ 𝑔) = Φ(𝑓) ⋅ Φ(𝑔).
ii. There is an initialisation condition: Φ[𝑣0] = 𝑎 for a fixed function 𝑣0, e.g.,

𝑣0(𝑧) = 𝑧.

The most typical definition of a spectrum is seemingly independent and uses
the important notion of resolvent:

Definition 6.2. A resolvent of element 𝑎 ∈ 𝔄 is the function 𝑅(𝜆) = (𝑎 − 𝜆𝑒)−1,
which is the image under Φ of the Cauchy kernel (𝑧 − 𝜆)−1.

A spectrum of 𝑎 ∈ 𝔄 is the set sp𝑎 of singular points of its resolvent 𝑅(𝜆).

Then the following important theorem links spectrum and functional calculus
together.

Theorem 6.3 (Spectral mapping). For a function 𝑓 suitable for the functional
calculus:

𝑓(sp𝑎) = sp 𝑓(𝑎). (6.1)

However the power of the classic spectral theory rapidly decreases if we move
beyond the study of one normal operator (e.g., for quasinilpotent ones) and is
virtually nil if we consider several non-commuting ones. Sometimes these severe
limitations are seen to be irresistible and alternative constructions, i.e., model
theory cf. Example 4.19 and [106], were developed.
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Yet the spectral theory can be revived from a fresh start. While three compon-
ents – functional calculus, spectrum, and spectral mapping theorem – are highly
interdependent in various ways, we will nevertheless arrange them as follows:

i. Functional calculus is an original notion defined in some independent terms;
ii. Spectrum (or more specifically contravariant spectrum) (or spectral decom-

position) is derived from previously defined functional calculus as its support
(in some appropriate sense);

iii. The spectral mapping theorem then should drop out naturally in the form
(6.1) or one of its variations.

Thus the entire scheme depends on the notion of the functional calculus and
our ability to escape limitations of Definition 6.1. The first (known to the present
author) definition of functional calculus not linked to the algebra homomorphism
property was the Weyl functional calculus defined by an integral formula [3]. Then
its intertwining property with affine transformations of Euclidean space was proved
as a theorem. However it seems to have been the only “non-homomorphism” cal-
culus for decades.

A different approach to the whole range of calculi was given in [62] and
developed in [66, 73, 75, 84] in terms of intertwining operators for group repre-
sentations. It was initially targeted for several non-commuting operators because
no non-trivial algebra homomorphism is possible with a commutative algebra of
functions in this case. However it emerged later that the new definition is a useful
replacement for the classical one across all ranges of problems.

In the following subsections we will support the last claim by consideration
of the simple known problem: characterisation of an 𝑛×𝑛 matrix up to similarity.
Even that “freshman” question can be only sorted out by the classical spectral
theory for a small set of diagonalisable matrices. Our solution in terms of new
spectrum will be full and thus unavoidably coincides with one given by the Jordan
normal form of matrices. Other more difficult questions are the subject of ongoing
research.

6.1. Intertwining group actions on functions and operators

Any functional calculus uses properties of functions to model properties of opera-
tors. Thus changing our viewpoint on functions, as was done in Section 5, we can
get another approach to operators. The two main possibilities are encoded in Defi-
nitions 4.20 and 4.22: we can assign a certain function to the given operator or vice
versa. Here we consider the second possibility and treat the first in Subsection 6.4.

The representation 𝜌1 (5.22) is unitary irreducible when it acts on the Hardy
space 𝐻2. Consequently we have one more reason to abolish the template Defini-
tion 6.1: 𝐻2 is not an algebra. Instead we replace the homomorphism property by
a symmetric covariance:

Definition 6.4 ([62]). A contravariant analytic calculus for an element 𝑎 ∈ 𝔄 and
an 𝔄-module 𝑀 is a continuous linear mapping Φ : 𝐴(𝔻)→ 𝐴(𝔻,𝑀) such that:
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i. Φ is an intertwining operator

Φ𝜌1 = 𝜌𝑎Φ

between two representations of the SL2(ℝ) group 𝜌1 (5.22) and 𝜌𝑎 defined
below in (6.4).

ii. There is an initialisation condition: Φ[𝑣0] = 𝑚 for 𝑣0(𝑧) ≡ 1 and 𝑚 ∈ 𝑀 ,
where 𝑀 is a left 𝔄-module.

Note that our functional calculus, released from the homomorphism condi-
tion, can take values in any left 𝔄-module 𝑀 , which however could be 𝔄 itself if
suitable. This adds much flexibility to our construction.

The earliest functional calculus, which is not an algebraic homomorphism,
was the Weyl functional calculus and was defined just by an integral formula as
an operator-valued distribution [3]. In that paper (joint) spectrum was defined
as support of the Weyl calculus, i.e., as the set of points where this operator-
valued distribution does not vanish. We also define the spectrum as a support
of functional calculus, but due to our Definition 6.4 it will mean the set of non-
vanishing intertwining operators with primary subrepresentations.

Definition 6.5. A corresponding spectrum of 𝑎 ∈ 𝔄 is the support of the func-
tional calculus Φ, i.e., the collection of intertwining operators of 𝜌𝑎 with primary
representations [55, § 8.3].

More variations of contravariant functional calculi are obtained from other
groups and their representations [62, 66, 73, 75, 84].

A simple but important observation is that the Möbius transformations (1.1)
can be easily extended to any Banach algebra. Let 𝔄 be a Banach algebra with
the unit 𝑒, an element 𝑎 ∈ 𝔄 with ∥𝑎∥ < 1 be fixed, then

𝑔 : 𝑎 �→ 𝑔 ⋅ 𝑎 = (𝛼̄𝑎− 𝛽𝑒)(𝛼𝑒 − 𝛽𝑎)−1, 𝑔 ∈ SL2(ℝ) (6.2)

is a well-defined SL2(ℝ) action on a subset 𝔸 = {𝑔 ⋅ 𝑎 ∣ 𝑔 ∈ SL2(ℝ)} ⊂ 𝔄, i.e.,
𝔸 is a SL2(ℝ)-homogeneous space. Let us define the resolvent function 𝑅(𝑔, 𝑎) :
𝔸 → 𝔄. If

𝑅(𝑔, 𝑎) = (𝛼𝑒 − 𝛽𝑎)−1

then

𝑅(𝑔1, a)𝑅(𝑔2, 𝑔
−1
1 a) = 𝑅(𝑔1𝑔2, a). (6.3)

The last identity is well known in representation theory [55, § 13.2(10)] and is a key
ingredient of induced representations . Thus we can again linearise (6.2), cf. (5.22),
in the space of continuous functions 𝐶 (𝔸,𝑀) with values in a left 𝔄-module 𝑀 ,
e.g., 𝑀 = 𝔄:

𝜌𝑎(𝑔1) : 𝑓(𝑔
−1 ⋅ 𝑎) �→ 𝑅(𝑔−11 𝑔−1, 𝑎)𝑓(𝑔−11 𝑔−1 ⋅ 𝑎) (6.4)

= (𝛼′𝑒− 𝛽′𝑎)−1 𝑓
(
𝛼̄′ ⋅ 𝑎− 𝛽′𝑒
𝛼′𝑒− 𝛽′𝑎

)
.



42 V.V. Kisil

For any 𝑚 ∈ 𝑀 we can define a 𝐾-invariant vacuum vector as 𝑣𝑚(𝑔−1 ⋅ 𝑎) =
𝑚⊗ 𝑣0(𝑔

−1 ⋅ 𝑎) ∈ 𝐶 (𝔸,𝑀). It generates the associated with 𝑣𝑚 family of coherent
states 𝑣𝑚(𝑢, 𝑎) = (𝑢𝑒− 𝑎)−1𝑚, where 𝑢 ∈ 𝔻.

The wavelet transform defined by the same common formula based on coher-
ent states (cf. (5.23)):

𝒲𝑚𝑓(𝑔) = ⟨𝑓, 𝜌𝑎(𝑔)𝑣𝑚⟩ , (6.5)

is a version of the Cauchy integral, which maps 𝐿2(𝔸) to 𝐶 (SL2(ℝ),𝑀). It is
closely related (but not identical!) to the Riesz-Dunford functional calculus: the
traditional functional calculus is given by the case

Φ : 𝑓 �→ 𝒲𝑚𝑓(0) for 𝑀 = 𝔄 and 𝑚 = 𝑒.

Both conditions – the intertwining property and initial value – required by
Definition 6.4 easily follow from our construction. Finally, we wish to provide an
example of application of Corollary 5.8.

Example 6.6. Let 𝑎 be an operator and 𝜙 be a function which annihilates it, i.e.,
𝜙(𝑎) = 0. For example, if 𝑎 is a matrix 𝜙 can be its minimal polynomial. From
the integral representation of the contravariant calculus on 𝐺 = SL2(ℝ) we can
rewrite the annihilation property like this:∫

𝐺

𝜙(𝑔)𝑅(𝑔, 𝑎) 𝑑𝑔 = 0.

Then the vector-valued function [𝒲𝑚𝑓 ](𝑔) defined by (6.5) shall satisfy the fol-
lowing condition: ∫

𝐺

𝜙(𝑔′) [𝒲𝑚𝑓 ](𝑔𝑔′) 𝑑𝑔′ = 0

due to Corollary 5.8.

6.2. Jet bundles and prolongations of 𝝆1

Spectrum was defined in 6.5 as the support of our functional calculus. To elaborate
its meaning we need the notion of a prolongation of representations introduced by
S. Lie, see [107, 108] for a detailed exposition.

Definition 6.7. [108, Chap. 4] Two holomorphic functions have 𝑛th order contact
in a point if their value and their first 𝑛 derivatives agree at that point, in other
words their Taylor expansions are the same in their first 𝑛+ 1 terms.

A point (𝑧, 𝑢(𝑛)) = (𝑧, 𝑢, 𝑢1, . . . , 𝑢𝑛) of the jet space 𝕁𝑛 ∼ 𝔻 × ℂ𝑛 is the
equivalence class of holomorphic functions having 𝑛th contact at the point 𝑧 with
the polynomial:

𝑝𝑛(𝑤) = 𝑢𝑛
(𝑤 − 𝑧)𝑛

𝑛!
+ ⋅ ⋅ ⋅+ 𝑢1

(𝑤 − 𝑧)

1!
+ 𝑢. (6.6)

For a fixed 𝑛 each holomorphic function 𝑓 : 𝔻 → ℂ has 𝑛th prolongation (or
𝑛-jet) j𝑛𝑓 : 𝔻 → ℂ𝑛+1:

j𝑛𝑓(𝑧) = (𝑓(𝑧), 𝑓 ′(𝑧), . . . , 𝑓 (𝑛)(𝑧)). (6.7)
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The graph Γ
(𝑛)
𝑓 of j𝑛𝑓 is a submanifold of 𝕁𝑛 which is a section of the jet bundle over

𝔻 with a fibre ℂ𝑛+1. We also introduce a notation 𝐽𝑛 for the map 𝐽𝑛 : 𝑓 �→ Γ
(𝑛)
𝑓

of a holomorphic 𝑓 to the graph Γ
(𝑛)
𝑓 of its 𝑛-jet j𝑛𝑓(𝑧) (6.7).

One can prolong any map of functions 𝜓 : 𝑓(𝑧) �→ [𝜓𝑓 ](𝑧) to a map 𝜓(𝑛) of
𝑛-jets by the formula

𝜓(𝑛)(𝐽𝑛𝑓) = 𝐽𝑛(𝜓𝑓). (6.8)

For example such a prolongation 𝜌
(𝑛)
1 of the representation 𝜌1 of the group SL2(ℝ)

in 𝐻2(𝔻) (as any other representation of a Lie group [108]) will be again a repre-

sentation of SL2(ℝ). Equivalently we can say that 𝐽𝑛 intertwines 𝜌1 and 𝜌
(𝑛)
1 :

𝐽𝑛𝜌1(𝑔) = 𝜌
(𝑛)
1 (𝑔)𝐽𝑛 for all 𝑔 ∈ SL2(ℝ).

Of course, the representation 𝜌
(𝑛)
1 is not irreducible: any jet subspace 𝕁𝑘, 0 ≤

𝑘 ≤ 𝑛 is a 𝜌
(𝑛)
1 -invariant subspace of 𝕁𝑛. However the representations 𝜌

(𝑛)
1 are

primary [55, § 8.3] in the sense that they are not sums of two subrepresentations.

The following statement explains why jet spaces appeared in our study of
functional calculus.

Proposition 6.8. Let matrix 𝑎 be a Jordan block of length 𝑘 with the eigenvalue 𝜆 =
0, and 𝑚 be its root vector of order 𝑘, i.e., 𝑎𝑘−1𝑚 ∕= 𝑎𝑘𝑚 = 0. Then the restriction
of 𝜌𝑎 on the subspace generated by 𝑣𝑚 is equivalent to the representation 𝜌𝑘1 .

6.3. Spectrum and spectral mapping theorem

Now we are prepared to describe a spectrum of a matrix. Since the functional cal-
culus is an intertwining operator, its support is a decomposition into intertwining
operators with primary representations (we can not expect generally that these
primary subrepresentations are irreducible).

Recall the transitive on 𝔻 group of inner automorphisms of SL2(ℝ), which
can send any 𝜆 ∈ 𝔻 to 0 and are actually parametrised by such a 𝜆. This group
extends Proposition 6.8 to the complete characterisation of 𝜌𝑎 for matrices.

Proposition 6.9. Representation 𝜌𝑎 is equivalent to a direct sum of the prolon-

gations 𝜌
(𝑘)
1 of 𝜌1 in the 𝑘th jet space 𝕁𝑘 intertwined with inner automorphisms.

Consequently the spectrum of 𝑎 (defined via the functional calculus Φ = 𝒲𝑚) is
labelled exactly by 𝑛 pairs of numbers (𝜆𝑖, 𝑘𝑖), 𝜆𝑖 ∈ 𝔻, 𝑘𝑖 ∈ ℤ+, 1 ≤ 𝑖 ≤ 𝑛 some of
which could coincide.

Obviously this spectral theory is a fancy restatement of the Jordan normal
form of matrices.

Example 6.10. Let 𝐽𝑘(𝜆) denote the Jordan block of length 𝑘 for the eigenvalue
𝜆. In Figure 11 there are two pictures of the spectrum for the matrix

𝑎 = 𝐽3 (𝜆1)⊕ 𝐽4 (𝜆2)⊕ 𝐽1 (𝜆3)⊕ 𝐽2 (𝜆4) ,
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(a)

X

Y

λ1λ2

λ3
λ4

(b)

X

Y

λ1λ2

λ3
λ4

Z

(c)

X

Y

λ1λ2

λ3
λ4

Z

Figure 11. Classical spectrum of the matrix from Example 6.10 is
shown at (a). Contravariant spectrum of the same matrix in the jet
space is drawn at (b). The image of the contravariant spectrum under
the map from Example 6.12 is presented at (c).

where

𝜆1 =
3

4
𝑒𝑖𝜋/4, 𝜆2 =

2

3
𝑒𝑖5𝜋/6, 𝜆3 =

2

5
𝑒−𝑖3𝜋/4, 𝜆4 =

3

5
𝑒−𝑖𝜋/3.

Part (a) represents the conventional two-dimensional image of the spectrum, i.e.,
eigenvalues of 𝑎, and (b) describes spectrum sp 𝑎 arising from the wavelet construc-
tion. The first image did not allow one to distinguish 𝑎 from many other essentially
different matrices, e.g., the diagonal matrix

diag (𝜆1, 𝜆2, 𝜆3, 𝜆4) ,

which even have a different dimensionality. At the same time Figure 11(b) com-
pletely characterises 𝑎 up to a similarity. Note that each point of sp 𝑎 in Fig-
ure 11(b) corresponds to a particular root vector, which spans a primary subrep-
resentation.

As was mentioned in the beginning of this section, a resonable spectrum
should be linked to the corresponding functional calculus by an appropriate spec-
tral mapping theorem. The new version of spectrum is based on prolongation of
𝜌1 into jet spaces (see Section 6.2). Naturally a correct version of the spectral
mapping theorem should also operate in jet spaces.

Let 𝜙 : 𝔻 → 𝔻 be a holomorphic map and let us define its action on functions
[𝜙∗𝑓 ](𝑧) = 𝑓(𝜙(𝑧)). According to the general formula (6.8) we can define the

prolongation 𝜙
(𝑛)
∗ onto the jet space 𝕁𝑛. Its associated action 𝜌𝑘1𝜙

(𝑛)
∗ = 𝜙

(𝑛)
∗ 𝜌𝑛1 on

the pairs (𝜆, 𝑘) is given by the formula

𝜙
(𝑛)
∗ (𝜆, 𝑘) =

(
𝜙(𝜆),

[
𝑘

deg𝜆 𝜙

])
, (6.9)

where deg𝜆 𝜙 denotes the degree of zero of the function 𝜙(𝑧) − 𝜙(𝜆) at the point
𝑧 = 𝜆 and [𝑥] denotes the integer part of 𝑥.

http://www.maths.leeds.ac.uk/~kisilv/calc1vr.gif
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Theorem 6.11 (Spectral mapping). Let 𝜙 be a holomorphic mapping 𝜙 : 𝔻 → 𝔻

and its prolonged action 𝜙
(𝑛)
∗ be defined by (6.9), then

sp𝜙(𝑎) = 𝜙
(𝑛)
∗ sp 𝑎.

The explicit expression of (6.9) for 𝜙
(𝑛)
∗ , which involves derivatives of 𝜙 up

to 𝑛th order, is known, see for example [41, Thm. 6.2.25], but was not recognised
before as a form of spectral mapping.

Example 6.12. Let us continue with Example 6.10. Let 𝜙 map all four eigenvalues
𝜆1, . . . , 𝜆4 of the matrix 𝑎 into themselves. Then Figure 11(a) will represent the
classical spectrum of 𝜙(𝑎) as well as 𝑎.

However Figure 11(c) shows that the mapping of the new spectrum for the
case 𝜙 has orders of zeros at these points as follows: the order 1 at 𝜆1, exactly the
order 3 at 𝜆2, an order at least 2 at 𝜆3, and finally any order at 𝜆4.

6.4. Functional model and spectral distance

Let 𝑎 be a matrix and 𝜇(𝑧) be its minimal polynomial :

𝜇𝑎(𝑧) = (𝑧 − 𝜆1)
𝑚1 ⋅ ⋅ ⋅ ⋅ ⋅ (𝑧 − 𝜆𝑛)

𝑚𝑛 .

If all eigenvalues 𝜆𝑖 of 𝑎 (i.e., all roots of 𝜇(𝑧) belong to the unit disk we can
consider the respective Blaschke product

𝐵𝑎(𝑧) =

𝑛∏
𝑖=1

(
𝑧 − 𝜆𝑖

1− 𝜆𝑖𝑧

)𝑚𝑖

,

such that its numerator coincides with the minimal polynomial 𝜇(𝑧). Moreover,

for a unimodular 𝑧 we have 𝐵𝑎(𝑧) = 𝜇𝑎(𝑧)𝜇
−1
𝑎 (𝑧)𝑧−𝑚, where 𝑚 = 𝑚1 + ⋅ ⋅ ⋅+𝑚𝑛.

We also have the following covariance property:

Proposition 6.13. The above correspondence 𝑎 �→ 𝐵𝑎 intertwines the SL2(ℝ) ac-
tion (6.2) on matrices with the action (5.22) with 𝑘 = 0 on functions.

The result follows from the observation that every elementary product 𝑧−𝜆𝑖

1−𝜆𝑖𝑧

is the Möbius transformation of 𝑧 with the matrix

(
1 −𝜆𝑖
−𝜆𝑖 1

)
. Thus the cor-

respondence 𝑎 �→ 𝐵𝑎(𝑧) is a covariant (symbolic) calculus in the sense of Defini-
tion 4.20. See also Example 4.19.

The Jordan normal form of a matrix provides a description which is equivalent
to its contravariant spectrum. From various viewpoints, e.g., numerical approxi-
mations, it is worth considering its stability under a perturbation. It is easy to
see that an arbitrarily small disturbance breaks the Jordan structure of a matrix.
However, the result of a random small perturbation will not be random; its nature
is described by the following remarkable theorem:
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(a) (b)

Figure 12. Perturbation of the Jordan block’s spectrum: (a) The spec-
trum of the perturbation 𝐽100 + 𝜀100𝐾 of the Jordan block 𝐽100 by a
random matrix 𝐾. (b) The spectrum of the random matrix 𝐾.

Theorem 6.14 (Lidskii [100], see also [104]). Let 𝐽𝑛 be a Jordan block of a length
𝑛 > 1 with zero eigenvalues and 𝐾 be an arbitrary matrix. Then eigenvalues of
the perturbed matrix 𝐽𝑛 + 𝜀𝑛𝐾 admit the expansion

𝜆𝑗 = 𝜀𝜉1/𝑛 + 𝑜(𝜀), 𝑗 = 1, . . . , 𝑛,

where 𝜉1/𝑛 represents all 𝑛th complex roots of certain 𝜉 ∈ ℂ.

The left-hand picture in Figure 12 presents a perturbation of a Jordan block
𝐽100 by a random matrix. Perturbed eigenvalues are close to vertices of a right
polygon with 100 vertices. Those regular arrangements occur despite the fact that
eigenvalues of the matrix 𝐾 are dispersed through the unit disk (the right-hand
picture in Fig. 12). In a sense it is rather that the Jordan block regularises eigen-
values of 𝐾 than that 𝐾 perturbs the eigenvalue of the Jordan block.

Although the Jordan structure itself is extremely fragile, it still can be easily
guessed from a perturbed eigenvalue. Thus there exists a certain characterisation
of matrices which is stable under small perturbations. We will describe a sense
in which the covariant spectrum of the matrix 𝐽𝑛 + 𝜀𝑛𝐾 is stable for small 𝜀.
For this we introduce the covariant version of spectral distances motivated by
the functional model. Our definition is different from other types known in the
literature [123, Ch. 5].

Definition 6.15. Let 𝑎 and 𝑏 be two matrices with all their eigenvalues sitting inside
of the unit disk and 𝐵𝑎(𝑧) and 𝐵𝑏(𝑧) be respective Blaschke products as defined
above. The (covariant) spectral distance 𝑑(𝑎, 𝑏) between 𝑎 and 𝑏 is equal to the
distance ∥𝐵𝑎 −𝐵𝑏∥2 between 𝐵𝑎(𝑧) and 𝐵𝑏(𝑧) in the Hardy space on the unit
circle.
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Since the spectral distance is defined through the distance in 𝐻2, all standard
axioms of a distance are automatically satisfied. For a Blaschke product we have
∣𝐵𝑎(𝑧)∣ = 1 if ∣𝑧∣ = 1, thus ∥𝐵𝑎∥𝑝 = 1 in any 𝐿𝑝 on the unit circle. Therefore an
alternative expression for the spectral distance is

𝑑(𝑎, 𝑏) = 2(1− ⟨𝐵𝑎, 𝐵𝑏⟩).
In particular, we always have 0 ≤ 𝑑(𝑎, 𝑏) ≤ 2. We get an obvious consequence of
Proposition 6.13, which justifies the name of the covariant spectral distance:

Corollary 6.16. For any 𝑔 ∈ SL2(ℝ) we have 𝑑(𝑎, 𝑏) = 𝑑(𝑔 ⋅𝑎, 𝑔 ⋅𝑎), where ⋅ denotes
the Möbius action (6.2).

An important property of the covariant spectral distance is its stability under
small perturbations.

Theorem 6.17. For 𝑛 = 2 let 𝜆1(𝜀) and 𝜆2(𝜀) be eigenvalues of the matrix 𝐽2+𝜀2 ⋅𝐾
for some matrix 𝐾. Then

∣𝜆1(𝜀)∣+ ∣𝜆2(𝜀)∣ = 𝑂(𝜀), however ∣𝜆1(𝜀) + 𝜆2(𝜀)∣ = 𝑂(𝜀2). (6.10)

The spectral distance from the 1-jet at 0 to two 0-jets at points 𝜆1 and 𝜆2 bounded
only by the first condition in (6.10) is 𝑂(𝜀2). However the spectral distance between
𝐽2 and 𝐽2 + 𝜀2 ⋅𝐾 is 𝑂(𝜀4).

In other words, a matrix with eigenvalues satisfying the Lisdkii condition
from Theorem 6.14 is much closer to the Jordan block 𝐽2 than a generic one with
eigenvalues of the same order. Thus the covariant spectral distance is more stable
under perturbation that magnitude of eigenvalues. For 𝑛 = 2 a proof can be forced
through a direct calculation. We also conjecture that a similar statement is true
for any 𝑛 ≥ 2.

6.5. Covariant pencils of operators

Let 𝐻 be a real Hilbert space, possibly of finite dimensionality. For bounded linear
operators 𝐴 and 𝐵 consider the generalised eigenvalue problem, that is finding a
scalar 𝜆 and a vector 𝑥 ∈ 𝐻 such that

𝐴𝑥 = 𝜆𝐵𝑥 or equivalently (𝐴− 𝜆𝐵)𝑥 = 0. (6.11)

The standard eigenvalue problem corresponds to the case 𝐵 = 𝐼, moreover for
an invertible 𝐵 the generalised problem can be reduced to the standard one for
the operator 𝐵−1𝐴. Thus it is sensible to introduce an equivalence relation on the
pairs of operators:

(𝐴,𝐵) ∼ (𝐷𝐴,𝐷𝐵) for any invertible operator 𝐷. (6.12)

We may treat the pair (𝐴,𝐵) as a column vector

(
𝐴
𝐵

)
. Then there is an

action of the SL2(ℝ) group on the pairs:

𝑔 ⋅
(
𝐴
𝐵

)
=

(
𝑎𝐴+ 𝑏𝐵
𝑐𝐴+ 𝑑𝐵

)
, where 𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℝ). (6.13)
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If we consider this SL2(ℝ)-action subject to the equivalence relation (6.12) then
we will arrive at a version of the linear-fractional transformation of the operator
defined in (6.2). There is a connection of the SL2(ℝ)-action (6.13) to the prob-
lem (6.11) through the following intertwining relation:

Proposition 6.18. Let 𝜆 and 𝑥 ∈ 𝐻 solve the generalised eigenvalue problem (6.11)
for the pair (𝐴,𝐵). Then the pair (𝐶,𝐷) = 𝑔 ⋅ (𝐴,𝐵), 𝑔 ∈ SL2(ℝ) has a solution
𝜇 and 𝑥, where

𝜇 = 𝑔 ⋅ 𝜆 =
𝑎𝜆+ 𝑏

𝑐𝜆+ 𝑑
, for 𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℝ),

is defined by the Möbius transformation (1.1).

In other words the correspondence

(𝐴,𝐵) �→ all generalised eigenvalues

is another realisation of a covariant calculus in the sense of Definition 4.20. The
collection of all pairs 𝑔 ⋅ (𝐴,𝐵), 𝑔 ∈ SL2(ℝ) is an example of a covariant pencil of
operators. This set is an SL2(ℝ)-homogeneous space, thus it shall be within the
classification of such homogeneous spaces provided in Subsection 2.1.

Example 6.19. It is easy to demonstrate that all existing homogeneous spaces can
be realised by matrix pairs.

i. Take the pair (𝑂, 𝐼) where 𝑂 and 𝐼 are the zero and identity 𝑛× 𝑛 matrices
respectively. Then any transformation of this pair by a lower-triangular ma-
trix from SL2(ℝ) is equivalent to (𝑂, 𝐼). The respective homogeneous space
is isomorphic to the real line with the Möbius transformations (1.1).

ii. Consider 𝐻 = ℝ2. Using the notations 𝜄 from Subsection 1.1 we define three
realisations (elliptic, parabolic and hyperbolic) of an operator 𝐴𝜄:

𝐴i =

(
0 1
−1 0

)
, 𝐴𝜀 =

(
0 1
0 0

)
, 𝐴j =

(
0 1
1 0

)
. (6.14)

Then for an arbitrary element ℎ of the subgroup 𝐾, 𝑁 or 𝐴 the respective
(in the sense of Principle 3.5) pair ℎ ⋅ (𝐴𝜄, 𝐼) is equivalent to (𝐴𝜄, 𝐼) itself.
Thus those three homogeneous spaces are isomorphic to the elliptic, parabolic
and hyperbolic half-planes under respective actions of SL2(ℝ). Note, that
𝐴2
𝜄 = 𝜄2𝐼, that is 𝐴𝜄 is a model for hypercomplex units.

iii. Let 𝐴 be a direct sum of any two different matrices out of the three 𝐴𝜄

from (6.14), then the fix group of the equivalence class of the pair (𝐴, 𝐼) is
the identity of SL2(ℝ). Thus the corresponding homogeneous space coincides
with the group itself.

Having homogeneous spaces generated by pairs of operators, we can define
respective functions on those spaces. Special attention is due the following para-
phrase of the resolvent:

𝑅(𝐴,𝐵)(𝑔) = (𝑐𝐴+ 𝑑𝐵)−1 where 𝑔−1 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿2(ℝ).
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Obviously 𝑅(𝐴,𝐵)(𝑔) contains the essential information about the pair (𝐴,𝐵).
Probably, the function 𝑅(𝐴,𝐵)(𝑔) contains too much simultaneous information,
so we may restrict it to get a more detailed view. For vectors 𝑢, 𝑣 ∈ 𝐻 we also
consider vector- and scalar-valued functions related to the generalised resolvent

𝑅𝑢
(𝐴,𝐵)(𝑔) = (𝑐𝐴+ 𝑑𝐵)−1𝑢, and 𝑅

(𝑢,𝑣)
(𝐴,𝐵)(𝑔) =

〈
(𝑐𝐴+ 𝑑𝐵)−1𝑢, 𝑣

〉
,

where (𝑐𝐴+𝑑𝐵)−1𝑢 is understood as a solution 𝑤 of the equation 𝑢 = (𝑐𝐴+𝑑𝐵)𝑤
if it exists and is unique; this does not require the full invertibility of 𝑐𝐴+ 𝑑𝐵.

It is easy to see that the map (𝐴,𝐵) �→ 𝑅
(𝑢,𝑣)
(𝐴,𝐵)(𝑔) is a covariant calculus as

well. It is worth noticing that function 𝑅(𝐴,𝐵) can again fall into three EPH cases.

Example 6.20. For the three matrices 𝐴𝜄 considered in the previous example we
denote by 𝑅𝜄(𝑔) the resolvent-type function of the pair (𝐴𝜄, 𝐼). Then

𝑅i(𝑔) =
1

𝑐2 + 𝑑2

(
𝑑 −𝑐
𝑐 𝑑

)
,

𝑅𝜀(𝑔) =
1

𝑑2

(
𝑑 −𝑐
0 𝑑

)
,

𝑅j(𝑔) =
1

𝑑2 − 𝑐2

(
𝑑 −𝑐
−𝑐 𝑑

)
.

Put 𝑢 = (1, 0) ∈ 𝐻 , then 𝑅𝜄(𝑔)𝑢 is a two-dimensional real vector-valued func-
tion with components equal to the real and imaginary parts of the hypercomplex
Cauchy kernel considered in [86].

Consider the space 𝐿(𝐺) of functions spanned by all left translations of
𝑅(𝐴,𝐵)(𝑔). As usual, a closure in a suitable metric, say 𝐿𝑝, can be taken. The

left action 𝑔 : 𝑓(ℎ) �→ 𝑓(𝑔−1ℎ) of 𝑆𝐿2(ℝ) on this space is a linear representation
of this group. Afterwards the representation can be decomposed into a sum of
primary subrepresentations.

Example 6.21. For the matrices 𝐴𝜄 the irreducible components are isomorphic to
analytic spaces of hypercomplex functions under the fraction-linear transforma-
tions built in Subsection 3.2.

An important observation is that a decomposition into irreducible or primary
components can reveal an EPH structure even in the cases that hide it on the
homogeneous space level.

Example 6.22. Take the operator 𝐴 = 𝐴i ⊕ 𝐴j from Example 6.19(iii). The cor-
responding homogeneous space coincides with the entire SL2(ℝ). However if we
take two vectors 𝑢i = (1, 0) ⊕ (0, 0) and 𝑢j = (0, 0) ⊕ (1, 0), then the respective
linear spaces generated by functions 𝑅𝐴(𝑔)𝑢i and 𝑅𝐴(𝑔)𝑢j will be of elliptic and
hyperbolic types respectively.
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Let us briefly consider a quadratic eigenvalue problem: for given operators
(matrices) 𝐴0, 𝐴1 and 𝐴2 from 𝐵(𝐻), find a scalar 𝜆 and a vector 𝑥 ∈ 𝐻 such
that

𝑄(𝜆)𝑥 = 0, where 𝑄(𝜆) = 𝜆2𝐴2 + 𝜆𝐴1 +𝐴0. (6.15)

There is a connection with our study of conic sections from Subsection 2.2 which
we will only hint at now. Comparing (6.15) with the equation of the cycle (2.7)
we can associate the respective Fillmore–Springer–Cnops–type matrix to 𝑄(𝜆),
cf. (2.8):

𝑄(𝜆) = 𝜆2𝐴2 + 𝜆𝐴1 +𝐴0 ←→ 𝐶𝑄 =

(
𝐴1 𝐴0

𝐴2 −𝐴1

)
. (6.16)

Then we can state the following analogue of Theorem 2.4 for the quadratic eigen-
values:

Proposition 6.23. Let two quadratic matrix polynomials 𝑄 and 𝑄̃ be such that their
FSC matrices (6.16) are conjugated 𝐶𝑄̃ = 𝑔𝐶𝑄𝑔

−1 by an element 𝑔 ∈ SL2(ℝ).
Then 𝜆 is a solution of the quadratic eigenvalue problem for 𝑄 and 𝑥 ∈ 𝐻 if and
only if 𝜇 = 𝑔 ⋅ 𝜆 is a solution of the quadratic eigenvalue problem for 𝑄̃ and 𝑥.
Here 𝜇 = 𝑔 ⋅ 𝜆 is the Möbius transformation (1.1) associated to 𝑔 ∈ SL2(ℝ).

So quadratic matrix polynomials are non-commuting analogues of the cycles
and it would be exciting to extend the geometry from Section 2 to this non-com-
mutative setting as much as possible.

Remark 6.24. It is beneficial to extend a notion of a scalar in an (generalised)
eigenvalue problem to an abstract field or ring. For example, we can consider
pencils of operators/matrices with polynomial coefficients. In many circumstances
we may factorise the polynomial ring by an ideal generated by a collection of
algebraic equations. Our work with hypercomplex units is the most elementary
realisation of this setup. Indeed, the algebra of hypercomplex numbers with the
hypercomplex unit 𝜄 is a realisation of the polynomial ring in a variable 𝑡 factored
by the single quadratic relation 𝑡2 + 𝜎 = 0, where 𝜎 = 𝜄2.

7. Quantum mechanics

Complex-valued representations of the Heisenberg group (also known as Weyl
or Heisenberg-Weyl group) provide a natural framework for quantum mechan-
ics [31, 43]. This is the most fundamental example of the Kirillov orbit method,
induced representations and geometrical quantisation technique [56,57]. Following
the presentation in Section 3 we will consider representations of the Heisenberg
group which are induced by hypercomplex characters of its centre: complex (which
correspond to the elliptic case), dual (parabolic) and double (hyperbolic).

To describe dynamics of a physical system we use a universal equation based
on inner derivations (commutator) of the convolution algebra [70,74]. The complex-
valued representations produce the standard framework for quantum mechanics
with the Heisenberg dynamical equation [126].
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The double number-valued representations, with the hyperbolic unit j2 = 1,
is a natural source of hyperbolic quantum mechanics that has been developed for
some time [45, 46, 49, 51, 52]. The universal dynamical equation employs a hyper-
bolic commutator in this case. This can be seen as a Moyal bracket based on the
hyperbolic sine function. The hyperbolic observables act as operators on a Krein
space with an indefinite inner product. Such spaces are employed in studies of
𝒫𝒯 -symmetric Hamiltonians and the hyperbolic unit j2 = 1 naturally appears in
this setup [38].

Representations with values in dual numbers provide a convenient description
of classical mechanics. For this we do not take any sort of semiclassical limit, rather
the nilpotency of the parabolic unit (𝜀2 = 0) does the task. This removes the
vicious necessity to consider the Planck constant tending to zero. The dynamical
equation takes the Hamiltonian form. We also describe classical non-commutative
representations of the Heisenberg group which acts in the first jet space.

Remark 7.1. It is worth noting that our technique is different from the contraction
technique in the theory of Lie groups [37, 99]. Indeed a contraction of the Heisen-
berg group ℍ𝑛 is the commutative Euclidean group ℝ2𝑛 which does not recreate
either quantum or classical mechanics.

The approach provides not only three different types of dynamics, it also gen-
erates the respective rules for addition of probabilities as well. For example, quan-
tum interference is a consequence of the same complex-valued structure that directs
the Heisenberg equation. The absence of an interference (a particle behaviour) in
classical mechanics is again a consequence of the nilpotency of the parabolic unit.
Double numbers created the hyperbolic law of additions of probabilities, which
has been extensively investigated [49, 51]. There are still unresolved issues with
positivity of the probabilistic interpretation in the hyperbolic case [45, 46].

Remark 7.2. Since Dirac’s paper [25], it has been commonly accepted that the
striking (or even the only) difference between quantum and classical mechanics is
non-commutativity of observables in the first case. In particular the Heisenberg
commutation relations (7.5) imply the uncertainty principle, the Heisenberg equa-
tion of motion and other quantum features. However, the entire book of Feynman
on QED [30] does not contain any reference to non-commutativity. Moreover, our
work shows that there is a non-commutative formulation of classical mechanics.
Non-commutative representations of the Heisenberg group in dual numbers implies
the Poisson dynamical equation and local addition of probabilities in Section 7.6,
which are completely classical.

This entirely dispels any illusive correlation between classical/quantum and
commutative/non-commutative. Instead we show that quantum mechanics is fully
determined by the properties of complex numbers. In Feynman’s exposition [30]
complex numbers are presented by a clock, rotations of its arm encode multipli-
cations by unimodular complex numbers. Moreover, there is no presentation of
quantum mechanics that does not employ complex phases (numbers) in one or
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another form. Analogous parabolic and hyperbolic phases (or characters produced
by associated hypercomplex numbers, see Section 3.1) lead to classical and hyper-
complex mechanics respectively.

This section clarifies foundations of quantum and classical mechanics. We
recovered the existence of three non-isomorphic models of mechanics from the
representation theory. They were already derived in [45,46] from a translation in-
variant formulation, that is from the group theory as well. It was also hinted that
the hyperbolic counterpart is (at least theoretically) as natural as classical and
quantum mechanics are. This approach provides a framework for a description of
an aggregate system which could have both quantum and classical components.
Such a framework can be used to model quantum computers with classical termi-
nals [80].

Remarkably, simultaneously with the work in [45], group-invariant axiomatics
of geometry led R.I. Pimenov [114] to a description of 3𝑛 Cayley–Klein construc-
tions. The connections between group-invariant geometry and respective mechanics
were explored in many works of N.A. Gromov, see for example [35–37]. They al-
ready highlighted the rôle of three types of hypercomplex units for the realisation
of elliptic, parabolic and hyperbolic geometry and kinematics.

There is a further connection between representations of the Heisenberg group
and hypercomplex numbers. The symplectomorphisms of phase space are also
automorphisms of the Heisenberg group [31, § 1.2]. We recall that the symplectic
group Sp(2) [31, § 1.2] is isomorphic to the group SL2(ℝ) [44,97,102] and provides
linear symplectomorphisms of the two-dimensional phase space. It has three types
of non-isomorphic one-dimensional continuous subgroups (2.4–2.6) with symplectic
action on the phase space illustrated by Figure 9. Hamiltonians, which produce
those symplectomorphisms, are of interest [121; 122; 127, § 3.8]. An analysis of
those Hamiltonians from Subsection 3.3 by means of ladder operators recreates
hypercomplex coefficients as well [87].

Harmonic oscillators, which we shall use as the main illustration here, are
treated in most textbooks on quantum mechanics. This is efficiently done through
creation/annihilation (ladder) operators, cf. § 3.3 and [13, 33]. The underlying
structure is the representation theory of the Heisenberg and symplectic groups [31;
43; 97, § VI.2; 120, § 8.2]. As we will see, they are naturally connected with
respective hypercomplex numbers. As a result we obtain further illustrations of
the similarity and correspondence Principle 3.5.

We work with the simplest case of a particle with only one degree of freedom.
Higher dimensions and the respective group of symplectomorphisms Sp(2𝑛) may
require consideration of Clifford algebras [20, 21, 38, 60, 115].

7.1. The Heisenberg group and its automorphisms

7.1.1. The Heisenberg group and induced representations. Let (𝑠, 𝑥, 𝑦), where 𝑠,
𝑥, 𝑦 ∈ ℝ, be an element of the one-dimensional Heisenberg group ℍ1 [31, 43].
Consideration of the general case of ℍ𝑛 will be similar, but is beyond the scope of
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the present discussion. The group law on ℍ1 is given as follows:

(𝑠, 𝑥, 𝑦) ⋅ (𝑠′, 𝑥′, 𝑦′) = (𝑠+ 𝑠′ + 1
2𝜔(𝑥, 𝑦;𝑥

′, 𝑦′), 𝑥+ 𝑥′, 𝑦 + 𝑦′), (7.1)

where the non-commutativity is due to 𝜔 – the symplectic form on ℝ2𝑛, which is
the central object of classical mechanics [4, § 37]:

𝜔(𝑥, 𝑦;𝑥′, 𝑦′) = 𝑥𝑦′ − 𝑥′𝑦. (7.2)

The Heisenberg group is a non-commutative Lie group with centre

𝑍 = {(𝑠, 0, 0) ∈ ℍ1, 𝑠 ∈ ℝ}.
The left shifts

Λ(𝑔) : 𝑓(𝑔′) �→ 𝑓(𝑔−1𝑔′) (7.3)

act as a representation of ℍ1 on a certain linear space of functions. For example,
an action on 𝐿2(ℍ, 𝑑𝑔) with respect to the Haar measure 𝑑𝑔 = 𝑑𝑠 𝑑𝑥 𝑑𝑦 is the left
regular representation, which is unitary.

The Lie algebra 𝔥𝑛 of ℍ1 is spanned by left-(right-)invariant vector fields

𝑆𝑙(𝑟) = ±∂𝑠, 𝑋 𝑙(𝑟) = ±∂𝑥 − 1
2𝑦∂𝑠, 𝑌 𝑙(𝑟) = ±∂𝑦 + 1

2𝑥∂𝑠 (7.4)

on ℍ1 with the Heisenberg commutator relation

[𝑋 𝑙(𝑟), 𝑌 𝑙(𝑟)] = 𝑆𝑙(𝑟) (7.5)

and all other commutators vanishing. We will sometimes omit the superscript 𝑙 for
a left-invariant field.

We can construct linear representations of ℍ1 by induction [55, § 13] from a
character 𝜒 of the centre 𝑍. Here we prefer the following one, cf. § 3.2 and [55, § 13;
120, Ch. 5]. Let 𝐹𝜒

2 (ℍ
𝑛) be the space of functions on ℍ𝑛 having the properties

𝑓(𝑔ℎ) = 𝜒(ℎ)𝑓(𝑔), for all 𝑔 ∈ ℍ𝑛, ℎ ∈ 𝑍 (7.6)

and ∫
ℝ2𝑛

∣𝑓(0, 𝑥, 𝑦)∣2 𝑑𝑥 𝑑𝑦 <∞. (7.7)

Then 𝐹𝜒
2 (ℍ

𝑛) is invariant under left shifts and those shifts restricted to 𝐹𝜒
2 (ℍ

𝑛)
make a representation 𝜌𝜒 of ℍ𝑛 induced by 𝜒.

If the character 𝜒 is unitary, then the induced representation is unitary as
well. However the representation 𝜌𝜒 is not necessarily irreducible. Indeed, left shifts
commute with the right action of the group. Thus any subspace of null-solutions
of a linear combination 𝑎𝑆 +

∑𝑛
𝑗=1(𝑏𝑗𝑋𝑗 + 𝑐𝑗𝑌𝑗) of left-invariant vector fields is

left-invariant and we can restrict 𝜌𝜒 to this subspace. The left-invariant differential
operators define analytic conditions for functions, cf. Corollary 5.6.

Example 7.3. The function 𝑓0(𝑠, 𝑥, 𝑦) = 𝑒iℎ𝑠−ℎ(𝑥
2+𝑦2)/4, where ℎ = 2𝜋ℏ, belongs to

𝐹𝜒
2 (ℍ

𝑛) for the character 𝜒(𝑠) = 𝑒iℎ𝑠. It is also a null solution for all the operators
𝑋𝑗 − i𝑌𝑗 . The closed linear span of functions 𝑓𝑔 = Λ(𝑔)𝑓0 is invariant under left
shifts and provides a model for Fock–Segal–Bargmann (FSB) type representation
of the Heisenberg group, which will be considered below.
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7.1.2. Symplectic automorphisms of the Heisenberg group. The group of outer
automorphisms of ℍ1, which trivially acts on the centre of ℍ1, is the symplectic
group Sp(2). It is the group of symmetries of the symplectic form 𝜔 in (7.1) [31,
Thm. 1.22; 42, p. 830]. The symplectic group is isomorphic to SL2(ℝ) considered
in the first half of this work. The explicit action of Sp(2) on the Heisenberg group
is

𝑔 : ℎ = (𝑠, 𝑥, 𝑦) �→ 𝑔(ℎ) = (𝑠, 𝑥′, 𝑦′), (7.8)

where

𝑔 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ Sp(2), and

(
𝑥′

𝑦′

)
=

(
𝑎 𝑏
𝑐 𝑑

)(
𝑥
𝑦

)
.

The Shale–Weil theorem [31, § 4.2; 42, p. 830] states that any representation 𝜌
ℏ
of

the Heisenberg groups generates a unitary oscillator (or metaplectic) representa-

tion 𝜌SW
ℏ

of the S̃p(2), the two-fold cover of the symplectic group [31, Thm. 4.58].

We can consider the semidirect product 𝐺 = ℍ1 ⋊ S̃p(2) with the standard
group law

(ℎ, 𝑔) ∗ (ℎ′, 𝑔′) = (ℎ ∗ 𝑔(ℎ′), 𝑔 ∗ 𝑔′), where ℎ, ℎ′ ∈ ℍ1, 𝑔, 𝑔′ ∈ S̃p(2), (7.9)

and the stars denote the respective group operations while the action 𝑔(ℎ′) is

defined as the composition of the projection map S̃p(2) → Sp(2) and the ac-
tion (7.8). This group is sometimes called the Schrödinger group and is known as
the maximal kinematical invariance group of both the free Schrödinger equation
and the quantum harmonic oscillator [105]. This group is of interest not only in
quantum mechanics but also in optics [121, 122]. The Shale–Weil theorem allows
us to expand any representation 𝜌

ℏ
of the Heisenberg group to the representation

𝜌2
ℏ
= 𝜌

ℏ
⊕ 𝜌SW

ℏ
of the group 𝐺.

Consider the Lie algebra 𝔰𝔭2 of the group Sp(2). We again use the basis 𝐴,
𝐵, 𝑍 (3.12) with commutators (3.13). Vectors 𝑍, 𝐵 − 𝑍/2 and 𝐵 are generators
of the one-parameter subgroups 𝐾, 𝑁 ′ and 𝐴′ (2.4–2.6) respectively. Furthermore
we can consider the basis {𝑆,𝑋, 𝑌,𝐴,𝐵, 𝑍} of the Lie algebra 𝔤 of the Lie group

𝐺 = ℍ1 ⋊ S̃p(2). All non-zero commutators besides those already listed in (7.5)
and (3.13) are:

[𝐴,𝑋 ] = 1
2𝑋, [𝐵,𝑋 ] = − 1

2𝑌, [𝑍,𝑋 ] = 𝑌 ; (7.10)

[𝐴, 𝑌 ] = − 1
2𝑌, [𝐵, 𝑌 ] = − 1

2𝑋, [𝑍, 𝑌 ] = −𝑋. (7.11)

Of course, there is the derived form of the Shale–Weil representation for 𝔤. It can
often be explicitly written in contrast to the Shale–Weil representation.

Example 7.4. Let 𝜌
ℏ
be the Schrödinger representation [31, § 1.3] of ℍ1 in 𝐿2(ℝ),

that is [88, (3.5)]:

[𝜌𝜒(𝑠, 𝑥, 𝑦)𝑓 ](𝑞) = 𝑒2𝜋iℏ(𝑠−𝑥𝑦/2)+2𝜋i𝑥𝑞 𝑓(𝑞 − ℏ𝑦).

Thus the action of the derived representation on the Lie algebra 𝔥1 is:

𝜌ℏ(𝑋) = 2𝜋i𝑞, 𝜌ℏ(𝑌 ) = −ℏ 𝑑

𝑑𝑞
, 𝜌ℏ(𝑆) = 2𝜋iℏ𝐼. (7.12)
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Then the associated Shale–Weil representation of Sp(2) in 𝐿2(ℝ) has the derived
action, cf. [31, § 4.3; 121, (2.2)]:

𝜌SWℏ (𝐴) = − 𝑞

2

𝑑

𝑑𝑞
− 1

4
, 𝜌SWℏ (𝐵) = − ℏi

8𝜋

𝑑2

𝑑𝑞2
− 𝜋i𝑞2

2ℏ
, 𝜌SWℏ (𝑍) =

ℏi

4𝜋

𝑑2

𝑑𝑞2
− 𝜋i𝑞2

ℏ
.

(7.13)
We can verify commutators (7.5) and (3.13), (7.11) for operators (7.12–7.13). It is
also obvious that in this representation the following algebraic relations hold:

𝜌SW
ℏ (𝐴) =

i

4𝜋ℏ
(𝜌

ℏ(𝑋)𝜌ℏ(𝑌 )− 1
2𝜌ℏ(𝑆)) (7.14)

=
i

8𝜋ℏ
(𝜌ℏ(𝑋)𝜌ℏ(𝑌 ) + 𝜌ℏ(𝑌 )𝜌ℏ(𝑋)),

𝜌SWℏ (𝐵) =
i

8𝜋ℏ
(𝜌ℏ(𝑋)2 − 𝜌ℏ(𝑌 )2), (7.15)

𝜌SWℏ (𝑍) =
i

4𝜋ℏ
(𝜌

ℏ(𝑋)2 + 𝜌ℏ(𝑌 )2). (7.16)

Thus it is common in quantum optics to name 𝔤 as a Lie algebra with quadratic
generators, see [33, § 2.2.4].

Note that 𝜌SW
ℏ

(𝑍) is the Hamiltonian of the harmonic oscillator (up to a fac-
tor). Then we can consider 𝜌SW

ℏ
(𝐵) as the Hamiltonian of a repulsive (hyperbolic)

oscillator. The operator 𝜌SW
ℏ

(𝐵 −𝑍/2) = ℏi
4𝜋

𝑑2

𝑑𝑞2 is the parabolic analog. A graph-

ical representation of all three transformations defined by those Hamiltonians is
given in Figure 9 and a further discussion of these Hamiltonians can be found
in [127, § 3.8].

An important observation, which is often missed, is that the three linear
symplectic transformations are unitary rotations in the corresponding hypercom-
plex algebra, cf. [85, § 3]. This means, that the symplectomorphisms generated
by operators 𝑍, 𝐵 − 𝑍/2, 𝐵 within time 𝑡 coincide with the multiplication of hy-
percomplex number 𝑞 + 𝜄𝑝 by 𝑒𝜄𝑡, see Subsection 3.1 and Figure 9, which is just
another illustration of the Similarity and Correspondence Principle 3.5.

Example 7.5. There are many advantages of considering representations of the
Heisenberg group on the phase space [24; 31, § 1.6; 43, § 1.7]. A convenient ex-
pression for Fock–Segal–Bargmann (FSB) representation on the phase space is,
cf. § 7.3.1 and [24, (1); 74, (2.9)]:

[𝜌𝐹 (𝑠, 𝑥, 𝑦)𝑓 ](𝑞, 𝑝) = 𝑒−2𝜋i(ℏ𝑠+𝑞𝑥+𝑝𝑦)𝑓
(
𝑞 − ℏ

2𝑦, 𝑝+
ℏ

2𝑥
)
. (7.17)

Then the derived representation of 𝔥1 is:

𝜌𝐹 (𝑋) = −2𝜋i𝑞 + ℏ

2∂𝑝, 𝜌𝐹 (𝑌 ) = −2𝜋i𝑝− ℏ

2∂𝑞, 𝜌𝐹 (𝑆) = −2𝜋iℏ𝐼. (7.18)

This produces the derived form of the Shale–Weil representation:

𝜌SW𝐹 (𝐴) = 1
2 (𝑞∂𝑞 − 𝑝∂𝑝) , 𝜌SW𝐹 (𝐵) = − 1

2 (𝑝∂𝑞 + 𝑞∂𝑝) , 𝜌SW𝐹 (𝑍) = 𝑝∂𝑞 − 𝑞∂𝑝.
(7.19)
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Note that this representation does not contain the parameter ℏ unlike the equiv-
alent representation (7.13). Thus the FSB model explicitly shows the equivalence
of 𝜌SW

ℏ1
and 𝜌SW

ℏ2
if ℏ1ℏ2 > 0 [31, Thm. 4.57].

As we will also see below the FSB-type representations in hypercomplex
numbers produce almost the same Shale–Weil representations.

7.2. 𝒑-Mechanic formalism

Here we briefly outline a formalism [15, 63, 70, 74, 116], which allows us to unify
quantum and classical mechanics.

7.2.1. Convolutions (observables) on ℍ𝒏 and commutator. Using an invariant
measure 𝑑𝑔 = 𝑑𝑠 𝑑𝑥 𝑑𝑦 on ℍ𝑛 we can define the convolution of two functions:

(𝑘1 ∗ 𝑘2)(𝑔) =
∫
ℍ𝑛

𝑘1(𝑔1) 𝑘2(𝑔
−1
1 𝑔) 𝑑𝑔1. (7.20)

This is a non-commutative operation, which is meaningful for functions from var-
ious spaces including 𝐿1(ℍ

𝑛, 𝑑𝑔), the Schwartz space 𝑆 and many classes of dis-
tributions, which form algebras under convolutions. Convolutions on ℍ𝑛 are used
as observables in 𝑝-mechanics [63, 74].

A unitary representation 𝜌 of ℍ𝑛 extends to 𝐿1(ℍ
𝑛, 𝑑𝑔) by the formula

𝜌(𝑘) =

∫
ℍ𝑛

𝑘(𝑔)𝜌(𝑔) 𝑑𝑔. (7.21)

This is also an algebra homomorphism of convolutions to linear operators.

For a dynamics of observables we need inner derivations 𝐷𝑘 of the convolution
algebra 𝐿1(ℍ

𝑛), which are given by the commutator :

𝐷𝑘 : 𝑓 �→ [𝑘, 𝑓 ] = 𝑘 ∗ 𝑓 − 𝑓 ∗ 𝑘 (7.22)

=

∫
ℍ𝑛

𝑘(𝑔1)
(
𝑓(𝑔−11 𝑔)− 𝑓(𝑔𝑔−11 )

)
𝑑𝑔1, 𝑓, 𝑘 ∈ 𝐿1(ℍ

𝑛).

To describe dynamics of a time-dependent observable 𝑓(𝑡, 𝑔) we use the uni-
versal equation, cf. [61, 63]:

𝑆𝑓 = [𝐻, 𝑓 ], (7.23)

where 𝑆 is the left-invariant vector field (7.4) generated by the centre of ℍ𝑛. The
presence of operator 𝑆 fixes the dimensionality of both sides of the equation (7.23)
if the observable 𝐻 (Hamiltonian) has the dimensionality of energy [74, Rem 4.1].
If we apply a right inverse 𝒜 of 𝑆 to both sides of the equation (7.23) we obtain
the equivalent equation

𝑓 = {[𝐻, 𝑓 ]} , (7.24)

based on the universal bracket {[𝑘1, 𝑘2]} = 𝑘1 ∗ 𝒜𝑘2 − 𝑘2 ∗ 𝒜𝑘1 [74].

Example 7.6 (Harmonic oscillator). Let 𝐻 = 1
2 (𝑚𝑘2𝑞2+ 1

𝑚𝑝2) be the Hamiltonian
of a one-dimensional harmonic oscillator, where 𝑘 is a constant frequency and 𝑚 is
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a constant mass. Its p-mechanisation will be the second-order differential operator
on ℍ𝑛 [15, § 5.1]:

𝐻 = 1
2 (𝑚𝑘2𝑋2 + 1

𝑚𝑌 2),

where we dropped sub-indexes of vector fields (7.4) in a one-dimensional setting.
We can express the commutator as a difference between the left and the right
action of the vector fields:

[𝐻, 𝑓 ] = 1
2 (𝑚𝑘2((𝑋𝑟)2 − (𝑋 𝑙)2) + 1

𝑚 ((𝑌 𝑟)2 − (𝑌 𝑙)2))𝑓.

Thus the equation (7.23) becomes [15, (5.2)]

∂

∂𝑠
𝑓 =

∂

∂𝑠

(
𝑚𝑘2𝑦

∂

∂𝑥
− 1

𝑚
𝑥
∂

∂𝑦

)
𝑓. (7.25)

Of course, the derivative ∂
∂𝑠 can be dropped from both sides of the equation and

the general solution is found to be

𝑓(𝑡; 𝑠, 𝑥, 𝑦) = 𝑓0
(
𝑠, 𝑥 cos(𝑘𝑡) +𝑚𝑘𝑦 sin(𝑘𝑡),− 𝑥

𝑚𝑘 sin(𝑘𝑡) + 𝑦 cos(𝑘𝑡)
)
, (7.26)

where 𝑓0(𝑠, 𝑥, 𝑦) is the initial value of an observable on ℍ𝑛.

Example 7.7 (Unharmonic oscillator). We consider an unharmonic oscillator with
cubic potential, see [16] and references therein:

𝐻 =
𝑚𝑘2

2
𝑞2 +

𝜆

6
𝑞3 +

1

2𝑚
𝑝2. (7.27)

Due to the absence of non-commutative products, p-mechanisation is straightfor-
ward:

𝐻 =
𝑚𝑘2

2
𝑋2 +

𝜆

6
𝑋3 +

1

𝑚
𝑌 2.

Similarly to the harmonic case the dynamic equation, after cancellation of ∂
∂𝑠 on

both sides, becomes

𝑓 =

(
𝑚𝑘2𝑦

∂

∂𝑥
+

𝜆

6

(
3𝑦

∂2

∂𝑥2
+

1

4
𝑦3

∂2

∂𝑠2

)
− 1

𝑚
𝑥
∂

∂𝑦

)
𝑓. (7.28)

Unfortunately, it cannot be solved analytically as easily as in the harmonic case.

7.2.2. States and probability. Let an observable 𝜌(𝑘) (7.21) be defined by a kernel
𝑘(𝑔) on the Heisenberg group and its representation 𝜌 at a Hilbert space ℋ. A
state on the convolution algebra is given by a vector 𝑣 ∈ ℋ. A simple calculation,

⟨𝜌(𝑘)𝑣, 𝑣⟩ℋ =

〈∫
ℍ𝑛

𝑘(𝑔)𝜌(𝑔)𝑣 𝑑𝑔, 𝑣

〉
ℋ

=

∫
ℍ𝑛

𝑘(𝑔) ⟨𝜌(𝑔)𝑣, 𝑣⟩ℋ 𝑑𝑔

=

∫
ℍ𝑛

𝑘(𝑔)⟨𝑣, 𝜌(𝑔)𝑣⟩ℋ 𝑑𝑔
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can be restated as

⟨𝜌(𝑘)𝑣, 𝑣⟩ℋ = ⟨𝑘, 𝑙⟩ , where 𝑙(𝑔) = ⟨𝑣, 𝜌(𝑔)𝑣⟩ℋ .

Here the left-hand side contains the inner product on ℋ, while the right-hand side
uses a skew-linear pairing between functions on ℍ𝑛 based on the Haar measure
integration. In other words we obtain, cf. [15, Thm. 3.11]:

Proposition 7.8. A state defined by a vector 𝑣 ∈ ℋ coincides with the linear func-
tional given by the wavelet transform

𝑙(𝑔) = ⟨𝑣, 𝜌(𝑔)𝑣⟩ℋ (7.29)

of 𝑣 used as the mother wavelet as well.

The addition of vectors in ℋ implies the following operation on states:

⟨𝑣1 + 𝑣2, 𝜌(𝑔)(𝑣1 + 𝑣2)⟩ℋ = ⟨𝑣1, 𝜌(𝑔)𝑣1⟩ℋ + ⟨𝑣2, 𝜌(𝑔)𝑣2⟩ℋ
+ ⟨𝑣1, 𝜌(𝑔)𝑣2⟩ℋ + ⟨𝑣1, 𝜌(𝑔−1)𝑣2⟩ℋ. (7.30)

The last expression can be conveniently rewritten for kernels of the functional as

𝑙12 = 𝑙1 + 𝑙2 + 2𝐴
√
𝑙1𝑙2 (7.31)

for some real number 𝐴. This formula is behind the contextual law of addition of
conditional probabilities [50] and will be illustrated below. Its physical interpreta-
tion is an interference, say, from two slits. Despite a common belief, the mechanism
of such interference can be both causal and local, see [54, 72].

7.3. Elliptic characters and quantum dynamics

In this subsection we consider the representation 𝜌ℎ of ℍ𝑛 induced by the elliptic
character 𝜒ℎ(𝑠) = 𝑒iℎ𝑠 in complex numbers parametrised by ℎ ∈ ℝ. We also use
the convenient agreement ℎ = 2𝜋ℏ borrowed from physical literature.

7.3.1. Fock–Segal–Bargmann and Schrödinger representations. The realisation of
𝜌ℎ by the left shifts (7.3) on 𝐿ℎ

2 (ℍ
𝑛) is rarely used in quantum mechanics. Instead

two unitary equivalent forms are more common: the Schrödinger and Fock–Segal–
Bargmann (FSB) representations.

The FSB representation can be obtained from the orbit method of Kir-
illov [56]. It allows spatially separate irreducible components of the left regular
representation, each of them become located on the orbit of the co-adjoint repre-
sentation, see [56; 74, § 2.1] for details, we only present a brief summary here.

We identify ℍ𝑛 and its Lie algebra 𝔥𝑛 through the exponential map [55, § 6.4].
The dual 𝔥∗𝑛 of 𝔥𝑛 is presented by the Euclidean space ℝ2𝑛+1 with coordinates
(ℏ, 𝑞, 𝑝). The pairing 𝔥∗𝑛 and 𝔥𝑛 given by

⟨(𝑠, 𝑥, 𝑦), (ℏ, 𝑞, 𝑝)⟩ = ℏ𝑠+ 𝑞 ⋅ 𝑥+ 𝑝 ⋅ 𝑦.
This pairing defines the Fourier transformˆ : 𝐿2(ℍ

𝑛)→ 𝐿2(𝔥
∗
𝑛) given by [57, § 2.3]:

𝜙(𝐹 ) =

∫
𝔥𝑛

𝜙(exp𝑋)𝑒−2𝜋i⟨𝑋,𝐹 ⟩ 𝑑𝑋 where 𝑋 ∈ 𝔥𝑛, 𝐹 ∈ 𝔥∗𝑛. (7.32)
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For a fixed ℏ the left regular representation (7.3) is mapped by the Fourier trans-
form to the FSB type representation (7.17). The collection of points (ℏ, 𝑞, 𝑝) ∈ 𝔥∗𝑛
for a fixed ℏ is naturally identified with the phase space of the system.

Remark 7.9. It is possible to identify the case of ℏ = 0 with classical mechanics [74].
Indeed, a substitution of the zero value of ℏ into (7.17) produces the commutative
representation

𝜌0(𝑠, 𝑥, 𝑦) : 𝑓(𝑞, 𝑝) �→ 𝑒−2𝜋i(𝑞𝑥+𝑝𝑦)𝑓 (𝑞, 𝑝) . (7.33)

It can be decomposed into the direct integral of one-dimensional representations
parametrised by the points (𝑞, 𝑝) of the phase space. The classical mechanics, in-
cluding the Hamilton equation, can be recovered from those representations [74].
However the condition ℏ = 0 (as well as the semiclassical limit ℏ → 0) is not
completely physical. Commutativity (and subsequent relative triviality) of those
representations is the main reason why they are often neglected. The commutativ-
ity can be outweighed by special arrangements, e.g., an antiderivative [74, (4.1)],
but the procedure is not straightforward, see discussion in [1, 77, 79]. A direct
approach using dual numbers will be shown below, cf. Remark 7.21.

To recover the Schrödinger representation we use notations and technique
of induced representations from § 3.2, see also [66, Ex. 4.1]. The subgroup 𝐻 =
{(𝑠, 0, 𝑦) ∣ 𝑠 ∈ ℝ, 𝑦 ∈ ℝ𝑛} ⊂ ℍ𝑛 defines the homogeneous space 𝑋 = 𝐺/𝐻 ,
which coincides with ℝ𝑛 as a manifold. The natural projection p : 𝐺 → 𝑋 is
p(𝑠, 𝑥, 𝑦) = 𝑥 and its left inverse s : 𝑋 → 𝐺 can be as simple as s(𝑥) = (0, 𝑥, 0).
For the map r : 𝐺→ 𝐻 , r(𝑠, 𝑥, 𝑦) = (𝑠− 𝑥𝑦/2, 0, 𝑦) we have the decomposition

(𝑠, 𝑥, 𝑦) = s(𝑝(𝑠, 𝑥, 𝑦)) ∗ r(𝑠, 𝑥, 𝑦) = (0, 𝑥, 0) ∗ (𝑠− 1
2𝑥𝑦, 0, 𝑦).

For a character 𝜒ℎ(𝑠, 0, 𝑦) = 𝑒iℎ𝑠 of 𝐻 the lifting ℒ𝜒 : 𝐿2(𝐺/𝐻) → 𝐿𝜒
2 (𝐺) is as

follows:

[ℒ𝜒𝑓 ](𝑠, 𝑥, 𝑦) = 𝜒ℎ(r(𝑠, 𝑥, 𝑦)) 𝑓(p(𝑠, 𝑥, 𝑦)) = 𝑒iℎ(𝑠−𝑥𝑦/2)𝑓(𝑥).

Thus the representation 𝜌𝜒(𝑔) = 𝒫 ∘ Λ(𝑔) ∘ ℒ becomes

[𝜌𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑥) = 𝑒−2𝜋iℏ(𝑠

′+𝑥𝑦′−𝑥′𝑦′/2) 𝑓(𝑥− 𝑥′). (7.34)

After the Fourier transform 𝑥 �→ 𝑞 we get the Schrödinger representation on the
configuration space

[𝜌𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑞) = 𝑒−2𝜋iℏ(𝑠

′+𝑥′𝑦′/2)−2𝜋i𝑥′𝑞 𝑓(𝑞 + ℏ𝑦′). (7.35)

Note that this again turns into a commutative representation (multiplication by a
unimodular function) if ℏ = 0. To get the full set of commutative representations
in this way we need to use the character 𝜒(ℎ,𝑝)(𝑠, 0, 𝑦) = 𝑒2𝜋i(ℏ+𝑝𝑦) in the above
consideration.
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7.3.2. Commutator and the Heisenberg equation. The property (7.6) of 𝐹𝜒
2 (ℍ

𝑛)
implies that the restrictions of two operators 𝜌𝜒(𝑘1) and 𝜌𝜒(𝑘2) to this space are
equal if ∫

ℝ

𝑘1(𝑠, 𝑥, 𝑦)𝜒(𝑠) 𝑑𝑠 =

∫
ℝ

𝑘2(𝑠, 𝑥, 𝑦)𝜒(𝑠) 𝑑𝑠.

In other words, for a character 𝜒(𝑠) = 𝑒2𝜋iℏ𝑠 the operator 𝜌𝜒(𝑘) depends only on

𝑘𝑠(ℏ, 𝑥, 𝑦) =

∫
ℝ

𝑘(𝑠, 𝑥, 𝑦) 𝑒−2𝜋iℏ𝑠 𝑑𝑠,

which is the partial Fourier transform 𝑠 �→ ℏ of 𝑘(𝑠, 𝑥, 𝑦). The restriction to 𝐹𝜒
2 (ℍ

𝑛)
of the composition formula for convolutions is [74, (3.5)]:

(𝑘′ ∗ 𝑘)𝑠̂ =
∫
ℝ2𝑛

𝑒iℎ(𝑥𝑦
′−𝑦𝑥′)/2 𝑘′𝑠(ℏ, 𝑥

′, 𝑦′) 𝑘𝑠(ℏ, 𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′. (7.36)

Under the Schrödinger representation (7.35) the convolution (7.36) defines a rule
for composition of two pseudo-differential operators (PDO) in the Weyl calcu-
lus [31, § 2.3; 43].

Consequently the representation (7.21) of commutator (7.22) depends only
on its partial Fourier transform [74, (3.6)]

[𝑘′, 𝑘]𝑠̂ = 2i

∫
ℝ2𝑛

sin(ℎ2 (𝑥𝑦
′ − 𝑦𝑥′)) (7.37)

× 𝑘′𝑠(ℏ, 𝑥
′, 𝑦′) 𝑘𝑠(ℏ, 𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′.

Under the Fourier transform (7.32) this commutator is exactly the Moyal bracket

[129] for of 𝑘′ and 𝑘 on the phase space.

For observables in the space 𝐹𝜒
2 (ℍ

𝑛) the action of 𝑆 is reduced to multiplica-
tion 𝜒(𝑠) = 𝑒iℎ𝑠 the action of 𝑆 is multiplication by iℎ. Thus the equation (7.23)
reduced to the space 𝐹𝜒

2 (ℍ
𝑛) becomes the Heisenberg type equation [74, (4.4)]

𝑓 =
1

iℎ
[𝐻, 𝑓 ]𝑠̂, (7.38)

based on the above bracket (7.37). The Schrödinger representation (7.35) trans-
forms this equation into the original Heisenberg equation.

Example 7.10.

i. Under the Fourier transform (𝑥, 𝑦) �→ (𝑞, 𝑝) the p-dynamic equation (7.25) of
the harmonic oscillator becomes

𝑓 =

(
𝑚𝑘2𝑞

∂

∂𝑝
− 1

𝑚
𝑝
∂

∂𝑞

)
𝑓. (7.39)

The same transform creates its solution out of (7.26).
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ii. Since ∂
∂𝑠 acts on 𝐹𝜒

2 (ℍ
𝑛) as multiplication by iℏ, the quantum representation

of unharmonic dynamics equation (7.28) is

𝑓 =

(
𝑚𝑘2𝑞

∂

∂𝑝
+

𝜆

6

(
3𝑞2

∂

∂𝑝
− ℏ2

4

∂3

∂𝑝3

)
− 1

𝑚
𝑝
∂

∂𝑞

)
𝑓. (7.40)

This is exactly the equation for the Wigner function obtained in [16, (30)].

7.3.3. Quantum probabilities. For the elliptic character 𝜒ℎ(𝑠) = 𝑒iℎ𝑠 we can use
the Cauchy–Schwartz inequality to demonstrate that the real number 𝐴 in the
identity (7.31) is between −1 and 1. Thus we can put 𝐴 = cos𝛼 for some angle
(phase) 𝛼 to get the formula for counting quantum probabilities, cf. [51, (2)]:

𝑙12 = 𝑙1 + 𝑙2 + 2 cos𝛼
√
𝑙1𝑙2. (7.41)

Remark 7.11. It is interesting to note that both trigonometric functions are em-
ployed in quantum mechanics: sine is in the heart of the Moyal bracket (7.37) and
cosine is responsible for the addition of probabilities (7.41). In essence the com-
mutator and probabilities took respectively the odd and even parts of the elliptic
character 𝑒iℎ𝑠.

Example 7.12. Take a vector 𝑣(𝑎,𝑏) ∈ 𝐿ℎ
2 (ℍ

𝑛) defined by a Gaussian with mean
value (𝑎, 𝑏) in the phase space for a harmonic oscillator of the mass 𝑚 and the
frequency 𝑘:

𝑣(𝑎,𝑏)(𝑞, 𝑝) = exp

(
−2𝜋𝑘𝑚

ℏ
(𝑞 − 𝑎)2 − 2𝜋

ℏ𝑘𝑚
(𝑝− 𝑏)2

)
. (7.42)

A direct calculation shows that〈
𝑣(𝑎,𝑏), 𝜌ℏ(𝑠, 𝑥, 𝑦)𝑣(𝑎′,𝑏′)

〉
=

4

ℏ
exp

(
𝜋i (2𝑠ℏ+ 𝑥(𝑎+ 𝑎′) + 𝑦(𝑏+ 𝑏′))

− 𝜋

2ℏ𝑘𝑚
((ℏ𝑥+ 𝑏− 𝑏′)2 + (𝑏− 𝑏′)2)− 𝜋𝑘𝑚

2ℏ
((ℏ𝑦 + 𝑎′ − 𝑎)2 + (𝑎′ − 𝑎)2)

)
=

4

ℏ
exp

(
𝜋i (2𝑠ℏ+ 𝑥(𝑎+ 𝑎′) + 𝑦(𝑏+ 𝑏′))

− 𝜋

ℏ𝑘𝑚
((𝑏 − 𝑏′ + ℏ𝑥

2 )2 + (ℏ𝑥2 )2)− 𝜋𝑘𝑚

ℏ
((𝑎− 𝑎′ − ℏ𝑦

2 )
2 + (ℏ𝑦2 )2)

)
.

Thus the kernel 𝑙(𝑎,𝑏) =
〈
𝑣(𝑎,𝑏), 𝜌ℏ(𝑠, 𝑥, 𝑦)𝑣(𝑎,𝑏)

〉
(7.29) for a state 𝑣(𝑎,𝑏) is

𝑙(𝑎,𝑏) =
4

ℏ
exp

(
2𝜋i(𝑠ℏ+ 𝑥𝑎+ 𝑦𝑏) − 𝜋ℏ

2𝑘𝑚
𝑥2 − 𝜋𝑘𝑚ℏ

2ℏ
𝑦2
)
. (7.43)

An observable registering a particle at a point 𝑞 = 𝑐 of the configuration space is
𝛿(𝑞 − 𝑐). On the Heisenberg group this observable is given by the kernel

𝑋𝑐(𝑠, 𝑥, 𝑦) = 𝑒2𝜋i(𝑠ℏ+𝑥𝑐)𝛿(𝑦). (7.44)
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The measurement of 𝑋𝑐 on the state (7.42) (through the kernel (7.43)) pre-
dictably is 〈

𝑋𝑐, 𝑙(𝑎,𝑏)
〉
=

√
2𝑘𝑚

ℏ
exp

(
−2𝜋𝑘𝑚

ℏ
(𝑐− 𝑎)2

)
.

Example 7.13. Now take two states 𝑣(0,𝑏) and 𝑣(0,−𝑏), where for simplicity we as-
sume the mean values of coordinates vanish in both cases. Then the corresponding
kernel (7.30) has the interference terms

𝑙𝑖 =
〈
𝑣(0,𝑏), 𝜌ℏ(𝑠, 𝑥, 𝑦)𝑣(0,−𝑏)

〉
=

4

ℏ
exp

(
2𝜋i𝑠ℏ− 𝜋

2ℏ𝑘𝑚
((ℏ𝑥+ 2𝑏)2 + 4𝑏2)− 𝜋ℏ𝑘𝑚

2
𝑦2
)
.

