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Preface

The theory of L-functions of one complex variable has a long and colorful history
going back to Euler, Dirichlet, and Riemann, among others. L-functions associated
to representations of Galois groups (Artin L-functions) as well as geometric
L-functions associated to algebraic varieties (Hasse-Weil L-functions) have been
extensively studied in the last 60 years. There is now a grand unification theory
of L-functions of one complex variable, loosely called the Langlands program,
which conjecturally associates to each L-function satisfying certain basic properties
such as:

• Meromorphic continuation (with finitely many poles)
• Moderate growth
• Functional equation
• Euler product

an irreducible automorphic representation of a certain reductive group.
By comparison, the theory of multiple Dirichlet series (L-functions of several

complex variables) is much less developed. It is natural to try to extend the
Langlands program to L-functions in several complex variables satisfying the
bulleted properties above. One quickly sees, however, that it may not be natural
to assume the existence of Euler products in the theory of multiple Dirichlet series;
a notion of twisted multiplicativity has been introduced instead. Some important
progress in developing a theory of multiple Dirichlet series has been made in the last
two decades. The main achievements so far include the construction of Weyl group
multiple Dirichlet series, applications of multiple Dirichlet series to the problem
of nonvanishing of twists of L-functions, to convexity breaking, to moments of
zeta and L-functions, and to the connections to multiple zeta function values. In
order to get interested researchers together and outline the latest advances in the
subject, a workshop, Multiple Dirichlet Series and Applications to Automorphic
Forms, was held in Edinburgh from August 4 to 8, 2008. It was hoped that this
workshop would stimulate further research and lead to deeper insights into what a
theory of multiple Dirichlet series should be. This has, in fact, happened and is the
main motivation for publishing this volume which is focused on the more recent
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vi Preface

developments in the theory. The chapter “Introduction: Multiple Dirichlet Series,”
which opens this volume, gives an introduction to many of these developments.
We would like to take this opportunity to thank especially Nikos Diamantis, Ivan
Fesenko, and Jeffrey Hoffstein for their hard work and efforts in organizing the
Edinburgh workshop and all the participants for their enthusiastic support and
interesting talks. In particular, we thank Ben Brubaker, Alina Bucur, Gautam Chinta,
Adrian Diaconu, Nikolaos Diamantis, Ivan Fesenko, Paul Garrett, Paul Gunnells,
and Jeffrey Hoffstein for organizing and/or lecturing in the two minicourses at the
workshop. We are extremely grateful to ICMS for hosting the workshop and making
the stay in Edinburgh so enjoyable. We thank the EPSRC, the NSF, and the LMS for
financial support. Finally, we would like to thank all the authors who contributed to
this volume and also the referees for their timely and insightful contributions.

Stanford, CA, USA Daniel Bump
Chestnut Hill, MA, USA Solomon Friedberg
New York, NY, USA Dorian Goldfeld



Contents

1 Introduction: Multiple Dirichlet Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Daniel Bump

2 A Crystal Definition for Symplectic Multiple Dirichlet Series. . . . . . . . . 37
Jennifer Beineke, Ben Brubaker, and Sharon Frechette

3 Metaplectic Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Ben Brubaker, Daniel Bump, Gautam Chinta, Solomon Friedberg,
and Paul E. Gunnells

4 Metaplectic Whittaker Functions and Crystals of Type B . . . . . . . . . . . . . 93
Ben Brubaker, Daniel Bump, Gautam Chinta, and Paul E. Gunnells

5 Littelmann Patterns and Weyl Group Multiple Dirichlet
Series of Type D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Gautam Chinta and Paul E. Gunnells

6 Toroidal Automorphic Forms, Waldspurger Periods and Double
Dirichlet Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Gunther Cornelissen and Oliver Lorscheid

7 Natural Boundaries and Integral Moments of L-Functions . . . . . . . . . . . 147
Adrian Diaconu, Paul Garrett, and Dorian Goldfeld

8 A Trace Formula of Special Values of Automorphic L-Functions. . . . . 173
Bernhard Heim

9 The Adjoint L-Function of SU2;1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Joseph Hundley

10 Symplectic Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Dmitriy Ivanov

11 On Witten Multiple Zeta-Functions Associated with Semisimple
Lie Algebras III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura

vii



viii Contents

12 A Pseudo Twin Primes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Alex V. Kontorovich

13 Principal Series Representations of Metaplectic Groups Over
Local Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Peter J. McNamara

14 Excerpt from an Unwritten Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
S.J. Patterson

15 Two-Dimensional Adelic Analysis and Cuspidal Automorphic
Representations of GL.2/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Masatoshi Suzuki



Chapter 1
Introduction: Multiple Dirichlet Series

Daniel Bump

Abstract This introductory article aims to provide a roadmap to many of the
interrelated papers in this volume and to a portion of the field of multiple Dirichlet
series, particularly emerging new ideas. It is both a survey of the recent literature,
and an introduction to the combinatorial aspects of Weyl group multiple Dirichlet
series, a class of multiple Dirichlet series that are not Euler products, but which may
nevertheless be reconstructed from their p-parts. These p-parts are combinatorially
interesting, and may often be identified with p-adic Whittaker functions.

Keywords Weyl group multiple Dirichlet series • Crystal graph • Solvable lattice
model • Whittaker function • Metaplectic group • Yang–Baxter equation

This survey article is intended to help orient the reader to certain topics in multiple
Dirichlet series. There are several other expository articles that the reader might also
want to consult, though we do not assume any familiarity with them. The article [20]
which appeared in 1996 contained many of the ideas in an early, undeveloped form.
The articles [9, 26], which appeared in 2006, also survey the field from different
points of view, and it is hoped that these papers will be complementary to this one.
Further expository material may be found in some of the chapters of [14].

Since approximately 2003, there has been an intensive development of the subject
into areas related to combinatorics, representation theory, statistical mechanics, and
other areas. These are scarcely touched on in [9, 20, 26] and indeed are topics that
have largely developed during the last few years. However, these combinatorial
developments are discussed in [14] as well as this introductory paper and other
papers in this volume.

D. Bump (�)
Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
e-mail: bump@math.stanford.edu

D. Bump et al. (eds.), Multiple Dirichlet Series, L-functions and Automorphic Forms,
Progress in Mathematics 300, DOI 10.1007/978-0-8176-8334-4 1,
© Springer Science+Business Media, LLC 2012
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Preparation of this paper was supported in part by NSF grant DMS-1001079. We
would like to thank Ben Brubaker, Solomon Friedberg, and Kohji Matsumoto for
their helpful comments.

1.1 Moments of L-Functions

The subject of multiple Dirichlet series originated in analytic number theory. If fang
is a sequence of real or complex numbers, then a typical Tauberian theorem draws
conclusions about the an from the behavior of the Dirichlet series

P
n an n

�s . If
the an are themselves L-functions or other Dirichlet series, this is then a multiple
Dirichlet series.

One may try to study moments of L-functions this way. For example, Goldfeld
and Hoffstein [37] considered a pair of Dirichlet series whose coefficients are

Z˙.w; s/ D
X

˙d>0
Ad .s/jd j 12�2w; (1)

where the coefficients Ad.s/ are essentially quadratic L-functions. More precisely,
if d is squarefree

Ad.s/ D
L2
�
2s � 1

2
; �d

�

�2.4s � 1/ ;

and

Adk2.s/

Ad .s/
D

X

d1d2d3 D k

d2; d3 odd

�d .d3/�.d3/d
�4sC3=2
2 d

�2sC1=2
3 ;

where � is the Möbius function and �d is the quadratic character �d .c/ D
�
d
c

�
in

terms of the Kronecker symbol. The subscript 2 applied to the L-function and zeta
function � means that the two parts have been removed.

Goldfeld and Hoffstein applied the theory of Eisenstein series of half-integral
weight to obtain the meromorphic continuation and functional equations of Z˙.
They showed that there are poles at w D 3

4
and 5

4
�s, then used a Tauberian argument

to obtain estimates for the mean values of L-functions. For example, they showed

X

1 < ˙d < x
d squarefree

L

�
1

2
; �d

�

D c1x log.x/C c2x CO
�
x
19
32C"

�

with known constants c1 and c2.
Note that Z˙ is a double Dirichlet series (in s;w) since if we substitute the

expression for the L-function L.w; �c/, we have “essentially”



1 Introduction: Multiple Dirichlet Series 3

Z˙ .s;w/ D
X

d

L

�

2s � 1
2
; �d

�

jd j 12�2w D
X

c;d

�
d

c

�

jcj 12�2s jd j 12�2w: (2)

Equation (2) gives two heuristic expressions representing the multiple Dirichlet
series with the intention of explaining as simply as possible what we expect to be
true and what form the generalizations must be. Such a heuristic form ignores a
number of details, such as the fact that the coefficients are only described correctly if
d is squarefree (both expressions) and that c and d are coprime (second expression).
Later, we will first generalize the heuristic form by attaching a multiple Dirichlet
series to an arbitrary root system. The heuristic version will have predictive value,
but will still ignore important details, so we will then have to consider how to make
a rigorous definition.

To give an immediate heuristic generalization of (2), let us consider, with
complex parameters s1; : : : ; sk , and w a multiple Dirichlet series

X

c

L

�

2s1 � 1
2
; �d

�

� � �L
�

2sk � 1
2
; �d

�

jd j 12�2w (3)

for k D 0; 1; 2; 3; : : :. If one could prove meromorphic continuation of this Dirichlet
series to all s with wi D 1

2
, the Lindelöf hypothesis in the quadratic aspect would

follow from Tauberian arguments. A similar approach to the Lindelöf hypothesis in
the t aspect would consider instead

Z 1

1

� .�1 ˙ i t/ � � � � .�k ˙ i t/ t�2w dt; (4)

where for each zeta function, we choose a sign ˙; if k is even, we may choose half
of them positive and the other half negative. This is equivalent to the usual moments

Z T

0

� .�1 ˙ i t/ � � � � .�k ˙ i t/ dt;

which have been studied since the work in the 1920s of Hardy and Littlewood,
Ingham, Titchmarsh, and others. It is possible to regard (4) as a multiple Dirichlet
series, and indeed both (3) and (4) are treated together in Diaconu, Goldfeld, and
Hoffstein [32]. See [31] in this volume for a discussion of the sixth integral moment
and its connection with the spectral theory of Eisenstein series on GL3.

Returning to (3), there are two problems: to make a correct definition of the
multiple Dirichlet series, and to determine its analytic properties. If k D 1; 2,
or 3, these can both be solved, and the multiple Dirichlet series has global
analytic continuation. In these cases, the multiple Dirichlet series was initially
constructed by applying a Rankin–Selberg construction to Eisenstein series (“of
half-integral weight”) on the metaplectic double covers of the groups Sp.2k/ for
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k D 1; 2; and 3. No corresponding constructions could be found for k > 3, but since
Rankin–Selberg constructions are often tricky, which did not constitute a proof that
such constructions may not exist undiscovered.

In [20], a different approach was taken. If k > 3, then it may be possible to
write down a correct definition of the multiple Dirichlet series, and indeed this has
essentially been done in the very interesting special case k D 4. See Bucur and
Diaconu [19]. Nevertheless, the approach taken in [20], which we will next explain,
shows that the multiple Dirichlet series cannot have meromorphic continuation to
all si and w if k > 3.

The analog for (3) of the second expression in (2) would have the form

X

d;c1;:::;ck

�
d

c1

�

� � �
�
d

ck

�

jc1j 12�2s1 � � � jckj 12�2sk jd j 12�2w: (5)

It will be helpful to associate with this Dirichlet series a graph whose vertices are the
variables d; c1; : : : ; ck . We connect two vertices if a quadratic symbol is attached to
them. Our point of view (which is justified when rigorous foundations are supplied)
is that due to the quadratic reciprocity law, we do not have to distinguish between�
d
c

�
and

�
c
d

�
. Thus, for heuristic purposes, the graph determines the Dirichlet series.

If k D 1; 2; or 3, the graph looks like this:

d c1 d c2c1 dc1

c2

c3

(6)

We could clearly associate a multiple Dirichlet series with a more general graph, at
least in this imprecise heuristic form. The interesting cases will be when the diagram
is a Dynkin diagram.

Here, we will only consider cases where the diagram is a “simply laced” Dynkin
diagram, that is, the diagram of a root system of Cartan type A, D, or E . A simply
laced root system is one in which all roots have the same length, and these are
their Cartan types. More general Dynkin diagrams are also associated with multiple
Dirichlet series, and we will come to these below.

We recall that a Coxeter group is a group with generators �1; : : : ; �r , each of
order two, such that the relations

�2i D 1; .�i�j /
n.i;j / D 1

give a presentation of the group, wheren.i; j / is the order of �i�j . We may associate
with the Coxeter group a graph, which consists of one node for each generator �i ,
with the following conditions. If n.i; j / D 2, so that �i and �j commute, there is
no edge connecting i and j . Otherwise, there is an edge. If n.i; j / D 3, it is not
necessary to label the edge, but if n.i; j / > 3, it is labeled with n.i; j /. (In Dynkin
diagrams, it is usual to interpret these labels as double or triple bonds.) We will
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consider only the case where n.i; j / D 2 or 3. In these cases, the Coxeter group is
finite if and only if the diagram is the finite union of the Dynkin diagrams of finite
Weyl groups of types Ar , Dr , or Er .

As we will now explain, the group of functional equations of a multiple Dirichlet
series such as (5) is expected to be the Coxeter group of its Dynkin diagram. For
example, consider (5) when k D 3. We collect the coefficients of c1:

X

d;c1;c2;c3

�
d

c1

��
d

c2

��
d

c3

�

jc1j 12�2s1 jc2j 12�2s3 jc3j 12�2s3 jd j 12�2w

D
X

d;c2;c3

�
d

c2

��
d

c3

�

jc2j 12�2s2 jc3j 12�2s3 jd j 12�2w

"
X

c1

�
d

c1

�

jc1j 12�2s1
#

:

This equals

X

d;c2;c3

�
d

c2

��
d

c3

�

jc2j 12�2s2 jc3j 12�2s3 jd j 12�2wL

�

2s1 � 1
2
; �d

�

:

The functional equation for the Dirichlet L-function has the form

L

�

2s1 � 1
2
; �d

�

D .�/ jd j1�2s1L
�

2.1� s1/� 1
2
; �d

�

;

where .�/ is a ratio of Gamma functions and powers of � . This factor is independent
of d , so we see that the functional equation has the effect

.s1; s2; s3;w/ 7!
�

1 � s1; s2; s3;wC s1 � 1
2

�

:

In the general case, let the variables be s1; : : : ; sr . Thus, if we are considering (5),
then r D k C 1 and sr D w, but we now have in mind a general graph such as a
Dynkin diagram, and r is the number of nodes. We have a functional equation which
sends si to 1 � si . If j ¤ i , then

sj 7�!
8
<

:

sj if i; j are not connected by an edge;

si C sj � 1
2

if i; j are connected by an edge.
(7)

These functional equations generate the Coxeter group associated with the diagram,
and its group of functional equations is the geometric realization of that group as a
group generated by reflections.

We may now see why the Dirichlet series (3) is expected to have meromorphic
continuation to all si and w when k 6 3 but not in general. These are the cases where
the graph is the diagram of a finite Weyl group, of typesA2, A3, orD4. If k D 4, the
graph is the diagram of the affine Weyl group D.1/

4 , and the corresponding Coxeter
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group is infinite. The meromorphic continuation in .s1; s2; s3; s4;w/ cannot be to all
of C5 since the known set of polar hyperplanes will have accumulation points.

We have now given heuristically a large family of multiple Dirichlet series,
one for each simply laced Dynkin diagram. (The simply laced assumption may be
eliminated, as we will explain later.) Only three of them, for Cartan types A2, A3,
and D4, are related to moments of L-functions. The case k D 3, related to D4,
was applied in [32] to the third moment after the combinatorics needed to precisely
define the Dirichlet series were established in [21].

Although only these three examples are related to quadratic moments of
L-functions, others in this family have applications to analytic number theory.
Chinta gave a remarkable example in [25], where the A5 multiple Dirichlet series
is used to study the distribution of central values of biquadratic L-functions. The
distribution of nth-order twists of an L-function was studied by Friedberg, Hoffstein,
and Lieman [36], and it was shown in Brubaker and Bump [7] that these could
be related to Weyl group multiple Dirichlet series of order n. (In this survey, the
Dirichlet series we have considered in this section correspond to n D 2, but we will
come to general n below.)

One may also consider the Dirichlet series that are (heuristically) of the form
L.w; �; �d / jd j�w, where � is an automorphic representation of GLk . If k D 2,
then there is considerable literature of the case, where n D 2; see, for example, [6]
and the references therein. If k D 2 and n D 3, there is a remarkable theory in [17];
there is a finite group of functional equations, which transform the Dirichlet series
into various different ones. If k D 3 and n D 2, then there is also a finite group
of functional equations; see [21]. The papers cited in this paragraph predate the
recent development of the combinatorial theory, but the combinatorics of multiple
Dirichlet series involving GLk cusp forms is under investigation by Brubaker and
Friedberg.

A double Dirichlet similar to that in [36] was considered by Reznikov [53].
This is the Dirichlet series

P
L.s; �n/jnj�w, where � is a Hecke character of

infinite order for Q.i/. Using a method of Bernstein, he proved the meromorphic
continuation of this multiple Dirichlet series and determined the poles. Despite the
similarity of this multiple Dirichlet series to that of [36], this series does not fit the
same way in the theory of Weyl group multiple Dirichlet series.

While the origins of our subject are in analytic number theory, our emphasis in
this paper will not be such applications, but rather on emerging connections with
areas of combinatorics, including quantum groups and mathematical physics, and
the theory of Whittaker functions. As we will see, the problem of giving precise
definitions of the multiple Dirichlet series, even when the general nature of the
Dirichlet series is known, is a daunting combinatorial one. Early investigations,
such as [21, 25], took an ad hoc approach substituting computer algebra or brute
force computation for real insight. This is sufficient for applications on a case-by-
case basis but also unsatisfactory. In recent years, the combinatorial theory has been
examined more closely, and its study may turn out to be as interesting as the original
problem.
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1.2 A Method of Analytic Continuation

Let us consider a double Dirichlet series which might be written

Z�
� .s1; s2/ D .�/Z�.s1; s2/; Z� .s1; s2/ D

X

n;m

A�.n;m/n
�s1m�s2 :

Here, .�/ denotes some Gamma functions and powers of � . The Dirichlet series
is allowed to depend on a parameter � drawn from a finite-dimensional vector
space˝ . It is assumed convergent in some region C such as the one in the following
figure, which shows the region for (2). We have graphed the projection onto R2

obtained by taking the real parts of s1 and s2.

( 1
2
, 1
2
)

( 3
4 , 3

4 )

C

s1 = 1
2

s2 = 1
2

Collecting the coefficients of m�s2 for each m gives a collection of Dirichlet
series in one variable s1 which have functional equations. These may be with respect
to some transformation such as the following, which is a functional equation of (2):

�1 W .s1; s2/ 7�!
�

1 � s1; s1 C s2 � 1
2

�

:

More precisely, there may be an action of �1 on ˝ , or more properly on M ˝˝ ,
where M is the field of meromorphic functions in s1 and s2, such that the functional
equation has the form

Z�
�1�

�

1 � s1; s1 C s2 � 1
2

�

D Z�
� .s1; s2/:

Thus, � 7�! �1� is a linear transformation of the vector space ˝ which, when
written out as a matrix, could involve meromorphic functions of s1 and s2. This is
the scattering matrix. In some cases, these meromorphic functions are holomorphic,
or even just Dirichlet polynomials in a finite number of integers. For example (2),
we would take polynomials in 2�s1 and 2�s2 .
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This gives the meromorphic continuation to the convex hull of C [ �1C.

( 1
2 ,

1
2 )

( 3
4 ,

3
4 )

hull(C∪ σ1C)

Similarly, we assume that collecting the coefficients of the other variable gives
another functional equation, which in example (2) is

�2 W .s1; s2/ 7�!
�

s1 C s2 � 1
2
; 1 � s2

�

:

The functional equations may be iterated, so we get analytic continuation to the the
union of hull.C [ �1C/ with hull.C [ �2C/ and �1 hull.C [ �2C/:

(34 , 34 )

(14 , 1)

(0, 3
4)

(1, 1
4)

(8)
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At this point, there are two ways of proceeding, one better than the other. We
could continue to iterate the functional equations until we obtained meromorphic
continuation to a region such as this:

There are two problems with this. One is that we have not obtained the meromorphic
continuation in the area near the origin. The other is that we have obtained two
different meromorphic continuations to the region �1�2�1C D �2�1�2C that is
darkly shaded. We do not know that these two meromorphic continuations agree.
This agreement, the braid relation, should be true in a suitable sense, but in fact
since there is a scattering matrix involved, we must be careful in formulating it. We
want an action of W on � extending the one already mentioned for �1 such that
Z�
� .s1; s2/ satisfies

Z�
w.�/.w.s1; s2// D Z�

� .s1; s2/; (9)

and the braid relation means that �1�2�1.�/ D �2�1�2.�/.
A better procedure is to use a theorem in complex variables, Bochner’s convexity

theorem [5], to assert meromorphic continuation once one has obtained meromor-
phic continuation to a region such as (8) whose convex hull is C2. Bochner’s theorem
is as follows: let U be an open subset of Cr , where r > 2 that is the preimage of
an open subset of Rr under the projection map; such a set is called a tube domain.
Then, any holomorphic function on a tube domain has analytic continuation to its
convex hull. In our case, we have a meromorphic function, but the polar divisor is a
set of hyperplanes, and the theorem is easily extended to this case. Hence, once we
have meromorphic continuation to (8), we obtain meromorphicity on C2. The braid
relation �1�2�1.�/ D �2�1�2.�/ is then a consequence. See [9, 11] for further
details.

Now, we come to the fundamental combinatorial question. Once one has decided
roughly what the Dirichlet series is to look like, the exact coefficients are still not
precisely defined. How can the coefficients be determined in such a way that the
functional equations (9) are true for both �1 and �2? For the Dirichlet series (3), this
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is not too hard when k D 1, but when k D 3, the combinatorics are rather daunting.
They were treated in [21] using difficult manipulations that were the only way before
the combinatorial properties of Weyl group multiple Dirichlet series began to be
established. Similarly, in the example of Chinta [25], the method of solving the
combinatorial problem was to use a computer program to find a Dirichlet series
with very special combinatorial properties. There has been a great deal of progress
in the basic combinatorial problem since these early papers, and this progress has
implications beyond the original practical problem of giving a proper definition of
a multiple Dirichlet series with a group of functional equations.

1.3 Kubota Dirichlet Series

Let n be a positive integer: we will define some Dirichlet series related to the n-th
power reciprocity law, so n D 2 in Sect. 1.1. Let F be a number field containing
the group �n of n-th roots of unity. We will further assume that F contains the
group �2n of 2n-th roots of unity, that is, that �1 is an n-th power in F . The
assumption that �n � F is essential; the assumption that �2n � F is only a matter
of convenience. We will make use of the n-th power reciprocity law.

We will define a family of Dirichlet series with analytic continuation and
functional equations, called Kubota Dirichlet series. If n D 2, these are the quadratic
L-functionsL.2s� 1

2
; �d /. If n D 1, these Dirichlet series are divisor sums, actually

finite Dirichlet polynomials. For general n, they are generating functions of nth-
order Gauss sums.

Let S be a finite set of places of F , containing all places dividing n and all
archimedean ones. If v is a place of F , let Fv be the completion at v. If v is
nonarchimedean, let ov be the ring of integers in Fv. Let oS be the ring of S -
integers in F , that is, those elements x 2 F such that x 2 ov for all v … S . Let
FS D Q

v2S Fv. We may embed oS in FS diagonally. It is a discrete, cocompact
subgroup. We may choose S so large that oS is a principal ideal domain. If a 2 FS ,
let jaj denote

Q
v2S jajv. It is the Jacobian of the map x 7�! ax. If a 2 oS , then jaj

is a nonnegative rational integer.
We recall the nth-order reciprocity law and nth-order Gauss sums. See

Neukirch [51] for proofs. Properties of the reciprocity symbol and Gauss sums are
more systematically summarized in [11].

The nth-order Hilbert symbol .; /v is a skew-symmetric pairing of F �
v � F �

v into
�n. Define a pairing . ; / on F �

S by

.x; y/ D
Y

v2S
.xv; yv/v; x; y 2 F �

S :

Then, the nth power residues symbol
�
d
c

�
, defined for nonzero elements c; d 2 o,

satisfies the nth power reciprocity law
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� c

d

�
D .d; c/

�
d

c

�

: (10)

Let  be an additive character of FS that is trivial on oS but no larger fractional
ideal. Let

g.m; d/ D
X

c mod d

� c

d

�
 
�mc

d

�
:

The sum is well defined since both factors only depend on c modulo d . It has the
twisted multiplicativity properties:

g.m; dd 0/ D
�
d

d 0

��
d 0

d

�

g.m; d/ g.m; d 0/ if gcd.d; d 0/ D 1;

g.cm; d/ D
� c

d

��1
g.m; d/ if c; d are coprime

and the absolute value for p prime in oS :

jg.m; p/j D
p
jpj if gcd.m; p/ D 1. (11)

Let � be a function on F �
S such that �."c/ D ."; c/�.c/ when " 2 o�

S .F
�
S /

n.
The vector space of such functions is nonzero but finite dimensional. Let

D� .sIm/ D
X

c

�.c/g.m; c/ jcj�2s :

This has a functional equation under s 7�! 1 � s. To state it, let

G n.s/ D .2�/�.n�1/.2s�1/ � .n.2s � 1//
� .2s � 1/ :

Define
D�
� .s;m/ D G .s/N �F .2ns � nC 1/ D� .s;m/;

whereN is the number of archimedean places (all complex) and �F is the Dedekind
zeta function of F . Then, Kubota [46] proved a functional equation for this,
as a consequence of the functional equations of Eisenstein series on the n-fold
metaplectic covers of SL2, which he developed for this purpose. In the form we
need it, this is proved by the same method in Brubaker and Bump [18], and a similar
result is in Patterson and Eckhardt [34].

To state these functional equations, there exists a family of Dirichlet polynomials
P	 indexed by 	 in F �

S =.F
�
S /

n such that

D�
� .s;m/ D

X

	2F�

S =.F
�

S /
n

jmj1�2sPm	.s/ D�
e�	
.1 � s;m/; (12)
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where
e�	.c/ D .	; c/�

�
c�1	�1� :

The polynomial P	 is actually a polynomial in q�s
v where v runs through the

finite places in S and qv is the cardinality of the residue field. It is important for
applications that P	 is independent of m.

1.4 A More General Heuristic Form

If n D 2 and m and c are coprime, then g.m; c/ equals
�
m
c

��1pjcj times a factor
which may be combined with � and ignored for heuristic purposes. Thus, D� .sIm/
is essentiallyL.2s� 1

2
; �m/. We may now give the following heuristic generalization

of the Dynkin diagram multiple Dirichlet series described in Sect. 1.1. Let us start
with a Dynkin diagram, which we will at first assume is simply laced (type A, D, or
E). As in Sect. 1.1, for purely heuristic purposes, it is not necessary to distinguish
between

�
c
d

�
and

�
d
c

�
since by the reciprocity law they differ by a factor .d; c/

which may also be combined with � and may be ignored for heuristic purposes.
Ultimately, such factors must eventually be kept track of, but at the moment, they
are unimportant.

The nodes i D 1; : : : ; r of the Dynkin diagram are in bijection with the simple
roots of some root system ˚ . We choose one complex parameter si for each i ,
and one “twisting parameter” mi , which is a nonzero integer in oS . The multiple
Dirichlet series then has the heuristic form

X

d1;:::;dr

2

4
Y

i; j adjacent

�
di

dj

��1
3

5g.mi ; di /jdi j�2si :

The form of the coefficient is only correct if di are squarefree and coprime, and
even then there is a caveat, but this heuristic form is sufficient for extrapolating the
expected properties of the multiple Dirichlet series. Whereas before, on expanding
in powers of one of the si parameters, we obtained a quadratic L-function, now we
obtain a Kubota Dirichlet series.

If the Dynkin diagram is not simply laced, there are long roots and short roots.
In this case, there is also a heuristic form, which we will not discuss here. For
each district pair of simple roots ˛i and ˛j , let r.˛i ; ˛j / be the number of bonds
connecting the nodes connecting ˛i and ˛j in the Dynkin diagram. Thus, if 
 is the
angle between ˛i and ˛j , let

r.˛i ; ˛j / D

8
ˆ̂
<

ˆ̂
:

0 if ˛i ; ˛j are orthogonal,
1 if 
 D 2�

3
;

2 if 
 D 3�
4
;

3 if 
 D 5�
6

.
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Normalize the roots so short roots have length 1; thus, every long root ˛ has jj˛k2 D
1; 2, or 3, the last case occurring only with G2. Let

g˛.m; d/ D
X

c mod d

� c

d

�t
 
�mc

d

�
; t D k˛k2:

Then, the heuristic form of the multiple Dirichlet series is

X

d1;��� ;dr

2

4
Y

i;j

�
di

dj

��r.˛i ;˛j /
3

5

"
Y

i

g˛i .mi ; di /jdi j�2si
#

: (13)

1.5 Foundations and the Combinatorial Problem

The first set of foundations for Weyl group multiple Dirichlet series was given by
Fisher and Friedberg [35], and these were used in all earlier papers. Another set of
foundations were explained in [9,11], and these have been used for the most part in
subsequent papers. We recall them in this section.

Let V be the ambient vector space of ˚ . Let h ; i be aW -invariant inner product
on V such that the short roots have length 1. Let B W V ˝ Cr �! C be the bilinear
map that sends .˛i ; s/ to si , where s D .s1; : : : ; sr / to

P
ki si and ˛i is the i th

simple root. Let �_ denote the vector .1; : : : ; 1/ 2 Cr . The reason for this notation
is explained in [11]. The Weyl group action on s, corresponding to the group of
functional equations, may be expressed in terms of B: we require that

B

�

w˛;w.s/ � 1
2
�_
�

D B
�

˛; s � 1
2
�_
�

for w 2 W .
We fix an ordering of simple roots of ˚ , so that in order they are f˛1; : : : ; ˛rg.

Some of the formulas depend on this ordering, but in an inessential way. Follow-
ing [11], let us define M to be the nonzero but finite-dimensional space of functions
on � W .F �

S /
r �! C that satisfy

�."1C1; : : : ; "rCr/ D
rY

iD1
."i ; Ci /

k˛ik2
S

8
<

:

Y

i<j

."i ; Cj /
2h˛i ;˛j i
S

9
=

;
�.C1; : : : ; Cr/ (14)

when "1; : : : ; "r 2 o�
S .F

�
S /

n and Ci 2 F �
S .

We seek a function H.C1; : : : ; Cr Im1; : : : ; mr/ defined if the Ci and mi are
nonzero elements of oS with the following properties. There is the multiplicativity
condition
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H.C1C
0
1; : : : ; CrC

0
r Im1; : : : ; mr/

H.C1; : : : ; Cr Im1; : : : ; mr/ H.C
0
1; : : : ; C

0
r Im1; : : : ; mr/

D
rY

iD1

�
Ci

C 0
i

�k˛ik2 �C 0
i

Ci

�k˛ik2Y

i<j

 
Ci

C 0
j

!2h˛i ;˛j i �
C 0
i

Cj

�2h˛i ;˛j i
: (15)

There is another multiplicativity condition which, unlike (15), does involve the mi .
If gcd.m0

1 � � �m0
r ; C1 � � �Cr/ D 1, we require:

H.C1; : : : ; Cr Im1m
0
1; : : : ; mrm

0
r /

D
�
m0
1

C1

��jj˛1jj2
� � �
�
m0
r

Cr

��jj˛r jj2
H.C1; : : : ; Cr Im1; : : : ; mr/: (16)

The conditions (14) and (15) together imply that if C1; : : : ; Cr is each multiplied
by a unit, then the value of �H.C1; : : : ; Cr / is unchanged. Since oS is a principal
ideal ring, we see that �H.C1; : : : ; Cr / is really a function of ideals. Let

Z�.s1; : : : ; sr Im1; : : : ; mr/

D
X

�.C1; : : : ; Cr /H.C1; : : : ; Cr Im1; : : : ; mr/jC1j�2s1 � � � jCr j�2sr (17)

where the summation is over ideals .Ci/. Also, let

Z�
� .s1; : : : ; sr Im1; : : : ; mr/ D

2

4
Y

˛2˚C

�˛.s/G˛.s/

3

5Z�.s1; : : : ; sr Im1; : : : ; mr/;

(18)
where, if ˛ is a positive root

�˛.s/ D �F
�

1C 2n.˛/
�

˛; s � 1
2
�_
	�

;

G˛.s/ D G n.˛/

�
1

2
C
�

˛; s � 1
2
�_
	�

(19)

with

n.˛/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

n if ˛ is a short root,
n if ˛ is a long root and ˚ ¤ G2, and n is odd
n
2

if ˛ is a long root and ˚ ¤ G2, and n is even
n if ˛ is a long root and ˚ D G2, and 3 − n
n
3

if ˛ is a long root and ˚ D G2, and 3jn.

The Kubota Dirichlet series D� .sIm/ is the special case if Z� where the root
system is of type A1.
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We still have not fully described H , so we have not given a proper definition
of Z� . The multiplicativities (15) and (16) together imply that the function H
is determined by its values on prime powers. In other words, if we specify
H.pk1; : : : ; pkr Ipl1 ; : : : ; plr / for prime elements p, the function is determined.

The fundamental combinatorial problem is this: given a global field F in which
�1 is an nth power and a root system, give a correct definition of the multiple
Dirichlet series extrapolating the heuristic one, such that expanding in powers of
every si gives a sum of Kubota Dirichlet series all having the same functional
equations. Naturally, this must be made more precise. We will write s D .s1; : : : ; sr /
and m D .m1; : : : ; mr/.

Fundamental Combinatorial Problem. Define H.pk1; : : : ; pkr Ipl1 ; : : : ; plr / in
such a way that for each index i , the series Z�.sIm/ has an expansion

X

M

D�i .si ;M /PM .s/ (20)

for some �i , where PM is a Dirichlet polynomial, such that for each i we have

PM .�is/ D jM j1�2si PM .s/: (21)

If this can be done, then we have a functional equation

Z�.sIm/ D Z� 0.�isIm/ (22)

for some � 0. Here, �i is the simple reflection in the Weyl group action on the
parameters s; if the root system is simply laced, it is the action (7), or see [11]
for the general case. The method of analytic continuation described in Sect. 1.2 is
applicable. This yields both the meromorphic continuation and the scattering matrix,
which we recall from Sect. 1.2 amounts to an action ofW on � such that in (22) we
have � 0 D �i� and more generally

Z�
w� .wsIm/ D Z�

� .sIm/:

The normalizing factor in (18) works out as follows: the factor �˛G˛ with ˛ D ˛i is
needed to normalize the Kubota Dirichlet series in (20). The other such factors are
simply permuted by s 7�! �i .s/.

Let us consider briefly how this works in the case of type A2. See [9] for a
complete discussion and detailed proof for this case. We have noted above that
specifying the coefficientsH.pk1 ; pk2 Ipl1 ; pl2 / completely determines the function
H . In this example, let us take m1 D m2 D 1 so l1 D l2 D 0 for all p. The
coefficients to be described are given by the following table.
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Let the nonzero values of H.pk1; pk2 I 1; 1/ be given by the following table.

k1

k2

0 1 2

0 1 g.1; p/

1 g.1; p/ g.p; p/g.1; p/ g.p; p2/g.1; p/

2 g.p; p2/g.1; p/ g.p; p2/g.1; p/2

Then, collecting terms with equal powers of jpj�s2 , we have a decomposition
(20) where the summation includes terms of the following type:

D� 0.s1I 1/; g.1; p/jpj�2s2D� 00.s1Ip/; g.1; p/g
�
p; p2

� jpj�2s1�4s2D� 000.s1I 1/;

for suitable � 0; � 00, and � 000. We recognize the p-parts of these Kubota Dirichlet
series from the tabulated values by collecting the terms in each column of the table.

Early papers in this subject gave ad hoc solutions to the combinatorial problem.
Such direct verifications become fairly difficult, for example, in [21, 25].

1.6 p-Parts

Let us define the p-part of Z to be the Dirichlet series

1X

kiD0
H
�
pk1 ; : : : ; pkr Ipl1 ; : : : ; plr � jpj�2k1s1�����2kr sr : (23)

We fix the representative p of the prime and ignore � . By twisted multiplicativity,
if the p-parts are known for all p, the multiple Dirichlet series is determined.

Returning to (17), let us consider the effect of the parametersm1; : : : ; mr . These
are called twisting parameters, and the term “twisting” is supposed to evoke the
usual twisting of L-functions: if L.s; f / D P

ann
�s is some L-function and � is

a Dirichlet character, then L.s; f; �/ D P
�.n/ann

�s . The term “twisting” in the
present context is both apt and in a way misleading, as we will now explain.

First, suppose thatm1; : : : ; mr are coprime to C1; : : : ; Cr . Then, by (16), we have

H.C1; : : : ; Cr Im1; : : : ; mr/

D
�
m1

C1

��jj˛1jj2
� � �
�
mr

Cr

��jj˛r jj2
H.C1; : : : ; Cr I 1; : : : ; 1/: (24)

Thus, these coefficients are indeed simply multiplied by an nth-order character, as
the term “twisting” suggests.
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On the other hand, if the mi are not coprime to the Ci , then the effect of the
mi is much more profound. For example, in H.pk1; : : : ; pkr Ipl1 ; : : : ; plr /, it is
important to think of .l1; : : : ; lr / as indexing a weight,

P
li$i , where $1; : : : ;$r

are the fundamental dominant weights of the root system ˚ . Then, we may think
of the p-part (23) as being something related to the character of an irreducible
representation of the associated Lie group, times a deformation of the Weyl
denominator, but with the weight multiplicities replaced by sums of products of
Gauss sums. In particular, varying mi D pli affects the p-part in a profound way,
no simple twisting.

With mi general, their meaning may be explained as follows: specifying
m1; : : : ; mr is equivalent to specifying, for each p, dominant weight �p such that
�p D 0 for almost all p. Indeed, factor mi D plim0

i where p − m0
i and take

�p DP li$i .
Now, let the prime p and the exponents l1; : : : ; lr be fixed, and let � D �p DP
li$i be the corresponding dominant weight. Also, let

� D
rX

iD1
$i D 1

2

X

˛2˚C

˛

be the Weyl vector. Let W be the Weyl group of ˚ . If w 2 W , let k.w/ be the
r-tuple of nonnegative integers .k1; : : : ; kr / such that �C ��w.�C �/ DP ki˛i .

The coefficients H.pk1 ; : : : ; pkr Ipl1 ; : : : ; plr / in general do not admit an easy
description, but if .k1; : : : ; kr / D k.w/ for some w, then it is a product of l.w/
Gauss sums, where l.w/ is the length of w. To make this explicit, let ˚w be the set
of all positive roots ˛ such that w.˛/ is a negative root, so j˚wj D l.w/: Then (see
[12]), we have

H
�
pk1 ; : : : ; pkr Ipl1 ; : : : ; plr � D

Y

˛2˚w

gk˛k2
�
ph�C�;˛i�1; ph�C�;˛i

�
: (25)

Let Supp.�/ be the support of H.pk1 ; : : : ; pkr Ipl1 ; : : : ; plr /, that is, the set of k D
.k1; : : : ; kr / such thatH.pk1; : : : ; pkr Ipl1 ; : : : ; plr / ¤ 0. Then, by (25), fk.w/jw 2
W g is contained in Supp.�/.

Most importantly, the jW j points k.w/ are the extremal values of the support.
That is, Supp.�/ is contained in the convex hull of k.w/. These jW j extremal
points are called stable in [11,12] for the following reason. If n is sufficiently large,
then Supp.�/ D fk.w/jw 2 W g, and in this case, the values (25) are the only
nonzero values of H.pk1; : : : ; pkr Ipl1 ; : : : ; plr /. So these values are “stable,” and
the combinatorial problem is solved by (25).

For arbitrary n, Supp.�/ is at least contained in the convex hull of fk.w/jw 2 W g.
But for interior points of this convex polytope, the description of H.pk1; : : : ; pkr I
pl1 ; : : : ; plr / is much more difficult. We will next look at the various approaches.
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1.7 Multiple Dirichlet Series and Combinatorics

In this section, we will introduce the modern combinatorial theory of the p-parts
of Weyl group multiple Dirichlet series. There are several different methods of
representing the p-parts of multiple Dirichlet series to be considered, each with its
own individual combinatorial flavor. The combinatorial theory has only taken shape
in the last few years. We will state things most fully in the “nonmetaplectic” case
n D 1, leaving the reader hopefully oriented and ready to explore the general cases
in the literature.

We see that correctly specifying the p-part of the function H produces a
Dirichlet series Z� with global meromorphic continuation. These functions turn
out to be extremely interesting. Several definitions ofH emerged, and proving their
equivalence proved to be nontrivial. Moreover, as the functionsH were intensively
studied, various clues seemed to suggest connections with the theory of quantum
groups. We will discuss these points in this section.

The following main classes of definitions were found:

• Definition by the “averaging method,” sometimes known as the Chinta-Gunnells
method

• Definition as spherical p-adic Whittaker functions
• Definition as sums over crystal bases
• Definition as partition functions of statistical-mechanical lattice models

The first and second definitions give uniform descriptions for all root systems and
all n. The third and fourth definitions are on a case-by-case basis and have not been
carried out for all n. Nevertheless, they are very interesting, and it is the latter two
approaches that suggest connections with quantum groups.

The equivalence of these different definitions is by no means clear or easy.
However, it is now mostly proved by the following scheme.

Chinta-Gunnells
method

 ! Whittaker
function

 ! Crystal
description

 ! Statistical
model

The equivalence of the averaging method with the Whittaker definition was proved
by Chinta and Offen [18] for type A by generalizing the original proof of Casselman
and Shalika. This was extended by McNamara [49] to arbitrary Cartan types. Two
results which both assert that the Whittaker definition is equivalent to the crystal
definition (in type A) are Brubaker, Bump, and Friedberg [13] and McNamara [50].
The first paper directly computes the Whittaker coefficients of Eisenstein series, and
the second paper proceeds locally by partitioning the unipotent integration into cells
that contribute the individual terms in the sum over the crystal. The relationship
between the statistical model scheme and the crystal description must be done on a
case-by-case basis, but we will discuss these below.
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Yet another possibility has appeared on the horizon within the last few months:

• Approach p-adic Whittaker functions by means of Demazure-Lusztig operators
and “metaplectic” generalizations of them.

The above remarks concern mainly what is, in the language of Whittaker models,
the spherical Whittaker function. However, it is useful to consider a larger class
of Whittaker functions, namely, the Iwahori-fixed vectors in the Whittaker model.
When these are considered, the Demazure-Lusztig operators and their metaplectic
analogs appear.

There are other objects in mathematics that may be related to these:

• Some examples of zeta functions of prehomogeneous vector spaces seem to be
specializations of Weyl group multiple Dirichlet series. These connections are
under investigation by Chinta and Taniguchi.

• Jacquet conjectured that anO.r/ period of an automorphic form on GLr is related
to a Whittaker coefficent of the Shimura correspondent on the double cover of
GLr . Applying this to Eisenstein series, this would mean that orthogonal periods
of Eisenstein series on GLr are related to type Ar�1. When r � 1 D 2, this was
investigated by Chinta and Offen [30].

• Zeta functions of prehomogeneous vector spaces as well as the Witten zeta
functions studied by Komori, Matsumoto, and Tsumura [45] in this volume are
both special cases of Shintani zeta functions. It is by no means clear that the
Witten zeta functions can be related to Weyl group multiple Dirichlet series, but
potentially there are undiscovered connections.

Let us begin with p-adic Whittaker functions. Casselman and Shalika [24]
showed that the values of the spherical Whittaker function are expressible as values
of the characters of irreducible representations of the L-group times a deformation
of the Weyl denominator. We begin by reviewing this important formula.

LetG be a split Chevalley group or more generally a split reductive group defined
over Z. Let F be a nonarchimedean local field with residue field o=p D Fq , where
o is the ring of integers and p its maximal ideal. Let B D TN be a Borel subgroup,
where T is a maximal split torus, and N is the unipotent radical. The root system
lives in the group X�.T / of rational characters of T and the roots so that N is the
subgroup generated by the root groups of the positive roots.

We may take the algebraic groups G; T;B; and N to be defined over o. Then,
G.o/ is a special maximal compact subgroup. If w is an element of the Weyl group
W , we will choose a representative for it in G.o/, which, by abuse of notation, we
will also denote as w.

Let OG be the (connected) Langlands L-group. It is an algebraic group defined
over C. Then,G and OG contain split maximal tori T and OT , respectively; T we have
already chosen. Then, OT .C/ is isomorphic to the group of unramified characters of
T .F /, that is, the characters that are trivial on T .o/. If z 2 OT .C/, let 
z denote the
corresponding unramified character.
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Let � be the weight lattice of OT , that is, the group of rational characters. Then,
� is isomorphic to T .F /=T .o/. The isomorphism may be chosen so that if � is a
weight and a� is a representative of the corresponding coset in T .F /=T .o/, then


z.a�/ D z�: (26)

There are now two root systems to be considered: the root system of G relative to
T and the root system of OG relative to OT . The latter is more important for us, so we
will denote it as ˚ . Thus, ˚ is contained in the Euclidean vector space R ˝ �. If
˛ 2 ˚ , then the corresponding coroot ˛_ is a root of G with respect to T , and we
will denote by i˛ W SL2 �! G the corresponding Chevalley embedding.

For example, let G D GLrC1. Then, OG D GLrC1. We take T and OT to be the
diagonal tori. We may identify the weight lattice � of OT with ZrC1 in such a way
that � D .�1; : : : ; �rC1/ 2 ZrC1 corresponds to the rational character

z D

0

B
@

z1
: : :

zrC1

1

C
A 7�!

Y

i

z�ii :

If p is a generator of p, we may take

a� D

0

B
@

p�1

: : :

p�rC1

1

C
A :

Then, (26) is satisfied with


z

0

B
@

t1
: : :

trC1

1

C
A D

Y
z

ordp.ti /
i :

Returning to the general case, let z 2 OT .C/. We may induce 
z to G.F / by
considering the vector space Vz of functions f W G.F / �! C that satisfy

f .bg/ D .ı1=2
z/.b/f .g/; b 2 B.F /: (27)

The group G.F / acts on Vz by right translation. If z is in general position, this
representation is irreducible and unchanged if z is replaced by any conjugate by
an element of the Weyl group. If it is not irreducible, at least its set of irreducible
constituents are unchanged if z is conjugated.

Let  W N.F / �! C be a character. We will assume that if ˛ is a simple root,
then the character x 7�! i˛.

1 x
1 / of F is trivial on o but no larger fractional ideal. If

f 2 Vz and g 2 G.F /, define the Whittaker function onG.F / associated with f by
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Wf .g/ D
Z

N.F /

f .w0ng/ .n/ dn; (28)

where w0 is a representative inG.o/ of the long Weyl group element. The integral is
convergent if jz˛j < 1 for positive roots ˛; for other z, it may be extended by analytic
continuation. The space Vz has a distinguished spherical vector f ı characterized by
the assumption that f ı.g/ D 1 for g 2 G.o/. Let W ı D Wf ı .

Theorem 1 (Casselman–Shalika [24]). Let � 2 �. Then,

ı�1=2.a�/W ı.a�/ D

 �Q

˛2˚C.1 � q�1z˛/
�
��.z/ if � is dominant,

0 otherwise:
(29)

Here, with � dominant, �� is the character of the finite-dimensional irreducible
representation of OG having highest weight �. Note that the product on the right-
hand side is a deformation of the Weyl denominator. Thus, if � is half the sum of
the positive roots, on specializing q�1 to 1, the right-hand side of (29) becomes

2

4
Y

˛2˚C

.1 � z˛/

3

5��.z/ D z�
X

w2W
.�1/l.w/zw.�C�/; (30)

where we have used the Weyl character formula to rewrite the specialization as a
sum over the Weyl group.

We next consider how expressions such as the character �� may be interpreted
as the p-parts of multiple Dirichlet series.

Let q be a power of a rational prime. Let � be a dominant weight. We consider
an expression E D P

� m.�/ z�, where the sum is over weights � and m.�/ is
a complex number that is nonzero for only finitely many �. More precisely, we
assume m.�/ D 0 unless � is in the convex hull of the polytope spanned by the
W -orbit of �, and moreover � � � is in the root lattice, which is the lattice in �
spanned by ˚ .1 We will also assume that m does not vanish on the W -orbit of
�, though it may vanish for roots in the interior of the polytope. We will call E
a �-expression. For example, �� is a �-expression, and the numerator in the Weyl
character formula, in other words (30), is a .�C �/-expression.

Given a �-expression E , let us show how to obtain a Dirichlet polynomial, that
is, a polynomial in q�2s1 ; : : : ; q�2sr , where r is the rank of OG. Given �, there exist
nonnegative integers .k1; : : : ; kr / D .k1.�/; : : : ; kr .�// such that

P
ki˛i D � �

w0.�/, where w0 is the long Weyl group element. Then, we call

X

�

m.�/q�2k1.�/s1�:::�2kr .�/sr

1If OG is semisimple, then the root lattice has finite index in�.
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the Dirichlet polynomial associated with the �-expression E . The p-parts of the
multiple Dirichlet series that we are considering are all of this type. If n D 1, the
.�C �/-expression producing the p-part is

2

4
Y

˛2˚C

.1� q�1z˛/

3

5��.z/ (31)

which, we observe, differs from (30) by the insertion of q�1. Thus, the p-part is a
deformation of (30). Comparing with the Casselman–Shalika formula (29), we see
that this is essentially a value of the spherical Whittaker function.

Similarly, the p-part (23) with q D jpj is derived from a certain .� C �/-
expression, and these .� C �/-expressions turn out to be values of spherical
Whittaker functions on metaplectic covers of G. The integer li in (23) is the inner
product of � with the coroot ˛_

i . These .� C �/-expressions might be regarded as
analogs of (31) in which the integersm.�/ have been replaced by sums of products
of Gauss sums. As we will explain, they are extremely interesting objects from a
purely combinatorial point of view.

The averaging method of Chinta-Gunnells expresses the p-part of the multiple
Dirichlet series as a ratio in which the numerator is a sum over the Weyl group, and
in the case n D 1, it reduces to the right-hand side of (30). When n > 1, the Weyl
group action on functions is nonobvious; the simple reflections involve Gauss sums
and congruence conditions, and verifying the braid relations is not a simple matter.
See Chinta and Gunnells [27] for this action and Patterson [52] for a meditation
on the relationship between the method and the intertwining operators for principal
series representations.

We turn next to the crystal description. Crystals arose from the representation
theory of quantum groups, that is, quantized enveloping algebras. Let Og be a
complex Lie algebra, which for us will be the Lie algebra of OG. Then, the
quantized enveloping algebra Uq.Og/ is a Hopf algebra that is a deformation of the
usual universal enveloping algebra U.Og/ to which it reduces when q D 1. The
representations of OG.C/ correspond bijectively to characters of Og, and hence to
U.Og/; they extend naturally to representations of Uq.Og/.

Suppose that � is a dominant weight, which is the highest weight vector of
an irreducible representation of OG and hence of Uq.Og/. This module Uq.Og/ has a
distinguished basis, Kashiwara’s global crystal basis, which is closely related to
Lusztig’s canonical basis. Let us denote it as B�. Let 0 be the zero element of the
module. Let ˛1; : : : ; ˛r be the simple roots. If ˛ D ˛i , then di˛. 0 10 0 / and di˛. 0 01 0 /
are in a certain sense approximated by maps ei and fi from B� to B� [ f0g, the
Kashiwara operators; each such operator applied to v 2 B� either gives 0 or another
element of the basis.
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Fig. 1.1 The crystal B.3;1;0/
with an element of weight
.1; 2; 1/ highlighted

Also, every element of the crystal basis lies in a well-defined weight space, so
there is a map wt W B� �! �, mapping each element to its weight. We have

��.z/ D
X

v2B�
z�: (32)

The maps ei and fi shift the weights: if x; y 2 B�, then fi .x/ D y if and only if
ei .y/ D x, and in this case, wt.y/ D wt.x/ � ˛. When this is true, we draw an

arrow x
i�!y, and the resulting directed graph, with edges labeled by indices i , is

the crystal graph.
Let us consider an example. Take G D GL3. Its Cartan type is A2. In this case,

the weight lattice � may be identified with Z3. If � is a weight, then with this
identification, � D .�1; �2; �3/ where z� D z�11 z�22 z�33 . The weight is dominant if
�1 > �2 > �3. Assume that � is dominant, and furthermore �3 > 0 so that � is a
partition. The elements of B� may be identified with semistandard Young tableaux
with shape �. So if � D .3; 1; 0/ and r D 2, the crystal graph of B� is shown in
Fig. 1.1. The weight of a tableau T is wt.T / D .�1; �2; �3/ where �i is the number
of entries in T equal to i .

If w 2 W , then B� has a unique element vw� of weight w�. We will call these
elements extremal. Consider a function f on B�, which we assume does not vanish
on the extremal elements. Then, we may consider

Ef D
X

v2B�
f .v/ zwt.v/:

This is a �-expression. For example, if f .v/ D 1 for all v, then Ef is the character
of the irreducible representation with highest weight �.
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We call a weight strongly dominant if it is of the form � C � with � dominant.
A dominant weight is strongly dominant if and only if W acts freely on its orbit,
or equalently, if it is in the interior of the positive Weyl chamber. Let � C � be a
strongly dominant weight. We recall that the numerator (30) in the Weyl character
formula, as are the p-parts of the Weyl group multiple Dirichlet series, are .�C �/-
expressions. So we may hope to find a function f on B�C� such that Ef equals this
numerator or p-part. In some cases, a deformation of the Weyl character formula
exists in which the numerator is a sum over B�C�. The formula will express �� as a
ratio of this sum to a denominator that is a deformation of the Weyl denominator, of
the form

Q
˛2˚C.1 � tz˛/, where t is a deformation parameter. Taking t D 1, only

the extremal elements of B�C� will make a nonzero contribution, and the numerator
will reduce to the numerator in the Weyl character formula. Taking t D 0, the only
terms that contribute will be those in the image of a map B� �! B�C�, and the sum
reduces to a sum over B�. Thus, when t D 0, the formula reduces to (32). Most
importantly for us, taking t D q�1 and comparing with (29), we see that the sum
over B�C� is exactly ı1=2.a�/W ı.a�/.

Moreover, such formulas exist for metaplectic Whittaker functions. In other
words, there is often a way of summing over B�C� and obtaining a Whittaker
function on the n-fold cover of some group. There should actually be one such
formula for every reduced decomposition of the long Weyl group element into a
product of simple reflections, and in some sense, this is true. But, in practice, only
certain such decompositions give clean and elegant formulas. Here is a list of cases
where nice formulas are known, rigorously or conjecturally:

• Cartan type Ar , any n. See [13, 14]. These produce Whittaker functions on the
n-fold covers of GLrC1. In this case, proofs are complete.

• Cartan typeBr , n even. These would produce Whittaker functions on even covers
of Sp2r . For general even n, the representation is conjectural, and even in the
n D 2 case, there is still work to be done. See [10], this volume, for the case
n D 2.

• Cartan type Cr , n odd. See [2, 3] and Ivanov [40] for a discussion of the Yang–
Baxter equation. These will produce Whittaker functions on the
n-covers of Sp2rC1. Only the case n D 1 is proved.

• Cartan typeDr , any n. See [28], this volume. This case is still largely conjectural.

Let us explain how this works for type Ar for arbitrary r , so G D GLrC1 (or
SLrC1). If n D 1, the formula in question is Tokuyama’s formula. Tokuyama [54]
expressed his formula as a sum over strict Gelfand-Tsetlin patterns, but it may be
reformulated in terms of tableaux or crystals. Using crystals, Tokuyama’s formula
may be written

2

4
Y

˛2˚C

.1 � tz˛/
3

5��.z/ D
X

v2B�C�

G[.v/zwt.v/�w0�; (33)
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where w0 is the long Weyl group element, and the function G[.v/ will be
described below. Tokuyama’s formula is a deformation of the Weyl character
formula, which is obtained by specializing t �! 1; the formula (32) is recovered
by specializing t �! 0. Taking t D q�1 to be the cardinality of the residue field
for a nonarchimedean local field, and combining Tokuyama’s formula with the
Casselman–Shalika formula (29), it gives a formula for the p-adic Whittaker
function, and similar formulas give the p-part of the multiple Dirichlet series.
Since this is the case we are concerned with, we will write q�1 instead of t
for the deformation parameter, even if occasionally we want to think of it as an
indeterminate.

To define G[.v/, we first associate with v a BZL-pattern (for Berenstein,
Zelevinsky [4] and Littelmann [47]). We choose a “long word” by which we mean
a decomposition of w0 D �!1 � � ��!N into a product of simple reflections �!i
(1 6 i 6 r), where N is the number of positive roots. Let b1 be the number of
times we may apply f!1 to v, that is, the largest integer such that f b1

!1
.v/ ¤ 0. Then,

we let b2 be the largest integer such that f b2
!2
f b1
!1
.v/ ¤ 0. Continuing this way, we

define b1; : : : ; bN . We may characterize BZL.v/ D .b1; b2; : : : ; b!N / as the unique
sequence of N nonnegative integers such that f bN

!N
� � �f b1

!1
.v/ is the unique vector

vw0� with lowest weight w0�.
We should be able to give a suitable definition of G[ for any Cartan type and

any long word, but in practice we only know how to give precise combinatorial
definitions in certain cases. We will choose this word:

.!1; : : : ; !N / D .1; 2; 1; 3; 2; 1; : : :/

corresponding to the decomposition into simple reflections:

w0 D �!1 � � ��!N D �1�2�1�3�2�1 � � ��r�r�1 � � ��1;
where �i is the i -th simple reflection inW . We will write BZL.v/ in a tabular array:

BZL.v/ D

2

6
6
6
4

: : :
:::

b4 b5 b6
b2 b3

b1

3

7
7
7
5
: (34)

This has the significance that each column corresponds to a single-root operator fi
where i D 1 for the rightmost column, i D 2 for the next column, and so forth.

Now, we will decorate the pattern by drawing boxes or circles around various bi
according to certain rules that we will now discuss. We describe the circling rule
first. It may be proved that bi satisfies the inequality bi > biC1, except in the case
that i is a triangular number, so that bi is the last entry in its row; in the latter case,
we only have the inequality bi > 0. In either case, we circle bi if its inequality is an
equality. In other words, we circle bi if (in the first case) bi D biC1 or (in the second
case) bi D 0.
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For the boxing rule, we box bi if e!iC1
f bi
!i
� � �f b1

!1
.v/ D 0.

Let us consider an example. We take .!1; !2; !1/ D .2; 1; 2/ and v to be the

element
1 2 2

3
in the crystal B.3;1;0/ that is highlighted in Fig. 1.1. Then, it is easy

to see that

BZL.v/ D


1 1

1

�

:

We decorate this as follows. Since b2 D b3, we circle b2. Moreover, e!1.v/ D 0

since (referring to the crystal graph) there is no way to move in the e2 direction.
Thus, b1 is boxed and the decorated BZL pattern looks like this:

BZL.v/ D

2

6
6
6
6
4

�������	1 1

1

3

7
7
7
7
5
:

The boxing and circling rules may seem artificial, but are actually natural, for
they have the following interpretation. Kashiwara defined, in addition to the crystals
B� corresponding to the finite-dimensional irreducible representations, a crystal B1
which is a crystal basis of the quantized universal developing algebra of the lower
unipotent part of the Lie algebra of G. There is another crystal T� with precisely
one element having weight �. Then, B1 ˝ T�C� is a “universal” crystal with a
highest weight vector having weight � C �. There is then a morphism of crystals
B�C� �! B1˝T�C�. See Kashiwara [41]. This morphism may be made explicit by
adopting a viewpoint similar to Littelmann [47]. Indeed, the notion of BZL patterns
makes sense for B1 ˝ T�C�, and the set of BZL patterns is precisely the cone of
patterns (34) such that

b1 > 0; b2 > b3 > 0; b4 > b5 > b6 > 0; � � � :
The morphism B�C� �! B1 ˝ T�C� is then characterized by the condition that
corresponding elements of the two crystals have the same BZL pattern. See Fig. 1.1
of Bump and Nakasuji [23] for a picture of this embedding.

Now, the circling rule may be explained as follows: embedding v 2 B�C� into
B1 ˝ T�C�, an entry in the BZL pattern is circled if and only if BZL.v/ lies on the
boundary of the cone. Similarly, there is a crystal B�1 ˝ Tw0.�C�/ with a unique
lowest weight vector having weight w0.�C �/, and we may embed B�C� into this
crystal by matching up the lowest weight vectors, and an entry is boxed if and only
if BZL.v/ lies on the boundary of this opposite cone.

Returning to Tokuyama’s formula, define

G[.v/ D
NY

iD1

8
ˆ̂
<

ˆ̂
:

1 if bi is circled but not boxedI
�q�1 if bi is boxed but not circledI
1 � q�1 if bi is neither circled nor boxed;
0 if bi is both circled and boxed.

9
>>=

>>;
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This was generalized to the n > 1 case as follows. There is, in this generality, a
Whittaker function on the metaplectic group, and as in the case n D 1, we have

ı�1=2.a�/W ı.a�/ D
X

v2B�C�

G[.v/zwt.v/�w0�: (35)

Now the definition of G[ must be slightly changed. Let a be a positive integer.
Define g.a/ D q�ag.pa�1; pa/ and h.a/ D q�ag.pa; pa/ in terms of the Gauss
sum discussed in the last section. These depend only on a modulo n. Then we have

G[.v/ D
NY

iD1

8
ˆ̂
<

ˆ̂
:

1 if bi is circled but not boxedI
g.bi / if bi is boxed but not circledI
h.gi / if bi is neither circled nor boxed;
0 if bi is both circled and boxed.

9
>>=

>>;

If n D 1, this reduces to our previous definition.
Tokuyama’s formula may be given another interpretation, as evaluating the

partition function of a statistical mechanical system of the free-fermionic six-vertex
model. For this, see [15], Chap. 19 of [14], and the paper [8] in this volume. Since
more details may be found in these references, we will be brief. In a statistical
mechanical system, there is given a collection of (many) states, and each state is
assigned a Boltzmann weight which is a measure of how energetic the state is; more
highly energetic states are less probable.

For example, the two-dimensional Ising model consists of a collection of sites,
each of which may be assigned a spin C or �. These sites might represent atoms
in a ferromagnetic substance, and in the two-dimensional model, they lie in a plane.
A state of the system consists of an assignment of spins to every site. At each site,
there is a local Boltzmann weight, depending on spin at the site and at its nearest
neighbors. This system was analyzed by Onsager, who found, surprisingly, that the
partition function could be evaluated explicitly.

Later investigators considered models in which the spins are assigned not to the
sites themselves, but to edges in a grid connecting the sites. The Boltzmann weight
at the vertex depends on the configuration of spins on the four edges adjacent to the
vertex. Thus, if the site is x, we label the four adjacent edges with "i D C or � by
the following scheme:

ε2

ε1 ε3

ε4

x
(36)

Of particular interest to us is the six-vertex or two-dimensional ice model which was
solved by Lieb and Sutherland in the 1960s, though it is the treatment of Baxter [1]
that is most important to us. There are six admissible configurations. These are given
by the following table.
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x x x x x x

Boltzmann
weight

a1 D a1.x/ a2 b1 b2 c1 c2

The set of Boltzmann weights used may vary from site to site, so if (as in the table)
the site is x, we may write a1.x/ to indicate this dependence.

If a1 D a2, b1 D b2, and c1 D c2, then the site is called field-free. If a1a2 C
b1b2 D c1c2, the site is called free-fermionic. The term comes from physics: in the
free-fermionic case, the row transfer matrices (see [8]) are differentiated versions of
the Hamiltonians of a quantum mechanical system, the XXZ model, and the quanta
for this model are particles of spin 1/2, called fermions.

Hamel and King [38] and Brubaker, Bump, and Friedberg [15] showed that one
may exhibit a free-fermionic six-vertex model whose partition function is exactly
the Tokuyama expression (33). In [8] in this volume, this is generalized to a system
whose partition function is the metaplectic spherical Whittaker function (35). The
explanation for this is as follows: there is a map from the set of states of the model
to the B�C� crystal. The map is not surjective, but its image is precisely the set of
v 2 B�C� such that G[.v/ ¤ 0.

Thus, using this bijection of the set of states with those v 2 B�C� such that
G[.v/ ¤ 0 means that Tokuyama’s theorem may be formulated either as the
evaluation of a sum over a crystal or as the partition function of a statistical-
mechanical system. But there is a subtle and important difference between these two
setups. For example, different tools are available. There is a an automorphism of the
crystal graph, the Schützenberger involution, that takes a vertex of weight � to one
of weight w0�, where w0 is the long Weyl group element; this is sometimes useful in
proofs. The set of states of the statistical-mechanical system has no such involution,
yet another, more powerful tool becomes available: the Yang–Baxter equation.

To describe it, let us associate a matrix with the Boltzmann weights at a site as
follows. Let V be a two-dimensional vector space with basis vC and v�. (In the
metaplectic case, the scheme proposed in [8] gives its dimension as 2n.) Associate
with each site an endomorphism of V ˝V as follows. With the vertices labeled as in
(36), letR be the linear transformation such that the coefficient of v"3˝v"4 inR.v"1˝
v"2/ is the Boltzmann weight corresponding to the four spins "1; "2; "3; and "4. Thus,
the only nonzero entries in the matrix of R with respect to the basis v˙ ˝ v˙ are
a1; a2; b1; b2; c1; and c2. We will call an endomorphism R of V ˝ V (or its matrix)
an R-matrix. We then denote by R12, R13, and R23 endomorphisms of V ˝ V ˝ V
in which Rij acts on the i -th and j -th components, and the identity 1V acts on the
remaining one. For example, R12 D R˝ 1V .

We are interested in endomorphismsR;S , and T of V ˝ V such that

R12S13T23 D T23S13R12:
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It is not hard to check that this is equivalent to (25) in [8]. This was called the star-
triangle relation by Baxter, and the Yang–Baxter equation by others, particularly in
the case whereR;S; andT are either all equal or drawn from the same parametrized
family. In particular, let � be a group, and g 7�! R.g/ a map from � into the set
of R-matrices such that

R12.g/R13.gh/R23.h/ D R23.h/R13.gh/R12.g/: (37)

Then, (37) is called a parametrized Yang–Baxter equation.
In Sect. 9.6 of [1], Baxter essentially found parametrized Yang–Baxter equations

in the field-free case, where a1 D a2 D a, b1 D b2 D b, and c1 D c2 D c.
Fix a complex number �. Then, his construction gives a parametrized Yang–
Baxter equation, with parameter group C�, such that the image of R consists
of endomorphisms of V ˝ V with corresponding to such field-free R-matrices
with .a2 C b2 � c2/=2ab D �. This construction led to the development of
quantum groups. In the formulation of Drinfeld [33], this instance of the Yang–
Baxter equation is related to Hopf algebra Uq.bsl2/. The parameter group indexes
modules of this Hopf algebra with � D 1

2
.qC q�1/, and Yang–Baxter equation is a

consequence of a property (quasitriangularity) of Uq.bsl2/, or a suitable completion.
A parametrized Yang–Baxter equation with parameter group SL.2;C/ was given

in Korepin, Boguliubov, and Izergin [44], p. 126. The parametrized R-matrices
are contained within the free-fermionic six-vertex model. Scalar R-matrices may
be added trivially, so the actual group is SL.2;C/ � GL1.C/. This nonabelian
parametrized Yang–Baxter equation was rediscovered in slightly greater generality
by Brubaker, Bump, and Friedberg [15], who found a parametrized Yang–Baxter
equation for the entire set of R-matrices in the free-fermionic six-vertex model, with
parameter group GL2.C/ � GL1.C/. It is an interesting question how to formulate
this in terms of a Hopf algebra, analogous to the field-free case.

Brubaker, Bump, and Friedberg [15] showed that a system may be found, with
free-fermionic Boltzmann weights, whose partition function is precisely (33). This
fact was generalized Bump, McNamara, and Nakasuji [22], who showed that one
may replace the character on the left-hand side by a factorial Schur function.
Then, the parametrized free-fermionic Yang–Baxter equation can be used to prove
Tokuyama’s formula (or its generalization to factorial Schur functions). Moreover,
in [8], a different generalization is given in which the partition function represents
the metaplectic Whittaker function. In the latter case, however, no Yang–Baxter
equation is known if n > 1.

When n D 1, various facts about Whittaker functions may be proved using
the free-fermionic Yang–Baxter equation. One fact that may be checked is that the
partition function representing (33), divided by the product on the left-hand side of
the equation, is symmetric, in other words invariant under permuting the eigenvalues
of z. This is a step in a proof of Tokuyama’s theorem. As explained in [8], this
fact has a generalization to partition functions representing metaplectic Whittaker
functions and seems amenable to the Yang–Baxter equation, but no Yang–Baxter
equation is known in this case.
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In (35), the definition ofG[ depends on the choice of a reduced word representing
the long Weyl group element. Two particular long words are considered, and the
Yang–Baxter equation is used to show that both representations give the same result.
If n > 1, this remains true, but again the Yang–Baxter equation is unavailable.
Consequently, different proofs, based on the Schützenberger involution of the crystal
B�C�, are given. However, these arguments require extremely difficult combinatorial
arguments, and it would be good to have an alternative approach based on the Yang–
Baxter equation.

See [10] for another application of the free-fermionic Yang–Baxter equation to
metaplectic Whittaker functions, this time on the double cover of Sp.2r/.

1.8 Demazure Operators

Let .�; V / be a principal series representation of G.F /, where G is a split
semisimple Lie group. The theory described above, including the Casselman–
Shalika formula (and its metaplectic generalizations), is for the spherical Whittaker
function, that is, the K-fixed vector in the Whittaker model, where K D G.o/.

Let J be the Iwahori subgroup, which is the inverse image of B.Fq/ under the
mapG.o/ �! G.Fq/ that is reduction mod p. We may consider more generally the
space V J of J -fixed vectors in the Whittaker model. These play an important role
in the proof of the Casselman–Shalika formula which, we have seen, is a key result
in the above discussion.

Until 2011, the investigations that we have been discussing in the above pages
concentrated on the unique (up to scalar) K-fixed vector, rather than elements of
V J, though the Iwahori-fixed vectors appeared in the work of Chinta and Offen [18]
and McNamara [49] generalizing Casselman and Shalika. Still, the essence of the
Casselman–Shalika proof is to finesse as much as possible in order to avoid getting
involved with direct calculations of Iwahori Whittaker functions. But it turns out that
there is an elegant calculus of Iwahori Whittaker functions, and this is likely to be a
key to the relationship between the theory of Whittaker functions and combinatorics.

If w 2 W , the Demazure operator @w acts on the ring O. OT / of rational functions
on OT . To define it, first consider the case where w D �i is a simple reflection. Then,
if f is a rational function on OT .C/,

@�i f .z/ D
f .z/� z�˛i f .�i z/

1 � z�˛i :

The numerator is divisible by the denominator, so this is again a rational function.
The definition of @w is completed by the requirement that if l.ww0/ D l.w/C l.w0/,
where l is the length function on W , then @ww0 D @w@w0 .

If � is a dominant weight, then @w0z
� is the character ��.z/, and for general w

we will call @wz� a Demazure character. These first arose in the cohomology of
line bundles over Schubert varieties, and they have proved to be quite important in
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combinatorics. As Littelmann and Kashiwara showed, they may be interpreted as
operators on functions on crystals. As we will explain, Demazure operators, and
the related Demazure-Lusztig operators arise naturally in the theory of Whittaker
functions.

Iwahori and Matsumoto observed that V J is naturally a module for the convo-
lution ring of compactly supported J -bi-invariant functions, and they determined
the structure of this ring. Later, Bernstein, Zelevinsky, and Lusztig gave a different
presentation of this ring. It is the (extended) affine Hecke algebra eHq , and it has
also turned out to be a key object in combinatorics independent of its origin in the
representation theory of p-adic groups. Restricting ourselves to the semisimple case
for simplicity, this algebra may be defined as follows. It contains a jW j-dimensional
subalgebra Hq with generators T1; : : : ; Tr subject to the quadratic relations

T 2i D .q � 1/Ti C q

together with the braid relations: when i ¤ j ,

TiTj Ti � � � D TjTiTj : : : ;

where the number of terms on either side is the order of �i�j and as before �i is the
i -th simple reflection.

The algebra eHq is the amalgam of Hq with an abelian subalgebra �� isomorphic
to the weight lattice �. If � 2 �, let �� be the corresponding element of ��. To
complete the presentation of eH we have the relation

Ti�
� � ��i�Ti D ��Ti � Ti��i � D

�
v � 1
1 � ��˛i

�

.�� � ��i �/; (38)

sometimes known as the Bernstein relation.
Though historically it first appeared in the representation theory of p-adic

groups, the affine Hecke algebra appears in other contexts. For example, the
investigation of Kazhdan and Lusztig [42], motivated by Springer’s work on the
representation theory of Weyl groups, used eHq in a fundamental way, and led to
applications in different areas of mathematics, such as the topology of flag varieties
and the structure of Verma modules. Significantly for the present discussion,
Lusztig [48] showed that eHv (with v an indeterminate) may be realized as a ring
acting on the equivariant K-theory of the flag manifold of OG, and Kazhdan and
Lusztig [43, 48] then applied this back to the local Langlands correspondence by
constructing the irreducible representations ofG.F / having an Iwahori-fixed vector.

The equivariant K-theory of OG may be described as follows. Let O. OT / be the
ring of rational functions on OT .C/. In our previous notation, it is simply the group
algebra of the weight lattice �. If X is the flag variety of OG then K OG.X/ Š O. OT /.
Better still, let M D OG �GL1, where the GL1 acts trivially on X . Then,KM.X/ Š
CŒv; v�1�˝O. OT /, where v is a parameter.



32 D. Bump

The starting point of the investigations of Kazhdan and Lusztig is a representation
of eHv on this ring. In this representation on CŒv; v�1�˝O. OT /, the generators of Hv

act by certain operators called Demazure-Lusztig operators, while the commutative
subalgebra �� acts by multiplication. We will call this representation of eHv on
CŒv; v�1�˝O. OT / the Lusztig representation.

The same representation of eH appears in another way, independent of Lusztig’s
cohomological interpretation. There are two versions of this:

• Ion [39] observed such a representation in the space of Iwahori-fixed vectors
of the spherical model of an unramified principal series representation. He con-
cluded that these matrix coefficients are expressed in terms of the nonsymmetric
Macdonald polynomials. His methods are based on the double affine Hecke
algebra.

• Brubaker, Bump, and Licata [16] found a representation equivalent to the Lusztig
representation acting on Whittaker functions. Their method could also be used in
the setting of [39].

After Brubaker, Bump, and Licata mentioned the connection between Whittaker
functions and Demazure characters, Chinta and Gunnells began looking at the
metaplectic case. They found “metaplectic Demazure operators” involving Gauss
sums that are related to the Chinta-Gunnells representation. Also, with A. Schilling,
Brubaker, Bump, and Licata looked at the possibility that the results of [16] could
be reinterpreted in terms of the crystal graph, similarly to the crystal interpretation
of Tokuyama’s formula. This seems to be a promising line of investigation.

Let us briefly recall the results of [16]. Let V D Vz be as in (27). Let ˝ be one
of the following two linear functionals on V : it is either the Whittaker functional

˝.f / D
Z

N.F /

f .wn/ .n/ dn;

where  is as in (28), or the spherical functional ˝.f / D R
K
f .k/ dk. If w 2 W ,

let ˚w be the element of V J defined as follows. Every element of G.F / may be
written as bw0k with b 2 B.F /, w0 2 W , and k 2 J . Then, with 
z as in (26),

˚w.bw0k/ D


ı1=2
z.b/ if w D w0;
0 otherwise.

The jW j functions ˚w are a basis of the space of J -fixed vectors in V . (The action
� W G.F /! End.V / is by right translation.) We also define

Ww.g/ D ˝.�.g/˚w/:

e̊w D
X

u>w

˚u; eW w D
X

u>w

Wu;

where u > w is with respect to the Bruhat order.
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Let � be a weight; if˝ is the Whittaker functional, we require � to be dominant.
We may regard Ww.a�/ as an element of CŒq; q�1� ˝ O. OT /. Then, there exist
operators Ti on CŒq; q�1�˝O. OT / such that

T 2
i D .q�1 � 1/Ti C q�1

and which also satisfy the braid relations. Therefore, we obtain a representation of
Hq�1 on CŒq; q�1� ˝ O. OT /. It may be extended to an action of eHq�1 . Now if the
simple reflection �i is a left descent of w 2 W , that is, l.�iw/ < l.w/, then

W�iw.a�/ D TiWw.a�/:

(see [16]). The operators Ti are slightly different in the two cases (˝ the Whittaker
or Spherical functional). In both cases, they are essentially the Demazure-Lusztig
operators. For definiteness, we will describe them when ˝ is the Whittaker
functional. If f is a function on OT .C/, define

@0
i f .z/ D

f .z/� z˛i f .�i z/
1 � z˛i

D f .�i z/ � z�˛i f .z/
1 � z�˛i :

This is the usual Demazure operator conjugated by the map z 7! �z. Then, the
operators Ti are given by

D0
i D .1 � q�1z˛/@0̨ ; T0

i D D0
i � 1:

The Whittaker functions Ww can thus be obtained from Ww0 by applying the Ti .
Moreover,Ww0 has a particularly simple form:

Ww0 .a�/ D


ı1=2.a�/zw0� if � is dominant,
0 otherwise:

In conclusion, the Lusztig representation arises naturally in the theory of Whittaker
functions or, in Ion’s setup,K; J -bi-invariant matrix coefficients. It gives a calculus,
whereby the Whittaker functions may be computed recursively from the simplest
oneWw0 .

It is also important to consider eW w. For example, eW 1 is the spherical Whittaker
function which we have discussed at length in the previous sections. In the theory
of multiple Dirichlet series, it might be useful to substitute eW w for the p-part at a
finite number of places. In the study of the eW w, the remarkable combinatorics of the
Bruhat order begins to play an important role. See [16] for further information. An
important issue is to extend the theory of the previous sections to the theory of the
eW w and to carry out this unified theory in the metaplectic context.
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Chapter 2
A Crystal Definition for Symplectic Multiple
Dirichlet Series

Jennifer Beineke, Ben Brubaker, and Sharon Frechette

Abstract We present a definition for Weyl group multiple Dirichlet series (MDS)
of Cartan type C , where the coefficients of the series are given by statistics on
crystal graphs for certain highest-weight representations of Sp.2r;C/. In earlier
work (Beineke et al., Pacific J. Math., 2011), we presented a definition based on
Gelfand–Tsetlin patterns, and the equivalence of the two definitions is explained
here. Finally, we demonstrate how to prove analytic continuation and functional
equations for any multiple Dirichlet series with fixed data by reduction to rank one
information. This method is amenable to MDS of all types.

Keywords Weyl group multiple Dirichlet series • Crystal graph • Gelfand-Tsetlin
pattern • Littelmann polytope • Whittaker function

2.1 Introduction

This paper presents a definition for a family of Weyl group multiple Dirichlet series
(henceforth “MDS”) of Cartan typeC using a combinatorial model for crystal bases
due to Berenstein–Zelevinsky [2] and Littelmann [16]. Recall that a Weyl group

J. Beineke
Department of Mathematics, Western New England University,
1215 Wilbraham Road, Springfield, MA 01119, USA,
e-mail: jbeineke@wne.edu

B. Brubaker (�)
Department of Mathematics, MIT, Cambridge, MA 02139-4307, USA
e-mail: brubaker@math.mit.edu

S. Frechette
Department of Mathematics and Computer Science, College of the Holy Cross,
1 College Street, Worcester, MA 01610, USA
e-mail: sfrechet@mathcs.holycross.edu

D. Bump et al. (eds.), Multiple Dirichlet Series, L-functions and Automorphic Forms,
Progress in Mathematics 300, DOI 10.1007/978-0-8176-8334-4 2,
© Springer Science+Business Media, LLC 2012

37



38 J. Beineke et al.

MDS is a Dirichlet series in several complex variables which (at least conjecturally)
possesses analytic continuation to a meromorphic function and satisfies functional
equations whose action on the complex space is isomorphic to the given Weyl
group. In [1], we presented a definition for such a series in terms of a basis for
highest-weight representations of Sp.2r;C/—type C Gelfand–Tsetlin patterns—
and proved that the series satisfied the conjectured analytic properties in a number
of special cases. Here we recast that definition in the language of crystal bases
and find that the resulting MDS, whose form appears as an unmotivated miracle
in the language of Gelfand–Tsetlin patterns, is more naturally defined in this new
language.

The family of MDS is indexed by a positive integer r , an odd positive integer
n, and an r-tuple of nonzero algebraic integers m D .m1; : : : ; mr/ from a ring
described precisely in Sect. 2.3. In [1], we further conjectured (and proved for nD 1)
that this series matches the .m1; : : : ; mr/th Whittaker coefficient of a minimal
parabolic, metaplectic Eisenstein series on an n-fold cover of SO.2r C 1/ over a
suitable choice of global field. It is known that the definition of MDS we present
fails to have the conjectured analytic properties if n is even, reflecting the essential
interplay between n and root lengths in our definition (see, for example, Sect. 2.3.6).
An alternate definition for Weyl group MDS attached to any root system (with
completely general choice of r , n, and m) was given by Chinta and Gunnells
[10], who proved they possess analytic continuation and functional equations. Our
definition of MDS for type C is conjecturally equal to theirs, and this has been
verified in a large number of special cases.

The remainder of the paper is outlined as follows. In Sects. 2.2 and 2.3, we recall
the model for the crystal basis from [16] and basic facts about Weyl group MDS for
any root system ˚ . In Sect. 2.4, we define the MDS coefficients in terms of crystal
bases and explain their relation to our earlier definition in [1] (It is instructive to
compare this definition with that of [9].). Section 2.5 demonstrates how, for any
fixed choice of data determining a single MDS of type C , one may prove that the
resulting series satisfies the conjectured functional equations. Similar techniques
would be applicable to Weyl group MDS for any root system. As demonstrated
in [6, 7], by Bochner’s theorem in several complex variables, the existence of such
functional equations then leads to a proof of the desired meromorphic continuation
to the entire complex space Cr . Thus, we provide a method for proving Part I of
Conjecture 1 given in [1] for any fixed choice of initial data specifying a multiple
Dirichlet series.

The proof of functional equations for a given Dirichlet series relies on reduction
to the rank one case, whose analytic properties were demonstrated by Kubota [15].
Similar techniques were employed in [6–8], where the definition of the Dirichlet
series was much simpler having assumed that the defining datum n is sufficiently
large. Our methods indicate that the same should be true for arbitrary choice of
n and arbitrary root system, leading to several potential applications. First, if one
is interested in mean-value estimates for coefficients appearing in a given Weyl
group MDS, this method provides the necessary analytic information to apply
standard Tauberian techniques. More generally, one may take residues of the Weyl
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Fig. 2.1 The crystal graph for a highest-weight representation V� of Sp.4/ with � D �1 C 2�2
(�i : fundamental dominant weights). The vertices of the graph have been labeled with their
corresponding sequence .t1; t2; t3; t4/ obtained by traversing the graph by maximal paths in the
Kashiwara lowering operators in the respective order .f1; f2; f1; f2/. This order is determined by
the decomposition of w0 D �1�2�1�2. For each vertex, t1 is centered in the bottom row, and the
top row is .t2; t3; t4/ read left to right. The highlighted path demonstrates this for the vertex labeled
.1; 2; 1; 1/. The picture has been drawn so that vertices that touch represent basis vectors in the
same weight space

group MDS to obtain a further class of Dirichlet series with analytic continuation.
In computing these residues, it is often useful to first express them in terms of rank
one Kubota Dirichlet series given by our method. (For a similar example in type A,
see [4].)

Since the initial writing of this paper, a new approach to multiple Dirichlet series
using statistical lattice models has emerged (see in particular [5]). In type C , Ivanov
[13] has found a two-dimensional lattice model giving rise to the definition of prime-
powered coefficients of the MDS presented in this paper (or equivalently in [1]).
This leads to an alternate proof of functional equations for the series in the special
case n D 1 based on the Yang–Baxter equation.
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2.2 Littelmann’s Polytope Basis for Crystals

Given a semisimple algebraic group G of rank r and a simple G-module V� of
highest weight �, we may associate a crystal graph X� to V�. That is, there exists
a corresponding simple module for the quantum group Uq.Lie.G// having the
associated crystal graph structure. Roughly speaking, the crystal graph encodes
data from the representation V�, and should be regarded as a kind of “enhanced
character” for the representation; for an introduction to crystal graphs, see [14] or
[11]. For now, we merely recall that the vertices of X� are in bijection with a basis
of weight vectors for the highest-weight representation, and the r “colored” edges
ofX� correspond to simple roots ˛1; : : : ; ˛r ofG. Two vertices b1; b2 are connected
by a (directed) edge from b1 to b2 of color i if the Kashiwara lowering operator f˛i
takes b1 to b2. If the vertex b has no outgoing edge of color i , we set f˛i .b/ D 0.

Littelmann gives a combinatorial model for the crystal graph as follows. Fix a
reduced decomposition of the long element w0 of the Weyl group of G into simple
reflections �i :

w0 D �i1�i2 � � ��iN :
Given an element b (i.e., vertex) of the crystal X�, let t1 be the maximal integer
such that b1 WD f t1

˛i1
.b/ ¤ 0. Similarly, let t2 be the maximal integer such that

b2 WD f t2
˛i2
.b1/ ¤ 0. Continuing in this fashion in order of the simple reflections

appearing in w0, we obtain a string of nonnegative integers .t1.b/; : : : ; tN .b//. We
often suppress this dependence on b, and simply write .t1; : : : ; tN /. Note that by
well-known properties of the crystal graph, we are guaranteed that for any reduced
decomposition of the long element and an arbitrary element b of the crystal, the path
f tN
˛iN
� � �f t1

˛i1
.b/ through the crystal always terminates at blow, corresponding to the

lowest weight vector of the crystal graph X�.
Littelmann proves that, for any fixed reduced decomposition, the set of all

sequences .t1; : : : ; tN / as we vary over all vertices of all highest-weight crystals V�
associated to G fills out the integer lattice points of a cone in RN . The inequalities
describing the boundary of this cone depend on the choice of reduced decom-
position. For a particular “nice” subset of the set of all reduced decompositions,
Littelmann shows that the cone is defined by a rather simple set of inequalities.
(A precise definition of “nice” and numerous examples may be found in [16], and
we will only make use of one such example.) For any fixed highest weight �, the
set of all sequences .t1; : : : ; tN / for the crystal X� are the integer lattice points of a
polytope in RN . The boundary of the polytope consists of the hyperplanes defined
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by the cone inequalities independent of �, together with additional hyperplanes
dictated by the choice of �.

We now describe this geometry in the special case of Sp2r .C/. We fix an
enumeration of simple roots chosen so that ˛1 is the unique long simple root and
˛i and ˛iC1 correspond to adjacent nodes in the Dynkin diagram. This example is
dealt with explicitly in Sect. 6 of [16] with the following “nice decomposition” of
the long element of the associated Weyl group:

w0 D �1.�2�1�2/.: : :/.�r�1 : : : �1 : : : �r�1/.�r�r�1 : : : �1 : : : �r�1�r /: (1)

With N D r2, let t D .t1; t2; : : : ; tN / be the string generated by traversing the
crystal graph from a given weight b to the highest weight � as described above. An
example in rank 2 is given in Fig. 2.1.

In order to describe the cone inequalities for Sp.2r;C/ with w0 as in (1), it is
convenient to place the sequence t D .t1; t2; : : : ; tN / in a triangular array. Following
Littelmann [16], construct a triangle� consisting of r centered rows of boxes, with
2.rC 1� i/� 1 entries in the row i , starting from the top. To any vector t 2 Rr

2
, let

�.t/ denote the filled triangle whose entries are the coordinates of t, with the boxes
filled from the bottom row to the top row, and from left to right. For notational
ease, we reindex the entries of � using standard matrix notation; let ci;j denote the
j th entry in the i th row of �, with i � j � 2r � i . Also, for convenience in the
discussion below, we will write ci;j WD ci;2r�j for i � j � r . Thus, when r D 3,
we are considering triangles of the form

c1;1 c1;2 c1;3 c1;2 c1;1

c2;2 c2;3 c2;2

c3;3

so that, for example,

t D .2; 2; 1; 1; 5; 3; 2; 2; 1/ 7! �.t/ D
5 3 2 2 1

2 1 1

2

:

Given this notation, we may now state the cone inequalities.

Proposition 1 (Littelmann, [16], Theorem 6.1). For G D Sp.2r;C/ and w0 as
in (1), the corresponding cone of all sequences t is given by the set of all triangles
�.t/ with nonnegative entries fci;j g that are weakly decreasing in rows.



42 J. Beineke et al.

Recall that for any fundamental dominant weight �, the set of all paths t ranging
over all vertices of the crystal X� are the integer lattice points of a polytope C�
in RN . We now describe the remaining hyperplane inequalities which define this
polytope.

Proposition 2 (Littelmann, [16] Corollary 6.1). Let G D Sp2r.C/ and let w0
be as in (1). Write � D �1�1 C � � � C �r�r ; with �i the fundamental weights.
Then C� is the convex polytope of all triangles �.ci;j ) such that the entries in the
rows are nonnegative and weakly increasing and satisfy the following upper-bound
inequalities for all 1 � i � r and 1 � j � r � 1:

ci;j � �r�jC1 C s.ci;j�1/� 2s.ci�1;j /C s.ci�1;jC1/; (2)

ci;j � �r�jC1 C s.ci;j�1/� 2s.ci;j /C s.ci;jC1/; (3)

and ci;r � �1 C s.ci;r�1/� s.ci�1;r /: (4)

In the above, we have set

s.ci;j / WD ci;jC
i�1X

kD1
.ck;jCck;j /; s.ci;j / WD

iX

kD1
.ck;jCck;j /; s.ci;r / WD

iX

kD1
2ck;r :

We will call these triangular arrays “Berenstein–Zelevinsky–Littelmann pat-
terns” (or “BZL-patterns” for short). The set of patterns corresponding to all
vertices in a highest-weight crystal X� will be referred to as BZL.�/.

2.3 Definition of the Multiple Dirichlet Series

In this section, we give the general shape of a Weyl group MDS, beginning with
the rank one case. In particular, we reduce the determination of the higher-rank
Dirichlet series to its prime-power-supported coefficients, which will be given in
the next section as a generating function over BZL-patterns.

2.3.1 Algebraic Preliminaries

Given a fixed positive integer n, let F be a number field containing the 2nth roots
of unity, and let S be a finite set of places containing all ramified places over Q, all
archimedean places, and enough additional places so that the ring of S -integers OS

is a principal ideal domain. Recall that

OS D fa 2 F j a 2 Ov 8v 62 Sg ;
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and can be embedded diagonally in FS D Qv2S Fv: There exists a pairing

.�; �/S W F �
S � F �

S �! �n defined by .a; b/S D
Y

v2S
.a; b/v;

where the .a; b/v are local Hilbert symbols associated to n and v.
To any a 2 OS and any ideal b 2 OS , we may associate the nth-power residue

symbol
�
a
b

�
n

as follows. For prime ideals p, the expression
�
a
p

�

n
is the unique nth

root of unity satisfying the congruence
�
a

p

�

n

� a.N.p/�1/=n .mod p/:

We then extend the symbol to arbitrary ideals b by multiplicativity, with the
convention that the symbol is 0 whenever a and b are not relatively prime. Since
OS is a principal ideal domain by assumption, we will write

�a

b

�

n
D
�a

b

�

n
for b D bOS

and often drop the subscript n on the symbol when the power is clear from context.
Then if a; b are coprime integers in OS , we have the nth-power reciprocity law

(cf. [17], Theorem 6.8.3)
�a

b

�
D .b; a/S

�
b

a

�

: (5)

Lastly, for a positive integer t and a; c 2 OS with c ¤ 0, we define the Gauss
sum gt .a; c/ as follows. First, choose a nontrivial additive character  of FS trivial
on the OS integers (cf. [3] for details). Then the nth-power Gauss sum is given by

gt .a; c/ D
X

d mod c

�
d

c

�t

n

 

�
ad

c

�

; (6)

where we have suppressed the dependence on n in the notation on the left.

