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Preface

This volume is an outgrowth of a special summer term on “Harmonic analysis,
representation theory, and integral geometry”, hosted by the Max Plank Institute
for Mathematics (MPIM) and the then newly founded Hausdorff Research Institute
for Mathematics (HIM) in Bonn in 2007. It was organized and led by S. Gindikin
and B. Krotz with the help of O. Offen and E. Sayag. The purpose of this book is
to make an essential part of the activity from the summer term available to a wider
audience.

The book contains research contributions on the following themes: connecting
periods of Eisenstein series on orthogonal groups and double Dirichlet series
(Gautam Chinta and Omer Offen); vanishing at infinity of smooth functions on
symmetric spaces (Bernhard Krotz and Henrik Schlichtkrull); a formula involving
all the Rankin—Selberg convolutions of holomorphic and non-holomorphic cusp
forms (Jay Jorgenson and Jiirg Kramer); a scheme of a new proof for the so-
called Helgason conjecture on a Riemannian symmetric space X = G/K of the
non-compact type (Simon Gindikin); an algorithm for the computation of special
unipotent representations attached to certain regular K-orbits on a flag variety of the
dual group (Dan Ciubotaru, Kyo Nishiyama, and Peter E. Trapa); applications of
symplectic geometry, particularly moment maps, to the study of arithmetic issues
in invariant theory (Marcus J. Slupinski and Robert J. Stanton); and restrictions of
representations of SL,(C) to SL,(R) treated in a geometric way, thus providing a
useful introduction to this research area (Birgit Speh and T. N. Venkataramana).

In addition, the volume contains three papers of an expository nature that should
be considered a bonus. The first, by Joseph Bernstein, is a course for beginners
on the representation theory of Lie algebras; experts can also benefit from this.
Although Feigin and Zelevinski published an expanded version of these notes, the
original from 1976, which is much more suitable for beginners, had never been
published. The second contribution, by Jacques Faraut, introduces the work of
Okounkov and Olshanski on the asymptotics of spherical functions on symmetric
spaces of a large rank. The third, by Yuri A. Neretin, is an introduction to the Stein—
Sahi complementary series.
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On Function Spaces on Symmetric Spaces

Bernhard Krotz and Henrik Schlichtkrull

Abstract Let Y = G/H be a semisimple symmetric space. It is shown that the
smooth vectors for the regular representation of G on L?(Y') vanish at infinity.

Keywords Smooth vectors * Decay of matrix coefficients * RiemannLebesgue
lemma ¢ Symmetric spaces

Mathematics Subject Classification (2010): 43A85, 43A90, 46E35

1 Vanishing at Infinity

Let G be a connected unimodular Lie group, equipped with a Haar measure dg, and
let 1 < p < oco. We consider the left regular representation L of G on the function
space £, = L7(G).

Recall that f € E, is called a smooth vector for L if and only if the map

G—E, g—Lgf
is a smooth £ ,-valued map.

Write g for the Lie algebra of G and U(g) for its enveloping algebra. The
following result is well known, see [3].
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2 B. Kré6tz and H. Schlichtkrull

Theorem 1. The space of smooth vectors for L is
E;’O ={feC®G) | L,f € L?(G) forallu € U(g)}.

Furthermore, E;’o C C°(G), the space of smooth functions on G which vanish at
infinity.
Our concern is with the corresponding result for a homogeneous space Y of G.

By that we mean a connected manifold ¥ with a transitive action of G. In other
words,

Y =G/H

with H C G a closed subgroup. We shall require that ¥ carries a G-invariant
positive measure dy. Such a measure is unique up to scale and commonly referred
to as Haar measure. With respect to dy, we form the Banach spaces E, :=
L?(Y). The group G acts continuously by isometries on £, via the left regular
representation:

L) fl0) = f(g7'y) (g€G.yeY. feE).

We are concerned with the space £7)° of smooth vectors for this representation. The
first part of Theorem 1 is generalized as follows, see [3], Theorem 5.1.

Theorem 2. The space of smooth vectors for L is
EX ={feC®Y)|L.f € LV(Y) forallu e U(g)}.

We write C5°(Y) for the space of smooth functions vanishing at infinity. Our
goal is to investigate an assumption under which the second part of Theorem 1
generalizes, that is,

E® C C(Y). (1)

Notice that if H is compact, then we can regard L?(G/H) as a closed
G-invariant subspace of L?(G), and (1) follows immediately from Theorem 1.

Likewise, if ¥ = G regarded as a homogeneous space for G x G with the
leftxright action, then again (1) follows from Theorem 1, since a leftxright smooth
vector is obviously also left smooth.

However, (1) is false in general as the following class of examples shows.
Assume that Y has finite volume but is not compact, e.g. ¥ = S1(2,R)/SI1(2,Z).
Then the constant function 1y is a smooth vector for E”, but it does not vanish at
infinity.
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2 Proof by Convolution

We give a short proof of (1) for the case Y = G, based on the theorem of Dixmier
and Malliavin (see [2]). According to this theorem, every smooth vector in a Fréchet
representation (7, E) belongs to the Garding space, that is, it is spanned by vectors
of the form 7 ( f)v, where f € C>°(G) andv € E. Let such a vector L( f)g, where
g € E, = L?(G) be given. Then by unimodularity

L(/)g)(r) = /G F)gGy) dx = /G Fox g () dx. @)

For simplicity, we assume p = 1. The general case is similar. Let 2 C G be
compact such that |g| integrates to < € over the complement. Then for y outside of
the compact set supp f - 2, we have

yxlesuppf = x ¢ Q,

and hence

IL(f)gy)] = sup|f] /m lg(x)|dx < sup|f]e.

It follows that L( f)g € Co(G).
Notice that the assumption ¥ = G is crucial in this proof, since the convolution
identity (2) makes no sense in the general case.

3 Semisimple Symmetric Spaces

Let Y = G/H be a semisimple symmetric space. By this, we mean:

* G is a connected semisimple Lie group with finite center.
* There exists an involutive automorphism t of G such that H is an open subgroup
of the group G* = {g € G | t(g) = g} of 7-fixed points.

We will verify (1) for this case. In fact, our proof is valid also under the more general
assumption that G/H is a reductive symmetric space of Harish—Chandra’s class,
see [1].

Theorem 3. LetY = G/H be a semisimple symmetric space, and let E, = L?(Y)
where 1 < p < 00. Then
E}° C Coo(Y).
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Proof. A little bit of standard terminology is useful. As customary we use the
same symbol for an automorphism of G and its derived automorphism of the Lie
algebra g. Let us write g = b + q for the decomposition in t-eigenspaces according
to eigenvalues +1 and —1.

Denote by K a maximal compact subgroup of G. We may and shall assume
that K is stable under r. Write 6 for the Cartan-involution on G with fixed
point group K, and write g = € 4 p for the eigenspace decomposition for the
corresponding derived involution. We fix a maximal abelian subspace a C p N q.

The simultaneous eigenspace decomposition of g under ad a leads to a (possibly
reduced) root system ¥ C a*\{0}. Write a., for a with the root hyperplanes
removed, i.e.:

g = {X €a| (Yo € ) a(X) # 0}.

Let M = ZHQK(O.) and Wy = NHﬂK(a)/M.
Recall the polar decomposition of Y. With yo = H € Y the base point of Y it
asserts that the mapping

p:K/Mxa—Y, (kM,X) kexp(X) - yo

is differentiable, onto and proper. Furthermore, the element X in the decomposition
is unique up to conjugation by Wy, and the induced map

K/M Xy, g = Y

is a diffeomorphism onto an open and dense subset of Y.

Let us return now to our subject proper, the vanishing at infinity of functions
in E7°. Let us denote functions on Y by lowercase roman letters, and by the
corresponding uppercase letters their pull backs to K/ M xa, forexample F' = fop.
Then f vanishes at infinity on Y translates into

lim sup |F(kM, X)| = 0. 3)
X—o0 kekK

X€a

We recall the formula for the pull back by p of the invariant measure dy on Y.
For each « € X we denote by g* C g the corresponding root space. We note
that g* is stable under the involution f7. Define p,, resp. ¢, as the dimension
of the Ot-eigenspace in g* according to eigenvalues +1,—1. Define a function
J on a by

J(X) = | [T lcosha(X)]e - [sinhe(X)]7| .

acxt
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With d (kM) the Haar-measure on K/M and dX the Lebesgue-measure on a
one then gets, up to normalization:

p*(dy) = J(X)d(k,X) := J(X) d(kM) dX.

We shall use this formula to relate certain Sobolev norms on ¥ andon K/M X a.
Fix a basis Xi,..., X, for g. For an n-tupel m = (m1,...,m,) € Nj, we define
elements X™ € U(g) by

XM= X" X
These elements form a basis for 2/ (g). We introduce the L”-Sobolev norms on Y,
1/p
Swalf)i= Y [ [ ieem o dy}
[m|<m

where Q C Y, and where |[m| := m; + ... + m,. Then a function f € C*°(Y)
belongs to E7° if and only if S, y (f) < oo for all m.
Likewise, for V' C a we denote

1/p
S* (F):= L(Z™F(&M, X)|1?P J(X)d(k, X .
* L (F) Em[[l{xvu VE (kM. X)I? J(X) d( )]

Here Z refers to members of some fixed bases for £ and a, acting from the left on
the two variables, and again m is a multiindex.
Observe that for Z € a we have for the action on a,

[L(Z)F1(kM. X) = [L(Z") f1(k exp(X) - yo),
where Z¥ := Ad(k)(Z) can be written as a linear combination of the basis elements

in g, with coefficients which are continuous on K. It follows that for every m there
exists a constant C,,, > 0 such that for all F = f o p,

Sy (F) = CuSma(f), )

where Q@ = p(K/M, V) = Kexp(V) - yo.
Let € > 0 and set

a={Xca|(Va € X) |a(X)| > ¢}
Observe that there exists a constant C. > 0 such that

(VX €a) J(X) = Ce. &)
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We come to the main part of the proof. Let f € E;’o. We shall first establish that

lim F(eM, X) = 0. (6)
X€ae

It follows from the Sobolev lemma, applied in local coordinates, that the
following holds for a sufficiently large integer m (depending only on p and the
dimensions of K/M and a). For each compact symmetric neighborhood V' of 0 in
a, there exists a constant C > 0 such that

|F(eM., 0)]

1/p
m 14
=C ) [/K/MXVI[L(Z YF|(kM, X)|? d (k. X)} A

[m|<m

forall F € C*°(K/M x a). We choose V' such that ac + V' C ac2.
Let 6 > 0. Since f € E?, it follows from (4) and the properness of p that there
exists a compact set B C a with complement B¢ C a, such that

S;:Bt(F) = CmSmQ(f) < 8’ (8)

where Q = K exp(B°) - yo.
Let Xy € a. N (B + V). Then X; + X € a.» N B¢ for X € V. Applying (7) to
the function
Fi(kM,X)=F(kM, X, + X),

and employing (5) for the set a. /2, we derive

|F(eM, X1)|

1/p
< m p
<C E |:/1</Mxv [[L(Z™)F](kM, X)| d(k,X)}

1/p
<C’ E L(Z™F|(kM, X)|? J(X)d(k, X

[m|<m

= C'S’ 5. (F) < C's,

from which (6) follows.

In order to conclude the theorem, we need a version of (6) which is uniform for
all functions L(q) f, for ¢ in a fixed compact subset Q of G.

Let § > 0 be given, and as before let B C a be such that (8) holds. By the
properness of p, there exists a compact set B’ C a such that

QKexp(B) - yo C Kexp(B') - yo.
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We may assume that B’ is Wy -invariant. Then for each k € K, X ¢ B’ and
q € Q we have that

q "kexp(X) - yo ¢ Kexp(B) - yo, )

since otherwise we would have
kexp(X) - yo € gK exp(B) - yo C K exp(B') - yo

and hence X € B'.
We proceed as before, with B replaced by B’, and with f, F replaced by f, =
L,f, F, = f; 0p. We thus obtain for X; € a. N (B’ + V),

|Fy(eM, X)| < CSyy e (Fy) < C CuSmr (fy)

where Q' = K exp((B')°) - yo.

Observe that for each X in g the derivative L(X) f; can be written as a linear
combination of derivatives of f by basis elements from g, with coefficients which
are uniformly bounded on Q. We conclude that S,, o/ ( f;) is bounded by a constant
times S, p—1g/(f), with a uniform constant for g € Q. By (9) and (8), we conclude
that the latter Sobolev norm is bounded from the above by §.

We derive the desired uniformity of the limit (6) forq € Q,

lim sup |F,;(eM,X)| = 0. 10)
Yoo a
Finally, we choose an appropriate compact set Q. Let Cy,...,Cy C a be the

closed chambers relative to X. For each chamber C;, we choose X; € C; such that
X; + C; C ac. It follows that

N
a=JX; + a0 an

j=1

Seta; = exp(X;) € A and define

N
0 :=|Ja;K.
j=1

Note that for ¢ = a;k we have

Fy(eM,X) = F(k™'M,X — X;).
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Let § > 0 be given. It follows from (10) that there exists R > 0 such that
|Fy(eM,Y)| < forallqg € Q andall Y € a. with |[Y| > R. For every X € a with
|X| > R + max; |X;|, we have X € —X, + a. for some j and |X + X;| > R.
Hence forall k € K,

|F(kM,X)| = |Fy(eM. X + X;)| <,

where ¢ = a;k~!. Thus,
lim F(kM,X) =0,
X—o00

uniformly over k € K, as was to be shown. O

Remark. Let f € L>(Y) be a K -finite function which is also finite for the center of
U(g). Then it follows from [4] that f vanishes at infinity. The present result is more
general, since such a function necessarily belongs to E3°.
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A Relation Involving Rankin-Selberg
L -Functions of Cusp Forms and Maass Forms

Jay Jorgenson and Jiirg Kramer

Abstract In previous articles, an identity relating the canonical metric to the
hyperbolic metric associated with any compact Riemann surface of genus at least
two has been derived and studied. In this article, this identity is extended to any
hyperbolic Riemann surface of finite volume. The method of proof is to study
the identity given in the compact case through degeneration and to understand
the limiting behavior of all quantities involved. In the second part of the paper,
the Rankin—Selberg transform of the noncompact identity is studied, meaning that
both sides of the relation after multiplication by a nonholomorphic, parabolic
Eisenstein series are being integrated over the Riemann surface in question. The
resulting formula yields an asymptotic relation involving the Rankin-Selberg
L-functions of weight two holomorphic cusp forms, of weight zero Maass forms,
and of nonholomorphic weight zero parabolic Eisenstein series.
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1 Introduction

1.1 Background

Beginning with the article [13], we derived and studied a basic identity, stated in
(1) below, coming from the spectral theory of the Laplacian associated with any
compact hyperbolic Riemann surface. In the subsequent papers, this identity was
employed to address a number of problems, including the following: Establishing
precise relations between analytic invariants arising in the Arakelov theory of
algebraic curves and hyperbolic geometry (see [13]), proving the noncompleteness
of a newly defined metric on the moduli space of algebraic curves of a fixed
genus (see [14]), deriving bounds for canonical and hyperbolic Green’s functions
(see [15]), and obtaining bounds for Faltings’s delta function with applications
associated with Arakelov theory (see [16]). In this article, we expand our application
of the results from [13] to analytic number theory. In brief, we first generalize
the identity (1) to general noncompact, finite volume hyperbolic Riemann surfaces
without elliptic fixed points; this relation is stated in equation (2) below. We then
compute the Rankin—Selberg convolution with respect to (2), and show that the
result yields a new relation involving Rankin—Selberg L-functions of cusp forms of
weight two and Maass forms, as well as the scattering matrix of the nonholomorphic
Eisenstein series of weight zero.

1.2 The Basic Identity

Let X denote a compact hyperbolic Riemann surface, necessarily of genus g > 2.
Let { f;} be a basis of the g-dimensional space of cusp forms of weight two, which
we assume to be orthonormal with respect to the Petersson inner product. Then
we set

NPz Adz

1
Mean(z) = — - 5 I
8 =

.8
for any pointz € X. Let Apy, denote the hyperbolic Laplacian acting on the space of
smooth functions on X, and K(¢; z, w) the corresponding heat kernel; set K(¢;z) =
K(t;z,z). We use snyp to denote the (1, 1)-form of the constant negative curvature
metric on X such that X has volume one, and pnyp to denote the (1, 1)-form of the
metric on X with constant negative curvature equal to —1. With this notation, the
key identity of [13] states

1 00
Hcan(Z) = /’Lshyp(z) + g/o AhypK(t;Z) dtﬂhyp(z) (z € X). (D
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The first result in this paper is to generalize (1) to general noncompact, finite volume
hyperbolic Riemann surfaces without elliptic fixed points. Specifically, if X is such
a noncompact, finite volume hyperbolic Riemann surface of genus g with p cusps
and no elliptic fixed points, then

p 1 [
Hen(2) = (1 + g) @) + 5= /0 AnpK(6:2)dt gy (3) (2 € X).
@)

The proof of (2) we present here is to study (1) for a degenerating family of
hyperbolic Riemann surfaces and to use known results for the asymptotic behavior
of the canonical metric form p,, (see [12]), the hyperbolic heat kernel (see [18]),
and small eigenvalues and eigenfunctions of the Laplacian (see [21]).

In [2], the author extends the identity (2) to general finite volume quotients of
the hyperbolic upper half-plane, allowing for the presence of elliptic elements. The
proof does not employ degeneration techniques, as in this paper, but rather follows
the original method of proof given in [13] and [15]. The article [2] is part of the
Ph.D. dissertation completed under the direction of the second named author of the
present article.

1.3 The Rankin—Selberg Convolution

For the remainder of this article, we assume p > 0. Let P denote a cusp of X and
E p 5 (z) the associated nonholomorphic Eisenstein series of weight zero. In essence,
the purpose of this article is to evaluate the Rankin—Selberg convolution with respect
to (2), by which we mean to multiply both sides of (2) by Ep(z) and to integrate
overallz € X.

By means of the uniformization theorem, there is a Fuchsian group of the first
kind I € PSL,(R) such that X is isometric to I"'\H. Furthermore, we can choose I"
so that the point i co in the boundary of H projects to the cusp P, which we assume
to have width b. Writing z = x + iy, well-known elementary considerations then
show that the expression

/ EP,s (Z)“can (Z)
X

1 o0
- /X Eps(2) ((1 + %) @) + 5= /0 AnpK(t:2)di uhyp(z))

is equivalent to

[ele) b
/ / ¥’ Uean(2)
y=0Jx=0

oo b 1 oo
= /y=0 /x=0 ys ((1 + %) I'Lshyp(Z) + g/() AhypK(t;Z) dr ,U«hyp(Z))- 3)
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The majority of the computations carried out in this article are related to the
evaluation of (3). To be precise, for technical reasons we consider the integrals in
(3) multiplied by the factor 2gh~' 7T (5)¢ (2s), where I'(s) is the I'-function and
£ (s) is the Riemann ¢-function.

1.4 The Main Result

Having posed the problem under consideration, we can now state the main result of
this article after establishing some additional notation.

The cusp forms f;, being invariant under the map z — z + b, allow a Fourier
expansion of the form

)
fj(Z) = ZajyneZng/b.
n=1

Following notations and conventions in [4], we let
L(s, f; ® ) = Gools) - L(s, f5 & ), )
where

Goo(s) = ) >0 ()T (s + 1)2(25),

L. fi®f)=).

n=1

Iaj,n|2
(/b1

As shown in [4], the Rankin—Selberg L-function Z(s, fi® 7 ;) is holomorphic for
s € C with Re(s) > 1, admits a meromorphic continuation to all s € C, and is
symmetric under s — 1 —s.

Let ¢; be a nonholomorphic weight zero form which is an eigenfunction of Ay,
with eigenvalue A; = s;(1 —s;), hence s; = 1/2 + ir;. From [11], we recall the
expansion

9j(@) =ajo(y) + Zaj,n Wi, (nz/b),
n#0

where

ajo(y) =ajoy' ™,

Ws; (w) = 24/cosh(rr;)+/ [Im(w)| K;y; 27 |Im(w)|)e* Re™ (€ C),
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and K.(-) denotes the classical K-Bessel function. Again, following notations and
conventions in [4], we let

L(s.0; ®9;) = G,,(s) L(s.90; ®9,).

where

G, (s) = s(1 — )7~ 2T? (%) r (— + ir,-) r (% - irj) ¢(2s),

_ |o '.,nl2
L0199 = Dyt
n7#0

As shown in [4], the Rankin—Selberg L-function Z(s, ®; ® ¢ ;) is holomorphic for
s € C with Re(s) > 1, admits a meromorphic continuation to all s e~<C, and is
symmetric under s +— 1 — s. Observe that our completed L-function L(s,¢; ®
¢ ;) differs from the L-function defined in [4] because of the appearance of the
multiplicative factor s(1 — s) in the definition of G, (s).

Similarly, one can define completed Rankin—Selberg L-functions associated with
the nonholomorphic Eisenstein series E p ;(z) for any cusp P on X having a Fourier
expansion of the form

Eps(2) =8pooy’ + poo()y' ™ + Y apnWi(nz/b)
n#0

with ¢ p o () denoting the (P, oo)-th entry of the scattering matrix.
With all this, the main result of this article is the following theorem. For any
e > 0and s € C with Re(s) > 1, define the ®-function

cosh(rrrj)e ™ ¢~ _
O(s) = ) ————L(s.0; ®%))
/\j>0 J

+ _ L(S,EP1/2+” ® 15P1/2+[r) d)
r2 | Vi ’ !
8” P cus —00 /

1 /°° cosh(rrr)e=(*+1/4e _

and the universal function

Fe(s) =

E(s)p! / * rsinh(rre A L
0

22 rz+1/4
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Then the L-function relation involving Rankin—Selberg L-functions of cusp forms
and Maass forms

lim (©4(s) — Fi(s))

g
= YT Sy 8 ) =4 Gools) = 7 P00 (1 )

(&)

J=1

holds true. By taking ¢ > 0 in (5), one has an error term which is o(1) as ¢
approaches zero. This error term is explicit and given in terms of integrals involving
the hyperbolic heat kernel.

A natural question to ask is to what extent the relation of L-functions (5) implies
relations between the Fourier coefficients of the holomorphic weight two forms
and the Fourier coefficients of the Maass forms under consideration. In general,
extracting such information from a limiting relationship such as (5) could be very
difficult. However, as stated, our analysis yields an explicit expression for the error
term by rewriting (5) for a fixed ¢ > 0, which allows for additional considerations.
The problem of using (5) to study possible relations among the Fourier coefficients
is currently under investigation.

1.5 General Comments

If X is the Riemann surface associated with a congruence subgroup, then the
series (oo 00 (s) can be expressed in terms of Dirichlet L-functions associated with
even characters with conductors dividing the level (see [8] or [10]). With these
computations, one can rewrite (5) further so that one obtains an expression involving
Rankin—Selberg L-functions associated with cusp forms of weight two, Maass
forms, nonholomorphic Eisenstein series, and classical zeta functions. However,
the relation stated in (5) holds for any finite volume hyperbolic Riemann surface
without elliptic fixed points. In order to eliminate the restriction that X has no
elliptic fixed points, one needs to revisit the proof of (2), and possibly (1), in order
to allow for elliptic fixed points. As stated above, this project currently is under
investigation in [2]; however, we choose to focus in this paper on deriving (5) with
the simplifying assumption that X has no elliptic fixed points in order to draw
attention to the presence of an L-function relation coming from the basic identity
(2). We will leave for future work the generalization of (2) to arbitrary finite volume
hyperbolic Riemann surfaces, which may have elliptic fixed points, and derive the
relation analogous to (5).

