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Preface

This volume features selected and peer-reviewed contributions from the Fall 2011
Seminar Series on Mathematical Sciences and Applications at Virginia State
University.

The weekly yearlong seminar is a dynamic forum for the best faculty to present
and discuss current cutting-edge research at the interface between mathematics,
science, engineering, and technology. The emphasis in this volume is on dynamical
systems and the N-body problem in celestial mechanics, fractional calculus, almost
and pseudo-almost periodicity, pseudo-almost automorphy, difference equations,
calculus of variations and convexity, perfect polygons, and convex quadrics in
geometry, as well as applications to materials sciences and pattern formation in
microstructures, life sciences, computer science, bioinformatics and health, game
theory, and economics. The participants, both faculty and students, are from several
disciplines. The main objective is fostering student interest in STEAM-H (Sci-
ence, Technology, Engineering, Agriculture, Mathematics and Health), stimulating
graduate and undergraduate research and collaboration among researchers on a
genuine interdisciplinary basis. Therefore, all articles are from contributors who
are leading researchers in their field, and are carefully selective, self-contained, and
pedagogically exposed.

The seminar takes place in an area that is socially, economically, intellectually
very dynamic, and home to some of the most important research centers in the
USA, including NASA Langley Research Center, manufacturing companies (Rolls-
Royce, Canon, Chromalloy, Sandvik, Siemens, Sulzer Metco, NN Shipbuilding,
Aerojet) and their academic consortium (CCAM), University of Virginia, Virginia
Tech and Virginia State University, the Virginia Logistics Research Center, Virginia
Nanotechnology Center, Aerospace Corporation, C3I Research and Development
Center, Defense Advanced Research Projects Agency, Naval Surface Warfare
Center, National Accelerator Facility, and the Homeland Security Institute. The
program invites leading national and international researchers. The seminar is
expected to become a national and international reference in STEAM-H education
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vi Preface

and research. To ensure thematic continuation, the proceedings are published by
Springer, a renowned publisher with high standards for quality. The volume is
organized as follows:

Chapter 1, by Dr. Zhifu Xie, is in celestial mechanics and presents current
research on central configurations of the N-body problem, along with super central
configurations, with some interesting applications to spacecraft orbital design.

Chapter 2, by Professor Gaston N’Guérékata, is in the rapidly expanding area
of fractional differential equations, generalization of ordinary differential equations
to arbitrary (non-integer) order capturing nonlocal relations in space and time. The
author proves the existence of solutions to some Cauchy problems with nonlocal
conditions.

Chapter 3, by Professor Toka Diagana, addresses nonautonomous systems of
second-order differential equations. Using dichotomy tools the author obtains the
existence of doubly weighted pseudo-almost automorphic solutions. An illustration
of the non-resonance case is also presented.

Chapter 4, by Professor Stephen Schecter, applies mathematics to game theory
and economics. The author revisits the biblical problem of how the Babylonian
Talmud divides an estate among creditors when the debts total more than the estate
using a game theoretical approach. He explains the Aumann–Maschler–Kaminski
solutions and their relation to game theory (Robert Aumann is the 2005 Nobel prize
winner in Economics.).

Chapter 5, by Professor Gaston N’Guérékata, is concerned with pseudo-almost
periodicity and proves the nonuniqueness of the decomposition of a weighted
pseudo-almost periodic function under certain conditions on the weight.

Chapter 6, by Dr. Paul Bezandry, studies almost periodic random sequences and
their applications to the stochastic Beverton–Holt difference equation, in which the
recruitment function and the survival rate vary randomly.

Chapter 7, by Dr Candace Kent, features an open problem in difference equa-
tions, in particular difference equations both piecewise-defined and having every
solution either eventually periodic or unbounded. Four such cases and their common
properties are studied. The chapter concludes with a very interesting query on the
3x+ 1 problem.

Chapter 8, by Dr Daniel Vasiliu, considers mathematical models for pattern
formation in microstructures, applied to solid–solid phase transitions in materials
science. Generalizations of rank-one convexity and quasi-convexity are developed
and presented.

Chapter 9, by Dr. Kostadin Damevski, is devoted to the efficient programming of
graphics processing units (GPU). The author develops a so-called refactoring tool,
the ExtractKernel, to reduce the complexity of programming or porting codes to
GPUs.

Chapter 10, by Dr. Weidong Mao, deals with bio-informatics. Data mining tools
based on the so-called Association studies are used to efficiently find associations,
patterns, and relationships on data collected about three different types of cancer
patients. The study is based on data mining algorithms, and with the assistance
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of Oracle Data Miner Software, it describes the disparities on cancer survivability
between African–American and White American populations

Chapter 12, by Professor Raymond Fletcher, features the so-called perfect
hexagons and elementary triangles and their appearance in geometry. Drawing from
abstract algebra and algebraic geometry, the author develops a theory of cubic curves
with several esthetic and artful geometric representations. The many interesting
results also lead to conjectures for future work.

The concluding chapter by Professor Valeriu Soltan investigates convex quadrics
by extending the special class of ellipses and ellipsoid convex surfaces and classifies
them in the n-dimensional real Euclidean space. Convex quadrics are also char-
acterized using planes and hyperplanes quadric sections among all hypersurfaces,
possibly unbounded.

This volume stimulates new advances in the fields of mathematics represented
here, as well as in their applications in engineering, life and health sciences, game
theory, and economics. The shared emphasis of these carefully selected and refereed
contributed chapters is on important methods, research directions, and applications
of analysis within and beyond mathematics. The seminar promotes mathematics,
engineering, and technology education as well as interdisciplinary, industrial, and
academic cooperation, through its Springer-published proceedings. The volume
will serve as a source of inspiration for a broad spectrum of researchers and
research students; the invited-only contributions are at the interface between modern
mathematics and its applications in Science, Technology, Engineering, Agriculture,
Mathematics, and Health, the so-called emerging STEAM-H interconnected disci-
plines.

We gratefully acknowledge the following supports: the Office of the Provost,
Dr. Weldon Hill, Mr. Daniel Roberts, Ms. Yancey Dot, and Ms. Marie Singfield;
the Office of the Dean, School of Engineering, Science and Technology,
Professor Larry Brown, Ms. Victoria Perkins, Mrs. Bonnie Grant, and Mrs. Rudine
Jenkins; the Department of Mathematics and Computer Science, its Chair Professor
Kenneth Bernard and administrative assistants Ms. Caroline Price and Ms. Vickie
Crowder; the Department of Education HBCU MS Program and Professor Pamela
Leigh-Mack; the NSF/HBCU-UP, Professor Ali Ansari and Ms. Amber Dollete; the
NIH/RIMI program and Dr. Omar Faison.

We would like to thank very much Ms. Melissa Watts, and also Dr. Giti Javidi,
Dr. Tony Bryant, Mr. Leroy Lane, Mr. Daniel Huang, Ms. Eleanor Poarch-Wall,
Mr. Daniel Fritz, Mr. Andrew Wynn, Ms. Owens Azzala, and Mr. Calvin Smith,
whose tireless efforts have contributed to the smooth organization, presentations,
recording, and attendance. We sincerely appreciate the promotional support by the
Office of Students Activities and its Director Ms. Martin Menjiwe, and VSU Radio
Station WVST 91.3 and Station Manager Ms. Jennifer Williamson and her assistants
Ms. Melony Negron and Ms. Melissa Thornton.

Special thanks are extended to all the contributors, the faculty and student
participants, in particular to Professor Oliver Hill, Professor Rana Singh, Professor
Emeritus Walter Elias, Dr. Brian Sayre, Dr. Ehsan Sheybani, Professor Toka
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Diagana, Dr. Ahmed Mohamed, and Professor Gaston N’Guérékata, great support-
ers and/or frequent presenters at the seminar since its inception. We would like to
express our sincere thanks to all the anonymous referees for their professionalism.
They all made the seminar and its published thematic continuation a reality for
the greater benefice of the community of science, engineering, technology, and
mathematics.

Petersburg, VA, USA Bourama Toni
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Chapter 1
Central Configurations, Super Central
Configurations, and Beyond in the n-Body
Problem

Zhifu Xie

Abstract In this survey, we review our recent understandings on central config-
urations, super central configurations, and their applications. At the end, some
challenging problems and further possible extensions are presented.

Keywords Central configurations • Super central configurations • n-body
problems • Celestial Mechanics

AMS classification number: 70F10, 37J45, 37N05

1.1 n-Body Problem and Central Configurations

One of the oldest dreams of humankind is to understand the motion of celestial
bodies such as the Sun, planets, and the Moon in the solar system. In 1686, Isaac
Newton [17] described such motion as a solution of differential equations in his
masterpiece “Philosophiae Naturalis Principia Mathematica.” Most celestial bodies
can be modeled as point masses. The Newtonian gravitational law asserts that the
force acting on each body is directly proportional to the product of the masses,
inversely proportional to the square of the distance between their centers, and acts
along the straight line joining them. Then the motion of the particles can be stated
as following:

Z. Xie (�)
Department of Mathematics and Computer Science, Virginia State University,
Petersburg, VA 23806, USA
e-mail: zxie@vsu.edu

B. Toni et al. (eds.), Bridging Mathematics, Statistics, Engineering and Technology,
Springer Proceedings in Mathematics & Statistics 24, DOI 10.1007/978-1-4614-4559-3 1,
© Springer Science+Business Media New York 2012
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2 Z. Xie

mkq̈k =
∂U
∂qk

=
n

∑
j=1, j �=k

mkm j(q j − qk)

|q j − qk|3 1 ≤ k ≤ n, (1.1)

where mk ∈ R+ is the mass of k-th body with position qk ∈ R3(k = 1, · · · ,n), and U
is the Newtonian potential function

U = ∑
1≤k< j≤n

mkm j

|qk − q j| . (1.2)

We will use q ∈ (R3)n and m ∈ (R+)n to denote the position and mass vectors
(q1, · · · ,qn) and (m1, · · · ,mn), respectively. Let C = m1q1 + · · ·+ mnqn, M =
m1 + · · ·+mn, c = C/M be the first moment, total mass, and center of mass of
the bodies, respectively.

The differential equations (1.1) of the two-body (n = 2) problem are easy to
solve. Its complete solution was first given by the Swiss mathematician John
Bernoulli in 1710. One can prove that the path followed by one particle with respect
to the other always lies along a conic section. This implies that the orbit described
in physical space may be a circle, an ellipse, a parabola, a branch of hyperbola, or
a straight line. Unfortunately the two-body problem has proved to be the only easy
one among all the n-body problems; in spite of an enormous expenditure of effort,
for n larger than two, even for n = 3, no other case has been solved completely.

The major breakthrough was achieved by Henri Poincaré in late nineteeth
century. His main result shows that it is not possible to find a general solution of
the systems and that the behavior of general solutions can be chaotic. This is the
starting point of qualitative theory of dynamical systems which has thrived in the
twentieth century. Even so, the n-body problem remains one of the favorite problems
of leading mathematicians. As pointed out by Jürgen Moser [14] in his 1998 ICM
hour-long talk, the n-body problem is the driving force in the development of
dynamical systems and other areas. The focus has been switched from seeking
general solutions to finding special periodic solutions and investigating initial
configurations with special behavior. A central configuration plays the essential role
in understanding the global structure of solutions of n-body problem of celestial
mechanics. A central configuration is an arrangement of the initial positions of
masses that leads to special families of solutions of the n-body problem. The initial
positions must satisfy the following nonlinear system of algebraic equations:

n

∑
j=1, j �=k

m j(q j − qk)

|q j − qk|3 =−λ (qk − c), 1 ≤ k ≤ n, (1.3)

for a constant λ . By the homogeneity of U(q) of degree −1, λ =U/2I > 0, where
I is the moment of inertial of the system, i.e., I = 1

2 ∑n
i=1 mi|qi|2. The collision set is

defined by

�=
⋃
{q = (q1,q2, · · · ,qn) ∈ (R3)n|qi = q j for some i �= j}. (1.4)
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To avoid singularities q is restricted in V (n):

V (n) = {q = (q1,q2, · · · ,qn) ∈ (R3)n}\�. (1.5)

Definition 1.1.1 (Central Configuration). A configuration q ∈ V (n) is a central
configuration (CC for short) for a given mass vector m = (m1,m2, · · · ,mn) ∈ (R+)n

if q is a solution of the system (1.3) for some constant λ ∈ R.

The study of central configurations plays a “central” role in the understanding
of the complexity of the n-body problem and it is a subject that develops in many
directions. The problem of finiteness of the number of central configurations has
been listed as a challenging problem for 21st century’s mathematicians (see S.Smale
[24]). The relevance of central configurations is remarked in multiple works in
the literature. We refer specially to the beautiful presentation by Sarri [20, 21],
Meyer-Hall [12], Meyer-Hall-Offin [13], and Moeckel [16] where the fundamental
references are found.

Central configurations lead to the only known cases where the differential
equations of the n-body problem are integrable. This was already known in
Newton’s era. Any planar central configuration gives rise to a special one-parameter
family of periodic solution where each body rotates around the center of mass on
its own ellipse. If all the ellipses are circles, the solution is known as a relative
equilibrium because it is a fixed point in a rotating coordinate system. Some of the
earliest solutions to the three-body problem were of this type. For example, Euler [5]
in 1767 proved that there exists exactly one central configuration for each ordering
of the three masses on a line. Lagrange [6] in 1772 discovered the equilateral triangle
central configurations. When three bodies with any choice of masses are placed at
the vertices of an equilateral triangle, it gives rise to a family of solutions where
each body is traveling along a particular Kepler orbit.

Indeed twentieth century astronomers later discovered two groups of asteroids
(now called the Trojans in 1906 and the Eureka in 1990) which form an equilateral
triangle with the Sun and Jupiter. Central configurations have been applied in
spacecraft mission design. When a spacecraft is placed at a location where the
Earth, the Moon, and the spacecraft form a central configuration, all the forces
among them are exactly balanced and the spacecraft will stay there forever in
the rotating system. These locations are called Euler–Lagrange points or libration
points. This is important in applications, since a spacecraft can be theoretically
parked at one of the Euler–Lagrange points without any fuel for as long as wanted.
Linear stability analysis on the equilibrium points shows that there exists a weak
stability boundary (WSB), where the gravitational forces from the Earth and the
Moon are nearly balanced in relation to a moving spacecraft as it travels around the
Moon. It provides a new useful mission design with low energy transfer (ballistic
capture transfer or WSB transfer) which is indeed used in the rescue of a spacecraft
probe to the Moon [4].

In the concept of low energy interplanetary transfers [7,8], the role of the libration
points is the key. However the mathematical theory behind the idea is very simple.
It is based on the understanding of the nonlinear dynamics of these orbits by the
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invariant manifold theory. The solar system is modeled by a series of circular
restricted three body problems. Each of them gives rise to some libration points. The
libration points of all the planets and their moons generate some stable and unstable
manifolds which are called tunnels. Then our solar system is interconnected by a
vast system of tunnels winding around the Sun. Our spacecraft can fly through the
tunnels with fewer energy consumption.

1.2 Super Central Configurations

A new phenomenon of central configurations was recently discovered in the
collinear three-body and four-body problem. There exists a configuration that is a
central configuration for at least two different arrangements of a given mass vector.
Given a configuration q = (q1,q2, · · · ,qn) ∈V (n), denote S(q) the admissible set of
masses by

S(q) = {m = (m1,m2, · · · ,mn)|mi ∈ R+,q is a central configuration for m}. (1.6)

For a given m ∈ S(q), let Sm(q) be the permutational admissible set about m,
denoted by

Sm(q) = {m′ ∈ S(q)|m′ �= m and m′ is a permutation of m}. (1.7)

The requirements that m′ �= m and m′ is a permutation of m in Sm(q) are necessary
to exclude some trivial cases. For example, if q is a central configuration for
m = (m1,m2, m3, · · · ,mn) with m1 = m2, then q is also a central configuration
m′ = (m2,m1,m3, · · · ,mn) but m′ /∈ Sm(q). Let P(n) be the set of permutations of
{1,2, · · · ,n}. The set Sm(q) is a finite subset of {m(τ)|τ ∈ P(n)} and has at most
n!− 1 elements in Sm(q).

Definition 1.2.2. Configuration q is called a super central configuration (SCC for
short) if there exists positive mass m such that Sm(q) is nonempty.

The existence of super central configurations is a special inverse problem of
central configurations. The first example of super central configuration is the
equilateral triangle configuration in the planar three-body problem. If q is the
equilateral triangle configuration and m = (m1,m2,m3), then q is also a central
configuration for each permutation of m. Therefore, for three distinct masses, the
set Sm(q), which has five elements, consists of all the permutations of (m1,m2,m3).
However, there is no super central configuration in planar four-body problem.

The existence and classification of super central configurations has been studied
in the collinear three-body problem [25] and in the collinear four-body prob-
lem [26]. The detailed classifications of the nonempty set Sm(q) and the exact
configurations of super central configurations are also established. In the collinear
three-body problem, to find the exact configuration of super central configurations,
the general configuration up to translation and scaling is chosen at the x-axis q =
((0,0,0),(1,0,0),(1+ r,0,0)). Albouy–Moeckel [3] found that the center of mass
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does not depend on the choice of the masses which make the configuration central
and this property was also given by Christian Marchal in his book [11]. By using
the remarkable property, that #Sm(q)≤ 1 is proven analytically for any configuration
and any mass m = (m1,m2,m3). Moreover q is a super central configuration when
r < r < 1/r and r �= 1, where r is a unique positive zero of a polynomial with
degree 6. The set Sm(q) can only be either {(m3,m1,m2)} or {(m2,m3,m1)}. Such
results (see [27]) have been extended by an undergraduate research group at the
Virginia State University to the case of inverse integer power law.

In the paper [28] entitled by “The Golden Ratio and Super Central Configurations
of the n-body Problem,”it is further discovered that golden ratio φ = (

√
5+1)/2 has

surprising connections with super central configurations of the N-body problem. It
is amazing that this mathematical beauty is hidden in the action of celestial particles.
Let r = (|q3 − q2|)/(|q2 − q1|) be the ratio of distances in the collinear three-body
problem with the ordered positions q1,q2,q3 on a line. Only if r is greater than 1/φ
and less than φ , the configuration could be a super central configuration.

In the collinear four-body problem, the general configuration is chosen at the
x-axis q = ((−s − 1,0,0),(−1,0,0),(1,0,0),(t + 1,0,0). Ouyang–Xie [18] gave
explicit expressions of the masses which make the configuration central. The center
of mass does depend on the choice of the masses. Surprisingly, it was proved
in [26] that the constant λ in (1.3) does not depend on the order of the bodies
for any elements in Sm(q). By using this property and the linearity of the center
of mass, that #Sm(q) ≤ 1 is proven analytically for any configuration and any
mass m = (m1,m2,m3,m4). To find the exact super central configurations and
the corresponding masses, a polynomial equation in two position variables s, t is
derived. The polynomial equation that consists of 291 terms with degree 29 is quite
complicated. Amazingly, it is proved just using Descartes’ Rule that the polynomial
equation gives rise to a unique curve in the st-plane which must be satisfied by any
super central configuration.

Based on the results in the collinear three-body and four-body problems, we pose
the following questions. Some of these questions have been reported in the 2011
AMS Spring Eastern Sectional Meeting at the College of Holly Cross.

Question One: How large can the set Sm(q) be?

Question Two: Will a super central configuration give a special type of “perverse
solutions” with some special type of dynamical behaviors?

Conjecture: #Sm(q) is either zero or one for the collinear n-body problems.

1.3 Super Central Configurations and Number of Central
Configurations

For any given mass vector m ∈ (R+)n, the sets LG(n,m), LP(n,m), and LM(n,m)
denote the set of all geometric equivalence, permutation equivalence, and mass
equivalence classes of n-body collinear central configurations, respectively.
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Most papers and books study the central configurations under permutation equiv-
alence. Generally speaking, permutation of bodies makes difference in permutation
equivalence and geometric equivalence refers to the equivalence of geometric
shapes. More details on the definitions of the equivalence can be found in the
paper [19].

As the results of [1, 2] for the four equal masses case, there are exactly four
planar central configurations under geometric equivalence, i.e., the square, a special
isosceles triangle with one body on its axis of the symmetry, an equilateral triangle
with one body at its center, and a collinear central configuration. However, there are
50 central configurations for the four equal masses case under permutation equiva-
lence. This gives a good example on which the number of central configurations is
different under the different equivalence.

Directly from the definitions, we can deduce that #LG(n,m) ≤# LM(n,m) ≤#

LP(n,m). Under the definition of permutation equivalence of central configurations,
collinear central configurations are one of a few families of central configurations
with given positive masses which are somewhat understood. Moulton [15] proved
that there is a unique position that causes a central configuration for each way the
particles can be ordered along a line in 1910 and Smale [22] reconfirmed the result
by a different variational approach in 1970. Therefore, #LP(n,m) = n!/2.

The decreasing phenomenon of the number of central configurations has been
observed in a long history. The decreasing phenomenon in #LM(3,m) was studied
by Wintner [24] in 1941. For example #LP(3,m) = 3 but #LM(3,m) = 2 if two of
m1,m2,m3 are equal but not the third. Long–Sun [9, 10] established the counting
number #LM(n,m) in the collinear n-body problem.

But #LG(n,m) is only known in the collinear three-body problem and in the
collinear four-body problem. Long–Sun [9,10] first addressed the problems and they
gave results on the enumerations of central configurations under each equivalence,
especially, in the sense of geometric equivalence they found a singular algebraic hy-
persurface in the mass space which decreases the number of central configurations in
the three-body problem. It was proved #LP(3,m) =# LM(3,m) = 3 but #LG(3,m) = 2
if m is in the singular algebraic hypersurface. This paper [29] reinvestigated the case
of collinear central configurations of the three-body problem. The paper provided
a direct parametric expression for the singular algebraic hypersurface in the mass
space and a different proof involving the information of super central configurations.
Ouyang and Xie [19] found the exact number of central configurations of the
collinear four-body problem under geometric equivalence. The expression of the
singular algebraic hypersurface in the mass space only depends on two parameters.
If m is in the singular algebraic hypersurface, then#LP(4,m) =# LM(4,m) = 12 but
#LG(4,m) = 11. If m is not in the singular algebraic hypersurface, #LG(4,m) =#

LM(4,m).

Question Three: What is the Relationship Between the Super Central Configura-
tions and the Number of Central Configurations under Geometric Equivalence?

If the masses are distinct, the decreasing phenomenon is closely related to the
existence of super central configurations, i.e., for some distinct masses m, #LG(n,m)
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is strictly less than #LM(n,m). The difficulties of the proofs in [19, 29] are to
check the equivalence of central configurations for many different arrangements
of the bodies. For example, more than 90 cases have been checked even after
some subtle simplifications with some remarkable properties in the collinear four-
body problem. The possible cases to be checked will increase tremendously as n
increases due to the fact that the number of permutations of n-body is n!. Previous
results with n = 3,4 show that the decreased number of central configuration under
geometric equivalence is solely due to the existence of super central configurations
if masses are distinct. It is possible to find the number of central configurations under
geometric equivalence by excluding the number of super central configurations.
Establishing the relationship between super central configurations and the number
of central configurations is an important step towards understanding the number
decreasing phenomenon and it will provide an easier way to count the number of
central configurations.

Acknowledgments The author would like to thank Professor Bourama Toni for his encourage-
ments and suggestions regarding this work.
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Chapter 2
A Note on Fractional Calculus and Some
Applications

Gaston M. N’Guérékata

Abstract In this short note, we show by simple examples that differential equations
of fractional orders generalize the ones of integer orders. We present a variation of
constants formula which we obtained recently with C. Lizama and use it to prove
the existence of solutions to some Cauchy problem with nonlocal conditions. This
latter generalizes some of our recent results.

Keywords Derivative of the fractional order • Mild solution
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2.1 Introduction

Fractional calculus is a three-century-old topic. It goes back to Leibniz. First, note
that the notation dny

dtn , n= 1,2, . . . of the derivatives of a function y is due to Leibniz.
In a 1965 correspondence to Leibniz, L’Hospital wrote: “what if n = 1

2 ?.” In his
response, Leibniz said, “this is an apparent paradox from which, one day, useful
consequences will be drawn.”

Early contributors include Euler (1730), Lagrange (1772), Fourier (1822),
Liouville (1832), Riemann (1847), Leitnikov (1868), Laurent (1884), Krug (1890),
and Weyl (1917).
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Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

Laboratoire CEREGMIA, Université des Antilles et de la Guyane,
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Over the last decade, there has been a resurgence of fractional differential
equations and their applications to science (cf. for instance [1–14] and references
therein).

Indeed, fractional calculus is applied in almost all areas of science. One might
cite for instance Mechanics (theory of viscoelasticity and viscoplasticity), (Bio)
Chemistry (modeling of polymers and proteins), Electrical Engineering (transmis-
sion of ultrasound waves), Medicine (modeling of human tissue under mechanical
loads), Mathematical Psychology (modeling of behavior of human beings), Control
Theory (implementation of fractional order controllers), etc. . . Fractional differ-
ential equations are more appropriate and more efficient in the modeling of
memory-dependent phenomena and the modeling in complex media, such as porous
ones.

The paper is organized as follows. In Sect. 2.2, we present some elementary
properties of the fractional derivatives in the sense of Caputo and in the sense
of Riemann–Liouville. In Sect. 2.3, we solve some simple fractional differential
equations using the Caputo and the Riemann–Liouville derivatives and compare the
solutions to the one of a differential equation of order one. In Sect. 2.4, we present
a variation of constants formula due to Lizama and N’Guérékata [7]. Finally in
Sect. 2.5, we study the existence of solutions to a Cauchy problem with nonlocal
conditions, using classical fixed-point theorems. These results generalize our recent
ones in [13].

2.2 Fractional Derivatives

In this section, we will present the Caputo fractional derivative and the Riemann–
Liouville fractional derivative, two concepts of fractional derivatives among the
most used in the literature and recall some of their properties.

Definition 2.2.1. The fractional integral of order α > 0 of a function f is defined as

Jα
t f (t) :=

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds

provided the right-hand side is pointwise defined on [0,∞).

Let gα(t) := tα−1

Γ(α) if t > 0 and := 0 if t ≤ 0.

Then

Jα
t f (t) = (gα � f )(t)

where

J0
t f (t) = f (t).

Here (·� ·) denotes the convolution operator.
Let X be a Banach space with norm ‖ · ‖.
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Definition 2.2.2. Let f ∈Cm(R+,X). If m−1<α <m where m∈N, the Riemann–
Liouville derivative of f of order α is

Dα
RL f (t) :=

dm

dtm

∫ t

0

(t − s)m−α−1

Γ(m−α)
f (s)ds =

dm

dtm

∫ t

0
gm−α(t − s) f (s)ds

Definition 2.2.3. The Caputo derivative of f of order α ∈ (m− 1,m) is

Dα
c f (t) :=

∫ t

0

(t − s)m−α−1

Γ(m−α)
f (m)(s)ds

=

∫ t

0
gm−α(t − s) f (m)(s)ds

= Jm−α
t f (m)(t).

Theorem 2.2.4. If f = c, a constant, then Dα
c f = 0, but Dα

RL f �= 0.

Proof. If f = c, then we have Dα
c f =

∫ t
0 gm−α(t − s) dm

dsm (c)ds = 0.
But

Dα
RL f =

dm

dtm

∫ t

0
gm−α(t − s)cds =

c
Γ(m−α)

dm

dtm

(
tm−α

m−α

)

=
c(m−α − 1)(m−α − 2) . . .(−α + 1)t−α

Γ(m−α)
�= 0.

	

The following provides a relation between the Caputo derivative and the

Riemann–Liouville derivative (cf. for instance [14]).

Theorem 2.2.5. Dα
c h(t) = Dα

RLh(t)− t−α

Γ(1−α)h(0
+), 0 < α < 1.

Theorem 2.2.6. Let α > 0. If Dα
c h(t) = 0, then

h(t) = c0 + c1t + c2t2 + · · ·+ cntn−1

where ci are reals and n = [α]+ 1.

2.3 Differential Equations

For z ∈ C, α > 0, β > 0, let

Eα ,β (z) :=
∞

∑
k=0

zk

Γ(αk+β )



12 G.M. N’Guérékata

be the two-parameter Mittag-Lefler function and set

Eα ,1(z) := Eα(z).

Then one obtains the following:

• E1(z) = ez

• E2(z2) = cosh(z)
• E2(−z2) = cos(z)

From the above, it is clear that the two-parameter Mittag-Lefler function is a
generalization of the exponential function. It is an essential tool in the study of
fractional differential equations.

Consider for λ > 0 the ordinary differential equation

y′(t)+λ y(t) = f (t)

y(0) = y0 (2.1)

The solution is given by

y(t) = E1(−λ t)y0 +

∫ t

0
E1(−λ (t − s)) f (s)ds. (2.2)

Now consider for 0 < α < 1 and λ > 0, the fractional differential equation

Dα
c y(t)+λ y(t) = f (t)

y(0) = y0 (2.3)

Let ŷ(s) and f̂ (s) be the Laplace transforms of y and f , respectively. Taking the
Laplace transform of Eq. (2.3), we get

sα ŷ(s)− sα−1y0 +λ ŷ(s) = f̂ (s)

Thus

ŷ(s) =
sα−1

sα +λ
y0 +

f̂ (s)
sα +λ

Then using the inverse Laplace transform

t−α

Γ(1−α)
→ sα

tα−1Eα(−λ tα)→ 1
sα +λ
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gives the following solution to Eq. (2.3):

y(t) = Eα(−λ tα)y0 +
∫ t

0
(t − s)α−1Eα(−λ (t − s)α) f (s)ds. (2.4)

Consider now the fractional differential equation

Dα
RLy(t)+λ y(t) = f (t)

(g1−α � y)(0) = y0 (2.5)

Remark 2.3.1. Note here that the initial condition corresponds to Dα
c y(0) = 0 in

view of Theorem 2.2.5.

Now, taking the Laplace transform of Eq. (2.5) yields

sα ŷ(s)− y0 +λ ŷ(s) = f̂ (s).

Thus

ŷ(s) =
1

sα +λ
y0 +

f̂ (s)
sα +λ

Taking the inverse Laplace transform gives the solution to Eq. (2.5)

y(t) = tα−1Eα(−λ tα)y0 +

∫ t

0
(t − s)α−1Eα(−λ (t − s)α) f (s)ds (2.6)

Remark 2.3.2. If we let α = 1 in (2.4) and (2.6), we obtain (2.2). This proves that
both Eqs. (2.3) and (2.5) generalize Eq. (2.1).

2.4 A Variation of Constants Formula

In this section, we present a variation of constants formula under minimal condi-
tions. We assume that A : D(A) ⊂ X → X is a closed linear operator and f ,g : R×
X → X are continuous functions. Consider for 0 < α < 1 the fractional differential
equation

Dα
c (u(t)+ g(t,u(t))) = Au(t)+ f (t,u(t)), u(0) = u0 (2.7)

and the integral equation

u(t) = u0 + g(0,u0)− g(t,u(t))+
∫ t

0
gα(t − s) f (s,u(s))ds

+A
∫ t

0
gα(t − s)u(s)ds, (2.8)
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or

u(t)+ g(t,u(t)) = u0 + g(0,u(0))+ Jα
t f (t,u(t))+AJα

t u(t).

Theorem 2.4.1. Equations (2.7) and (2.8) are equivalent.

Proof. First we have

Dα
c f (t) = Jm−α

t Dm
c f (t), m = �α�

where Jα
t =

∫ t
0 gα(t − s) f (s)ds = (gα � f )(t). The following are well known.

(1) Dα
c Jα

t f = f
(2) Jα

t Dα
c f = f (t)− f (0)

Now suppose that (1) holds. Apply Jα
t to both sides. We get

u(t)+ g(t,u(t))− (u(0)+ g(0,u(0)))= AJα
t u(t)+ Jα

t f (t,u(t))

or

u(t)+ g(t,u(t))− (u(0)+ g(0,u(0)))= A(gα � u)(t)+ (gα � f (t,u(t))

which is (2).
Conversely suppose (2) holds. Apply Dα

c to both sides of (2). We get

Dα
c (u(t)+ g(t,u(t))) = Dα

c (u0 + g(0,u(0)))+Dα
c Jα

t f (t,u(t))+Dα
c AJα

t u(t)

or

Dα
c (u(t)+ g(t,u(t))) = f (t,u(t))+Au(t)

since Dα
c (constant) = 0 and Dα

c Jα
t h = h. 	


2.5 A Cauchy Problem with Nonlocal Conditions

Let X =R
n, I = [0,T ], C :=C(I,X) the Banach space of continuous functions : I →

X endowed with the topology of uniform convergence ‖ · ‖C. Consider the Cauchy
problem with nonlocal conditions

Dα
c u(t) = f (t,u(t)), t ∈ (0,T ]

u(0)+ g(u) = u0. (2.9)

Here 0 < α < 1. We make the assumptions

• H1 f (t,u) is of Carathéodory, i.e., for any u ∈ X , f (t,u) is strongly measurable
with respect to t ∈ I, and for any t ∈ I, f (t,u) is continuous with respect to u ∈ X .