2.3.2 Kubota’s Rank One Dirichlet Series

We now present Kubota’s Dirichlet series arising from the Fourier coefficient of an
Eisenstein series on an n-fold cover of SL.2; FS/. It is the prototypical Weyl group
MDS, and many of the general definitions of Sect. 2.3.4 can be understood as natural
extensions of those in the rank one case. Moreover, we will make repeated use of
the functional equation for the Kubota Dirichlet series when we demonstrate the
functional equations for higher-rank MDS by reduction to rank one in Sect. 2.6.
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A subgroup ˝ � F �
S is said to be isotropic if .a; b/S D 1 for all a; b 2 ˝ . In

particular,˝ D OS.F
�
S /

n is isotropic (where .F �
S /

n denotes the nth powers in F �
S ).

Let Mt .˝/ be the space of functions � W F �
S �! C that satisfy the transformation

property

�.�c/ D .c; �/�tS �.c/ for any � 2 ˝; c 2 F �
S . (7)

For � 2Mt .˝/, consider the “Kubota Dirichlet series”

Dt .s; �; a/ D
X

0¤c2Os=O�

s

gt .a; c/�.c/

jcj2s : (8)

Here, jcj is the order ofOS=cOS , gt .a; c/ is as in (6), and the term gt .a; c/�.c/jcj�2s
is independent of the choice of representative c, modulo S -units. Standard estimates
for Gauss sums show that the series is convergent if R.s/ > 3

4
. To state a precise

functional equation, we require the Gamma factor

Gn.s/ D .2�/�2.n�1/sn2ns
n�2Y

jD1
�

�

2s � 1C j

n

�

: (9)

In view of the multiplication formula for the Gamma function, we may also write

Gn.s/ D .2�/�.n�1/.2s�1/ � .n.2s � 1//
� .2s � 1/ :

Let
D�
t .s; �; a/ D Gm.s/

ŒF WQ�=2�F .2ms �mC 1/Dt .s; �; a/; (10)

where m D n= gcd.n; t/, 1
2
ŒF W Q� is the number of archimedean places of the

totally complex field F , and �F is the Dedekind zeta function of F .
If v 2 Sfin, the non-archimedean places of S , let qv denote the cardinality of the

residue class field Ov=Pv, where Ov is the local ring in Fv and Pv is its prime ideal.
By an S -Dirichlet polynomial, we mean a polynomial in q�s

v as v runs through the
finitely many places of Sfin. If � 2Mt .˝/ and 	 2 F �

S , denote

e�	.c/ D .	; c/S �
�
c�1	�1� : (11)

Then, we have the following result (Theorem 1 in [8]), which follows from the work
of Brubaker and Bump [3].

Theorem 1. Let � 2 Mt .˝/ and a 2 OS . Let m D n= gcd.n; t/. Then
D�
t .s; �; a/ has meromorphic continuation to all s, analytic except possibly at

s D 1
2
˙ 1

2m
, where it may have simple poles. There exist S -Dirichlet polynomials

P t
	 .s/ depending only on the image of 	 in F �

S =.F
�
S /

n such that



2 A Crystal Definition for Symplectic Multiple Dirichlet Series 45

D�
t .s; �; a/ D jaj1�2s

X

	2F�

S =.F
�

S /
n

P t
a	.s/D�

t .1 � s;e�	; a/: (12)

This result, based on ideas of Kubota [15], relies on the theory of Eisenstein series.
The case t D 1 is handled in [3]; the general case follows as discussed in the proof
of Proposition 5.2 of [7]. Notably, the factor jaj1�2s is independent of the value of t .

2.3.3 Root Systems

Before proceeding to the definition of higher-rank MDS, which uses the language
of the associated root system, we first fix notation and recall a few basic results.

Let˚ be a reduced root system contained in a real vector space V of dimension r .
The dual vector space V _ contains a root system ˚_ in bijection with ˚ , where the
bijection switches long and short roots. If we write the dual pairing

V � V _ �! R W .x; y/ 7! B.x; y/; (13)

then B.˛; ˛_/ D 2. Moreover, the simple reflection �˛ W V ! V corresponding to
˛ is given by

�˛.x/ D x � B.x; ˛_/˛:

In particular, �˛ preserves ˚ . Similarly, we define �˛_ W V _ ! V _ by �˛_.x/ D
x � B.˛; x/˛_ with �˛_.˚_/ D ˚_.

Without loss of generality, we may take ˚ to be irreducible (i.e., there do not
exist orthogonal subspaces ˚1;˚2 with ˚1 [ ˚2 D ˚). Then set h�; �i to be the
Euclidean inner product on V and jj˛jj D ph˛; ˛i the Euclidean norm, normalized
so that 2h˛; ˇi and jj˛jj2 are integral for all ˛; ˇ 2 ˚ . With this notation, we may
alternately write

�˛.ˇ/ D ˇ � 2hˇ; ˛ih˛; ˛i ˛ for any ˛; ˇ 2 ˚ . (14)

We partition ˚ into positive roots ˚C and negative roots ˚� and let � D
f˛1; : : : ; ˛rg � ˚C denote the subset of simple positive roots. Let �i for i D
1; : : : ; r denote the fundamental dominant weights satisfying

2h�i ; ˛j i
h˛j ; ˛j i D ıij ; ıij : Kronecker delta. (15)

Any dominant weight � is expressible as a nonnegative linear combination of the �i ,
and a distinguished role in the theory is played by the Weyl vector �, defined by

� D 1

2

X

˛2˚C

˛ D
rX

iD1
�i : (16)
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2.3.4 The Form of Higher-Rank Multiple Dirichlet Series

We now begin explicitly defining the MDS, retaining our previous notation. By
analogy with the rank 1 definition in (7), given an isotropic subgroup˝ , let M.˝r/

be the space of functions � W .F �
S /

r �! C that satisfy the transformation property

�.�c/ D
0

@
rY

iD1
.�i ; ci /

jj˛i jj2
S

Y

i<j

.�i ; cj /
2h˛i ;˛j i
S

1

A�.c/ (17)

for all � D .�1; : : : ; �r / 2 ˝r and all c D .c1; : : : ; cr / 2 .F �
S /

r .
Given a reduced root system ˚ of fixed rank r , an integer n 	 1, m 2 Or

S ,
and � 2M.˝r/, then we define a MDS as follows. It is a function of r complex
variables s D .s1; : : : ; sr / 2 Cr of the form

Z�.sIm/ WD Z�.s1; : : : ; sr Im1; : : : ; mr/ D
X

cD.c1;:::;cr /2.OS=O�

S /
r

H .n/.cIm/�.c/
jc1j2s1 � � � jcr j2sr :

(18)

The function H.n/.cIm/ carries the main arithmetic content. In general, it is not
a multiplicative function but rather a “twisted multiplicative” function. That is, for
S -integer vectors c; c0 2 .OS=O�

S /
r with gcd.c1 � � � cr ; c0

1 � � � c0
r / D 1,

H.n/.c1c
0
1; : : : ; crc

0
r Im/ D �.c; c0/H.n/.cIm/H.n/.c0Im/; (19)

where �.c; c0/ is an nth root of unity depending on c; c0. It is given precisely by

�.c; c0/ D
rY

iD1

�
ci

c0
i

�jj˛i jj2

n

�
c0
i

ci

�jj˛i jj2

n

Y

i<j

 
ci

c0
j

!2h˛i ;˛j i

n

�
c0
i

cj

�2h˛i ;˛j i

n

(20)

where
� �

�
�
n

is the nth-power residue symbol defined in Sect. 2.3.1. Note that in the
special case ˚ D A1, the twisted multiplicativity in (19) and (20) agrees with the
usual identity for Gauss sums appearing in the numerator for the rank one case given
in (8).

The transformation property of functions in M.˝r/ in (17) above is, in part,
motivated by the identity

H.n/.�cIm/�.�c/ D H.n/.cIm/�.c/ for all � 2 Or
S ; c;m 2 .F �

S /
r :

This can be verified using the nth-power reciprocity law from Sect. 2.3.1.
The functionH.n/.cIm/ also exhibits a twisted multiplicativity in m. Given any

m;m0; c 2 Or
S with gcd.m0

1 � � �m0
r ; c1 � � � cr / D 1, we let
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H.n/.cIm1m
0
1; : : : ; mrm

0
r / D

rY

iD1

�
m0
i

ci

��jj˛i jj2

n

H .n/.cIm/: (21)

The definitions in (19) and (21) imply that it is enough to specify the coefficients
H.n/.pk1 ; : : : ; pkr Ipl1 ; � � � ; plr / for any fixed prime p with li D ordp.mi/ in order
to completely determine H.n/.cIm/ for any pair of S -integer vectors m and c.
These prime-power coefficients are described in terms of data from highest-weight
representations associated to .l1; � � � ; lr / and will be given precisely in Sect. 2.4.

2.3.5 Weyl Group Actions

In order to precisely state a functional equation for the Weyl group MDS defined
in (18), we require an action of the Weyl groupW of ˚ on the complex parameters
.s1; : : : ; sr /. This arises from the linear action ofW , realized as the group generated
by the simple reflections �˛_ , on V _. From the perspective of Dirichlet series, it
is more natural to consider this action shifted by �_, half the sum of the positive
co-roots. Then, each w 2 W induces a transformation V _

C D V _ ˝ C ! V _
C (still

denoted by w) if we require that

B

�

w˛;w.s/ � 1
2
�_
�

D B
�

˛; s � 1
2
�_
�

:

We introduce coordinates on V _
C using simple roots� D f˛1; : : : ; ˛rg as follows.

Define an isomorphism V _
C ! Cr by

s 7! .s1; s2; : : : ; sr /; si D B.˛i ; s/: (22)

This action allows us to identify V _
C with Cr , and so the complex variables si that

appear in the definition of the MDS may be regarded as coordinates in either space.
It is convenient to describe this action more explicitly in terms of the si , and it
suffices to consider simple reflections which generate W . Using the action of the
simple reflection �˛i on the root system ˚ given in (14) in conjunction with (22)
above gives the following:

Proposition 3. The action of �˛i on s D .s1; : : : ; sr / defined implicitly in (22) is
given by

sj 7! sj � 2h˛j ; ˛i ih˛i ; ˛i i
�

si � 1
2

�

; j D 1; : : : ; r: (23)

In particular, �˛i W si 7! 1 � si . For convenience, we will write �i for �˛i .
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2.3.6 Normalizing Factors and Functional Equations

The multiple Dirichlet series must also be normalized using Gamma and zeta factors
in order to state precise functional equations. Let

n.˛/ D n

gcd.n; jj˛jj2/ ; ˛ 2 ˚C:

For example, if ˚ D Cr and we normalize short roots to have length 1, this implies
that n.˛/ D n unless ˛ is a long root and n even (in which case n.˛/ D n=2). By
analogy with the zeta factor appearing in (10), for any ˛ 2 ˚C, let

�˛.s/ D �
�

1C 2n.˛/B
�

˛; s� 1
2
�_
��

;

where � is the Dedekind zeta function attached to the number field F . Further,
for Gn.s/ as in (9), we may define

G˛.s/ D Gn.˛/

�
1

2
C B

�

˛; s � 1
2
�_
��

: (24)

Then for any m 2 Or
S , the normalized multiple Dirichlet series is given by

Z�
� .sIm/ D

2

4
Y

˛2˚C

G˛.s/�˛.s/

3

5Z�.s;m/: (25)

For any fixed n, m, and root system ˚ , we seek to exhibit a definition for
H.n/.cIm/ (or equivalently, given twisted multiplicativity, a definition of H at
prime-power coefficients) such that Z�

� .sIm/ is initially convergent for <.si /
sufficiently large (i D 1; : : : ; r), has meromorphic continuation to all of Cr and
satisfies functional equations of the form:

Z�
� .sIm/ D jmi j1�2si Z�

�i�
.�i sIm/ (26)

for all simple reflections �i 2 W . Here, �i s is as in (23) and the function �i� ,
which essentially keeps track of the rather complicated scattering matrix in this
functional equation, is defined as in (37) of [8]. As noted in Sect. 7 of [8], given
functional equations of this type together with several assumptions about the form
ofH.n/.cIm/, one can obtain analytic continuation to a meromorphic function of Cr

with an explicit description of polar hyperplanes via Bochner’s convexity principle.
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2.4 Definition of the Prime-Power Coefficients

In this section, we use crystal graphs to give a definition for the p-power coefficients
H.n/.pkIpl/ in a multiple Dirichlet series for the root system Cr with n odd. More
precisely, the p-power coefficients will be given as weighted sums over the BZL-
patterns defined in Sect. 2.2 that have weight corresponding to k. Given a fixed
r-tuple of integers l D .l1; : : : ; lr /, let

� D
rX

iD1
li �i ; (27)

where �i are fundamental dominant weights. The contributions to H.n/.pkIpl/ are
parametrized by basis vectors of the highest-weight representation with highest
weight �C �, where � is the Weyl vector for Cr defined in (16). We use the set of
BZL-patterns BZL.�C �/ as our combinatorial model for these basis vectors.

The contributions to each H.n/.pkIpl/ come from a single weight space
corresponding to k D .k1; : : : ; kr / in the highest-weight representation � C �

corresponding to l. Given a BZL-pattern � D �.ci;j /, define the vector

k.�/ D .k1.�/; k2.�/; : : : ; kr .�//

with

k1.�/ D
rX

iD1
ci;r ; and kj .�/ D

rC1�jX

iD1

�
ci;rC1�j C ci;rC1�j

�
; for 1 < j � r .

(28)

We define

H.n/.pkIpl/ D H.n/
�
pk1; : : : ; pkr Ipl1 ; : : : ; plr � D

X

�2BZL.�C�/
k.�/D.k1;:::;kr /

G.�/; (29)

where G.�/ is a weighting function to be defined presently.
To this end, we will apply certain decoration rules to the BZL-patterns. These

decorations will consist of boxes and circles around the individual entries of the
pattern, applied according to the following rules:

1. The entry ci;j is circled if ci;j D ci;jC1. We understand the entries outside the
triangular array to be zeroes, so the right-most entry in a row will be circled if it
equals 0.

2. The entry ci;j is boxed if equality holds in the upper-bound inequality of
Proposition 2 having ci;j as the lone term on the left-hand side.
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We illustrate these rules in the following rank 3 example. Let .l1; l2; l3/ D
.0; 1; 1/. Then there are nine upper-bound inequalities for the polytope C�C�. We
state them for the five top row elements c1;j , leaving the rest to the reader:

c1;1 � 2; c1;2 � 2C c1;1 c1;3 � 1C c1;2
c1;2 � 2C c1;1 � 2c1;2 C 2c1;3; c1;1 � 2 � 2c1;1 C c1;2 C c1;2:

We may now decorate any pattern occurring in BZL.� C �/. For example, the
following BZL-pattern (with decorations) occurs in this set:

5 3 2�2 1

2 1�1

2
:

(30)

To each entry ci;j in a decorated�.c/, we associate the complex-valued function

�.ci;j / D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

qci;j if ci;j is circled (but not boxed);

g1.p
ci;j�1; pci;j / if ci;j is boxed (but not circled), and j ¤ r ,

g2.p
ci;j�1; pci;j / if ci;j is boxed (but not circled), and j D r ,

�.pci;j / if ci;j is neither boxed nor circled;

0 if ci;j is both boxed and circled,

(31)

where gt .p˛; pˇ/ is an nth-power Gauss sum as in (6), �.pa/ denotes Euler’s
totient function for OS=p

aOS , and q D jOS=pOS j. Then at last, we may define
the weighting function appearing in (29) by

G.�/ D
Y

1�i�r;
i�j�2r�1

�.ci;j /: (32)

For instance, in (30), we find that

�.c1;1/ D g1.p4; p5/; �.c1;3/ D q2; and �.c1;2/ D �.p2/:

Computing the remaining �.ci;j /’s for� in (30), we have

G.�/ D ˚g1.p4; p5/g1.p2; p3/q2�.p2/�.p/
� � ˚�.p2/q�.p/� � �.p2/:

Note that the definition implies that some BZL-patterns� will haveG.�/ D 0.
For instance, in rank 2 with l1 D 3 and l2 D 4, the decorated pattern
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� D 5� 5 5�

3

occurs, and has G.�/ D 0.
The definition of G.�/ in (32) completes the definition of the prime-power

coefficients H.n/.pkIpl/ in (29). According to the twisted multiplicativity given
in Sect. 2.3.4, this completely determines the coefficients of the multiple Dirichlet
series Z�.sIm/ defined in (18).

2.5 Equality of the GT and BZL Descriptions

In Sect. 3 of [1], we gave an alternate definition for the p-power coefficients using
Gelfand–Tsetlin patterns (henceforth “GT -patterns”) as our combinatorial model
for the highest-weight representation. In this section, we will demonstrate that the
two definitions for p-power coefficients H.n/.pkIpl/ in terms of GT -patterns and
BZL-patterns are indeed the same.

A GT -pattern P associated to Sp.2r;C/ has the form

P D

a0;1 a0;2 � � � a0;r
b1;1 b1;2 � � � b1;r�1 b1;r

a1;2 � � � a1;r
: : :

: : :
:::

ar�1;r
br;r

(33)

where the ai;j ; bi;j are nonnegative integers and the rows of the pattern interleave.
That is, for all ai;j ; bi;j in the pattern P above,

min.ai�1;j ; ai;j / 	 bi;j 	 max.ai�1;jC1; ai;jC1/

and
min.biC1;j�1; bi;j�1/ 	 ai;j 	 max.biC1;j ; bi;j /:

A careful summary of patterns of this type arising from branching rules for classical
groups can be found in [18] building on the work of [20]:

Let �C � D .l1 C 1/�1 C � � � C .lr C 1/�r and set

.Lr ; � � � ; L1/ WD .l1 C l2 C � � � C lr C r; : : : ; l1 C l2 C 2; l1 C 1/: (34)

Then the set of all GT -patterns with top row .a0;1; : : : ; a0;r / D .Lr ; : : : ; L1/ forms
a basis for the highest-weight representation with highest weight �C �. We refer to
this set of patterns as GT .�C �/.
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Proposition 4 (Littelmann, [16] Corollary 6.2). The following equations induce
a bijection of sets ' between GT .�C �/ and BZL.�C �/:

ci;j D
jX

mD1
.ai�1;m � bi;m/ ; for i � j � r;

and

ci;j D ci;r C
r�jX

mD1
.ai;rC1�m � bi;rC1�m/ ; for i < j � r � 1. (35)

Remark 1. The map given in Corollary 2 of Sect. 6 in [16] is actually the inverse
of the map defined by (35). (Note that there are several typographical errors in the
presentation of the map in [16].) In that same section, Littelmann gives an example
illustrating this correspondence, in the case of rank 3. This example is given below,
with the corrected first entry in the second row:

9 5 1

6 5 0

5 3

5 2

3

1

 !

7 7 4 3 3

2 1 0

2

Using the bijection of the previous proposition, we may now compare the two
definitions for prime-power coefficients of the multiple Dirichlet series.

Proposition 5. Given a fundamental dominant weight �, let GGT be the function
defined on Gelfand–Tsetlin patterns P in GT .� C �/ in Definition 3 of [1]. Let
G.�/ be the function defined on BZL-patterns in (32). Then, with ' the bijection
of Proposition 4,

GGT ..P // D G.'.P //:

Proof. It suffices to check that the cases defining the function onGT -patterns match
those for BZL-patterns. Indeed, one must check that “maximal” and “minimal”
entries in GT -patterns correspond to boxing and circling, respectively, in BZL-
patterns. This is a simple consequence of the bijection in Proposition 4, and we
leave the case analysis to the reader.

2.6 Functional Equations by Reduction to Rank One

In this section, we provide evidence toward global functional equations for the
multiple Dirichlet series Z�.sIm/ through a series of computations in a particular
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rank 2 example. We will demonstrate that these multiple Dirichlet series are, in
some sense, built from combinations of rank 1 Kubota Dirichlet series and thus
inherit their functional equations. Similar techniques to those presented here would
apply for arbitrary rank.

Recall from (23) that, in rank 2, we expect functional equations corresponding to
the simple reflections

�1 W .s1; s2/ 7! .1�s1; s1Cs2�1=2/ and �2 W .s1; s2/ 7! .s1C2s2�1; 1�s2/; (36)

which generate a group acting on .s1; s2/ 2 C2 isomorphic to the Weyl group of C2,
the dihedral group of order 8.

With notations as before, let n D 3, and m D .p2; p1/ for some fixed OS

prime p. Then we will illustrate how our definition of the coefficientsH.3/.cIp2; p/
leads to a multiple Dirichlet series Z�.sIp2; p/ satisfying the functional equations

Z�
�
s1; s2Ip2; p

�! jp2j1�2s1Z�1�
�
1 � s1; s1 C s2 � 1=2Ip2; p

�
(37)

and

Z�
�
s1; s2Ip2; p

�! jpj1�2s2Z�2�
�
s1 C 2s2 � 1; 1� s2Ip2; p

�
(38)

corresponding to the above simple reflections according to (26).
Note that Z� is only initially defined for <.si / > c, i D 1 or 2, for some

constant c. This is clear from the fact that the prime-power-supported coefficients
H.`k1 ; `k2/ at a given prime ` are nonzero for only finitely many pairs .k1; k2/.
However, (37) and (38) both require meromorphic continuation to larger region
which is also a consequence of our expression in terms of rank 1 Dirichlet series.
(See [6] for a careful explanation of this for typeA2 MDS.) Together with Bochner’s
tube domain theorem (cf. Theorem 2.5.10 of [12]), these functional equations imply
the meromorphic continuation of the series Z� to all of C2, verifying a special
case of Conjecture 1 in [1]. The emphasis in this section will be on the functional
equations (37) and (38) which rely critically on the combinatorics of the typeC root
system, so we leave the remaining details of the meromorphic continuation to the
reader. It follows from methods quite similar to those of [6–8].

Our strategy is quite simple. To demonstrate the functional equation correspond-
ing to �1, write

Z�.s1; s2Ip2; p/ D
X

c22OS=O�

S

jc2j�2s2
X

c12OS=O�

S

H .3/.c1; c2Ip2; p/�.c/
jc1j2s1 (39)

and attempt to realize the inner sum, for any fixed c2, in terms of rank 1 Kubota
Dirichlet series whose one-variable functional equations are all compatible with
the global functional equation in (37). Similar methods apply for the other simple
reflection. One difficulty with this approach is that our definitions forH.n/.cIm/ up
to this point have been “local”—that is, we have only provided explicit definitions
for the prime-power-supported coefficients. Of course, our requirement that the
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H.n/.cIm/ satisfy twisted multiplicativity then uniquely defines the coefficients for
any r-tuple of integers c, but there are many complications in attempting to patch
together the prime-power-supported pieces to reconstruct a global series.

This strategy was precisely carried out in [7] and [8] for any root system ˚

provided n is sufficiently large. Such values of n are referred to as stable (see
[8] for the precise statement). Indeed, global objects were reconstructed from
the prime-power-supported contributions by meticulously checking that all Hilbert
symbols and nth-power residue symbols combine neatly into Kubota Dirichlet series
with the required twisted multiplicativity. Our purpose here is not to get bogged
down in these complications, but rather to show how global functional equations
can be anticipated simply by considering the prime-power-supported coefficients.
According to [8], the example with m D .p2; p/ will have a simple description
only if n 	 7; hence when n D 3, the results of [8] do not apply. Nevertheless, as
we will explain, our method of reduction to the rank 1 case is still viable.

2.6.1 Analysis of H .3/.c1; c2I p2; p/ with Prime-Power Support

The nature of H.3/.c1; c2Ip2; p/ with c1; c2 powers of a fixed prime depends
critically on whether that prime is p, the fixed prime occurring in m D .p2; p/, or a
distinct prime ` ¤ p. The prime-power-supported coefficientsH.3/.`k1 ; `k2 Ip2; p/
at primes ` ¤ p have identical support .k1; k2/ for any such prime ` (as the support
depends only on ord`.m1/ and ord`.m2/) and a uniform description as products of
Gauss sums in terms of `. The .k1; k2/ coordinates of this support are depicted
in Fig. 2.2—the result of the affine linear transformation of the weights in the
corresponding highest-weight representation �. The vertex in the bottom left corner
is placed at .k1; k2/ D .0; 0/. At each of the vertices in the interior, the number
shown indicates the number ofBZL-patterns associated with that vertex, that is, the
multiplicity in the associated weight space. These counts include both singular and
nonsingular patterns, though singular patterns give no contribution to the multiple
Dirichlet series for any n. Support on the boundary is indicated by black dots, each
with a unique correspondingBZL-pattern.

For n D 3, each of the eight patterns � (four singular, four nonsingular) in the
interior of the polygon of support has G.�/ D 0, so the only nonzero contributions
come from the eight boundary vertices. Note that these are just the “stable” vertices,
which have G.�/ nonzero for all n.

k1

k2

2

2 2

2
Fig. 2.2 Support .k1; k2/ for
H.3/.`k1 ; `k2 Ip2; p/ (with
indicated multiplicities of
contributing BZL-patterns �
having k.�/ D .k1; k2/)
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k1

k2

2

3

2

4

2

4

2

3

2 2

3 4 4

2 4

4 6 6

2 5

4 6 6

2

4 5

5 6

4 5 4

3 4 4

2 2 2

Fig. 2.3 Support .k1; k2/ for
H.3/.pk1 ; pk2 Ip2; p/ (with
indicated multiplicities of
contributing
BZL-patterns �)

The coefficients H.3/.pk1 ; pk2 Ip2; p1/ are much more interesting. Recall that
these coefficients are parametrized by BZL-patterns with the coordinates of �C �
given by .L2; L1/ D .5; 3/, as in (34). The supporting vertices .k1; k2/ for the
p-part are shown below in Fig. 2.3. On the support’s boundary, stable vertices are
indicated by filled circles, and unstable vertices are indicated by open circles, all
with multiplicity one.

Again, the choice of n D 3 will make G.�/ D 0 for many of the patterns
� occurring at these support vertices. Roughly speaking, the nonzero support for
any fixed n forms an n � n regular lattice beginning at the origin. However, this
lattice becomes somewhat distorted by the boundary of the polygon, particularly
the location of the stable vertices. In fact, our choice of .L2; L1/ D .5; 3/ in this
example is so small that this phenomenon is essentially obscured.

2.6.2 Three Specific Examples

Returning to the discussion of functional equations, we will first demonstrate a
functional equation corresponding to the simple reflection �1 taking s1 7! 1 � s1.
Recall our strategy is to show that for any choice of c2, we may write the inner sum
in (39) in terms of Kubota Dirichlet series. For example, let c2 D p8. By twisted
multiplicativity, we see that H.3/.c1; p

8Ip2; p/ will be 0 unless ord`.c1/ � 1 for
all primes ` ¤ p (as evident from Fig. 2.2, since we seek `-power terms with
support k2 D 0). More interestingly, using Fig. 2.3, we see that p-power terms with
k2 D 8 must have 3 � ordp.c1/ � 8. Let us examine the p-power coefficients more
closely.
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2.6.2.1 The Functional Equation �1 with k2 D 8

As seen in Fig. 2.3,H.3/.pk1 ; pk2 Ip2; p/ with k2 D 8 has support at 6 lattice points
.k1; 8/ with a total of 16 BZL-patterns. Having chosen n D 3 (so that all Gauss
sums appearing are formed with a cubic residue symbol), one checks that only five
of these 16 BZL-patterns have nonzero Gauss sum products associated to them.
These are listed in the table below.

� k.�/ G.�/ G.�/ for n D 3

8 3 0

0

�

�
.3; 8/ g2.p

2; p3/ g1.p
7; p8/ �jpj2g1.p7; p8/

6 5 2

0�
.5; 8/ g1.p

1; p2/ g2.p
4; p5/ g1.p

7; p6/ jpj6�.p6/

8 3 0

3

�
.6; 8/ g2.p

2; p3/ g1.p
7; p8/ g2.p

4; p3/ �jpj2g1.p7; p8/�.p3/

6 5 2

1
.6; 8/ g1.p

1; p2/ g2.p
4; p5/ g1.p

7; p6/ g2.1; p/ jpj6�.p6/g2.1; p/

8 3 0

5

�
.8; 8/ g2.p

2; p3/ g1.p
7; p8/ g2.p

4; p5/ �jpj2g1.p7; p8/g2.p4; p5/

We have computed the final column in the table from the third column, using
the following three elementary properties of nth-order Gauss sums at prime powers,
which can be proved easily from the definition in (6):

1. If a 	 b, then gt .pa; pb/ D
(
�.pb/ njtb;
0 n − tb:

2. For any integers a and t , gt .pa�1; pa/ D jpja�1gat .1; p/.
3. For any integer t , gt .1; p/ gn�t .1; p/ D jpj:
For notational convenience, let the inner sum in (39) be denoted
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F.s1I c2/ D
X

c12OS =O�

S

H .3/.c1; c2Ip2; p/�.c/
jc1j2s1 : (40)

Fix c2 D p8 and let

F .p/.s1Ip8/ D
X

k1

H .3/.pk1 ; p8Ip2; p/�.pk1 ; p8/
jpj2k1s1 : (41)

From the table above, this sum is supported at k1D 3; 5; 6, and 8, so thatF .p/.s1Ip8/
equals

�jpj2 g1.p7; p8/�.p3; p8/
jpj6s1




1C g2.p
4; p3/

jpj6s1
�.p6; p8/

�.p3; p8/
C g2.p

4; p5/

jpj10s1
�.p8; p8/

�.p3; p8/

�

C jpj6�.p6/�.p5; p8/
p10s1




1C g2.1; p/

jpj2s1 �
�.p6; p8/

�.p5; p8/

�

(42)

Ignoring complications from the� function, both bracketed sums may be expressed
as thep-part of a Kubota Dirichlet series in s1. Indeed, lettingD.p/

2 denote the prime-
power-supported coefficients of the Kubota Dirichlet series D2 in (8), then

D.p/
2 .s1; �

0; p4/ D



1C g2.p
4; p3/

jpj6s1
�.p6; p8/

�.p3; p8/
C g2.p

4; p5/

jpj10s1
�.p8; p8/

�.p3; p8/

�

for some appropriately defined � 0 2M2.˝/, as D.p/
2 .s1; �

0; p4/ contains
g2.p

4; pk1/ in the numerator, which is nonzero only if k1 D 0; 3, or 5 when n D 3.
Similarly,

D.p/
2 .s1; �

00; 1/ D



1C g2.1; p/

jpj2s1 �
�.p6; p8/

�.p5; p8/

�

for an appropriately defined� 00 2M2.˝/. Thus, according to (42), we may express
F .p/.s1/ as the sum of p-parts of Kubota Dirichlet series multiplied by Dirichlet
monomials. The reader interested in checking all details regarding the � function
should refer to Sect. 5 of [7]; our notation for the one-variable � 0 or � 00 in M2.˝/

derived from �.c1; c2/ is called �c1;c2 in Lemma 5.3 of [7].
In order to reconstruct the global object F.s1I c2/ with c2 D p8, we now turn to

the analysis at primes ` ¤ p. Since ord`.c2/ D 0, then we can reconstructF.s1Ip8/
from the twisted multiplicativity in (19) and (21) together with knowledge of terms
of the formH.3/.`k1 ; 1Ip2; p/. Then define

F .`/.s1I 1/ D
X

k1

H .3/.`k1 ; 1Ip2; p/�.`k1 ; p8/
j`j2k1s1
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for all primes ` ¤ p. Using twisted multiplicativity in (21),

F .`/.s1I 1/ D
X

k1

�
p2

`k1

��2

3

�p

1

��1
3

H.3/.`k1 ; 1I 1; 1/�.`k1; p8/
j`j2k1s1

D �.1; p8/C
�
p2

`

��2

3

H.3/.`1; 1I 1; 1/�.`1; p8/j`j�2s1

D �.1; p8/
"

1C
�
p2

`

��2

3

g2.1; `/

j`j2s1
�.`1; p8/

�.1; p8/

#

:

To summarize, we have found that

F .p/.s1Ip8/ D �jpj
2 g1.p

7; p8/�.p3; p8/

jpj6s1 D.p/
2 .s1; �

0; p4/

C jpj
6�.p6/�.p5; p8/

jpj10s1 D.p/
2 .s1; �

00; 1/

and

F .`/.s1I 1/ D �.1; p8/
"

1C
�
p2

`

��2

3

g2.1; `/

j`j2s1
�.`1; p8/

�.1; p8/

#

; for all primes ` ¤ p:

Now using twisted multiplicativity, we can reconstruct F.s1Ip8/. We claim that

F.s1Ip8/ D �jpj
2 g1.p

7; p8/�.p3; p8/

jpj6s1 D2.s1; �
0; p4/

C jpj
6�.p6/�.p5; p8/

jpj10s1 D2.s1; �
00; 1/:

This may be directly verified up to Hilbert symbols (i.e., ignoring Hilbert symbols
in the power reciprocity law in (5)) by using twisted multiplicativity to reconstruct
H.c1; p

8Ip2; p/ from F .p/.s1Ip8/ and F .`/.s1I 1/. But to give a full accounting
with Hilbert symbols, one needs to verify that the “leftover” Hilbert symbols from
repeated applications of reciprocity are precisely those required for the definitions
of � 0 and � 00 (again referring to Lemma 5.3 of [7]).

We now return to our general strategy of demonstrating the functional equation
�1 as in (36). The function Z�.s1; s2Ip2; p/ as in (39) with fixed c2 D p8

yields F.s1Ip8/ as above. We must verify that this portion of Z�.s1; s2Ip2; p/ is
consistent with the desired global functional equation

Z�
�
s1; s2Ip2; p

�! jp2j1�2s1Z�1�
�
1 � s1; s1 C s2 � 1=2Ip2; p

�
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presented at the outset of this section. By Theorem 1,

D2.s1; �
0; p4/! jp4j1�2s1D2.1 � s1; � 0; p2/

and jpj�6s1�16s2 ! jpj2�10s1�16s2 under �1. Similarly, D2.s1; �
00; 1/ ! D2.1 �

s1; �
00; p2/ and jpj�10s1�16s2 ! jpj�2�6s1�16s2 under �1. Taken together, these

calculations imply that

F.s1Ip8/
jp8j2s2 ! jp

2j1�2s1 F .1 � s1Ip
8/

jp8j2.s1Cs2�1=2/ ;

which is consistent with the global functional equation for Z� above.
Throughout the above analysis, we chose to restrict to the case where c2 D p8 to

limit the complexity of the calculation. However, identical methods could be used
to determine the global object for arbitrary choice of c2 depending on the order of p
dividing c2, and hence verify the global functional equation for �1 in full generality.

Remark 2. With respect to the s1 functional equation, it turns out to be quite simple
to figure out which BZL-patterns contribute to a particular Kubota Dirichlet series
appearing in F.s1Ipk2/. All such BZL-patterns have identical top rows but differ
in the bottom row entry. This entry increases as we increase k1, as can be verified in
our earlier table with k2 D 8. However, as we will see in the next section, functional
equations in s2 and the respective Kubota Dirichlet series used in asserting them
obey no such simple pattern.

2.6.2.2 The Functional Equation �2 with k1 D 3

We now repeat the methods of the previous section to demonstrate a functional
equation under �2. As we will show, it is significantly more difficult to organize the
local contributions into linear combinations of Kubota Dirichlet series in terms of
s2. Once this is accomplished, the analysis proceeds along the lines of the previous
section, so we omit further details.

Let c1 D p3 be fixed. Mimicking our notation from the previous section, we now
set

F.s2Ip3/ D
X

k2

H .3/.p3; c2Ip2; p/�.p3; c2/
jc2j2s2 : (43)

As in the previous section, the bulk of the difficulty lies in analyzing

F .p/.s2Ip3/ D
X

k2

H .3/.p3; pk2 Ip2; p/�.p3; pk2/
jpj2k2s2 :

Again referring to Fig. 2.3, coefficients H.3/.pk1 ; pk2 Ip2; p/ with k1 D 3

involve nine different vertices and a total of 30 BZL-patterns, only six of which
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give nonzero contributions in the case when n D 3. In the table below, we list only
those BZL-patterns yielding nonzero Gauss sums. The final column has again been
computed from the third column, using the elementary properties of nth-order Gauss
sums mentioned in the previous subsection.

� .k1; k2/ D k.�/ G.�/ G.�/ for n D 3

000

3

���
.3; 0/ g2.p

2; p3/ �jpj2

2 0 0

3

��
.3; 2/ g1.p; p

2/ g2.p
4; p3/ jpjg2.1; p/�.p3/

3 3 2

0

�

�
.3; 5/ p3 g1.p; p

2/ g1.p
4; p3/ jpj4g2.1; p/�.p3/

4 3 2

0�
.3; 6/ g1.p; p

2/ g1.p
3; p4/ g2.p

4; p3/ jpj5�.p3/

6 3 0

0

�

�
.3; 6/ g1.p

7; p6/ g2.p
2; p3/ �jpj2�.p6/

8 3 0

0

�

�
.3; 8/ g1.p

7; p8/ g2.p
2; p3/ �g2.1; p/jpj9

According to the above table,

F .p/.s2Ip3/

D�jpj2�.p3; 1/Cjpjg2.1; p/�.p
3/�.p3; p2/

jpj4s2 Cjpj
4g2.1; p/�.p

3/�.p3; p5/

jpj10s2

C jpj
5�.p3/�.p3; p6/

jpj12s2 � jpj
2�.p6/�.p3; p6/

jpj12s2 � g2.1; p/jpj
9�.p3; p8/

jpj16s2 :

(44)
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By adding and subtracting certain necessary terms at vertices .3; 3/ and .3; 5/, and
using the fact that g1.1; p/g2.1; p/ D jpj when n D 3, we find that F .p/.s2Ip3/
equals

� jpj2�.p3; 1/
"

1C �.p3/

jpj6s2
�.p3; p3/

�.p3; 1/
C �.p6/

jpj12s2
�.p3; p6/

�.p3; 1/
C g2.1; p/jpj7

jpj16s2
�.p3; p8/

�.p3; 1/

#

C g2.1; p/jpj�.p3/�.p3; p2/
jpj4s2

"

1C �.p3/

jpj6s2
�.p3; p5/

�.p3; p2/
C g1.1; p/p

3

jpj8s2
�.p3; p6/

�.p3; p2/

#

C jpj
2�.p3/�.p3; p3/

jpj6s2
"

1C jpjg2.1; p/jpj4s2
�.p3; p5/

�.p3; p3/

#

:

(45)

After analyzing the terms in the bracketed sums, ignoring complications from the
function � as before, we have

F .p/.s2Ip3/

D �jpj2�.p3; 1/D.p/
1 .s2; �

0; p7/Cg2.1; p/jpj�.p
3/�.p3; p2/

jpj4s2 D.p/
1 .s2; �

00; p3/

C jpj
2�.p3/�.p3; p3/

jpj6s2 D.p/
1 .s2; �

000; p/: (46)

Arguing similarly to the previous section, one can use these local contributions
to reconstruct the global Dirichlet series via twisted multiplicativity. The resulting
objects satisfy the global functional equation for �2 as in (36).

2.6.2.3 The Functional Equation �2 with k1 D 6

As a final example, the set of all H.3/.pk1 ; pk2 Ip2; p/ with k1 D 6 involves 7
support vertices and 18 BZL-patterns. In the case n D 3, however, only four of
the BZL-patterns have nonzero Gauss sum products associated to them. These are
listed in the table below.

� k.�/ G.�/ G.�/ for n D 3

6 3 0

3

�
.6; 6/ g1.p

7; p6/ g2.p
2; p3/ g2.p

2; p3/ jpj4 �.p6/

4 3 2

3
.6; 6/ g1.p

1; p2/ g1.p
3; p4/ g2.p

2; p3/ g2.p
4; p3/ �jpj7 �.p3/
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8 3 0

3

�
.6; 8/ g1.p

7; p8/ g2.p
2; p3/ g2.p

4; p3/ �jpj9g2.1; p/�.p3/

6 5 2

1
.6; 8/ g1.p

1; p2/ g1.p
7; p6/ g2.1; p/ g2.p

4; p5/ jpj11g2.1; p/�.p6/

Upon first inspection, it is unclear how to package the Gauss sum products neatly
into p-parts of Kubota Dirichlet series, as in the previous examples. However, the
two nonzero terms at .6; 6/ cancel each other out when n D 3, as do the two nonzero
terms at .6; 8/. This seems like a very complicated way to write 0, but we remind the
reader that the definition in terms of Gauss sums is “uniform” in n, in the sense that
only the order of the multiplicative character in the Gauss sum changes. For other
n, the p-part H.n/.pk1 ; pk2 Ip2; p/ with k1 D 6 will have the same 18 products
of Gauss sums, four of which are as shown in the third column of the table above.
However, the evaluations as in the last column of the table depend on the choice of
n and result in a different organization as Kubota Dirichlet series.
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Chapter 3
Metaplectic Ice

Ben Brubaker, Daniel Bump, Gautam Chinta, Solomon Friedberg,
and Paul E. Gunnells

Abstract We study spherical Whittaker functions on a metaplectic cover of
GL.r C 1/ over a nonarchimedean local field using lattice models from statistical
mechanics. An explicit description of this Whittaker function was given in terms
of Gelfand–Tsetlin patterns in (Brubaker et al., Ann. of Math. 173(2):1081–1120,
2011; McNamara, Duke Math. J. 156:29–31, 2011), and we translate this description
into an expression of the values of the Whittaker function as partition functions of
a six-vertex model. Properties of the Whittaker function may then be expressed in
terms of the commutativity of row transfer matrices potentially amenable to proof
using the Yang–Baxter equation. We give two examples of this: first, the equivalence
of two different Gelfand–Tsetlin definitions, and second, the effect of the Weyl
group action on the Langlands parameters. The second example is closely connected
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with another construction of the metaplectic Whittaker function by averaging over
a Weyl group action (Chinta and Gunnells, J. Amer. Math. Soc. 23:189–215, 2010;
Chinta and Offen, Amer. J. Math., 2011).

Keywords Weyl group multiple Dirichlet series • Crystal graph • Solvable lattice
model • Whittaker function • Metaplectic group • Yang–Baxter equation

3.1 Introduction

The study of spherical Whittaker functions of reductive groups over local fields is
of fundamental importance in number theory and representation theory. Recently,
in two separate series of papers, the authors and their collaborators have studied
Whittaker functions on metaplectic covers of such groups. The goal of this paper
is to introduce a new method for describing such p-adic metaplectic Whittaker
functions: two-dimensional lattice models of statistical mechanics. In such a model,
one defines the partition function to be a weighted sum over states of the model.
We show that there exists a choice of weights for which the partition functions
are metaplectic Whittaker functions. Baxter [2] developed important techniques
for evaluating the partition functions of lattice models including the so-called
“commutativity of transfer matrices” and the use of the Yang–Baxter equation. We
discuss how these methods relate to our descriptions of Whittaker functions and to
prior work.

Two different explicit formulas have been given in [10, 15] for the spherical
Whittaker function on a metaplectic cover of GL.r C 1/ over a non-archimedean
local field. The first of these is expressed in terms of a Weyl group action described
in [9], the second in terms of a function on Gelfand–Tsetlin patterns initially
introduced in [8]. In fact, this latter representation belongs to a family of explicit
formulas, one for each reduced expression of the long element of the Weyl group
as a product of simple reflections. Two such reduced expressions in type A are
particularly nice and lead to representations of the Whittaker function as sums
over Gelfand–Tsetlin patterns. In keeping with earlier works, we refer to the two
different descriptions as “Gamma” and “Delta” rules. The main result of [6] is
a combinatorial proof that these two definitions are in fact equal. This equality
allows one to prove the analytic properties of an associated global object (a multiple
Dirichlet series) by applying Bochner’s convexity principle.

In the following section, we demonstrate that the Gelfand–Tsetlin patterns we are
concerned with are in bijection with admissible states of the six-vertex model having
certain fixed boundary conditions. After recalling the description of the metaplectic
Whittaker function as a function on Gelfand–Tsetlin patterns in Sect. 3.3, we use the
bijection with the lattice model in Sect. 3.4 to express both the Gamma and Delta
descriptions of the Whittaker function as partition functions for certain respective
choices of Boltzmann weights.

In Sect. 3.5, we take the connection with statistical models further. We show that
the necessary result for demonstrating the equivalence of the Gamma and Delta
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descriptions may be reformulated in terms of the commutativity of transfer matrices.
Baxter [2] advocated the use of the Yang–Baxter equation for demonstrating this
commutativity. In Sect. 3.6, we explain how this is carried out in the context of the
six-vertex model, and we speculate about the possibility of such an equation in the
metaplectic case.

Finally, we discuss the Weyl group action on metaplectic Whittaker functions,
initially established by Kazhdan and Patterson [12], which plays a critical role in
the explicit formulas of [10]. When the degree of the cover is 1, i.e., the linear
case, the p-adic spherical Whittaker function is essentially a Schur polynomial
by results going back to Shintani [18]. The Weyl group action is thus closely
related to the standard permutation action on polynomials in r C 1 variables. In
[7], this Whittaker function (or equivalently, the Schur polynomial multiplied by
a q-deformation of the Weyl denominator) is realized as a partition function on a
six-vertex model, and its properties are studied via instances of the Yang–Baxter
equation. On the other hand, as soon as the degree of the cover is greater than 1,
the action looks rather different (cf. (33)–(35)). Nevertheless, we may ask whether
these functional equations may also be phrased in terms of transfer matrices and
a Yang–Baxter equation, and in this final section, we present evidence toward an
affirmative answer.

This work was partially supported by the following grants: NSF grants DMS-
0844185 (Brubaker), DMS-0652817 and DMS-1001079 (Bump), DMS-0847586
(Chinta), DMS-0652609 and DMS-1001326 (Friedberg), DMS-0801214
(Gunnells), and NSA grant H98230-10-1-0183 (Friedberg).

3.2 Six-Vertex Model and Gelfand–Tsetlin Patterns

In this section, we demonstrate a bijection between strict Gelfand–Tsetlin patterns
and admissible states of the six-vertex model (or “square ice”) on a finite square
lattice with certain fixed boundary conditions. The boundary conditions on ice were
known to Hamel and King, who presented bijections between ice and patterns
related to the symplectic group in [11]. A treatment tailored to the aims of the
present paper was given in [7], whose terminology we now recall.

A Gelfand–Tsetlin pattern of rank r is a triangular array of integers

T D

8
ˆ̂
<̂

ˆ̂
:̂

a0;0 a0;1 � � � a0;r�1 a0;r
a1;1 � � � a1;r

: : : . .
.

ar;r

9
>>>=

>>>;

(1)
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in which the rows interleave: ai�1;j�1 	 ai;j 	 ai�1;j . The set of all Gelfand–
Tsetlin patterns with fixed top row is in bijection with basis vectors of a corre-
sponding highest weight representation of GL.r C 1;C/. Indeed, any given top
row .a0;0; a0;1; : : : ; a0;r / is a partition which may be regarded as a dominant weight
of the GL.r C 1;C/ weight lattice. Each successive row of a pattern then records
a branching rule down to a highest weight representation on a subgroup of rank
one less. We will focus mainly on the set of strict Gelfand–Tsetlin patterns, whose
entries in horizontal rows are strictly decreasing. In terms of representation theory,
these patterns result from branching through strictly dominant highest weights. Top
rows of strict Gelfand–Tsetlin patterns are then indexed by strictly dominant weights
�C �, where � is a dominant weight and � is the Weyl vector .r; r � 1; : : : ; 0/.

Now we come to lattice models. The six-vertex model consists of labelings of
edges in a square grid where each vertex has adjacent edges in one of six admissible
configurations. This model is sometimes referred to as “square ice” where each
vertex of the grid represents an oxygen atom and the six admissible ways of
labeling adjacent edges correspond to the number of ways in which two of the four
edges include a nearby hydrogen atom. If we represent adjacent hydrogen atoms
by incoming arrows, and locations where there is no adjacent hydrogen atom by
outgoing arrows, the six admissible states are as follows:

We will use a representation consisting of a lattice whose edges are labeled with
signsC or � called spins. To relate this to the previous description, interpret a right-
pointing or down-pointing arrow as a C and a left-pointing or up-pointing arrow
as �. We then find the following six configurations. (The index i in the table
indicates the row to which the vertex belongs and will be used in later sections.)

i i i i i i

The rectangular lattices we consider will be finite, with boundary conditions
chosen so that the admissible configurations are in bijection with strict Gelfand–
Tsetlin patterns with fixed rank r and top row � C � as above. Here � D
.�r ; : : : ; �1; �0/ with �j 	 �j�1 for all j , and we suppose that �0 D 0.

Boundary Conditions. The rectangular grid is to have �rCrC1 columns (labeled
0 through �r C r increasing from right to left) and r C 1 rows. Then with �C � D
.�rCr; �r�1Cr�1; : : : ; 0/, we place a� spin at the top of each column whose label
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is one of the distinct parts of �C �, i.e., at columns labeled �j C j for 0 � j � r .
We place a C spin at the top of each of the remaining columns. Furthermore, we
place a C spin at the bottom of every column and on the left-hand side of each row
and a � spin on the right-hand side of each row.

For example, put r D 2 and take � D .3; 2; 0/ so that � C � D .5; 3; 0/. Then
we have the following boundary conditions for the ice:

5 4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(2)

The column labels are written above each column, and row labels have been
placed next to each vertex. These row labels will be used in Sect. 3.4, but need
not concern us now. The edge spins have been placed inside circles located along
the boundary. The remaining open circles indicate interior spins not determined
by our boundary conditions, though any filling of the grid must use only the six
admissible configurations in the above table. Such an admissible filling of the finite
lattice having above boundary conditions will be referred to as a state of ice.

Proposition 1. Given a fixed rank r and a dominant weight � D .�r ; : : : ; �1; 0/,
there is a bijection between strict Gelfand–Tsetlin patterns with top row �C � and
admissible states of ice having boundary conditions determined by � as above.

Proof. We begin with a strict Gelfand–Tsetlin pattern. Each row of the Gelfand–
Tsetlin pattern will correspond to the set of spins located between numbered rows
of ice, the so-called “vertical spins” since they lie on vertical edges of the grid, as
follows. To each entry ai;j in the Gelfand–Tsetlin pattern, we assign a � to the
vertical spin between rows labeled r C 2 � i and r C 1 � i in the column labeled
ai;j . (Recall that we are using decreasing row labels from top to bottom as in the
example (2).) The remaining vertical spins are assignedC.

It remains to assign horizontal spins, but these are already uniquely determined
since the left and right edge horizontal spins have been assigned and each admissible
vertex configuration has an even number of adjacent C spins. We must only verify
that the resulting configuration uses only the six admissible configurations (from
the eight having an even number of C signs) for the corresponding ice. This
is easily implied by the interleaving condition on entries in the Gelfand–Tsetlin
pattern, which is violated if one of the two inadmissible configurations appears. See
Lemma 2 of [7] for more details. ut
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A simple example illustrates the bijection:

8
<

:

5 3 0

3 1

3

9
=

;
 !

5 4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(3)

3.3 Metaplectic Whittaker Functions and Patterns

We now discuss the relation between the spherical metaplectic Whittaker function
on the n-fold cover of GL.r C 1/ over a nonarchimedean local field and Gelfand–
Tsetlin patterns. Such a relationship, described globally, was conjectured in [8] and
was established in [5]. Though it is possible to pass from the global result to its
local analogue, a direct local proof was given by McNamara [15], expressing a
metaplectic spherical Whittaker function as a generating function supported on strict
Gelfand–Tsetlin patterns. In this section, we recall two formulations of this explicit
description, following [6]. In Sect. 3.4, we will explain their translations to square
ice via the bijection of Proposition 1.

Let AG.F / denote the n-fold metaplectic cover of G.F / D GL.r C 1; F /, where
F denotes a nonarchimedean local field having ring of integers oF and residue field
of order q. (There are several related such extensions, but we will use the one in [12]
where their parameter c D 0.) We assume 2n divides q�1, which guarantees that F
contains the group�2n of 2nth roots of unity. The group AG.F/ is a central extension
of G.F / by �n:

1 �! �n ! AG.F /
��! G.F / �! 1:

We will identify �n � F with the group �n � C of complex nth roots of unity by
some fixed isomorphism. For convenience, we will sometimes denote AG.F/ as just
eG, and if H is an algebraic subgroup of G, we may denote by eH the preimage of
H.F / in eG.

For details of the construction of the metaplectic group and results about its
representations, see [16] in this volume. Let B.F / be the standard Borel subgroup
of upper triangular matrices in G.F / and let T .F / be the diagonal maximal torus.
Then B.F / D T .F /U.F /, where U.F / is the unipotent radical of B.F /. The
metaplectic cover splits over various subgroups of G.F /; for us, it is relevant that it
splits over U.F / and over K WD G.oF /, the standard maximal compact subgroup.
By abuse of notation, we will sometimes denote by K the homomorphic image of
K in eG under this splitting.
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Let s W G.F /! eG be any map such that � ı s is the identity map onG.F /. Then
the map � W G.F / �G.F /! �n such that

s.g1/s.g2/ D �.g1; g2/s.g1g2/

is a 2-cocycle defining a class in H2.G.F /; �n/. A particular such cocycle was
considered by Matsumoto [17], Kazhdan and Patterson [12], and Banks, Levy, and
Sepanski [1]. By these references, such as [12] Sect. 0.1, the map s may be chosen
so that the restriction of � to T .F / is given by the formula

�

0

B
@

0

B
@

t1
: : :

trC1

1

C
A ;

0

B
@

u1
: : :

urC1

1

C
A

1

C
A D

Y

i<j

.ti ; uj /n: (4)

The cocycle � also has the property that �.u; g/ D �.g; u/ D 1 if u 2 U.F /, and
so the restriction of s to U.F / is a homomorphism to eG.

We will call a representation � of eG or any subgroup genuine if �.�g/ D ��.g/
when � 2 �n. Recall that eT denotes the inverse image under � of the maximal
torus T .F /:

Let A be a maximal abelian subgroup of eT containing eT \K . Given a genuine
character � on A=.eT \K/, we may choose complex numbers s D .s1; : : : ; sr / such
that

�

0

B
B
B
@

$m1

$m2

: : :

$mrC1

1

C
C
C
A
D

Y

iCj�rC1
q�2mi sj ; $ W uniformizer in oF (5)

whenever the matrix diag.$m1; : : : ;$mrC1 / is in A. The condition on the integers
mi is that they are in a sublattice of nZrC1. See [16] for an explicit characterization
of this sublattice and for further details on principal series representations of eG.

Let i.�/ be the resulting induced representation from A to eT . We extend i.�/ to
the inverse image eB of B.F / in such a way that s.U.F // acts trivially. We then
consider the representation of eG obtained by normalized induction. We call the
vector space of the resulting representation I.�/. It has a one-dimensional space of
K-fixed, i.e., spherical, vectors. Let �K W eG ! i.�/ be a nonzero element of I.�/K .

Let w0 denote the representative in K of the long element of the Weyl group.
Then we may construct the spherical metaplectic Whittaker function via the integral

Z

U.F /

�K.w0s.u/g/ .u/du; (6)

where  is the character of U.F / given by
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0

B
B
B
@

0

B
B
B
@

1 x1;2 � � � x1;n
1 x2;3 � � � x2;n

: : :
:::

1

1

C
C
C
A

1

C
C
C
A
D  0

 
X

i

xi;iC1

!

and  0 W F ! C is an additive character that is trivial on oF but on no larger
fractional ideal. Strictly speaking, the integral (6) as we have defined it is an i.�/-
valued function and should be composed with a natural choice of linear functional
on i.�/ to obtain a complex-valued function. The functional maps �K to f W eG ! C

defined by

f .�s.u/ diag.$m1; : : : ;$mrC1 /k/ D �
Y

iCj�rC1
q�.2mi�1/sj ;

where � 2 �n; u 2 U.F /; k 2 K; and mi 2 Z; according to the Iwasawa
decomposition in eG. Composing the i.�/-valued function in (6) with this functional,
we thus obtain

W.g/ D
Z

U.F /

f .w0s.u/g/ .u/ du; (7)

which we refer to, for brevity, as the metaplectic Whittaker function.
The transformation propertyW.s.u/gk/ D  .u/W.g/ for all u 2 U.F /; k 2 K ,

implies that it suffices to determine W on the inverse image of the torus T .F /.
Moreover, since W is genuine, it is sufficient to specify W on s.T .F //. Given � DP

i �i!i , where !i are fundamental weights, let t� D diag.$�1C�2C���C�r ;$�2C���
C�r ; : : : ; 1/ and set t� D s.t�/. Due to our assumption that F contains the 2nth
roots of unity, .$;$/n D 1, and by (4), it follows that t�C� D t�t�.

It is not hard to show that W.t�/ D 0 unless � is a dominant weight.
Given any dominant weight �, the metaplectic Whittaker function W.t�/, may

viewed as a Dirichlet series in the r complex variables s D .s1; : : : ; sr / used to
define the character � in (5). ThenW.t�/ is equal to the series

Z.sI�/ D
X

kD.k1;:::;kr /2Nr
H.$k1; : : : ;$kr I�/ qk1.1�2s1/C���Ckr .1�2sr /; (8)

where the complex-valued function H.$k1 ; : : : ;$kr I�/ will be defined presently.
The definition ofH was first given in the context of metaplectic Eisenstein series in
[8] and later [5], and a different definition is given in [9]. The series (8) is a p-part
of a Weyl group multiple Dirichlet series as defined in those papers. It is a Dirichlet
polynomial since, as we will see, only finitely many values of H are nonzero. The
equality of Z.sI�/ andW.t�/ is the main result of [15].

The positive integer nwill continue to denote the degree of the metaplectic cover.
We define the Gauss sum
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g.a; b/ D
Z

o�

F

.u;$/bn  0
�
$a�bu

�
du;

where .�; �/n denotes the nth power Hilbert symbol, and we normalize the Haar
measure so that �.oF / D 1. As a further shorthand, for any positive integer b,
we set

g.b/ D g.b � 1; b/; h.b/ D g.a; b/ for any a 	 b: (9)

Note that for a fixed base field F , these values depend only on b mod n. If n divides
b, in particular if n D 1, we have

g.b/ D �1
q
; h.b/ D 1 � 1

q
: (10)

We caution the reader that the q-powers that appear in the g.a; b/ are normalized
differently than in the previous works [5, 6, 8]; these are the functions denoted g[

and h[ in [6]. The function h is a degenerate Gauss sum whose values may be made
explicit, while (if n − b) the function g.b/ is a nontrivial nth order Gauss sum.

Any strict Gelfand–Tsetlin pattern T with entries indexed as in (1), we associate
a weighting function � to each entry ai;j with i 	 1 as follows:

�.ai;j / D
8
<

:

g.bi;j / if ai;j D ai�1;j�1;
h.bi;j / if ai�1;j ¤ ai;j ¤ ai�1;j�1;
1 if ai;j D ai�1;j ;

where bi;j D
rX

lDj
.ai;l �ai�1;l /:

(11)
Then we define

G� .T/ D
rY

iD1

rY

jDi
�.ai;j /: (12)

If T is a Gelfand–Tsetlin pattern that is not strict, we define G� .T/ D 0. We also
define

k� .T/ D .k�1 .T/; : : : ; k�r .T// where k�i .T/ D
rX

lDi
ai;l � a0;l : (13)

In particular, note that both G� and k� are defined using differences of elements
above and to the right of ai;j . The superscript � may be regarded as indicator that
these quantities are defined using such “right-hand” differences.

We present these definitions in this ad hoc fashion in order to give a brief
and self-contained treatment, but in fact, they have very natural descriptions when
reinterpreted as functions on a Kashiwara crystal graph. See [6] for an extensive
discussion.

As an example, consider the Gelfand–Tsetlin pattern T in (3). Then

.b1;1; b1;2; b2;2/ D .1; 1; 2/ so that G� .T/ D h.1/g.2/ and .k1; k2/ D .1; 3/. (14)
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Theorem 1. (Brubaker, Bump, and Friedberg [5]; McNamara [15]) Given a
dominant weight � and a fixed r-tuple of nonnegative integers k D .k1; : : : ; kr /, the
function H.$k1 ; : : : ;$kr I�/ appearing in the p-adic Whittaker function W.t�/ is
given by

H.$kI�/ WD H.$k1 ; : : : ;$kr I�/ D
X

k� .T/Dk

G� .T/;

where the sum is over all Gelfand–Tsetlin patterns with top row corresponding to
�C � satisfying the subscripted condition.

There is a second explicit description of H.$kI�/ in terms of “left-hand”
differences using functions G� and k� that are analogous to those defined in (12)
and (13), respectively. Assuming that T is strict, set

ı.ai;j / D
8
<

:

g.ci;j / if ai;j D ai�1;j ;
h.ci;j / if ai�1;j ¤ ai;j ¤ ai�1;j�1;
1 if ai;j D ai�1;j�1;

where ci;j D
jX

lD1
.ai�1;l�1�ai;l /

(15)
and define

G�.T/ D
rY

iD1

rY

jDi
ı.ai;j /: (16)

If T is not strict, define G�.T/ D 0. We also set

k�.T/ D .k�1 .T/; : : : ; k�r .T//; where k�i .T/ D
iX

lD1
a0;l�1 � arC1�i;rC1�l :

(17)
The main theorem of [6] is as follows:

Theorem 2. (Statement A of Brubaker, Bump, and Friedberg [6]) Given a
dominant weight � and a fixed r-tuple of nonnegative integers k D .k1; : : : ; kr /,

X

k� .T/Dk

G� .T/ D
X

k�.T/Dk

G�.T/; (18)

where the sums each run over all Gelfand–Tsetlin patterns with top row correspond-
ing to �C � satisfying the subscripted condition.

As an immediate corollary, we have a second description of the p-adic Whittaker
function in terms ofG� and k�. We refer to these two recipes on the left- and right-
hand sides of (18) as the � - and �-rules, respectively.

In fact, there are many other descriptions for the Whittaker function, though these
are generally much more difficult to write down as explicitly. Indeed, as explained
in [3, 14], there exist bases for highest weight representations corresponding to any
reduced expression for the long element w0 of the Weyl group of GL.rC1/—Sr , the
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symmetric group on r letters—as a product of simple reflections �i . These make use
of the Kashiwara crystal graph and are commonly called string bases. Using these
bases, one may make a correspondence between long words and recipes for the
Whittaker function (cf. [6, Chap. 2]). From this perspective, the � -rule corresponds
to the word

w0 D �1.�2�1/ � � � .�r�r�1 � � ��1/;
whereas the �-rule corresponds to the word

w0 D �r.�r�1�r / � � � .�1�2 � � ��r/:

These two words are as far apart as possible in the lexicographic ordering of all
reduced decompositions. The proof of Theorem 2 as given in [6] uses a blend of
combinatorial arguments to give various equivalent forms of the identity (18) as we
move through the space of long words. We highlight various aspects of the proof in
more detail now.

The proof is by induction on the rank r . The inductive hypothesis allows us to
equate any two recipes for the Whittaker function whose associated long words
differ by a sequence of relations obtained from a lower rank case. For example,
assuming the rank 2 case allows us to perform a braid relation �1�2�1 D �2�1�2,
which could be applied to the word corresponding to the � -rule above. After a
series of such identities, we arrive at two descriptions for the Whittaker function as
a weighted sum over Gelfand–Tsetlin patterns that agree on the bottom r � 2 rows
of the pattern. Thus, we may restrict our attention to the top three rows of a rank
r pattern. We refer to such three-row arrays of interleaving integers, where we fix
both the top and bottom of the three rows, as “short Gelfand–Tsetlin patterns” and
re-index the three rows as follows:

t D
8
<

:

`0 `1 � � � `r�1 `r

a1 a2 ar�1 ar
m1 m2 mr�1

9
=

;
: (19)

These two recipes for the Whittaker function will be called G�� (as this recipe uses
a right-hand rule for the entries ai and a left-hand rule for the entriesmj ) and G��

(where the use of rules is reversed). To be exact, using the definitions in (11) and
(15), we have

G��.t/ D
rY

iD1
�.ai /

r�1Y

jD1
ı.mj / and G�� .t/ D

rY

iD1
ı.ai /

r�1Y

jD1
�.mj /:

Rather than define functions k�� and k�� on short patterns in analogy to the recipes
above, it is enough to specify the middle row sum as the other rows are fixed.
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Before stating the reduction, we require one final ingredient. There is a natural
involution qr on short Gelfand–Tsetlin patterns of rank r , given by acting on middle
row entries according to

qr W ai 7�! max.`i�1;mi�1/Cmin.`i ; mi/ � ai DW a0
i ;

where if i D 0, we understand that max.`0;m0/ D `0, and if i D r , min.`r ;mr/ D
`r . This involution qr is used by Berenstein and Kirillov (cf. [13]) to define
a Schützenberger involution on Gelfand–Tsetlin patterns. Brubaker, Bump, and
Friedberg use the involution qr to give the following reduction of Statement A in [6].

Theorem 3. (Brubaker, Bump, and Friedberg; Statement B of [6]) Fix an .r C
1/-tuple of positive integers ` D .`0; : : : ; `r /, an .r � 1/-tuple of positive integers
m D .m1; : : : ; mr�1/; and a positive integer k: Then

X

P
aiDk

G��.t/ D
X

P
a0

iDk0

G�� .qr .t//;

where a0
i are the entries of qr.t/, k0 D P

i `i C
P

j mj � k, and the sums range
over all short patterns with top row ` and bottom row m, satisfying the indicated
condition.

See [4] and Chap. 6 of [6] for a full proof of the reduction from Statement
A to Statement B. As noted above, the proof of Statement B proceeds through
a series of additional reductions which occupy 13 chapters of [6]. In brief, for
“generic” short patterns t, the Schützenberger involution qr gives a finer equality
G��.t/ D G�� .qr .t//, which implies the equality of Statement B summand by
summand. By “generic,” we mean that the entries of the short pattern are in general
position—in particular, for all i , `i ¤ mi using the notation of (19). Note that the
Schützenberger involution does not necessarily preserve strictness for all patterns
in the remaining nongeneric cases, and one needs much more subtle arguments
to handle these short patterns. For such patterns, Statement B is not in fact true
summand by summand, and one does need to sum over all short patterns with fixed
row sum to obtain equality.

As an alternative to establishing Statement B, we mention that one could also
prove Theorem 2 by computing the Whittaker integral in two ways, mimicking
the techniques of [5], thus obtaining a proof via decomposition theorems in
algebraic groups which respect the metaplectic cover. In subsequent sections of this
paper, we propose a third way of viewing these theorems using ice-type models,
which portends new connections between number theory/representation theory and
statistical physics.
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3.4 Ice and Metaplectic Whittaker Functions

In statistical mechanics, one attempts to infer global behavior from local interac-
tions. In the context of lattice models, this means that we attach a Boltzmann weight
to each vertex in the grid, and for each admissible state of the model, we consider
the product of all Boltzmann weights ranging over all vertices of the grid. Then
one can attempt to determine the partition function of the lattice model, which is
simply the sum over all admissible states of the associated weights. In this section,
we explain how to obtain the metaplectic spherical Whittaker function of Sect. 3.3
as the partition function of a lattice model with boundary conditions as defined in
Sect. 3.2.

We make use of the two sets of Boltzmann weights B� and B�. When
these weights are applied to an admissible state of ice, we refer to the resulting
configuration as Gamma ice or Delta ice, respectively. In order to indicate which set
of weights is being used at a particular vertex, we use 
 for Gamma ice and ı for
Delta ice.

Gamma
ice

i i i i i i

Boltzmann
weight B� 1 zi g.a/ zi h.a/zi 1

Delta
ice

i i i i i i

Boltzmann
weight B� 1 g.a/zi 1 zi h.a/zi 1

(20)

In giving these Boltzmann weights, we have made use of the notation in (9). For
Gamma ice, the constant a equals the number of C signs in the i th row to the right
of the vertex 
. For Delta ice, the constant a equals the number of � signs in the i th
row to the left of the vertex ı. In either case, we refer to this constant as the “charge”
at the vertex. Note by our definitions in (9), the Boltzmann weights only depend on
the charge mod n. The weights B� and B� also depend on parameters zi , where
i indicates the row in which the vertex is found. For Gamma ice, the row numbers
decrease from r C 1 to 1 as we move from top to bottom as in the example (2),
while for Delta ice, the row numbers increase from 1 to r C 1. These zi are referred
to as “spectral parameters.” We often suppress the dependence of B� and B� on
the spectral parameters zi , 1 � i � r C 1. Let z D .z1; : : : ; zrC1/.
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Given an admissible state of Gamma ice (or Delta ice, respectively) S, we define

G� .S; z/ D
Y

v2S
B� .v/; G�.S; z/ D

Y

v2S
B�.v/; (21)

where the product (in either case) is taken over all vertices in the state of ice S.

Proposition 2. Under the bijection of Proposition 1, with strict pattern T corre-
sponding to an admissible state of Gamma ice S, then G� .T/ as defined in (12) is
related to G� .S; z/ in (21) as follows:

G� .S; z/ D G� .T/zd0.T/�d1.T/rC1 zd1.T/�d2.T/r � � � zdr�1.T/�dr .T/2 zdr .T/1 ;

where di .T/ is the sum of the entries in the i th row of the pattern T.
Similarly, for an admissible state of Delta ice S, G�.T/ as defined in (16) is

related to G�.S; z/ in (21) by

G�.S; z/ D G�.T/zd0.T/�d1.T/1 zd1.T/�d2.T/2 � � � zdr�1.T/�dr .T/r zdr .T/rC1 :

We first illustrate this for Gamma ice with our working example from (3) in
rank 2. The admissible Gamma ice S and its associated Boltzmann weights are
pictured below.

5 4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

7�!

Boltzmann weights
5 4 3 2 1 0

1 z3 z3 z3 h.1/z3 1
1 1 g.2/ 1 1 z2
1 1 1 z1 z1 z1

Taking the product over all these weights, we obtain G� .S; z/ D h.1/g.2/z43z2z
3
1,

which indeed matches G� .T/zd0.T/�d1.T/3 zd1.T/�d2.T/2 zd2.T/1 with T as in (3) and
G� .T/ as in (14).

Remark 1. The relevant terms in the metaplectic Whittaker function take the form

G� .T/qk
�
1 .T/.1�2s1/C���Ck�r .T/.1�2sr / (22)

as given in Theorem 1. However, k� .T/ D .k�1 ; : : : ; k
�
r / may be easily recovered

from our fixed choice of highest weight �C � D .`1; : : : ; `r ; 0/ and the row sums
di WD di .T/ used in the monomial above. Indeed,

k�1 D d1 � .`2 C � � � C `r/; k�2 D d2 � .`3 C � � � C `r /; : : : ; k�r D dr :
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Hence, upon performing this simple transformation, we may recover the monomials
in q1�2si in (22) from those in zj appearing in G� .S; z/ of the above proposition.
A similar set of transformations holds for the Delta rules.

Proof. Proposition 2 is a consequence of the bijection given in Proposition 1. We
sketch the proof for Gamma ice, as the proof for Delta ice is similar. Recall that �
vertical spins correspond to the entries of the pattern, so the values �.ai;j / given in
(11) should appear in the Boltzmann weights for vertices sitting above a � vertical
spin. The particular cases of (11) to be used are determined by the vertical spin above
the vertex in question. We now show that each bi;j in (11) matches the charge, the
number of C signs to the right of the vertex in row i . Equivalently, we must show
that every spin between column ai;j and column ai�1;j in row i is assigned aC. So
suppose that ai;j > ai�1;j and let v be the vertex in row i , column ai;j , and let w be
the vertex in row i , column ai�1;j . Then the north and south spins for v are .C;�/
which, by the six admissible configurations in Gamma ice, forces the east spin to be
C. All the vertices between v and w have north and south spins .C;C/ according to
our bijection. The east spinC for v becomes the west spin for the neighboring vertex
v0 to the right of v, forcing the east spin of v0 to beC as well. This effect propagates
down the row, forcing all row spins between v and w to beC. Finally, we must show
that the spectral parameters for G are given by differences of consecutive row sums.
This is Lemma 3 of [7]. ut

Given a fixed set of boundary conditions for the vertex model and an assignment
B of Boltzmann weights associated to each admissible vertex, we refer to the set of
all admissible states S as a “system.” Given a system S, its partition functionZ.S/
is defined as

Z.S/ WD Z.S; z/ D
X

S2S
B.S; z/; with B.S; z/ WD

Y

v2S
B.v/; (23)

where this latter product is taken over all vertices v in the state S. In particular, let
S� denote the system with boundary conditions as in Sect. 3.2, Boltzmann weights
B� , and rows labeled in descending order from top to bottom. Similarly, let S�

denote the system with the same boundary conditions, but with Boltzmann weights
B�, and rows labeled in ascending order from top to bottom. Using this language,
we may now summarize the results of the past two sections in a single theorem.

Theorem 4. Given a dominant weight � for GLrC1, the metaplectic Whittaker
function W.t�/ is expressible as either of the two partition functions Z.S� / or
Z.S�/:

This is merely the combination of Theorems 1 and 2 together with Proposition 2.
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3.5 Transfer Matrices

Baxter considered the problem of computing partition functions for solvable lattice
models (cf. [2]). His approach is based on the idea of using the Yang–Baxter
equation (called the “star-triangle identity” by Baxter) to prove the commutativity of
row transfer matrices. We will show that basic properties of metaplectic Whittaker
functions can be interpreted as commutativity of such transfer matrices, and at least
when the metaplectic degree n D 1, the Yang–Baxter equation can be used to give
proofs of these.

The row transfer matrices shall now be described. Let us consider a row of
vertices that all have the same Boltzmann weights. If B D .a1; a2; b1; b2; c1; c2/,
then we use the assignment of Boltzmann weights in the following table:

B B B B B
B

Boltzmann
weight

a1 a2 b1 b2 c1 c2

The vertical edge spins in the top and bottom boundaries will be collected into
vectors ˛ D .˛N ; : : : ; ˛0/ and ˇ D .ˇN ; : : : ; ˇ0/. The subscripts correspond to
the columns which, we recall, are numbered in ascending order from right to left.
For example, if ˛ D .�;C;�;C;C;�/ and ˇ D .C;�;C;C;C;�/, we would
consider the partition function of the following one-layer system of ice:

5 4 3 2 1 0

B B B B B B (24)

Let VB.˛; ˇ/ denote the partition function. Recall that we compute this as
follows. We complete the state by assigning values to the interior edges (unlabeled
in this figure) and sum over all such completions. Let VB be the 2NC1�2NC1 matrix
whose entries are all possible partition functions VB.˛; ˇ/, where the choices of ˛
and ˇ index the rows and columns of the matrix, respectively. This is referred to as
the transfer matrix for the one-layer system of size N with Boltzmann weights B at
every vertex.
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Now let us consider a two-layer system:

5 4 3 2 1 0

B1 B1 B1 B1 B1 B1

B2 B2 B2 B2 B2 B2

(25)

Note that we are using two sets of Boltzmann weights B1 and B2 for the top and
bottom layers, respectively. We may try to express the partition function V.˛; �/ for
the two-layer system pictured above having top row ˛ as in (24) and bottom row
� D .C;C;C;�;C;C/ in terms of one-layer partition functions. However, each
one-layer system is only determined upon a choice of vertical spins lying between
the rows. One such choice of edge spins is ˇ as in the one-layer system in (24), but
we must sum over all possible choices to get the partition function of the two-layer
system. Therefore,

V.˛; �/ D
X

ˇ

VB1.˛; ˇ/VB2.ˇ; �/;

which is precisely the entry V.˛; �/ in the product of the two transfer matrices VB1
and VB2 .

Cases where the transfer matrices commute are of special interest. Indeed, this
commutativity means that one can interchange the roles of Boltzmann weights
B1 and B2 in (25), and the value of the product of the transfer matrices is
unchanged. Baxter considers the case where B1 D .a; a; b; b; c; c/ and B2 D
.a0; a0; b0; b0; c0; c0/ for arbitrary choices of a; a0; b; b0; c; c0. His boundary condi-
tions are different from ours. Baxter’s boundary conditions are toroidal; that is,
the boundary spins at the left and right edges of the each row are equal, so those
edges may be identified, treated as interior edges, and hence, summed over. With
this modification, Baxter proves that if 4 D 40, where 4 D .a2 C b2 � c2/=2ab
and 40 is similarly defined with a0; b0 and c0, then the transfer matrices commute.
Obtaining a sufficiently large family of commuting transfer matrices is a step
towards evaluating the partition function, since by doing so, one can make the
eigenspaces one-dimensional. Thus the problem of simultaneously diagonalizing
them has a unique solution and therefore becomes tractable.
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Let us now show how Statement B may be formulated in terms of commuting
transfer matrices. We consider a two-layer system having a layer of Gamma ice and
a layer of Delta ice, thus:

BΓ
1 BΓ

1 BΓ
1 BΓ

1 BΓ
1 BΓ

1 BΓ
1

BΔ
2 BΔ

2 BΔ
2 BΔ

2 BΔ
2 BΔ

2 BΔ
2

(26)

We use the values in (20); in the top row, the spectral parameter is z1, and in the
bottom row, it is z2. Regarding the boundary conditions, as always, the rows of ice
must haveC at the left edge and � at the right edge. Furthermore, we fix a choice of
spins for the top edge and the bottom edge of this two-layered ice such that the top
edge has two more � than the bottom row. In this example, the locations of the �
along the top edge are (reading from right to left) 0; 1; 4; 6 and along the bottom
edge, they are at 3; 4. We have labeled each vertex with 
�1 and ı�2 to remind the
reader of the Boltzmann weights that we are using. We will call this system S��

and its partition functionZ.S��/.
On the other hand, we may consider the same configuration with the roles of the

Boltzmann weights for Gamma and Delta ice switched, as in the figure below. Note
that the boundary conditions remain the same as in (26). We will refer to this system
as S�� .

BΓ
1 BΓ

1 BΓ
1 BΓ

1 BΓ
1 BΓ

1 BΓ
1

BΔ
2 BΔ

2 BΔ
2 BΔ

2 BΔ
2 BΔ

2 BΔ
2

Theorem 5. Given top and bottom boundary values as vectors of spins ˛ and �
and Boltzmann weights B�

1 and B�
2 as in (20), let S�� and S�� be the systems

described above. Then Z.S��/ D Z.S�� /.

We prove this by showing that the claim is equivalent to Statement B, stated as
Theorem 3 here and proved by combinatorial means in [6]. Note in particular that
we have reformulated Statement B as the commutativity of two transfer matrices.
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Proof. We associate two strictly decreasing vectors of integers with ˛ and � , which
we call l and m. Namely, let l D .l0; l1; l2; : : :/, where the li s are the integers such
that ˛li D �, arranged in descending order; m is defined similarly with regard to � .
Thus, in the example (26) above, there are � spins in the 6; 4; 1; 0 columns of the
top row and so l D .6; 4; 1; 0/, while m D .4; 3/. Similarly, given any admissible
state of the system, let ˇ be the middle row of edge spins and associate in similar
fashion a sequence a D .a1; a2; : : :/ according to the location of � signs in ˇ.

We observe that the sequences l ; a;m interleave. This holds for the same reason
that the rows of the pattern interleave in Proposition 1; it is a consequence of
Lemma 2 of [7]. Therefore, the legal states of either system S are in bijection with
the (strict) short Gelfand–Tsetlin patterns

t D
8
<

:

`0 `1 � � � `r�1 `r

a1 a2 ar�1 ar
m1 m2 mr�1

9
=

;
:

These are not in bijection with the terms of the sumG��.t/ appearing in Theorem 3
because there is no condition on the middle row sum. Rather, the states of ice give all
possible middle row sums. However, letting G��.S; z/ denote the Boltzmann weight
for a state of �� ice, this may be regarded as a homogeneous polynomial in the two
spectral parameters z1 and z2 of our two-row system. In the notation of Proposition 2,
this monomial is zd0.t/�d1.t/1 zd1.t/�d2.t/2 , where di.t/ denotes the i th row sum in the
short Gelfand–Tsetlin pattern above. Clearly, the middle row sum can be recovered
from knowledge of this monomial for fixed choice of boundary conditions ˛ and � ,
which dictate the top and bottom row of the short pattern. A similar correspondence
may be obtained for the �� system whose short patterns t0 are associated to

the monomial zd0.t
0/�d1.t0/

2 zd1.t
0/�d2.t0/

1 . Of course, the boundary conditions remain
constant whether we are using the �� or �� system, so d0.t/ D d0.t

0/ and
d2.t/ D d2.t0/. Thus, the monomials

zd0.t/�d1.t/1 zd1.t/�d2.t/2 and zd0.t
0/�d1.t0/

2 zd1.t
0/�d2.t0/

1

agree precisely when

d1.t/ D d0.t/C d2.t/� d1.t0/;

which is exactly the condition on the sum in Theorem 3. Hence we see that the
commutativity of transfer matrices—the statement that Z.S��/ D Z.S�� /—is
an equality of two homogeneous polynomials, and the matching of each monomial
corresponds to the identity of Statement B for each possible middle row sum.
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3.6 The Yang–Baxter Equation

The proof of Theorem 5, the commutativity of transfer matrices, uses the equiv-
alence with Theorem 3 and hence implicitly relies on all of the combinatorial
methods of [6] in order to obtain this result. In this section, we want to explore
the extent to which Baxter’s methods for solving statistical lattice models, most
notably the Yang–Baxter equation, may be used to prove the commutativity of
transfer matrices.

In our context of two-dimensional square lattice models, the Yang–Baxter
equation may be viewed as a fundamental identity between partition functions on
two very small pieces of ice—each having six boundary edges to be fixed, three
internal edges, and three vertices each with an assigned set of Boltzmann weights.

Definition 1 (Yang–Baxter Equation). Let R;S; and T be three collections of
Boltzmann weights associated to each admissible vertex. Then for every fixed
combination of boundary conditions �; 
; ˛; ˇ; �; 
 , we have the following equality
of partition functions:

Z

0

B
B
B
B
B
B
B
@ ¹

®

½

�

°

¯

º¿

¾

R

S

T

1

C
C
C
C
C
C
C
A

D Z

0

B
B
B
B
B
B
B
@

T

S

R

¯

¿ Ã μ

½Á

®

¾

±

1

C
C
C
C
C
C
C
A

: (27)

Recall that these partition functions are sums of Boltzmann weights over all
admissible states. Hence, the left-hand side is a sum over all choices of internal edge
labels �; �; � , while the right-hand side is a sum over internal edge labels �; ; ı.
Note that the roles of S and T are interchanged on the two sides of the equality.

In the diagram above one vertex, labeled R has been rotated by 45ı for ease of
drawing the systems. It should be understood in the same way as S and T—it has a
Boltzmann weight associated to a set of admissible adjacent edge labels. However,
vertices of this type have a distinguished role to play in the arguments that follow,
so we use the term R-vertex to refer to any vertex rotated by 45ı like R in (27).

Once equipped with the Yang–Baxter equation, the commutativity of transfer
matrices, i.e., invariance of the partition function under interchange of rows, may
be proved under certain assumptions. We illustrate the method with a three-layer
system of ice S having boundary conditions and admissible vertices like those of
the system S� , to give the basic idea. Suppose we wanted to analyze the effect of
swapping the second and third rows in the following configuration:
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5 4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(28)

Suppose there exists only one admissible R-vertex having positive spins on
the right, without loss of generality, we take it to have all positive spins. Then
the partition function Z.S/ for (28) multiplied by the Boltzmann weight for the
R-vertex with all C spins is equal to the partition function for the following
configuration of ice:

5 4 3 2 1 0

a

b

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(29)

(By assumption, the only legal values for a and b are C, so every state of this
problem determines a unique state of the original problem.) Now we apply the
Yang–Baxter equation to move this R-vertex rightward, to obtain equality with the
following configuration:

5 4 3 2 1 0
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1
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Repeatedly applying the Yang–Baxter equation, we eventually obtain the configu-
ration in which the R-vertex is moved entirely to the right.

5 4 3 2 1 0

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

c

d

(30)

In drawing the above picture, we have again assumed that there is just one legal
configuration for the R-vertex having two � spins on the left, and assumed the spins
of this R-vertex were all �. If we let S0 denote the system with the same boundary
conditions as S shown in (28) but with the second and third row Boltzmann weights
interchanged, we have shown

BR

 !

Z.S/ D BR
 !

Z.S0/; (31)

where BR denotes the assignment of Boltzmann weight to each configuration. In
particular, if the two admissible R-vertices coming from the left- and right-hand
sides of (31) have equal Boltzmann weights, we obtain the exact equality of the two
configurations, i.e., the commutativity of transfer matrices.

We now explore the possibility of obtaining a Yang–Baxter equation with S
and T in (27) corresponding to the Boltzmann weights B� and B�, respectively,
from (20). In light of our previous argument, this would give an alternate proof of
Theorem 3. However, the Boltzmann weights in (20) depend not only on spins C
or � on adjacent edges but also on a “charge” a mod n. Recall from Sect. 3.4 that
usingB� weights, charge records the number ofC signs in a row between the given
vertex and the � boundary spin at the right-hand edge the row. Using B� weights
charge counts the number of � signs between the vertex and the C boundary at
the left.

In order to demonstrate a Yang–Baxter equation, we need Boltzmann weights
that are purely local—i.e., depend only on properties of adjacent edges—so we need
a different way of interpreting charge. We do this by labeling horizontal edges with
both a spin and a number mod n. We declare the Boltzmann weight of these vertices
to be 0 unless the edge labels a; b mod n to the immediate left and right of the vertex
reflect the way charge is counted for the given spins. For example, with B� weights,
a D b C 1 if the spin below a is C and a D b if the spin below a is �. Using this
interpretation, we record the nonzero vertices for both sets of Boltzmann weights:
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Gamma
ice

a+1 a
i i

a a
i

a+1 a
i

a a
i

a a
i

a+1 a

B�

weight
1 zi g.a/ zi h.a/zi 1

Delta
ice

i
a a+1

i
a a

i
a a+1

i
a a

i
a a a a+1

i

B�

weight
1 g.a/zi 1 zi 1 h.a/zi

(32)

The above vertices are admissible for any choice of a mod n (and the integers aC 1
are, of course, understood to be mod n as well). This means that we are generalizing
the six-vertex model, since due to the dependence on a, each vertex has more than
six admissible states.

For n D 1, the charge labels on horizontal edges are trivial as the Gauss sums
g.a/ and h.a/ are independent of a as evaluated in (10). For this special case, it
was shown in [7] that a Yang–Baxter equation exists with weights S and T as
in (27) taken to be B� and B� from the table above. We refer the reader to [7]
for the corresponding Boltzmann weights R for which the Yang–Baxter equation
is satisfied. Thus, we obtain an alternate proof of Theorem 4, or equivalently
Theorem 3, using methods from lattice models.

In general, we know from [6] that Theorem 4 is true for any positive integer n.
It would be extremely interesting to find a local relation like (27) similarly proving
that the transfer matrices commute, and this is currently under investigation by the
authors.

3.7 Weyl Group Invariance and the Yang–Baxter Equation

Kazhdan and Patterson [12, Lemma 1.3.3] describe how the metaplectic Whittaker
functions transform under the action of the Weyl group. This invariance—which
does not follow directly from the description of the coefficients H given in
Theorem 1—plays a key role in the proof of the metaplectic Casselman-Shalika
formula for GLrC1 by Chinta and Offen [10], and was the main inspiration for the
Weyl group action in [9].

In this section, we restate this Weyl group invariance in terms of the partition
functions defined in the previous sections. We content ourselves to describe how a
simple reflection acts on the partition function. Let �i denote the simple reflection
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in the Weyl group corresponding to the i th simple root. We let �i act on the spectral
parameter z D .z1; z2; : : : ; zrC1/ by �i .z/ D .z1; : : : ; zi�1; ziC1; zi ; ziC2; : : : ; zrC1/;
i.e., the i th and .i C 1/st coordinates are transposed. Here, the notation Z.S; z/
refers to the partition function associated to the system S, where S is either of the
two systems S� or S� introduced in Sect. 3.4.

Further define, for j D 0; : : : ; n � 1,

P .j /.x; y/ D xj yn�j 1 � q�1

xn � q�1yn
and Q.j /.x; y/ D g.j / xn � yn

xn � q�1yn
; (33)

where we again use the shorthand notation of (9) and interpret g.0/ WD g.n/ D
�q�1: The functions P ,Q are closely related to the functions 
1s ,
2s of [12, Lemma
1.3.3].

For each 1 � i � r , we may decompose the partition function

Z.S; z/ D
X

0�j<n
Z
.j /
i .S; z/; (34)

where Z.j /
i .S; z/ is the sum over all states S 2 S such that B.S; z/ is equal to

a constant times za11 � � � zarC1

rC1 , where ai � aiC1 � j .mod n/. Then the Whittaker
function satisfies

Z
.j /
i .S; �i .z// D P .j /.ziC1; zi / �Z.j /

i .S; z/CQ.j /.ziC1; zi / �Z.n�j /
i .S; z/: (35)

We now consider the extent to which the functional equations (35) can be
interpreted in the language of transfer matrices. First, we consider the case n D 1.
The decomposition on the right-hand side of (34) has only one term, namely Z
itself, since the congruence condition is automatically satisfied by all monomials
for any i . The i th functional equation (35) becomes

Z.S; �i .z// D .P .0/.ziC1; zi /CQ.0/.ziC1; zi //Z.S; z/

or
.zi � ziC1=q/Z.S; z/ D .�zi =q C ziC1/Z.S; �i .z//: (36)

Recalling the effect of �i on z defined above, the partition function on the right-
hand side is the result of swapping the spectral parameters associated to rows i and
i C 1 in the system S. Note that (36) is not exactly the same as “commutation of
two transfer matrices” because we do not have the identity Z.S; z/ D Z.S; �i .z//.
Indeed, the partition function Z is not a symmetric function, but it is very close
to one: it is a Schur polynomial times a q-deformation of the Weyl denominator
(cf. [7]).

Nevertheless, with assumptions as in Sect. 3.6, we may ask for a Yang–Baxter
equation leading to a proof of (36). That is, we seek sets of Boltzmann weights
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R;S; and T satisfying (27) where S D T D B� or S D T D B�. Comparing (36)
with (31), we further require Boltzmann weights BR for the R-vertices such that

BR

 !

D zi � ziC1=q;

BR

 !

D �zi =q C ziC1:

It follows from results in [7] that we may use the following coefficients in the R-
vertex for Gamma ice:

zi � q�1ziC1 ziC1 � q�1zi q�1.ziC1 � zi / ziC1 � zi .1� q�1/ziC1 .1 � q�1/zi

(37)

We are taking all ti D �q�1 in Table 1 in [7] and observe that the order of the
rows in this paper is opposite those in that paper. Our convention here is the same
as in [6].

For n > 1, the situation is more complicated, but rather suggestive. In general,
Z
.j /
i .S/ 6D Z

.n�j /
i .S/, so we cannot rewrite (35) to look like (31) and (36).

