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Preface

Since the mid-1980s the following volumes containing collections of papers
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional
Analysis appeared:

1983–1984 Published privately by Tel Aviv University
1985–1986 Springer Lecture Notes in Mathematics, vol. 1267
1986–1987 Springer Lecture Notes in Mathematics, vol. 1317
1987–1988 Springer Lecture Notes in Mathematics, vol. 1376
1989–1990 Springer Lecture Notes in Mathematics, vol. 1469
1992–1994 Operator Theory: Advances and Applications, vol. 77, Birkhäuser
1994–1996 MSRI Publications, vol. 34, Cambridge University Press
1996–2000 Springer Lecture Notes in Mathematics, vol. 1745
2001–2002 Springer Lecture Notes in Mathematics, vol. 1807
2002–2003 Springer Lecture Notes in Mathematics, vol. 1850
2004–2005 Springer Lecture Notes in Mathematics, vol. 1910

The first six were edited by Lindenstrauss and Milman, the seventh by Ball and
Milman and the last four by Milman and Schechtman.

As in the previous volumes, the current one reflects the general trends of the
Theory. Most of the papers deal with different aspects of Asymptotic Geometric
Analysis understood in a broad sense. It includes classical topics in the geometry
of convex bodies, inequalities involving volumes of such bodies or, more generally,
log-concave measures, valuation theory, probabilistic and isoperimetric problems
in combinatorial setting. A special attention is given to the study of volume
distribution on high dimensional spaces. Additional direction is the characterization
of some classical constructions in Geometry and Analysis (like the Legendre and
Fourier transforms, derivation and others) is represented by a few papers. This
leads also to an unexpected use of fractional linear maps and one paper intensively
study these maps and present their use in the Convexity Theory. In many of the
papers Probability Theory plays an important role and probabilistic tools are used
intensively. There are also papers on related subjects. All the papers here are original
research papers and were subject to the usual standards of refereeing.

v



vi Preface

As in previous proceedings of the GAFA Seminar, we also list all the talks given
in the seminar as well as talks in some related workshops and conferences. We
believe this gives a sense of the main directions of research in our area.

We are grateful to Miriam Hercberg for taking excellent care of the typesetting
aspects of this volume.

Tel Aviv, Israel Bo’az Klartag
Haifa, Israel Shahar Mendelson
Tel Aviv, Israel Vitali Milman
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The ˛-Cosine Transform and Intertwining
Integrals on Real Grassmannians

Semyon Alesker

Abstract In this paper we describe the range of the ˛-cosine transform between
real Grassmannians in terms of the decomposition under the action of the special
orthogonal group. As one of the steps in the proof we show that the image
of certain intertwining operators between maximally degenerate principal series
representations is irreducible.

1 Introduction

In this paper we describe the range of the ˛-cosine transform between real Grass-
mannians in terms of the decomposition under the action of the special orthogonal
group. As one of the steps in the proof we show that the image of certain intertwining
operators between maximally degenerate principal series representations of the
groupGLn.R/ is irreducible.

Let V be a Euclidean space of dimension n. Let us denote by Gri .V / (or just
Gri;n) the Grassmannian of real i -dimensional subspaces. The ˛-cosine transform
T ˛j i , where ˛ is a complex number, is a linear operator T ˛j i W C1.Gri;n/ !
C1.Grj;n/ which is given explicitly by a kernel for Re˛ > �1 (defined
below), and is obtain by the meromorphic continuation for other values of ˛.
The problem of description of its range for ˛ D 1 was solved in [2] by
Bernstein and the author. Various particular cases for ˛ D 1 and various i; j
were solved previously by Goodey and Howard [11, 12], Goodey et al. [13],
Matheron [24, 25] in connection to convex and stochastic geometry. However the
method of the paper [2] does not generalize to ˛ ¤ 1. The injectivity of the
˛-cosine transform for i D j D 1 and ˛ being an odd positive integer was proved

S. Alesker (�)
Sackler Faculty of Exact Sciences, Department of Mathematics, Tel Aviv University,
Ramat Aviv, 69978 Tel Aviv, Israel
e-mail: semyon@post.tau.ac.il

B. Klartag et al. (eds.), Geometric Aspects of Functional Analysis, Lecture Notes
in Mathematics 2050, DOI 10.1007/978-3-642-29849-3 1,
© Springer-Verlag Berlin Heidelberg 2012
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2 S. Alesker

by Schneider [30]. The case of general ˛ was studied by Rubin [28] for i D j D 1

(equivalently for i D j D n � 1) where he constructed inversion formulas in those
cases when the ˛-cosine transform is injective. The case of general Grassmannians
and ˛ being a positive integer was considered by Goodey and Howard [12] where
they studied the injectivity of the ˛-cosine transform. More general case when
either i or j is equal to one was studied by Rubin [28] where he gave some
inversion formulas for the ˛-cosine transform (when it is injective). Some related
results for the Grassmannians were considered by Spodarev [31]. For some history
and references about the ˛-cosine transform see also Koldobsky [19] where the
applications of the ˛-cosine transform to convexity are discussed. We refer to Rubin
[27] (especially Sects. 3.3 and 3.4 there), for other results about ˛-cosine transform
and their relations to PDE and harmonic analysis.

It was observed in [2] for ˛ D 1 and generalized (easily) in this paper for other
values of ˛ that for i D j the operator T ˛i i can be rewritten to commute with the
action of the full linear group GLn.R/ (where the spaces of functions C1.Gri;n/
are interpreted as spaces of sections of certainGLn.R/-equivariant line bundles over
the Grassmannians). Then it essentially coincides with the standard construction of
intertwining integrals (see e.g. [35,36]). The study of the case of various i; j reduces
to the case i D j using the identity (which was communicated to us by B. Rubin)
T ˛j i D cT ˛jj ıRji whereRji is the Radon transform between Grassmannians, and c
is a constant. One has also to use the description of the range of the Radon transform
Rji due to Gelfand et al. [10] (see also [14]).

Let us define the operator T ˛j i . Let E 2 Gri;n; F 2 Grj;n. Assume that i � j .
Let us call by cosine of the angle between E and F the following number:

j cos.E; F /j WD voli .P rF .A//

voli .A/
;

where A is any subset of E of non-zero volume, P rF denotes the orthogonal
projection onto F , and voli is the i -dimensional measure induced by the Euclidean
structure. (Note that this definition does not depend on the choice of a subset
A � E). In the case i � j we define the cosine of the angle between them as
cosine of the angle between their orthogonal complements:

j cos.E; F /j WD j cos.E?; F?/j:

(It is easy to see that if i D j both definitions are equivalent.)
For any 1 � i; j � n � 1 one defines the ˛-cosine transform

T ˛j;i W C.Gri;n/ �! C.Grj;n/

as follows:

.T ˛j;if /.E/ WD
Z
Gri;n

j cos.E; F /j˛f .F /dF;
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where the integration is with respect to the Haar measure on the Grassmannian. In
Theorem 4.15 we describe the range of T ˛j i for ˛ 62 Z and for ˛ 2 ZC in terms of
the decomposition under the action of the special orthogonal group SO.n/. A slight
refinement of the method allows to obtain such a description for ˛ ¤ �n;�.n �
1/; : : : ;�1 though it is not presented here.

Thus the main new case is i D j which reduces to some purely representation
theoretical statements. Let us describe those which have independent interest in
representation theory. Remind that a degenerate principal series representation of
a reductive group (say GLn.R/) is a representation induced from a character of a
parabolic subgroup. Such representations were studied extensively in representation
theory since there are one of the main sources of construction of representations of
the reductive groups (see e.g. [3,9,15–17,21–23,26,29,38]). Let us introduce more
notation. Let 1 � k � Œn=2�. Let

Pk WD
��

c b

0 a

�
jc 2 GLn�k; a 2 GLk

�
:

For ˛ 2 C let
�˙̨ W Pk �! C

be given by

�C̨
��
c b

0 a

��
D j detaj˛;

��̨
��
c b

0 a

��
D sgn.a/j detaj˛:

Let
L˛;˙ WD IndGLnPk

�˙̨

(the induction is not unitary!). In this paper we prove the following result which is
crucial for the study of the ˛-cosine transform.

Theorem 4.2. Assume that ˛ ¤ 1; 2; : : : ; n � 1. Then the representation L˛;˙ has
a unique composition series. If ˛ < n=2 then the Gelfand-Kirillov dimension of
consecutive irreducible subquotients is strictly increasing. If ˛ > n=2 then it is
strictly decreasing.

We also get the following corollary.

Corollary 4.3. Let ˛; ˇ ¤ 1; 2; : : : ; n � 1. Assume that either ˛ > n=2 and ˇ <
n=2, or ˛ < n=2 and ˇ > n=2. Let "; ı D ˙. Then up to a multiplication by
a constant there is at most one intertwining operator from L˛;" to Lˇ;ı . Such an
operator has an irreducible image.

Theorem 4.2 and Corollary 4.3 combined with the results by Howe and Lee [15]
imply the description of the range of the ˛-cosine transform for suitable ˛.
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The main tools of this paper are the Beilinson–Bernstein localization theorem [4]
and the description of the category of perverse sheaves on complex matrices with
the rank stratification due to Braden and Grinberg [7].

Acknowledgements We express our gratitude to T. Braden for the explanations of the results
of [7], and to B. Rubin for communication us Proposition 2.2 and important remarks on the first
version of the paper. We are grateful to A. Beilinson, J. Bernstein, A. Braverman, and D. Vogan for
very useful discussions. We thank A. Koldobsky for useful discussions and some references.

2 Some Preparations

In this section we describe some preliminary results about the ˛-cosine and Radon
transforms. Let V be an n-dimensional Euclidean space.

Lemma 2.1. Let Re.˛/ > �1. Fix E0 2 Gri .V / Then the integral

Z
Gri .V /

j cos.E;E0/j˛dE

converges absolutely.

Proof. We may assume that ˛ is real and ˛ > �1 and i � n=2. Let us denote
G D SO.n/. Let K denote the stabilizer of E0 in G. Let us fix an orthonormal
basis e1; : : : ; ei in E0. Let us also fix an orthonormal system �1; : : : ; �i in E?

0 . Let
us denote by A the subset of Gri .V / consisting of subspaces of the formE D span
< cos.�1/e1Csin.�1/�1; : : : ; cos.�i /ei Csin.�i /�i >. ClearlyA is isomorphic to the
i -dimensional torus T i . For a subspace E 2 A of the above form j cos.E;E0/j D
jQi

kD1 cos.�i /j.
Next one has a decomposition Gri .V / D K � A. Since the function

E 7! j cos.E;E0/j is K-invariant, lemma follows from the fact that the integralR
T i

jQi
kD1 cos.�i /j˛d�1 : : : d�i is absolutely convergent for ˛ > �1. ut

The following proposition is due to Rubin (private communication).

Proposition 2.2. Let Re.˛/ > �1. Then

T ˛j i D c.˛/ � T ˛jj ıRji
where c.˛/ is a constant depending on ˛; i; j only.

Remark 2.3. It follows from the proof of this proposition that in fact

c.˛/ D
�Z

L2Gri .Rj /
j cos.L;L0/j˛dL

��1
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where L0 2 Gri.R
j / is any fixed subspace. Note that the integral converges

absolutely by Lemma 2.1.

Proof of Proposition 2.2. For any F 2 Grj .V / we have

T ˛j i .f /.F / D
Z
E2Gri .V /

f .E/j cos.E; F /j˛dE:

Lemma 2.4. Let E 2 Gri.V /; F 2 Grj .V /; j < i . Then

j cos.E; F /j˛ D c.˛/

Z
L2Grj .E/

j cos.F;L/j˛dL:

Let us postpone the proof of this lemma and let us finish the proof of Proposition 2.2.
We have

T ˛j i.f /.F / D c.˛/

Z
E2Gri .V /

dEf .E/

Z
L2Grj .E/

j cos.F;L/j˛dL

D c.˛/

Z
L2Grj .V /

dLj cos.F;L/j˛
Z
E�L

f .E/dE

D c.˛/

Z
L2Grj .V /

dLj cos.F;L/j˛.Rij f /.L/ D c.˛/.T ˛jj ıRji/.f /.F /:

Let us now prove Lemma 2.4.
We may assume that F does not intersect E?. Let us fix an orthonormal basis

�1; : : : ; �j in F . Let �p be the orthogonal projection of �p to E . Let F 0 2 Grj .E/

be the image of F under the orthogonal projection. Let us fix an orthonormal basis
� 0
1; : : : ; �

0
j in F 0. Then

j cos.E; F /j D j cos.F 0; F /j D j det.� 0
p; �q/j D j det.� 0

p; �q/j:

Let Stj .E/ denote the Stiefel manifold of j -tuples of orthonormal vectors in E .
It has the unique normalized Haar measure. We have:

Z
L2Gri .E/

j cos.L; F /j˛dL D R
<up>2Stj .E/ j detŒ.up; �q/�j˛du

D R
<up>2Stj .E/ j detŒ.up; �q/�j˛du: (1)

We have

j detŒ.up; �q/�j D j detŒ.up;
X
l

.�q; �
0
l /�

0
l /�j

D j detŒ
X
l

.�q; �
0
l /.�

0
l ; uq/�j D j det.Œ.�q; �

0
l /�Œ.�

0
l ; uq/�/j
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D j detŒ.�q; � 0
l /� detŒ.� 0

l ; uq/�j
D j cos.F; F 0/j � j cos.F 0; span < up >/j
D j cos.E; F /j � j cos.span < up >; F

0/j:

Substituting this into (1) we get:

Z
L2Grj .E/

j cos.L; F /j˛dL D j cos.E; F /j˛
Z
L2Grj .E/

j cos.L; F 0/j˛dL:

Thus Lemma 2.4 follows with the constant

c.˛/ D
 Z

L2Grj .E/
j cos.L; F 0/j˛dL

!�1

(note that the last expression is independent of F 0 2 Grj .E/). ut
We will also need later on the following result about the Radon transform due to

Gelfand et al. [10] (see also [14]).

Proposition 2.5. For j < i the Radon transform Rj;i W C.Gri;n/ ! C.Grj;n/ is
injective iff i C j � n and has a dense image iff i C j � n.

We will need also a simple lemma which can be easily checked (where the
representations L˛;˙ were introduced in the introduction ).

Lemma 2.6.
.L˛;˙/� D L�˛Cn;˙ ˝ j det.�/jk

Now let us consider the case i D j in more detail. We will rewrite the ˛-cosine
transform so that it will commute with the action of the group GLn.R/. Let us
remind some basic definitions. Let E be an i -dimensional real vector space.

Definition 2.7. An ˛-density � on V is a C-values function on the set of bases in
E , � W fbases in Eg ! C such that for any g 2 GL.E/ one has �.g.e1; : : : ; ei // D
j detgj˛�..e1; : : : ; ei // for any basis e1; : : : ; ei of E .

Note that the space of ˛-densities is one dimensional since the set of bases is
a principal homogeneous GL.E/-space. Also the space of Lebesgue measures on
E is naturally isomorphic to the space of 1-densities. Indeed let � be a Lebesgue
measure. Then � defines a 1-density such that its value on a basis e1; : : : ; ei is equal
to the measure � of the parallelepiped spanned by these vectors. This map from
the Lebesgue measures to 1-densities defines an isomorphism of (one-dimensional)
vector spaces.

Let L˛ ! Gri.V / be the line bundle over the Grassmannian Gri.V / whose
fiber over a subspace E is equal to the space of ˛-densities on E . Naturally L˛ is
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a GL.V /-equivariant line bundle over Gri .V /. The representation of GL.V / is the
space of sections of L˛ is isomorphic to L˛;C ˝ j det.�/j�˛ (corresponding to the
subgroup Pn�i ).

Let M 0̨ ! Grn�i .V / denote the line bundle over the Grassmannian Grn�i .V /
whose fiber over F 2 Grn�i .V / is equal to the space of ˛-densities over V=F .
Finally let us define M˛ WD M 0̨ ˝ j!j where j!j is the line bundle of densities
over Grn�i .V /. The representation of GL.V / is the space of sections of M˛ is
isomorphic to L�˛Cn ˝ j det.�/j�nCi (corresponding to the subgroup Pi ).

Let us define an intertwining operator

T ˛i W C1.Grn�i .V /;M˛/ �! C1.Gri .V /; L˛/

as follows. For E 2 Gri .V / and f 2 C1.Grn�i .V /;M˛/ set

.T ˛i f /.E/ D
Z
F2Grn�i .V /

pr�
E;F .f .F //;

where prE;F denotes the natural map E ! V=F and pr�
E;F is the induced map

j ^i .V=F /�j ! j ^i E�j. Clearly T ˛i is a non-trivial operator commuting with the
action of GL.V /.

Let us fix a Euclidean metric on V . Then we can identifyGrn�i .V / withGri .V /
by passing to the orthogonal complement. Also for each subspace E 2 Gri .V / the
space of ˛-densities can be identified with C if 1 2 C corresponds to the ˛-density
which is equal to one on each orthonormal basis in E . This defines trivializations
of the line bundles L˛ and M˛ . These trivializations commute with the action of
the orthogonal group O.n/. We have the following easily proved observation (for
˛ D 1 it was noticed in [2]):

Claim 2.8. With these identifications the map T ˛i coincides with the ˛-cosine
transform T ˛i i .

Corollary 2.9. The operators T ˛j i admit a meromorphic continuation with respect
to ˛ to the whole complex plane.

Proof. By Proposition 2.2 we can write for Re.˛/ > �1

T ˛j i D c.˛/T ˛jj ıRji
where the constant c.˛/ is given by the formula in Remark 2.3. By Claim 2.8 the
operators T ˛jj coincide with the standard intertwining integrals. But they admit a
meromorphic continuation with respect to ˛ to the whole complex plane (see e.g.
[35, 36]). Thus it remains to check that c.˛/ admits a meromorphic continuation to
the whole complex plane. But this follows from the previous fact and the expression
for c.˛/ from Remark 2.3.
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3 The Beilinson–Bernstein Theorem

We remind the Beilinson–Bernstein theorem on localization of g-modules following
[5]. We denote by capital letters the Lie groups, and by the corresponding small
letters their Lie algebras.

Let G be a complex reductive algebraic group. Let P be a parabolic subgroup of
G. Let P1 WD ŒP; P � denote the commutator subgroup, and let TP WD P=P1. Thus
tp denotes the Lie algebra of TP .

Let us define the set of roots of tp in g. Choose a Levi subgroup L of P , and let
C be the connected component of its center. Then C acts on g by the adjoint action,
and we obtain the roots of c in g (which do not always form a root system). The map
C ,! P ! TP is a finite covering of TP . Hence to every root of c in g corresponds
a root of tp in g. These roots are independent of the choice of L. Let R.tp/ � t�p
be the set of roots of tp in g. The set R.tp/ is naturally divided into the set of roots
whose root spaces are contained in n and its complement. Let RC.tp/ be the set of
roots of tp in g=p. If ˛ is a root of tp in g then the dimension of the corresponding
root subspace g˛ is called the multiplicity of ˛. Let 	p be the half sum of the roots
contained in RC.tp/ counted with their multiplicities.

Let B be a Borel subgroup of G contained in P . The map B=B1 ! P=P1 gives
the canonical surjection TB ! TP . It dualizes to the inclusion t�p ,! t�b .

We say that 
 2 t�p is dominant if for any root ˛ 2 RC.tb/ we have< 
; ˛V >¤
�1;�2; : : : . We shall say that 
 2 t�b is B-regular if for any root ˛ 2 RC.tb/ we
have < 
; ˛V >¤ 0.

Via the inclusion t�p ,! t�b we view the elements of t�p as elements of t�b , and
under this identification let us define an element 	l WD 	b � 	p 2 t�b .

For the definitions and basic properties of the sheaves of twisted differential
operators we refer to [5, 18]. Here we will present only the explicit description of
the sheaf D
 in order to agree about the normalization.

Let X be the flag variety of G of type P (then X D G=P ). Let OX denote the
sheaf of regular functions onX . LetU.g/ denote the universal enveloping algebra of
g. LetU o be the sheafU.g/˝COX , and go WD g˝COX . Let TX be the tangent sheaf
of X . We have a canonical morphism ˛ W go ! TX . Let also po WD Ker˛ D f� 2
goj �x 2 px8x 2 Xg: Let 
 W p ! C be a linear functional which is trivial on p1
(thus 
 2 t�p ). Then 
 defines a morphism 
o W po ! OX . We will denote by D
 the
sheaf of twisted differential operators corresponding to 
�	p , i.e. D
 is isomorphic
to U o=I
, where I
 is the two sided ideal generated by the elements of the form
� � .
 � 	p/

o.�/ where � is a local section of po. Let D
 WD � .X;D
/ denote
the ring of global sections of D
. We have a canonical morphism U.g/ ! D
. Let
us also denote by D
 � mod (resp. D
 � mod) the category of D
- (resp. D
�)
modules.

In this notation one has the following result.
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Theorem 3.1 (Beilinson–Bernstein). 1. If 
C	l 2 t�b is dominant then the functor
� W D
 �mod ! D
 �mod is exact.

2. If 
C 	l 2 t�b is dominant and is regular then the functor � is also faithful.

This theorem for the full flag variety was proved in [4]. The general case is
discussed in [5]. In order to apply this theorem in our situation we need two more
facts.

Lemma 3.2. Let g D gln.C/. The canonical morphism U.g/ ! D
 is an
epimorphism and preserves the natural filtrations by the order on both algebras.

This lemma implies that the structure of any D
-module considered as U.g/-
module remains the same (length, composition series, etc.).

Proof of Lemma 3.2. By Proposition III.6.2 of [5], Lemma 3.2 will be proved if the
moment map � W T �X ! g� is birational on its image and the image is normal (see
[5] for the definition of the moment map). The image of the moment map is a closed
subvariety of the nilpotent cone in g and is called the Richardson class of p (here g�
is identified with g via the invariant bilinear form on g). But by the result of [20] all
the Richardson classes for the Lie algebra gln.C/ are normal. Also it is easy to see
that the moment map for any parabolic subalgebra of gln.C/ is birational. ut

Note also that always the functor � has a left adjoint functor (called the
localization functor)  W D
 � mod ! D
 � mod . It is defined as .M/ D
D
 ˝D
 M .

The next lemma is proved in ([5], Proposition I.6.6).

Lemma 3.3. Suppose � W D
 �mod ! D
 �mod is exact. Then the localization
functor W D
 �mod ! D
 �mod is the right inverse of � :

� ı D Id:

Furthermore

(1) � sends simple objects to simple ones or to zero.
(2) � sends distinct simple objects to distinct ones or to zero.

The following lemma is obvious.

Lemma 3.4. 1. The positive roots RC.tb/ of tb in g are .0; : : : ; 0;�1,
0; : : : ; 0; 1; 0; : : : /.

2. 	b D 1
2
.�.n � 1/;�.n� 3/; : : : ; n � 1/.

Now let us consider the case of the groupGLn. Remind that

Pk WD
��

c b

0 a

�
jc 2 GLn�k; a 2 GLk

�
:



10 S. Alesker

Let 
 W tb ! C be a character of the form


 D . ˛; : : : ; ˛„ ƒ‚ …
n�k times

I 0; : : : ; 0„ ƒ‚ …
k times

/C 	pk :

Lemma 3.5. 1. 
C 	l is regular iff ˛ ¤ 1; : : : ; n � 1.
2. 
C 	l is dominant iff ˛ ¤ 2; 3; : : : .

Proof. We have


C 	l D .˛ � n � 1

2
; ˛ � n � 3

2
; : : : ; ˛ C n � 1

2
� kI n � 1

2
� k � 1; : : : ; n � 1

2
/:

Now the result follows from the definitions by a direct computation. ut

4 Main Results

The following proposition was proved in [15] though in this paper we will present a
different proof.

Proposition 4.1. If ˛ 62 Z then the representations L˛;˙ are irreducible.

Also in [15] it was computed the length and theK-type structure of all irreducible
subquotients of L˛;˙ for all ˛ 2 C. We will prove the following result.

Theorem 4.2. Assume that ˛ ¤ 1; 2; : : : ; n � 1. Then the representation L˛;˙ has
a unique composition series. If ˛ < n=2 then the Gelfand-Kirillov dimension of
consecutive irreducible subquotients is strictly increasing. If ˛ > n=2 then it is
strictly decreasing.

From this theorem we immediately get the following corollary.

Corollary 4.3. Let ˛; ˇ ¤ 1; 2; : : : ; n � 1. Assume that either ˛ > n=2 and ˇ <
n=2 or ˛ < n=2 and ˇ > n=2. Let "; ı D ˙. Then up to a multiplication by
a constant there is at most one intertwining operator from L˛;" to Lˇ;ı . Such an
operator has an irreducible image.

In particular we get the following corollary for the operators Ti considered in
Sect. 1.

Corollary 4.4. Let ˛ ¤ 1; 2; : : : ; n � 1. Then the image of the operator

Ti W C1.Grn�i .V /;M˛/ �! C1.Gri .V /; L˛/

is irreducible.
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Before we prove Theorem 4.2 and Proposition 4.1 notice that the case ˛ > n=2

reduces by duality to the case ˛ < n=2 using Lemma 2.6 and the fact that the
Gelfand-Kirillov dimensions of a representation and its dual are equal (this follows
from Theorem 1.2 in Vogan’s paper [34] which allows to compute the Gelfand-
Kirillov dimension of a representation using the K-type structure).

Thus we will assume that ˛ ¤ 1; 2; 3; : : : . Let " D ˙. Consider the character

 D .�˛; : : : ;�˛„ ƒ‚ …

n�k times

; 0; : : : ; 0„ ƒ‚ …
k times

/C 	pk . Let CGrn�k denote the complex Grassmannian

of .n � k/-dimensional subspaces in the complexified space CV WD V ˝R C. Set
� WD 0 if " D C, and � WD 1 if " D �. Let us describe the O.n;C/-equivariant
sheaf M of D
-modules on CGrn�k;n corresponding to T ˛;" WD L˛;" ˝ j det.�/j�˛ ˝
sgn.det.�//� . (It is slightly more convenient for the notational reasons to work with
the last representation rather than with L˛;" itself.)

First notice that the Euclidean structure on V defines a non-degenerate symmetric
quadratic form on the complexification CV . Let us denote this form by B . The
O.n;C/-orbits on CGrn�k;n are classified by the rank of the restriction of the form
B to a subspace (this fact is well known and can be easily checked). In other
words two subspaces E;F 2 CGrn�k;n belong to the same orbit if and only if
rkBjE D rkBjF . Let U denote the open orbit consisting of the subspaces such
that the restriction of the form B on them is non-degenerate. Let us fix a subspace
E0 2 U . Note that O.n;C/-equivariant coherent D
-modules on U correspond
to representations of the group of connected components of the stabilizer of E0
which is equal to O.n � k;C/ � O.k;C/. Consider the O.n;C/-equivariant D
-
module M0 corresponding to the representation .A;B/ 7! sgn.detA/� where
.A;B/ 2 O.n � k;C/ � O.k;C/. Let j W U ,! CGrn�k;n be the identity (open)
imbedding. One easily checks the following claim.

Claim 4.5.
M D j�M0:

In order to study the composition series of the D
-module M it is enough to
study its pull back to a transversal to the minimal O.n;C/-orbit on CGrn�k;n. This
minimal orbit consists of subspaces such that the dimension of the kernel of the
restriction of the formB to them is equal to minfk; n�kg. Let us describe explicitly
a transversal to it. First note that we may assume that k D minfk; n � kg. Indeed
suppose that k > l WD minfk; n � kg. Fix a .k � l/-dimensional subspace F such
that the restriction of the form B to F is non-degenerate. Replacing V by V=F and
k by l we may assume that k D l . We may also assume that n D 2k replacing V
by certain 2k-dimensional subspace.

Let us denote by Hk the space of complex symmetric .k � k/-matrices. We can
present V D M˚N whereM andN are certain isotropic k-dimensional subspaces.
Furthermore we can choose bases in M and N such that in these bases the matrix

of B is equal to

�
0 I

I 0

�
. Any matrix A 2 Hk can be considered as a matrix of

an operator A W M ! N with respect to these bases (which we will denote by
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the same letter A). Then the graph of this operator graph.A/ is a k-dimensional
subspace in V . When A runs over Hk it defines a transversal to the minimal orbit.
Moreover the stratification of CGrk.V / by O.n;C/-orbits induces on Hk the usual
stratification by the rank of a matrix.

By the Riemann-Hilbert correspondence the D0-module M corresponds to cer-
tain twisted perverse sheaf. For the details on the Riemann-Hilbert correspondence
we refer to [18]. Slightly oversimplifying, note only that at a neighborhoodO of any
point any twisted perverse sheaf can be presented by a usual (untwisted) perverse
sheaf PO , and at the intersection O1 \ O2 of two such neighborhoods O1 \ O2

the isomorphism PO1 jO1\O2 ! PO2 jO1\O2 is given by a twist by certain rank one
local system LO1;O2 on O1 \ O2. These local systems LO1;O2 must satisfy certain
compatibility conditions on the triple intersections of neighborhoods (see [18]).

Let us denote by Sj the locally closed stratum of Hk of matrices of rank k � j ,
j D 0; : : : ; k. Thus S0 is the open stratum of non-degenerate matrices. For the
details about the topology of Sj we refer to [7], Sect. 3. We need only the fact that
�1.S0/ is isomorphic to Z, and a generator is a loop around S1.

We will identify D0-modules with twisted perverse sheaves via the Riemann-
Hilbert correspondence, and we will denote them by the same letters.

Let us choose a small ball B � Hk with the center at the origin 0 such that
the twisted perverse sheaf M restricted to B is isomorphic to a usual (untwisted)
perverse sheaf. Let h W S0 \B ,! B denote the open imbedding. Then MjB can be
described as follows. First note that MjS0\B D M0jS0\B is a local system on S0 \
B . ThenM D h�.M0jS0\B/. It is easy to see that M0jS0\B is rank one local system
with the monodromy � D ei�.˛C�/ around the generator of �1.S0 \ B/ Q!�1.S0/.
It is sufficient to study the composition series of MjB . For convenience we will
replace B by Hk (since they are diffeomorphic as stratified spaces).

Let us denote by L0 the rank one local system on S0 with the monodromy � D
ei�.˛C�/ around the generator of�1.S0/. Let L WD j�L0. We have to study the length
and the composition series of L.

In order to do that let us remind the description in terms of quivers of the category
of perverse sheaves on Hk stratified by fSj g due to Braden and Grinberg [7]. Let
us define categories Ak and Bk of quivers following [7] for an integer k � 1. An
object .A�; p�; q�/ of Ak is a collection of kC 1 finite dimensional complex vector
spaces and linear maps between them as follows:

A0
p1

�
q1

A1
p2

�
q2

: : :
pk

�
qk

Ak

satisfying the following conditions:

(A1) 1C qj pj and 1C pj qj are invertible for j D 1; : : : ; k;
(A2) pj qj D qjC1pjC1 for j D 1; : : : ; k � 1.

A morphism f W A ! A0 of quivers from Ak is a collection of linear maps
fj W Aj ! A0

j such that fj pj D p0
j fj�1 and q0

j fj D fj�1qj . Then Ak is an
abelian category. A sequence of quivers A0 ! A ! A00 is exact if and only if
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the sequences A0
j ! Aj ! A00

j are exact for all j . For an object A 2 An define
maps �j W Aj ! Aj by �j D 1 C qjC1pjC1 if j < k and by �j D 1 C pj qj
if j > 0. These definitions agree due to condition (A2). The maps f�j g define an
automorphism �A W A ! A for any object A 2 Ak . This � defines an automorphism
of the identity functor on Ak . More precisely if f W A ! A0 is a morphism in Ak

then f �A D �A0f . The following statement was proved in [7], Propositions 4.1, 4.2.

Proposition 4.6. (1) Ak is a direct sum of abelian categories

Ak D
M

¤0

A.
/

k ;

where A.
/

k is the full subcategory of objects A for which �A � 
 is nilpotent.

(2) If 
 ¤ 0; 1, then A.
/

k is equivalent to A.
/
0 . The equivalence is given by sending

A to .A0; �0/.

An object of Bk is a collection .B�; p�; q�/ consisting of finite dimensional
complex vector spaces B0; : : : ; Bk and linear maps between them

B0
p1

�
q1

B1
p2

�
q2

: : :
pk

�
qk

Bk

which satisfy the following conditions. Let �j D 1C qjC1pjC1 for 0 � j < k, and
�j D 1C pj qj for 0 < j � k. We require that

(1) All the maps �j and �j are invertible;
(2) �2j D �2j , for j D 1; : : : ; k � 1;
(3)

pj �j�1 D ��jpj ;
�j�1qj D �qj �j ;
pjC1�j D ��jC1pjC1;

�j qjC1 D �qjC1�jC1; for j D 1; : : : ; k � 1:

The morphisms of quivers in Bk are defined in the obvious way. Then Bk is also an
abelian category. Define N�j D .�1/j �j for j < k, and N�k D .�1/kC1�k . It is easy
to see that N� is the automorphism of the identity functor of Bk .

For any object B D .B�; p�; q�/ 2 Bk each vector space Bj decomposes as

Bj D BC
j ˚ B�

j

where �j j
B

C

j
D �j j

B
C

j
and �j jB�

j
D ��j jB�

j
. The operators �j and �j preserve this

decomposition. Let BC
k be the full subcategory of Bk of objectsB withB0 DBk D 0
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and B�
j D 0 for j D 1; : : : ; k � 1. Easily all the maps p and q must vanish for

B 2 BC
k . Let us define B�

k to be the full subcategory of Bk of objects with BC
j D 0

for j D 1; : : : ; k � 1.
The following statement was proved in [7], Proposition 4.4.

Proposition 4.7. The category Bk splits as a direct sum

Bk D BC
k ˚ B�

k :

Let us define B.
/k to be the full subcategory of B�
k of objectsB for which N�B �


is nilpotent. Let us also introduce category A0 D B0. The objects of this category
are pairs .A0; �0/ where A is a finite dimensional complex vector space, and �0 W
A0 ! A0 is an invertible transformation. The next proposition was proved in [7],
Proposition 4.4.

Proposition 4.8. The category B�
k decomposes as

B�
k D

M

¤0

B.
/k :

If 
 62 f�1; 0; 1g then B.
/k ' A.
/
0 . Furthermore there are equivalences of

categories
�
.1/

k W B.1/k Q�!A.1/

dk=2e and �.�1/k W B.�1/k Q�!A.1/

bk=2c:

Here we denote by bxc the maximal integer not greater than x, and by
dxe the minimal integer not smaller than x. Note that for 
 62 f�1; 0; 1g the
equivalence B.
/k ' A.
/

0 is given by sending the quiver .B�; p�; q�/ to .B0; �0/.

We will not describe explicitly the functors �.1/k and �.�1/k referring to the proof of
Proposition 4.4 in [7]. We need only to know how they change the vector spaces in
the quiver. One has

.�
.�1/
k .B//j D B2j (2)

if n D 2m is even then .�.1/k .B//j D B2j (3)

if n D 2m � 1 is odd then .�.1/k .B//j D B2j

for j < m and .�.1/k .B//m D Bn: (4)

Let us define functors FB W Bk ! A0 and FA W Ak ! A0 by

FB..B�; p�; q�// D .B0; N�0/
FA..A�; p�; q�// D .A0; �0/:
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Then it immediately follows from (2)–(4) that

.�
.1/

k .B//0 D B0 and .�.�1/k .B// D B0

for any object B from the corresponding category. It is also clear that FB.B�
k / D 0.

One of the main results of [7] says that the category of perverse sheaves on
Hk constructible with respect to the stratification fSj g is equivalent to the category
Bk. Let us present some more details on this equivalence. the vector spaces Bj
corresponds to stalks of Morse local systems. We will not define them here. We
need only to define B0. This is the stalk at a fixed point on the open stratum S0
of our perverse sheaf (which is just a local system on S0). Moreover the operator
N�0 is equal to the monodromy of this local system along the generator of �1.S0/.
Let us denote by j W S0 ,! Hk the open imbedding. Then the functor j � from
the category of perverse sheaves on Hk to perverse sheaves on S0 in the language
of quivers coincides with the functor FB . However for our purposes we need to
describe in the language of quivers the right adjoint functor j�. This description
was privately explained to us by T. Braden (private communication).

Since j �.BC
k / D 0 then by adjointness j�.A0/ � B�

k . Similarly j�.A.
/
0 / �

B.
/k . Moreover by Proposition 4.8 for 
 62 f�1; 0; 1g the functor j� W A.
/
0 Q!B.
/k is

an equivalence of categories. This implies the following claim.

Claim 4.9. If the monodromy � D ei�.˛C�/ ¤ ˙1 then j�L0 is irreducible.

If 
 D 1 then by Proposition 4.8 we can replace category B.1/k by the category

A.1/

dk=2e, and for 
 D �1 we can replace category B.�1/k by the category A.1/

bk=2c. Thus

let us study the functor j� W A.1/
0 ! A.1/

l (where we denote by j� the functor right
adjoint to FA). In fact let us describe the functor j� W A0 ! Al .

Claim 4.10.
j�..A0; �0// D .A�; p�; q�/

where Aj D A0 for all j D 0; : : : ; l , pj D �0 � 1; qj D 1.

Proof. Let X D .X�; p�; q�/ 2 Al . We have to show that Hom.X; j�.A0; �0// D
Hom..X0; �0/; .A0; �0//. We have to show that if we are given a map f0 W X0 ! A0
commuting with �0 then we can extend it (in a functorial way) to a morphism X !
j�.A0; �0/. Let us define the maps fj W Xj ! A0 inductively by fj WD fj�1qj . It
is easy to check all the properties. ut

Now let us come back to our perverse sheaf j�L0 on Hk . Let us assume that the
monodromy � D ei�.˛C�/ D ˙1. Set l WD dk=2e if � D 1 and l WD bk=2c if
� D �1. Then the corresponding object in A.1/

0 is equal to .C; 1/. From the proof

of Claim 4.10 we obtain that j�..C; 1// D .A; p�; q�/ 2 A.1/

l where Aj D C,
pj D 0; qj D 1 for all j D 0; : : : ; l . It is easy to see that every subquiver of
j�..C; 1// has the form Yk D .Y�; p0�; q0�/ where Yj D Aj for j � k and Yj D 0
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for j > k, p0
j D pj ; q

0
j D qj for j � k and p0

j D 0 D q0
j for j > k. It particular

it follows that j�..C; 1// has a unique composition series and length l C 1.
Thus the above argument shows that the representations L˛;˙ have unique

composition series for ˛ ¤ 1; 2; : : : ; n � 1. Let us show that if in addition
˛ < n=2 then the Gelfand-Kirillov dimension of consecutive subquotients is
strictly increasing. Let us remind a general method how to compute the Gelfand-
Kirillov dimension of a finitely generated g-module M . It is well known that the
Gelfand-Kirillov dimension is equal to the dimension of the associated variety (or
the Bernstein variety) Vg.M/ of M which is an algebraic subvariety of g�. Let
us remind its definition. One can choose a filtration of M by finite dimensional
subspaces M0 � M1 � M2 � � � � � M such that gMi D MiC1 for large i .
Such a filtration is called good. The associated graded module grM is a module
over the algebra grU.g/ D S.g/. In other words grM is a coherent sheaf on
g� D SpecS.g/. The support of this sheaf is called the associated variety of M
and is denoted by Vg.M/. It is well known (and can be easily checked) that it does
not depend on the choice of a good filtration. Moreover if we identify g� with g
using an invariant bilinear form on g then Vg.M/ � g is contained in the nilpotent
cone of g.

Next let us assume that X D GL.n;C/=CPk is the complex Grassmannian of
.n�k/-dimensional subspaces 2 C

n with the standard action of CK D O.n;C/. Let
D0 be a CK-equivariant sheaf of twisted differential operators on X which satisfies
the assumptions of the Beilinson–Bernstein localization theorem. Let M be an CK-
equivariant D0-module on X . Let us denote by Ch.M/ the singular support of M.
Thus Ch.M/ � T �X . Let � W T �X ! g denote the moment map.

Lemma 4.11. Let the sheaf D0 satisfies the assumptions of the Beilinson–Bernstein
theorem. Let M be a coherent D0-module. Let M WD � .X;M/. Then Vg.M/ D
�.Ch.M//.

This lemma is proved in Proposition 4.2 in [1] where the argument is taken
from [6].

Let l D minfk; n � kg. Passing to the orthogonal complement if necessary we
can replace the Grassmannian Grn�k.Cn/ by Grl.Cn/. Let us denote by Uj , j D
0; : : : ; l , the locally closed subvariety of X consisting of l-subspaces such that the
restriction of our quadratic form onto them has rank l�j . Then the singular support
on any CK-equivariant coherent D0-module is contained in the union of closures of
conormal bundles T �

Uj
X .

Lemma 4.12. The image under the moment map �.T �
Uj
X/ is equal to the variety

of complex symmetric .n�n/-matrices T of rank at most l�j such that there exists
a subspace F 2 Grl.C/ so that T .Cn/ � F and T .F / D 0.(Let us denote this
variety of matrices by Rj .)

Proof. Let us fix E 2 Uj . Then the space of conormal vectors to Uj at E coincides
with the space of operators (again using the identification of g D gln.C/ with its
dual by the Killing form) A W Cn ! C

n such that
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(1) A is symmetric;
(2) A.Cn/ � E;
(3) A.E/ D 0.

First let us show that rkA � l � j . We have ImA � E � KerA D .ImA/?.
Hence l � dim.ImA/ � j . Hence rkA � l � j . Next let us show that T �Uj
is mapped onto Rj . It is easy to see that the variety of such matrices is a closure
of matrices of the above form of rank l � j which form an O.n;C/-orbit. Since
the moment map is GLn.C/-equivariant it is enough to check that the image of
T �Uj contains at least one matrix of rank l � j . Indeed we may choose linearly

independent vectors e1; : : : ; el�j 2 KerBjE . Consider the operator Ax D Pl�j
iD1 <

x; ei > ei . Clearly A satisfies (1)–(3) and rkA D l � j . ut
In order to compute the singular support of a D0-module let us remind that it

is equal to the union of those closures of T �
Uj
X where the corresponding Morse

groups of the corresponding D0-module do not vanish. We may replace X by the
transversal to the minimal orbit identified with Hk as previously. Then the strata Uj
will be replaced by Sj .

First let us state few more results from [7]. For a local system N on a stratum Sj
let us denote by IC.Sj ;N / the Goresky-Macpherson extension of N to Hk . The
fundamental group of Sj for 1 � j � n � 1 is isomorphic to Z=2Z (see [7]). Thus
on Sj there are just two irreducible local systems: the constant one and the rank
one local system corresponding to to the non-trivial representation of �1.Sj /. This
non-trivial local system on Sj will be denoted by Nj . The following statement was
proved in [7], Corollary 4.11.

Proposition 4.13. For 1 � j � n� 1 the quiver B corresponding to IC.Sj ;L˝j /
is given by Bj D C, and by all other Bi D 0. It is an object in BC

n .
For 1 � j � n � 1 the quiver corresponding to IC.Sj ;N˝.jC1// is given

by Bj D BjC1 D C, and by all other Bi D 0. It is an object in B.
/n where

 D .�1/jC1.

The quiver B corresponding to IC.Sn;C/ is given by Bn D C and by all other
Bi D 0. It is an object of B.
/n where 
 D .�1/nC1.

We always have j�L0 2 B�
n . Let us first consider the case � D 1. Then

L0 D C. Thus j�C 2 B.1/m , and all its irreducible subquotients also belong to B.1/n .
Hence by Proposition 4.13 all irreducible subquotients of j�C must have the form
IC.Sj ;N˝.jC1/

j / where j is odd and 1 � j � n�1, or IC.n;C/ if n is odd. From

this we see that the singular support of IC.S2k�1;N˝.2k/
2k�1 / is contained and not

equal to the singular support of IC.S2kC1;N˝.2kC2/
2kC1 /. This implies the statement

about the Gelfand-Kirillov dimension in the case � D 1 using Lemmas 4.11
and 4.12.

Let us consider the case � D �1. Then j�L0 2 B.�1/n . Hence all irreducible
subquotients also belong to B.�1/n . Again Proposition 4.13 implies that all of them
must be of the form IC.Sj ;N .jC1/

j / with j is even and 1 � j � n � 1, or
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IC.Sn;C/ if n is even. Similarly to the previous case, the statement follows. Thus
Theorem 4.2 is proved. ut

Let us discuss now the K-type structure of the range of the ˛-cosine transform
T ˛j i . First let us recall some standard facts on the representations of the special
orthogonal group SO.n/ (see e.g. [37]).

Lemma 4.14. The isomorphism classes of irreducible representations of SO.n/,
n > 2 are parameterized by their highest weights, namely sequences of integers
.m1;m2; : : : ; mŒn=2�/ which satisfy:

(i) If n is odd then m1 � m2 � � � � � mŒn=2� � 0:
(ii) If n > 2 is even thenm1 � m2 � � � � � mn=2�1 � jmn=2j.

Recall also that for n D 2 the representations of SO.2/ are parameterized by
a single integer m1. We will use the following notation. Let us denote by �C the
set of all highest weights of SO.n/, and by �C

k the set of all highest weights 
 D
.m1;m2; : : : ; mŒn=2�/ with mi D 0 for i > k and all mi are even.

Let us recall the decomposition of the space of functions on the Grassmannian
Grk;n under the action of SO.n/ referring for the proofs to [32, 33]. Since Grk;n is
a symmetric space, each irreducible representation enters with multiplicity at most
one. The representations which do appear have highest weights precisely from�C

k \
�C
n�k .

Theorem 4.15. Let ˛ 2 C, ˛ ¤ �n;�.n � 1/; : : : ;�1. The range of the ˛-cosine
transform T ˛j;i W C1.Gri;n/ ! C1.Grj;n/ is a closed subspace and is decomposed
under the action of SO.n/ as follows.

(1) If ˛ 62 Z then the range consists of the representations of SO.n/ with highest
weights precisely from the set �C

i \�C
n�i \�C

j \�C
n�j .

(2) If ˛ 2 Z and ˛ > � n
2

(hence ˛ � 0) then the range of T ˛j i consists of the

representations with highest weights 
 D .m1; : : : ; mŒn=2�/ such that 
 2 �C
i \

�C
n�i \�C

j \�C
n�j with the restriction jm2j � 1C ˛.

Proof of Theorem 4.15. Let us prove first the statement about the K-type structure.
The case (1) follows from Propositions 2.2, 2.5, and 4.1. Let us consider case (2).
First let us consider the case i D j . It follows from our assumptions that ˛ 2 Z

is non-negative. Then the constant function on Gri;n is mapped into a non-zero
constant function. Thus the range of T ˛i i is an unramified GLn.R/-module. By
Theorems 3.4.2 and 3.4.4 of [15] theK-type structure of the unramified subquotient
can be described as follows. Set l WD minfk; n�kg. Then the set of highest weights
is f.m1 � m2 � : : : / 2 �C

l j jm2j � 1C ˛g. Thus for i D j the result follows. The
case of general case follows again from this, Propositions 2.2, and 2.5.

Now let us prove that the image of T ˛ij is closed in the C1-topology. The
argument is exactly the same as in [2], but we partly reproduce it here for the sake
of completeness. It remains to prove that if f is a C1- function on Gri;n belonging
to the closure of the sum of SO.n/- irreducible subspaces satisfying conditions in
the statement of Theorem 4.15, then f is an image under T ˛j i of some C1- function
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onGrj;n. We may assume that j < i . By Proposition 2.2, T ˛j i D c �T ˛jjRj i . We will
need the following fact due to Casselman and Wallach (see [8]).

Proposition 4.16. Let G be a real reductive group. Let K be its maximal compact
subgroup. Let � W X ! Y be a morphism of two admissible Banach G-modules of
finite length which has a dense image. Then � induces an epimorphism on the spaces
of smooth vectors.

In our situation we will need the following more precise form of Proposition 4.16
which was proved in [2] (Lemma 1.10).

Lemma 4.17. Let G D GL.n;R/. Let K D O.n/ be the maximal compact
subgroup. Let X and Y be G- modules of continuous sections of some finite
dimensional G- equivariant vector bundles over the Grassmannians (or any other
partial flag manifolds). Let � W X ! Y be a morphism of these G- modules. Then
if f 2 Y is a smooth vector then there exists a smooth vector g 2 X such that
�.g/ D f and the K- types entering into the decomposition of g are the same as
those of f .

Now let us continue the proof of Theorem 4.15. We have given an interpretation
of T ˛jj as an intertwining operator of two GL.n;R/- modules; they satisfy the
assumptions of Proposition 4.16, since they are induced from characters of parabolic
subgroups (see [35, 36]). Hence by Proposition 4.16 there exists a C1- smooth
function g on the Grassmannian Grj;n such that f D T ˛jj .g/ and with the same
K- types as f . Next there exists an interpretation of the Radon transform as an
intertwining operator of some admissible GL.n;R/- modules of finite length (it
was given in [10]). Hence Proposition 4.16 implies the statement. ut
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37. D.P. Želobenko, Compact Lie Groups and Their Representations. Translated from the Russian
by Israel Program for Scientific Translations. Translations of Mathematical Monographs,
vol. 40 (American Mathematical Society, Providence, 1973)

38. G.K. Zhang, Jordan algebras and generalized principal series representations. Math. Ann.
302(4), 773–786 (1995)



On Modules Over Valuations

Semyon Alesker

Abstract To any smooth manifoldX an algebra of smooth valuations V1.X/ was
associated in [Alesker, Israel J. Math. 156, 311–339 (2006); Adv. Math. 207(1),
420–454 (2006); Theory of Valuations on Manifolds, IV. New Properties of the
Multiplicative Structure (2007); Alesker, Fu, Trans. Am. Math. Soc. 360(4), 1951–
1981 (2008)]. In this note we initiate a study of V1.X/-modules. More specifically
we study finitely generated projective modules in analogy to the study of vector
bundles on a manifold. In particular it is shown that for a compact manifold
X there exists a canonical isomorphism between the K-ring constructed out of
finitely generated projective V1.X/-modules and the classical topologicalK0-ring
constructed out of vector bundles over X .

1 Introduction

Let X be a smooth manifold of dimension n.1 In [1–3, 5] the notion sof a smooth
valuation on X was introduced. Roughly put, a smooth valuation is a C-valued
finitely additive measure on compact submanifolds of X with corners, which
satisfies in addition some extra conditions. We omit here the precise description
of the conditions due to their technical nature. Let us notice that basic examples of
smooth valuations include any smooth measure on X and the Euler characteristic.
There are many other natural examples of valuations coming from convexity,

1All manifolds are assumed to be countable at infinity, i.e. presentable as a union of countably
many compact subsets. In particular they are paracompact.
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integral, and differential geometry. We refer to recent lecture notes [4, 7, 8] for an
overview of the subject, examples, and applications.

The space V1.X/ of all smooth valuations is a Fréchet space. It has a canonical
product making V1.X/ a commutative associative algebra over C with a unit
element (which is the Euler characteristic).

In this note we initiate a study of modules over V1.X/. Our starting point is
the analogy to the following well known fact due to Serre and Swan [11, 12]: if
X is compact, then the category of smooth vector bundles of finite rank over X is
equivalent to the category of finitely generated projective modules over the algebra
C1.X/ of smooth functions (the functor in one direction is given by taking global
smooth sections of a vector bundle).

In order to state our main results we need to remind a few general facts about
valuations on manifolds. We have a canonical homomorphism of algebras

V1.X/ ! C1.X/ (1)

given by the evaluation on points, i.e. � 7! Œx 7! �.fxg/�. This is an epimorphism.
The kernel, denoted by W1, is a nilpotent ideal of V1.X/:

.W1/
nC1 D 0:

Next, smooth valuations form a sheaf of algebras which is denoted by V1
X : for

an open subset U � X ,
V1
X .U / D V1.U /;

where the restriction maps are obvious. We denote by OX the sheaf of C1-smooth
functions on X . Then the map (1) gives rise to the epimorphism of sheaves

V1
X � OX : (2)

Recall now the notion of a projective module. LetA be a commutative associative
algebra with a unit. An A-module M is called projective if M is a direct summand
of a free A-module, i.e. there exists an A-module N such that M ˚ N is a free
A-module (not necessarily of finite rank). It is easy to see that if M is in addition
finitely generated then M is a direct summand of a free A-module of finite rank.

Let A be a sheaf of algebras on a topological spaceX . A sheaf M of A-modules
is called a locally projectiveA-module if any point x 2 X has an open neighborhood
U such that M.U / is a projective A.U /-module.

Let us denote by Projf V1
X � mod the full subcategory of V1

X -modules
consisting of locally projective V1

X -modules of finite rank. Let us denote by
Projf V

1.X/ � mod the full subcategory of the category of V1.X/-modules
consisting of projective V1.X/-modules of finite rank. In Sect. 2 we prove the
following result.
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Theorem 1.1. Let X be a smooth manifold.

(1) Any locally projective V1
X -module of finite rank is locally free.

(2) Assume in addition that X is compact. Let E be a locally free V1
X -module of

finite rank. Then there exists another locally free V1
X -module H of finite rank

such that E ˚ H is isomorphic to .V1
X /

N for some natural numberN .
(3) Assume again that X is compact. Then the functor of global sections

� W Projf V1
X �mod ! Projf V

1.X/ �mod

is an equivalence of categories.

Notice that all the statements of the theorem are completely analogous to the
classical situation of vector bundles (whose spaces of sections are projective finitely
generated C1.X/-modules). For example a version of (2) for vector bundles says
that any vector bundle is a direct summand of a free bundle. A classical version of (3)
is the above mentioned theorem of Serre-Swan. The method of proof of Theorem 1.1
is a minor modification of the proof for the analogous statement for vector bundles.

To formulate our next main result observe that to any V1
X -module we can

associate an OX -module via

M 7! M ˝V1

X
OX ; (3)

where OX is considered as V1
X -module via the epimorphism (2). Clearly under this

correspondence locally free V1
X -modules of finite rank are mapped to locally free

OX -modules of equal rank, i.e. to vector bundles.

Theorem 1.2. Assume that X is a compact manifold. Let N be a natural number.
The map (3) induces a bijection between the isomorphism classes of locally free
V1
X -modules of rank N and isomorphism classes of vector bundles of rank N .

Theorem 1.2 is proved in Sect. 3. The proof is an application of general results
of Grothendieck [9] on non-abelian cohomology of topological spaces and the
existence of a finite decreasing filtration on V1

X such that the associated graded
sheaf is a sheaf of OX -modules.

Acknowledgements I thank M. Borovoi for useful discussions on non-abelian cohomology, and
F. Schuster for numerous remarks on the first version of the paper. Partially supported by ISF grant
701/08.

2 Locally Free Sheaves Over Valuations

A sheaf E of V1
X -modules is called locally projective of finite rank if every point

x 2 X has a neighborhoodU such that there exists a sheaf of V1
U -modules F with

the property that E jU ˚ F is isomorphic to .V1
X /

N for some natural numberN .
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The technique used in the proofs of most of the results of this section is rather
standard and is a simple modification of that from [6].

Proposition 2.1. On a manifoldX any locally projective V1
X -module of finite rank

is locally free.

Proof. Fix a point x0 2 X . Let us denote for brevity Vx0 WD V1
X;x0

(resp. OX;x0) the
stalk at x0 of the sheaf V1

X (resp. OX ). Let E be a locally projective V1
X -module of

finite rank. Consider its stalk Ex0 as Vx0-module. Then there exists a Vx0-module F
such that

Ex0 ˚ F ' VNx0
for some natural number N . Consider the idempotent endomorphism of the Vx0-
module

eWVNx0 ! VNx0
given by the projection onto Ex0 . Thus e2 D e. Notice that Vx0 is a local ring with
the maximal ideal

m WD f� 2 Vx0 j�.fx0g/ D 0g:
Clearly Vx0=m D C.

We have

C
N D VNx0 ˝Vx0 .Vx0=m/ D .Ex0 ˝Vx0 Vx0=m/˚ .F ˝Vx0 Vx0=m/: (4)

Let us choose a basis
� 0
1; : : : ; �

0
k; f

0
1 ; : : : ; f

0
N�k

of CN such that the � 0
i ’s form a basis of the first summand in the right hand side of

(4), and the f 0
j ’s form a basis of the second summand.

Let Q�i 2 VNx0 ; Qfj 2 VNx0 be their lifts. Define finally

�i WD e. Q�i / 2 Ex0 ;

fj WD .1� e/. Qfj / 2 F :

It is clear that

�i 	 Q�i mod.m/;
fj 	 Qfj mod.m/:

Consider the morphism of Vx0-modules � WVkx0 ! Ex0 given by

�.�1; : : : ; �k/ WD
kX
iD1

�i �i :
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Consider also another morphism � WVN�K
x0

! F given by

�. 1; : : : ;  N�k/ D
N�kX
jD1

 j fj :

Now define a morphism of Vx0-modules by

� WD � ˚ � WVNx0 D Vkx0 ˚ VN�k
x0

! Ex0 ˚ F ' VNx0 :

We claim that � is an isomorphism. It is equivalent to the property that det.�/ 2 Vx0
is invertible. In order to see this it suffices to show that .det�/.fx0g/ ¤ 0. But the
last condition is satisfied since

� ˝ IdVx0 =mWVNx0 ˝Vx0 Vx0=m ! VNx0 ˝Vx0 Vx0=m

is an isomorphism C
N ! C

N since by construction

� 0
1 D �1.fx0g/; : : : ; � 0

k D �k.fx0g/; f 0
1 D f1.fx0g/; : : : ; f 0

N�k D fN�K.fx0g/

form a basis of CN .
Since � WVNx0 ! VNx0 is an isomorphism, it follows that there exists an open

neighborhoodU of x0 and an isomorphism of V1
U -modules

Q� W .V1
U /

N ! .V1
U /

N

which extends � , i.e. � is the stalk of Q� at x0. It follows that � extends to an
isomorphism

Q� W .V1
U /

k Q!E jU
of V1

U -modules (and similarly for �). ut
Lemma 2.2. Let E be a locally free V1

X -module of finite rank N . Let �1; : : : ; �k 2
H0.X; E/ be chosen such that for every point x0 2 X their images N�1; : : : ; N�k
in E ˝V1

X
V1
X =mx0 ' C

N form a linearly independent sequence. Consider the
morphism of V1

X -modules
f W .V1

X /
k ! E ;

given by f .�1; : : : ; �k/ D Pk
iD1 �i �i .

Then f W .V1
X /

k ! Im.f / is an isomorphism, and E=Im.f / is a locally free
V1
X -module of rank N � k.

Proof. Let us denote for brevity V WD V1
X . The statement is local onX . Fix x0 2 X .

We can choose �1; : : : ; �N�k 2 H0.E/ such that their images

N�1; : : : ; N�k; N�1; : : : ; N�N�k 2 E ˝V V=mx0
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form a basis. Consider a morphism of V-modules gWVk ˚ VN�k ! E given by

g.�1; : : : ; �k I 1; : : : ;  N�k/ D
kX
iD1

�i �i C
N�kX
jD1

 j �j :

Clearly gjVk 	 f . In a neighborhood of x0 we may and will identify E ' VN .
Then

gWVk ˚ VN�K D VN ! VN :

It is easy to see that the map

g ˝ IdV=mx0 WCN ' .V=mx0/
N ! C

N ' .V=mx0/
N

is an isomorphism. Hence .detg/.fx0g/ ¤ 0. It follows that detg 2 V is invertible
in a neighborhood of x0. Hence g is an isomorphism in a neighborhood of x0. This
implies the lemma immediately. ut
Lemma 2.3. Let P be a locally free V1

X -module of finite rank. Then for any V1
X -

module A,
ExtiV1

X �mod .P;A/ D 0 for i > 0:

Proof. We abbreviate againV WD V1
X . First notice that in the category of V-modules

the following two functors

F;GWV �mod ! Vect

are naturally isomorphic:

F.A/ D HomV�mod .P;A/;

G.A/ D H0.X;P � ˝V A/;

where P � WD HomV�mod .P;V/ is the inner Hom as usual. Indeed the natural
morphism

P � ˝V A D HomV�mod .P;V/˝V A ! HomV�mod .P;A/

is an isomorphism of sheaves. Taking global sections, we get an isomorphism

H0.X;P � ˝V A/ Q!H0.X;HomV�mod .P;A//:

But the last space is equal to HomV�mod .P;A/ (see [10], Chap. II, Sect. 1,
Exc. 1.15).
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Consequently F and G have isomorphic derived functors. Hence

ExtiV�mod .P;A/ ' Hi.X;P � ˝V A/:

But the last group vanishes for i > 0 by [3], Lemma 5.1.2. ut
Corollary 2.4. Let

0 ! A ! B ! C ! 0

be a short exact sequence of V1
X -modules. If C is locally free of finite rank, then

this exact sequence splits.

Proof. Indeed Ext1V�mod .C;A/ D 0 by Lemma 2.3. ut
Proposition 2.5. Let X be a compact manifold. Let E be a locally free V1

X -module
of finite rank. Then there exists another locally free V1

X -module H of finite rank
such that

E ˚ H ' .V1
X /

N :

Proof. Let us choose a finite open covering X D [˛U˛ such that the sheaf E jU˛
is free for each ˛. Let f�˛g be a partition of unity in the algebra of valuations
subordinate to this covering (it exist by [3], Proposition 6.2.1). We can find a
finite dimensional subspaceL˛ � H0.U˛; E/ which generates E jU˛ as V1

U˛
-module.

Consider �˛ � L˛ � H0.X; E/ (where all sections are extended by zero outside
of U˛). Then the finite dimensional subspace

L WD
X
˛

�˛ � L˛ � H0.X; E/

generates E as V-module (indeed at every x 2 X there exists an ˛ such that �˛ is
invertible in a neighborhood of x).

Let us choose a basis �1; : : : ; �s of L. Consider the morphism of V-modules
F WV s ! E given by

F.�1; : : : ; �s/ D
sX
iD1

�i �i :

Clearly F is an epimorphism of V-modules. Let A WD Ker.F /. By Corollary 2.4
the short exact sequence

0 ! A ! V s ! E ! 0

splits. Thus E ˚ A ' V s . Hence A is locally projective. Hence A is locally free by
Proposition 2.1. ut

Let us denote by Projf V1
X �mod (or just Projf V �mod ) the full subcategory

of V � mod consisting of locally free V-modules of finite rank. Let us denote by
Projf V

1.X/ �mod the category of projective V1.X/-modules of finite rank.



30 S. Alesker

Theorem 2.6. Let X be a compact manifold. Then the functor of global sections

� W Projf V1
X �mod ! Projf V

1.X/�mod

is an equivalence of categories.

Proof. We denote again by V WD V1
X . Let A;B 2 Projf V �mod . First let us show

that
HomV�mod .A;B/ D HomV1.X/�mod .� .A/; � .B//:

Both Hom functors respect finite direct sums with respect to both arguments. Since
A;B are direct summands of free V-modules by Proposition 2.5 we may assume
that A D B D V . But clearly

HomV�mod .V ;V/ D V1.X/;

HomV1.X/.V
1.X/; V1.X// D V1.X/:

Thus � is fully faithful.
Let us define a functor in the opposite direction (the localization functor),

GW Projf V
1.X/ �mod ! Projf V �mod;

by G.A/ WD A ˝V1.X/ V . G is also fully faithful: it commutes with direct sums,
and for trivial V1.X/-modules the statement is obvious.

The functors F ıG and G ı F are naturally isomorphic to the identity functors.
ut

3 Isomorphism Classes of Bundles Over Valuations

Recall that the sheaf of smooth valuations V1
X , which we will denote for brevity by

V , has a canonical filtration by subsheaves,

V D W0 
 W1 
 � � � 
 Wn:

This filtration is compatible with the product, and V=W1 ' OX canonically [3]. Let
us fix a natural number N . Let us denote by GLN .V/ (resp. GLN .OX/) the sheaf
on X of invertible N �N matrices with entries in V (resp. OX ). We have a natural
homomorphism of sheaves of groups

GLN .V/ ! GLN .OX/: (5)

It is well known that isomorphism classes of usual vector bundles are in bijective
correspondence with the (Cech) cohomology set H1.X;GLN .OX//. Similarly it is
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clear that locally free V-modules of rankN are in bijective correspondence with the
set H1.X;GLN .V//. The main result of this section is

Theorem 3.1. Let X be a compact manifold. The natural map

H1.X;GLN .V// ! H1.X;GLN .OX//

induced by (5) is a bijection. Thus, ifX is compact, the isomorphism classes of rank
N locally free V-modules are in natural bijective correspondence with isomorphism
classes of rank N vector bundles.

We will need some preparations before the proof of the theorem. First we observe
that GLN .V/ has a natural filtration by subsheaves of normal subgroups

GLN .V/ DW K0 
 K1 
 � � � 
 Kn;

where for any i > 0, Ki .U / WD f� 2 GLN .V/.U /j � 	 I mod Wi .U /g for any
open subset U � X . We have the canonical isomorphisms of sheaves of groups:

K0=K1 ' GLN .OX/; (6)

Ki =KiC1 ' .Wi =WiC1/N for i > 0: (7)

We have to remind some general results due to Grothendieck [9]. Let G be a
sheaf of groups (not necessarily abelian) on a topological space X . Let F � G be a
subsheaf of normal subgroups. Let H WD G=F be the quotient sheaf, which is also
a sheaf of groups. Notice that the sheaf of groupsG acts on F by conjugations.

Let E 0 be aG-torsor. Let c0 WD ŒE 0� 2 H1.X;G/ be its class. Define a new sheaf
F .E 0/ to be the sheaf associated to the presheaf

U 7! F .U / �G.U/ E
0.U /:

Since G acts on F by automorphisms, it follows that F .E 0/ is a sheaf of groups.
Grothendieck [9] has constructed a map

i1WH1.X; F .E 0// ! H1.X;G/;

and he has shown (see Corollary after Proposition 5.6.2 in [9]) that the set of classes
c 2 H1.X;G/ which have the same image as c0 under the natural map

H1.X;G/ ! H1.X;H/

is equal to the image of the map i1. In particular we deduce immediately the
following claim.
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Claim 3.2. If, for any G-torsor E 0,

H1.X; F .E 0// D 0

then the natural mapH1.X;G/ ! H1.X;H/ is injective.

We will need the following proposition.

Proposition 3.3. For any 1 � i < j and for any K0=Kj -torsor E 0, one has

H1.X; .Ki =Kj /.E
0// D 0:

Proof. The proof is by induction in j � i . Assume first that j � i D 1.
.Ki =KiC1/.E 0/ is a sheaf of OX -modules; this follows easily from (7) and the fact
that Wi =WiC1 is a sheaf of OX -modules. Hence .Ki =KiC1/.E 0/ is acyclic.

Assume now that j � i > 1. Then we have a short exact sequence of sheaves

1 ! .Kj =Kj�1/.E 0/ ! .Ki =Kj /.E
0/ ! .Ki =Kj�1/.E 0/ ! 1:

Hence we have an exact sequence of pointed sets (see [9], Sect. 5.3),

H1.X; .Kj =Kj�1/.E 0// ! H1.X; .Ki =Kj /.E
0// ! H1.X; .Ki =Kj�1/.E 0//:

The first and the third terms of the last sequence vanish by the induction assumption.
Hence the middle term vanishes too. Proposition is proved. ut

We easily deduce a corollary.

Corollary 3.4. The natural map

H1.X;GLN .V// ! H1.X;GLN .OX//

is injective.

Proof. By Proposition 3.3 H1.X;K1.E
0// D 0 for any K0-torsor E 0. Hence, by

Claim 3.2, the map H1.X;K0/ ! H1.X;K0=K1/ is injective. ut
We will need a few more results from [9]. Assume X is a paracompact topologi-

cal space (remind that all our manifolds are always assumed to be paracompact). Let
G be a sheaf of groups on X as before. Let F GG be a subsheaf of normal abelian
subgroups. Let H WD G=F be the quotient sheaf as before. The action of G on F
by conjugation induces in this case an action of H on F . For any H -torsor E 00 one
has the sheaf F .E 00/ defined similarly as before. This is a sheaf of abelian groups
since F is, and H acts on F by automorphisms. Grothendieck ([9], Sect. 5.7) has
constructed an element

ıE 00 2 H2.X; F .E 00//
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with the following property: ıE 00 vanishes if and only if the class ŒE 00� 2 H1.X;H/

lies in the image of the canonical map H1.X;G/ ! H1.X;H/.
In order to apply this result in our situation we will need two lemmas.

Lemma 3.5. For any i > 0 and any K0=Ki -torsor E 00,

H2.X; .Ki =KiC1/.E 00// D 0:

Proof. It is easy to see that .Ki =KiC1/.E 00/ is a sheaf of OX -modules. Hence it is
acyclic. ut
Lemma 3.6. For any i � 0 the natural map

H1.X;K0=KiC1/ ! H1.X;K0=Ki /

is onto.

Proof. Let c00 2 H1.X;K0=Ki / be an arbitrary element. Let E 00 be a K0=Ki -torsor
representing c00. Consider the element ıE 00 2 H2.X; .Ki =KiC1/.E 00//. Since the
last group vanishes by Lemma 3.5, by the above mentioned result of Grothendieck,
c00 lies in the image of H1.X;K0=KiC1/. Lemma is proved. ut
Corollary 3.7. The natural map

H1.X;GLN .V// ! H1.X;GLN .OX//

is onto.

Proof. The map in the statement factorizes into the sequence of maps

H1.X;GLN .V// D H1.X;K0/ ! H1.X;K0=Kn/ ! H1.X;K0=Kn�1/ ! : : :

� � � ! H1.X;K0=K1/ D H1.X;GLN .OX//

where all the maps are surjective by Lemma 3.6. Hence their composition is onto
too. ut

Now Theorem 3.1 follows immediately from Corollaries 3.4 and 3.7.

Remark 3.8. Theorem 3.1 has the following immediate consequence. For a compact
manifold X we can construct a K-ring generated by finitely generated projective
V1.X/-modules in the standard way. Namely as a group it is equal to the quotient
of the free abelian group generated by isomorphism classes of such modules by the
relations

ŒM ˚N� D ŒM �C ŒN �:

The product is induced by the tensor product of such V1.X/-modules. Then
Theorem 3.1 implies that there is a canonical isomorphism of this K-ring with the
classical topologicalK0-ring (see [6]) constructed from vector bundles.
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Remark 3.9. The main results of this paper are of general nature. It would be
interesting to have concrete geometric examples of V1

X -modules; in the classical
case of OX -modules we have the tangent bundle and its tensor powers.

As a first small step in this direction let us mention the following construction.
Let L be a flat vector bundle over a manifold X . By an abuse of notation, we will
also denote by L the sheaf of its locally constant sections. Let C be the constant
sheaf of C-vector spaces. Consider the V1

X -module defined by

QL WD L ˝C V1
X

where we consider V1
X as C-module via the imbedding C ,! V1

X where 1 goes to
the Euler characteristic. It is easy to see that QL is a locally free V1

X -module.
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On Multiplicative Maps of Continuous
and Smooth Functions

Shiri Artstein-Avidan, Dmitry Faifman, and Vitali Milman

Abstract In this note, we study the general form of a multiplicative bijection
on several families of functions defined on manifolds, both real or complex
valued. In the real case, we prove that it is essentially defined by a composition
with a diffeomorphism of the underlying manifold (with a bit more freedom in
families of continuous functions). Our results in the real case are mostly simple
extensions of known theorems. We then show that in the complex case, the only
additional freedom allowed is complex conjugation. Finally, we apply those results
to characterize the Fourier transform between certain function spaces.

1 Introduction and Main Results

The following is the simplest form of a lemma regarding multiplicative maps.
It is standard, and was used recently for example in the paper [2] where a
characterization of the derivative transform as an essentially unique bijection (up
to constant) from C1.R/ to C.R/ which satisfies the chain rule was derived.

Lemma 1.1. Assume that K W R ! R is measurable, not identically zero and
satisfies for all u; v 2 R that K.uv/ D K.u/K.v/. Then there exists some p > 0

such that
K.u/ D jujp or K.u/ D jujp sgn.u/:

When instead of R we have a more complicated set with a multiplication
operation, such as a class of functions, things become more involved. This already
became apparent in the papers [1, 3], where characterizations of the Fourier
transform were proved as a unique bijection between corresponding classes of
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functions which maps products to convolutions. Let us recall a result from the
paper [3]. Here S D SC.n/ denotes the Schwartz space of infinitely smooth rapidly
decreasing functions f WRn ! C, namely functions such that for any l 2 ZC and
any multi-index ˛ D .˛1; : : : ; ˛n/ of non-negative integers one has

sup
x2Rn

ˇ̌@˛f .x/
@x˛

.1C jxjl /ˇ̌ < 1

where as usual @
˛f .x/

@x˛
WD @j˛jf

@x
˛1
1 :::@x

˛n
n

, j˛j WD Pn
iD1 ˛i .

Let S 0
C
.n/ be the topological dual of SC.n/.

Theorem 1.2 (Alesker–Artstein–Faifman–Milman). Assume we are given a
bijective map T WSC.n/!SC.n/ which admits an extension T 0WS 0

C
.n/ ! S 0

C
.n/

and such that for every f 2 SC.n/ and g 2 S 0
�C.n/ we have Tu.f � g/ D

.Tf / � .Tug/. Then there exists a C1-diffeomorphism uWRn ! R
n such that

either T .f / D f ı u for all f 2 SC.n/;

or T .f / D f ı u for all f 2 SC.n/:

Thus, multiplicativity is valid only for transforms which are essentially a “change of
variables”. One of the elements in the proof was a lemma similar to those appearing
in Appendix A below.

An obvious corollary of Theorem 1.2, which appeared in [3], was a theorem
characterizing Fourier transform which is denoted by F and defined by

.Ff /.t/ D
Z
R

f .x/e�2�ixt dx:

It is well known that Fourier transform exchanges pointwise product on C with usual
convolution, which is denoted by f �g; that is, F.f �g/ D Ff �Fg and vice versa.
The corollary of Theorem 1.2 is that the Fourier transform is, up to conjugation and
up to a diffeomorphism, the only one which maps product to convolution among
bijections F WS ! S which have an extension F 0WS 0 ! S 0. It is not hard to check
that if convolution is also mapped back to product then the diffeomorphism u above
must be the identity mapping, for details see [3].

A similar characterization of the derivative through a functional equation was
undertaken in [7, 8]. The functional equation was taken to be the chain rule.

One of the main theorems in the present note is that the assumption of the
existence of F 0WS 0 ! S 0 may be omitted in this theorem (and the corresponding
extension of T in Theorem 1.2). This is presented in Theorem 1.10, one instance of
which is B being Schwartz space. A direct corollary of the theorem is

Theorem 1.3. Let T W SC.n/ ! SC.n/ be a bijection.

1. Assume T satisfies

T .f � g/ D Tf � Tg:
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Then there exists a C1-diffeomorphism u W R
n ! R

n such that either
Tf .u.x// D Ff .x/ or Tf .u.x// D Ff .x/.

2. Assume T satisfies
T .f � g/ D Tf � Tg:

Then there exists a C1-diffeomorphism u W R
n ! R

n such that either Tf D
F.f ı u/ or Tf D F.f ı u/.

Remark 1.4. Similarly, Theorem 1.10 may also be used to characterize bijections
T W SC.n/ ! SC.n/ which satisfy T .f � g/ D Tf � Tg.

Let us quote one more application of the method to Fourier theory. We denote
by C1

c .R;C/ the smooth complex valued function on R which have compact
support. It is well known, and referred to as a Paley-Wiener type theorem, that
the class C1

c .R;C/ is the image under Fourier transform of the class PW.R/
consisting of functions F which decay on the real axis faster than any power of
jxj, and have an analytic continuation on the complex plane satisfying the estimate
jF.z/j < A exp.Bjzj/ for some constants A;B , see for example [6]. A similar
characterization holds for functions of several variables, and we denote this class
PW.Rn/ D F.C1

c .R
n;C//. The following will be an immediate corollary of

Theorem 1.10.

Theorem 1.5. Let T W C1
c .R

n;C/ ! PW.Rn/ be a bijection which satisfies

T .f � g/ D Tf � Tg:

Then there exists a C1-diffeomorphism u W Rn ! R
n such that either Tf .u.x// D

Ff .x/ or Tf .u.x// D Ff .x/.

The setting of Schwartz space, and of its dual, in previous results, was very
specific, and from the point of view of merely multiplicative mappings—not very
natural. It was discussed mainly for its application to Fourier transform. However,
in other characterization problems we found that similar tools were used in their
proofs, and it turned out that in most of the natural situations in which we encounter
multiplicative transforms, it is possible to characterize their form. One example was
already given above in the form of compactly supported infinitely smooth functions.
Below are several other such examples, and these are the main theorems to be proven
in this note. The exposition is intended to make these tools available to the reader,
more than to demonstrate the specific results, most of which we later discovered
have already been proved in the literature (some more than 60 years ago, and some
very recently). We view our method as very straightforward and natural, and believe
it can be applied in many different situations.

In the following, a map T W B ! B between some class B of real- or complex-
valued functions, is called multiplicative if T .fg/ D Tf � Tg pointwise for all
f; g 2 B. Throughout the paper, we will address several families of Ck functions,
defined on a Ck manifoldM . When discussing Schwartz functions, it should always
be understood that M D R

n, and k D 1.
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Out first theorem regards multiplicative maps on continuous real valued func-
tions, and it goes back to Milgram [9]. We also extend it to the class of continuous
compactly supported functions.

Theorem 1.6. Let M be a real topological manifold, and B is either C.M;R/ or
Cc.M;R/. Let T W B ! B be a multiplicative bijection. Then there exists some
continuous p W M ! RC, and a homeomorphism u W M ! M such that

.Tf /.u.x// D jf .x/jp.x/ sgn.f .x//: (1)

Remark 1.7. Without some non-degeneracy (and above we assume bijectivity,
which is very strong non-degeneracy) there is a simple counterexample: let Tf D f

on x � 0, let Tf .x/ D f .x � 1/ on x � 1 and let Tf D f .0/ on Œ0; 1�. However,
this counterexample may actually hint that in a more general situation the map u
may be a set valued map.

Next we move to the classes of Ck functions, where similar theorems hold, and
moreover, no extra power is allowed, so that the mapping is automatically linear.
This theorem is also known, but much more recent—it appears in [11] for k < 1.
The C1 case remained open in [11], and our method is able to clarify it as well.
However, it also was already settled (by a considerably different method altogether)
in [13]. We also obtain the same results for some subspaces of Ck , namely the
compactly supported functions Ck

c , and the Schwartz functions S.n/.

Theorem 1.8. Let M be a Ck real manifold, 1 � k � 1, and B is one of the
following function spaces: Ck.M;R/, Ck

c .M;R/ or SR.n/. Let T W B ! B be a
multiplicative bijection. Then there exists some Ck-diffeomorphism u W M ! M

such that
.Tf /.u.x// D f .x/; (2)

In particular, T is linear.

We also address the case of complex-valued functions, which seems not to have
been treated in previous works.

Theorem 1.9. Let M be a topological real manifold, and B is either C.M;C/ or
Cc.M;C/. Let T W B ! B be a multiplicative bijection. Then there exists some
homeomorphism u W M ! M and a function p 2 C.M;C/, Re.p/ > 0 such that
either

T .rei� /.u.x// D jr.x/jp.x/ei�.x/
or

T .rei� /.u.x// D jr.x/jp.x/e�i�.x/

Theorem 1.10. Let M be a Ck real manifold, 1 � k � 1, and B is one of the
following function spaces: Ck.M;C/, Ck

c .M;C/ or SC.n/. Let T W B ! B be
a multiplicative bijection. Then there exists some Ck-diffeomorphism u W M !
M such that either Tf .u.x// D f .x/ or Tf .u.x// D f .x/. In particular, T is
R-linear.
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We give other variants of these theorems, and applications to Fourier transform,
in Sect. 5.

Acknowledgements The authors would like to thank Mikhail Sodin for several useful discussions,
Bo’az Klartag for explaining to us the failure of our original method of zero sets in the C1

n-dimensional setting, and the referee for numerous useful remarks and references, which allowed
us to improve our results, and helped to provide better structure and context for the article.

2 Zero Sets

In the following section, 0 � k � 1, and M is a Ck real manifold. We use for
f 2 Ck.M/ the notation Z.f / for the zero-set of the function, namely Z.f / D
fx 2 M W f .x/ D 0g. We will also need (though in a very mild manner) the notion
of the “jet” of a function at a point; in fact, we will only need here a function 	
whose k-jet at a point x0, denoted J	.x0/, is vanishing. This roughly means that all
its derivatives at the point vanish. For the precise definition of a jet, see Appendix A.
Finally, we fix a field F which is either R or C. For the remainder of the section, all
functions will have values in F, and it will be often omitted from the notation.

The goal of this section is to establish the following

Proposition 2.1. Let 0 � k � 1 be an integer, and let M be a Ck manifold. Let
B be one of the following function families: Ck.M;F/, Ck

c .M;F/, SF.n/. Assume
T W B ! B is a multiplicative bijection. Then there exists a homeomorphism u W
M ! M such that Z.Tf / D u.Z.f // for all f 2 B.

We present two different proofs. The first only applies to B D Ck.M/ with
k < 1, and also in several 1-dimensional cases for the other function families,
which will be specified later. The second proof is due to Mrcun [10], which applies
in all cases, with slight modifications for the cases B D Ck

c .M;F/ and B D SF.n/.

2.1 The Case of B D Ck.M;F/, k < 1

Lemma 2.2. Let f 2 Ck.M/. If f .x0/ D 0, then there exists h 2 Ck.M/ s.t.
Z.h/ D fx0g, and f 4kC4 is divisible by h in Ck.M/.

Proof. Fix 	 2 Ck.M/ which is non-negative, with J	.x0/ D 0, and 	.x/ > 0

for x ¤ x0. Take h D jf j2 C 	. It is then easy to see (Say, by induction) that
f 4kC4=h 2 Ck.M/, and we are done. ut
Remark 2.3. If M D R or M D S1, this also holds for k D 1 (with f instead of
f 4kC4): simply take h.x/ D x forM D R, x0 D 0. Note that the statement is local,
so it applies to S1 as well. If in addition all functions are required to belong to S.1/,
one can construct h 2 S.1/ with the required property. Since those constructions
only apply in the 1-dimensional case, while the corresponding C1 results hold in
all dimensions and will be proven differently, we omit the details.
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Corollary 2.4. Let f 2 Ck.M/ and x; y 2 M , x ¤ y s.t. f .x/ D f .y/ D 0. One
can then represent f 4kC4 D f1f2f3 with fj 2 Ck.M/ s.t. f1.x/ D f3.y/ D 0,
and Z.f1/ \Z.f3/ D ;.

Proof. Take, using Lemma 2.2 f1 and f3 such that Z.f1/ D fxg, Z.f3/ D fyg,
and f 4kC4 is divisible by both f1 and f3 in Ck.M/. It is then obvious that .f1f3/
divides f 4kC4 in Ck.M/, since for all z 2 M either f1.z/ ¤ 0 or f3.z/ ¤ 0. Thus,

f2 D f 4kC4

f1f3
2 Ck.M/ is well-defined. ut

Lemma 2.5. Let f; g 2 Ck.M/ s.t. f .x/ D g.x/ D 0. Then one can find
h 2 Ck.M/ with h.x/ D 0 s.t. both f 4kC4 and g4kC4 are divisible by h.

Proof. Take h D f 2 C g2, and verify divisibility by induction. ut
We denote by gcd.f 4kC4; g4kC4/ the family of all such functions h.

Remark 2.6. Again, if M D R or M D S1, this also holds for k D 1, with f; g
instead of f 4kC4; g4kC4, since if the zero is assumed to be, say, at the point 0, then
h.x/ D x is a common divisor.

We next prove that there is a function u W M ! M which governs the behavior
of zero-sets of functions under the transform T W Ck.M/ ! Ck.M/.

Proposition 2.7. Let 0� k <1 and let M be a Ck manifold. Assume
T WCk.M/!Ck.M/ is a multiplicative bijection. Then there exists a homeo-
morphism u W M ! M such that Z.Tf / D u.Z.f // for all f 2 Ck.M/.

Proof. Step 1. For f 2 Ck.M/, Z.f / D ; if and only if Z.Tf / D ;.
Simply note that ifZ.f /D ; then gD 1=f 2Ck.M/. Thus .Tf /.Tg/D

T .fg/ D T .1/, and obviously T .1/ D 1, so that Z.Tf / D ;. For the
reverse implication, consider T �1, which is multiplicative as well.

Step 2. For f; g 2 Ck.M/ we have thatZ.f /\Z.g/ ¤ ;, if and only if Z.Tf /\
Z.Tg/ ¤ ;.

Take by Lemma 2.5 h 2 gcd.f 4kC4; g4kC4/. Denote f 4kC4 D vh and
g4kC4 D wh. Therefore Tf 4kC4 D T vT h and Tg4kC4 D TwT h. By
assumption, Z.h/ ¤ ;, and therefore ; ¤ Z.T h/ � Z.Tf / \Z.Tg/. For
the reverse implication, consider T �1.

Step 3. There exists an invertible map u W M ! M such that Z.f / D fxg implies
Z.Tf / D fu.x/g.

Assume Z.f / D fxg. By (1), Z.Tf / ¤ ;. If y; z 2 Z.Tf / and
y ¤ z, apply the previous lemma: write Tf 4kC4 D g1g2g3 with g1.x/ D
g3.z/ D 0, Z.g1/ \ Z.g3/ D ;. By bijectivity of T , gj D T .fj /. Thus
f 4kC4 D f1f2f3. By step 2, f1 and f3 have no common zeros, while
by step 1 both f1 and f3 have zeros. Thus f has at least two zeros, a
contradiction. We conclude that Tf has a unique zero. If Z.f / D Z.g/ D
fxg, by step 2 Tf and Tg have a common (and by above unique) zero, thus
Z.Tf / D Z.Tg/, i.e. Z.Tf / D fu.x/g for some u W M ! M . Note that u
must be invertible by observing T �1.
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Step 4. For f 2 Ck.M/, x 2 M , one has f .x/ D 0 if and only if Tf .u.x// D 0,
i.e. Z.Tf / D u.Z.f //.

Take f such that f .x/ D 0, and using Lemma 2.2 take h dividing f 4kC4
with Z.h/ D fxg. Denote f 4kC4 D hv. Then Tf 4kC4 D T hT v, and
since T h.u.x// D 0 by step 3, one has Tf .u.x// D 0. For the reverse
implication, consider T �1.

Step 5. The map u W M ! M is a homeomorphism.
For a chart Rn ' U � M , take a Ck function f with Z.f / D M n U .

Then u.B/ D M n Z.T .f // is an open set. Similarly, the preimage of a
chart is open. Since the charts form a basis of the topology, images and
preimages by u of open sets are open. Therefore, u is a homeomorphism.

ut
Remark 2.8. The construction of a homeomorphism with the property as in
Lemma 2.7 does not extend to the general C1.M/ case. Nevertheless, it can
be carried out when M D R or M D S1 by Remarks 2.3 and 2.6.

2.2 The Cases of B D Ck.M;F/, Ck
c .M;F/ and SF.n/,

0 � k � 1

We use the construction of u from [10] that is used in [11]. Some attention should
be paid when repeating it for the different families of functions, and we do it in full
detail for the convenience of the reader.

Proposition 2.9. Let B be a multiplicatively closed family of functions s.t.
Ck
c .M/ � B � Ck.M/. Let T W B ! B be a multiplicative bijection, which

restricts to a bijection of Ck
c .M/. Then there exists a homeomorphism u W M ! M

s.t. u.Z.f // D Z.Tf / for all f 2 B.

Proof. Step 1. Recall the notion of a characteristic sequence of functions
fj at a point x 2M : this a sequence fj 2Ck

c .M/ s.t. fj fjC1 DfjC1,
and

T
supp.fj /D fxg. Fix some x 2M and a characteristic sequence of

functions for it, fj . By our assumptions, gj DT .fj / satisfy gjgjC1 DgjC1, so
supp.gjC1/ � supp.gj /, and those are also compact sets, so K D T

supp.gj /
¤ ;. We want to show that this intersection is in fact a single point. Fix y 2 K ,
a neighborhood U of y, and choose a characteristic sequence ˇj at y with
supp.ˇ1/ � U . Take ˛j D T �1ˇj . Then �j D fj ˛j has compact support
and satisfies �jC1 D �j �jC1, so

T
supp.�j / ¤ ;, but supp.�j / � supp.fj /, soT

supp.�j / D fxg and �j is a characteristic family at x. In particular, �1fj D fj
for large j , and applying T , ˇ1g1gj D gj . So supp.gj / � supp.ˇ1/ � U

for large j . This holds for every U , implying
T

supp.gj / D fyg. We claim
that y depends only on x and not on the choice of characteristic sequence
fj . Assuming Qfj is another such sequence, fj Qfj is also a characteristic
sequence at x, so if

T
supp.Tfj / D fyg,

T
supp.T Qfj / D fzg and y ¤ z
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then
T

supp.TfjT Qfj / � fyg \ fzg D ;, a contradiction. We thus define the
map u W M ! M by u.x/ D y. By bijectivity of T , it is obvious that u is also
bijective.

Step 2. We next claim that for all f 2 B, x 2 M ,T .f /.u.x// depends only on the
germ fx . Indeed, assume fx D gx . Take a characteristic sequence �j at x. Then
for some large j , �j f D �jg, so T .�j /T .f / D T .�j /T .g/. By construction
of u, T .�j / 	 1 in a neighborhood of u.x/, so T .f /.u.x// D T .g/.u.x//.

Step 3. Take f 2 B s.t. f .x/ ¤ 0. Choose g 2 B s.t. .fg/x D 1x (which can be
done since Ck

c .M;F/ � B). Then T .f /.u.x//T .g/.u.x// D T .1x/.u.x//. Now
T .fx/.u.x//T .1x/.u.x// D T .fx/.u.x// by multiplicativity for any germ fx ,
implying by surjectivity of T that T .1x/.u.x// ¤ 0 (in fact, since 12x D 1x ,
we immediately conclude that T .1x/.u.x// D 1). Thus T .f /.u.x// ¤ 0. By
considering T �1, we get f .x/ ¤ 0 ” Tf .u.x// ¤ 0, as required. Finally, u
is a homeomorphism by Step 5 of the proof of Proposition 2.7. ut

Remark 2.10. It follows from step 2 that in fact T maps germs of functions
at x to germs of functions at u.x/. This is also an immediate consequence of
Proposition 2.1, as will be seen in the next section.

Corollary 2.11. Let B be a multiplicatively closed family of functions s.t.
Ck
c .M/�B �Ck.M/ and for all f 2B, fx 2M Wf .x/D 1g �M is compact.

Let T W B ! B be a multiplicative bijection. Then there exists a homeomorphism
u W M ! M s.t. u.Z.f // D Z.Tf / for all f 2 B.

Proof. By the proposition above, it only remains to verify that T restricts to a
bijection of Ck

c .M/. Observe that

f 2 C1
c .M/ ” fg D f for some g 2 B

Indeed, if f 2 C1
c .M/, just choose any g 2 Ck

c .M/with g 	 1 on supp.f /. In the
other direction, if fg D f with g 2 B, then g ¤ 1 outside some compact set K ,
implying supp.f / � K . Since T is multiplicative and bijective, fg D f ”
Tf Tg D Tf , so T restricts to a bijection of Ck

c .M/ as required. ut
Corollary 2.12. For both B DCk

c .M;F/ and B DSF.n/, a multiplicative bijection
T W B ! B defines a homeomorphism u W M ! M s.t. u.Z.f // D Z.Tf / for all
f 2 B.

Proof. Simply apply the Corollary above. In fact, for B D Ck
c .M;F/ Proposition

2.9 applies immediately. ut
Remark 2.13. The family B D Ck.M;F/ does not satisfy all assumptions automat-
ically: it is not immediate that T W Ck.M/ ! Ck.M/ preserves the subspace of
compactly supported functions, which makes the construction in [10] slightly more
involved. We do not repeat here the proof in this case, since no details of the original
proof should be modified.
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3 Real Valued Functions

In the following section, we describe the general form of T W B ! B for the real-
valued function families B from Proposition 2.1. We then separately treat the cases
of k D 0 and 0 < k � 1. The reader might want to review the notion of the jet
of a function before proceeding (see Appendix A). We will write Bk instead of B
for any of the families Ck.M/, Ck

c .M/, and also S.n/ if k D 1. One always has
Ck
c .M/ � Bk. In the following, fx denotes the germ of f at x.

Proposition 3.1. Given a multiplicative bijection T W Bk !Bk (with 0� k� 1)
there exists a homeomorphism u, given by Lemma 2.1, such that letting Tu be defined
by Tu.f / D T .f / ı u, the new map Tu W Bk ! C.M;R/ has the following
properties:

(1) It is multiplicative, that is, Tu.fg/ D Tu.f /Tu.g/

(2) It is local, namely .Tuf /x D .Tug/x when fx D gx . Moreover, .Tuf /.x/ D
F.x; J kf .x//.

(3) It is determined by its action on non-negative functions, namely

Tu.f /.x/ D
�
0; f .x/ D 0

Tu.jf j/.x/ sgn.f .x//; f .x/ ¤ 0

Proof. Part (1) is obvious. For part (2), observe:

Step 1. T .0/D 0. Immediate since T .f /T .0/DT .0/ for all f , and T is bijective.
Step 2. For any open set V , f D g on V implies Tf D Tg in cl.u.V //.

Indeed, take any open ball B � V , and take a function h with Z.h/ D M n B
(a bump function overB). We have f �h D g �h inM , and so Tf �T h D Tg �T h
in M and by Proposition 2.7 Z.T h/ D M n u.B/, implying Tf D Tg in u.B/.
This holds for all u.B/ � u.V /; since u is a homeomorphism,Tf D Tg in u.V /,
and by continuity in cl.u.V //.

Put another way, we proved that the germ .Tf /u.x/ only depends on the
germ fx of f at x. We may write .Tf /u.x/ D T .fx/u.x/, and T .f /.u.x// D
Tu.f /.x/ D Tu.fx/.x/. Thus we may compute Tu.Cx/ for the constant germ
C at x, even if the constant function C … B, by completing C to a compactly
supported function away from x.

Step 3. .Tf /.u.x// D F.x; J kf .x// for some F W J k ! R.
Indeed, fix x0 2 M . Choose an open ball U around x0, and two open sectors
V1; V2 � U , having x0 as a common vertex, and cl.V1/ \ cl.V2/ D fx0g. Given
two functions f1; f2 2 C.M/, assume that J kf1.x0/ D J kf2.x0/. By Whitney’s
extension theorem, one can choose a Ck

c .M/ function f3 that equals fj on Vj
for j D 1; 2. Then Tu.f3/ and Tu.fj / coincide on cl.Vj /, and in particular,
Tf1.u.x0// D Tf3.u.x0// D Tf2.u.x0//. Therefore, .Tuf /.x/ D .Tf /.u.x// D
F.x; J kf .x//. This completes the proof of (2).

Step 4. Tu.�1x/ D ..�1/ı.x//x with ı.x/ 2 f0; 1g a locally constant function.
Indeed, for any germ fx , Tu.fx/ D Tu.fx/Tu.1x/ so Tu.1x/ 	 1x. Again by
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multiplicativity, Tu.�1x/2 D Tu.1x/ D 1x , so Tu.�1x/ D ..�1/ı.x//x Finally,
note that Tu.�1x/ is the germ of a continuous function to conclude ı.x/ is locally
constant.

Step 5.

.Tuf /.x/ D
�
0; f .x/ D 0

Tu.jf j/.x/Tu.sgn.f .x///; f .x/ ¤ 0

Indeed, since by continuity, for any x 2 M such that f .x/ ¤ 0, sgnf is locally
constant at x, and by step 2 Tu.fx/.x/ D Tu.sgnf .x/jfx j/.x/.

Step 6. The function ı.x/ from step 4 satisfies ı.x/D 1 for all x. Indeed,
f .x0/> 0 implies .Tuf /.x0/ > 0: One can choose g 2 Ck

c .M/ with f .x/ D
g.x/2 for x near x0. Then Tu.f /.x0/ D Tu.g/

2.x0/ > 0. If Tu.�1/.x/ D C1
for some x, it implies that .Tf /.u.x// D T .jf j/.u.x// is always non-negative
on the connected component of u.x/ in M , thus contradicting surjectivity of T .
Therefore, Tu.�1x/ D �1x . ut
From now on we work with Tu instead of T , and only return to the original T

when we show that u is a Ck-diffeomorphism. Thus, for now we cannot assume that
the image of Tu is Ck , but only that it is continuous.

By part (3) of Proposition 3.1, we need to study our transform only on non-
negative functions.

Lemma 3.2. Let Tu satisfy the conclusion of Proposition 3.1. Then there exists a
global section of .J k/�, ck , such that for f .x0/ > 0,

Tu.f /.x0/ D exp.hck.x0/; J k.logf /.x0/i/

If k < 1, ck is a continuous global section. If k D 1, it is locally finite dimensional
and continuous, i.e. every x0 2 M has an open neighborhood U such that c1 D
Qn.cn/ in U for some finite n, and cn is a continuous section of .J n/� over U .

Proof. As in the proof above, Tu clearly maps positive functions to positive func-
tions. Define A WCk

c .M/!C.M/ by A.f /D logTu.exp.f //. Then A is an addi-
tive transformation, with the additional property that A.f /.x/DB.x; J kf .x//,
where B.x; �/ W J kx ! R is an additive functional for every x 2 M . Apply
Lemma A.2 from Appendix A to conclude the stated result. ut

We are ready to conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. Recall that Tu D T ı u, and observe that it is surjective, as
T is. We already know by Lemma 3.2 with k D 0 that

.Tf /.u.x// D
�
0; f .x/ D 0

jf .x/jc0.x/ sgn.f .x//; f .x/ ¤ 0

with c0.x/ continuous. We are left to show that c0.x/ > 0 everywhere. Indeed, if
c0.x/ D 0 then Tuf .x/ is either 0 or ˙1 for every f , contradicting surjectivity
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of Tu; while if c0.x/ < 0, we could take a positive function f with an isolated zero
at x0, and then limx!x0 Tf .x/ D 1, contradicting continuity of Tf .

Next we assume k � 1 and prove Theorem 1.8, i.e. that .Tf /.u.x// D f .x/. We
will denote v D u�1.

Fix some x0 2 M , and choose a relatively compact neighborhood U of x0
as in Lemma 3.2. Thus .Tf /.u.x// D exp.hck.x/; J k.logf /.x/i/ for positive
f 2 Ck.U /, and ck D Q.n; k/.cn/ for some finite n, cn a continuous section
of J n over U (i.e., ck only depends on the n-jet of the function). We claim that one
can take n D 0. We may assume that U is a coordinate chart with x0 at the origin.
Then, if cn at x0 depends on terms of the jet other than the constant term, one has

hck.x/; J k.logf /.x/i D a0.x/ log f .x/C
X

1�j˛j�n
a˛.x/

@j˛j logf

@x˛

where a˛ 2 C.U /, and a˛0.0/ ¤ 0 for some ˛0 ¤ 0. Fix such ˛ of maximal
modulusm D j˛j, and take f .x/ D 
1x1 C : : :C 
dxd where d D dimM . Then

@j˛j logf

@x˛
D ˙Q



˛j
j .j˛j � 1/Š

.
P

jxj /j˛j

so an appropriate choice of 
j (not all zero) will guarantee that

X
j˛jDm

a˛.x/
@j˛j logf

@x˛
D C.x/

.
P

j xj /m

with C.x/ continuous and non-vanishing near 0. The same would hold, with a
different C.x/, also if we sum up all the ˛-derivatives for 1 � j˛j � n. It follows
that

Tu.
X


j xj / D j
X


jxj ja0.x/e
P
1�j˛j�n a˛.x/.log

P

j xj /

.˛/

cannot be continuous at 0, a contradiction.
Thus .Tf /.x/ D f .v.x//a0.v.x// for positive f . Taking fx 	 2x, we conclude

that a0.v.x// 2 Ck.M/. As in the case k D 0 we see that a0 > 0, so f .v.x// 2
Ck.M/ for all positive f , which implies v 2 Ck.M;M/. The same reasoning
applied to T �1, we conclude that u is a Ck-diffeomorphism. Now it is obvious that
Ck
c .M/ is invariant under T , so T W Ck

c .M/ ! Ck
c .M/ is a bijection. Since k � 1,

we must have a0 	 1, so .Tf /.u.x// D f .x/, as claimed. ut

4 Complex Valued Functions

In this section, we describe the general form of T W B ! B for the complex-valued
function families B from Proposition 2.1. We again treat the cases of k D 0 and
0 < k � 1 separately. We write Bk instead of B for any of the families Ck.M/,
Ck
c .M/, and also S.n/ if k D 1. One always has Ck

c .M/ � Bk.
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Proposition 4.1. Given a multiplicative bijection T WBk !Bk (with 0� k� 1)
there exists a homeomorphism u, given by Lemma 2.1, such that letting Tu be defined
by Tu.f / D T .f / ı u, the new map Tu W Bk ! C.M;C/ has the following
properties:

(1) It is multiplicative: Tu.fg/ D Tu.f /Tu.g/

(2) It is local, namely .Tuf /x D .Tug/x when fx D gx . Moreover, .Tuf /.x/ D
F.x; J kf .x//.

(3) Tu.f /.x/ D 0 if and only if f .x/ D 0.

The proof of this statement is as in the real case, and is omitted. We denote
v D u�1. It is then obvious that Ck

c .M;C/ is an invariant subspace of T , on which
T is bijective. Also by part (2), Tu extends naturally to a map Tu W Ck.M;C/ !
C.M;C/ which retains properties (1)–(3).

We next make some helpful decompositions, which enable us to treat the various
parts of the transform separately. A complex valued function f 2 Ck.M;C/ can
be written as r.x/ei�.x/ where r � 0 continuous s.t. r 2 Ck.fx W r.x/ > 0g, and
� 2 Ck.fx W r.x/ > 0g; S1/ and

Proposition 4.2. There exists a function g0 2 C.M;RC/, and global sections dk 2
.J k/�.M � S1;R/, hk 2 .J k/�.M � R/ and ek 2 .J k/�.M � S1; S1/ such that

Tu.re
i� /.x/D

(
0; r.x/D0
r.x/g0.x/eihhk.x/;J k log r.x/iehdk.x/;J k�.x/ieihek.x/;J k�.x/i; r.x/¤0

The sections hk; dk; ek are continuous when k < 1, and locally finite dimensional
and continuous when k D 1.

Proof. We may, using multiplicativity of Tu, write

Tu.r.x/ exp.i�.x/// D Tu.r.x//S.�.x//

where S.�/ D Tu.exp.i�//. Since we already know that zeros are mapped to zeros,
Tu W Ck.M;RC/ ! C.M;C�/ and S W Ck.M; S1/ ! C.M;C�/ are group
homomorphisms. Denote further Tu.r/ D G.r/H.r/ and S.�/ D D.�/E.�/,
where D W Ck.M; S1/ ! C.M;RC/, E W Ck.M; S1/ ! C.M;S1/, G W
Ck.M;RC/ ! C.M;RC/, H W Ck.M;RC/ ! C.M;S1/ are homomorphisms
of groups. Furthermore, Property (2) immediately implies that D;E;G;H are all
local, namely depend only on the jets of the functions.

As in the real case, we apply lemma A.2 of Appendix A to conclude that
G.r/.x/ D r.x/g0.x/ with g0 2 C.M;RC/ (if k � 1, G cannot depend on
higher derivatives of r as in the proof of Theorem 1.8, while g0 > 0 as in the
proof of Theorem 1.6: g0 � 0 to guarantee continuity of Tu.r.x// at a zero point
of r , and g0.x/ D 0 would immediately contradict surjectivity of T ). Then by
Lemmas A.3–A.5 of Appendix A, D.�/.x/ D exp.hdk.x/; J k�.x/i/; H.r/.x/ D
exp.ihhk.x/; J k log r.x/i/; and E.�/ D exp.ihek.x/; J k�.x/i/ where dk; hk; ek
are as stated. ut
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We now can complete the proof of Theorem 1.9.

Proof of Theorem 1.9. Recall that k D 0. Then dk.x/ D 0, ek.x/ D m for
some fixed m 2 Z and hk.x/ D h0 for some h0 2 C.M/. Thus Tu.re

i� / D
rg0ei.m�Ch0 log r/, g0; h0 2 C.M/. From injectivity of Tu on B, m D ˙1: otherwise,
either m D 0 and Tu does not depend on � ; or jmj � 2, so � can be replaced with
� C 2�=m without affecting Tu.re

i� / (for any compactly supported r.x/). Thus

T .rei� /.u.x// D r.x/p.x/e˙i�

where p.x/ D g0.x/C ih0.x/, as claimed. ut
Next we proceed to prove Theorem 1.10.

Proof of Theorem 1.10.

Step 1. We prove that u is a Ck-diffeomorphism of M . Taking r 	 2, � 	 0 we
see that jT .2/.x/j D 2g0.v.x// 2 Ck.M/, in particular g0.v.x// 2 Ck.M/.
Thus for any r.x/ 2 Ck.M;RC/ (again �.x/ 	 0/)

log jT .r/.x/j D g0.v.x// log r.v.x// 2 Ck.M/

so also r.v.x// 2 Ck.M;RC/. Thus v 2 Ck.M;M/. By considering T �1,
u is also Ck, implying u is a Ck-diffeomorphism of M . From now on we
only consider Tuf D Tf ı u, and prove that Tuf D f or Tuf D f . Note
that Tu W Ck.M/ ! Ck.M/, and its restriction Tu W Ck

c .M/ ! Ck
c .M/ is

a bijection.
Step 2. We show here that dk D 0. If dk ¤ 0, one could choose for any x0 2 M a

function � 2 Ck.U nfx0g/whereU is a small neighborhood of x0 contained
in a coordinate chart with its origin at x0, for which dk only depends on the
m-jet,m < 1, s.t. hdk.xn/; J k�.xn/i � g0.xn/

jxnj2 for someU nfx0g 3 xn !x0,

while jJ j �.x/j � Cj jxj�Nj for all j � k and x 2 U n fx0g (simply
take � D C jxj�2 with appropriate C in a contractible neighborhood of the
sequence .xn/, and extend it to U n x0 arbitrarily). Then, taking r.x/ D
exp.�1=jxj2/, one has f .x/ D r.x/ei�.x/ 2 Ck.U /, f .x0/ D 0 while

jTuf .x0/j D lim
n!1 r.xn/

g0.xn/ exp.hdk.xn/; J k�.xn/i/

� lim
n!1 exp.�g0.xn/=jxnj2/ exp.g0.xn/=jxnj2/ D 1

a contradiction. Thus, dk 	 0.
Step 3. We show that g0 	 1. Indeed, since jTu.r.x/e

i�.x//j D r.x/g0.x/ 2Ck.M;

RC/ for all r 2 Ck.M;RC/, and since Tu is surjective on Ck
c .M;C/, we

must have g0 	 1

Step 4. We next claim that hk 	 0. Note that for all r.x/ 2 Ck.M;RC/,

Tu.r.x// D r.x/eihhk.x/;J k log r.x/i 2 Ck.M/
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so hk is a Ck section of .J k/�.M � R/. First, hk only depends on the
constant term of the jet, or else Tu.r.x// would not be in Ck for all r 2
Ck.M;RC/: this is obvious when k <1; and if kD 1, we proceed as was
done in the real case. Fix a coordinate chart U s.t. hk.x/ D .a˛.x//j˛j�m
where a˛ 2 Ck.U /, m � 1 and a˛.0/ ¤ 0 for some ˛ with j˛j D m. Take
f .x/ D 
1x1 C : : :C 
dxd with coefficients 
j s.t.