From Riemannian geometry, theta functions naturally appear as the trace of a
heat kernel, and the small time expansion of the heat kernel has a first-order term
which is somewhat universal and a second-order term which involves integrals of
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a curvature of the Riemannian metric. In this regard, (5) suggests that the sum of
Rankin—Selberg L-functions

g
Y L. fi®f))

j=1

represents some type of curvature integral relative to the theta function ®,(s).
Further investigation of this heuristic observation is warranted.

1.6 Outline of the Paper

In Sect. 2, we recall necessary background material and establish additional nota-
tion. In Sect. 3, we prove (2) and further develop the identity (2) using the spectral
expansion of the heat kernel K(z;z,w). In Sect.4, we evaluate the integrals in
(3) using the revised analytic expressions of (2), and in Sect.5, we gather the
computations from Sect. 4 and prove (5).

2 Notations and Preliminaries

2.1 Hpyperbolic and Canonical Metrics

Let I be a Fuchsian subgroup of the first kind of PSL;(R) acting by fractional linear
transformations on the upper half-plane H = {z € C|z = x 4+ iy, y > 0}. We let
X be the quotient space I'\IH and denote by g the genus of X. We assume that "
has no elliptic elements and that X has p > 1 cusps. We identify X locally with its
universal cover H.

In the sequel p denotes a (smooth) metric on X, i.e., i is a positive (1, 1)-form
on X. In particular, we let ;1 = ppyp denote the hyperbolic metric on X, which is
compatible with the complex structure of X, and has constant negative curvature
equal to —1. Locally, we have

i dzadz
Pnyp(2) = 5 32

We write voly,(X) for the hyperbolic volume of X; recall that volyy,(X) is given
by 2m(2g — 2 + p). The scaled hyperbolic metric (4 = pishyp is simply the rescaled
hyperbolic metric fipyp/VOlhyp(X), which measures the volume of X to be one.



16 J. Jorgenson and J. Kramer

Let Sk (I") denote the C-vector space of cusp forms of weight k with respect to
T" equipped with the Petersson inner product

dz AdzZ

(e =3 [ 103@ S5 (feesan)

By choosing an orthonormal basis { fi, ..., f¢ } of S>(I") with respect to the Petersson
inner product, the canonical metric ;t = ficqn Of X is given by

Pean(2) =

0q | —

. 8
i _
.§Z|fj(z)|2dz/\dz.
j=1

We denote the hyperbolic Laplacian on X by Ayyp; locally, we have
02 9’
2
Ahyp =y (W + W) . (6)
The discrete spectrum of Ayy, is given by the increasing sequence of eigenvalues

O0=A) <A <A <...

2.2 Modular Forms, Maass Forms, and Eisenstein Series

Throughout we assume, as before, that the cusp width of the cusp ioco equals b.
In Sect. 1.4, we established the notation for holomorphic cusp forms of weight two
and Maass forms with respect to I", as well as the corresponding Rankin—Selberg
L-functions, so we do not repeat the discussion here.

The eigenfunctions for the continuous spectrum of Apy, are provided by the
Eisenstein series Ep g (associated with each cusp P of X) with eigenvalue A =
s'(1 —s"), hence s’ = 1/2 + ir (r € R). They have Fourier expansions of the form

EP,s/ (Z) = O(P,s/,O(y) + Z aps’ n I/Vs/ (nz/b)7
n7#0

where
aps0(3) = 8pooy” + dpools)y' ™,
Wy (w) = 2y/cosh(rrr) /[Im(w)| K;» (27 [Im(w) )e*™ R (w e C);

here §p oo is the Kronecker delta and ¢poo(s’) is the (P, 00)-th entry of the
scattering matrix (see [11]). For example, the function ¢ co(s’) is given by a
Dirichlet series of the form



A Relation Involving Rankin—Selberg L-Functions of Cusp Forms and Maass Forms 17

1/2
¢OO OO(S) = F(S/)/ ) Z 25/ ’ (7)

where the quantities a, and pu, are explicitly given in [11], p. 60.
For s € C, Re(s) > 1, we define the completed Rankin—Selberg L-function
attached to Ep ¢ by

L(s,Epy @ Epy) =G,(s)-L(s, Epy @ Epy), (8)

where
G, (s) = s(1 — 5)7~>T? (%) r (% + ir) r (% - ir) £(2s),

|05Ps n|

L(s.Epy ® Epy) = Z /by

2.3 Hyperbolic Heat Kernel and Variants

The hyperbolic heat kernel Ky(#;z,w) (f € Rso; z,w € H) on H is given by the
formula

Ku(t:z.w) = Ku(t:p) =

ﬁe—t/ét /oo re—rz/(4t) ;
r
(rt)3/2 J,  \/cosh(r) — cosh(p)

where p = dhyp(z, w) denotes the hyperbolic distance from z to w. The hyperbolic
heat kernel K(¢;z,w) (t € R.9; z,w € X) on X is obtained by averaging over the
elements of I', namely

K(t;z,w) = Z Ku(t:z.y(w)).

yer

The heat kernel on X satisfies the equations

0
(5 + Ahyp,z) K(t;z,w) =0 (we X),

lim / K(t:2.w) £00) i) = £ (2 € X)
— X

for all C*°-functions f on X. As a shorthand, we write K(¢;z) = K(t;z, 2).
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With the notations from Sect. 2.2, we introduce the modified heat kernel function

Kcusp(t;z) — K(I;Z) _ Z |O[j,0|2y2—2s,- e—)kjt
0<Aj<1/4

1 ) ‘ s
T arx Z / 18,00y 2T+ $p oo (s)y'Z P H M A (9)
(e 9)

Pcusp® ™

Denoting by I's, the stabilizer of the cusp oo, we can define the following partial
heat kernel functions

Ko(t:) = Y Ka(t:z.7(). (10)
y€Mleo

Keo(t:2) = ) Ku(t:2.7(2) (1D
v€leo

giving rise to the decomposition

K(t;:2) = Ko(t:2) + Koo(t:2).

3 The Fundamental Identity

In this section, we derive the identity (2) by studying the relation (1) for a
degenerating family of compact hyperbolic Riemann surfaces. The corresponding
statement is proven in Lemma 3.1. In the remainder of the section, we manipulate
the terms in (2) assuming p > 0 in order to obtain an equivalent formulation of the
relation which then will be suited for our computations in the subsequent sections.
Specifically, we first express the heat kernel on the underlying Riemann surface in
terms of its spectral expansion, which involves Maass forms and nonholomorphic
Eisenstein series, and we remove the terms associated with the constant terms in
the Fourier expansions of the Maass forms and the nonholomorphic Eisenstein
series (see Proposition 3.3). We then express the heat kernel as a periodization
over the uniformizing group and remove the contribution from the parabolic
subgroup associated with a single cusp (see Lemma 3.8 as well as the preliminary
computations and remarks). The main result of this section is Theorem 3.9.

Lemma 3.1. With the above notations, we have

p [ e
:u“can(Z) = (1 + E) /’Lshyp(Z) + g/o AhypK(t;Z) dr I'Lhyp(Z)- (12)
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Proof. The proof of identity (12) in case X is compact, i.e. p = 0, for any
g > 2 is given in [13] as well as the appendix to [16]. We will now prove
(12) by induction on p by considering degenerating sequences of finite volume
hyperbolic Riemann surfaces. More specifically, we assume that (12) holds for
any hyperbolic Riemann surface of genus g with p cusps, and then prove the relation
for hyperbolic Riemann surfaces of any genus with p+1 cusps. Whereas the method
of proof can be viewed as standard perturbation theory, we choose to include all
details in order to determine all constants, specifically the multiplicative factor of
Hnyp in (2).

If X has genus g and p + 1 cusps, then, following the methodology of
[12] and [18], one can construct a degenerating family {X,} with the following
properties:

— For £ > 0, each surface X, has genus g + 1 and p cusps,

— the degenerating family has precisely one pinching geodesic of length ¢
approaching zero,

— the limiting surface Xy, which necessarily has two components, is such that X is
isometric to one of the two components.

Let X and X' be the two components of X, with hyperbolic volumes v = volxyp (X)
and v = volyyp (X'), respectively; by construction, X’ has genus one and one cusp.
The hyperbolic volume of X, equals v + V/, and the induction hypothesis for X,
reads (using an obvious change in notation)

Z(g + 1)/‘Lcan,Xg(Z) = (Z(g + 1) + p)ﬂshyp,Xg(Z)

o0
[ A K @ 03
0

We now determine the limiting value of (13) through degeneration. Throughout, we
will let z € X, be any point which limits to a point z € X.
From [12], we have that

l}i_lf(l) (2(g + Dteanx, (2)) = 2&Hcanx (2)- (14)
From [1], we recall that
}1_13(1) (Ihyp.x: (2)) = hyp.x (2),
which leads to

2(e+ 1)+ p

lim (2(g + 1) + p)ptsnypx, () = ——

Mhyp, X (2)- (15)
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Let now A, y, denote the smallest nonzero eigenvalue of the hyperbolic Laplacian
Anyp,x, On X¢, with corresponding eigenfunction ¢ x,. From [18], we have that

1
2 —Aix,t ) .
T 901,)([(1)3 IXe ) = Kx(t;2) — "

. _ 1
lim (Kxg 9~ ——

with uniformity of the convergence for all # > 0 (see [18], Lemma 3.2). The proof
given in [18] extends (see Remark 3.2) to show that

. 1 _ 1
lim Anyp.x, (KXé (2=~ 01 x, (2)e Al"Xet) = Anyp.x (KX(’?Z) - ;) ’

+v
(16)

with a corresponding uniformity result, which allows us to arrive at the conclusion
that

00
lim (/ Ahyp,Xg KX@ (l; Z) dr —
£—0 0

Ahyp,Xe‘Plz,X,g (Z))

00
) :/ Ahypnyx(l;Z)dl.
1,X¢ 0

a7

By substituting the limit computations (14), (15), and (17) into (13), we are led to

o0
28 ean x (2) = / Anyp.x Kx (2;2) dt pinyp x (2)
0

2(e + 1) + . Ay X 902 (Z)
+ ((g—)p + lim (u Hnyp.x (2).

v+ =0 Ax,

so we are left to prove that

(18)

v+ (=0 Alx, v

2g+D+p (Ahyp,xlsoixl(z)) 26+ (p+1
—— + lim = .
The construction of the degenerating family {X,} from [18] begins by con-
structing a degenerating family of compact Riemann surfaces with distinguished
points, after which one obtains a degenerating family of finite volume hyperbolic
Riemann surfaces by employing the uniformization theorem. As a result, there is
an underlying real parameter u, which describes the degenerating family {X;}. An
asymptotic relation between u and £ is established in [21]; for our purposes, it
suffices to use that £ — 0 as u — 0, and conversely. With all this, it is proven
in [21] that one has the asymptotic expansion

11,Xl=a1u+0(u2) as u—0 (19)
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for some constant «;. In addition, one has from [21] the asymptotic expansions
01x,(2) = cox(@ + e x@u+0W) as u—>0 (z€X), (20)

and

01.x,(2) = cox'(2) +crx@u+ O@W?) as u—>0 (ze X). 2n
In [18], it is proven that small eigenvalues and small eigenfunctions converge
through degeneration; hence, the functions coy and ¢y’ are constants. More
precisely, since ¢, y, is orthogonal to the constant functions on X; and has L*-norm
one, we have the relations

coxv+coxV =0 and v+t =1,

from which we immediately derive

W 1/2 y 1/2
=4+ — d , = R . 22
co.x (v(v n v’)) and oy =7 (( n v/)) (22)

The uniformity of the convergence of heat kernels through degeneration from [18]
and the convergence of hyperbolic metrics through degeneration from [ 1], allow one
to conclude that, since ¢ y, is an eigenfunction of Ay, x, with eigenvalue A4 y,,
the asymptotic expansions (19) and (20) yield the relation (keeping in mind that the
function ¢y x is constant)

Anyp.xc1,x(2) = ajcox. (23)
In the same way, we derive from (20) the asymptotic expansion

Ahyp,Xg(plz,Xé (2) = Anypx¢hx (@) + Angpx (2¢0.x @)c1.x (2)u + O(u?)

=2coxAnpxcix(@u+ OW?) as u— 0. (24)

Using (19), (22), (23), and (24), we arrive at

. Ahysté(plz,Xg (2) . 2¢co.x Angpxcix(@u+ Ou?)
lim | ————— ] = lim

{—0 /11’)(é u—>0 aju + 0(u2)
2V
=202, = —.
X.0 v(v+ V)

Recalling the formulae

v=2m(2g—-2+(p+1)) and V =2m,
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we finally compute

206+ 1) +p 2 v(v/(Q2m) +3) 2/
v+ viv+v) v +V) v(v + V')

LV 2?2 1T vy 24+ (p+ 1)
2 v +V) 2 v v ’

which completes the proof of claim (18) and hence the proof of the lemma. O

Remark 3.2. 'We describe here how one can extend the arguments from [18] and
references therein to prove formula (16); we continue to use the notation from the
proof of Lemma 3.1. The pointwise convergence

[11_135 Anyp.x Kx, (t:2) = Anyp x Kx(t:2) (25)

follows immediately from [17], Theorem 1.3 (iii). Using the inverse Laplace
transform, one concludes from (25) the convergence of small eigenvalues and
small eigenfunctions (see, for example, [9] for complete details) to conclude that
(16) holds pointwise for all # > 0. Theorem 1.3 in [17] states further conditions
under which the convergence in (25) is uniform, which immediately implies that
the convergence in (16) holds for fixed z and ¢ lying in any bounded, compact
subset of + > 0, so it remains to prove uniform convergence for ¢ near zero and
near infinity. The uniformity of the convergence near zero is established as part
of the proof of Theorem 1.3 in [17] since the identity term does not contribute to
the realization of the heat kernel through group periodization. What remains is to
prove uniformity of the convergence in (16) as ¢ approaches infinity. For this, the
method of proof of Lemma 3.2 in [18] applies. More specifically, one writes the
function

1 —
Anyp,x, (KX(([;Z) - 07y, (e M.Xlt)

+ Vv

as the Laplace transform of a measure as in [18], p. 649. In this case, the measure
is not bounded, but standard bounds for the sup-norm of L>?-eigenfunctions of the
Laplacian imply that the measure is bounded by a positive measure, which suffices
to apply the method of proof of Lemma 3.2 in [18]. With all this, one concludes the
pointwise convergence asserted in (16) and integrable, uniform bounds for all # > 0,
from which (17) follows.

Proposition 3.3. With the above notations, in particular using the form (7) for the
Junction ¢oo.00(s’), we have
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1 1 oo cusp (4.
Mean(2) = g —— Mhyp @+ — 29 ApypK (t;z)dt Mhyp (2)
0

2 nMn
Z 2ty ) (26)

/Ln<l/y V1= (tny )

We point out that the sum in (26) vanishes if y > 0.

Proof. The proof is based on formula (12) from Lemma 3.1 and consists in
substituting the integrand K(¢; z) by K*P(¢; 7). We compute

AnypK(:2) = Apgp KP(t:2) — > ool (2= 25;)(1 = 257)y> e ™!
0<A;<1/4

=Y / = (Brooy + Igpec(1/2 + NPy

P cusp
+8p,000p,00(1/2 + i) 72 4 8p 0o oo (1/2 + i)y 207) =0 FH1/ D1 gy

= AhypKCUSp(t;z) - Z |(xj,o|2(2—25j)(1 —ij)yz_zsf e Mt
0<A;<1/4

1
- (#o0.00(5)2 = 25)(1 = 26)y% 7
L JRe(s)=1/2

+oo.00(1 — 5)25(25 — 1) st) e (1=9)1 g
Next, we integrate against ¢ to get

oo oo
/ AnypK(t;2)dt = / Apyp KP(2; 2)de
0 0

Y ey p G DU

Aj
0<A;<1/4
! 2-2s
-— (Booc0(5)2 —25)(1 —25)y
4ri JRe(s)=1/2
+ fos,co(1 = 5)25(2s — 1)y ds
o s(1—s)
°° ‘ 2—2s;)(1 —2s; 5
= / AhychusP([; z)dt — Z |aj,0|2(vj)z—fsj)y2_2“/
0 0<ij<1/4 Y
4 1—25 5
T oo,oo(S) y2 2SdS.

A7 JRe(s)=1/2
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Now we use the residue theorem to evaluate the last integral (be aware of the
orientation).

4
- . ¢oo,oo (S)

A0 JRe(s)=1/2

1—2s
y2—2sds

Z (_2)Ress=sj (d)oooo (S)) ﬂyz_zsj

residues s ; 5
1 1—2s
+2 ( ) / Poo.00(5) y*ds;
2mi Re(s)=a
here a > 1. It is known that the residues of ¢ o Occur at s = 1 with residue

1/volyyp(X) and at s = s; such that 0 < A; = 5;(1 — ;) < 1/4 with residue
laj0]? (see [20], p. 652). Therefore, we get

4 1—=2s , 5,
- Poo.00(5) y2 »ds
Ami Jre(s)=1/2
- _ 2 Z |a'0|2(2_2Sj)(1_2Sj)y2_2sf
Volnyp (X) 0 <1/4 8 Aj
2 2 2s
+ — Do, oo(s) ds.

2mi Re(s)=a

We are left to determine the latter integral. By substituting formula (7) for ¢ oo 00
and using the functional equation for the I'-function, we first compute

L Booco ()2

2mi Re(s)=a

Ps+1/2( 1 Y
_szany i /ReM:a T(s+1) ((MnY)Z) @

2 2€ds

= iza y \/;F(Ll/z)e”nds
el 27Tl Re(s)=a F(S + 1) ’

where 1, = —log ((14)?). Recalling formula (10.5) of [19], p. 307, namely

1

, >0,
L T —F(S + 1/2)estds = el —1

2mi Re(s)=a 'es+1) 0 £ <0
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we obtain

L Goooo(s) 2

2mi Re(s)=a

2 25 4 — Z 23:): Z Zanﬂn

t,>0 wn<l1/y - ('u“" )2

Summing up, we get

o0 o0
/ AnypK(t:2)dt = / Anyp KP(2;2) dt —
0 0

Z 4anun
vo lhyp(X) ooty V1= (ny)?

The claim now follows by observing that

p 1 2 1
1+ £ s
( + 2 ) eshyp(2) — 2g VOl by (X) Pnyp(z) = g —— [hyp(2)-

This completes the proof of the proposition. O

Remark 3.4. By our definition, the partial heat kernel K (¢; z) is given by

o0
Koolt:2) = Y Ku(t:z.z+ nb).

n=—oo

Recalling the formula for the hyperbolic distance dyyp(z, w), namely (see [3], p. 130)

cosh (d (z W)) =1+ ﬂ
iyp & 2Im(z)Im(w)’
which specializes to
(nb)*
cosh (dnyp (2,2 + nb)) = 27

shows that the function Ky(¢;z,z + nb) is independent of x, and hence can be
represented in the form

Ku(t;z,z 4+ nb) = f; (\/_Lzyn) 27)

with f;(w) = Ky (t;cosh™' (1 4+ w?)). Therefore, we can write

Koo(t:2) = Z ﬁ( ) (28)

n=—oo
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By the general Poisson formula, we then have

n_X_:oof’(b ) fyn;m (Zn«/—y)’

where ?, (v) denotes the Fourier transform of f;(w) given by

?,(v) =/_ f,(w)e_iwvdw.

Summarizing we arrive at

Kool vry 53 <2nvry )'

Definition 3.5. With the above notations, we set

, «/’
K$P(t:2) = Koo(t32) — 2) 5

KS™P(t:2) = K9P (1:2) — Kéé‘f"(t;z)-

Lemma 3.6. For the Fourier transform ?, of fi, we have the formula

7 \/5 * o —(r2+1/4)t 2
fiv)y= — r sinh(rrr)e K;(v/ V2)dr.
0

(29)

Proof. Using the explicit formula for the heat kernel on the upper half-plane (see

[5], p. 246), we have

1 o0
Ku(t:z,w) = E/ r tanh(nr)e_(’z*'l/“)tP_1/2+,~,(cosh(dhyp(z, w))) dr
0

from which we get

1 o0
filw) = E/ rtanh(rr)e” TP (1 + wP)dr.
0

(30)

Taking into account that f; (w) is an even function, the Fourier transform f, of f;

can be written in the form

?,(v) = /_OO fi(w)e ™ dw = 2/000 f: (w) cos(wv) dw.
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By means of formula 7.162 (5) of [7], p. 807, the proof of the lemma can now be
easily completed. O
Lemma 3.7. The function Kgo " (t;z) decays exponentially as y tends to infinity.

Proof. From Lemma 3.6, we note that the function 7f(v) decays exponentially
as v tends to infinity. From this, we immediately conclude that Kgo(;z) decays
exponentially as y tends to infinity. O

Lemma 3.8. With the above notations, we have

% 1 27y/b \* 1
it Crrerr) R L

w2>_

Proof. First, we recall for z, w € H, z # w, the relation

*© 1
/ Ku(t;z,w)dt = ——log
0 47T

Substituting w = y(z), summing over y € ', ¥ # id, and applying Apyp, then
yields the formula

7 —

z—w

o0 ) B - z—(z+nb) 2
/0 AnypKoo(t;2)dt = = n;oo Anyp log ( TG
n#0
B 2y i G Z = Qy/b)*
= (nb)? + 4y2)2 nbz T (n2 + (2y/b)?)?*
n#0

Applying now formula 1.421 (5) of [7], p. 36, namely

Z n — W _ ( T )2
2 ~w)2  \sinh(zw) )

= (n2 4+ w?) sinh(7rw)

with w = 2y /b, immediately completes the proof of the lemma. O

Theorem 3.9. We set

_ 27y /b 2
o) = (sinh(Zny/b)) '
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With the above notations, we then have the fundamental identity

1 *° CLIS
e (2) = @ /0 By K5 (13 0 (@) + - d>(y)uhyp(z)

(32)

2a, iy y?
Z ZMhyp(Z)
un<1/y V1= (ny)

Proof. The proof consists in combining Proposition 3.3 with Lemma 3.8 together
with the observation that

Angp K™ (1:2) = Dayp(Ko™ (1:2) + K0 (1:2)

= Anyp(K"™P(1:2) + Koolt:2)),

since Apyp (y?t(O)) =0. O

4 Preliminary Computations

We will multiply the fundamental identity (32) of Theorem 3.9 with the function

M) = T ) 0s)y’ (33)

and integrate the resulting form along x and y. In this section, we first calculate
the integrals involving the form ptc,,, the function @, and the sum over the w,’s,
respectively. In the second part of the section, we treat the term involving K| P
partly; this computation will be completed in the next section.

Lemma 4.1. With the above notations, we have
[7 [ 16 menr = ZL( f87)). (34)
=1

Proof. The proof is elementary, so we omit further details. O

Lemma 4.2. With the above notations, we have

s—1
e [ [ r6 00 = 4t or G 09



A Relation Involving Rankin—Selberg L-Functions of Cusp Forms and Maass Forms 29

Proof. We start with the following observation. By differentiating the relation
1 o0
_ —2nw
1—e2w - Z ©

n=0

we get

—2nw
ne y
(1 _ e—2w)2 Z

which gives

1 4 4o
= = =4 ne” 2,
Sinh2 (W) (ew _ e—w)2 (1 —211)2 Z

We now turn to the proof of the lemma. We compute

e [T e =

_ T T($)¢Q2s) (27)° /oo y dy
2 b2 Jo sinh®>Q2my/b)

T T(s)E(2s) [ dy
— /O y<1>(y)ﬁ

a7 T(s)¢(2s) (2n)? /00 SR dy
. 4 s+1 drwny/b =7
2w br ) Y Zne v

n=1

00 00 d
— 23n—s+lr(s)é-(zs)b—22n/ ys+le—4rmy/b_y
n=1 0 Y

— 93 —stl -2 PR —
=2 [(s)8(25)b™7T(s + 1); (4mrn/b)s+!