However, according to (33), the denominators of P and Q appearing in the i -
th functional equation (35) are equal and independent of j . For any j , they are
zni � zniC1=q. Thus, clearing denominators, we may rewrite (35) as follows:

.zniC1 � q�1zni /Z
.j /
i .S; �i .z//

D p.j /.ziC1; zi / �Z.j /
i .S; z/C q.j /.ziC1; zi / �Z.n�j /

i .S; z/; (38)

where

p.j /.ziC1; zi / D .1 � q�1/zjiC1z
n�j
i ; q.j /.ziC1; zi / D g.j /.zniC1 � zni /:

Let S be a state of the system, and as before, let a1; : : : ; arC1 be the exponents
of z1; : : : ; zrC1 in B.S; z/. We make the following observation: In the weights (32),
there is a contribution of zi if and only if the charge is not augmented as we move
across the vertex. Since (in Gamma ice) the charges at the right edge will have value
0, it follows that the charges at the left edge will have value ci , where ai C ci is the
number of vertices in the row. Therefore,

ai � aiC1 D ciC1 � ci ; (39)
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and we may therefore write

Z
.j /
i .S; z/ D

X

ciC1 � ci � j mod n

B.S; z/:

We will now explain how, with a suitable R-vertex, (38) could also be interpreted
as an identity similar to (31), but now with sets of Boltzmann weights involving
charges. We will describe the characteristics that such an R-vertex might have. For
simplicity, we will assume that n is odd.

The value will depend on the spins and charges of the adjacent edges. Let us
assume first that the spins on these four edges are all C, with charges diC1, di ,
d 0
iC1, d 0

i as follows:

d
i+1

d
i

d′
i+1

d′
i

(40)

If j D diC1 � di and j 0 D d 0
iC1 � d 0

i , then we require that the Boltzmann weight
of this vertex v is zero unless j 0 � j or n � j mod n. Moreover, in these cases, we
require that the Boltzmann weight of (40) is



p.j /.ziC1; zi / if j � j 0 mod n
q.j /.ziC1; zi / if j � n � j 0 mod n

except when j � 0. In this case, the weight will be

p.0/.ziC1; zi /C q.0/.ziC1; zi / D zni � q�1zniC1;

since g.0/ D �q�1.
Regarding the case where the vertex has spin � on all four adjoining edges, we

require that the Boltzmann weight of

d
i+1

di

0

0

is zero unless di D diC1 D 0, in which case, it is zniC1 � q�1zni .
Assuming that the R-vertex has the above properties, we may now express the

functional equation in a form similar to (31). Let us fix the vertical edge spins above
the ziC1 row and below the zi row and work with just the two relevant rows; let S0
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denote the two-layer system consisting of just rows i C 1 and i with these boundary
spins fixed. In order to establish (35), or equivalently (38), it suffices to show

.zniC1 � q�1zni /Z
.j /
i .S0; �i .z//

D p.j /.ziC1; zi / �Z.j /
i .S0; z/C q.j /.ziC1; zi / �Z.n�j /

i .S0; z/:

Since Z.S0; z/ is a homogeneous polynomial in the zi , and since only ai and aiC1
are allowed to vary, we have ai C aiC1 equal to a constant. Since we are assuming
that n is odd, there will be a unique pair of charges ci and ciC1 mod n such that (39)
is satisfied, and such that ciC1 � ci � j modulo n.

Now let us consider the partition function of the system

±

±

±

±

±

±

±

±

±

±

±

±

ci+1

ci

0

0

obtained by attaching the R-vertex to the left of S0. From the above discussion, this
equals

p.j /.ziC1; zi / �Z.j /
i .S0; z/C q.j /.ziC1; zi / �Z.n�j /

i .S0; z/:

Similarly, the partition function of the system

±

±

±

±

±

±

±

±

±

±

±

±

c
i+1

ci

0

0

is

.zniC1 � q�1zni /Z
.j /
i .S0; �i .z//:

The equality of these partition functions implies (38).
At this writing, we do not know if the values of the R-vertex that we have

described can be completed to a full R-matrix such that the appropriate Yang–
Baxter equation is satisfied. We know that this can be done when n D 1, and
since (38) is true, it seems very plausible that this can be done in general. Thus,
we may conjecture that within this scheme, or some similar one, it is possible
to formulate a Yang–Baxter equation adapted to these weights that gives a proof
of (38). Such a “metaplectic” Yang–Baxter equation might well have importance
beyond the problems that we have discussed in this paper.
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Chapter 4
Metaplectic Whittaker Functions and Crystals
of Type B

Ben Brubaker, Daniel Bump, Gautam Chinta, and Paul E. Gunnells

Abstract The spherical metaplectic Whittaker function on the double cover of
Sp.2r; F /, where F is a nonarchimedean local field, is considered from several
different points of view. Previously, an expression, similar to the Casselman–Shalika
formula, had been given by Bump, Friedberg, and Hoffstein as a sum is over the
Weyl group. It is shown that this coincides with the expression for the p-parts of
Weyl group multiple Dirichlet series of type Br as defined by the averaging method
of Chinta and Gunnells. Two conjectural expressions as sums over crystals of typeB
are given and another as the partition function of a free-fermionic six-vertex model
system.

Keywords Weyl group multiple Dirichlet series • Crystal graph • Solvable lattice
model • Metaplectic Whittaker function • Chinta-Gunnells averaging method

Let n be an integer and let F be a nonarchimedean local field whose characteristic
is not a prime dividing n. Let �k be the group of kth roots of unity in the algebraic
closure of F ; we assume that �2n � F . Let G be a split, simply connected
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semisimple algebraic group over F . We assume that G is actually defined over the
ring o of integers in F in such a way that K D G.o/ is a special maximal compact
subgroup of G.F /.

Matsumoto [26] constructed an n-fold metaplectic cover QG.F / of G.F /. For
this, we only need �n � F , but the hypothesis �2n � F simplifies the metaplectic
cocycle and the resulting formulas. We are interested in values of a spherical
Whittaker functionW on QG.F /.

Let G D Sp2r and let the cover degree n D 2. In this case, we connect a known
description of the Whittaker function to the theory of multiple Dirichlet series:

• Bump, Friedberg, and Hoffstein [12] gave a description of the Whittaker
function, essentially as a sum of at most 2r irreducible characters of Sp.2r/,
that is, of Cartan type Cr .

• Chinta and Gunnells [17] gave a recipe for the p-parts of Weyl group multiple
Dirichlet series for any root system ˚ and any positive integer n. In the special
case ˚ D Br and n D 2, we show that this agrees with the description of the
Whittaker function in [12].

In addition to these descriptions, we have three other conjectural formulas for the
metaplectic Whittaker function on Sp2r using the root system of type Br . Let �
denote a dominant weight for this root system and let t� be an element of the split
maximal torus parametrized by �. Then:

• The value of the Whittaker functionW at t� may be expressed as a sum over the
Kashiwara crystal B� (Conjecture 1).

• The value W.t�/ may be expressed as a sum over the Kashiwara crystal B�C�,
where � is the Weyl vector (Conjecture 2).

• The valueW.t�/may be expressed as the partition function for a statistical lattice
model–square ice with U-turn boundary (Conjecture 3).

The second and third conjectural descriptions are easily seen to be equivalent but
give rise to very different considerations. We offer partial proofs of these conjectures
in the following sections. The conjectures are further convincingly supported by
extensive calculations using SAGE. An interesting feature of this situation is the
interplay between type B descriptions and type C descriptions.

We thank the anonymous referee for a careful reading of this chapter. This work
was supported by NSF grants DMS-0801214, DMS-0844185, DMS-0847586, and
DMS-1001079.

4.1 The Classical Case: The Casselman–Shalika Formula

Before considering the metaplectic case, let us review the situation when n D 1,
so that G.F / and QG.F / are the same. Let � be the weight lattice of the connected
L-group LGı. It is the group X.LT / of rational characters of a maximal torus LT
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of LGı. If � 2 � and z 2 LT , we will denote by z� the value of � at z. Let ˚ be the
root system of LGı, so that the root system of G is the dual root system O̊ .

If T is an F -split torus of G, then � Š T .F /=T .o/. If � 2 �, let t�
be a representative of its coset in T .F /. Unramified quasicharacters of T .F /
correspond to elements of LT . Indeed, an unramified quasicharacter � of T .F / is
a quasicharacter that is trivial on T .o/, that is, a character of �, and so there is an
element z 2 LT such that �.t�/ D z�. In this case, we write � D �z.

If ˛ is a positive root, then the coroot ˛_ is a positive root of G with respect
to T . Let X˛_ be the corresponding root eigenspace in Lie.G/, and let N be the
maximal unipotent subgroup with Lie algebra

L
˛2˚C X˛_ . Then B D TN is a

Borel subgroup.
Let  N be a nondegenerate character of N . Then  N is trivial on exp.X˛_/ if

˛ is a positive root that is not simple. If ˛ is a simple positive root, then we may
arrange that  N is trivial on exp.X˛_/\K but no larger subgroup of exp.X˛_/.

Let � D �z be a character of T .F /, which we extend to a character of B.F / by
taking N.F / to be in the kernel. Let ı be the modular quasicharacter of B.F /. The
normalized induced representation �.�/ consists of all locally constant functions
f W G.F / �! C such that f .bg/ D .�ı1=2/.b/f .g/, with G.F / acting by
right translation. The standard spherical vector f ı is the unique function such that
f ı.k/ D 1 for k 2 K . Let w0 be a representative of the long Weyl group element.
We may assume that w0 2 K . Then the spherical Whittaker function is

W.g/ D
Z

N.F /

f ı.w0ng/ N .n/ dn: (1)

If � D �z then the integral is convergent provided jz˛j < 1 for ˛ 2 ˚C. For other z,
it may be defined by analytic continuation from this domain.

According to the formula of Casselman and Shalika [13], we have W.t�/ D 0

unless the weight � is dominant, and if � is dominant, then

W.t�/ D
Y

˛2˚C

.1 � q�1z˛/��.z/; (2)

where �� is the irreducible character of LGı with highest weight � and q is the
cardinality of the residue field.

Let B� be the Kashiwara crystal with highest weight �, so that

��.z/ D
X

v2B�
zwt.v/; (3)

where wt denotes the weight function on the crystal. Ignoring the normalizing
constant

Q
˛2˚C.1 � q�1z˛/ in (2), this could be regarded as a formula for the

Whittaker function.
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We note that by the Weyl character formula

Y

˛2˚C

.1 � z˛/��.z/ D
X

w2W
.�1/l.w/zw.�C�/C�; � D 1

2

X

˛2˚C

˛:

The factor
Q
˛2˚C.1 � z˛/ is the Weyl denominator, and the factor

Q
˛2˚C.1 �

q�1z˛/ which appears in (2) is a deformation of this factor.
We are therefore interested in deformations of the Weyl character formula in

which the deformed denominator appears. A typical such formula will have the
form

Y

˛2˚C

.1 � q�1z˛/��.z/ D
X

v2B�C�

G.v/zwt.v/; (4)

whereB�C� is the Kashiwara crystal with highest weight �C� and wt is the standard
weight function on the crystal. We will call a function G on B�C� which satisfies
this identity a Tokuyama function. The archetype is the formula of Tokuyama [28],
where it was stated in the language of Gelfand–Tsetlin patterns and translated into
the crystal language in [9]. This is for Cartan type A. For Cartan types C and D,
see [3, 15] in this volume.

For general n, we may define the metaplectic Whittaker function by an integral
generalizing (1), and then ask for a formula of the form

W.t�/ D ı1=2.t�/
X

v2B�C�

G.v/zwt.v/: (5)

We will give analogs of both (3) and (4) for the metaplectic Whittaker function on
the double cover of Sp2r .F /. However, this is the only metaplectic example where
we have an analog of (3), whereas analogs of (4) may be found in many cases of
group and degree of metaplectic cover:

• G D SLn and any n: [7, 9, 10]
• G D Spin.2r C 1/ and n odd: [3] (rigorously for n D 1 or n sufficiently large)
• G D Spin.2r/ and n even: [15]
• G D Sp.2r/ and n even: this chapter (rigorously for n D 2)

4.2 The Metaplectic Whittaker Function

We review the formula for the metaplectic Whittaker function on the double cover of
Sp2r .F /which was found by Bump, Friedberg, and Hoffstein. We are assuming that
�4 � F , which simplifies the formula slightly, since the quadratic Hilbert symbol
.�1; a/2 D .a; a/2 D 1 because �1 is a square.
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Let Sp2r D fg 2 GL2r j gJ tg D J g, with J D
� �Jr
Jr

�

, Jr D
0
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. .
.
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1
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;

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

y1
: : :

yr

y�1
r

: : :

y�1
1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

1

C
C
C
C
C
C
C
C
C
A

D
Y
.xi ; yi /2:

The double cover eSp2r .F / consists of pairs .g; "/ with g 2 Sp2r .F / and " D ˙1.
The multiplication is .g; "/.g0; "0/ D .gg0; ""0�.g; g0//. Let �C D Zr ; in the next
section, we will interpret this as the weight lattice of Cartan type Cr . An element
� D .�1; : : : ; �r / 2 �C is dominant if �1 > � � � > �r > 0. We define the
“alternator”

A D
X

w2W
.�1/l.w/w (6)

as a member of the group algebra of the Weyl group W . As a group acting
on the spectral parameters z D .z1; : : : ; zr /, W is the group generated by the
rŠ permutations and the 2r transformations zi ! z˙1

i . The r simple reflections
s1; : : : ; sr 2 W correspond to si W zi $ ziC1 for i D 1; : : : ; r � 1 and sr W zr 7! 1=zr .
We will denote z� D Q z�ii for � 2 �C . Let �C D .r; r � 1; : : : ; 1/ denote the Weyl
vector. By the Weyl denominator formula,

�C.z/ WD
X

w2W
.�1/`.w/w.z�C / D z��C

rY

iD1
.1 � z2i /

Y

i<j

.1 � zi zj /.1 � zi z
�1
j /:

We sometimes simply write the denominator as �C , when clear from the context.
If � 2 �C , let

t� D

0

B
B
B
B
B
B
B
B
B
@

p�1

: : :

p�r

p��r
: : :

p��1

1

C
C
C
C
C
C
C
C
C
A

:

We fix an additive character  on F . This gives rise to a nondegenerate character
 N on the subgroup N.F / of upper triangular unipotent matrices n of Sp2r .F /
by  N .n/ D  .n12 C n23 C � � �nr;rC1/. The cocycle �.n; g/ D �.g; n/ D 1 for
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n 2 N.F / and g arbitrary, so the map N.F / �! eSp2r .F / given by n 7! .n; 1/ is a
homomorphism, and we may identify N.F / with its image.

If a 2 F �, let �.a/ D pjaj R  .ax2/ dx=
R
 .x2/ dx where the integral is

taken over any sufficiently large fractional ideal. Let s W T .F / �! eSp2r .F / be the
map t 7! s.t/ D .t; 1/. Then �.ab/=�.a/�.b/D .a; b/2, the local quadratic Hilbert
symbol.

Theorem 1. (Bump, Friedberg, Hoffstein) If � 2 �C is dominant, we have

W.t�/ D ı1=2.t�/ 1
�C

A
 

z�C�C
rY

iD1

�
1 � q�1=2z�1

i

�
!

W.1/:

Moreover,

W.1/ D
 

rY

iD1
�.p�i /�1

!
Y

i

�
1C q� 1

2 zi
�Y

i<j

�
1 � q�1zi z�1

j

� �
1 � q�1zi zj

�
:

If � is not dominant, then W.t�/ D 0.

Let us combine the two most important parts of this formula and write

W.�/ D
Y

i

�
1C q� 1

2 zi
�Y

i<j

�
1 � q�1zi z�1

j

� �
1 � q�1zi zj

�

� 1

�C

A
 

z�C�C
rY

iD1

�
1 � q�1=2z�1

i

�
!

: (7)

We note that in this context, � is integral but (7) makes sense if � is half-integral.
Furthermore, the Whittaker function can be extended to the larger group GSp2r . It
is natural to expect that our results can be extended to GSp2r and that the values of
(7) when � is half-integral are to be interpreted as values of the Whittaker function
on GSp2r . Although we cannot confirm this when � is half-integral, we will make
some observations about the values of (7) in this case.

4.3 An Embarrassment of L-Groups

Although Langlands only defined an L-group for algebraic groups, there is a natural
candidate for an L-group of QG.F / when G is split. For G D Sp2r , it is natural to
assume that the L-group should be



Sp2r .C/ if n is even,
Spin2rC1.C/ if n is odd.
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For example, the alternation of the Cartan type of the L-group is suggested by
Savin [27], who found that the Cartan type of the genuine part of the Iwahori Hecke
algebra was isomorphic to that of Sp2r .F / if n is odd and of Spin2rC1.F / if n is
even, suggesting that the L-group of the metaplectic n-fold cover of Sp2r should be
isomorphic to the L-groups of these groups. Thus, we may provisionally expect that
in generalizing the Casselman–Shalika formula to the double cover of Sp2r , the role
of LGı should be played by Sp2r .C/, and indeed, such a generalization was found
by Bump, Friedberg, and Hoffstein [12].

It is therefore a little surprising that in generalizing (5), the relevant crystal B� is
not of type Cr but rather of type Br ! In explaining this, both the representations of
Sp2r .C/ (type Cr ) and Spin2rC1.C/ (type Br ) will play a role.

We will compare these representation theories by the ad hoc method of identify-
ing the ambient spaces of their weight lattices. The weight lattice �C of type Cr is
Zr . The lattice �C has index two in the weight lattice �B of type Br . The lattice
�B consists of � D .�1; : : : ; �r / 2 1

2
Zr such that all �i � �j 2 Z. The Weyl group

W of type Br is the same as the Weyl group of type Cr ; acting on �B or �C , it is
generated by simple reflections s1; : : : ; sr where si acting on � D Zr interchanges
�i and �iC1 in � D .�1; : : : ; �r / when i < r , and sr sends �r ! ��r . The Weyl
vector � of any root system is half the sum of the positive roots, and so for Br and
Cr , respectively, we have

�B D
�

r � 1
2
; r � 3

2
; : : : ;

1

2

�

; �C D .r; r � 1; : : : ; 1/ :

If � 2 �C is a dominant weight, then the irreducible character of Sp2r .C/ with
highest weight � will be denoted �C� , and similarly, if � 2 �B is a dominant weight,
the irreducible character of Spin2rC1.C/ with highest weight � will be denoted �B� .
In either case, let g be an element of the relevant group. Let z D .z1; : : : ; zr / be such
that the eigenvalues of g are z˙1

i in the symplectic case or such that the eigenvalues
of the image of g in SO2rC1.C/ are z˙1

i and 1 in the spin case. Then the Weyl
character formula asserts that

�C� .g/ D
1

�C

A.z�CC�/ or �B� .g/ D
1

�B

A.z�BC�/

depending on which case we are in, where the Weyl denominators are

�C DA.z�C /
D
Y

i<j

h�
z1=2i z�1=2

j � z�1=2
i z1=2j

� �
z1=2i z1=2j � z�1=2

i z�1=2
j

�iY

i

�
zi � z�1

i

�
;
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�B DA .z�B /
D
Y

i<j

h�
z1=2i z�1=2

j � z�1=2
i z1=2j

� �
z1=2i z1=2j � z�1=2

i z�1=2
j

�iY

i

�
z1=2i � z�1=2

i

�
:

In particular,

�C

�B

D
rY

iD1

�
z1=2i C z�1=2

i

�
D z�C

z�B

rY

iD1

�
1C z�1

i

�
: (8)

On the face of it, the last formula has little meaning, since the Weyl denominators
live on different groups. We will use it in the next section.

4.4 Ambivalence of the L-Group

LetG be a reductive group over a nonarchimedean local field F . Let us consider the
role of the L-group in the Casselman–Shalika formula. The semisimple conjugacy
classes of LGı parametrize the spherical representations of G.F /. Let � be a
spherical representation and z D z� the parametrizing conjugacy class. Then the
values of the irreducible characters of G.F / on z equal the values of the spherical
Whittaker function of � .

So we should seek a similar interpretation in the metaplectic case. Let G D
Sp2r .F / and let QG.F / be the double cover. Either Sp2r .C/ or SO2rC1.C/ will serve
to parametrize the principal series representations of G.

We first seek an interpretation of the factor

Y

i

�
1C q� 1

2 zi
�Y

i<j

�
1 � q�1zi z�1

j

� �
1 � q�1zi zj

�
(9)

appearing in (7) as a deformation of a Weyl denominator. The Weyl denominators
of types B and C are, respectively, z��B and z��C times

Y

i

.1� zi /
Y

i<j

.1� zi z
�1
j /.1� zi zj /; and

Y

i

.1� z2i /
Y

i<j

.1� zi z
�1
j /.1� zi zj /:

Now, there are two ways of looking at (9). We may write it as

Y

i

�
1 � q� 1

2 zi
��1 �

Y

i

�
1 � q�1z2i

�Y

i<j

�
1 � q�1zi z�1

j

� �
1 � q�1zi zj

�
;

and the factor in front may be interpreted as the p-part of a quadratic L-function.
The remaining terms in the product give the typical deformation of the Weyl
denominator of type C , and taking the classical limit q�1 ! 1 recovers the familiar
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denominator formula in type C . On the other hand, we may let q� 1
2 ! �1, in which

case (9) becomes the Weyl denominator of type B.
A similar dual interpretation pertains with the factor

1

�C

A
 

z�C�C
rY

kD1

�
1� q�1=2z�1

i

�
!

: (10)

On the one hand, if we expand the product, we get a sum

X

S�f1;2;3;:::;rg
.�q1=2/jS j 1

�C

A
 

z�C�C Y

i2S
z�1
i

!

: (11)

Each term is either zero or an irreducible character of Sp2r .C/ by the Weyl character
formula. Hence, (10) may be regarded as a sum of 6 2r irreducible characters of
Sp2r .C/ and thus has a type C flavor. But, on the other hand, let us again specialize
q
1
2 ! �1. Then using (8), the factor (10) becomes

1

�B

A
�
z�C�B � D �B� .z/: (12)

This formula generalizes to a formula like (3) for the metaplectic Whittaker function
in the form (10). We will discuss this point in a subsequent section.

4.5 The Weyl Group Averaging Method

Chinta and Gunnells [16,17] gave a construction of thep-parts for multiple Dirichlet
series which applies to any root system and choice of fixed positive integer n. In this
section, we show that their construction gives the metaplectic Whittaker function
of eSp2r .F / when the root system is of type Br and the cover degree n D 2.
(For additional articles on relations between multiple Dirichlet series and Whittaker
functions, see also Chinta and Offen [18] and Chinta, Friedberg, and Gunnells [14].)

This method begins by defining an action on rational functions of the spectral
parameters, which we review in the case at hand.

As before, let T be the maximal torus of diagonal elements in SO2rC1, whose
eigenvalues are z1; : : : ; zr ; 1; z�1

r ; : : : ; z
�1
1 . Let T 0 be the preimage of T in Spin2rC1.

The coordinate ring CŒT 0� of T 0 is then generated by z˙1
i and by

p
z1 � � � zr . We

remark thatCŒT 0� can be identified with the group ringCŒ�B�, with the zi , 1 � i < r
corresponding to the first r � 1 fundamental weights and the product

p
z1 � � � zr

corresponding to the spin representation (as before, we think of �C sitting as a
sublattice of �B of index 2).
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Let C.T 0/ be the fraction field of CŒT 0�. Consider the rational map C.T 0/ !
C.T 0/ that takes zi ! zi for i D 1; : : : ; r � 1 and

p
z1 � � � zr ! �pz1 � � � zr . We

write this map as f .z/ 7! f ."z/, slightly abusing notation from before. Then we
define an action of W by

.f jsi /.z/ D f .si z/; 1 � i < r;

and

.f jsr /.z/ D 1� q�1=2z�1
r

1 � q�1=2zr
f C.srz/C 1

zr
f �.srz/;

where

f C.z/ D f .z/C f ."z/
2

; f �.z/ D f .z/ � f ."z/
2

:

The braid relations are satisfied, and so this definition extends to a right action
f 7! f jw for all w 2 W . Now, the description of [17] for the p-part of the multiple
Dirichlet series may be written as

H.�; z/ D z�C�C X

w2W

z����C jw
�C.wz/

: (13)

We further define a q-deformation of the Weyl denominator�C by

D.zI q/ D
rY

iD1

�
1 � q�1z2i

�Y

i<j

.1 � q�1zi zj /.1 � q�1zi z�1
j /:

Let

P D
rY

iD1

�
1 � q�1=2zi

�
:

Lemma 1. If f D f C, then

.f jw�1/.z/
f .wz/

D P.wz/
P.z/

:

Proof. If p.w; z/ D P.wz/=P.z/, thenp satisfies the cocycle conditionp.ww0; z/ D
p.w;w0z/p.w0; z/. The left-hand side also satisfies the same cocycle relation, so we
are reduced to the case where w is a simple reflection, in which case, it follows
easily from the definition.

Theorem 2. We have

D.zI q/H.�; z/ D .�1/rz�C�C W.�/;

where W.�/ is the Whittaker value defined in (7).
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Proof. The function H.�; z/ in (13) may be rewritten in the form

z�C�C
�C

X

w2W
.�1/l.w/ �z����C jw� D z�C�C

�CP.z/
A.P.z/z����C /; (14)

where the latter equality follows by replacing w by w�1 and using the previous
lemma. Again, we have employed the notation for the alternator as in (6). Note
in particular that for any rational function f , A.f .z// D .�1/rA.f .w0z//. Since
w0z D .z�1

1 ; : : : ; z
�1
r /, the expression on the right-hand side of (14) equals

.�1/rz�C�C
Qr
iD1.1 � q�1=2zi /

1

�C

A
 

z�C�C
rY

iD1

�
1 � q�1=2z�1

i

�
!

:

Multiplying by D.z/ and simplifying, the statement follows.

4.6 BZL Patterns

Let w0 be the long Weyl group element. Choose a decomposition reduced decom-
position w0 D s!1 � � � s!N into a product of simple reflections where 1 6 !i 6 r (the
rank). Let

! D .!1; : : : ; !N /
be the corresponding reduced word for w0.

Let B� be the crystal of an irreducible finite-dimensional representation of
highest weight � for any Cartan type and let W be the corresponding Weyl group.
We will denote the Kashiwara (root) operators by ei and fi . There are maps
B �! B [ f0g. There is a unique element v� 2 B corresponding to the highest
weight �.

To each vertex v 2 B� and each reduced word !, we associate an integer
sequence as follows. Let k1 be the largest integer such that ek1!1.v/ ¤ 0. Then
let k2 be the largest integer such that ek2!2e

k1
!1
.v/ ¤ 0 and so forth. Upon

using all root operators in the order specified by the long word decomposition,
ekN!N � � � ek1!1.v/ D v�; the vertex corresponding to the highest weight vector. The
sequence .k1; : : : ; kN / determines v and can be arrayed in a pattern to give a
convenient way of parametrizing elements of the crystal. These patterns were
studied by Littelmann [24] and by Berenstein and Zelevinsky [4]. We will refer to
the sequence .k1; : : : ; kN / as a BZL string or BZL pattern and write .k1; : : : ; kN / D
BZL!.v/. This construction applies equally well to any symmetrizable Kac–Moody
group, but we focus entirely on type B root systems and their crystal graphs in this
section.
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Theorem 3. Let B be a crystal graph of type B . There exists a unique function �
on B taking values in the nonnegative integers with the following properties. If v� is
the highest weight vector, then �.v�/ D 0. If x; y 2 B and fi .x/ D y with i < r ,
then �.x/ D �.y/. If er .x/ D 0 and y D f k

r .x/, then

�.y/ D


�.x/ if k is even,
�.x/C 1 if k is odd:

Let us illustrate this with an example:

0

0 1 0

0

1

1

1

0

0

0

0

1

1

1

2

2 1 2

2

1

1

1

1

1

1

0

0
1

0

0

0

0

0

0

This illustrates the crystal with the highest weight � D .2; 1/ for B2. We draw
x �! y with a solid arrow if y D f1.x/ and with a dashed arrow if y D f2.x/.
The vertex in the upper right-hand corner is v�. The values of � are shown for every
element.

Proof. We will give one definition of � for each reduced decomposition

w0 D s!1s!2 � � � s!r2
of the long element. We will show that these definitions are all equivalent, then
deduce the statement of the theorem. We start with the BZL string of v 2 B
corresponding to this word. Thus, corresponding to the word

! D .!1; !2; : : : ; !r2/;
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we produce the sequence k1; k2; : : : ; kr2 with each kn defined by

ekn!n � � � ek1!1v ¤ 0; eknC1
!n
� � � ek1!1v D 0;

so that e
kr2
!r2
� � � ek1!1v D v� is the highest weight element of the crystal base. Define

�!.v/ D
X

!jDr



1 if kj is odd,
0 if kj is even.

(15)

We wish to assert that if ! and !0 D .!0
1; : : : ; !

0
r2
/ are two reduced decompositions,

then �! D �!0 .
The proof will involve a reduction to the rank two case, so let us first prove that

the statement is true for crystals of type B2. In this case, there are only two reduced
words, and we may assume that ! D f1; 2; 1; 2g and !0 D f2; 1; 2; 1g. In this case,
Littelmann (cf. Sect. 2 of [24]) proved that

k0
1 D max.k4; k3 � k2; k2 � k1/;
k0
2 D max.k3; k1 � 2k2 C 2k3; k1 C 2k4/;
k0
3 D min.k2; 2k1 � k3 C k4; k4 C k1/;
k0
4 D min.k1; 2k2 � k3; k3 � 2k4/:

From this, it follows easily that the number of odd elements of the set fk0
2; k

0
4g is the

same as the number of odd elements of the set fk1; k3g, that is, �! D �!0 .
We turn now to the proof that �! D �!0 for arbitrary rank r . Consider the

equivalence relation on all reduced words representing w0 generated by ! � !0
if !0 is obtained from ! by replacing a string fl; m; l;m; : : :g of length equal to
the order N of sl sm in the Weyl group by the string fm; l;m; l; : : :g of the same
length. By a theorem of Tits, any two reduced decompositions are equivalent under
this relation. As a consequence, it is sufficient to show that �! D �!0 when !0 is
obtained by replacing an occurrence of l; m; l by m; l;m (if m D l C 1 < r/, or an
occurrence of l; m; l;m bym; l;m; l (if l D r �1;m D r), or an occurrence of l; m
by m; l when jl �mj > 1.

Suppose that it D l , itC1 D m, etc. are the elements of ! that are changed in !0.
The elements it�1 and i 0t�1 of ! and !0 preceding this string (if it is not initial) are
not l norm and similarly for the elements following it. Let

vh D ekhih � � � ek1i1 v; e
khC1
ih
� � � ek1i1 v D 0;

v0
h D ek

0

h

i 0h
� � � ek0

1

i 01
v; e

k0

hC1
i 0h
� � � ek0

1

i 01
v D 0;
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so v0D v0
0D v and vr2 D v0

r2
D v�. We will argue that the sequences .v0; v2;

: : : ; vr2 / and .v0
0; v

0
2; : : : ; v

0
r2
/ and the sequences .k1; k2; : : : ; kr2 / and .k0

1; k
0
2; : : : ;

k0
r2
/ are identical, except at indices t through t CN � 2 where ! and !0 differ.
To see this, remove all edges of the crystal graph except those labeled l and m,

which produces a crystal graph B0 of type A2, B2, A1 � A1, or A1 � B1. Clearly,
vt�1 D v0

t�1 since ! and !0 agree up to this point. Let B00 be the connected
component of B0 containing this. Then vtCN�1 is the highest weight vector in B00
and so is v0

tCN�1. It is now clear that the portion of the BZL pattern which lies
within this crystal is the only part of k1; : : : ; kr2 which is different from k0

1; : : : ; k
0
r2

,
and we have only to show that the number of ki within this subpattern with !i D r
such that ki is odd is the same as for the k0

i . That is, we have reduced to the rank two
case. If B0 is of type B2, we have proven this, and the other three cases are trivial,
since an A2 or A1 � A1 crystal has no edges of type r , while an A1 � B1 crystal is
just a Cartesian product.

Now, let 1 6 i 6 r . To verify the assertion that �.x/ D �.y/ if fi .x/ D
y, choose a word ! whose first element !1 D i . If .k1; : : : ; kr2/ D BLZ!.x/,
then .k1 C 1; k2; : : : ; kr2/ D BZL!.y/. Since �.x/ is the number of odd ki with
!i D r , it is obvious that �.x/ D y. On the other hand, suppose that er .x/ D 0.
Choosing ! such that !1 D r , we have BZL.x/ D .k1; : : : ; kr2 / with k1 D 0, while
BZL.f k

r .x// D .k; k2; : : : ; kr2/, and so obviously, �.f k
r .x// D �.x/ if k is odd

and �.x/C 1 if k is even.
We recall that the Weyl group acts on the crystal: each simple reflection si acts by

reversing the i -root strings. It is shown that this action gives rise to a well-defined
action of W on the crystal in Littelmann [25].

Proposition 1. If � is integral, then the function � is constant on W orbits of the
crystal.

Proof. It is clear from the definition that reversing the i -root string through v 2 B�
does not change �.v/ if i < r since � is constant on the root string in that case. If
i D r , then the fact that � is integral means that each root string has odd length, and
therefore �.si .v// D �.v/ in this case also since v�sr .v/ D k˛r with k even. (Note
that if � is half-integral, the Weyl group action does not preserve � .)

Conjecture 1. Assume that � is integral. Then

1

�C

A
 

z�C�C
rY

kD1

�
1 � q�1=2z�1

i

�
!

D
X

v2B�

��q1=2��.v/ zwt.v/:

This expresses the metaplectic Whittaker function (except for its normalizing
constant) as a sum over the crystal. As noted in a previous section, the left-hand
side may be expanded as a polynomial in q whose coefficients are composed
of irreducible characters. Hence, the above proposition may be viewed as partial
evidence for the conjecture. It has also been verified numerically for many choices
of �.
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4.7 Decorated BZL Patterns

Let us disregard the normalizing constant (9) for the time being, and consider (10) to
be the value of thep-adic Whittaker function at t� in eSp2r .F /, where � is a dominant
weight for Spin2rC1.C/. Strictly speaking, this only makes sense if � is integral.
However, if � is half-integral, it is probable that this scenario can be extended, taking
t� in eGSp2r .F /. In any case, (10) is defined whether � is integral or half-integral.

We saw in (12) that when q1=2 is specialized to �1, the value of (10) becomes the
character �B� of an irreducible representation of Spin2rC1.C/. We will reinterpret
this fact in terms of crystals, showing that for any q, the expression (10) may be
interpreted as a deformation of �B� . Indeed, we give a conjectural expression for the
metaplectic Whittaker function evaluated at t� as a sum over vertices in the crystal
B� by making use of certain decorated BZL patterns.

That is, we decorate the BZL string k1; : : : ; kN by drawing boxes or circles
around some of the entries according to the following rules. For the boxing rule,
if

f!i e
ki�1
!i�1
� � � ek1!1.v/ D 0;

then we box ki . Concretely, this means that the path from v to v� that goes through

v; ek1!1.v/; e
k2
!2
ek1!1 ; : : :

includes the entire !i -string passing through the vertex eki!i � � � ek1!1.v/. In this sense,
we roughly think of the value ki as being as large as possible and cannot be
increased.

The circling rule may be regarded also very roughly as signifying that the value
ki is as small as possible and cannot be decreased. To make this precise for type
Br and for one particularly nice reduced word !, we take a closer look at the BZL
patterns as treated by Littelmann [24].

We will use the Bourbaki ordering of the weights, so that the fundamental
dominant weights are !1; : : : ; !r with !1 D .1; 0; : : : ; 0/ the highest weight of
the standard representation and !r D

�
1
2
; : : : ; 1

2

�
the highest weight of the spin

representation. Then the reduced decomposition that we will use is

w0 D sr .sr�1sr sr�1/.sr�2sr�1sr sr�1sr�1/ � � � .s1 � � � sr � � � s1/:

Thus, ! D .r; r � 1; r; r � 1; r � 2; r � 1; r; r � 1; r � 2; : : :/ and N D r2. An
alternative indexing will sometimes be convenient, so we will write alternatively

BZL.v/ D .k1; : : : ; kr2/ D .kr;r ; kr�1;r�1; kr�1;r ; kr�1;rC1; : : :/:

Following Littelmann, we put the entries into a triangular array, from bottom to top
and left to right, thus
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8
ˆ̂
<̂

ˆ̂
:̂

k1;1 � � � k1;r k1;rC1 � � � k1;2r�1
: : :

::: . .
.

kr�1;r�1 kr�1;r kr�1;rC1
kr;r

9
>>>=

>>>;

D

8
ˆ̂
<̂

ˆ̂
:̂

:::

k5 k6 k7 k8 k9
k2 k3 k4
k1

9
>>>=

>>>;

Littelmann proved that the entries in each row satisfy the following inequalities
(independent of the choice of highest weight �):

2ki;i > 2ki;iC1 > � � � > 2ki;r�1 > ki;r > 2ki;rC1 > � � � > 2ki;2r�i > 0:

Note that every value is doubled except the middle one.
We circle the BZL string entry ki if the corresponding lower bound inequality is

an equality. Let us make this explicit in the case r D 3. In this case,

BZL.v/ D .k3;3; k2;2; k2;3; k2;4; k1;1; k1;2; k1;3; k1;4; k1;5/ D .k1; k2; : : : ; k9/;

and the array is:

8
<

:

k1;1 k1;2 k1;3 k1;4 k1;5
k2;2 k2;3 k2;4

k3;3

9
=

;
D
8
<

:

k5 k6 k7 k8 k9
k2 k3 k4
k1

9
=

;
: (16)

We have
k3;3 > 0;

and if k3;3 D 0, we circle it. We have 2k2;2 > k2;3, and if this is an equality, we
circle k2;2. Similarly, k2;3 > 2k2;4, and if this is equality, we circle k2;3.

We attach a simple root of the Br root system to each column of the array, in this
order:

˛1; : : : ; ˛r�1; ˛r ; ˛r�1; : : : ; ˛1:

The assignment is chosen so that a BZL string entry is in the column labeled by ˛i
if the corresponding element of the long word ! is i . Thus, letting ci be the sum of
the i th column, we have

wt.v/ D � � .c1 C c2r�1/˛1 � .c2 C c2r�1/˛2 � � � � � cr˛r :

Only ˛r is a short root.

4.8 A Tokuyama Function on BZL Patterns

Let p be a prime element in the nonarchimedean local field F . Let . ; /n be the local
nth power Hilbert symbol. For any m and nonzero c 2 o, we define the nth order
Gauss sum
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gt .m; c/ D
X

x mod c
gcd.x; c/ D 1

 
�mx

c

�
.x; c/tn:

We will only need these for t D 1; 2. For a nonnegative integer a, we also use the
shorthand notations

gt .a/ D gt .pa�1; pa/; ht .a/ D gt .pa; pa/:

In the special case n D 2, then all these Gauss sums may be made explicit. The
Gauss sum g1.1; p/ is a square root of q, which we will denote q1=2; by choosing
the additive character  correctly, we may arrange that it is the positive square root.
Assuming n D 2, we then have

g1.a/ D qa� 1
2 ; h1.a/ D



qa�1.q � 1/ if a is even,
0 otherwise,

and
g2.a/ D �qa�1; h2.a/ D qa�1.q � 1/:

We now assume that n is even, and that B is crystal of type Br . If v 2 B, we
define

G.v/ D
Y

k2BZL.v/

8
ˆ̂
<

ˆ̂
:

q�kht .k/ if k is unboxed and uncircled;
q�kgt .k/ if k is boxed but not circled;
1 if k is circled but not boxed;
0 if k is both boxed and circled;

where the subscript t D t.k/ in the cases above is 1 if the root corresponding to k
is ˛r , and t D 2 otherwise. This means that t D 1 if k is in the middle column of
the BZL array (16) and t D 2 otherwise. Note that these differ from the weighting
functions used in [9] in three ways:

• Due to the presence of both long and short roots, we must use two kinds of Gauss
sums, indexed by t (as done in [6]).

• The function G.v/ has been normalized by q�k which ultimately simplifies the
formulas (and was called G[.v/ in Chap. 1 of [9]).

• We have made our BZL patterns using the ei instead of the fi , which has the
effect of permuting the contributionsG.v/ assigned to any given weight vector v.

Now, let � be a dominant weight. Then we claim that G.v/ is a Tokuyama function
for the metaplectic Whittaker function. More precisely:

Conjecture 2. Assume that � is integral. Then with W.�/ as in (7), we have

W.�/ D
X

v2B�C�

G.v/z� wt.v/:
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In order to make progress on this conjecture, we translate the problem to the
realm of statistical lattice models. For more on the relationships between bases of
highest weight representations and statistical lattice models, see [5] in this volume.

4.9 Ice Models

We will now give an alternative description of the Whittaker function as the partition
function of a statistical system in the six-vertex model.

The use of the Yang–Baxter equation to evaluate the partition functions for the
six-vertex model was initiated by Baxter [1]. The so-called “domain wall” boundary
conditions, which are different from those used by Baxter, were introduced by
Korepin, who in the field-free case obtained recursion relations for the N � N
partition function; Izergin used these relations to evaluate the partition function as a
determinant. See [21], Sect. VII.10, and Kuperberg [22], who explains how to use
the Yang–Baxter equation to prove the Korepin–Izergin determinant formula and to
use it to enumerate alternating sign matrices.

Meanwhile, Tokuyama [28] obtained a generalization of the Weyl character
formula that expresses the character of the irreducible representation of GL.n;C/
with highest weight � (a fixed dominant weight) times a deformation of the
Weyl denominator as a sum over Gelfand–Tsetlin patterns. Hamel and King [19]
reformulated Tokyuma’s result as evaluating the partition function of a six-vertex
model. Their proofs were combinatorial, based on jeu de taquin. It was shown by
Brubaker, Bump, and Friedberg [8] that the results of Tokuyama and Hamel and
King may be proved using the Yang–Baxter equation.

The Yang–Baxter equation used by Brubaker, Bump, and Friedberg is a differ-
ent case from that of the Korepin–Izergin determinant formula since it requires
Boltzmann weights that are not “field-free,” but which are “free-fermionic.” (These
terms are defined in Sect. 7 of [11] in this volume.) The boundary conditions are a
generalization of the domain wall boundary conditions considered by Korepin and
Izergin, that is, the special case � D 0.

Regarding the free-fermionic Yang–Baxter equation, Korepin and Izergin had
found a parametrized Yang–Baxter equation for the free-fermionic six-vertex
model with parameter group SL.2/. See [21], page 126. A slightly more general
parametrized Yang–Baxter equation for the free-fermionic six-vertex model, with
parameter group GL.2/ � GL.1/, was used by Brubaker, Bump, and Friedberg [8]
to prove the results of Tokuyama and Hamel and King.

Beyond [22], Kuperberg [23] considered other lattice models that he used to
enumerate other classes of alternating sign matrices. One that is particularly relevant
for us is the “U-turn model.” Hamel and King [19] found deformations of the
Weyl character formula for the group Sp.2r;C/ representing a character times a
deformation of the Weyl denominator, the partition function of a U-turn model.
Ivanov [20] then proved a variant of this formula using the free-fermionic Yang–
Baxter equation.
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In view of the Casselman–Shalika formula, the partition function computed
by Ivanov may be regarded as the value of a spherical Whittaker function on an
odd orthogonal group. This interpretation of the results of Hamel and King and
Ivanov is explained in Brubaker, Beineke, and Frechette [2]. See also [3] where an
interpretation of this Whittaker function as a sum over crystals is given.

In this chapter, we will use a variant of the model considered by Hamel and King,
Ivanov and Brubaker, and Beineke and Frechette in order to express the Whittaker
functions on the metaplectic double covers of Sp.2r/. The model that we give is
very similar to that in Ivanov, the only difference between the systems being the
Boltzmann weights at the U-turn or “cap” vertices.

We consider a rectangular grid having 2r rows and the number of columns to
be determined. The intersections of the rows and columns of the grid will be called
vertices. The vertices in the odd-numbered rows will be designated “Gamma ice”
(labeled 
, and those in even numbered rows (labeled ı) will be designated “Delta
ice.” Each pair of rows will be closed at the right edge by a “cap” containing a single
vertex. Thus, if r D 2, the array looks like:

+

−

+

−

+ + + + + +

− + + − + +

11
2

9
2

7
2

5
2

3
2

1
2

z

z

z2

1

z−1
2

−1
1

We have labeled the boundary edges by certain signs˙. The interior edges will also
be labeled with signs, but these signs will be variable, whereas the boundary edge
signs are fixed and are part of the data describing the system.

The boundary edge signs are to be assigned as follows. We put alternating signs
�;C;�;C; : : : on the left edge, so that the rows of Delta ice begin with � and the
rows of Gamma ice begin with C. We put C signs at the bottom of each column.
For the top, we label the columns with half integers beginning with 1

2
at the right

and increasing by 1 from right to left. Given a highest weight � of type B , we put
� in the columns labeled from values in � C �B . Thus, if r D 2 and � D .4; 2/,
then �C �B D

�
11
2
; 5
2

�
, and so we put � in those columns, as indicated in the figure

above. The remaining top edges are labeledC.
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A state of the system is an assignment of spins˙ to the remaining interior edges.
For the Gamma and Delta vertices, the assignments will be taken from Table 1 in
Ivanov [20] in this volume.

For the cap vertices, which we will label with a �, the two adjacent edges must
have the same sign, and here we use different weights from Ivanov, as follows:

� Cap
vertex

+

+

−

−

Boltzmann
weight

�p�tz1=2i z�1=2
i

For the moment, we may regard t; z1; : : : ; zr as arbitrary parameters to be deter-
mined later. Given a highest weight � of type B , we may fix boundary spins as
above. Then an admissible state is one in which each vertex in the state has a
Boltzmann weight taken from the above table. Let S� D S�.z1; : : : ; zr ; t/ be the
set of all states.

Given a state S 2 S� of the system, the Boltzmann weight BW.S/ of the state
is the product over all vertices of the weights of the vertex. The partition function
Z.S/ is the sum of the BW.S/ over all states S .

As before, we let the Weyl groupW of type Br act on the parameters z1; : : : ; zr ;
it is generated by permutations of the zi and the 2r transformations zi ! z˙1

i .

Theorem 4. The product

z�B
Y

i

.1 � iptz�1
i /

2

4
Y

i>j

.1C tzi zj /.1C tzi z�1
j /

3

5Z.S/ (17)

is invariant under the action ofW .

The ideas of this proof are similar to those in [8] and [20], where the “caduceus”
braid also appears.

Proof. Structurally, the proof is the same as that of the result in Ivanov [20]. Due
to the difference in the Boltzmann weights at the cap vertices, the formulas turn out
differently, and some auxiliary results are different between the two proofs.

We first show invariance under the simple reflections which interchange
zi and ziC1.

The parametrized Yang–Baxter equation in [8] implies the following statement,
which is the same as Lemma 1 in [20]. Given any pair X; Y 2 f�;�g, we may
make three types of vertices: XY , X , and Y , each of whose Boltzmann weights is
given by the above tables. Call these flavors of vertices R;S , and T , respectively.
Let "1; : : : ; "6 be six choices of sign ˙. Then the following two partition functions
(each involving respective Boltzmann weights at three vertices) are equal:
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R

S

T

2

1

3

4

5

6

= R

T

S

2

1

3

4

5

6

This means that (on each side of the equation) we sum over all assignments of signs
to the three interior edges. The reversal of the spectral parameters and of the order
of the S and T vertices is indicated.

Now, consider four rows of the system, which have (alternately) �, � , �, �
vertices, with spectral parameters zi , z�1

i , zj , and z�1
j . (So j D i C 1.) To the left of

these four rows, we attach the following “caduceus” braid, which was employed in
this context for type C by Ivanov [20]:

ΔΔ

ΓΔ ΔΓ

ΓΓ

4

3

2

1

5

6

7

8

z
j

z

zi

z−1
i

−1
j

z
i

z−1
i

zj

z−1
j

See (6) of [20] for a picture of the resulting configuration, with the caduceus braid
attached.

We observe that there is only one legal configuration for this system which has
."4; "3; "2; "1/ D .�;C;�;C/. This configuration is:

ΔΔ

ΓΔ ΔΓ

ΓΓ

−

+

−

+

−

+

−

+

−

+

z
j

j

z
i

z−1

z−1

i

z
i

z−1
i

zj

z
−1

j

−

+
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The partition function for this piece of ice is therefore just the product of the values
at the four vertices, which can be read off from the above table:

.tzj C z�1
i /.zi C tzj /.tz�1

i C z�1
j /.tzi C z�1

j /: (18)

Hence, we may attach the caduceus to the left of four rows in our original U-turn
ice configuration, and the resulting partition function multiplies the original partition
function by this factor.

Using repeated application of the Yang–Baxter equation as in Ivanov [20], the
braid may be moved across resulting in a configuration as in (7) of Ivanov [20]. In
the process, the zi and zj spectral parameters are interchanged—effectively, the two
pairs of rows are switched. To analyze the resulting partition function requires the
following lemma, which is the analog of Lemma 3 in Ivanov [20].

Lemma 2. Let "1; "2; "3; "4 2 fC;�g. Then the partition function of the system on
the left in the following diagram:

ΔΔ

ΓΔ ΔΓ

ΓΓ

4

3

2

1

z
j

z−1
j

zi

z−1
i

z
i

z−1
i

zj

z−1
j

4

3

2

1

z
j

z−1
j

z
i

z−1
i

equals
.tzi C z�1

j /.tzi C zj /.tz
�1
i C z�1

j /.tzj C z�1
i /: (19)

times the partition function of the system on the right.

This lemma allows us to pass the braid all the way through the U-turn ice,
resulting in an interchange of parameters zi and zj D ziC1. Thus, our original
partition function is related to that of U-turn ice with zi and ziC1 swapped by the
ratio of (18) to (19). This ratio equals

zj C tzi
zi C tzj D

zj
zi
� 1C tzi z

�1
j

1C tzj z�1
i

D zsi �B

z�B
1C tzi z�1

j

1C tzj z�1
i

;

which means that the product (17) is invariant under this interchange.
Now, we consider the effect of the interchange zr $ z�1

r . For this, we begin by
transforming the very bottom row of � vertices with spectral parameters zr into �
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vertices with the spectral parameter z�1
r by flipping the signs of all the horizontal

edges in the row. Thus, we will be using the following weights before and after the
described change:

G vertex
(before)

i i i i i i

Boltzmann
weight 1 z−1

r 1 z−1
r t z−1

r (t + 1)

D vertex
(after)

i i i i i i

Boltzmann
weight 1 z−1

r 1 z−1
r t 1 z−1

r (t + 1)

This change has no effect on the Boltzmann weights because of the boundary
conditions. Indeed, onlyC signs occur in the bottom edge spins, and therefore only
the first three types of vertices in the table above occur. In order to compensate
for the change, we must replace the cap vertices with the following modified ones,
which we label by � instead of �:

� Cap
vertex

z
i

z−1
i−

+
z
i

z−1
i+

−

Boltzmann
weight

�p�tz1=2r z�1=2
r

Now, we attach a �� vertex to the left, using the following Boltzmann weights:

DD

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight tzr + z−1

r z−1
r (t + 1) tz−1

r − tzr zr − z−1
r (t + 1)zr zr + tz−1

r

As the signs in the bottom row have all been reversed, we are attaching the braid on
the left to a pair of rows each beginning with �. There is only one such admissible
�� vertex—the last in the table above. Attaching this braid then multiplies our
original partition function by zrCtz�1

r . We use the Yang–Baxter equation repeatedly
to push this �� vertex across the bottom two rows until it encounters the cap.
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Then we have the following configuration, referred to by Kuperberg [23] as the
“fish equation”:

zr

z−1
r2

1

It may be checked that the value of this configuration is

�
1 �p�tzr

� �
1Cp�tz�1

r

�

times the value of the single � vertex. After this is substituted, we may then repeat
the flipping of all signs in the bottom row, turning the vertices in this row back into
� vertices, but now with parameter z�1

r changed to zr .
Therefore, zr C tz�1

r times Z.S/ equals .1 � p�tzr /.1 C
p�tz�1

r / times the
partition function with zr replaced by its inverse. This implies that (17) is invariant
under zr ! z�1

r .

Conjecture 3. Take t D � 1
q

. Then, Z.S/ equals

zw.�B/

�C

Y

i

�
1C q�1=2zi

�
2

4
Y

i<j

�
1 � q�1zi zj

� �
1 � q�1zi z�1

j

�
3

5

A
 

z�C�C
rY

iD1

�
1 � q�1=2z�1

i

�
!

:

It follows from Theorem 4 that Z.S/ is divisible by the product

Y

i

�
1C q�1=2zi

�
2

4
Y

i<j

�
1� q�1zi zj

� �
1 � q�1zi z�1

j

�
3

5 ;

and the quotient is a polynomial in q�1=2 and zi , z�1
i that is invariant under the Weyl

group.

Theorem 5. The conjecture is true if r � 3.

We omit the proof, but we note that both sides as polynomials in the arbitrary
parameter q�1=2, we may confirm the identity in the conjecture for the special values
q�1=2 D 0 or 1. If r 6 3, we may prove the conjecture by bounding the size of the
possible degree of q1=2 in the resulting partition function and using the known pair
of special values in q�1=2.

Thus, this ice-type model conjecturally represents the Whittaker function. This
conjecture implies Conjecture 2 using the bijection between states of U-turn ice
with boundary corresponding to � and vertices in the crystal B� of type B having
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the G.v/ ¤ 0. This bijection is implicit in [5] given the bijection between Gelfand–
Tsetlin patterns and BZL patterns described by Littelmann [24].
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Chapter 5
Littelmann Patterns and Weyl Group Multiple
Dirichlet Series of Type D

Gautam Chinta and Paul E. Gunnells

Abstract We formulate a conjecture for the local parts of Weyl group multiple
Dirichlet series attached to root systems of type D. Our conjecture is analogous to
the description of the local parts of type A series given by Brubaker et al. (Ann. of
Math. 166(1):293–316, 2007) in terms of Gelfand–Tsetlin patterns. Our conjecture
is given in terms of patterns for irreducible representations of even orthogonal Lie
algebras developed by Littelmann (Transform. Groups 3(2):145–179, 1998).

Keywords Weyl group multiple Dirichlet series • Crystal graph • Gelfand-Tsetlin
pattern • Littelmann pattern

5.1 Introduction

We begin with some notation. Let ˚ be a reduced root system of rank r and n a
positive integer. Let F be a number field containing the 2n-th roots of unity. Let S
be a set of places ofF containing the Archimedean places and those that ramify over
Q, as well as sufficiently many more places to ensure that the ring of S -integers OS

has class number 1. Let m D .m1; : : : ; mr/ be a fixed nonzero r-tuple of elements
of OS . Let s D .s1; : : : ; sr / be an r-tuple of complex variables.

Given the data above, one can form a Weyl group multiple Dirichlet series. This
is a Dirichlet series in the r variables si with a group of functional equations
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isomorphic to the Weyl group W of ˚ . More precisely, one can define a set of
functions of the form

Z.sIm; �/ D Zn
˚.sIm; �/ D

X

c

H.cIm/�.c/
Q jci jsi ;

where each ci ranges over nonzero elements of OS modulo units, � is taken from
a certain finite-dimensional complex vector space ˝ of functions on .F �

S /
r , and H

is an important function we shall say more about shortly. Then, the collection of
all such Z as � ranges over a basis of ˝ satisfies a group of functional equations
isomorphic to W with an appropriate scattering matrix. For more about why Weyl
group multiple Dirichlet series are interesting objects, as well as a discussion about
the basic framework for their construction, we refer to [9].

The heart of the construction of Z is the function H . This function must be
carefully defined to ensure thatZ satisfies the correct group of functional equations.
The heuristic of [9] dictates how to define H on the powerfree tuples c;m (those
tuples such that the product c1 � � � crm1 � � �mr is squarefree). Moreover, it is further
specified in [9] how the values ofH on the prime power tuples c D .$k1; : : : ;$kr /,
m D .$l1 ; : : : ;$lr /, where $ 2 OS is a prime, determineH on all tuples.

Thus, writing ` for a tuple of nonnegative integers .l1; : : : ; lr / and letting $`

denote the tuple .$l1 ; : : : ;$lr /, the construction of Z reduces to defining the
multivariate generating function

N.x1; : : : ; xr I `/ WD
X

ki	0
H
�
$k1 ; : : : ;$kr I$`

�
x
k1
1 � � �xkrr : (1)

At present, there are two different approaches to defining the generating function
(1) and thus to constructing Weyl group multiple Dirichlet series. Both are related
to characters of representations of the semisimple complex Lie algebra attached
to ˚ . Let !i ; i D 1; : : : ; r be the fundamental weights of ˚ and let 
 be the strictly
dominant weight

P
.li C 1/!i .

• The Gelfand–Tsetlin approach [4,5,7], which works for ˚ D Ar , gives formulas
for the coefficients H.$k1; : : : ;$kr I$`/. These formulas are written in terms
of Gauss sums and statistics extracted from Gelfand–Tsetlin patterns for the
representation of slrC1.C/ of lowest weight �
 .

• The averaging approach [11–13,15], which works for all˚ , uses a “metaplectic”
deformation of the Weyl character formula to construct a rational function with
known denominator, whose numerator is then taken to define N .

Both approaches have their advantages and limitations. The Gelfand–Tsetlin
construction gives very explicit formulas for H , formulas that (remarkably) are
uniform in n and that lead to a direct connection with the global Fourier coefficients
of Borel Eisenstein series on the n-fold cover of SLrC1 [8], but suffers from
the obvious disadvantage that it only works for type A. The averaging approach,
on the other hand, works for all ˚ , quickly leads to the definition of Z, yet
has the drawback that it seems difficult to get similarly explicit formulas for
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the coefficients of N . By combining recent work of Chinta and Offen [14] and
McNamara [17], we know that in typeA, the two definitions ofN coincide, although
it seems difficult to give a direct combinatorial proof.

This note arose from our attempts to understand the Gelfand–Tsetlin approach
to (1). In the course of studying [5], it became plain to us that the most suitable
language to understand the constructions in [5] is that of Kashiwara’s crystal graphs,
as encoded in the generalization of the Gelfand–Tsetlin basis due to Littelmann [16],
which we call Littelmann patterns. These patterns, which reformulate and extend
earlier work of Berenstein–Zelevinsky [1–3], are well suited for constructing H .
Indeed, the definitions in [5] become much more transparent when phrased in terms
of these patterns, as one can see in [8].

To test the relevance of this observation, we decided to try to formulate a
Littelmann analogue of the Gelfand–Tsetlin construction when˚ is a root system of
typeD. The main result of this note is thus Conjecture 1, which explicitly describes
the generating function N.x1; : : : ; xr I `/ for the $-part of the type D Weyl group
multiple Dirichlet series constructed using the averaging method. We remark that
for n D 1, proving Conjecture 1 would give a type D analogue of a theorem of
Tokuyama [18].

To formulate Conjecture 1, we began by translating the definition in [5] into
Littelmann patterns. We then compared the putative $-part with that constructed
in [11, 13]. This allowed us to adjust the contributions of certain patterns until we
reached agreement for all examples.

We have some limited evidence for the truth of Conjecture 1. First, for D2 '
A1�A1, the conjecture is easily seen to be true. Next, we have tested the conjecture
for D3 when n � 4 and for D4 when n � 2 by computing the $-parts for
many tuples ` using the averaging method and comparing with the predictions of
Conjecture 1. In all cases, including many not used in experimental development
of Conjecture 1, there was complete agreement. Note that D3 ' A3, so the $-part
of the D3-series has already been described explicitly using the results of [5], and
in this guise has already been compared extensively with $-parts constructed by
averaging. Nevertheless, agreement in rank 3 between $-parts constructed using
Conjecture 1 and using averaging is a nontrivial check sinceD3 Littelmann patterns
are quite different from A3 Gelfand–Tsetlin patterns.

Finally, Brubaker and Friedberg have recently computed the global Whittaker
coefficients of Eisenstein series on covers of GL4 by inducing from the parabolic
subgroup of type GL2 �GL2 [6]. Their computations—which build on earlier work
of Bump–Hoffstein [10] and are the first attempts to extend the results of [8]
beyond type A and to work with other parabolic subgroups—express the Whittaker
coefficients in terms of certain exponential sums. In the course of their work,
Brubaker and Friedberg found that the integrals can be broken up in accordance
with the decomposition of H.$k1 ; : : : ;$kr I$`/ given by Conjecture 1 and that if
one does so, the contributions to the global Whittaker coefficient exactly agree with
Conjecture 1. We find this connection between Eisenstein series and $-parts to be
strongly convincing evidence of the correctness of Conjecture 1.
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5.2 Littelmann Patterns

Let g be the simple complex Lie algebra of type Dr , in other words the Lie algebra
of the group SO2r .C/. Let 
 be a dominant weight of g and let V
 be the irreducible
g-module of highest weight 
 . In [16, Sect. 7], Littelmann describes a way to index
a basis of V
 using patterns that are analogous to the classical Gelfand–Tsetlin
patterns for the Lie algebra of SLr .C/. A Littlemann pattern is a length ` sequence
of nonnegative integers, where ` is the length of the longest word of the Weyl group.
Essentially this sequence records the lengths of certain strings of edges in the crystal
graph. We refer to [16] for more details.

First, we label vertices of the Dynkin diagram of g with the integers 1; : : : ; r . We
label the upper node of the right prong 1, the lower node of the prong 2, the node at
the elbow of the prong 3, and then the remaining nodes increase from 4 to r , reading
right to left (Fig. 5.1). We remark that this is not the standard labeling by Bourbaki,
which begins with 1 at the left of the diagram.

A Littlemann pattern T for Dr consists of a collection of integers ai;j , where
1 � i � r � 1 and i � j � 2r � 2. We picture T by drawing the integers placed in
r �1 rows of centered boxes. The first row contains 2r �2 boxes, the second 2r �4
boxes, and so on down to the .r � 1/st row, which contains two boxes. The integers
are placed in the boxes so that ai;i is placed in the leftmost box of the i th row, and
then, the remaining integers ai;j are put in the boxes in order as j increases. We
define an involution on each row by ai;j D ai;2r�1�j .

To index a weight vector in V
 , there are two sets of inequalities the ai;j must
satisfy. The first is independent of 
 : in each row we must have

ai;i 	 ai;iC1 	 � � � 	 ai;r�2 	 ai;r�1; ai;r 	 ai;rC1 	 � � � 	 ai;2r�1�i 	 0 (2)

6 5 4 3

1

2

Fig. 5.1 The diagram for D6
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6 6 4 4 2

3 3 2 1

1 3

5
Fig. 5.2 An admissible
pattern for D4

or, using the bar notation,

ai;i 	 ai;iC1 	 � � � 	 ai;r�2 	 ai;r�1; ai;r�1 	 ai;r�2 	 � � � 	 ai;i 	 0:

In other words, the ai;j are weakly decreasing in the rows, with the exception that
no comparison is made between ai;r�1 and ai;r . Both of these entries, however, are
required to be � ai;r�2 and 	 ai;rC1.
Definition 1. A pattern T is admissible if T satisfies (2) for all i .

Figure 5.2 shows an admissible pattern for D4.
The next set of inequalities involves the highest weight 
 . Write


 D
X

mk!k;

where the !k are the fundamental weights. Then, an admissible T will correspond
to a weight vector in V
 if T satisfies

ai;j � mr�jC1 C s.ai;j�1/� 2s.ai�1;j /C s.ai�1;jC1/ for j � r � 2; (3)

ai;j � mr�jC1 C s.ai;jC1/� 2s.ai;j /C s.ai;j�1/ for j � r � 2; (4)

ai;r�1 � m2 C s.ai;r�2/ � 2t.ai�1;r�1/; and (5)

ai;r � m1 C s.ai;r�2/ � 2t.ai�1;r /; (6)

where we write for j < r � 1

s.ai;j / D ai;j C
i�1X

kD1
.ak;j C ak;j /;

s.ai;j / D
iX

kD1
.ak;j C ak;j /;

s.ai;r�1/ D s.ai;r�1/ D
iX

kD1
ak;r�1 C ak;r ;

t.ai;r�1/ D
iX

kD1
ak;r�1; t.ai;r / D

iX

kD1
ak;r :
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Definition 2. A pattern T is 
-admissible if T is admissible and its entries satisfy
(3)–(6).

Note that the inequalities for the i th row only involve the entries of T on the
i th and .i � 1/st rows. Moreover, when ordered in terms of increasing i , there is a
unique inequality in which a given entry ai;j appears on the left.

Definition 3. We say that an entry in a 
-admissible pattern is critical if this first
inequality is actually an equality.

To complete our discussion of Littelmann patterns, we must assign a weight �.T /
to each pattern T . This is a vector �.T / D .�1; : : : ; �r / of nonnegative integers,
where

�k D
8
<

:

Pr�1
iD1.ai;rC1�k C ai;rC1�k/ k D 3; 4; : : : ; r

Pr�1
iD1 ai;r�2Ck k D 1; 2:

We write j�j D �1 C � � � C �r . In our conjecture, if a pattern T occurs for the
twist 
 DPmi!i , it will contribute to the coefficient of x�.T / WD x�11 � � �x�rr in the
numeratorN.x; `/, where ` D .l1; : : : ; lr / and li D mi �1. For instance, the pattern
in Fig. 5.2 contributes to the coefficient of x91x

9
2x

14
3 x

8
4 , with x1 corresponding to left

middle column of three entries and x2 to the right middle column of three entries.

5.3 The Decorated Graph of a Pattern

Let T be a 
-admissible pattern. We want to associate to T a graph � .T /. The
graph� .T /will also potentially be endowed with decorations, which will be circled
vertices. The vertices of � .T / correspond to the pairs .i; j / indexing entries of T ;
the graph will have at least one connected component for each row of T .

We begin by describing how each row determines a subgraph. Consider the
i th row of T . Each entry ai;j in this row corresponds to a vertex. We draw the
corresponding vertices in a row, with the two vertices in the middle corresponding
to the incomparable entries ai;r�1; ai;r entries arranged vertically. For definiteness,
we assign ai;r�1 to the top vertex and ai;r to the bottom vertex. See Fig. 5.3 for the
arrangement for the top row of a pattern forD6.

a1,1 a1,2 a1,3 a1,4

a1,5

a1,6

a1,7 a1,8 a1,9 a1,10

Fig. 5.3 The vertices for the top row of D6
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Fig. 5.4 A symmetric
multiple leaner

6 6 4 4 2

3 3 2 1

1 3

5

Fig. 5.5 The decorated graph of the pattern in Fig. 5.2

Now, join two vertices by an edge if their corresponding pattern entries appear
consecutively in the inequalities (2), are equal, and are comparable in (2). Note that
we do not join the vertices corresponding to ai;r�1; ai;r by an edge if they happen to
be equal since they are not comparable in (2). This gives a graph for this row. We
then do the same for each row of T . The result is � .T / without decorations.

Certain symmetric connected components that arise in the construction of � .T /
will play a special role in our conjecture.

Definition 4. Let T be an admissible pattern and suppose ai;j D ai;j for some i; j
with j 6D r � 1; r . Then, the component of � .T / containing ai;j ; ai;j is called a
multiple leaner. The legs of a multiple leaner are the subgraphs joining the vertices
ai;j to ai;r�2 and ai;rC1 to ai;j . If in addition ai;j�1 6D ai;j and ai;j�1 6D ai;j , then
we say the multiple leaner is symmetric. We define the length l.C / of a symmetric
multiple leaner to be half the number of its vertices.

The term leaning is inspired by Brubaker, Bump, Friedberg and Hoffstein [5];
see also Sect. 5.5. Figure 5.4 shows an example of a symmetric multiple leaner of
length 5, when all the entries in the top row of a pattern for D6 are equal. Note that
the minimal length of a symmetric multiple leaner is 2 and that multiple leaners can
appear in patterns forD3 but not forD2.

To complete the construction of � .T /, we must describe how to add the
decorations. This is very simple: we circle each vertex whose corresponding entry
is critical in the sense of Definition 3.

Figure 5.5 shows an example of the decorated graph of the Littelmann pattern in
Fig. 5.2. We assume that a highest weight 
 has been specified so that the circled
vertices in the graph correspond to critical entries.
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Fig. 5.6 See Definition 5

5.4 Strictness

In [5], certain patterns for a given weight are discarded and do not contribute to
the relevant coefficient of N ; such patterns are called nonstrict in [5]. In type A,
strictness corresponds to an easily stated property for Gelfand–Tsetlin patterns.
If one interprets the definition of strictness in [5] in terms of type A Littelmann
patterns, one sees that a type A pattern is nonstrict exactly when

• An entry is simultaneously 0 and critical. Or
• There are two adjacent entries that are equal, with the left entry critical

We take these to be our definition for type D patterns as well.

Definition 5. A type D Littelmann pattern T is called strict if the following
conditions hold:

• The graph � .T / contains no circled vertex whose corresponding entry ai;j
equals 0.

• No component of � .T / that is not a multiple leaner contains a subgraph of the
form shown in Fig. 5.6 (in this figure, the rightmost vertex is less than the left
vertex in the partial order from (2)).

Note that the subgraph from Fig. 5.6 is allowed to appear in multiple leaners.

5.5 Leaning and Standard Contributions

In the following for k D 1; : : : ; n� 1, we write gk for the Gauss sum g.$k�1;$k/

(see, for example, [11] for the definition of the Gauss sums). For convenience, we
extend the notation and define g0 to be �1. It is also convenient to define gm for
m 	 n by gm D gk , where m D k mod n and k D 0; : : : ; n � 1. We let q be the
norm of $ .

Let T be a strict pattern, and let � .T / be the associated decorated graph. For any
connected component C of � .T /, let yC be the rightmost vertex, in the sense of
the order induced by the inequalities (2). If C has two rightmost vertices, meaning
that it is in the i th row and contains entries ai;r�2 D ai;r�1 D ai;r 6D ai;rC1, then
we define the rightmost vertex to be the vertex corresponding to ai;r�1, that is, the
upper vertex in Fig. 5.3.

Definition 6. Let T be a pattern and � D � .T / the associated decorated graph.
Fix n and let y be an entry of T . We define the standard contribution �.y/ by the
following rule:
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• If the vertex corresponding to y 6D 0 is uncircled, then we put �.y/ D 1� 1=q if
n divides y and �.y/ D 0 otherwise.

• If the vertex corresponding to y 6D 0 is circled, then we put �.y/ D gk=q, where
y D k mod n and k D 0; : : : ; n � 1.

Note that �.y/ depends on n and 
 , even though we omit them from the notation.

We are almost ready to state our conjecture. There is one more phenomenon
that plays a role, namely, leaning. Essentially, leaning means that if entries are
consecutive and equal in a Littelmann pattern T , where consecutive means adjacent
in (2), then only one should contribute to the corresponding coefficient of N.xI `/.
This is why we introduce the graph � .T /. Its connected components keep track of
these equalities among entries.

Thus, we are led to consider contributions of the connected components of � .T /,
not just the entries. There is further slight twist that the contribution of a multiple
leaning component is different from that of all other components:

Definition 7. LetC be a connected component of � .T /. The standard contribution
�.C / of C is defined as follows:

• If C is not a multiple leaner, then we put �.C / D �.yC /, where yC is the
rightmost entry of C .

• If C is a multiple leaner that is not symmetric, let yC be the entry on the endpoint
of its shorter leg. Then, we define �.C / D �.yC /.

• If C is a symmetric multiple leaner, then let yC be its rightmost entry ai;j and
�C (upsilon = Greek y) to be the entry ai;j�1. Then we define

�.C / D
(
�.yC /.1 � 1=ql.C // if yC is uncircled,

�.yC /�.�C /.1=q
l.C /�1/ if yC is circled,

where l.C / is defined to the half the number of vertices of C (Definition 4).

We are now ready to state our conjecture:

Conjecture 1. LetN.xI `/ DP� a�x� be the$-part constructed by averaging [11,
13] for the Weyl group multiple Dirichlet series Zn

˚.sIm; �/. Then, we have

a� D qj�j X

T

Y

C�� .T /
�.C /; (7)

where the sum is taken over all strict patterns T of weight � and with highest weight

 DP.liC1/!i , and the product is taken over the connected components of � .T /.

Example 1. Suppose the pattern in Fig. 5.2 appears for a highest weight 
 such that
the decorated graph appears in Fig. 5.5. Suppose n D 2. Then, the contribution of
this pattern to the coefficient of x91x

9
2x

14
3 x

8
4 will be
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9 6 5 6 4 1

4 3 3 3

12

Fig. 5.7 A nonstrict pattern

10 6

6

4

4

2 2

3

5 3

2

0

Fig. 5.8 T1

q40
�

1 � 1
q

�3 �

�1
q

��
g1

q

�5
:

Example 2. We consider another example for n D 2. Suppose the twisting
parameter is ` D .1; 0; 2; 0/, which corresponds to the highest weight 
 D
2!1 C !2 C 3!3 C !4. We will compute the coefficient a� of the monomial
x� D x101 x102 x173 x104 . Note that j�j D 47.

There are 27 Littelmann patterns that we must consider. Six of these patterns are
nonstrict, for instance, the pattern shown in Fig. 5.7. Of the remaining 21, only two
give nonzero contributions; these patterns T1, T2 appear in Figs. 5.8–5.9. Note that
Fig. 5.9 contains a multiple leaner of length 2. All of the other 19 patterns have an
odd entry that is not circled, and thus have a connected component in � .T / with
standard contribution equal to zero.

Each vertex in � .T1/ is its own connected component. We see three uncircled
even nonzero entries, five circled even nonzero entries, and three circled odd entries.
Thus, T1 contributes

q47
�

1 � 1
q

�3 �

�1
q

�5 �
g1

q

�3

to a�.
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6 4 5 3 0

4 4 4

2 1

4

10

Fig. 5.9 T2

The pattern T2 has a multiple leaner C of length l.C / D 2. Its rightmost entry
yC is circled, and the entry �C is uncircled. We have �.yC / D �1=q, �.�C / D
.1 � 1=q/. These appear in (7) multiplied by the additional factor 1=q to account
for the length of C . Each of the remaining vertices is its own connected component,
and we have no uncircled nonzero even entries, four circled nonzero even entries,
and three circled odd entries. Thus, T2 contributes

q47
�

�1
q

�4 �
g1

q

�3 �

�1
q

��

1 � 1
q

��
1

q

�

to a�. After simplifying, we find

a� D �q36
�
q3 � 2q2 C 2q � 1�g31;

in agreement with the $-part from [13].

Example 3. We conclude by describing an example for D4 when n D 1. We put
` D .0; 0; 0; 0/ (the “untwisted” case) so that the highest weight is!1C!2C!3C!4.
The polynomialN.xI `/ is supported on 601monomials. There are 4;096 Littelmann
patterns to consider, 2;216 of which are nonstrict. The remaining patterns each give
a nonzero contribution to N . The resulting polynomial can be written succinctly as

N.xI `/ D
Y

˛>0

�
1 � qd.˛/�1x˛� ;

where the product is taken over the positive roots. Here d.˛/ D k1 C k2 C k3 C k4
if ˛ is the linear combination of simple roots k1˛1 C k2˛2 C k3˛3 C k4˛4, and x˛

refers to the monomial xk11 x
k2
2 x

k3
3 x

k4
4 .
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Boston, MA, 2008, pp. 1–26.

8. B. Brubaker, D. Bump, and S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series
and crystal bases, Ann. of Math. (2) 173 (2011), no. 2, 1081–1120.

9. B. Brubaker, D. Bump, G. Chinta, S. Friedberg, and J. Hoffstein, Weyl group multiple Dirichlet
series. I, Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc.
Sympos. Pure Math., vol. 75, Amer. Math. Soc., Providence, RI, 2006, pp. 91–114.

10. D. Bump and J. Hoffstein, Some conjectured relationships between theta functions and
Eisenstein series on the metaplectic group, Number theory (New York, 1985/1988), Lecture
Notes in Math., vol. 1383, Springer, Berlin, 1989, pp. 1–11.

11. G. Chinta and P. E. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer.
Math. Soc. 23 (2010), no. 1, 189–215.

12. G. Chinta and P. E. Gunnells, Weyl group multiple Dirichlet series of type A2. In Number
Theory, Analysis and Geometry: In Memory of Serge Lang. Goldfeld, Jorgenson, Jones,
Ramakrishnan, Ribet, and Tate, J. (Eds.). Springer (2012).

13. G. Chinta and P. E. Gunnells, Weyl group multiple Dirichlet series constructed from quadratic
characters, Invent. Math. 167 (2007), no. 2, 327–353.

14. G. Chinta and O. Offen, A metaplectic Casselmann-Shalika formula for GLr , Amer. J. Math.,
to appear.

15. G. Chinta, S. Friedberg, and P. E. Gunnells, On the p-parts of quadratic Weyl group multiple
Dirichlet series, J. Reine Angew. Math. 623 (2008), 1–23.

16. P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145–179.
17. Peter J. McNamara. Metaplectic Whittaker functions and crystal bases. Duke Math. J.,

156(1):29–31, 2011.
18. T. Tokuyama, A generating function of strict Gelfand patterns and some formulas on characters

of general linear groups, J. Math. Soc. Japan 40 (1988), no. 4, 671–685.



Chapter 6
Toroidal Automorphic Forms, Waldspurger
Periods and Double Dirichlet Series

Gunther Cornelissen and Oliver Lorscheid

Abstract The space of toroidal automorphic forms was introduced by Zagier in
the 1970s: a GL2-automorphic form is toroidal if it has vanishing constant Fourier
coefficients along all embedded non-split tori. The interest in this space stems
(amongst others) from the fact that an Eisenstein series of weight s is toroidal for
a given torus precisely if s is a nontrivial zero of the zeta function of the quadratic
field corresponding to the torus.

In this chapter, we study the structure of the space of toroidal automorphic forms
for an arbitrary number field F . We prove that this space admits a decomposition
into a subspace of Eisenstein series (and derivatives) and a subspace of cusp forms.
The subspace of Eisenstein series is generated by all derivatives up to order n-1
of an Eisenstein series of weight s and class group character ! for certain n; s; !,
namely, precisely when s is a zero of order n of theL-seriesLF .!; s/. The subspace
of cusp forms consists of exactly those cusp forms � whose centralL-value is zero:
L.�; 1=2/ D 0.

The proofs are based on an identity of Hecke for toroidal integrals of Eisenstein
series and a result of Waldspurger about toroidal integrals of cusp forms combined
with nonvanishing results for twists of L-series proven by the method of double
Dirichlet series.
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6.1 Introduction

A classical theorem of Hecke (cf. Hecke [13] Werke p. 201) shows that on the
modular curve X.1/, the integral of an Eisenstein series along a closed geodesic
of discriminant d > 0 is essentially the zeta function of the number field Q.

p
d/.

As was observed by Don Zagier in [26], the formula fits into a more general
framework, where integrals of automorphic forms for global fields over tori (of any
discriminant) evaluate to L-series. The approach in [26] is to define a space of so-
called toroidal automorphic forms by the vanishing of these integrals for varying
tori, and the author calls for an (independent) understanding of the space of toroidal
automorphic forms, after which one may hopefully apply the gained knowledge in
combination with the generalization of Hecke’s formula to deduce something about
zeta functions. For example, if the irreducible subrepresentations of the space of
toroidal automorphic forms are tempered, the Riemann hypothesis follows. This
seems for now an elusive programme, but see [7] for a case study for some function
fields.

In this chapter, we study the space of toroidal automorphic forms in its own right.
We use our increased knowledge (compared to the 1970s, when [26] was written)
about the decomposition of the space of automorphic forms for a general number
field (by Franke), toroidal integrals of cusp forms (by Waldspurger in his study of
the Shimura correspondence) and nonvanishing of quadratic twists (by the method
of multiple Dirichlet series, essentially in the works of Friedberg, Hoffstein and
Lieman) to prove the following theorem, which summarizes our main results. Note
that in light of the previous paragraph, we avoid using any unproven hypothesis
about the zeros of L-series.

Theorem 1.1. The space of toroidal automorphic forms for an arbitrary number
field decomposes into an Eisenstein part and a cuspidal part. More precisely,

(i) (cf. Theorem 4.1) The Eisenstein part of the space of toroidal automorphic
forms is spanned by all derivatives of Eisenstein series of weight s0 2 C and
class group character !, precisely up to the order of vanishing of the L-series
corresponding to ! at s0.

(ii) (cf. Theorem 5.2) No nontrivial residues of Eisenstein series are toroidal.
(iii) (cf. Theorem 6.1) The cuspidal part of the space of toroidal automorphic forms

is spanned by those cusp forms � for which the central value of its L-series
vanish: L.�; 1=2/ D 0.

We will use the next section to set up notation and give precise definitions of the
spaces involved.

Remark 1.2. How many derivatives of Eisenstein series will be toroidal? It is
reasonable to expect that the only multiplicities in the zeros of L-functions of
a number field F arise from multiplicities in the decomposition of the regular
representation of the Galois group of the normal closure of F=Q (following
the Artin formalism of factorization of L-series). The Rudnick–Sarnak theory of
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statistical distribution of zeros of principal primitive L-series (cf. [20, 21], Sect. 5)
indicates that the zeros of different such principal primitive L-series should be
uncorrelated. For example, for F D Q, all zeros of the Riemann zeta function are
expected to be simple.

But of course, as soon as F=Q is non-abelian, there will be such multiplicities
arising from irreducible representations of the Galois group of higher dimension;
cf. also the possibility that a Galois extension N=Q contains two distinct subfields
that are arithmetically equivalent (corresponding to two subgroups of the Galois
group G from which the trivial representation induces the same representation of
G, cf. [14]), hence have the same zeta function, whose zeros will then occur with
multiplicity in the zeta function of N .

Remark 1.3. Our way of averaging toroidal integrals is a two-step method: by first
relating them to twists of L-series and then using standard techniques to average
those. Is there a direct way to average toroidal integrals, for example, by a Rankin–
Selberg unfolding of an Eisenstein series twisted with toroidal integrals? We did
not work this out. But, for example, the toroidal integral of a holomorphic weight
two cusp form f over a torus corresponding to Q.

p
d/ for some d > 0 is the

integral of the differential form ! corresponding to f over the closed geodesic �d
in the modular curve corresponding to d . In this specific case, one wants to have an
asymptotic result for a sum of “modular symbols”

P
d<X

R
�d
!. Compare with [4],

where Eisenstein series twisted by modular symbols are studied.

Remark 1.4. There is an obvious generalization of T -toroidal automorphic forms
on GL.n/ for a maximal indecomposable torus T � GL.n/. One may wonder
whether the methods presented in this chapter can be generalized to the GL.n/-case.

Part of the ingredients of our proof is already in the literature: on the one hand,
Wielonsky [25] generalized Hecke’s formula (Theorem 3.2 (i)): toroidal integrals
of Eisenstein series on GL.n/ that are induced by a parabolic subgroup of type
.n � 1; 1/ equal certain L-series; see Lachaud [17] for a recent treatment. On the
other hand, Friedberg, Hoffstein and Lieman [11] introduced double Dirichlet series
w.r.t. n-th order twists of HeckeL-series and showed that they admit a meromorphic
continuation and satisfy a functional equation.

However, we are not aware of a generalization of Hecke’s theorem 3.2 to all
Eisenstein series on GL.n/ or of Waldspurger’s work on toroidal integrals of cusp
forms (6.1) to GL.n/. Maybe there is a way to circumvent the relation to L-series;
compare the previous remark and the method in [5].

Remark 1.5. In [15] (extended version in [17]) and [16], Lachaud ties up the theory
of toroidal automorphic forms with Connes’ trace form programme [6] in the study
of zeros of zeta functions.

Remark 1.6. For global function fields, methods more akin to the geometric Lang-
lands programme allow one to prove that the space of toroidal automorphic forms is
finite dimensional, and one can control the linear relations between Eisenstein series
in a very precise way, leading to an actual dimension formula for the Eisenstein part
of the space of toroidal automorphic forms, cf. [18].
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6.2 Definition of Toroidal Automorphic Forms

Notations 2.1. Let F be a number field, Fv be the completion at v, A D AF

the adeles of F . Set G D GL.2/ and let Z be its center. Let A be the space of
automorphic forms for G over F with trivial central character.

Notations 2.2. Let T � G be a maximal non-split torus defined over F , �T the
corresponding character on the idele class group and E D FT the corresponding
quadratic field extension of F . This means that there is a nonsquare d 2 F such
that E=F is generated by a square root of d and that T .F / is conjugated in G.F /
to the standard torus

Td .F / D
(0

@
a b

bd a

1

A 2 G.F /
)

:

If T D Td , then write �d for �T .

Definition 2.3. The zeroth Fourier coefficient w.r.t. T (or T -toroidal integral) of an
automorphic form f 2 A is defined to be the function

fT .g/ WD
Z

TF Z.A/nT .A/
f .tg/ dt

for g 2 G.A/.
Definition 2.4.

(i) The space of T - or E-toroidal automorphic forms for F is

Ator.T / WD Ator.E/ WD ff 2 A W fT .g/ D 0; 8g 2 G.A/g:
(ii) The space of toroidal automorphic forms for F is

Ator WD
\

E=F

Ator.E/;

where the intersection is taken over all quadratic field extensions E=F .

Remark 2.5. These definitions are independent of the choice of torus correspond-
ing to E=F since they are conjugacy invariant.

Remark 2.6. There is also a definition of T -toroidal automorphic form for a split
torus T, but one has to be careful, since the toroidal integral fT as defined above
over a split torus T can diverge. This can be taken care of by subtracting suitable
parabolic Fourier coefficients before integrating (cf. [18, Sect. 1.5] for the definition
in the function field case). One could thus consider the space of automorphic forms
that are T -toroidal for all maximal tori T , split or not. Due to the results of the
present text and [18, Sect. 6.2] (which transfer to the number field case), this space
coincides with Ator, and we forgo describing the more involved theory for split tori.
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The space A is an automorphic representation of G.A/ for right translation by
G.A/. By applying [9] to GL.2/, the space A decomposes into a direct sum of
automorphic representations as follows:

A D A0 ˚ E ˚R;

where A0 is the space of cusp forms, E is the space generated by the derivatives of
Eisenstein series and R is generated by the residues of these Eisenstein series and
their “derivatives”. We will give the precise definitions of E and R in Sects. 6.3 and
6.5, respectively.

Multiplicity one holds for GL.2/; hence, if � is any subrepresentation of A, it
inherits this decomposition since it is determined by its isomorphism type. In order
to investigate the space of toroidal automorphic forms Ator, which is an automorphic
representation by its very definition, it thus suffices to investigate

A0;tor WD Ator \A0; Etor WD E \Ator and Rtor WD R \Ator

separately, since Ator D A0;tor ˚ Etor ˚Rtor:

6.3 Toroidal Integrals of Eisenstein Series: A Formula
of Hecke

Notations 3.1. Let � denote a character of the idele class group I D F �nA�.

We can write � D ! � j js0� 1
2 for some finite-order character !, and we will

sometimes regard a function of � as a function of s0 (assuming ! to be fixed). We
set Re.�/ D Re.s0/� 1

2
. We also remark that the shift in s0 by � 1

2
is in accordance

with the usual convention in the adelic theory of Eisenstein series, putting the center
of symmetry at 0.

We define the principal series P.�/ by




f W G.A/ smooth�! CW 8� a bd
�
; g 2 G.A/; f �� a bd

�
g
� D �.a=d/ ja=d j1=2 f .g/

�

;

where a function f W G.A/ ! C is smooth if it is smooth in the usual sense at
archimedean places and locally constant at finite places. Let f 2 P.�/ be embedded
in a flat section f� of the principal series, i.e., there exists a function f�.s/ of s 2 C
such that f�.s/ 2 P.� j js/ with f D f�.0/ and f�.s/.e/ D f .e/ for all s 2 C,
where e D � 1 00 1

�
. Note that every f 2 P.�/ is embedded into a unique flat section.

In the following, we will write f D f�.0/ 2 P.�/ to refer to this situation. We
define the (completed) Eisenstein series as

E.g; f / D L

�

�2;
1

2

�

�
X

�2B.F /nG.F /
f .�g/
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in terms of meromorphic continuation. Here, L.�2; 1=2/ denotes the completed
L-series, i.e., including the factors at infinity. Note that E.g; f / is defined for all
f D f�.0/ unless �2 D j j˙1, when the Eisenstein series has a simple pole. At these
values of �, the residues of the Eisenstein series define automorphic forms, which
will be investigated in Sect 6.5—these values of � characterize the cases where the
principal series P.�/ is not irreducible as an automorphic representation of G.A/.

Also, note that the symbol “E” is now in use for both a field E=F and a function
E.g; f /, but this should cause no confusion.

We now compute the toroidal integrals of Eisenstein series. Statement (i) in
the theorem below is the adelic formulation of a theorem of Hecke ([13]). In this
formulation, it was first stated by Zagier [26].

Theorem 3.2. Let T be a maximal torus in G corresponding to the quadratic field
extension E=F . Let �E W I ! C� be the quadratic character whose kernel equals
the norms of AE . For every f D f�.0/ 2 P.�/, every g 2 GA and every character
� W I ! C�, there exists a holomorphic function eT .g; f�.s// of s 2 C with the
following properties:

(i) For all � such that �2 ¤ j j˙1,

ET .g; f / D eT .g; f / L

�

�;
1

2

�

L

�

��E;
1

2

�

:

(ii) For every g 2 GA and � W I ! C�, there is a f 2P.�/ such that eT .g; f /¤ 0.

Proof. The strategy of the proof is as follows: we first prove (i) for Re.�/
sufficiently large, so we are in the region of absolute convergence. We rewrite
the Eisenstein series conveniently as a certain adelic integral. Then, a change of
variables identifies its toroidal integral with a Tate integral for an L-series of E .

Rewriting the Eisenstein series. First, we explain how to represent E.g; f / by a
certain adelic integral, and then the statement in (i) is a simple application of a
change of variables. Let ' be a Schwartz-Bruhat function on A2. Then,

F.g; '; �/ D
Z

Z.A/

'..0; 1/zg/�.det zg/ jdet zgj1=2 dz (1)

is a Tate integral for L.�2; 1/, which converges if the real part of � is larger than
1=2 (the square of the character � occurs because in the above integrand�.det.z// D
�.z/2). One verifies easily that F.�; '; �/ is an element of P.�/.

In [24, Chap. VII, Sect. 7], Weil defines a particular test function '0 (the
“standard function”) with the property that for e D �

1 0
0 1

�
,we have F.e; '0; �/ D

c�1
F L.�2; 1/ for a non-zero constant cF that only depends on the field F . Thus,

cF � F.g; '0; �/ D L.�2; 1/ � f .g/
for an f 2 P.�/ with f .e/ D 1; in particular, F.�; '0; �/ is a non-trivial element of
P.�/.
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We note that for every g 2 G.A/, the function '0. � g/ is a Schwartz-Bruhat
function, too. Since P.�/ is irreducible, the integrals F.g; '; �/ for varying '
exhaust all products of the form L.�2; 1/f .g/, where f 2 P.�/. Thus, there is
a Schwartz-Bruhat function ' D '.f / for every f 2 P.�/ such that

E.g; f / D
X

�2B.F /nG.F /
F.�g; '; �/; (2)

where the equality has to be interpreted in terms of meromorphic continuation. Since
for all ' the Tate integral (1) is a multiple of L.�2; 1/, there exists f 2 P.�/ for
every Schwartz-Bruhat function ' such that equation (2) holds true.

Computing the toroidal integral. With this reformulation at hand, we can prove
the theorem precisely as it has been done by Zagier in [26]: by identifying T .F /
with E� and T .AF / with A�

E , and using Fubini’s theorem, the toroidal integral of
E.g; f / is changed into a Tate integral for an L-series of E . Explicitly, ET .g; f /
is given by

Z

T .F /Z.A/nT .A/

X

�2B.F /nG.F /

Z

Z.A/

'..0; 1/z� tg/�.det z� tg/ jdet z� tgj1=2 dz dt:

Via T .F / D E� and

B.F /nG.F / D F �nF 2 � f.0; 0/g D F �nE�;

we identify the “domain of integration” with

T .F /Z.A/nT .A/ � B.F /nG.F / �Z.A/ Š A�
E;

and note that this identification is compatible with measures. Hence,

ET .g; f / D �.detg/ jdet.g/j1=2 �
Z

A�

E

ˆ.t/ .� ıNE=F /.t/ jt j1=2E dt

for a certain Schwartz-Bruhat function ˆ on A�
E . This is a Tate integral for

LE.� ı NE=F ; 1=2/ and factors in a product of two L-series as in (i), thus giving
(i) for Re.�/ sufficiently large. Statement (i) now follows for all characters by
meromorphic continuation in s since both sides are meromorphic functions of
s 2 C.