The measurement of 𝑋𝑐 (7.44) on this term contains the oscillating part

⟨𝑋𝑐, 𝑙𝑖⟩ =
√

2𝑘𝑚

ℏ
exp

(
−2𝜋𝑘𝑚

ℏ
𝑐2 − 2𝜋

𝑘𝑚ℏ
𝑏2 +

4𝜋i

ℏ
𝑐𝑏

)
.

Therefore on the kernel 𝑙 corresponding to the state 𝑣(0,𝑏) + 𝑣(0,−𝑏) the measure-
ment is

⟨𝑋𝑐, 𝑙⟩ = 2

√
2𝑘𝑚

ℏ
exp

(
−2𝜋𝑘𝑚

ℏ
𝑐2
)(

1 + exp

(
− 2𝜋

𝑘𝑚ℏ
𝑏2
)
cos

(
4𝜋

ℏ
𝑐𝑏

))
.

The presence of the cosine term in the last expression can generate an interference
picture. In practise it does not happen for the minimal uncertainty state (7.42)
which we are using here: it rapidly vanishes outside of the neighbourhood of zero,
where oscillations of the cosine occurs, see Figure 13(a).

(a) (b)

Figure 13. Quantum probabilities: the blue (dashed) graph shows
the addition of probabilities without interaction, the red (solid) graph
presents the quantum interference. The left picture shows the Gaussian
state (7.42), the right – the rational state (7.45)
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Example 7.14. To see a traditional interference pattern one can use a state which
is far from the minimal uncertainty. For example, we can consider the state

𝑢(𝑎,𝑏)(𝑞, 𝑝) =
ℏ2

((𝑞 − 𝑎)2 + ℏ/𝑘𝑚)((𝑝− 𝑏)2 + ℏ𝑘𝑚)
. (7.45)

To evaluate the observable 𝑋𝑐 (7.44) on the state 𝑙(𝑔) = ⟨𝑢1, 𝜌ℎ(𝑔)𝑢2⟩ (7.29) we
use the following formula:

⟨𝑋𝑐, 𝑙⟩ = 2

ℏ

∫
ℝ𝑛

𝑢̂1(𝑞, 2(𝑞 − 𝑐)/ℏ) 𝑢̂2(𝑞, 2(𝑞 − 𝑐)/ℏ) 𝑑𝑞,

where 𝑢̂𝑖(𝑞, 𝑥) denotes the partial Fourier transform 𝑝 �→ 𝑥 of 𝑢𝑖(𝑞, 𝑝). The formula
is obtained by swapping order of integrations. The numerical evaluation of the state
obtained by the addition 𝑢(0,𝑏) + 𝑢(0,−𝑏) is plotted on Figure 13(b); the red curve
shows the canonical interference pattern.

7.4. Ladder operators and harmonic oscillator

Let 𝜌 be a representation of the Schrödinger group 𝐺 = ℍ1 ⋊ S̃p(2) (7.9) in a
space 𝑉 . Consider the derived representation of the Lie algebra 𝔤 [97, § VI.1] and
write 𝑋̃ = 𝜌(𝑋) for 𝑋 ∈ 𝔤. To see the structure of the representation 𝜌 we can

decompose the space 𝑉 into eigenspaces of the operator 𝑋̃ for some 𝑋 ∈ 𝔤. The
canonical example is the Taylor series in complex analysis.

We are going to consider three cases corresponding to three non-isomorphic
subgroups (2.4–2.6) of Sp(2) starting from the compact case. Let 𝐻 = 𝑍 be a gen-
erator of the compact subgroup 𝐾. Corresponding symplectomorphisms (7.8) of

the phase space are given by orthogonal rotations with matrices

(
cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

)
.

The Shale–Weil representation (7.13) coincides with the Hamiltonian of the har-
monic oscillator in Schrödinger representation.

Since S̃p(2) is a two-fold cover the corresponding eigenspaces of a compact

group 𝑍𝑣𝑘 = i𝑘𝑣𝑘 are parametrised by a half-integer 𝑘 ∈ ℤ/2. Explicitly for a
half-integer 𝑘 eigenvectors are

𝑣𝑘(𝑞) = 𝐻𝑘+ 1
2

(√
2𝜋

ℏ
𝑞

)
𝑒−

𝜋
ℏ
𝑞2 , (7.46)

where 𝐻𝑘 is the Hermite polynomial [28, 8.2(9); 31, § 1.7].
From the point of view of quantum mechanics as well as the representation

theory it is beneficial to introduce the ladder operators 𝐿± (3.14), known also as
creation/annihilation in quantum mechanics [13; 31, p. 49]. There are two ways to
search for ladder operators: in (complexified) Lie algebras 𝔥1 and 𝔰𝔭2. The latter
in essence coincides with our consideration in Section 3.3.

7.4.1. Ladder operators from the Heisenberg group. Assuming 𝐿+ = 𝑎𝑋̃+ 𝑏𝑌 we
obtain from the relations (7.10–7.11) and (3.14) the linear equations with unknown
𝑎 and 𝑏:

𝑎 = 𝜆+𝑏, −𝑏 = 𝜆+𝑎.
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The equations have a solution if and only if 𝜆2+ + 1 = 0, and the raising/lowering

operators are 𝐿± = 𝑋̃ ∓ i𝑌 .

Remark 7.15. Here we have an interesting asymmetric response: due to the struc-

ture of the semidirect product ℍ1 ⋊ S̃p(2) it is the symplectic group which acts
on ℍ1, not vise versa. However the Heisenberg group has a weak action in the
opposite direction; it shifts eigenfunctions of Sp(2).

In the Schrödinger representation (7.12) the ladder operators are

𝜌
ℏ(𝐿

±) = 2𝜋i𝑞 ± iℏ
𝑑

𝑑𝑞
. (7.47)

The standard treatment of the harmonic oscillator in quantum mechanics, which
can be found in many textbooks, e.g., [31, § 1.7; 33, § 2.2.3], is as follows. The vector
𝑣−1/2(𝑞) = 𝑒−𝜋𝑞

2/ℏ is an eigenvector of 𝑍 with the eigenvalue − i
2 . In addition

𝑣−1/2 is annihilated by 𝐿+. Thus the chain (3.16) terminates to the right and the
complete set of eigenvectors of the harmonic oscillator Hamiltonian is presented
by (𝐿−)𝑘𝑣−1/2 with 𝑘 = 0, 1, 2, . . ..

We can make a wavelet transform generated by the Heisenberg group with
the mother wavelet 𝑣−1/2, and the image will be the Fock–Segal–Bargmann (FSB)

space [31, § 1.6; 43]. Since 𝑣−1/2 is the null solution of 𝐿+ = 𝑋̃ − i𝑌 , then by
Corollary 5.6 the image of the wavelet transform will be null-solutions of the
corresponding linear combination of the Lie derivatives (7.4):

𝐷 = 𝑋𝑟 − i𝑌 𝑟 = (∂𝑥 + i∂𝑦)− 𝜋ℏ(𝑥− i𝑦), (7.48)

which turns out to be the Cauchy–Riemann equation on a weighted FSB-type
space.

7.4.2. Symplectic ladder operators. We can also look for ladder operators within
the Lie algebra 𝔰𝔭2, see § 3.3.1 and [85, § 8]. Assuming 𝐿+2 = 𝑎𝐴 + 𝑏𝐵̃ + 𝑐𝑍 from
the relations (3.13) and defining condition (3.14) we obtain the following linear
equations with unknown 𝑎, 𝑏 and 𝑐:

𝑐 = 0, 2𝑎 = 𝜆+𝑏, −2𝑏 = 𝜆+𝑎.

The equations have a solution if and only if 𝜆2+ + 4 = 0, and the raising/lowering

operators are 𝐿±2 = ±i𝐴 + 𝐵̃. In the Shale–Weil representation (7.13) they turn
out to be

𝐿±2 = ±i
(
𝑞

2

𝑑

𝑑𝑞
+

1

4

)
− ℏi

8𝜋

𝑑2

𝑑𝑞2
− 𝜋i𝑞2

2ℏ
= − i

8𝜋ℏ

(
∓2𝜋𝑞 + ℏ

𝑑

𝑑𝑞

)2

. (7.49)

Since this time 𝜆+ = 2i, the ladder operators 𝐿±2 produce a shift on the dia-
gram (3.16) twice bigger than the operators 𝐿± from the Heisenberg group. After
all, this is not surprising since from the explicit representations (7.47) and (7.49)
we get

𝐿±2 = − i

8𝜋ℏ
(𝐿±)2.



Erlangen Program at Large: An Overview 65

7.5. Hyperbolic quantum mechanics

Now we turn to double numbers also known as hyperbolic, split-complex, etc.
numbers [53; 124; 128, App. C]. They form a two-dimensional algebra 𝕆 spanned
by 1 and j with the property j2 = 1. There are zero divisors:

j± = 1√
2
(1± 𝑗), such that j+j− = 0 and j2± = j±.

Thus double numbers are algebraically isomorphic to two copies of ℝ spanned
by j±. Being algebraically dull, double numbers are nevertheless interesting as a
homogeneous space [82, 85] and they are relevant in physics [49, 124, 125]. The
combination of the p-mechanical approach with hyperbolic quantum mechanics
was already discussed in [15, § 6].

For the hyperbolic character 𝜒jℎ(𝑠) = 𝑒jℎ𝑠 = coshℎ𝑠+ j sinhℎ𝑠 of ℝ one can
define the hyperbolic Fourier-type transform

𝑘(𝑞) =

∫
ℝ

𝑘(𝑥) 𝑒−j𝑞𝑥𝑑𝑥.

It can be understood in the sense of distributions on the space dual to the set
of analytic functions [52, § 3]. A hyperbolic Fourier transform intertwines the
derivative 𝑑

𝑑𝑥 and multiplication by j𝑞 [52, Prop. 1].

Example 7.16. For the Gaussian the hyperbolic Fourier transform is the ordinary
function (note the sign difference!)∫

ℝ

𝑒−𝑥
2/2𝑒−j𝑞𝑥𝑑𝑥 =

√
2𝜋 𝑒𝑞

2/2.

However the opposite identity∫
ℝ

𝑒𝑥
2/2𝑒−j𝑞𝑥𝑑𝑥 =

√
2𝜋 𝑒−𝑞

2/2

is true only in a suitable distributional sense. To this end we may note that 𝑒𝑥
2/2

and 𝑒−𝑞
2/2 are null solutions to the differential operators 𝑑

𝑑𝑥 − 𝑥 and 𝑑
𝑑𝑞 + 𝑞 re-

spectively, which are intertwined (up to the factor j) by the hyperbolic Fourier
transform. The above differential operators 𝑑

𝑑𝑥 − 𝑥 and 𝑑
𝑑𝑞 + 𝑞 are images of the

ladder operators (7.47) in the Lie algebra of the Heisenberg group. They are inter-
twining by the Fourier transform, since this is an automorphism of the Heisenberg
group [42].

An elegant theory of hyperbolic Fourier transform may be achieved by a
suitable adaptation of [42], which uses representation theory of the Heisenberg
group.

7.5.1. Hyperbolic representations of the Heisenberg group. Consider the space
𝐹 j
ℎ(ℍ

𝑛) of 𝕆-valued functions on ℍ𝑛 with the property

𝑓(𝑠+ 𝑠′, ℎ, 𝑦) = 𝑒jℎ𝑠
′
𝑓(𝑠, 𝑥, 𝑦), for all (𝑠, 𝑥, 𝑦) ∈ ℍ𝑛, 𝑠′ ∈ ℝ, (7.50)
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and the square integrability condition (7.7). Then the hyperbolic representation

is obtained by the restriction of the left shifts to 𝐹 j
ℎ(ℍ

𝑛). To obtain an equiva-
lent representation on the phase space we take an 𝕆-valued functional of the Lie
algebra 𝔥𝑛:

𝜒𝑗(ℎ,𝑞,𝑝)(𝑠, 𝑥, 𝑦) = 𝑒j(ℎ𝑠+𝑞𝑥+𝑝𝑦) = cosh(ℎ𝑠+ 𝑞𝑥+ 𝑝𝑦) + j sinh(ℎ𝑠+ 𝑞𝑥+ 𝑝𝑦). (7.51)

The hyperbolic Fock–Segal–Bargmann type representation is intertwined with the
left group action by means of a Fourier transform (7.32) with the hyperbolic func-
tional (7.51). Explicitly this representation is

𝜌ℏ(𝑠, 𝑥, 𝑦) : 𝑓(𝑞, 𝑝) �→ 𝑒−j(ℎ𝑠+𝑞𝑥+𝑝𝑦)𝑓
(
𝑞 − ℎ

2 𝑦, 𝑝+
ℎ
2𝑥
)
. (7.52)

For a hyperbolic Schrödinger type representation we again use the scheme de-
scribed in § 3.2. Similarly to the elliptic case one obtains the formula, resem-
bling (7.34),

[𝜌j𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑥) = 𝑒−jℎ(𝑠

′+𝑥𝑦′−𝑥′𝑦′/2)𝑓(𝑥− 𝑥′). (7.53)

Application of the hyperbolic Fourier transform produces a Schrödinger type rep-
resentation on the configuration space, cf. (7.35):

[𝜌j𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑞) = 𝑒−jℎ(𝑠

′+𝑥′𝑦′/2)−j𝑥′𝑞 𝑓(𝑞 + ℎ𝑦′).

The extension of this representation to kernels according to (7.21) generates hy-
perbolic pseudodifferential operators introduced in [52, (3.4)].

7.5.2. Hyperbolic dynamics. Similarly to the elliptic (quantum) case we consider

a convolution of two kernels on ℍ𝑛 restricted to 𝐹 j
ℎ(ℍ

𝑛). The composition law
becomes, cf. (7.36),

(𝑘′ ∗ 𝑘)𝑠̂ =
∫
ℝ2𝑛

𝑒jℎ(𝑥𝑦
′−𝑦𝑥′) 𝑘′𝑠(ℎ, 𝑥

′, 𝑦′) 𝑘𝑠(ℎ, 𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′. (7.54)

This is close to the calculus of hyperbolic PDO obtained in [52, Thm. 2]. Respec-
tively for the commutator of two convolutions we get, cf. (7.37),

[𝑘′, 𝑘]𝑠̂ =
∫
ℝ2𝑛

sinh(ℎ(𝑥𝑦′ − 𝑦𝑥′)) 𝑘′𝑠(ℎ, 𝑥
′, 𝑦′) 𝑘𝑠(ℎ, 𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′. (7.55)

This the hyperbolic version of the Moyal bracket, cf. [52, p. 849], which generates
the corresponding image of the dynamic equation (7.23).

Example 7.17.

i. For a quadratic Hamiltonian, e.g., harmonic oscillator from Example 7.6, the
hyperbolic equation and respective dynamics are identical to the quantum
considered before.

ii. Since ∂
∂𝑠 acts on 𝐹 j

2(ℍ
𝑛) as multiplication by jℎ and j2 = 1, the hyperbolic

image of the unharmonic equation (7.28) becomes

𝑓 =

(
𝑚𝑘2𝑞

∂

∂𝑝
+

𝜆

6

(
3𝑞2

∂

∂𝑝
+

ℏ2

4

∂3

∂𝑝3

)
− 1

𝑚
𝑝
∂

∂𝑞

)
𝑓.
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The difference with quantum mechanical equation (7.40) is in the sign of the
cubic derivative.

Notably, the hyperbolic setup allows us to linearise many non-linear problems
of classical mechanics. It will be interesting to realise new hyperbolic coordinates
introduced to this end in [112, 113] as a hyperbolic phase space.

(a) (b)

Figure 14. Hyperbolic probabilities: the blue (dashed) graph shows
the addition of probabilities without interaction, the red (solid) graph
presents the quantum interference. The left picture shows the Gauss-
ian state (7.42), with the same distribution as in quantum mechanics,
cf. Figure 13(a). The right picture shows the rational state (7.45); note
the absence of interference oscillations in comparison with the quantum
state on Figure 13(b).

7.5.3. Hyperbolic probabilities. To calculate probability distribution generated by
a hyperbolic state we will use the general procedure from Section 7.2.2. The main
differences with the quantum case are as follows:

i. The real number 𝐴 in the expression (7.31) for the addition of probabilities is
bigger than 1 in absolute value. Thus it can be associated with the hyperbolic
cosine, cosh𝛼, cf. Remark 7.11, for a certain phase 𝛼 ∈ ℝ [52].

ii. The nature of hyperbolic interference on two slits is affected by the fact that
𝑒jℎ𝑠 is not periodic and the hyperbolic exponent 𝑒j𝑡 and cosine cosh 𝑡 do not
oscillate. It is worth noticing that for Gaussian states the hyperbolic inter-
ference is exactly the same as quantum one, cf. Figs. 13(a) and 14(a). This
is similar to coincidence of quantum and hyperbolic dynamics of a harmonic
oscillator.

The contrast between two types of interference is prominent for the ra-
tional state (7.45), which is far from the minimal uncertainty, see the different
patterns on Figsure 13(b) and 14(b).
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7.5.4. Ladder operators for the hyperbolic subgroup. Consider the case of the
Hamiltonian 𝐻 = 2𝐵, which is a repulsive (hyperbolic) harmonic oscillator [127,
§ 3.8]. The corresponding one-dimensional subgroup of symplectomorphisms pro-
duces hyperbolic rotations of the phase space, see Figure 9. The eigenvectors 𝑣𝜇
of the operator

𝜌SWℏ (2𝐵)𝑣𝜈 = −i
(

ℏ

4𝜋

𝑑2

𝑑𝑞2
+

𝜋𝑞2

ℏ

)
𝑣𝜈 = i𝜈𝑣𝜈 ,

are Weber–Hermite (or parabolic cylinder) functions 𝑣𝜈 = 𝐷𝜈− 1
2

(±2𝑒i𝜋4√𝜋
ℏ
𝑞
)
,

see [28, § 8.2; 117] for fundamentals of Weber–Hermite functions and [121] for
further illustrations and applications in optics.

The corresponding one-parameter group is not compact and the eigenvalues
of the operator 2𝐵̃ are not restricted by any integrality condition, but the rais-
ing/lowering operators are still important [44, § II.1; 102, § 1.1]. We again seek
solutions in two subalgebras 𝔥1 and 𝔰𝔭2 separately. However the additional options
will be provided by a choice of the number system: either complex or double.

Example 7.18 (Complex ladder operators). Assuming 𝐿+ℎ = 𝑎𝑋̃ + 𝑏𝑌 from the
commutators (7.10–7.11) we obtain the linear equations

− 𝑎 = 𝜆+𝑏, −𝑏 = 𝜆+𝑎. (7.56)

The equations have a solution if and only if 𝜆2+ − 1 = 0. Taking the real roots

𝜆 = ±1 we obtain that the raising/lowering operators are 𝐿±ℎ = 𝑋̃ ∓ 𝑌 . In the
Schrödinger representation (7.12) the ladder operators are

𝐿±ℎ = 2𝜋i𝑞 ± ℏ
𝑑

𝑑𝑞
. (7.57)

The null solutions 𝑣± 1
2
(𝑞) = 𝑒±

𝜋i
ℏ
𝑞2 to operators 𝜌

ℏ
(𝐿±) are also eigenvectors of

the Hamiltonian 𝜌SW
ℏ

(2𝐵) with the eigenvalue ± 1
2 . However the important distinc-

tion from the elliptic case is, that they are not square-integrable on the real line
anymore.

We can also look for ladder operators within the 𝔰𝔭2, that is in the form

𝐿+2ℎ = 𝑎𝐴 + 𝑏𝐵̃ + 𝑐𝑍 for the commutator [2𝐵̃, 𝐿+ℎ] = 𝜆𝐿+ℎ, see § 3.3.2. Within

complex numbers we get only the values 𝜆 = ±2 with the ladder operators 𝐿±2ℎ =

±2𝐴+ 𝑍/2, see [44, § II.1; 102, § 1.1]. Each indecomposable 𝔥1- or 𝔰𝔭2-module is
formed by a one-dimensional chain of eigenvalues with a transitive action of ladder
operators 𝐿±ℎ or 𝐿±2ℎ respectively. And we again have a quadratic relation between
the ladder operators:

𝐿±2ℎ =
i

4𝜋ℏ
(𝐿±ℎ)

2.

7.5.5. Double ladder operators. There are extra possibilities in the context of
hyperbolic quantum mechanics [49, 51, 52]. Here we use the representation of ℍ1
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induced by a hyperbolic character 𝑒jℎ𝑡 = cosh(ℎ𝑡) + j sinh(ℎ𝑡), see [88, (4.5)], and
obtain the hyperbolic representation of ℍ1, cf. (7.35),

[𝜌jℎ(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑞) = 𝑒jℎ(𝑠

′−𝑥′𝑦′/2)+j𝑥′𝑞 𝑓(𝑞 − ℎ𝑦′). (7.58)

The corresponding derived representation is

𝜌jℎ(𝑋) = j𝑞, 𝜌jℎ(𝑌 ) = −ℎ 𝑑

𝑑𝑞
, 𝜌jℎ(𝑆) = jℎ𝐼. (7.59)

Then the associated Shale–Weil derived representation of 𝔰𝔭2 in the Schwartz space
𝑆(ℝ) is, cf. (7.13),

𝜌SWℎ (𝐴) = − 𝑞

2

𝑑

𝑑𝑞
− 1

4
, 𝜌SWℎ (𝐵) =

jℎ

4

𝑑2

𝑑𝑞2
− j𝑞2

4ℎ
, 𝜌SWℎ (𝑍) = − jℎ

2

𝑑2

𝑑𝑞2
− j𝑞2

2ℎ
.

(7.60)
Note that 𝜌SWℎ (𝐵) now generates a usual harmonic oscillator, not the repulsive
one like 𝜌SW

ℏ
(𝐵) in (7.13). However the expressions in the quadratic algebra are

still the same (up to a factor), cf. (7.14–7.16):

𝜌SWℎ (𝐴) = − j

2ℎ
(𝜌jℎ(𝑋)𝜌jℎ(𝑌 )− 1

2𝜌
j
ℎ(𝑆)) (7.61)

= − j

4ℎ
(𝜌jℎ(𝑋)𝜌jℎ(𝑌 ) + 𝜌jℎ(𝑌 )𝜌jℎ(𝑋)),

𝜌SWℎ (𝐵) =
j

4ℎ
(𝜌jℎ(𝑋)2 − 𝜌jℎ(𝑌 )2), (7.62)

𝜌SWℎ (𝑍) = − j

2ℎ
(𝜌jℎ(𝑋)2 + 𝜌jℎ(𝑌 )2). (7.63)

This is due to Principle 3.5 of similarity and correspondence: we can swap operators
𝑍 and 𝐵 with simultaneous replacement of hypercomplex units i and j.

The eigenspace of the operator 2𝜌SWℎ (𝐵) with an eigenvalue j𝜈 are spanned

by the Weber–Hermite functions 𝐷−𝜈− 1
2

(
±
√

2
ℎ𝑥
)
, see [28, § 8.2]. Functions 𝐷𝜈

are generalisations of the Hermite functions (7.46).

The compatibility condition for a ladder operator within the Lie algebra 𝔥1
will be (7.56) as before, since it depends only on the commutators (7.10–7.11).
Thus we still have the set of ladder operators corresponding to values 𝜆 = ±1:

𝐿±ℎ = 𝑋̃ ∓ 𝑌 = j𝑞 ± ℎ
𝑑

𝑑𝑞
.

Admitting double numbers we have an extra way to satisfy 𝜆2 = 1 in (7.56) with
values 𝜆 = ±j. Then there is an additional pair of hyperbolic ladder operators,
which are identical (up to factors) to (7.47):

𝐿±j = 𝑋̃ ∓ j𝑌 = j𝑞 ± jℎ
𝑑

𝑑𝑞
.
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Pairs 𝐿±ℎ and 𝐿±j shift eigenvectors in the “orthogonal” directions changing their
eigenvalues by ±1 and ±j. Therefore an indecomposable 𝔰𝔭2-module can be para-
metrised by a two-dimensional lattice of eigenvalues in double numbers, see Fig-
ure 10.

The functions

𝑣±ℎ1
2

(𝑞) = 𝑒∓j𝑞
2/(2ℎ) = cosh

𝑞2

2ℎ
∓ j sinh

𝑞2

2ℎ
, 𝑣±j1

2

(𝑞) = 𝑒∓𝑞
2/(2ℎ)

are null solutions to the operators 𝐿±ℎ and 𝐿±j respectively. They are also eigen-

vectors of 2𝜌SWℎ (𝐵) with eigenvalues ∓ j
2 and ∓ 1

2 respectively. If these functions
are used as mother wavelets for the wavelet transforms generated by the Heisen-
berg group, then the image space will consist of the null-solutions of the following
differential operators, see Corollary 5.6:

𝐷ℎ = 𝑋𝑟 − 𝑌 𝑟 = (∂𝑥− ∂𝑦)+
ℎ
2 (𝑥+ 𝑦), 𝐷j = 𝑋𝑟 − j𝑌 𝑟 = (∂𝑥+ j∂𝑦)− ℎ

2 (𝑥− j𝑦),

for 𝑣±ℎ1
2

and 𝑣±j1
2

respectively. This is again in line with the classical result (7.48).

However annihilation of the eigenvector by a ladder operator does not mean that
the part of the 2D-lattice becomes void since it can be reached via alternative
routes on this lattice. Instead of multiplication by a zero, as it happens in the
elliptic case, a half-plane of eigenvalues will be multiplied by the divisors of zero
1± j.

We can also search ladder operators within the algebra 𝔰𝔭2 and admitting
double numbers we will again find two sets of them, cf. § 3.3.2:

𝐿±2ℎ = ±𝐴+ 𝑍/2 = ∓ 𝑞

2

𝑑

𝑑𝑞
∓ 1

4
− jℎ

4

𝑑2

𝑑𝑞2
− j𝑞2

4ℎ
= − j

4ℎ
(𝐿±ℎ)

2,

𝐿±2j = ±j𝐴+ 𝑍/2 = ∓ j𝑞

2

𝑑

𝑑𝑞
∓ j

4
− jℎ

4

𝑑2

𝑑𝑞2
− j𝑞2

4ℎ
= − j

4ℎ
(𝐿±j )

2.

Again the operators 𝐿±2ℎ and 𝐿±2ℎ produce double shifts in the orthogonal directions
on the same two-dimensional lattice in Figure 10.

7.6. Parabolic (classical) representations on the phase space

After the previous two cases it is natural to link classical mechanics with dual
numbers generated by the parabolic unit 𝜀2 = 0. Connection of the parabolic unit
𝜀 with the Galilean group of symmetries of classical mechanics is around for a
while [128, App. C].

However the nilpotency of the parabolic unit 𝜀 make it difficult if we are
working with dual number-valued functions only. To overcome this issue we con-
sider a commutative real algebra ℭ spanned by 1, i, 𝜀 and i𝜀 with identities i2 = −1
and 𝜀2 = 0. A seminorm on ℭ is defined as

∣𝑎+ 𝑏i + 𝑐𝜀+ 𝑑i𝜀∣2 = 𝑎2 + 𝑏2.

7.6.1. Classical non-commutative representations. We wish to build a representa-
tion of the Heisenberg group which will be a classical analog of the Fock–Segal–
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Bargmann representation (7.17). To this end we introduce the space 𝐹 𝜀
ℎ(ℍ

𝑛) of
ℭ-valued functions on ℍ𝑛 with the property

𝑓(𝑠+ 𝑠′, ℎ, 𝑦) = 𝑒𝜀ℎ𝑠
′
𝑓(𝑠, 𝑥, 𝑦), for all (𝑠, 𝑥, 𝑦) ∈ ℍ𝑛, 𝑠′ ∈ ℝ, (7.64)

and the square integrability condition (7.7). It is invariant under the left shifts and
we restrict the left group action to 𝐹 𝜀

ℎ(ℍ
𝑛).

There is a unimodular ℭ-valued function on the Heisenberg group para-
metrised by a point (ℎ, 𝑞, 𝑝) ∈ ℝ2𝑛+1:

𝐸(ℎ,𝑞,𝑝)(𝑠, 𝑥, 𝑦) = 𝑒2𝜋(𝜀𝑠ℏ+i𝑥𝑞+i𝑦𝑝) = 𝑒2𝜋i(𝑥𝑞+𝑦𝑝)(1 + 𝜀𝑠ℎ).

This function, if used instead of the ordinary exponent, produces a modification
ℱ𝑐 of the Fourier transform (7.32). The transform intertwines the left regular
representation with the following action on ℭ-valued functions on the phase space:

𝜌𝜀ℎ(𝑠, 𝑥, 𝑦) : 𝑓(𝑞, 𝑝) �→ 𝑒−2𝜋i(𝑥𝑞+𝑦𝑝)(𝑓(𝑞, 𝑝) (7.65)

+𝜀ℎ(𝑠𝑓(𝑞, 𝑝) +
𝑦

2𝜋i
𝑓 ′𝑞(𝑞, 𝑝)−

𝑥

2𝜋i
𝑓 ′𝑝(𝑞, 𝑝))).

Remark 7.19. Comparing the traditional infinite-dimensional (7.17) and one-dim-
ensional (7.33) representations of ℍ𝑛 we can note that the properties of the rep-
resentation (7.65) are a non-trivial mixture of the former:

i. The action (7.65) is non-commutative, similarly to the quantum representa-
tion (7.17) and unlike the classical one (7.33). This non-commutativity will
produce the Hamilton equations below in a way very similar to the Heisenberg
equation, see Remark 7.21.

ii. The representation (7.65) does not change the support of a function 𝑓 on the
phase space, similarly to the classical representation (7.33) and unlike the
quantum one (7.17). Such a localised action will be responsible later for the
absence of an interference in classical probabilities.

iii. The parabolic representation (7.65) can not be derived from either the ellip-
tic (7.17) or hyperbolic (7.52) by the plain substitution ℎ = 0.

We may also write a classical Schrödinger type representation. According
to § 3.2 we get a representation formally very similar to the elliptic (7.34) and
hyperbolic versions (7.53):

[= [𝜌𝜀𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓𝑡(𝑥) = 𝑒−𝜀ℎ(𝑠

′+𝑥𝑦′−𝑥′𝑦′/2)𝑓(𝑥− 𝑥′)

= (1− 𝜀ℎ(𝑠′ + 𝑥𝑦′ − 1
2𝑥

′𝑦′))𝑓(𝑥− 𝑥′).

(7.66)

However due to nilpotency of 𝜀 the (complex) Fourier transform 𝑥 �→ 𝑞 produces a
different formula for parabolic Schrödinger type representation in the configuration
space, cf. (7.35) and (7.58):

[𝜌𝜀𝜒(𝑠
′, 𝑥′, 𝑦′)𝑓 ](𝑞) = 𝑒2𝜋i𝑥

′𝑞
((

1− 𝜀ℎ(𝑠′ − 1
2𝑥

′𝑦′)
)
𝑓(𝑞) +

𝜀ℎ𝑦′

2𝜋i
𝑓 ′(𝑞)

)
.

This representation shares all properties mentioned in Remark 7.19 as well.
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7.6.2. Hamilton equation. The identity 𝑒𝜀𝑡 − 𝑒−𝜀𝑡 = 2𝜀𝑡 can be interpreted as
a parabolic version of the sine function, while the parabolic cosine is identically
equal to 1, cf. § 3.1 and [40, 81]. From this we obtain the parabolic version of the
commutator (7.37),

[𝑘′, 𝑘]𝑠̂(𝜀ℎ, 𝑥, 𝑦) = 𝜀ℎ

∫
ℝ2𝑛

(𝑥𝑦′ − 𝑦𝑥′)

× 𝑘′𝑠(𝜀ℎ, 𝑥
′, 𝑦′) 𝑘𝑠(𝜀ℎ, 𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′,

for the partial parabolic Fourier-type transform 𝑘𝑠 of the kernels. Thus the para-
bolic representation of the dynamical equation (7.23) becomes

𝜀ℎ
𝑑𝑓𝑠
𝑑𝑡

(𝜀ℎ, 𝑥, 𝑦; 𝑡) = 𝜀ℎ

∫
ℝ2𝑛

(𝑥𝑦′ − 𝑦𝑥′) 𝐻̂𝑠(𝜀ℎ, 𝑥
′, 𝑦′) 𝑓𝑠(𝜀ℎ, 𝑥− 𝑥′, 𝑦 − 𝑦′; 𝑡) 𝑑𝑥′𝑑𝑦′.

(7.67)
Although there is no possibility to divide by 𝜀 (since it is a zero divisor) we can
obviously eliminate 𝜀ℎ from both sides if the rest of the expressions are real. More-
over this can be done “in advance” through a kind of the antiderivative operator
considered in [74, (4.1)]. This will prevent “imaginary parts” of the remaining
expressions (which contain the factor 𝜀) from vanishing.

Remark 7.20. It is noteworthy that the Planck constant completely disappeared
from the dynamical equation. Thus the only prediction about it following from
our construction is ℎ ∕= 0, which was confirmed by experiments, of course.

Using the duality between the Lie algebra of ℍ𝑛 and the phase space we
can find an adjoint equation for observables on the phase space. To this end we
apply the usual Fourier transform (𝑥, 𝑦) �→ (𝑞, 𝑝). It turns to be the Hamilton
equation [74, (4.7)]. However the transition to the phase space is more a custom
rather than a necessity and in many cases we can efficiently work on the Heisenberg
group itself.

Remark 7.21. It is noteworthy, that the non-commutative representation (7.65)
allows one to obtain the Hamilton equation directly from the commutator
[𝜌𝜀ℎ(𝑘1), 𝜌

𝜀
ℎ(𝑘2)]. Indeed its straightforward evaluation will produce exactly the

above expression. On the contrary such a commutator for the commutative rep-
resentation (7.33) is zero and to obtain the Hamilton equation we have to work
with an additional tool, e.g., an anti-derivative [74, (4.1)].

Example 7.22.

i. For the harmonic oscillator in Example 7.6 the equation (7.67) again reduces
to the form (7.25) with the solution given by (7.26). The adjoint equation of
the harmonic oscillator on the phase space is not different from the quantum
written in Example 7.10(i). This is true for any Hamiltonian of at most
quadratic order.
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ii. For non-quadratic Hamiltonians, classical and quantum dynamics are differ-
ent, of course. For example, the cubic term of ∂𝑠 in the equation (7.28) will
generate the factor 𝜀3 = 0 and thus vanish. Thus the equation (7.67) of the
unharmonic oscillator on ℍ𝑛 becomes

𝑓 =

(
𝑚𝑘2𝑦

∂

∂𝑥
+

𝜆𝑦

2

∂2

∂𝑥2
− 1

𝑚
𝑥
∂

∂𝑦

)
𝑓.

The adjoint equation on the phase space is

𝑓 =

((
𝑚𝑘2𝑞 +

𝜆

2
𝑞2
)

∂

∂𝑝
− 1

𝑚
𝑝
∂

∂𝑞

)
𝑓.

The last equation is the classical Hamilton equation generated by the cubic
potential (7.27). Qualitative analysis of its dynamics can be found in many
textbooks [4, § 4.C, Pic. 12; 110, § 4.4].

Remark 7.23. We have obtained the Poisson bracket from the commutator of
convolutions on ℍ𝑛 without any quasiclassical limit ℎ → 0. This has a common
source with the deduction of main calculus theorems in [17] based on dual numbers.
As explained in [82, Rem. 6.9] this is due to the similarity between the parabolic
unit 𝜀 and the infinitesimal number used in non-standard analysis [23]. In other
words, we never need to take care about terms of order 𝑂(ℎ2) because they will
be wiped out by 𝜀2 = 0.

An alternative derivation of classical dynamics from the Heisenberg group is
given in the recent paper [101].

7.6.3. Classical probabilities. It is worth noticing that dual numbers are not only
helpful in reproducing classical Hamiltonian dynamics, they also provide the classic
rule for addition of probabilities. We use the same formula (7.29) to calculate
kernels of the states. The important difference is now that the representation (7.65)
does not change the support of functions. Thus if we calculate the correlation term
⟨𝑣1, 𝜌(𝑔)𝑣2⟩ in (7.30), then it will be zero for every two vectors 𝑣1 and 𝑣2 which
have disjoint supports in the phase space. Thus no interference similar to quantum
or hyperbolic cases (Subsection 7.3.3) is possible.

7.6.4. Ladder operator for the nilpotent subgroup. Finally we look for ladder
operators for the Hamiltonian 𝐵̃ + 𝑍/2 or, equivalently, −𝐵̃ + 𝑍/2. It can be
identified with a free particle [127, § 3.8].

We can look for ladder operators in the representation (7.12–7.13) within the

Lie algebra 𝔥1 in the form 𝐿±𝜀 = 𝑎𝑋̃ + 𝑏𝑌 . This is possible if and only if

− 𝑏 = 𝜆𝑎, 0 = 𝜆𝑏. (7.68)

The compatibility condition 𝜆2 = 0 implies 𝜆 = 0 within complex numbers. How-
ever such a “ladder” operator produces only the zero shift on the eigenvectors,
cf. (3.15).
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Another possibility appears if we consider the representation of the Heisen-
berg group induced by dual-valued characters. On the configuration space such a
representation is [88, (4.11)]:

[𝜌𝜀𝜒(𝑠, 𝑥, 𝑦)𝑓 ](𝑞) = 𝑒2𝜋i𝑥𝑞
((

1− 𝜀ℎ(𝑠− 1
2𝑥𝑦)

)
𝑓(𝑞) +

𝜀ℎ𝑦

2𝜋i
𝑓 ′(𝑞)

)
. (7.69)

The corresponding derived representation of 𝔥1 is

𝜌𝑝ℎ(𝑋) = 2𝜋i𝑞, 𝜌𝑝ℎ(𝑌 ) =
𝜀ℎ

2𝜋i

𝑑

𝑑𝑞
, 𝜌𝑝ℎ(𝑆) = −𝜀ℎ𝐼. (7.70)

However the Shale–Weil extension generated by this representation is inconvenient.
It is better to consider the FSB–type parabolic representation (7.65) on the phase
space induced by the same dual-valued character. Then the derived representation
of 𝔥1 is

𝜌𝑝ℎ(𝑋) = −2𝜋i𝑞 − 𝜀ℎ

4𝜋i
∂𝑝, 𝜌𝑝ℎ(𝑌 ) = −2𝜋i𝑝+ 𝜀ℎ

4𝜋i
∂𝑞, 𝜌𝑝ℎ(𝑆) = 𝜀ℎ𝐼. (7.71)

An advantage of the FSB representation is that the derived form of the parabolic
Shale–Weil representation coincides with the elliptic one (7.19).

Eigenfunctions with the eigenvalue 𝜇 of the parabolic Hamiltonian 𝐵̃+𝑍/2 =
𝑞∂𝑝 have the form

𝑣𝜇(𝑞, 𝑝) = 𝑒𝜇𝑝/𝑞𝑓(𝑞), with an arbitrary function 𝑓(𝑞). (7.72)

The linear equations defining the corresponding ladder operator 𝐿±𝜀 = 𝑎𝑋̃ +

𝑏𝑌 in the algebra 𝔥1 are (7.68). The compatibility condition 𝜆2 = 0 implies 𝜆 = 0
within complex numbers again. Admitting dual numbers we have additional values
𝜆 = ±𝜀𝜆1 with 𝜆1 ∈ ℂ with the corresponding ladder operators

𝐿±𝜀 = 𝑋̃ ∓ 𝜀𝜆1𝑌 = −2𝜋i𝑞 − 𝜀ℎ

4𝜋i
∂𝑝 ± 2𝜋𝜀𝜆1i𝑝 = −2𝜋i𝑞 + 𝜀i(±2𝜋𝜆1𝑝+ ℎ

4𝜋
∂𝑝).

For the eigenvalue 𝜇 = 𝜇0 + 𝜀𝜇1 with 𝜇0, 𝜇1 ∈ ℂ the eigenfunction (7.72) can be
rewritten as

𝑣𝜇(𝑞, 𝑝) = 𝑒𝜇𝑝/𝑞𝑓(𝑞) = 𝑒𝜇0𝑝/𝑞

(
1 + 𝜀𝜇1

𝑝

𝑞

)
𝑓(𝑞) (7.73)

due to the nilpotency of 𝜀. Then the ladder action of 𝐿±𝜀 is 𝜇0 + 𝜀𝜇1 �→ 𝜇0 +
𝜀(𝜇1± 𝜆1). Therefore these operators are suitable for building 𝔰𝔭2-modules with a
one-dimensional chain of eigenvalues.

Finally, consider the ladder operator for the same element 𝐵+𝑍/2 within the

Lie algebra 𝔰𝔭2, cf. § 3.3.3. There is the only operator 𝐿±𝑝 = 𝐵̃+𝑍/2 corresponding
to complex coefficients, which does not affect the eigenvalues. However the dual
numbers lead to the operators

𝐿±𝜀 = ±𝜀𝜆2𝐴+ 𝐵̃ + 𝑍/2 = ±𝜀𝜆2
2

(𝑞∂𝑞 − 𝑝∂𝑝) + 𝑞∂𝑝, 𝜆2 ∈ ℂ.

These operators act on eigenvalues in a non-trivial way.
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7.6.5. Similarity and correspondence. We wish to summarise our findings. Firstly,
the appearance of hypercomplex numbers in ladder operators for 𝔥1 follows exactly
the same pattern as was already noted for 𝔰𝔭2, see Remark 3.8:

∙ the introduction of complex numbers is a necessity for the existence of ladder
operators in the elliptic case;

∙ in the parabolic case we need dual numbers to make ladder operators useful ;
∙ in the hyperbolic case double numbers are not required, neither for the ex-
istence nor for the usability of ladder operators, but they do provide an
enhancement.

In the spirit of the similarity and correspondence Principle 3.5 we have the follow-
ing extension of Proposition 3.9:

Proposition 7.24. Let a vector 𝐻 ∈ 𝔰𝔭2 generate the subgroup 𝐾, 𝑁 ′ or 𝐴′, that
is 𝐻 = 𝑍, 𝐵 + 𝑍/2, or 2𝐵 respectively. Let 𝜄 be the respective hypercomplex unit.
Then the ladder operators 𝐿± satisfying the commutation relation

[𝐻,𝐿±2 ] = ±𝜄𝐿±
are given by:

i. Within the Lie algebra 𝔥1: 𝐿
± = 𝑋̃ ∓ 𝜄𝑌 .

ii. Within the Lie algebra 𝔰𝔭2: 𝐿
±
2 = ±𝜄𝐴+ 𝐸̃. Here 𝐸 ∈ 𝔰𝔭2 is a linear combi-

nation of 𝐵 and 𝑍 with the properties:
∙ 𝐸 = [𝐴,𝐻 ].
∙ 𝐻 = [𝐴,𝐸].
∙ Killings form 𝐾(𝐻,𝐸) [55, § 6.2] vanishes.

Any of the above properties defines the vector 𝐸 ∈ span{𝐵,𝑍} up to a real
constant factor.

It is worth continuing this investigation and describing in detail hyperbolic
and parabolic versions of FSB spaces.

8. Open problems

The reader may already note numerous objects and results that deserve further
consideration. It may also be useful to state some open problems explicitly. In this
section we indicate several directions for further work, which go through four main
areas described in the paper.

8.1. Geometry

Geometry is the most elaborated area so far, yet many directions are waiting for
further exploration.

i. Möbius transformations (1.1) with three types of hypercomplex units appear
from the action of the group SL2(ℝ) on the homogeneous space SL2(ℝ)/𝐻
[85], where𝐻 is any subgroup𝐴, 𝑁 ,𝐾 from the Iwasawa decomposition (1.3).
Which other actions and hypercomplex numbers can be obtained from other
Lie groups and their subgroups?
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ii. Lobachevsky geometry of the upper half-plane is an extremely beautiful and
well-developed subject [8,22]. However the traditional study is limited to one
subtype out of nine possible: with the complex numbers for Möbius transfor-
mation and the complex imaginary unit used in FSCc (2.8). The remaining
eight cases should be explored in various directions, notably in the context
of discrete subgroups [7].

iii. The Fillmore-Springer-Cnops construction, see Subsection 2.2, is closely re-
lated to the orbit method [57] applied to SL2(ℝ). An extension of the orbit
method from the Lie algebra dual to matrices representing cycles may be
fruitful for semisimple Lie groups.

iv. A development of a discrete version of the geometrical notions can be derived
from suitable discrete groups. A natural first example is the group SL2(𝔽),
where 𝔽 is a finite field, e.g., ℤ𝑝 the field of integers modulo a prime 𝑝.

8.2. Analytic functions

It is known that in several dimensions there are different notions of analyticity,
e.g., several complex variables and Clifford analysis. However, analytic functions
of a complex variable are usually thought to be the only options in a plane domain.
The following seem to be promising:

i. Development of the basic components of analytic function theory (the Cauchy
integral, the Taylor expansion, the Cauchy-Riemann and Laplace equations,
etc.) from the same construction and principles in the elliptic, parabolic and
hyperbolic cases and respective subcases.

ii. Identification of Hilbert spaces of analytic functions of Hardy and Bergman
types, investigation of their properties. Consideration of the corresponding
Toeplitz operators and algebras generated by them.

iii. Application of analytic methods to elliptic, parabolic and hyperbolic equa-
tions and corresponding boundary and initial value problems.

iv. Generalisation of the results obtained to higher-dimensional spaces. Detailed
investigation of physically significant cases of three and four dimensions.

v. There is a current interest in construction of analytic function theory on
discrete sets. Our approach is ready for application to analytic functions in
a discrete geometric set-up as outlined in item 8.1.iv above.

8.3. Functional calculus

The functional calculus of a finite-dimensional operator considered in Section 6
is elementary but provides a coherent and comprehensive treatment. It should be
extended to further cases where other approaches seem to be rather limited.

i. Nilpotent and quasinilpotent operators have the most trivial spectrum pos-
sible (the single point {0}) while their structure can be highly non-trivial.
Thus the standard spectrum is insufficient for this class of operators. In con-
trast, the covariant calculus and the spectrum give complete descriptions of



Erlangen Program at Large: An Overview 77

nilpotent operators – the basic prototypes of quasi-nilpotent ones. For quasi-
nilpotent operators the construction will be more complicated and should use
analytic functions as mentioned in item 8.2.i.

ii. The version of covariant calculus described above is based on the discrete
series representations of the SL2(ℝ) group and is particularly suitable for
the description of the discrete spectrum (note the remarkable coincidence in
the names).

It would be interesting to develop similar covariant calculi based on the
two other representation series of SL2(ℝ): principal and complementary [97].
The corresponding versions of analytic function theories for principal [64] and
complementary series [82] have been initiated within a unifying framework.
The classification of analytic function theories into elliptic, parabolic, hyper-
bolic [78,82] should be also compared with discrete, continuous and residual
spectrum of an operator.

iii. Let 𝑎 be an operator with sp𝑎 ∈ 𝔻̄ and
∥∥𝑎𝑘∥∥ < 𝐶𝑘𝑝. It is typical to consider

instead of 𝑎 the power bounded operator 𝑟𝑎, where 0 < 𝑟 < 1, and conse-
quently develop its 𝐻∞ calculus. However such a regularisation is very rough
and hides the nature of extreme points of sp 𝑎. To restore full information
a subsequent limit transition 𝑟 → 1 of the regularisation parameter 𝑟 is re-
quired. This make the entire technique rather cumbersome and many results
have an indirect nature.

The regularisation 𝑎𝑘 → 𝑎𝑘/𝑘𝑝 is more natural and accurate for polyno-
mially bounded operators. However it cannot be achieved within the homo-
morphic calculus Definition 6.1 because it is not compatible with any algebra
homomorphism. Albeit this may be achieved within the covariant calculus
Defninition 6.4 and Bergman type space from item 8.2.ii.

iv. Several non-commuting operators are especially difficult to treat with func-
tional calculus Definition 6.1 or a joint spectrum. For example, deep insights
on joint spectrum of commuting tuples [119] refused to be generalised to the
non-commuting case so far. The covariant calculus was initiated [62] as a
new approach to this hard problem and was later found useful elsewhere as
well. Multidimensional covariant calculus [73] should use analytic functions
described in item 8.2.iv.

v. As we noted above there is a duality between the co- and contravariant calculi
from Definitions. 4.20 and 4.22. We also saw in Section 6 that functional
calculus is an example of contravariant calculus and the functional model
is a case of a covariant one. It would be interesting to explore the duality
between them further.

8.4. Quantum mechanics

Due to space restrictions we only touched upon quantum mechanics; further de-
tails can be found in [63, 74, 76, 77, 79, 88]. In general, the Erlangen approach is
much more popular among physicists than among mathematicians. Nevertheless
its potential is not exhausted even there.
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i. There is a possibility to build representation of the Heisenberg group using
characters of its centre with values in dual and double numbers rather than in
complex ones. This would naturally unify classical mechanics, traditional QM
and hyperbolic QM [52]. In particular, a full construction of the corresponding
Fock–Segal–Bargmann spaces would be of interest.

ii. Representations of nilpotent Lie groups with multidimensional centres in Clif-
ford algebras as a framework for consistent quantum field theories based on
De Donder–Weyl formalism [76].

Remark 8.1. This work has been done within the “Erlangen program at large”
framework [78, 82], thus it would be suitable to explain the numbering of various
papers. Since the logical order may be different from the chronological one the
following numbering scheme is used:

Prefix Branch description

“0” or no prefix Mainly geometrical works, within the classical field of the
Erlangen program by F. Klein, see [82, 85]

“1” Papers on analytical functions theories and wavelets,
e.g., [64]

“2” Papers on operator theory, functional calculi and spectra,
e.g., [75]

“3” Papers on mathematical physics, e.g., [88]

For example, [88] is the first paper in the mathematical physics area. The present
paper [89] outlines the whole framework and thus does not carry a subdivision
number. The on-line version of this paper may be updated in due course to reflect
the achieved progress.
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operators and the time-harmonic Maxwell equations, Journal of Physics A: Mathe-
matical and Theoretical 44 (2011), no. 13, 135303. ↑52

[22] H.S.M. Coxeter and S.L. Greitzer, Geometry revisited., Random House, New York,
1967 (English). Zbl # 0166.16402. ↑76

[23] Martin Davis, Applied nonstandard analysis, Wiley-Interscience [John Wiley &
Sons], New York, 1977. MR0505473 (58 #21590) ↑73

[24] Maurice A. de Gosson, Spectral properties of a class of generalized Landau operators,
Comm. Partial Differential Equations 33 (2008), no. 10-12, 2096–2104. MR2475331
(2010b:47128) ↑55

[25] P.A.M. Dirac, Quantum mechanics and a preliminary investigation of the hydrogen
atom, Proceedings of the Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character 110 (1926), no. 755, pp. 561–579 (English).
↑51

[26] M. Duflo and Calvin C. Moore, On the regular representation of a nonunimod-
ular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243.
MR52#14145 ↑24, 29

[27] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part i: General theory,
Pure and Applied Mathematics, vol. VII, John Wiley & Sons, Inc., New York, 1957.
↑28
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[32] Hartmut Führ, Abstract harmonic analysis of continuous wavelet transforms, Lec-
ture Notes in Mathematics, vol. 1863, Springer-Verlag, Berlin, 2005. MR2130226
(2006m:43003) ↑22, 24

[33] Jean-Pierre Gazeau, Coherent States in Quantum Physics, Wiley-VCH Verlag,
2009. ↑52, 55, 64

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=1005.22003&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=0166.16402&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/zmathf.html?first=1&maxdocs=3&type=html&an=691.46011&format=complete


Erlangen Program at Large: An Overview 81

[34] Loukas Grafakos, Classical Fourier analysis, Second, Graduate Texts in Mathe-
matics, vol. 249, Springer, New York, 2008. MR2445437 ↑26, 36

[35] N.A. Gromov, Контракции и аналитические продолжения классических групп. Единыи
подход. (Russian) [Contractions and analytic extensions of classical groups. Unified
approach], Akad. Nauk SSSR Ural. Otdel. Komi Nauchn. Tsentr, Syktyvkar, 1990.
MR1092760 (91m:81078) ↑52

[36] , Transitions: Contractions and analytical continuations of the Cayley–Klein
groups, Int. J. Theor. Phys. 29 (1990), 607–620. ↑52

[37] N.A. Gromov and V.V. Kuratov, All possible Cayley-Klein contractions of quan-
tum orthogonal groups, Yadernaya Fiz. 68 (2005), no. 10, 1752–1762. MR2189521
(2006g:81101) ↑51, 52

[38] Uwe Günther and Sergii Kuzhel, 𝒫𝒯 –symmetry, Cartan decompositions, Lie triple
systems and Krein space-related Clifford algebras, Journal of Physics A: Mathemat-
ical and Theoretical 43 (2010), no. 39, 392002. ↑51, 52

[39] Sigurdur Helgason, Integral geometry and Radon transforms, Springer, New York,
2011. MR2743116 ↑26

[40] Francisco J. Herranz, Ramón Ortega, and Mariano Santander, Trigonometry
of spacetimes: a new self-dual approach to a curvature/signature (in)dependent
trigonometry, J. Phys. A 33 (2000), no. 24, 4525–4551. arXiv:math-ph/9910041.
MR1768742 (2001k:53099) ↑16, 72

[41] Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge
University Press, Cambridge, 1994. Corrected reprint of the 1991 original. MR95c:
15001 ↑45

[42] Roger Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer.
Math. Soc. (N.S.) 3 (1980), no. 2, 821–843. MR81h:22010 ↑2, 54, 65

[43] , Quantum mechanics and partial differential equations, J. Funct. Anal. 38
(1980), no. 2, 188–254. MR83b:35166 ↑28, 50, 52, 55, 60, 64

[44] Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis. Applications of
S𝐿(2,R), Springer-Verlag, New York, 1992. MR1151617 (93f:22009) ↑20, 52, 68

[45] Robin Hudson, Generalised translation-invariant mechanics, D. Phil. thesis, Bod-
leian Library, Oxford, 1966. ↑51, 52

[46] , Translation invariant phase space mechanics, Quantum theory: reconsid-
eration of foundations – 2, 2004, pp. 301–314. MR2111131 (2006e:81134) ↑51, 52
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[99] Jean-Marc Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poin-
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space, 18, 51

ladder operator, 19–21, 34–36, 63–65,
68–70, 73–75

Laplace operator, see also Laplacian

Laplacian, 4, 35, 36, 76

left regular representation, 53

length, 13

from centre, 13

from focus, 13

Lidskii theorem, 46

limit

semiclassical, 51, 59

Littlewood–Paley

operator, 26

Lobachevsky

geometry, 2, 30, 34, 76

lowering operator, see also ladder
operator

Möbius map, 2, 24, 27, 33, 38, 45, 48, 50

on cycles, 7

map

Möbius, 2, 24, 27, 33, 38, 45, 48, 50

on cycles, 7

matrix

cycle, of a, 7

Jordan normal form, 43

maximal

function, 26

measure

Haar, see also invariant measure

invariant, 22, 24, 29, 53

mechanics

classical, 53, 59

metaplectic representation, see also
oscillator representation

method

orbits, of, 50, 76
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minimal

polynomial, 45

model

functional, 27, 39, 46, 77

mother wavelet, 23, 42

Moyal bracket, 60, 61

hyperbolic, 51, 66

multiresolution analysis, 25

nilpotent unit, see also parabolic unit

non-commutative geometry, 4, 50

non-linear dynamics, 67

non-simply connected domain, 38

norm

shift invariant, 26

normalised

cycle, 8

𝑘-, 12

Kirillov, 9

number

double, 2, 15, 20, 21, 51, 65, 69

dual, 2, 15–16, 18, 21, 51, 70, 70–74

hypercomplex, 2, 18, 21, 75

numerical

range, 27

observable, 56

operator

annihilation, see also ladder operator

Casimir, 35

Cauchy-Riemann, 4, 32, 35, 36, 64, 76

creation, see also ladder operator

defect, 27

fiducial, 22

Fillmore–Springer–Cnops
construction, 50

intertwining, 4, 23, 26, 30, 31, 40, 41,
48

ladder, 19–21, 34–36, 63–65, 68–70,
73–75

Laplace, see also Laplacian

Littlewood–Paley, 26

lowering, see also ladder operator

power bounded, 77

pseudodifferential, 28

quasi-nilpotent, 77

raising, see also ladder operator

Toeplitz, 76

optics, 54

orbit

method, 50, 76

subgroup 𝐴, of, 3

subgroup 𝐾, of, 3

subgroup 𝑁 , of, 3

orders

of zero, 45

orthogonality

cycles, of, 7, 10

focal, see also f-orthogonality

oscillator

harmonic, 52, 55, 56, 60, 63, 66, 72

repulsive (hyperbolic), 68

representation, 54

unharmonic, 57, 61, 73

hyperbolic, 66

p-mechanics, 56

dynamic equation, 56

observable, 56

state, 57

p-mechanisation, 57

pairing

Hardy, 29

invariant, 28

parabola

directrix, 8

focus, 8

vertex, 8

parabolic

case, 2

cylinder function, see also
Weber–Hermite function

Fock–Segal–Bargmann
representation, 71

probability, see also classic
probability

Schrödinger representation, 71

unit (𝜀), 2

PDO, 28

pencil

covariant, 48

perpendicular, 14
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phase

space, 16, 52, 55, 59, 61, 63, 66

Planck

constant, 51, 72

Plato’s cave, 7

point space, 7

Poisson

bracket, 73

kernel, 24, 36

polyanalytic function, 36

polynomial

Hermite, 63, 69

minimal, 45

power bounded operator, 77

primary

representation, 41, 43, 49

principle

similarity and correspondence, 18,
21, 69, 75

probability

classic (parabolic), 73

hyperbolic, 67

quantum, 51, 58, 61

product

Blaschke, 45

projective space, 7

prolongation, 42

pseudodifferential operator, 28

𝒫𝒯 -symmetry, 51

quadratic

eigenvalue, 50

generator, 55

quantisation

geometrical, 50

quantum

field, 78

probability, 51, 58, 61

quantum mechanics, 52

quasi-nilpotent

operator, 77

quaternion, 14

radius

cycle, of, 12

Radon transform, 26

raising operator, see also ladder
operator

range

numerical, 27

reconstruction formula, 29

reduced wavelet transform, 30

reflection

in a cycle, 11

representation

SL2(ℝ) group, 17–18

in Banach space, 41

𝑎𝑥+ 𝑏 group, 24

coefficients, see also wavelet
transform

complementary series, 4, 25, 77

discrete series, 4, 17, 22, 25, 77

Fock–Segal–Bargmann, 53, 55, 56, 74

classic (parabolic), 71

hyperbolic, 66

FSB, see also Fock–Segal–Bargmann
representation

Heisenberg group

classic (parabolic), 71

hyperbolic, 66

Schrödinger, 54

induced, 14, 41, 50

Heisenberg group,of, 53

left regular, 53

linear, 4

metaplectic, see also oscillator
representation

oscillator, 54

primary, 41, 43, 49

principal series, 4, 25, 77

Schrödinger, 54, 58, 59, 64, 68

classic (parabolic), 71

hyperbolic, 66

Shale–Weil, see also oscillator
representation

square integrable, 22, 24, 29, 30

representations

Fock–Segal–Bargmann, 58

linear, 14

repulsive

harmonic oscillator, 68

resolvent, 28, 39, 41, 48
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Riemann

mapping theorem, 38

Schrödinger

group, 54, 63

representation, 54, 58, 59, 64, 68

classic (parabolic), 71

hyperbolic, 66

sections

conic, 2, 6

semiclassical

limit, 51, 59

semigroup

cancellative, 23

Shale–Weil representation, see also
oscillator representation

similarity, see also principle of similarity
and correspondence

simply-connected domain, 38

space

Bergman, 4, 22, 25, 39, 76

configuration, 59, 61, 66, 71, 74

cycles, of, 7

Fock–Segal–Bargmann, 25, 56, 64,
75, 78

FSB, see also Fock–Segal–Bargmann
space

Hardy, 4, 22, 24, 35, 38, 40, 46, 76

Krein, 18, 51

phase, 16, 52, 55, 59, 61, 63, 66

point, 7

projective, 7

spectral

covariant distance, 46

spectrum, 39, 42

contravariant, 40, 41, 43, 45

stability, 46

discrete, 77

joint, 41

mapping, 39

square integrable

representation, 22, 24, 29, 30

stability

contravariant spectrum, 46

state, 57

coherent, see also wavelet

vacuum, see also mother wavelet

subalgebra

Cartan, 19

subgroup

𝐴, 3, 5

orbit, 3

𝐾, 3, 5

orbit, 3

𝑁 , 3, 5

orbit, 3

generator, 19

supersymmetry, 19

support

functional calculus, see also spectrum

symbol

contravariant, 28

covariant, 26

symbolic calculus, see also covariant
calculus

covariant, 27

symplectic

form, 53

group, 52, 64

transformation, 15, 16, 52, 68

theorem

Atiyah-Singer (index), 3

Lidskii, 46

Riemann mapping, 38

spectral mapping, 39

Toeplitz

operator, 76

token, 23

trace, 8

transform

Cayley, 37

covariant, 22

induced, 30

inverse, 29

Radon, 26

wavelet, see also wavelet transform

transformation

symplectic, 15, 16, 52, 68

transitive, 2

umbral calculus, 23
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unharmonic

oscillator, 57, 61, 73

hyperbolic, 66

unit

circle, 37

disk, 37

hyperbolic (j), 2

imaginary (i), 2

nilpotent, see also parabolic unit

parabolic (𝜀), 2

vacuum state, see also mother wavelet

vertex

of a parabola, 8

wavelet, 22, 24, 30, 34, 42

admissible, 22, 24, 29

mother, 23, 42

transform, 23, 42, 64

induced, see also induced
covariant transform

reduced, 30

Weber–Hermite function, 68, 69

Wiener–Hopf factorisation, 25

zero

divisor, 2, 70

order, of, 45

zero-radius cycle, 9, 11
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1. Introduction

We recall that the function 𝑓(𝑧) is called analytic at the point 𝑧0 if 𝑓(𝑧) has a
power series expansion

𝑓(𝑧) =

∞∑
𝑚=0

𝑎𝑚(𝑧 − 𝑧0)
𝑚

which is convergent in some neighbourhood of the point 𝑧0. The function 𝑓(𝑧) is
analytic in the set 𝐷 if it is analytic in each point of 𝐷.

A set of points (𝑥, 𝑦), where

𝑥 = 𝑓1(𝑡), 𝑦 = 𝑓2(𝑡), 0 ≤ 𝑡 ≤ 1, (1.1)

and 𝑓1(𝑡) and 𝑓2(𝑡) are continuous functions such that, for given 𝑥 and 𝑦 the
system (1.1) has no more than one solution, is called the Jordan arc.

A set 𝐷 is said to be connected if any two of its points, arbitrarily chosen,
can be connected by a Jordan arc lying in 𝐷. A domain is an open connected set.

It is well known that analytic functions can be approximated by polynomials.
The ultimate result in this field belongs to S.N. Mergelyan [S.N. Mergelyan (1951)],
[S.N. Mergelyan (1952)], see also [J.L. Walsh (1960)].
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Theorem 1.1. Suppose that 𝐾 is a compact subset on the complex plane with con-
nected complement, and the function 𝑓(𝑧) is continuous on 𝐾 and analytic in the
interior of 𝐾. Then, for every 𝜖 > 0, there exists a polynomial 𝑃 (𝑧) such that

sup
𝑧∈𝐾

∣𝑓(𝑧)− 𝑃 (𝑧)∣ < 𝜖.

Note that conditions on the set 𝐾 and function 𝑓(𝑧) are necessary.
In Theorem 1.1, the approximating polynomial depends on the function 𝑓(𝑧).

It turns out that there exist functions 𝐹 (𝑧) such that their shifts 𝐹 (𝑧+𝑖𝜏) approx-
imate any analytic function. The simplest of 𝐹 (𝑧) is the Riemann zeta-function.

In this survey, we give an introduction to the theory of the Riemann zeta-
function, state the universality theorem, discuss the effectivization problem of this
theorem and present recent results on universality of zeta-functions.

2. The Riemann zeta-function

Let 𝑠 = 𝜎 + 𝑖𝑡 be a complex variable. The Riemann zeta-function 𝜁(𝑠) is defined,
in the half-plane 𝜎 > 1, by the series

𝜁(𝑠) =

∞∑
𝑚=1

1

𝑚𝑠
.

We recall that the series of the form
∞∑

𝑚=1

𝑎𝑚e
−𝜆𝑚𝑠,

where 𝑎𝑚 ∈ ℂ and {𝜆𝑚} is an increasing sequence of real numbers such that
lim

𝑚→∞𝜆𝑚 = +∞, are called general Dirichlet series. If 𝜆𝑚 = log𝑚, then we have

an ordinary Dirichlet series
∞∑

𝑚=1

𝑎𝑚
𝑚𝑠

.

The region of convergence as well as of absolute convergence of Dirichlet series
is a half-plane. Thus, the Riemann zeta-function is given, for 𝜎 > 1, by ordinary
Dirichlet series with coefficients 𝑎𝑚 ≡ 1.

The function 𝜁(𝑠), as a function of a complex variable, was introduced by B.
Riemann in 1859. However, the function 𝜁(𝑠) with real 𝑠 earlier was studied by
L. Euler.

Denote by [𝑢] the integer part of 𝑢. Summing by parts, it it easy to obtain
that, for 𝜎 > 1,

𝜁(𝑠) =
1

𝑠− 1
+

1

2
+ 𝑠

∞∫
1

[𝑥]− 𝑥+ 1
2

𝑥𝑠+1
d𝑥. (2.1)

Clearly, the integral converges absolutely for 𝜎 > 0, and uniformly for 𝜎 ≥ 𝜀 with
arbitrary 𝜀 > 0. Therefore, it defines a function analytic for 𝜎 > 0. Hence, (2.1)
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gives analytic continuation for 𝜁(𝑠) to the region 𝜎 > 0, except for a simple pole
at the point 𝑠 = 1 with residue 1.

Denote, as usual, by Γ(𝑠) the Euler gamma-function which is defined, for
𝜎 > 0, by

Γ(𝑠) =

∞∫
0

e−𝑢𝑢𝑠−1d𝑢.

Moreover, the function Γ(𝑠) is meromorphically continuable over the whole com-
plex plane, the points 𝑠 = −𝑚, 𝑚 = 0, 1, 2, . . . , are simple poles, and

Res𝑠=−𝑚Γ(𝑠) =
(−1)𝑚
𝑚!

.

The Euler gamma function is involved in the functional equation of the Rie-
mann zeta function

𝜋−
𝑠
2Γ
(𝑠
2

)
𝜁(𝑠) = 𝜋−

1−𝑠
2 Γ

(
1− 𝑠

2

)
𝜁(1 − 𝑠) (2.2)

which implies analytic continuation for 𝜁(𝑠) to the region 𝜎 < 1
2 .

Riemann began to study the function 𝜁(𝑠) for needs of the distribution of
prime numbers, i.e., for the asymptotics for the function

𝜋(𝑥) =
∑
𝑝≤𝑥

1, 𝑝 is prime,

as 𝑥 → ∞. A relation of 𝜁(𝑠) with prime numbers is clearly seen from the Euler
identity

𝜁(𝑠) =
∏
𝑝

(
1− 1

𝑝𝑠

)−1
, 𝜎 > 1, (2.3)

which is a simple consequence of the principal theorem of arithmetics and definition
of 𝜁(𝑠) by Dirichlet series. Riemann proposed [B. Riemann (1859)] an original way
to obtain the asymptotic formula

𝜋(𝑥) ∼
𝑥∫

2

d𝑢

log 𝑢
, 𝑥→∞,

however, his work was not completely correct. Riemann’s ideas were realized
probably 50 years later independently by C.J. de la Vallée Poussin [C.J. de la
Vallée-Poussin (1896)] and J. Hadamard [J. Hadamard (1896)].

It turned out that a problem of the asymptotics for 𝜋(𝑥) is closely connected
to zeros of the function 𝜁(𝑠). From the functional equation (2.2) it follows that
𝜁(𝑠) = 0 for 𝑠 = −2𝑚, 𝑚 ∈ ℕ. These zeros of 𝜁(𝑠) are called trivial and, in general,
are not interesting. The Euler identity (2.3) shows that 𝜁(𝑠) ∕= 0 for 𝜎 > 1. It is
not difficult to show that 𝜁(𝑠) ∕= 0 on the line 𝜎 = 1, and this is already sufficient
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to obtain the asymptotics for 𝜋(𝑥). This and (2.2) imply that 𝜁(𝑠) ∕= 0 for 𝜎 ≤ 0.
Application of elements of the theory of entire functions of order 1 for the function

𝜉(𝑠) =
1

2
𝑠(𝑠− 1)𝜋−

𝑠
2Γ
(𝑠
2

)
𝜁(𝑠)

allows us to prove that the function 𝜁(𝑠) has infinitely many zeros in the strip
0 < 𝜎 < 1. These zeros of 𝜁(𝑠) are called non-trivial, and play an important role
not only in analytic number theory but in mathematics in general. The famous
Riemann hypothesis (RH) says that all non-trivial zeros of 𝜁(𝑠) lie on the critical
line 𝜎 = 1

2 . RH is included in the list of seven Millennium Prize Problems, for
each of which a solution carries a prize of US $ 1 million, set up by the Clay
Mathematics Institute [The Millennium Prize problems (2006)].

There exist results favorable for RH, however some facts do not support it.
There are many computations on the location of zeros of 𝜁(𝑠). For example, in
[J. van de Lune, H.J.J. te Riele, D.T. Winter (1986)] the first 1500000001 zeros
of 𝜁(𝑠) were found, all lying on the critical line; moreover, they all are simple. Of
course, calculations can not prove RH, they can only disprove it.

In applications, it is important to know regions where 𝜁(𝑠) ∕= 0. The best
result in this direction is of the form: there exists an absolute constant 𝑐 > 0 such
that 𝜁(𝑠) ∕= 0 in the region

𝜎 ≥ 1− 𝑐

(log 𝑡)2/3(log log 𝑡)1/3
, 𝑡 ≥ 𝑡0 > 0.

This result is due to H.-E. Richert who never published its proof.

For 𝑇 > 0, let 𝑁(𝑇 ) denote the number of non-trivial zeros of 𝜁(𝑠) lying in
the rectangle 0 < 𝜎 < 1, 0 < 𝑡 ≤ 𝑇 . Then the von Mangoldt formula

𝑁(𝑇 ) =
𝑇

2𝜋
log

𝑇

2𝜋
− 𝑇

2𝜋
+O(log 𝑇 ), 𝑇 →∞,

is true. This formula was conjectured by Riemann and proved in [H. von Mangoldt
(1895)] by H. von Mangoldt.

Let𝑁0(𝑇 ) denote the number of zeros of 𝜁(𝑠) of the form 𝑠 = 1
2+𝑖𝑡, 0 < 𝑡 ≤ 𝑇 .

Then RH is equivalent to the assertion that 𝑁0(𝑇 ) = 𝑁(𝑇 ) for all 𝑇 > 0. We recall
some results on the relation between 𝑁(𝑇 ) and 𝑁0(𝑇 ).

In 1914, G.H. Hardy proved [G.H. Hardy (1914)] that𝑁0(𝑇 )→∞ as 𝑇 →∞.
More precisely, he obtained that 𝑁0(𝑇 ) > 𝑐𝑇 , 𝑐 > 0, for 𝑇 ≥ 𝑇0.

In 1942, A. Selberg found [A. Selberg (1942)] that 𝑁0(𝑇 ) > 𝑐𝑇 log𝑇 , 𝑐 > 0,
for 𝑇 ≥ 𝑇0, that is, that a positive proportion of non-trivial zeros lies on the critical
line.

A very important result belongs to N. Levinson. In 1974, he proved [N. Levin-
son (1974)] that

𝑁0(𝑇 ) ≥ 1

3
𝑁(𝑇 ).

In 1983, J.B. Conrey improved [J.B. Conrey (1989)] this result till𝑁0(𝑇 ) ≥ 2
5𝑁(𝑇 ).
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One more important conjecture in the theory of the Riemann zeta-function
is the Lindelöf hypothesis (LH). LH asserts that, with arbitrary 𝜀 > 0,

𝜁

(
1

2
+ 𝑖𝑡

)
= O𝜀(𝑡

𝜀), 𝑡 ≥ 𝑡0,

or equivalently

𝜁 (𝜎 + 𝑖𝑡) = O𝜀(𝑡
𝜀), 𝑡 ≥ 𝑡0,

for all 𝜎 > 1
2 . The classical estimate says that

𝜁

(
1

2
+ 𝑖𝑡

)
= O

(
𝑡
1
6

)
.

The best result in this direction belongs to M.N. Huxley [M.N. Huxley (2005)],
and is of the form

𝜁

(
1

2
+ 𝑖𝑡

)
= O

(
𝑡

32
205+𝜀

)
.

It is well known that RH implies LH.

There are several equivalents of LH. One of them is related to the moments
of 𝜁(𝑠). Namely, LH is equivalent to the estimates: for arbitrary 𝜀 > 0

𝑇∫
1

∣∣∣∣𝜁 (12 + 𝑖𝑡

)∣∣∣∣2𝑘 d𝑡 = O𝜀(𝑇
1+𝜀), 𝑘 ∈ ℕ,

or
𝑇∫
1

∣𝜁 (𝜎 + 𝑖𝑡)∣2𝑘 d𝑡 = O𝜀(𝑇
1+𝜀), 𝑘 ∈ ℕ,

for all 𝜎 > 1
2 .

In general, the moment problem is a very important and difficult one in the
theory of the Riemann zeta-function.In some applications, individual values of
𝜁(𝑠) can be replaced by its mean-value estimates. There exists a conjecture that,
as 𝑇 →∞,

𝑇∫
1

∣∣∣∣𝜁 (12 + 𝑖𝑡

)∣∣∣∣2𝑘 d𝑡 ∼ 𝑐𝑘𝑇 (log𝑇 )
𝑘2

, 𝑘 > 0.

This is proved only for three values of 𝑘:

𝑐1 = 1, Hardy-Littlewood (1918);

𝑐2 =
1

2𝜋2 , Ingham (1926).

From a probabilistic limit theorem for
∣∣𝜁 ( 12 + 𝑖𝑡

)∣∣ it follows [A. Laurinčikas (1996)]
that 𝑐𝑘 = 1 for 𝑘 = 𝑐(log log 𝑇 )−

1
2 , 𝑐 > 0.
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3. Universality

We understand the universal mathematical object as an object having influence
for a wide class of other objects. In analysis, this influence often is related with a
certain approximation.

The first universal object in analysis was found by Fekete in 1914. He proved
that there exists a real power series

∞∑
𝑚=1

𝑎𝑚𝑥𝑚

which is divergent for all 𝑥 ∕= 0. Moreover, this divergence is so extreme that,for
every continuous function 𝑓 on [−1, 1], 𝑓(0) = 0, there exists a sequence {𝑛𝑘} ⊂ ℕ
such that

lim
𝑘→∞

𝑛𝑘∑
𝑚=1

𝑎𝑚𝑥𝑚 = 𝑓(𝑥)

uniformly on [−1, 1].
After Fekete’s result, many universal objects were found. We recall one the-

orem of Birkhoff. He proved [G.D. Birkhoff (1929)] that there exists an entire
function 𝑓(𝑧) such that, for every entire function 𝑔(𝑧), there exists a sequence of
complex numbers {𝑎𝑚} such that

lim
𝑚→∞ 𝑓(𝑧 + 𝑎𝑚) = 𝑔(𝑧)

uniformly on compact subsets of the complex plane.