X
j˛jDm

a˛.x/
@j˛j logf

@x˛
D C.x/

.
P

j xj /m

with C.x/ 2 Ck.U / and non-vanishing near 0. Then, assuming 
1 ¤ 0 and
considering only points x where f .x/ > 0,

@

@x1
.Tuf / D 
1e

ihhk.x/;J k log f .x/i

C
�X


j xj

	��@C.x/
@x1

1

.
P

jxj /m

� m
1C.x/

.
P

jxj /mC1

�

C
X

j˛j�m

C˛.x/

.
P

jxj /j˛j

�
eihhk.x/;J k log f .x/i

where all C˛ are continuous. Thus there is no limit to @
@x1
.Tuf / as x ! 0

(along points of positivity for f ), a contradiction. So hk D h0 2 C.M;R/.
Then, if h0.x0/ ¤ 0, take a chart with x0 at the origin, and consider f .x/ D
x1 2 Ck.M/—the first coordinate function. Then

@

@x1
.Tuf /.0/ D lim

x1!0C

x1e
ih0.x/ log x1

x1
D lim

x1!0C

eih0.x/ log x1

which diverges since h0.x/ log x1 is continuous when x1 2 .0;1/, and
limx1!0C

jh0.x/ logx1j D 1. This is a contradiction.
Step 5. Finally, we want to show that hek.x/; J k�.x/i D ˙ �.x/. First, by con-

sidering a coordinate chart and polynomial functions � , we see that the
components of ek.x/ are in fact Ck . We now treat separately the cases
k < 1 and k D 1.

Case 1: k < 1. Then Tu.e
i�.x// D exp.ihek.x/; J k�.x/i/ 2 Ck.M; S1/ for all

ei� 2 Ck.M; S1/, which is impossible unless ek only depends on J 0� ,
i.e. hek.x/; J k�.x/i D m�.x/. From injectivity of Tu on Ck

c .M;C/,
m D ˙1.

Case 2: k D 1. Let us prove the following
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Proposition. P W C1.M;R/ ! C1.M;R/, � 7! hek.x/; J1�.x/i
induces an isomorphism of stalks of smooth functions at every p 2 M .

Proof. Indeed, fix p 2 M , and a germ up represented by u 2 C1.U;R/
with some small neighborhoodU 3 p.

To see that Ker.Pp/ D 0, assume .P u/p D 0, so P u vanishes identically
in some neighborhood V of p. Take any r 2 C1

c .M;RC/ with supp.r/ �
V and r.p/ > 0. Then Tu.r exp.iu// D r exp.iPu/ 	 r and also Tu.r/ D r ,
so by injectivity of Tu, u must be a multiple of 2� whenever r ¤ 0, in
particular up 	 .2�l/p—a constant germ with l 2 Z. Since P.c/ D mc

for constant functions c, and m ¤ 0 from injectivity of Tu on Ck
c .M;C/,

we may conclude that c D 0 and so up D 0.
For surjectivity of Pp , let us find vp s.t. .P v/p D up. Choose

any smooth continuation of u to M , and some r.x/ 2 C1
c .M;RC/

with r.p/D 1. By surjectivity of Tu, one can find v 2 C1.M;R/ s.t.
r exp.iu/ D Tu.r exp.iv// D r exp.iP v/. Thus P v 	 u modulo 2� in
some neighborhood V D fr.x/ ¤ 0g of p. We then may replace v by
v C 2�l if necessary, and replace V by a connected neighborhood of p so
that .P v/p 	 up, as required. ut

Step 6. Now fix a small neighborhoodW in M , s.t. hek.x/; J k�.x/i only depends
on a finite jet, i.e. P is a differential operator inW . We apply a consequence
of Peetre’s theorem (see Lemma A.7 below) to conclude thatP is of order 0,
implying J k� D m� . From injectivity of Tu on Ck

c .M;C/, m D ˙1. This
concludes the proof of Theorem 1.10. ut

5 Various Generalizations and Applications
to Fourier Transform

One of our main motivations for studying multiplicative transforms is that Fourier
transform can be, in certain settings, characterized by the property that it carries
product to convolution, as explained in the introduction. We already stated two
corollaries of Theorem 1.10 following from this point of view, namely Theorems 1.3
and 1.5. Of course, in general the Fourier transform is not defined on all continuous
functions, and even when it is, its image is usually not as well understood as in
the case of Schwartz and compactly supported function. Let us first state a formal
corollary of Theorems 1.6 and 1.8, in the case where M D S1, that is, of 2�-
periodic real-valued functions.

Denote the subclass of `2.Z/ consisting of those sequences which are the
coefficients of the fourier series of 2�-periodic real valued Ck functions by Ek .
Fourier series is a bijection O� W Ck.S1;R/ ! Ek , given by

Of .n/ D
Z 2�

0

f .x/e�2�inxdx:
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It satisfies that bf � g D Of � Og where here we use � for two series to mean their
convolution (or Cauchy product), that is,

fang � fbng D fcng where ck D
X
j2Z

aj bk�j :

Corollary 5.1. Let F W Ck.S1;R/ ! Ek be a bijection which satisfies

F.f � g/ D .Ff / � .Fg/: (3)

Then there exists some continuous p W RC ! RC and a Ck-diffeomorphism u W
S1 ! S1 such that

Ff D Og with g.x/ D jf .u.x//jp.x/ sgn.f .u.x///: (4)

and if k � 1 then p 	 1 , i.e. g D f ı u.

Another interesting class to work with isL2.R/\Ck.R/\L1.R/, and although
our theorems do not formally apply to this class, it is not hard to check that their
corresponding variants are valid as well, as the interested reader may care to verify.

One may thus apply the Fourier transform F in this case, and conclude that
the only bijections from this class to its images under F which map product
to convolution are the standard Fourier transform composed with the additional
terms coming from out main theorems (a diffeomorphism u only, if k � 1, and
some power p.x/ and sign if k D 0). Clearly not every choice of u and p will
give a bijection, but the statement is only on the existence of such functions. The
“permissible” u and p are to be determined by the class in question.

We next briefly present an observation regarding possible generalizations of the
main theorems. We state them in the simplest case of continuous functions on M .

Theorem 5.2. Let M be a real topological manifold, let V;W;U WC.M/!C.M/

satisfy that V is a bijection and that for all f; g 2 C.M/

V.f � g/ D .Wf / � .Ug/: (5)

Then there exist continuous a; b W M ! R
C, p W M ! RC, and a homeomorphism

u W M ! M such that

Vf .u.x// D a.x/jf .x/jp.x/ sgn.f .x//;

Wf .u.x// D b.x/jf .x/jp.x/ sgn.f .x//;

Uf .u.x// D c.x/jf .x/jp.x/ sgn.f .x//;

with c.x/ D a.x/

b.x/
.
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Proof. Take g	 1, and denoteWg.x/D c.x/ 2 C.R/ and Ug.x/ D d.x/ 2 C.R/.
Then V.f / D U.f / � c.x/ D d.x/ �W.f /. From bijectivity of V we see that c and
d can never vanish, and that

V.fg/ D 1

c.x/d.x/
V .f /V .g/:

Define Tf D Vf=.cd/ we have

T .fg/ D 1

cd
V.fg/ D 1

cd
Vf � 1

cd
Vg D Tf � Tg:

Since V is a bijection, so is T , and we may apply Theorem 1.6 to conclude that
there exists some continuous p W M ! RC, and a homeomorphism u W M ! M

such that
.Tf /.u.x// D jf .x/jp.x/ sgn.f .x//: (6)

Therefore, letting a.x/ D c.u.x//d.u.x// and b.x/ D d.u.x//, the proof is
complete. ut
Remark 5.3. The version of the above theorem in which Fourier transform can be
applied (say, the L2.R/\C.R/\L1.R/ case) has, as usual, a direct consequence
regarding the exchange of product and convolution. Assume W;U; V satisfy

V.f � g/ D W.f / � U.g/:

Apply F and get that V 0 D FV , W 0 D FW and U 0 D FU satisfy

V 0.f � g/ D W 0.f / � U 0.g/;

which is equation (5). Of course, one needs some assumption on the range of V to
get that V 0 is a bijetcion, and apply a modification of Theorem 5.2. The conclusion
would be of the form

.Vf /.u.x// D Oa.x/ � F

jf .x/jp.x/ sgn.f .x//

�
:

Appendix A: Additive Local Operators on Jet Bundles

A.1 A Review of Jet Bundles

We briefly outline the basic definitions concerning jet bundles. For more details,
see [14].

Let M be a Cn manifold (0 � n � 1), and fix a Cn smooth real vector bundle
E over M . We denote by Ok.E;U / the Ck sections on U � M , and � .Ok.E//



52 S. Artstein-Avidan et al.

D Ok.E;M/ the global Ck section of E . Also, � k
c .E/ will denote the compactly

supported globalCk sections ofE . For our purposes, we really only need two cases:
E D M � R and E D M � C. The Ck sections are then simply Ck functions on
M with values in R or C. Let J k DJ k.E/ (with k � n) denote the associated k-
jet bundle for which the fiber over x 2 M is denoted J kx . We give two equivalent
definitions of jet bundles, and consider first the case k < 1.

1. Consider the sheaf of modules Ok.E/ of Ck sections ofE over the sheaf of rings
Ok.M/ WD Ok.M � R/. The stalk Ok;x at x of Ok.M/ is a local ring, with the
maximal ideal nx D ffx.x/ D 0g. We then define the space J kx .E/ of k-jets at
x as the quotient Ok;x.E/=n

kC1
x Ok;x.E/. We denote the projection

J k.x/ W Ok;x.E/ ! J kx .E/

and for k < n one also has the natural projections

P.k/.x/ W J kC1
x ! J kx

We then topologize the disjoint union J k D S
x2M J kx by requiring all set-

theoretic sections of the form
PN

jD1 aj .x/J kfj .x/ to be continuous, for aj 2
C.M/ and fj 2 � .Ok.E//.

Informally, J kf .x/ is the k-th Taylor polynomial of f , in a coordinate-free
notation. For instance, J 0.E/ D E , and J 1.M � R/ D .M � R/˚ T �M .

2. It is well known that if x 2 M is a critical point for a function f 2 C2.M/,
i.e. dxf D 0, then the Hessian of f is well defined. For a general bundle E ,
the same happens already in the first order: the 1-jet of a germ sx 2 Ok;x.E/ is
well defined at x 2 M (it is an element of T �

x M ˝ Ex), given that s.x/ D 0.
Proceeding by induction, one can show that the notion J kx sx D 0 is well defined
for all finite k, as well as for k D 1. The space of k-jets at x is then defined as
the quotient Ok;x.E/=fsx W J kC1

x sx D 0g.
For k D 1 (assuming M is C1) only the second definition applies.

Alternatively, one could generalize definition 1 as follows: define the space
J1
x .E/ of 1-jets at x as the nx-adic completion of Ok;x.E/. This is just the

inverse limit of J kx through the projections P.k/. Thus,

J1
x .E/ D f.vj /1jD0 W P.j /.vjC1/ D vj g

The equivalence of the two definition is known as Borel’s lemma. The set-
theoretic bundle of jets J D J1 will be the disjoint union of all fibers J1

x .E/.
We denote Jf D J1f the section of J defined by a C1 section f of E . For
0 � j < k � 1, denote P.k; j / W J k ! J j the natural projection map, and
Q.j; k/ D P.k; j /� W .J j /� ! .J k/�. Also, denotePk D P.1; k/,Qk D P �

k .
We will assume that some inner product is chosen on J n for n < 1.

In general, there is no canonic map J kx ! J nx when k < n. However, when
k D 0 and E D M � V for some vector space V , such a map does exist: We
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have J 0x ' E0x ' V and all isomorphisms are canonical, so one can choose a
constant function with the given value and consider its n-jet. Such jets are called
constant jets.

We list a few more basic properties of jets, which will not be used in the paper.
Assume that E is trivial over M , with fiber either R or C. The fiber J nx with
0 � n � 1 is then naturally a local ring, with maximal ideal mx D fJ nf W
f .x/ D 0g D KerP.n; 0/, mk

x D KerP.n; k/. Thus we get an mx-filtration
of J nx . The induced mx-adic topology on J nx is Hausdorff by definition, and
complete.

A.2 S1-Bundles

We would like to discuss separately the case E D M � S1, where S1 is considered
as a Lie group. We make the following definition: For f D ei� 2 Ck.M; S1/,
J kf WD J k� . Note that J 0f is only defined up to 2� . Further, note that a functional
c W J kx .M � S1/ ! R is induced from a functional Qc W J kx .M � R/ ! R which
vanishes on constant jets. Denote the bundle of such functionals by .J k/�.M �
S1;R/. We also define a linear character � W J kx .M � S1/ ! S1 by � D exp.ic/
where c W J kx .M � R/ ! R is a linear functional s.t. c.v/ D mv for constant jets
v, for some fixed m 2 Z. The bundle of linear characters � (as well as that of the
corresponding functionals c) is denoted .J k/�.M � S1; S1/.

A.3 Main Lemmas

Particular cases of the following Lemma have appeared before, i.e. in [5].

Lemma A.1. Fix a C s manifold M , 0 � s � 1, and a C s real vector bundle E
overM . Assume B W J s.E/ ! R satisfies the following conditions:

(1) B.x; u C v/ D B.x; u/C B.x; v/ for all x 2 M , u; v 2 J sx .
(2) For all f 2 � s

c .E/, one has B.J sf / 2 C.M/.
Then B is linear in every fiber.

Proof. Let A D fx 2 M jB.x; �/ W J sx ! R is non-linearg. First we prove thatA has
no accumulation points in M .

Assume the contrary, i.e. A 3 xk ! x1. We can assume that xk ¤ xl for
1 � k < l � 1. By the assumption, there exists a sequence vk 2 J sxk such that
the functions B.xk; tvk/ are additive and non-linear in t . We will construct in A.4 a
sequence of sections fk 2 � s.E/ such that:

(a) fk is supported in a small neighborhood of xk , such that supp.fk/\supp.fl / D
; for k ¤ l , and x1 … supp.fk/, for all k < 1.
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(b) J sfk.xk/ D �kvk for some 0 < �k < 1.
(c) jJmin.k;s/fk.x/j < 2�k for all x 2 M and k < 1.

Given that, choose 0< tk ! 0 such that jB.xk; tk�kvk/j>1, using that non-linear
additive functions are not locally bounded, and consider f D P1

kD1 tkfk . By
condition (c), f 2 � s.E/, and by (a), (b), J sf .xk/ D tkJ

sfk.xk/ D tk�kvk and
J sf .x1/ D 0. ThusB.xk; tkJ sf .xk// ! B.x1; J sf .x1/ by condition (2) onB ,
but jB.xk; tkJ sf .xk/j > 1 while B.x1; 0/ D 0, a contradiction.

Next, we show that A is empty. Indeed, take any sequence xk … A converging to
arbitrary x1 2 M . Fix any v 2 J sx

1

, and choose f 2 � s.E/ with J sf .x1/ D v.
Then for all t 2 R, B.xk; tJ sf .xk// ! B.x1; tJ sf .x1//, i.e. B.x1; tv/ is a
pointwise limit of continuous functions (of t 2 R), thus a measurable function. Next
use a theorem of Banach and Sierpinski, see [4,15] which states that if B.x1; tv/ is
a measurable function of t and B.x1; �/ is additive, then it must be linear. ut
Lemma A.2. Under the conditions of the lemma above

(1) If s < 1 then B is a continuous section of .J s/�.
(2) If s D 1 then B is locally finite dimensional and continuous in the following

sense: Denoting Fn D fx W B.x; �/ 2 Image.Qn/xg, one has Fn � FnC1 are
closed sets, and for all K � M compact, there exists an n such that K � Fn
and B D Qn.cn/ where cn is a continuous section of .J n/� overK .

Proof. (1) Fix some coordinate chart U � M , with a trivialization of E over M .
Take cs.x/ 2 .J sx /

� s.t. B.x; v/ D cs.x/.Ps.v// D P
j˛j�s a˛;ˇ.x/v

.˛/

ˇ (here ˛
parametrizes the order of the derivative, and ˇ the coordinate inEx) for x 2 U ,
v 2 J sx . Take xk ! x1 within U , with x1 at the origin. We claim that
a˛;ˇ.xk/ ! a˛;ˇ.x1/: this is straightforward by condition (2) if one considers
polynomial sections. Thus cs is continuous.

(2) Step 1. Let C D fx 2 M jB.x; �/ … Image.Qn/ for all n < 1g. We prove
that C has no accumulation points. Like before, assume the contrary, i.e.
C 3 xk ! x1, and all xk are different for k � 1. Choose a sequence
vk 2 J1

xk
with Pk.vk/ D 0 and B.xk; vk/ D 1. Again, we construct in A.4 a

sequence of functions gk 2 � 1.E/ such that:

(a) gk is supported in a small neighborhood of xk , such that supp.gk/ \
supp.gl /D ; for k ¤ l , and x1 … supp.gk/, for all k.

(b) Jgk.xk/ D vk .
(c) jJ kgk.x/j < 2�.k�1/ for all x 2 M .

Now consider gD P1
kD1 gk . By condition (c), g 2�1.E/, Jg.xk/DJgk

.xk/D vk and Jg.x1/ D 0. Thus 1 D B.xk; Jg.xk// ! B.x1; Jg.x1//
D 0 by condition (2) on B , a contradiction.

Step 2. Fix some coordinate chartU � M , with a trivialization ofE overM .
Then for x 2 Fn one has cn.x/ 2 .J nx /

� s.t. B.x; v/ D cn.x/.Pn.v// DP
j˛j�n a˛;ˇ.x/v

.˛/

ˇ (here ˛ parametrizes the order of the derivative, and ˇ
the coordinate in Ex) for x 2 Fn \ U , v 2 J1

x . Take xk ! x1 within
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U , with xk 2 Fn. We will show that a˛;ˇ.xk/ converges as k ! 1: this is
straightforward by condition (2) if one considers polynomial sections. And
so cn extends to a continuous section of .J n/� on the closure of Fn. This
implies that for all v 2 J1

x one can choose any f with Jf .x1/ D v, and
then by condition (2)

B.x1; v/ D B.x1; Jf .x1// D lim
k!1B.xk; Jf .xk//

D lim
k!1 cn.xk/.J

nf .xk//

D cn.x1/.J nf .x1// D cn.x1/.v/

i.e. x1 2 Fn. Thus, Fn is closed.
Step 3. We now show thatC is in fact empty. Assume otherwise, and takeM n
C 3 xk ! x1, x1 2 C . Since Fk are all closed sets, we may assume xk 2
M nFk . We may further assume that all xk are distinct. Now we simply repeat
the construction of step 1: Choose a sequence vk 2 J1

xk
with Pk.vk/D 0 and

B.xk; vk/ D 1. Choose the functions gk , g as before. Thus Jg.xk/ D vk and
Jg.x1/ D 0, so 1 D B.xk; Jg.xk// ! B.x1; Jg.x1// D 0 by condition
(2) on B , a contradiction.

Step 4. Finally, if K � M is compact, and Fk \ K is a strictly increasing
sequence of subsets, one can choose a converging sequenceKnFk3xk!x1,
which is impossible by Step 3. ThusK � Fn for large n. ut

A.4 The Construction of the Function Families

We finally construct the functions fk , gk which we used in the lemmas above, for
some fixed k. We do this by mimicking the proof of Borel’s lemma. Since the
construction is local, we can assume E is trivial. For simplicity, we further assume
M D R, andE D M �R. We will denote v D vk . For convenience, assume xk D 0.
Take

ı D min

�
1

2
minfjxm � xkj W 1 � m � 1; m ¤ k:g

�

Fix a smooth, non-negative function h 2 C1.R/ such that h.x/ D 0 for jxj > ı,
and h.x/ D 1 for jxj � ı=2. Let  n.x/ D xnh.x/, then  .j /n .0/ D nŠı

j
n .

Define

n D maxf1; jv.j /j; sup j nj; sup j 0

nj; : : : ; sup j .n/n jg

�n D v.n/

nŠ
nn
 n.
nx/

Then

�.j /n D v.n/

nŠ

n�j
n

 .j /n .
nx/
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and �.j /n .0/ D v.j /ıjn . Take H D P1
nD0 �n.x/. This is a C1 function, since

X
j�.j /n j �

jC1X
nD0

jv.n/j
nŠ


n�j
n

sup j .j /n j C
1X

nDjC2

1

nŠ

1



n�j�2
n

jv.n/j

n

sup j .j /n j

n

and JH.0/ D v.
Now we consider our two cases separately: For an arbitrary vk 2 R

1, take

�k D 1

2k.1C maxfsup jH j; sup jH 0j; : : : ; sup jH.k/jg/
and fk D �kH satisfies (a)–(c).

For vk 2 Ker.Pk/, we have for all j < k

jH.j /j �
1X

nDkC1

1

nŠ
� 1

2k�1

so gk D H satisfies (a)-(c) ut

A.5 Replacing R with S1

Next we state without proof several variants of the lemmas above. To see how the
proofs above adapt to those S1 cases, see [3].

Lemma A.3. Fix a C1 manifold M , and E D M � R. Assume B W J1 ! S1

(here S1 is a Lie group) satisfies the following conditions:

(1) B.x; u C v/ D B.x; u/B.x; v/ for all x 2 M , u; v 2 J1
x .

(2) For all f 2 C1
c .M/, one has B.J1f / 2 C.M/.

Then B.x; u/ D exp.ihc.x/; ui/ where c 2 J �. Moreover, M D S1
nD0 Fn

where Fn D fx W c.x/ 2 Image.Qn/xg. The sets Fn � FnC1 are closed, and
for all K � M compact, one has K � Fn for some n, and B is a continuous
section of .J n/� over K .

Lemma A.4. Fix a C1 manifoldM , andE D M �S1. Assume B W J1.E/ ! R

satisfies the following conditions:

(1) B.x; uv/ D B.x; u/C B.x; v/ for all x 2 M , u; v 2 J1
x .

(2) For all f 2 C1
c .M; S

1/, one has B.J1f / 2 C.M/.
Then B.x; v/ D hc.x/; vi/ where c 2 J � vanishes on constant jets.

Moreover, M D S1
nD0 Fn where Fn D fx W c.x/ 2 Image.Qn/xg. The sets

Fn � FnC1 are closed, and for all K � M compact, one hasK � Fn for some
n, and B is a continuous section of .J n/� overK .



On Multiplicative Maps of Continuous and Smooth Functions 57

Lemma A.5. Fix aC1 manifoldM , andE D M �S1. AssumeB W J1.E/ ! S1

satisfies the following conditions:

(1) B.x; uv/ D B.x; u/B.x; v/ for all x 2 M , u; v 2 J1
x .

(2) For all f 2 C1
c .M; S

1/, one has B.J1f / 2 C.M;S1/.
Then B.x; v/ D exp.ihc.x/; vi/ where c 2 J �. Moreover, M D S1

nD0 Fn
where Fn D fx W c.x/ 2 Image.Qn/xg. The sets Fn � FnC1 are closed, and
for all K � M compact, one has K � Fn for some n, and B is a continuous
section of .J n/� over K . Also, c.x/.v/ D mv for constant jets v, with m 2 Z.

Remark A.6. One also has the C s simpler versions of those lemmas, with s < 1.

A.6 A Consequence of Peetre’s Theorem

In the following,M is a real smooth manifold, andE , F are smooth vector bundles
overM . First, recall Peetre’s Theorem [12]:

Theorem. Let Q W �1.E/ ! �1.F / be a linear operator which decreases
support: supp.Qs/ � supp.s/. Then for every x 2 M there is an integer k � 0

and an open neighborhoodU 3 x s.t. P restricts to a differential operator of order
k on �1.U;E/.

Lemma A.7. Let P W �1.E/ ! �1.E/ be an invertible differential operator,
which for all x 2 M induces an isomorphism on the stalk Ox.E/. Then P is of
order 0.

Proof. Denote Q D P�1. We claim that Q is a local operator (i.e. Qf.x/ only
depends on the germ fx of f 2�1.E/). Indeed, assume fx D 0 and take g D Qf .
Then .Pg/x Dfx D 0, implying gx D 0, as required. In particular, Q does not
increase supports: supp.Qf / � supp.f /. By Peetre’s theorem, Q is locally a
differential operator. Thus in small neighborhoods U � M , P and Q are two
differential operators that are inverse to each other, and we conclude they have
order 0. ut

Appendix B: Two Characterizations of Continuous
Functions

In this appendix we give two lemmas in the same spirit, which may be of use in other
settings. One concerns bijections of open sets preserving intersection. The other is
almost trivial but nevertheless may be useful.

Denote by U.R/ the open subsets of R.

Lemma B.1. Assume F W U.R/ ! U.R/ is a bijection which satisfies

F.U1 \ U2/ D F.U1/\ F.U2/:
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Then F is given by an open point map u W R ! R,

F.U / D fu.x/ W x 2 U g:

Proof. First we claim that F is an order isomorphism. Indeed, (using injectivity)

U1 � U2 , U1 \ U2 D U1 , F.U1/\ F.U2/ D F.U1/ , F.U1/ � F.U2/:

Next, note that this implies that

F.U1 [ U2/ D F.U1/[ F.U2/:

Indeed, denote (using surjectivity) F.U3/ D F.U1/[F.U2/, then F.U1/ � F.U1[
U2/ and F.U2/ � F.U1[U2/ and thus F.U3/ � F.U1[U2/ and so U3 � U1[U2.
On the other hand U1 � U3 and U2 � U3, so that U1 [ U2 � U3. We get equality,
thus F preserves union too.

Next we claim that the set of special open sets fAx W x 2 Rg given by Ax D
fy 2 R W y ¤ xg is invariant under F . Indeed, start by noticing that F.R/ D R, as
it satisfies that R \ A D A for every A. (Also that R [ B D R for every B) and
these properties are preserved under F and unique to this subset.

Next, notice that a setAx satisfiesAx[B D Ax or R for everyB . Whereas every
other open set A has at least two points which are not elements in it, and thus one
may construct at least three different sets as combinations A [ B for various open
B’s. Therefore, F.Ax/ D Au.x/. Notice that F�1 satisfies the same conditions as F
and thus u is a bijection.

Finally, for a set A we know that for any x 62 A

F.A/ D F.A \Ax/ D F.A/ \Au.x/

and thus u.x/ 62 F.A/, so that F.A/ � u.A/. However, using the same argument
for u�1 we get that F �1.A/ � u�1.A/, and applying this to the set F.A/ we get
A � u�1.F.A// which means u.A/ � F.A/ and the proof is complete. ut
Remark B.2. Clearly u is a continuous bijection. It is also clear that the setting of R
can be vastly generalized.

Lemma B.3. Let f W Rn �R ! R be a function such that for any g 2 C.Rn/, also
f .x; g.x// 2 C.Rn/. Then f is continuous.

Proof. Without loss of generality it suffices to show that f is continuous at .0; 0/ 2
R
n � R. Choose R

n � R 3 .xj ; yj / ! 0, and show that f .xj ; yj / ! f .0; 0/.
Assume otherwise, namely, that one can choose such a sequence and � > 0 such
that jf .xj ; yj /�f .0; 0/j > �. Since by assumption f .�; yj / is continuous for all j ,
we may choose x0

j 2 R
n such that jx0

j � xj j < 1
j

and jf .x0
j ; yj /� f .xj ; yj /j < �

2
.

Moreover, we can do it in such a way that all x0
j are different. Then one can choose a

continuous g W Rn ! R such that g.x0
j / D yj . Thus f .x0

j ; yj / D f .x0
j ; g.x

0
j // !

f .0; 0/. But also jf .x0
j ; yj /� f .0; 0/j > �

2
, a contradiction. ut
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Order Isomorphisms on Convex Functions
in Windows

Shiri Artstein-Avidan, Dan Florentin, and Vitali Milman

Abstract In this paper we give a characterization of all order isomorphisms on
some classes of convex functions. We deal with the class C vx.K/ consisting of
lower-semi-continuous convex functions defined on a convex setK , and its subclass
C vx0.K/ of non negative functions attaining the value zero at the origin. We show
that any order isomorphism on these classes must be induced by a point map on the
epi-graphs of the functions, and determine the exact form of this map. To this end
we study convexity preserving maps on subsets of Rn, and also in this area we have
some new interpretations, and proofs.

1 Introduction

In recent years, a big research project initiated by the first and third named authors
has been carried out, in which a characterization of various transforms by their most
simple and basic properties has been found. Among these are the Fourier transform
(see [1,2]), the Legendre transform (see [6]), polarity for convex sets (see [5,10,16]),
the derivative (see [9]) and various other transforms. This paper is part of this effort.

One example for such characterization is the understanding of bijective order
isomorphisms for certain partially ordered sets (see Sect. 3 for definitions and
details). In this category one includes the Legendre transform, which is, up to linear
terms, the unique bijective order reversing map on the set of all convex (lower-semi-
continuous) functions on R

n, with respect to the pointwise order. In this paper we
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discuss analogous results where the convex functions are defined on a “window”,
that is on a convex set K � R

n, and several other variants as well.
One main tool in the proof of such results is the fundamental theorem of affine

geometry, which states that an injective mapping on R
n which sends lines to lines,

and whose image is not contained in a line, must be affine linear. When working
with “windows”, one immediately encounters a need for a similar theorem for maps
defined on a subset of R

n. Such theorems exist in the literature, and a mapping
which maps intervals to intervals on a subset of Rn must be of a very specific form,
which we call here “fractional linear”, discussed in Sect. 2. A remark about this
name is in need: the mappings are of the form: AxCb

hc;xiCd for A 2 Ln.R/; b; c 2
R
n and d 2 R, with some extra restriction. In the literature, the name “fractional

linear maps” sometimes refers to Möbius transformations, which is not the case
here (note that a Möbius transformation on a subset of C D R

2 does not preserve
intervals, but these notions are indeed connected—see Example 2.7). One could
name them “permissable projective transformation” but we prefer to think about
them exclusively in R

n and not on the projective space. Another option was to call
them “convexity preserving maps”, which describes their action rather than their
functional form, but this hides the fact that they are of a very simple form.

The classification of interval preserving transforms of a convex subset of Rn is
known (see [15]). However, since this is an essential part for our study of the order
isomorphisms on functions in windows, we dedicate the whole of Sect. 2 to this
topic. We also provide some new insights and results, and give a seemingly new
geometric proof of the main fact which is that such maps are fractional linear. Some
parts of this section are elementary and may be known to the reader, but we include
them as they too serve as intuition for the way these maps behave.

In Sects. 3–5 we turn to the main topic of this paper, namely characterization
of order preserving (and reversing) isomorphisms on classes of convex functions
defined on windows. Let T � K be two closed convex sets. The class of all lower-
semi-continuous convex functions ff W K ! R [ f1gg is denoted C vx.K/, and
its subclass of non negative functions satisfying f .T / D 0 is denoted C vxT .K/. In
Sect. 3 we give background on general order isomorphisms. In Sects. 4 and 5 we deal
with characterization of such transforms on C vx.K/ and C vx0.K/ respectively.
In both cases, the proof is based on finding a subset of convex functions which
are extremal, in some sense. The extremal elements are relatively simple functions,
which can be described by a point in R

nC1. We show that an order isomorphism
is determined by its action on the extremal family, and that its restriction to this
family must be a bijection. Therefore the transform induces a bijective point map on
a subset of RnC1. By applying our uniqueness theorem, we show that this point map
must be fractional linear. We then discuss some generalizations of these theorems
to other classes of non-negative convex functions.

Acknowledgements The authors would like to thank Leonid Polterovich for helpful references
and comments. They also wish to thank the anonymous referee for useful remarks. Supported in
part by Israel Science Foundation: first and second named authors by grant No. 865/07, second and
third named authors by grant No. 491/04. All authors were partially supported by BSF grant No.
2006079.
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2 Interval Preserving Maps

We start this section with a simple but curious fact which is stated again and proved
as Theorem 2.27 below. This fact demonstrates the idea that fractional linear maps
should be a key ingredient in convexity theory. Consider a convex bodyK (actually
any closed convex set will do) which includes the origin and is included in the half-
space H1 D fx1 < 1g � R

n. One may take its polar, defined by

Kı D fy W sup
x2K

hx; yi � 1g:

Since polarity reverses the partial order of inclusion on closed convex sets including
the origin, Kı includes the set Œ0; e1� which is the polar of H1. Translate it by �e1
(so now it includes Œ�e1; 0�, and in particular includes the origin) and then take
its polar again. In other words, we constructed a map mapping certain convex sets
(which include 0 and are included in the half-spaceH1) to convex sets, given by

F.K/ D .Kı � e1/
ı:

Clearly this mapping is order preserving.
While polarity is a “global” operation, it turns out that this mapping is actually

induced by a point map on H1, QF W H1 ! R
n, which preserves intervals, and

can be explicitly written as QF .x/ D x
1�x1 . (This is a simple calculation, and for

completeness we provide it in the proof of Theorem 2.27 below.)
This map is a special case of the so called “fractional linear maps” which are the

main topic of this section.

2.1 Definition and Simple Observations

Definition 2.1. Let D � R
n. A function f W D ! R

n is called an interval
preserving map, if f maps every interval Œx; y� � D to an interval Œz;w�.

Lemma 2.2. Let D � R
n, and let f W D ! R

n be an injective interval preserving
map. Then for every x; y 2 D with Œx; y� � D we have that f .Œx; y�/ D
Œf .x/; f .y/�.

Proof. Indeed, assume that f .Œx; y�/ D Œw; z�, and that, say, f .y/ 2 .w; z/. Pick a
point b 2 .w; f .y//, and a point b0 2 .f .y/; z/. Then for some a; a0 2 .x; y/, b D
f .a/ and b0 D f .a0/. Consider f .Œa; a0�/. It is an interval that includes the points b
and b0, and therefore it includes f .y/, whereas y 62 Œa; a0�—in contradiction to the
injectivity of f . ut
Lemma 2.3. Let D � R

n, and let f W D ! R
n be an injective interval preserving

map. Then the inverse f �1 W f .D/ ! D is interval preserving.
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Proof. Let I D Œf .a/; f .b/� be an interval in the image, and f .c/ 2 I . From
Lemma 2.2 f .Œa; b�/ D I , so by injectivity, c 2 Œa; b�. ut
Remark 2.4. Clearly, an interval preserving map f must be convexity preserving,
i.e. f must map every convex set K to a convex set f .K/. We will actually need
the opposite direction, given in the following lemma.

Lemma 2.5. Let D � R
n be a convex set, and let f W D ! R

n be an injective
interval preserving map. Then the inverse image of a convex set in f .D/ is convex.

Proof. Let K � f .D/ be a convex set, and let x; y 2 f �1.K/. We wish to show
that Œx; y� � f �1.K/. The interval Œx; y� is contained in the convex domainD, and
by Lemma 2.2 we know that

f .Œx; y�/ D Œf .x/; f .y/� � K;

where the last inclusion is due to convexity of K . This implies Œx; y� � f �1.K/.
ut

Lemma 2.6. Let D � R
n be an open domain and f W D ! R

n an injective
interval preserving map, then f is continuous.

Proof. Let us prove that f is continuous at a point x 2 D. We may assume that
D is convex (restrict f to an open convex neighborhood of x). Let y D f .x/ 2
f .D/ and By an open ball containing y. If x 2 int.f �1.By// we are finished (we
have a neighborhood of x that is mapped into By ). We claim this must be the case.
Indeed, assume otherwise, then x is on the boundary of the set f �1.By/, which by
Lemma 2.5, is convex. Let xout 2 D such that Œx; xout � \ f �1.By/ D fxg. Then
f .Œx; xout �/ is an interval I � f .D/ such that I \ By D fyg, but no such interval
exists, since By is open. ut

2.2 Fractional Linear Maps

Clearly, linear maps are interval preserving. It turns out that when the domain of the
map is contained in a half-space of Rn, there is a larger family of (injective) interval
preserving maps. Indeed, fix a scalar product h�; �i on R

n, let A 2 Ln.R/ be a linear
map, b; c 2 R

n two vectors and d 2 R some constant, then the map

v 7! 1

hc; vi C d
.Av C b/

is defined on the open half space hc; vi < �d and is interval preserving. One can
check interval preservation directly, or deduce it from the projective description in
Sect. 2.2.1, as well as an injectivity argument. A necessary and sufficient condition
for this map to be injective is that the associated matrix OA (defined below) is
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invertible. The matrixA itself need not be invertible, for an example see Remark 2.9.
We call these maps “fractional linear maps”, see the introduction for a remark about
this name.

2.2.1 Projective Description

Consider the projective space RPn D P.RnC1/, the set of 1-dimensional subspaces
of RnC1. It is easily seen that

RPn ' R
n [ RPn�1;

where one can geometrically think of Rn as R
n � f1g � R

nC1, so that each line
which is not on the hyperplane e?

nC1. R
n/, intersects the shifted copy of Rn at

exactly one point. The lines which lie on e?
nC1 are thus lines in an n-dimensional

subspace, and are identified with RPn�1.
Any invertible linear transformation on R

nC1 induces a transformation on RPn,
mapping lines to lines. Thus it induces in particular a map F W R

n ! R
n [

RPn�1. The part mapped to RPn�1 is either empty—in which case the induced
transformation on R

n is linear, or an affine hyperplane H—in which case the
induced transformation F W Rn nH ! R

n is fractional linear.
Indeed, if the matrix associated with the original transformation in L.RnC1;RnC1/

is OA 2 GLnC1, then the hyperplane in R
n mapped to e?

nC1 is simply fx 2 R
n W

. OA.x; 1//nC1 D 0g. If OA is given by

OA D
�
A b

cT d

�

with A 2 Mn�n, b; c 2 R
n and d 2 R, then the set fx W hc; xi C d ¤ 0g � R

n

is exactly the pre image of RPn�1 under F . It is an n � 1 dimensional subspace if
c ¤ 0, and empty if c D 0 ( OA 2 GLnC1 implies d ¤ 0 in that case).

Pick any vector x 2 R
n which is not in this hyperplane, then it is mapped to y D

OA.x; 1/ 2 R
nC1 which has a non-vanishing .nC1/th coordinate, ynC1 D hc; xiCd .

Normalize y ! y=ynC1, so that the last coordinate is 1, and consider only the first
n coordinates of this vector (we denote the projection to the first n coordinates by
Pn). Thus, under the above map, x is mapped to

F.x/ D Pn

� OA.x; 1/=. OA.x; 1//nC1
	

D Ax C b

hc; xi C d
: (1)

Denote the domain of the map by D � R
n. Clearly, if D D R

n, the condition
�.x/ D . OA.x; 1//nC1 ¤ 0 for all x 2 D implies that this (affine linear) function
�.x/ is constant, which means that our induced map is affine linear. However,
when D is contained in a half space (for example, if D is a convex set strictly
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contained in R
n), there are many choices of OA which satisfy this condition. Indeed,

. OA.x; 1//nC1 D hc; xi C d for some c 2 R
n and d 2 R (.c; d / is the .nC 1/th row

of OA), and the condition is that

8x 2 D hc; xi ¤ �d;

which can be satisfied for appropriate chosen c and d ; for every direction c in
which D is bounded, there exists a critical d such that from this value onwards
the condition is satisfied (the critical d may or may not be chosen, depending on the
boundary of D). Other ways of describing these maps will be given in Sect. 2.4.

Notation. For future reference we denote the map F associated with a matrix OA
by FA and the matrix OA associated with a map F by AF . Note that OA is defined
uniquely up to a multiplicative constant. We say that AF induces F , and may also
write F � AF .

Example 2.7. We are, in fact, very much familiar with one class of projective
transformations: Möbius transformations of the extended complex plane. These are
just projective transformations of the complex projective line P1.C/ to itself. We
describe points in P1.C/ by homogeneous coordinates Œz0; z1�, and then a projective
transformation � is given by �.Œz0; z1�/ D Œaz0Cbz1; cz0Cd z1� where ad �bc 6D 0.
This corresponds to the invertible linear transformation

T D
�
a b

c d

�
:

It is convenient to write P1.C/ D C [ fC1g where the point fC1g is now
the 1-dimensional space z1 D 0. Then if z1 6D 0, Œz0; z1� D Œz; 1� and �.Œz; 1�/ D
Œaz C b; cz C d� and if cz C d 6D 0 we can write �.Œz; 1�/ D Œ.az C b/=.cz C d/; 1�

which is the usual form of a Möbius transformation, i.e.

z 7! az C b

cz C d
:

The advantage of projective geometry is that the point 1 D Œ1; 0� plays no special
role. If czCd D 0we can still write �.Œz; 1�/ D ŒazCb; czCd� D ŒazCb; 0� D Œ1; 0�

and if z D 1 (i.e. Œz0; z1� D Œ1; 0�) then we have �.Œ1; 0�/ D Œa; c�. In this note,
however, we work over R and these transformations when considered as acting over
R
2 do not preserve intervals.

Example 2.8. If we view the real projective plane P2.R/ in the same way, we
get some less familiar transformations. Write P2.R/ D R

2 [ P1.R/ where the
projective line at infinity is f.x; y; 0/; x 2 R; y 2 Rg. A linear transformation
T W R3 ! R

3 can then be written as the matrix
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T D
0
@a11 a12 b1a21 a22 b2

c1 c2 d

1
A ;

and its action on Œx; y; 1� can be expressed, with v D .x; y/ 2 R
2, as

v ! 1

hc; vi C d
.Av C b/

where A is the matrix faij g and b; c are the vectors .b1; b2/, .c1; c2/. Each
such transformation can be considered as a composition of an invertible linear
transformation, a translation and an inversion v ! v=.hc; vi C d/. Clearly it is
easier here to consider projective transformations defined by 3 � 3 matrices.

Remark 2.9. Consider the matrix

OA D
0
@1 0 00 0 1

0 1 0

1
A :

It gives rise to the transformation

.x; y/ 7!
�
x

y
;
1

y

�
;

which is injective (where it is defined). The upper 2 � 2 block (or n � n, in the
general case) is not invertible, though. We will get back to this transformation in
later sections.

2.2.2 Basic Properties

1. Preservation of intervals. It is very easy to check that the map F defined above
in (1) preserves intervals. Indeed, an interval in R

n is a subset of a line, which
corresponds to a two dimensional plane in R

nC1. The latter is mapped by AF to
a two dimensional plane, and after the radial projection to the level xnC1 D 1 we
again get a line.

2. Maximal domain. A non affine fractional linear map F can be extended to a
half space. The only restriction is that for x 2 D one has hc; xi ¤ �d , that
is, D cannot intersect some given affine hyperplane H . Since we are interested
in a convex domain, we must choose one side, which means the domain can be
extended to a half space. It is not immediately clear why it cannot be extended
further. To see why it cannot be extended further while preserving intervals,
consider a point x0 2 H . We shall see that there is no way to define F on x0.
Indeed, take two rays emanating from x0 into the domain of F , sayHC (and not
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on H ); fx0 C 
y W 
 > 0g; fx0 C 
y0 W 
 > 0g. The fact that the rays are not on
H means that hc; yi ¤ 0, likewise for y0. Moreover, hc; yi and hc; y0i have the
same sign (say, positive, if we are in HC). Assume F.x/ D AxCb

hc;xiCd . Remember

hc; x0i D �d . Then F.x0 C 
y/ D A.x0C
y/Cb
hc;x0C
yiCd D Ay

hc;yi C 1



�
�
Ax0Cbhc;yi

	
, and

similarly F.x0C
y0/ D Ay0

hc;y0i C 1



�
�
Ax0Cbhc;y0i

	
. We see the two rays are mapped to

two parallel half lines, which by injectivity of F are not identical, and therefore
F.x0/ cannot be chosen so that it lies on both these lines. This means F cannot
be extended to a domain which intersects H , and still preserve intervals.

3. The image. The image of a (non-affine) fractional linear map F , whose domain
is maximal (meaning it is an open half space) is an open half space. Indeed, let
OA D AF be the associated matrix, and let OA.f.x; 1/ W x 2 R

ng/ D E � R
nC1.

Then the image of F is the radial projection into f.x; 1/ W x 2 R
ng of the part of

E with positive .nC 1/th coordinate. It is easily checked that this is a half space
in f.x; 1/ W x 2 R

ng � R
n, whose boundary is the hyperplane

@.Im.F // D fAx W hc; xi D 1g; where OA D
�
A b

cT d

�
:

Note that it does not depend on b and d .
4. Composition. It is easily checked that AF ıG DAF � AG . In particular, the

composition of two fractional linear maps is again a fractional linear map. As
for the domains: The maximal domain of each of the maps is a half space, and so
is the image, thus the map is formally defined only on G�1.Im.G/ \ dom.F //,
and by the previous remarks it can be extended to be defined on some half space.

5. The inverse map. It is easily checked that AF�1 D A�1
F and in particular, every

fractional linear map has an inverse, which is also fractional linear. The domain of
F �1 is the image of F , which by previous remarks is exactly the radial projection
into f.x; 1/ W x 2 R

ng of the part ofE D A.f.x; 1/ W x 2 R
ng/ with, say, positive

.nC 1/th coordinate.

2.2.3 More Properties

To continue we first need two properties of fractional linear maps, given in
Lemmas 2.10 and 2.15. The first is a transitivity result.

Lemma 2.10. Fix a point p in the interior of the simplex  D fz D P
zi ei W 0 �

zi ;
Pn

iD1 zi � 1g, where feigniD1 is the standard basis of Rn. Given n C 2 points,
x0; x1; : : : ; xn; y in R

n such that y is in the interior of conv.xi /niD0, there exists
an open convex domain D which contains the points and a fractional linear map
F W D ! R

n such that for 1 � i � n, F.xi / D ei , F.x0/ D 0 and F.y/ D p.

Remark 2.11. By invertibility (see Item (5) above) an equivalent formulation is as
follows: there exists a fractional linear map F W  ! R

n such that for 1 � i � n,
F.ei / D xi , F.0/ D x0 and F.p/ D y.
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Remark 2.12. From Lemma 2.14, it will follow that the map in Lemma 2.10 is
unique.

Remark 2.13. Let us compare Lemma 2.10 with the more standard transitivity
result of projective geometry, which can be found for example in [13] (Theorem 2,
p. 59):
Let A1; : : : ; AnC2 and B1; : : : ; BnC2 be two sets of points in general position in
RPn. Then there exists a unique projective transformation f W RPn ! RPn such
that f .Ai / D Bi for i D 1; : : : ; nC 2. Indeed, they have the same flavor, however
we demand more (in both sets, one point is in the convex hull of all the others) and
get more; the whole convex hull is in the domain of the fractional linear map (i.e. it
is mapped, within RPn D R

n [ RPn�1, to the part not in RPn�1).

Proof of Lemma 2.10. First let us build an affine linear map which maps xi to ei
for i D 1; : : : ; n and x0 to 0. This is clearly possible by linear algebra. So we are
left with the following task: given z in the interior of the simplex, build a fractional
linear map F whose domain contains the simplex, such that F.ei / D ei , F.0/ D 0

and F.z/ D p.
To describe this map F , consider its associated matrix OA in GLnC1. Let us give

the matrix elements which produce the desired map. Let the matrix be given by

OA D

0
BBB@

0

A
:::

0

cT d

1
CCCA ;

where A is an n � n matrix, c 2 R
n, and d 2 R

C. Let A be the diagonal matrix
with diagonal entries Ai;i D pi

zi
, let d D 1�Ppi

1�P zi
, and let the vector c be given by

ci D pi
zi

�d . The matrix induces a fractional linear map on the domain fx W hc; xi >
�d g. We must verify that the points 0; feigniD1 are in this domain. Indeed, d > 0

since the points are in the simplex, and also ci > �d . Finally, it is easily checked
that the associated fractional linear map satisfies the desired conditions. ut

Once we know that the map from Lemma 2.10 exists, it follows that it is unique.
Indeed, by the Theorem quoted in Remark 2.13, there exists only one fractional
linear map which maps n C 2 given points to another n C 2 given points. We
formulate it below, and for completeness provide the proof.

Lemma 2.14. Let F1 W D1 ! R
n and F2 W D2 ! R

n be two fractional linear
maps, where Di � R

n. Let fxi gnC1
iD0 be .n C 2/ points in D1 \ D2 such that one

is in the interior of the convex hull of the others. If F1.xi / D F2.xi / for every
0 � i � n C 1, then the two maps coincide on all of D1 \ D2 and moreover, are
induced by the same matrix in GLnC1 (up to multiplication by a non-zero scalar).

Proof of Lemma 2.14. Without loss of generality, by Lemma 2.10, we can assume
that x0 D 0, xi D ei for i D 1; : : : ; n, and that xnC1 D p is any point we desire in
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the interior of the convex hull of fxi gniD1. Furthermore, by the same lemma, we may
assume that F1.xi / D F2.xi / D xi for all i , and therefore we may simply compare,
say, F1 to Id (and then also F2). Consider the matrix which induces F1, given by
some 0

BB@ A b

cT d

1
CCA ;

whereA is an n�nmatrix, b and c are vectors in R
n and d 2 R. In fact, d ¤ 0 since

0 is in the domain of F1, which is fx W hc; xi > �d g:Without loss of generality we
let d D 1. From the condition F1.0/ D 0 we see that b D 0. From F1.ei / D ei
we see that A is diagonal, let us denote Ai;i D ai , so that ci D ai � 1. Finally, for
F1.p/ D p we see that

pi D aipi

1CP
.aj � 1/pj :

This implies that for all i , ai D 1CP
.aj � 1/pj , and in particular a1 D : : : D an.

This means that .a1�1/.1�Ppj / D 0, and since p is not on the hyperplane passing
through feigniD1, it implies ai D 1 for all i , that is, F1 is the identity mapping. The
same holds for F2. ut

As a consequence we get the following useful fact:

Corollary 2.15. Let F1 W D1 ! R
n and F2 W D2 ! R

n be two fractional linear
maps, where Di � R

n. Let D � D1 \ D2 be some open domain in R
n such that

F1jD D F2jD . Then the two maps coincide, i.e. they are induced by the same matrix,
and their maximal extension is the same function, with the same maximal domain.

2.3 Uniqueness

When the domain of an interval preserving map is assumed to be all of R
n, it

is a well known classical theorem that the map must be affine linear, as stated
in the fundamental theorem of affine geometry, quoted below as Theorem 2.16.
As a reference see, for example, [13], or [3] for the projective counterpart. More
generally, interval preservation can be replaced by “collineation”. More far reaching
generalizations also exist, and we refer the reader to the forthcoming [8] where an
elaborate account of these is given.

Theorem 2.16 (The Fundamental Theorem of Affine Geometry). Let m � 2

and f W Rn ! R
m be a bijective interval preserving map. Then f must be an affine

transformation.

In this section we discuss the fact that when the domain is a convex set (or,
more generally, a connected open domain), the only interval preserving maps are
fractional linear. This result was obtained by Shiffman in [15]. His method of proof



Order Isomorphisms on Convex Functions in Windows 71

is different from ours, and works in the projective setting, where he shows that any
such map can be extended (using Desargues’ theorem) to a mapping of the whole
projective space, and then, from the fundamental theorem of projective geometry
he concludes that it must be projective linear. We work in a more elementary way,
never leaving R

n. However, Shiffman’s result is in a more general setting where not
all intervals are assumed to be mapped to intervals, but only a subfamily which is
large enough. This is important in some applications, in particular in the proof of
Theorem 5.23.

The main theorem discussed in this section is the following.

Theorem 2.17. Let n � 2 and let K � R
n be a convex set with non empty interior.

If F W K ! R
n is an injective interval preserving map, then F is a fractional linear

map.

The proof of the theorem relies on the following lemma:

Lemma 2.18. Assume n � 2. Let  � U � R
n, where U is an open set, and 

is a non-degenerate simplex with vertices x0; : : : ; xn. Let p belong to the interior
of . If F W U ! R

n is an injective interval preserving map that fixes all .n C 1/

vertices of  and the interior point, that is F.xi / D xi for every 0 � i � n, and
F.p/ D p, then F j D Id j.

Proof of Lemma 2.18. The proof goes by induction on the dimension n. Begin with
n D 2. Consider a two dimensional simplex, that is, a triangle in R

2, with vertices
a; b; c; and a point p 2 int./. Since F is injective and interval preserving, by
Lemma 2.6 it is continuous, which implies that the set D D fx 2  W F.x/ D xg is
closed.

Let us check that all the edges are contained in D. Assume the contrary, namely
that there is a point e 2 Œa; b�, e 62 D. Since D is closed, there exists an interval
Œa0; b0� � Œa; b�, such that a0; b0 2 D, but .a0; b0/ \ D D ;. Now we will find a
point e0 2 .a0; b0/ \ D in contradiction, thus concluding that no such e exists. Let
us find two points a00 2 Œa0; c� and b00 2 Œb0; c�, such that a00; b00 2 D. To this end,
consider the intervals Œa0; c�, Œb0; c�. They are both mapped to themselves by F , and
both intersect the line L containing a and p, for which we have F.L/ � L. Let
a00 2 Œa0; c� and b00 2 Œb0; c� be the points of intersection with L. Then F.a00/ D a00
since this is the only point in Œa0; c� and in L, and similarly F.b00/ D b00.
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Now we look at the intersection of Œa00; b0� with Œb00; a0�. This is a point p0 in the
interior of the triangle a0b0c. The line between c and p0 intersects with Œa0; b0� at
some point e0 2 .a0; b0/, and by the same argument as before, e0 2 D. We get a
contradiction which proves that F is the identity map on the edges of .

Next, for every point y in the interior, we draw two intervals containing y—
each connecting a vertex with an edge, and get that the two intervals must be
mapped to themselves (since the end points are on the edges and are thus mapped
to themselves). This implies, as before, F.y/ D y, which completes the proof for
n D 2.

For the inductive step, we assume that the proposition is true for dimension n�1,
and prove it for dimension n. Let  be an n dimensional simplex. Denote by
i WD Convfx0; : : : ; xi�1; xiC1; : : : ; xng the face of  opposite to xi . First we
claim that F.i/ D i . Indeed, this is due to interval preservation, together with
the fact that the vertices are mapped to themselves. Denote by y 2 relint.i/ the
unique point in the intersection of i , with the line connecting xi and p 2 int./.
Interval preservation implies that F.y/ remains on this line, and since it must
remain on the face, we get F.y/ D y. By applying the induction hypothesis to
the (n � 1) dimensional simplex i , we conclude that F ji D Id ji . The fact
that the restriction of F to each of the faces is the identity, combined with interval
preservation, implies that F j D Id j simply by representing a point in the interior
as the intersection of two intervals with endpoints on faces. ut

By the transitivity result from Lemma 2.10, we may state a corollary of the above
lemma for general maps on the simplex.

Corollary 2.19. Assume n � 2. Let  � U � R
n, where U is an open set, and

 is a non-degenerate simplex with vertices x0; : : : ; xn. If F W U ! R
n is an

injective interval preserving map then there exists a fractional linear map FA such
that F j D FAj.

Proof of Corollary 2.19. Let p belong to the interior of. The main step is to show
that the mapping F maps the point p to a point in the interior of convfF.xi /gniD0,
so that we may invoke transitivity and Lemma 2.18. To this end we shall use
induction and prove the following claim: an injective interval preserving map must
map simplices of dimension k, for any k � 1, to simplices of the same dimension,
whose vertices are the images of the original vertices. Once this is done, an interior
point must be mapped to an interior point by injectivity of F . The case kD 1 is
almost by definition (see Lemma 2.2). Assume this is the case for simplices of
dimension � k and let y0; : : : ykC1, the vertices of some .k C 1/ dimensional
simplex, in general position, be given. By induction, the relative boundary of the
convex hull is mapped to the relative boundary of the simplex fF.yj /gkC1

jD0. Since a
point in the interior can be written as the intersection of two intervals with endpoints
on the boundary, we get that the interior of the simplex convfyj gkC1

jD0 is mapped to

the interior of convfF.yj /gkC1
jD0, as needed. Applying this, we have that the points

fxi gniD0 are mapped to points fF.xi /gniD0 which are the vertices of a non degenerate
simplex, F./ D convfF.xi /gniD0 DW 0, and for any point p 2 int./ we have
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that F.p/ 2 int.0/. To prove the corollary, chose any p 2 , and compose F
with some fractional linear G so that .G ı F /.xi / D xi for i D 0; : : : n and
.G ıF /.p/ D p. Using Lemma 2.18 we have thatG ıF D Id on, and therefore
F j D G�1j, which is fractional linear, as claimed. ut
Proof of Theorem 2.17. First we prove the theorem under the assumption that K is
open and convex, and at the end of the proof we remark on the extension to general
convexK (with non empty interior).

First we note that for every simplex  inside K the statement holds: consider
nC 2 points x0; : : : ; xn; p 2 R

n, arranged as a simplex and a point in its interior,
as in Corollary 2.19. Since F is injective and interval preserving, by Corollary 2.19
F j is fractional linear.

Next, consider the union of two simplices 1 and 2 such that the intersection
has a non empty interior. F ji is fractional linear on each simplex 1 and 2, and
these mappings coincide on the intersection, so they must be induced by the same
matrix, by Corollary 2.15.

Finally, by covering the domainK with simplices so that each two are connected
by a chain of simplices figNiD0, with the property that the intersection of i and
iC1 has a non empty interior, we get that there is one map which induces all of the
maps F j for all these simplices, meaning that F itself is a fractional linear map.
Such a covering exists, for example an infinite family fx;y W x; y 2 Kg, where
x;y is some simplex which contains x and y in the interior will do (such a simplex
exists for every x and y). This completes the proof in the case where K is open.

For a general convexK with non empty interior we must deal with the boundary
of K . We know there exists a fractional linear map G W U ! R

n s.t. F jint .K/ D
Gjint.K/, where U is the maximal domain of G (an open half space), and of course
int.K/ � U . We wish to show that K � U , and that F D G also on K \ @K .
Take x 2 K \ @K . We first claim that x 2 U , for which we need only show that
x 62 H D @U . However, we have shown in item (2) of Sect. 2.2.2 that G cannot
be extended to be defined on any point of H so that it is still interval preserving,
from which we concludeK � U . Indeed, this was shown by considering two points
a, b in the interior of K , to which correspond intervals Œa; x/ and Œb; x/ which are
mapped to intervals, byG. Were x on the boundary, these intervals would have been
parallel, and no way to define F.x/ would have existed. When x 62 H , the intervals
ŒG.a/;G.x/� and ŒG.b/;G.x/� have a unique point of intersection G.x/, and we
conclude that F.x/ D G.x/. ut
Remark 2.20. Theorem 2.17 can be proved for a general open connected set K; we
only used convexity of K when arguing that K can be covered by simplices to get
the wanted chains. This argument holds also whenever K is open and connected.
Indeed, to get this covering we took between every two points x; y 2 K a simplex
x;y . This simplex is now replaced by a chain of simplices connecting x and y,
constructed using an � neighborhood of the path between x and y.

To complete the picture let us also attend to the case n D 1, although this
will not be used in the sequel. Obviously, a similar theorem cannot be proved in
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R, since, for example, all continuous functions are interval preserving. The next
theorem, Theorem 2.23, gives a characterization of one dimensional fractional linear
maps. The theorem is a local version of the more well-known fact from projective
geometry, stating that maps preserving cross ratio are linear when the domain and
range are lines, and projective when the domain and range are extended lines.

We recall that the cross ratio of four numbers (thought of as coordinates of points
on a line) is defined to be

Œa; b; c; d � WD
�c � a

c � b

	
=

�
d � a

d � b
�
:

For details and discussion see, for example, [13].

Remark 2.21. Note that Œa; b; c; x� D Œa0; b0; c0; x0� implies x0 D ˛xCˇ
�xCı , where

˛; ˇ; �; ı are some function of a; b; c; a0; b0; c0. Conversely, every fractional linear
map on R preserves the cross ratio of any four points in its domain.

Remark 2.22. Regarding permutations of a; b; c; d , we have the following:

ŒA;B; c; d � D ŒB;A; c; d ��1;

Œa; b; C;D� D Œa; b;D;C ��1;

Œa; B; C; d � D 1 � Œa; C;B; d �;

and using the rule for these three transpositions, the cross ratio of any permutation
of a; b; c; d can be derived from Œa; b; c; d �. Moreover, as a consequence, we see
that if we have Œa; b; c; d � D Œx; y; z;w�, then for every permutation � we also have
that Œ�.a/; �.b/; �.c/; �.d/� D Œ�.x/; �.y/; �.z/; �.w/�.

A basic notion when dealing with one dimensional fractional linear maps is the
projection of one line to another line, through a so called “focus point” situated
outside the two lines. See [13] for more details on the relation between fractional
linear maps, preservation of cross ratio, and projection.

Theorem 2.23. Let I � R be a convex set, either bounded or not, and f W I ! R.
Assume further that f preserves cross ratio on I , so for every four distinct points
a < b < c < d 2 I

Œf .a/; f .b/; f .c/; f .d/� D Œa; b; c; d �:

Then f is fractional linear on I . In fact, it is true also if a; b; c 2 I are three
(distinct) fixed points, and we assume only that f preserves cross ratio of a; b; c; d
for any d 2 I n fa; b; cg.
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Proof. Let a; b; c 2 I such that a < b < c, and f preserves cross ratio of a; b; c; x
for any x 2 I n fa; b; cg. Let x 2 I . We consider four cases; x < a, a < x < b,
b < x < c, and c < x. For each case, the preservation of cross ratio yields a
different equation;

x < a ) Œf .x/; f .a/; f .b/; f .c/� D Œx; a; b; c�;

a < x < b ) Œf .a/; f .x/; f .b/; f .c/� D Œa; x; b; c�;

b < x < c ) Œf .a/; f .b/; f .x/; f .c/� D Œa; b; x; c�;

c < x ) Œf .a/; f .b/; f .c/; f .x/� D Œa; b; c; x�:

By Remark 2.22, each of these equations implies Œf .a/; f .b/; f .c/; f .x/� D
Œa; b; c; x�, and thus by Remark 2.21, we get f .x/ D ˛xCˇ

�xCı for some ˛; ˇ; �; ı
which depend only on a; b; c, f .a/; f .b/; f .c/. Therefore f is a fractional linear
map on I . ut

2.4 Other Representations and Properties

2.4.1 Canonical Form

In what follows, we denote by x D .x1; : : : ; xn/ the coordinates of a point x with
respect to the standard basis feig.

Definition 2.24. Let HC be the half space fx1 > 1g. The mapping F0 W HC !
HC given by

F0.x/ D x

x1 � 1

will be called the canonical fractional linear map.

It is useful to note that the group of fractional linear maps is generated by its
subgroup of affine linear maps, and the above map.

Theorem 2.25. Let F be an injective non-affine fractional linear map with
F.x0/ D y0. Then there exist B;C 2 GLn such that B.F.CxCx0/�y0/ D F0.x/.

Proof of Theorem 2.25. Define G.x/ WD F.x C x0/ � y0, then G.0/ D 0. G is an
injective non-affine fractional linear map, with an inducing matrix of the form:

0
BB@ A0 b

cT d

1
CCA :
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From 0 2 Dom.G/ it follows d ¤ 0, so (using the multiplicative degree of
freedom) we let d D �1. Also, G.0/ D 0 implies b D 0. Since G is injective,
the inducing matrix is invertible, and by b D 0 this implies that A0 2 GLn.
Non-linearity of G implies c ¤ 0. Therefore we can write for some A0 2 GLn,
0 ¤ c 2 R

n, that

G.x/ D A0x
hc; xi � 1

:

Pick C 2 GLn such that C tc D e1. We get hc; Cxi D he1; xi D x1. Therefore

G.Cx/ D A0Cx
x1 � 1 :

Finally, by letting B D .A0C/�1, we get .B ıG ı C/.x/ D x
x1�1 , and so

B.F.Cx C x0/� y0/ D x

x1 � 1 ;

as required. ut
Remark 2.26. For simplicity, assume below x0 D y0 D 0. The representation in
Theorem 2.25 is clearly not unique, as C can be chosen in any way satisfying just
one linear condition, and B depends on C . Another form which can be given is:

C�1A0�1FC D x

x1 � 1
;

where A0 is uniquely determined, and C as before. Yet a third way to view this
representation is:

F.x/ D A0x
hc; xi � 1

;

as was shown in the proof. This form has the advantage of emphasizing the degrees
of freedom of a fractional linear map, since both the point c and the matrix A0 are
determined uniquely.

2.4.2 Geometric Structure

The mappingF0.x/ D x
x1�1 is defined onHC D fx1 > 1g, and satisfies F0.HC/ D

HC. It is an involution on HC (and on H� D fx1 < 1g as well). Denote the
boundary of HC by H .

For every affine hyperplane parallel toH , namelyHt D fx W x1 D tg (for t ¤ 1),
we have F0.Ht / D Hf.t/, where f .t/ D t

t�1 . The restriction F0 W Ht ! Hf.t/,
thought of as a map on R

n�1, is a linear map—in fact, it is simply a scalar map; x 7!
1
t�1x. In particular we see that in this family of parallel hyperplanes (shifts of H ),
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parallel hyperplanes are mapped to parallel hyperplanes. This behavior is unique to
shifts of H . Indeed, take v 2 R

n, then (F�1
0 D F0):

F0.fx W hx; vi D cg/ D fF0.x/ W hx; vi D cg D fx W hF0.x/; vi D cg
D fx W hx; vi D c.x1 � 1/g D fx W hx; vi D chx; e1i � cg
D fx W hx; v � ce1i D �cg:

And so we see that if v ¤ 
e1, hyperplanes parallel to v? are mapped to hyperplanes
which are not parallel; .v � ce1/? ¤ .v � c0e1/? for c ¤ c0.

These considerations, by Theorem 2.25, may be applied to a general fractional
linear mapping F . There are two hyperplanes, the first of which, say H1, is the
boundary of the maximal domain of F , and the second, H2, is the boundary of the
image of F , such that any translate of H1 (which is in the domain) is mapped to
a translate of H2, and moreover, the map F restricted to each translate of H1 is
linear. In any other direction, however, two parallel hyperplanes are mapped to two
hyperplanes which are not parallel.

As for a linear subspace V of Rn of dimension 0 � k � n, we have F0.V / D V

(by this we mean F0.V \ H�/ D V \ H� and F0.V \ HC/ D V \ HC, since
F0 is not defined on the intersection with H ). For n � 1 dimensional subspaces,
we have seen it in the formula given above for the image of hyperplanes under F0;
substituting c D 0 yields F0.v?/ D v? for every v 2 R

n. But in fact it is true
trivially for subspaces of any dimension; simply note that F0.x/ is in the direction
of x. In fact, this is a particular case of the more general phenomenon; lines (more
precisely: their intersection with the domain) through a fixed point in the domain
of F , x0 2 dom.F /, are mapped into lines through F.x0/. This is due to interval
preservation of F . Since F is smooth, this mapping of lines (but not of points along
the lines) is the linear map given by the differential of F , dF.x0/.

We can say even more about the geometric structure of F . For a point y0 on the
boundary of the maximal domain of F , the family of all the rays emanating from the
point y0 (into the domain) is mapped to the family of all half lines in the image of F
which are parallel to some vector y0

0, and vice versa. Again, by Theorem 2.25 it is
enough to show this for the specific map F0.x/ D x

x1�1 . Consider a point Oy D .1; y/

on H ; a ray emanating from Oy into the domain can be written, for some .1; u/ 2 H
as

R D f.1; y/C t.1; u/ W t 2 R
Cg:

It is mapped to the half line

l 0 D fF..1; y/C t.1; u// W t 2 R
Cg D f.1; u/C 1

t
.1; y/ W t 2 R

Cg

D f.1; u/C s.1; y/ W s 2 R
Cg:

So we have seen that for a and b on H , the ray a C bRC is mapped under F0 to
b C aRC and vice versa. For example all rays emanating from the point e1 2 H



78 S. Artstein-Avidan et al.

are mapped to all lines perpendicular to H . Note that the part of l which is close to
the point Oy (small t) is mapped to the part of l 0 which is far from the hyperplaneH
(large s). In a sense, the point Oy is mapped to “infinity” in direction opposite to H .

This also shows that fractional linear maps act as a lens on straight lines
intersecting the defining hyperplane. Indeed, a cone of rays with base B , emanating
from the point a in H , is mapped to a half infinite cylinder with base B , in the
direction a. If a 2 B , the corresponding line is the only one in the cone which
is mapped to itself. When considering a general non-affine fractional linear map,
we get that an infinite cone with base B is mapped to a half infinite cylinder with
base T .B/ for some linear T , and vice versa. Of course, if the fractional linear
map is affine it also does this, but by mapping cones to themselves and cylinders to
themselves.

2.5 Additional Results

2.5.1 Fractional Linear Maps and Polarity

For a closed convex set T containing 0, denote its polar set as before by T ı. We
claim that in a sense, the “root” of a fractional linear map is the polar map. The
following theorem states that the so called “distortion” of fractional linear maps
corresponds to two actions of polarity, each with respect to a different point of
origin.

Theorem 2.27. Let 0 2 K � fx1 < 1g � R
n be a closed convex set. Then for the

canonical form of a fractional linear map, F0.x/ D x
x1�1 , the following holds:

F0.K/ D .e1 �Kı/ı:

In [10], [16] the authors prove uniqueness theorems for order isomorphisms on
various families of convex sets. Here we see new such maps, on the family of closed
convex bodies which are contained in a half space. Uniqueness of these maps in
some weak sense (among point maps) follows immediately from the uniqueness
Theorem 2.17. Applying techniques from those papers one can get uniqueness of
these maps among all order isomorphisms on this class of convex bodies.
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Proof of Theorem 2.27. Let T be a closed convex set. Clearly

Œ0; e1� � T , Œ�e1; 0� � T � e1 , .T � e1/
ı � fx1 > �1g;

and therefore under our assumptions for every x 2 .T �e1/ı we have 0 < 1Cx1. We
define G.�x/ D �F0.x/, or explicitly G.x/ D �x

x1C1 . Note that F0 is an involution
on fx1 ¤ 1g, and hence G is an involution on fx1 ¤ �1g. Compute

.T � e1/
ı D fx 2 R

n W hx; y � e1i � 1 8y 2 T g
D fx 2 R

n W hx; yi � 1C x1 8y 2 T g

D
�
x 2 R

n W
� �x
1C x1

;�y


� 1 8y 2 T
�

D fx 2 R
n W hG.x/;�yi � 1 8y 2 T g

D ˚
G�1.x/ 2 R

n W hx; yi � 1 8y 2 .�T /�
D G�1 .fx 2 R

n W hx; yi � 1 8y 2 .�T /g/
D G�1..�T /ı/ D G.�T ı/ D �F0.T ı/;

which in turn implies
F0.T

ı/ D .e1 � T /ı;
for sets T which contain the interval Œ0; e1�, or conversely, such that T ı � fx1 <
1g. Therefore we can formulate it in the following way, for a closed convex K �
fx1 <1g such that 0 2 K we have

F0.K/ D .e1 �Kı/ı:
ut

Remark 2.28. Recall that fx1 D 1g is the defining hyperplane of F0, so we cannot
hope to get that result for K which intersects this hyperplane. In the other side of
this hyperplane, however, we do not have 0, and again cannot work with Kı.

Remark 2.29. By Theorem 2.25, once we understand the action of F0 on convex
bodies, we understand the action of all (non-affine) fractional linear maps on convex
bodies, and the only difference is in some linear maps and translations.

2.5.2 Sets That Can be Preserved

The fractional linear maps clearly have a non-linear “distortion” of the image.
As we saw above, when approaching the defining hyperplane, the map diverges.
However, fractional linear maps preserve some structure, for example, they preserve
combinatorial structure of polytopes (number of vertices, faces of every dimension,
intersection between faces, etc.). We will investigate which sets can be preserved by
fractional linear maps.
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We present some examples of simple convex sets K for which there exist
fractional linear maps F with F.K/ D K . This will also shed some light on the
question: “given sets K1, K2, does there exist a fractional linear map F such that
F.K1/ D K2?”. This question will have consequences in the next section, where
we deal with classes of functions supported on convex sets (“windows”), and see
that the existence of any order isomorphism between two such classes depends on
the existence of a fractional linear map between the corresponding windows (more
precisely; between the corresponding cylinders, either Ki � R

C or Ki � R).
Let us start with an explicit two dimensional example: A non-affine fractional

linear map which preserves the Euclidean disk.

Example 2.30 (Euclidean ball, 2 dimensions). Define T W D ! R
2, where D D

f.x; y/ 2 R
2 W x < 2g, in the following way:

�
x

y

�
7!
�
T1.x/

T2.x; y/

�
D
 
2x�1
2�xp
3y

2�x

!
:

Note that x2 C y2 D 1 implies T1.x/2 C T2.x; y/
2 D 1, that is, S1 is mapped to

itself by T . It is easy to check that T maps S1 onto itself. By the interval preservation
property of T , this implies that the unit ball is mapped to itself. Note that T .0/ ¤ 0,
with correspondence to Theorem 2.37.

Example 2.31 (Ellipsoids in n dimensions). The above explicit example can be
extended easily to the Euclidean ball in R

n. However, let us discuss this case,
or more generally, the case of an ellipsoid in R

n, in a slightly more abstract
way. Note that a conic section is always mapped by a fractional linear map to
a conic section. Indeed, a conic section in R

n is given as a section of the cone
C D fx2nC1 D Pn

iD1 x2i g by a hyperplane (identified with R
n). Equivalently, we

may take the section of a linear image of the cone,A.C / (forA 2 GLnC1.R/) by the
hyperplane fxnC1 D 1g � R

nC1. Viewing fractional linear maps as traces of linear
maps on R

nC1 (say, given by a matrix B), we immediately get that the image of the
conic section corresponding to A.C / is the conic section corresponding to BA.C /.
Next, letting E be some closed ellipsoid in the domain of a non-affine fractional
linear map (so, it is bounded away from the defining hyperplane), it is mapped to
a conic section, but since F is continuous, this must be a compact conic section,
and in particular a bounded one. Thus, F.E/ is an ellipsoid E 0. Finally, since any
two ellipsoids can be mapped to one another via an affine linear map, we can find
an invertible affine transformation A such that AF.E/ D E , and AF is a non-affine
fractional linear map.

Before moving on to the next convex set, we mention that for Euclidean balls
(and hence ellipsoids) we also have a transitivity result, in the flavor of Lemma 2.10
for simplices. It is given in the following proposition.

Proposition 2.32. Let Bn denote the open unit ball in R
n, and E be some open

ellipsoid, with p 2 E . Then there exists a bijective fractional linear map F W E !
Bn with F.p/ D 0.
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Proof. There exists an affine linear map that maps E to Bn and p to p0, and an
orthogonal transformation which maps p0 to 
e1 for 0 � 
 < 1. If 
 D 0 we are
done, with F being an affine map.

Assume otherwise; then by invertibility of f.l. maps, our task is to find a bijective
fractional linear map G W Bn ! Bn such that G.0/ D 
e1, for a given 0 < 
 < 1.
Let a WD 1=
, c WD p

a2 � 1 (so, 1 < a; 0 < c). One possible choice of G is
induced by the .nC 1/ � .nC 1/ matrix

AG D

0
BB@ D e1

eT1 a

1
CCA ;

whereD is diagonal with eigenvalues fa; c; : : : ; cg. The direct formula correspond-
ing to that choice of G is:

G

0
B@
x1
:::

xn

1
CA D 1

x1 C a

0
BBB@

ax1 C 1

cx2
:::

cxn

1
CCCA :

ut
We turn to the second example which is again in R

2, a trapezoid.

Example 2.33 (Trapezoid). Let ˛ > 0, and D D f.x; y/ 2 R
2 W x < 1 C ˛�1g.

Define T W D ! R
2 and A W R2 ! R

2 in the following way:

T

�
x

y

�
D
�
T1.x/

T2.x; y/

�
D
 

x
1C˛�˛x
.1C˛/y
1C˛�˛x

!
; A

�
x

y

�
D
�
1 � y
x

�
:

The affine linear map A is the �=2 rotation around .1=2; 1=2/, and so it maps
the four points .0; 0/; .1; 0/; .0; 1/; .1; 1/ to themselves in a cyclic manner i.e. to
.1; 0/; .0; 1/; .1; 1/; .0; 0/ respectively. The fractional linear map T fixes the three
points .0; 0/; .1; 0/; .0; 1/, and maps .1; 1/ to .1; 1C ˛/.

Denote by K the trapezoid with vertices .0; 0/; .1; 0/; .0; 1/, .1; 1 C ˛/, and
consider F W K ! K defined by F WD T ı A ı T �1. It is obvious that F is
not affine, and that it maps the four vertices of K to themselves cyclically, thus by
interval preservation, F.K/ D K . These two facts can also be verified from the
direct formula of F : �

x

y

�
7!
 

˛x�yC1
˛xC˛yC1
.˛C1/2x
˛xC˛yC1

!
:
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Note, had we chosen ˛ D 0, our trapezoid K would be a square, and we would
get that T , therefore F , are both affine maps, and thus we see that at least with this
construction, we did not get a non-affine fractional linear map that preserves the
cube in R

2. This is, in fact, a general result in R
n.

We denote by Qn the unit ball of the l1 norm in R
n, and by Bn

1 the unit ball of
the l1 norm in R

n:

Qn WD fx 2 R
n W �1 � xi � 1; i D 1; : : : ; ng;

Bn
1 WD fx 2 R

n W
nX
iD1

jxi j � 1; i D 1; : : : ; ng:

Theorem 2.34. Any bijective fractional linear map F W Qn ! Qn is affine.

Theorem 2.35. Any bijective fractional linear map F W Bn
1 ! Bn

1 is affine.

We use the following lemma:

Lemma 2.36. Let K � R
n be a non-degenerate closed polytope, and f W K ! R

n

a fractional linear map. If two pairs of opposite and parallel facets are mapped to
such pairs, the map must be affine.

Proof. By Sect. 2.4.2, if f is not affine, there is only one direction in which f maps
parallel hyperplanes to parallel hyperplanes. Therefore, if two n � 1 dimensional
subsets are parallel (but are not contained in the same hyperplane), and mapped to
parallel sets, they must lie on a translate of the defining hyperplane of f . Assume
that F1; F2 are two parallel facets ofK , and likewise F3; F4. There is no hyperplane
whose shifts contain all four facets, sinceK is a polytope of full dimension (there are
no more than two parallel facets). Therefore, the fact that the pair F1; F2 is mapped
to a similar pair, and likewise F3; F4, implies that f is affine. ut
Proof of Theorems 2.34, 2.35. Both the facets of Qn and of Bn

1 have the property
that every two non-opposite facets intersect. Therefore, every pair of opposite facets
is mapped to such a pair. In particular, we have two such pairs, and by the previous
lemma this implies that f is affine. ut

Next, we prove that ifK is a centrally symmetric convex body, the only fractional
linear maps which may preserve bothK and f0g are affine.

Theorem 2.37. Let K � R
n be a closed, convex, centrally symmetric body, and let

F W K ! K be a bijective fractional linear map. If F.0/ D 0, then F is linear.

Proof of Theorem 2.37. As usual, since F.0/ D 0 we assume that the inducing
matrix of F has the form:

F �
�
A 0

vT �1
�
;

where A 2 GLn, and 0; v 2 R
n. Therefore F.x/ D Ax

hv;xi�1 .
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We need to show that v D 0. Otherwise, let x 2 @K be such that hv; xi ¤ 0

(for example, take x in the direction of v). The interval Œx;�x� is mapped by F
to the interval ŒF .x/; F.�x/�. Since F is surjective, F.x/ and F.�x/ are also
on the boundary of K , and by the formula they are in opposite direction, which
means that F.�x/ D �F.x/, by symmetry of K . By kF.x/k D kF.�x/k we get
jhv; xi C 1j D jhv; xi � 1j, meaning hv; xi D 0, in contradiction to our choice of x.
Thus we conclude v D 0, which means that F is linear. ut
Remark 2.38. The theorem remains correct also when the condition “closed” is
omitted. If the closure of K is contained in the maximal domain of F (the half
space parallel to the defining hyperplane), then by continuity of F we get that
the same conditions hold for the closure of K , apply the theorem, and conclude
that F is linear. In the other case, i.e. when the closure of K intersects the
defining hyperplane, one must be more careful, and we omit the details completing
the proof.

Remark 2.39. The condition F.0/ D 0 cannot be omitted. Indeed, we have seen
examples of symmetric bodies preserved by non-affine fractional linear maps, for
instance in Example 2.30.

Theorem 2.40. Let  � R
n be a closed, non-degenerate simplex, and p 2  its

center of mass. If F W  !  is a bijective fractional linear map with F.p/ D p,
then F is affine linear.

Proof of Theorem 2.40. Denote by x0; : : : ; xn the vertices of. Let A W  !  be
the affine map defined by the conditions A.xi / D F.xi /, i D 0; : : : ; n. Such a map
obviously exists, moreover it is unique, and it is invertible. Note that A./ D 

implies A.p/ D p, since the center of mass is a linear invariant. By Lemma 2.14,
this implies F D A, meaning that F is affine linear. ut
Remark 2.41. As in the case of symmetric bodies, the condition F.p/Dp can-
not be omitted. In fact we have seen in Lemma 2.10 a transitivity result, stating that
fractional linear maps can map any simplex to itself, with an arbitrary permutation
on the vertices, and in addition map a given point inside—say, the center of mass—
to an arbitrary point inside. In the last theorem we have seen that among these maps,
the affine maps are the only ones which map the center of mass to itself.

However, the choice of a different point inside will not give the same result.
Meaning, for any point p0 in the interior of  which is not the center of mass, there
exists a non-affine fractional linear map F such that F./ D  and F.p0/ D p0.
The construction is quite simple—find a linear mapA W  !  which permutes the
vertices and does not fix the point p0 (such a map is easily seen to exist), and then
compose it with a fractional linear which fixes the vertices but “restores” A.p0/ to
p0 (that map will be non-affine, since the only affine map which fixes all the vertices
is the identity map). This composition is the wanted map.
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3 Background on Order Isomorphisms

Our main interest in what follows is order preserving and order reversing transforms
on convex functions, when the functions are restricted to being defined on a convex
body in R

n rather than the whole space. It turns out that this restriction changes the
picture entirely, and a new family of transformations appears. These transformations
are based on fractional linear maps, which we studied in detail in Sect. 2.

3.1 General Order Isomorphisms

Definition 3.1. If S1;S2 are partially ordered sets, and T W S1 ! S2 is a bijective
transform, such that for every f; g 2 S1: f � g , T f � T g, we say that T
is an order preserving isomorphism.

Definition 3.2. If S1;S2 are partially ordered sets, and T W S1 ! S2 is a bijective
transform, such that for every f; g 2 S1: f � g , T f � T g, we say that T
is an order reversing isomorphism.

Definition 3.3. A partially ordered set S is said to be closed under supremum, if
for every ff˛g � S, there exists a unique element in S, denoted supff˛g, with the
following two properties:

1. For every ˛, f˛ � supff˛g (bounding from above).
2. If g 2 S also bounds ff˛g from above, then supff˛g � g (minimality).

Definition 3.4. A partially ordered set S is said to be closed under infimum, if for
every ff˛g � S, there exists a unique element f 2 S, with the following two
properties:

1. For every ˛, f � f˛ (bounding from below).
2. If g 2 S also bounds ff˛g from below, then g � f (maximality).

Consider the case where S is a partially ordered set which contains a minimal
element, and is closed under supremum. When S is one of the classes of convex
functions we deal with, supff˛g may be given by the pointwise supremum.
However, the corresponding pointwise infff˛g operation may not give a convex
function. To obtain an infimum operation (denoted Oinf), we use the supremum
operation in the following way:

Oinf
˛2Aff˛g WD supfg 2 S W 8˛ 2 A g � f˛g:

That is, Oinfff˛g is the largest element which is below the family ff˛g. Using Oinf, we
see that these classes are also closed under infimum; the first property is due to the
minimality of sup, and the second holds since sup is a bound from above. Dealing
with convex functions, we have:
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1. Oinfff˛g � infff˛g.
2. When infff˛g is already a convex function, infff˛g D Oinfff˛g.

For example, if f is a convex function, then f D inffıx;f .x/g (recall that
ıx;c.y/D C1 for y¤x, and ıx;c.x/D c). Thus inffıx;f .x/g D Oinffıx;f .x/g Df .

Next we follow Proposition 2.2 from [4], which states that an order preserving
isomorphism T must satisfy T .supff˛g/ D supfT f˛g and T . Oinfff˛g/ D OinffT f˛g,
that is, sup and Oinf are preserved by T . Similarly, an order reversing isomorphism
satisfies T .supff˛g/ D OinffT f˛g and T . Oinfff˛g/ D supfT f˛g, that is, sup
and Oinf are interchanged by T . We will prove this lemma for the case of order
isomorphisms and order reversing isomorphisms between two possibly different
partially ordered sets.

Proposition 3.5. Let S1;S2 be partially ordered sets closed under supremum and
infimum, and let T W S1 ! S2 be an order preserving isomorphism. Then for any
family f˛ 2 S1 we have

T . Oinfff˛g/ D OinffT f˛g;
T .supff˛g/ D supfT f˛g:

Proposition 3.6. Let S1;S2 be partially ordered sets closed under supremum and
infimum, and let T W S1 ! S2 be an order reversing isomorphism. Then for any
family f˛ 2 S1 we have

T . Oinfff˛g/ D supfT f˛g;
T .supff˛g/ D OinffT f˛g:

Both proofs are almost identical to the proof of Proposition 2.2 in [4], but we
cannot apply it directly, since here the domain and image of T may be different
sets. Therefore we prove below only Proposition 3.5 (the proof of Proposition 3.6
follows the exact same lines).

Proof of Proposition 3.5. Let ff˛g˛2A � S1. Denote f D supff˛g, and g such
that T g D supfT f˛g—such g exists due to surjectivity of T . We wish to show
that T f D T g, i.e. f D g. Since f � f˛ for all ˛, we get T f � T f˛ for all
˛, thus T f � supfT f˛g D T g, which implies f � g. On the other hand, since
T g � T f˛ for all ˛, we have g � f˛ for all ˛, thus g � supff˛g D f . We have
seen f � g and g � f , therefore f D g.

For Oinf, denote f D Oinfff˛g, and g such that T g D OinffT f˛g. We wish to show
that T f D T g, i.e. f D g. Since f � f˛ for all ˛, we get T f � T f˛ for all
˛, thus T f � OinffT f˛g D T g, which implies f � g. On the other hand, since
T g � T f˛ for all ˛, we get g � f˛ for all ˛, thus g � Oinfff˛g D f . We have seen
f � g and g � f , therefore f D g. ut
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3.2 Order Isomorphisms of Convex Functions

In a recent series of papers, the first and third named authors have crystallized
the concept of duality and investigated order reversing isomorphisms (called there
“abstract duality”) for various classes of objects and functions, see [5, 6]. The main
theorem in [6] can be stated in two equivalent forms which we quote here for future
reference.

Recall the Legendre transform L for a function � W Rn ! R [ f1g; one first
fixes a scalar product h�; �i on R

n (that is, a pairing between the space and the dual
space). The Legendre transform L is then defined by

.L�/.x/ D sup
y

fhx; yi � �.y/g: (2)

It is an involution on the class of all lower-semi-continuous convex functions on R
n,

denoted C vx.Rn/. More precisely, C vx.Rn/ consists of all convex l.s.c. functions
f W Rn ! R [ fC1g, together with the constant �1 function.

Theorem 3.7. Let T W C vx.Rn/ ! C vx.Rn/ be an order reversing involution.
Then there exist C0 2 R, v0 2 R

n and a symmetric transformation B 2 GLn, such
that

.T �/.x/ D .L�/.Bx C v0/C hx; v0i C C0:

We call these two properties “abstract duality”, and so we say that on the class
C vx.Rn/ there is, up to linear terms, only one duality transform, L. More generally
we have:

Theorem 3.8. Let T W C vx.Rn/ ! C vx.Rn/ be an order reversing isomorphism.
Then, there exist C0 2 R; C1 2 R

C; v0; v1 2 R
n and B 2 GLn, such that

.T �/.x/ D C0 C hv1; xi C C1.L�/.B.x C v0//:

As usual, this is equivalent to the following

Theorem 3.9. Let T W C vx.Rn/ ! C vx.Rn/ be an order preserving isomorphism.
Then there exist C0 2 R; C1 2 R

C; v0; v1 2 R
n and B 2 GLn, such that

.T �/.x/ D C1�.Bx C v0/C hv1; xi C C0:

3.3 Order Isomorphisms of Geometric Convex Functions

The subclass of C vx.Rn/ consisting of non negative functions with f .0/ D 0 is
denoted by C vx0.Rn/. Next we follow [7] to define two transforms J and A on this
class. Consider the following transform, defined on C vx0.Rn/:
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.Af /.x/ D
(

supfy2RnWf .y/>0g
hx;yi�1
f .y/

if x 2 ff �1.0/gı

C1 if x 62 ff �1.0/gı

)
: (3)

(with the convention sup ; D 0). One may check that it is order reversing. This
transform (with its counterpart J defined below) first appeared in the classical
monograph [14], but remained practically unnoticed until recently. For details, a
geometric description, and more, see [7]. Next define:

J D LA D AL:

Clearly, as a composition of two order reversing isomorphisms, it is an order
preserving isomorphism. The formula for J can be computed (again, see [7] for
details), and has the form:

.J f /.x/ D inffr > 0 W f .x=r/ � 1=rg;

with the convention inf ; D C1. It turns out that, apart from the identity transform,
up to linear variants, this is the only order preserving transform on the class
C vx0.Rn/. It was shown in [7] that the following uniqueness theorems for J hold.

Theorem 3.10. If T W C vx0.RC/ ! C vx0.RC/ is an order isomorphism, then
there exist two constants ˛ > 0 and ˇ > 0 such that either (a-la-i) for every � 2
C vx0.RC/,

.T �/.x/ D ˇ�.x=˛/;

or (a-la-J ), for every � 2 C vx0.RC/,

.T �/.x/ D ˇ.J �/.x=˛/:

In higher dimensions, it was shown that

Theorem 3.11. Let n � 2. Any order isomorphism T W C vx0.Rn/ ! C vx0.Rn/
is either of the form T f D C0f ı B or of the form T f D C0.J f / ı B for some
B 2 GLn and C0 > 0.

It is interesting to notice, and will be quite important in the sequel, that the map
(on functions) J is actually induced by a point map on the epi-graphs of those
functions. Indeed, one can check that for every f 2 C vx0.Rn/, the bijective map
F W Rn � R

C ! R
n � R

C given by

F.x; y/ D
�
x

y
;
1

y

�
;

satisfies
epi.J f / D F.epi.f //;
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where
epi.f / D f.x; y/ 2 R

n � R
C W f .x/ < yg:

See [7] for details. Moreover, we see that F is actually a fractional linear map. We
will get back to this issue frequently in the next two sections.

Clearly, if we have a point map which preserves the set “epi-graphs of (a certain
subset of) convex functions” then it induces an order preserving transform on this
subset. It is not clear that, in some cases, any order preserving transform is induced
by such a point map. However, this turns out to be the case both in the theorems
described above, and in all theorems in the next two sections. Let us emphasize that
this is also, usually, the idea behind the proof. First one shows that the transform
must be induced by some point map, and moreover, one which preserves intervals.
Next one uses some theorem which classifies all interval preserving maps (for
example, the fundamental theorem of affine geometry, or Theorem 2.17), and finally
one checks which of these maps really induces a transform on the right class, by this
getting a full classification of order preserving transforms.

3.4 Order Reversing Isomorphisms

Considering order reversing transforms, the situation is slightly different, since
there are two different cases. The first case is when one is given a set on
which there is a known order reversing transform, such as L on C vx.Rn/ or on
C vx0.Rn/, for example. In that case the classification of order reversing transforms
is completely equivalent to the classification of order preserving ones, by composing
each of them with the known transform. For example, the theorems above give the
following:

Theorem 3.12. Let n � 2. If T W C vx.Rn/ ! C vx.Rn/ is an order reversing
involution, then T is of the form T f D .Lf / ı B C C0, for some symmetric B 2
GLn and C0 2 R.

Theorem 3.13. Let n � 2. If T W C vx0.Rn/ ! C vx0.Rn/ is an order reversing
involution, then T is either of the form T f D .Lf / ı B , or of the form T f D
C0.Af / ı B , for some symmetric B 2 GLn and C0 > 0.

However, there exists a second case in which there is no order reversing
transform and this requires a different treatment, since one cannot use the above
mentioned strategy, and is forced to find the real obstruction for the existence of
such a transform (see [4] for examples). In Sect. 4.5 we deal with order reversing
isomorphisms on C vx.K/, and show that when K ¤ R

n, there are no such
transforms.
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4 The Cone of Convex Functions on a Window

4.1 Introduction

We investigate the question of characterizing order isomorphisms on convex
functions, when the domain of the functions is not the whole of Rn but a convex
subset. One such example which has already been studied (see [7]) is the case of
geometric convex functions on R

C. Since this example is central also for our setting,
we describe it in detail below. First, let us recall the following definition:

Definition 4.1. The class of all lower-semi-continuous convex functions f W K !
R [ f1g together with the constant �1 function on K will be denoted C vx.K/.
It can be naturally embedded into C vx.Rn/ by assigning to f the value C1
outsideK .

We often call K a window, on which we observe the functions of C vx.Rn/.
Our first results regard a description of order isomorphisms on the class of convex
functions defined on a window. We state two versions, one of which does not assume
surjectivity, but in which the order preservation condition is replaced by a slightly
stronger condition of preservation of supremum and generalized infimum.

Theorem 4.2. Let n � 1, and let K1;K2 � R
n be convex sets with non empty

interior. If T W C vx.K1/ ! C vx.K2/ is an order preserving isomorphism, then
there exists a bijective fractional linear map F W K1 � R ! K2 � R, such that T is
given by

epi.T f / D F.epi.f //:

In particular,K2 is a fractional linear image ofK1.

Theorem 4.3. Let n � 1, and let K1;K2 � R
n be convex sets with non empty

interior. If T W C vx.K1/ ! C vx.K2/ is an injective transform satisfying:

1. T .sup˛ f˛/ D sup˛ T f˛ .
2. T . Oinf˛f˛/ D Oinf˛T f˛ .

for any family ff˛g � C vx.K1/, then there exist K 0
2 � K2, and a bijective

fractional linear map F W K1 � R ! K 0
2 � R, such that T is given by

epi.T f / D F.epi.f //:

Note that for x 62 K 0
2 we get .T f /.x/ D C1.

Note that by Proposition 3.5, an order isomorphism respects the actions of sup
and Oinf. Therefore Theorem 4.3 is stronger, and implies Theorem 4.2. However, in
the bijective case some of the reasoning is much simpler, and therefore below we
prove both theorems independently, for clarity.
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Remark 4.4. Let us elaborate on the meaning of the equation epi.T f / D
F.epi.f //. When F induces a transform on C vx.K/, it is shown in Sect. 4.4
that up to some affine linear functionalL1, F is of the form

F.x; y/ D
�
Ax C u

hv; xi C d
;

y

hv; xi C d

�
;

where A 2 Ln.R/, u; v 2 R
n, and d 2 R. Denoting L0 D hv; �i C d for the

affine linear functional in the denominator, and Fb.x/ D AxCu
hv;xiCd for the base-map

(projection of F to the first n coordinates), we conclude that

.T f / D
�
f

L0

�
ı F �1

b C L1; (4)

where L1 is some affine linear functional and F �1
b W K2 ! K1 is bijective.

Note that L0 and Fb are not independent, since L0 must vanish on the defining
hyperplane of Fb (where Fb is not defined). Moreover, note that for a general f , the
function f

L0
may not be convex, but the composition with F�1

b exactly compensates
this problem, and the result is again a convex function. In the special case of
A D I; u D 0;L0.x/ D x1 C 1;L1.x/ 	 0 we get F.x; y/ D . x

x1C1 ;
y

x1C1 /,
and .T f /.x/ D .1�x1/f . x

1�x1 /. This simpler form of the transform is not general,
but if one allows linear actions on the epi-graphs, before and after F acts on them,
it suffices to consider this form. There is another important, different, instance of
the equation epi.T f / D F.epi.f //, which may occur when the transform is
defined on the subset of C vx.K/ consisting of non-negative functions vanishing
at the origin. We state it now for comparison and elaborate below (Theorem 5.2). A
transform of this second, essentially different, type (a-la-J , see [7]), corresponds to
the inducing fractional linear map:

FJ .x; y/ D
�
x

y
;
1

y

�
;

and to the explicit formula:

.J f /.x/ D inf
n
r > 0 W rf

�x
r

	
� 1

o
:

4.2 The Bijective Case

Proof of Theorem 4.2. The proof is composed of several steps.

Extremality of delta functions. As in [7], we define the following family P of
extremal functions: f 2 P if every two functions above f are comparable, that is:
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f � g; h ) g � h or h � g:

This implies that the support of f (the set on which f is finite) consists of only
one point. We call these functions delta functions, and denote by ıx;c the function
which equals c at the point x, and C1 elsewhere.

T is a bijection between the familyP inC vx.K1/ and the familyP inC vx.K2/,
since this property is defined only using the “�” relation, which T preserves in
both directions. Thus T .ıx;c/ D ıy;d , and this map between delta functions is
bijective. This allows us to define a bijection F W K1 � R ! K2 � R; F.x; c/ D
.y.x; c/; d.x; c//, such that T .ıx;c/ D ıF.x;c/. In fact, we get that y D y.x/ and
d D d.x; c/ because two functions ıx;c and ıx;c0 are comparable, and so must
be mapped to comparable functions. Note that also y.x/ is bijective. Indeed, it
is injective since the images of two functions are comparable if, and only if, the
original functions are comparable, and it is surjective since all delta functions are in
the image of T .

Preservation of intervals. The “projection” of F to the first n coordinates, i.e.
the mapping x 7! y.x/, is a bijective interval preserving map. Indeed, assume
y.x1/ D y1, y.x2/ D y2, and x3 2 Œx1; x2�. Since ıx3;0 � Oinffıx1;0; ıx2;0g, the
function ıx3;0 must be mapped to a function ıy3;d3 which is above Oinffıy1;d1 ; ıy2;d2g.
Since Oinffıy1;d1 ; ıy2;d2g is C1 outside Œy1; y2�, this implies y3 2 Œy1; y2�. For n � 2,
it implies that y.x/ is fractional linear, by Theorem 2.17. In fact this is true also
when n D 1, but for n D 1 it follows from interval preservation of F itself. To see
that F is interval preserving, consider .x3; c3/ on the interval between .x1; c1/ and
.x2; c2/. We know it is mapped to .y3; d3/ with y3 2 Œy1; y2� and moreover, letting
y3 D 
y1 C .1 � 
/y2, we know d3 � 
d1 C .1 � 
/d2. Using surjectivity, we
deduce that F.x3; c3/ D ıy3;
d1C.1�
/d2 , since ıy3;
d1C.1�
/d2 is above the function
Oinffıy1;d1 ; ıy2;d2g and for all c < c3, ıx3;c is not above the function Oinffıx1;c1 ; ıx2;c2g.

Since F is an injective interval preserving map, we may apply Theorem 2.17, to
conclude that F is a fractional linear map.

To complete the proof of Theorem 4.2, let f 2 C vx.K1/, and write it as

f D Oinffıx;y W .x; y/ 2 epi.f /g:

) T f D OinffT .ıx;y/ W .x; y/ 2 epi.f /g
D OinffıF.x;y/ W .x; y/ 2 epi.f /g
D Oinffıx;y W .x; y/ 2 F.epi.f //g:

On the other hand:

T f D Oinffıx;y W .x; y/ 2 epi.T f /g:
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Therefore we get
epi.T f / D F.epi.f //;

as desired. This completes the proof. ut
Of course, there are restrictions on the structure of F for it to induce such a

transform. This is elaborated in Sect. 4.4.

4.3 The Injective Case

We next move to the case of injective transforms. Let us first remark why in
Theorem 4.3 we had to change the conditions from mere order preservation to
preservation of sup and Oinf.

Remark 4.5. In the bijective case, order preservation (in both directions) is equiva-
lent to preservation of sup and Oinf. One direction is given in Proposition 3.5, and the
other is given here:

f � g ) T .g/ D T .supff; gg/ D supfT .f /;T .g/g ) T .f / � T .g/;
T .f /�T .g/ ) T .g/D supfT .f /;T .g/gDT .supff; gg/) gD supff; gg ) f �g:

This direction is true also in the injective case (preservation of sup and Oinf implies
order preservation), but the opposite (order preservation in both directions implies
preservation of sup and Oinf) is not, as shown in the following example. The following
T W C vx.Rn/ ! C vx.Rn/ is injective and f � g if and only if T f � T g:

.T f /.x/ D f .x/C x21 :

But T does not map Oinf to Oinf. The reason behind this fact is that T is not surjective.
Moreover, there exist f; g, such that OinffT .f /; T .g/g is not in the image of T , and
in particular it is not equal to T . Oinfff; gg/; for example take f .x/Dx1; g.x/D�x1.

For the proof of the more general Theorem 4.3, we need the following known
geometric lemma. The dimension of a set K denotes the minimal dimension of an
affine subspace which contains the set.

Lemma 4.6. In anm-dimensional affine space, letM be a closed convex set. Let F
be a family of m-dimensional closed convex sets such that K ¤ M for all K 2 F ,
and K1 \ K2 D M whenever K1 ¤ K2 and K1;K2 2 F . Then F is at most
countable.

We reformulate it, to better suit our need:

Lemma 4.7. Let M � R
n be a fixed closed convex set of dimension m. Let F be

an uncountable family of closed convex sets such that K ¤ M for all K 2 F , and
K1 \ K2 D M whenever K1 ¤ K2 and K1;K2 2 F . Then for at least one set
K 2 F , dim.K/ � mC 1. In particular,m � n � 1.
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Lemma 4.7 follows from Lemma 4.6, where the minimal subspace which
contains M is taken to be the m-dimensional affine space of Lemma 4.6. Our
application of this lemma requires a little more, so we prove:

Lemma 4.8. Let M � R
n be a fixed closed convex set of dimension m. Let F be

an uncountable family of closed convex sets such that K ¤ M for all K 2 F , and
K1 \ K2 D M whenever K1 ¤ K2 and K1;K2 2 F . Then for at least one set
K 2 F , dim.K/ � mC 1. Moreover, m � n � 2.

Proof. We wish to prove thatm ¤ n�1; the rest follows from Lemma 4.7. Assume
otherwise, then let H D fhx; ui D cg be the affine subspace of dimension n � 1

which contains M . Our assumption is that the relative interior of M in H is not
empty. The set fK 2 F W K � Hg is at most countable, by Lemma 4.6. Since
F is not countable, there are at least three sets which are not contained in H , and
therefore (without loss of generality) we have A;B 2 F such that A \ HC ¤ ;,
B \HC ¤ ;, whereHC WD fhx; ui > cg. Let a 2 A; b 2 B such that a; b 2 HC,
and let x 2 M be a point in the relative interior of M . Since convfM;ag � A, we
conclude that there is some open half ball of the form B.x;r/ \HC contained in A,
and likewise for B . The two half balls have non empty intersection, in contradiction
to A \ B D M . ut

We will use this lemma for epi-graphs of functions. Noting that

epi.maxff; gg/ D epi.f /\ epi.g/;

we get the following lemma for convex functions:

Lemma 4.9. Let M W Rn ! R be a fixed convex function, such that epi.M/ �
R
nC1 is of dimension m. Let F be an uncountable family of convex functions such

that f < M for all f 2 F , and maxff1; f2g D M whenever f1; f2 2 F and
f1 ¤ f2. Then for at least one function f 2 F , dim.epi.f // � mC 1. Moreover,
m � n � 1.

Proof of Theorem 4.3. We start by checking where the constant function C1 is
mapped to. Let us call its image f1. Consider the family fıxgx2K1, and its image
fT ıxgx2K1 . It is uncountable, and every two functions in the second family satisfy
maxfg1; g2g D f1.

This means, by Lemma 4.9, that there exists x1 2 K1 such that the dimension
of the epi-graph of T ıx1 must be higher by at least 1 than the dimension of the
epi-graph of f1. Similarly, for x1 we construct an uncountable family of functions
fıŒx1;y�gy2K1 such that the maximum of every two is ıx1 , and by applying Lemma 4.9
again we get that there exists at least one such function, the image of which has
an epi-graph with dimension higher by at least 1 than the dimension of the epi-
graph of T ıx1 . After repeating this construction an overall of n � 1 times, we
conclude that there exist x1; : : : ; xn�1 2 K1 such that the epi-graph of the function
T ıconvfx1;:::;xn�1g is of dimension higher by at least n � 1 than the dimension of the
epi-graph of f1. Applying Lemma 4.9 one last time, we get that the dimension of
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the epi-graph of T ıconvfx1;:::;xn�1g is at most .n C 1/ � 2 D n � 1. This means that
the epi-graph of f1 is of dimension 0, that is, f1 D C1.

This also shows that T .ıx;c/ D ıy;d . Indeed, since the only epi-graph with
dimension 0 has already been designated to f1, the dimension of the epi-graph
of T .ıx;c/ is at least 1; but we may construct a chain as above which implies that it
is also at most 1. We define the injective map F W K1 �R ! K2 �R by the relation
T .ıx;c/ D ıF.x;c/, and denote F.x; c/ D .y.x; c/; d.x; c//.

In fact, we get that y D y.x/ and d D d.x; c/ because the two functions
ıx;c and ıx;c0 are comparable, and so must be mapped to comparable functions (by
Remark 4.5). Note that y.x/ is injective because the images of two functions are
comparable if and only if the original functions are comparable. In addition, y.x/
is interval preserving. Indeed, assume y.x1/ D y1, y.x2/ D y2, and x3 2 Œx1; x2�.
Since ıx3 � Oinffıx1; ıx2g, the function ıx3 must be mapped to a function ıy3;c which
is above Oinffıy1;c1 ; ıy2;c2g, which implies y3 2 Œy1; y2�. For n � 2, the fact that
y.x/ is an injective interval preserving map implies that it is fractional linear, by
Theorem 2.17. Actually this is true also for n D 1, but it only follows from the fact
that .x; c/ 7! .y; d/ is also interval preserving, which we will next show.