Nonvanishing of the “constant”. For (ii), note that the nonvanishing of eT .g; f /
follows from the fact that we can choose ' such that the test functionˆ is again the
standard function as described by Weil [24, Chap. VII, Sect. 7], and then

eT .g; f�.s// D c�1
E �.det.g// jdet.g/jsC1=2 (3)

is a non-vanishing holomorphic function of s. ut
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In order to accord for possible multiple zeros of L-series, we need to also take
into account higher derivatives of Eisenstein series.

Notations 3.3.

(i) We denote by E.n/.g; f / the n-th derivative of E.g; f�.s// w.r.t. s at s D 0.
(ii) We denote by E the space of automorphic forms that is generated by all

derivatives E.n/.�; f / of Eisenstein series, where n 	 0 and f 2 P.�/ with �
varying through all idele class group characters whose square is not trivial.

(iii) Similarly, we denote by L.n/.�; 1=2/ the n-th derivative of L.�; 1=2 C s/ at
s D 0 and by e.n/T .g; f / the n-th derivative of the function eT .g; f�.s// at
s D 0.

Definition 3.4. We say � is a zero of L.�; 1=2/ of order n if L.i/.�; 1=2/ D 0 for
all i < n but ¤ 0 for i D n, and then we write ord�L.�; 1=2/ D n.

Proposition 3.5. Let T be a maximal non-split torus in G and n a non-negative
integer.

(i) For all g 2 GA and � such that �2 ¤ j j˙1, we have

E
.n/
T .g; f / D

X

iCjCkDn
i;j;k	0

nŠ

i Š j Š kŠ
e
.i/
T .g; f / L

.j /

�

�;
1

2

�

L.k/
�

��T ;
1

2

�

:

(ii) The n-th derivative E.n/.g; f / of an Eisenstein series is E-toroidal if and only
if � is a zero of L.�; 1=2/ � L.��E; 1=2/ of order at least n.

Proof. The first part follows from the Leibniz rule. For (ii), use (i) and observe the
following:

• The derivatives e.i/T .g; f / are nonzero as function of f , as is easily seen from (3).
• If E.m/.g; f / is E-toroidal, then so is E.n/.g; f / for all n < m since E.m/

generates an automorphic subrepresentation of the space of toroidal automorphic
forms that contains all derivatives of lower order.

This finishes the proof. ut

6.4 Application of Double Dirichlet Series: Toroidal
Eisenstein Series

In this section, we will prove the following:

Theorem 4.1. Let f 2 P.�/. The n-th derivative E.n/.g; f / of an Eisenstein
series is toroidal if and only if � is a zero of L.�; 1

2
/ of order at least n. Hence,

Etor D
�

E.n/.�; f / W 9�; f 2 P.�/ and n � ord�L

�

�; 1
2

�	

:
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Proof. Recall that we know from the computation of toroidal integrals in
Proposition 3.5 when the n-th derivative E.n/.�; f / of an Eisenstein series is
E-toroidal. It suffices to prove that for all �, there exists a quadratic E=F such
that L.��E; 1=2/ ¤ 0. This follows from Theorem 4.2. ut

As before, we now write � D ! � j js0� 1
2 for a finite character !, where we

consider s D s0 2 C as varying parameter. We use the notation L.!; s/ for
L.�; 1=2/.

Theorem 4.2. Let F denote a number field, let ! denote a class group character
on F . Then, there exists a quadratic field extension E=F such that L.!�E; s/ ¤ 0:
Remark 4.3. Before we start with the proof, we make some incomplete historical
remarks. Nonvanishing of quadratic twists can be proven by sieve methods, but
only for a restricted set of number fields. A method that works more uniformly is
that of multiple Dirichlet series (so Fourier coefficients of metaplectic Eisenstein
series); unfortunately, the result we need is not literally in the existing literature on
multiple Dirichlet series, but rather arises from a combination of existing methods.
We observe that for Re.s/ ¤ 1

2
, the result can be proven using “unweighted” double

Dirichlet series (see Chinta, Friedberg and Hoffstein [2] Theorem 1.1). To extend
to the (for us interesting) range Re.s/ D 1

2
, one needs to analytically continue

the double Dirichlet series with weights; for higher order characters and a general
number field, this is done by Friedberg, Hoffstein and Lieman in [11], and for
quadratic twists of function fields by Fisher and Friedberg [8]. We will combine the
methods of these latter two sources. Since proofs of many facts are literally the same,
we will not repeat them here, but we will set up all required notations. One can go
a (small) step further and combine the method with Tauberian theorems to establish
lower bounds on the number of nonvanishing twists of bounded conductor, but we
will not need those. Also, we refrain from discussing averaging of toroidal integrals
directly, without first relating them to L-series, cf. also Remark 1.3.

Proof (of Theorem 4.2). First note that the L-series we consider are “completed”
by the correct archimedean factors, so they do not have trivial zeros outside the
critical strip.

Because of the functional equation, we can assume that 1
2
� Re.s/ � 1. Since

L.!�E; s/ does not vanish on Re.s/ D 1 ([19] Chap. 1, Sect. 4), we can even
assume 1

2
� Re.s/ < 1.

The strategy of the proof is now the following: we assume by contradiction
that all nontrivial twists L.!�E; s/ vanish at s D s0. Then, the (analytically
continued) double Dirichlet series Z0

!.s;w/ (to be defined below), with the trivial
twist extracted, vanishes identically in w for s D s0. But it has residue at w D 1

a non-zero constant times L.!; 2s0/. Hence, we find L.!; 2s0/ D 0, and this is
impossible if 1

2
� Re.s0/ < 1.

To define the double Dirichlet series in a rigorous way, we follow [11], Sect. 1.
Since the class number of F is not necessarily one, the most natural double Dirichlet
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series (and the one that has a natural analytic continuation and set of functional
equations) does not only sum over quadratic twists �E , but rather over more general
characters on a ray class group. We now introduce this series first.

Let S D Sf [ S1 denote a finite set of places of F that contains all infinite
places S1 of F and a set Sf of finite places such that the ring of Sf -integers has
class number one. For v a finite place corresponding to an ideal pv, let qv D jO=pvj.
Set C D Q

v2Sf p
nv
v , where nv D 1 for v not above 2, and for v above 2, nv is so

large that any a 2 Fv with ordv.a � 1/ 	 nv is a square in Fv. Let HC denote the
ray class group of modulus C , let hC WD jHC j and set

RC D HC ˝ Z =2 D Z =a1 � � � � � Z =ar :

Choose generators bi for Z =ai , and choose a set E0 of ideals prime to S that
represent the bi . For any E0 2 E0, let mE0 denote an element of F � that generates
the (principal) ideal E0OS . Let E denote a set of representatives of RC that are of
the form E D Q

E
nE0
0 , where the E0 are elements of E0 and the nE0 are natural

numbers, and set mE D Q
m
nE0
E0

with the convention that O 2 E with mO D 1.
Then,EOS D .mE/. Let I.S/ denote the set of fractional ideals coprime to Sf . For
d; e 2 I.S/ coprime, write d D .a/EG2 with E 2 E ; a 2 F �; a � 1 mod C;G 2
I.S/, and define

�d .e/ D
�
d

e

�

WD
�amE

e

�
:

This is well defined (cf. [11], Proposition 1.1); it does not depend on the decompo-
sition of d (but it does depend on the choice ofmE). For d principal, �d is the usual
quadratic character for F.

p
d/=F (cf. Notation 2.2).

Let LS.!; s/ denote the L-series of F for the class group character !, but with
the Euler factors corresponding to the places in S removed. For d 2 I.S/, let Sd
denote the set of primes above d . Let J.S/ denote the set of integral ideals in I.S/.
For d 2 J.S/, let jd j denote its norm. Write d D d0d21 with d0 squarefree.

We define the weight factor to be

a.!; s; d / WD
X

ei2J.S/
e1e2jd1

�.e1/�d .e1/!
�
e1e

2
2

�

je1jsje2j2s�1 ;

where � is the Möbius function. Let � denote a character on the idele class group
unramified outside S ; this will be used later on to filter out principal ideals, which
are the ones we are interested in. We define the double Dirichlet series as

Z!;�.s;w/ WD
X

d2J.S/

LS[Sd .!�d ; s/�.d/
jd jw � a.!; s; d /:

This is convergent for Re.s/ and Re.w/ sufficiently large (say, 	 1). The following
properties are proven in exactly the same way as in [11] (the only difference to [11],
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which treats the case of twists by characters of higher order, is the set of functional
equations, which here is of order 12 instead of 32, cf. [11], Remark 2.6):

(i) The functionZ!;�.s;w/ admits a meromorphic continuation to C2.
(ii) The poles of Z!;�.s;w/ are located on the union of the lines:

w D 0;w D 1; s D 0; s D 1;wC s D 1

2
and wC s D 3

2
:

(iii) If � ¤ 1, then Z!;�.s;w/ is holomorphic at w D 1; if � D 1 and s ¤ 1=2,
Z!;�.s;w/ has a simple pole at w D 1. If � D 1 and s D 1

2
, Z!;�.s;w/ has a

double pole at w D 1, and LS.!2; 2s/ has a simple pole. We have

lim
w!1

.w � 1/Z!;�.s;w/

D
(
0 if � ¤ 1I
.ReswD1 �F .w// �

�Q
v2Sf �F;v.1/

�1
�
� LS.!2; 2s/ if � D 1

(cf. [3], Sect. 5; see also Sect. 5.3 in loc. cit. for a computation of the principal part
of Z!;�.s;w/ around w D 1, which we will not need here).

Let

Z0
!.s;w/ WD

X

d2J.S/
Œd �D0

LS[Sd .!�d ; s/
jd jw � a.!; s; d /; (4)

denote the modified double Dirichlet series, where we only sum over principal ideals
d (indicated by the fact that their class Œd � is trivial in RC ). Note that by plugging
in the decomposition of the characteristic function of the class Œ0� as h�1

C

P
�2bRC �,

we find

Z0
!.s;w/ D

1

hC

X

�2bRC
Z!;�.s;w/:

Hence, Z0
!.s;w/ inherits an analytic continuation fromZ!;�.s;w/. Using the above

computation of residues, we find that

lim
w!1

.w � 1/Z0
!.s0;w/ D c � L.!2; 2s0/; (5)

where c is some nonzero constant.
We can now finish the proof of the theorem. We are assuming that all “principal”

twists L.!�d ; s0/ (Œd � D 0, �d nontrivial) vanish at some s0 with 1
2
� Re.s0/ < 1.

Note first that this obviously implies the vanishing of all twists for the modified
L-series with the S [ Sd -Euler factors removed.

A slight complication arises since the s0 we consider are outside of the region of
absolute convergence of the series Z0

!.s;w/, but we can use a convexity estimate to
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get that for such s0 and Re.w/ large enough, the double Dirichlet series Z0
!.s0;w/

as defined in (4) will also converge. This is because of Phragmén-Lindelöf estimates
in the d -aspect of the form

jLS[Sd .!�d ; s0/a.!; s0; d /j � jd j

(cf. [3], Sect. 3.3), so Re.w/ > 2 will do.
Now, recall our hypothesis that LS[Sd .!�d ; s0/ D 0 for all principal d with

�d ¤ 1, i.e., d is not a square. Hence, if we subtract the terms for which d D e2 is
a square from (4), we find the identically zero function

Z0
!.s0;w/ �

X

e2J.S/
Œe2�D0

LS[Se .!; s0/
jej2w

� a.!; s0; e2/ D 0 (6)

(first for Re.w/ sufficiently large, hence after analytic continuation, for all w).
We now prove that the term we have subtracted off does not have a pole at w D 1;

actually, it converges absolutely at w D 1. Write the term as

LS.!; s0/ �
X

e2J.S/
Œe2�D0

Be

jej2w
� a.!; s0; e2/; (7)

where Be consists of the reciprocals of the (finitely many) .Se n S/-Euler factors of
L.!; s0/. Essentially, the absolute convergence is due to the fact that the exponent
of jej is
 2 if w 
 1 and the other factors are small in jej. We present some details.
First of all, note that LS.!; s0/ does not have a pole for 1

2
� Re.s0/ < 1. We

estimate for Re.s0/ 	 1=2

jBej D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Y

p2SenS

�

1 � !.p/jpjs0
�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� 2$.jej/ŒF WQ� � d.jej/ŒF WQ� � jej1=3

(where $.n/ is the number of positive prime divisors of an integer n and d.n/ is
the number of positive divisors of n, e.g. [12] Sect. 22.13). We estimate the other
factor as

ˇ
ˇa.!; s0; e

2/
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

e1;e22J.S/
e1e2je

�.e1/!.e1e
2
2/

je1js0 je2j2s0�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
X

e1;e22J.S/
e1e2je

1

� d.jej/2ŒF WQ� � jej1=3
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since
ˇ
ˇ�.e1/!.e1e

2
2/
ˇ
ˇ � 1 and je1js0 je2j2s0�1 	 1 for Re.s0/ 	 1

2
. We combine this

into the estimate

X

e2J.S/
Œe2�D0

ˇ
ˇ
ˇ
ˇ
Be

jej2w
� a.!; s0; e2/

ˇ
ˇ
ˇ
ˇ � k

X

e2J.S/
Œe2�D0

ˇ
ˇ
ˇ
ˇ

1

jej2w�2=3

ˇ
ˇ
ˇ
ˇ ;

for some constant k, the latter sum being an absolutely convergent series for w D 1.
We conclude from this and (6) that also Z0

!.s0;w/ does not have a pole at w D 1,
i.e., lim

w!1
.w � 1/Z0

!.s0;w/ D 0. Then, by (5), we find that L.!2; 2s0/ D 0 with

1 � Re.2s0/ < 2, which is impossible. This finishes the proof. ut

6.5 Toroidal Residues of Eisenstein Series

Let � be a character of the idele class group such that �2 D j j˙1 and f D f�.0/ 2
P.�/. Then, the Eisenstein series E.g; f�.s// has a simple pole at s D 0, but the
residue

R.g; f / WD RessD0 E.g; f�.s//

is an automorphic form. More generally, we consider the “derivatives”

R.n/.g; f / WD lim
s!0

dn

dsn

�
s �E.g; f�.s//

�

for n 	 0.

Definition 5.1. Define R as the space of automorphic forms that is generated by the
functions R.n/.g; f /, where n 	 0, f ranges through P.�/ and � ranges through
all characters on the idele group such that �2 D j j˙1.
Theorem 5.2. Rtor D f0g.
Proof. We compute the toroidal integral of R.g; f / for a torus T corresponding to
a quadratic field E:

RT .g; f / D lim
s!0

s ET .g; f�.s//

D lim
s!0

s eT .g; f�.s// L

�

�; s C 1

2

�

L

�

��E; s C 1

2

�

D eT .g; f / RessD0 L
�

�; s C 1

2

�

L

�

��E; s C 1

2

�

:

Recall that �2 D j j˙1; hence, � j j
1=2 is quadratic, so either trivial or by class
field theory is equal to �E for some quadratic field extension E=F . In the case that
E is nontrivial, we have that

L

�

��E; s C 1

2

�

D �F
�

s C 1

2
˙ 1

2

�

;
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where �F is as usual the completed zeta function of F with poles at 0 and 1, so

�F

�

s C 1

2
˙ 1

2

�

has a pole at s D 0 (for both choices of sign). Hence, by the above formula for
RT .g; f /, the toroidal integral ofRT .g; f / for this E cannot vanish since the other
factor L.�; 1=2/ does not vanish.

If � j j
1=2 is trivial, then we choose an arbitrary non-split torus T . We find that

L.�; s C 1=2/ D �F
�

s C 1

2
˙ 1

2

�

has a pole at s D 0, but the other factor in the above computation of the toroidal
integral,

L

�

��E; s C 1

2

�

D L
�

�E; s C 1

2
˙ 1

2

�

does not vanish at s D 0.
This also implies that R.n/.g; f / cannot be toroidal, since R.g; f / is contained

in the automorphic representation generated by this automorphic form. ut

6.6 Application of Waldspurger Periods: Toroidal Cusp
Forms

In this section, we prove the following:

Theorem 6.1. A cuspidal representation � � A0 is toroidal if and only if

L.�; 1=2/ D 0:
Thus, we have

A0;tor D
�

� 2 A0 W L
�

�;
1

2

�

D 0
	

:

Proof. A formula of Waldspurger ([22, Proposition 7]) shows that the T -period of
an automorphic form f in an irreducible cuspidal representation � is a nonzero
multiple of

L

�

�;
1

2

�

� L
�

� ˝ �T ; 1
2

�

:

Thus, � is toroidal if L.�; 1=2/ D 0.
We are left to prove the reverse implication. Assume that L.�; 1=2/ ¤ 0. Note

that all automorphic representation of GL.n/ with trivial central character are self-
contragredient. Thus, the functional equation of the L-series of � in s D 1=2 is

L.�; 1=2/ D � .�; 1=2/ � L.�; 1=2/;
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and necessarily �.�; 1=2/ D 1. This allows us to apply a theorem of Friedberg and
Hoffstein: let �v be representations of G.Fv/ such that � ' ˝0�v, where v ranges
over all places; let S be the (finite) set of places v such that �v is square integrable;
let � be the trivial Hecke character. Then, [10, Theorem B (1)] states that there are
infinitely many different nonconjugate tori T such that L.� ˝ �T ; 1=2/ ¤ 0, and
such that for all v 2 S , the local character �v is trivial, i.e., Tv is split. In particular,
there is such a non-split torus T .

We want to apply to apply [22, Theorem 2, p. 221] (in the “situation globale,”
where the quaternion algebra is chosen to split), which implies that � is not
T -toroidal. To do so, we have to verify that condition (i) in loc. cit. is satisfied.
By [22, Lemme 8 (iii)], condition (i) is satisfied for all local factors �v that are not
square integrable. If v 2 S , then Tv is split and [22, Lemme 8 (ii)] implies that
condition (i) holds for square integrable �v.

This shows that � is not toroidal, which concludes the proof of the theorem. ut
Remark 6.2. Theorem [23, Theorem 4, p. 288] of Waldspurger says that there
exists a �d for d 2 F � such thatL.�˝�d ; 1=2/ ¤ 0, but without the claim that �d
is nontrivial. However, if there exists one such d (square or not), there exist infinitely
many, as may be seen from Lemma 7.1 in [1], which shows that the Dirichlet series
occurring as Mellin transform of the series t.�/ on p. 289 of the proof in [23] cannot
have only finitely many nonzero coefficients.

Remark 6.3. There do exist number fields F for which there exist nontrivial
toroidal cusp forms. We only need � to be a cusp form with L.�; 1=2/ D 0. This
happens when the root number is �1, which is, for example, the case for a cuspidal
lift of a classical holomorphic cusp form to an imaginary quadratic field (cf. also
Waldspurger [23], Remark on p. 282). The argument also shows that there are no
toroidal cusp F D Q.

Acknowledgments We thank Gautam Chinta for help with multiple Dirichlet series and Wee Teck
Gan for his remarks on the proof of Theorem 6.1.
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Chapter 7
Natural Boundaries and Integral Moments
of L-Functions

Adrian Diaconu, Paul Garrett, and Dorian Goldfeld

Abstract It is shown, under some expected technical assumption, that a large class
of multiple Dirichlet series which arise in the study of moments of L-functions
have natural boundaries. As a remedy, we consider a new class of multiple Dirichlet
series whose elements have nice properties: a functional equation and meromorphic
continuation. This class suggests a notion of integral moments of L-functions.

Keywords Multiple Dirichlet series • Integral moments of L-functions • Good’s
method • Eisenstein series • GL(3)

7.1 Introduction

The problem of obtaining asymptotic formulae (as T �! 1) for the integral
moments Z T

0

ˇ
ˇ
ˇ
ˇ�

�
1

2
C i t

�ˇ
ˇ
ˇ
ˇ

2r

dt .for r D 1; 2; 3; : : :/ (1)

is approximately 100 years old and very well known. See [4] for a good exposition
of this problem and its history. Following [1], it was proved by Carlson that for
� > 1 � 1

r
,

Z T

0

j�.� C i t/j2r dt �
" 1X

nD1
dr .n/

2n�2�
#

� T .T �!1/:
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Furthermore,
1X

nD1
dr .n/

2n�s D �.s/r2
Y

p

Pr .p
�s/ ;

where

Pr.x/ D .1 � x/2r�1
r�1X

nD0

�
r � 1
n

�2

xr :

Now, Estermann [12] showed that the Euler product
Q
p Pr.s/ is absolutely

convergent for <.s/ > 1
2
, and that it has meromorphic continuation to <.s/ > 0.

He also proved the disconcerting theorem that for r 	 3, the Euler productQ
p Pr .s/ has the line <.s/ D 0 as natural boundary. Estermann’s result was

generalized by Kurokowa (see [19, 20]) to a much larger class of Euler products.
This situation, where an innocuous looking L-function has a natural boundary,
is now called the Estermann phenomenon. A very interesting instance of the
Estermann phenomenon is for L-functions formed with the arithmetic Fourier
coefficients a.n/; nD1; 2; 3; : : : ; of an automorphic form on, say, GL.2/. The
L-functions 1X

nD1
a.n/n�s ;

1X

nD1
ja.n/j2n�s ;

both have good properties: meromorphic continuation and functional equation, but
for r 	 3, the Dirichlet series

1X

nD1
ja.n/jrn�s (2)

has a natural boundary. Thus, theL-function defined in (2) does not have the correct
structure when r 	 3: It is now generally believed that the correct notion of (2) is
the r th symmetric power L-function as in [24].

Another approach to obtain asymptotics for (1) is to study the meromorphic
continuation in the complex variable w of the zeta integral

Zr .w/ D
Z 1

1

ˇ
ˇ
ˇ
ˇ�.
1

2
C i t/

ˇ
ˇ
ˇ
ˇ

2r

t�w dt; (3)

for r , a positive rational integer. This integral is easily shown to be absolutely
convergent for <.w/ sufficiently large. Such an approach was pioneered by Ivić,
Jutila, and Motohashi [16–18, 23] and somewhat later in [10].

One aim of this chapter is to give evidence that for r 	 3, the function Zr .w/ has
a natural boundary along<.w/ D 1

2
: For simplicity of exposition, we shall consider
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(3) only in the special case r D 3: There is an infinite class of other examples of
this phenomenon to which this method should generalize. For instance,

Z 1

1

ˇ
ˇ
ˇ
ˇ�Q.i/

�
1

2
C it

�ˇ
ˇ
ˇ
ˇ

4

t�w dt D
Z 1

1

ˇ
ˇ
ˇ
ˇ�

�
1

2
C it

�

L

�
1

2
C it; ��4

�ˇ
ˇ
ˇ
ˇ

4

t�w dt;

which is compatible with Z4.w/; should also have a natural boundary.
The fact that the Estermann phenomenon occurs for the integrals (1) and (3)

suggests that for r 	 3, the classical 2r-th integral moment of zeta

Z T

0

ˇ
ˇ
ˇ
ˇ�

�
1

2
C it

�ˇ
ˇ
ˇ
ˇ

2r

dt (4)

does not have the correct structure. It is therefore doubtful that substantial advances
in the theory of the Riemann zeta function will come from further investigations
of (4).

The final goal of this chapter is to provide an alternative to (4) in the same
spirit that the symmetric power L-function is an alternative to (2). Accordingly, in
Sect. 7.3, we introduce a natural notion of integral moments for GL3 automorphic
forms over Q (see Theorem 1) with good analytic properties, i.e., it has a spectral
expansion (obtained by combining Theorems 1 and 2). In the case of GL2 over Q;
our notion coincides with the classical second integral moment.

The third author was partially supported by NSF grant 1001036.

7.2 Multiple Dirichlet Series with Natural Boundaries

For s1; : : : ; sr and w 2 C with sufficiently large real parts, let

Z.s1; : : : ; sr ;w/ D
Z 1

1

�.s1 C it/�.s1 � it/ � � � �.sr C it/�.sr � it/ t�w dt: (5)

This multiple Dirichlet series was considered in [10], and is more convenient than
Zr .w/: Specializing r D 3; we can write

Z.s1; s2; s3;w/

D
X

m;n

1

.mn/<.s1/

Z 1

1

�m

n

�it
�.s2 C it/�.s2 � it/�.s3 C it/�.s3 � it/ t�w dt:

The reason Z3.w/ should have a natural boundary is simple. The inner integral
admits meromorphic continuation to C3: For s2 D s3 D 1

2
; this function should

have infinitely many poles on the line <.w/ D 1
2
; the positions depending on m; n.
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As m; n �! 1, the number of poles in any fixed interval will tend to infinity.
Summing overm; n, all these poles form a natural boundary. Accordingly, the main
difficulty is to meromorphically continue the integral

Z 1

1

�m

n

�it
�.s2 C it/�.s2 � it/�.s3 C it/�.s3 � it/ t�w dt; (6)

as a function of s2; s3; w to C3 (see also Motohashi [22, 23], where in the integral
(6) t�w is replaced by a Gaussian weight). When m D n D 1; the meromorphic
continuation of (6) was already established by Motohashi in [21]. Although this
integral can certainly be studied by his method, the approach we follow is based on
the more general ideas developed in [6–9, 14]. Using our techniques, it is possible
to study in a unified way very general integrals attached to integral moments.

One can establish the meromorphic continuation of the slightly more general
integral

Z 1

1

�m

n

�i t
L.s1 C it; f /L.s2 � it; f / t�w dt; (7)

where f is an automorphic form onGL2.Q/ andL.s; f / is the L-function attached
to f: This implies the meromorphic continuation of an integral of type

Z 1

1

L.s1 C it; f /L.s2 � it; f /

ˇ
ˇ
ˇ
ˇ
ˇ

X

n�N
ann

it

ˇ
ˇ
ˇ
ˇ
ˇ

2

t�w dt

(with an 2 C for 1 � n � N ). In fact, it is technically easier to study the
integral (7) when f is a cuspform on SL2.Z/ than the corresponding analysis of
(6). Accordingly, to illustrate our point, for simplicity, we shall discuss the case
when f is a holomorphic cuspform of even weight � for SL2.Z/: Then f has a
Fourier expansion

f .z/ D
1X

`D1
a`e2�i`z; .z D x C iy; y > 0/:

For m; n, two coprime positive integers, consider the congruence subgroup

�m;n D

�

a b

c d

�

2 SL2.Z/
ˇ
ˇ
ˇ
ˇ b � 0 .mod m/; c � 0 .mod n/

�

:

Then, the function F n
m
.z/ WD y� f

�
n
m

z
�
f .z/ is �m;n–invariant. For v 2 C; let '.z/

be a function satisfying

'.�z/ D �v'.z/; .for � > 0 and z D x C iy; y > 0/;
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and (formally) define the Poincaré series

P.zI'/ D
X

�2Zn�m;n
'.�z/; (8)

whereZ is the center of �m;n: To ensure convergence, one can choose, for instance,

'.z/ D yv

 
y

p
x2 C y2

!w

; (9)

where v; w 2 C with sufficiently large real parts. These Poincaré series were
introduced by Anton Good in [14].

Let h ; i denote the Petersson scalar product for automorphic forms for the group
�m;n: As in [9], we have the following.

Proposition 1. Let m and n be two coprime positive integers, and let P.zI'/; F n
m

,
and �m;n be as defined above. For � > 0 sufficiently large and ' defined by (9), we
have

D
P.�; '/; F n

m

E
D �.2�/�.vC�C1/� .wC vC � � 1/

2wCvC��2 �
�m

n

��

�
Z 1

�1

�m

n

�it
L.� C it; f /L.vC � � � � it; f /

� � .� C it/� .vC � � � � it/

�
�

w
2
C � C it

�
�
�

w
2
C vC � � � � it

� dt:

As we already pointed out, the above proposition (with appropriate modifica-
tions) remains valid if the cuspform f is replaced by a truncation of the usual
Eisenstein series E.z; s/ (for instance, on the line <.s/ D 1

2
), or a Maass form. On

the other hand, using Stirling’s formula, it can be shown that the kernel in the above
integral is (essentially) asymptotic to t�w; as t �! 1: This fact holds whether f
is holomorphic or not. It follows that the meromorphic continuation of (7) can be
obtained from the meromorphic continuation (in w 2 C) of the Poincaré series (8).

The meromorphic continuation of the Poincaré series (8) can be obtained by
spectral theory1 as in [9]. To describe the contribution from the discrete part of the
spectrum, let

	.z/ D y 1
2

X

`¤0
�.`/Ki�.2�j`jy/ e2�i`x

1The Poincaré series P.z; '/ is not square integrable. Just after an obvious Eisenstein series is
subtracted, the remaining part is not only in L2 but also has sufficient decay so that its integrals
against Eisenstein series converge absolutely (see [7–9]).
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(K�.y/ is the K-Bessel function) be a Maass cuspform (for the group �m;n) which
is an eigenfunction of the Laplacian with eigenvalue 1

4
C �2: We shall need the

well-known transforms

1Z

�1
.x2 C 1/�we�2�i`xy dx D 2�w

� .w/
.j`jy/w� 1

2 K 1
2�w.2�j`jy/

�

<.w/ > 1

2

�

;

and

1Z

0

yvKi�.y/K1
2�w.y/

dy

y

D
2v�3 �

� 1
2�i�Cv�w

2

�
�
� 1

2Ci�Cv�w
2

�
�
�� 1

2�i�CvCw
2

�
�
�� 1

2Ci�CvCw
2

�

� .v/
;

the latter being valid provided <.v C w/ > 1
2
; <.w � v/ < 1

2
; and � is real, i.e.,

we assume the Selberg 1
4
–conjecture. Unfolding the integral and applying the above

transforms, one obtains

hP.�; '/; 	i
h	; 	i

D 1

h	; 	i

1Z

0

1Z

�1
yvC 1

2

 
y

p
x2 C y2

!w
X

`¤0
�.`/Ki�.2�j`jy/ e�2�i`x dxdy

y2

D 1

h	; 	i
X

`¤0
�.`/

1Z

0

1Z

�1
yvC 1

2 .1C x2/� w
2 Ki�.2�j`jy/ e�2�i`xy dxdy

y

D 2�
w
2

h	; 	i � � .w
2
/

X

`¤0
�.`/ j`j w�1

2

1Z

0

yvC w
2 Ki�.2�j`jy/K1�w

2
.2�j`jy/ dy

y

D ��v

2h	; 	iL
�

vC 1

2
; N	
�

�
�
� 1

2�i�Cv
2

�
�
� 1

2Ci�Cv
2

�
�
�� 1

2�i�CvCw
2

�
�
�� 1

2Ci�CvCw
2

�

� .vC w
2
/� .w

2
/

: (10)

Here, L.s; 	/ is the L-function associated to 	: Note that the above computation
is valid (all integrals and infinite sums converge absolutely) provided v;w have
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large real parts. The identity (10) then extends by analytic continuation. The ratio
of products of gamma functions in the right-hand side of (10) has simple poles at
vC w D 1

2
˙ i� with corresponding residues:

��v

h	; 	i �
� .˙i�/�

� 1
2
i�Cv

2

�

�
� 1

2˙i��v
2

� � L
�

vC 1

2
; N	
�

:

For v D 0 and <.w/ 	 1
2
; it is expected that the above residues are almost always

nonzero and that h	; F n
m
i ¤ 0 for almost all 	 ranging over a basis of Maass

cuspforms for �m;n: It also follows from Weyl’s law that the number of such poles
with imaginary part in the interval Œ�T; T � is 
 T 2 as T �! 1: Summing over
m; n; we see from the above argument that the function

X

m;n

m�2<.s1/
D
P.�; '/; F n

m

E
;

with the choices � D �=2 and v D 0 is expected to have a natural boundary at
<.w/ D 1

2
: In a similar manner, one may show that the functionZ.s1; 1=2; 1=2;w/;

in particular, should have meromorphic continuation to at most <.s1/ 	 1
2

and
<.w/ > 1

2
:

7.3 A Notion of Integral Moment for GL3.Q/

In [6], we propose a mechanism to obtain asymptotics for integral moments
of GLr (r 	 2) automorphic L-functions over an arbitrary number field. Our
treatment follows the viewpoint of [7], where second integral moments for GL2
are presented in a form enabling application of the structure of adele groups and
their representation theory. We establish relations of the form

moment expansion D
Z

ZAGLr .k/GLr .A/

Pé � jf j2 D spectral expansion;

where Pé is a Poincaré series on GLr over number field k; for cuspform f

on GLr.A/: Roughly, the moment expansion is a sum of weighted moments of
convolution L-functions L.s; f ˝ F /; where F runs over a basis of cuspforms
on GLr�1; as well as further continuous-spectrum terms. Indeed, the moment-
expansion side itself does involve a spectral decomposition on GLr�1: The spectral
expansion side follows immediately from the spectral decomposition of the Poincaré
series, and (surprisingly) consists of only three parts: a leading term, a sum arising
from cuspforms onGL2; and a continuous part fromGL2: That is, no cuspforms on
GL` with 2 < ` � r contribute.
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As mentioned at the end of the introduction, in the case of GL2 over Q; the
above expression gives (for f spherical) the spectral decomposition of the classical
integral moment

Z 1

�1

ˇ
ˇ
ˇ
ˇL.

1

2
C it; f /

ˇ
ˇ
ˇ
ˇ

2

g.t/ dt

for suitable smooth weights g.t/:

Integral moments for GL3: In the simplest case beyond GL2; take f a spherical
cuspform on GL3 over Q: We construct a weight function � .s; v;w; f1; F1/
depending upon complex parameters s; v; and w and upon the Archimedean data for
both f and cuspforms F on GL2; such that the second integral moment attached to
f arises as an integral:

Z

ZAGL3.Q/ GL3.A/

Pé.g/ jf .g/j2 dg

D
X

F on GL2

1

2�i

Z

<.s/D 1
2

jL.s; f ˝ F /j2 � � .s; 0;w; f1; F1/ ds

C 1

4�i

1

2�i

X

k2Z

Z

<.s1/D 1
2

Z

<.s2/D 1
2

jL.s1; f ˝ E.k/
1�s2 /j2

�� .s1; 0;w; f1; E.k/
1�s2;1/ ds2 ds1

(see also the statement of Theorem 1). Here, for<.s2/ D 1=2; write 1� s2 in place
of Ns2; to maintain holomorphy in complex-conjugated parameters. In this vein, over
Q; it is reasonable to put

L.s1; f ˝ NE.k/
s2
/ D L

�
s1; f ˝ E.k/

1�s2
�

D L.s1 � s2 C 1
2 ; f / � L.s1 C s2 � 1

2 ; f /

�.2� 2s2/ (finite-prime part)

since the natural normalization of the Eisenstein series E.k/
s2 on GL2 contributes

the denominator �.2s2/: In the above expression, F runs over an orthonormal basis
for all level-one cuspforms on GL2; with no restriction on the right K1-type. The
Eisenstein series E.k/

s run over all level-one Eisenstein series for GL2.Q/ with no
restriction onK1-type denoted here by k: The weight function � .s; v;w; f1; F1/
can be described as follows. Let U.R/ denote the subgroup of GL3.R/ of matrices
of the form

�
ccI2 �

1

�
: For w 2 C; define ' on U.R/ by

'

�
I2 x

1

�

D �
1C jjxjj2�� w

2 ;
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and set

 

0

@
1 x1 x3

1 x2
1

1

A D e2�i.x1Cx2/:

Then, the weight function is (essentially)

� .s; v;w; f1; F1/

Dj�F .1/j2 �
1Z

0

1Z

0

Z

O2.R/

1Z

0

1Z

0

Z

O2.R/

�
t2y

�v�sC 1
2 � �t 0 2y0�s� 1

2 K.h; m/

�W
f;R

0

@
ty

t

1

1

AW
F;R

��
y

1

�

� k
�

�W
f;R

0

@
t 0y0

t 0
1

1

AW
F;R

��
y0
1

�

� k0
�

�dk dy

y2
dt

t
dk0 dy0

y
02

dt 0

t 0
;

where: �F .1/ is the first Fourier coefficient of F;

h D
0

@
ty

t

1

1

A
�
k

1

�

; m D
0

@
t 0y0

t 0
1

1

A
�
k0
1

�

;

and

K.h; m/ D
Z

U.R/

'.u/  
�
huh�1� .mum�1/ du:

Here, W
f;R

and WF;R denote the Whittaker functions at 1 attached to f and F;
respectively. We can sum the above weight � over (GL2) right K1-types, and
denote the resulting weight by M:

To obtain higher moments of automorphicL-functions such as �; we replace the
cuspform f by a truncated Eisenstein series or wave packet of Eisenstein series.
For example, for GL3, the continuous part of the above moment expansion gives
the following natural integral:

Z

<.s/D 1
2

Z 1

�1

ˇ
ˇ
ˇ
ˇ
�.s C it/3 � �.s � it/3

�.1� 2it/

ˇ
ˇ
ˇ
ˇ

2

M.s; t;w/ dt ds;
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where M is the smooth weight above obtained by summing over the right
K1-types the function � above with v D 0: We stress the fact that this higher
moment of the Riemann zeta is just one term in a GL3 moment expansion which
involves a complete sum over a GL2 orthonormal basis (it corresponds to level-one
Eisenstein series E.k/

s for GL2.Q/), and unfortunately, there seems to be no way to
isolate this term from the rest of the sum.

For applications to Analytic Number Theory, one finds it useful to present, in
classical language, the derivation of the explicit moment identity, when r D 3 over
Q: To do so, let G D GL3.R/ and define the standard subgroups

P D

�

2 � 2 �
1 � 1

��

; U D

�

I2 �
1

��

; H D

�

2 � 2
1

��

;

Z D center of G. Let N be the unipotent radical of standard minimal parabolic in
H , i.e., the subgroup of upper-triangular unipotent elements in H; and set K D
O3.R/:

For w 2 C; define ' on U by

'

�
I2 x

1

�

D �
1C jjxjj2�� w

2 :

We extend ' to G by requiring rightK-invariance and left equivariance:

'.mg/ D
ˇ
ˇ
ˇ
ˇ
detA

d2

ˇ
ˇ
ˇ
ˇ

v

� '.g/;
�

v 2 C; g 2 G; m D
�
A

d

�

2 ZH
�

:

More generally, we can take suitable functions (see [5, 7]) ' on U and extend them
to G by rightK-invariance and the same left equivariance.

For <.v/ and <.w/ sufficiently large, define the Poincaré series

Pé.g/ D Pé.gI v;w/ D
X

�2H.Z/nSL3.Z/
'.�g/; .g 2 G/ (11)

where H.Z/ is the subgroup of SL3.Z/ whose elements belong to H: Note that
H.Z/ 
 SL2.Z/: To see that the series defining Pé.g/ converges absolutely and
uniformly on compact subsets of G=ZK; one can use the Iwasawa decomposition
to make a simple comparison with the maximal parabolic Eisenstein series.

For a cuspform f of type � D .�1; �2/ on SL3.Z/ (right ZK-invariant),
consider the integral

I D I.v;w/ D
Z

ZSL3.Z/nG
Pé.g/ jf .g/j2 dg: (12)
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Unwinding the Poincaré series, we write

I D
Z

ZH.Z/nG
'.g/ jf .g/j2 dg:

Next, we will use the Fourier expansion (see [13]):

f .g/ D
X

�2N.Z/H.Z/

1X

`1D1

X

`2¤0

a.`1; `2/

j`1`2j �W�.L�g/ (13)

(with a.`1; `2/ D a.`1;�`2/) where N.Z/ is the subgroup of upper-triangular
unipotent elements in H.Z/; L D diag.`1`2; `1; 1/; and W� is the Whittaker
function. Then, the integral I further unwinds to

I D
X

`1; `2

a.`1; `2/

j`1`2j
Z

ZN.Z/nG
'.g/W�.Lg/ Nf .g/ dg: (14)

Now, let P1 be the (minimal) parabolic subgroup of G of upper-triangular
matrices, and let K1 be the subgroup of K fixing the row vector .0; 0; 1/: Using
the Iwasawa decomposition

G D P1 �K; P D .HZ/ � U D P1 �K1;

we can write (up to a constant) the right-hand side of (14) as

I D
X

`1; `2

a.`1; `2/

j`1`2j
Z

.N.Z/nH/�U
'.hu/W�.Lhu/ Nf .hu/ dh du: (15)

The constant involved is
�R

K1
1 dk

��1
:

One of the key ideas is to decompose the left H.Z/-invariant function Nf .hu/
alongH.Z/H: Accordingly, we have the spectral decomposition

Nf .hu/ D
Z

.	/

	.h/

Z

H.Z/nH
	.m/ Nf .mu/ dm d	 (16)

D
X

`0

1; `
0

2

a.`0
1; `

0
2/

j`0
1`

0
2j

Z

.	/

	.h/

Z

N.Z/nH
	.m/W �.L

0mu/ dm d	: (17)
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Plugging (17) into (15), we can decompose

I D
X

`1; `2

X

`0

1; `
0

2

a.`1; `2/

j`1`2j
a.`0

1; `
0
2/

j`0
1`

0
2j

I`1; `2; `0

1; `
0

2
; (18)

where, for fixed `1; `2; `0
1; `

0
2,

I`1; `2; `0

1; `
0

2

D
Z

.	/

Z

.N.Z/nH/�U

Z

N.Z/nH
'.hu/W�.Lhu/ 	.h/W �.L

0mu/ 	.m/ dh dm du d	:

(19)

The integral over U in (19) is
Z

U

'.u/W�.Lhu/W �.L
0mu/ du

D W�.Lh/W �.L
0m/

Z

U

'.u/  
�
Lhuh�1L�1� .L0mum�1L0 �1/ du

D W�.Lh/W �.L
0m/

1Z

�1

1Z

�1
� � � dx2 dx3

D W�.Lh/W �.L
0m/K.Lh; L0m/;

where

 

0

@
1 x1 x2
1 x3
1

1

A D e2�i.x1Cx3/:

Therefore,

I`1; `2; `0

1; `
0

2

D
Z

.	/

Z

N.Z/nH

Z

N.Z/nH
'.h/K.Lh; L0m/W�.Lh/ 	.h/W �.L

0m/ 	.m/ dh dm d	:

(20)

For n 2 N and h 2 H; we have

'.nh/ D '.h/;
K.Lnh; L0m/ D K.Lh; L0m/;

W�.Lnh/ D  
�
LnL�1�W�.Lh/:
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Hence,

Z

N.Z/nH

Z

N.Z/nH
'.h/K.Lh; L0m/W�.Lh/ 	.h/W �.L

0m/ 	.m/ dh dm

D
Z

NnH

Z

NnH
'.h/K.Lh; L0m/W�.Lh/W �.L

0m/

�
Z

N.Z/nN
 
�
LnL�1� 	.nh/ dn �

Z

N.Z/nN
 
�
L0n0L0 �1� 	.n0m/ dn0 dh dm:

(21)

To simplify (21), let

h D
0

@
ty

t

1

1

A
�
k

1

�

; m D
0

@
t 0y0

t 0
1

1

A
�
k0
1

�

; .k; k0 2 O2.R//:

The functions 	 above are of the form jdetj�s ˝ F with s 2 iR: In what follows,
for convergence purposes, the real part of the parameter s will necessarily be shifted
to a fixed (large) � D <.s/: The shifting occurs in (17) (there is a hidden vertical
integral in the integral over 	).

Remark. For every K-type �; we choose F in an orthonormal basis consisting
of common eigenfunctions for all Hecke operators Tn: Furthermore, this basis is
normalized as in Corollary 4.4 and (4.69) [11] with respect to Maass operators.

Note that

Z

N.Z/nN
 
�
LnL�1�F.nh/ dn D �F.�`2/pj`2j

W ˙
F;R

�� j`2j y
1

�

� k
�

;

Z

N.Z/nN
 
�
L0n0L0 �1� NF .n0m/ dn0 D �F.�`0

2/pj`0
2j
W˙

F;R

�� j`0
2j y0

1

�

� k0
�

; (22)

where W ˙
F;R

are the GL2 Whittaker functions attached to F: These functions can be
expressed in terms of the classical Whittaker function

W˛;ˇ.y/ D y˛ e� y
2

2�i

i1Z

�i1

� .u/ � .�u � ˛ � ˇ C 1
2
/ � .�u � ˛ C ˇ C 1

2
/

� .�˛ � ˇ C 1
2
/ � .�˛ C ˇ C 1

2
/

yu du;
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where the contour has loops, if necessary, so that the poles of � .u/ and the poles of
the function � .�u�˛�ˇC 1

2
/� .�u�˛CˇC 1

2
/ are on opposite sides of it. For

k D � cc cos 
 � sin 

sin 
 cos 


� 2 SO2.R/; we have (see [11])

W ˙
F;R

��
y

1

�

� k
�

D ei�
 W ˙
F;R

�
y

1

�

D ei�
 W˙ �
2 ; i�F

.4�y/; .y > 0/;

if F is an eigenfunction of

�� D y2

 
@2

@x2
C @2

@y2

!

� i�y
@

@x

with eigenvalue 1
4
C �2

F
: In (7.3) and (22), the Whittaker functions are determined

by the signs of �`2 and �`0
2; respectively. If F corresponds to a holomorphic, or

anti-holomorphic, cuspform, there are no negative, or positive, respectively, terms
in its Fourier expansion. We have

W C
F;R

��
y

1

�

� k
�

D ei�
 W C
F;R

�
y

1

�

D ei�
 W�
2 ;

�0�1

2

.4�y/

(for � 	 �0 	 12; y > 0) for F corresponding to a holomorphic cuspform of
weight �0 :

Then, making the substitutions

t �! t

`1
; y �! y

j`2j ; t 0 �! t 0

`0
1

; y0 �! y0

j`0
2j
;

we can write (21) as

pj`2j �F.�`2/
.`21j`2j/v�s

pj`0

2j �F.�`0

2/

.`
02
1 j`0

2j/s
1Z

0

1Z

0

Z

H\K

1Z

0

1Z

0

Z

H\K

.t2y/v�s � .t 0 2y0/s K.h; m/

�W�

0

@
ty

t

1

1

AW˙

F;R

��
y

1

�

� k
�

�W �

0

@
t 0y0

t 0

1

1

AW
˙

F;R

��
y0

1

�

� k0

�

� dk dy

y2
dt

t
dk0

dy0

y
02

dt 0

t 0
; (23)

where

K.h; m/ D
Z

U

'.u/  
�
huh�1� .mum�1/ du:
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Recall that the Rankin–Selberg convolution L.s; f ˝ F / is given by

L.s; f ˝ F / D L.s; f ˝ F0/ D
1X

`1; `2D1

a.`1; `2/�F0.`2/

.`21 `2/
s

;

where F0 is the basic ancestor of F and �F0.`/ is the corresponding eigenvalue of
the Hecke operator T`: Since a.`1; `2/ D a.`1;�`2/; it follows from (18), (20), and
(23) that

I D
Z

ZSL3.Z/nG
Pé.g/ jf .g/j2 dg

D
X

F in GL2

1

2�i

Z

<.s/D�
L.vC 1 � s; f ˝ F /L.s; Nf ˝ NF /�'.s/ ds;

where

�'.s/ D �'.s; v; w; f; F /

D
X

˙
�F.˙1/�F.˙1/ �

1Z

0

1Z

0

Z

H\K

1Z

0

1Z

0

Z

H\K
.t2y/v�sC 1

2 � .t 0 2y0/s� 1
2 K.h; m/

�W�

0

@
ty

t

1

1

AW ˙
F;R

��
y

1

�

� k
�

�W �

0

@
t 0y0

t 0
1

1

AW
˙
F;R

��
y0
1

�

� k0
�

� dk dy

y2
dt

t
dk0 dy0

y
02

dt 0

t 0
; (24)

with all four possible sign choices in the sum. Note that we have also replaced s by
s � 1

2
:

The kernel �'.s/ can be expressed as a Barnes-type (multiple) integral. To see
this, note that

 
�
huh�1� D e2�it.u1 sin 
Cu2 cos 
/;  .mum�1/ D e�2�it 0.u1 sin 
 0Cu2 cos 
 0/;

with 0 � 
; 
 0 � 2�: Changing the variables u1 D r cos�; u2 D r sin � (r 	 0
and 0 � � � 2�), one can write

K.h; m/ D
1Z

0

2�Z

0

r2'.r/ e2�irt sin.
C�/ e�2�irt 0sin.
 0C�/ d�
dr

r
: (25)
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In (25), express the two exponentials using the Fourier expansion:

eiu sin 
 D
1X

`D�1
J`.u/ e

i`
 :

Recalling that

W ˙
F;R

��
y

1

�

� k
�

D ei�
 W ˙
F;R

�
y

1

�

;

it follows that, up to a positive constant, �'.s/ is represented by

X

˙
�F.˙1/�F.˙1/

�
1Z

0

1Z

0

1Z

0

1Z

0

.t2y/v�sC 1
2 .t 0 2y0/s� 1

2 �
1Z

0

r2'.r/ J�.2�rt/ J�.2�rt
0/

dr

r

�W�

0

@
ty

t

1

1

AW ˙
F;R

�
y

1

�

W �

0

@
t 0y0

t 0
1

1

AW
˙
F;R

�
y0
1

�
dy

y2
dt

t

dy0

y
02

dt 0

t 0
:

(26)

Here, we have also used the well-known identity J��.z/ D .�1/�J�.z/:
To continue the computation, express both GL3.R/ Whittaker functions in (26)

as (see [3])

W�

0

@
ty

t

1

1

A D 1

.2�i/2

Z

.ı1/

Z

.ı2/

���1��2 V .�1; �2/ t1��1y1��2 d�1 d�2;

where

V.�1; �2/ D 1

4

�
�
�1C˛
2

�
�
�
�1Cˇ
2

�
�
�
�1C�
2

�
�
�
�2�˛
2

�
�
�
�2�ˇ
2

�
�
�
�2��
2

�

�
�
�1C�2
2

� ;

the vertical lines of integration being taken to the right of all poles of the integrand.
We shall consider only the .C;C/ part of (26), assuming � 	 0 and

W C
F;R

�
y

1

�

D W�
2 ; i�F0

.4�y/:

Interchanging the order of integration and applying standard integral formulas (see
[15]), we write the integrals of the .C;C/ part of (26) corresponding to the above
choice of W C

F;R
as
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��3.1Cv/

128

1

.2�i/4

Z

.ı1/

Z

.ı2/

Z

.ı0

1/

Z

.ı0

2/

V .�1; �2/ V .�
0
1; �

0
2/
�
�
1C �

2
� s � �1

2
C v

�
�
�
�
2
C s � �0

1

2

�

�
�
�
2
C s C �1

2
� v
�
�
�
�
2
C 1 � s C �0

1

2

�

� �
 
1 � s � �2 C v � i�F0

2

!

�

 
1 � s � �2 C vC i�F0

2

!

� �
 
s � � 0

2 � i�F0

2

!

�

 
s � � 0

2 C i�F0

2

!

� �
� �1C�0

1�2v
2

�
�
���1��0

1C2vCw
2

�

�
�

w
2

� d� 0
2 d� 0

1 d�2 d�1: (27)

This representation holds, provided

ı1; ı2; ı
0
1; ı

0
2 > 0I

<.v/� <.s/ � ı2 > �1I <.s/� ı0
2 > 0I

3

2
> 2<.s/� ı0

1 > 0I �
1

2
> 2<.v/� 2<.s/� ı1 > �2I

<.w/ > ı1 C ı0
1 � 2<.v/ > 0:

We remark that for all the other choices of W ˙
F;R
; one obtains similar expressions.

For fixed F0, a Maass cuspform of weight zero, or a classical holomorphic (or
anti-holomorphic) cuspform of weight �0; the corresponding Archimedean sum over
the K-types � in the moment expansion can be evaluated using the effect of the
Maass operators on F0 given explicitly in [11] (see especially (4.70), (4.77), (4.78),
and (4.83)).

We summarize the main result of this section in the following.

Theorem 1. Let Pé.g/ defined in (11) be the Poincaré series associated to ': Then,
for s; v; w 2 C with sufficiently large real parts, and f a cuspform on SL3.Z/; we
have

Z

ZSL3.Z/nG
Pé.g/ jf .g/j2 dg

D
X

F inGL2

1

2�i

Z

<.s/D�
L.vC 1 � s; f ˝ F /L.s; Nf ˝ NF /�'.s/ ds;
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where F runs over an orthonormal basis for all level-one cuspforms together with
vertical integrals of all level-one Eisenstein series on GL2.Q/; with no restriction
on the right K-types. The weight function �'.s/ is given by

�'.s/ D
X

˙
�F.˙1/�F.˙1/

�
1Z

0

1Z

0

1Z

0

1Z

0

.t2y/v�sC 1
2 .t 0 2y0/s�

1
2 �

1Z

0

r2'.r/ J�.2�rt/ J�.2�rt
0/

dr

r

�W�

0

@
ty

t

1

1

AW ˙
F;R

�
y

1

�

W �

0

@
t 0y0

t 0
1

1

AW
˙
F;R

�
y0
1

�
dy

y2
dt

t

dy0

y
02

dt 0

t 0
;

with all four possible sign choices in the sum.

7.4 Spectral Decomposition of Poincaré Series

We begin by showing that our Poincaré series Pé.g/ is a degenerateGL3 object (i.e.,
the cuspforms on SL3.Z/ do not contribute to its spectral decomposition). We have
the following.

Proposition 2. The Poincaré series Pé.g/ is orthogonal to the space of cuspforms
on SL3.Z/:

Proof. Let f be a cuspform on SL3.Z/ with Fourier expansion

f .g/ D
X

�2N.Z/nH.Z/

1X

`1D1

X

`2¤0

a.`1; `2/

j`1`2j �W.L�g/:

Unwinding twice, it follows, as before, that

Z

ZSL3.Z/G

Pé.g/ Nf .g/ dg D
X

`1; `2

a.`1; `2/

j`1`2j
Z

ZN.Z/nG=K
'.g/W .Lg/ dg: (28)

Now, write g 2 G in Iwasawa form,

g D
0

@
1 x1 x2

1 x3
1

1

A

0

@
y1y2

y1
1

1

A

0

@
d

d

d

1

A k .y1; y2 > 0; k 2 K/

D
0

@
y1y2 d

y1d

d

1

A

0

@
1 x1=y2

1

1

1

A

0

@
1 0 .x2 � x1x3/=y1y2
0 1 x3=y1
0 0 1

1

A k:
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Then,

'.g/ D .y21y2/
v '

0

@
1 0 .x2 � x1x3/=y1y2
0 1 x3=y1
0 0 1

1

A (29)

and

W.Lg/ D e2�i.`2x1C`1x3/ �W
0

@
`1y1j`2jy2

`1y1
1

1

A : (30)

Also, the integral in the right-hand side of (28) can be written explicitly as

Z

ZN.Z/nG=K
� � � dg D

1Z

y2D0

1Z

y1D0

1Z

x3D�1

1Z

x2D�1

1Z

x1D0
� � � dx1 dx2 dx3

dy1
y31

dy2
y32
:

Letting
x1 D t1; x2 D t2 C t1t3; x3 D t3;

the inner integral over t1 is

1Z

0

e�2�i`2t1 dt1 D 0

(since `2 ¤ 0). Thus,
Z

ZSL3.Z/nG
Pé.g/ Nf .g/ dg D 0:

ut
Now, write the Poincaré series as

Pé.g/ D
X

�2H.Z/nSL3.Z/
'.�g/ D

X

�2P.Z/nSL3.Z/

X

ˇ2U.Z/
'.ˇ�g/;

where P.Z/ denotes the subgroup of SL3.Z/ with the bottom row .0; 0; 1/: By the
Poisson summation formula, we have

X

ˇ2U.Z/
'.ˇg/ D

1X

m2;m3D�1
'

0

@

0

@
1 m2

1 m3

1

1

A

0

@
1 x1 x2
1 x3
1

1

A

0

@
y1y2

y1
1

1

A

1

A

D
1X

m2;m3D�1
'

0

@

0

@
1 x1 x2 Cm2

1 x3 Cm3

1

1

A

0

@
y1y2

y1
1

1

A

1

A

D
1X

m2;m3D�1
C .m2;m3/
' .x1; y1; y2/ e2�i.m2x2Cm3x3/;
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where C .m2;m3/
' .x1; y1; y2/ is given by

C .m2;m3/
' .x1; y1; y2/

D .y21y2/v
Z

R2

'

0

@
1 0 .u2 � x1u3/=y1y2
0 1 u3=y1
0 0 1

1

A e�2�i.m2u2Cm3u3/ du2 du3

D .y21y2/vC1
Z

R2

'

0

@
1 t2
1 t3
1

1

A e�2�iŒm2y1y2t2C.m2x1Cm3/y1t3� dt2 dt3: (31)

Therefore, denoting C .m2;m3/
' .x1; y1; y2/ e2�i.m2x2Cm3x3/ by b'g.m2;m3/; we can

write

Pé.g/ D
X

�2P.Z/nSL3.Z/

1X

m2;m3D�1
b'�g.m2;m3/:

Thus, by (31), we can decompose the Poincaré series Pé.g/ as

Pé.g/ D C.'/ �E2;1.g; vC 1/ C Pé�.g/; (32)

where E2;1.g; vC 1/ is the maximal parabolic Eisenstein series on SL3.Z/ and

C.'/ D
Z

R2

'

0

@
1 t2
1 t3
1

1

A dt2 dt3: (33)

To obtain a spectral decomposition, we need to present the Poincaré series Pé.g/
with the maximal parabolic Eisenstein series on SL3.Z/ removed in a more useful
way. To do so, we first write

Pé�.g/ D
X

�2P.Z/nSL3.Z/

1X

m2;m3D�1
.m2;m3/¤.0;0/

b'�g.m2;m3/

D
X

�2P.Z/nSL3.Z/

X

 2.U.Z/nU.R//b
 ¤1

b'�g. /;

where

b'g. / D
Z

U

'.ug/ .u/ du:
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For ˇ 2 H.Z/; we observe that

b'ˇg. / D
Z

U

'.uˇg/ .u/ du D
Z

U

'.ˇˇ�1uˇg/ .u/ du

D
Z

U

'.ˇ�1uˇg/ .u/ du D
Z

U

'.ug/ .ˇuˇ�1/ du; (34)

as '.ˇg/ D '.g/ for ˇ 2 H.Z/ and g 2 G: Setting  ˇ.u/ D  .ˇuˇ�1/; the last
integral in (34) isb'g. ˇ/:

Consider the characters on U.Z/nU.R/:

 m.u/ D e2�imu3 ;

0

@m 2 Z
� and u D

0

@
1 u2
1 u3
1

1

A

1

A :

Since every nontrivial character on U.Z/nU.R/ is obtained as . m/ˇ; for unique
m 2 Z� and ˇ 2 P1;1.Z/nH.Z/; where P1;1.Z/ is the parabolic subgroup of
H.Z/; it follows from (34) that

Pé�.g/ D
X

�2P.Z/nSL3.Z/

X

ˇ2P1;1.Z/nH.Z/

X

m2Z�

b'ˇ�g. 
m/

D
X

�2P1;1;1.Z/nSL3.Z/

X

m2Z�

b'�g. 
m/:

Let

� D
8
<

:

0

@
1

� �
� �

1

A

9
=

;
; U 0 D

8
<

:

0

@
1 �
1

1

1

A

9
=

;
; U 00 D

8
<

:

0

@
1

1 �
1

1

A

9
=

;
:

Then, Pé�.g/ D
X

�2P1;2.Z/nSL3.Z/

X

ˇ2P1;1.Z/n�.Z/

X

m2Z�

Z

U 00

 
m
.u00/ �

�Z

U 0

'.u0u00ˇ�g/ du0
�

du00:

Setting

e'.g/ D
Z

U 0

'.u0g/ du0;

the last expression of Pé�.g/ becomes

Pé�.g/ D
X

�2P1;2.Z/nSL3.Z/

X

ˇ2P1;1.Z/n�.Z/

X

m2Z�

Z

U 00

 
m
.u00/e'.u00ˇ�g/ du00: (35)
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Let

˚.g/ D
X

ˇ2P1;1.Z/n�.Z/

X

m2Z�

Z

U 00

 
m
.u00/e'.u00ˇg/ du00: (36)

We need the following simple observation.

Lemma 1. We have the equivariance

e'.pg/ D jqjvC1 � jajv � jd j�2v�1 �e'.g/;
0

@for p D
0

@
q b c

a

d

1

A 2 GL3.R/
1

A :

Proof. Indeed, since

0

@
1 t

1

1

1

A

0

@
q b c

a

d

1

A D
0

@
q b td C c
a

d

1

A D
0

@
q b

a

d

1

A

0

@
1 .td C c/=q
1

1

1

A ;

we have

e'.pg/ D
Z

U 0

'.u0pg/ du0 D
ˇ
ˇ
ˇ
qa

d2

ˇ
ˇ
ˇ
v �
Z

R

'

0

@

0

@
1 .td C c/=q
1

1

1

Ag

1

A dt

D jqjvC1 � jajv � jd j�2v�1e'.g/:

ut
Assuming g of the form

g D
�
a �
g0
�

.a 2 R
� and g0 2 GL2.R//;

(we can always do using the Iwasawa decomposition) and decomposing it as

g D
�
a �
I2

��
1

g0
�

;

we have

e'.g/ D jajvC1 �e'
�
1

g0
�

:

Since
�
1

D

�

g D
�
a �
Dg0

�

.forD 2 GL2.R//;
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it follows that ˚.g/ defined in (36) descends to a GL2 Poincaré series, with the
corresponding Eisenstein series removed, of the type studied in [7–9]. Setting

'.2/
�
1 x

1

�

D e'

0

@
1

1 x

1

1

A .x 2 R/;

and extending it to GL2.R/ by

'.2/
��
a

d

�

gk

�

D
ˇ
ˇ
ˇ
a

d

ˇ
ˇ
ˇ

3vC1
2 � '.2/.g/; .g 2 GL2.R/; k 2 O2.R//;

we can write

˚

�
a �
g0
�

D jajvC1�jdetg0j� vC1
2 �

X

ˇ2P1;1.Z/nSL2.Z/

X

m2Z�

Z

N

 
m
.n/ '.2/.nˇg0/ dn;

(37)

with N the subgroup of upper-triangular unipotent elements in GL2.R/: Note
that, for

'

�
I2 u
1

�

D �
1C jjujj2�� w

2 ;

we have

'.2/
�
1 x

1

�

D e'

0

@
1

1 x

1

1

A D
Z

U 0

'

0

@u0
0

@
1

1 x

1

1

A

1

A du0

D
Z 1

�1
�
1C u2 C x2�� w

2 du D p� � .
w�1
2
/

� .w
2
/
� �1C x2� 1�w

2 : (38)

Then, by (2.2), (2.3), and (5.8) in [9], it follows that, for an orthonormal basis of
Maass cuspforms which are simultaneous eigenfunctions of all the Hecke operators,
we have the spectral decomposition

˚

�
a �
g0
�

D 1
2

X

F�even

�F.1/L
�3v

2
C 1; F

�
G
�1

2
C i�F I

3vC 1
2

;w� 1
�
jajvC1 jdetg0j� vC1

2 F .g0/

C 1

4�i

Z

<.s/D 1
2

�. 3v
2
C 1

2
C s/ �. 3v

2
C 3

2
� s/

��1Cs � .1 � s/ �.2� 2s/

�G
�
1 � sI 3vC 1

2
;w � 1

�
jajvC1 jdetg0j� vC1

2 E.g0; s/ ds;
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where

G.sI v;w/ D ��vC 1
2
�
��sCvC1

2

�
�
�
sCv
2

�
�
��sCvCw

2

�
�
�
sCvCw�1

2

�

� .wC1
2
/�
�
vC w

2

� :

This decomposition holds provided<.v/ and<.w/ are sufficiently large. Hence, by
(35) and (36), Pé�.g/ has the induced spectral decomposition from GL2,

Pé�.g/

D 1

2

X

F�even

�
F
.1/L

�
3v

2
C 1; F

�

G
�
1

2
C i�

F
I 3vC 1

2
;w � 1

�

E1;2
F .g; vC 1/

C 1

4�i

Z

<.s/D 1
2

�. 3v
2
C 1

2
C s/ �. 3v

2
C 3

2
� s/

��1Cs � .1 � s/ �.2� 2s/ G
�

1 � sI 3vC 1
2

;w � 1
�

�E1;1;1

�

g;
vC 1
2
� s
3
;
2s

3

�

ds:

By Godement’s criterion (see [2]), the minimal parabolic Eisenstein series E1;1;1

inside the integral converges absolutely and uniformly on compact subsets ofG=ZK
for <.v/ sufficiently large. The meromorphic continuation of the Poincaré series
Pé.g/ in .v;w/ 2 C2 follows by shifting the contour similarly to Sect. 5 of [9], or
Theorem 4.17 in [7].

We summarize the main result of this section in the following theorem.

Theorem 2. For <.v/ and <.w/ sufficiently large, the Poincaré series Pé.g/
associated to

'

�
I2 u
1

�

D �
1C jjujj2�� w

2

has the spectral decomposition

Pé.g/ D 2�

w � 2 �E
2;1.g; vC 1/

C 1

2

X

F�even

�F.1/L

�
3v

2
C 1; F

�

G
�
1

2
C i�F I

3vC 1
2

;w � 1
�

E
1;2
F .g; vC 1/

C 1

4�i

Z

<.s/D 1
2

�. 3v
2
C 1

2
C s/ �. 3v

2
C 3

2
� s/

��1Cs � .1 � s/ �.2� 2s/ G
�

1 � sI 3vC 1
2

;w � 1
�

�E1;1;1

�

g;
vC 1
2
� s
3
;
2s

3

�

ds:
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From Theorem 2, the meromorphic continuation of the Poincaré series follows
by similar techniques to those used in [9] or [7]. However, we are not pursuing this
spectral decomposition any further here, as for potential applications, one needs to
use it together with asymptotic information for the weights appearing in the moment
side, information which we do not have at the moment.

Remark 1. Let ' on U be defined by

'

�
I2 u
1

�

D 21�wp�
� .w

2
/
�
1C jjujj2�� w

2 F .w
2
; w
2
IwI 1

1Cjjujj2 /
� .w�1

2
/

;

and consider the Poincaré series Pé.g/ attached to this choice of ': Representing
the hypergeometric function by its power series,

F.˛; ˇI � I z/ D � .�/

� .˛/� .ˇ/
�

1X

mD0

1

mŠ

� .˛ Cm/� .ˇ Cm/
� .� Cm/ zm .jzj < 1/;

and using the last identity in (38), it follows, as in [5], Sect. 7.3, that the Poincaré
series Pé.g/ with v D 0 satisfies a shifted functional equation (involving an
Eisenstein series) as w �! 2 � w (see also [9, 14]).

References

1. Jennifer Beineke and Daniel Bump. Moments of the Riemann zeta function and Eisenstein
series. I. J. Number Theory, 105(1):150–174, 2004.

2. Armand Borel. Introduction to automorphic forms. In Algebraic Groups and Discontinuous
Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 199–210. Amer. Math.
Soc., Providence, R.I., 1966.

3. Daniel Bump. Automorphic forms on GL.3;R/, volume 1083 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1984.

4. J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith. Integral moments
of L-functions. Proc. London Math. Soc. (3), 91(1):33–104, 2005.

5. A. Diaconu and P. Garrett. Subconvexity bounds for automorphic L-functions. J. Inst. Math.
Jussieu, 9(1):95–124, 2010.

6. A. Diaconu, P. Garrett, and D. Goldfeld. Moments for L-functions for GLr � GLr�1. In
preparation: http://www.math.umn.edu/garrett/m/v/.

7. Adrian Diaconu and Paul Garrett. Integral moments of automorphic L-functions. J. Inst. Math.
Jussieu, 8(2):335–382, 2009.

8. Adrian Diaconu and Dorian Goldfeld. Second moments of quadratic Hecke L-series and
multiple Dirichlet series. I. In Multiple Dirichlet series, automorphic forms, and analytic
number theory, volume 75 of Proc. Sympos. Pure Math., pages 59–89. Amer. Math. Soc.,
Providence, RI, 2006.

9. Adrian Diaconu and Dorian Goldfeld. Second moments of GL2 automorphic L-functions. In
Analytic number theory, volume 7 of Clay Math. Proc., pages 77–105. Amer. Math. Soc.,
Providence, RI, 2007.

http://www.math.umn.edu/∼garrett/m/v/


172 A. Diaconu et al.

10. Adrian Diaconu, Dorian Goldfeld, and Jeffrey Hoffstein. Multiple Dirichlet series and mo-
ments of zeta and L-functions. Compositio Math., 139(3):297–360, 2003.

11. W. Duke, J. B. Friedlander, and H. Iwaniec. The subconvexity problem for Artin L-functions.
Invent. Math., 149(3):489–577, 2002.

12. T. Estermann. On certain functions represented by Dirichlet series. Proc. London Math. Soc.,
27(435–448), 1928.

13. Dorian Goldfeld. Automorphic forms and L-functions for the group GL.n;R/, volume 99 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006.
With an appendix by Kevin A. Broughan.

14. A. Good. The convolution method for Dirichlet series. In The Selberg trace formula and related
topics (Brunswick, Maine, 1984), volume 53 of Contemp. Math., pages 207–214. Amer. Math.
Soc., Providence, RI, 1986.

15. I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Academic Press
Inc., Boston, MA, Fifth edition, 1994. Translation edited and with a preface by Alan Jeffrey.
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Chapter 8
A Trace Formula of Special Values
of Automorphic L-Functions

Bernhard Heim

Abstract Deligne introduced the concept of special values of automorphic
L-functions. The arithmetic properties of these L-functions play a fundamental
role in modern number theory. In this chapter, we prove a trace formula which
relates special values of the Hecke, Rankin, and the central value of the Garrett
triple L-function attached to primitive new forms. This type of trace formula is
new and involves special values in the convergent and nonconvergent domain of
the underlying L-functions.

Keywords Arithmetic trace formula • Garrett triple L-function • Critical values
of L-functions • Saito-Kurokawa correspondence

8.1 Introduction and Statement of Results

The main result of this chapter is the discovery of an arithmetic trace formula. This
formula relates special values of various kinds of automorphic L-functions. Our
previous knowledge of the basic facts on the arithmetic nature of special values
is built on the fundamental works of some of the pioneers in this field: Siegel
[Si69], Klingen [Kl62], Shimura [Sh76], Zagier [Za77], Deligne [De79], and Garrett
[Ga87].

Let g 2 Sk.SL2.Z// be a primitive (normalized Hecke eigenform) cusp form of
integer weight k. Let .fj /j 2 S2k�2 and .gi /i 2 Sk be primitive eigenbases. The
trace formula compares the weighted average

P
j of special values of the nontrivial

piece of the triple L-functionL.fj ˝ Sym2.g/; ck/ evaluated at the central value ck
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and the average
P

i of the triple L-functionL.g˝g˝gi ; 2k�2/ and an error term
expressed by special values related to the Rankin L-function attached to g. This
special value L.fj ˝Sym2.g/; ck/ and the related triple L-function recently played
a prominent role in the proof of the Gross-Prasad conjecture for Saito-Kurokawa
lifts given by Ichino [Ich05]. More generally, Ikeda stated in [Ik06] a conjecture on
the explicit value of a certain period which involves the central value of L-functions
(Conjecture 5:1) of the type studied in this chapter. There, the nonvanishing of the
central value is important. Recently, some progress has been obtained by Katsurada
and Kawamura [KK06]. The focus of this chapter is the proof of the arithmetic trace
formula and not applications. Nevertheless, we believe that there will be applications
towards the problems proposed by Iwaniec and Sarnak in the survey article [IS02].

Before we go into more details, we put our results into a more general framework
and give relations to other results.

Since the days of Euler (1707–1783), the analytic and arithmetic properties of
infinite series of type

L.s/ WD
1X

nD1
A.n/ n�s .s 2 C/ (1)

at integral values m D : : : � 2;�1; 0; 1; 2; : : : have always revealed significant
invariants and properties of the underlying motivic object related to the sequence
A.1/; A.2/; : : : of complex numbers. Significant series arise when the functionA.n/
is multiplicative and L.s/ converges absolutely and locally uniformly if Re.s/ is
large enough. These series are nowadays called L-functions.

Examples are given by the Dedekind zeta functions �K.s/, the Hasse-Weil zeta
functionsZE.s/, the Hecke L-functionL.f; s/, and the Rankin L-functionsD.f; s/
attached to algebraic number fields K , elliptic curves E , and primitive elliptic
cusp forms f . They have a meromorphic continuation to the whole complex plane
and satisfy a functional equation. Let us just recall some interesting properties.
The Riemann zeta function �.s/ WD �Q.s/ has a single simple pole at s D 1. The
nonvanishing at �.1Ci t/ for t 2 R directly leads to the prime number theorem. The
Kronecker limit formula of �K gives information on the regulator, class number, and
other invariants of the number field K . From Euler, we know that

�.2m/ D .�1/m�122m�1B2m
.2m/Š

�2m for m 2 N: (2)

Here, Bm denotes the mth Bernoulli number. Let �.z/ be the Ramanujan function,
the unique primitive cusp form of level 1 of weight 12, with Fourier coefficients

.n/. It is known that up to normalization, the values of the Rankin-type L-function
D.�; s/ at integral values within the “critical strip” are rational numbers, for
example,

D.�; 14/ D �.6/

�.3/

1X

nD1


.n/2

n14
D 414

14Š
�17 k � k2 : (3)
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Let h ; i be the Petersson scalar product and k k the Petersson norm (see (14) for
details). Then k � k2D 1:03536205679� 10�6 with 12-digit accuracy (see[Za77]).

The concept of critical values of a motivic L-function and conjectures on the
arithmetic nature has been introduced by Deligne. Let bL.s/ WD �.s/ L.s/ be the
completion of L.s/ at infinity, i.e., �.s/ is essentially a product of � -functions with
functional equationbL.s/ D bL.w � s/, w 2 N. Then m 2 Z is a critical value if and
only if �.m/ and �.w�m/ are finite. Deligne predicts that thenL.m/ D algebraic �
˝period. Moreover, a certain functoriality of the action of the automorphism of the
absolute Galois group over the involved number fields can be given.

Let g 2 Sk be primitive with Fourier coefficients .an.g//n and Satake parameter
(see (15)) ęp; ěp for all finite prime numbers p. For simplification, we put

Ap.g/ WD
�
ęp.g/ 0

0 ě
p.g/

�

: (4)

Then Hecke attached to g the L-function

L.g; s/ WD
Y

p

˚
det

�
12 � Ap.g/ p�s���1

for Re.s/ >
k

2
: (5)

With this notation, the Rankin L-function D.g; s/ and the triple L-function
L.f1 ˝ f2 ˝ f3; s/ are defined by

D.g; s/ WD �.s � k C 1/�1
Y

p

˚
det
�
14 �Ap.g/˝ Ap.g/ p�s���1

for Re.s/ > k: (6)

L.f1 ˝ f2 ˝ f3; s/
WD
Y

p

˚
det
�
18 �Ap.f1/˝ Ap.f2/˝ Ap.f3/ p�s���1

for Re.s/� 0: (7)

Here, f1; f2; andf3 are primitive elliptic cusp forms. Let bL.g; s/; bD.g; s/, etc., be
the completed L-function, see (23)–(30). They all have a meromorphic continuation
to the whole complex plane and satisfy certain functional equations. From this, the
critical values can be explicitly determined. In contrast to the Rankin L-function,
the center of the Hecke L-function and the triple L-function is always a critical
point. The Hecke L-function vanishes in the center if the weight k is congruent to 2
modulo 4 and the triple L-function for the full modular group SL2.Z/. This follows
from the sign in the functional equation.

Recently, a piece of the triple L-function L.f ˝ Sym2.g/; s/ attached to g 2 Sk
and f 2 S2k�2 primitive (see (22) for an explicit definition) showed up in the proof
of the Gross-Prasad conjecture of Saito-Kurokawa lifts. Among other things, Ichino
[Ich05] showed that L

�
f ˝ Sym2.g/; 2k � 2� is finite.
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More precisely, we have the decomposition

L.f ˝ g ˝ g; s/ D L �f ˝ Sym2.g/; s
� � L.f; s � k C 1/: (8)

Work of Deligne predicts that the unique critical value is given by 2k � 2 which
matches with the center of the functional equation. Now, the vanishing of the
triple L-function becomes obvious since the Hecke L-function of f vanishes
at the center. So it remains an open question to study the arithmetic nature of
L.f ˝ Sym2.g/; s/. Ichino [Ich05] proved that the value is zero if and only if a
certain period vanishes. Moreover, he described the transformation of the special
value under any automorphism of C. Recently, we have proven [Hei05]: Let g be
given. Then there exists at least one f such that the value

L.f ˝ Sym2.g/; 2k � 2/ ¤ 0: (9)

Starting with f 2 S2k�2 the property (9) is not always possible. Since, for example,
in the case k D 18 we have S10 D 0. For general k, we cannot say much.

Theorem: Arithmetic Trace Formula. Let k be an even positive integer. Let g 2 Sk
be a primitive Hecke eigenform. Then we have

dimS2k�2X

iD1

bL.fi ; 2k � 3/ bL
�
fi ˝ Sym2.g/; 2k � 2�

k fi k2k g k4

D .�1/k=2 � 2k�2
dimSkX

jD1

bL.g ˝ g ˝ gj ; 2k � 2/
k g k4k gj k2

C�1
 
bD.g; 2k � 2/
�

k
2 �1 k g k2

!2

C �2
bD.g; 2k � 2/
�

k
2 �1 k g k2

: (10)

Here, .fi /i and
�
gj
�
j

are primitive Hecke eigenbases of S2k�2 and Sk, and the
constants �1 and �2 can be explicitly given. We have

�1 D .�1/.�1/k=224 � .k/2

.2k � 2/B2k�2� .k=2/2
; (11)

�2 D .�1/.�1/k=222kC1 � .k C 1/
.2k � 2/Bk� .k=2/ : (12)

Remark 1. We would like to note that in this chapter, we actually prove a more
general trace formula. It involves the products of roots of L-values of
type bL

�
fi ˝ Sym2.gi�/; 2k � 2

�
on the left side and the more general triple L-

function of typebL.gi1 ˝gi2 ˝gj ; 2k� 2/ on the right side (see (62)). Here, i� D i1
or i2.
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Remark 2. All the totally real algebraic numbers (see the Sects. 8.2.1 and 8.2.3 for
more details)

bL.fi ; 2k � 3/
˝�.fi /

;
bL.g ˝ g ˝ gj ; 2k � 2/
k g k2k g k2k gj k2 ; and

bD.g; 2k � 2/
�

k
2 �1 k g k2

(13)

are given by evaluating an infinite product, which locally does not vanish in
the domain of absolute and uniform convergence. Let f; : : : ; ˚ be any Hecke
eigenforms, then Kf;:::;˚ denotes the field over Q generated by the corresponding
eigenvalues. We putKk if we take all the eigenvalues of an Hecke eigenbasis of Sk .
Then the values given in (13) are units inKfi ;Kg;gj , andKg . This is not surprising.
But new is the fact that these values can be explicitly used to study the central
value of the L-functionL

�
fi ˝ Sym2.gi�/; s

�
at the center of symmetry, at least on

average.

8.2 Automorphic L-Functions

Let us recall some notation and basic facts on modular forms and L-functions.
Moreover, we add some properties of Jacobi forms. For the general setting we refer
the reader to Iwaniec [Iw97], Eichler and Zagier [EZ85], and Klingen [Kl90]. The
overview article of van der Geer [Ge06] is also very useful.

8.2.1 Basics on L-Functions

Let Hg denote the Siegel upper half-space of genus g and let �g WD Spg.Z/ be the

Siegel modular group of degree g. For k, an even nonnegative integer, let M.g/

k be
the space of Siegel modular forms of weight k and genus g with respect to �g. Let

S
.g/

k be the subspace of cusp forms. We recall the definition of the Petersson scalar
product on Sgk :

hF ; Gi WD
Z

�gnHg
F .Z/ G.Z/ det .Im.Z//kCg�1 dZ: (14)

Hence, k F k2D hF ; F i. To simplify notation, we drop the index g in the case
g D 1. Examples of Siegel modular forms are given by Eisenstein series. Let Z 2
Hg be an element of the Siegel upper half-space and let k > g C 1 be even. Then

E
g

k .Z/ WD
X

�
A B
C D

�
2�1n�g

det.CZ CD/�k;

where�1 WD
˚�

A B
0 D

� 2 �g
�
: This series is absolutely and locally uniformly conver-

gent onHg and is an element ofM.g/

k . We denote its Fourier coefficients byAE
g
k .T /,
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where T 2 Ag runs through all half-integral symmetric semipositive matrices of size

g. Here, AE
g
k .0/ D 1. It is useful to know that the coefficients AE

g
k .T / are rational

and have bounded denominators.
Let g 2 Sk with Fourier coefficients .an.g//

1
nD1. The cusp form g is called

primitive if g is a Hecke eigenform and if a1.g/D 1. Let us assume that g
is primitive. Then we attach to every prime number p the local parameters
ęp.g/; ěp.g/ 2 C defined by the equations

ęp.g/C ěp.g/ D ap.g/ and ęp.g/ � ěp.g/ D pk�1: (15)

Then the Satake parameters are given by

˛p.g/ WD p� k�1
2 ęp.g/ and ˇp.g/ WD p� k�1

2 ěp.g/: (16)

By Deligne’s proof of the Ramanujan–Petersson conjecture in [De71], we have
j˛p.g/j D jˇp.g/j D 1. For further simplification, we put

Ap.g/ WD
�
ęp.g/ 0

0 ě
p.g/

�

: (17)

We begin now with the definition of the L-function L.g; s/ attached to g of Hecke
type. We have the absolute convergent infinite product over all prime numbers

L.g; s/ WD
Y

p

˚
det

�
12 � Ap.g/ p�s���1

for Re.s/ >
k C 1
2

: (18)

The standard L-function D.g; s/ or sometimes called the symmetric square
L-function of g has been already defined in the introduction (6). We also have the
identity

L.g; s/ D
1X

nD1
an.g/ n

�s ; (19)

D.g; s/ D �.2s � 2k C 2/
�.s � k C 1/

1X

nD1
an.g/

2n�s : (20)

Let now f 2 S2k�2 and g 2 Sk be primitive. Then, we put

Sp.g/ WD
0

@
ęp.g/

2 0 0

0 pk�1 0

0 0 ě
p.g/

2

1

A : (21)
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The next L-function L.f ˝ Sym2.g/; s/ is defined by

L.f ˝ Sym2.g/; s/ WD
Y

p

˚
det

�
16 � Ap.f /˝ Sp.g/ p�s���1

for Re.s/� 0:

(22)

Finally, we have the triple L-function (7) attached to primitive Hecke eigenforms
fj 2 S�.fj / for j D 1; 2; 3.

All these L-function have a meromorphic continuation to the whole complex
s-plane. They also have a functional equation. This can be stated in the “right” way
if we add the local factors corresponding to the Archimedean prime number. Let
�R.s/ WD �� s

2 � .s=2/ and �C.s/ WD 2 .2�/�s � .s/ be the normalized� -function.
Then we have for g 2 Sk primitive the completed L-functions

bL.g; s/ WD �C.s/ L.g; s/; (23)

bD.g; s/ WD �R.s � k C 2/�C.s/D.g; s/: (24)

Then it is well known that bL.g; s/ and D.g; s/ are entire function on the whole
s-plane. They have the functional equation

bL.g; s/ D .�1/k2 bL.g; k � s/ (25)

and
bD.g; s/ D bD.g; 2k � 1 � s/: (26)

In the setting of the triple L-function, we assume that �.f1/ > �.f2/ > �.f3/. Since
we are mainly interested in the balanced case, we assume that �.f2/ C �.f3/ >
�.f1/. Then

bL.f1 ˝ f2 ˝ f3; s/ WD �C .s/ �C .s � �.f1/C 1/�C .s � �.f2/C 1/
�C .s � �.f3/C 1/L .f1 ˝ f2 ˝ f3; s/: (27)

This function has a meromorphic continuation to the whole s-plane and satisfies the
antisymmetric functional equation

bL .f1 ˝ f2 ˝ f3; s/ D �bL.f1 ˝ f2 ˝ f3; �.f1/C �.f2/C �.f3/� 2 � s/ :
(28)

This L-function vanishes at the center s0 D �.f1/C�.f2/C�.f3/
2

� 1. Moreover, let
f 2 S2k�2 and g 2 Sk be primitive. Then we have by a straightforward calculation
that

L.f ˝ g ˝ g; s/ D L �f ˝ Sym2.g/; s
� � L.f; s � k C 1/: (29)
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We obtain the following completed L-function

bL
�
f ˝ Sym2.g/; s

�

WD �C .s/ �C .s � k C 1/�C .s � 2k C 3/L.f ˝ Sym2.g/; s/: (30)

It has a meromorphic continuation to the whole complex s-plane and has the
functional equation s 7! 4k � 4 � s.

8.2.2 Saito-Kurokawa Correspondance

Let MC
k� 1

2

.�0.4// be Kohnen’s plus space. This is the space of modular forms of

half-integral weight k � 1
2

related to the group

�0.4/ WD

�
a b

c d

�

2 SL2.Z/j c � 0 .mod 4/

�

;

where certain Fourier coefficients are zero. Let SC
k� 1

2

.�0.4// be the subspace of cusp

forms. Let Jk;1 be the space of Jacobi forms of weight k and index 1 and J cusp
k;1 the

subspace of cusp forms. Jacobi forms are holomorphic functions on H � C which
satisfy certain conditions (for details, see the standard reference [EZ85]).

Let hj 2 SC
k� 1

2

.�0.4//. Then there exists a Jacobi cusp form ˚j 2 J cusp
k;1 via

the isomorphism given in Theorem 5.4 in [EZ85]. This isomorphism is given on
the level of Fourier coefficients and is compatible with the action of the Hecke
algebra of Jacobi forms and modular forms of half-integral weight. Let .�.n//n
be the eigenvalues. Then f .z/ D P

n �.n/e
2�inz 2 S2k�2 is a primitive Hecke

eigenform. This is the Shimura isomorphism.
Moreover, these spaces are isomorphic to the (cuspidal) Maass Spezialschar, a

certain subspace of S.2/k . Let further h ; i, h ; iJ , and h ; iC denote the Petersson

scalar products on M.g/

k , the space of Jacobi forms, and the plus space. Moreover,
let k k� be the related Petersson norm.

Let g 2 Sk be primitive. Then we denote by Kg the field generated by the
eigenvalues of g. It is well known that Kg is a totally real number field. Let finitely
many Hecke eigenforms f1; : : : ; fl be given. They can be Siegel modular forms,
Jacobi forms, or modular forms of half-integral weight. Then we denote byKf1;:::;fl

the field generated by the eigenvalues. Let f 2 S2k�2 primitive be given. Then we
can choose h 2 SC

k� 1
2

.�0.4// via the Shimura correspondance such that the Fourier

coefficients are all contained in Kf . Similarly, we can choose the related Jacobi
form ˚ . Such h and ˚ we call normalized.
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8.2.3 Algebraicity of Critical Values of Automorphic
L-Functions

The general philosophy of Deligne [De79] predicts for any motivic Dirichlet
series L.s/ the structure of the arithmetic nature of certain “critical” values. The
underlying assumption is that the Dirichlet series arise from some algebraic variety,
Galois representation, or modular form and has a functional equation of the form

bL.s/ D �.s/ L.s/ D "bL.w� s/; " is root of unity, w is a constant; (31)

and �.s/ is a � -factor. Then all integers m for which �.m/ and �.w �m/ are finite
are called critical values. It is expected that L.m/ D algebraic � ˝ , where ˝ is a
period “about which something nice can be said” (Don Zagier [[Za77], p. 118]).

(a) Hecke L-function L.g; s/
Let g 2 Sk be primitive. Then the critical values of the L-function L.g; s/ are
given by the integers m D 1; 2; : : : ; k � 1. We want also to remark that the
center m0 D k=2 is also a critical value and L.g;m0/ D 0 if k � 2 .mod 4/.
We know from the result of Eichler–Shimura–Manin that there exist two periods
˝�.g/;˝C.g/ 2 R such that for the critical valuesm D k

2
; : : : ; k � 1, we have

bL.g;m/

˝.�1/m.g/
2 Kg: (32)

Here, we identify .�1/k withC or� in the obvious way. Analogous information
for the other critical values follow directly from the functional equation (see also
[Ge06], Sect. 26).

(b) Rankin L-functionD.g; s/
Let g 2 Sk be primitive. Then the critical values of the Rankin-type L-function
D.g; s/ are given by m D 1; 3; : : : ; k � 1 and k; k C 2; : : : ; 2k � 2. Here, the
centerm0 D 2k�2

2
is not an integer and hence not a critical value. We have

D.g;m/

�2m�kC1 k g k2 D
�

21�m�
�
m � k C 2

2

�

� .m/

��1
�

k�m
2

bD.g;m/

k g k2 2 Kg

(33)

for the even critical values. Supplementarily, we deduce from the functional
equation that for the odd critical values, we have D.g;m/=.�m k g k2/ 2 Kg .

(c) Triple L-function
For the triple L-functionL.f1 ˝ f2 ˝ f3; s/ with fj 2 S�j , we fix the ordering
�.f1/ > �.f2/ > �.f3/ and assume that we are in the situation of the balanced
case �.f2/C �.f3/ > �.f1/. Then the critical valuesm are given by

�.f1/ 6 m 6 �.f2/C �.f3/� 2: (34)
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Here, the centerm0 D �.f1/C�.f2/C�.f3/
2

�2 is also a critical value. It can deduced
from the functional equation and a finiteness theorem that the triple L-function
vanishes in the center (see Orloff ([Or87]). Moreover, we have

L.f1 ˝ f2 ˝ f3;m/
�4mCA k f1 k2k f2 k2k f3 k2 2 Kf1;f2;f2 ; (35)

with A D 3 � �.f1/� �.f2/� �.f3/.
Examples:

(a) Let f1 D f 2 S2k�2 and f2 D f3 D g 2 Sk be primitive. Then we have exactly
one critical value m D 2k � 2. This is also equal to the center. Hence, we have
L.f ˝ g ˝ g; 2k � 2/ D 0.

(b) Let �.f1/ D �.f2/ D �.f3/ D k. Then we have

bL .f1 ˝ f2 ˝ f3; 2k � 2/
k f1 k2k f2 k2k f3 k2 2 Kf1;f2;f2 : (36)

(c) L-function L.f ˝ Sym2.g/; s/

Let f 2 S2k�2 and g 2 Sk be primitive. Then there is one critical value, namely,
m D 2k � 2, for the L-function L.f ˝ Sym2.g/; s/. Moreover, we have

bL
�
f ˝ Sym2.g/; 2k � 2�

˝C.f / k g k4 2 Kf;g: (37)

(see also Ichino [Ich05] for details).

8.3 Numerical Verification of the Trace Formula

We consider the arithmetic trace formula stated in the introduction for the weight
k D 12. Let � 2 S12 and f 2 S22 be the unique primitive Hecke eigenforms of
weight 12 and 22. Then we have

�.z/ D q � 24q2 C 252q3 � 1472q4 C 4830q5 � 6048q6 C � � � D
1X

nD1


.n/qn

f .z/ D q � 288q2 � 128844q3 � 2014208q4 C 21640950q5 C � � � D
1X

nD1

b.n/qn:
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The Petersson norm a Hecke eigenform g 2 Sk can be identified with a special value
of the standard zeta functionD.g; s/ of , this is due to Rankin. The correspondance
is given by

k g k2D .k � 1/Š
22k�1�kC1D.g; k/: (38)

The special value D.g; k/ can be determined by meromorphic continuation. There
is a useful program of Dokchister [Do04] to calculate such values. This leads to

k � k2 D 0:00000103536205680432092234 : : :
k f k2 D 0:00002009981832327430645231 : : :

Our first goal is to determine the numerical value of the left side of the trace formula.
The value of bL

�
f ˝ Sym2.�/; 22

�
can again be determined with the program of

Dokchister (see also Ichino [Ich05]). We have

L.f; 21/ D 0:9998499414258382599524516 : : :
bL.f; 21/ D 84:2000215244544365950065601 : : :

bL
�
f ˝ Sym2.�/; 22

� D 0:75704862297802829562086575 : : :

Hence,
dimS2k�2X

iD1

bL.fi ; 2k � 3/ bL
�
fi ˝ Sym2.g/; 2k � 2�

k fi k2k g k4 (39)

for k D 12 is equal to the numerical value

2958416757652464643:22953541 : : : (40)

This number has been obtained directly. From the proof of the trace formula, we
know that this number should actually be a rational number (see (67)).