= 2B =B ()T (s + 1)E(s)C(2s)b* L.

The claim now follows using the definition of the function G (s). O

Lemma 4.3. With the above notations, we have

/ / h(s. y) Z _ anfny

tn<1/y 1= (uny )2

5 S s+1
= P25 fece (T) . (36)
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Proof. Using the B-function, we compute

//h(sy)z\/%

un<l1/y

- _Gnfn )y
=277"T(5)(2s)
TR / yg/i v (uny)2

€+1

. i a, 1 witl
=2n"T'(s)¢(2s) - / dw
o wtt Jo V1T —w?

= n—fr(s)g(zs)B( + 1, 1) 3y

s+1
—

I'(s/2+ DI(1/2) Z
2s+l

=T (s)¢(29) I(G+3)2)

n=1 [y
s/2T((s + 1)/2—-1/2)J/7 i
(s +1)/2F((S+1)/2 =

=T () (25)

5 S s+ 1
= g ° mF(s)g“(Zs)gboo,oo ( 5 ) . O

Remark 4.4. For ¢ > 0, we can write

1 /W/b/wh( ) Anyp KEP(1:2) ded
- S, Y)An 2 X—
2¢ Jo Jo Jo wo y?

1 0o 00 b dy
= — h(s, y) Anyp Ky T (t; z)dx —dt + o(1)
el [ ] s

as ¢ — 0. Using now the specific form of the hyperbolic Laplacian, we integrate by
parts in each real variable x and y. Since the integrand is invariant under x + x +b,
the terms involving derivatives with respect to x will vanish. What remains to be
done is the integration by parts with respect to y. Substituting

Ko™ (t:2) = KP(1:2) — KEP(1:2).
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we arrive in this way at the formula

1 oo b 00 ] dy
— h(s,y)Anyp Ky P (t;2) dedx —
s h [ J et e
1— oo poo pb d
0= / / /h(s,y)K““Sp(t;z)dx—);dt
26 =0 Je Jo Jo y
[e%e) [ele) b dy
—/ / / h(s, y)KegP(t;2) dx—dr | (37)
e Jo Jo y

We point out that for the right-hand side of formula (37) the individual triple
integrals over h(s, y) KP(¢; z) and h(s, y)Kgo " (t;z) do not exist for & = 0, which
justifies the need to introduce the parameter . For further discussion of this point,
see also Proposition 5.5 below.

Lemma 4.5. With the above notations, we have

L 2 5 dy cosh(nrj)~ _
@/0 /0 h(s, ») (Ie; @1 = lejo(n)P) dxF = 20-9 T (50 © ;)
(38)

Proof. We compute

1o b
_g/o /0 h(s.y) (le; @1* = lejo(y)I?) dx Y

2 (lo; @1 = letjo(3)[?) dxdy

5 w0, ()7, ()

n,m#0

+ @) Y W (%) a0 Y W, ('%Z) dx dy
n#0 m#£0

—5 o0 v ' 5 E 2
" F(s)i(zs)/o y §O|am| ‘Wyf(b)’ dy
“F(s)z(zs)cosh(mj)/ ¥ Y gl (4In|y) K2, (27r|bn|y) O

n#0
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00 2
= 47T ()¢ (25) cosh(r)) Y layal In| / vk, (2
b)) "\
n#0
27|n|y\ dy
K, =
) ’( b )y

With the change of variables

_ 2x|nly

we then obtain (see [11], p. 205)

1 [ (P .
—g/O /0 h(s,y) (e @F = lejo()) dxy_z
=47~°T 2 h(zr; . Z(M) o0 .
7T (5)§(2s) cos (7”’1)2'0‘]’ | b /0 ' Kir, (1)

n#0
2 |n|\ " du
x Kiy; (1) ( ) ) ~

=4n 7 2m) T (s)¢(2s) cosh(mr;) Z ol (|Z|) (M)_S
n#0

o0
d
x / ' K, () Koy, (1) —
0 u

= 477 (27) T (5)¢(25) cosh(rrr;) D |l (|”|) (%)_S
n#0

s—3
ST GG Gn)

22—s+s—3 Grj (s) cosh( rj)

s(1—ys)

lojn]? _cosh(nr,)~
2 al/by=T = as(i—s) L0 €7 1

Lemma 4.6. With the above notations, we have

/ / h(s,y) (1Ep.1/2+ir (@) = |@p.1/4ir0(0)]?) dxy—

cosh(mrr) ~
=——L E ir E ir
251 —s) (8, Ep1j2+ir ® Epijoyir).

Proof. The proof runs along the same lines as the proof of Lemma 4.5.
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Proposition 4.7. With the above notations, we have for any & > 0

1— oo poo pb d
st =) / / / h(s, y)K"P(¢t;2) dx—zdt
2¢ Je o Jo y

B Z cosh(rrr;)e ¢ ~

7 L(s,0; ®9;)
/\j>0
cosh(rr)e=(+1/9e _
+— Z / ( ) 14 L(s, Epija+ir ® Epijoyir) dr. (39)

P cusp
Proof. Recall that

K*P(t:2) = K@) — Y lejo(n))e ™

0<h;<1/4

2
- Z / lep1j24ir0(y) e DMdr

P cusp”’

=Y (s @F = lajo)?) e

/1/'>0

2
+ 4_ Z / (IEp1j2+ir @) = lop,1jpgiro(0) ) e TV ar,

Pcusp® ™

(40)

By multiplying (38) by e/, adding over all positive eigenvalues A > and integrat-
ing along ¢ from ¢ to co, we get

Z/ / / h(s,y) (lg; @ = lajo()*) e ’dx

A>0

cosh(zrr]) e
- Z/ (1 —s) Lo @@l

1 Z cosh(zrr;)e™ L
s(l —5) ) 22

L(s.0; ®9)). (41)
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Using Lemma 4.6, we analogously find

4”2gp / / / /h(s W (Erajp+i@P = lepijz4io())

e +1/4>’dx ~drdr

cosh(zrr) ~
— Z / / ( )L(S Epij2tir ® Epijotir)e” P19 s

P cusp 2S(1 - )
1 1 % cosh(mr)e 7 H1/Me
- gs(l—s) . r2+1/4 L(S EP1/2+1r®EP1/2+,r)dr
Pcusp® ™

(42)

By combining (41) and (42) with (40), and multiplying by s(1 — 5), we complete
the proof of the proposition. O

5 The L-Function Relation

As stated before, our computations amount to computing the integral of the identity
in Theorem 3.9 when multiplied by A(s, y). As stated in Remark 4.4, we write

K3™P(t2) = K™0(12) — K8P(1;2).

The computations in the previous section allow us to compute the integral involving
the term K°*P(z;z). In this section, we begin by computing the integral involving
Ko (t: 7), after which we complete the proof of our main theorem, which we state
in Theorem 5.4. To conclude this section, we show the necessity of introducing the
parameter € > 0, as stated in Remark 4.4, by computing the asymptotic behavior of
the integral arising from the Koo¥ (z; z)-term from Theorem 3.9. This computation
is given in Proposition 5.5.

Lemma 5.1. With the above notations, we have

AR
— h(s, V) K (t;z) dx —=
28 Jo Jo Oo y?

= 22T ()0 ()6 25)D T M(T ) s). (“43)
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where M(?,) is the Mellin transform of the function ?r defined in Remark 3.4 given

by
~ © o dv
M) = | VLG
0
Proof. By Remark 3.4 and Definition 3.5, we have

1 /OOO /Ob h(s, y) KSP(: 2) dxd—);
e B () o

y2

— 23T [Ty T (”bﬁy n) o
n=1

y
— V27T (5)C(28)b™ IZ/ (2”;” )7
By the change of variables
_ 2n«/§y
v=—7 n,
we find
oo b
i/ / h(s,y)KggSp(t;z)dxd—);
~ d
= 2«/—7r_‘1"(s)§(2s)b IZ o \/_n)S/ vsf,(v)jv

= 22D 2D (5)E ()0 (25)b T M(F ) ().

which completes the proof.

Lemma 5.2. The Mellin transform ./\/l(?t) of the function ?, is given by

M(F)(s)
23s/2—5/2 FZ(S/Q,)
T2 TG J,

o0
rsinh(zr)e YT (s/2 + ir)[(s/2 —

(44)

ir)dr.
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Proof. By Lemma 3.6, we have

~

fiv) = ;/—25 / ~ rsinh(rr)e" "tV K2 (v/N/2) dr.
0
This gives
~ © . d
MToe = [ vimT

o0 A e d
= / v (i;/ r sinh(nr)e_(r2+l/4)tKizr(v/\/z) dr) had
0 0 v

7
2 [ o d

= Lz_/ r sinh(r)e 1/ (/ vSKiZ,(v/x/E)—V) dr.
b 0 0 v

From [11], p. 205, we find

/oo V‘VKI,ZV(V/\/E)@ (52 I'(s/2+inT(s/2 - ir).
0 v I'(s)

Summing up, we get

A _ 235/2—5/2 FZ(S/Z) [ee)
MTDS =5 |

rsinh(rr)e = HY T (s /2 + ir)T(s/2 — ir) dr,

which is the claimed formula. O

Proposition 5.3. With the above notations, we have for any ¢ > 0

s(1—5) /°°/°°/b , dy
h(s, y)K2P(t; z) dx —=dt
26 Jo Jo Jo OO y?

C(s)b*™! /°° r sinh(srr)e = +1/9e G, (s) dr.
0

272 r2+1/4

Proof. Using Lemma 5.1, we compute for the inner double integral

1 /°° /b dy
— h(s, y)KP(t;2) dx—
2¢ Jo Jo o »?

= 22 HD =B ()L ()¢ (25)0° T M(F 1) (5)
=27 a7 TR (s/2)¢ () (28)b°

o
x/ rsinh(rr)e” YYD (s/2 + ir)[(s/2 — ir) dr.
0
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The claim now follows using the definition of the function G, (s) and integrating
along ¢ from ¢ to oco. O

Theorem 5.4. With the above notations, we define for any ¢ > 0 and s € C with
Re(s) > 1, the O-function

cosh(mrr;)e i~ _
O.s) = Y NI T e )

)»‘/'>0 2AJ

1 % cosh(rrr)e=+1/4e _ —

Q- L s, E ir E ir dr
+ . chuzsp/_oo 114 (s, Epij2+ir ® Epijovir)

and the universal function

Fe(s) =

s—1 poo .. o: —(r2+1/4)¢
L(s)b / r sinh(rr)e G, (s)dr. 45)
0

22 rz+1/4

Then we have the relation

lim (©:(s) = Fe(s))

g
~ — — s 2 +1
= YTl fy 87 )~ 4800 Gools) = 1 T e (T2 ).
j=l1
Proof. The proof follows immediately from Lemma 4.1, Lemma 4.2, and

Lemma 4.3, as well as Proposition 4.7 and Proposition 5.3 in conjunction with
Remark 4.4. O

Proposition 5.5. With the above notations, we have the following asymptotics for
the universal function (45) for s € R, s > 1,

e _ P Gipls)
hm<8 Fa(s))_ 4r  T(s/2+1/2)

e—>0

Proof. Substituting v = \/er, we get

2

Fe(s) =

(OB g /0°° vsinh(y/ Ve o,

272 v +e/4

Now, recall the formula

_ TV 1
; V5 Qi haddl I
gm% (e sinh (\/E)) X (46)
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and, using Stirling’s formula, the asymptotics

Jim (IPGe e 1) = Var (7)
for fixed x € R (see formula (6) of [6], p. 47). Writing

(o)l ) ()

1—s

.

()7
xews | — ,
(%)

we obtain, using (46) and (47),

im (e sinn () 0 (5 i 22 Mo (5= 22\ = o
21_1)%(8 smh(\/g)‘r(z—i-l\/g)HF(z l\/g))—nv . (48)
We have
G,/ je(s) = H(s)T (% + z%) r (% —i%)
S % N .V
=molr (5+ ) G -1%)
with

H(s) = s(1 — s)7~>T? (%) ¢(2s).

From (48), we then find

e 7y -
8121(1) (8 7 sinh (%) Gv/ﬁ(s)) =o' H(s),

from which we derive

s—1 00 . —2
lim (S%FE(S)) _ Sk lim (85216_8/4/0 vsinh(v//e)e Gv/ﬁ(s)dv)

e—0 22 e—0 vi+e/d

. C(s)bs™t [ =1, TV _edv
=5 /0 !1_1)1(1) € 2 sinh WG G, () |e .

H(s)5(s)b*! /oo 2 14y
= c v .
2 0
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Using the substitution w = 2, the remaining integral simplifies to

00_2 _ldv 1 oo_,A—ldW 1 S 1
e VYT D = e"wz — =Tr(Z2=-2).
0 v 2 Jo w 2 2 2

Summing up, we get

e _ b Gipls)
iﬁ%(s FE(S))_ 4w T(s/2+1/2)

which is the claimed formula. O
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Orthogonal Period of a GL3(Z) Eisenstein Series

Gautam Chinta and Omer Offen

Abstract We provide an explicit formula for the period integral of the unramified
Eisenstein series on GL3(Ag) over the orthogonal subgroup associated with the
identity matrix. The formula expresses the period integral as a finite sum of products
of double Dirichlet series that are Fourier coefficients of Eisenstein series on the
metaplectic double cover of GL3.

Keywords Eisenstein series ¢ Metaplectic group * Multiple Dirichlet series

Mathematics Subject Classification (2010): 11F30, 11F37,11M36

1 Introduction

Let F be a number field, G a connected reductive group defined over F, and H a
reductive F-subgroup of G. The period integral P (¢) of a cuspidal automorphic
form on G(Af) is defined by the absolutely convergent integral (cf. [AGR93,
Proposition 1])

P (¢p) = ¢(h) dh,
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where G(Af)! is the intersection of ker | y(-)|, , for all rational characters y of G.
For more general automorphic forms, the period integral P (¢) fails to converge
but in many cases it is known how to regularize it [LR03]. Case study indicates that
the value P (¢), when not zero, carries interesting arithmetic information.

Roughly speaking, in cases of local multiplicity one, i.e. when at every place v of
F the space of H,-invariant linear forms of an irreducible representation of G, is one
dimensional, the period integral P on an irreducible automorphic representation
T = ®,m, factorizes as a tensor product P = ®,P, of H,-invariant linear forms
on 7. This indicates a relation between P! (¢) and automorphic L-functions. For
example, the setting were H = GL, over F, E/F is a quadratic extension and
G is the restriction of scalars from E to F of GL, over E, is an example where
local multiplicity one holds. In this case, the nonvanishing of the period P (¢)
of a cusp form depicts the existence of a pole at s = 1 of the associated Asai L-
function (cf. [F1i88, Sect. 1, Theorem]) and the (regularized) period P (E (¢, 1)) of
an Eisenstein series is related to special values of the Asai L-function (cf. [JLR99,
Theorems 23 and 36])).

Remarkably, the period integral P#! is sometimes factorizable even though local
multiplicity one fails. Consider now the case where G is defined as in the previous
example, but H is the quasi split unitary group with respect to £/ F. For cuspidal
representations, nonvanishing of P characterizes the image of quadratic base
change from G’ = GL, over F to G (cf. [JacO5] and [Jac10]). Furthermore,
although for “most” irreducible representations of G,, the space of H,-invariant
linear forms has dimension 2"~!, on a cuspidal representation the period P is
factorizable (cf. [JacO1]). This factorization is best understood through the relative
trace formula (RTF) of Jacquet. Roughly speaking, the RTF is a distribution on
G(Ar) with a spectral expansion ranging over the H -distinguished spectrum, i.e.
the part of the automorphic spectrum of G(Ar), where P* is nonvanishing. In the
case at hand the RTF for (G, H) is compared with the Kuznetsov trace formula for
G’ = GL, over F. If  is a cuspidal representation of G(Af) and it is the base
change of 7/, a cuspidal representation of G’(AF), then the contribution of 7 to
the RTF is compared with the contribution of 7’ to the Kuznetsov trace formula.
The multiplicity one of Whittaker functionals for G’ allows the factorization of
the contribution of 7/, hence that of the contribution of 7 and finally of P#
on . The value P (¢) (or rather its absolute value squared) for a cusp form is
related to special values of Rankin—Selberg L-functions (cf. [LO07]). Essential to
the factorization of P in this case is the fact that (up to a quadratic twist) 7’
base-changing to 7 is unique. In some sense, the local factors x] of 7’ pick a one-
dimensional subspace of H,-invariant linear forms on m, and with the appropriate
normalization, these give the local factors of P*. For 7 an Eisenstein automorphic
representation in the image of base change 7’ is no longer unique (but the base-
change fiber is finite). This is the reason that the (regularized) period P (E(¢, 1))
of an Eisenstein series can be expressed as a finite sum of factorizable linear forms.
In effect, this was carried out using a stabilization process (stabilizing the open
double cosets in P\G/H over the algebraic closure of F' where the Eisenstein series
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is induced from the parabolic subgroup P) for Eisenstein series induced from the
Borel subgroup (cf. [LROO] for n = 3 and [Off07] for general n) and is work in
progress for more general Eisenstein series.

Consider now the case where G = GL, over F and H is an orthogonal
subgroup. Using his RTF formalism and evidence from the n = 2 case, Jacquet
suggests that in this setting the role of G’ is played by the metaplectic double cover
of G [Jac91]. For this G’ local multiplicity one of Whittaker functionals fails. This
leads us to expect that the period integral P! (¢) of a cusp form is not factorizable.
In the last paragraph of [Jac91], Jacquet remarks that it is natural to conjecture that
the period is related to Whittaker—Fourier coefficients of a form on G’ related to ¢
under the metaplectic correspondence [FK86]. Nevertheless, to date, the arithmetic
interpretation of the period at hand is a mystery. Even precise conjectures are yet to
be made.

This brings us, finally, to the subject matter of this note. Often, studying the
period integral of an Eisenstein series is more approachable than that of a cusp form
and yet may help to predict expectations for the cuspidal case (this was the case for
G = GL, and H an anisotropic torus, where the classical formula of Maass for the
period of an Eisenstein series in terms of the zeta function of an imaginary quadratic
field significantly predates the analogous formula of Waldspurger for the absolute
value squared of the period of a cusp form, cf. [Wal80, Wal81]). In this work, we
provide a very explicit formula for the period integral P# (E(¢, 1)) in the special
case that n = 3, H is the orthogonal group associated with the identity matrix
and E (¢, A) is the unramified Eisenstein series induced from the Borel subgroup.
The formula we obtain expresses the period integral as a finite sum of products of
certain double Dirichlet series. This formula, given in Theorem 6.1, is our main
result. The double Dirichlet series that appear are related to the Fourier coefficients
of Eisenstein series on G'(Ar) (cf. [BBFH07]). This fits perfectly into Jacquet’s
formalism and it is our hope that the formula in this very special case can shed a light
on the arithmetic information carried by orthogonal periods in the general context.

We conclude this introduction with a description of the computation of Maass
alluded to above. Let E(z,s) be the real analytic Eisenstein series on SL,(Z).
A classical result of Maass relates a weighted sum of E(z,s) over CM points of
discriminant d < 0 with the ¢ function of the imaginary extension Q(+/d). This
can be reinterpreted as relating an orthogonal period of the Eisenstein series with
a Fourier coefficient of a half-intgeral weight automorphic form. Indeed, the ¢
function of Q(+/d) shows up in the Fourier expansion of a half-integral weight
Eisenstein series.

Let z = x + iy with x,y € R,y > 0 be an element of the complex upper
halfplane. Let I's, be the subgroup of SL,(Z) consisting of matrices of the form
(%! f,) - The weight zero real analytic Eisenstein series for SL>(Z) is defined by
the absolutely convergent series

E(z,5) = Z Im(yz)* (1.1)

y=(3 7)€T0o\SLa(2)
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for s € C with Re(s) > 1 and by analytic continuation for s € C, s # 1. Similarly,
the Eisenstein series of weight % for T'y(4) is defined by

5 i/ ¢y Im(yz)*
E(s) = S &' (5) = (1.2)
d/ d
y=(* %) e(ToaNTo @)\ o) czt

where

o = 1 ifd =1 (mod4)
“T Vi ifd =3 (mod 4).

The Fourier expansion of the half integral weight Eisenstein series was first
computed by Maass [Maa38]. To describe the expansion, first define

[e9) eZnimx
Km s = . d
5:) /_oo (2 i)

Then
- .S §(4 2n1mx
E@zs) =y +co(s)y* =" T ) ) 4 me(s)K (s, y)e (1.3)
where, for m squarefree,
_ L(2s, ym)
bn(s) = cm(S)—§(4s e (1.4)

In the above equations, ¢, (s) is a quotient of Dirichlet polynomials in 27 and
Xm is the real primitive character corresponding to the extension Q(/m)/Q. See
Propositions 1.3 and 1.4 of Goldfeld—Hoffstein [GH85] for precise formulas.

On the other hand, quadratic Dirichlet L-functions also arise as sums of the
nonmetaplectic Eisenstein series over CM points. Let z = x + iy in the upper half
plane be an element of an imaginary quadratic field K of discriminant dg. Let A be
the ideal class in the ring of integers of K corresponding to Z + zZ. Let g(m, n) be
the binary quadratic form

v Vvid
qg(m,n) = | K'N( —i—n)zﬂlmz—i-mz
2 Im(z) 2 Imz
and ¢, the Epstein zeta function
L) =Y, 1 (15)
! q(m,n)* '

mn€Z

(m.n)#(0.,0)
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Then
L1
Ck(s, A7) = —84(s), (1.6)
Wk

where wg is the number of roots of unity in K. These zeta functions can be
expressed in terms of the nonmetaplectic Eisenstein series:

1+s

W§(2S)E(Z, S) (17)

Ck(s. A7) = L g,(s) =
WK

By virtue of the bijective correspondences between ideal classes in the ring of
integers of K, binary quadratic forms and CM points in the upper halfplane, we
arrive at the identity

+

Lk (s) = qu( ) = | PR

—¢(29) ZE(Z 5), (1.8)

where the sum in the middle is over equivalence classes of integral binary quadratic
forms of discriminant dx and the rightmost sum is over SL,(Z) inequivalent CM
points of discriminant d . Writing the zeta function of K as {x (s) = {(s)L(s, yax)
gives the relation between the Fourier coefficients by, (s) of metaplectic Eisenstein
series (see (1.4)) and sums of nonmetaplectic Eisenstein series over CM points.
The sum over CM points is actually a finite sum of orthogonal periods. In this
setting, an orthogonal period of an S L,(Z) invariant function on the upper halfplane
is a sum over a subset of CM points corresponding to a fixed genus class of
binary quadratic forms. Therefore, the precise relation between an orthogonal
period of the nonmetaplectic Eisenstein series and Fourier coefficients of the
metaplectic Eisenstein series is slightly more complicated. See Sect. 4 (in particular
Proposition 4.1) for an expression for the orthogonal period in terms of a finite sum
of quadratic Dirichlet L-functions.