Remark. We note that until this point in the proof (for n � 2) we only use the
max/min condition, and not the stronger assumed condition for sup/inf; we already
get that the map F is very restricted: it is a fractional linear map on the base, and
some one dimensional map dx.c/ on each fiber, and all these maps dx must join
together to preserve convexity of epi-graphs. This seems to restrict d.x; c/ enough
to determine its form, but we chose to continue using a different argument, which
works also for n D 1, but requires the preservation of sup/inf.

To see that F is interval preserving consider the function Ominfıx1;c1 ; ıx2;c2g,
which is C1 outside the interval Œx1; x2� and linear in it, with f .x1/ D c1 and
f .x2/ D c2. By assumption, it is mapped to Ominfıy1;d1 ; ıy2;d2g. Taking .x3; c3/ 2
Œ.x1; c1/; .x2; c2/� we have that ıx3;c3 � Ominfıy1;d1 ; ıy2;d2g and so the point .y3; d3/
lies above or on the segment Œ.y1; d1/; .y2; d2/�.

On the other hand, look at x3 D 
x1 C .1 � 
/x2 and c0
3 < 
c1 C .1 � 
/c2.

That is, we take a point .x3; c0
3/ which is under the segment Œ.x1; c1/; .x2; c2/�. From

the “only if” condition, we have that T .ıx3;c0

3
/ 6� Ominfıx1;c1 ; ıx2;c2g. So .y3; d 0

3/ is
under the segment Œ.y1; d1/; .y2; d2/�, since y3 2 Œy1; y2� and it cannot be above
or on it. Since ıx3;c3 D supc0

3<c3
fıx3;c0

3
g, we may use the condition of supremum to

get d3 D supfd 0
3g, and thus .y3; d3/ is below or on the segment Œ.y1; d1/; .y2; d2/�.

Together with what we saw before, this implies .y3; d3/ 2 Œ.y1; d1/; .y2; d2/�.
So, we have shown that F W K1 �R ! K2 �R is an injective interval preserving

map, and we may apply Theorem 2.17 to conclude that it is fractional linear.
To complete the proof of Theorem 4.3, we proceed in exactly the same way as in

the proof of Theorem 4.2, to conclude that

T f D Oinffıx;y W .x; y/ 2 F.epi.f //g
D Oinffıx;y W .x; y/ 2 epi.T f /g;
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and thus
epi.T f / D F.epi.f //;

which completes the proof. ut
Both proofs generalize without any complication to various other settings in

which one considers different classes, such as the class of all non negative functions
in C vx.Rn/, or in C vx.K/, or more generally:

Sf0 D C vx.Rn/\ ff W f0 � f g;

for some fixed f0 2 C vx.Rn/. We get:

Theorem 4.10. Let n � 1, and let f1; f2 2 C vx.Rn/ be convex functions with
support of full dimension. If T W Sf1 ! Sf2 is an order isomorphism, then there
exists a bijective fractional linear map F W epi.f1/ ! epi.f2/, such that T is
given by

epi.T f / D F.epi.f //:

Theorem 4.11. Let n � 1, and let f1; f2 2 C vx.Rn/ be convex functions with
support of full dimension. If T W Sf1 ! Sf2 is an injective transform satisfying:

1. T .sup˛ f˛/ D sup˛ T f˛ .
2. T . Oinf˛f˛/ D Oinf˛T f˛ .

for any family ff˛g � Sf1 , then there exist f 0
2 2 Sf2 , and a bijective fractional

linear map F W epi.f1/ ! epi.f 0
2 /, such that T is given by

epi.T f / D F.epi.f //:

It is tempting to consider Theorems 4.2 and 4.3 as manifestations of Theo-
rems 4.10 and 4.11, where fi is the function which attains only the values �1 on
Ki and C1 outside Ki . The only problem is that these functions are not elements
of C vx.Rn/, but in fact Theorems 4.10 and 4.11 can be further generalized without
any effort. Instead of considering only classes of the form Sf0 D ff 2 C vx.Rn/ W
epi.f / � epi.f0/g, consider also ff 2 C vx.Rn/ W epi.f / � Kg, where K is
some convex set (in the case of Theorems 4.2 and 4.3, K is the infinite cylinder
Ki � R).

4.4 Classification of Admissible Fractional Linear Maps

Since fractional linear maps send intervals to intervals, it is clear (a-posteriori,
once we know the transform is induced by a fractional linear map) that a delta
function ıx;c is mapped to a delta function ıy;d ; since these are the only functions
with epi-graphs that are half-lines. Moreover, by order preservation, we see that y
is a function only of x. Observations of this kind allow us to classify the type of
fractional linear maps that induce transforms as in Theorem 4.2.
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Let the inducing matrix AF 2 GLnC2 be given by

AF D

0
BBBBB@

u0
1 u1

A
:::
:::

u0
n un

v0
1 � � � v0

n a b

v1 � � � vn c d

1
CCCCCA
;

where A is an n � n matrix, v; v0; u; u0 2 R
n, and a; b; c; d 2 R.

The infinite cylinder K1 � R is contained in the domain of F , so it must not
intersect the defining hyperplaneH D fhv; xi C cy D �d g, which implies c D 0.
In particular, K1 � fhv; xi > �d g (the sign of the denominator is constant on
dom.F /, and we choose it to be positive; we may do so due to the multiplicative
degree of freedom in the choice of AF ).

Since F must map fibers f.x; y/ W y 2 Rg to fibers, we see that for i D 1; : : : ; n,

F..x; y//i D
�
AxCyu0Cu

hv;xiCd
	
i

does not depend on y, which implies u0 D 0.

Let f 2 C vx.K1/. The image of epi.f / must be the epi-graph of some g 2
C vx.K2/. Since we have chosen a positive sign for the denominator, this simply
means that a > 0, and we choose a D 1, thus exhausting the multiplicative degree
of freedom in the choice of AF .

Finally, let F 0 be the map corresponding to the following .nC1/�.nC1/ matrix,
having removed the next to last row and column from AF :

AF 0 D

0
BB@ A u

vT d

1
CCA :

The map F 0 W K1 ! K2 is fractional linear, and corresponds to the action of F on
fibers (the “projection” of F to R

n). Thus AF 0 must be invertible. We note that this
condition always holds; we have AF 2 GLnC2, and since the .n C 1/th column of
AF is enC1, det.AF 0/ D ˙det.AF / ¤ 0.

We claim that these restrictions are not only necessary but also sufficient:

Proposition 4.12. Let K1 � R
n be a convex set with interior, for n � 1. Let A be

an n� n matrix, u; v; v0 2 R
n, b; d 2 R, and let F;F 0 be the fractional linear maps

defined by the following matrices:

AF D

0
BBBBB@

0

A
::: u
0

v0T 1 b

vT 0 d

1
CCCCCA
; AF 0 D

0
BB@ A u

vT d

1
CCA :



Order Isomorphisms on Convex Functions in Windows 97

If the following two conditions are satisfied:

1. K1 � fhv; xi > �d g.
2. AF 0 2 GLnC1, or equivalently AF 2 GLnC2.

then F induces an order isomorphism from C vx.K1/ to C vx.K2/ by its action on
epi-graphs, where K2 D F 0.K1/.

Proof. The following four conditions must be checked: that epi-graphs are mapped
to epi-graphs, that convexity of the functions is preserved under the transform, that
it is bijective, and that it is order preserving. Bijectivity and convexity preservation
follow easily by the bijectivity and interval preservation properties of fractional
linear maps, and order preservation is immediate for transforms induced by a point
map. The fact that epi-graphs are mapped to epi-graphs follows from the zeros in
the .nC 1/th (next to last) column of AF . ut

Denote the map from the fiber above x1 to the fiber above F 0.x1/ D x2 by
Fx1 W R ! R. It is an affine linear map, given by

Fx1.y/ D hv0; x1i C y C b

hv; x1i C d
:

Remark 4.13. Letting x2 D F 0.x1/ we get

.T f /.x2/ D Fx1.f .x1//:

Note that there is a sort of coupling between the “projected” map F 0, which
determines the x 2 R

n dependency, and Fx1 , which determines the y dependency.
More precisely: given F 0, the transform induced by F is determined, up to
multiplication by a positive scalar, and addition of an affine linear function. We
next show that the linear part is determined by v0 and b. Consider a transform T
induced by a map F , where

AF D

0
BBBBB@

0

A
::: u
0

0 � � � 0 1 0
vT 0 d

1
CCCCCA
:

Next, consider the transform: . QT f /.x/ D .T f /.x/Chx;wiCe, induced by a map
QF , where w 2 R

n and e 2 R. As before, denote
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A QF D

0
BBBBB@

0

QA ::: Qu
0

Qv0T 1 Qb
QvT 0 Qd

1
CCCCCA
:

Then A D QA, u D Qu, v D Qv, and d D Qd . The only difference is in the next to last
row, namely v0 and b, and a simple calculation shows that

0
BB@ Qv

Qb

1
CCA D

0
BB@ AT v

uT d

1
CCA

0
BB@w

e

1
CCA :

The matrix appearing above is exactly ATF 0

, so it is invertible, and therefore, the set
of all v; b corresponds exactly to the set of all affine linear additions to T (clearly
these affine additions do not harm the properties of order preservation, bijectivity,
etc.).

4.5 Order Reversing Isomorphisms

The Legendre transform L W C vx.Rn/ ! C vx.Rn/, is the unique order reversing
isomorphism on C vx.Rn/. The corresponding question for windows is, given
K1;K2 � R

n, what are all the possible order reversing isomorphisms between
C vx.K1/ and C vx.K2/? It turns out that there are no such order reversing
isomorphisms, except in the aforementioned case where K1 D K2 D R

n. This
is due to the fact that the delta functions “have nowhere to be mapped to”. We
formulate this simple observation in the following Proposition 4.17. To this end we
use the following two definitions.

Definition 4.14. Let PK � C vx.K/ denote the following subset of extremal
functions:

PK WD ff 2 C vx.K/ W g; h � f ) g; h are comparableg:

Definition 4.15. Let QK � C vx.K/ denote the following subset of extremal
functions (dual to P ):

QK WD ff 2 C vx.K/ W g; h � f ) g; h are comparableg:

Recall that in this new notation, for any closed convexK (actually, for any K �
R
n), PK consists exactly of the delta functions. In C vx.Rn/, it is clear that QRn



Order Isomorphisms on Convex Functions in Windows 99

consists of linear functions; it follows from the fact that the only functions below
f D hc; xi C d are of the form g.x/ D hc; xi C d 0, for d 0 < d . In the next lemma
we see that when K ¤ R

n is a convex set with non empty interior,QK D ;.

Lemma 4.16. If K ¨ R
n is a convex set with non empty interior, then QK D ;.

Proof. Clearly, if f is a non linear convex function, f 62 Q (take two hyperplanes
supporting epi.f / in different directions). For a linear function f , one may easily
construct two non-parallel linear functions below it, which are not comparable (they
will satisfy g.x/; h.x/ � f .x/ for every x 2 K , not for every x 2 R

n). Note that
the fact that K has non empty interior is essential, otherwise there is no guarantee
that the functions will differ on K , as demonstrated by the example of K being a
subspace. ut

We have shown in the proof of Theorem 4.2 that an order preserving isomorphism
T W C vx.K1/ ! C vx.K2/ defines a bijection from PK1 to PK2 . Similarly, an order
reversing isomorphism defines a bijection from PK1 to QK2 (and from QK1 to PK2 ,
of course), which is why we say Q is “dual” to P .

Proposition 4.17. Let n � 1, and let K1;K2 � R
n be convex sets with non empty

interior, such that eitherK1 ¤ R
n orK2 ¤ R

n. Then there does not exist any order
reversing isomorphism T W C vx.K1/ ! C vx.K2/.

Proof of Proposition 4.17. Without loss of generality, assumeK2 ¤ R
n (otherwise

consider T �1). Let x 2 K1, then ıx;0 2 PK1 . Therefore T .ıx;0/ 2 QK2 , which
contradicts the conclusion of Lemma 4.16. ut

5 Geometric Convex Functions on a Window

Recall the definition of geometric convex functions on a window:

Definition 5.1. For a convex set K � R
n with 0 2 K , the subclass of C vx.K/

containing non negative functions satisfying f .0/ D 0 is called the class of
geometric convex functions, and denoted by C vx0.K/, i.e.

C vx0.K/ D ff 2 C vx.K/ W f � 0; f .0/ D 0g:

It is naturally embedded in C vx0.Rn/ by assigning to f the value C1 outside K .
Therefore an equivalent definition is

C vx0.K/ D ff 2 C vx.Rn/ W 1K � f � 1f0gg

where 1K denotes the convex indicator function of K , which is zero on K and C1
elsewhere, and similarly 1f0g. Note that these functions are usually denoted by 11

K ,
however, we never use in this paper the standard characteristic functions, so this
notation can not lead to a misunderstanding.
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In this section we deal with order isomorphisms from C vx0.K1/ to C vx0.K2/,
where Ki are convex sets (containing 0, of course), and some generalizations of
these classes.

As the example of J in C vx0.Rn/ (which was discussed in Sect. 3.3) shows
us, the case of C vx0.K/ is more involved than C vx.K/, and a transform can be
more complicated than a mere fractional linear change in the domain with the
corresponding change in the fiber. Indeed, here we know already of an example
where an indicator function is not mapped to such.

However, for the cases of K D R
C and K D R

n we do have theorems of the
sort, see Theorems 3.10 and 3.11. There, the transform is given by a fractional linear
point map on the epi-graphs. In each of these cases we observe two different types
of behavior; one where fibers are mapped to fibers (a-la-i), and one when they are
not (a-la-J ).

In this section we generalize these theorems to apply to an order isomorphism
T W C vx0.K1/ ! C vx0.K2/, for convex domainsK1, K2.

Theorem 5.2. Let n � 2, and let K1;K2 � R
n be convex sets with non empty

interior. If T W C vx0.K1/ ! C vx0.K2/ is an order preserving isomorphism, then
there exists a bijective fractional linear map F W K1 � R

C ! K2 � R
C, such that

T is given by
epi.T f / D F.epi.f //:

The case n D 1 is slightly different since the two domains RC and R
� do not

interact. Other than that, the result is the same, for example see Theorem 5.7.

Remark 5.3. Of course, it is not true that every fractional linear map on K1 � R
C

induces such a transform. A discussion of which fractional linear maps do induce
such a transform (similar to that in Sect. 4.4) is given in Sect. 5.3.2.

Remark 5.4. In Sect. 5.3.2 we will also see that there is a difference between the
cases 0 2 @K and 0 2 int.K/, where in the former a “J -type” transform does exist,
and in the latter it does not (except in the case K1 D K2 D R

n).

First, we will prove the one-dimensional theorem. We will do this in two ways.
The first (in Sect. 5.1) is by using the known uniqueness Theorem 3.10 for J and i.
The second is a direct proof, which we postpone to Sect. 5.3.1. We add this second
proof for two purposes; to make the paper self contained, and also to clarify the case
of a transform T W C vx0.Œ0; x1�/ ! C vx0.Œ0; x2�/, that is when the domain of all
functions is bounded.

Second, we will prove the multi-dimension theorem, in the following stages: we
show that the transform must act “ray-wise”. Then, on each ray, we could already
apply the one-dimensional conclusion, but in fact we need much less—thus we
continue directly and show that two extremal families of functions, namely linear
functions and indicator functions, determine the full shape of T . The extremality
property forces the transform to act bijectively on these two families, and in a
monotone way. Here, we do not need to discover the exact rule of this monotone
mapping (even though we have it, since we’ve solved the one dimensional case).
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Instead, we prove that there is some point map on the epi-graphs, controlling the
rule of the transform for a third family, namely triangle functions. We show that
this point map is interval preserving, and then apply Theorem 2.17 to show that
it is fractional linear. Finally, we show that the rule of the transform for triangles
determines the whole transform, thus completing the proof. This plan follows the
proof from [7] of the case K1 D K2 D R

n.

5.1 Dimension One

In [7], the first and third named authors showed that essentially, any order
isomorphism T W C vx0.RC/ ! C vx0.RC/ is either i or J , see Theorem 3.10.
We note that in this case, indeed, for each of these two families of transforms, the
transform is induced by a point map on the epi-graphs which is fractional linear.
The first family of transforms (a-la-i) is given by

.T �/.x/ D ˇ�.x=˛/;

for positive ˛ and ˇ, and the inducing maps are F i
˛;ˇ.x; y/ D .˛x; ˇy/. The second

family of transforms (a-la-J ) is given by

.T �/.x/ D ˇ.J �/.x=˛/;

for positive ˛ and ˇ, and the inducing maps are F J
˛;ˇ.x; y/ D

�
˛x
y
;
ˇ

y

	
.

We introduce a third transform, with a parameter z > 0, to be able to switch
between the bounded and non bounded cases;

Definition 5.5. Let z > 0, and Fz W Œ0; z/ � R
C ! R

C � R
C be the bijective

fractional linear map defined by Fz.x; y/ D 

x

z�x ;
y

z�x
�
.

Lemma 5.6. Fz induces an order isomorphism Tz WC vx0.Œ0; z//!C vx0.RC/ by
its action on epi-graphs, that is

epi.Tz.f // D Fz.epi.f //:

Proof. To see that a transform defined using a point map on the epi-graphs, is an
order isomorphism, three things need to be checked; that it is well defined, that it
is bijective, and that it preserves order in both directions. For Tz to be well defined,
Fz must map epi-graphs of geometric convex functions to epi-graphs of geometric
convex functions. SinceFz is fractional linear, it is interval preserving, thus a convex
epi-graph is mapped to some convex set. Among all convex sets, epi-graphs of
geometric convex functions are characterized by two inclusions;

f.0; y/ W y > 0g D epi.1f0g/ � epi.f / � epi.1K/ D f.x; y/ W x 2 K; y > 0g:
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Note that Fz maps the half line f.0; y/ W y > 0g onto itself, and the entire domain
Œ0; z/�R

C onto the imageRC�R
C. Therefore also Fz.epi.f // is between these two

sets, which means it is the epi-graph of some geometric convex function. Bijectivity
of Fz implies bijectivity of Tz. Since f � g , epi.g/ � epi.f /, a transform
induced by a bijective point map on the epi-graphs, automatically preserves order in
both directions. ut

We are ready to prove the one dimensional theorem, dealing with I1; I2 � R

which may be either bounded intervals or half lines.

Theorem 5.7. Let I1 � R be either of the form I1 D Œ0; x1/ for some positive
x1, or I1 D Œ0;1/, and likewise I2. If T W C vx0.I1/ ! C vx0.I2/ is an order
isomorphism, then there exists a bijective fractional linear map F W I1 � R

C !
I2 � R

C, such that T is given by

epi.T f / D F.epi.f //:

Proof of Theorem 5.7. Define QT W C vx0.RC/ ! C vx0.RC/ in the following way:

If I1 D Œ0; x1/ and I2 D Œ0;1/, then: QT WD T ı T �1
x1

If I1 D Œ0; x1/ and I2 D Œ0; x2/, then: QT WD Tx2 ı T ı T �1
x1

If I1 D Œ0;1/ and I2 D Œ0;1/, then: QT WD T
If I1 D Œ0;1/ and I2 D Œ0; x2/, then: QT WD Tx2 ı T

QT is clearly an order isomorphism. Next, by simply applying Theorem 3.10, we get
that our original T is some composition of the transforms i, J , Tz, and T �1

z , which
are all induced by fractional linear point maps on the epi-graphs. Thus we conclude
that T is also induced by such a map. ut
Remark 5.8. For transforms on (or to) C vx0.Œ0; z�/ simply note that all elements of
C vx0.Œ0; z// are non decreasing and lower-semi-continuous functions, and thus have
a unique extension to Œ0; z�, which preserves order in both directions. Therefore,
by embedding C vx0.Œ0; z// D C vx0.Œ0; z�/ (where f is mapped to its unique
extension) we get an order isomorphism of the form described in Theorem 5.7,
and thus have the same result for closed intervals Œ0; z�, where epi-graphs are taken
without the point z. In particular we see that there exist order isomorphisms between
C vx0.Œ0; z�/ and C vx0.RC/.

5.1.1 Table of One Dimension Transforms

Straightforward computation of the transform in each of the cases gives, in each
of the four scenarios, two types of transforms; a-la-identity and a-la-J . We list
them here, indicated by the fractional linear maps which induce them, namely Fa;b W
I1�R

C ! I2�R
C. Each family is two-parametric, for convenience we choose the

parameters a; b such that a; b > 0 gives exactly all the functions in the family:
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I1 I2 a-la-iI Fa;b.x; y/ a-la-J I Fa;b.x; y/

Œ0; x1/ Œ0; x2/
x2

x.1�a/Cx1a
�
�
x

by

�
bx2
bxCy

�
�

x

a.x1 � x/

�

Œ0; x1/ Œ0;1/ a
x1�x

�
�
x

by

�
b
y

�
�

x

a.x1 � x/

�

Œ0;1/ Œ0; x2/
ax2
axC1

�
�
x

by

�
bx2
bxCy

�
�
x

a

�

Œ0;1/ Œ0;1/ a �
�
x

by

�
b
y

�
�
x

a

�

There is an essential difference between the i-type and J -type transforms; they
handle differently the extremal elements ofC vx0.I /, which are indicators and linear
functions (see Sect. 5.2.2 for exact definitions). The i-type transforms map indicators
to themselves (bijectively), and likewise linear functions. The J -type transforms,
however, interchange between the two sub-families, mapping indicators to linear
functions (bijectively) and vice versa. In the inducing maps, we also have a natural
distinction between the i-type and J -type maps. In both cases the determinant of
the Jacobian of the inducing map never vanishes; it is positive for i-type maps, and
negative for J -type maps.

5.2 Multi Dimension

5.2.1 Acting on Rays

We next prove that in the n-dimensional case, one merely deals with many copies
of the one dimensional problem (in fact, the case of functions on R

C).
The next lemma states that an order isomorphism basically works in the

following way: first, there is a permutation on the rays, and then on each ray, the
transform acts independently of the functions’ values on other rays.

There are two nuances here; first, if K ¤ R
n, then in some directions it does not

contain a full ray. Since this does not affect the argumentation in any way, we don’t
distinguish between a full ray (RCz) and a restricted ray (RCz \ K), which may
be a bounded interval, and use “ray” to describe both. Second, if 0 2 int.K/, then
the set of all relevant rays can be described by Sn�1, but if 0 2 @K , then there are
less relevant rays (in some directions z, RCz \ K D f0g). Therefore we are again
forced to add another definition, for the set of all relevant rays—S.K/ � Sn�1.
S.K/ WD fz 2 Sn�1 W RCz \K ¤ f0gg. In what follows, the support of a function
is defined to be (the closure of) the set on which it is finite; fx W f .x/ < 1g
Lemma 5.9. Let n � 2, and let K1;K2 � R

n be convex sets with non empty
interior. If T W C vx0.K1/ ! C vx0.K2/ is an order preserving isomorphism, then
there exists a bijection ˚ W S.K1/ ! S.K2/, such that any function supported on
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R
Cy is mapped to a function supported on R

Cz, for z D ˚.y/. Moreover, T acts
ray-wise, namely .T f /j

RCz depends only on f j
RCy , for z D ˚.y/.

We remark that if we were to prove the theorem directly for order reversing
transformations then we would not encounter this ray-wise behavior, and get a
transformA (orL) which, miraculously, when combined with L acts ray-wise. Later
on, it will follow that ˚ must be induced by a linear map.

The proof uses the following simple observation: if x; y 2 S.K1/ are two
different points, and fx; fy 2 C vx0.K1/ are two functions supported on R

Cx and
R

Cy respectively, then maxffx; fyg D 1f0g, and thus also maxfT fx; T fyg D 1f0g,
which means that T fx and T fy are supported on different sets.

Proof of Lemma 5.9. For two functions f; g to have maxff; gg D 1f0g they must
be supported on two sets whose intersection equals f0g. A function with support in
a line cannot be mapped to one whose support includes two positively-linearly-
independent points because then T �1 would map two functions whose support
intersects at f0g only, to functions supported on the same ray—impossible. Thus
functions supported on a given ray are all mapped to functions supported on another
fixed ray. By invertibility, we get that this defines a mapping ˚ W S.K1/ ! S.K2/

which is bijective.
As for the ray-wise action of T , the values of T f on R

Cz are the same as the
values of maxfT f;Rzg, whereRz denotes the function which is 0 on R

Cz \K2 and
C1 elsewhere. This maximum is the image of the function maxff;Ryg, because
T Ry D Rz (each being the smallest function supported on the corresponding ray).
Since maxff;Ryg does not depend on the values f attains outside R

Cy, our claim
follows. ut

5.2.2 Extremal Elements and Monotonicity

Restricted to a ray I , we consider two families of extremal functions in C vx0.I /;
indicator functions, and linear functions.

(a) 1Œ0;z� which equals to 0 on Œ0; z� and C1 elsewhere (indicator).
(b) lc.t/ D maxfct; 1I .t/g (linear).

Formally, the function lc is defined on the whole of Rn, therefore it is not really
linear, but we will use this name in short. All the J -type transforms switch (a) and
(b)—bijectively, and all the i-type transforms fix (a) and fix (b)—again, bijectively.
We will show that this is no coincidence—a general order isomorphism T must act
in one of these two ways. We derive this from two properties of these families—the
extremality property, and the non-comparability relation between these two families.

Definition 5.10. A function f 2 C vx0.I / is called extremal if there exist no two
functions g; h 2 C vx0.I / such that g 6� f and h 6� f but maxfg; hg � f .
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In the language of epi-graphs, this means that for epi.f / to contain A \ B ,
it must contain either A or B—whenever A;B are also epi-graphs of geometric
convex functions.

We claim that extremality characterizes indicator and linear functions in
C vx0.I /:

Lemma 5.11. The only extremal functions in C vx0.I / are either of the form 1Œ0;z�
for some z 2 I or of the form lc for some c 2 R

C.

Proof of Lemma 5.11. It is easy to check that both families are extremal. To show
that any extremal function f 2 C vx0.I /, must be of one of the two forms, we
first show that if it assumes some value 0 < c ¤ 1, it must be linear. Indeed,
let f .x/ D c. Without loss of generality we may assume x 2 int.I /, since f is
lower-semi-continuous. Consider the function 1Œ0;x� assuming 0 in the interval Œ0; x�
and C1 elsewhere; f 6� 1Œ0;x�, since 1Œ0;x�.x/ D 0 < f .x/. Consider the function
Lx.y/ D c

x
y. By convexity of f , on the interval Œ0; x�, f � Lx . Since outside

Œ0; x� we have f � 1Œ0;x�, this implies f � maxf1Œ0;x�; Lxg, and so by extremality it
must be that f � Lx . Since x is in the interior of I , this means that f D Lx , and
therefore f is linear. The only other option is that f assumes only the values 0 and
C1, which implies it is an indicator function, by convexity. ut
Lemma 5.12. If T W C vx0.I1/ ! C vx0.I2/ is an order isomorphism then
either:

T is a bijection from linear functions to indicators, and a bijection from indicators
to linear functions, or:

T is a bijection from linear functions to themselves, and a bijection from indicator
functions to themselves.

Proof. Extremality is preserved under T . Indeed, if there exist two functions g; h 2
C vx0.I2/ such that g 6� T f and h 6� T f but maxfg; hg � T f , then the functions
T �1g and T �1h contradict extremality for f . So, we see that the family of all
extremal functions is mapped to itself, and by Lemma 5.11 this family is exactly the
union of linear and indicator functions. Since T �1 shares the same properties as T ,
we see that the map is surjective.

Secondly, all linear functions are comparable to one another and all indicator
functions are comparable to one another (by f and g comparable we mean that
either f � g or g � f ). However, no indicator function is comparable to a
linear function—except for the trivial examples of 1f0g and 0, whose behavior is
obvious—since in C vx0.I /, these are the maximal and minimal elements (they are
also the only mutual elements in both families). Hence, once we know that one
linear function is mapped to a linear function then all of them must be, and then
all indicator functions are mapped to indicators. The alternative is of course that
all linear functions are mapped to indicators, and then all indicators are mapped to
linear functions. ut
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In this last lemma, a dichotomy, not apparent at first sight, appears. We have two
very different possibilities, one corresponding to i, the identity transform (which
clearly maps linear functions to themselves, likewise for indicator functions), and
the other possibility corresponds to the transform J , which—as can be checked—
maps linear functions to indicator functions and vice-versa. Despite this dichotomy,
in the statement of the next lemma we do not need to separate the two cases.

Next we claim that T is a monotone bijection on each of the extremal families.
Monotonicity has a meaning here since both families are fully ordered subsets
of C vx0.I /—“chains”—bounded together by the minimal and maximal elements
f0 	 0 and f1 D 1f0g.

If T maps linear functions to themselves (and likewise indicator functions), we
define S W I1 ! I2 to be the function for which T 1Œ0;x� D 1Œ0;S.x/�, and A W RC !
R

C, for which T .lc/ D lA.c/. If T interchanges between the two families, we define
S W I1 ! R

C to be the function for which T 1Œ0;x� D lS.x/, and A W RC ! I2, for
which T .lc/ D 1Œ0;A.c/�. In this next simple lemma we formulate the monotonicity
property:

Lemma 5.13. Assume T W C vx0.I1/ ! C vx0.I2/ is an order isomorphism.
If T maps linear functions to themselves, then S andA are increasing bijections.
If T interchanges between the two families, then S and A are decreasing

bijections.

Proof. S and A are bijections, since T is a bijection. Note that 1Œ0;x� � 1Œ0;y� ,
x � y and lc � ld , c � d . Therefore, if T fixes each of the families, S and A
are increasing, and if T switches between the families, S and A are decreasing. ut

5.2.3 Triangles Functions: Completing the Proof

Next, we handle another family of functions, “triangle” functions. We show it
is preserved under T , and that the rule of the transform for it is monotone. We
show that when leaving the one-dimensional perspective, the rule of the transform
for triangles is controlled by an interval preserving bijection; and thus we apply
our uniqueness theorem for such maps, Theorem 2.17. Finally we show that the
transform is determined by its behavior on triangles, which proves Theorem 5.2.

For z 2 K and c 2 R
C, we introduce the “triangle” functions, denoted Cz;c2

C vx0.K/:

Cz;c .x/ D
�
cjxj; if x 2 Œ0; z�
C1; otherwise:

Note that they are one-dimensional (i.e. supported on a ray), so they can be
thought of as elements of C vx0.I / where I is a ray, and then Cz;cD maxf1Œ0;z�; lcg.

Lemma 5.14. If T W C vx0.I1/ ! C vx0.I2/ is an order isomorphism then a
triangle function Cz;c is mapped under T to a triangle function Cz0;c0 , where .z0; c0/
is a function of .z; c/.
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Proof of Lemma 5.14. A triangle is the maximum of an indicator and a linear
function. By Proposition 3.5 T respects sup and Oinf, and thus in both cases of
Lemma 5.12, a triangle is mapped to the maximum of an indicator and a linear
function; that is, to a triangle. ut
Remark. Since in Lemma 5.13 we showed that T maps indicator and linear
functions in a monotone way, it is obvious that this is the case also for triangles,
meaning either T .Cz;c/D CS.z/;A.c/, or T .Cz;c/ DCA.c/;S.z/, and in both cases,
fixing any of the parameters z or c and changing the other monotonously, changes
also the triangle in the image monotonously. Since we already know the exact shape
of 1D transforms, we could have concluded this immediately. However, in what
follows, we only use the fact that T .Cx;c/ DCy;d , and that this map is monotone,
meaning that on a fixed ray, either y D y.x/, d D d.c/, and both functions are
bijective and increasing, or y D y.c/, d D d.x/, and both functions are bijective
and decreasing.

We return to the n-dimensional picture, the first time since we reduced the dis-
cussion to ray-wise action. We wish to see how the different mappings of triangles
on different rays all fit together. To this end, we replace the “parametrization” of
triangles, from the point z (indicating the support of the function) and the slope c,
to the point z and the value of the function at that point h D cjzj. To avoid abuse of
notation, for h D cjzj we will denote Cz;c by Cz;h. With this notation, we denote by
F W .K1nf0g/�R

C ! .K2nf0g/�R
C the bijective map for which T Cz;hDCF.z;h/.

Proposition 5.15. Let n � 2, K1;K2 � R
n convex sets with non empty interior,

and T W C vx0.K1/ ! C vx0.K2/ an order preserving isomorphism. Assume F W
.K1 n f0g/� R

C ! .K2 n f0g/ � R
C is the bijection satisfying T .Cx;h/ DCF.x;h/

for every .x; h/ 2 .K1 n f0g/� R
C. Then F is a fractional linear map.

Proof of Proposition 5.15. First we show that the restriction of F to any
domain for which .0; 0/ is an extreme point, is fractional linear. Let
.x1; h1/; .x2; h2/ 2 K1 � R

C such that 0 62 Œx1; x2�. This merely means
that our argument does not hold if x1 and x2 are on opposite rays. Letting
.x3; h3/ 2 Œ.x1; h1/; .x2; h2/�, and denoting F.xi ; hi / D .yi ; li /, we need to
prove that .y3; l3/ 2 Œ.y1; l1/; .y2; l2/�. If xi are on the same ray, then it follows
from the one dimensional case, handled in Sect. 5.3.1, that the restriction of F to
this line is fractional linear, and in particular it maps intervals to intervals, that is
F.Œ.x1; h1/; .x2; h2/�/ D Œ.y1; l1/; .y2; l2/�. Assume otherwise, that xi are linearly
independent. Note that Cx3;h3� OinffCx1;h1 ;Cx2;h2g, and that in this inequality x3
is maximal, and h3 is minimal. Therefore Cy3;l3� OinffCy1;l1 ;Cy2;l2g, and in this
inequality—due to the monotonicity of T on triangles—again y3 is maximal, and l3
is minimal (recall that in Lemma 5.13 we saw that if indicators and linear functions
are exchanged, S and A are decreasing, and if they are preserved, S and A are
increasing—thus in any case maximality of x3 and minimality of h3 coincides with
maximality of y3 and minimality of l3). Therefore y3, which lies on a different ray
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than those of y1; y2 (˚ is bijective), is in the triangle with vertices 0; y1; y2, and
due to its maximality—y3 2 Œy1; y2�. Moreover, the point .y3; l3/ is above or on
the interval Œ.y1; l1/; .y2; l2/�, and due to its minimality, it is on this line. Therefore
.y3; l3/ 2 Œ.y1; l1/; .y2; l2/�, which means that F preserves intervals which do not
intersect the positive h-axis; f.0; h/ W h � 0g. In other words, the restriction of F to
any domain for which .0; 0/ is an extreme point, is interval preserving. By applying
Theorem 2.17, we conclude that F is fractional linear on each such domain, and
thus, since n � 2, we may use Corollary 2.15 to conclude that F is a fractional
linear map on the whole of .K1 n f0g/� R

C. ut
Remark. The proof of Proposition 5.15 does not work in one dimension, since
the only two rays; RC;R� cannot interact—they have 0 in their convex hull, and
therefore a direct proof is needed in this case, to show that the transform is given by
a fractional linear map on the epi-graphs. In fact, while it is true for transforms on a
ray, it is indeed not the case for transforms on C vx0.R/, or on C vx0.I / where I is
an interval containing 0 in the interior.

Remark. The functionF which is defined formally only for .x; h/ 2 .Knf0g/� R
C,

can in fact be extended to K � R
C, since the defining hyperplane of F does not

intersect epi.1f0g/ D f.0; h/ W h > 0g. Indeed, it is obvious that if it intersects
this ray in one point it must contain the whole ray. In such a case, it follows from
the properties of fractional linear maps, that rays emanating from a point in the
hyperplane are mapped to parallel rays emanating from the hyperplane. Such a
point map does not induce a transform on C vx0.K/. ThereforeF can be defined on
the whole ofK �R

C. Moreover, using the fact that the supremum of all triangles is
1f0g, we get that F.epi.1f0g// D epi.1f0g/.

Finally, knowing that the transform rule for triangle functions is controlled by a
fractional linear map F , we turn to see that this is also the case for the epi-graph of
any function. We use the following simple equality epi.f / D f.x; h/ 2 .K nf0g/�
R

C WCx;h> f g [ epi.1f0g/ which holds for every f 2 C vx0.K/.

Proof of Theorem 5.2. By the previous proposition, there exists a bijective fractional
linear map F W .K1 n f0g/ � R

C ! .K2 n f0g/ � R
C, and we need to show that

F.epi.f // D epi.T f /.

epi.T f / D f.y; l/ 2 .K2 n f0g/� R
C WCy;l> T f g [ epi.1f0g/

D F.f.x; h/ 2 .K1 n f0g/� R
C WCF.x;h/> T f g/[ F.epi.1f0g//

D F.f.x; h/ 2 .K1 n f0g/� R
C W T Cx;h> T f g/ [ F.epi.1f0g//

D F.f.x; h/ 2 .K1 n f0g/� R
C WCx;h> f g/ [ F.epi.1f0g//

D F.epi.f //

ut
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5.3 Additional Results

5.3.1 Direct Uniqueness Proof in the One Dimensional Bounded Case

We focus on the possible transforms in the case where linear functions are mapped
to themselves, likewise indicator functions. Clearly, the function S W I1 ! I2 for
which we have that T 1Œ0;x� D 1Œ0;S.x/� is bijective and increasing (so it is continuous
as well). Similarly A W RC ! R

C, for which T .lc/ D lA.c/, is bijective, increasing,
and continuous. Note that we deal now only with I1 and I2 which are bounded,
which means that S maps an interval to an interval, and A maps a full ray to a
full ray.

Lemma 5.16. Let I1 D Œ0; x1/; I2 D Œ0; x2/, where xi 2 R are two positive
numbers. Let T W C vx0.I1/ ! C vx0.I2/ be an order preserving isomorphism.
Assume further, that for some increasing bijective function S W I1 ! I2 we have
T 1Œ0;x� D 1Œ0;S.x/�, and for another increasing bijective function A W RC ! R

C, we
have that T lc D lA.c/. Then there exist two constants ˛ > 0 and d < 1 such that
A.c/ D ˛c and S.x/ D x2

x1
� x
d.x=x1�1/C1 .

Proof of Lemma 5.16. Denote as before Cx;cD maxf1Œ0;x�; lcg, and similarly gx;c D
Oinff1Œ0;x�; lcg. We get (on I2 replace x1 by x2):

gx;c.z/ D

8̂
<
:̂
0 I if z 2 Œ0; x�
c.z � x/ x1

x1�x I if z 2 Œx; x1�
C1 I otherwise

; Cx;c .z/ D
�
cz I if z 2 Œ0; x�
C1 I otherwise

:

By Proposition 3.5 we get T .Cx;c/ DCS.x/;A.c/, T .gx;c/ D gS.x/;A.c/. Let 0< t <1
and consider g D g

tx;. c
1�t /.

x1�tx
x1

/
. It can be easily checked that g �Cx;c, and

g.x/ DCx;cD cx, so that g 6�Cx;c0 for any c0 < c, and g 6�Cx0;c for any x0 > x.
In fact, when a g-type function and a C-type function behave that way (g �Cx;c

with maximal x and minimal c) it must be that they are equal at the “breaking point
of the triangle”, i.e. at the point x. Since T preserves order in both directions, T .g/
and T .Cx;c/ behave in the same way, and therefore:

g
S.tx/;A.. c

1�t /.
x1�tx
x1

//
�CS.x/;A.c/

with equality between the two functions at the point S.x/, meaning:

A

�
c
x1 � tx
x1 � tx1

�
� .S.x/ � S.tx// �

�
x2

x2 � S.tx/
�

D A.c/S.x/

for every 0 < t < 1, every 0 < x < x1, and every 0 < c. By defining u D x1�tx
x1�tx1

and rearranging the equation, we get:
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A.cu/

A.c/
D
�

S.x/

S.x/ � S.tx/
�

�
�
x2 � S.tx/

x2

�
: (5)

In particular, the ratio A.cu/
A.c/

does not depend on c—thus it is equal to A.u/
A.1/

, and
we may write

A.cu/ D A.c/A.u/

A.1/
; (6)

which holds for all 0 < c and 1 < u (see the definition of u). For u D 1 it is true
trivially. For 0 < u < 1 we denote u0 WD 1=u > 1. Noticing the symmetry between
u and c, we interchange their roles to see that A.1/ D A.u/A.u0/

A.1/
, and write

A.cu/

A.c/
D 1

A.cu�u0/

A.cu/

D 1
A.u0/

A.1/

D 1
A.1/

A.u/

D A.u/

A.1/
:

Equation (6), valid for all c > 0, u > 0, together with the continuity ofA, implies
that A is of the form

A.c/ D ˛c�

for some fixed ˛ > 0 and � .
Therefore, A.cu/

A.u/ D u� . Returning to equation (5) with this new information, and

substituting u D x1�tx
x1�tx1 , we get

�
x1 � tx

x1 � tx1
��

D
�

S.x/

S.x/� S.tx/

�
�
�
x2 � S.tx/

x2

�
: (7)

This can be written also as

S.tx/ D S.x/ �

0
B@

x2

�
x1�tx
x1�tx1

	� � x2

x2

�
x1�tx
x1�tx1

	� � S.x/

1
CA ;

to show that for a given 0 < x < x1, f .t/ WD S.tx/ is differentiable as a function
of t , for all 0 < t < 1. This means S is differentiable in .0; x1/ (the interior of I1).

Denote Da;b D S.b/�S.a/
b�a for a; b 2 Œ0; x1�, and similarly Da;a D S 0.a/ for

a 2 .0; x1/, so thatDa;b ! Da;a when b ! a. Note that for a 6D b, 0 < Da;b < 1.
Rearranging equation (7) yields:

�
x1 � tx
x1 � tx1

���1
D D0;x �Dtx;x1

D0;x1 �Dtx;x

:

Choose x < x1 such that S 0.x/ 6D 0 and let t ! 1�, then the right hand side of
the equation tends to a finite, strictly positive number, and since x1�tx

x1�tx1 ! 1 when
t ! 1, this implies � D 1. Therefore for every 0 < t < 1; 0 < x < x1 we have:
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D0;x1 �Dtx;x D D0;x �Dtx;x1

or alternatively:

Œ0; tx; x; x1� D ŒS.0/; S.tx/; S.x/; S.x1/�

which by Theorem 2.23 implies that S is fractional linear. Combined with S.0/ D 0,
S.x1/ D x2, S 0.x/ > 0, and � D 1, this implies that S and A each belongs to a
one-parametric family of maps of the form

S.x/ D x2 � x=x1

d.x=x1 � 1/C 1
A.c/ D ˛c

where d < 1 and ˛ < 0. ut

5.3.2 Classification of Admissible Fractional Linear Maps

We wish to fully classify the type of fractional linear maps that induce transforms as
in Theorem 5.2. (The one dimensional case was fully described in Sect. 5.1). Denote
by A1 D f.0; y/ W y > 0g the epi-graph of ı0;0 D 1f0g; the maximal function in
C vx0.K/, and by A10 D f.x; y/ W x 2 K1; y > 0g the epi-graph of 1K1 ; the minimal
function in C vx0.K1/ (similarly A20 D f.x; y/ W x 2 K2; y > 0g for C vx0.K2/).
Since C vx0.K/ D ff 2 C vx.Rn/ W 1K � f � 1f0gg, it turns out that a necessary
and sufficient condition for a bijection F W K1�R

C ! K2 �R
C to induce an order

isomorphism is that it maps the minimal and maximal elements in C vx0.K1/ to the
minimal and maximal elements in C vx0.K2/, namely:

F.A1/ D A1; (8)

F.A10/ D A20: (9)

Indeed, since F is a bijection from the cylinder K1 �R
C to the cylinder K2 �R

C,
we see that the transform is bijective. Order preservation (in both directions) is
automatic for point-map-induced transforms. One must check that F.epi.f // is
an epi-graph of some convex function, which follows from it being a convex set
containing the fiber A1. Since A1 � epi.f / � A10, we get A1 � F.epi.f // �
A20, meaning that F.epi.f // is an epi-graph of a function in C vx0.K2/. Therefore,
we give the description of a general fractional linear map F which satisfies (8) and
(9). Let the matrix AF be given by

AF D

0
BBBBB@

v0
1 u0

1

A
:::
:::

v0
n u0

n

v1 � � � vn a b

u1 � � � un c d

1
CCCCCA
;
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for A 2 Ln.R/, v; v0; u; u0 2 R
n, and a; b; c; d 2 R. Thus F is given by:

�
x

y

�
7!

0
B@

AxCyv0Cu0

hu;xiCcyCd

hv;xiCayCb
hu;xiCcyCd

1
CA

Condition (8) means that

�
0

y

�
is mapped to

�
0

g.y/

�
, where g W RC ! R

C is

some bijection, and therefore

yv0 C u0

cy C d
D 0 for all y > 0;

which implies v0 D u0 D 0. For g.y/ D ayCb
cyCd to be a bijection there exist only

two options, corresponding to the two types of transforms on C vx0.K/: either g
is increasing, and then g.y/ D y

d
for some d > 0, which is associated with the

i-type transforms, or g is decreasing, and then g.y/ D b
y

for some b > 0, which is

associated with the J -type transforms. We denote these two different cases by F i

and F J , and (using the multiplicative degree of freedom in AF ) get:

AF i D

0
BBBBB@

0 0

A
:::
:::

0 0

v1 � � � vn 1 0
u1 � � � un 0 d

1
CCCCCA
; AFJ D

0
BBBBB@

0 0

A
:::
:::

0 0

v1 � � � vn 0 b
u1 � � � un 1 0

1
CCCCCA

Note that in both cases, AF 2 GLnC2 , A 2 GLn. Turning to condition (9), we
separate the two cases, dealing first with the i-type.

This case is very similar to the C vx.K/ case (see discussion in Sect. 4.4), where
the preservation of infinite cylinders is replaced with preservation of a part of those
cylinders. Since

F i
�
x

y

�
D

0
B@

Ax
hu;xiCd

hv;xiCy
hu;xiCd

1
CA

we have that hv;xiCy
hu;xiCd > 0 for all x 2 K1 and y > 0, which implies K1 � fhu; xi C

d > 0g. Since hv;xiCy
hu;xiCd maps R

C to R
C (as a function of y), hv; xi D 0 for all

x 2 K1, which implies v D 0 (recall that K1 has interior). The general form of an
i-type inducing map, is thus given, for A 2 GLn, u 2 R

n, and d > 0, such that
K1 � fhu; xi C d > 0g by
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F i

�
x

y

�
D

0
B@

Ax
hu;xiCd

y

hu;xiCd

1
CA :

For the J -type case, we know that

F J
�
x

y

�
D

0
B@

Ax
hu;xiCy

hv;xiCb
hu;xiCy

1
CA :

Therefore hv;xiCb
hu;xiCy > 0 for all x 2 K1 and y > 0, which implies K1 � fhu; xi � 0g,

and also K1 � fh�v; xi � bg.
In the image, we know that each fiber f.x2; y/g above a point x2 2 K2

must contain all positive y. The fiber above Ax0hu;x0iCy0 is given by thv;x0iCb
t.hu;x0iCy0/ ,

and is the image of the ray .tx0; ty0/ in K1 � R
C, which may be bounded or

not. If it is bounded, say of the form Œ.0; 0/; .x0; y0/�, we must have hv; x0i D �b.
If it is not bounded, we must have hv; x0i D 0. Therefore we handle the following
cases separately:

A cone K1: In this case, all rays .tx0; ty0/ in K1 � R
C are not bounded, therefore

all directions x0 inK1 satisfy hv; x0i D 0, and therefore v D 0, sinceK1 has interior.

Bounded K1: In this case, all rays .tx0; ty0/ in K1 � R
C are bounded, therefore

all rays in K1 emanating from the origin have end points in the hyperplane
fhv; �i D �bg (in particular, v ¤ 0). This means that K1 is a truncated cone, i.e.
K1 D K1 \ S1, where K1 is the minimal cone containing K1 and S1 is the slab
f0 � h�v; �i � bg.

General K1: In this case, some rays .tx0; ty0/ in K1 � R
C are bounded, which

implies v ¤ 0. All non bounded directions x0 must satisfy as before hv; x0i D 0,
which implies that K1 is bounded in directions x0 62 v?, and K1 \ v? is a
(degenerate) cone. As in the bounded case, we get K1 D K1 \ S1.

We can sum up the above three options as follows. The set K1 is the intersection
of some cone, with the (possibly degenerate; if v D 0) slab f0 � h�v; �i � bg.

Similarly, since in every direction, K2 is given by ftAx W 0 � t � hu; xi�1g
for some x 2 K1 (if hu; xi D 0 we let hu; xi�1 D 1), it contains full rays in
all directions A.u?/, and in other directions it contains intervals with end points
x0 which satisfy hA�T u; x0i D 1. This implies, as before, that K2 is some cone,
intersected with the (possibly degenerate) slab f0 � hA�T u; �i � 1g.

One can further investigate the possible restrictions on v; u; A with respect to the
bodies Ki , but it involves considering different cases for K1 and K2. We do not go
into this in detail but instead give a few examples.

Remark 5.17. Under the condition 0 2 int.K1/, the only J -type order isomorphism
T W C vx0.K1/ ! C vx0.K2/ is possible when K1 D K2 D R

n. Indeed, in that case
K1 � fhu; xi � 0g implies u D 0, which means that the projection of F J to the
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first n coordinates is PnF J
�
x

y

�
D 1

y
Ax. Clearly, since A is invertible, and K1

contains 0 in the interior, this meansK2 D R
n, and by the exact same argument also

K1 D R
n. In addition,K1 � fhv; xi C b � 0g implies v D 0, thus the general form

of F J which induces a transform on C vx0.Rn/ is

F J
�
x

y

�
D

0
B@

Ax
y

b
y

1
CA

for A 2 GLn and b > 0, as stated in Theorem 3.11.

Example 5.18. When u ¤ 0, the defining hyperplane of F J intersects the cylinder
K1�R, and the defining hyperplane of the image intersects the cylinderK2�R. This
is a restriction on the bodies Ki ; since K2 is the intersection of a cylinder (which
has its base on the defining hyperplane of the image) with a half space (y > 0),
we have (see Sect. 2.4.2) that K1 � R

C is the intersection of a cone (emanating
from the origin) with a half space. This is true also for K2 � R

C, and so both our
bodies are simultaneously the intersection of a half space with a cylinder and the
intersection of a half space with a cone. For example, let K1 D .RC/n and K2 D
conv f0; e1; : : : ; eng, and let F J be given by

AFJ D

0
BBBBB@

0 0

In
:::
:::

0 0

0 � � � 0 0 b
1 � � � 1 1 0

1
CCCCCA
:

Example 5.19. Let K D K1 D K2 be the slab f0 � x1 � 1g. The following matrix
induces a mapping F J W K � R

C ! K � R
C:

AFJ D

0
BBBBB@

0 0

In
:::
:::

0 0

�eT1 0 1

eT1 1 0

1
CCCCCA
;

which induces an order isomorphism on C vx0.K/.
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5.4 Generalized Geometric Convex Functions

5.4.1 Introduction

Definition 5.20. Let n � 2, and let T � K be two closed convex sets. The
subclass ofC vx.Rn/ consisting of functions above 1K and below 1T will be denoted
C vxT .K/, that is

C vxT .K/ WD ff 2 C vx.Rn/ W 1K � f � 1T g:

Remarks. 1. In the case n D 1 this definition would still make sense, but it does
not really generalize the case of T D f0g. Indeed, C vxT .K/ is isomorphic to
C vx0.Œ0; 1�/ if K n T is connected, and to C vx0.Œ�1; 1�/ otherwise.

2. When T D ;, this is the case of convex functions on a window, C vx.K/.
3. When T D f0g, this is the case of geometric convex functions on a window,
C vx0.K/.

4. Throughout this section we will assume that K is of dimension n, and that the
interior of K n T is connected.

Definition 5.21. Let T W C vxT1.K1/ ! C vxT2.K2/ be an order preserving
isomorphism, and F W K1 � R

C ! K2 � R
C a fractional linear map such that

epi.Tf / D F.epi.f // for every f 2 C vxT1.K1/. The transform T and the map
F are said to be of i-type in two cases: the first, if F is linear map, and the second,
if F is a non affine fractional linear map with its defining hyperplane containing a
ray in the RC direction. Otherwise, T and F are said to be of J -type.

Note that this definition coincides with that of the particular case C vx0.K/, given
in the previous Sect. 5.3.2.

Definition 5.22. Let T W C vxT1.K1/!C vxT2.K2/ be an order reversing isomor-
phism. We say that T is of A-type if the composition T ı A is an order preserving
isomorphism of i-type, otherwise we say T is of L-type.

We deal with order isomorphisms from C vxT1.K1/ to C vxT2.K2/. We show
that order preserving isomorphisms are induced by fractional linear point maps on
K1 � R

C, which are always of i-type. We show that up to a composition with such
transforms, the only order reversing isomorphism is the geometric duality A. It may
be formulated for order preserving or for order reversing transforms:

Theorem 5.23. Let n � 2, and let T1 � K1 � R
n; T2 � K2 � R

n be four non
empty, convex, compact sets, and assume that int.Ki/ ¤ ;, and that int.K1 n T1/ is
connected. If T W C vxT1.K1/ ! C vxT2.K2/ is an order preserving isomorphism,
then there exists a fractional linear map F W K1 � R

C ! K2 � R
C such that for

every f 2 C vxT1.K1/, we have

epi.T f / D F.epi.f //:
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Moreover, F is of i-type, and in particular T2 is a fractional linear image of T1, and
K2 is a fractional linear image ofK1.

Theorem 5.24. Let n � 2, let K � T � R
n be two convex sets such that

0 2 int.K/, and assume that K does not contain a full line, and that int.T n K/
is connected. Let T 0 � K 0 � R

n be two non empty, convex, compact sets, and
assume that int.K 0/ ¤ ;. If T W C vxK.T / ! C vxT 0.K 0/ is an order reversing
isomorphism, then T is of A-type. In particular, T 0; K 0 are fractional linear images
of T ı; Kı respectively.

Proof of Theorem 5.24. The composition QT WD T ıA W C vxT ı.Kı/ ! C vxT 0.K 0/
is an order preserving isomorphism, and the assumptions on T and K imply that
T;K; T 0; K 0 satisfy the conditions of Theorem 5.23. Indeed, T ı; Kı are non empty
convex sets, and 0 2 int.K/ implies that they are compact. Since K does not
contain a full line, Kı is not contained in any hyperplane, thus it has non empty
interior. It is easy to check that for two convex sets A � B , int.B nA/ is connected
if and only if int.Aı n Bı/ is connected, thus we may apply Theorem 5.23. We get
that QT is induced by some fractional linear map F W T ı � R

C ! T 0 � R
C, which

is of i-type, thus T is of A-type, as desired. ut
For the proof of Theorem 5.23, we first need to define and characterize extremal

elements in the class C vxT .K/. Then we show that extremal elements are mapped
to such, which will imply that the transform induces a point map on a subset of
R
nC1. We show that this point map is interval preserving for a sufficiently large set

of intervals, in order to use a theorem of Shiffman [15], which states that the map
is fractional linear. Finally we show that under our assumptions, the transform is
of i-type, thus completing the proof of Theorem 5.23. We will need the following
notations throughout this section.

• Let n � 2, and let A � B � R
n be two closed convex sets. We denote

Kn.A;B/ D fK � R
n W K is closed, convex, and A � K � Bg:

For Kn.;;Rn/ we simply write Kn. Note that if T ¤ ;, any element in
KnC1.epi.1T /; epi.1K// is an epi-graph of some function f 2 C vxT .K/.

• For the convex hull of two sets A and B we write

A _ B D
\

K2Kn;.A[B/	K
K:

5.4.2 Extremal Elements

Definition 5.25. A set K 2 Kn.A;B/ is called extremal if 8T;P 2 Kn.A;B/:

K D T _ P H) K D T; or K D P:
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Definition 5.26. A function f 2 C vxT .K/ is called extremal if 8g; h 2
C vxT .K/:

f D Oinffh; gg H) f D h; or f D g:

Another formulation of which is:

epi.f / D epi.h/_ epi.g/ H) f D h; or f D g;

which (in the case T ¤ ;), means that epi.f / is extremal in KnC1.epi.1T /,
epi.1K//.

Recall that for bijective transforms, order-preservation in both directions is
equivalent to preservation of the lattice operations Oinf and sup (see Proposition 3.5
and Remark 4.5). Since the extremality property is defined by the Oinf operation, all
extremal elements in the domain are mapped to all extremal elements in the range.

In the next few lemmas we investigate extremal elements of C vxT .K/. We need
the following simple observation.

Lemma 5.27. Let ' W Rn ! R be an affine linear functional andK � R
n a closed,

convex set that does not contain a ray on which ' is constant. If '.K/ > 0, then
there exists some c 2 R such that '.K/ � c > 0.

Proof. Consider the slab S D '�1.Œ0; 1�/. If the intersectionK\S is empty then we
may take c D 1. Assume otherwise, thenK\S is a closed convex set, and moreover,
it is bounded. Indeed, the slab S contains only rays on which ' is constant, and K
contains no such rays, therefore K \ S contains no rays, and one can easily verify
that for a convex set this is equivalent to boundedness. Since K \ S is compact and
' is continuous, there exists x0 2 K such that '.K/ � '.x0/ 	 c > 0. ut
Lemma 5.28. Let n � 2, and let T � K � R

n be two non empty, compact, convex
sets. Consider the subsets A D T � R

C, B D K � R
C of R

n � R D R
nC1. If

K 2 KnC1.A;B/ is extremal, then K D A _ fxg, for some x 2 B .

Proof of Lemma 5.28. Let K 2 KnC1.A;B/ be extremal. By a Krein-Milman type
theorem for non compact sets, see [11], K is the convex hull of its extreme points
and extreme rays. Since the only rays in K are translates of f0g � R

C, and any
extreme ray must emanate from an extreme point, K is the convex hull of A and
its extreme points. Finally, since the set of exposed points is dense in the set of
extreme points, see [17], if we denote by E the set of exposed extreme points of K
which are not in A, we haveKDA_E (actually in [17] this is proved for compact
convex sets, but the non compact case follows as an immediate consequence, and
also appears in a more general setting of normed spaces in [12], as Theorem 2.3).

Let x1 2 E , and let '1 be an affine functional such that '1.K n fx1g/ > 0

and '1.x1/ D 0. Note that '1 cannot be constant on translates of f0g � R
C,

since then it would be constant 0 on the translate of f0g � R
C emanating from x1,

contradicting strict positivity on K n fx1g. If E � A _ fx1g, the proof is complete.
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Assume otherwise; that there exists x2 2 E n .A_ fx1g/. We may separate x2 from
the closed set A _ fx1g by an affine functional '2 such that '2.A _ fx1g/ > 0 and
'2.x2/ < 0. Denote by H�

2 the (closed) half space on which '2 � 0 and by HC
2

the (closed) half space on which '2 � 0. Consider the sets KC D A _ .E \HC
2 /,

K� D A _ .E \ H�
2 /. Clearly Ki 2 KnC1.A;B/ and K D KC _ K�, thus by

extremality of K we must have either K D KC or K D K�. Since both A and
E \ HC

2 are contained in HC
2 , so is KC, thus x2 62 KC. This implies K ¤ KC,

i.e.K D K�. We next show that x1 62 K�, which leads to the wanted contradiction.
To this end we claim that '1.K�/ > 0 D '1.x1/. Indeed, '1.A/ > 0, and the only
rays contained in A are translates of f0g � R

C, on which '1 is not constant. Thus,
by Lemma 5.27, there exists some constant c such that '1.A/ � c > 0. Similarly
'1.K \ H�

2 / � c0 > 0. For the convex hull we get '1.K�/ � minfc; c0g > 0,
so x1 62 K�.

The following is a simpler version of Lemma 5.28, which we do not use in this
paper but add it to complete the picture.

Lemma 5.29. Let n � 2, and let A � B � R
n be two compact convex sets. If

K 2 Kn.A;B/ is extremal, thenK D A _ fxg, for some x 2 B .

We omit the proof, as it is contained in the proof of the previous lemma (the use of
Lemma 5.27 is replaced by a straightforward compactness argument).

A reformulation of Lemma 5.28 is:

Lemma 5.30. Let n � 2, and let T � K � R
n be two non empty, compact, convex

sets. If f 2 C vxT .K/ is extremal, then either:

• f D 1T , or:
• f D Oinff1T ; ık;hg for some k 2 K n T and h � 0.

Proof of Lemma 5.30. By Lemma 5.28, epi.f / D epi.1T / _ fxg for some x 2
epi.1K/. If x 2 epi.1T /, then f D 1T . If x 62 epi.1T /, then f D Oinff1T ; ık;hg for
some k; h as stated above. ut

5.4.3 The Point Map

So far we have seen that an order isomorphism T W C vxT1.K1/ ! C vxT2.K2/ is in
particular a bijection between the extremal families. Clearly T .1T1/ D 1T2 . Aside
of the maximal element 1T1 , each extremal function in C vxT1.K1/ corresponds to
a point in R

nC1, thus T induces a bijective point map F W .K1 n T1/ � R
C !

.K2 n T2/ � R
C.

Denote by E1 the interior of the set .K1 n T1/ � R
C (by our assumption, it is

connected). The sets .Ki nTi/�R
C inherit the partial order structure of C vxTi .Ki /,

after restriction to the set of extremal elements, and the bijective map F W
.K1 n T1/ � R

C ! .K2 n T2/ � R
C is an order isomorphism. In the following

lemmas we will use the fact that the injective map F jE1 W E1 ! .K2 n T2/ � R
C

is an order isomorphism on its image, to prove that for some intervals Œa; b� � E1,
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F.Œa; b�/ is again an interval (these can be characterized as the ones that, extended to
a full line, do not intersect epi.1T1/). Since the use of the uniqueness Theorem 2.17
requires the preservation of all intervals, we apply a result by Shiffman from [15],
which roughly states that if a set of points is covered by an open set of intervals
which are all mapped to intervals, then the inducing map is fractional linear. More
precisely, denote by L.Rn/ the set of all lines in R

n, not necessarily intersecting
the origin. It may be seen as a subset of the Grassmannian GnC1;2, therefore it is
equipped with the usual inherited metric topology (for some details see Remark 4
below). Denoting by L.U / � L.Rn/ the set of all such lines intersecting a given set
U � R

n, we have

Theorem 5.31 ([15]). Let n � 2, let U be an open connected set in R
n, and let

L0 be an open subset of L.U /, which covers U , i.e. U � [l2L0 l . Assume that
F W U ! R

n is a continuous injective map, and that F.l \ U / is contained in a
line for all l 2 L0. Then F is fractional linear.

Remarks. 1. Theorem 5.31 is adjusted to the real, linear, setting (i.e. when U is a
subset of Rn, which is embedded in RPn), and is a particular case of the more
general statement Shiffman proves in [15]. The general result applies for subsets
of RPn or CPn, and states that the map F is projective linear.

2. In [15], Theorem 5.31 is proved for RPn and CPn simultaneously. However,
considering only the case of RPn, one may check (by following the proof
in [15]), that in this case continuity is actually not required, and may be replaced
by the following weaker condition; if I � U is an interval and I � l 2 L0, then
F.I / is again an interval. We will use this stronger version of Theorem 5.31.

3. In our setting, we have epi-graphs of functions in C vxT .K/, therefore we apply
Theorem 5.31 to the function F defined on the set U D E1 � R

nC1.
4. A line in L.Rn/ is determined by its closest point to the origin and its direction.

That is, for every l 2 L.Rn/ let xl 2 l be the unique point satisfying jxl j D
minfjxj W x 2 lg, and let ul 2 fxlg? be one of the two points satisfying
l D fxl C tul ; t 2 Rg, jul j D 1 (the other being �ul ). Note that directions
in fxlg? correspond to Sn�2 if xl ¤ 0, and to Sn�1 if xl D 0. Denoting the
line l by the pair .xl ; ul /, we get a correspondence between L.Rn/ � GnC1;2
and



.Rn n f0g/� Sn�2� S 
f0g � Sn�1�, which is 1–1, modulo the ˙ choice

in the direction u. The metric d on L.Rn/ is inherited from that on GnC1;2,
and it follows that d..x; u1/; .x; u2// D ju1 � u2j, and that d..x1; u/; .x2; u// D
d. O.x1; 1/; O.x2; 1//, where Ox D x

jxj .
A neighborhood of .x; u/ is therefore constructed by perturbing simultane-

ously x and u. It can be checked that such a perturbation contains the following
“cylinder” of lines; fix a point z 2 .x; u/, let M > 0, let a; b 2 .x; u/ satisfy
ja� zj D jb� zj D M , and let A;B be open balls of radius 1=M and centers a; b
respectively. We take our “cylinder” of lines to be Ll;z;M WD L.A/ \ L.B/. For
every z 2 l and every M > 0, there exists a small perturbation of l D .x; u/
which is contained in Ll;z;M . More precisely, there exists " > 0 such that
Gl;" D f.y; v/ W jy � xj C jv � uj < "g � Ll;z;M . This fact is useful in the
proof of Lemma 5.32.
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Let QL0 WD L.E1/ n L.T1 � R
C/, that is, QL0 is the set of lines through E1

(the domain of F ), which do not intersect the inner half cylinder T1 � R
C. In

Lemma 5.32 we prove that the interior of QL0, denoted L0, is an open subset of
L.E1/which coversE1, and in Lemma 5.34 we prove that F.l\E1/ is contained
in a line for all l 2 L0, and that intervals which are segments of lines in L0 are
mapped to intervals.

Lemma 5.32. The open set L0 D int. QL0/ described above, covers E1. That is,

E1 �
[
l2L0

l:

Proof of Lemma 5.32. Let x 2 E1. We may separate x from the closed set T1 �R
C

by a hyperplane. Denote by H the translate of this hyperplane containing x. We
claim that if l � H is a line containing x, which is not parallel to the ray f0g �R

C,
then l 2 L0. Indeed, it is clear that l 2 QL0. Consider the set of lines Ll;x;M , for
some M > 0 (see the last remark). It is an open neighborhood of l , and since T1
is compact and l is not parallel to f0g � R

C, we have (for large enough M ) that
LM � QL0, thus l 2 L0. This implies x 2 Sl2L0 l , and hence L0 covers E1. ut

Next we prove that the set L0 consists exactly of all the lines in L.E1/, with the
property that points along these lines are non comparable.

Lemma 5.33. Let a; b 2 E1 be two different points, and let la;b be the line
containing a and b. Then la;b 62 L0 if and only if a and b are comparable.

Proof of Lemma 5.33. The point a is “greater” than the point b, if and only if
a 2 epi.1T1/ _ fbg, therefore a and b are comparable if and only if la;b is in the
closure of L.fbg/\L.T1�R

C/ � L.E1/n QL0 (in fact, the closure is only necessary
if a and b are on the same translate of f0g �R

C). This closure does not intersect L0,
the interior of QL0, therefore we have shown:

a; b are comparable ) la;b 62 L0:

If la;b 62 L0 there are two cases. First assume la;b 62 QL0 (that is, la;b intersects
T1 � R

C). Thus a and b are comparable (one is in the convex hull of the other
and epi.1T1/). Otherwise, assume la;b 2 QL0. Since it is not in the interior L0, we get
la;b 2 @ QL0. Since L.E1/nSx2K1nT1fxg�R is open, and L.T1�R

C/ is closed, L0 D
int. QL0/ must contain

�
L.E1/ nSx2K1nT1ffxg � Rg

	
n L.T1 � R

C/, and therefore

L0 D QL0 nSx2K1nT1fxg � R: Thus la;b 2 @ QL0 implies that la;b is parallel to the ray
f0g � R, and that a and b are comparable. Thus we have shown:

la;b 62 L0 ) a; b are comparable:

ut
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Lemma 5.34. If l 2 L0, then F.l \E1/ is contained in a line. Moreover, if I � E1
is an interval and I � l 2 L0, then F.I / is again an interval.

Proof of Lemma 5.34. The intersection of every l 2 L0 with the convex set
K1 �R

C is either a ray or an interval. Since l 2 L0, it does not intersect T1 � R
C,

and therefore also l \ E1 is either a ray or an interval. Thus, by Lemma 5.33, it
is enough to show that for every two non comparable points a; b 2 E1, we have
F.Œa; b�/ D ŒF .a/; F.b/�. Denote for every x 2 E1 by ıx the function with epi-
graph .T1 � R

C/ _ fxg. Of all the extremal functions ıx , only those corresponding
to x 2 Œa; b� have the following minimality property: ıx � Oinffıa; ıbg, and for every
y with ıy � Oinffıa; ıbg, we have ıy 6< ıx . This property is preserved by F , therefore
the interval Œa; b� is mapped to the interval ŒF .a/; F.b/�. ut

Proof of Theorem 5.23. The set E1 is open and connected. Therefore, by Lem-
mas 5.32 and 5.34, we may apply Theorem 5.31 (see Remark 2 after Theorem 5.31)
to the map F jE1 , and conclude it is fractional linear. To see that F W .K1 n T1/ �
R

C ! .K2 n T2/ � R
C is fractional linear, note that a point in the boundary of

.K1 nT1/�R
C is the infimum of all the points below it which are in E1. To see that

F induces the transform T W C vxT1.K1/ ! C vxT2.K2/, note that the epi-graph of
a function f 2 C vxTi .Ki/ corresponds to the set of extremal functions above it,
and that f is given as the infimum of those extremal functions. Finally we need to
show that F is of i-type, that is, assuming F is a non affine fractional linear map,
we need to show that the defining hyperplane is parallel to the R

C direction. If it is
not, then by Sect. 2.4.2, the half cylinder K1 � R

C is mapped to some cone, which
must be K2 � R

C. But since K2 is compact, K2 � R
C is not a cone. Therefore the

map F is either affine, or it is non affine, but with a defining hyperplane containing
the direction of the epi-graphs (the ray f0g � R

C). ut
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Finite Transitive Graph Embeddings
into a Hyperbolic Metric Space Must Stretch
or Squeeze

Itai Benjamini and Oded Schramm

Abstract The ı-hyperbolicity constant of a finite vertex transitive graph with more
than two vertices is proportional to its diameter. This implies that any map from
such a graph into a 1-Gromov hyperbolic metric space has to stretch or squeeze the
metric.

Contrary to the situation in Euclidean space, there is a finite constant ı such that
for every triangle T in hyperbolic space H

n there is a point p 2 H
n whose distance

from each of the three edges of T is at most ı. This observation led I. Rips to the
following definition.

Definition 1 (ı-hyperbolic). Let X be a geodesic metric space. If there is a finite
ı > 0 such that for every geodesic triangle T in X there is a point p 2 X whose
distance from the three edges is at most ı, then X is said to be ı-hyperbolic. The
least such ı is denoted by ı.X/. If ı.X/ < 1, then we say that X is hyperbolic.

Recall that a geodesic segment in a metric space X is a subset that is isometric
with an interval in R and that X is geodesic if for every pair of distinct points
x; y 2 X is contained in at least one geodesic segment. A geodesic segment
with endpoints x and y will be denoted by Œx; y� (with the understanding that this
notation is sometimes ambiguous). A geodesic triangle T inX is a triple of geodesic
segments of the form Œx; y�; Œy; z� and Œz; x�.

Hyperbolic groups, also known as Gromov-hyperbolic groups [4], are groups
whose Cayley graph is hyperbolic (hyperbolicity is independent of the choice of
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generators). There is much literature about hyperbolic metric spaces and groups,
see, for instance [3].

Definition 2 (transitive graph). A graph G is vertex transitive if for any pair of
vertices v and u of G, there is an automorphism of G mapping v to u.

Graphs may be viewed as metric spaces, with the graph distance. Our first
observation is the following

Theorem 1. There is a constant c > 0 such that for every finite vertex-transitive
graph G with at least 3 vertices

ı.G/ > c diam.G/ :

The proof gives c � 1=8. The note [2] contains a related but weaker result for
expanders. There are infinite vertex transitive hyperbolic graphs, e.g., regular trees.

The theorem will be used to show that any embedding of a transitive graph of
large diameter into a hyperbolic metric space cannot preserve the metric. In order to
state this result we define the stretch of a map.

Definition 3. The distortion of a map f WX !Y between metric spaces
.X; dX/; .Y; dY / is given byD.f / D DC.f /=D�.f /, where

DC.f / D max
n
1; sup
a;b2X

dY .f .a/; f .b//

1C dX.a; b/

o
;

D�.f / D min
n
1; inf
a;b2X

1C dY .f .a/; f .b//

dX.a; b/

o
:

Such a choice of values for DC and D� allows us to estimate the distortion
of quasi-isometries, for example. In general such maps are not injective and not
continuous and, moreover, every point ofX can have many images in Y . An inverse
map of a quasi-isometry is also a quasi-isometry.

Definition 4. A map f W X ! Y of two metric spaces is called the .
; c/-quasi-
isometry if for any two points u1 and u2 of X we have

1



ju1 � u2j � c � jf .u1/ � f .u2/j � 
ju1 � u2j C c:

The natural case of a quasi-isometry is when c << 
. The distortion of this map
is D � 
2. For a dilation the distortion is equal to the coefficient of dilation. As
general hyperbolic graphs have non-degenerated triangles which are isomorphic to
cycles, it is impossible to represent them injectively in a tree.

Corollary 2. The metric distortion between finite vertex transitive graph and a tree
is proportional to the diameter.
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By [2] similar result holds for expanders.
Gromov [4] proved that any n points in an hyperbolic metric space can be

embedded in a tree with a distortion bounded by O.ı logn/.

Question 3. What bound can we get when the tree is replaced by a graph with some
fixed finite ı-hyperbolicity?

1 Proofs

We start with Theorem 1.

A quasi-proof. Suppose that it does not have a fat triangles. Then we have a
sequence of finite graphs Gn where the ratio of the diameter to the hyperbolicity
constant goes to infinity. Rescale Gn so that the diameter is 1 and take a subsequen-
tial limit. The limit will be a transitive 0-hyperbolic metric space with diameter 1;
necessarily a tree (a R-tree). But bounded metric trees are not transitive, since they
have endpoints and midpoints.

Proof. SupposeG is finite and transitive, and d is its diameter. Let A andD realize
the diameter, i.e. AD D d . By transitivity there is a geodesic path BC that has D
as its midpoint and length d . Let ı be the hyperbolicity constant. By its definition,
there is a pointX on BC such that the distance fromX to AC is at most 2ı and the
distance fromX to AB is at most 2ı. Suppose, w.l.o.g. that X is closer to B than to
C . We haveXBCXC D d , AX CXB < 2ıCd (becauseX is within 2ı of AB),
AX C XC < 2ı C d . Add these latter two and subtract the previous equality, and
get AX < d=2C 2ı. Since AD D d , this means that DX > d=2 � 2ı. Since X
is on BC and closer to B , this means that BX < 2ı. Since X is within 2ı from
AC , we have AC > AX C XC � 2ı. Since BX < 2ı and BC D d this gives
AC > AX C d � 4ı. Since AC is at most d , this implies AX < 4ı. But DX is at
most d=2. so d D AD � AX CDX < 4ı C d=2 So d < 8ı.

Question 4. What is the right constant in the theorem?

We turn to the corollary.

Proof. A geodesic triangle (as well as a geodesic path) is a structure that is roughly
preserved by a map with a small distortion. The corollary follows from the following
lemma applied to the fat triangle contained in the vertex transitive graph.

Lemma 5. If a map fromG toH has distortionD, andG has a geodesic triangleC
of length proportional to the diameter and hyperbolicity constant proportional to the
diameter, then there is a simple self avoiding cycle C 0 � H of length proportional
to the diameter overD.

The lemma is a straight forward adaptation of lemma 5 in [1].
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Regarding distortion of embedding into general hyperbolic spaces we have a
weaker result. It is known [4] that in ı-hyperbolic spaces, quasi geodesics are within
bounded distance, depending only on ı, of a true geodesic. This implies that the
distortion of embedding geodesic triangles with hyperbolicity constant growing to
1 into 1-hyperbolic space must grow to 1. As a bounded distortion image of a
geodesic triangle is a quasi geodesic triangle, which is within a bounded distance
from a true geodesic triangle. A quantitative analysis of this will be useful in
answering Question 2.
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Tightness of Fluctuations of First Passage
Percolation on Some Large Graphs

Itai Benjamini and Ofer Zeitouni

Abstract The theorem of Dekking and Host [Probab. Theor. Relat. Fields 90,
403–426 (1991)] regarding tightness around the mean of first passage percolation
on the binary tree, from the root to a boundary of a ball, is generalized to a class
of graphs which includes all lattices in hyperbolic spaces and the lamplighter graph
overN. This class of graphs is closed under product with any bounded degree graph.
Few open problems and conjectures are gathered at the end.

1 Introduction

In First Passage Percolation (FPP) random i.i.d lengths are assigned to the edges
of a fixed graph. Among other questions one studies the distribution of the distance
from a fixed vertex to another vertex or to a set, such as the boundary of a ball
in the graph, see e.g. [9] for background. Formally, given a rooted, undirected
graph G D .V;E/ with root o, let Dn denote the collection of vertices at (graph)
distance n from the root. For v 2 Dn, let Pv denote the collection of paths
.v0 D o; v1; v2; v3; : : : ; vk D v/ (with .vi�1; vi / 2 E) from o to v. Given a collection
of positive i.i.d. fXege2E , define, for v 2 E,

Zv D min
p2Pv

X
e2p

Xe : (1)

Because of the positivity assumption on the weights, we may and will assume that
any path in Pv visits each vertex of G at most once.
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For n integer, let Zn D minv2Dn Zv. Under a mild moment condition on the law
of the random lengths Xe, Dekking and Host [6] proved that for any regular tree,
Zn�EZn, the random distance from the root toDn minus its mean, is tight. (Recall
that a sequence of real valued random variables fXngn
0 is tight iff for any � > 0,
there is some r� 2 R, so that for all n, P.jXnj > r�/ < �.)

We formulate here a simple and general property of the underling graph G and
prove that for graphs satisfying this property and a mild condition on the law ofXe ,
the collection fZn � EZngn
0 is tight. Lattices in real hyperbolic spaces H

d , the
graph of the lamplighter over N, as well as graphs of the form G � H where G
satisfies the conditions we list below andH is any bounded degree graph, are shown
to possess this property. (In passing, we mention that the Euclidean case is wide
open; it is known that in two dimensions the fluctuations of the distance are not
tight, see [12,13], however only very poor upper bounds are known [1]. For a special
solved variant see [8].)

In the next section we formulate the geometric condition on the graph and the
assumption on the distribution of the edge weights fXege2V ; we then state the
tightness result, Theorem 2.1, which is proved in Sect. 3. We conclude with a few
open problems.

2 A Recursive Structure in Graphs and Tightness

Throughout, let distG denote the graph distance in G. The following are the
properties of G and the law of Xe alluded to above.

(1) G contains two vertex-disjoint subgraphsG1;G2, which are isomorphic to G.
(2) There existsK < 1 so that EXe < K , and

distG.RootG;RootG1/ D distG.RootG;RootG2/:

One can replace Property (2) by the following.

(3) Xe < K a.s., and every vertex at distance n from the root is connected to at least
one vertex of distance nC 1.

Properties (1) and (2) imply that the binary tree embeds quasi-isometrically into
G, thus G has exponential growth. Property (3) is called having ”no dead ends” in
geometric group theory terminology.

Theorem 2.1. Assume Property (1) and either Property (2) or Property (3). Then
the sequence f.Zn � EZn/gn
1 is tight.

Note that a hyperbolic lattice in H
d ; d � 2, intersected with a half space, admits

the graph part of Properties (1) and (2) above (and probably (3) as well but we
don’t see a general proof). This is due to topological transitivity of the action on the
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space of geodesics, i.e. pairs of point of the boundary. There exist elements g in the
authomorphism group of the hyperbolic space that map the half space into arbitrarily
small open sets of the boundary and elements of this group map the lattice orbit to
itself. Note also that by the Morse lemma of hyperbolic geometry (see, e.g., [4] p.
175), if one assumes in addition that Xe � ı > 0 a.s. then a path with minimal
FPP length will be within a bounded distance from a hyperbolic geodesic and will
not wind around, thus tightness for half space for weights that are bounded below
by a uniform positive constant implies tightness for the whole space. (Recall also
that the regular tree is a lattice in H

2; see [10] for some nice pictures of other planar
hyperbolic lattices.)

An example satisfying Properties (1) and (2) is given by the semi group of the
lamplighter over N. Recall the graph of the lamplighter over N: a vertex corresponds
to a scenery of 0’s and 1’s over N, with finitely many 1’s with a position of a
lamplighter in N; edges either change the bit at the position of the lamplighter or
move the lamplighter one step to the left or the right, see, e.g., [10]. If we fix the
left most bit and restrict the lamplighter to integers strictly bigger than 1, we get the
requiredG0 and G1.

It easy to see that if G satisfies the properties in the theorem then G � H will
too. In particular the theorem applies to T � T 0 for two regular trees. Note also that
ifG satisfies the Property (1) in the theorem, then the lamplighter overG will admit
it as well.

3 Proof of Theorem 2.1

The proof is based on a modification of an argument in [6]; a related modification
was used in [3]. Note first that, by construction,

(a) EZnC1 � EZn;

because to get to distance nC1 a path has to pass through distance n and the weights
fXeg are positive.

Under Property (3), one has in addition
(a’) Zn and ZnCi can be constructed on the same space so that

ZnCi � Zn while ZnCi � Zn CKi:

(The first inequality does not need Property (3), but the second does—one just goes
forward from the minimum at distance n, i steps.)

On the other hand, from Property (1),

EZnC1 � E.min.Zn�R1C1; Z0
n�R2C1/CKC;
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where Ri D distG.RootG;RootGi /, C D max.R1;R2/, and Z0
m denotes a

identically distributed independent copy of Zm .
Since min.a; b/ D aCb

2
� ja�bj

2
,

EZnC1 � .1=2/ŒEZn�R1C1 C EZ0
n�R2C1 � EjZn�R1C1 �Z0

n�R2C1j�CKC:

Therefore, with ni D nC 1 �Ri ,

EjZn1 �Z0
n2

j � Œ�2EZnC1 C EZn1 C EZn2 �C 2KC:

If R1 D R2 (i.e. Property (2) holds), then, using (a),

EjZn1 �Z0
n1

j � 2KC ;

and the tightness follows by standard arguments, sinceEjZn�1�Z0
n�1j � EjZn�1�

EZ0
n�1j D EjZn�1�EZn�1j by the independence ofZn�1 andZ0

n�1, and Jensen’s
inequality. Otherwise, assume Property (3) with n2 > n1. By (a’), we can construct
a version of Z0

n1
, independent of Zn1 , so that jZ0

n2
�Z0

n1
j � K.n2 �n1/. Therefore,

EjZn1 �Z0
n1

j � Œ�2EZnC1 C EZn1 C EZn2 �C 2KC CK.R1 � R2/:

Applying again (a) we get, for some constant C 0,

EjZn1 �Z0
n1

j � 2KC CK.R1 � R2/ � C 0K;

and as before it is standard that this implies tightness. ut

4 Questions

Question 1: Extend the theorem to the lamplighter group over � , for any finitely
generated group � ; start with Z.

Question 2: Show that tightness of fluctuations is a quasi-isometric invariant. In
particular, show this in the class of Cayley graphs.

Question 3: The lamplighter over Z is a rather small group among the finitely
generated groups with exponential growth. It is solvable, amenable and Liouville.
This suggests that all Cayley graphs of exponential growth are tight. We ask then
which Cayley graphs admit tightness; is there an infinite Cayley graph, which is
not quasi-isometric to Z or Z2, for which tightness does not hold? Start with a sub
exponential example with tightness or even only variance smaller than on Z

2.

Question 4: (Gabor Pete) Note that requiring (1) only quasi-isometrically (plus
the root condition of (2)) does not imply exponential growth, because when one
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iterates, one may collect a factor (from quasiness) each time, killing the exponential
growth. E.g., branch groups like Grigorchuk’s group [7], whereG�G is a subgroup
of G, may have intermediate growth, see e.g. [11]. This condition is somewhat in
the spirit of Property (1). Bound the variance for FPP on the Grigorchuk’s group.

Maybe ideas related to the one above will be useful in proving at least a sublinear
variance?

The last two questions are regarding point to point FPP.

Question 5: We conjecture that in any hyperbolic lattice the point to point FPP
fluctuations admit a central limit theorem with variance proportional to the distance.
This is motivated by the fact that, due to the Morse lemma, the minimal path will be
in a bounded neighborhood of the hyperbolic geodesic, and for cylinders a CLT is
known to hold [5].

A related question is the following. Assume that for any pair of vertices in a Cayley
graph the variance of point to point FPP is proportional to the distance, is the Cayley
graph hyperbolic? Alternatively, what point to point variances can be achieved for
Cayley graphs? As pointed out above, the only behavior known is linear in the
distance (for Z), the conjectured (and proved in some cases) behavior for Z2, which
is the distance to the power 2=3. Can the bound or proof of Theorem 2.1 be adapted
to give point to point order 1 variance for T � Z

d or T � T or some other graphs?
Are other behaviors possible?

Question 6: In [2] tightness was proved for point to point FPP between random
vertices in the configuration model of random d -regular graph. Does tightness hold
for point to point FPP between random vertices on expanders?

All the questions above are regarding the second order issue of bounding fluctua-
tions. The fundamental fact regarding FPP on Z

d is the shape theorem, see e.g. [9].
That is, rescale the random FPP metric then the limiting metric space a.s. exists and
is R

d with some deterministic norm. The subadditive ergodic theorem is a key in
the proof. We conjecture that FPP on Cayley graph of groups of polynomial growth
also admits a shape theorem. What can replace the subadditive ergodic theorem in
the proof? Start with

Question 7: Prove a shape theorem for FPP on the Cayley graph of the discrete
Heisenberg group.

Acknowledgements Thanks to Pierre Pansu and Gabor Pete for very useful discussions.
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Finitely Supported Measures on SL2.R/ Which
are Absolutely Continuous at Infinity

Jean Bourgain

Abstract We construct finitely supported symmetric probability measures on
SL2.R/ for which the Furstenberg measure on P1.R/ has a smooth density.

1 Introduction

In this note, we give explicit examples of finitely supported symmetric probability
measures � on SL2.R/ for which the corresponding Furstenberg measure � on
P1.R/ is absolutely continuous wrt to Haar measure d� , and moreover d�

d�
is of

class C r , with r any given positive integer. Probabilistic constructions of finitely
supported (non-symmetric measures � on SL2.R/ with absolutely continuous
Furstenberg measure appear in the paper [1], setting (in the negative) a conjecture
from [4]. The construction in [1] may be viewed as a non-commutative analogue of
the theory of random Bernoulli convolutions and uses methods from [5, 6].

It is not clear if this technique may produce Furstenberg measures with say C1-
density. Our method also addresses the issue of obtaining a symmetric � (raised in
[4]), which seems problematic with the [1] technique.

Our starting point is a construction from [2] of certain Hecke operators on
SL2.R/ whose projective action exhibits a spectral gap. The mathematics under-
lying [2] is closely related to the paper [3] and makes essential use of results and
techniques from arithmetic combinatorics. In particular, it should be pointed out that
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the spectral gap is not achieved by exploiting hyperbolicity, at least not in the usual
way. Our measure � has in fact a Lyapounov exponent that can be made arbitrary
small, while the spectral gap (in an appropriate restricted sense) remains uniformly
controlled (the size of supp � becomes larger of course).

We believe that similar constructions are possible also in the SLd.R/-setting,
for d > 2 (cf. [4]). In fact, such Hecke operators can be produced using the
construction from Lemmas 1 and 2 below in SL2.R/ and considering a suitable
family of SL2.R/-embeddings in SLd . We do not present the details here.

Acknowledgements The author is grateful to C. McMullen and P. Varju for several related
discussions. Research was partially supported by NSF grants DMS-0808042 and DMS-0835373

2 Preliminaries

We recall Lemmas 2.1 and 2.2 from [2].

Lemma 1. Given " > 0, there is Q 2 ZC and G � SL2.R/ \ 

1
Q
Mat2.Z/

�
with

the following properties
1

"
< Q <

�1
"

	c1
(1)

jGj > Qc2 (2)

The elements of G are free generators of a free group (3)

kg � 1k < " for g 2 G (4)

Here c1; c2 are constants independent of ".
Define the probability measure � on SL2.R/ as

� D 1

2jGj
X
g2G

.ıg C ıg�1 /: (5)

Denote also Pı; ı > 0, an approximate identity on SL2.R/. For instance, one may

take Pı D 1Bı .1/jBı.1/j where Bı.1/ is the ball of radius ı around 1 in SL2.R/.

Lemma 2. Fix � > 0. Then we have

k�.`/ � Pık1 < ı�� (6)

provided

` > c3.�/
log 1=ı

log 1="
(7)

and assuming ı small enough (depending on Q and �).
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3 Furstenberg Measure

Denote for g 2 SL2.R/ by �g the action on P1.R/ that we identify with the circle

R=Z D T. Thus if g D
�
a b

c d

�
; ad � bc D 1, then

ei�g.�/ D .a cos � C b sin �/C i.c cos � C d sin �/

Œ.a cos � C b sin �/2 C .c cos � C d sin �/2�
1
2

: (8)

Assume � on P1.R/ is �-stationary, i.e.

� D
X

�.g/g�Œ��: (9)

4 A Restricted Spectral Gap

Take G as in Lemma 1 and � D 1
2r

P
g2G.ıg C ıg�1/ with r D jGj.

Lemma 3. There is some constantK > 0 (depending on �), such that if f 2 L2.T/
satisfies

kf k2 � 1 and Of .n/ D 0 for jnj < K (10)

then ����
Z
.f ı �g/d�

����
2

<
1

2
: (11)

Proof. Define 	gf D .� 0
g/
1=2.f ı�g/, hence 	 is the projective representation. Since

k1 � gk < ", j� 0
g � 1j . " and (11) will follow from

����
Z
.	gf /�.dg/

����
2

<
1

3
: (12)

Assume (12) fails. By almost orthogonality, there is f 2 L2.T/ such that

supp Of � Œ2k; 2kC1� (13)

kf k2 D 1 (14)����
Z
.	gf /�.dg/

����
2

> c(for some c > 0): (15)

Let ` < k to be specified. From (15), since � is symmetric,

����
Z
.	gf /�

.`/.dg/

����
2

> c` (16)
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and hence

Z
jh	gf; f ij�.2`/.dg/ D

“
jh	gf; 	hf ij�.`/.dg/�.`/.dh/ > c2`: (17)

Take ı D 10�k . Recalling (13), straightforward approximation permits us to
replace in (16) the discrete measure �.`/ by �.`/ � Pı , where Pı.ı > 0/ denotes the
approximate identity on SL2.R/. Hence (17) becomes

Z
SL2.R/

jh	gf; f ij.�2` � Pı/.g/dg C 2�k > c2`: (18)

Fix a small constant � > 0 and apply Lemma 2. This gives

` � C.�/
log 1

ı

log 1
"

(19)

such that
k�.`/ � Pık1 < ı�� : (20)

Note that supp �.`/ is contained in a ball of radius at most .1C "/`, by (4).

Introduce a smooth function 0 � ! � 1 on R; ! D 1 on Œ�.1C "/4`; .1C "/4`�

and ! D 0 outside Œ�2.1C "/4`; 2.1C "/4`�.

Let !1.g/ D !.a2 C b2 C c2 C d2/ for g D
�
a b

c d

�
.

From (20), the first term of (18) is bounded by

ı��
Z
SL2.R/

jh	gf; f ij!1.g/dg: (21)

Note also that by assuming " a sufficiently small constant, we can ensure that ` � k

and 2�k < c2`. Thus Z
SL2.R/

jh	gf; f ij!1.g/dg > 1

2
ı�c2` (22)

and applying Cauchy-Schwarz

c4`ı2� .1C "/�6` �
Z
SL2.R/

jh	gf; f ij2!1.g/dg

D
ˇ̌
ˇ̌Z
SL2.R/

Z
T

Z
T

f .x/f .y/ f .�gx/f .�gy/.�
0
g.x//

1=2.� 0
g.y//

1=2!1.g/dgdxdy

ˇ̌
ˇ̌

�
Z
T

Z
T

jf .x/j jf .y/j
ˇ̌
ˇ̌
Z
SL2.R/

f .�gx/f .�gy/.�
0
g.x//

1=2


� 0
g.y/

� 1
2 !1.g/dg

ˇ̌
ˇ̌dxdy:

(23)



Measures on SL2.R/ Absolutely Continuous at Infinity 137

Fix x 6D y and consider the inner integral. If we restrict g 2 SL2.R/ s.t. �gx D �

(fixed), there is still an averaging in  D �gy that can be exploited together with

(13). By rotations, we may assume x D � D 0. Write g D
�
a b

c d

�
2 SL2.R/,

dg D dadbdc
a

on the chart a 6D 0. Since

ei�gx D .a cos x C b sin x/C i.c cos x C d sin x/

Œ.a cos x C b sin x/2 C .c cosx C d sin x/2�1=2

the condition �g0 D 0 means c D 0 and thus

ei D ei�gy D .a cosy C b siny/C i
a

sin y

Œ.a cosy C b sin y/2 C 1
a2

sin2 y�
1
2

:

Hence, fixing a

@ 

@b
D �a sin2  : (24)

Also

� 0
g.z/ D cos2 �g.z/

.a cos z C b sin z/2
D a2

sin2 �g.z/

sin2 z
(25)

implying

� 0
g.0/ D 1

a2
and � 0

g.y/ D a2 sin2  

sin2 y
: (26)

Substituting (24), (26) in (23) gives for the inner integral the bound

1

j sin.x � y/j
“

d�
da

a2
jf .�/j

�
ˇ̌
ˇ̌
Z
f . /

1

j sin.� �  /j!
�
a2C 1

a2
C
�
1

a
cotg. � �/ � a cotg.y � x/

�2�
d 

ˇ̌
ˇ̌:
(27)

The weight function restricts a to .1C "/�2` . jaj . .1C "/2` and clearly

j sin.� �  /j & .1C "/�4`j sin.x � y/j: (28)

If we restrict j sin.x � y/j > 2� k
10 , Assumption (13) gives a bound at most

2�kkf k1 for the  -integral in (27). Indeed, if ˇ is a smooth function vanishing
on a neighborhood of 0 and jnj � 2k, partial integration implies that for any given
A > 0 Z

e�in 1

sin.� �  /
ˇ


2
k
10 .� �  /

�
d . 2�Ak:



138 J. Bourgain

Thus
(27) < 2k=10.1C "/2` 2�kkf k21: (29)

The contribution to (23) is at most

2�k=2.1C "/2`kf k41: (30)

Next we consider, the contribution of j sin.x � y/j � 2� k
10 to (23).

First, from (25), we have that

j� 0
gj . a2 C 1

a2
C b2 . kgk2 < .1C "/4`:

By Cauchy-Schwarz, the inner integral in (23) is at most

.1C "/4`
�Z

jf .�gx/j2!1.g/dg
�
< .1C "/10`kf k22:

Hence, we obtain

�Z
jx�yj<2�k=10

jf .x/j jf .y/jdxdy
�
.1C "/10`kf k22

< 2�k=20.1C "/10`kf k42: (31)

From (30), (31),
(23) � 2�k=20.1C "/10`

and hence, by (19)
2k=10 < 100k�:C C.�/.log 1

" /
�1k: (32)

Taking (in order) � and " small enough, a contradiction follows.

This proves Lemma 3.

5 Absolute Continuity of the Furstenberg Measure
and Smoothness of the Density

Our aim is to establish the following.

Theorem. Let � be the stationary measure introduced in (9). Given r 2 ZC and
taking " in Lemma 1 small enough will ensure that d�

d�
2 C r .

This will be an immediate consequence of

Lemma 4. Let k > k."/ be sufficiently large and f 2 L1.T/; jf j � 1 such that
supp Of � Œ2k�1; 2k�. Then
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jhf;�ij < C�k
" (33)

where C"
"!0�! 1.

Proof. Clearly, for any ` 2 ZC

jhf;�ij �
���X

g

�.`/.g/.f ı �g/
���1: (34)

We will iterate Lemma 3 and let K D K."/ satisfy (10), (11).
We assume 2k > 10K10. Form < ` and jnj < K , we evaluate jcFm.n/j, denoting

Fm D
X
g

�.m/.g/.f ı �g/: (35)

Clearly jcFm.n/j � maxg2supp�.m/ j.f ı �g/^.n/j and by assumption on supp Of

j.f ı �g/^.n/j D
ˇ̌
ˇ̌Z f



�g.x/

�
e�2�inxdx

ˇ̌
ˇ̌

� 2k=2kf k2 max
n02Œ2k�1;2k �

ˇ̌
ˇ̌
Z
e2�i.n

0�g.x/�nx/dx
ˇ̌
ˇ̌:

Performing a change of variables gives

ˇ̌
ˇ̌Z e2�i.n

0�g.x/�nx/dx
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z e

2�i.n0y�n�g�1 .y//� 0
g

�1 .y/dy

ˇ̌
ˇ̌

�r ke�2�in�g�1� 0
g�1kCr jn0j�r

�r

Kr

jn0jr .1C "/2m.rC1/ �r 2
� 3
4 kr .1C "/2`.rC1/ (36)

by partial integration and our assumptions. It follows from (36) that if ` satisfies

` <
k

100"
(37)

then form < ` and k > k.r/

max
jnj<K

jcFm.n/j < 2� kr
2 (38)

(with r a fixed large integer).
Next, decompose

Fm D F .1/
m C F .2/

m where F .1/
m .x/ D

X
jnj<K

cFm.n/e2�inx:
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Hence, by (38)

kF .1/
m k1 < 2K2� kr

2 : (39)

Estimate using (39) and Lemma 3

kFmC1k2 �
����
Z
.F .1/

m ı �g/d�
����1

C
����
Z
.F .2/

m ı �g/d�
����
2

� kF .1/
m k1 C 1

2
kF .2/

m k2

� 3K2� kr
2 C 1

2
kFmk2: (40)

Iteration of (40) implies by (37)

kF`k2 � 4K2� kr
2 C 2�` . 2� kr

2 C 2� k
100" : (41)

Also
jF 0̀j � max

g2supp �.`/
k.f ı �g/0k1 � kf 0k1.1C "/2` . 5k (42)

and interpolation between (41), (42) implies for r (resp. ") large (resp. small) enough

kF`k1 . (41)1=2:(42)1=2 < 2� kr
5 C 2� k

300" (43)

provided k > k."; r/.
In view of (34), this proves (33).

Remark. For � finitely supported (with positive Lyapounov exponent), one cannot
obtain a Furstenberg measure � that equals Haar measure on P1.R/ ' T. Indeed,
otherwise for any f on T, we would have

Of .0/ D
Z
T

fd� D
Z
�.dg/

�Z
.f ı �g/d�

�

D
Z
�.dg/

�Z
f .x/.�

g
�1 /0.x/dx

�
: (44)

For g 2 SL2.R/,
Z
f .x/.�

g
�1 /0.x/dx D

Z
f .�/Pz.2�/d�

D Of .0/C
X
n 6D0

jzjjnje2�in.Argz/ Of .�2n/ (45)

for some z 2 D D fz 2 CI jzj < 1g, with Pz.�/ D 1�jzj2
j1�Nzei� j2 the Poisson kernel.
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From (44), (45), taking � D Pr
jD1 cj ıgj ; cj > 0 and

P
cj D 1 and fzj g the

corresponding points in D, we get

rX
1

cj jzj jne2�in.Argzj / D 0 for all n 6D 0: (46)

This easily implies that z1 D � � � D zr D 0. But then each gj has unimodular
spectrum and � vanishing Lyapounov exponent.
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Moebius Schrödinger

Jean Bourgain

Abstract Consider the one-dimensional lattice Schrödinger operator with potential
given by the Moebius function. It is shown that the Lyapounov exponent is strictly
positive for almost all energies, answering a question posed by P. Sarnak.

1 Statement of the Result

Let �.n/ be the Moebius function and consider the Schrödinger operator on ZC

H D C 
� .
 6D 0 arbitrary/: (1)

We prove the following

Theorem 1. For E 2 R outside a set of 0-measure, any solution  D . n/n
0,
 0 D 0;  6D 0 of

H D E 

satisfies

lim
logC j nj

n
> 0: (2)

Recalling the spectral theory of 1D Schrödinger operators with a random
potential, Theorem 1 fits the general heuristic, known as the ‘Moebius randomness
law’ (cf. [4]). The question whether (1) satisfies Anderson localization remains open
and is probably difficult.

The fact that H has no ac-spectrum is actually immediate from the following
result of Remling.
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Proposition 1 ([3, Theorem 1.1]). Suppose that the (half line) potential V.n/ takes
only finitely many values and �ac 6D �. Then V is eventually periodic.

We will use again Proposition 1 later on, in the proof of the Theorem.

2 Proof of the Theorem (I)

Let X � f0; 1;�1gZ be the point-wise closure of the set fT j!I j 2 Zg, where T is
the left shift and ! defined by

!n D
(
�.n/ for n 2 ZC
0 for n 2 Z�:

(3)

Let

�N D 1

N

N�1X
jD0

ıT j ! .ıx D Dirac measure at x)

and � 2 P.X/ a weak�-limit point of f�N g.
Then � is a T -invariant probability measure on X .
The only property of the Moebius function exploited in the proof of Theorem 1

is the following fact.

Lemma 1. For no element ! 2 X; .!n/n
0 is eventually periodic, unless !n D 0

for n large enough. Similarly for .!n/n�0.

Proof. Suppose ! eventually periodic. Hence there is n0 2 ZC and d 2 ZC such
that

!.nC d/ D !.n/ for n � n0: (4)

Take N D 103.n1 C d3/ and choose n1 � n0 and k 2 ZC such that

!.n/ D �.k C n/ for n 2 Œn1; n1 CN�: (5)

Let d < p < 10d be a prime. Taking n 2 Œn1; n1CN
2
�, there is 0 � j < p2 such that

kCnCjd 	 0.mod p2/ and thus�.kCnCjd/ D 0. Since nCjd 2 Œn1; n1CN�,
(5), (4) imply that �.k C nC jd/ D !.n C jd/ D !.n/ and therefore ! D 0 on
Œn1; n1 C N

2
�, hence on Œn1;1Œ. ut

Denote for ! 2 X
H! D C 
!: (6)

Combined with Proposition 1, Lemma 1 implies

Lemma 2.
�ac.H!/ D � .� � a.e./
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Proof. DenotingH!̇ the corresponding halfline SO’s, we have

�ac.H!/ D �ac.H
C
! / [ �ac.H�

! /

and these sets are empty, unless

! 2
1[
kD1

f! 2 X I!n D 0 for all n � k or all n � �kg: (7)

Clearly � (7) D 0. ut
The measure � need not be T -ergodic, so we consider its ergodic decomposition

� D
Z
�˛d˛: (8)

For each ˛, let �˛.E/ be the Lyapounov exponent of H! , i.e.

�˛.E/ D lim
N!1

1

N
log

���
0Y
N

�
E � 
!n �1

1 0

���� .�˛ a:e/: (9)

Next, we apply Kotani’s theorem (for stochastic Jacobi matrices, as proven in
[5, Theorem 2]).

Proposition 2 (Assuming .˝;�; T / ergodic). If �.E/ D 0 on a subset A of R
with positive Lebesque measure, then Eac

! .A/ 6D 0 for a.e. !.

(Eac denote the projection on the ac-spectrum).

Apply Proposition 2 to H! on .X; �˛/. By Lemma 2, Eac
! D 0, �˛ a.e., hence

fE 2 RI �˛.E/ D 0g is a set of zero Lebesgue measure. For E outside a subset
E� � R of zero Lebesque measure, we have that �˛.E/ > 0 for almost all ˛ in (8),
therefore

lim inf
N!1

Z
1

N
log

���
0Y
N

�
E � 
!n �1

1 0

�����.d!/

�
Z n

lim inf
N!1

Z h 1
N

log
���

0Y
N

�
E � 
!n �1

1 0

����
i
�˛.d!/

o
d˛

�
Z
�˛.E/d˛ > 0: (10)
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Denoting RN the restriction operator to Œ1; N �, let

H.N/
! D RNH!RN

G.N/
! .E/ D .H.N/

! � E C i0/�1 (D restricted Green’s function):

Recall that by Cramer’s rule, for 1 � k1 � k2 � N

jG.N/
! .E/.k1; k2/j D detŒH .k1�1/

! �E�:j detŒH .N�k2/
T k2!

�E�j
j detŒH .N/

! � E�j
(11)

and also the formula

MN.E;!/ D
1Y
N

�
E � 
!n �1

1 0

�

D
"

detŒE �H
.N/
! � � detŒE �H

.N�1/
T!

detŒE �H.N�1/
! � � detŒE �H.N�2/

T!
�

#
:

(12)

Using the above formalism, it is well-known how to derive from positivity of
the Lyapounov exponent, bounds and decay estimates on the restricted Green’s
functions. Since ergodicity of the measure is used, application to the preceding
requires to start from the �˛ .