• H2 ‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖, ∀x,y ∈ X , ∀t ∈ I
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• H3 g : C → X is continuous; moreover, there exists b > 0 such that

‖g(u)− g(v)‖≤ b‖u− v‖C, ∀u,v ∈ C.

We have the following results with slight generalizations of Theorems 2.1 and
2.2 [13], because of H1.

Theorem 2.5.1. Under assumptions H1–H3, (A) has a unique solution provided
b < 1

2 and L < Γ(α+1)
2Tα .

Proof. According to Theorem 2.4.1, Eq. (2.5) is equivalent to the integral equation

u(t) = u0 − g(u)+
1

Γ(α)

∫ t

0
(t − s)α−1 f (s,u(s))ds.

We proceed as in [13]. We define the operator F : C → C by

(Fu)(t) := u0 − g(u)+
1

Γ(α)

∫ t

0
(t − s)α−1 f (s,u(s))ds.

and prove that F has a unique fixed point by the Banach contraction principle. 	

Theorem 2.5.2. Suppose that H1–H3 are satisfied with b < 1. Suppose also that

‖ f (t,x)‖ ≤ μ(t), ∀(t,x) ∈ I×X

where μ ∈ L1(I,R+). Then Eq. (2.5) has at least one solution on I.

Proof. As in [13] Theorem 2.2, we use Krasnoselkii’s theorem to achieve the
conclusion. 	
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Chapter 3
A Note on Nonautonomous Systems
of Second-Order Differential Equations

Toka Diagana

Abstract The main objective of this paper is twofold. We first revisit the concept of
doubly weighted pseudo-almost automorphy and discuss some additional properties
of these functions. Next, we make extensive use of dichotomy tools to study
and obtain the existence of doubly weighted pseudo-almost automorphic solutions
to some nonautonomous second-order systems of differential equations. As an
illustration, we will consider a nonresonance case for some scalar second-order
systems of second-order differential equations.
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3.1 Introduction

In Diagana [4] the concept of weighted pseudo-almost periodicity was introduced
for the first time. Later on, Blot et al. [1] extended the notion of weighted
pseudo-almost periodicity by introducing the notion of weighted pseudo-almost
automorphy. More recently, in Diagana [5, 6], the notions of doubly weighted
pseudo-almost periodicity and doubly weighed pseudo-almost automorphy were
introduced, which generalize respectively the notions of weighted pseudo-almost
periodicity and weighted pseudo-almost automorphy.
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In this paper we first revisit the notion of doubly weighted pseudo-almost
automorphy and discuss some additional properties of these classes of functions.
Our next task consists of studying the existence of doubly weighted pseudo-almost
automorphic solutions to

u′′(t)+B(t)u′(t)+A(t)u(t) = f (t,u), t ∈R, (3.1)

where A(t),B(t) : Rn �→ R
n are n × n-square matrices with real coefficients and

the function f : R×R
n �→ R

n is jointly continuous and satisfies some additional
conditions.

To illustrate the above-mentioned abstract case, we study a nonresonance case
for the scalar second-order differential equation

u′′(t)+ b(t)u′(t)+ a(t)u(t) = f (t,u), t ∈ R, (3.2)

where the function f : R×R �→R is jointly continuous and satisfies some additional
conditions, and the functions a,b : R �→R are almost automorphic and satisfy some
additional conditions (see assumptions (H.5) and (H.6)).

To study Eq. (3.1), our strategy consists of rewriting it as a first-order system of
differential equation in R

n ×R
n involving a 2n× 2n square matrix A(t). Indeed,

if u is twice differentiable, if we denote the identity and the zero matrices of Rn

respectively by IRn and 0Rn , and setting

w :=

⎛

⎜⎜⎝

u

u′

⎞

⎟⎟⎠ ∈ R
n ×R

n,

then Eq. (3.1) can be rewritten as follows:

w′(t) =A(t)w(t)+F(t,w), t ∈ R, (3.3)

where A(t) is the 2n× 2n square matrix given by

A(t) =

⎛

⎜⎜⎝

0Rn IRn

−A(t) −B(t)

⎞

⎟⎟⎠ (3.4)

and the function F appearing in Eq. (3.3) is defined by

F(t,w) :=

⎛

⎜⎜⎝

0

f (t,u)

⎞

⎟⎟⎠ .
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3.1.1 Preliminaries

In this paper the real n-dimensional space R
n will be equipped with its natural

Euclidean norm | · | defined for each x = (x1,x2, . . . ,xn) ∈ R
n by

|x|=
√

x2
1 + x2

2 + · · ·+ x2
n.

Let BC(R,Rn) denote the collection of all-bounded continuous functions
f : R �→ R

n. Clearly, BC(R,Rn) equipped with the sup-norm defined by

‖ f‖∞ = sup
t∈R

| f (t)|

is a Banach space.
The notation U will stand for the collection of (weight) functions ρ : R �→ (0,∞),

which are locally integrable upon R such that ρ > 0 almost everywhere. Now, if
μ ∈ U and if r > 0, we set Qr := [−r,r] and let

μ(Qr) :=
∫

Qr

μ(t)dt.

In this setting we are interested in weights μ ∈ U for which lim
r→∞

μ(Qr) = ∞.

Using the previous tools, we then define the set of weights U∞ by

U∞ :=
{

μ ∈ U : lim
r→∞

μ(Qr) = ∞
}
.

We also need the following set of weights:

Ub :=

{
μ ∈ U∞ : 0 < m0 = inf

x∈R
μ(x)≤ sup

x∈R
μ(x) = μ1 < ∞

}
.

Definition 3.1.1. A function f ∈ C(R,Rn) is said to be almost automorphic if
for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N
such that

g(t) := lim
n→∞

f (t + sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t − sn) = f (t)

for each t ∈ R.

Denote by AA(Rn) the collection of all almost automorphic functions f :R �→R
n,

which turns out to be a Banach space when equipped with the sup-norm ‖ · ‖∞.
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Definition 3.1.2. A jointly continuous function F : R×R
m �→ R

n is said to be
almost automorphic in t ∈ R if t �→ F(t,x) is almost automorphic for all x ∈ K
(K ⊂ R

m being any bounded subset). Equivalently, for every sequence of real
numbers (s′n)n∈N, there exists a subsequence (sn)n∈N such that

G(t,x) := lim
n→∞

F(t + sn,x)

is well defined in t ∈ R and for each x ∈ K, and

lim
n→∞

G(t − sn,x) = F(t,x)

for all t ∈ R and x ∈ K.
The collection of such functions will be denoted by AA(Rm,Rn).

For more on almost automorphic functions we refer the reader to the book of
N’Guérékata [8].

If μ ,ν ∈ U∞, we define

PAP0(R
n,μ ,ν) :=

{
f ∈ BC(R,Rn) : lim

T→∞

1
μ(QT )

∫

QT

‖ f (σ)‖ν(σ)dσ = 0

}
.

Similarly, we define PAP0(R
m,Rn,μ ,ν) as the collection of jointly continuous

functions F : R×R
m �→R

n such that F(·,y) is bounded for each y ∈ R
m and

lim
T→∞

1
μ(QT )

{∫

QT

|F(s,y)|ν(s)ds

}
= 0

uniformly in y ∈ R
m.

The space PAP0(R
n,μ ,μ) is denoted by PAP0(R

n,μ). Similarly, PAP0(R
m,Rn,

μ ,μ) is denoted by PAP0(R
m,Rn,μ).

Definition 3.1.3 ([9]). A continuous function F(t,s) : R×R �→ R
n is called bi-

almost automorphic if for every sequence of real numbers (sm) we can extract a
subsequence (sn) such that

G(t,s) := lim
n→∞

F(t + sn,s+ sn)

is well defined for all t,s ∈ R, and

lim
n→∞

G(t − sn,s− sn) = F(t,s)

for all t,s ∈ R. The collection of such functions is denoted bAA(R×R,Rn).

The following definitions of doubly weighted pseudo-almost automorphy are due
to Diagana [5, 6].
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Definition 3.1.4. Let μ ∈U∞ and ν ∈U∞. A function f ∈C(R,Rn) is called doubly
weighted pseudo-almost automorphic if it can be expressed as f = g+φ , where g ∈
AA(Rn) and φ ∈ PAP0(R

n,μ ,ν). The collection of such functions will be denoted
by PAP(Rn,μ ,ν).

Definition 3.1.5. Let μ ,ν ∈ U∞. A function f ∈ C(R×R
m,Rn) is called doubly

weighted pseudo-almost automorphic if it can be expressed as F = G+Φ, where
G∈AA(Rm,Rn) and Φ ∈ PAP0(R

m,Rn,μ ,ν). The collection of such functions will
be denoted by PAA(Rm,Rn,μ ,ν).

Let μ ,ν ∈ U∞. According to Diagana [6, Theorem 2.16], if PAP0(R
n,μ ,ν) is

translation invariant and if

inf
r>0

ν(Qr)

μ(Qr)
> 0, (3.5)

then the decomposition of doubly weighted pseudo-almost automorphic functions
is unique.

Let W∞ be the collection of all weights ρ ∈ U∞ such that

lim
|t|→∞

ρ(t + τ)
ρ(t)

< ∞, ∀τ ∈ R.

According to a recent paper by Ji and Zhang [7], if ρ ∈ W∞, then PAP0(R
n,ρ)

is translation invariant. Similarly, it can be easily seen that if μ ,ν ∈ W∞, then
PAP0(R

n,μ ,ν) is translation invariant, too. The previous discussion on the unique-
ness of the decomposition of doubly weighted pseudo-almost automorphic functions
can be formulated as follows:

Proposition 3.1.6. If μ ,ν ∈ W∞ and if (3.5) holds, then the decomposition of
doubly weighted pseudo-almost automorphic functions is unique, that is,

PAA(Rn,μ ,ν) = AA(Rn)⊕PAP0(R
n,μ ,ν).

We need the following composition result for doubly weighted pseudo-almost
automorphic functions, which was obtained by Diagana [5].

Theorem 3.1.7 ([5]). Let μ ,ν ∈ U∞ and let f ∈ PAA(Rm,Rn,μ ,ν) satisfying the
Lipschitz condition; there exists L ≥ 0 such that

| f (t,u)− f (t,v)| ≤ L|u− v| for all u,v ∈ R
m, t ∈R.

If h ∈ PAA(Rm,μ ,ν), then f (·,h(·)) ∈ PAA(Rn,μ ,ν).
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3.2 Existence of Doubly Weighted Pseudo-Almost
Automorphic Solutions

In the rest of the paper we suppose that μ ,ν ∈ W∞ and that Eq. (3.5) holds.
Let {A(t)}t∈R be an n × n square matrix and consider the first-order system of
differential equations given by

z′(t) = A(t)z(t)+ g(t), t ∈ R (3.6)

and its corresponding homogeneous equation

z′(t) = A(t)z(t), t ∈ R (3.7)

where g : R �→ R
n is continuous.

Definition 3.2.1 ([2]). The homogeneous equation (3.7) is said to be to have an
exponential dichotomy if there exist a projection P and the constants K,δ > 0 such
that

(i) ‖X(t)PX−1(s)‖ ≤ Ke−δ (t−s) for all t,s ∈ R and t ≥ s; and
(ii) ‖X(t)QX−1(s)‖ ≤ Ke−δ (s−t) for all t,s ∈ R and t ≤ s.

where Q= I−P and X(t) is a fundamental solution to Eq. (3.10) satisfying X(0)= I.

If Eq. (3.10) has an exponential dichotomy, we then define

Γ(t,s) =
{

X(t)PX−1(s) if t ≥ s,
X(t)QX−1(s) if s ≥ t.

It can be easily seen that

‖Γ(t,s)‖ ≤
{

Ke−δ (t−s) if t ≥ s,
Ke−δ (s−t) if s ≥ t.

Our setting requires the following additional assumptions:

(H.1) g ∈ PAA(Rn,μ ,ν)
(H.2) Γ(t,s)u ∈ bAA(R×R,Rn) uniformly for all u in any bounded subset of Rn

We have

Theorem 3.2.2. If Eq. (3.7) has exponential dichotomy and if assumptions (H.1)
and (H.2) hold, then Eq. (3.6) has a unique doubly weighted pseudo-almost
automorphic solution.

Proof. The proof is slightly similar to the one given in a recent paper by Diagana
and Nelson [3]. However, for the sake of clarity, we reproduce it here. Indeed, let
X(t) be a fundamental solution to Eq. (3.7) satisfying X(0) = I and suppose there
exist a projection P and the constants K,δ > 0 such that

‖X(t)PX−1(s)‖ ≤ Ke−δ (t−s) (3.8)
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for all t,s ∈ R and t ≥ s; and

‖X(t)QX−1(s)‖ ≤ Ke−δ (s−t) (3.9)

for all t,s ∈ R and t ≤ s, where Q = I−P.
Set U(t,s) = X(t)PX−1(s) for t ≥ s and Ũ(t,s) = X(t)QX−1(s) for t ≤ s.

According to Coppel [2], the only bounded solution to Eq. (3.6) is given by

z(t) =
∫ t

−∞
U(t,s)g(s)ds−

∫ ∞

t
Ũ(t,s)g(s)ds.

Let g = g1+g2 ∈ PAA(Rn) where g1 ∈ AA(Rn) and g2 ∈ PAP0(R
n). We also set

Sg j(t) :=
∫ t

−∞
U(t,s)g j(s)ds and Rg j(t) :=

∫ ∞

t
Ũ(t,s)g j(s)ds for j = 1,2.

Let us show that Sg1 ∈ AA(Rn). Indeed, since g1 ∈ AA(Rn), for every sequence
of real numbers (τ ′n)n∈N there exists a subsequence (τn)n∈N such that

h1(t) := lim
n→∞

g1(t + τn)

is well defined for each t ∈ R, and

lim
n→∞

h1(t − τn) = g1(t)

for each t ∈ R.
We have

Sg1(t + τn)− Sh1(t) =
∫ t+τn

−∞
U(t + τn,s)g1(s)ds−

∫ t

−∞
U(t,s)h1(s)ds

=

∫ t

−∞
U(t + τ,s+ τn)g1(s+ τn)ds−

∫ t

−∞
U(t,s)h1(s)ds

=

∫ t

−∞
U(t + τn,s+ τn)(g1(s+ τn)− h1(s))ds

+
∫ t

−∞
(U(t + τn,s+ τn)−U(t,s))h1(s)ds.

Using Eq. (3.8) and the Lebesgue-Dominated Convergence theorem, one can
easily see that

∣∣∣∣
∫ t

−∞
U(t + τn,s+ τn)(g1(s+ τn)− h1(s))ds

∣∣∣∣→ 0 as n → ∞, t ∈ R.
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Similarly, using (H.2) it follows that

∣∣∣∣
∫ t

−∞
(U(t + τn,s+ τn)−U(t,s))h1(s)ds

∣∣∣∣→ 0 as n → ∞, t ∈ R.

Therefore,
Sh1(t) = lim

n→∞
Sg1(t + τn), t ∈ R.

Using ideas similar to the previous ones, one can easily see that

Sg1(t) = lim
n→∞

Sh1(t − τn), t ∈ R.

Similarly, using again Eq. (3.8) it follows that

lim
r→∞

1
ν(Qr)

∫

Qr

|(Sg2)(t)|μ(t)dt ≤ lim
r→∞

K
ν(Qr)

∫

Qr

∫ +∞

0
e−δ s|g2(t − s)|μ(t)dsdt

≤ lim
r→∞

K
∫ +∞

0
e−δ s 1

ν(Qr)

∫

Qr

|g2(t − s)|μ(t)dtds.

Set

Γs(r) =
1

ν(Qr)

∫

Qr

|g2(t − s)|μ(t)dt.

Since PAP0(R
n,μ ,ν) is translation invariant it follows that t �→ g2(t − s) belongs to

PAP0(R
n,μ ,ν) for each s ∈ R, and hence

lim
r �→∞

1
ν(Qr)

∫

Qr

|g2(t − s)|μ(t)dt = 0

for each s ∈ R. One completes the proof by using the well-known Lebesgue-
Dominated Convergence theorem and the fact Γs(r) �→ 0 as r → ∞ for each s ∈ R.

The proof for R is similar to that of S and hence omitted. For R, one makes use
of Eq. (3.9) rather than Eq. (3.8). 	


In order to apply the previous result to Eq. (3.1) and then to Eq. (3.3), we need to
make the following additional assumptions:

(H.3) There exists L > 0 such that

| f (t,u)− f (t,v)| ≤ L|u− v| for all u,v ∈ R
n, t ∈ R.

(H.4) f ∈ PAA(Rn,Rn,μ ,ν).

Theorem 3.2.3. If Eq. (3.10) has exponential dichotomy and if assumptions (H.2),
(H.3), (H.4) hold, then Eq. (3.1) has a unique doubly weighted pseudo-almost
automorphic solution whenever L is small enough.
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Proof. Define the nonlinear integral operator Γ defined by

(Λu)(t) =
∫ t

−∞
U(t,s) f (s,u(s))ds−

∫ ∞

t
Ũ(t,s) f (s,u(s))ds.

Let u ∈ PAA(Rn,Rn,μ ,ν). Using assumptions (H.3) and (H.4) and Theorem 3.1.7
it follows that g(s) := f (s,u(s)) belongs to PAA(Rn,μ ,ν). Next, one can easily
show that

Λ(PAA(Rn,μ ,ν))⊂ PAA(Rn,μ ,ν).

Now if u,v ∈ PAA(Rn,μ ,ν) are arbitrarily chosen elements, then

‖Λ(u)−Λ(v)‖∞ ≤ KLδ−1‖u− v‖∞.

Therefore, if L is small enough, that is, L < K−1δ , then Λ has a unique fixed point
which obviously is the unique solution to

u′(t) = A(t)u(t)+ f (t,u), t ∈ R.

Clearly, under the same assumptions it follows that Eq. (3.3) has a unique doubly
weighted pseudo-almost automorphic solution given by

t → z(t) :=

⎛

⎜⎜⎝

u(t)

u′(t)

⎞

⎟⎟⎠ .

Therefore, Eq. (3.1) has a unique doubly weighted pseudo-almost automorphic
solution u whenever L is small enough. In fact, the solution u belongs to a smaller
space than PAA(Rn,μ ,ν), that is, u ∈ PAA(1)(Rn,μ ,ν) ⊂ PAA(Rn,μ ,ν), where
PAA(1)(Rn,μ ,ν) stands for the space of all C(1)-doubly-weight pseudo-almost
automorphic functions consisting of all functions ϕ ∈ PAA(Rn,μ ,ν) such that
ϕ ′ ∈ PAA(Rn,μ ,ν). 	


3.3 A Nonresonance Case

Let n = 1. In order to illustrate Theorem 3.2.3, we will study a nonresonance
case (see (H.6)) for the scalar second-order systems differential equations given by
Eq. (3.2). For that, we let A(t) = a(t) and B(t) = b(t), and suppose that both a,b :
R �→ R are almost automorphic and satisfy the following additional assumptions:

(H.5) There exist a0,b0 > 0 such that

inf
t∈R

a(t) = a0 and inf
t∈R

b(t) = b0.

(H.6) b(t) �= 2
√

a(t) for all t ∈R.
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Now

A(t) =

⎛

⎜⎜⎝

0 1

−a(t) −b(t)

⎞

⎟⎟⎠

which yields Pt(λ ) = det(A(t)−λ I
R2) = λ 2 + b(t)λ + a(t) for all t ∈R.

Let D(t) = b2(t)− 4a(t) for all t ∈ R. Clearly, (H.6) yields either D(t) > 0 or
D(t)< 0 for all t ∈ R.

• If D(t)> 0 for all t ∈R and if assumptions (H.5) and (H.6) hold, then eigenvalues
of A(t) are given by

λ1(t) =
−b(t)+

√
b2(t)− 4a(t)
2

and λ2(t) =
−b(t)−

√
b2(t)− 4a(t)
2

.

It is then easy to see that λ1(t), λ2(t)< 0 for all t ∈R.
• If D(t)< 0 for all t ∈R and if (H.5) and (H.6) hold, then eigenvalues of A(t) are

given by

λ1(t) =
−b(t)+ i

√
4a(t)− b2(t)
2

and λ2(t) =
−b(t)− i

√
4a(t)− b2(t)
2

.

It is then easy to see that ℜeλ1(t), ℜeλ2(t)< 0 for all t ∈ R.

Thus under assumptions (H.5) and (H.6), one has ℜe(λk(t)) < 0 for all t ∈ R for
k = 1,2 (a nonresonance case). It follows that there exists ω > 0 and M > 0 such
that

‖esA(t)‖ ≤ Me−ωs, s ≥ 0

which yields

w′(t) =A(t)w(t), t ∈R (3.10)

has exponential dichotomy with projection P = I
R2 .

Using similar techniques as in the proof of Theorem 3.2.3 we obtain the
following:

Theorem 3.3.1. Under assumptions (H.3)–(H.6), then Eq. (3.2) has a unique
doubly weighted pseudo-almost automorphic solution whenever L is small enough.
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Chapter 4
How the Talmud Divides an Estate Among
Creditors

Stephen Schecter

Abstract The Talmud gives examples of how to divide an estate among creditors
when the debts total more than the estate, but it is not clear what the algorithm is.
We describe the solution of this problem by Aumann, Maschler, and Kaminski, and
its relation to game theory.

Keywords Bankruptcy • Hydraulic rationing • Nucleolus

4.1 Introduction

A man dies leaving an estate that is too small to pay his debts. How much should
each creditor get?

The Babylonian Talmud, a compendium of Jewish law that dates back 1,800
years, gives the following example. Creditor 1 is owed 100, Creditor 2 is owed 200,
and Creditor 3 is owed 300.

1. If the estate is 100, each creditor gets 33 1/3.
2. If the estate is 200, Creditor 1 gets 50, Creditors 2 and 3 get 75 each.
3. If the estate is 300, Creditor 1 gets 50, Creditor 2 gets 100, Creditor 3 gets 150.

A literature stretching across 1,500 years deals with the question: what algorithm
is the Talmud using? Of course, as in any legal system, the answer must be based on
the system’s principles and precedents.

The problem was convincingly solved by two mathematicians at Hebrew Uni-
versity of Jerusalem, Robert Aumann and Michael Maschler, in the 1980s [1].
Later Marek Kaminski, a political scientist now at the University of California,
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Irvine, showed how, given the sizes of the debts, one can construct special-purpose
glassware so that when an amount of liquid equal to the size of the estate is poured
in, it will divide itself in the correct way [3].

The goal of this paper is to explain the Aumann–Maschler–Kaminski solution
and its relation to game theory.

The estate-division problem is related to bankruptcy, since the same issue arises
in dividing the assets of a bankrupt person or corporation among creditors. As we
shall see, the Aumann–Maschler–Kaminski solution is related to the Talmud’s view
of this and other situations in which money is owed.

My interest in the estate-division problem grew out of a game theory course
for undergraduates that I teach. When Aumann was awarded the Nobel Prize in
Economics in 2005 for work in game theory, I read some of what was written about
him. Most of his work is rather technical. Perhaps for that reason, journalists writing
about Aumann tended to move quickly to the fact that he had solved an old problem
from the Talmud, apparently because this was thought to be of general interest. I
looked into what the problem was and found a story that opens in many directions.

Aumann learned of the Talmud’s estate-division problem in 1980 or 1981 from
his son Shlomo, who was studying at a Talmudic academy in Jerusalem and pointed
his father to the relevant passage. Shlomo Aumann was killed in 1982 while serving
in the Israeli army.

4.2 What is the Talmud?

The Talmud (more precisely, the Babylonian Talmud) consists of:

• The Mishna (c. 200 CE), a written compendium of Judaism’s Oral Law
• The Gemara (c. 500 CE), a record of discussions by rabbis about the Mishna

It is divided into 60 tractates, or books. The first printed version appeared in Italy
around 1,520, some 85 years after Gutenberg invented the printing press. A modern
edition with English translation occupies 73 volumes.

Figure 4.1 shows a page of Talmud from a modern edition. The unusual form
of the page dates back to the earliest printings. The header at the top of the page
gives the tractate, in this case Megillah, or scroll, meaning the scroll of Esther; this
tractate deals with laws concerning the reading of the Book of Esther at the holiday
of Purim. The header also gives the chapter number and name and the page number.
Modern references to the Talmud give just the tractate and page number, followed
by the letter a or b, meaning front or back of the page. The central block of text
is portions of Mishna and the related Gemara, separated by colons. These texts are
often fairly obscure; the Gemara is often in the form of notes on a discussion. The
Mishna is in Hebrew, the Gemara in Aramaic. Commentary by Rashi (a French
rabbi, 1040–1105) wraps around the central block at the upper right. The Talmud is
considered to be largely incomprehensible without Rashi’s commentary. Wrapping
around the central block at the left is commentary by Rashi’s successors in the
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Tractate

Page Chapter Name

Chapter Number

Mishnah (~200)

Mishnah

Gemara (~500)

Gemara

Rashi (11th cent.)

Tosefot 
(successors of Rashi) 
(12th -13th cent.)

Cross-references to Talmud

Other medieval
commentary

Modern glosses

Modern glosses

References to
legal codes

Fig. 4.1 A page of Talmud

twelfth and thirteenth centuries. Outside these texts are more recent commentary,
cross-references to related pages of Talmud, and references to codifications of
Talmudic law.

The word “Mishna” is also used to refer to single portion of Mishna on a page of
Talmud.

4.3 A Problem from the Talmud

A man dies leaving

• An estate of size e
• Debts to creditors 1, . . . ,n of d1, . . . ,dn

• e < d1 + · · ·+ dn

How much should each creditor get?
A Mishna (Tractate Ketubot 93a) gives the answer described in the Introduction.

(“Ketubot” is the plural of ketubah, which means marriage contract. This tractate
includes laws about marriage and legal and financial aspects of family life.) Alfasi
(a Moroccan rabbi, 1013–1103) wrote, “My predecessors discussed this Mishna
and its Gemara at length, and were unable to make sense of it.” Aumann and
Maschler write in [1]: “Over two millennia, this Mishna has spawned a large
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literature. Many authorities disagree with it outright. Others attribute the figures
to special circumstances, not made explicit in the Mishna. A few have attempted
direct rationalizations of the figures as such, mostly with little success. One modern
scholar, exasperated by his inability to make sense of the text, suggested errors in
transcription. In brief, the passage is notoriously difficult.”

An estate-division problem is a pair (e,(d1, . . . ,dn)) with the following properties:

1. 0 < d1 ≤ d2 ≤ ·· · ≤ dn.
2. Let d = d1 + · · ·+ dn. Then 0 < e < d.

A division of the estate is an n-tuple (x1, . . . ,xn) with 0 ≤ xi for all i and x1 + · · ·+
xn = e.

Here are some ideas about how an estate should be divided.

Proportional Division. Compute the fraction of the total debt that is owed each
creditor, and assign her that fraction of the estate. (Following Aumann and Maschler,
we use the pronoun “her” because in the Talmudic example, the creditors are
women.) In other words, assign to creditor i the amount di

d e. Secular legal systems
typically follow this idea, which treats each dollar of debt as equally worthy of
payment. To most of us this approach seems obviously correct. Our Mishna appears
to use this idea when e = 300.

Equal Division of Gains. Assign to each creditor the amount e
n . This method treats

each creditor as equally worthy of payment. Our Mishna appears to use this idea
when e = 100. Equal Division of Gains is not sensible if d1 < e

n , since the first
creditor (at least) will be paid more than she is owed. In other words, Equal Division
of Gains is not sensible for large estates.

Constrained Equal Division of Gains. Give each creditor the same amount, but
don’t give any creditor more than her claim. In other words, choose a number a
such that

min(d1,a)+min(d2,a)+ · · ·+min(dn,a) = e.

Then assign to creditor i the amount min(di,a). The number a exists and is unique
because for fixed (d1, . . . ,dn), the left-hand side is a function of a that maps the
interval [0,e] onto itself and is strictly increasing on this interval. This rule was
adopted by Maimonides (1135–1204, born in Spain, worked in Morocco and Egypt)
in his codification of Talmudic law, the Mishneh Torah, which is still considered
canonical. Maimonides’ choice is inconsistent with our Mishna (it produces equal
division in all our cases).

Equal Division of Losses. Make each creditor take the same loss. The total loss to
the creditors is d − e, so assign to creditor i the amount di − (d − e)/n. This is not
sensible if d1 < (d−e)/n, since Creditor 1’s portion of the estate would be negative.
In other words, Equal Division of Losses not sensible for small estates.

Constrained Equal Division of Losses. Make each creditor take the same loss, but
don’t make any creditor lose more than her claim.
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The principle that losses should be shared equally was used by Maimonides in
a different context. Suppose that at an auction, n bidders bid amounts b1 < b2 <
· · ·< bn−1 < bn. The object is sold to the highest bidder for the price bn. If for some
reason the highest bidder reneges, the object is sold to the second-highest bidder for
bn−1. The highest bidder’s reneging has cost the seller the difference between the
two bids, bn −bn−1. Maimonides says that the highest bidder is obligated to pay the
seller this amount. Now suppose that all n bidders renege. This costs the seller bn,
the amount he should have sold the object for. Maimonides says that each bidder
must pay the amount bn

n to the seller. The bidders lose equal amounts to cover what
the seller should have gained.

Actually, Maimonides just gives a numerical example. In his example, equal
payments by each bidder would result from either the Equal Division of Losses
principle or the Constrained Equal Division of Losses principle. We can guess, based
on Maimonides’ adoption of Constrained Equal Division of Gains for division of
estates, that what he had in mind was Constrained Equal Division of Losses.

4.4 The Aumann–Maschler Solution

Aumann and Maschler’s solution to the Talmud’s estate-division problem was based
on another Mishna and an issue dealt with in Gemara.

4.4.1 The Contested Garment Rule

The relevant Mishna is from Tractate Bava Metzia 2a: “Two hold a garment; one
claims it all, the other claims half. Then the one is awarded three-fourths, the other
one-fourth.”

(“Bava Metzia” means middle gate. It deals with civil law, including property
law. The name refers to the gates of a city, where markets were located.)

Rashi explains the reasoning. The one who claims half concedes that half belongs
to the other. Therefore only half is in dispute. It is split equally between the two
claimants.

Alfasi, in his commentary mentioned earlier, says that Rabbi Hai Gaon suggested
without giving details that the Mishna about estate division should be explained
using Bava Mezia 2a. Hai Gaon (939–1083) worked in what is today the Iraqi city
of Falujah.

The second relevant passage is from Gemara in Tractate Yevamot 38a. (“Yevamot”
is the plural of yibum, levirate marriage, i.e., the requirement that a widow marry
her deceased husband’s brother. This requirement is found in Deuteronomy 25:5–6.)
It deals with a rather complicated family tree, illustrated in Fig. 4.2.

Mr. B dies childless. His widow, as is required, marries his brother, C. C already
has two sons, c1 and c2, by his first wife. Eight months later B’s widow gives birth
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A

B CWB WC

b c1 c2

? ?

Fig. 4.2 WB is B’s widow.
WC is C’s first wife

to a son, b, whose father is therefore doubtful. Next C dies. Finally, A, the father of
B and C dies. How is A’s estate to be divided among his grandchildren b, c1, and c2?

Young Mr. b says: Half of A’s estate goes to A’s son B and half to A’s son C. I am
B’s only son, so I get his half. C’s half should be divided between c1 and c2.

C’s sons c1 and c2 say: B had no children, and C had three sons. Therefore the
entire estate goes to C, and then is divided equally among the three grandchildren.

The Talmud’s decision: c1 and c2 are treated as one claimant, b as another. The
half of the estate that b concedes is not his goes to c1 and c2. The third of the estate
that c1 and c2 concede is not theirs goes to b. The remainder of the estate, 1/6, is
split equally: 1/12 to c1 and c2, 1/12 to b. Thus b gets 5/12 of the estate, and c1 and
c2 get 7/12 to split.

Neither passage of Talmud treats a situation exactly analogous to an estate with
creditors: there all claims are valid, whereas in these two passages, both claims
cannot be valid. Nevertheless, applied to an estate with two creditors, we get:

Contested Garment Rule. Consider an estate-division problem with two creditors:
0 < d1 ≤ d2, 0 < e < d1 + d2. Creditor 2 concedes max(e− d2,0) to Creditor 1.
Creditor 1 concedes max(e − d1,0) to Creditor 2. The remainder of the estate,
e−max(e− d1,0)−max(e− d2,0), is divided equally. Thus Creditor 1 receives

max(e− d2,0)+
1
2
(e−max(e− d1,0)−max(e− d2,0)).

Creditor 2 receives

max(e− d1,0)+
1
2
(e−max(e− d1,0)−max(e− d2,0)).

4.4.2 Aumann and Maschler’s Theorem

Here’s our Mishna again. There are three debts, d1 = 100, d2 = 200, d3 = 300.

1. If e = 100, each creditor gets 33 1/3.
2. If e = 200, Creditor 1 gets 50, Creditors 2 and 3 get 75 each.
3. If e = 300, Creditor 1 gets 50, Creditor 2 gets 100, Creditor 3 gets 150.
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d1 d2 d1+d2

e

d1/2

d2−d1/2

d2

allotmentFig. 4.3 Division of the
estate when e ≤ d1

Aumann and Maschler observed that each of these divisions is consistent with
the Contested Garment Rule in the following sense. If any two creditors use the
Contested Garment Rule to split the amount they were jointly awarded, each will
get the amount she was actually awarded.