A careful analysis leads to the candidate

256 � 36 � 54 � 7
131 � 593 (41)

which coincides with 2958416757652464643:22953541 : : : in the range of
precision.

On the right side, we first determine the value of

bD.g; 2k � 2/
�

k
2�1 k g k2

(42)
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for g D �. We obtain directly

D.�; 22/ D 0:99964571112477139783572962 : : :

and hence,

bD.�; 22/

�5 k � k2 D 110841:734096772163845718240 : : : �

The constants �0; �1; and �2

�0.k/ D .�1/k=22k�2;

�1.k/ D .�1/.�1/k=224 � .k/2

.2k � 2/B2k�2� .k=2/2
;

�2.k/ D .�1/.�1/k=222kC1 � .k C 1/
.2k � 2/Bk� .k=2/

are explicitly given. Let k D 12. Then

�0 D 10240 D 210

�1 D �12995908:891263210741088 : : :D .�1/ � 214 � 37 � 52 � 72 � 23
131 � 593

�2 D 24052904584483:936324167872648 : : :D 232 � 35 � 52 � 72 � 13
691

:

We determine the special value of the triple L-functionL.�˝�˝�; s/ at s D 22
via the local factors of the Euler product by calculating the Satake parameters of�.
Hence, we obtain

L.�˝�˝�; 22/ D 0:99602837097824593011931492 : : : : (43)

Then we obtain for k D 12,

dimSkX

jD1

bL.g ˝ g ˝ gj ; 2k � 2/
k g k4k gj k2

is equal to

441423252695906:208342030317 : : : :

So, finally, we have for the expression

�0 �
bL.�˝�˝�; 22/

k � k6 C �1 �
 
bD.�; 22/

�5 k � k2
!2

C �2 �
bD.�; 22/

�5 k � k2
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the explicit value

2958416757652464643:22111654 : : : : (44)

This shows that the arithmetic trace formula for the weight kD 12 can be numeri-
cally verified.

8.4 Proof of the Arithmetic Trace Formula

This section is devoted to the arithmetic trace formula stated in the introduction. We
give a proof which is constructive and explicit. Moreover, as already remarked, we
give a more general formula which may be useful for further applications.

Proof. We prove the theorem with an extension of a technique related to the
doubling method in the setting of modular and Jacobi forms. There, the so-called big
cell plays a fundamental role. It is related to the unique nonnegligible orbit which
leads to an integral representation of an automorphic L-function. For our purpose,
it is not enough to know one orbit; we need them all. Actually, we need the whole
pullback formula related to the orbits. What does this mean? Let us fix the diagonal
embedding H �H ,! H2. Here,

.Z;W / 7!
�
Z 0

0 W

�

: (45)

Similarly, we will make use of the diagonal embeddingH�H�H into H3. Let
�
gj
�
j

be a Hecke eigenbasis of Sk with a1.gj / D 1, i.e., gj is assumed to be primitive.
This always exists. Garrett [Ga84] has discovered the following beautiful formula:

E
.2/

k jH�H D Ek ˝ Ek C
dimSkX

jD1
dj gj ˝ gj : (46)

It had been well-known since the time of Witt that the restriction of a modular
form of genus n on blocks of size n1C � � �C nl D n is an element ofM.n1/

k ˝ � � �˝
M

.nl/

k . That the image in the case n D 2 is contained in the “diagonal” of a Hecke
eigenbasis was surprising. Most important is that the numbers dj have a significant
arithmetic meaning. They are related to a critical value of the Rankin L-function.
From this, we can deduce that these numbers are elements of Kgj and are not zero.
They can be explicitly determined:

dj D .�1/ k2 23�k�D.gj ; 2k � 2/
.k � 1/�.k/�.2k � 2/ k gj k2 : (47)

The situation in the case 3D 1 C 1 C 1 is different. Garrett [Ga87] computed the
scalar product of the restricted Eisenstein series with three elliptic cusp forms.
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A detailed analysis and combination of the two papers of Garrett (see also [He99])
leads to the complete pullback formula. We obtain

E
.3/

k jH�H�H D Ek ˝ Ek � Ek C
dimSkX

jD1
dj Ek � gj ˝ gj

C
dimSkX

jD1
dj gj ˝ Ek ˝ gj C

dimSkX

jD1
dj gj ˝ gj ˝Ek

C
dimSkX

i;j;mD1
li;j;m gi ˝ gj ˝ gm: (48)

Here, we have li;j;m 2 K�
gi ;gj ;gm

, the composition field of Kgi ;Kgj ; andKgm .
These numbers are essentially critical values of the triple L-function in the sense
of Deligne. They had been first explicitly determined by Garrett [Ga87] (see also
Mizumoto [Mi97], page 192, and Heim [He99], page 236, for the explicit value of
the constants and further explanation):

li;j;m D .�1/ k2 � 2�5kC8 � .k � 1/3
� .k/

� �3�2k L.gi ˝ gj ˝ gm; 2k � 2/
�.2k � 2/ �.k/ k gi k2k gj k2k gm k2 : (49)

Here, we would like to remark that all three cusp forms have the same weight.
For a more general formula allowing different weights, one has to use differential
operators. Moreover, the big cell is related to

dimSkX

i;j;mD1
li;j;m gi ˝ gj ˝ gm:

But we will see immediately that one also needs one of the negligible orbits for the
trace formula.

The next step is to extract the first coefficient of the Fourier expansion with
respect to the third variable. It is important that this procedure is the same as
starting with a Fourier-Jacobi expansion of the involved Siegel Eisenstein series,
then extracting the first coefficient, and then restricting the domain H2�C2 to H�H.
Let Bk be the k-th Bernoulli number. Then we have

�2k
Bk

Ek ˝ Ek C
dimSkX

jD1
dj Ek ˝ gj C

dimSkX

jD1
dj gj ˝ Ek

C�2k
Bk

dimSkX

jD1
dj gj ˝ gj C

dimSkX

i;j;mD1
li;j;m gi ˝ gj : (50)
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Here, we would like to mention that it turns out to be very convenient to have
normalized our Siegel Eisenstein series, such that the 0th coefficient is always one
since it is compatible with restricting the Eisenstein series to the diagonal.

Let ıi;j D 1 if i D j and 0 otherwise. Then the coefficient of the basis element
gi ˝ gj 2 Sk ˝ Sk is given by

ıij dj � -2k

Bk
C

dimSkP

mD1
li;j;m : (51)

Now, we do something which we have not found yet in the literature. We determine
a second pullback formula of our Eisenstein series, with respect to a not obvious
embedding of the Jacobi spaces HJ �HJ into H3 and obtain something new. Here,
HJ WD H � C. We start by looking directly at the Fourier-Jacobi expansion of the
Eisenstein series of genus 3. It is convenient to parameterize elements of H3 in the
following way:

Z D
0

@

1 z z1
z 
2 z2
z1 z2 
3

1

A : (52)

We fix the diagonal embedding HJ �HJ ,! H3 given by

.
1; z1/ ; .
2; z2/ 7!
0

@

1 0 z1
0 
2 z2
z1 z2 
3

1

A : (53)

With this notation, the Fourier-Jacobi expansion of E.3/

k .Z/ with respect to 
3 is
given by

E
.3/

k .Z/ D
1X

nD0
e
.3/

k;n ..

1 z
z 
2 / ; .z1; z2// e2�in
3 : (54)

The Fourier-Jacobi coefficients are Jacobi forms on H2�C2 of weight k and index n.
By switching to Jacobi Eisenstein series and having a “compatible” normalization,
we normalize the Jacobi Eisenstein series in such a way that the 0-th Fourier
coefficient is equal to 1. In this case, we have

E
J;2
k;n ..


1 z
z 
2 /; .z1; z2// D

Bk

�2k �k�1.n/
e
.3/

k;n ..

1 z
z 
2 /; .z1; z2//: (55)

Here, �k�1.n/ WD P
d jn dk�1. Let

�
˚j
�
j

be a normalized Hecke eigenbasis of

J
cusp
k;1 , i.e., a Hecke eigenbasis such that all the Fourier coefficients are contained

in the field K˚j generated by all the eigenvalues. Let fj 2 S2k�2 be primitive and
correspond to˚j via the Shimura correspondance. Then

�
fj
�
j

is a Hecke eigenbasis
of S2k�2 with the same eigenvalues. Obviously, we have Kfj D K˚j . Arakawa
[Ar94] found out that also in the setting of Jacobi forms the doubling method has a
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certain interpretation. But it turned out that the underlying Hecke-Jacobi theory is
much more complicated as expected [AH98, He01]. But anyway, some results can
be obtained. We deduce from [Ar94]

E
J;2
k;1 jHJ�HJ D EJ

k;1 ˝ EJ
k;1 C

dimJ
cusp
k;1X

mD1
˛m ˚m ˝ ˚m: (56)

Here, EJ
k;1 is the Jacobi-Eisenstein series of weight k and index 1 on H � C as

introduced in [EZ85]. The numbers ˛j are related to the critical values of the Hecke
L-function attached to fj . We have

˛m D .�1/k=2� 21�k
.k � 3=2/

L.fm; 2k � 3/
k ˚m k2 �.2k � 2/ : (57)

For details, see [Ar94, He01]. Since up to normalization EJ
k;1 is the first Fourier-

Jacobi coefficient of E.2/

k and these Eisenstein series are in the Maass Spezialschar,
we have

EJ
k;1jH D Ek C

Bk

�2k
dimSkX

jD1
dj gj : (58)

This formula can be deduced from the fact that the Siegel Eisenstein series of genus
2 is an element from the so-called Maass Spezialschar. It is then an easy exercise to
obtain the formula. Further, we have formally that

˚mjH D
dimSkX

jD1
�mj gj : (59)

From the arithmetic of the Fourier coefficients of the Jacobi form, we can deduce
that �mj are totally real algebraic numbers. Let now hm be the modular form of half-
integral weight directly related to the Jacobi form ˚m via the isomorphism given in
[EZ85], Theorem 5.4 (see also Sect. 8.2.2). Then we can combine Proposition 4.3
given in [He98] and the explicit description of Ichino [Ich05] of the square of the
pullback of a Saito-Kurokawa lift. Again, by a straightforward calculation, we get

�
�mj

�2 D 2�k k hm k2
k fm k2k gj k4

bL
�
fm ˝ Sym2.gj /; 2k � 2

�
: (60)

Hence, we obtain the expression

Bk

�2k di � dj C
�2k
Bk

dimS2k�2X

mD1
˛m �

m
i �

m
j : (61)
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for the coefficients of gi ˝ gj in the pullback formula of �2k
Bk
E
J;2
k;1 jH�H. In the next

step, we compare the two pullback formulas one in the setting of modular forms
and the other deduced from the work of Arakawa in the setting of Jacobi forms.
This leads to

ıij dj � -2k

Bk
C

dimSkX

mD1
li;j;m D Bk

�2k di � dj C
�2k
Bk

dimS2k�2X

mD1
˛m �

m
i �

m
j : (62)

This formula is the heart of our approach. It contains much more information than
we use at the moment. To prove the trace formula, we restrict ourself to the case
i D j . We want to mention that if i ¤ j , then on one side, the formula simplifies
because the summand ıij dj � -2k

Bk
disappears. But, on the other side, we only know

the value of
�
�mi
�2

which is a totally real algebraic number. So still, the delicate
question of the sign of the root remains open. Nevertheless, we obtain from (24)
and (47) the explicit formula

dj D � 25�2k � � .k C 1/
� .k=2/

� 1

Bk B2k�2
�
bD.gj ; 2k � 2/
�

k
2�1 k gj k2

: (63)

Moreover, from (27) and (49), we obtain

lj;j;m D � 23�3k � k � .2k � 2/
Bk B2k�2

bL.gj ˝ gj ˝ gm; 2k � 2/
k gj k2 k gj k2 k gm k2 : (64)

And from (23) and (57), we obtain

˛j D .�1/ k2 21�k � 2k � 2
B2k�2

bL.fj ; 2k � 3/
k ˚j k2 : (65)

Let hj 2 SC
k� 1

2

.�0.4// be normalized and related to˚j 2 J cusp
k;1 via the isomorphism

given in Theorem 5.4 in ([EZ85]. Then we obtain, for example, from ([KS89],
Sect. 2), the transformation law for the square of the norms given by k ˚j k2D
22k�3 k hj k2. This leads to

˛j D .�1/ k2 24�3k � 2k � 2
B2k�2

bL.fj ; 2k � 3/
k hj k2 : (66)

Then we have

˛j

�
�mj

�2 D �
bL.fm; 2k � 3/bL

�
fm ˝ Sym2.gj /; 2k � 2

�

k fm k2 � k gj k4 : (67)
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Here, � D .�1/ k2 24�4k 2k�2
B2k�2

. Summarizing everything and plugging into (62), this
leads to

� �2k
Bk

� .k C 1/
� .k=2/

� 25-2k

BkB2k�2

bD.gj ; 2k � 2/
�

k
2 �1 k gj k2

� 23�3k k � .2k � 2/
Bk B2k�2

dimSkX

tD1

bL.gj ˝ gj ˝ gt ; 2k � 2/
k gj k2 k gj k2 k gt k2

D Bk

�2k 2
10�4k � .k C 1/2

� .k=2/2
� 1

B2
kB

2
2k�2

 
bD.gj ; 2k � 2/
�

k
2 �1 k gj k2

!2

C .�1/ k2 �2k
Bk

24�4k
2k � 2
B2k�2

dimS2k�2X

mD1

bL.fm; 2k � 3/bL
�
fm ˝ Sym2.gj /; 2k � 2

�

k fm k2 � k gj k4 :

(68)

Finally, we obtain by a straightforward calculation the desired result.

References

[Ar94] T. Arakawa: Jacobi Eisenstein series and a basis problem for Jacobi forms. Comm.
Mathematici Universitatis Sancti Pauli. 43 (1994), 181–216

[AH98] T. Arakawa, B. Heim: Real analytic Jacobi Eisenstein series and Dirichlet series attached
to three Jacobi forms. Max-Planck-Institut Bonn. Series 66 (1998)

[De71] P. Deligne: Formes modulaires et representations l-adic. Lect. Notes Math. 179 (1971),
Berlin-Heidelberg-New York, 139–172.

[De79] P. Deligne: Valeurs de fonctions L et periode d’integrales. Proc. Symposia Pure Math. 33
(1979), part 2, 313–346.

[Do04] T. Dokchitser: Computing special values of motivic L-functions. Exp. Math. 13 (2004),
137–149.

[EZ85] M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics. Vol. 55.
Boston-Basel-Stuttgart: Birkhäuser (1985).
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Chapter 9
The Adjoint L-Function of SU2;1

Joseph Hundley

To the memory of my grandfather, Harold H. Hensold, Jr.

Abstract We modify Ginzburg’s construction for the adjoint L-function of GL.3/
to accommodate quasi-split unitary groups.

Keywords Adjoint L-function of SU(2;1) • Rankin–Selberg method • Exceptional
group G 2

In these notes, we give a construction for a certain L-function attached to a globally
generic automorphic representation of the quasi-split unitary group in 3 variables
associated to a quadratic extension E=F of number fields. Recall that the finite
Galois form of the L-group of this group is a semidirect product of GL3.C/ and
Gal.E=F /: The representation we consider has the property that when restricted to
GL3.C/, it is the adjoint representation of this group. For this reason, we refer to the
associated L-function as the adjoint L-function. In fact, there are two representations
ofGL3.C/ÌGal.E=F / with the above property—related to one another by twisting
by the unique nontrivial one-dimensional representation of Gal.E=F /:We pin down
precisely which one we are talking about in Sect. 9.1.1. Let us mention that a small
modification of this construction gives the other.

The construction is a slight modification of that given in [3].
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9.1 Notation

Let F be a global field, and A its ring of adèles. Let E D F.
/ be a quadratic

extension, such that � WD 
2 2 F: Let J D
�

1
1

1

�
: Abusing notation, we will

also denote by J the analogous matrix of any size with points in any ring (with
unity). The F points of our special unitary group may be thought of as the set of
3 � 3 matrices with determinant 1 with entries in E such that gJ t Ng D J: Here,
N denotes conjugation by the nontrivial element of Gal.E=F /. Presently, we shall
also identify this group with a group of matrices having entries in F:We denote this
group by SU2;1:

We consider also the split exceptional group of type G2 defined over F; which
we denote simply byG2:We recall a few facts about this group (cf. [4], pp. 350–57).
First, it may be realized as the identity component of the group of automorphisms of
a seven-dimensional vector space which preserve a general skew-symmetric trilinear
form. Second, this seven-dimensional “standard” representation ofG2 is orthogonal:
the image also preserves a symmetric bilinear form. We wish now to pin things down
explicitly. It will be convenient to realize G2 as a subgroup of SO8:

Thus, we consider SO8 D fg 2 GL8 W gJ tg D J g: Let

v0 D t .0; 0; 0; 1;�1; 0; 0; 0/:
By SO7, we mean the stabilizer of v0 in SO8: Let V0 denote the orthogonal
complement of v0; defined relative to J: To fix an embedding of G2; into SO7;
we fix a trilinear form of V0 in general position, namely:

T WD e�
7 ^ .e�

4 C e�
5 / ^ e�

2 C e�
1 ^ .e�

4 C e�
5 / ^ e�

8

Ce�
6 ^ .e�

4 C e�
5 / ^ e�

3 C 2e�
3 ^ e�

2 ^ e�
8 � 2e�

6 ^ e�
7 ^ e�

1

(which is obtained from the form written down on p. 357 of [4] via suitable
identifications). The identity component of the stabilizer of T in GL.V0/ is a group
of type G2; defined and split over F; and contained in SO7 as defined above.

Now, let v� D t .0; 0; 1; 0; 0; �; 0; 0/; and let H� denote the stabilizer of v� in G2:

Lemma 1 H� Š SU2;1:
Remarks 2 1. This is essentially the same embedding of SU2;1 into G2 described

on p. 371 of [1].
2. One may also obtain this embedding by making the following identifications

between an F -basis of E3 and one for the orthogonal complement of hv0; v�i
in F 8:

.1; 0; 0/$ e1 .�
�1; 0; 0/$ e2 .0;�2
; 0/$ e3 � �e6
.0;�2; 0/$ e4 C e5 .0; 0; 2
/$ e7 .0; 0; 2/$ e8
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Proof. On the one hand, we know from [6], pp. 808–810 that the stabilizer of a
vector in this representation having nonzero length (relative to J ) is isomorphic to
either SL3 or SU.Q/ for a suitable Q: On the other hand, H� is clearly contained
in the group of automorphisms of the six-dimensional complement of v� in V0
which preserve both the original symmetric bilinear form and the skew-symmetric
form obtained by plugging in v� as one of the arguments of T: This latter group is
isomorphic to U2;1 (with an isomorphism being given by the identification of bases
above). The result follows. ut
To aid in visualizing these groups and checking various assertions below, we write
down a general element of each of their Lie algebras.

G2 W

0

B
B
B
B
B
B
B
B
B
B
B
@

T1 a c d d e f 0

g T2 � T1 b �c �c d 0 �f
h l 2T1 � T2 a a 0 �d �e
i �h g 0 0 �a c �d
i �h g 0 0 �a c �d
j i 0 �g �g T2 � 2T1 �b �c
k 0 �i h h �l T1 � T2 �a
0 �k �j �i �i �h �g �T1

1

C
C
C
C
C
C
C
C
C
C
C
A

(1)

SU2;1 W

0

B
B
B
B
B
B
B
B
B
B
B
@

T1 a ��e d d e f 0

�a T1 ��d �e �e d 0 �f
h l 0 a a 0 �d �e
��l �h �a 0 0 �a ��e �d
��l �h �a 0 0 �a ��e �d
��h ��l 0 ��a ��a 0 �d �e

k 0 �l h h �l �T1 �a
0 �k �h �l �l �h ��a �T1

1

C
C
C
C
C
C
C
C
C
C
C
A

(2)

The set of upper triangular matrices in G2 is a Borel subgroup BG2 , and the set
of diagonal matrices in G2 is a maximal torus TG2 : We use this torus and Borel
to define notions of “standard” for parabolics and Levis. We also fix a maximal
compact subgroup K D Q

vKv of G2.A/ such that G2.Fv/ D BG2.Fv/Kv for all v
andKv D G2.ov/ for almost all finite v: (Here, ov denotes the ring of integers of Fv:)

For any matrix A, we let tA denote the “other transpose” J tAJ; obtained by
reflecting A over the diagonal that runs from upper right to lower left. Finally, if H
is any F group, thenH.F nA/ WD H.F /nH.A/:

9.1.1 The Representation r

Let us now describe explicitly the representation r which appears in the Langlands
L-function we will construct. We first describe the L-group we consider, which is
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the finite Galois form of the L-group of U2;1.E=F /: Let Fr denote the nontrivial
element of Gal.E=F /: Our L-group is GL3.C/ Ì Gal.E=F /; where the semidirect
product structure is such that

Fr �g � Fr D t g
�1: (3)

Now, consider the eight-dimensional complex vector space of 3 � 3 traceless
matrices, with an action of GL3.C/ by conjugation. The definition

Fr �X D tX (4)

extends this to a well-defined action of GL3 Ì Gal.E=F /: This is our representa-
tion r:

It is not difficult to check that there is only one other way to define the action of
Fr which is compatible with (3) and (4), namely Fr �X D �tX: Now, it is part of the
L-group formalism that the parameter of � at an unramified place v is in the identity
component iff � is a square in the completion of F at v: Hence, if we let r 0 denote
the representation corresponding to the action Fr �X D �tX; then LS.s; �; r 0/ is the
twist of LS.s; �; r/ by the quadratic character corresponding to the extensionE=F:
An integral for this L-function may be obtained from the one considered in this
chapter by inserting this character into the induction data for the Eisenstein series.

9.1.2 Eisenstein Series

We shall make use of the same Eisenstein series onG2.F nA/ as in [3]. We recall the
definition. Let P denote the standard maximal parabolic of G2 such that the short
simple root of G2 is a root of the Levi factor of P: Take f a K-finite flat section of
the fiber bundle of representations IndG2.A/P.A/ jıP js (nonnormalized induction). Thus,
for each s; f .g; s/ is a function G2.A/! C such that f .pg; s/ D jıP .p/jsf .g; s/
for all p 2 P.A/; g 2 G2.A/; and for k 2 K; the value of f .k; s/ is independent
of s: The associated Eisenstein series is defined by the formula

E.g; s/ D
X

�2P.F /nG2.F /
f .�g; s/

for <.s/ sufficiently large, and by meromorphic continuation elsewhere.

9.2 Unfolding

Lemma 3 The space P.F /nG2.F /=SU2;1.F / has two elements, represented by
the identity and (any representative in G2.F / for) the simple reflection in the Weyl
group of G2 associated to the long simple root, which we denote w2:
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Proof. This follows easily from our characterization of SU2;1 as a stabilizer. Indeed,
P.F /nG2.F /=SU2;1.F /may be identified with the set ofP.F / orbits in theG2.F /
orbit of v�: Write v 2 G2.F /v� as t .v1; v2; v3/ with v1; v3 2 F 2 and v2 2 F 4: Either
v3 D 0 or not. This distinction clearly separates P.F / orbits, and in particular
separates the P.F / orbit of the identity from that of w2: On the other hand, an
element of the G2.F / orbit of v� is certainly in V0 and of norm 2�: It is not hard to
check that P.F / permutes the set of such elements with v3 D 0 and v3 ¤ 0 each
transitively. ut

Let '� be a cusp form in the space of an irreducible automorphic cuspidal
representations � of SU2;1.A/: Let N denote the maximal unipotent subgroup of
SU2;1

8
<

:

0

@
1 x y

1 �Nx
1

1

A W x; y 2 E;Try C Normx D 0
9
=

;
:

Fix a nontrivial additive character  of .F nA/; and let  N denote the character of
N.A/ with coordinates as above to  

�
1
2

Trx
�
: (The 1

2
is for convenience: it cancels

the 2 that arises when we take the trace of an element of F:)
We assume that the integral

W'� .g/ WD
Z

N.F nA/
'�.ng/ N .n/ dn (5)

does not vanish identically. (And hence, that � is generic.) We consider the integral

I.'�; f; s/ WD
Z

SU2;1.F nA/
'�.g/E.g; s/:

Theorem 4 (The Unfolding) Let N2 denote the two-dimensional unipotent sub-
group of SU2;1 corresponding to the coordinates e and f in (2). Then for <.s/
sufficiently large,

I.'�; f; s/ D
Z

N2.A/nSU2;1.A/
W'� .g/f .w2g; s/dg: (6)

Proof. By the lemma, we find that I.'�; f; s/ is equal to

Z

.SU2;1\P/.F /nSU2;1.A/
'�.g/f .g; s/dg

C
Z

.SU2;1\w2Pw2/.F /nSU2;1.A/
'�.g/f .w2g; s/dg:

The first integral vanishes by the cuspidality of �:
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The group SU2;1 \ w2Pw2 consists of the one-dimensional F -split torus and
the two-dimensional unipotent group N2: Incidentally, when written as elements of
GL3.E/; this unipotent group is

8
<̂

:̂

0

B
@

1 r
 t
 C r2�

2

1 r


1

1

C
A W r; t 2 F

9
>=

>;
:

We now expand '� along the subgroup of elements of the form

0

B
@

1 s � s2
2

1 �s
1

1

C
A :

The constant term vanishes by cuspidality. The remaining terms are permuted
simply transitively by the action of the F -split torus. The term corresponding to
1 yields the integral (5). ut

9.3 Unramified Computations

We now consider the value of the local analogue of (6) at a place where all
data is unramified. Thus, let F be a nonarchimedean local field. We denote the
nonarchimedean valuation on F by v and the cardinality of the residue field by q:
We keep the definitions of all the algebraic groups above. However, we now allow
the possibility that � is a square in F: In this case, the group SU2;1 defined by the
equations above is isomorphic to SL3 overF; and what we are proving is essentially
the local result proved in [3]. We assume that � and 2 are both units in F: In this sec-
tion, we encounter only the F points of algebraic groups, so we suppress the “.F /:”

Let f be the spherical vector in the induced representation IndG2P jıP js; and let
W denote the normalized spherical vector in the Whittaker model of an unramified
local representation � of GL3: The integral we consider is

I.s; �/ D
Z

N2nSU2;1
W.g/f .w2g; s/dg:

The main result of this section is the following:

Proposition 5 For <.s/ sufficiently large,

I.s; �/ D L.3s � 1; �; r/
�.3s/�.6s � 2/�.3s � 9/ :
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Here, all zeta and L-functions are local. Thus, if q is the number of elements in the
residue field of F; then �.3s/ D .1 � q�3s/�1; etc.

Proof. We begin with some computations which are valid regardless of whether or
not � is a square in F: The one-dimensional subgroup of SU2;1 corresponding to
the variable d in (2) maps isomorphically onto the quotient N2nN: An element of
this group may also be expressed as x˛2.�u/x2˛1C˛2 .�u/;where x˛2 and x2˛1C˛2 are
maps of Ga onto the one-parameter unipotent subgroups ofG2 corresponding to the
indicated roots. These subgroups correspond to the variables b and d in (1). Using
the Iwasawa decomposition, we express the integral overN2nSU2;1 as integrals over
the maximal compact K; the torus T; and this one-dimensional subgroup. Since W
and f are spherical, and the volume of K is 1; we may erase the integral over K:
Also w2x2˛1C˛2.u/ 2 P: Hence, we find that

I.s; �/ D
Z

T

Z

F

f .w2x˛2 .�u/t; s/ N .u/duW.t/ı�1
B .t/dt:

Here, ıB denotes the modular quasi-character of the Borel subgroup of SU2;1: Now,
an element of T may be visualized as an element of SL3.F.

p
�// of the form

0

B
@

aC bp�
a�bp

�

aCbp
�

1
a�bp

�

1

C
A :

The corresponding 8 � 8 matrix is

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a �b
�b� a

a2

N
� ab
N
� ab
N
� b2
N

� ab�
N

a2

N

b2�

N
ab
N

� ab�
N

b2�

N
a2

N
ab
N

� b2�2
N

ab�

N

ab�

N
a2

N

a
N

b
N

b�

N
a
N

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; where N WD a2 � b2�:

We now write the Iwasawa decomposition for this as an element of G2: First,
suppose that jb�j � jaj: Then the decomposition is
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0

B
B
B
B
B
B
@

1 � b
a
1

1 � b
a � b

a � b2

a2

1 b
a

1 b
a
1

1 b
a
1

1

C
C
C
C
C
C
A

0

B
B
B
B
B
@

N
a
a

N

a2

1
1
a2

N
1
a

a
N

1

C
C
C
C
C
A

0

B
B
B
B
B
B
B
@

1
b�
a 1

1
b�
a 1
b�
a 1

� b2�2

a2
� b�

a � b�
a 1

1

� b�
a 1

1

C
C
C
C
C
C
C
A

:

If, jb�j > jaj; it is

0

B
B
B
B
B
B
@

1 � a
b�

1

1 � a
b� � a

b� �
�
a
b�

�2

1 a
b�

1 a
b�

1
1 a
b�

1

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
@

N
b�

b�
N

b2�2

1
1
b2�2

N
1
b�

b�
N

1

C
C
C
C
C
C
C
A

�

�

0

B
B
B
B
B
B
@

1�1 a
b�

�1�1 � a
b�

�1 � a
b�

�1 a
b�

a
b�

a2

b2�2

�1
1 a

b�

1

C
C
C
C
C
C
A

:

Let us denote the three factors by u0; t 0, and k0; respectively. Then u0 has the property
that w2u0w�1

2 and w2Œx˛2 .u/; u
0�w�1

2 (where Œ ; � denotes the commutator) are both
in P: Thus, f .w2x˛2.u/t; s/ D f .w2x˛2.u/t 0; s/: We have

I.s; �/ D
Z

T

�Z

F

f .w2x˛2 .u/; s/ .˛2.t
0/u/du

�

K.t/ı
� 1
2

B .t/ısP .w2t
0w2/j˛2.t 0/jdt;

where t 0 is as above, and K.t/ WD W.t/ıB.t/
� 1
2 : We find that

ı
� 1
2

B .t/ D jN j�1; ıP .w2t
0w2/ D jN j2

max.jaj; jbj/3 ; j˛2.t 0/j D max.jaj; jbj/3
jN j :

Lemma 6

Z

F

f .w2x˛2.u/; s/ .cu/du D .1� q�3s/
.1� q.�3sC1/.v.c/C1//

.1 � q�3sC1/
:
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Proof. There is an embedding j of SL2 into G2 such that j
�

1�1
� D w2 and

j
�
1 u
1

� D x˛2.u/: The lemma is a well-known computation from SL2 applied to
this copy of SL2: One has only to check that f

�
j
�
t
t�1

�
; s
� D t�3s : ut

Let x D q�3sC1: Then the above reads

.1 � q�1x/
.1 � xv.c/C1/
.1 � x/ :

To complete the argument, we must consider the two cases (SU2;1 splits over F or
does not) separately.

9.3.1 Split Case

In this case, put t1 D a C bp� and t2 D a � bp�: Then t1 and t2 are just two
independent variables ranging over F �: The quantity called “N ” above us equal to
t1t2: Since � and 2 are units, max.jaj; jbj/ D max.jt1j; jt2j/: Let ˇ1; ˇ2 denote the
simple roots of SL3: We get

ıP .w2t
0w2/ D jt1t2j2

max.jt1j; jt2j/3 D min.jt�11 t22 j; jt21 t�12 j/ D min.jˇ1.t/j; jˇ2.t/j/;

j˛2.t 0/j D max.jt1j; jt2j/3
jt1t2j D max.jˇ1.t/j; jˇ2.t/j/:

Now, define two integer-valued variables, depending on t by mi D v.ˇi .t//; i D
1; 2: As t ranges over the torus of SL3; the pair .m1;m2/ ranges over

f.m1;m2/ 2 Z
2 W m1 �m2 is divisible by 3g:

Every part of our local integral can now be expressed in terms of m1 and m2:

First, we consider the function K.t/: This is evaluated using the Casselman–
Shalika formula [2]. It is equal to zero unless m1 and m2 are both nonnegative.
If m1 and m2 are both nonnegative, then the pair corresponds to a dominant
weight for the group PGL3.C/: Let �m1:m2 denote the corresponding irreducible
finite-dimensional representation, which we may also regard as a representation of
GL3.C/: Then we have

K.t/ D Tr�m1;m2.Qt�/;
where Qt� is the conjugacy class of GL3.C/ associated to the local representation �:

Also ıP .w2t 0w2/ D q� max.m1;m2/; j˛2.t 0/j D q� min.m1;m2/; and ı
� 1
2

B .t/ D q�m1�m2:
Thus, we consider,

.1 � q�1x/
X

m1;m2

1 � xmin.m1;m2/C1

1 � x xmax.m1;m2/ Tr�m1;m2.Qt�/;

where the sum is overm1;m2 both nonnegative, such thatm1�m2 is divisible by 3:
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We now make use of the relationship between local Langlands L-functions and
the Poincaré series of certain graded algebras. We first review some definitions. Fix
N 2 N; and

A D
M

i1;:::;iN 2N
Ai1;:::;iN

a graded algebra over a field k: The Poincaré series of A is a power series in N
indeterminates

1X

i1;:::;iND0
dim.Ai1;:::;iN /T

i1
1 : : : T

iN
N :

The graded algebra which is relevant for consideration of Langlands L-functions is
described as follows. Let LG be a semisimple complex Lie group and .r; V / a finite-
dimensional representation. Inside the symmetric algebra Sym�.V /, we consider
the subalgebra Sym�.V /LU of LU invariants. (Here, LU is a maximal unipotent
subgroup of LG:) This subalgebra contains the highest weight vectors of each of the
irreducible components of Sym�.V / and is graded by the semigroup of dominant
weights of LG as well as by degree.

Let us use a slightly different notation from that above. We use X for the
indeterminate associated to the grading by degree and T1; : : : ; TN for the grad-
ing by weight. Let � be an unramified representation of G.F / where F is a
nonarchimedean local field and G is a semisimple algebraic group such that LG
is the L-group. Let Qt� be the semisimple conjugacy class in LG corresponding
to �: Then it follows from the definitions that the local Langlands L-function
L.s; �; r/ may be obtained from the Poincaré series of Sym�.V /LU by substitut-
ing q�s for X and Tr�k1$1C���CkN$N .Qt�/ for T k11 : : : T

kN
N : Here, �k1$1C���CkN$N

denotes the irreducible finite-dimensional representation of LG with highest weight
k1$1 C � � � C kN$N :

In cases when LG is reductive but not semisimple, this discussion must be
adapted, as the choice of maximal unipotent LU does not by itself pin down a
basis for the weight lattice which may be used to define the grading. In the case at
hand, one needs only to observe that, since the adjoint representation of GL3.C/
factors through the projection to PGL3.C/ (which is semisimple), each of the
representations appearing in the decomposition of the symmetric algebra must as
well. Alternatively, one may define the grading using the weights of the derived
group.

Proposition 5 in this case is reduced to the claim that the Poincaré series of the
LU invariants for the adjoint representation of GL3.A/ is given by

1

.1� X2/.1 � X3/

1X

m1;m2D0
3j.m1�m2/

1 � Xmin.m1;m2/C1

1 � X Xmax.m1;m2/T
m1
1 T

m2
2 : (7)
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This may be deduced from the computations in Sect. 3 of [3]. It also follows readily
from example a) on p. 14 of [5].

Remark 7 The Poincaré series (7) of Sym�.V /LU may be summed, with the result
being the rational function:

1 � T 31 T 32 X6

.1 � T1T2X/.1� T1T2X2/.1 � T 31 X3/.1 � T 32 X3/.1 �X2/.1 � X3/
:

9.3.2 NonSplit Case

Suppose now that � is not a square in the local field F: Then it is part of the L-group
formalism that the semisimple conjugacy class Qt� in LG D GL3.C/ Ì Gal.E=F /
associated to � is in the coset corresponding to the nontrivial element of Gal.E=F /;
which we denote Fr : Each such conjugacy class contains an element of the form

0

@

0

@
�

˙1
��1

1

A ;Fr

1

A :

Adjusting by an element of the center, we may assume the sign in the middle is plus.
Referring to Sect. 9.1.1, we see that our eight-dimensional representation decom-

poses into a five-dimensionalC1 eigenspace for Fr, on which

�
�
1
��1

�

acts with

eigenvalues �2; �; 1; ��1; ��2; and a three-dimensional �1 eigenspace for Fr; on

which

�
�
1
��1

�

acts with eigenvalues �; 1; ��1: Hence, the local L-function is

1

.1 � �2x/.1 � �2x2/.1 � x2/.1 � ��2x/.1 � ��2x2/
;

where x D q�3sC1 as before. This may also be written as

1

.1 � x2/
1X

k1;k2D0
Tr.�k1 ˝ �k2/

�
�2

��2

�
xk1C2k2 :

Turning to the local integral, we find that in this case we have m1 D m2: Let us
therefore denote this quantity simply “m:”

Lemma 8 With the notation as above, we have

K.t/ D Tr�m
�
�2

��2

�
:
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Proof. This can be verified either by direct computation or by a close reading of
[2]. In either method, it is necessary first to identify the precise unramified character

of the torus of SU2;1 corresponding to

��
�

˙1
��1

�

;Fr

�

: For the convenience of

the reader, we record that it is the map sending the torus element with coordinates a
and b as above to �v.a2�b2�/: (Here, v is again the discrete valuation on the field F:)

This case of the proposition now follows from the identity

1X

k1;k2D0

min.k1;k2/X

iD0
Xk1C2k2T k1Ck2�2i D 1

.1 � X3/.1 � TX/.1 � TX2/

D 1

1 � X3

1X

mD0
Xm 1 �XmC1

1 �X T m;

which is straightforward to verify. ut
This also completes the proof of Proposition 5. ut
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Chapter 10
Symplectic Ice

Dmitriy Ivanov

Abstract In this chapter, we construct an ice model (a six-vertex model) whose
partition function equals the product of a deformation of Weyl’s denominator
and an irreducible character of the symplectic group Sp.2n;C/. Similar results
have been obtained by Brubaker et al. (Schur polynomials and the Yang–Baxter
equation. Comm. Math. Phys. 308(2):281–301, 2011) (for the general linear group)
and by Hamel and King (Symplectic shifted tableaux and deformations of Weyl’s
denominator formula for sp.2n/, J. Algebraic Combin. 16, 2002, no. 3, 269–300,
2003) (for the symplectic group). The difference between our result and that
of (Hamel and King, Symplectic shifted tableaux and deformations of Weyl’s
denominator formula for sp.2n/, J. Algebraic Combin. 16, 2002, no. 3, 269–300,
2003) is that our Boltzmann weights for cap vertices are different from those
in (Hamel and King, Symplectic shifted tableaux and deformations of Weyl’s
denominator formula for sp.2n/, J. Algebraic Combin. 16, 2002, no. 3, 269–300,
2003). Also, our proof uses the Yang–Baxter equation, while that of Hamel and
King does not.

Keywords Yang–Baxter equation • Weyl character formula • Partition function
• Ice model

10.1 Introduction

Hamel and King [5] showed how characters of irreducible representations times a
deformed Weyl denominator equal partition functions of certain ice models, and
Brubaker et al. [4] showed how to use the Yang–Baxter equation to investigate these
ice models. In this chapter, we use the Yang–Baxter equation to investigate a certain
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ice model (a 6-vertex model). We consider a graph in the shape of a grid with caps on
the right end. A state of this system consists of assignment of signs C or � to each
edge. To each vertex, we assign a number (called Boltzmann weight); the Boltzmann
weight of a vertex depends on the signs adjacent to it. A Boltzmann weight of a state
is equal to the product of the Boltzmann weights of all vertices, and the partition
function is the sum of the Boltzmann weights of all possible states. We show that
the partition function of this ice model equals the product of an irreducible character
of the symplectic group Sp.2n;C/ with a deformation of the Weyl denominator. A
similar result was originally proved by Hamel and King [5], but the Boltzmann
weights (for the vertices at the caps) here are different from theirs. Also, our proof
uses the Yang–Baxter equation, whereas the proof of Hamel and King does not.
Our proof is similar to that of an analogous result for the general linear group in
Brubaker et al. [4]. Our proof also uses Proctor patterns; a good reference for this
topic is Beineke et al. [1, 2]. This gives us 6-vertex models for the characters of
Sp.2n;C/. Our result can also be interpreted as an example of an exactly solved
model in the sense of statistical mechanics, that is, an ice model whose partition
function can be computed explicitly.

Ice models can also be used to describe Whittaker functions. Let F be a locally
compact field and G a split reductive group over F . Let T denote a split maximal
torus of G, B the positive Borel subgroup, and U the unipotent radical of B D
T U . Let  denote a nontrivial character of U . A Whittaker model of an irreducible
representation .�; V / ofG is a space W� of functionsW onG satisfyingW.ug/ D
 .u/W.g/ which is closed under right translations and such that W� is isomorphic
to V (asG-modules). It is known that a Whittaker model is unique (if it exists). The
Casselman–Shalika formula relates the characters of the L-group with values of the
Whittaker functions on a p-adic group. In some cases, a Whittaker function can be
described as the partition function of a statistical system in the 6-vertex model. For
example, Brubaker et al. [4] used a certain statistical system in the 6-vertex model
and Yang–Baxter equation to study p-adic Whittaker functions of type A.

The ice model studied here is similar to the U-turn models used by Kuperberg [6]
to enumerate classes of alternating sign matrices. After the work in this chapter was
done, Brubaker et al. [3] followed our arguments (using the same ice model but with
different Boltzmann weights) to represent a Whittaker function on the metaplectic
double cover of Sp.2n; F / where F is a non-archimedean local field.

I would like to thank Daniel Bump for suggesting this problem and for his
encouragement and guidance. This work was supported in part by NSF grant DMS-
0652817.

10.2 The Yang–Baxter Equation

We shall give a new proof of a result due to Hamel and King [5] based on the Yang–
Baxter equation. It represents the product of the character of the symplectic group
times a deformation of the Weyl denominator as a partition function of a certain
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Table 10.1 Boltzmann weights for gamma and delta ice

� vertex

i i i i i i

Boltzmann
weight

1 z�1
i t z�1

i z�1
i .t C 1/ 1

� vertex

i i i i i i

Boltzmann
weight

zi zi .t C 1/ 1 zi t 1 1

type of ice. We begin by explaining the notation we will be using later. By ice we
shall mean a lattice (or a more general graph), to each edge of which we may assign
a sign (eitherC or �). We shall consider six different types of ice, called delta (�)
ice, gamma (� ) ice, delta–delta (��) ice, delta–gamma ice (�� ), gamma–delta
(��) ice, and gamma–gamma (� � ) ice. To each vertex, we assign a weight (called
Boltzmann weight); for each type of ice, the weight depends on signs C or � that
will be assigned to the four adjacent edges. Let z1; : : : ; zn; t be complex numbers
with zi ¤ 0 for all i . We shall refer to zi as spectral parameters and t a deformation
parameter. In Tables 10.1 and 10.2, we give Boltzmann weights for each type of
ice. The labels i and j are integers between 1 and r . They refer to the spectral
parameters and depend on the row of the matrix.

We will consider planar graphs. Each vertex will have four (or occasionally only
two) adjacent edges. Edges on the interior will join two vertices, but edges on the
boundary will only have a single adjacent vertex. Each vertex will be assigned a set
of Boltzmann weights from one of the six types of ice. Each boundary edge will be
assigned a fixed sign C or �. Interior edges will also be assigned signs, but these
will not be fixed.

By an admissible configuration (or admissible state), we shall mean a labeling of
the edges of the graph by signsC or � such that each vertex on the graph is listed in
the table above. The Boltzmann weight of an admissible state is simply the product
of the Boltzmann weights of all vertices in this state. The partition function of an
ice is the sum of Boltzmann weights of all admissible states. (This definition of the
partition function comes from statistical mechanics.)

The Yang–Baxter equation will be an important tool in our proof. Here is the
version of the Yang–Baxter equation that we will use:

Lemma 1. Let X; Y 2 f�;�g, and let S be a vertex of type X , T of type Y and R
of type XY . We use the spectral parameter zi at the vertex S , zj at the vertex T and
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Table 10.2 Auxiliary Boltzmann weights

Type

��

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltz.
weight

t 2zj � z�1
i .t C 1/zj tzj C z�1

i tzj C z�1
i .t C 1/z�1

i z�1
i � zj

��

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltz.
weight

tzi C zj zj .t C 1/ tzj � tzi zi � zj .t C 1/zi zi C tzj

� �

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltz.
weight

tz�1
i C z�1

j tz�1
j C z�1

i tz�1
j � tz�1

i z�1
i � z�1

j .t C 1/z�1
i .t C 1/z�1

j

��

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltz.
weight

zi � z�1
j .t C 1/zi tzi C z�1

j tzi C z�1
j .t C 1/z�1

j �t 2zi C z�1
j

the spectral parameters zi ; zj at the vertex R. The Boltzmann weights are given in
the table on the previous page. Then the partition functions of

R

σ

τ

β

θ

ρ

α

S

T

ν

μ

γ

,

R

σ

τ

β

θ

ρ

α

ψ

φ

δ

T

S

are equal for every fixed combination of signs �; 
; ˛; ˇ; �; 
 .

Note that by definition in the partition functions, �; 
; ˛; ˇ; �; 
 are fixed, but the
signs �; �; � and  ; �; ı of the interior edges are summed.

We refer the reader to Brubaker et al. [4] for the proof of this proposition. Indeed,
the caseX D Y D � follows from Theorem 3 of [4], and a similar argument shows
that the proposition is true in the other three cases. Informally, this means that if the
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signs on the outer edges are fixed, then we can push the braid (i.e., a vertex of type
XY ) to the right without changing the partition function. We emphasize that the
vertices R;S; T have the same Boltzmann weights in both pictures. A consequence
of this proposition is that it allows us to switch the spectral parameters without
changing the partition function. We see that zi corresponds to the top row and zj
corresponds to the bottom row while in the second picture zi corresponds to the
bottom row and zj corresponds to the top one.

Let us use the Yang–Baxter equation to show that the following two configura-
tions have equal partition functions:

Δ

Δ
A

i i i

j j j

(1)

Δ

Δ

A

iii

jjj

(2)

Here it is assumed that the six boundary edges are given some fixed assignment of
signs ˙ and that these are the same for the two configurations. Note that the braid
in this example connects two rows of delta ice (in both cases), so the vertex A is a
vertex of delta–delta ice. The spectral parameters corresponding to these rows have
been switched; in other words, if the spectral parameters of the rows of the first ice
are zi (top row) and zj (bottom row), then after applying the Yang–Baxter equation,
zj will correspond to the top row and zi will correspond to the bottom row.

Indeed, using Lemma 1 for delta ice (i.e., with X D Y D �), we see that the
partition functions of (1) equal the partition function of

Δ

Δ
A

j i i

j j j

Repeating this process two more times, we see that this equals the partition
function of (2).

The Yang–Baxter equation can even be applied to ice which contains rows of
both delta ice and gamma ice; in this case, the braid will have more than one vertex.
Let us show that the partition functions of the following two systems are equal:
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A

D C

B

Δ

Γ

Δ

Γ

i

i

j

j

i

i

j

j

i

i

j

j

i

i

j

j

i

i

j

j

(3)

A

D C

B

Δ

Γ

Δ

Γ

j

j

i

i

j

j

i

i

j

j

i

i

j

j

i

i

j

j

i

i

(4)

Here the vertex A is a vertex of delta–delta ice, the vertex B is a vertex of gamma–
gamma ice, the vertex C is a vertex of gamma–delta ice, and the vertex D is a vertex
of delta–gamma ice. The vertices in the rows are of � or � type as labeled. In the
second system, the spectral parameters of the delta rows and of the gamma rows
have been switched. This means that if the spectral parameters in the first system
corresponding to the delta rows are zi (upper delta row) and zj (lower delta row),
then in the second system, the spectral parameter corresponding to the upper delta
row is zj and the spectral parameter corresponding to the lower row is zi . The same
is true for the rows of gamma ice. This example will be used later in our proof.

To prove this, using the Yang–Baxter equation in the form of Lemma 1 with
X; Y D �;�, we see that the partition function of (3) equals the partition
function of:

A

D C

B

Δ

Δ

Γ

Γ

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

Then applying this again withX; Y D �;�, this equals the partition function of:
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A

D C

B

Δ

Δ

Γ

Γ

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

Next using Lemma 1 with X D Y D � moves the B vertex across (not shown),
then finally using the lemma withX D �, Y D � shows that this partition function
equals that of (4).

Yang–Baxter equation will be a useful tool later when we prove that the partition
function of certain ice is invariant under interchanging spectral parameters.

Let � D .�1; �2; : : : ; �n/ 2 Zn; we assume that �1 	 �2 	 �3; : : : 	 �n 	 0.
We may view � as a dominant weight of the symplectic group Sp.2n;C/. We recall
that Sp.2n;C/ consists of all 2n by 2n invertible matrices g satisfying gJgT D J
where J D

�
0 �I
I 0

�
; here 0 denotes the zero matrix and I denotes the identity

matrix. Let �� be the character of the irreducible representation of Sp.2n;C/ with
highest weight �. By the Weyl character formula, there exists a Laurent polynomial
in n variables ssp� .x1; x2; ::; xn/ 2 CŒx1; x

�1
1 ; x2; x

�1
2 ; ::; xn; x

�1
n � such that ��.g/ D

s
sp

� .z1; z2; ::; zn/ where

z1; z2; ::; zn; z
�1
1 ; z

�1
2 ; ::; z

�1
n

are the eigenvalues of g 2 Sp.2n;C/. Define

D.z1; z2; ::; zn; t/ D
Y

i

.1C tz2i / �
Y

i<j

.1C tzi zj /.1C tzi z�1
j / � z��;

where z�� D z�n
1 z�nC1

2 : : : z�1
n . We will show that ssp� �D equals the partition function

of a six-vertex model system. We recall that the Weyl character formula states that

��.g/ D
P

w2W .�1/l.w/zw.�C�/
Q
˛2˚C.z˛=2 � z�˛=2/

:

In this formula, W is the Weyl group, l.w/ is the length function, and ˚C is the
set of positive roots. Here z.�C�/ means z�1Cn1 z�2Cn�1

2 : : : z�nC1
n , and zw.�C�/ means

.w.z1//�1Cn.w.z2//�2Cn�1 : : : .w.zn//�nC1, We now observe that the denominator in
this formula can be written as
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Y

˛2˚C

.z˛=2 � z�˛=2/ D
Y

˛2˚C

.z�˛=2 � z˛=2/

D z�� Y

˛2˚C

.1 � z˛/ D z��Y

i

.1 � z2i / �
Y

i<j

.1 � zi zj /.1 � zi z
�1
j /:

Hence, we see that D.z1; z2; ::; zn;�1/ is the denominator in the Weyl character
formula, so this result is a deformation of the Weyl character formula.

10.3 The Character as a Partition Function

We consider the following problem. We consider a domain which consists of a
rectangular lattice with 2n rows; each odd numbered row is a row of delta ice,
and each even numbered row is a row of gamma ice. Hence, there are n rows of
delta ice and n rows of gamma ice. Let zi be the spectral parameter corresponding
to the i th row of delta ice and also the i th row of gamma ice. We assume that
� D .�1; ::; �n/ 2 Zn be a partition (this means that �1 	 �2 	 � � � 	 �n 	 0). We
assign signs to each edge as follows: on the left column, we assign � to each row
of delta ice (i.e., to each odd numbered row), and a C to each even numbered row.
On the bottom, we assign C to each edge. On the top, we assign � to each column
labeled �i CnC 1� i (for 1 � i � n), and we assignC to each remaining column.
The columns of this lattice are numbered in descending order from �1 C n to 1. On
the right side, we connect each row of delta ice with the following row of gamma
ice with a “cap,” to be described below.

If n D 2 and � D .3; 1/, we thus have the following configuration:

z1

z
−1
1

z2

z
−1
2

1234col. 5
−++−−

+++++

Δ

Γ

Δ

Γ

−

+

−

+

(5)

Each cap includes a new vertex whose Boltzmann weights for the cap are as
follows:



10 Symplectic Ice 213

+

+

−

−

tzi z�1
i

Other combinations of signs are not allowed. Thus, the signs at the ends of a row of
delta ice and the row of gamma ice right below it must be the same (thus, we can
have either two C signs or two � signs).

We consider the partition function of the ice described above. Our result is the
following theorem:

Theorem 1. Let � D .�1; : : : ; �n/ 2 Zn be a partition. Then the partition function
of the ice described above is given by D � ssp� .z1; z2; : : : ; zn/.
Proof. Let I1 denote the given ice (5). Let Z.I/ denote the partition function of
the ice I . Consider Z.I1/=D. We first show that this quotient is invariant under the
action of the Weyl group (which is generated by permutations of z1; ::; zn and also
by the functions that take zi to z�1

i (for some i )).

Lemma 2. Z.I1/=D is invariant under any permutation of z1; : : : ; zn:

Proof. Since the group Sn is generated by transpositions of the form .k; k C 1/,
it suffices to show that Z.I1/=D is invariant under the interchange i $ i C 1

(for any i ).
We attach a braid to I1. (The picture below is the part of the ice which

corresponds to spectral parameters with indices i and i C 1, namely, two rows
of delta ice with spectral parameters zi and ziC1 and two rows of gamma ice
with spectral parameters z�1

i and z�1
iC1. The picture (ice) extends above and below

this part.)

A

D C

B

Δ

Γ

Δ

Γ

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

−

+

−

+

(6)

Let us denote this new ice by I2. The only admissible configuration of spins here is
shown in the picture below.
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A

D C

B

Δ

Γ

Δ

Γ

i

i

i + 1

i + 1

i

i

i + 1

i + 1

i

i

i + 1

i + 1

i

i

i + 1

i + 1

i

i

i+1

i+1

−

+

−

+

−

+

− −

+ +

(7)

Therefore, every state of this new boundary problem (with ice I2) determines a
unique state of the original problem (with ice I1). Hence, the partition function of
I2 is the partition function of the ice I1 times the partition function of the braid. The
partition function of the braid is equal to .ziCtziC1/.tz�1

i Cz�1
iC1/.tziCz�1

iC1/.tziC1C
z�1
i /, and therefore,

Z.I2/ D .zi C tziC1/.tz�1
i C z�1

iC1/.tzi C z�1
iC1/.tziC1 C z�1

i /Z.I1/:

An application of the Yang–Baxter equation tells us that the partition function of
I2 is equal to the partition of the ice I3 (see picture below) with zi ; ziC1 switched.
We will denote this by Z�.I3/; � means that zi ; ziC1 are switched.

A

D C

B

Δ

Γ

Δ

Γ

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

−

+

−

+

Note that Z�.I3/ D P
ei
Z�.I4/.e1; e2; e3; e4/ � Z.I5/.e1; e2; e3; e4/ where the

sum is taken over all possible spins e1; e2; e3; e4, and the pictures of I4; I5 are shown
below. Here are the ices I4 (left) and I5:
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A

D C

B

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

i+1

i+1

i

i

−

+

−

+

1

2

3

4

1

2

3

4

At this point, we used the computer program SAGE [7] to check that the following
equality holds.

Lemma 3. For every choice of e1; e2; e3; e4 2 f˙g, we have

Z.I5/.e1; e2; e3; e4/ D z�2
i z�2

iC1 �Z�.I6/.e1; e2; e3; e4/

� .tzi C ziC1/.tziC1 C zi /.tzi ziC1 C 1/2:
Here I6 is the ice that consists of two caps (see picture).

ε4

ε3

ε2

ε1

Note, in particular, that the expression z�2
i z�2

iC1 � .tzi C ziC1/.tziC1 C zi /
.tzi ziC1 C 1/2 does not depend on the choice of spins e1; e2; e3; e4, and therefore,
we get Z.I2/ D Z�.I3/ D P

ei
Z�.I4/.e1; e2; e3; e4/ � z�2

i z�2
iC1 � Z�.I6/ � .tzi C

ziC1/.tziC1 C zi /.tzi ziC1 C 1/2, or, equivalently,

.zi C tziC1/.tz�1
i C z�1

iC1/.tzi C z�1
iC1/.tziC1 C z�1

i /Z.I1/

D
X

ei

Z�.I4/.e1; e2; e3; e4/ � z�2
i z�2

iC1 �Z�.I6/

�.tzi C ziC1/.tziC1 C zi /.tzi ziC1 C 1/2:

We observe that
P

ei
Z�.I4/ � Z�.I6/ D Z�.I1/, and hence, we obtain the

following equality:
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.zi C tziC1/.tz�1
i C z�1

iC1/.tzi C z�1
iC1/.tziC1 C z�1

i /Z.I1/

D Z�.I1/ � z�2
i z�2

iC1 � .tzi C ziC1/.tziC1 C zi /.tzi ziC1 C 1/2:

After simplifying it, we obtain

.tzi C ziC1/Z.I1/ D .tziC1 C zi /Z
�.I1/;

which means that

Z.I1/ D .tziC1 C zi /

.tzi C ziC1/
Z.I1/

�:

Recall that we definedD as

z�� �
Y

i

.1C tz2i / �
Y

i<j

.1C tzi zj /.1C tzi z�1
j /:

If we let D� denote the same expression, but with zi and ziC1 switched, i.e.

D�.z1; z2; : : : ; zi ; ziC1; : : : ; zn/ D D.z1; z2; : : : ; ziC1; zi ; : : : ; zn/;

then it is easy to check that D
D�
D .tziC1Czi /

.tziCziC1/
, and therefore, we conclude that

Z.I1/ D D

D�Z.I1/
�;

which is to say that
Z.I1/=D D Z.I1/�=D�;

which is exactly what we needed to show. ut

Lemma 4. Z.I1/=D is invariant under the change zi $ z�1
i .

Proof. Since we have already shown that this expression is invariant under zi $
ziC1 for any i , it suffices to show that Z.I1/=D is invariant under zn $ z�1

n . We
transform the last row of the given ice (the row of gamma ice corresponding to
spectral parameter z�1

n / into a row of delta ice as follows: we change the sign on the
left edge fromC to � and we also change the signs of all the entries on the edges in
the last row. We observe that in the last row of horizontal edges, only the following
types of Gamma ice can appear:

Gamma
Ice

i i i

Boltzmann
weight

1 1 zi
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These change to:

Delta
Ice

i i i

Boltzmann
weight

1 1 zi

We observe that the Boltzmann weights are unchanged, and therefore, the partition
function is also unchanged by this transformation. Let us denote this new ice by I7;
hence, Z.I7/ D Z.I1/. (We note that this will work only in the last row because it
is essential that there be no � signs on the bottom edges.) We also define a new cap
which connects two rows of delta ice. The signs on the ends of this new cap must
be opposite (thus, one of them must be a C and the other one must be a �), and the
Boltzmann weights for this cap are shown in the picture below.

tzi z−1
i

So now, the last two rows are rows of delta ice. We attach a braid (delta–delta
vertex) to this ice, as shown in the picture below. We denote this new ice by I8.

Δ

Δ

zn

z−1
n

−

−

The only admissible configuration of spins for the delta–delta vertex has all four
adjacent edges �.Therefore, every state of this new boundary problem (with ice I8)
determines a unique state of the original problem (with ice I7). Hence, the partition
function of each state of I8 is the partition function of the corresponding state of
ice I7 times the partition function of the braid. The partition function of the braid is
equal to .zn C tz�1

n /.
An application of the Yang–Baxter equation tells us that the partition function of

I8 is equal to the partition of the ice I9 (see picture below) with zn and z�1
n switched.

Δ

Δ

zn
−1

zn
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We will denote this by Z�.I9/; � means that zn and z�1
n are switched. We have

Z�.I9/ D P
e1;e2

Z�.I10/.e1; e2/ � Z�.I11/.e1; e2/ where the sum is taken over all
possible spins e1; e2, and the pictures of I10 and I11 are shown below.

Here are pictures of I10 (left) and I11 (right):

Δ

Δ

zn
−1

zn

e1

e2

e1

e2

We checked that the following equality holds:

Z�.I11/ D .tzn C z�1
n /Z

�.I12/;

where I12 is the ice that only consists of the new cap (see picture)

This result is very similar to the fish equation (Lemma 9 on page 14 of
Kuperberg [6]), although the Boltzmann weights that are used in the fish equation
and our Boltzmann weights are different. Note in particular that the factor .tznCz�1

n /

does not depend on the choice of spins e1; e2, and therefore, we get

Z�.I9/ D
X

e1;e2

Z�.I10/.e1; e2/ �Z�.I11/.e1; e2/

D .tzn C z�1
n / �

X

e1;e2

Z�.I9/.e1; e2/Z�.I12/.e1; e2/ D .tzn C z�1
n /Z

�.I7/:

Now we may change the last row back to the gamma ice. As mentioned before, the
partition function is not affected by this change; this means that Z�.I7/ D Z�.I1/.
Hence, we obtain the following equality:

.zn C tz�1
n /Z.I1/ D .tzn C z�1

n /Z
�.I1/:

From this, we conclude that Z.I1/

Z.I1/�
D .tznCz�1

n /

.znCtz�1
n /

. But we also have D
D�
D .tznCz�1

n /

.znCtz�1
n /

,

so that Z.I1/

Z.I1/�
D D

D�
, and so this proves that Z.I1/=D is invariant under the change

zi $ z�1
i . ut

Lemma 5. Z.I1/=D is a polynomial in t (with coefficients in

CŒz1; z2; : : : ; zn; z
�1
1 ; z

�1
2 ; : : : ; z

�1
n �/;

and it is independent of t .
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Proof. We observe that we may writeD D z�� �Q˛2˚C.1Ctz˛/, where˚C denotes
the set of positive roots. Let D0 D z� �Q˛2˚�.1C tz˛/.

We see that DD0 is invariant under the action of the Weyl group (since the Weyl
group simply permutes all the roots), and therefore,Z.I/D0 D .Z.I1/=D/ � .DD0/
is also invariant under the action of the Weyl group.

But Z.I1/D0 is clearly divisible byD0 (here we view both terms as polynomials
in t), and therefore, since Z.I1/D0 is invariant under the action of the Weyl group,
it must also be divisible by D. Now, since D and D0 are relatively prime in a
unique factorization domain CŒz1; z�1

1 ; z2; z
�1
2 ; : : : ; zn; z

�1
n �Œt � (note that this ring is a

localization of a UFD CŒz1; z2; : : : ; zn; �Œt �, so it is indeed a UFD), it follows that D
must divide Z.I1/, as desired.

To show that Z.I1/=D is independent of t , we observe that D has degree n2

(as a polynomial in t). Hence, it suffices to show that Z.I1/ has degree n2 as a
polynomial in t . In fact, since we already know that Z.I1/=D is a polynomial in t ,
it suffices to show that the degree of Z.I1// is � n2. Z.I1/ is the sum of Boltzmann
weights of each state, so it suffices to show that the partition function of each state
has degree � n2.

So consider an admissible state. We observe that the only (possible) powers of t
come from the following types of vertices:

Gamma
Ice

i i

Boltzmann
weight

zi .t C 1/ t

Delta
Ice

i i

Boltzmann
weight

zi .t C 1/ zi t

We see that we need to count the number of � signs in the rows of edges between
the rows of delta ice and gamma ice.

We recall Lemma 5 of Brubaker et al. [4], which counts the number of � signs in
the rows of edges above and below a row of gamma ice. We state this lemma here
for the convenience of the reader:

Lemma 6. Suppose we have a row of gamma ice and that the sign of the left edge
is C. Let m be the number of � signs in the vertical row of edges above this row of
gamma ice and m0 be the number of � signs in the row of vertical edges below this
row. Then m D m0 if and only if the sign of the right edge is � and m D m0 � 1 if
and only if the sign of the right edge isC. Moreover, if ˛1; ˛2; : : : ; are the locations
of the � signs in the row of edges above this row of gamma ice and ˇ1; ˇ2; : : : are
the locations of � signs in the row of edges below this row, the sequences ˛1; ˛2; : : :
and ˇ1; ˇ2; : : : interleave.
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By symmetry of the delta ice and gamma ice, we obtain the following lemma:

Lemma 7. Suppose we have a row of delta ice and that the sign of the left edge
is �. Let m be the number of � signs in the row of edges above this row of delta ice
and m0 be the number of � signs in the row of edges below this row. Then m D m0
if and only if the sign of the right edge is � and m D m0 � 1 if and only if the sign
of the right edge is C. Moreover, if ˛1; ˛2; : : : ; are the locations of the � signs in
the row of edges above this row of delta ice and ˇ1; ˇ2; : : : are the locations of �
signs in the row of edges below this row, the sequences ˛1; ˛2; : : : and ˇ1; ˇ2; : : :
interleave.

Since the number of � signs in the top row of edges is n, we see that the number
of � signs in the rows of edges between the rows of delta ice and gamma ice is
� n.n � 1/.

Moreover, since there are n caps, the degree of t coming from the Boltzmann
weights of these caps is � n. We see that if the signs on the cap are CC, then the
Boltzmann weight is tzi , so it will contribute only one power of t to the Boltzmann
weight of a state; if the signs are ��, then the Boltzmann weight is z�1

i , which does
not contribute any powers of t .

Hence, the degree of the partition function of each state is � n2, and as explained
above, this means that Z.I1/=D is independent of t . This completes the proof of
Lemma 4. ut

10.4 Proctor Patterns

By a Proctor pattern, we shall mean a sequence of rows of nonnegative integers ai;j
and bi;j

a0;1 a0;2 : : : a0;r
b1;1 b1;2 : : : b1;r

a1;2 : : : a1;r
:::

: : : : : :

br;r

such that the rows interleave. This last condition means that

minfa.i�1;j /; a.i;j /g 	 bi;j 	 maxfa.i�1;jC1/; a.i;jC1/g
and also

minfb.iC1;j�1/; b.i;j�1/g 	 ai;j 	 maxfb.iC1;j /; b.i;j /g:
We now would like to establish a bijection between the set of all admissible states

and the Proctor patterns. Consider a row of delta ice and a row of gamma ice right
below it. Let ai denote the locations of � signs in the top row of vertical edges, bi
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denote the locations of � signs of middle row of vertical edges, and ci denote the
locations of � signs of bottom row of vertical edges. We consider two cases:

Case I: the signs on the cap that connects these two rows are ��. Then (using
Lemmas 6 and 7) we have the following inequalities:

a1 	 b1 	 a2 	 � � � 	 bm
b1 	 c1 	 b2 � � � 	 bm:

Case II: the signs on the cap that connects these two rows are CC. Then we have
the following inequalities:

a1 	 b1 	 a2 	 � � � 	 bm�1 	 am
b1 	 c1 	 b2 � � � 	 bm�1 	 cm�1:

In this case, we define bm D 0.
We see that the locations of � signs in the rows of vertical edges gives us a

Proctor pattern. Here are three rows of a Proctor pattern:

a1 a2 : : : am
b1 b2 : : : bm

c1 : : : cm�1:

Moreover, we see that this is a one-to-one correspondence, meaning that given
any Proctor pattern, there exists an admissible state such that the locations of �
signs are exactly as described by this pattern. This also follows from the Lemmas 6
and 7 above.

Since Z.I1/=D is independent of t , we may choose t D �1. This way, the
Boltzmann weight of the vertices

Gamma
ice

i

Boltzmann
weight

zi .t C 1/

Delta
ice

i

Boltzmann
weight

zi .t C 1/

is equal to 0, so we consider all possible states which omit both of these vertices.
We observe that there exists a bijection between the Weyl group and the set of

all Proctor patterns of the particular type, in which each entry in the pattern (except
for entries in the top row) is equal to one of the entries above it (or to 0 in the
case of the last entry in an even numbered row). This bijection is given as follows:
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given a Proctor pattern, let di denote the sum of the entries of the .2i � 1/th row;
in other words, it denotes the sum of the entries in each odd numbered row; here
1 � i � n. Also let dnC1 D 0. Note that the numbers di � diC1 for 1 � i � n,
all distinct. In fact, since each entry in the pattern (except for entries in the top
row) is equal to one of the entries above it (or to 0 in the case of the last entry in
an even numbered row), it follows that di � diC1 is equal to �j C �j for some
j (1 � j � n). In other words, we get a permutation of n distinct elements
�1 C �1; �2 C �2; : : : ; �n C �n: And for any such permutation and any choice of
the signs on the caps, we can construct a Proctor pattern corresponding to it. We
see that w.z1/;w.z2/ : : :w.zn/ is equal to z�1�.1/; z

�2
�.2/; z

�n
�.n/ for some � 2 Sn and each

�i 2 f˙1g; the choice of �i depends on whether an admissible state corresponds
to case I or case II described above. Hence, we see that we indeed get a bijection
between the Weyl group and the set of all Proctor patterns of the particular type
described above. Since we’ve already observed that there is a bijection between the
set of all Proctor patterns of the particular type and the set of all admissible states,
by composing these two bijections, we obtain a bijection between the set of all
admissible states and the Weyl group. An explicit formula for this bijection is given
by w! .�1/l.w/zw.�C�/, where .�1/l.w/zw.�C�/ represents the Boltzmann weight of
the corresponding admissible state. Here z.�C�/ means z�1Cn1 z�2Cn�1

2 : : : z�nC1
n and

zw.�C�/ means .w.z1//�1Cn.w.z2//�2Cn�1 : : : .w.zn//�nC1.
Note that the partition function is equal to

P
w2W .�1/l.w/zw.�C�/, which is equal

to the numerator in the Weyl character formula. Also note that with t D �1, we
haveD D Qi .1� z2i / �

Q
i<j .1� zi zj /.1� tzi z�1

j / � z��, which is the denominator
in the Weyl character formula. Hence, we have obtained a deformation of the Weyl
character formula (which, as we mentioned before, is due to Hamel and King [5]),
and the proof of the theorem is complete. ut
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Chapter 11
On Witten Multiple Zeta-Functions Associated
with Semisimple Lie Algebras III

Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura

Abstract We prove certain general forms of functional relations among Witten
multiple zeta-functions in several variables (or zeta-functions of root systems). The
structural background of these functional relations is given by the symmetry with
respect to Weyl groups. From these relations, we can deduce explicit expressions
of values of Witten zeta-functions at positive even integers, which are written in
terms of generalized Bernoulli numbers of root systems. Furthermore, we introduce
generating functions of Bernoulli numbers of root systems, using which we can give
an algorithm of calculating Bernoulli numbers of root systems.

Keywords Witten zeta-functions • Root systems • Lie algebras • Bernoulli
polynomials • Weyl groups

11.1 Introduction

Let g be a complex semisimple Lie algebra with rank r . The Witten zeta-function
associated with g is defined by
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�W .sI g/ D
X

'

.dim'/�s ; (1)

where the summation runs over all finite-dimensional irreducible representations
' of g.

Let N be the set of positive integers, N0 D N[f0g, Z the ring of rational integers,
Q the rational number field, R the real number field, and C the complex number
field, respectively. Witten’s motivation [38] for introducing the above zeta-function
is to express the volumes of certain moduli spaces in terms of special values of (1).
This expression is called Witten’s volume formula, which especially implies that

�W .2kI g/ D CW .2k; g/�2kn (2)

for any k 2 N, where n is the number of all positive roots and CW .2k; g/ 2 Q

(Witten [38], Zagier [39]).
When g D sl.2/, the corresponding Witten zeta-function is nothing but the

Riemann zeta-function �.s/. It is classically known that

�.2k/ D �1
2

.2�
p�1/2k
.2k/Š

B2k .k 2 N/; (3)

where B2k is the 2k-th Bernoulli number. Formula (2) is a generalization of (3),
but the values CW .2k; g/ are not explicitly determined in the work of Witten
and of Zagier. In this chapter, we introduce a root-system theoretic generalization
of Bernoulli numbers and periodic Bernoulli functions, and express CW .2k; g/
explicitly in terms of generalized periodic Bernoulli functions P.k; yI�/ (defined
in Sect. 11.4). This result will be given in Theorem 8. Note that Szenes [31,32] also
studied generalizations of Bernoulli polynomials from the viewpoint of the theory of
arrangement of hyperplanes, which include P.k; yI�/ mentioned above. However,
our root-system theoretic approach enables us to show that our P.k; yI�/ and its
generating function F.k; yI�/ are quite natural extensions of the classical ones (see
Theorems proved in Sect. 11.6).

Our explicit expression of CW .2k; g/ is obtained as a special case of a general
family of functional relations, which is another main result of this chapter. To ex-
plain this, we first introduce the multivariable version of Witten zeta-functions.

Let � be the set of all roots of g, �C the set of all positive roots of g, � D
f˛1; : : : ; ˛rg the fundamental system of �, and ˛_

j the coroot associated with ˛j
(1 � j � r). Let �1; : : : ; �r be the fundamental weights satisfying h˛_

i ; �j i D
�j .˛

_
i / D ıij (Kronecker’s delta). A more explicit form of �W .sI g/ can be written

down in terms of roots and weights by using Weyl’s dimension formula (see (1.4)
of [16]). Inspired by that form, we introduced in [16] the multivariable version of
Witten zeta-function

�r .sI g/ D
1X

m1D1
� � �

1X

mrD1

Y

˛2�C

h˛_; m1�1 C � � � Cmr�ri�s˛ ; (4)
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where s D .s˛/˛2�C
2 Cn. In the case that g is of type Xr , we call (4) the zeta-

function of the root system of type Xr and also denote it by �r .sIXr/, where X D
A;B;C;D;E; F;G. Note that from (1.5) and (1.7) in [16], we have

�W .sI g/ D K.g/s�r .s; : : : ; sI g/; (5)

where

K.g/ D
Y

˛2�C

h˛_; �1 C � � � C �ri: (6)

More generally, in [16], we introduced multiple zeta-functions associated with sets
of roots. The main body of [16] is devoted to the study of recursive structures in the
family of those zeta-functions that can be described in terms of Dynkin diagrams of
underlying root systems.

The Euler–Zagier r-fold sum is defined by the multiple series

�r .s1; : : : ; sr / D
1X

m1D1
� � �

1X

mrD1
m

�s1
1 .m1 Cm2/

�s2�

� � � � � .m1 C � � � Cmr/
�sr : (7)

The harmonic product formula

�.s1/�.s2/ D �.s1 C s2/C �2.s1; s2/C �2.s2; s1/; (8)

due to L. Euler (where �.s/ denotes the Riemann zeta-function), and its r-ple
analogue are classical examples of functional relations (cf. Bradley [3]). However,
no other functional relations among multiple zeta-functions have been discovered
for a long time.

Let

�MT;2.s1; s2; s3/ D
1X

mD1

1X

nD1
m�s1n�s2 .mC n/�s3 : (9)

This series is called Tornheim’s harmonic double sum or the Mordell–Tornheim
double zeta-function, after the work of Tornheim [33] and Mordell [27] in 1950s.
But it is to be noted that this sum actually coincides with the Witten zeta-
function (4) for g D sl.3/, that is, the simple Lie algebra of type A2. Recently,
the third-named author [36] proved that there are certain functional relations
among �MT;2.s1; s2; s3/ D �2.s1; s2; s3IA2/ and the Riemann zeta-function. More-
over, he obtained the same type of functional relations for various relatives of
�MT;2.s1; s2; s3/ (see [34, 35]). The method in these papers can be called the
“u-method,” because an auxiliary parameter u > 1 was introduced to ensure the
absolute convergence in the argument.
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In [24], by the same “u-method,” the second- and the third-named authors
proved certain functional relations among �3.sIA3/, �2.sIA2/, and the Riemann
zeta-function. The papers [22, 23, 25, 26] are also devoted to the study of some new
functional relations for certain (mainly) double and triple zeta-functions and their
relatives.

The above papers give many examples of functional relations. Therefore, it is
timely to investigate the structural reason underlying these functional relations.
The first hint on this question was supplied by Nakamura’s paper [28], in which
he presented a new simple proof of the result of the third-named author [36].
(Nakamura’s method has then been applied in [22, 23].)

It can be observed from Nakamura’s proof that the functional relations proved in
[28, 36] are connected with the symmetry with respect to the symmetric group S3,
which is the Weyl group of the Lie algebra of typeA2. This suggests the formulation
of general functional relations using Weyl groups.

One of the main purposes of this chapter is to show that such general forms of
functional relations can indeed be proved. In Sect. 11.2, we prepare some notation
and preliminary results about root systems, Weyl groups, and convex polytopes,
which play essential roles in the study of the structural background of functional
relations. We will give general forms of functional relations in Sects. 11.3 and 11.4.
The most general form of functional relations is Theorem 3, which is specialized
to the case of “Weyl group symmetric” linear combinations S.s; yI I I�/ (defined
by (110)) of zeta-functions of root systems with exponential factors in Theorems 5
and 6. A naı̈ve form of Theorem 6 has been announced in Sect. 3 of [11], but we
consider the generalized form with exponential factors because this form can be
applied to evaluations of L-functions of root systems (see [17] for the details).

The theorems mentioned above give expressions of linear combinations of zeta-
functions in terms of certain multiple integrals involving Lerch zeta-functions.
Since the values of Lerch zeta-functions at positive integers (	2) can be written as
Bernoulli polynomials, we can show more explicit forms of those multiple integrals
in some special cases. We will carry out this procedure using generating functions
(Theorem 4).

In particular, we find that the value S.s; yI�/ D S.s; yI ;I�/ at s D k D .k˛/,
where all k˛’s are positive integers (	2), is essentially a generalization P.k; yI�/
of periodic Bernoulli functions. The generating function F.t; yI�/ of P.k; yI�/
will be evaluated in Theorem 7. Consequently, we can prove a generalization of
Witten’s volume formula (2) (Theorem 8).

In Sect. 11.5, we will show the Weyl group symmetry of S.s; yI�/, F.t; yI�/,
and P.k; yI�/. For our purpose, it is not sufficient to consider the usual Weyl
group only, and hence, we will introduce a certain extension bW of the affine Weyl
group and will prove the symmetry with respect to bW (Theorems 9, 11, and 12).
These results ensure that the existence of functional relations is indeed based on
the symmetry with respect to bW . Although the symmetry by affine translations is
itself trivial in the case of periodic Bernoulli functions, it plays an important role
to construct the action of Weyl groups on a generalization of Bernoulli polynomials
introduced in Sect. 11.6. (See Theorem 16 for details.) It is to be noted that Weyl
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groups already played a role in Zagier’s sketch [39] of the proof of (2) and also in
Gunnells–Sczech’s computation [6].

In Sect. 11.6, we will prove that P.k; yI�/ can be continued to polynomials in
y (Theorem 13). This may be regarded as a (root-system theoretic) generalization
of Bernoulli polynomials. Since P.k; yI�/ is essentially the same as S.k; yI�/,
this gives explicit relations among special values of zeta-functions of root systems.
Moreover, in the same theorem, we will give the continuation of F.t; yI�/.

As examples, in Sect. 11.7, we will calculate P and F explicitly in the cases of
A1,A2,A3, andB2. In particular, from the explicit expansion of generating functions
F , we will determine the value of CW .2;A2/, CW .2;A3/, and CW .2; B2/ in (2).
The case of A2 type is included in the results of Mordell [27], Subbarao et al. [29],
and Zagier [39]. Furthermore, Gunnells–Sczech [6] studied general cases and, in
particular, gave explicit examples for CW .2k;A3/. Here we can deduce explicit
value relations and special values of multivariable zeta-functions of any simple
algebra g by the same argument, at least in principle, though the actual procedure
will become quite complicated when the rank of g becomes higher. We also provide
an example of a functional relation in the A2 case.

Some parts of the contents of [16] and this chapter have been already announced
briefly in [11–13, 15].

11.2 Root Systems, Weyl Groups, and Convex Polytopes

In this preparatory section, we first fix notation and summarize basic facts about root
systems and Weyl groups. See [2, 8–10] for the details. Let V be an r-dimensional
real vector space equipped with an inner product h�; �i. We denote the norm of
v 2 V by kvk D hv; vi1=2. The dual space V � is identified with V via the inner
product of V . Let � be a finite reduced root system in V and � D f˛1; : : : ; ˛rg its
fundamental system. Let �C and �� be the set of all positive and negative roots,
respectively. Then we have a decomposition of the root system� D �C

`
��. Let

Q_ be the coroot lattice, P the weight lattice, PC the set of integral dominant
weights, and PCC the set of integral strongly dominant weights, respectively,
defined by

Q_ D
rM

iD1
Z˛_

i ; P D
rM

iD1
Z�i ; PC D

rM

iD1
N0 �i ; PCC D

rM

iD1
N�i ; (10)

where the fundamental weights f�j grjD1 are a basis dual to �_ satisfying
h˛_
i ; �j i D ıij . Let

� D 1

2

X

˛2�C

˛ D
rX

jD1
�j (11)

be the lowest strongly dominant weight. Then PCC D PC C �.
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We define the reflection �˛ with respect to a root ˛ 2 � as

�˛ W V ! V; �˛ W v 7! v � h˛_; vi˛; (12)

and for a subsetA � �, letW.A/ be the group generated by reflections �˛ for ˛2A.
Let W D W.�/ be the Weyl group. Then �j D �˛j (1 � j � r) generates W .
Namely, we have W D W.�/. Any two fundamental systems � , � 0 are conjugate
underW .

We denote the fundamental domain called the fundamental Weyl chamber by

C D fv 2 V j h�_; vi 	 0g; (13)

where h�_; vi means any of h˛_; vi for ˛_ 2 �_. Then W acts on the set of Weyl
chambers WC D fwC j w 2 W g simply transitively. Moreover, if wx D y for
x; y 2 C , then x D y holds. The stabilizerWx of a point x 2 V is generated by the
reflections which stabilize x. We see that PC D P \ C .

Let Aut.�/ be the subgroup of all the automorphisms GL.V / which stabilizes�
(see [8, Sect. 12.2]). Then the Weyl group W is a normal subgroup of Aut.�/, and
there exists a subgroup˝ � Aut.�/ such that

Aut.�/ D ˝ ËW: (14)

The subgroup ˝ is isomorphic to the group Aut.� / of automorphisms of the
Dynkin diagram � . For w 2 Aut.�/, we set

�w D �C \ w�1�� (15)

and the length function `.w/ D j�wj (see [9, Sect. 1.6]). The subgroup ˝ is
characterized as w 2 ˝ if and only if `.w/ D 0. Note that w�w D �� \ w�C D
��w�1 and `.w/ D `.w�1/.

For u 2 V , let 
.u/ be the translation by u, that is,


.u/ W V ! V; 
.u/ W v 7! vC u: (16)

Since Aut.�/ stabilizes the coroot lattice Q_, we can define

bW D Aut.�/ Ë 
.Q_/: (17)

Then bW D .˝ ËW / Ë 
.Q_/ ' ˝ Ë .W Ë 
.Q_//. It should be noted that bW is
an extension of the affine Weyl groupW Ë
.Q_/ different from the extended affine
Weyl groupW Ë 
.P_/ (see [2, 10] for the details of affine Weyl groups).

Let bV D V �R and ı D .0; 1/ 2 bV . We embedV in bV and we havebV D V˚R ı.
For � D 	C cı 2 bV with 	 2 V and c 2 R, we associate an affine linear functional
on V as �.v/ D h	; vi C c. Let bQ_ be the affine coroot lattice defined by

bQ_ D Q_ ˚ Z ı (18)

(see [10]).
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For a set X , let F.X/ be the set of all functions f W X ! C. For a function
f 2 F.P /, we define a subset

Hf D f� 2 P j f .�/ D 0g (19)

and for a subset A of F.P /, define HA D S
f 2A Hf . It is noted that we typically

work with linear functions, and in such cases, HA is the intersection of P and the
union of some hyperplanes.

One sees that an action of W is induced on F.P / as .wf /.�/ D f .w�1�/.
Note that V � bV � F.P /, where the second inclusion is given by the associated
functional mentioned above.

Let I � f1; : : : ; rg and �I D f˛i j i 2 I g � � . Let VI be the linear subspace
spanned by �I . Then �I D � \ VI is a root system in VI whose fundamental
system is �I . For the root system �I , we denote the corresponding coroot lattice
(resp. weight lattice, etc.) by Q_

I D
L

i2I Z˛_
i (resp. PI D L

i2I Z�i , etc.). We
define

CI D fv 2 C j h�_
I c ; vi D 0; h�_

I ; vi > 0g; (20)

where I c is the complement of I . Then the dimension of the linear span of CI is
jI j, and we have a disjoint union

C D
a

I�f1;:::;rg
CI (21)

and the collection of all sets wCI for w 2 W and I � f1; : : : ; rg is called the
Coxeter complex (see [9, Sect. 1.15]; it should be noted that we use a little different
notation), which partitions V and we have a decomposition

PC D
a

I�f1;:::;rg
PICC; (22)

where

PICC D PC \ CI : (23)

In particular, P;CC D f0g and Pf1;:::;rgCC D PCC.
The natural embedding � W Q_

I ! Q_ induces the projection �� W P ! PI .
Namely, for � 2 P , ��.�/ is defined as a unique element ofPI satisfying h�.q/; �i D
hq; ��.�/i for all q 2 Q_

I . Let

W I D fw 2 W j �_
IC � w�_Cg: (24)

Then we have the following key lemmas to functional relations among zeta-
functions. Note that the statements hold trivially in the case I D ;, and hence,
we deal with I ¤ ; in their proofs.
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Lemma 1. The subset W I coincides with the minimal (right) coset representatives
fw 2 W j `.�iw/ > `.w/ for all i 2 I g of the parabolic subgroup W.�I / (see [9,
Sect. 1.10]). Therefore, jW I j D �W.�/ W W.�I /

�
.

Proof. Let w 2 W I . Then �_
IC � w�_C, which implies �_

IC \ w�_� D ;. In
particular, ˛_

i 62 w�_� for i 2 I , which yields �_C \ w�_� D .�_C n f˛_
i g/ \ w�_�.

Therefore,

�i .�
_C\w�_�/ D �i

�
.�_Cnf˛_

i g/\w�_�
� D .�_Cnf˛_

i g/\�iw�_� � �_C\�iw�_�
(25)

and `.�iw/ 	 `.w/. Since `.�iw/ D `.w/˙ 1, we have `.�iw/ D `.w/C 1 and w
is a minimal coset representative.

Assume that w 2 W satisfies `.�iw/ > `.w/ for all i 2 I . Then we have

�i .�
_C \ w�_�/ D

�
.�_C n f˛_

i g/\ �iw�_�
� [ �f�˛i g \ �iw�_�

�
: (26)

Since j�i .�_C \w�_�/j D `.w/ and j.�_C n f˛_
i g/\ �iw�_�j 	 `.�iw/� 1 D `.w/,

we have jf�˛ig \ �iw�_�j D 0. It implies that no element of �_C \ w�_� is sent to
�_� by �i for i 2 I , and hence, �_

I \w�_� D ;. Since 0 62 h�_; �i and ˛_ 2 w�_�
if and only if h˛_;w�i < 0, we have h�_

I ;w�i > 0 and hence h�_
IC;w�i > 0. It

follows that �_
IC \ w�_� D ; and w 2 W I . ut

Lemma 2.

���1.PIC/ D PIC ˚ PI c D
[

w2W I

wPC: (27)

Proof. The first equality is clear. We prove the second equality.
Assume w 2 W I . Then for � 2 PC, we have h�_

IC;w�i D hw�1�_
IC; �i �

h�_C; �i 	 0: Hence, wPC � ���1.PIC/.
Conversely, assume � 2 ���1.PIC/. Since j�_j < 1, it is possible to fix a

sufficiently small constant c > 0 such that 0 < jh�_; c�ij < 1. Then we see that
� C c� is regular (see [8, Sect. 10.1]), that is, 0 62 h�_; � C c�i and the signs of
h˛_; �i and h˛_; �C c�i coincide if h˛_; �i ¤ 0, because h�_; �i � Z. Let Q�_C D
f˛_ 2 �_ j h˛_; � C c�i > 0g. Then Q�_C is a positive system, and hence, there
exists an element w 2 W such that Q�_C D w�_C. Since � 2 ���1.PIC/, we have
�_
IC � Q�_C. Hence, �_

IC � w�_C, that is, w 2 W I . Moreover, h Q�_C; �C c�i > 0

implies h�_C;w�1.� C c�/i > 0 and h�_C;w�1�i 	 0 again due to the integrality.
Therefore, � 2 wPC. ut
Lemma 3. For � 2 ���1.PIC/, an element w 2 W I satisfying � 2 wPC (whose
existence is assured by Lemma 2) is unique if and only if � 62 H�_n�_

I
.

Proof. Assume ˛_ 2 �_ n �_
I and � 2 ���1.PIC/ \ H˛_ . Let w 2 W I satisfy

� 2 wPC. Then �˛� D � 2 wPC and hence w�1� D �w�1˛w�1� 2 PC, which
further implies w�1˛_ 2 �0_, where �0_ is a coroot system orthogonal to w�1�
whose fundamental system is given by � 0_ D f˛_

i 2 �_ j h˛_
i ;w

�1�i D 0g
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(see [9, Sect. 1.12]). If � 0_ � w�1�_
I , then W.� 0_/� 0_ D �0_ � w�1�_

I , and
hence w�1˛_ 2 w�1�_

I , which contradicts to the assumption ˛_ 62 �_
I . Therefore,

there exists a fundamental coroot ˛_
i 2 � 0_ n w�1�_

I , which satisfies �iw�1� D
w�1� 2 PC by construction. Since w 2 W I , we have w�1�_

IC � �_C n f˛_
i g.

Hence, �iw�1�_
IC � �_C, because �i .�_C n f˛_

i g/ � �_C. Then putting w0 D w�i ,
we have W I 3 w0 ¤ w such that � 2 wPC \ w0PC.

Conversely, assume that there exist w;w0 2 W I such that w ¤ w0 and � 2
wPC \ w0PC. This implies that w�1� D w0�1� is on a wall of C and hence � 2
H�_ . Let �00_ D f˛_ 2 �_ j � 2 H˛_g be a coroot system orthogonal to � so
that � 2 H�00_ . Assume �00_ � �_

I . Then by � D ww0�1�, we have ww0�1 2 W�

and hence ww0�1 2 W.�I /, because W� D W.�00_/ � W.�_
I / by the assumption.

Since id ¤ ww0�1 2 W.�I /, there exists a coroot ˛_ 2 �_
IC such that ˇ_ D

ww0�1˛_ 2 �_
I�. Then, since w�1.ww0�1/�_

IC � �_C and w�1�_
IC � �_C, we

have w�1ˇ_ 2 �_C from the first inclusion and w�1.�ˇ_/ 2 �_C from the second
one, which leads to the contradiction. Therefore, � 2 H˛_ for ˛ 2 �00_ n�_

I . ut
Next, we give some definitions and facts about convex polytopes (see [7,40]) and

their triangulations. For a subset X � RN , we denote by Conv.X/ the convex hull
ofX . A subset P � RN is called a convex polytope if P D Conv.X/ for some finite
subset X � RN . Let P be a d -dimensional polytope. Let H be a hyperplane in RN .
Then H divides RN into two half-spaces. If P is entirely contained in one of the two
closed half-spaces and P \H ¤ ;, then H is called a supporting hyperplane. For a
supporting hyperplane H, a subset F D P \H ¤ ; is called a face of the polytope
P . If the dimension of a face F is j , then we call it a j -face F . A 0-face is called a
vertex and a .d � 1/-face a facet. For convenience, we regard P itself as its unique
d -face. Let Vert.P/ be the set of the vertices of P . Then

F D Conv.Vert.P/\F/; (28)

for a face F .
A triangulation of a polytope is a partition of it into simplexes that intersect each

other in entire faces. It is known that a convex polytope can be triangulated without
adding any vertices. Here we give an explicit procedure of a triangulation of P .
Number all the vertices of P as p1; : : : ;pk . For a face F , by N .F/, we mean the
vertex pj whose index j is the smallest in the vertices belonging to F . A full flag
˚ is defined by the sequence

˚ W F0 � F1 � � � � � Fd�1 � Fd D P ; (29)

with j -faces Fj such that N .Fj / 62 Fj�1.