The term of universality was used for the first time by J. Marcinkiewicz in
[J. Marcinkiewicz (1935)]. He obtained the following result. Let {ℎ𝑛} be a sequence
of real numbers and lim

𝑛→∞ ℎ𝑛 = 0. Then he proved that there exists a continuous

function 𝑓 ∈ 𝐶[0, 1] such that, for every continuous function 𝑔 ∈ 𝐶[0, 1], there
exists an increasing sequence {𝑛𝑘} ⊂ ℕ such that

lim
𝑘→∞

𝑓(𝑥+ ℎ𝑛𝑘
)− 𝑓(𝑥)

ℎ𝑛𝑘

= 𝑔(𝑥)

almost everywhere on [0, 1]. Marcinkiewicz called the function 𝑓 a primitive uni-
versal.

However, all of the above and other known universal objects, were not ex-
plicitly given, only their existence was proved. As recently as 1975, S.M. Voronin
[S.M. Voronin (1975)] found the first explicitly given universal (in a certain sense
object). It was not very strange that this object is the famous Riemann zeta-
function 𝜁(𝑠).

The first version of the Voronin theorem is as follows.

Theorem 3.1 [S.M. Voronin (1975)]. Let 0 < 𝑟 < 1
4 . Suppose that 𝑓(𝑠) is a contin-

uous non-vanishing function on the disc ∣𝑠∣ ≤ 𝑟 which is analytic in the interior
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of this disc. Then, for every 𝜀 > 0, there exists a real number 𝜏 = 𝜏(𝜀) such that

max
∣𝑠∣≤𝑟

∣∣∣∣𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀.

Roughly speaking, the Voronin theorem asserts that any analytic function is
approximated with desired accuracy uniformly on the disc by shifts of the Riemann
zeta-function. Voronin himself called his theorem “theorem o kruzhochkakh”. Now-
adays its name is the Voronin universality theorem.

A modern version of the Voronin theorem has a bit more general form. Denote
by meas{𝐴} the Lebesgue measure of a measurable set 𝐴 ⊂ ℝ, see, for example,
[A. Laurinčikas (1996)].

Theorem 3.2. Let 𝐾 be a compact subset of the strip 𝐷 = {𝑠 ∈ ℂ : 1
2 < 𝜎 < 1} with

connected complement. Let 𝑓(𝑠) be a continuous and non-vanishing on 𝐾 function
which is analytic in the interior of 𝐾. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

The latter theorem shows that the set of shifts 𝜁(𝑠+ 𝑖𝜏) whose approximate
uniformly on 𝐾 a given analytic function 𝑓(𝑠) is sufficiently rich, it has a positive
lower density.

The universality in the Voronin sense of 𝜁(𝑠) has a direct connection to RH.It
is known, see, for example, [J. Steuding (2007)] that RH is equivalent to the fol-
lowing statement: for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝜁(𝑠)∣ < 𝜀

}
> 0,

where the set 𝐾 is the same as in Theorem 3.2.
In Theorem 3.2, the shifts 𝜁(𝑠 + 𝑖𝜏) occur, where 𝜏 varies continuously in

the interval [0, 𝑇 ]. Therefore, the universality of 𝜁(𝑠) in Theorem 3.2 is called
continuous. Also, a discrete universality of 𝜁(𝑠) is known. It is included in the
following theorem.

Theorem 3.3. Let ℎ > 0 be a fixed number, and 𝐾 and 𝑓(𝑠) be the same as in
Theorem 3.2. Then, for every 𝜀 > 0,

lim inf
𝑁→∞

1

𝑁 + 1
♯

{
0 ≤ 𝑚 ≤ 𝑁 : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝑚ℎ)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

4. Effectivization problem

The universality theorem for 𝜁(𝑠) has one very important shortcoming. It is not
effective in the sense that we do not know any concrete value 𝜏 ∈ ℝ for which

sup
𝑠∈𝐾

∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀,
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or 𝑚 ∈ ℕ with

sup
𝑠∈𝐾

∣𝜁(𝑠+ 𝑖𝑚ℎ)− 𝑓(𝑠)∣ < 𝜀.

For applications of the universality theorem, it is sufficient to know at least an in-
terval [0, 𝑇0] containing 𝜏 with an approximating property. However, in our opin-
ion, the latter problem is very difficult. The first attempt in this direction was
made in [A. Good (1981)] by A. Good, however, his results are too complicated to
be given here. Interesting results were obtained by my student R. Garunkštis. Sup-
pose that the function 𝑓(𝑠) is analytic on the disc ∣𝑠∣ ≤ 0.05 and max

∣𝑠∣≤0.05
∣𝑓(𝑠)∣ < 1.

Then Garunkštis proved [R. Garunkštis (2003)] that, for every 0 < 𝜀 < 1
2 , there

exists 𝜏 ,

0 ≤ 𝜏 ≤ exp
{
exp{10𝜀−13}} ,

such that

max
∣𝑠∣≤0.0001

∣∣∣∣log 𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀,

and

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : max

∣𝑠∣≤0.0001

∣∣∣∣log 𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀

}
≥ exp

{−𝜀−13} .
Also, an estimate for the upper universality density is known [J. Steuding

(2003)]. Suppose that 𝑟 ∈ (0, 14) and the function 𝑓(𝑠) is non-vanishing and ana-
lytic on the disc ∣𝑠∣ ≤ 𝑟. Then, for every 𝜀 ≥ 0,

lim sup
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : max

∣𝑠∣≤𝑟

∣∣∣∣𝜁 (𝑠+ 3

4
+ 𝑖𝜏

)
− 𝑓(𝑠)

∣∣∣∣ < 𝜀

}
= O(𝜀).

The last result in this direction is as follows. For 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1) ∈ ℂ𝑛
,

let

∥𝑏∥ =
𝑛−1∑
𝑘=0

∣𝑏𝑛∣,

and

𝐴(𝑛, 𝑏, 𝜀) = ∣ log ∣𝑏0∣∣+
(∥𝑏∥

𝜀

)𝑛2

.

Then we have the following statement.

Theorem 4.1. [R. Garunkštis, A. Laurinčikas, K. Matsumoto, J. Steuding, R. Steud-
ing (2010)] Let 𝑠0 = 𝜎0+𝑖𝑡0, 𝜎0 ∈

(
1
2 , 1
)
and 𝐾 = {𝑠 ∈ ℂ : ∣𝑠−𝑠0∣ ≤ 𝑟}. Moreover,

let 𝑔 : 𝐾 → ℂ be a continuous function, 𝑔(𝑠0) ∕= 0, which is analytic on the disc
∣𝑠 − 𝑠0∣ ≤ 𝑟. Then, for every 𝜀 ∈ (0, ∣𝑔(𝑠0)∣), there exist real numbers 𝜏 ∈ [𝑇, 2𝑇 ]
and 𝛿 = 𝛿(𝜀, 𝑔, 𝜏) > 0, connected by the equality

𝑀(𝜏)
𝛿𝑛

1− 𝛿
=

𝜀

3

(
2− e𝛿𝑟

)



The Riemann Zeta-function: Approximation of Analytic Functions 103

with

𝑀(𝜏) = max
∣𝑠−𝑠0∣=𝑟

∣𝜁(𝑠+ 𝑖𝜏)∣,

such that

max
∣𝑠−𝑠0∣≤𝛿𝑟

∣𝜁(𝑠+ 𝑖𝜏)− 𝑔(𝑠)∣ < 𝜀.

Here 𝑇 = 𝑇 (𝑔, 𝜀, 𝜎0) > 𝑟 satisfies the inequality

𝑇 ≥ 𝐶(𝑛, 𝜎0)exp

{
exp

{
5𝐴
(
𝑛, 𝑔,

𝜀

3

) 8
1−𝜎0

+ 8

𝜎0− 1
2

}}
,

where

𝑔 =
(
𝑔(𝑠0), 𝑔

′((𝑠0), . . . , 𝑔(𝑛−1)(𝑠0)
)
,

and 𝐶(𝑛, 𝜎0) is an effective computable constant depending on 𝑛 and 𝜎0.

Remark. The requirement 𝑔(𝑠0) ∕= 0 can be removed if 𝐴(𝑛, 𝑔, 𝜀3 ) is changed by
𝐴(𝑛, 𝑔

𝜀
, 𝜀3 ), where

𝑔
𝜀
=
(𝜀
2
, 𝑔′(𝑠0), . . . , 𝑔(𝑛−1)(𝑠0)

)
.

We note that Theorem 4.1 gives only an approximation to the effectivization
problem of the universality theorem, and is far from the full solution of the problem.

5. Other zeta-functions

The Riemann zeta-function is not unique in having the above universality property.
There exists the Linnik-Ibragimov conjecture that all functions 𝑍(𝑠) in some half-
plane given by Dirichlet series

𝑍(𝑠) =

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

, 𝜎 > 𝜎0,

analytically continuable to the half-plane 𝜎 > 𝜎1, 𝜎1 < 𝜎0, and satisfying certain
natural growth conditions, are universal in the Voronin sense. Usually, in the proof
of universality the estimates, for 𝜎1 < 𝜎 < 𝜎0,

𝑇∫
0

∣𝑍(𝜎 + 𝑖𝑡)∣2d𝑡≪ 𝑇

and

𝑍(𝜎 + 𝑖𝑡)≪ 𝑡𝑎, 𝑎 > 0, 𝑡 > 𝑡0 > 0,

are applied. In our opinion, the latter conjecture is very difficult, however, the
majority of classical zeta-functions are universal.
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On the other hand, there exist non-universal functions given by Dirichlet
series. For example, suppose that

𝑎𝑚 =

{
1 if 𝑚 = 𝑚𝑘

0 , 𝑘 ∈ ℕ,

0 if 𝑚 ∕= 𝑚𝑘
0 ,

where 𝑚0 ∈ ℕ∖{1}. Then we have that, for 𝜎 > 0,

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

=

∞∑
𝑘=1

1

𝑚𝑘𝑠
0

=
1

𝑚𝑠
0 − 1

.

The function (𝑚𝑠
0− 1)−1 is analytic in the whole complex plane except, for simple

poles on the line 𝜎 = 0; it however, obviously, is non-universal. In this section, we
discuss some examples of other universal zeta-functions.

Let 0 < 𝛼 ≤ 1 be a fixed parameter. The Hurwitz zeta-function 𝜁(𝑠, 𝛼) is
defined, for 𝜎 > 1, by

𝜁(𝑠, 𝛼) =
∞∑

𝑚=0

1

(𝑚+ 𝛼)𝑠
,

and can be meromorphically continued to the whole complex plane. The point
𝑠 = 1 is a simple pole with residue 1. Obviously, 𝜁(𝑠, 1) = 𝜁(𝑠), so 𝜁(𝑠, 𝛼) is a
generalization of the Riemann zeta-function. On the other hand, its properties
are governed by the arithmetical nature of the parameter 𝛼. The simplest case
is of transcendental 𝛼, i.e., when 𝛼 is not a root of any polynomial with rational
coefficients. In this case, the set

{log(𝑚+ 𝛼) : 𝑚 ∈ ℕ0}, ℕ0 = ℕ ∪ {0},
is linearly independent over the field ℚ of rational numbers. We observe that
𝜁(𝑠, 𝛼) with transcendental 𝛼 has no Euler product over primes, therefore, its
universality differs from that of the Riemann zeta-function: the approximated
function can be not necessarily non-vanishing, see, for example, [A. Laurinčikas,
R. Garunkštis (2002)].

Theorem 5.1. Suppose that 𝛼 is transcendental. Let 𝐾 be a compact subset of the
strip 𝐷 with connected complement, and 𝑓(𝑠) be a continuous function on 𝐾 and
analytic in the interior of 𝐾. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠 + 𝑖𝜏, 𝛼)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

If 𝛼 is rational, then the function 𝜁(𝑠, 𝛼) is also universal. However, the case
of algebraic irrational 𝛼 is an open problem.

Some periodic generalizations of the Riemann and Hurwitz zeta-functions are
known. Let 𝔞 = 𝑎𝑚 : 𝑚 ∈ ℕ be a periodic with a minimal period 𝑘 ∈ ℕ sequence
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of complex numbers. Then the function

𝜁(𝑠; 𝔞) =

∞∑
𝑚=1

𝑎𝑚
𝑚𝑠

, 𝜎 > 1,

is called a periodic zeta-function. The periodicity of 𝔞 implies, for 𝜎 > 1, the
equality

𝜁(𝑠; 𝔞) =
1

𝑘𝑠

𝑘∑
𝑙=1

𝑎𝑙𝜁

(
𝑠,

𝑙

𝑘

)
.

Hence, by virtue of the well-known properties of 𝜁(𝑠, 𝛼), we have that the function
𝜁(𝑠; 𝔞) has analytic continuation to the whole complex plane. If

𝑎 =
1

𝑘

𝑘∑
𝑙=1

𝑎𝑙 ∕= 0,

then the point 𝑠 = 1 is a simple pole of 𝜁(𝑠; 𝔞) with residue 𝑎,while if 𝑎 ∕= 0, then
𝜁(𝑠; 𝔞) is an entire function.

If 𝔞 is a multiplicative sequence, i.e., 𝑎1 = 1 and 𝑎𝑚𝑛 = 𝑎𝑚𝑎𝑛 for all coprimes
𝑚,𝑛 ∈ ℕ, then an analogue of Theorem 3.2 is true [A. Laurinčikas, D. Šiaučiūnas
(2006)] for the function 𝜁(𝛼, 𝛼). In the general case, the following result is known
[J. Kaczorowski (2009)].

Theorem 5.2. For every non-zero periodic sequence 𝔞 of complex numbers with
period 𝑘, there exists a positive constant 𝑐0 = 𝑐0(𝔞) such that, for every compact
subset 𝐾 ⊂ 𝐷 with connected complement,

max
𝑠∈𝐾

Im𝑠−min
𝑠∈𝐾

Im𝑠 ≤ 𝑐0,

every continuous non-vanishing function 𝑓(𝑠) on 𝐾 which is analytic in the inte-
rior of 𝐾, and every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠 + 𝑖𝜏, 𝔞)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

Now let 𝔟 = {𝑏𝑚 : 𝑚 ∈ ℕ0} be another periodic with a minimal period
𝑙 ∈ ℕ sequence of complex numbers, and 𝛼, 0 < 𝛼 ≤ 1, be a fixed parameter. The
periodic Hurwitz zeta-function 𝜁(𝑠, 𝛼, 𝔟) is defined, for 𝜎 > 1, by

𝜁(𝑠, 𝛼; 𝔟) =

∞∑
𝑚=0

𝑏𝑚
(𝑚+ 𝛼)𝑠

.

In view of periodicity of 𝔟,for 𝜎 > 1,

𝜁(𝑠, 𝛼; 𝔟) =
1

𝑙𝑠

𝑙−1∑
𝑘=0

𝑎𝑘𝜁

(
𝑠,

𝑘 + 𝑙

𝑙

)
,
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and this equality gives analytic continuation for 𝜁(𝑠, 𝛼; 𝔟) to the whole complex
plane. The function 𝜁(𝑠, 𝛼; 𝔟) is entire, if

𝑏 =
1

𝑙

𝑙−1∑
𝑘=0

𝑎𝑘 = 0,

and has a simple pole with residue 𝑏 at 𝑠 = 1 if 𝑏 ∕= 0.
If 𝛼 is transcendental, then an analogue of Theorem 5.1 is true [A. Javtokas,

A. Laurinčikas (2006)] for the function 𝜁(𝑠, 𝛼; 𝔟).
We will present one more example of universal zeta-functions with the Euler

product. Let 𝑆𝐿(2,ℤ) denote the full modular group, i.e.,

𝑆𝐿(2,ℤ) =

{(
𝑎 𝑏
𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑− 𝑏𝑐 = 1

}
.

Suppose that the function 𝐹 (𝑧) is analytic in the upper half-plane Im𝑧 > 0

and, for all

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝑆𝐿(2,ℤ), the functional equation

𝐹

(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
= (𝑐𝑧 + 𝑑)𝜅𝐹 (𝑧)

with a certain 𝜅 ∈ 2ℕ is satisfied. Then 𝐹 (𝑠) has the Fourier series expansion

𝐹 (𝑧) =
∞∑

𝑚=−∞
𝑐𝑚e

2𝜋𝑖𝑚𝑧.

In the case when 𝑐𝑚 = 0 for 𝑚 ≤ 0, the function is called a cusp form of weight
𝜅. Additionally, suppose that 𝐹 (𝑧) is an eigenform of all Hecke operators

(𝑇𝑛𝑓)(𝑧) = 𝑛𝜅−1
∑
𝑑∣𝑛

𝑑−𝜅
𝑑−1∑
𝑏=0

𝑓

(
𝑛𝑧 + 𝑏𝑑

𝑑2

)
.

Then it is proved that 𝑐𝑚 ∕= 0, and, after normalization, we have that

𝐹 (𝑧) =

∞∑
𝑚=1

𝑐𝑚e
2𝜋𝑖𝑚𝑧 with 𝑐1 = 1. (5.1)

To the cusp form (5.1), we attach the zeta-function

𝜑(𝑠, 𝐹 ) =

∞∑
𝑚=1

𝑐𝑚
𝑚𝑠

, 𝜎 >
𝜅+ 1

2
.

Since the coefficients 𝑐𝑚 are multiplicative, 𝜑(𝑠, 𝐹 ) has the Euler product repre-
sentation

𝜑(𝑠, 𝐹 ) =
∏
𝑝

(
1− 𝛼(𝑝)

𝑝𝑠

)−1(
1− 𝛽(𝑝)

𝑝𝑠

)−1
, 𝜎 >

𝜅+ 1

2
.

Here 𝛼(𝑝) and 𝛽(𝑝) are complex numbers, 𝛽(𝑝) = 𝛼(𝑝), 𝛼(𝑝)𝛽(𝑝) = 1 and 𝛼(𝑝) +
𝛽(𝑝) = 𝑐(𝑝). Moreover, the function 𝜑(𝑠, 𝐹 ) is analytically continued to an entire
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function. The universality of 𝜑(𝑠, 𝐹 ) has been proved in [A. Laurinčikas, K. Mat-
sumoto (2001)].

Theorem 5.3 [A. Laurinčikas, K. Matsumoto (2001)]. Let 𝐾 be a compact subset
of the strip {𝑠 ∈ ℂ : 𝜅

2 < 𝜎 < 𝜅+1
2 } with connected complement, and 𝑓(𝑠) be a

continuous non-vanishing on 𝐾 function which is analytic in the interior of 𝐾.
Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜑(𝑠+ 𝑖𝜏, 𝐹 )− 𝑓(𝑠)∣ < 𝜀

}
> 0.

6. Joint universality

A more complicated and interesting problem is a simultaneous approximation of
a collection of analytic functions by shifts of zeta-functions. The first result in
this direction also belongs to S.M. Voronin: in [S.M. Voronin (1975)], he obtained
the joint universality for Dirichlet 𝐿-functions. For the definition of Dirichlet 𝐿-
functions, a notion of a Dirichlet character is needed. A full definition is rather
complicated, therefore, we only observe that every arithmetical function 𝑔(𝑚) ∕= 0
satisfies the following conditions:

1∘ 𝑔(𝑚) is a completely multiplicative function (𝑔(𝑚𝑛) = 𝑔(𝑚)𝑔(𝑛)) for all
𝑚,𝑛 ∈ ℕ;

2∘ 𝑔(𝑚) is periodic with period 𝑘;
3∘ 𝑔(𝑚) = 0 if (𝑚, 𝑘) > 1, and 𝑔(𝑚) ∕= 0 if (𝑚, 𝑘) = 1 coincides with one of the

Dirichlet characters modulo 𝑘.

Let 𝜒 be a Dirichlet character. Then the corresponding Dirichlet 𝐿-function
𝐿(𝑠, 𝜒) is defined, for 𝜎 > 1, by

𝐿(𝑠, 𝜒) =

∞∑
𝑚=1

𝜒(𝑚)

𝑚𝑠
=
∏
𝑝

(
1− 𝜒(𝑝)

𝑝𝑠

)−1
.

A character

𝜒0(𝑚) =

{
1, if (𝑚, 𝑘) = 1,
0, if (𝑚, 𝑘) > 0,

is called the principal character modulo 𝑘. It is not difficult to see that, for 𝜎 > 1,

𝐿(𝑠, 𝜒0) = 𝜁(𝑠)
∏
𝑝∣𝑘

(
1− 1

𝑝𝑠

)
,

thus 𝐿(𝑠, 𝜒0) has a simple pole at 𝑠 = 1 with residue
∏
𝑝∣𝑘

(
1− 1

𝑝𝑠

)
. If 𝜒 ∕= 𝜒0, then

the function 𝐿(𝑠, 𝜒) is entire.
Let 𝑙, 𝑘 ∈ ℕ, (𝑙, 𝑘) = 1. Define

𝜋(𝑥, 𝑘, 𝑙) =
∑
𝑝≤𝑥

𝑝≡𝑙(mod𝑘)

1.
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Dirichlet 𝐿-functions are applied for the investigation of prime numbers in arith-
metical progressions, i.e., for the asymptotics of the function 𝜋(𝑥, 𝑘, 𝑙) as 𝑥→∞.
It has been proved that

𝜋(𝑥, 𝑘, 𝑙) ∼ 𝑥

𝜑(𝑘) log 𝑥
, 𝑥→∞,

where 𝜑(𝑘) is the Euler function: 𝜑(𝑘) = ♯{1 ≤ 𝑚 ≤ 𝑘 : (𝑚, 𝑘) = 1}.
Let 𝜒1(mod𝑘1) and 𝜒2(mod𝑘2) be two Dirichlet characters, and 𝑘 = [𝑘1, 𝑘2]

denote the least common multiple. The characters 𝜒1 and 𝜒2 are called equivalent
if, for (𝑚, 𝑘) = 1,

𝜒1(𝑚) = 𝜒2(𝑚).

Each Dirichlet 𝐿-function is also universal in the Voronin sense. Moreover, the first
example of the joint universality is related to Dirichlet 𝐿-functions.

Theorem 6.1 [S.M. Voronin (1975)]. Suppose that 𝜒1, . . . , 𝜒𝑛 are pairwise non-
equivalent Dirichlet characters, and 𝐿(𝑠, 𝜒1), . . . , 𝐿(𝑠, 𝜒𝑛) are the corresponding
Dirichlet 𝐿-functions. Let 𝐾1, . . . ,𝐾𝑛 be compact subsets of the strip {𝑠 ∈ ℂ :
1/2 < 𝜎 < 1} with connected complements, and let functions 𝑓1(𝑠), . . . , 𝑓𝑛(𝑠) be
continuous non-vanishing on 𝐾1, . . . ,𝐾𝑛 and analytic in the interior of 𝐾1, . . . ,
𝐾𝑛, respectively. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑛
sup
𝑠∈𝐾𝑗

∣𝐿(𝑠+ 𝑖𝜏, 𝜒𝑗)− 𝑓(𝑠)∣ < 𝜀

}
> 0.

Now let 𝛼𝑗 ∈ ℝ, 0 < 𝛼𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑟, and

𝐿(𝛼1, . . . , 𝛼𝑟) = {log(𝑚+ 𝑥𝑗) : 𝑚 ∈ ℕ0, 𝑗 = 1, . . . , 𝑟}.
A joint universality theorem for Hurwitz zeta-functions is of the form.

Theorem 6.2. Suppose that the set 𝐿(𝛼1, . . . , 𝛼𝑟) is linearly independent over ℚ. For
𝑗 = 1, . . . , 𝑟, let 𝐾𝑗 be a compact subset of the strip 𝐷 with connected complement,
and let 𝑓𝑗(𝑠) be a continuous function on 𝐾𝑗 which is analytic in the interior of
𝐾𝑗. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑟
sup
𝑠∈𝐾𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝛼𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀

}
> 0.

Note that, differently from Theorem 6.1, the approximated analytic functions
in Theorem 6.2 can have zeros on the set 𝐾𝑗 .

There exist other results on joint universality, however, some of them are
conditional. We present a recent theorem on joint universality of zeta-functions
with periodic coefficients.

Let 𝔞𝑗 = {𝑎𝑗𝑚 : 𝑚 ∈ ℕ} be a periodic sequence of complex numbers with min-
imal period 𝑘𝑗 ∈ ℕ, and 𝜁(𝑠; 𝔞𝑗) denote the corresponding periodic zeta-function,
𝑗 = 1, . . . , 𝑟1, 𝑟1 > 1. Let 𝔟𝑗 = {𝑏𝑗𝑚 : 𝑚 ∈ ℕ0} be another periodic sequence of
complex numbers with minimal period 𝑙𝑗 ∈ ℕ, 0 < 𝛼𝑗 ≤ 1, and 𝜁(𝑠, 𝛼𝑗 ; 𝔟𝑗) be the
corresponding periodic Hurwitz zeta-function, 𝑗 = 1, . . . , 𝑟2, 𝑟2 > 1.
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Denote by 𝑘 = [𝑘1, . . . , 𝑘2] the least common multiple of the periods 𝑘1, . . . ,
𝑘𝑟, and let 𝜂1, . . . , 𝜂𝜑(𝑘) be the reduced residue system modulo 𝑘. Define the matrix

𝐴 =

⎛⎜⎜⎝
𝑎1𝜂1 𝑎2𝜂1 . . . 𝑎𝑟1𝜂1
𝑎1𝜂2 𝑎2𝜂2 . . . 𝑎𝑟1𝜂2
. . . . . . . . . . . . .

𝑎1𝜂𝜑(𝑘)
𝑎2𝜂𝜑(𝑘)

. . . 𝑎𝑟1𝜂𝜑(𝑘)

⎞⎟⎟⎠ .

Theorem 6.3 [A. Laurinčikas (2010)]. Suppose that 𝔞1, . . . , 𝔞𝑟1 are multiplicative,
rank(𝐴) = 𝑟1, and the numbers 𝛼1, . . . , 𝛼𝑟2 are algebraically independent over ℚ.
Let 𝐾1, . . . ,𝐾𝑟1 be compact subsets of the strip 𝐷 = {𝑠 ∈ ℂ : 1/2 < 𝜎 < 1} with
connected complements, and let the functions 𝑓1(𝑠), . . . , 𝑓𝑟(𝑠) be continuous non-
vanishing on 𝐾1, . . . ,𝐾𝑟1 and analytic in the interior of 𝐾1, . . . ,𝐾𝑟1 , respectively.

Let 𝐾̂1, . . . , 𝐾̂𝑟1 also be compact subsets of 𝐷 with connected complements, and let

the functions 𝑓1(𝑠), . . . , 𝑓𝑟1(𝑠) be continuous on 𝐾̂1, . . . , 𝐾̂𝑟2 and analytic in the

interior of 𝐾̂1, . . . , 𝐾̂𝑟2 , respectively. Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

1<𝑗≤𝑟1
sup
𝑠∈𝐾𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝔞𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀,

sup
1<𝑗≤𝑟2

sup
𝑠∈𝐾̂𝑗

∣𝜁(𝑠+ 𝑖𝜏, 𝛼𝑗 ; 𝔟𝑗)− 𝑓𝑗(𝑠)∣ < 𝜀
}
> 0.

7. Proof of universality theorems

The original proof of the Voronin universality theorem is based on an analogue of
the Riemann theorem on rearrangement of terms of series in Hilbert spaces. How-
ever, a more convenient and universal approach uses probabilistic limit theorems
in the sense of weak convergence of probability measures in the space of analytic
functions.

Let 𝑆 be a metric space, and let ℬ(𝑆) denote the class of Borel sets of the
space 𝑆, i.e., the 𝜎-field generated by open sets of 𝑆. Let 𝑃𝑛, 𝑛 ∈ ℕ, and 𝑃 be
probability measures on (𝑆,ℬ(𝑆)). We recall that 𝑃𝑛 converges weakly to 𝑃 as
𝑛→∞ if

lim
𝑛→∞

∫
𝑆

𝑓d𝑃𝑛 =

∫
𝑆

𝑓d𝑃

for every real continuous bounded function 𝑓 on 𝑆.

Denote by 𝐻(𝐷) the space of analytic functions on 𝐷 equipped with the
topology of uniform convergence on compacta. On (𝐻(𝐷),ℬ(𝐻(𝐷))), define the
probability measure

𝑃𝑇 (𝐴) =
1

𝑇
meas {𝜏 ∈ [0, 𝑇 ] : 𝜁(𝑠+ 𝑖𝜏) ∈ 𝐴} .
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To state a limit theorem for the measure 𝑃𝑇 , we need some notation. Let

Ω =
∏
𝑝

𝛾𝑝,

where 𝛾𝑝 = {𝑠 ∈ ℂ : ∣𝑠∣ = 1} for each prime 𝑝. With the product topology and
pointwise multiplication, the infinite-dimensional torus Ω is a compact topological
Abelian group. Therefore, on (Ω,ℬ(Ω)), the probability Haar measure 𝑚𝐻 can
be defined, and this gives the probability space (Ω,ℬ(Ω),𝑚𝐻). Denote by 𝜔(𝑝)
the projection of 𝜔 ∈ Ω to the coordinate space 𝛾𝑝, and on the probability space
(Ω,ℬ(Ω),𝑚𝐻), define the 𝐻(𝐷)-valued random element 𝜁(𝑠, 𝜔) by the formula

𝜁(𝑠, 𝜔) =
∏
𝑝

(
1− 𝜔(𝑝)

𝑝𝑠

)−1
.

Note that the latter product converges uniformly on compact subset of the half-
plane 𝜎 > 1

2 for almost all 𝜔 ∈ Ω.Denote by 𝑃𝜁 the distribution of the random
element 𝜁(𝑠, 𝜔), i.e.,

𝑃𝜁(𝐴) = 𝑚𝐻(𝜔 ∈ Ω : 𝜁(𝑠, 𝜔) ∈ 𝐴), 𝐴 ∈ ℬ(𝐻(𝐷)).

Theorem 7.1. The probability measure 𝑃𝑇 converges weakly to 𝑃𝜁 as 𝑇 →∞.

The next ingredient of the proof of universality for 𝜁(𝑠) is the support of the
measure 𝑃𝜁 .We recall that the support of 𝑃𝜁 is a minimal closed set 𝑆𝜁 such that
𝑃𝜁(𝑆𝜁) = 1. The support 𝑆𝜁 consists of elements 𝑥 ∈ 𝐻(𝐷) such that, for every
neighbourhood 𝐺 of 𝑥, the inequality 𝑃𝜁(𝐺) > 0 is satisfied.

Theorem 7.2. The support of the measure 𝑃𝜁 is the set

{𝑔 ∈ 𝐻(𝐷) : 𝑔(𝑠) ∕= 0 or 𝑔(𝑠) ≡ 0}.

Proof of Theorem 3.2. First suppose that the function 𝑓(𝑠) has a non-vanishing
analytic continuation to the strip 𝐷. Then, by Theorem 7.2, 𝑓(𝑠) ∈ 𝑆𝜁 , therefore,
defining an open set 𝐺 by

𝐺 = {𝑔 ∈ 𝐻(𝐷) : sup
𝑠∈𝐾

∣𝑔(𝑠)− 𝑓(𝑠)∣ < 𝜀},

we obtain that

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− 𝑓(𝑠)∣ < 𝜀

}
≥ 𝑃𝜁(𝐺) > 0.

Now let 𝑓(𝑠) be as in Theorem 3.2. Then, by Theorem 1.1, there exists a
polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

∣𝑓(𝑠)− 𝑝(𝑠)∣ < 𝜀

4
.
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We have that 𝑝(𝑠) ∕= 0 on 𝐾. Therefore, we can choose a continuous branch of
log 𝑝(𝑠) which is analytic in some region containing 𝐾. By Theorem 1.1 again, we
can find a polynomial 𝑞(𝑠) such that

sup
𝑠∈𝐾

∣𝑝(𝑠)− e𝑞(𝑠)∣ < 𝜀

4
. (7.1)

This and (7.1) show that

sup
𝑠∈𝐾

∣𝑓(𝑠)− e𝑞(𝑠)∣ < 𝜀

2
. (7.2)

However, 𝑒𝑞(𝑠) is a non-vanishing analytic function on 𝐷. Thus, by the first part
of the proof

lim inf
𝑇→∞

1

𝑇
meas

{
𝜏 ∈ [0, 𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)− e𝑞(𝑠)∣ < 𝜀

2

}
> 0.

In view of (7.2),{
𝜏 ∈ [0,𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)−𝑓(𝑠)∣<𝜀

}
⊃
{
𝜏 ∈ [0,𝑇 ] : sup

𝑠∈𝐾
∣𝜁(𝑠+ 𝑖𝜏)−e𝑞(𝑠)∣< 𝜀

2

}
,

hence the theorem follows.

8. Some applications

Universality theorems for zeta- and 𝐿-functions have theoretical and practical
applications. One of the theoretical applications is related to the functional inde-
pendence of functions.

In 1887, O. Hölder proved [O. Hölder (1887)] that the Euler gamma-function
Γ(𝑠) does not satisfy any algebraic-differential equation, i.e., there are no polyno-
mials 𝑃 ∕≡ such that

𝑃 (Γ(𝑠),Γ′(𝑠), . . . ,Γ(𝑛−1)) ≡ 0.

In 1900, Hilbert observed that the algebraic-differential independence of the Rie-
mann zeta-function can be proved by using the above Hölder’s result and the
functional equation for 𝜁(𝑠). S.M. Voronin, using a universality theorem, obtained
[S.M. Voronin (1973)] the functional independence of 𝜁(𝑠).

Theorem 8.1. Suppose that the functions 𝐹𝑗 : ℂ𝑁 → ℂ are continuous, 𝑗 =
0, . . . , 𝑟, and

𝑟∑
𝑗=0

𝑠𝑗𝐹𝑗(𝜁(𝑠), . . . , 𝜁
(𝑁−1)(𝑠)) ≡ 0.

Then 𝐹𝑗 ≡ 0 for 𝑗 = 0, . . . , 𝑟.

The functional independence also follows for other zeta- and 𝐿-functions that
are universal in the above sense.

The universality also can be used for approximate computations with ana-
lytic functions. Usually, zeta-functions satisfy approximate functional equations.
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For example, for the function 𝜁(𝑠), the following equation is true [A. Ivič(1985)].
Suppose that 0 ≤ 𝜎 ≤ 1, 𝑥, 𝑦, 𝑡 ≥ 𝑐 > 0 and 2𝜋𝑥𝑦 = 𝑡. Then uniformly in 𝜎,

𝜁(𝑠) =
∑
𝑚≤𝑥

1

𝑚𝑠
+ 𝜒(𝑠)

∑
𝑚≤𝑦

1

𝑚1−𝑠 +O(𝑥−𝜎) + O
(
𝑡1/2−𝜎𝑦𝜎−1

)
,

where

𝜒(𝑠) = 2𝑠𝜋𝑠−1Γ(1− 𝑠) sin
𝜋𝑠

2
.

Therefore, first we can evaluate 𝜁(𝑠 + 𝑖𝜏), and then, using Theorem 3.2, we can
obtain the desired information on a given analytic function 𝑓(𝑠).

An application of universality in physics is given in [K.M. Bitar, N.N. Khuri,
H.C. Ren (1991)].

The author thanks Professor S. Rogosin for inviting me to the school-seminar
and for suggesting that write this paper.
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Anomalous Diffusion: Models, Their Analysis,
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Abstract. In this chapter, modeling of anomalous diffusion processes in terms
of differential equations of an arbitrary (not necessarily integer) order is dis-
cussed. We start with micro-modeling and first deduce a probabilistic inter-
pretation of normal and anomalous diffusion from basic random walk models.
The fractional differential equations are then derived asymptotically in the
Fourier-Laplace domain from random walk models and generalized master
equations, in the same way as the standard diffusion equation is obtained
from a Brownian motion model. The obtained equations and their generaliza-
tions are analyzed both with the help of the Laplace-Fourier transforms (the
Cauchy problems) and the spectral method (initial-boundary-value problems).
In particular, the maximum principle, well known for elliptic and parabolic
type PDEs, is extended to initial-boundary-value problems for the generalized
diffusion equation of fractional order.
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1. Introduction

Anomalous transport processes represent a very natural way for description of
structural and dynamical properties of the so-called complex systems that are
characterized by a large diversity of elementary particles participating in transport
processes, by strong interactions between them, and by an anomalous evolution
of the whole system in time (for a detailed discussion of the complex systems
and anomalous transport processes see, e.g., [Luchko et al.(2010)] or [Metzler and
Klafter(2000a)]). In this chapter, the focus will be on the anomalous diffusion
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processes; we do not consider here the effects of convection or the degradation
components of general transport processes.

What is the critical attribute to distinguish between the normal and the
anomalous diffusion? There exist several possibilities to decide between them. In
this chapter, we define the anomalous diffusion processes as those that no longer
follow the Gaussian statistics for long time intervals. Especially, a deviation from
the linear time dependence of the mean squared displacement of a particle partic-
ipating in an anomalous diffusion process can be observed, i.e., the relation

𝑥2(𝑡) ≈ 𝐶1𝑡, (1.1)

no longer holds. Let us note here that the relation (1.1) can be interpreted as the
main characteristic of Brownian motion. Furthermore, it is a direct consequence of
the central limit theorem and of the Markovian nature of the underlying stochastic
process. Instead of (1.1), the anomalous diffusion shows a non-linear growth of the
mean squared displacement in time. In this chapter, we deal with the power-low
pattern for the mean squared displacement in time:

𝑥2(𝑡) ≈ 𝐶𝛼𝑡
𝛼. (1.2)

It can be shown that, for anomalous diffusion, the central limit theorem no longer
holds and has to be replaced by a more general Levy-Gnedenko generalized central
limit theorem. Another problem connected with the anomalous diffusion described
by the relation (1.2) is that not all moments of the underlying elementary transport
events exist; the last property is closely connected with the non-Markovian time
evolution of the whole system on a macro level. For the anomalous diffusion that
is described by the relation (1.2) the following cases are distinguished:

∙ subdiffusion (0 < 𝛼 < 1),
∙ normal diffusion (𝛼 = 1),
∙ superdiffusion (1 < 𝛼 < 2).

It is well known that both normal and anomalous diffusion can be described ei-
ther on the micro level through an appropriate stochastic formulation in terms
of random walk processes or on the macro level through deterministic diffusion
equations. In this chapter, we start to compile a model for anomalous diffusion
on the micro level in the framework of a continuous time random walk model and
then proceed with a deterministic model on the macro level. It turns out that –
under some suitable restrictions – the deterministic models of the anomalous diffu-
sion that fulfils the relation (1.2) can be formulated in terms of partial differential
equations of a fractional (non-integer) order 𝛼.

During the last few decades, partial differential equations of fractional order
begun to play an important role in the modeling of anomalous phenomena and
in the theory of complex systems (see, e.g., [Chechkin et al.(2005),Dubbeldam et
al.(2007), Freed et al.(2002),Gorenflo and Mainardi(1998), Hilfer(2000), Kilbas et
al.(2006),Luchko and Punzi(2011),Mainardi(1996),Mainardi and Tomirotti(1997),
Metzler and Klafter(2000a),Podlubny(1999)]) and references therein). In this con-
nection, the so-called time-fractional diffusion equation that is obtained from the
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diffusion equation by replacing the first-order time derivative by a fractional de-
rivative of order 𝛼 with 0 < 𝛼 < 1 has to be especially mentioned. In the paper
[Schneider and Wyss(1989)], the Green function for the time-fractional diffusion
equation was shown to be a probability density with a mean square displacement
proportional to 𝑡𝛼. As a consequence, the time-fractional diffusion equation ap-
peared to be a suitable mathematical model for the sub-diffusion processes and
thus became important and useful for different applications.

Probabilistic interpretation of anomalous diffusion processes, different ran-
dom walk models, and their connection each to the other and to the frac-
tional differential equations were considered, e.g., in [Beghin and Orsingher(2009),
Gorenflo and Mainardi(2008),Gorenflo and Mainardi(2009),Jacob(2005),Mainardi
et al.(2004),Meerschaert et al.(2011), Scalas et al.(2004)] to mention only a few
out of many recent relevant publications.

The mathematical theory of partial differential equations of fractional or-
der in general, and of the time-fractional diffusion equation in particular, is
still far away from being at least nearly as complete as that of the PDEs.
In the literature, mainly the initial-value problems for these equations have
been considered until now (see, e.g., [Eidelman and Kochubei(2004), Kilbas et
al.(2006),Kochubei(1989),Mainardi et al.(2001), Podlubny(1999),Voroshilov and
Kilbas(2006)]). As to the boundary-value or initial-boundary-value problems, they
were mainly investigated for equations with constant coefficients and in the one-
dimensional case (see, e.g., [Bazhlekova(1998),Meerschaert et al.(2009),Metzler
and Klafter(2000b),Zhang(2006)]).

In the recent papers [Luchko(2009b),Luchko(2010)], the case of the general-
ized time-fractional diffusion equation with variable coefficients and over an open
bounded 𝑛-dimensional domain has been considered. This equation is obtained
from the diffusion equation by replacing the first-order time derivative by a frac-
tional derivative of order 𝛼 (0 < 𝛼 ≤ 1) and the second-order spatial derivative
by a more general linear second-order differential operator with variable coeffi-
cients. In the paper [Zacher(2008)], some more general linear and quasi-linear
evolutionary partial integro-differential equations of second order were investi-
gated. In particular, the global boundedness of appropriately defined weak so-
lutions and a maximum principle for the weak solutions of such equations were
established by employing a different technique compared to the one used in the
papers [Luchko(2009b),Luchko(2010)].

In this chapter, a general time-fractional diffusion equation with variable
coefficients is considered. Let us mention that some complex systems can show
more complicated behavior compared to one that can be described by the time-
fractional diffusion equation. In some cases the multi-term time-fractional diffusion
equations (see, e.g., [Daftardar-Gejji and Bhalekar(2008),Luchko(2011)]) or even
the fractional differential equations of the distributed order (see, e.g., [Chechkin
et al.(2003), Luchko(2009a)]) with a special weight function could be a more ap-
propriate alternative to model these complex systems.
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The rest of the chapter is organized as follows. In the second section, continu-
ous time random walk models are introduced and analyzed. It is shown that under
certain restrictions these models can be written down in the form of a deterministic
partial differential equation of fractional order. In the third section, the Cauchy
problem for the space-time fractional diffusion equation that is obtained from the
standard diffusion equation by replacing the second-order space derivative with a
Riesz-Feller derivative of order 𝛼 ∈ (0, 2] and skewness 𝜃 (∣𝜃∣ ≤ min {𝛼, 2 − 𝛼}),
and the first-order time derivative with a Caputo derivative of order 𝛽 ∈ (0, 2] are
considered. The fundamental solution (Green function) for the Cauchy problem is
investigated with respect to its scaling and similarity properties, starting from its
Fourier-Laplace representation. We review the particular cases of space-fractional
diffusion 0 < 𝛼 ≤ 2 , 𝛽 = 1, time-fractional diffusion 𝛼 = 2 , 0 < 𝛽 ≤ 2, and
neutral-fractional diffusion 0 < 𝛼 = 𝛽 ≤ 2, for which the fundamental solution can
be interpreted as a spatial probability density function evolving in time. Then, by
using the Mellin integral transform, a general representation of the Green functions
in terms of Mellin-Barnes integrals in the complex plane is provided. This allows
us to extend the probability interpretation to the ranges (0 < 𝛼 ≤ 2)∩(0 < 𝛽 ≤ 1)
and (1 < 𝛽 ≤ 𝛼 ≤ 2). Furthermore, from this representation the explicit formulae
(convergent series and asymptotic expansions) are derived. In the fourth section,
the initial-boundary-value problems for generalized time-fractional diffusion equa-
tion are analyzed. First, the maximum principle, well known for partial differential
equations of elliptic and parabolic type, is extended for the case of the generalized
time-fractional differential equation. In the proof of the maximum principle, an
appropriate extremum principle for the Caputo fractional derivative plays a very
important role. Then the maximum principle is applied to show that the initial-
boundary-value problem under consideration possesses at most one solution. This
solution – if it exists – depends continuously on the data given in the problem.
To show the existence of the solution, a notion of the generalized solution is first
introduced. The generalized solution is constructed with the method of variables
separation. Under certain conditions, it is shown that the generalized solution can
be interpreted as a solution and thus its existence is proved. Finally, in the last
section some open questions and directions for further research are summarized.

2. Continuous time random walk models

In the framework of the well-known random walk model for Brownian motion, the
random walker jumps at each time step 𝑡 = 0,Δ𝑡, 2Δ𝑡, . . . in a randomly selected
direction, thereby covering the distance Δ𝑥, the lattice constant.

Denoting by 𝑢(𝑥, 𝑡)Δ𝑥 the probability that the random walker is located
between 𝑥 and 𝑥+Δ𝑥 at the time 𝑡, the master equation

𝑢(𝑥, 𝑡+Δ𝑡) =
1

2
𝑢(𝑥+Δ𝑥, 𝑡) +

1

2
𝑢(𝑥−Δ𝑥, 𝑡) (2.1)
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can be easily derived. For the one-dimensional Brownian motion, the Taylor ex-
pansions

𝑢(𝑥, 𝑡+Δ𝑡) = 𝑢(𝑥, 𝑡) + Δ𝑡
∂𝑢

∂𝑡
+𝒪((Δ𝑡)2),

𝑢(𝑥±Δ𝑥, 𝑡) = 𝑢(𝑥, 𝑡)±Δ𝑥
∂𝑢

∂𝑥
+

(Δ𝑥)2

2

∂2𝑢

∂𝑥2
+𝒪((Δ𝑥)3)

lead to
∂𝑢

∂𝑡
=

(Δ𝑥)2

2Δ𝑡

∂2𝑢

∂𝑥2
+Δ𝑥𝒪

(
(Δ𝑥)2

Δ𝑡

)
+𝒪(Δ𝑡). (2.2)

In the continuum limit Δ𝑡 → 0 and Δ𝑥→ 0, this equation becomes the diffusion
equation

∂𝑢

∂𝑡
= 𝐶1

∂2𝑢

∂𝑥2
(2.3)

under the condition that the diffusion coefficient

𝐶1 = lim
Δ𝑥→0, Δ𝑡→0

(Δ𝑥)2

2Δ𝑡

is finite. Of course, the same procedure leads to the two- or three-dimensional dif-
fusion equations for the two- or three-dimensional Brownian motion, respectively:

∂𝑢

∂𝑡
= 𝐶1Δ𝑢, Δ :=

𝑛∑
𝑖=1

∂2

∂𝑥2𝑖
, 𝑛 = 2, 3. (2.4)

When the random walker is located at the starting point 𝑥 = 0, 𝑥 ∈ 𝐼𝑅𝑛, 𝑛 =
1, 2, 3 at the time 𝑡 = 0, then an initial condition

𝑢(𝑥, 0) =

𝑛∏
𝑖=1

𝛿(𝑥𝑖),

∫ +∞

−∞
𝛿(𝑥) 𝑑𝑥 = 1, 𝑛 = 1, 2, 3 (2.5)

with the Dirac 𝛿-function has to be added to the model. The solution of the diffu-
sion equation (2.4) with the initial condition (2.5) can be found with the Laplace
and Fourier integral transforms method. In the one-dimensional case we get

𝑢(𝑥, 𝑡) =
1√

4𝜋𝐶1𝑡
exp

(
− 𝑥2

4𝐶1𝑡

)
. (2.6)

The pdf function 𝑢(𝑥, 𝑡) is a Gaussian distribution at any time point 𝑡 > 0 with
the middle value 𝜇 = 0 and with the deviation 𝜎 =

√
2𝐶1𝑡, which means that the

mean squared displacement of a particle participating in the anomalous diffusion
process is given by 𝜎2(𝑡) = 2𝐶1𝑡, that is in accordance with the equation (1.1).

In contrast to the random walk model for Brownian motion, the continuous
time random walk model (CTRW model) is based on the idea that the length of a
given jump, as well as the waiting time elapsing between two successive jumps, are
ruled by a joint probability density function (pdf) 𝜓(𝑥, 𝑡) which will be referred
to as the jump pdf. From 𝜓(𝑥, 𝑡), the jump length pdf

𝜆(𝑥) =

∫ ∞

0

𝜓(𝑥, 𝑡) 𝑑𝑡 (2.7)
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and the waiting time pdf

𝑤(𝑡) =

∫ ∞

−∞
𝜓(𝑥, 𝑡) 𝑑𝑥 (2.8)

can be deduced.

The main characteristics of the CTRW processes are the characteristic wait-
ing time

𝑇 =

∫ ∞

0

𝑤(𝑡) 𝑡 𝑑𝑡 (2.9)

and the jump length variance

Σ2 =

∫ ∞

−∞
𝜆(𝑥)𝑥2 𝑑𝑥. (2.10)

They can be finite or infinite and this makes the difference between the CTRW
processes. In general, the following different cases are distinguished:

∙ Both 𝑇 and Σ2 are finite: Brownian motion (diffusion equation as a deter-
ministic model)

∙ 𝑇 diverges, Σ2 is finite: Sub-diffusion (time-fractional diffusion equation as a
deterministic model)

∙ 𝑇 is finite, Σ2 diverges: Levy flights (space-fractional diffusion equation as a
deterministic model)

∙ Both 𝑇 and Σ2 are infinite: Levy flights (time-space-fractional diffusion equa-
tion as a deterministic model)

It is known that the CTRW model can be described by the master equa-
tions in the form of integral equations of convolution type (see, e.g., [Metzler and
Klafter(2000a)]). Below we give a short summary of how to establish these equa-
tions.

Denote by 𝜂(𝑥, 𝑡) the pdf of the event that a particle arrived at position 𝑥 at
time 𝑡. This pdf satisfies the equation

𝜂(𝑥, 𝑡) =

∫ +∞

−∞
𝑑𝑥′
∫ 𝑡

0

𝜂(𝑥′, 𝑡′)𝜓(𝑥− 𝑥′, 𝑡− 𝑡′) 𝑑𝑡′ + 𝛿(𝑥)𝛿(𝑡). (2.11)

The pdf 𝑢(𝑥, 𝑡) of being at position 𝑥 at time 𝑡 is given by

𝑢(𝑥, 𝑡) =

∫ 𝑡

0

𝜂(𝑥, 𝑡′)Ψ(𝑡− 𝑡′) 𝑑𝑡′, (2.12)

where

Ψ(𝑡) = 1−
∫ 𝑡

0

𝑤(𝑡′) 𝑑𝑡′, (2.13)

is assigned to the probability of no jump event during the time interval (0, 𝑡).
The integral equations (2.11)–(2.13) determine the one-point probability den-

sity function that is an important part of a mathematical model but of course not
enough to fully characterize the underlaying stochastic process (see, e.g., [Germano
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et al.(2009)] for more details). Now we transform these equations into the fre-
quency domain by applying the Fourier and the Laplace transforms to the equa-
tions (2.11)–(2.13). By using the well-known product property of the Fourier and
the Laplace transforms, when applying them to the Fourier or Laplace convolutions
respectively, we can deduce from the equations (2.11)–(2.13) the Fourier-Laplace
transform of the jump pdf 𝑢(𝑥, 𝑡):

ˆ̃𝑢(𝜅, 𝑠) = 1− 𝑤(𝑠)

𝑠

𝑢0(𝜅)

1− ˆ̃𝜓(𝜅, 𝑠) , (2.14)

where 𝑢0(𝜅) denotes the Fourier transform of the initial condition 𝑢0(𝑥). It is worth
noting that a purely probabilistic proof of this equation is given in [Germano et
al.(2009)].

We remind the reader that the Fourier transform is defined by

𝑓(𝜅) = ℱ{𝑓(𝑥);𝜅} =
∫ +∞

−∞
𝑒+𝑖𝜅𝑥 𝑓(𝑥) 𝑑𝑥 , 𝜅 ∈ 𝑅 ,

and the Laplace transform by

𝑓(𝑠) = ℒ{𝑓(𝑡); 𝑠} =
∫ ∞

0

𝑒−𝑠𝑡 𝑓(𝑡) 𝑑𝑡.

It can be shown (see, e.g., [Metzler and Klafter(2000a)]) that if both the charac-
teristic waiting time and the jump length variance are finite for a CTRW, then its
long-time limit behavior corresponds to the Brownian motion.

Now let us discuss the CTRW, where the characteristic waiting time diverges,
but the jump length variance remains finite. To this end, a particular long-tailed
waiting time pdf with the asymptotic behavior

𝑤(𝑡) ≈ 𝐴𝛼(𝜏/𝑡)
1+𝛼, 𝑡→ +∞, 0 < 𝛼 < 1

is considered. Its asymptotics in the Laplace domain can be easily determined by
the so-called Tauberian theorem and is as follows:

𝑤(𝑠) ≈ 1− (𝑠𝜏)𝛼, 𝑠→ 0.

It is important to mention that the specific form of 𝑤(𝑡) is of minor importance.
In particular, the so-called Mittag-Leffler waiting time density

𝑤(𝑡) = − 𝑑

𝑑𝑡
𝐸𝛼(−𝑡𝛼), 𝐸𝛼(𝑥) :=

∞∑
𝑘=0

𝑥𝑘

Γ(𝛼𝑘 + 1)

can be taken without loss of generality. The Laplace transform of the function 𝑤
can be evaluated in explicit form

𝑤(𝑠) =
1

1 + 𝑠𝛼

and has the desired asymptotics.
Together with the Gaussian jump length pdf

𝜆(𝑥) = (4𝜋𝜎2)−1/2exp(−𝑥2/(4𝜎2)), Σ2 = 2𝜎2
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with the Fourier transform in the form

𝜆̂(𝜅) ≈ 1− 𝜎2𝜅2, 𝜅→ 0,

the asymptotics of the Fourier-Laplace transform of the jump pdf 𝑢(𝑥, 𝑡) becomes

ˆ̃𝑢(𝜅, 𝑠) ≈ 𝑢0(𝜅)/𝑠

1 + 𝐶𝛼𝑠−𝛼𝜅2
, 𝑠→ 0, 𝜅→ 0. (2.15)

Using the Tauberian theorems for the Laplace and Fourier transforms, the last
equation can be transformed to a time-fractional partial differential equation for
large 𝑡 and ∣𝑥∣.

After multiplication with the denominator of the right-hand side, the equa-
tion (2.15) becomes

(1 + 𝐶𝛼𝑠
−𝛼𝜅2) ˆ̃𝑢(𝜅, 𝑠) ≈ 𝑢0(𝜅)/𝑠, 𝑠→ 0, 𝜅→ 0. (2.16)

Making use of the differentiation theorem

ℱ{𝑓 ′′(𝑥);𝜅} = −𝜅2ℱ{𝑓(𝑥);𝜅}
for the Fourier transform and employing the integration rule

ℒ{(𝐼𝛼 𝑓)(𝑡); 𝑠} = 𝑠−𝛼 𝑓(𝑠),

for the Riemann-Liouville fractional integrals defined by

(𝐼𝛼 𝑓)(𝑡) :=
1

Γ(𝛼)

∫ 𝑡

0

𝑓(𝜏)(𝑡 − 𝜏)𝛼−1 𝑑𝜏, 𝛼 > 0, (𝐼0 𝑓)(𝑡) = 𝑓(𝑡),

the equation (2.16) can be rewritten in the form of the fractional integral equation

𝑢(𝑥, 𝑡)− 𝑢0(𝑥) = 𝐶𝛼(𝐼
𝛼 ∂2

∂𝑥2
𝑢(𝑥, 𝜏))(𝑡) (2.17)

for large 𝑡 and ∣𝑥∣.
By application of the fractional differential operator𝐷𝛼

𝑡 to (2.17), the CTRW
model can be written for large 𝑡 and ∣𝑥∣ in the form of the initial-value problem

𝑢(𝑥, 0) = 𝑢0(𝑥)

for the so-called time-fractional diffusion equation

(𝐷𝛼
𝑡 𝑢)(𝑡) = 𝐶𝛼

∂2𝑢

∂𝑥2
. (2.18)

In what follows, the fractional derivative 𝐷𝛼
𝑡 (𝑚− 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁) will

be defined in the Caputo sense (see, e.g., [Podlubny(1999)]):

(𝐷𝛼
𝑡 𝑓)(𝑡) := (𝐼𝑚−𝛼𝑓 (𝑚))(𝑡). (2.19)

For the theory of fractional integrals and derivatives the reader is referred, e.g., to
[Kilbas et al.(2006)] or [Podlubny(1999)].

It is worth mentioning that the integro-differential nature of the fractional
differential operator in the model (2.18) ensures the non-Markovian nature of
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the sub-diffusive process. Indeed, calculating the Laplace transform of the mean
squared displacement via the relation

𝑥2(𝑠) = lim
𝜅→0

− 𝑑2

𝑑𝜅2
𝑢(𝜅, 𝑠)

and using the Laplace inversion, the formula

𝑥2(𝑡) =
2𝐶𝛼

Γ(1 + 𝛼)
𝑡𝛼

for the mean squared displacement in time is obtained.
Now let the characteristic waiting time be finite, but the jump length variance

be infinite.
As an example, consider the Levy distribution for the jump length with the

Fourier transform

𝜆̂(𝜅) = exp(−𝜎𝜇∣𝜅∣𝜇) ≈ 1− 𝜎𝜇∣𝜅∣𝜇, 1 < 𝜇 < 2, ∣𝜅∣ → 0.

Then

𝜆(𝑥) ≈ 𝐴𝜇𝜎
−𝜇∣𝑥∣−1−𝜇, 𝑥→∞.

Again, the specific form of 𝜆(𝑥) is of minor importance.
Together with the Poissonian waiting time distribution

𝑤(𝑡) = 𝜏−1exp(−𝑡/𝜏)
with the Laplace transform of the form

𝑤(𝑠) ≈ 1− 𝑠𝜏 +𝑂(𝑠2), 𝑠→ 0,

the asymptotics of the Fourier-Laplace transform of the pdf 𝑢 given by (2.14) can
be written in the formˆ̃𝑢(𝜅, 𝑠) = 1

𝑠+𝐾𝜇∣𝜅∣𝜇 , 𝑠→ 0, ∣𝜅∣ → 0. (2.20)

By inverting the Laplace and Fourier transforms in the equation (2.20), a
space-fractional diffusion equation

∂𝑢

∂𝑡
= 𝐾𝜇𝐷

𝜇
𝑥𝑢(𝑥, 𝑡),

is obtained for large 𝑡 and ∣𝑥∣, where 𝐷𝜇
𝑥 is the Riesz operator defined by (see, e.g.,

[Kilbas et al.(2006)] or [Metzler and Klafter(2000a)])

(𝐷𝜇
𝑥𝑢)(𝑥) =

Γ(1 + 𝜇)

𝜋
sin(𝜇𝜋/2)

∫ ∞

0

𝑢(𝑥+ 𝜁)− 2𝑢(𝑥) + 𝑢(𝑥− 𝜁)

𝜁1+𝜇
𝑑𝜁.

From this equation, the Fourier transform of the pdf 𝑢 can be determined in the
form

𝑢(𝜅, 𝑡) = exp (−𝐾𝜇𝑡∣𝜅∣𝜇) , ∣𝜅∣ → 0, 𝑡→∞.

The asymptotics of the pdf 𝑢 is then given by

𝑢(𝑥, 𝑡) ≈ 𝐾𝜇𝑡

∣𝑥∣1+𝜇
, 1 < 𝜇 < 2, 𝑡→∞, ∣𝑥∣ → ∞.
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As expected, it follows from the last formula, that the mean squared displacement
of the pdf 𝑢 diverges.

Following the same way, we can deduce the equation for the pdf 𝑢 in the case
of infinite 𝑇 and Σ2 in the form of the time-space fractional diffusion equation

(𝐷𝛽
𝑡 𝑢)(𝑡) = 𝑆𝛽,𝜇𝐷

𝜇
𝑥𝑢(𝑥, 𝑡) (2.21)

with the Caputo fractional derivative𝐷𝛽
𝑡 in time and the Riesz fractional derivative

𝐷𝜇
𝑥 in space.

Further fractional models that generalize the well-known conventional models
are the fractional diffusion-advection equation (anomalous diffusion with an addi-
tional velocity field) and the fractional Fokker-Plank equation (anomalous diffusion
in the presence of an external field). Of course, like in the conventional case, the
multi-dimensional generalizations, fractional equations with non-constant coeffi-
cients and nonlinear fractional differential equations appear in the corresponding
models and should be investigated.

3. Initial-value-problems for the space-time-fractional diffusion
equation

Motivated by the models introduced in the previous section, we deduce in this
section the fundamental solution (the Green function) for the one-dimensional
space-time-fractional diffusion equation in terms of the Mellin-Barnes integral,
consider its particular cases, and give an interpretation of the Green function as
a probability density function. The representation follows the results presented in
[Mainardi et al.(2001)].

The space-time fractional diffusion equation is given by

𝐷𝛽
𝑡 𝑢(𝑥, 𝑡) = 𝑥𝐷

𝛼
𝜃 𝑢(𝑥, 𝑡) , 𝑥 ∈ 𝑅 , 𝑡 ∈ 𝐼𝑅+ , (3.1)

where the 𝛼 , 𝜃 , 𝛽 are real parameters restricted as follows:

0 < 𝛼 ≤ 2 , ∣𝜃∣ ≤ min{𝛼, 2− 𝛼} , 0 < 𝛽 ≤ 2 ,

𝐷𝛽
𝑡 is the Caputo fractional derivative of the order 𝛽 (𝑚 − 1 < 𝛽 ≤ 𝑚, 𝑚 ∈ 𝐼𝑁)

and by 𝑥𝐷
𝛼
𝜃 the so-called Riesz-Feller space-fractional derivative of order 𝛼 and

skewness 𝜃 is denoted. For sufficiently well-behaved functions, this derivative is
defined as a pseudo-differential operator in the form

ℱ { 𝑥𝐷𝛼
𝜃 𝑓(𝑥);𝜅} = −𝜓𝜃

𝛼(𝜅) 𝑓(𝜅) , (3.2)

with the symbol

𝜓𝜃
𝛼(𝜅) = ∣𝜅∣𝛼 e𝑖(sign𝜅)𝜃𝜋/2 , 0 < 𝛼 ≤ 2 , ∣𝜃∣ ≤ min {𝛼, 2− 𝛼}.

Whereas the heuristic discussion in the previous section was presented only for
the case of the symmetric diffusion, the equation (3.1) is fully asymmetric. It
generalises the time-space fractional diffusion equation (2.21) for the case when
the jumps follow an asymmetric Lévy distribution. For 𝜃 = 0, the Riesz-Feller
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space-fractional derivative is a symmetric operator with respect to 𝑥 , which can
be interpreted as

𝑥𝐷
𝛼
0 = −

(
− 𝑑2

𝑑𝑥2

)𝛼/2

,

as can be formally deduced by writing −∣𝜅∣𝛼 = −(𝜅2)𝛼/2 .
For 0 < 𝛼 < 2 and ∣𝜃∣ ≤ min {𝛼, 2 − 𝛼} the Riesz-Feller derivative can be

represented in the form

𝑥𝐷
𝛼
𝜃 𝑓(𝑥) =

Γ(1 + 𝛼)

𝜋
×
{
sin [(𝛼 + 𝜃)𝜋/2]

∫ ∞

0

𝑓(𝑥+ 𝜉)− 𝑓(𝑥)

𝜉1+𝛼
𝑑𝜉

+ sin [(𝛼 − 𝜃)𝜋/2]

∫ ∞

0

𝑓(𝑥− 𝜉)− 𝑓(𝑥)

𝜉1+𝛼
𝑑𝜉

}
.

For the space-time-fractional diffusion equation (3.1) we consider the Cauchy prob-
lem with the initial condition

𝑢(𝑥, 0) = 𝜑(𝑥) , 𝑥 ∈ 𝐼𝑅 , 𝑢(±∞, 𝑡) = 0 , 𝑡 > 0 , (3.3)

where 𝜑(𝑥) ∈ 𝐿𝑐(𝐼𝑅) is a sufficiently well-behaved function. If 1 < 𝛽 ≤ 2, the
condition 𝑢𝑡(𝑥, 0) = 0, where 𝑢𝑡(𝑥, 𝑡) =

∂
∂𝑡𝑢(𝑥, 𝑡) is added to the initial conditions.

By the Green function (or fundamental solution) of the Cauchy problem we
mean the (generalized) function 𝐺𝜃

𝛼,𝛽(𝑥, 𝑡) corresponding to 𝜑(𝑥) = 𝛿(𝑥) (the

Dirac delta function). It allows us to represent the solution of the Cauchy problem
by the integral formula

𝑢𝜃𝛼,𝛽(𝑥, 𝑡) =

∫ +∞

−∞
𝐺𝜃
𝛼,𝛽(𝜉, 𝑡)𝜑(𝑥 − 𝜉) 𝑑𝜉 .

For a sufficiently well-behaved function 𝑓 , the Laplace transform of the Ca-
puto time-fractional derivative of order 𝛽 (𝑚− 1 < 𝛽 ≤ 𝑚, 𝑚 ∈ 𝐼𝑁) is given by

ℒ
{
𝐷𝛽

𝑡 𝑓(𝑡); 𝑠
}
= 𝑠𝛽 𝑓(𝑠)−

𝑚−1∑
𝑘=0

𝑠𝛽−1−𝑘 𝑓 (𝑘)(0+). (3.4)

We apply now the Laplace and the Fourier transforms to the equation (3.1). Taking
into account the formulae (3.2)–(3.4) we get

−𝜓𝜃
𝛼(𝜅)

ˆ̃
𝐺𝜃
𝛼,𝛽(𝜅, 𝑠) = 𝑠𝛽

ˆ̃
𝐺𝜃
𝛼,𝛽(𝜅, 𝑠)− 𝑠𝛽−1 ,

where

𝜓𝜃
𝛼(𝜅) := ∣𝜅∣𝛼 e𝑖(sign𝜅)𝜃𝜋/2.

We therefore obtain the formula

ˆ̃
𝐺𝜃
𝛼,𝛽(𝜅, 𝑠) =

𝑠𝛽−1

𝑠𝛽 + 𝜓𝜃
𝛼(𝜅)

(3.5)

for the Green function in the Fourier-Laplace domain.
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First we mention that by using the known scaling rules for the Fourier and
Laplace transforms,

𝑓(𝑎𝑥)
ℱ↔ 𝑎−1 𝑓(𝜅/𝑎) , 𝑎 > 0 ,

𝑓(𝑏𝑡)
ℒ↔ 𝑏−1 𝑓(𝑠/𝑏) , 𝑏 > 0 ,

we can directly (i.e., without inverting the two transforms) infer the following
scaling property of the Green function,

𝐺𝜃
𝛼,𝛽(𝑎𝑥 , 𝑏𝑡) = 𝑏−𝛾𝐺𝜃

𝛼,𝛽(𝑎𝑥/𝑏
𝛾 , 𝑡) , 𝛾 = 𝛽/𝛼 .

Consequently, introducing the similarity variable 𝑥/𝑡𝛾 , the Green function can be
written in the form

𝐺𝜃
𝛼,𝛽(𝑥, 𝑡) = 𝑡−𝛾 𝐾𝜃

𝛼,𝛽(𝑥/𝑡
𝛾) , 𝛾 = 𝛽/𝛼, (3.6)

where the one-variable function 𝐾𝜃
𝛼,𝛽 is to be determined.

Let us invert the Laplace-Fourier transform of the right-hand side of the
formula (3.5) starting with the inverse Laplace transform. To this end, the following
Laplace transform pair is used (see, e.g., [Erdélyi et al. (1953)])

𝐸𝛽(𝑐𝑡
𝛽)

ℒ↔ 𝑠𝛽−1

𝑠𝛽 − 𝑐
, ℜ (𝑠) > ∣𝑐∣1/𝛽 ,

with 𝑐 ∈ 𝐼𝐶 , 0 < 𝛽 ≤ 2 , where 𝐸𝛽 denotes the Mittag-Leffler function of order 𝛽 ,
defined in the complex plane by the power series

𝐸𝛽(𝑧) :=

∞∑
𝑛=0

𝑧𝑛

Γ(𝛽 𝑛+ 1)
, 𝛽 > 0 , 𝑧 ∈ 𝐼𝐶 .

Using the last formula the Fourier transform of the Green function can be written
in the form

𝐺𝜃
𝛼,𝛽(𝜅, 𝑡) = 𝐸𝛽

[−𝜓𝜃
𝛼(𝜅) 𝑡

𝛽
]
, 𝜅 ∈ 𝐼𝑅 , 𝑡 ≥ 0 . (3.7)

In what follows, the technique of the Mellin integral transform and the Mellin-
Barnes integrals is employed. We remind the reader of the definition of the Mellin
integral transform and some of its properties useful for further discussions. The
Mellin integral transform is defined by

ℳ{𝑓(𝑟); 𝑠} = 𝑓∗(𝑠) =
∫ +∞

0

𝑓(𝑟) 𝑟𝑠−1 𝑑𝑟, 𝛾1 < ℜ (𝑠) < 𝛾2,

and the inverse Mellin transform by

ℳ−1 {𝑓∗(𝑠); 𝑟} = 𝑓(𝑟) =
1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑓∗(𝑠) 𝑟−𝑠 𝑑𝑠

where 𝑟 > 0 , 𝛾 = ℜ (𝑠) , 𝛾1 < 𝛾 < 𝛾2 . Denoting by
ℳ↔ the juxtaposition of a

function 𝑓(𝑟) with its Mellin transform 𝑓∗(𝑠) , the main transformation rules are:

𝑓(𝑎𝑟)
ℳ↔ 𝑎−𝑠 𝑓∗(𝑠) , 𝑎 > 0 ,
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𝑟𝑎 𝑓(𝑟)
ℳ↔ 𝑓∗(𝑠+ 𝑎) ,

𝑓(𝑟𝑝)
ℳ↔ 1

∣𝑝∣ 𝑓
∗(𝑠/𝑝) , 𝑝 ∕= 0 ,

ℎ(𝑟) =

∞∫
0

1

𝜌
𝑓(𝜌) 𝑔(𝑟/𝜌) 𝑑𝜌

ℳ↔ ℎ∗(𝑠) = 𝑓∗(𝑠) 𝑔∗(𝑠) .

The Mellin convolution formula will be used in further discussions in treating
integrals of the Fourier type for 𝑥 = ∣𝑥∣ > 0 :

𝐼𝑐(𝑥) =
1

𝜋

∫ ∞

0

𝑓(𝜅) cos (𝜅𝑥) 𝑑𝜅 , (3.8)

𝐼𝑠(𝑥) =
1

𝜋

∫ ∞

0

𝑓(𝜅) sin (𝜅𝑥) 𝑑𝜅 . (3.9)

The integrals 𝐼𝑐(𝑥) and 𝐼𝑠(𝑥) can be interpreted as the Mellin convolutions between
𝑓(𝜅) and the functions 𝑔𝑐(𝜅) , 𝑔𝑠(𝜅) , respectively, with 𝑟 = 1/∣𝑥∣ , 𝜌 = 𝜅 , where

𝑔𝑐(𝜅) :=
1

𝜋 ∣𝑥∣𝜅 cos

(
1

𝜅

)
ℳ↔ Γ(1− 𝑠)

𝜋 ∣𝑥∣ sin
(𝜋𝑠
2

)
:= 𝑔∗𝑐 (𝑠), 0 < ℜ(𝑠) < 1 ,

𝑔𝑠(𝜅) :=
1

𝜋 ∣𝑥∣𝜅 sin

(
1

𝜅

)
ℳ↔ Γ(1− 𝑠)

𝜋 ∣𝑥∣ cos
(𝜋𝑠
2

)
:= 𝑔∗𝑠 (𝑠), 0 < ℜ(𝑠) < 2 .

Finally, the convolution theorem for the Mellin transform allows us to represent
the integrals 𝐼𝑐(𝑥) and 𝐼𝑠(𝑥) in the form

𝐼𝑐(𝑥) =
1

𝜋 𝑥

1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑓∗(𝑠) Γ(1− 𝑠) sin

(𝜋 𝑠

2

)
𝑥𝑠 𝑑𝑠 , 𝑥 > 0 , 0 < 𝛾 < 1 , (3.10)

𝐼𝑠(𝑥) =
1

𝜋 𝑥

1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞
𝑓∗(𝑠) Γ(1− 𝑠) cos

(𝜋 𝑠

2

)
𝑥𝑠 𝑑𝑠 , 𝑥 > 0 , 0 < 𝛾 < 2 . (3.11)

Another formula that is very essential for further discussion is a representation of
the Mittag-Leffler function in form of the inverse Mellin integral transform

𝐸𝛽(𝑧) =
1

2𝜋𝑖

∫
𝐿−∞

Γ(𝑠) Γ(1 − 𝑠)

Γ(1 − 𝛽𝑠)
(−𝑧)−𝑠 𝑑𝑠 , (3.12)

where the integration is over a left-hand loop 𝐿−∞ drawn round all the left-hand
poles 𝑠 = 0,−1,−2, . . . of the integrand in a positive direction.

Now we start with the determination of the one-variable function 𝐾𝜃
𝛼,𝛽 from

the formula (3.6) for the Green function. First we note the symmetry relation for
the function 𝐾𝜃

𝛼,𝛽 in the form

𝐾𝜃
𝛼,𝛽(−𝑥) = 𝐾−𝜃

𝛼,𝛽(𝑥) .

As a consequence, we can restrict our attention to the case 𝑥 > 0 , and obtain from
(3.6)-(3.7) the representation

𝐾𝜃
𝛼,𝛽(𝑥) =

1

2𝜋

∫ +∞

−∞
e−𝑖𝜅𝑥 𝐸𝛽

[−𝜓𝜃
𝛼(𝜅)

]
𝑑𝜅 = 𝑐𝐾

𝜃
𝛼,𝛽(𝑥) +𝑠 𝐾

𝜃
𝛼,𝛽(𝑥) ,
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where

𝑐𝐾
𝜃
𝛼,𝛽(𝑥) =

1

𝜋

∫ ∞

0

cos (𝜅𝑥)ℜ
[
𝐸𝛽

(
− 𝜅𝛼 e 𝑖𝜃𝜋/2

)]
𝑑𝜅 , (3.13)

𝑠𝐾
𝜃
𝛼,𝛽(𝑥) =

1

𝜋

∫ ∞

0

sin (𝜅𝑥)ℑ
[
𝐸𝛽

(
− 𝜅𝛼 e 𝑖𝜃𝜋/2

)]
𝑑𝜅 . (3.14)

From (3.12) the Mellin transform pair

𝐸𝛽

(
− 𝜅𝛼 e 𝑖𝜃𝜋/2

) ℳ↔ 1

𝛼

Γ( 𝑠𝛼 ) Γ(1− 𝑠
𝛼 )

Γ(1− 𝛽
𝛼𝑠)

exp

(
−𝑖 𝜃𝜋

2

𝑠

𝛼

)
,

where 𝜅 > 0 , ∣𝜃∣ ≤ 2 − 𝛽 , 0 < ℜ(𝑠) < 𝛼 can be deduced. Using now this
formula, the representations (3.13)–(3.14), as well as (3.10)–(3.11), we then obtain
the representation

𝐾𝜃
𝛼,𝛽(𝑥) =

1

𝜋𝛼𝑥

1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞

Γ( 𝑠𝛼 ) Γ(1 − 𝑠
𝛼 ) Γ(1− 𝑠)

Γ(1 − 𝛽
𝛼𝑠)

sin
[ 𝑠
𝛼

𝜋

2
(𝛼 − 𝜃)

]
𝑥𝑠 𝑑𝑠

for the function 𝐾𝜃
𝛼,𝛽 in terms of a Mellin-Barnes integral. By setting

𝜌 =
𝛼− 𝜃

2𝛼
,

and using the reflection formula for the gamma function, we finally get

𝐾𝜃
𝛼,𝛽(𝑥) =

1

𝛼𝑥

1

2𝜋𝑖

∫ 𝛾+𝑖∞

𝛾−𝑖∞

Γ( 𝑠𝛼 ) Γ(1− 𝑠
𝛼 ) Γ(1− 𝑠)

Γ(1− 𝛽
𝛼𝑠) Γ(𝜌 𝑠) Γ(1− 𝜌 𝑠)

𝑥𝑠 𝑑𝑠 . (3.15)

The representation (3.15) shows that the function 𝐾𝜃
𝛼,𝛽 is a particular case

of the general Fox H-function; it can be used both for the asymptotical analysis of
𝐾𝜃

𝛼,𝛽, for deducing its series representations, and for simplification of the function
for some special values of its parameters. In what follows, we consider shortly
some of the aspects mentioned above. For a detailed presentation of these results
we refer the reader to [Mainardi et al.(2001)].