For E 2 R; ı; c > 0;M 2 ZC, define

˝E;ı;c;M D f! 2 X I kG.M/
! .E/k < eıM and jG.M/

! .E/.k; k0/j < e�cjk�k0j

if 1 � k; k0 � M and jk � k0j > ıM g:
(13)

Fix ˛ and ı > 0. Then E a.e

lim
M!1 �˛.˝E;ı; 12 �˛.E/;M

/ D 1: (14)

Using Fubini arguments and (8), we derive the following

Lemma 3. Given " > 0, there is b > 0, such that for all ı > 0, there is a subset
E" � R, mes E" < " and some scale M satisfying

�.˝E;ı;b;N / > 1 � " for E 62 E" and N > M: (15)
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3 Proof of the Theorem (II)

Using the definition of �, we re-express (15) in terms of the Moebius function.
Let H be as in (1). For I � ZC an interval, denote

HI D RIHRI (16)

and
GI .E/ D .HI � E C io/�1: (17)

Let S D SE;ı;N be defined by

S D fk 2 ZI kGŒk;kCNŒ.E/k < eıN and

jGŒk;kCNŒ.E/.k0; k00/j < e�bjk0�k00j if k � k0; k00 � k CN; jk0 � k00j > ıN:
(18)

Property (15) then translates as follows

lim
`!1
`�N

1

`
jS \ Œ1; `�j > 1

2
(19)

forE 62 E" andN > M . Here “lim” refers to the Banach limit in the definition of �.
Fix " > 0 a small number, take 0 < b < 1

10
as in Lemma 3 and let ı D b10. Let

E" � R;M > ı�2 C 1
"
, satisfy the lemma. Hence, from (19)

lim
`!1
`�M

1

`
jSE;ı;M \ Œ1; `�j > 1

2
for E 62 E": (20)

Choose ` � M such that

1

`
jSE;ı;M \ Œ1; `�j > 1

2
for E 62 E 0

" (21)

where E" � E 0
" � R satisfies

mesE 0
" < 2":

Next we rely on a construction from [1, Lemma 6.1 and Corollary 6.54]. We recall
the statement

Lemma 4. Let 0 < c0 < 1, 0 < c1 <
1
10

be constants, 0 < ı < c101 and ` � M >

ı�2.
Let

A D vnınn0 C .1 � n; n0 � `/ (22)

(hence A is an ` � ` matrix) with diagonal vn arbitrary, bounded, jvnj D 0.1/.
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Let U � R be a set of energies E such that for eachE 2 U , the following holds:
There is a collection fI˛g of disjoint intervals in Œ1; `�; jI˛j D M such that for

each ˛
k.RI˛ .A �E/RI˛ /�1k < eıM (23)

and

j.RI˛ .A �E/RI˛ /�1.k; k0/j < e�c1jk�k0j for k; k0 2 I˛; jk � k0j > ıM (24)

holds, and X
˛

jI˛j > c0`: (25)

Then there is a set E 00 � R so that

mes .E 00/ <
1

M
(26)

and for E 2 UnE 00,

max
1�x� c0

10 `

`
y
`� c0
10 `

j.A� E/�1.x; y/j < e� 1
8 c0c1`: (27)

The proof of Lemma 4 is a bit technical, but uses nothing more than the resolvent
identity and energy perturbation.

Let vn D 
�.n/.
Take c0 D 1

2
; c1 D b;U D RnE 0

" with E 0
" as above:

Let `0 � M satisfy (21). From the definition (18) of SE;ı;M and (21), we clearly
obtain a collection fI˛g of M -intervals in Œ1; `� such that (23)–(25) hold.

It follows that forE outside of the set E 00
" D E 0

"[E 00 of measure at most 2"C 1
M
<

3", one has for b0 � b that

max
1�x� c0

10 `

`
y
`� c0
10 `

jGŒ1;`�.E/.x; y/j < e�b0`: (28)

Note that b0 > 0 depends on " and � and E 00
" depends on `, which can be taken

arbitrarily large in the subsequence of ZC used to define �. Since this subsequence
is arbitrary, it follows that there is some b0 D b" and `" 2 ZC such that for ` > `"

mes ŒE 2 RI max
1�x� c0

10 `

`
y
`� c0
10 `

jGŒ1;`�.E/.x; y/j > e�b0`� D mes QE` < ": (29)

Assume  D . n/n
0;  0 D 0 a solution of

H D E :
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Taking ` large, one has by projection

HŒ1;`� 
.`/ C  `C1e` D E .`/ (30)

where  .`/ D P
1�x�`  xex; fexg the unit vector basis.

Hence
 .`/ D � `C1GŒ1;`�.E/e`

and fixing some coordinate x � 1, for ` large enough

j x j � j `C1j jGŒ1;`�.E/.x; `/j: (31)

Take x with  x 6D 0. Assuming

lim
n

logC j nj
n

D 0

it follows from (31) that

lim
`

1

`
logC jGŒ1;`�.E/.x; `/j�1 D 0: (32)

From the definition of QE` in (29), this means that

E 2
[
`0

\
`
`0

QE` (33)

which is a set of measure � ".
Letting " ! 0, Theorem 1 follows.

4 Further Comments

Taking into account the comment made prior to Lemma 1, our argument gives the
following more general result, that can be viewed as a refinement of [3].

Theorem 2. Suppose that the (half line) potential .Vn/n
0 takes only finitely many
values and satisfies the following property

lim
r!1 lim

N!1
1

N
jf1 � k � N IVk D !0; VkC1 D !1; : : : ; VkCr D !r gj D 0 (34)

whenever ! D .!r/r
0 is a periodic sequence in the pointwise closure of the
sequences .VnCj /n2Z

C

.j 2 ZC/.
Then the Schrödinger operator H D  C V satisfies the conclusion of

Theorem 1.
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Interpolations, Convexity and Geometric
Inequalities

Dario Cordero-Erausquin and Bo’az Klartag

Abstract We survey some interplays between spectral estimates of Hörmander-
type, degenerate Monge-Ampère equations and geometric inequalities related to
log-concavity such as Brunn-Minkowski, Santaló or Busemann inequalities.

1 Introduction

The Brunn-Minkowski inequality has an L2 interpretation, an observation that can
be traced back to the proof provided by Hilbert. More recently, it has been noted that
the Brunn-Minkowski inequality for convex bodies is related, in its local form, to
spectral inequalities. In fact, the Prékopa theorem, which is the function form of the
Brunn-Minkowski inequality for convex sets, is equivalent to spectral inequalities
of Brascam-Lieb type. The local derivation of Prékopa’s theorem from spectral L2

inequalities was described in the more general complex setting in [13] and then
extended further in [6, 7].

Let K0;K1 � R
n be two convex bodies (i.e., compact convex sets with non-

empty interior) and denote, for t 2 Œ0; 1�,

K.t/ WD .1� t/K0C tK1 D fz 2 R
n I 9.a; b/ 2 K0�K1; z D .1� t/aC tbg: (1)
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The Brunn-Minkowski inequality is central in the theory of convex bodies. Denoting
the Lebesgue measure by j � j, it states that

jK.t/j � jK0j1�t jK1jt ;

with equality if and only ifK0 D K1Cx0 for x0 2 R
n. Introducing the convex body

K WD
[
t2Œ0;1�

ftg �K.t/ � R
nC1;

then K.t/ is the section over t , and the Brunn-Minkowski inequality expresses the
log-concavity of the marginal measure. Namely, it shows that the function

˛.t/ WD � log jK.t/j

is convex. The Brunn-Minkowski inequality for convex bodies admits the following
useful functional form, which states that marginals of log-concave functions are
log-concave.

Theorem 1 (Prékopa). Let F W RnC1 ! R[ fC1g be convex with
R

exp.�F / <
1 and define ˛ W R �! R [ fC1g by

e�˛.t/ D
Z
Rn

e�F.t;x/ dx:

Then ˛ is convex.

The Brunn-Minkowski inequality then follows by considering, for a given convex
set K � R

nC1 D R � R
n, the convex function F defined by

e�F.t;x/ D 1K.t; x/ D 1K.t/.x/: (2)

The standard proofs of the Brunn-Minkowski inequality rely on parameterization
or mass transport techniques between K0 and K1, with the parameter t 2 Œ0; 1�

being fixed. A natural question is whether one can provide a direct local approach
by proving ˛00.t/ � 0? The answer is affirmative and this was shown recently by
Ball, Barthe and Naor [4]. As mentioned earlier, this local approach was put forward
in an L2 framework, for analogous complex versions, in Cordero-Erausquin [13]
and in subsequent far-reaching works by Berndtsson [6, 7]. We can also point
out that this local approach was implicitly initiated in the paper by Brascamp and
Lieb [9] from which the knowledgeable reader can extract the equivalence between
Prekopa’s inequality and Brascamp-Lieb’s inequality (17).

Another essential concept in the theory of convex bodies is duality. This requires
us to fix a center and a scalar product. Let x �y stand for the standard scalar product
of x; y 2 R

n. We write jxj2 D x � x and Bn
2 D fx 2 R

nI x � x � 1g, the associated
unit ball. Recall thatK � R

n is a centrally-symmetric convex body if and only ifK
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is the unit ball of some norm k � k on R
n, a relation denoted by K D Bk�k WD fx 2

R
n I kxk � 1g. The polar of K is defined as the unit ball of the dual norm k � k�,

Kı D Bk�k
�

D fy 2 R
n I x � y � 1; 8x 2 Kg:

We have the following beautiful result:

Theorem 2 (Blaschke-Santaló inequality). For every centrally-symmetric convex
bodyK � R

n, we have
jKj jKıj � jBn

2 j2 (3)

with equality holding true if and only ifK is an ellipsoid (i.e. a linear image of Bn
2 ).

The corresponding functional form reads as follows (see [1, 2]): for an even
function f W Rn ! R with 0 <

R
e�f < 1, if Lf denotes its Legendre transform,

then Z
e�f

Z
e�Lf �

� Z
e�jxj2=2 dx

	2 D .2�/n: (4)

Note that the Brunn-Minkowski inequality entails

p
jKj jKıj �

ˇ̌
ˇ̌K CKı

2

ˇ̌
ˇ̌ : (5)

In general we have KCKı

2

 Bn

2 , since .kxk C kxk�/=2 � pkxkkxk� � 1 for
any vector x 2 R

n and a norm k � k. However, typically, .K C Kı/=2 is much
larger than Bn

2 , and (5) is weaker than (3). For instance, take K D T .Bn
2 /, where

T ¤ IdRn is a positive-definite symmetric operator. ThenKı D T �1.Bn
2 /. Observe

that KCKı

2

 TCT�1

2
.Bn

2 / and

T C T �1

2
>

p
T T �1 D IdRn

in the sense of symmetric matrices. This suggest that instead of taking convex
combinations, as in the Brunn-Minkowski theory, we would like to consider
geometric means of convex bodies. It turns out that this is exactly what complex
interpolation does, and it is a challenging question to understand real analogues of
this procedure.

In this note we will consider several ways of going fromK0 toK1, or equivalently
from a norm k�k0 to another norm k�k1. There are many ways to recover the volume
of K from the associated norm k � k. Let p > 0 and n � 1. There exists an explicit
constant cn;p > 0 such that for every centrally-symmetric convex body K � R

n,
with associated norm k � kK , we have

Z
Rn

e�kxkpK=p dx D cn;p jKj: (6)

Note that the procedure (2) corresponds to the case p ! C1.
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We aim to find ways of interpolating between norms in order to recover, among
other things, the Brunn-Minkowski and the Santaló inequalities.

Let us next put forward some notation as well as a formula that we shall use
throughout the paper.

Notation 3. For a function F W Rn ! R such that
R
e�F.x/ dx < C1, we denote

by �F the probability measure on R
n given by

d�F .x/ WD de�F.x/R
e�F dx:

For a function of n C 1 variables F W I � R
n ! R, where I is an interval of

R, we denote, for a fixed t 2 I , Ft WD F.t; �/ W R
n ! R and then by �Ft the

corresponding probability measure on R
n. We also set

˛.t/ D � log
Z
Rn

e�Ft .x/dx:

The variance with respect to a probability measure � of a function u 2 L2.�/

—where, depending on the context, we consider either real-valued or complex-
valued functions—is defined as the L2 norm of the projection of u onto the space of
functions orthogonal to constant functions, i.e.

Var�.u/ WD
Z ˇ̌

u � R
u d�

ˇ̌2
d� D

Z
juj2 d� �

ˇ̌
ˇ
Z

u d�
ˇ̌
ˇ2:

A straightforward computation yields:

Fact 4. With Notation 3, we have for every t 2 I ,

˛00.t/ D
Z
Rn

@2t tF d�Ft .x/ �
�Z

Rn



@tF.t; x/

�2
d�Ft .x/

�
�Z

Rn

@tF .t; x/ d�Ft .x/

�2�

D
Z
Rn

@2t tF d�Ft � Var�Ft


@tF

�
; (7)

assuming that F is sufficiently regular to allow for the differentiations under the
integral sign.

Our goal is to understand for which families of functions F the function ˛
is convex, by looking at ˛00. Actually, we will first discuss the complex case,
where convexity is replaced by plurisubharmonicity. We will recover the fact that
families given by complex interpolation, or equivalently by degenerate Monge-
Ampére equations, lead to subharmonic functions ˛. Then we will try to see, at
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a very heuristic level, what can be said in the real case. A final section proposes a
local L2 approach, to the Busemann inequality similar to that used in the preceding
sections.

Acknowledgements We thank Yanir Rubinstein and Bo Berndtsson for interesting, related
discussions. Bo’az Klartag was supported in part by the Israel Science Foundation and by a Marie
Curie Reintegration Grant from the Commission of the European Communities.

2 The Complex Case

Let K0 and K1 be two unit balls of Cn associated with the (complex vector space)
norms k�k0 and k�k1. Note that here we are working with the class of convex bodies
K of R

2n that are circled, meaning that ei�K D K for every � 2 R. We think
of a normed space as a triplet consisting of a vector space, a norm and its unit ball.
Consider the complex normed spacesX0 D .Cn; k�k0;K0/ andX1 D .Cn; k�k1;K1/

and write
Xz D .Cn; k � kz; Kz/

for the complex Calderón interpolated space at

z 2 C WD fw 2 C I <.w/ 2 Œ0; 1�g

where <.w/ is the real part of w 2 C. Recall thatXz D X<.z/ and thereforeKz D Kt

with t D <.z/ 2 Œ0; 1�. We have:

Theorem 5 ([12]). The function t ! jKt j is log-concave on Œ0; 1� and so

jK0j1�t jK1jt � jKt j: (8)

In the case of complex unit balls, this result improves upon the Brunn-Minkowski
inequality since it can be verified, by using the Poisson kernel on Œ0; 1��C

n and the
definition of the interpolated norm, that

Kt � .1 � t/K0 C tK1 D K.t/:

In this setting, it also gives the Santaló inequality. Indeed, for a given complex unit
ballK � C

n, let X0 be the associated complex normed space, and letX1 be the dual
conjugate space which hasKı � C

n as its unit ball. Then it is well known that

X1=2 D `n2.C/ D `2n2 .R/ (9)

and therefore we obtain p
jKj jKıj � jB2n

2 j:
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(Let us mention here that the conjugation bar in the statements of [12] is superfluous
according to standard definitions).

In order to have a better grasp on complex interpolation, let us write an explicit
formula in the specific case of Reinhardt domains. A subsetK � C

n is Reinhardt if
for any z D .z1; : : : ; zn/ 2 C

n,

.z1; : : : ; zn/ 2 K ” .jz1j; : : : ; jznj/ 2 K:

Note that a Reinhardt convex set is necessarily circled. In the case where X0 D
.Cn; k � k0;K0/ and X1 D .Cn; k � k1;K1/ are such that K0 and K1 are Reinhardt,
the interpolated space Xz D .Cn; k � kz; Kz/ satisfies

Kz D ˚
z 2 C

n I 9.a; b/ 2 K0 �K1; jzj j D jaj j1�t jbj jt for j D 1; : : : ; n
�

with t D <.z/. The case of Reinhardt unit balls is particularly simple and easy
to analyze, but it has its limitations. Still, the idea is that in general, Kt should be
understood as a “geometric mean” of the bodiesK0 andK1, whereas the Minkowski
sum (1) reminds us of an arithmetic mean.

Theorem 5 was proved using the complex version of the Prékopa theorem
obtained by Berndtsson [5], which was derived in [13] using a local computation
and L2 spectral inequalities of Hördmander type. Here, we would like to provide
a different direct proof, by combining the results of Rochberg and Hörmander’s a
priori L2-estimates. Let k � kz be a family of interpolated norms on C

n and Kz D
Bk�kz . We assume for simplicity that these norms are smooth and strictly convex, so
that we will not have to worry about justification of the differentiations under the
integral signs. In fact, by approximation we can assume that 1=R � Hess k � k2k � R

(for some large constant R > 1) for k D 1; 2, and these bounds remain valid for the
interpolated norms. Introduce the function F W C � C

n ! R,

F.z;w/ WD 1

2
kwk2z :

Denote the Lebesgue measure on C
n ' R

2n by 
, and introduce, in view of (6),

˛.z/ D � log
Z
Cn

e�F.z;w/ d
.w/ D � log jKzj � log.c2n;2/

for z 2 C . Our goal is to prove that t ! ˛.t/ is convex on Œ0; 1�. Since ˛.z/ D
˛.<.z//, this is equivalent to proving that ˛ is subharmonic on the strip C . The
following analogue of (7) is also straightforward:

1

4
˛.z/ D @2zz˛.z/ D

Z
Cn

@2zzF d�Fz �
Z
Cn

ˇ̌
@zF.w/� R

@zF d�Fz

ˇ̌2
d�Fz.w/;

where �Fz is the probability measure on C
n given by
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dd�Fz.w/ D e�F.z;w/R
e�F.z;�/d
.�/

d
.w/:

It was explained by Rochberg [17] that complex interpolation is characterized by
the following differential equation:

@2zzF D
nX

j;kD1
F jk.z;w/@wj .@zF /@wk .@zF / (10)

where .F jk/j;k�n is the inverse of the complex Hessian in the w-variables of
F.z;w/, that is

�
F jk

	
j;k�n D 


HessCw F
��1 WD

��
@2wjwk

F
	
j;k�n

��1
:

Actually, the function F is plurisubharmonic on C �C
n � C

nC1 and (10) expresses
the fact that it is a solution of the degenerate Monge-Ampère equation

det
�

HessCz;w F
	

D 0

where HessCz;w F is the full complex Hessian of F.z;w/, an .nC1/� .nC1/matrix.
As a consequence of the previous discussion, we have that, for a fixed z 2 C and

setting u WD @zF.z; �/ W Cn ! C,

˛.z/=4 D
Z
Cn

nX
j;kD1

F jk@wj u @wkud�Fz �
Z ˇ̌

u � R
u d�Fz

ˇ̌2
d�Fz : (11)

Of course, it is now irresistible to appeal to Hörmander’s a priori estimate (see
e.g. [15]). It states that if F W Cn ! R is a (strictly) plurisubharmonic function and
if u is a (smooth enough) function, then

Z
Cn

ju � PHuj2 d�F �
Z
Cn

nX
j;kD1

F jk@wj u @wku d�F (12)

where dd�F .w/ D e�F.w/R
e�F d


d
.w/ and PH W L2.�F / ! L2.�F / is the orthogonal

projection onto the closed space H D fh 2 L2.�F / I @h D 0g of holomorphic
functions. Actually, this a priori estimate on C

n is rather easy to prove by duality
and integration by parts. We now apply this result to F D F.z; �/, �F D �Fz and
u D @zF . Note that F (and thus �F / and u are invariant under the action of S1:
F.z; ei�w/ D F.z;w/ and the same is true for @zF . This implies that the function
PHu has the same invariance, but since it is a holomorphic function on C

n, it has to
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be constant. Therefore PHu D R
ud�Fz and we indeed obtain that ˛.z/ � 0 by

combining (11) and (12), as desired.
Here, we reproved (8) without using explicitly [5], but rather by combining the

local computations of [13] and the degenerate Monge-Ampère equation satisfied
by the complex interpolation. In fact, this computation also appears, in a much
more general and deep form, in recent works by Berndtsson [6, 7]. The reason
is that complex interpolation corresponds to a geodesic in the space of metrics,
and therefore enters Berndtsson’s abstract theorems. Also, it can be noticed that
complex interpolation corresponds to an extremal construction (for given boundary
data), in the sense that it can be viewed as a plurisubharmonic hull. Equivalently,
plurisubharmonic functions may be viewed as sub-solutions of degenerate Monge-
Ampère equations.

Following our presentation, it is very tempting to develop an analogous presen-
tation for convex bodies in R

n. However, the real case is more complex, as we shall
now see.

3 Real Interpolations

The concept of interpolation and the basic properties we present here are due
to Semmes [18], building on previous work by Rochberg [17]. Semmes indeed
raised the question of whether such interpolations (which are not interpolations in
the operator sense) could be used to prove inequalities, by showing that certain
functionals are convex along the interpolation. Our main contribution here is to
explain that this is indeed the case, by connecting this interpolation with some well-
known spectral inequalities. However, some discussions will remain at a heuristic
level, as it is not the purpose of this note to discuss existence, unicity and regularity
of solutions to the partial differential equations we refer to.

Definition 1 (Rochberg–Semmes interpolation [18]). Let I be an interval of R
and p 2 Œ1;C1�. We say that a smooth function F W I � R

n ! R is a family of
p-interpolation if for any t 2 I , the function F.t; �/ is (strongly) convex on R

n and
for .t; x/ 2 I � R

n

@2t tF D 1

p



Hessx F

��1r@tF � r@tF: (13)

Accordingly, when @2t tF � 1
p



Hessx F

��1r@tF � r@tF , we say that F is a sub-
family of p-interpolation.

In Definition 1, we denote by rF the gradient of F.t; x/ in the x variables,
and a function is strongly convex when Hessx F > 0. By standard linear algebra
we have the following equivalent formulation in terms of the degenerate Monge-
Ampère equation:
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Proposition 6 (Interpolation and degenerate Monge-Ampère equation). Let
F W I � R

n ! R be a smooth function such that F.t; �/ is (strongly) convex on
R
n and introduce, for .t; x/ 2 I � R

n, the .nC 1/ � .nC 1/ matrix

H D HpF.t; x/ WD
0
@ @2t tF .rx@tF /

�

rx@tF dpHessxF

1
A : (14)

Then,F is a family (resp. a sub-family) of p-interpolation if and only if d detH D 0

(resp. detH � 0) on I � R
n.

In particular, 1-interpolation corresponds exactly to the degenerate Monge-
Ampère equation on I�R

n. In fact, we see p-interpolation as a (Dirichlet) boundary
value problem.

Definition 2. Let F0 and F1 be two smooth convex functions on R
n. We say

that fFt W R
n ! Rgt2Œ0;1� is a p-interpolated family associated with fF0; F1g if

F.t; x/ D Ft .x/ is a family of p-interpolation on Œ0; 1� � R
n with boundary value

F.0; �/ D F0 and F.1; �/ D F1.

As we said earlier, we will not discuss in this exposition questions related to
existence, uniqueness and regularity of solutions to this Dirichlet problem (except
for the easy case p D 1, explained below). However, it is reasonable to expect that
generalized solutions, which are sufficient for our purposes, can be constructed by
using Perron processes, as mentioned by Semmes [18].

Using Notation 3, given a family or a sub-family of p-interpolation F , we aim
to understand the convexity of the function on I ,

˛.t/ D � log
Z
Rn

e�F.t;x/ dx: (15)

In view of (7), we see that for every fixed t 2 I we have the implication

Var�Ft .@tF / � 1

p

Z
Rn



Hessx F

��1r@tF � r@tF d�Ft H) ˛00.t/ � 0; (16)

under some mild regularity assumptions. The left-hand side is of course reminiscent
of the real version of Hörmander’s estimate (12), which is known as the Brascamp-
Lieb inequality from [9]. Recall that this inequality states that if F W Rn ! R is a
(strongly) convex function and if u 2 L2.�F / is a locally Lipschitz function, then

Var�F .u/ �
Z
Rn



Hessx F

��1ru � ru d�F ; (17)

with our notation dd�F .x/ D e�F.x/R
e�F dx. Again, this inequality can easily be proven

along the lines of Hörmander’s approach (see below).
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Applying the Brascamp-Lieb inequality (17) to F D F.t; �/ and u D @tF

when F is a 1-interpolation sub-family, we obtain, in view of (16), the following
statement:

Proposition 7. If F is a sub-family of 1-interpolation, then ˛ is convex.

The first comment is that we have not proved anything new! Indeed, it is directly
verified below that for any C2-smooth function F ,

F is a sub-family of 1-interpolation ” F is convex on I � R
n: (18)

Therefore, we have reproduced Prékopa’s Theorem 1. In order to demonstrate (18),
observe that the positive semi-definiteness of the matrix H1F.t; x/ amounts to the
inequality

.HessxF /y � y C 2rx.@tF / � y C @2t tF � 0 for all y 2 R
n;

or equivalently,

@2t tF � sup
y2Rn

Œ2rx.@tF / � y � .Hessx/Fy � y� D 

Hessx F

��1rx@tF � rx@tF;

as Hessx F is positive definite. Let us note that if F0 and F1 are given, then
the associated family of 1-interpolation—equivalently, the unique solution to the
degenerate Monge-Ampère equation on Œ0; 1� � R

n with F.t; x/ convex in x—is

F.t;w/ D inf
wD.1�t /xCty

˚
.1 � t/F0.x/C tF1.y/

�
: (19)

Every sub-family of 1-interpolation is above this F , and thus the statement of
Prékopa’s Theorem reduces to 1-interpolation families (an argument that is standard
in the study of functional Brunn-Minkowski inequalities). One way to recover
the Brunn-Minkowski inequality directly from this family F of 1-interpolation,
is to take, as in the derivation from Prékopa’s theorem, something like F0.x/ D
kxkqK0=q, F1.y/ WD kykqK1=q and let q ! C1.

We have just shown that Prékopa’s theorem reduces, locally, to the Brascamp-
Lieb inequality, an observation that is already implicitly present in [9] . This is
parallel to the complex setting, i.e to the local L2-proof of the complex Prékopa
theorem of Berndtsson given in [13] and extended in [6,7]. The converse procedure
was known, starting from the work of Brascamp and Lieb; more explicitely,
Bobkov and Ledoux [8] noted that the Prékopa-Leindler inequality (an extension
of Prékopa’s result to the case that the fibers are not convex) indeed implies
the Brascamp-Lieb inequality. We also emphasize Colesanti’s work [11], where,
starting from the Brunn-Minkowski inequality, spectral inequalities of Brascamp-
Lieb type on the boundary @K of a convex bodyK � R

n are obtained. This can also
be recovered by applying the Brascamp-Lieb inequality to homogeneous functions.
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The conclusion is that all of these results are the global/local versions of the same
phenomenon. At the local level, we have reduced the problem to the inequality (17)
which expresses a spectral bound in L2.�F / for the elliptic operator associated with
the Dirichlet form on the right-hand side of (17).

For completeness, we would like to briefly recall here Hörmander’s original
approach to (17). Consider the Laplace-type operator on L2.�F /,

L WD  � rF � r;

that we define, say, on the space ofC2-smooth compactly supported functions. First,
recall the integration by parts formulae,

R
uL' d�F D � R ru � r' d�F and

Z
Rn

.L'/2 d�F D
Z
Rn

.Hessx F /r' � r' d�F C
Z
Rn

k Hessx 'k22 d�F ; (20)

where k Hess 'k22 D P
i;j�n.@2i;j '/2: Let u be a locally-Lipschitz function on R

n.
We use the (rather weak) standard observation that the image byL of the C2-smooth
compactly supported functions is dense in the space ofL2.�F / functions orthogonal
to constants (see e.g. [14]). For " > 0 let ' be a C2-smooth, compactly-supported
function such that L' � .u � R

ud�F / has L2.�F /-norm smaller than ". Then, by
integration by parts and using (20) we get

Var�F .u/ D 2

Z 

u�R u d�F

�
L' d�F�

Z
.L'/2d�FC

Z 

L'�
u�R u d�F

��2
d�F

� �2
Z

ru � r' d�F�
Z
.Hessx F /r' � r' d�F�

Z
k Hessx 'k22d�FC"2

� �2
Z

ru � r' �
Z
.Hessx F /r' � r' d�F C "2

�
Z 


Hessx F
��1ru � ru d�F C "2;

and (17) follows by letting " tend to zero.
Let us go back to interpolation families. As we said, 1-sub-interpolation

corresponds to a function F that is convex on I � R
n. More generally, we have

the following characterization, proved by Semmes:

Proposition 8. For a smooth function F W I � R
n ! R, the following are

equivalent:

• F is a sub-family of p-interpolation.
• With the notation (14), we have, 8.t; x/ 2 I � R

n, dHpF.t; x/ � 0.
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• For all x0; y0 2 R
n, the function

.s; t/ �! F
�
t; x0 C .t Cp

p � 1 s/y0

	

is subharmonic on the subset of R2 where it is defined.

Note that the third condition in Proposition 8 needs only a minimal level of
smoothness. We may thus speak of a sub-family F of p-interpolation even when
F is not very smooth.

We turn now to duality, which was part of the motivation of Semmes. We shall
denote by L the Legendre transform in space, i.e. onRn. In particular, forF W I�R

n,
we shall write

LF.t; x/ D L.Ft /.x/ D sup
y2Rn

˚
x � y � F.t; y/�:

It is classical that if F is the family of 1-interpolation given by (19), then LF is a
family of 1-interpolation, meaning that LF is affine in t :

LFt .x/ D .1 � t/LF0.x/C tLF1.x/:

So in this case, when we move to the dual setting, Brunn-Minkowski or Prékopa’s
inequality is replaced by the trivial fact that ˛.t/D � log

R
e�Lt F .x/dx is concave by

Hölder’s inequality.
More general duality relations hold for p-interpolations. Suppose F.t; x/ D

Ft .x/ is convex in x, and denote G.t; y/ D LFt .y/. We have the identity (proved
below):

@2t tF C @2t tG D .Hessx F /�1r@tF � r@tF D .Hessy G/�1r@tG � r@tG; (21)

where F and its derivatives are evaluated at .t; x/, while G and its derivatives are
evaluated at .t; y/ D .t;rF.x//. From this identity, we immediately conclude

Proposition 9. If F is a family of p-interpolation, then LF is a family of p0-
interpolation, where 1

p0

C 1
p

D 1.

We now present the details of the straightforward proof of (21). From the
definition,

G.t;rF.t; x// D hx;rF.t; x/i � F.t; x/; (22)

rGt.rFt .x// D .rG/.t;rF.x// D x (23)

Hessy G.t;rF.x; t// D .Hessx F.t; x//�1: (24)
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where the gradients and the hessians refer only to the space variables x; y. By
differentiating (23) with respect to t , we see that

r@tG D �.Hessy G/.r@tF / (25)

where G and its derivatives are evaluated at .t; y/ D .t;rF.x//, while F and its
derivatives are evaluated at .t; x/. From (24) and (25),

� r@tG � r@tF D .Hessx F /�1r@tF � r@tF D .Hessy G/�1r@tG � r@tG: (26)

Differentiating (22) with respect to t and using (23) we get that @tG.t;rF.x//
D �@tF.t; x/. If we differentiate this last equality one more time with respect to t ,
we find

@2t tG C r@tG � r@tF D �@2t tF;
which combined with (26) yields the desired formula (21).

As a consequence of Proposition 8, we see that 2-interpolation families satisfy
an interpolation duality theorem. Let f be a convex function on R

n, and suppose
that Ft .x/ D F.t; x/ is the 2-interpolation family F with F0 D f and F1 D Lf .
Then,

F.t; x/ D LF.1 � t; x/
provided we have unicity for the 2-interpolation problem, and therefore we have

F

�
1

2
; x

�
D jxj2

2
:

If we take f .x/ D kxk2K=2, then Lf .x/ D kxk2Kı

=2. Thus, if we could prove that
for a 2-interpolation family F , the associated function ˛ from (15) is convex, as it
is for 1-interpolations, then we would recover Santaló’s inequality. This would be
the case if we had a Brascamp-Lieb inequality with a factor 1=2 on the right-hand
side of (17) for every convex function F W R

n ! R. However, this is of course
false in general. Recall that even for the Santaló inequality, some “center” must be
fixed or some symmetry must be assumed. Therefore, a more reasonable question
to ask, is whether ˛ is convex when the initial data f is even. This guarantees that
Ft is even for all t 2 Œ0; 1�. However, it is again false in general that the Brascamp-
Lieb inequality holds with factor 1=2 in the right-hand side of (17) when F and u
are even, as can be shown by taking a perturbation of the Gaussian measure. This
suggests that the answer to the question could be negative in general. A reasonable
conjecture, perhaps, is:

Conjecture 1. Assume F0 and F1 are even, convex and 2-homogeneous (i.e.
Fi .x/ D 
ikxk2Ki for some centrally-symmetric convex bodies Ki � R

n),
properties that propagate along the interpolation. Then, the function ˛ associated
with the 2-interpolation family is convex.
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Here is a much more modest result:

Fact 11. Assume that f is convex and even, and let F be a 2-interpolation family
with F0 D f and F1 D Lf , with the associated function ˛ as in (15). Then, one
has

˛00 .1=2/ � 0:

Proof. Since F.1
2
; x/ D jxj2=2, the probability measure �F1=2 is exactly the

Gaussian measure on R
n, which we denote by � . Note also that Hessx F1=2 D IdRn .

Therefore, if we denote u D @tF.
1
2
; �/, we need to check that

Var� .u/ � 1

2

Z
Rn

jruj2 d�:

The function v WD u � R u d� is by construction orthogonal to constant functions in
L2.�/. But since u is even (because Ft is even for all t , and so is @tF ), this function
v is also orthogonal to linear functions. Recall that the Hermite (or Ornstein-
Uhlenbeck) operator L D  � x � r has non-positive integers as eigenvalues,
and that the eigenspaces (generated by Hermite polynomials) associated with the
eigenvalues 0 and �1 are formed by the constant and linear functions. Therefore, v
belongs to the subspace where �L � 2 Id and so

Var� .u/ D
Z

jvj2 d� � �1
2

Z
vLv d� D 1

2

Z
jruj2 d�:

We conclude this section by mentioning that we have analogous formulas in the
case where we work with some fixed measure � on R

n, in place of the Lebesgue
measure. Then, for a function F W Rn ! R such that

R
e�F d� < C1, we denote

by ��;F the probability measure on R
n given by

d��;F .x/ WD de�F.x/R
e�F d�

d�.x/:

For a function of n C 1 variables F W I � R
n ! R, we denote as before Ft WD

F.t; �/ W Rn ! R and then ��;Ft is the corresponding probability measure on R
n.

We are then interested in the convexity of the function

˛�.t/ WD � log
Z
Rn

e�F.t;x/ d�.x/ D � log
Z
Rn

e�Ft d�:

The computation is identical:

˛00
� .t/ D

Z
Rn

@2t tF d��;Ft � Var��;Ft


@tF

�
:
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Here is an illustration. Let � be a symmetric log-concave measure on R
n: d�.x/ D

e�W.w/ dx with W being convex and even on R
n, and consider the family

F.t; x/ D et jxj2=2:

This is a typical example of a 2-interpolation family. Then, the fact that the
corresponding ˛� is convex is equivalent to the B-conjecture proved in [14]. The
argument there begins with the computation above. It turns out that for this particular
family F , the required Brascamp-Lieb inequality reduces to a Poincaré inequality
for the measure ��;Ft , which holds precisely with a constant 1=2 when restricted to
even functions.

Let us also mention in this direction that the Santaló inequality in its functional
form (4) also holds if the Lebesgue measure is, in the three integrals, replaced by
an even log-concave measure of Rn, as noted in Klartag [16]. Several examples of
this type suggest that the Lebesgue measure can often be replaced by a more general
log-concave measure.

4 The Busemann Inequality

We conclude this survey with a proof of the Busemann inequality via L2 inequal-
ities. The Busemann inequality [10] is concerned with non-parallel hyperplane
sections of a convex body K � R

n. In the particular case where K is centrally-
symmetric, the Busemann inequality states that

g.x/ D jxj
jK \ x?j .x 2 R

n/

is a norm on R
n. Here jK\x?j is the .n�1/-dimensional volume of the hyperplane

section K \ x? D fy 2 KIy � x D 0g, and g.0/ D 0 as interpreted by continuity.
The convexity of the function g is a non-trivial fact. Using the Brunn-Minkowski
inequality, the convexity of g reduces to a statement about log-concave functions in
the plane, as observed by Busemann. Indeed, the convexity of g has to be checked
along affine lines, and therefore on 2-dimensional vector subspaces. Specifically, let
E � R

n be a two-dimensional plane, which we conveniently identify with R
2. For

y 2 R
2 D E set

e�w.y/ D jK \ .y C E?/j;
the .n � 2/-dimensional volume of the section of K . Then w W R2 ! R [ fC1g
is a convex function, according to the Brunn-Minkowski inequality. For p > 0 and
t 2 R define

˛p.t/ D
Z 1

0

e�w.ts;s/sp�1ds: (27)
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Note that when K is centrally-symmetric, 2
p
1C t2˛1.t/ D jK \ .1;�t/?j. We

therefore see that Busemann’s inequality amounts to the convexity of the function
1=˛1.t/ on R. Next we will prove the following more general statement, which is
due to Ball [3] when p � 1:

Theorem 12. Let X be an n-dimensional real linear space and let w W X ! R be
a convex function with

R
e�w < 1. For p > 0 and 0 ¤ x 2 X denote

h.x/ D
�Z 1

0

e�w.sx/sp�1ds
��1=p

with h.0/ D 0. Then h is a convex function on X .

Busemann’s proof of the case p D 1 of Theorem 12, and the generalization
to p � 1 by Ball, rely on transportation of measure in one dimension. The
proof we present below may be viewed as an infinitesimal version of Busemann’s
transportation argument. This is reminiscent of the proof given in Ball, Barthe and
Naor [4] of the Prékopa inequality, which may be viewed as an infinitesimal version
of the transportation proof of the latter inequality.

Proof of Theorem 12: By a standard approximation argument, we may assume
that w is smooth and 1=R � Hess.w/ � R at all points of R

n, for some large
constantR > 1. Therefore h is a continuous function, smooth outside the origin, and
homogeneous of degree one. Since convexity of a function involves three collinear
points contained in a two-dimensional subspace, we may assume that n D 2. Thus,
selecting a point 0 ¤ z 2 X and a direction � 2 X , our goal is to show that
@2��h.z/ � 0 (since h is homogeneous of degree one, it suffices to consider the
case z ¤ 0). If � is proportional to z, then the second derivative vanishes as h is
homogeneous of degree one. We may therefore select coordinates .t; x/ 2 R

2 D X ,
and identify z D .0; 1/ and � D .1; 0/. With this identification, in order to prove the
theorem we need to show that

�
˛�1=p
p

	00
.0/ � 0;

where ˛p is defined in (27). Equivalently, we need to prove that at the origin,

@2t t ˛p �
�
1C 1

p

� 

@t˛p

�2
=˛p: (28)

We denote by � the probability measure on Œ0;1/ whose density is proportional
to the integrable function exp.�w.0; x//xp�1. Similarly to Fact (7) above with
F.t; x/ D w.tx; x/, the desired inequality (28) is equivalent to

Var�.x@tw/ �
Z 1

0

x2.@2t tw/d�.x/C 1

p

�Z 1

0

x.@tw/d�.x/

�2
: (29)
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We will use the convexity of w.t; x/ via the inequality @2t tw � 

@2txw

�2
=@2xxw, which

expresses the fact that wt .x/ D w.t; x/ is a sub-family of 1-interpolation. Denote
u.x/ D x@tw.0; x/ and compute that x@2txw D u0 � u.x/=x for x > 0. Hence, in
order to prove (29), it suffices to show that

Var�.u/ �
Z 1

0

1

@2xxw

�
u0.x/ � u.x/

x

�2
d�.x/C 1

p

�Z 1

0

ud�.x/

�2
: (30)

We will prove (30) for any smooth function u 2 L2.�/ (it is clear that the function
x@tw.0; x/ grows at most polynomially at infinity, and hence belongs to L2.�/).
By approximation (e.g., multiply u by an appropriate cutoff function), it suffices to
restrict our attention to smooth functions such that u�R ud� is compactly-supported
in Œ0;1/. Consider the Laplace-type operator

L' D ' 00 �
�
@xw.0; x/ � p � 1

x

	
' 0 D ' 00 � @x

�
w.0; x/ � .p � 1/ log.x/

	
' 0:

Integrating the ordinary differential equation, we find a smooth function ', with
' 0.0/ D 0 and ' 0 compactly-supported in Œ0;1/, such that L' D u � R

ud�. As
before, we have the integration by parts

R
.L'/u d� D � R ' 0u0 d� and

Z 1

0

.L'/2d� D �
Z 1

0

' 0.x/u0.x/d�

D
Z 1

0

.' 00.x//2d�C
Z 1

0

�
@2xxw C p � 1

x2

�
.' 0.x//2d�:

Let us abbreviate w00 D @2xxw.0; x/; E D R
ud� and also hf i D R1

0 f .x/d�.x/.
Then, by using the above identities and by completing three squares (marked by
wavy underline),

Var�.u/ D �2hu0' 0i � h.L'/2i

D
D
�2' 0 �u0 � u

x

	E
�������������

�
�
2' 0u
x


�
�
.' 00/2 C w00.' 0/2

������
C p � 1

x2
.' 0/2



�
�
1

w00
�

u0 � u

x

	2
�������������

� 2

�
' 0.L' C E/

x


�
�
.' 00/2 C p � 1

x2
.' 0/2



D
�
1

w00
�

u0� u

x

	2C ˝
2' 00' 0=x

˛
��������

�
�
2' 0E
x

C .' 00/2
����

C .pC1/.'
0/2

x2



�
�
1

w00
�

u0� u

x

	2 �
*
2' 0E
x

C p
.' 0/2

x2
�����

+
�
�
1

w00
�

u0� u

x

	2C E2

p
;

and (30) is proven. ut



168 D. Cordero-Erausquin and B. Klartag

References

1. S. Artstein-Avidan, B. Klartag, V.D. Milman, The santaló point of a function, and a functional
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Hypercontractive Measures, Talagrand’s
Inequality, and Influences

Dario Cordero-Erausquin and Michel Ledoux

Abstract We survey several Talagrand type inequalities and their application
to influences with the tool of hypercontractivity for both discrete and continu-
ous, and product and non-product models. The approach covers similarly by a
simple interpolation the framework of geometric influences recently developed by
N. Keller, E. Mossel and A. Sen. Geometric Brascamp-Lieb decompositions are also
considered in this context.

1 Introduction

In the famous paper [24], Talagrand showed that for every function f on the discrete
cube X D f�1;C1gN equipped with the uniform probability measure �,

Var�.f / D
Z
X

f 2d� �
�Z

X

fd�

�2
� C

NX
iD1

kDif k22
1C log


kDif k2=kDif k1
� (1)

for some numerical constant C � 1, where k � kp denote the norms in Lp.�/,
1 � p � 1, and for every i D 1; : : : ; n and every x D .x1; : : : ; xN / 2 f�1;C1gN ,
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Dif .x/ D f .�ix/ � f .x/ (2)

with �ix D .x1; : : : ; xi�1;�xi ; xiC1; : : : ; xN /. Up to the numerical constant, this
inequality improves upon the classical spectral gap inequality (see below)

Var�.f / � 1

4

NX
iD1

kDif k22 : (3)

The proof of (1) is based on an hypercontractivity estimate known as the Bonami-
Beckner inequality [7,9] (see below). Inequality (1) was actually deviced to recover
(and extend) a famous result of Kahn et al. [12] about influences on the cube.
Namely, applying (1) to the Boolean function f D 1A for some setA � f�1;C1gN ,
it follows that

�.A/


1 � �.A/� � C

NX
iD1

2Ii .A/

1C log


1=
p
2Ii .A/

� (4)

where, for each i D 1; : : : ; N ,

Ii .A/ D �

fx 2 A; �ix … Ag�

is the so-called influence of the i -th coordinate on the set A (noticing that
kDi1Akpp D 2Ii .A/ for every p � 1). In particular, for a set A with �.A/ D a,
there is a coordinate i , 1 � i � N , such that

Ii .A/ � a.1 � a/

8CN
log

� N

a.1 � a/
	

� a.1 � a/ logN

8CN
(5)

which is the main result of [12]. (To deduce (5) from (4), assume for example that

Ii .A/ � 

a.1�a/
N

�1=2
for every i D 1; : : : ; N , since if not the result holds. Then,

from (4), there exists i , 1 � i � N , such that

a.1 � a/

CN
� 2Ii .A/

1C log


1=
p
2Ii .A/

� � 8Ii .A/

4C log.N=4a.1� a//

which yields (5)). Note that (5) remarkably improves by a (optimal) factor logN
what would follow from the spectral gap inequality (3) applied to f D 1A.
The numerical constants like C throughout this text are not sharp.

The aim of this note is to amplify the hypercontractive proof of Talagrand’s orig-
inal inequality (1) to various settings, including non-product spaces and continuous
variables, and in particular to address versions suitable to geometric influences. It
is part of the folklore indeed (cf. e.g. [8]) that an inequality similar to (1), with the
same hypercontractive proof, holds for the standard Gaussian measure � on R

N



Hypercontractive Measures, Talagrand’s Inequality, and Influences 171

(viewed as a product measure of one-dimensional factors), that is, for every smooth
enough function f on R

N and some constant C > 0,

Var�.f / � C

NX
iD1

k@if k22
1C log.k@if k2=k@if k1/

: (6)

(A proof will be given in Sect. 2 below.) However, the significance of the latter
for influences is not clear, since its application to characteristic functions is
not immediate (and requires notions of capacities). Recently, Keller et al. [13]
introduced a notion of geometric influence of a Borel set A in R

N with respect
to a measure � (such as the Gaussian measure) simply as k@if k1 for some smooth
approximation f of 1A, and proved for it the analogue of (5) (with

p
logN instead

of logN ) for the standard Gaussian measure on R
N . It is therefore of interest to

seek for suitable versions of Talagrand’s inequality involving only L1-norms k@if k1
of the partial derivatives. While the authors of [13] use isoperimetric properties,
we show here how the common hypercontractive tool together with a simple
interpolation argument may be developed similarly to reach the same conclusion.
In particular, for the standard Gaussian measure � on R

N , we will see that for every
smooth enough function f on R

N such that jf j � 1,

Var�.f / � C

NX
iD1

k@if k1


1C k@if k1

�
�
1C logC 
1=k@if k1

��1=2 : (7)

Applied to f D 1A, this inequality indeed ensures the existence of a coordinate i ,
1 � i � N , such that the geometric influence of A along i is at least of the order

of
p

logN
N

, that is one of the main conclusions of [13] (where it is shown moreover
that the bound is sharp). In this continuous setting, the hypercontractive approach
yields more general examples of measures with such an influence property in the
range between exponential and Gaussian for which only a logarithmic Sobolev
type inequality is needed while [13] required an isoperimetric inequality for the
individual measures �i .

This note is divided into two main parts. In the first one, we present Talagrand
type inequalities for various models, from the discrete cube to Gaussian and more
general product measures, by the general principle of hypercontractivity of Markov
semigroups. The method of proof, originating in Talagrand’s work, has been used
recently by O’Donnell and Wimmer [20, 21] to investigate non-product models
such as random walks on some graphs which enter the general presentation below.
Actually, most of the Talagrand inequalities we present in the discrete setting are
already contained in the work by O’Donnell and Wimmer. It is worth mentioning
that an approach to the Talagrand inequality (1) rather based on the logarithmic
Sobolev inequality was deviced in [22] and [11] a few years ago. The abstract
semigroup approach applies in the same way on the sphere along the decomposition
of the Laplacian. Geometric Brascamp-Lieb decompositions within this setting are



172 D. Cordero-Erausquin and M. Ledoux

also discussed. In the second part, we address our new version (7) of Talagrand’s
inequality towards geometric influences and the recent results of [13] by a further
interpolation step on the hypercontractive proof.

In the last part of this introduction, we describe a convenient framework in order
to develop hypercontractive proofs of Talagrand type inequalities. While of some
abstract flavor, the setting easily covers two main concrete instances, probability
measures on finite state spaces (as invariant measures of some Markov kernels) and
continuous probability measures of the form d�.x/ D e�V.x/dx on the Borel sets
of Rn where V is some (smooth) potential (as invariant measures of the associated
diffusion operators  � rV � r). We refer for the material below to the general
references [1, 2, 4, 10, 23]. . .

Let � be a probability measure on a measurable space .X;A/. For a function
f W X ! R in L2.�/, define its variance with respect to � by

Var�.f / D
Z
X

f 2d� �
�Z

X

fd�

�2
:

Similarly, whenever f > 0, define its entropy by

Ent�.f / D
Z
X

f logfd��
Z
X

fd� log

�Z
X

fd�

�

provided it is well-defined. The Lp.�/-norms, 1 � p � 1, will be denoted by
k � kp .

Let then .Pt /t
0 be a Markov semigroup with generator L acting on a suitable
class of functions on .X;A/. Assume that .Pt /t
0 and L have an invariant,
reversible and ergodic probability measure �. This ensures that the operators Pt
are contractions in all Lp.�/-spaces, 1 � p � 1. The Dirichlet form associated to
the couple .L; �/ is then defined, on functions f; g of the Dirichlet domain, as

E.f; g/ D
Z
X

f .�Lg/d�:

Within this framework, the first example of interest is the case of a Markov kernel
K on a finite state space X with invariant (

P
x2X K.x; y/�.x/ D �.y/, y 2 X )

and reversible (K.x; y/�.x/ D K.y; x/�.y/, x; y 2 X ) probability measure �.
The Markov operator L D K � Id generates the semigroup of operators Pt D etL,
t � 0, and defines the Dirichlet form

E.f; g/ D
Z
X

f .�Lg/d� D 1

2

X
x;y2X

�
f .x/ � f .y/

��
g.x/ � g.y/

�
K.x; y/�.x/

on functions f; g W X ! R. The second class of examples is the case of X D R
n

equipped with its Borel �-field. Letting V W Rn ! R be such that
R
Rn

e�V.x/dx D 1,
under mild smoothness and growth conditions on the potential V , the second order
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operator L D  � rV � r admits d�.x/ D e�V.x/dx as symmetric and invariant
probability measure. The operator L generates the Markov semigroup of operators
.Pt /t
0 and defines by integration by parts the Dirichlet form

E.f; g/ D
Z
Rn

f .�Lg/d� D
Z
Rn

rf � rg d�

for smooth functions f; g on R
n.

Given such a couple .L; �/, it is said to satisfy a spectral gap, or Poincaré,
inequality if there is a constant 
 > 0 such that for all functions f of the Dirichlet
domain,


Var�.f / � E.f; f /: (8)

Similarly, it satisfies a logarithmic Sobolev inequality if there is a constant 	 > 0

such that for all functions f of the Dirichlet domain,

	Ent�.f 2/ � 2 E.f; f /: (9)

One speaks of the spectral gap constant (of .L; �/) as the best 
 > 0 for which
(8) holds, and of the logarithmic Sobolev constant (of .L; �/) as the best 	 > 0 for
which (9) holds. We still use 
 and 	 for these constants. It is classical that 	 � 
.

Both the spectral gap and logarithmic Sobolev inequalities translate equivalently
on the associated semigroup .Pt /t
0. Namely, the spectral gap inequality (8) is
equivalent to saying that

kPtf k2 � e�
t kf k2
for every t � 0 and every mean zero function f in L2.�/. Equivalently for the
further purposes, for every f 2 L2.�/ and every t > 0,

Var�.f / � 1

1 � e�
t
�kf k22 � kPtf k22

�
: (10)

On the other hand, the logarithmic Sobolev inequality gives rise to hypercontrac-
tivity which is a smoothing property of the semigroup. Precisely, the logarithmic
Sobolev inequality (9) is equivalent to saying that, whenever p � 1C e�2	t , for all
functions f in Lp.�/,

kPtf k2 � kf kp: (11)

For simplicity, we say below that a probability measure � in this context is
hypercontractive with constant 	.

A standard operation on Markov operators is the product operation. Let .L1; �1/
and .L2; �2/ be Markov operators on respective spaces X1 and X2. Then

L D L1 ˝ Id C Id ˝ L2

is a Markov operator on the product space X1 � X2 equipped with the product
probability measure�1˝�2. The product semigroup .Pt /t
0 is similarly obtained as
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the tensor product Pt D P1
t ˝P2

t of the semigroups on each factor. For the product
Dirichlet form, the spectral gap and logarithmic Sobolev constants are stable in the
sense that, with the obvious notation, 
 D min.
1; 
2/ and 	 D min.	1; 	2/. This
basic stability by products will allow for constants independent of the dimension in
the Talagrand type inequalities under investigation. For the clarity of the exposition,
we will not mix below products of continuous and discrete spaces, although this
may easily be considered.

Let us illustrate the preceding definitions and properties on two basic examples.
Consider first the two-point space X D f�1;C1g with the measure � D pıC1
C qı�1, p 2 Œ0; 1�, p C q D 1, and the Markov kernel K.x; y/ D �.y/, x; y 2 X .
Then, for every function f W X ! R,

E.f; f / D
Z
X

f .�Lf /d� D Var�.f /

so that the spectral gap 
 D 1. The logarithmic Sobolev constant is known to be

	 D 2.p � q/

logp � log q
.D 1 if p D q/: (12)

The product chain on the discrete cubeX D f�1;C1gN with the product probability
measure � D .pıC1 C qı�1/˝N and generator L D PN

iD1 Li is associated to the
Dirichlet form

E.f; f / D
Z
X

NX
iD1

f .�Li f /d� D pq

Z
X

NX
iD1

jDif j2d�

whereDif is defined in (2). By the previous product property, it admits 1 as spectral
gap and 	 given by (12) as logarithmic Sobolev constant. In its hypercontractive
formulation, the case p D q is the content of the Bonami-Beckner inequality [7, 9].

As mentioned before, M. Talagrand [24] used this hypercontractivity on the
discrete cube f�1;C1gN equipped with the product measure�D .pıC1 C qı�1/˝N
to prove that for any function f W f�1;C1gN ! R,

Var�.f / � Cpq.logp � log q/

p � q

NX
iD1

kDif k22
1C log


kDif k2=2p
pq kDif k1

� (13)

for some numerical constantC > 0 (this statement will be covered in Sect. 2 below).
This in turn yields a version of the influence result of [12] on the biased cube.

In the continuous settingX D R
n, the case of a quadratic potential V amounts to

the Hermite or Ornstein-Uhlenbeck operator L D � x � r with invariant measure
the standard Gaussian measure d�.x/ D .2�/�n=2 e�jxj2=2dx. It is known here

that 
D 	D 1 independently of the dimension. (More generally, if V.x/ � c jxj2
2
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is convex for some c > 0, then 
 � 	 � c.) Actually, L may also be viewed
as the sum

Pn
iD1 Li of one-dimensional Ornstein-Uhlenbeck operators along each

coordinate, and � as the product measure of standard normal distributions. Within
this product structure, the analogue (6) of (13) has been known for some time, and
will be recalled below.

2 Hypercontractivity and Talagrand’s Inequality

This section presents the general hypercontractive approach to Talagrand type
inequalities including the discrete cube, the Gaussian product measure and more
general non-product models. The method of proof, directly inspired from [24],
has been developed recently by O’Donnell and Wimmer [20, 21] towards non-
product extensions on suitable graphs. Besides hypercontractivity, a key feature
necessary to develop the argument is a suitable decomposition of the Dirichlet form
along “directions” commuting with the Markov operator or its semigroup. These
directions are immediate in a product space, but do require additional structure in
more general contexts.

In the previous abstract setting of a Markov semigroup .Pt /t
0 with generator
L, assume thus that the associated Dirichlet form E may be decomposed along
directions �i acting on functions on X as

E.f; f / D
NX
iD1

Z
X

�i.f /
2d� (14)

in such a way that, for each i D 1; : : : ; N , �i commutes to .Pt /t
0 in the sense that,
for some constant � 2 R, every t � 0 and every f in a suitable family of functions,

�i .Ptf / � e�t Pt


�i .f /

�
: (15)

These properties will be clearly illustrated on the main examples of interest below,
with in particular explicit descriptions of the classes of functions for which (14) and
(15) may hold.

We first present the Talagrand inequality in this context. The proof is the
prototype of the hypercontractive argument used throughout this note and applied
to various examples.

Theorem 1. In the preceding setting, assume that .L; �/ is hypercontractive with
constant 	 > 0 and that (14) and (15) hold. Then, for any function f in L2.�/,

Var�.f / � C.	; �/

NX
iD1

k�if k22
1C log.k�if k2=k�if k1/

where C.	; �/ D 4 e.1C.�=	//C=	.
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Proof. The starting point is the variance representation along the semigroup .Pt /t
0
of a function f in the L2.�/-domain of the semigroup as

Var�.f / D �
Z 1

0

�
d

dt

Z
X

.Ptf /
2d�

�
dt D �2

Z 1

0

�Z
X

Ptf LPtfd�

�
dt:

The time integral has to be handled both for the large and small values. For the large
values of t , we make use of the exponential decay provided by the spectral gap in
the form of (10) to get that, with T D 1=2	 for example since 	 � 
,

Var�.f / � 2
�kf k22 � kPT f k22

�
:

We are thus left with the variance representation of

kf k22 � kPT f k22 D �2
Z T

0

�Z
X

Ptf LPtfd�

�
dt D 2

Z T

0

E.Ptf; Ptf /dt:

Now by the decomposition (14),

kf k22 � kPT f k22 D 2

NX
iD1

Z T

0

�Z
X



�i .Ptf /

�2
d�

�
dt:

Under the commutation assumption (15),

Z
X



�i.Ptf /

�2
d� � e2�t

Z
X



Pt


�i .f /

��2
d�:

Since .Pt /t
0 is hypercontractive with constant 	 > 0, for every i D 1; : : : ; N and
t � 0, ��Pt 
�i .f /���2 � ���i.f /��p
where p D p.t/ D 1C e�2	t � 2. After the change of variables p.t/ D v, we thus
reached at this point the inequality

Var�.f / � 2 e.1C.�=	//C

	

NX
iD1

Z 2

1

���i.f /��2v dv: (16)

This inequality actually basically amounts to Theorem 1. Indeed, by Hölder’s
inequality, ���i .f /��v

� ���i.f /���1
���i.f /��1��2
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where � D �.v/ 2 Œ0; 1� is defined by 1
v D �

1
C 1��

2
. Hence

Z 2

1

���i.f /��2v dv � ���i .f /��22
Z 2

1

b2�.v/dv

where b D k�i .f /k1=k�i.f /k2 � 1. It remains to evaluate the latter integral with
2�.v/ D s, Z 2

1

b2�.v/dv �
Z 2

0

bsds � 2

1C log.1=b/

from which the conclusion follows. ut
Inequality (16) of the preceding proof may also be used towards a version of

Theorem 1 with Orlicz norms as emphasized in [24]. As in [24], let ' W RC ! RC
be convex such that '.x/ D x2= log.e C x/ for x � 1, and '.0/ D 0, and denote by

kgk' D inf

�
c > 0 I

Z
X

'

jgj=c�d� � 1

�

the associated Orlicz norm of a measurable function g W X ! R. Then, for some
numerical constant C > 0,

Z 2

1

kgk2v dv � C kgk2' (17)

so that (16) yields

Var�.f / � 2C e.1C.�=	//C

	

NX
iD1

���i .f /��2': (18)

Since as pointed out in Lemma 2.5 of [24],

kgk2' � C kgk22
1C log.kgk2=kgk1/

;

we see that (18) improves upon Theorem 1. To briefly check (17), assume by
homogeneity that

R
X
g2= log.e C g/d� � 1 for some non-negative function g.

Then, setting gk D g 1f2k�1<g�2kg, k � 1, and g0 D g 1fg�1g,

X
k2N

1

k C 1

Z
X

g2kd� � C1 (19)

for some numerical constant C1 > 0. Hence, since gk � 2k for every k,
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Z 2

1

kgk2v dv D
Z 2

1

�X
k2N

Z
X

gv
kd�

�2=v

dv

� 4

Z 2

1

�X
k2N

2�.2�v/k
Z
X

g2kd�

�2=v

dv

� C2
X
k2N

�Z 2

1

.k C 1/2=v2�2.2�v/k=vdv

�
1

k C 1

Z
X

g2kd�

where we used (19) as convexity weights in the last step. Now, it is easy to check that

Z 2

1

.k C 1/2=v2�2.2�v/k=vdv � C3

uniformly in k so that
R 2
1

kgk2v dv � C1C2C3 concluding thus the claim.

We next illustrate the general Theorem 1 on various examples of interest.
On a probability space .X;A; �/, consider first the Markov operator Lf DR

X
fd� � f acting on integrable functions (in other words Kf D R

X
fd�). This

operator is symmetric with respect to � with Dirichlet form

E.f; f / D
Z
X

f .�Lf /d� D Var�.f /:

In particular, it has spectral gap 1. Let now X D X1 � � � � � XN be a product
space with product probability measure � D �1 ˝ � � � ˝ �N . Consider the product
operator L D PN

iD1 Li where Li is acting on the i -th coordinate of a function f as
Lif D R

Xi
fd�i � f . The product operator L has still spectral gap 1. Its Dirichlet

form is given by

E.f; f / D
NX
iD1

Z
X

f .�Li f /d� D
NX
iD1

Z
X

.Li f /2d�:

We are therefore in the setting of a decomposition of the type (14). Moreover, it
is immediately checked that Li L D L Li for every i D 1; : : : ; N , and thus the
commutation property (15) also holds (with � D 0). Hence Theorem 1 applies for
this model with hypercontractive constant 	 D min1�i�N 	i > 0. In particular,
Theorem 1 includes Talagrand’s inequality (13) for the hypercubeX D f�1;C1gN
with the product measure � D .pıC1 C qı�1/˝N with hypercontractive constant
given by (12), for which it is immediately checked that, for every r � 1 and every
i D 1; : : : ; N ,

Z
X

jLi f jrd� D .pqr C prq/

Z
X

jDif jrd�:
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More generally, as pointed out to us by J. van den Berg and D. Kiss (private
communication), we may consider similarly products of the complete graph
X1 D � � � D XN D f0; : : : ; kg, each factor being equipped with the probability
measure�1 D Pk

jD0 pj ıj . Talagrand’s approach is known to extend to this case, as
noted for instance in [14]. The hypercontractive constant of X1 has been computed
in [10] and is given by

	 D 2.1� 2p�/
log.1=p� � 1/

with p� D min0�j�k pj , so that Theorem 1.3 from [14] follows from Theorem 1
above.

Non-product examples may be considered similarly as has been thus emphasized
recently in [20,21] with similar arguments. Let for exampleG be a finite group, and
let S be a symmetric set of generators ofG. The Cayley graph associated to S is the
graph with vertices the element of G and edges the couples .x; xs/ where x 2 G

and s 2 S . The transition kernel associated to this graph is

K.x; y/ D 1

jS j 1S.yx�1/; x; y 2 G;

where jS j is the cardinal of S . The uniform probability measure � on G is an
invariant and reversible measure for K . This framework includes the example
of GDSn the symmetric group on n elements with the set of transpositions as
generating set and the uniform measure as invariant and symmetric measure.

Given such a finite Cayley graph G with generator set S , kernel K and uniform
measure � as invariant measure, the associated Dirichlet form may be expressed on
functions f W G ! R in the form (14)

E.f; f / D 1

2jS j
X
s2S

X
x2G

�
f .sx/ � f .x/�2�.x/ D 1

2jS j
X
s2S

kDsf k22

where for s 2 S , Dsf .x/ D f .sx/ � f .x/, x 2 G. In order that the operatorsDs

commute toK in the sense of (15) (with again � D 0), it is necessary to assume that
S is stable by conjugacy in the sense that

for all u 2 S; uS u�1 D S

as it is the case for the set of transpositions on the symmetric group Sn. The
following statement from [20] is thus an immediate consequence of the general
Theorem 1.

Corollary 2. Under the preceding notation and assumptions, denote by 	 the
logarithmic Sobolev constant of the chain .K;�/. Then for every function f on G,

Var�.f / � 2e

	jS j
X
s2S

kDsf k22
1C log


kDsf k2=kDsf k1
� :
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One may wonder for the significance of this Talagrand type inequality for
influences. For A � G and s 2 S , define the influence Is.A/ of the direction s
on the set A by

Is.A/ D �

fx 2 GI x 2 A; sx … Ag�:

As on the discrete cube, given A � G with �.A/ D a, Corollary 2 yields the
existence of s 2 S such that

Is.A/ � 1

C
a.1�a/	 log

�
1C 1

C	 a.1 � a/
	

� 1

C
a.1�a/ 	 log

�
1C 1

C	

	
(20)

(where C � 1 is numerical). However, with respect to the spectral gap inequality of
the chain .K;�/


Var�.f / � 1

2jS j
X
s2S

kDsf k22 ;

we see that (20) is only of interest provided that 	 log.1 C .1=	// >> 
. This is
the case on the symmetric discrete cube f�1;C1gN for which, in the Cayley graph
normalization of Dirichlet forms, 
 D 	 D 1=N . On the symmetric group, it is
known that the spectral gap 
 is 2

n�1 whereas its logarithmic Sobolev constant 	 is
of the order of 1=n logn ([10, 17]) so that 	 log.1 C .1=	// and 
 are actually of
the same order for large n, and hence yield the existence of a transposition � with
influence at least only of the order of 1=n. It is pointed out in [21] that this result is
however optimal. The paper [20] presents examples in the more general context of
Schreier graphs for which (20) yields influences strictly better than the ones from
the spectral gap inequality.

Theorem 1 may also be illustrated on continuous models such as Gaussian
measures. While the next corollary is stated in some generality, it is already of
interest for products of one-dimensional factors and covers in particular the example
(6) of the standard Gaussian product measure.

Corollary 3. Let d�i.x/ D e�Vi .x/dx, i D 1; : : : ; N , on Xi D R
ni be

hypercontractive with constant 	i > 0. Let� D �1˝� � �˝�N onX D X1�� � ��XN .
Assume in addition that V 00

i � ��, � 2 R, i D 1; : : : ; N . Then, for any smooth
function f on X ,

Var�.f / � C.	; �/

NX
iD1

kri f k22
1C log


kri f k2=kri f k1
�

where 	 D min1�i�N 	i , and where ri f denotes the gradient of f in the direction
Xi , i D 1; : : : ; N .

Corollary 3 again follows from Theorem 1. Indeed, the product structure
immediately allows for the decomposition (14) of the Dirichlet form

E.f; f / D
Z
X

jrf j2d� D
NX
iD1

Z
X

jri f j2d�
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along smooth functions with thus �i .f / D jrif j. On the other hand, the basic
commutation (15) between the semigroup and the gradients ri is described here as
a curvature condition. Namely, whenever the Hessian V 00 of a smooth potential V on
R
n is (uniformly) bounded below by ��, � 2 R, the semigroup .Pt /t
0 generated

by the operator L D  � rV � r commutes to the gradient in the sense that, for
every smooth function f and every t � 0,

jrPtf j � e�t Pt

jrf j�: (21)

In the product setting of Corollary 3, the semigroup .Pt /t
0 is the tensor product of
the semigroups along every coordinate so that (21) ensures that

jriPt f j � e�t Pt

jri f j� (22)

along the partial gradients ri , i D 1; : : : ; N , and hence (15) holds on smooth
functions. This commutation property (with � D �1) is for example explicit on
the integral representation

Ptf .x/ D
Z
Rn

f


e�t x C .1 � e�2t /1=2y

�
d�.y/; x 2 R

n; t � 0; (23)

of the Ornstein-Uhlenbeck semigroup with generator L D �x�r and invariant and
symmetric measure the standard Gaussian distribution. The assumption V 00 � ��
describes a curvature property of the generator L and is linked to Ricci curvature
on Riemannian manifolds. Since only � 2 R is required here, it appears as a mild
property, shared by numerous potentials such as for example double-well potentials
on the line of the form V.x/ D ax4 � bx2, a; b > 0. Recall that the assumption
V 00 � c > 0 (for example the quadratic potential with the Gaussian measure as
invariant measure) actually implies that � satisfies a logarithmic Sobolev inequality,
and thus hypercontractivity (with constant c). We refer for example to [2,4,15]. . . for
an account on (21) and the preceding discussion.

Corollary 3 admits generalizations in broader settings. Weighted measures on
Riemannian manifolds with a lower bound on the Ricci curvature may be considered
similarly with the same conclusions. In another direction, the hypercontractive
approach may be developed in presence of suitable geometric decompositions.
The next statements deal with the example of the sphere and with geometric
decompositions of the identity in Euclidean space which are familiar in the context
of Brascamp-Lieb inequalities (see [6] for further illustrations in a Markovian
framework).

A non-product example in the continuous setting is the one of the standard sphere
S
n�1 � R

n (n � 2) equipped with its uniform normalized measure �. Consider, for
every i; j D 1; : : : ; n, Dij D xi @j � xj @i . These will be the directions along which
the Talagrand inequality may be considered since
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E.f; f / D
Z
Sn�1

f .�f /d� D 1

2

nX
i;jD1

Z
Sn�1

.Dij f /
2d�:

The operators Dij namely commute in an essential way to the spherical Laplacian
 D 1

2

Pn
i;jD1 D2

ij so that (15) holds with � D 0. Finally, the logarithmic Sobolev
constant is known to be n � 1 [2, 4, 15]. . . . Corollary 4 thus again follows from the
general Theorem 1.

Corollary 4. For every smooth enough function f W Sn�1 ! R,

Var�.f / � 4e

n

nX
i;jD1

kDij f k22
1C log


kDij f k
2
=kDij f k

1

� :

Up to the numerical constant, this inequality improves upon the Poincaré
inequality for � (with constant 
 D n � 1).

We turn to geometric Brascamp-Lieb decompositions. Consider thus Ei , i D
1; : : : ; m, subspaces in R

n, and ci > 0, i D 1; : : : ; m, such that

IdRn D
mX
iD1

ci QEi (24)

where QEi is the projection onto Ei . In particular, for every x 2 R
n, jxj2 DPm

iD1 ci jQEi .x/j2 and thus, for every smooth function f on R
n,

E.f; f / D
Z
Rn

jrf j2d� D
mX
iD1

ci

�Z
Rn

ˇ̌
QEi .rPtf /

ˇ̌2
d�

�
:

Furthermore, QEi .rPtf / D e�tPt .QEi .rf // which may be examplified on the
representation (23) of the Ornstein-Uhlenbeck semigroup with hypercontractive
constant 1. Theorem 1 thus yields the following conclusion.

Corollary 5. Under the decomposition (24), for � the standard Gaussian measure
on R

n, and for every smooth function f on R
n,

Var�.f / � 4

mX
iD1

ci

��QEi .rf /
��2
2

1C log

kQEi .rf /k2=kQEi .rf /k1

� :

3 Hypercontractivity and Geometric Influences

In the continuous context of the preceding section, and as discussed in the
introduction, the L2-norms of gradients in Corollary 3 are not well-suited to the
(geometric) influences of [13] which require L1-norms. In order to reach L1-norms
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through the hypercontractive argument, a further simple interpolation trick will be
necessary.

To this task, we use an additional feature of the curvature condition V 00 � ��,
�� 0, namely that the action of the semigroup .Pt /t
0 with generator LD�rV �V
on bounded functions yields functions with bounded gradients. More precisely (cf.
[4, 15]. . . ), for every smooth function f with jf j � 1, and every 0 < t � 1=2�,

jrPtf j � 1p
t
: (25)

This property may again be illustrated in case of the Ornstein-Uhlenbeck semigroup
(22) for which, by integration by parts,

rPtf .x/ D e�t

.1 � e�2t /1=2

Z
Rn

y f


e�t x C .1 � e�2t /1=2y

�
d�.y/:

With this additional tool, the following statement then presents the expected
result. The setting is similar to the one of Corollary 3. Dependence on 	 and �
for the constant C 0.	; �/ below may be drawn from the proof. It will of course be
independent of N .

Theorem 6. Let d�i.x/ D e�Vi .x/dx, i D 1; : : : ; N , on Xi D R
ni be hypercon-

tractive with constant 	i > 0. Let � D �1 ˝ � � � ˝ �N on X D X1 � � � � � XN ,
and set as before 	 D min1�i�N 	i . Assume in addition that V 00

i � ��, � � 0,
i D 1; : : : ; N . Then, for some constant C 0.	; �/ � 1 and for any smooth function
f on X such that jf j � 1,

Var�.f / � C 0.	; �/
NX
iD1

kri f k1


1C kri f k1

�
�
1C logC 
1=krif k1

��1=2 :

Proof. We follow the same line of reasoning as in the proof of Theorem 1, starting
on the basis of (10) from

kf k22 � kPT f k22 D 2

NX
iD1

Z T

0

�Z
X

jriPtf j2d�
�
dt

� 4

NX
iD1

Z T

0

�Z
X

jriP2t f j2d�
�
dt

for some T > 0. By (22) along each coordinate, for each t � 0,

jriP2tf j � e�t Pt

jriPt f j�:

Hence, by the hypercontractivity property as in Theorem 1,
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kriP2tf k2 � e�t kriPtf kp

where p D p.t/ D 1 C e�2	t � 2. We then proceed to the interpolation trick.
Namely, by (25) and the tensor product form of the semigroup, jriPtf j � t�1=2 for
0 < t � 1=2�, so that in this range,

kriP2t f k2 � e�.1C1=p/t t�.1�1=p/=2 kri f k1=p1

(where we used again (22)). As a consequence, provided T � 1=2�,

kf k22 � kPT f k22 � 4 e4�T
NX
iD1

kri f k1
Z T

0

t�.1�1=p.t//kri f k.2=p.t//�11 dt:

We are then left with the estimate of the latter integral that only requires
elementary calculus. Set b D kri f k1 and �.t/ D 2

p.t/
� 1 � 1. Assuming T � 1,

Z T

0

t�.1�1=p.t// b�.t/dt �
Z T

0

t�1=2 b�.t/dt:

Distinguish between two cases. When b � 1,

Z T

0

t�1=2 b�.t/dt � b

Z T

0

t�1=2dt � 2b
p
T :

When b � 1, use that �.t/ � 	t=2 for every 0 � t � 1=2	. Hence, provided
T � 1=2	,

Z T

0

t�1=2 b�.t/dt �
Z T

0

t�1=2 b	t=2dt � Cp
	

� 1�
1C log.1=b/

�1=2

where C � 1 is numerical. Summarizing, in all cases, provided T is chosen smaller
than min



1; 1

2	

�
, we have

Z T

0

t�.1�1=p.t//b�.t/dt � 2Cp
	

� 1C b�
1C logC.1=b/

�1=2 :

Choosing for example T D min


1; 1

2	
; 1
2�

�
and using (10), Theorem 6 follows with

C 0.	; �/ D C 0=	3=2T for some further numerical constant C 0. If � � c	, then this
constant is of order 	�1=2. ut
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The preceding proof may actually be adapted to interpolate between Corollary 3
and Theorem 6 as

Var�.f / � C

NX
iD1

kri f kqq


1C kri f k21=kri f kqq

�
�
1C logC 
kri f kqq=kri f k21

��q=2

for any smooth function f on X such that jf j � 1, and any 1 � q � 2 (where C
depends on 	, � and q).

As announced in the introduction, the conclusion of Theorem 6 may be inter-
preted in terms of influences. Namely, for f D 1A (or some smooth approximation),
define kri f k1 as the geometric influence Ii .A/ of the i th coordinate on the set A.
In other words, Ii .A/ is the surface measure of the section of A along the fiber of
x 2 X D X1 � � � � � XN in the i th direction, 1 � i � N , averaged over the
remaining coordinates (see [13]). Then Theorem 6 yields that

�.A/


1 � �.A/

� � C.	; �/

NX
iD1

Ii .A/


1C Ii .A/

�
�
1C logC 
1=Ii.A/��1=2

:

Proceeding as in the introduction for influences on the cube, the following conse-
quence holds.

Corollary 7. In the setting of Theorem 6, for any Borel set A in X with �.A/ D a,
there is a coordinate i , 1 � i � N , such that

Ii .A/ � a.1 � a/
CN

�
log

N

a.1 � a/

�1=2
� a.1 � a/.logN/1=2

CN

where C only depends on 	 and �.

It is worthwhile mentioning that when N D 1, I1.A/ corresponds to the surface
measure (Minkowski content)

�C.A/ D lim inf
"!0

1

"

�
�.A"/ � �.A/�

of A � R
n1 , so that Corollary 7 contains the quantitative form of the isoperimetric

inequality for Gaussian measures

�C.A/ � 1

C
a.1 � a/

�
log

1

a.1 � a/
�1=2

:

Recall indeed (cf. e.g. [15, 16]) that the Gaussian isoperimetric inequality indicates
that �C.A/ � ' ı ˚�1.a/ (a D �.A/) where '.x/ D .2�/�1=2 e�x2=2, x 2 R,
˚.t/ D R t

�1 '.x/dx, t 2 R, and that ' ı ˚�1.u/ � u.2 log 1
u /
1=2 as u ! 0.
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This conclusion, for hypercontractive log-concave measures, was established previ-
ously in [3]. See [18, 19] for recent improvements in this regard.

Theorem 6 admits also generalizations in broader settings such as weighted
measures on Riemannian manifolds with a lower bound on the Ricci curvature (this
ensures that both (21) and (25) hold).

Besides the Gaussian measure, Keller et al. [13] also investigate with isoperi-
metric tools products of one-dimensional distributions of the type c˛e�jxj˛ dx,

1 < ˛ < 1, for which they produce influences at least of the order of .logN/ˇ=2

N

where ˇ D 2.1 � 1
˛
/ (˛ D 2 corresponding to the Gaussian case). The proof of

Theorem 6 may be adapted to cover this result but only seemingly for 1 < ˛ < 2.
Convexity of the potentials jxj˛ ensures (21) and (25). When 1 < ˛ < 2, measures
c˛e�jxj˛ dx are not hypercontractive. Nevertheless, the hypercontractive theorems
in Orlicz norms of [5] still indicate that the semigroup .Pt /t
0 generated by the
potential jxj˛ is such that, for every bounded function g with kgk1 D 1 and every
0 � t � 1,

kPtgk22 � C kgk1 exp

 � ct logˇ.1C .1=kgk1//

�
(26)

for ˇ > 0 and some constants C; c > 0, and similarly for the product semigroup
with constants independent of N . The hypercontractive step in the proof of
Theorem 6 is then modified into

��jriP2t f j��2
2

� Ckri f k1
Z 1

0

t�1=2 exp

 � ct logˇ.1C .1=krif k1//

�
dt:

As a consequence, for any smooth f with jf j � 1,

Var�.f / � C

NX
iD1

kri f k1


1C kri f k1

�
�
1C logC 
1=krif k1

��ˇ=2 : (27)

We thus conclude to the influence result of [13] in this range. When ˛ > 2

(ˇ 2 .1; 2/), the potentials are hypercontractive in the usual sense so that the
preceding proofs yield (27) but only for ˇ D 1. We do not know how to reach the
exponent ˇ=2 in this case by the hypercontractive argument.

We conclude this note by the L1 versions of Corollaries 4 and 5. In the case
of the sphere, the proof is identical to the one of Theorem 6 provided one uses that
jDij f j � jrf j which ensures that jDijPtf j � 1=

p
t . The behavior of the constant

is drawn from the proof of Theorem 6.

Theorem 8. For every smooth enough function f W Sn�1 ! R such that jf j � 1,

Var�.f / � Cp
n

nX
i;jD1

kDij f k
1



1C kDij f k

1

�
�
1C logC 
1=kDij f k1

��1=2 :

Application to geometric influences Iij .A/ as the limit of kDij f k
1

as f
approaches the characteristic function of the set A may be drawn as in the previous
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corresponding statements. From a geometric perspective, Iij .A/ can be viewed as
the average over x of the boundary of the section ofA in the 2-plane xCspan.ei ; ej /.
We do not know if the order n�1=2 of the constant in Theorem 8 is optimal.

As announced, the last statement is the L1-version of the geometric decom-
positions of Corollary 5 which seems again of interest for influences. Under the
corresponding commutation properties, the proof is developed similarly.

Proposition 9. Under the decomposition (24), for � the standard Gaussian mea-
sure on R

n and for every smooth function f on R
n such that jf j � 1,

Var�.f / � C

mX
iD1

ci
kQEi .rf /k1



1C kQEi .rf /k1

�
�
1C logC 
1=kQEi .rf /k1

��1=2

where C > 0 is numerical.

Let us illustrate the last statement on a simple decomposition. As in the Loomis-
Whitney inequality, consider the decomposition

IdRn D
nX
iD1

1

n � 1 QEi

with Ei D ei
?, i D 1; : : : ; n, .e1; : : : ; en/ orthonormal basis. Proposition 9 applied

to f D 1A for a Borel set A in R
n with �.A/ D a then shows that there is a

coordinate i , 1 � i � n, such that

��QEi .rf /
��
1

� 1

C
a.1 � a/

�
log

1

a.1 � a/

�1=2

for some constant C > 0. Now, kQEi .rf /k1 may be interpreted as the boundary
measure of the hyperplane section

Ax�ei D ˚
.x � e1; : : : ; x � ei�1; x � eiC1; : : : ; x � en/I .x � e1; : : : ; x � ei ; : : : ; x � en/ 2 A�

along the coordinate x � ei 2 R averaged over the standard Gaussian measure. By
Fubini’s theorem, there is x � ei 2 R (or even a set with measure as close to 1 as
possible) such that

�C.Ax�ei / � 1

C
a.1 � a/

�
log

1

a.1 � a/

�1=2
: (28)

The interesting point here is that a is the full measure of A. Indeed, recall that
the isoperimetric inequality for � indicates that �C.A/ � ' ı ˚�1.a/, hence a
quantitative lower bound for �C.A/ of the same form as (28). When A is a half-
space in R

n, thus extremal set for the isoperimetric problem and satisfying�C.A/ D
' ı ˚�1.a/, it is easy to see that there is indeed a coordinate x � ei such that Ax�ei
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is again a half-space in the lower-dimensional space. The preceding (28) therefore
extends this property to all sets.

Acknowledgements We thank F. Barthe and P. Cattiaux for their help with the bound (26), and
R. Rossignol for pointing out to us the references [20, 21]. We also thank J. van den Berg and
D. Kiss for pointing out that the techniques developed here cover the example of the complete
graph and for letting us know about [14].
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Sur les inégalités de Sobolev logarithmiques. (French. Frech summary) [Logarithmic
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A Family of Unitary Operators Satisfying
a Poisson-Type Summation Formula

Dmitry Faifman

Abstract We consider a weighted form of the Poisson summation formula. We
prove that under certain decay rate conditions on the weights, there exists a unique
unitary Fourier–Poisson operator which satisfies this formula. We next find the
diagonal form of this operator, and prove that under weaker conditions on the
weights, a unique unitary operator still exists which satisfies a Poisson summation
formula in operator form. We also generalize the interplay between the Fourier
transform and derivative to those Fourier–Poisson operators.

1 Introduction

The classical summation formula of Poisson states that, for a well-behaved function
f W R ! C and its (suitably scaled) Fourier Transform Of we have the relation

1X
nD�1

f .n/ D
1X

nD�1
Of .n/

Fix x > 0, and replace f .t/ with 1
x
f .t=x/. The Poisson formula is linear and trivial

for odd f , so we assume f is even. Also, assume f .0/ D 0. Then

1X
nD1

Of .nx/ D 1

x

1X
nD1

f .n=x/ (1)
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We discussed in [6] the extent to which this summation formula, which involves
sums over lattices in R, determines the Fourier transform of a function. Taking a
weighted form of the Poisson summation formula as our starting point, we define a
generalized Fourier–Poisson transform, and show that under certain conditions it is
a unitary operator on L2Œ0;1/. As a sidenote, we show a peculiar family of unitary
operators on L2Œ0;1/ defined by series of the type f .x/ 7! P

anf .nx/.

2 Some Notation, and a Summary of Results

The Fourier transform maps odd functions to odd functions, rendering The Poisson
summation formula trivial. Thus we only consider square-integrable even functions,
or equivalently, all functions belong to L2Œ0;1/.

Denote by ın, n � 1 the sequence given by ı.1/ D 1 and ı.n/ D 0 for n > 1,
and the convolution of sequences as .a � b/k D P

mnDk ambn.
Define the (possibly unbounded) operator

T .an/f .x/ D
1X
nD1

anf .nx/ (2)

It holds that TbnTanf D Tan�bnf whenever the series in both sides are well defined
and absolutely convergent.

Let an, bn, n � 1 be two sequences, which satisfy a � b D ı.
This is equivalent to saying that L.sI an/L.sI bn/ D 1 where L.sI cn/ DP1
nD1

cn
ns

. For a given an with a1 ¤ 0, its convolutional inverse is uniquely defined
via those formulas.

Then, the formal inverse transform to Tan is given simply by Tbn .
Note that the convolutional inverse of the sequence an D 1 is the Möbius function

�.n/, defined as

�.n/ D
(
.�1/]fpjn primeg; n square-free
0; d 2jn

Also, define the operator

Sf .x/ D 1

x
f

�
1

x

�

—a unitary involution on L2Œ0;1/, which is straightforward to check.

In terms of S and T , the Poisson summation formula for the Fourier Transform
can be written as following:

T .en/ Of .x/ D ST .en/f
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where en D 1 for all n. This suggests a formula for the Fourier transform:

Of .x/ D T .�n/ST .en/f .x/ (3)

with �n D �.n/ the Möbius function. We would like to mention that Davenport in
[4] established certain identities, such as

1X
nD1

�.n/

n
fnxg D � 1

�
sin.2�x/

which could be used to show that formula (3) actually produces the Fourier
transform of a (zero-integral) step function.

We define the (possibly unbounded) Fourier–Poisson Transform associated with
.an/ as

F.an/f .x/ D T .an/
�1ST .an/f .x/ (4)

This is clearly an involution, and produces the operator Sf .x/ D 1
x
f


1
x

�
for

an D ın, and (non-formally) the Fourier Transform for an D 1. Note that both are
unitary operators on L2Œ0;1/. In the following, we will see how this definition can
be carried out rigorously. First we give conditions on .an/ that produce a unitary
operator satisfying a pointwise Poisson summation formula, as was the case with
Fourier transform (Theorem 3.3). Then we relax the conditions, which produces
a unitary operator satisfying a weaker operator-form Poisson summation formula
(Theorem 5.2).

Remark. A similar approach appears in [1,2,5], where it is used to study the Fourier
Transform and certain variants of it.

A somewhat different approach is taken in [3], there, arithmetic sequences were
characterized through the Fourier transform.

3 The Fourier–Poisson Operator is Unitary

We prove that under certain rate-of-growth assumptions on the coefficients an and
its convolution-inverse bn, it holds that F.an/ D T .an/

�1ST .an/ is unitary.
In the following, f .x/ D O.g.x// will be understood to mean at x ! 1 unless

otherwise indicated.

Lemma 3.1. Assume X janjp
n
< 1 (5)

holds, and let f 2 C.0;1/ satisfy f D O.x�1��/ for some � > 0. Then T .an/f
as defined in (2) is a continuous function satisfying T .an/f .x/ D O.x�1��/.
Moreover, T .an/ extends to a bounded operator on L2Œ0;1/, and kT k � P janjp

n
.
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Proof. Consider a continuous function f D O.x�1��/. It is straightforward to
verify that T .an/f is well-defined, continuous and T .an/f .x/ D O.x�1��/. Now
apply Cauchy-Schwartz:

jhf .mx/; f .nx/ij � 1p
mn

kf k2

implying

kT .an/f k2 �
X
m;n

jamjjanjjhf .mx/; f .nx/ij �
 X

n

janjp
n

!2
kf k2

So T .an/ can be extended as a bounded operator to all L2, and kT k �P jan jp
n

. ut
Now, consider a sequence an together with its convolution-inverse bn. In all the

following, we assume that an, bn both satisfy (5) (as an example, consider an D n�

and bn D �.n/n�
 with 
 > 0:5).

Then T .an/, T .bn/ are both bounded linear operators, and we define the Fourier–
Poisson operator

F.an/ D T .bn/ST .an/

Note that T .an/�1 D T .bn/ (and likewise T .an/�1 D T .bn/), which is easy to
verify on the dense subset of continuous functions with compact support.

Corollary 3.2. Assume that
P janjn� < 1 for some � > 0 and .bn/ satisfies (5).

Take a continuous f satisfying f .x/ D O.x�1��/ as x ! 1 and f .x/ D O.x�/

as x ! 0 for some � > 0. Then

(a) F.an/f is continuous and F.an/f .x/ D O.x�1��/.
(b) The formula

P
anF.an/f .nx/ D .1=x/

P
anf .n=x/ holds pointwise.

Proof. (a) It is easy to see that all the properties of the function are preserved by
applying T .an/ (using

P janjn� < 1) and then by S . Then by Lemma 3.1
application of T .bn/ to ST .an/ completes the proof.

(b) By Lemma 3.1, we get an equality a.e. of two continuous functions:

T .an/F.an/f D ST .an/f

ut
Theorem 3.3. Assume that

P janjn� < 1 for some � > 0 and .bn/ satisfies (5).
Then F.an/ is a unitary operator.

Proof. Consider G D ST .bn/ST .an/. Take a continuous function f which is
compactly supported. Define g.x/ D ST .an/f .x/ D 1

x

P
anf .

n
x
/, and note that g
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vanishes for small values of x, and jg.x/j D O

P janjn�x�1���. Then T .bn/g is

given by the series (2), and we obtain the absolutely convergent formula

Gf.x/ D
X
m;n

anbm

m
f
� n
m
x
	

Take two such f1; f2 and compute

hGf1;Gf2i D
X
k;l;m;n

anbmakbl

ml

�
f1

� n
m
x
	
; f2

�
k

l
x

�

the series are absolutely convergent when both an and bn satisfy (5). Now we sum
over all co-prime .p; q/, such that n

m
D p

q
k
l
. So, nl

mk
D p

q
, i.e. nl D up and

mk D uq for some integer u. Then

�
f1

� n
m
x
	
; f2

�
k

l
x

�
D l

k

�
f1

�
p

q
x

�
; f2.x/



hGf1;Gf2i D
X

.p;q/D1

�
f1

�
p

q
x

�
; f2.x/

X
u

X
mkDuq

X
nlDup

anbmakbl

mk

D
X

.p;q/D1

1

q

�
f1

�
p

q
x

�
; f2.x/

X
u

1

u

X
mkDuq

akbm
X
nlDup

anbl

and so the only non-zero term corresponds to p D q D 1, u D 1, m D n D k D
l D 1, i.e.

hGf1;Gf2i D hf1; f2i
Since F.an/ is invertible, we conclude that F.an/ D SG is unitary. ut

4 An Example of a Unitary Operator Defined by Series

Let an 2 C be a sequence satisfying (5). We denote by C0.0;1/ the space of
compactly supported continuous functions.

Let T .an/ W C0.0;1/ ! C0.0;1/ be given by (2). We will describe conditions
on an that would imply hTf; TgiL2 D hf; giL2 for all f; g 2 C0.0;1/. Then we
can conclude that T is an isometric operator on a dense subspace of L2Œ0;1/, and
thus can be extended as an isometry of all L2Œ0;1/.

A C -isometric (correspondingly, unitary) operator will mean an isometric
(unitary) operator, scaled by a constant factor C .
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Proposition 4.1. hTf; TgiL2 D C2hf; giL2 for all f; g 2 C0.0;1/ if and only if
for all co-prime pairs .m0; n0/

1X
kD1

am0kan0k

k
D
�
C2; m0 D n0 D 1

0; m0 ¤ n0
(6)

Proof. Take � > 0. DenoteM D supfxjf .x/ ¤ 0 _ g.x/ ¤ 0g. Write

Z 1

�

Tf .x/Tg.x/dx D
Z 1

�

1X
m;nD1

amanf .mx/g.nx/dx

It is only necessary to consider m; n < M=�. Thus the sum is finite, and we may
write Z 1

�

Tf .x/Tg.x/dx D
1X

m;nD1
aman

Z 1

�

f .mx/g.nx/dx

Note that
Z 1

0

f .mx/g.nx/dx � kf .mx/kkg.nx/k D 1p
mn

kf kkgk

and therefore 1X
m;nD1

aman

Z 1

0

f .mx/g.nx/dx

is absolutely convergent:

1X
m;nD1

ˇ̌
ˇ̌aman

Z 1

0

f .mx/g.nx/dx

ˇ̌
ˇ̌ �

1X
m;nD1

jamjjanjp
mn

kf kkgk

Therefore, the sum

S.�/ D
1X

m;nD1
aman

Z �

0

f .mx/g.nx/dx

is absolutely convergent. We will show that S.�/ ! 0 as � ! 1. Assume jf j �
Af , jgj � Ag . Then

jS.�/j �
X
m;n

aman

Z �

0

f .mx/g.nx/dx �
X
m;n

jamanjp
mn

sZ m�

0

jf j2
sZ n�

0

jgj2
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And

1X
mD1

jamjp
m

sZ m�

0

jf j2 D
p
1=�X

mD1
C

1X
mDp

1=�

�
1X
mD1

jamjp
m

sZ p
�

0

jf j2 C kf k
1X

mDp
1=�

jamjp
m

�! 0

We conclude that

hTf; Tgi D
1X

m;nD1

aman

m

Z 1

0

f .x/g
� n
m
x
	
dx

D
*
f .x/;

X
.m0;n0/D1

1

m0

1X
kD1

am0kan0k

k
g.
n0

m0

x/

+

Therefore, T .an/ is a C -isometry on C0.0;1/ if and only if .an/ satisfy (6).
ut

Example 1. Take a.2/n D 0 for n ¤ 2k and

a
.2/

2k
D
�
1; k D 0

.�1/kC1; k � 1

Then

T2f .x/ D
X
n

a.2/n f .nx/ D f .x/C f .2x/ � f .4x/C f .8x/ � f .16x/C : : :

is a
p
2-isometry.

Example 2. Generalizing Example 1 (and using the already defined a.2/n ), we fix a

natural numberm, and take a.m/
mk

D 

m
2

�k=2
a
.2/

2k
and a.m/n D 0 for n ¤ mk . Then

Tmf .x/ D
X

a.m/n f .nx/

is again a
p
2-isometry.

Example 3. Similarly, we could take an D 0 for n ¤ 2k and

a2k D
�
1; k D 0

�1; k � 1
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Then

Tf .x/ D f .x/ � f .2x/ � f .4x/ � f .8x/ � f .16x/ � : : :
is a

p
2-isometry.

Remarks.

• If an and bn satisfy (5), then so does their convolution cn D .a � b/n DP
klDn akbl :

X
n

jcnjp
n

�
X
n

X
klDn

jakjjbl jp
kl

D
X
k

jakjp
k

X
l

jbl jp
l
< 1

• Also, any two scaled isometries of the form T .an/ commute: If an and bn satisfy
(6), T .an/ and T .bn/ are isometries from C0.0;1/ to itself, and thus so is their
composition which is easily computed to be T .an � bn/.

Proposition 4.2. When .an/ satisfies (6), T .an/ is C -unitary.

Proof. It is easy to verify that for any g 2 C Œ0;1/ and an satisfying (6),

T .an/
�g D

X an

n
g
�x
n

	

Moreover,T .an/� is a scaled isometry on ff 2 C0Œ0;1/ W supp.f / � Œa; b�; a > 0g
(proof identical to that of T .an/), and so a scaled isometry on L2. Thus T �T D
T T � D kT k2I , and so T .an/ is C -unitary. ut
Remark. We recall the operator Sf .x/ D 1

x
f


1
x

�
—a unitary operator ofL2.0;1/.

Then for a continuous function f with compact support which is bounded away
from 0, we have Sf 2 C0.0;1/ and so we can use (2) to obtain ST .an/Sf D
T .an/

�f and therefore ST .an/S D T .an/
� on all L2. In particular, for real

sequences .an/, ST m and T mS are unitary involutions (up to scaling) for any
integerm.

5 Diagonalizing the Fourier–Poisson Operator

We further generalize the Poisson summation formula: by removing some of the
conditions on the sequence .an/, we are still able to construct a unitary operator
satisfying the summation formula, but only in the weaker operator sense. This is
done through a natural isometry between L2Œ0;1/ and L2.�1;1/ which was
suggested to us by Bo’az Klartag (see also [7]).
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We will denote by dm the Lebesgue measure on R, and Og will stand for the
Fourier transform defined as Og.!/ D R1

�1 g.y/e�iy!dy.
First, define two isometries of spaces:

1. u W L2 .Œ0;1/; dm.x// ! L2 .R; eydm.y// given by f .x/ 7! g.y/ D f .ey/.
2. v W L2 .R; eydm.y// ! L2 .R; dm/ given by g.y/ 7! h.x/ D .2�/� 1

2 Og.x C
i=2/.

u is isometric by a simple change of variables.

To see that v is isometric, note that bf .x C i=2/ D 2et=2f .t/.x/, and so by
Plancherel’s formula

Z
j Of .x C i=2/j2dx D 2�

Z
jf .t/j2etdt

(alternatively, one could decompose v into the composition of two isometries:
f .y/ 7! ey=2f .y/, identifyingL2 .R; eydm.y// with L2.R; dm/, and then Fourier
transform).

We will denote the composition v ı u D w.
For A W L2Œ0;1/ ! L2Œ0;1/, we write eA D wAw�1 W L2.R/ ! L2.R/—the

conjugate operator to A. The conjugate to S is QS.h/.x/ D h.�x/.
Let an satisfy (5), implying jL.1=2C ixI an/j is bounded and continuous. Then

for g D u.f /,

.uT .an/u
�1g/.y/ D

X
ang.y C logn/ D g � �.y/

where �.y/ D P
anı� log n.y/ and O�.z/ D P

ane
iz log n D P

ann
iz D L.�izI an/,

which converges for Imz � 1=2 by (5). And so letting h D vg,

AT .an/h.x/ D .2�/�
1
2
1g � �.x C i=2/ D L.1=2� ixI an/h.x/

thus we proved

Corollary 5.1. Assume an satisfies (5). Then the following are equivalent:

(a) jL.1=2C ixI an/j D C

(b) T .an/ is C -unitary on L2Œ0;1/

(c) .an/ satisfies (6).

The equivalence of (a) and (c) can easily be established directly.
For example, the

p
2-unitary Tf .x/ D f .x/ C f .2x/ � f .4x/ C f .8x/ � : : :

discussed previously is associated with L.sI an/ D 2C2s
1C2s which has absolute value

of
p
2 on Re.s/ D 1=2.
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This suggests that the Fourier–Poisson transform associated with an, which was
defined in Sect. 3 for some special sequences .an/, could be generalized as follows:
F.an/f D T .an/

�1ST .an/f should be defined through

AF.an/h.x/ D h.�x/L.1=2C ixI an/
L.1=2� ixI an/ D h.�x/L.1=2C ixI an/

L.1=2C ixI an/
(7)

we arrive at the following:

Theorem 5.2. Assume
P janjn�1=2 < 1. Then

(a) There exists a bounded operator F.an/ W L2Œ0;1/ ! L2Œ0;1/ satisfying
the Poisson summation formula (in its operator form) T .an/F.an/ D ST .an/.
Moreover, F.an/ is unitary.

(b) If for some � > 0,
P janjn�1=2C� < 1, then a bounded F.an/ satisfying

T .an/F.an/ D ST .an/ is unique.

Proof. (a) We have L.1=2C ixI an/=L.1=2C ixI an/ D e2i.argL.1=2CixIan// when-
ever L.1=2C ixI an/ ¤ 0. In accordance with (7), define

AF.an/h.x/ D e2i.argL.1=2CixIan//h.�x/

taking argL.1=2C ixI an/ D 0 whenever L.1=2C ixI an/ D 0. We then have

L.1=2� ixI an/AF.an/h.x/ D L.1=2C ixI an/h.�x/

for all h 2 L2.R/, implying T .an/F.an/ D ST .an/ in L2Œ0;1/. Also, F.an/
is isometric and invertible, thus unitary.

(b) For uniqueness, observe that L.sI an/ is analytic in a neighborhood of
Re.s/D 1=2, and so its set of zeros Z is discrete, and the ratio L.1=2 C
ixI an/=L.1=2C ixI an/ is continuous and of absolute value 1 outside of Z.
Thus for continuous h with supp.h/ \Z D ;, the equation

L.1=2� ixI an/AF.an/h.x/ D L.1=2C ix/h.�x/

determines BF.an/h uniquely, and all such h are dense in L2.R/.
ut

By part (b) we conclude that under the conditions of Theorem 3.3, the operator
F.an/ defined in Sect. 3 coincides with the operator defined here.

Remark. It was pointed out to us by Fedor Nazarov that under the conditions
of Theorem 5.2 the Poisson summation formula cannot hold pointwise for all
sequences .an/.
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6 A Formula Involving Differentiation

Denote by B W L2Œ0;1/ ! L2Œ0;1/ the unbounded operator

Bf .x/ D i.xf 0 C f=2/

with Dom.B/ D ff 2 C1 W xf 0 C f=2 2 L2g. It is straightforward to check that
B is a symmetric operator.

It is easy to verify that the ordinary Fourier transform F satisfies, for a well
behaved (i.e. Schwartz) function f , the identity BFf C FBf D 0. It turns out
to be also a consequence of Poisson’s formula, and so holds for a large family of
operators. We will need the following standard lemma (see [8]).

Lemma 6.1. Take a function g 2 L2.R/. The following are equivalent:

(a) g 2 C1.R/ and
sup
jyj<b

sup
t

eyt jg.k/.t/j < 1

for all b < B and k � 0.
(b) h D Og is a Schwartz function, which has an analytic extension to the strip

jyj < B such that
sup
jyj<b

sup
x

jxjkjh.x C iy/j < 1

for all b < B and k � 0.

Proof. (a))(b). Observe that Og.x C iy/ D 2eytg.t/.x/. Thus the existence of
analytic extension is clear, and we can write

jxjk jh.x C iy/j D jxjkj2eytg.t/.x/j D j 4.eytg.t//.k/.x/j

Note that


eytg.t/

�.k/ D eyt
kX

jD0
Pj;k.y/g

.j /.t/

where Pj;k denotes some universal polynomial of degree � k. Therefore

sup
x

jxjkjh.x C iy/j �
Z 1

�1

ˇ̌
ˇ̌eyt

kX
jD0

Pj;k.y/g
.j /.t/

ˇ̌
ˇ̌dy

The sum is finite, so we can bound every term separately. Choose b < Y < B ,
� D Y � b. Then

sup
jyj<b

Z 1

�1
jeytg.j /.t/j � C.j; Y /

Z 1

�1
e��jt jdt < 1
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(b))(a). Note that g is a Schwartz function since h is. It suffices to show (by
induction) that supremums of j.eytg/.k/j are finite for every k and b < B . Notice

that bg.k/.x/ D .ix/k Og.x/ has an analytic extension to the strip jyj < B (namely:
.iz/kh.z/), satisfying the same conditions as h itself. Now take a C1 compactly
supported function � on R. We will show that

Z 1

�1
eytg.t/�.t/dt D

Z 1

�1
h.x C iy/ O�.x/dx (8)

implying
2eytg.t/.x/ D h.x C iy/

and therefore for any k

3eytg.k/.t/.x/ D ik.x C iy/kh.x C iy/

which is equivalent to having

4.eytg.t//.k/.x/ D ikxkh.x C iy/

Indeed,  D O� is an analytic function satisfying the supremum condition by the
“.a/ ) .b/” implication. Then

Z 1

�1
eytg.t/�.t/ D

Z 1

�1
Og2eyt�.t/dt D

Z 1

�1
h.x/ .x C iy/dt

Observe that 
.z/ D h.z/ .iy C z/ is an analytic function, and the integrals
over the intervals Re.z/ D ˙R, �b < Im.z/ < b of 
.z/ converge to 0 as
R ! 1 by the uniform bounds on h and  . Considering the line integral of 

over a rectangle with these vertical sides and horizontal lines at Im.z/ D 0 and
Im.z/ D y, we get

Z 1

�1
h.x/ .iy C x/ D

Z 1

�1
h.x C iy/ .x/

which proves (8). Finally,

sup
jyj<b

sup
t

j.eytg.t//.k/j � sup
jyj<b

Z 1

�1
jxjkh.x C iy/dx

which is finite by the assumptions.
ut

Let S0 be the following class of “Schwartz” functions in L2Œ0;1/
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S0 D ff 2 C1 W sup jxjnjf .k/.x/j < 1 8k � 0 ,8n 2 Zg

Note that n 2 Z can be negative. Observe that S0 � Dom.B/.

Proposition 6.2. Assume .an/ satisfies
P janjn� < 1 for some � > 0, and the

convolution inverse .bn/ satisfies
P jbnj=pn < 1. Next, assume that

L.1=2C izI an/=L.1=2C izI an/

(which is meromorphic by assumption in the strip jyj < 1=2 C �) satisfies the
following polynomial growth condition: there exist constantsN and C such that

ˇ̌
ˇ̌L.1=2� y C ixI an/
L.1=2C y C ixI an/

ˇ̌
ˇ̌ � C0 C C1jxjN

for all x; y 2 R, jyj � 1=2C �=2. Let f 2 S0. Then F.an/Bf CBF.an/f D 0.

Proof. Denote gDF.an/f . Denote F.t/D et=2f .et / and G.t/D et=2g.et /,
hf D OF and hg D OG. The condition f 2 S0 implies immediately that F 2 C1 and
supt2R eyt jF .k/.t/j < 1 for all y 2 R, sinceF .k/.t/DPk.e

t=2;f .et /; : : : ; f .k/.et //

for some fixed polynomial Pk . By Lemma (6.1), hf is a Schwartz function (on the
real line), with an analytic extension to the strip jyj < 1 such that

sup
jyj�1

sup
x

jxjkjhf .x C iy/j < 1

for all k � 0. Next,

hg.x C iy/ D L.1=2� y C ixI an/
L.1=2C y C ixI an/

hf .x C iy/

is an analytic function in the strip jyj < 1=2 C �. By the assumed bound on the
L-function ratio, it is again a Schwartz function when restricted to the real line; and

sup
jyj<b

sup
x

jxjkjhg.x C iy/j < 1

for all b < 1=2 C �=2. Denote ı D �=4. Again by Lemma (6.1), G 2 C1 and
satisfies e.1=2Cı/jt jjG.t/j � C ” jG.t/j � Ce�.1=2Cı/jt j and likewise jG0.t/j �
Ce�.1=2Cı/t for some constant C . Then, as t ! �1,

jg.et /j D e�t=2jG.t/j � Ce�t=2e.1=2Cı/t D O.e�ıt /

and as t ! C1,

jg.et /j D e�t=2jG.t/j � Ce�t=2e�.1=2Cı/t D O.e�.1Cı/t /
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Also, as t ! C1,

jg0.et /j D
ˇ̌
ˇ̌G0.t/ � 1

2
G.t/

ˇ̌
ˇ̌ e�3t=2 D O.e�.2Cı/t /

Thus g 2 C1.0;1/ and g D O.xı/ as x ! 0, g D O.x�1�ı/ as x ! 1 while
g0 D O.x�2�ı/ as x ! 1. By Corollary 3.2 (b) we can write

P
ang.nx/ D

.1=x/
P
anf .n=x/, and then the functions on both sides are C1, and can be

differentiated term-by-term. Carrying the differentiation out, we get

X
an.nx/g

0.nx/ D �.1=x/
X

anf .n=x/ � .1=x2/
X

an.n=x/f
0.n=x/

Invoke Lemma 3.1 to write

T .an/.xg
0/ D �T .an/g � ST .an/.xf

0/

and then use Corollary 3.2 applied to xf 0 to conclude

T .an/.xg
0/ D �T .an/g � T .an/F.an/.xf 0/

Finally, apply T .bn/ to obtain the announced result. ut
Remark. As an example of such a sequence, take an D n
, 
 < �1.
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Stability of Order Preserving Transforms

Dan Florentin and Alexander Segal

Abstract The purpose of this paper is to show stability of order preserving/
reversing transforms on the class of non-negative convex functions in R

n, and its
subclass, the class of non-negative convex functions attaining 0 at the origin (these
are called “geometric convex functions”). We show that transforms that satisfy
conditions which are weaker than order preserving transforms, are essentially close
to the order preserving transforms on the mentioned structures.