For example, look at the division with e = 200. Creditors 1 and 2 between them
are awarded 125. Consider an estate of size 125 with two claims on it, d1 = 100
and d2 = 200 (these were the original claims of Creditors 1 and 2). According to
the Contested Garment Rule, Creditor 1 concedes 25 to Creditor 2, and Creditor
2 concedes nothing to Creditor 1. The remaining 100 is split equally between the
two. Thus Creditor 1 gets 50 and Creditor 2 gets 75. These are the amounts that the
Mishna awarded them.

In an estate-division problem (e,(d1, . . . ,dn)), a division (x1, . . . ,xn) of the estate
is consistent with the Contested Garment Rule if, for each pair (i, j), (xi,x j) is
exactly the division produced by the Contested Garment Rule applied to an estate
of size xi + x j with debts di and d j.

Aumann and Maschler proved:

Theorem 4.4.1 (Aumann–Maschler). In any estate-division problem, there is
exactly one division of the estate that is consistent with the Contested Garment Rule.

This is the division that the Talmud presumably has in mind. Aumann and
Maschler’s proof was algebraic. We won’t give it, since a nicer one appeared some
years later.

4.4.3 Another look at the Contested Garment Rule

Let’s look more closely at the Contested Garment Rule for an estate with two
creditors.

1. If e ≤ d1, neither creditor concedes anything to the other, so the estate is split
equally: each creditor gets e

2 . Each additional dollar of estate value produces an
equal gain for each creditor. See Fig. 4.3.
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d1 d2 d1+d2

Fig. 4.4 Division of the
estate when e ≤ d2

d1 d2 d1+d2

e

d1/2

d2−d1/2

d2

allotmentFig. 4.5 Division of the
estate for all e ≤ d1 +d2

2. If d1 < e≤ d2, e−d1 is conceded by Creditor 1 to Creditor 2, nothing is conceded
by Creditor 2 to Creditor 1, and the remainder, d1, is split equally.

Creditor 1:
d1

2
. Creditor 2: (e− d1)+

d1

2
.

See Fig. 4.4. When e = d1, the estate is split equally, so each Creditor has a gain
of d1

2 . Thereafter each additional dollar of estate value goes to Creditor 2. When

e reaches d2, Creditor 1 gets d1
2 and Creditor 2 gets d2− d1

2 , so each creditor has a

loss of d1
2 relative to the debt she is owed. Previously Creditor 2’s loss was larger.

3. If d2 < e < d1 + d2, e− d1 is conceded by Creditor 1 to Creditor 2, e− d2 is
conceded by Creditor 2 to Creditor 1, and the remainder, e−(e−d1)−(e−d2) =
d1 + d2 − e, is split equally.

Creditor 1: e− d2+
1
2
(d1 + d2 − e) =

d1

2
+

1
2
(e− d2).

Creditor 2: e− d1+
1
2
(d1 + d2 − e) = d2 − d1

2
+

1
2
(e− d2).

We saw previously that when e = d2, each creditor has a loss of d1
2 relative to

the debt she is owed. The part of the estate above d2 is split equally, so the two
creditors’ losses remain equal (Fig. 4.5).
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We conclude that the Contested Garment Rule linearly interpolates between
Equal Division of Gains for e ≤ d1 (small estates) and Equal Division of Losses for
d2 ≤ e (large estates).

4.4.4 More than Half is Like the Whole

Aumann and Maschler suggest that the Contested Garment Rule is perhaps related to
the Talmudic principle that “more than half is like the whole, whereas less than half
is like nothing.” This principle says that the dividing line between two approaches
to a problem is at the number one-half.

For example, in Talmudic law, a lender normally has an automatic lien on a
borrower’s property. However, in some cases, if the property is worth less than
half the loan and the borrower is unable to repay it, the lender may not take the
borrower’s property (Arakhin 23b). Rashi explains that since the property is grossly
inadequate to repay the loan, the lender has presumably relied not on the property
but on the borrower’s character for repayment, so the lender has no lien on the
borrower’s property.

In other words, if the property is worth less than half the loan and the borrower,
despite his character, defaults, then the lender does not expect the loan to be repaid,
so any repayment the lender receives is a gain relative to her expectation. If the
property is worth more than half the loan, the lender expects the loan to be repaid,
so any repayment she does not receive is a loss relative to her expectation.

The Contested Garment Rule can be seen as a sophisticated alternative to “more
than half is like the whole.” One principle is used to divide a small estate, and
another is used to divide a large estate, but in between, one linearly interpolates
between the two approaches.

(Arakhin 23b does not mean that the borrower is free of the obligation to repay
the loan. Talmudic law does not have a concept of bankruptcy. If someone is unable
to repay a loan, the lender cannot be forced to cancel it; it is the community’s
responsibility to help its destitute members, not the lender’s. Should the borrower’s
circumstances improve, he must repay the lender.)

4.5 Kaminski’s Proof of the Aumann–Maschler Theorem
Using Glassware

Figure 4.6 is a schematic diagram of a piece of glassware. There are two glasses,
of volumes d1 and d2. Each glass is equally divided between a top and a bottom
connected by a small stem. In addition, a glass tube connects the bottoms of the two
glasses. We will assume the stems and tube are very narrow, so that their volumes
are negligible. The first glass represents the claim of Creditor 1, the second the claim
of Creditor 2.
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Fig. 4.6 Glassware for the
Contested Garment Rule
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Fig. 4.7 Using the glassware to divide an estate with two creditors

Suppose one pours a volume e of liquid, 0 < e < d1+d2, into this glassware. The
liquid represents the estate. Because of the connecting tube at the bottom, the liquid
will rise to the same height in both glasses. If you ignore the liquid in the stems and
the connecting tube, you will see that each creditor gets the amount to which she is
entitled by the Contested Garment Rule. For e ≤ d1, the liquid divides equally. For
d1 < e≤ d2, Creditor 1 gets d1

2 , and the rest goes to Creditor 2. For d2 < e < d1+d2,
each glass fills to within the same distance of the top, so each creditor has an equal
loss (Fig. 4.7).

The Aumann–Maschler Theorem can now be proved using more elaborate
glassware. Given claims d1, . . . ,dn, construct the glassware shown in Fig. 4.8.

Pour in an amount e of liquid. It will rise to the same height in each glass. Since
the height is the same in each pair of glasses, this division is consistent with the
Contested Garment Rule. The division is unique: if we raise the height in one glass,
in order to stay consistent with the Contested Garment Rule we must raise the height
in all, so the total amount of liquid will increase.
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Fig. 4.8 Glassware for an
estate with n creditors

Kaminski learned about the Talmud’s estate-division problem in a class taught
by the game theorist Peyton Young at the University of Maryland. Young was ex-
plaining his concept of “parametric representation” of allocation methods. Kaminski
writes [4]: “Sitting in class, I was repeatedly failing to visualize the parametric
representation of the Talmudic solution, and, displeased with myself, I stopped
listening and started thinking about an alternative. The ‘hydraulic’ idea came to my
mind in one of those unexplainable flashes. Later, I proved that in fact it is closely
related to parametric representation.”

4.6 The Aumann–Maschler Theorem and Game Theory

A cooperative game consists of

1. A set of players {1, . . . ,n}
2. A value V > 0 to be divided among the players
3. A value function v from the power set of {1, . . . ,n} into the nonnegative real

numbers

In this context, a subset S of {1, . . . ,n} is called a coalition. The number v(S) is
interpreted as the part of the value V that the coalition S can get for itself no matter
what the other players do. Because of this interpretation, the value function v is
required to satisfy the following conditions.

1. v( /0) = 0
2. v({1, . . . ,n}) =V
3. If S1 and S2 are disjoint, then v(S1)+ v(S2)≤ v(S1 ∪S2)

An allocation of the value V to the players is a vector x = (x1, . . . ,xn) such that
all xi ≥ 0 and x1+ · · ·+xn =V . The problem of cooperative game theory is to choose
the allocation. There are various ideas about how to do it. We will only discuss one
of them..

Given an allocation x, the coalition S achieves the excess e(x,S)=∑ j∈S x j−v(S).
Coalitions with low excess will presumably complain that they have been treated
unfairly and will not agree to the allocation. Perhaps one should choose x to avoid
small excesses as much as possible and thus minimize the complaining.
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More precisely, given an allocation x, calculate all 2n − 2 excesses e(x,S). (We
ignore the empty set and the set {1, . . . ,n}.) Order them from smallest to largest to
form an excess vector e ∈ R

2n−2.
Given two excess vectors we can ask which precedes the other in the lexi-

cographic ordering, which is defined as follows. Let x = (x1, . . . ,x2n−2) and y =
(y1, . . . ,y2n−2) be two excess vectors, and suppose they first differ in the ith place.
Then x precedes y in the lexicographic ordering if xi < yi.

• Example: (1,2,4,5) precedes (2,1,2,7)
• Example: (2,2,2,7) precedes (2,2,3,6)

Definition 4.6.1. The nucleolus of a cooperative game is the allocation whose
excess vector is last in the lexicographic ordering.

Theorem 4.6.2. Every cooperative game has a unique nucleolus.

To find the nucleolus of a cooperative game, start with any allocation and adjust
it to make one whose excess vector follows the excess vector of the first in the
lexicographic ordering. When you can’t go farther, you have found the nucleolus.

What does this have to do with estate-division problems? Associated with any
estate division problem is a cooperative game. The value to be divided is the estate
e. To define the value function, assume that any coalition can guarantee itself the
larger of 0 and the amount that remains if all other creditors are paid in full.

Let’s work this out for the second example in our Mishna. A man dies leaving
an estate of 200. There are three creditors with claims of 100, 200, and 300. Any
coalition can guarantee itself the larger of 0 and whatever is left after those not in
the coalition are paid in full. Therefore

v({1}) = 0, v({2}) = 0, v({3}) = 0, v({1,2}) = 0, v({1,3}) = 0, v({2,3}) = 100.

We claim that the nucleolus of this game is the allocation proposed by the
Mishna: (50,75,75). To see this we consider the following table of excesses for
an arbitrary allocation (x1,x2,x3) and for the allocation proposed by the Mishna.

S v(S) e((x1,x2,x3),S) e((50,75,75),S)
{1} 0 x1 50
{2} 0 x2 75
{3} 0 x3 75
{1,2} 0 x1 + x2 125
{1,3} 0 x1 + x3 125
{2,3} 100 x2 + x3 −100 50

The excess vector is (50,50,75,75,125,125).
Can we adjust the allocation to make one whose excess vector follows this one in

the lexicographic ordering? If we take anything from Creditor 1, the first 50 in the
table will fall, so the new excess vector will precede the old one in the lexicographic
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ordering. If we take anything from Creditor 2 or 3 and give it to Creditor 1, the other
50 in the table will fall, so the new excess vector will again precede the old one
in the lexicographic ordering. The only remaining possibility is to take something
from Creditor 2 or 3 and give it to the other. If we do this, the two 50s in the table
will remain, but one of the 75s will decrease. Again the new excess vector will
precede the old one in the lexicographic ordering. We conclude that the allocation
(50,75,75) proposed by the Mishna is the nucleolus of the associated cooperative
game.

Theorem 4.6.3 (Aumann–Maschler). In any estate-division problem, the unique
allocation that is consistent with the Contested Garment Rule is also the nucleolus
of the associated cooperative game.

It is a remarkable fact that Aumann and Maschler discovered the relationship
between the Talmud’s proposed allocations and the nucleolus before they thought
of the relation to the Contested Garment Rule. Here is the story as told by Aumann
in [2]: “Mike and I sat down to try to figure out what is going on in that passage. We
put the nine relevant numbers on the blackboard in tabular form and gazed at them
mutely. There seemed no rhyme or reason to them—not equal, not proportional,
nothing. We tried the Shapley value of the corresponding coalitional game; this,
too, did not work. Finally one of us said, let’s try the nucleolus; to which the other
responded, come on, that’s crazy, the nucleolus is an extremely sophisticated notion
of modern mathematical game theory, there’s no way that the sages of the Talmud
could possibly have thought of it. What do you care, said the first; it will cost us
just 15 min of calculation. So we did the calculation, and the nine numbers came
out precisely as in the Talmud!” They then discovered by a literature search that the
nucleolus had recently been proved to have a consistency property: if you look at
the amounts assigned by the nucleolus to a subset of players, this is precisely the
nucleolus of the reduced game with only those players and value equal to the total
assigned to them by the nucleolus of the original game.

4.7 Final Remark

There is one aspect of the Aumann–Maschler solution that bothered me. Their
solution has nothing whatever to do with proportional division. Nevertheless,
among the three examples of estate division given in the Talmud, one, the last, is
proportional: each creditor gets exactly half her claim. Was the Talmud trying to
lead us astray?

Joseph Bak of the City College of New York saw the slides for a talk I had
given in which I asked this question. He sent the following answer: in any estate-
division problem, if the estate is exactly half the total of the debts, then the Aumann–
Maschler rule will produce proportional division. In fact each debtor will get exactly
half what she is owed.



42 S. Schecter

This is easy to see from Fig. 4.8. The volumes of the bottoms of all the glasses
add up to 1

2 (d1 + · · ·+ dn). If this is the amount of the estate, it will exactly fill all

the bottoms. Thus the ith debtor gets di
2 .

If one gives examples of the Aumann–Maschler estate-division rule using nice
round numbers like 100, 200, etc. for the estate and the debts, it is quite easy for
one of the examples to have the estate equal to exactly half the total debts, thus
producing proportional division. This may be what happened in the Talmud.
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Chapter 5
On the Non-uniqueness of the Decomposition
of Weighted Pseudo Almost Periodic Functions
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Abstract In this short communication, we show through an example that the
decomposition of a ρ-weighted pseudo almost periodic function is not unique when
inf
t∈R

ρ(t) = 0.
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5.1 Introduction

The concept of weighted pseudo almost periodicity was introduced by Diagana
in [4, 7]. It is a generalization of Zhang’s pseudo almost periodicity [11, 12, 14, 15].
Since then, the concept has attracted several authors especially in connection with
the existence of solutions of differential equations [1, 2, 5–7, 13]. There is a recent
generalization to almost automorphic case by Blot et al. [3]. See also [9, 10] for
more recent developments.

In this paper, we like to discuss the uniqueness of the decomposition of weighted
pseudo almost periodic functions as presented in [1] and many others. Note that this
problem has been addressed in [8].
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5.2 The Result

Like in [5], let U be the collection of functions (weights) ρ : R→ (0,∞), which are
locally integrable over R such that ρ(x)> 0 almost everywhere. Set

m(T,ρ) :=
∫ T

−T
ρ(t)dt,

U∞ :=
{

ρ ∈ U : lim
T→∞

m(T,ρ) = ∞
}
,

UB :=

{
ρ ∈ U∞ : ρ is bounded with inf

t∈R
ρ(t)> 0

}
.

Obviously, UB ⊂ U∞ ⊂ U, with strict inclusions.
For each ρ ∈ U∞, define

PAP0(X ,ρ) :=

{
f ∈ BC(R,X) : lim

T→∞

1
m(T,ρ)

∫ T

−T
‖ f (t)‖ρ(t)dt = 0

}
.

Definition 5.2.1. Let ρ ∈U∞. A function f ∈ BC(R,X) is called weighted pseudo
almost periodic or ρ-pseudo almost periodic if it can be expressed as f = g+ϕ ,
where g ∈ AP(X) and ϕ ∈ PAP0(X ,ρ). The collection of such functions will be
denoted by PAP(X ,ρ).

Theorem 5.2.2 ([5] Theorem 3.1). Fix ρ ∈ U∞. The decomposition of a ρ-pseudo
almost periodic function f = g+φ , g ∈ AP(X), φ ∈ PAP0(X ,ρ) is unique.

We would like to revisit this result when inf
t∈R

ρ(t) = 0. Indeed, let X = R and for

each n ∈ Z,

ρ(t) =

{
1, t ∈ [n,n+ 1

2 ],

e−t2
, t ∈ (n+ 1

2 ,n+ 1).

Clearly inf
t∈R

ρ(t) = 0.

Since ρ(t) = 1 on each [n,n+ 1
2 ], it follows that

m(T,ρ) =
∫ T

−T
ρ(t)dt ≥

∫ [T ]

−[T ]
ρ(t)dt

=
2[T ]

∑
k=1

∫ −[T ]+k

−[T ]+k−1
ρ(t)dt

≥
2[T ]

∑
k=1

∫ −[T ]+k− 1
2

−[T ]+k−1
ρ(t)dt

≥
2[T ]

∑
k=1

1
2
= [T ].
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Thus ρ ∈U∞.
Define x periodically on R (with period 1) from

x(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t ∈ [0, 1
2 ],

4t − 2, t ∈ [ 1
2 ,

3
4 ],

−4t + 4, t ∈ [ 3
4 ,1],

Thus x(t + 1) = x(t) for all t ∈R. Obviously, x is continuous. So x ∈ AP(R).
On the other hand, let T > 0 and choose n > T . Then using the fact that x(t) = 0

on each
[
n,n+ 1

2

]
we have

0 ≤
∫ T

−T
x(t)ρ(t)dt ≤

∫ n

−n
x(t)ρ(t)dt

=
k=2n−1

∑
k=0

∫ −n+k+1

−n+k+ 1
2

e−t2
dt

≤
∫ n

−n
e−t2

dt ≤√
π.

Then,

lim
T→∞

∫ T

−T
x(t)ρ(t)dt

∫ T

−T
ρ(t)dt

= 0,

which means that x ∈ PAP0(R,ρ).
Now, we get x ∈ AP(R)∩PAP0(R,ρ). Obviously, x ∈ PAP(R,ρ). However, the

decomposition is not unique since

x(t) = x(t)+ 0 = 0+ x(t) = 2x(t)− x(t) = · · · .

From the above we get:

Theorem 5.2.3. The set

AP(X)∩PAP0(X ,ρ)

is nontrivial if ρ ∈ U∞.

Remark 5.2.4. Note that in our example inf
t∈R

ρ(t) = 0. Thus ρ(t) /∈ UB. It has been

shown in [8] that uniqueness of the decomposition occurs when PAP0(X ,ρ) is
translation invariant. The problem remains open if this is not true.
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Chapter 6
Note on the Almost Periodic Stochastic
Beverton–Holt Equation

Paul H. Bezandry

Abstract In this paper almost periodic random sequence is defined and investi-
gated. It is then applied to study the existence and uniqueness of the almost periodic
solution of the stochastic Beverton–Holt equation with varying survival rates and
intrinsic growth rates.

Keywords Almost periodicity in mean • Difference equation • Beverton-Holt
equation

Mathematics Subject Classification (2000): Primary: 60H05, 60H15; Secondary:
34G20, 43A60

6.1 Introduction

In constant environments, theoretical discrete-time population models are usually
formulated under the assumption that the dynamics of the total population size in
generation n, denoted by X(n), are governed by equations of the form

X(n+ 1) = γX(n)+ f (X(n)) , (6.1)

where γ ∈ (0,1) is the constant “probability” of surviving per generation, and f :
R+ → R+ models the recruitment process.

Almost periodic effects can be introduced into Eq. (6.1) by writing the recruit-
ment function or the survival probability as almost periodic sequences. This is model
with the equation
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X(n+ 1) = γnX(n)+ f (n,X(n)) , (6.2)

where either {γn}n∈Z+ or n → f (n,X(n)) is almost periodic and each γn ∈ (0,1).
In their paper, Franke and Yakubu [4] studied (6.2) with the periodic Beverton–

Holt recruitment function

f (n,X(n)) =
(1− γn)μKnX(n)

(1− γn)Kn +(μ − 1+ γn)X(n)
, (6.3)

where the carrying capacity Kn is p-periodic, Kn+p = Kn for all n ∈ Z+, and μ > 1.
In this paper, we assume that the intrinsic growth rate μ , the carrying capacity K,

and the survival rate γ vary and that K and γ are random. Equation (6.3) becomes

X(n+ 1) = γnX(n)+
(1− γn)μnKnX(n)

(1− γn)Kn +(μn − 1+ γn)X(n)
. (6.4)

We are then concerned with the existence of almost periodic solutions to
Eq. (6.4). The case where the intrinsic growth rate is constant has been treated in [2].
The assumption of randomness makes a lot of sense in this context since nature is
basically stochastic rather than deterministic.

The paper is organized as follows. In Sect. 6.2, we recall a basic theory of almost
periodic random sequences on Z+. In Sect. 6.3, we apply the techniques developed
in Sect. 6.2 to find some sufficient conditions for the existence and uniqueness of
the almost periodic solution to the stochastic Beverton–Holt difference equation
with varying survival rates and intrinsic growth rates.

6.2 Preliminaries

In this section we establish a basic theory for almost periodic random sequences.
To facilitate our task, we first introduce the notations needed in the sequel.

Let (B,‖·‖) be a Banach space and let (Ω ,F ,P) be a complete probability space.
Throughout the rest of the paper, Z+ denotes the set of all nonnegative integers.
Define L1(Ω ;B) to be the space of all B-valued random variables V such that

E‖V‖ :=

(∫

Ω
‖V (ω)‖dP(ω)

)
< ∞. (6.5)

It is then routine to check that L1(Ω ;B) is a Banach space when it is equipped with
its natural norm ‖ · ‖1 defined by ‖V‖1 := E‖V‖ for each V ∈ L1(Ω ,B).

Let X = {Xn}n∈Z+ be a sequence of B-valued random variables satisfying
E‖Xn‖ < ∞ for each n ∈ Z+. Thus, interchangeably we can, and do, speak of such

a sequence as a function, which goes from Z+ into L1(Ω ;B).
This setting requires the following preliminary definitions.

Definition 6.2.1. A B-valued sequence x = {x(n)}n∈Z+ is said to be Bohr almost
periodic if for each ε > 0 there exists N0(ε)> 0 such that among any N0 consecutive
integers there exists at least an integer p > 0 for which
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‖X(n+ p)−X(n)‖< ε, ∀n ∈ Z+.

Definition 6.2.2. An L1(Ω ;B)-valued random sequence X = {X(n)}n∈Z+ is said to
be Bohr almost periodic in mean if for each ε > 0 there exists N0(ε) > 0 such that
among any N0 consecutive integers there exists at least an integer p > 0 for which

E‖X(n+ p)−X(n)‖< ε, ∀n ∈ Z+.

An integer p > 0 with the above-mentioned property is called an ε-almost period
for X . The collection of all B-valued random sequences X = {X(n)}n∈Z+ which are
Bohr almost periodic in mean is then denoted by AP(Z+;L1(Ω ;B)).

Similarly, one defines the Bochner almost periodicity in mean as follows.

Definition 6.2.3. An L1(Ω ;B)-valued random sequence X = {X(n)}n∈Z+ is called
mean Bochner almost periodic if for every sequence {mk}k∈Z+

⊂ Z+ there exists
a subsequence

{
m′

k

}
k∈Z+

such that
{

X(n+m′
k))

}
k∈Z+

converges (in the mean)
uniformly in n ∈ Z+.

Following along the same arguments as in the proof of [3, Theorem 2.4, p 241],
one can show that those two notions of almost periodicity coincide.

Theorem 6.2.4. An L1(Ω ;B)-valued random sequence X = {X(n)}n∈Z+ is Bochner
almost periodic in mean if and only if it is Bohr almost periodic in mean.

An important and straightforward consequence of Theorem 6.2.4 is the next
corollary, which pays a key role in the proof of Theorem 6.3.1.

Corollary 6.2.5 ([1]). If X1 = {X1(n)}n∈Z+ ,X2 = {X1(n)}n∈Z+ , . . ., and XN =
{XN(n)}n∈Z+ are N random sequences, which belong to AP(Z+;L1(Ω ,B)), then for
each ε > 0 there exists N0(ε) > 0 such that among any N0(ε) consecutive integers
there exists an integer p > 0 for which

E‖X j(n+ p)−X(n)‖< ε

for n ∈ Z+ and for j = 1,2, . . . ,N.

Lemma 6.2.6 ([1]). If X belongs to AP(Z+;L1(Ω ;B)), then there exists a constant
M > 0 such that E‖X(n)‖ ≤ M for each n ∈ Z+.

Lemma 6.2.7 ([1]). Let B = R. If the sequences X and Y are (stochastically)
independent one another and both belong to AP(Z+;L1(Ω ;R)), then the sequence
XY =

{
X(n)Y (n), n ∈ Z+

}
belongs to AP(Z+;L1(Ω ;R)).

Let (B1,‖·‖1) and (B2,‖·‖2) be Banach spaces and let L1(Ω ;B1) and L1(Ω ;B2)
be their corresponding L1-spaces, respectively.

Definition 6.2.8. A function F : Z+ × L1(Ω ;B1) �→ L1(Ω ;B2), (n,U) �→ F(n,U)
is said to be almost periodic in mean in n ∈ Z+ uniformly in U ∈ K where
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K⊂ L1(Ω ;B1) is compact if for any ε > 0, there exists a positive integer l(ε,K)
such that among any l consecutive integers there exists at least a integer p with the
following property:

E‖F(n+ p,U)−F(n,U)‖2 < ε

for each random variable U ∈K and n ∈ Z
+.

Here again, the number p will be called an ε-translation of F and the set of all
ε-translations of F is denoted by E(ε,F,K).

Let UB(Z+; L1(Ω ;B)) denote the collection of all uniformly bounded L1(Ω ; B)-
valued random sequences X = {X(n)}n∈Z+ . It is then easy to check that the space
UB(Z+; L1(Ω ;B)) is a Banach space when it is equipped with the norm:

‖X‖∞ = sup
n∈Z+

E‖X(n)‖.

Lemma 6.2.9 ([1]). AP(Z+;L1(Ω ;B)) ⊂ UB(Z+;L1(Ω ;B)) is a closed space.

In view of the above, the space AP(Z+;L1(Ω ;B)) of almost periodic random
sequences equipped with the sup norm ‖ · ‖∞ is also a Banach space.

We now state the following composition result.

Theorem 6.2.10 ([1]). Let F : Z+×L1(Ω ;B1) �→ L1(Ω ;B2), (n,U) �→ F(n,U) be
almost periodic in mean in n ∈ Z+ uniformly in U ∈ L1(Ω ;B1). If in addition, F
is Lipschitz in U ∈ K, where K ⊂ L1(Ω ;B1) is compact, that is, there exists L > 0
such that

E‖F(t,U)−F(t,V )‖2 ≤ M E‖U −V‖1 ∀U,V ∈ L1(Ω ;B1), n ∈ Z+)

then for any almost periodic random sequence X = {X(n)}n∈Z+, then the L1(Ω ;B1)-
valued random sequence Y (n) = F(n,X(n)) is almost periodic in mean.

6.3 Application to Stochastic Beverton–Holt Equation

In this section, we assume that both carrying capacity Kn and the survival rate γn are
random and that {γn, n ∈ Z+} are (stochastically) independent and (stochastically)
independent of the sequence Kn, n ∈ Z+.

We have the following theorem.

Theorem 6.3.1. Suppose that {μn}n∈Z+ is almost periodic and that both {γn}n∈Z+

and {Kn}n∈Z+ are almost periodic in mean. Then Eq (6.4) has a unique mean almost
periodic solution whenever

sup
n∈Z+

E[γn]<
1

μ + 1
,

where μ := sup
n∈Z+

μn.
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Remark 6.3.2. In the above theorem, μ is well defined since {μn}n∈Z+ is almost
periodic.

The proof of Theorem 6.3.1 requires the following lemma.

Lemma 6.3.3. Let

f (n,X(n)) =
(1− γn)μnKnX(n)

(1− γn)Kn +(μn − 1+ γn)X(n)

where {μn}n∈Z+ is almost periodic and both {Kn}n∈Z+ and {γn}n∈Z+ are almost
periodic in mean, and let μ be as in Theorem 6.3.1. Then,

(i) f is μ-Lipschitz in the following sense:

E| f (n,U)− f (n,V )| ≤ μ E|U −V |, ∀U,V ∈ L1(Ω ;R+), n ∈ Z+;

(ii) If X belongs to AP(Z+;L1(Ω ;R+)), then the sequence { f (n,X(n))}n∈Z+ also
belongs to AP(Z+;L1(Ω ;R+)).

Proof. (Lemma 6.3.3)
It is a routine to show that

| f (n,U)− f (n,V )| ≤ μn|U −V | ,
and hence

E| f (n,U)− f (n,V )| ≤ μ E|U −V | .
To prove the almost periodicity of n → f (n,X(n)), set An = (1− γn)Kn and Bn =
μn − 1+ γn. Then f can be written as follows:

f (n,X(n)) = μn
AnX(n)

An +BnX(n)
for each n ∈ Z+.

Using the fact that {μn} is almost periodic and that {γn} and {Kn} are almost
periodic in mean, and making use of Lemma 6.2.6 and Corollary 6.2.5, we can
choose a constant K > 0 such that E|Kn| < K for all n ∈ Z+ and for each ε > 0
there exists a positive integer N0(ε) such that among any N0(ε) consecutive integers,
there exists an integer p > 0, a common ε-almost period for {μn}, {γn}, and {Kn}
for which

|μn+p − μn| ≤ ε
3μM1

E|γn+p − γn| ≤ ε
3μM2

,and E|Kn+p −Kn| ≤ ε
3μM3

,

where M1 =
K

(m−1)2 , M2 = K
[

1
m−1 +

1
(m−1)2

]
, and M3 =

2
m−1 +

μ
(m−1)2 .
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Observe that

E| f (n+ p,U)− f (n,U)| = μn E

∣∣∣∣
An+pU

An+p +Bn+pU
− AnU

An +BnU

∣∣∣∣

≤ μ E

∣∣∣∣
(An+pBn −AnBn+p)U2

Bn+pBnU2

∣∣∣∣= μ E

∣∣∣∣
An+p

Bn+p
− An

Bn

∣∣∣∣ .

We now evaluate E
∣∣∣An+p

Bn+p
− An

Bn

∣∣∣. Using the hypothesis of independence of the

random sequences {γn}n∈Z+ and {Kn}n∈Z+ , we have

E

∣∣∣∣
An+p

Bn+p
− An

Bn

∣∣∣∣ = E

∣∣∣∣
(1− γn+p)Kn+p

μn − 1+ γn+p
− (1− γn)Kn

μn − 1+ γn

∣∣∣∣

= E

∣∣∣∣
1

(μn+p−1+ γn+p)(μn−1+ γn)

[
(μn−1)(1−γn+p)Kn+p

+ γn(1−γn+p)Kn+p − (μn+p − 1)(1−γn)Kn − γn+p(1−γn)Kn

]∣∣∣∣

= E

∣∣∣∣
1

(μn+p − 1+ γn+p)(μn − 1+ γn)

[
(μn − 1)[Kn+p −Kn]

− [μn+p−μn]Kn +(μn − 1)[γn+pKn+p−γnKn]+ γnkn[μn+p−μn]

+ γnKn+p − γn+pKn − γnγn+p[Kn+p −Kn]
]∣∣∣∣

= E

∣∣∣∣
μn − 1

(μn+p − 1+ γn+p)(μn − 1+ γn)
[Kn+p −Kn]

− Kn

(μn+p − 1+ γn+p)(μn − 1+ γn)
[μn+p − μn]

+
(μn − 1)Kn

(μn+p − 1+ γn+p)(μn − 1+ γn)
[γn+p − γn]

+
μn

(μn+p − 1+ γn+p)(μn − 1+ γn)
[Kn+p −Kn]

+
γn

(μn+p − 1+ γn+p)(μn − 1+ γn)
[Kn+p −Kn]

− Kn

(μn+p − 1+ γn+p)(μn − 1+ γn)
[γn+p − γn]

∣∣∣∣

≤ 1
μn+p − 1

E|Kn+p−Kn|+ 1
(μn+p − 1)(μn − 1)

|μn+p−μn| E [Kn]
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+
1

μn+p − 1
E[Kn] E|γn+p−γn|+ 1

μn+p − 1
E[γn] E|Kn+p−Kn|.

+
1

(μn+p − 1)(μn − 1)
E[Kn] E|γn+p − γn|

+
μn

(μn+p − 1)(μn − 1)
E|Kn+p −Kn|

But the sequence {μn} is bounded. That is, there exist m > 1 and μ := sup
n∈Z+

μn such

that m ≤ μn ≤ μ for all n ∈ Z+. Thus,
1

μn − 1
≤ 1

m− 1
for all n ∈ Z+.

Hence,

E

∣∣∣∣
An+p

Bn+p
− An

Bn

∣∣∣∣≤
1

m− 1
E|Kn+p −Kn|+ K

(m− 1)2 |μn+p − μn|

+
K

m− 1
E|γn+p − γn|+ 1

m− 1
E|Kn+p −Kn|.

+
K

(m− 1)2 E|γn+p − γn|+ μ
(m− 1)2 E|Kn+p −Kn|

≤
[

2
m− 1

+
μ

(m− 1)2

]
E|Kn+p −Kn|+ K

(m− 1)2 |μn+p − μn|

+K

[
1

m− 1
+

1
(m− 1)2

]
E|γn+p − γn|

Thus, we obtain

E | f (n+ p,U)− f (n,U)| ≤ ε
3
+

ε
3
+

ε
3
= ε .