In particular, for the value of 𝐾𝜃
𝛼,𝛽(𝑥) at the point 𝑥 = 0 we obtain

𝐾𝜃
𝛼,𝛽(0) =

1

𝜋𝛼

Γ(1/𝛼) Γ(1− 1/𝛼)

Γ(1− 𝛽/𝛼)
cos

(
𝜃𝜋

2𝛼

)
if 1 < 𝛼 ≤ 2 , 𝛽 ∕= 1 ,

𝐾𝜃
𝛼,𝛽(0) =

1

𝜋𝛼
Γ(1/𝛼) cos

(
𝜃𝜋

2𝛼

)
if 0 < 𝛼 ≤ 2 , 𝛽 = 1 .

Now we consider some particular cases of the space-time fractional diffusion
equation and of the corresponding Green function:

𝛼 = 2 , 𝛽 = 1 (standard diffusion),

0 < 𝛼 ≤ 2 , 𝛽 = 1 (space-fractional diffusion),

𝛼 = 2 , 0 < 𝛽 ≤ 2 , 𝛽 ∕= 1 (time-fractional diffusion),

0 < 𝛼 = 𝛽 ≤ 2 (neutral fractional diffusion).
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It is well known that for the standard diffusion (𝛼 = 2 , 𝛽 = 1) the Green
function is the Gaussian 𝑝𝑑𝑓

𝐺0
2,1(𝑥, 𝑡) = 𝑡−1/2

1

2
√
𝜋
exp[−𝑥2/(4𝑡)] , −∞ < 𝑥 < +∞ , 𝑡 ≥ 0 ,

with similarity variable 𝑥/𝑡1/2 , that evolves in time with moments (of even order)

𝜇2𝑛(𝑡) :=

∫ +∞

−∞
𝑥2𝑛𝐺0

2,1(𝑥, 𝑡) 𝑑𝑥 =
(2𝑛)!

𝑛!
𝑡𝑛 , 𝑡 ≥ 0 .

The variance 𝜎2 := 𝜇2(𝑡) = 2𝑡 is thus proportional to the first power of time,
according to the Einstein diffusion law.

The case of the space-fractional diffusion (0 < 𝛼 ≤ 2 , 𝛽 = 1) includes the
standard diffusion for 𝛼 = 2. In this case, the Mittag-Leffler function is reduced
to the exponential function:

𝐺𝜃
𝛼,1(𝜅, 𝑡) = e−𝑡𝜓𝜃

𝛼(𝜅) ,

with 𝜓𝜃
𝛼(𝜅) defined as in the general case.

Then the Green function of the space-fractional diffusion equation can be
interpreted as a Lévy strictly stable 𝑝𝑑𝑓 , evolving in time, according to

𝐺𝜃
𝛼,1(𝑥, 𝑡) = 𝑡−1/𝛼 𝐿𝜃

𝛼(𝑥/𝑡
1/𝛼) ,

−∞ < 𝑥 < +∞ , 𝑡 ≥ 0 .

The stable densities admit a representation in terms of elementary functions only
in the following particular cases

𝛼 = 2 , 𝜃 = 0 , Gaussian distribution :

e−𝜅2 ℱ↔ 𝐿0
2(𝑥) =

1

2
√
𝜋
e−𝑥2/4 , −∞ < 𝑥 < +∞ ;

𝛼 = 1/2 , 𝜃 = −1/2 , Lévy-Smirnov distribution :

𝐿
−1/2
1/2 (𝑥) =

𝑥−3/2

2
√
𝜋

e−1/(4𝑥) , 𝑥 ≥ 0 ;

𝛼 = 1 , 𝜃 = 0 , Cauchy distribution :

e−∣𝜅∣ ℱ↔ 𝐿0
1(𝑥) =

1

𝜋

1

𝑥2 + 1
, −∞ < 𝑥 < +∞ .

We note that the case 𝛼 = 1 can be easily treated also for 𝜃 ∕= 0 taking into
account elementary properties of the Fourier transform:

𝛼 = 1 , 0 < ∣𝜃∣ < 1:

𝐿𝜃
1(𝑥) =

1

𝜋

cos(𝜃𝜋/2)

[𝑥+ sin(𝜃𝜋/2)]2 + [cos(𝜃𝜋/2)]2
, −∞ < 𝑥 < +∞ ;

𝛼 = 1 , 𝜃 = ±1:
𝐿±11 (𝑥) = 𝛿(𝑥± 1) , −∞ < 𝑥 < +∞ .
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For 0 < 𝛼 < 2 the stable 𝑝𝑑𝑓 ’s exhibit fat tails in such a way that their absolute
moment of order 𝜈 is finite only if −1 < 𝜈 < 𝛼. In fact one can show that for
non-Gaussian stable densities the asymptotic decay of the tails is

𝐿𝜃
𝛼(𝑥) = 𝑂

(
∣𝑥∣−(𝛼+1)

)
, 𝑥→ ±∞ .

Consequently, the Gaussian distribution is the unique stable distribution with
finite variance. Furthermore, when 0 < 𝛼 ≤ 1 , the first absolute moment is infi-
nite so we should use the median instead of the non-existent expected value. The
asymptotic representations of the stable distributions are given by the following
formulae:

0 < 𝛼 < 1 , −𝛼 < 𝜃 ≤ 𝛼:

𝐿𝜃
𝛼(𝑥) ∼

1

𝜋 𝑥

∞∑
𝑛=1

(−𝑥)𝑛 Γ(1 + 𝑛/𝛼)

𝑛!
sin
[𝑛𝜋
2𝛼

(𝜃 − 𝛼)
]
, 𝑥→ 0+ ,

0 < 𝛼 < 1 , 𝜃 = −𝛼:

𝐿−𝛼𝛼 (𝑥) ∼ 𝐴1 𝑥
−𝑎1 e−𝑏1 𝑥

𝑐1
, 𝑥→ 0+ , 𝐴1 =

{
[2𝜋(1− 𝛼)]

−1
𝛼1/(1−𝛼)

}1/2
,

𝑎1 =
2− 𝛼

2(1− 𝛼)
𝑏1 = (1 − 𝛼)𝛼𝛼/(1−𝛼) , 𝑐1 =

𝛼

1− 𝛼
;

1 < 𝛼 < 2 , 𝛼− 2 < 𝜃 ≤ 2− 𝛼:

𝐿𝜃
𝛼(𝑥) ∼

1

𝜋 𝑥

∞∑
𝑛=1

(−𝑥−𝛼)𝑛 Γ(1 + 𝑛𝛼)

𝑛!
sin
[𝑛𝜋
2
(𝜃 − 𝛼)

]
, 𝑥→∞ ,

1 < 𝛼 < 2 , 𝜃 = 𝛼− 2:

𝐿𝛼−2
𝛼 (𝑥) ∼ 𝐴2 𝑥

𝑎2 e−𝑏2𝑥
𝑐2
, 𝑥→∞ , 𝐴2 =

[
2𝜋(𝛼− 1)𝛼1/(𝛼−1)

]−1/2
,

𝑎2 =
2− 𝛼

2(𝛼− 1)
, 𝑏2 = (𝛼− 1)𝛼𝛼/(𝛼−1) , 𝑐2 =

𝛼

𝛼− 1
.

Let us now consider the case of the time-fractional diffusion (𝛼 = 2 , 0 < 𝛽 <
2) including standard diffusion for 𝛽 = 1, for which we have

𝐺0
2,𝛽(𝜅, 𝑡) = 𝐸𝛽

(−𝜅2 𝑡𝛽) , 𝜅 ∈ 𝐼𝑅 , 𝑡 ≥ 0 .

Inverting the Fourier transform we get

𝐺0
2,𝛽(𝑥, 𝑡) =

1

2
𝑡−𝛽/2𝑀𝛽/2

(
∣𝑥∣/𝑡𝛽/2

)
,

−∞ < 𝑥 < +∞ , 𝑡 ≥ 0 ,

where𝑀𝜈 denotes the Mainardi function (a particular case of the Wright function):

𝑀𝜈(𝑧) =
∞∑
𝑛=0

(−𝑧)𝑛
𝑛! Γ[−𝜈𝑛+ (1 − 𝜈)]

.
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It turns out that 𝑀𝜈(𝑧) is an entire function of order 𝜌 = 1/(1−𝜈) , which provides
a generalization of the Gaussian and of the Airy function:

𝑀1/2(𝑧) =
1√
𝜋
exp

(− 𝑧2/4
)
, 𝑀1/3(𝑧) = 32/3Ai

(
𝑧/31/3

)
.

The Green function 𝐺0
2,𝛽(𝑥, 𝑡) with 0 < 𝛽 < 2 can be interpreted as a symmetric

spatial 𝑝𝑑𝑓 evolving in time with a stretched exponential decay. More precisely, we
have

𝐺0
2,𝛽(𝑥, 1) =

1

2
𝑀𝛽/2(∣𝑥∣) ∼ 𝐴𝑥𝑎 e−𝑏𝑥

𝑐

, 𝑥→ +∞,

𝐴 =
{
2𝜋(2− 𝛽) 2𝛽/(2−𝛽)𝛽(2−2𝛽)/(2−𝛽)

}−1/2
,

𝑎 =
2𝛽 − 2

2(2− 𝛽)
, 𝑏 = (2− 𝛽) 2−2/(2−𝛽)𝛽𝛽/(2−𝛽) , 𝑐 =

2

2− 𝛽
.

Furthermore, the moments (of even order) of 𝐺0
2,𝛽(𝑥, 𝑡) can be evaluated in the

explicit form:

𝜇2𝑛(𝑡) :=

∫ +∞

−∞
𝑥2𝑛 𝐺0

2,𝛽(𝑥, 𝑡) 𝑑𝑥 =
Γ(2𝑛+ 1)

Γ(𝛽𝑛+ 1)
𝑡𝛽𝑛 .

In particular, the variance

𝜎2 := 𝜇2 = 2 𝑡𝛽/Γ(𝛽 + 1)

is now proportional to the 𝛽th power of time, consistent with anomalous slow
diffusion for 0 < 𝛽 < 1 and with anomalous fast diffusion for 1 < 𝛽 < 2.

In the limit 𝛽 = 2 we recover the fundamental solution of the D’Alembert
wave equation, i.e.,

𝐺0
2,2(𝑥, 𝑡) =

𝛿(𝑥− 𝑡) + 𝛿(𝑥+ 𝑡)

2
=

𝐺−11,1(𝑥, 𝑡) +𝐺+1
1,1(𝑥, 𝑡)

2
,

−∞ < 𝑥 < +∞ , 𝑡 ≥ 0 .

Finally we consider neutral fractional diffusion (0 < 𝛼 = 𝛽 ≤ 2), which
includes the Cauchy diffusion for 𝛼 = 𝛽 = 1 (𝜃 = 0) and the limiting case of wave
propagation for 𝛼 = 𝛽 = 2.

In this case, we use the following Fourier transform pair related to the Mittag-
Leffler function of our interest:

𝐸𝛼 (−∣𝜅∣𝛼) ℱ↔ 1

𝜋

∣𝑥∣𝛼−1 sin (𝛼𝜋/2)
1 + 2∣𝑥∣𝛼 cos (𝛼𝜋/2) + ∣𝑥∣2𝛼 , 0 < 𝛼 < 2 , 𝑥 ∈ 𝐼𝑅 .

Using this last formula, the Green function can be written for 𝛼 = 𝛽, 0 < 𝛼 < 2
and 𝑥 > 0 in the form

𝐾𝜃
𝛼,𝛼(𝑥) =

1

𝜋

𝑥𝛼−1 sin[𝜋2 (𝛼 − 𝜃)]

1 + 2𝑥𝛼 cos[𝜋2 (𝛼− 𝜃)] + 𝑥2𝛼
.

This solution can be extended to negative 𝑥 by setting

𝐾𝜃
𝛼,𝛼(−𝑥) = 𝐾−𝜃

𝛼,𝛼(𝑥) ,
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and is evidently not negative in all of 𝐼𝑅, so it can be interpreted as a probability
density. In other words, 𝐾𝜃

𝛼,𝛼(𝑥) may be considered the fractional generalization
with skewness of the well-known Cauchy density.

In the limiting case 𝛼→ 2− (with 𝜃 = 0) the density tends to the combination
[𝛿(𝑥− 1) + 𝛿(𝑥+ 1)]/2 , so we recover the Green function of the D’Alembert wave
equation.

There is a problem in the physical and probabilistic interpretation of the
equation (3.1) when the Caputo derivative is of order 𝛽 and 1 < 𝛽 < 2. This case
was considered in [Mainardi and Pagnini(2002),Mainardi and Pagnini(2003)].

For a detailed discussion of the composition rules for the Green function,
algorithms for its numerical evaluation, and numerous plots of this function for
different values of the parameters we refer the reader to [Mainardi et al.(2001)].

4. Initial-boundary-value problems for the generalized
time-fractional diffusion equation

In this section, the time-fractional diffusion equation (2.18) deduced in the second
section as a model for certain CTRW processes is considered. Because in real life
applications we mostly deal with the two- or three-dimensional anomalous diffusion
processes and both the properties of the medium where the diffusion takes place
and the diffusion coefficient can depend on the spatial coordinates, we consider here
the generalized time-fractional diffusion equation (GTFDE) that is obtained from
the diffusion equation by replacing the first-order time derivative by a fractional
derivative of order 𝛼 (0 < 𝛼 ≤ 1) and the second-order spatial derivative by
the general linear second-order differential operator. Unlike in the case of the
linear space-time-fractional diffusion equation with constant coefficients that was
considered in the previous section, this equation cannot be solved analytically in
an explicit form. We thus need to use numerical algorithms to evaluate the solution
on the finite domains and to try to determine the qualitative behavior of solutions
on infinite domains. The first step of this analysis we deal with in this section is to
consider the questions of existence and uniqueness of the solution of this equation
with the appropriately chosen initial and boundary conditions.

The generalized time-fractional diffusion equation has the form

(𝐷𝛼
𝑡 𝑢)(𝑡) = −𝐿(𝑢) + 𝐹 (𝑥, 𝑡), (4.1)

0 < 𝛼 ≤ 1, (𝑥, 𝑡) ∈ Ω𝑇 := 𝐺× (0, 𝑇 ), 𝐺 ⊂ 𝐼𝑅𝑛,

where

𝐿(𝑢) := −div(𝑝(𝑥) grad𝑢) + 𝑞(𝑥)𝑢,

𝑝 ∈ 𝐶1(𝐺̄), 𝑞 ∈ 𝐶(𝐺̄), 𝑝(𝑥) > 0, 𝑞(𝑥) ≥ 0, 𝑥 ∈ 𝐺̄, (4.2)

the fractional derivative 𝐷𝛼
𝑡 is defined in the Caputo sense and the domain 𝐺 with

boundary 𝑆 is open and bounded in 𝐼𝑅𝑛.
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The operator −𝐿 is in fact a linear elliptic differential operator of the second
order:

−𝐿(𝑢) =
𝑛∑

𝑘=1

(
𝑝(𝑥)

∂2𝑢

∂𝑥2𝑘
+

∂𝑝

∂𝑥𝑘

∂𝑢

∂𝑥𝑘

)
− 𝑞(𝑥)𝑢,

that can be represented in the form

− 𝐿(𝑢) = 𝑝(𝑥)△𝑢 + (grad 𝑝, grad𝑢)− 𝑞(𝑥)𝑢, (4.3)

△ being the Laplace operator. For 𝛼 = 1, the equation (4.1) is reduced to a linear
second-order parabolic PDE. The theory of this equation is well known, so that
the main focus in the section is on the case 0 < 𝛼 < 1. For the equation (4.1), the
initial-boundary-value problem

𝑢
∣∣
𝑡=0

= 𝑢0(𝑥), 𝑥 ∈ 𝐺̄, (4.4)

𝑢
∣∣
𝑆
= 𝑣(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇 ] (4.5)

is considered. A solution of the problem (4.1), (4.4), (4.5) is called a function
𝑢 = 𝑢(𝑥, 𝑡) defined in the domain Ω̄𝑇 := 𝐺̄ × [0, 𝑇 ] that belongs to the space
𝐶(Ω̄𝑇 ) ∩𝑊 1

𝑡 ((0, 𝑇 ]) ∩ 𝐶2
𝑥(𝐺) and satisfies both equation (4.1) and the initial and

boundary conditions (4.4)–(4.5). By 𝑊 1
𝑡 ((0, 𝑇 ]), the space of the functions 𝑓 ∈

𝐶1((0, 𝑇 ]) such that 𝑓 ′ ∈ 𝐿((0, 𝑇 )) is denoted. If the problem (4.1), (4.4), (4.5)
possesses a solution, then the functions 𝐹 , 𝑢0 and 𝑣 given in the problem have
to belong to the spaces 𝐶(Ω𝑇 ), 𝐶(𝐺̄) and 𝐶(𝑆 × [0, 𝑇 ]), respectively. In further
discussions, these inclusions are always supposed to be valid.

First, the uniqueness of the solution of the problem (4.1), (4.4), (4.5) is con-
sidered. The main component of the uniqueness proof is an appropriate maximum
principle for equation (4.1). In its turn, the proof of the maximum principle uses
an extremum principle for the Caputo fractional derivative. The results presented
in this section are based on the author’s papers [Luchko(2009b), Luchko(2010)]
and the reader is welcome to consult these papers for more details.

Theorem 4.1. Let a function 𝑓 ∈ 𝑊 1
𝑡 ((0, 𝑇 ]) ∩ 𝐶([0, 𝑇 ]) attain its maximum over

the interval [0, 𝑇 ] at the point 𝜏 = 𝑡0, 𝑡0 ∈ (0, 𝑇 ]. Then the Caputo fractional
derivative of the function 𝑓 is non-negative at the point 𝑡0 for any 𝛼, 0 < 𝛼 < 1:

0 ≤ (𝐷𝛼
𝑡 𝑓)(𝑡0), 0 < 𝛼 < 1. (4.6)

To prove the theorem, let us first introduce an auxiliary function

𝑔(𝜏) := 𝑓(𝑡0)− 𝑓(𝜏), 𝜏 ∈ [0, 𝑇 ],

that possesses the properties

0 ≤ 𝑔(𝜏), 𝜏 ∈ [0, 𝑇 ], (4.7)

(𝐷𝛼
𝑡 𝑔)(𝑡) = −(𝐷𝛼

𝑡 𝑓)(𝑡), 𝑡 ∈ [0, 𝑇 ], (4.8)

∣𝑔(𝜏)∣ ≤ 𝐶𝜖∣𝑡0 − 𝜏 ∣, 𝜏 ∈ [𝜖, 𝑇 ], 0 < 𝜖 < 𝑇, (4.9)

due to the conditions on the function 𝑓 and the properties of the Caputo fractional
derivative (see, e.g., [Kilbas et al.(2006)] or [Podlubny(1999)]).
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For any 𝜖, 0 < 𝜖 < 𝑡0 we get

(𝐷𝛼
𝑡 𝑔)(𝑡0) =

1

Γ(1− 𝛼)

∫ 𝑡0

0

(𝑡0 − 𝜏)−𝛼𝑔′(𝜏) 𝑑𝜏

=
1

Γ(1− 𝛼)

∫ 𝜖

0

(𝑡0 − 𝜏)−𝛼𝑔′(𝜏) 𝑑𝜏 +
1

Γ(1− 𝛼)

∫ 𝑡0

𝜖

(𝑡0 − 𝜏)−𝛼𝑔′(𝜏) 𝑑𝜏 = 𝐼1 + 𝐼2.

Since 𝑓 ∈ 𝑊 1
𝑡 ((0, 𝑇 ]), the function 𝑔 belongs to the space 𝑊 1

𝑡 ((0, 𝑇 ]), too. This
means, in particular, that 𝑔′ ∈ 𝐿((0, 𝑇 )). It follows from this last inclusion that

∀𝛿 > 0 ∃𝜖 > 0 such that ∣𝐼1∣ ≤ 𝛿. (4.10)

As to the second integral, 𝐼2, the integration by parts formula and property (4.9)
of the function 𝑔 are used to get the representation

𝐼2 = − (𝑡0 − 𝜖)−𝛼𝑔(𝜖)
Γ(1− 𝛼)

+
1

Γ(−𝛼)
∫ 𝑡0

𝜖

(𝑡0 − 𝜏)−𝛼−1𝑔(𝜏) 𝑑𝜏.

In follows now from inequality (4.7), the inequalities Γ(−𝛼) < 0, 0 < Γ(1−𝛼), for
0 < 𝛼 < 1, and 𝜖 < 𝑡0, that

𝐼2 ≤ 0,

which together with (4.8) and (4.10) finishes the proof of the theorem.

The extremum principle for the Caputo fractional derivative is a foundation
for the proof of a maximum principle for the generalized time-fractional diffusion
equation (4.1).

Theorem 4.2. Let a function 𝑢 ∈ 𝐶(Ω̄𝑇 )∩𝑊 1
𝑡 ((0, 𝑇 ])∩𝐶2

𝑥(𝐺) be a solution of the
generalized time-fractional diffusion equation (4.1) in the domain Ω𝑇 and 𝐹 (𝑥, 𝑡) ≤
0, (𝑥, 𝑡) ∈ Ω𝑇 .

Then either 𝑢(𝑥, 𝑡) ≤ 0, (𝑥, 𝑡) ∈ Ω̄𝑇 or the function 𝑢 attains its positive
maximum on the part 𝑆𝑇

𝐺 := (𝐺̄×{0})∪ (𝑆× [0, 𝑇 ]) of the boundary of the domain
Ω𝑇 , i.e.,

𝑢(𝑥, 𝑡) ≤ max
(𝑥,𝑡)∈𝑆𝑇

𝐺

{0, 𝑢(𝑥, 𝑡)}, ∀(𝑥, 𝑡) ∈ Ω̄𝑇 . (4.11)

To prove the theorem, we first suppose that the statement of the theorem
does not hold true, i.e., ∃(𝑥0, 𝑡0), 𝑥0 ∈ 𝐺, 0 < 𝑡0 ≤ 𝑇 with the property

𝑢(𝑥0, 𝑡0) > max
(𝑥,𝑡)∈𝑆𝑇

𝐺

{0, 𝑢(𝑥, 𝑡)} = 𝑀 > 0. (4.12)

Let us define the number 𝜖 := 𝑢(𝑥0, 𝑡0) − 𝑀 > 0 and introduce the auxiliary
function

𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡) +
𝜖

2

𝑇 − 𝑡

𝑇
, (𝑥, 𝑡) ∈ Ω̄𝑇 .
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It follows from the definition of the function 𝑤 and the theorem conditions that 𝑤
possesses the following properties:

𝑤(𝑥, 𝑡) ≤ 𝑢(𝑥, 𝑡) +
𝜖

2
, (𝑥, 𝑡) ∈ Ω̄𝑇 ,

𝑤(𝑥0, 𝑡0) ≥ 𝑢(𝑥0, 𝑡0) = 𝜖+𝑀 ≥ 𝜖+ 𝑢(𝑥, 𝑡)

≥ 𝜖+ 𝑤(𝑥, 𝑡) − 𝜖

2
≥ 𝜖

2
+ 𝑤(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑆𝑇

𝐺.

The last property means that the function 𝑤 cannot attain its maximum on the
part 𝑆𝑇

𝐺 of the boundary of the domain Ω𝑇 . If the maximum point of the function
𝑤 over the domain Ω̄𝑇 is denoted by (𝑥1, 𝑡1) then 𝑥1 ∈ 𝐺, 0 < 𝑡1 ≤ 𝑇 and

𝑤(𝑥1, 𝑡1) ≥ 𝑤(𝑥0, 𝑡0) ≥ 𝜖+𝑀 > 𝜖. (4.13)

Theorem 4.1 and the necessary conditions for the existence of the maximum in on
open domain 𝐺 lead then to the relations{

(𝐷𝛼
𝑡 𝑤)(𝑡1) ≥ 0,

grad𝑤
∣∣
(𝑥1,𝑡1)

= 0, △𝑤
∣∣
(𝑥1,𝑡1)

≤ 0.
(4.14)

According to the definition of the function 𝑤, the function 𝑢 satisfies the relation

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) − 𝜖

2

𝑇 − 𝑡

𝑇
, (𝑥, 𝑡) ∈ Ω̄𝑇 . (4.15)

The well-known formula (0 < 𝛼 ≤ 1)

(𝐷𝛼
𝑡 𝜏

𝛽)(𝑡) =
Γ(1 + 𝛽)

Γ(1− 𝛼+ 𝛽)
𝑡𝛽−𝛼, 𝛽 > 0 (4.16)

for the Caputo fractional derivative leads to

(𝐷𝛼
𝑡 𝑢)(𝑡) = (𝐷𝛼

𝑡 𝑤)(𝑡) +
𝜖

2𝑇

𝑡1−𝛼

Γ(2− 𝛼)
. (4.17)

Using the formulae (4.2), (4.3), (4.13), (4.14), (4.15), and (4.17), we arrive at the
following chain of equalities and inequalities for the point (𝑥1, 𝑡1):

(𝐷𝛼
𝑡 𝑢)(𝑡1)− div(𝑝 grad𝑢) + 𝑞𝑢− 𝐹

= (𝐷𝛼
𝑡 𝑤)(𝑡1) +

𝜖

2𝑇

𝑡1−𝛼1

Γ(2− 𝛼)
− 𝑝△𝑣

∣∣
(𝑥1,𝑡1)

− (grad 𝑝
∣∣
𝑥1
, grad𝑤

∣∣
(𝑥1,𝑡1)

) + 𝑞

(
𝑤 − 𝜖

2

𝑇 − 𝑡1
𝑇

)
− 𝐹

≥ 𝜖

2𝑇

𝑡1−𝛼1

Γ(2− 𝛼)
+ 𝑞𝜖

(
1− 𝑇 − 𝑡1

2𝑇

)
> 0,

that contradicts the condition of the theorem saying that the function 𝑢 is a solu-
tion of the equation (4.1). The obtained contradiction shows that the assumption
made at the beginning of the theorem’s proof is wrong, which proves the theorem.
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Similarly to the case of the partial differential equations of parabolic (𝛼 = 1)
or elliptic (𝛼 = 0) type, an appropriate minimum principle for 0 < 𝛼 < 1 is valid,
too.

Theorem 4.3. Let a function 𝑢 ∈ 𝐶(Ω̄𝑇 )∩𝑊 1
𝑡 ((0, 𝑇 ])∩𝐶2

𝑥(𝐺) be a solution of the
generalized time-fractional diffusion equation (4.1) in the domain Ω𝑇 and 𝐹 (𝑥, 𝑡) ≥
0, (𝑥, 𝑡) ∈ Ω𝑇 .

Then either 𝑢(𝑥, 𝑡) ≥ 0, (𝑥, 𝑡) ∈ Ω̄𝑇 or the function 𝑢 attains its negative
minimum on the part 𝑆𝑇

𝐺 of the boundary of the domain Ω𝑇 , i.e.,

𝑢(𝑥, 𝑡) ≥ min
(𝑥,𝑡)∈𝑆𝑇

𝐺

{0, 𝑢(𝑥, 𝑡)}, ∀(𝑥, 𝑡) ∈ Ω̄𝑇 . (4.18)

The maximum and minimum principles can be applied to show that the
problem (4.1), (4.4)–(4.5) possesses at most one solution and this solution – if it
exists – continuously depends on the data given in the problem.

First, some a priori estimates for the solution norm are established.

Theorem 4.4. Let 𝑢 be a solution of the problem (4.1), (4.4)–(4.5) and 𝐹 belong
to the space 𝐶(Ω̄𝑇 ) with the norm 𝑀 := ∥𝐹∥𝐶(Ω̄𝑇 ). Then the estimate

∥𝑢∥𝐶(Ω̄𝑇 ) ≤ max{𝑀0, 𝑀1}+ 𝑇𝛼

Γ(1 + 𝛼)
𝑀 (4.19)

of the solution norm holds true, where

𝑀0 := ∥𝑢0∥𝐶(𝐺̄), 𝑀1 := ∥𝑣∥𝐶(𝑆×[0,𝑇 ]). (4.20)

To prove the theorem, we first introduce an auxiliary function 𝑤:

𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡)− 𝑀

Γ(1 + 𝛼)
𝑡𝛼, (𝑥, 𝑡) ∈ Ω̄𝑇 .

Evidently, the function 𝑤 is a solution of the problem (4.1), (4.4)–(4.5) with the
functions 𝐹1(𝑥, 𝑡) := 𝐹 (𝑥, 𝑡) −𝑀 − 𝑞(𝑥) 𝑀

Γ(1+𝛼) 𝑡
𝛼, 𝑣1(𝑥, 𝑡) := 𝑣(𝑥, 𝑡) − 𝑀

Γ(1+𝛼) 𝑡
𝛼

instead of 𝐹 and 𝑣, respectively. To get an expression for the function 𝐹1, the
formula (4.16) is used. The function 𝐹1 satisfies the condition 𝐹1(𝑥, 𝑡) ≤ 0, (𝑥, 𝑡) ∈
Ω̄𝑇 . Then the maximum principle applied to a solution 𝑤 leads to the estimate

𝑤(𝑥, 𝑡) ≤ max{𝑀0,𝑀1}, (𝑥, 𝑡) ∈ Ω̄𝑇 , (4.21)

where the constants 𝑀0, 𝑀1 are defined as in (4.20). For the function 𝑢, we get

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) +
𝑀

Γ(1 + 𝛼)
𝑡𝛼

≤ max{𝑀0,𝑀1}+ 𝑇𝛼

Γ(1 + 𝛼)
𝑀, (𝑥, 𝑡) ∈ Ω̄𝑇 .

(4.22)

The minimum principle from Theorem 4.3 applied to the auxiliary function

𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡) +
𝑀

Γ(1 + 𝛼)
𝑡𝛼, (𝑥, 𝑡) ∈ Ω̄𝑇
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leads to the estimate ((𝑥, 𝑡) ∈ Ω̄𝑇 )

𝑢(𝑥, 𝑡) ≥ −max{𝑀0,𝑀1} − 𝑇𝛼

Γ(1 + 𝛼)
𝑀,

that together with the estimate (4.22) finishes the proof of the theorem.
The result formulated in the next theorem follows from Theorem 4.4.

Theorem 4.5. The initial-boundary-value problem (4.4)–(4.5) for the GTFDE (4.1)
possesses at most one solution. This solution continuously depends on the data
given in the problem in the sense that if

∥𝐹 − 𝐹∥𝐶(Ω̄𝑇 ) ≤ 𝜖, ∥𝑢0 − 𝑢̃0∥𝐶(𝐺̄) ≤ 𝜖0, ∥𝑣 − 𝑣∥𝐶(𝑆×[0,𝑇 ]) ≤ 𝜖1,

and 𝑢 and 𝑢̃ are the classical solutions of the problem (4.1), (4.4)–(4.5) with the

source functions 𝐹 and 𝐹 , the initial conditions 𝑢0 and 𝑢0, and the boundary
conditions 𝑣 and 𝑣, respectively, then the norm estimate

∥𝑢− 𝑢̃∥𝐶(Ω̄𝑇 ) ≤ max{𝜖0, 𝜖1} +
𝑇𝛼

Γ(1 + 𝛼)
𝜖 (4.23)

for the solutions 𝑢 and 𝑢̃ holds true.

Because the problem under consideration is a linear one, the uniqueness of the
solution immediately follows from the fact that the homogeneous problem (4.1),
(4.4)–(4.5), i.e., the problem with 𝐹 ≡ 0, 𝑢0 ≡ 0, and 𝑣 ≡ 0 has only one solution,
namely, 𝑢(𝑥, 𝑡) ≡ 0, (𝑥, 𝑡) ∈ Ω̄𝑇 . The last statement is a simple consequence from
the norm estimate (4.19) established in Theorem 4.4. The same estimate is used
to prove the inequality (4.23). This time, it is applied to the function 𝑢 − 𝑢̃ that

is a solution of the problem (4.1), (4.4)–(4.5) with the functions 𝐹 − 𝐹 , 𝑢0 − 𝑢̃0,
and 𝑣 − 𝑣 instead of the functions 𝐹, 𝑢0, and 𝑣, respectively.

The last theorem gives conditions for the uniqueness of the solution of the
problem (4.1), (4.4)–(4.5). To tackle the problem of the existence of the so-
lution, the notion of the generalized solution in the sense of Vladimirov (see
[Vladimirov(1971)] is first introduced.

Definition 4.6. Let 𝐹𝑘 ∈ 𝐶(Ω̄𝑇 ), 𝑢0𝑘 ∈ 𝐶(𝐺̄) and 𝑣𝑘 ∈ 𝐶(𝑆 × [0, 𝑇 ]), 𝑘 = 1, 2, . . .
be the sequences of functions that satisfy the following conditions:

1) there exist the functions 𝐹 , 𝑢0, and 𝑣, such that

∥𝐹𝑘 − 𝐹∥𝐶(Ω̄𝑇 ) → 0 as 𝑘 →∞, (4.24)

∥𝑢0𝑘 − 𝑢0∥𝐶(𝐺̄) → 0 as 𝑘 →∞, (4.25)

∥𝑣𝑘 − 𝑣∥𝐶(𝑆×[0,𝑇 ]) → 0 as 𝑘 →∞, (4.26)

2) for any 𝑘 = 1, 2, . . . there exists the solution 𝑢𝑘 of the initial-boundary-value
problem

𝑢𝑘
∣∣
𝑡=0

= 𝑢0𝑘(𝑥), 𝑥 ∈ 𝐺̄, (4.27)

𝑢𝑘
∣∣
𝑆
= 𝑣𝑘(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇 ], (4.28)
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for the generalized time-fractional diffusion equation

(𝐷𝛼
𝑡 𝑢𝑘)(𝑡) = −𝐿(𝑢𝑘) + 𝐹𝑘(𝑥, 𝑡). (4.29)

Suppose, there exists a function 𝑢 ∈ 𝐶(Ω̄𝑇 ) such that

∥𝑢𝑘 − 𝑢∥𝐶(𝐺̄) → 0 as 𝑘→∞. (4.30)

The function 𝑢 is called a generalized solution of the problem (4.1), (4.4)–(4.5).

The generalized solution of the problem (4.1), (4.4)–(4.5) is a continuous
function, not a generalized one. Still, the generalized solution is not required to be
from the functional space 𝐶(Ω̄𝑇 )∩𝑊 1

𝑡 ((0, 𝑇 ])∩𝐶2
𝑥(𝐺), where our solution has to

belong to that space.
It follows from Definition 4.6 that if the problem (4.1), (4.4)–(4.5) possesses

a solution then this solution is a generalized solution of the problem, too. In this
sense, Definition 4.6 extends the notion of the solution of the problem (4.1), (4.4)–
(4.5). This extension is needed to get some existence results. But of course one does
not want to lose the uniqueness of the solution. Let us consider some properties of
the generalized solution including its uniqueness.

If the problem (4.1), (4.4), (4.5) possesses a generalized solution, then
the functions 𝐹 , 𝑢0 and 𝑣 given in the problem have to belong to the spaces
𝐶(Ω̄𝑇 ), 𝐶(𝐺̄) and 𝐶(𝑆 × [0, 𝑇 ]), respectively. In further discussions, these inclu-
sions are always supposed to be valid.

Let us show that the sequence 𝑢𝑘, 𝑘 = 1, 2, . . . defined by the relations
(4.24)–(4.29) of Definition 4.6 is always a uniformly convergent one in Ω̄𝑇 , i.e.,
there always exists a function 𝑢 ∈ 𝐶(Ω̄𝑇 ) that satisfies the property (4.30). Indeed,
applying the estimate (4.23) from Theorem 4.5 to the functions 𝑢𝑘 and 𝑢𝑝 that
are solutions of the corresponding initial-boundary-value problems (4.27)–(4.28)
for the equation (4.29) one gets the inequality

∥𝑢𝑘 − 𝑢𝑝∥𝐶(Ω̄𝑇 ) ≤ max
{∥𝑢0𝑘 − 𝑢0𝑝∥𝐶(𝐺̄), ∥𝑣𝑘 − 𝑣𝑝∥𝐶(𝑆×[0,𝑇 ])

}
+

𝑇𝛼

Γ(1 + 𝛼)
∥𝐹𝑘 − 𝐹𝑝∥𝐶(Ω̄𝑇 ),

(4.31)

that, together with the relations (4.24)–(4.26), means that 𝑢𝑘, 𝑘 = 1, 2, . . . is a
Cauchy sequence in 𝐶(Ω̄𝑇 ) that converges to a function 𝑢 ∈ 𝐶(Ω̄𝑇 ).

Moreover, the estimate (4.19) proved in Theorem 4.4 for the solution of the
problem (4.1), (4.4)–(4.5) remains valid for the generalized solution, too. To show
this, the inequality

∥𝑢𝑘∥𝐶(Ω̄𝑇 ) ≤ max{𝑀0𝑘,𝑀1𝑘}+ 𝑇𝛼

Γ(1 + 𝛼)
𝑀𝑘, (4.32)

𝑀0𝑘 := ∥𝑢0𝑘∥𝐶(𝐺̄), 𝑀1𝑘 := ∥𝑣𝑘∥𝐶(𝑆×[0,𝑇 ]), 𝑀𝑘 := ∥𝐹∥𝐶(Ω̄𝑇 )

that is valid ∀𝑘 = 1, 2 . . . is considered as 𝑘 tends to +∞.
The estimate (4.19) for the generalized solution is a foundation for the fol-

lowing important uniqueness theorem.
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Theorem 4.7. The problem (4.1), (4.4)–(4.5) possesses at most one generalized
solution in the sense of Definition 4.6. The generalized solution – if it exists –
continuously depends on the data given in the problem in the sense of the estimate
(4.23).

The proof of the theorem follows the lines of the proof of Theorem 4.5 and
is omitted here.

Contrary to the situation with the solution of the problem (4.1), (4.4)–(4.5),
existence of the generalized solution can be shown in the general case under some
standard restrictions on the problem data and the boundary 𝑆 of the domain 𝐺.
In this section, the existence of the solution of the problem

(𝐷𝛼
𝑡 𝑢)(𝑡) = −𝐿(𝑢), (4.33)

𝑢
∣∣
𝑡=0

= 𝑢0(𝑥), 𝑥 ∈ 𝐺̄, (4.34)

𝑢
∣∣
𝑆
= 0, (𝑥, 𝑡) ∈ 𝑆 × [0, 𝑇 ] (4.35)

is considered to demonstrate the technique that can be used with the appropriate
standard modifications in the general case, too. The generalized solution of the
problem (4.33)–(4.35) can be constructed in an analytical form by using the Fourier
method of the variables separation. Let us look for a particular solution 𝑢 of the
equation (4.33) in the form

𝑢(𝑥, 𝑡) = 𝑇 (𝑡)𝑋(𝑥), (𝑥, 𝑡) ∈ Ω̄𝑇 , (4.36)

that satisfies the boundary condition (4.35). Substitution of the function (4.36)
into the equation (4.33) and separation of the variables lead to the equation

(𝐷𝛼
𝑡 𝑇 )(𝑡)

𝑇 (𝑡)
= −𝐿(𝑋)

𝑋(𝑥)
= −𝜆, (4.37)

𝜆 being a constant not depending on the variables 𝑡 and 𝑥. The last equation,
together with the boundary condition (4.35), is equivalent to the fractional differ-
ential equation

(𝐷𝛼
𝑡 𝑇 )(𝑡) + 𝜆𝑇 (𝑡) = 0 (4.38)

and the eigenvalue problem

𝐿(𝑋) = 𝜆𝑋, (4.39)

𝑋
∣∣
𝑆
= 0, 𝑥 ∈ 𝑆 (4.40)

for the operator 𝐿. Due to the condition (4.2), the operator 𝐿 is a positive definite
and self-adjoint linear operator. The theory of the eigenvalue problems for such
operators is well known (see, e.g., [Vladimirov(1971)]). In particular, the eigenvalue
problem (4.39)–(4.40) has a countable number of positive eigenvalues 0 < 𝜆1 ≤
𝜆2 ≤ ⋅ ⋅ ⋅ with finite multiplicity and – if the boundary 𝑆 of 𝐺 is a smooth surface
– any function 𝑓 ∈ℳ𝐿 can be represented through its Fourier series in the form

𝑓(𝑥) =
∞∑
𝑖=1

(𝑓,𝑋𝑖)𝑋𝑖(𝑥), (4.41)
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where 𝑋𝑖 ∈ℳ𝐿 are the eigenfunctions corresponding to the eigenvalues 𝜆𝑖:

𝐿(𝑋𝑖) = 𝜆𝑖𝑋𝑖, 𝑖 = 1, 2, . . . . (4.42)

We denote by ℳ𝐿 the space of functions 𝑓 that satisfy the boundary condition
(4.40) and the inclusions 𝑓 ∈ 𝐶1(Ω̄𝑇 ) ∩ 𝐶2(𝐺), 𝐿(𝑓) ∈ 𝐿2(𝐺).

The solution of the fractional differential equation (4.38) with 𝜆 = 𝜆𝑖, 𝑖 =
1, 2, . . . has the form (see, e.g., [Luchko and Gorenflo(1999),Luchko(1999)])

𝑇𝑖(𝑡) = 𝑐𝑖𝐸𝛼(−𝜆𝑖𝑡𝛼), (4.43)

𝐸𝛼 being the Mittag-Leffler function defined by

𝐸𝛼(𝑧) :=

∞∑
𝑘=1

𝑧𝑘

Γ(𝛼 𝑘 + 1)
. (4.44)

Any of the functions

𝑢𝑖(𝑥, 𝑡) = 𝑐𝑖𝐸𝛼(−𝜆𝑖𝑡𝛼)𝑋𝑖(𝑥), 𝑖 = 1, 2, . . . (4.45)

and thus the finite sums

𝑢𝑘(𝑥, 𝑡) =

𝑘∑
𝑖=1

𝑐𝑖𝐸𝛼(−𝜆𝑖𝑡𝛼)𝑋𝑖(𝑥), 𝑘 = 1, 2 . . . (4.46)

satisfy both equation (4.33) and the boundary condition (4.35). To construct a
function that satisfies the initial condition (4.34), too, the notion of a formal
solution is introduced.

Definition 4.8. A formal solution of the problem (4.33)–(4.35) is called a Fourier
series in the form

𝑢(𝑥, 𝑡) =

∞∑
𝑖=1

(𝑢0, 𝑋𝑖)𝐸𝛼(−𝜆𝑖𝑡𝛼)𝑋𝑖(𝑥), (4.47)

𝑋𝑖, 𝑖 = 1, 2, . . . being the eigenfunctions corresponding to the eigenvalues 𝜆𝑖 of
the eigenvalue problem (4.39)–(4.40).

Under certain conditions, the formal solution (4.47) can be proved to be the
generalized solution of problem (4.33)–(4.35).

Theorem 4.9. Let the function 𝑢0 in the initial condition (4.34) be from the space
ℳ𝐿. Then the formal solution (4.47) of the problem (4.33)–(4.35) is its generalized
solution.

It can be easily proved that the functions 𝑢𝑘, 𝑘 = 1, 2, . . . defined by (4.46)
are solutions of problem (4.33)–(4.35) with initial conditions

𝑢0𝑘(𝑥) =
𝑘∑

𝑖=1

(𝑢0, 𝑋𝑖)𝑋𝑖(𝑥) (4.48)
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instead of 𝑢0. Because the function 𝑢0 is from the functional spaceℳ𝐿, its Fourier
series converges uniformly to the function 𝑢0, so that

∥𝑢0𝑘 − 𝑢0∥𝐶(𝐺̄) → 0 as 𝑘→∞.

To prove the theorem, one only needs to show that the sequence 𝑢𝑘, 𝑘 = 1, 2, . . . of
the partial sums (4.46) converges uniformly on Ω̄𝑇 . But this statement immediately
follows from the estimate (see, e.g., [Podlubny(1999)])

∣𝐸𝛼(−𝑥)∣ ≤ 𝑀

1 + 𝑥
≤𝑀, 0 ≤ 𝑥, 0 < 𝛼 < 1 (4.49)

for the Mittag-Leffler function and the fact that the Fourier series
∞∑
𝑖=1

(𝑢0, 𝑋𝑖)×
𝑋𝑖(𝑥) of the function 𝑢0 ∈ℳ𝐿 uniformly converges on Ω̄𝑇 .

In some cases, the generalized solution (4.47) can be shown to be a solution
of the initial-boundary-value problem for the generalized time-fractional diffusion
equation, too. One important example is given in the following theorem.

Theorem 4.10. Let an open domain 𝐺 be a one-dimensional interval (0, 𝑙) and
𝑢0 ∈ℳ𝐿, 𝐿(𝑢0) ∈ℳ𝐿. Then the solution of the initial-boundary-value problem

𝑢
∣∣
𝑡=0

= 𝑢0(𝑥), 0 ≤ 𝑥 ≤ 𝑙,

𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇

for the generalized time-fractional diffusion equation

(𝐷𝛼
𝑡 𝑢)(𝑡) =

∂

∂𝑥

(
𝑝(𝑥)

∂𝑢

∂𝑥

)
− 𝑞(𝑥)𝑢

exists and is given by the formula (4.47).

The proof of the theorem follows mainly the lines of the proof of the same
result for the one-dimensional parabolic PDE (the case 𝛼 = 1) presented in
[Vladimirov(1971)] and is omitted here.

The theory presented in this section can be applied with some small mod-
ifications in the case of the infinite domain Ω = 𝐺 × (0,∞), 𝐺 ⊂ 𝐼𝑅𝑛, too.
Another direction of research is that of initial-boundary-value problems for the
multi-term time-fractional diffusion equation and for the time-fractional diffu-
sion equation of distributed order. Whereas the first results for the multi-term
time-fractional diffusion equation and for the time-fractional diffusion equation
of the distributed order have been already obtained (see [Daftardar-Gejji and
Bhalekar(2008),Luchko(2009a)] and [Chechkin et al.(2003),Luchko(2011)], respec-
tively), the initial-boundary-value problems for the space-fractional diffusion equa-
tion and for the time-space-fractional diffusion equation have practically not yet
been considered in the literature. In particular, one should try to extend the max-
imum principle discussed in this section for these types of equations, too. The
next step in research would be to employ the maximum principle to establish the
uniqueness of some special solutions (the so-called maximum and minimum solu-
tions) for the nonlinear fractional partial differential equations. And finally, a very
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recent direction of research in Fractional Calculus and its applications is the study
of so-called fractional differential operators of variable order and the ordinary and
partial differential equations with these operators. All topics mentioned above are
beyond the scope of the present chapter and still a subject of active research.
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Abstract. The ℝ-linear problem with constant coefficients for arbitrary mul-
tiply connected domains has been solved. The method is based on reduction
of the problem to a system of functional equations for a circular domain and
to integral equations for a general domain. In previous works, the ℝ-linear
problem and its partial cases such as the Riemann–Hilbert problem and the
Dirichlet problem were solved under geometrical restrictions to the domains.
In the present work, the solution is constructed for any circular multiply con-
nected domain in the form of modified Poincaré series. Moreover, the modified
alternating Schwarz method has been justified for an arbitrary multiply con-
nected domain. This extends application of the alternating Schwarz method,
since in the previous works geometrical restrictions were imposed on loca-
tions of the inclusions. The same concerns Grave’s method which was worked
out before only for simple closed algebraic boundaries or for a collection of
confocal boundaries.
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1. Introduction

Various boundary value problems are reduced to singular integral equations
[Gakhov (1977)], [Muskhelishvili (1968)], [Vekua (1988)]. Only some of them can
be solved in closed form. In the present paper we follow the lines of the book [Mit-
yushev and Rogosin (2000)] and describe application of the functional equations
method to the ℝ-linear problem which in a particular case yields the Riemann–
Hilbert problem.

This problem can be considered as a generalization of the classical Dirichlet
and Neumann problems for harmonic functions. It includes as a particular case the
mixed boundary value problem. We know the famous Poisson formula which solves
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the Dirichlet problem for a disk. The exact solution of the Dirichlet problem for a
circular annulus is also known due to Villat–Dini (see [Koppenfels and Stallman
(1959)], p. 119 and [Akhiezer (1990)], p. 169). Formulae from Theorems 3.6 and 3.7
presented below can be considered as a generalization of the Poisson and Villat–
Dini formulae to arbitrary circular multiply connected domains. In order to deduce
our formulae we first reduce the boundary value problem to the ℝ-linear problem
and solve the later one by use of functional equations. By functional equations
we mean iterative functional equations [Kuczma et al. (1990)], [Mityushev and
Rogosin (2000)] with shift into its domain. Hence, we do not use traditional integral
equations and infinite systems of linear algebraic equations. The solution is given
explicitly in terms of the known functions or constants and geometric parameters
of the domain.

Despite the solution being given by exact formulae, its structure is not el-
ementary. More precisely, it is represented in the form of integrals involving the
Abelian functions [Baker (1996)] (Poincaré series [Mityushev (1998)] or their coun-
terparts [Mityushev and Rogosin (2000)]). The reason why the solution in general
is not presented by integrals involving elementary kernels is of a topological na-
ture. In order to explain this, we briefly recall the scheme of the solution to the
Riemann–Hilbert problem

𝜙(𝑡) +𝐺(𝑡)𝜙(𝑡) = 𝑔(𝑡), 𝑡 ∈ ∂ℂ+, (1.1)

for the upper half-plane ℂ+ following [Gakhov (1977)], [Muskhelishvili (1968)].

Define the function 𝜙−(𝑧) := 𝜙(𝑧) analytic in the lower half-plane. Then the
Riemann–Hilbert problem (1.1) becomes the ℂ-linear problem (Riemann problem)

𝜙+(𝑡) +𝐺(𝑡)𝜙−(𝑡) = 𝑔(𝑡), 𝑡 ∈ ∂ℂ+. (1.2)

The latter problem is solved in terms of Cauchy type integrals (see details in
[Gakhov (1977)], [Muskhelishvili (1968)]).

Let us look at this scheme from another point of view [Zverovich (1971)].
Introduce a copy of the upper half-plane ℂ+ with the local complex coordinate 𝑧

and glue it with ℂ+ along the real axis. Define the function 𝜙−(𝑧) := 𝜙(𝑧) analytic
on the copy of ℂ+. Then we again arrive at the ℂ-linear problem (1.2) but on the

double of ℂ+ which is conformally equivalent to the Riemann sphere ℂ̂. The fun-
damental functionals of ℂ̂ are expressed by means of meromorphic functions which
produces the Cauchy type integrals. The same scheme holds for any 𝑛-connected
domain 𝐷. As a result, we arrive at problem (1.2) on the Schottky double of 𝐷,
the Riemann surface of genus (𝑛− 1), where life is more complicated than on the
plane, i.e., on the Riemann sphere of zero genus. It is not described by meromor-
phic functions. Therefore, if one tries to solve problem (1.2) on the double of 𝐷,
one has to use meromorphic analogies of the Cauchy kernel on Riemann surfaces,
i.e., the Abelian functions. In the case 𝑛 = 2, the double of 𝐷 becomes a torus
in which meromorphic functions are replaced by the classical elliptic functions
[Akhiezer (1990)]. [Crowdy (2009)], [Crowdy (2008a)], [Crowdy (2008b)] used the
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Schottky–Klein prime function associated with the Schottky double of 𝐷 to solve
many different problems for multiply connected domains.

The paper is organized as follows. First, we describe the known results, discuss
the Riemann–Hilbert and the Schwarz problems. In Section 2 we discuss functional
equations and prove convergence of the method of successive approximations for
these equations. In Section 3 the harmonic measures of the circular multiply con-
nected domains and the Schwarz operator are constructed by a method which can
be outlined as follows. At the beginning the Schwarz problem is written as an
ℝ-linear problem. Then we reduce it to functional equations. Application of the
method of successive approximations yields the solution in the form of a Poincaré
series of weight 2. As a sequence we obtain the almost uniform convergence of the
Poincaré series for any multiply connected domain. The ℝ-linear problem with con-
stant coefficients is studied in Section 4. Application of the method of successive
approximations has been justified to the ℝ-linear problem for arbitrary multiply
connected domain.

1.1. Riemann–Hilbert problem

Let 𝐷 be a multiply connected domain on the complex plane whose boundary ∂𝐷
consists of 𝑛 simple closed Jordan curves. The positive orientation on ∂𝐷 leaves
𝐷 to the left. This orientation is kept up to Section 3.

The scalar linear Riemann–Hilbert problem for 𝐷 is stated as follows: Given
Hölder continuous functions 𝜆(𝑡) ∕= 0 and 𝑓(𝑡) on ∂𝐷, to find a function 𝜙(𝑧)
analytic in 𝐷, continuous in the closure of 𝐷 with the boundary condition

Re𝜆(𝑡)𝜙(𝑡) = 𝑓(𝑡), 𝑡 ∈ ∂𝐷. (1.3)

This condition can also be written in the form (1.1).
The problem (1.3) had been completely solved for simply connected domains

(𝑛 = 1). Its solution and general theory of boundary value problems is presented
in the classic books [Gakhov (1977)], [Muskhelishvili (1968)] and [Vekua (1988)].
In 1975 [Bancuri (1975)] solved the Riemann–Hilbert problem for circular annulus
(𝑛 = 2).

First results concerning the Riemann–Hilbert problem for general multiply
connected domains were obtained [Kveselava (1945)]. He reduced the problem to
an integral equation. Beginning in 1952, I.N. Vekua and later Bojarski began to
extensively study this problem. Their results are presented in the book [Vekua
(1988)]. This Georgian attack on the problem, supported by a young Polish math-
ematician, were successful. Due to Kveselava, Vekua and Bojarski, we have a theory
of solvability of problem (1.3) based on integral equations and estimations of its
defect numbers, 𝑙𝜒, the number of linearly independent solutions and 𝑝𝜒, the num-
ber of linearly independent conditions of solvability on 𝑓(𝑡). Here, 𝜒 = 𝑤𝑖𝑛𝑑∂𝐷𝜆
is the index of the problem. In particular, Bojarski obtained the exact estimation
𝑙𝜒 ≤ 𝜒 + 1. In the special case 0 < 𝜒 < 𝑛 − 2, Bojarski showed that solvability
of the problem depends on a system of linear algebraic equations with 2𝜒 un-
knowns. It was also demonstrated that the rank of this system differs from 2𝜒
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on the set of zeros of an analytic function of few variables. Hence, almost always
𝑙𝜒 = 𝑚𝑎𝑥(0, 2𝜒−𝑛+2). In [Zverovich (1971)] the theory was developed by reduc-
tion of the problem (1.3) to the ℂ-linear problem (1.2) on the Riemann surface
and it was shown that the solution of the problem is expressed in terms of the
fundamental functionals of the double of 𝐷.

Any multiply connected domain𝐷 can be conformally mapped onto a circular
multiply connected domain ([Golusin (1969)], p. 235). Hence, it is sufficient to solve
the problem (1.3) for a circular domain and after to write the solvability conditions
and solution using a conformal mapping. The complete solution to problem (1.3)
for an arbitrary circular multiply connected domain had been given in [Mityushev
(1994)], [Mityushev (1998)], [Mityushev and Rogosin (2000)] by the method of
functional equations.

1.2. ℝ-linear problem

Let 𝐷 be a multiply connected domain described above. Let 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝑛)
be simply connected domains complementing 𝐷 to the extended complex plane.
In the theory of composites, the domains 𝐷𝑘 are called by inclusions. The ℝ-
linear conjugation problem or simply ℝ-linear problem is stated as follows. Given
Hölder continuous functions 𝑎(𝑡) ∕= 0, 𝑏(𝑡) and 𝑓(𝑡) on ∂𝐷. To find a function
𝜙(𝑧) analytic in ∪𝑛𝑘=1𝐷𝑘 ∪ 𝐷, continuous in 𝐷𝑘 ∪ ∂𝐷𝑘 and in 𝐷 ∪ ∂𝐷 with the
conjugation condition

𝜙+(𝑡) = 𝑎(𝑡)𝜙−(𝑡) + 𝑏(𝑡)𝜙−(𝑡) + 𝑓(𝑡), 𝑡 ∈ ∂𝐷. (1.4)

Here 𝜙+(𝑡) is the limit value of 𝜙(𝑧) when 𝑧 ∈ 𝐷 tends to 𝑡 ∈ ∂𝐷, 𝜙−(𝑡) is the limit
value of 𝜙(𝑧) when 𝑧 ∈ 𝐷𝑘 tends to 𝑡 ∈ ∂𝐷. In the case ∣𝑎(𝑡)∣ ≡ ∣𝑏(𝑡)∣ the ℝ-linear
problem is reduced to the Riemann–Hilbert problem (1.3) [Mikhailov (1963)].

In the case of the smooth boundary ∂𝐷, the homogeneous ℝ-linear problem
with constant coefficients

𝜙+(𝑡) = 𝑎𝜙−(𝑡) + 𝑏𝜙−(𝑡), 𝑡 ∈ ∂𝐷 (1.5)

is equivalent to the transmission problem from the theory of harmonic functions

𝑢+(𝑡) = 𝑢−(𝑡), 𝜆+
∂𝑢+

∂𝑛
(𝑡) = 𝜆−

∂𝑢−

∂𝑛
(𝑡), 𝑡 ∈ ∂𝐷. (1.6)

Here the real function 𝑢(𝑧) is harmonic in𝐷 and continuously differentiable in𝐷𝑘∪
∂𝐷𝑘 and in 𝐷∪∂𝐷, ∂

∂𝑛 is the normal derivative to ∂𝐷. The conjugation conditions
express the perfect contact between materials with different conductivities 𝜆+ and
𝜆−. The functions 𝜙(𝑧) and 𝑢(𝑧) are related by the equalities

𝑢(𝑧) = Re𝜙(𝑧), 𝑧 ∈ 𝐷,

𝑢(𝑧) =
𝜆− + 𝜆+

2𝜆+
Re𝜙(𝑧), 𝑧 ∈ 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝑛).

(1.7)
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The coefficients are related by formulae (for details see [Mityushev and Rogosin
(2000)], Sec. 2.12.)

𝑎 = 1, 𝑏 =
𝜆− − 𝜆+

𝜆− + 𝜆+
. (1.8)

Let us note that for positive 𝜆+ and 𝜆− we arrive at the elliptic case ∣𝑏∣ < ∣𝑎∣ in
accordance with Mikhajlov’s terminology [Mikhailov (1963)].

The non-homogeneous problem (1.4) with real coefficients 𝑎(𝑡) and 𝑏(𝑡) can
be written as a transmission problem (1.6). If 𝑎(𝑡) and 𝑏(𝑡) are complex the trans-
mission problem takes a more complicated form [Mikhailov (1963)].

In 1932, using the theory of potentials, [Muskhelishvili (1932)] (see also
[Muskhelishvili (1966)], p. 522) reduced the problem (1.6) to a Fredholm integral
equation and proved that it has a unique solution in the case 𝜆± > 0, the most
interesting in applications. [Vekua and Rukhadze (1933)], [Vekua and Rukhadze
(1933)] constructed a solution of (1.6) in closed form for an annulus and an el-
lipse (see also papers by Ruhadze quoted in [Muskhelishvili (1966)]). Hence, the
paper [Muskhelishvili (1932)] is the first result on solvability of the ℝ-linear prob-
lem, [Vekua and Rukhadze (1933)] and [Vekua and Rukhadze (1933)] published in
1933 are the first papers devoted to exact solution of the ℝ-linear problem for an
annulus and an ellipse. A little bit later [Golusin (1935)] considered the ℝ-linear
problem in the form (1.6) by use of the functional equations for analytic functions
(see below Section 1.4). Therefore, the paper [Golusin (1935)] is the first paper
which concerns constructive solution to the ℝ-linear problem for special circular
multiply connected domains. In further works these first results were not associated
to the ℝ-linear problem even by their authors.

[Markushevich (1946)] had stated the ℝ-linear problem in the form (1.4) and
studied it in the case 𝑎(𝑡) = 0, 𝑏(𝑡) = 1, 𝑓(𝑡) = 0 when (1.4) is not a Nöther prob-
lem. Later [Muskhelishvili (1968)] (p. 455 in Russian edition) did not determine
whether (1.4) was his problem (1.6) discussed in 1932 in terms of harmonic func-
tions. [Vekua (1967)] established that the vector-matrix problem (1.4) is Nötherian
if det 𝑎(𝑡) ∕= 0.

[Bojarski (1960)] showed that in the case ∣𝑏(𝑡)∣ < ∣𝑎(𝑡)∣ with 𝑎(𝑡), 𝑏(𝑡) be-
longing to the Hölder class 𝐻1−𝜀 with sufficiently small 𝜀, the ℝ-linear problem
(1.4) is qualitatively similar to the ℂ-linear problem

𝜙+(𝑡) = 𝑎(𝑡)𝜙−(𝑡) + 𝑓(𝑡), 𝑡 ∈ ∂𝐷. (1.9)

More precisely, Bojarski proved the following theorem for simply connected do-
mains. His proof is also valid for multiply connected domains. Let 𝑤𝑖𝑛𝑑𝐿𝑎(𝑡) denote
the winding number (index) of 𝑎(𝑡) along 𝐿:

Theorem 1.1 ([Bojarski (1960)]). Let the coefficients of the problem (1.4) satisfy
the inequality

∣𝑏(𝑡)∣ < ∣𝑎(𝑡)∣. (1.10)

If 𝜒 = 𝑤𝑖𝑛𝑑∂𝐷𝑎(𝑡) ≥ 0, the problem (1.4) is solvable and the homogeneous problem
(1.4) (𝑓(𝑡) = 0) has 2𝜒 ℝ-linearly independent solutions vanishing at infinity. If
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𝜒 < 0, the problem (1.4) has a unique solution if and only if ∣2𝜒∣ ℝ-linearly
independent conditions on 𝑓(𝑡) are fulfilled.

Later [Mikhailov (1963)] (first published in [Mikhailov (1961)]) developed this
result to continuous coefficients 𝑎(𝑡) and 𝑏(𝑡); 𝑓(𝑡) ∈ ℒ𝑝(∂𝐷). The case ∣𝑏(𝑡)∣ <
∣𝑎(𝑡)∣ was called the elliptic case. It corresponds to the partial case of the real
constant coefficients 𝑎 and 𝑏 considered by [Muskhelishvili (1932)].

[Mikhailov (1963)] reduced the problem (1.4) to an integral equation and
justified the absolute convergence of the method of successive approximation for
the later equation in the space ℒ𝑝(𝐿) under the restrictions 𝑤𝑖𝑛𝑑𝐿𝑎(𝑡) = 0 and

(1 + 𝑆𝑝)∣𝑏(𝑡)∣ < 2∣𝑎(𝑡)∣, (1.11)

where 𝑆𝑝 is the norm of the singular integral in ℒ𝑝(𝐿). Further discussion of the
conditions (1.10) and (1.11) is in our Conclusion.

1.3. Schwarz problem

As we noted above the Riemann–Hilbert problem (1.3) is a partial case of the
ℝ-linear problem. Later we will need this fact in the case 𝑎 = 1, 𝑏 = −1.
Theorem 1.2. The problem

Re𝜙(𝑡) = 𝑓(𝑡), 𝑡 ∈ ∂𝐷 (1.12)

is equivalent to the problem

𝜙+(𝑡) = 𝜙−(𝑡)− 𝜙−(𝑡) + 𝑓(𝑡), 𝑡 ∈ ∂𝐷, (1.13)

i.e., the problem (1.12) is solvable if and only if (1.13) is solvable. If (1.12) has a
solution 𝜙(𝑧), it is a solution of (1.13) in 𝐷 and a solution of (1.13) in 𝐷𝑘 can
be found from the following simple problem for the simply connected domain 𝐷𝑘

with respect to function 2 Im𝜙−(𝑧) harmonic in 𝐷𝑘,

2 Im𝜙−(𝑡) = Im𝜙+(𝑡)− 𝑓(𝑡), 𝑡 ∈ ∂𝐷. (1.14)

The problem (1.14) has a unique solution up to an arbitrary additive real constant.

The proof of the theorem is evident. We call problem (1.12) the Schwarz prob-
lem for the domain 𝐷. Along similar lines (1.14) is called the Schwarz problem for
the domain 𝐷𝑘. The operator solving the Schwarz problem is called the Schwarz
operator (in appropriate functional space). The function 𝑣(𝑧) = 2 Im𝜙(𝑧) is har-
monic in 𝐷𝑘. Therefore, the Schwarz problem (1.14) is equivalent to the Dirichlet
problem

𝑣(𝑡) = Im𝜙+(𝑡)− 𝑓(𝑡), 𝑡 ∈ ∂𝐷.

For multiply connected domains 𝐷, the Schwarz problem (1.12) is not equivalent
to a Dirichlet problem for harmonic functions, since any function harmonic in 𝐷
is represented as the real part of a single-valued analytic function plus logarithmic
terms (see for instance (3.2)).

The problem

Re𝜙(𝑡) = 𝑓(𝑡) + 𝑐𝑘, 𝑡 ∈ ∂𝐷𝑘, 𝑘 = 1, 2, . . . , 𝑛, (1.15)
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with undetermined constants 𝑐𝑘 is called the modified Schwarz problem. The prob-
lem (1.15) always has a unique solution up to an arbitrary additive complex con-
stant [Mikhlin (1964)].

1.4. Functional equations

[Golusin (1934)]–[Golusin (1935)] reduced the Dirichlet problem for circular multi-
ply connected domains to a system of functional equations and applied the method
of successive approximations to obtain its solution under some geometrical restric-
tions. Such a restriction can be roughly presented in the following form: each disk
𝔻𝑘 lies sufficiently far away from all other disks 𝔻𝑚 (𝑚 ∕= 𝑘). Golusin’s approach
was developed in [Zmorovich (1958)], [Dunduchenko (1966)], [Aleksandrov and
Sorokin (1972)]. [Aleksandrov and Sorokin (1972)] extended Golusin’s method to
an arbitrary multiply connected circular domain. However, the analytic form of the
Schwarz operator was lost. More precisely, the Schwarz problem was reduced via
functional equations to an infinite system of linear algebraic equations. Application
of the method of truncation to this infinite system was justified.1

We also reduce the problem to functional equations which are similar to
Golusin’s. The main advantage of our modified functional equations is based on
the possibility to solve them without any geometrical restriction by successive
approximations. It is worth noting that this solution produced the Poincaré series
discussed above.

The same story repeats with the alternating Schwarz method, which we call
for non-overlapping domains the generalized Schwarz method [Golusin (1934)],
[Mikhlin (1964)]. It is also known as a decomposition method [Smith et al. (1996)].
[Mikhlin (1964)] developed the alternating Schwarz method to the Dirichlet prob-
lem for multiply connected domains and proved its convergence under some ge-
ometrical restrictions coinciding with Golusin’s restrictions for circular domains.
Having modified this method we obtained a method convergent for any multiply
connected domain (for details see [Mityushev (1994)], [Mityushev and Rogosin
(2000)]).

1.5. Poincaré series

Let us consider mutually disjointed disks 𝔻𝑘 := {𝑧 ∈ ℂ : ∣𝑧 − 𝑎𝑘∣ < 𝑟𝑘} (𝑘 =
1, 2, . . . , 𝑛) in the complex plane ℂ. Let 𝔻 be the complement of the closed disks

∣𝑧−𝑎𝑘∣ ≤ 𝑟𝑘 to the extended complex plane ℂ̂ = ℂ∪{∞}, i.e., 𝔻 := ℂ̂∖∪𝑛𝑘=1(𝔻𝑘 ∪
∂𝔻𝑘). It is assumed that 𝕋𝑘 ∩ 𝕋𝑚 = ∅ for 𝑘 ∕= 𝑚.

The circles 𝕋𝑘 := {𝑡 ∈ ℂ : ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘} leave 𝔻 to the left. Let

𝑧∗(𝑘) =
𝑟2𝑘

𝑧 − 𝑎𝑘
+ 𝑎𝑘

1Though the method of truncation can be effective in numeric computations, one can hardly

accept that this method yields a closed form solution. Any way it depends on the definition of
the term “closed form solution”. A regular infinite system [Kantorovich and Krylov (1958)] can

be considered as an equation with compact operator, i.e., it is no more than a discrete form of a
Fredholm integral equation.
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be an inversion with respect to the circle 𝕋𝑘. It is known that if Φ(𝑧) is analytic

in the disk ∣𝑧 − 𝑎𝑘∣ < 𝑟𝑘 and continuous in its closure, Φ(𝑧∗(𝑘)) is analytic in

∣𝑧 − 𝑎𝑘∣ > 𝑟𝑘 and continuous in ∣𝑧 − 𝑎𝑘∣ ≥ 𝑟𝑘.
Introduce the composition of successive inversions with respect to the circles

𝕋𝑘1 ,𝕋𝑘2 , . . . ,𝕋𝑘𝑝 ,

𝑧∗(𝑘𝑝𝑘𝑝−1...𝑘1)
:=
(
𝑧∗(𝑘𝑝−1...𝑘1)

)∗
(𝑘𝑝)

. (1.16)

In the sequence 𝑘1, 𝑘2, . . . , 𝑘𝑝 no two neighboring numbers are equal. The number
𝑝 is called the level of the mapping. When 𝑝 is even, these are Möbius transfor-
mations. If 𝑝 is odd, we have anti-Möbius transformations, i.e., Möbius transfor-
mations in 𝑧. Thus, these mappings can be written in the form

𝛾𝑗(𝑧) = (𝑒𝑗𝑧 + 𝑏𝑗) / (𝑐𝑗𝑧 + 𝑑𝑗) , 𝑝 ∈ 2ℤ,

𝛾𝑗(𝑧) = (𝑒𝑗𝑧 + 𝑏𝑗) / (𝑐𝑗𝑧 + 𝑑𝑗) , 𝑝 ∈ 2ℤ+ 1,
(1.17)

where 𝑒𝑗𝑑𝑗 − 𝑏𝑗𝑐𝑗 = 1. Here 𝛾0(𝑧) := 𝑧 (identical mapping with the level 𝑝 =
0), 𝛾1(𝑧) := 𝑧∗(1) , . . . , 𝛾𝑛(𝑧) := 𝑧∗(𝑛) (𝑛 simple inversions, 𝑝 = 1), 𝛾𝑛+1(𝑧) :=

𝑧∗(12), 𝛾𝑛+2(𝑧) := 𝑧∗(13),. . . , 𝛾𝑛2(𝑧) := 𝑧∗(𝑛,𝑛−1) (𝑛
2 − 𝑛 pairs of inversions, 𝑝 = 2),

𝛾𝑛2+1(𝑧) := 𝑧∗(121), . . . and so on. The set of the subscripts 𝑗 of 𝛾𝑗 is ordered in

such a way that the level 𝑝 is increasing. The functions (1.17) generate a Schottky
group 𝒦. Thus, each element of 𝒦 is presented in the form of a composition of
inversions (1.16) or in the form of linearly ordered functions (1.17). Let 𝒦𝑚 be
such a subset of 𝒦∖{𝛾0} that the last inversion of each element of 𝒦𝑚 is different
from 𝑧∗(𝑚), i.e., 𝒦𝑚 = {𝑧∗(𝑘𝑝𝑘𝑝−1...𝑘1)

: 𝑘𝑝 ∕= 𝑚}.
Let 𝐻(𝑧) be a rational function. This following series is called the Poincaré

series:

𝜃2𝑞(𝑧) :=

∞∑
𝑗=0

𝐻(𝛾𝑗(𝑧))(𝑐𝑗𝑧 + 𝑑𝑗)
−2𝑞, (𝑞 ∈ ℤ/2) (1.18)

for 𝑞 = 1 associated with the subgroup 𝒦.
Definition 1.3. A point 𝑧 is called a limit point of the group 𝒦 if 𝑧 is a point of

accumulation of the sequence 𝛾𝑗(𝑧) for some 𝑧 ∈ ℂ̂. A point which is not a limit
point is called an ordinary point.

In other words, if 𝑧 runs over the extended complex plane, then the accu-
mulation points of the sequence 𝛾𝑗(𝑧) generate the limit set Λ(𝒦). It is assumed

that in the formula (1.18) 𝑧 ∈ 𝐵 := ℂ̂∖(𝐵1 ∪ Λ(𝒦)), 𝐵1 is the set of poles of all
𝐻(𝛾𝑗(𝑧)) and 𝛾𝑗(𝑧). Ordinary points are characterized by the following property.

Lemma 1.4. A point 𝑧 us a regular point of 𝒦 if there exist numbers 𝑘1, 𝑘2, . . . , 𝑘𝑚
such that 𝑧∗𝑘𝑚𝑘𝑚−1...𝑘1

belongs to 𝐷 ∪ ∂𝐷.

The points 𝑧1 and 𝑧2 are called congruent if there exists such 𝛾𝑗 ∈ 𝒦 that
𝛾𝑗(𝑧1) = 𝑧2. All limit points of the Schottky group 𝒦 lie within the disks 𝐷∪∂𝐷.
In the neighborhood of a limit point 𝜍 there is an infinite number of distinct points
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congruent to any point of ℂ̂ with, at most, exception of 𝜍 itself and of one other
point. The limit set Λ(𝒦) is transformed into itself by any 𝛾𝑗 ∈ 𝒦; Λ(𝒦) is closed
and dense itself.

[Poincaré (1916)] introduced the 𝜃2-series (1.18) associated to various types
of the Kleinian groups. He did not study carefully the Schottky groups and just
conjectured that the corresponding 𝜃2-series always diverges [Poincaré (1916)],
[Burnside (1891)] (p. 51). [Burnside (1891)] gave examples of convergent series for
the Schottky groups (named by him the first class of groups) and studied their ab-
solute convergence under some geometrical restrictions. In his study W. Burnside
followed Poincaré’s proof of the convergence of the 𝜃4-series. On p. 52 [Burnside
(1891)] wrote “I have endeavoured to show that, in the case of the first class of
groups, this series is convergent, but at present I have not obtained a general
proof. I shall offer two partial proofs of the convergency; one of which applies only
to the case of Fuchsian groups, and for that case in general, while the other will
also apply to Kleinian groups, but only when certain relations of inequality are
satisfied.” Further, on p. 57 [Burnside (1891)] gave a condition for absolute con-
vergence in terms of the coefficients of the Möbius transformations. He also noted
that convergence holds if the radii of the circles ∣𝑧 − 𝑎𝑘∣ = 𝑟𝑘 are sufficiently less
than the distances between the centers ∣𝑎𝑘 − 𝑎𝑚∣ when 𝑘 ∕= 𝑚.