2 Adelic Versus Classical Periods

Let G = GL, over Qandlet X = {g € G : 'g = g} be the algebraic subset of
symmetric matrices. Let K = [, K, be the standard maximal compact subgroup of
G(Ag), where the product is over all places v of Q, K, = G(Z,) for every prime
number p and Koo = O(n) = {g € GR) : g'g = I,}.

2.1 The Genus Class

For x, y € X(Q), we say that x and y are in the same class and write x ~ y if
there exists ¢ € G(Z) such that y = g x ‘g and we say that x and y are in the same
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genus class and write x ~ y if for every place v of QQ there exists g € K, such that
y = g x'g. Of course classes refine genus classes. If x € X(Q) is positive definite,
it is well known that there are finitely many classes in the genus class of x.

2.2 An Anisotropic Orthogonal Period as a Sum Over
the Genus

Fix once and for all x € X(Q) positive definite and let
H={gecG:gx'g=x}

be the orthogonal group associated with x. Thus, H is anisotropic and the
orthogonal period integral

P (9) =/ $(h) dh
H(Q)\H(Ag)

is well defined and absolutely convergent for any say continuous function ¢ on
H(Q\H(Ag).

Note that the imbedding of G(R) in G(Ag) in the “real coordinate” defines
a bijection G(Z)\G(R)/Ks =~ G(Q)\G(Ag)/K. Furthermore, the map g
g'g defines a bijection from G(R)/ Koo to the space X T(R) of positive definite
symmetric matrices in X (R). The resulting bijection

G(Q\G(Ag)/K ~ G(L)\X"(R) 2.1)

allows us to view any function ¢(g) on G(Q)\G(Ag)/K as a function (still denoted
by) ¢ (x) on G(Z)\X *(R).

By [Bor63, Proposition 2.3], there is a natural bijection between the double coset
space H(Q)\H(Ag)/(H(Ag) N K) and the set {y € Xg : ¥ ~ x}/ ~ of classes
in the genus class of x. Let goo € G(R) be such that x = goo'goo and let gy €
G(Ag) have g in the infinite place and the identity matrix at all finite places. As in
[CO07, Lemma 2.1], it can be deduced that for any function ¢ on G(Q)\G(Ag)/ K
we have

/ o (h g0) dh
H(QN\H(Ag)

= vol(H(Ag) NgoKgy) Y ?0) 2.2)

#HgeG2): lg =
{yeXgiy=x}/~ 8 (Z):gy'g =y}
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where ¢ on the left- and right-hand sides correspond via (2.1). In short, the
anisotropic orthogonal period associated with x of an automorphic form ¢ equals a
finite weighted sum of point evaluations of ¢ over classes in the genus class of x.

2.3 The Unramified Adelic Eisenstein Series as a Classical One

Let B = AU be the Borel subgroup of upper triangular matrices in G, where A
is the subgroup of diagonal matrices and U is the subgroup of upper triangular
unipotent matrices. For A = (A1,...,4,) € C", let

n
_ RS
ea(diag(ay, ..., a,) uk) = l—[ Ja; [

i=1

for diag(ay,...,a,) € A(Ag), u € U(Ag) and k € K. The unramified Eisenstein
series £(g, A) induced from B is defined by the meromorphic continuation of the
series

EgN= Y, arg.
yeB@\G©

Note that £(g, A) is a function on G(Q)\G(Ag)/K. With the identification (2.1),
for x € X T(R) we have

n—1
E(x.A) =detx @+ 3 3™ [d, (882 Gk, (2.3)
YEB(Z\G(Z) i=1

where d; (x) denotes the determinant of the lower right i x i block of x.
Assume now that n = 3. Arguing along the same lines as in [CO07, Sect. 4.2]
we may write (2.3) as

1
E(.A1.22,20) = 3 E02 = A3+ D7 L = A2+ D7 (det) F

% Z Qx,1(V)%0”3_Az_l) Qx,z(w)%(kz_kl_l), (2.4)

O#V,WEZ3
vlw

where Q, 1 (resp. Q. ) is the quadratic form on V' = R? defined on the row vector
v € V by v > vxv' (resp. v = vx~ 1), The genus class of the identity matrix
x = I3 consists of a unique class. Let Q = Q.1 = Oy, 2. Combining (2.2) and
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(2.4) we see that when x = I3 there exists a normalization of the Haar measure on
H (Ag) such that as a meromorphic functionin A = (1, A2, 13) € C* we have

/ E(h,2)dh = 4E(I5,2)
H(@Q\H(Ag)
== A+ DT~ + DT 3T QTR g,
O#VfEZ3

2.5)

Introduce the new variables s, = (A, — A3 +1)/2,5; = (A; — A, + 1)/2 and
write the right hand side of (2.5) as

E(Iysis) = 2507 ¢2s)™" Y 070w (2.6)

0#v,weZ?
vlw

The rest of this work is devoted to the explicit computation of (2.6), which is given
in Theorem 6.1.

3 The Double Dirichlet Series

We define the double Dirichlet series which arise in our evaluation of the GL3(Z)
Eisenstein series at the identity. Let v, ¥, be two quadratic characters unramified
away from 2. Then the double Dirichlet series Z(si,$2; Y1, ¥2) is roughly of
the form

L(s1, xa)
P (3.1)
4
More precisely,
xay(dy)
Z(s1,5:Y1,Y2) = Z Wa(dl,dz)%(dl)%(dz), (3.2)
d],d2>0 1 2
odd
where
« dy = (=1)>7V2d; and y, is the Kronecker symbol associated with the

squarefree part of d;.
e d, is the part of d; relatively prime to the squarefree part of d,.
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e The coefficients a(d,, d,) are multiplicative in both entries and are defined on
prime powers by

.y min(p*/?, p!/?) if min(k, ) is even,
a(p®.p') = _ (3.3)
0 otherwise.

It can be shown that the functions Z(sy,s2; V1, ¥2) appear in the Whittaker
expansion of the metaplectic Eisenstein series on the double cover of GL3(R), see
e.g [BBFHO7]. As such these functions have an analytic continuation to sy, s, € C
and satisfy a group of 6 functional equations.

We conclude this section by relating the heuristic definition (3.1) to the precise
definition (3.2).

Theorem 3.1. Let v, Y2 be quadratic characters ramified only at 2. Then

La(s, xa; 1) ya(da)

Z(s.wivn¥2) = LG £ 20—1) Y] st s
s 2 2

dr>0, odd
sqfree

where Lj(s, x) denotes the Dirichlet L-function with the Euler factor at 2
removed.

Proof. See [CFHOS5]. |

4 Genus Theory for Binary Quadratic Forms

Our description of the genus characters follows the presentation in Sect. 3 of Bosma
and Stevenhagen, [BS96]. Let D be a negative discriminant. Write D = df?
where d is a fundamental discriminant. We will assume f is odd. Let C1(D) be the
group of SL,(Z) equivalence classes of primitive integral binary quadratic forms of
discriminant D. We will denote the quadratic form ¢(x, y) = ax? + bxy + cy? by
[a,b,c]. We call e a prime discriminant if e = —4,8, =8 or p’ = (—1)?~Y/2p for
an odd prime. Note that e is a fundamental discriminant. Write D = D; D, where
D is an even fundamental discriminant and D, is an odd discriminant. Let D, be
D times the product of the prime discriminants dividing D».
For each odd prime p dividing D we define a character y(*) on C1(D) by

() xp(a) if(p,a)=1
2P (la,b,c]) = @.1)

xp(c) if(p,c)=1

The primitivity of [a, b, c] ensures that at least one of these two conditions will be
satisfied. These characters generate a group X'(D), called the group of genus class
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characters of CI(D). The order of X' (D) is 2°®)~!, where w(D) is the number of
distinct prime divisors of D. For each squarefree odd number e; dividing D we
define the genus class character

tee = T2

pler

where eje), = Dy. Then as e ranges over the squarefree positive odd divisors of D,
Xel e, w111 range over all the genus character exactly once (i D is even) or twice (if
D is odd).

Two forms ¢; and ¢, are in the same genus if and only if y(q;) = y(g») for all
x € X(D). As in Sect. 2, we denote this by ¢; & ¢5.

Using the identification between primitive integral binary quadratic forms of
discriminant D and invertible ideal classes in the order O = Z[(D + +/D)/2], we
may define the genus characters on the group Pic(Op). This allows us to associate
with a genus class character y the L-function

x(a)
— N(a)*’

LOD (S7 X) =

where the sum is over all invertible ideals of Op. In terms of the Epstein zeta
function, we have

1
Lop(s:2) = g7 D 1@L(s). (42)

D 4eci(p)

Using the group of characters X'(D), we may isolate individual genus classes on the
right-hand side of (4.2).

Proposition 4.1. Let g be a fixed form in CI(D). Then

Z éq(s) Zw(D) 1 Z X(qO)LOD(S’ X)

a~qo 1€X (D)
Finally, the following proposition shows how to write an L-function associated
with a genus class character in terms of ordinary Dirichlet L-functions.

Proposition 4.2. Let ey, e, be fundamental discriminants and let D = eje, f2.
Then

Loy (8, Xerer) = L(s, xe) LS, xer) [ Pep™, xer () xes (D)),
RIS
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where Pr(p™°, e, (P), Xe, (P)) is a Dirichlet polynomial defined by the generating
series

(1 —ouX)(1 - BuX)
(A= X)(1— pueX)

Fu.X:o.B) =Y Prlu.a.f)X* = 4.3)

k>0

Proof. See Remark 3 of Kaneko, [Kan05]. Actually, Kaneko considers only zeta
functions of orders, not genus character L-functions as in the proposition, but the
ideas are similar. O

S The Gauss Map

Let V = Q® equipped with the quadratic form Q, Q(x,y,z) = x> + y> + 2%
We also let Q denote the associated bilinear form on V x V. Let L = Z* and let
L[n] be the set of vectors in L such that Q(v) = n. Let L( be the set of primitive
integral vectors and let Lo[n] = Lo N L[n]. Let

—4n ifn=1or2 (mod 4)
D = (5.1
—n  ifn =3 (mod 4).

(The case n = 0 (mod 4) will not occur in our computations below.)

We have a map from Ly[n] to equivalence classes of primitive binary quadratic
forms of discriminant D defined as follows. Let v € L[n]. Let W be the orthogonal
complement of v (with respect to Q) and let M be a maximal Q-integral sublattice
in W. Explicitly, we take M = LN W ifn = 0,1 mod4 and M = %L nw
if n = 3 mod 4. Let u, w be an integral basis for M. The restriction of Q to the
two-dimensional subspace W is a binary quadratic form, which we’ll denote by g.
With respect to an integral basis u, w of M, the Gram matrix of this restriction is

(Q(w) Q(u,v)) | 52
O@w,v) Q,v)

We call the map G : Lo[n] — CI(D) defined by G(v) = Q|,1 the Gauss map.
We now describe the image of this map more explicitly for fixed n.
We begin with three observations.

1. By the Hasse—Minkowski principle, if ¢ € CI(D) is in the image of G, then every
form in the genus of ¢ is also in the image.

2. If g1 =~ g, are two forms in the image of G, then by Siegel’s mass formula, the
fiber over both forms has the same cardinality.

3. If ¢ and g, are two forms in the image, then ¢; and g, are in the same genus.
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These three facts follow because the ternary quadratic form Q is the only form in
its genus. We refer the reader to Theorems 1 and 2 of the survey paper of Shimura
[Shi06] for further details. More explicitly, we have the following theorem.

Theorem 5.1. Let n be a positive integer which is not divisible by 4, D as in (5.1)
above and let g € CI(D) be a form in the image of G. For any genus character Y., ¢,
of CI(D) with e, odd, we have

x—s(le1]) ifn =3 (mod 4)
Xerer(q) =
x—4(ler]) ifn=1,2 (mod 4).

Moreover,

. 24 . pw(n) 48/#07 - 20D~ if p = 3 (mod 4)
#5 ({g}) = HOX
D 24/4#07% - 20~ ifp = 1,2 (mod 4).

This theorem was first proven by Gauss [Gau86]. We again refer the reader to
[Shi06] for a more modern presentation.

6 Proof of the Main Theorem

We will evaluate the minimal parabolic GL3;(Z) Eisenstein series at the identity
matrix. We recall

(@sDER)E 51 = Y QM) 720w ©6.1)
Oaéovzée‘frﬁﬂ-

Our goal is the following theorem.

Theorem 6.1. The Eisenstein series E(I, sy, s2) can be expressed as a linear com-
bination of products of the double Dirichlet series Z (Y1, V) 1= Z(s1, $2; V1, ¥2),
where Y1, Yy range over the characters ramified only at 2. Explicitly,

§2(2S1)§2(2S2)§2(2S1 + 285, — 1)E(]3, S1, Sz)/lz
=Z(, x-0)Z(x=4,1) + Z(, 1) Z(x-4, x-4)

+27Z( x=8) Z(x—4, D) + 27 Z (1, x—8) Z(x-4, x—4)
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+272Z(1, (=) Z(x—-s, ) + 272 Z(1, x-0)Z(xs, 1)

T2 Z(A D Z(x—s. x—4) =272 Z(1. D Z (3. X~4)

+ 2702 Z(, =) Z (-5, 1) + 272 Z(1, x-8) Z(xs, 1)
+ 2772 Z (1, x8) Z (=85 x—a) — 272 Z(1, x8) Z (18 f—4)

+272Z(LDZ(, x—8) =272 Z(1, x—4) Z(1, ¥s). (6.2)

In particular, according to (2.5) and (2.6), this expresses the orthogonal period
PH(E(-, X)) in terms of the double Dirichlet series Z (Y1, V).

Proof. Begin by breaking up the sum in (6.1) into congruence classes of Q(v)
mod 4. Because multiplication by 2 gives a bijection between L(n) and L(4n),
we have

Y 0WMTOW) T =472 Q2s) 2 E(L st ). (63)

0#veL
Q(v)=0mod 4
0#we LNyt

Therefore,

(1—47)0Q2s)EQ2)E(Lsi) = Y. QW) ™20 w)™
0#veL

Q(v)#0mod 4
weLNvt

=5(2s) Y Q) O

voE€Log
WELﬂvOL

The second line follows after writing v € L as cvy with vy € Ly and ¢ an odd
positive integer. Note that we have dropped the condition Q(v) % Omod 4 as it
becomes redundant for vy € L. Thus,

§(2S1)E(1, 51, Sz)

=l > + ¥ + X Jow™mow™ (64

vELo VELo VELo
Q(v)=lmod4 Q(v)=2mod 4 Q(v)=3mod 4
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is equal to S| + S> + S3, say. We treat each of these 3 sums separately. Begin
with Si:

1
Si= >, e Y Lowls)
n>0 vELo[n]
n=1mod 4
1 [ 24.200M
= > el By PBRIACHER
n>0 =4 g~qon
n=1mod 4

where g, is a form in Cl(—4n) satisfying Xel e (q0.n) = x—a4(ey) for all squarefree
odd divisors e; of n. This follows from Theorem 5.1. Since w(n) = w(—4n) — 1,
Proposition 4.1 now implies that

1
Sl =24 § E E X_4(€1)L(’)74n(51, Xei,eé)' (65)
n>0 el‘n
n=1mod 4 sqfree

As in Sect. 4, ¢/, is chosen to be the fundamental discriminant such that e} e}, is equal
to the product of the prime discriminants dividing —4n. Reintroduce the integers
n =3 mod 4in (6.5):

1+ y—4(n
sma= Y TS Lo (1)

ns2
erln

n>0
n=1mod 4 sqfree

1
ZE Z X_4(81)LO—4n(S17 Xe{,eé)

n>0 el |n

odd sqfree
Y LS e Loy (51 k) 6.6)
P X—ale)Lo_y, I’Xel,ez . .
n>0 el‘n
odd sqfree

Now write n = ejey f 2 with ey, es, f odd and reverse the order of summation in
both sums in (6.6). For ¢y = 1 or y_4,
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Z 'g[/(l’l) Z X_4(€])LO—4K (sl’ Xei,éé)

n>0 erln
odd sqfree
Z W(elez))( a(er) Z L074e1e2f2(sl’xeiv—4€§) 6.7)
(elez)YZ f2S2 ' :
e1,e2>0 f>0,0dd
odd,sqfree

By virtue of Proposition 4.2, the inner sum in (6.7) is an Euler product, which may
be explicitly evaluated as

Z LO_4(.1(.2/'2 (S] ’ Xel —462)

2
f>0,0dd f "
Pr(p™ Xer (P)s X=4e;(P))
= L(s1, Xe| )L (s1, x— 4e2) l—[ Z el—2kw :
p#2 k=0 p
2s 251 + 25, —1
= L(s1. 1)L (51 Aae)) QR)6GAY F20-D gy

La(s1 + 282, xop) La(s1 + 252, X—ae})

Thus, (6.6) becomes

$2(252)82(281 + 25, — 1)

y Z Z Yx—aler) LG xe) Z Ye) LG X—4ep)
ei'Z LZ(Sl + 2S2s Xei) 62 L2(S] + 2527 X—4E£)

e2>0

Y=1,x—4 \e1>0
odd odd

(6.9)
Comparing with Theorem 3.1, the second term in parentheses above is just

Z(s1, 525 =4 Y1)
$2(252)8(251 + 25, — 1)

(6.10)

To write the first in terms of the double Dirichlet series of Sect. 3.1, we remove the
Euler factor at 2 from the L function, which appear in the numerator:

X (2) 1\!
L(sl’Xe{)=L2(S1aXei)(l+ o -
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Now x./(2) = xs(e), so the first term in parentheses in (6.9) is

(1—50)"!
$2(252)82(281 + 25, — 1)

[Z(s1, 80 1, ¥x—a) + 27 Z(s1,82: 1, ¥ y—g)]. (6.11)

Putting (6.10),(6.11) into (6.9) completes our evaluation of Sj.
The evaluations of S, and S5 are similar and will be omitted. We merely list the
results below.

Proposition 6.2. Abbreviate Z(sy, s2; V1, ¥2) by Z(Y1, ¥2). Let

S.
St = 1—12(1 —47)85(252)82(251 + 252 — 1)
fori =1,2,3. We have

St =Z, -0 Z(x-2,1) + ZA, D Z (-4, x-1)
+ 27 Z(1, x=8) Z (-4, 1) + 27 Z (1, x—8) Z(Y—4, x-4)
2283 = Z(1, x-0)Z(x-s, 1) + Z(1, x-4) Z (x5, 1)
+ Z(L, D) Z(X—=s. x—4) — Z(1. 1) Z(xs3, x—4)
+ 27 Z (1, x—8) Z(x—s. 1) + 27" Z(1, x—s) Z(xs. 1)
+ 27 Z(L, x8) Z(X—s, X—4) — 27" Z(L, x3) Z( X3, X—4)
2283 = Z(1,1)Z(1, x-8) — Z(1, x-4) Z(1, xs)

Adding up S; + Sz + S3 completes the proof of the theorem O

7 Concluding Remarks

7.1 A Two-Variable Converse Theorem

Hamburger’s converse theorem states that a Dirichlet series satisfying the same
functional equation as the Riemann zeta function must be a constant multiple of
the Riemann zeta function, [Ham21]. It is natural to ask for a two-variable analogue
of this result. We formulate such an analogue here.

Conjecture 7.1. Let D(s,w) = Y_ 4m1) he a double Dirichlet series in two

m,nZO msnW
complex variables, which is absolutely convergent for Re(s), Re(w) > 1. Define

D*(s,w) = G(s,w)D(s,w),
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where
G(s,w) = (2s)¢2w).(2s + 2w — 1)I'(s) (W) (s +w— %)

Suppose that:

1. D*(s,w) has a meromorphic continuation to (s, w) € C2. Moreover,

s—Dw-=1) (s +w-— %) D*(s,w)

is entire, and for each fixed s, is bounded in each strip a < Re(w) < b of fixed
width.

2. D*(s,w) is invariant under (s,w) > (1 — 8585 +w - %) and (s,w)
(s+w—1.1-w)

3. D(s,w) satisfies the limits

31_1)11.10 D(s,w) = 24“—S)L(s, X—4) and ll)ngo D(s,w) = 24ML(W, X—4)

£(29) ¢(2w)

Then D(s,w) = E(I3,s,w).

This conjecture would provide an alternate proof of our main result Theorem 6.1,
since, with a little work, one can directly show that the double Dirichlet series on the
right-hand side of (6.2) satisfies the same conditions as the D (s, w) of the conjecture
after multiplying by 12 and clearing the zeta factors. This would have the following
arithmetic consequence. Whereas we proved the main identity using Gauss’s result
(Theorem 5.1) on the image of G, a independent proof of the main identity will give
a result almost as strong as Theorem 5.1. In particular, the conjecture would give a
new proof of Gauss’s result on the number of representations of an integer as a sum
of 3 squares.

7.2 Siegel Modular Forms and Double Dirichlet Series

Let r(m,n) be the number of pairs of vectors v,w € Z> such that Q(v) = n,
Q(w) = m and v is orthogonal to w. Comparing with (6.1), we see that the double
Dirichlet series

r(m,n)
D(S’W) = Z Spyw
nm>1 m'n
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isequalto £ (25)C(2w) E (I, s, w). From the theory of Eisenstein series, we know that
D(s,w) has a meromorphic continuation to C? and satisfies a group of 6 functional
equations. On the other hand, r(m,n) are the diagonal Fourier coefficients of a
Siegel modular theta series 6 of genus 2. Thus, D(s,w) can be obtained as an
integral transform of 6. It is natural to ask if the analytic properties of D(s,w)
can be obtained from the automorphic properties of 6. If so, then presumably one
can construct a double Dirichlet series with analytic continuation and functional
equations by taking the same integral transform of any genus 2 Siegel modular form.
We believe this warrants further investigation.
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In more detail, suppose G is a complex connected reductive algebraic group
and let 6 denote an involutive automorphism of G. Write K for the fixed points
of 0, and P for a variety of parabolic subalgebras of a fixed type in g, the Lie
algebra of G. Then K acts with finitely many orbits on P, and these orbits may be
parameterized in a number of ways (e.g. [M,RS,BH]), each of which may be viewed
as a generalization of the classical Bruhat decomposition. (This latter decomposition
arises if G = G| x Gy, 0 interchanges the two factors, and P is taken to be the full
flag variety of (pairs of) Borel subalgebras.) We give our parameterization of K\P
in Corollary 2.14 and then turn to applications and examples in later sections.

As mentioned above, one of the applications we have in mind concerns the
connection with nilpotent coadjoint orbits for K. To each orbit 0 = K - p of
parabolic subalgebras in P, we obtain such a coadjoint orbit as follows. Let £ denote
the Lie algebra of K, and consider

K-[(g/p)* N (g/H"]=K-(g/(p +8)" C g™ (1.1

here and elsewhere we implicitly invoke the inclusion of (g/p)* and (g/€)* into
g* and take the intersection there. Suppose for simplicity K is connected. Then the
space in (1.1) is irreducible. It also consists of nilpotent elements and is K invariant.
Since the number of nilpotent K orbits on (g/€)* is finite [KR], the space must
contain a unique dense K orbit, call it ®p(Q). (It is easy to adapt this argument to
yield the same conclusion if K is disconnected.) Thus, we obtain a natural map

®=dp : K\P— K\N2, (1.2)
where ./\/'7@ denotes the cone of nilpotent elements in

(G- (a/p)*] N (9/®)". (1.3)

In fact, the map ®p is the starting point of our parameterization of K\P in Sect. 2.
For orientation, in the setting of the Bruhat decomposition mentioned above, the
map may be interpretation as taking Weyl group elements to nilpotent coadjoint
orbits. (Concretely, it amounts to taking an element w to the dense orbit in the G,
saturation of the intersection of the nilradicals of two Borel subalgebras in relative
position w.)