1 Introduction

The concept of duality was studied by Artstein-Avidan and Milman in recent papers
[1, 3, 4] on different classes which arise from geometric problems. Examples of
such classes are the class of convex bodies containing zero, the class of all lower
semi-continuous convex functions on R

n, which we denote by C vx.Rn/, and
its subclass—the class of all lower semi-continuous geometric convex functions
denoted by C vx0.Rn/. A convex function f is said to be geometric if it is non-
negative and f .0/ D 0.

It turned out that duality on such classes is uniquely defined by simple properties
like order reversion and involution (actually involution is not required and can be
replaced by bijectivity). The Legendre transform is an example of such a duality
transform that acts on the class of convex functions C vx.Rn/. When dealing with
C vx.Rn/, it was shown by Artstein-Avidan and Milman [3] that the Legendre
transform is essentially the only order reversing transform acting on this class, where
“essentially” means up to the choice of scalar product and addition of linear terms.
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Note: The properties of order preservation and involution actually imply preserva-
tion of supremum and infimum on the classes. It is also known that the mentioned
classes can be generated with supremum (or infimum) of an extremal family. This
concept is not new, and was used by Kutateladze and Rubinov [7] to discuss
Minkowski duality on complete lattices.

Studying the structure of C vx0.Rn/ shows that it differs from C vx.Rn/. As was
shown by Artstein-Avidan and Milman in [4], there exist essentially two duality
(order reversing) bijective transforms—The Legendre transform, and a “geometric
duality” transform called A, on the class of geometric convex functions.

Actually, the authors of [4] showed first that there exist essentially two order
preserving bijections—identity transform I and the Gauge transform J which
greatly differs from I. After showing this, using the fact that L is an involution
and the fact that J DLADAL, it is easy to see that the order reversing transforms
are also uniquely defined. Notice that the results about order reversing transforms
are “dual” to the results about order preserving transforms. For details of the
mentioned transforms we refer the reader to [4], and provide the basic definitions
for completeness.

Definition 1.1. The geometric transform A W C vx0.Rn/ ! C vx0.Rn/ is defined as
follows:

.Af /.x/ D
(

supfy2RnWf .y/>0g
<x;y>�1
f .y/

if x 2 fy W f .y/ D 0gı

C1 if x 62 fy W f .y/ D 0gı

assuming sup ; D 0.

Definition 1.2. The Legendre transform L of a function f is defined as follows:

.Lf /.x/ D sup
y

.< x; y > �f .y//;

and the Gauge transformJ is defined as J f D ALf D LAf , for f 2 C vx0.Rn/.
Notice that the commutativity of A and L requires a proof, and is actually a non-
trivial fact. The Gauge transform J can be calculated, and written explicitly:

.J f /.y/ D inf f1=f .x/ W y D tx=f .x/; 0 � t � 1g;

where inf ; D C1, and 0=f .0/ is understood in the sense of limits.
In this paper we discuss the stability of the mentioned transforms on the class

C vx0.Rn/ and C vxC.Rn/ (non-negative convex functions). We do not deal with
classes of convex bodies, and refer the reader to [5] for results on such classes. We
start with the following definitions:

Definition 1.3. Let QC > 1, and Qc D QC�1. A bijective transform T , on the class
C vx0.Rn/ that satisfies the following conditions:
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f � g implies Tf � QCTg; (1a)

f � Qcg implies Tf � Tg, (1b)

will be called a QC -almost order preserving transformation, or just almost order
preserving, in case there exists some unspecified constant that satisfies conditions
(1a) and (1b).

Similarly, we can define a QC -almost order reversing transform:

Definition 1.4. Let QC > 1, and Qc D QC�1. A bijective transform T , on the class
C vx0.Rn/ that satisfies the following conditions:

f � g implies Tf > QcTg; (2a)

f � Qcg implies Tf > Tg (2b)

will be called a QC -almost order reversing transformation, or just almost order
reversing, in case there exists some constant that satisfies conditions (a) and (b).

Remark 1.5. If T and T �1 are almost order preserving transforms, the following
hold:

Tf � Tg implies f � QCg, (3a)

Tf � QcTg implies f � g (3b)

Indeed, since T is bijective, we can write f D Tf 0 and g D Tg0. If Property
(1a) holds for f , g and T �1, after substituting Tf 0 and Tg0, we come to Tf 0 �
Tg0 ) f 0 � QCg0. So condition (1a) on T �1 is equivalent to condition (3a) on T .
The same applies for (3b) and (1b).

Notice that when QC D 1, we have order preserving transform. We would like
to show that order preserving transforms are stable, i.e. almost order preserving
transforms are, in some sense, close to the order preserving transforms discussed
above. Our main theorems are the following:

Theorem 1.6. Let n � 2. Any 1 � 1 and onto transform T W C vx0.Rn/ !
C vx0.Rn/ such that both, T and T �1 are QC -almost order preserving, satisfies one
of the following conditions:
Either

For all f 2 C vx0.R
n/; cf ıB � Tf � Cf ı B , (4a)

or
For all f 2 C vx0.R

n/, c.J f / ı B � Tf � C.J f / ı B , (4b)

where B 2 GL.n/ and c; C are positive constants depending only on QC .

Remark 1.7. Actually the proof gives C � 
 QC7, but it is entirely possible that the
dependence on QC is linear.



208 D. Florentin and A. Segal

The “dual” of the above statement follows:

Theorem 1.8. Let n � 2. Any bijective transform T W C vx0.Rn/ ! C vx0.Rn/
such that both, T and T �1 are almost order reversing, satisfies one of the following
conditions:
Either

for all f 2 C vx0.R
n/, c.Af / ı B � Tf � C.Af / ı B , (5a)

or
for all f 2 C vx0.R

n/, c.Lf / ı B � Tf � C.Lf / ı B , (5b)

where B 2 GL.n/ and c; C are positive constants as above.

In the case of general positive convex functions (C vxC.Rn/), we have a similar
theorem:

Theorem 1.9. Let n � 2. Any bijective transform T W C vxC.Rn/ ! C vxC.Rn/
such that both, T and T �1 are almost order preserving, must be close to the identity
transform:

cf .Bx C b0/ � .Tf /.x/ � Cf .Bx C b0/

where B 2 GL.n/; b0 2 R
n and c; C are positive constants.

Notice that there there is no dual statement for the class of general convex non-
negative functions, since there exist no order reversing transformations on this class,
as was noted by Artstein-Avidan and Milman in [4].

2 Preliminaries and Notation

Let us state that throughout the article, all the constants c; C; c0; C 0 etc, mostly
depend on QC which appears in the definition of order almost preserving transforms.
The dependence is some power of QC which can be seen during the proofs. These
constants are not universal and might have a different meaning in different context.

We will use the notation of convex indicator functions, 11
K where K is some

convex domain. As our discussion is limited to convex functions, we define it in the
following way:

11
K .x/ D

(
0; x 2 K
C1; x 62 K

Likewise, we will use modified Delta functions denoted byD� C c, which equals c
when x D � and C1 otherwise.

Next we state a known stability result by Hyers and Ulam [6, 9], which we will
use in some of the proofs:

Theorem 2.1. Let E1 be a normed vector space, E2 a Banach space and suppose
that the mapping f W E1 ! E2 satisfies the inequality



Stability of Order Preserving Transforms 209

jjf .x C y/� f .x/ � f .y/jj � �

for all x; y 2 E1, where � > 0 is a constant. Then the limit

g.x/ D lim
n!1 2�nf .2nx/

exists for each x 2 E1, and g is the unique additive mapping satisfying

jjf .x/ � g.x/jj � �

for all x 2 E1. If f is continuous at a single point of E1, then g is continuous
everywhere.

Lemma 2.2. Assume we have function f W R
C ! R

C, which satisfies the
following condition of C�monotonicity:

x � y implies f .x/ � Cf .y/ (6)

for a constantC > 1 independent of x and y. Then there exist a monotonic function
g.x/ such that C�1g.x/ � f .x/ � g.x/.

Proof. Define g.x/ to be the infimum over all monotone functions which are greater
or equal f .x/:

g.x/ D sup
0�y�x

f .y/:

Obviously g.x/ � f .x/ and g.x/ is monotone. For any x0, we know that if y � x0
then f .y/ � Cf .x0/. Therefore this is true after applying sup, which brings us to
g.x0/ � Cf .x0/ as desired. ut
Lemma 2.3. Assume we have a function f W Rn � R

C ! R
C which satisfies the

following inequalities for all .x; a/ and .y; b/:

1

C
.
f .x; a/C .1 � 
/f .y; b// � f .
.x; a/C .1 � 
/.y; b//

� C.
f .x; a/C .1 � 
/f .y; b//; (7)

and f .x; 0/ D 0, for all x 2 R
n. Then there exists a constant C 0 such that

1

C 0 a � f .x; a/ � C 0a

Proof. First we check the case where n D 0. Substitute y D 0 and use the fact that
f .0/ D 0 to conclude:

c
f .a/ � f .
a/ � C
f .a/: (8)
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This is true for every 0 � 
 < 1 and a 2 R, so choose a D 1 to get almost-linearity
of f :

c
 � f .
/ � C
: (9)

Note that this is true for 
 � 1, but we can easily conclude it for all 
 by taking
a0 D 
a and applying (8) again. First, rewrite (8) in the form

1

C

� f .a/

f .
a/
� 1

c

:

After substituting a0 D 
a, it becomes:

1

C

� f .a0=
/

f .a0/
� 1

c

:

Now, if a0 D 1, we get what we required:

c



� f .1=
/ � C



:

Replace 1=
 with t > 1 and conclude the proof. To prove the general case, notice
that if x D .x1; x2; : : : xn/, then using the previous case

f .x; a/ D f .
1

2
.2x1; 2x2; : : : 2xn � 1; 0/C 1

2
.0; 0; : : : ; 0; 1; 2a//

� 1

2
Cf .0; 0; : : : ; 1; 2a/ � C 0a

In the same way, we see that f .x; a/ � 1
C 0

a. This completes the proof. ut

3 Stability On the Class of Geometric Convex Functions

3.1 Preservation of sup and Oinf

Since we work with convex functions, taking supremum results in a convex function
in our class. However, infimum of convex functions is not necessarily convex, thus
we use a modified infimum denoted by Oinf, defined as follows:

Oinf
˛
.f˛/ D sup

g

.g 2 C vx0.R
n/ W g � f˛ for each ˛/:

Now we can see how almost order preserving transforms act on sup and Oinf.
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Lemma 3.1. If T is almost order preserving transformation, then:

Qc2T .maxf˛/ � maxTf˛ � QCT .maxf˛/ (10)

QcT . Oinff˛/ � OinfTf˛ � QC2T . Oinff˛/ (11)

Proof. Since T is bijective, we may assume that there exists such a function h such
that: maxTf˛ D QcT h: Hence, for each ˛, Tf˛ � QcT h. Condition (3b) implies
that f˛ � h for all ˛. If we define h0 D maxf˛ , we may write h0 � h. Applying
condition (1a) we conclude that T h0 � QCT h, which means (by definition of T h)
that Qc2T .maxf˛/ � maxTf˛. To get the right hand side, we write that f˛ � h0,
so by condition (1a) we get that Tf˛ � QCT h0. This is true for all ˛, so maxTf˛ �
QCT h0. The proof of inequality (11) is similar. ut

3.2 Preservation of Zero and Infinity

Lemma 3.2. If T is almost order preserving transformation, then T11
f0g D 11

f0g and
T 0 D 0.

Proof. Since 11
f0g is the maximal function on the set C vx0.Rn/, we may write: f �

Qc11
f0g. Using condition (1b), we get Tf � T11

f0g, for every f . Since T is bijective,
T11

f0g must be the maximal function. In the same way T 0 D 0. ut

3.3 Ray-wise-ness

Lemma 3.3. If T W C vx0.Rn/ ! C vx0.Rn/ is an almost order preserving trans-
formation then there exists some bijection ˚ W Sn�1 ! Sn�1 such that a function
supported on the ray RCy is mapped to a function supported on the ray RC˚.y/.

Proof. Let us check that if max.f; h/ D 11
f0g, then max.Tf; Tg/ D 11

f0g. This

follows immediately from the fact that max.Tf; Tg/ � Qc2T .max.f; g// D 11
f0g

according to the previous lemma. The proof of the lemma follows exactly in the
same way as in [4]. ut
Lemma 3.4. Let f 2 C vx0.Rn/ and y 2 Sn�1. Then, .suppTf / \ R

C˚.y/ D
suppT .max.f; 11

RCy
//.

Proof. Notice that T .11
RCy

/ D 1
RC˚.y/. Indeed, the function 11

RCy
is supported on

a ray, and thus must be mapped to a function supported on a ray. In addition, it is the
smallest function on R

Cy which, by the reasoning of Lemma 3.2 must be mapped
to the smallest function on R

C˚.y/.
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By Lemma 3.1 we have

Qc2 max.Tf; 11
RC˚.y/

/ � T .max.f; 11
RCy

// � QC max.Tf; 11
RC˚.y/

/:

Hence, we see that on the ray RC˚.y/, the function Tf is finite if and only if the
function T .max.f; 11

RCy
//. This completes the proof. ut

3.4 Convex Functions on R
C

We have seen that due to the ray-wise-ness, the case of R
C will give us an idea

about the general case. We will state and proof this special case, which is actually
not required for the general one, but is of independent interest.

Theorem 3.5. if T and T �1 are both QC -almost order preserving transforms on the
class of convex geometric functions C vx0.RC/ and T is bijective, then there exist
positive constants ˛1, ˛2, ˇ1, ˇ2 (dependent of QC ) , such that either

for all f 2 C vx0.R
C/, ˇ1f .x=˛2/ � Tf .x/ � ˇ2f .x=˛1/, (12a)

or

for all f 2 C vx0.R
C/, ˛1J f .x=ˇ2/ � Tf .x/ � ˛2J f .x=ˇ1/: (12b)

The proof of this theorem uses a few preliminary constructions and facts which
we introduce and study in Sects. 3.5–3.7.

3.5 Property QP

To study general functions, we need a family of extremal functions which are
easy to deal with and can be used to describe the general case. In the case of
geometric convex functions the family of indicators and linear functions is most
convenient. A property which uniquely defines such a family was introduced in [4]
(property P ). Due to the modified nature of our problem, we introduce a slightly
modified property:

Definition 3.6. We say that a function f satisfies property QP , if there exist no two
functions g; h 2 C vx0.Rn/, such that g � Qc3f , h � Qc3f but max.g; h/ � f .

Note that Definition 3.6 depends on the constant QC .
Obviously, if a function satisfies property P , then it satisfies property QP . This

means that the family of functions which satisfy QP contains all the indicator
functions and linear functions through 0. We will now show that the non-linear
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functions that have property QP cannot differ greatly from the linear ones, unless
they are indicators.

Lemma 3.7. If f has property QP and f is not an indicator, then f 0.0/ > 0.

Proof. Assume otherwise, that is, f 0.0/ D 0. Since f is not an indicator, there
exists a x0 > 0 such that f .x0/ > 0. Define

L.x/ D f .x0/

x0
x;

andL2.x/ WD Qc3L1.x/. Since f 0.0/ D 0, there exists a point x1 such thatL2.x1/ D
f .x1/. Hence, it holds that max.L1; 11

Œ0;x1�
/ � f . Since f has property QP we have

that either 11
Œ0;x1�

� Qc3f or L1 � Qc3f . Clearly, neither of the inequalities holds and

this is a contradiction to the fact that f has property QP . ut
Lemma 3.8. Every function with property QP that is not an indicator can be
bounded by

f 0.0/z � f .z/ � QC3f 0.0/z:

Proof. First note that by Lemma 3.7 f 0.0/ > 0. It is clear that f .z/ is bounded
by L1.z/ WD f 0.0/z from below. Assume that L2.z/ WD QC3L1.z/ intersects f .z/ at
some point x0. This means that L1.z/ intersects Qc3f .z/ at x0. Hence, the derivative
of Qc3f .x/ at x0 is bigger than f 0.0/ (otherwise, they wouldn’t intersect). So there
exists a constant a > f 0.0/ such that La.z/ D az intersects both, f .z/ and Qc3f .z/.
This is a contradiction to property QP (take La and an indicator function to see this).

ut
Lemma 3.9. If a function f with property QP , equals 1 for x � x0 for some x0, it
must be an indicator.

Proof. Assume there exists x1 < x0 such that f .x1/ D c > 0. Then, define two
functions: g.x/ D c

x1
x and h.x/ D 11

Œ0;x1�
. Obviously, g.x/ � Qc3f .x/ and h.x/ �

Qc3f .x/, but max.g; h/ � f , which contradicts f having property QP . ut
From now on, a function f with property QP that is not an indicator, will be called

almost linear function.

3.6 Properties of QP

Lemma 3.10. If T is almost order preserving, and f has property P , then Tf has
property QP .

Proof. Assume that f has property P , but Tf does not have QP . So there exist g; h
such that g � Qc3Tf , h � Qc3Tf , but max.g; h/ � Tf . Since T is bijective, there
exist �; 2 C vx0.Rn/ such that
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g D Qc2T�; h D Qc2T  :

Using Property (10) we write:

QcT .max.�;  // � max.g; h/ � Tf:

Now, applying condition (3a), we conclude that f � max.�;  /. Since f has
property P , then either f � � or f �  . After applying condition (1a), we get
that either Tf � QCT� D QC3g, or Tf � QC3h, which is a contradiction. The same
proof applies for T �1, so T �1 also maps functions with property P , to functions
with property QP . ut
Lemma 3.11. T either maps all indicators to indicators or it maps all indicators
to almost linear functions.

Proof. Assume that the claim is false and there exist two indicators 11
Œ0;x�; 1

1
Œ0;y�

which are mapped to an indicator 11
Œ0;x0� and an almost linear function f , respec-

tively. Assume, without loss of generality, that x < y. Then we know that 11
Œ0;y� �

Qc11
Œ0;x�, which by properties of T implies that f and 11

Œ0;x0� are comparable. But we
know that an almost linear function cannot be comparable to an indicator, and the
proof is complete. ut
Lemma 3.12. T either maps all linear functions to almost linear functions, or it
maps them to the indicators.

Proof. Assume that there exist linear functions la; lb such that T .la/ D 11
Œ0;x� and

T .lb/ D f where f is almost linear. In addition, assume, without loss of generality,
that la < lb . Then, by properties of T we have T .la/ < QCT .lb/, which is equivalent
to 11

Œ0;x� � QCf . But this is a contradiction since indicators and almost linear
functions are not comparable. ut
Lemma 3.13. T cannot map all functions with property P to indicators, and it
cannot map all functions with property P to almost linear functions.

Proof. Assume, all functions are mapped to indicators. Then we may write that
T .11

Œ0;x�/ D 11
Œ0;y� and T .la/ D 11

Œ0;z�. If, without loss of generality, y < z, then
T .la/ � QcT .11

Œ0;x�/. This implies that la and 11
Œ0;z� are comparable, which cannot be.

The other option, is that all functions with property P , are mapped to almost
linear functions: T11

Œ0;x� D f , and T .la/ D g. Since both f and g are almost linear,
there exists a linear function lb such that f � Qclb and g � Qclb . By Lemma 3.10,
we know that the function T �1.lb/ is either almost linear or an indicator. If it is an
indicator then the inequality g � Qclb implies that la � T �1.lb/ (Property (1.5b)).
This is a contradiction as an indicator cannot be comparable to linear function. If it is
almost linear, then the inequality f � Qclb implies that 11

Œ0;x� � T �1.lb/. This is again
a contradiction since almost linear functions cannot be comparable to indicators.
This completes the proof. ut
Lemma 3.14. If T maps linear functions to indicators, T preserves property P .
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Proof. Assume that we are in the case where indicators are mapped to almost-linear
functions, and linear functions are mapped to indicators. First we will show that T
maps the linear functions onto the indicators. If we have a g which is not linear, but
Tg D 11

Œ0;z�, then we can find a linear function ax that intersects g. la is mapped to
some indicator 1Œ0;y�. If y > z then 11

Œ0;y� < Qc11
Œ0;z�, hence g and la are comparable.

This is a contradiction, so g must be linear.
Now we know that the indicators are mapped to almost-linear functions under T .

But T �1 maps property P to QP , so if we restrict it to linear functions, we get only
indicators. So the preimage of every linear function is an indicator. But this also
means that there are no non-linear functions with property QP other than indicators.
The reason is similar: If we have a non-linear function g D T11

Œ0;y�, then intersect it
with some linear function lb . They are not comparable, but the sources are, which is
a contradiction. This ends the proof. ut
Lemma 3.15. If T maps linear functions to indicators, then it is order preserving
on functions that have property P .

Proof. Assume that T .11
Œ0;z�/ D l�.z/ and T .la/ D 11

Œ0;c.a/�. If 11
Œ0;z� < 11

Œ0;z0� (z0 < z),
then 11

Œ0;z� < Qc11
Œ0;z0� and using Property (1.3a) we write �.z/ < �.z0/. So we see that

�.z/ is monotone decreasing and continuous. The same applies for c.a/. ut

3.7 Triangles

Define triangle: Cz;cD max.lc; 11
Œ0;z�/: Using facts shown above, we conclude that:

Qc Cz0;c0� T .Cz;c/ � QC2 Cz0;c0

where z0 D z0.z; c/ and c0 D c0.z; c/. Next, we show that triangles determine every-
thing, in the general setting of C vx0.Rn/. To this end, we will need a definition of
triangle in R

n. Given a vector z and a gradient c, define:

Cz;c .x/ D maxfc xjzj ; 1
1
Œ0;z�g:

Lemma 3.16. Assume that T is an almost order preserving map defined on
C vx0.Rn/, and that there exists B 2 GL.n/ and a constant ˇ such that

Qcˇ CB�1z;d� T .Cz;d / � QCˇ CB�1z;d : (13)

Then, T is almost a variation of identity, in the following sense:

1

C
'.Bx/ � .T '/.x/ � C'.Bx/
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Proof. Any '.x/ 2 C vx0.Rn/ can be written as '.x/ D . Oinfy Cy;'.y//.x/. Hence,
using (3.1) we have .T '/.x/ � QC2. OinfyT .Cy;'.y//.x/. Using assumption (13) we
conclude that

.T '/.x/ � QC3ˇ. Oinf
y
.CB�1y;'.y///.x/ D QC3ˇ. Oinf

z
Cz;'.Bz//.x/ D QC3ˇ'.Bx/:

The other part is concluded in a similar way. ut
Lemma 3.17. Assume that T is an almost order preserving map defined on
C vx0.Rn/, and that there exist B 2 GL.n/ and a constant ˇ such that

Qcˇ C B�1z
d jzj ;

1
jzj

� T .Cz;d / � QCˇ C B�1z
d jzj ;

1
jzj
: (14)

Then, T is almost a variation of J , in the following sense:

1

C
.J '/.Bx/ � .T '/.x/ � C.J '/.Bx/

The proof is similar to Lemma 3.16.

3.8 Proof of Theorem 3.5

3.8.1 The Case of “J”

We stay with the notation of Lemma 3.15. First we deal with the case we identify
with J , i.e linear functions are mapped to indicators and vice versa. Define g D
Oinff11

Œ0;tz�; la=.1�t /g, for some 0 < t < 1. Now, g �Cz;a, but it does not hold for any

a0 < a or z0 > z. Applying T to the last inequality we get that T .g/ � QCT .Cz;a/.
Using Property (11):

Qc2 Oinf.11
Œ0;c.a=.1�t /�; l�.tz// � T .g/ � QC Oinf.11

Œ0;c.a=.1�t /�; l�.tz//; (15)

and using (10) for the triangle:

Qc Cc.a/;�.z/� T .Cz;a/ � QC2 Cc.a/;�.z/ : (16)

Plugging (15) and (16) into our inequality, we conclude that

Qc2 Oinf.11
Œ0;c.a=.1�t /�; l�.tz// � QC2 Cc.a/;�.z/; (17)
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which means that

.c.a/ � c.a=.1 � t///�.tz/ � QC4c.a/�.z/: (18)

We know that g —Cz;a0 for a0 < a. This means that T .g/ — QcT .Cz;a0/. Using the
right-hand side of (15) and the left hand side of (16) we conclude

Qc3c.a0/�.z/ � .c.a/ � c.a=.1 � t///�.tz/: (19)

This is true for every a0 < a, so using continuity, we may right the above with a
instead. Inequalities (18) and (19) can be rewritten together:

Qc3 c.a/

c.a/ � c.a=.1 � t// � �.tz/

�.z/
� QC4 c.a/

c.a/ � c.a=.1 � t// : (20)

Choose z D 1 to get:

Qc3 c.a/

c.a/ � c.a=.1 � t//
� �.t/

�.1/
� QC4 c.a/

c.a/ � c.a=.1 � t//
: (21)

Combining (20) and (21), we come to the inequality

c�.t/�.z/ � �.tz/ � C�.t/�.z/; (22)

for some constant C and c D C�1. To solve this, substitue t D exp˛1 and z D
exp˛2, and define h.s/ D log.�.es//. Then after applying log, (22) becomes:

� C 0 C h.˛1/C h.˛2/ � h.˛1 C ˛2/ � C 0 C h.˛1/C h.˛2/; (23)

or equivalently:
jh.˛1 C ˛2/ � h.˛1/� h.˛2/j � C 0: (24)

The Hyers–Ulam theorem (2.1), implies that there exists a linear g.˛/ D �˛, such
that jh.˛/ � g.˛/j < C 0. This means that j log.�.es// � log.e�s/j and it is easy to
check that this implies the following on �:

c00z� � �.z/ � C 00z� ; c00 D 1

C 00 (25)

Notice that � < 0, since we know that � is decreasing. Let use now proceed to
estimate c.a/. Notice that all the arguments applied so far can be reused for T �1,
hence there exists � 0 < 0 and c0z� 0 �  .z/ � C 0z� 0

such that T �111
Œ0;z� D l .z/. We

know that T la D 11
Œ0;c.a/�, or T �111

Œ0;c.a/� D la, which is equivalent. But we have just

shown that T �111
Œ0;c.a/� D l .c.a//. So,

c0.c.a//� 0 � a D  .c.a// � C 0.c.a//� 0

: (26)
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Rewriting (26) gives
c0a1=� 0 � c.a/ � C 0a1=� 0

: (27)

Using (18), (19) and the estimate we have for �.z/, we write:

c002 Qc3t�� � Qc3 �.z/
�.tz/

� c.a/ � c.a=.1 � t//
c.a/

� QC4 �.z/

�.tz/
� C 002 QC4t�� ; (28)

which is equivalent to

1 � C 000t�� � c.a=.1 � t//

c.a/
� 1 � c000t�� : (29)

Choose a D 1 to get the following:

1 � C 000t�� � c.1=.1 � t//
c.1/

� 1 � c000t�� : (30)

Using the bounds we got in (27), we see that � D � 0 D �1. To summarize, there
exist positive constants ˛1, ˛2 and ˇ1, ˇ2, such that

˛1

z
� �.z/ � ˛2

z
;

ˇ1

a
� c.a/ � ˇ2

a
(31)

To conclude the proof, notice that we have:

T .Cz;a/ � QC2 Cˇ1=a;˛2=zD QC2J .Cz=˛2;a=ˇ1 /: (32)

Also, notice that f .x/ D . Oinfy Cy;f .y//.x/, so

.Tf /.x/ � QC OinfT .Cy;f .y// � QC3 Oinf.Cˇ1=f .y/;˛2=y/ D ˛2 QC3 OinfJ .Cy;f .y/=ˇ1 /

D ˛2 QC3J . Oinf Cy;f .y/=ˇ1 / D QC3˛2J .
1

ˇ1
f .x// D C 0J .f .x=ˇ1/:

The same applies for the lower bound.

3.8.2 The Case of “I”

In the case T maps indicators to themselves, we do not know that it preserves
property P . Assume now that T11

Œ0;z� D 11
Œ0;�.z/�. We also know, due to Lemma 3.8,

that if T .la/ D f , then f 0.0/x � f .x/ � QC3f 0.0/x. If we define c.a/ D f 0.0/,
then, lc.a/ � T .la/ � QC3lc.a/. Now, we can estimate how triangles are mapped:
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T .Cz;a/ � QC2 max.11
Œ0;�.z/�; T .la// � QC5 C�.z/;c.a/; (33)

and
T .Cz;a/ � Qcmax.11

Œ0;�.z/�; T .la// � Qc C�.z/;c.a/ : (34)

Now, let us rewrite the bounds for g, from the previous case:

T .g/ � QC Oinf.11
Œ0;�.z/�; T .la=.1�t /// � QC4 Oinf.11

Œ0;�.z/�; lc.a=.1�t //; (35)

and
T .g/ � Qc2 Oinf.11

Œ0;�.z/�; lc.a=.1�t //: (36)

Using the fact that T .g/ � QCT .Cz;a/, we get a similar inequality:

.�.z/� �.tz//c.a=.1 � t// � QC7�.z/c.a/; (37)

and using the same methods as before (this time taking z0 > z, since we only know
that � is continuous), we get the lower bound:

.�.z/� �.tz//c.a=.1 � t// � Qc6�.z/c.a/: (38)

We can see that we have the same inequalities we had in the previous case, but with
� and c interchanged, and we come to the inequality

1

C1
c.1=.1 � t// � c.a=.1 � t//

c.a/
� C1c.1=.1 � t//: (39)

After substituting s D 1=.1� t/, we come to an inequality we already know how to
solve:

c1c.s/c.a/ � c.as/ � C1c.s/c.a/: (40)

Using Hyers–Ulam thorem again (2.1), we conclude again that ct� � c.t/ � C t� ,
for some � . To find bounds for �, substitute this in the original inequality, and
conclude that ˛1z � �.z/ � ˛2z. After we have this estimate it is easy to conclude
that � D 1.

To conclude the proof, notice that we have:

T .Cz;a/ � QC5 C˛1z;ˇ2a (41)

Also, notice that f .x/ D . Oinfy Cy;f .y//(x), so

.Tf /.x/ � QC OinfT .Cy;f .y// � QC6 Oinf C˛1y;ˇ2f .y/D QC6ˇ2f .x=˛1/:

The same applies for the lower bound.
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3.9 Completing the Proof in R
n

Recall, that we know there exists a function ˚ W Sn�1 ! Sn�1 (1-1 and onto), such
that any function supported on R

Cy is mapped to a function supported on R
C˚.y/.

Let us define for each y 2 Sn�1 a number j.y/ that equals 0 if T , restricted to R
Cy

behaves like the identity (indicators are mapped to indicators) and 1 if T , restricted
to R

Cy behaves like J (indicators are mapped to linear functions and vice versa).

Lemma 3.18. Denote S0 D fy 2 Sn�1 W j.y/ D 0g, S1 D fy 2 Sn�1 W j.y/ D 1g.
Then, either S0 D Sn�1, or S1 D Sn�1.

Proof. Let us see that Si ; ˚.Si/ are convex. To see this, consider the function f D
11
B whereB is the n-dimensional unit ball. Let x 2 S1. By Lemma 3.4 we know that

the support of Tf on R
C˚.x/ is the same as the support of T .max.f; 11

RCx
//, and

the latter is RC˚.x/. Since Tf is a convex function with a convex support, we get
that for every x; y 2 S1, the support of Tf must contain every ray R

C˚.z/ such that
˚.z/ is contained in ˚.x/ _ ˚.y/. Hence, ˚.S1/ is convex. Choosing g.x/ D jxj,
by the same argument, we get that ˚.S0/ is also convex. Since T and T �1 have the
same properties we may conclude that Si are also convex.

Notice that S0[S1 D Sn�1, so either one of the sets is empty and we are done, or
S0 and S1 are both half-spheres, and likewise ˚.Si /. In this case let us check how T
acts on the function f . Denote by H1 the half-space

S
y2˚.S1/ R

Cy, and by H0 the
half-space

S
y2˚.S0/ R

Cy. We know that for y 2 S1, RC˚.y/ � supp.Tf /. Hence,
supp.Tf / contains H1. This means that the support of Tf jH0 cannot be bounded.
But then, we could choose a convex, bounded set K � H0 (containing zero in the
interior of the boundary) and consider the pre-image of 11

K . Since T �1 preserves
order on indicators we know that the support M of T �1.11

K / will be contained in
the unit ball B . Consider the function h D 11

M_.�M/. By the preceding argument
we know that supp.T h/ contains H1 and supp.T h/ \ H0 is bounded, which is a
contradiction to the fact that supp.T h/ is convex. ut

Now we proceed to analyze the behavior of T in each case.
The case of j 	 0. Define ' W Rn ! R

n by T11
Œ0;x� D 11

Œ0;'.x/�. We know that

T preserves sup and Oinf on indicators with equality (compare to Lemma 3.1), thus
for any convex body K with 0 2 K , T11

K D 11
'.K/, and '.K/ is also convex. The

point map ' therefore induces an order preserving isomorphism on Kn
0 , the class of

convex bodies containing the origin, and by known results (see [2]), this implies '
is a linear.

Take two triangles C1;C2 with bases x; x0 and heights a; a0 accordingly. The
largest triangle C
 which is smaller than Oinf.C1;C2/ with the base 
xC .1� 
/x0
has the height 
aC .1�
/a0. Denote by h.x; a/ the height of the maximal triangle
which bounds T .C1/ from below. We have shown before that QC3h.x; a/ will be the
height of the triangle that bounds T .C1/ from above. Since T .C
/ � QC2 Oinf.T C1;

T C2/, we may write (using Lemma 3.1):

h.
.x; a/C .1 � 
/.x0; a0// � QC7.
h.x; a/C .1 � 
/h.x0; a0//:
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Notice that for a given x, h satisfies conditions of Lemma 2.2. This is verified
by choosing a0 D 1. Applying this lemma we know that for every x there exists
a monotone function !x.a/ such that Qc!x.a/ � h.x; a/ � !x.a/. We know that
if we increase the height of the triangle C
 by some � > 0 (denote this triangle
by C�), then T .C�/ — Qc Oinf.T C1; T C2/. Hence, by Lemma 3.1 combined with
properties of T , we have

h.
.x; a/C .1 � 
/.x0; a0/C .0; �// � Qc5.
h.x; a/C .1 � 
/h.x0; a0//: (42)

We would like now to say that the inequality holds when � ! 0, but we don’t know
that h is continuous. We do know however, that in the worst case, the right hand
side of (42) is multiplied by QC after taking the limit (due to existence of !x which
is monotone and continuous). Hence

h.
.x; a/C .1 � 
/.x0; a0// � Qc6.
h.x; a/C .1 � 
/h.x0; a0//:

Applying Lemma 2.3 on h.x; a/, we conclude that there exists a constant ˇ such
that

Qcˇa � h.x; a/ � QCˇa:
To sum it up, we know that for a triangle f , Qc f̌ ı A � T .f / � QC f̌ ı A. Using
Lemma 3.16 we conclude the same inequality for every f 2 C vx0.Rn/.

The case of j 	 1. In this case we know that lines are mapped to indicators and
vice-versa. Notice, that we cannot compose T with J and apply the previous case,
since J ı T would not necessarily satisfy the conditions of almost order preserving
transform. However, we do know that in this case J ı T is order preserving on
the extremal family of indicators and rays. Thus, as explained above (the case of
j 	 0), .J ı T /11

Œ0;z� D 11
Œ0;Bz� for some B 2 GL.n/. Composing both sides with

J (recall that J is an involution), we see that T sends the indicator 11
Œ0;z� to a ray

in direction Bz. Due to the ray-wise-ness of the problem we may conclude that any
function supported on a ray in direction z is mapped to a function supported by the
ray R

CBz(˚.z/ D Bz).
Take two indicators I1 D 11

Œ0;z� and I2 D 11
Œ0;z0� and define the function g D

Oinf.I1; I2/. The indicator I
 D 11
Œ0;
zC.1�
/z0� is bigger then g, but for every � > 0

the indicator I� D 11
Œ0;.1C�/.
zC.1�
/z0/� is not comparable to g. Since T is order

preserving on indicators and rays, it preserves the Oinf, so Oinf.TI1; TI2/ D Tg �
TI
, but the same is not true for any TI �. Define .z/ by the way T maps indicators
to lines: T11

Œ0;z� D lBz=jzj; .z/. Hence the ray TI
 is comparable to the sector Tg that
is spanned by the rays TI1; TI2. Since the same is not true for T�, and is monotone
in every direction, we conclude that Tg is a linear combination of TI1, TI2. Using
this fact we come to the following property of  :

 .
z C .1 � 
/z0/ D 
jzj
j
z C .1� 
/z0j .z/C .1 � 
/jz0j

j
z C .1 � 
/z0j .z
0/: (43)
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Define the function h.z/ WD jzj .z/. It follows that h.z/ satisfies: h.
zC.1�
/z0/ D

h.z/ C .1 � 
/h.z0/, from which it follows that h is linear: h.z/ D< u0; z > Cˇ
for some vector u0 2 R

n and a constant ˇ. Since  .z/ cannot be zero, u0 D 0, it
means that  .z/ D ˇ=jzj.

Now, define �.z; a/ by T lz;a D 11
Œ0;Bz�.z;a/=jzj�. Finding �.z; a/ can be accom-

plished directly as with  , but it is simpler to notice that T and T �1 have the same
properties. On one hand we know that T �111

Œ0;Bz=jzj�.z;a/� D lz;a. On the other hand,

applying the same arguments used for  , we have T �111
Œ0;Bz=jzj�.z;a/� D lz=jzj;�=�.z;a/,

for some � > 0. Thus,

a D �

�.z; a/
;

or equivalently, �.z; a/ D �=a. Using Lemma 3.17 we conclude the theorem.

To show the dual statement (1.8), apply A to T , and use the homogeneity of A to
conclude that T is almost order preserving. Now we know that AT is either almost-
J or almost identity. Applying A again, and using the fact that it is an involution
and that AJ D L we finish the proof.

Remark 3.19. In case n � 3, we could use a shorter proof to see that ˚ is linear.
Notice that ˚ sends cones to cones, and preserves intersections and convex-hulls
of unions of cones. This is shown easily by using properties of sup and Oinf from
Lemma 3.1: Define functions which are zero on the cone and 1 everywhere else.
The intersection is given by sup of the functions, and the convex hull is given
by Oinf. Observe that the functions have values of 0 and 1 only, the inequalities in
Lemma 3.1 become equalities, and the property holds. Using Schneider’s theorem
[8], we conclude that˚ is linear. This means that˚.x/ D Bx for someB 2 GL.n/.

4 Stability on the Class of Non-negative Convex Functions

We now proceed to the proof of theorem (1.9). Again, like in the previous case,
we will need a family of extremal functions and some properties of their behaviour
under our transform. The extremal family of function we will use in the case are
what we call here “delta” functionsD� C c, mentioned before.

4.1 Preservation of Osup and Oinf

Clearly, properties (10) and (11) hold in this case too, and the proof of Lemma 3.1
can be applied verbatim.
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4.2 Behaviour of “Delta” Functions

4.2.1 Delta Functions are Mapped to Delta Functions

We will show that T maps the class of “delta” functions fD� C cg to itself and does
so bijectively . Assume T .D� C c/ D f . We want to show that the support of f
has exactly one point. Assume there exist two functions g and h such that g � f

and h � f . Due to surjectivity we may write: g D QcT ' and h D QcT  . Hence,

T .D� C c/ � QcT ' (44a)

T .D� C c/ � QcT  : (44b)

Condition (3b) now implies that D� C c � ' and D� C c �  . This means that
both ' and  , are of the form D� C ˛i . Thus, they are comparable, and without
loss of generality we may assume that ' >  . Applying condition (1a), we get that
h � QCg. But, if the support of f has two or more points, we can easily find two
functions greater than f , but not comparable up to QC . So we conclude that f is
supported at one point only, and has the formD� C c0.

4.2.2 Only Delta Functions are Mapped to Delta Functions

Now assume that Tf D D� C c and that the support of f has at least two points x0
and x1, with values c0 and c1. Then Dx0 C c0 � f and Dx1 C c1 � f . Applying
condition (1a), we get QCT .Dxi C ci / � D� C c. According to the previous lemma
T .Dxi C ci / D Dyi C ai , but they must be comparable (since they are greater than
D� C c), so y1 D y2 D � . But this also implies that the sources are comparable, up
to a constant QC , hence x1 D x2.

4.2.3 Delta Functions are Mapped in Fibres

Since D� C c > D� , we get that T .D�/ � QCT .D� C c/ D D� 0 C c0. We know
that T .D�/ D D' C ˛. So D' C ˛ � D� 0 C c0, which means that ' D ˛ and
T .D� C c/ D T .D�/ C c00. We see that all the delta functions on the fibre x D �

are mapped to delta functions on the fiber T .D�/.

4.3 The Mapping Rule forD� C c

Assume that the delta functions are mapped by the rule T .D� C c/ D D�.�/ C
 .�; c/. Notice that due to the property of mapping in fibres, � does not depend
on c. Now we analyze the behavior of �.�/. TakeD�0 Cc0 andD�1 Cc1, and define
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g D Oinf.D�0Cc0;D�1Cc1/. Consider � D 
�0C.1�
/�1, and c D 
c0C.1�
/c1.
Obviously g � D� C c, and this is not true for any D� C c0 where c0 < c. Apply
Property (1a) and use (11) to write:

Qc2 Oinf.D�.�0/ C  .�0; c0/;D�.�1/ C  .�1; c1// � T .g/ � QCT .D� C c/

D D�.�/ C QC .�; c/:

This inequality implies that �.�/ is on the interval Œ�.�0/; �.�1/�, since otherwise
T .g/ and QCT .D� C c/ would not be comparable. So � W Rn ! R

n sends intervals
to intervals, hence it must be affine (see [2]). Thus, there exists A 2 GL.n/ and
b 2 Rn such that �.x/ D Ax C b.

We know that according to properties (1a) and (1b), for a given � ,  satisfies
(20) and (21). Applying Lemma 2.2 we find a monotone function !� that satisfies
the following:

Qc!�.t/ �  .�; t/ � !�.t/:

If c0 < c, then g — D� C c, and Tg — Qc.D�.�/ C  .c0//. Hence by Property (11)
QC Oinf.D�.�0/ C  .�0; c0/;D�.�1/ C  .�1; 2c1// — Qc2.D�.�/ C !�.c

0//. Since !� is
monotone and the last statement applies for all c0 < c, we can conclude that

 .�; c/ � !�.c/ � QC3.
. .�0; c0/C .1 � 
/ .�1; c1//:

But, on the other hand, we have

 .�; c/ � Qc3.
. .�0; c0/C .1 � 
/ .�1; c1//:

So, we know that for every .x; c/ and .y; d/ in R
n � R

C,  satisfies the following:

c.
 .x; c/ C .1 � 
/ .y; d// �  .
.x; c/C .1 � 
/.y; d//
� C.
 .x; c/C .1 � 
/ .y; d//; (45)

and  .x; 0/ D 0.

4.4 Proving Stability

According to Lemma 2.3, we know that there exists a constant such that Qcˇd �
 .�; d/ � QCˇd . Recall also that there exists A 2 GL.n/ and a vector b, such that
T .D�/ D DA�Cb . This means thatDA�Cb C Qcˇd � T .D� Cd/ � DA�Cb C QCˇd .
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We know that any function f .x/ 2 C vxC.Rn/ can be described by “Delta”
functions: f .x/ D . Oinf.Dy C f .y///.x/. So,

.Tf /.x/ D T . Oinf
y
.Dy C f .y///.x/ � QC. Oinf

y
T .Dy C f .y///.x/

� QC. Oinf
y
DAyCb C C f̌ .y//.x/ D QC. f̌ .A�1.x � b//

The lower bound is obtained in the same way, so we come to:

Qc f̌ .A�1.x � b// � .Tf /.x/ � QC f̌ .A�1.x � b//;

as required.

Acknowledgements The authors would like to express their sincere appreciation to Prof. Vitali
Milman and Prof. Shiri Artstein-Avidan for their support, advice and discussions. Dan Florentin
was Partially supported by the Israel Science Foundation Grant 865/07. Alexander Segal was
Partially supported by the Israel Science Foundation Grant 387/09.

References

1. S. Artstein-Avidan, V. Milman, A new duality transform, C. R. Acad. Sci. Paris 346, 1143–1148
(2008)

2. S. Artstein-Avidan, V. Milman, The concept of duality for measure projections of convex bodies.
J. Funct. Anal. 254, 2648–2666 (2008)

3. S. Artstein-Avidan, V. Milman, The concept of duality in asymptotic geometric analysis, and
the characterization of the Legendre transform. Ann. Math. 169(2), 661–674 (2009)

4. S. Artstein-Avidan, V. Milman, Hidden structures in the class of convex functions and a new
duality transform. J. Eur. Math. Soc. 13, 975–1004

5. S. Artstein-Avidan, V. Milman, Stability results for some classical convexity operations. To
appear in Advances in Geometry

6. D.H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27,
222–224 (1941)

7. S.S. Kutateladze, A.M. Rubinov, The Minkowski Duality and Its Applications (Russian) (Nauka,
Novosibirsk, 1976)

8. R. Schneider, The endomorphisms of the lattice of closed convex cones. Beitr. Algebra Geom.
49, 541–547 (2008)

9. S.M. Ulam, A Collection of Mathematical Problems (Interscience Publ., New York, 1960)



On the Distribution of the  2-Norm of Linear
Functionals on Isotropic Convex Bodies

Apostolos Giannopoulos, Grigoris Paouris, and Petros Valettas

Abstract It is known that every isotropic convex body K in R
n has a “subgaus-

sian” direction with constant r DO.
p

logn/. This follows from the upper bound

j�2.K/j1=n 6 c
p

log np
n
LK for the volume of the body �2.K/ with support function

h�2.K/.�/ WD sup26q6n
kh�;�ikqp

q
. The approach in all the related works does not

provide estimates on the measure of directions satisfying a  2-estimate with a given
constant r . We introduce the function  K.t/ WD �.f� 2 Sn�1 W h�2.K/.�/ 6
ct
p

lognLKg/ and we discuss lower bounds for  K.t/, t > 1. Information on the
distribution of the  2-norm of linear functionals is closely related to the problem of
bounding from above the mean width of isotropic convex bodies.

1 Introduction

A convex body K in R
n is called isotropic if it has volume 1, it is centered (i.e. it

has its center of mass at the origin), and there exists a constant LK > 0 such that

Z
K

hx; �i2dx D L2K (1)

for every � 2 Sn�1. It is known (see [19]) that for every convex body K in
R
n there exists an invertible affine transformation T such that T .K/ is isotropic.
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Moreover, this isotropic position of K is uniquely determined up to orthogonal
transformations; therefore, if we define LK D L QK where QK is an isotropic affine
image of K , then LK is well defined for the affine class of K.

A central question in asymptotic convex geometry asks if there exists an absolute
constant C > 0 such that LK 6 C for every convex body K . Bourgain [4] proved
that LK 6 c 4

p
n logn for every symmetric convex body K in R

n. The best known
general estimate is currently LK 6 c 4

p
n; this was proved by Klartag in [11]—see

also [13].
Let K be a centered convex body of volume 1 in R

n. We say that � 2 Sn�1 is a
subgaussian direction for K with constant r > 0 if kh�; �ik 2 6 rkh�; �ik2, where

kf k ˛ D inf

�
t > 0 W

Z
K

exp ..jf .x/j=t/˛/ dx 6 2

�
; ˛ 2 Œ1; 2�: (2)

V. Milman asked if every centered convex body K has at least one “subgaussian”
direction (with constant r D O.1/). By the formulation of the problem, it is clear
that one can work within the class of isotropic convex bodies. Affirmative answers
have been given in some special cases. Bobkov and Nazarov (see [2,3]) proved that
if K is an isotropic 1-unconditional convex body, then kh�; �ik 2 6 c

p
nk�k1 for

every � 2 Sn�1; a direct consequence is that the diagonal direction is a subgaussian
direction with constantO.1/. In [23] it is proved that every zonoid has a subgaussian
direction with a uniformly bounded constant. Another partial result was obtained in
[24]: if K is isotropic and K � .�

p
nLK/B

n
2 for some � > 0, then

�


� 2 Sn�1 W kh�; �ik 2 > c1� tLK

�
6 exp.�c2

p
nt2=�/ (3)

for every t > 1, where � is the rotationally invariant probability measure on Sn�1
and c1; c2 > 0 are absolute constants.

The first general answer to the question was given by Klartag who proved in
[12] that every isotropic convex bodyK in R

n has a “subgaussian” direction with a
constant which is logarithmic in the dimension. An alternative proof with a slightly
better estimate was given in [6]. The best known estimate, which appears in [7],
follows from an upper bound for the volume of the body �2.K/ with support
function

h�2.K/.�/ WD sup
26q6n

kh�; �ikqp
q

: (4)

It is known that kh�; �ik 2 ' sup26q6n
kh�;�ikqp

q
, and hence, h�2.K/.�/ ' kh�; �ik 2 .

The main result in [7] states that

c1p
n
LK 6 j�2.K/j1=n 6

c2
p

lognp
n

LK; (5)
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where c1; c2 > 0 are absolute constants. A direct consequence of the right hand
side inequality in (5) is the existence of subgaussian directions for K with constant
r D O.

p
logn/. With a small amount of extra work, one can also show that if K is

a centered convex body of volume 1 in R
n, then there exists � 2 Sn�1 such that

jfx 2 K W jhx; �ij > ctkh�; �ik2gj 6 e
� t2

log .tC1/ (6)

for all t > 1, where c > 0 is an absolute constant.
The approach in [6,7,12] does not provide estimates on the measure of directions

for which an isotropic convex body satisfies a  2-estimate with a given constant r .
Klartag obtains some information on this question, but for a different position ofK .
More precisely, in [12] he proves that ifK is a centered convex body of volume 1 in
R
n then, there exists T 2 SL.n/ such that the body K1 D T .K/ has the following

property: there exists A � Sn�1 with measure �.A/ > 4
5

such that, for every � 2 A
and every t > 1,

jfx 2 K1 W jhx; �ij > ctkh�; �ik2gj 6 e
� ct2

log2 n log5 .tC1/ (7)

In this result, K1 is the `-position of K (this is the position of the body which
essentially minimizes its mean width; see [27]). The first aim of this note is to pose
the problem of the distribution of the  2-norm of linear functionals on isotropic
convex bodies and to provide some first measure estimates. To this end, we introduce
the function

 K.t/ WD �
�
f� 2 Sn�1 W h�2.K/.�/ 6 ct

p
lognLKg

	
: (8)

The problem is to give lower bounds for K.t/, t > 1. We present a general estimate
in Sect. 4:

Theorem 1.1. Let K be an isotropic convex body in R
n. For every t > 1 we have

 K.t/ > exp.�cn=t2/; (9)

where c > 0 is an absolute constant.

For the proof of Theorem 1.1 we first obtain, for every 1 6 k 6 n, some
information on the 2-behavior of directions in an arbitrary k-dimensional subspace
of Rn:

Theorem 1.2. Let K be an isotropic convex body in R
n.

(i) For every log2 n 6 k 6 n= logn and every F 2 Gn;k there exists � 2 SF such
that

kh�; �ik 2 6 C
p
n=k LK; (10)
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(ii) For every 1 6 k 6 log2 n and every F 2 Gn;k there exists � 2 SF such that

kh�; �ik 2 6 C
p
n=k

p
log 2k LK; (11)

(iii) For every n= logn 6 k 6 n and every F 2 Gn;k there exists � 2 SF such that

kh�; �ik 2 6 C
p

lognLK; (12)

where C > 0 is an absolute constant.

It is known (for example, see [10]) that every isotropic convex body K is
contained in Œ.n C 1/LK�B

n
2 . This implies that the  2-norm is Lipschitz with

constantO.
p
nLK/. Then, Theorem 1.2 is combined with a simple argument which

is based on the fact that the  2-norm is stable on a spherical cap of the appropriate
radius.

Note that  K.t/ D 1 if t > c
p
n= logn. Therefore, the bound of Theorem 1.1

is of some interest only when 1 6 t 6 c
p
n= logn. Actually, if t � c 4

p
n then we

have much better information. In Sect. 5 we give some estimates on the mean width
of the Lq–centroid bodies of K and of �2.K/; as a consequence, we get:

Proposition 1.3. Let K be an isotropic convex body in R
n. For every t >

c1
4
p
n=
p

logn one has

 K.t/ > 1 � e�c2t2 log n; (13)

where c1; c2 > 0 are absolute constants.

Deeper understanding of the function  K.t/ would have important applications.
The strength of the available information can be measured on the problem of
bounding from above the mean width of isotropic convex bodies. From the inclusion
K � Œ.nC 1/LK�B

n
2 , one has the obvious bound w.K/ 6 cnLK . However, a better

estimate is always possible: for every isotropic convex bodyK in R
n one has

w.K/ 6 cn3=4LK; (14)

where c > 0 is an absolute constant. There are several approaches that lead to
the estimate (14). The first one appeared in the PhD Thesis of Hartzoulaki [9] and
was based on a result from [5] regarding the mean width of a convex body under
assumptions on the regularity of its covering numbers. The second one is more
recent and is due to Pivovarov [28]; it relates the question to the geometry of random
polytopes with vertices independently and uniformly distributed inK and makes use
of the concentration inequality of [25]. A third—very direct—proof of this bound
can be based on the “theory of Lq-centroid bodies” which was developed by the
second named author (see Sect. 5). In Sect. 6 we propose one more approach, which
can exploit our knowledge on  K.t/.
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2 Background Material

2.1 Notation

We work in R
n, which is equipped with a Euclidean structure h�; �i. We denote

by k � k2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean unit

ball, and Sn�1 for the unit sphere. Volume is denoted by j � j. We write !n for
the volume of Bn

2 and � for the rotationally invariant probability measure on
Sn�1. The Grassmann manifoldGn;k of k-dimensional subspaces of Rn is equipped
with the Haar probability measure �n;k . Let k 6 n and F 2 Gn;k . We will denote
by PF the orthogonal projection from R

n onto F . We also define BF WD Bn
2 \ F

and SF WD Sn�1 \ F .
The letters c; c0; c1; c2 etc. denote absolute positive constants which may change

from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1; c2 > 0 such that c1a 6 b 6 c2a. Also if K;L � R

n we will write
K ' L if there exist absolute constants c1; c2 > 0 such that c1K � L � c2K .

2.2 Convex Bodies

A convex body in R
n is a compact convex subset C of Rn with non-empty interior.

We say thatC is symmetric if x 2 C implies that �x 2 C . We say thatC is centered
if it has center of mass at the origin, i.e.

R
C

hx; �i dx D 0 for every � 2 Sn�1. The
support function of a convex body C is defined by

hC .y/ D maxfhx; yi W x 2 C g; (15)

and the mean width of C is

w.C / D
Z
Sn�1

hC .�/�.d�/: (16)

For each �1 < p < 1, p ¤ 0, we define the p-mean width of C by

wp.C / D
�Z

Sn�1

h
p
C .�/�.d�/

�1=p
: (17)

The radius of C is the quantity R.C/ D maxfkxk2 W x 2 C g and, if the origin is an
interior point of C , the polar body C ı of C is

C ı WD fy 2 R
n W hx; yi 6 1 for all x 2 C g: (18)
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A centered convex body C is called almost isotropic if C has volume one and
C ' T .C / where T .C / is an isotropic linear transformation of C . Finally, we write
C for the homothetic image of volume 1 of a convex bodyC � R

n, i.e. C WD C

jC j1=n .

2.3 Lq-Centroid Bodies

Let K be a convex body of volume 1 in R
n. For every q > 1 and y 2 R

n we define

hZq.K/.y/ WD
�Z

K

jhx; yijqdx

�1=q
: (19)

We define the Lq-centroid body Zq.K/ of K to be the centrally symmetric
convex set with support function hZq.K/. Note that K is isotropic if and only if
Z2.K/DLKB

n
2 . It is clear that Z1.K/ � Zp.K/ � Zq.K/ � Z1.K/ for

every 1 6 p 6 q 6 1, where Z1.K/ D convfK;�Kg. If T 2 SL.n/ then
Zp.T .K// D T .Zp.K//. Moreover, as a consequence of Borell’s lemma (see [20,
Appendix III]), one can check that

Zq.K/ � cqZ2.K/ (20)

for every q > 2 and, more generally,

Zq.K/ � c
q

p
Zp.K/ (21)

for all 1 6 p < q, where c > 1 is an absolute constant. Also, if K is centered, then

Zq.K/ � c1 K (22)

for all q > n, where c1 > 0 is an absolute constant.

2.4 The Parameter k�.C /

Let C be a symmetric convex body in R
n. We write k � kC for the norm induced on

R
n by C . We also define k�.C / as the largest positive integer k � n for which the

measure of F 2 Gn;k for which 1
2
w.C /BF � PF .C / � 2w.C /BF is greater than

n
nCk . The parameter k�.C / is determined, up to an absolute constant, by the mean
width and the radius of C : There exist c1; c2 > 0 such that

c1n
w.C /2

R.C /2
� k�.C / � c2n

w.C /2

R.C /2
(23)
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for every symmetric convex bodyC in R
n. The lower bound follows from Milman’s

proof of Dvoretzky’s theorem (see [18]) and the upper bound was proved in [21].
The q-mean width wq.C / is equivalent to w.C / as long as q � k�.C /. As Litvak

et al. prove in [16], there exist c1; c2; c3 > 0 such that for every symmetric convex
body C in R

n we have:

1. If 1 � q � k�.C / then w.C / � wq.C / � c1w.C /.
2. If k�.C / � q � n then c2

p
q=nR.C / � wq.C / � c3

p
q=nR.C /.

2.5 Moments of the Euclidean Norm

For every q > �n, q ¤ 0, we define the quantities Iq.K/ by

Iq.K/ WD
�Z

K

kxkq2 dx

�1=q
: (24)

In [26] and [25] it is proved that for every 1 � q � n=2,

I�q.K/ '
p
n=q w�q.Zq.K// (25)

and

Iq.K/ ' p
n=q wq.Zq.K//: (26)

We define

q�.K/ WD maxfk � n W k�.Zk.K// � kg: (27)

Then, the main result of [26] states that, for every centered convex body K of
volume 1 in R

n, one has

I�q.K/ ' Iq.K/ (28)

for every 1 � q � q�.K/. In particular, for all q � q�.K/ one has Iq.K/ �
CI2.K/, where C > 0 is an absolute constant.

If K is isotropic, one can check that q�.K/ � c
p
n, where c > 0 is an absolute

constant (for a proof, see [25]). Therefore,

Iq.K/ � C
p
nLK for every q � p

n: (29)

In particular, from (26) and (29) we see that, for all q 6
p
n,

w.Zq.K// ' wq.Zq.K// ' p
qLK: (30)
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2.6 The Parameter d�.C /

Let C be a symmetric convex body in R
n. For every ı � 1 we define

d�.C; ı/ D maxfq � 1 W w.C / � ıw�q.C /g: (31)

It was proved in [14, 15] that

k�.C / � cd�.C; 2/ (32)

2.7 Keith Ball’s Bodies

For every k-dimensional subspaceF of Rn we denote byE the orthogonal subspace
of F . For every � 2 F n f0g we define EC.�/ D fx 2 spanfE; �g W hx; �i � 0g.
K. Ball (see [1, 19]) proved that, if K is a centered convex body of volume 1 in R

n

then, for every q > 0, the function

� 7! k�k1C
q

qC1

2

�Z
K\EC.�/

hx; �iqdx

�� 1
qC1

(33)

is the gauge function of a convex body Bq.K;F / on F . A basic identity from [25]
states that for every F 2 Gn;k and every q > 1 we have that

PF .Zq.K// D
�
k C q

2

�1=q
jBkCq�1.K; F /j1=kC1=qZq.BkCq�1.K; F //: (34)

It is a simple consequence of Fubini’s theorem that if K is isotropic then
BkC1.K; F / is almost isotropic. Moreover, using (34) one can check that

c1
k

k C q

Zq.BkC1.K; F //
LBkC1.K;F /

� PF .Zq.K//

LK
� c2

k C q

k

Zq.BkC1.K; F //
LBkC1.K;F /

(35)

for all 1 6 k; q 6 n. In particular, for all q 6 k we have

Zq.BkC1.K; F //
LBkC1.K;F /

' PF .Zq.K//

LK
: (36)
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2.8 Covering Numbers

Recall that if A and B are convex bodies in R
n, then the covering numberN.A;B/

ofA byB is the smallest number of translates of B whose union coversA. A simple
and useful observation is that, if A and B are both symmetric and if St .A;B/ is the
maximal number of points zi 2 A which satisfy kzi � zj kB > t for all i ¤ j , then

N.A; tB/ 6 St.A;B/ 6 N.A; .t=2/B/: (37)

3 Covering Numbers of Projections of Lq-Centroid Bodies

Let K be an isotropic convex body in R
n. We first give an alternative proof of

some estimates on the covering numbers N.Zq.K/; t
p
qLKB

n
2 / that were recently

obtained in [7]; they improve upon previous estimates from [6].

Proposition 3.1. Let K be an isotropic convex body in R
n, let 1 6 q 6 n and

t > 1. Then,

logN


Zq.K/; c1t

p
qLKB

n
2

�
6 c2

n

t2
C c3

p
qn

t
; (38)

where c1; c2; c3 > 0 are absolute constants.

Note that the upper bound in (38) is of the order n=t2 if t 6
p
n=q and of the

order
p

qn=t if t >
p
n=q. Our starting point is a “small ball probability” type

estimate which appears in [22, Fact 3.2(c)]:

Lemma 3.2. Let � 2 Sn�1, 1 6 k 6 n � 1 and r >
p
e. Then,

�n;k

 (
F 2 Gn;k W kPF .�/k2 6 1

r

r
k

n

)!
6
�p

e

r

�k
: (39)

Under the restriction logN.C; tBn
2 / 6 k, Lemma 3.2 allows us to compare the

covering numbers N.C; tBn
2 / of a convex body C with the covering numbers of its

random k-dimensional projections.

Lemma 3.3. LetC be a convex body in R
n, let r >

p
e, s > 0 and 1 6 k 6 n�1. If

Ns WD N.C; sBn
2 /, then there exists F � Gn;k such that �n;k.F/ > 1 �N2

s e
k=2r�k

and

N

 
PF .C /;

s

2r

r
k

n
BF

!
> Ns (40)

for all F 2 F .
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Proof. Let Ns D N.C; sBn
2 /. From (37) we see that there exist z1; : : : ; zNs 2 C

such that kzi � zjk2 > s for all 1 6 i; j 6 Ns , i ¤ j . Consider the set fwm W 1 6
m 6 Ns.Ns�1/

2
g of all differences zi � zj (i ¤ j ). Note that kwmk2 > s for all m.

Lemma 3.2 shows that

�n;k

 (
F 2 Gn;k W kPF .wm/k2 6 1

r

r
k

n
kwmk2

)!
6
�p

e

r

�k
; (41)

and hence,

�n;k

 (
F W kPF .wm/k2 > 1

r

r
k

n
kwmk2 for all m

)!
> 1 �N2

s e
k=2r�k: (42)

Let F be the subset ofGn;k described in (42). Then, for every F 2 F and all i ¤ j ,

kPF .zi / � PF .zj /k2 > 1

r

r
k

n
kzi � zj k2 > s

r

r
k

n
: (43)

Since PF .zi / 2 PF .C /, the right hand side inequality of (37) implies that

N

 
PF .C /;

s

2r

r
k

n
BF

!
> Ns; (44)

as claimed. ut
Finally, we will use the following regularity estimate for the covering numbers

of Lq-centroid bodies (see [6, Proposition 3.1] for a proof of the first inequality and
[9] for a proof of the second one): For all t > 0 and 1 6 q 6 n,

log N


Zq.K/; ct

p
qLKB

n
2

�
6

p
qnp
t

C n

t
and logN



K �K; tpnLKBn

2

�
6 n

t
;

(45)

where c > 0 is an absolute constant. Note that the upper bound in (45) is of the
order n=t if t 6 n=q and of the order

p
qn=

p
t if t > n=q.

Proof of Proposition 3.1. We set sD ct
p
qLK andNs WDN.Zq.K/; sB

n
2 /. Because

of (45) we may assume that 3 6 Ns 6 ecn, and then, we choose 1 6 k 6 n so that
logNs 6 k 6 2 logNs. We distinguish two cases:

(a) Assume that 1 6 t 6
p
n=q. Applying Lemma 3.3 with r D e3 we have that,

with probability greater than 1 � N2
s e

�5k=2 > 1 � e�k=2, a random subspace
F 2 Gn;k satisfies
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k

2
6 logNs 6 logN

 
PF .Zq.K//; c1s

r
k

n
BF

!
; (46)

where c1 > 0 is an absolute constant.

If logNs 6 q then we trivially get logNs 6 n=t2 because q 6 n=t2. So, we
may assume that logNs > q; in particular, q 6 k. Then, using (35) we get

k

2
6 logN

 
Zq.BkC1.K; F //; c

LBkC1.K;F /

LK

r
k

n
sBF

!
: (47)

Observe that s
p
k=np
qLK

D ct
p
k=n 6 ct 6 cn=q. Therefore, applying the estimate

(45) for the k-dimensional isotropic convex body BkC1.K; F /, we get

k

2
6 c2

k

t
p
k=n

D c2

p
kn

t
; (48)

which shows that

logN.Zq.K/; t
p
qLKB

n
2 / D logNs 6 k 6 c3

n

t2
; (49)

where c3 D 4c22 .

(b) Assume that t >
p
n=q. We set p WD

p
qn
t

� q. Then, using (22), we have that

N


Zq.K/; t

p
qLKB

n
2

� � N

�
q

p
Zp.K/; c4t

p
qLKB

n
2

�

� N

�
Zp.K/; c4t

r
p

q

p
pLKB

n
2

�

D N

�
Zp.K/; c4

r
n

p

p
pLKB

n
2

�
:

Applying the result of case (a) for Zp.K/ with t D p
n=p, we see that

N


Zq.K/; t

p
qLKB

n
2

� � N

�
Zp.K/; c4

r
n

p

p
pLKB

n
2

�

� ec5p D exp

�
c5

p
qn

t

�
;

and the proof is complete. ut
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Using Proposition 3.1 we can obtain analogous upper bounds for the covering
numbers of PF .Zq.K//, where F 2 Gn;k .

Proposition 3.4. LetK be an isotropic convex body in R
n. For every 16q <k6n,

for every F 2 Gn;k and every t > 1, we have

logN


PF .Zq.K//; t

p
qLKBF

�
6 c1k

t2
C c2

p
qk

t
; (50)

where c1; c2 > 0 are absolute constants. Also, for every k 6 q 6 n, F 2 Gn;k and
t > 1,

logN


PF .Zq.K//; t

p
qLKBF

�
6 c3

p
qk

t
; (51)

where c3 > 0 is an absolute constant.

Proof. (i) Let 1 6 q 6 k, F 2 Gn;k and t > 1. From (36) we see that

logN


PF .Zq.K//; t

p
qLKBF

�

6 logN
�
Zq.BkC1.K; F //; ct

p
qLBkC1.K;F /

BF

	
; (52)

where c > 0 is an absolute constant. Since BkC1.K; F / is almost isotropic, we
may apply Proposition 3.1 for BkC1.K; F / in F : we have

logN
�
Zq.BkC1.K; F //; ct

p
qLBkC1.K;F /

BF

	
6 c1k

t2
C c2

p
qk

t
; (53)

and hence,

logN


PF .Zq.K//; t

p
qLKBF

�
6 c1k

t2
C c2

p
qk

t
: (54)

(ii) Assume that k 6 q 6 n and F 2 Gn;k . Then, using (35) and the fact that
Zq.C / � convfC;�C g, for every t > 1 we write

logN


PF .Zq.K//; t

p
qLKBF

�

6 logN
�cq

k
DkC1.K; F /; t

p
qLBkC1.K;F /

BF

	

6 logN

 
DkC1.K; F /; t

s
k

q

p
kLBkC1.K;F /

BF

!

6 c3

p
qk

t
;
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whereDkC1.K; F / D BkC1.K; F /�BkC1.K; F /, using in the end the second
estimate of (45) for the isotropic convex body BkC1.K; F /. This completes the
proof. ut

Using these bounds we can prove the existence of directions with relatively
small  2-norm on any subspace of Rn. The dependence is better as the dimension
increases.

Theorem 3.5. Let K be an isotropic convex body in R
n.

(i) For every log2 n 6 k 6 n= logn and every F 2 Gn;k there exists � 2 SF such
that

kh�; �ik 2 6 C
p
n=k LK; (55)

(ii) For every n= logn 6 k 6 n and every F 2 Gn;k there exists � 2 SF such that

kh�; �ik 2 6 C
p

lognLK; (56)

where C > 0 is an absolute constant.

Proof. For every integer q � 1 we define the normalized Lq-centroid body Kq of
K by

Kq D 1p
qLK

Zq.K/; (57)

and we consider the convex body

T D conv

0
@

blog2 nc[
iD1

K2i

1
A : (58)

Then, for every F 2 Gn;k we have

PF .T / D conv

0
@

blog2 nc[
iD1

PF .K2i /

1
A : (59)

We will use the following standard fact (see [6] for a proof): If A1; : : : ; As are
subsets of RBk

2 , then for every t > 0 we have

N.conv.A1 [ � � � [As/; 2tBk
2 / 6

�
cR

t

�s sY
iD1

N.Ai ; tB
k
2 /: (60)

We apply this to the sets Ai D PF .K2i /. Observe that K2i � c12
i=2Bn

2 , and
hence, N.Ai ; tBF / D 1 if c12i=2 6 t . Also, Ai � c2

p
nBF for all i .
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Using Proposition 3.4, for every t > 1 we can write

N.PF .T /; 2tBF / 6 .c2
p
n/blog2 nc

2
4

blog2 ncY
iD1

N.PF .K2i /; tBF /

3
5

6 ec3 log2 n exp

0
@C

blog2 ncX
iD1

2i=2
p
k

t
C C

X
t 262i6k

k

t2

1
A

6 ec3 log2 n exp

 
C

p
nk

t
C C

k

t2
log.k=t2/

!
;

where the second term appears only if k > ct2.
Now, we distinguish two cases:

(i) If log2 n 6 k 6 n= logn we choose t0 D p
n=k. Observe that

p
nk
t0

D k and

k

t20
log

�
k

t20

�
D k2

n
log

�
k2

n

�
6 k

logn
log

�
k2

n

�
6 k: (61)

This implies that N.PF .T /;
p
n=kBF / 6 eck . It follows that

jPF .T /j 6 jCpn=k BF j: (62)

Therefore, there exists � 2 SF such that

hT .�/ D hPF .T /.�/ 6 C
p
n=k; (63)

which implies
kh�; �ik2i 6 C 2i=2

p
n=k LK (64)

for every i D 1; 2; : : : ; blog2 nc. This easily implies (55).

(ii) If n= logn 6 k 6 n we choose t0 D p
logn ' p

log k. Observe that
p
nk
t0

D
k
q

n
k log n 6 k and

k

t20
log

�
k

t20

�
D k

logn
log

�
k

logn

�
6 k

logn
log

�
n

logn

�
6 k: (65)

This implies that N.PF .T /;
p

lognBF / 6 eck and, as in case (i), we see that

kh�; �ik2i 6 C 2i=2
p

lognLK (66)

for every i D 1; 2; : : : ; blog2 nc. The result follows. ut
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We close this section with a sketch of the proof of an analogue of the estimate of
Proposition 3.1 for N.Zq.K/; t

p
qLKB

n
2 / for t 2 .0; 1/.

Proposition 3.6. Let K be an isotropic convex body in R
n. If 1 6 q 6 n and

t 2 .0; 1/, then

N


Zq.K/; c1t

p
qLKB

n
2

�
6
�c2
t

	n
(67)

and
N


Zq.K/; c3t

p
qBn

2

�
>
�c4
t

	n
; (68)

where ci > 0 are absolute constants.

Proof. The lower bound is a consequence of the estimate jZq.K/j1=n >
c
p
qjBn

2 j1=n (see [17]). Then, we write

N


Zq.K/; c1t

p
qBn

2

�
> jZq.K/j

jc1tpqBn
2 j >

�c2
t

	n
: (69)

For the upper bound, we will use the fact (see [7, Sect. 3] for the idea of this
construction) that there exists an isotropic convex bodyK1 in R

n with the following
properties:

(i) N


Zq.K/; t

p
qLKB

n
2

�
6 N



Zq.K1/; c1t

p
qBn

2

�
for every t > 0.

(ii) c2
p
qBn

2 � Zq.K1/ for all 1 6 q 6 n.
(iii) jZq.K1/j1=n 6 c3

p
q=n for all 1 6 q 6 n.

Therefore, for every t 2 .0; 1/ we have

N

�
Zq.K/;

t

2

p
qLKB

n
2

�
6

jZq.K1/C t
p
qBn

2 j
jtpqBn

2 j

6 jcZq.K1/j
jtpqBn

2 j
6
�c
t

	n
;

and (67) is proved. ut

4 On the Distribution of the  2-Norm

From Theorem 3.5 we can deduce a measure estimate for the set of directions which
satisfy a given  2-bound. We start with a simple lemma.

Lemma 4.1. Let 1 6 k 6 n and letA be a subset of Sn�1 which satisfiesA\F ¤ ;
for every F 2 Gn;k . Then, for every " > 0 we have
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�.A"/ > 1

2

� "
2

	k�1
; (70)

where

A" D ˚
y 2 Sn�1 W inffky � �k2 W � 2 Ag 6 "

�
: (71)

Proof. We write

�.A"/ D
Z
Sn�1

�A" .y/ d�.y/ D
Z
Gn;k

Z
SF

�A".y/ d�F .y/ d�n;k.F /; (72)

and observe that, since A \ SF ¤ ;, the set A" \ SF contains a cap CF ."/ D fy 2
SF W ky � �0k2 6 "g of Euclidean radius " in SF . It follows that

Z
SF

�A".y/ d�F .y/ > �F .CF ."// > 1

2

� "
2

	k�1
; (73)

by a well-known estimate on the area of spherical caps, and the result follows. ut
Remark. As the proof of the Lemma shows, the strong assumption that A \ F ¤ ;
for every F 2 Gn;k is not really needed for the estimate on �.A"/. One can
have practically the same lower bound for �.A"/ under the weaker assumption that
A\ F ¤ ; for every F in a subset Fn;k of Gn;k with measure �n;k.Fn;k/ > c�k .

Theorem 4.2. Let K be an isotropic convex body in R
n. For every log2 n 6 k 6 n

there exists Ak � Sn�1 such that

�.Ak/ > e�c1k log k (74)

where c1 > 0 is an absolute constant, and

kh�; yik 2 6 C max
np

n=k;
p

logn
o
LK (75)

for all y 2 Ak .

Proof. We fix log2 n 6 k 6 n= logn and define A to be the set of � 2 Sn�1 which
satisfy (55). By Theorem 3.5 we have A \ SF ¤ ; for every F 2 Gn;k . Therefore,
we can apply Lemma 4.1 with " D 1p

k
. If y 2 A" then there exists � 2 A such that

ky � �k2 6 ", which implies

kh�; y � �ik 2 6

kh�; y � �ik1kh�; y � �ik 1

�1=2 6 c
p
n"LK; (76)

if we take into account the well-known fact that kh�; �ik 1 6 ckh�; �ik1 6 cLK (see
[19]) and the fact that kh�; �ik1 6 .nC 1/LK . It follows that
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kh�; yik 2 6 kh�; �ik 2 C kh�; y � �ik 2
6 kh�; �ik 2 C c

p
n=k LK:

Since � satisfies (55), we get (75)—with a different absolute constant C—for all
y 2 Ak WD A

1=
p
k
. Finally, Lemma 4.1 shows that

�.Ak/ > 1

2

�
1

2
p
k

�k�1
> e�c1k log k; (77)

which completes the proof in this case. A similar argument works for k > n= logn:
in this case, we apply Lemma 4.1 with " D p

logn=n and the measure estimate for
Ak is the same. ut

Proof of Theorem 1.1. Let t > 1 and consider the largest k for which
p
n=k >

t
p

logn. Then,
n

t2
' k logn > k log k; (78)

and hence, e�c1k log k > e�c2n=t2 . Theorem 4.2 shows that

 K.t/ > �.Ak/ > e�c2n=t2 : (79)

This proves our claim. ut

5 On the Mean Width of Lq-Centroid Bodies

5.1 Mean Width of Zq.K/

Let K be an isotropic convex body in R
n. For every q 6 q�.K/ we have

w.Zq.K// ' wq.Zq.K// ' p
q=nIq.K/ 6 c

p
qLK: (80)

Since q�.K/ > c
p
n, (80) holds at least for all q 6

p
n. For q >

p
n, we may use

the fact that Zq.K/ � c.q=
p
n/Zp

n.K/ to write

w.Zq.K// 6 c
qp
n

w.Zp
n.K// 6 c1

q
4
p
n
LK: (81)

In other words, for all q > 1 we have

w.Zq.K// 6 c
p
qLK

�
1C

p
q

4
p
n

�
: (82)
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Setting q D n and taking into account (22) we get the general upper bound

w.K/ 6 c1w.Zn.K// 6 c2n
3=4LK (83)

for the mean width of K .

In the next Proposition we slightly improve these estimates, taking into account
the radius of Zq.K/ or K .

Proposition 5.1. Let K be an isotropic convex body in R
n and let 1 6 q 6 n=2.

Then,

w.Zq.K// 6 c
p
qLK

�
1C

q
R.Zq.K//=

p
nLK

�
: (84)

In particular,

w.K/ 6 c
p
nLK

�
1C

q
R.K/=

p
nLK

�
: (85)

Proof. Recall that, for all 1 6 q 6 n=2,

I�q.K/ ' p
n=qw�q.Zq.K//: (86)

We first observe that, for every t > 1,

w�q=t2 .Zq.K// 6 ct2w�q=t2 .Zq=t2 .K// ' t2
r

q

t2n
I�q=t2 .K/ 6 ct

p
qLK: (87)

Let ı > 1. Recall that d�.C; ı/ D maxfq � 1 W w.C / � ıw�q.C /g. We distinguish
two cases:

(a) If q 6 d�.Zq.K/; ı/ then, by (86), we have that

w.Zq.K// 6 ıw�q.Zq.K// ' ı
p
qI�q.K/=

p
n 6 cı

p
qLK: (88)

(b) If q > d�.Zq.K/; ı/, we set d WD d�.Zq.K/; ı/ and define t > 1 by the
equation q=t2 D d . Then, using (87), we have

w.Zq.K// 6 ıw�d .Zq.K// D ıw�q=t2 .Zq.K// 6 cıt
p
qLK: (89)

This gives the bound

w.Zq.K// 6 cı
qp

d�.Zq.K/; ı/
LK: (90)

Moreover, using the fact that

d�.Zq.K/; c2/ > k�.Zq.K// ' n
w.Zq.K//2

R.Zq.K//2
; (91)
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we see that if if q > c1d�.Zq.K/; c2/ then

w.Zq.K// 6 c

p
q
p
R.Zq.K//
4
p
n

p
LK: (92)

Choosing ı D 2 and combining the estimates (88) and (92) we get (84). Setting
q D n and using (22) we obtain (85). ut

Recall that K is called a  ˛-body with constant b˛ if

kh�; �ik ˛ 6 b˛kh�; �ik1 (93)

for all � 2Sn�1. If we assume that K is a  ˛ body for some ˛ 2 Œ1; 2� then
R.Zq.K//6R.b˛q1=˛Z2.K//D b˛q

1=˛LK , and Proposition 5.1 gives immediately
the following.

Proposition 5.2. Let K be an isotropic convex body in R
n. If K is a  ˛-body with

constant b˛ for some ˛ 2 Œ1; 2� then, for all 1 6 q 6 n,

w.Zq.K// 6 c
p
qLK

 
1C

p
b˛q

1
2˛

4
p
n

!
(94)

and
w.K/ 6 c

p
b˛n

˛C2
4˛ LK: (95)

5.2 Mean Width of �2.K/

As an application of Theorem 1.1 we can give the following estimate for the q-width
of �2.K/ for negative values of q.

Proposition 5.3. Let K be an isotropic convex body in R
n and t > 1. Then

w� n

t2
.�2.K// 6 ct

p
lognLK: (96)

Proof. Observe that, by Markov’s inequality,

�

�
f� 2 Sn�1 W h�2.K/.�/ 6 1

e
w� n

t2
.�2.K//g

�
6 e

� n

t2 : (97)

From Theorem 1.1 we know that

e
� n

t2 6 �
�
f� 2 Sn�1 W h�2.K/.�/ 6 ct

p
lognLKg

	
; (98)

for some absolute constant c > 0. This proves (96). ut
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We can also give an upper bound for the mean width of �2.K/:

Proposition 5.4. Let K be an isotropic convex body in R
n. Then,

w.�2.K// 6 c 4
p
n lognLK: (99)

Proof. Let w WD w.�2.K//. Since R.�2.K// 6 c
p
nLK , using (32) we see that

d�.�2.K// > ck�.�2.K// > c
w2

L2K
: (100)

We choose t so that n
t2

D c w2

L2K
, i.e.

t D c
p
nLK

w
> 1: (101)

Then, from Proposition 5.3 we see that

w 6 cw�d
�

.�2.K// 6 w� cw2

L2K

.�2.K// D w� n

t2
.�2.K//

6 c1

p
n

w

p
lognL2K;

and (99) follows. ut
Actually, we can remove the logarithmic term, starting with the next lemma:

Lemma 5.5. Let K be an isotropic convex body in R
n and let 1 6 k 6 n� 1. Then

for every F 2 Gn;k ,

PF .�2.K// � c
p
n=k

LK

LBkC1.K;F /

�2.BkC1.K; F //; (102)

where c > 0 is an absolute constant.

Proof. Indeed, because of (35) and (36), for every � 2 SF we can write

h�2.K/.�/

LK
6 sup

16q6k

hZq.K/.�/p
qLK

C sup
k6q6n

hZq.K/.�/p
qLK

D sup
16q6k

hPF .Zq.K//.�/p
qLK

C sup
k6q6n

hPF .Zq.K//.�/p
qLK

6 c1 sup
16q6k

hZq.BkC1.K;F //
.�/

p
qLBkC1.K;F /

C c2 sup
k6q6n

q

k

hPF .Zk.K//.�/p
qLK
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D c1 sup
16q6k

hZq.BkC1.K;F //
.�/

p
qLBkC1.K;F /

C c2 sup
k6q6n

r
q

k

hZk.BkC1.K;F //
.�/p

kLBkC1.K;F /

6 c3
h�2.BkC1.K;F //

.�/

LBkC1.K;F /

C c4 sup
k6q6n

r
q

k

h�2.BkC1.K;F //
.�/

LBkC1.K;F /

6 c5

r
n

k

h�2.BkC1.K;F //
.�/

LBkC1.K;F /

:

ut
Proposition 5.6. Let K be an isotropic convex body in R

n. Then

w.�2.K// 6 c 4
p
nLK: (103)

Proof. Let k D p
n. Using Lemma 5.5 we see that

w.�2.K// D
Z
Gn;k

w.PF .�2.K///d�n;k.F /

6 c

r
n

k

Z
Gn;k

LK

LBkC1.K;F /

w.�2.BkC1.K; F ///d�n;k.F /:

Since k D p
n 6 q�.K/, we know that a “random” BkC1.K; F / is “ 2” (see [8]),

and the result follows. ut
Applying Lemma 5.5 we can cover the case 1 6 k 6 log2 n in Theorem 3.5:

Corollary 5.7. Let K be an isotropic convex body in R
n. For every 1 6 k 6 log2 n

and every F 2 Gn;k there exists � 2 SF such that

kh�; �ik 2 6 C
p
n=k

p
log 2k LK; (104)

where C > 0 is an absolute constant. In fact, for a random F 2 Gn;k the termp
log 2k is not needed in (104).

Proof. Let 1 6 k 6 log2 n and F 2 Gn;k . Since BkC1.K; F / is isotropic,
Theorem 3.5(ii) shows that there exists � 2 SF such that

h�2.BkC1.K;F //
.�/ 6 c1

p
log 2kLBkC1.K;F /

: (105)

Then, Lemma 5.5 shows that

kh�; �ik 2 ' h�2.K/.�/ D hPF .�2.K//.�/

6 c
p
n=k

LK

LBkC1.K;F /

h�2.BkC1.K;F //
.�/ 6 C

p
n=k

p
log 2k LK:
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In fact, since k 6 log2 n 6 q�.K/, for a random F 2 Gn;k we know that
BkC1.K; F // is a  2-body (see [8]), and hence, h�2.BkC1.K;F //

.�/ 6 c2LBkC1.K;F /

for all � 2 SF . Using this estimate instead of (105) we may remove the
p

log 2k-
term in (104) for a random F 2 Gn;k . ut

Proof of Proposition 1.3. Since h�2.K/ is
p
nLK -Lipschitz, we have that

�

f� 2 Sn�1 W h�2.K/.�/ � w.�2.K// > sw.�2.K//g

�
6 e

�cns2
�

w.�2.K//
p

nLK

	2
: (106)

Let u > 2w.�2.K//. Then, u D .1 C s/w.�2.K// for some s > 1 and sw.�2.K//
> u=2. From (106) it follows that

�

f� 2 Sn�1 W h�2.K/.�/ > ug� 6 exp


�cu2=L2K
�
: (107)

If t > c1 4
p
n=
p

logn, then Proposition 5.6 shows that u D t
p

lognLK > 2w.�2.K//.
Then, we can apply (107) to get the result. ut

The estimate of Proposition 1.3 holds true for all t > cw.�2.K//=
p

lognLK ;
this is easily checked from the proof. This shows that better lower bounds for  K.t/
would follow from a better upper estimate for w.�2.K// and vice versa.

6 On the Mean Width of Isotropic Convex Bodies

Let K be an isotropic convex body in R
n. For every 2 6 q 6 n we define

k�.q/ D n

�
w.Zq.K//

R.Zq.K//

�2
: (108)

Since kh�; �ikq 6 cqLK for all � 2 Sn�1, we have R.Zq.K// 6 cqLK . Therefore,

w.Zq.K// 6 cqLK

p
k�.q/p
n

(109)

Then, from (22) we see that

w.K/ ' w.Zn.K// 6 cn

q
w.Zq.K// 6 c

p
n
p
k�.q/LK: (110)

Define
	� D 	�.K/ D min

26q6n
k�.q/: (111)

Since q was arbitrary in (110), we get the following:
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Proposition 6.1. For every isotropic convex bodyK in R
n one has

w.K/ 6 c
p
n
p
	�.K/LK: (112)

Our next observation is the following: by the isoperimetric inequality on Sn�1,
for every q > 1 one has

�

�
j kh�; �ikq � w.Zq/ j >

w.Zq/

2

�
6 exp.�ck�.q// 6 exp.�2c	�/ (113)

where c > 0 is an absolute constant. Assume that logn 6 ec	� . Then,

kh�; �ik ' w.Zq/ (114)

for all � on a subsetAq of Sn�1 of measure �.Aq/ > 1�exp.�c	�/. Taking qi D 2i ,
i 6 log2 n and setting A D T

Aqi , we have the following:

Lemma 6.2. For every isotropic convex body K in R
n with 	�.K/ > C log logn

one can find A � Sn�1 with �.A/ > 1 � e�c	
� such that

kh�; �ikq ' w.Zq/ (115)

for all � 2 A and all 2 6 q 6 n. In particular,

kh�; �ik 2 ' max
26q6n

w.Zq/p
q

(116)

for all � 2 A.

Lemma 6.2 implies that if 	�.K/ is “large” and kh�; �ik 2 is well-bounded on a
“relatively large” subset of the sphere, then a similar bound holds true for “almost
all” directions. As a consequence, we get a good bound for the mean width of K .
The precise statement is the following.

Proposition 6.3. Let K be an isotropic convex body in R
n which satisfies the

following two conditions:

(1) 	�.K/ > C log logn.
(2) For some bn > 0 we have kh�; �ik 2 6 bnLK for all � in a set B � Sn�1 with
�.B/ > e�c	

� .

Then,
kh�; �ik 2 6 CbnLK (117)

for all � in a set A � Sn�1 with �.A/ > 1 � e�c	
� . Also,

w.Zq.K// 6 c
p
qbn LK (118)
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for all 2 6 q 6 n and
w.K/ 6 C

p
nbn LK: (119)

Proof. We can find u 2 A \ B , where A is the set in Lemma 6.2. Since u 2 B , we
have

kh�; uikq 6 C1
p
qbn LK (120)

for all 2 6 q 6 n, and (115) shows that

w.Zq.K// 6 C2
p
qbn LK (121)

for all 2 6 q 6 n. Going back to (115) we see that if � 2 A then

kh�; �ikq 6 cw.Zq/ 6 C3
p
qbn LK (122)

for all 2 6 q 6 n. For q D n we get (119).
Finally, for every � 2 A we have

kh�; �ik 2 ' max
26q6n

kh�; �ikqp
q

6 Cbn LK: (123)

This completes the proof. ut
Propositions 6.1 and 6.3 provide a dichotomy. If 	�.K/ is small then we can use

Proposition 6.1 to get an upper bound for w.K/. If 	�.K/ is large then we can
use Proposition 6.3 provided that we have some sufficiently good lower bound for
 K.t/: what we have is

 K.t/ > e�c1n=t2 > e�c	
� ; (124)

if t ' p
n=	�. Therefore, we obtain the estimate

w.K/ 6 C
p
n logn

p
n=	�LK: (125)

Combining the previous results, we deduce one more general upper bound for the
mean width of K .

Theorem 6.4. For every isotropic convex bodyK in R
n we have

w.K/ 6 C
p
nmin

np
	�;

p
n logn=	�

o
LK; (126)

where c > 0 is an absolute constant.

The estimate in Theorem 6.4 depends on our knowledge for the behavior of
 K.t/; as it stands, it only recovers the O.n3=4LK/ bound for the mean width
of K . Actually, the logarithmic term in (126) makes it slightly worse. However,
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we can remove this logarithmic term, starting with the following modification of
Proposition 5.1.

Proposition 6.5. Let K be an isotropic convex body in R
n and 1 6 q 6 n. Then,

w.Zq.K// 6 c
p
qLK

�
1C

r
q

k�.Zq.K//

�
; (127)

where c > 0 is an absolute constant.

Proof. If R.Zq.K// 6 c
p
nLK then (127) is a direct consequence of (84). So, we

assume that R.Zq.K// > c
p
nLK . Then, writing (84) in the form

w.Zq.K// 6 c

p
q

4
p
n

q
R.Zq.K//

p
LK; (128)

and taking into account the definition of k�.Zq.K// we see that

R.Zq.K//p
nLK

6 c1
q

k�.Zq.K//
; (129)

and (127) follows from (84) again. ut
Theorem 6.6. Let K be an isotropic convex body in R

n. Then,

w.K/ 6 c
p
nLK min

�p
	�;

r
n

	�

�
; (130)

where c > 0 is an absolute constant.

Proof. From Proposition 6.1 we know that

w.K/ 6 c
p
nLK

p
	�: (131)

Let q0 satisfy 	� D k�.Zq0.K//. From Proposition 6.5 and from (21) and (22) we
have that, for all 1 6 q 6 n,

w.K/ 6 c
n

q
w.Zq.K// 6 c1

p
nLK

�r
n

q
C
r

n

k�.Zq.K//

�
: (132)

Recall that q� is the parameter q�.K/ WD maxfq 2 Œ1; n� W k�.Zq.K// > qg. We
distinguish two cases.

(i) Assume that q0 6 q�. Then we apply (132) for q�; since q� D k�.Zq
�

.K//>	�,
we get

w.K/ 6 2c1
p
nLK

r
n

q�
6 2c1

p
nLK

r
n

	�
: (133)
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(ii) Assume that q0 > q�. Then, q0 > k�.Zq0.K// D 	�. Applying (132) for q0,
we get

w.K/ 6 2c1
p
nLK

r
n

k�.Zq0.K//
D 2c1

p
nLK

r
n

	�
: (134)

In both cases, we have

w.K/ 6 c
p
nLK

r
n

	�
: (135)

Combining (135) with (131) we get the result.
ut
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A Remark on Vertex Index of the Convex Bodies

Efim D. Gluskin and Alexander E. Litvak

Abstract The vertex index of a symmetric convex body K � R
n, vein.K/, was

introduced in [Bezdek, Litvak, Adv. Math. 215, 626–641 (2007)]. Bounds on the
vertex index were given in the general case as well as for some basic examples.
In this note we improve these bounds and discuss their sharpness. We show that

vein.K/ � 24n3=2;

which is asymptotically sharp. We also show that the estimate

n3=2p
2�e ovr.K/

� vein.K/;

obtained in [Bezdek, Litvak, Adv. Math. 215, 626–641 (2007)] (here ovr.K/ denotes
the outer volume ratio of K), is not always sharp. Namely, we construct an example
showing that there exists a symmetric convex body K which simultaneously has
large outer volume ratio and large vertex index. Finally, we improve the constant in
the latter bound for the case of the Euclidean ball from

p
2�e to

p
3, providing a

completely new approach to the problem.
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1 Introduction

Let K be a convex body symmetric about the origin 0 in R
n (such bodies below we

call 0-symmetric convex bodies). The vertex index of K, vein.K/, was introduced
in [6] as

vein.K/ D inf

(X
i

kxikK j K � convfxig
)
;

where kxkK D inff
 > 0 j x 2 
Kg denotes the Minkowski functional of K.
In other words, given K one looks for the convex polytope that contains K and
whose vertex set has the smallest possible closeness to 0 in metric generated by
K. Let us note that vein.K/ is an affine invariant of K, i.e. if T W Rn ! R

n is an
invertible linear map, then vein.K/ D vein.T .K//.

The vertex index is closely connected to some important quantities in analysis
and geometry including the illumination parameter of convex bodies, introduced
by Bezdek; the Boltyanski-Hadwiger illumination conjecture, which says that every
convex body in R can be illuminated by 2n sources; the Gohberg-Marcus conjecture,
which avers that a convex body can be covered by 2n smaller positive homothetic
copies of itself). We refer to [4–6, 11] for the related discussions, history, and
references.

Denote the volume by j � j, the canonical Euclidean ball in R
n by Bn2 , and as usual

define the outer volume ratio of K by ovr.K/ D inf .jE j=jKj/1=n, where the infimum
is taken over all ellipsoids E 
 K. In [6] the following theorem has been proved.

Theorem 1.1. There exists a positive absolute constantC such that for every n � 1

and every 0-symmetric convex body K in R
n one has

n3=2p
2�e ovr.K/

� vein.K/ (1)

and
vein.K/ � C n3=2 ln.2n/: (2)

Moreover, in [9] it was shown that vein.K/ � 2n for every n-dimensional
0-symmetric convex body K.

The purpose of this note is to discuss sharpness of estimates 1 and 2. We start
our discussion with the first estimate. Note that it is sharp (especially in view of
estimate (3) below) for the class of bodies with finite outer volume ratio, that is
bodies such that ovr.K/ � C , where C is a positive absolute constant (fixed in
advance). This class is very large, it includes in particular the unit balls of `p-spaces
for p � 2 as well as 0-symmetric convex polytopes having at most C1n facets (here
C1 is another absolute constant). In Sect. 3 we show that in fact (1) is not sharp,
i.e. that in general vein.K/ is not equivalent to n3=2=ovr.K/. Namely, we construct
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a 0-symmetric convex body K which has simultaneously large outer volume ratio
and large vertex index (in fact both are largest possible up to a logarithmic factor):
vein.K/  n3=2 and ovr.K/  p

n=
p

ln.2n/. It shows that for some bodies the
gap in (1) can be of the order

p
n=
p

ln.2n/. Note that despite of our example,
there are bodies with large outer volume ratio for which (1) is sharp, e.g. for the
n-dimensional octahedron Bn1 we have vein.Bn1/ D 2n [6] and

ovr.Bn1/ D
p
�

2

�
n

� .1C n=2/

�1=n


p
�p
2e

p
n:

The construction of our example is of the random nature, essentially we take the
absolute convex hull of n2 random points on the sphere and show that it works with
high probability.

Next, in Sect. 4, we remove the logarithmic factor in the estimate (2), improving
it to the asymptotically best possible one. The main new ingredient in our improve-
ment is a recent result of Batson et al. [3] on the decomposition of a linear operator
acting on R

n (see Theorem 4.1 below). The application of their theorem instead of
corresponding Rudelson’s Theorem used in [6] allows us to remove the unnecessary
logarithm.

In Sect. 5 we turn to the vertex index of the Euclidean ball. In [6] it was
conjectured that

vein.Bn2/ D 2n3=2;

i.e., the best configuration for the Euclidean ball is provided by the vertices of the
n-dimensional octahedron. The conjecture was verified for n D 2 and n D 3. Note
that by (1)

n3=2p
2�e

� vein.Bn2/:

We improve this bound to n3=2=
p
3. Our proof uses completely different approach

via operator theory (recall that in [6] the approach via volumes was used). We think
that this new approach is interesting by itself and could lead to more results. Thus
the results of Sects. 4 and 5 can be summarized in the following theorem.

Theorem 1.2. For every n � 1 and every 0-symmetric convex body K in R
n one

has
vein.K/ � 24 n3=2: (3)

Moreover
vein.Bn2/ � n3=2=

p
3: (4)
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2 Preliminaries and Notation

By j � j and h�; �i we denote the canonical Euclidean norm and the canonical inner
product on R

n. The canonical basis of Rn we denote by e1; : : : ; en. By k � kp , 1 �
p � 1, we denote the `p-norm, i.e.

kxkp D
0
@X
i
1

jxi jp
1
A
1=p

for p < 1 and kxk1 D sup
i
1

jxi j:

In particular, k � k2 D j � j. As usual, `np D .Rn; k � kp/, and the unit ball of `np is
denoted by Bnp .

Given points x1; : : : ; xk in R
n we denote their convex hull by convfxi gi�k and

their absolute convex hull by abs convfxi gi�k D convf˙xi gi�k. Similarly, the
convex hull of a set A � R

n is denoted by convA and absolute convex hull of
A is denoted by abs convA (D convfA [ �Ag).

Given convex compact body K � R
n with 0 in its interior by jKj we denote its

volume and by k � kK its Minkowski functional. Kı denotes the polar of K, i.e.

Kı D fx j hx; yi � 1 for every y 2 Kg :
The outer volume ratio of K is

ovr.K/ D inf

� jE j
jKj

�1=n
;

where infimum is taken over all 0-symmetric ellipsoids in R
n containing K. It is

well-known that
ovr.K/ � p

n

for every convex symmetric about the origin body K.
Finally we recall some notations from the Operator Theory. Given u; v 2 R

n,
u ˝ v denotes the operator from R

n to R
n defined by .u ˝ v/.x/ D hu; xi v for every

x 2 R
n. The identity operator on R

n is denoted by Id. Given two operators T; S W
R
n ! R

n we write T � S if S �T is positive semidefinite, i.e., h.S � T /x; xi � 0

for every x 2 R
n.

3 Example

Theorem 3.1. There exists an absolute positive constant c such that for every n � 1

there exists a convex symmetric body K satisfying

ovr .K/ � c

r
n

ln.2n/
and vein K � cn3=2:
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Proof. Let m D n2 and u1, u2, : : :, um be independent random vectors uniformly
distributed on Sn�1. Let

K WD abs conv
˚
ui ; ej

�
i�m;j�n :

Clearly
1p
n

Bn2 � K � Bn2:

Moreover, it is well-known [2,7,8] that there exists an absolute positive constant C0
such that for every linear transformation T satisfying TK � Bn2 one has

jTKj � C0

p
ln.2.mC n/=n/

n
;

which immediately implies that

ovr .K/ � c0

r
n

ln.2n/

for an absolute positive constant c0.
Now we prove the lower bound on vein.K/. First note that if T is an absolute

convex hull of vectors x1, x2, : : :, xM satisfying

a WD
MX
iD1

jxi j � n3=2

4
p
2�e

then by Santaló inequality and a result of Ball and Pajor (Theorem 2 in [1]) we have

jTj
jBn2j

� jBn2 j
jT0j �

 p
2�ep
n

!n �a
n

	n � 4�n:

It implies that the probability

P .fK � 2Tg/ � P .f8i � m W ui 2 2Tg/ D .P .f8i W ui 2 2Tg//m

D 
j2T \ Sn�1j�m �
� j2T \ Bn2 j

jBn2 j
�m

� 2�n3:

Now we consider a 1

2
p
n

-net (in the Euclidean metric) N in n3=2Bn2 of cardinality

less than A D .6n2/n (it is well known that such a net exists). We fix M D
Œn3=2=8

p
2�e� (assuming without loss of generalityM � 3) and consider

CM D
(

T j T D abs convfxigi�N ;N � M;xi 2 N ;
NX
iD1

jxi j � n3=2

4
p
2�e

)
:
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Then the cardinality of CM is

jCM j �
MX
iD1

 
A

i

!
�
�
eA

M

�M
� .6n2/nM :

It implies that

P .f9T such that K � 2Tg/ � .6n2/nM2�n3 < 1:

This proves that there exists K such that

8T 2 CM W K 6� 2T: (5)

Finally fix K satisfying (5) and assume

vein K <
n3=2

8
p
2�e

;

i.e., that there exists L D convfxi gi�k with K � L and

k �
kX
iD1

kxikK <
n3=2

8
p
2�e

:

Since K � Bn2 , we observe that

kX
iD1

jxi j < n3=2

8
p
2�e

;

in particular xi 2 n3=2Bn2 , i � k. Then for every i there exist yi 2 N such that

jxi � yi j � 1

2
p
n
:

Therefore

kX
iD1

jyi j �
kX
iD1

jxi j C
kX
iD1

jxi � yi j � n3=2

8
p
2�e

C k

2
p
n

� n3=2

4
p
2�e

:

Thus P D abs convfyi gi�N 2 CM , so, by (5) one has K 6� 2P. On the other hand
we have for every x
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kxkL0 D max
i�k hx; xi i � max

i�k hx; yi i C max
i�k hx; xi � yi i

� kxkP0 C 1

2
p
n

jxj � kxkP0 C 1

2
kxkL0 ;

where the latter inequality holds because 1p
n

Bn2 � K � L. The above inequality

means that L � 2P, which contradicts the fact that K 6� 2P. Hence

vein K � n3=2

8
p
2�e

;

which proves the theorem. ut

4 An Upper Bound for the Vertex Index

In this section we prove the inequality (3), i.e. we prove the sharp (up to an absolute
constant) upper estimate for the vein of a convex symmetric body in the general
case, removing the unnecessary logarithmic term from (1). Recall that such bound
is attained for any body with a bounded volume ratio as well as for the body from
Theorem 3.1.

In [6] the Rudelson theorem on decomposition of identity was essentially used.
It contains a logarithmic term which appeared in the upper bound on the vertex
index. Here we use a recent result of Batson, Spielman, and Srivastava instead of
Rudelson’s theorem. In [3], they proved the following theorem.

Theorem 4.1. Let m � n � 1, 
 > 1, and ui 2 R
n, i � m be such that

Id D
mX
iD1

ui ˝ ui :

Then there exist non-negative numbers c1; c2; : : : ; cm such that at most 
n of them
non-zero and

Id �
mX
iD1

ciui ˝ ui �
 p


C 1p

 � 1

!2
Id:

To obtain the upper bound it is enough to apply this theorem combined with
the standard John decomposition instead of Rudelson theorem in the proof given in
Sect. 5 of [6]. For the sake of completeness we provide the details. The following
standard lemma proves (3).

Lemma 4.2. Let 
 > 1, n � 1, and K be a 0-symmetric convex body in R
n such

that its minimal volume ellipsoid is Bn2 . Then there exists a 0-symmetric convex
polytope P in R

n with at most 
n vertices such that
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P � K � Bn2 �
p

C 1p

 � 1

p
n P:

In particular
vein.K/ � 24n3=2:

Proof. The John decomposition [10] states that there exist points vi , i � m, with
kvikK D jvi j D 1 and scalars 
i > 0 such that

Id D
mX
iD1


ivi ˝ vi :

Then Theorem 4.1 applied to ui D p

ivi implies that there exist non-negative

numbers c1; c2; : : : ; cm such that at most 
n of them non-zero and

Id �
mX
iD1

ci
ivi ˝ vi �
 p


C 1p

 � 1

!2
Id: (6)

Let I denotes the set of indeces i such that ci ¤ 0. Consider P D abs convfvigi2I .
Since vi 2 K D �K, i � m, we observe

P � K � Bn2:

By (6) we also have for every x 2 R
n

jxj2 D hId x; xi �
*
mX
iD1

ci
i hvi ; xi vi ; x

+
D

mX
iD1

ci
i hvi ; xi2

� max
i�m hvi ; xi2

mX
iD1

ci
i D kxk2Pı

mX
iD1

ci
i

and
mX
iD1

ci
i D
mX
iD1

ci
i hvi ; vi i D trace
mX
iD1

ci
ivi ˝ vi

�
 p


C 1p

 � 1

!2
trace Id D

 p

C 1p

 � 1

!2
n:

It implies that jxj �
p

C1p

�1

p
n kxkPı , which means Bn2 �

p

C1p

�1

p
n P. This proves

P � K � Bn2 �
p

C 1p

 � 1

p
n P
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and in particular implies

vein.K/ � 2
p
n

p

C 1p

 � 1

X
i2I

kvikK � 2


p

C 1p

 � 1

n3=2:

Choosing 
 D 4 we obtain the result. ut

5 A Lower Bound for the Vertex Index of Bn
2

In this section we prove estimate (4), i.e. we improve the constant in the estimate

cn3=2 � vein.Bn2/ � 2n3=2

from c D 1=
p
2�e proved obtained [6] to c D 1=

p
3. Recall that the proof in [6]

was based on volume estimates. We use here completely different approach.