[Myrberg (1916)] gave examples of absolutely divergent 𝜃2-series. Afterwards
many mathematicians justified the absolute convergence of the Poincaré series
under geometrical restrictions to the locations of the circles (see for references
[Crowdy (2008b)] and [Mityushev and Rogosin (2000)]). Here, we present such a
typical restriction expressed in terms of the separated parameter Δ introduced by
Henrici,

Δ = max
𝑘 ∕=𝑚

𝑟𝑘 + 𝑟𝑚
∣𝑎𝑘 − 𝑎𝑚∣ <

1

(𝑛− 1)
1
4

(1.19)

for an 𝑛-connected domain 𝔻 bounded by the circles ∣𝑧−𝑎𝑘∣ = 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛).

Necessary and sufficient conditions for absolute and uniform convergence of
the series have been found in [Akaza (1966)], [Akaza and Inoue (1984)] in terms
of the Hausdorff dimension of Λ(𝒦). This result is based on the study of the series∑∞

𝑗=1 ∣𝑐𝑗∣−2 .
After [Myrberg (1916)] it seemed that the opposite conjectures of Poincaré

and Burnside were both wrong. However, it was proved in [Mityushev (1998)]
that 𝜃2-series converges uniformly for any multiply connected domain 𝔻 with-
out any geometrical restriction that corresponds to Burnside’s conjecture. The
uniform convergence does not directly imply the automorphy relation, i.e., invari-
ance under the Schottky group of transformations, since it is forbidden to change
the order of summation without absolute convergence. But this difficulty can be
easily overcome by using functional equations. As a result, the Poincaré series
satisfies the required automorphy relation and can be written in each fundamen-
tal domain with a prescribed summation depending on this domain [Mityushev
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(1998)]. The study [Mityushev (1998)] is based on the solution to a Riemann–
Hilbert problem. First, the Riemann–Hilbert problem is written as an ℝ-linear
problem which is stated as a conjugation problem between functions analytic in
the disks 𝔻𝑘 = {𝑧 ∈ ℂ : ∣𝑧 − 𝑎𝑘∣ < 𝑟𝑘} (𝑘 = 1, 2, . . . , 𝑛) and in 𝔻. Further, the lat-
ter problem is reduced to a system of functional equations (without integral terms)
with respect to the functions analytic in ∣𝑧 − 𝑎𝑘∣ < 𝑟𝑘. The method of successive
approximations is justified for this system in a functional space in which conver-
gence is uniform. Straightforward calculations of the successive approximations
yields a Poincaré type series (see for instance (3.40) in this paper).

2. Linear functional equations

2.1. Homogeneous equation

Let 𝐺 be a domain on the extended complex plane whose boundary ∂𝐺 consists
of simple closed Jordan curves. Introduce the Banach space 𝒞(∂𝐺) of functions
continuous on the curves of ∂𝐺 with the norm ∣∣𝑓 ∣∣ = max1≤𝑘≤𝑛max∂𝐺 ∣𝑓(𝑡)∣. Let
us consider a closed subspace 𝒞𝒜(𝐺) of 𝒞(∂𝐺) consisting of the functions analyti-
cally continued into all disks 𝐺. Further, we usually take ∪𝑛𝑘=0𝔻𝑘 and sometimes
𝔻 as the domain 𝐺 (not necessarily connected). For brevity, the notation 𝒞𝒜 for
𝒞𝒜 (∪𝑛𝑘=0𝔻𝑘) is used.

Hereafter, a point 𝑤 ∈ 𝔻∖ {∞} is fixed.
Lemma 2.1. Let given numbers 𝜈𝑘 have the form 𝜈𝑘 := exp (−𝑖𝜇𝑘) with 𝜇𝑘 ∈ ℝ.
Consider the system of functional equations with respect to the functions 𝜙𝑘 (𝑧)
analytic in 𝔻𝑘,

𝜙𝑘 (𝑧) = −𝜈𝑘
∑
𝑚 ∕=𝑘

𝜈𝑚

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
, ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛).

(2.1)
This system has only the trivial solution.

Proof. Let 𝜙𝑚 (𝑧) (𝑚 = 1, 2, . . . , 𝑛) be a solution of (2.1). Then the right-hand part
of (2.1) implies that the function 𝜙𝑘 (𝑧) is analytic in ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛).
Introduce the function

𝜓 (𝑧) := −
𝑛∑

𝑚=1

𝜈𝑚

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
,

analytic in the closure of 𝔻. Then the functions 𝜓, 𝜙𝑘 satisfy the ℝ-linear boundary
conditions

𝜈𝑘𝜓 (𝑡) = 𝜙𝑘 (𝑡)− 𝜙𝑘 (𝑡) + 𝜙𝑘

(
𝑤∗(𝑘)

)
, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, . . . , 𝑛.

One can write the later relations in the following form:

Re 𝜈𝑘𝜓 (𝑡) = 𝑐𝑘, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, . . . , 𝑛, (2.2)

2 Im𝜙𝑘 (𝑡) = Im 𝜈𝑘𝜓 (𝑡) + 𝑑𝑘, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, . . . , 𝑛. (2.3)
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Here 𝜙𝑘
(
𝑤∗(𝑘)

)
= 𝑐𝑘 + 𝑖𝑑𝑘. One may consider equalities (2.2) as a boundary value

problem with respect to the function 𝜓 (𝑧) analytic in 𝔻 and continuous in its
closure, i.e., 𝜓 ∈ 𝒞𝐴(𝔻). The real constants 𝑐𝑘 have to be determined. We prove
that the problem (2.2) has only constant solutions: 𝜓 (𝑧) ≡ 𝑐, 𝑐𝑘 = Re 𝜈𝑘𝑐. De-

note by 𝜓 (𝔻) :=
{
𝜍 ∈ ℂ̂ : 𝑧 ∈ 𝔻, 𝜍 = 𝜓 (𝑧)

}
the image of 𝔻 under mapping 𝜓. It

follows from the Boundary Correspondence Principle for conformal mapping that
the boundary of 𝜓 (𝔻) consists of the segments Re 𝜈𝑘𝜍 = 𝑐𝑘 (𝑘 = 1, 2, . . . , 𝑛). But
in this case the point 𝜍 = ∞ ∈ 𝜓 (𝔻) corresponds to a point of 𝔻. It contradicts
boundedness of the function 𝜓 (𝑧) in the closure of 𝔻. Hence, 𝜙(𝑧) = constant and
equalities (2.3) imply that 𝜙𝑘(𝑡) = constant [Gakhov (1977)]. Using (2.1) we have
𝜙𝑘 (𝑧) ≡ 0.

The lemma is proved. □

2.2. Non-homogeneous equation

Lemma 2.2. Let ℎ ∈ 𝒞𝒜, ∣𝜈𝑘∣ = 1. Then the system of functional equations

𝜙𝑘 (𝑧) = −𝜈𝑘
∑
𝑚 ∕=𝑘

𝜈𝑚

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
+ ℎ𝑘 (𝑧) ,

∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛),

(2.4)

has a unique solution Φ ∈ 𝒞𝒜. Here Φ (𝑧) := 𝜙𝑘 (𝑧) in ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘, 𝑘 =
1, 2, . . . , 𝑛. This solution can be found by the method of successive approximations.
The approximations converge in 𝒞𝒜.
Proof. Rewrite the system (2.4) on 𝕋𝑘 in the form of a system of integral equations

𝜙𝑘 (𝑡) = −𝜈𝑘
∑
𝑚 ∕=𝑘

𝜈𝑚
1

2𝜋𝑖

∫
𝕋
−
𝑚

𝜙𝑚 (𝜏)

(
1

𝜏 − 𝑡∗(𝑚)

− 1

𝜏 − 𝑤∗(𝑚)

)
𝑑𝜏 + ℎ𝑘 (𝑡) ,

∣𝑡− 𝑎𝑘∣ = 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛).

(2.5)

The orientation on 𝕋−𝑚 leaves 𝔻𝑚 to the left. The system (2.5) can be written as
an equation in the space 𝒞 (∪𝑛𝑘=1𝕋𝑘):

Φ = AΦ + ℎ. (2.6)

The integral operators from (2.5) are compact in 𝒞 (𝕋𝑘); multiplication by 𝜈𝑚 and
complex conjugation are bounded operators in 𝒞. Then A is a compact operator
in 𝒞. Since Φ is a solution of (2.6) in 𝒞, hence Φ ∈ 𝒞𝒜 (see Pumping principle from
[Mityushev and Rogosin (2000)], Sec. 2.3). This follows from the properties of the
Cauchy integral and the condition ℎ ∈ 𝒞𝒜. Therefore, equation (2.6) in 𝒞 and
equation (2.4) in 𝒞𝒜 are equivalent when ℎ ∈ 𝒞𝒜. It follows from Lemma 2.1 that
the homogeneous equation Φ = AΦ has only a trivial solution. Then the Fredholm
theorem implies that equation (2.6) or the system (2.4) has a unique solution.

Let us show the convergence of the method of successive approximations. By
virtue of the Successive Approximation Theorem (see [Krasnosel’skii et al. (1969)]
and [Mityushev and Rogosin (2000)], Sec. 2.3) it is sufficient to prove the inequality
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𝜌 (A) < 1, where 𝜌 (A) is the spectral radius of the operator A. The inequality
𝜌 (A) < 1 is satisfied if for all complex numbers 𝜆 such that ∣𝜆∣ ≤ 1, equation

Φ = 𝜆AΦ

has only a trivial solution. This equation can be rewritten in the form

𝜙𝑘 (𝑧) = −𝜆𝜈𝑘
∑
𝑚 ∕=𝑘

𝜈𝑚

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
, ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘. (2.7)

Consider the case ∣𝜆∣ < 1. Introduce the function, analytic in the closure of 𝔻,

𝜓 (𝑧) = −𝜆
𝑛∑

𝑚=0

𝜈𝑚

(
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

))
.

Then 𝜓 (𝑧) and 𝜙𝑘 (𝑧) satisfy the ℝ-linear problem

𝜈𝑘𝜓 (𝑡) = 𝜙𝑘 (𝑡)− 𝜆𝜙𝑘 (𝑡) + 𝛾𝑘, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, 2, . . . , 𝑛,

where 𝛾𝑘 := 𝜆𝜙𝑘

(
𝑤∗(𝑘)

)
. It can be written in the form

𝜈𝑘𝜓0 (𝑡) = 𝜙𝑘 (𝑡)− 𝜆𝜙𝑘 (𝑡) + 𝛾𝑘 − 𝜈𝑘𝜓(∞), ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, 2, . . . , 𝑛, (2.8)

where 𝜓0(𝑧) = 𝜓(𝑧) − 𝜓(∞). Theorem 1.1 implies that problem (2.8) has the
unique solution

𝜓0(𝑧) = 0, 𝜙𝑘(𝑧) =
𝛾𝑘 − 𝜈𝑘𝜓(∞) + 𝜆(𝛾𝑘 − 𝜈𝑘𝜓(∞))

∣𝜆∣2 − 1
, 𝑘 = 1, 2, . . . , 𝑛.

Hence, 𝜙𝑘 (𝑧) = constant. Then (2.7) yields 𝜙𝑘 (𝑧) ≡ 0.

Consider the case ∣𝜆∣ = 1. Then by substituting 𝜔𝑘 (𝑧) = 𝜙𝑘 (𝑧) /
√
𝜆 the

system (2.7) is reduced to the same system with 𝜆 = 1. It follows from Lemma 2.1
that 𝜔𝑘 (𝑧) = 𝜙𝑘 (𝑧) = 0. Hence, 𝜌 (A) < 1.

This inequality proves the lemma. □

3. Schwarz operator

3.1. Harmonic measures

In the present section the number 𝑠 is chosen from 1, 2, . . . , 𝑛 and fixed. The
harmonic measure 𝛼𝑠 (𝑧) of the circle 𝕋𝑠 with respect to ∂𝔻 is a function harmonic
in 𝔻, continuous in its closure, satisfying the boundary conditions

𝛼𝑠 (𝑡) = 𝛿𝑠𝑘, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, 2, . . . , 𝑛, (3.1)

where 𝛿𝑠𝑘 is the Kronecker symbol. The functions 𝛼𝑠 are infinitely ℝ-differentiable
in the closure of 𝔻 (see [Mityushev and Rogosin (2000)], Sec. 2.7.2). Using the
Logarithmic Conjugation Theorem [Mityushev and Rogosin (2000)] we look for
𝛼𝑠 (𝑧) in the form

𝛼𝑠 (𝑧) = Re𝜙 (𝑧) +
𝑛∑

𝑚=1

𝐴𝑚 ln ∣𝑧 − 𝑎𝑚∣+𝐴, (3.2)
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where 𝐴𝑚 and 𝐴 are real constants,
𝑛∑

𝑚=1

𝐴𝑚 = 0. (3.3)

The later condition follows from the limit in (3.2) as 𝑧 tends to infinity. Using the
boundary condition (3.1) and the representation (3.2) we arrive at the following
boundary value problem:

Re𝜙 (𝑡) +

𝑛∑
𝑚=1

𝐴𝑚 ln ∣𝑡− 𝑎𝑘∣+𝐴 = 𝛿𝑠𝑘, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘. (3.4)

This problem is equivalent to the ℝ-linear problem (see Introduction)

𝜙 (𝑡) = 𝜙𝑘 (𝑡)− 𝜙𝑘 (𝑡) + 𝑓𝑘 (𝑡) , ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, 2, . . . , 𝑛, (3.5)

where the unknown functions 𝜙 ∈ 𝒞𝒜(𝔻), 𝜙𝑘 ∈ 𝒞𝒜(𝔻𝑘),

𝜙 (𝑤) = 0, (3.6)

𝑓𝑘 (𝑧) := 𝛿𝑠𝑘 −𝐴−𝐴𝑘 ln 𝑟𝑘 −
∑
𝑚 ∕=𝑘

𝐴𝑚 ln(𝑧 − 𝑎𝑚), 𝑧 ∈ 𝔻𝑘. (3.7)

The branch of ln (𝑧 − 𝑎𝑚) is fixed in such a way that the cut connecting the points
𝑧 = 𝑎𝑚 and 𝑧 =∞ does not intersect the circles 𝕋𝑘 for 𝑘 ∕= 𝑚 and does not pass
through the point 𝑧 = 𝑤. The function 𝑓𝑘 (𝑧) satisfies the boundary condition

Re 𝑓𝑘 (𝑡) := 𝛿𝑠𝑘 −𝐴−
𝑛∑

𝑚=1

𝐴𝑚 ln ∣𝑡− 𝑎𝑚∣ , ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘

and belongs to 𝒞𝒜 (𝔻𝑘).

Remark 3.1. More precisely the functions 𝜙, 𝜙𝑘 and 𝑓𝑘 are infinitely ℂ-differenti-
able in the closures of the domains considered.

Let us introduce the function

Φ (𝑧) :=

⎧⎨⎩
𝜙𝑘 (𝑧) +

∑
𝑚 ∕=𝑘

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
− 𝜙𝑘

(
𝑤∗(𝑘)

)
+ 𝑓𝑘 (𝑧) ,

∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘,

𝜙 (𝑧) +
∑𝑛

𝑚=1

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
, 𝑧 ∈ 𝔻.

Calculate the jump across the circle 𝕋𝑘,

Δ𝑘 := Φ+ (𝑡)− Φ− (𝑡) , 𝑡 ∈ 𝕋𝑘,

where Φ+ (𝑡) := lim𝑧→𝑡 𝑧∈𝔻 Φ (𝑧) , Φ− (𝑡) := lim𝑧→𝑡 𝑧∈𝔻𝑘
Φ (𝑧). Using (3.5), (3.7)

we get Δ𝑘 = 0. It follows from the Analytic Continuation Principle that Φ (𝑧)
is analytic in the extended complex plane. Then Liouville’s theorem implies that
Φ (𝑧) is a constant. Using (3.6) we calculate Φ(𝑤) = 0, hence Φ (𝑧) ≡ 0. The
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definition of Φ (𝑧) ≡ 0 in ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘 yields the following system of functional
equations:

𝜙𝑘 (𝑧) = −
∑
𝑚 ∕=𝑘

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
− 𝛿𝑠𝑘 +𝐴+𝐴𝑘 ln 𝑟𝑘

+
∑
𝑚 ∕=𝑘

𝐴𝑚 ln (𝑧 − 𝑎𝑚) + 𝜙𝑘

(
𝑤∗(𝑘)

)
, ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘,

(3.8)

with respect to the functions 𝜙𝑘 (𝑧) ∈ 𝒞𝒜(𝔻𝑘). The branches of logarithms are
chosen in the same way as in (3.7).

The system of functional equations (3.8) is the main point to construct the
harmonic measure 𝛼𝑠 via the analytic function 𝜙(𝑧) by formula (3.2). If 𝜙𝑘(𝑧) are
known, the required function 𝜙(𝑧) has the form

𝜙 (𝑧) = −
𝑛∑

𝑚=1

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
, 𝑧 ∈ 𝔻 ∪ ∂𝔻. (3.9)

It is convenient to represent 𝜙𝑘(𝑧) in the form

𝜙𝑘(𝑧) = 𝜑
(0)
𝑘 (𝑧) +

𝑛∑
𝑚=1

𝐴𝑚𝜑
(𝑚)
𝑘 (𝑧), (3.10)

where 𝜑
(0)
𝑘 (𝑧) satisfies

𝜑
(0)
𝑘 (𝑧) = −

∑
𝑚 ∕=𝑘

[
𝜑
(0)
𝑚

(
𝑧∗(𝑚)

)
− 𝜑

(0)
𝑚

(
𝑤∗(𝑚)

)]
− 𝛿𝑠𝑘 +𝐴+𝐴𝑘 ln 𝑟𝑘 (3.11)

+
∑
𝑚 ∕=𝑘

𝐴𝑚 ln (𝑤 − 𝑎𝑚) + 𝜙𝑘

(
𝑤∗(𝑘)

)
, ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘, 𝑘 = 1, . . . , 𝑛,

𝜑
(𝑚)
𝑘 (𝑧) satisfies

𝜑
(𝑚)
𝑘 (𝑧) = −

∑
𝑘1 ∕=𝑘

[
𝜑
(𝑚)
𝑘1

(
𝑧∗(𝑘1)

)
− 𝜑

(𝑚)
𝑘1

(
𝑤∗(𝑘1)

)]
+ 𝛿′𝑘𝑚 ln

𝑧 − 𝑎𝑚
𝑤 − 𝑎𝑚

,

∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘, 𝑘 = 1, . . . , 𝑛 (𝑚 = 1, . . . , 𝑛).

(3.12)

In (3.12), 𝑛 systems of functional equations are written, 𝑚 is the number of the
system, 𝛿′𝑘𝑚 = 1− 𝛿𝑘𝑚, where 𝛿𝑘𝑚 is the Kronecker symbol. It is assumed that the

constants 𝐴, 𝐴𝑘 and 𝜙𝑘

(
𝑤∗(𝑘)

)
are fixed in (3.11). The values of these constants

will be found later. According to Lemma 2.2, functional equations (3.11)–(3.12) can
be solved by the method of successive approximations. The method of successive
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approximations applied to (3.12) yields

𝜑
(𝑚)
𝑘 (𝑧) = 𝛿′𝑘𝑚 ln

𝑧 − 𝑎𝑚
𝑤 − 𝑎𝑚

−
∑
𝑘1 ∕=𝑘

𝛿
(𝑚)
𝑘1

ln
𝑧∗(𝑘1)

− 𝑎𝑚

𝑤∗(𝑘1)
− 𝑎𝑚

(3.13)

+
∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

𝛿
(𝑚)
𝑘2

ln
𝑧∗(𝑘2𝑘1)

− 𝑎𝑚

𝑤∗(𝑘2𝑘1)
− 𝑎𝑚

− ⋅ ⋅ ⋅ ,

where the sum
∑

𝑘𝑗 ∕=𝑘𝑗−1

contains the terms with 𝑘𝑗 = 1, 2, . . . , 𝑛; 𝑘𝑗 ∕= 𝑘𝑗−1.

By virtue of Lemma 2.2 with 𝜈𝑚 = 1 the series (3.13) converges uniformly in

∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘. It follows from (3.11) that 𝜙
(0)
𝑘 (𝑧) (𝑘 = 1, 2, . . . , 𝑛) are constants,

since the zeroth approximation is a constant and the operator from the right-hand
side of (3.11) produces constants.

One can see from (3.9) that the constants 𝜑
(0)
𝑘 (𝑧) do not impact on 𝜙 (𝑧),

hence using (3.10) we have

𝜙 (𝑧) = −
𝑛∑

𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

[
𝜑
(𝑚)
𝑘

(
𝑧∗(𝑘)
)
− 𝜑

(𝑚)
𝑘

(
𝑤∗(𝑘)

)]
. (3.14)

Substitution of (3.13) into (3.14) yields

𝜙 (𝑧) = −
𝑛∑

𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

𝛿′𝑘𝑚 ln
𝑧∗(𝑘) − 𝑎𝑚

𝑤∗(𝑘) − 𝑎𝑚
+

𝑛∑
𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘

𝛿
(𝑚)
𝑘1

ln
𝑧∗(𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘1𝑘)
− 𝑎𝑚

−
𝑛∑

𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

𝛿
(𝑚)
𝑘2

ln
𝑧∗(𝑘2𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘2𝑘1𝑘)
− 𝑎𝑚

+ ⋅ ⋅ ⋅ , 𝑧 ∈ 𝔻 ∪ ∂𝔻.

(3.15)

Using the properties of 𝛿′𝑘𝑚 one can rewrite (3.15) in the form

𝜙 (𝑧) = −
𝑛∑

𝑚=1

𝐴𝑚

∑
𝑘 ∕=𝑚

ln
𝑧∗(𝑘) − 𝑎𝑚

𝑤∗(𝑘) − 𝑎𝑚
+

𝑛∑
𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘,𝑚

ln
𝑧∗(𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘1𝑘)
− 𝑎𝑚

−
𝑛∑

𝑚=1

𝐴𝑚

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1,𝑚

ln
𝑧∗(𝑘2𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘2𝑘1𝑘)
− 𝑎𝑚

+ ⋅ ⋅ ⋅ , 𝑧 ∈ 𝔻 ∪ ∂𝔻.

(3.16)

In order to write (3.16) in more convenient form we use the following:

Lemma 3.2. There holds the equality

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘

. . .
∑

𝑘𝑠 ∕=𝑘𝑠−1,𝑚

𝐴𝑚𝑅𝑚𝑘𝑠𝑘𝑠−1...𝑘1𝑘 =
∑
𝑘1 ∕=𝑚

∑
𝑘2 ∕=𝑘1

. . .
∑

𝑘𝑠 ∕=𝑘𝑠−1

∑
𝑘 ∕=𝑘𝑠

𝐴𝑚𝑅𝑚𝑘1𝑘2...𝑘𝑠𝑘.

(3.17)
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Proof. It is sufficient to demonstrate that both parts of equality (3.17) contain
the same terms. First, replace 𝑘1𝑘2 . . . 𝑘𝑠 by 𝑘𝑠𝑘𝑠−1 . . . 𝑘1 in the right-hand part of
(3.17) which becomes∑

𝑘𝑠 ∕=𝑚

∑
𝑘𝑠−1 ∕=𝑘𝑠

⋅ ⋅ ⋅
∑
𝑘1 ∕=𝑘2

∑
𝑘 ∕=𝑘1

𝐴𝑚𝑅𝑚𝑘𝑠𝑘𝑠−1...𝑘1𝑘. (3.18)

The left-hand part of (3.17) can be written as the sum

𝑛∑
𝑘=1

𝑛∑
𝑘1=1

⋅ ⋅ ⋅
𝑛∑

𝑘𝑠=1

𝛿′𝑘1𝑘𝛿
′
𝑘2𝑘1

⋅ ⋅ ⋅ 𝛿′𝑘𝑠𝑘𝑠−1
𝛿′𝑘𝑠𝑚𝐴𝑚𝑅𝑚𝑘𝑠𝑘𝑠−1...𝑘1𝑘, (3.19)

where 𝛿′𝑙𝑘 = 1− 𝛿𝑙𝑘, 𝛿𝑙𝑘 is the Kronecker symbol. One can see that the sum (3.18)
written in the similar form (3.19) contains the same product of the complimentary
Kronecker symbols.

This proves the lemma. □

Applying Lemma 3.2 to (3.16) we obtain

𝜙 (𝑧) = −
𝑛∑

𝑚=1

𝐴𝑚

∑
𝑘 ∕=𝑚

ln
𝑧∗(𝑘) − 𝑎𝑚

𝑤∗(𝑘) − 𝑎𝑚
(3.20)

+
𝑛∑

𝑚=1

𝐴𝑚

∑
𝑘1 ∕=𝑚

∑
𝑘 ∕=𝑘1

ln
𝑧∗(𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘1𝑘)
− 𝑎𝑚

−
𝑛∑

𝑚=1

𝐴𝑚

∑
𝑘1 ∕=𝑚

∑
𝑘2 ∕=𝑘1

∑
𝑘 ∕=𝑘2

ln
𝑧∗(𝑘1𝑘2𝑘)

− 𝑎𝑚

𝑤∗(𝑘1𝑘2𝑘)
− 𝑎𝑚

+ ⋅ ⋅ ⋅ , 𝑧 ∈ 𝔻 ∪ ∂𝔻.

It can be also written in the form

𝜙 (𝑧) =
𝑛∑

𝑚=1

𝐴𝑚𝜓𝑚 (𝑧) ,

where

𝜓𝑚 (𝑧) = ln
∏
𝑘 ∕=𝑚

𝑤∗(𝑘) − 𝑎𝑚

𝑧∗(𝑘) − 𝑎𝑚
+ ln

∏
𝑘1 ∕=𝑚

∏
𝑘 ∕=𝑘1

𝑧∗(𝑘1𝑘)
− 𝑎𝑚

𝑤∗(𝑘1𝑘)
− 𝑎𝑚

+ ln
∏

𝑘1 ∕=𝑚

∏
𝑘2 ∕=𝑘1

∏
𝑘 ∕=𝑘2

𝑤∗(𝑘1𝑘2𝑘)
− 𝑎𝑚

𝑧∗(𝑘1𝑘2𝑘)
− 𝑎𝑚

+ ⋅ ⋅ ⋅ , 𝑧 ∈ 𝔻 ∪ ∂𝔻.

(3.21)

Let us rewrite (3.21) in terms of the group 𝒦,

𝜓𝑚 (𝑧) = ln

⎡⎣ ∞∏
𝑗∈𝒦𝑚

𝜓(𝑗)
𝑚 (𝑧)

⎤⎦ , (3.22)
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where

𝜓(𝑗)
𝑚 (𝑧) =

⎧⎨⎩
𝛾𝑗(𝑧)−𝑎𝑚

𝛾𝑗(𝑤)−𝑎𝑚
, if level of 𝛾𝑗 is even,

𝛾𝑗(𝑤)−𝑎𝑚

𝛾𝑗(𝑧)−𝑎𝑚
, if level of 𝛾𝑗 is odd.

The numeration on 𝑗 in (3.22) is fixed with increasing level.
In order to determine the constants 𝐴 and 𝐴𝑚, substitute 𝑧 = 𝑤∗(𝑘) in the

real parts of (3.8):

0 = −
∑
𝑚 ∕=𝑘

Re

[
𝜑𝑚

((
𝑤∗(𝑘)

)∗
(𝑚)

)
− 𝜑𝑚

(
𝑤∗(𝑚)

)]

− 𝛿𝑠𝑘 +𝐴+𝐴𝑘 ln 𝑟𝑘 +
∑
𝑚 ∕=𝑘

𝐴𝑚 ln
∣∣∣𝑤∗(𝑘) − 𝑎𝑚

∣∣∣ , 𝑘 = 1, 2, . . . , 𝑛.

(3.23)

The function 𝜑𝑚 has the form (3.13) and linearly depends on the unknown con-
stants 𝐴𝑚. The equalities (3.3), (3.23) generate a system of 𝑛+ 1 linear algebraic
equations with respect to 𝑛+1 unknowns 𝐴,𝐴1, . . . , 𝐴𝑛. This system has a unique
solution, since in the opposite case it contradicts the uniqueness of the solution to
the Dirichlet problem.

Theorem 3.3. The harmonic measures have the form

𝛼𝑠 (𝑧) =
𝑛∑

𝑚=1

𝐴𝑚 [Re𝜓𝑚 (𝑧) + ln ∣𝑧 − 𝑎𝑚∣] +𝐴, (3.24)

where 𝜓𝑚 (𝑧) is given in (3.22). The infinite product (3.22) converges uniformly
on each compact subset of 𝔻∖ {∞}. The real constants 𝐴 and 𝐴𝑚 are uniquely
determined by the system (3.3), (3.23)).

Proof. Exact formulae for harmonic measures were deduced in a formal way. In
order to justify them it is necessary to prove the change of the summation in (3.16)
to obtain (3.20).

Using the designations of Section 2, we write the series (3.13) in the form

Φ =

∞∑
𝑘=1

A𝑘ℎ, (3.25)

where

ℎ(𝑧) = 𝛿′𝑘𝑚 ln
𝑧 − 𝑎𝑚
𝑤 − 𝑎𝑚

, Aℎ(𝑧) = −
∑
𝑘1 ∕=𝑘

𝛿′𝑘1𝑚 ln
𝑧∗(𝑘1)

− 𝑎𝑚

𝑤∗(𝑘1)
− 𝑎𝑚

,

A2ℎ(𝑧) =
∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

𝛿′𝑘2𝑚 ln
𝑧∗(𝑘2𝑘1)

− 𝑎𝑚

𝑤∗(𝑘2𝑘1)
− 𝑎𝑚

− ⋅ ⋅ ⋅ .
(3.26)

It is possible to change the order of summation in each term A𝑘ℎ of the succes-
sive approximations which contains inversions only of the level 𝑘. Therefore, it is



164 V.V. Mityushev

possible to change the order of summation in the series (3.15) in terms having the
same level. The series (3.20) is obtained from (3.16) by application of this rule.

This proves the theorem. □
Remark 3.4. The constants 𝐴 and 𝐴𝑚 depend on the choice of 𝑤.

Remark 3.5. The logarithmic terms in (3.24) can be included into infinite product
(3.21). Then (3.24) becomes

𝛼𝑠 (𝑧) =

𝑛∑
𝑚=1

𝐴𝑚 ln
∏

𝑗∈𝒦𝑚∪{0}
∣𝜓(𝑗)

𝑚 (𝑧) ∣+𝐴0,

where 𝐴0 := 𝐴−∑𝑛
𝑚=1𝐴𝑚 ln ∣𝑤 − 𝑎𝑚∣ .

3.2. Exact formula for the Schwarz operator

Following the previous section we construct the complex Green function 𝑀(𝑧, 𝜁)
and the Schwarz operator for the circular multiply connected domain 𝔻. One can
find general properties of the Schwarz operator in [Mityushev and Rogosin (2000)],
[Mikhlin (1964)].

Let 𝑧 and 𝜁 belong to the closure of 𝔻. The real Green function 𝐺(𝑧, 𝜁) =
𝑔(𝑧, 𝜁) − ln ∣𝑧 − 𝜁∣ is introduced via the function 𝑔(𝑧, 𝜁) harmonic in 𝔻 satisfying
the Dirichlet problem

𝑔(𝑡, 𝜁)− ln ∣𝑡− 𝜁∣ = 0, ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛) (3.27)

with respect to the first variable. If 𝐺(𝑧, 𝜁) is known, the solution of the Dirichlet
problem

𝑢(𝑡) = 𝑓(𝑡), ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛) (3.28)

has the form

𝑢(𝑧) =
1

2𝜋

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝐺

∂𝜈
(𝑧, 𝜁)𝑑𝜎, (3.29)

where 𝜈 is the outward (in sense of orientation) normal vector at the point 𝜁 ∈ ∂𝔻.
The complex Green function 𝑀(𝑧, 𝜁) is defined by the formula

𝑀(𝑧, 𝜁) = 𝐺(𝑧, 𝜁) + 𝑖𝐻(𝑧, 𝜁), (3.30)

where the function 𝐻(𝑧, 𝜁) is harmonically conjugated to 𝐺(𝑧, 𝜁) on the variable
𝑧. It has the form

𝐻(𝑧, 𝜁) =

∫ 𝑧

𝑤

−∂𝐺

∂𝑦
𝑑𝑥+

∂𝐺

∂𝑥
𝑑𝑦

with 𝑧 = 𝑥+ 𝑖𝑦.
Introduce the Schwarz kernel (see [Mityushev and Rogosin (2000)], Sec. 2.7.2)

𝑇 (𝑧, 𝜁) =
∂𝑀

∂𝜈
(𝑧, 𝜁), 𝜁 ∈ 𝔻. (3.31)

In accordance with (3.28)–(3.31) the function

𝐹 (𝑧) =
1

2𝜋

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)𝑇 (𝑧, 𝜁)𝑑𝜎 (3.32)
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satisfies the boundary value problem

Re𝐹 (𝑡) = 𝑓(𝑡), ∣𝑡− 𝑎𝑘∣ = 𝑟𝑘 (𝑘 = 1, 2, . . . , 𝑛). (3.33)

Here 𝑢(𝑧) from (3.29) is the real part of the analytic function 𝐹 (𝑧) having in
general multi-valued imaginary part in the multiply connected domain 𝔻. If we
are looking for single-valued 𝐹 (𝑧) by (3.33), we arrive at the Schwarz problem in
accordance with the terminology introduced in our Introduction.

We use the representation for the Green function (see [Mityushev and Rogosin
(2000)], Sec. 2.7.2)

𝑀(𝑧, 𝜁) = 𝑀0(𝑧, 𝜁) +

𝑛∑
𝑘=1

𝛼𝑘(𝜁) ln(𝑧 − 𝑎𝑘)− ln(𝜁 − 𝑧) +𝐴(𝜁), (3.34)

where 𝛼𝑘 is a harmonic measure of 𝔻, 𝐴(𝜁) is a real function in 𝜁. The point 𝑤
and the branches of ln(𝑧 − 𝑎𝑘) are fixed as in the previous section. Using (3.31),
(3.34) we obtain

𝑇 (𝑧, 𝜁) =
∂𝑀0

∂𝜈
(𝑧, 𝜁) +

𝑛∑
𝑚=1

∂𝛼𝑚

∂𝜈
(𝜁) ln(𝑧 − 𝑎𝑚)− 1

𝜁 − 𝑧

∂𝜁

∂𝜈
+

∂𝐴

∂𝜈
(𝜁). (3.35)

The function 𝑀0(𝑧, 𝜁) is infinitely ℂ-differentiable in the closure of 𝔻 in 𝑧 and
satisfies the boundary value problem which follows from (3.27) and (3.30),

Re

[
𝑀0(𝑡, 𝜁) +

𝑛∑
𝑘=1

𝛼𝑘(𝜁) ln(𝑡− 𝑎𝑘)− ln(𝜁 − 𝑡) +𝐴(𝜁)

]
= 0,

∣𝑡− 𝑎𝑘∣ = 𝑟𝑘, 𝑘 = 1, 2, . . . , 𝑛; 𝑀0(𝑤, 𝜁) = 0.

(3.36)

The problem (3.36) has a unique solution. It is reduced to the following system of
functional equations:

𝜙𝑘 (𝑧) = −
∑
𝑚 ∕=𝑘

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
− ln(𝜁 − 𝑧) +𝐴

+ 𝛼𝑘(𝜁) ln 𝑟𝑘 +
∑
𝑚 ∕=𝑘

𝛼𝑚(𝜁) ln(𝑧 − 𝑎𝑚) + 𝜙𝑘

(
𝑤∗(𝑘)

)
,

∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘, 𝑘 = 1, . . . , 𝑛

(3.37)

where 𝜙𝑘 (𝑧) belongs to 𝒞𝒜(𝔻𝑘) and ℂ-infinitely differentiable in the closure of 𝔻𝑘.
Here 𝜁 is considered as a parameter fixed in the closure of 𝔻. The required function
𝑀0(𝑧, 𝜁) is related to the auxiliary functions 𝜙𝑘 (𝑧) by equality

𝑀0(𝑧, 𝜁) = −
𝑛∑

𝑘=1

[
𝜙𝑘

(
𝑧∗(𝑘)
)
− 𝜙𝑘

(
𝑤∗(𝑘)

)]
, 𝑧 ∈ 𝔻 ∪ ∂𝔻∖ {𝜁} . (3.38)
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In order to solve (3.37) we consider two auxiliary systems of functional equations

Ψ𝑘(𝑧) = −
∑
𝑚 ∕=𝑘

[
Ψ𝑚 (𝑧∗𝑚)−Ψ𝑚 (𝑤∗𝑚)

]
+𝐴+ 𝛼𝑘(𝜁) ln 𝑟𝑘

+
∑
𝑚 ∕=𝑘

𝛼𝑚(𝜁) ln(𝑧 − 𝑎𝑚) + 𝜙𝑚

(
𝑤∗(𝑘)

)
,

Ω𝑘(𝑧) = −
∑
𝑚 ∕=𝑘

[
Ω𝑚 (𝑧∗𝑚)− Ω𝑚 (𝑤∗𝑚)

]
− ln(𝜁 − 𝑧), ∣𝑧 − 𝑎𝑘∣ ≤ 𝑟𝑘, 𝑘 = 1, . . . , 𝑛.

The first system coincides with the system (2.5) (𝜈𝑘 = 1), and thus can be solved
by the method of successive approximations (cf. Lemma 2.2). Let us consider the
second system. If ∣𝜁 − 𝑧∣ ≤ 𝑟𝑠 for some 𝑠, the right-hand part of the second system
− ln(𝜁−𝑧) does not belong to 𝒞𝒜(𝔻𝑠). But by introducing a new unknown function

Ω
(0)
𝑠 (𝑧) := Ω𝑠(𝑧) − ln(𝜁 − 𝑧) we get an equation in the space 𝒞𝒜(𝔻𝑠). Therefore,

the method of successive approximations can be applied to the second system too,
and

Ψ𝑘 (𝑧∗𝑘)−Ψ𝑘 (𝑤∗𝑘) =
∑
𝑚 ∕=𝑘

𝛼𝑚(𝜁) ln
𝑧∗(𝑘) − 𝑎𝑚

𝑤∗(𝑘) − 𝑎𝑚
−
∑
𝑘1 ∕=𝑘

∑
𝑚 ∕=𝑘1

𝛼𝑚(𝜁) ln
𝑧∗(𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘1𝑘)
− 𝑎𝑚

+
∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

∑
𝑚 ∕=𝑘2

𝛼𝑚(𝜁) ln
𝑧∗(𝑘2𝑘1𝑘)

− 𝑎𝑚

𝑤∗(𝑘2𝑘1𝑘)
− 𝑎𝑚

− ⋅ ⋅ ⋅ , (3.39)

Ω𝑘 (𝑧∗𝑘)− Ω𝑘 (𝑤∗𝑘) = ln
𝜁 − 𝑤∗(𝑘)
𝜁 − 𝑧∗(𝑘)

+
∑
𝑘1 ∕=𝑘

ln
𝜁 − 𝑧∗(𝑘1𝑘)

𝜁 − 𝑤∗(𝑘1𝑘)

+
∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

ln
𝜁 − 𝑧∗(𝑘2𝑘1𝑘)

𝜁 − 𝑤∗(𝑘2𝑘1𝑘)

+ ⋅ ⋅ ⋅ , 𝑧 ∈ 𝔻 ∪ ∂𝔻. (3.40)

The series (3.39), (3.40) converge uniformly in every compact subset of 𝔻∪∂𝔻∖ {𝜁}.
We have 𝜙𝑘 (𝑧) = Ψ𝑘(𝑧) + Ω𝑘(𝑧), hence the values

𝜙𝑘 (𝑧∗𝑘)− 𝜙𝑘 (𝑤∗𝑘) = Ψ𝑘 (𝑧∗𝑘)−Ψ𝑘 (𝑤∗𝑘) + Ω𝑘 (𝑧∗𝑘)− Ω𝑘 (𝑤∗𝑘) (3.41)

are completely determined. It follows from (3.38) that

𝑀0(𝑧, 𝜁) =

𝑛∑
𝑚=1

𝛼𝑚(𝜁)𝜓𝑚(𝑧)− 𝜔(𝑧, 𝜁),

where the functions 𝜓𝑚(𝑧) have the form (3.21) or (3.22 ), 𝛼𝑚(𝜁) are given in
Theorem 3.3,

𝜔(𝑧,𝜁)=ln

(
𝑛∏

𝑘=1

𝜁−𝑧∗(𝑘)
𝜁−𝑤∗(𝑘)

)⎛⎝ 𝑛∏
𝑘=1

∏
𝑘1 ∕=𝑘

𝜁−𝑤∗(𝑘1𝑘)

𝜁−𝑧∗(𝑘1𝑘)

⎞⎠⎛⎝ 𝑛∏
𝑘=1

∏
𝑘1 ∕=𝑘

∏
𝑘2 ∕=𝑘1

𝜁−𝑧∗(𝑘2𝑘1𝑘)

𝜁−𝑤∗(𝑘2𝑘1𝑘)

⎞⎠... .

(3.42)
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This infinite product can be represented in the form

𝜔(𝑧, 𝜁) = ln

∞∏
𝑗=1

𝜔𝑗(𝑧, 𝜁), (3.43)

where

𝜔𝑗(𝑧, 𝜁) =

⎧⎨⎩
𝜁−𝛾𝑗(𝑧)
𝜁−𝛾𝑗(𝑤) , if level of 𝛾𝑗 is even,

𝜁−𝛾𝑗(𝑤)

𝜁−𝛾𝑗(𝑧)
, if level of 𝛾𝑗 is odd.

In order to find 𝐴(𝜁) we substitute 𝑤∗(𝑘) in the real part of (3.37) and obtain

0 = −
∑
𝑚 ∕=𝑘

Re

[
𝜙𝑚

((
𝑤∗(𝑘)

)∗
(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
− ln

∣∣∣𝜁 − 𝑤∗(𝑘)
∣∣∣+𝐴(𝜁)

+ 𝛼𝑘(𝜁) ln 𝑟𝑘 +
∑
𝑚 ∕=𝑘

𝛼𝑚(𝜁) ln
∣∣∣𝑤∗(𝑘) − 𝑎𝑚

∣∣∣ , 𝑘 = 1, . . . , 𝑛.

(3.44)

The harmonic measures satisfy the equality
𝑛∑

𝑚=1

𝛼𝑚(𝜁) = 1. (3.45)

One can consider (3.44), (3.45) as a system of 𝑛+1 real linear algebraic equations
with respect to 𝑛+ 1 real unknowns 𝛼1(𝜁), 𝛼2(𝜁), . . . , 𝛼𝑛(𝜁), 𝐴(𝜁). The systems
(3.44), (3.45) and (3.3), (3.23) have the same homogeneous part. Therefore, the
system (3.44), (3.45) has a unique solution We may at the beginning look for the
complex Green function 𝑀(𝑧, 𝜁) with undetermined periods 𝛼𝑘(𝜁)/2𝜋, find 𝛼𝑘(𝜁)
from (3.44), (3.45) and after assert that 𝛼𝑘(𝜁) is a harmonic measure. In order to
determine 𝐴(𝜁), we fix for instance 𝑘 = 𝑛 in (3.44) and obtain

𝐴(𝜁) =

𝑛−1∑
𝑚=1

Re

[
𝜙𝑚

((
𝑤∗(𝑛)

)∗
(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
+ ln

∣∣∣𝜁 − 𝑤∗(𝑛)
∣∣∣

− 𝛼𝑘(𝜁) ln 𝑟𝑘 −
𝑛−1∑
𝑚=1

𝛼𝑚(𝜁) ln
∣∣∣𝑤∗(𝑘) − 𝑎𝑚

∣∣∣ , (3.46)

where

[
𝜙𝑚

(
𝑧∗(𝑚)

)
− 𝜙𝑚

(
𝑤∗(𝑚)

)]
has the form (3.39 ), (3.40), (3.41).

The function (3.32) is single-valued in 𝔻 if and only if
𝑛∑

𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝛼𝑚

∂𝜈
(𝜁)𝑑𝜎 = 0, 𝑚 = 1, 2, . . . , 𝑛. (3.47)

Note that one of the relations (3.47) follows from the other ones. For instance, let
(3.47) be valid for 𝑚 = 1, 2, . . . , 𝑛− 1. Then ( 3.47) for 𝑚 = 𝑛 is fulfilled, since

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝛼𝑛

∂𝜈
(𝜁)𝑑𝜎 = −

𝑛−1∑
𝑚=1

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝛼𝑚

∂𝜈
(𝜁)𝑑𝜎 = 0.
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Here the identity (3.45) is used. With the help of (3.35) the single- and the multi-
valued components of the Schwarz operator can be separated:

𝑇 (𝑧, 𝜁) = 𝑇s(𝑧, 𝜁) + 𝑇𝑚(𝑧, 𝜁),

𝑇s(𝑧, 𝜁) =

𝑛∑
𝑚=1

∂𝛼𝑚

∂𝜈
(𝜁) [𝜓𝑚(𝑧) + ln(𝑧 − 𝑎𝑚)] ,

𝑇𝑚(𝑧, 𝜁) =
∂𝜔

∂𝜈
(𝑧, 𝜁)− 1

𝜁 − 𝑧

∂𝜁

∂𝜈
+

∂𝐴

∂𝜈
(𝜁).

We now proceed to calculate the normal derivatives in the later formulae.
One can see that

∂𝑓

∂𝜈
𝑑𝜎 = −1

𝑖

[
∂𝑓

∂𝜁
+

(
𝑟𝑘

𝜁 − 𝑎𝑘

)2
∂𝑓

∂𝜁

]
𝑑𝜏, ∣𝜁 − 𝑎𝑘∣ = 𝑟𝑘, (3.48)

for any 𝑓 ∈ 𝒞1(∂𝔻). Recall that we deal with the outward normal to 𝔻. In order
to apply (3.48) to 𝜔(𝑧, 𝜁) we find from (3.42) that

∂𝜔

∂𝜁
(𝑧, 𝜁) =

𝑛∑
𝑘=1

∑
𝑘1 ∕=𝑘

(
1

𝜁 − 𝑤∗(𝑘1𝑘)

− 1

𝜁 − 𝑧∗(𝑘1𝑘)

)

+
𝑛∑

𝑘=1

∑
𝑘1 ∕=𝑘

∑
𝑘2 ∕=𝑘1

∑
𝑘3 ∕=𝑘2

(
1

𝜁 − 𝑤∗(𝑘3𝑘2𝑘1𝑘)

− 1

𝜁 − 𝑧∗(𝑘3𝑘2𝑘1𝑘)

)
+ ⋅ ⋅ ⋅

=

∞∑
𝑗=1

′′
(

1

𝜁 − 𝛾𝑗(𝑤)
− 1

𝜁 − 𝛾𝑗(𝑧)

)
, (3.49)

where the terms in the later sum are ordered due to increasing even level. We also
have

∂𝜔

∂𝜁
(𝑧, 𝜏) =

∞∑
𝑗=1

/

(
1

𝜁 − 𝛾𝑗(𝑧)
− 1

𝜁 − 𝛾𝑗(𝑤)

)
, (3.50)

where elements 𝛾𝑗 have the odd level. Substituting (3.49), (3.50) into (3.35), (3.32)
we arrive at the following

Theorem 3.6. The Schwarz operator of 𝔻 has the form

𝜙 (𝑧) =
1

2𝜋𝑖

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)

⎧⎨⎩
∞∑
𝑗=2

′′
[

1

𝜁 − 𝛾𝑗 (𝑤)
− 1

𝜁 − 𝛾𝑗 (𝑧)

]

+

(
𝑟𝑘

𝜁 − 𝑎𝑘

)2 ∞∑
𝑗=1

′
[

1

𝜁 − 𝛾𝑗 (𝑧)
− 1

𝜁 − 𝛾𝑗 (𝑤)

]
− 1

𝜁 − 𝑧

⎫⎬⎭ 𝑑𝜁 (3.51)

+
1

2𝜋𝑖

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝐴

∂𝜈
(𝜁)𝑑𝜎 +

𝑛∑
𝑚=1

𝐴𝑚 [ln (𝑧 − 𝑎𝑚) + 𝜓𝑚(𝑧)] + 𝑖𝜍,
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where

𝐴𝑚 :=
1

2𝜋𝑖

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝛼𝑚

∂𝜈
(𝜁)𝑑𝜎, 𝑚 = 1, 2, . . . , 𝑛,

𝐴(𝜁) has the form (3.46), The functions 𝛼𝑚(𝜁) and 𝜓𝑚(𝑧) are derived in Theorem
3.3, 𝜍 is an arbitrary real constant,

∑′
contains 𝛾𝑗 of odd level,

∑′′
– of even level.

The series converges uniformly in each compact subset of 𝔻 ∪ ∂𝔻∖ {∞} .
The single-valued part of the Schwarz operator can be determined by solution

of the modified Dirichlet problem (see [Mityushev and Rogosin (2000)], Sec. 2.7.2):

Re𝜙 (𝑡) = 𝑓(𝑡) + 𝑐𝑘, 𝑡 ∈ 𝕋𝑘, 𝑘 = 1, 2, . . . , 𝑛, (3.52)

where a given function 𝑓 ∈ 𝒞(∂𝔻), 𝑐𝑘 are undetermined real constants. If one of
the constants 𝑐𝑘 is fixed arbitrarily, the remaining ones are determined uniquely
and 𝜙 (𝑧) is determined up to an arbitrary additive purely imaginary constant (see
[Mityushev and Rogosin (2000)], Sec. 2.7.2). Thus, we have

Theorem 3.7. The single-valued part of the Schwarz operator of 𝔻 corresponding
to the modified Dirichlet problem (3.52) has the form

𝜙 (𝑧) =
1

2𝜋𝑖

𝑛∑
𝑘=1

∫
𝕋𝑘

(𝑓 (𝜁) + 𝑐𝑘)

⎧⎨⎩
∞∑
𝑗=2

′′
[

1

𝜁 − 𝛾𝑗 (𝑤)
− 1

𝜁 − 𝛾𝑗 (𝑧)

]

+

(
𝑟𝑘

𝜁 − 𝑎𝑘

)2 ∞∑
𝑗=1

′
[

1

𝜁 − 𝛾𝑗 (𝑧)
− 1

𝜁 − 𝛾𝑗 (𝑤)

]
− 1

𝜁 − 𝑧

⎫⎬⎭ 𝑑𝜁 (3.53)

+
1

2𝜋𝑖

𝑛∑
𝑘=1

∫
𝕋𝑘

𝑓(𝜁)
∂𝐴

∂𝜈
(𝜁)𝑑𝜎 + 𝑖𝜍.

One of the real constants 𝑐𝑘 can be fixed arbitrarily, the remaining ones are deter-
mined uniquely from the linear algebraic system

𝑛∑
𝑘=1

∫
𝕋𝑘

(𝑓(𝜁) + 𝑐𝑘)
∂𝛼𝑚

∂𝜈
(𝜁)𝑑𝜎 = 0, 𝑚 = 1, 2, . . . , 𝑛− 1. (3.54)

4. ℝ-linear problem

4.1. Integral equations

There are two different methods of integral equations associated to boundary value
problems. The first method is known as the method of potentials. In complex
analysis, it is equivalent to the method of singular integral equations [Gakhov
(1977),Muskhelishvili (1968),Muskhelishvili (1966),Vekua (1988)]. The alternat-
ing method of Schwarz can be presented as a method of integral equations of
another type [Mikhlin (1964),Mikhailov (1963)]. Let 𝐿𝑘 = ∂𝐷𝑘 be Lyapunov’s
simple closed curves. It is convenient to introduce the opposite orientation to the
orientation considered in the above sections. So, it is assumed that each 𝐿𝑘 leaves
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the inclusion 𝐷𝑘 on the left. In the present section, we discuss the following ℝ-
linear problem corresponding to the perfect contact between components of the
composite with the external field 𝑓(𝑡),

𝜑−(𝑡) = 𝜑𝑘(𝑡)− 𝜌𝑘𝜑𝑘(𝑡)− 𝑓(𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1, 2, . . . , 𝑛). (4.1)

Here, the contrast parameter 𝜌𝑘 = 𝜆𝑘+𝜆
𝜆𝑘−𝜆 is introduced via the conductivity of the

host 𝜆 and the conductivity of the 𝑘th inclusion 𝜆𝑘. Introduce a space ℋ(𝐷+)
consisting of functions analytic in 𝐷+ = ∪𝑛𝑘=1𝐷𝑘 and Hölder continuous in the
closure of 𝐷+ endowed with the norm

∣∣𝜔∣∣ = sup
𝑡∈𝐿

∣𝜔(𝑡)∣+ sup
𝑡1,2∈𝐿

∣𝜔(𝑡1)∣ − 𝜔(𝑡2)∣
∣𝑡1 − 𝑡2∣𝛼 , (4.2)

where 0 < 𝛼 ≤ 1. The space ℋ(𝐷+) is Banach, since the norm in ℋ(𝐷+) coincides
to the norm of functions Hölder continuous on 𝐿 (inf on 𝐷+ ∪ 𝐿 in (4.2) is equal
to inf on 𝐿). It follows from Harnack’s principle that convergence in the space
ℋ(𝐷+) implies uniform convergence in the closure of 𝐷+.

For fixed 𝑚 introduce the operator

𝐴𝑚𝑓(𝑧) =
1

2𝜋𝑖

∫
𝐿𝑚

𝑓(𝑡)𝑑𝑡

𝑡− 𝑧
, 𝑧 ∈ 𝐷𝑚. (4.3)

In accordance with Sokhotskij’s formulae,

𝐴𝑚𝑓(𝜁) = lim
𝑧→𝜁

𝐴𝑚𝑓(𝑧) =
1

2
𝑓(𝜁) +

1

2𝜋𝑖

∫
𝐿𝑚

𝑓(𝑡)𝑑𝑡

𝑡− 𝜁
, 𝜁 ∈ 𝐿𝑚. (4.4)

Equations (4.3)–(4.4) determine the operator 𝐴𝑚 in the space ℋ(𝐷𝑚).

Lemma 4.1. The linear operator 𝐴𝑚 is bounded in the space ℋ(𝐷𝑚).

The proof is based on a definition of the bounded operator ∣∣𝐴𝑚𝑓 ∣∣ ≤ 𝐶∣∣𝑓 ∣∣
and the fact that the norm in ℋ(𝐷𝑚) is equal to the norm of functions Hölder
continuous on 𝐿𝑚. The estimation of the later norm follows from the boundness
of the operator (4.4) in Hölder’s space [Gakhov (1977)].

The lemma is proved.

The conjugation condition (4.1) can be written in the form

𝜑𝑘(𝑡)− 𝜑−(𝑡) = 𝜌𝑘𝜑𝑘(𝑡) + 𝑓(𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1, 2, . . . , 𝑛). (4.5)

A difference of functions analytic in 𝐷+ and in 𝐷 is in the left-hand part of the
later relation. Then application of Sokhotskij’s formulae yield

𝜑𝑘(𝑧) =
𝑛∑

𝑚=1

𝜌𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡+ 𝑓𝑘(𝑧), 𝑧 ∈ 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝑛), (4.6)

where the function

𝑓𝑘(𝑧) =
𝜆

𝜋𝑖(𝜆𝑘 + 𝜆)

𝑛∑
𝑚=1

∫
𝐿𝑚

𝑓(𝑡)

𝑡− 𝑧
𝑑𝑡

is analytic in 𝐷𝑘 and Hölder continuous in its closure.
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The integral equations (4.6) can be continued to 𝐿𝑘 as follows:

𝜑𝑘(𝑧) =

𝑛∑
𝑚=1

𝜌𝑚

[
𝜑𝑘(𝑧)

2
+

1

2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡

]
+ 𝑓𝑘(𝑧), 𝑧 ∈ 𝐿𝑘 (𝑘 = 1, 2, . . . , 𝑛).

(4.7)
One can consider equations (4.6), (4.7) as an equation with linear bounded oper-
ator in the space ℋ(𝐷+).

Equations (4.6), (4.7) correspond to the generalized method of Schwarz.
Write, for instance, equation (4.6) in the form

𝜑𝑘(𝑧)− 𝜌𝑘
2𝜋𝑖

∫
𝐿𝑘

𝜑𝑘(𝑡)

𝑡− 𝑧
𝑑𝑡 =

∑
𝑚 ∕=𝑘

𝜌𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡+𝑓𝑘(𝑧), 𝑧 ∈ 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝑛).

(4.8)
At the zeroth approximation we arrive at the problem for the single inclusion 𝐷𝑘

(𝑘 = 1, 2, . . . , 𝑛),

𝜑𝑘(𝑧)− 𝜌𝑘
2𝜋𝑖

∫
𝐿𝑘

𝜑𝑘(𝑡)

𝑡− 𝑧
𝑑𝑡 = 𝑓𝑘(𝑧), 𝑧 ∈ 𝐷𝑘. (4.9)

Let problem (4.9) be solved. Further, its solution is substituted into the right-
hand part of (4.8). Then we arrive at the first-order problem etc. Therefore, the
generalized method of Schwarz can be considered as a method of implicit iterations
applied to integral equations (4.6), (4.7).

In the case of circular domains the integral term from the left-hand part of
(4.8) becomes a constant:

𝜌𝑘
2𝜋𝑖

∫
𝐿𝑘

𝜑𝑘(𝑡)

𝑡− 𝑧
𝑑𝑡 = 𝜌𝑘𝜑𝑘(0),

since 𝜑𝑘(𝑡) is analytically continued out of the circle 𝐿𝑘.

Remark 4.2. An integral equation method was proposed in Chapter 4 of [Mityu-
shev and Rogosin (2000)] for the Dirichlet problem. A convergent direct iteration
method for these equations coincides with the modified method of Schwarz. How-
ever, the integral terms of this method contain Green’s functions of the domains𝐷𝑘

which should be constructed. One can obtain similar equations by application of
the operator 𝒮−1𝑘 to both sides of (4.8), where the operator 𝒮𝑘 solves equation (4.9).
4.2. Method of successive approximations

We use the following general result.

Theorem 4.3 ([Krasnosel’skii et al. (1969)]). Let 𝐴 be a linear bounded operator
in a Banach space ℬ. If for any element 𝑓 ∈ ℬ and for any complex number 𝜈
satisfying the inequality ∣𝜈∣ ≤ 1 equation

𝑥 = 𝜈𝐴𝑥+ 𝑓 (4.10)

has a unique solution, then the unique solution of the equation

𝑥 = 𝐴𝑥+ 𝑓 (4.11)
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can be found by the method of successive approximations. The approximations
converge in ℬ to the solution

𝑥 =

∞∑
𝑘=0

𝐴𝑘𝑓. (4.12)

A weaker form of this theorem, valid for compact operators, is used in the
proof of Lemma 2.2. Theorem 4.3 can be applied to equations (4.6), (4.7).

Theorem 4.4. Let ∣𝜌𝑘∣ < 1. Then the system of equations (4.6), (4.7) has a unique
solution. This solution can be found by the method of successive approximations
convergent in the space ℋ(𝐷+).

Proof. Let ∣𝜈∣ ≤ 1. Consider equations in ℋ(𝐷+),

𝜑𝑘(𝑧) = 𝜈
𝑛∑

𝑚=1

𝜌𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡+ 𝑓𝑘(𝑧), 𝑧 ∈ 𝐷𝑘 (𝑘 = 1, 2, . . . , 𝑛). (4.13)

Equations on 𝐿𝑘 look like (4.7).
Let 𝜑𝑘(𝑧) be a solution of (4.13). Introduce the function

𝜑(𝑡) = 𝜑𝑘(𝑡)− 𝜈𝜌𝑘𝜑𝑘(𝑡)− 𝑓𝑘(𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1, 2, . . . , 𝑛). (4.14)

Calculate the integral

𝐼 =
1

2𝜋𝑖

∫
𝐿

𝜑(𝑡)

𝑡− 𝑧
𝑑𝑡 =

𝑛∑
𝑚=1

1

2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)− 𝜈𝜌𝑚𝜑𝑚(𝑡)− 𝑓𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡, 𝑧 ∈ 𝐷𝑘.

(4.15)
Taking into account (4.13), formulae

1

2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚(𝑡)

𝑡− 𝑧
𝑑𝑡 = 0, 𝑚 ∕= 𝑘,

1

2𝜋𝑖

∫
𝐿𝑘

𝜑𝑘(𝑡)

𝑡− 𝑧
𝑑𝑡 = 𝜑𝑘(𝑧), 𝑧 ∈ 𝐷𝑘 (4.16)

and analogous formulae for 𝑓𝑚(𝑧), we obtain 𝐼 = 0. The latter equality implies that
𝜑(𝑡) is analytically continued into 𝐷. In accordance with Corollary to Theorem
1.1, the ℝ-linear problem (4.14) has a unique solution. This unique solution is the
unique solution of the system (4.13).

Theorem 4.3 yields convergence of the method of successive approximations
applied to the system (4.13).

This completes the proof of the theorem. □

5. Conclusion

Though the method of integral equations discussed in Section 4.2 is rather a numer-
ical method, application of the residua for special shapes of the inclusions trans-
forms the integral terms to compositions of the functions. Therefore, at least for
the boundaries expressed by algebraic functions, one should arrive at the functional
equations. An example concerning elliptical inclusions is presented in [Mityushev
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(2009)]. This approach can be considered as a generalization of Grave’s method
reviewed in [Apel’tsin (2000)] to multiply connected domains.

In order to understand the place of the convergence results obtained in this
paper, we return to Section 1.2. It was established in the previous works that for
∣𝑏(𝑡)∣ < ∣𝑎(𝑡)∣ the problem has a unique solution. If the stronger condition (1.11)
is fulfilled (always 𝑆𝑝 ≥ 1), this unique solution can be constructed by the ab-
solutely convergent method of successive approximations. Absolute convergence
implies geometrical restrictions on the geometry which can be roughly presented
as follows. Each inclusion 𝐷𝑘 is sufficiently far away from other inclusions 𝐷𝑚

(𝑚 ∕= 𝑘). Only after the results presented in Section 4 of the present paper does
the situation become clear and simplified. In the case (1.10) the method of suc-
cessive approximations can be also applied, but absolute convergence is replaced
by uniform convergence. The same story with convergence repeats for other meth-
ods and problems. In all previous works beginning from Poincaré’s investigations,
i.e., the Schwarz operator, the Poincaré series, the Riemann–Hilbert problem, the
modified alternating Schwarz method etc., all the relevant problems were studied
by absolute convergent methods under geometrical restrictions. The main result of
the present paper is based on the modification of these methods and study of the
problems by uniform convergence methods. This replacement of absolute conver-
gence by uniform convergence abandons all previous geometrical restrictions and
yields solution to the problems and convergence of the methods for an arbitrary
location of non-overlapping inclusions.

This complicated situation concerning absolute and uniform convergences
can be illustrated by a simple example. Let the almost uniformly convergent series∑∞

𝑛=1(𝑛− 𝑧)−2 (𝑧 /∈ ℕ) be integrated term by term,∫ 𝑧

𝑤

∞∑
𝑛=1

1

(𝑛− 𝑡)2
𝑑𝑡 =

∞∑
𝑛=1

(
1

𝑛− 𝑧
− 1

𝑛− 𝑤

)
.

One can see that this series can be convergent if and only if 𝑤 ∕=∞. This unlucky
infinity is sometimes taken as a fixed point in similar investigations by specialists
in complex analysis (see for instance Michlin’s study [Mikhlin (1964)] devoted to
convergence of Schwarz’s method).

For engineers it is interesting to get exact and approximate formulae for
the effective conductivity tensor. One can find a description of such formulae
based on the solution to the problems discussed in the present paper in the survey
[Mityushev et al. (2008)].
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1. Algebras associated with the Laplace equation

1.1. Spatial stationary potential solenoid vector field

Consider a spatial stationary vector field defined by means of the vector-function
V ≡ V(𝑥, 𝑦, 𝑧) of the Cartesian coordinates 𝑥, 𝑦, 𝑧. The vector V is defined by
means of three real scalar functions 𝑣1 := 𝑣1(𝑥, 𝑦, 𝑧), 𝑣2 := 𝑣2(𝑥, 𝑦, 𝑧), 𝑣3 :=
𝑣3(𝑥, 𝑦, 𝑧) which give its coordinates in the point (𝑥, 𝑦, 𝑧), videlicet:V = (𝑣1, 𝑣2, 𝑣3).

Defining a potential solenoid field in a simply connected domain 𝑄 of the
three-dimensional real space ℝ3, the vector-functionV satisfies the system of equa-
tions

divV = 0 , rotV = 0 , (1.1)

that we rewrite also in expanded form:

∂𝑣1
∂𝑥

+
∂𝑣2
∂𝑦

+
∂𝑣3
∂𝑧

= 0 ,

∂𝑣3
∂𝑦

− ∂𝑣2
∂𝑧

= 0 ,

∂𝑣1
∂𝑧

− ∂𝑣3
∂𝑥

= 0 ,

∂𝑣2
∂𝑥

− ∂𝑣1
∂𝑦

= 0 .

(1.2)

Then there exists a scalar potential function 𝑢(𝑥, 𝑦, 𝑧) such that

V = grad𝑢 :=

(
∂𝑢

∂𝑥
,
∂𝑢

∂𝑦
,
∂𝑢

∂𝑧

)
,

and 𝑢 satisfies the three-dimensional Laplace equation

Δ3𝑢(𝑥, 𝑦, 𝑧) :=

(
∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2

)
𝑢(𝑥, 𝑦, 𝑧) = 0 . (1.3)

Doubly continuously differentiable functions satisfying equation (1.3) are
called harmonic functions, and solutions of the system (1.1) are called harmonic
vectors.

Every harmonic function 𝑢(𝑥, 𝑦, 𝑧) generates a harmonic vector V = grad𝑢 ,
and the coordinates of vector V = (𝑣1, 𝑣2, 𝑣3) are solutions of (1.3).

1.2. A relation between the two-dimensional Laplace equation
and the algebra of complex numbers

An important achievement of mathematics is the description of plane potential
fields by means of analytic functions of a complex variable.

A potential 𝑢(𝑥, 𝑦) and a flow function 𝑣(𝑥, 𝑦) of plane stationary potential
solenoid field satisfy the Cauchy–Riemann conditions

∂𝑢(𝑥, 𝑦)

∂𝑥
=

∂𝑣(𝑥, 𝑦)

∂𝑦
,

∂𝑢(𝑥, 𝑦)

∂𝑦
= −∂𝑣(𝑥, 𝑦)

∂𝑥
,
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and they form the complex potential 𝐹 (𝑥+𝑖𝑦) = 𝑢(𝑥, 𝑦)+𝑖𝑣(𝑥, 𝑦), being an analytic
function of complex variable 𝑥 + 𝑖𝑦. In turn, every analytic function 𝐹 (𝑥 + 𝑖𝑦)
satisfies the two-dimensional Laplace equation

Δ2𝐹 :=
∂2𝐹

∂𝑥2
+

∂2𝐹

∂𝑦2
≡ 𝐹 ′′(𝑥 + 𝑖𝑦) (12 + 𝑖2) = 0

owing to the equality 12 + 𝑖2 = 0 for the unit 1 and the imaginary unit 𝑖 of the
algebra of complex numbers.

1.3. Attempts to find an algebra associated with the three-dimensional Laplace
equation

Effectiveness of analytic function methods in the complex plane for researching
plane potential fields has inspired mathematicians to develop analogous methods
for spatial fields.

Apparently, W. Hamilton (1843) made the first attempts to construct an
algebra associated with the three-dimensional Laplace equation (1.3) in the sense
that components of hypercomplex functions satisfy (1.3). However, Hamilton’s
quaternions form a noncommutative algebra, and after constructing the quaternion
algebra he made no attempt to construct any other algebra (see [1]).

1.4. Harmonic triads in commutative algebras. Harmonic algebras

Let 𝔸 be a commutative associative Banach algebra of a rank 𝑛 (3 ≤ 𝑛 ≤ ∞) over
either the field of real numbers ℝ or the field of complex numbers ℂ. Let {𝑒1, 𝑒2, 𝑒3}
be a part of the basis of 𝔸 and 𝐸3 := {𝜁 := 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 : 𝑥, 𝑦, 𝑧 ∈ ℝ} be the
linear envelope generated by the vectors 𝑒1, 𝑒2, 𝑒3.

A function Φ : 𝑄𝜁 → 𝔸 is analytic in a domain 𝑄𝜁 ⊂ 𝐸3 if in a certain
neighborhood of every point 𝜁0 ∈ 𝑄𝜁 it can be represented in the form of the sum
of convergent power series with coefficients belonging to the algebra 𝔸:

Φ(𝜁) =
∞∑
𝑘=0

𝑐𝑘 (𝜁 − 𝜁0)
𝑘, 𝑐𝑘 ∈ 𝔸. (1.4)

It is obvious that if the basic elements 𝑒1, 𝑒2, 𝑒3 satisfy the condition

𝑒21 + 𝑒22 + 𝑒23 = 0 , (1.5)

then every analytic function Φ : 𝑄𝜁 → 𝔸 satisfies equation (1.3), because

Δ3Φ(𝜁) ≡ Φ′′(𝜁) (𝑒21 + 𝑒22 + 𝑒23) = 0 , 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 , (1.6)

where Φ′′(𝜁) can be obtained by a formal double differentiation of the series (1.4),

i.e., Φ′′(𝜁) =
∞∑
𝑘=0

𝑘(𝑘 − 1) 𝑐𝑘 (𝜁 − 𝜁0)
𝑘−2.

We say that an algebra 𝔸 is harmonic (see [2–4]) if in 𝔸 there exists a triad
of linearly independent vectors {𝑒1, 𝑒2, 𝑒3} satisfying the equality (1.5) provided
that 𝑒2𝑘 ∕= 0 for 𝑘 = 1, 2, 3. We say also that such a triad {𝑒1, 𝑒2, 𝑒3} is harmonic.
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P.W. Ketchum [2] considered the C. Segre algebra of quaternions [5] in its
relations with the three-dimensional Laplace equation. Indeed, in the Segre alge-
bra of quaternions there is the unit 1, and the multiplication table for the basis
{1, 𝑖, 𝑗, 𝑘} is of the following form:

𝑖2 = 𝑗2 = −1, 𝑘2 = 1, 𝑖 𝑗 = 𝑘, 𝑖 𝑘 = −𝑗, 𝑗 𝑘 = −𝑖.
Therefore, there are harmonic triads, in particular: 𝑒1 =

√
2, 𝑒2 = 𝑖, 𝑒3 = 𝑗.

K.S. Kunz [6] developed a method for a formal construction of solutions (1.3)
by using power series in any harmonic algebra over the field ℂ.

1.5. Differentiability in the sense of Gateaux. Monogenic functions

I. P. Mel’nichenko [7] noticed that doubly differentiable, in the sense of Gateaux,
functions form the largest class of functions Φ satisfying identically the equality
(1.6), where Φ′′ is the Gateaux second derivative of the function Φ.

We say that a continuous function Φ : Ω𝜁 → 𝔸 is monogenic in a domain
Ω𝜁 ⊂ 𝐸3 if Φ is differentiable in the sense of Gateaux in every point of Ω𝜁 , i.e., if
for every 𝜁 ∈ Ω𝜁 there exists an element Φ′(𝜁) ∈ 𝔸 such that

lim
𝜀→0+0

(Φ(𝜁 + 𝜀ℎ)− Φ(𝜁)) 𝜀−1 = ℎΦ′(𝜁) ∀ℎ ∈ 𝐸3. (1.7)

Thus, if the basic elements 𝑒1, 𝑒2, 𝑒3 satisfy the condition (1.5), then every
doubly differentiable, in the sense of Gateaux, function Φ : Ω𝜁 → 𝔸 satisfies the
equality (1.6) in the domain Ω𝜁 . In turn, if there exists a doubly differentiable, in
the sense of Gateaux, function Φ : Ω𝜁 → 𝔸 satisfying the equality (1.6) and the
inequality Φ′′(𝜁) ∕= 0 at least at one point 𝜁 := 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ Ω𝜁 , then in this
case the condition (1.5) is satisfied.

I.P. Mel’nichenko suggested an algebraic-analytic approach to equations of
mathematical physics, which means to find a commutative Banach algebra such
that differentiable, in the sense of Gateaux, functions with values in this algebra
have components satisfying the given equation with partial derivatives (see [4,
7]). Inasmuch as monogenic functions taking values in a commutative Banach
algebra form a functional algebra, note that a relation between these functions and
solutions of given equations with partial derivatives is important for constructing
mentioned solutions.

1.6. Three-dimensional harmonic algebras

The problem on finding a three-dimensional harmonic algebra 𝔸 with the unit 1
was completely solved by I.P. Mel’nichenko [3, 4, 7]. In the paper [7] I.P. Mel’nichen-
ko established that there does not exist a harmonic algebra of third rank with a
unit over the field ℝ, but he constructed a three-dimensional harmonic algebra
over the field ℂ.
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Theorem 1.1 (I. Mel’nichenko, [7]). The commutative associative algebra 𝔸 is har-
monic, if the multiplication table for the basis {𝑒1, 𝑒2, 𝑒3} is of the following form:

𝑒𝑘 𝑒1 = 𝑒𝑘, 𝑘 = 1, 2, 3;

𝑒2 𝑒2 = −1

2
𝑒1 − 𝑖

2
(sin𝜔) 𝑒2 +

𝑖

2
(cos𝜔) 𝑒3 ,

𝑒2 𝑒3 =
𝑖

2
(cos𝜔) 𝑒2 +

𝑖

2
(sin𝜔) 𝑒3 ,

𝑒3 𝑒3 = −1

2
𝑒1 +

𝑖

2
(sin𝜔) 𝑒2 − 𝑖

2
(cos𝜔) 𝑒3 ,

(1.8)

where 𝑖 is the imaginary complex unit and 𝜔 ∈ ℂ.

Let {𝑒1, 𝑒2, 𝑒3} be a harmonic basis in the algebra 𝔸 with the multiplication
table (1.8). Associate with a set 𝑄 ⊂ ℝ3 the set 𝑄𝜁 := {𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 :
(𝑥, 𝑦, 𝑧) ∈ 𝑄} in 𝐸3.

Theorem 1.2 (I. Mel’nichenko, [7]). Let 𝔸 be a harmonic algebra with the multi-
plication table (1.8) for a basis {𝑒1, 𝑒2, 𝑒3}. If a function Φ : Ω𝜁 → 𝔸 is monogenic
in a domain Ω𝜁 ⊂ 𝐸3, then the components 𝑈𝑘 : Ω → ℝ, 𝑉𝑘 : Ω → ℝ, 𝑘 = 1, 2, 3,
of decomposition

Φ(𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3) =

3∑
𝑘=1

𝑈𝑘(𝑥, 𝑦, 𝑧) 𝑒𝑘 + 𝑖

3∑
𝑘=1

𝑉𝑘(𝑥, 𝑦, 𝑧) 𝑒𝑘, (𝑥, 𝑦, 𝑧) ∈ Ω ,

generate harmonic vectors V1 := (𝑈1,− 1
2 𝑈2,− 1

2 𝑈3), V2 := (𝑉1,− 1
2 𝑉2,− 1

2 𝑉3).