Just as the Bruhat order on a Weyl group is easier to understand than the
classification and closure order on nilpotent orbits, the set of K orbits on P in some
sense behaves more nicely than the set of K orbits on Nf). The former (and the
closure order on it) can be described uniformly, for instance [RS]. This is not the
case for K\N%, where any (known) classification involves at least some case-by-
case analysis. So a natural question becomes: can one translate the uniform features
of K orbits on P to the setting of K orbits on Nf) using ®p? This is the viewpoint
we adopt in Sect. 2. In particular, one may ask the following: given a K orbit Ok in
N2, do these exist a canonical element Q of K\P such that ®p(Q) = Ok? If so,
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we would be able to embed the set of K orbits on Ng into (the more uniformly
behaved) set of K orbits on P. One might optimistically hope to understand a
parameterization of K \/\/‘7@ (and understand its closure order) in this way.

The simplest way to produce affirmative answer to this last question is whether
the fiber of ®p over Ok consists of a single element Q. So it is desirable to have
a formula for the cardinality of the fiber. Using ideas of Rossmann and Borho-
MacPherson, we give such a formula in Proposition 2.10 in terms of certain Springer
representations. The question of whether the fiber consists of a single element then
becomes a multiplicity one question about certain Weyl group representations. We
then turn to two natural questions:

(1) Can one find a natural class of orbits O for which the fiber <I>7§1 (Ok) is indeed
a singleton?

(2) If so, can one give an effective algorithm to determine the fiber? (This is clearly
important if one really wants to use these ideas to try to classify K orbits on
N uniformly.)

We give affirmative answers to these questions in Proposition 3.7 and Remark 3.10
respectively. The class of K orbits we find are those Ok such that O = G - Ok is an
even complex orbit; then ®%' (Ok) consists of a single element if P is taken to be
the partial flag variety such that 7*P is a resolution of singularities of the closure
of O. (The corresponding K orbits on P are the regular orbits of the title.) Perhaps
surprisingly the algorithm answering (2) relies on the Kazhdan—Lusztig—Vogan
algorithm [V 1] for computing the intersection homology groups (with coefficients)
of K orbit closures on the full flag variety.

The setting of Sect. 3 may appear too restrictive to be of much practical value. But
in Sect. 4 we recall that it is exactly the geometric setting of the Adams—Barbasch—
Vogan definition of Arthur packets. More precisely, since the ground field is C,
0 arises as the complexification of a Cartan involution for a real form Gy of G.
We show that the algorithm of Remark 3.10 gives an effective means to compute
a distinguished constituent of each Arthur packet of integral special unipotent
representations for Ggr. According to the Arthur conjectures, these representations
should be unitary. This is a striking prediction (which is still open in general), since
the constructions leading to their definition have nothing to do with unitarity.

Section 4 is highly technical unfortunately, but we have included it in the hope
that it is perhaps more accessible than [ABV, Chap. 27] (upon which it is of course
based). We have also included it for another reason, which is easy to understand
from the current context. If it were possible to give affirmative answers to questions
(1) and (2) above to a wider class of orbits than we consider in Sect. 3, then the
ideas of Sect. 4 translate those answers into new conclusions about special unipotent
representations of real reductive groups. In recent joint work with Barbasch, one of
us (PT) has made progress in this direction. The precise formulation of these results
involves a rather different set of ideas, and the details [BT] appear elsewhere.

Finally, in Sect. 5, we consider a number of examples illustrating some subtleties
of the parameterization of Sect. 2.
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2 Parametrizing K\P

The main result of this section is Corollary 2.14, which gives a parameterization
of the K orbits on P. As Propositions 2.10 and 2.15 show, the parameterization is
closely related to Springer’s Weyl group representations.

We begin with a discussion of the set K\5 of K orbits on B, the full flag variety
of Borel subalgebras in our fixed complex reductive Lie algebra g. Basic references
for this material are [M] or [RS]. The set K\ B is partially ordered by the inclusion of
orbit closures. It is generated by closure relations in codimension one. We will need
to distinguish two kinds of such relations. To do so, we fix a base-point b, € B and
a Cartan b, in bo. We write b, = ho @ n, for the corresponding Levi decomposition,
and let AT = AT (ho, no) denote the roots of b in no. For a simple root e AT, let
‘P, denote the set of parabolic subalgebras of type o, and write 7, for the projection
B — P,.

Fix K orbits Q and Q' on B.If K is connected, then Q is irreducible, and hence
sois ;! (4 (Q)). Thus, ;! (7, (Q)) contains a unique dense K orbit. In general,
K need not be connected and Q need not be irreducible. But it is easy to see that
the similar reasoning applies to conclude ;! (7, (Q)) always contains a dense K

orbit. We write Q0 —> Q' if
dim(Q’) = dim(Q) + 1

and
Q' is dense in 7, ! (74(Q)).

This implies that Q is codimension one in the closure of Q. The relations Q < Q'
for Q 5 Q’ do not generate the full closure order, however. Instead, we must also
consider a kind of saturation condition. More precisely, whenever a codimension
one subdiagram of the form

@1
77
Q2 Q3 2.1
N L
Qa4
is encountered, we complete it to
@1
Q2 Qs (2.2)

N
Qu
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New edges added in this way are dashed in the diagrams below. Note that this
operation must be applied recursively, and thus some of the edges in the original
diagram (2.1) may be dashed as the recursion unfolds. Following the terminology
of [RS, 5.1], we call the partially ordered set determined by the solid edges the weak
closure order.

Now fix a variety of parabolic subalgebras P of an arbitrary fixed type and write
sp for the projection from B to P. For definiteness fix po € P containing bo, and
write po = [ @, for the Levi decomposition such that h, C I,. Then K'\P may be
parameterized from a knowledge of the weak closure on K\ B as follows. Consider
the relation Q ~p Q' if 7p(Q) = 7p(Q’); this is generated by the relations Q ~
Q'if Q 5 Q' for « simple in A(ho, lo). Equivalence classes in K\B clearly are
in bijection with K\P. (See also the parameterization of [BH, Sect. 1], especially
Proposition 4.) Fix an equivalence class C and fix a representative Q € C. The
same reasoning that shows that 7! (7,(Q)) contains a unique dense K orbit also
shows that

5! (p(Q))

contains a unique dense K orbit Q¢ € K\B. In other words, Q¢ is the unique
largest dimensional orbit among the elements in C. In fact, Q¢ is characterized
among the elements of C by the condition

dimm, ' (71, (Qc)) = dim(Qc) (2.3)

for all @ simple in A(ho, o). It follows that the full closure order on K\P is
simply the restriction of the full closure order on K\ to the subset of all maximal-
dimensional representatives of the form Q¢. By restricting only the weak closure
order, we may speak of the weak closure order on K\P.

We next place the map ®p of (1.2) in a more natural context. Consider the
cotangent bundle 7*P C P x g*. It consists of pairs (p, &) with

£e TP~ (a/p)". (2.4)

The moment map pp from T*P to g* maps a point (p, ) in T*P simply to .
Consider now the conormal variety for K orbits on P,

P = |J T3P
QeK\P

where T573 denotes the conormal bundle to the K orbit Q. (In the special case
G = G x G| and P = B mentioned in the introduction, the conormal variety is
the usual Steinberg variety of triples). In general, we may identify

ToP ={(p.8) |pec Q.8 c(a/t+p)"}. (2.5)
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and hence the image of T)¢P under jp is simply Nf,. Moreover, the image of TgP
under pp is nothing but the space in (1.1). Hence, ®»(Q) is simply the unique
dense K orbit in the moment map image of Té‘ P.

Here, are some elementary properties of ®p.

Proposition 2.6. . Fix Q € K\P and suppose Q' € K\B is dense in 717;1(Q).
Then

P5(Q') = 2p(Q).

2. The map ®p is order reversing from the weak closure order in K\'P to the

closure order on K\N%; that is, if Q < Q' in the weak closure order on K\P,
then

p(Q) O Pp(Q).

Proof. Part (1) is clear from the definitions. Part (2) reduces to the assertion for
0 5 Q’. In that case, it amounts to a rank one calculation where it is obvious. O

Example 2.7. Proposition 2.6(2) fails for the full closure order on K\P. The first
example which exhibits this failure is Gg = Sp(4,R) and P = B. Let « denote
the short simple root in A" and B the long one. The closure order for K\B is as
in the diagram in (2.8). Orbits on the same row of the diagram below all have the
same dimension. (The bottom row consists of orbits of dimension one, the next row
consists of orbits of dimension two, and so on.) Dashed lines represent relations in
the full closure order, which are not in the weak order.

Q

VN NN

« (0%

T} Uy U- T
4

Adopt the parameterization of K\N % given in [CM, Theorem 9.3.5] in terms
of signed tableau. Let (i I)Q (iz)g --- denote the tableau with j; rows of length
i, beginning with sign ¢, for each k. Then the closure order on K\N? is
given by
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/\/\

2121
\ / \ / (2.9)
21111t 21111t
1212

Then @ maps Q to 1312; Ry to 24,11 11; S and §" to 21, 2! ; T4 and T to 23;
and U4 to 4;. Note that ®p reverses all closure relations except the two dashed
edges indicating T C S.

We are now in a position to determine the size of the fiber <I>7§1 (Ok) for Ok €
K \/\/‘7‘;. For £ € Ok, let Ag(§) (resp. Ag(§)) denote the component group of the
centralizer in K (resp. G) of £&. Obviously, there is a natural map

Ak (§) = A (§).

which we often invoke implicitly. Write Sp(§) for the Springer representation of
W x Ag(€) on the top homology of the Springer fiber over & (normalized so that
& = 0 gives the sign representations of W). Let

Sp(£)** = Homy, ) (Sp(€). 1).

Proposition 2.10. Fix § € Ok. Then

#®5' (Ox) = dimHomyp) (sgn, Sp(§)*¥)

= dim Homy, (indw(m (sgn), Sp(£)1x).

Proof. The second equality follows by Frobenius reciprocity. For the first, set

Sp ={Q € K\B | Q is dense in Jr7§1 (mp(0))}.

According to the discussion around (2.3) and Proposition 2.6(1), wp implements a
bijection

Sp N &5 (Ok) — @5 (Ok).
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We will count the left-hand side if K is connected. If K is disconnected, there are a
few subtleties (none of which are very serious), which are best treated later.

Consider the top integral Borel-Moore homology of the conormal variety T¢P.
Since we have assumed K is connected, the closures of the individual conormal
bundles exhaust the irreducible components of T;;P, and their classes form a basis
of the homology,

HY (TEP.Z) = @ [TFP).
QeK\P

If P = B, Rossmann [R] (extending earlier work of Kazhdan-Lusztig [KL])
described a construction giving an action of the Weyl group W on this homology
space. The action is graded in the following sense that if Q € ®5'(Ok), then

v (T3

is a linear combination of conormal bundles to orbits in fibers ® Bl (O%) with O
Ok . Hence, if we set

o' 0k 9= |J @50

[ =tore
and
o5 (0. <) = () @5'(0))
OKCOK
then

M(Ok) = (758 / & 158

QGCDBI(OK <) 0ed;' (Ok.<)
is a W module with basis indexed by CDgl(OK). Rossmann’s construction shows
that
M(Ok) = Sp(£)%,
where £ € Ok as above. This proves the proposition for P = B. For the general

case, we must identify Sp in terms of the Weyl group action. It follows from
Rossmann’s constructions that

sa - [TB] = [T} B]

if and only if
dim, " (7(Q)) = dim(Q).
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Thus, (2.3) implies that Sp N ®5'(Ok) indexes exactly the basis elements of
M(Ok) which transform by the sign representation of the Weyl group of type P.
The proposition thus follows in the case of K connected. (A complete proof in the
disconnected case is discussed after Proposition 2.15.) O

The above proof is extrinsic in the sense that it is deduced from a statement about
the P = B case. We may argue more intrinsically (without reference to 3) using
results of Borho—-MacPherson [BM] as follows.

Fix £ € ./\/'7@ and consider ;' (§). In terms of the identification around (2.4),

1p' (§) ={(p.§) | £ € (a/p)").

(Borho—MacPherson write 73? for u;l (&) and call it a Spaltenstein variety.) Clearly

Ag (€), and hence Ak (§), act on the set of irreducible components Irr(15' (§)). Fix
C € Irr(u' (€)), and consider Z(C) := K - C C T*P.Since § € N C N(g/®)*,
it follows from (2.5) that Z(C) is in fact contained in the conormal variety

Z(C) CT¢P,
which is of course pure-dimensional of dimension dim(7). Hence,
dim(Z(C)) < dim(P).

But clearly
dim(Z(C)) = dim(K - §) + dim(C),
and thus
dim(C) < dim(P) — dim(K - §). (2.11)

Write Irtmax (145! (§)) for those irreducible components whose dimensions actually
achieve the upper bound. (This set could be empty, for instance, as we shall see in
Example 3.3 below when P = Pg and £ is a representative of a minimal nilpotent
orbit. Note, however, that it is a general theorem of Spaltenstein’s that if P = B3, the

full flag variety, then Irtmax (15" (§)) = Irr(ug' (€)).)

Proposition 2.12. Fix £ € N9, set Ox = K - &, assume <I>7_,1 (Ok) is nonempty,
and fix Q € <I>7_,l (Ok). Then

C(Q):=T;P N uz' ()

is the union of elements in an Ak (§) orbit on Irrmax(,LL;l (§)). The assignment Q +—
C(Q) gives a bijection

D5 (Ok) —> Ax (E)\Itmax (15 (§))- (2.13)
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Proof. Fix C € Irrpmax (/L,;l (£)). Then dim(Z(C)) = dim(P) by definition. Notice
that Z(C) is nearly irreducible (and it is if K is connected). In general, the
component group of K (which is finite by hypothesis) acts transitively on the
irreducible components of Z(C). But from the definition of TZP, the closure
of each conormal bundle TSP consists of a subset of irreducible components of
T¢P on which the component group of K acts transitively. Since dim(Z(C)) =
dim(T'¢P), it follows that there is some Q such that

Z(C) = TyP;

moreover, Q must be an element of ®3'(Ok). Clearly Z(C) = Z(C’) if and only
if C and C’ are in the same A (€) orbit. The assignment C + Q gives a bijection
Ag E\Irrmax (u5' (€)) — <I>7_31 (Ok) which, by construction, is the inverse of the
map in (2.13). This completes the proof. O

Corollary 2.14. Let &y, ..., & be representatives of the K orbits on ./\/'79,. Then the
map

0 — (®p(0). T3P N 7' ()
for i the unique index such that K - &; dense in ®p(Q) implements a bijection

K\P — [ [ Ak E)\Irtax (13" ().

Thus everything reduces to understanding the irreducible components of u;l €3]
of maximal possible dimension. For this we need some nontrivial results of Borho—
MacPherson. [BM, Theorem 3.3] shows that the fundamental classes of the elements
of Irrmax(u;1 (§)) index a basis of Homyp)(sgn, Sp(§)). Actually, to be precise,
their condition for C to belong to Irryax (,u;,l (&)) is that

dim(C) = dim(P) — %dim(G -£).

To square with (2.11), we need to invoke the result of Kostant—Rallis [KR] that K - &
is Lagrangian in G - £. In any case, because Ag (£) acts on Sp(§) and commutes
with the W action, Ag () also acts on Homyp)(sgn, Sp(£)), and [BM, Theorem
3.3] shows that this action is compatible with the action of A¢ (§) on Irr(u3'(§)).
In particular, this implies the following result.

Proposition 2.15. Fix§ € ./\/703. Then the number of A (§) orbits on Ittpax (15" (£))
equals the dimension of

Homyy(p) (sgn, Sp(E)AK) .

Combining Propositions 2.12 and 2.15, we obtain an alternate proof of Proposition
2.10, which makes no assumption on the connectedness of K.
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Remark 2.16. The P = B case of Corollary 2.14 is due to Springer (unpublished).
In this case, W(B) is trivial, and thus <I>gl((91<) has order equal to the W-
representation Sp(£)“X .

Itis of interest to compute the bijection of Corollary 2.14 as explicitly as possible.
For instance, if Gg = GL(n, C) and P = B consists of pairs of flags, the left-hand
side of the bijection in Corollary 2.14 consists of elements of the symmetric group
S,. On the right-hand side, all A-groups are trivial, and the irreducible components
in question amount to pairs of irreducible components of the usual Springer fiber.
Such pairs are parameterized by same-shape pairs of standard Young tableaux.
Steinberg [St] showed that the bijection of the corollary amounts to the classical
Robinson—Schensted correspondence.

A few other classical cases have been worked out explicitly [vL, Mcl, T1, T3].
But general statements are lacking. For instance, given Q and Q’, there is no known
effective algorithm to decide if ®p(Q) = Pp(Q’). The next section is devoted
to special cases of the parameterization, which lead to nice general statements. It
might appear that these special cases are too restrictive to be of much use. But it
turns out that they encode exactly the geometry needed for the Adams—Barbasch—
Vogan definition of Arthur packets. This is explained in Sect. 4.

3 P-Regular K Orbits

The main results of this section are Proposition 3.7(b) and Remark 3.10, which
together give an effective computation of a portion of the bijection of Proposition
2.12 under the assumption that pp is birational.

Definition 3.1 (see [ABV, Definition 20.17]). A nilpotent orbit Og of K on Ng is
called P-regular (or simply regular, if P is clear from the context) if G - O is dense
in up(T*P). Since O is Lagrangian in G - Ok [KR], this condition is equivalent to

dim(Og) = % dim u(T*P) = dim(g/p).

for any p € P. In other words, P-regular nilpotent K-orbits meet the complex
Richardson orbit induced from p. An orbit Q of K on P is called P-regular (or
simply regular) if 5 (Q) is a P-regular nilpotent orbit. Note that regular P-orbits
need not exist in general (for instance, if Ggr is compact and P is not trivial).

Since regular nilpotent K orbits are automatically maximal in the closure order
on N, 703, Proposition 2.6(2) shows that regular K orbits on P are minimal in the weak
closure order:

Proposition 3.2. Suppose Q is a regular K orbit on P. Then Q is minimal in the
weak closure order on K\P.
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The next example shows that regular K orbits on P need not be minimal in the
full closure order (i.e., they need not be closed).

Example 3.3. Retain the notation of Example 2.7. Let P, (resp. Pg) consist of
parabolic subalgebras of type o (resp. B) and write 7, and 7g in place of 7p, and
7py, and similarly for j1, and pg. Then the closure order on K\ P, is obtained by
the appropriate restriction from (2.8). (Subscripts now indicate dimensions; dashed
edges are those covering relations present in the full closure order but not the weak
one.)

7a(Q)s
/ \
- N
(T4 )o .."'%%;<S/)'if 7o (T )o

The closure order on K'\Pg is again obtained by restriction from (2.8). (Once again
subscripts indicate dimensions.)

m5(Q)3

|

73(9)2 (3.5)

(T mo(T_)s

In this case ./V;f =N g , and the closure order on K \./\/'79) is just the bottom three
rows of (2.9),

242! 22

NN,

2b 111t 2t 141t (3.6)

N,

1212
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From Proposition 5.2 below (for instance), both &, = ®p, and &g = Pp,
are injective. There are enough edges in the weak closure order on K\P, so that
Proposition 2.6(1) allows one to conclude that ®, reverses the full closure order. In
fact, @, is the obvious order reversing bijection of (3.4) onto (3.6). Hence, 7, (T",)
and 7, (S") are P,-regular.

By contrast, ®4 does not invert the dashed edges in (3.5): &g maps mwg(Q) to the
zero orbit, and the three remaining orbits to the three orbits of maximal dimension in
Nf,. Hence, 7g(T}) and 74 (S) are Pg-regular. In particular, g (S) is a Pg-regular
orbit which is not closed.

Finally note that the fiber of @, over 2!, 1} 11 consists of a single element,
while the corresponding fiber for ®4 is empty. This is consistent with Proposition
2.10 since Sp(§) (for £ a representative of these orbits) is a one-dimensional
representation on which the simple reflection s, (resp. sg) acts nontrivially (resp.
trivially). O

An essential difference in the two cases considered in Example 3.3 is that p, is
birational, but ug has degree two.

Proposition 3.7 ([ABV, Theorem 20.18]). Suppose up is birational onto its
image. Then:

(a) Any regular K orbit on P consists of 0-stable parabolic subalgebras (and hence
is closed).

(b) ®p is a bijection from the set of regular K orbits on ‘P to the set of regular
nilpotent K orbits on ./\/703.

Proof. Fix a P-regular nilpotent K orbit Og in N, § € Ok, and Q €
<I>7_31 (Ok). Since pp is birational, the set Irtmax (15" (§)) is a single point, and so
Proposition 2.12 shows that Q is the unique orbit in <I>7_31 (Ok). This gives (b).
Again since pup is birational, there is a unique parabolic p € Q such that § €
(g/p)*. Since 0(§) = —£, O(p) is also such a parabolic. So 8(p) = p. Thus, 0 =
K - p consists of -stable parabolic subalgebras. This gives the first part of (a). The
same (well-known) proof of the fact that K orbits of 6-stable Borel subalgebras are
closed (for example, [Mi, Lemma 5.8]), also applies to show that orbits of 6-stable
parabolics are closed. (It is no longer true that a closed K orbit on P consists of
0-stable parabolic subalgebras. But if a 6-stable parabolic algebra in P exists, all
closed orbits do indeed consist of -stable parabolic subalgebras.) O

Because of the good properties in Proposition 3.7, we will mostly be interested
in P-regular orbits when pp is birational. For orientation (and later use in Sect. 4),
it is worth recalling a sufficient condition for birationality from [He]; see also [CM,
Theorem 7.1.6] and [ABV, Lemma 27.8].

Proposition 3.8. Suppose O is an even complex nilpotent orbit. Let P denote the
variety of parabolic subalgebras in g corresponding to the subset of the simple roots
labeled 0 in the weighted Dynkin diagram for O (e.g. [CM, Sect.3.5]). Then O is
dense in up(T*P) and up is birational. O
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Return to Proposition 3.7(a). Example 5.12 below shows that if tp is birational,
then not every (necessarily closed) K orbit of 6-stable parabolic subalgebras on P
need be regular. (A good example to keep in mind is the case when K and G have the
same rank and P = B. Then the closed K orbits on B parameterize discrete series
representations with a fixed infinitesimal character. But the regular orbits are the
ones which parameterize large discrete series.) So the question becomes: can one
give an effective procedure to select the regular K orbits on P from among all
orbits of #-stable parabolics (when pp is birational)? This is only a small part of
computing the parameterization of Corollary 2.14, so it is perhaps surprising that the
answer we give after Proposition 3.9 depends on the power of the Kazhdan—Lusztig—
Vogan algorithm for G, the real form of G with complexified Cartan involution 6.

We need a few definitions. Recall that the associated variety of a two-sided ideal
I in U(g) is the subvariety of g* cut out by the associated graded ideal gr/ (with
respect to the standard filtration on U(g)) in grU(g) = S(g). (From [BBI1], if [ is
primitive, then AV (/) is the closure of a single nilpotent coadjoint orbit.) Finally if
p is a O-stable parabolic subalgebra of g, recall the irreducible (g, K)-module A4,
constructed in [VZ]. (It would be more customary to denote these modules A, but
we have already used the letter O for another purpose.)