By Theorem 6.2.10, we can conclude that n → f (n,X(n)) is almost periodic in
mean. 	


We now prove Theorem 6.3.1.

Proof. By Lemma 6.3.3(ii), if u ∈ AP(Z+,L1(Ω ;R+), then n → f (n,u(n)) belongs
to AP(Z+,L1(Ω ;R+)). Define the nonlinear operator Γ by setting:

Γ : AP(Z+,L
1(Ω ;R+)) �→ AP(Z+,L

1(Ω ;R+)),
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where

Γ u(n) :=
n−1

∑
r=0

(
n−1

∏
s=r

γs

)
f (r,u(r)),

is the representation of the solution of Eq. (6.4).
It is clear that Γ is well defined. Now, let u,v ∈ AP(Z+,L1(Ω ;R+)) having the

same property as X defined in the Beverton–Holt equation. One can easily see that

E |Γ u(n)−Γ v(n)| ≤
n−1

∑
r=0

{(
n−1

∏
s=r

E |γs|
)

E | f (r,u(r))− f (r,v(r))|
}
,

and hence letting β = sup
n∈Z+

E[γn] we obtain

sup
n∈Z+

E |Γ u(n)−Γ v(n)| ≤
(

μβ
1−β

)
sup

n∈Z+

E |u(n)− v(n)| .

Obviously, Γ is a contraction whenever
μβ

1−β
< 1. In that event, using the Banach

fixed point theorem it easily follows that Γ has a unique fixed point, X , which
obviously is the unique mean almost periodic solution of (6.4). 	
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Chapter 7
Piecewise-Defined Difference Equations:
Open Problem

Candace M. Kent

Abstract We consider difference equations of the form

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,

where k ∈ {0,1, . . .}, fn is piecewise defined and fn : Dk+1 → D, D ⊂ R, whose
behavior of solutions is limited to that of being either eventually periodic or
unbounded. There exist numerous examples of difference equations that are both
piecewise defined and characterized by having every solution either eventually
periodic or unbounded. We briefly describe four such cases. However, not all
piecewise-defined difference equations have solutions with this behavior, and we
point out some of these exceptions. We then present some properties that our sam-
pling of eventually periodic or unbounded piecewise-defined difference equations
have in common. We follow up with an open problem, asking for an explanation as
to why certain piecewise-defined difference equations have eventually periodic or
unbounded solutions, and others do not.

Keywords Piecewise-defined difference equations • Eventually periodic solu-
tions • Unbounded solutions • Max-type equations • Collatz-type equations
• Neuronic models • Tent map

7.1 Introduction and Preliminaries

We give a brief synopsis of four well-known cases in the literature of piecewise-
defined difference equations characterized by their having every solution eventually
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periodic, every solution unbounded, or every solution either eventually periodic or
unbounded. (See, e.g., [1–5, 7–18, 19a, 21–24, 26–31], and the references therein.)

We first define what it means to be periodic, eventually periodic, and unbounded.

Definition 7.1.1. Let {xn}∞
n=−k be a solution of the difference equation

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,

where k ∈ {0,1, . . .} and fn : Dk+1 →D, D⊂R. Then {xn}∞
n=−k is said to be periodic

with period p if
xn+p = xn for all n ≥−k.

A solution which is said to be periodic with prime period p is periodic with period
p but not for any value less than p.

Definition 7.1.2. Let {xn}∞
n=−k be a solution of the difference equation

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,

where k ∈ {0,1, . . .} and fn : Dk+1 → D, D ⊂ R. Then {xn}∞
n=−k is said to be

eventually periodic with period p (or truncated periodic) if there is N ≥ −k such
that

xn+p = xn for all n ≥ N.

Definition 7.1.3. Let {xn}∞
n=−k be a solution of the difference equation

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,

where k∈ {0,1, . . .} and fn : Dk+1 →D, D⊂R. Then {xn}∞
n=−k is said to be bounded

if there is M > 0 such that

|xn| ≤ M for all n ≥−k.

Therefore, {xn}∞
n=−k is unbounded if there exists a subsequence {xni}∞

i=0 such that

lim
i→∞

xni =+∞ or −∞.

The four cases that we consider in this paper are the following.

Case 1. Max-Type Equation
This category includes equations of the form

xn+1 = max

{
A(0)

n

xn
,

A(1)
n

xn−1
, . . . ,

A(k)
n

xn−k

}
, n = 0,1, . . . ,
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where initial conditions, x−k,x−k+1, . . . ,x−1,x0, are positive and the coefficients

(also called parameters), {A(i)
n }∞

n=0, for i = 0,1, . . . ,k, are positive periodic se-
quences with respective periods pi ∈ {1,2, . . .}. When pi = 1 for all i = 0,1, . . . ,k
(i.e., all coefficients are constant), the equation is referred to as autonomous;
otherwise the equation is referred to as nonautonomous.

Case 2. Collatz-Type Equations
Included under this category are equations of the form

xn+1 =

⎧
⎪⎨

⎪⎩

αxn +β xn−1

2
, if xn + xn−1 is even,

γxn + δxn−1, if xn + xn−1 is odd,

n = 0,1, . . . ,

where initial conditions, x−1,x0, are integers and α,β ,γ,δ ∈ {−1,1}.

Case 3. Neuronic Models
The models considered are

(i) The equations

xn+1 = xn − g(xn−k), n = 0,1, . . . ,

and
xn+1 = xn + g(xn−k), n = 0,1, . . . ,

where the delay k ∈ {0,1, . . .} and

g(u) =

{−1, if u ≤ σ ,

1, if u > σ ,

with threshold σ ∈ R
(ii) The system

{
xn+1 = xn + ag(xn−k)+ bg(yn−k),

yn+1 = yn − bg(xn−k)+ ag(yn−k),
n = 0,1, . . . ,

where the delay k ∈ {0,1, . . .} and

g(u) =

{−1, if u > 0
1, if u ≤ 0

The following definition, modified from [20], will be useful in the sequel.

Definition 7.1.4. Let σ be some threshold value, and let {xn}∞
n=−k be a solution of

the difference equation

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,
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where k ∈ {0,1, . . .} and fn : Dk+1 → D, D ⊂ R. A positive semicycle of {xn}∞
n=−k

is a “string” of terms {xl,xl+1, . . . ,xm}, all greater than or equal to σ , with l ≥ −k
and m ≤ ∞ and such that

either l =−k or l >−k and xl−1 < σ

and
either m = ∞ or m < ∞ and xm+1 < σ .

A negative semicycle of {xn}∞
n=−k is a “string” of terms {xl ,xl+1, . . . ,xm}, all less

than σ , with l ≥−k and m ≤ ∞ and such that

either l =−k or l >−k and xl−1 ≥ σ

and

either m = ∞ or m < ∞ and xm+1 ≥ σ .

Case 4. The Tent Map
The tent map T is the piecewise linear map

T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

αx, if 0 ≤ x ≤ 1
α
,

α
α − 1

(1− x), if
1
α

< x ≤ 1,

where T : [0,1]→ [0,1] and α ∈ (1,∞). This map can also be written in the form of
a difference equation:

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

αxn, if 0 ≤ xn ≤ 1
α
,

α
1− a

(1− xn), if
1
α

< xn ≤ 1,

where the initial condition x0 ∈ [0,1].The following definitions and note, taken
from [6, 19], and [25], will be useful in the sequel.

Definition 7.1.5. A complex number α is called an algebraic number if it satisfies
an equation of the form

αm + am−1αm−1 + · · ·+ a1α + a0 = 0

with rational coefficients a0, . . . ,am−1. A complex number α is an algebraic integer
if it satisfies such an equation with integer coefficients. The roots other than α are
called the Galois conjugates of α .

Definition 7.1.6. A Pisot number is a real algebraic integer greater than one whose
Galois conjugates all have modulus strictly less than one.
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Note 7.1.7. An almost integer is a number “very close to an integer” (which is
frequently coincidental although not always). For example,

eπ −π = 19.999099791 . . .

is an almost integer. In particular, we have that Pisot numbers generate almost
integers, and this is not coincidental. They do this as follows: Let α be a Pisot
number. Then the values of successively higher powers of α get successively
“closer” to whole numbers. What this means is that if one defines, for x ∈ R,

‖ x ‖= |x−m| such that m is the closest integer to x,

then
lim
n→∞

‖ αn ‖= 0.

We state the following result which will be pertinent in the sequel.

Proposition 7.1.8. Let {xn}∞
n=−k be a solution of the difference equation

xn+1 = fn(xn,xn−1, . . . ,xn−k), n = 0,1, . . . ,

where k ∈ {0,1, . . .} and fn : Zk+1 → Z. Then either {xn}∞
n=−k is unbounded or

{xn}∞
n=−k is eventually periodic.

We end this section with what might be considered one of the simplest piecewise-
linear difference equations whose every solution is eventually periodic:

xn+1 = |xn − 1|, n = 0,1, . . . ,

where the initial condition x0 ∈ R.

7.2 Max-Type Equations

In a key paper by Amleh et al. [2], it was shown that every solution of the difference
equation

xn+1 = max

{
1
xn
,

A
xn−1

}
, n = 0,1, . . . , (7.1)

where the constant coefficient A and initial conditions x−1,x0 are nonzero real
numbers, is eventually periodic. One of the results obtained was that when A and
x−1,x0 are positive, every positive solution {xn}∞

n=−1 of Eq. (7.1) is eventually
periodic with period

1. Two if A ∈ (0,1)
2. Three if A = 1
3. Four if A ∈ (1,∞)
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The proof given was geometric and showed how in a finite number of iterations any
point (xn−1,xn) in the xn−1,xn phase plane “jumps” onto a particular line segment
along which all solutions are periodic.
On the other hand, with the equation

xn+1 = max

{
a
xn
,

A
xn−1

}
, n = 0,1, . . . ,

where a �= A, a,A are negative, and x−1,x0 are nonzero real numbers, it was found
that every solution is unbounded.

Briden et al. [5] made the coefficient A in Eq. (7.1) variable and investigated the
resulting nonautonomous difference equation

xn+1 = max

{
1
xn
,

An

xn−1

}
, n = 0,1, . . . , (7.2)

where {An}∞
n=0 is a periodic sequence of positive real numbers with period two

such that

An =

{
A0, if n is even,
A1, if n is odd,

and where the initial conditions x−1,x0 are positive. It was shown that every positive
solution {xn}∞

n=−1 of Eq. (7.2) is eventually periodic with the following periods:

1. Two if A0A1 ∈ (0,1)
2. Six if A0A1 = 1
3. Four if A0A1 ∈ (1,∞)

Briden et al. [4] and Grove et al. [15] then studied this same equation

xn+1 = max

{
1
xn
,

An

xn−1

}
, n = 0,1, . . . , (7.3)

only now with the positive sequence {An}∞
n=0 periodic with period three such that,

for m ≥ 0,

An =

⎧
⎨

⎩

A0, if n = 3m,

A1, if n = 3m+ 1,
A2, if n = 3m+ 2.

Initial conditions, x−1,x0, were kept positive so that again all solutions, {xn}∞
n=−1,

were positive. The following was proved:

1. If An ∈ (0,1) for all n ≥ 0, then every positive solution of Eq. (7.3) is eventually
periodic with period two.

2. If An ∈ (1,∞) for all n ≥ 0, then every positive solution of Eq. (7.3) is eventually
periodic with period twelve.
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3. If Ai+1 < 1 < Ai for some i ∈ {0,1,2}, then every positive solution of Eq. (7.3)
is unbounded.

4. In all other cases, every positive solution of Eq. (7.3) is eventually periodic with
period three.

The proofs in the above two cases were purely computational and inductive.
Noteworthy is the fact that the branching of possibilities in each proof is curtailed
since a finite set of conditions evolves with each iteration that then completely
determines which argument of the maximum function is chosen at each iterative
step.

In a paper by Kent and Radin [18], the following equation was examined:

xn+1 = max

{
An

xn
,

Bn

xn−1

}
, n = 0,1, . . . , (7.4)

where {An}∞
n=0 is a periodic sequence of positive real numbers with prime period p,

and {Bn}∞
n=0 is a periodic sequence of positive real numbers with prime period q.

They discovered that every positive solution, {xn}∞
n=−1, of Eq. (7.4) is unbounded if

p or q is a multiple of three. A number-theoretic approach was taken in the proof.
All previous results cited were extended in yet another landmark paper by Bidwell
and Franke [3]. It was shown that every bounded positive solution {xn}∞

n=−k of the
equation

xn+1 = max

{
A(0)

n

xn
,

A(1)
n

xn−1
, . . . ,

A(k)
n

xn−k

}
, n = 0,1, . . . , (7.5)

where k ∈ {1,2, . . .} and
{

A(i)
n

}∞

n=0
, for i = 0,1, . . . ,k, is a periodic sequence of

nonnegative real numbers with period pi ∈ {1,2, . . .}, is eventually periodic. It is
interesting to note that the proof here shares some common features with the proof
used in [2]. Both proofs use a log transformation, which converts the equation
into a piecewise-linear equation, and both involve points (xn,xn−1) asymptotically
approaching but then suddenly “jumping” onto a set of points representing solutions
that are periodic. With Eq. (7.5), the set is an ω-limit cycle.

In contrast to the above examples, there are piecewise-defined difference equa-
tions with the maximum function whose solutions are not necessarily eventually
periodic but asymptotically convergent to some value.

For example, in a paper by Stevic [29], it was proved that every positive solution
of the difference equation

xn+1 = max

{
A0

xα0
n
,

A1

xα1
n−1

, . . . ,
Ak

xαk
n−k

}
, n = 0,1, . . . , (7.6)

where k ∈ {1,2, . . .} and Ai ∈ (0,∞) and αi ∈ (0,1), for i = 0,1, . . . ,k, converges to

x̄ = max

{
A

1
α0+1

0 , . . . ,A
1

αk+1

k

}
.
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In a paper by Yang et al. [30], mixed results were obtained with an example of
Eq. (7.6),

xn+1 = max

{
1

xα
n
,

A
xn−1

}
, n = 0,1, . . . ,

where A ∈ (0,∞) and α ∈ (0,1). Their results were as follows:

1. If A ∈ (1,∞), then every positive solution is eventually periodic with period four.
In particular, there exists N ≥ 0 such that xn =

A
xn−1

for all n ≥ N.

2. If A ∈ (0,1], then every positive solution converges to x̄ = 1.

Recently Sauer in [26] and [27] generalized the idea of max-type equations to that
of rank-type equations. This new class of equations includes, for example, equations
of the form

xn+1 = max{ f0(xn), f1(xn−1), . . . , fk(xn−k)} , n = 0,1, . . . ,

xn+1 = min{ f0(xn), f1(xn−1), . . . , fk(xn−k)} , n = 0,1, . . . ,

xn+1 = median{ f0(xn), f1(xn−1), . . . , fk(xn−k)} , n = 0,1, . . . ,

where k ∈ {1,2, . . .} and fi : R → R, for i ∈ {0,1, . . .}, is continuous. A function
is called contractive if there exists α ∈ [0,1) and a real number r such that
| f (x)− r| ≤ α|x− r| for all x. With, for example, the max equation just above, Sauer
showed that if fi, for i = 0,1, . . . ,k, is contractive (i.e., for i ∈ {0,1, . . .}, there exist
αi ∈ [0,1) and ri ∈ R such that | fi(x)− ri| ≤ αi|x− ri| for all x), then every solution
{xn}∞

n=0 converges to max{r0,r1, . . . ,rk}. However we make mention of the fact that
if α < 1 is relaxed, then, in many instances, the solution is eventually periodic rather
than asymptotically convergent. A typical instance is with our familiar equation

xn+1 = max

{
A(0)

n

xn
,

A(1)
n

xn−1
, . . . ,

A(k)
n

xn−k

}
, n = 0,1, . . . .

Given all of the above results, we conclude this section with the following
observation.

In the case of max-type equations whose solutions are either eventually periodic
or unbounded, as against, say, asymptotically convergent, the terms of the solutions
are “made up” of elements that are drawn from a finite set of elements in much the
same way as the nonnegative integers are formed from the combination of only ten
digits. Specifically, consider the nonautonomous equation

xn+1 = max

{
An

xn
,

Bn

xn−1

}
, n = 0,1, . . . ,
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where initial conditions x−1,x0 are positive and where the variable coefficients
{An}∞

n=0, {Bn}∞
n=0 are both periodic sequences of positive real numbers with prime

period two such that

An =

{
A0, if n is even,
A1, if n is odd,

Bn =

{
B0, if n is even,
B1, if n is odd.

Then the “finite set of elements” is {x−1,x0,A0,A1,B0,B1} and every term xn of a
solution {xn}∞

n=−1 is equal to the countable product of these elements:

xn = xn1
−1 · xn2

0 ·An3
0 ·An4

1 ·Bn5
0 ·Bn6

1 ,

where ni ∈ Z for i ∈ {1,2,3,4,5,6}

7.3 Collatz-Type Equations

In 1950, Lothar Collatz introduced what is currently called the 3x+ 1 Problem,
associated with the map

C(x) =

⎧
⎨

⎩

x
2
, if x ≡ 0 (mod 2),

3x+ 1, if x ≡ 1 (mod 2),

with x ∈ N, at the International Congress of Mathematicians in Cambridge, Mas-
sachusetts. This map is now referred to as the Collatz map. The problem was to
prove the conjecture that for any x ∈ N, there exists N ≥ 0 such that CN(x) = 1, after
which iterations cycle through the values 4, 2, 1. (See Lagarias [22].) This problem
has averted solution up to the present.

The Collatz map can be written more concisely as

T (x) =

⎧
⎪⎨

⎪⎩

x
2
, if x ≡ 0 (mod 2),

3x+ 1
2

, if x ≡ 1 (mod 2),

where x ∈ N and T is called the 3x+ 1 map. We can, in turn, translate this map into
the difference equation (which we will refer to as the “3x+ 1 difference equation”)

xn+1 =

⎧
⎪⎨

⎪⎩

xn

2
, if xn is even,

3xn + 1
2

, if xn is odd,
n = 0,1, . . . , (7.7)
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where x0 ∈ N; and we can restate the 3x+ 1 Conjecture as follows:

Conjecture 7.3.1. Every solution of Eq. (7.7) is eventually periodic with period two,
ending in the two-cycle (1,2).

Since 1950, there have been partial proofs of the conjecture or of related conjectures,
and variants of the 3x + 1 equation together with the creation of Collatz-type
equations, more amenable to solution, have sprouted up.

We consider the Collatz-type equations.
One of the earlier investigations of these Collatz-type difference equations was

conducted by Clark and Lewis [9]. They studied the equation

xn+1 =

⎧
⎨

⎩

xn + xn−1

2
, if xn + xn−1 is even,

xn − xn−1, if xn + xn−1 is odd,
n = 0,1, . . . , (7.8)

where x−1,x0 ∈ Z. Clark and Lewis’ goal was to show that indeed every solution is
eventually periodic. In order to do so, they needed to find a bound on each solution
which would be a function of the initial conditions x−1,x0 (see Proposition 7.1.8).
They found such a bound:

|xn| ≤ max{|x−1|, |x0|} for all n ≥−1.

They then not only were able to conclude that every solution is eventually periodic,
but, using this bound, were able to show that a solution {xn}∞

n=−1 is either eventually
the constant solution 1,1, . . ., the constant solution −1,−1 . . ., or the period-six
solution ending in the six-cycle (−2,1,3,2,−1,−3).

Clark and Lewis’ equation was then extended to the following family of sixteen
Collatz-type equations by Al-Amleh et al. [1]:

xn+1 =

⎧
⎪⎨

⎪⎩

αxn +β xn−1

2
, if xn + xn−1 is even,

γxn + δxn−1, if xn + xn−1 is odd,

n = 0,1, . . . , (7.9)

where x−1,x0 ∈ Z and α,β ,γ,δ ∈ {−1,1}. The solutions of all but four of the
sixteen equations were fully characterized and were found to be either eventually
periodic or unbounded. For example, when α = β = γ = δ = 1, it was proved that
every solution is eventually constant (periodic with period one) or unbounded. When
it came to the four unsolved equations, it was conjectured that with each, every
solution is eventually periodic. However, no bounds on solutions were discovered
(as has been the case with the 3x + 1 Problem), thereby making it seemingly
impossible to prove the conjectures.
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Feuer and Ladas in a series of two papers [13] and [11] proposed several open
problems and conjectures on Collatz-type equations that are generalizations of
Eq. (7.9):

1. They looked at six cases of the family of equations

xn+1 =

⎧
⎪⎨

⎪⎩

αxn +β xn−1

a
, if a |xn + xn−1,

γxn + δxn−1, otherwise,

n = 0,1, . . . , (7.10)

where x−1,x0 ∈ Z, a is an integer greater than or equal to 2, and α,β ,γ,δ ∈
{−1,1}.

2. Then they studied eight cases of the family of equations

xn+1 =

⎧
⎪⎨

⎪⎩

αxn +β xn−1

an
, if an |xn + xn−1,

γxn + δxn−1, otherwise,

n = 0,1, . . . , (7.11)

where x−1,x0 ∈ Z, {an}∞
n=0 is a periodic sequence of integers greater than or

equal to 2, and α,β ,γ,δ ∈ {−1,1}.

It was conjectured that in some of the cases, every solution is eventually periodic,
and in others, unbounded.

The proofs used in the above examples are inductive in nature and case-specific.
In a recent paper by Liddell [24], an alternative geometric approach was suggested
that could serve as a more general method for analyzing piecewise-linear difference
equations (especially those, for example, represented by Eq. (7.10)) in the phase
space Z2.

While it is obvious why every solution of a Collatz-type equation, for which
bounds on solutions have been discovered, is eventually periodic, what about the
actual 3x+ 1 difference equation and the four unsolved cases of Eq. (7.9), where
no bounds have been obtained? Computer observation tells us that in these latter
cases, every solution is eventually periodic, which means there have to be bounds
on these integer solutions. But how do we find such bounds? Do we imbed these
problems in larger problems, for which the mathematics may not yet be known, and
look for the bounds there? As Paul Erdös stated, “Mathematics is not yet ready for
such problems.” (See Lagarias [22].)

7.4 Neuronic Models

There is a paucity of applications of difference equations to the field of neuro-
science, especially where analytic proofs are involved rather than simply computer
observations and simulations. A few of elegant examples exist in which it is proved
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that the solutions of the difference equation models are eventually periodic or
unbounded. The difference equations are all piecewise constant with thresholds.
In a paper by Chen [7], the following difference equation model was presented,
which was a discretized version of a differential equation with applications in neural
network theory:

xn+1 = xn − g(xn−k), n = 0,1, . . . , (7.12)

where k ∈ {0,1, . . .} and

g(u) =

{−1, if u ≤ σ ,

1, if u > σ ,

with threshold value σ ∈ R. Chen proved that every solution of Eq. (7.12) is
eventually periodic with prime period 2(2l + 1) for some l ≥ 0 such that k−l

2l+1 is
a nonnegative integer.

In another paper by Chen [8], it was shown that every solution of a modified
version of Eq. (7.12),

xn+1 = xn + g(xn−k), n = 0,1, . . . ,

is either eventually periodic or unbounded (unbounded if the solution has a
semicycle with length greater than k–See the Introduction for the definition of a
“semicycle”).

Yuan and Huang [31] extended Chen’s work to the following system:

xn+1 = xn + ag(xn−k)+ bg(xn−k),

yn+1 = yn − bg(xn−k)+ ag(yn−k),

n = 0,1, . . .

where a,b are constants, k ∈ {0,1, . . .}, and

g(u) =

{−1, if u > 0,

1, if u ≤ 0,

Every solution, {(xn,yn)}∞
n=−k, was again shown to be eventually periodic, but not

unbounded.
The proofs in the first two papers utilize semicycle analysis in which semicycles

of terms of solutions are studied in relation to the threshold value σ . The fact that
the difference equations involve thresholds suggests that some sort of feedback
mechanisms in the mathematical sense are at work; namely, negative feedback
leading to convergence of solutions to eventually periodic solutions and positive
feedback giving rise to unbounded solutions. In addition, again, as with max-type
equations the terms of the solutions are “made up” of elements that are drawn from
the finite set of elements {x0,−1,1}, where each term is of the form x0 + n, n ∈ Z
(see Proposition A). The proofs in the third paper are both geometric in nature and
in the spirit of Proposition A.
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7.5 The Tent Map

We introduce the tent map, a piecewise linear map, with the following example
(see [10]):

T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x, if 0 ≤ x ≤ 1
2
,

2(1− x), if
1
2
< x ≤ 1,

(7.13)

where T : [0,1]→ [0,1]. If the map T is written as a difference equation we have

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

2xn, if 0 ≤ xn ≤ 1
2
,

2(1− xn), if
1
2
< xn ≤ 1.

(7.14)

For the most part, this example exhibits chaotic behavior. However, if the initial
condition x0 =

k
2m ∈ (0,1) with k,m ∈ N, then the resulting solution {xn}∞

n=0 of
Eq. (7.14) is eventually constant (i.e., periodic with period one).

The map in Eq. (7.13) is just one member of the family of asymmetric tent maps
(see [23]):

Tα(x) =

⎧
⎪⎪⎨

⎪⎪⎩

αx, if 0 ≤ x ≤ 1
α
,

α
α − 1

(1− x), if
1
α

< x ≤ 1,

where Tα : [0,1]→ [0,1] for α ∈ (1,∞). The corresponding difference equation of
this map is

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

αxn, if 0 ≤ xn ≤ 1
α
,

α
α − 1

(1− xn), if
1
α

< xn ≤ 1.

(7.15)

It is known that for each α , there exists a subset of initial conditions in the set
Q(α)∩ [0,1], where Q(α) is a finite algebraic extension of Q, such that the resulting
solutions are eventually periodic. However, if α belongs to a “special subgroup”
of the Pisot numbers (with this subgroup, α

α−1 is also a Pisot number), then all
initial conditions in the set Q(α)∩ [0,1] give rise to eventually periodic solutions.
(See [6, 19, 23], and also the definition of “Pisot number” in the Introduction.) In
addition, we reiterate that high powers of Pisot numbers are almost integers (see [25]
and also the definition of “almost integers in the Introduction).

Therefore, in Eq. (7.15), when α belongs to this special subgroup of Pisot
numbers, referred to above, then there is a subset of (almost) integers that go into
“making up” the terms xn of solutions {xn}∞

n=0 of Eq. (7.15). Couple this with the
fact that every solution is bounded, that is, xn ∈ [0,1], for all n = 0,1, . . ., and we
have “almost” Proposition A.
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7.6 Open Problem, Heuristic Argument, and Query

We conclude with our open problem, a brief heuristic argument, and a suggestion on
using an adjuvant approach to the study of piecewise-defined difference equations.

7.6.1 Open Problem

Open Problem 1. Develop a complete set of properties which allows one to
distinguish between piecewise-defined difference equations whose solutions are
either eventually periodic or unbounded and piecewise-defined and other difference
equations that do not exhibit this type of behavior.

It should be noted that E.A. Grove and G. Ladas in their book, Periodicities in
Nonlinear Difference Equations [16], inspired the formulation of this open problem.

7.6.2 Heuristic Argument

Observe that each of the piecewise-defined difference equations considered above
involves some type of threshold. For example, with the max-type equation

xn+1 = max

{
1
xn
,

A
xn−1

}
, n = 0,1, . . . ,

we have A as our threshold value if we rewrite the equation as

xn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
xn
, if

xn−1

xn
≥ A,

A
xn
, if

xn−1

xn
≤ A,

n = 0,1, . . . .

We can rewrite the 3x+ 1 difference equation as

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

xn

2
, if xn ≡ 0 (mod 2),

3xn + 1
2

, if xn ≡ 1 (mod 2).

n = 0,1, . . . .

Here, the threshold value can be viewed as 0 (mod 2), where either xn is either
equal to 0 (mod 2) or is “greater than” 0 (mod 2).

The neuronic models

xn+1 = xn ± g(xnk), n = 0,1, . . . ,
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where k ∈ {0,1, . . .} and

g(u) =

{−1, if u ≤ σ ,

1, if u > σ ,

have the already built-in threshold value σ ∈ R.
Perhaps there is some type of negative feedback going on in which there is

convergence, albeit, not asymptotic, with solutions eventually becoming periodic;
or some type of positive feedback going on in which there is divergence or
unboundedness of solutions. If negative feedback and positive feedback do in
actuality exist, they need to be characterized rigorously. The fact that convergence to
periodic solutions is not asymptotic suggests that Proposition A is somehow playing
a role in solutions eventually becoming periodic.

7.6.3 Query

Difference equations today have many applications to areas outside of mathemat-
ics, including biology and medicine. What about an application in the opposite
direction? There are cases where biology has motivated ideas in mathematics.
In particular, there is a paper, relevant to our paper, by Sayama [28], in which
morphogenesis (the study of the evolution and development of shapes and patterns
of organisms) is used to aid in the elucidation of the 3x+ 1 problem. Perhaps doing
something similar in the case of Open Problem 7.10, would provide at least part of
its solution.
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Chapter 8
Mathematics Behind Microstructures:
A Lead to Generalizations of Convexity

Daniel Vasiliu

Abstract We consider a mathematical model aimed at explaining pattern formation
in microstructures. Usually such models are also useful for understanding problems
of solid–solid phase transitions in material science. Our goal is to analyze the
limiting behavior of certain non-linear energy type functionals, with restrictions,
from a variational point of view. In order to better understand this problem we
develop some generalizations for the notions of rank-one convexity and quasi-
convexity and demonstrate their relevance in the context of energy minimizing
sequences.

Keywords Microstructures • Rank-one convexity • Quasiconvexity • Restricted
lower semicontinuity

Mathematics Subject Classification (1991): 49J45

8.1 Introduction

The idea that microstructures are abundant in nature represents a universally
accepted truth. In one of the most notable monographs concerning the mathematical
models of nonlinear elasticity and microstructures [29], Müller elaborated on
the idea that the observed microstructure corresponds to minimizers or almost
minimizers of the elastic energy. In the case of an elastic crystal, given a reference
configuration Ω ⊂R

3, a deformation u : Ω →R
3 requires an elastic energy:

D. Vasiliu (�)
Department of Mathematics, Christopher Newport University, Newport News,
VA 23606, USA
e-mail: daniel.vasiliu@cnu.edu

B. Toni et al. (eds.), Bridging Mathematics, Statistics, Engineering and Technology,
Springer Proceedings in Mathematics & Statistics 24, DOI 10.1007/978-1-4614-4559-3 8,
© Springer Science+Business Media New York 2012

73



74 D. Vasiliu

I(u) =
∫

Ω

f (Du)dx (8.1)

where f : M3×3 → R represents the stored-energy density function that describes
the properties of the material. Under the Cauchy–Born rule f (A) is given by the
(free) energy per unit volume that is required for an affine deformation x �→ Ax of
the crystal lattice.

Thus, a problem of significant importance in the Calculus of Variations is to
find among all functions u∈W 1,p(Ω,Rm), with certain prescribed constraints, those
which minimize a given functional

I(u) =
∫

Ω

f (x,u(x),Du(x))dx (8.2)

where f : Ω×R
m ×M

m×n → R, Ω ⊂ R
n a bounded domain and Du denotes the

gradient of u in the sense of distributions. A direct method of proving existence
of minimizers is to find minimizing sequences converging in some topology and
check that the functional I is lower semicontinuous in that topology; then in this
case the limit would be a minimizer. Therefore it is of special interest in finding
necessary and sufficient conditions for the function f such that I defined (8.2) is
weakly lower semicontinuous on certain Sobolev space. One “right” candidate for
such a condition is the concept of quasiconvexity first introduced by Morrey in the
early 1950s [26]. According to Morrey a function f : Mm×n → R is quasiconvex if

∫

Ω

f (A+Du(x))dx ≥ |Ω| f (A)

for all A ∈M
m×n and all u ∈C∞

0 (Ω,Rm).
Acerbi and Fusco [2] proved that under some proper growth condition the

weak lower semicontinuity of the functional I given by (8.2) is equivalent to the
quasiconvexity condition of f with respect to variable ξ .

The quasiconvexity condition is generally difficult to verify. As a major
contribution in understanding this condition we distinguish the work of Ball [4].
He developed the concepts of rank-one convexity and polyconvexity along with the
quasiconvexity emphasizing many interesting facts in the attempt to consecrate a
useful sufficient condition for the weak lower semicontinuity. It turns out that rank-
one convexity (see definition below), although easier to check, is the weakest among
all three conditions. In general rank-one convexity does not imply quasiconvexity
(Šverák [38]) but vice versa is always true. However there are particular cases
when rank-one convexity is equivalent to quasiconvexity, for example, when f is
a quadratic form.