Proof. Assume that Bn2 � L D convfxi gi�N for some non zero xi ’s and denote

a D
nX
iD1

jxi j:

Our goal is to show that a2 � n3=3.
Define the operator T W R

N ! R
n by Tei D xi , i � N . Then the rank of T is

n (since Bn2 � L), a D Pn
iD1 jTei j and for every x 2 R

n

jxj � kxkL0 D max
i�N hx; xi i D max

i�N hT �x; ei i : (7)

For i � N denote


i D
p

jTei j=a and vi D Tei

a
i
:

Then
nX
iD1


2i D 1 and
nX
iD1

jvi j2 D 1:

We also observe that T � can be presented as T � D a�S , where � is the diagonal
matrix with 
i ’s on the diagonal and

S D
NX
iD1

vi ˝ ei :
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Note that the rank of S equals n. Let s1 � s2 � : : : � sn > 0 be the singular values
of S and let fwi gi�n, fzi gi�n be orthonormal systems such that

S D
nX
iD1

snwi ˝ zi :

Then
nX
iD1

s2i D kSk2HS D
nX
iD1

jvi j2 D 1;

where kSkHS is the Hilbert-Schmidt norm of S . Now form � n denote

Sm D
nX

iDm
snwi ˝ zi

and consider the .nC 1 �m/-dimensional subspace

Em D Im .�Sm/ � Im T �:

Considering the extreme points of the section of the cube BN1 \Em we observe that
there exists a vector y D fyigi�N 2 BN1 \Em such that the set A D fi j jyi j D 1g
has cardinality at least nC 1�m. Without loss of generality we assume that jAj D
n C 1 � m (otherwise we choose an arbitrary subset of A with such cardinality).
We observe

j.a�/�1yj D 1

a

vuut NX
iD1

y2i


2i
� 1

a

sX
i2A

1


2i

� nC 1 �m

a

qP
i2A 
2i

� nC 1 �m

a

qPN
iD1 
2i

D nC 1 �m
a

:

Note that by construction y 2 Em � Im T �, so denoting the inverse of T � from the
image by .T �/�1 we have

j.T �/�1yj D jS�1.a�/�1yj D jS�1
m .a�/�1yj � j.a�/�1yj

kSmk � nC 1 �m
asm

:

Using (7) we obtain

nC 1�m

asm
� j.T �/�1yj � max

i�N
˝
T �.T �/�1y; ei

˛ D kyk1 D 1:
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This shows sm � .nC 1 �m/=a and implies

n3

3a2
� 1

a2

nX
mD1

.nC 1 �m/2 �
nX

mD1
s2m D 1;

which proves the desired result. ut
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Inner Regularization of Log-Concave Measures
and Small-Ball Estimates

Bo’az Klartag and Emanuel Milman

Abstract In the study of concentration properties of isotropic log-concave mea-
sures, it is often useful to first ensure that the measure has super-Gaussian marginals.
To this end, a standard preprocessing step is to convolve with a Gaussian measure,
but this has the disadvantage of destroying small-ball information. We propose an
alternative preprocessing step for making the measure seem super-Gaussian, at least
up to reasonably high moments, which does not suffer from this caveat: namely,
convolving the measure with a random orthogonal image of itself. As an application
of this “inner-thickening”, we recover Paouris’ small-ball estimates.

1 Introduction

Fix a Euclidean norm j�j on R
n, and let X denote an isotropic random vector in R

n

with log-concave density g. Recall that a random vector X in R
n (and its density)

is called isotropic if eX D 0 and eX ˝ X D Id , i.e. its barycenter is at the origin
and its covariance matrix is equal to the identity one. Taking traces, we observe that
ejX j2 D n. Here and throughout we use e to denote expectation and P to denote
probability. A function g W R

n ! RC is called log-concave if � logg WRn !
R [ fC1g is convex. Throughout this work, C ,c,c2,C 0, etc. denote universal
positive numeric constants, independent of any other parameter and in particular
the dimension n, whose value may change from one occurrence to the next.
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Any high-dimensional probability distribution which is absolutely continuous
has at least one super-Gaussian marginal (e.g. [14]). Still, in the study of concentra-
tion properties of X as above, it is many times advantageous to know that all of the
one-dimensional marginals of X are super-Gaussian, at least up to some level (see
e.g. [10, 15, 25]). By this we mean that for some p0 � 2:

82 � p � p0 8� 2 Sn�1 .E jhX; �ijp/ 1p � c.E jG1jp/ 1p ; (1)

where G1 denotes a one-dimensional standard Gaussian random variable and Sn�1
is the Euclidean unit sphere in R

n. It is convenient to reformulate this using the
language of Lp-centroid bodies, which were introduced by Lutwak and Zhang in
[17] (under a different normalization). Given a random vector X with density g on
R
n and p � 1, the Lp-centroid body Zp.X/ D Zp.g/ � R

n is the convex set
defined via its support functional hZp.X/ by:

hZp.X/.y/ D
�Z

Rn

jhx; yijp g.x/dx
�1=p

; y 2 R
n :

More generally, the one-sided Lp-centroid body, denoted ZC
p .X/, was defined in

[10] (cf. [11]) by:

h
Z

C

p .X/
.y/ D

�
2

Z
Rn

hx; yipC g.x/dx
�1=p

; y 2 R
n ;

where as usual aC WD max.a; 0/. Note that when g is even then both definitions
above coincide, and that when the barycenter of X is at the origin, Z2.X/ is the
Euclidean ball Bn

2 if and only X is isotropic. Observing that the right-hand side of
(1) is of the order of

p
p, we would like to have:

82 � p � p0 ZC
p .X/ 
 c

p
pBn

2 ; (2)

where Bn
2 D fx 2 R

nI jxj � 1g is the unit Euclidean ball.
Unfortunately, we cannot in general expect to satisfy (2) for p0 which grows

with the dimension n. This is witnessed by X which is uniformly distributed on the
n-dimensional cube Œ�p

3;
p
3�n (the normalization ensures that X is isotropic),

whose marginals in the directions of the axes are uniform on a constant-sized
interval. Consequently, some preprocessing on X is required, which on one hand
transforms it into another random variable Y whose density g satisfies (2), and on
the other enables deducing back the desired concentration properties of X from
those of Y .

A very common such construction is to convolve with a Gaussian, i.e. define
Y WD .X CGn/=

p
2, where Gn denotes an independent standard Gaussian random

vector in R
n. In [12] (and in subsequent works like [5, 13]), the Gaussian played

more of a regularizing role, but in [10], its purpose was to “thicken from inside” the
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distribution of X , ensuring that (2) is satisfied for all p � 2 (see [10, Lemma 2.3]).
Regarding the transference of concentration properties, it follows from the argument
in the proof of [12, Proposition 4.1] that:

P.jX j � .1C t/
p
n/ � CP

 
jY j �

r
.1C t/2 C 1

2

p
n

!
8t � 0 ; (3)

and:

P.jX j � .1 � t/
p
n/ � CP

 
jY j �

r
.1 � t/2 C 1

2

p
n

!
8t 2 Œ0; 1� ; (4)

for some universal constant C > 1. The estimate (3) is perfectly satisfactory
for transferring (after an adjustment of constants) deviation estimates above the
expectation from jY j to jX j. However, note that the right-hand side of (4) is bounded
below by P.jY j � p

n=2/ (and in particular does not decay to 0 when t ! 1),
and so (4) is meaningless for transferring small-ball estimates from jY j to jX j.
Consequently, the strategies employed in [5,10,12,13] did not and could not deduce
the concentration properties of jX j in the small-ball regime. This seems an inherent
problem of adding an independent Gaussian: small-ball information is lost due to
the “Gaussian-thickening”.

The purpose of this note is to introduce a different inner-thickening step, which
does not have the above mentioned drawback. Before formulating it, recall that X
(or its density) is said to be “ ˛ with constant D > 0” if:

Zp.X/ � Dp1=˛Z2.X/ 8p � 2 : (5)

We will simply say that “X is  ˛”, if it is  ˛ with constant D � C , and not
specify explicitly the dependence of the estimates on the parameter D. By a result
of Berwald [1] (or applying Borell’s Lemma [3] as in [22, Appendix III]), it is well
known that any X with log-concave density satisfies:

1 � p � q ) Zp.X/ � Zq.X/ � C
q

p
Zp.X/ : (6)

In particular, such an X is always  1 with some universal constant, and so we only
gain additional information when ˛ > 1.

Theorem 1.1. Let X denote an isotropic random vector in R
n with a log-concave

density, which is in addition  ˛ (˛ 2 Œ1; 2�), and let X 0 denote an independent copy
of X . Given U 2 O.n/, the group of orthogonal linear maps in R

n, denote:

Y U˙ WD X ˙ U.X 0/p
2

:

Then:
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1. For any U 2 O.n/, the concentration properties of jY U˙ j are transferred to jX j
as follows:

P.jX j � .1C t/pn/ � .2max.P.jY UC j � .1C t/pn/; P.jY U� j � .1C t/pn/// 12
8t � 0 ;

and:

P.jX j � .1� t/pn/ � .2max.P.jY UC j � .1� t/pn/; P.jY U� j � .1� t/pn/// 12
8t 2 Œ0; 1� :

2. For any U 2 O.n/:

ZC
p .Y

U˙ / � Cp1=˛Bn
2 8p � 2 : (7)

3. There exists a subset A � O.n/ with:

�O.n/.A/ � 1 � exp.�cn/ ;

where �O.n/ denotes the Haar measure on O.n/ normalized to have total mass
1, so that if U 2 A then:

ZC
p .Y

U˙ / 
 c1
p
pBn

2 8p 2 Œ2; c2n˛
2 � : (8)

Remark 1.2. Note that when the density of X is even, then Y UC and Y U� in
Theorem 1.1 are identically distributed, which renders the formulation of the
conclusion more natural. However, we do not know how to make the formulation
simpler in the non-even case.

Remark 1.3. Also note that Y U˙ are isotropic random vectors, and that by the
Prékopa–Leindler Theorem (e.g. [7]), they have log-concave densities.

As our main application, we manage to extend the strategy in the second named
author’s previous work with Guédon [10] to the small-ball regime, and obtain:

Corollary 1.4. Let X denote an isotropic random vector in R
n with log-concave

density, which is in addition  ˛ (˛ 2 Œ1; 2�). Then:

P.
ˇ̌jX j � p

n
ˇ̌ � t

p
n/ � C exp.�cn˛

2 min.t2C˛; t// 8t � 0 ; (9)

and:
P.jX j � "

p
n/ � .C "/cn

˛
2 8" 2 Œ0; 1=C � : (10)
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Corollary 1.4 is an immediate consequence of Theorem 1.1 and the following
result, which is the content of [10, Theorem 4.1] (our formulation below is slightly
more general, but this is what the proof gives):

Theorem (Guédon–Milman). Let Y denote an isotropic random vector in R
n with

a log-concave density, so that in addition:

c1
p
pBn

2 � ZC
p .Y / � c2p

1=˛Bn
2 8p 2 Œ2; c3n˛

2 � ; (11)

for some ˛ 2 Œ1; 2�. Then (9) and (10) hold with X D Y (and perhaps different
constants C; c > 0).

We thus obtain a preprocessing step which fuses perfectly with the approach in
[10], allowing us to treat all deviation regimes simultaneously in a single unified
framework. We point out that Corollary 1.4 by itself is not new. The large positive-
deviation estimate:

P.jX j � .1C t/
p
n/ � exp.�cn˛

2 t/ 8t � C ;

was first obtained by Paouris in [23]; it is known to be sharp, up to the value of the
constants. The more general deviation estimate (9) was obtained in [10], improving
when t 2 Œ0; C � all previously known results due to the first named author and to
Fleury [5, 12, 13] (we refer to [10] for a more detailed account of these previous
estimates). In that work, the convolution with Gaussian preprocessing was used,
and so it was not possible to independently deduce the small-ball estimate (10). The
latter estimate was first obtained by Paouris in [24], using the reverse Blaschke–
Santaló inequality of Bourgain and Milman [4]. In comparison, our main tool in the
proof of Theorem 1.1 is a covering argument in the spirit of Milman’s M-position
[18–20] (see also [26]), together with a recent lower-bound on the volume of Zp
bodies obtained in our previous joint work [15].
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2 Key Proposition

In this section, we prove the following key proposition:

Proposition 2.1. Let X;X 0 be as in Theorem 1.1, let U be uniformly distributed on
O.n/, and set:
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Y WD X C U.X 0/p
2

:

Then there exists a c > 0, so that:

8C1 > 0 9c1 > 0 8p 2 Œ2; cn˛=2� P.ZC
p .Y / 
 c1

p
pBn

2 / � 1 � exp.�C1n/ :

Here, as elsewhere, “uniformly distributed on O.n/” is with respect to the
probability measure �O.n/.

We begin with the following estimate due to Grünbaum [9] (see also [6, Formula
(10)] or [2, Lemma 3.3] for simplified proofs):

Lemma 2.2 (Grünbaum). Let X1 denote a random variable on R with log-
concave density and barycenter at the origin. Then 1

e
� P.X1 � 0/ � 1 � 1

e
.

Recall that the Minkowski sumKCL of two compact setsK;L � R
n is defined

as the compact set given by fx C yI x 2 K; y 2 Lg. When K;L are convex, the
support functional satisfies hKCL D hK C hL.

Lemma 2.3. With the same notations as in Proposition 2.1:

ZC
p .Y / 
 1

2
p
2e1=p

.ZC
p .X/C U.ZC

p .X/// :

Proof. Given � 2 Sn�1, denote Y1 D hY; �i, X1 D hX; �i and X 0
1 D hU.X 0/; �i.

By the Prékopa–Leindler theorem (e.g. [7]), all these one-dimensional random
variables have log-concave densities, and since their barycenter is at the origin, we
obtain by Lemma 2.2:

h
p

Z
C

p .Y /
.�/ D 2E.Y1/

p
C D 2

2p=2
E


X1 CX 0

1

�p
C � 2

2p=2
E.X1/

p
CP.X 0

1 � 0/

� 2

E2p=2
E.X1/

p
C :

Exchanging the roles of X1 and X 0
1 above, we obtain:

h
p

Z
C

p .Y /
.�/ � 1

e2p=2
max

�
h
p

Z
C

p .X/
.�/; h

p

Z
C

p .U.X 0//
.�/

�
:

Consequently:

h
Z

C

p .Y /
.�/ � 1p

2e1=p

h
Z

C

p .X/
.�/C h

Z
C

p .U.X 0//
.�/

2
;

and since ZC
p .U.X

0// D U.ZC
p .X

0// D U.ZC
p .X//, the assertion follows. ut
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Next, recall that given two compact subsets K;L � R
n, the covering number

N.K;L/ is defined as the minimum number of translates of L required to coverK .
The volume-radius of a compact set K � R

n is defined as:

V.Rad..K/ D
�

Vol.K/

Vol.Bn
2 /

� 1
n

;

measuring the radius of the Euclidean ball whose volume equals the volume of K .
A convex compact set with non-empty interior is called a convex body, and given
a convex body K with the origin in its interior, its polar Kı is the convex body
given by:

Kı WD fy 2 R
nI hx; yi � 1 8x 2 Kg :

Finally, the mean-width of a convex bodyK , denotedW.K/, is defined asW.K/ D
2
R
Sn�1 hK.�/d�Sn�1 .�/, where �Sn�1 denotes the Haar probability measure on

Sn�1. The following two lemmas are certainly well-known; we provide a proof for
completeness.

Lemma 2.4. Let K � R
n be a convex body with barycenter at the origin, so that:

N.K;Bn
2 / � exp.A1n/ and V.Rad..K/ � a1 > 0 :

Then:
N.Kı; Bn

2 / � exp.A2n/ ;

where A2 � A1 C log.C=a1/, and C > 0 is a universal constant.

Proof. Set Ks D K \ �K . By the covering estimate of König and Milman [16], it
follows that:

N.Kı; Bn
2 / � N.Kı

s ; B
n
2 / � CnN.Bn

2 ;Ks/ :

Using standard volumetric covering estimates (e.g. [26, Chap. 7]), we deduce:

N.Kı; Bn
2 / � Cn

�
Vol.Bn

2 CKs=2/

Vol.Ks=2/

�
� CnN.Ks=2; B

n
2 /

Vol.2Bn
2 /

Vol.Ks=2/
:

By a result of Milman and Pajor [21], it is known that Vol.Ks/ � 2�n Vol.K/, and
hence:

N.Kı; Bn
2 / � .8C /nN.K;Bn

2 /V.Rad..K/�n � .8C=a1/
n exp.A1n/ ;

as required. ut
Lemma 2.5. Let L denote any compact set in R

n (n � 2), so that N.L;Bn
2 / �

exp.A1n/. If U is uniformly distributed on O.n/, then:

P.L \ U.L/ � A3B
n
2 / � 1 � exp.�A2n/ ;
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where A2 D A1 C .log 2/=2 and A3 D C 0 exp.6A1/, for some universal constant
C 0 > 0.

Proof Sketch. Assume that L � [exp.A1n/
iD1 .xi C Bn

2 /. Set R D 4C exp.6A1/, for
some large enough constant C > 0, and without loss of generality, assume that
among all translates fxi g, fxi gNiD1 are precisely those points lying outside of RBn

2 .
Observe that for each i D 1; : : : ; N , the cone

˚
t.xi C Bn

2 /I t � 0
�

carves a spherical
cap of Euclidean radius at most 1=R on Sn�1. By the invariance of the Haar
measures on Sn�1 and O.n/ under the action of O.n/, it follows that for every
i; j 2 f1; : : : ; N g:

P.U.xi C Bn
2 /\ .xj C Bn

2 / ¤ ;/ � �Sn�1 .B2=R/ ;

where B" denotes a spherical cap on Sn�1 of Euclidean radius ", and recall �Sn�1

denotes the normalized Haar measure on Sn�1. When " < 1=.2C /, it is easy to
verify that:

�Sn�1.B"/ � .C "/n�1 ;

and so it follows by the union-bound that:

P.L \ U.L/ � .RC 1/Bn
2 / � P.8i; j 2 f1; : : : ; N g

U.xi C Bn
2 / \ .xj C Bn

2 / D ;/ � 1 �N2.2C=R/n�1 :

Since N � exp.2A1.n � 1//, our choice of R yields the desired assertion with
C 0 D 5C .

It is also useful to state:

Lemma 2.6. For any density g on R
n and p � 1:

ZC
p .g/ � 21=pZp.g/ � ZC

p .g/ �ZC
p .g/ : (12)

Proof. The first inclusion is trivial. The second follows since a1=p C b1=p � .a C
b/1=p for a; b � 0, and hence for all � 2 Sn�1:

h
Z

C

p .g/�ZC

p .g/
.�/ D h

Z
C

p .g/
.�/C h

Z
C

p .g/
.��/ � 21=phZp.g/.�/ :

ut
The next two theorems play a crucial role in our argument. The first is due to

Paouris [23], and the second to the authors [15]:

Theorem (Paouris). With the same assumptions as in Theorem 1.1:

W.Zp.X// � C
p
p 8p 2 Œ2; cn˛=2� : (13)
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Theorem (Klartag–Milman). With the same assumptions as in Theorem 1.1:

V.Rad..Zp.X// � c
p
p 8p 2 Œ2; cn˛=2� : (14)

We are finally ready to provide a proof of Proposition 2.1:

Proof of Proposition 2.1. Let p 2 Œ2; cn˛=2�, where c > 0 is some small enough
constant so that (13) and (14) hold. We will ensure that c � 1, so there is nothing to
prove if n D 1. By (12), Sudakov’s entropy estimate (e.g. [26]) and (13), we have
(see also [8, Proposition 5.1]):

N.ZC
p .X/=

p
p;Bn

2 / � N.21=pZp.X/=
p
p;Bn

2 /

� exp. QCnW.21=pZp.X/=pp/2/ � exp.Cn/ : (15)

Note that by (12) and the Rogers–Shephard inequality [27], we have:

2n=p Vol.Zp.X// � Vol.ZC
p .X/�ZC

p .X// � 4n Vol.ZC
p .X// :

Consequently, the volume bound in (14) also applies to ZC
p .X/:

V.Rad..ZC
p .X// � c1

p
p : (16)

By Lemma 2.4, (15) and (16) imply that:

N.
p
p.ZC

p .X//
ı; Bn

2 / � exp.C2n/ :

Consequently, Lemma 2.5 implies that if U is uniformly distributed on O.n/, then
for any C1 � C2 C .log 2/=2, there exists a C3 > 0, so that:

P

�
ZC
p .X/

ı \ U.ZC
p .X/

ı/ � C3p
p
Bn
2

�
� 1� exp.�C1n/ ;

or by duality (since T .K/ı D .T �1/�.Kı/ for any linear map T of full rank), that:

P

�
ZC
p .X/C U.ZC

p .X// 
 C�1
3

p
pBn

2

	

� P

�
conv.ZC

p .X/ [ U.ZC
p .X/// 
 C�1

3

p
pBn

2

	
� 1 � exp.�C1n/ :

Lemma 2.3 now concludes the proof. ut
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3 Remaining Details

We now complete the remaining (standard) details in the proof of Theorem 1.1.

Proof of Theorem 1.1.

1. For any U 2 O.n/ and t � 0, observe that:

2max

�
P

�ˇ̌
ˇ̌X C U.X 0/p

2

ˇ̌
ˇ̌ � t

�
;P

�ˇ̌
ˇ̌X � U.X 0/p

2

ˇ̌
ˇ̌ � t

��

� P

�ˇ̌
ˇ̌X C U.X 0/p

2

ˇ̌
ˇ̌ � t

�
C P

�ˇ̌
ˇ̌X � U.X 0/p

2

ˇ̌
ˇ̌ � t

�

D P

 
jX j2 C jX 0j2

2
C ˝
X;U.X 0/

˛ � t2

!

C P

 
jX j2 C jX 0j2

2
� ˝
X;U.X 0/

˛ � t2

!

� P

jX j � t and

ˇ̌
X 0ˇ̌ � t and

˝
X;U.X 0/

˛ � 0
�

C P

jX j � t and

ˇ̌
X 0ˇ̌ � t and

˝
X;U.X 0/

˛
> 0

�

D P

jX j � t and

ˇ̌
X 0 ˇ̌ � t

� D P .jX j � t/2 :

Similarly:

2max

�
P

�ˇ̌
ˇ̌X C U.X 0/p

2

ˇ̌
ˇ̌ � t

�
;P

�ˇ̌
ˇ̌X � U.X 0/p

2

ˇ̌
ˇ̌ � t

��
� P .jX j � t/2 :

This is precisely the content of the first assertion of Theorem 1.1.
2. Given � 2 Sn�1, denote Y1 D P�Y

UC ,X1 D P�X andX2 D P�U.X
0/, whereP�

denotes orthogonal projection onto the one-dimensional subspace spanned by � .
We have:

hZp.Y U
C

/.�/ D .ejY1jp/
1
p D

�
e

ˇ̌
ˇ̌X1 CX2p

2

ˇ̌
ˇ̌p
� 1

p

� 1p
2

�
.ejX1jp/ 1p C .ejX2jp/ 1p

	
D 1p

2



hZp.X/.�/C hZp.U.X///.�/

�
:

Employing in addition (12), it follows that:

ZC
p .Y

UC / � 21=pZp.Y
UC / � 21=pp

2



Zp.X/C U.Zp.X//

�
;
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and the second assertion for Y UC follows sinceZp.X/ � Cp
1
˛ Bn

2 by assumption.
Similarly for Y U� .

3. Given a natural number i , set pi D 2i . Proposition 2.1 ensures the existence of a
constant c > 0, so that for any C1 > 0, there exists a constant c1 > 0, so that for
any pi 2 Œ2; cn˛

2 �, there exists a subset Ai � O.n/ with:

�O.n/.Ai / � 1 � exp.�C1n/ ;

so that:
8U 2 Ai Zpi .Y

UC / 
 c1
p
piB

n
2 :

Denoting A0 WD \ ˚Ai I pi 2 Œ2; cn˛
2 �
�
, and setting A D A0 \ �A0, where

�A0 WD f�U 2 O.n/IU 2 A0g, it follow by the union-bound that:

�O.n/.A/ � 1 � 2 log.C2 C n/ exp.�C1n/ :

By choosing the constant C1 > 0 large enough, we conclude that:

�O.n/.A/ � 1 � exp.�C3n/ :

By construction, the set A has the property that:

8U 2 A 8pi 2 Œ2; cn˛
2 � Zpi .Y

U˙ / 
 c1
p
piB

n
2 :

Using (6), it follows that:

8U 2 A 8p 2 Œ2; cn˛
2 � Zp.Y

U
˙ / 
 c1p

2

p
pBn

2 ;

thereby concluding the proof of the third assertion. ut
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An Operator Equation Generalizing the Leibniz
Rule for the Second Derivative

Hermann König and Vitali Milman�

Abstract We determine all operators T W C2.R/ ! C.R/ andA W C1.R/ ! C.R/

which satisfy the equation

T .f � g/ D .Tf / � g C f � .Tg/C .Af / � .Ag/ I f; g 2 C2.R/ : (1)

This operator equation models the second order Leibniz rule for .f � g/00 with
Af D p

2f 0. Under a mild regularity and non-degeneracy assumption on A, we
show that the operators T and A have to be of a very restricted type. In addition
to the operator solutions S of the Leibniz rule derivation equation corresponding to
A D 0 ,

S.f � g/ D .Sf / � g C f � .Sg/ I f; g 2 C2.R/ or C1.R/ ; (2)

which are of the form

Sf D bf 0 C af ln jf j; a; b 2 C.R/;
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T and A may be of the following three types

Tf D 1
2
d 2f 00 ; Af D d f 0

Tf D 1
2
d 2f .ln jf j/2 ; Af D d f ln jf j

Tf D d2f ."jf jp � 1/ ; Af D d f ."jf jp � 1/

for suitable continuous functions d; c and p and where " is either 1 or sgn f
and p � �1. The last operator solution is degenerate in the sense that T is a
multiple of A. We also determine all solutions of (1) if T and A operate only on
positive C2.R/-functions or C2.R/-functions which are nowhere zero.

1 Introduction and Results

In previous papers we showed that the derivative and other differentiation operators
are characterized by simple operator equations like the chain rule or the Leibniz rule
plus some natural initial conditions [3, 5, 6]. In this paper we consider an operator
equation generalizing the second order Leibniz rule for C2-functions on R,

.f � g/00 D f 00 � g C f � g00 C 2 f 0 � g0 I f; g 2 C2.R/ W

Suppose T W C2.R/ ! C.R/ and A W C1.R/ ! C.R/ are operators satisfying the
operator equation

T .f � g/ D Tf � g C f � Tg C Af � Ag I f; g 2 C2.R/ : (1)

So in the case of the second derivative Tf D f 00 we have that Af D p
2f 0.

We determine all operators T and A verifying (1) for all C2.R/-functions and show
that T and A have to be of a very restricted type. This allows a characterization
of the second derivative Tf D f 00 by (1) and some natural smoothness and initial
conditions. No regularity or linearity assumptions will be made on T andA besides a
mild non-degeneracy and a weak continuity condition imposed on A. As a corollary
we also determine the analogues of the second derivative operation on C1.R/

and C.R/.
All operators S W Ck.R/ ! C.R/ satisfying the Leibniz rule derivation equation

S.f � g/ D Sf � g C f � Sg I f; g 2 Ck.R/ (2)

were determined in [6] for k 2 N : There are continuous functions a; b 2 C.R/

such that any such S is of the form

.Sf /.x/ D b.x/f 0.x/C a.x/f .x/ ln jf .x/j ; (3)
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without any continuity assumption on S . Linearity is not assumed and, in fact,
is not present in the case of the entropy type solution. For k D 0, the operators
satisfying (2) had been found by Goldmann and Šemrl [4]: then b.x/ D 0 so that S
is defined on C.R/ and given by the entropy function. Clearly, (2) is a homogeneous
version of equation (1). The operators S satisfy (1) with A D 0, and the solutions
(3) of the “homogeneous” equation (2) may be added to any solution T of the
“inhomogeneous” equation (1), yielding another map fulfilling (1) with the same
operatorA. We prove that only very few types of operators T and A will be suitable
for (1) to hold.

We consider A W C1.R/ ! C.R/ to be “of lower order”, not depending on
second derivatives. To prove a localization property forA forC1.R/-functions while
(1) is assumed only for C2.R/-functions, we need the following mild continuity
assumption on A:

Definition. An operator A W C1.R/ ! C.R/ is pointwise C1-continuous provided
that for any f 2 C1.R/ and any sequence .fn/n2N in C2.R/ such that fn ! f and
f 0
n ! f 0 converge uniformly on R, we have for all x 2 R that lim

n!1.Afn/.x/ D
.Af /.x/ holds.

To prove localization for C2.R/-functions, we need a non-degeneracy assump-
tion as well:

Definition. An operator A W C1.R/ ! C.R/ is non-degenerate if for any open
interval J � R and any x 2 J there are functions g1; g2 2 C2.R/ with support in J
such that the two vectors .gi .x/; Agi .x// 2 R

2, i 2 f1; 2g are linearly independent.

This means that A should be essentially different from a multiple of the identity.
Our main result gives all operators T and A verifying the second order Leibniz rule
(1) on C2.R/.

Theorem 1. Let T W C2.R/ ! C.R/ and A W C1.R/ ! C.R/ be operators such
that the equation

T .f � g/.x/ D .Tf /.x/ � g.x/C f .x/ � .Tg/.x/C .Af /.x/ � .Ag/.x/ (1)

holds for all functions f; g 2 C2.R/ and any x 2 R. Assume that A is non-
degenerate and pointwise C1-continuous. Then there are continuous functions
a; b; d; e; p 2 C.R/ such that

.Tf /.x/ D .T1f /.x/C .Sf /.x/ ;

where
.Sf /.x/ D b.x/f 0.x/C a.x/f .x/ ln jf .x/j : (3)

solves the “homogeneous” equation and where T1 andA are of one of the following
three forms

.T1f /.x/ D d.x/2

2
f 00.x/ ; .Af /.x/ D d.x/f 0.x/
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or
.T1f /.x/ D e.x/2

2
f .x/.ln jf .x/j/2 ; .Af /.x/ D e.x/f .x/ ln jf .x/j

or

.T1f /.x/ D e.x/2f .x/.fsgn f .x/gjf .x/jp.x/ � 1/;
.Af /.x/ D e.x/f .x/.fsgn f .x/gjf .x/jp.x/ � 1/ :

Here p.x/ � �1 and the bracket fsgnf .x/g means that there are two solutions,
one without this term and one with the sgn-term. The formulas for T hold for all
f 2 C2.R/ and the ones for A for all f 2 C1.R/. The first operator T1 is the only
one that cannot be extended toC1.R/. Conversely, these operators .T; A/ satisfy (1).

Remarks. 1. After this paper was finished, we reproved Theorem 1 in [7] using
a different method which allowed to avoid the assumption of pointwise C1-
continuity ofA. However, Theorem 3 below, which is the analogue of Theorem 1
for functions which never vanish, requires the assumption of pointwise C1-
continuity of A and is not considered in [7]. In addition, the proof given here
explains clearer and more easily why the dependence on f 00 in the first and main
case is linear.

2. Let x0 2 R. If d.x0/ D 0 and e.x0/ D 0 or e.x0/ D 0 for two different of
the three solutions, one might think that the corresponding operators might be
mixed: taking for x < x0 one formula and for x > x0 the second formula: on
both sides of x0, equation (1) is satisfied with Tf;Af 2 C.R/. However, the
condition of non-degeneration of A would not be satisfied in x0, so this is not a
valid solution under the assumptions of Theorem 1.

3. The last operator .T1; A/ may be also considered degenerate since in these cases
T1 and A are proportional.

4. Starting with the derivations Sf D f 0 and Sf D f ln jf j solving (2) in C1 and
C , the first two operators T1 might be considered “second iterated derivations”.
In particular, T1f D 1

2
f .ln jf j/2 corresponds to the derivation Sf D f ln jf j

on C .
5. The last two solutions for .T; A/ extend to operators T W C.R/ ! C.R/ and
A W C.R/ ! C.R/ satisfying the operator functional equation (1) for all f; g 2
C.R/ , if the b.x/f 0.x/ term in Sf is omitted.

Theorem 1 yields a characterization of the second derivative by the operator
equation (1) together with a natural smoothness and an initial condition:

Proposition 2. Assume T W C2.R/ ! C.R/ and A W C1.R/ ! C.R/ satisfy the
functional equation (1) on C2.R/ and that A is non-degenerate and pointwise C1-
continuous. If T is zero on the affine functions on R, it is the second derivative up
to some continuous function, namely there exists d 2 C.R/ such that Tf D d2

2
f 00

and Af D d f 0.

We also determine the larger class of operators satisfying (1) on the set of
nowhere zero C2-functions. Let Ck

¤0.R/ WD ff 2 Ck.R/j f .x/ ¤ 0 for all
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x 2 Rg; k 2 N. In the case of the “homogeneous” equation (2), all C2
¤0.R/-

solutions are of the type

.S 0f /.x/ D c.x/.f 00.x/ � f 0.x/2

f .x/
/C b.x/f 0.x/C a.x/f .x/ ln jf .x/j ; (4)

where a; b and c are suitable continuous functions on R, cf. [6]. Adding S 0 to any
solution T of (1) again yields a solution of (1) for C2

¤0.R/-functions with the same
operator A. In this situation, we prove:

Theorem 3. Let T W C2
¤0.R/ ! C.R/ and A W C1

¤0.R/ ! C.R/ be operators
such that the functional equation

T .f � g/.x/ D .Tf /.x/ � g.x/C f .x/ � .Tg/.x/C .Af /.x/ � .Ag/.x/ (1)

holds for all functions f; g 2 C2
¤0.R/ and any x 2 R. Assume that A is non-

degenerate and pointwise C1-continuous restricted to the nowhere zero functions.
Then there are continuous functions a; b; c; d; e; p 2 C.R/ such that T and A have
the form

Tf .x/ D .T 0f /.x/C .S 0f /.x/

where

.S 0f /.x/ D c.x/.f 00.x/ � f 0.x/2

f .x/
/C b.x/f 0.x/C a.x/f .x/ ln jf .x/j (5)

solves the “homogeneous” equation and where T 0 andA are of one of the following
two forms

.T 0f /.x/ D d.x/2

2

f 0.x/2

f .x/
C e.x/2

2
f .x/.ln jf .x/j/2 C d.x/e.x/f 0.x/ ln jf .x/j

.Af /.x/ D d.x/f 0.x/C e.x/f .x/ ln jf .x/j

or

.T 0f /.x/ D e.x/2f .x/.fsgn f .x/gjf .x/jp.x/ exp.d.x/f 0.x/=f .x// � 1/
.Af /.x/ D e.x/ f .x/.fsgn f .x/gjf .x/jp.x/ exp.d.x/f 0.x/=f .x// � 1/

In the second case the term fsgnf .x/g may be present both in T 0 and A or not.
Conversely, these operators .T; A/ satisfy equation (1).

Remarks. (a) The second case is trivial in the sense that T 0 and A are proportional.
The first solution combines the first two solutions in Theorem 1.

(b) Notice that a term c.x/f 00.x/ involving the second derivative may show up in
all solutions due to the fact that it may be present in S 0f .
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(c) The proof uses localization on open intervals J � R, and Theorems 1 and 3
are true just as well for maps T W C2.J / ! C.J / and A W C1.J / ! C.J /

satisfying (1) for x 2 J . In the case of Theorem 3, the functions should be
non-zero everywhere on J .

Acknowledgements We would like to thank the referee for valuable suggestions and remarks, in
particular for pointing out a gap in the original localization argument. This led us to the example
in the following section.

2 Localization

The first step in the Proof of Theorems 1 and 3 is to show that any operators T andA
verifying the functional equation (1) are local operators, i.e. defined pointwise in the
sense that .Tf /.x/ only depends on x; f .x/; f 0.x/ and f 00.x/ and that .Af /.x/
is a function of x; f .x/ and f 0.x/. Afterwards, we will analyze this dependence in
a second step. We start with a “localization on intervals” result.

Proposition 4. Assume T W C2.R/ ! C.R/ and A W C1.R/ ! C.R/ satisfy the
functional equation (1) on C2.R/ and that A is non-degenerate. Then:

(a) T 1 D A1 D 0 .
(b) For any open interval J � R and f1; f2 2 C.R/ with f1jJ D f2jJ , we have

.Tf1/jJ D .Tf2/jJ and .Af1/jJ D .Af2/jJ . This is also true in the case of
C2

¤0.R/-functions, if (1) holds for f; g 2 C2
¤0.R/.

Proof. (a) By the functional equation (1), we have for any g 2 C2.R/ and x 2 R

0 D T .1.x/ � g.x// � 1.x/ � T .g/.x/ D T .1/.x/ � g.x/C A.1/.x/ � Ag.x/ :

Since A is non-degenerate, we may choose functions g1; g2 2 C2.R/ such that
.gi .x/; Agi .x//, i 2 f1; 2g are linearly independent. Applying the previous
equality to g1; g2, we find that T .1/.x/ D A.1/.x/ D 0. Therefore T .1/ D
A.1/ D 0 on R.

(b) Assume J � R is an open interval and f1; f2 2 C2.R/ are such that f1jJ D
f2jJ . Then for any g 2 C2.R/ with support in J , we have f1 � g D f2 � g and
hence by (1)

.Tf1/ � g C f1 � .Tg/C .Af1/ � .Ag/ D T .f1 � g/ D T .f2 � g/
D .Tf2/ � g C f2 � .Tg/C .Af2/ � .Ag/ ;

and hence for any x 2 J , with f1.x/ D f2.x/ ,

..Tf1/.x/ � .Tf2/.x// � g.x/C ..Af1/.x/ � .Af2/.x// � .Ag/.x/ D 0 : (6)
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Since A is assumed to be non-degenerate, we may choose two functions g1; g2 2
C2.R/ with support in J such that .g1.x/; .Ag1/.x// and .g2.x/; .Ag2/.x// are
linearly independent in R

2. Applying (6) for g D g1 and g D g2 then also yields
.Tf1/.x/ D .Tf2/.x/ and .Af1/.x/ D .Af2/.x/. Hence Tf1jJ D Tf2jJ and
Af1jJ D Af2jJ in both cases. The argument for C2

¤0.R/-functions is identical. ut
For non-degenerate A, the previous result implies as in [5] that T and A are

pointwise defined operators:

Proposition 5. Assume T W C2.R/ ! C.R/ and A W C1.R/ ! C.R/ satisfy
the functional equation (1) on C2.R/ and that A is non-degenerate and pointwise
C1-continuous. Then there are functions F W R4 ! R and B W R3 ! R such that

.Tf /.x/ D Fx.f .x/; f
0.x/; f 00.x// ;

.Af /.x/ D Bx.f .x/; f
0.x// I f 2 C2.R/; x 2 R :

For convenience, we write the dependence on the first variable x 2 R as index.
A corresponding statement holds in the C2

¤0.R/-case.

Proof. (a) For x0 2 R and f 2 C2.R/, let g be the quadratic approximation to f
in x0 ,

g.x/ WD f .x0/C f 0.x0/.x � x0/C 1

2
f 00.x0/.x � x0/

2 ;

and put

h.x/ WD
�
f .x/ x < x0

g.x/ x � x0

�
:

Then h 2 C2.R/ and with J1 D .�1; x0/; J2 D .x0;1/ we have f jJ1 D
hjJ1 ; hjJ2 D gjJ2 . By Proposition 4, .Tf /jJ1 D .T h/jJ1 and .T h/jJ2 D
.Tg/jJ2 . Since Tf; T h and Tg are continuous in x0 2 J1 \ J2, we find
.Tf /.x0/ D .T h/.x0/ D .Tg/.x0/. Since g only depends on x0, f .x0/, f 0.x0/
and f 00.x0/, .Tf /.x0/ D Fx0.f .x0/; f

0.x0/, f 00.x0// for a suitable function
F W R4 ! R. In the case of C2

¤0.R/ and f .x0/ ¤ 0, there is an open interval
J � R with x0 2 J and g.x/ ¤ 0 for any x 2 J . By Proposition 4, .Tf /.x0/
is determined by gjJ . Therefore again .Tf /.x0/ D Fx0.f .x0/; f

0.x0/; f 00.x0//
with F W R � R¤0 � R

2 ! R.
(b) In the case of A W C1.R/ ! C.R/, consider the tangential approximation to

f 2 C2.R/ in x0 ,

g.x/ WD f .x0/C f 0.x0/.x � x0/ :

Then h, defined as above, is only in C1.R/ and (1) is not directly applicable
to h. However, as in [5], we find C2.R/-functions gn such that gn ! g and
g0
n ! g0 converge uniformly and such that
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hn.x/ WD
�
f .x/ x < x0

gn.x/ x � x0

�
:

defines a C2.R/-function. Using Proposition 4 in the same way as in (a) gives

.Af /.x0/ D .Ahn/.x0/ D .Agn/.x0/ ;

and the pointwise C1-continuity assumption on A implies

.Af /.x0/ D lim
n
.Agn/.x0/ D .Ag/.x0/ :

Therefore .Af /.x0/ only depends on the parameter x0, f .x0/ and f 0.x0/
defining the tangent g to f at x0 , i.e. Af .x0/ D Bx0.f .x0/; f

0.x0//. ut
Example. By itself, without some assumption of non-degeneracy, the operator
equation (1) does not yield a local operation in the sense of being determined
completely by the values of x; f .x/; f 0.x/ and f 00.x/: Consider the operators
T;A W C2.R/ ! C.R/ defined by

.Tf /.x/ D �f .x/C f .x C 1/ ; .Af /.x/ D f .x/ � f .x C 1/:

One quickly checks that (1) is satisfied by T and A. On intervals J of length < 1

with x 2 J and functions f with support in J , .Af /.x/ D f .x/. Therefore A is
degenerate. T andA are not locally defined in one point x, depending also on xC1.

3 Two Functional Equations on R

A function c W R ! R is additive if c.x C y/ D c.x/ C c.y/ for all x; y 2 R. As
well-known, additive functions are linear, i.e. c.x/ D �x, if they are measurable,
cf. [1]. In the following, we write cŒx� for additive functions which at that stage are
not known to be linear. We also do so for additive functions on RC; c W RC ! R.

To determine the specific form of the functions F and B representing T and A
according to Proposition 5, we need two Lemmas on functional equations which
show up analyzing the dependence on the function and the derivative variable in F
and B .

Lemma 6. Assume that F;B W R ! R are functions such that for any x; y 2 R

F.x C y/ D F.x/C F.y/CB.x/B.y/ : (7)

Then there are additive functions c; d W R ! R and there is some � 2 R such that
F and B are of one of the following three forms

(a) F.x/ D ��2 C dŒx�; B.x/ D �
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(b) F.x/ D 1
2
.cŒx�/2 C dŒx�; B.x/ D cŒx�

(c) F.x/ D �2.ecŒx� � 1/C dŒx�; B.x/ D �.ecŒx� � 1/.
Remark. Case (c) with d D 0 and � D 1 yields a solution for (7) with B D F .

Proof. There are related functional equations in Sect. 3.1.3 in [1] and in Chap. 15,
Theorem 1 in [2] to which the Lemma could be reduced. We prefer to give a direct
proof.

(i) If B D 0, F is additive and we are in case (a) with � D 0. Thus assume B ¤ 0

and choose a 2 R with B.a/ ¤ 0. Let

f .x/ WD F.x C a/ � F.x/ � F.a/ ; b.x/ WD B.x C a/ � B.x/ :

Equation (7) then is transformed into

f .x C y/ D f .x/C b.x/B.y/ : (8)

Hence for x D 0, f .y/ D f .0/C b.0/B.y/. Replacing here y by x C y and
by x, respectively, and inserting this back into (8), we find that

b.0/.B.x C y/ � B.x// D b.x/B.y/ : (9)

If b.0/ D 0, (9) yields b D 0 since B.a/ ¤ 0 and that f D f .0/ is
constant. Note that by (7), f .x/ D B.a/B.x/. Thus also B is constant,
B D f .0/=B.a/ DW � . Let d.x/ WD F.x/C �2. Then by (7)

d.x C y/ D F.x C y/C �2 D .F.x/C F.y/C �2/C �2 D d.x/C d.y/ ;

i.e. d is additive and F and B are of the form given in (a).
(ii) Assume now that b.0/ ¤ 0. Then putting x D 0 in (9), we find that B.0/ D 0.

Moreover,

B.x C y/ D B.x/C b.x/

b.0/
B.y/ : (10)

We first consider the case that b D b.0/ is a constant function. Then B.x/ D
cŒx� is additive and G.x/ WD F.x/ � 1

2
.cŒx�/2 satisfies

G.x C y/ D F.x C y/ � 1

2
.cŒx� C cŒy�/2

D .F.x/C F.y/C B.x/B.y// � 1

2
.cŒx�/2 � 1

2
.cŒy�/2 � cŒx�cŒy�

D G.x/CG.y/ :
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Hence G.x/ D dŒx� is additive on R and F and B are of the form in (b),

F.x/ D 1

2
.cŒx�/2 C dŒx� ; B.x/ D cŒx� :

(iii) Now assume that b.0/ ¤ 0 and that b is not constant. Choose x0 2 R with
b.x0/ ¤ b.0/. Since the left side of (10) is symmetric in x and y ,

B.x/C b.x/

b.0/
B.y/ D B.y/C b.y/

b.0/
B.x/ :

Hence for y D x0, B.x/ D B.x0/

b.x0/�b.0/ .b.x/ � b.0// and by (8)

f .x/ � f .0/ D b.0/B.x/ D �.b.x/� b.0// (11)

where � WD b.0/B.x0/=.b.x0/ � b.0//. For � D 0, i.e. B.x0/ D 0, we again
are in case (a). So we may assume that � ¤ 0. By (8) and (11)

�.b.x C y/� b.0// D f .x C y/ � f .0/

D f .x/ � f .0/C b.x/B.y/

D �.b.x/� b.0//C b.x/

b.0/
�.b.y/� b.0//

D �

�
b.x/b.y/

b.0/
� b.0/

�
:

Hence Qb.x/ WD b.x/=b.0/ satisfies Qb.x C y/ D Qb.x/ Qb.y/. Hence Qb.x/ D
Qb 
 x

2

�2 � 0. Therefore c.x/ WD ln Qb.x/ is additive and

b.x/ D b.0/ecŒx� :

The formula for B.x/ before (11) then gives

B.x/ D �


ecŒx� � 1� : (12)

Put similarly as aboveG.x/ WD F.x/� �2.ecŒx� � 1/. Then (7) and (12) imply
that G.x C y/ D G.x/ C G.y/ , i.e. G is additive, G.x/ D dŒx�. Therefore
F.x/ D �2.ecŒx� � 1/C dŒx� and this case yields case (c) of the Lemma. ut

We also need a multiplicative analogue of Lemma 6.

Lemma 7. Assume that F;B W R ! R are functions such that for any ˛; ˇ 2 R

F.˛ˇ/ D F.˛/ˇ C F.ˇ/˛ CB.˛/ B.ˇ/ ; (13)
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Then there are additive functions c; d W R ! R and there is � 2 R such that F and
B are of one of the following three forms

(a) F.˛/ D ˛ .cŒln j˛j� � �2/ ; B.˛/ D �˛

(b) F.˛/ D ˛


1
2
cŒln j˛j�2 C dŒln j˛j�� ; B.˛/ D ˛ cŒln j˛j�

(c) F.˛/ D ˛


�2.fsgn˛gecŒln j˛j� � 1�C dŒln j˛j�/,

B.˛/ D ˛ �.fsgn˛gecŒln j˛j� � 1/.

In (c), there are two possibilities, with sgn˛ present in both B and F or not
present in both. If the sgn˛-term is present, B and F are not odd functions; in all
other cases they are odd functions.

Proof. (i) For ˛ ¤ 0 ¤ ˇ, (10) yields

F.˛ˇ/

˛ˇ
D F.˛/

˛
C F.ˇ/

ˇ
C B.˛/

˛

B.ˇ/

ˇ
:

For x; y 2 R, let ˛ D ex; ˇ D ey and put

QF .x/ WD F.ex/=ex ; QB.x/ WD B.ex/=ex :

Then
QF .x C y/ D QF .x/C QF .y/C QB.x/ QB.y/

is of the form considered in Lemma 6. Hence for positive ˛; ˇ > 0, F.˛/
equals ˛ times one of the formulas (a), (b) or (c) in Lemma 6, with x D ln˛ ,
yielding (a), (b) or (c) of Lemma 7 in this case.

Choose ˇ D �1 in (13) and use the symmetry in .˛;�˛/ to find that

F.˛/C F.�˛/ D F.�1/˛ C B.�1/B.˛/ D �F.�1/˛ C B.�1/B.�˛/ ;
B.�1/ B.�˛/ D B.�1/B.˛/C 2F.�1/˛ :

For ˛ D 1 we get that B.�1/2 D B.�1/B.1/C 2F.�1/ , hence

B.�1/B.�˛/ D B.�1/ŒB.˛/ C .B.�1/ � B.1//˛� (14)

and

F.˛/C F.�˛/ D B.�1/ŒB.˛/ C 1

2
.B.�1/ � B.1//˛� : (15)

(ii) If B.�1/ D 0, also F.�1/ D 0 and (15) implies for ˇ D �1 that F.�˛/ D
�F.˛/ and hence

B.�˛/B.ˇ/ D F.�˛ˇ/� F.�˛/ˇ C F.ˇ/˛

D �F.˛ˇ/C F.˛/ˇ C F.ˇ/˛ D �B.˛/B.ˇ/

i.e. both F and B are odd functions.
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(iii) If B.�1/ ¤ 0 , (14) yields that B.�˛/ D B.˛/ C .B.�1/ � B.1//˛. In the
case of (a), for ˛ > 0, B.�˛/ D �˛ C .B.�1/ � �/˛ D B.�1/˛ and by (15)

F.˛/C F.�˛/ D B.�1/.�˛ C 1

2
.B.�1/� �/˛/ D B.�1/

2
.� C B.�1//˛ :

(16)
Using this for ˛ˇ and again (13), we have

B.�1/
2

.� C B.�1//˛ˇ D F.˛ˇ/C F.�˛ˇ/
D .F.˛/C F.�˛//ˇ C .B.˛/C B.�˛//B.ˇ/

D B.�1/
2

.� C B.�1//˛ˇ C .� C B.�1//˛B.ˇ/

which implies that B.�1/ D ��; B.�˛/ D ��˛ D �B.˛/ and by (14)
F.�˛/ D �F.˛/ , i.e. B and F are odd functions.

(iv) In the case of (b) and (c) we know that B.1/ D F.1/ D 0. We only have to
consider the case of B.�1/ ¤ 0. By (14) and (15)

B.�˛/ D B.˛/C B.�1/˛

F.˛/C F.�˛/ D B.�1/ŒB.˛/ C B.�1/
2

˛� : (17)

We apply the last equation to ˛ˇ and use (13) to find

B.�1/ŒB.˛ˇ/C B.�1/
2

˛ˇ� D F.˛ˇ/C F.�˛ˇ/
D .F.˛/C F.�˛//ˇ C .B.˛/C B.�˛//B.ˇ/

D B.�1/ŒB.˛/ˇ C B.�1/
2

˛ˇ�C 2B.˛/B.ˇ/ C B.�1/B.ˇ/˛

which may be restated as

B.�1/
2

.B.˛ˇ/C B.�1/
2

˛ˇ/ D .B.˛/C B.�1/
2

˛/.B.ˇ/C B.�1/
2

ˇ/ :

Therefore the function '.˛/ WD 2
B.�1/B.˛/ C ˛ is multiplicative, '.˛ˇ/ D

'.˛/'.ˇ/ and Qc.x/ D ln'.ex/ is additive. Therefore '.˛/ D fsgn˛ge QcŒln j˛j�,
and for any ˛ 2 R,

B.˛/ D B.�1/
2

.fsgn˛ge QcŒln j˛j� � ˛/ D B.�1/
2

˛.fsgn˛gecŒln j˛j� � 1/
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where cŒx� D QcŒx� � x , i.e. we are in case (c) with B.�1/ D 2� where we
know F.˛/ for ˛ > 0. For ˛ < 0 , by (17) with �˛ > 0; sgn.�˛/ D 1 ,

F.˛/ D �F.�˛/C B.�1/ŒB.˛/C B.�1/
2

˛�

D ˛.�2.ecŒln j˛j� � 1/C dŒln j˛j�/C 2�Œ��˛.ecŒln j˛j� C 1/C �˛�

D �˛�2.ecŒln j˛j� C 1/C ˛dŒln j˛j� :

This is the case in (c) where the term .sgn˛/ appears and where F and B are
not odd functions of ˛. In the cases (a) and (b), F and B are odd. This ends
the proof of Lemma 7. ut

The following Proposition of Faifman is proved in [6].

Proposition 8. Let Hj W R
2 ! R for j D 1; : : : ; d be a family of functions

additive in the second variable,

Hj .x; ˛ C ˇ/ D Hj .x; ˛/CHj .x; ˇ/ I x; ˛; ˇ 2 R; j D 1; : : : ; d

such that
H1.x; f .x//C � � � CHd.x; f

.d�1/.x//

is continuous in x for any f 2 C1.R/. Then Hj .x; ˛/ D cj .x/˛ is linear in the
second variable ˛ with continuous coefficients cj 2 C.R/.

4 Proofs of Theorems 1 and 3

We return to the functional equation

T .fg/ D Tf � g C f � Tg C Af � Ag (1)

By Proposition 5, T andA are local in the sense that there are functionsF W R4 ! R

and B W R3 ! R such that for any f 2 C2.R/ and x 2 R

Tf .x/ D Fx.f .x/; f
0.x/; f 00.x// ; Af .x/ D Bx.f .x/; f

0.x//

We now analyze the structure of F and B and prove Theorems 1 and 3.

Proof of Theorem 3.

(i) For any ˛0; ˛1; ˛2; ˇ0; ˇ1; ˇ2 2 R and x 2 R there are functions f; g 2 C2.R/

such that

f .j /.x/ D ˛j ; g
.j /.x/ D ˇj I j D 0; 1; 2 :
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Therefore the functional equation (1) translates into the following equation for
F and B ,

Fx.˛0ˇ0; ˛0ˇ1 C ˛1ˇ0; ˛0ˇ2 C ˛2ˇ0 C 2˛1ˇ1/

D Fx.˛0; ˛1; ˛2/ˇ0 C Fx.ˇ0; ˇ1; ˇ2/˛0 C Bx.˛0; ˛1/Bx.ˇ0; ˇ1/: (18)

We first determine the general forms of F and B if ˛0 ¤ 0 and ˇ0 ¤ 0

are assumed, i.e. for functions f and g which are non-zero everywhere. By
Proposition 4, we know that A.1/.x/ D 0. Therefore, choosing ˇ0 D 1 and
ˇ1 D 0 in (18) we conclude that

Fx.˛0; ˛1; ˛2 C ˛0ˇ2/ D Fx.˛0; ˛1; ˛2/C Fx.1; 0; ˇ2/˛0 :

For ˛0 D 1; ˛1 D 0 this means that Fx.1; 0:�/ is additive,

Fx.1; 0; ˛2 C ˇ2/ D Fx.1; 0; ˛2/C Fx.1; 0; ˇ2/ :

We write
Fx.1; 0; ˛2/ D cxŒ˛2� (19)

for this additive function. We will later see that it is linear, i.e. that Fx.1; 0; ˛2/
D cx˛2 with cx D Fx.1; 0; 1/. Choosing ˛2 D 0 above, we get

Fx.˛0; ˛1; ˛0ˇ2/ D Fx.˛0; ˛1; 0/C Fx.1; 0; ˇ2/˛0 :

Since ˛0 ¤ 0 , ˛0ˇ2 may attain arbitrary values; this yields that

Fx.˛0; ˛1; ˛2/ D Fx.˛0; ˛1; 0/C cx

�
˛2

˛0

�
� ˛0 ; (20)

i.e. for ˛0 ¤ 0 we separated the second order variable ˛2 in an additive way.
Choose ˇ0 D 1; ˛2 D ˇ2 D 0 in (18) and use (20) to get

Fx.˛0; ˛1 C ˛0ˇ1; 0/C 2cx

�
˛1ˇ1

˛0

�
˛0

D Fx.˛0; ˛1; 0/C Fx.1; ˇ1; 0/˛0 CBx.˛0; ˛1/Bx.1; ˇ1/ :

Since ˛0 ¤ 0; ˛0ˇ1 may attain arbitrary values. We may therefore replace
˛0ˇ1 by ˇ1 and use the symmetry in .˛1; ˇ1/ to find

Fx.˛0; ˛1 C ˇ1; 0/C 2cx

�
˛1ˇ1

˛20

�
˛0

D Fx.˛0; ˛1; 0/C Fx.1;
ˇ1

˛0
; 0/˛0 C Bx.˛0; ˛1/ � Bx.1; ˇ1

˛0
/

D Fx.˛0; ˇ1; 0/C Fx.1;
˛1

˛0
; 0/˛0 C Bx.˛0; ˇ1/ � Bx.1; ˛1

˛0
/ :
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We know from Proposition 4 (a) that Bx.1; 0/ D 0 and Fx.1; 0; 0/ D 0.
Using this, the second equality yields for ˇ1 D 0 that

Fx.˛0; ˛1; 0/ D Fx.˛0; 0; 0/CFx

�
1;
˛1

˛0
; 0

�
˛0 CBx.˛0; 0/ �Bx

�
1;
˛1

˛0

�
:

(21)
(ii) Equations (20) and (21) determine Fx.˛0; ˛1; ˛2/ once we know the form of

Fx.˛0; 0; 0/, Bx.˛0; 0/ and Fx.1; ˛1; 0/ ; Bx.1; ˛1/. Equation (18) implies for
˛1 D ˛2 D ˇ1 D ˇ2 D 0 that

Fx.˛0ˇ0; 0; 0/ D Fx.˛0; 0; 0/ˇ0CFx.ˇ0; 0; 0/˛0CBx.˛0; 0/Bx.ˇ0; 0/ : (22)

By Lemma 7, there are suitable additive functions ax; ex; px W R ! R and
constants �x such that, introducing functionsGx W R ! R by

Gx.˛0/ WD Fx.˛0; 0; 0/� ˛0axŒln j˛0j� ;

any solution of (22) is of one of the following three corresponding forms

Gx.˛0/ D

8̂
<̂
ˆ̂:

��2x˛0
˛0
2
.exŒln j˛0j�/2

�2x˛0.fsgn˛0gepxŒln j˛0j� � 1/

9>>=
>>;
;

Bx.˛0; 0/ D
8<
:

�x˛0

˛0 exŒln j˛0j�
�x˛0.fsgn˛0gepxŒln j˛0j� � 1/

9=
; :

(23)

Since Bx.1; 0/ D 0, the first solution pair is actually zero. The choice of
˛0 D ˇ0 D 1 and ˛2 D ˇ2 D 0 in (18) yields, using also (20)

Fx.1; ˛1 C ˇ1; 0/C 2cxŒ˛1ˇ1�

D Fx.1; ˛1; 0/C Fx.1; ˇ1; 0/C Bx.1; ˛1/Bx.1; ˇ1/ :

Let QHx.˛1/ WD Fx.1; ˛1; 0/CcxŒ˛21 �. Since cx is additive, the previous equation
means

QHx.˛1 C ˇ1/ D QHx.˛1/C QHx.ˇ1/CBx.1; ˛1/Bx.1; ˇ1/ : (24)

By Lemma 6, there are additive functions dx; bx W R ! R and constants ıx
such that with

Hx.˛1/ WD Fx.1; ˛1; 0/C cxŒ˛
2
1 � � bxŒ˛1�

any solution of (24) may be written in one of the following forms
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Hx.˛1/ D

8̂
<̂
ˆ̂:

�ı2x
1
2
.dxŒ˛1�/2

ı2x.e
dxŒ˛1� � 1/

9>>=
>>;
; Bx.1; ˛1/ D

8̂
<
:̂

ıx

dxŒ˛1�

ıx.edx Œ˛1� � 1/

9>=
>; : (25)

Since Bx.1; 0/ D 0, again the first solution pair is zero. By (20), (21), (23)
and (25) a term occurring in any case in Fx.˛0; ˛1; ˛2/ is

Sx.˛0; ˛1; ˛2/ WD ˛0.cxŒ
˛2

˛0
� ˛21
˛20
�C bxŒ

˛1

˛0
�C ˛xŒln j˛oj�/ : (26)

This corresponds to the general solution of the homogeneous functional

equation (1) with A D 0, i.e. Tf D f .cŒ
f 00

f
� f 02

f 2
� C bŒ

f 0

f
� C aŒln jf j�/.

Moreover, put

Kx.˛0; ˛1/ WD Gx.˛0/C ˛0 Hx.
˛1

˛0
/C Bx.˛0; 0/Bx.1;

˛1

˛0
/ : (27)

Then by (20), (21), (23) and (25)

Fx.˛0; ˛1; ˛2/ D Sx.˛0; ˛1; ˛2/CKx.˛0; ˛1/ : (28)

Since S satisfies the homogeneous functional equation, (18) and (20) imply
that Kx and Bx are related by

Kx.˛0ˇ0; ˛1ˇ0 C ˛0ˇ1/

D Kx.˛0; ˛1/ˇ0 CKx.ˇ0; ˇ1/˛0 C Bx.˛0; ˛1/Bx.ˇ0; ˇ1/ : (29)

(iii) Equations (26)–(28) determine the structure of Fx , once we know which
combinations of the different cases for Gx and Hx are possible. We use (29)
for answering this question and hence need to describe the general form of
Bx.˛0; ˛1/. To do so, we isolate the product of B’s in (29) on the left side for
˛0 ¤ 0 ¤ ˇ0 and use equations (27) and (29) in the following calculation

Bx.˛0; ˛1/Bx.ˇ0; ˇ1/

D Kx.˛0ˇ0; ˛1ˇ0 C ˛0ˇ1/�Kx.˛0; ˛1/ˇ0 �Kx.ˇ0; ˇ1/˛0

D .Gx.˛0ˇ0/�Gx.˛0/ˇ0 �Gx.ˇ0/˛0/

C ˛0ˇ0

�
Hx

�
˛1

˛0
C ˇ1

ˇ0

�
�Hx

�
˛1

˛0

�
�Hx

�
ˇ1

ˇ0

��

C Bx.˛0ˇ0; 0/Bx

�
1;
˛1

˛0
C ˇ1

ˇ0

�
� Bx.˛0; 0/Bx

�
1;
˛1

˛0

�
ˇ0

� Bx.ˇ0; 0/Bx

�
1;
ˇ1

ˇ0

�
˛0 :
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Rewriting equations (22) and (24) as

Gx.˛0ˇ0/ D Gx.˛0/ˇ0 CGx.ˇ0/˛0 C Bx.˛0; 0/Bx.ˇ0; 0/ ;

Hx.
˛1

˛0
C ˇ1

ˇ0
/ D Hx.

˛1

˛0
/CHx.

ˇ1

ˇ0
/C Bx.1;

˛1

˛0
/Bx.1;

ˇ1

ˇ0
/ ;

we find that

Bx.˛0; ˛1/Bx.ˇ0; ˇ1/ D Bx.˛0; 0/Bx.ˇ0; 0/C˛0ˇ0 Bx
�
1;
˛1

˛0

�
Bx

�
1;
ˇ1

ˇ0

�

C Bx.˛0ˇ0; 0/Bx

�
1;
˛1

˛0
C ˇ1

ˇ0

�
� Bx.˛0; 0/Bx

�
1;
˛1

˛0

�
ˇ0

� Bx.ˇ0; 0/Bx

�
1;
ˇ1

ˇ0

�
˛0: (30)

Hence, if Bx.1; �/ D 0 identically, we find for ˛0 D ˇ0 and ˛1 D ˇ1 that
Bx.˛0; ˛1/

2 D Bx.˛0; 0/
2 and hence Bx.˛0; ˛1/ D Bx.˛0; 0/ does not depend

on ˛1. If Bx.1; �/ ¤ 0, choose ˇ1 2 R with Bx.1; ˇ1/ ¤ 0. Then (30) with
ˇ0 D 1 yields, after dividing by Bx.1; ˇ1/ ,

Bx.˛0; ˛1/ D Bx.˛0; 0/

Bx.1; ˇ1/
.Bx.1;

˛1

˛0
C ˇ1/� Bx.1;

˛1

˛0
//C ˛0Bx.1;

˛1

˛0
/ :

(31)
(iv) We now determine the possible combinations of Hx;Bx.1; �/ from (25) and

Gx;Bx.�; 0/ from (23). The first solutions were zero in our case. It turns out that
the last two possibilities of (25) and (23) may be combined with one another.
In the following, we consider these four cases.

In the second case of (25),

Bx.1; ˛1/ D dxŒ˛1� ; Hx.˛1/ D 1

2
.dxŒ˛1�/

2 (32)

where dx is additive. Equation (31) yields in this case that

Bx.˛0; ˛1/ D Bx.˛0; 0/C ˛0 dx

�
˛1

˛0

�
: (33)

We have to examine the second and third possibility in (23): The second case
in (23) and equation (27) yield

Bx.˛0; ˛1/ D ˛0

�
dx

�
˛1

˛0

�
C exŒln j˛0j�

�

Kx.˛0; ˛1/ D ˛0

2

�
.dx

�
˛1

˛0

�
/2C.exŒln j˛0j�/2

�
C˛0 dx

�
˛1

˛0

�
exŒln j˛0j�

(34)
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Calculation shows that (29) and hence (18) is satisfied for (34). This will give
the first solution in Theorem 3.

Combining the second case of (25) with the third case of (23) again yield
formulas for Bx.˛0; ˛1/ andKx.˛0; ˛1/ by using (33) and (27). Inserting these
into (29) shows, however, that they provide a solution of (29) and (18) only if
�x � dx D 0 , �x from (23). The case dx ¤ 0 requires �x D 0; Bx.˛0; 0/ D 0

and is a special case of (33) before. If �x ¤ 0; dx D 0 and

Bx.˛0; ˛1/ D �x˛0.fsgn˛0gepxŒln j˛0j� � 1/ ; Kx.˛0; ˛1/ D �x Bx.˛0; ˛1/ :

This will be a special case of a more general solution below.
(v) Last, we consider the third case in (25), combined with one of the two last

possibilities in (23),

Bx.1; ˛1/ D ıx.e
dxŒ˛1� � 1/ ; Hx.˛1/ D ıx Bx.1; ˛1/ :

Using this, (31) and (27) yield

Bx.˛0; ˛1/ D e
dx

h
˛1
˛0

i
Bx.˛0; 0/C ıx ˛0.e

dx

h
˛1
˛0

i
� 1/;

Kx.˛0; ˛1/ D Gx.˛0/C ıx.Bx.˛0; 0/C ıx ˛0/.e
dx

h
˛1
˛0

i
� 1/ : (35)

To check whether (35) provides another solution of (18), we insert the formulas
for Bx and Kx into (29). Calculation and reordering terms shows that (29) is
satisfied if and only if

ıx.e
dxŒ

˛1
˛0

C ˇ1
ˇ0
� � 1/'.˛0; ˇ0/ D e

dx Œ
˛1
˛0

C ˇ1
ˇ0
�
Bx.˛0; 0/ Bx.ˇ0; 0/�  .˛0; ˇ0/ ;

(36)
where

'.˛0; ˇ0/ D Bx.˛0ˇ0; 0/� ˛0Bx.ˇ0; 0/� ˇ0Bx.˛0; 0/ ;
 .˛0; ˇ0/ D Gx.˛0ˇ0/� ˛0Gx.ˇ0/� ˇ0Gx.˛0/ :

In the third case of (23), Gx.˛0/ D �xBx.˛0; 0/ and hence  .˛0; ˇ0/ D
�x'.˛0; ˇ0/. Moreover, in this case Bx.˛0; 0/Bx.ˇ0; 0/ D  .˛0; ˇ0/. Hence
(36) means

.ıx � �x/.e
dxŒ

˛1
˛0

C ˇ1
ˇ0
� � 1/'.˛0; ˇ0/ D 0 :

This requirement means that either �x D ıx or dx D 0 or ' D 0. For ıx D �x
we get

Bx.˛0; ˛1/ D ıx˛0.fsgn˛0gepxŒln j˛0j�edx
h
˛1
˛0

i
� 1/

Kx.˛0; ˛1/ D ı2x˛0.fsgn˛0gepxŒln j˛0j�edx
h
˛1
˛0

i
� 1/ (37)
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as another solution of (18) which will yield the second solution in Theorem 3.
If dx D 0; Bx.1; �/ D 0 and Hx D 0. If ' D 0; Bx.�; 0/ D 0 and Gx D 0.
Both cases yield special cases of (37) with dx D 0 or px D 0 there.

In the second case of (23), ' D 0 and

 .˛0; ˇ0/ D Bx.˛0; 0/Bx.ˇ0; 0/ D ˛0ˇ0 exŒln j˛0j� exŒln jˇ0j� :

Therefore equation (36) is equivalent to

.e
dxŒ

˛1
˛0

C ˇ1
ˇ0
� � 1/ .˛0; ˇ0/ D 0

which requires that dx D 0, i.e. Hx D 0. The solution of (18), coming from
this choice is a special case of the solution in (34), when dx D 0 there.

We now know that any solution of (18) is of one of the forms in (34) or (37),
where definitions (26) and (28) are used.

(vi) We now prove that the additive functions occurring in formulas (34) and (37)
are linear and continuous in x. By these formulas and Proposition 5, we have
for any f 2 C2

¤0.R/ that one of the following cases occurs

.Af /.x/ D
(
f .x/ dxŒf

0.x/=f .x/�C exŒln jf .x/j�
ıx f .x/.fsgn f .x/gepxŒln jf .x/j�edx Œf 0.x/=f .x/� � 1/ :

For any g 2 C2.R/, let f .x/ D exp.g.x//. Then f 2 C2
¤0.R/ and since A

maps into C.R/ , we know that for any g 2 C2.R/

.Sg/.x/ WD .Af /.x/

f .x/
D
(
dxŒg

0.x/�C exŒg.x/�

ıx.e
px Œg.x/�CdxŒg0.x/� � 1/

is a continuous function of x 2 R. In the second case, if px ¤ 0, choose g to
be an appropriate constant function and, if px D 0 and dx ¤ 0, choose g to be
a constant multiple of the identity to conclude that e.x/ WD ıx is continuous in
x. For those x with ıx ¤ 0 in the second case

pxŒg.x/� C dxŒg
0.x/� D ln..Sg/.x/=ıx C 1/

is continuous for any g 2 C2.R/, and similarly exŒg.x/� C dxŒg
0.x/� in the

first case. Proposition 8 yields that px; dx; ex are linear and continuous in x,
e.g. dx.˛1/ D d.x/˛1 for d 2 C.R/ and similarly for px; ex . If ıx D 0 in the
second case but for a sequence xn tending to x we have ıxn ¤ 0, we get the
continuity of pŒg�C dŒg0� in x from the C1-pointwise continuity of A. Hence
A has the form given in Theorem 3. As a consequence, the form of T 0 is

.T 0f /.x/ D
(
d.x/2

2
f 0.x/2

f .x/
C e.x/2

2 f .x/ .ln jf .x/j/2 C d.x/ e.x/ f 0.x/ ln jf .x/j
e.x/2 f .x/.fsgnf .x/gjf .x/jp.x/ed.x/f 0.x/=f .x/ � 1/
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with the same continuous functions d; e and p as in the representation of A.
Since Tf is continuous for any f 2 C2

¤0.R/ , so is S 0f D Tf � T 0f . For

g 2 C2.R/ and f D exp.g/, we thus know that S 0f .x/ D cxŒg
00.x/� C

bxŒg
0.x/�C axŒg.x/� is continuous in x 2 R. Again, Proposition 8 implies the

linearity and continuity in x of cx; bx; ax ; i.e. cxŒg00.x/� D c.x/ � g00.x/ for
c 2 C.R/. This ends the Proof of Theorem 3. Remark (c) after the statement
of Theorem 3 follows from the local nature (in terms of open intervals J ) of
the proof given. ut

Proof of Theorem 1. Since C2
¤0.R/ is a subset of C2.R/, T and A are given by

one of the formulas in Theorem 3, with the additional requirement that they need to
be extendable to all f 2 C2.R/ and x 2 R with f .x/ D 0 and with .Tf / being
continuous. As a consequence of this requirement, we eliminate some solutions and
show that the remaining ones are uniquely extendable to C2.R/.

For the first solution in Theorem 3, this requires that c.x/ D d.x/2=2 and
that d.x/e.x/ D 0 since 1=f .x/ and ln jf .x/j are not defined if f .x/ D 0.
Thus either e.x/ D 0 or c.x/ D d.x/ D 0 which yields the first two solutions
for T and A in Theorem 1. In both cases the “homogeneous” part in (5) is
Sf .x/ D b.x/f 0.x/ C a.x/ ln jf .x/j and the “non-homogeneous” part is given
by one of the first two formulas for T1f in Theorem 1. We remark that this is the
general solution of the homogeneous equation (2) when the domain is a linear space
contained in C1.R/ and containing Ck.R/ for some k 2 N. In the second solution
of Theorem 3, d.x/ D 0 and p.x/ � �1 are required to guarantee that .Tf /.x/ is
defined if f .x/ D 0. This yields the third solution in Theorem 1. The last solution
in both Theorems is identical.

We now show that these maps T are uniquely extended from C2
¤0.R/ to C2.R/.

For x0 2 R and f 2 C2.R/ with ˛0 D f .x0/ D 0; ˛1 D f 0.x0/; ˛2 D f 00.x0/
and .˛1; ˛2/ ¤ 0 , f is non-zero in J n fx0g for a suitable open interval J � R with
x0 2 J . Therefore, using Remark (c) after the statement of Theorem 3, we have for
any x 2 J n fx0g by Theorem 3 and the preceeding arguments

.Tf /.x/ D Fx.f .x/; f
0.x/; f 00.x//

where e.g. in the first case the form of Fx is given by

Fx.˛0; ˛1; ˛2/ D 1

2
d.x/2˛2 C b.x/˛1 C a.x/˛0 ln j˛0j

with d; b; a 2 C.R/. Therefore F is continuous in x 2 R and .˛0; ˛1; ˛2/ 2 R
3

which implies that

.Tf /.x0/ D lim
x!x0

.Tf /.x/ D lim
x!x0

Fx.f .x/; f
0.x/; f 00.x//

D 1

2
d.x0/

2f 00.x0/C b.x0/f
0.x0/ ;
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so that solution formula for Tf also holds if f .x0/ D 0, with the same representing
functions d; b; a 2 C.R/. In the same way, one shows that the solution formulas
remain valid for f .x0/ D 0 also in the other cases, and also for .Af /.x0/.

To prove that the formula for Af .x0/ also holds for C1.R/-functions f which
are not in C2.R/ and x0 2 R, we choose a compact neighborhood I of x0
and a sequence of C2.R/-functions fn such that gD limn fn, g0 D limn f

0
n exist

uniformly on R and gjI D f jI . Using localization on I (Proposition 4(b)) and
the C1-pointwise continuity of A, we conclude that Af .x0/ D limn Afn.x0/ and
since the coefficients in B are continuous, the formulas for Af .x0/ also holds for
the C1.R/-function f . This ends the proof of Theorem 1. ut
Remarks. (a) The previous argument shows that the formulas for .Af /.x/ hold for
all C1.R/-functions f also in the case of Theorem 3.

(b) Instead of the continuity argument for f .x0/ D 0, we could also perform a
direct analysis of Fx.0; ˛0; ˛1/ using (18) for ˛0 D 0 or ˇ0 D 0 similar as in part (i)
of the proof of Theorem 3.

Proof of Proposition 2. By Theorem 1, any operator T satisfying (1) has the form

Tf .x/ D b.x/f 0.x/C a.x/f .x/ ln jf .x/j C T1f .x/:

The last three forms of T1f .x/ only involve f .x/ but neither f 0.x/ nor f 00.x/.
Choosing different constant functions for f , we get that the different terms, which
are functions of f .x/ only, must be zero, i.e. a.x/ D 0; e.x/ D 0 or p.x/ D 0.
Then choosing f .x/ D x, we also find that b.x/ D 0. ut
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Moments of Unconditional Logarithmically
Concave Vectors

Rafał Latała

Abstract We derive two-sided bounds for moments of linear combinations of
coordinates of unconditional log-concave vectors. We also investigate how well
moments of such combinations may be approximated by moments of Gaussian
random variables.

1 Introduction

The aim of this paper is to study moments of linear combinations of coordinates of
unconditional, log-concave vectors X D .X1; : : : ; Xn/. A nondegenerate random
vector X is log-concave if it has a density of the form g D e�h, where hWR !
.�1;1� is a convex function. We say that a random vector X is unconditional
if the distribution of .�1X1; : : : ; �nXn/ is the same as X for any choice of signs
�1; : : : ; �n.

A typical example of an unconditional log-concave vector is a vector dis-
tributed uniformly in an unconditional convex body K , i.e. such convex body that
.˙x1; : : : ;˙xn/ 2 K whenever .x1; : : : ; xn/ 2 K .

A random vector X is called isotropic if it has identity covariance matrix,
i.e. Cov.Xi ; Xj / D ıi;j . Notice that unconditional vector X is isotropic if and
only if its coordinates have variance one, in particular if X is unconditional with
nondegenerate coordinates then the vector .X1=Var1=2.X1/; : : : ; Xn=Var1=2.Xn//
is isotropic and unconditional.
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In [3] Gluskin and Kwapień derived two-sided estimates for moments ofPn
iD1 aiXi if Xi are independent, symmetric random variables with log-concave

tails (coordinates of log-concave vector have log-concave tails). In Sect. 2 we derive
similar result for arbitrary unconditional log-concave vectorsX .

In [8] Klartag obtained powerful Berry-Essen type estimates for isotropic,
unconditional, log-concave vectors X , showing in particular that if

P
i a

2
i D 1 and

all ai ’s are small then the distribution of S D Pn
iD1 aiXi is close to the standard

Gaussian distribution N .0; 1/. In Sect. 3 we investigate how well moments of S
may be approximated by moments of N .0; 1/.

Notation. By "1; "2; : : :we denote a Bernoulli sequence, i.e. a sequence of indepen-
dent symmetric random variables taking values ˙1. We assume that the sequence
."i / is independent of other random variables.

For a random variable Y andp>0we write kY kp D .EjY jp/1=p . For a sequence
.ai / and 1 � q < 1, kakq D .

P
i jai jq/1=p and kak1 D maxi jai j. We set

Bn
q D fa 2 R

nW kakq � 1g, 1 � q � 1. By .a�
i /1�i�n we denote the nonincreasing

rearrangement of .jai j/1�i�n.
We use letter C (resp. C.˛/) for universal constants (resp. constants depending

only on parameter ˛). Value of a constantC may differ at each occurence. Whenever
we want to fix the value of an absolute constant we will use letters C1; C2; : : :. For
two functions f and g we write f � g to signify that 1

C
f � g � Cf .

2 Estimation of Moments

It is well known and easy to show (using e.g. Brunn’s principle—see Lemma 4.1
in [17]) that if X has a uniform distribution over a symmetric convex body K in
R
n then for any p � n, kPi�n aiXikp � kakKo D supfjPi�n ai xi jWx 2 Kg.

Our first proposition generalizes this statement to arbitrary log-concave symmetric
distributions.

Proposition 1. Suppose that X has a symmetric n-dimensional log-concave distri-
bution with the density g. Then for any p � n we have

���
nX
iD1

aiXi

���
p

� kakKo
p
;

where

Kp WD fxWg.x/ � e�pg.0/g and kakKı

p
D sup

n nX
iD1

aixi Wx 2 Kp

o
:
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Proof. First notice that there exists an absolute constant C1 such that

Pr.X 2 C1Kp/ � 1 � e�p � 1

2
:

For n � p � 2n this follows by Corollary 2.4 and Lemma 2.2 in [9]. For p � 2n

we may either adjust arguments from [9] or take any log-concave symmetric m D
bpc � n dimensional vector Y independent of X with density g0 and consider the
set K 0 D f.x; y/ 2 R

n � R
mWg.x/g0.y/ � e�pg.0/g0.0/g. Then Kp is a central n-

dimensional section ofK 0, hence Pr.X 2 C1Kp/ � Pr..X; Y / 2 C1K 0/ � 1� e�p .
Observe that for any z 2 Kp ,

ˇ̌
ˇ
n
x 2KpW

ˇ̌
ˇ

nX
iD1

aixi

ˇ̌
ˇ� 1

2

nX
iD1

ai zi
oˇ̌
ˇ� 2�njKpj � .2C1/�n Pr.X 2C1Kp/=g.0/;

therefore choosing z such that
Pn

iD1 ai zi D kakKo
p

we get

���
nX
iD1

aiXi

���
p

� 2�1=pkakKo
p
e�1g.0/1=p

ˇ̌
ˇ
n
x 2 KpW

ˇ̌
ˇ

nX
iD1

ai xi

ˇ̌
ˇ � 1

2

nX
iD1

ai zi
oˇ̌
ˇ1=p

� 2�1=pkakKo
p
e�1.2C1/�n=p Pr.X 2 C1Kp/

1=p � 1

8eC1
kakKo

p
:

To get the upper estimate notice that

Pr
�ˇ̌
ˇ

nX
iD1

aiXi

ˇ̌
ˇ > C1kakKo

p

	
� Pr.X … C1Kp/ � e�p:

Together with the symmetry and log-concavity of
Pn

iD1 aiXi this gives

Pr
�ˇ̌
ˇ

nX
iD1

aiXi

ˇ̌
ˇ > C1tkakKo

p

	
� e�tp for t � 1:

Integration by parts yields
���Pn

iD1 aiXi
���
p

� CkakKo
p
. ut

Remark. The same argument as above shows that for ˛ � e and p � n,

���
nX
iD1

aiXi

���
p

� 1

8˛C1
sup

n nX
iD1

ai xi Wg.x/ � ˛�pg.0/
o
:

From now on till the end of this section we assume that a random vector
X is unconditional, log-concave and isotropic. Jensen’s inequality and Hitczenko
estimates for moments of Rademacher sums [5] (see also [15]) imply that for p � 2,
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���X
i

aiXi

���
p

D
���X

i

ai "i jXi j
���
p

�
���X

i

ai "iEjXi j
���
p

� 1

C

�X
i�p

a�
i C p

p
�X
i>p

ja�
i j2
	1=2	

: (1)

The result of Bobkov and Nazarov [2] yields for p � 2,

���X
i

aiXi

���
p

� C
���X

i

aiEi

���
p

� C
�
pmax

i
jai j C p

p
�X

i

a2i

	1=2	
; (2)

where .Ei/ is a sequence of independent symmetric exponential random variables
with variance 1 and to get the second inequality we used the result of Gluskin and
Kwapień [3].

Estimates (1) and (2) together with Proposition 1 give

1

C
.
p
pBn

2 \ Bn1/ �
n
xWg.x/ � e�pg.0/

o
� C.

p
pBn

2 C pBn
1 / for p � n:

(3)

Corollary 2. Let X D .X1; : : : ; Xn/ be an unconditional log-concave isotropic
random vector with the density g. Then for any p � n we have

���
nX
iD1

aiXi

���
p

� sup
n nX
iD1

aixi Wg.x/ � e�pg.0/
o

� sup
n nX
iD1

aixi Wg.x/ � e�5p=2o

� sup
n nX
iD1

jai jti W Pr.jX1j � t1; : : : ; jXnj � tn/ � e�p
o
:

Proof. We have g.0/ D LnX , where LX is the isotropic constant of the vector X .
Unconditionality of X implies boundedness of LX , thus

e�3n=2 � .2�e/�n=2 � g.0/ � Cn
2 ;

where C2 is an absolute constant (see for example [2]). Hence

fxWg.x/ � e�pg.0/g � fxWg.x/ � e�5p=2g � fxWg.x/ � .e5=2C2/
�pg.0/g (4)

and first two estimates on moments follows by Proposition 1 (see also remark
after it).
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For any t1; : : : ; tn � 0,

E

ˇ̌
ˇ

nX
iD1

aiXi

ˇ̌
ˇp �

� nX
iD1

jai jti
	p
2�n Pr.jX1j � t1; : : : ; jXnj � tn/;

therefore

���
nX
iD1

aiXi

���
p

� 1

2e
sup

n nX
iD1

jai jti W Pr.jX1j � t1; : : : ; jXnj � tn/ � e�po:

To prove the opposite estimate we use the already proven bound and take x such
that g.x/ � e�5p=2 and

Pn
iD1 ai xi � 1

C3
kPn

iD1 aiXikp . By the unconditionality
without loss of generality we may assume that all ai ’s and xi ’s are nonnegative.
Notice that by (3) and (4) we have g.1=C4; : : : ; 1=C4/ � e�5p=2. Hence by log-
concavity of g we also have g.y/ � e�5p=2 for yi D .xi C 1=C4/=2. Notice that g
is coordinate increasing on R

nC, therefore

Pr
�
X1 � y1

2
; : : : ; Xn � yn

2

	
� g.y/

nY
iD1

yi

2
� e�5p=2.4C4/�n � .4e5=2C4/

�p:

The function F.s1; : : : ; sn/ WD � ln Pr.X1 � s1; : : : ; Xn � sn/ is convex on R
nC,

F.0/ D n ln 2, therefore

Pr
�
jX1j � y1

C5
; : : : ; jXnj � yn

C5

	
D 2n Pr

�
X1 � y1

C5
; : : : ; Xn � yn

C5

	
� e�p

for sufficiently large C5. To conclude it is enough to notice that

nX
iD1

ai
yi

C5
� 1

2C5

nX
iD1

ai xi � 1

2C3C5

���
nX
iD1

aiXi

���
p
:

ut
Theorem 3. Suppose that X is an unconditional log-concave isotropic random
vector in R

n. Then for any p � 2,

���
nX
iD1

aiXi

���
p

� sup
nX
i2Ip

ai xi W gIp .x/ � e�pgIp .0/
o

C p
p
�X
i…Ip

a2i

	1=2
;

� sup
nX
i2Ip

ai xi W gIp .x/ � e�5p=2oC p
p
�X
i…Ip

a2i

	1=2

� sup
nX
i2Ip

jai jti W Pr
�
8i2Ip jXi j�ti

	
� e�p

o
Cp

p
�X
i…Ip

a2i

	1=2
;
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where gIp is the density of .Xi /i2Ip and Ip is the set of indices of minfdpe; ng
largest values of jai j’s.

Proof. By Corollary 2 it is enough to show that

1

C

����X
i2Ip

aiXi

���
p

C p
p
�X
i…Ip

a2i

	1=2	 �
���

nX
iD1

aiXi

���
p

� C
����X

i2Ip
aiXi

���
p

C p
p
�X
i…Ip

a2i

	1=2	
:

(5)

Observe also that
P

i…Ip a
2
i D P

i>p ja�
i j2.

Unconditionality of Xi implies that kPn
iD1 aiXikp � kPi2Ip aiXikp . Hence

the lower estimate in (5) follows by (1).
Obviously we have

���
nX
iD1

aiXi

���
p

�
���X
i2Ip

aiXi

���
p

C
���X
i…Ip

aiXi

���
p
:

Estimates (1) and (2) imply

���X
i…Ip

aiXi

���
p

� C
�
pmax
i…Ip

jai j C p
p
�X
i…Ip

a2i

	1=2	

� C
����X

i2Ip
aiXi

���
p

C p
p
�X
i…Ip

a2i

	1=2	

and the upper bound in (5) follows. ut
Example 1. Let Xi be independent symmetric log-concave r.v’s. Define Ni.t/ WD
� ln Pr.jXi j � t/, then Pr.jXi j � ti for i 2 Ip/D exp.�Pi2IpNi.ti // and Theo-
rem 3 yields the Gluskin-Kwapień estimate

���
nX
iD1

aiXi

���
p

� sup
nX
i2Ip

jai jti W
X
i2Ip

Ni .ti / � p
o

C p
p
�X
i…Ip

a2i

	1=2
:

Example 2. Let X be uniformly distriputed on rn;qBn
q with 1 � q < 1, where rn;q

is chosen in such a way that X is isotropic. Then it is easy to check that rn;q � n1=q .
Since all k-dimensional sections of Bn

q are homogenous we immediately obtain that

for I � f1; : : : ; ng and x 2 R
I , gI .x/=gI .0/ D .1 � .kxkq=rn;q/q/.n�jI j/=q . Hence

for 1 � p � n=2 we get that
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sup
nX
i2Ip

aixi WgIp .x/ � e�pgIp .0/
o

� sup
nX
i2Ip

aixi W kxkq � p1=q
o
:

Since for p � n=2, kPn
iD1 aiXikp � kPn

iD1 aiXikn=2, we recover the result from
[1] and show that for p � 2,

���
nX
iD1

aiXi

���
p

� minfp; ng1=q
�X
i�p

ja�
i jq0

	1=q0

C p
p
�X
i>p

ja�
i j2
	1=2

;

where 1=q0 C 1=q D 1.

Remark. In the case of vector coefficients the following conjecture seems reason-
able. For any isotropic unconditional log-concave vector X D .X1; : : : ; Xn/, any
vectors v1; : : : ; vn in a normed space .F; k � k/ and p � 1,

�
E

���
nX
iD1

viXi
���p
	1=p �

�
E

���
nX
iD1

viXi
���C sup

k'k
�

�1

�
E

ˇ̌
ˇ

nX
iD1

'.vi /Xi
ˇ̌
ˇp
	1=p	

:

The nontrivial part is the upper bound for .EkPn
iD1 viXikp/1=p . It is known that the

above conjecture holds if the space .F; k � k/ has a nontrivial cotype – see [11] for
this and some related results.

Remark. Let S D Pn
iD1 aiXi , whereX is as in Theorem 3. Then Pr.jS j � ekSkp/�

e�p by the Chebyshev’s inequality. Moreover kSk2p � CkSkp for p � 2, hence
by the Paley-Zygmund inequality, Pr.jS j � kSkp=C / � minf1=C; e�pg. This way
Theorem 3 may be also used to get two-sided estimates for tails of S .

3 Gaussian Approximation of Moments

Let �p D kN .0; 1/kp D 2p=2� .
pC1
2
/=

p
� . In [10] it was shown that for inde-

pendent symmetric random variablesX1; : : : ; Xn with log-concave tails (notice that
log-concave symmetric random variables have log-concave tails) and variance 1,

ˇ̌
ˇ
���

nX
iD1

aiXi

���
p

� �pkak2
ˇ̌
ˇ � pkak1 for a 2 R

n; p � 3 (6)

(see also [13] for p 2 Œ2; 3/). The purpose of this section is to discuss similar
statements for general log-concave isotropic vectors X .

The lower estimate of moments is easy. In fact it holds for more general class of
unconditional vectors with bounded fourth moments.

Proposition 4. Suppose that X is an isotropic unconditional n-dimensional vector
with finite fourth moment. Then for any nonzero a 2 R

n and p � 2,
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���
nX
iD1

aiXi

���
p

� �pkak2 � pp
2kak2

� nX
iD1

a4i EX
4
i

	1=2

� �pkak2 � pp
2

max
i
.EX4

i /
1=2kak1:

Proof. Let us fix p � 2. By the homogenity we may and will assume that kak2 D 1.
Corollary 1 in [10] gives

���
nX
iD1

bi"i

���
p

� �p

� X
i
dp=2e

jb�
i j2
	1=2

for b 2 R
n;

where .b�
i / denotes the nonicreasing rearrangement of .jbi j/i�n. Therefore

���
nX
iD1

aiXi

���p
p

D E

ˇ̌
ˇ

nX
iD1

ai "iXi

ˇ̌
ˇp � �ppE

� nX
iD1

a2i X
2
i � max

#I<p=2

X
i2I

a2i X
2
i

	p=2

� �pp

�
E

� nX
iD1

a2i X
2
i � max

#I<p=2

X
i2I

a2i X
2
i

		p=2 D �pp

�
1�E max

#I<p=2

X
i2I

a2i X
2
i

	p=2
:

We have

E max
#I<p=2

X
i2I

a2i X
2
i � E max

#I<p=2

p
#I
�X
i2I

a4i X
4
i

	1=2 �
r
p

2
E

� nX
iD1

a4i X
4
i

	1=2

�
r
p

2

� nX
iD1

a4i EX
4
i

	1=2
:

Since
p
1 � x � 1 � x for x � 0 and �p � p

p the assertion easily follows. ut
Since EY 4 � 6 for symmetric log-concave random variables Y we immediately

get the following.

Corollary 5. Let X be an isotropic unconditional n-dimensional log-concave
vector. Then for any a 2 R

n n f0g and p � 2,

���
nX
iD1

aiXi

���
p

� �pkak2 � p

kak2
�
3

nX
iD1

a4i

	1=2 � �pkak2 � p
3pkak1:

Now we turn our attention to the upper bound. Notice that for unconditional
vectorsX and p � 2,

���
nX
iD1

aiXi

���
p

D
���

nX
iD1

ai "iXi

���
p

� �p

���
� nX
iD1

a2i X
2
i

	1=2���
p
; (7)
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where the last inequality follows by the Khintchine inequality with the optimal
constant [4]. First we will bound moments of .

Pn
iD1 a2i X2

i /
1=2 using the result of

Klartag [8].

Proposition 6. For any isotropic unconditional n-dimensional log-concave vector
X , p � 2 and a 2 R n f0g we have

���
nX
iD1

aiXi

���
p

� �pkak2 � Cp5=2
1

kak2
� nX
iD1

jai j4
	1=2 � Cp5=2kak1:

Proof. By the homogenity we may assume that kak2 D 1. We have

���
� nX
iD1

a2i X
2
i

	1=2���
p

� 1C
���
�� nX

iD1
a2i X

2
i

	1=2 � 1
	

C

���
p
:

Notice that

nX
iD1

a2i .X
2
i � 1/ D

�� nX
iD1

a2i X
2
i

	1=2 � 1
	�� nX

iD1
a2i X

2
i

	1=2 C 1
	
;

thus ���
�� nX

iD1
a2i X

2
i

	1=2 � 1
	

C

���
p

�
���

nX
iD1

a2i .X
2
i � 1/

���
p
:

Lemma 4 in [8] gives

���
nX
iD1

a2i .X
2
i � 1/

���2
2

D Var
� nX
iD1

a2i X
2
i

	
� 8

3

nX
iD1

a4i EX
4
i � 16

nX
iD1

a4i :

Comparison of moments of polynomials with respect to log-concave distributions
[16] implies

���
nX
iD1

a2i .X
2
i � 1/

���
p

� .Cp/2
���

nX
iD1

a2i .X
2
i � 1/

���
2

� Cp2
� nX
iD1

a4i

	1=2
:

ut
We may improve p5=2 term if we assume some concentration properties of a

vector X . We say that a random vector X satisfies exponential concentration with
constant � if

Pr.X 2 A/ � 1

2
) Pr.X 2 AC �tBn

2 / � 1 � e�t for t � 0:

For log-concave vectors exponential concentration is equivalent to several
other important functional and concentration inequalities including Poincaré and
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Cheeger [14]. The strong conjecture due to Kannan, Lovász and Simonovits [7]
states that every isotropic log-concave vector satisfies Cheeger’s (and therefore also
exponential) inequality with a uniform constant. The conjecture is wide open—
however a recent result of Klartag [8] shows that unconditional isotropic vectors
satisfy exponential concentration with � D C logn (see also [6] for examples of
log-concave measures that satisfy Poincaré inequalities with uniform constants).

Proposition 7. LetX be an isotropic unconditional vector that satisfies exponential
concentration with constant �. Then for any p � 2 and a 2 R

n,

���
nX
iD1

aiXi

���
p

� �pkak2 C C�p3=2kak1:

Proof. Let M WD Med..
Pn

iD1 a2i X2
i /
1=2/. Notice that

sup
n� nX

iD1
a2i y

2
i

	1=2Wy 2 tBn
2

o
D tkak1;

therefore exponential concentration applied to the set A WD f.Pn
iD1 a2i x2i /1=2 � M g

gives

Pr
�� nX

iD1
a2i X

2
i

	1=2 � M C �tkak1
	

� 1 � e�t :

Integration by parts gives for p � 2,

���
� nX
iD1

a2i X
2
i

	1=2���
p

� M C C�pkak1:

Using exponential concentration for the set A WD f.Pn
iD1 a2i x2i /1=2 � M g we get

Pr
�� nX

iD1
a2i X

2
i

	1=2 � M � �tkak1
	

� 1 � e�t ;

hence

kak2 D
���
� nX
iD1

a2i X
2
i

	1=2���
2

� M � C�kak1:

Thus by (7) we get for p � 2,

���
nX
iD1

aiXi

���
p

� �p

���
� nX
iD1

a2i X
2
i

	1=2���
p

� �p.kak2 C C�pkak1/:

ut
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Since by the result of Klartag [8] unconditional log-concave vectors satisfy
exponential concentration with constant C logn we get

Corollary 8. Let X be an isotropic unconditional log-concave vector. Then for any
p � 2 and a 2 R

n,

���
nX
iD1

aiXi

���
p

� �pkak2 C Cp3=2 lognkak1:

To get the factor p instead of p3=2 we need a stronger notion than exponential
concentration. We say that a random vectorX satisfies two level concentration with
constant � if

Pr.X 2 A/ � 1

2
) Pr.X 2 AC �.

p
tBn

2 C tBn
1 // � 1 � e�t for t � 0:

Since it is enough to consider t � 1 two level concentration is indeed stronger
than exponential concentration.

Proposition 9. Suppose that X is an isotropic unconditional vector that satisfies
two level concentration with constant �. Then for any p � 2 and a 2 R

n,

���
nX
iD1

aiXi

���
p

� �pkak2 C C�pkak1:

Proof. For p � 2 define a norm jjj � jjjp on R
n by jjjxjjjp D kPn

iD1 xi "ikp . Notice
that jjjxjjjp � �pkxk2, hence

Ejjj.aiXi /jjj2p � �2pkak22:

Observe also that

supfjjj.aixi /jjjpWx 2 p
tBn

2 C tBn
1 g

� p
t supfjjj.aixi /jjjpWx 2 Bn

2 g C t sup
j�n

jjj.ai ıi;j /jjjp

� p
t�p supfk.aixi /k2Wx 2 Bn

2 g C tkak1 D .
p
t�p C t/kak1:

Let Mp D Med.jjj.aiXi/jjjp/, two level concentration (applied twice to sets A D
fjjj.aixi /jjjp � Mpg and A D fjjj.aixi /jjjp � Mpg) implies that

Pr
�ˇ̌
ˇjjj.aiXi/jjjp �Mp

ˇ̌
ˇ � �.

p
t�p C t/kak1

	
� 2 exp.�t/:
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Integrating by parts this gives for p � q � 2,

��jjj.aiXi/jjjp �Mp

��
q

� C�.
p
q�p C q/kak1 � C�pkak1:

Hence

���
nX
iD1

aiXi

���
p
Dkjjj.aiXi/jjjpkp�kjjj.aiXi /jjjpk2 CC�pkak1��pkak2 CC�pkak1:

ut
Unfortunately we do not know many examples of random vectors satisfying two

level concentration with a good constant. Using estimate (2) it is not hard to see that
infimum convolution inequality investigated in [12] implies two level concentration.
In particular isotropic log-concave unconditional vectors with independent coordi-
nates and isotropic vectors uniformly distributed on the (suitably rescaled) Bn

q balls
satisfy two level concentration with an absolute constant.

The last approach to the problem of Gaussian approximation of moments we will
discuss is based on the notion of negative association. We say that random variables
.Y1; : : : ; Yn/ are negatively associated if for any disjoint sets I1; I2 in f1; : : : ; ng and
any bounded functions fi WRIi ! R, i D 1; 2 that are coordinate nondecreasing we
have

Cov
�
f1..Yi /i2I1/; f2..Yi /i2I2/

	
� 0:

Our next result is an unconditional version of Theorem 1 in [19].

Theorem 10. Suppose that X D .X1; : : : ; Xn/ is an unconditional random vector
with finite second moment and random variables .jXi j/niD1 are negatively associ-
ated. Let X�

1 ; : : : ; X
�
n be independent random variables such that X�

i has the same
distribution asXi . Then for any nonnegative function f on R such that f 00 is convex
and any a1; : : : ; an we have

Ef
� nX
iD1

aiXi

	
� Ef

� nX
iD1

aiX
�
i

	
: (8)

In particular

E

ˇ̌
ˇ

nX
iD1

aiXi

ˇ̌
ˇp � E

ˇ̌
ˇ

nX
iD1

aiX
�
i

ˇ̌
ˇp for p � 3:

Proof. Since random variables jaiXi j are also negatively associated, it is enough to
consider the case when ai D 1 for all i . We may also assume that variables X�

i are
independent of X . Assume first that random variablesXi are bounded.

Let Y D .Y1; : : : ; Yn/ be independent copy of X and 2 � k � n. To shorten the
notation put for 1 � l � n, Sl D Pl

iD1 "i jXi j and QSl D Pl
iD1 "i jYi j (recall that "i

denotes a Bernoulli sequence independent of other variables).
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We have

f .Sk/C f . QSk/ � f .Sk�1 C "kjYkj/� f . QSk�1 C "kjXkj/

D
Z jXk j

jYk j
"k.f

0.Sk�1 C "kt/ � f 0. QSk�1 C "kt//dt

D
Z 1

0

"k.f
0.Sk�1 C "kt/ � f 0. QSk�1 C "kt//.IfjXk j
tg � IfjYk j
tg/dt: (9)

Define for t > 0, gt .x/ D E"kf
0.x C "kt/ D .f 0.x C t/ � f 0.x � t//=2 and

ht .jx1j; : : : ; jxk�1j/ D E""kf
0
� k�1X
iD1

"i jxi j C "kt
	

D Egt

� k�1X
iD1

"i jxi j
	
:

Taking the expectation in (9) and using the unconditionality we get

2
�
Ef

� kX
iD1

Xi

	
� Ef

� k�1X
iD1

Xi CX�
k

		

D E

Z 1

0

"k.f
0.Sk�1 C "kt/ � f 0. QSk�1 C "kt//.IfjXk j
tg � IfjYk j
tg/dt

D
Z 1

0

E
�

ht .jX1j; : : : ; jXk�1j/�ht .jY1j; : : : ; jYk�1j/

�

IfjXk j
tg�IfjYk j
tg

��
dt

D
Z 1

0

Cov


ht .jX1j; : : : ; jXk�1j/; IfjXk j
tg

�
dt:

Convexity of f 00 implies that the function gt is convex on R, therefore the
function ht is coordinate increasing on R

k�1C . So by the negative association
we get

Ef
� kX
iD1

Xi

	
� Ef

� k�1X
iD1

Xi CX�
k

	
(10)

The same inequality holds if we change the function f into the function f .� C h/

for any h 2 R. Therefore applying (10) conditionally we get

Ef
� kX
iD1

Xi C
nX

iDkC1
X�
i

	
� Ef

� k�1X
iD1

Xi C
nX
iDk

X�
i

	

and inequality (8) easily follows in the bounded case.
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To settle the unbounded case first notice that random variables jXi j ^ m are
bounded and negatively associated for any m > 0. Hence we know that

Ef
� nX
iD1

"i .jXi j ^m/
	

� Ef
� nX
iD1

"i .jX�
i j ^m/

	
:

We have lim infm!1 Ef .
Pn

iD1 "i .jXi j ^m// � Ef .
Pn

iD1 "i jXi j/, so it is enough
to show that, lim infm!1 Ef .

Pn
iD1 "i .jX�

i j ^m// � Ef .
Pn

iD1 "i jX�
i j/.

Let us define u.x/ D f .x/� 1
2
f 00.0/x2, the function u00 is convex and u00.0/ D 0.

Since EjXi j2 D EjX�
i j2 < 1 it is enough to show that for anym > 0,

Eu
� nX
iD1

"i .jX�
i j ^m/

	
� Eu

� nX
iD1

"i jX�
i j
	
: (11)

Let for s 2 R, vs.t/ WD Eu."1sC "2t/. Then v00
s .t/ D Eu00."1sC "2t/ � u00.E."1sC

"2t// D 0 and v0
s.0/ D 0, hence vs is nondecreasing on Œ0;1/. Thus for any x 2 R

n,

E"u
� nX
iD1

"i .jxi j ^m/
	

� E"u
� nX
iD1

"i jxi j
	

and (11) immediately follows. ut
Corollary 11. Suppose that X is an isotropic unconditional n-dimensional log-
concave vector such that variables jXi j are negatively associated. Then for any
a1; : : : ; an and p � 3,

�p
3pkak1 �

���
nX
iD1

aiXi

���
p

� �pkak2 � pkak1:

In particular the above inequality holds if X has a uniform distribution on a
(suitably rescaled) Orlicz ball.

Proof. First inequality follows by Corollary 5, second by Theorem 10 and (6).
The last part of the statement is a consequence of the result of Pilipczuk and
Wojtaszczyk [18] (see also [20] for a simpler proof and a slightly more general class
of unconditional log-concave measures with negatively associated absolute values
of coordinates).
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Projections of Probability Distributions:
A Measure-Theoretic Dvoretzky Theorem

Elizabeth Meckes

Abstract Many authors have studied the phenomenon of typically Gaussian
marginals of high-dimensional random vectors; e.g., for a probability measure
on R

d , under mild conditions, most one-dimensional marginals are approximately
Gaussian if d is large. In earlier work, the author used entropy techniques and Stein’s
method to show that this phenomenon persists in the bounded-Lipschitz distance for
k-dimensional marginals of d -dimensional distributions, if k D o.

p
log.d//. In this

paper, a somewhat different approach is used to show that the phenomenon persists
if k < 2 log.d/

log.log.d// , and that this estimate is best possible.

1 Introduction

The explicit study of typical behavior of the margins of high-dimensional prob-
ability measures goes back to Sudakov [15], although some of the central ideas
appeared much earlier; e.g., the 1906 monograph [2] of Borel, which contains the
first rigorous proof that projections of uniform measure on the n-dimensional sphere
are approximately Gaussian for large n. Subsequent major contributions were made
by Diaconis and Freedman [3], von Weizsäcker [18], Bobkov [1], and Klartag [8],
among others. The objects of study are a random vectorX 2 R

d and its projections
onto subspaces; the central problem here is to show that for most subspaces, the
resulting distributions are about the same, approximately Gaussian, and moreover
to determine how large the dimension k of the subspace may be relative to d for
this phenomenon to persist. This aspect in particular of the problem was addressed
in earlier work [10] of the author. In this paper, a different approach is presented to

E. Meckes (�)
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© Springer-Verlag Berlin Heidelberg 2012

317



318 E. Meckes

proving the main result of [10], which, in addition to being technically simpler and
perhaps more geometrically natural, also gives a noticable quantiative improvement.
The result shows that the phenomenon of typical Gaussian marginals persists under
mild conditions for k < 2 log.d/

log.log.d// , as opposed to the results of [10], which requires

k D o.
p

log.d// (note that a misprint in the abstract of that paper claimed that
k D o .log.d// was sufficient).

The fact that typical k-dimensional projections of probability measures on R
d are

approximately Gaussian when k < 2 log.d/
log.log.d// can be viewed as a measure-theoretic

version of a famous theorem of Dvoretzky [5], Milman’s proof of which [12] shows
that for � > 0 fixed and X a d -dimensional Banach space, typical k-dimensional
subspaces E � X are .1 C �/-isomorphic to a Hilbert space, if k � C.�/ log.d/.
(This is the usual formulation, although one can give a dual formulation in terms
of projections and quotient norms rather than subspaces.) These results should be
viewed as analogous, in the following sense: in both cases, an additional structure is
imposed on R

n (a norm in the case of Dvoretzky’s theorem; a probability measure
in the present context); in either case, there is a particularly nice way to do this (the
Euclidean norm and the Gaussian distribution, respectively). The question is then:
if one projects an arbitrary norm or probability measure onto lower dimensional
subspaces, does it tend to resemble this nice structure? If so, by how much must one
reduce the dimension in order to see this phenomenon?