I. Mel’nichenko [3, 4] found all three-dimensional harmonic algebras and de-
veloped a method for finding all harmonic bases in these algebras.

Note that there exist only four commutative associative algebras of third
rank with unit 1 over the field ℂ. If one chooses nilpotent and idempotent elements
generating these algebras, then the multiplication tables will be of the most simple
form.

Let 𝔸1 be a semisimple algebra with idempotent elements in the basis
{ℐ1, ℐ2, ℐ3} and the multiplication table

ℐ21 = 𝐼1, ℐ22 = ℐ2, ℐ23 = ℐ3, ℐ1ℐ2 = ℐ1ℐ3 = ℐ2ℐ3 = 0.

Here 1 = ℐ1 + ℐ2 + ℐ3.
Other algebras contain radicals.

Let 𝔸2 be an algebra with basis {ℐ1, ℐ2, 𝜌} and multiplication table

ℐ21 = ℐ1, ℐ22 = ℐ2, ℐ1ℐ2 = 0, 𝜌2 = 0, ℐ1𝜌 = 0, ℐ2𝜌 = 𝜌.

Here 1 = ℐ1 + ℐ2, and 𝜌 is a radical of the algebra.

Algebras 𝔸3 and 𝔸4 with the basis {1, 𝜌1, 𝜌2} have no ideals generated by
idempotents and 𝜌1 and 𝜌2 are radicals of these algebras.
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The multiplication table in the algebra 𝔸3 is of the form

𝜌21 = 𝜌2, 𝜌22 = 0, 𝜌1𝜌2 = 0 .

The multiplication table in the algebra 𝔸4 is of the form

𝜌21 = 𝜌22 = 𝜌1𝜌2 = 0 .

Theorem 1.3 (I. Mel’nichenko, [3]). The algebra 𝔸4 is not harmonic. The algebras
𝔸1, 𝔸2, 𝔸3 are harmonic.

All harmonic bases in the algebras 𝔸1, 𝔸2, 𝔸3 are described (see [4]). Note
that in the semisimple algebra 𝔸1, in particular, there exists the family of harmonic
bases constructed in Theorem 1.1.

In the algebra 𝔸2 there exists the following family of harmonic bases:

𝑒1 = 1,

𝑒2 = 𝑖(sin𝜔) ℐ1 + 𝑖(cos𝜔) ℐ2 − (sin𝜔) 𝜌,

𝑒3 = 𝑖(cos𝜔) ℐ1 − 𝑖(sin𝜔) ℐ2 − (cos𝜔) 𝜌,

and in the algebra 𝔸3 there exists the following family of harmonic bases:

𝑒1 = 1,

𝑒2 = 𝑖 sin𝜔 + (cos𝜔) 𝜌1 + 𝑖
(
cos
(𝜋
6
− 𝜔

))
𝜌2,

𝑒3 = 𝑖 cos𝜔 − (sin𝜔) 𝜌1 + 𝑖
(
sin
(𝜋
6
− 𝜔

))
𝜌2,

where 𝜔 ∈ ℂ (see [3, 4]).

2. Algebraic-analytic properties of monogenic functions
in the algebra 𝔸3

2.1. Harmonic bases in the algebra 𝔸3

All harmonic bases in the algebra 𝔸3 are described in Theorem 1.6 [4], videlicet,
the following statement is true:

Theorem 2.1. A basis {𝑒1, 𝑒2, 𝑒3} is harmonic if decompositions of its elements
with respect to the basis {1, 𝜌1, 𝜌2} are of the form

𝑒1 = 1,

𝑒2 = 𝑛1 + 𝑛2𝜌1 + 𝑛3𝜌2,

𝑒3 = 𝑚1 +𝑚2𝜌1 +𝑚3𝜌2,

(2.1)

where 𝑛𝑘 and 𝑚𝑘 for 𝑘 = 1, 2, 3 are complex numbers satisfying the system of
equations

1 + 𝑛21 +𝑚2
1 = 0,

𝑛1𝑛2 +𝑚1𝑚2 = 0,

𝑥𝑛22 +𝑚2
2 + 2(𝑛1𝑛3 +𝑚1𝑚3) = 0

(2.2)
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and the inequality 𝑛2𝑚3−𝑛3𝑚2 ∕= 0, and moreover, at least one of the numbers in
each of the pairs (𝑛1, 𝑛2) and (𝑚1,𝑚2) is not equal to zero. Any harmonic basis
in 𝔸3 can be obtained as a result of multiplication of elements of harmonic basis
(2.1) by an invertible element of the algebra 𝔸3.

For example, if 𝑛1 = 𝑖, 𝑛2 = 𝑖/2, 𝑛3 = 𝑚1 = 0, 𝑚2 = −1, 𝑚3 = −√3 𝑖/2,
then we have a harmonic basis {𝑒01, 𝑒02, 𝑒03} with the following decomposition with
respect to the basis {1, 𝜌1, 𝜌2}:

𝑒01 = 1, 𝑒02 = 𝑖+
𝑖

2
𝜌2, 𝑒03 = −𝜌1 −

√
3

2
𝑖𝜌2. (2.3)

The algebra 𝔸3 has the unique maximal ideal ℐ := {𝜆1𝜌1+𝜆2𝜌2 : 𝜆1, 𝜆2 ∈ ℂ}
which is also the radical of 𝔸3.

Consider the linear functional 𝑓 : 𝔸3 → ℂ such that the maximal ideal ℐ is
its kernel and 𝑓(1) = 1. It is well known [8, p. 135] that 𝑓 is also a multiplicative
functional, i.e., the equality 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏) is fulfilled for all 𝑎, 𝑏 ∈ 𝔸3.

2.2. Cauchy–Riemann conditions for functions taking values in the algebra 𝔸3

Let {𝑒1, 𝑒2, 𝑒3} be a harmonic basis of the form (2.1).

Let Ω be a domain in ℝ3 and 𝜁 = 𝑥+𝑦𝑒2+𝑧𝑒3, where (𝑥, 𝑦, 𝑧) ∈ Ω. Consider
the decomposition

Φ(𝜁) =

3∑
𝑘=1

𝑈𝑘(𝑥, 𝑦, 𝑧) 𝑒𝑘 , (2.4)

of a function Φ : Ω𝜁 −→ 𝔸3 with respect to the basis {𝑒1, 𝑒2, 𝑒3}, where the
functions 𝑈𝑘 : Ω −→ ℂ are differentiable in Ω, i.e.,

𝑈𝑘(𝑥+Δ𝑥, 𝑦 +Δ𝑦, 𝑧 +Δ𝑧)− 𝑈𝑘(𝑥, 𝑦, 𝑧)

=
∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥
Δ𝑥+

∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑦
Δ𝑦 +

∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑧
Δ𝑧

+ 𝑜
(√

(Δ𝑥)2 + (Δ𝑦)2 + (Δ𝑧)2
)
, (Δ𝑥)2 + (Δ𝑦)2 + (Δ𝑧)2 → 0 .

It follows from Theorem 1.3 [4] that the function Φ is monogenic in the domain
Ω𝜁 if and only if the following Cauchy–Riemann conditions are satisfied in Ω𝜁 :

∂Φ

∂𝑦
=

∂Φ

∂𝑥
𝑒2,

∂Φ

∂𝑧
=

∂Φ

∂𝑥
𝑒3. (2.5)

2.3. A constructive description of monogenic functions taking values
in the algebra 𝔸3

Below in Section 2, all stated results are obtained jointly with V.S. Shpakivskyi
(see also [9]).

Let {𝑒1, 𝑒2, 𝑒3} be a harmonic basis of the form (2.1) and 𝜁 = 𝑥+ 𝑦𝑒2 + 𝑧𝑒3,
where 𝑥, 𝑦, 𝑧 ∈ ℝ.
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It follows from the equality

(𝑡− 𝜁)−1 =
1

𝑡− 𝑥− 𝑛1𝑦 −𝑚1𝑧
+

𝑛2𝑦 +𝑚2𝑧

(𝑡− 𝑥− 𝑛1𝑦 −𝑚1𝑧)2
𝜌1

+

(
𝑛3𝑦 +𝑚3𝑧

(𝑡− 𝑥− 𝑛1𝑦 −𝑚1𝑧)2
+

(𝑛2𝑦 +𝑚2𝑧)
2

(𝑡− 𝑥− 𝑛1𝑦 −𝑚1𝑧)3

)
𝜌2

∀ 𝑡 ∈ ℂ : 𝑡 ∕= 𝑥+ 𝑛1𝑦 +𝑚1𝑧 (2.6)

(see [4, p. 30]) that the element 𝜁 = 𝑥 + 𝑦𝑒2 + 𝑧𝑒3 ∈ 𝐸3 is noninvertible in 𝔸3 if
and only if the point (𝑥, 𝑦, 𝑧) belongs to the following straight line in ℝ3:

𝐿 :

{
𝑥+ 𝑦ℜ𝑛1 + 𝑧ℜ𝑚1 = 0,

𝑦ℑ𝑛1 + 𝑧ℑ𝑚1 = 0 .

We say that the domain Ω ⊂ ℝ3 is convex in the direction of the straight line
𝐿 if Ω contains every segment parallel to 𝐿 and connecting two points (𝑥1, 𝑦1, 𝑧1),
(𝑥2, 𝑦2, 𝑧2) ∈ Ω.

To obtain a constructive description of monogenic functions given in the
domain Ω𝜁 and taking values in the algebra 𝔸3, consider an auxiliary statement.

Lemma 2.2. Let a domain Ω ⊂ ℝ3 be convex in the direction of the straight line
𝐿 and Φ : Ω𝜁 → 𝔸3 be a monogenic function in the domain Ω𝜁 . If 𝜁1, 𝜁2 ∈ Ω𝜁 and
𝜁2 − 𝜁1 ∈ 𝐿𝜁 , then

Φ(𝜁1)− Φ(𝜁2) ∈ ℐ. (2.7)

Proof. Let the segment connecting the points (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) ∈ Ω be par-
allel to the straight line 𝐿.

Let us construct in Ω two surfaces𝑄 and Σ satisfying the following conditions:

∙ 𝑄 and Σ have the same edge;
∙ the surface 𝑄 contains the point (𝑥1, 𝑦1, 𝑧1) and the surface Σ contains the
point (𝑥2, 𝑦2, 𝑧2);

∙ restrictions of the functional 𝑓 onto the sets 𝑄𝜁 and Σ𝜁 are one-to-one map-
pings of these sets onto the same domain 𝐺 of the complex plane;

∙ for every 𝜁0 ∈ 𝑄𝜁 (and 𝜁0 ∈ Σ𝜁) the equality

lim
𝜀→0+0

(Φ(𝜁0 + 𝜀(𝜁 − 𝜁0))− Φ(𝜁0)) 𝜀
−1 = Φ′(𝜁0)(𝜁 − 𝜁0) (2.8)

is fulfilled for all 𝜁 ∈ 𝑄𝜁 for which 𝜁0 + 𝜀(𝜁 − 𝜁0) ∈ 𝑄𝜁 for all 𝜀 ∈ (0, 1) (or
for all 𝜁 ∈ Σ𝜁 for which 𝜁0 + 𝜀(𝜁 − 𝜁0) ∈ Σ𝜁 for all 𝜀 ∈ (0, 1), respectively).

As the surface 𝑄, we can take an equilateral triangle having the center
(𝑥1, 𝑦1, 𝑧1) and apexes 𝐴1, 𝐴2, 𝐴3, and, in addition, the plane of this triangle is
perpendicular to the straight line 𝐿.

To construct the surface Σ, first, consider a triangle with the center (𝑥2, 𝑦2, 𝑧2)
and apexes 𝐴′1, 𝐴′2, 𝐴′3 such that the segments 𝐴′1𝐴′2, 𝐴′2𝐴′3, 𝐴′1𝐴′3 are parallel to
the segments 𝐴1𝐴2, 𝐴2𝐴3, 𝐴1𝐴3, respectively, and, in addition, the length of
𝐴′1𝐴

′
2 is less than the length of 𝐴1𝐴2. Inasmuch as the domain Ω is convex in the

direction of the straight line 𝐿, the prism with vertexes 𝐴′1, 𝐴
′
2, 𝐴

′
3, 𝐴

′′
1 , 𝐴

′′
2 , 𝐴

′′
3 is
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completely contained in Ω, where the points 𝐴′′1 , 𝐴
′′
2 , 𝐴

′′
3 are located in the plane

of triangle 𝐴1𝐴2𝐴3 and the edges 𝐴′𝑚𝐴′′𝑚 are parallel to 𝐿 for 𝑚 = 1, 3.

Further, set a triangle with apexes 𝐵1, 𝐵2, 𝐵3 such that the point 𝐵𝑚 is
located on the segment 𝐴′𝑚𝐴′′𝑚 for 𝑚 = 1, 3 and the truncated pyramid with
vertexes 𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3 and lateral edges 𝐴𝑚𝐵𝑚, 𝑚 = 1, 3, is completely
contained in the domain Ω.

At last, in the plane of triangle𝐴′1𝐴′2𝐴′3 set a triangle 𝑇 with apexes 𝐶1, 𝐶2, 𝐶3

such that the segments 𝐶1𝐶2, 𝐶2𝐶3, 𝐶1𝐶3 are parallel to the segments 𝐴′1𝐴
′
2,

𝐴′2𝐴
′
3, 𝐴

′
1𝐴

′
3, respectively, and, in addition, the length of 𝐶1𝐶2 is less than the

length of 𝐴′1𝐴
′
2. It is evident that the truncated pyramid with vertexes 𝐵1, 𝐵2,

𝐵3, 𝐶1, 𝐶2, 𝐶3 and lateral edges 𝐵𝑚𝐶𝑚, 𝑚 = 1, 3, is completely contained in the
domain Ω.

Now, as the surface Σ, denote the surface formed by the triangle 𝑇 and the
lateral surfaces of mentioned truncated pyramids

𝐴1𝐴2𝐴3𝐵1𝐵2𝐵3 and 𝐵1𝐵2𝐵3𝐶1𝐶2𝐶3.

For each 𝜉 ∈ 𝐺 define two complex-valued functions 𝐻1 and 𝐻2 so that

𝐻1(𝜉) := 𝑓(Φ(𝜁)), where 𝜉 = 𝑓(𝜁) and 𝜁 ∈ 𝑄𝜁 ,

𝐻2(𝜉) := 𝑓(Φ(𝜁)), where 𝜉 = 𝑓(𝜁) and 𝜁 ∈ Σ𝜁 .

Inasmuch as 𝑓 is a linear continuous multiplicative functional, from the equal-
ity (2.8) it follows that

lim
𝜀→0+0

(𝑓(Φ(𝜁0 + 𝜀(𝜁 − 𝜁0))) − 𝑓(Φ(𝜉))) 𝜀−1 = 𝑓(Φ′(𝜁0))(𝑓(𝜁) − 𝑓(𝜁0)).

Thus, there exist all directional derivatives of the functions 𝐻1, 𝐻2 in the point
𝑓(𝜁0) ∈ 𝐺, and, moreover, these derivatives are equal for each of the functions
𝐻1, 𝐻2. Therefore, by Theorem 21 in [10], the functions 𝐻1, 𝐻2 are analytic in the
domain 𝐺, i.e., they are holomorphic in the case where 𝜉 = 𝜏 + 𝑖𝜂, and they are
antiholomorphic in the case where 𝜉 = 𝜏 − 𝑖𝜂, 𝜏, 𝜂 ∈ ℝ.

Inasmuch as 𝐻1(𝜉) ≡ 𝐻2(𝜉) on the boundary of domain 𝐺, this identity is
fulfilled everywhere in 𝐺. Therefore, the equalities

𝑓(Φ(𝜁2)− Φ(𝜁1)) = 𝑓(Φ(𝜁2))− 𝑓(Φ(𝜁1)) = 0,

are fulfilled for 𝜁1 := 𝑥1+𝑦1𝑒2+𝑧1𝑒3 and 𝜁2 := 𝑥2+𝑦2𝑒2+𝑧2𝑒3. Thus, Φ(𝜁2)−Φ(𝜁1)
belongs to the kernel ℐ of functional 𝑓 . The lemma is proved. □

Let 𝐷 := 𝑓(Ω𝜁) and 𝐴 be the linear operator which assigns the function
𝐹 : 𝐷 → ℂ to every monogenic function Φ : Ω𝜁 → 𝔸3 by the formula 𝐹 (𝜉) :=
𝑓(Φ(𝜁)), where 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 and 𝜉 := 𝑓(𝜁) = 𝑥 + 𝑛1𝑦 + 𝑚1𝑧. It follows
from Lemma 2.2 that the value 𝐹 (𝜉) does not depend on a choice of a point 𝜁, for
which 𝑓(𝜁) = 𝜉.
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Theorem 2.3. If a domain Ω ⊂ ℝ3 is convex in the direction of the straight line
𝐿, then every monogenic function Φ : Ω𝜁 → 𝔸3 can be expressed in the form

Φ(𝜁) =
1

2𝜋𝑖

∫
Γ𝜁

(𝐴Φ)(𝑡)(𝑡 − 𝜁)−1𝑑𝑡+Φ0(𝜁) ∀ 𝜁 ∈ Ω𝜁 , (2.9)

where Γ𝜁 is an arbitrary closed Jordan rectifiable curve in 𝐷 that is homotopic to
the point 𝑓(𝜁) and embraces this point, and Φ0 : Ω𝜁 → ℐ is a monogenic function
taking values in the radical ℐ.
Proof. It is easy to see that the function Φ0 from (2.9) belongs to the kernel of
the operator 𝐴, i.e., Φ0(𝜁) ∈ ℐ for all 𝜁 ∈ Ω𝜁 . The theorem is proved. □

Note that the complex number 𝜉 = 𝑓(𝜁) is the spectrum of 𝜁 ∈ 𝔸3, and the
integral in the equality (2.9) is the principal extension (see [8, p. 165]) of analytic
function 𝐹 (𝜉) = (𝐴Φ)(𝜉) of the complex variable 𝜉 into the domain Ω𝜁 .

It follows from Theorem 2.3 that the algebra of monogenic in Ω𝜁 functions is
decomposed into the direct sum of the algebra of principal extensions of analytic
functions of the complex variable and the algebra of monogenic in Ω𝜁 functions
taking values in the radical ℐ.

In Theorem 1.7 in [4] the principal extension of analytic function 𝐹 : 𝐷 → ℂ
into the domain Π𝜁 := {𝜁 ∈ 𝐸3 : 𝑓(𝜁) ∈ 𝐷} was explicitly constructed in the form

1

2𝜋𝑖

∫
Γ𝜁

𝐹 (𝑡)(𝑡− 𝜁)−1𝑑𝑡 = 𝐹 (𝑥+ 𝑛1𝑦+𝑚1𝑧) + (𝑛2𝑦+𝑚2𝑧)𝐹
′(𝑥+ 𝑛1𝑦+𝑚1𝑧)𝜌1

+

(
(𝑛3𝑦 +𝑚3𝑧)𝐹

′(𝑥+ 𝑛1𝑦 +𝑚1𝑧) +
(𝑛2𝑦 +𝑚2𝑧)

2

2
𝐹 ′′(𝑥 + 𝑛1𝑦 +𝑚1𝑧)

)
𝜌2

∀𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ Π𝜁 . (2.10)

It is evident that the domain Π ⊂ ℝ3 congruent to Π𝜁 is an infinite cylinder, and
its generatrix is parallel to 𝐿.

In the following theorem we describe all monogenic functions given in the
domain Ω𝜁 and taking values in the radical ℐ.
Theorem 2.4. If a domain Ω ⊂ ℝ3 is convex in the direction of the straight line
𝐿, then every monogenic function Φ0 : Ω𝜁 → ℐ can be expressed in the form

Φ0(𝜁) = 𝐹1(𝜉) 𝜌1 + (𝐹2(𝜉) + (𝑛2𝑦 +𝑚2𝑧)𝐹
′
1(𝜉)) 𝜌2

∀𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ Ω𝜁 , (2.11)

where 𝐹1, 𝐹2 are complex-valued analytic functions in the domain 𝐷 and 𝜉 =
𝑥+ 𝑛1𝑦 +𝑚1𝑧.

Proof. For a monogenic function Φ0 of the form

Φ0(𝜁) = 𝑉1(𝑥, 𝑦, 𝑧)𝜌1 + 𝑉2(𝑥, 𝑦, 𝑧)𝜌2 , (2.12)
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where 𝑉𝑘 : Ω→ ℂ for 𝑘 = 1, 2, the Cauchy–Riemann conditions (2.5) are satisfied
with Φ = Φ0.

Substituting the expressions (2.1), (2.12) into the equalities (2.5) and taking
into account the uniqueness of decomposition of element of 𝔸3 with respect to the
basis {1, 𝜌1, 𝜌2}, we get the following system for the determination of functions
𝑉1, 𝑉2:

∂𝑉1
∂𝑦

= 𝑛1
∂𝑉1
∂𝑥

,

∂𝑉2
∂𝑦

= 𝑛2
∂𝑉1
∂𝑥

+ 𝑛1
∂𝑉2
∂𝑥

,

∂𝑉1
∂𝑧

= 𝑚1
∂𝑉1
∂𝑥

,

∂𝑉2
∂𝑧

= 𝑚2
∂𝑉1
∂𝑥

+𝑚1
∂𝑉2
∂𝑥

.

(2.13)

Inasmuch as

𝜉 = (𝑥+ 𝑦ℜ𝑛1 + 𝑧ℜ𝑚1) + 𝑖(𝑦ℑ𝑛1 + 𝑧ℑ𝑚1) =: 𝜏 + 𝑖𝜂 , (2.14)

from the first and the third equations of the system (2.13) we get

∂𝑉1
∂𝜂

ℑ𝑛1 = 𝑖
∂𝑉1
∂𝜏

ℑ𝑛1 ,
∂𝑉1
∂𝜂

ℑ𝑚1 = 𝑖
∂𝑉1
∂𝜏

ℑ𝑚1 . (2.15)

It follows from the first equation of the system (2.2) that, at least one of the
numbers ℑ𝑛1, ℑ𝑚1 is not equal to zero. Therefore, from (2.15) we get the equality

∂𝑉1
∂𝜂

= 𝑖
∂𝑉1
∂𝜏

. (2.16)

Let us prove that 𝑉1(𝑥1, 𝑦1, 𝑧1) = 𝑉1(𝑥2, 𝑦2, 𝑧2) for the points (𝑥1, 𝑦1, 𝑧1),
(𝑥2, 𝑦2, 𝑧2) ∈ Ω such that the segment connecting these points is parallel to the
straight line 𝐿. Consider two surfaces 𝑄, Σ in Ω and the domain 𝐺 in ℂ that are
defined in the proof of Lemma 2.2. For each 𝜉 ∈ 𝐺 define two complex-valued
functions 𝐻1 and 𝐻2 so that

𝐻1(𝜉) := 𝑉1(𝑥, 𝑦, 𝑧) for (𝑥, 𝑦, 𝑧) ∈ 𝑄,

𝐻2(𝜉) := 𝑉1(𝑥, 𝑦, 𝑧) for (𝑥, 𝑦, 𝑧) ∈ Σ,

where the correspondence between the points (𝑥, 𝑦, 𝑧) and 𝜉 ∈ 𝐺 is determined by
the relation (2.14). The functions 𝐻1, 𝐻2 are analytic in the domain 𝐺 owing to
the equality (2.16) and Theorem 6 in [11]. Further, the identity 𝐻1(𝜉) ≡ 𝐻2(𝜉) in
𝐺 can be proved in the same way as in the proof of Lemma 2.2.

Thus, the function 𝑉1 of the form 𝑉1(𝑥, 𝑦, 𝑧) := 𝐹1(𝜉), where 𝐹1(𝜉) is an
arbitrary function analytic in 𝐷, is the general solution of the system consisting
of the first and the third equations of the system (2.13).
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Now, from the second and the fourth equations of the system (2.13) we get
the following system for the determination of function 𝑉2(𝑥, 𝑦, 𝑧):

∂𝑉2
∂𝑦

− 𝑛1
∂𝑉2
∂𝑥

= 𝑛2
∂𝐹1

∂𝑥
,

∂𝑉2
∂𝑧

−𝑚1
∂𝑉2
∂𝑥

= 𝑚2
∂𝐹1

∂𝑥
.

(2.17)

The function (𝑛2𝑦 + 𝑚2𝑧)𝐹
′
1(𝜉) is a particular solution of this system and,

therefore, the general solution of the system (2.17) is represented in the form

𝑉2(𝑥, 𝑦, 𝑧) = 𝐹2(𝜉) + (𝑛2𝑦 +𝑚2𝑧)𝐹
′
1(𝜉),

where 𝐹2 is an arbitrary function analytic in 𝐷. The theorem is proved. □

It follows from the equalities (2.9), (2.11) that in the case where a domain
Ω ⊂ ℝ3 is convex in the direction of the straight line 𝐿, any monogenic function
Φ : Ω𝜁 → 𝔸3 can be constructed by means of three complex analytic in 𝐷 functions
𝐹 , 𝐹1, 𝐹2 in the form:

Φ(𝜁) =
1

2𝜋𝑖

∫
Γ𝜁

𝐹 (𝑡)(𝑡− 𝜁)−1𝑑𝑡+ 𝜌1𝐹1(𝑥+ 𝑛1𝑦 +𝑚1𝑧)

+ 𝜌2

(
𝐹2(𝑥+ 𝑛1𝑦 +𝑚1𝑧) + (𝑛2𝑦 +𝑚2𝑧)𝐹

′
1(𝑥+ 𝑛1𝑦 +𝑚1𝑧)

)
∀𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ Ω𝜁 , (2.18)

and in this case the equality (2.10) is applicable. Thus, we can rewrite the equality
(2.18) in the following form:

Φ(𝜁) = 𝐹 (𝑥+ 𝑛1𝑦 +𝑚1𝑧)

+

(
𝐹1(𝑥+ 𝑛1𝑦 +𝑚1𝑧) + (𝑛2𝑦 +𝑚2𝑧)𝐹

′(𝑥+ 𝑛1𝑦 +𝑚1𝑧)

)
𝜌1

+

(
𝐹2(𝑥+ 𝑛1𝑦 +𝑚1𝑧) + (𝑛2𝑦 +𝑚2𝑧)𝐹

′
1(𝑥+ 𝑛1𝑦 +𝑚1𝑧)

+ (𝑛3𝑦 +𝑚3𝑧)𝐹
′(𝑥+ 𝑛1𝑦 +𝑚1𝑧) +

(𝑛2𝑦 +𝑚2𝑧)
2

2
𝐹 ′′(𝑥+ 𝑛1𝑦 +𝑚1𝑧)

)
𝜌2

∀𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ Ω𝜁 . (2.19)

Using the equality (2.19), one can construct all monogenic functions Φ : Ω𝜁 → 𝔸3

by means of arithmetic operations with arbitrary complex-valued analytic func-
tions 𝐹 , 𝐹1, 𝐹2 given in the domain 𝐷 ⊂ ℂ.

It is evident that the following statement follows from the equality (2.19).

Theorem 2.5. If a domain Ω ⊂ ℝ3 is convex in the direction of the straight line
𝐿, then every monogenic function Φ : Ω𝜁 → 𝔸3 can be continued to a function
monogenic in the domain Π𝜁 .
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Note that the condition of convexity of Ω in the direction of the line 𝐿 is
essential for the truth of Lemma 2.2 and consequently for the truth of Theorems
2.3–2.5.

Example 2.6. Let us construct a domain Ω, which is not convex in the direction of
the straight line 𝐿, and an example of monogenic function Φ : Ω𝜁 → 𝔸3 for which
the relation (2.7) is not fulfilled for certain 𝜁1, 𝜁2 ∈ Ω𝜁 such that 𝜁2 − 𝜁1 ∈ 𝐿𝜁 .

Consider a harmonic basis (2.3). In this case the straight line 𝐿 coincide with
the axis 𝑂𝑧. Consider the domain Ω𝜁 which is the union of sets

Ω
(1)
𝜁 :={𝑥+𝑦𝑒02+𝑧𝑒03∈𝐸3 : ∣𝑥+ 𝑖𝑦∣<2, 0<𝑧<2,−𝜋/4<arg(𝑥+ 𝑖𝑦)<3𝜋/2},

Ω
(2)
𝜁 :={𝑥+𝑦𝑒02+𝑧𝑒03∈𝐸3 : ∣𝑥+ 𝑖𝑦∣<2, 2≤𝑧≤4, 𝜋/2<arg(𝑥+ 𝑖𝑦)<3𝜋/2},

Ω
(3)
𝜁 :={𝑥+𝑦𝑒02+𝑧𝑒03∈𝐸3 : ∣𝑥+ 𝑖𝑦∣<2, 4<𝑧<6, 𝜋/2<arg(𝑥+ 𝑖𝑦)<9𝜋/4}.

It is evident that the domain Ω ⊂ ℝ3 congruent to Ω𝜁 is not convex in the direction
of the axis 𝑂𝑧.

In the domain {𝜉 ∈ ℂ : ∣𝜉∣ < 2,−𝜋/4 < arg 𝜉 < 3𝜋/2} of the complex
plane consider a holomorphic branch 𝐻1(𝜉) of analytic function Ln 𝜉 for which
𝐻1(1) = 0. In the domain {𝜉 ∈ ℂ : ∣𝜉∣ < 2, 𝜋/2 < arg 𝜉 < 9𝜋/4} consider also a
holomorphic branch 𝐻2(𝜉) of function Ln 𝜉 for which 𝐻2(1) = 2𝜋𝑖.

Further, consider the principal extension Φ1 of function 𝐻1 into the set

Ω
(1)
𝜁 ∪ Ω

(2)
𝜁 and the principal extension Φ2 of function 𝐻2 into the set Ω

(2)
𝜁 ∪ Ω

(3)
𝜁

constructed by using the formula (2.10):

Φ1(𝜁) = 𝐻1(𝑥+ 𝑖𝑦)− 2𝑧 − 𝑖𝑦

2(𝑥+ 𝑖𝑦)
𝜌1 −

( √
3𝑖𝑧

2(𝑥+ 𝑖𝑦)
+

(2𝑧 − 𝑖𝑦)2

8(𝑥+ 𝑖𝑦)2

)
𝜌2 ,

Φ2(𝜁) = 𝐻2(𝑥+ 𝑖𝑦)− 2𝑧 − 𝑖𝑦

2(𝑥+ 𝑖𝑦)
𝜌1 −

( √
3𝑖𝑧

2(𝑥+ 𝑖𝑦)
+

(2𝑧 − 𝑖𝑦)2

8(𝑥+ 𝑖𝑦)2

)
𝜌2 ,

where 𝜁 = 𝑥+ 𝑦𝑒02 + 𝑧𝑒03.

Now, the function

Φ(𝜁) :=

{
Φ1(𝜁) for 𝜁 ∈ Ω

(1)
𝜁 ∪ Ω

(2)
𝜁 ,

Φ2(𝜁) for 𝜁 ∈ Ω
(3)
𝜁

is monogenic in the domain Ω𝜁 , because Φ1(𝜁) ≡ Φ2(𝜁) everywhere in Ω
(2)
𝜁 . At the

same time, for the points 𝜁1 = 1 + 𝑒03 and 𝜁2 = 1 + 5 𝑒03 we have 𝜁2 − 𝜁1 ∈ 𝐿𝜁 but

Φ(𝜁2)− Φ(𝜁1) = 2𝜋𝑖− 4 𝜌1 − (12 + 2
√
3 𝑖)𝜌2 /∈ ℐ ,

i.e., the relation (2.7) is not fulfilled.
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Taking into account the equality (2.10), we can rewrite the equality (2.19) in
the following integral form:

Φ(𝜁) =
1

2𝜋𝑖

∫
Γ𝜁

(
𝐹 (𝑡) + 𝜌1𝐹1(𝑡) + 𝜌2𝐹2(𝑡)

)
(𝑡− 𝜁)−1𝑑𝑡 ∀𝜁 ∈ Ω𝜁 , (2.20)

where the curve Γ𝜁 is the same as in Theorem 2.3.
The following statement is true for monogenic functions in an arbitrary do-

main Ω𝜁 .

Theorem 2.7. For every monogenic function Φ : Ω𝜁 → 𝔸3 in an arbitrary domain

Ω𝜁 , the Gateaux 𝑛th derivatives Φ(𝑛) are monogenic functions in Ω𝜁 for any 𝑛.

Proof. Consider an arbitrary point (𝑥0, 𝑦0, 𝑧0) ∈ Ω and a ball ℧ ⊂ Ω with the
center in the point (𝑥0, 𝑦0, 𝑧0). Inasmuch as ℧ is a convex set, in the neighbourhood
℧𝜁 of the point 𝜁0 = 𝑥0+𝑦0𝑒2+𝑧0𝑒3 we have the equality (2.20), where the integral
has the Gateaux 𝑛th derivative for any 𝑛 and these derivatives are continuous
functions in ℧𝜁 . Thus, the Gateaux 𝑛th derivative Φ(𝑛) is a monogenic function in
℧𝜁 for any 𝑛. The theorem is proved. □

Using the integral expression (2.20) of monogenic function Φ : Ω𝜁 → 𝔸3, we

obtain the following expression for the Gateaux 𝑛th derivative Φ(𝑛):

Φ(𝑛)(𝜁) =
𝑛!

2𝜋𝑖

∫
Γ𝜁

(
𝐹 (𝑡) + 𝜌1𝐹1(𝑡) + 𝜌2𝐹2(𝑡)

)(
(𝑡− 𝜁)−1

)𝑛+1

𝑑𝑡 ∀𝜁 ∈ Ω𝜁 .

2.4. Isomorphism of algebras of monogenic functions

Let us establish an isomorphism between algebras of monogenic functions at tran-
sition from a harmonic basis to another one. Byℳ(𝐸3,Ω𝜁) we denote the algebra
of monogenic functions in a domain Ω𝜁 ⊂ 𝐸3.

Consider a harmonic basis (2.3) and 𝐸0
3 := {𝜁 = 𝑥𝑒01+𝑦𝑒02+𝑧𝑒03 : 𝑥, 𝑦, 𝑧 ∈ ℝ}.

Let Ω0
𝜁 be a domain in 𝐸0

3 . Consider also an arbitrary harmonic basis {𝑒1, 𝑒2, 𝑒3}
in 𝔸3 and 𝐸3 := {𝜁 = 𝑥̃𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 : 𝑥, 𝑦, 𝑧 ∈ ℝ}.

Let us specify a correspondence between 𝐸0
3 and 𝐸3 under which a domain

Ω̃
˜𝜁 ⊂ 𝐸3 corresponds to the domain Ω0

𝜁 and algebras ℳ(𝐸0
3 ,Ω

0
𝜁), ℳ(𝐸3, Ω̃˜𝜁) are

isomorphic.
It follows from Theorem 2.1 that elements of the basis {𝑒1, 𝑒2, 𝑒3} can be

represented in the form 𝑒1 = 𝑎𝑒1, 𝑒2 = 𝑎𝑒2, 𝑒3 = 𝑎𝑒3, where 𝑎 is an invert-
ible element and decompositions of the basis {𝑒1, 𝑒2, 𝑒3} with respect to the basis
{1, 𝜌1, 𝜌2} are of the form (2.1), where without restricting the generality we may
assume that ℑ𝑛1 ∕= 0. Then the basis {𝑒1, 𝑒2, 𝑒3} can be expressed in the form

𝑒1 = 𝑒01,

𝑒2 = 𝛼1𝑒
0
1 + 𝛼2𝑒

0
2 + 𝑟21𝜌1 + 𝑟22𝜌2,

𝑒3 = 𝛽1𝑒
0
1 + 𝛽2𝑒

0
2 + 𝑒03 + 𝑟31𝜌1 + 𝑟32𝜌2,
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where 𝛼1 := ℜ𝑛1 , 𝛼2 := ℑ𝑛1 ∕= 0 , 𝛽1 := ℜ𝑚1 , 𝛽2 := ℑ𝑚1 , 𝑟21 := 𝑛2,

𝑟22 := 𝑛3 − 1
2 𝑖ℑ𝑛1 , 𝑟31 := 𝑚2 + 1 , 𝑟32 := 𝑚3 +

√
3
2 𝑖− 1

2 𝑖ℑ𝑚1 .

Theorem 2.8. Let a correspondence between 𝜁 = 𝑥𝑒01 + 𝑦𝑒02 + 𝑧𝑒03 ∈ 𝐸0
3 and

𝜁 = 𝑥̃𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 ∈ 𝐸3 be given by the equalities

𝑥 = 𝑥+ 𝛼1𝑦 + 𝛽1𝑧,

𝑦 = 𝛼2𝑦 + 𝛽2𝑧,

𝑧 = 𝑧.

Then the algebras ℳ(𝐸0
3 ,Ω

0
𝜁),ℳ(𝐸3, Ω̃˜𝜁) are isomorphic, and the correspondence

ℳ(𝐸0
3 ,Ω

0
𝜁) ∋ Φ←→ Φ̃ ∈ ℳ(𝐸3, Ω̃˜𝜁) are established by the equality

Φ̃(𝜁) = Φ(𝜁)+Φ′(𝜁)
(
(𝑟21𝑦+ 𝑟31𝑧)𝜌1+(𝑟22𝑦+ 𝑟32𝑧)𝜌2

)
+
1

2
Φ′′(𝜁)(𝑟21𝑦+ 𝑟31𝑧)

2𝜌2.

3. Integral theorems in the algebra 𝔸3

3.1. On integral theorems in hypercomplex analysis

In the paper [12] for functions differentiable in the sense of Lorch in an arbitrary
convex domain of a commutative associative Banach algebra, some properties sim-
ilar to properties of holomorphic functions of a complex variable (in particular, the
integral Cauchy theorem and the integral Cauchy formula, the Taylor expansion
and the Morera theorem) are established. The convexity of the domain in the
mentioned results from [12] is excluded by E.K. Blum [13].

In this paper we establish similar results for monogenic functions Φ : Ω𝜁 → 𝔸3

given only in a domain Ω𝜁 of the linear envelope 𝐸3 instead of the domain of the
whole algebra 𝔸3. Let us note that a priori the differentiability of the function
Φ in the sense of Gateaux is a restriction weaker than the differentiability of this
function in the sense of Lorch. Moreover, note that the integral Cauchy formula
established in the papers [12, 13] is not applicable to a monogenic function Φ :
Ω𝜁 → 𝔸3 because it deals with an integration along a curve on which the function
Φ is not given, generally speaking.

Note that as well as in [12, 13], some hypercomplex analogues of the integral
Cauchy theorem for a curvilinear integral are established in the papers [14, 15]. In
the papers [14, 16–18] similar theorems are established for surface integrals.

Below in Section 3, all stated results are obtained jointly with V.S. Sh-
pakivskyi (see also [19, 20]).

3.2. Cauchy integral theorem for a surface integral

Let {𝑒1 = 1, 𝑒2, 𝑒3} be a harmonic basis in the algebra 𝔸3.

Along with monogenic functions satisfying the Cauchy–Riemann conditions
(2.5), consider a function Ψ : Ω𝜁 → 𝔸3 having continuous partial derivatives of
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the first order in a domain Ω𝜁 and satisfying the equation

∂Ψ

∂𝑥
+

∂Ψ

∂𝑦
𝑒2 +

∂Ψ

∂𝑧
𝑒3 = 0 (3.1)

in every point of this domain.
In the scientific literature, different denominations are used for functions

satisfying equations of the form (3.1). For example, in the papers [14, 15, 21] they
are called regular functions, and in the papers [16, 17, 22] they are called monogenic
functions. As well as in the papers [18, 23, 24], we call Ψ a hyperholomorphic
function if it satisfies equation (3.1).

It is well known that in the quaternion analysis the classes of functions de-
termined by means of conditions of the form (2.5) and (3.1) do not coincide (see
[14, 25]).

Note that in the algebra 𝔸3 the set of monogenic functions is a subset of the
set of hyperholomorphic functions, because every monogenic function Φ : Ω𝜁 →
𝔸3 satisfies the equality (3.1) owing to conditions (1.5), (2.5). But, there exist
hyperholomorphic functions which are not monogenic. For example, the function
Ψ(𝑥 + 𝑦𝑒2 + 𝑧𝑒3) = 𝑧𝑒2 − 𝑦𝑒3 satisfies condition (3.1), but it does not satisfy
equalities of the form (2.5).

Let Ω be a bounded closed set in ℝ3. For a continuous function Ψ : Ω𝜁 → 𝔸3

of the form

Ψ(𝑥+ 𝑦𝑒2 + 𝑧𝑒3) =

3∑
𝑘=1

𝑈𝑘(𝑥, 𝑦, 𝑧)𝑒𝑘 + 𝑖

3∑
𝑘=1

𝑉𝑘(𝑥, 𝑦, 𝑧)𝑒𝑘, (3.2)

where (𝑥, 𝑦, 𝑧) ∈ Ω and 𝑈𝑘 : Ω → ℝ, 𝑉𝑘 : Ω → ℝ, we define a volume integral by
the equality∫

Ω𝜁

Ψ(𝜁)𝑑𝑥𝑑𝑦𝑑𝑧 :=
3∑

𝑘=1

𝑒𝑘

∫
Ω

𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑖
3∑

𝑘=1

𝑒𝑘

∫
Ω

𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧.

Let Σ be a quadrable surface in ℝ3 with quadrable projections on the coor-
dinate planes. For a continuous function Ψ : Σ𝜁 → 𝔸3 of the form (3.2), where
(𝑥, 𝑦, 𝑧) ∈ Σ and 𝑈𝑘 : Σ → ℝ, 𝑉𝑘 : Σ → ℝ, we define a surface integral on
Σ𝜁 with the differential form 𝜎𝛼1,𝛼2,𝛼3 := 𝛼1𝑑𝑦𝑑𝑧 + 𝛼2𝑑𝑧𝑑𝑥𝑒2 + 𝛼3𝑑𝑥𝑑𝑦𝑒3, where
𝛼1, 𝛼2, 𝛼3 ∈ ℝ, by the equality∫

Σ𝜁

Ψ(𝜁)𝜎𝛼1,𝛼2,𝛼3 :=
3∑

𝑘=1

𝑒𝑘

∫
Σ

𝛼1𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧 +
3∑

𝑘=1

𝑒2𝑒𝑘

∫
Σ

𝛼2𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑥

+

3∑
𝑘=1

𝑒3𝑒𝑘

∫
Σ

𝛼3𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦 + 𝑖

3∑
𝑘=1

𝑒𝑘

∫
Σ

𝛼1𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧

+ 𝑖

3∑
𝑘=1

𝑒2𝑒𝑘

∫
Σ

𝛼2𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑥+ 𝑖

3∑
𝑘=1

𝑒3𝑒𝑘

∫
Σ

𝛼3𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦.
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A connected homeomorphic image of a square in ℝ3 is called a simple surface.
A surface is locally-simple if it is simple in a certain neighborhood of every point.

If a simply connected domain Ω ⊂ ℝ3 has a closed locally-simple piece-
smooth boundary ∂Ω and a function Ψ : Ω𝜁 → 𝔸3 is continuous together with
partial derivatives of the first order up to the boundary ∂Ω𝜁, then the following
analogue of the Gauss–Ostrogradsky formula is true:∫

∂Ω𝜁

Ψ(𝜁)𝜎 =

∫
Ω𝜁

(
∂Ψ

∂𝑥
+

∂Ψ

∂𝑦
𝑒2 +

∂Ψ

∂𝑧
𝑒3

)
𝑑𝑥𝑑𝑦𝑑𝑧, (3.3)

where 𝜎 := 𝜎1,1,1 ≡ 𝑑𝑦𝑑𝑧 + 𝑑𝑧𝑑𝑥𝑒2 + 𝑑𝑥𝑑𝑦𝑒3. Now, the next theorem is a result of
formula (3.3) and equality (3.1).

Theorem 3.1. Suppose that Ω is a simply connected domain with a closed locally-
simple piece-smooth boundary ∂Ω. Suppose also that the function Ψ : Ω𝜁 → 𝔸3 is

continuous in the closure Ω𝜁 of domain Ω𝜁 and is hyperholomorphic in Ω𝜁 . Then∫
∂Ω𝜁

Ψ(𝜁)𝜎 = 0.

3.3. Cauchy integral theorem for a curvilinear integral

Let 𝛾 be a Jordan rectifiable curve in ℝ3. For a continuous function Ψ : 𝛾𝜁 → 𝔸3

of the form (3.2), where (𝑥, 𝑦, 𝑧) ∈ 𝛾 and 𝑈𝑘 : 𝛾 → ℝ, 𝑉𝑘 : 𝛾 → ℝ, we define an
integral along the curve 𝛾𝜁 by the equality∫

𝛾𝜁

Ψ(𝜁)𝑑𝜁 :=
3∑

𝑘=1

𝑒𝑘

∫
𝛾

𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥+
3∑

𝑘=1

𝑒2𝑒𝑘

∫
𝛾

𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑦

+

3∑
𝑘=1

𝑒3𝑒𝑘

∫
𝛾

𝑈𝑘(𝑥, 𝑦, 𝑧)𝑑𝑧 + 𝑖

3∑
𝑘=1

𝑒𝑘

∫
𝛾

𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑥

+ 𝑖

3∑
𝑘=1

𝑒2𝑒𝑘

∫
𝛾

𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑦 + 𝑖

3∑
𝑘=1

𝑒3𝑒𝑘

∫
𝛾

𝑉𝑘(𝑥, 𝑦, 𝑧)𝑑𝑧,

where 𝑑𝜁 := 𝑑𝑥 + 𝑒2𝑑𝑦 + 𝑒3𝑑𝑧.
If a function Φ : Ω𝜁 → 𝔸3 is continuous together with partial derivatives of

the first order in a domain Ω𝜁 , and Σ is a piece-smooth surface in Ω, and the edge
𝛾 of surface Σ is a rectifiable Jordan curve, then the following analogue of the
Stokes formula is true:∫

𝛾𝜁

Φ(𝜁)𝑑𝜁 =

∫
Σ𝜁

(
∂Φ

∂𝑥
𝑒2 − ∂Φ

∂𝑦

)
𝑑𝑥𝑑𝑦 +

(
∂Φ

∂𝑦
𝑒3 − ∂Φ

∂𝑧
𝑒2

)
𝑑𝑦𝑑𝑧

+

(
∂Φ

∂𝑧
− ∂Φ

∂𝑥
𝑒3

)
𝑑𝑧𝑑𝑥.

(3.4)
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Now, the next theorem is a result of formula (3.4) and equalities (2.5).

Theorem 3.2. Suppose that Φ : Ω𝜁 → 𝔸3 is a monogenic function in a domain
Ω𝜁 , and Σ is a piece-wise smooth surface in Ω, and the edge 𝛾 of surface Σ is a
rectifiable Jordan curve. Then ∫

𝛾𝜁

Φ(𝜁)𝑑𝜁 = 0. (3.5)

Now, similarly to the proof of Theorem 3.2 in [13] we can prove the following

Theorem 3.3. Let Φ : Ω𝜁 → 𝔸3 be a monogenic function in a domain Ω𝜁 . Then
for every closed Jordan rectifiable curve 𝛾 homotopic to a point in Ω, the equality
(3.5) is true.

For functions taking values in the algebra 𝔸3, the following Morera theorem
can be established in the usual way.

Theorem 3.4. If a function Φ : Ω𝜁 → 𝔸3 is continuous in a domain Ω𝜁 and satisfies
the equality ∫

∂△𝜁

Φ(𝜁)𝑑𝜁 = 0 (3.6)

for every triangle △𝜁 such that △𝜁 ⊂ Ω𝜁 , then the function Φ is monogenic in the
domain Ω𝜁 .

3.4. Cauchy integral formula

Inasmuch as according to Theorem 2.8 there exists an isomorphism between alge-
bras of monogenic functions Φ(𝜁) of the variable 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3 determined
in various harmonic bases, it is enough to study properties of monogenic functions
given in domains of a linear envelope 𝐸3 generated by one of its harmonic bases.

Thus, let us consider a basis (2.3) as the harmonic basis {𝑒1, 𝑒2, 𝑒3}.
It follows from equality (2.6) that

𝜁−1 =
1

𝑥+ 𝑖𝑦
+

𝑧

(𝑥+ 𝑖𝑦)2
𝜌1 +

(
𝑖

2

√
3𝑧 − 𝑦

(𝑥+ 𝑖𝑦)2
+

𝑧2

(𝑥 + 𝑖𝑦)3

)
𝜌2 (3.7)

for all 𝜁 = 𝑥+ 𝑦𝑒2+ 𝑧𝑒3 ∈ 𝐸3 ∖ {𝑧𝑒3 : 𝑧 ∈ ℝ}. Thus, it is obvious that the straight
line {𝑧𝑒3 : 𝑧 ∈ ℝ} is contained in the radical of the algebra 𝔸3.

Using equality (3.7), it is easy to calculate that∫
𝛾𝜁

𝜏−1𝑑𝜏 = 2𝜋𝑖, (3.8)

where 𝛾𝜁 := {𝜏 = 𝑥+ 𝑦𝑒2 : 𝑥
2 + 𝑦2 = 𝑅2}.
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Theorem 3.5. Let Ω be a domain convex in the direction of the axis 𝑂𝑧 and Φ :
Ω𝜁 → 𝔸3 be a monogenic function in the domain Ω𝜁 . Then for every point 𝜁0 ∈ Ω𝜁

the following equality is true:

Φ(𝜁0) =
1

2𝜋𝑖

∫
𝛾𝜁

Φ(𝜁) (𝜁 − 𝜁0)
−1

𝑑𝜁, (3.9)

where 𝛾𝜁 is an arbitrary closed Jordan rectifiable curve in Ω𝜁 , which winds once
around the straight line {𝜁0 + 𝑧𝑒3 : 𝑧 ∈ ℝ} and is homotopic to the point 𝜁0.

Proof. We represent the integral from the right-hand side of equality (3.9) as the
sum of the following two integrals:∫

𝛾𝜁

Φ(𝜁) (𝜁 − 𝜁0)
−1

𝑑𝜁 =

∫
𝛾𝜁

(Φ(𝜁)− Φ(𝜁0)) (𝜁 − 𝜁0)
−1

𝑑𝜁

+Φ(𝜁0)

∫
𝛾𝜁

(𝜁 − 𝜁0)
−1 𝑑𝜁 =: 𝐼1 + 𝐼2.

Inasmuch as the domain Ω is convex in the direction of the axis 𝑂𝑧 and the
curve 𝛾𝜁 winds once around the straight line {𝜁0+ 𝑧𝑒3 : 𝑧 ∈ ℝ}, 𝛾 is homotopic to
the circle 𝐾(𝑅) := {(𝑥−𝑥0)

2+(𝑦−𝑦0)
2 = 𝑅2, 𝑧 = 𝑧0}, where 𝜁0 = 𝑥0+𝑦0𝑒2+𝑧0𝑒3.

Then using equality (3.8), we have 𝐼2 = 2𝜋𝑖Φ(𝜁0).
Let us prove that 𝐼1 = 0. First, we choose on the curve 𝛾 two points 𝐴 and

𝐵 in which there are tangents to 𝛾, and we choose also two points 𝐴1, 𝐵1 on the
circle𝐾(𝜀) which is completely contained in the domain Ω. Let 𝛾1, 𝛾2 be connected
components of the set 𝛾 ∖{𝐴,𝐵}. By 𝐾1 and 𝐾2 we denote connected components
of the set 𝐾(𝜀) ∖ {𝐴1, 𝐵1} in such a way that after a choice of smooth arcs Γ1, Γ2

each of the closed curves 𝛾1 ∪ Γ2 ∪𝐾1 ∪ Γ1 and 𝛾2 ∪ Γ1 ∪𝐾2 ∪ Γ2 will homotopic
to a point of the domain Ω ∖ {(𝑥0, 𝑦0, 𝑧) : 𝑧 ∈ ℝ}.

Then it follows from Theorem 3.3 that∫
𝛾1
𝜁∪Γ2

𝜁∪𝐾1
𝜁∪Γ1

𝜁

(Φ(𝜁)− Φ(𝜁0)) (𝜁 − 𝜁0)
−1

𝑑𝜁 = 0, (3.10)

∫
𝛾2
𝜁∪Γ1

𝜁∪𝐾2
𝜁∪Γ2

𝜁

(Φ(𝜁)− Φ(𝜁0)) (𝜁 − 𝜁0)
−1

𝑑𝜁 = 0. (3.11)

Inasmuch as each of the curves Γ1𝜁 , Γ
2
𝜁 has different orientations in the equal-

ities (3.10), (3.11), after addition of the mentioned equalities we obtain∫
𝛾𝜁

(Φ(𝜁)− Φ(𝜁0)) (𝜁 − 𝜁0)
−1 𝑑𝜁 =

∫
𝐾𝜁(𝜀)

(Φ(𝜁) − Φ(𝜁0)) (𝜁 − 𝜁0)
−1 𝑑𝜁, (3.12)

where the curves 𝐾𝜁(𝜀), 𝛾𝜁 have the same orientation.
The integrand in the right-hand side of the equality (3.12) is bounded by

a constant which does not depend on 𝜀. Therefore, passing to the limit in the
equality (3.12) as 𝜀→ 0, we obtain 𝐼1 = 0 and the theorem is proved. □
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Using formula (3.9), we obtain the Taylor expansion of a monogenic function
in the usual way (see, for example, [26, p. 107]). A uniqueness theorem for mono-
genic functions can also be proved in the same way as for holomorphic functions
of a complex variable (see, for example, [26, p. 110]).

3.5. Different equivalent definitions of monogenic functions taking values
in the algebra 𝔸3

Thus, the following theorem giving different equivalent definitions of monogenic
functions is true:

Theorem 3.6. A function Φ : Ω𝜁 → 𝔸3 is monogenic in an arbitrary domain Ω𝜁 if
and only if one of the following conditions is satisfied:

(I) the components 𝑈𝑘, 𝑘 = 1, 3, of the decomposition (2.4) of the function Φ are
differentiable in Ω and the conditions (2.5) are satisfied in the domain Ω𝜁 ;

(II) in every ball ℧𝜁 ⊂ Ω𝜁 the function Φ is expressed in the form (2.19), where
the triad of holomorphisms in the domain 𝑓(℧𝜁), functions 𝐹 , 𝐹1, 𝐹2, is
unique;

(III) the function Φ is continuous in Ω𝜁 and satisfies the equality (3.6) for every

triangle △𝜁 such that △𝜁 ⊂ Ω𝜁 ;
(IV) for every 𝜁0 ∈ Ω𝜁 there exists a neighborhood in which the function Φ is

expressed as the sum of the power series (1.4), where 𝔸 = 𝔸3.

4. Infinite-dimensional commutative Banach algebras and spatial
potential fields

4.1. An infinite-dimensional harmonic algebra

Note that it is impossible to obtain all solutions of the three-dimensional Laplace
equation (1.3) in the form of components of monogenic functions taking values
in commutative algebras of third rank. In particular, for every mentioned algebra
there exist spherical functions which are not components of specified hypercomplex
monogenic functions.

Indeed, it is well known that there exists (2𝑛 + 1) linearly independent ho-
mogeneous polynomials (of real variables 𝑥, 𝑦, 𝑧) of the degree 𝑛, which satisfy
(1.3). At the same time, in every algebra 𝔸 over the field ℂ with harmonic basis
{𝑒1, 𝑒2, 𝑒3}, the mentioned polynomials are real components of decomposition on
the vectors 𝑒1, 𝑒2, 𝑒3, 𝑖𝑒1, 𝑖𝑒2, 𝑖𝑒3 of functions of the form 𝑎(𝑥𝑒1+𝑦𝑒2+𝑧𝑒3)

𝑛, where
𝑎 ∈ 𝔸, but there are only six linearly independent real components for all 𝑛 ≥ 3.

Hence, for every harmonic algebra 𝔸 of the third rank there exist spherical
functions which are not components of monogenic functions taking values in the
algebra 𝔸.

In the papers [4, 27, 28] we considered an infinite-dimensional commutative
Banach algebra 𝔽 over the field of real numbers and established that any spherical
function is a component of some monogenic function taking values in this algebra.
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We described relations between monogenic functions and harmonic vectors in the
space.

Consider an infinite-dimensional commutative associative Banach algebra

𝔽 := {𝑔 =
∞∑
𝑘=1

𝑐𝑘𝑒𝑘 : 𝑐𝑘 ∈ ℝ,
∞∑
𝑘=1

∣𝑐𝑘∣ <∞}

over the field ℝ with the norm ∥𝑔∥𝔽 :=
∞∑
𝑘=1

∣𝑐𝑘∣ and the basis {𝑒𝑘}∞𝑘=1, where the

multiplication table for elements of its basis is of the following form:

𝑒𝑛𝑒1 = 𝑒𝑛, 𝑒2𝑛+1𝑒2𝑛 =
1

2
𝑒4𝑛 ∀𝑛 ≥ 1 ,

𝑒2𝑛+1𝑒2𝑚 =
1

2

(
𝑒2𝑛+2𝑚 − (−1)𝑚𝑒2𝑛−2𝑚

)
∀𝑛 > 𝑚 ≥ 1 ,

𝑒2𝑛+1𝑒2𝑚 =
1

2

(
𝑒2𝑛+2𝑚 + (−1)𝑛𝑒2𝑚−2𝑛

)
∀𝑚 > 𝑛 ≥ 1 ,

𝑒2𝑛+1𝑒2𝑚+1 =
1

2

(
𝑒2𝑛+2𝑚+1 + (−1)𝑚𝑒2𝑛−2𝑚+1

)
∀𝑛 ≥ 𝑚 ≥ 1 ,

𝑒2𝑛𝑒2𝑚 =
1

2

(
−𝑒2𝑛+2𝑚+1 + (−1)𝑚𝑒2𝑛−2𝑚+1

)
∀𝑛 ≥ 𝑚 ≥ 1 .

It is evident that here 𝑒1, 𝑒2, 𝑒3 form a harmonic triad of vectors.
Let Ω be a domain in ℝ3 and 𝜁 = 𝑥+𝑦𝑒2+𝑧𝑒3, where (𝑥, 𝑦, 𝑧) ∈ Ω. Consider

the decomposition

Φ(𝜁) =

∞∑
𝑘=1

𝑈𝑘(𝑥, 𝑦, 𝑧) 𝑒𝑘 , (4.1)

of a function Φ : Ω𝜁 → 𝔽 with respect to the basis {𝑒𝑘}∞𝑘=1, where the functions
𝑈𝑘 : Ω→ ℝ are differentiable in Ω.

In the following theorem we establish necessary and sufficient conditions for
a function Φ : Ω𝜁 → 𝔽 to be monogenic in a domain Ω𝜁 ⊂ 𝐸3.

Theorem 4.1. Let a function Φ : Ω𝜁 → 𝔽 be continuous in a domain Ω𝜁 and the
functions 𝑈𝑘 : Ω→ ℝ from the decomposition (4.1) be differentiable in Ω. In order
that the function Φ be monogenic in the domain Ω𝜁 , it is necessary and sufficient
that the conditions (2.5) be satisfied and the following relations be fulfilled in Ω:

∞∑
𝑘=1

∣∣∣∣∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥

∣∣∣∣ <∞, (4.2)

lim
𝜀→0+0

∞∑
𝑘=1

∣∣∣∣∣ 𝑈𝑘(𝑥 + 𝜀ℎ1, 𝑦 + 𝜀ℎ2, 𝑧 + 𝜀ℎ3)− 𝑈𝑘(𝑥, 𝑦, 𝑧)− ∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥
𝜀ℎ1

−∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑦
𝜀ℎ2 − ∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑧
𝜀ℎ3

∣∣∣∣ 𝜀−1 = 0 ∀ℎ1, ℎ2, ℎ3 ∈ ℝ . (4.3)
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Proof. Necessity. If the function (4.1) is monogenic in the domain Ω𝜁 , then for
ℎ = 𝑒1 the equality (1.7) turns into the equality

Φ′(𝜁) =
∂Φ(𝜁)

∂𝑥
≡

∞∑
𝑘=1

∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥
𝑒𝑘 ,

and the relation (4.2) is fulfilled. Now, setting in series ℎ = 𝑒2 and ℎ = 𝑒3 in the
equality (1.7), we obtain the conditions (2.5).

Let us write the conditions (2.5) in expanded form:

∂𝑈1(𝑥, 𝑦, 𝑧)

∂𝑦
= −1

2

∂𝑈2(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈2(𝑥, 𝑦, 𝑧)

∂𝑦
=

∂𝑈1(𝑥, 𝑦, 𝑧)

∂𝑥
+

1

2

∂𝑈5(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈3(𝑥, 𝑦, 𝑧)

∂𝑦
= −1

2

∂𝑈4(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈2𝑘(𝑥, 𝑦, 𝑧)

∂𝑦
=

1

2

∂𝑈2𝑘−1(𝑥, 𝑦, 𝑧)
∂𝑥

+
1

2

∂𝑈2𝑘+3(𝑥, 𝑦, 𝑧)

∂𝑥
, 𝑘 = 2, 3, . . . ,

∂𝑈2𝑘+1(𝑥, 𝑦, 𝑧)

∂𝑦
= −1

2

∂𝑈2𝑘−2(𝑥, 𝑦, 𝑧)
∂𝑥

− 1

2

∂𝑈2𝑘+2(𝑥, 𝑦, 𝑧)

∂𝑥
, 𝑘 = 2, 3, . . . ,

∂𝑈1(𝑥, 𝑦, 𝑧)

∂𝑧
= −1

2

∂𝑈3(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈2(𝑥, 𝑦, 𝑧)

∂𝑧
= −1

2

∂𝑈4(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈3(𝑥, 𝑦, 𝑧)

∂𝑧
=

∂𝑈1(𝑥, 𝑦, 𝑧)

∂𝑥
− 1

2

∂𝑈5(𝑥, 𝑦, 𝑧)

∂𝑥
,

∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑧
=

1

2

∂𝑈𝑘−2(𝑥, 𝑦, 𝑧)
∂𝑥

− 1

2

∂𝑈𝑘+2(𝑥, 𝑦, 𝑧)

∂𝑥
, 𝑘 = 4, 5, . . . .

(4.4)

At last, for ℎ1, ℎ2, ℎ3 ∈ ℝ and 𝜀 > 0, writing ℎ := ℎ1𝑒1 + ℎ2𝑒2 + ℎ3𝑒3 and
taking into account the equalities (4.4), we have(

Φ(𝜁 + 𝜀ℎ)− Φ(𝜁)
)
𝜀−1 − ℎΦ′(𝜁)

=

( ∞∑
𝑘=1

(
𝑈𝑘(𝑥+ 𝜀ℎ1, 𝑦 + 𝜀ℎ2, 𝑧 + 𝜀ℎ3)− 𝑈𝑘(𝑥, 𝑦, 𝑧)

)
𝑒𝑘

− 𝜀 (ℎ1𝑒1 + ℎ2𝑒2 + ℎ3𝑒3)

∞∑
𝑘=1

∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥
𝑒𝑘

)
𝜀−1

= 𝜀−1
∞∑
𝑘=1

(
𝑈𝑘(𝑥+ 𝜀ℎ1, 𝑦 + 𝜀ℎ2, 𝑧 + 𝜀ℎ3)− 𝑈𝑘(𝑥, 𝑦, 𝑧)

− ∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑥
𝜀ℎ1 − ∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑦
𝜀ℎ2 − ∂𝑈𝑘(𝑥, 𝑦, 𝑧)

∂𝑧
𝜀ℎ3

)
𝑒𝑘 .

(4.5)
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Therefore, inasmuch as the function (4.1) is monogenic in the domain Ω𝜁 , the
relation (4.3) is fulfilled in Ω.

Sufficiency. Let 𝜀 > 0 and ℎ := ℎ1𝑒1+ℎ2𝑒2+ℎ3𝑒3, where ℎ1, ℎ2, ℎ3 ∈ ℝ. Then
under the conditions (4.4) and (4.2) the equality (4.5) is true. Now, it follows from
the equality (4.5) and the relation (4.3) that the function (4.1) has the Gateaux
derivative Φ′(𝜁) for all 𝜁 ∈ 𝑄𝜁 . The theorem is proved. □

Note that the conditions (4.4) are similar by nature to the Cauchy–Riemann
conditions for monogenic functions of complex variables, and the relations (4.2),
(4.3) are conditioned by the infinite dimensionality of the algebra 𝔽.

It is clear that if the Gateaux derivative Φ′ of monogenic function Φ : Ω𝜁 → 𝔽,
in turn, is a monogenic function in the domain Ω𝜁 , then all components 𝑈𝑘 of
decomposition (4.1) satisfy equation (1.3) in Ω in consequence of condition (1.5).
At the same time, the following statement is true even independently of the relation
between solutions of the system of equations (4.4) and monogenic functions.

Theorem 4.2. If the functions 𝑈𝑘 : Ω → ℝ have continuous second-order par-
tial derivatives in a domain Ω and satisfy the conditions (4.4), then they satisfy
equation (1.3) in 𝑄.

To prove Theorem 4.2 it is easy to show that if the functions 𝑈𝑘 are doubly
continuously differentiable in the domain Ω, then the equalities Δ𝑈𝑘(𝑥, 𝑦, 𝑧) = 0
for 𝑘 = 1, 2, . . . are corollaries of the system (4.4).

Note that the algebra 𝔽 is isomorphic to the algebra F of absolutely conver-
gent trigonometric Fourier series

𝑔(𝜏) = 𝑎0 +

∞∑
𝑘=1

(
𝑎𝑘 𝑖

𝑘 cos 𝑘𝜏 + 𝑏𝑘 𝑖
𝑘 sin 𝑘𝜏

)
with real coefficients 𝑎0, 𝑎𝑘, 𝑏𝑘 and the norm ∥𝑔∥F := ∣𝑎0∣ +

∞∑
𝑘=1

(
∣𝑎𝑘∣ + ∣𝑏𝑘∣

)
. In

this case, we have the isomorphism 𝑒2𝑘−1 ←→ 𝑖𝑘−1 cos (𝑘 − 1)𝜏 , 𝑒2𝑘 ←→ 𝑖𝑘 sin 𝑘𝜏
between basic elements.

Let us write the expansion of a power function of the variable 𝜉 = 𝑥𝑒1 +
𝑦𝑒2 + 𝑧𝑒3 in the basis {𝑒𝑘}∞𝑘=1, using spherical coordinates 𝜌, 𝜃, 𝜙 which have the
following relations with 𝑥, 𝑦, 𝑧:

𝑥 = 𝜌 cos 𝜃, 𝑦 = 𝜌 sin 𝜃 sin𝜙, 𝑧 = 𝜌 sin 𝜃 cos𝜙 . (4.6)

In view of the isomorphism of the algebras 𝔽 and F, the construction of expansions
of this sort is reduced to the determination of relevant Fourier coefficients. So, we
have

𝜁𝑛 = 𝜌𝑛
(
𝑃𝑛(cos 𝜃) 𝑒1 + 2

𝑛∑
𝑚=1

𝑛!

(𝑛+𝑚)!
𝑃𝑚
𝑛 (cos 𝜃)

(
sin 𝑚𝜙𝑒2𝑚 + cos 𝑚𝜙𝑒2𝑚+1

))
,

(4.7)
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where 𝑛 is a positive integer, 𝑃𝑛 and 𝑃𝑚
𝑛 are Legendre polynomials and associated

Legendre polynomials, respectively, namely:

𝑃𝑛(𝑡) :=
1

2𝑛 𝑛!

𝑑𝑛

𝑑𝑡𝑛
(𝑡2 − 1)𝑛, 𝑃𝑚

𝑛 (𝑡) := (1− 𝑡2)𝑚/2 𝑑𝑚

𝑑𝑡𝑚
𝑃𝑛(𝑡) . (4.8)

We obtain in exactly the same way the following expansion of the exponential
function:

𝑒𝜁 = 𝑒𝜌 cos 𝜃
(
𝐽0(𝜌 sin 𝜃)𝑒1 + 2

∞∑
𝑚=1

𝐽𝑚(𝜌 sin 𝜃)
(
sin 𝑚𝜙𝑒2𝑚 + cos 𝑚𝜙𝑒2𝑚+1

))
,

where 𝐽𝑚 are Bessel functions, namely:

𝐽𝑚(𝑡) :=
(−1)𝑚

𝜋

𝜋∫
0

𝑒𝑖𝑡 cos 𝜏 cos𝑚𝜏 𝑑𝜏 . (4.9)

Thus, 2𝑛 + 1 linearly independent spherical functions of the 𝑛th power are
components of the expansion (4.7) of the function 𝜁𝑛. Using the expansion (4.7)
and rules of multiplication for basic elements of the algebra 𝔽, it is easy to prove
the following statement.

Theorem 4.3. Every spherical function

𝜌𝑛
(
𝑎𝑛,0𝑃𝑛(cos 𝜃) +

𝑛∑
𝑚=1

(
𝑎𝑛,𝑚 cos𝑚𝜙+ 𝑏𝑛,𝑚 sin𝑚𝜙

)
𝑃𝑚
𝑛 (cos 𝜃)

)
where 𝑎𝑛,0, 𝑎𝑛,𝑚, 𝑏𝑛,𝑚 ∈ ℝ, is the first component of expansion of the monogenic
function (

𝑎𝑛,0 𝑒1 +
𝑛∑

𝑚=1

(−1)𝑚 (𝑛+𝑚)!

𝑛!

(
𝑏𝑛,𝑚 𝑒2𝑚 + 𝑎𝑛,𝑚 𝑒2𝑚+1

))
𝜉𝑛

in the basis {𝑒𝑘}∞𝑘=1, where 𝜉 := 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3, and 𝑥, 𝑦, 𝑧 have the relations
(4.6) with the spherical coordinates 𝜌, 𝜃, 𝜙.

4.2. Relation between the system (4.4) and harmonic vectors

Let us specify a relation between solutions of the system (4.4) and spatial potential
fields.

Theorem 4.4. Every solution of the system (4.4) in a domain Ω ⊂ ℝ3 generates a
harmonic vector V := (𝑈1,− 1

2 𝑈2,− 1
2 𝑈3) in Ω.

Proof. The equalities (1.2) for a vector V := (𝑈1,− 1
2 𝑈2,− 1

2 𝑈3) are corollaries
of the system (4.4). Really, the system (4.4) contains the third equation and the
fourth equation from (1.2). The second equation from (1.2) is a corollary of the
third condition and the seventh condition of the system (4.4). Finally, the first
equation from (1.2) is a corollary of the second condition and the eighth condition
of the system (4.4). The theorem is proved. □
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Theorem 4.5. For any function 𝑈1 : Ω → ℝ harmonic in a simply connected
domain Ω ⊂ ℝ3 there exist harmonic functions 𝑈𝑘 : Ω → ℝ, 𝑘 = 2, 3, . . . , such
that the conditions (4.4) are fulfilled in Ω.

Proof. Let us add and subtract the second condition and the eighth condition as
well as the third condition and the seventh condition of the system (4.4). Let us
also add and subtract the fourth condition for 𝑘 = 𝑚 and the ninth condition of
the system (4.4) for 𝑘 = 2𝑚+1, where 𝑚 = 2, 3, . . . . Let us else add and subtract
the fifth condition for 𝑘 = 𝑚 and the ninth condition of system (4.4) for 𝑘 = 2𝑚,
where 𝑚 = 2, 3, . . . . Thus, we rewrite the system (4.4) in the following equivalent
form:

∂𝑈1

∂𝑥
− 1

2

∂𝑈2

∂𝑦
− 1

2

∂𝑈3

∂𝑧
= 0 ,

∂𝑈3

∂𝑦
− ∂𝑈2

∂𝑧
= 0 ,

∂𝑈1

∂𝑦
+

1

2

∂𝑈2

∂𝑥
= 0 ,

∂𝑈1

∂𝑧
+

1

2

∂𝑈3

∂𝑥
= 0 ,

∂𝑈2𝑘

∂𝑥
= −∂𝑈2𝑘−2

∂𝑧
− ∂𝑈2𝑘−1

∂𝑦
,

∂𝑈2𝑘+1

∂𝑥
=

∂𝑈2𝑘−2
∂𝑦

− ∂𝑈2𝑘−1
∂𝑧

,

∂𝑈2𝑘

∂𝑧
− ∂𝑈2𝑘+1

∂𝑦
=

∂𝑈2𝑘−2
∂𝑥

,

∂𝑈2𝑘

∂𝑦
+

∂𝑈2𝑘+1

∂𝑧
=

∂𝑈2𝑘−1
∂𝑥

𝑘 = 2, 3, . . . .

(4.10)

First of all, note that there exists a harmonic vector V0 := (𝑈1, 𝑣
0
2 , 𝑣

0
3) in

the domain Ω. Moreover, for any vector V := (𝑈1, 𝑣2, 𝑣3) harmonic in Ω, the
components 𝑣2, 𝑣3 are determined accurate within the real part and the imaginary
part of any function 𝑓1(𝑡) holomorphic in the domain {𝑡 = 𝑧 + 𝑖𝑦 : (𝑥, 𝑦, 𝑧) ∈ Ω}
of the complex plane, i.e., the equalities

𝑣2(𝑥, 𝑦, 𝑧) = 𝑣02(𝑥, 𝑦, 𝑧) + ℜ 𝑓1(𝑧 + 𝑖𝑦), 𝑣3(𝑥, 𝑦, 𝑧) = 𝑣03(𝑥, 𝑦, 𝑧) + ℑ 𝑓1(𝑧 + 𝑖𝑦)

are true for all (𝑥, 𝑦, 𝑧) ∈ Ω. Then, using Theorem 4.4, we find the functions 𝑈2

and 𝑈3, namely:

𝑈2 := −2 𝑣2, 𝑈3 := −2 𝑣3.
Now, let us show that the last four conditions of the system (4.10) allow us to

determine the functions 𝑈2𝑘, 𝑈2𝑘+1, if the functions 𝑈2, 𝑈3, . . . , 𝑈2𝑘−1 are already
determined. Really, integrating the fifth equation and the sixth equation of the
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system (4.10), we obtain the expressions

𝑈2𝑘(𝑥, 𝑦, 𝑧) = −
𝑥∫

𝑥0

(
∂𝑈2𝑘−2(𝜏, 𝑦, 𝑧)

∂𝑧
+

∂𝑈2𝑘−1(𝜏, 𝑦, 𝑧)
∂𝑦

)
𝑑𝜏 + 𝑢2𝑘(𝑧, 𝑦),

𝑈2𝑘+1(𝑥, 𝑦, 𝑧) =

𝑥∫
𝑥0

(
∂𝑈2𝑘−2(𝜏, 𝑦, 𝑧)

∂𝑦
− ∂𝑈2𝑘−1(𝜏, 𝑦, 𝑧)

∂𝑧

)
𝑑𝜏 + 𝑢2𝑘+1(𝑧, 𝑦)

for (𝑥, 𝑦, 𝑧) belonging to a certain neighborhood𝒩 ⊂Ω of any point (𝑥0, 𝑦0, 𝑧0) ∈ Ω.