An efficient way to study weakly convergent sequences and the weak lower
semicontinuity property for the functional (8.2) is to use the concept of Young
measures developed by Tartar [42] following the original idea of Young [47].
Kinderlehrer and Pedregal [20] showed that the homogeneous gradient Young
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measures are exactly those probability measures that satisfy Jensen’s inequality for
all quasiconvex functions f i.e.,

∫

Mm×n

f (λ )dνx(λ )≥ f

⎛

⎝
∫

Mm×n

λ dνx(λ )

⎞

⎠

Using the techniques of Young measures, Fonseca and Müller [18] studied the
so-called A-quasiconvexity problem and Müller [30] also studied a similar problem
without the constant rank condition.

In this paper we study the weak lower semicontinuity of functionals I given by
(8.2) along sequences uk satisfying a projection-type constraint (i.e., dist(Duk,L)
→ 0) for a given linear subspace L of Mm×n. We show that this problem leads to
meaningful generalizations of the rank-one convexity and quasiconvexity concepts.
We say that a function f : L→ R is L- rank one convex if for any λ ∈ [0,1] and A,
B ∈ L such that rank(A−B)≤ 1 we have

f (λ A+(1−λ )B)≤ λ f (A)+ (1−λ ) f (B).

Also we say that f is L- quasiconvex if

f (A)≤ 1
|Q|

∫

Q

f (A+Du(x))dx

for every cube Q ⊂ R
n, any A ∈ L and every u ∈ W 1,∞(Q;Rm), Q-periodic with

Du(x) ∈ L for almost every x. We remark that if L =M
m×n we get the usual rank-

one convexity and quasiconvexity condition and thus the new conditions generalize
the classical ones.

Let f : Mm×n → R and define I(u) =
∫

Ω f (Du)dx. We say I is L-weakly lower
semicontinuous on W 1,p if

I(u)≤ liminf
k→∞

I(uk)

whenever uk⇀u and dist(Duk,L)→ 0 as k → ∞.
The main result we prove is that assuming the subspace L satisfies the constant

dimension condition (see definition below) then L-quasiconvexity is equivalent to
the L-weak lower semicontinuity of the functional I.

8.2 Preliminaries and Notations

Let Rn the usual n-dimensional Euclidean space with points x = (x1,x2, . . . ,xn),
xi ∈ R (real numbers). Let Ω be a bounded domain in R

n and Q0 = [0,1]n the unit
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cube inRn. LetMm×n be the set of m×n matrices. For vectors a,b∈R
n and matrices

ξ ,η ∈M
m×n, we define the inner products by

a ·b =
n

∑
j=1

aibi, ξ : η = 〈ξ ,η〉=
m

∑
i=1

n

∑
j=1

ξi jηi j

with the corresponding Euclidean norms denoted both by | · |. For vectors q ∈ R
m,

a∈R
n, we denote by q⊗a the rank-one m×n matrix (qia j) and also define 0= 0m×n

where 0m×n is the m× n matrix having 0 in all entries.
A cube in R

n is a set

Q =

{
x ∈ R

n

∣∣∣∣∣x =
n

∑
i=1

cili

∣∣∣∣∣0 ≤ ci ≤ 1

}

where {l1, l2, . . . , ln} is an orthonormal basis of Rn.
Denoting μ(Ω) or |Ω| the Lebesgue measure of a measurable set Ω we have that

μ(Q) = |Q|= 1. A function u defined on R
n is called Q-periodic if

u(x) = u

(
x+

n

∑
i=1

cili

)

for any x ∈ R
n and any ci ∈ Z.

Let W 1,p(Ω) be the usual Sobolev space of scalar functions on Ω, and define
W 1,p(Ω;Rm) to be the space of vector functions u : Ω → R

m with each component
ui ∈W 1,p(Ω) and we denote by Du the Jacobi matrix of u defined by

Du(x) = (∂ui/∂x j)
j=1,...,n
i=1,...,m.

Let 1 ≤ p < ∞. We make W 1,p(Ω;Rm) a Banach space with the norm

‖u‖W1,p(Ω;Rm) =

(∫

Ω
(|u|p + |Du|p) dx

) 1
p

Let C∞
0 (Ω;Rm) be the set of infinitely differentiable vector functions with compact

support in Ω, and let W 1,p
0 (Ω;Rm) be the closure of C∞

0 (Ω;Rm) in W 1,p(Ω;Rm).

Then W 1,p
0 (Ω;Rm) is itself a Banach space and has an equivalent norm defined by

‖|Du|‖Lp(Ω). We also recall the following version of Sobolev embedding:.

Theorem 8.2.1. If Ω is a bounded Lipschitz domain then the embedding

W 1,p(Ω;Rm)→ Lp(Ω;Rm)

is compact for any 1 ≤ p ≤ ∞.
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By C0(R
n) we denote the closure of continuous functions on R

n with compact
support. The dual of C0(R

n) can be identified with the space M(Rn) of signed
Radon measures with finite mass via the pairing

〈ν, f 〉 =
∫

Rn
f dν

A map ν : E →M(Rn) is called weak* measurable if the functions x → 〈ν(x), f 〉
are measurable for all f ∈C0(R

n). We shall write νx instead of ν(x).
Let f : Ω×R

m →R a function measurable in x such that v→ f (x,v) is continuous
for all x ∈ Ω (a function with this properties is called Carathéodory function). The
following result represents the fundamental theorem of Young measures:.

Theorem 8.2.2 ([5]). Let E ⊂ R
n be a measurable set of finite measure and let

uk : E →R
m be a sequence of measurable functions. Then there exists a subsequence

ukj and a weak* measurable map ν : E →M(Rm) such that the following hold.

(i) νx ≥ 0, ‖νx‖M(Rm) =
∫
Rm dνx ≤ 1, for almost every x ∈ E.

(ii) We have ‖νx‖M(Rm) = 1 if and only if the sequence does not escape to infinity,
i.e., if lim

r→∞
sup

j
|{|ukj |}| ≥ r|= 0.

(iii) Let A ⊂ E measurable and f ∈ C(Rm). If ‖νx‖M(Rm) = 1 for almost every
x ∈ E and if f (ukj ) is relatively compact in L1(A) then

f (ukj )⇀〈νx, f 〉=
∫

Rm
f dνx

(iv) If f is Carathéodory and bounded from below then

lim
n→∞

∫

Ω
f (x,ukj )(x))dx =

∫

Ω
〈νx, f (x,ukj (x))〉dx < ∞

if and only if { f (·,ukj (·))} is equi-integrable.

The measures (νx)x∈Ω are called the Young measures generated by the sequence
{ukj}. The Young measure is said to be homogeneous if there is a Radon measure
ν0 ∈M(Rm) such that νx = ν0 for almost every x ∈ Ω.

Theorem 8.2.3 ([34]). If {uk} is a sequence of measurable functions with associ-
ated Young measure ν = {νx}x∈Ω, then

liminf
k→∞

∫

E
f (x,uk(x))dx ≥

∫

E

∫

Rm
f (x,λ )dνx(λ )dx (8.3)

for every Carathéodory function f , bounded from below, and every measurable
subset E ⊂ Ω.

A Young measure (νx) is called a gradient Young measure if it is generated by
a sequence of gradients. We say that (νx) is a W 1,p gradient Young measure if it is
generated by {Duk} and uk⇀u in W 1,p(Ω,Rm). The following result refers to the
localization of the gradient Young measures.
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Theorem 8.2.4 ([20]). Let (νx) be a gradient Young measure generated by a
sequence of gradients of functions in W 1,p(Ω). Then for almost every a ∈ Ω
there exists a sequence of gradients of functions in W 1,p(Ω) that generates the
homogeneous Young measure (νa).

We also provide the definitions of convexity, rank-one convexity, and quasicon-
vexity.

Definition 8.2.5. Let h : Mm×n → R. We say that h is convex on M
m×n if the

inequality

h(λ ξ +(1−λ )η)≤ λ h(ξ )+ (1−λ )h(η) (8.4)

holds for all 0 < λ < 1 and ξ , η ∈M
m×n .

Note also that h is convex if and only if g(t) = h(ξ + tη) is a convex function of t
on R for all ξ , η ∈M

m×n . For C1 functions h, the convexity condition is equivalent
to the condition

h(η)≥ h(ξ )+Dξ h(ξ ) : (η − ξ ), ∀ η , ξ ∈M
m×n (8.5)

Furthermore, a C1 function h on R is convex if and only if h′ is nondecreasing, or
equivalently, the following condition holds:

(h′(a)− h′(b))(a− b)≥ 0, ∀ a, b ∈R (8.6)

Definition 8.2.6. A function f : Mm×n →R is called rank one convex if

f (λ A+(1−λ )B)≤ λ f (A)+ (1−λ ) f (B)

for all λ ∈ [0,1] and any matrices A and B such that rank (A−B)≤ 1.

Definition 8.2.7. A function f : Rn → R is called separately convex if gi(t) =
f (x1, . . . ,xi−1, t,xi+1, . . . ,xn) is convex in t for all 1 ≤ i ≤ n.

Definition 8.2.8. A function f : Mm×n →R is said to be quasiconvex if

∫

Q0

f (A+Du(x))dx ≥ f (A)

for any A ∈M
m×n and u ∈W 1,∞

0 (Q0;Rm).

If f is quasiconvex then one can show [38] that

f (A) = inf
u∈W1,∞

per (Q0;Rm)

∫

Q0

f (A+Du(x))dx

where W 1,∞
per (Q0;Rm) is the class of periodic functions in W 1,∞(Q0;Rm).
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Let Λ :=Z
N be the unit lattice, i.e. the additive group of points in Z

n with integer
coordinates. We say that f : Rn → R

m is Λ -periodic if

f (x+λ ) = f (x) for all x ∈ R
n, λ ∈ Λ .

A Λ − periodic function f may be identified with a function fT on the n-torus

Tn :=
{
(e2π ix1 ,e2π ix2 , . . . ,e2π ixn) ∈ C

n : (x1,x2, . . . ,xn) ∈ R
n}

through the relation

fT
(
e2π ix1 ,e2π ix2 , . . . ,e2π ixn

)
:= f (x1,x2, . . . ,xn)

The space Lp(Tn) is identified with Lp(Q0) and C(Tn) is the set of Λ -periodic
continuous functions on Q̄0. We recall some results on Fourier transform for
periodic functions. If f ∈ L1(Tn), then its Fourier coefficients are defined as:

f̂ (λ ) :=
∫

Tn

f (x)e−2π ix·λ dx, λ ∈ Λ

Theorem 8.2.9. We have the following:

(i) The trigonometric polynomials

R(x) := ∑
λ∈Λ ′

aλ e−2π ix·λ , Λ ′ all finite subsets of Λ , aλ ∈ C

are dense in C(Tn) and in Lp(Tn) for all 1 ≤ p < ∞.
(ii) If f ∈ L2(Tn) then

f (x) = ∑
λ∈Λ

f̂ (λ )e−2π ix·λ , ∑
λ∈Λ

| f̂ (λ )|2 = ‖ f‖L2

Let f : Ω × R
n ×M

m×n → R. We say f is Carathéodory if f (x,s,ξ ) is
measurable in x for all (s,ξ ) ∈ R

n ×M
m×n and continuous in (s,ξ ) ∈ R

n ×M
m×n

for almost every x ∈ Ω. Define the multiple integral functional I on W 1,p(Ω;Rm) by

I(u) =
∫

Ω
f (x,u(x),Du(x))dx, u ∈W 1,p(Ω;Rm)

If f (x,s,ξ ) is measurable in x ∈ Ω for all (s,ξ ) ∈ R
n ×M

m×n and is C1 in (s,ξ ) ∈
R

n ×M
m×n for almost every x ∈ Ω, we shall use the following notation to denote

the derivatives of f on s and ξ :

Ds f (x,s,ξ ) =
(

∂ f
∂ s1

, . . . ,
∂ f
∂ sn

)
, Dξ f (x,s,ξ ) = (∂ f/∂ξi j)

j=1,...,n
i=1,...,m



80 D. Vasiliu

Definition 8.2.10. A functional I is said to be (sequentially) weakly lower semi-
continuous on W 1,p(Ω;Rm) provided

I(u)≤ liminf
k→∞

I(uk) whenever uk ⇀ u in W 1,p(Ω;Rm). (8.7)

The following important result has been proved by Acerbi and Fusco [2].

Theorem 8.2.11. Assume f is Carathéodory and satisfies

0 ≤ f (x,s,ξ )≤ c1 (|ξ |p + |s|p)+A(x),

where c1 > 0, p ≥ 1, and A ∈ L1(Ω). Then functional I defined above is weakly
lower semicontinuous on W 1,p(Ω;Rm) if and only if f (x,s, ·) is quasiconvex for
almost every x ∈ Ω and all s ∈R

n; i.e., the inequality

f (x,s,ξ ) ≤ 1
|Ω|

∫

Ω
f (x,s,ξ +Dϕ(y))dy

holds for a.e. x ∈ Ω, all s ∈ R
n, ξ ∈M

m×n and all ϕ ∈C∞
0 (Ω;Rm).

8.3 Linear Restrictions L-Rank-One Convexity
and L-Quasiconvexity

An interesting and motivating problem is to study necessary and sufficient conditions
for the weak lower semicontinuity of the operator I restricted only to a class of
functions that satisfy certain linear constraints, i.e., their gradients in the sense of
distributions approach a preset target linear subspace of M

m×n by means of L2

convergence. When the linear subspace satisfies some special condition we prove
that the restricted weak lower semicontinuity is equivalent to a generalized version
of quasiconvexity.

Let L be a linear subspace of Mm×n and P : Mm×n →M
m×n the linear map such

that PA = 0 if and only if A ∈ L, which is actually the orthogonal projection onto
the orthogonal complement of L.

Definition 8.3.1. We say that a function f : L→R is L- rank one convex if for any
λ ∈ [0,1] and A, B ∈ L such that rank (A−B)≤ 1 we have

f (λ A+(1−λ )B)≤ λ f (A)+ (1−λ ) f (B)

Definition 8.3.2. Given a cube Q ⊂ R
n we say that a function f : L→ R is Q−L-

quasiconvex if

f (A)≤ 1
|Q|

∫

Q

f (A+Du(x))dx

for any A ∈ L and every u ∈W 1,∞(Q;Rm), Q-periodic with Du ∈ L.
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Definition 8.3.3. We say that a function f : L→ R is L- quasiconvex if it is Q-L-
quasiconvex for every cube Q,i.e.,

f (A)≤ 1
|Q|

∫

Q

f (A+Du(x))dx

for any cube Q ⊂ R
n, any A ∈ L and every u ∈ W 1,∞(Q;Rm), Q-periodic with

Du∈ L.

Theorem 8.3.4. If a function f : L→R is L-quasiconvex then it is also L-rank one
convex.

Proof. Let λ ∈ [0,1] and A, B two elements in the subspace L such that rank
(A−B) ≤ 1. Let Q0 = [0,1]n a unit cube in R

n. Since rank(A−B)≤ 1 there exist
two vectors a ∈R

m and b ∈ R
n such that

A−B = a⊗ b

and it exists a rotation, a matrix R∈R
n×n such that RRT = In and (RTb)

T
= e1 where

e1 ∈R
n with e1 = (1,0,0, . . . ,0). Thus (A−B)R = a(RTb)

T
= a⊗e1. Let Q = RQ0.

Since f is assumed to be L-quasiconvex we have

∫

Q

f (C+Dϕ(x))dx ≥ f (C) (8.8)

for all C ∈ L and ϕ ∈ W 1,∞(Q,Rm) such that is Q-periodic and Dϕ(x) ∈ L a.e. x.
Let f̃ (A) = f (ART) and also denote Ã = AR and ϕ̃(x) = ϕ(Rx). Notice that ϕ̃ is
Q0-periodic,

Dϕ̃(x) ∈ L̃= {M̃|M̃ = MR,M ∈ L}
almost every x and ϕ̃ ∈W 1,∞(Q0,R

m). By the change of variable under the integral
we obtain ∫

Q0

f̃ (C̃+Dϕ̃(x))dx ≥ f̃ (C̃) (8.9)

for all C̃ ∈ L̃ and all ϕ̃ ∈W 1,∞(Q0,R
m), Q0-periodic and Dϕ̃(x) ∈ L̃. Also we have

Ã− B̃ = a⊗ e1.

Let η : [0,1] → R such that η ′(t) = { (1−λ ) if t ∈ [0,λ ]
−λ if t ∈ [λ ,1]

and let ϕ̃(x) = η(x1)a

where x=(x1,x2, . . . ,xn). Thus we obtain that ϕ̃ is Q0 periodic and we can extend by
this periodicity to R

n and Dϕ̃(x) ∈ L̃ a.e. x. Also notice that ϕ̃ ∈W 1,∞ (Rn,Rm) and

Dϕ̃(x) =
{
(1−λ )(Ã− B̃) if x1 ∈ [0,λ ]
−λ (Ã− B̃) if x1 ∈ [λ ,1]
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Thus we have that
∫

Q0

f̃ (λ Ã+(1−λ )B̃+Dϕ̃(x))dx = λ f̃ (Ã) + (1 − λ ) f̃ (B̃) and
∫

Q0

f̃ (λ Ã+(1−λ )B̃+Dϕ̃(x))dx ≥ f̃ (λ Ã + (1 − λ )B̃) and obtain f̃ (λ Ã + (1 −
λ )B̃)≤ λ f̃ (Ã)+(1−λ ) f̃ (B̃) hence f (λ A+(1−λ )B)≤ λ f (A)+(1−λ ) f (B) 	

Proposition 8.3.5. If the subspace L does not contain rank one matrices and a
function u ∈W 1,2(Q;Rm), Q-periodic has the property that Du(x) ∈ L almost every
x then u = const.

Proof. Assume first Q=Q0. Since L does not contain rank one matrices we have that

min
|a|=1,|λ |=1

|P(a⊗λ )|> 0 (8.10)

and it follows that

|P(a⊗λ )|> c|a||λ | (8.11)

for any a ∈ R
m \ {0m} and λ ∈ R

n \ {0n}. We consider now the Fourier transform
of PDu which is P(û(λ )⊗λ ). Since L does not contain rank one matrices we have
that

P(û(λ )⊗λ ) = 0 (8.12)

for all λ ∈ Λ \ {0n}. Thus, using (8.11) we get that û(λ ) = 0 for all λ ∈ R
n \ {0n}

which proves that u must be a constant.
Now, if Q = RQ0 for a rotation R and u ∈W 1,2(Q;Rm), Q-periodic with Du(x) ∈

L we have that ũ(x) = u(Rx) is in W 1,2(Q0;Rm), Q0-periodic. Also Dũ = Du(Rx)R
so Dũ ∈ L̃ where L̃ = {Ã ∈M

m×n |Ã = AR, A ∈ L}. Since L doesn’t contain rank
one matrices it follows that L̃ has the same property. Thus ũ must be constant and
therefore u is constant as well. 	


8.4 Examples

In this section we are going to discuss particular cases of linear subspaces L and
some aspects related to the restricted rank-one convexity and quasiconvexity.

Example 8.4.1. Consider L =
{(a b

b a

)|a,b ∈ R

}
and let f : L → R a L-rank one

convex function. We show that f must be Q0-L-quasiconvex.
Given u ∈W 1,∞(Ω;Rm), u(x,y) = (u1(x,y),u2(x,y)) with Du ∈ L it implies

∂xu1 = ∂yu2
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Thus u1 and u2 satisfy the wave equation i.e.,

∂xxu1 − ∂yyu1 = 0

∂xxu2 − ∂yyu2 = 0

and we get

u1(x,y) = h(x+ y)− g(x− y)

u2(x,y) = h(x+ y)+ g(x− y)

where h,g : R → R, absolutely continuous. If u is assumed to be Q0 periodic it
follows that h and g are periodic of period 1. Indeed, u1(x,y) = u1(x+1,y) so h(x+
y+ 1)− h(x+ y) = g(x− y)− g(x− y+ 1) for any x,y ∈ R. It implies that g(t)−
g(t +1) = g(0)−g(1) for any t ∈R since if two absolutely continuous functions α
and β verify α(x+ y) = β (x− y) for any x,y it follows that they must be constant.
Thus we get that

g(1)− g(k+ 1) = (g(0)− g(1))k

for any positive integer k. Since g has to be bounded, we get g(0)− g(1) = 0 and
thus g(t)− g(t+ 1) = 0 for any t ∈R.

Let F : R2 → R defined as F(a,b) = f
(a+b a−b

a−b a+b

)
. Since f is L-rank one convex,

we have that F is separately convex in each variable and

f

((
c d
d c

)
+

(
a+ b a− b
a− b a+ b

))
= F

(
c+ d

2
+ a,

c− d
2

+ b

)
(8.13)

Now we prove that f is Q0-L-quasiconvex. Making the substitution ξ = x+ y
and η = x− y we get

∫∫

Q0

f

((
c d
d c

)
+Du

)
dxdy =

1
2

1∫

0

⎛

⎜⎝
ξ∫

−ξ

F

(
c+d

2
+h′(ξ ),

c−d
2

+g′(η)
)

dη

⎞

⎟⎠dξ

+
1
2

2∫

1

⎛

⎜⎝
ξ−2∫

2−ξ

F

(
c+d

2
+h′(ξ ),

c−d
2

+g′(η)
)

dη

⎞

⎟⎠dξ

Now using the fact that F is separately convex and Jenssen’s inequality we get

1∫

0

ξ F

(
h′(ξ ),

g(ξ )− g(−ξ )
2ξ

)
+(1− ξ )F

(
h′(ξ ),

g(−ξ )− g(ξ )
2ξ

)
dξ

≥
1∫

0

F(h′(ξ ),0)dξ ≥ F

(
c+ d

2
,

c− d
2

)
= f

((
c d
d c

))
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and it follows
∫∫

Q0

f

((
c d
d c

)
+Du

)
dxdy ≥ f

((
c d
d c

))

hence f is Q0-L-quasiconvex.

Example 8.4.2. We show that Q0-L-quasiconvexity might not imply L-rank-one
convexity.

Let L =
{(a b

√
2

b a
√

2

)|a,b ∈ R

}
a linear subspace of R

2×2. If u ∈ W 1,∞(Q0;Rm)

satisfies Du ∈ L it follows that

2∂xxu1 − ∂yyu1 = 0 (8.14)

which implies that there exist h,g : R→R such that

u1(x,y) = h
(

x+ y
√

2
)
+ g

(
x− y

√
2
)

(8.15)

Also, u1(x,y) is Q0-periodic so we get, by reasoning as before, that h and g are peri-

odic with periods 1 and
√

2. Since
√

2 is irrational and the set
{

k
√

2+ p|k, p ∈ Z

}

is dense in R it follows that h and g must be constant. Therefore, by definition, every
function is Q0-L-quasiconvex, but not necessarily L-rank one convex (see Example
8.4.1).

Example 8.4.3. We show that L-rank-one convexity does not imply
L-quasiconvexity. The following famous example belongs to Šverák [38].

Let

L=

⎧
⎨

⎩

⎛

⎝
a 0
0 b
c c

⎞

⎠ , a,b,c ∈ R

⎫
⎬

⎭ (8.16)

a linear subspace of M3×2. Also let f : L→R be defined by

f

⎛

⎝

⎛

⎝
a 0
0 b
c c

⎞

⎠

⎞

⎠=−abc (8.17)

We notice that the only rank-one directions in L are given by

⎛

⎝
1 0
0 0
0 0

⎞

⎠ ,

⎛

⎝
0 0
0 1
0 0

⎞

⎠ , and

⎛

⎝
0 0
0 0
1 1

⎞

⎠

and the function f is convex on each rank-one line contained in L . Consider the
function u : R2 → R

3 given by



8 Mathematics Behind Microstructures: A Lead to Generalizations of Convexity 85

u(x,y) =
1

2π

⎛

⎝
sin(2πx)
sin(2πy)

sin(2π(x+ y))

⎞

⎠

We have that u ∈ W 1,∞(Q0;R3) where Q0 = [0,1]2, u is Q0-periodic and Du ∈ L
since

Du(x,y) =

⎛

⎝
cos(2πx) 0

0 cos(2πy)
cos(2π(x+ y)) cos(2π(x+ y))

⎞

⎠

Thus we get
∫∫

Q0

f (Du(x,y))dxdy =−
∫∫

Q0

(cos(2πx))2(cos(2πy))2dxdy < 0 = f (03×2)

(8.18)

which shows that f is not L-quasiconvex.

Now we generalize Example 8.4.3 to the case where some function f : L → R

which is L-rank one convex but not Q0-L-quasiconvex can be extended to the entire
space Mm×n and preserve this property.

Theorem 8.4.4. Let f : L → R be a function which is L-rank one but it is not
L-quasiconvex. Also assume that f is C2 and for some p ≥ 2:

| f (A)| ≤ c(1+ |A|p). (8.19)

|D2 f (A)| ≤ c
(
1+ |A|p−2) (8.20)

for all A ∈ L. Then there exists a function F : Mm×n →R which is rank one convex
but not quasiconvex on M

m×n.

Proof. Since f is not L-quasiconvex it exists a cube Q= RQ0 and u∈W 1,∞(Q;Rm),
Q-periodic with Du(x) ∈ L such that

f (0)>
∫

Q
f (Du(x))dx (8.21)

Let Fε,k : Mm×n → R with

Fε,k(X) = f (PX)+ ε|X |2 + ε|X |p+1+ k|X −PX |2. (8.22)

Here P is the projection onto L . Let A,Y ∈ M
m×n arbitrary such that rankY = 1,

|Y | = 1 and let hε,k = Fε,k(A+ tY ). We are going to prove that for every ε > 0 it
exists k such that Fε,k is L-rank one convex. To show this it is enough to prove that
h
′′
ε,k ≥ 0.
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Thus, now we prove that

d2

dt2 Fε,k(A+ tY)

∣∣∣∣
t=0

≥ 0 (8.23)

for any matrices A,Y ∈M
m×n with rankY = 1, |Y |= 1. We have

|A+ tY |p+1 =
(|A+ tY |2)

p+1
2 =

(|A|2 + 2t < Y,A >+t2)p− 1
2 (8.24)

d
dt
|A+ tY |p+1 = (p+ 1)

(|A|2 + 2t < Y,A >+t2) p+1
2 (< Y,A >+t) (8.25)

Thus we get

d2

dt2 |A+ tY |p+1

∣∣∣∣
t=0

= (p+ 1)(p− 1)|A|p−3 < Y,A >2 +(p+ 1)|A|p−1 (8.26)

and

d2

dt2 Fε,k(A+ tY)

∣∣∣∣
t=0

=
d2

dt2 f (PA+ tPY)

∣∣∣∣
t=0

+ 2ε + ε(p+ 1)|A|p−1

+ ε(p+ 1)(p− 1)|A|p−3 < Y,A >2 + k|Y −PY |2

Now, from (8.19), we have

d2

dt2 f (PA+ tPY)

∣∣∣∣
t=0

≥−c
(
1+ |A|p−2) (8.27)

and

d2

dt2 Fε,k(A+ tY)

∣∣∣∣
t=0

≥−c
(
1+ |A|p−2)+ ε(p+ 1)|A|p−1+ 2ε + 2k|Y −PY |2

(8.28)
Assume by contradiction that it exists ε0 such that for every positive integer k we
get Ak, Y k satisfying

0 >
d2

dt2 Fε0,k

(
Ak + tYk

)∣∣∣∣
t=0

(8.29)

From (8.28) it follows that Ak is bounded and by extracting a subsequence we have
Ak → Ā and Y k → Ȳ = PȲ as k → ∞. Thus, passing to the limit in (8.28),

− ε >
d2

dt2 f (Ā+ tȲ)

∣∣∣∣
t=0

(8.30)

a contradiction with the fact that f is L-rank one convex.
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Now we can also choose ε small such that

Fε,k(0)>
∫

Q
Fε,k(Du(x))dx (8.31)

where u is given in (2.14). Hence Fε,k is not L-quasiconvex. 	


8.5 The Constant Dimension Condition

Let λ ∈ R
n and Rλ

L = {w ∈ R
m|w⊗λ ∈ L}. We notice that Rλ

L is a linear subspace
of Rm.

Definition 8.5.1. We say that the subspace L satisfies the constant dimension
condition if the related subspace Rλ

L has the same dimension for all λ ∈ R
n \ {0}.

If L satisfies the constant dimension condition we shall prove the equivalence
between Q0-L-quasiconvexity and the weak lower semicontinuity of the functional

IΩ(u) =
∫

Ω
f (Du)dx

along sequences satisfying the linear restriction PDuk(x)→ 0 almost every x.

Remark 8.5.2. If m= n= 2 andL is the linear subspace of 2×2 symmetric matrices
then the dimension of Rλ

L is constantly 1 for all λ ∈ R
2 \ {02}.

Proof. We have that L=
{(a b

b c

)| a,b,c ∈ R

}
and

Rλ
L =

{
w = (w1,w2) ∈ R

2| w1λ2 = w2λ1
}

Clearly the dimension of Rλ
L is 1 for any λ ∈ R

2 \ {02} 	

Lemma 8.5.3. If L satisfies the constant dimension condition there exists γ > 0
such that for any a ∈ (Rλ

L)
⊥ and λ ∈ R

n \ {0} we have

|P(λ ⊗ a)| ≥ γ|λ ⊗ a| (8.32)

Proof. Assume by contradiction that

min
|λ |=1,|a|=1

|P(λ ⊗ a)|= 0 (8.33)

Then there exists a minimizing sequence λ j → λ̄ and a j → ā. Let k = dimRλ
L. For

ε small enough and any λ such that |λ − λ̄ | < ε there exists a set w1(λ ),w2(λ ),
. . . ,wk(λ ) of linearly independent vectors of Rλ

L and lim
λ→λ̄

wi(λ ) = wi(λ̄ ), for all i,



88 D. Vasiliu

1 ≤ i ≤ k. Since a j ∈ (R
λ j
L )⊥, it implies that 〈a j,wi(λ j)〉= 0 for all i, 1 ≤ i ≤ k. We

get 〈ā,wi(λ̄ )〉= 0 so ā ∈ (
Rλ
L
)⊥

. Also, since P(λ̄ ⊗ ā) = 0 it implies ā ∈ Rλ
L. Thus

ā = 0, in contradiction with |ā|= 1. 	

First we shall prove the selection theorem.

Theorem 8.5.4. Let Q a cube in R
n and u ∈W 1,2(Q;Rm) a Q-periodic function. If

the linear subspaceL satisfies the constant dimension condition then for every ε > 0
there exists a selection vε , vε ∈C∞ a Q-periodic function such that Dvε(x) ∈ L a.e.
x ∈ Q and

‖Du−Dvε‖L2(Q) ≤ ‖PDu‖L2(Q) + ε (8.34)

Proof. First we assume that Q = Q0. Let Λ =Z
n be the unit lattice, i.e., the additive

group of points in R
n with integer coordinates. Since u is Q-periodic we can expand

u as a Fourier series
u(x) = ∑

λ∈Λ
û(λ )e2π iλ x

Thus Du(x) = ∑
λ∈Λ

û(λ )⊗λ e2π iλ x. Let v̂(λ ) = PRλ
L

û(λ ), projection of both real part

and imaginary part of û(λ ) onto Rλ
L. By Riesz–Fischer theorem we have that

v(x) = ∑
λ∈Λ

v̂(λ )e2π iλ x (8.35)

is a function in W 1,2(Q), Q-periodic and its gradient belong to L almost every x.
Applying Lemma 8.5.3 for a = û(λ )− v̂(λ ) we get ‖Du−Dv‖2 ≤ ‖PDu‖2.

Now we can consider vε(x) as the real part of ∑
λ∈Λ ′

v̂(λ )e2π iλ x where is Λ ′ is a

finite subset of Λ such that

‖Dvε −Dv‖L2 < ε (8.36)

since the imaginary part of ∑
λ∈Λ ′

v̂(λ )⊗λ e2π iλ x converges to 0m×n as Λ ′ ↗ Λ .

Now if the cube Q is arbitrary then Q = SQ0 for some a∈R
n and a rotation S. Let

L̃ = {Ã ∈M
m×n |Ã = AS, A ∈ L} and P̃ the orthogonal projection onto L̃. Define

ũ : Q0 →R
m by ũ(x) := u(Sx). Also notice that

Rλ
L̃ = RSλ

L

and therefore Rλ
L̃ has constant dimension for any λ ∈R

n. Thus we can select ṽ such
that ṽ ∈C∞(Q0), Q0-periodic and

‖Dũ−Dṽε‖L2(Q0)
≤ ‖P̃Dũ‖L2(Q0)

+ ε (8.37)

For each x ∈ Q there exists a unique x̄ ∈ Q0 such that x = Sx̄. Let v : Q → R
m with

vε(x) = ṽε(ST (x)). We notice that vε satisfies the requirement of the lemma. 	




8 Mathematics Behind Microstructures: A Lead to Generalizations of Convexity 89

8.6 L-Weak Lower Semicontinuity

Let f : Mm×n → R satisfy the growth condition

| f (A)| ≤ c
(
1+ |A|2) (8.38)

for any matrix A ∈M
m×n and consider the integral operator

IΩ(u) =
∫

Ω
f (Du)dx (8.39)

where Ω is open bounded domain with Lipschitz boundary and u ∈W 1,2(Ω;Rm).
In contrast to Example 8.4.2 in Sect. 2.2 we show that under the constant

dimension condition Q0-L-quasiconvexity implies L-rank one convexity.