Aside from the philosophical similarity of these results, they are also similar
in that additional natural geometric assumptions lead to better behavior under
projections. The main result of Klartag [9] shows that if the random vector
X 2 R

d is assumed to have a log-concave distribution, then typical marginals
of the distribution of X are approximately Gaussian even when kDd� (for a
specific universal constant � 2 .0; 1/). This should be compared in the context
of Dvoretzky’s theorem to, for example, the result of Figiel et al. [6] showing
that if a d -dimensional Banach space X has cotype q 2 Œ2;1/, then X has

subspaces of dimension of the order d
2
q which are approximately Euclidean; or

the result of Szarek [16] showing that if X has bounded volume ratio, then X
has nearly Euclidean subspaces of dimension d

2
. One interesting difference in the

measure-theoretic context from the classical context is that, for measures, it is
possible to determine which subspaces have approximately Gaussian projections
under symmetry assumptions on the measure (see [11]); there is no known method
to find explicit almost Euclidean subspaces of Banach spaces, even under natural
geometric assumptions such as symmetry properties.

Following the statements of the main results below, an example is given to show
that the estimate k < 2 log.d/

log.log.d// is best possible in the metric used here.
Before formally stating the results, some notation and context are needed. The

Stiefel manifold Wd;k is defined by

Wd;k WD f� D .�1; : : : ; �k/ W �i 2 R
d ;
˝
�i ; �j

˛ D ıij 8 1 � i; j � kg;
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with metric 	


�; � 0� D

hPk
jD1 j�j � � 0

j j2
i1=2

. The manifold Wd;k posseses a

rotation-invariant (Haar) probability measure.
Let X be a random vector in R

d and let � 2 Wd;k . Let

X� WD 
 hX; �1i ; : : : ; hX; �ki
�I

that is, X� is the projection of X onto the span of � . Consider also the “annealed”
version X� for � 2 Wd;k distributed according to Haar measure and independent
of X . The notation eXŒ�� is used to denote expectation with respect to X only; that
is, eXŒf .X;�/� D e

�
f .X;�/

ˇ̌
�
�
: When X� is being thought of as conditioned

on � with randomness coming from X only, it is written X� . The following results
describe the behavior of the random variables X� and X�. In what follows, c and
C are used to denote universal constants which need not be the same in every
appearance.

Theorem 1. Let X be a random vector in R
n, with eX D 0, e

�jX j2� D �2d , and
let A WD e

ˇ̌jX j2��2 � d
ˇ̌
. If � is a random point of Wd;k, X� is defined as above,

and Z is a standard Gaussian random vector, then

dBL.X�; �Z/ � �Œ
p
k.AC 1/C k�

d � 1
:

Theorem 2. Let Z be a standard Gaussian random vector. Let

B WD sup
�2Sd�1

e hX; �i2 :

For � 2 Wd;k , let

dBL.X�; �Z/

D sup
max.kf k

1

;jf jL/�1

ˇ̌
ˇe
h
f .hX; �1i ; : : : ; hX; �ki/

ˇ̌
�
i

� ef .�Z1; : : : ; �Zk/
ˇ̌
ˇI

that is, dBL.X�; �Z/ is the conditional bounded-Lipschitz distance from X� to �Z,
conditioned on�. Then if Pd;k denotes the Haar measure on Wd;k,

Pd;k

�
� W ˇ̌dBL.X� ; �Z/� edBL.X� ; �Z/

ˇ̌
> �

� � Ce� cd�2

B :

Theorem 3. With notation as in the previous theorems,

edBL.X�; �Z/ � C

"
.kB C B log.d//B

2
9kC12

.kB/
2
3 d

2
3kC4

C �Œ
p
k.AC 1/C k�

d � 1

#
:
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In particular, under the additional assumptions that A � C 0pd and B D 1, then

edBL.X�; �Z/ � C
k C log.d/

k
2
3 d

2
3kC4

:

Remark. The assumption that B D 1 is automatically satisfied if the covariance
matrix of X is the identity; in the language of convex geometry, this is simply
the case that the vector X is isotropic. The assumption that A D O.

p
d/ is a

geometrically natural one which arises, for example, if X is distributed uniformly
on the isotropic dilate of the `1 ball in R

d .

Together, Theorems 2 and 3 give the following.

Corollary 4. Let X be a random vector in R
d satisfying

ejX j2 D �2d ejjX j2��2 � d j � L
p
d sup

�2Sd�1

e h�;Xi2 � 1:

Let X� denote the projection of X onto the span of � , for � 2 Wd;k . Fix a > 0 and
b < 2 and suppose that k D ı

log.d/
log.log.d// with a � ı � b. Then there is a c > 0

depending only on a and b such that for

� D 2 exp

�
�c log.log.d//

ı

�
;

there is a subset T � Wd;k with Pd;kŒT� � 1 � C exp

�c0d�2

�
, such that for all

� 2 T,
dBL.X�; �Z/ � C 0�:

Remark. For the bound on edBL.X�; �Z/ given in [10] to tend to zero as d ! 1,
it is necessary that k D o.

p
log.d//, whereas Theorem 3 gives a similar result if

k D ı
�

log.d/
log.log.d//

	
for ı < 2. Moreover, the following example shows that the bound

above is best possible in our metric.

1.1 Sharpness

In the presence of log-concavity of the distribution of X , Klartag [9] proved a
stronger result than Corollary 4 above; namely, that the typical total variation
distance between X� and the corresponding Gaussian distribution is small even
when � 2 Wd;k and k D d� (for a specific universal constant � 2 .0; 1/). The
result above allows k to grow only a bit more slowly than logarithmically with d .
However, as the following example shows, either the log-concavity or some other
additional assumption is necessary; with only the assumptions here, logarithmic-
type growth of k in d is best possible for the bounded-Lipschitz metric. (It should be
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noted that the specific constants appearing in the results above are almost certainly
non-optimal.)

Let X be distributed uniformly among f˙p
de1; : : : ;˙

p
ded g, where the ei are

the standard basis vectors of Rd . That is, X is uniformly distributed on the vertices
of a cross-polytope. Then eŒX� D 0, jX j2 	 d , and given � 2 S

d�1, e hX; �i2 D 1;
Theorems 1–3 apply with ˙2 D 1, A D 0 and B D 1.

Consider a projection of f˙p
de1; : : : ;˙

p
ded g onto a random subspace E

of dimension k, and define the Lipschitz function f W E ! R by f .x/ WD
.1 � d.x; SE//C ; where SE is the image of f˙p

de1; : : : ;˙
p
ded g under projec-

tion onto E and d.x; SE/ denotes the (Euclidean) distance from the point x to the
set SE . Then if �SE denotes the probability measure putting equal mass at each of
the points of SE ,

R
fd�SE D 1. On the other hand, it is classical (see, e.g., [7])

that the volume !k of the unit ball in R
k is asymptotically given by

p
2p
k�

�
2�e
k

� k
2 for

large k, in the sense that the ratio tends to one as k tends to infinity. It follows
that the standard Gaussian measure of a ball of radius 1 in R

k is bounded by
1

.2�/k=2
!k �

p
2p
k�

�
e
k

� k
2 . If �k denotes the standard Gaussian measure in R

k , then

this estimate means that
R
fd�k � 2

p
2dp
k�

�
e
k

� k
2 . Now, if k D c log.d/

log.log.d// for c > 2,

then this bound tends to zero, and thus dBL.�SE ; �k/ is close to 1 for any choice of
the subspace E; the measures �SE are far from Gaussian in this regime.

Taken together with Corollary 4, this shows that the phenomenon of typically
Gaussian marginals persists for k D c log.d/

log.log.d// for c < 2, but fails in general if

k D c log.d/
log.log.d// for c > 2.

Continuing the analogy with Dvoretzky’s theorem, it is worth noting here that,
for the projection formulation of Dvoretzky’s theorem (the dual viewpoint to the
slicing version discussed above), the worst case behavior is achieved for the `1 ball,
that is, for the convex hull of the points considered above.

Acknowledgements The author thanks Mark Meckes for many useful discussions, without which
this paper may never have been completed. Thanks also to Michel Talagrand, who pointed out a
simplification in the proof of the main theorem, and to Richard Dudley for clarifying the history
of “Dudley’s entropy bound”. Research supported by an American Institute of Mathematics 5-year
Fellowship and NSF grant DMS-0852898.

2 Proofs

Theorems 1 and 2 were proved in [10], and their proofs will not be reproduced.
This section is mainly devoted to the proof of Theorem 3, but first some

more definitions and notation are needed. Firstly, a comment on distance: as
is clear from the statement of Theorems 2 and 3, the metric on random vari-
ables used here is the bounded-Lipschitz distance, defined by dBL.X; Y / WD
supf

ˇ̌
ef .X/ � ef .Y /

ˇ̌
, where the supremum is taken over functions f with

kf kBL WD maxfkf k1; jf jLg � 1 (jf jL is the Lipschitz constant of f ).
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A centered stochastic process fXtgt2T indexed by a space T with a metric d is
said to satisfy a sub-Gaussian increment condition if there is a constant C such that,
for all � > 0,

P
�jXs � Xt j � �

� � C exp

�
� �2

2d2.s; t/

�
: (1)

A crucial point for the proof of Theorem 3 is that in the presence of a sub-
Gaussian increment condition, there are powerful tools availabe to bound the
expected supremum of a stochastic process; the one used here is what is usually
called Dudley’s entropy bound, formulated in terms of entropy numbers à la
Talagrand [17]. For n � 1, the entropy number en.T; d/ is defined by

en.T; d/ WD inffsup
t

d.t; Tn/ W Tn � T; jTnj � 22
ng:

Dudley’s entropy bound is the following.

Theorem 5. If fXtgt2T is a centered stochastic process satisfying the sub-Gaussian
increment condition (1), then there is a constant L such that

e

�
sup
t2T

Xt

�
� L

1X
nD0

2n=2en.T; d/: (2)

Although the bound above is usually attributed to Dudley [4], it appears to have
first appeared in print in a more general formulation due to Pisier [14, Theorem 1.1].

We now give the proof of the main theorem.

Proof of Theorem 3. As in [10], the key initial step is to view the distance as the
supremum of a stochastic process: let Xf D Xf .�/ WD eXf .X�/ � ef .X�/.
Then fXf gf is a centered stochastic process indexed by the unit ball of k � kBL,
and dBL.X� ;X�/ D supkf kBL�1 Xf . The fact that Haar measure on Wd;k has a
measure-concentration property for Lipschitz functions (see [13]) implies that Xf
is a sub-Gaussian process, as follows.

Let f W R
k ! R be Lipschitz with Lipschitz constant L and consider the

functionG D Gf defined on Wd;k by

G.�1; : : : ; �k/ D eXf .X�/ D e
�
f .h�1; Xi ; : : : ; h�k;Xi/ˇ̌�� :

Then
ˇ̌
ˇG.�/ �G.� 0/

ˇ̌
ˇ D

ˇ̌
ˇe
h
f

 ˝
X; � 0

1

˛
; : : : ;

˝
X; � 0

k

˛ � � f 
 hX; �1i ; : : : ; hX; �ki
�ˇ̌ˇ�; � 0

iˇ̌
ˇ

� Le
hˇ̌
 ˝

X; � 0
1 � �1

˛
; : : : ;

˝
X; � 0

k � �k
˛ �ˇ̌ˇ̌ˇ�; � 0

i
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� L

vuuut
kX

jD1
j� 0
j � �j j2e

*
X;

� 0
j � �j

j� 0
j � �j j

+2

� L	.�; � 0/
p
B;

thusG.�/ is a Lipschitz function on Wk;d , with Lipschitz constantL
p
B . It follows

immediately from Theorem 6.6 and Remark 6.7.1 of [13] that

Pd;k ŒjG.�/ �MG j > �� �
r
�

2
e

� d�2

8L2B ;

where MG is the median of G with respect to Haar measure on Wd;k . It is then a
straightforward exercise to show that for some universal constant C ,

P ŒjG.�/ � eG.�/j > �� � Ce
� d�2

32L2B : (3)

Observe that, for � a Haar-distributed random point of Wd;k , eG.�/ D ef .X�/,
and so (3) can be restated as P

�jXf j > �� � C exp
��cd�2� :

Note that Xf � Xg D Xf�g; thus for jf � gjL the Lipschitz constant of f � g

and kf � gkBL the bounded-Lipschitz norm of f � g,

P
�ˇ̌
Xf �Xg

ˇ̌
> �

� � C exp

� �cd�2
2jf � gj2L

�
� C exp

� �cd�2
2kf � gk2BL

�
:

The process fXf g therefore satisfies the sub-Gaussian increment condition in the
metric d�.f; g/ WD 1p

cd
kf �gkBL; in particular, the entropy bound (2) applies. We

will not be able to apply it directly, but rather use a sequence of approximations to
arrive at a bound.

The first step is to truncate the indexing functions. Let

'R.x/ D

8̂
<̂
ˆ̂:
1 jxj � R;

R C 1 � jxj R � jxj � RC 1;

0 RC 1 � jxj;

and define fR WD f � 'R. It is easy to see that if kf kBL � 1, then kfRkBL � 2.
Since jf .x/ � fR.x/j D 0 if x 2 BR and jf .x/ � fR.x/j � 1 for all x 2 R

k,

ˇ̌
eXf .X�/ � eXfR.X�/

ˇ̌ � P
�jX� j > Rˇ̌�� � 1

R2

kX
iD1

e
� hX; �ii2

� � Bk

R2
;
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and the same holds if eX is replaced by e. It follows that
ˇ̌
Xf � XfR

ˇ̌ � 2Bk
R2
:

Consider therefore the process Xf indexed by BL2;RC1 (with norm k � kBL), for
some choice of R to be determined, where

BL2;RC1 WD ˚
f W Rk ! R W kf kBL � 2If .x/ D 0 if jxj > RC 1

� I

what has been shown is that

e
h

sup
kf kBL�1

Xf

i
� e

h
sup

f 2BL2;RC1

Xf

i
C 2Bk

R2
: (4)

The next step is to approximate functions in BL2;RC1 by “piecewise linear”
functions. Specifically, consider a cubic lattice of edge length � in R

k . Triangulate
each cube of the lattice into simplices inductively as follows: in R

2, add an extra
vertex in the center of each square to divide the square into four triangles. To
triangulate the cube of R

k , first triangulate each facet as was described in the
previous stage of the induction. Then add a new vertex at the center of the cube;
connecting it to each of the vertices of each of the facets gives a triangulation into
simplices. Observe that when this procedure is carried out, each new vertex added is
on a cubic lattice of edge length �

2
. Let L denote the supplemented lattice comprised

of the original cubic lattice, together with the additional vertices needed for the
triangulation. The number of sites of L within the ball of radius R C 1 is then

bounded by, e.g., c


3R
�

�k
!k , where !k is the volume of the unit ball in R

k .

Now approximate f 2 BL2;RC1 by the function Qf defined such that Qf .x/ D
f .x/ for x 2 L, and the graph of Qf is determined by taking the convex hull of
the vertices of the image under f of each k-dimensional simplex determined by

L. The resulting function Qf still has k Qf kBL � 2, and kf � Qf k1 � �
p
k
2

, since

the distance between points in the same simplex is bounded by �
p
k. Moreover,

k Qf kBL D supx2L jf .x/j C supx�y
jf .x/�f .y/j

jx�yj , where x � y if x; y 2 L and
x and y are part of the same triangulating simplex. Observe that, for a given
x 2 L, those vertices which are part of a triangulating simplex with x are all
contained in a cube centered at x of edge length �; the number of such points is thus
bounded by 3k , and the number of differences which must be considered in order

to compute the Lipschitz constant of Qf is therefore bounded by c


9R
�

�k
!k . Recall

that !k � 2p
k�

�
2�e
k

� k
2 for large k, and so the number of differences determining

the Lipschitz constant of Qf is bounded by cp
k

�
c0R

�
p
k

	k
, for some absolute constants

c; c0. It follows that

e
h

sup
f 2BL2;RC1

Xf

i
� e

h
sup

f 2BL2;RC1

X Qf
i

C �
p
k; (5)
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that the process fX Qf gf 2BL2;RC1
is sub-Gaussian with respect to 1p

cd
k � kBL, and that

the values of Qf for f 2 BL2;RC1 are determined by a point of the ball 2BM1 of `M1,
where

M D cp
k

�
c0R
�
p
k

�k
: (6)

The virtue of this approximation is that it replaces a sub-Gaussian process
indexed by a ball in an infinite-dimensional space with one indexed by a ball
in a finite-dimensional space, where Dudley’s bound is finally to be applied. Let

T WD
n Qf W f 2 BL2;RC1

o
� 2BM1 ; the covering numbers of the unit ball B of a

finite-dimensional normed space .X; k � k/ of dimensionM are known (see Lemma
2.6 of [13]) to be bounded as N .B; k � k; �/ � exp

�
M log



3
�

��
: This implies that

N .BM1 ; 	; �/ � exp

�
M log

�
3

�
p
cd

��
;

which in turn implies that

en.2B
M1 ; 	/ � 24

p
Bp
d
2� 2n

M :

Applying Theorem 5 now yields

e

"
sup

f 2BL2;RC1

X Qf

#
� L

X
n
0

 
24

p
Bp
d
2

�
n
2� 2n

M

	!
: (7)

Now, for the terms in the sum with log.M/ � .n C 1/ log.2/ � 3 log.n/, the
summands are bounded above by 2�n, contributing only a constant to the upper
bound. On the other hand, the summand is maximized for 2n D M

2
log.2/, and is

therefore bounded by
p
M . Taken together, these estimates show that the sum on

the right-hand side of (7) is bounded by L log.M/

q
MB
d

.
Putting all the pieces together,

e

"
sup

kf kBL�1



e
�
f .X�/

ˇ̌
�
� � ef .X�/

�# � 9kB

R2
C 2�

p
k CL log.M/

r
MB

d
:

Choosing � D
p
kB
2R2

and using the value ofM in terms of R yields

e

"
sup

kf kBL�1


e
�
f .X�/

ˇ̌
�
� � ef .X�/

�#

� 10kB

R2
C Lk log

�
c0R3

kB

�
c

k1=4

�
c0R3

kB

� k
2
r
B

d
:
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Now choosingR D cd
1

3kC4 k
2kC1
6kC8 B

kC1
3kC4 yields

e

"
sup

kf kBL�1


e
�
f .X�/

ˇ̌
�
� � ef .X�/

�# � L
kB C B log.d/

d
2

3kC4 k
2kC1
3kC4 B

2kC2
3kC4

:

This completes the proof of the first statement of the theorem. The second follows
immediately using that B D 1 and observing that, under the assumption that A �
C 0pd , the bound above is always worse than the error �Œ

p
k.AC1/Ck�
d�1 coming from

Theorem 1. ut
The proof of Corollary 4 is essentially immediate from Theorems 2 and 3.
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On a Loomis–Whitney Type Inequality
for Permutationally Invariant Unconditional
Convex Bodies

Piotr Nayar and Tomasz Tkocz

Abstract For a permutationally invariant unconditional convex body K in R
n we

define a finite sequence .Kj /
n
jD1 of projections of the bodyK to the space spanned

by first j vectors of the standard basis of Rn. We prove that the sequence of volumes
.jKj j/njD1 is log-concave.

1 Introduction

The main interest in convex geometry is the examination of sections and projections
of sets. Some introduction can be found in a monograph by Gardner [5]. We are
interested in a class PUn of convex bodies in R

n which are unconditional and
permutationally invariant.

Let us briefly recall some definitions. A convex body K in R
n is called

unconditional if for every point .x1; : : : ; xn/ 2 K and every choice of signs
�1; : : : ; �n 2 f�1; 1g the point .�1x1; : : : ; �nxn/ also belongs to K . A convex body
K in R

n is called permutationally invariant if for every point .x1; : : : ; xn/ 2 K

and every permutation � W f1; : : : ; ng �! f1; : : : ; ng the point .x�.1/; : : : ; x�.n//
is also in K . A sequence .ai /niD1 of positive real numbers is called log-concave if
a2i � ai�1aiC1, for i D 2; : : : ; n � 1.

The main result of this paper reads as follows.

Theorem 1. Let n � 3 and letK 2 PUn. For each i D 1; : : : ; n we define a convex
body Ki 2 PU i as an orthogonal projection of K to the subspace f.x1; : : : ; xn/
2 R

n j xiC1 D : : : D xn D 0g. Then the sequence of volumes .jKi j/niD1 is log-
concave. In particular

jKn�1j2 � jKnj � jKn�2j: (1)
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Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
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Inequality (1) is related to the problem of negative correlation of coordinate
functions onK 2 PUn, i.e. the question whether for every t1; : : : ; tn � 0

�K

 
n\
iD1

fjxi j � ti g
!

�
nY
iD1

�K .jxi j � ti / ; (2)

where �K is normalized Lebesgue measure on K . Indeed, the Taylor expansion of
the function h.t/ D �K.jx1j � t/�K.jx2j � t/ � �K.jx1j � t; jx2j � t/ at t D 0

contains
1

jKnj2

jKn�1j2 � jKn�2j � jKnj

�
t2;

cf. (1), as a leading term. The Property (2), the so-called concentration hypothesis
and the central limit theorem for convex bodies are closely related, see [1]. The last
theorem has been recently proved by Klartag [8].

The negative correlation property in the case of generalized Orlicz balls was
originally investigated by Wojtaszczyk in [11]. A generalized Orlicz ball is a set

B D
(
.x1; : : : ; xn/ 2 R

n
ˇ̌ nX
iD1

fi .jxi j/ � n

)
;

where f1; : : : ; fn are some Young functions (see [11] for the definition). In prob-
abilistic terms Pilipczuk and Wojtaszczyk (see [10]) have shown that the random
variable X D .X1; : : : ; Xn/ uniformly distributed on B satisfies the inequality

Cov.f .jXi1 j; : : : ; jXik j/; g.jXj1 j; : : : ; jXjl j// � 0

for any bounded coordinate-wise increasing functions f WRk �! R, gWRl �! R

and any disjoint subsets fi1; : : : ; ikg and fj1; : : : ; jlg of f1; : : : ; ng. In the case of
generalized isotropic Orlicz balls this result implies the inequality

VarjX jp � Cp2

n
EjX j2p; p � 2;

from which some reverse Hölder inequalities can be deduced (see [3]).
One may ask about an example of a nice class of Borel probability measures on

R
n for which the negative correlation inequality hold. Considering the example of

the measure with the density

p.x1; : : : ; xn/ D exp

�2.nŠ/1=n maxfjx1j; : : : ; jxnjg

�
;

which was mentioned by Bobkov and Nazarov in a different context (see [2, Lemma
3.1]), we certainly see that the class of unconditional and permutationally invariant
log-concave measures would not be the answer. Nevertheless, it remains still
open whether the negative correlation of coordinate functions holds for measures
uniformly distributed on the bodies from the class PUn.
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We should remark that our inequality (1) is similar to some auxiliary result
by Giannopoulos, Hartzoulaki and Paouris, see [6, Lemma 4.1]. They proved that
a version of inequality (1) holds, up to the multiplicative constant n

2.n�1/ , for an
arbitrary convex body.

The paper is organised as follows. In Sect. 2 we give the proof of Theorem 1.
Section 3 is devoted to some remarks. Several examples are there provided as well.

2 Proof of the Main Result

Here we deal with the proof of Theorem 1. We start with an elementary lemma.

Lemma 1. Let f W Œ0; L� �! Œ0;1/ be a nonincreasing concave function such that
f .0/ D 1. Then

n � 1

n

�Z L

0

f .x/n�2dx
�2

�
Z L

0

xf .x/n�2dx; n � 3: (3)

Proof. By a linear change of a variable one can assume that L D 1. Since f is
concave and nonincreasing, we have 1 � x � f .x/ � 1 for x 2 Œ0; 1�. Therefore,
there exists a real number ˛ 2 Œ0; 1� such that for g.x/ D 1� ˛x we have

Z 1

0

f .x/n�2dx D
Z 1

0

g.x/n�2dx:

Clearly, we can find a number c 2 Œ0; 1� such that f .c/ D g.c/. Since f is concave
and g is affine, we have f .x/ � g.x/ for x 2 Œ0; c� and f .x/ � g.x/ for x 2 Œc; 1�.
Hence,

Z 1

0

x.f .x/n�2 � g.x/n�2/dx �
Z c

0

c.f .x/n�2 � g.x/n�2/dx

C
Z 1

c

c.f .x/n�2 � g.x/n�2/dx D 0:

We conclude that it suffices to prove (3) for the function g, which is by simple
computation equivalent to

1

˛2n.n � 1/


1 � .1 � ˛/n�1�2 � 1

˛2

 
1

n� 1



1 � .1 � ˛/n�1�

� 1

n
.1 � .1 � ˛/n/

!
:
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To finish the proof one has to perform a short calculation and use Bernoulli’s
inequality. ut
Remark 1 (Added in Proofs). A slightly more general form of this lemma appeared
in [7] and, as it is pointed out in that paper, the lemma is a particular case of a result
of [9, p. 182]. Only after the paper was written we heard about these references from
Prof. A. Zvavitch, for whom we are thankful. Our proof differs only in a few details,
yet it is provided for the convenience of the reader.

Proof of Theorem 1. Due to an inductive argument it is enough to prove inequal-
ity (1).

Let gWRn�1 �! f0; 1g be a characteristic function of the set Kn�1. Then, by
permutational invariance and unconditionality, we have

jKn�1j D 2n�1.n � 1/Š

Z
x1
:::
xn�1
0

g.x1; : : : ; xn�1/dx1 : : : dxn�1; (4)

and similarly

jKn�2j D 2n�2.n� 2/Š

Z
x1
:::
xn�2
0

g.x1; : : : ; xn�2; 0/dx1 : : : dxn�2: (5)

Moreover, permutational invariance and the definition of a projection imply

1Kn.x1; : : : ; xn/ �
nY
iD1

g.x1; : : : ; Oxi ; : : : ; xn/: (6)

Thus

jKnj � 2nnŠ

Z
x1
:::
xn
0

nY
iD1

g.x1; : : : ; Oxi ; : : : ; xn/dx1 : : : dxn

D 2nnŠ

Z
x1
:::
xn
0

g.x1; : : : ; xn�1/dx1 : : : dxn

D 2nnŠ

Z
x1
:::
xn�1
0

xn�1g.x1; : : : ; xn�1/dx1 : : : dxn�1;

(7)

where the first equality follows from the monotonicity of the function g for
nonnegative arguments with respect to each coordinate. We define a function
F W Œ0;1/ �! Œ0;1/ by the equation

F.x/ D
R
x1
:::
xn�2
x g.x1; : : : ; xn�2; x/dx1 : : : dxn�2R
x1
:::
xn�2
0 g.x1; : : : ; xn�2; 0/dx1 : : : dxn�2

:
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One can notice that

1. F.0/ D 1.
2. The function F is nonincreasing as so is the function

x 7! g.x1; : : : ; xn�2; x/1fx1
:::
xn�2
xg:

3. The function F 1=.n�2/ is concave on its support Œ0; L� since F.x/ multiplied by
some constant equals the volume of the intersection of the convex set Kn�1 \
fx1 � : : : � xn�1 � 0g with the hyperplane fxn�1 D xg. This is a simple
consequence of the Brunn–Minkowski inequality, see for instance [4, p. 361].

By the definition of the function F and equations (4), (5) we obtain

Z L

0

F.x/dx D
1

2n�1.n�1/Š jKn�1j
1

2n�2.n�2/Š jKn�2j
D 1

2.n� 1/
� jKn�1j

jKn�2j ;

and using inequality (7)

Z L

0

xF.x/dx �
1
2nnŠ

jKnj
1

2n�2.n�2/Š jKn�2j
D 1

22n.n � 1/
� jKnj

jKn�2j :

Therefore it is enough to show that

n � 1

n

�Z L

0

F.x/dx

�2
�
Z L

0

xF.x/dx:

This inequality follows from Lemma 1. ut

3 Some Remarks

In this section we give some remarks concerning Theorem 1.

Remark 2. Apart from the trivial example of the Bn1 ball, there are many other
examples of bodies for which equality in (1) is attained. Indeed, analysing the proof,
we observe that for the equality in (1) the equality in Lemma 1 is needed. Therefore,
the function F 1=.n�2/ has to be linear and equal to 1 � x. Taking into account the
equality conditions in the Brunn–Minkowski inequality (consult [4, p. 363]), this is
the case if and only if the setKn�1\fx1 � : : : � xn�1 � 0g is a coneC with the base
.Kn�2 \ fx1 � : : : � xn�2 � 0g/� f0g � R

n�1 and the vertex .z0; : : : ; z0/ 2 R
n�1.

Thus if for a convex bodyK 2 PUn we have the equality in (1), then this bodyK is
constructed in the following manner. Take an arbitrary Kn�2 2 PUn�2. Define the
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set Kn�1 as the smallest permutationally invariant unconditional body containing
C . For z0 from some interval the set Kn�1 is convex. For the characteristic function
of the bodyK we then set

Qn
iD1 1Kn�1 .x1; : : : ; Oxi ; : : : ; xn/.

A one more natural question to ask is when a sequence .jKi j/niD1 is geometric.
Bearing in mind what has been said above for i D 2; 3; : : : ; n � 1 we find that a
sequence .jKi j/niD1 is geometric if and only if

K D Œ�L;L�n [
[

i2f1;:::;ng;�2f�1;1g
conv f�aei ; fxi D �L; jxkj � L; k ¤ igg ;

for some positive parameters a and L satisfying L < a < 2L, where e1; : : : ; en
stand for the standard orthonormal basis in R

n. One can easily check that jKi j D
2iLi�1a.

Remark 3. Suppose we have a sequence of convex bodies Kn 2 PUn, for n � 1,
such that Kn D �n.KnC1/, where by �nWRnC1 �! R

n we denote the projection
�n.x1; : : : ; xn; xnC1/ D .x1; : : : ; xn/. Since Theorem 1 implies that the sequence
.jKnj/1nD1 is log-concave we deduce the existence of the limits

lim
n!1

jKnC1j
jKnj ; lim

n!1
n
p

jKnj:

We can obtain this kind of sequences as finite dimensional projections of an Orlicz
ball in `1.
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The Hörmander Proof of the Bourgain–Milman
Theorem

Fedor Nazarov

Abstract We give a proof of the Bourgain–Milman theorem based on Hörmander’s
Existence Theorem for solutions of the N@-problem.

1 Introduction

The formal aim of this paper is to present a complex-analytic proof of the Bourgain–
Milman estimate

vn.K/vn.K
ı/ � cn

4n

nŠ

where K is an origin-symmetric bounded convex body in R
n, Kı D ft 2 R

n W
hx; ti � 1g is its polar body, vn stands for the n-dimensional volume measure in R

n,
and c > 0 is a numeric constant (see [2]).

The best value of c I could get on this way is


�
4

�3
, which is 3 times worse (on

the logarithmic scale) than the current record c D �
4

due to Kuperberg [7]. Still, I
hope that this approach may be of some interest to those who enjoy fancy interplays
between convex geometry and Fourier analysis.

Since the title line and the author line of this article contradict each other, I
should, probably, clarify that, like in many other cases, my personal contribution
to the proof below was merely to combine the ideas of other, greater, minds in a
way they just didn’t have enough time to think of and to prepare this write-up, i.e.,
to do something that any other qualified mathematician could do equally well, if not
better, under favorable circumstances.
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Artem Zvavich and Dmitry Ryabogin attracted my attention to this problem.
Mikhail Sodin suggested using the Hörmander theorem in the construction and, in
parallel with Greg Kuperberg, read the original draft and has made many pertinent
remarks about it, which resulted in eliminating many misprints it contained and
improving the presentation in general. I’m most grateful to them as well as to
numerous other friends, relatives, and colleagues of mine who made my work on
this project possible.

With all that said, let’s turn to mathematics now.

2 The Main Idea

We shall start with recasting the question into the language of Hilbert spaces of
analytic functions of several complex variables. The optimal way to restate the
problem is to use the Paley–Wiener theorem, which asserts that the following two
classes of functions are the same:

1. The class of all entire finctions f W C
n ! C of finite exponential type (i.e.,

satisfying the bound f .z/ � CeC jzj for all z 2 C
n with some C > 0) such that

their restriction to R
n belongs to L2 and such that jf .iy/j � Ce	K.y/ with some

C > 0 for all y 2 R
n where 	K.x/ D inffˇ > 0 W x 2 ˇKg.

2. The class of the Fourier transforms f .z/ D R
Kı

g.t/e�ihz;ti dvn.t/ of L2-
functions g supported onKı.

We shall denote the class given by any of these conditions by PW.K/. If f 2
PW.K/ is the Fourier transform of g, then, by Plancherel’s formula, kf k2

L2.Rn/
D

.2�/nkgk2
L2.Kı/

.
Note now that, by the Cauchy–Schwarz inequality, we have

jf .0/j2 D
ˇ̌
ˇ
Z
Kı

g dvn
ˇ̌
ˇ2 � vn.K

ı/kgk2
L2.Kı/

D 1

.2�/n
vn.K

ı/kf k2
L2.Rn/

and that the equality sign is attained when g D 1 in Kı. Thus,

vn.K
ı/ D .2�/n sup

f 2PW.K/

jf .0/j2 � kf k�2
L2.Rn/

:

Note that the quantity on the right does not include any metric characteristics of
the polar body Kı and that the problem of proving a lower bound for vn.Kı/ has
been thus transformed into the problem of finding an example of an entire function
f 2 PW.K/ that has not too small value at the origin and not too large L2.Rn/-
norm.

Unfortunately, constructing fast decaying on R
n analytic functions of several

complex variables is quite a non-trivial task by itself and this approach would
look rather hopeless if not for the remarkable theorem of Hörmander that allows
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one to conjure up such functions in Bergman type spaces L2.Cn; e�' dv2n/ with
plurisubharmonic '.

The whole point now is to approximate the Paley–Wiener space by some
weighted Bergman space with a Hörmander type weight and to carry out the relevant
computations in that space. There is a lot of freedom in what Bergman space to
choose. It turns out that almost any decent approximation works and gives the
desired inequality with its own exponential factor cn. The particular choice below
was made just because it gives the best constant c among all spaces I tried but I do
not guarantee its optimality.

The reader should be aware though that there may be no ideal approximation
of the Paley–Wiener space by a Bergman–Hörmander one and, in order to get the
Mahler conjecture itself on this way, one would have to work directly with the
Paley–Wiener space by either finding a good analogue of the Hörmander theorem
allowing to control the Paley–Wiener norm of the solution, or by finding some novel
way to construct decaying analytic functions of several variables.

Now it is time to present the formal argument. We shall start with

3 The Rothaus–Korányi–Hsin Formula for the Reproducing
Kernel in a Tube Domain

Let K be any (strictly) convex open subset of Rn and let TK D fx C iy W x 2
R
n; y 2 Kg � C

n be the corresponding tube domain. Let A2.TK/ be the Bergman
space of all analytic in TK functions for which

kf k2
A2.TK/

D
Z
TK

jf j2 dv2n < C1:

In [5] Hsin presented the following nice formula for the reproducing kernel K.z;w/
associated with the Hilbert space A2.TK/:

K.z;w/ D 1

.2�/n

Z
Rn

eihz�w;ti

JK.t/
dvn.t/

where

JK.t/ D
Z
K

e�2hx;ti dvn.x/ :

The idea of this formula can be traced back to Rothaus’ dissertation [8]. Korányi [6]
seems to be the first to publish it in 1962 for the very similar to our case situation
of a tube domain constructed on a convex cone instead of a bounded convex set. In
1968, Rothaus published a paper [9] that, among other things, contained a formula
analogous to Hsin’s but for the vertical tube x 2 K; y 2 R

n, not for the horizontal
one we need here.
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Anyway, what concerns us at this point is the following simple corollary. If
02K , then

K.0; 0/ D 1

.2�/n

Z
Rn

dvn.t/

JK.t/
:

Suppose now thatK is origin-symmetric. Since xCy
2

2 K for all x; y 2 K and since
the function x 7! e�hx;ti is convex, we can write

JK.t/ � 2�n
Z
K

e�hx;ti�hy;ti dvn.x/ � 2�nvn.K/e
�hy;ti

for all y 2 K . Maximizing this quantity over y, we get

JK.t/ � 2�nvn.K/e
	Kı

.�t /

where 	Kı.t/ D inffˇ > 0 W t 2 ˇKıg. The immediate corollary of this estimate is
the inequality

Z
Rn

dvn.t/

JK.t/
� 2nvn.K/

�1
Z
Rn

e�	Kı dvn D 2nnŠvn.K
ı/vn.K/�1 :

Now, one of the key properties of the reproducing kernel K.z;w/ is the inequality

jf .0/j2 D
ˇ̌
ˇ
Z
TK

K.0;w/f .w/ dv2n.w/
ˇ̌
ˇ2

�
hZ

TK

jK.0;w/j2 dv2n.w/
i

�
hZ

TK

jf .w/j2 dv2n.w/
i

D K.0; 0/kf k2
A2.TK/

valid for all f 2 A2.TK/. Thus, in order to estimate K.0; 0/ (and, thereby, vn.Kı/)
from below, it will suffice to construct a function f 2 A2.TK/ with jf .0/j not too
small compared to kf kA2.TK/. For this construction, we shall need the celebrated

4 Hörmander’s Existence Theorem for Solutions
of the N@-Problem

In [3] Hörmander proved the following statement. Let ˝ � C
n be any open

pseudoconvex domain. Let ' W ˝ ! R be any plurisubharmonic function in ˝
satisfying the inequality

nX
i;jD1

@2'

@zi @Nzj wi Nwj � � jwj2
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for all w 2 C
n at every point of ˝ with some � > 0. Then, for every .0; 1/-form !

in˝ satisfying N@! D 0, we can find a solution g of the equation N@g D ! in˝ such
that Z

˝

jgj2e�' dv2n � ��1
Z
˝

j!j2e�' dv2n

where, as usual, j!j2 D Pn
iD1 jaj j2 if ! D Pn

iD1 ai .z/d Nzi .
This amazing theorem has become the main tool for constructing analytic

functions in C
n with good growth/decay estimates. It has essentially wiped out all

previous ad-hoc procedures based on power series, Cauchy integrals, and such. The
details of how to use this remarkable tool vary slightly from proof to proof. The
particular way we apply it below can be traced back to Hörmander himself (see,
for example, the subsection “The construction of analytic functions with prescribed
zeros” on p. 349 in [4]). We shall start with

5 The Construction of '

For technical reasons, it will be convenient to assume thatK is not too wild. Since all
the quantities we will use change in a very simple way under linear transformations
of Rn, by John’s theorem, we can replace K by its suitable affine image and ensure
that vn.K/ D 1 and that K contains the ball of radius r and is contained in the
ball of radius R centered at the origin with the ratio of radii R

r
� p

n (see [1], for
example).

Now, for every t 2 Kı, the mapping z 7! hz; ti sends TK to the horizontal unit
strip j Im �j < 1. Let

˚.�/ D 4

�
� e

�
2 � � 1

e
�
2 � C 1

be the standard conformal mapping of this strip to the disk of radius 4
�

centered at
the origin. Note that ˚.0/ D 0 and ˚ 0.0/ D 1.

The function log j˚ j is subharmonic in the strip j Im �j < 1 and satisfiesˇ̌
log j˚.�/j � log j�jˇ̌ � C j�j when j�j � 1

2
with some finite C � 1.

Define
'.z/ D R�2jyj2 C 2n log sup

t2Kı

j˚.hz; ti/j :

(as usual, we write z D x C iy for z 2 C
n)

Note that the second term is plurisubharmonic as a supremum of a family
of plurisubharmonic functions and therefore ' satisfies the conditions of the
Hörmander existence theorem with � D 1

4
R�2. Also,

'.z/ � 2n log
4

�
CR�2jyj2 � 2n log

4

�
C 1
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in TK . At last, e�' is comparable to jzj�2n near the origin, so e�' is not locally
integrable at 0.

Now we turn to

6 The Construction of the Analytic Function f

Fix two parameters � 2 .1; 2/ and ı 2 .0; 1
4
/. Let

KC D fz 2 C
n W jhz; tij � 1 for all t 2 Kıg � K �K :

Note first of all that

'.z/ � 2n.log ı � 2Cı/ D 2n log ı � 4Cnı

in .�ıKC/ n .ıKC/.
Now note thatKC is convex and contains 1p

2
.K�K/, which, in turn, contains the

ball of radius rp
2

centered at the origin. Thus, we can construct a smooth function

g W Cn ! Œ0; 1� such that g D 1 in ıKC, g D 0 outside �ıKC, and

j N@gj D 1

2
jrgj � p

2 r�1Œı.� � 1/��1 :

This function will satisfy

Z
TK

j N@gj2e�' dv2n � C.�; ı/r�2�2nı2nv2n.KC/e
�2n log ıC4Cnı

D C.�; ı/r�2e2n.log�C2Cı/v2n.KC/

with some C.�; ı/ that does not depend on n.
Now, by Hörmander’s theorem, there exists a solution h of the equation N@h D

�N@g in TK such that

Z
TK

jhj2e�' dv2n � C.�; ı/4

�
R

r

�2
e2n.log�C2Cı/v2n.KC/

� C.�; ı/4ne2n.log �C2Cı/v2n.KC/ :

Note that N@h D 0 in ıKC, so h is analytic and, thereby, continuous in ıKC. Since
e�' is not locally integrable at the origin, the integral

R
TK

jhj2e�' dv2n can be finite
only if h.0/ D 0.
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Thus, the analytic in TK function f D g C h satisfies f .0/ D g.0/ D 1. On the
other hand, Z

TK

jf j2 dv2n � 2

Z
TK

jgj2 dv2n C 2

Z
TK

jhj2 dv2n

The first integral does not exceed .�ı/2nv2n.KC/ � v2n.KC/. The second one can
be bounded by

e2n log 4
� C1

Z
TK

jhj2e�' dv2n � 4neC.�; ı/e2n.log �C2Cı/
�
4

�

�2n
v2n.KC/ :

Thus

kf k2
A2.TK/

� 2Œ4neC.�; ı/C 1�e2n.log �C2Cı/
�
4

�

�2n
v2n.KC/ ;

say, while
jf .0/j2 D 1 :

Therefore

K.0; 0/ � c.�; ı/n�1e�2n.log �C2Cı/ ��
4

	2n
v2n.KC/

�1 :

Now observe that we can choose ı very small and � very close to 1 to make
log � C 2Cı as small as we wish. Recalling that K.0; 0/ D 1

.2�/n

R
Rn

dvn.t/
JK.t/

, we get
the inequality

v2n.KC/

Z
Rn

dvn.t/

JK.t/
� e�o.n/

�
�3

8

�n

as n ! 1.
To get rid of the e�o.n/ factor, we use

7 The Tensor Power Trick

Fix n � 1 and the body K 2 R
n. Choose a very big number m and consider

K 0 D K � � � � �K„ ƒ‚ …
m

� R
mn. Note that K 0

C
D KC � � � � �KC and JK0.t1; : : : ; tm/ D

JK.t1/ � : : : � JK.tm/. Applying the above inequality to K 0 instead of K and raising
both parts to the power 1

m
, we get

v2n.KC/

Z
Rn

dvn.t/

JK.t/
� e�o.mn/=m

�
�3

8

�n
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as m ! 1. Since o.mn/=m ! 0 as m ! 1 and everything else does not depend
on m at all, we get the clean estimate

v2n.KC/

Z
Rn

dvn.t/

JK.t/
�
�
�3

8

�n

valid for all origin-symmetric convex bodiesK of volume 1 in R
n.

Though it doesn’t relate directly to our story, it is worth mentioning here that
this estimate is sharp. If n D 1 and K D .� 1

2
; 1
2
/, we have v2.KC/ D �

4
, JK.t/ D

et�e�t

2t
, and

Z
R

dt

JK.t/
D 4

Z 1

0

t

et � e�t D 4

Z 1

0

t
� X
k
1;k odd

e�kt	 dt

D 4
X

k
1;k odd

Z 1

0

te�kt dt D 4
X

k
1;k odd

1

k2
D �2

2
:

Thus, for the interval in R
1 (and, thereby, for the cube in every dimension), the

equality sign is attained.
It is now time to finish with the

8 Derivation of the Bourgain–Milman Theorem

Recalling that KC � K �K , we see that v2n.KC/ � vn.K/2. Also, as we have seen
earlier, Z

Rn

dvn.t/

JK.t/
� 2nnŠvn.K

ı/vn.K/�1 :

Plugging these estimates in, we get

vn.K/vn.K
ı/ �

��
4

	3n 4n
nŠ

as promised.
It is, probably, worth mentioning that the same technique with minor modifica-

tions can be applied to the non-symmetric case as well. If somebody wants to follow
this way, he should note first that it suffices to consider the case when 0 is the center
of mass ofK , after which the whole argument can be repeated almost verbatim using
the lower half-plane Im � < 1 instead of the unit strip. Since the conformal radius
of this half-plane with respect to the origin is 2, the final estimate will change to

vn.K/vn.K
ı/ �

� �
16

	n 4n
nŠ

D
� �
4e

	n en
nŠ
:

Unfortunately, this is well below the bound you can get by the symmetrization trick.
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On Some Extension of Feige’s Inequality

Krzysztof Oleszkiewicz

Abstract An extension of the Feige inequality [Feige, SIAM J. Comput. 35,
964–984 (2006)] is formulated and proved in a relatively simple way.

1 Main Theorem

The main result of this note is the following theorem:

Theorem 1.1. Let t0;M > 0 and let X1; X2; : : : ; Xn be independent zero-mean
real random variables. Assume also that for i D 1; 2; : : : ; n and for every t > t0
there is

EXi1Xi
t � EjXi j1Xi��Mt : (1)

Then for every ı > 0 we have

P.X1 C : : :CXn � ı/ � ".ı; t0;M /;

where " D ".ı; t0;M / is strictly positive and does not depend on the number n and
distribution of the random variables X1; X2; : : : ; Xn.

The proof yields ".ı; t0;M / such that lim infı!0C
".ı; t0;M /=ı > 0 and it is

easy to see that even for n D 1 one cannot in general expect better asymptotics with
respect to ı. Theorem 1.1 is an extension of the following result of Uriel Feige.
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Theorem 1.2 (Feige [1]). For every ı > 0 there exists some " D ".ı/ > 0 such that
for any positive integer n and any sequence of independent non-negative random
variables Y1; Y2; : : : ; Yn with EYi � 1 for i D 1; 2; : : : ; n there is

P.S � ES C ı/ � ".ı/;

where S D Y1 C Y2 C : : :C Yn.

Indeed, by setting Xi D Yi � EYi one immediately reduces Theorem 1.2 to
a special case of Theorem 1.1 with M D t0 D 1, the inequality (1) being then
trivially satisfied since its right hand side is equal to zero.

Actually, the proof given in [1] yields ".ı/ D ı
1Cı for ı close enough to zero, and

this bound cannot be improved as indicated by an example of nD 1 and P.Y1 D 0/ D
1 � P.Y1 D 1 C ı/ D .ı C �/=.1C ı/ with � ! 0C. Neither the present note nor
the recent paper by He et al. [3] recovers this optimal estimate for small values of ı.
However, it seems that both of them offer some better understanding of probabilistic
phenomena related to Feige’s inequality than the (elementary but very complicated)
proof contained in [1]. While He et al. work hard to obtain as good as possible value
of ".1/ in Theorem 1.2, managing to improve it from Feige’s 1=13 to 1=8, we will
not care much about constants, trying to keep the proof as simple and transparent as
possible.

It should be explained here that, at the time the results of this note were proved,
the present author was not aware of [3]. Nevertheless, as must be obvious to a careful
reader, methods used in both papers are quite similar.

2 Proof of the Main Theorem

2.1 Reduction to Two-Point Distributions

We will start by showing that it suffices to prove Theorem 1.1 under additional
assumption that each ofXi ’s takes on exactly two values—a similar initial reduction
occured already in [1]. The proof given there relied on an approximation argument
which, if extended to our setting, would have to become quite technical and
complicated since the inequality (1) is less “stable” under approximation than
assumptions of the Feige theorem. Hence we present a different approach, closer
to functional analysis (extreme point theory) or stochastic ordering theory while
still quite explicit and elementary.

Given M; t0 > 0 we will say that a real random variable X is .M; t0/-controlled
(meaning the control of its lower tail by its upper tail) if it is zero-mean and for all
t > t0 we have

EX1X
t � EjX j1X��Mt :
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We will say that a probability measure � on R is .M; t0/-controlled if a random
variable with distribution� is .M; t0/-controlled. Assume that an .M; t0/-controlled
X is non-trivial, i.e. q D P.X ¤ 0/ > 0. It is a well known fact that there exists a
non-decreasing right-continuous function f W .0; 1/ ! R with the same distribution
as X , i.e. P.X 2 A/ D 
.f �1.A// for every Borel A � R, where 
 denotes the
Lebesgue measure on .0; 1/. Let ˛ D supf �1..�1; 0// and ˇ D inff �1..0;1//.
Obviously, 0 < ˛ � ˇ < 1. Set 	 D EjX j

2q
. Let us consider two continuous functions,

a W .0; q/ ! .0; ˛� and b W .0; q/ ! Œˇ; 1/, first of them increasing and the second
one decreasing, defined by

�
Z a.x/

0

f .s/ ds D
Z 1

b.x/

f .s/ ds D 	x

for x 2 .0; q/. Furthermore, define a weight function w on .0; 1/ by

w.x/ D 	

f .b.x//
� 	

f .a.x//

for x 2 .0; q/ and w.x/ D 1 for x 2 Œq; 1/. Note that f .a.x// is negative, so
w � 0 on .0; 1/. Let us define a family of probabilistic measures .�x/x2.0;1/ by
setting �x D ı0 for x 2 Œq; 1/ and

�x D f .b.x//ıf .a.x// � f .a.x//ıf .b.x//

f .b.x// � f .a.x//

for x 2 .0; q/. Since both a and b are locally Lipschitz, and there is
a0.x/ D �	=f .a.x// and b0.x/ D �	=f .b.x// for all except countably many
points x 2 .0; q/, it is easy to check that for any Borel A � R we have

Z q

0

w.x/�x.A/ dx D �	
Z q

0

1A.f .a.x///

f .a.x//
dx C 	

Z q

0

1A.f .b.x///

f .b.x//
dx

D
Z q

0

1f �1.A/.a.x//a
0.x/ dx �

Z q

0

1f �1.A/.b.x//b
0.x/ dx

D
Z ˛

0

1f �1.A/.y/ dy C
Z 1

ˇ

1f �1.A/.y/ dy D 
.f �1.A n f0g//

D P.X 2 A n f0g/:

The above reasoning works for all Borel sets A; however the readers who feel
uncertain about technicalities of the change of variables may find it useful to verify
the equality for A being open intervals (which is simple) and then use the standard
�- and 
-systems argument. We have proved that
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P.X 2 A/ D
Z 1

0

w.x/�x.A/ dx

for every Borel set A � R. For A D R we get
R 1
0

w.x/ dx D 1.
Now notice that all the measures �x are .M; t0/-controlled. Indeed, they are

obviously zero-mean. Let t > t0. We are to check that
R
.�1;�Mt�

jsj d�x.s/ �R
Œt;1/ s d�

x.s/. If f .a.x// > �Mt then our assertion is trivial, whereas for
f .a.x// � �Mt we need only to prove that f .b.x// � t :

Z 1

b.x/

f .s/ ds D
Z a.x/

0

jf .s/j ds �
Z
f �1..1;�Mt�/

jf .s/j ds

D EjX j1X��Mt � EX1X
t D
Z
f �1.Œt;1//

f .s/ ds;

so that b.x/ � inff �1.Œt;1//—recall that f is strictly positive on .ˇ; 1/. Thus
f .b.x// � t (here we use the right-continuity of f ) and we are done.

Using the above procedure we may express distributions of the random variables
X1; X2; : : : ; Xn from Theorem 1.1 as integrals

R 1
0 wi .x/�xi dx (i D 1; 2; : : : ; n,

respectively). Now it is easy to prove that

P..X1;X2; : : : ; Xn/ 2 A/ D
Z
.0;1/n

� nY
iD1

wi .xi /
	
.�

x1
1 ˝ �

x2
2 ˝ : : :˝ �xnn /.A/ dx

for every Borel set A � R
n. This follows by the Fubini theorem for product sets A

and then again by the standard �- and 
-systems argument extends to all Borel sets.
By considering

A D ft 2 R
n W

nX
iD1

ti � ıg

we see that it suffices to prove Theorem 1.1 for Xi ’s distributed according to the
measures �xii and then the assertion for original variables Xi immediately follows
from the fact that

R
.0;1/n

Qn
iD1 wi D Qn

iD1
R 1
0

wi D 1.
Thus we may and will henceforth assume that each of the .M; t0/-controlled

random variables Xi in Theorem 1.1 takes on exactly two values (strictly speaking,
the above reduction may have led to some of the random variables being identically
zero but then it is trivial to get rid of those):

P.Xi D zi / D pi ;P.Xi D yi / D 1 � pi ; yi < 0 < zi ; 0 < pi < 1; si D zi � yi :

Without loss of generality we may and will assume that the sequence of spreads
.si /

n
iD1 is non-increasing: s1 � s2 � : : : � sn > 0: Also, let snC1 D 0.
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2.2 Auxiliary Estimate

In the proof of the main theorem we will use the following auxiliary bound.

Proposition 2.1. For every C > 0 there exists �.C / > 0 such that for any positive
integer n, any K > 0, and any sequence of independent random variables Z1;
Z2; : : : ; Zn; satisfying EZi D 0 and �K � Zi � K a.s. for i D 1; 2; : : : ; n,
we have

P.Z1 CZ2 C : : :CZn � C �K/ � �.C /:

Moreover, lim infC!0C
N�.C /=C > 0, where N�.C / denotes the optimal (largest)

value of �.C / for which the above assertion holds true for given C > 0.

Since the above estimate is quite simple and standard we will postpone its proof
until next section. Obviously, it is enough to prove it in the case K D 1 and then
use the homogeneity to deduce the result for generalK > 0—the formulation above
was chosen only for its convenience of use.

Now we are in position to prove the main theorem (the main trick being quite
similar to the one in [3] although discovered independently).

2.3 Main Argument

Let k be the least index i such that p1s1 C : : : C pisi � siC1=2. So, p1s1 C : : : C
pksk � skC1=2 but p1s1C : : :Cpk�1sk�1 < sk=2 and hence p1C : : :Cpk�1 < 1=2
(recall that the spreads form a non-increasing sequence).

Let us consider two cases:

2.3.1 Case sk < .M C 1/t0

Then we have also skC1; : : : ; sn � .M C 1/t0; so that Xk;XkC1; : : : ; Xn are
independent mean-zero random variables with values in Œ�.M C 1/t0; .M C 1/t0�.
Now

P.X1 C : : :CXn � ı/ � P.X1 D y1; : : : ; Xk�1 D yk�1; Xk C : : :CXn � ı/ D

.1 � p1/ : : : .1 � pk�1/P.Xk C : : :CXn � ı/ �
�
1 � .p1 C : : :C pk�1/

	
�
� ı

.M C 1/t0

	
� 1

2
�
� ı

.M C 1/t0

	
:

We have used Proposition 2.1 for C D ı=..M C 1/t0/ and K D .M C 1/t0.
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2.3.2 Case sk � .M C 1/t0

Recall that pizi C .1 � pi /yi D EXi D 0, so that pisi D jyi j and pi D jyi j=.zi C
jyi j/ for i D 1; 2; : : : ; n.

Assume that pk > M=.M C 1/. Then

jykj D pksk >
M

M C 1
� .M C 1/t0 D Mt0:

Set t D jykj=M > t0. Since Xk is .M; t0/-controlled we have

.1 � pk/jykj D EjXkj1Xk��Mt � EXk1Xk
t D pkzk1zk
t :

Hence zk � t D jykj=M and thus pk D jykj=.zk C jykj/�M=.MC1/; contradicting
our assumption. We have proved that pk � M=.M C 1/. Now,

P.X1 C : : :CXn � ı/ � P.X1 C : : :CXn � 0/

� P.X1 D y1; : : : ; Xk D yk;XkC1 C : : :CXn � jy1j C : : :C jykj/
D .1�p1/ : : : .1�pk�1/.1�pk/P.XkC1C: : :CXn � p1s1C: : :Cpksk/

�
�
1 � .p1 C : : :C pk�1/

	
� 1

M C 1
� P.XkC1 C : : :CXn � skC1=2/

� 1

2
� 1

M C 1
� �.1=2/ D �.1=2/

2.M C 1/
;

where we have used Proposition 2.1 for C D 1=2 and K D skC1 (if k < n).
Putting together both cases we finish the proof of Theorem 1.1 with

".ı; t0;M / D min
� �.1=2/

2.M C 1/
; �
� ı

.M C 1/t0

	
=2
	
:

The second assertion of Theorem 1.1 follows from the second assertion of
Proposition 2.1.

3 Proof of Proposition 2.1

With a slight abuse of notation, for C > 0 let us denote by N�.C / the largest real
number � for which the inequality

P.Z1 CZ2 C : : :CZn � C �K/ � �
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holds true under assumptions of Proposition 2.1 (note that a priori this N�.C / may
be equal to zero). Obviously, N�.C / is non-decreasing and by considering symmetric
˙1 random variables and n ! 1 we see that N�.C / � 1=2 for all C > 0. First we
will prove that N�.C / > 0 for some C > 0 and then by using the standard “amplifier
trick” we will infer that N�.C / > 0 for all C > 0 and that lim infC!0C

N�.C /=C > 0.
Then we will use another approach to prove that in fact N�.C / D 1=2 for C large
enough.

3.1 Fourth Moment Method

Let S D Z1 CZ2 C : : :CZn and �2 D ES2. Note that

ES4 D
nX
iD1

EZ4
i C6

X
1�i<j�n

EZ2
i �EZ2

j � K2

nX
iD1

EZ2
i C3.

nX
iD1

EZ2
i /
2 D K2�2C3�4:

By Hölder’s inequality ES2 D E.jS j2=3 � jS j4=3/ � .EjS j/2=3.ES4/1=3; so

.EjS j/2=ES2 � .ES2/2=ES4 � �4.K2�2 C 3�4/�1 D 1=.3CK2��2/:

Now we use the classical Paley-Zygmund type bound: ES D 0, so that

EjS j=2 D EjS j1S<0 � .ES2/1=2 �
�
P.S < 0/

	1=2

and therefore

P.S � C �K/ � P.S < 0/ � .EjS j/2
4ES2

� 1

4.3CK2��2/
:

Thus P.S � C � K/ � 1=16 if � � K , whereas for � � K by Chebyshev’s
inequality we get

P.S > C �K/ � �2

C 2K2
� C�2;

in particular P.S � 2K/ � 3=4 > 1=16. We have proved N�.2/ � 1=16 > 0: The
amplifier trick will do the rest.

3.2 Amplifier Trick

Let m be a natural number. Let
�
Z
.j /
i

	jD1;:::;m
iD1;:::;n be independent random variables

such that Z.j /
i has the same distribution as Zi for i � n and j � m. Furthermore,
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let Sj D Z
.j /
1 C Z

.j /
2 C : : : C Z

.j /
n , so that S1, S2; : : : ; Sm are independent copies

of S . Then
P.S1 C S2 C : : :C Sm � C �K/ � N�.C /

since S1 C S2 C : : :C Sm is a sum of mn independent zero-mean random variables
with values in Œ�K;K� a.s. On the other hand, we have

P.S1 C S2 C : : :C Sm � C �K/ �
mX
jD1

P

�
Sj � C

m
K
	

D m � P
�
S � C

m
K
	
:

Thus we have proved that for Zi ’s satisfying assumptions of Proposition 2.1 there
is P.S � C

m
K/ � N�.C /=m; so that N�.C=m/ � N�.C /=m for all integer m � 1.

Hence N�.C / > 0 for all C > 0, and lim infC!0C

N�.C /=C > 0. The proof of
Proposition 2.1 is complete.

Remark 3.1. The amplifier trick may be easily modified to yield a proof that N�
is subadditive on .0;1/. Also, note that the amplifier trick may be as well, after
minor modifications, applied directly to Theorem 1.1 (instead of Proposition 2.1)
thus allowing its simple reduction to the case ı D 1.

Remark 3.2. It is easy to see that the above proof of Proposition 2.1 remains valid
(up to an obvious modification of the amplifier trick) if we replace in Proposition 2.1
the assumption jZi j � K a.s. by a much weaker condition EZ4

i � K2
EZ2

i < 1
(for i D 1; 2; : : : ; n).

3.3 Berry-Esseen Inequality Approach

Let Z1; Z2; : : : ; Zn be as in Proposition 2.1 and let S D Z1 C Z2 C : : : C Zn,

and � D
�Pn

iD1 EZ2
i

	1=2
. First let us observe that by Chebyshev’s inequality

P.S � CK/ � 1=2 if � � CK=
p
2. Now let us assume � > CK=

p
2.

The classical Berry-Esseen inequality (in the form which can be found for
example in [5]) states that there exists a universal positive constant B such that for
any integer n and independent zero-mean random variables �1; �2; : : : ; �n satisfyingPn

iD1 E�2i D 1, there is

sup
s2R

jP.
nX
iD1

�i � s/� ˚.s/j � B �
nX
iD1

Ej�i j3;

where ˚ denotes the standard normal distribution function. Using the above
quantitative version of the CLT for random variables �i D Zi=� we arrive at
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P.S � CK/ D P.

nX
iD1

�i � CK=�/ � ˚.CK=�/ � B��3
nX
iD1

EjZi j3

� ˚.CK=�/� B��3
nX
iD1

KEZ2
i

D 1=2C .2�/�1=2
Z CK=�

0

e�t 2=2 dt � BK=�:

Recall that � > CK=
p
2, so that e�t 2=2 � 1=e on Œ0; CK=�� and we have

.2�/�1=2
Z CK=�

0

e�t 2=2 dt � .2�/�1=2e�1CK=� � BK=�

whenever C � e
p
2�B . Thus N�.C / � 1=2 for C � e

p
2�B . A similar reasoning

may be found in [4]—we have reproduced it here for reader’s convenience (the
reader may also like to check [2] for interesting related considerations).

Remark 3.3. As can be easily seen, the above argument remains valid if we replace
in Proposition 2.1 the assumption jZi j �K a.s. by a much weaker condition
EjZi j3 � KEZ2

i < 1 (for i D 1; 2; : : : ; n). Note that the Schwarz inequality
implies EZ4=EZ2 � .EjZj3=EZ2/2 for any square-integrable random variable Z,
therefore this approach yields a proof of Proposition 2.1 under assumptions slightly
weaker than those needed for the fourth moment method to work.
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Sabatier in Toulouse in May 2010. It is a pleasure to acknowledge their kind hospitality. Research
partially supported by Polish MNiSzW Grant N N201 397437.

References

1. U. Feige, On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM J. Comput. 35, 964–984 (2006)

2. M.G. Hahn, M.J. Klass, Uniform local probability approximations: Improvements on Berry-
Esseen. Ann. Probab. 23, 446–463 (1995)

3. S. He, J. Zhang, S. Zhang, Bounding probability of small deviation: A fourth moment approach.
Math. Oper. Res. 35, 208–232 (2010)

4. K. Oleszkiewicz, Concentration of capital – the product form of the law of large numbers in L1.
Statist. Probab. Lett. 55, 159–162 (2001)

5. V.V. Petrov, in Sums of Independent Random Variables. Ergeb. Math. Grenzgeb., vol. 82
(Springer, Berlin, 1975)



On the Mean Width of Log-Concave Functions

Liran Rotem

Abstract In this work we present a new, natural, definition for the mean width of
log-concave functions. We show that the new definition coincides with a previous
one by B. Klartag and V. Milman, and deduce some properties of the mean width,
including an Urysohn type inequality. Finally, we prove a functional version of the
finite volume ratio estimate and the low-M � estimate.

1 Introduction and Definitions

This paper is another step in the “geometrization of probability” plan, a term coined
by V. Milman. The main idea is to extend notions and results about convex bodies
into the realm of log-concave functions. Such extensions serve two purposes: Firstly,
the new functional results can be interesting on their own right. Secondly, and
perhaps more importantly, the techniques developed can be used to prove new
results about convex bodies. For a survey of results in this area see [11].

A function f W Rn ! Œ0;1/ is called log-concave if it is of the form f D e�� ,
where � W R

n ! .�1;1� is a convex function. For us, the definition will also
include the technical assumptions that f is upper semi-continuous and f is not
identically 0. Whenever we discuss f and � simultaneously, we will always assume
they satisfy the relation f D e�� . Similar relation will be assumed for ef and Q�, fk
and �k , etc. The class of log-concave functions naturally extends the class of convex
bodies: if ; ¤ K � R

n is a closed, convex set, then its characteristic function 1K is
a log-concave function.
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On the class of convex bodies there are two important operations. If K and T
are convex bodies then their Minkowski sum is K C T D fkCt W k 2 K; t 2 T g.
If in addition 
 > 0, then the 
-homothety of K is 
 � K D f
k W k 2 Kg. These
operations extend to log-concave functions: If f and g are log-concave we define
their Asplund product (or sup-convolution), to be

.f ? g/ .x/ D sup
x1Cx2Dx

f .x1/g.x2/:

If in addition 
 > 0 we define the 
-homothety of f to be

.
 � f / .x/ D f
�x



	

:

It is easy to see that these operations extend the classical operations, in the sense that
1K ? 1T D 1KCT and 
 � 1K D 1
K for every convex bodiesK;T and every 
 > 0.
It is also useful to notice that if f is log-concave and ˛; ˇ > 0 then .˛ �f /?.ˇ �f / D
.˛ C ˇ/ � f . In particular, f ? f D 2 � f .

The main goal of this paper is to define the notion of mean width for log-concave
functions. For convex bodies, this notion requires we fix an Euclidean structure
on R

n. Once we fix such a structure we define the support function of a body K
to be hK.x/ D supy2K hx; yi. The function hK W Rn ! .�1;1� is convex and
1-homogeneous. The mean width of K is defined to be

M �.K/ D
Z
Sn�1

hK.�/d�.�/; (1)

where � is the normalized Haar measure on the unit sphere Sn�1 D
fx 2 R

n W jxj D 1g.
The correspondence between convex bodies and support functions is linear, in

the sense that h
KCT D 
hK C hT for every convex bodies K and T and every

 > 0. It immediately follows that the mean width is linear as well. It is also easy
to check that M � is translation and rotation invariant, so M �.uK/ D M �.K/ for
every isometry u W Rn ! R

n.
We will also need the equivalent definition of mean width as a quermassintegrals:

Let D � R
n denote the euclidean ball. If K � R

n is any convex body then the
n-dimensional volume jK C tDj is a polynomial in t of degree n, known as the
Steiner polynomial. More explicitly, one can write

jK C tDj D
nX
iD0

 
n

i

!
Vn�i .K/t i ;

and the coefficients Vi.K/ are known as the quermassintegrals of K . One can also
give explicit definitions for the Vi ’s, and it follows that V1.K/ D jDj � M �.K/
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(more information and proofs can be found for example in [9] or [14] ). From this
it’s not hard to prove the equivalent definition

M �.K/ D 1

n jDj � lim
�!0C

jD C �Kj � jDj
�

: (2)

This last definition is less geometric in nature, but it suits some purposes
extremely well. For example, using the Brunn–Minkowski theorem (again, check
[9] or [14]), one can easily deduce the Urysohn inequality:

M �.K/ �
� jKj

jDj
� 1

n

for every convex bodyK .
In [6], Klartag and Milman give a definition for the mean width of a log-concave

function, based on definition (2). The role of the volume is played by Lebesgue
integral (which makes sense because

R
1Kdx D jKj), and the euclidean ball D is

replaced by a Gaussian G.x/ D e� jxj

2

2 . The result is the following definition:

Definition 1.1. The mean width of a log-concave function f is

fM �.f / D cn lim
�!0C

R
G ? .� � f / � R

G

�
:

Here cn D 2

n.2�/
n
2

is a normalization constant, chosen to have fM �.G/ D 1.

Some properties of fM � are not hard to prove. For example, it is easy to see thatfM � is rotation and translation invariant. It is also not hard to prove a functional
Urysohn inequality:

Proposition. If f is log-concave and
R
f D R

G, then fM �.f / � fM �.G/ D 1.

The proof that appears in [6] is similar to the standard proof for convex bodies.
Instead of the Brunn–Minkowski theorem one uses its functional version, known
as the Prékopa–Leindler inequality (see, e.g. [13]). For other applications, however,
this definition is rather cumbersome to work with. For example, by looking at the
definition it is not at all obvious that fM � is a linear functional. It is proven in [6]
that indeed fM � ..
 � f / ? g/ D 
fM �.f /CfM �.g/;

but only for sufficiently regular log-concave functions f and g. These difficulties,
and the fact that the definition has no clear geometric intuition, made V. Milman
raise the questions of whether Definition 1.1 is the “right” definition for mean width
of log-concave functions.

We would like to give an alternative definition for mean width, based on the
original definition (1). To do so, we first need to explain what is the support function
of a log-concave function, following a series of papers by S. Artstein-Avidan and
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V. Milman. To state their result, assume that T maps every (upper semi-continuous)
log-concave function to its support function which is lower semi-continuous and
convex. It is natural to assume that T is a bijection, so a log-concave function can
be completely recovered from its support function. It is equally natural to assume
that T is order preserving, that is Tf � T g if and only if f � g—this is definitely
the case for the standard support function defined on convex bodies. In [2] it is
shown that such a T must be of the form

.Tf / .x/ D C1 � ŒL.� logf /� .Bx C v0/C hx; v1i C C0

for constants C0,C1 2 R, vectors v0; v1 2 R
n and a transformation B 2 GLn. Here

L is the classical Legendre transform, defined by

.L�/ .x/ D sup
y2Rn

.hx; yi � �.y// :

We of course also want T to extend the standard support function. This
significantly reduces the number of choices and we get that .Tf / .x/ D
1
C
ŒL.� logf /� .Cx/ for some C > 0. The exact choice of C is not very important,

and we will choose the convenient C D 1. In other words, we define the support
function hf of a log-concave function f to be L.� logf /. Notice that the support
function interacts well with the operations we defined on log-concave functions: it
is easy to check that h.
�f /?g D 
hf C hg for every log-concave functions f and
g and every 
 > 0 (in fact this property also completely characterizes the support
function—see [1]).

We would like to define the mean width of a log-concave function as the integral
of its support function with respect to some measure on R

n. In (1) the measure being
used is the Haar measure on Sn�1, but since hK is always 1-homogeneous this is
completely arbitrary: for every rotationally invariant probability measure � on R

n

one can find a constant C� > 0 such that

M �.K/ D C�

Z
Rn

hK.x/d�.x/

for every convex bodyK � R
n. We choose to work with Gaussians:

Definition 1.2. The mean width of log-concave function f is

M �.f / D 2

n

Z
Rn

hf .x/d�n.x/;

where �n is the standard Gaussian probability measure on R
n (d�n D .2�/�

n
2

e� jxj

2

2 dx).

The main result of Sect. 2 is the fact that the two definitions given above are, in
fact, the same:
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Theorem 1.3. M �.f / D fM �.f / for every log-concave function f .

This theorem gives strong indication that our definition for mean width is the
“right” one.

In Sect. 3 we present some basic properties of the functional mean width. The
highlight of this section is a new proof of the functional Urysohn inequality, based
on Definition 1.2. Since this definition involves no limit procedure, it is also possible
to characterize the equality case:

Theorem 1.4. For any log-concave f

M �.f / � 2 log

�R
fR
G

� 1
n

C 1;

with equality if and only if
R
f D 1 or f .x/ D Ce� jx�aj

2

2 for some C > 0 and
a 2 R

n.

Finally, in Sect. 4, we prove a functional version of the classical low-M � estimate
(see, e.g. [10]). All of the necessary background information will be presented there,
so for now we settle on presenting the main result:

Theorem 1.5. For every " < M , every large enough n 2 N, every f W R
n !

Œ0;1/ such that f .0/ D 1 and M �.f / � 1 and every 0 < 
 < 1 one can find a
subspace E ,! R

n such that dimE � 
n with the following property: for every
x 2 E such that e�"n � .f ? G/.x/ � e�Mn one have

f .x/ �
�
C.";M/

1
1�
 �G

	
.x/:

In fact, one can take

C.";M/ D C max

�
1

"
;M

�
:

Acknowledgements I would like to thank my advisor, Vitali Milman, for raising most of the
questions in this paper, and helping me tremendously in finding the answers.

2 Equivalence of the Definitions

Our first goal is to prove that M �.f / D fM �.f / for every log-concave function f .
We’ll start by proving it under some technical assumptions:

Lemma 2.1. Let f W R
n ! Œ0;1/ be a compactly supported, bounded, log-

concave function, and assume that f .0/ > 0. Then M �.f / D fM �.f /.
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Proof. We’ll begin by noticing that

ŒG ? ." � f /� .x/ D sup
y

G.x � y/ � f
�y
"

	" D sup
y

exp

 
�jx � yj2

2
� ��

�y
�

	!

D sup
y

exp

 
�jxj2
2

C hx; yi � jyj2
2

� ��
�y
�

	!

D e� jxj

2

2 exp

 
sup

z

 
hx; �zi � j�zj2

2
� ��.z/

!!

D e� jxj

2

2 C�H.x;�/;

where

H.x; �/ D sup
z

 
hx; zi � �.z/ � � jzj2

2

!
D L

 
�.x/C �

jxj2
2

!
:

Since the functions �.x/C � jxj2
2

converge pointwise to � as � ! 0, it follows that
H.x; �/ ! .L�/ .x/ for every x in the interior of A D fx W .L�/ .x/ < 1g (see
for example Lemma 3.2 (3) in [3]).

To find A, notice the following: since f is bounded there exists an M 2 R such
that �.x/ > �M for all x. Since f is compactly supported there exists an R > 0

such that �.x/ D 1 if jxj > R. It follows that for every x

.L�/ .x/ D sup
y

.hx; yi � �.y// D sup
jyj�R

.hx; yi � �.y//

� sup
jyj�R

.jxj jyj � �.y// � R jxj CM < 1:

Therefore A D R
n andH.x; �/ ! .L�/ .x/ for all x.

We wish to calculate

fM �.f / D cn lim
�!0C

R
e� jxj

2

2 C�H.x;�/dx � R
e� jxj

2

2 dx

�

D cn lim
�!0C

Z
e�H.x;�/ � 1

�
� e� jxj

2

2 dx;

and to do so we would like to justify the use of the dominated convergence theorem.
Notice that for every fixed t , the function exp.�t/�1

�
is increasing in �. By substituting

z D 0 we also see that for every � > 0
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.L�/ .x/ � H.x; �/ D sup
z

 
hx; zi � �.z/� �

jzj2
2

!
� ��.0/:

Therefore on the one hand we get that for every � > 0

e�H.x;�/ � 1
�

� e���.0/ � 1
�

� lim
�!0C

e���.0/ � 1

�
D ��.0/ > �1;

and on the other hand we get that for every 0 < � < 1

e�H.x;�/ � 1

�
� e�.L�/.x/ � 1

�
� e.L�/.x/ � 1 � eRjxjCM :

Since the functions ��.0/ and eRjxjCM are both integrable with respect to the
Gaussian measure the conditions of the dominated convergence theorem apply, so
we can write

fM �.f / D cn

Z
lim
�!0C

e�H.x;�/ � 1

�
� e� jxj

2

2 dx:

To finish the proof we calculate

lim
�!0C

e�H.x;�/ � 1

�
D lim

�!0C

e�H.x;�/ � 1

�H.x; �/
� lim
�!0C

H.x; �/

D lim
�!0C

e� � 1

�
� lim
�!0C

H.x; �/ D .L�/ .x/ D hf .x/:

Therefore

fM �.f / D cn

Z
hf .x/e

� jxj

2

2 dx D 2

n

Z
hf .x/d�n.x/ D M �.f /

like we wanted. ut
In order to prove Theorem 1.3 in its full generality, we first need to eliminate one

extreme case: usually we think of fM �.f / as the differentiation with respect to � ofR
G ? .� � f /. However, this is not always the case, since it is quite possible thatR
G ? .� � f / 6! R

G as � ! 0C (for example this happens for f .x/ D e�jxj). The
next lemma characterizes this case completely:

Lemma 2.2. The following are equivalent for a log-concave function f :

(i) .L�/ .x/ < 1 for every x.
(ii)

R
G ? Œ� � f � ! R

G as � ! 0C.

Proof. First, notice that both conditions are translation invariant: if we define Qf D
f .x � a/ then it’s easy to check that
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L Q�� .x/ D .L�/ .x/C hx; ai (3)

and
Z �

G ?
h
� � Qf

i	
.x/dx D

Z
.G ? Œ� � f �/ .x � a�/dx D

Z
.G ? Œ� � f �/ .x/dx:

(4)
Therefore, since we assumed f 6	 0, we can translate f and assume without loss
of generality that f .0/ > 0 (or �.0/ < 1).

Assume first that condition (i) holds. In the proof of Lemma 2.1 we saw that

ŒG ? ." � f /� .x/ D e� jxj

2

2 C�H.x;�/;

and that if .L�/ .x/ < 1 for every x then H.x; �/ ! .L�/ .x/ as � ! 0C: It
follows that

lim
�!0C

ŒG ? ." � f /� .x/ D e� jxj

2

2 C0�.L�/.x/ D G.x/

for every x. Since the functions G ? ." � f / are log-concave, we get that
R
G ?

Œ� � f � ! R
G like we wanted (See Lemma 3.2 (1) in [3]).

Now assume that (i) doesn’t hold. Since the set A D fx W .L�/ .x/ < 1g is
convex, we must have A � H for some half-space

H D fx W hx; �i � ag

(here � 2 Sn�1 and a > 0). It follows that for every t > 0

�.t�/ D .LL�/ .t�/ D sup
y2H

Œhy; t�i � .L�/ .y/� :

But for every y we know that

.L�/ .y/ D sup
z
.hy; zi � �.z// � ��.0/;

so
�.t�/ � at C b

where b D �.0/. Therefore

H.x; �/ � sup
t>0

 
hx; t�i � �.t�/� �

jt� j2
2

!
� sup

t>0

�
t hx; �i � at � b � �t2

2

�

D .hx; �i � a/2
2�

� b;
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and then
Z
ŒG ? ." � f /� .x/dx � e�b�

Z
e� jxj

2

2 C .
hx;�i�a/2

2 dx !
Z
e� jxj

2

2 C .
hx;�i�a/2

2 dx

>

Z
G:

It follows that we can’t have convergence in (ii) and we are done. ut
The last ingredient we need is a monotone convergence result which may be

interesting on its own right:

Proposition 2.3. Let f be a log-concave function such that .L�/ .x/ < 1 for
all x. Assume that .fk/ is a sequence of log-concave functions such that for every x

f1.x/ � f2.x/ � f3.x/ � � � �

and fk.x/ ! f .x/: Then:

(i) M �.fk/ ! M �.f /.
(ii) fM �.fk/ ! fM �.f /.

Proof. (i) By our assumption �k.x/ ! �.x/ pointwise. Since we assumed that
.L�/.x/ < 1 it follows that L�k converges pointwise to L� (again, Lemma 3.2 (3)
in [3]). Now one can apply the monotone convergence theorem and get that

M �.fk/ D 2

n

Z
.L�k/ .x/d�n.x/ ! 2

n

Z
.L�/ .x/d�n.x/ D M �.f /;

like we wanted.
(ii) For � > 0 define

Fk.�/ D
Z
G ? Œ� � fk�

and

F.�/ D
Z
G ? Œ� � f � :

It was observed already in [6] that Fk and F are log-concave. By our assumption
on f and Lemma 2.2, Fk and F will be (right) continuous at � D 0 if we define
Fk.0/ D F.0/ D R

G. We would first like the show that Fk converges pointwise to
F . Because all of the functions involved are log-concave, it is enough to prove that
for a fixed � > 0 and x 2 R

n

.G ? Œ� � fk�/ .x/ ! .G ? Œ� � f �/ .x/

(Lemma 3.2 (1) in [3]). Since fk � f for all k it is obvious that
lim .G ? Œ� � fk�/ .x/ � .G ? Œ� � f �/ .x/. For the other direction, choose ı > 0.
There exists yı 2 R

n such that
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.G ? Œ� � f �/ .x/ � G.x � yı/f
�yı
�

	� C ı

D lim
k!1G.x � yı/fk

�yı
�

	� C ı � lim
k!1 .G ? Œ� � fk�/ .x/C ı:

Finally taking ı ! 0 we obtain the result.
We are interested in calculating fM �.f / D cnF

0.0/ (the derivative here is right-
derivative, but it won’t matter anywhere in the proof). Since F is log-concave, it
will be easier for us to compute .logF /0 .0/ D F 0.0/R

G
. Indeed, notice that

.logF /0 .0/ D sup
�>0

.logF / .�/� .logF / .0/

�
D sup

�>0

sup
k

.logFk/ .�/� .logFk/ .0/

�

D sup
k

sup
�>0

.logFk/ .�/� .logFk/ .0/

�
D sup

k

.logFk/
0 .0/

D sup
k

F 0
k.0/R
G
:

Since the sequence F 0
k.0/ is monotone increasing we get that

fM �.f / D cn

Z
G � .logF /0 .0/ D lim

k!1 cnF
0
k.0/ D lim

k!1
fM �.fk/

like we wanted. ut
Now that we have all of the ingredients, it is fairly straightforward to prove the

main result of this section:

Theorem 1.3. M �.f / D fM �.f / for every log-concave function f .

Proof. Let f W Rn ! Œ0;1/ be a log-concave function. By equations (3) and (4)
we see that both M � and fM � are translation invariant. Hence we can translate f
and assume without loss of generality that f .0/ > 0.

If there exists a point x0 such that .L�/ .x0/ D 1, then L� D 1 on an entire
half-space, so M �.f / D 1. By Lemma 2.2 we know that

R
G ? Œ� � f � 6! R

G,
and then fM �.f / D 1 as well and we get an equality.

If .L�/ .x/ < 1 for all x we define a sequence of functions ffkg1
kD1 as

fk D min.f � 1jxj�k; k/:

Every fk is log-concave, compactly supported, bounded and satisfies

fk.0/ D min.f .0/; k/ > 0:
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Therefore we can apply Lemma 2.1 and conclude that M �.fk/ D fM �.fk/.
Since the sequence ffkg is monotone and converges pointwise to f we can apply
proposition 2.3 and get that

M �.f / D lim
k!1M �.fk/ D lim

k!1
fM �.fk/ D fM �.f /;

so we are done. ut

3 Properties of the Mean Width

We start by listing some basic properties of the mean width, all of which are almost
immediate from the definition:

Proposition 3.1. (i) M �.f / > �1 for every log-concave function f .
(ii) If there exists a point x0 2 R

n such that f .x0/ � 1, then M �.f / � 0.
(iii) M � is linear: for every log-concave functions f; g and every 
 > 0

M � ..
 � f / ? g/ D 
M �.f /CM �.g/:

(iv) M � in rotation and translation invariant.
(v) If f is a log-concave function and a > 0 define fa.x/ D a � f .x/. Then

M �.fa/ D M �.f /C 2

n
log a

Proof. For (i), remember we explicitly assumed that f 6	 0, so there exists a point
x0 2 R

n such that f .x0/ > 0. Hence

hf .x/ D sup
y

.hx; yi � �.y// � hx; x0i � �.x0/;

and then

M �.f / D 2

n

Z
hf .x/d�n.x/ � 2

n

�Z
hx; x0id�n.x/ � �.x0/

�
D �2

n
�.x0/

> �1

like we wanted. For (ii) we know that �.x0/ < 0, and we simply repeat the
argument.

(iii) follows from the easily verified fact that the support function has the same
property. In other words, if f; g are log-concave and 
 > 0 then

h.
�f /?g.x/ D 
hf .x/C hg.x/

for every x. Integrating over x we get the result.
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For (iv), we already saw in the proof of Theorem 1.3 that M � is translation
invariant. For rotation invariance, notice that if u is any linear operator then

hf ıu.x/ D sup
y

Œhx; yi � �.u .y//� D sup
z

�˝
x; u�1z

˛ � �.z/
� D

D sup
z

hD

u�1�� x; zE � �.z/

i
D hf

�

u�1�� x	 :

In particular if u is orthogonal then hf ıu.x/ D hf .ux/, and the result follows since
�n is rotation invariant.

Finally for (v), notice that �a D � � log a. Therefore

hfa D L .� � log a/ D L� C log a D hf C loga;

and the result follows. ut
Remark. A comment in [6] states that M �.f / is always positive. This is not the
case: from (v) we see that if f is any log-concave function with M �.f / < 1
then M �.fa/ ! �1 as a ! 0C. (ii) gives one condition that guarantees that
M �.f / � 0, and another condition can be deduced from Theorem 1.4.

We now turn our focus to the proof of Theorem 1.4, the functional Urysohn
inequality. The main ingredient of the proof is the functional Santaló inequality,
proven in [4] for the even case and in [3] for the general case. The result can be
stated as follows:

Proposition. Let � W Rn ! .�1;1� be any function such that 0 <
R
e�� < 1.

Then, there exists x0 2 R
n such that for Q�.x/ D �.x � x0/ one has

Z
e� Q� �

Z
e�L Q� � .2�/n

We will also need the following corollary of Jensen’s inequality, sometimes
known as Shannon’s inequality:

Proposition. For measurable functions p; q W Rn ! R, assume the following:

(i) p.x/ > 0 for all x 2 R
n and

R
Rn
p.x/dx D 1

(ii) q.x/ � 0 for all x 2 R
n

Then Z
p log

1

p
�
Z
p log

1

q
C log

Z
q;

with equality if and only if q.x/ D ˛ � p.x/ almost everywhere.

For a proof of this result see, e.g. Theorem B.1 in [7] (the result is stated for
n D 1, but the proof is completely general). Using these propositions we can now
prove:
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Theorem 1.4. For any log-concave function f

M �.f / � 2 log

�R
fR
G

� 1
n

C 1;

with equality if and only if
R
f D 1 or f .x/ D Ce� jx�aj

2

2 for some C > 0 and
a 2 R

n.

Proof. If
R
f D 0 there is nothing to prove. Assume first that

R
f < 1. We start

by applying Shannon’s inequality with p D d�n
dx

D .2�/�
n
2 e� jxj

2

2 and q D e�hf :

M �.f / D 2

n

Z
hf .x/d�n.x/ D 2

n

Z
p log

1

q
� 2

n

�Z
p log

1

p
� log

Z
q

�

D 2

n

"Z  
jxj2
2

C n

2
log.2�/

!
d�n.x/ � log

�Z
e�hf

�#

D
Z
x21d�n.x/C log.2�/� 2

n
log

�Z
e�hf

�

D 1C log.2�/ � 2

n
log

�Z
e�hf

�
:

Now we wish to use the functional Santaló inequality. Since the inequality we
need to prove is translation invariant, we can translate f and assume without loss of
generality that x0 D 0. Hence we get

Z
f �

Z
e�hf � .2�/n :

Substituting back it follows that

M �.f / � 1C log.2�/ � 2

n
log

�
.2�/nR
f

�

D 1C 2

n
log

�R
fR
G

�
;

which is what we wanted to prove.
From the proof we also see that equality in Urysohn inequality implies equality

in Shannon’s inequality. Hence for equality we must have q.x/ D ˛ �p.x/ for some

constant ˛, or hf D jxj2
2

C a for some constant a. This implies that

� D L .L�/ D L
 

jxj2
2

C a

!
D jxj2

2
� a;
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so f .x/ D Ce� jxj

2

2 for C D e�a. Since we allowed translations of f in the proof,

the general equality case is f .x/ D Ce� jx�aj

2

2 for some C > 0 and a 2 R
n.

Finally, we need to handle the case that
R
f D 1. Like in Theorem 1.3, we

choose a sequence of compactly supported, bounded functions fk such that fk " f .
It follows that

M �.f / � M �.fk/ � 2 log

�R
fkR
G

� 1
n

C 1
k!1�! 1;

so M �.f / D 1 and we are done. ut

4 Low-M� Estimate

Remember the following important result, known as the low-M � estimate:

Theorem. There exists a function f W .0; 1/ ! R
C such that for every convex

body K � R
n and every 
 2 .0; 1/ one can find a subspace E ,! R

n such that
dimE � 
n and

K \ E � f .
/ �M �.K/ �DE

This result was first proven by Milman in [8] with f .
/ D C
1

1�
 for some
universal constant C . Many other proofs were later found, most of which give
sharper bounds on f .
/ as 
 ! 1� (an incomplete list includes [10, 12], and [5]).

The original proof of the low-M � estimate passes through another result, known
as the finite volume ratio estimate. Remember that if K is a convex body, then the
volume ratio of K is

V.K/ D inf

� jKj
jE j

� 1
n

;

where the infimum is over all ellipsoids E such that E � K . In order to state the
finite volume ratio estimate it is convenient to assume without loss of generality that
this maximizing ellipsoid is the euclidean ball D. The finite volume ratio estimate
[15, 16] then reads:

Theorem. Assume D � K and
� jKj

jDj
	 1
n � A. Then for every 
 2 .0; 1/ one can

find a subspace E ,! R
n such that dimE � 
n and

K \ E � .C � A/ 1
1�
 � .D \ E/

for some universal constant C . In fact, a random subspace will have the desired
property with probability � 1 � 2�n.
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We would like to state and prove functional versions of these results. For
simplicity, we will only define the functional volume ratio of a log-concave function
f when f � G:

Definition 4.1. Let f be a log-concave function and assume that f .x/ � G.x/ for
every x. We define the relative volume ratio of f with respect to G as

V.f / D
�R

fR
G

� 1
n

D 1p
2�

�Z
f

� 1
n

:

Theorem 4.2. For every � < 1 < M , every large enough n 2 N, every log-concave
f W Rn ! Œ0;1/ such that f � G and every 0 < 
 < 1 one can find a subspace
E ,! R

n such that dimE � 
n with the following property: for every x 2 E such
that e��n � f .x/ � e�Mn one have

f .x/ �
�
ŒC.�;M/ � V.f /� 2

1�
 �G
	
.x/:

Here C.�;M/ is a constant depending only on � andM , and in fact we can take

C.";M/2 D C max

�
1

"
;M

�
:

Proof. For any ˇ > 0 define

Kf;ˇ D ˚
x 2 R

nj f .x/ � e�ˇn� :
We will bound the volume ratio of Kf;ˇ in terms of V.f /. Because f � G we get

Kf;ˇ � KG;ˇ D
�
x 2 R

nj e� jxj

2

2 � e�ˇn
�

D p
2ˇnD:

We will prove a simple upper bound for the volume of Kf;ˇ . Since f is log-
concave one get that for every ˇ1 � ˇ2

Kf;ˇ1 � Kf;ˇ2 � ˇ2

ˇ1
Kf;ˇ1:

In particular, we can conclude that for every ˇ > 0

Kf;ˇ � max.1; ˇ/ �Kf;1:

However, a simple calculation tells us that

Z
f �

Z
Kf;1

f � ˇ̌
Kf;1

ˇ̌ � e�n;
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so ˇ̌
Kf;ˇ

ˇ̌ � max.1; ˇ/n
ˇ̌
Kf;1

ˇ̌ � Œe � max.1; ˇ/�n
Z
f:

Putting everything together we can bound the volume ratio for Kf;ˇ with respect
to the ball

p
2ˇnD:

V.Kf;ˇ/ D
0
@

ˇ̌
Kf;ˇ

ˇ̌
ˇ̌
ˇp2ˇnD

ˇ̌
ˇ

1
A

1
n

� e � max.1; ˇ/p
2ˇn

�
�R

fR
G

� 1
n

�
�R

G

jDj
� 1

n

� C max.
1p
ˇ
;
p
ˇ/ � V.f /:

Now we pick a one dimensional net � D ˇ0 < ˇ1 < : : : < ˇN�1 < ˇN D M

such that ˇiC1

ˇi
� 2 . Using the standard finite volume ratio theorem for convex

bodies we find a subspace E � R
n such that

Kf;ˇi \E �
"
C max.

1p
ˇi
;
p
ˇi / � V.f /

# 1
1�
 p

2ˇinD

�
�
C max.

1p
�
;
p
M/ � V.f /

� 1
1�
 p

2ˇinD:

for every 0 � i � N (This will be possible for large enough n. In fact, it’s enough
to take n � log log M

�
).

For every x 2 E such that e��n � f .x/ � e�Mn pick the smallest i such that
e�ˇi n � f .x/. Then x 2 Kf;ˇi \ E , and therefore

jxj �
�
C max.

1p
�
;
p
M/ � V.f /

� 1
1�
 p

2ˇin;

or

G.x/ D e� jxj

2

2 � exp

 
�.ˇin/ �

�
C max.

1p
�
;
p
M/ � V.f /

� 2
1�


!

� exp

 
�.ˇi�1n/ �

�
C 0 max.

1p
�
;
p
M/ � V.f /

� 2
1�


!
:

This is equivalent to
 �
C 0 max.

1p
�
;
p
M/ � V.f /

� 2
1�


�G
!
.x/ � e�ˇi�1n > f .x/

which is exactly what we wanted. ut
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Remark. The role of � and M in the above theorem might seem a bit artificial,
as the condition e��n � f .x/ � e�Mn has no analog in the classical theorem.
This condition is necessary however, as some simple examples show. For example,
consider f .x/ D e��.jxj/ where

�.x/ D

8̂
<̂
ˆ̂:
0 x <

p
n

2
p
nx � 2n p

n � x � 2
p
n

x2

2
2
p
n � x:

To explain the origin of this example notice that f is the log-concave envelope of
max.G; 1p

nD/. It is easy to check that f � G and V.f / is bounded from above by
a universal constant independent of n. Since f is rotationally invariant the role of
the subspaceE in the theorem is redundant, and one easily checks that f .x/ � e��n
if and only if

f .x/ �
�
."C 2/2

8"
�G
�
.x/ �

�
1

2"
�G
�
.x/:

This shows that not only does C.�;M/ must depend on �, but the dependence we
showed is essentially sharp as � ! 0. Similar examples show that the same is true
for the dependence in M .

Using Theorem 4.2 we can easily prove Theorem 1.5:

Theorem 1.5. For every " < M , every large enough n 2 N, every f W R
n !

Œ0;1/ such that f .0/ D 1 and M �.f / � 1 and every 0 < 
 < 1 one can find a
subspace E ,! R

n such that dimE � 
n with the following property: for every
x 2 E such that e�"n � .f ? G/.x/ � e�Mn one have

f .x/ �
�
C.";M/

1
1�
 �G

	
.x/:

In fact, one can take

C.";M/ D C max

�
1

"
;M

�
:

Proof. Define h D f ? G. Since f .0/ D 1 it follows that

.f ? G/ .x/ D sup
x1Cx2Dx

f .x1/G.x2/ � f .0/G.x/ D G.x/:

Since M � is linear M �.h/ D M �.f / C M �.G/ � 2, so by Theorem 1.4 we get
that V.h/ � p

e. Applying Theorem 4.2 for h, and noticing that f .x/ � h.x/ for
all x, we get the result. ut
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Approximate Gaussian Isoperimetry for k Sets

Gideon Schechtman

Abstract Given 2 � k � n, the minimal .n � 1/-dimensional Gaussian measure
of the union of the boundaries of k disjoint sets of equal Gaussian measure in R

n

whose union is Rn is of order
p

log k. A similar results holds also for partitions of
the sphere Sn�1 into k sets of equal Haar measure.

1 Introduction

Consider the canonical Gaussian measure on R
n, �n. Given k 2 N and k disjoint

measurable subsets of Rn each of �n measure 1=k we can compute the .n � 1/-
dimensional Gaussian measure of the union of the boundaries of these k sets. Below
(see Definition 1) we shall make clear what exactly we mean by the .n � 1/-
dimensional Gaussian measure but in particular our normalization will be such that
the .n � 1/-dimensional Gaussian measure of a hyperplane at distance t from the
origin will be e�t 2=2 (and not 1p

2�
e�t 2=2 which is also a natural choice). The question

we are interested in is what is the minimal value that this quantity can take when
ranging over all such partitions of Rn. As is well known, the Gaussian isoperimetric
inequality [1, 4] implies that, for k D 2, the answer is 1 and is attained when the
two sets are half spaces. The answer is also known for k D 3 and n � 2 and is
given by 3 2�=3-sectors in R

2 (product with Rn�2) [2]. The value in question is
then 3=2. If the k sets are nice enough (for example if, with respect to the .n � 1/-
dimensional Gaussian measure, almost every point in the union of the boundaries
of the k sets belongs to the boundary of only two of the sets) then the quantity
in question is bounded from below by c

p
logk for some absolute c > 0. This

was pointed out to us by Elchanan Mossel. Indeed, by the Gaussian isoperimetric

G. Schechtman
Weizmann Institute of Science, Department of Mathematics, Rehovot, Israel
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inequality, the boundary of each of the sets has measure at least e�t 2=2 where t is
such that 1p

2�

R1
t
e�s2=2ds D 1=k. If k is large enough t satisfies

e�t 2=2
p
2�2t

<
1

k
<
e�t 2=2
p
2�t

which implies
p

log k � t � p
2 logk and so the boundary of each of the k sets has

.n� 1/-dimensional Gaussian measure at least e�t 2=2 � p
2�t=k � p

2� log k=k.
Under the assumption that the sets are nice we then get a lower bound of orderp
2� log k to the quantity we are after.1

Of course the minimality of the boundary of each of the k sets cannot occur
simultaneously for even 3 of the k sets (as the minimal configuration is a set bounded
by an affine hyperplane) so it may come as a surprise that one can actually achieve a
partition with that order of the size of the boundary. To show this is the main purpose
of this note. It is natural to conjecture that, for k � 1 � n the minimal configuration
is that given by the Voronoi cells of the k vertices of a simplex centered at the origin
of Rn. So it would be nice to compute or at least estimate well what one gets in
this situation. This seems an unpleasant computation to do. However, in Corollary 1
below we compute such an estimate for a similar configuration - for even k with
k=2 � n, we look at the k cells obtained as the Voronoi cells of ˙ei , i D 1; : : : ; k=2

and show that the order of the .n�1/-dimensional Gaussian measure of the boundary
is of order

p
log k and we deduce the main result of this note:

Main Result. Given even k with k � 2n, the minimal .n � 1/-dimensional
Gaussian measure of the union of the boundaries of k disjoint sets of equal Gaussian
measure in R

n whose union is Rn is of order
p

log k.

In Corollary 2 we deduce analogue estimates for the Haar measure on the sphere
Sn�1.

This note benefitted from discussions with Elchanan Mossel and Robi
Krauthgamer. I first began to think of the subject after Elchanan and I spent some
time trying (alas in vain) to use symmetrization techniques to gain information on
the (say, Gaussian) “k-bubble” conjecture and some variant of it (see Conjecture
1.4 in [3]). Robi asked me specifically the question that is solved here, with some
possible applications to designing some algorithm in mind (but apparently the
solution turned out to be no good for that purpose). I thank Elchanan and Robi
also for several remarks on a draft of this note. I had also a third motivation to
deal with this question. It is related to the computation of the dependence on " in
(the probabilistic version of) Dvoretzky’s theorem. It is too long to explain here,
especially since it does not seem to lead to any specific result.

1One may think that the right quantity should be
p
2� log k=2 since (almost) every boundary point

is counted twice but our Definition 1 is such that almost every boundary point is counted with
multiplicity of the number of sets in the partition it is on the boundary of. In any case, absolute
constants do not play a significant role here.
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2 Approximate Isoperimetry for k Sets

We begin with the formal definition of the .n � 1/-dimensional Gaussian measure
of the boundary of a partition of Rn into k sets.

Definition 1. Let A1;A2; : : : ; Ak be a partition of Rn into k measurable sets. Put
A D fA1;A2; : : : ; Akg and denote

@"A D [k
iD1..[j 6DiAj /" n [j 6DiAj /

(where B" denotes the "-neighborhood of the set B). We shall call @"A the
"-boundary of A. The .n � 1/-dimensional Gaussian measure of the boundary of
A will be defined and denoted by

�n�1.@A/ D lim inf
"!0

�n.@"A/� �n.A/p
2=�"

:

The reason we are using the above definition of @"A rather than what might
look more natural, [k

iD1..Ai/"nAi/, is that in the former the sets in the union
are disjoint, making the computation of the measure of the union easier. Note
that we do not define the boundary of the partition, only the measure of the
boundary. However, in simple cases when the boundary and its .n� 1/-dimensional
Gaussian measure are well understood, this definition coincides with the classical
one (modulo normalization by absolute constant). In particular notice that if the
partition is into two sets which are separated by a hyperplane at distance t from
the origin the definition says that the .n � 1/-dimensional Gaussian measure of the
boundary is e�t 2=2 and in particular when t D 0 the measure is 1 which coincides
with what we understand as the classical �n�1 measure of a hyperplane through 0.
This is why the factor

p
2=� is present in the definition above.

The main technical tool here is Proposition 1 below for its proof we need the
following simple inequality.

Lemma 1. For all " > 0 if C is large enough (depending on ") then for all k 2 N

1p
2�

Z p
2 logCk

p
2 log k

C �1

� 1p
2�

Z s

�s
e�t 2=2dt

	k�1
e�s2=2ds � 1

.2C "/k

Proof. Let g1; g2; : : : ; gk be independent identically distributed N.0; 1/ variables.
Then by symmetry,

1p
2�

Z 1

0

� 1p
2�

Z s

�s
e�t 2=2dt

	k�1
e�s2=2ds D P.g1 � jg2j; : : : ; jgkj/ D 1

2k
:

(1)
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Also,

1p
2�

Z p
2 log k

C �1

0

� 1p
2�

Z s

�s
e�t 2=2dt

	k�1
e�s2=2ds

D 1

2k

� 2p
2�

Z s

0

e�t 2=2	ki
p
2 log k

C �1
sD0 (2)

� 1

2k
.1� 2p

2�
e� log k

C /k � 1

2k
e

� 2C
p

2� ;

and, for C large enough,

1p
2�

Z 1
p
2 logCk

� 1p
2�

Z s

�s
e�t 2=2dt

	k�1
e�s2=2ds

D 1

2k

� 2p
2�

Z s

0

e�t 2=2
	ki1

sDp
2 logCk

(3)

� 1

2k

�
1 �

�
1 � 2p

2�

Z 1
p
2 logCk

e�s2=2
	k	 � 1

2k
.1 � e�1=C /:

The Lemma now follows from (1)–(3). ut
The next proposition is the main technical tool of this note. The statement

involves the (appropriately normalized) .k � 1/-dimensional Gaussian measure
of a certain subset of R

k . The set is the common boundary of the Voronoi cells
corresponding to e1 and e2 in the partition of Rk obtained by the Voronoi cells of
˙ei , i D 1; : : : ; k=2. This set is a subset of a hyperplane (through the origin of Rk)
and for such a set the measure in question coincides with the canonical Gaussian
measure associated with this subspace (appropriately normalized).

Proposition 1. For each " > 0 there is a C such that for all k � 2, the .k � 1/-
dimensional Gaussian measure of the set f.t1; t2; : : : ; tk/I t1 D t2 � jt3j; : : : ; jtkjg is

bounded between
p
� log k

C �1
.1C"/2k.k�1/ and .1C"/p� logCk

2k.k�1/ .

Proof. The measure in question is

1p
2�

Z 1

0

� 1p
2�

Z s

�s
e�t 2=2dt

	k�2
e�s2ds:

Integration by parts (with parts
�

2p
2�

R s
0
e�t 2=2dt

	k�2
e�s2=2 and e�s2=2) gives that

this it is equal to

1

2.k � 1/

Z 1

0

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds: (4)
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Now,

Z 1
p
2 logCk

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds (5)

D �
Z 1

s

� 2p
2�

Z u

0

e�t 2=2dt
	k�1

e�u2=2dus
i1
sDp

2 logCk

C
Z 1

p
2 logCk

Z 1

s

� 2p
2�

Z u

0

e�t 2=2dt
	k�1

e�u2=2duds

�
p
2�

2k
.1 � e�1=C /

p
2 logCk C

Z 1
p
2 logCk

p
2�

2k
.1 � e�ke�s2=2

/ds;

(6)

where the estimate for the first term in (6) follows from (3) and of the second term
follows from a similar computation to (3). Now (6) is at most

p
2�

2Ck

p
2 logCk C

Z 1
p
2 logCk

p
2�

2
e�s2=2ds �

p
2�.

p
2 logCk C 1/

2Ck
(7)

and we conclude that

Z 1
p
2 logCk

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds �
p
2�.

p
2 logCk C 1/

2Ck
: (8)

On the other hand

Z p
2 logCk

0

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds (9)

� p
2 logCk

Z 1

0

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

e�s2=2ds D
p
2�
p
2 logCk

2k
:

Now, (4), (8) and (9) gives the required upper bound. The lower bound (which also
follows from the Gaussian isoperimetric inequality) is easier. By Lemma 1

1

2.k � 1/

Z 1

0

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds (10)

� 1

2.k � 1/
Z p

2 logCk

p
2 log k

C �1

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

se�s2=2ds (11)
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�
q
2 log k

C
� 1

2.k � 1/

Z p
2 logCk

p
2 log k

C �1

� 2p
2�

Z s

0

e�t 2=2dt
	k�1

e�s2=2ds (12)

�
q
� log k

C
� 1

.1C "/2k.k � 1/ : (13)

ut
The next Corollary is the main result here, in the most general setting we need

the definition of the .n � 1/-dimensional Gaussian measure of the boundary of a
partition of Rn into k sets given in Definition 1 above. Note that this is the first time
we use the full details of the definition; Until now we dealt only with subsets of
hyperplanes for which simpler definitions could suffice.

Corollary 1. For some universal constants 0 < c < C < 1 and all k D
2; 3; : : : ,

(1) If A D fA1;A2; : : : ; Akg is a partition of Rn into k measurable sets each of �n
measure 1=k. Then �n�1.@A/ � c

p
log k.

(2) If k � n, there is a partition A D fA1;A2; : : : ; A2kg of Rn into 2k measurable
sets each of �n measure 1=2k such that �n�1.@A/ � C

p
log k.