Proposition 3.9. Suppose pp is birational. Fix a closed K orbit Q on P consisting
of 0-stable parabolic subalgebras. Fix p € Q. Then Q is P-regular in the sense of
Definition 3.1 if and only if

AV(Ann(4y)) = n(T*P),

the closure of the complex Richardson orbit induced from .

Remark 3.10. We remark that the condition of the proposition is effectively com-
putable from a knowledge of the Kazhdan-Lusztig—Vogan polynomials for Gg.
More precisely, the results of Sect.2 allow us to enumerate the closed orbits of
K on P from the structure of K orbits on B. In turn, the description of K\B
has been implemented in the command kgb in the software package atlas
(available for download from www.liegroups.org). Moreover, it is not difficult to
determine which closed orbits consist of #-stable parabolic subalgebras; in fact,
if one of closed orbit does, then they all do. (Alternatively, one may implement
the algorithms of [BH, Sect.3.3], at least if K is connected.) For a representative
p of each such orbit, one then uses the command wcells to enumerate the cell
of Harish—Chandra modules containing the Vogan—Zuckerman module A,. (The
computation of cells relies on computing Kazhdan-Lusztig—Vogan polynomials.)
Finally AV(Ann(A4,)) = w(T*P) if and only if the cell containing A, affords
the Weyl group representation Sp(£)4¢ (with notation as in Sect.?2), where £ is
an element of the Richardson orbit induced from p. Again, this is an effectively
computable condition and is easy to implement from the output of at 1as. Hence if
Wp is birational, there is an effective algorithm to enumerate the ‘P-regular orbits

of K onP.
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Remark 3.11. Suppose O is an even complex nilpotent orbit, so that Proposition 3.8
applies. Then Proposition 3.7(b) shows that the algorithm of Remark 3.10 also enu-
merates the K orbits in O N (g/€)*. Using the Kostant—-Sekiguchi correspondence,
this amounts to the enumeration of the real forms of O, i.e. Gg orbits on O N gﬂ’i.
By contrast, if O is not even, the only known way to enumerate the real forms of O
involves case-by-case analysis.

Proposition 3.9 is known to experts, but we sketch a proof (of more refined
results) below; see also [ABV, Chap.20]. We begin with some representation-
theoretic preliminaries. Let Dp denote the sheaf of algebraic differential operators
on P, and let Dp denote its global section. Since the enveloping algebra U(g) acts
on P by differential operators, we obtain a map U(g) — Dp. Let Ip denote its
kernel, and Rp its image. By choosing a base-point p, € P, it is easy to see
that /p is the annihilator of the irreducible generalized Verma module induced
from po € P with trivial infinitesimal character. We will be interested in studying
Harish—-Chandra modules whose annihilators contain /p, i.e. (Rp, K)-modules.
For orientation, note that if P = B, I3 is a minimal primitive ideal, and thus any
Harish—Chandra module with trivial infinitesimal character contains it.

Unlike the case of P = B, U(g) need not surject onto Dp in general, and
so Rp >~ U(g)/Ip is generally a proper subring of Dp. Thus, the localization
functor

Rp-mod — Dp-mod

X—)X:=Dp®RPX.

need not be an equivalence of categories. But, nonetheless, we have that the
appropriate irreducible objects match. (Much more conceptual statements of which
the following proposition is a consequence have recently been established by
S. Kitchen.)

Proposition 3.12. Suppose X is an irreducible (Dp, K)-module. Then its restric-
tion to Rp is irreducible.

Sketch. Irreducible (Dp, K)-modules are parameterized by irreducible K equiv-
ariant flat connections on P. We show that the irreducible (Rp, K)-modules are also
parameterized by the same set. The parameterizations have the property that support
of the localization of either type of module parameterized by such a connection £
is simply the closure of the support of £. This implies there are the same number of
such irreducible modules and hence implies the proposition.

Let X be an irreducible (Rp, K)-module. Hence, we may consider X as an
irreducible (g, K)-module, say X’, whose annihilator contains /. By localizing on
B, we may consider the corresponding irreducible K equivariant flat connection on
B, say L', parameterizing X'. The condition that Ann(X’) D Ip can be translated
into a geometric condition on £ using [LV, Lemma 3.5], the conclusion of which
is that £ fibers over an irreducible flat K-equivariant connection on P (with
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fiber equal to the trivial connection on ). This implies that irreducible (Rp, K)-
modules are also parameterized by K equivariant flat connections on P, as claimed,
and the proposition follows. O

Remark 3.13. Proposition 3.12 need not hold when considering twisted sheaves of
differential operators corresponding to singular infinitesimal characters.

Next suppose X is an irreducible Rp module. Let (X7) denote a good filtration
onits localization X’ compatible with the degree filtration on Dp. Let CV(X') denote
the support of gr(X). This is well-defined independent of the choice of filtration.
Moreover, there is a subset cv(X) € K\P such that

cvx) = |J 1P
Qecv(X)

The set cv(X) is difficult to understand, but there are two easy facts about it. First,
if X is irreducible, there is a dense K orbit, say supp, (X) in the support of X'; then
supp, (X) € cv(X). Moreover if Q € cv(X), then Q € supp,(X). So, for example,
if supp, (X) is closed, then cv(X) = {supp,(X)}.

Finally, we define

AV(X) = p(CV(X)).

(Alternatively one may define AV(X) as in [V3] without localizing. The fact that

the two definitions agree follows from [BB3, Theorem 1.9(c)].) Clearly, AV(X) is

the union of closures of K orbits on Nf,. We let av(X) denote the set of these orbits.
Here is how these invariants are tied together.

Theorem 3.14. Retain the setting above. Then

1. AV(Ip) = w(T*P).
2. If X is an irreducible (Rp, K)-module, then

G - AV(X) = AV(Ann(X)) C AV(Ip).

Proof. Part (1) is Theorem 4.6 in [BB1]. The equality in part (2) is proved in [V3,
Sect. 6]; the inclusion follows because X is an Rp = U(g)/Ip module. |

Proposition 3.15. Suppose X is an irreducible (Rp, K)-module such that there
exists a P-regular K orbit Q € cv(X). (For instance, suppose suppo(X) is P-
regular.) Then ®p(Q) is a K orbit of maximal dimension in AV(X); that is,
®p(Q) € av(X).

Proof. Since AV(X) = w(CV(X)) and since Q € cv(X),

dp(Q) C AV(X) (3.16)
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for any (Rp, K)-module. If Q is P-regular, then the G saturation of the left-hand
side of (3.16) is dense in u(7*P). But by Theorem 3.14 the right-hand side of
(3.16) is also contained in (7 *P). So the current proposition follows. O

Corollary 3.17. Suppose X is an irreducible (Rp, K)-module. Then the following
are equivalent.

(a) There exists a P-regular orbit Q € cv(X)

(b) There exists a P-regular orbit Ok € av(X)

(c) Ann(X) = Ip

(d) AV(Ann(X)) = AV(Ip), i.e. AV(Ann(X)) = u(T*P)

Proof. The equivalence of (a) and (b) follows from the definitions above. Since
the annihilator of any Rp module contains Ip, the equivalence of (c¢) and (d)
follows from [BKr, 3.6]. Theorem 3.14 and the definitions gives the equivalence of
(b) and (d). O

Proof of Proposition 3.9. If p € P is a f-stable parabolic, then the Vogan—
Zuckerman module Ay is the unique irreducible (Rp, K)-module whose localiza-
tion is supported on the closed orbit K - p and thus, as remarked above, cv(4,) =
{K - p}. So Proposition 3.9 is a special case of Corollary 3.17. O

4 Applications to Special Unipotent Representations

The purpose of this section is to explain how the algorithm of Remark 3.10
produces special unipotent representations. Much of this section is implicitin [ABV,
Chap. 27].

Fix a nilpotent adjoint orbit O for gV, the Langlands dual of g. Fix a Jacobson—
Morozov triple {e¥, 1Y, [V} for OV, and set

x(OY) = (1/2)h".

Then y(OV) is an element of some Cartan subalgebra h¥ of g¥. There is a
Cartan subalgebra ) of g such that ¥ canonically identifies with h*. Hence we
may view

x(©OY) e b*.

There were many choices made in the definition of y(OV). But, nonetheless, the
infinitesimal character corresponding to y(OV) is well defined; i.e. y(OV) is well-
defined up to GV conjugacy and thus (via Harish-handra’s theorem) specifies a well-
defined maximal ideal Z(O") in the center of U(g). We call x(OV) the unipotent
infinitesimal character attached to OV.

By aresult of Dixmier [Di], there exists a unique maximal primitive ideal in U(g)
containing Z(OV). Denote it by I(OV), and let d(O") denote the dense nilpotent
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coadjoint orbitin AV(/(OV)). The orbit d(OV) is called the Spaltenstein dual of O¥
(after Spaltenstein who first defined it in a different way); see [BV, Appendix A].
Fix Gr as above, and define

Unip(O0Y) = {X an irreducible (g, K) module | Ann(X) = 1(O")}.

This is the set of special unipotent representations for Gy attached to OV Since the
annihilator of such a representation X is the maximal primitive ideal containing
Z(OV), X is as small as the (generally singular) infinitesimal character y(OV)
allows. These algebraic conditions are conjectured to have implications about
unitarity.

Conjecture 4.1 (Arthur, Barbasch-Vogan [BV]). The set Unip(OV) consists of
unitary representations.

We are going to produce certain special unipotent representations from the
regular orbits of Definition 3.1. In order to do so, we need to shift our perspective
and work on side of the Langlands dual g". So let G}, be a real form of a connected
reductive algebraic group with Lie algebra gV and let K’ denote the complexification
of a maximal compact subgroup in G. Fix an even nilpotent coadjoint orbit
OV. (This is equivalent to requiring that y(OV) is integral.) Define P as in
Proposition 3.8. Thus, the main results of Sect. 3 are available in this setting.

Let X’ denote an irreducible (Rpv, K')-module, and let X denote the Vogan
dual of X’ in the sense of [V2]. Thus, X is an irreducible Harish-Chandra module
for a group Gy arising as the real points of a connected reductive algebraic group
with Lie algebra g. Moreover, X has trivial infinitesimal character.

Recall that we are interested in representations with infinitesimal character
x(OY). In order to pass to this infinitesimal character, we need to introduce certain
translation functors. There are technical complications which arise in this setting
for two reasons. First, Gg need not be connected (although it is in Harish—Chandra’s
class by our hypothesis). Second, Gr may not have enough finite-dimensional
representations to define all of the translations one would like. Both of these
complications disappear if we assume G is simply connected, and we shall do so
here in the interest of streamlining the exposition. (It is of course possible to relax
this assumption, as in [ABV, Chap. 27].)

Fix a representative p € b* representing the trivial infinitesimal character.
Choose a representative y € h* representing the (integral) infinitesimal character
x(OY) so that y and p lie in the same closed Weyl chamber. Let v = p — y. Let
FV denote the finite-dimensional representation of Ggr with extremal weight v; this
exists since we have assumed G is simple connected. Using it, define the translation
functor ¥ = wg (as in [KnV, Sect. VII.13]) from the category of Harish—Chandra
modules with trivial infinitesimal character to the category of Harish—Chandra
modules with infinitesimal character y(OV).

Theorem 4.2 (cf. [ABV, Chap. 27]). Retain the notation introduced after Conjec-
ture 4.1. In particular, fix an even nilpotent orbit OV, and let P denote the variety
of parabolic subalgebras corresponding to the nodes labeled 0 in the weighted
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Dynkin diagram for OV . Let X' be an irreducible (Rpv, K')-module, assume G is
simply connected, and let Z = (X)) denote the translation functor to infinitesimal
character y(OV) applied to the Vogan dual X of X'. Then the following are
equivalent:

(a) Z is a (nonzero) special unipotent representation attached to OV
(b) There exists a PV -regular orbit QV € cv(X').

Proof. From the properties of the duality explained in [V2, Sect. 14] (and the
translation principle), Z is nonzero with infinitesimal character y(OV) if and only
if X’ is annihilated by Ipv, i.e. if and only if X’ descends to a (Rpv, K)-module.
Moreover, Z is annihilated by a maximal primitive ideal if and only if the Rpv-
module X’ has minimal possible annihilator, namely /pv. The conclusion is that
Z is special unipotent attached to OV if and only if X’ is a (Rpv, K)-module
annihilated by Ipv. So the theorem follows from the equivalence of (a) and (c)
in Corollary 3.17. O

Since the duality of [V2] is effectively computable, and since the same is true
of the translation functors ¥, the theorem shows Remark 3.10 translates into an
effective construction of special unipotent representations. More precisely, one
uses Remark 3.10 to enumerate the relevant PV-regular orbits, and for each
one constructs the representation X’ = A, of Proposition 3.9. As remarked in
the proof of Proposition 3.9, X’ satisfies condition (b) of Theorem 4.2. Applying
the construction of the theorem gives special unipotent representations.

In fact, this construction may be understood further in light of the following
refinement. In the setting of Theorem 4.2, fix a PV-regular orbit QV, and define
A(QV) be the set of special unipotent representations attached to @ produced by
applying Theorem 4.2 to all modules X’ with Q¥ € cv(X’). Then the theorem
implies

Unip(0Y) = | A(QY),

where the (not necessarily disjoint) union is over all P -regular orbits.

The sets A(QY) are the Arthur packets defined in [ABV, Chap. 27]. While there
are effective algorithms to enumerate Unip(OV), there are no such algorithms for
individual packets A(QV) (except in favorable cases). In any event, the discussion
of the previous paragraph shows that Remark 3.10 leads to an effective algorithm
to enumerate one element of each Arthur packet of integral special unipotent
representations. These representatives are necessarily distinct.

S Examples

Example 5.1 (Maximal parabolic subalgebras for classical groups). Suppose G is
classical and P consists of maximal parabolic subalgebra. Then it is well known that

ind %(73) (sgn)
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decomposes multiplicity freely as a W-module. Thus if Sp(§)“¥ is irreducible as a
W -module, then Proposition 2.10 implies <I>7_31 (Ok) is a single orbit. In particular,
if the orbits of Ax(§) and Ag(§) on irreducible components of the Springer fiber
pg' (§) coincide (for instance, if Ag(§) surjects onto Ag (&) for each §), then
Sp(§)4x = Sp(£)¢ is irreducible and ®p is injective.

Proposition 5.2. Suppose the real form Gr of G corresponding to 0 is a classical
semisimple Lie group with no complex factors whose Lie algebra has no simple
factor isomorphic to s0*(2n) or sp(p,q). If P consists of maximal parabolic
subalgebras, then ®p is injective.

Proof. Unfortunately, this follows from a case-by-case analysis of the classical
groups. First note that the orbits of Ax (&) and Ag(§) on ug'(€) are insensitive to
the isogeny class of Gg. So, by the remarks preceding the proposition, it is enough
to examine when the two kinds of orbits coincide for a simply connected group
Gr with simple Lie algebra. In type A, all A-groups are trivial (up to isogeny) so
there is nothing to check. It follows from direct computation that A g (£) surjects on
A (§) for Gg = Sp(2n,R) and SO(p, q), but that the image of Ax(§) in Ag(§) is
always trivial for Sp(p, ¢) and SO*(2n). This completes the case-by-case analysis
and hence the proof.

Remark 5.3. For the groups in Proposition 5.2, the map ®5 is computed explicitly
in [T1] and [T3]. Using Proposition 2.6(1), this gives one (rather roundabout) way to
compute ®p in these cases. For exceptional groups, the injectivity of the proposition
fails. See Example 5.12 below.

Example 5.4. Suppose now Gr = Sp(2n,R) and P consists of maximal parabolic
of type corresponding to the subset of simple roots obtained by deleting the long
one. (Soif n = 2, P = P, in Example 3.3.) Then the analysis of the preceding
example extends to show that ®p is an order-reversing bijection. The closure order
on K\N (and hence K\P) is as follows.

2 212t

AN

_ v
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Here, as before, we are using the parameterization of K\ 79, given in [CM, Theorem
9.3.5]. There are thus n + 1 orbits which are P-regular, all of which are closed
according to Proposition 3.7(a) (which applies since P is attached via Proposition
3.8 to the even complex orbit with partition 2).

In this setting, we may now apply Theorem 4.2. (Notationally, the roles of the
group and dual group must unfortunately be inverted: for the application, we should
take GV = Sp(2n, C) in the statement of the theorem.) Even though SO(#, n+ 1) is
not simply connected, the complications involving the relevant translation functors
are absent, and the construction of the theorem, nonetheless, applies and produces
n 4+ 1 special unipotent representations for SO(n,n + 1).

Example 5.6. Suppose Gr = U(n,n) and P corresponds to the subset of simple
roots obtained by deleting the middle simple root in the Dynkin diagram of type
Aj,—1. Then ®p is an order reversing bijection, and the partially ordered sets in
question again look like that (5.5) using the parameterization of K \/\/'7(1 given in
[CM, Theorem 9.3.3]. Again, there are n + 1 orbits which are P-regular. The
construction of Theorem 4.2 produces n + 1 special unipotent representation for
GL(2n, R), each of which turns out to be a constituent of maximal Gelfand—Kirillov
dimension in the degenerate principal series for GL(2n,R) induced from a one-
dimensional representation of a Levi factor isomorphic to a product of n copies of
GL(2,R).

In terms of representation theory of Gg = U(n,n), it is well known that
the enveloping algebra in this case does surject on the ring of global differential
operators on P (e.g., the discussion of [T2, Remark 3.3]) and localization is an
equivalence of categories. Because all Cartan subgroups in U(n,n) are connected,
the only irreducible flat K-equivariant connections on P are the trivial ones
supported on single K orbits. The map Q +— Pp(Q) coincides with the map
which sends the unique irreducible (Rp, K)-module supported on the closure of Q
to the dense orbit in its (irreducible) associated variety, and is a bijection between
such irreducible modules and the K orbits on /\/'7(1 It would be interesting to see if
this observation could be used to give a geometric explanation of the computation
of composition series of certain degenerate principal series for U(n, n) first given
in [Sa] and later reproved in [Le]. (See, for instance, Sahi’s module diagrams
reproduced in [Le, Fig. 7], for example.)

Example 5.7. Suppose Gr = Sp(1, 1), a real form of G = Sp(4,C). If O is the
subregular nilpotent orbit for g and £ € O N (g/€)*, then Ak (§) is trivial, but
Ag(§) ~ 7Z/2. So the proof of Proposition 5.2 does not apply. Let o denote the
short simple root and B the long one. The closure order on K\ is given by

R (5.8)
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The picture for K\ P, is

Ta(Q)3
} (5.9)
T (R)2
and for K'\'Pg
m5(Q)3
7 ™ (5.10)
Ta(S+)2 m5(5-)2

Here, /\/;9 = N? = N?Y, and the closure order of K orbits is simply

2128
0 5.11)

1212

in the notation of [CM, Theorem 9.3.5]. Then ®,, is an order reversing bijection, but
®p is two-to-one over 2!, 2! . The reason is that

Sp(§) = std & y,

where std is the two-dimensional standard representation of W and y is a character
on which the simple reflection s, acts trivially and on which sg acts nontrivially.
The orbit 7, (R) is P,-regular, and the orbits g (S+) are Pg-regular.

Example 5.12. As an example of what can happen in the exceptional cases, let G be
the (simply connected) connected complex group of type F4 and 8 correspond to the
splitreal form G of G. (So K is a quotient of Sp(3, C)xSL(2, C) by Z/2.) Then the
corresponding real form G is split. Let P denote the variety of maximal parabolic
obtained by deleting the middle long root from the Dynkin diagram, and let O
denote the corresponding Richardson orbit. Then O is 40 dimensional and is labeled
F4(A3) in the Bala—Carter classification. Moreover, O is the unique orbit which is
fixed under Spaltenstein duality. (Here, we are of course identifying g and gV.) For
£ € O, Ag(§) = S4, the symmetric group on four letters. The weighted Dynkin
diagram of O has the middle long root labeled 2 and all others nodes labeled 0. So
‘P corresponds to O as in Proposition 3.8.
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From results of Djokovi¢ (recalled in [CM, Sect. 9.6]), there are 19 orbits of K on
Nf,. They are labeled 0-18; the orbit corresponding to label i will be denoted O,
and &' will denote an element of O%.. Orbits O}, O}, and O are the three K orbits
on O N (g/€)*. From the discussion leading to [Ki, Table 2], it follows that A (§')
surjects onto Ag (§') fori = 0,...,15.In each of these cases, A (§) is either trivial
or Z/2. We also have Ag (£'%) = Ag(£'°) = S,. But Ag(§!7) = Dy, the dihedral
group with eight elements, and Ax (§'7) — A (£'7) is the natural inclusion into Sj.
Finally, Ax (§'®) = Z/2 x Z/2 which injects into Ag (£'®). _

For i = 17 and 18, it is not immediately obvious how to read off Sp(&')4x ")
from, say, the tables of [Ca]. But for i = 0,...,16, the component group
calculations of the previous paragraph imply that Sp(§)4x¢") = Sp(&/)46¢") | and
such representations are indeed tabulated in [Ca]. Applying Proposition 2.10, it is
then not difficult to show that

#071(O%) = 1ifi € {0,1,2,3}U{9,10,...,16}
and
#01(O%) = 2ifi € {4,5,6,7,8}.

In more detail, the G-saturation of O} and O% is the complex orbit A; x Al in
the Bala—Carter labeling, while 0%, O, and O% have G saturation labeled by A,.
The corresponding irreducible Weyl group representations in these two cases both
appear with multiplicity two in indVWV(p) (sgn). All other relevant multiplicities are
one.

We thus conclude that there are 22 orbits of K on P which map via ®p to some
(’)}< fori = 0,...,15. Meanwhile, using the software program atlas, one can
compute the closure order of K on B, and thus (as explained in Sect. 2), the closure
order on K\P. Fig.4.1 gives the full closure order for K\P. Vertices are labeled
according to their dimensions. (The edges in Fig. 4.1 do not distinguish between the
weak and full closure order. Doing so would make the picture significantly more
complicated and difficult to draw.) There are thus 24 orbits of K on P. Since 22
have been shown to map to (’)}< fori = 0,..., 15, one concludes that the the fiber
of ®p over O fori = 16 and 17 must consist of just one element in each case.

In particular, there are three P-regular K orbits on P which are bijectively
matched via Proposition 3.7(b) to O, OV, and O. But from the atlas
computation of the closure order on K\P, there are four closed orbits of K on
‘P. (These are in fact exactly the four orbits, which are minimal in the weak closure
order.) See Fig.5.12. The at1las labels of the closed orbits are 3, 22, 31, and 47.
Their respective dimensions are 0, 1, 2, and 3. Applying the algorithm of Remark
3.10, one deduces that the three P-regular orbits are 3, 31, and 47. Theorem 4.2
thus produces three distinct special unipotent representations, one in each of the
three Arthur packets for O = d(O).
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Fig. 1 The full closure 14

ordering of K-orbits on P for ?

Ggr =F,and O = F4(A3) 13

Vertices are labeled according ¢

to their dimensions and boxed 12

vertices are P-regular. Note, / \

in particular, that not every 11/ 11"

closed orbit is P-regular T /F
10/ 10”
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The Helgason conjecture [He74] is one of the most fundamental facts of harmonic
analysis on Riemannian symmetric manifolds of noncompact type. Let X = G/K
be such a manifold; G be a connected real semisimple Lie group with a finite
center and K be its maximal compact subgroup. The conjecture states that joint
eigenfunctions of invariant differential operators on X can be reconstructed through
their hyperfunction’s boundary values and that for all eigenvalues, except an
explicitly described set, the operator of boundary values is surjective on the space of
hyperfunctions on the boundary F' (the real flag manifold). Helgason proved this for
manifolds of rank 1. In the general case, the conjecture was proven in [KKMOOT]
using a very deep technology of differential operators with singularities, and this
proof continues to be one of the most analytically challenging in the theory of
representations.