Theorem 8.6.1. Assume that the linear subspace L satisfies the constant dimension
condition. If a continuous function f : Mm×n → R satisfies the growth condition
(8.38) and is Q0-L-quasiconvex then it is also L-rank one convex.

Proof. Let A,B ∈ L be such that rank(A−B)≤ 1 and λ ∈ [0,1]. For any integer k
there exist Qk

1,Q
k
2 ⊂ Q0, Qk

1 ∩Qk
2 = /0 and ϕk ∈W 1,∞

0 (Q0,R
m) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|μ(Qk
1)−λ | ≤ 1

k
|μ(Qk

2)− (1−λ )| ≤ 1
k

Dϕk(x) =

{
(1−λ )(A−B) if x ∈ Qk

1
−λ (A−B) if x ∈ Qk

2
‖Dϕk‖∞ ≤ const(A,B)

since μ(Q0) = 1 (see [12]). We extend the ϕk to be Q0-periodic on R
n. From these

properties we also have that PDϕk → 0 in L2(Q0). Thus, by Theorem 8.5.4, for any
ε we can find a selection uk,ε ∈W 1,∞(Q0,R

m), Q0-periodic such that Duk,ε ∈ L and

‖Duk,ε −Dϕk‖L2(Q0)
→ 0

as ε → 0 and it follows

liminf
k→∞,ε→0

∫

Q0

f (λ A+(1−λ B)+Duk,ε)dx = liminf
k→∞

∫

Q0

f (λ A+(1−λ B)+Dϕk)dx

= λ f (A)+ (1−λ ) f (B)

Since f is Q0-L-quasiconvex we have

∫

Q0

f (λ A+(1−λ B)+Duk,ε)dx ≥ f (λ A+(1−λ B)) (8.40)
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for any k and ε . Taking liminf over k and ε for the left-hand side of the previous
inequality we obtain

λ f (A)+ (1−λ ) f (B)≥ f (λ A+(1−λ B))

which proves that f is L-rank one convex. 	

Definition 8.6.2. Let f and IΩ be defined as above. We say that the functional IΩ
is L- weakly lower semicontinuous on W 1,2(Ω;Rm) if for any sequence uk⇀u in
W 1,2(Ω;Rm) with ‖PDuk‖L2(Ω) → 0 as k → ∞, we have

IΩ(u)≤ liminf
k→∞

IΩ(uk) (8.41)

Theorem 8.6.3. If the functional IΩ is L-weakly lower semicontinuous then the
functional f is L-quasiconvex.

Proof. Let Q=RQ0, A∈L arbitrary and u∈W 1,∞(Q;Rm), Q-periodic with Du(x)∈
L for almost every x. We show that

∫

Q
f (A+Du(x))dx ≥ f (A) (8.42)

assuming that I is L-weakly lower semicontinuous. For any test function ϕ we have
∫

Q
Du(kx)ϕ(x)dx =

∫

Q0

Du(kRx̃)ϕ(x̃)dx̃

Thus, by Riemann–Lebesgue theorem, we have that

lim
k→∞

∫

Q
Du(kx)ϕ(x)dx =

∫

Q0

Du(Rx̃)ϕ(x̃)dx̃ =
∫

Q
Du(x)dx (8.43)

Let uk(x) =
1
k u(kx)+Ax. We notice that Duk(x) = Du(kx)+A and Duk(x) ∈ L

for any k and almost every x. We have that

Duk
*
⇀A (8.44)

and also
∫

Q
f (A+Du(x))dx = kn

∫

1
k Q

f (A+Du(kx))dx (8.45)

For k sufficiently large there exist pk cubes, Q1,Q2, . . . ,Qpk , which are translates of
1
k Q by multiples of 1

k , mutually disjoint, such that

pk⋃

i=1

Qi ⊂ Ω and μ

(
Ω\

pk⋃

i=1

Qi

)
< εk (8.46)
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where εk → 0 as k → ∞. Thus we also get that pk
kn → μ(Ω) as k → ∞.

Since I is L-weakly lower semicontinuous it follows:

liminf
k→∞

∫

Ω
f (Duk(x))dx ≥ f (A)μ(Ω) (8.47)

Also, from (8.45) we get
∫

Ω
f (Duk(x))dx = pk

∫

1
k Q

f (A+Du(kx))dx+
∫

Ω\⋃pk
i=1 Qi

f (A+Du(kx))dx

=
pk

kn

∫

Q
f (A+Du(x))dx+ εkC

Letting k → ∞ we have μ(Ω)
∫

Q f (A+Du(x))dx ≥ f (A)μ(Ω) and after dividing by
μ(Ω) we obtain what we had to prove. 	


Next we show under the constant dimension condition the L-quasiconvexity is
always sufficient for the L-weak lower semicontinuity.

Theorem 8.6.4. If the linear subspace L satisfies the constant dimension condition
and if the function f is bounded from below, satisfies the growth condition (8.38),
and is Q0-L-quasiconvex then functional IΩ is L-weakly lower semicontinuous on
W 1,2(Ω;Rm).

Proof. Let uk ∈ W 1,2(Ω,Rm) such that uk⇀u in W 1,2 and PDuk → 0 in L2.
We assume that for almost every x, Duk generates a parametrized Young measure
(νx)x∈Ω. Then

Du(x) =
∫

Mm×n

λ dνx(λ )

By Theorem 8.2.3 we also have that

liminf
k

∫

Ω

f (Duk(x))dx ≥
∫

Ω

∫

Mm×n

f (λ )dνx(λ )dx (8.48)

For our purpose it would be sufficient to show

∫

Ω

∫

Mm×n
f (λ )dνx(λ )dx ≥

∫

Ω
f (Du(x))dx (8.49)

Now we actually prove

∫

Mm×n

f (λ )dνa(λ )≥ f (
∫

Mm×n

λ dνa(λ )) = f (Du(a)) (8.50)

for almost every a ∈ Ω.
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By Theorem 8.2.3 we have that νa is also a gradient Young measure for almost
every a ∈ Ω. Consider a cube Q ⊂ Ω such that a ∈ Q. There exists wk ∈ W 1,2(Q)
such that Dwk generates νa and wk → w̄ in L2, by the Sobolev embedding. Also we
get that Dwk ⇀Du(a) = Dw̄ and by the fundamental theorem of Young measures
PDwk → 0 in L2(Q).

Let ϕ j ∈C∞
0 (Q) such that ϕ j ↗ 1 and vk, j = ϕ j(wk − w̄). Since wk → w̄ in L2 for

each j there exists k j such that

‖Dϕ j ⊗ (wkj − w̄)‖L2(Q) <
1
j

Thus we can select a subsequence of vk, j which we can conveniently denote by vk

and we have vk ∈W 1,2
0 (Q) and

‖Dvk −D(wk − w̄)‖L2(Q) → 0 (8.51)

By using Theorem 8.5.4, we can select ṽk ∈ C∞(Q), Q-periodic such that ‖Dṽk −
Dvk‖L2(Q) → 0 in L2(Q) and Dṽk(x) ∈ L almost every x. So we have

liminf
k

∫

Q

f (Du(a)+D(wk(x)− w̄(x))dx = liminf
k

∫

Q

f (Du(a)+Dṽk(x))dx

Also since f is L-quasiconvex

∫

Q

f (Du(a)+Dṽk(x))≥ f (Du(a))dx

Thus it follows that

liminf
k

∫

Ω

f (Du(a)+D(wk(x)− w̄(x))dx =
∫

Mm×n
f (λ )dνa(λ )≥ f (Du(a))

This completes the proof. 	


8.7 Particular Case Without the Constant
Dimension Condition

Consider the linear subspace L=
{(a 0

0 b

)|a,b ∈ R

}
. We notice that the subspace

Rλ
L =

{
w ∈ R

2|w⊗λ ∈ L}
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does not have constant dimension for all λ ∈ R
2 \ {0}. Therefore this space L does

not satisfy the constant dimension condition defined above.
Let f : M2×2 →R be a C1 function satisfying

0 ≤ f (ξ )≤ c
(
1+ |ξ |2) (8.52)

|D f (ξ )| ≤ c(1+ |ξ |) (8.53)

Also, as above, define

IΩ(u) =
∫

Ω
f (Du)dx (8.54)

Theorem 8.7.1. If f : M2×2 → R satisfies (8.52) and (8.53) and is L-rank one
convex then IΩ is L-weakly lower semicontinuous on W 1,2(Ω;R2).

The following result by Müller is going to be essential in the course of the proof.

Theorem 8.7.2 ([30]). Let f :R2 →R be a separately convex function that satisfies

0 ≤ f (ξ )≤C
(
1+ |ξ |2)

Let Ω ⊂ R
2 be open and suppose that

uk⇀u, vk ⇀v inL2
loc(Ω) (8.55)

∂yuk → ∂yu, ∂xvk → ∂xv, inH−1
loc (Ω) (8.56)

Then we have

liminf
k→∞

∫

Ω
f (uk,vk)dz ≥

∫

Ω
f (u,v)dz (8.57)

Now we are going to prove Theorem 8.7.1.

Proof. Let uk ∈ W 1,2(Ω;R2) with uk⇀u and PDuk → 0 almost everywhere. Thus
we have that ∂yu1

k → 0 and ∂xu2
k → 0 so ∂x(∂yu1

k)→ 0 and ∂y(∂xu2
k)→ 0 in H−1(Ω).

Let F : L → R given by F(a,b) = f
((a 0

0 b

))
. Since f is L-rank one convex

it follows that F is separately convex and satisfies the growth condition from
Theorem 8.7.2. From (8.52) and (8.53) we also have that

| f (ξ )− f (η)| ≤ c(1+ |ξ |+ |η |)(ξ −η) (8.58)

By using this inequality with ξ = Duk and η =
(∂xu1

k 0

0 ∂yu2
k

)
we get

liminf
k→∞

∫

Ω
f (Duk)dz = liminf

k→∞

∫

Ω
f

((
∂xu1

k 0

0 ∂yu2
k

))
dz (8.59)
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From Theorem 8.7.2 we obtain

F(∂xu1,∂yu2)≤ liminf
k→∞

∫

Ω
F
(
∂xu1

k,∂yu2
k

)
dz (8.60)

and since ∂yu1 = 0 and ∂xu2 = 0 we finally get

f (Du)≤ liminf
k→∞

∫

Ω
f (Duk)dz 	


Remark 8.7.3. From Theorems 8.7.1 and 8.7.2 we get that for this particular case
of subspace L, every L-rank one convex function is L-quasiconvex but it may very
difficult to prove this directly.
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31. Müller, S., Šverák, V.: Attainment results for the two-well problem by convex integration. In:
Jost, J. (ed.) Geometric Analysis and the Calculus of Variations, pp 239–251. Internat. Press,
Cambridge, MA (1996)

32. Murat, F.: A survey on compensated compactness. In: Contributions to modern calculus of
variations (Bologna, 1985), 145–183, Putman Res. Notes Math. Ser., 148, Longman Sci. Tech.,
Harlow (1987)

33. Palombaro, M., Smyshlyaev, V.P.: Relaxation of three solenoidal wells and characterization of
extremal three-phase H-measures. Arch. Ration. Mech. Anal. 194(3), 775–722 (2009)

34. Pedregal, P.: Parameterized Measures and Variational Principles. Birkhäuser, Besel (1997)
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Chapter 9
Tool Support for Efficient Programming
of Graphics Processing Units

Kostadin Damevski

Abstract Graphics Processing Units (GPU) have established themselves as
effective platforms for high-performance computing. Utilizing the power of these
devices usually requires significant changes to existing codes or the development of
a completely new solution. In this paper, we survey approaches that we believe are
the most promising in reducing the complexity of programming or porting codes
to GPUs. We also focus our presentation on our refactoring tool developed for this
purpose, called ExtractKernel, which transforms existing C loops into code that can
execute on the GPU.

Keywords Programming • Graphics Processing Units

9.1 Introduction

Graphics Processing Units (GPUs) are an emerging hardware platform for achieving
high performance in a large number of applications. GPUs outperform conventional
CPUs by one or two orders of magnitude in many computationally intensive tasks,
due to their large number of simple computational cores (448 cores in NVIDIA’s
Tesla C2070 GPU) and lower memory latency. These devices are programmed in a
data parallel fashion and require the presence of a CPU to manage memory alloca-
tion and transfer. Since CPUs continue to achieve higher performance than GPUs
for serial tasks, CPUs and GPUs are commonly coupled as a hybrid computational
platform that represents the cutting edge in high-performance computing.
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A number of novel uses have recently been proposed for such hybrid computing
platforms, addressing problems in virus protection, networking, image processing
and scientific computing [4, 5, 7]. New programming models targeting GPUs,
such as NVIDIA’s Compute Unified Device Architecture (CUDA) and the Kronos
Group’s Open Compute Language (OpenCL), closely followed the emergence of
these devices and are part of the reason for their success. However, at present,
these programming models greatly lag in programmer productivity compared to
mainstream programming approaches, forcing programmers to be concerned with a
number of low level details, such as memory allocation and transfer between CPU
and GPU.

In the scientific and high-performance computing domains, porting to new
platforms, such as GPUs, has been shown to be one of the largest barriers to high
programmer productivity. Several studies of programmers cite the difficulty and
time overhead in porting scientific code to the latest class of supercomputers [1,3,9],
time that could have been spent in developing new functionality and speeding the
path to new scientific discoveries in a number of disciplines. In this paper, we
examine the software engineering tool support available for constructing efficient
GPU code, while reducing the programming time invested in this task. We survey
a number of existing approaches, including a code refactoring approach, which was
introduced by this paper’s author and his collaborators.

Section 9.2 provides an overview of the task of programming GPUs and an
intuition of the task’s complexity. A survey of the tool support for programming
GPUs is given in Sect. 9.3, including a description of the EXTRACT KERNEL

refactoring, which was created by this paper’s author. We limit our discussion only
to programming tools and purposefully leave out discussion of tools that support
other related tasks, such as debugging, testing, and profiling. Section 9.4 concludes
the paper.

9.2 Programming Graphics Processing Units

In this section, we outline the complexity of writing GPU code and in porting
existing code to use these devices. To show this, we use a simple example that
computes the AXPY (Alpha X Plus Y), αx + y, operation on two vectors of
equivalent size N, x, and y (see Fig. 9.1). The example is written in NVIDIA’s
CUDA, which is currently the most common way of programming GPUs, and is
also relatively similar to its alternative, OpenCL.

CUDA introduces a minor extension of the C language and a set of libraries
exposed through conventional API calls. To a CUDA programmer, a program
consists of two parts: one that executes on the CPU (or host) and one that executes
on the GPU (or device). The GPU part of the code consists mainly of data-parallel
functions, called kernels. To use the GPU, CUDA code follows the following
workflow:
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1 #define N 1000
2

3 int main()
4 {
5 float x[N], y[N], a;
6

7 for(int i=0; i < N; i++)
8 {
9 y[i] = a*x[i] + y[i];

10 }
11 }

Fig. 9.1 AXPY serial code

1. Allocate and copy necessary data into the GPU memory (host).
2. Specify the number of threads and launch the kernel (host).
3. Execute the kernel function, placing the results in globally accessible memory

(device).
4. Copy results back to the CPU memory (host).
5. Free memory on the GPU (host).

Figure 9.2 contains the CUDA code for the AXPY operation. Lines 3–10 contain
the CUDA parallel kernel, which is launched with one thread per vector element.
The transfer of data to the GPU memory is performed by lines 16–23, and the
inverse operation is in lines 29–34 where this memory is also deallocated. In CUDA,
threads are organized in thread blocks, and lines 25 and 26 calculate the number of
blocks based on the assumption that the architecture supports 256 threads per block.
Line 27 invokes the gpu axpy CUDA kernel, passing pointers to the data in GPU
memory and specifying the number of threads and blocks. The code to determine
whether there was an error in the kernel execution is omitted here for simplicity. The
memory transfer functions: cudaMalloc, cudaMemcpy, and cudaFree follow
the structure and semantics of similar functions in the standard C library.

Within the CUDA kernel code, lines 6 and 7 calculate a unique thread identifier
using several built-in variables that were set by the kernel invocation: blockIdx,
blockDim, and threadIdx. These correspond to the index of the thread block,
the number of thread blocks, and the thread index within the block. Line 9 performs
the AXPY calculation, where each thread performs the multiplication and addition
for the array element corresponding to its thread identifier.

9.3 Tool Support for Programming GPUs

Matlab is a programming and rapid prototyping environment that has a broad
scientific user community, which is capable, in a limited way, of using GPUs to
accelerate computation. Matlab’s use of GPUs comes in two varieties: (1) via a
small set of predefined Matlab native functions that can execute on special GPU
arrays and (2) by providing the means to call CUDA functions directly from Matlab.
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1 #define N 1000
2

3 __global__ void gpu_axpy(float a, float *x,
4 float *y)
5 {
6 int idx = blockIdx.x * blockDim.x +
7 threadIdx.x;
8 if(idx < N)
9 y[idx] = a * x[idx] + y[idx];

10 }
11

12 int main()
13 {
14 float x[N], y[N], a;
15

16 float *x_d;
17 cudaMalloc((void **) &x_d, sizeof(float)*N);
18 cudaMemcpy(x_d, x, sizeof(float)*N,
19 cudaMemcpyHostToDevice);
20 float *y_d;
21 cudaMalloc((void **) &y_d, sizeof(float)*N);
22 cudaMemcpy(y_d, y, sizeof(float)*N,
23 cudaMemcpyHostToDevice);
24

25 int nThreads = 256;
26 int nBlocks = N / numThreads + 1;
27 gpu_axpy<<<nBlocks,nThreads>>>(a, x_d, y_d);
28

29 cudaMemcpy(x, x_d, sizeof(float)*N,
30 cudaMemcpyDeviceToHost);
31 cudaFree(x_d);
32 cudaMemcpy(y, y_d, sizeof(float)*N,
33 cudaMemcpyDeviceToHost);
34 cudaFree(y_d);
35 }

Fig. 9.2 AXPY kernel in
CUDA.

The Matlab native functions that can operate on GPUs are very few in number and
since they have to be somewhat generically written they are unlikely to achieve
performance on the level of hand-tuned CUDA code. On the other hand, the latter
type of integration between CUDA and Matlab still requires the user to provide a
CUDA implementation of the algorithm.

NVIDIA’s Thrust library [6] provides a high level C++ programming interface
for GPU program development. The interface resembles that of the widely known
C++ standard template library and allows for the programmer to focus on
implementing the core algorithm functionality, while using invocations to Thrust
to perform appropriate memory transfers and thread initiation.

While having the potential to improve productivity in programming hybrid
architectures, the previous approaches do not address legacy code. They are better
suited for writing new applications, and to use these tools requires that existing
code be rewritten, which requires significant additional effort. Other tools, such as
OpenACC [8] and ExtractKernel [2], are targeted towards the porting of existing
code to use the GPU.
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The OpenACC standard, recently introduced by a group of computer software
and hardware vendors, defines a novel method to execute unmodified C or Fortran
code on a GPU. OpenACC provides special directives (or pragmas) that should be
placed around parts of the code intended to execute on the GPU. These directives
describe the number of threads and other configuration parameters, while the
difficult task of adding code to copy CPU to GPU memories and launch GPU threads
is left up to the compiler. The directives are disguised in a way that does not affect
the compilation of the annotated code by compilers that do not support them. Several
compilers supporting this standard are due to be released by the vendors in the first
quarter of 2012.

9.3.1 ExtractKernel Refactoring

Our EXTRACT KERNEL refactoring is more appropriate for development based on
a legacy code base, and it integrates as a plugin to the popular Eclipse integrated
development environment. This refactoring is intended to serve as a rapid initial
step in transitioning a legacy application to use CUDA and efficiently execute on
the GPU.

EXTRACT KERNEL transforms sequential C loops into parallel CUDA code
(i.e., Figs. 9.1 and 9.2). This refactoring does not abstract away CUDA code via
some new programming model. On the contrary, the user of EXTRACT KERNEL

will likely need to modify and maintain the generated CUDA code. Therefore,
the philosophy of this refactoring is to generate code that closely follows the code
style of a human CUDA developer. To accomplish this we attempt to make the
parallel code within the kernel follow the contents of the refactored loop and avoid
transformations that obfuscate the original code’s structure.

The workflow of this refactoring is depicted in Fig. 9.3. The refactoring begins
when the user concurrently selects a loop (e.g., lines 7–10 in Fig. 9.1) and chooses
the “Extract to CUDA Kernel” menu option in the Eclipse environment. The
selected loop is extensively analyzed to determine whether it passes a set of
preconditions specific to this refactoring (box 1 in Fig. 9.3). If the preconditions
are met, an initial screen is presented to the user that enables the selection of the
kernel name and the tuning of GPU platform parameters (e.g., the maximum number
of threads per block) (box 2a). This is followed by a refactoring preview screen
that clearly and in graphical form outlines the modifications to the original code
(box 3). Once the user gives his or her final approval, the refactoring takes place.
All refactorings in Eclipse are easily reversible if the user is not satisfied with the
end result. Also, if a candidate loop fails to pass one of the preconditions, the user
is presented with an informative error message detailing the reason for rejecting
the loop (e.g., the loop contains a data dependence on a specific variable) (box 2b).
Once the user fixes this problem, the refactoring can be reinitiated.
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Fig. 9.3 The workflow of the EXTRACTKERNEL refactoring tool

Before the refactoring is performed, candidate loops are evaluated to determine
whether they satisfy EXTRACT KERNEL’s preconditions. These will only be
satisfied by some of the candidate loops: ones that are parallelizable and conform to
the set of rules imposed by the CUDA programming model. In order to determine
whether a loop is safely parallelizable by EXTRACT KERNEL, an analysis step
that determines whether the loop contains data races is performed. Intuitively, it
requires that the data (i.e., array element) which is written in one iteration the loop
body is not read or written from within another iteration. Extract Kernel uses the
polyhedral model of loop iteration spaces and array accesses, which is commonly
used in modern optimizing compilers, to determine the parallelizability of a loop.
This approach is effective, but is necessarily conservative in that it rejects loops
that may perhaps be safe, but whose analysis is inconclusive in determining their
safe parallelization. Our initial preliminary tests of candidate loops, performed over
large scientific codes, indicate that EXTRACT KERNEL is effective in only about
half of loops. In most of the cases loops were rejected due to violating one of the
preconditions (i.e., not being parallelizable or violating another CUDA requirement)
and not due to a false negative induced by the loop analysis.

9.4 Conclusions

In this paper we survey several programming techniques aimed at harnessing the
computational power of GPUs. These techniques range from low level extensions
of C, such as CUDA or OpenCL, to high-level libraries and languages, such as
Matlab and Thrust to tools like OpenACC and ExtractKernel, which are capable of
adapting existing (or legacy) code to execute on GPUs.
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Chapter 10
Association Studies of Racial Disparities
in Cancer Survivability

Lisa Walls and Weidong Mao

Abstract Cancer has always been and still is very prevalent in today’s society.
It would be very difficult to find a person who has not been affected by some
form of the disease as either diagnosed themselves or a family member or friend
diagnosed. In many families, cancer may seem to be an epidemic, constantly in some
form attacking. As with many diseases, advanced research, alternative treatments,
and many other factors have played major roles in increasing the survival rates of
patients with cancer. In this study, we analyze different types of cancer such as
breast, colon rectal, and respiratory with important attributes of patients such as age,
sex, tumor size, year of treatment, and year of survival. Our results show that there
is disparity between White Americans and Black Americans in cancer survivability.
This can assist in predicting survivability rates and treatment of future patients.

Keywords Disparity • Association • Cancer • Survivability

10.1 Introduction

Cancer refers to any one of a large number of diseases characterized by the
development of abnormal cells that divide uncontrollably and have the ability to
infiltrate and destroy normal body tissue. Cancer also has the ability to spread
throughout your body. Cancer is the second leading cause of death in the United
States. But survival rates are improving for many types of cancer, thanks to
improvements in cancer screening and cancer treatment [1].
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It is difficult to find a person who has not been affected by cancer as either a
victim or as a family member or friend of someone diagnosed. Often times we
ponder many of the same thoughts as others. Many of these questions include:

– Is cancer hereditary or genetically linked to a family?
– How can I prevent or reduce the risk of getting cancer?
– Are there factors or circumstances in my lifestyle that will increase my chance

of getting cancer?
– If I get cancer, what is my chance of survival and how can I beat the odds and

increase my survival rate?

Studies have shown that in certain types of cancer there may be genetic links that
when researched further have been found as a common link throughout families
with similar diagnosis. Since we cannot change our genetic makeup, many times we
are faced with dealing with many of the diseases and medical conditions that have
attacked our family members throughout decades.

Cancer survival rates or survival statistics tell you the percentage of people who
survive a certain type of cancer for a specific amount of time. Cancer statistics often
use an overall five-year survival rate. For instance, the overall five-year survival rate
for bladder cancer is 80%. That means that of all people diagnosed with bladder
cancer, 80 of every 100 were living five years after diagnosis. Conversely, 20 out
of every 100 died within five years of a bladder cancer diagnosis. Cancer survival
rates are based on research that comes from information gathered on hundreds or
thousands of people with a specific cancer. An overall survival rate includes people
of all ages and health conditions who have been diagnosed with cancer, including
those diagnosed very early and those diagnosed very late [2].

With the vast amount of data now being collected for patients diagnosed with
diseases such as cancer, we would think that somewhere in the demographic
or clinical data or combination thereof, there exist certain attributes that can be
identified to assist in the prediction of survivability. If a set of attributes such as
age, treatment type (i.e., surgery, radiation, chemotherapy, combination treatments,
no surgery, etc.) can be determined that will identify the characteristics of patients
with long survival, patients and doctors can use these findings to determine the plan
of treatment with the best possible outcome. Association studies is the process of
analyzing data from different perspectives to determine if correlations or patterns
exist among a number of attributes that identify the subject. Data mining tools are
able to handle large volumes of data, efficiently finding associations, patterns, and
relationships that can show historical as well as future trends best on the data mining
algorithm used.

Statistics shows certain cancers are more aggressive and invasive in African
Americans versus White Americans. As mentioned in the Cancer Health Disparities
report, some key points that attribute to mortality rates between Blacks and Whites
are low socioeconomic status (SES). SES is most often based on a person’s income,
education level, occupation, and other factors, such as social status in the community
and where he or she lives. Studies have found that SES, more than race or ethnicity,
predicts the likelihood of an individual’s or a group’s access to education, certain
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occupations, health insurance, and living conditions—including conditions where
exposure to environmental toxins is most common—all of which are associated
with the risk of developing and surviving cancer. SES, in particular, appears to play
a major role in influencing the prevalence of behavioral risk factors for cancer (e.g.,
tobacco smoking, physical inactivity, obesity, excessive alcohol intake, and health
status), as well as in following cancer screening recommendations. Research also
shows that individuals from medically underserved populations are more likely to be
diagnosed with late-stage diseases that might have been treated more effectively or
cured if diagnosed earlier. Financial, physical, and cultural beliefs are also barriers
that prevent individuals or groups from obtaining effective health care [3].

Overall, studies show that race is a major contributor in cancer incidence as well
as the increase in deaths from the disease based on race. In this paper we analyze
data from breast, colon rectal, and respiratory cancer patients. With the assistance
of Oracle Data Miner Software, the data are mined using the association rule to
discover the race disparity in cancer survivability, specifically the commonalities of
the longest survivors such as surgery/non-surgery, radiation, tumor size, race, sex
between African Americans versus White Americans. This can assist in predicting
survivability rates and treatment of future patients.

10.2 Methods

The dataset we use in our study comes from Surveillance Epidemiology and End
Results (SEER) [4], which includes over 100 attributes that have been collected by
the registry from breast cancer, colon rectal cancer and respiratory (lung) cancer.
Examples of the attributes include age, year diagnosed, race, marital status, stage of
cancer, tumor size, and cause of death.

In Table 10.1 we list attributes that are chosen after the initial screening according
to their importance.

Table 10.2 shows the distribution of African American and White American in
three different types of cancers.

The initial data mining process started with all fields loaded into the table as part
of the process. The thought was that race, sex, age as well as many of the other fields
would be a factor in this prediction. After reviewing the counts per each attribute, it
was determined that some of the data were so disproportioned that it would obscure
the results if included. For example, certain cancers are more prevalent in male
versus female; using sex attribute would only cause more abnormal behavior in the
results.

In order to find the disparity of cancer survivability between African Americans
and White Americans, we analyze the data and try to find the association between
the race with all other attributes such as age, year of survival, year of diagnosis,
tumor size, surgery, and radiation treatment.
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Table 10.1 Attributes and descriptions

Attributes Descriptions

PATIENT-ID Unique identifier for patients
REGISTRY-ID Location submitting the data
RACE Race of patient
SEX Male, female
AGE-AT-DIAG Age at the time of diagnosis
YEAR-DIAG Year of diagnosis
CS-TUMOR-SIZE Size of tumor
NO-SURGERY-REASON Reason surgery was not performed
RX-RADIATION Type of radiation performed, if any
AGE-RECODE 5 year grouping of age from 0 to 85+
RACE-RECODE Groups race into Black, White or Other
STATE-COUNTY-RECODE Location
SURVIVAL-TIME-RECODE Number of months and years patient lived after

diagnosis
SEER-SPEC-DEATH-CLASS Did patient die from cancer or other cause

Table 10.2 Distributions of
patients

White Black Total

Breast 878,350 73,055 951,405
Respiratory 740,683 89,878 830,561
Colon/Rectal 605,229 65,242 670,471
Total 2,224,262 228,175 2,452,437

10.3 Results

Figures 10.1–10.3 show the survival percentage of Black/White diagnosed with
breast cancer, colon/rectal cancer, and respiratory cancer over survival years from
their diagnosis. We found that for breast cancer, in the first 5 years Blacks survive at
a greater percentage than Whites, but at around 5 years and above, Whites survive
longer than Blacks. For colon/rectal cancer, in the earlier years Blacks survive at a
greater percentage than Whites, but Blacks surviving rates decline at a faster rate
than Whites. By year 6, Whites are survival longer than Blacks. For respiratory
cancer, there is no significant difference between Blacks and Whites. The majority
of patients diagnosed, regardless of race, died within the first year.

Figure 10.4 shows the tumor size and percentage of patients with that size tumor
who survived one year or less. We found that Black patients are usually diagnosed
in later stages of their cancer which usually results in lowered survival rates. As
pictured, about 27% of Blacks had tumor sizes of over 50 mm (i.e., size of a tennis
ball, peach, or apple) at the time of diagnosis, while only 16% of Whites had a tumor
over 50 mm. The highest percentage per tumor size for White patients is 11–20 cm
at 27% (i.e., size of a penny, grape, peanut). Also, Fig. 10.4 shows that Blacks with
tumor sizes of 0–20 cm had a lower survivor rate than Whites with the same tumor
size. Fifteen percent of White patients survived with tumor size of 0–10 cm versus
only 10% of Black patients.
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Fig. 10.1 Survival rate of breast cancer over years from diagnosis
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Fig. 10.2 Survival rate of colon/rectal cancer over years from diagnosis
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Fig. 10.3 Survival rate of respiratory cancer over years from diagnosis
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Figures 10.5 and 10.6 show the survival rate of patients for breast cancer with
surgery and tumor sizes. We found that Blacks who had surgery with larger tumors
(50+ mm) survived at a higher support count than Whites (Whites 11%, Blacks
18%). Blacks who had surgery with smaller tumors (0–20) had a lower survival rate
than Whites with tumors of the same size (Whites 13–24%, Blacks 8–17%). NO
SURGERY results for both races were about the same with less than 5% survival
with all tumors except 50+ mm which resulted in a slightly higher (approximately
3%) chance of survival.

Figure 10.7 shows the one year survival rate of patients for breast cancer with
treatments. We found that surgery is performed on Whites more often than Blacks.
There is a approximately a 5% difference in the number of patients receiving surgery
by race. (White 85%, Black 79%). Blacks had a higher survival rate over Whites
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when No Surgery and No Radiation. This could possibly due to biological factors
the make races different from others. (White 12%, Blacks 17%). Though Whites
had a higher percentage of cases where the patient had multiple tumors (Not First
Tumor), Blacks had a lower survival rate. (White 21%–Black 16%). We compare the
five year breast cancer survivor rates with treatment in Fig. 10.8. The survival rates
for Black and White counts are nearly equal for treatment of cancer. In all cases,
whether surgery, no surgery, etc., the percent support remained the same among
races. When compared to the one year survival we found that for five year survivors
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the percentage survived with surgery for all categories increased from as low as 14%
to as high as 40%. Five year survivors with No Surgery barely existed, whereas with
one year survivors the rates were 15–22%.

The association studies for colon/rectal and respiratory cancer show very similar
disparities in Black/White on survivability.

10.4 Conclusions and Future Works

In this paper we analyze the cancer patients, profile which covers about 100
attributes for three different types of cancers. Our study shows there exist disparities
between African Americans and White Americans on cancer survivability. The
survivability varies with factors such as year of survival, survival rates with different
treatments, and tumor sizes. Other factors such as lifestyle habits (i.e., smoke,
drink), living conditions, family medical history, occupation, etc. can possibly play
a major role in determining the diseases we contract as well as our chances for
survival.