(1) follows very similarly to the argument in the introduction, except that there
is no need for the boundary to be nice anymore: By the Gaussian isoperimetric
inequality, for each " > 0 and each i D 1; : : : ; k,

�n..[j 6DiAj /"n [j 6Di Aj / � 1p
2�

Z tC"

t

e�s2=2ds;

where t is such that 1p
2�

R1
t
e�s2=2ds D 1=k. If " is small enough, the argument

in the introduction gives that the integral in question is of order "
p

log k
k

. Since
the k sets .[j 6DiAj /" n [j 6DiAj are disjoint, we deduce (1). (2) follows directly
from Proposition 1 since the boundary of the partition into the Voronoi cells
corresponding to f˙eigkiD1 is contained in the union of k.k�1/ hyperplans through
zero and thus �n�1.@A/ coincide with the classical �n�1.@A/ which is what is
estimated in Proposition 1.

A similar result to Corollary 1 holds on the n-dimensional sphere, Sn�1 with its
normalized Haar measure �n. One defines the "-boundary of a partition A of the
sphere in a similar way to the first part of Definition 1 (using, say, the geodesic
distance to define the "-neighborhood of a set). Then one defines the .n � 1/-
dimensional Haar measure of the boundary of A by

�n�1.@A/ D lim inf
"!0

�n.@"A/ � �n.A/p
2n=�"

:
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The choice of the normalization constant
p
2n=� was made so that if the partition

is into two sets separated by a hyperplane then the measure of the boundary
(which “is” Sn�2) will be 1. The proof of the upper bound ((2) of Corollary 2)
can be obtained from that of Corollary 1 by a standard reduction, using the
fact that if .g1; : : : ; gn/ is a standard Gaussian vector then the distribution of
.
P
g2i /

�1=2.g1; : : : ; gn/ is �n. Note that we deal only with subsets of centered
hyperplanes here so there is no problem with the reduction. The lower bound (1)
can also be achieved using this reduction although one needs to be a bit more
careful. Alternatively, a similar argument to that of the Gaussian case (given in
the introduction), replacing the Gaussian isoperimetric inequality with the spherical
isoperimetric inequality can be used.

Corollary 2. For some universal constants 0 < c < C < 1 and all k D
2; 3; : : : ,

(1) If A D fA1;A2; : : : ; Akg is a partition of Sn�1 into k measurable sets each of
�n measure 1=k. Then �n�1.@A/ � c

p
log k.

(2) If k � n, there is a partitionA D fA1;A2; : : : ; A2kg of Sn�1 into 2k measurable
sets each of �n measure 1=2k such that �n�1.@A/ � C

p
log k.

Remark 1. It may be interesting to investigate what happens when k >> n. In
particular, if k D 2n then the partition of Rn into its k D 2n quadrants satisfy
that the �n�1 measure of its boundary (consisting of the coordinates hyperplanes) is
n D log k. Is that the best (order) that can be achieved?
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Remark on Stability of Brunn–Minkowski and
Isoperimetric Inequalities for Convex Bodies

Alexander Segal

Abstract This paper is a note on the work of Figalli, Maggi and Pratelli, regarding
the stability of Brunn–Minkowski and the isoperimetric inequalities. By a careful
examination of the methods presented in the mentioned papers, we slightly improve
the constants that appear in stability versions of these inequalities, which play an
important role in asymptotic geometric analysis. In addition we discuss a stability
version of Urysohn’s inequality and the relation to Dar’s conjecture.

1 Introduction

Assume that E and F are convex bodies in R
n. Then we have the famous Brunn–

Minkowski (B–M) inequality

jE C F j1=n � jEj1=n C jF j1=n; (1)

where j � j denotes the Lebesgue measure in R
n. The Brunn–Minkowski inequality

is a well known inequality that plays a central role in theory of convex bodies, as
explained in great detail in Schneider’s book [12]. It is easy to see that equality
holds if and only if the bodies E and F are homothetic. This fact raises the natural
questions: Given that the left-hand side and right-hand side of (1) differ only slightly,
can we say that E and F are “close”? Is the Brunn–Minkowski inequality sensitive
to small perturbations?
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Clearly, to answer these questions one needs to define what “close” means.
Answers were given, when the distance between bodies is measured by Hausdorff
distance [7], but a more natural way to measure how “close” two convex bodies are,
is using volume. For example, we could ask how large the volume of the maximal
intersection of E and homotheties of F is, compared to the volume of E . This
question was answered by Figalli et al. in [9] and in [8] using mass transportation
approach.

Let us state some notations used in the mentioned papers in order to discuss their
results:
Given two convex bodies E and F , define their relative asymmetry to be:

A.E;F / WD inf
x02Rn

jE.x0 C rF /j
jEj ; (2)

where EF D .F n E/[ .E n F / is the symmetric difference and rnjEj D jF j.
Also, define the Brunn–Minkowski deficit of E and F to be:

ˇ.E; F / D jE C F j1=n
jEj1=n C jF j1=n � 1: (3)

Using these notations, the authors of [9] showed a refined version of the Brunn–
Minkowski inequality in case jEj D jF j:

A.E;F / � C.n/
p
ˇ.E; F /;

where C.n/  n7.

Remark 1.1. In this paper, for convenience purposes, we only discuss the case
where the bodies are of equal volume. The general case follows exactly in the same
way, with an added scaling parameter.

In [8], the authors showed the same inequality with a much simpler proof, but
the constant had an exponential dependence on n. Knowing the optimal behaviour
of C.n/ is very important for certain problems in asymptotic geometrical analysis,
and we would like to find the best possible estimate. Although we have not found
the optimal behaviour, we would like to note that some improvement is possible
just by careful examination of each step in [8,9] and minor modification of some of
them. We show the following statement:

Theorem 1.2. Assume E and K are convex bodies in R
n with equal volume. The

following inequality holds:

A.E;K/ � Cn3:5
p
ˇ.E;K/;

where C is some universal constant.
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2 Preliminaries and Notation

We denote by ln2 the space R
n equipped with the standard euclidean norm. Also

denote by dE the Banach-Mazur distance of the body E from the unit ball of
ln2 . Recall that the Banach-Mazur distance between two finite dimensional normed
spaces X; Y is defined as follows:

d.X; Y / D inf
T

˚jjT jjjjT �1jj W T W X ! Y is a linear isomorphism
�
:

The proof of the main theorem follows directly from a similar result regarding the
stability of the isoperimetric inequality. We outline the details here.

First we state a modified Poincaré type inequality, proved in [8] and used for
proving the main theorem:

Lemma 2.1. Let E be a convex body such that Br � E � BR, for 0 < r < R.
Then, the following inequality holds:

n

p
2

log 2

R

r

Z
E

jrf j �
Z
@E

jf �Mf jdHn�1; (4)

for every f smooth enough, where Mf denotes the median of function f in E.

Remark 2.2. The dependence on the dimension n, and on R=r is optimal in
Lemma 2.1, as shown in [8].

Next we turn to basic definitions and statements regarding the isoperimetric
inequality.

Denote by hK.x/ the supporting functional of a convex bodyK in R
n:

hK.v/ D supfhx; vi W x 2 Kg:

Now, given a convex body E , we can define the anisotropic perimeter of E with
respect to K:

PK.E/ D
Z
@E

hK.vE.x// dHn�1; (5)

where vE.x/ is the outer unit normal vector on the boundary @E , and Hn�1 is the
n � 1 dimensional Hausdorff measure on R

n. Since we restrict our discussion to
compact convex sets, the anisotropic perimeter can be written as



384 A. Segal

PK.E/ D lim
�!0C

jE C �Kj � jEj
�

:

This fact follows from the definition of mixed volumes, mixed area measures
and Minkowski’s theorem on mixed volumes. For details see [10] (pp. 397–399).
Actually, one can check this fact directly for polytopes and conclude the proof by
approximation argument. Applying Brunn–Minkowski inequality to the expression
under the limit we get:

jE C �Kj � jEj
�

� .jEj1=n C �jKj1=n/n � .jEj1=n/n
�

:

Clearly, when � ! 0 the right hand side converges to njKj1=njEj1=n0

, where n0 is
the conjugate of n:

1

n
C 1

n0 D 1:

Finally, we get the anisotropic isoperimetric inequality:

PK.E/ � njKj1=njEj1=n0

: (6)

Like in the Brunn–Minkowski inequality, the case of equality holds if and only if the
bodies E andK are homothetic. Hence, the questions of stability is relevant again.

Define the isoperimetric deficit of a body E to be:

ı.E;K/ WD PK.E/

njKj1=njEj1=n0

� 1:

We are interested in estimating the behavior of A.E;K/ with the deficit ı.E;K/.
An answer to this question was given in [9]:

A.E;K/ � C0.n/
p
ı.E;K/; (7)

where C0.n/ behaves like n7. The authors also proved that the result is sharp, in
the sense that the power of ı.E;K/ cannot be improved. The equivalent refinement
for Brunn–Minkowski follows immediately, as will be shown in the text. In order
to improve the constant in the Brunn–Minkowski inequality, we will prove the
following theorem:

Theorem 2.3. Let E and K be two convex bodies in R
n. Then, the following

inequality holds:
A.E;K/ � C1n

3:5
p
ı.E;K/;

where C1 is a universal constant, A.E;K/ and ı.E;K/ are the relative asymmetry
and the isoperimetric deficit, defined above.

The proof is in the following sections.
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3 Proof of Isoperimetric Inequality

From now on, for our convenience, we assume thatE andK are smooth and uniform
convex bodies that have equal volumes (scaling argument). We will use the method
of mass transportation to show the isoperimetric inequality. For details regarding
optimal transport we refer the read to Villani’s book [13]. Brenier map theorem [2]
states there exists a convex function � W Rn ! R, such that the map T D r� pushes
forward the measure jEj�11E.x/dx to jKj�11K.x/dx. A result by Caffarelli [4, 5]
also states that under our assumptions the map T is smooth, i.e T 2 C1. NE; NK/.
Since T is measure preserving, we also get:

det.Hess.�.x/// D det.rT .x// D jKj
jEj D 1:

Since rT .x/ is a symmetric positive definite matrix, we may assume that the
eigenvalues are ordered 0 < 
1.x/ � 
2.x/ � � � � 
n.x/. Denote the Arithmetic and
Geometric means of the eigenvalues,


A.x/ D 1

n

nX
iD1


i .x/; 
G D
nY
iD1


i .x/
1=n D 1:

Now, we can prove the isoperimetric inequality using mass transportation. First
denote by jj � jj, the norm induced by the bodyK:

jjxjj D inf

>0

n

 W x



2 K

o
:

Notice that whenever x 2 E , we have T .x/ 2 K , thus jjT jj � 1. Applying
arithmetic-geometric mean inequality and the divergence theorem, we get

njKj1=njEj1=n0 D njEj D
Z
E

n.det rT .x//1=n dx �
Z
E

divT .x/ dx

D
Z
@E

< T; vE > dHn�1 �
Z
@E

jjT jjhK.vE/dHn�1 � PK.E/:

Where the last inequalities were obtained applying Cauchy–Schwarz inequality and
jjT jj � 1.
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4 Estimating the Isoperimetric Deficit

From the proof of the isoperimetric inequality, we conclude that

jKjı.E;K/ �
Z
E

divT .x/

n
� .det rT .x//1=n dx D

Z
E

.
A � 
G/ dx (8)

Now, since A.E;K/ is controlled by
R
@E

jx � T .x/jdHn�1, we would like to
estimate it by using Poincaré inequality mentioned above. Thus, first we estimate
the following expression:

Z
E

jrT .x/� Id j dx D
Z
E

vuut nX
kD1

.
k � 
G/2:

Using a refinement of the Arithmetic-Geometric mean inequality proved by Alzer
in [1] we conclude:

nX
kD1
.
k � 
G/

2 � 2n
n.
A � 
G/:

Applying this inequality we write:

Z
E

jrT .x/� Id j dx �
Z
E

p
2n
n.
A � 
G/ �

q
2njj
njjL1.E/jKjı.E;K/; (9)

where the last inequality was obtained by applying Hölder’s inequality and using
(8). Now we need an upper bound for jj
njjL1.E/. Notice that

jj
njjL1.E/ �
Z
E

divT .x/ dx � PK.E/ D njKj.ı.E;K/C 1/ � 2njKj;

where in the last inequality we assumed the isoperimetric deficit to be smaller
than 1. This assumption is natural, as otherwise Theorem 2.3 holds in a trivial way.
Substitue it in (9) and conclude:

Z
E

jrT .x/ � Idj dx �
p
4n2jKj2ı.E;K/ D 2njKjpı.E;K/: (10)

Now, we can apply the mentioned Poincaré trace-type inequality (4) on (10) entry-
wise, to get the following (up to translation of K):

Z
E

jrT .x/ � Id j dx � C

n1:5dE

Z
@E

jT .x/ � xjdHn�1; (11)
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Where we replaced R=r with dE , which is the Banach-Mazur distance of the body
E from ln2 , by choosing the correct position for E . Combining (10) and (11), we
come to:

Cn2:5dE jKj
p
ı.E;K/ �

Z
@E

jT .x/ � xjdHn�1 (12)

As shown in [8], the right hand side of (12) controls A.E;K/. This is done by
replacing the Brenier map T , with the projection P W Rn nK ! @K . Clearly,

Z
@E

jT .x/ � xjdHn�1 �
Z
@EnK

jP.x/ � xjdHn�1: (13)

Now, consider the map ˚ W .@E nK/ � .0; 1/ ! E nK , defined by:

˚.x; t/ D tx C .1 � t/P.x/: (14)

Also, consider the tangent space to @E at x to be f�k.x/gn�1
1 . Now, since ˚ is a

bijection, we can write:

jEnKj D
Z 1

0

dt

Z
@EnK

j.x�P.x/j^.
n�1̂

kD1
.t�k.x/C .1 � t/dPx.�k.x////dHn�1.x/;

(15)

where dPx denotes the differential of the projection P at x. Since P is a projection
over a convex set, it decreases distances, which means that jdPx.e/j � 1 for
e 2Sn�1. Hence

jt�k.x/C .1 � t/dPx.�k.x//j � 1; 81 � k � n � 1:

Combining it all together, we write:

A.E;K/ � jEKj
jKj D 2

jE nKj
jKj � 1

jKj
Z
@EnK

jP.x/ � xjdHn�1

� 1

jKj
Z
@E

jT .x/ � xjdHn�1 � Cn2:5dE
p
ı.E;K/:

By John’s theorem [11] we know dE � n, so we may write that A.E;K/ �
Cn3:5

p
ı.E;K/, as stated in Theorem 2.3.

Remark 4.1. Notice that in case E is a symmetric body, we get a slightly improved
result, A.E;K/ � Cn3

p
ı.E;K/, since dE � p

n.
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4.1 Brunn–Minkowski Refinement

Now, when we have a refinement for the isoperimetric inequality, using Theorem 2.3
we can easily get the same refinement for the Brunn–Minkowski inequality, by
repeating the argument in [9] (Sect. 4). We outline the proof for the sake of
completeness. We show that given two convex bodies E and K ,

A.E;K/ � Cn3:5
p
ˇ.E;K/; (16)

where ˇ.E;K/ is the Brunn–Minkowski deficit, defined in (3). To prove this, we
use the following property of PK.E/:

PE.G/C PK.G/ D PECK.G/; (17)

which can be easily verified using the definition. Let us examine the case where
jEj D jKj D jGj D 1, A.E;G/ D jEGj and A.G;K/ D jGKj:

A.E;K/ � jEKj � jEGj C jGKj D A.E;G/C A.G;L/ (18)

By the first part of Theorem 1.2 we may write:

PE.E CK/ � njEj1=njE CKj1=n0

 
1C

�
A.E CK;E/

Cn3:5

�2!
; (19)

PK.E CK/ � njKj1=njE CKj1=n0

 
1C

�
A.E CK;K/

Cn3:5

�2!
: (20)

Adding up the two inequalities, applying (17) and the fact that njE C Kj D
PECK.E CK/, we find that

Cn3:5
p
ˇ.E;K/ � A.E;K/;

which completes the proof of Theorem 1.2.

Remark 4.2. Notice that n3:5 is an estimate of the worst case that is achieved only
when the bodies have a large Banach-Mazur distance from ln2 . The general estimate
can be written as Cn2:5 maxfdE; dKgpˇ.E;K/ � A.E;K/.

5 Some Special Cases

We outline two special cases of the discussed inequalities which are of special
interest in the field of high dimensional convex geometry.
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5.1 Urysohn’s Inequality Refinement

Denote by hK.�/ the support functional of convex body K with 0 2 int.K/. Then,
the width of K in some direction � 2 Sn�1 is given by hK.�/C hK.��/, and the
mean width of K is given by

!.K/ D
Z
Sn�1

hK.�/C hK.��/d�.�/ D 2

Z
Sn�1

hK.�/d�.�/;

where � is the normalized Lebesgue measure on the sphere Sn�1. Notice that by
definition (5) of the anisotropic perimeter PK.Bn/, where Bn is the n-dimensional
Euclidean unit ball, we may write:

PK.Bn/ D
Z
Sn�1

hK.�/dHn�1 D !n�1
2
!.K/; (21)

where !n�1 is the surface area of Sn�1. Substituting the formula above in the
isoperimetric inequality (6) for PK.Bm/ we get:

!n�1
2
!.K/ � njKj1=njBnj1�1=n:

Using the fact that !n�1 D njBnj, we come to the well known Urysohn’s inequality
(see [3] pp. 93–94):

1

2
!.K/ �

� jKj
jBnj

� 1
n

: (22)

Notice that the result of Theorem 2.3 can be rewritten in the form:

PK.E/

njEj �
� jKj

jEj
� 1

n

 
1C

�
A.E;K/

Cn3:5

�2!
:

Thus, for the case where E D Bn we get a refinement for Urysohn’s inequality:

1

2
!.K/ �

� jKj
jBnj

� 1
n

 
1C

�
A.Bn;K/

Cn3:5

�2!
: (23)

Actually, it is easy to notice that the trace type inequality in Lemma 2.1 holds with
a constant n in our case since the Banach-Mazur distance dBn equals 1. So we may
rewrite (23) with a slightly better constant:

1

2
!.K/ �

� jKj
jBnj

� 1
n

 
1C

�
A.Bn;K/

Cn2:5

�2!
:
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5.2 The Case of K and �K

Given two convex bodiesK;L define their maximal intersection by:

M.K;L/ D max
x2Rn jK \ .LC x0/j: (24)

Notice that whenever jKj D jLj we have that A.K;L/jKj C 2M.K;L/ D jKj C
jLj D 2jKj. Thus, in this case,

A.K;L/ D 2

�
1 � M.K;L/

jKj
�

(25)

Notice that the constant C which appears in Theorem 1.2, satisfies C � 4
p
2

log 2 . This
is easily verified by following the proof of the theorem.

Let us assume now that the Brunn–Minkowski deficit satisfies: ˇ.K;�K/ �
˛n�7, for some ˛ > 0. Then, using the result in Theorem 1.2 we may write:

A.K;�K/ � Cn3:5
p
ˇ.K;�K/ � C

p
˛;

or equivalently, using (25) and the upper bound for C :

M.K;�K/ �
�
1 � C

2

p
˛

�
jKj �

 
1 � 2

p
2

log 2

p
˛

!
jKj:

The last inequality implies that given a convex body K that has a small enough
Brunn–Minkowski deficit, then we can choose our origin in such way that jK \
.�K/j is equivalent to jKj. In other words, K must be close to a symmetric body.
For example, if C�2 is an admissible value for ˛, then we have that jK \ .�K/j �
1
2
jKj.

6 Relation to Dar’s Conjecture

Another possible refinement of the Brunn–Minkowski inequality was proposed and
proven to hold in some special cases by Dar in [6]. Given two convex bodies K;L
the conjecture states the following:

jK C Lj1=n � M.K;L/1=n C jKj1=njLj1=n
M.K;L/1=n

; (26)

where M.K;L/ is the volume of the maximal intersection, defined in (24). Let
us check that this conjecture implies a stability result equivalent to Theorem 1.2
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with better constants. We will assume, as always, that jKj D jLj D 1 and denote
� WD ˇ.K;L/. Then, in this case, Dar’s conjecture implies:

2.1C �/ � M.K;L/1=n C 1

M.K;L/1=n
:

Solving this inequality for small values of � we get the stability result:

M.K;L/1=n � 1 � Cpˇ.K;L/:
Applying the fact that M.K;L/ D 1 � 1

2
A.K;L/ together with Bernoulli’s

inequality, we get:
A.K;L/ � Cn

p
ˇ.K;L/;

which is a stability result of the same spirit as in Theorem 1.2, except for an
improved dimensional constant.
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On Contact Points of Convex Bodies

Nikhil Srivastava

Abstract We show that for every convex bodyK in R
n, there is a convex bodyH

such that
H � K � c �H with c D 2:24

and H has at most O.n/ contact points with the minimal volume ellipsoid that
contains it. When K is symmetric, we can obtain the same conclusion for every
constant c >1. We build on work of Rudelson [Israel J. Math. 101(1), 92–124
(1997)], who showed the existence of H with O.n logn/ contact points. The
approximating body H is constructed using the “barrier” method of Batson,
Spielman, and the author, which allows one to extract a small set of vectors with
desirable spectral properties from any John’s decomposition of the identity. The
main technical contribution of this paper is a way of controlling the mean of the
vectors produced by that method, which is necessary in the application to John’s
decompositions of nonsymmetric bodies.

1 Introduction

Let K be an arbitary convex body in R
n and let E be a minimal volume ellipsoid

containingK . Then the contact points ofK are the points of intersection of E andK .
The ellipsoid E is unique and characterized by a celebrated theorem of John
[1], which says that if K is embedded via an affine transformation in R

n so that
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E becomes the standard Euclidean ball Bn
2 , then there are m � N D n.n C 3/=2

contact points x1; : : : ; xm 2 K \ Bn
2 and nonnegative weights c1; : : : cm for which

X
i

cixi D 0 (mean zero) (1)

X
i

cixix
T
i D I (inertia matrix identity). (2)

Moreover, any convex bodyK 0 containing x1; : : : ; xm must have Bn
2 inside its John

ellipsoid. We refer to a weighted collection of unit vectors .ci ; xi /i�m which satisfies
(1) and (2) as a John’s decomposition of the identity.

The study of contact points has been fruitful in convex geometry, for instance
in understanding the behavior of volume ratios of symmetric and nonsymmetric
convex bodies [1] and in estimating distances between convex bodies and the cube
or simplex [3,5]. In this work, we consider the number of contact points of a convex
body. Define a distance d between two (not necessarily symmetric) convex bodies
K andH in R

n as follows1:

d.K;H/ D inf
T2GL.n/;u;v2Rnfc W H C u � T .K C v/ � c.H C u/g

and let K be the space of all convex bodies equipped with the topology induced
by d . Gruber [4] proved that the set of K having fewer than N D n.n C 3/=2

contact points is of the first Baire category in K. However, Rudelson has shown that
every K is arbitrarily close to a body which has a much smaller number of contact
points.

Theorem 1 (Rudelson [6]). Suppose K is a convex body in R
n and � > 0. Then

there is a convex body H such that d.H;K/ � 1 C � and H has at most m �
Cn logn=�2 contact points, where C is a universal constant.

In this note, we show that the logn factor in Rudelson’s theorem is unnecessary
in many cases. For symmetric convex bodies, we obtain exactly the same distance
guarantee d.H;K/ � 1C� but with a much smaller numberm � 32n=�2 of contact
points of H . For arbitrary convex bodies, we show a somewhat weaker result that
only guarantees an H within constant distance d.H;K/ � 2:24, with m � Cn

contact points for some universal C . Thus Rudelson’s O.n logn/ bound is still the
best known in the regime d.H;K/ < 2:24 for nonsymmetric bodies.

Our approach for constructingH is the same as Rudelson’s, and consists of two
steps:

1. Given a John’s decomposition .ci ; xi /i�m for K , extract a small subsequence
of points xi which are approximately a John’s decomposition. To be precise,

1 When K and H are symmetric then we can take u D v D 0 and d becomes the usual Banach-
Mazur distance.
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find a set of scalars bi , at most s D O.n/ of which are nonzero, and a small
‘recentering’ vector u for which

X
i

bi .xi C u/ D 0

�����I �
X
i

bi .xi C u/.xi C u/T
����� � �:

2. Use the approximate John’s decomposition .bi ; xi C u/i�s to construct an
exact John’s decomposition .ai ; ui /i�s , and show that it characterizes the John
Ellipsoid of a bodyH that is close to K .

The source of our improvement is a new method for extracting the approximate
decomposition in step (1). Whereas the bi were chosen by random methods in
Rudelson’s work, we now use a deterministic procedure which was introduced in
recent work of Batson et al. on spectral sparsification of graphs [2]. The main
theorem of [2] is the following:

Theorem 2 (Batson, Spielman, Srivastava). Suppose d > 1 and v1; v2; : : : ; vm
are vectors in R

n with X
i�m

vivTi D I:

Then there exist scalars si � 0 with jfi W si ¤ 0gj � dn so that

I �
X
i�m

sivivTi �
 p

d C 1p
d � 1

!2
I:

A sharp result regarding the contact points of symmetric convex bodies can
be derived as an immediate corollary of Theorem 2 and Rudelson’s proof of
Theorem 1 [5].

Corollary 3. If K is a symmetric convex body in R
n and � > 0, then there exists a

body H such that H � K � .1 C �/H and H has at most m � 32n=�2 contact
points with its John Ellipsoid.

Proof. Suppose K is a symmetric convex body whose John ellipsoid is Bn
2 , and let

X D fx1; : : : xmg be contact points satisfying (1,2) with weights c1; : : : cm. Since
K is symmetric we can assume that xi 2 X ” �xi 2 X , and that the
corresponding weights ci are equal.

We will extract an approximate John’s decomposition fromX . Apply Theorem 2
to the vectors vi D p

cixi with parameter d D 16=�2 to obtain scalars si , and let
Y � X be the set of xi with nonzero si . We are now guaranteed that

I �
X
xi2Y

si cixi x
T
i �

�
4=� C 1

4=� � 1

�2
I
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with jY j � 16n=�2. Notice that by an easy calculation

�
4=� C 1

4=� � 1

�2
� 1C �

for sufficiently small epsilon.
In order to obtain a John’s decomposition from these vectors, we need to ensure

the mean zero condition (1). This is achieved easily by taking a negative copy of
each vector in Y and halving the scalars si , since

X
xi2Y

.si =2/cixi C .si =2/ci .�xi / D 0

and X
xi2Y

.si =2/cixix
T
i C .si =2/ci.�xi /.�xi /T D

X
xi2Y

si cixi x
T
i

which we know is a good approximation to the identity. Thus the vectors in Y [�Y
with weights bi D si ci =2 on xi and �xi constitute a .1 C �/-approximate John’s
decomposition with only 32n=�2 points. Substituting this fact in place of [5, Lemma
3.1] in the proof of [5, Theorem 1.1] gives the promised result. ut

When the body K is not symmetric, there is no immediate way to guarantee the
mean zero condition. If we simply recenter the vectors produced by Theorem 2 to
have mean zero by adding u D �

P
i bi xiP
i bi

to each xi , then the corresponding inertia
matrix is

X
i

bi .xi C u/.xi C u/T D
X
i

bixix
T
i �

 X
i

bi

!
uuT (3)

which no longer well-approximates the identity if k 
Pi bi
�

uuT k is large. This is
the issue that we address here. In Sect. 2, we prove a variant of Theorem 2 which
allows us to obtain very good control on the mean u at the cost of having a worse (at
best factor 4, rather than 1 C �) approximation of the inertia matrix to the identity.
In Sect. 3, we show that this is still sufficient to carry out Rudelson’s construction of
the approximating bodyH . The end result is the following theorem.

Theorem 4. For every � > 0 the following is true for n sufficiently large. If K is a
convex body in R

n, then there is a convex body H such that

H � K � .
p
5C �/H

andH has at most O�.n/ contact points with its John Ellipsoid.
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2 Approximate John’s Decompositions

In this section we will prove the following theorem.

Theorem 5. Suppose we are given a John’s decomposition of the identity, i.e., unit
vectors x1; : : : ; xm 2 R

n with nonnegative scalars ci such that

X
i

cixi D 0 (4)

X
i

cixix
T
i D I: (5)

Then for every � > 0 there are scalars bi , at most O�.n/ nonzero, and a vector u
such that

I �
X
i

bi .xi C u/.xi C u/T � .4C �/I (6)

X
i

bi .xi C u/ D 0 (7)

 X
i

bi

!
kuk2 � �: (8)

We remark that the requirement (4) is necessary to allow a useful bound on u,
since otherwise we can take xi D ei with ci D 1 for the canonical basis vectors
feigi�n and it is easily checked (for instance, using concavity of 
min) that

X
i

bi eie
T
i �


P
i biei

� 
P
i biei

�
P

i bi

is singular for every choice of scalars bi , which is worthless considering (3).

2.1 An Outline of the Proof

As in the proof of Theorem 2 [2], we will build the approximate John’s decomposi-
tion .bi ; xi C u/ by an iterative process which adds one vector at a time. At any step
of the process, let

A D
X
j

bj xj x
T
j

denote the inertia matrix of the vectors that have already been added (i.e., the bi ’s
that have been set to some nonzero value), and let

z D
X
j

bj xj
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denote their weighted sum. Initially both A D 0 and z D 0. We will take s D O.n/

steps, adding one bj vj vTj in each step, in a way that guarantees that at the end the
inertia matrix A approximates the identity and the sum z is close to zero. Since we
only increment one bi in each step, at most O.n/ will be nonzero at the end, as
promised.

2.1.1 Barrier Functions

The choice of vector to add in each step will be guided by two “barrier” potential
functions which we will use to maintain control on the eigenvalues of A. For real
numbers u; l 2 R, which we will call the upper and lower barrier respectively,
define:

˚u.A/
defD Tr.uI �A/�1 D

X
i

1

u � 
i
(Upper potential):

˚l .A/
defD Tr.A � lI /�1 D

X
i

1


i � l
(Lower potential);

where 
1; : : : ; 
n are the eigenvalues of A.
As long as A � uI and A � lI (i.e., 
max.A/ < u and 
min.A/ > l), these

potential functions measure how far the eigenvalues of A are from the barriers u
and l . In particular, they blow up as any eigenvalue approaches a barrier, since
then uI � A (or A � lI ) approaches a singular matrix. Thus if ˚l.A/ and ˚u.A/

are appropriately bounded, we can conclude that the eigenvalues of A are ‘well-
behaved’ in that there is no accumulation near the barriers u and l . This will allow
us to prove that the process never gets stuck.

For a thorough discussion of these potential functions, where they come from,
and why they work, see [2].

2.1.2 Invariants

We will maintain three invariants throughout the process. Note that u; l; A and z vary
from step to step, while PU ;PL; and � remain fixed.

• The eigenvalues of A lie strictly between l and u:

lI � A � lU: (9)

• Both the upper and lower potentials are bounded by some fixed values PL and
PU :

˚l.A/ � PL ˚u.A/ � PU : (10)
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• The running sum z is appropriately small:

kzk2 � � � Tr.A/ (11)

2.1.3 Initialization

At the beginning of the process we have A D 0 and z D 0, and the barriers at initial
values

l D l0 D �1 and u D u0 D 1: (12)

It is easy to see that (9)–(11) all hold with PU D PL D n at this point.

2.1.4 Maintenance

The process will evolve in steps. Each step will consist of adding two vectors, tv
and rw, where t; r � 0 and v;w 2 fxigi�m. We will call these the main vector and
the fix vector, respectively.

The main vector will allow us to move the upper and lower barriers forward by
fixed amounts ıl > 0 and ıu > 0 while maintaining the invariants (9) and (10); in
particular, we will choose it in a manner which satisfies:

˚lCıl .AC tvvT / � ˚l.A/ ˚uCıu.AC tvvT / � ˚u.A/

.l C ıl /I � AC tvvT � .u C ıu/I:
(13)

The fix will correct any undesirable impact that the main has on the sum;
specifically, we will choose rw in a way that guarantees

hz; tv C rwi � 0 (14)

where z is the sum at the end of the previous step. Thus the net increase in the length
of the sum in any step is given by

kz C .tv C rw/k2 D kzk2 C2hz; tv C rwi Cktv C rwk2 � kzk2 C .t C r/2; (15)

since v and w are unit vectors. The corresponding increase in the trace is simply
t C r , and so if we guarantee in addition that the steps are sufficiently small:

t C r � � (16)

then the invariant (11) can be maintained by induction as follows:
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kz C .tv C rw/k2
Tr.AC tvvT C rwwT /

� kzk2 C .t C r/2

Tr.A/C .t C r/
by (15)

� max

� kzk2
Tr.A/

;
.t C r/2

t C r

�

� � by (16).

However, we need to make sure that adding the fix vector does not cause us
to violate (9) or (10). To do this, the addition of rw will be accompanied by an
appropriately large shift of ıfu > 0 in the upper barrier. In particular, we will make
sure that on top of satisfying (14), rw also satisfies

˚uCıuCıfu .AC tvvT C rwwT / � ˚uCıu.AC tvvT /

and AC tvvT C rwwT � .u C ıu C ıfu /I:
(17)

Since A C tvvT C A C rwwT � A C tvvT , the analogous bound for the lower
potential follows immediately without any additional lower shift:

˚lCılC0.AC tvvT C rwwT / � ˚lCıl .AC tvvT /

with AC tvvT C rwwT � .l C ıl /I:

Together with (13), these inequalities guarantee that

˚lCıl .AC tvvT C rwwT / � ˚l.A/ � PL

and
˚uCıuCıfu .AC tvvT C rwwT / � ˚u.A/ � PU ;

thus maintaining both (9) and (10), as desired.
To summarize what has occured during the step: we have added two vectors tv

and rw and shifted u and l forward by ıu C ı
f
u and ıl , respectively, in a manner

that our three invariants continue to hold. To show that such a step can actually be
taken, we need to prove that as long as the invariants are maintained there must exist
scalars t; r � 0 and vectors v;w 2 fxi gi�m which satisfy all of the conditions (13),
(14), (16), and (17). We will do this in Lemma 6.

2.1.5 Termination

After s steps of the process, we have

.�1C sıl /I � A � .1C s.ıu C ıfu //I by (9):
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If we take s sufficiently large, then we can make the ratio 
max.A/=
min.A/ arbitrar-

ily close to ıuCıfu
ıl

. In the actual proof, which we will present shortly, we will show

that the process can be realized with parameters ıl ; ıu; ı
f
u for which this ratio can

be made arbitrarily close to 4 in s D O.n/ steps.

As for the mean, we will set u D �
P
j bj xjP
j bj

D � z
Tr.A/ at the end of the process,

so that immediately

.
X
j

bj /kuk2 D kzk2
Tr.A/

� � (18)

by (11) as desired.

2.2 Realizing the Proof

To complete the proof, we will identify a range of parameters ıl ; ıu; ı
f
u ; PU ; PL; and

� for which the above process can actually be sustained.

Lemma 6 (One Step). Suppose .ci ; xi /i�m is a John’s decomposition and z is any
vector. Let A � 0 be a matrix satisfying the invariants (9) and (10). If

1

ıu
C 1

ı
f
u

C 2PU C PL C 4n

�
� 1

ıl
(19)

Then there are scalars t; r � 0 and vectors v;w 2 fxi g which satisfy (13), (14),
(16), and (17).

To this end, we recall the following lemmas from [2], which characterize how
much of a vector one can add to a matrix without increasing the upper and lower
potentials.

Lemma 7 (Upper Barrier Shift). Suppose A � uI and ıu > 0. Then there is a
positive definite matrix U D U.A; u; ıu/ so that if v is any vector which satisfies

vTUv � 1

t

then
˚uCıu.AC tvvT / � ˚u.A/ and 
max.AC tvvT / < u C ıu:

That is, if we add t times vvT to A and shift the upper barrier by ıu, then we do not
increase the upper potential.

Lemma 8 (Lower Barrier Shift). Suppose A � lI , ıl > 0, and ˚l.A/ < 1=ıl .
Then there is a matrix L D L.A; l; ıl / so that if v is any vector which satisfies

vTLv � 1

t
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then
˚lCıl .AC tvvT / � ˚l.A/ and 
min.AC tvvT / > l C ıl :

That is, if we add t times vvT to A and shift the lower barrier by ıl , then we do not
increase the lower potential.

We will prove that desirable vectors exist by taking averages of the quantities
vTUv and vTLv over our contact points fxi g with weights fci g. Since

X
i

cix
T
i Uxi D U �

 X
i

ci xix
T
i

!

D U � I by (2)

D Tr.U/

(and similarly for L), it will be useful to recall bounds on Tr.U/ and Tr.L/ from [2].
Crucially, these bounds do not depend on the matrix A or on u; l at all, but only on
the shifts ıu and ıl and on the potentials.

Lemma 9 (Traces of L and U). If lI � A � uL with ˚l.A/ � PL and ˚u.A/ �
PU then

Tr.U/ � 1

ıu
C PU

and

Tr.L/ � 1

ıl
� PL:

We are now in a position to prove Lemma 6.

Proof of Lemma 6. Let L D L.A; l; ıl /;U D U.A; u; ıu/;U
f D U.A; u C ıu; ı

f
u /

be the matrices produced by Lemmas 7 and 8.
Let us focus on the main vector first. By Lemmas 7 and 8, we can add tv without

increasing potentials if
vTUv � 1=t � vTLv:

In fact, we will insist on v for which

vTUv C 2=� � 1=t � vTLv

as this will ensure that we can take t � �=2.
Let D.v/ D vTLv � vTUv � 2=� and call F D fxi W D.xi / � 0g the set of

feasible vectors. Let P D fxi W hxi ; zi > 0g be the set of vectors with positive inner
product with z, and let N D fxi W hxi ; zi � 0g be the vectors in the complementary
halfspace.

We will always add as little of a main vector can, so we can assume that we
take 1=t D vTLv whenever v 2 F . Here is the rule for choosing which v to add:
choose the feasible v for which thv; zi is minimized. If this quantity is negative then
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there is no need for a fix vector, and taking w D 0 we are done. Otherwise let
˛ WD minfthv; zi W v 2 Fg and notice that F � P :j

hv; zi
˛

� 1

t
D vTLv 8v 2 F : (20)

Taking a sum, we find that

X
P
ci

hxi ; zi
˛

�
X
F
ci

hxi ; zi
˛

since F � P

�
X
F
cix

T
i Lxi by (20)

�
X
F
ciD.xi / since U � 0 implies that D.xi / � xTi Lxi

�
X
i

ciD.xi / since D < 0 outside F

However, since
P

i cixi D 0 this implies that

X
N
ci

hxi ;�zi
˛

D
X
P
ci

hxi ; zi
˛

�
X
i

ciD.xi /: (21)

We will use (21) to show that a suitable fix vector w exists. We are interested in
finding a w 2 fxi g and r � 0 for which

rhw;�zi � ˛ (sufficient to reverse ˛ D thv; zi)—for (14)

wTUf w C 2=� � 1=r (upper barrier feasible with shift ıfu and r � �=2)

—for (16,17)

Thus it suffices to find a w for which

wTUf w C 2=� � hw;�zi
˛

;

and then we can squeeze 1=r in between. Taking a weighted sum over all vectors of
interest, it will be sufficient to show that

X
N
cix

T
i U

f xi C 2ci=� �
X
N
ci

hxi ;�zi
˛

:
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For the left hand side we use the crude estimate

X
N
cix

T
i U

f xi C 2ci=� �
X
N[P

cix
T
i U

f xi C 2ci=� D Tr.Uf /C 2n=�

and for the right hand side we consider that

X
N
ci

hxi ;�zi
˛

�
X
i

ciD.xi / by (21)

D
X
i

cix
T
i Lxi � cix

T
i Uxi � 2ci=�

D Tr.L/ � Tr.U/ � 2n=� since
X
i

cixi x
T
i D I

Thus it will be enough to have

Tr.Uf /C 2n=� � Tr.L/� Tr.U/ � 2n=�

which follows from our hypothesis (19) and Lemma 9. ut
Proof of Theorem 5. If we start with l0 D �1 and u0 D 1 then we can take PL D
PU D n. Setting ıu D ı

f
u D .2C �/ıl , (19) reduces to

2

.2C �/ıl
C 3nC 4n

�
� 1

ıl
;

which it is easy to check is satisfied for small enough ıl , in particular for

ıl D �2

10n
:

At the end of s steps we take

u D �
P

i bixiP
i bi

D � z

Tr.A/
;

immediately satisfying (7) and (8). To finish the proof, we notice that

.�1C sıl � kzk2
Tr.A/

/I �
X
i

bi .xi C u/.xi C u/T D A� Tr.A/uuT

� .1C s � 2.2C �/ıl /I:

Setting s D 100n=�3 and replacing � by �=3 yields (6), as promised. ut
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3 Construction of the Approximating Body

The contents of this section are very similar to Rudelson [5, Sect. 4] but the
calculations are more delicate because we must work with a .4C �/-approximate
John’s decomposition rather than a .1C �/-approximate one.

The main technical contribution is a generic procedure for turning approximate
John’s decompositions into approximating bodies:

Lemma 10. SupposeK has contact points .ci ; xi /i�m and .bi ; yi D xi Cu/i�s are
the vectors produced by Theorem 5, with

A D
X
i

biyiy
T
i

satisfying
�.A/ D kAk � kA�1k D O.1/:

Then for n sufficiently large, there is a bodyH with at most s contact points and

d.H;K/ � .1C o.1//

 
�.A/

 
1C .

p
�.A/ � 1/2
4

!!1=2
: (22)

This immediately yields a proof of Theorem 4:

Proof of Theorem 4. Since the condition number �.A/ guaranteed by Theorem 5
can be made arbitrarily close to 4, the number in (22) can be made arbitrarily close
to �

4

�
1C 1

4

��1=2
D p

5

as desired. ut
Let .bi ; yi D xi C u/i�s be the approximate John’s decomposition guaranteed

by Theorem 5, with X
i

biyi D 0

and X
i

biyi y
T
i D A:

There are two problems with this: the yi are not unit vectors, and their moment
ellipsoid E D A1=2Bn

2 is not the sphere. We will adjust the vectors in a manner that
fixes both these problems, to obtain an exact John’s decomposition . Oai ; Oui /i�s .

Add a small vector v, to be determined later, to each yi to obtain vectors

Oyi WD yi C v
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with inertia matrix

OA WD
X
i

bi Oyi OyTi D
X
i

biyiy
T
i C

X
i

bivvT D AC Tr.A/vvT : (23)

(we will use O� to denote vectors that depend on v.) Let OR WD OA1=2 and let OE WD ORBn
2

be the corresponding moment ellipsoid. If we rescale each Oyi to lie on OE, taking

Ozi WD Oyi
k Oyik OE

where k Oyik OE D k OR�1 Oyik, (24)

and then apply the inverse transformation OR�1 which maps OE to Bn
2 , we obtain unit

vectors

Oui WD OR�1Ozi :
Moreover, if these are given weights

Oai WD bik Oyik2OE
then we have an exact decomposition of the identity since

X
i

Oai Oui OuTi D OR�1
 X

i

bik Oyik2OE
Oyi OyTi

k Oyik2OE

!
OR�1 D OR�1 OA OR�1 D I: (25)

In the following lemma, we show that there must exist a small v for which the
weighted sum

X
i

Oai Oui D
X
i

bik Oyik2OE OR�1 Oyi
k Oyik OE

D OR�1
 X

i

bik Oyik OE Oyi
!

is equal to zero. This will complete the construction of . Oai ; Oui /i�s .
Lemma 11. Let bi ; yi ; A, etc. be as above and suppose Tr.A/ D ˝.n/. Then there
is a vector v with

kvk � �A WD 1C o.1/

2

�p
�.A/� 1

	s kAk
Tr.A/

(26)

for which X
i

bik Oyik OE Oyi D 0:
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Proof. We need to find a v for which

X
i

bi

q
.yi C v/T OA�1.yi C v/.yi C v/ D 0:

As in [5], we will do this using the Brouwer fixed point theorem. In particular it will
suffice to show that the function

F.v/ D �
P

i biˇ
.v/
i yiP

i biˇ
.v/
i

where ˇ.v/i D
p
.yi C v/T .AC Tr.A/vvT /�1.yi C v/

D �
P

i bi .ˇ
.v/
i � �/yiP

i biˇ
.v/
i

for any � 2 R since
X
i

biyi D 0

maps �ABn
2 to itself. We begin with the preliminary bounds

ˇ
.0/
i D

p
.xi C u/T A�1.xi C u/

� kxi C uk
p

kA�1k
� .1C o.1//

p
kA�1k since kxik D 1 and kuk � O.Tr.A/�1=2/, (27)

and similarly

ˇ
.0/
i � .1 � o.1// 1

kAk1=2 ; (28)

for all i . We now have the estimate:

kF.v/k D max
kwkD1

P
i bi .ˇ

.v/
i � �/hyi ;wiP
i biˇ

.v/
i

� .
P

i bi .ˇ
.v/
i � �/2/1=2P
i biˇ

.v/
i

� max
kwkD1

 X
i

bi hyi ;wi2
!1=2

by Cauchy–Schwarz

D .
P

i bi .ˇ
.v/
i � �/2/1=2P
i biˇ

.v/
i

� kAk1=2

� 1

1 � o.1/

.
P

i bi .ˇ
.v/
i � �/2/1=2P
i biˇ

.0/
i

� kAk1=2 by Lemma 12

� .1C o.1// � .
P

i bi .ˇ
.v/
i � �/2/1=2P
i bi

� kAk1=2 � kAk1=2 by (28)

Applying Lemma 13, we control the sum in the numerator as
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.
X
i

bi .ˇ
.v/
i � �/2/1=2 �

 
Tr.A/1=2 C

X
i

bi .ˇ
.0/
i � �/2

!1=2

�
 X

i

bi .ˇ
.0/
i � �/2

!1=2
CO.Tr.A/1=4/

using
p
a C b � p

a C
p
b

�
 X

i

bi

!1=2
� max

i
jˇ.0/i � �j CO.Tr.A/1=4/

D Tr.A/1=2 �
 

j maxi ˇ
.0/
i � mini ˇ

.0/
i j

2
C o.1/

!

setting � D .max
i
ˇ
.0/
i � min

i
ˇ
.0/
i /=2

� .1C o.1// � Tr.A/1=2

2

�
kA�1k1=2 � 1

kAk1=2
�

D .1C o.1/ � Tr.A/1=2

2kAk1=2
�p

�.A/ � 1
	
:

Substituting into the previous bound gives

kF.v/k � .1C o.1// �
p
�.A/� 1

2
�
s

kAk
Tr.A/

;

as advertised in (26). ut
Lemma 12. If kvk D O.Tr.A/�1=2/, then

X
i

biˇ
.v/
i �

X
i

biˇ
.0/
i �O.Tr.A/1=2/ � .1 � o.1// �

X
i

biˇ
.v/
i :

Proof. We can lowerbound the individual terms as

ˇ
.v/
i D k OR�1.yi C v/k

� k OR�1yik � k OR�1vk
D 


yTi .AC Tr.A/vvT /�1yi
�1=2 � k OR�1vk

D
�
yTi

�
A�1 � A�1 Tr.A/vvT A�1

1C Tr.A/vT A�1v

�
yi

�1=2
� k OR�1vk

by the Sherman-Morrison formula
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�
q
yTi A

�1yi �
�
yTi

�
A�1vvT A�1

Tr.A/�1 C vT A�1v

�
yi

�1=2
� k OR�1vk

since
p
a � b � p

a �
p
b

Taking a sum, we observe the difference of the sums that we are interested in is
bounded by

X
i

biˇ
.0/
i �

X
i

biˇ
.v/
i �

X
i

bi

�
yTi

�
A�1vvT A�1

Tr.A/�1CvT A�1v

�
yi

�1
2

C
X
i

bik OR�1vk:
(29)

The first sum is handled by Cauchy–Schwarz:

X
i

bi

�
yTi

�
A�1vvT A�1

Tr.A/�1 C vT A�1v

�
yi

�1=2

�
 X

i

bi

!1=2  X
i

biy
T
i

�
A�1vvT A�1

Tr.A/�1 C vT A�1v

�
yi

!1=2

D Tr.A/1=2
�

Tr.AA�1vvT A�1/
Tr.A/�1 C vT A�1v

�1=2

since
X
i

biyiy
T
i D A

< Tr.A/1=2:

For the second, we observe crudely that

X
i

bik OR�1vk � Tr.A/k OR�1kkvk D O.Tr.A/1=2/

since k OR�1k D O.1/ and kvk D O.Tr.A/�1=2/. Plugging these two bounds into
(29), we obtain

X
i

biˇ
.v/
i �

X
i

biˇ
.0/
i �O.Tr.A/1=2/

�
X
i

biˇ
.0/
i

 
1 � O.Tr.A/1=2/

.mini ˇ
.0/
i / �Pi bi

!

� .1 � o.1//
X
i

biˇ
.0/
i noting that min

i
ˇ
.0/
i D ˝.1/.

ut



410 N. Srivastava

Lemma 13. If kvk D O.Tr.A/�1=2/ then

X
i

bi .ˇ
.v/
i � �/2 �

X
i

bi .ˇ
.0/
i � �/2 CO.Tr.A/1=2/:

Proof. Write

X
i

bi .ˇ
.v/
i � �/2 D

X
i

bi .ˇ
.v/
i /

2 � 2biˇ
.v/
i C bi�

2:

Then .ˇ.v/i /
2 � .ˇ

.0/
i /

2 by AC Tr.A/vvT � A, and

�2
X
i

biˇ
.v/
i � �2

X
i

biˇ
.0/
i CO.2Tr.A/1=2/ by Lemma 12;

as desired. ut
Proof of Lemma 10. We are now in a position to construct the bodyH promised in
Theorem 4. LetK be a convex body with Bn

2 as its John ellipsoid and contact points
.ci ; xi /i�m. Use Theorem 5 to obtain a subsequence .bi ; yi D xi C u/i�s with only
O.n/ points. Let v; OA; fOzi gi�s, f Oyi gi�s, OR, OE , and . Oai ; Oui /i�s be as above and take

OK D K C u C v:

Let
�min WD min

kyk
OED1

kyk2;

be the size of the largest copy of Bn
2 which fits inside OE , let � > 0 be a small

constant, and consider the body

H D conv

�
�min

1C �
OK; Oz1; : : : ; Ozs

�
; (30)

which is as a shrunken version of OK with “spikes” Ozi .
We first show that H has very few contact points with its John Ellipsoid, which

is OE . Observe that each Ozi 2 @ OE since kOzik OE D 1 by construction. Moreover, as the
John Ellipsoid of K is Bn

2 we have the containments

�min

1C �
OK � �min

1C �
.Bn

2 C u C v/ � �min.1C o.1//

1C �
Bn
2 ;

since kuk; kvk D O.n�1=2/ and �min D ˝.1/, immediately implying that

�min

1C �
OK 2 int.�minBn

2 / � int. OE/:
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Thus we must have Ozi … conv �min
1C� OK and Ozi 2 @H ; moreover, these are the only

contact points of H with OE. To see that OE is indeed the John Ellipsoid of H , apply
the inverse transformation OR�1, and note that OR�1H has contact points Oui D OR�1Ozi
with Bn

2 , which we have already shown satisfy the conditions of John’s theorem
with weights Oai in (25) and Lemma 11.

It remains to bound the distance d.K;H/; we will show that

�min

1C �
OK � H � .1C �/�max OK;

for �max WD maxkyk
OED1 kyk2 D maxkykD1 kyk�1

OE . The first containment is obvious;
for the second, observe that for each i we have

kOzik OK D kxi C u C vk OK
k Oyik OE

D 1

k Oyik OE
since Oyi D xi C u C v 2 @ OK

� k Oyik � �max
� .1C o.1//�max since Oyi D xi C u C v and kuk; kvk D O.n�1=2/:

The distance between H and K is thus bounded by the ratio

.1C �/2
�max

�min
� .1C �/2

maxkykD1 kyk OE
minkykD1 kyk OE

� .1C �/2
q
�. OA/: (31)

To complete the proof, we bound �. OA/ using Theorem 5 (6) and Lemma 11 as
follows:

�. OA/ D k OAkk OA�1k
� kAC Tr.A/vvT kkA�1k since OA D AC Tr.A/vvT � A

� 
kAk C Tr.A/kvk2� kA�1k

�
�

kAk C .
1

4
C o.1//.

p
�.A/ � 1/2kAk

�
kA�1k by (26)

D �.A/

�
1C .

1

4
C o.1//.

p
�.A/� 1/2

�
:

Combining this with (31) and taking � D o.1/ gives the required bound (22). ut
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Appendix A
Related Conference and Seminar Talks

Israel GAFA Seminar
Tel Aviv University, 2006–2011

Friday, November 10, 2006

Sasha Sodin (Tel Aviv) Non-backtracking walks and the spectrum of random
matrices

Eyal Lubetzky (Tel – Aviv) Non-backtracking random walks mix faster (joint work
with N. Alon, I. Benjamini, S. Sodin)

Friday, December 1, 2006

Semyon Alesker (Tel Aviv) A new proof of the Bourgain-Milman inequality (after
G. Kuperberg)

Mark Rudelson (Columbia, MO) The smallest singular number of a random matrix

Friday, December 15, 2006

B. Mityagin (Columbus, OH) Asymptotics of instability zones of the Hill operator
with trigonometric polynomial potentials

S. Mendelson (Haifa and Canberra) Subgaussian processes are well-balanced

Friday, December 29, 2006

James Lee (Seattle, Washington) Vertex cuts, random walks, and dimension reduc-
tion

Gady Kozma (Rehovot) The scaling limit of loop-erased random walk in three
dimensions

Friday, January 12, 2007

William Johnson (College Station, TX) Eight 20+ year old problems in the geometry
of Banach spaces

Ofer Zeitouni (Haifa and Minneapolis, MN) Markov chains on an infinite dimen-
sional simplex, the symmetric group, and a conjecture of Vershik.

B. Klartag et al. (eds.), Geometric Aspects of Functional Analysis, Lecture Notes
in Mathematics 2050, DOI 10.1007/978-3-642-29849-3,
© Springer-Verlag Berlin Heidelberg 2012
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Friday, March 23, 2007

Avi Wigderson (IAS, Princeton) The power and weakness of randomness in
computation

Semyon Alesker (Tel Aviv) A Fourier type transform on translation invariant
valuations on convex sets

Friday, April 27, 2007

Emanuel Milman (Rehovot) Isoperimetric inequalities for uniformly log-concave
measures and uniformly convex bodies (Joint work with Sasha Sodin)

Victor Katsnelson (Rehovot) The Weyl and Minkowski polynomials

Wednesday, December 22, 2010

Yuval Peres (Microsoft) Cover times, blanket times and the Gaussian free field

Friday, December 31, 2010

Bo’az Klartag (Tel Aviv) The vector in subspace problem

Sergei Bobkov (Minneapolis) Concentration of information in data generated by
log-concave probability distributions

Friday, January 7, 2011

Emanuel Milman (Haifa) Interpolating thin-shell and sharp large-deviation esti-
mates for isotropic log-concave measures

Apostolos Giannopoulos (Athens) On the distribution of the  2-norm of linear
functionals on isotropic convex bodies

Friday, March 4, 2011

Semyon Alesker (Tel Aviv) A Radon type transform on valuations

Franz Schuster (Vienna) Towards a Hadwiger type theorem for Minkowski
valuations

December 26, 2011

Yuval Peres (Microsoft) Mixing times are hitting times of large sets

Peter Mester (Jerusalem) A factor of iid with continuous marginals and infinite
clusters spanned by identical labels

Friday, December 30, 2011

Yanir Rubinstein (Stanford) A priori estimates for complex Monge-Ampere
equations

Zbigniew Blocki (Krakow) Suita conjecture and the Ohsawa-Takegoshi extension
theorem
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Asymptotic Geometric Analysis Seminar
Tel Aviv University, 2007–2011

December 3, 2007

Muli Safra Extractors from polynomials

December 24, 2007

Sasha Sodin Functional versions of isoperimetric inequalities

December 12, 2007

James Lee Trees and Markov convexity

January 8, 2008

Zemer Kosalov Random complex zeroes-asymptotic normality

January 15, 2008

Nir Shahaf The geometry of majorizing measures

January 22, 2008

Emanuel Milman Almost sub-Gaussian marginals of convex bodies

March 18, 2008

Sasha Sodin Simple bounds for the extreme eigenvalues of Gaussian random
matrices, following Gordon, Szarek and Davidson

April 15, 2008

Jesús Suárez Extending operators into Lindenstrauss spaces

April 18, 2008

M. Meyer Some inequalities for increasing functions on R
n

April 22, 2008

Tal Weisblatt Alexandrov inequalities for mixed descriminants
Daniel Pasternak Power-law estimates for the central limit theorem for convex
sets
April 29, 2008

Carla Peri Geometric tomography: classical and recent results

May 16, 2008

Tal Weisblatt Bergstorm’s inequality for positive definite matrices, and a general-
ization due to Ky Fan
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May 20, 2008

Omer Friedland On Bollobás’ paper titled “An extension of the isoperimetric
inequality on the sphere”

Ronen Eldan The volume distribution of convex bodies

May 27, 2008

Sasha Sodin Hubbard–Stratonovich transform and the P. Levy concentration
function.

May 29, 2008

Boaz Klartag Unconditional convex bodies, Neumann laplacian, optimal trans-
portation and all the rest of it

Olivier Guedon Subspaces generated by orthogonal bounded systems

June 17, 2008

Tal Weisblatt Bergstorm’s inequality for mixed volumes with a Euclidean ball
(after Giannopoulos et al.)

July 7, 2008

Orit Raz Shadows of convex bodies

July 11, 2008

B. Rubin Radon transforms and comparison of volumes

July 14, 2008

Dan Florentin Cube slicing

July 18, 2008

Sasha Litvak Vertex index of convex bodies and asymmetry of convex polytopes

August 1, 2008

Shiri Artstein-Avidan Characterization of duality and the Legendre transform

August 8, 2008

Sasha Sodin A bound on the P. Levy concentration function: the multidimensional
case

August 15, 2008

Ronen Eldan Pointwise estimates for the CLT for convex sets

August 18, 2008

Boaz Slomka Characterization of duality for convex bodies

August 24,28, 2008

Apostolos Giannopoulos Volume estimates for isotropic convex bodies



A Related Conference and Seminar Talks 417

August 29, 2008

Jesüs Suárez Maurey’s extension theorem

Sasha Sodin Kwapień’s proof of the Maurey-Pisier lemma

September 7, 2008

Ronen Eldan Differential geometry of the 19th century—minimal surfaces of
revolution

September 14, 2008

Sasha Sodin A non-scary account of extremal problems related to Chebyshev,
Markov and Stieltjes and to TC systems

September 21, 2008

Sasha Sodin Extremal problems related to log-concave measures, and more

September 28, 2008

Bo’az Klartag On a seven-line paragraph by Gromov

October 5, 2008

Mark Rudelson Non-commutative Khinchine inequality for interpolation norms
(a question)

October 12, 2008

Rolf Schneider Mixed functionals and mixed bodies

October 19, 2008

Rolf Schneider Inequalities for convex bodies applied to random mosaics

November 30, 2008

Ronen Eldan Monotonicity of optimal transportation á la Caffarelli and also
Kolesnikov

December 21, 2008

Boaz Slomka Mass transport generated by a flow of Gauss maps, after Bogachev
and Kolesnikov

December 28, 2008

Alex Segal On Bokowski and Heil’s inequalities

January 11, 2009

Omer Friedland Remez inequalities (after Yomdin)

January 25 and February 2, 2009

Ronen Eldan Polynomial number of random samples cannot determine the
volume of a convex body

February 22, 2009

Omer Friedland Turan’s lemma for polynomials
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March 15, 2009

Orit Raz An introduction to Busemann-Petty type problems

March 22, 2009

Bo’az Klartag What is convexity good for?

March 29, 2009

Bo’az Klartag Geometric symmetrizations of convex bodies

April 19, 2009

Sasha Sodin Poisson asymptotics for random projections of points on a high-
dimensional sphere (joint work with Itai Benjamini and Oded Schramm)

April 26, 2009

Florin Avram Asymptotic approximations for the stationary distribution of queu-
ing networks

May 3, 2009

Dmitry Faifman Muntz’ theorem and some related inequalities

May 10, 2009

Alex Segal On the paper “On the Volume ratio of two convex bodies” by
Giannopoulos and Hartzoulaki.

May 24, 2009

Boaz Slomka Uniformly convex functions on Banach spaces

May 28, 2009

Bo’az Klartag On Nazarov’s paper “The Hormander-Hsin proof of the Bourgain-
Milman theorem”

June 6, 2009

Orit Raz Covering n-space by convex bodies and its chromatic number after a
paper by Furedi and Kang

July 3, 2009

Efim Gluskin The diameter of the Banach Mazur compactum

June 21, 2009

Ronen Eldan Brascamp-Lieb and Entropy sub-additivity are equivalent (after
Carlen and Cordero)

Bo’az Klartag The proof of Nazarov for the Bourgain-Milman inverse Santalo
inequality

July 26, 2009

Daniel Dadush Rapidly mixing random walks on convex bodies: Why isoperimet-
ric inequalities are awesome
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August 2, 2009

Orit Raz A survey about successive minima and Minkowski’s 1st and 2nd
fundamental theorems (some theorems, some conjectured)

October 6, 2009

Dima Faifman The Poisson formula and a characterisation of Fourier transform

Bo’az Klartag Some classical results regarding the restriction of homogeneous
polynomials of fixed (odd) degree and many variables to linear subspaces

October 11, 2009

Roy Wagner Intersection of ln1 and ln2 spheres after a recent paper by Sourav
Chatterjee

November 1, 2009

Dima Faifman Every polynomial of odd degree, vanishes on large subspaces

November 15, 2009

Orit Raz Best known bounds for packing balls in Euclidean space, and more

November 22, 2009

Ronen Eldan Hilbert’s proof of the Brunn-Minkowski inequality

January 10, 2010

Grigoris Paouris A recent work with Nikos Dafnis, which in particular gives a
new proof of n1=4

p
. logn/ bound for the isotropic constant

February 2, 2010

Omer Friedland A recent result with Olivier Guedon, on embedding of `np into `Nr

March 14, 2010

Gideon Schechtman Fine estimates in Dvoretzky’s theorem

March 21, 2010

Ronen Eldan A generalization of Caffarelli’s contraction theorem via (reverse)
heat flow (On the paper by E. Milman and Kim)

April 11, 2010

Sasha Sodin Berry-Esseen inequality: history and more recent results

April 18, 2010

Boaz Slomka Klartag’s result regarding Minkowski symmetrizations using spher-
ical harmonics

April 25, 2010

Bo’az Klartag Approximately gaussian marginals and the hyperplane conjecture
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May 2, 2010

Dima Faifman The algebraic Dvoretzky theorem and conjecture, and the recent
(possibly unpublished) work of Dol’nikov and Karasev on the subject

May 9, 2010

Vitali Milman The mystique of duality

May 16, 2010

Dan Florentin Fractional linear maps and order isomorphisms

May 23, 2010

Liran Rotem Results concerning the Banach Mazur distance between a general
convex body in Rn and the cube

June 6, 2010

Alex Segal Rotation invariant Minkowski classes of convex bodies (after a paper
by Rolf Schneider and Franz E. Schuster)

June 21, 2010

Ronen Eldan A stochastic formula for the entropy due to Lehec, in the spirit of
Borell

July 5, 2010

Uri Grupel Fleury’s improvement of the thin shell bound for log-concave densities

July 12, 2010

Oded Badt Alexandrov’s result concerning preservation of light cones

July 19, 2010

Ronen Eldan Kendall’s work on domain monotonicity of the heat kernel in convex
domains

July 26, 2010

Alexander Litvak On the symmetric average of a convex body (joint work with
Olivier)

August 2, 2010

Edward G. Effros Quantum information theory in the context of quantized func-
tional analysis

August 19, 2010

Dima Faifman Proof of the Gromov-Milman conjecture by Dol’nikov and Karasev

August 22, 2010

Sasha Sodin Wegner’s estimate for random Schroedinger operators
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September 6, 2010

Mark Kozdoba Euclidean Bernstein widths of some Lipschitz balls

September 20, 2010

Uri Grupel Sudakov’s classical theorem on marginals of high-dimensional
distributions

January 9, 2011

Yaron Ostrover Symplectic measurements and convex geometry

February 20, 2011

Shiri Artstein-Avidan Stability of certain operations connected with geometry

February 27, 2011

Liran Rotem “Low-M � estimate for log concave functions

March 6, 2011

Alex Segal Characterizing duality via maps interchanging sections with projec-
tions

March 13, 2011

Hermann Koenig Solutions of the chain rule and Leibniz rule functional equations

March 27, 2011

Greg Kuperberg (UC Davis) Numerical cubature from geometry and coding theory

April 10, 2011

Ronen Eldan Extremal points of a high dimensional random walk and the convex
hull of a high dimensional Brownian motion

May 15, 2011

Dima Faifman Convexity arising through the momentum mapping

May 22, 2011
Dan Florentin Santaló’s inequality by complex interpolation

May 29, 2011

Dan Florentin The B-conjecture and versions of Santaló’s inequality

June 5, 2011

Uri Grupel Thin spherical shell estimate for convex bodies with unconditional
basis

July 10, 2011

Sasha Sodin Griffiths-Ginibre inequalities

July 17, 2011
Liran Rotem On the mean width of log-concave functions
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July 24, 2011

Tomasz Tkocz (Warsaw) Volumes of projections of permutationally invariant convex
bodies

July 28, 2011
Alexander Litvak (Alberta) Tail estimates for norms of submatrices of a random
matrix and applications

August 7, 2011
Boaz Slomka On shaking convex sets, Silvester’s problem and related topics

September 4, 2011
Yanir Rubinstein The Cauchy problem for the homogeneous Monge-Ampere
equation

September 8, 2011

Alex Segal Volume inequalities on convolution bodies

September 18, 2011

Uri Grupel Central limit theorem in non convex bodies

November 6, 2011
Boaz Slomka The Jacobian conjecture

November 13, 2011

Liran Rotem Fixed points of the polarity transform for geometric convex functions

November 20, 2011

Hermann Koenig Gaussian measure of sections of the n-cube

December 23, 2011

Christos Saroglou The minimal surface area position is not always anM -position

December 4, 2011

Alex Segal Projections of log-concave functions (joint work with Boaz Slomka)
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Phenomena in High Dimensions
2nd Annual Conference, Paris, June 7–14, 2006

Wednesday, June 7, 2006

Mikhail Gromov Linearized isoperimetry

Assaf Naor Is there a local theory of metric spaces?

Semyon Alesker Some results and conjectures on valuations invariant under a
group

Dario Cordero-Erausquin Entropy of marginals and Brascamp-Lieb inequalities

Boris Kashin On some class of inequalities for orthonormal systems

Bo’az Klartag A central limit theorem for convex sets

Radoslaw Adamczak Concentration of measure for U-statistics with applications
to the law of the iterated logarithm

Daniel Hug Nakajima’s problem: Convex bodies of constant width and constant
brightness

Thursday, June 8, 2006

Noga Alon Monotone graph properties

Carsten Schütt On the minimum of several random variables

György Elekes Incidences in Euclidean spaces

Laura Wisewell Covering polygonal annuli by strips

Dimitris Gatzouras Threshold for the volume spanned by random points with
independent coordinates

Emmanuel Opshtein Maximal symplectic packings

Ofer Zeitouni Path enumeration and concentration for certain random matrices

Matthias Heveling Does polynomial parallel volume imply convexity?

Van Vu Random discrete structures

Friday, June 9, 2006

Apostolos Giannopoulos Geometry of random polytopes

Vladimir Pestov Lévy groups and the fixed point on compacta property

Shiri Artstein-Avidan Randomness reduction results in asymptotic geometric
analysis

Krzysztof Oleszkiewicz On some deviation inequality for Rademacher sums

Bernard Maurey Geometrical inequalities and Brownian motion

Matthias Reitzner Elementary moves on triangulations
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Witold Bednorz Regularity of processes with increments controlled by many
Young functions

Andrea Colesanti Remarks about the spectral gap of log-concave measures on the
real line

Stefan Valdimarsson Optimisers for the Brascamp-Lieb inequality

Stanislaw Szarek On the nontrivial projection problem

Monday, June 12, 2006

Marianna Csörnyei Structure of null sets, differentiability of Lipschitz functions,
and other problems

Antonio Aviles-Lopez Homeomorphic classification of balls in the Hilbert space

Rafał Latała On the boundedness of Bernoulli processes

Guillaume Aubrun Approximating the inertia matrix of an unconditional convex
body

Mark Rudelson Singular values of random matrices

Stefano Campi Volume inequalities for Lp-zonotopes

Sasha Sodin An isoperimetric inequality on lp balls

Alexander Litvak On the vertex index of convex bodies

Franz Schuster Rotation intertwining additive maps—properties and applications

Aicke Hinrichs Normed spaces with extremal distance to the Euclidean space

Tuesday, June 13, 2006

Monika Ludwig Affine geometry of convex bodies

Emanuel Milman Gaussian marginals of uniformly convex bodies

Grigoris Paouris Concentration of mass on convex bodies

Jesus Bastero Asymptotic behaviour of typical k-marginals of strongly concen-
trated isotropic convex bodies

Nicole Tomczak-Jaegermann Banach-Mazur distances and projections on random
subgaussian polytopes

Shahar Mendelson On weakly bounded empirical processes

Mariya Shcherbina On the volume of the intersection of a sphere with rando m
half-spaces

Cyril Roberto Rigorous results for relaxation times in kinetically constrained spin
models

Sergey Bobkov On isoperimetric constants for product probability measures

Wednesday, June 14, 2006

Gideon Schechtman Non-linear factorization of linear operators

Andrei Okounkov Algebraic geometry of random surfaces

Terence Tao The uniform uncertainty principle and applications
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Phenomena in High Dimensions
3rd Annual Conference, Samos, June 25–29, 2007

Monday, 25 June, 2007

Endre Szemerédi Some problems in extremal graph theory

Nicole Tomczak-Jaegermann Embeddings under various notions of randomness

Zoltán Füredi Almost similar configurations

Michael Krivelevich Minors in expanding graphs

Greg Kuperberg From the Mahler conjecture to Gauss linking integrals

Piotr Mankiewicz How neighbourly an m-neighbourly symmetric polytope can
be?

Rafał Latała On the infimum convolution inequality

Emanuel Milman Isoperimetric inequalities for uniformly log-concave measures
and uniformly convex bodies

Olivier Guédon Selections of arbitrary size of characters

Tuesday, 26 June, 2007

Roman Vershynin Anti-concentration inequalities

Mark Rudelson Invertibility of random matrices

Hermann König Projecting l1onto classical spaces

Tony Carbery On equivalence of certain norms on sequence spaces

Mathieu Meyer On some functional inequalities

Gabriele Bianchi Determination of a set from its covariance: Complete confirma-
tion of Matheron’s conjecture

Martin Henk Roots of Ehrhart polynomials

Stefano Campi Estimating intrinsic volumes from finitely many projections

Wednesday, 27 June, 2007

Gady Kozma Contracting Clusters of Critical Percolation

Alain Pajor Marchenko-Pastur distribution for random vectors with log concave
law

Elisabeth Werner Geometry of sets of quantum states and super-operators

Stanislaw Szarek Sets of constant height and ppt states in quantum information
theory

Guillaume Aubrun Catalytic majorization in quantum information theory
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Thursday, 28 June, 2007

Matthias Reitzner Tail inequalities for random polytopes

Alexander Koldobsky The complex Busemann-Petty problem

Wolfgang Weil Projections and liftings on the sphere

Attila Pór Density of ball packings and its application to the Hausdorff dimension
of the residual set

Alexander Sodin The non-backtracking random walk on a graph

Omer Friedland Kahane-Khinchin type Averages

Franz Schuster Valuations and Busemann-Petty type problems

Peter Pivovarov Volume thresholds for Gaussian and spherical random polytopes
and their duals

Christoph Haberl Lp intersection bodies

Joseph Lehec A simple proof of the functional Santaló inequality

Vladyslav Yaskin On strict inclusions in hierarchies of convex bodies

Boris Bukh Measurable chromatic number and sets with excluded distances

Maryna Yaskina Shadow boundaries and the Fourier transform

Stefan Valdimarsson A multilinear generalisation of the Hilbert transform and
fractional integration

Balázs Patkós Equitable coloring of random graphs

Jesús Suárez Twisting Schatten classes

Gergely Ambrus On the maximal convex chains among random points in a triangle

Friday, 29 June, 2007

Michel Ledoux Deviation inequalities on largest eigenvalues

Vitali Milman On some recent achievements of Asymptotic Geometric Analysis

Alexander Litvak Vertex index of convex bodies and asymmetry of convex
polytopes

Mariya Shcherbina Central limit theorem for linear eigenvalue statistics of orthog-
onally invariant matrix models

Krzysztof Oleszkiewicz Gaussian concentration of vector valued random variables

Bo’az Klartag Rate of convergence in the central limit theorem for convex bodies
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Phenomena in High Dimensions
4th Annual Conference, Seville, 23–27 June 2008

Monday, 23 June, 2008

Hermann König Measure of sections and slabs of the n-cube

Nathael Gozlan Concentration of measure, Transport and Large Deviations

Stanislaw Szarek Concentration for non-commutative polynomials in random
matrices

Sergey G. Bobkov Convex bodies and norms associated to convex measures

Elisabeth Werner On Lp affine surface area

Yehoram Gordon Generalizing the Johnson-Lindenstrauss lemma to k-dimensional
affine subspaces

Alexander Litvak Covering convex bodies by cylinders

Tuesday, 24 June, 2008

Ben Green The Gowers norms

Mireille Capitaine Asymptotic spectrum of large deformed Wigner matrices

Andrea Colesanti The Minkowski problem for the torsional rigidity

Olivier Guedon On the isotropic constant of random polytopes

Emanuel Milman On the role of convexity in isoperimetry, spectral-gap and
concentration

Matthieu Fradelizi Some functional inverse Santaló inequalities

Andreas Winter Some applications of measure concentration in quantum informa-
tion theory

Rafał Latała Bounds on moments of linear combinations of log-concave random
vectors

Krzysztof Oleszkiewicz Precise tail estimates for products and sums of indepen-
dent random variables

Carsten Schütt Uniform estimates for order statistics and Orlicz functions

Wednesday, 25 June, 2008

Daniel Hug Random polytopes and mosaics: asymptotic results

Monika Ludwig General affine surface areas

Wolfgang Weil Generalized Averages of Section and Projection Functions

Franz Schuster General Lp affine isoperimetric inequalities

M. Angeles Hernández Cifre On the volume of inner parallel bodies

Nigel Kalton The uniform structure of Banach spaces
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Thursday, 26 June, 2008

Ofer Zeitouni The single ring theorem

Alexander Soshnikov On the largest eigenvalues of large random Wigner matrices
with non-symmetrically distributed entries

Alexander Sodin Universality on the edge in random matrix theory: Around
Soshnikov’s theorems

William B. Johnson A characterization of subspaces and quotients of reflexive
Banach spaces with unconditional bases

Ronen Eldan Pointwise estimates for marginals of convex bodies

Gana Lytova Central limit theorem for linear eigenvalue statistics of the Wigner
and the sample covariance random matrices

Chiara Bianchini Geometric inequalities for the Bernoulli constant

Jesús Suárez On a problem of Lindenstrauss and Pelczynski

Pawel Wolff Spectral gap for conservative spin systems: The case of gamma
distribution

Joseph Lehec Equipartitions and functional Santaló inequalities

Eugenia Saorı́n From Brunn-Minkowski to Poincaré type inequalities

Marisa Zymonopoulou Sections of complex convex bodies

David Alonso-Gutiérrez An extension of the hyperplane conjecture and the
Blaschke-Santaló inequality

Maryna Yaskina Christoffel’s problem and the Fourier transform

Peter Pivovarov On the mean-width of isotropic convex bodies

Vladyslav Yaskin Christoffel’s problem and the Fourier transform. Part II.

Friday, 27 June, 2008

Gil Kalai Fourier analysis of Boolean functions and applications

James R. Lee Expander codes and pseudorandom subspaces

Semyon Alesker A Fourier type transform on translation invariant valuations on
convex sets

Nathan Linial What is high-dimensional combinatorics?

François Bolley Mean field limits of stochastic interacting particle systems

Subhash Khot Inapproximability of NP-complete problems, discrete Fourier ana-
lysis, and geometry
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Affine Convex Geometric Analysis
Banff, January 11–15, 2009
Organizers: Monika Ludwig, Alina Stancu, Elisabeth Werner

Monday, January 12, 2009

Rolf Schneider The role of the volume product in stochastic geometry

Mathieu Meyer Once again on Mahler’s problem

Nicole Tomczak-Jaegermann Random points uniformly distributed on an isotropic
convex body

Alexander Litvak On vectors uniformly distributed over a convex body

Joseph Lehec A functional approach to the Blaschke-Santaló inequality

Matthieu Fradelizi The volume product of convex bodies with many symmetries

Tuesday, January 13, 2009

Matthias Reitzner A classification of SL.n/ invariant valuations

Fedor Petrov Affine surface area and rational points on convex surfaces

Christoph Haberl Blaschke valuations

Peter J. Olver Moving frames, differential invariants and surface geometry

Franz Schuster Valuations and affine Sobolev inequalities

Christian Steineder The volume of the projection body and binary coding
sequences

Carlo Nitsch Affine isoperimetric inequalities and Monge-Amp‘ere equations

Wednesday, January 14, 2009

Franck Barthe Remarks on conservative spin systems and related questions in
convexity

Andrea Colesanti Recent contributions to the Christoffel problem coming from
partial differential equations

Marina Yaskina Non-symmetric convex bodies and the Fourier transform

Thursday, January 15, 2009

Mark Rudelson

Mark Meckes On the measure-theoretic analogue of Dvoretzky’s theorem

Eugenia Saorı́n Gómez ApproachingK by its form body and kernel
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Vlad Yaskin On strict inclusions in hierarchies of convex bodies

Marisa Zymonopoulou New examples of non-intersection bodies

Olivier Guédon Invertibility of matrices with iid columns

Efrén Morales Amaya Characterization of ellipsoids by means of parallel trans-
lated sections

Daniel Hug Random polytopes: Geometric and analytic aspects
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State of Geometry and Functional Analysis
Tel Aviv University and Dead Sea, June 24–30, 2009
Conference in honour of the
70th Birthday of Professor Vitali Milman

Organizers: S. Alesker, S. Artstein-Avidan, B. Klartag, S. Mendelson
Scientific committee: N. Alon, J. Bernstein, J. Bourgain, M. Gromov, M. Talagrand

Wednesday, June 24, 2009
N. Alon Graph Eigenvalues and the interplay between discrete and continuous
isoperimetric problems
Y. Eliashberg Leonard M. Blumenthal Lecture in Geometry: Symplectic topology
of Stein manifolds
S.G. Bobkov Geometric and analytic problems in the theory of heavy-tailed convex
measures
P. Enflo Extremal vectors and invariant subspaces
A. Wigderson Applications of TCS techniques to geometric problems
M. Gromov

Thursday, June 25, 2009

D. Kazhdan Satake isomorphism for symmetrizable Kac-Moody algebras
J. Lindenstrauss Frechet differentiability, porosity and asymptotic structure in
Banach spaces
S. Argyros The solution of the “Scalar plus Compact” problem
I. Benjamini Random planar geometry
J. Bourgain Expansion in linear groups and applications

Mini symposium on Asymptotic Geometric Analysis
Organizers: A. Litvak, V. Milman
Speakers: J. Bernues, M. Fradelizi, O. Maleva, T. Schlumprecht, S. Szarek,
A. Tsolomitis

Friday, June 26, 2009, Dead Sea

L. Pastur Universalities in random matrix theory
A. Giannopoulos Volume distribution on high-dimensional convex bodies
D. Preiss Lipschitz functions and negligible sets

Mini symposium in Convexity
Organizers: S. Alesker, M. Ludwig
Speakers: I. Barany, A. Bernig, K. Boroczky, D. Hug, A. Koldobsky, D. Ryabogin,
A. Stancu, W. Weil, E. Werner, A. Zvavitch
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Sunday, June 28, 2009

P. Gruber A short survey of the geometry of numbers and modern applications of
a classical idea
M. Ledoux Measure concentration, functional inequalities, and curvature of metric
measure spaces
N. Tomczak-Jaegermann Random matrices with independent columns

Monday, June 29, 2009

O. Zeitouni Limit laws for the eigenvalues of certain matrix ensembles
B. Bollobas Convergent sequences of graphs
V. Bergelson Ergodic theory along polynomials and combinatorial number theory
V. Pestov Ramsey-Dvoretzky-Milman phenomenon: a survey
J.-M. Bismut The hypoelliptic laplacian and its applications

Mini symposium on Probability in Convex Bodies
Organizers: B. Klartag, R. Vershynin
Speakers: R. Latała, E. Milman, K. Oleszkiewicz, G. Paouris, M. Shcherbina,
S. Sodin, A. Volcic

Tuesday, June 30, 2009

G. Kalai Noisy quantum computers above the “Threshold”
Y. Sinai Non-standard Ergodic theorems and limit theorems
S. Novikov New Discretization of Complex Analysis
M. Rudelson Invertibility and spectrum of random matrices
R. Schneider Classical convexity and stochastic geometry
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Conference on Convex and Discrete Geometry
Technische Universität, Vienna, July 13–17, 2009
On the occasion of the retirement of Peter M. Gruber

Organizer: Buchta, Haberl, Ludwig, Reitzner, Schuster

Monday, July 13, 2009

Rolf Schneider (Freiburg) The many appearances of zonoids

Günter M. Ziegle (Berlin) Some centrally-symmetric polytopes

Paul Goodey (Norman) Some stereological results for non-symmetric convex bodies

Konrad Swanepoel (Chemnitz) Maximal pairwise touching families of translates of
a convex body

Karoly Böröcz (Budapest) A characterization of balls

Ivan Netuka (Prague) Jensen measures and harmonic measures

Rajinder Hans-Gill (Chandigarh) On conjectures of Minkowski & Woods

Nikolai Dolbilin (Moscow)

Tuesday, July 14, 2009

Keith Ball (London) Superexpanders and Markov cotype in the work of Mendel and
Naor

Apostolos Giannopoulos (Athens) Asymptotic shape of a random polytope in a
convex body

Stefano Campi (Siena) Estimating intrinsic volumes of a convex body from finitely
many tomographic data

Richard Gardner (Bellingham) Capacities, surface area, and radial sums

Carla Peri (Milan) On some new results in discrete tomography

Aljoša Volčič (Cosenza) Random symmetrizations of measurable sets

Luis Montejano (Mexico City) Topology and Transversal

Margarita Spirova (Chemnitz) Bodies of constant width in Minkowski geometry
and related coverings problems

Wednesday, July 15, 2009

Peter McMullen (London) Translation tilings by polytopes

Semyon Alesker (Tel Aviv) Product on valuations

Andreas Bernig (Fribourg) Integral geometry of transitive group actions

Bo’az Klartag (Tel Aviv) On nearly radial marginals of high-dimensional proba-
bility measures
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Thursday, July 16, 2009

Imre Bárány (Budapest) Simultaneous partitions by k-fans

Iskander Aliev (Cardiff) On feasibility of integer knapsacks

Martin Henk (Magdeburg) Successive minima type inequalities

Chuanming Zong (Beijing) Geometry of numbers in Vienna

Nikolai Dolbilin & Arkadii Maltsev (Moscow) Sergey Ryshkov

Gábor Fejes Tót ( Budapest) László Fejes Tóth

David Larman (London) Victor Klee and Ambrose Rogers

Jörg Will (Siegen) Edmund Hlawka

Friday, July 17, 2009

Vitali Milman (Tel Aviv) Duality and rigidity for families of convex functions

Wolfgang Weil (Karlsruhe) Integral geometry of translation invariant functionals

Daniel Hug (Karlsruhe) Typical cells and faces in Poisson hyperplane mosaics

Idzhad Kh. Sabitov (Moscow) On the notion of combinatorial p-parametricity of
polyhedra

Serguei Novikov (Moscow) New discretization of complex analysis (DCA)



A Related Conference and Seminar Talks 435

Thematic Program on Asymptotic Geometric Analysis
Fields Institute, July–December 2010

Concentration Period on Convexity
September 9–10, 2010
Organizer: Monika Ludwig

Workshop on Asymptotic Geometric Analysis and
Convexity
September 13–17, 2010
Organizers: Monika Ludwig, Vitali Milman and Nicole Tomczak-Jaegermann

Concentration Period on Asymptotic Geometric Analysis
September 20, 2010

Thursday, September 9, 2010

Dan Klain (University of Massachusetts Lowell) If you can hide behind it, can you
hide inside it?

C. Hugo Jimenez (University of Seville) On the extremal distance between two
convex bodies

Maria A. Hernandez Cifre (Universidad de Murcia) On the location of roots of
Steiner polynomials

Vitali Milman (Tel Aviv University) Convexity in windows

Wolfgang Weil (Karlsruhe Institute of Technology) Valuations and local functionals

Friday, September 10, 2010

Alina Stancu (Concordia University, Montreal) Affine Differential Invariants for
Convex Bodies

Deping Ye (The Fields Institute) On the homothety conjecture

Mathieu Meyer (Université de Paris Est Marne-la-Vallée) Functional inequalities
related to Mahler’s conjecture

Monday, September 13, 2010

Hermann Koenig (University of Kiel, Germany) The chain rule as a functional
equation

Maryna Yaskina (University of Alberta) Shadow boundaries and the Fourier trans-
form

Peter Pivovarov (Fields Institute) On the volume of random convex sets

Deane Yang (Polytechnic Institute of NYU) Towards an Orlicz Brunn-Minkowski
theory
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Alexander Litvak (University of Alberta) On the Euclidean metric entropy

Emanuel Milman (University of Toronto) Properties of isoperimetric, spectral-gap
and log-Sobolev inequalities via concentration

Elizabeth Meckes (Case Western Reserve University) Another observation about
operator compressions

Gautier Berck Invariant distributions in integral geometry

Tuesday, September 14, 2010

Radoslaw Adamczak (University of Warsaw/Fields Institute) Random matrices with
independent log-concave rows

Kei Funano (Kumamoto University) Concentration of measure phenomenon and
eigenvalues of Laplacian

Andrea Colesanti (Universitá di Firenze) Integral functionals verifying a Brunn-
Minkowski type inequality

Franz Schuster (Vienna University of Technology) Translation invariant valuations

Artem Zvavitch (Kent State University) Some geometric properties of intersection
body operator

Distinguished Lecture Series
September 14–16, 2010

Avi Wigderson (Institute for Advanced Study) Randomness, pseudorandomness and
derandomization

Wednesday, September 15, 2010

Daniel Hug (Karlsruhe Institute of Technology) Volume and mixed volume inequal-
ities in stochastic geometry

Christoph Haberl (Vienna University of Technology) Minkowski valuations inter-
twining the special linear group

Matthias Reitzner (Univ. Osnabrueck) Poisson-Voronoi approximation

Olivier Guedon (Université Paris-Est Marne-La-Vallée) Embedding from lnp into lNr
for 0 < r < p < 2

Roman Vershynin (University of Michigan) Estimation of covariance matrices

Jie Xiao (Memorial University) Volume integral means of holomorphic mappings

Martin Henk (University of Magdeburg) The average Frobenius number

Thursday, September 16, 2010

Krzysztof Oleszkiewicz (Institute of Mathematics: University of Warsaw and Polish
Academy of Sciences) Feige’s inequality

David Alonso (Universidad de Zaragoza, Fields Institute) Volume of Lp-zonotopes
and best best constants in Brascamp-Lieb inequalities

Dmitry Faifman (Tel Aviv University) The Poisson summation formula uniquely
characterizes the Fourier transform
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Grigoris Paouris (Texas A&M University) On the existence of subgaussian direc-
tions for log-concave measures

Alexander Barvinok (University of Michigan) Gaussian and almost Gaussian
formulas for volumes and the number of integer points in polytopes

Carla Peri (Università Cattolica – Piacenza) On the reconstruction of inscribable
sets in discrete tomography

Mikhail Ostrovskii (St. Johns University, Queens, NY) Properties of metric spaces
which are not coarsely embeddable into a Hilbert space

Friday, September 17, 2010

Rafał Latała (University of Warsaw) Moments of unconditional logarithmically
concave vectors

Vladyslav Yaskin (University of Alberta) The geometry of p-convex intersection
bodies

Nikolaos Dafnis (University of Athens) Small ball probability estimates,  2-
behavior and the hyperplane conjecture

Fedor Nazarov (University of Wisconsin at Madison) Hormander’s proof of the
Bourgain-Milman theorem

Mark Rudelson (University of Missouri) Spectral properties of random conjunction
matrices

Coxeter Lecture Series
September 17,20,21, 2010

Shiri Artstein-Avidan [Sept. 17] (Tel Aviv University) Abstract duality, the Legendre
transform and a new duality transform
[Sept. 20] Order isomorphisms and the fundamental theorem of affine geometry
[Sept. 21] Multiplicative transforms and characterization of Fourier transform

Monday, September 20, 2010

Gideon Schechtman (Weizmann Institute of Science, Rehovot) Tight embedding of
subspaces of Lp in lnp for even p

Julio Bernues (University of Zaragoza) Factoring Sobolev inequalities through
classes of functions

Stanislaw J. Szarek (Université Paris 6 and Case Western Reserve University,
Cleveland) Peculiarities of Dvoretzky’s Theorem for Schatten classes

Yehoram Gordon (Technion, Haifa) Large distortion dimension reduction using
random variables



438 A Related Conference and Seminar Talks

Workshop on the Concentration Phenomenon,
Transformation Groups and Ramsey Theory
October 12–15, 2010
Organizers: Eli Glasner, V. Pestov and S. Todorcevic

Tuesday, October 12, 2010

Slawomir Solecki (University of Illinois) Finite Ramsey theorems

Claude Laflamme (University of Calgary) The hypergraph of copies of countable
homogeneous structures

Ilijas Farah (York University) Classification of nuclear C �-algebras and set theory

Kei Funano (Kumamoto University) Concentration of maps and group actions

Matthias Neufang (The Fields Institute and Carleton University) Topological centres
for group algebras, actions, and quantum groups

Vladimir Pestov (University of Ottawa) Ergodicity at identity of measure-preserving
actions of Polish groups

Wednesday, October 13, 2010

Lewis Bowen (Texas A&M University) Entropy of group actions on probability
spaces

Arkady Leiderman (Ben-Gurion University) On topological properties of the space
of subgroups of a discrete group

Hanfeng Li (SUNY at Buffalo) Entropy for actions of sofic groups

Kostyantyn Slutskyy (University of Illinois at Urbana-Champaign) Classes of topo-
logical similarity in Polish groups

Sergey Bezuglyi (Institute for Low Temperature Physics) Homeomorphic measures
on a Cantor set

Eli Glasner (Tel Aviv University) Topological groups with Rohlin properties

Thursday, October 14, 2010

Norbert Sauer (University of Calgary) On the oscillation stability of universal
metric spaces

Aleksandra Kwiatkowska (University of Illinois at Urbana-Champaign) Point real-
izations of near-actions of groups of isometries

Lionel Nguyen Van Thé (Université Aix-Marseille 3, Paul Cézanne) Universal flows
for closed subgroups of the permutation group of the integers

Jan Pachl (Fields Institute) Uniform measures and ambitable groups

Todor Tsankov (Paris 7) Unitary representations of oligomorphic groups

Yonatan Gutman (Université Paris-Est Marne-la-Vallée) Minimal hyperspace
actions of Homeo.bwnw/
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Friday, October 15, 2010

Jose Iovino (The University of Texas at San Antonio) From discrete to continuous
arguments in logic. What is needed and why

Miodrag Sokic (California Institute of Technology) Posets with linear orderings

Julien Melleray (Univ. Lyon 1) Applications of continuous logic to the theory of
Polish groups

Jakub Jasinski (University of Toronto) Ramsey degrees of boron tree structures

Pandelis Dodos (University of Athens) Density Ramsey theory of trees

Vadim Kaimanovich (University of Ottawa) Continuity of the asymptotic entropy
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Workshop on Geometric Probability and Optimal
Transportation
November 1–5, 2010

Concentration Periods
October 25–19 and November 8–10

Organizers: B. Klartag and R. McCann

Monday, October 25, 2010

Frank Morgan (Williams College) Densities from geometry to Poincaré

Israel Michael Sigal (University of Toronto) Singularity formation under the mean-
curvature flow

Tuesday, October 26, 2010

Aldo Pratelli (Pavia, Italy) About the approximation of orientation-preserving
homeomorphisms via piecewise affine or smooth ones

Mariya Shcherbina (Institute for Low Temperature Physics Ukr. Ac. Sci.) Orthogo-
nal and symplectic matrix models: universality and other properties

Scott Armstrong (University of Chicago) An introduction to infinity harmonic
functions (in the framework of a Graduate Minicourse, part 1)

Charles Smart (New York University) An introduction to infinity harmonic func-
tions (in the framework of a Graduate Minicourse, part 2)

Wednesday, October 27, 2010

Tony Gomis (NBI) A domain decomposition method, Cherruault transformations,
homotopy perturbation method, and nonlinear dynamics: theories and comparative
applications to frontier problems

Jerome Bertrand (University Paul Sabatier Toulouse) Wasserstein space over
Hadamard space

Amir Moradifam (University of Toronto) Isolated singularities of polyharmonic
inequalities

Magda Czubak (University of Toronto) Topological defects in the abelian Higgs
model

Thursday, October 28, 2010

Scott Armstrong (University of Chicago) An introduction to infinity harmonic
functions (in the framework of a Graduate Minicourse, part 3)

Charles Smart (New York University) An introduction to infinity harmonic func-
tions (in the framework of a Graduate Minicourse, part 4)

Jiakun Liu (Princeton University) Global regularity of the reflector problem
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Friday, October 29, 2010

Philippe Delanoe (CNRS at University of Nice Sophia Antipolis) Remarks on the
regularity of optimal transport

Young-Heon Kim (University of British Columbia) Regularity of optimal transport
maps on multiple products of spheres

Monday, November 1, 2010

Alexander Plakhov (University of Aveiro) Optimal mass transportation and billiard
scattering by rough bodies

Brendan Pass (University of Toronto) The multi-marginal optimal transportation
problem

Alexander Kolesnikov (MSUPA and HSE (Moscow)) Sobolev regularity of optimal
transportation

Gabriel Maresch (TU Vienna) Optimal and better transport plans

Emil Saucan (Department of Mathematics, Technion, Haifa, Israel) Triangulation
and discretizations of metric measure spaces

Jun Kitagawa (Princeton University) Regularity for the optimal transport problem
with Euclidean distance squared cost on the embedded sphere

Cédric Villani (Institut Henri Poincaré, Université Claude Bernard Lyon 1) What is
the fate of the solar system? (in the framework of the Distinguished Lecture Series)

Tuesday, November 2, 2010

Nassif Ghoussoub (University of British Columbia) Homogenization, inverse prob-
lems and optimal control via selfdual variational calculus

Yi Wang (Princeton University) The Aleksandrov-Fenchel inequalities of k+1-
convex domains

Vitali Milman (Tel Aviv University) Overview of asymptotic geometric analysis; an
introduction (in the framework of a Graduate Course)

Alexander Koldobsky (University of Missouri-Columbia) Positive definite functions
and stable random vectors

Nicola Gigli (University of Nice) The Heat Flow as Gradient Flow

Wednesday, November 3, 2010

Irene M. Gamba (The University of Texas at Austin) Convolution inequalities for
Boltzmann collision operators and applications

Micah Warren (Princeton University) Parabolic optimal transport equations on
compact manifolds

Dmitry Jakobson (McGill University, Department of Mathematics and Statistics)
Curvature of random metrics

Alfredo Hubard (NYU) Can you cut a convex body into five convex bodies, with
equal areas and equal perimeters?
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Cédric Villani (l’Institut Henri Poincaré, Université Claude Bernard Lyon 1) Particle
systems and Landau damping (in the framework of the Distinguished Lecture
Series)

Thursday, November 4, 2010

Alessio Figalli (University of Texas at Austin) The geometry of the Ma-Trudinger-
Wang condition (in the framework of a Graduate Course)

Cédric Villani (l’Institut Henri Poincaré, Université Claude Bernard Lyon 1) From
echo analysis to nonlinear Landau damping (in the framework of the Distinguished
Lecture Series)

Michael Loss (School of Mathematics, Georgia Tech) Hardy-Littlewood-Sobolev
Inequalities via Fast Diffusion Flows

Mark Meckes (Case Western Reserve University) The magnitude of a metric space

Shaghayegh Kordnoori (Islamic Azad University North Tehran Branch) Central
limit theorem and geometric probability

Marjolaine Puel (IMT Toulouse, France) Jordan-Kinderlehrer-Otto scheme for a
relativistic cost

Joseph Lehec (Universit Paris-Dauphine) A stochastic formula for the entropy and
applications

Friday, November 5, 2010

Luigi Ambrosio (Scuola Normale Superiore) Elements of geometric measure theory
in Wiener spaces

Paul Woon Yin Lee (UC Berkeley) Generalized Ricci curvature bounds for three
dimensional contact subriemannian manifolds

Elton Hsu (Department of Mathematics, Northwestern University) Mass transporta-
tion and optimal coupling of Brownian motions

Emanuel Milman (University of Toronto) A generalization of Caffarelli’s contrac-
tion theorem via heat-flow

Wilfrid Gangbo (Georgia Institute of Technology) Sticky particle dynamics with
interactions

Monday, November 8, 2010

Konstantin Khanin (University of Toronto) Lagrangian dynamics on shock mani-
folds

Walter Craig (Department of Mathematics and Statistics, McMaster University) On
the size of the Navier-Stokes singular set

Marina Chugunova (University of Toronto) Finite speed propagation of the interface
and blow-up solutions for long-wave unstable thin-film equations

Gideon Simpson (University of Toronto) Coherent structures in the nonlinear
Maxwell equations

Stephen W. Morris (University of Toronto) Icicles, washboard road and meandering
syrup
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Wednesday, November 10, 2010

Boris Khesin (University of Toronto) Optimal transport and geodesics for H1

metrics on diffeomorphism groups

Seminar

Wednesday, September 22, 2010

Rafał Latała Gaussian approximation of moments of sums of independent subex-
ponential random variables

Monday, September 27, 2010

Krzysztof Oleszkiewicz A convolution inequality which implies Khinchine
inequality with optimal constants (joint with Piotr Nayar)

Wednesday, October 6, 2010

Karsten Schütt (Kiel) A note on Mahler’s conjecture

Thursday, October 7, 2010

Eli Glasner (Tel Aviv) Representations of dynamical systems on Banach spaces

Friday, October 8, 2010

Norbert Sauer (Calgary) Introduction to homogeneous structures and their partitions

Wednesday, October 20, 2010

Leonid Pastur (Academy of Sciences of Ukraine) “YES” and “NO” for the validity
of Central Limit Theorem for spectral statistics of random matrices

Thursday, October 21, 2010

Sergey Bezuglyi (Institute for Low Temperature, Kharkov) Full groups in Cantor,
Borel and measurable dynamics

Wednesday, November 17, 2010

Vladimir Pestov (Universite d’Ottawa) Non-locally compact Polish groups: some
examples, techniques, results, and open problems, I

Thursday, November 18, 2010

Vladimir Pestov (Université d’Ottawa) Non-locally compact Polish groups: some
examples, techniques, results, and open problems, II

Wednesday, November 24, 2010

Nicole Tomczak-Jaegermann Singular numbers of random matrices in asymptotic
non-limit regime

Thursday, November 25, 2010

Radek Adamczak Bernstein type inequalities for geometrically ergodic Markov
chains
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Wednesday, December 1, 2010

Rafał Latała

Young Researchers Seminar
Steven Taschuk (University of Alberta) Milman’s other proof of the Bourgain–
Milman theorem

Tuesday, September 28, 2010

Susanna Spektor (University of Alberta) Bernstein-type inequality for independent
random matrices

Tuesday, October 5, 2010

Kei Funano (Kumamoto University) Can we capture the asymptotic behavior of 
k?

Monday, October 18, 2010

Yonatan Gutman (Université Paris-Est Marne-la-Vallée) Universal minimal spaces

Tuesday, October 19, 2010

Anastasios Zouzias (University of Toronto) Low rank matrix-valued Chernoff
bounds and approximate matrix multiplication

Tuesday, October 26, 2010

Kostya Slutsky (University of Illinois at Urbana-Champaign) Ramsey action of
Polish groups

Tuesday, November 9, 2010

Alexander Segal (Tel-Aviv University) Stability of the Brunn-Minkowski inequality

Tuesday, November 16, 2010

Dominic Dotterrer (University of Toronto) Triangles in a box

Tuesday, November 30, 2010

David Alonso-Guttierez On the projections of polytopes and their isotropy
constant

Thursday, December 2, 2010

Peter Pivovarov Isoperimetric problems for random convex sets

Tuesday, December 7, 2010

Deping Ye Additivity conjecture via Dvoretzky’s theorem
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Conference on Geometry and the Distribution of Volume
on Convex bodies
Kibbutz Hagoshrim Guest House and Tel Aviv University Israel,
March 31–April 5, 2011
Organizers: Shiri Artstein-Avidan, Bo’az Klartag, Shahar Mendelson, Emanuel
Milman, Vitali Milman, Rolf Schneider

Thursday, March 31, 2011

Rolf Schneider (Freiburg) Diametrically complete sets in normed spaces

Dan Florentin (Tel Aviv) Convexity on windows,

Friday, April 1, 2011

Boaz Klartag (Tel Aviv) The Logarithmic Laplace Transform in Convex Geometry

Nikolaos Dafnis (Athens) Estimates for the affine and dual affine quermassintegrals
of convex bodies

Alex Segal (Tel Aviv) Duality through exchange of section/projection property

Daniel Hug (Essen) Random tessellations in high dimensions

Boaz Slomka (Tel Aviv) Order isomorphisms for cones and ellipsoids

Dmitrii Faifman (Tel Aviv) Some invariants of Banach spaces through associated
Finsler manifolds

Sunday, April 3, 2011

Wolfgang Weil (Karlsruhe) Curvature measures and generalizations

Liran Rotem (Tel Aviv) A la finite volume ratio and low M � estimate for log-
concave functions

Monday, April 4, 2011
Emanuel Milman (Haifa) Volumetric properties of log-concave measures and
Paouris’ q� parameter

Petros Valettas (Athens) Distribution of the  2-norm of linear functionals on
isotropic convex bodies

Antonis Tsolomitis (Samos) Random polytopes in convex bodies

Tuesday, April 5, 2011

Apostolos Giannopoulos (Athens) Problems about positions of convex bodies

Ronen Eldan (Tel Aviv) On extremal points of a high dimensional random walk and
the convex hull of a high dimensional Brownian motion

Grigoris Paouris (College Station) Estimates for distances and volumes of k-
intersection bodies
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Wednesday, April 6, 2011

Dimitris Gatzouras (Heraclion) Random 0–1 polytopes

Semyon Alesker (Tel Aviv) Valuations and integral geometry

Omer Friedland (Tel Aviv) Sparsity and other random embeddings
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Conference on Convex and Integral Geometry
Goethe-University Frankfurt, September 26–30, 2011
Organizers: Andreas Bernig, Monika Ludwig, Franz Schuster

Monday, September 9, 2011

Richard Gardner (Western Washington University) Fundamental properties of
operations between sets

Dmitry Ryabogin (Kent State University) A problem of Klee on inner section
functions of a convex body

Wolfgang Weil (Karlsruhe Institute of Technology) Projection formulas for valua-
tions

Joseph Fu (University of Georgia) Results and prospects in integral geometry

Gil Solanes (Universitat Autónoma de Barcelona) Integral geometry of complex
space forms

Thomas Wannerer (Vienna University of Technology) Centroids of Hermitian area
measures

Tom Leinster (University of Glasgow) Integral geometry for the 1-norm

Tuesday, September 27, 2011

Shiri Artstein-Avidan (Tel Aviv University) Dirential analysis of polarity

Andrea Colesanti (University of Florence) Derivatives of integrals of log-concave
functions

Daniel Hug (Karlsruhe Institute of Technology) Mixed volumes, projection func-
tions and flag measures of convex bodies

Alina Stancu (Concordia University) On some equi-affine invariants for convex
bodies

Gaoyong Zhang (Polytechnic Institute of NYU) The Minkowski problem

Manuel Weberndorfer (Vienna University of Technology) Simplex inequalities for
asymmetric Wulff shapes

Marı́a A. Hernández Cifre (University of Murcia) Coverings and compressed
lattices

Wednesday, September 28, 2011

Christoph Haberl (University of Salzburg) Body valued valuations

Judit Abardia (Goethe-University Frankfurt) A characterization of complex projec-
tion bodies

Lukas Parapatits (University of Salzburg) Linearly intertwining Lp-Minkowski
valuations

Semyon Alesker (Tel Aviv University) Theory of valuations and integral geometry
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Thursday, September 29, 2011

Eva B. Vedel Jensen (University of Aarhus) Rotational integral geometry

Jan Rataj (Charles University Prague) Critical values and level sets of distance
functions

Georges Comte (University of Savoie) Real singularities and local Lipschitz-Killing
curvatures

Martina Zähle (Friedrich-Schiller-University Jena) Local and global curvatures for
classes of fractals

Matthias Reitzner (University of Osnabrück) Real-valued valuations

Eugenia Saorı́n Gómez (University of Magdeburg) Inner quermassintegrals inequal-
ities

Eberhard Teufel (University of Stuttgart) Linear combinations of hypersurfaces in
hyperbolic space

Ivan Izmestiev (TU Berlin) Infinitesimal rigidity of convex surfaces through varia-
tions of the Hilbert-Einstein functional

Friday, September 30, 2011

Rolf Schneider (Albert-Ludwigs-University Freiburg) Random tessellations and
convex geometry – a synopsis

Christoph Thäle (University of Osnabrück) Integral geometry and random tessella-
tion theory

Gautier Berck (Polytechnic Institute of NYU) Regularized integral geometry

Vitali Milman (Tel Aviv University) The reasons behind some classical constructions
in analysis
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Colloquium on the Occasion of the 70th Birthday of
Peter M. Gruber
Vienna, October 20–21, 2011
Organizers: Monika Ludwig, Gabriel Maresch, Franz Schuster, Christian Steineder

Thursday, October 20, 2011

Martin Henk (Magdeburg) Frobenius numbers and the geometry of numbers

Rajinder J. Hans-Gil (Chandigarh) On Conjectures of Minkowski and Woods

Jörg Wills (Siegen) Successive minima and the zeros of the Ehrhart polynomial

Friday, October 21, 2011

Peter Gruber (Vienna) Some flowers from my mathematical garden

Matthias Reitzner (Osnabrück) Approximation of convex bodies by polytopes

Vitali Milman (Tel Aviv) Operator and functional equations characterizing some
constructions in analysis

Chuanming Zong (Beijing) Classification of convex lattice polytopes

Rolf Schneider (Freiburg) Constant width and diametrical completeness
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