Theorem 1 ([30]). All the collection of the simplexes with vertices N .F0/, . . . ,
N .Fd�1/, N .Fd / associated with full flags gives a triangulation.

Remark 1. This procedure only depends on the face poset structure of P (see [7,
Sect. 5]).
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For a D t .a1; : : : ; aN /;b D t .b1; : : : ; bN / 2 CN , we define a � b D a1b1C � � � C
aN bN . The definition of polytopes above is that of “V-polytopes.” We mainly deal
with another representation of polytopes, “H-polytopes,” instead. Namely, consider
a bounded subset of the form

P D
\

i2I
HC
i � R

N ; (30)

where jI j < 1 and HC
i D fx 2 RN j ai � x 	 hi g with ai 2 RN and hi 2 R. The

following theorem is intuitively clear but nontrivial (see, e.g., [40, Theorem 1.1]).

Theorem 2 (Weyl–Minkowski). H-polytopes are V-polytopes and vice versa.

We have a representation of k-faces in terms of hyperplanes Hi D fx 2 RN j ai �
x D hi g.
Proposition 1. Let J � I . Assume that F D P\Tj2J Hj ¤ ;. Then F is a face.

Proof. Let x 2 P . Then x 2 Tj2J HC
j and hence aj �x 	 hj for all j 2 J . Set a D

P
j2J aj and h DPj2J hj . Let H be a hyperplane defined by fx 2 RN j a �x D hg.

Then a � x 	 h for x 2 P and P � HC D fx 2 RN j a � x 	 hg.
Let x 2 P \H. Then a � x D h. Since aj � x D hj C cj 	 hj with some cj 	 0

for all j 2 J , we have cj D 0 and x 2 Hj for all j 2 J . Thus, x 2 F . It is easily
seen that x 2 F satisfies x 2 P \H. Therefore, F D P \H and H is a supporting
hyperplane. ut
Proposition 2. Let H be a supporting hyperplane and F D P \H a k-face. Then
there exists a set of indices J � I such that jJ j D .dimP/ � k and F D P \T
j2J Hj .

Proof. Assume d D N without loss of generality. Let x 2 F . Then x 2 H and
hence x 2 @P since P � HC. If x 2 HC

i nHi for all i 2 I , then x is in the interior
of P , which contradicts to the above. Thus, x 2 Hj for some j 2 I .

First we assume that F D P \ H is a facet. Then there exists a subset
fx1; : : : ; xN g � F such that x2 � x1; : : : ; xN � x1 are linearly independent. Let C
be the convex hull of fx1; : : : ; xN g. We consider that C � F is equipped with the
relative topology. Note that for x 2 C, we have x 2 Hi.x/, where i.x/ 2 I . We
show that there exists an open subset U � C and i 2 I such that Hi \ U is dense
in U . Fix an order fi1; i2; : : :g D I . If Hi1 \ C is dense in C, then we have done.
Hence, we assume that it is false. Then there exists an open subset U1 � C such that
Hi1 \ U1 D ;. Similarly, we see that Hi2 \ U1 is dense in U1 unless there exists an
open subset U2 � U1 such that Hi2\U2 D ;. Since jI j <1, repeated application of
this argument yields the assertion. Thus, there exists a subset fx0

1; : : : ; x
0
N g � Hi\U

such that x0
2 � x0

1; : : : ; x
0
N � x0

1 are linearly independent. Hence, we have F � Hi

and H D Hi .
For any k-face F , there exists a sequence of faces such that

F D Fk � FkC1 � � � � � FN�1 � P ; (31)
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where Fj (k � j � N �1) is a j -face. Since Fj is a facet of FjC1, by the induction
on dimensions, we have F DP \Tj2J Hj for some J � I with jJ j DN � k. ut
Lemma 4. Let a D t .a1; : : : ; aN / 2 CN and � be a simplex with vertices
p0; : : : ;pN 2 RN in general position. Then

Z

�

ea�xdx D NŠVol.�/
NX

mD0

ea�pm
Q
j¤m a � .pm � pj /

D NŠVol.�/T .a � p0; : : : ; a � pN /; (32)

where

T .x0; : : : ; xN / D det

0

B
B
B
B
B
@

1 � � � 1

x0 � � � xN
:::

: : :
:::

xN�1
0 � � � xN�1

N

ex0 � � � exN

1

C
C
C
C
C
A

,

det

0

B
B
B
B
B
@

1 � � � 1

x0 � � � xN
:::

: : :
:::

xN�1
0 � � � xN�1

N

xN0 � � � xNN

1

C
C
C
C
C
A

; (33)

Vol.�/ D
Z

�

1dx D 1

N Š
jdet QP j; (34)

and

QP D
�
1 � � � 1
p0 � � � pN

�

; (35)

with pj regarded as column vectors.

Proof. Let 
 be the simplex whose vertices are t .0; : : : ;
j

1; : : : ; 0/, 1 � j � N , and
the origin. Then by changing variables from x to y as x D p0CP y with the N �N
matrix P D .p1 � p0; : : : ;pN � p0/, we have

Z

�

ea�xdx D ea�p0 jdetP j
Z




eb�ydy; (36)

where tb D .b1; : : : ; bN / D taP . Since

Z 1�y1�����ym�1

0

ecC.b1�c/y1C���C.bm�c/ymdym

D 1

bm � c
�
ebmC.b1�bm/y1C���C.bm�1�bm/ym�1 � ecC.b1�c/y1C���C.bm�1�c/ym�1

�
;

(37)

we see that
Z




eb�ydy D q0.b/C
NX

mD1
qm.b/ebm ; (38)



234 Y. Komori et al.

where qj .b/ for 0 � j � N are rational functions in b1; : : : ; bN . In particular, we
have

q0.b/ D .�1/N
b1 � � �bN (39)

and hence

Z

�

ea�xdx D jdet.p0 � p1; : : : ;p0 � pN /j
�
a � .p0 � p1/

� � � � �a � .p0 � pN /
�ea�p0 C

NX

mD1
Qqm.a/ea�pm; (40)

where Qqm.a/ are certain rational functions in a1; : : : ; aN . Since ea�pj for 0 �
j � N are linearly independent over the field of rational functions in a1; : : : ; aN ,
exchanging the roles of the indices 0 and j in the change of variables in (36) yields

Z

�

ea�xdx D
NX

mD0

jdet.pm � p0; : : : ;pm � pm�1;pm � pmC1; : : : ;pm � pN /j
Q
j¤m a � .pm � pj /

ea�pm

D NŠVol.�/
NX

mD0

ea�pm
Q
j¤m a � .pm � pj /

: (41)

Generally, we have

NX

mD0

exm
Q
j¤m.xm � xj /

D T .x0; : : : ; xN / (42)

by the Laplace expansion of the numerator of the right-hand side of (33) with respect
to the last row and hence the result (32). ut
Although the following lemma is a direct consequence of the second expression
of (32) with the definition of Schur polynomials and the Jacobi–Trudi formula (see
[19]), we give a direct proof for convenience.

Lemma 5. Let a 2 CN, � and p0; : : : ;pN 2 RN are the same as in Lemma 4. Then
the Taylor expansion with respect to a is given by

Z

�

ea�xdxDVol.�/

0

B
B
@1C

1

NC1
X

0�i�N
a � piC� � �

C NŠ

.N C k/Š
X

k0;:::;kN	0
k0C���CkNDk

.a � p0/k0 � � � .a � pN /kNC � � �

1

C
C
A: (43)
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Proof. We recall Dirichlet’s integral (see [37, Chap. XII, Sect. 12.5]) for nonnega-
tive integers kj and a continuous function g, that is,

Z

Q

y
k0
0 � � �ykNN g.y0 C � � � C yN /dy0 � � � dyN

D k0Š � � �kN Š
.N C k0 C � � � C kN /Š

Z 1

0

g.t/tk0C���CkNCN dt; (44)

where Q
 is the .N C 1/-dimensional simplex with their vertices t .0; : : : ;
j

1; : : : ; 0/,
0 � j � N , and the origin. This formula is easily obtained by repeated application
of the beta integral.

We calculate

f .a/ D 1

kŠ

Z

�

.a � x/kdx: (45)

By multiplying

1 D .k C 1/
Z 1

0

skds; (46)

and changing variables as x0 D sx, we obtain

f .a/ D k C 1
kŠ

Z

Q�
.a � x0/ks�N dsdx0; (47)

where Q� D S
0�s�1

�
s

s�

�

is an .N C 1/-dimensional simplex. Again, we change

variables as QP Qy D Qx D
�
s

x0
�

. Then

f .a/ D k C 1
kŠ
jdet QP j

Z

Q


0

@
NX

jD0
.a � pj /yj

1

A

k 0

@
NX

jD0
yj

1

A

�N

dQy

D k C 1
kŠ
jdet QP j

X

k0;:::;kN	0
k0C���CkNDk

.a � p0/k0 � � � .a � pN /kN kŠ

k0Š � � �kN Š

�
Z

Q

y
k0
0 � � �ykNN

0

@
NX

jD0
yj

1

A

�N

dQy; (48)
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where Qy D t .y0; : : : ; yN /. Hence applying (44), we obtain

f .a/ D k C 1
kŠ
jdet QP j

X

k0;:::;kN	0
k0C���CkNDk

.a � p0/k0 � � � .a � pN /kN kŠ

.N C k/Š
1

k C 1

D Vol.�/
N Š

.N C k/Š
X

k0;:::;kN	0
k0C���CkNDk

.a � p0/k0 � � � .a � pN /kN : (49)

ut
It should be remarked that a � pj for 0 � j � N are not linearly independent. Thus,
the coefficients with respect to them are not unique. Lemma 5 is a special and exact
case of the following lemma.

Lemma 6. Let a 2 CN , � and p0; : : : ;pN 2 RN are the same as in Lemma 4.
Then for b 2 CN , the coefficients of total degree k with respect to a of the Taylor
expansion of

Z

�

e.aCb/�xdx (50)

are holomorphic functions in b of the form

Vol.�/
NX

mD0

X

k0;:::;kN	0
k0C���CkNDk

cm;k0;:::;kN
eb�pm

Q
j¤m

�
b � .pm � pj /

�kjC1 ; (51)

where cm;k0;:::;kN 2 Q.

Proof. We assume ja � .pm � pj /j < jb � .pm � pj /j for all j ¤ m. Then we have

e.aCb/�pm
Q
j¤m.aC b/ � .pm � pj /

D eb�pm
Q
j¤m b � .pm � pj /

ea�pm
Q
j¤m

�

1C a � .pm � pj /
b � .pm � pj /

�

D eb�pm
Q
j¤m b � .pm � pj /

ea�pm Y

j¤m

1X

kjD0

�

�a � .pm � pj /
b � .pm � pj /

�kj

D
1X

kD0

X

k0;:::;kN	0
k0C���CkNDk

eb�pm
Q
j¤m

�
b � .pm � pj /

�kjC1
.a � pm/km
kmŠ

Y

j¤m

�
a � .pj � pm/

�kj
:

(52)
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Applying this result to the second member of (32) with a replaced by a C b, we
see that the coefficients of total degree k are of the form (51). The holomorphy with
respect to a and b follows from the original integral form (50). Therefore, (51) is
valid for the whole space with removable singularities. ut

11.3 General Functional Relations

The purpose of this section is to give a very general formulation of functional
relations. For f; g 2 F.P / and I; J � f1; : : : ; rg, we define

�.f; gIJ I�/ D
X

�2PJCCnHg

f .�/

g.�/
; (53)

and

S.f; gI I I�/ D
X

�2���1.PIC/nHg

f .�/

g.�/
: (54)

We assume that (54) is absolutely convergent for a fixed I . By (24) and Lemma 2,
we have id 2 W I and PC � ���1.PIC/. Hence, (53) is also absolutely convergent
for all J since PJCC � PC by (22).

For s 2 C, <s > 1 and x; c 2 R, let

Ls.x; c/ D � � .s C 1/
.2�
p�1/s

X

n2Z
nCc¤0

e..nC c/x/
.nC c/s : (55)

Here and hereafter, we use the standard notation e.x/ D e2�
p�1x for simplicity. Let

DI c be a finite subset of .Q_ n f0g/˚ R ı � bV . Then any element of � 2 DI c can
be written as � D 	� C c�ı (	� 2 Q_ n f0g, c� 2 R). We assume that DI c contains
BI c D f�igi2I c where �i D 	i C ci ı for i 2 I c such that f	igi2I c forms a basis of
Q_
I c and ci 2 R. Let f�i gi2I c � PI c be a basis dual to f	igi2I c .

Theorem 3. Let s� 2 C with <s� > 1 for � 2 DI c and let y 2 VI c . We assume that

f .�C �/ D f .�/e.hy; �i/; (56)

g.�C �/ D g].�/
Y

�2DIc

�.�C �/s� ; (57)

for any � 2 PIC and any � 2 PI c , where g] 2 F.PI /. (Hence f depends on y, and
g depends on s� ’s.) Then
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(i) We have

S.f; gI I I�/ D
X

w2W I

X

J�f1;:::;rg

1

Nw;J
�.w�1f;w�1gIJ I�/

D
X

J�I
�.f � f ]; g]IJ I�/; (58)

where

Nw;J D jwW.�Jc / \W I j (59)

and f ] 2 F.PI / is defined by

f ].�/ D .�1/jDIc je.�hy; �i/
0

@
Y

�2DIc

.2�
p�1/s�

� .s� C 1/

1

A

�
Z 1

0

: : :

Z 1

0

e

0

@�
X

�2DIc nBIc

�.� � �/x�
1

A

0

@
Y

�2DIc nBIc

Ls� .x� ; c� /

1

A

�
0

@
Y

i2I c

Ls�i

0

@hy; �ii �
X

�2DIc nBIc

x� h	� ; �i i; ci
1

A

1

A
Y

�2DIc nBIc

dx� ;

(60)

and

� D
X

i2I c

ci�i 2 PI c ˝ R: (61)

(ii) The second member of (58) consists of 2r
�
W.�/ W W.�I /

�
terms.

(iii) If H�_n�_

I
� Hg , then �.w�1f;w�1gIJ I�/ D 0 unless Nw;J D 1.

Proof. First, we claim that for w;w0 2 W I and � 2 wPJCC; we have � 2 w0PJCC
if and only if w0 2 wW.�Jc /. In fact, � 2 wPJCC\w0PJCC implies w0�1� 2 PJCC
and .w�1w0/w0�1� 2 PJCC, and hence, w�1w0 stabilizes PJCC D PC \ CJ .
Therefore, w�1w0 2 W.�Jc /. The converse statement is shown by reversing
the arguments, and we have the claim. By using this claim, Lemma 2, and the
decomposition (22), we have

S.f; gI I I�/ D
X

�2���1.PIC/nHg

f .�/

g.�/

D
X

w2W I

X

J�f1;:::;rg

1

Nw;J

X

�2wPJCCnHg

f .�/

g.�/
: (62)
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Therefore,

S.f; gI I I�/ D
X

w2W I

X

J�f1;:::;rg

1

Nw;J

X

�2PJCCnw�1Hg

f .w�/

g.w�/

D
X

w2W I

X

J�f1;:::;rg

1

Nw;J

X

�2PJCCnHw�1g

.w�1f /.�/
.w�1g/.�/

D
X

w2W I

X

J�f1;:::;rg

1

Nw;J
�.w�1f;w�1gIJ I�/; (63)

where the last member consists of 2r
�
W.�/ W W.�I/

�
terms since the cardinality

of the power set of f1; : : : ; rg is 2r and jW I j D �
W.�/ W W.�I /

�
by Lemma 1,

which implies the statement (ii).
Assume that � D 	� C c�ı 2 .Q_ n f0g/ ˚ R ı and � 2 P . Then �.�/ D

h	� ; �i C c� 2 ZC c� and for �.�/ ¤ 0, we have

1

�.�/s�
D

X

n�2Z
n�Cc�¤0

Z 1

0

e..n� C c� � �.�//x� /
.n� C c� /s� dx�

D
Z 1

0

X

n�2Z
n�Cc�¤0

e..n� C c� � �.�//x� /
.n� C c� /s� dx�

D � .2�
p�1/s�

� .s� C 1/
Z 1

0

Ls� .x� ; c� /e.��.�/x�/dx� ; (64)

where we have used the absolute convergence because of <s� > 1.
By using (57), (56), and Lemma 2, we have

S.f; gI I I�/ D
X

�2PIC

X

�2PIc

�C�62Hg

f .�/

g].�/
e.hy; �i/

0

@
Y

�2DIc

1

�.�C �/s�

1

A : (65)

Applying (64) to the right-hand side of the above, we obtain

S.f; gI I I�/ D
X

�2PIC

X

�2PIc

�C�62Hg

f .�/

g].�/
e.hy; �i/

0

@
Y

�2BIc

1

�.�C �/s�

1

A

�
0

@
Y

�2DIc nBIc

� .2�
p�1/s�

� .s� C 1/
Z 1

0

Ls� .x� ; c� /e.��.�C �/x� /dx�
1

A :

(66)
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Note that if �.�/ D 0, then c� 2 Z and the last member of (64) vanishes. Hence, we
may add the case �.�C�/ D 0 for � 2 DI c nBI c in the above. Therefore, by using
Hg D Hg] [HDIc nBIc [HBIc and putting � DPi2I c ni�i (ni 2 Z), we have

S.f; gI I I�/

D
0

@
Y

�2DIc nBIc

� .2�
p�1/s�

� .s� C 1/

1

A
X

�2PICnH
g]

f .�/

g].�/

�
X

ni2Z
niCci¤0
i2I c

Z 1

0

: : :

Z 1

0

e

0

@�
X

�2DIc nBIc

�.�/x�

1

A

0

@
Y

�2DIc nBIc

Ls� .x� ; c� /

1

A

�
Y

i2I c

e
�
.hy; �ii �P�2DIc nBIc x� h	� ; �i i/ni

�

.ni C ci /s�i
Y

�2DIc nBIc

dx�

D .�1/jDIc je.�hy; �i/
0

@
Y

�2DIc

.2�
p�1/s�

� .s� C 1/

1

A
X

�2PICnH
g]

f .�/

g].�/

�
Z 1

0

: : :

Z 1

0

e

0

@�
X

�2DIc nBIc

�.� � �/x�
1

A

0

@
Y

�2DIc nBIc

Ls� .x� ; c� /

1

A

�
0

@
Y

i2I c

Ls�i

�
hy; �i i �

X

�2DIc nBIc

x� h	� ; �i i; ci
�
1

A
Y

�2DIc nBIc

dx� ; (67)

which is equal to the third member of (58), because PIC D S
J�I PJCC. Hence,

the statement (i).
As for the last claim (iii) of the theorem, we first note that Nw;J > 1 if and

only if wPJCC � H�_n�_

I
. This follows from Lemma 3 and the definition of

Nw;J , with noting the claim proved on the first line of the present proof. Now
assume H�_n�_

I
� Hg . Then, if Nw;J > 1, we have wPJCC � Hg . This implies

�.w�1f;w�1gIJ I�/ D 0, because the definition (53) is an empty sum in this case.
ut

In this chapter, we mainly discuss the case when DI c � Q_. Nevertheless, we
give the above generalized form of Theorem 3, by which we can treat the case of
zeta-functions of Hurwitz type.

For a real number x, let fxg denote its fractional part x � Œx�. If s D k 	 2 and
c are integers, then it is known (see [1]) that
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Lk.x; c/ D � kŠ

.2�
p�1/k

X

n2Znf0g

e.nx/
nk

D Bk.fxg/; (68)

where Bk.x/ is the kth Bernoulli polynomial. Thus if all Ls.x; c/ in the integrand
on the right-hand side of (60) are written in terms of Bernoulli polynomials, then we
have a chance to obtain an explicit form of the right-hand side of (60). We calculate
the integral in question through a generating function instead of a direct calculation.
The result will be stated in Theorem 4 below.

Remark 2. When s� D 1, the argument (64) is not valid, because the series is
conditionally convergent. Hence, on the right-hand side of (67), s�i D 1 for i 2 I c

is not allowed. However, for n 2 Z n f0g, we have

1

n
D .�2�p�1/

Z 1

0

B1.x/e.�nx/dx; (69)

where the right-hand side vanishes if n D 0. Thus the value s� D 1 is also allowed
for � 2 .DI c n BI c/\ bQ_ on the right-hand side of (66) and hence in Theorem 3.

LetM;N 2 N, k D .kl /1�l�MCN 2 N
MCN
0 , y D .yi /1�i�M 2 RM and bj 2 C,

cij 2 R for 1 � i �M and 1 � j � N . Let

P.k; y/ D
Z 1

0

: : :

Z 1

0

exp

0

@
NX

jD1

bj xj

1

A

0

@
NY

jD1

Bkj .xj /

1

A

0

@
MY

iD1

BkNCi

0

@

8
<

:
yi�

NX

jD1

cij xj

9
=

;

1

A

1

A
NY

jD1

dxj :

(70)

For t D .tl /1�l�MCN 2 C
MCN , we define a generating function of P.k; y/ by

F.t; y/ D
X

k2NMCN
0

P.k; y/
MCNY

jD1

t
kj
j

kj Š
: (71)

Lemma 7. (i) The generating function F.t; y/ is absolutely convergent, uniformly
on DR � RM where DR D ft 2 C j jt j � RgMCN with 0 < R < 2� .

(ii) The function F.�; y/ is analytically continued to a meromorphic function in t on
the whole space CMCN , and we have

F.t; y/ D
0

@
MCNY

jD1

tj

etj � 1

1

A
Z 1

0

: : :

Z 1

0

0

@
NY

jD1
exp

�
.bj C tj /xj

�
1

A

�
0

@
MY

iD1
exp

0

@tNCi

8
<

:
yi �

NX

jD1
cij xj

9
=

;

1

A

1

A
NY

jD1
dxj
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D
0

@
MCNY

jD1

tj

etj � 1

1

A
c

C

1X

m1Dc�

1

� � �
c

C

MX

mMDc�

M

exp

 
MX

iD1
tNCi .fyig Cmi/

!

�
Z

Pm;y

exp

0

@
NX

jD1
.aj C bj /xj

1

A
NY

jD1
dxj ; (72)

where cC
i is the minimum integer satisfying cC

i 	
P

1�j�N
cij >0

cij and c�
i is the

maximum integer satisfying c�
i �

P
1�j�N
cij <0

cij and

aj D tj �
MX

iD1
tNCi cij ; (73)

Pm;y D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

x D .xj /1�j�N

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 � xj � 1; .1 � j � N/

fyi g Cmi � 1 �
NX

jD1
cij xj � fyig Cmi ;

.1 � i �M/

9
>>>>>>=

>>>>>>;

;

(74)

which is a convex polytope.

Proof. (i) Fix R0 2 R such that R < R0 < 2� . Then by the Cauchy integral
formula

Bk.x/

kŠ
D 1

2�
p�1

Z

jzjDR0

zezx

ez � 1
dz

zkC1 ; (75)

we have for 0 � x � 1

ˇ
ˇ
ˇ
Bk.x/

kŠ

ˇ
ˇ
ˇ � 1

2�

Z

jzjDR0

ˇ
ˇ
ˇ

zezx

ez � 1
ˇ
ˇ
ˇ
jdzj
R0kC1 �

CR0

R0k ; (76)

where

CR0 D max
nˇ
ˇ
ˇ

zezx

ez � 1
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ jzj D R0; 0 � x � 1

o
: (77)
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Therefore,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
P.k; y/

MCNY

jD1

t
kj
j

kj Š

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
�
0

@
MCNY

jD1
jtj jkj

1

A
Z 1

0
: : :

Z 1

0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
exp

0

@
NX

jD1
bj xj

1

A

0

@
NY

jD1

Bkj .xj /

kj Š

1

A

�
0

@
MY

iD1

BkNCi

�n
yi �PN

jD1 cij xj
o�

kNCi Š

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

NY

jD1
dxj

� C
0

@
MCNY

jD1
Rkj

1

A
Z 1

0
: : :

Z 1

0
CMCN
R0

MCNY

jD1

1

R0kj
NY

jD1
dxj

D CCMCN
R0

MCNY

jD1

�
R

R0
�kj

; (78)

where C D exp
�PN

jD1j<bj j
�

. Since

X

k2NMCN
0

CCMCN
R0

MCNY

jD1

�
R

R0

�kj
D CCMCN

R0

MCNY

jD1

1

1 � R=R0 <1; (79)

we have the uniform and absolute convergence of F.t; y/.
(ii) Noting the absolute convergence shown in (i), we obtain

F.t; y/ D
X

k2NMCN
0

P.k; y/
MCNY

jD1

t
kj
j

kj Š

D
X

k2NMCN
0

Z 1

0

: : :

Z 1

0

exp

0

@
NX

jD1
bj xj

1

A

0

@
NY

jD1
Bkj .xj /

t
kj
j

kj Š

1

A

�
0

@
MY

iD1
BkNCi

0

@

8
<

:
yi �

NX

jD1
cij xj

9
=

;

1

A
t
kNCi

NCi
kNCi Š

1

A
NY

jD1
dxj

D
0

@
MCNY

jD1

tj

etj � 1

1

A
Z 1

0

: : :

Z 1

0

exp

0

@
NX

jD1
bj xj

1

A

0

@
NY

jD1
exp.tj xj /

1

A

�
0

@
MY

iD1
exp

0

@tNCi

8
<

:
yi �

NX

jD1
cij xj

9
=

;

1

A

1

A
NY

jD1
dxj
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D
�MCNY

jD1

tj

etj � 1
�Z 1

0

: : :

Z 1

0

exp

� NX

jD1

�
bj C tj �

MX

iD1
tNCi cij

�
xj

�

� exp

� MX

iD1
tNCi

�
yi �

h
yi �

NX

jD1
cij xj

i�� NY

jD1
dxj : (80)

Here the inequality

yi � cC
i � yi �

NX

jD1
cij xj � yi � c�

i (81)

implies

fyi g C c�
i � yi �

2

4yi �
NX

jD1
cij xj

3

5 � fyi g C cC
i ; (82)

and formi 2 Z, the region of x satisfying

yi �
2

4yi �
NX

jD1
cij xj

3

5 D fyi g Cmi (83)

is given by

fyig Cmi � 1 <
NX

jD1
cij xj � fyi g Cmi: (84)

Therefore,

F.t; y/ D
0

@
MCNY

jD1

tj

etj � 1

1

A
c

C

1X

m1Dc�

1

� � �
c

C

MX

mMDc�

M

exp

 
MX

iD1
tNCi .fyig Cmi/

!

�
Z

Pm;y

exp
� NX

jD1
.aj C bj /xj

� NY

jD1
dxj ; (85)

which is a meromorphic function in t on the whole space CMCN . ut
Remark 3. When the polytope Pm;y is simple, then the corresponding integral is
calculated by Proposition 3.10 in [4]. Generally, the polytopes we treat may not be
simple. In [17], we avoid such difficulty using a certain limiting process.

Lemma 8. The function P.k; y/ is continuous with respect to y on RM . The
function F.t; y/ is continuous on ft 2 C j jt j < 2�gMCN � RM and holomorphic
in t for a fixed y 2 RM .
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Proof. For y 2 RM and x D .xj /1�j�N 2 RN , let h.y; x/ be the integrand of (70).
Let fyng1nD1 be a sequence in RM with limn!1 yn D y1, and we set hn.x/ D
h.yn; x/ and h1.x/ D h.y1; x/. Then for x 2 Œ0; 1�N ,

lim
n!1hn.x/ D h1.x/ (86)

holds if x satisfies

.y1/i �
NX

jD1
cij xj 62 Z; (87)

for all 1 � i �M . Hence, (86) holds almost everywhere, and we have

lim
n!1P.k; yn/ D lim

n!1

Z

Œ0;1�N
hn.x/

NY

jD1
dxj

D
Z

Œ0;1�N
lim
n!1hn.x/

NY

jD1
dxj

D
Z

Œ0;1�N
h1.x/

NY

jD1
dxj

D P.k; y1/; (88)

where we have used the uniform boundedness hn.x/ � C for some C > 0 and for
all n 2 N and x 2 Œ0; 1�N .

Combining the continuity of P.k; y/, definition (71), and Lemma 7, we obtain
the continuity and the holomorphy of F.t; y/. ut

Now we return to the situation y 2 VI c . Let yi D hy; �ii for i 2 I c and we
identify y with .yi /i2I c 2 RjI cj. We set Q Œy� D Q Œ.yi /i2I c �, A.y/ DPi2I c Zyi C
Z and jkj DP�2DIc k� . Let

D D f� ı 
.��/ j � 2 DI c n BI cg; � D
X

i2I c

ci�i 2 PI c : (89)

Theorem 4. Assume the same condition as in Theorem 3. Moreover, we assume
that DI c � bQ_ and s� D k� are integers for all � 2 DI c such that k� 	 2 for
� 2 BI c and k� 	 1 otherwise. Then f ] 2 F.PI / in (60) is of the form

f ].�/ D e.�hy; �i/
jkjX

kD0
.�
p�1/jkj�.kCN/X

	

f
.k/
	 .�/

g
.k/
	 .�/

; (90)
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where 	 runs over a certain finite set of indices, N D jDI c n BI c j and

f .k/
	 2 Q Œy�e.Q � A.y/ �D/; g.k/	 2

�
A.y/ �D�kCN

: (91)

Proof. From (60), we have

f ].�/ D .�1/jDIc je.�hy; �i/
� Y

�2DIc

.2�
p�1/k�
k� Š

�

P.k; y; �/; (92)

where for k D .k� /�2DIc ,

P.k; y; �/ D
Z 1

0

: : :

Z 1

0

e

0

@�
X

�2DIc nBIc

�.� � �/x�
1

A

0

@
Y

�2DIc nBIc

Bk� .x� /

1

A

�
0

@
Y

i2I c

Bk�i

0

@

8
<

:
yi �

X

�2DIc nBIc

x� h	� ; �i i
9
=

;

1

A

1

A
Y

�2DIc nBIc

dx� : (93)

Hence, P.k; y; �/ is of the form (70). Therefore, by applying Lemma 7, we find that
P.k; y; �/ is obtained as the coefficient of the term

Y

�2DIc

t
k�
� (94)

in the generating function

F.t; y; �/ D
X

k2NjDIc j

0

P.k; y; �/
Y

�2DIc

t
k�
�

k� Š

D
0

@
Y

�2DIc

t�

et� � 1

1

A
c

C

iX

miD0
i2I c

exp

 
X

i2I c

t�i .fyi g Cmi/

!

�
Z

Pm;y

exp
�
.aC b/ � x�

Y

�2DIc nBIc

dx� ; (95)

where a D .a� /�2DIc nBIc 2 RN ;b D .b� /�2DIc nBIc 2 CN with

a� D t� �
X

i2I c

t�i h	�; �i i; (96)

b� D �2�
p�1�.� � �/: (97)
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Since h	� ; �i i 2 Z, any vertex pj of Pm;y satisfies

.pj /� 2
X

i2I c

Q yi CQ D Q � A.y/: (98)

The first two factors of the last member of (95) are expanded as
� Y

�2DIc

t�

et� � 1
��Y

i2I c

exp
�
t�i .fyi g Cmi/

�
�

D
X

k02NjDIc j

0

Pk0.y/
Y

�2DIc

t
k0

�
� ; (99)

where Pk0.y/ 2 Q Œy� is of total degree at most jk0j.
Next, we calculate the contribution of t of the integral part. By a triangulation

Pm;y D SL.m/
lD1 �l;m;y in Theorem 1, the integral on Pm;y is reduced to those on

�l;m;y. Since (94) is of total degree jkj, and a is of the same degree as t by (96),
the contribution of t comes from terms of total degree � � jkj with respect to a.
By Lemma 6, we see that these terms are calculated as the special values of the
functions h.b0/ at b, where h.b0/ is a holomorphic function on CN of the form

Vol.�l;m;y/
NX

qD0

X

�0;:::;�N	0
�0C���C�ND�

cq;�0;:::;�N
eb0�pjq

QN
q0D0
q0¤q

�
b0 � .pjq � pjq0

/
��q0 C1 ; (100)

and pjq ’s are the vertices of �l;m;y and Vol.�l;m;y/ 2 Q Œy� is of total degree at most
N due to (98). Since

b � pj D �2�
p�1

X

�2DIc nBIc

�.�� �/.pj /� 2 �
p�1Q � A.y/ �D; (101)

each term of (100) is an element of

Q Œy�
e.Q �A.y/ �D/

.�
p�1Q � A.y/ �D/�0CN D

1

.�
p�1/�0CN Q Œy�

e.Q � A.y/ �D/
�
A.y/ �D��0CN ; (102)

where 0 � �0 � � � jkj.
Combining (99) and (100) for all m and l 2 L.m/ appearing in the sum, we see

that the coefficient of (94) is of the form (90). ut
Remark 4. It may happen that the denominator of (90) vanishes. However, the
original form (60) implies that f ] is well defined on PI . In fact, the values can
be obtained by use of analytic continuation in (100).

Remark 5. It should be noted that in Theorems 3 and 4, we have treated y 2 VI c

as a fixed parameter. In general, as a function of y 2 VI c , (90) is not a real analytic
function on the whole space VI c . We study this fact in a special case in Sect. 11.6.

We conclude this section with the following proposition, whose proof is a direct
generalization of that of (2.1) in [16].
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Proposition 3. Let f; g 2 F.P / and J � f1; : : : ; rg. Assume that J D J1
`
J2

and that f and g are decomposed as

f .�1 C �2/ D f1.�1/f2.�2/; g.�1 C �2/ D g1.�1/g2.�2/; (103)

for f1; g1 2 F.PJ1/, f2; g2 2 F.PJ2/, �1 2 PJ1 , �2 2 PJ2 . Then we have

�.f; gIJ I�/ D �.f1; g1IJ1I�/�.f2; g2IJ2I�/: (104)

11.4 Functional Relations, Value Relations, and Generating
Functions

Hereafter, we deal with the special case

f .�/ D e.hy; �i/; (105)

g.�/ D
Y

˛2�C

h˛_; �is˛ ; (106)

for y 2 V and s D .s˛/˛2� 2 Cj�Cj, where � is the quotient of � obtained by
identifying ˛ and �˛. We define an action of Aut.�/ by

.ws/˛ D sw�1˛; (107)

and let

�r.s; yI�/ D
X

�2PCC

e.hy; �i/
Y

˛2�C

1

h˛_; �is˛ : (108)

Then we have

�.f; gIJ I�/ D
(
�r .s; yI�/; if J D f1; : : : ; rg;
0; otherwise;

(109)

because for J ¤ f1; : : : ; rg, we have PJCC � H�_ D Hg . When y D 0, the
function �r .sI�/ D �r .s; 0I�/ coincides with the zeta-function of the root system
�, defined by (3.1) of [16]. Therefore, (108) is the Lerch-type generalization of
zeta-functions of root systems. Also we have

S.f; gI I I�/ D
X

�2���1.PIC/nH�_

e.hy; �i/
Y

˛2�C

1

h˛_; �is˛ ; (110)

which we denote by S.s; yI I I�/. Note that H�_ coincides with the set of all walls
of Weyl chambers. Let

S D fs D .s˛/ 2 C
j�Cj j <s˛ > 1 for ˛ 2 �Cg: (111)

Note that S is an Aut.�/-invariant set.
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Lemma 9. �r.s; yI�/ and S.s; yI I I�/ are absolutely convergent, uniformly on
D � V where D is any compact subset of the set S. Hence, they are continuous
on S � V , and holomorphic in s for a fixed y 2 V .

Proof. Since for s 2 D, ˛ 2 �C and � 2 P nH�_ ,
ˇ
ˇ
ˇ
ˇ

1

h˛_; �is˛
ˇ
ˇ
ˇ
ˇ �

e�j=s˛ j

jh˛_; �ij<s˛ (112)

(the factor e�j=s˛ j appears when h˛_; �i is negative), we have
ˇ
ˇ
ˇ
ˇ

Y

˛2�C

1

h˛_; �is˛
ˇ
ˇ
ˇ
ˇ � h.s/

Y

˛2�C

1

jh˛_; �ij<s˛ � h.s/
Y

˛2�

1

jh˛_; �ij<s˛

� A
Y

˛2�

1

jh˛_; �ijB (113)

where h.s/ D Q
˛2�C

e�j=s˛ j and ADmaxs2D h.s/, BDmin˛2� .mins2D <s˛/> 1.
It follows that

X

�2PnH�_

Y

˛2�

1

jh˛_; �ijB D jW j
X

�2PCC

Y

˛2�

1

jh˛_; �ijB D jW j.�.B//
r <1;

(114)

and hence the uniform and absolute convergence on D � V . ut
Remark 6. Although the statements in Lemma 9 and in the rest of this chapter
hold for larger regions than S, we work with S for simplicity. For instance, the
above proof of Lemma 9 holds for the region fsD.s˛/2Cj�Cj j <s˛ > 1for ˛2�;
<s˛ > 0 otherwiseg. (See also Remark 2.) In more general cases, we may need to
specify an order of summation because the convergence is conditional. One way to
do this is the Q-limit procedure treated in [6].

First, we apply Theorem 3 to the case I ¤ ;. Then Theorem 3 implies the
following theorem:

Theorem 5. When I ¤ ;, for s 2 S and y 2 V , we have

S.s; yI I I�/

D
X

w2W I

0

@
Y

˛2�w�1

.�1/�s˛
1

A �r.w
�1s;w�1yI�/

D .�1/j�Cn�IC j
0

@
Y

˛2�Cn�IC

.2�
p�1/s˛

� .s˛ C 1/

1

A
X

�2PICC

e.hy; �i/
Y

˛2�IC

1

h˛_; �is˛
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�
Z 1

0

: : :

Z 1

0

e

0

@�
X

˛2�Cn.�IC[�/
x˛h˛_; �i

1

A

0

@
Y

˛2�Cn.�IC[�/
Ls˛ .x˛; 0/

1

A

�
0

@
Y

i2I c

Ls˛i

0

@hy; �ii �
X

˛2�Cn.�IC[�/
x˛h˛_; �i i; 0

1

A

1

A
Y

˛2�Cn.�IC[�/
dx˛:

(115)

The second member consists of
�
W.�/ W W.�I /

�
terms.

Proof. It is easy to check (56) and (57) for (105) and (106), withDI c D �C n�IC,
BI c D �I c (hence c� D 0 for all � 2 DI c ), and g].�/ D Q

˛2�IC

h˛_; �is˛ for
� 2 PIC. Since PJCC � Hg] for all J ¨ I , we have the second equality.

Next, we check the first equality. From (58), (109), and Theorem 3 (iii), we have

S.s; yI I I�/ D
X

w2W I

�.w�1f;w�1gI f1; : : : ; rgI�/: (116)

Further,

�.w�1f Iw�1gI f1; : : : ; rgI�/ D
X

�2PCC

e.hy;w�i/
Y

˛2�C

1

h˛_;w�is˛

D
X

�2PCC

e.hw�1y; �i/
Y

˛2�C

1

hw�1˛_; �is˛

D
X

�2PCC

e.hw�1y; �i/
Y

˛2w�1�C

1

h˛_; �isw˛ ; (117)

by rewriting ˛ as w˛. When

˛ 2 w�1�C \�� D �.�C \ w�1��/ D ��w; (118)

we further replace ˛ by �˛. Then we have

�.w�1f Iw�1gI f1; : : : ; rgI�/

D
0

@
Y

˛2�w

.�1/�sw˛
1

A
X

�2PCC

e.hw�1y; �i/
Y

˛2�C

1

h˛_; �isw˛

D
0

@
Y

˛2�w�1

.�1/�s˛
1

A �r .w
�1s;w�1yI�/; (119)

where we have used the fact that w�w D ��w�1 . Hence, the first equality follows.
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Lemma 1 implies that the second member of (115) consists of
�
W.�/ W W.�I /

�

terms. ut
Next, we deal with the case I D ;. Let S.s; yI�/ D S.s; yI ;I�/. Then we have

the following theorem by Theorem 3.

Theorem 6. For s 2 S and y 2 V ,

S.s; yI�/ D
X

w2W

0

@
Y

˛2�w�1

.�1/�s˛
1

A �r .w
�1s;w�1yI�/

D .�1/j�Cj
� Y

˛2�C

.2�
p�1/s˛

� .s˛ C 1/
�Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
Ls˛ .x˛; 0/

�

�
0

@
rY

iD1
Ls˛i

0

@hy; �ii �
X

˛2�Cn�
x˛h˛_; �i i; 0

1

A

1

A
Y

˛2�Cn�
dx˛:

(120)

The above two theorems are general functional relations among zeta-functions of
root systems with exponential factors. In some cases, it is possible to deduce,
from these theorems, more explicit functional relations among zeta-functions (see
Example 5). However, in general, it is not easy to deduce explicit forms of functional
relations from (115) by direct calculations. Therefore, in our forthcoming paper
[17], we will consider some structural background of our technique more deeply
and will present much improved versions of Theorems 7 and 13. In fact, by using
these results, we will give explicit forms of other concrete examples which we do not
treat in this chapter. On the other hand, in [14], we will introduce another technique
of deducing explicit forms. This can be regarded as a certain refinement of the “u-
method” developed in our previous papers. By using this technique, we give explicit
functional relations among zeta-functions associated with root systems of types A3,
C2.' B2/, B3, and C3.

Now we study special values of S.s; yI�/. We recall that by (68),

Lk.x; 0/ D Bk.fxg/ (121)

for a real number x. Motivated by this observation, for k D .k˛/˛2� 2 N
j�Cj
0 and

y 2 V , we define

P.k; yI�/ D
Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
Bk˛ .x˛/

�

�
0

@
rY

iD1
Bk˛i

0

@

8
<

:
hy; �ii �

X

˛2�Cn�
x˛h˛_; �i i

9
=

;

1

A

1

A
Y

˛2�Cn�
dx˛;

(122)
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so that

S.k; yI�/ D .�1/j�Cj
� Y

˛2�C

.2�
p�1/k˛
k˛Š

�

P.k; yI�/ (123)

for k 2 S \ N
j�Cj
0 . This function P.k; yI�/ may be regarded as a generalization

of the periodic Bernoulli functions and Bk.�/ D P.k; 0I�/ the Bernoulli numbers
(see [1]). We define generating functions of P.k; yI�/ and Bk.�/ as

F.t; yI�/ D
X

k2Nj�
C

j

0

P.k; yI�/
Y

˛2�C

tk˛˛
k˛Š

; (124)

F.tI�/ D
X

k2Nj�
C

j

0

Bk.�/
Y

˛2�C

tk˛˛
k˛Š

; (125)

where t D .t˛/˛2� with jt˛j < 2� . Assume � is irreducible and not of type A1.
Then by Lemma 8, we see that P.k; yI�/ is continuous in y on V and F.t; yI�/ is
continuous on ft 2 C j jt j < 2�gj�Cj � V and holomorphic in t for a fixed y 2 V .
Further, by Lemma 7(ii), we see that for a fixed y 2 V , F.t; yI�/ is analytically
continued to a meromorphic function in t on the whole space Cj�Cj. For explicit
examples, see (250) for P..2; 2; 2/; yIA2/ in the region 0 < y2 < y1 < 1 and [17,
Example 3] for P..2; 2; 2; 2/; yIC2/.
Theorem 7. We have

F.t; yI�/ D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
exp.t˛x˛/

�

�
� rY

iD1
exp

�
t˛i

n
hy; �ii �

X

˛2�Cn�
x˛h˛_; �i i

o�� Y

˛2�Cn�
dx˛

D
� Y

˛2�C

t˛

et˛ � 1
� 2h�_;�1i�1X

m1D0
� � �

2h�_;�r i�1X

mrD0
exp

� rX

iD1
t˛i .fhy; �iig Cmi/

�

�
Z

Pm;y

exp
� X

˛2�Cn�
t �̨x˛

� Y

˛2�Cn�
dx˛; (126)

where �_ D 1
2

P
˛2�C

˛_, t �̨ D t˛ �Pr
iD1 t˛i h˛_; �i i, m D .m1; : : : ; mr/ and

Pm;yD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

xD.x˛/˛2�Cn�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 � x˛ � 1; .˛ 2 �C n �/
fhy; �iigCmi�1 �

X

˛2�Cn�
x˛h˛_; �ii

� fhy; �iigCmi; .1 � i � r/

9
>>>>=

>>>>;

(127)
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is a convex polytope. In particular, we have

F.tI�/ D
� Y

˛2�C

t˛

et˛ � 1
� 2h�_;�1i�1X

m1D1
� � �

2h�_;�r i�1X

mrD1
exp

� rX

iD1
t˛imi

�

�
Z

Pm

exp
� X

˛2�Cn�
t �̨x˛

� Y

˛2�Cn�
dx˛; (128)

where

Pm D Pm;0

D

8
<̂

:̂
x D .x˛/˛2�Cn�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 � x˛ � 1; .˛ 2 �C n �/
mi � 1 �

X

˛2�Cn�
x˛h˛_; �i i � mi ; .1 � i � r/

9
>=

>;
:

(129)

Proof. Applying Lemma 7 to the case N D j�C n� j,M D j� j, bj D 0, kj D k˛ ,
yi D hy; �ii, and cij D h˛_; �ii, we obtain (126). ut
From the above theorem, we can deduce the following formula. In the case when
all k˛’s are the same, this formula gives a refinement of Witten’s formula (2). In
other words, it gives a multiple generalization of the classical formula (3). In [38],
Witten showed that the volume of certain moduli spaces can be written in terms
of special values of series (1). Moreover, he remarked that the volume is rational
in the orientable case, which implies (2). Zagier [39] gives a brief sketch of a
more number-theoretic demonstration of (2). Szenes [31] provides an algorithm
of the evaluations by use of iterated residues. In our method, the rational number
CW .2k; g/ is expressed in terms of generalized Bernoulli numbers, which can be
calculated by use of the generating functions.

Theorem 8. Assume that � is an irreducible root system. Let k˛ D kk˛k 2 N and
k D .k˛/˛2�. Then we have

�r .2kI�/ D .�1/j�Cj

jW j
� Y

˛2�C

.2�
p�1/2k˛
.2k˛/Š

�

B2k.�/ 2 Q�2
P
l kl j.�C/l j; (130)

where l runs over the lengths of roots and .�C/l D f˛ 2 �C j k˛k D lg.
Proof. Since the vertices pj of Pm satisfy .pj /˛ 2 Q, by Theorem 7 and Lemma 5,
we have

B2k.�/ D P.2k; 0I�/ 2 Q; (131)
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and hence by (123),

S.2k; 0I�/ D .�1/j�Cj
� Y

˛2�C

.2�
p�1/2k˛
.2k˛/Š

�

B2k.�/ 2 Q�2
P
l kl j.�C/l j: (132)

On the other hand, by Theorem 6,

S.2k; 0I�/ D jW j�r.2kI�/; (133)

since roots of the same length form a single orbit. Therefore, we have (130). ut
Remark 7. The assumption of the irreducibility of � in Theorem 8 is not essential.
Since a reducible root system is decomposed into a direct sum of some irreducible
root systems, this assumption can be removed by use of Proposition 3.

Remark 8. It is also to be stressed that our formula covers the case when some of
the k˛’s are not the same. For example, let Xr D C2.' B2/. Then we can take the
positive roots as f˛1; ˛2; 2˛1 C ˛2; ˛1 C ˛2g with k˛_

1 k D k˛_
1 C 2˛_

2 k, k˛_
2 k D

k˛_
1 C ˛_

2 k. We see that

�2.2; 4; 4; 2IC2/ D
1X

mD1

1X

nD1

1

m2n4.mC n/4.mC 2n/2

D 53

6810804000
�12: (134)

Explicit forms of generating functions can be calculated with the aid of Theorem 1
and Lemma 4. We give some more explicit examples in Sect. 11.7.

11.5 Actions of cW

In this section, we study the action of bW on S.s; yI�/, F.t; yI�/, and P.k; yI�/.
First, consider the action of Aut.�/ � bW . Note thatP nH�_ is an Aut.�/-invariant
set, because H�_ is Aut.�/ invariant. An action of Aut.�/ is naturally induced on
any function f in s and y as follows: For w 2 Aut.�/,

.wf /.s; y/ D f .w�1s;w�1y/: (135)

Theorem 9. For s 2 S and y 2 V , and for w 2 Aut.�/, we have

.wS/.s; yI�/ D
0

@
Y

˛2�w�1

.�1/�s˛
1

AS.s; yI�/; (136)

if s˛ 2 Z for ˛ 2 �w�1 .
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Proof. From (110), we have

.wS/.s; yI�/ D
X

�2PnH�_

e.hw�1y; �i/
Y

˛2�C

1

h˛_; �isw˛ : (137)

Rewriting � as w�1� and noting that P nH�_ is Aut.�/ invariant, we have

.wS/.s; yI�/ D
X

�2PnH�_

e.hy; �i/
Y

˛2�C

1

hw˛_; �isw˛

D
X

�2PnH�_

e.hy; �i/
Y

w�1˛2�C

1

h˛_; �is˛

D
� Y

˛2�w�1

.�1/�s˛
�
S.s; yI�/: (138)

Thus, we have ut
Theorem 10. For s 2 S and y 2 V , we have S.s; yI�/ D 0 if there exists an
element w 2 Aut.�/s \Aut.�/y such that s˛ 2 Z for ˛ 2 �w�1 and

X

˛2�w�1

s˛ 62 2Z; (139)

where Aut.�/s and Aut.�/y are the stabilizers of s and y respectively by regarding
y 2 V=Q_.

Proof. Assume (139). Then by Theorem 9,

�

1 �
� Y

˛2�w�1

.�1/�s˛
��

S.s; yI�/ D 0; (140)

which implies S.s; yI�/ D 0. ut
Lemma 10. The group Aut.�/ acts on Cj�Cj by

.wt/˛ WD
(
tw�1˛; if ˛ 2 �C n�w�1 ;

�tw�1˛; if ˛ 2 �w�1 ;
(141)

where t D .t˛/˛2� 2 C
j�Cj and the representative ˛ runs over �C.

Proof. What we have to check is that the definition (141) indeed defines an
action. Since

�
v.wt/

�
˛
D
(
.wt/v�1˛; if ˛ 2 �C n�v�1 ;

�.wt/v�1˛; if ˛ 2 �v�1 ;
(142)
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we have

.v.wt//˛ D t.vw/�1˛; (143)

if and only if either

1. ˛ 2 �C n�v�1 and v�1˛ 2 �C n�w�1

or

2. ˛ 2 �v�1 and �v�1˛ 2 �w�1

holds. Here, the minus sign in the second case is caused by the fact that if ˛ 2 �v�1 ,
then v�1˛ 2 v�1�v�1 D ��v � ��. Therefore, (143) is valid if and only if ˛ 2 �C
and

˛ 2 �v.�C n�w�1 / \ v�C
� [ �v.��w�1 /\ v��

�

D .v�C n vw��/ [ .v�� \ vw�C/

D .v�C \ vw�C/[ .v�� \ vw�C/

D vw�C: (144)

This condition is equivalent to ˛ 2 �C n�.vw/�1 . This implies v.wt/ D .vw/.t/. ut
Note that we defined two types of actions of Aut.�/ on C

j�Cj, that is, (107)
and (141). The action (141) is used only on the variable t and should not be confused
with the action (107).

If � is of type A1, then F.t; yIA1/ D tetfyg=.et � 1/ (see Example 1) is an
even or, in other words, Aut.�/-invariant function except for y 2 Z. In the multiple
cases, F.t; yI�/ is revealed to be really an Aut.�/-invariant function. To show it,
we need some notation and facts. Fix 1 � m � r . Note that �m�C D .�C n
f˛mg/`f�˛mg. Let �1 D .�C n �/ \ �m.�C n �/ and �1 D � \ �m.�C n �/
so that �m.�C n �/ D �1

`
�1. Let �2 D .�C n �/\ �m� and �2 D � \ �m� .

Then we have �C n � D �1

`
�2 and � D �1

`
�2
`f˛mg. Moreover, we see

that �m fixes �2 pointwise and �1 D �m�2.

Lemma 11. X

˛i2�1
�i h˛_

i ; ˛mi D ˛m � 2�m: (145)

Proof. Note that ˛i 2 �1 if and only if h˛_
i ; ˛mi ¤ 0 and ˛i ¤ ˛m. Let v be the

left-hand side. Then we have

h˛_
k ; vi D

(
h˛_
k ; ˛mi; if ˛k 2 �1;

0; if ˛k 2 �2 [ f˛mg;
(146)

which determines the right-hand side uniquely. ut
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An action of Aut.�/ is naturally induced on any function f in t and y as follows:
For w 2 Aut.�/,

.wf /.t; y/ D f .w�1t;w�1y/: (147)

Theorem 11. Assume that � is an irreducible root system. If � is not of type
A1, then

.wF /.t; yI�/ D F.t; yI�/ (148)

for t 2 Cj�Cj and y 2 V , and for w 2 Aut.�/. Hence, for k 2 N
j�Cj
0 and y 2 V ,

.wP/.k; yI�/ D
� Y

˛2�w�1

.�1/�k˛
�
P.k; yI�/: (149)

Remark 9. If k is in the region S of absolute convergence with respect to s, the
relation (123) and Theorem 9 immediately imply (149), while if k 62 S, it should be
proved independently.

Remark 10. The assumption of the irreducibility is not essential by the same reason
as in Remark 7.

Proof. It is sufficient to show (148) for the cases w D �m 2 W and w D ! 2 ˝
because Aut.�/ is generated by simple reflections and the subgroup ˝ . Applying
the simple reflection �m to the second member of (126), we have

.�mF /.t; yI�/

D
0

@
Y

˛2�C

t˛

et˛ � 1

1

A
Z 1

0

: : :

Z 1

0

0

@
Y

˛2�Cn�
exp .t�m˛x˛/

1

A

� exp

0

@t˛m

0

@1�
8
<

:
h�my; �mi �

X

˛2�Cn�
x˛h˛_; �mi

9
=

;

1

A

1

A

�

0

B
@

rY

iD1
i¤m

exp

0

@t�m˛i

8
<

:
h�my; �i i �

X

˛2�Cn�
x˛h˛_; �i i

9
=

;

1

A

1

C
A

Y

˛2�Cn�
dx˛;

(150)

where we have used the fact that by the action of �m, the factor
Q
˛2�C

t˛=.et˛ � 1/
is sent to

�t�m˛m
e�t�m˛m � 1

Y

˛2�Cnf˛mg

t�m˛

et�m˛ � 1 D
t�m˛met�m˛m

et�m˛m � 1
Y

˛2�Cnf˛mg

t�m˛

et�m˛ � 1

D et˛m
Y

˛2�C

t˛

et˛ � 1: (151)
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Therefore, rewriting x˛ as x�m˛, we have

.�mF /.t; yI�/ D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0
: : :

Z 1

0

� Y

˛2�Cn�
exp.t�m˛x�m˛/

�

� exp
�
t˛m

�
1 �

n
hy; �m�mi �

X

˛2�Cn�
x�m˛h�m˛_; �m�mi

o��

�
rY

iD1
i¤m

exp
�
t�m˛i

n
hy; �m�i i �

X

˛2�Cn�
x�m˛h�m˛_; �m�i i

o�Y

˛2�Cn�
dx�m˛

D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0
: : :

Z 1

0

� Y

˛2�m.�Cn�/
exp.t˛x˛/

�

� exp
�
t˛m

�
1 �

n
hy; �m � ˛mi �

X

˛2�m.�Cn�/
x˛h˛_; �m � ˛mi

o��

�
Y

˛i2�nf˛mg
exp

�
t�m˛i

n
hy; �i i �

X

˛2�m.�Cn�/
x˛h˛_; �i i

o� Y

˛2�m.�Cn�/
dx˛

D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0
: : :

Z 1

0

Y

˛2�1
exp.t˛fx˛g/

Y

˛i2�1
exp.t˛i fx˛i g/

� exp
�
t˛m

�
1 �

n
hy; �m � ˛mi �

X

˛2�1[�1
x˛h˛_; �m � ˛mi

o��

�
� Y

˛j2�2
exp

�
t˛j

n
hy; �j i �

X

˛2�1[�1
x˛h˛_; �j i

o��

�
� Y

˛i2�1
exp

�
t�m˛i

n
hy; �i i �

X

˛2�1[�1
x˛h˛_; �i i

o�� Y

˛2�1[�1
dx˛:

(152)

Here we change variables from x D .x˛/˛2�1[�1 to z D .z˛/˛2�1[�2 as

z˛ D
(
x˛; if ˛ 2 �1;

hy; �ii �Pˇ2�1[�1 xˇhˇ_; �i i; if ˛ D �m˛i 2 �2;
(153)

so that the Jacobian matrix is calculated as

@z
@x
D
�
Ij�1j 0

� �Ij�2j

�

; (154)
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where Ip is the p � p identity matrix, since

z�m˛i D hy; �ii �
X

˛2�1[�1
x˛h˛_; �i i

D hy; �ii �
X

˛2�1
x˛h˛_; �i i � x˛i : (155)

Thus, we have jdet @x=@zj D 1. For ˛ D �m˛k 2 �2 and ˛i 2 �1, we have

h˛_; �i i D h�m˛_
k ; �i i D h˛_

k ; �m�ii D h˛_
k ; �i i D ıki ; (156)

and hence,

x˛i D hy; �ii �
X

˛2�1
z˛h˛_; �i i � z�m˛i

D hy; �ii �
X

˛2�Cn�
z˛h˛_; �i i: (157)

For the fourth factor of the last integral in (152), we have

h˛_; �j i D h�m˛_
k ; �j i D h˛_

k ; �m�j i D h˛_
k ; �j i D 0; (158)

for ˛ D �m˛k 2 �2 and ˛j 2 �2, and hence

hy; �j i �
X

˛2�1[�1
x˛h˛_; �j i D hy; �j i �

X

˛2�1
z˛h˛_; �j i

D hy; �j i �
X

˛2�Cn�
z˛h˛_; �j i: (159)

For the third factor, we have

hy; �m � ˛mi �
X

˛2�1[�1
x˛h˛_; �m � ˛mi

D hy; �m � ˛mi �
X

˛2�1
x˛h˛_; �m � ˛mi �

X

˛i2�1
x˛i h˛_

i ; �m � ˛mi

D hy; �m � ˛mi �
X

˛2�1
x˛h˛_; �m � ˛mi C

X

˛i2�1
x˛i h˛_

i ; ˛mi

D hy; �m � ˛mi �
X

˛2�1
z˛h˛_; �m � ˛mi

C
X

˛i2�1

�

hy; �ii �
X

˛2�Cn�
z˛h˛_; �i i

�

h˛_
i ; ˛mi (160)
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by using (157). Hence, we have

hy; �m � ˛mi �
X

˛2�1[�1
x˛h˛_; �m � ˛mi

D hy; �m � ˛mi �
X

˛2�1
z˛h˛_; �m � ˛mi

C
X

˛i2�1
hy; �iih˛_

i ; ˛mi �
X

˛2�Cn�

X

˛i2�1
z˛h˛_; �i ih˛_

i ; ˛mi

D �hy; �mi C
X

˛2�Cn�
z˛h˛_; �mi; (161)

where in the last line, we have used Lemma 11 and the fact that for ˛ D �m˛k 2 �2,
we have

h˛_; �m � ˛mi D h�m˛_
k ; �m�mi D h˛_

k ; �mi D 0: (162)

Since all the factors of the integrand of the right-hand side of (152) are periodic
functions with period 1, we integrate the interval Œ0; 1�with respect to z˛. Therefore,
using (153), (157), (159), and (161), we have

.�mF /.t; yI�/

D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0

: : :

Z 1

0

�Y

˛2�1
exp.t˛fz˛g/

�

�
� Y

˛i2�1
exp

�
t˛i

n
hy; �ii �

X

˛2�Cn�
z˛h˛_; �i i

o��

� exp
�
t˛m

�
1 �

n
�hy; �mi C

X

˛2�Cn�
z˛h˛_; �mi

o��

�
� Y

˛j2�2
exp

�
t˛j

n
hy; �j i �

X

˛2�Cn�
z˛h˛_; �j i

o��

�
� Y

˛i2�1
exp.t�m˛i fz�m˛i g/

� Y

˛2�Cn�
dz˛

D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
exp.t˛z˛/

�

�
� Y

˛i2�nf˛mg
exp

�
t˛i

n
hy; �ii �

X

˛2�Cn�
z˛h˛_; �i i

o��
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� exp
�
t˛m

�
1 �

n
�hy; �mi C

X

˛2�Cn�
z˛h˛_; �mi

o�� Y

˛2�Cn�
dz˛

D F.t; yI�/; (163)

where in the last line, we have used the fact that for any ˛m 2 � , there exists a root
˛ 2 �C n� such that h˛_; �mi ¤ 0 and thus 1�f�xg D fxg for x 2 RnZ implies
that the integrand coincides with that of F.t; yI�/ almost everywhere.

Lastly, we check the invariance with respect to ! 2 ˝ . Since ! 2 ˝ permutes
� and leaves �C and hence�C n � invariant, we have

.!F /.t; yI�/

D
� Y

˛2�C

t!˛

et!˛ � 1
�Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
exp.t!˛x!˛/

�

�
� rY

iD1
exp

�
t!˛i

n
h!�1y; �ii �

X

˛2�Cn�
x!˛h!˛_; !�i i

o�� Y

˛2�Cn�
dx!˛

D
� Y

˛2�C

t˛

et˛ � 1
�Z 1

0

: : :

Z 1

0

� Y

˛2�Cn�
exp.t˛x˛/

�

�
� rY

iD1
exp

�
t!˛i

n
hy; !�ii �

X

˛2�Cn�
x˛h˛_; !�i i

o�� Y

˛2�Cn�
dx˛

D F.t; yI�/: (164)

ut
It is possible to extend the action of Aut.�/ to that of bW as follows: For q 2 Q_,

.
.q/s/˛ D s˛;

.
.q/t/˛ D t˛;

.q/y D yC q: (165)

We can observe the periodicity of S , F , and P with respect to y from (110), (122),
and the first line of (126). From this periodicity, we have

Theorem 12. The action of Aut.�/ is extended to that of bW and is given by

.
.q/S/.s; yI�/ D S.s; yI�/;

.
.q/F /.t; yI�/ D F.t; yI�/;
.
.q/P /.k; yI�/ D P.k; yI�/; (166)

for q 2 Q_.
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Remark 11. Some statements related with S.s; yI�/ or �r .s; yI�/ in Sects. 11.4
and 11.5 hold on any regions in s to which these functions are analytically continued.
In particular, in the case y D 0, as we noticed at the beginning of Sect. 11.4, the
function �r.sI�/ D �r .s; 0I�/ coincides with the zeta-function defined in [16], and
its analytic continuation is given in [16, Theorem 6.1] or by Essouabri’s theory [5].

11.6 Generalization of Bernoulli Polynomials

In the previous sections, we have investigated P.k; yI�/ as a continuous function
in y. In fact, this function is not real analytic in y in general. However, they are
piecewise real analytic, and each piece is actually a polynomial in y. In this section,
we will prove this fact and will discuss basic properties of those polynomials.

Let D D fy 2 V j 0 � hy; �ii � 1; .1 � i � r/g be a period-parallelotope
of F.t; �I�/ with its interior. Let R be the set of all linearly independent subsets
R D fˇ1; : : : ; ˇr�1g � �, HR_ D Lr�1

iD1Rˇ_
i the hyperplane passing through

R_ [ f0g and

HR WD
[

R2R
q2Q_

.HR_ C q/: (167)

Lemma 12. We have

HR D
[

w2W
w

 
r[

jD1
.H�_nf˛_

j g C Z˛_
j /

!

: (168)

The set fHR_ C q j R 2 R; q 2 Q_g is locally finite, that is, for any y 2 V ,
there exists a neighborhood U.y/ such that U.y/ intersects finitely many of these
hyperplanes.

Proof. Fix R 2 R. Then Q�_ D �_\HR_ is a coroot system so that R_ � Q�_. Let
� be a nonzero vector normal to HR_ . Then there exists an element w 2 W such that
w�1� 2 C . Put w�1� D Pr

jD1 cj �j with cj 	 0. Then ˛_ D Pr
jD1 aj ˛_

j 2 �_
orthogonal to w�1� should satisfy

Pr
jD1 aj cj D 0. Since aj are all nonpositive

or nonnegative, we have aj D 0 for j such that cj ¤ 0. Hence, cj D 0 except
for only one j , because w�1 Q�_ � �_ is orthogonal to w�1� with codimension 1.
That is, w�1� D c�j for some c > 0. Therefore, w.�_ n f˛_

j g/ is a fundamental

system of Q�_ and HR_ D Hw.�_nf˛_

j g/ D wH�_nf˛_

j g. Moreover, Q_ D wQ_ D
Lr

iD1 Zw˛_
i , which implies

HR_ CQ_ D wH�_nf˛_

j g C Zw˛_
j ; (169)
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since
Lr

iD1;i¤j Z˛_
i � H�_nf˛_

j g. This shows that HR is contained in the right-
hand side of (168). The opposite inclusion is clear. The local finiteness follows from
the expression (168) and jW j <1. ut

Due to the local finiteness shown in Lemma 12 and @D � HR, we denote by
D.�/ each open connected component of D n HR so that

D nHR D
a

�2J
D.�/; (170)

where J is a set of indices. Let V be the set of all linearly independent subsets V D
fˇ1; : : : ; ˇrg � �C and A D f0; 1gn�r , where n D j�Cj. Let W D V �A . For
subsets u D fu1; : : : ; ukg; v D fv1; : : : ; vkC1g � V , and c D fc1; : : : ; ckC1g � R, let

H.yI u; v; c/ D det

0

B
B
B
B
B
@

hu1; v1i � � � hu1; vkC1i
:::

: : :
:::

huk; v1i � � � huk; vkC1i
hy; v1i C c1 � � � hy; vkC1i C ckC1

1

C
C
C
C
C
A

: (171)

We give a simple description of the polytopes Pm;y defined by (127). For � 2 �C,
a 2 f0; 1g, and y 2 V , we define u.�; a/ 2 Rn�r by

u.�; a/˛ D
(
.�1/1�ah˛_; �i i; if � D ˛i 2 �;
.�1/aı˛� ; if � 62 �; (172)

where ˛ runs over�C n � , and define v.�; aI y/ 2 R by

v.�; aI y/ D
(
.�1/1�a.fhy; �iig Cmi � a/; if � D ˛i 2 �;
.�1/aa D �a; if � 62 �: (173)

Further, we define

H�;a.y/ D fx D .x˛/˛2�Cn� 2 R
n�r j u.�; a/ � x D v.�; aI y/g; (174)

and

HC
�;a.y/ D fx D .x˛/˛2�Cn� 2 R

n�r j u.�; a/ � x 	 v.�; aI y/g; (175)

where for w D .w˛/; x D .x˛/ 2 Cn�r , we have set

w � x D
X

˛2�Cn�
w˛x˛: (176)



264 Y. Komori et al.

Then we have

Pm;y D
\

�2�C

a2f0;1g

HC
�;a.y/: (177)

We use the identificationC˝V ' C
r through y 7! .yi /

r
iD1 where yi D hy; �iiwith

h�; �i bilinearly extended over C. For k D .k˛/˛2� 2 N
n
0 , we set jkj DP˛2� k˛ .

Theorem 13. In each D.�/, the functions F.t; yI�/ and P.k; yI�/ are real ana-
lytic in y. Moreover, F.t; yI�/ is analytically continued to a meromorphic function
F .�/.t; yI�/ from each Cn � D.�/ to the whole space Cn � .C ˝ V /. Similarly,
P.k; yI�/ is analytically continued to a polynomial function B.�/

k .yI�/ 2 Q Œy�
from each D.�/ to the whole space C˝ V with its total degree at most jkj C n � r .

Proof. Throughout this proof, we fix an index � 2 J. Note that fhy; �iig D hy; �ii
holds for y 2 VD. We show this statement by several steps. In the first three steps, we
investigate the dependence of vertices of Pm;y on y 2 D.�/, and in the last two steps,
by use of this result and triangulation, we show the analyticity of the generating
function. We fix m 2 N

r
0 except in the last step.

(Step 1.) Let V D fˇ1; : : : ; ˇrg � �C and a� 2 f0; 1g for � 2 �C n V. Consider
the intersection of j�C nVj.D n � r/ hyperplanes

\

�2�CnV

H�;a� .y/ D fx D .x˛/ j u.�; a� / � x D v.�; a� I y/ for � 2 �C nVg:

(178)

Then this set consists of the solutions of the system of the .n�r/ linear equations

8
<

:

P
˛2�Cn� x˛h˛_; �j i D hy; �j i Cmj � a˛j ; for � D ˛j 2 � n V;

x� D a� ; for � 2 �C n .� [ V/:
(179)

Let I D fi j ˇi 2 V n �g and J D fj j ˛j 2 � n Vg. Note that jI j D jJ j DW k
and fˇi j i 2 I cg D f˛j j j 2 J cg. The system of the linear equations (179) has
a unique solution if and only if

det.hˇ_
i ; �j i/i2Ij2J ¤ 0; (180)

and also if and only if

V 2 V ; (181)
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since

ˇ
ˇdet.hˇ_

i ; �j i/1�i�r1�j�r
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
det

 
.hˇ_

i ; �j i/i2Ij2J .hˇ_
i ; �j i/i2Ij2J c

.h˛_
i ; �j i/i2J cj2J .h˛_

i ; �j i/i2J cj2J c

!ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇdet

 
.hˇ_

i ; �j i/i2Ij2J �
0 IjJ c j

!ˇ
ˇ
ˇ
ˇ

D ˇˇdet.hˇ_
i ; �j i/i2Ij2J

ˇ
ˇ; (182)

where Ip is the p�p identity matrix. We assume (181) and denote by p.yIW/ the
unique solution, where W D .V;A/ 2 W with the sequence A D .a� /�2�CnV

regarded as an element of A . We see that p.yIW/ depends on y affine linearly.
(Step 2.) We define �y W W ! Rn�r by

�y WW 7! p.yIW/: (183)

Any vertex (i.e., 0-face) of Pm;y is defined by the intersection of .n � r/
hyperplanes by Proposition 2. Hence Vert.Pm;y/ � �y.W /. On the other hand,
Pm;y is defined by n pairs of inequalities in (127). The point p.yIW/ is a vertex
of Pm;y if all of those inequalities hold. We see that .n� r/ pairs among them are
satisfied, because

p.yIW/ 2
\

�2�CnV

H�;a� .y/; (184)

and also it is easy to check

p.yIW/ 2
\

�2�CnV

�
HC
�;1�a� .y/ nH�;1�a� .y/

�
: (185)

Therefore, p.yIW/ 2 Vert.Pm;y/ if and only if the remaining r pairs of
inequalities are satisfied, that is,

p.yIW/ 2
\

ˇ2V
a2f0;1g

HC
ˇ;a.y/

D fx D .x˛/ j u.ˇ; a/ � x 	 v.ˇ; aI y/ for ˇ 2 V; a 2 f0; 1gg; (186)

or equivalently x D p.yIW/ satisfies r pairs of the linear inequalities

8
ˆ̂
<̂

ˆ̂
:̂

hy; �li Cml � 1 �P˛2�Cn� x˛h˛_; �li � hy; �li Cml;

for ˇ D ˛l 2 V \ �;
0 � xˇ � 1; for ˇ 2 V n �:

(187)
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We see that it depends on y whether p.yIW/ is a vertex, or in other words,
whether the solution of (179) satisfies (187). We will show in the next step that
p.yIW/ 2 H.yIW/ implies y 2 HR, where

H.yIW/ D
[

ˇ2V
a2f0;1g

Hˇ;a.y/: (188)

Then for y 2 D n HR, we can uniquely determine the .n � r/ hyperplanes on
which the point p.yIW/ lies; they are fH�;a� .y/g�2�CnV. Therefore, �y is an
injection.

For ˇ 2 V and a 2 f0; 1g, we define fˇ;a W VD! R by

fˇ;a W y 7! u.ˇ; a/ � p.yIW/� v.ˇ; aI y/: (189)

Then for y 2 D nHR, we have fˇ;a.y/ ¤ 0, and hence, we define

f D .fˇ;a/ˇ2V;a2f0;1g W D n HR ! .R n f0g/2r : (190)

Therefore, for y 2 D nHR, the point p.yIW/ is a vertex if and only if f .y/ is an
element of the connected component .0;1/2r . Since each fˇ;a is continuous and
hence f .D.�// is connected, we see that for a fixed W 2 W , the point p.yIW/ is
always a vertex, or never a vertex, on D.�/. Thus,

Wm WD ��1
y .Vert.Pm;y// � W .y 2 D.�// (191)

has one-to-one correspondence with Vert.Pm;y/ and is independent of y on D.�/.
(Step 3.) Now we prove the claim announced just before (188). First, we show that

the condition

p.yIW/ 2 Hˇ;aˇ .y/ (192)

for some ˇ D ˛l 2 V \ � and aˇ 2 f0; 1g implies y 2 HR. For x D p.yIW/,
condition (192) is equivalent to

X

˛2�Cn�
x˛h˛_; �li D hy; �li Cml � a˛l : (193)

From (179) and (193), we have an overdetermined system with the jV n � j D k
variables xˇ for ˇ 2 V n � and the j.� nV/ [ f˛lgj D .k C 1/ equations

X

ˇ2Vn�
xˇhˇ_; �j i D hy; �j i C cj ; (194)
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for j 2 J [ flg, where

cj D mj � a˛j �
X

�2�Cn.�[V/

a� h�_; �j i 2 Z: (195)

Hence, we have

�
xˇi1 � � � xˇik �1

�

0

B
B
B
@

hˇ_
i1
; �j1i � � � hˇ_

i1
; �jk i hˇ_

i1
; �l i

:::
: : :

:::
:::

hˇ_
ik
; �j1i � � � hˇ_

ik
; �jk i hˇ_

ik
; �li

hy; �j1i C cj1 � � � hy; �jki C cjk hy; �li C cl

1

C
C
C
A
D �0 � � � 0� ;

(196)

where we have put I D fi1; : : : ; ikg and J D fj1; : : : ; jkg. As the consistency
for these equations, we get

H.yI fˇ_
i gi2I ; f�j gj2J[flg; fcj gj2J[flg/ D 0: (197)

By direct substitution, we see that each element of

fˇ_ � qgˇ2Vnf˛l g [ f�qg; q D
X

j2J[flg
cj ˛

_
j (198)

satisfies (197), while ˛_
l � q does not. In fact, if y D �q or y D ˇ_ � q (ˇ 2

.V \ �/ n f˛lg), then the last row of the matrix is .0; : : : ; 0/, and if y D ˇ_
ip
� q

(ˇip 2 Vn� ), then the last row is equal to the p-th row, and hence (197) follows,
while if y D ˛_

l � q, then the last row of the matrix is .0; : : : ; 0; 1/ and hence

H.yI fˇ_
i gi2I ; f�j gj2J[flg; fcj gj2J[flg/ D det.hˇ_

i ; �j i/i2Ij2J ¤ 0; (199)

because of (180). By (181), we see that V n f˛lg � � is a linearly independent
subset and hence .V n f˛lg/ 2 R. It follows that (197) represents the hyperplane
HV_nf˛_

l g � q � HR. Therefore, (192) implies y 2 HR.
Similarly, we see that the condition p.yIW/ 2 Hˇ;aˇ .y/ for some ˇ D ˇl 2

V n � and aˇ 2 f0; 1g yields a hyperplane contained in HR defined by

H.yI fˇ_
i gi2Inflg; f�j gj2J ; fdj gj2J / D 0; (200)

which passes through r points in general position

fˇ_ � qgˇ2Vnfˇl g [ f�qg; (201)



268 Y. Komori et al.

where

q D
X

j2J
dj ˛

_
j ; (202)

dj D mj � a˛j �
X

�2�Cn.�[.Vnfˇl g//
a� h�_; �j i 2 Z: (203)

This completes the proof of our claim.
(Step 4.) We have checked that on D.�/, the vertices Vert.Pm;y/ neither increase

nor decrease and are indexed by Wm. By numbering Wm as fW1;W2; : : :g, we
denote pi .y/ D p.yIWi /. We see that on D.�/, the polytopes Pm;y keep .n �
r/-dimensional or empty because each vertex is determined by unique .n � r/
hyperplanes. Assume that Pm;y is not empty. Next, we will show that the face
poset structure of Pm;y is independent of y on D.�/.

Fix y0 2 D.�/. Consider a face F.y0/ of Pm;y0 and let

Vert.Pm;y0 /\ F.y0/ D fpi1 .y0/; : : : ;pih.y0/g: (204)

Then by Proposition 2, there exists a subset J0 D f.�1; a�1 /; .�2; a�2/; : : :g �
�C � f0; 1g such that jJ0j D n � r � dimF.y0/ and

fpi1.y0/; : : : ;pih .y0/g � F.y0/ D Pm;y0 \
\

.�;a� /2J0
H�;a� .y0/: (205)

By the definition of pi1 .y0/; : : : ;pih .y0/ (see (178)), we find that for .�; a� / 2
�C � f0; 1g, the condition

fpi1 .y0/; : : : ;pih .y0/g � H�;a� .y0/ (206)

is equivalent to

� 2
h\

jD1
.�C n Vij /; a� D .Ai1/� D � � � D .Aih/� ; (207)

where Wij D .Vij ;Aij / D ��1
y0 .pij .y0//. Hence, each .�; a� / 2 J0 satis-

fies (207). Assume that there exists a pair .� 0; a0
� 0/ 62 J0 satisfying (207). Then

fpi1 .y0/; : : : ;pih .y0/g �
\

.�;a� /2J 0

0

H�;a� .y0/; (208)

where J 0
0 D J0 [ f.� 0; a0

� 0/g. Hence, by (28), we have

F.y0/ D Convfpi1 .y0/; : : : ;pih .y0/g �
\

.�;a� /2J 0

0

H�;a� .y0/; (209)
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and in particular,

pi1 .y0/ 2
\

.�;a� /2J 0

0

H�;a� .y0/: (210)

Since .n�r/ hyperplanes on which pi1 .y0/ lies are uniquely determined and their
intersection consists of only pi1 .y0/, their normal vectors fu.�; a� /g.�;a� /2J 0

0
must

be linearly independent. It follows from (209) that dimF.y0/ � n � r � jJ 0
0 j <

n � r � jJ0j D dimF.y0/, which contradicts. Hence, (207) is also a sufficient
condition for .�; a� / 2 J0.

By definition, we have

fpi1.y/; : : : ;pih .y/g �
\

.�;a� /2J0
H�;a� .y/; (211)

for all y 2 D.�/. Define

F.y/ D Pm;y \
\

.�;a� /2J0
H�;a� .y/: (212)

Then fpi1 .y/; : : : ;pih .y/g � F.y/ and by Proposition 1, we see that F.y/ is a
face. Fix another y1 2 D.�/. Then by the argument at the beginning of this step,
there exists a subset J1 � �C � f0; 1g such that jJ1j D n � r � dimF.y1/ and

Vert.Pm;y1 /\ F.y1/ D fpi1 .y1/; : : : ;pih .y1/;pihC1
.y1/; : : : ;pih0

.y1/g
� F.y1/ D Pm;y1 \

\

.�;a� /2J1
H�;a� .y1/;

(213)

with h0 	 h (because all of pi1 .y1/; : : : ;pih .y1/ are vertices of F.y1/, while so
far, we cannot exclude the possibility of the existence of other vertices on F.y1/).
Since each .�; a� / 2 J1 satisfies

� 2
h0

\

jD1
.�C nVij /; a� D .Ai1 /� D � � � D .Aih0

/� ; (214)

which is equal to or stronger than condition (207), we have J1 � J0. On the other
hand, by comparing (212) and (213), we see that each .�; a� / 2 J0 satisfies (214).
As shown in the previous paragraph, condition (214) is sufficient for .�; a� / 2
J1, which implies J0 D J1 and hence dimF.y1/ D dimF.y0/. If h0 > h,
then (214) implies

fpi1 .y0/; : : : ;pih .y0/;pihC1
.y0/; : : : ;pih0

.y0/g � F.y0/; (215)

which contradicts to (204) and hence h0 D h. Therefore, for all y 2 D.�/, we see
that all faces of Pm;y are determined at y0 and are described in the form (212),
and we have

Vert.Pm;y/ \F.y/ D fpi1 .y/; : : : ;pih .y/g: (216)
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Assume that F 0.y0/ � F.y0/ for faces F 0.y0/;F.y0/ of Pm;y0 . Then by (28), it
is equivalent to

Vert.Pm;y0 /\ F 0.y0/ � Vert.Pm;y0 / \F.y0/: (217)

By applying ��1
y0 , we obtain an equivalent condition independent of y and hence

F 0.y1/ � F.y1/. Therefore, the face poset structure is indeed independent of y
on D.�/.

(Step 5.) By Theorem 1, we have a triangulation of Pm;y with .n� r/-dimensional
simplexes �l;m;y as

Pm;y D
L.m;y/[

lD1
�l;m;y; (218)

where L.m; y/ is the number of the simplexes. From the previous step and by
Remark 1, we see that this triangulation does not depend on y up to the order of
simplexes, that is,

fI.1;m; y/; : : : ; I.L.m; y/;m; y/g (219)

is independent of y, where I.l;m; y/ is the set of all indices of the vertices
of �l;m;y. Reordering �l;m;y with respect to l if necessary, we assume that each
I.l;m/ D I.l;m; y/ is independent of y on D.�/. Note that jI.l;m/j D n�rC1.
Let L.m/ D L.m; y/ if Pm;y is not empty, and L.m/ D 0 otherwise.

By (218) and Lemma 4, we find that the integral in the third expression of
(126) is

.n � r/Š
L.m/X

lD1
Vol.�l;m;y/

X

i2I.l;m/

et��pi .y/
Q
j2I.l;m/
j¤i

t� � .pi .y/� pj .y//
; (220)

where t� D .t �̨/ with t �̨ D t˛ �Pr
iD1 t˛i h˛_; �i i. We see that Vol.�l;m;y/ is

a polynomial function in y D .yi /
r
iD1 with rational coefficients and its total

degree at most n � r on D.�/ due to (34), because in Step 1, we have shown that
pi .y/ depends on y affine linearly. Therefore, from (126), we have the generating
function

F.t; yI�/ D
� Y

˛2�C

t˛

et˛ � 1
� .n�rC1/Pm L.m/X

jD1

fj .y/ehj .t;y/

gj .t; y/
; (221)

which is valid for all y 2 D.�/, where fj 2 Q Œy� with its total degree at most
n � r and gj 2 Z Œt; y�, hj 2 Q Œt; y� are of the form

gj .t; y/ D
X

˛2�C

.h�˛; yi C c˛/t˛; �˛ 2 P; c˛ 2 Z; (222)
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hj .t; y/ D
X

˛2�C

.h'˛; yi C d˛/t˛; '˛ 2 P ˝Q; d˛ 2 Q: (223)

We see from (221) that F.t; yI�/ is meromorphically continued from Cn �D.�/

to the whole space Cn � .C˝ V /, and that P.k; yI�/ is analytically continued
to a polynomial function in y D .yi /

r
iD1 with rational coefficients and its total

degree at most jkj C n � r by (124) and Lemma 5. ut
Theorem 14. The function P.k; yI�/ is not real analytic in y on V unless
P.k; yI�/ is a constant.

Proof. By Theorem 12, we see that for k 2 Nn0 , P.k; yI�/ is a periodic function in
y with its periods �_, while by Theorem 13, P.k; yI�/ is a polynomial function in
y on some open region. Therefore, such a polynomial expression cannot be extended
to the whole space unless P.k; yI�/ is a constant. This implies that there are some
points on HR, at which P.k; yI�/ is not real analytic. ut

The polynomialsB.�/
k .yI�/ may be regarded as (root-system theoretic) general-

izations of Bernoulli polynomials. For instance, they possess the following property.

Theorem 15. Assume that � is an irreducible root system and is not of type A1.
For k 2 Nn0 , y 2 @D.�/ and y0 2 @D.�0/ with y � y0 .mod Q_/, we have

B
.�/
k .yI�/ D B.�0/

k .y0I�/: (224)

Proof. If y D y0, then the result follows from the continuity proved in Lemma 8. If
y ¤ y0, but y � y0 .mod Q_/, we also use the periodicity. ut
This theorem also holds in theA1 case with k ¤ 1 and can be regarded as a multiple
analogue of the formula for the classical Bernoulli polynomials

Bk.0/ D Bk.1/; (225)

for k ¤ 1. Moreover, the formula

Bk.1 � y/ D .�1/kBk.y/ (226)

is well known. In the rest of this section, we will show the results analogous
to the above formula for B.�/

k .yI�/ (Theorem 16) and its vector-valued version
(Theorem 18). The latter gives a finite-dimensional representation of Weyl groups.
In this framework, (226) can be interpreted as an action of the Weyl group of type
A1 (Example 1). These results will not be used in this chapter, but we insert this
topic because of its own interest.
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Lemma 13. Fix w 2 Aut.�/ and � 2 J. Then there exist unique qw;� 2 Q_ and
� 2 J such that


.qw;�/wD
.�/ D D.�/: (227)

Thus, Aut.�/ acts on J as w.�/ D �. Moreover, qv;w.�/ C vqw;� D qvw;� for v;w 2
Aut.�/.

Proof. It can be easily seen from the definition (167) that HR is bW invariant.
Therefore, bW acts on V n HR as homeomorphisms, and a connected component
is mapped to another one.

Fix y 2 wD.�/. There exists a unique q 2 Q_ such that 0 � h
.q/y; �j i < 1 for
1 � j � r , that is, q D �Pr

jD1 aj ˛_
j 2 Q_, where aj D Œhy; �j i� is the integer

part of hy; �j i. Denote this q by qw;� . Then 
.qw;�/y 2 D.�/ for some � 2 J and
thus 
.qw;�/wD.�/ D D.�/.

Let w;w0 2 Aut.�/. Assume


.q/wD.�/ D D.�/; 
.q0/w0D.�/ D D.�0/; 
.q00/w0wD.�/ D D.�00/; (228)

for q; q0; q00 2 Q_ and �; �; �0; �00 2 J. Then we have

D.�0/ D 
.q0/w0
.q/wD.�/

D 
.q0 C w0q/w0wD.�/: (229)

By the uniqueness, we have q0 C w0q D q00 and �0 D �00. ut
Theorem 16. For w 2 Aut.�/,

B
.�/
k .
.qw�1;w.�//w

�1yI�/ D
� Y

˛2�w

.�1/�k˛
�
B
.w.�//
wk .yI�/: (230)

Proof. By Theorems 11 and 12, we have

P.k; 
.qw�1;w.�//w
�1yI�/ D P.k;w�1yI�/

D
� Y

˛2�w�1

.�1/�kw�1˛

�
P.wk; yI�/

D
� Y

˛2�w

.�1/�k˛
�
P.wk; yI�/; (231)

where we have used w�1�w�1 D ��w. By (227) in Lemma 13 with replacing w, �
by w�1, w.�/, respectively, we have


.qw�1;w.�//w
�1D.w.�// D D.�/: (232)



11 Witten Multiple Zeta-Functions 273

Hence, y 2 D.w.�// implies 
.qw�1;w.�//w
�1y 2 D.�/. Therefore, we obtain

P.k; 
.qw�1;w.�//w
�1yI�/ D B.�/

k .
.qw�1;w.�//w
�1yI�/; (233)

P.k; yI�/ D B.w.�//
k .yI�/; (234)

by Theorem 13. The theorem of identity implies (230). ut
Let P be the Q -vector space of all vector-valued polynomial functions of the

form f D .f�/�2J W V ! RjJj with f� 2 Q Œy�. We define a linear map �.w/ W
P! P for w 2 Aut.�/ by

.�.w/f /�.y/ D fw�1.�/.
.qw�1;� /w
�1y/: (235)

Theorem 17. The pair .�;P/ is a representation of Aut.�/.

Proof. For v;w 2 Aut.�/, we have

.�.v/�.w/f /�.y/ D .�.w/f /v�1.�/.
.qv�1;�/v
�1y/

D fw�1v�1.�/.
.qw�1;v�1.�//w
�1
.qv�1;�/v

�1y/

D f.vw/�1.�/.
.qw�1;v�1.�/ C w�1qv�1;�/.vw/�1y/: (236)

Since by Lemma 13 we have qw�1;v�1.�/Cw�1qv�1;� D q.vw/�1;� , we obtain �.vw/ D
�.v/�.w/. ut
Define B.�/k 2 P for k 2 N

n
0 and � 2 J by

.B.�/k /�.y/ D .B.�/k /�.yI�/ D
(
B
.�/
k .yI�/; if � D �;

0; otherwise;
(237)

and let

B.k;�/ D
X

.k0;�0/2.k;�/
QB.�

0/

k0 � P; (238)

where .k; �/ is an element of the orbit space .Nn0 � J/=Aut.�/.

Theorem 18. The vector subspace B.k;�/ is a finite-dimensional Aut.�/-invariant
subspace, and the action is

�.w/B.�/k D
� Y

˛2�w

.�1/�k˛
�

B.w.�//wk : (239)
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Proof. If � D w.�/, then we have

.�.w/B.�/k /�.yI�/ D B.�/
k .
.qw�1;w.�//w

�1yI�/
D
� Y

˛2�w

.�1/�k˛
�
B
.w.�//
wk .yI�/; (240)

by Theorem 16 and otherwise

.�.w/B.�/k /�.y/ D 0: (241)

Thus, we obtain (239). ut
For the representation in the A2 case, see (259) and (260).