There were several approaches to understand this result in a broader context
of differential operators. For example, let us give mention to nontrivial results of
Penney on similar facts for nonsymmetric homogeneous manifolds. Nevertheless,
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from my point of view, it continues to be a rather isolated fact which to a large
extent depends on the structure of symmetric manifolds and semisimple groups.
I want to discuss here an idea that the intrinsic nature of this fact lies in integral
geometry and complex analysis rather than in differential operators.

In the beginning, I want to explain the ideology of integral geometry in the
context of theory of representations, as I understand it. Of course, this point
of view is subjective. The crucial moments in the theory of representations are
different kinds of equivalencies of representations of different nature. In Helgason’s
conjecture, it is the equivalency of representations in eigenspaces of invariant
differential operators on the symmetric manifold X and hyperfunction’s sections of
some line bundles on the boundary F. The idea of integral geometry is to consider
an intertwining operator not for individual representations (eigenvalues in this
example) but a generating operator whose restrictions give individual equivalences
of representations. It turns out that often this universal intertwining operator has a
geometrical nature and is similar to Radon’s transform. The transition to individual
representations often is an elementary step since it is reduced to commutative
harmonic analysis (for a Cartanian subgroup). Of course, this situation is not
universal, but it is observed in many important cases, hopefully, in an appro-
priate interpretation, for all semisimple symmetric manifolds. Integral geometry
on Riemannian symmetric manifolds of noncompact type is one of the primary
examples where this structure was realized, but all considered functional spaces on
X did not include eigenfunctions of invariant differential operators. We will discuss
below how to make this, quite a substantial, adjustment, but we will explain in the
beginning how to construct the integral geometrical picture corresponding to finite
dimensional representations (this is a relatively new result [Gi06]).

Following the unitary trick of H.Weyl, finitely dimensional representations
for complex semisimple Lie groups G¢ and the maximal compact subgroups U
coincide. Of course, it does not mean that harmonic analyses on G¢ and U are
identical. Let us start from the complex picture. Let Z = G¢/H be a complex
symmetric manifold, H be an involutive subgroup corresponding to a holomorphic
involution. Let us remind that Z is a Stein manifold. The group G itself is
symmetric relative to the action of G¢ X G¢. Let A and N be Cartanian and maximal
unipotent subgroups transversal to H so that HAN is Zariski open in G¢. Let M
be the centralizer of A at H. We call E = G¢/MN the horospherical manifold.
There is a geometrical duality between Z and E through the double fibering:

Z < Gc/M — E

(z € Z and ¢ € E are incidental if they have a joint preimage at Gc/M). The
horosphere E((),¢ € B, is the set of points z € Z incidental to {. Horospheres
are orbits of all maximal unipotent subgroups. Correspondingly, there are defined
dual submanifolds — pseudospheres S(z),z € Z, — of points on E incidental to z.
Let us remark that Z and E have the same dimension (let it be denoted as n) and
horospheres and pseudospheres have the dimension n — [, where [ is the rank of the
symmetric space Z (the dimension of A).
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On & there is a natural action of the Abelian group A, which commutates with
the action of Gc¢. It corresponds to the fibering

2 — F,

where the base is the flag manifold F = G¢/AM N and the fibers are A-orbits. Let
us consider the space of holomorphic functions O(E) on E (in the algebraic setting
we could consider regular functions — “polynomials”). Let us decompose it relative
to the action of A (“Taylor series”):

O(E) = @ 0n(B).

The subspaces O, are the same in analytic and algebraic pictures. The Borel—
Weil theorem means that in O,, there are realized irreducible representations of
the group G¢ and the (simple) spectrum is described. Indeed, the spaces of sections
of different line bundles on F, which participate in the Borel-Weil theorem can
be identified with the spaces O,,. On the other side, Helgason [He94] described
the (simple) spectrum of the Gc-representation in Z. It turns out that these
spectrums coincide. It is connected with the fact that the action of G¢ on E is a
contraction of the action on Z and Popov [Po87] gave a general conceptual proof
of the coincidence of spectrums in such situations. It is possible, using standard
technology, to construct isomorphisms of irreducible components, but the position
of integral geometry is that there must be a generating intertwining operator. Indeed,
it turns out that the spaces O(Z) and O(E) are isomorphic as G¢-modules [Gi06].
In the algebraic case — for regular functions — it is equivalent to the spectral result,
but for holomorphic functions it is a stronger statement. What is important is not
so much the fact of the isomorphism but the explicit structure of the intertwining
operator.

Let us define the objects which participate in the formula for this operator. First,
we define the basic special functions on Z x & which participate in the formula. The
points of E parameterize maximal unipotent subgroups. For { € E, we consider the
corresponding maximal unipotent subgroup N({) and its Iwasawa decomposition
HAN on the open part of G¢. We lift characters of A on the open part of G¢ and
take only characters for which these functions holomorphically extend on the whole
G and push them down on Z. Let §;(a), ..., §(a) be generating characters of A
and A;(z|¢), j < [, be corresponding functions on Z depending on { € E. They
are dominant highest weight functions. We call these functions Sylvester’s functions
since they are principal minors in the case of the manifold of nondegenerated
symmetric matrices. The horosphere E({) is an orbit of N(¢). In an appropriate
normalization, the horosphere E(¢) is defined by the equations

A =1, j=L ey
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Let u(z,dz) be the holomorphic invariant differential form on Z of the maximal
degree (it is defined up to a constant factor). The pseudospheres S(z) are homoge-
neous manifolds relative to the isotropy subgroup H(z) = H. Let v(z|¢,d¢) for
each z € Z be the form p on S(z), which is holomorphic on z.

Let us define the horospherical Cauchy transform

/(@)

F@= r[li<j<i(A;E 1)

u(z,dz), f € 0O(2). 2

Here, I' is a n-dimensional cycle which does not intersect the singularities of
the kernel. It is possible to choose as such a cycle a compact real form of the
manifold Z. This is an intertwining operator between O(Z) and O(E).

Let us construct its inversion. We consider on Abelian group A the differential
operators P(D) with the polynomial symbols P(m) in logarithmic coordinates.
Since A acts on the fibers of the fibering & — F, these operators will act also
on functions on E. Let

wom = [] {m + p,a)

ez, (Po@)

be Weyl’s polynomial for the dimensions of representations; p be the sum of positive
roots. Then

fQ) = / WD) @it ) 3)
Yz

Here, y(z) is a cycle (of the dimension 7 —) in the pseudosphere S(z). Let us remind
that S(z) is a homogeneous Stein manifold (with the group H) and we can take
as the cycle y(z) a compact real form of S(z) (a flag manifold). Again it reminds
very much of Radon’s inversion formula, but in a holomorphic environment. The
composition of these two integral operators gives an integral formula representing f
through the integration of a differential form on Z x E along a cycle, which is fibered
on cycles y(z) over the cycle I'. This form-integrand is a closed meromorphic form
and we can integrate it along any cycle avoiding the singularities. It is natural to
interpret it as Cauchy integral formula on Z. It can be deduced for the special cycles
from the Plancherel formula for compact symmetric manifolds, but the conceptual
proof goes through a generalization of the Cauchy—Fantappie formula for cycles of
higher codimension [Gi06]. Let us pay attention to the fact that the application
of the operator W(D) to the kernel in (2) gives a complicated combination of
the monomials of the factors in the denominator of the degree —(n — /). The
remarkable property of Weyl’s operator is that this combination gives the closed
form — a quite nontrivial combinatorial fact.
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If the function f lies in O,,(E), it is homogeneous relative to A-action: it is
multiplied on the character §”(a) = &{"'(a)---8" (a). Then the application of

Weyl’s differential operator W(D) just multiplies f on W(m):

f@) = cW(m)/v) f©Qv@EE D), f € O@m). 4)

7(

In this case, f € O,(Z) are eigenfunctions of invariant differential operators;
restrictions of the sections f of the line bundle on F on S(z°) for a fixed z° can
be interpreted as boundary values of f. We can rewrite (4) as

f@) = CW(M)/ P20 f Qv d0),  f € Om), )

r(2%)

where the kernel P(z,2°,¢) for { € y(z°) is the value of the character § on such
a € Athat al € S(z). Of course, we need to choose the cycle y(z°) so that such
a would exist (fibers of E — F through points of the cycle must intersect S(z)).
The formula (4”) can be interpreted as a holomorphic analog of the Poisson formula
for finite dimensional representations. It has a very interesting structure compared
to the real version. When we work with complex groups, we replace the averaging
along of orbits of compact groups by an integration of closed holomorphic forms
along cycles on orbits of complex groups.

The aim of the harmonic analysis on pseudo Riemannian symmetric manifolds
(real forms X of Z), from the points of view of integral geometry, is the search
for real forms of the horospherical Cauchy transform, in other words, to extend
this transform from O(Z) to appropriate functional spaces on X. A choice of
such a space is not unique and it is a substantial, informal part of the problem.
It must be big enough to include considering functions, but not so big as to
obscure the specifics of the problem. The first interesting example is the compact
form X = U/K - the compact Riemannian symmetric space. The natural maximal
functional space is the space of hyperfunctions on X (functionals on the space of
functions holomorphic in a neighborhood of X). Then a natural extension of the
horospherical Cauchy transform can be defined [Gi06] such that the image is the
space of holomorphic functions in the domain D C E parameterizing horospheres
which do not intersect X. In such a way, we see that completely real objects
— compact symmetric manifolds (including the real sphere) have canonical dual
complex objects — the domains D (a real horospherical transform there can not be
defined). We will not go into details here.

Now let X = G/K be a Riemannian symmetric manifold of noncompact type; G
be a real form of G¢, K be its maximal compact subgroup (the compact form of H).
Here, the real horospherical transform is well known: it is defined on C° or another
space of decreasing functions through the integration along of (real) horospheres
on X. As we mentioned, this transform does not satisfy us since we want to work
with eigenfunctions of invariant differential operators which are analytic.
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Let us remind that there is a canonical Stein neighborhood of X in Z — Crown(X)
[AG90]. All eigenfunctions of invariant differential operators on X admit holomor-
phic extension in Crown(X), and it is the maximal domain with this property. The
crown was defined in [AG90] explicitly, but for our aims an equivalent description
from [GKO02] is more convenient. Let A be the real form of the Cartanian subgroup
A C Gg, corresponding to X, and a be its Lie algebra. We consider the convex
polyhedral

Q={acala(a)| <n/2,Va e X},

where X is the restricted system of roots and let 1(2) = Arexp(i2)) be the
tube domain in A. We saw that the parallel horospheres on Z are parameterized
by elements of A (by a fiber in E). Let 7 (2) be the union of parallel horospheres
E(¢) corresponding to elements of the tube 7(£2). Then

Crown(X) = [ () eT(Q) | - (5)

g€G 0
We take here the connected component of the intersection, which contains X.
This explicit description is not so important for us as a geometrical corollary: the
domain Crown(X) is horospherically convex [Gi08]. It means that the compliment
to Crown(X) in Z is horospherically concave: it is the union of horospheres
E(¢),¢ € Y, which do not intersect Crown(X)). This set Y C E admits an explicit
description. Let

F]R = G/ARMRNR Cc F

be the real flag manifold. Then the projection of ¥ on F is Fr and preimages of
points in Fr are compliments at A to the tube (£2). To be more exact, the manifold
Er = G/MgNr of real horospheres on X admits the canonical imbedding in &
and there is the fibering Er — Fgr with fibers A: real horospheres have complex
forms. On Fy the group K acts transitively — Fr = K/Mp — and we can identify
Fr with the manifold Sg(x) of real horospheres passing through a point x € X
(the real form of the pseudosphere S(x)). Then the orbit ¥ of the action of the tube
Ar C t(2) C Aon Fy in F is welldefined.

Let us remark that the domain E \ Y is concave relative to pseudospheres: it is
the union of S(z),z € Crown(X). We can interpret this domain as a dual object
for X. We will need one modification. The horospherical manifold E is not a
Stein one. It admits the extension up to a Stein space (not a manifold) but for us
it is convenient to consider the holomorphically complete (but not holomorphically
separable) extension of & which is smooth. An essential point is that the fibering
E — F has no global sections (as different from the real case): pseudospheres S(z)
are sections over the Zariski open orbits of the isotropy subgroups H(z) = H on F.



Helgason’s Conjecture in Complex Analytical Interior 93

We define homogeneous coordinates on the fibers ({,u),{ € E,u € C!, such
that

(ou) ~ (ag,8(@)"'w), a €A,

where 6;(a),1 < j < are characters of A corresponding to A;. Let E be the
factorization of E x C' relative to this equivalency relation. Let us extend the
equivalency relation on the manifold of triplets (z, ¢, u) € Z x E x C! such that

Aj@Ed) =u;, 1=j=I

and let L be the result of the factorization. It is a Stein manifold and its points are
incidental pairs (z, ),z € Z,¢ € E: we have the double fibering

Z <« L — E&.

Left fibers E (¢, u) are defined by the equations

and they coincide with the horospheres if u € (C*)!(u ; # 0).If some u; = 0,
then we have some unions of degenerated orbits (of nonmaximal dimension)
of the maximal unipotent subgroups, which sometimes are called degenerated
horospheres. These fibers can be singular, but it is possible to prove that they have
the dimension n — [ as the horospheres (unpublished result with Vinberg). On e
we obtain the compactlﬁcatlons S(z) of hyperspheres S(z) isomorphic to F. Let
X be the extension in & of the domain E \'Y C E ;itis the union of compacts
S(z).z € Crown(X).

Let Q = Crown(X) X X C L. 1tis a Stein manifold. The manifold X is
(n — I)-pseudoconcave and we consider cohomology H (”_”()2 ,O(8™)) with the
coefficients in line bundles corresponding to characters §”(a) of A using the
homogeneous coordinates (£, u). The dimension of this space of cohomology is
infinite and we will use for the description of this cohomology the holomorphic
language developed in [Gi93, EGW95]. We consider the complex of holomorphic
differential forms w(z, ¢, u,dz) on Q with differentials only on z; on (&, u) they
are sections of the bundle O(§”) (homogeneous relative to the action of A with
the character §”). The differential in the complex also acts only along z. The
corresponding cohomology is isomorphic to Dolbeault cohomology. Let us describe
this isomorphism. We consider the fibering O — X with contractible fibers E (¢, u),
restrict a d -closed form w on a section I' and take (0,n — /)-part of this form,
considered as a form on X. The result is 0-closed form and we have a map from
holomorphic cohomology on Dolbeault cohomology H @~ (X, O(5™)).

We need two special holomorphic forms. The invariant holomorphic form
of maximal degree A(z, ¢, u,dz) has coefficients from O(§~') on (¢, u)), where
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§7Y(a) = [1(8;(a))~". It is the residue of the form 1 (z,dz)/ [](A; (¢) —u,) on the
fibers. Also on & there is an invariant holomorphic (n — [)-form « (&, u, d¢, du) with
coefficients in O(§72"). Now we are ready to define the horospherical transform as

an operator from holomorphic functions f € O(Crown(X)) to cohomology from
H"D(X,0™)):

f = @Mz ¢ u, dz). 6)

We obtain here the (n — [)-form on Q with differentials on Z (along fibers), which
is closed since it has the maximal degree on fibers. So it defines a cohomology
class (in the holomorphic language). It may look strange that in this form of
the horospherical transform there is no integration at all but it is typical for
representations of inverse Penrose transforms in the holomorphic language for
analytic cohomology (cf. [Gi93,Gi07]). The principal fact is the following theorem.

Theorem. The horospherical transform
f € O(Crown(X)) — f e H" (X, 07"

is injective.
This fact follows from the next inversion formula

@ =c /S WD) At )

In this integral after the application of the Weyl’s differential operator to f , We
obtain the coefficients in O(87%0) instead of O(§~"). Then we push down this form
on X as d-closed (n — I)-form (using a section I') and after the multiplication on
k we obtain an (n — [,n — [)-form with coefficients in . We integrate this form
along cycles S (z). Thus, the inverse operator is a Penrose-type transform. The fact
that this operator reproduces f is another version of the integral Cauchy formula
at Z. We need in the kernel of the integral Cauchy formula, which we discussed
above, to take the residue on the edge of the singular set of the denominator —
the horosphere E (¢, u). Such formulas in the case of codimension 1 Leray [Le00]
called 2nd Cauchy—Fantappie formulas. They were considered in [GH90,Gi07]. We
will consider details in another paper dedicated to the integral Cauchy formulas on
symmetric manifolds. Let us again emphasize that in this consideration the explicit
form of the initial domain O(Crown(X)) was not important; it was essential only
that it was horospherically convex. Also let us remark that the space O(E) admits a
canonical imbedding in H @D (X, ©O(§~")) such that both horospherical transforms
are compatible. This fact is again a consequence of Cauchy formulas.

To return to the usual form of Helgason’s conjecture, we need to consider
the action of 4 on H"~)(X,O(5~")) and investigate homogeneous cohomology
classes relative to this action since just these classes correspond to eigenfunctions of
invariant differential operators. We will not discuss this in this paper. It is interesting
to investigate the image of the horospherical transform.
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Conjecture. The kernel of Weyl’s differential operator W(D) on H "~ ()2 ,O@™Y)
is complimentary to the image of the horospherical transform.

We can see that in this approach to Helgason’s conjecture, compared with the
usual considerations, there are no difficult analytic constructions. Instead, we use
integral Cauchy formulas on symmetric manifolds and holomorphic language for
analytic cohomology. We also avoid a reduction to functions on the Cartanian
subgroup, which decreases the number of variables, but brings singularities which
did not exist in the initial problem.
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The reader is supposed to be acquainted with the main notions of Linear Algebra
([Pr] will be just fine). The knowledge of the first facts and notions from the theory
of Lie algebra will not hurt but is not required.

The presentation is arranged as follows:

In Sect.1, we discuss general facts regarding Lie algebras, their universal
enveloping algebras, and their representations.

In Sect. 2, we discuss in detail the case of the simplest simple Lie algebra g =
5((2). The results of this section provide essential tools for treating the general case.

In Sect.3, we provide without proofs a list of results on the structure of
semisimple Lie algebras and their root systems.

In Sect.4, we introduce some special category of g-modules, so-called cate-
gory O. We construct basic objects of this category — Verma modules M, — and
describe some of their properties.

In Sect.5, we construct, for every semisimple Lie algebra g, a family of
irreducible finite dimensional representations A4 .

In Sect. 6, we formulate one of the central results — Harish—Chandra’s description
of the algebra 3(g) — center of the enveloping algebra of g. For the proof see Sect. 9.

In Sect. 7, we describe various properties of the category O that follow from the
Harish—Chandra theorem.

In Sect. 8, we prove Weyl’s character formula for irreducible g-modules A, and
derive Kostant’s formula for the multiplicities of weights for these representations.
We also prove that every finite dimensional g-module is decomposable into a direct
sum of irreducible modules isomorphic to 4; .

In Sect. 9, we present a proof of the Harish—Chandra theorem.

1 General Facts About Lie Algebras

All vector spaces considered in what follows are defined over a ground field K. We
assume that K is algebraically closed of characteristic 0. The reader can assume
K =C.

1.1 Lie Algebras

Definition. A Lie algebra is a K-vector space g equipped with a bilinear multipli-
cation [, ]: g ® g — g (it is called bracket) that satisfies the following identities:

[X,Y]+[Y,X]=0 forany X,Y €g¢g (S-9)

(X, [Y.Z]| + [Y.[Z, X]] + [Z,[X,Y]] =0forany X,Y,Z € g. J.L)
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The identity (S-S) signifies skew-symmetry of the bracket, (J.1.) is called the Jacobi
identity.

Example. Let A be an associative algebra. By means of the subscript L we will
denote the Lie algebra g = A; whose underlying vector space is a copy of A and
the bracket is given by the formula [X, Y] = XY — YX. Clearly, A, is a Lie algebra:
(S-S) and (J.1.) are subject to a direct verification.

If V is a vector space, we denote gl(V) its general linear Lie algebra that is
defined as gl(V') = (Endg(V))L.

We abbreviate gl(KK") to gl(n). Note that this is just the algebra Mat(n) of n x n-
matrices with the operation [X, Y] = XY — ¥YX.

1.2 Representations of Lie Algebra

A representation y of a Lie algebra g in a vector space V' is a morphism of Lie
algebras y : g — gl(V'). We will denote by the same symbol y the corresponding
morphism of vector spaces g® V — V.

We will also use the following equivalent terms for representations: “y is an
action of Lie algebra g on V’; “V is g-module”.

Morphisms of g-modules are defined as usual. The category of g-modules will
be denoted by M(g).

An important example of a representation is the adjoint representation ad of a
Lie algebra g on the vector space V' = g. It is defined by formula ad(X)(Y) :=
[X, Y]. The fact that this is a representation follows from Jacobi identity.

1.3 Tensor Product Representation

Given representations y, § of a Lie algebra g in spaces V and E we construct the
tensor product representation 7 = y ® § in the space V ® E via Leibnitz rule
nX)=yX)®Id + 1d ® §(X).

Lemma. Lety : g ® V — V be any representation of a Lie algebra g. Consider
on the space g ® V the structure of g-module given by representation Ad ® y. Then
y:9QV — Visamorphism of g-modules.

The verification is left to the reader.

1.4 Some Examples of Lie Algebras

Example 1. Let n™, n_, and h be the subspaces of g = gl(n) consisting of all
strictly upper triangular, strictly lower triangular and diagonal matrices, respectively.
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Clearly, n4, n_, and b are Lie subalgebras of gl(#). Important role in representa-
tion theory plays a triangular decomposition gl(n) = n_ @ h @ n (this is a direct
sum decomposition of vector spaces, but not of Lie algebras).

Example 2. The space of n x n matrices with trace zero is a Lie algebra; it is called
the special linear algebra and denoted by sl(n).

Example 3. Let B be a bilinear form on a vector space V. Consider the space
Der(B) of all operators X € gl(V) that preserve B, i.e., B(Xu,v) + B(u,Xv) =
Oforanyu,veV.

It is easy to see that this subspace is closed under the bracket and so is a Lie
subalgebra of gl(V).

If B is nondegenerate, we distinguish two important subcases:

e B is symmetric, then Der(B) is called the orthogonal Lie algebra and denoted
by o(V, B).

e B is skew-symmetric, then Der(B) is called the symplectic Lie algebra and
denoted by sp(V, B).

It is well known that over C all nondegenerate symmetric forms on V' are
equivalent to each other and the same applies to skew-symmetric forms. So Lie
algebras o(V/, B) and sp(V, B) actually depend only on the dimension of V', and we
will sometimes denote them by o(n) and sp(2m).

The Lie algebras gl(n), o(n), and sp(2m) are called classical Lie algebras.
For the proof of the statements of this section, see ([Bu], [Di], [OV], [Se]).

1.5 Universal Enveloping Algebra

Let g be a Lie algebra over K. To g we assign an associative K-algebra with unit,
U(g), called the universal enveloping algebra of the Lie algebra g. Namely, consider
the tensor algebra 7T'(g) of the space g, i.e.,

'@ = @ ")

where T(g) = K, T"(g) = g ® --- ® g (n factors). Consider also the two-sided
ideal I C T'(g) generated by the elements X ® Y —Y ® X —[X, Y] forany X, Y € g.
SetU(g) = T(g)/1.