Although these data files had hundreds of attributes, many of them were either too
complex for a nonmedical analyst to decipher or spanned over so many categories
that one would have to have great knowledge of the field in order to know how to
appropriately group the data. If the knowledge and data were available, it would be
beneficial to look at cancer stage or lymph node results to see if cancer had already
spread to the other areas of the body. Knowing if the patient lived near a nuclear
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power plant or grew up in a big fog infested city could possibly change the outcome
of the results. Future work would probably be more valuable and better represented
if working alongside a medical expert with knowledge in the area of study.
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Chapter 11
Perfect Hexagons, Elementary Triangles,
and the Center of a Cubic Curve

Raymond R. Fletcher III

Abstract If six points in the plane are labeled with Z6 so that for each k in Z6 the
set of lines Wk = {(a,b) : a+ b = k} concurs at a point Xk then the six points form
a perfect hexagon P. The vertices of P and the perspective points {Xk : k ∈ Z6} lie
on a cubic curve. If we complete P by including all lines which join vertices of P
as well as all intersection points of these lines, we obtain a figure which contains
many perfect hexagons. We develop a theory of cubic curves which explains this
phenomenon.

Keywords Cubic curve • Hexagon • Abelian symmetric quasigroup • Sextatic
points • Flex points

11.1 Introduction

A perfect n-gon P is defined in [1] as a set of n points in the plane labeled with Zn

such that for each k ∈ Zn the set of lines {(a,b) : a+ b = k( mod n)} is concurrent
at a point Xk. The set {Xk : k ∈ Zn} is called the perspective set of P. It is shown also
in [1] that the combined set of vertices and perspective points of P lie on a cubic
curve α which we call the cubic envelope of P. If α is irreducible, then a binary
operation can be defined on the nonsingular points of α by letting a ∗ b equal the
third point on the line (a,b) and on α . This binary operation satisfies the axioms:

1. x∗ y = y∗ x
2. x∗ (x∗ y) = y
3. (x∗ y)∗ (u ∗ v) = (x∗ u)∗ (y∗ v).
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Fig. 11.1 Type IV cubic curve

In [2] an algebra satisfying axioms 1, 2 is called a symmetric quasigroup and an
abelian symmetric quasigroup in case axiom 3 is satisfied also. We shall simply call
an algebra satisfying (1), (2), (3) a thirdpoint groupoid. The element a ∗ a refers
to the point of α , besides a, which lies on the tangent to α at a. A flex point a
of α is a point at which the tangent intersects α with multiplicity 3. At such a
point a ∗ a = a and thus flex points of α correspond to idempotent elements in the
thirdpoint groupoid (α,∗). In [3] it is shown that every nonsingular irreducible cubic
has exactly three flex points in the real projective plane and that these are collinear.

Also in [3] it is shown that every irreducible cubic can be transformed into one
of the following basic types:

I. y2 = x3

II. y2 = x2(x+ 1)
III. y2 = x2(x− 1)
IV. y2 = x(x− 1)(x−w),w > 1
V. y2 = x(x2 + kx+ 1), −2 < k < 2.

We shall refer to any cubic which can be transformed into one of these basic types
as a cubic of that type. In [4] it is shown that cubics of Type I or II cannot serve
as envelopes for perfect polygons, so we will not be concerned with these. Type III
cubics have one singularity at the origin. If we remove this point, we are left with
a curve similar to Type V. We therefore confine our attention to the nonsingular
irreducible cubics (Types IV and V). These are illustrated in Figs. 11.1 and 11.2
respectively. A Type V cubic has one connected component, and a Type IV cubic
has two connected components in the real projective plane. These we shall refer
to as the oval and the bell. The product of any two points on the oval is a point
on the bell, and the bell is a subalgebra of (α,∗). We note that the transformations
required to take a general Type IV or Type V cubic into the indicated basic types
are collineations, so any theorem involving collinearity of points or concurrence of
lines, if proved for the basic type, will remain true for all curves transformable into
that type.
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Fig. 11.2 Type V cubic curve

If P is a perfect polygon, then the completion of P, (Ω(P)) denotes the plane
figure consisting of the vertices of P, the lines joining these vertices, and the points
of intersection of these lines. If P = (0,1,2, . . .,n− 1) and s, t, r are fixed elements
of Zn with r, t �= s, 0, we define a cyclic derivative E = (E0,E1, . . .,En−1) of P by
setting Ek = (k,k + s)◦(k+ t,k+ r) for k ∈ Zn. Thus a cyclic derivative of P is an
n-gon whose vertices lie in Ω(P). If P is a perfect hexagon, we will show that every
cyclic derivative of P is also a perfect hexagon. There are 21 cyclic derivatives of a
perfect hexagon. Some of these can be easily proved perfect using the Theorems
of Desargues or Pappus and others are quite difficult to prove in this way, but
can be handled with analytic arguments, i.e., with appropriate transformations and
coordinatizations. In this chapter we develop some properties intrinsic to irreducible
cubic curves and use these to prove that the cyclic derivatives as well as many other
hexagons in Ω(P) are perfect.

We shall refer to the odd subscripted perspective points of a perfect hexagon P
as the major perspective points and the even subscripted perspective points as the
minor perspective points of P. Three lines meet at a major perspective point and
only two (not counting tangents) meet at a minor perspective point of P. Thus, to
prove a hexagon is perfect it suffices to demonstrate the required concurrences at the
major perspective points. We shall use the notation (a,b) to indicate the line joining
points a,b; (a,b)◦(c,d) to denote the intersection of lines (a,b) and (c,d) in the
real projective plane. Also we use the notation [a,b,c] as shorthand for the phrase
“points a,b and c are collinear” or simply to indicate the line with points a,b,c.

11.2 The Meridians and Center of a Cubic Curve

Let α be a Type IV cubic curve with flex points e, f ,g. There are two points A,B on
the oval such that A∗A = B∗B = f , two points C,D on the oval such that C ∗C =
D∗D = e and two points E,F on the oval such that E ∗E = F ∗F = g. In [5] these
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Fig. 11.3 Perfect hexagon formed by the six sextatic points

points are called the sextatic points of α . We denote the lines (A,B), (C,D), and
(E,F) by Lf , Le, and Lg, respectively, and call these the meridians of α .

Theorem 11.2.1. The six points A, B, C, D, E, F form a perfect hexagon P with
cubic envelope α . Moreover, the diagonals (A, B), (C, D), (E, F) of P are concurrent.

Proof. Consider: ( f ∗C)∗ ( f ∗C) = ( f ∗ f )∗ (C∗C) = f ∗e= g. It must then be that
f ∗C ∈ {E,F}. Relabeling if necessary, we may suppose that f ∗C = E . Similarly
( f ∗D)∗ ( f ∗D) = g, and we must then have f ∗D = F . Consider (A∗ e)∗ (A∗ e) =
(A ∗A) ∗ (e ∗ e) = f ∗ e = g, and (B ∗ e) ∗ (B ∗ e) = (B ∗B) ∗ (e ∗ e) = f ∗ e = g. So
one of {A∗ e,B∗ e} must equal E and the other must equal F. We may suppose that
A∗ e = F and B∗ e = E as in Fig. 11.3.

Consider A∗C = (e∗F)∗ ( f ∗E) = (e∗ f )∗ (E ∗F) = g ∗(E ∗F) = (g∗g)∗ (E ∗
F)= (g∗E)∗(g∗F)=E ∗F . Also A∗C=(e∗F)∗( f ∗E)= (e∗E)∗( f ∗F)=B∗D.
Thus the three lines (A,C), (E,F), (B,D) concur at a point on the bell. Consider
C ∗F = ( f ∗E)∗ (e∗A) = (e∗E)∗ ( f ∗A) = B∗A. Also D∗E = ( f ∗F)∗ (e∗B) =
(e∗F)∗ ( f ∗B) = A∗B. Thus the lines (A,B), (E,D), (C,F) concur also at a point
on the bell, and similarly the lines (A,E), (C,D), (B,F) concur at a point on the bell.
We have shown that the major perspective points of hexagon P = (A,C,F,B,D,E)
lie on α . To show that the minor perspective points of P also lie on α , consider
A∗D = (e∗F)∗ ( f ∗F) = (e∗ f )∗ (F ∗F) = (e∗ f )∗ (E ∗E) = g∗g = g = g∗g =
(e∗E)∗( f ∗E) =B∗C. Thus g is one of the minor perspective points and it is shown
similarly that the flex points e, f are the remaining minor perspective points of P.

Now let U = A∗E =C∗D = B∗F ;V =C∗F = A∗B = E ∗D, and W = A∗C =
E ∗F = B∗D denote the major perspective points of P. Consider U ∗V = (A∗E)∗
(A∗B)= (A∗A)∗(E ∗B)= f ∗e= g and so we have [U,V,g]. Let Z =(A,B)◦(C,D),
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Fig. 11.4 Meridians and center of a Type V cubic

then triangles (A,E,D), (C,Z,B) are in perspective from [U,V,g] and consequently
the lines (A,C), (E,Z), and (D,B) are concurrent. But then Z must lie on (E,F). 	


We have shown that the meridians of a Type IV cubic curve α are concurrent at a
point Z. We call Z the center of α . A Type V cubic contains no oval so the meridians
for a Type V cubic cannot be defined using the method of Theorem 11.2.1; however
there is an equivalent alternative method which we now present, which can be used
on both types of cubics.

Theorem 11.2.2. Let U,V,W denote the unique nonflex points on the bell of a Type
IV cubic α or a Type V cubic curve β , which square to e,f,g, respectively, and
let R = (V, f )◦(W,g);S = (U,e)◦(V, f ), and T = (U,e)◦(W,g). Then we define the
meridians of β by Le =(U,R),Lf =(V,T ), and Lg =(W,S). These meridians concur
at a point Z which we call the center of β . Moreover, these meridians are the same
as those defined for a Type IV cubic curve in Theorem 11.2.1.

Proof. Consider the points U,V,W defined in the proof of Theorem 11.2.1. We have
W ∗W = (A∗C)∗(D∗B)= (A∗D)∗(C∗B)= g∗g= g, and similarly U ∗U = e and
V ∗V = f . Thus the points U,V,W described in Theorems 11.2.1 and 11.2.2 are the
same. Consider (W ∗V )∗ (W ∗V = (W ∗W )∗ (V ∗V = g∗ f = e. There are only two
elements on β or on the bell of α which square to e, namely {U.e}. If W ∗V =U ,
then we have [W,V,U ], but this is clearly not the case in the standard Type V cubic
and thus cannot occur in any Type V cubic. So we must have W ∗V = e, and similarly
W ∗U = f and U ∗V = g as in Figs. 11.3 and 11.4. Since W ∗V = e, we have the line
[W,V,e], and, referring to Fig. 11.3, triangles (g,R, f ), (B,D,E) are in perspective
from this line. Consequently the lines (g,B), (R,D), ( f ,E) are concurrent, and
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2(b,0)

Fig. 11.5 Coordinatized perfect hexagon

since (g,B)◦( f ,E) =C, we conclude that [R,D,C] and thus R lies on Le. Similarly,
S lies on Lg and T on Lf . Thus the meridians as defined in Theorem 11.2.1 or
Theorem 11.2.2 are the same.

Finally, for the Type V cubic illustrated in Fig. 11.4, let Z = (R,U)◦(V,T ) and
consider triangles (R,S,T ), (U,W,V ). These are in perspective from the flex line
[e, f ,g], with the consequence that lines (R,U), (S,W ), (T,V ) are concurrent. We
then obtain [Z,S,W ] showing that the meridians of a Type V cubic curve must also
be concurrent. 	

Theorem 11.2.3. Let α0 denote the standard Type IV cubic and β0 the standard
Type V cubic curve (see Figs. 11.1 and 11.2). In α0 or β0 the vertical distance from
the x-axis to the flex point f is 1/3 the vertical distance from the x-axis to oblique
meridian Le.

Proof. First consider α0 and let P = (0,1,2,3,4,5) denote the perfect hexagon on
α0 whose long diagonals are formed by the three meridians. See Fig. 11.5. Apply
a horizontal translation to put the center Z of P at the origin and then a horizontal
stretch/compression to put vertices 0, 4 on the vertical line x = 1. Finally apply a
vertical stretch/compression to put these vertices at (1,1) and (1,−1), and let α1

denote the resulting cubic curve. The perspective points X0, X2, X4 represent the flex
points e, f , g, respectively, with X4 = g the point at infinity on vertical lines. The flex
line [e, f ,g] is vertical and meets the x-axis at M and the meridian Le at the point N
in Fig. 11.5. The transformations which carry α0 to α1 do not affect the ratio of MX2

to MN, so it suffices to show that the 1:3 ratio holds in α1. The oblique meridians
Le, Lf of α1 have equations y = x and y = −x, respectively, so we may set the
coordinates of vertices 1, 3 at (−a,a) and (−a,−a), respectively. Vertex 2 must lie
on the x-axis so we give it the coordinates (b,0). By intersecting lines (1, 2), (0, 3)
we obtain X3 = (ab/(2a+b),ab/(2a+b)), and by intersecting line (X3,4) with the
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Fig. 11.6 Transformed Type V cubic curve with meridians

x-axis we obtain (2ab/(2a+ b+ ab),0) as the coordinates of vertex 5. Finally by
intersecting lines (0, 2), (3, 5) we obtain f = X2 = (3b/(2+ b),b/(2+ b)) and thus
MX2 = M f = b/(2+ b) and MN = 3b/(2+ b) = 3(MX2) as stipulated.

Now consider the standard Type V cubic curve β0 and apply a horizontal
translation to move the center Z to the origin. Let U,V,W,R,S,T be the points
defined in Theorem 11.2.2, and apply a horizontal stretch/compression followed
by a vertical stretch/compression to move the points U,V to (−1,1) and (−1,−1),
respectively, as in Fig. 11.6. Let the flex points e, f have coordinates (a,−b) and
(a,b), respectively. By intersecting line (U, f ) with the x-axis we obtain W =
((a+b)/(1−b)). Now intersect line (V, f ) with the vertical line through W to obtain
R = ((a+ b)/(1− b),2b/(1− b)). The flex line [e, f ,g] is vertical and meets the x-
axis at M and the meridian Le = (R,U) at N. By intersecting the flex line with (R,U)
we obtain N = (a,3b) and thus MN = 3b = 3(M f ). 	


11.3 A Collineation Which Restricts to an Automorphism

If e is a flex point of an irreducible cubic curve α , then the mapping ψ : α → α
defined by ψ(x) = e∗ x is easily seen to be an automorphism of α: If x,y are points
on α , then ψ(x ∗ y) = e ∗ (x ∗ y) = (e ∗ e) ∗ (x ∗ y) = (e ∗ x) ∗ (e ∗ y) = ψ(x) ∗ψ(y).
The point e∗ x is the preimage of x under ψ , so ψ is onto, and if ψ(x) = ψ(y), then
e ∗ x = e ∗ y; e ∗ (e ∗ x) = e ∗ (e ∗ y), and thus x = y. So ψ is one–one. If x,y,z are
three collinear points on α , then x ∗ y = z and ψ(x) ∗ψ(y) = ψ(x ∗ y) = ψ(z), and
thus [ψ(x),ψ(y),ψ(z)]. This shows that ψ is also a collineation. In this section we
show that such a mapping can be extended to a collineation of the entire plane.
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Fig. 11.7 φ f is a collineation

Theorem 11.3.1. Let α be an irreducible cubic curve with flex points e,f,g and
corresponding meridians Le,Lf ,Lg. Define a mapping φ f on the plane by y =
φ f (x) = (g,q)◦( f ,x), where q = (e,x)◦Lf . Then (i)φ f is an involution; (ii) φ f is
a collineation; (iii) φ f restricts to an automorphism of α; (iv) the points fixed by φ f

consist of the points on Lf along with the flex point f; (v) if a,b,c,d lie on α and
(a,b)◦(c,d) = x, then φ f (x) = ( f ∗ a, f ∗ b)◦( f ∗ c, f ∗ d); (vi) φ f maps points on Le

to Lg and points on Lg to Le.

Proof. In Figs. 11.7 and 11.8, items (ii), (v) are illustrated on a typical Type(IV)
cubic curve. However, for proving the theorem we transform to the standard
Type(IV) cubic α0 which is symmetrical w.r.t the x-axis. We then apply further
transformations to place the center Z at (0, 0) and the flex points e, f at (1,−1/3)
and (1,1/3), respectively. In accordance with Theorem 11.2.3, the meridians are
then given by Le : y = x;Lf : y =−x, and Lg : y = 0 as in Fig. 11.9. Letting x = (s, t)
be an arbitrary point in the plane, we find that the x-coordinate of q = (e,x)◦Lf is
given by

qx = (s+ 3t)/(3s+ 3t− 2).

Since g is the point at infinity on vertical lines, this is also the x-coordinate of
y = φ f (x). Now intersecting the line ( f ,x) with the vertical line through q we obtain
also the y-coordinate of y, and thus:

φ f (x) = φ f (s, t) = ((s+ 3t)/(3s+ 3t− 2),(s− t)/(3s+ 3t− 2)). (11.1)

In case s+ t = (2/3), the coordinates of φ f (x) are not defined by (11.1) and we take
φ f (x) to be the point at infinity on lines parallel to ( f ,x). Using (11.1) we easily
obtain φ f (φ f (x)) = x, and thus φ f is an involution. Items (iv), (vi) are also easily
proved using (11.1).
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jf(x) =  ((s+3t)/(3s+3t-2),  (s-t)/(3s+3t-2))
jg(jf(x)) =  ((s+3t)/(3s+3t-2),  (t-s)/(3s+3t-2))
jg(x) = (s,-t)
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Fig. 11.9 The mappings ϕ f , φy and ϕe
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We can prove (ii) without coordinates as follows. Let u,v,w be three collinear
points in the plane and let us use the notation φ f (x) = x′. Let h = (v,w)◦(v′,w′);k =
(u,w)◦(u′,w′);q = (e,v)◦Lf ;r = (e,w)◦Lf , and s = (e,u)�Lf , as in Fig. 11.7.
Triangles (g,v′,w′), (e,v,w) are in perspective from f ; thus [q,h,r] and so h lie
on Lf . Triangles (g,w′,u′), (e,w,u) are also in perspective from f, and thus [r,k,s],
with the consequence that k lies on Lf . So k = Lf �(u,w) = Lf �(v,w) = h. We then
have: [h,v′,w′] and [k,u′,w′] = [h,u′,w′]. Combining, we obtain [u′,v′,w′].

To prove (iii), we first show that φ f maps an arbitrary cubic curve to a cubic
curve. If we let φ f (s, t) = (s′, t ′), then since φ f is an involution, φ f (s′, t ′) = (s, t).

Thus s= (s′+3t ′)/M, and t =(s′ −t ′)/M, where M = 3s′+3t ′−2. Now suppose
(s, t) lies on the cubic curve F(x,y) = 0. Then F(s, t) = 0 implies:

F((s′+ 3t ′)/M,(s′ − t ′)/M) = 0.

This is a rational expression in s′, t ′. Multiplying by M3 produces a cubic
polynomial with the same zero set. If we set M = M(x,y) = 3x + 3y − 2, then
(s′, t ′) lies on the cubic curve G(x,y) = M3F((x + 3y)/M, (x− y)/M) = 0. Now
consider the meridial perfect hexagon P = (A,E,D,B,F,C) illustrated in Fig. 11.3.
Since A,B lie on Lf and φ f fixes points on Lf by (iv), we must have that φ f (A) =
A and φ f (B) = B. By (vi) we must have that φ f (E) = C;φ f (C) = E;φ f (D) =
F and φ f (F) = D. Since φ f is a collineation by (ii), we must have φ f (g) =
φ f ((B,C)�(A,D)) = (B,E)�(A,F) = e. Similarly φ f ( f ) = f and φ f (e) = g. Also
φ f (W ) = φ f ((B,D)�(A,C)) = (B,F)�(A,E) = U , and similarly φ f (U) = W and
φ f (V ) = V . Thus the 12 points on α which represent the vertices and perspective
points of the meridial hexagon on α are mapped by φ f to the same set of 12 points
on α . Let α ′ denote the image of α under φ f . We have shown above that α ′ must be
a cubic curve. The 12 points lie on both α , α ′, and ten such points, not to speak of
12, determine a unique cubic, (see [3]), so we must have α = α ′. If x is any point on
α then φ f (x) must lie on α and on the line ( f ,x). Thus φ f (x) = f ∗x. We have shown
in the opening paragraph of this section that such a mapping is an automorphism of
(α,∗).

Item (v) follows immediately from (ii). 	

Let Q f = (g,x)◦Lf ; Qe = ( f ,x)◦Le, and Qg = (e,x)◦Lg, and define mappings:

φ f (x) = (e,Q f )
◦( f ,x),

φe(x) = (g,Qe)
◦(e,x),

φg(x) = ( f ,Qg)
◦(g,x),

Although φ f is defined differently here than in Theorem 11.3.1, it is the same
mapping. This can easily be shown using the transformed and coordinatized set up
used in the proof of Theorem 11.3.1. Properties analogous to those proved for φ f

also hold for φe and φg, and these three mappings generate a group G of collineations
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Fig. 11.10 Group of collineations

of the plane isomorphic to the symmetric group S6. The composition table for G
is given in Fig. 11.10, where ψ = φgφ f and ξ = φ f φg. The coordinates given in
Fig. 11.9 can be used to establish the collinearites needed to prove the table entries.

11.4 Elementary Triangles

The mapping ψ = φgφ f defined in Sect. 11.3 is a composition of two collineations,
and so is itself a collineation of the plane. From the table in Fig. 11.10, it is seen that
ψ3(x) = x. We call (x,ψ(x),ψ2(x)) the elementary triangle determined by the point
x. We will show that the alternate vertices of any perfect hexagon with irreducible
cubic envelope α form an elementary triangle. If a,b,c are three points on α such
that: a∗a= b∗c;b∗b= a∗c, and c∗c= a∗b, then we call (a,b,c) a perfect triangle
on α . If P = (0,1,2,3,4,5) is a perfect hexagon with cubic envelope α , then (0, 2,
4) and (1, 3, 5) are perfect triangles. If a is any point on α then, in [4], it is shown
that there exists a unique contiguous perfect n-gon P on α which has a as a vertex.
(If α is a Type IV cubic, “contiguous” means that all the vertices of P lie together on
the bell, or they all lie together on the oval.) A perfect triangle is simply a perfect 3-
gon and must be contiguous. Thus for any point a on α there exists a unique perfect
triangle on α which contains a.

Theorem 11.4.1. Every perfect triangle on an irreducible cubic curve α is an
elementary triangle.

Proof. Let a be any point on α . We will show that the elementary triangle
(a,ψ(a),ψ2(a)) is a perfect triangle. Let b = ψ(a) and c = ψ2(a). In what
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follows, we use the fact that ψ being the composition φgφ f of two collineations,
which restrict to automorphisms of α , is also a collineation of the plane which
restricts to an automorphism of α . Consider b ∗ c = ψ(a)∗ψ2(a) = ψ(a ∗ψ(a)) =
ψ(a ∗ (g ∗ ( f ∗ a))) = ψ(a) ∗ (ψ(g) ∗ (ψ( f ) ∗ψ(a))) = ψ(a) ∗ ( f ∗ (e ∗ψ(a))) =
(g∗( f ∗a))∗( f ∗(e∗ψ(a))) = ( f ∗( f ∗a))∗(g∗(e∗ψ(a)))= a∗φgφ f ψ(a) = a∗a.
The requirements c ∗ a = b ∗ b and a ∗ b = c ∗ c follow immediately by applying ψ
and ψ2 to the equation b ∗ c = a ∗ a. Thus (a,ψ(a),ψ2(a)) is the unique perfect
triangle containing a. 	

Theorem 11.4.2. Let P be a perfect hexagon with irreducible cubic envelope α .
Then the alternate vertices of P form elementary triangles.

Proof. Let P = (0,1,2,3,4,5). Then 0 ∗ 2 = 4 ∗ 4 = X2; 0 ∗ 4 = 2 ∗ 2 = X4, and
2 ∗ 4 = 0 ∗ 0 = X0, and thus (0, 2, 4) is a perfect triangle. Similarly (1, 3, 5) is a
perfect triangle on α . By Theorem 11.4.1, (0, 2, 4) and (1, 3, 5) are elementary
triangles. 	


Since an elementary triangle is ultimately determined by an irreducible cubic
curve α , we shall refer to such a triangle as α-elementary. Two α-elementary
triangles are incident if a vertex of one lies on a side of the other. If this is the
case then all three vertices of one lie one each on the three sides of the other.
For, if [x,y,ψ(x)], then since ψ is a collineation, we have [ψ(x),ψ(y),ψ2(x)] and
[ψ2(x),ψ2(y),x].

Theorem 11.4.3. Let α be an irreducible cubic curve; let ψ(x) = x′; and let
(x,x′,x′′), (y,y′,y′′) be any two nonincident α-elementary triangles. Then (x,y,x′,
y′,x′′,y′′) is a perfect hexagon.

Proof. We first transform α as in the proof of Theorem 11.3.1, so that the center Z
of α lies at the origin and the meridians Le, Lf , Lg have equations y = x, y =−x and
y = 0, respectively, as in Fig. 11.11. Let x = (s, t) and y = (u,v). Equation (11.1)
then gives:

φ f (x) = ((s+ 3t)/(3s+ 3t− 2),(s− t)/(3s+ 3t− 2)),

φ f (y) = ((u+ 3v)/(3u+ 3v−2),(u− v)/(3u+3v−2)).

In this set up, φg is simply a reflection across the x-axis, and thus:

x′ = ψ(x) = ((s+ 3t)/(3s+ 3t− 2),−(s− t)/(3s+ 3t− 2)),

y′ = ψ(y) = ((u+ 3v)/(3u+ 3v−2),−(u− v)/(3u+3v−2).

We then obtain:

x′′ = ψ2(x) = ((s− 3t)/(3s− 3t− 2),(s+ t)/(3s− 3t− 2)),

y′′ = ψ2(y) = ((u− 3v)/(3u− 3v−2),(u+ v)/(3u−3v−2).
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Fig. 11.11 Two elementary triangles form a perfect hexagon

Using these coordinates we find that the lines (x,y), (x′,y′′), (x′′,y′) concur at the
point C = (Cx,Cy) where:

Cx =
(

s2u−3t2u− su2 +3t2u2 +6stv−6tuv+3sv2 −3s2v2
)
/M,

Cy =
(

2stu+ tu2 −3stu2 − s2v+3t2v −2suv+3s2uv−3t2uv−3tv2 +3stv2
)
/M,

M = −s2 −3t2 +3s2u+3t2u+u2 −3su2 +6stv−6tuv+3v2 −3sv2.

Now let A = ψ(C). Since ψ is a collineation, [C,x,y] implies [A,x′,y′]; [C,x′,y′′]
implies [A,x′′,y], and [C,x′′,y′] implies [A,x,y′′]. So the lines (x′,y′), (x,y′′), (x′′,y)
concur at A. Similarly the lines (x,y′), (x′,y), (x′′,y′′) concur at B = ψ(A). Thus the
hexagon (x,y,x′,y′,x′′,y′′) is perfect and its major perspective points {A,B,C} form
an elementary triangle. 	


11.5 Cyclic Derivatives and Interlaces

Two typical cyclic derivatives of a perfect hexagon are illustrated in Fig. 11.12. If
the cubic envelope of a perfect n-gon P is irreducible and n > 6, then we do not find
any perfect cyclic derivatives, but for n = 6 we have:

Theorem 11.5.1. Every cyclic derivative of a perfect hexagon is perfect.
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Fig. 11.12 Cyclic derivatives of a perfect hexagon

Proof. Let P = (0,1,2,3,4,5) be a perfect hexagon with irreducible cubic envelope
α and let E = (E0, E1, E2, E3, E4, E5) be a cyclic derivative of P where:

Ek = (k,k+ s)(k+ t,k+ r)

for some fixed s, t, r ∈ Z6 with r, t �= s,0. Triangles (0, 2, 4), (1, 3, 5) are α-
elementary triangles and ψ acts on the vertices of P according to the formula
ψ(x) = x+2(mod6). Thus ψ(E0) = ψ((0,s)◦(t,r)) = (ψ(0),ψ(s))◦(ψ(t),ψ(r)) =
(2,s+2)◦(t +2,r+2) = E2. Similarly ψ(E2) = E4 and ψ(E4) = E0. Thus (E0, E2,
E4) is an elementary triangle. Similarly (E1, E3, E5) is an α-elementary triangle,
and by Theorem 11.4.3, E is a perfect hexagon. 	

Theorem 11.5.2. Let P = (0,1,2,3,4,5) be a perfect hexagon with irreducible cu-
bic envelope α , and let E =(E0,E1,E2,E3,E4,E5) and D=(D0,D1,D2,D3,D4,D5)
be two cyclic derivatives of P. Then any two nonincident triangles from among
{(E0,E2,E4),(E1,E3,E5),(D0,D2,D4),(D1,D3,D5)} can be interlaced to form a
perfect hexagon.
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Fig. 11.13 (E1, M2, E3, M3, E5, M5) is a perfect hexagen

Proof. As we see in the proof of Theorem 11.5.1, each of the four triangles:

(E0,E2,E4),(E1,E3,E5),(D0,D2,D4),(D1,D3,D5)

is α-elementary and so by Theorem 11.4.3 , any nonincident pair will interlace to
form a perfect hexagon. 	


In Fig. 11.13 we illustrate a perfect hexagon obtained by interlacing alternate
vertices from the two cyclic derivatives in Fig. 11.12. If the cubic envelope α of a
perfect polygon P is reducible, it is shown in [1] that the perspective points of P lie
on a line and the vertices on a conic. In [2] it is shown that every cyclic derivative
of such a polygon is perfect. As we have seen, this result holds also in case P is a
perfect hexagon with irreducible cubic envelope. We conjecture that if P is a perfect
n-gon with n > 6, then P has a perfect cyclic derivative iff the cubic envelope of P
is reducible.
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Chapter 12
Convex Quadrics and Their Characterizations
by Means of Plane Sections

Valeriu Soltan

Abstract Ellipses and ellipsoids form a well-established special class of convex
surfaces, primarily due to a wide range of their applications in various mathematical
disciplines. The present survey deals with a natural extension of this class to that of
convex quadrics. It contains a classification of convex quadrics of the Euclidean
space Rn and describes, in terms of plane quadric sections, their various character-
istic properties among all convex hypersurfaces of Rn, possibly unbounded.

Keywords Convex • Hypersurface • Quadratic plane • Section • Ellipsoid •
Ellipse

12.1 Introduction

Various characterizations of solid ellipses and ellipsoids among convex bodes in
the plane and in space became an established topic of convex geometry on the
turn of the twentieth century, with Brunn’s habilitation thesis [9] from 1889 and
Blaschke’s book [7] from 1916 reflecting significant contributions of that period.
Bonnesen and Fenchel [8, § 70] gave an overview on known results in this field
for dimensions two and three, published prior to 1934. Comprehensive surveys on
various characteristic properties of solid ellipsoids in Rn obtained in the second
half of the twentieth century are given by Gruber and Höbinger [13] and Petty [25]
(see also Heil and Martini [14]). These characteristic properties usually involve one
of the following topics: ellipticity or central symmetricity of plane sections of a
convex body; homotheticity of parallel sections of the boundary; planarity of the
sets of midpoints of families of parallel chords; planarity of shadow boundaries
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with respect to illuminations by parallel rays or by rays from single points; polarity
of points and hyperplanes with respect to the boundary; Helmholtz–Lie type results
on the mapping of the boundary of a convex body into itself.

The purpose of this survey is to describe further development of the topic, which
involves quadric plane sections of convex hypersurfaces. The extension to the case
of unbounded convex sets provides various characterizations of a wide class of
convex quadric hypersurfaces.

The main contents of the survey are divided into the following sections:

12.2. Defining convex quadrics
12.3. Classification of convex quadrics
12.4. Quadric sections by two-dimensional planes
12.5. Quadric sections by hyperplanes

This paper is based on a talk given at the interdisciplinary Seminar on Mathe-
matical Sciences and Applications of Virginia State University, and its contents are
accessible to graduate students in mathematics.

12.2 Defining Convex Quadrics

In what follows, by convex solids in the Euclidean space Rn, n ≥ 2, we mean
n-dimensional closed convex sets, distinct from the whole space and, possibly,
unbounded (convex bodies are compact convex solids). As usual, bd K and int K
denote the boundary and the interior of a convex solid K.

A convex hypersurface in Rn is the boundary of a convex solid. This definition
includes a hyperplane (i.e., a plane of dimension n − 1) or a pair of parallel
hyperplanes. A quadric (or a second degree hypersurface) in Rn is the locus of
points x = (ξ1, . . . ,ξn) which satisfy a quadratic equation

F(x)≡
n

∑
i,k=1

aikξiξk + 2
n

∑
i=1

biξi + c = 0, (12.1)

where not all aik are zero.
There are different ways to define convex quadrics.