Substituting these expressions into the seventh equation and eighth equation
of the system (4.10) and taking into account that 𝑈2𝑘−2, 𝑈2𝑘−1 are harmonic func-
tions in the domain 𝒩 , we obtain the following inhomogeneous Cauchy–Riemann
system (see, for example, [29]) for finding the functions 𝑢2𝑘, 𝑢2𝑘+1:

∂𝑢2𝑘(𝑧, 𝑦)

∂𝑧
− ∂𝑢2𝑘+1(𝑧, 𝑦)

∂𝑦
=

∂𝑈2𝑘−2(𝑥, 𝑦, 𝑧)
∂𝑥

∣∣∣∣
𝑥=𝑥0

,

∂𝑢2𝑘(𝑧, 𝑦)

∂𝑦
+

∂𝑢2𝑘+1(𝑧, 𝑦)

∂𝑧
=

∂𝑈2𝑘−1(𝑥, 𝑦, 𝑧)
∂𝑥

∣∣∣∣
𝑥=𝑥0

.

(4.11)

Solutions of the system (4.11) are determined accurate within the real part and the
imaginary part of any function holomorphic in the domain {𝑡 = 𝑧+ 𝑖𝑦 : (𝑥, 𝑦, 𝑧) ∈
𝒩} of the complex plane. Therefore, inasmuch as the domain Ω is simply con-
nected, taking into account the uniqueness theorem for spatial harmonic functions,
it is easy to continue the functions 𝑈2𝑘, 𝑈2𝑘+1 defined in the neighborhood 𝒩 into
the domain Ω. The theorem is proved. □

Let us note that the functions 𝑈2𝑚, 𝑈2𝑚+1 satisfying the last four conditions
of the system (4.10) for 𝑘 = 𝑚 ≥ 2 are determined accurate within the real
part and the imaginary part of any function 𝑓𝑚(𝑡) holomorphic in the domain
{𝑡 = 𝑧 + 𝑖𝑦 : (𝑥, 𝑦, 𝑧) ∈ Ω} of the complex plane, i.e., the equalities

𝑈2𝑚(𝑥, 𝑦, 𝑧) = 𝑈0
2𝑚(𝑥, 𝑦, 𝑧) + ℜ 𝑓𝑚(𝑧 + 𝑖𝑦) ,

𝑈2𝑚+1(𝑥, 𝑦, 𝑧) = 𝑈0
2𝑚+1(𝑥, 𝑦, 𝑧) + ℑ 𝑓𝑚(𝑧 + 𝑖𝑦)

are true for all (𝑥, 𝑦, 𝑧) ∈ Ω, where 𝑈0
2𝑚, 𝑈

0
2𝑚+1 are functions forming together

with the functions 𝑈1, 𝑈2, . . . , 𝑈2𝑚−1 a particular solution of the system (4.10), in
which 𝑘 = 2, 3, . . . ,𝑚.

4.3. Monogenic functions and axial-symmetric potential fields

In the case where a spatial potential field is symmetric with respect to the axis
𝑂𝑥, a potential function 𝑢(𝑥, 𝑦, 𝑧) satisfying equation (1.3) is also symmetric with

respect to the axis 𝑂𝑥, i.e., 𝑢(𝑥, 𝑦, 𝑧) = 𝜑(𝑥, 𝑟) = 𝜑(𝑥,−𝑟), where 𝑟 :=
√
𝑦2 + 𝑧2,

and 𝜑 is known as the axial-symmetric potential. Then in a meridian plane 𝑥𝑂𝑟
there exists a function 𝜓(𝑥, 𝑟) known as the Stokes flow function such that the
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functions 𝜑 and 𝜓 satisfy the following system of equations degenerating on the
axis 𝑂𝑥:

𝑟
∂𝜑(𝑥, 𝑟)

∂𝑥
=

∂𝜓(𝑥, 𝑟)

∂𝑟
, 𝑟

∂𝜑(𝑥, 𝑟)

∂𝑟
= −∂𝜓(𝑥, 𝑟)

∂𝑥
. (4.12)

Under the condition that there exist continuous second-order partial deriva-
tives of the functions 𝜑(𝑥, 𝑟) and 𝜓(𝑥, 𝑟), the system (4.12) implies the equation

𝑟Δ𝜑(𝑥, 𝑟) +
∂𝜑(𝑥, 𝑟)

∂𝑟
= 0 (4.13)

for the axial-symmetric potential and the equation

𝑟Δ𝜓(𝑥, 𝑟) − ∂𝜓(𝑥, 𝑟)

∂𝑟
= 0 (4.14)

for the Stokes flow function, where Δ :=
∂2

∂𝑥2
+

∂2

∂𝑟2
.

We proved in the papers [4, 30] that in a domain convex in the direction of
the axis 𝑂𝑟 the functions 𝜑 and 𝜓 can be constructed by means of components of
principal extensions of analytic functions of a complex variable into a correspond-
ing domain of a special two-dimensional vector manifold in an infinite-dimensional
commutative Banach algebra ℍℂ over the field of complex numbers.

In such a way for solutions of the system (4.12) we obtained integral ex-
pressions which were generalized for domains of general form (see [4, 31]). Using
integral expressions for solutions of the system (4.12), in the papers [4, 32–35] we
developed methods for solving boundary problems for axial-symmetric potentials
and Stokes flow functions that have various applications in mathematical physics.
In particular, the developed methods are applicable for solving a boundary prob-
lem about a streamline of the ideal incompressible fluid along an axial-symmetric
body (see [4, 36]).

Now, let us consider a subalgebra

ℍ := {𝑎 =
∞∑
𝑘=1

𝑎𝑘𝑒2𝑘−1 : 𝑎𝑘 ∈ ℝ,
∞∑
𝑘=1

∣𝑎𝑘∣ <∞}

of the algebra 𝔽. In the paper [37] I. Mel’nichenko offered the algebra ℍ for de-
scribing spatial axial-symmetric potential fields.

As in the papers [30, 38], consider a complexification

ℍℂ := ℍ⊕ 𝑖ℍ ≡ {𝑐 = 𝑎+ 𝑖𝑏 : 𝑎, 𝑏 ∈ ℍ}

of the algebra ℍ such that the norm of element 𝑔 :=
∞∑
𝑘=1

𝑐𝑘𝑒2𝑘−1 ∈ ℍℂ is given by

means of the equality ∥𝑔∥ℍℂ
:=

∞∑
𝑘=1

∣𝑐𝑘∣.
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The algebra ℍℂ is isomorphic to the algebra Fcos of absolutely convergent
trigonometric Fourier series

𝑐(𝜏) =

∞∑
𝑘=1

𝑐𝑘 𝑖𝑘−1 cos(𝑘 − 1)𝜏

with complex coefficients 𝑐𝑘 and the norm ∥𝑐∥Fcos :=
∞∑
𝑘=1

∣𝑐𝑘∣. In this case, we have

the isomorphism 𝑒2𝑘−1 ←→ 𝑖𝑘−1 cos(𝑘 − 1)𝜏 between basic elements.
The structure of maximal ideals of the algebra of absolutely convergent com-

plex Fourier series is described in the monograph [39]. This description allows us
to make a conclusion about the structure of maximal ideals of the algebra ℍℂ and
about the fact that there do not exist inverse elements in ℍℂ for the basic elements
𝑒𝑘, where 𝑘 = 2, 3, . . . .

In particular, the set

ℐ0 :=
{
𝑔∈ℍℂ :

∞∑
𝑘=1

(−1)𝑘(ℜ𝑐2𝑘−1−ℑ𝑐2𝑘)=0,

∞∑
𝑘=1

(−1)𝑘(ℜ𝑐2𝑘+ℑ𝑐2𝑘−1)=0

}
is a maximum ideal of the algebra ℍℂ.

Let 𝑓ℐ0 : ℍℂ → ℂ be the linear functional defined by the equality

𝑓ℐ0

( ∞∑
𝑘=1

𝑐𝑘𝑒2𝑘−1

)
:= −

∞∑
𝑘=1

(−1)𝑘(ℜ 𝑐2𝑘−1 −ℑ 𝑐2𝑘)− 𝑖

∞∑
𝑘=1

(−1)𝑘(ℜ 𝑐2𝑘 + ℑ 𝑐2𝑘−1).

It is evident that the ideal ℐ0 is the kernel of the functional 𝑓ℐ0 and 𝑓(𝑒1) = 1,
i.e., 𝑓ℐ0 is a continuous multiplicative functional.

Consider the Cartesian plane 𝜇 := {𝜁 = 𝑥𝑒1+ 𝑟𝑒3 : 𝑥, 𝑟 ∈ ℝ}. For a domain
𝐸 ⊂ ℝ2 we use coordinated denotations for congruent domains of the plane 𝜇 and
the complex plane ℂ, namely: 𝐸𝜁 := {𝜁 = 𝑥𝑒1 + 𝑟𝑒3 : (𝑥, 𝑟) ∈ 𝐸} ⊂ 𝜇 and
𝐸𝑧 := {𝑧 = 𝑥+ 𝑖𝑟 : (𝑥, 𝑟) ∈ 𝐸} ⊂ ℂ.

We say that a continuous function Φ : 𝐸𝜁 → ℍℂ is monogenic in a domain
𝐸𝜁 if Φ is differentiable in the sense of Gateaux in every point of 𝐸𝜁 , i.e., for every
𝜁 ∈ 𝐸𝜁 there exists an element Φ′(𝜁) ∈ ℍℂ such that the equality (1.7) is fulfilled
for all ℎ ∈ 𝜇.

The proof of the following theorem is similar to the proof of Theorem 4.1.

Theorem 4.6. Let a function Φ : 𝐸𝜁 → ℍℂ be continuous in a domain 𝐸𝜁 ⊂ 𝜇 and
the functions 𝑈𝑘 : 𝐸 → ℂ from the decomposition

Φ(𝑥𝑒1 + 𝑟𝑒3) =

∞∑
𝑘=1

𝑈𝑘(𝑥, 𝑟) 𝑒2𝑘−1

be differentiable in 𝐸. In order that the function Φ be monogenic in the domain
𝐸𝜁 , it is necessary and sufficient that the conditions

∂Φ(𝜁)

∂𝑦
=

∂Φ(𝜁)

∂𝑥
𝑒3 (4.15)
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be satisfied and that the following relations be fulfilled in 𝐸:

∞∑
𝑘=1

∣∣∣∣∂𝑈𝑘(𝑥, 𝑟)

∂𝑥

∣∣∣∣ <∞, (4.16)

lim
𝜀→0+0

∞∑
𝑘=1

∣∣∣∣ 𝑈𝑘(𝑥 + 𝜀ℎ1, 𝑟 + 𝜀ℎ2, )− 𝑈𝑘(𝑥, 𝑟) − ∂𝑈𝑘(𝑥, 𝑟)

∂𝑥
𝜀ℎ1

−∂𝑈𝑘(𝑥, 𝑟)

∂𝑟
𝜀ℎ2

∣∣∣∣ 𝜀−1 = 0 ∀ℎ1, ℎ2 ∈ ℝ . (4.17)

Note that the conditions (4.15) rewritten in expanded form

∂𝑈1(𝑥, 𝑟)

∂𝑟
= −1

2

∂𝑈2(𝑥, 𝑟)

∂𝑥
,

∂𝑈2(𝑥, 𝑟)

∂𝑟
=

∂𝑈1(𝑥, 𝑟)

∂𝑥
− 1

2

∂𝑈3(𝑥, 𝑟)

∂𝑥
,

∂𝑈𝑘(𝑥, 𝑟)

∂𝑟
=

1

2

∂𝑈𝑘−1(𝑥, 𝑟)
∂𝑥

− 1

2

∂𝑈𝑘+1(𝑥, 𝑟)

∂𝑥
, 𝑘 = 3, 4, . . . ,

are similar by nature to the Cauchy–Riemann conditions for monogenic functions
of a complex variable, and the relations (4.16), (4.17) are conditioned by the infinite
dimensionality of the algebra ℍℂ.

In the papers [4, 30] we established relations between monogenic functions
taking values in the algebra ℍℂ and solutions of the system (4.12) in so-called
proper domains.

We call 𝐸𝑧 a proper domain in ℂ, provided that for every 𝑧 ∈ 𝐸𝑧 with ℑ 𝑧 ∕= 0
the domain 𝐸𝑧 contains the segment connecting points 𝑧 and 𝑧. In this case 𝐸𝜁 is
also called a proper domain in 𝜇.

Let 𝐴 be the linear operator which assigns the function 𝐹 : 𝐸𝑧 → ℂ to every
function Φ : 𝐸𝜁 → ℍℂ by the formula 𝐹 (𝑧) := 𝑓ℐ0(Φ(𝜁)), where 𝑧 = 𝑥 + 𝑖𝑟 and
𝜁 = 𝑥𝑒1 + 𝑟𝑒3. It is easy to prove that if Φ is a monogenic function in 𝐸𝜁 , then 𝐹
is an analytic function in 𝐸𝑧.

Theorem 4.7 ([4, 30]). If 𝐸𝜁 is a proper domain in 𝜇, then every monogenic func-
tion Φ : 𝐸𝜁 → ℍℂ can be expressed in the form

Φ(𝜁) =
1

2𝜋𝑖

∫
𝛾

(𝐴Φ)(𝑡)(𝑡𝑒1 − 𝜁)−1 𝑑𝑡+Φ0(𝜁) ∀ 𝜁 ∈ 𝐸𝜁 , (4.18)

where 𝛾 is an arbitrary closed Jordan rectifiable curve in 𝐷𝑧 that embraces the
segment connecting the points 𝑧 = 𝑓ℐ0(𝜁) and 𝑧, and Φ0 : 𝐸𝜁 → ℐ0 is a monogenic
function taking values in the ideal ℐ0.

Note that under the conditions of Theorem 4.7 the integral in the equality
(4.18) is the principal extension (see [8, p. 165]) of an analytic function 𝐹 =
𝐴Φ into the domain 𝐷𝜁 . Thus, the algebra of monogenic functions in 𝐸𝜁 can be
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decomposed into the direct sum of the algebra of principal extensions of complex-
valued analytic functions and the algebra of monogenic functions taking values in
the ideal ℐ0.

In the papers [4, 30], for every function 𝐹 : 𝐸𝑧 → ℂ analytic in a proper
domain 𝐸𝑧 we constructed explicitly the decomposition of the principal extension
of 𝐹 into the domain 𝐸𝜁 with respect to the basis {𝑒2𝑘−1}∞𝑘=1:

1

2𝜋𝑖

∫
𝛾

(𝑡𝑒1 − 𝜁)−1𝐹 (𝑡) 𝑑𝑡 = 𝑈1(𝑥, 𝑟) 𝑒1 + 2

∞∑
𝑘=2

𝑈𝑘(𝑥, 𝑟) 𝑒2𝑘−1 , (4.19)

where

𝑈𝑘(𝑥, 𝑟) :=
1

2𝜋𝑖

∫
𝛾

𝐹 (𝑡)√
(𝑡− 𝑧)(𝑡− 𝑧)

(√
(𝑡− 𝑧)(𝑡− 𝑧)− (𝑡− 𝑥)

𝑟

)𝑘−1
𝑑𝑡 , (4.20)

𝜁 = 𝑥𝑒1 + 𝑟𝑒3 and 𝑧 = 𝑥 + 𝑖𝑟 for (𝑥, 𝑟) ∈ 𝐸, and the curve 𝛾 has the same

properties as in Theorem 4.7, and
√
(𝑡− 𝑧)(𝑡− 𝑧) is a continuous branch of this

function analytic with respect to 𝑡 outside of the segment mentioned in Theorem
4.7. Note that for every 𝑧 ∈ 𝐸𝑧 with ℑ 𝑧 = 0, we define

√
(𝑡− 𝑧)(𝑡− 𝑧) := 𝑡− 𝑧.

In the following theorem we describe relations between principal extensions
of analytic functions into the plane 𝜇 and solutions of the system (4.12).

Theorem 4.8 ([4, 30]). If 𝐹 : 𝐸𝑧 → ℂ is an analytic function in a proper domain
𝐸𝑧, then the first and the second components of principal extension (4.19) of func-
tion 𝐹 into the domain 𝐸𝜁 generate the solutions 𝜑 and 𝜓 of system (4.12) in 𝐸
by the formulas

𝜑(𝑥, 𝑟) = 𝑈1(𝑥, 𝑟), 𝜓(𝑥, 𝑟) = 𝑟 𝑈2(𝑥, 𝑟) . (4.21)

From the relations (4.19)–(4.21) it follows that the functions

𝜑(𝑥, 𝑟) =
1

2𝜋𝑖

∫
𝛾

𝐹 (𝑡)√
(𝑡− 𝑧)(𝑡− 𝑧)

𝑑𝑡 , (4.22)

𝜓(𝑥, 𝑟) = − 1

2𝜋𝑖

∫
𝛾

𝐹 (𝑡) (𝑡− 𝑥)√
(𝑡− 𝑧)(𝑡− 𝑧)

𝑑𝑡 , 𝑧 = 𝑥+ 𝑖𝑟 , (4.23)

are solutions of system (4.12) in the domain 𝐸.
In the following theorem we describe relations between components 𝑈𝑘 of

hypercomplex analytic function (4.19) and solutions of elliptic equations degener-
ating on the axis 𝑂𝑥.

Theorem 4.9 ([40, 41]). If 𝐹 : 𝐸𝑧 → ℂ is an analytic function in a proper domain
𝐸𝑧, then the components 𝑈𝑘 of principal extension (4.19) of function 𝐹 into the
domain 𝐸𝜁 satisfy the equations

𝑟2Δ𝑈𝑘(𝑥, 𝑟) + 𝑟
∂𝑈𝑘(𝑥, 𝑟)

∂𝑟
− (𝑘 − 1)2 𝑈𝑘(𝑥, 𝑟) = 0 , 𝑘 = 1, 2, . . . ,
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in the domain 𝐸. In addition, the function

𝜓𝑘(𝑥, 𝑟) := 𝑟𝑘−1 𝑈𝑘(𝑥, 𝑟)

is a solution in 𝐸 of the equation

𝑟 Δ𝜓𝑘(𝑥, 𝑟) − (2𝑘 − 3)
∂𝜓𝑘(𝑥, 𝑟)

∂𝑟
= 0 , 𝑘 = 1, 2, . . . .

In the following theorem we establish an expression of generalized axial-
symmetric potential via components 𝑈𝑘 of the hypercomplex analytic function
(4.19).

Theorem 4.10 ([42]). If 𝐹 : 𝐸𝑧 → ℂ is an analytic function in a proper domain
𝐸𝑧, then the function

𝑢(𝑥, 𝑟) :=

(
1 +

∞∑
𝑛=1

(𝑚− 1)(𝑚− 3) . . . (𝑚− 4𝑛+ 1)

24𝑛(2𝑛!)
𝐶𝑛
2𝑛

)
𝑈1(𝑥, 𝑟) (4.24)

+

∞∑
𝑘=1

( ∞∑
𝑛=𝑘

(𝑚− 1)(𝑚− 3) . . . (𝑚− 4𝑛+ 1)

24𝑛(2𝑛!)
𝐶𝑛−𝑘
2𝑛

)
𝑈4𝑘+1(𝑥, 𝑟)

+

∞∑
𝑘=0

( ∞∑
𝑛=𝑘

(𝑚− 1)(𝑚− 3) . . . (𝑚− 4𝑛− 1)

24𝑛+2(2𝑛+ 1)!
𝐶𝑛−𝑘
2𝑛+1

)
𝑈4𝑘+3(𝑥, 𝑟),

where 𝐶𝑘
𝑛 are the binomial coefficients, satisfies the equation

Δ𝑢(𝑥, 𝑟) +
𝑚

𝑟

∂𝑢(𝑥, 𝑟)

∂𝑟
= 0 (4.25)

on the set {(𝑥, 𝑟) ∈ 𝐷 : 𝑟 ∕= 0} for 𝑚 ≥ 1.
Furthermore, the function (4.24) is expressed in the form

𝑢(𝑥, 𝑟) =
2(𝑚−3)/2

𝜋𝑖 ∣𝑟∣𝑚−1
∫
𝛾′

𝐹 (𝑡)√
(𝑡− 𝑧)(𝑡− 𝑧)

[(𝑡− 𝑧)(𝑡− 𝑧)]
(𝑚−1)/2

𝑑𝑡 ,

where 𝛾′ is an arbitrary closed Jordan rectifiable curve in 𝐸𝑧 that contains the

points 𝑧 and 𝑧 and embraces the set {𝑥+ 𝑖𝜂 : ∣𝜂∣ < ∣𝑟∣}, and [(𝑡− 𝑧)(𝑡− 𝑧)]
(𝑚−1)/2

is a continuous branch of this function, analytic with respect to 𝑡 outside of the cut
{𝑥+ 𝑖𝜂 : ∣𝜂∣ ≥ ∣𝑟∣}.

Let us write expansions with respect to the basis {𝑒2𝑘−1}∞𝑘=1 of some ele-
mentary analytic functions of the variable 𝜁 = 𝑥𝑒1 + 𝑟𝑒3 (note that in view of the
isomorphism between algebras ℍℂ and Fcos, the construction of expansions of this
sort is reduced to a determination of relevant Fourier coefficients). The expansion
of a power function has the form

𝜁𝑛 = (𝑥2 + 𝑟2)𝑛/2
(
𝑃𝑛(cos𝜗) 𝑒1 + 2

𝑛∑
𝑘=1

(sgn 𝑟)𝑘 𝑛!

(𝑛+ 𝑘)!
𝑃 𝑘
𝑛 (cos𝜗) 𝑒2𝑘+1

)
,
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where 𝑛 is a positive integer, cos𝜗 := 𝑥(𝑥2 + 𝑟2)−1/2,

sgn 𝑟 :=

{
1, for 𝑟 ≥ 0,
−1, for 𝑟 < 0,

and Legendre polynomials 𝑃𝑛 and associated Legendre polynomials 𝑃𝑚
𝑛 are defined

to be the equalities (4.8).
For the functions 𝑒𝜁 , sin 𝜁 and cos 𝜁 we have

𝑒𝜁 = 𝑒𝑥
(
𝐽0(𝑟) 𝑒1 + 2

∞∑
𝑘=1

𝐽𝑘(𝑟) 𝑒2𝑘+1

)
,

sin 𝜁 = sin𝑥

(
𝐽0(𝑖𝑟) 𝑒1 + 2

∞∑
𝑘=1

𝐽2𝑘(𝑖𝑟) 𝑒4𝑘+1

)
− 2𝑖 cos𝑥

∞∑
𝑘=1

𝐽2𝑘−1(𝑖𝑟) 𝑒4𝑘−1,

cos 𝜁 = cos𝑥

(
𝐽0(𝑖𝑟) 𝑒1 + 2

∞∑
𝑘=1

𝐽2𝑘(𝑖𝑟) 𝑒4𝑘+1

)
+ 2𝑖 sin𝑥

∞∑
𝑘=1

𝐽2𝑘−1(𝑖𝑟) 𝑒4𝑘−1,

where Bessel functions 𝐽𝑚 are defined by the equality (4.9).
For the functions 𝜁−1 and Ln 𝜁 we obtain

𝜁−1 =

⎧⎨⎩
1√

𝑥2 + 𝑟2

(
𝑒1 + 2

∞∑
𝑘=1

(−1)𝑘
(√

𝑥2 + 𝑟2 − 𝑥

𝑟

)𝑘

𝑒2𝑘+1

)
for 𝑥 > 0,

− 1√
𝑥2 + 𝑟2

(
𝑒1 + 2

∞∑
𝑘=1

(√
𝑥2 + 𝑟2 + 𝑥

𝑟

)𝑘

𝑒2𝑘+1

)
for 𝑥 < 0,

Ln 𝜁 =

⎧⎨⎩

(
ln

√
𝑥2 + 𝑟2 + 𝑥

2
+ 2𝑚𝜋𝑖

)
𝑒1

+2

∞∑
𝑘=1

(−1)𝑘+1

𝑘

(√
𝑥2 + 𝑟2 − 𝑥

𝑟

)𝑘

𝑒2𝑘+1 for 𝑥 > 0,(
ln

√
𝑥2 + 𝑟2 − 𝑥

2
+ (2𝑚+ 1)𝜋𝑖

)
𝑒1

+2

∞∑
𝑘=1

1

𝑘

(√
𝑥2 + 𝑟2 + 𝑥

𝑟

)𝑘

𝑒2𝑘+1 for 𝑥 < 0,

where 𝑚 is an integer number. In this case, the functions 𝜁−1 and Ln 𝜁 are not
defined for 𝑥 = 0.

4.4. Integral expressions for axial-symmetric potential and
the Stokes flow function

In the papers [4, 31] we generalized integral expressions (4.22) and (4.23) for the
axial-symmetric potential and the Stokes flow function, respectively, to the case
of an arbitrary simply connected domain symmetric with respect to the axis 𝑂𝑥.

Below in Section 4, 𝐸 is a bounded simply connected domain symmetric with
respect to the axis 𝑂𝑥. For every 𝑧 ∈ 𝐸𝑧 with ℑ 𝑧 ∕= 0, we fix an arbitrary Jordan
rectifiable curve Γ𝑧𝑧 in 𝐸𝑧 which connects the points 𝑧 and 𝑧. In this case, let
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√
(𝑡− 𝑧)(𝑡− 𝑧) be a continuous branch of this function analytic with respect to 𝑡

outside of the cut along Γ𝑧𝑧. As earlier, for every 𝑧 ∈ 𝐸𝑧 with ℑ 𝑧 = 0 we define√
(𝑡− 𝑧)(𝑡− 𝑧) := 𝑡− 𝑧.

Theorem 4.11 ([31, 35]). If 𝐹 is an analytic function in the domain 𝐸𝑧, then
the functions (4.22) and (4.23) are solutions of system (4.12) in 𝐸, where 𝛾 is
an arbitrary closed Jordan rectifiable curve in 𝐸𝑧 which embraces Γ𝑧𝑧. Functions
(4.22) and (4.23) are also solutions of equations (4.13) and (4.14), respectively.

It is evident that if the boundary ∂𝐸𝑧 is a Jordan rectifiable curve and the
function 𝐹 belongs to the Smirnov class 𝐸1 (see [43], p. 205) in the domain 𝐸𝑧 ,
then the formulas (4.22) and (4.23) can be transformed to the form

𝜑(𝑥, 𝑟) =
1

2𝜋𝑖

∫
∂𝐸𝑧

𝐹 (𝑡)√
(𝑡− 𝑧)(𝑡− 𝑧)

𝑑𝑡 , (4.26)

𝜓(𝑥, 𝑟) = − 1

2𝜋𝑖

∫
∂𝐸𝑧

𝐹 (𝑡) (𝑡− 𝑥)√
(𝑡− 𝑧)(𝑡− 𝑧)

𝑑𝑡 , 𝑧 = 𝑥+ 𝑖𝑟 , (4.27)

for all (𝑥, 𝑟) ∈ 𝐸, where 𝐹 (𝑡) is the angular boundary value of the function 𝐹
which is known to exist almost everywhere on ∂𝐸𝑧.

If 𝑧 ∈ 𝐸𝑧 with ℑ 𝑧 ∕= 0 and 𝛼 ∈ ℝ, then
(
(𝑡− 𝑧)(𝑡− 𝑧)

)𝛼
is understood as a

continuous branch of the function 𝐿(𝑡) :=
(
(𝑡− 𝑧)(𝑡− 𝑧)

)𝛼
analytic with respect

to 𝑡 outside of the cut along a Jordan curve that successively connects the points
𝑧, ∞ and 𝑧, and the only common points of which with the set Γ𝑧𝑧 ∪ ℝ are the
points 𝑧 and 𝑧. In this case 𝐿(𝑡) > 0 for all 𝑡 > max

𝜏∈Γ𝑧𝑧

ℜ 𝜏 .

In the following theorem we establish an integral expression of generalized
axial-symmetric potential that is a generalisation of integral expressions obtained
by A.G. Mackie [44], P. Henrici [45], Yu.P. Krivenkov [46] and G.N. Polozhii [47].

Theorem 4.12 ([48]). If 𝑚 > 0 and 𝐹 is an analytic function in the domain 𝐸𝑧,
then the function

𝑢(𝑥, 𝑦) =
1

2𝜋𝑖∣𝑦∣𝑚−1
∫
Γ𝑧𝑧

𝐹 (𝑡)
(
(𝑡− 𝑧)(𝑡− 𝑧)

)𝑚/2−1
𝑑𝑡 , 𝑧 = 𝑥+ 𝑖𝑦, (4.28)

satisfies equation (4.25) on the set {(𝑥, 𝑦) ∈ 𝐸 : 𝑦 ∕= 0}. Moreover, there exists the
limit

lim
(𝑥,𝑦)→(𝑥0,0)

𝑢(𝑥, 𝑦) =
B
(
𝑚
2 ,

1
2

)
2𝜋

𝐹 (𝑥0) ∀𝑥0 ∈ ℝ : (𝑥0, 0) ∈ 𝐸 ,

where B(𝑝, 𝑞) is the Euler beta function.

We proved converse theorems on integral expressions of axial symmetric po-
tentials and Stokes flow functions in domains of a meridian plane.
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Theorem 4.13 ([32, 35]). Suppose that the axial-symmetric potential 𝜑(𝑥, 𝑟) is even
with respect to the variable 𝑟 in the domain 𝐸. Then there exists the unique function
𝐹 analytic in the domain 𝐸𝑧 and satisfying the condition

𝐹 (𝑧) = 𝐹 (𝑧) ∀ 𝑧 ∈ 𝐷𝑧 (4.29)

such that the equality (4.22) is fulfilled for all (𝑥, 𝑟) ∈ 𝐸.

Theorem 4.14 ([34, 35]). Suppose that the Stokes flow function 𝜓(𝑥, 𝑟) is even with
respect to the variable 𝑟 in the domain 𝐸 and satisfies the additional assumption

𝜓(𝑥, 0) ≡ 0 ∀ (𝑥, 0) ∈ 𝐸 . (4.30)

Then there exists a function 𝐹0 analytic in the domain 𝐸𝑧 such that the equality
(4.23) is fulfilled with 𝐹 = 𝐹0 for all (𝑥, 𝑟) ∈ 𝐸. Moreover, any analytic function
𝐹 which satisfies the condition (4.29) and the equality (4.23) for all (𝑥, 𝑟) ∈ 𝐷 is
expressed in the form 𝐹 (𝑧) = 𝐹0(𝑧) + 𝐶, where 𝐶 is a real constant.

Note that the requirement (4.30) is natural. For example, for the model of
steady flow of an ideal incompressible fluid without sources and vortexes it means
that the axis 𝑂𝑥 is a line of flow.

Using integral expressions (4.26) and (4.27), we developed a method for
effectively solving boundary problems for axial-symmetric potential fields (see
[4, 32–36]).

5. Monogenic functions in the biharmonic algebra

5.1. Biharmonic algebra

We say that an associative commutative two-dimensional algebra 𝔹 with the unit
1 over the field ℂ is biharmonic if in 𝔹 there exists a biharmonic basis {𝑒1, 𝑒2}
satisfying the conditions

(𝑒21 + 𝑒22)
2 = 0, 𝑒21 + 𝑒22 ∕= 0 . (5.1)

V.F. Kovalev and I.P. Mel’nichenko [49] found a multiplication table for a
biharmonic basis {𝑒1, 𝑒2}:

𝑒1 = 1, 𝑒22 = 𝑒1 + 2𝑖𝑒2. (5.2)

In the paper [50] I.P. Mel’nichenko proved that there exists a unique bihar-
monic algebra 𝔹 with a non-biharmonic basis {1, 𝜌}, for which 𝜌2 = 0. Moreover,
he constructed all biharmonic bases in the form:

𝑒1 = 𝛼1 + 𝛼2 𝜌 , 𝑒2 = ± 𝑖

(
𝛼1 +

(
𝛼2 − 1

2𝛼1

)
𝜌

)
, (5.3)

where complex numbers 𝛼1 ∕= 0, 𝛼2 can be chosen arbitrarily. In particular, for the
basis (5.2) in the equalities (5.3) we choose 𝛼1 = 1, 𝛼2 = 0 and + of the double
sign:

𝑒1 = 1, 𝑒2 = 𝑖− 𝑖

2
𝜌, (5.4)
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Note that every analytic function Φ(𝜁) of the variable 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 satisfies
the two-dimensional biharmonic equation

(Δ2)
2𝑈(𝑥, 𝑦) :=

(
∂4

∂𝑥4
+ 2

∂4

∂𝑥2∂𝑦2
+

∂4

∂𝑦4

)
𝑈(𝑥, 𝑦) = 0 (5.5)

owing to the relations (5.1) and (Δ2)
2Φ = Φ(4)(𝜁) (𝑒21 + 𝑒22)

2.
The algebra 𝔹 has the unique maximum ideal ℐ := {𝜆𝜌 : 𝜆 ∈ ℂ} which is

also the radical of 𝔹. In what follows, 𝑓 : 𝔹→ ℂ is the linear functional such that
the maximum ideal ℐ is its kernel and 𝑓(1) = 1.

5.2. Monogenic functions given in a biharmonic plane.
Cauchy–Riemann conditions

Consider a biharmonic plane 𝜇𝑒1,𝑒2 := {𝜁 = 𝑥 𝑒1 + 𝑦 𝑒2 : 𝑥, 𝑦 ∈ ℝ} which is a
linear envelope generated by the elements 𝑒1, 𝑒2 of biharmonic basis (5.3). In what
follows, 𝜁 = 𝑥 𝑒1 + 𝑦 𝑒2 and 𝑥, 𝑦 ∈ ℝ.

Let 𝐺𝜁 be a domain in the biharmonic plane 𝜇𝑒1,𝑒2 . Inasmuch as divisors of
zero don’t belong to the plane 𝜇𝑒1,𝑒2 , the Gateaux derivative of function Φ : 𝐺𝜁 →
𝔹 coincides with the derivative

Φ′(𝜁) := lim
ℎ→0, ℎ∈𝜇𝑒1,𝑒2

(
Φ(𝜁 + ℎ)− Φ(𝜁)

)
ℎ−1 .

Therefore, we define monogenic functions as functions Φ : 𝐺𝜁 → 𝔹 for which the
derivative Φ′(𝜁) exists in every point 𝜁 ∈ 𝐺𝜁 .

It is established in the paper [49] that a function Φ(𝜁) is monogenic in a
domain of biharmonic plane generated by the biharmonic basis (5.4) if and only if
the following Cauchy–Riemann condition is satisfied:

∂Φ(𝜁)

∂𝑦
=

∂Φ(𝜁)

∂𝑥
𝑒2. (5.6)

It can similarly be proved that a function Φ : 𝐺𝜁 → 𝔹 is monogenic in a
domain 𝐺𝜁 of an arbitrary biharmonic plane 𝜇𝑒1,𝑒2 if and only if the following
equality is fulfilled:

∂Φ(𝜁)

∂𝑦
𝑒1 =

∂Φ(𝜁)

∂𝑥
𝑒2 ∀ 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 ∈ 𝐺𝜁 . (5.7)

Below in Section 5, all stated results are obtained jointly with S.V. Gryshchuk
(see also [51]).

5.3. A constructive description of monogenic functions given in a biharmonic plane

Let 𝐷 := 𝑓(𝐺𝜁) and 𝐴 be the linear operator which assigns the function 𝐹 :
𝐷 → ℂ to every function Φ : 𝐺𝜁 → 𝔹 by the formula 𝐹 (𝜉) := 𝑓(Φ(𝜁)), where
𝜉 := 𝑓(𝜁) = 𝛼1(𝑥± 𝑖𝑦).

It is evident that if Φ is a monogenic function in the domain 𝐺𝜁 , then 𝐹 is an
analytic function in the domain 𝐷, i.e., 𝐹 is either holomorphic in the case where
𝜉 = 𝛼1(𝑥+ 𝑖𝑦) or antiholomorphic in the case where 𝜉 = 𝛼1(𝑥− 𝑖𝑦).
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The following theorem can be proved similarly to Theorem 2.3.

Theorem 5.1. Every monogenic function Φ : 𝐺𝜁 → 𝔹 can be expressed in the form

Φ(𝜁) =
1

2𝜋𝑖

∫
Γ𝜁

(𝐴Φ)(𝑡)(𝑡 − 𝜁)−1 𝑑𝑡+Φ0(𝜁) ∀ 𝜁 ∈ 𝐺𝜁 , (5.8)

where Γ𝜁 is an arbitrary closed rectifiable curve in 𝐷 that embraces the point 𝑓(𝜁),
and Φ0 : 𝐺𝜁 → ℐ is a monogenic function taking values in the radical ℐ.

Note that the complex number 𝜉 = 𝑓(𝜁) is the spectrum of 𝜁 ∈ 𝔹, and the
integral in the equality (5.8) is the principal extension (see [8, p. 165]) of analytic
function 𝐹 (𝜉) = (𝐴Φ)(𝜉) of the complex variable 𝜉 into the domain 𝐺𝜁 .

It follows from Theorem 5.1 that the algebra of monogenic in 𝐺𝜁 functions is
decomposed into the direct sum of the algebra of principal extensions of analytic
functions of a complex variable and the algebra of monogenic in 𝐺𝜁 functions
taking values in the radical ℐ.

In the following theorem we describe all monogenic functions given in the
domain 𝐺𝜁 and taking values in the radical ℐ.
Theorem 5.2. Every monogenic function Φ0 : 𝐺𝜁 → ℐ can be expressed in the form

Φ0(𝜁) = 𝐹0(𝜉)𝜌 ∀ 𝜁 ∈ 𝐺𝜁 , (5.9)

where 𝐹0 : 𝐷 → ℂ is an analytic function and 𝜉 = 𝑓(𝜁).

Proof. Substituting the function (5.9) in the equality (5.7) in place of Φ and taking
into account the equalities 𝜌𝑒1 = 𝛼1𝜌, 𝜌𝑒2 = ±𝛼1𝑖𝜌, we get

𝛼1
∂𝐹0(𝜉)

∂𝑦
𝜌 = ±𝛼1

∂𝐹0(𝜉)

∂𝑥
𝑖 𝜌 ∀ 𝜉 ∈ 𝐷. (5.10)

From the equality (5.10), taking into account the uniqueness of decomposition
of elements of 𝔹 with respect to the basis {1, 𝜌}, we obtain the equality

∂𝐹0(𝜉)

∂𝑦
= ±𝑖 ∂𝐹0(𝜉)

∂𝑥
∀ 𝜉 ∈ 𝐷.

Thus, the function 𝐹0 is either holomorphic in 𝐷 in the case where 𝜉 =
𝛼1(𝑥 + 𝑖𝑦) or antiholomorphic in 𝐷 in the case where 𝜉 = 𝛼1(𝑥 − 𝑖𝑦), i.e., 𝐹0 is
analytic in the domain 𝐷. The theorem is proved. □

It follows from the equalities (5.8), (5.9) that any monogenic function Φ :
𝐺𝜁 → 𝔹 can be constructed by means of two complex analytic in 𝐷 functions 𝐹 ,
𝐹0 in the form:

Φ(𝜁) =
1

2𝜋𝑖

∫
Γ𝜁

𝐹 (𝑡)(𝑡− 𝜁)−1𝑑𝑡+ 𝐹0(𝑓(𝜁))𝜌 ∀𝜁 ∈ 𝐺𝜁 . (5.11)
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Moreover, by using the expression

(𝑡− 𝜁)−1 =
1

𝑡− 𝜉
− 1

2𝛼1

2𝛼2𝜉 ± 𝑖𝑦

(𝑡− 𝜉)2
𝜌,

∀ 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 ∈ 𝐺𝜁 ∀ 𝑡 ∈ ℂ : 𝑡 ∕= 𝜉 = 𝛼1(𝑥± 𝑖𝑦),

the principal extension of an analytic in 𝐷 function 𝐹 into 𝐺𝜁 can explicitly be
constructed in the form

1

2𝜋𝑖

∫
Γ𝜁

𝐹 (𝑡)(𝑡 − 𝜁)−1𝑑𝑡 = 𝐹 (𝜉)− 𝐹 ′(𝜉)
𝛼1

(
𝛼2𝜉 ± 𝑖𝑦

2

)
𝜌,

𝜉 = 𝑓(𝜁) ∈ 𝐷, ∀ 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 ∈ 𝐺𝜁 .

(5.12)

Note that in a particular case, in the paper [49] principal extensions of ana-
lytic functions of a complex variable was explicitly constructed into the biharmonic
plane generated by the biharmonic basis (5.4).

The following theorem can be proved similarly to Theorem 2.7.

Theorem 5.3. Every monogenic function Φ : 𝐺𝜁 → 𝔹 has derivatives of all orders
in the domain 𝐺𝜁 .

5.4. Isomorphism of algebras of monogenic functions

There is an isomorphism between algebras of monogenic functions at transition
from a biharmonic basis to another one. By ℳ(𝜇𝑒1,𝑒2 , 𝐺𝜁) we denote the algebra
of monogenic functions in a domain 𝐺𝜁 ⊂ 𝜇𝑒1,𝑒2 .

Theorem 5.4. Let {𝑒1, 𝑒2} be the biharmonic basis composed of the elements (5.4)
and {𝑒1, 𝑒2} be an arbitrary biharmonic basis composed of elements of the form

(5.3). Let 𝐺𝜁 be a domain in the biharmonic plane 𝜇𝑒1,𝑒2 and 𝐺̃
˜𝜁 := {𝜁 = 𝑥𝑒1±𝑦𝑒2 :

𝜁 = 𝑥𝑒1+𝑦𝑒2 ∈ 𝐺𝜁} be the congruent domain in the biharmonic plane 𝜇𝑒1,𝑒2 . Then

the algebras ℳ(𝜇𝑒1,𝑒2 , 𝐺𝜁),ℳ(𝜇𝑒1,𝑒2 , 𝐺̃˜𝜁) are isomorphic, and the correspondence

ℳ(𝜇𝑒1,𝑒2 , 𝐺𝜁) ∋ Φ←→ Φ̃ ∈ℳ(𝜇𝑒1,𝑒2 , 𝐺̃˜𝜁) are established by the equality

Φ̃(𝜁) = Φ(𝜁) + Φ′(𝜁)(𝑥𝑟1 + 𝑦𝑟2)𝜌,

where 𝑟1 := 𝛼2/𝛼1, 𝑟2 := 𝑖(𝛼2
1 + 2𝛼1𝛼2 − 1)/(2𝛼2

1) and 𝛼1, 𝛼2 are the same com-
plex numbers which are situated in the equalities of the form (5.3) for elements of
the basis {𝑒1, 𝑒2}.
5.5. A representation of a biharmonic function in the form of the first component

of a monogenic function

In what follows, the basic elements 𝑒1, 𝑒2 are defined by the equalities (5.4) and
𝜁 = 𝑥 𝑒1 + 𝑦 𝑒2, 𝑧 = 𝑥+ 𝑖𝑦 and 𝑥, 𝑦 ∈ ℝ.

𝑈 : 𝐺→ ℝ is called a biharmonic function in a domain 𝐺 ⊂ ℝ2 if it satisfies
equation (5.5) in 𝐺.
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We shall prove that every biharmonic function 𝑈1(𝑥, 𝑦) in a bounded simply
connected domain 𝐺 ⊂ ℝ2 is the first component of some monogenic function

Φ(𝜁) = 𝑈1(𝑥, 𝑦) 𝑒1 + 𝑈2(𝑥, 𝑦) 𝑖𝑒1 + 𝑈3(𝑥, 𝑦) 𝑒2 + 𝑈4(𝑥, 𝑦) 𝑖𝑒2, (5.13)

in the corresponding domain 𝐺𝜁 := {𝜁 = 𝑥𝑒1+ 𝑦𝑒2 : (𝑥, 𝑦) ∈ 𝐺} of the biharmonic
plane 𝜇𝑒1,𝑒2 , where 𝑈𝑘 : 𝐺→ ℝ for 𝑘 = 1, 4.

At first, consider some auxiliary statements.

Lemma 5.5. Every monogenic function (5.13) with 𝑈1 ≡ 0 is of the form

Φ(𝜁) = 𝑖(−𝑎𝑥2 + 𝑘𝑥− 𝑎𝑦2 − 𝑏𝑦 + 𝑛) + 𝑒2(2𝑎𝑦
2 + 2𝑏𝑦 + 𝑐)

+ 𝑖𝑒2(−2𝑎𝑥𝑦 − 𝑏𝑥+ 𝑘𝑦 +𝑚) ∀ 𝜁 ∈ 𝜇𝑒1,𝑒2 , (5.14)

where 𝑎, 𝑏, 𝑐, 𝑘,𝑚, 𝑛 are arbitrary real constants.

To prove Lemma 5.5, taking into account the identity 𝑈1 ≡ 0, one should
integrate the Cauchy–Riemann condition (5.6) rewritten in expanded form:

0 =
∂𝑈3(𝑥, 𝑦)

∂𝑥
,

∂𝑈2(𝑥, 𝑦)

∂𝑦
=

∂𝑈4(𝑥, 𝑦)

∂𝑥
,

∂𝑈3(𝑥, 𝑦)

∂𝑦
= −2∂𝑈4(𝑥, 𝑦)

∂𝑥
,

∂𝑈4(𝑥, 𝑦)

∂𝑦
=

∂𝑈2(𝑥, 𝑦)

∂𝑥
+ 2

∂𝑈3(𝑥, 𝑦)

∂𝑥
.

Lemma 5.6. If 𝐹 is a holomorphic function in a bounded simply connected domain
𝐷 ⊂ ℂ, then the functions

Φ1(𝜁) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)− 𝑒2𝑣(𝑥, 𝑦) + 𝑖𝑒2𝑢(𝑥, 𝑦),

Φ2(𝜁) = 𝑦𝑢(𝑥, 𝑦) + 𝑖𝑦𝑣(𝑥, 𝑦) + 𝑒2 (𝒰(𝑥, 𝑦)− 𝑦𝑣(𝑥, 𝑦))

+ 𝑖𝑒2 (𝒱(𝑥, 𝑦) + 𝑦𝑢(𝑥, 𝑦)) ,

Φ3(𝜁) = 𝑥𝑢(𝑥, 𝑦) + 𝑖𝑥𝑣(𝑥, 𝑦) + 𝑒2 (𝒱(𝑥, 𝑦)− 𝑥𝑣(𝑥, 𝑦))

+ 𝑖𝑒2 (𝑥𝑢(𝑥, 𝑦)− 𝒰(𝑥, 𝑦)) ∀ 𝜁 = 𝑥𝑒1 + 𝑦𝑒2 ∈ 𝐺𝜁

are monogenic in the domain 𝐺𝜁 ≡ {𝜁 = 𝑥𝑒1 + 𝑦𝑒2 : 𝑥+ 𝑖𝑦 ∈ 𝐷} of a biharmonic
plane 𝜇𝑒1,𝑒2 , where

𝑢(𝑥, 𝑦) := ℜ𝐹 (𝜉), 𝑣(𝑥, 𝑦) := ℑ𝐹 (𝜉),

𝒰(𝑥, 𝑦) := ℜℱ(𝜉), 𝒱(𝑥, 𝑦) := ℑℱ(𝜉) ∀ 𝜉 ∈ 𝐷

and ℱ is a primitive function for the function 𝐹 .

To prove Lemma 5.6, it is easy to show that the functions Φ1, Φ2, Φ3 satisfy
the conditions of the form (5.6).
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It is well known that every biharmonic function 𝑈1(𝑥, 𝑦) in the domain 𝐺 is
expressed by the Goursat formula

𝑈1(𝑥, 𝑦) = ℜ (𝜑(𝜉) + 𝜉𝜓(𝜉)), 𝜉 = 𝑥+ 𝑖𝑦, (5.15)

where 𝜑, 𝜓 are holomorphic functions in the domain 𝐷 ≡ {𝑥 + 𝑖𝑦 : (𝑥, 𝑦) ∈ 𝐺},
𝜉 := 𝑥− 𝑖𝑦.

Theorem 5.7. Every biharmonic function 𝑈1(𝑥, 𝑦) in a bounded simply connected
domain 𝐺 ⊂ ℝ2 is the first component in the decomposition (5.13) of the function

Φ(𝜁) = 𝜑(𝜉) + 𝜉𝜓(𝜉) + 𝑖𝑒2
(
𝜑(𝜉) + 𝜉𝜓(𝜉) − 2ℱ(𝜉)) , (5.16)

monogenic in the corresponding domain 𝐺𝜁 of the biharmonic plane 𝜇𝑒1,𝑒2 , where
𝜑, 𝜓 are the same functions as in the equality (5.15) and ℱ is a primitive function
for the function 𝜓. Moreover, all monogenic in 𝐺𝜁 functions for which the first
component in the decomposition (5.13) is the given function 𝑈1 are expressed as
the sum of the functions (5.14) and (5.16).

Proof. Introducing the functions

𝑢1(𝑥, 𝑦) := ℜ𝜑(𝑧), 𝑢2(𝑥, 𝑦) := ℜ𝜓(𝑧), 𝑣2(𝑥, 𝑦) := ℑ𝜓(𝑧),

we rewrite the equality (5.15) in the form

𝑈1(𝑥, 𝑦) = 𝑢1(𝑥, 𝑦) + 𝑥𝑢2(𝑥, 𝑦) + 𝑦𝑣2(𝑥, 𝑦). (5.17)

Now, it follows from equality (5.17) and Lemma 5.6 that the function (5.16) is
monogenic in the domain 𝐺𝜁 and its first component in the decomposition (5.13)
is the given function 𝑈1. Finally, it evidently follows from Lemma 5.5 that all
monogenic in 𝐺𝜁 functions for which the first component in the decomposition
(5.13) is the given function 𝑈1 are expressed as the sum of functions (5.14) and
(5.16). The theorem is proved. □

5.6. Integral theorems

In contrast to the papers [12, 13], where integral theorems are established for func-
tions differentiable in the sense of Lorch in domains of a commutative associative
Banach algebra, we establish similar results for monogenic functions Φ : 𝐺𝜁 → 𝔹
given only in a domain 𝐺𝜁 of the biharmonic plane 𝜇𝑒1,𝑒2 instead of a domain of
the whole algebra 𝔹. Moreover, note that the integral Cauchy formula established
in the papers [12, 13] is not applicable to a monogenic function Φ : 𝐺𝜁 → 𝔹 be-
cause it deals with an integration along a curve on which the function Φ is not
given, generally speaking.

For the Euclidian norm ∥𝑎∥ :=
√∣𝜉1∣2 + ∣𝜉2∣2, where 𝑎 = 𝜉1𝑒1 + 𝜉2𝑒2 and

𝜉1, 𝜉2 ∈ ℂ, in the algebra 𝔹 the inequality

∥𝑎𝑏∥ ≤
√
10 ∥𝑎∥ ∥𝑏∥ ∀ 𝑎, 𝑏 ∈ 𝔹 (5.18)

is fulfilled.
In the same way as in the complex plane, a rectifiable curve and an integral

along a rectifiable curve are defined in the biharmonic plane 𝜇𝑒1,𝑒2 .
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The Cauchy integral theorem and integral formula for monogenic functions
of the variable 𝜁 ∈ 𝜇𝑒1,𝑒2 are proved by a classic scheme (see, for example, [26])
by using the inequality (5.18). For a proof of the Cauchy integral formula we use
as well the equality (3.8) which is also fulfilled in the biharmonic plane 𝜇𝑒1,𝑒2 .

Thus, the following statement is true:

Theorem 5.8. Suppose that the boundary ∂𝐺𝜁 of domain 𝐺𝜁 is a closed Jordan

rectifiable curve, and a function Φ: 𝐺𝜁 −→ 𝔹 is continuous in the closure 𝐺𝜁 of
the domain 𝐺𝜁 and is monogenic in 𝐺𝜁 . Then the following equalities are fulfilled :∫

∂𝐺𝜁

Φ(𝜏) 𝑑𝜏 = 0 (the Cauchy theorem), (5.19)

Φ(𝜁) =
1

2𝜋𝑖

∫
∂𝐺𝜁

Φ(𝜏)(𝜏 − 𝜁)−1 𝑑𝜏 ∀𝜁 ∈ 𝐺𝜁 (the Cauchy formula). (5.20)

For functions of the biharmonic variable 𝜁, the following Morera theorem can
be established in the usual way (see, for example, [26]) by using Theorem 5.3 and
the inequality (5.18).

Theorem 5.9. If a function Φ: 𝐺𝜁 −→ 𝔹 is continuous in a domain 𝐺𝜁 and satisfies

the equality (3.6) for every triangle △𝜁 such that △𝜁 ⊂ 𝐺𝜁 , then the function Φ is
monogenic in the domain 𝐺𝜁 .

5.7. The Taylor expansion

Consider a problem on an expansion of a monogenic in 𝐷𝜁 function Φ in the Taylor
power series. Applying to the function (5.20) a method similar to a method for
expanding holomorphic functions, which is based on an expansion of the Cauchy
kernel in a power series (see, for example, [26, p. 107]), we obtain immediately the
following expansion of the function Φ in the power series:

Φ(𝜁) =
∞∑
𝑛=0

𝑏𝑛(𝜁 − 𝜁0)
𝑛, (5.21)

where

𝑏𝑛 =
Φ(𝑛)(𝜁0)

𝑛!
=

1

2𝜋𝑖

∫
Γ

Φ(𝜏)
(
(𝜏 − 𝜁0)

−1
)𝑛+1

𝑑𝜏 , 𝑛 = 0, 1, . . . ,

and Γ is an arbitrary closed Jordan rectifiable curve in 𝐺𝜁 that embraces the point
𝜁0. But in such a way it can only be proved that the series (5.21) is convergent in
a disk 𝐾𝑟(𝜁0) := {𝜁 ∈ 𝜇𝑒1,𝑒2 : ∥𝜁 − 𝜁0∥ < 𝑟} with a radius 𝑟 which is less than the
distance between 𝜁0 and the boundary of domain 𝐺𝜁 . It is connected with that

fact that the constant
√
10 can not be replaced by 1 in the inequality (5.18).

Nevertheless, taking into account the equality (5.12) in the plane 𝜇𝑒1,𝑒2 gen-
erated by the basis (5.4) and using the equality (5.11) which is transformed now
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into the form

Φ(𝜁) = 𝐹 (𝜉)𝑒1 −
(
𝑖𝑦

2
𝐹 ′(𝜉) − 𝐹0(𝜉)

)
𝜌 ∀𝜁 ∈ 𝐺𝜁 , (5.22)

we can prove the convergence of the series (5.21) in the disk 𝐾𝑅(𝜁0) with the
radius 𝑅 := min

𝜏∈∂𝐷𝜁

∥𝜏 − 𝜁0∥.

Theorem 5.10. If a function Φ: 𝐺𝜁 −→ 𝔹 is monogenic in a domain 𝐺𝜁 and
𝜁0 = 𝑥0𝑒1 + 𝑦0𝑒2 is an arbitrary point in 𝐺𝜁 , then Φ is expressed in the disk
𝐾𝑅(𝜁0) as the sum of the convergent power series (5.21). In this case

𝑏𝑛 =

(
𝑐𝑛 +

(
𝑐(0)𝑛 − (𝑛+ 1)

𝑖𝑦0
2

𝑐𝑛+1

)
𝜌

)
, (5.23)

where 𝑐𝑛 and 𝑐
(0)
𝑛 are coefficients of the Taylor series

𝐹 (𝜉) =

∞∑
𝑛=0

𝑐𝑛(𝜉 − 𝜉0)
𝑛, 𝐹0(𝜉) =

∞∑
𝑛=0

𝑐(0)𝑛 (𝜉 − 𝜉0)
𝑛, 𝜉0 = 𝑥0 + 𝑖𝑦0, (5.24)

for the functions 𝐹 and 𝐹0 included in the equality (5.22).

Proof. Inasmuch as in the equality (5.22) the functions 𝐹 and 𝐹0 are holomorphic
in the domain 𝐷 := {𝜉 = 𝑥+ 𝑖𝑦 : 𝑥𝑒1 + 𝑦𝑒2 ∈ 𝐺𝜁}, the series (5.24) are absolutely
convergent in the disk {𝜉 ∈ ℂ : ∣𝜉 − 𝜉0∣ < 𝑅}. Then we rewrite the equality (5.22)
in the form

Φ(𝜁) = 𝑐0 +

∞∑
𝑛=1

𝑐𝑛

(
(𝜉 − 𝜉0)

𝑛 − 𝑖(𝑦 − 𝑦0)

2
𝑛(𝜉 − 𝜉0)

𝑛−1𝜌
)

− 𝑖𝑦0
2

∞∑
𝑛=0

(𝑛+ 1)𝑐𝑛+1(𝜉 − 𝜉0)
𝑛𝜌+

∞∑
𝑛=0

𝑐(0)𝑛 (𝜉 − 𝜉0)
𝑛𝜌.

Now, using the relations

(𝜁 − 𝜁0)
𝑛 = (𝜉 − 𝜉0)

𝑛 − 𝑛
𝑖(𝑦 − 𝑦0)

2
(𝜉 − 𝜉0)

𝑛−1𝜌, (𝜁 − 𝜁0)
𝑛𝜌 = (𝜉 − 𝜉0)

𝑛𝜌 (5.25)

for all 𝜁 ∈ 𝜇𝑒1,𝑒2 and 𝑛 = 0, 1, . . . , we obtain the expression (5.21), where co-
efficients are defined by the equality (5.23) and the series (5.21) is absolutely
convergent in the disk 𝐾𝑅(𝜁0). The theorem is proved. □

Now, in the same way as for holomorphic functions of a complex variable
(see., for example, [26, p. 118]), we obtain the following uniqueness theorem for
monogenic functions of a biharmonic variable.

Theorem 5.11. If two monogenic in 𝐺𝜁 functions coincide on a set which have at
least one limit point belonging to the domain 𝐺𝜁 , then they are identically equal in
the whole domain 𝐺𝜁 .



218 S.A. Plaksa

5.8. Different equivalent definitions of monogenic functions

Thus, we obtain the following theorem which gives different equivalent definitions
of monogenic functions in the biharmonic plane:

Theorem 5.12. A function Φ: 𝐺𝜁 −→ 𝔹 is monogenic in the domain 𝐺𝜁 if and
only if one of the following conditions is satisfied:

(I) the components 𝑈𝑘, 𝑘 = 1, 4, of the expansion (5.13) of the function Φ are dif-
ferentiable in the domain 𝐺 and the condition (5.6) is satisfied in the domain
𝐺𝜁 ;

(II) the function Φ is expressed in the form (5.22), where the pair of holomorphic
in 𝐷 functions 𝐹 and 𝐹0 is unique;

(III) the function Φ is continuous in 𝐺𝜁 and satisfies the equality (3.6) for every

triangle △𝜁 such that △𝜁 ⊂ 𝐺𝜁 ;

(IV) for every 𝜁0 ∈ 𝐺𝜁 there exists a neighborhood, in which the function Φ is
expressed as the sum of the power series (5.21).

5.9. The Laurent expansion

Consider Laurent series in the biharmonic plane. Set 𝐾𝑟,𝑅(𝜁0) := {𝜁 ∈ 𝜇𝑒1,𝑒2 : 0 ≤
𝑟 < ∥𝜁 − 𝜁0∥ < 𝑅 ≤ ∞}.

Theorem 5.13. Every monogenic function Φ: 𝐾𝑟,𝑅(𝜁0) −→ 𝔹 is expressed in the
ring 𝐾𝑟,𝑅(𝜁0) as the sum of the convergent series

Φ(𝜁) =
∞∑

𝑛=−∞
𝑏𝑛(𝜁 − 𝜁0)

𝑛, (5.26)

where (𝜁 − 𝜁0)
𝑛 := ((𝜁 − 𝜁0)

−1)−𝑛 for 𝑛 = −1,−2, . . . ,

𝑏𝑛 =
1

2𝜋𝑖

∫
Γ

Φ(𝜏)(𝜏 − 𝜁0)
−𝑛−1 𝑑𝜏, 𝑛 = 0,±1,±2, . . . , (5.27)

and Γ is an arbitrary closed Jordan rectifiable curve in 𝐾𝑟,𝑅(𝜁0) that embraces the
point 𝜁0.

Proof. Inasmuch as in the equality (5.22) the functions 𝐹 and 𝐹0 are holomorphic
in the ring {𝜉 ∈ ℂ : 𝑟 < ∣𝜉 − 𝜉0∣ < 𝑅} with its center in the point 𝜉0 = 𝑥0 + 𝑖𝑦0,
they are expanded into Laurent series

𝐹 (𝜉) =

∞∑
𝑛=−∞

𝑐𝑛(𝜉 − 𝜉0)
𝑛,

𝐹0(𝜉) =

∞∑
𝑛=−∞

𝑐(0)𝑛 (𝜉 − 𝜉0)
𝑛,
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which are absolutely convergent in the mentioned ring. Then we rewrite the equal-
ity (5.22) in the form

Φ(𝜁) = 𝑐0 +

∞∑
𝑛=1

𝑐𝑛

(
(𝜉 − 𝜉0)

𝑛 − 𝑖(𝑦 − 𝑦0)

2
𝑛(𝜉 − 𝜉0)

𝑛−1𝜌
)

− 𝑖𝑦0
2

∞∑
𝑛=0

(𝑛+ 1)𝑐𝑛+1(𝜉 − 𝜉0)
𝑛𝜌

+
∞∑
𝑛=0

𝑐(0)𝑛 (𝜉 − 𝜉0)
𝑛𝜌+ 𝑐−1

(
1

𝜉 − 𝜉0
+

𝑖(𝑦 − 𝑦0)

2(𝜉 − 𝜉0)2
𝜌

)

+
𝑐
(0)
−1

𝜉 − 𝜉0
𝜌+

−2∑
𝑛=−∞

𝑐𝑛

(
(𝜉 − 𝜉0)

𝑛 − 𝑖(𝑦 − 𝑦0)

2
𝑛(𝜉 − 𝜉0)

𝑛−1𝜌
)

− 𝑖𝑦0
2

−2∑
𝑛=−∞

(𝑛+ 1)𝑐𝑛+1(𝜉 − 𝜉0)
𝑛𝜌+

−2∑
𝑛=−∞

𝑐(0)𝑛 (𝜉 − 𝜉0)
𝑛𝜌.

Further, using the equalities (5.25) for all 𝜁 ∈ 𝐾𝑟,𝑅(𝜁0) and 𝑛 = 0,±1,±2, . . . ,
we obtain the expansion of the function Φ in the series (5.26), where coefficients
are defined by the equalities (5.23), and, moreover, the series (5.26) is absolutely
convergent in the ring 𝐾𝑟,𝑅(𝜁0). Multiplying by (𝜁 − 𝜁0)

−𝑛−1 both parts of the
equality (5.26) and integrating then along the curve Γ, we obtain the formulas
(5.27) for coefficients of the series (5.26). The theorem is proved. □

5.10. The classification of isolated singular points of monogenic functions
in the biharmonic plane

It is an evident fact that every convergent in 𝐾𝑟,𝑅(𝜁0) series of the form (5.26)
with coefficients from 𝔹 is the Laurent series of its sum. Terms of the series (5.26)
with nonnegative powers form its regular part, and terms with negative powers
form the principal part of the series (5.26).

Let us compactify the algebra 𝔹 by means of addition of an infinite point. Let
us agree that every sequence 𝑤𝑛 := 𝜉1,𝑛𝑒1 + 𝜉2,𝑛𝑒2 with 𝜉1,𝑛, 𝜉2,𝑛 ∈ ℂ converges
to the infinite point in the case, where at least one of the sequences 𝜉1,𝑛, 𝜉2,𝑛
converges to infinity in the extended complex plane.

Now, for a removable singular point and a pole and an essential singular point
of a function Φ which is monogenic in a pierced neighborhood 𝐾0,𝑟(𝜁0) of a point
𝜁0 ∈ 𝜇𝑒1,𝑒2 , one can give the same definitions as for appropriate notions in the
complex plane (see, for example, [26]).

Moreover, an isolated singular point of monogenic function Φ(𝜁) of the bihar-
monic variable 𝜁 has a relation with the form of Laurent expansion of this function.
More precisely, the following statement is true:

Theorem 5.14. If in a pierced neighbourhood 𝐾0,𝑟(𝜁0) of an isolated singular point
𝜁0 ∈ 𝜇𝑒1,𝑒2 of a monogenic function Φ: 𝐾0,𝑅(𝜁0) −→ 𝔹, the principal part of the
Laurent series (5.26):
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a) equals to zero, then 𝜁0 is a removable singular point;
b) contains only a finite number of nonzero terms, then 𝜁0 is a pole;
c) contains an infinite number of nonzero terms, then 𝜁0 is either a pole or an

essential singular point.

Indeed, it is evident that in the case a) the point 𝜉0 is a removable singular
point for the functions 𝐹 and 𝐹0 from the equality (5.22). It is also evident that
in the case b) the point 𝜉0 is a pole at least for one of the functions 𝐹 , 𝐹0, and
is not an essential singular point for these functions. Therefore, the point 𝜁0 is
a removable singular point of the function Φ in the case a) and is a pole of this
function in the case b). In the case c) the point 𝜁0 can be either a pole of the
function Φ (for example, in the case where the point 𝜉0 is a pole of the function
𝐹 and is an essential singular point of the function 𝐹0) or an essential singular
point of this function (for example, in the case where 𝐹 ≡ 0 and the point 𝜉0 is
an essential singular point of the function 𝐹0).
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1. Introduction
1 In 1898 the British engineer Henry Selby Hele-Shaw published a paper [11]
in which he described an experiment on moving a viscous fluid in a so-called
cell, a narrow channel between two closely situated glass plates. By coloring the
fluid he could see the behavior of the flow as it meets different obstacles in the
cell. Therefore, he could confirm Stokes’s prediction (see, e.g., [24]) that for low
Reynolds numbers the flow velocity field u becomes irrotational. In this case,
pressure plays the role of potential of the field, satisfying the following conditions:

u = −∇𝑝, △𝑝 = 0, in Ω𝑡, (1.1)

∂𝑝

∂𝑛
= 0, on 𝐿, (1.2)

where Ω𝑡 is a domain occupied by the fluid at the time instant 𝑡, and 𝐿 is the
boundary of obstacles. The role of the Hele-Shaw cell as a tool for description of
two-dimensional flows is especially important in the case of flows in porous media,
which are sufficiently slow to satisfy the Darcy Law.

Much later (see, e.g., [20], [28]) it was understood that many filtration prob-
lems lead to the models in which the fluid domain has to be separated from the

1This section is partially based on the survey articles [24] and [47].
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“dry” media. P.Ya. Polubarinova-Kochina came to the conclusion that in this case
the pressure on the boundary has to be constant on the free boundary and thus the
normal velocity of the flow u𝑛 has to be proportional to the normal “geometric”
velocity 𝑣𝑛 of the free boundary. Therefore, we arrive at the problem

u = −∇(𝑝+ 𝜌𝑔𝑧), △𝑝 = 0, in Ω𝑡, (1.3)

∂(𝑝+ 𝜌𝑔𝑧)

∂𝑛
= 𝑣𝑛, on Γ, (1.4)

where Γ𝑡 is a free boundary, and 𝑧 is the vertical coordinate. For this problem
were found (see [12]) several exact solutions (following pioneering work by P.Ya.
Polubarinova-Kochina [28]), which are in a good agreement with experimental
data. Thus, the nonlinear problem (1.3)–(1.4) is useful for description of flows
under different circumstances.

In fact, this problem has been used and generalized for modeling more com-
pound situations that can be also considered as processes with free boundary.
Essential development of the theory is due to appearance of several Stefan-type
models. The classical Stefan model (see [18]) describes the so-called theory of
albedo, characterizing the reflective abilities of body surfaces. The prototype for
this model is the problem on freezing/cooling of a material whose initial stage has
a temperature of a phase transition, on condition that the heat is transferred only
via conduction and there exists a fixed value of the latent melting heat. Then the
value of 𝑝 in (1.3)–(1.4) (in the case 𝑔 = 0) can be interpreted as a temperature (or
concentration) in the new phase, corresponding to zero melting temperature and
to dimension-free latent melting heat, equal to 1. This model deals with different
technological processes, namely, steel production, semi-conductors construction,
foot freezing, laser welding etc. From the other side, if 𝑝 is understood as electric
potential, then we arrive at the model of electro-chemical machining (see, e.g.,
[17]). Whereas, if 𝑝 is a concentration of a certain biological agent, then taking
into account diffusion in the Stefan model, one can model a tumor’s necrosis (see,
e.g., [27]). Another interpretation of the Hele-Shaw model (1.3)–(1.4) (in the case
𝑔 = 0) arises, if we introduce 𝜔(𝑥, 𝑦) as an instance of time at which the free
boundary Γ reaches the point (𝑥, 𝑦) in the Hele-Shaw cell, then the function

𝑢(𝑥, 𝑦, 𝑡) =

𝑡∫
𝜔

𝑝(𝑥, 𝑦, 𝜏)𝑑𝜏, (1.5)

satisfies △𝑢 = 1 and thus describes transversal displacement of the membrane
under a homogeneous load. Further, it follows from the relation (1.4) that 𝑢 =
∂ 𝑢
∂ 𝑛 = 0. Therefore, (in the framework of the mechanics of contact interactions) 𝑢
can be interpreted as the displacement of the pressurised membrane jammed to the
rigid smooth plane. If we again suppose existence of diffusion, then a corresponding
problem arises in the theory of the choice of optimal time for option realization,
where the value 𝑝 is connected with the price of an option and the role of spatial
variable is played by the share price (see, e.g., [49]).
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We can also note a series of intensively studied mathematical problems which
are not really free boundary value problems. The problem (1.3)–(1.4) plays the
role of a limiting singular case for these problems. Among them we single out the
models described by

– Allen-Khan equation

𝜏
∂ 𝑢

∂ 𝑡
= 𝜀2△𝑢+ 𝑢− 𝑢3, as 𝜀, 𝜏 → 0,

– Khan-Chilliard equation

𝜏
∂ 𝑢

∂ 𝑡
= −△ (𝜀2△𝑢+ 𝑢− 𝑢3

)
, as 𝜀, 𝜏 → 0,

– equation of the phase field

𝛿
∂ 𝑢

∂ 𝑡
= 𝜀2△𝑢+ 𝑢− 𝑢3 + 𝛼𝑇, 𝜏

∂ 𝑇

∂ 𝑡
+

∂ 𝑢

∂ 𝑡
= △𝑇, as 𝜀, 𝜏 → 0,

– filtration equation

𝜌
∂ 𝑢

∂ 𝑡
= ∇ ⋅ (𝑢𝑚∇𝑢) , as 𝑚→∞.

The celebrated P.Ja. Polubarinova-Kochina’s exact solution (see, e.g., [28],
[10], [46]) to the Hele-Shaw problem shows that there is an essential difference be-
tween two cases of problem (1.3)–(1.4), namely, a well-posed case (when the fluid
domain is extended) and an ill posed case (when the area of the fluid domain is
decreasing). Namely, in the well-posed case known exact solutions (see [12]) cor-
respond to smoothing of the free boundary in time. Vice versa, in the ill-posed
case some of the exact solution corresponds to cusp formation. Such an instability
illustrates an irreversibility in time the considered model. Occurrence of such an
effect is demonstrated in particular by so-called “fingering” ([41], see also [40]),
known also as Saffman-Taylor instability. In fact, Saffman-Taylor instability gen-
erates a series of delicate regularization analyses of the Hele-Shaw model with the
aim of understanding dendrite growth and the development of two-phase domains
in the case of solidification of alloys. Morphology of domains in such processes has
a great level of unpredictability similar to the turbulence effect. Therefore, the
Hele-Shaw model is still very important for modelling and has lead to many new
considerations and results.

This paper is devoted mainly to the classical Hele-Shaw model and its modern
counterpart. The article is organized as follows. Section 2 contains auxiliary results
devoted to modeling fluid dynamics on the base of the Reynolds Transport Theo-
rem. In Section 3, starting from the Navier-Stokes equation we describe a number
of assumptions and simplifications, and arrive finally at the Hele-Shaw model. It is
known that this model exists in two forms. Dynamics of the free boundary is stud-
ied in the framework of boundary value problems for evolution-type differential
equations for real-valued functions (so-called “real Hele-Shaw model”). Another
variant of the model is connected with possible parametrization of the phase do-
main (and thus of the free boundary) by using conformal mapping theory. The
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latter is derived in Section 4 in the form of a Polubarinova-Galin equation. In [30]
(see also [31], [32], [33]) it was proposed to reformulate the complex Hele-Shaw
model in the form of an abstract Cauchy-Kovalevsky problem and to study of the
latter in the corresponding scale of Banach spaces. In order to apply this method
we present in Section 5 an auxiliary result, the Ovsjannikov-Nirenberg-Nishida
theorem on solvability of the abstract Cauchy-Kovalevsky problem in a proper
scale of Banach spaces.

The known exact solutions show the time irreversibility of the Hele-Shaw
model. Thus, the injection problem can have infinite life-time (see, e.g., [9]). Con-
trariwise, the suction problem has a finite-time blow-up and cusp formation at the
free boundary before the moving boundary reaches the sink (see, e.g., [12]). Con-
sequently, the above model is globally ill-posed in this respect. That is why several
attempts have been made to regularise the classical Hele-Shaw model with suction.
In this paper we use the so-called kinetic undercooling regularization. A correspond-
ing model is presented in Section 6. This model is analysed and rewritten in the
form of Problem (𝑄)𝛼 in Section 7. It is formulated as two coupled problems – an
abstract Cauchy-Kovalevsky problem and a Riemann-Hilbert-Poincaré problem.

Preliminary analysis of these two problems is performed in Section 8. In
order to apply the Ovsjannikov-Nirenberg-Nishida theorem, we construct a spe-
cial Banach space with the scale property. Solvability of the (time-independent)
Riemann-Hilbert-Poincaré problem and analytic continuation of its solution is in-
vestigated too. The main theorem on local-in-time existence and uniqueness of the
complex Hele-Shaw moving boundary value problem with kinetic undercooling
regularization is presented in the last Section 9.

2. Flow of a viscous fluid

Let us introduce some basic notions of two-dimensional flows of viscous fluid,
following mainly to monograph [10].

Fluid (liquid) is a substance which changes its form under the influence of an
external disturbing force 𝐹 . If 𝐹 is acting on the domain of area 𝐴, then the ratio of
the tangential component of 𝐹 to 𝐴 determines shear stress inside the fluid. Hence
the fluid begins to flow. This stress determines the velocity of the deformation
of fluid particles. If the density of the fluid changes are negligible under high
external load, then the fluid is called incompressible (it is also said that this is
a case of incompressible flow). If fluid particles are moving along straight lines
without essential changes of their velocity, then we have laminar flow. In a simple
case, when the deformation depends linearly on the stress, then we deal with a
Newtonian fluid. It satisfies Newtons Law of Viscosity if the pressure in the flow in
the direction 𝑥 is proportional to the velocity 𝑉 in the orthogonal direction 𝑦, i.e.,

𝜎 =
𝑑𝐹

𝑑𝐴
= 𝜇

∂𝑉

∂𝑦
.

𝜇 is called the viscosity coefficient.
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Different approaches to determination of equations of fluid motion are based
on the Reynolds Transport Theorem. Let the fluid occupy at the time instant 𝑡
a control volume 𝒱(𝑡) bounded by a control surface 𝑆(𝑡). Let 𝑁(𝑡) be a certain
extensive property of the system, say mass, or moment of force, or energy. Let
the spatial variables be denoted by x = (𝑥1, 𝑥2, 𝑥3), and let 𝜂(x, 𝑡) be an intensive
property equal to the ratio of the extensive property to the unit of mass, i.e.,

𝜂 =
𝑑𝑁

𝑑𝑚
, 𝑁(𝑡) =

∫
𝒱(𝑡)

𝜂𝜌𝑑𝑣, 𝑑𝑣 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3.