11.7 Examples

Example 1. The set of positive roots of typeA1 consists of only one root ˛1. Hence,
we have �C D � D f˛1g and 2�_ D ˛_

1 . We set t D t˛1 and y D hy; �1i. Then by
Theorem 7, we obtain the generating function F.t; yIA1/ as

F.t; yIA1/ D t

et � 1etfyg: (242)

Since D D fy j 0 � y � 1g and R D f;g, we have HR D Q_, and hence, D n HR

consists of only one connected componentDnHR D VD D D.1/. Therefore, we have

F .1/.t; yIA1/ D tety

et � 1 (243)

for y 2 D.1/, which coincides with the generating function of the classical Bernoulli
polynomials. Since J D f1g, we see that B.1/k .yIA1/ consists of only one component,
that is, the classical Bernoulli polynomial Bk.y/. The group Aut.�/ is fid; �1g. For
y 2 D.1/, we have �1y D �y and hence 
.˛_

1 /�1y D ˛_
1 � y 2 D.1/ due to 0 <

h˛_
1 � y; �1i < 1, which implies that the action on Q Œy� is given by

�
�.�1/f

�
.y/ D

f .˛_
1 � y/. Therefore, we have the well-known property

.�.�1/B
.1/
k /.yIA1/ D Bk.1 � y/ D .�1/kBk.y/ D .�1/kB.1/k .yIA1/: (244)

Example 2. In the root system of type A2, we have �C D f˛1; ˛2; ˛1 C ˛2g and
� D f˛1; ˛2g. Then R D �C, and from Lemma 12, we have

HR D .R˛_
1 C Z˛_

2 / [ .R˛_
2 C Z˛_

1 /[ .R .˛_
1 C ˛_

2 /C Z˛_
1 /: (245)
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We see that D nHR D D.1/
`

D.2/, where

D.1/ D fy j 0 < y2 < y1 < 1g; (246)

D.2/ D fy j 0 < y1 < y2 < 1g; (247)

with y1 D hy; �1i and y2 D hy; �2i. Let t1 D t˛1 , t2 D t˛2 , and t3 D t˛1C˛2 . For
y 2 D.1/, the vertices of the polytopes Pm1;m2;y in (127) are given by

0; y2 for P0;0;y;

y2; y1 for P0;1;y;

y1; 1 for P1;1;y: (248)

Then by Theorem 7 and Lemma 4, we have

F .1/.t; yIA2/

D t1t2t3et1y1Ct2y2
.et1 � 1/.et2 � 1/.et3 � 1/

�
�

y2
e.t3�t1�t2/y2 � 1
.t3 � t1 � t2/y2 C et2 .y1 � y2/ .e

.t3�t1�t2/y1 � e.t3�t1�t2/y2/

.t3 � t1 � t2/.y1 � y2/

C et1Ct2 .1 � y1/ .e
t3�t1�t2 � e.t3�t1�t2/y1/
.t3 � t1 � t2/.1 � y1/

�

D t1t2t3et1y1Ct2y2
.et1 � 1/.et2 � 1/.et3 � 1/.t3 � t1 � t2/

�
e.t3�t1�t2/y2 � 1

C et2 .e.t3�t1�t2/y1 � e.t3�t1�t2/y2/C et1Ct2 .et3�t1�t2 � e.t3�t1�t2/y1/
�
: (249)

Hence, by the Taylor expansion of (249), we have

B
.1/
2;2;2.yIA2/ D

1

3780
C 1

45
.y1y2 � y21 � y22/C

1

18
.3y1y

2
2 � 3y21y2 C 2y31/

C1
9
.�2y1y32 � 3y21y22 C 4y31y2 � 2y41 C y42/

C 1

30
.�5y1y42 C 10y21y32 C 10y31y22 � 15y41y2 C 6y51 /

C 1

30
.6y1y

5
2 � 5y21y42 � 5y41y22 C 6y51y2 � 2y61 � 2y62/: (250)
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Table 11.1 Bernoulli
numbers for A2

.k1; k2; k3/ B.k1 ;k2;k3/.A2/ .k1; k2; k3/ B.k1;k2;k3/.A2/

.0; 0; 0/ 1 .0; 1; 1/ �1=12

.0; 1; 3/ 1=120 .0; 2; 2/ 1=180

.0; 2; 4/ �1=630 .0; 3; 1/ 1=120

.0; 3; 3/ �1=840 .0; 4; 2/ �1=630

.0; 4; 4/ 1=2100 .1; 0; 1/ �1=12

.1; 0; 3/ 1=120 .1; 1; 0/ 1=12

.1; 1; 2/ 1=180 .1; 1; 4/ �1=630

.1; 2; 1/ �1=180 .1; 2; 3/ 1=5040

.1; 3; 0/ �1=120 .1; 3; 2/ �1=5040

.1; 3; 4/ 1=12600 .1; 4; 1/ 1=630

.1; 4; 3/ �1=12600 .2; 0; 2/ 1=180

.2; 0; 4/ �1=630 .2; 1; 1/ �1=180

.2; 1; 3/ 1=5040 .2; 2; 0/ 1=180

.2; 2; 2/ 1=3780 .2; 2; 4/ �1=18900

.2; 3; 1/ 1=5040 .2; 4; 0/ �1=630

.2; 4; 2/ �1=18900 .2; 4; 4/ 1=103950

.3; 0; 1/ 1=120 .3; 0; 3/ �1=840

.3; 1; 0/ �1=120 .3; 1; 2/ �1=5040

.3; 1; 4/ 1=12600 .3; 2; 1/ 1=5040

.3; 3; 0/ 1=840 .3; 3; 4/ �1=277200

.3; 4; 1/ �1=12600 .3; 4; 3/ 1=277200

.4; 0; 2/ �1=630 .4; 0; 4/ 1=2100

.4; 1; 1/ 1=630 .4; 1; 3/ �1=12600

.4; 2; 0/ �1=630 .4; 2; 2/ �1=18900

.4; 2; 4/ 1=103950 .4; 3; 1/ �1=12600

.4; 3; 3/ 1=277200 .4; 4; 0/ 1=2100

.4; 4; 2/ 1=103950 .4; 4; 4/ �19=13513500

Similarly, we can calculate B.2/
2;2;2.yIA2/ for y 2 D.2/, which coincides with (250)

with y1 and y2 exchanged. In the case y D 0, from Lemma 8, we have

F.tIA2/ D t1t2t3et1Ct2 .et3�t1�t2 � 1/
.et1 � 1/.et2 � 1/.et3 � 1/.t3 � t1 � t2/

D 1C 1

12
.t1t2 � t1t3 � t2t3/C 1

360
.t1t2t

2
3 � t21 t2t3 � t1t22 t3/

C 1

720
.t21 t

2
2 C t21 t23 C t22 t23 /C

1

30240
t21 t

2
2 t
2
3 C � � � ; (251)

by letting y ! 0 in (249). See Table 11.1 for explicit forms of B.k1;k2;k3/.A2/
with k1; k2; k3 � 4. Note that B.k1;k2;k3/.A2/ D 0 for .k1; k2; k3/ which are not
in the table.
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By Theorem 8, we recover Mordell’s formula [27]:

�2.2; 2; 2IA2/ D .�1/3 .2�
p�1/6
3Š

B.2;2;2/.A2/

.2Š/3

D .�1/3 .2�
p�1/6
3Š

1

30240
D �6

2835
: (252)

We also discuss the action of Aut.�/. Note that Aut.�/ is generated by
f�1; �2; !g where ! is a unique element of ˝ such that ! ¤ id, and hence
!˛1 D ˛2,!�1 D �2 and!2 D id. Also note that ˛1 D 2�1��2 and ˛2 D 2�2��1.
For y 2 D.1/, we have

h˛_
1 C �1y; �1i D 1C hy; �1�1i D 1C hy; �1 � ˛1i D 1 � y1 C y2;
h˛_
1 C �1y; �2i D hy; �1�2i D hy; �2i D y2; (253)

which implies

0 < h˛_
1 C �1y; �2i < h˛_

1 C �1y; �1i < 1: (254)

Therefore, we have 
.˛_
1 /�1D

.1/ D D.1/ and in a similar way �1D.2/ D D.2/, and
so on. Thus, from (235), we see that for f D .f1; f2/ with f1; f2 2 Q Œy�, the action
of Aut.�/ is given by

.�.�1/f /.y/ D
�
f1.˛

_
1 C �1y/; f2.�1y/

�
;

.�.�2/f /.y/ D
�
f1.�2y/; f2.˛_

2 C �2y/
�
;

.�.!/f /.y/ D �f2.!y/; f1.!y/
�
; (255)

or in terms of coordinates,

.�.�1/f /.y1; y2/ D
�
f1.1 � y1 C y2; y2/; f2.�y1 C y2; y2/

�
;

.�.�2/f /.y1; y2/ D
�
f1.y1; y1 � y2/; f2.y1; 1C y1 � y2/

�
;

.�.!/f /.y1; y2/ D
�
f2.y2; y1/; f1.y2; y1/

�
: (256)

Then for

B.1/2;2;2.yIA2/ D .B.1/
2;2;2.yIA2/; 0/; (257)

B.2/2;2;2.yIA2/ D .0; B.2/
2;2;2.yIA2//; (258)

we have

�.�1/B
.1/
2;2;2 D B.1/2;2;2;

�.�2/B
.1/
2;2;2 D B.1/2;2;2;

�.!/B.1/2;2;2 D B.2/2;2;2: (259)
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More generally, we can show

�.�1/B
.1/

k1;k2;k3
D .�1/�k1B.1/k1;k3;k2 ;

�.�2/B
.1/

k1;k2;k3
D .�1/�k2B.1/k3;k2;k1 ;

�.!/B.1/k1;k2;k3 D B.2/k2;k1;k3 : (260)

Example 3. The set of positive roots of type C2.' B2/ consists of ˛1, ˛2, 2˛1C˛2,
and ˛1 C ˛2. Let t1 D t˛1 , t2 D t˛2 , t3 D t2˛1C˛2 , and t4 D t˛1C˛2 . The vertices
.x2˛1C˛2 ; x˛1C˛2/ of the polytopes Pm1;m2 in (129) are given by

.0; 0/; .0; 1=2/; .1; 0/ for P1;1;

.0; 1/; .0; 1=2/; .1; 0/ for P1;2;

.0; 1/; .1; 1=2/; .1; 0/ for P2;2;

.0; 1/; .1; 1=2/; .1; 1/ for P2;3: (261)

Then by Lemmas 4 and 5, we obtain

F.tIC2/ D
� 4Y

jD1

tj

etj � 1
�

G.tIC2/

D 1C 1

2880
.2t1t2t

2
3 � 4t1t2t24 � 2t1t22 t3 C 4t1t22 t4 � 4t1t3t24 � 4t1t23 t4

C t21 t2t3 � 4t21 t2t4 � 4t21 t3t4 � t2t3t24 � 2t2t23 t4 � 2t22 t3t4/

C 1

241920
.3t1t2t

2
3 t
2
4 � 3t1t22 t3t24 � 3t21 t2t23 t4 � 3t21 t22 t3t4 C 2t21 t22 t23

C 8t21 t22 t24 C 8t21 t23 t24 C 2t22 t23 t24 /

C 1

9676800
t21 t

2
2 t
2
3 t
2
4 C � � � ;

(262)

where

G.tIC2/ D et3

.t1 C t2 � t3/.t1 � 2t3 C t4/ �
2e

t1
2 C t4

2

.t1 C 2t2 � t4/.t1 � 2t3 C t4/

C et1Ct2
.t1 C t2 � t3/.t1 C 2t2 � t4/ �

et2Ct3
.t2 C t3 � t4/.t1 � 2t3 C t4/

C et4

.t1 C 2t2 � t4/.t2 C t3 � t4/ C
2e

t1
2 Ct2C t4

2

.t1 C 2t2 � t4/.t1 � 2t3 C t4/
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C 2e
t1
2 Ct3C t4

2

.t1 C 2t2 � t4/.t1 � 2t3 C t4/ C
et1Ct2Ct3

.t2 C t3 � t4/.t1 C 2t2 � t4/

� et1Ct4
.t2 C t3 � t4/.t1 � 2t3 C t4/ C

et3Ct4
.t1 C t2 � t3/.t1 C 2t2 � t4/

� 2e
t1
2 Ct2Ct3C t4

2

.t1 C 2t2 � t4/.t1 � 2t3 C t4/ C
et1Ct2Ct4

.t1 C t2 � t3/.t1 � 2t3 C t4/ : (263)

See Tables 11.2–11.4 for explicit forms ofB.k1;k2;k3;k4/.C2/with k1; k2; k3; k4�4.
Note that B.k1;k2;k3;k4/.C2/ D 0 for .k1; k2; k3; k4/ which are not in the table. Using
these tables, we obtain

�2.2; 2; 2; 2IC2/ D .�1/4 .2�
p�1/8
2Š � 22

B.2;2;2;2/.C2/

.2Š/4

D .�1/4 .2�
p�1/8
2Š � 22

1

9676800
D �8

302400
; (264)

and so

�W .2IC2/ D 62 �8

302400
D �8

8400
: (265)

Example 4. The set of positive roots of typeA3 consists of ˛1, ˛2, ˛3, ˛1C˛2, ˛2C
˛3, and ˛1 C ˛2 C ˛3. Let t1 D t˛1 , t2 D t˛2 , t3 D t˛3 , t4 D t˛1C˛2 , t5 D t˛2C˛3 , and
t6 D t˛1C˛2C˛3 . The vertices .x˛1C˛2 ; x˛2C˛3 ; x˛1C˛2C˛3/ of the polytopes Pm1;m2;m3
in (129) are given by

.0; 0; 0/; .0; 0; 1/; .0; 1; 0/; .1; 0; 0/ for P1;1;1;

.0; 0; 1/; .0; 1; 0/; .1; 0; 0/; .1; 1; 0/ for P1;2;1;

.0; 0; 1/; .0; 1; 0/; .0; 1; 1/; .1; 1; 0/ for P1;2;2;

.0; 0; 1/; .1; 0; 0/; .1; 0; 1/; .1; 1; 0/ for P2;2;1;

.0; 0; 1/; .0; 1; 1/; .1; 0; 1/; .1; 1; 0/ for P2;2;2;

.0; 1; 1/; .1; 0; 1/; .1; 1; 0/; .1; 1; 1/ for P2;3;2: (266)

Then by Lemmas 4 and 5, we obtain

F.tIA3/ D
� 6Y

jD1

tj

etj � 1
�

G.tIA3/

D 1C � � � C 23

435891456000
t21 t

2
2 t
2
3 t
2
4 t
2
5 t
2
6 C � � � ; (267)
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Table 11.2 Bernoulli numbers for C2
.k1; k2; k3; k4/ B.k1 ;k2;k3;k4/.C2/ .k1; k2; k3; k4/ B.k1 ;k2;k3;k4/.C2/

.0; 0; 0; 0/ 1 .0; 1; 1; 2/ �1=1440

.0; 1; 1; 4/ 1=20160 .0; 1; 2; 1/ �1=720

.0; 1; 2; 3/ 1=20160 .0; 1; 3; 2/ 1=10080

.0; 1; 3; 4/ �1=134400 .0; 1; 4; 1/ 1=2520

.0; 1; 4; 3/ �1=67200 .0; 2; 1; 1/ �1=720

.0; 2; 1; 3/ 1=20160 .0; 2; 2; 2/ 1=15120

.0; 2; 2; 4/ �1=201600 .0; 2; 3; 1/ 1=5040

.0; 2; 3; 3/ �1=134400 .0; 2; 4; 2/ �1=50400

.0; 2; 4; 4/ 1=665280 .0; 3; 1; 2/ 1=10080

.0; 3; 1; 4/ �1=134400 .0; 3; 2; 1/ 1=5040

.0; 3; 2; 3/ �1=134400 .0; 3; 3; 2/ �1=67200

.0; 3; 3; 4/ 1=887040 .0; 3; 4; 1/ �1=16800

.0; 3; 4; 3/ 1=443520 .0; 4; 1; 1/ 1=2520

.0; 4; 1; 3/ �1=67200 .0; 4; 2; 2/ �1=50400

.0; 4; 2; 4/ 1=665280 .0; 4; 3; 1/ �1=16800

.0; 4; 3; 3/ 1=443520 .0; 4; 4; 2/ 1=166320

.0; 4; 4; 4/ �691=1513512000 .1; 0; 1; 2/ �1=360

.1; 0; 1; 4/ 1=1260 .1; 0; 2; 1/ �1=360

.1; 0; 2; 3/ 1=2520 .1; 0; 3; 2/ 1=2520

.1; 0; 3; 4/ �1=8400 .1; 0; 4; 1/ 1=1260

.1; 0; 4; 3/ �1=8400 .1; 1; 0; 2/ 1=360

.1; 1; 0; 4/ �1=1260 .1; 1; 2; 0/ 1=720

.1; 1; 2; 2/ 1=20160 .1; 1; 2; 4/ �29=2419200

.1; 1; 3; 3/ 1=268800 .1; 1; 4; 0/ �1=2520

.1; 1; 4; 2/ �1=86400 .1; 1; 4; 4/ 1=403200

.1; 2; 0; 1/ 1=360 .1; 2; 0; 3/ �1=2520

.1; 2; 1; 0/ �1=720 .1; 2; 1; 2/ �1=20160

.1; 2; 1; 4/ 29=2419200 .1; 2; 3; 0/ 1=5040

.1; 2; 3; 2/ 1=403200 .1; 2; 3; 4/ �1=1267200

.1; 2; 4; 1/ �1=151200 .1; 2; 4; 3/ 1=2217600

.1; 3; 0; 2/ �1=2520 .1; 3; 0; 4/ 1=8400

.1; 3; 1; 3/ �1=268800 .1; 3; 2; 0/ �1=5040

.1; 3; 2; 2/ �1=403200 .1; 3; 2; 4/ 1=1267200

.1; 3; 4; 0/ 1=16800 .1; 3; 4; 2/ 1=2217600

.1; 3; 4; 4/ �479=4036032000 .1; 4; 0; 1/ �1=1260

.1; 4; 0; 3/ 1=8400 .1; 4; 1; 0/ 1=2520

.1; 4; 1; 2/ 1=86400 .1; 4; 1; 4/ �1=403200

.1; 4; 2; 1/ 1=151200 .1; 4; 2; 3/ �1=2217600

.1; 4; 3; 0/ �1=16800 .1; 4; 3; 2/ �1=2217600

.1; 4; 3; 4/ 479=4036032000
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Table 11.3 Bernoulli numbers for C2
.k1; k2; k3; k4/ B.k1;k2;k3;k4/.C2/ .k1; k2; k3; k4/ B.k1;k2;k3;k4/.C2/

.2; 0; 1; 1/ �1=360 .2; 0; 1; 3/ 1=2520

.2; 0; 2; 2/ 1=3780 .2; 0; 2; 4/ �1=12600

.2; 0; 3; 1/ 1=2520 .2; 0; 3; 3/ �1=16800

.2; 0; 4; 2/ �1=12600 .2; 0; 4; 4/ 1=41580

.2; 1; 0; 1/ �1=360 .2; 1; 0; 3/ 1=2520

.2; 1; 1; 0/ 1=1440 .2; 1; 1; 4/ �23=4838400

.2; 1; 2; 1/ �1=20160 .2; 1; 2; 3/ 1=806400

.2; 1; 3; 0/ �1=10080 .2; 1; 3; 4/ 1=2534400

.2; 1; 4; 1/ 1=86400 .2; 1; 4; 3/ �1=2217600

.2; 2; 0; 2/ 1=3780 .2; 2; 0; 4/ �1=12600

.2; 2; 1; 1/ �1=20160 .2; 2; 1; 3/ 1=806400

.2; 2; 2; 0/ 1=15120 .2; 2; 2; 2/ 1=604800

.2; 2; 2; 4/ �1=3801600 .2; 2; 3; 1/ 1=403200

.2; 2; 4; 0/ �1=50400 .2; 2; 4; 2/ �1=3326400

.2; 2; 4; 4/ 1=20697600 .2; 3; 0; 1/ 1=2520

.2; 3; 0; 3/ �1=16800 .2; 3; 1; 0/ �1=10080

.2; 3; 1; 4/ 1=2534400 .2; 3; 2; 1/ 1=403200

.2; 3; 3; 0/ 1=67200 .2; 3; 3; 4/ �373=16144128000

.2; 3; 4; 1/ �1=2217600 .2; 3; 4; 3/ 53=4036032000

.2; 4; 0; 2/ �1=12600 .2; 4; 0; 4/ 1=41580

.2; 4; 1; 1/ 1=86400 .2; 4; 1; 3/ �1=2217600

.2; 4; 2; 0/ �1=50400 .2; 4; 2; 2/ �1=3326400

.2; 4; 2; 4/ 1=20697600 .2; 4; 3; 1/ �1=2217600

.2; 4; 3; 3/ 53=4036032000 .2; 4; 4; 0/ 1=166320

.2; 4; 4; 2/ 53=1513512000 .2; 4; 4; 4/ �1=172972800

.3; 0; 1; 2/ 1=2520 .3; 0; 1; 4/ �1=8400

.3; 0; 2; 1/ 1=2520 .3; 0; 2; 3/ �1=16800

.3; 0; 3; 2/ �1=16800 .3; 0; 3; 4/ 1=55440

.3; 0; 4; 1/ �1=8400 .3; 0; 4; 3/ 1=55440

.3; 1; 0; 2/ �1=2520 .3; 1; 0; 4/ 1=8400

.3; 1; 2; 0/ �1=20160 .3; 1; 2; 2/ �1=806400

.3; 1; 2; 4/ 1=5068800 .3; 1; 3; 1/ �1=268800

.3; 1; 4; 0/ 1=67200 .3; 1; 4; 2/ 1=2217600

.3; 1; 4; 4/ �797=16144128000 .3; 2; 0; 1/ �1=2520

.3; 2; 0; 3/ 1=16800 .3; 2; 1; 0/ 1=20160

.3; 2; 1; 2/ 1=806400 .3; 2; 1; 4/ �1=5068800

.3; 2; 3; 0/ �1=134400 .3; 2; 3; 4/ 373=32288256000

.3; 2; 4; 1/ 1=2217600 .3; 2; 4; 3/ �53=4036032000

.3; 3; 0; 2/ 1=16800 .3; 3; 0; 4/ �1=55440

.3; 3; 1; 1/ 1=268800 .3; 3; 2; 0/ 1=134400

.3; 3; 2; 4/ �373=32288256000 .3; 3; 4; 0/ �1=443520

.3; 3; 4; 2/ �53=4036032000 .3; 3; 4; 4/ 1=461260800

.3; 4; 0; 1/ 1=8400 .3; 4; 0; 3/ �1=55440

.3; 4; 1; 0/ �1=67200 .3; 4; 1; 2/ �1=2217600

.3; 4; 1; 4/ 797=16144128000 .3; 4; 2; 1/ �1=2217600

.3; 4; 2; 3/ 53=4036032000 .3; 4; 3; 0/ 1=443520

.3; 4; 3; 2/ 53=4036032000 .3; 4; 3; 4/ �1=461260800
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Table 11.4 Bernoulli numbers for C2
.k1; k2; k3; k4/ B.k1;k2;k3;k4/.C2/ .k1; k2; k3; k4/ B.k1;k2;k3;k4/.C2/

.4; 0; 1; 1/ 1=1260 .4; 0; 1; 3/ �1=8400

.4; 0; 2; 2/ �1=12600 .4; 0; 2; 4/ 1=41580

.4; 0; 3; 1/ �1=8400 .4; 0; 3; 3/ 1=55440

.4; 0; 4; 2/ 1=41580 .4; 0; 4; 4/ �691=94594500

.4; 1; 0; 1/ 1=1260 .4; 1; 0; 3/ �1=8400

.4; 1; 1; 0/ �1=20160 .4; 1; 1; 2/ 23=4838400

.4; 1; 2; 1/ 29=2419200 .4; 1; 2; 3/ �1=5068800

.4; 1; 3; 0/ 1=134400 .4; 1; 3; 2/ �1=2534400

.4; 1; 4; 1/ �1=403200 .4; 1; 4; 3/ 797=16144128000

.4; 2; 0; 2/ �1=12600 .4; 2; 0; 4/ 1=41580

.4; 2; 1; 1/ 29=2419200 .4; 2; 1; 3/ �1=5068800

.4; 2; 2; 0/ �1=201600 .4; 2; 2; 2/ �1=3801600

.4; 2; 2; 4/ 373=24216192000 .4; 2; 3; 1/ �1=1267200

.4; 2; 3; 3/ 373=32288256000 .4; 2; 4; 0/ 1=665280

.4; 2; 4; 2/ 1=20697600 .4; 2; 4; 4/ �1=345945600

.4; 3; 0; 1/ �1=8400 .4; 3; 0; 3/ 1=55440

.4; 3; 1; 0/ 1=134400 .4; 3; 1; 2/ �1=2534400

.4; 3; 2; 1/ �1=1267200 .4; 3; 2; 3/ 373=32288256000

.4; 3; 3; 0/ �1=887040 .4; 3; 3; 2/ 373=16144128000

.4; 3; 4; 1/ 479=4036032000 .4; 3; 4; 3/ �1=461260800

.4; 4; 0; 2/ 1=41580 .4; 4; 0; 4/ �691=94594500

.4; 4; 1; 1/ �1=403200 .4; 4; 1; 3/ 797=16144128000

.4; 4; 2; 0/ 1=665280 .4; 4; 2; 2/ 1=20697600

.4; 4; 2; 4/ �1=345945600 .4; 4; 3; 1/ 479=4036032000

.4; 4; 3; 3/ �1=461260800 .4; 4; 4; 0/ �691=1513512000

.4; 4; 4; 2/ �1=172972800 .4; 4; 4; 4/ 479=1372250880000

where

G.tIA3/

D et3Ct4

.t1 C t2 � t4/.t1 � t3 � t4 C t5/.t3 C t4 � t6/
� et1Ct5

.t2 C t3 � t5/.t1 � t3 � t4 C t5/.t1 C t5 � t6/

� et6

.t1 C t2 C t3 � t6/.t3 C t4 � t6/.t1 C t5 � t6/
C et1Ct2Ct3

.t1 C t2 � t4/.t2 C t3 � t5/.t1 C t2 C t3 � t6/

� et4Ct5

.t1 C t2 � t4/.t2 C t3 � t5/.t2 � t4 � t5 C t6/
� et2Ct3Ct4

.t2 C t3 � t5/.t1 � t3 � t4 C t5/.t3 C t4 � t6/

C et1Ct2Ct5

.t1 C t2 � t4/.t1 � t3 � t4 C t5/.t1 C t5 � t6/
C et2Ct6

.t3 C t4 � t6/.t1 C t5 � t6/.t2 � t4 � t5 C t6/

C et3Ct4Ct5

.t1 C t2 � t4/.t3 C t4 � t6/.t2 � t4 � t5 C t6/
� et5Ct6

.t2 C t3 � t5/.t1 C t2 C t3 � t6/.t3 C t4 � t6/

C et1Ct2Ct3Ct5

.t1 C t2 � t4/.t1 C t2 C t3 � t6/.t1 C t5 � t6/
� et2Ct3Ct6

.t2 C t3 � t5/.t1 C t5 � t6/.t2 � t4 � t5 C t6/
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C et1Ct4Ct5

.t2 C t3 � t5/.t1 C t5 � t6/.t2 � t4 � t5 C t6/
� et4Ct6

.t1 C t2 � t4/.t1 C t2 C t3 � t6/.t1 C t5 � t6/

C et1Ct2Ct3Ct4

.t2 C t3 � t5/.t1 C t2 C t3 � t6/.t3 C t4 � t6/
� et1Ct2Ct6

.t1 C t2 � t4/.t3 C t4 � t6/.t2 � t4 � t5 C t6/

� et1Ct3Ct4Ct5

.t1 C t5 � t6/.t2 � t4 � t5 C t6/.t3 C t4 � t6/
� et3Ct4Ct6

.t1 C t2 � t4/.t1 � t3 � t4 C t5/.t1 C t5 � t6/

C et1Ct5Ct6

.t2 C t3 � t5/.t1 � t3 � t4 C t5/.t3 C t4 � t6/
C et1Ct2Ct3Ct6

.t1 C t2 � t4/.t2 C t3 � t5/.t2 � t4 � t5 C t6/

� et4Ct5Ct6

.t1 C t2 � t4/.t2 C t3 � t5/.t1 C t2 C t3 � t6/
C et1Ct2Ct3Ct4Ct5

.t1 C t2 C t3 � t6/.t3 C t4 � t6/.t1 C t5 � t6/

C et2Ct3Ct4Ct6

.t2 C t3 � t5/.t1 � t3 � t4 C t5/.t1 C t5 � t6/
� et1Ct2Ct5Ct6

.t1 C t2 � t4/.t1 � t3 � t4 C t5/.t3 C t4 � t6/
:

(268)

Therefore, we obtain

�3.2; 2; 2; 2; 2; 2IA3/ D .�1/6 .2�
p�1/12
4Š

23

435891456000
D 23

2554051500
�12;

(269)

which implies a formula of Gunnells–Sczech [6]:

�W .2IA3/ D 122 23

2554051500
�12 D 92

70945875
�12: (270)

In higher rank root systems, generating functions are more involved, since the
polytopes are not simplicial any longer. For instance, we have the generating
function of type G2, A4, B3, and C3 with 1010 terms, 5040 terms, 19908 terms,
and 20916 terms, respectively, by use of triangulation. In [17], we will improve
Theorem 7 and will give more compact forms of the generating functionsF.t; yI�/,
which do not depend on simplicial decompositions. As a result, the numbers of
terms in the above generating functions reduce to 15, 125, 68, and 68, respectively
(as for the G2 case, see [18]). In fact, the number for An is .n C 1/n�1, which
coincides with the number of all trees on f1; : : : ; nC 1g. See [17] for the details.

Example 5. In Theorem 5, we have already given general forms of functional
relations among zeta-functions of root systems. In previous examples, we observed
generating functions and special values in several cases, but here, we treat examples
of explicit functional relations which can be deduced from the general forms. First,
consider the A2 case (see Example 2). Set

�C D �C.A2/ D f˛1; ˛2; ˛1 C ˛2g;

and y D 0, s D .2; s; 2/ for s 2 C with <s > 1, I D f2g, that is, �IC D f˛2g.
Then, from (110), we can write the left-hand side of (115) as
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S.s; yI I I�/ D
1X

m;nD1

1

m2ns.mC n/2 C
1X

m;nD1
m 6Dn

1

m2ns.�mC n/2

D 2�2.2; s; 2IA2/C �2.2; 2; sIA2/:

On the other hand, the right-hand side of (115) is

 
.2�
p�1/2
2Š

!2 1X

mD1

1

ms

Z 1

0

e.�mx/L2.x; 0/L2.�x; 0/dx

D
 
.2�
p�1/2
2Š

!2 1X

mD1

1

ms

Z 1

0

e.�mx/B2.x/B2.1 � x/dx;

by using (121). From well-known properties of Bernoulli polynomials, we can
calculate the above integral (for details, see Nakamura [28]) and can recover
from (115) the formula

2�2.2; s; 2IA2/C �2.2; 2; sIA2/ D 4�.2/�.sC 2/� 6�.sC 4/; (271)

proved in [36] (see also [28]). The function �2.sIA2/ can be continued meromorphi-
cally to the whole space C3[20], so (271) holds for any s 2 C except for singularities
on the both sides. In particular, when s D 2, we obtain (252). Similarly, we can treat
the C2.' B2/ case and give some functional relations from (115) by combining the
meromorphic continuation of �2.sIC2/ which has been shown in [21].
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2. N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
3. D. M. Bradley, Partition identities for the multiple zeta function, in ‘Zeta Functions, Topology

and Quantum Physics’, Developments in Mathematics Vol. 14, T. Aoki et al. (eds.), Springer,
New York, 2005, pp. 19–29.

4. M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997),
371–392.
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Chapter 12
A Pseudo Twin Primes Theorem

Alex V. Kontorovich

Abstract Selberg identified the “parity” barrier that sieves alone cannot distinguish
between integers having an even or odd number of factors. We give here a short and
self-contained demonstration of parity breaking using bilinear forms, modeled on
the twin primes conjecture.

Keywords Exponential sums • Bilinear forms • Piatetski-Shapiro primes

12.1 Introduction

The twin prime conjecture states that there are infinitely many primes p such that
p C 2 is also prime. A refined version of this conjecture is that �2.x/, the number
of prime twins lying below a level x, satisfies

�2.x/ � C x

log2 x
;

as x !1, where C 
 1:32032 : : : an arithmetic constant.
The best result towards the twin prime conjecture is Chen’s [Che73], stating that

there are infinitely many primes p for which p C 2 is either itself prime or the
product of two primes. This statement is a quintessential exhibition of the “parity”
barrier identified by Selberg that sieve methods alone cannot distinguish between
sets having an even or odd number of factors. Vinogradov’s resolution [Vin37] of
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the ternary Goldbach problem introduced the idea that estimating certain bilinear
forms can sometimes break this barrier, and there have since been many impressive
instances of this phenomenon; see, e.g., [FI98, HB01].

In this note, we aim to illustrate parity breaking in a simple, self-contained
example. Consider an analogue of the twin prime conjecture where instead of
intersecting two copies of the primes, we intersect one copy of the primes with a
set which analytically mimics the primes. For x > 2 let

iL.x/ � x logx

denote the inverse to the logarithmic integral function

Li.x/ WD
Z x

2

dt

log t
:

Definition 1. Let b�.x/ denote the number of primes p � x such that p D biL.n/c
for some integer n.

Here b�c is the floor function, returning the largest integer not exceeding its
argument. Our main goal is to demonstrate.

Theorem 1. As x !1,

b�.x/ � x

log2 x
:

Notice that the constant above is 1, that is, there is no arithmetic interference. This
theorem follows also from the work of Leitmann [Lei77]; both his proof and ours
essentially mimic Piatetski–Shapiro’s theorem [Pu53]. Our aim is to give a short
derivation of this statement from scratch.

12.1.1 Outline

In Sect. 12.2, we give bounds for exponential sums of linear and bilinear type; these
are used in the sequel. We devote Sect. 12.3 to reducing Theorem 1 to an estimate
for exponential sums over primes. The latter are treated in Sect. 12.4 by Vaughan’s
identity, relying on the bounds of Sect. 12.2 to establish Theorem 1.

12.2 Estimates for Linear and Bilinear Sums

In this section, we develop preliminary bounds of linear and bilinear type, which
are used in the sequel. We require first the following two well-known estimates
due originally to Weyl [Wey21] and van der Corput [vdC21, vdC22]; see, e.g.,
Theorem 2.2 and Lemma 2.5 of [GK91].
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Lemma 1 (van der Corput). Suppose f has two continuous derivatives and for
0 < c < C , we have c� � f 00 � C� on ŒN; 2N �. Then

X

N<n�N1�2N
e.f .n// �C;c N�1=2 C��1=2:

This is proved by truncating Poisson summation, comparing the sum to the
integral, and integrating by parts two times.

Lemma 2 (Weyl, van der Corput). Let zk 2 C be any complex numbers, k D
K C 1; : : : ; 2K . Then for anyQ � K ,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

K<k�2K
zk

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

� K CQ
Q

X

jqj<Q

�

1 � jqj
Q

� X

K<k;kCq�2K
zk NzkCq:

To prove this, shift the interval by q and average the contributions over jqj < Q.

12.2.1 Estimating Type I Sums

We use Lemma 1 to prove

Lemma 3. For any integer h and ` 	 1,

X

N<n�N1�2N
e.hLi.n`//�

(
N if h D 0
.N jhj`/ 12 log.N`/ otherwise.

Remark 1. Here as throughout, the implied constant is absolute unless otherwise
specified.

Proof. Let� denote the sum in question. The trivial estimate isN . Assume without
loss of generality h > 0. Apply Lemma 1 with f .n/ D hLi.n`/, taking � D

h`

N log2.N`/
. Thus,

� � N

�
h`

N log2.N`/

�1=2
C
 
N log2.N`/

h`

!1=2

� .Nh`/1=2 log.N`/;

so we are done. ut
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12.2.2 Estimating Type II Sums

We first require the following estimate.

Lemma 4. For positive integers h; k; q; and L 	 10, let

S0.qI k/ WD
X

L<`�2L
e

�

h
�

Li.`k/ � Li.`.k C q//�
�

: (1)

Then
S0.qI k/� .Lhq/1=2;

where the implied constant is absolute, that is, independent of k.

Proof. We again apply Lemma 1, this time choosing for the function f .x/ D
h.Li.xk/ � Li.x.k C q///. Then for L < x � 2L,

f 00.x/ D h
� �k
x log2.xk/

C k C q
x log2.x.k C q//

�

D hq log.k0x/ � 2
x log.k0x/

� hq

L
;

for some k0 2 Œk; k C q/ by the mean value theorem in k. Thus, we can take
� D hq

L
and

S0 � L

�
hq

L

�1=2
C
�
L

hq

�1=2
� .Lhq/1=2;

as desired. ut
With this estimate in hand, we control Type II sums as follows (see also [GK91,

Lemma 4.13]).

Lemma 5. Let ˛.`/ and ˇ.k/ be sequences of complex numbers supported in
.L; 2L� and .K; 2K�, respectively, and suppose that

X

`

j˛.`/j2 � L log2A L and
X

k

jˇ.k/j2 � K log2B K: (2)

Then
X

L<`�2L

X

K<k�2K
˛.`/ˇ.k/e.hLi.`k//� KL5=6h1=6 logA L logB K: (3)

The implied constant in (3) depends only on those in (2).

Proof. Let S denote the sum on the left-hand side. By Cauchy–Schwartz,

jS j2 �
 
X

`

j˛.`/j2
!
X

`

ˇ
ˇ
ˇ
ˇ
ˇ

X

k

ˇ.k/e.hLi.`k//

ˇ
ˇ
ˇ
ˇ
ˇ

2

:
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Let Q � K be a parameter to be chosen later. Using Lemma 2 and (2), we get

jS j2 � L log2A L
K CQ
Q

X

jqj<Q

�

1 � jqj
Q

�

�
X

`

X

K<k;kCq�2K
ˇ.k/ Ň.k C q/ e

�

h
�

Li.`k/� Li.`.k C q//�
�

� L log2AL
K

Q

X

1�jqj<Q

X

k

jˇ.k/ Ň.k C q/jjS0.qI k/jCK
2L2

Q
log2AL log2BK;

where S0 is defined by (1).
Using Cauchy’s inequality, jx Nyj � 1

2
.jxj2 C jyj2/, and the fact that jS0.qI k/j D

jS0.�qI k C q/j, we get

jS j2 � K2L2

Q
log2A L log2B K C LK

Q
log2A L

X

k

jˇ.k/j2
X

1�q<Q
jS0.qI k/j:

From Lemma 4, we have the estimate

1

Q

X

1�q<Q
jS0.qI k/j � .LhQ/1=2;

so we finally see that

jS j2 � K2L2

Q
log2A L log2B K C L3=2K2 log2A L log2B KQ1=2h1=2:

The choiceQ D bL1=3h�1=3c gives the desired result. ut

12.3 Reduction to Exponential Sums

In this section, we reduce the statement of Theorem 1 to a certain exponential
sum over primes. We follow standard methods; see, e.g., [GK91, HB83], which
we include here for completeness. If p D biL.n/c, then p � iL.n/ < p C 1 or,
equivalently, Li.p/ � n < Li.p C 1/. The existence of an integer in the interval
ŒLi.p/;Li.p C 1// is indicated by the value bLi.p C 1/c � bLi.p/c, so we have

b�.x/ D
X

p�x

�

bLi.p C 1/c � bLi.p/c
�

:
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Write b
c D 
 �  .
/ � 1
2
, where  is the shifted fractional part

 .
/ WD f
g � 1
2
2



�1
2
;
1

2

�

:

So we have

b�.x/ D
X

p�x




Li.p C 1/� Li.p/

�

C
X

p�x




 .Li.p// �  .Li.p C 1//
�

:

Since Li0.x/ D 1
log x , we use the Taylor expansion:

Li.p C 1/ D Li.p/C 1

logp
CO

�
1

p log2 p

�

to get:

b�.x/ D
X

p�x

1

logp
C
X

p�x




 .Li.p//�  .Li.p C 1//
�

CO.1/:

By partial summation and a crude form of the prime number theorem,

X

p�x

1

logp
D
Z x

2

d�.t/

log t
D �.x/

logx
CO

�Z x

2

�.t/

t log2 t
dt

�

D x

log2 x
CO

�
x

log3 x

�

:

Therefore, to prove Theorem 1, it suffices to show that

X

p�x




 .Li.p// �  .Li.p C 1//
�

� x

log3 x
: (4)

Equivalently, split the sum into dyadic segments and apply partial summation to
reduce (4) to the statement that for any N < N1 � 2N ,

˙ WD
X

N<n�N1�2N
�.n/




 .Li.n// �  .Li.nC 1//
�

� N

log2 N
; (5)

with N � x. Here � is the von Mangoldt function:

�.n/ D
(

logp if n D pk is a prime power

0 otherwise.
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The truncated Fourier series of  is

 .
/ D
X

0<jhj�H
ch e.
h/CO.g.
;H//; (6)

where e.x/ D e2�ix , ch D 1
2�ih

, and

g.
;H/ D min

�

1;
1

Hk
k
�

:

Here k � k is the distance to the nearest integer. In the above,H is a parameter which
we will choose later, eventually setting

H D log4 N: (7)

The function g has Fourier expansion

g.
;H/ D
X

h2Z
ah e.
h/;

in which

ah � min

�
log 2H

H
;
H

jhj2
�

: (8)

Using (6), write the sum in (5) as ˙ D ˙1 CO.˙2/ where

˙1 WD
X

n

�.n/
X

0<jhj�H
ch




e.hLi.n//� e.hLi.nC 1//
�

and

˙2 WD
X

n�N
�.n/




g.Li.n/;H/C g.Li.nC 1/;H/
�

:

We first dispose of ˙2. Using positivity of g, the bound (8), and Lemma 3,
we have

˙2 � logN
X

n�N
g.Li.n/;H/� logN

X

h2Z
jahj

ˇ
ˇ
ˇ
ˇ
ˇ

X

n�N
e.Li.n/h/

ˇ
ˇ
ˇ
ˇ
ˇ

� logN

2

4 log 2H

H
N C

X

h¤0

H

jhj2 .N jhj/
1=2 logN

3

5

� .logN/2
�

N=H CN1=2H

�

:

This bound is acceptable for (5) on setting H according to (7).
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Next, we massage ˙1. On writing �h.x/ D 1 � e.h.Li.x C 1/� Li.x//, we see
by partial summation that

˙1 �
X

1�h�H
h�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

N<n�N1
�.n/�h.n/e.hLi.n//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
X

1�h�H
h�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
�h.N1/

X

N<n�N1
�.n/e.hLi.n//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

C
Z N1

N

X

1�h�H
h�1

ˇ
ˇ
ˇ
ˇ
ˇ

@�h.x/

@x

X

N<n�x
�.n/e.hLi.n//

ˇ
ˇ
ˇ
ˇ
ˇ
dx

� 1

logN
max
N2�2N

X

1�h�H

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

N<n�N2
�.n/e.hLi.n//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

Here we used the bounds

�h.x/� h.Li.x C 1/� Li.x//� h

logN

and
@�h.x/

@x
� h

�
1

log.x C 1/ �
1

log.x/

�

� h

N log2 N

for N � x � 2N . We have thus reduced Theorem 1 to the statement that for all
N < N2 � 2N ,

S WD
X

0<h�H

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

N<n�N2�2N
�.n/e.hLi.n//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
� N

logN
: (9)

We establish this fact in the next section.

12.4 Proof of Theorem 1

Our goal in this section is to demonstrate (9), thereby establishing Theorem 1. We
will actually prove more; instead of a log savings, we will save a power:

Theorem 2. For S defined in (9) and any � > 0, we have

S �� N
21=22C�; as N !1:
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Fix u and v, parameters to be chosen later, and let F.s/ DP1�n�v�.n/n
�s and

M.s/ DP1�n�u�.n/n
�s , where � is the Möbius function:

�.n/ D
(
.�1/k if n is the product of k distinct primes

0 if n is not square-free.

The functions F and M are the truncated Dirichlet polynomials of the functions
�� 0=� and 1=�, respectively, where �.s/ is the Riemann zeta function. Notice, for
instance, that

� 0

�
.s/C F.s/ D �

X

n>v

�.n/n�s :

Comparing the Dirichlet coefficients on both sides of the identity

� 0

�
C F D

�
� 0

�
C F

�

.1 � �M/C � 0M C �FM

gives for n > v:

��.n/ D �
X

k`Dn
k>v;`>u

�.k/
X

d j`
d>u

�.d/�
X

k`Dn
`�u

log k �.`/C
X

k`mDn
`�v;m�u

1 ��.`/�.m/; (10)

This formula is originally due to Vaughan [Vau77] (see also [GK91, Lemma 4.12]).
Assume for now that v � N (we will eventually set u and v to be slightly less thanp
N ). Multiply the above identity by e.hLi.n// and sum over n:

X

N<n�N2�2N
�.n/e.hLi.n// D

X

u<`�N2=v

X

N=`�k�N2=`
v<k

�.k/a.`/e.hLi.k`//

C
X

`�u

X

N=`�k�N2=`
�.`/ logk e.hLi.k`//

�
X

r�uv

X

N=r�k�N2=r
b.r/e.hLi.kr//

D S1 C S2 � S3;

where

a.`/ D
X

d j`
d>u

�.d/, and b.r/ D
X

`mDr
`�v;m�u

�.`/�.m/:

It is the bilinear nature of the above identity which we exploit, forgetting the
arithmetic nature of the coefficients a, b,�, and� and just treating them as arbitrary.
The savings then comes from the matrix norm of fe.hLi.kl//gk;`. This is achieved
as follows.
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Notice that ja.`/j is at most d.`/, the number of divisors of `, and similarly
jb.r/j �Pd jr �.d/ D log r , so we have the estimates

X

L<`�2L
ja.`/j2 � L log3 L, and

X

R<r�2R
jb.r/j2 � R log2 R:

It now suffices to show that
P

0<h<H jSi j �� N
21=22C� for each i D 1; 2; 3 by

choosing u and v appropriately. We treat the sums of Si individually in the next three
subsections.

12.4.1 The Sum S2

Let G.x/ WD P
k�x e.hLi.k`//. By Lemma 3, G.x/ � .xh`/

1
2 log.x`/, so by

partial integration, we get

S2 D
X

`�u

�.`/
X

N=`�k�N2=`
log k e.hLi.k`//

�
X

`�u

ˇ
ˇ
ˇ
ˇ
ˇ

Z N2=`

N=`

logx dG.x/

ˇ
ˇ
ˇ
ˇ
ˇ

�
X

`�u

 p
Nh log2 N C

Z N2=`

N=`

1

x

p
xh` log.x`/dx

!

�
p
Nhu log2 N:

Thus,
P

1�h<H jS2j �� N 21=22C� (as desired) on taking u D N5=11 and
recalling (7).

12.4.2 The Sum S1

Rewrite S1 and split it into� log2 N sums of the form:

S1 D
X

N�k`�N2
v<k;u<`

˛.k/ˇ.`/e.hLi.k`//

� log2 N
X

L<`�2L

X

K<k�2K
N<k`�N2

˛.k/ˇ.`/e.hLi.k`//:
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The roles of k and ` are essentially symmetric (allowing ˛ and ˇ to be either �
or a affects only powers of log and not the final estimate), and taking v D u, we
may arrange it so N5=11 � K � N1=2 � L � N6=11.

Now using Lemma 5, we find that:

S1 � log2 N
�
KL5=6h1=6 log2 L log2 K

�

� log6 N
�
N21=22h1=6

�
:

Thus,
P

h jS1j �� N
21=22C� , as desired.

12.4.3 The Sum S3

Recall S3 and break it according to

S3 D
X

r�uv

b.r/
X

N=r�k�N2=r
e.hLi.kr//

D
X

r�u

C
X

u<r�uv

D S4 C S5:
We treat S4 exactly as S2, getting S4 � .Nh/1=2 logN.u log u/, which is clearly

sufficiently small.
For S5, the analysis is identical to that of S1 and gives the same estimate, so we

are done.
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[HB83] D. R. Heath-Brown. The Pjateckiĭ-S̆apiro prime number theorem. J Number Theory,
16:242–266, 1983.

[HB01] D. R. Heath-Brown. Primes represented by x3 C 2y3 . Acta Math., 186(1):1–84, 2001.



298 A.V. Kontorovich

[Lei77] D. Leitmann. The distribution of prime numbers in sequences of the form Œf .n/�. Proc.
London Math. Soc., 35(3):448–462, 1977.
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Chapter 13
Principal Series Representations of Metaplectic
Groups Over Local Fields

Peter J. McNamara

Abstract Let G be a split reductive algebraic group over a non-archimedean
local field. We study the representation theory of a central extension eG of G
by a cyclic group of order n, under some mild tameness assumptions on n. In
particular, we focus our attention on the development of the theory of principal
series representations for eG and its applications to the study of Hecke algebras via
a Satake isomorphism.

Keywords Principal series representations • Metaplectic group • Satake
isomorphism

13.1 Introduction

LetF be a non-archimedean local field with ring of integersOF and assume thatG is
a split reductive group over F that arises by base extension from a smooth reductive
group scheme G overOF. Let n be a positive integer such that 2n is coprime to the
residue characteristic of F and that F � contains 2n distinct 2nth roots of unity. The
object of this chapter is to study the principal series representations of a group eG
which arises as a central extension of (the F -points of) G by the cyclic group �n of
order n. This means that there is an exact sequence of topological groups

1! �n ! eG ! G ! 1

with the kernel �n lying inside the centre of eG.
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This metaplectic group eG is a locally compact, totally disconnected topological
group. Following the example of reductive case, we study the simplest family of
representations, namely those which are induced from the inverse image in eG of
a Borel subgroup of G. Such representations have been studied in the literature
for particular classes of groups. Kazhdan and Patterson [KP84] have a detailed
study in the case of G D GLn, while Savin [Sav04] has considered the case of G
simply laced and simply connected. The double cover of a general simply connected
algebraic group has also been considered by Loke and Savin [LS10]. This chapter,
in developing a theory in greater generality borrows heavily on the results and
arguments from the above-mentioned papers, as often the existing arguments in the
literature can be generalised to the case of an arbitrary reductive group. In another
direction, we mention the work of Weissman [Wei09] where the representation
theory of metaplectic non-split tori is studied.

This chapter is intended to be partly expository, and partly an extension of the
work mentioned above, redone to hold in slightly greater generality. We begin by
giving an overview of the construction of the metaplectic group. In order to carry
out our construction in the desired generality, we are forced to use a significant
amount of the theory of these extensions in the semisimple simply connected case,
after which we proceed to the general reductive case along the lines of the approach
in [FL10].

Our study of the representation theory begins by focusing on the metaplectic
torus and its representations, which govern a large part of the following theory. This
metaplectic torus is no longer abelian, but its irreducible representations are finite
dimensional by a version of the Stone–von Neumann theorem.

Following this, we construct the principal series representations for a metaplectic
group by the familiar method of inducing from a Borel subgroup. The theory
of Jacquet modules and intertwining operators between such representations is
developed in this generality.

We then study the Hecke algebras of anti-genuine compactly supported locally
constant functions invariant on the left and the right with respect to an open compact
subgroup. The two cases of interest to us are when this compact subgroup is taken
to be the maximal compact subgroup K D G.OF/ or an Iwahori subgroup. In
the former case, we present a metaplectic version of the Satake isomorphism in
Theorem 10, while in the Iwahori case, we give a presentation of the corresponding
Hecke algebra in terms of generators and relations, following Savin [Sav88,Sav04].

With the study of the structure of these Hecke algebras, we propose a combina-
torial definition of the dual group to a metaplectic group which extends the notion
of a dual group to a reductive group. This dual group is always a reductive group, so
unlike in the reductive case, a metaplectic group cannot be recovered from its dual
group. We hope that this notion of a dual group will prove to be useful in order to
bring the study of metaplectic groups under the umbrella covered by the Langlands
functoriality conjectures. It is worth noting that the root datum for the dual group
has also appeared in [Lus93, Sect. 2.2.5], [FL10] and [Rei].
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It is believed to be possible to develop this theory while working under the
weaker assumption that F only contains n nth roots of unity, though in order to
achieve this, a large amount of extra complications in formulae is necessary.

The author would like to thank Ben Brubaker and Omer Offen for useful
conversations.

13.2 Preliminaries

As mentioned in the introduction, F will denote a non-archimedean local field, OF

is its valuation ring, and k its residue field. Let q be the cardinality of k. We choose
once and for all a uniformising element$ 2 OF (so OF=$OF D k).

Let G be a split reductive group scheme over OF. Throughout, our practice
will be to use boldface letters to denote the group scheme and roman letters to
denote the corresponding group of F -points. Let B be a Borel subgroup of G with
unipotent radical U, and let T be a maximal split torus contained in B. We let
Y D Hom .Gm;T/ be the group of cocharacters of T.

Our object of study is notG itself but a central extension of eG by the group�n of
nth roots of unity. A construction of eG is given in Sect. 13.3. For any subgroupH of
G, we will use the notation eH to denote the inverse image of H in eG; it is a central
extension of H by �n. The topology on G induces the structure of a topological
group on QG. We will use p to denote the natural projection map eG ! G.

We consistently phrase our results in terms of coroots and cocharacters. Given
a coroot ˛, there is an associated morphism of group schemes '˛ W SL2 �! G.
Accordingly, we define elements of G by w˛ D '˛.. 0 1�1 0 // and e˛.x/ D '˛.. 1 x0 1 //.
We will show in Sect. 13.4 that the Weyl group and unipotent subgroups of G split
in the central extension eG (in the latter case canonically) and use the same notation
for the corresponding lifts to eG. For any x 2 F and � 2 Y , we will denote the
image in T of x under � by x�.

We fix a positive integer nwhich shall be the degree of our cover. The assumption
on n we work under is that 2njq � 1. This implies the condition that F contains 2n
2nth roots of unity that was mentioned in the introduction.

We require some knowledge of the existence and properties of the Hilbert
symbol, which we shall now recap. These results concerning the Hilbert symbol
are well known, a reference for this material may be given by Serre’s book [Ser62].

The Hilbert symbol is a bilinear map .�; �/ W F � � F � ! �n such that

.s; t/.t; s/ D 1 D .t;�t/ D .t; 1 � t/:

Due to our assumptions on n, we can calculate the Hilbert symbol via the equation

.s; t/ D
�

.�1/v.s/v.t/ s
v.t/

t v.s/

� q�1
n
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where the bar indicates to take the image in the residue field and v is the valuation
in F . Particular special cases that we will make liberal use of throughout this chapter
without further comment are the identities .�1; x/ D 1 and .$a;$b/ D 1, both of
which require q � 1 to be divisible by 2n, as opposed to only being divisible by n.

A representation .�; V / of eG is a vector space V equipped with a group
homomorphism � WeG�! Aut .V /. We say that .�; V / is smooth if the stabiliser of
every vector contains an open subgroup, and admissible if for every open compact
subgroupK , the subspace V K of vectors fixed by K is finite dimensional.

Fix a faithful character � W�n �! C�. We will only have cause to consider
representations of QG in which the central �n acts by �. (If �n did not act faithfully
on an irreducible representation, then this representation would factor through a
smaller cover of G.) Such representations will be called genuine.

We always will assume our representations to be genuine, smooth and admissi-
ble, and denote the category of such representations by Rep .eG/.

For any subgroupB of a groupA, we use CA.B/ (respectivelyNA.B/) to denote
the centraliser (respectively normaliser) of B in A.

13.3 Construction of the Extension

This section is devoted to showing the existence of the central extension eG that we
will be studying.

The cocharacter group Y comes equipped with a natural action of the Weyl
groupW: Let B W Y � Y �!Z be a W -invariant symmetric bilinear form on Y such
that Q.˛/ WD B.˛; ˛/=2 2 Z for all coroots ˛. (There will never be any possible
confusion between this use of the symbol B and its use for a Borel subgroup.)
Associated to such a B , we will construct an appropriate central extension.

We begin by recalling the following result of Brylinski and Deligne [BD01].

Proposition 1. Suppose that G is semisimple and simply connected. The category
of central extensions of G by K2 as sheaves on the big Zariski site Spec.F /Zar is
equivalent to the category of integer valued Weyl group invariant quadratic forms
on Y , where the only morphisms in the latter category are the identity morphisms.

Upon taking F -points, this yields a central extension

1! K2.F /! E ! G ! 1:

Since F is assumed to be a local non-archimedean field containing n nth roots of
unity, there is a surjection K2.F /! �n given by the Hilbert symbol and hence we
obtain our central extension

1! �n ! eG ! G ! 1:



13 Representations of Metaplectic Groups 303

In particular, if we consider the case where G D SL2, then we have defined a
map of abelian groups � WZ�!H2.SL2.F /; �n/.

Theorem 1. For any split reductive group G, with our assumptions on F , n and B
as above, there exists a central extension eG of G by �n, such that for each coroot
˛, the pullback of the central extension under �˛ to a central extension of SL2.F /
is incarnated by the cohomology class of �.Q.˛//, and when restricted to a central
extension of T , the commutator Œ�; �� WT � T �!�n is given by

Œx�; y�� D .x; y/B.�;�/

for all x; y 2 F � and �;� 2 Y.

A more explicit form of the commutator formula is possible, and we discuss it
now since it will be of use to us later. Pick a basis e1; : : : ; er of Y . This induces
an explicit isomorphism .F �/r ' T , namely .t1; : : : ; tr / 7! t

e1
1 : : : t

er
r . Via this

isomorphism, suppose that s D .s1; : : : ; sr / and t D .t1; : : : ; tr / are two elements
of T: Then their commutator is given by the formula

Œs; t � D
Y

i;j

.si ; tj /
bij D

Y

i

0

@si ;
Y

j

t
bij
j

1

A ; (1)

where the integers bij are defined in terms of the bilinear form B by

B

0

@
X

i

xi ei ;
X

j

yj ej

1

A D
X

i;j

bij xiyj :

We first discuss Theorem 1 in the case where G is semisimple and simply
connected. In this case, our desired central extensions of G by �n are well known
to exist. Steinberg [Ste62] computed the universal central extension of G, and
Matsumoto [Mat69] computed the kernel of this extension, showing it to be equal
to the group K2.F / except when G is of symplectic type, in which case K2.F /

is canonically a quotient of this kernel. In fact, the adjoint group always acts by
conjugation on the universal central extension, and the group of coinvariants is
always K2.F /. More recently, Brylinski and Deligne [BD01] have generalised this
construction, proving the result we quoted above as Proposition 1.

Theorem 1 is thus known in this semisimple simply connected case. The desired
commutator relation upon restriction to the torus is proved in [BD01, Proposition
3.14].

It is most important to us that this central extension is both derived from
a solution to a universal problem (so that any automorphism of G lifts to an
automorphism of the extension), and that this extension has no automorphisms.

We now discuss Theorem 1 in the case where G D T is a torus. In this case, the
construction of [BD01] does not produce all natural central extensions. For example,
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even in the case of GL1 over a field of Laurent series, the work of [AdCK89]
produces a central extension whose commutator is the Hilbert symbol, whereas
K2-based methods only produce the square of this extension. The author does not
know how to generalise this construction to the case of mixed characteristic, so
we shall proceed in the following ad hoc manner, making use of the assumption
that �2n � F . We will write .�; �/2n for the Hilbert symbol with values in �2n and
reserve .�; �/ for the Hilbert symbol with values in �n.

We can associate to 2B a quadratic form Q and consider the corresponding
central extension

1! �2n ! E ! T ! 1:

This extension may be either constructed from the work of [BD01], or we may
construct it explicitly from the 2-cocycle

�.s; t/ D
Y

i�j
.si ; tj /

qij
2n

whereQ.
P

i yi ei / D
P

i�j qij yiyj .
This central extension has commutator

Œx�; y�� D .x; y/2B.�;�/2n D .x; y/B.�;�/:
We will realise eT as an index 2 subgroup of E .

Since the commutator takes values only in the subgroup �n of �2n, when we
quotient out by �n, we obtain a central extension

1! �2 ! E 0 ! T ! 1;

where the groupE 0 is abelian.
The central extension splits over T.OF/ since the Hilbert symbol is trivial on

O�
F �O�

F .
Now choose a splitting of T.OF/ and quotient E 0 by its image. We arrive at a

central extension
1! �n ! E 00 ! T=T.OF/! 1:

This is a short exact sequence of abelian groups with the last term free. Hence, it
splits, so we get a surjection E ! �2. Taking the kernel of this surjection as eT , we
get our desired central extension of T by �n.

We now complete the proof of Theorem 1 for an arbitrary split reductive G by a
reduction to the semisimple simply connected case and the torus case. This argument
follows the proof of [FL10, Proposition 1]. For our purposes here, it will be most
convenient for us to reinterpret a central extension of a group H by a group A as a
group morphism H ! BA, where BA is the (Milnor) classifying space of A. We
caution the reader that f WH �!BA is not a homomorphism of topological groups
but instead is only a group homomorphism up to homotopy. For example, the two
mapsH �H ! BA given by .f �f /ım andmıf , wherem is the multiplication,
are not equal but are homotopic.
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We briefly indicate how this translation works. By definition, a morphism H !
BA is an A-torsor overH . Since A is abelian, the multiplication map fromA�A to
A is a group homomorphism, and this induces a group structure on BA. The extra
structure of a group homomorphism on the mapH ! BA is what yields the datum
of a group structure on the total space of the torsor represented by this map. It is this
group structure on this total space which is the central extension of H by A.

Let Gsc be the simply connected cover of the derived group of G, and let T sc

be the inverse image of T in Gsc. Suppose that we have two central extensions
Gsc ! B�n and T ! B�n which are isomorphic upon restriction to T sc. Suppose
furthermore that the extensionGsc ! B�n is invariant under the conjugation action
of T onGsc and the trivial T -action on �n. To this set of data, we construct a central
extension G ! B�n.

Consider the semidirect productGscÌT where T is acting onGsc by conjugation.
The datum we have of group morphisms T ! B�n and Gsc ! B�n with the latter
being T -equivariant is equivalent to that of a group morphism Gsc Ì T ! B�n.

Now consider the multiplication map from Gsc Ì T to G. This is a surjective
group homomorphism with kernel isomorphic to T sc embedded inside Gsc Ì T via
t 7! .t; t�1/.

If we assume that the restrictions of Gsc ! B�n and T ! B�n to T sc are
assumed isomorphic, the restriction ofGsc ÌT ! B�n is a trivial central extension.
Choosing a trivialisation, we may thus factor Gsc Ì T ! B�n through the quotient
G of Gsc Ì T by T sc and thus we get our desired extension G ! B�n.

Now from our knowledge of the semisimple simply connected case and the torus
case, associated to B , we may construct our desired central extensions of Gsc and
T by �n. It remains to show that these two extensions agree upon restriction to T sc

and that Gsc ! B�n is invariant under the conjugation action of T .
The former property may be seen by an analogous argument to the one appearing

in the proof of the torus case: both extensions split over Tsc.OF/ and have the same
commutator, so their difference in H2.T; �n/ is abelian, splitting over Tsc.OF/,
hence trivial. The latter property holds since the extension by K2 is a canonically
constructed object that has no automorphisms. Consequently, the action of T onGsc

by conjugation extends to an action on the cover eGsc that is trivial when restricted
to the central �n. This completes our proof of Theorem 1.

If we restrict ourselves to the case where SL2, then we can be very explicit
about our extension. Following Kubota [Kub69], we have the following formula for
� 2 H2.SL2.F /; �n/ such that multiplication in eG is given by .g1; �1/.g2; �2/ D
.g1g2; �1�2�.g1; g2//:

�.g; h/ D
�
x.gh/

x.g/
;
x.gh/

x.h/

�Q.˛/
; (2)

where for g D . a bc d / 2 SL2.F /, we define x.g/ D c unless c D 0 in which case
x.g/ D d . In this formula, ˛ is a simple coroot.
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13.4 Splitting Properties

A subgroup H of G is said to be split by the central extension if we have an
isomorphism p�1.H/ ' �n � H that commutes with the projection maps to H .
In this section, we shall show that the unipotent subgroups and the maximal
compact subgroupK are split in eG. We also discuss splittings of discrete subgroups
corresponding to the coroot lattice and the Weyl group.

Proposition 2. Any unipotent subgroup U of G is split canonically by the central
extension eG.

Proof. This result is proved in greater generality in [MW94, Appendix 1]. Since we
are concerned only with the case where .n; q/ D 1, a simple proof can be given.
The assumptions on n ensure that the map U ! U given by u 7! un is bijective. If
u 2 U , write u D un1 and let Qu1 be any lift of u1 to eG. Then define s.u/ D . Qu1/n. This
is well defined, invariant under conjugation and is the proposed section determining
the splitting.

So it suffices to show that s is a group homomorphism. For U abelian, this is
trivial. In general, U is solvable, write U 0 for the quotient group U=ŒU;U �, and
by induction, we may assume that s is a homomorphism when restricted to ŒU; U �.
We now form the quotient eU 0 D eU=s.ŒU; U �/. Suppose u1; u2 2 U . Form � D
s.u1/s.u2/s.u1u2/�1. A priori, we have � 2 �n. Projecting into eU 0 and using the
abelian case of the proposition imply that � 2 s.ŒU; U �/ and thus we have � D 1 so
s is a homomorphism as desired. ut

For the corresponding result for the maximal compact subgroup, the splitting
is no longer unique, and in order for the splitting to exist, it is essential that n is
coprime to the residue characteristic.

Theorem 2. [BD01, Sect. 10.7], [Moo68, Lemma 11.3] The extension eG of G
splits over the maximal compact subgroupK D G.OF/.

Proof. Let K1 denote the kernel of the surjection G.OF/ ! G.k/. Then K1 is a
pro-p group, hence has trivial cohomology with coefficients in �n. By the Lyndon–
Hochschild–Serre spectral sequence, we thus have an isomorphism H2.K;�n/ '
H2.G.k/; �n/. Let M be the normaliser of T in G. Since the index of M.k/ in
G.k/ is coprime to n, we know that the map H2.G.k/; �n/ ! H2.M.k/; �n/ is
injective. T.k/ can be considered as the k points of the group scheme of (q � 1)th
roots of unity in T, which is etale, so lifts uniquely into T.OF/. The group generated
by this lift together with the elements w˛ 2 K form a lift of M.k/ into K . Thus,
it suffices to show that our central extension is trivial when restricted to this lift of
M.k/ in K . However, we have explicit knowledge of the central extension in terms
of a 2-cocycle onM thanks to [Mat69, Lemme 6.5] (the non-simply connected case
works similarly), allowing us to complete the proof in this manner. ut

When needed, we will denote by �� the lifting of K to eG. This lifting �� is
not unique, being well defined only up only to a homomorphism from K to �n.
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In [KP84], a canonical choice is made in the case of G D GLn; however, this
failure of uniqueness shall not be of concern to us.

Just as in the case ofG D SL2 when we were able to provide an explicit formula
for the cocycle � , again in this case we are able to provide an explicit formula for
the splitting �, following Kubota [Kub69]. Writing s for the section g 7! .g; 1/, and
�� as ��.k/ D s.k/�.k/, we have

�

�
a b

c d

�

D
(
.c; d /Q.˛/ if 0 < jcj < 1
1 otherwise,

(3)

for all . a bc d / 2 SL2.OF/, where again ˛ is the simple coroot.
The group Y , considered as a subgroup of T by the injection � 7! $�, is

trivially split in our central extension since it is a free abelian group whose cover is
abelian (here we require the fact that �2n � F to conclude that the Hilbert symbols
appearing in the commutator vanish).

Let W0 be the subgroup of G generated by all elements of the form w˛ for
˛ a coroot. This group W0 is a finite cover of the Weyl group W . It is split in
our extension since it is a subgroup of K . Let Wa;0 be the corresponding cover of
the affine Weyl group, that is, the group generated by Y and W0. We can see this
subgroup ofG is also split in our extension by following through the construction of
[Mat69, Lemme 6.5], noting that the Weyl group action on Y preserves its splitting.
For any w 2 Wa;0, we will identify w with its image under this splitting in eG, and
we will denote this splitting by s when necessary.

13.5 Heisenberg Group Representations

A Heisenberg group is defined to be any two-step nilpotent subgroup, that is,H is a
Heisenberg group if its commutator subgroup is central. The metaplectic torus eT is
an example of such a group, since the commutator subgroup ŒeT ;eT � is contained in
the central �n. The representation theory of Heisenberg groups is well understood;
in particular, we will make use of the following version of the Stone–von Neumann
theorem, compare, for example, with [Wei09, Theorem 3.1].

Theorem 3. Let H be a Heisenberg group with centre Z such that H=Z is finite
and let � be a character of Z. Suppose that ker.�/ \ ŒH;H� D f1g. Then up
to isomorphism, there is a unique irreducible representation of H with central
character �. It can be constructed as follows: Let A be a maximal abelian subgroup
of H and let �0 be any extension of � to A. Then inducing this representation from
A to H produces the desired representation.

Proof. Let � be an irreducible H -representation with central character �. Since
H=Z is finite, � is finite dimensional. Considering � as an A-representation, this
implies that it has a one-dimensional quotient �0 which must be an extension of the
character � to A.
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By Frobenius reciprocity, there is thus a non-trivial H -morphism from � to
IndHA �

0. To conclude that � is isomorphic to IndHA �
0, we need to prove that this

induced representation is irreducible.
Since IndHA �

0 is generated by a non-zero function supported on A, to prove
irreducibility, it suffices to show that any H -invariant subspace contains such a
function. So suppose f ¤ 0 is in an H -invariant subspace M . Then by translating
by an element ofH , we may assume that the support of f containsA. Now suppose
that there exists h 2 H n A such that f .h/ ¤ 0. Then since A is a maximal
abelian subgroup of H , there exists a 2 A such that Œh; a� ¤ 1. Now consider
.a � �.Œa; h�/�0.a//f 2M . It has strictly smaller support than f (since it vanishes
at h) and is non-zero on A. So continual application of this method will, by finite
dimensionality, produce a non-zero function inM supported onA and thus we have
proved the irreducibility of IndHA �

0.
To finish the proof of the theorem, we need to show that if we have two different

extensions �1 and �2 of � to A, then after inducing to H , we get isomorphic
representations. Given two such extensions, �1��1

2 is a character of A=Z, and we
extend it to a character ofH=Z. Our assumption that ker.�/\ŒH;H� D f1g implies
that the pairing h�; �i WH=Z � H=Z �! C� given by hh1; h2i D �.Œh1; h2�/ is
nondegenerate and hence that every character ofH=Z is of the form h 7! �.Œh; x�/

for some x 2 H . Hence, there exists x 2 H such that �1��1
2 .a/ D �.Œa; x�/ for

all a 2 A. This implies that the characters �1 and �2 conjugate by x under the
conjugation action of H on A. Hence, when induced to representations of H , the
induced representations are isomorphic. ut
Corollary 1. Genuine representations of eT are parametrised by characters of
Z.eT /.

Proof. eT is a Heisenberg group so we only need to check that the conditions of the
above theorem are satisfied. The condition that eT =Z.eT / is finite is satisfied since
T n (the subgroup of nth powers in T ) is central and .F �/n is of finite index in F �.
The condition that ŒH;H�\ker.�/ D f1g is satisfied for genuine characters �, since
ŒeT ;eT � � �n and � is faithful on �n. Hence, we may apply Theorem 3 to obtain our
desired corollary. ut

We now produce explicitly a choice of maximal abelian subgroup of eT that we
can use later on for our convenience.

Lemma 1. The group CeT .eT \K/ is a maximal abelian subgroup of eT .

Proof. Since eT \ K is abelian, it is clear that any maximal abelian subgroup of eT
containingeT \K is contained in CeT .eT \K/. So it suffices to prove that CeT .eT \K/
is abelian.

Recall the basis e1; : : : ; er of Y which was used to introduce coordinates on
T and the coefficients bij of the bilinear form B introduced at the beginning of
Sect. 13.3. We need to make use of the equation (1), which we reproduce here for
convenience:
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Œs; t � D
Y

i;j

.si ; tj /
bij D

Y

i

0

@si ;
Y

j

t
bij
j

1

A : (4)

Thus, the condition for t to be in CeT .eT \K/ is that
Q
j t

bij
j has valuation divisible

by n for all i . Now suppose that s and t are elements of CeT .eT \ K/. Let xi and
yi be the valuations of si and ti , respectively. Then, we have that .si ; tj / is equal

to ..�1/xiyj syji =txij /
q�1
n after reduction modulo $ . Hence, we may compute the

commutator

Œs; t � D
0

@
Y

i;j

.�1/xiyj
Y

i

s

P
j yj bij

i

Y

j

t
P
i xi bij

j

1

A

q�1
n

:

Since we are assuming that 2njq�1, the power of �1 which appears in this product
is even. By assumption on s and t , all exponents of si and tj are divisible by n. So
the whole product is a q � 1-th power, so after reduction modulo $ becomes 1.
Hence, s and t commute, so CeT .eT \K/ is abelian, as required. ut

We will use H to denote this maximal abelian subgroup CeT .eT \K/.

13.6 Principal Series Representations

We begin by studying the class of representations that will be our main object of
study. Let .�; V / be a genuine, smooth admissible representation of eT . The group
eB contains U as a normal subgroup with quotient naturally isomorphic to eT . Via
this quotient, we consider .�; V / as a representation of eB on which U acts trivially.

Definition 1. For .�; V / a smooth representation of eT , we define the (normalised)
induced representation I.V / as follows:

The space of I.V / is the space of all locally constant functions f WeG�!V such
that

f .bg/ D ı1=2.b/�.b/f .g/
for all b 2 eB and g 2 eG where ı is the modular quasicharacter of eB and we are
considering .�; V / as a representation of eB . The action of eG on I.V / is given by
right translation. In this way, we define an induction functor

I W Rep .eT /�! Rep .eG/:

Suppose now that � is a genuine character of Z.eT /. We denote by i.�/ D
.��; V�/ a representative of the corresponding isomorphism class of irreducible
representations of eT with central character �. By the considerations in the above
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section, i.�/ is finite dimensional. We will write I.�/ for the corresponding induced
representation I.i.�// of eG. Such representations I.�/ will be called principal
series representations.

We now define a family of principal series representations, called unramified,
that will be of principal interest to us.

Definition 2. A genuine character � of Z.eT / is said to be unramified if it has an
extension to H that is trivial on eT \ K . We use the same adjective unramified for
the corresponding representation I.�/ of eG.

Lemma 2. An unramified principal series representation I.�/ has a one-
dimensional space of K-fixed vectors.

Proof. Suppose f 2 I.�/K . Let g D f .1/ 2 i.�/. By the Iwasawa decomposition
G D UAK , we may write any g 2 eG as g D uak with u 2 U , a 2 eT and k 2 K .
Then we have f .g/ D f .uak/ D ��.a/g.

The element a is well defined up to right multiplication by an element 	 2 eT \K .
This induces (the only) compatibility condition, we thus require that f .g/ D
��.a	/g D ��.a/��.	/g. Thus, we have that f 7! f .1/ is an isomorphism from

I.�/K to i.�/eT\K .
If g 2 i.�/eT\K , then for all t 2 eT and 	 2 eT \K we have

g.t/ D g.t	/ D Œt; 	�g.	t/ D Œt; 	��.	/g.t/:

Since � is unramified, �.	/ D 1, so either Œt; 	� D 1 or g.t/ D 0. The function
g 2 i.�/ is determined by its restriction to a set of coset representatives of HneT .
By the definition of H we know that Œt; 	� D 1 for all 	 2 eT \ K if and only if
t 2 H . Thus, we have shown that i.�/eT\K is one dimensional, proving the lemma.

ut
A K-fixed vector in such a representation will be called spherical.

We now define an action of the Weyl groupW on principal series representations.
The group fM acts on eT by conjugation, and hence acts on Rep .eT /. Explicitly,

write cm WeT �! eT for the operation of conjugation by m 2 fM on eT . Then for
.�; V /, the action of m 2 fM is defined by .�; V /m D .�m; V m/ where V m D V

and �m is the composition � ı cm WeT �! Aut .V /.
Unfortunately, when we restrict this action to eT , we do not obtain the identity.

However, we may still define an action of the Weyl group on Rep .eT /. Recall from
the discussion at the end of Sect. 13.4, that the groupW0 lifts tofM . In this realisation
of W0, the kernel of the surjection W0 ! W lies in Z.eT /. Since the conjugation
action of Z.eT / is trivial, we are able to define an action of W on Rep .eT / by first
restricting the action of fM to an action of W0, which then induces a well-defined
action of W on Rep .eT /.

In a similar but simpler manner, one may define an action of W on the space
of characters of Z.eT /. These two actions are compatible in the sense that i.�w/ D
i.�/w for all characters � and w 2 W .
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To proceed, we require the theory of the Jacquet functor, and the results regarding
the composition of the Jacquet functor with the induction functor I. These results
are all contained in [BZ77].

Definition 3. The Jacquet functor J from Rep .eG/ to Rep .eT / is defined to be the
functor of U -coinvariants.

Explicitly, for an object V in Rep .eG/, J.V / is defined to be the largest quotient
of V on which U acts trivially, that is, we quotient out by the submodule generated
by all elements of the form �.u/v � v with u 2 U and v 2 V . Since eT normalises
U (as U has a unique splitting, conjugation by eT must preserve this splitting), the
action ofeT on V induces an action on J.V /, so the image of J is indeed in Rep .eT /.

The work in [BZ77] is in sufficient generality to cover our circumstances. In
particular, we have the following two propositions.

Proposition 3. [BZ77, Proposition 1.9(a)] The Jacquet functor is exact.

Proposition 4. [BZ77, Proposition 1.9(b)] The Jacquet functor J is left adjoint to
the induction functor I . That is, there exists a natural isomorphism

HomeT .J.V /;W / Š HomeG.V; I.W //:

The main result of [BZ77] is their Theorem 5.2, from which we derive the
following important corollary.

Corollary 2. The composition factors of the Jacquet module J.I.�// are given by
i.�w/ as w runs over W .

Proof. The derivation of this corollary follows in exactly the same manner as in
the reductive case. In the notation of Bernstein and Zelevinsky [BZ77], we apply
their Theorem 5.2 with G D eG, Q D P D eB , N D M D eT , V D U D U and
 D 
 D 1. ut

We say that a character � of Z.eT / is regular if �w ¤ � for all w ¤ 1.

Proposition 5. If � is regular, then J.I.�// is semisimple.

Proof. Decompose the eT -module J.I.�// into Z.eT /-eigenspaces—this must be
a semisimple decomposition since we are dealing with commuting operators on a
finite-dimensional space. As � is assumed to be regular, these eigenvalues of Z.eT /
are all distinct. This shows that the filtration from Corollary 2 splits as eT -modules,
so we are done. ut

13.7 Intertwining Operators

We start with these results on the spaces of morphisms between various principal
series representations.
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Theorem 4. 1. For two characters �1 and �2 of Z.eT /, we have

HomeG.I.�1/; I.�2// D 0

unless there exists w 2 W such that �2 D �w
1 .

2. Suppose that � is regular. Then for all w 2 W we have

dim HomeG.I.�/; I.�
w// D 1:

Proof. Since J is left adjoint to I , we have

HomeG.I.�1/; I.�2// D HomeT .J.I.�1//; i.�2//:

Our knowledge of the description of the composition series of J.I.�1// from
Corollary 2 and Proposition 5 completes the proof. ut

This section will be dedicated to the explicit construction and analysis of these
spaces HomeG.I.�/; I.�

w//. Elements in these spaces are referred to as intertwining
operators.

Suppose s 2 C. Associated to s is a one-dimensional representation ıs of eB
given by raising the modular quasicharacter ı to the sth power. Accordingly, given
any representation V of eT , we define a family Is of representations of eG by

Is.V / D I.V ˝ ıs/:

For each V 2 Rep .eT /, this family of representations is a trivialisable vector
bundle over C. We choose a trivialisation as follows:

To each f 2 I.V / D I0.V / and s 2 C , we define the element fs 2 Is.V / by

fs.bk/ D ı.b/sf .bk/ (5)

for any b 2 eB and k 2 K . It is easily checked that this is well defined, the claim
fs 2 Is.V / is true and that s 7! fs does define a section.

Our strategy for constructing intertwining operators is as follows: We shall first
construct intertwining operators via an integral representation that is only absolutely
convergent on a cone in the set of all possible characters �. We then make use of
the trivialising section we have just constructed to meromorphically continue these
intertwining operators to all I.�/.

For any finite-dimensional eT representation .�; V /, and any coroot ˛, we define
the ˛-radius r˛.V / to be the maximum absolute value of an eigenvalue of the
operator �.$˛/ on V . This turns out to be independent of the choice of uniformiser
$ since T .OF/ is compact.

For w 2 W and such a finite-dimensional representation .�; V /, the intertwining
operator Tw W I.V /�!I.V w/ is defined by the integral
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.Twf /.g/ D
Z

Uw

f .w�1ug/du: (6)

whenever this is absolutely convergent.
To check that Tw does indeed map I.V / into I.V w/ is a simple calculation. Note

that the underlying vector spaces of V and V w are equal as per the definition of the
W -action on such representations in Sect. 13.6.

Lemma 3. Suppose that w1;w2 2 W are such that `.w1w2/ D `.w1/C`.w2/. Then
Tw1w2 D Tw1Tw2 , whenever their defining integrals are absolutely convergent.

Proof. This result is a simple application of Fubini’s theorem. ut
Let us now restrict ourselves to a study of the case where w D w˛ is the simple

reflection corresponding to the simple coroot ˛.

Theorem 5. The defining integral (6) for the intertwining operator Tw˛ is abso-
lutely convergent for r˛.V / < 1.

Proof. In SL2, we have the following identity:

�
0 �1
1 0

��
1 x

0 1

�

D
�
1=x �1
0 x

��
1 0

1=x 1

�

:

We apply the morphism �˛ to interpret this as an identity in G. This equation lifts
to eG as the relevant Kubota cocycles are trivial. We are thus able to write

.Tw˛f /.g/ D
Z

F

f .w�1
˛ e˛.x/g/dx

D
Z

F

f .e˛.�1=x/x˛e�˛.1=x/g/dx

D
Z

F

ı1=2.x˛/�.x˛/f .e�˛.1=x/g/dx:

In the above, e� .x/ is the canonical lift from G to eG of the one-dimensional
unipotent subgroup corresponding to the coroot � , as defined in Sect. 13.2.

Since f is locally constant, there exists a positive numberN such that for jxj 	
N we have f .e�˛.1=x/g/ D f .g/. Now we shall break up our integral over F into
a sum of two integrals, the first over jxj < N and the second over jxj 	 N . The
first integral is an integral over a compact set so is automatically convergent. We
will now study the second integral in greater detail.

Note that $n˛ is central in eT . We may assume without loss of generality that
f .g/ 2 V is an eigenvector of �.$n˛/ with corresponding eigenvalue .q�1x˛/n.
Then our second integral becomes
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Z

jxj	N
.ı1=2�/.x˛/f .e�˛.1=x/g/dx

D
�Z

m�v.x/<mCn
.ı1=2�/.x˛/f .g/

� 1X

iD0
xin
˛

!

: (7)

This is absolutely convergent if and only if jx˛j < 1, proving the theorem. ut
For ease of exposition, we shall now restrict ourselves to the case of intertwining

operators from I.�/ to I.�w/. Under this restriction, the complex numbers x˛ are
essentially well defined, in that different choices of eigenvectors will only change
them by an nth root of unity. We may pick any such eigenvector to define the x˛ ,
any subsequent formulae will be independent of such choices.

Define a renormalised version of the intertwining operator by

eT w D
Y

˛>0
w˛<0

.1 � xna/Tw: (8)

Lemma 4. The collection of renormalised intertwining operators eT w˛ satisfies the
braid relations.

Proof. Since we know that the unnormalised intertwining operators Tw˛ satisfy
the braid relations, to check this lemma, it suffices to check that c.w1w2; x/ D
c.w1;w2x/c.w2; x/ where c.w; x/ is the renormalising coefficient in (8). This is a
triviality. ut

We are now in a position to analytically continue the intertwining operators eT w.
If � is the eigenvalue of �.$n˛/ on V , then �q�s is the eigenvalue of �.$n˛/

on V ˝ ıs . Then by (7), .eT w˛fs/.g/ is a polynomial in �q�s , so in particular is a
holomorphic function in s. Recall that the section fs is as defined in (5).

For <.s/ sufficiently large, the defining integral for eT w˛fs is absolutely conver-
gent. Thus we can define eT w˛fs for all s 2 C by analytic continuation. In particular,
for all V , we have now defined

eT w˛ W I.V /�!I.V w˛ /

and since the maps eT w˛ satisfy the braid relations, we have also defined

eT w W I.V /�!I.V w/

for all w 2 W .
Now let us suppose that V D i.�/ is an irreducible unramified representation of

eT . By Lemma 2, I.V / contains a K-fixed vector. Let �K be such a vector for I.V /
and �w

K be such a vector for I.V w/. We normalise these spherical functions such that
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.�K.1eG//.1eT / D 1. The spherical vectors �K and �w
K are related by eT w in a manner

given by the following theorem. The integer n˛ is defined to be n
.n;Q.˛//

where the
notation .�; �/ here is that of the greatest common divisor.

Theorem 6. [McN11, Theorem 6.5]

eT w�K D
Y

˛2˚w

�
1 � q�1xn˛˛

� 1 � xn˛
1 � xn˛˛ �

w
K:

Proof. The proof in [McN11] is for the case ofG semisimple and simply connected,
so we need to show how to reduce to this case. First, we note that Tw�K is a priori
K-fixed, so by Lemma 2, it suffices to calculate the integral

I� D
�Z

U

�K.w
�1u/du

�

.1eT /:

Consider the natural map from the corresponding simply connected semisimple
groupGsc

ss toG. We can pullback the central extension eG ofG to a central extension
of Gsc

ss and thus consider the corresponding group H sc
ss . The character � of H can

be extended to a character �0 of H sc
ss . In calculating I�, only group elements in

the image of Gsc
ss occur and we see that the calculation is the same as for the

corresponding integral I�0 . In this way, this theorem is reduced to the semisimple,
simply connected case. ut
Corollary 3. For generic � (so on a Zariski open subset of such characters), the
intertwining operator eT w induces an isomorphism I.�/ ' I.�w/.

Proof. The functor eT w restricts to a morphism from I.�/K to I.�w/K . These two
spaces are one dimensional, so we have an isomorphism as long as eT w�K is non-
zero. The Corollary now follows immediately from Theorem 6. ut

At this point, we have developed the theory as far as is necessary for the
purposes of the Satake isomorphism. Following the works of Casselman [Cas],
Kazhdan–Patterson [KP84] and Rodier [Rod81], one could push this line of thought
further to produce stronger results on the composition series of principal series
representations, though we shall not do this here.

13.8 Whittaker Functions

In this section, we consider .�; V / a spherical genuine admissible representation of
eG. Let  be a character of U such that the restriction of  to each one-dimensional
subgroup U˛ for ˛ a simple coroot is non-trivial.

Let W denote the space of smooth functions f WeG �! C such that f .�ng/ D
� .n/f .g/ for � 2 �r and n 2 N . Then a Whittaker model for .�; V / is defined
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to be a eG-morphism from V to W . A Whittaker function is any non-zero spherical
vector in a Whittaker model. It thus is a functionW� WeG�!C satisfying

W�.�ngk/ D � .n/W�.g/ for � 2 �r; n 2 N; g 2 G; k 2 K: (9)

Define the twisted Jacquet functor J from Rep .eG/ to VectC by J .V / D
V=V .U /, where V .U / is the subspace of V generated by the vectors �.u/v �
 .u/v for all u 2 U and v 2 V . There is a natural bijection between J .V / and the
vector space of Whittaker models of V .

Theorem 5.2 of [BZ77] can be used to compute the dimension of the space of
Whittaker functions in the same manner as it was used to compute the composition
series of a Jacquet module of an induced representation.

Theorem 7. The dimension of the space of Whittaker functions for a principal
series representation I.�/ is jeT =H j.

We apply [BZ77, Theorem 5.2] with G D eG, P D eB , M D eT , U D Q D V D
U , N D 1, 
 D 1 and  non-trivial as above. Of the glued functors that appear in
the composition series of J .I.�// via [BZ77, Theorem 5.2], only one is non-zero,
and it is the forgetful functor from Rep .eT / to VectC.

If f is a spherical vector in I.�/, then we can construct a Whittaker function as
the integral

W.g/ D
Z

U

f .w0ug/ .u/du:

Technically speaking, this is a i.�/-valued function, so to obtain a C-valued
Whittaker function, we should compose with a functional on i.�/. Such a choice
is made in [McN11] where a complex-valued Whittaker function is evaluated. In
fact, in [McN11], a basis for the space of Whittaker functions is computed together
with the production of an explicit formula for W.t/ with t 2 eT in the case where
G D SLn. Note that by (9) and the Iwasawa decomposition, W is completely
determined by its restriction to eT . There is an alternative method of Chinta and
Offen [CO] for calculating these metaplectic Whittaker functions. Their method
more closely follows the lines of the original work of Casselman and Shalika
[CS80], again working in type A.

13.9 The Spherical Hecke Algebra

We call a complex-valued function f on eG anti-genuine if, for all � 2 �n and
g 2 eG, we have f .�g/ D ��1f .g/. This notion is of use to us since we are only
studying genuine representations of eG. If we decompose the algebra C1

c .
eG/ of

smooth compactly supported functions on eG into a direct sum of eigenspaces under
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the action of �n, then only the anti-genuine functions act non-trivially on a genuine
representation of eG. We now define and study a version of the spherical Hecke
algebra for the metaplectic group.

ConsideringK as a subgroup of eG via ��, let H.eG;K/ denote the algebra ofK-
bi-invariant anti-genuine compactly supported smooth (locally constant) complex-
valued functions. In other words, a compactly supported smooth function f WeG�!
C is in H.eG;K/ if and only if f .�k1gk2/ D ��1f .g/ for all � 2 �r , g 2 G and
k1; k2 2 K . The algebra structure is given by convolution; for f1; f2 2 H.eG;K/,
we define

.f1f2/.g/ D
Z

eG
f1.h/f2.h

�1g/dh;

where the Haar measure on eG is normalised such thatK � �n has measure 1.
We have the following two results about the structure of H.eG;K/. In the case of

G D GLn, these appear in [KP86].

Theorem 8. H.eG;K/ is commutative.

We will not prove this in this section, but instead note that it follows immediately
from the Satake isomorphism, Theorem 10.

Theorem 9. The support of H.eG;K/ is given by �nKHK .

Proof. The Cartan decomposition G D KTK implies that every .K;K/ double
coset ofG contains a representative of the form$�, and this decomposition clearly
lifts to eG. So it suffices to find the set of � for which the double coset �nK$�K

supports a function in H.eG;K/.
Fix �, and letK� denote the subgroupK\$��K$� ofG. We define a function

�� WK� �! �n as follows. For k 2 K� there exists a unique k0 2 K such that
k$� D $�k0. We lift this identity into eG using our choice of splitting of K , and
define ��.k/ by k$� D �.k/$�k0.

It is straightforward to check that �� is a group homomorphism. Furthermore,
there is a function in H.eG;K/ supported on �nK$

�K if and only if the
homomorphism �� is trivial.

The normal subgroupK1\K� ofK� is a pro-p group; hence, the homomorphism
�� is trivial when restricted to this subgroup.

There is a canonicial isomorphism K�=.K1 \ K�/ ' P.k/ for some parabolic
subgroup P of G. The above shows that �� factors to a homomorphism from P.k/
to �n. The group P.k/ is generated by T.k/ and unipotent elements. Since ��

is necessarily trivial on any unipotent element, it is completely determined by its
restriction to T.k/.

We know that the restriction of �� to T.OF/ is trivial if and only if $� 2 H , by
the definition of H . This completes our proof. ut
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13.10 Satake Isomorphism

The approach we shall take in presenting the Satake isomorphism was learnt by the
author from a lecture of Kazhdan in the reductive case, and differs from that which
is generally considered as, for example, in [Gro98]. First, we define a free abelian
group�which shall be of fundamental importance for the remainder of this chapter.
Let

� D f� 2 Y j s.$�/ 2 H g D fx 2 Y j B.x; y/ 2 nZ 8 y 2 Y g:
The equivalence of the two given presentations is a consequence of the commutator
formula (1). This group� is also naturally isomorphic to the abelian groupH=.eT \
K � �n/, and carries an action of the Weyl group, inherited from the action of
W on T .

The aim of this section is to prove the following.

Theorem 10 (Satake Isomorphism). Let CŒ�� denote the group algebra of �.
Then there is a natural isomorphism between the spherical Hecke algebra H.eG;K/
and the W -invariant subalgebra, CŒ��W .

Let Z� denote the complex affine variety Hom .�;C�/ and �� be the ring of
regular functions onZ�. We shall first define a homomorphism fromH.eG;K/ to��.

To any � 2 Z�, there is an associated genuine unramified principal series
representation I.�/ D .��; V�/ of eG. By Lemma 2, this representation has the
property that dimV K

� D 1, and thus V K
� is a one-dimensional representation

of H.eG;K/. We again use �� WH.eG;K/ �! End .V K
� / Š C to denote this

representation.
From this representation, we obtain a ring homomorphism S WH.eG;K/�!��

given by Sf .�/ D ��.f /. This is the Satake map. A priori, the image of this map
lies in the set of functions from Z� to C, though it will follow from the results
proven below that the image lies in the ring of regular functions on Z�.