1. The most restrictive definition says that convex quadric is a convex hypersurface
in Rn which is also a quadric. According to this definition, the convex quadrics
in Rn are n-dimensional ellipsoids and paraboloids, hyperplanes, pairs of parallel
hyperplanes, and all cylinders based on (n− 1)-dimensional convex quadrics of
the same type. This definition is often used in differential geometry.

2. Another way is to define convex quadric as a convex hypersurface in Rn which
is a connected component of a quadric. This definition slightly expands the
family of convex quadrics described in (1) by adding sheets of n-dimensional
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elliptic hyperboloids and cylinders based on sheets of (n−1)-dimensional elliptic
hyperboloids (see, e.g., Berger [5, Proposition 15.4.7]).

3. The definitions above exclude the boundaries of convex elliptic cones from
the family of convex quadrics. The following definition from [30] corrects this
omission.

Definition 12.2.1 ([30]). A convex hypersurface S ⊂ Rn is called convex quadric
provided there is a real quadric Q ⊂ Rn and a connected component U of Rn \Q
such that U is a convex set and S = bdU .

In what follows, we consider convex quadrics in Rn according to Defini-
tion 12.2.1. A classification of convex quadrics is given in Sect. 12.3.

The main topic of this survey deals with plane sections of the boundary of
a convex solid. By an r-dimensional plane in Rn we mean a translate of an
r-dimensional subspace, 0≤ r ≤ n−1. We will say that a plane L properly intersects
a convex solid K ⊂ Rn (equivalently, L properly intersects bdK) provided L meets
both sets bdK and intK.

Lemma 12.2.2. If an r-dimensional plane L ⊂ Rn properly intersects a convex
quadric S ⊂ Rn, then S∩L is a convex quadric in L.

Proof. Let Q ⊂ Rn be a real quadric and U a connected component of Rn \Q such
that U is convex and S = bdU . First, we observe that Q ∩ L is a real quadric in
L. Indeed, choose in Rn a new coordinate system η1, . . . ,ηn, expressed by linear
equations

ξi = ei1η1 + · · ·+ einηn + di, i = 1, . . . ,n, det(ei j) �= 0, (12.2)

such that
L = {(η1, . . . ,ηn) : ηr+1 = · · ·= ηn = 0}.

Using (12.1) and (12.2), we describe Q∩L by a quadratic equation

r

∑
i,k=1

a′ikηiηk + 2
r

∑
i=1

b′iηi + c′ = 0,

where not all scalars a′ik are zero. Because /0 �= S∩L �= L, the set Q∩L is a proper
quadric in L. Finally, since U ∩L is a convex connected component of L \ (Q∩L),
and since S∩L is the relative boundary of U ∩L, the set S∩L is a convex quadric
in L. 	


Sections 12.4 and 12.5 contain various existing results related to the following
question.

Question 12.2.3. Let K ⊂ Rn be a convex solid and F a family of planes of certain
dimension in Rn with the property that each plane L ∈ F properly intersects K and
the set L∩bdK is a convex quadric in L. Describe further conditions on K and F to
ensure that bdK is a convex quadric.
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12.3 Classification of Convex Quadrics

The next theorem from [30] plays a key role in the description of convex quadrics.

Theorem 12.3.1 ([30]). The complement of a real quadric Q ⊂ Rn, n ≥ 2, is the
disjoint union of four or fewer open sets; at least one of these components is convex
if and only if the canonical form of Q is given by one of the equations

a1ξ 2
1 + · · ·+ akξ 2

k = 1, 1 ≤ k ≤ n,

a1ξ 2
1 − a2ξ 2

2 −·· ·− akξ 2
k = 1, 2 ≤ k ≤ n,

a1ξ 2
1 = 0,

a1ξ 2
1 − a2ξ 2

2 −·· ·− akξ 2
k = 0, 2 ≤ k ≤ n,

a1ξ 2
1 + · · ·+ ak−1ξ 2

k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

The proof of Theorem 12.3.1 uses the following considerations. Based on the
standard classifications of quadrics Rn (see, e.g., Berger [5, Sect. 15.3]), we may
suppose that Q has one of the following canonical forms:

Ak : ξ 2
1 + · · ·+ ξ 2

k = 1, 1 ≤ k ≤ n,

Bk,r : ξ 2
1 + · · ·+ ξ 2

k − ξ 2
k+1 −·· ·− ξ 2

r = 1, 1 ≤ k < r ≤ n,

Ck : ξ 2
1 + · · ·+ ξ 2

k = 0, 1 ≤ k ≤ n,

Dk,r : ξ 2
1 + · · ·+ ξ 2

k − ξ 2
k+1 −·· ·− ξ 2

r = 0, 1 ≤ k < r ≤ n,

Ek,r : ξ 2
1 + · · ·+ ξ 2

k − ξ 2
k+1 −·· ·− ξ 2

r−1 = ξr, 1 ≤ k < r ≤ n.

Next, we exclude the trivial cases Q = A1 (when Q is a pair of parallel hyper-
planes) and Q =Ck (when Q is an (n− k)-dimensional subspace). Furthermore, the
proof can be reduced to the case when Q has one of the forms An,Bk,n,Dk,n,Ek,n,
since otherwise Q is a cylinder generated by a lower-dimensional quadric of the
same type.

With this assumption, we express each of the quadrics An, Bk,n, Dk,n, Ek,n as a
rotation set of a respective lower-dimensional quadrics. To describe these rotations,
choose any subspaces L1,L2, and L3 of Rn such that L1 ⊂ L2 ⊂ L3 and

dimL1 = m− 1, dimL2 = m, dimL3 = m+ 1, 2 ≤ m ≤ n− 1.

Let M be the two-dimensional subspace of L3 orthogonal to L1. Given a point y∈ L2,
put My = y+M and denote by z the point of intersection of L1 and My (z is the
orthogonal projection of y on L1). Let Cy be the circumference in My with center z
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and radius ‖y− z‖. We say that a set X ⊂ L3 is the rotation set of a set Y ⊂ L2 about
L1 within L3 provided X = ∪(Cy : y ∈ Y ). A set Z ⊂ Rn is called symmetric about
a subspace N ⊂ Rn if for any point x ∈ Z and its orthogonal projection u on N, the
point 2u− x lies in Z.

In these terms, the following lemmas hold (where 〈e1, . . . ,ek〉 means the span of
vectors e1, . . . ,ek).

Lemma 12.3.2. If Y is a subset of L2 and X is the rotation set of Y about L1 within
L3, then X is symmetric about L2 and each component of X is the rotation set of a
suitable component of Y about L1 within L3.

Lemma 12.3.3. If a set Y ⊂ L2 is symmetric about L1 and X is the rotation set of
Y about L1 within L3, then X is a convex set if and only if Y is a convex set.

Lemma 12.3.4. Within Rn, n ≥ 3, we have

(1) An is the rotation set of An−1 ⊂ 〈e1, . . . ,en−1〉 about 〈e1, . . . ,en−2〉,
(2) Bk,n is the rotation set of Bk,n−1 ⊂ 〈e1, . . . ,en−1〉 about 〈e1, . . . ,en−2〉, 1 ≤ k ≤

n− 2.
(3) Dk,n is the rotation set of Dk,n−1 ⊂ 〈e1, . . . ,en−1〉 about 〈e1, . . . ,en−2〉, 1 ≤ k ≤

n− 2.
(4) Bk,n is the rotation set of Bk−1,n−1 ⊂ 〈e2, . . . ,en〉 about 〈e3, . . . ,en〉, 2 ≤ k ≤

n− 1.
(5) Dk,n is the rotation set of Dk−1,n−1 ⊂ 〈e2, . . . ,en〉 about 〈e3, . . . ,en〉, 2 ≤ k ≤

n− 1.

Finally, starting with quadric curves in R2, Lemmas 12.3.2–12.3.4 are used to
describe recursively the quadrics in Rm+1 which contain convex quadrics, based on
a description of such quadrics in Rm.

The following result from [31] gives additional details about real quadrics with
convex components of the complement. We will say that a quadric Q ⊂ Rn is proper
provided its complement Rn \ Q has two or more connected components, which
happens when either Q is a hyperplane, or both sets

{x ∈ Rn : F(x)> 0} and {x ∈ Rn : F(x)< 0}
are nonempty. Furthermore, a proper quadric Q ⊂ Rn is called locally convex at a
point u ∈ Q if there is an open ball Uρ(u)⊂ Rn with center u and radius ρ > 0 such
that Q∩Uρ(u) is a piece of a convex hypersurface. Similarly, a proper quadric Q ⊂
Rn is called locally supported at u ∈ Q provided there is an open ball Uρ(u) ⊂ Rn

and a hyperplane H ⊂ Rn through u such that Q∩Uρ(u) lies in a closed halfspace
of Rn determined by H.

Theorem 12.3.5 ([31]). For a proper quadric Q ⊂ Rn, n ≥ 2, the following condi-
tions are equivalent:

(1) at least one of connected components of Rn \Q is a convex set.
(2) Q is locally convex at a certain point u ∈ Q.
(3) Q is locally supported at a certain point u ∈ Q.
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There is a connection of conditions (2) and (3) in Theorem 12.3.5 with respective
properties of convex hypersurfaces. Indeed, if S is the boundary of an open
connected set X ⊂ Rn, then S is a convex hypersurface provided X is locally
supported at every point u ∈ S (see Carathéodory [12]). Similarly, S is a convex
hypersurface if X is locally convex at every point u ∈ S (see Nakajima [22] and
Tietze [32]). On the other hand, Theorem 12.3.5 deals with local convexity and
local support of Q at a single point.

Theorem 12.3.1 immediately implies the following classification of convex
quadrics.

Corollary 12.3.6 ([30]). A convex hypersurface S ⊂ Rn, n ≥ 2, is a convex quadric
if and only if S can be described in suitable Cartesian coordinates ξ1, . . . ,ξn by one
of the conditions:

a1ξ 2
1 + · · ·+ akξ 2

k = 1, 1 ≤ k ≤ n,

a1ξ 2
1 − a2ξ 2

2 −·· ·− akξ 2
k = 1, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ 2
1 = 0,

a1ξ 2
1 − a2ξ 2

2 −·· ·− akξ 2
k = 0, ξ1 ≥ 0, 2 ≤ k ≤ n,

a1ξ 2
1 + · · ·+ ak−1ξ 2

k−1 = ξk, 2 ≤ k ≤ n,

where all scalars ai involved are positive.

In particular, convex quadrics in Rn which contain no lines can be expressed in
suitable coordinates by one of the equations

a1ξ 2
1 + · · ·+ anξ 2

n = 1, (ellipsoid)

a1ξ 2
1 − a2ξ 2

2 −·· ·− anξ 2
n = 1, ξ1 ≥ 0, (sheet of elliptic hyperboloid

of two sheets)

a1ξ 2
1 − a2ξ 2

2 −·· ·− anξ 2
n = 0, ξ1 ≥ 0, (sheet of elliptic cone)

a1ξ 2
1 + · · ·+ an−1ξ 2

n−1 = ξn, (elliptic paraboloid)

where all scalars a1, . . . ,an are positive.

A recurrent description of convex quadratics in Rn can be given as follows.

1. Convex quadratic curves in R2 are ellipses, branches of hyperbolas, parabolas,
convex cones, lines, and pairs of parallel lines.

2. Convex quadratic in Rn, n ≥ 3, are ellipsoids, sheets of elliptic hyperboloids of
two sheets, sheets of elliptic cones, elliptic paraboloids, and cylinders based on
convex quadrics in Rn−1.
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12.4 Quadric Sections by Two-Dimensional Planes

The following result was proved by Kubota [19] for n = 3 (see also Auerbach,
Mazur, and Ulam [4]) and by Busemann [11, pp. 91–92] for all n ≥ 3.

Theorem 12.4.1 ([11, 19]). If a convex body K ⊂ Rn, n ≥ 3, has the property that
every two-dimensional plane through a fixed point p ∈ intK intersects the boundary
of K in an ellipse, then bdK is an ellipsoid.

The methods of proofs in [11] and [19] are essentially different. We sketch here
both methods, since their variations are widely used in the proofs of the results listed
below.

Kubota chooses ellipses E1,E2,E3, which are the sections of bdK by three
distinct planes through p containing no common line, and considers a quadric Q
containing E1 ∪E2 ∪E3. Any plane L through p that meets E1 ∪E2 ∪E3 at a set S of
precisely six points determines two quadrics: L∩bdK and L∩Q, both containing S.
Since a planar quadric curve is uniquely determined by any five points with no four
on a line (see, e.g., [23]), we have L∩bdK = L∩Q. Varying L about p, one easily
obtains that bdK = Q.

Busemann uses synthetic methods and geometric transformations of the space
to show that bdK itself is an ellipsoid (although his proof employs projective
transformations of R3, we describe below its affine version). Choose a chord [x,z] of
the convex body K ⊂ R3 which contains p and has maximum possible length. There
are parallel planes Hx and Hz through x and z, respectively, both supporting K (see,
e.g., [27]). Applying a suitable affine transformation, one may assume that [x,z] is
perpendicular to both Hx and Hz. Then every section of bdK by a plane L through
[x,z] is an ellipse symmetric about [x,z]. Let L0 be the plane through p which is
parallel to Hx. It is easy to see that E0 = L0 ∩bdK is an ellipse symmetric about p.
Applying one more affine transformation that keeps [x,z] and L0 and transforms E0

into a circle, we obtain that bdK is an ellipsoid of rotation about [x,z].
The following statement is proved in [28] by using an extension of Busemann’s

method to the case of unbounded convex sets.

Theorem 12.4.2 ([28]). If K ⊂ Rn, n ≥ 3, is a convex solid and p ∈ intK, then
the boundary of K is a convex quadric if and only if all sections of bdK by two-
dimensional planes through p are convex quadric curves.

The next result from [31] sharpens Theorem 12.4.2 by putting restrictions
on the directions of two-dimensional planes through p (see also Montejano and
Morales [20] for the case of a convex body symmetric about p). We recall that the
recession cone of a convex solid K ⊂ Rn is defined by

recK = {y ∈ Rn : x+λ y ∈ K whenever x ∈ K and λ ≥ 0}.
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The set recK is a closed convex cone with apex o, the origin of Rn; furthermore,
recK is distinct from {o} if and only if K is unbounded. The next result is obtained
by using Kubota’s method.

Theorem 12.4.3 ([31]). Let K ⊂Rn, n≥ 3, be a convex solid and p∈ intK. Suppose
l is a line through p such that the one-dimensional subspace l − p does not lie in
recK ∪−recK. For any scalar ε > 0, the following conditions are equivalent:

(1) bdK is a convex quadric.
(2) For every two-dimensional plane L through p which forms with l an angle of

size ε or less, the section L∩bdK is a convex quadric curve.

Kubota’s method also allows further refinement of Theorem 12.4.2. We observe
that if K ⊂ Rn is a closed n-dimensional convex cone with apex p and L is a two-
dimensional plane through p properly intersecting K, then L∩bdK is a convex cone,
which is a convex quadric.

Theorem 12.4.4. Let K ⊂ Rn, n ≥ 3, be a convex solid and p a point in bdK such
that all proper sections of bdK by two-dimensional planes through p are convex
quadric curves. Then either K is a convex cone with apex p or bdK is a convex
quadric.

Proof. We proceed by induction on n(≥ 3). Let n = 3. If K contains a line l and L
is a plane complementary to l, then bdK is a cylindric surface based on the convex
quadric curve L∩bdK. Let K contain no lines. Translating K on the vector −p, we
may suppose that p = o ∈ bdK. Assume that K is not a cone with apex o. Then there
is a line l through o meeting intK such that l ∩K is a line segment, [o,z]. Choose
a pair of distinct two-dimensional subspaces L1 and L2 both containing l and such
that the sets L1 ∩K and L2 ∩K are bounded. By the assumption, E1 = L1 ∩bdK and
E2 = L2 ∩ bdK are convex quadric curves, whence they are ellipses. Let c be the
midpoint of [o,z], and c1 and c2 the centers of E1 and E2, respectively. Applying a
suitable affine transformation, we may assume that both E1 and E2 are circles and the
planes L1 and L2 are orthogonal. Clearly, the image of K under this transformation,
also denoted by K, satisfies theorem’s hypothesis. Let 2δ be the length of [o,z].

Choose in R3 a coordinate system (ξ1,ξ2,ξ3) such that l is the ξ3-axis, all points
c,c1,c2 belong to the coordinate plane ξ3 = σ3, where σ3 ≥ 0 is a suitable scalar.
So, we may put

c = (0,0,σ3), c1 = (σ1,0,σ3), c2 = (0,σ2,σ3), σ1,σ2,σ3 ≥ 0.

Then E1 and E2 are described by

E1 = {(ξ1,0,ξ3) : (ξ1 −σ1)
2 +(ξ3 −σ3)

2 = σ2
1 + δ 2},

E2 = {(0,ξ2,ξ3) : (ξ2 −σ2)
2 +(ξ3 −σ3)

2 = σ2
2 + δ 2}.

Clearly, L1 and L2 are given by the equations ξ2 = 0 and ξ1 = 0, respectively.
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Choose a point v ∈ bdK \ (L1 ∪L2) so close to o that a certain two-dimensional
plane L through the line 〈o,v〉 meets K along a bounded set and intersects each of
the ellipses E1,E2 at precisely three points (including o). Since K is not a cone with
apex o, the point v can be chosen such that [o,v] meets intK. As above, L∩bdK is
an ellipse.

We state the existence of a quadric Q that contains {v} ∪ E1 ∪ E2. For this,
consider the family of quadrics Q(μ) given by

ξ 2
1 + ξ 2

2 + ξ 2
3 + μξ1ξ2 − 2σ1ξ1 − 2σ2ξ2 − 2σ3ξ3 +σ2

3 − δ 2 = 0,

where μ is a scalar parameter. Obviously, Ei = Li ∩Q(μ), i = 1,2, for all μ ∈ R.
If v = (v1,v2,v3), then v /∈ L1 ∪L2 if and only if v1v2 �= 0. Hence v ∈ Q = Q(μ0),
where

μ0 =
δ 2 −σ2

3 + 2σ1v1 + 2σ2v2 + 2σ3v3 − v2
1 − v2

2 − v2
3

v1v2
.

Next, we state that L∩ bdK ⊂ Q. Indeed, denote by H a plane supporting K at
o. Since H supports E1 ∪E2, the plane H is uniquely defined and is tangent to Q.
It is known that a planar quadric curve is uniquely determined by any four points
(not all on a line) and a tangent line at one of them (see, e.g., [24]). Since both
planar quadrics L∩bdK and L∩Q contain the four-point set {v}∪ (L∩ (E1 ∪E2))
and are tangent to the line H ∩L at o, they coincide by the argument above. Hence
L∩bdK = L∩Q ⊂ Q.

Slightly rotating L about the line 〈o,v〉, we obtain a family of ellipses L∩ bdK
which cover an open subset V of bdK. As above, V ⊂ Q. Let w ∈ V such that
[o,w] meets intK. To show the inclusion bdK ⊂ Q, choose any point x ∈ bdK \{w}
and denote by N the two-dimensional subspace containing {w,x}. Since the quadric
curves N ∩ bdK and N ∩ Q coincide along the nonlinear arc N ∩W of a quadric
curve, they must coincide: N ∩bdK = N ∩Q. Summing up, bdK ⊂ Q. Because Q is
locally convex at any point x ∈ bdK, Theorem 12.3.5 implies that bdK is a convex
quadric.

Let n ≥ 4. As above, we assume that o ∈ bdK. Choose a point q ∈ intK and
a two-dimensional plane M through q. Consider a three-dimensional subspace S
containing {o} ∪ L and the three-dimensional closed convex set P = K ∩ S. If L
is a two-dimensional subspace of S properly intersecting P, then from L∩ rbdP =
L∩ bdK and the inductive hypothesis implies that L meets the relative boundary
rbdP of P along a convex quadric curve. By the proved above (the case n = 3),
rbdP is a convex quadric in S. Hence L∩bdK = L∩ rbdP is a convex quadric curve,
and Theorem 12.4.2 shows that bdK is a convex quadric. 	


Burton [10] and Höbinger [15, Theorems 3 and 6] independently obtained
the same refinement of Theorem 12.4.1 by showing that the point p can be
chosen anywhere in Rn. In this regard we formulate the following problem, which
complements Theorems 12.4.2 and 12.4.4.
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Problem 12.4.5 ([30]). Is it true that the boundary of a convex solid K ⊂Rn, n ≥ 3,
is a convex quadric if and only if there is a point p ∈ Rn \K such that all proper
sections of bdK by two-dimensional planes through p are convex quadric curves?

Corollary 12.4.11 implies that the boundary of a convex solid K ⊂ Rn, n ≥ 3, is a
convex quadric if and only if there is a point p ∈ Rn \K such that all proper sections
of bdK by 3-dimensional planes through p are convex quadrics. One more problem
concerns a local version of Theorem 12.4.2.

Problem 12.4.6. Let K be a convex solid in Rn, n ≥ 3, and Ω an open subset of
bdK. Is it true that the following two conditions are equivalent?

(1) Ω lies within a convex quadric.
(2) There is a point p ∈ intK such that every section of Ω by a two-dimensional

plane through p lies within a convex quadric curve.

Another way to extend Theorem 12.4.1 to the case of convex solids is to consider
their bounded planar sections. We will say that a convex solid K is line-free if it
contains no lines.

Theorem 12.4.7 ([31]). For a line-free convex solid K ⊂ Rn and a point p ∈ Rn,
n ≥ 3, the following conditions are equivalent:

(1) All proper bounded sections of bdK by two-dimensional planes through p are
ellipses.

(2) The set bdK \ ((p+ recK)∪ (p− recK)
)

lies in a convex quadric.

We observe that condition (1) of Theorem 12.4.7 implicitly covers the trivial case
when no proper section of bdK by a two-dimensional plane through p is bounded.
For the line-free convex solid K, this happens if and only if K ⊂ p + recK, or,
equivalently, when the set bdK \ ((p+ recK)∪ (p− recK)

)
is empty, thus ensuring

the equivalence of conditions (1) and (2) of the theorem.
The following example shows that in Theorem 12.4.7 the boundary of K can be

different from a convex quadric.

Example 12.4.8. Let K be a convex solid in R3, is given by

K =
{
(ξ1,ξ2,ξ3) | ξ3 ≥ max

{
1,(ξ 2

1 + ξ 2
2 )

1/2}}

(so that the boundary of K is a truncated sheet of a convex circular cone). Let p =
(0,0,2). Then p ∈ intK, and a plane L through p intersects K along a bounded set if
and only if L misses the open circle

C = {(ξ1,ξ2,ξ3) | ξ 2
1 + ξ 2

2 < 1, ξ3 = 1}.

Furthermore, all bounded sections of bdK by two-dimensional planes through p are
ellipses. Clearly, bdK \ ((p+ recK)∪ (p− recK)

)
is the part of bdK disjoint from

the plane ξ3 = 1.
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Two-dimensional planar sections provide characterizations of various classes of
convex solids. A well-known result of Klee [16] states that a convex solid K ⊂ Rn is
a convex polyhedron (i.e., the intersection of finitely many closed halfspaces) if and
only if there is a point p ∈ intK such that every two-dimensional plane through p
meets K along a polygonal set. The following result from [26, 28] combines Klee’s
statement and Theorem 12.4.2 (see also [28] for a more general statement which
involves so-called boundedly polyhedral convex solids).

Theorem 12.4.9 ([26, 28]). The boundary of a convex solid K ⊂ Rn, n ≥ 3, is a
convex quadric or a convex polyhedral hypersurface if and only if there is a point
p ∈ intK such that every section of bdK by a two-dimensional plane through p is a
convex quadric curve or a convex polygonal line.

The proof of Theorem 12.4.9 is organized by induction on n(≥ 3). For the basic
case, n = 3, we proceed by the method of contradiction. This gives the existence of
two planes through p, say L1 and L2, such that E1 = L1 ∩ bdK is a convex quadric
distinct from a cone, and E2 = L2 ∩ bdK is a convex polygonal line. Using the
polygonality of E2, one can find an integer m and a sequence of planes N1,N2, . . .
through p converging to L1 such that each section Pi = Ni ∩ bdK, i = 1,2, . . . , is
a convex polygonal line with at most m sides. Since no line-free convex quadric
distinct from a convex cone can be the limit of a sequence of such polygonal lines,
we obtain a contradiction with the assumption Pi → E1.

The following example shows that, unlike Theorems 12.4.4 and 12.4.7 above, the
point p in Theorem 12.4.9 cannot be placed in Rn \ intK.

Example 12.4.10. Let K ⊂ R3 be a truncated bounded cone, given by

K = {(ξ1,ξ2,ξ3) : ξ1 ≥
(
ξ 2

1 + ξ 2
2

)1/2
, 1 ≤ ξ1 ≤ 2},

and let p = (0,0,0). Then all proper sections of bdK by planes through p are
trapezoids, while K is neither a solid ellipsoid nor a convex polytope.

In fact, Theorem 12.4.1 is formulated by Busemann in a slightly more general
form. Namely, as pointed in [11], the boundary of a convex body is an ellipsoid if
and only if there is an integer r, 2 ≤ r ≤ n− 1, such that every r-dimensional plane
through a fixed point p ∈ intK intersects bdK in an r-dimensional ellipsoid (ellipse
when r = 2). This statement was further refined by Höbinger [15], who showed that
p can be selected anywhere in Rn. We observe here that the case of any r between 2
and n−1 is easily reducible to that of r = 2. Furthermore, the case of any r between
2 and n− 1 can be refined as follows.

Corollary 12.4.11. The boundary of a convex solid K ⊂ Rn, n ≥ 3, is a convex
quadric if and only if there is a plane L ⊂ Rn of certain dimension s, 0 ≤ s ≤ n− 4,
and an integer r, with s+ 3 ≤ r ≤ n− 1, such that all proper sections of bdK by
r-dimensional planes through L are r-dimensional convex quadrics. If L meets K or
if K is a convex body, then one can assume that s ≤ n− 3 and s+ 2 ≤ r.
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Proof. Clearly, we have to verify the “only if” part. Let L ⊂ Rn be an s-dimensional
plane and p a point in intK. Choose a two-dimensional plane through p that properly
intersects K. Since s+ 3 ≤ r, there is an r-dimensional plane M ⊂ Rn containing
L∪N. Obviously, M properly intersects K. By the assumption, M ∩ bdK is an r-
dimensional convex quadric. Hence L∩ bdK = L∩ (M∩ bdK) is a convex quadric
curve. Now Theorem 12.4.2 above implies that bdK is a convex quadric.

If L meets K, then let p be a point in L ∩ K, and if K is a convex body,
then let p be any point in L. If N is a two-dimensional plane through p that
properly intersects K, then L ∪N lies in a s + 2 dimensional plane. Hence, with
s+ 2≤r, we can find an r-dimensional plane M ⊂ Rn containing L∪N. As above,
L∩bdK = L∩ (M ∩bdK) is a convex quadric curve. Finally, Theorem 12.4.4 (if L
meets K) or Theorem 4 from [10] (if K is a convex body) shows that bdK is a convex
quadric. 	


The following example shows that the inequality s+ 2 ≤ r in Corollary 12.4.11
above cannot be replaced by s+ 1 ≤ r if L meets K or if K is a convex body (see
Nakagawa [21] for a similar example involving ellipses).

Example 12.4.12. Let Γ be a strictly convex quadric curve in the ξ1ξ3-plane of R3

symmetric about the ξ3-axis. Denote by Γ ′ the curve in the ξ2ξ3-plane obtained
from Γ by rotation about the ξ3-axis. Let K be the convex solid in R3 which is the
convex hull of Γ ∪Γ ′. If L is the ξ3-axis (so, s = 1), then each section of bdK by
a two-dimensional plane through L is a convex quadric curve, while bdK is not a
convex quadric surface.

Petty [25] observed (based on statements of Busemann [11] and Burton [10]) that
the boundary of a convex body K ⊂ Rn is an ellipsoid provided for a given point p in
the projective extension Pn of Rn and an integer r, 2 ≤ r ≤ n−1, all proper sections
of bdK by r-dimensional planes through p are r-dimensional ellipsoids. For the case
when p ∈ Pn \Rn, Petty’s observation can be reformulated as follows: the boundary
of K is an ellipsoid provided every r-dimensional plane L ⊂Rn which is parallel to a
given line l ⊂ Rn and properly intersects K, the section L∩bdK is an r-dimensional
ellipsoid.

As above, we observe that the case of any r between 2 and n−1 is easily reducible
to that of r = 2. The following result (whose proof uses a modification of Kubota’s
method) extends Petty’s statement (for r = 2) to the case of convex quadrics and puts
additional restrictions on the planes which meet K. Given a line l ⊂ Rn and a scalar
δ > 0, denote by Pδ (l) the family of two-dimensional planes which are parallel to l
and whose distance from l is less than δ .

Theorem 12.4.13 ([31]). Let K ⊂ Rn, n ≥ 3, be a convex solid, l a line which
meets K along a bounded set, and δ a positive scalar. The following conditions
are equivalent:

(1) bdK is a convex quadric.
(2) For any plane L ∈ Pδ (l) properly intersecting K, the section L∩bdK is a convex

quadric curve.
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The following example shows that in Theorem 12.4.13, the condition on the line l
to meet K along a bounded set is essential. Let Q be the unit square in the coordinate
plane ξ1 = 0 of R3, and l be the ξ1-axis of R3. If K is the Cartesian product of Q
and l, then bdK is not a convex quadric, while any proper section of bdK by a
two-dimensional plane parallel to l consists of a pair of parallel lines, which is a
degenerate convex quadric curve.

12.5 Quadric Sections by Hyperplanes

Kubota [17, 18] showed that, given a pair of bounded convex surfaces in R3,
one being enclosed by the other, if all planar sections of the biggest surface by
planes tangent to the enclosed surface are ellipses, then the biggest surface is
an ellipsoid. Bianchi and Gruber [6] gave a far-reaching generalization of this
statement, extended in [30] to the case of convex quadrics.

Theorem 12.5.1 ([30]). Let K be a convex solid in Rn, n≥ 3, and δ (u) a continuous
real-valued function on the unit sphere Sn−1 of Rn such that for each vector u∈Sn−1

the hyperplane {x ∈ Rn : x·u = δ (u)} either lies in K or intersects bdK along an
(n− 1)-dimensional convex quadric. Then bdK is a convex quadric.

Alonso and Martı́n [1–3] obtained a serious of characterizations of ellipsoids in
Rn by means of hyperplane sections. We need some definitions to formulate their
results.

Let L ⊂ Rn be a plane of dimension r, 0 ≤ r ≤ n− 2. We say that a convex body
K ⊂ Rn is elliptic through L if for every hyperplane H containing L and properly
intersecting K, the set H ∩bdK is an (n− 1)-dimensional ellipsoid. For any planes
P1 and P2 in Rn, denote by aff(L1 ∪L2) the smallest plane containing L1 ∪L2.

Theorem 12.5.2 ([2,3]). Let K be a convex body in Rn, n≥ 3, and L1 and L2 be two
planes of dimensions r1 and r2, respectively, 1 ≤ r1,r2 ≤ n− 2, such that L1 �⊂ L2

and L2 �⊂ L1. Assume that K is elliptic through each of L1 and L2 and that one of
the following properties holds:

(a) At least one of the planes L1 and L2 meets intK.
(b) Both L1 and L2 support K, L1 ∩K = L2 ∩K, and dim(aff(L1 ∪L2))< n.
(c) Both L1 and L2 support K, L1 ∩L2 = /0, and dim(aff(L1 ∪L2)) = n.

Then bdK is an ellipsoid.

Due to Corollary 12.4.11, we may put r1 = r2 = n−2 in Theorem 12.5.2. Papers
[1–3] contain a variety of sophisticated examples demonstrating the necessity of
conditions (a)–(c) in Theorem 12.5.2. Following [1], we say that a convex body
K ⊂ Rn is elliptic with respect to an (n−1)-dimensional subspace H of Rn provided
any proper section of bdK by a translate of H is an (n− 1)-dimensional ellipsoid.
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Theorem 12.5.3 ([1]). If a centrally symmetric convex body K ⊂ Rn is elliptic with
respect to three pairwise distinct (n−1)-dimensional subspaces of Rn, then bdK is
an ellipsoid.

The following example from [1] shows that the condition on central symmetricity
of K is essential in Theorem 12.5.3.

Example 12.5.4. For any scalar −2 ≤ λ ≤ 2, the set

Kλ = {(ξ1,ξ2,ξ3) : ξ 2
1 + ξ 2

2 + ξ 2
3 +λ ξ1ξ2ξ3 ≤ 1,max{|ξ1|, |ξ2|, |ξ2|} ≤ 1}

is a convex body in R3, which is elliptic with respect to any of the three planes given
by ξ1 = 0, ξ2 = 0, and ξ3 = 0, respectively. On the other hand, Kλ is not an ellipsoid
if λ �= 0.

The next result from [31] complements Theorem 12.5.3.

Theorem 12.5.5 ([31]). If a convex body K ⊂ Rn is elliptic with respect to four
pairwise distinct (n− 1)-dimensional subspaces of Rn, then bdK is an ellipsoid.
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12. Carathéodory, C.: Über den Variabilitätsbereich der Koefficienten von Potenzreihen, die

gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907)
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