The Reynolds Transport Theorem says that velocity of the change of the charac-
teristic 𝑁(𝑡) in the system during a certain period of time is equal to the velocity
of the change of 𝑁(𝑡) inside the control volume plus the velocity of the change of
𝑁(𝑡) on the control surface during the same period:(

𝑑𝑁

𝑑𝑡

)
sys

=

∫
𝒱(𝑡)

∂

∂𝑡
(𝜂𝜌)𝑑𝑣 +

∫
𝑆(𝑡)

𝜂𝜌V ⋅ n𝑑𝑆. (2.1)

By the Gauss-Ostrogradsky relation, (2.1) can be rewritten as(
𝑑𝑁

𝑑𝑡

)
sys

=

∫
𝒱(𝑡)

[
∂

∂𝑡
(𝜂𝜌) +∇ ⋅ (𝜂𝜌V)

]
𝑑𝑣,

or in terms of the so-called convective derivative (Euler derivative)

𝐷

𝐷𝑡
=

∂

∂𝑡
+V ⋅ ∇

the (global) Reynolds Transport Theorem is represented as(
𝑑𝑁

𝑑𝑡

)
sys

=

∫
𝒱(𝑡)

[
𝐷(𝜂𝜌)

𝐷𝑡
+ 𝜂𝜌 (∇ ⋅V)

]
𝑑𝑣. (2.2)

If one takes mass as an extensive property (𝑁 ≡ 𝑚, 𝜂 ≡ 1), then relation (2.1) has
the form (

𝑑𝑚

𝑑𝑡

)
sys

=

∫
𝒱(𝑡)

∂𝜌

∂𝑡
𝑑𝑣 +

∫
𝑆(𝑡)

𝜌V ⋅ n𝑑𝑆.

By the mass conservation law
(
𝑑𝑚
𝑑𝑡

)
sys

= 0. Hence∫
𝒱(𝑡)

[
∂𝜌

∂𝑡
+∇ ⋅ (𝜌V)

]
𝑑𝑣 = 0.

Since this equality is valid for any control volume we have

∂𝜌

∂𝑡
+∇ ⋅ (𝜌V) = 0. (2.3)
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In the case of an incompressible fluid relation, (2.3) yields a so-called continuity
equation

∇ ⋅V = 0. (2.4)

Let us consider in the following only the incompressible fluids. Then the linear
moment of the element of mass is a vector determined by the relation 𝑑P = V𝑑𝑚.
For the whole control volume we have

P =

∫
𝒱(𝑡)

𝜌V𝑑𝑣.

By the Reynolds Transport Theorem we obtain(
𝑑P

𝑑𝑡

)
sys

=

∫
𝒱(𝑡)

𝜌
𝐷V

𝐷𝑡
𝑑𝑣 =

∫
𝒱(𝑡)

𝐷V

𝐷𝑡
𝑑𝑚.

The Second Newton Law says that the velocity of change of P is equal to the force
applied to the fluid in the control volume 𝒱(𝑡):

𝑑F =
𝐷V

𝐷𝑡
𝑑𝑚 =

(
∂V

∂𝑡
+ (V ⋅ ∇)V

)
𝑑𝑚, (2.5)

where F is a vector of forces.
Let us suppose for the moment that there are no shear stresses in the system.

Let the surface forces 𝐹𝑆 be due to the pressure of the surface, and internal forces
𝐹𝑏 be due to gravitation in the direction 𝑥3. Hence

𝑑F = 𝑑𝐹𝑆 + 𝑑𝐹𝑏 = −(∇𝑝)𝑑𝑣 − 𝑔(∇𝑥3)(𝜌𝑑𝑣). (2.6)

Substituting (2.6) into (2.5) we have

−1

𝜌
∇𝑝− 𝑔∇𝑥3 =

∂V

∂𝑡
+ (V ⋅ ∇)V,

or

−∇𝑝− 𝜌𝑔∇𝑥3 = 𝜌
𝐷V

𝐷𝑡
. (2.7)

The latter equation is called an Euler equation. In terms of the control volume it
has a form (

𝑑

𝑑𝑡

)
sys

∫
𝒱(𝑡)

𝜌V𝑑𝑣 = −
∫
𝒱(𝑡)

(∇𝑝+ 𝜌𝑔∇𝑥3) 𝑑𝑣,

or (
𝑑

𝑑𝑡

)
sys

∫
𝒱(𝑡)

𝜌V𝑑𝑣 =

∫
𝑆(𝑡)

𝜎 ⋅ n𝑑𝑆 −
∫
𝒱(𝑡)

𝜌𝑔∇𝑥3𝑑𝑣, (2.8)

where 𝜎 = (𝜎𝑖𝑗)
3
𝑖,𝑗=1 is the stress tensor.

The Stokes Viscosity Law for incompressible fluids states

𝜎𝑖𝑖 = −𝑝+ 2𝜇
∂𝑉𝑖
∂𝑥𝑖

, 𝜎𝑖𝑗 = 𝜇

(
∂𝑉𝑖
∂𝑥𝑗

+
∂𝑉𝑗
∂𝑥𝑖

)
, 𝑖 ∕= 𝑗.
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Substituting these relations into formula (2.8) and applying the Gauss-Ostrograd-
sky theorem we arrive at the (local) relation for the fluid motion of an incompress-
ible Newtonian fluid with constant viscosity in the following form:

𝐷V

𝐷𝑡
= 𝐹𝑏 +

1

𝜌
(−∇𝑝+ 𝜇ΔV) . (2.9)

Equations (2.4), (2.9) are called the Navier-Stokes equations for an incompressible
Newtonian fluid.

3. Hele-Shaw model

Hele-Shaw flow is the flow of a viscous fluid between two closely related parallel
plates. Let us suppose that the narrow channel between the plates has a constant
height equal to ℎ and two other sizes of the channel are much greater than the
distance between the plates. Let the flow be generated by an injection/suction
through the point source/sink at one of the plates (𝑥01, 𝑥

0
2). Suppose that the

velocity of the fluid is maximal at a source/sink and vanishes at the boundary of
the Hele-Shaw cell.

To derive the corresponding governing equations one can start with the
Navier-Stokes equations neglecting gravity (2.4), (2.9) (see, e.g., [10]),

∂V

∂ 𝑡
+ (V ⋅ ∇)V =

1

𝜌
(−∇𝑝+ 𝜇△V) , ∇ ⋅V = 0. (3.1)

Assume that the injection/suction is sufficiently slow such that the fluid motion is
uniform and plane parallel. It means

∂V

∂ 𝑡
= 0, 𝑉3 = 0.

Under these conditions the equations (3.1) become(
𝑉1

∂

∂ 𝑥1
+ 𝑉2

∂

∂ 𝑥2

)
𝑉1 = −1

𝜌

∂ 𝑝

∂ 𝑥1
+

𝜇

𝜌
△𝑉1,(

𝑉1
∂

∂ 𝑥1
+ 𝑉2

∂

∂ 𝑥2

)
𝑉2 = −1

𝜌

∂ 𝑝

∂ 𝑥2
+

𝜇

𝜌
△𝑉2,

0 = −1

𝜌

∂ 𝑝

∂ 𝑥3
,

with boundary conditions

𝑉1∣𝑥3=0,ℎ
= 𝑉2∣𝑥3=0,ℎ

= 0.

If ℎ is sufficiently small and the flow is slow, then we can assume that the deriva-
tives of 𝑉1 and 𝑉2 with respect to 𝑥1 and 𝑥2 are negligible compared to the deriva-
tives with respect to 𝑥3. Thus

∂ 𝑉1
∂ 𝑥𝑗

=
∂ 𝑉2
∂ 𝑥𝑗

=
∂2 𝑉1
∂ 𝑥2𝑗

=
∂2 𝑉2
∂ 𝑥𝑗

, 𝑗 = 1, 2,
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which gives

∂𝑝

∂𝑥1
= 𝜇

∂2 𝑉1
∂ 𝑥23

,
∂𝑝

∂𝑥2
= 𝜇

∂2 𝑉2
∂ 𝑥23

, 0 =
∂𝑝

∂𝑥3
.

The last equation in this system shows that 𝑝 does not depend on 𝑥3, whence 𝑉1, 𝑉2
are polynomials of degree at most 2 as functions of 𝑥3. The boundary conditions
then imply

𝑉1 =
1

2

∂𝑝

∂𝑥1

(
𝑥23
𝜇
− ℎ𝑥3

𝜇

)
, 𝑉2 =

1

2

∂𝑝

∂𝑥2

(
𝑥23
𝜇
− ℎ𝑥3

𝜇

)
.

The integral means 𝑉1 and 𝑉2 of 𝑉1 and 𝑉2 across the gap are

𝑉1 =
1

ℎ

ℎ∫
0

𝑉1𝑑𝑥3 = − ℎ2

12𝜇

∂ 𝑝

∂ 𝑥1
, 𝑉2 =

1

ℎ

ℎ∫
0

𝑉2𝑑𝑥3 = − ℎ2

12𝜇

∂ 𝑝

∂ 𝑥2
,

so the integral mean Ṽ of V satisfies

Ṽ = − ℎ2

12𝜇
∇𝑝. (3.2)

Equation (3.2) is called the Hele-Shaw equation. It is of the same form as Darcy’s
law, which governs flows in porous media. In the sequel we write just V instead

of Ṽ.

The Stokes-Leibenzon model ([16]) suggests that a point sink/source (𝑥01, 𝑥
0
2)

is of constant strength. The rate of area (or mass) change is given as∫
∂ 𝑈𝜀

𝜌V ⋅ n𝑑𝑠 = const, thus

∫∫
𝑈𝜀

ℎ2𝜌

12𝜇
△𝑝𝑑𝑥1𝑑𝑥2 = const .

where 𝑈𝜀 = {(𝑥, 𝑦) : (𝑥1 − 𝑥01)
2 + (𝑥2 − 𝑥02)

2 < 𝜀2}. Equality (3.2) together with
the Green theorem imply ∫∫

𝑈𝜀

ℎ2𝜌

12𝜇
△𝑝𝑑𝑥1𝑑𝑥2 = const .

So, △𝑝 = 𝑄𝛿(𝑥0
1,𝑥

0
2)

for some constant 𝑄, where 𝛿(𝑥0
1,𝑥

0
2)

is the Dirac distribution,

and the potential function 𝑝 has a logarithmic singularity at (𝑥01, 𝑥
0
2). On the free

boundary the balance of forces gives

𝑝 = exterior air pressure+ surface tension.

Suppose the air pressure to be constant, and surface tension to be proportional to
the curvature of the free boundary. If the distance ℎ between the plates is small
enough, and the surface tension is almost constant, then the pressure on the free
boundary can be assumed to be constant (vanishing in a proper scale).
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4. The Polubarinova-Galin equation and complex Hele-Shaw model

The idea of P.Ja. Polubarinova-Kochina and L.A. Galin is in parametrization of
the free boundary of the flow in the Hele-Shaw cell by the time-dependent family
of conformal mappings of the canonical domain on the complex plane (say, of the
unit disc) onto the domain on the phase plane (occupied by the fluid). Such a
model (called a complex Hele-Shaw model) was completely described in [48] and
rediscovered in [36].

Denote by Ω(𝑡) the bounded simply connected domain in the phase 𝑧-plane
occupied by the fluid at instant 𝑡, and consider suction/injection through a single
sink/source at the origin (of a constant strength 𝑄, which is positive in the case
of suction and negative in the case of injection). The dimensionless pressure 𝑝
is scaled so that 0 corresponds to the atmospheric pressure. Put Γ(𝑡) = ∂ Ω(𝑡)
(Ω(0) =: Ω0,Γ(0) =: Γ0). The potential function 𝑝 is harmonic in Ω(𝑡) ∖ {0} and

△𝑝 = 𝑄𝛿0(𝑧), 𝑧 = 𝑥+ 𝑖𝑦 ∈ Ω(𝑡). (4.1)

The zero surface tension dynamic boundary condition is given by

𝑝(𝑧, 𝑡) = 0, ∀𝑧 ∈ Γ(𝑡). (4.2)

The resulting motion of the free boundary Γ(𝑡) is given by the fluid velocity V on
Γ(𝑡). The normal velocity in the outward direction is

𝑣𝑛 = V∣Γ(𝑡)
⋅ n(𝑡), (4.3)

where n(𝑡) is the unit outer normal vector to Γ(𝑡). Rewriting this law of motion
in terms of the potential function and using (3.2) after suitable rescaling, we get
the kinematic boundary condition

∂ 𝑝

∂ n
= −𝑣𝑛. (4.4)

Let us introduce the complex potential 𝑊 (𝑧, 𝑡),Re𝑊 = 𝑝. For each fixed 𝑡
the function 𝑊 (𝑧, 𝑡) is a multi-valued analytic function on Ω(𝑡), whose real part
satisfies the Dirichlet problem (4.1)–(4.2). It follows from the Cauchy-Riemann
equations that

∂ 𝑊

∂ 𝑧
=

∂ 𝑝

∂ 𝑥1
− 𝑖

∂ 𝑝

∂ 𝑥2
.

Since Green’s function solves (4.1), (4.2), we have the representation

𝑊 (𝑧, 𝑡) =
𝑄

2𝜋
log 𝑧 + 𝑤0(𝑧, 𝑡), (4.5)

where 𝑤0(𝑧, 𝑡) is an analytic regular function in Ω(𝑡).
In order to derive an equation of the free boundary Γ(𝑡) = ∂Ω(𝑡), we introduce

some notation. Let 𝑓(𝑧, 𝑡) : 𝐺1 → Ω(𝑡) be a unique conformal mapping of the unit
disc 𝐺1 = {𝑧 ∈ ℂ : ∣𝑧∣ < 1} on the plane of parameter 𝑧, satisfying conditions
𝑓(0, 𝑡) = 0, 𝑓𝑧(0, 𝑡) > 0. The function 𝑓(𝑧, 0) = 𝑓0(𝑧) parameterizes the initial
boundary Γ0 = {𝑓0(𝑒𝑖𝜃), 𝜃 ∈ [0, 2𝜋)}, and the function 𝑓(𝑧, 𝑡) parameterizes the
boundary Γ(𝑡) = Γ𝑡 = {𝑓(𝑒𝑖𝜃, 𝑡), 𝜃 ∈ [0, 2𝜋)}. The velocity 𝑣𝑛 in the direction
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of the outward normal to Γ(𝑡) is determined by (4.4). The vector of the outward
normal to Γ(𝑡) is defined by the relation

n = 𝑧
𝑓𝑧
∣𝑓𝑧∣ , 𝑧 ∈ ∂𝐺1.

Hence the normal velocity can be written as

𝑣𝑛 = V ⋅ n = −Re
(
∂𝑊

∂𝜁
𝑧

𝑓𝑧
∣𝑓𝑧∣

)
.

Since the Green’s function is invariant under conformal mapping we have

(𝑊 ∘ 𝑓) (𝑧, 𝑡) = 𝑄

2𝜋
log 𝑧, and thus

∂𝑊

∂𝜁

∂𝑓

∂𝑧
(𝑧, 𝑡) =

𝑄

2𝜋𝑧
.

From the other side, the normal velocity on the free boundary can be represented
in the form

𝑣𝑛 = Re

[
∂𝑓

∂𝑡
𝑧

𝑓𝑧
∣𝑓𝑧∣

]
.

Finally we have got the following Polubarinova-Galin equation:

Re

[
∂𝑓

∂𝑡
(𝑧, 𝑡) 𝑧

∂𝑓

∂𝑧
(𝑧, 𝑡)

]
= − 𝑄

2𝜋
, 𝑧 = 𝑒𝑖𝜙. (4.6)

A complex mathematical model for Hele-Shaw flows with a free boundary
produced by injection/suction into/from a narrow channel supposing constant at-
mospheric pressure on the moving boundary. This model can be represented in
terms of the following form, where the Riemann mapping functions 𝑓 = 𝑓(𝑧, 𝑡),
from the unit disc 𝐺1 onto the region occupied by fluid at the time 𝑡, and the rate
of injection/suction is 𝑄(𝑡):

Let the functions 𝑓0 = 𝑓0(𝑧) and 𝑄 = 𝑄(𝑡) be given. Let 𝑓0 be holomorphic and
univalent in a neighbourhood of the unit disk 𝐺1, 𝑓0(0) = 0, and 𝑄 be continuous in
a right-sided neighbourhood of 𝑡 = 0. Find a function 𝑓 = 𝑓(𝑧, 𝑡), holomorphic and
univalent as a function of 𝑧 in a neighbourhood of 𝐺1, continuously differentiable
in 𝑡 such that with respect to 𝑡 in a right-sided neighbourhood of 𝑡 = 0, satisfies

Re

(
1

𝑧

∂𝑓

∂𝑡
(𝑧, 𝑡)

∂𝑓

∂𝑧
(𝑧, 𝑡)

)
= 𝑄(𝑡), 𝑧 ∈ ∂𝐺1, 𝑡 ∈ [0, 𝑇 ); (4.7)

𝑓(𝑧, 0) = 𝑓0(𝑧), 𝑧 ∈ 𝐺1; (4.8)

𝑓(0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ). (4.9)

Under the additional assumption 𝑓 ′𝑧(0, 𝑡) > 0 one gets with the results of [48] the
local existence and uniqueness of solutions in the case 𝑄(𝑡) ≡ 1, where the solution
depends analytically on 𝑡.

In [8] a more elementary proof of local existence and uniqueness of solutions
for the above model is given in the case that 𝑓0 is a polynomial or a rational
function. In particular, it was shown (see, e.g., [10]) that the solution remains
polynomial (rational) with respect to 𝑧 if the initial function 𝑓0 is.
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5. Nirenberg-Nishida theorem

Let us formulate an auxiliary result which will be used in our further analysis.
This theorem is called the Nirenberg-Nishida theorem (see [22]–[23]), but the basic
result of such a type was obtained earlier by L.V. Ovsjannikov [26], and thus
it is more correct to call it the Ovsjannikov theorem (or at least Ovsjannikov-
Nirenberg-Nishida theorem). This result is applied for the study of a so-called
abstract Cauchy-Kovalevsky problem.

The abstract Cauchy-Kovalevsky problem means the following. We consider
the Cauchy problem

𝑑𝑡𝑤 = 𝐹 (𝑡, 𝑤), 𝑤(0) = 0, (5.1)

for a differential equation with (an abstract) nonlinear operator ℱ : 𝑡 �→ 𝐹 (𝑡, 𝑤(𝑡)).
If the operator ℱ is acting in a locally compact space then the classical Picard-
Lindelöf approach is already inapplicable. However if this operator is acting in a
certain scale of Banach spaces, then one can use a form of the Cauchy-Kovalevsky
theorem (e.g., that of Nirenberg-Nishida type). By the scale of Banach spaces
we understand here a family of Banach spaces {𝐵𝑠, ∥⋅∥𝑠}0<𝑠≤1 such that for each

0 < 𝑠′ ≤ 𝑠 ≤ 1 the norm of the canonical imbedding operator ℐ𝑠→𝑠′ is not
greater than 1. In [35] the corresponding scale is constructed to provide a “conical
evolution” of the solution to (5.1) (see, e.g., [45]). It is convenient to present here
the Nirenberg-Nishida theorem which is applied below.

Theorem 5.1. Let us consider an abstract Cauchy-Kovalevsky problem

𝑑𝑡𝑤 = 𝐹 (𝑡, 𝑤), 𝑤(0) = 0, (5.2)

in a scale of Banach spaces {𝐵𝑠, ∥⋅∥𝑠}0<𝑠≤1. Let for certain absolute (i.e., inde-

pendent of 𝑠, 𝑠′, 𝑡) constants 𝐶,𝐾,𝑅, 𝑇 the following conditions be satisfied:

∙ for each fixed 𝑠, 0 < 𝑠 ≤ 1, the mapping 𝐹 (𝑡, 𝑤) of [0, 𝑇 ]× {𝑤 ∈ 𝐵𝑠 : ∥𝑤∥𝑠 <
𝑅} to 𝐵𝑠′ is continuous with respect to 𝑡;

∙ for all 0 < 𝑠′ < 1 the continuous function 𝐹 (𝑡, 0) satisfies the inequality

∥𝐹 (𝑡, 0)∥𝑠′ ≤
𝐾

1− 𝑠′
;

∙ for all 0 < 𝑠′ < 𝑠 ≤ 1, 𝑡 ∈ [0, 𝑇 ], 𝑤1, 𝑤2 ∈ {∥𝑤∥𝑠 < 𝑅} the inequality

∥𝐹 (𝑡, 𝑤1)− 𝐹 (𝑡, 𝑤2)∥𝑠′ ≤
𝐶

𝑠− 𝑠′
∥𝑤1 − 𝑤2∥𝑠

is valid.

Then the problem (5.2) has a unique solution

𝑤 ∈ 𝒞1 ([0, 𝑎0(1 − 𝑠)), 𝐵𝑠)0<𝑠<1 , ∥𝑤(𝑡)∥𝑠 < 𝑅,

where 𝑎0 is a suitable positive constant.
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6. Kinetic undercooling regularization

The first exact solutions for Hele-Shaw flows driven by a single sink at the origin
were constructed in [28], [4]. They have finite-time blow-up and cusp formation at
the free boundary before the moving boundary reaches the sink (see, e.g., [12]).
Consequently, the above model is globally ill-posed in this respect. The physical
meaning of this situation is that the velocity of points on the moving boundary
tends to infinity at the cusp.

There are different approaches to the regularization of the suction problem by
incorporating extra terms in the free boundary conditions to penalize large curva-
tures or large normal derivatives (see [44] and [13]). The most common corrections
are to include a Gibbs-Thomson term proportional to the curvature or a kinetic
undercooling term proportional to the normal velocity at the moving boundary.

This paper is concerned with kinetic undercooling regularization. For Hele-
Shaw flows this regularization first appeared in the doctoral thesis [39] (see also
the review in [42]). A local linear stability analysis shows that this regularization
successfully penalises the short wavelength growth which is usually associated with
blow-up [14]. The following problem (𝑃𝛼) was derived for a complex model which
describes Hele-Shaw flows with kinetic undercooling regularization (see, e.g., [35]
and [34]):

Problem (𝑷𝜶): Let the two functions 𝑓0 = 𝑓0(𝑧) and 𝑄 = 𝑄(𝑡) be given. Sup-
pose that 𝑓0 = 𝑓0(𝑧) is a given holomorphic and univalent in a neighbourhood of
𝐺1, 𝑓0(0) = 0, 𝑄(𝑡) is a given continuous function in a right-sided neighbourhood
of 𝑡 = 0.

The problem is to find two functions 𝑓 = 𝑓(𝑧, 𝑡), 𝑤reg = 𝑤reg(𝑧, 𝑡), 𝑓 is holo-
morphic and univalent as a function of 𝑧 in a neighbourhood of 𝐺1, continuously
differentiable in 𝑡 in a right-sided neighbourhood of 𝑡 = 0, 𝑤reg is holomorphic in 𝑧
in a neighbourhood of 𝐺1, continuous in 𝑡 in a right-sided neighbourhood of 𝑡 = 0,
such that for all 𝑧 ∈ ∂𝐺1, 𝑡 ∈ [0, 𝑇 ),

Re

(
1

𝑧

∂𝑓

∂𝑡
(𝑧, 𝑡)

∂𝑓

∂𝑧
(𝑧, 𝑡)

)
= 𝑄(𝑡) + Re (𝑧𝑤reg(𝑧, 𝑡)) , (6.1)

𝑓(𝑧, 0) = 𝑓0(𝑧), (6.2)

𝑓(0, 𝑡) = 0, (6.3)

Im (𝑧𝑤reg(𝑧, 𝑡)) = 𝛼∂𝜃

(∣∣∣∣∂𝑓∂𝑧
∣∣∣∣−1 (𝑄(𝑡) + Re (𝑧𝑤reg(𝑧, 𝑡))

))
, (6.4)

where 𝛼 > 0, 𝑧 = 𝑟𝑒𝑖𝜃, and 𝑄(𝑡) < 0 in the case of suction.

If 𝛼 = 0, then Im (𝑧𝑤reg(𝑧, 𝑡)) = 0, 𝑧 ∈ ∂𝐺1. Consequently, Re (𝑧𝑤reg(𝑧, 𝑡)) =

const, 𝑧 ∈ ∂𝐺1, that is 𝑤reg(𝑧, 𝑡) ≡ 0, 𝑧 ∈ 𝐺1. This means our starting model
(4.7)–(4.9) coincides with (𝑃0).

Remark 6.1. An approach called kinetic undercooling regularization takes into
account the kinematic boundary condition 𝑉𝑛 = 𝑈𝑛 and the dynamic boundary
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condition 𝑝 ∼ 𝑉𝑛 at the moving boundary Γ(𝑡) in the physical plane. Here 𝑝 is the
pressure, 𝑉𝑛 is the normal component of velocity of the fluid and 𝑈𝑛 the normal
component of the velocity of Γ(𝑡). Then using 𝑓 = 𝑓(𝑧, 𝑡) and the complex potential
𝜒 = 𝜒(𝑓(𝑧, 𝑡), 𝑡) we have that both conditions can be written in the mathematical
plane as

Re

(
1

𝑧

∂𝑓

∂𝑡

∂𝑓

∂𝑧

)
= Re

(
𝑧
∂𝜒

∂𝑧

)
,

Re𝜒 = −𝛼
∣∣∣∣∂𝑓∂𝑧

∣∣∣∣−1Re (1𝑧 ∂𝑓∂𝑡 ∂𝑓∂𝑧
)
, 𝛼 > 0.

The ansatz for 𝜒 = 𝑄(𝑡) log 𝑧+𝜒reg and for the conjugate 𝑤 := ∂𝑧𝜒 = 𝑄(𝑡)/𝑧+𝑤reg

of the complex velocity 𝑤 gives immediately the kinematic boundary condition
(6.1). After differentiation of the second condition with respect to 𝜃 we obtain
some calculations that lead to the dynamic boundary condition (6.4).

7. On structure of the problem (𝑷𝜶)

Let us discuss the structure of (6.1)–(6.4), and derive an equivalent problem to (𝑃𝛼)
to which we will apply complex-analytic methods. Under an additional assumption

Im

(
1

𝑧

∂𝑓

∂𝑡
(𝑧, 𝑡)

(
∂𝑓

∂𝑧

)−1
(𝑧, 𝑡)

)
(0, 𝑡) = 0, (7.1)

one can rewrite (6.1) by using Schwarz’s integral formula as follows:

∂𝑓

∂𝑡
(𝑧, 𝑡)− 𝑧

∂𝑓

∂𝑧
(𝑧, 𝑡)

1

2𝜋𝑖

∫
∣𝜁∣=1

∣∣∣∣∂𝑓∂𝜁
∣∣∣∣−2 (𝑄(𝑡) + Re (𝜁𝑤reg))

𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁
= 0.

Differentiating and setting

𝜔(𝑧, 𝑡) := 𝑧𝑤reg(𝑧, 𝑡), 𝜙(𝑧, 𝑡) :=

(
∂𝑓

∂𝑧

)−1
(𝑧, 𝑡)

gives the following equivalent form of equation (6.1) (cf. [30] for the model (4.7)–
(4.9), (7.1)):

∂𝜙

∂𝑡
(𝑧, 𝑡)− 𝑧

∂𝜙

∂𝑧
(𝑧, 𝑡)T𝑡(𝜙, 𝜔) + 𝜙(𝑧, 𝑡)

∂

∂𝑧
(𝑧T𝑡(𝜙, 𝜔)) = 0,

𝜙0(𝑧) := 𝜙(𝑧, 0) =

(
∂𝑓0
∂𝑧

)−1
,

where

𝜙0(𝑧) := 𝜙(𝑧, 0) =

(
∂𝑓0
∂𝑧

)−1
,T𝑡(𝜙, 𝜔) :=

1

2𝜋𝑖

∫
∣𝜁∣=1

∣𝜙∣2 (𝑄(𝑡) + Re𝜔)
𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁
.

(7.2)
Equation (6.4) is a Riemann-Hilbert-Poincaré problem for 𝜔 = 𝜔(𝑧, 𝑡):

Im (𝜔(𝑧, 𝑡)) = 𝛼∂𝜃
(∣𝜙(𝑧, 𝑡)∣(𝑄(𝑡) + Re (𝜔(𝑧, 𝑡))

))
, 𝜔(0, 𝑡) = 0.
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In the following we will study the next problem which is equivalent to problem
(𝑃𝛼) (cf. [30] for the model (4.7)–(4.9), (7.1)):

Problem (𝑸𝜶): Let 𝜙0 be given holomorphic and non-vanishing in a neighbourhood
of 𝐺1, and 𝑄 be given continuous in a right-sided neighbourhood of 𝑡 = 0.

The problem is to find two functions, namely 𝜙 = 𝜙(𝑧, 𝑡) being holomorphic
and non-vanishing in a neighbourhood of 𝐺1, continuously differentiable with re-
spect to 𝑡 in a neighbourhood of 𝑡 = 0, and 𝜔 = 𝜔(𝑧, 𝑡) being holomorphic in 𝑧 in
a neighbourhood of 𝐺1, continuous with respect to 𝑡 in a right-sided neighbourhood
of 𝑡 = 0, both functions satisfy

∙ the abstract Cauchy-Kovalevsky problem (or Cauchy problem for the abstract
evolution equation)

∂𝜙

∂𝑡
(𝑧, 𝑡)− 𝑧

∂𝜙

∂𝑧
(𝑧, 𝑡)T𝑡(𝜙, 𝜔) + 𝜙(𝑧, 𝑡)

∂

∂𝑧
(𝑧T𝑡(𝜙, 𝜔)) = 0, (7.3)

𝜙(𝑧, 0) =

(
∂𝑓0
∂𝑧

)−1
, in a cylinder {(𝑧, 𝑡) ∈ 𝐺1 × [0, 𝑇 )} ; (7.4)

∙ the Riemann-Hilbert-Poincaré problem with respect to 𝜔 (𝜔(0, 𝑡) = 0)

Im (𝜔(𝑧, 𝑡)) = 𝛼∂𝜃

(
∣𝜙(𝑧, 𝑡)∣(𝑄(𝑡) + Re (𝜔(𝑧, 𝑡))

))
on ∂𝐺1 × [0, 𝑇 ) (7.5)

under the additional constraint

𝜔(0, 𝑡) = 0 (7.6)

where T𝑡(𝜙, 𝜔) is defined by (7.2), 𝛼 > 0, and 𝑧 = 𝑟𝑒𝑖𝜃.

8. Mathematical treatment of problem (𝑸𝜶)

In order to study the problem (𝑄𝛼) we introduce a function space for 𝜙 = 𝜙(𝑧, 𝑡)
and 𝜔 = 𝜔(𝑧, 𝑡). To define this space we need constants. Let us fix constants 𝑟0,
𝑟1, 1 < 𝑟0 < 𝑟1, a positive constant 𝑏, and a parameter 𝑠 ∈ (0, 1). By ℋ(𝐺(𝑠))
we denote the space of functions which are holomorphic in 𝐺(𝑠), where 𝐺(𝑠) :=
{𝑧 ∈ ℂ : ∣𝑧∣ < 𝑟0 + 𝑠(𝑟1 − 𝑟0)}. Then we define the space

B :=

{
𝑔 = 𝑔(𝑧, 𝑡) ∈

∪
0<𝑠<1

𝒞 ([0, 𝑏(1− 𝑠)),ℋ(𝐺(𝑠)) ∩ 𝒞1,𝜆(𝐺(𝑠))
)
:

∥𝑔∥B = max

{
sup

𝑠∈(0,1),ℎ<𝑏(1−𝑠)
max
𝑡∈[0,ℎ]

∥𝑔(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))
;

sup
𝑠∈(0,1),𝑡<𝑏(1−𝑠)

∥∥∥∥∂𝑔∂𝑧 (⋅, 𝑡)
∥∥∥∥
𝒞𝜆(𝐺(𝑠))

(
1− 𝑡

𝑏(1− 𝑠)

) 1
2

}
<∞

}
.

Lemma 8.1. The function space B is a Banach space and an algebra with

∥𝑔 ⋅ ℎ∥B ≤ 2∥𝑔∥B∥ℎ∥B for all 𝑔, ℎ ∈ B.
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9. The abstract Cauchy-Kovalevsky problem

In order to study the evolution problem (7.3), (7.4) we want to understand how
the operators ∂𝑧, T𝑡(𝜙, 𝜔) act on B, B×B, respectively.

It is clear that ∂𝑧 is an unbounded operator on B. If we use the operator

(J𝜓)(⋅, 𝑡) :=
𝑡∫
0

𝜓(⋅, 𝜏)𝑑𝜏 , then it turns out that A := J∘∂𝑧 is a continuous operator
on B (see, e.g., [45]).

Lemma 9.1. Let 𝜙 ∈ B. Then the operator

A : 𝜙 �→ J ∘ ∂𝑧𝜙(⋅) =
𝑡∫

0

∂𝑧𝜙(⋅, 𝜏)𝑑𝜏, 𝑡 ∈ [0, 𝑏(1− 𝑠)), 𝑠 ∈ (0, 1),

is a continuous operator mapping B into itself, and satisfying the estimate

∥A𝜙∥B ≤ 𝐶𝑏∥𝜙∥B, 𝐶 = 𝐶(𝑟0, 𝑟1) (9.1)

where 𝐶 = 𝐶(𝑟0, 𝑟1).
2

Proof. The main ideas of this proof are taken from [45]. The idea is to consider the
differential operator ∂𝑧 in the scale of Banach spaces

{ℋ(𝐺(𝑠)) ∩ 𝒞𝜆(𝐺(𝑠))
}
0<𝑠<1

.

The operator of integration with respect to time acts as a regularizing one, this
means it compensates the unboundedness of ∂𝑧.

3 □
To study the nonlinear operator T𝑡(𝜙, 𝜔) for given 𝜙, 𝜔 ∈ B we introduce

another function space (Banach space)

B𝑎 :=

{
𝑔 = 𝑔(𝑧, 𝑡) ∈

∪
0<𝑠<1

𝒞 ([0, 𝑏(1− 𝑠)),ℋ(𝐴(𝑠)) ∩ 𝒞1,𝜆(𝐴(𝑠))
)
:

∥𝑔∥B𝑎 = max

{
sup

𝑠∈(0,1),ℎ<𝑏(1−𝑠)
max
𝑡∈[0,ℎ]

∥𝑔(⋅, 𝑡)∥𝒞𝜆(𝐴(𝑠))
;

sup
𝑠∈(0,1),𝑡<𝑏(1−𝑠)

∥∥∥∥∂𝑔∂𝑧 (⋅, 𝑡)
∥∥∥∥
𝒞𝜆(𝐴(𝑠))

(
1− 𝑡

𝑏(1− 𝑠)

) 1
2

}
<∞

}
,

where

𝐴(𝑠) =

{
𝑧 ∈ ℂ :

1

𝑟0 + (𝑟1 − 𝑟0)𝑠
< ∣𝑧∣ < 𝑟0 + (𝑟1 − 𝑟0)𝑠

}
, 0 < 𝑠 < 1.

The following lemma is evident.

Lemma 9.2. If 𝜙 belongs to B, then the function 𝜙 = 𝜙(𝑧, 𝑡) := 𝜙(1𝑧 , 𝑡) as well as

the product 𝜙𝜙 belongs to B𝑎. Besides,

∥𝜙∥B𝑎 ≤ 𝐶∥𝜙∥B.
2Up to the end of the paper we use 𝐶 as a universal constant.
3The goal of this paper is to prove the local existence in time. So, we have no need to minimize
the constant 𝐶𝑏 in (9.1).



240 S.V. Rogosin

Now we have all tools for the consideration of T𝑡(𝜙, 𝜔) on B.

Lemma 9.3. The nonlinear operator T𝑡(𝜙, 𝜔) is a continuous operator mapping
B×B into B. Moreover there exists a constant 𝐶 = 𝐶(𝜆,𝑄, 𝑟0, 𝑟1) such that

∥T𝑡(𝜙, 𝜔)∥B ≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B).
Proof. Let the given functions 𝜙 and 𝜔 belong to B. Then

T𝑡(𝜙, 𝜔)(𝑧, 𝑡) :=
1

2𝜋𝑖

∫
∣𝜁∣=1

∣𝜙∣2 (𝑄(𝑡) + Re𝜔)
𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁

=
1

2𝜋𝑖

∫
∣𝜁∣=1

𝜙(𝜁, 𝑡)𝜙(
1

𝜁
, 𝑡)

⎛⎝𝑄(𝑡) +
𝜔(𝜁, 𝑡) + 𝜔(1

𝜁
, 𝑡)

2

⎞⎠ 𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁
.

Due to Lemma 9.2 the functions 𝜙 = 𝜙(𝑧, 𝑡) := 𝜙(1𝑧 , 𝑡) and 𝜔̃ = 𝜔̃(𝑧, 𝑡) := 𝜔(1𝑧 , 𝑡)
belong to B𝑎 (but not to B). This is the motivation for us to consider the Banach
space B𝑎. For our purpose it is necessary to use the domains 𝐴(𝑠), 𝑠 ∈ (0, 1),

because the product 𝜙𝜙 is defined only on these sets. Due to the definition of the
tilded functions 𝜙, 𝜔̃ and their properties in 𝐴(𝑠), 0 < 𝑠 < 1, we have

T𝑡(𝜙, 𝜔)(𝑧, 𝑡) =
1

2𝜋𝑖

∫
∣𝜁∣=1

𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)
𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁

=
1

2𝜋𝑖

∫
∂𝐺(𝑠)

𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)
𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁

for all 𝑠 ∈ (0, 1), 𝑡 ∈ [0, 𝑏(1 − 𝑠)) and all 𝑧 ∈ 𝐺(𝑠). The last formula gives us

immediately T𝑡(𝜙, 𝜔) ∈ 𝒞 ([0, 𝑏(1− 𝑠)),ℋ(𝐺(𝑠)) ∩ 𝒞1,𝜆(𝐺(𝑠))
)
for all 𝑠 ∈ (0, 1).

Using Hölder estimates for the Schwarz’s integral we have with a constant 𝐶 =
𝐶(𝜆,𝑄, 𝑟0, 𝑟1) the following estimate

∥T𝑡(𝜙, 𝜔)(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))
≤ 𝐶∥𝜙∥B∥𝜙∥B𝑎

(
1 +

1

2
(∥𝜔∥B + ∥𝜔̃∥B𝑎)

)
.

It follows from this inequality together with Lemma 9.2 that

∥T𝑡(𝜙, 𝜔)(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))
≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B),

sup
𝑠∈(0,1),ℎ<𝑏(1−𝑠)

max
𝑡∈[0,ℎ]

∥T𝑡(𝜙, 𝜔)(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))
≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B). (9.2)

For the derivative we have

∂𝑧T𝑡(𝜙, 𝜔)(𝑧, 𝑡) = 𝐼1 + 𝐼2,

where

𝐼1 :=
1

2𝜋𝑖

∫
∂𝐺(𝑠)

𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)
𝜁 + 𝑧

(𝜁 − 𝑧)2
𝑑𝜁

𝜁

and

𝐼2 :=
1

2𝜋𝑖

∫
∂𝐺(𝑠)

𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)
1

(𝜁 − 𝑧)

𝑑𝜁

𝜁
.
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The second integral 𝐼2 can be estimated in the same way as T𝑡(𝜙, 𝜔)(⋅, 𝑡). Thus
∥𝐼2∥𝒞𝜆(𝐺(𝑠))

≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B). (9.3)

After using the holomorphy of 𝜙, 𝜔̃ with respect to 𝜁 in 𝐴(𝑠) we have for all

𝑧 ∈ 𝐺(𝑠), 𝑠 ∈ (0, 1) and 𝑡 ∈ [0, ℎ],

𝐼1 = − 1

2𝜋𝑖

∫
∂𝐺(𝑠)

𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)
𝜁 + 𝑧

𝜁
∂𝜁

(
1

𝜁 − 𝑧

)
𝑑𝜁

=
1

2𝜋𝑖

∫
∂𝐺(𝑠)

∂𝜁

(
𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

)𝜁 + 𝑧

𝜁

)
1

𝜁 − 𝑧
𝑑𝜁.

Consequently, the integral 𝐼1 is equal to the sum of Schwarz’s integral with the
density

∂𝜁

(
𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)

(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

))
and Cauchy’s integral with the density

−𝜙(𝜁, 𝑡)𝜙(𝜁, 𝑡)
(
𝑄(𝑡) +

𝜔(𝜁, 𝑡) + 𝜔̃(𝜁, 𝑡)

2

) 𝑧

𝜁2
.

For both types of integrals, estimates in Hölder spaces are well known. Hence,

∥𝐼1∥𝒞𝜆(𝐺(𝑠))
≤ 𝐶

(
∥∂𝜙
∂𝑧
∥𝒞𝜆(𝐺(𝑠))

∥𝜙∥B𝑎 + ∥
∂𝜙

∂𝑧
∥𝒞𝜆(𝐴(𝑠))

∥𝜙∥B
)

×
(
∣𝑄(𝑡)∣+ ∥𝜔∥B + ∥𝜔̃∥B𝑎

)
+ 𝐶∥𝜙∥B∥𝜙∥B𝑎

(
∥∂𝜔
∂𝑧
∥𝒞𝜆(𝐺(𝑠))

+ ∥∂𝜔̃
∂𝑧
∥𝒞𝜆(𝐴𝑠)

)
+ 𝐶∥𝜙∥B∥𝜙∥B𝑎

(
∣𝑄(𝑡)∣+ ∥𝜔∥B + ∥𝜔̃∥B𝑎

)
,

∥𝐼1∥𝒞𝜆(𝐺(𝑠))

(
1− 𝑡

𝑏(1− 𝑠)

) 1
2

≤ 𝐶∥𝜙∥B∥𝜙∥B𝑎

(
∣𝑄(𝑡)∣+ ∥𝜔∥B + ∥𝜔̃∥B𝑎

)
, (9.4)

respectively. Applying Lemma 9.2 and summarizing (9.3) and (9.4) gives

sup
𝑠∈(0,1),𝑡∈[0,𝑏(1−𝑠))

∥∂𝑧T𝑡(𝜙, 𝜔)(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))

(
1− 𝑡

𝑏(1− 𝑠)

) 1
2

≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B).
(9.5)

The inequalities (9.2) and (9.5) yield

∥T𝑡(𝜙, 𝜔)∥B ≤ 𝐶∥𝜙∥2B(1 + ∥𝜔∥B),
that is, T𝑡(𝜙, 𝜔) belongs to B. Following the same approach implies moreover

∥T𝑡(𝜙1, 𝜔)−T𝑡(𝜙2, 𝜔)∥B ≤ 𝐶max{∥𝜙1∥B, ∥𝜙2∥B}(1 + ∥𝜔∥B)∥𝜙1 − 𝜙2∥B, (9.6)

∥T𝑡(𝜙, 𝜔1)−T𝑡(𝜙, 𝜔2)∥B ≤ 𝐶∥𝜙∥2B∥𝜔1 − 𝜔2∥B. (9.7)

Thus T𝑡 depends continuously on 𝜙 and 𝜔. All the statements of our lemma are
proved. □
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Corollary 9.4. For each 𝜔 ∈ B there exists a constant 𝑏 = 𝑏(𝜔) such that the
abstract Cauchy-Kovalevsky problem (7.3)–(7.4) has a uniquely determined solution
𝜙 ∈ B.

Proof. The problem (7.3)–(7.4) can be rewritten in the following operator form:

I(𝜙) = I(𝜙0)+A∘M
(
𝜙,M

(
𝑧,T𝑡(𝜙, 𝜔)

))−2J∘M
(
𝜙, ∂𝑧 ∘M

(
𝑧,T𝑡(𝜙, 𝜔)

))
, (9.8)

where M(𝜙, 𝜔) := 𝜙 ⋅ 𝜔 is the operator of multiplication, J𝜓 :=
𝑡∫
0

𝜓(⋅, 𝜏)𝑑𝜏 is the

operator of integration, I is the identity operator, and ∘ denotes the superposition
operator.

Lemmas 8.1, 9.1, 9.3 imply immediately

∥A ∘M
(
𝜙,M(𝑧,T𝑡(𝜙, 𝜔))

)
∥B ≤ 𝐶𝑏∥𝜙∥3B(1 + ∥𝜔∥B), (9.9)

∥2J ∘M
(
𝜙, ∂𝑧 ∘M(𝑧,T𝑡(𝜙, 𝜔))

)
∥B ≤ 𝐶𝑏∥𝜙∥3B(1 + ∥𝜔∥B), (9.10)

respectively, where in the last two formulas the constants 𝐶 are independent of 𝜙
and 𝜔.

The assumptions on 𝜙 and 𝜔 from problem (𝑄𝛼) guarantee the existence of
𝑟0, 𝑟1 such that 𝜙0 ∈ B. Let us fix a constant 𝑅 > 0. Then a suitable small 𝑏 makes
sure together with (9.8), (9.9), and (9.10) that the right-hand side of (9.8) maps
{𝜙 ∈ B : ∥𝜙− 𝜙0∥B ≤ 𝑅} into itself. By (9.1) this mapping is a contractive one if
we eventually choose a smaller 𝑏. Banach’s fixed point theorem leads to a uniquely
determined solution 𝜙 ∈ B of (7.3)–(7.4). This completes the proof. □

9.1. Riemann-Hilbert-Poincaré problem

Here we discuss the holomorphy of the second component 𝑤reg = 𝑤reg(𝑧, 𝑡) of
solutions of problem (𝑃𝛼) (or equivalently 𝜔 = 𝜔(𝑧, 𝑡) of problem (𝑄𝛼)). As we
have already shown, the solution 𝜙 = 𝜙(𝑧, 𝑡) of (7.3)–(7.4) admits an analytic
continuation into a bigger domain if we suppose a corresponding property for
𝜔. Without loss of generality we can suppose that this domain is a disk 𝐺𝑑 =
{𝑧 : ∣𝑧∣ < 𝑑}, 𝑑 > 1, and it is a common domain of holomorphy for all functions
𝜙 = 𝜙(⋅, 𝑡), 𝑡 ∈ [0, 𝑇𝑑). In problem (7.5)–(7.6) the variable 𝑡 is only a parameter.
For this reason let us omit it till the end of this section (and use for sake of brevity
the notations 𝜙(𝑧), 𝜔(𝑧), 𝑄 etc.)

Let 𝜙 be a given holomorphic and non-vanishing function in 𝐺𝑑. Our goal is
to prove that 𝜔 connected with 𝜙 by

Im (𝜔(𝑧)) = 𝛼∂𝜃

(
∣𝜙(𝑧)∣(𝑄+Re (𝜔(𝑧))

))
on ∂𝐺1, (9.11)

𝜔(0) = 0, (9.12)

is also holomorphic in 𝐺𝑑.
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Therefore we need the following auxiliary result:

Lemma 9.5. Let the non-vanishing function 𝜙 belong to ℋ(𝐺1) ∩ 𝒞1,𝜆(𝐺1). Then
the boundary value problem (9.11)–(9.12) possesses a uniquely determined solution
𝜔(𝑧) ∈ ℋ(𝐺1) ∩ 𝒞1,𝜆(𝐺1).

Proof. Using Im(𝜔(0)) = 0 we can rewrite the boundary condition (9.11) in the
equivalent form

−H (Re𝜔) (𝑧) = 𝛼𝑄∂𝜃∣𝜙(𝑧)∣+ 𝛼∂𝜃

(
∣𝜙(𝑧)∣Re (𝜔(𝑧))

)
, 𝑧 = 𝑟𝑒𝑖𝜃 ∈ ∂𝐺1, (9.13)

where H is the Hilbert transform for the unit circle,

H𝑔(𝑒𝑖𝜂) :=
1

2𝜋

∫ 2𝜋

0

𝑔(𝑒𝑖𝜎) cot
𝜂 − 𝜎

2
𝑑𝜎, 𝜂 ∈ [0, 2𝜋).

Using Re (𝜔(0)) = 0 and applying H once more we get

Re (𝜔(𝑧)) = 𝛼𝑄∂𝜃H (∣𝜙(𝑧)∣) + 𝛼∂𝜃

(
H (∣𝜙(𝑧)∣Re (𝜔(𝑧)))

)
. (9.14)

Let us introduce a new function 𝑈 = 𝑈(𝑧, 𝑧), which is harmonic in the unit disk,
and which satisfies the boundary relation

𝑈(𝑧, 𝑧) = ∣𝜙(𝑧)∣Re (𝜔(𝑧)), 𝑧 ∈ ∂𝐺1. (9.15)

Using the Cauchy-Riemann equations on the unit circle we get finally, that (9.11)–
(9.12) can be rewritten as the third kind of boundary problem for 𝑈 ,

∂𝑟𝑈 +
1

𝛼∣𝜙(𝑧)∣𝑈 = 𝑄H (∂𝜃∣𝜙∣) (𝑧), 𝑧 ∈ ∂𝐺1.

The coefficient (𝛼∣𝜙(𝑧)∣)−1, and the right-hand side of this boundary condition
belong to 𝒞𝜆 (∂𝐺1). It is known that this problem is uniquely solvable (see, e.g.,
[15]) in the space 𝒞1,𝜆 (𝐺1

)
. By Poisson’s formula and (9.15) we determine the

unique harmonic function Re (𝜔). The formula (9.14) implies
2𝜋∫
0

Re (𝜔(𝑒𝑖𝜃))𝑑𝜃 = 0,

i.e., Re (𝜔(0)) = 0. The corresponding unique solution 𝜔 of problem (9.11)–(9.12)
is obtained by Schwarz’s formula under the additional constraint Im(𝜔(0)) = 0.
Using the assumption for 𝜙 and the regularity of 𝑈 gives immediately the statement
of the lemma. □

Let the function 𝜙 be holomorphic and non-vanishing in the disk 𝐺𝑑, 𝑑 > 1.4

One can introduce the following holomorphic function:

ℎ+(𝑧) := (𝜙(𝑧))
1
2 , 𝑧 ∈ 𝐺𝑑,

4We will use further the same notations for functions given in the unit disk and for their analytic
continuations into bigger domains.
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choosing any branch of the root function. We can define another holomorphic
function by

ℎ−(𝑧) := ℎ+
(
1

𝑧

)
for

{
𝑧 : ∣𝑧∣ > 1

𝑑

}
.

Both of these functions ℎ+(𝑧), and ℎ−(𝑧) as well as their product 𝑚(𝑧) :=
ℎ+(𝑧)ℎ−(𝑧) are holomorphic in the annulus 𝐴 =

{
𝑧 : 1

𝑑 < ∣𝑧∣ < 𝑑
}
. Besides we

have on the unit circle

∣𝜙(𝑧)∣ = ℎ+(𝑧)ℎ−(𝑧), 𝑧 ∈ ∂𝐺1.

In the same manner we can introduce

𝜔−(𝑧) := 𝜔+

(
1

𝑧

)
for {𝑧 : ∣𝑧∣ > 1},

where 𝜔+(𝑧) := 𝜔(𝑧) in the unit disk 𝐺1. With these notations the boundary
condition (9.11) can be rewritten on ∂𝐺1 in the equivalent form

𝜔+(𝑧)− 𝜔−(𝑧) = 2𝑖𝛼𝑄∂𝜃𝑚(𝑧) + 𝑖𝛼∂𝜃

(
𝑚(𝑧)

(
𝜔+(𝑧) + 𝜔−(𝑧)

))
,

or

𝛼𝑧𝑚(𝑧)𝑑𝑧𝜔
+(𝑧) + (1 + 𝛼𝑧𝑑𝑧𝑚(𝑧))𝜔+(𝑧) + 𝛼𝑄𝑧𝑑𝑧𝑚(𝑧)

= −𝛼𝑧𝑚(𝑧)𝑑𝑧𝜔
−(𝑧) + (1− 𝛼𝑧𝑑𝑧𝑚(𝑧))𝜔−(𝑧)− 𝛼𝑄𝑧𝑑𝑧𝑚(𝑧).

(9.16)

Let us note that all the terms at the left-hand side of (9.16) are in fact holomor-
phic on the internal annulus 𝐴𝑖 :=

{
𝑧 : 1

𝑑 < ∣𝑧∣ < 1
}
and Hölder-continuous up to

∂𝐺1, but those at the right-hand side of (9.16) are holomorphic on the external
annulus 𝐴𝑒 := {𝑧 : 1 < ∣𝑧∣ < 𝑑} and Hölder-continuous up to ∂𝐺1. Therefore, due
to the theorem on analytic continuation the left- (right-) hand side of (9.16) is
the restriction of a holomorphic function (say 𝐹 = 𝐹 (𝑧)) defined on the annulus
𝐴 to 𝐴𝑖 (𝐴𝑒). This means that (9.16) is equivalent to the system of differential
equations

𝛼𝑧𝑚(𝑧)𝑑𝑧𝜔
+ + (1 + 𝛼𝑧𝑑𝑧𝑚(𝑧))𝜔+ + 𝛼𝑄𝑧𝑑𝑧𝑚(𝑧) = 𝐹 (𝑧), 𝑧 ∈ 𝐴𝑖,

−𝛼𝑧𝑚(𝑧)𝑑𝑧𝜔
− + (1− 𝛼𝑧𝑑𝑧𝑚(𝑧))𝜔− − 𝛼𝑄𝑧𝑑𝑧𝑚(𝑧) = 𝐹 (𝑧), 𝑧 ∈ 𝐴𝑒.

(9.17)

By Lemma 9.5 the function 𝜔+(𝑧) is uniquely determined in 𝐺1. We have, due to
Schwarz’s Reflection Principle, that

𝐹 (𝑧) = 𝐹

(
1

𝑧

)
, for 𝑧 ∈ 𝐴𝑒; (9.18)

taking into consideration that the values of 𝐹 (𝑧) on ∂𝐺1 are real, this means (9.18)
holds on ∂𝐺1. Consequently, we can use the differential equation

𝛼𝑧𝑚(𝑧)𝑑𝑧𝜔
+ + (1 + 𝛼𝑧𝑑𝑧𝑚(𝑧))𝜔+ + 𝛼𝑄𝑧𝑑𝑧𝑚(𝑧) = 𝐹 (𝑧), 𝑧 ∈ 𝐴, (9.19)

for the continuation of 𝜔+ from 𝐴𝑖∪∂𝐺1 into 𝐴𝑒. Now we are in position to prove
the next statement.
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Lemma 9.6. Let the function 𝜔𝑖 = 𝜔𝑖(𝑧) be a single-valued holomorphic function
in an open annulus 𝐴𝑖 whose boundary consists of two disjoint circles Γ𝑖,Γ0 (Γ𝑖 ⊂
int Γ0). Let 𝜔

𝑖 satisfy on 𝐴𝑖 the first-order differential equation

𝑑𝑧𝜔 + 𝑎(𝑧)𝜔 = 𝑏(𝑧), (9.20)

where 𝑎, 𝑏 ∈ ℋ(𝐴𝑖).
Let us additionally suppose that 𝑎, 𝑏 admit analytic continuations into an

annulus 𝐴𝑒 whose boundary consists of two disjoint circles Γ0,Γ𝑒 (Γ0 ⊂ int Γ𝑒).
Then 𝜔𝑖 admits an analytic continuation 𝜔 into 𝐴𝑒, too.

Proof. Let us cover 𝐴
𝑒
by a finite number {𝑉1, . . . , 𝑉𝑛} of open sets in such a way

that

𝑉𝑗 ∩ 𝐴𝑒 ∕= ∅;
𝑛∪

𝑗=1

𝑉𝑗 ⊃ 𝐴
𝑒
;𝑉𝑗 ∩ 𝑉𝑗+1 ∩ 𝐴𝑖 ∕= ∅, 𝑗 = 1, . . . , 𝑛;𝑉𝑛+1 = 𝑉1.

Then we choose a point 𝑧1 ∈ 𝑉𝑛 ∩ 𝑉1 ∩𝐴𝑖 and solve the Cauchy problem

𝜔(𝑧1) = 𝜔𝑖(𝑧1)

for the differential equation (9.20) on 𝑉1∩𝐴𝑒. It has a unique holomorphic solution
𝜔1(𝑧), which in fact coincides with 𝜔𝑖(𝑧) on 𝑉1∩𝑉𝑛∩𝐴𝑖. Hence 𝜔1(𝑧) is an analytic
continuation of 𝜔𝑖(𝑧) into 𝑉1∩𝐴𝑒. In the same manner we get a continuation into all
domains 𝑉𝑗 ∩𝐴𝑒, 𝑗 = 1, . . . , 𝑛, choosing corresponding points 𝑧𝑗 ∈ 𝑉𝑗−1 ∩ 𝑉𝑗 ∩𝐴𝑖.
At last 𝜔𝑛(𝑧) coincides with 𝜔1(𝑧) on 𝑉1 ∩ 𝑉𝑛 ∩ Ω𝑒 because both functions are
analytic continuations of the single-valued holomorphic function 𝜔𝑖(𝑧) from the
domains 𝑉𝑛 ∩𝐴𝑖 and 𝑉1 ∩𝐴𝑖, respectively. Moreover, 𝑉𝑛 ∩𝐴𝑖 and 𝑉1 ∩𝐴𝑖 have a
common non-empty domain. □
Corollary 9.7. If in (7.5) the function 𝜙 = 𝜙(𝑧, 𝑡) admits an analytic continuation
to a bigger disk 𝐺𝑑, 𝑑 > 1, for certain 𝑡 ∈ [0, 𝑇 ), then the corresponding solution
𝜔 = 𝜔(𝑧, 𝑡) of (7.5)–(7.6) admits an analytic continuation into 𝐺𝑑 for the same 𝑡,
too.

10. Existence result

We suppose that 𝜙0 = 𝜙0(𝑧) is non-vanishing in a neighbourhood of the unit disk
𝐺1. Thus there exists 𝑟1 > 1 such that

𝜌0 := inf
𝑧∈𝐺𝑟1

∣𝜙0(𝑧)∣ = inf
𝑧∈𝐺𝑟1

∣∣∣∣∣
(
∂𝑓0
∂𝑧

(𝑧)

)−1∣∣∣∣∣ > 0. (10.1)

Using Corollary 9.7 the solution 𝜔0 = 𝜔0(𝑧) of the problem (9.11)–(9.12) with
𝜙 := 𝜙0 is holomorphic in 𝐺(1) = 𝐺𝑟1 , too. The next lemma describes properties
of continuations of solutions for (9.11)–(9.12). Let us introduce the function space

B1 = {𝜙 ∈ ℋ
(
𝐺(1)

)
: ∥𝜙∥1 := sup

𝑠∈(0,1)
∥𝜙∥𝒞1,𝜆(𝐺(𝑠))

<∞}.

Moreover, let 𝐵1(𝜙0, 𝜌) ⊂ B1 be the ball around 𝜙0 with radius 𝜌.
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Lemma 10.1. If 𝜙 ∈ 𝐵1(𝜙0, 𝜌), 𝜌 < 𝜌0, then the continuations 𝜔 = 𝜔(𝑧) of solutions
for (9.11)–(9.12) belong to B1 and satisfy

∥𝜔∥1 ≤ 𝐶, where 𝐶 = 𝐶(𝜆,𝑄, 𝑟0, 𝑟1, 𝜌, 𝜌0).

Proof. By the aid of Lemma 9.5 and following its proof we obtain with the same
notations

∥𝑈(𝑧)∥𝒞1,𝜆(𝐺1)
≤ 𝐶∥𝜙(𝑧)∥𝒞1,𝜆(𝐺1)

.

Using (10.1) and the assumption 𝜌 < 𝜌0 we have the estimate

∥∣𝜙(𝑧)∣−1∥𝒞1,𝜆(𝐺1)
≤ 𝐶.5

Taking into account (9.9), (9.10) and the properties of the Hilbert transform we
get immediately

∥𝜔∥𝒞1,𝜆(𝐺1)
≤ 𝐶. (10.2)

From Corollary 9.7 we get the existence of 𝜔 in 𝐺(1). The continuation of 𝜔 from

𝐺1 to 𝐺(1) is defined in the annulus 𝐴 = {𝑧 ∈ ℂ : 1
𝑟1

< ∣𝑧∣ < 𝑟1} as the solution of
the differential equation

𝑑𝑧𝜔
+ +

1 + 𝛼𝑧𝑑𝑧𝑚(𝑧)

𝛼𝑧𝑚(𝑧)
𝜔+ =

𝐹 (𝑧)

𝛼𝑧𝑚(𝑧)
− 𝑄𝑑𝑧𝑚(𝑧)

𝑚(𝑧)
. (10.3)

We remember that 𝑚(𝑧) = (𝜙(𝑧))
1
2 (𝜙(1𝑧 ))

1
2 , 𝑧 ∈ 𝐴, and 𝐹 (𝑧) is defined in 𝐴𝑖 =

{𝑧 ∈ ℂ : 1
𝑟1

< ∣𝑧∣ < 1} by (9.17) and in 𝐴𝑒 = {𝑧 ∈ ℂ : 1 < ∣𝑧∣ < 𝑟1} by (9.18).

By the aid of points 𝑧1, . . . , 𝑧𝑛, 𝑛 sufficiently large, we choose an equidistant
partition of ∂𝐺1 and overlapping sectors 𝑆1, . . . , 𝑆𝑛 defined as follows:

𝑆𝑘 :=

{
𝑧 ∈ ℂ :

1

𝑟1
< ∣𝑧∣ < 𝑟1,−𝜋

𝑛
− 𝛿 < arg 𝑧 − 𝛿𝑘 <

𝜋

𝑛
+ 𝛿

}
,

where 𝛿𝑘 = arg 𝑧𝑘, 𝛿 is a sufficiently small positive number. It is enough to get
an estimate for ∥𝜔∥𝒞1,𝜆(𝐺(𝑠)∩𝑆𝑘)

uniformly for all 𝑠 ∈ (0, 1), and 𝜙 ∈ 𝐵1(𝜙0, 𝜌). All

these estimates together yield an estimate for ∥𝜔∥𝒞1,𝜆(𝐺(𝑠))
.

The solution of (10.3) can be represented in 𝑆𝑘 in the form

𝜔(𝑧) := 𝐽1(𝑧) + 𝐽2(𝑧) := 𝜔(𝑧𝑘) exp

{
−
∫ 𝑧

𝑧𝑘

1 + 𝛼𝜁𝑑𝜁𝑚(𝜁)

𝛼𝜁𝑚(𝜁)
𝑑𝜁

}
+

∫ 𝑧

𝑧𝑘

(
𝐹 (𝜁)

𝛼𝜁𝑚(𝜁)
− 𝑄𝑑𝜁𝑚(𝜁)

𝑚(𝜁)

)
exp

{∫ 𝜁

𝑧

1 + 𝛼𝜉𝑑𝜉𝑚(𝜉)

𝛼𝜉𝑚(𝜉)
𝑑𝜉

}
𝑑𝜁.

For 𝐽1(𝑧) we have

𝐽1(𝑧) = 𝜔(𝑧𝑘)
𝑚(𝑧𝑘)

𝑚(𝑧)
exp

{
−
∫ 𝑧

𝑧𝑘

𝑑𝜁

𝛼𝜁𝑚(𝜁)

}
.

5In this section the constant 𝐶 is independent of 𝜙 ∈ 𝐵1(𝜙0, 𝜌) and of 𝑠 ∈ (0, 1).
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The function 𝑚−1 belongs to 𝒞1,𝜆(𝐺(1)∩𝑆𝑘), where ∥𝑚−1∥𝒞1,𝜆(𝐺(𝑠)∩𝑆𝑘)
≤ 𝐶. Here

we use ∣𝑚(𝑧)∣ ≥ 𝜌0 − 𝜌 > 0 for all 𝜙 ∈ 𝐵1(𝜙0, 𝜌). Consequently,

∥𝐽1(𝑧)∥𝒞1,𝜆(𝐺(𝑠)∩𝑆𝑘)
≤ 𝐶. (10.4)

The discussion of 𝐽2(𝑧) brings no new difficulties besides the consideration of the

integral
𝑧∫
𝑧𝑘

𝐹 (𝜁)
𝛼𝜁𝑚(𝜁)𝑑𝜁. From (9.17) and (10.2) we get

∥𝐹∥𝒞𝜆(𝐺1∩𝑆𝑘) ≤ 𝐶 for all 𝜙 ∈ 𝐵1(𝜙0, 𝜌).

Hence, by (9.18) we have

∥𝐹∥𝒞𝜆(𝐺(𝑠)∩𝑆𝑘)
≤ 𝐶.

But this gives immediately that 𝐽2(𝑧) ∈ 𝒞1,𝜆(𝐺(1) ∩ 𝑆𝑘) with

∥𝐽2(𝑧)∥𝒞1,𝜆(𝐺(𝑠)∩𝑆𝑘)
≤ 𝐶. (10.5)

The inequalities (10.4), and (10.5) imply ∥𝜔∥𝒞1,𝜆(𝐺(1)∩𝑆𝑘) ≤ 𝐶, that is 𝜔 ∈ B1

with ∥𝜔∥1 ≤ 𝐶 for all 𝜙 ∈ 𝐵1(𝜙0, 𝜌). This completes the proof. □

Corollary 10.2. If 𝜙 ∈ 𝐵1(𝜙0, 𝜌), then 𝜔 ∈ 𝐵1(𝜔0, 𝜂) with a constant 𝜂 depending
on 𝜌. If 𝜌 tends to 0, then 𝜂 tends to 0, too.

Proof. Let 𝜔, 𝜔0 be the solutions of (9.11)–(9.12) for 𝜙, 𝜙0, respectively. Then
𝑣 := 𝜔 − 𝜔0 solves the following Riemann-Hilbert-Poincaré Problem on ∂𝐺1:

Im (𝑣(𝑧)) = 𝛼∂𝜃

(
∣𝜙(𝑧)∣Re (𝑣(𝑧))

)
+ 𝛼∂𝜃

(
(∣𝜙(𝑧)∣ − ∣𝜙0(𝑧)∣)

(
𝑄+Re (𝜔0(𝑧))

))
,

𝑣(0) = 0.

The statement follows from the fact that 𝑣 ≡ 0 is a solution of

Im (𝑣(𝑧)) = 𝛼∂𝜃

(
∣𝜙(𝑧)∣Re (𝑣(𝑧))

)
, 𝑣(0) = 0 on ∂𝐺1,

and 𝛼∂𝜃
(
(∣𝜙(𝑧)∣−∣𝜙0(𝑧)∣)

(
𝑄+Re (𝜔0(𝑧))

))
can be considered as a small perturba-

tion. To complete the proof we follow the same approach as in the proof of Lemma
10.1. □

Remark 10.3. The statements of Lemma 10.1 and Corollary 10.2 remain true if
we replace B1 by B𝑠0 , 𝑠0 ∈ (0, 1), where

B𝑠0 := {𝜙 ∈ ℋ(𝐺(𝑠0)) : ∥𝜙∥𝑠0 := sup
𝑠∈(0,𝑠0)

∥𝜙∥𝒞1,𝜆(𝐺(𝑠))
<∞}.
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10.1. Main result

The results of the previous sections serve as preparations to prove our main result.

Theorem 10.4. There exists an (in general) small interval of time [0, 𝑏) such that
the problem (𝑄𝛼) has a uniquely determined solution (𝜙, 𝜔). The first component
𝜙 = 𝜙(𝑧, 𝑡) has no zeros on 𝐺𝑟0 × [0, 𝑏) and belongs to the space

𝒞1 ([0, 𝑏),ℋ(𝐺𝑟0) ∩ 𝒞1,𝜆(𝐺𝑟0)
)
.

The second component 𝜔 = 𝜔(𝑧, 𝑡) belongs to the space

𝒞 ([0, 𝑏),ℋ(𝐺𝑟0) ∩ 𝒞1,𝜆(𝐺𝑟0)
)
.

The constant 𝑟0 is taken as in the definition of B.

Corollary 10.5. There exists an (in general) small interval of time [0, 𝑏) such that
the problem (𝑃𝛼) has a uniquely determined solution (𝑓, 𝑤reg). The first component
𝑓 = 𝑓(𝑧, 𝑡) is univalent with respect to z on 𝐺𝑟0 for 𝑡 ∈ [0, 𝑏) and belongs to
𝒞1 ([0, 𝑏),ℋ(𝐺𝑟0) ∩ 𝒞2,𝜆(𝐺𝑟0)

)
. The second component 𝑤reg = 𝑤reg(𝑧, 𝑡) belongs to

𝒞 ([0, 𝑏),ℋ(𝐺𝑟0) ∩ 𝒞1,𝜆(𝐺𝑟0)
)
. The constant 𝑟0 is taken as in the definition of B.

This corollary is a direct consequence of the theorem. Univalence of the func-
tion 𝑓 follows from the properties of initial function 𝑓0, the choice of 𝜌 < 𝜌0 (see
(10.1)) and the chosen norm of B which is stronger than the sup-norm.

Proof of Theorem 10.4. Let us consider the problem (𝑄𝛼), that is (7.3)–(7.6). Let
𝜔0 be the solution of (7.5)–(7.6) for 𝜙 = 𝜙0(𝑧). One can find constants 𝑟0, 𝑟1 such
that 𝜙0 and 𝜔0 belong to B. We will prove the existence of solutions 𝜙 = 𝜙(𝑧, 𝑡)
and 𝜔 = 𝜔(𝑧, 𝑡) belonging to 𝑀𝑅(𝜙0) := {𝜙 : ∥𝜙 − 𝜙0∥B ≤ 𝑅} and 𝑀𝐾(𝜔0) :=
{𝜔 : ∥𝜔 − 𝜔0∥B ≤ 𝐾}, respectively, where the constants 𝑅 and 𝐾 will be chosen
later.

Step 1: The abstract Cauchy-Kovalevsky problem

Using Corollary 1, to each 𝜔 ∈𝑀𝐾(𝜔0) corresponds a constant 𝑏 = 𝑏(𝜔) such that
(7.3)–(7.4) has a uniquely determined solution 𝜙 ∈ B. We can choose the constant
𝑏 in such a way that 𝜙 ∈𝑀𝑅(𝜙0) uniformly for all 𝜔 ∈𝑀𝐾(𝜔0). Let us define the
operator

P1 : 𝜔 ∈𝑀𝐾(𝜔0) �→ 𝜙 = 𝜙(𝜔) ∈𝑀𝑅(𝜙0),

which maps 𝜔 ∈ 𝑀𝐾(𝜔0) to the uniquely determined solution 𝜙 = 𝜙(𝜔) of (7.3)–
(7.4). Taking into consideration (9.6), (9.7) the operator P1 depends continuously
on 𝜔. The inequalities (9.6), (9.7) and (9.9), (9.10) yield the existence of a constant
𝐶1 = 𝐶1(𝑅,𝐾) independent of 𝑏 such that

∥P1(𝜔1)−P1(𝜔2)∥B ≤ 𝐶1𝑏∥𝜔1 − 𝜔2∥B. (10.6)

Consequently, this inequality remains valid if we choose a smaller 𝑏.
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Discussion of the choice of 𝑏: Let us choose 𝑅 > 0. From (9.9), (9.10) we obtain

∥𝜙− 𝜙0∥B ≤ 𝐶𝑏
(∥𝜙0∥B +𝑅

)3
(1 +𝐾).

Hence,

𝑏 ≤ 𝑅

𝐶
(∥𝜙0∥B +𝑅

)3
(1 +𝐾)

(10.7)

guarantees that 𝜙 = 𝜙(𝜔) ∈𝑀𝑅(𝜙0) for all 𝜔 ∈𝑀𝐾(𝜔0). Using (10.1) a sufficiently
small choice of 𝑅 gives additionally that 𝜙 ∈𝑀𝑅(𝜙0) has no zeros in

∪
0<𝑠<1

𝐺(𝑠) ×
[0, 𝑏(1− 𝑠)).

Step 2: The Riemann-Hilbert-Poincaré problem

Due to Corollary 2 we can define a mapping

P2 : 𝜙 ∈𝑀𝑅(𝜙0) �→ 𝜔̃,

where 𝜔̃ is the uniquely determined solution of (7.5)–(7.6). Due to the results
from Section 3.3 this mapping takes values in B. Repeating the proof of Lemma
8, taking into account Corollary 3, leads to the next statement:

Lemma 10.6. If

max

{
sup

𝑠∈(0,1),ℎ<𝑏(1−𝑠)
max
𝑡∈[0,ℎ]

∥𝜙(⋅, 𝑡)∥𝒞𝜆(𝐺(𝑠))
;

sup
𝑠∈(0,1),ℎ<𝑏(1−𝑠)

∥∥∥∥∂𝜙∂𝑧 (⋅, 𝑡)
∥∥∥∥
𝒞𝜆(𝐺(𝑠))

𝐶𝑡,𝑠

}
<∞,

then the same is true for 𝜔̃ = 𝜔̃(𝑧, 𝑡).

Proof. It is clear because the derivatives ∂𝑧𝐽1(𝑧), ∂𝑧𝐽2(𝑧) and the left-hand side of

the differential equation (9.19) depend linearly on the derivatives ∂𝑧𝜙 and ∂𝑧𝜙. □

Using 𝐶𝑡,𝑠 =
(
1− 𝑡

𝑏(1−𝑠)
) 1

2 gives thatP2 maps 𝜙 ∈𝑀𝑅(𝜙0) to 𝜔̃ = P2(𝜙) ∈ B.

By Corollary 3 the function 𝜔̃ belongs to 𝑀𝐾(𝜔0) for all 𝜙 ∈ 𝑀𝑅(𝜙0). The proof
of this corollary implies the existence of a constant 𝐶2 = 𝐶2(𝑅,𝐾) independent
of 𝑏 such that

∥P2(𝜙1)−P2(𝜙2)∥B ≤ 𝐶2𝑏∥𝜙1 − 𝜙2∥B. (10.8)

The inequalities (10.6), (10.8) give for the mapping

P2 ∘P1 : 𝜔 ∈𝑀𝐾(𝜔0) �→ 𝜔̃ ∈𝑀𝐾̃(𝜔0)

the estimate

∥𝜔̃1 − 𝜔̃2∥B = ∥P2 ∘P1(𝜙1)−P2 ∘P1(𝜙2)∥B ≤ 𝐶2𝐶1𝑏∥𝜔1 − 𝜔2∥B.
Discussion of the choice of 𝐾,𝑅 and 𝑏: If 𝐾̃ > 𝐾, then we choose 𝐾 := 𝐾̃,
otherwise it is unchanged. The constant 𝑅 is determined by Corollary 3 in such
a way, that 𝜙 ∈ 𝑀𝑅(𝜙0) is mapped by P2 into 𝑀𝐾(𝜔0). Then (10.7) and 𝑏 <
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(𝐶1𝐶2)
−1 (the constants 𝐶1, 𝐶2 are independent of 𝑏) ensure that P2 ∘ P1 is a

contractive mapping on𝑀𝐾(𝜔0). Consequently, there exists a uniquely determined
fixed point 𝜔𝑓𝑖𝑥 ∈ 𝑀𝐾(𝜔0). This fixed point and 𝜙 := P1(𝜔𝑓𝑖𝑥) form the unique
solution (𝜙, 𝜔) := (P1(𝜔𝑓𝑖𝑥), 𝜔𝑓𝑖𝑥) of (𝑄𝛼). All statements of the theorem are
proved. □
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