For any abelian group �, there is a canonical isomorphism between �� and the
group ring of � (which is actually the same as given above, if we can take eG D �

in the definition of the Satake map).
Let us identify �� with CŒ�� via this isomorphism. Using this, we will from now

assume that S has image in CŒ��.

Lemma 5. We have the following formula for the Satake map S WH.eG;K/ �!
CŒ��:

.Sf /.�/ D ı1=2.$�/

Z

U

f .$�u/du: (10)

Proof. We begin by unfolding of the integral definition of the action of f on the
spherical vector �K . From this we get
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��.f /�K D
Z

eG
f .g/��.g/�Kdg

D
Z

K

Z

eB
f .bk/��.bk/�KdLb dk

D
Z

eB
f .b/��.b/�KdLb

D
Z

eT

Z

U

f .tu/��.tu/�Kdu dt

D
Z

eT

�

ı1=2.t/

Z

U

f .tu/du

�

.ı�1=2��/.t/�Kdt:

It was shown in the proof of Lemma 2 that for t 2 eT , .ı�1=2��/.t/�K D �.t/�K if
t 2 H and is zero otherwise. Thus, we may restrict our integral overeT to an integral
overH . Since the integrand is invariant undereT \K ��n, we obtain the following
sum over�:

��.f / D
X

�2�
ı1=2.$�/

Z

U

f .$�u/du�.$�/:

Under the isomorphism �� ' CŒ��, this gives us (10) as required. ut
Lemma 6. The image of the Satake map lies in � W

� .

Proof. By Corollary 3, we have, for generic �, an isomorphism between I.�/K

and I.�w/K . Thus, the image of the Satake map is W -invariant. To complete the
proof, it remains to show that the image of S consists of regular functions on Z�
(or equivalently that .Sf /.�/ is non-zero for only finitely many �). For this we
use the integral expression from Lemma 5. To see this, we need to remark that any
f 2 H.eG;K/ is compactly supported and used [BT72, Proposition 4.4.4(i)]. ut
Theorem 11. The Satake map S gives an isomorphism between H.eG;K/ and
CŒ��W .

Proof. For dominant � 2 �, we define basis elements c� and d� of H.eG;K/ and
CŒ��W , respectively.

Let c� be the function in H.eG;K/ that is supported on �nK$�K and takes the
value 1 at s.$�/. That the set of all such c� form a basis of H.eG;K/ is known from
Theorem 9.

Let d� 2 CŒ��W be the characteristic function of the orbitW �.
Write Sc� D P

� a��d�. We shall show that a�� ¤ 0 and that a�� D 0 unless
� � �, which suffices to prove that S is bijective. Since we already know that S is
a homomorphism, this is sufficient to prove our theorem.

To show that a�� ¤ 0, we must calculate Sc�.�/. Notice that for u 2 U , we have
$�u 2 K$�K if and only if u 2 K so in the calculation of the integral (10), the
integrand is non-zero only onK \U , where it takes the value 1; hence, the integral
is non-zero, so a�� ¤ 0 as desired.
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To show that a�� D 0 unless � � �, we again look at calculating Sc�.�/ via
the integral (10). We again appeal to a result from the structure theory of reductive
groups over local fields [BT72, Proposition 4.4.4(i)] to say that$�U \K$�K D 0
unless � � �, which immediately gives us our desired vanishing result, so we are
done. ut

13.11 The Dual Group to a Metaplectic Group

Motivated by the Satake isomorphism in the previous section, we will now give
a combinatorial definition of a dual group to a metaplectic group. This group eG_
will be a split reductive group, so to define it, it will suffice to give a root datum
.X;˚;X 0; ˚ 0/.

We use � to denote the set of all coroots. Throughout this section, lower-case
Greek letters will be used to denote coroots. If ˛ is a simple coroot, recall that the
integer n˛ is defined to be the quotient n˛ D n

.n;Q.˛//
(where .�; �/ here is used to

denote the greatest common divisor).
We define a root datum .X;˚;X 0; ˚ 0/ by

X D �;
˚ D fn˛˛ j ˛ 2 �g;
X 0 D Hom .�;Z/ � Hom .T;Gm/˝Q;

˚ 0 D fn�1
˛ ˛

_ j ˛ 2 �g;

and we define the dual group eG_ of eG to be the reductive group associated to this
root datum.

Theorem 12. The quadruple .X;˚;X 0; ˚ 0/ defines a root datum.

Proof. To check that ˚ and ˚ 0 are stable under the Weyl group is straightforward.
For example, if w˛ D ˇ, then Q.˛/ D Q.ˇ/ so wn˛˛ D nˇˇ. The only part
involving significant work is to check that ˚ � X and ˚ 0 � X 0.

To check that ˚ � X , it suffices to show that for all ˛ 2 � and y 2 Y we have
that B.˛; y/ is divisible by Q.˛/.

Consider the set Ly D y C Z˛. It is a w˛ stable subset of Y . There are two
possibilities, either Ly contains z which is fixed by w˛ or L˛ contains z such that
w˛z D zC ˛.

In the former case, consider the Q-subspace of Y ˝ Q spanned by z and ˛. On
this subspace, we haveQ.m˛Cnz/ D Am2CBn2CCmn for some A;B;C 2 Q.
Since Q is invariant under w˛ , we must have that C D 0. Then B.˛; z/ D 0, so
since Q.˛/ divides B.˛; ˛/, it must divide B.˛; y/.

In the latter case, we calculate thatB.˛; z/ D �Q.˛/, so proceed as in the former
case, so we are done.
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We now show that ˚ 0 � X 0.
Firstly, we use the fact that B.˛; ˛/ D 2Q.˛/ to conclude that

n˛Z˛ � X \Q˛ � n˛

2
Z˛:

Now consider some ˇ 2 X , and let Mˇ D .ˇ C Q˛/ \ X . A priori, there are
three options.

The first is that there exists � 2 Mˇ such that w˛� D � , which implies
h˛_; �i D 0.

The second is that there exists � 2Mˇ such that w˛� D � C n˛˛ which implies
h˛_; �i D n˛ .

In the third potential case, we would have � 2 Mˇ such that w˛� D �C n˛
2
˛. For

this to occur, we would require that 2jn˛ , so in this case B.�; ˛/ … nZ. However,
this last statement implies that � … X , which cannot occur.

Thus, since we know that ˇ D � C kn˛
2
˛ for some integer k, we obtain that

hˇ; ˛_i 2 n˛Z. This shows that n�1
˛ ˛

_ 2 Hom .X;Z/ D X 0, as required. ut
Thus, we have a root datum, so defining eG_ as the split reductive group

corresponding to this root datum is well defined.
As a consequence, we may consider the Satake isomorphism to be the existence

of a natural isomorphism

H.eG;K/ Š CŒ��W Š K0.Rep.eG_//˝ C:

13.12 Iwahori–Hecke Algebra

There is an alternative Hecke algebra associated to the group eG, defined in the
same fashion as the spherical Hecke algebra H.eG;K/, but considering a standard
Iwahori subgroup I (defined to be the inverse image of B.k/ under the surjection
K ! G.k/) in place of the hyperspecial maximal compact subgroup K . We will
denote this Hecke algebra by H.eG; I /; it is the algebra of anti-genuine I -biinvariant
compactly supported locally constant functions on eG.

Let J denote the normaliser in eG of eT \K .

Theorem 13. The support of the algebra H.eG; I / is IJI .

Proof. We also use the decomposition G D IMI . Suppose that t 2 M and t … J .
Then there exists k 2 eT \ K such that tkt�1 … eT \ K . Since we are assuming
t 2 W T , we have that p.t/ 2 T \K . Thus tkt�1 D �k0 for some k0 2 eT \K and
� 2 �n with � ¤ 1. Hence any f 2 H.eG; I / has f .t/ D 0 so we have proved that
the support of H.eG; I / lies in IJI .

For the reverse implication, we need to show that if t 2 J then there exists f 2
H.eG; I / with f .t/ ¤ 0. To do this, we need to show that whenever p.i1ti2/ D p.t/
for i1; i2 2 I , then i1t i2 D t .
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Let Ip denote the maximal pro-p subgroup of I (it is the inverse image of U.k/
under the projection K ! G.k/). The torus T.k/ over the residue field lifts to I
and every element of I can be uniquely written as a product of an element of T.k/
with an element of Ip .

After projection to G, i2 2 I \ t�1I t . Write i2 D j1j2 with j1 2 T.k/
and j2 2 Ip. Then t i2t�1 D tj1t

�1tj2t�1. We have tj1t�1 2 T.k/ because t
normalises eT \ K and T.k/ consists of all elements of order q � 1 in this group.
Since tj2t�1 topologically generates a pro-p group, it must be that tj2t�1 2 Ip

since it is a priori in QI which also has a unique maximal pro-p subgroup. Thus,
t i2t

�1 D tj1t�1tj2t�1 2 I , so we are done. ut
Let Wa denote inverse image of � under the projection from the affine Weyl

group to Q. Then there is an isomorphism InIJI=I ' Wa. As a corollary of the
above theorem, we are able to exhibit a basis for H.eG; I /. For any w 2 W , we are
able to exhibit a choice of a lifting w 2 eG which is an element of our embedding
W0 ,! eG from the discussion at the end of Sect. 13.4. There is an embedding� �
Wa and W � Wa. Using these inclusions, we identify elements of � as elements
of Wa and for each simple coroot ˛ denote by s˛ 2 Wa the corresponding simple
reflection.

Corollary 4. For each w 2 Wa, then there is a function Tw in H.eG; I /, supported
on �nIwI and taking the value 1 at w. Then the collection of these Tw for w 2 Wa,
forms a C basis for the algebra H.eG; I /.

It is possible to write down a system of generators and relations for the algebra
H.eG; I /. The following is a corrected version of [Sav88, Proposition 3.1.2]. The
change is in the definition of Savin’s integer m, which has been replaced by n˛
(althoughm D n˛ in a large number of cases, in general they are not even equal in
the rank one case).

Let �C denote the set of dominant elements of� and� denote the set of simple
coroots.

Theorem 14. The following relations hold in H.eG; I /:

1. T�T� D T�C� for �;� 2 �C.
2. If s˛� D � for ˛ 2 � and � 2 �C then Ts˛ and T� commute.
3. If � 2 �C and h˛_; �i D n˛ then

T�T
�1
s˛
T�T

�1
s˛
D qn˛�1T2��n˛˛:

4. If � 2 �C and h˛; �i D 2n˛ then

T�T
�1
s˛
T�T

�1
s˛
D q2n˛�1T2��2n˛˛ C .q � 1/qn˛�1T2��n˛˛T �1

s˛
:

5. .Ts˛ � q/.Ts˛ C 1/ D 0 for ˛ 2 �.
6. For w1;w2 2 W with `.w1w2/ D `.w1/C `.w2/ we have Tw1w2 D Tw1Tw2 .
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Proof. The proof given by Savin [Sav88] is applicable here and correct until we
reduce to a rank one calculation in proving parts 3 and 4. We will present this
rank one calculation here. It does not appear in [Sav88] and is the source of the
inaccurate statement in [Sav88, Proposition 3.1.2]. To carry out this computation,
we will be making use of the explicit formulae for the 2-cocyle and the splitting
given in equations (2) and (3), respectively.

In the rank one case, the statements of parts 3 and 4 simplify to the following,
where s is the sole reflection in the Weyl group:

(3’) If � D n˛˛=2 2 �C then

T�T
�1
s T� D qn˛�1Ts

(4’) If � D n˛˛ 2 �C then

T�T
�1
s T� D q2n˛�1Ts C .q � 1/qn˛�1T�:

We know from Savin’s proof that T �1
si
T� D Tsi� and so need to calculate the

product T�Ts�. In particular, we need to calculate T�Ts�.$�/, which is the task we
shall accomplish.

Let us first consider the case where our rank one group is G D SL2. We may

thus write $� D
�
$l 0
0 $�l

�
for some integer l (actually l D h˛_; �i=2). Note

that 2lQ.˛/ is divisible by n, which will have the consequence that all powers of
Hilbert symbols that appear will be ˙1, a feature we will exploit, simplifying our
expressions by freely inverting such symbols on a whim.

We write T�Ts�.$�/ as an integral over eG=�n ' G.

T�Ts�.$
�/ D

Z

G

T�.h/Ts�.h
�1$�/dh:

This integrand is non-zero when h�1 2 I$��I \ I s$��I$��. We shall work
modulo I on the left. Thus we have

h�1 D
�
0 �$�l
$l 0

��
a b

c d

��
$�l 0

0 $l

�

;

where . a bc d / 2 I . The condition for h�1 2 I$��I is equivalent to c D $lu for
some u 2 O�

F :

We calculate h D
�
b$2l d
�a �u$�l

�
and s.h/�1 D s.h�1/.

For i1 D
�

�u �d$l

0 �u�1

�
and i2 D

�
1 0

�au�1$l 1

�
we have i1hi2 D $�, �.i1/ D

�.i2/ D 1 and �.i1h; i2/�.i1; h/ D .au;$lQ.˛//.
For i3 D

�
d �b

�u$l a

�
, we have h�1$�i3 D s$�, �.i3/ D .a;$�/ and

�.h�1;$�/�.h�1$�; i3/ D .a;$lQ.˛//.
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Thus, overall, our integrand T�.h/Ts�.h�1$�/ is equal to .au;$lQ.˛// where it
is supported. Hence, the integral T�Ts�.$�/ is equal zero if n does not divide lQ.˛/
and the value of the appropriate volume, namely q2n˛�1, otherwise. To complete the
proof in the SL2 case, we need to note that in case 3, 2l D n˛ and thus n does not
divide lQ.˛/ as can be seen by looking at 2-adic valuations. In case 4, l D n˛ so n
trivially divides lQ.˛/.

Now we turn to the case of G D PGL2. We write $� D �
$l 0
0 1

�
. In order to

have our integrand T�.h/Ts�.h�1$�/ non-zero, by consideration of the valuation
of the determinant, we must have that l is even. This immediately proves our result
when l is odd. For in case 4, for PGL2 we have l D 2n˛ , so if l is odd, we must be
in case 3.

If � 2 �C is such that h˛_; �i D 2n˛ and �=2 2 �C, then the (4) is a formal
consequence of (3) and (5). Thus, we may reduce to the case where � is a minimal
non-zero element of �C. This implies that l divides n, so in particular, n is even.

Let E be an unramified quadratic extension of F . Consider the natural map
SL2.E/! PGL2.E/ and restrict this to the preimage of PGL2.F /. Note that$�

and all elements of the Iwahori subgroup I lie in the image of this map. Accordingly,
we will be able to make use of the above calculation for SL2.E/.

Since n is even, qC1
2
� 1 .mod n/. For s; t 2 E with s2; t2 2 F , we thus have

the following identity of Hilbert symbols:

.s2; t2/
Q.˛=2/
F D

�

.�1/v.s/v.t/ s
v.t/

t v.s/

� q�1
n Q.˛/

D
�

.�1/v.s/v.t/ s
v.t/

t v.s/

� q2�1
n

Q.˛/
2

D .s; t/Q.˛/=2E :

We interpret this in the following manner: Since our central extensions are
determined by their restriction to maximal tori, this shows that the pullback of the
extension of PGL2.F / to its inverse image in SL2.E/ is the same as the restriction
of the central extension on SL2.E/ corresponding to the quadratic formQ0 defined
byQ0 D Q=2. We are able to push forward a cocycle on SL2 to a cocycle on PGL2
since the centre of SL2 remains central when lifted to eSL2.

As a result of this relationship between the covers of PGL2.F / and SL2.E/, we
are able to use the SL2 calculations above for the proof in the PGL2 case. We have
h˛_; �i D l and T�.h/Ts�.h�1$�/ is non-zero if and only if n divides lQ.˛/=2.

In case 3, l D n˛ . Since n is known to be even, it does not divide lQ.˛/=2 by
the same 2-adic argument as in the SL2 case.

In case 4, l D 2n˛ and in this case n trivially divides lQ.˛/=2.
This completes our calculation and so, combined with the work in [Sav88],

completes the proof. ut
There is a stronger statement, giving a presentation for the Hecke algebra

H.eG; I /.
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Theorem 15. [Sav88] The set of relations presented in Theorem 14 provides a
complete set of relations for the algebra H.eG; I /.

Proof. The proof of Savin [Sav88] of this theorem goes through without change.
ut

13.13 Further Work with the Dual Group

Corollary 5 ([Sav88]). Suppose that eG and eH are two metaplectic groups with
isomorphic dual groups eG_ Š eH_ and Iwahori subgroups IeG and IeH , respec-
tively. Then, there is an isomorphism of Iwahori–Hecke algebras:

H�

�
eG; IeG

�
Š H�

�
eH; IeH

�
:

Proof. This is an immediate consequence of the description of these Hecke algebras
in terms of generators and relations in Theorem 15. To see this explicitly, we rewrite
the relations without any occurrences of n˛ in the exponents of q by defining new
variables Us D Ts and U� D q�h�_ ;�iT�. ut

To the data of a metaplectic cover of a split group (i.e., the groupG, the quadratic
form Q and the degree of the cover n), let us propose to define the L-group of eG
to be the complex reductive group eG_.C/. We hope that this definition will provide
a way to bring the study of the metaplectic groups into the paradigm that is the
Langlands functoriality conjectures.

The above corollary together with the metaplectic Satake isomorphism provides
a starting point for correspondences between local representations with an Iwahori-
fixed or spherical vector, respectively. In the spherical case, we have the following.

Proposition 6. Suppose eG and eH are two metaplectic (possibly reductive) groups
with a continuous homomorphism LeG ! LeH . Then there is a natural correspon-
dence from spherical representations of eG to spherical representations of eH .

Proof. The homomorphism LeG ! LeH defines a functor Rep .LH/! Rep .LG/.
Taking Grothendieck groups and using the Satake isomorphism, we obtain a
natural morphism of spherical Hecke algebras H.eH;K/ ! H.eG;K/, hence
a map between representations of these spherical Hecke algebras, and thus a
correspondence of representations from spherical representations of eG to spherical
representations of eH . ut

We end this chapter with a short discussion of a categorified version of the
metaplectic Satake isomorphism due to Finkelberg and Lysenko [FL10]. Suppose
that F is a field of Laurent series F D k..t// over a field k with some mild
assumption on the characteristic of k not being too small. Corresponding to eG,
there is a central extension of the loop group G.F / by Gm.k/ as group ind-schemes
over k. This central extension splits over G.OF/, so we obtain a Gm torsor over the
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affine Grassmannian Gr D G.F /=G.OF/ (as an ind-scheme over k). The group
K D G.OF/ acts on the total space of this torsor Eı by left multiplication and the
group �n acts by multiplication fibrewise. Again choose a faithful character � of
�n.k/. Consider � as a representation of �1.Gm/ and let L� be the corresponding
one-dimensional local system on Gm. One considers the category of perverse
sheaves on Eı which are K- and .Gm;L

�/-equivariant. Finkelberg and Lysenko
give this category the structure of a tensor category and show that it is equivalent
to the category of representations of a reductive algebraic group. They construct
explicitly the root system of this group and it can be seen to be the same as the root
system constructed above for the group we denoted eG_.
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Chapter 14
Excerpt from an Unwritten Letter

S.J. Patterson

Abstract This note is concerned with the representation constructed by Chinta and
Gunnells in (Constructing Weyl group multiple Dirichlet series, J. Amer. Math.
Soc. 23, 2010, 189–215), a representation of the Weyl group of an irreducible root
system on an infinite-dimensional algebra over a base field. Chinta and Gunnells in
(Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23, 2010,
189–215). The first group of remarks is that this result can, at least, in principle, be
constructed and understood from the point of view of the representation theory of
local metaplectic groups. The original proof is by means of generators, relations and
computer algebra, and so a representation-theoretical proof makes the construction
and verification more “natural.”

The second group of remarks concerns the application of this local theorem to
the global problem of determining the Fourier–Whittaker coefficients of metaplectic
theta functions and the closely related problem of the distribution of the values of
Gauss sums and their generalizations. These applications are still very preliminary,
but the prospects are encouraging.

Keywords Chinta–Gunnells averaging method • Metaplectic Whittaker function

This should have been part of a joint letter to Ben Brubaker, Dan Bump, Gautam
Chinta, Sol Friedberg and Jeff Hoffstein. The purpose was to formulate with a broad
brush how I understand the papers of Chinta and Gunnells and of Chinta and Offen.

We shall need a number of results of H. Matsumoto which I shall recall here.
Let F be a non-archimedean local field containing the nth roots of 1. Let ˚ be a
simple reduced root system which corresponds to a simple complex Lie algebra g.
From this, one constructs an algebraic group (Chevalley group)G (over Z) such that
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the Lie algebra of G.C/ is g. There is no need to worry about the finer points here.
We fix a set of positive roots ˚C. We denote by ˚R the real vector space in which
˚ is embedded. As usual, it is acted upon by the Weyl group W of ˚ , and there is
an invariant positive definite inner product .�; �/ on ˚R.

For each ˛ 2 ˚C there is a morphism h˛ W SL2 ! G. The theory of Chevalley
groups builds G out of these maps. It is useful to denote by L̨ .x/ the image under
h˛ of the diagonal matrix with entries x and x�1. As we are not concerned here
with changes of the field, we write G for G.F /, etc., when there should be no
danger of confusion. The element L̨ .x/ lies in the distinguished Cartan subgroupH
of G. Recall that the roots originate as elements of Hom.H; F �/. We then have
ˇ. L̨ .x// D xM˚ .˛;ˇ/, where M˚.˛; ˇ/ D 2.˛;ˇ/

.ˇ;ˇ/
is the appropriate entry of the

Cartan matrix of ˚ .
Let N denote the unipotent group of G generated by the images under the h˛

of the unipotent upper-triangular matrices in SL2. Let e be a nontrivial additive
character of F . Let ˚0 be the set of simple roots in ˚C. Let r W ˚0 ! F . Then, we
can construct a character er of N with er

�
h˛
��
cc1 x
0 1

��� D e.r.˛/x/.
Matsumoto showed how to glue the metaplectic extensions of the SL2.F / into a

global one of G. We recall what we need here; the details of the construction itself
are not relevant at the moment. Let .�; �/ be the n-th order Hilbert symbol in F . Then
for each ˛ 2 ˚ with ˛ a long root, Kubota’s construction [13] gives a metaplectic
cover of SL2.F / associated with .�; �/, and we consider it as a cover of h˛.SL2.F //;
if there are two different lengths of root, then for a short root we use instead .�; �/m
where m D 2 for the cases B�; C�; F4 and m D 3 for G2. Matsumoto shows that
there is a metaplectic extension QG of G whose restriction to the image of h˛ is the
given one, [18, Theorems 5.10 and 8.2]. One can give a cocycle on a Zariski open
subset of G �G, but it is not of much use. What is relevant is that the commutator
of (lifts of) elements of H is an invariant and is known. The commutator of L̨ .x/
and Ľ.y/ is .x; y/M˚ .˛;ˇ/m.˛/ where m.˛/ D 1 if ˛ is long and has the value above
if ˛ is short should there be two different lengths. Note that m.˛/.˛; ˛/ takes on
the same value for all roots. There is no need to normalize the inner product. See
also [20].

The centre of G is finite and the same clearly is true of QG. We fix a homomor-
phism " W �n.F / ! C�. It makes life easier, but it is not absolutely necessary to
assume that " is injective. Since 2 and 3 are primes, the centre of QH is generated
by �n.F / and the images of L̨ .x/ with x 2 F �n= gcd.m.˛/;n/ where m.˛/ are as
above. We denote the centre of QH by QHZ , and we denote by QH� a maximal abelian
subgroup.

Now, we can introduce the manifold ˝."/ of quasicharacters of QHZ which
restrict to " on �n.F /. We can extend any ! 2 ˝."/, in several ways, to QH�.
From this extension, we can form the induced representation of QH which depends
only on ! and is irreducible. Let � be the square root of the modulus function ofH
acting onN . Then, we can induce !�� on QH� QN as usual to QG. Denote the resulting
representation by V.!/. We can regard V.!/ as a fibre of a holomorphic vector
bundle over˝."/.
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We can now introduce as usual the intertwining operators, but care is called for.
LetM � G be the normalizer ofH (monomial group). In the usual dispensation of
things, the Weyl group is defined to be M=H . It is not a subgroup of G, but there is
a covering group ofW which is; the order of the covering is 2rank of ˚—for details,
see [18, Sect. 6]. It is this fact that seems to have given rise to many of the problems
when �1 is not an nth power.

For our purposes, we have to replace the usual Weyl group with QM= QHZ . This
is also a covering group of the Weyl group. One could use the lift of the image
of Matsumoto’s group in it for the discussion of intertwining operators. Generally,
one defines the intertwining operator Iw.!/ W V.!/ ! V.w!/ for w 2 QM as a QG-
morphisms where w!.h/ D !.w�1hw/. For h 2 QHZ , one has that w!.h/ depends
only on the class of w in the (metaplectic) Weyl group, but the extension to QH�
depends on w in QM= QH�. For h 2 QH� � QM one has that Ih.!�/ is .!��/.h/�1
times the identity.

One has that generically Iw1 .
w2!/Iw2 .!/ is a multiple of Iw1w2 .!/. The word

“generically” needs an explanation. For a simple root ˛, let !˛.x/ D !. L̨ .x//
for x 2 F �n= gcd.n;m˛/. Then, all of the functions are rational on each connected
component of ˝.�/ in certain roots of the .x˛/˛2˚0 where x˛ D !˛.�

�n= gcd.n;m˛//

and � is a uniformizer of F - see [1]. (The fact that x˛ depends on the choice of �
will cause us no problems.) We understand the word “generically” to mean that the
result holds true on a Zariski open subset of the .x˛/˛2˚0 .

The multiple above is 1 if the length of w1w2 is the sum of the lengths of w1 and
w2. Otherwise, it is a product of L or gamma functions (depending on the language
one uses) and monomials. The calculations for SL2 are straightforward, and one can
reduce the calculation in the general case to this one using standard techniques as in
[1, 6, 7].

One can use the conclusions of this calculation to investigate the reducibility
of the V.!/. Again, the techniques were established around 1970—see [6] for the
classical case and [15, Corollary 2.2.7] for the case where �1 is a nth power. One
can, as in the standard case, renormalize the intertwining operators by forming
certain multiples QIw.!/ for which QIw1 .

w2!/ QIw2 .!/ is an monomial times QIw1w2 .!/.
Now, we turn to the Whittaker models. We introduced the er above, and we shall

assume that er is nondegenerate in the sense that r.˛/ ¤ 0 for all ˛ 2 ˚0. The space
of Whittaker models Wh.!; er / is the subspace of the dual space of V.!/ of linear
forms � with �.nv/ D er .n/�.v/ for n 2 N . Generically, this space is of dimension
ŒH W HZ�

1
2 . We form the dual maps t QIw.!/ W Wh.w!; er/ ! Wh.!; er / which can

be represented by certain matrices.
We should note here that er .hnh�1/ D er 0.n/ where r 0.˛/ D ˛.h/r.˛/, and we

say r and r 0 are in the same class in this case. It is easy to compare the Wh.!; er /
for different r’s in the same class.

One can construct a basis of Wh.!; er / at least for the .x˛/ in an open set of
˝."/ as integrals

v 7!
Z

N?

v.w�1n/ Ner .n/dn
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where N? is the standard lift of N and w runs through elements of QM of maximal
length in the Weyl group taken modulo QH�. This gives a more precise meaning
as to how the t QIw.!/ W Wh.w!; er / ! Wh.!; er/ can be represented as matrices.
Let us now fix a basis f�1.!; r/; : : : ; �N .!; r/g of Wh.!; er/ such as one of the
type described above. We shall assume that this basis is rational in ! in the sense
above. This is the case with the functionals those given above. Such a basis can be
specialized to a basis almost everywhere on ˝.�/. Define hr so that .hr/.˛/ D
˛.h/r.˛/ (˛ 2 ˚0) leads to a matrix representation of the action of t QIw.!/. It can
be written as

t QIw.!/.�i .
w!/ D

X

j


ij .!; r/�j .!/

As usual, the coefficients 
ij .!; r/ will be rational. Now, for � 2 Wh.!; er /, the
linear form � ı h W v 7! �.hv/ belongs to Wh.!; ehr /. One can give a fairly general
formula for the coefficients in terms of the generalized gamma functions (which,
one should recall, are defined first as generalized functions):

�n.�; reo/ D
Z

F�n

�.x/eo.rx/jxj�1dx

where � is a quasicharacter on F �n and r ¤ 0, [10, Sect. 1]. It is elementary
to express these functions in terms of the gamma functions of Tate’s thesis, the
�1.�

0; reo/. By means of generalized functions (or otherwise), one can reduce the
calculation of the matrix coefficients to the case of SL2. If we assume also that all
the !˛ are unramified in the sense that !˛.x/ D 1 if jxjF D 1 (where j � jF is the
norm on F ), then the calculation become very explicit. This was done in the case of
GLr in [12]. We obtain a functional equation of Jacquet’s type, [11, Sect. 3].

This construction yields a representation of QM on
L

w2M=H�

Wh.w!; er /. It
should be in essence the Chinta–Gunnells representation. Actually, their theorem
is a very general one, but it seems as if one can deduce it from this more special
one using Bernstein’s techniques which have been developed in this context by
Banks [1]. This would give a more transparent proof of their theorem which makes
use of computer algebra (see [8, Proof of Theorem 3.2]) and thereby only the
straightforward formal properties of monomials and Gauss sums. Moreover, as
Matsumoto’s construction does not need the assumption that�1 be an nth power, we
see that a version of the Chinta–Gunnells representation has to exist in all cases1.
It is an important consequence of [8] that their theorem can dissociated from the
theory of Chevalley groups and that it may be considered as a construction from ˚

without the intervention of the Chevalley group or its covers. One can recover their
full theorem from this version using the techniques of [1].

1The condition that �1 be an nth power is used in [8, Sect. 3] in the formula �.j /�.�j / D q�1

for j 6� 0 .mod n/ (their notations). This holds true if .�1; �/n;F D 1. If .�1; �/n;F D �1, we
can replace �.j / by i j

2
�.j / with i 2 D �1. From this, one can derive a representation of the same

type as [8, Theorem 3.2] when .�1; �/n;F D �1.
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One can use these considerations to determine Whittaker functions and spherical
functions. The techniques for doing so go back to Casselman and Shalika [6, 7].
Under the restriction that �1 be an nth power, they have been used by various
authors [5, 8, 9, 15–17] where they are augmented by either the use using the
asymptotics of Whittaker functions and the Gidinkin–Karpelevich formula and
Jacquet’s functional equation or with the Hecke algebra (cf. [19]). There are other
approaches, as for example the direct one of [3]. All these formulae are under the
assumption about�1, but again there seems to be nothing essential here. One should
note that one should take into account the different classes of maximal compact open
subgroups; for the classification, see [2].

In fact, Chinta and Gunnells do not determine the Whittaker functions but
rather the coefficients of the multiple Dirichlet series which is done inductively [8,
Theorem 3.5]. It is this formula that I want to discuss here and in connection with
it to point out what are for me the two most serious open problems at the present
time, both of which seem to me to be not extremely difficult. They both concern the
global case.

Let k be a global field containing the nth roots of 1. I shall assume that the
multiple Weyl Dirichlet series exist in this case. The purpose of the arguments
above was to persuade you the restriction on �1 is unnecessary. The theory is
well established in the case A1, and the arguments of [8] allow one to extend the
definition to the other simple root systems. Although they should be associated with
forms on the cover of the Chevalley group, the argument of [8] shows that it is a
question only about root systems. The connection with metaplectic forms has been
established in several cases, but this will not be relevant here. Let S be a finite
set of places containing all those v where jnjv ¤ 1. We shall assume that the ring
of S -integers R is a principal ideal domain. We let kS D Q

v2S , and we let e be
a nontrivial additive character on kS trivial on R. We can, and shall, assume that
fx 2 k W ejxR D 1g D R. Let me denote the coefficients of the metaplectic
multiple Weyl series by g˚.r; �; c/—this you prefer to write this as H.c/. Here,
r W ˚C ! R. For a number of purposes, it is convenient to regard r as an element
of ˚Z ˝Z R.

The function g˚.r; �; c/ is, in principle, known—by your work—through the
property of twisted multiplicativity and a list, still somewhat implicit in the general
case, of values depending on ord.r.˛// and ord.c.˛//. This is like defining the
Gauss sum g.r; "; c/ D P

x .mod c/

�
x
c

�
e.rx=c/ by demanding that it have the

twisted multiplicativity property and that if � is a uniformizer of F , ro 2 R�

g.ro�
�; �; �� / D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 if � > �C 1
q��1g.ro; �� ; �/ if � D �C 1; � 6� 0 .mod n/
�q��1 if � D �C 1; � � 0 .mod n/
0 if � � �; � 6� 0 .mod n/
q� � q��1 if 0 < � � �; � � 0 .mod n/
1 if 0 D �
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where q is the cardinality of the residue class field. This would clearly not be the
correct approach. As far as I can see, neither the method of crystal bases nor that of
Chinta–Gunnells leads quickly to a unified formula. It is perhaps an act of faith to
believe that there is one, but I think that one can subscribe to it for the moment. It is,
from my point of view, a central problem to give a good global description of g˚ .

Let us consider the case A1. Let N be the modulus function (norm) on kS with
respect to the additive Haar measure. We define the Gauss sum g.r; �; c/ in R as
usual. We write

 o.r; �; 	; s/ D
X

c�	
g.r; �; c/N.c/�s

which converges in Re.s/ > 3
2
. Here, we write � to indicate that two elements lie

in the same coset of k�
S =k

�n
S . The sum is taken modulo R�n. The o indicates that

we shall not worry about the L or zeta factors needed to produce the most elegant
functional equation and to limit the poles to nonspurious ones. This function has an
analytic continuation to the entire plane as a meromorphic function. There is at most
one pole in Re.s/ > 1I it is at s D 1C 1

n
. We denote the residue there by �o.r; �; 	/:

Let � be a prime in R and let S 0 be the union of S and the valuation associated
with � . Let q D N.�/: Then (see [12, Prop. II.3.2]),

 oS.ro�
m; �; 	; s/ D  oS 0.ro�

m; �; 	; s/
.1 � qn�ns�1/� .1 � q�1/q.n�ns/.Œ mn �C1/

1 � qn�ns

C  oS 0.ro�
�m�2; �; 	��m�1; s/g.ro; �mC1; �/q.mC1/.1�s/�s�.	; �/mC1

or, what is the same (with .m/n the least nonnegative residue of m .mod n/)

 oS.ro�
m; �; 	; s/ D 1 � qn�ns�1

1 � qn�ns




 oS 0.ro�
m; �; 	; s/

� q.mC1/.1�s/



 oS 0.ro�
m; �; 	; s/

.1 � q�1/q.1�s/.n�.m/n/

1 � qn�ns�1

� oS 0.ro�
�m�2; �; 	��m�1; s/

g.ro; �
mC1; �/q�s�.	; �/mC1

1 � qn�ns�1 .1 � qn�ns/
��

The second term of this equation reflects the action of a reflection through the
Chinta–Gunnells representation on  o. This means that we can surmise the form
of the general case. The two terms may be considered as giving the asymptotics
in m. The major pole of  oS.r�

m; �; 	; s/, should it exist, is at s D 1 C 1
n

and
the Periodicity Theorem asserts that the residue there is periodic in m with period
n. This means that the residue of the term corresponding to the nontrivial element
of “the Weyl group” is regular at this point. From this, we obtain certain relations
between the residues—see, for example, [10, Theorem 1.9]. These are, for m with
0 � m � n � 2,
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�.ro�
m; �; 	/

D N.�/�mC1
n g.ro; �

mC1; �/�..�	; �//mC1�.ro�n�m�2; �; 	��m�1/ .?/

and for m D n � 1

�.ro�
n�1; �; 	/ D 0 .??/

We have written here �S.r; �; 	/ for �oS .r; �; 	/�k.2/: Together with the
Periodicity Theorem, these determine � essentially completely if n D 2 or 3. If
n > 3, then they do not suffice, and one of the major problems is to understand
the function � better. It seems unrealistic to expect an explicit formula. C. Eckhardt
and I proposed a partial formula in the case n D 4 and k D Q.

p�1/. Beyond this
case, one can only make conjectures, and as I tried to explain at the conference for
Dorian Goldfeld’s 60th birthday, all the �’s seem to have a common transcendental
factor (meaning a number given in terms of transcendental functions).2 This was
first proposed, in the case n D 6; k D Q.�3/, by G. Wellhausen in his thesis [21].
Again, following the ideas of Wellhausen, it seems plausible that, divided by this
factor, the coefficients are as small as .?/ allows them to be. More precisely, if
the transcendental factor is T , then it appears that all the .�.r; �; 	/=T /n lie in an
algebraic number field of finite degree over Q. Moreover, it seems plausible that for
" > 0, we have �.r; �; 	/ D O.N.r/"/ and perhaps for r free of nth powers even
that �.r; �; 	/ D O.N.r/� 1

2nC"/. Finally, there are indications that the norm of the
denominator of .�.�oˇ; �/=T /nN.ˇ/ is O.N.ˇ/"/. This latter suggestion is that the
height be “as small as possible.”

Now, let us meditate on the general case. The second general question that seems
to me to be need investigation is to determine when a situation analogous to that
with n D 2 and n D 3. We assume we can construct

 o˚;S .r; 	; s/ D
X

c�	
g˚.r; �; c/N.c/�s

where c 2 HC.R/ taken modulo H.R�n/ and HC.R/ is the semigroup of H.kS/
generated by the L̨ .x/ with x 2 R � f0g and ˛ 2 ˚C. Further, H.R�n/ is the
subgroup of H.kS/ generated by the L̨ .x/ with x 2 R�n. Next, s 2 ˚Z ˝ C.
We can write any such s uniquely as

P
˛2˚0 s.˛/˛, and so we can also think of

2The precise nature of T is unclear. In the case of the cubic theta function and in Wellhausen’s
conjectures in the case n D 6, we find a factor .2�/1�1=n� .1=n/. If this were also the case
when n D 4, the constant of [10, pp. 240,251] which was numerically estimated as 0:14742376—
note that a digit was omitted on p. 240—could be . 1

4
.2�/

3
4 �.1=4//2 This is numerically

0:1475425748 : : : . This is close but not close enough in view of the accuracy of the calculations

of [10]. A much better estimate is .2�/3

128� .1=4/2
which is numerically 0:1474237606 : : : . This is very

puzzling.
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s as a function from ˚0 to C. The norm N induces a map from H.kS/ to Ho.R/

the connected component of the identity of H.R/, and we can interpret s as a
quasicharacter of Ho.R/ which we write as y 7! ys. For w in the Weyl group,
we can define w.s/ by N.w�1

1 xw1/s D N.x/w.s/ where w1 is a representative of w.
Finally, 	 2 H.kS/, and we write c � 	 when c 2 	HZ.kS/ where HZ.kS/ is
the group covered by QHZ.kS/. Then, what Chinta and Gunnells have proved can be
reformulated as follows. Let � be a prime in R. Let f 2 ˚Z which we can write
uniquely as

P
˛2˚0 f .˛/˛. We suppose for convenience that S and e are such that

fy 2 k W ejykS D 1g of e is R. Then, ro is a function defined on ˚0 with values in
R. Let ro be such that ro.˛/ is not divisible by � for any ˛. The expression ro� f is
defined by component-wise multiplication on ˚0. Then, Chinta and Gunnells have
shown that  o˚;S .r0�

f; 	; s/ can, if all the f.˛/ are dominant, be written as,

X

w2W
F.r0;w; 	; s/N.� f/w.s��/C�

and is 0 otherwise. Here, � D 1
2

P
˛2˚C

˛ as before but now interpreted as a map
from ˚0 to C. The use of  o instead of a normalized function, leads, as above,
to some extraneous products of zeta or L-factors which we shall not discuss here.
Apart from them, F.r0; I; 	; s/ will be  o˚;S 0.r; 	; s/, and the other F.r0;w; 	; s/
are the consequence of the action of the Chinta–Gunnells representation on some
 o˚;S 0.ro�?; ?; ?; s/.

Since we can approach the major singularity .s; L̨ / D 1Cgcd.n;m˛/=n (˛ 2 ˚0)
by first selecting out one ˛ and taking the corresponding residue, we see the residues
are invariant when the ˛th component is multiplied with a n= gcd.n;m˛/th power;
see [4]. This is the corresponding version of the Periodicity Theorem in this context.
In the sum over the “Weyl group,” this means that at the major singularity all the
terms vanish except for the one corresponding to the identity. Consequently, the
residues satisfy a system of linear equations. These reflect, as we see, the action of
the intertwining operators, and just as with them, it should follow that all these
relations follow from the ones for simple reflections. We should have a set of
relations parametrized by ˚0 essentially of the same shape as .?/ above. Without
worrying now about the finer points of the definition of the residue, for example,
about the zeta functions needed for the functional equation, we can formulate the
putative generalization of .?/ as follows. Write �o.r; �; 	/ for the residue. Then, we
might expect for each ˛ 2 ˚0
�˚.ro�

f; �; 	/ D N.�/�.f .˛/C1/ gcd.n;m.˛//=ng.ro.˛/; �
�.f .˛/C1/m.˛/; �/

�.�	.˛/; �/.f .˛/C1/m.˛/�˚
�

ro�
s˛.f/�2.��s˛.�//; �; 	�� 1

2 .f�s˛.f//C.��s˛.�//
�

.%/

when f .˛/ < n=gcd.n;m.˛//. Moreover, we would expect if for some ˛ 2 ˚o we
have .fC �/.˛/ � 0 .mod n= gcd.n;m.˛//, then

�˚.ro�
f; �; 	/ D 0 .&/
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If we accept these formulae, then we can attempt to use them to determine the
�˚.r; �; 	/ in terms of finitely many values as happens in the case ofA1 when n D 2
and n D 3. In the cases of the classical root systems, then one can carry out the
calculation without too much trouble, but the results depend on various congruences,
and I shall not go into details here. The most useful consequence would seem to be
that the rank 2 cases can be used to garner information about the case n D 5. The
case (with k D Q.�5/) is the only one that seems within the range of numerical
investigation at the present time and which has not yet been investigated. In the case
of A� the argument leading to [12, Theorem II.2.5] shows that “uniqueness almost
everywhere” leads to “uniqueness everywhere”. This is based on the special role that
Whittaker models play in the case of general linear groups, and there is no parallel
to them in general. Consequently, neither the existence nor uniqueness statements
can be asserted. Whether they are true or not is an open question.

There is an additional technique which one could potentially make use of this
context. If we select out one simple root from the Dynkin diagram and construct
the residue in s.˛/ at the remaining ones, then we have an Eisenstein series in
one variable. It would be interesting to investigate the coefficients of the Whittaker
functions. This idea was proposed in the context of cuspidal representations by
Langlands in [14] and has been developed much further by F. Shahidi in a series
of papers. The optimist would hope that they are Dirichlet series of Hecke type,
or quadratic ones of Rankin–Selberg type, or triple products of Garrett type in
the branches of the Dynkin diagram left after excising the simple root selected.
The cases which would be most interesting at the outset would be A2, A3 (with
the middle root excised), D4 (with the central root excised) and G2. Nothing
concrete is known here. To investigate these questions, one should probably attempt
to understand the Chinta–Gunnells representation in more detail, especially their
Theorem (3.5) and its variants.

References

1. W. Banks, A corollary to Bernstein’s theorem and Whittaker functions on the metaplectic
group, Math.Research Letters 5(1998) 781–790.

2. K. S. Brown, Buildings, Springer-Verlag, 1989.
3. B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series

and crystal bases, Ann. of Math. 173(2011)1081–1120.
4. B. Brubaker, D. Bump, S. Friedberg, J. Hoffstein, Coefficients of the n-fold theta function

and Weyl group multiple Dirichlet series, In: Contributions in Analytic and Algebraic Number
Theory, Festschrift for S. J. Patterson, Edd. V. Blomer, P. Mihailescu, Springer Proceedings in
Mathematics, Springer-Verlag, 2012,83–95.

5. W. Banks, D. Bump, D. Lieman, Whittaker–Fourier coefficients of metaplectic Eisenstein
series, Compositio Math. 135(2)(2003)153–178.

6. W. Casselman, J. Shalika The unramified principal series of p-adic groups, I, The spherical
function, Compositio Math. 40(1980) 387–406.

7. W. Casselman, J. Shalika The unramified principal series of p-adic groups, II, The Whittaker
function, Compositio Math. 41(1980)207–231.



338 S.J. Patterson

8. G. Chinta, P. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math.
Soc.23(2010)189–215.

9. G. Chinta, O. Offen, A metaplectic Casselman–Shalika formula for GLr , Amer. J. Math.
(to appear)

10. C. Eckhardt, S. J. Patterson, On the Fourier coefficients of biquadratic theta series, Proc.
London Math.Soc. (3)64(1992)225–264.

11. H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull.Soc.Math.France
95(1967) 243–309.

12. D. A. Kazhdan, S. J. Patterson, Metaplectic forms, Publ. Math. IHES 59(1984)35–142.
13. T. Kubota, Automorphic forms and the reciprocity law in a number field, Kyoto University,

1969.
14. R.P. Langlands, Euler Products, Yale Mathematical Monographs 1, Yale U.Press, 1971.
15. P. J. McNamara, Whittaker functions on metaplectic groups, Ph.D.Thesis, MIT, 2010.
16. P. J. McNamara, Principal series representations of metaplectic groups over local field.
17. P. J. McNamara, Metaplectic Whittaker Functions and Crystal Bases. Duke Math Journal

156(1)(2011)1–31.
18. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi–simples déployés, Ann.
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Chapter 15
Two-Dimensional Adelic Analysis and Cuspidal
Automorphic Representations of GL.2/

Masatoshi Suzuki

Abstract Two-dimensional adelic objects were introduced by I. Fesenko in his
study of the Hasse zeta function associated to a regular model E of the elliptic
curve E . The Hasse–Weil L-function L.E; s/ of E appears in the denominator of
the Hasse zeta function of E . The two-dimensional adelic analysis predicts that the
integrand h of the boundary term of the two-dimensional zeta integral attached to E
is mean-periodic. The mean-periodicity of h implies the meromorphic continuation
and the functional equation of L.E; s/. On the other hand, if E is modular, several
nice analytic properties of L.E; s/, in particular the analytic continuation and
the functional equation, are obtained by the theory of the cuspidal automorphic
representation of GL.2/ over the ordinary ring of adele (one dimensional adelic
object). In this chapter, we try to relate in analytic way the theory of two-
dimensional adelic object to the theory of cuspidal automorphic representation of
GL.2/ over the one-dimensional adelic object, under the assumption that E is
modular. In the first approximation, they are dual each other.

Keywords L-functions of elliptic curves • Two-dimensional adelic analysis •
Mean-periodic functions • Cuspidal automorphic representations of GL(2)

15.1 Introduction

Let X ! SpecZ be a scheme separated and of finite type. The Hasse zeta function
of X is defined by the Euler product

�X.s/ D
Y

x2X0
.1 � j�.x/j�s/�1 ;
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where X0 is the set of all closed points x of X with residue field �.x/ of cardinality
j�.x/j < 1. For a number field k with the ring of integers Ok the Hasse zeta
function of the affine scheme SpecOk is the Dedekind zeta function �k.s/ DQ

p�Ok
.1 � jOk=pj�s/�1. It is conjectured that �X.s/ has several nice analytic

properties such as a meromorphic continuation and a functional equation. However,
very little is established when the dimension of X is larger than one.

From now on, we concentrate on characteristic zero case. If the dimension of X
is one, the Hasse zeta function �X.s/ is essentially the Dedekind zeta function �k.s/.
Due to the celebrated work of Iwasawa and Tate, the analytic properties of �k.s/ are
obtained by the Fourier analysis on the adeles Ak . The completed Dedekind zeta
functionb�k.s/ is defined by multiplying �k.s/ with a finite product of � -factors. It
has the integral representation

b�k.s/ D
Z

A�

k

f .x/jxjsd�A�

k
.x/ DW �k.f; s/;

where f is an appropriate Schwartz–Bruhat function on Ak and j j is a module on
the ideles A�

k of k. On the other hand, �k.f; s/ is written as

�k.f; s/ D �.f; s/C �. Of ; 1 � s/C !.f; s/

on<.s/ > 1, where Of is the Fourier transform of f on Ak . Here �.f; s/ is an entire
function given by an integral converging absolutely for every s 2 C, and the term
!.f; s/ which is called as the boundary term in [4–6,15] is expressed as the integral

!.f; s/ D
Z 1

0

hf .x/x
s dx

x

for some function hf on .0; 1/. Hence, the meromorphic continuation and the

functional equation forb�k.s/ are equivalent to the meromorphic continuation and the
functional equation for !.f; s/. In this sense, the analytic properties of the function
hf .x/ are crucial for a better understanding of the boundary term !.f; s/. Fourier
analysis and analytic duality on k � Ak leads to

hf .x/ D ��
�
A
1
k=k

��
�
f .0/ � x�1 Of .0/

�
:

As a consequence, the boundary term !.f; s/ is a rational function of s invariant
with respect to f 7! Of and s 7! .1 � s/. Thus, b�k.s/ admits a meromorphic
continuation to C and satisfies a functional equation with respect to s 7! .1 � s/.

Let E an elliptic curve over k and let E ! B D SpecOk be a regular model of
E over k. Then the description of geometry of models in [10, Theorems 3.7, 4.35 in
Chap. 9 and Sect. 10.2.1 in Chap. 10] implies that
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�E.s/ D nE .s/�E.s/ with �E.s/ D �k.s/�k.s � 1/
L.E; s/

(1)

on <.s/ > 2, where L.E; s/ is the Hasse–Weil L-function of E . Here, nE.s/ is the
product of zeta functions of affine lines over finite extension �.bj / of the residue
fields �.b/, where b are places of bad reduction of E:

nE.s/ D
JY

jD1

�
1 � j�.bj /j1�s

��1
(2)

where J is the number of singular fibres of E ! B (see [5, Sect. 7.3]).
The automorphic conjecture forE=k asserts that there exists a cuspidal automor-

phic representation �E of GL2.Ak/ such that

L.E; s/ D L.�E; s � 1=2/:

Then the general theory of L-function L.�; s/ attached to a cuspidal automorphic
representation � of GL2.Ak/ implies the analytic continuation and functional
equation of L.E; s/ via L.�; s/. The analytic properties of L.�; s/ are obtained
by extending the Iwasawa–Tate theory from the commutative group GL1.Ak/ to
the noncommutative group GL2.Ak/. In this story, the theory of noncommutative
group GL2.Ak/ relates to �E.s/ via the modularity conjecture and the L-function
L.E; s/ of E .

In contrast with the above story, I. Fesenko proposed another way to study �E.s/
in [4–6] by using a commutative group associated with two-dimensional adeles.
The ordinary ring of adeles Ak is regarded as a one-dimensional object in the sense
that it is associated to the one-dimensional scheme SpecOk . He introduced the
two-dimensional adelic space AE associated to the two-dimensional scheme E and
established a theory of translation invariant measure and integrals on its subring
AE ;S � AE , where S is a set of curves on E consisting of finitely many horizontal
curves and all vertical fibers. Using a measure theory on the two-dimensional adelic
space, he defined the zeta integral

�E ;S .f; s/ D
Z

TE;S
f .t/jt jsd�.t/;

where f is a generalized Schwartz–Bruhat function on AE ;S � AE ;S , TE ;S is
certain subgroup of A�

E ;S � A�
E ;S , j j is a module function on TE ;S , and d� is a

measure on TE ;S (see [5, Sect. 5]). The zeta integral �E ;S .f; s/ converges absolutely
for <.s/ > 2. If the test function f0 is well-chosen, the zeta integral �E ;S .f0; s/
equals

�E ;S .f0; s/ D
Y

finite

b�ki .s=2/
2 � c1�sE � �E.s/2; (3)
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where ki is an extension of k determined by each horizontal curve in S and cE is a
positive real number determined by E . On the other hand, as well as the Iwasawa–
Tate theory, the zeta integral �E ;S .f; s/ decomposes into three parts

�E ;S .f; s/ D �.f; s/C �. Of ; 2 � s/C !.f; s/

on <.s/ > 2, where �.f; s/ is an entire function and Of is the Fourier transform
of f on AE ;S � AE ;S . The third term !.f; s/ is called the boundary term of the
zeta integral �E ;S .f; s/. Hence, the meromorphic continuation of the boundary term
!.f0; s/ attached to f0 in (3) implies the meromorphic continuation of the Hasse
zeta function �E.s/. Therefore, if the meromorphic continuation of the boundary
term !.f; s/ is proved without proving the (difficult) modularity property, for
example, by using Fourier analysis and analytic duality on the two-dimensional
adelic space, it leads to the meromorphic continuation of the L-function L.E; s/
without the modularity!

One possible approach for the meromorphic continuation of !.f; s/ is proposed
by the theory of mean-periodic functions as follows. (see [5, Sect. 7], and see also
[15]. For the general theory of mean-periodic functions, see Kahane [8], Schwartz
[13], or references of [15]). As in the Iwasawa–Tate theory, the boundary term is
written as

!.f; s/ D
Z 1

0

hf .x/ � xs dx

x
D
Z 1

0

hf .e�t / � e�stdt (4)

for some function hf on .0; 1/, namely, the boundary term is expressed as the
Laplace transform of hf .e�t /. Standing on this fact, the boundary term is connected
with the theory of mean-periodic functions.

Let X be a locally convex separated topological C-vector space consisting of
complex valued functions on R�C D .0;1/. It has the natural representation 
 of
R�C as .
aF /.x/ D F.x=a/ for every F 2 X. For a function F 2 X, we denote
by T .F / the closure of the set f
aF j a 2 R�Cg with respect to the topology on X.
A function F 2 X is called mean-periodic if the closure T .F / is not equal to the
whole space X. Using the representation 
 , the convolution F � ' of F 2 X and
' 2 X_ is defined by

.F � '/.x/ D
D

x LF ; '

E
;

where LF .x/ D F.x�1/ and h�; �i is the pairing on X � X_. The mean-periodicity
condition T .F / 6D X of F is equivalent to the assertion that the space

T .F /? WD f' 2 X_ jG � ' D 0 for all G 2 T .F /g

of annihilators of T .F / with respect to the convolution is nontrivial. The general
theory of mean-periodic functions assert that the Laplace transform of F.e�t / (the
Mellin transform of F.x/) extends meromorphically to the whole complex plane
whenever the function F is mean-periodic.
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Now we suppose that the function hf0 determined by (3) and (4) belongs to the
space X. Then the conjectural mean-periodicity of hf0 implies the meromorphic
continuation of the Hasse zeta function �E.s/ [5,6], and the mean-periodicity of hf0
is equivalent to T .hf0 /? 6D f0g. Hence, it is important to understand the space of
annihilators T .hf0 /? attached to hf0 in order to prove the mean-periodicity of hf0
without any assumption.

In this paper, we describe the space of annihilators T .hf0/? in the case of k D Q

by using the cuspidal automorphic representation of GL2.AQ/ whose existence
follows from the modularity ofE=Q (Theorems 3.1 and 3.2). The restriction k D Q

is settled for the simplicity; see Remark 3.1. Such descriptions of T .hf0/? suggest
some duality between the commutative theory of two-dimensional adeles AE , AE ;S
and the noncommutative theory (GL2-theory) of one-dimensional adele AQ. To
study the space of annihilators T .HE/?, we use the theory of C. Soulé [14] and
A. Deitmar [3] which is a generalization of the work of A. Connes [1] (see also the
book [2]) about the spectral interpretation of the zeros of Hecke L-functions.

In Sect. 15.2, we review the theory of Connes after R. Meyer [11,12], and review
the theory of mean-periodic function involving the Mellin–Carleman (Laplace–
Carleman) transform. In addition, we review several facts on the boundary term
!.f0; s/ according to [15]. Then, in Sect. 15.3, we state the results (Theorems 3.1
and 3.2), and we prove them in Sect. 15.4. In the final section, we comment on the
space of annihilators leave the setting of elliptic curves.

15.2 Preliminaries

At the first stage of Connes’ work [1], certain weighted Hilbert space together
with some artificial parameter is introduced, and a natural generalization of such
weighted Hilbert space is used in works of Soulé [14] and Deitmar [3] about the
spectral interpretation of the zeros of an automorphic L-function attached to a
cuspidal automorphic representation. However, such weighted Hilbert space is not
useful for the theory of mean-periodic functions due to the artificial parameter. In
particular, if we use one of their weighted Hilbert spaces, the off-line zeros of the
L-function do not appear in the spectrum. This difficulty is overcome by the work
of Meyer [11, 12] by introducing the strong Schwartz space (which is named by
Connes–Marcolli [2]) and dismissing the Hilbert space setting.

15.2.1 Connes’ Spectral Interpretation of Zeros

In this part, we review Connes’ work about the spectral interpretation of the zeros
of the Riemann zeta function after the work of Meyer. For detailed and rigorous
description, see [1] and [12].
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Let S.R/ be the Schwartz space on R which consists of smooth functions on R

satisfying

kf km;n D sup
x2R
jxmf .n/.x/j <1

for all nonnegative integerm and n. It is a Fréchet space over the complex numbers
with the topology induced from the family of seminorms k km;n. Let us define the
Schwartz space S.R�C/ on R

�C and its topology via the homeomorphism

S.R/! S.R�C/I f .t/ 7! f .� logx/;

where t D � logx. The strong Schwartz space S.R�C/ is defined by

S.R�C/ WD
\

ˇ2R

n
f W R�C ! C;

h
x 7! x�ˇf .x/

i
2 S.R�C/

o
: (5)

One of the family of seminorms on S.R�C/ defining its topology is given by

kf km;n D sup
x2R�

C

jxmf .n/.x/j (6)

for every integersm and nonnegative integers n. The strong Schwartz space S.R�C/
is a Fréchet space over the complex numbers where the family of seminorms
defining its topology is given in (6). This space is closed under the multiplication by
a complex number and the pointwise addition and multiplication [12].

Let S.R/0 be the subspace of S.R/ consisting of all even functions � 2 S.R/
satisfying �.0/ D O�.0/ D 0, where O� is the Fourier transform of � on R. For a
function � 2 S.R/0, we define the function E.�/ on the positive real line R�C by the
formula

E.�/.x/ D
1X

nD1
�.nx/: (7)

Then we find that E.�/ is of rapid decay as x ! C1. In addition, we have the
reciprocal formula E.�/.x/ D x�1E. O�/.x�1/ by the Poisson summation formula.
Hence, E.�/.x/ is also of rapid decay as x ! 0C, since the subspace S.R/0 is
closed under the Fourier transform. Hence, the function E.�/ belongs to the strong
Schwartz space S.R�C/ for every � 2 S.R/0. In other words, E is a map from the
subspace S.R/0 into the strong Schwartz space. Denote by V � S.R�C/ the range of
the map E W S.R/0 ,! S.R�C/:

V D ˚˚ 2 S.R�C/ j˚.x/ D E.�/ for some � 2 S.R/0
�
:

Then the “discrete part” of the “orthogonal complement”

V? D f 2 S.R�C/_ j hE.�/;  i D 0 for all � 2 S.R/0 g � S.R�C/_
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is spanned by functions

fx�.logx/k j �.�/ D 0; 0 < <.�/ < 1; 0 � k < m�g;

where S.R�C/_ is the dual space of S.R�C/ and m� is the multiplicity of the zero �.
Roughly, it is shown as follows. Let D be the R�C-invariant operator on S.R�C/
defined by .Df /.x/ D xf 0.x/, and let D_ be the adjoint operator of D on
S.R�C/_ defined by hf;D_'i D hDf; 'i (f 2 S.R�C/). Then all eigenvalues of
D_ are s 2 C with eigenvector xs , and each eigenspace is spanned by f s;k.x/ D
xs.logx/k j 0 � k <1g. We have

hE.�/;  s;ki D
Z 1

0

E.�/.x/xs.logx/k
dx

x

D dk

dsk

Z 1

0

E.�/.x/ xs
dx

x
D dk

dsk
�
�.s/˚.s/

�
;

where ˚ is the Mellin transform of �. Hence, the condition that hE.�/;  s;ki D 0

for every � 2 S.R/0 implies �.s/ D 0 and k < ms. The trivial zeros are excluded by
using the functional equation of �.s/˚.s/. (In the case of the large space S.R�C/ �
S.R�C/, all eigenvalues of D_ on S.R�C/ are i� 2 iR with eigenvector xi� ).

15.2.2 Mean-Periodicity on the Strong Schwartz Space

In this part, we review the theory of mean-periodic functions attached to the strong
Schwartz space S.R�C/ according to Sect. 2 of [15]. For the general theory of mean-
periodic functions, see Kahane [8], Schwartz [13], or references of [15].

Let S.R�C/_ be the dual space of the strong Schwartz space S.R�C/ with the weak
�-topology, and denote by h�; �i the pairing on S.R�C/ � S.R�C/_, namely, hf; 'i D
'.f / for f 2 S.R�C/ and ' 2 S.R�C/_. Using the (multiplicative) representation

.
xf /.y/ D f .y=x/ .x 2 R
�C/;

of the multiplicative group R
�C on S.R�C/, define the (multiplicative) convolution

f � ' for f 2 S.R�C/ and ' 2 S.R�C/_ by

.f � '/.x/ D h
x Lf ; 'i .x 2 R
�C/;

where Lf .x/ WD f .x�1/. In addition, define the dual representation 
_ on S.R�C/_
by

hf; 
_
x 'i WD h
xf; 'i:
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For a C-vector space V , we identify the bidual space .V _/_ (the dual space of V _
with respect to the weak �-topology on V _) with V in the following way. For a
continuous linear functional F on V _ with respect to its weak �-topology, there
exists v 2 V such that F.v_/ D v_.v/ for every v_ 2 V _. Therefore, we do not
distinguish the pairing on .V _/_ � V _ from the pairing on V � V _.

Definition 2.1. Let X D S.R�C/_. An element x 2 X is said to be X-mean-periodic
if there exists a nontrivial element x_ in X_ satisfying x � x_ D 0.

For x 2 X D S.R�C/_, we denote by T .x/ the closure of theC-vector space spanned
by f
_

g .x/; g 2 R
�Cg. Then the Hahn–Banach theorem implies the following

equivalence of the X-mean-periodicity.

Proposition 2.1. Let X D S.R�C/_. An element x 2 X is X-mean-periodic if and
only if the closure T .x/ is not equal to the whole space X.

Let L1loc;poly.R
�C/ be the space of locally integrable functions on R�C satisfying

h.x/ D
(
O.xa/ as x ! C1;
O.x�a/ as x ! 0C

for some real number a 	 0. Each h 2 L1loc;poly.R
�C/ gives rise to a distribution

'h 2 S.R�C/_ defined by

hf; 'hi D
Z C1

0

f .x/h.x/
dx

x
; 8f 2 S.R�C/:

If there is no confusion, we denote 'h by h itself, and use the notations hf; hi D
hf; 'hi and h.x/ 2 S.R�C/_. Under this convention, we have

x� logk .x/ 2 L1loc;poly.R
�C/ � S.R�C/_

for every .k; �/ 2 Z	0 � C. Moreover, for every h 2 L1loc;poly.R
�C/, the convolution

f � 'h with f 2 S.R�C/ coincides with the ordinary convolution on functions on
R�C, namely,

.f � h/.x/ D h
x Lf ; f i D
Z C1

0

f .x=y/h.y/
dy

y
D
Z C1

0

f .y/h.x=y/
dy

y
:

For a function h 2 L1loc;poly.R
�C/, we set

hC.x/ WD
(
0 if x 	 1;
h.x/ otherwise

h�.x/ WD
(
h.x/ if x 	 1;
0 otherwise:

Clearly both hC and h� belong to L1loc;poly.R
�C/ if h belongs to L1loc;poly.R

�C/.
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Lemma 2.1. Let h 2 L1loc;poly.R
�C/. Suppose that f � h D 0 for some nontrivial

f 2 S.R�C/. Then the Mellin transforms

M.f � h˙/.s/ D
Z C1

0

.f � h˙/.x/xs
dx

x

are entire functions on C.

Definition 2.2. Let h 2 L1loc;poly.R
�C/. Suppose that f � h D 0 for some nontrivial

f 2 S.R�C/. Then the Mellin–Carleman transform MC.h/.s/ of h.x/ is defined by

MC.h/.s/ WD M.f � hC/.s/
M.f /.s/

D �M.f � h�/.s/
M.f /.s/

:

The Mellin–Carleman transform MC.h/ does not depend on the particular choice
of nontrivial f satisfying f � h D 0. By Lemma 2.1 we have

Proposition 2.2. Let h 2 L1loc;poly.R
�C/ � S.R�C/_. Suppose that h is S.R�C/_-

mean-periodic, in other words, suppose that f � h D 0 for some nontrivial f 2
S.R�C/. Then the Mellin–Carleman transform MC.h/.s/ of h.x/ is a meromorphic
function on C.

The Mellin–Carleman transform MC.h/.s/ of h.x/ is not a generalization of the
Mellin transform of h but is a generalization of the half Mellin transform

Z 1

0

h.x/xs
dx

x
:

See Sect. 2 of [15] for more details.

15.2.3 Boundary Term !.f0; s/

In this part, we review several formulas for the boundary term !.f0; s/ attached
to the elliptic surface E ! SpecZ according to Sect. 5 of [15]. Let E be an
elliptic curve over Q with conductor qE . Then the completed L-function�.E; s/ is
defined by

�.E; s/ WD qs=2E .2�/�s� .s/L.E; s/;

where L.E; s/ is the Hasse–Weil L-function appearing in (1). It is conjectured
that �.E; s/ is continued to an entire function and satisfies the functional equation
�.E; s/ D !E�.E; 2 � s/ for some sign !E 2 f˙1g. By (1), the meromorphic
continuation and the functional equation of �.E; s/ implies the meromorphic
continuation and the functional equation of �E.s/. Moreover such nice analytic
properties of �.E; s/ imply the mean-periodicity of the boundary term !.f0; s/

as follows.
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Theorem 2.1. Let E be an elliptic curve over Q and let E ! SpecZ be its regular
model. Assume that �.E; s/ is continued meromorphically to C with finitely many
poles and satisfies the functional equation

�.E; s/2 D �.E; 2 � s/2:

Then the function
hE.x/ WD fE.x/ � x�1fE.x�1/ (8)

with

fE.x/ D 1

2�i

Z

.c/

�.s=2C 1=4/2c�s�1=2
E �E.s C 1=2/2x�sds .c > 1/ (9)

belongs to S.R�C/_, where cE is a positive real constant determined by the singular
fiber of E [5, Sect. 5]. Moreover, hE is S.R�C/_-mean-periodic and has the expansion

hE.x/ D lim
T!1

X

=.�/�T

m�X

mD1
Cm.�/

.�1/m�1

.m � 1/Šx
��.logx/m�1;

where � are poles of �.s=2 C 1=4/2c�s�1=2
E �E.s C 1=2/2 of multiplicity m� and

Cm.�/ are constants determined by the principal part at s D �;

�.s=2C 1=4/2c�s�1=2
E �E.s C 1=2/2 D

m�X

mD1

Cm.�/

.s � �/m CO.1/ when s ! �;

and the sum over � converges uniformly on every compact subset of R�C.

Proof. See Sect. 5 of [15]. ut
Therefore, the mean-periodicity of hE.x/ and the meromorphic continuation of
�.E; s/2 are equivalent to each other in the first approximation.

Remark 2.1. Let S be the set of curves on E consisting of one horizontal curve
which is the image of the zero section of E ! SpecZ and all vertical fibers of
E ! SpecZ. Then we have

�E ;S .f0; s/ D �.s=2/2c�s
E �E.s/2

D
Z 1

1

x�1=2fE.x/xs
dx

x
C
Z 1

1

x�1=2fE.x/x2�s
dx

x
C
Z 1

0

x�1=2hE.x/xs
dx

x
:

(10)

Hence, the function hf0.x/ in the introduction is x�1=2hE.x/.
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As mentioned in the introduction, it is desirable to prove the mean-periodicity of
hE.x/ without the meromorphic continuation of�.E; s/ which is a consequence of
the modularity of E .

15.3 Statement of Results

Throughout this section we denote by A the adele ring AQ of Q. At first, we settle
the following basic assumption.

Basic assumption and notations. Suppose that E=Q is modular. We denote by
.�; V�/ the corresponding cuspidal automorphic representation in L2.GL2.Q/

nGL2.A/; 1/, where 1 is the trivial central character.

Needless to say, the modularity of E=Q is now a theorem by the famous work
of Wiles et al. However it is not proved for a general number field k. We emphasize
this assumption for the future study of this direction.

For the function hE of (8), we have

fx��.logx/kg � T .hE/ � S.R�C/_; (11)

where � extends over all common poles of Mellin–Carleman transforms MC.'/.s/
with hE � ' D 0 that are just all poles of MC.hE/. By (1) and (10), the poles of
MC.hE/ coincide with the zeros ofL.E; s/, ignoring the cancellations in (1). Recall
the construction of Sect. 15.2.1:

fE.�/ I � 2 S.R/0g � V � S.R�C/;

fx�.logx/kg � V? � S.R�C/_; (12)

where � extends over all nontrivial zeros of �.s/ that are also common zeros of the
Mellin transforms of M.E.�// with � 2 S.R/0. Comparing (11) and the second line
of (12), we expect that the space of annihilators T .hE/? is an analogue of V so that
the set of common zeros of the Mellin transforms M. / with  2 T .hE/? is the
set of all zeros of �.E; s/.

15.3.1 Construction on the Positive Real Line

In this part, we construct the space of annihilators T .hE/? attached to the function
hE in (8) by using GL2.A/-theory of Soulé [14] which is an extension of the original
theory of Connes [1], and using the Godement–Jacquet zeta integrals [7].

Let M D Mat2 and G D GL2. Let jj W GA ! R
�C be the module map given

by jgj D j detgjA. Let f� be an admissible matrix coefficient of the cuspidal
automorphic representation .�; V�/ on L2.GQnGA/ D L2.GQnGA; 1/, namely,
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f�.g/ D
Z

ZAGQnGA

'1.hg/'2.h/dh;

for some '1; '2 2 A0.G/ \ V� , where A0.G/ � L2.GQnGA/ is the space of
cuspidal automorphic forms with central character 1. Let � be a Schwartz–Bruhat
function on MA. For a positive real number x, we set Gx D fg 2 GA j jgj D xg.
Define a complex valued function E.�; f�/ on R

�C by

E.�; f�/.x/ D
Z

Gx

�.g/f�.g/dg .x 2 R
�C/ (13)

as an analogue of (7). Then

1. The integral (13) converges absolutely.
2. For a given integer N > 0, there exists a positive constant C D CN such that

jE.�; f�/.x/j � Cx�N (14)

for every x 2 R�C.
3. We have the functional equation

E.�; f�/.x/ D x�2E. O�; Lf�/.x�1/; (15)

where O� is the Fourier transform of � and Lf�.g/ D f�.g�1/.

In addition, we find that

E.�; f�/.x/ D
X

�2GQ

Z

GQnG1�GQnG1
'1.g/'2.h/

Z

A1=Q�

�.h�1a
x�g/da dh dg:

(16)
A function � 2 S.MA/ is called gaussian if every archimedean component has

the form P.m/ exp.�ajmj2/ (m 2 M.Fv/) for some polynomial function P on
M.Fv/ and a positive real number a > 0. Put

S.�/ D f.�; f�/ j� 2 S.MA/ W gaussian; f� : admissible coefficient of �g:

Then (14) and (15) show that E is a map from S.�/ into S.R�C/:

E W S.�/! S.R�C/I .�; f�/ 7! E.�; f�/:

We denote by V� � S.R�C/ the image of this map. Using the function

w0.x/ D 1

2�i

Z

.c/

� .s=4/2 � .cE=qE/
s

nE.s/2
� s4.s � 2/4 � .s � 1/2 � x�sds; (17)
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we define the space W� by

W� D w0 � V� � V� D spanCfw0 � v1 � v2 j vi 2 V�g: (18)

Then the space W� is a subspace of S.R�C/, since w0 2 S.R�C/ and S.R�C/ is closed
under the multiplicative convolution. For h 2 S.R�C/, we define

T .h/? D f g 2 S.R�C/ j g � 
 D 0 for all 
 2 T .h/g

and

W?
� D f ' 2 S.RC/_ jw � ' D 0 for all w 2W� g:

Theorem 3.1. Let E be an elliptic curve over Q and let E ! SpecZ be its regular
model. Let hE be the function in (8). Then we have

T .hE/? �W� and T .hE/ �W?
� :

Hence, W� 6D f0g means S.R�C/_-mean-periodicity of hE.x/. Further, the equality

T .hE/? DW� or T .hE/ DW?
�

implies the absence of cancellations of zeros between

.s � 1/b�.s=2/b�.s/b�.s � 1/ and nE .s/�1�.E; s/.

15.3.2 Adelic Construction

In this part, we consider the adelic version of the construction in the previous
subsection according to Deitmar [3]. Let S.MA/0 be the space of all � 2 S.MA/

such that � and O� send fg 2 MA j det.g/ D 0g D MA n GA to zero. For
� 2 S.MA/0, we define functions E.�/ and OE.�/ on GA by

E.�/.g/ D
X

�2MQ

�.�g/ D
X

�2GQ

�.�g/;

OE.�/.g/ D
X

�2MQ

�.g�/ D
X

�2GQ

�.g�/: (19)
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Then for every � 2 S.MA/0, we have:

1. The sums E.�/ and OE.�/ converge locally uniformly in g with all derivatives.
2. For any N > 0 there exists C > 0 such that

jE.�/.g/j; j OE.�/.g/j � Cmin
�jgj; jgj�1�N : (20)

3. For g 2 GA we have the functional equation

E.�/.g/ D jgj�2 OE. O�/.g�1/: (21)

Hence, E.�/ belongs to the strong Schwartz space

S.GQnGA/ D
\

ˇ2R
j jˇS.GQnGA/:

Let G1
A be the kernel of the module map g 7! jgj. Fix a splitting ß W R�C ! GA of

the exact sequence 1 ! G1
A ! GA ! 1 such that .id; ß/ W G1

A � R�C ! GA

is an isomorphism. We denote by R the image of splitting ß. Let '� 2 V� �
L2.GQnG1

A/ ' L2.RGQnGA/ be a vector '� D ˝v'�;v such that '�;v is a
normalized class one vector for almost all places. Further, we assume that '� is
smooth and '�.1/ 6D 0.

We define

W� D spanC
˚
.w0 ı ß/ � .E.�1/ � '�/ � .E.�2/ � '�/

ˇ
ˇ�i 2 S.MA/

� � S.GQnGA/;

where w0 is the function in (17), .E.�/ � '�/.x/ D E.�/.x/ � '�.x/ and � is the
convolution on GQnGA via the right regular representation R, and

W?
� D f	 2 S.GQnGA/

_ jw � 	 � 0; 8w 2W�g:

For 	 2 S.GQnGA/
_ we define

T .	/ D spanCfR_.g/	 j g 2 GAg;

where R_ is the transpose of the right regular representation of GA on S.GQnGA/

with respect to the pairing h ; i of S.GQnGA/ and S.GQnGA/
_.

Theorem 3.2. Let hE be the function on R�C associated to the Hasse zeta function
�E.s/2 as in Theorem 2.1. Under the above notations, we have

T .hE ı ß/ �W?
� :

The equality
T .hE ı ß/ DW?

�
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implies the absence of cancellation of the zeros between

.s � 1/b�.s=2/b�.s/b�.s � 1/ and nE.s/�1�E.s/:

Remark 3.1. There are no essential obstructions to extend the above results to a
general algebraic number fields k under the assumption for automorphic properties
of the L-function of E=k, since Soulé [14] and Deitmar [3] are done for general
global fields k and analytic properties of hE for general algebraic number fields k
are similar to the case of the rational number field under automorphic properties
of E=k (see Sect. 5 of [15], in particular the series expansion of hE consisting of
x�.logx/k).

15.4 Proof of Results

15.4.1 Proof of Theorem 3.1

First, we prove the implication W� � T .hE/?. It suffices to prove that w � hE � 0
for every w 2 W� : By Theorem 2.1 the function hE is a series consisting of
functions f�;k.x/ D x��.logx/k . For a function w 2W� , we have

w � f�;k.x/ D
Z 1

0

w.y/f�;k.x=y/
dx

x

D
kX

jD1
.�1/k

 
k

j

!

x��.logx/k�j
Z 1

0

w.y/y�.logy/j
dy

y
:

Here
Z 1

0

w.y/y�.logy/j
dy

y
D dj

d�j

Z 1

0

w.y/y�
dy

y
:

By definition (18) of the space W� , we have

Z 1

0

w.y/y�
dy

y
D
Z 1

0

�
w0 � E.�1; f�/ � E.�2; f 0

�/
�
.y/y�

dy

y

D
Z 1

0

w0.y/y
� dy

y
�
Z 1

0

E.�1; f�/.y/y
� dy

y
�
Z 1

0

E.�2; f
0
�/.y/y

� dy

y

for some .�1; f�/; .�2; f 0
�/ 2 S.�/. From the construction of V� , we have

Z 1

0

E.�; f�/.y/y
� dy

y
D F�;f� .�/L.�; � � 1=2/ D F�;f� .�/L.E; �/
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where F�;f� .�/ is an entire function determined by .�; f�/ (see [7, Theorem 13.8]
and [14, Sect. 2.5]). The second equality is a consequence of the modularity ofE=Q.
As a consequence of the above argument, we obtain

Z 1

0

w.y/y�
dy

y
D � .�=4/2�4.� � 2/4.� � 1/2.cE=qE/�

�nE.�/�2L.E; �/2F�2;f� .�/F�2;f 0

�
.�/; (22)

and w�hE is a series consisting of (22) and its j th derivative with j � m�. Because
E=Q is modular, �.E; s/ is an entire function. Therefore, the complex number �
appearing in the expansion of hE.x/ is one of the following:

1. � D 0 or 2 and m� D 4.
2. � 6D 1 is a zero of �.E; s/ with nE .�/�1 6D 0 and 0 � m� � the multiplicity of

zero of �.E; s/2 at s D �.
3. � 6D 1 is a common zero of �.E; s/ and nE.s/�1, and �2 � m� � 2 � the

multiplicity of zero of �.E; s/2 at s D �.
4. � 6D 1 is a zero of nE .s/�1 with �.E; �/ 6D 0, and m� D 2.
5. � D 1 and �2 � 2J � m� � 2 � 2J � the multiplicity of zero of �.E; s/2 at
s D �, where J is the number of singular fibers of E (see (2)).

Hence, w � hE � 0. Because w was arbitrary, we obtain W� � T .hE/?.
The other implication T .hE/ � W?

� is proved by a similar way. The following
fact is useful for this direction (see [7, Sect. 13] and [14, Sect. 2.5]); there exists
finitely many .�˛; f�;˛/ 2 S.�/ such that

X

˛

Z 1

0

E.�˛; f�;˛/.x/x
s dx

x
D L.�; s � 1=2/:

The final assertion for T .hE/? D W� is obvious from (22) and (1)–(5).
For T .hE/ D W?

� , we note that W?
� consists of f�;k such that � is a zero of

nE.s/�2�.E; s/s4.s � 2/4.s � 1/2 and k � the multiplicity of � [14]. If f�;k 2
T .hE/, then � is a pole of order 	 k of MC.hE/ by the general theory of mean-
periodic function (e.g., [8, Theorem in lecture 4]). Hence, the cancellation cannot
occur when T .hE/ DW?. �

15.4.2 Proof of Theorem 3.2

This is proved similarly to the proof of Theorem 3.1. For T .hE ı ß/ � W?
� , it is

sufficient to prove that .hE ıß/�w D 0 for any w 2W� . By the expansion of hE.x/
in Theorem 2.1, hE ı ß is a series consisting of f�;k ı ß. We have
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.f�;k ı ß/ � w.y/D
kX

jD0
.�1/j

 
k

j

!

jyj��.log jyj/k�j
Z

GQnGA

w.x/jxj�.log jxj/jdx:

Here
Z

GQnGA

w.x/jxj�.log jxj/j dx D dj

d�j

Z

GQnGA

w.x/jxj�dx;

and
Z

GQnGA

w.x/jxj�dx D
Z

R�

C

w0.x/x
� dx

x

�
Z

GQnGA

E.�1/.x/'�.x/jxj�dx
Z

GQnGA

E.�2/.x/'�.x/jxj�dx;

since j j� is a multiplicative (quasi) character. By Lemma 3.5 of [3],

Z

GQnGA

E.�/.x/'�.x/jxj�dx D L.�; s � 1=2/F�;'� .s/ D L.E; s/F�;'� .s/;

where F�;'� .s/ is an entire function. Therefore, .f�;k ı ß/ � w.y/ D 0 for each �,
1 � k � m� appearing in the expansion of hE , since � is a zero of L.E; s/ or a zero
of
R
R�

C

w0.x/x�
dx
x

. Hence, .hE ı ß/ � w D 0 for any w 2W� . �

15.5 Note on Mean-Periodicity and Modularity

Recall the discussion of Sect. 15.3. Many elements of the space of annihilators of
T .h/ with respect to the convolution satisfied a kind of modular relation (see (15)
or (21)). In this final section, we observe that the space of annihilators of T .h/
contains an element satisfying some modular relation in general. It shows a duality
of mean-periodicity and certain kind of modularity.

15.5.1 Basic Assumptions

Let X be a locally convex separated topological C-vector space consisting of C-
valued functions on R�C satisfying:

(X-1) The Hahn–Banach theorem is available in X .
(X-2) The Mellin transform M.g/.s/ is defined for every element g of the dual

space X_, and M.g/.s/ is an entire function.
(X-3) The spectral synthesis holds in X .
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The second condition is settled in order to use the theory of the Mellin–Carleman
transform (see Definition 2.2). Recall that a function h 2 X is called (X -)mean-
periodic if there exists nontrivial g 2 X_ such that h � g � 0. By (X-1), the
mean-periodicity of h 2 X is equivalent to T .h/ 6D X . For a mean-periodic function
h 2 X , the set of all poles of MC.hI s/ is called the spectrum of h. We denote by
Spec.h/ the set of spectrum of h without multiplicity.

Throughout this section, we study mean-periodic functions h 2 X satisfying the
following three conditions:

(h-1) h.x/ D �x�1h.x�1/.

(h-2)
X

�2Spec.h/

m�

.1C j�j/2 <1; wherem� is the multiplicity of � 2 Spec.h/.

(h-3) two numbers

�� WD inff<.�/ I � 2 Spec.h/g; �C WD supf<.�/ I � 2 Spec.h/g

are both finite, namely, Spec.h/ is contained in some vertical strip of finite
width.

15.5.2 Symmetry of the Spectrum

Lemma 5.1. Let h 2 X be a mean-periodic function satisfying (h-1). Then

� 2 Spec.h/ implies 1 � � 2 Spec.h/: (23)

Remark 5.1. We do not know whether (23) holds if we exclude .X-3/.

Proof. By (X-3), every mean-periodic function h 2 X has an expansion

h.x/ D
X

�2Spec.h/

m��1X

mD0
am.�/ x

��.logx/m .am.�/ 6D 0/; (24)

where the meaning of the series on the right-hand side should be considered in
the sense of the topology on X . The series expansion (24) and (h-1) implies (23).
Moreover,

am.�/ D .�1/mC1am.1 � �/
for every � 2 Spec.h/ and 0 � m < m�. ut
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15.5.3 Modular Type Realization of the Mean-Periodicity

Take a nontrivial g 2 X_ satisfies h � g � 0, and denote by eG0.s/ the Weierstrass
product attached to Spec.h/:

eG0.s/ D sm0
Y

06D�2Spec.h/

n�
1 � s

�

�
exp

� s

�

�om�
:

By definition of the spectrum, Spec.h/ is a subset of the zeros of the Mellin
transform M.gI s/, and eG0.s/ divide M.gI s/ as M.gI s/ D eG0.s/ � eG1.s/ for some
entire function eG1.s/. Define

B0 WD �1
2

X

�2Spec.h/

m�

�
1

�
C 1

1 � �
�

which is well defined by (h-2) and (23), and put

G0.s/ WD exp.B0s/ � eG0.s/: (25)

Then G0.s/ satisfies the functional equation

G0.s/ D G0.1 � s/ (26)

by (23) and the correction factor exp.B0s/.

In the later, we take X D C1
poly.R

�C/ which is the space of smooth functions on
R�C having at most polynomial growth as x ! 0C and x ! C1, and satisfies
(X-1), (X-2), and (X-3) (see Sect. 2 of [15]).

Theorem 5.1. Let X D C1
poly.R

�C/. Suppose that h 2 X is mean-periodic and
satisfies (h-1), (h-2), and (h-3). In addition, suppose that h satisfies one of the
following conditions:

(?) For any �1 < a < b < C1, there exist positive numbers Ca;b , Aa;b , and
ta;b such that

jG0.� C i t/j � Ca;b jt j�1�Aa;b
for every a � � � b and jt j 	 ta;b , where G0.s/ is the entire function
defined in (25).

(??) There exists ı > 0 such that

X

�2Spec.h/

m�

.1C j�j/2�ı <1:

Then there exists a nonzero function g 2 X_ satisfying h � g D 0 and
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g.x�1/ D xg.x/: (27)

Proof. First, we consider the case when (?) holds. Then, by (?), the inverse Mellin
transform g0.x/ of G0.s/ is defined by

g0.x/ D 1

2�i

Z cCi1

c�i1
G0.s/ x

�sds

for each c 2 R, and g0.x/ is smooth. The functional equation (26) implies
g0.x

�1/ D xg0.x/. Moreover, by moving the path of integration to the right (resp.
left), we have

g0.x/ D O.x�N / .resp. g0.x/ D O.xN //
for every N > 0. Here the moving the path of integration is justified by (?). Hence
g0.x/ belongs to the dual space of X D C1

poly.R
�C/. Using the expansion (24), we

have

.h � g0/.x/ D
Z 1

0

h.x=y/g0.y/
dy

y

D
X

�2Spec.h/

m��1X

mD0

mX

jD0

 
m

j

!

.�1/m�j am.�/ x�� .logx/j
Z 1

0

g0.y/y
�.logy/m�j dy

y

D
X

�2Spec.h/

m��1X

mD0

mX

jD0

 
m

j

!

.�1/m�j am.�/ x�� .logx/jG.m�j /
0 .�/ D 0;

since Spec.h/ is a subset of zeros of G0.s/. Hence, we have h � g0 D 0. Thus, the
desired assertion is obtained by taking g D g0.

Successively, suppose that (??) holds. Then (??) implies

jG0.s/j � exp.C"jsj2�ıC"/ (28)

for every " > 0 by the general theory of the Weierstrass product [9, Sect. 4.3]. Define

G.s/ WD exp.s.s � 1// �G0.s/:
Then G.s/ satisfies G.s/ D G.1 � s/ and

jG.� C i t/j � exp.�.� � 1/� t2/ exp.C"jsj2�ıC"/ (29)

for every " > 0. Hence, in particular, for any �1 < a < b < C1, there exists
positive numbers Ca;b , Aa;b , and ta;b such that

jG.� C it/j � Ca;b jt j�1�Aa;b

for every a � � � b and jt j 	 ta;b . Thus, similar to the proof of the first case, we
find that the inverse Mellin transform g.x/ of G.s/ is a required function. ut
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As in (23), the spectrum of a mean-periodic function h has the symmetry � 7!
1 � � as a consequence of (h-1) (and (X-3)). However, we especially mention that
the symmetry � 7! 1 � � is not a simple consequence of the functional equation
MC.h/.s/ D MC.h/.1 � s/ of the Mellin–Carleman transform, since condition
(h-1) itself does not imply such functional equation. The symmetry of the spectrum
is a consequence of the mean-periodicity of h and condition (h-1), since these two
properties lead to the above functional equation of MC.h/.s/ (cf. Proposition 2.10
and Remark 2.11 of [15]). Therefore, one interpretation of Theorem 5.1 is that the
mean-periodicity of h 2 X involves a kind of modularity implicitly (together with
(h-1)�(h-3)), and it is realized in the dual space X_ as the modular type equality
(27). In the next subsection, we try to express equality (27) coming from the mean-
periodicity of h 2 X as a kind of summation formula (see (33)) in more number
theoretical setting.

15.5.4 A Kind of Summation Formula

Suppose that the entire function G0.s/ defined by (25) has the form

G0.s/ D � .hI s/D.hI s/ (30)

such that

D.hI s/ D
1X

nD1

cn

ns
.converges absolutely for <.s/� 0/ (31)

and � .hI s/ is a � -like function which has no zeros in �� � <.s/ � �C, and
D.hI s/, � .hI s/ are meromorphic functions on C. Then Spec.h/ is a subset of all
zeros of D.hI s/.

For a “nice” test function � 2 S.R/, for example, its Mellin transform M.�/.s/
vanishes at each pole of D.hI s/, we “define”

Eh.�/.x/ WD
1X

nD1
cn�.nx/ (32)

referring to definition (7). Then Eh.�/.x/ is of rapid decay as x ! C1, and

M.Eh.�//.s/ D D.hI s/M.�/.s/

is an entire function. Since G0.s/ D G0.1 � s/, we have

D.hI s/M.�/.s/ D D.hI 1 � s/� .hI 1 � s/
� .hI s/ M.�/.s/:
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Taking the inverse Mellin transform of both sides, we formally obtain

1X

nD1
cn �.nx/ D 1

x

1X

nD1
cn .Fh�/

�n

x

�
; (33)

where

Fh�.x/ WD 1

2�i

Z cCi1

c�i1
� .hI 1 � s/
� .hI s/ M.�I s/ xs�1ds: (34)

Let S.h/ be the subspace of S.R/ such that:

1. �.x/ D �.�x/ for every � 2 S.h/.
2. M.�/.s/ vanishes at all poles of D.hI s/ for every � 2 S.h/.
3. S.h/ is closed under the operator Fh of (34).

If S.h/ is not empty and not trivial, Eh.�/.x/ is also of rapid decay as x ! 0C
by (33) for every � 2 S.h/, and hence, Eh.�/.x/ belongs to the dual space of
C1

poly.R
�C/, and satisfies h � Eh.�/ D 0. That is, the space of annihilators of T .h/

contains the image of the map Eh W S.h/ ,! C1
poly.R

�C/_.

It is possible to regard the “summation formula” (33) as a trace of equality (27)
(cf. Sects. 15.2.1, 15.3.1, and 15.3.2).

Acknowledgments The author thanks Ivan Fesenko for his many helpful comments and questions
to this research and also the School of Mathematical Sciences of the University of Nottingham for
the hospitality on author’s stay in November 2007–February 2008, August 2008. The author had
fruitful conversations and discussions with Guillaume Ricotta and Ivan Fesenko during this stay.
This work was partially supported by Grant-in-Aid for JSPS Fellows.

References

1. Alain Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta
function, Selecta Math. (N.S.) 5 (1999), no. 1, 29–106. MR MR1694895 (2000i:11133)

2. Alain Connes and Matilde Marcolli, Noncommutative geometry, quantum fields and motives,
American Mathematical Society Colloquium Publications, vol. 55, American Mathematical
Society, Providence, RI, 2008. MR MR2371808 (2009b:58015)

3. Anton Deitmar, A Polya-Hilbert operator for automorphic L-functions, Indag. Math. (N.S.) 12
(2001), no. 2, 157–175. MR MR1913639 (2003h:11055)

4. Ivan Fesenko, Analysis on arithmetic schemes. I, Doc. Math. (2003), no. Extra Vol., 261–284
(electronic), Kazuya Kato’s fiftieth birthday. MR MR2046602 (2005a:11186)

5. Ivan Fesenko, Adelic approach to the zeta function of arithmetic schemes in dimension two,
Mosc. Math. J. 8 (2008), no. 2, 273–317, 399–400, (also available at author’s web page). MR
MR2462437

6. Ivan Fesenko, Analysis on arithmetic schemes. II, J. K-Theory 5 (2010), no. 3, 437–557. MR
2658047
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