We will identify the elements of g with their images in U(g). Under this
identification, any g-module may be considered as a (left, unital) U(g)-module
and, conversely, any U(g)-module may be considered as a g-module. We will not
distinguish the g-modules from the corresponding U(g)-modules.

The algebra U(g) has a natural increasing filtration U(g), = Y_,_, T'(g). We
denote by grU(g) the associated graded algebra grU(g) = @®,>0gr,U(g), where
gr,U(g) := U(g),/U(g)n—1. This algebra is clearly commutative and hence the
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natural morphism i : g — gr,U(g) extends to a morphism of graded commutative
algebras i : S°(g) — grU(g), where S’ (g) is the symmetric algebra of the linear
space g. The following result will be used repeatedly in the lectures.

Theorem (Poincaré-Birkhoff—-Witt). The morphism i : S*(g) —> grU(g) is an
isomorphism of graded commutative algebras.

Corollary. (1) U(g) is a Noetherian ring without zero divisors.
(2) Let symm' : S°(g) —> T°(g) be the map determined by the formula

1
X ® QX — F Z Xo) ® -+ ® Xok)-

T oeSy

Denote by symm: S°(g) —> T (g) —> U(g) the composition of symm’ and the
projection onto U(g). The map symm is an isomorphism of linear spaces (not
algebras).

(3) If X1, ..., Xk is a basis of g, then the set of monomials X{' X5* ... X}'¥, where
the n; run over the set Z>( of nonnegative integers, is a basis of U(g).

Remark. The version of PBW as stated above is in [Di] 2.3.6. A direct proof can be
found in [BG]. For point one of the corollary, see 2.3.8 and 2.3.9 of loc. cit. For the
second point, see 2.4 in [Di] and for the last point see 2.1.8 in [Di].

1.6 Some Finiteness Results

In order to analyze finite dimensional representations of a Lie algebra, we will often
use infinite dimensional representations that satisfy some finiteness assumptions.

1.6.1 Locally Finite Representations

Definition. Let A be an associative algebra. An A-module V' is called locally finite
if it is a union of finite dimensional A-submodules.

Notice that the subcategory M(A4)" C M(A) of locally finite A-modules is
closed with respect to subquotients. It is easy to check that if algebra A is finitely
generated then M (A)" is also closed under extensions.

If V is an arbitrary A-module, then the sum of all locally finite submodules is the
maximal locally finite submodule of V. We denote it VA-finitc,

We use the same definitions for a module V' over a Lie algebra a. In particular,
we denote by Vi the maximal locally finite a-submodule of V.

Lemma. (i) Let a be a Lie algebra. Then the tensor product of locally finite
representations is locally finite.
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(ii) Let g be a finite-dimensional Lie algebra and a C g its Lie subalgebra. Given a
g-module V consider its maximal a-locally finite submodule L = V /" Then
L is a g-submodule of V.

Proof. The proof of (i) is straightforward. Then (i) implies that the morphism of
y:g®V — Vmapsg® L into L, i.e., L is a g-submodule. O

Exercise. Show that the same result is true under weaker assumptions. Namely, it
is enough to assume that the adjoint action of the Lie algebra a on the space g/a is
locally finite.

1.6.2 Locally Nilpotent Representations

Definition. Let a be a Lie algebra. An a-module V is called nilpotent if for some
natural number k we have a* (V) = 0. An a-module V is called locally nilpotent if
it is a sum of nilpotent submodules.

As before we denote by VoM the maximal locally nilpotent submodule of V.

Lemma. (i) Tensor product of locally nilpotent representations is locally
nilpotent.

(ii) Let g be a Lie algebra and a C g its Lie subalgebra such that the adjoint
action of a on g is locally nilpotent. Given a g-module V' consider its maximal
a-locally nilpotent submodule L = V"% _Then L is a g-submodule of V.

The proof is the same as in Lemma 1.6.1.

1.7 Representations of Abelian Lie Algebras

Let a be an abelian Lie algebra (i.e., the bracket on a is identically 0). Let V' be a
locally finite a-module.

For every character y € a*, we denote by V(y) the space of generalized
eigenvectors of a with eigencharacter y.

Proposition. V' is a direct sum of the subspaces V(y).
This is a standard result of linear algebra, see Proposition A.1 in the appendix.

Definition. A module V' over an abelian Lie algebra a is called semisimple if it is
spanned by eigenvectors of a.

For any a-module V, we denote by V' ** the maximal semisimple a-submodule
of V.

Lemma. (i) Tensor product of semisimple representations is semisimple.

(ii) Let g be a Lie algebra and a C g its abelian Lie subalgebra such that the
adjoint action of a on g is semisimple. Given a g-module V consider its maximal
a-semisimple submodule L = V °°. Then L is a g-submodule of V.

Again, the proof is the same as in Lemma 1.6.1.
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2 The Representations of s[(2)

In this section, we will describe representations of the simplest simple Lie algebra
g = sl(2).

2.1 The Lie Algebra s1(2)

The Lie algebra sl(2) consists of matrices x = (a 2) over field K such that
c

trx =a + d = 0. In sl(2), select the following basis

0 1 10 0 0
w0 o) 7= 2) == 0)

The commutation relations between the elements of the basis are:
[H,E+] =2E4+ [H,E_]=-2E_;[E+,E_] = H.

Remark. We will see that in any semisimple Lie algebra g we can find many triples
of elements (E4, H, E_) of g that satisfy above relation. We call such a triple an
5l(2)-triple. In this way, the study of the representations of the Lie algebra s[(2)
provides us with lots of information on the representations of any semisimple Lie
algebra g.

The above relations between E_, H, and E and a simple inductive argument
yield the following relations in U(s((2)):

[H,EY] = 2kE* | [H,E¥] = —2kE", [E4, EX] = kEX"'(H — (k — 1)).

Besides, it is easy to verify that the element

C =4E_E. + H>+2H

belongs to the center of U(s[(2)). The element C is called the Casimir operator.
Let V be an sl(2)-module. A vector v € V is called a weight vector if it is an
eigenvector of the operator H, i.e. Hv = yv; the number y € K is called the weight
of v.
We denote by V** () the subspace of all such vectors. Similarly, we define V()
to be the space of generalized weight vectors for H (see appendix for definitions).

Lemma.

E (V¥() CV¥(x+2), Ex(V(x) CV(x+2)
E_(V*() CcV¥(x—=2), E-(V()) CV(x—2).
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Proof. Letv € V*(y). Then (H — y —2)E4v = Ex(H — y)v = 0,i.e. E;v €
VS (x +2). Similarly if v e V(y) then (H — y —2)"Eyv = E{(H — y)"v = 0 for
large n, ie. Exve V(y +2).

The proof for E_ is similar. O

A nonzero vector v is called a highest weight vector if it is a weight vector with
some weight y and Ev = 0.

2.2 A Key Lemma

Lemma 1. Let V be a representation of sl(2) and v € V a highest weight vector of
weight y. Consider the sequence of vectors vy = EXv, k =0, 1.... Then

1) Hvi = (x = 2k)vi, Eqvit1r = (k + D) (x — k)vk

2) The subspace L C 'V spanned by vectors vy is an sl(2)-submodule and all
non-zero vectors vy are linearly independent.

3) Suppose that vi = 0 for large k. Then y =1 € Zso, vk # 0 for0 <k <
and vy = 0 fork > [.

Proof. (1) is proved by induction in k.

(2) follows from 1) since v, are eigenvectors of H with distinct eigenvalues.

(3) Let! be the first index such thatv;41 = 0. Then0 = Eqv;4; = ((+1)(y—Dw;
and hence y = 1[. O

2.3 Construction of Representations A,

Let us now describe a family of irreducible finite dimensional representations of
5[(2). For every [ € Zx>, we construct a representation A; of dimension / + 1. This
representation is generated by a highest weight vector v; of weight /.

First we describe this representations geometrically. Consider the natural action
of the group G = SL(2,K) on the plane K? with coordinates (x, y). It induces the
action of G on the space V' of polynomial functions on K2.

The action of the group G on V induces a representation of its Lie algebra g =
5[(2). It can be described via explicit formulas using differential operators

Ey =x0,,H=x0,—y0,,E_ = yo,.

The representation V' is a direct sum of invariant subspaces A;,/ € Zso, where
Ay is the space of homogeneous polynomials of degree /.
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In particular, the representations A; extend to representations of the group G =
SL(2,K).

Let us describe these representations explicitly. The space A; has a basis
consisting of monomials {a_;,a—;+,....,a;—3,a;}, where a; = xU+)/2y(=D/2,
The action of the algebra s[(2) is as follows:

[+ [ —i
ai—, Eya; =

Ha,» = ia,», E_a,' = aj4.

Exercise. (i) Show that the module Ay is irreducible.

(ii) Consider the s[(2)-module M generated by a vector m subject to the relations
H(m) = {m (i.e. m has weight £), E4 (m) = 0 and E*T!(m) = 0. Prove that
M is isomorphic to the module A, described above.

2.4 Classification of Irreducible Finite Dimensional Modules
of the Lie Algebra s1(2)

Proposition. (1) In any finite dimensional nonzero sl(2)-module V, there is a
submodule isomorphic to one of A;.

(2) The Casimir operator C acts on A as the scalar (I + 2).

(3) The modules A; are irreducible, distinct, and exhaust all (isomorphism classes
of) finite dimensional irreducible s\(2)-modules.

Proof. (1) Consider all eigenvalues of H in V' and choose an eigenvalue y such
that y + 2 is not an eigenvalue. Let vy be a corresponding eigenvector. Then
Hvy = xvo, E4vop = 0. Since V is finite dimensional, Key Lemma implies
that y = € € Zso, EXT'vg = 0 and the space spanned by E” vy, where r =
0,1,...,¢, forms an s[(2)-submodule L C V. The Exercise above implies that
L is isomorphic to Ay.

(2) Itis quite straightforward that Ca; = [(I + 2)a;. If a € A;, then a = Xa for
a certain X € U(sl(2)). Hence, Ca = CXa; = XCa; = (Il + 2)a.

(3) If A; contains a nontrivial submodule V, then it contains Ay, where k < [,
contradicting the fact that C = [(/ + 2) on A; and C = k(k + 2) on Ay.

Heading (1) implies that A;, where | € Zso, exhaust all irreducible s[(2)-

modules. O

2.5 Complete Reducibility of s1(2)-Modules

Proposition. Any finite dimensional s\(2)-module V is isomorphic to a direct sum
of modules of type A;. In other words, finite dimensional representations of sl(2)
are completely reducible.
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Proof. We will use the following general lemma that we prove below.

Lemma. Let C be an abelian category. Suppose that any object V. € C of length
2 is completely reducible. Then any object V € C of finite length is completely
reducible.

This implies that it is enough to prove the proposition for a module V' of length
two. Let S >~ Ay be an irreducible submodule of V and Q = V/S ~ A; a quotient
module.

If k # [, then the Casimir operator has two distinct eigenvalues on V' and hence
V splits as a direct sum of generalized eigenvectors of C and this decomposition is
5[(2)-invariant. Thus, we can assume that k = [.

Consider now the decomposition of V' = @V/(i) with respect to generalized
eigenspaces of the operator H. Since V is glued from two copies of representation
Ay, it is clear that dim V(i) = 2 ifi = —I,—[ + 2, ...,] and there are no other
summands. Also, it is clear that E. : V() — V(=) is an isomorphism.

Let us show that the action of H on the space V(I) is given by a scalar operator.
Indeed consider the identity Ey E'*' — E/*1E, = E! (H —1). The left-hand side
is 0 on the space V(/) so the right-hand side is 0. Since the operator E’ does not
have kernel on V (1), we conclude that H = [ on V/(I).

Now let us choose a vector v € V(/) that does not lie in the submodule S. Then it
is a highest weight vector and by the Key Lemma it generates a submodule Q' C V
isomorphic to 4;. It is clear that this submodule isomorphically maps to the quotient
module Q = V/S,ie.V >~S® Q. O

Proof of lemma. We proceed by induction on the length of the object V. Find a
simple submodule S C V and consider the quotient module Q = V//S. By the
induction assumption, we can write the quotient module Q = V/S as a direct
sum of simple objects Q0 = @W;. It is enough to show that the natural projection
p:V — Qhasasectionv : O — V. We construct this section v separately
on every summand W;. Namely, consider the module V; = p~!(W;). This module
has length two and by assumption is completely reducible. Hence, the projection
pi : Vi —> W;hasasectionv; : W; - V; C V.

Corollary. Let V be a finite dimensional s(2)-module. Then

(1) H is diagonalizable and each of the operators E. and Ef|r gives an isomor-
phism between V(i) and V(—i).

(2) The action of s(2) uniquely extends to the action p of the group SL(2,K) on
V' that satisfies the following condition: Let X equal E4 or E_, t € K and
g =exp(tX) € SL(2,K). Then the operator p(g) in V equals exp(tX).

Remark. The same conclusion holds under the weaker assumption that the module
V is s[(2)-finite. This is left as an exercise to the reader.
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3 A Crash Course on Semi-Simple Lie Algebras

3.1 Killing Form

Any Lie algebra g admits a unique maximal solvable ideal called the radical
Rad(g). The Lie algebra g is called semisimple iff its radical is zero.

For finite dimensional Lie algebras over a field K of characteristic 0, there is an
equivalent definition, often more convenient. It is given in terms of the Killing form,
which is the symmetric bilinear form on g defined by

(X,Y)=tr(ad X -ad Y).

Theorem (Cartan-Killing). g is semisimple iff its Killing form is nondegenerate.

3.2 Cartan Subalgebra

There exists a maximal commutative subalgebra ) C g such that the adjoint action
of h on g is semisimple.

Such subalgebra is called a Cartan subalgebra of g. In what follows we will fix a
Cartan subalgebra h. One can show that any two Cartan subalgebras are conjugate,
so we do not lose information fixing one of them. The number » = dim b is called
the rank of g.

3.3 Root System

Consider the adjoint action of the Cartan subalgebra h on g. We obtain a decompo-
sition g = @g,, where for x € h* we have

gy =X €g:[H X]=x(H)X}.

This is called the weight decomposition of g. Since Killing form is h-invariant, we
see that (g,, g,) = O unless y 4+ v = 0. Since this form is nondegenerate, it gives
a nondegenerate pairing between g, and g—,. In particular, the restriction of the
Killing form to gy is nondegenerate.

Proposition. (1) go = b
(2) For x # 0, we have dimg(g,) < 1.

Let
R={yeb"—{0}:g, #1{0}}
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Then R C h* is a finite subset of nonzero elements of the dual space h*.

Elements of R are called roots.

For every y € R, we fix a nonzero element E, € g. Itis called a root vector.
We will see later thatif y € R, then —y € Rand Ay € R for A # +1.

3.4 sl(2)-Triples

Proposition. We can choose root vectors E, for all roots y € R in such a way
that for every root y the triple of elements E, € g,, H, := [E,,E_,] € b and
E_, € g, form an sl(2)-triple.

Essentially, this means that we can find an element H, € [g,,g—,] C b such that

V(Hy) =2.
The vector H, € b is called a coroot corresponding to the root y € h*.

Corollary. Let y,8 be roots. If § +y ¢ R, then [E,, Es] = 0. If§ + y € R, then
[Ey, Es] = CE,4s, where C # 0.

3.5 Integral Structure: Weight Lattice and Root Lattice

From properties of s[(2)-representations, we see that all eigenvalues of the operator
H, are integers. In particular for any root § we have §(H,) € Z.

Let Q denote the subgroup of fj generated by all coroots H), (itis called a coroot
lattice).

For elements H € Q, we have (H, H) = Y_ §(H)* > 0, i.e. the Killing form is
positive on Q In fact, it is strictly positive since for any vector H in its kernel we
have §(H) = Oforall § € R and hence H acts trivially in the adjoint representation.
The same reason shows that Q is a lattice in K-vector space §.

Let us denote by P the lattice in h* dual to the lattice Q (it is usually called the
weight lattice; the elements of P are called integral weights). It contains a sublattice
O generated by all roots (it is called root lattice).

Since the restriction of the Killing form to b is nondegenerate, it induces a
bilinear form (-, -) on h*.

One can describe the coroot H, € b, with y € R by the property

2(x. )

forany y € h*.
(v.7v)

x(Hy) =
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3.6 The Weyl Group of the Lie Algebra g

We will consider the R vector space a = R ® Q equipped with Euclidean structure
defined by positive definite Killing form on it. It is convenient to use convex
geometry of this space to state and prove many results about roots and weights.

For any root y € R, consider the linear transformation in the space h* defined
by the formula

oy () = x — x(Hy)y.

The transformation o, is the reflection in the hyperplane defined by the equation
(x,v) = 0. In particular 03 = Id and det(o,) = —1. The corresponding reflection
on the space b is given by the formulao, (H) = H —y(H)H,.

The group of linear transformations of h* generated by operators oy, where y €
R, is called the Weyl group of g and will be denoted by W.

The group W is a group of orthogonal transformations of the space h*.
It naturally acts on the space h. The action of W preserves the Killing form, the
set of roots R, the set of coroots, lattices P, Q, and Q Since the Killing form on
the lattice P is positive definite, the Weyl group W is finite.

If y1, x2 € b*, then we write y; ~ y» whenever y; and y, belong to the same
orbit of the Weyl group, i.e., when y; = wy, for a certainw € W.

We also consider the induced actions of W on the Euclidean space a and on its
dual. In this realization, the Weyl group is a finite group generated by reflections
and we can use many geometric facts about actions of such groups.

3.7 Weyl Chamber

For every root y € R consider the hyperplane I, in the space a* orthogonal to y,
i.e. the set of weights that vanish on H,, . Consider in a* an open subset a* \Uy er1ly
obtained by removing all root hyperplanes and fix a connected component C of this
set. We denote by C the closure of C in a. The set C is called the Weyl chamber.
The choice of this set plays central role in the theory. We will see that all Weyl
chambers are conjugate under the action of W.
We have the following

Proposition. C is a fundamental domain for the W -action on a. More precisely:

(1) If x € a, thenwy € C fora certainw € W.
(2) If x,wy € C, then y = wy. If, moreover, y € C, thenw = e.
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3.8 Positive Roots and Simple Roots

In what follows we fix a Weyl chamber C. A root y is called positive if the coroot
H, is positive on C, i.e. if (y,y) > Oforall y € C.

We denote by R™ the subset of positive roots. It is clear that R is a disjoint
union of sets RT™ and R~ = —R™. Also R is closed under addition, i.e. if y, § are
positive roots and their sum is a root then this root is positive.

A positive root « is called a simple root if it cannot be written as a sum of two
positive roots. We denote by B C R the subset of simple roots .

Proposition. (/) B is a base of the root lattice Q. Every positive root y is a sum
of simple roots with nonnegative integer coefficients.

(2) Simple roots correspond to hyperplanes in a* that are walls of the Weyl
chamber C.

(3) The Weyl group W is generated by reflections o, corresponding to simple roots
(they are called simple reflections).

(4) Let a be a simple root. Then for any positive root y different from a the root
oy (y) is positive. In particular, if B is a simple root different from «, then
(@,f) < 0.

(5) Let p € b* be half of the sum of all positive roots. Then for any simple root «
we have p(Hy) = 1 and o,(p) = p — . In particular, p lies in the lattice P.

Let us denote by O the subsemigroup of the root lattice Q generated by positive
roots. In other words, QT is a free semigroup generated by the set B.

Using this semigroup, we introduce a partial order < on the space h* by y < ¥
ify =y +qwithqge Q7.

Note that a weight y lies in P iff y(H,) € Z for every simple root . A weight
x is called dominant if y(H,) € Z>( for every simple root «. Equivalent condition:
oa(x) < X

We denote the semigroup of dominant weights by P*. Note that the cone
generated by P in a* is usually much smaller than the cone generated by Q.

3.9 The Triangular Decomposition of a Lie Algebra g

From this description of the root system R, we derive the following decomposition :
g=n_&hodny,

where n_ and ny are subspaces generated by E, for y € R™ and y € RT,
respectively. This is a decomposition of linear spaces (not of Lie algebras). We have

Lemma. (i) ny (resp. n_) is the Lie subalgebra of g generated by E, (resp. by
E_,), where oo € B.

(ii) [hsn-i-] =n4 and [hs n—] =n_.
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(iii) The Lie algebras ny and n_ are nilpotent. Moreover, if X € ny or n_, then
adX is a nilpotent operator on g.
(iv) U@ = Um)@UM) @ Umy) =~ Um-) @ Uny) ® U(h).

4 Category O and Verma Modules M,

The aim of these lectures is the description of finite dimensional g-modules. In the
sixties, it was noted that it is more natural to describe the finite dimensional modules
in the framework of a wider class of g-modules. First, let us give several preparatory
definitions.

4.1 Weight Spaces

Let V be a g-module. For any y € h* denote by V**(y) the space of vectors
v € V such that Hv = y(H)v for any H € b and call it the weight space of
weight y. If V(y) # 0, then y is called a weight of the g-module V' and any
v € V*(y) is called a weight vector. A module V is called h-diagonalizable if
V=3 o V(0.

Similarly, we introduce a generalized weight space V(x) as the space of vectors
v € V such that for any H € h one has (H — y(H))" = 0 for large n. If V' is
h-finite, it has decomposition V' = @V (y) (see appendix A). We denote by P (V)
the set of weights y € h* such that V(y) # 0 (the weight support of V).

Lemma. Let V be a g-module. For any y € R, y € b* we have E,V*(y) C
VE(+y)and E,V(x) CV(x +vy)

The proof is the same as in s[(2) case.

4.2 The Category O

Let us now introduce a class of g-modules that we will consider. The objects of
category O are g-modules M satisfying the following conditions.

(1) M is a finitely generated U(g)-module.
(2) M is h-diagonalizable.
(3) M is ny-finite.

Clearly, if a g-module M belongs to O, then so does any submodule of M and any
quotient module of M, and if M|, M, € O, then M| & M, € O.

Lemma. Let g be a semisimple Lie algebra. Then any finite dimensional g-module
V lies in O.
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Proof. It suffices to verify that V' is h-diagonalizable. Since the operators H,, where

¥ € R, generate b and commute, it suffices to verify that V' is H,,-diagonalizable.
Now V is a finite dimensional s,,-module, with 5, C g generated by £, H, and

E_,. Since s, is isomorphic to 5[(2), the result follows from Corollary 2.5. a

4.3 Highest Weight

A nonzero weight vector m € M is called a highest weight vector if nym = 0.
Since n4 is generated by E, for @ € B, we have

Lemma. A weight vector m is a highest weight vector if and only if E,m = 0 for
everya € B.

Proposition. Let M € O be nonzero. Then M contains a nonzero highest weight
vector.

Proof. The proof is the same as in the case of s[(2). We choose an h)-invariant finite
dimensional vector subspace V' C M that generates M. Replacing it by U(ny)V
we can assume that it is also n-invariant. Consider all weights y of f in V. Since
this is a finite set, there exists a weight y in V' such that for every positive root y the
weight y + y is not a weight in V. Any nonzero vector v € V() is a highest weight
vector. O

4.4 Verma Modules

We now introduce a family of central objects in the category O. These are the Verma
modules M.

Lemma. Ler y € h*. There exists a pair (M,,my) of a g-module and a highest
weight vector m, € M,(x — p) that satisfies the following universality condition.

For any g-module M and highest weight vector v € M of weight y — p, there
exists a unique morphism of g-modules i, : M, — M with i(m,) = v.

Remark. By abstract nonsense, if such a module exists it is unique up to a canonical
isomorphism.

Proof. Let y € h*. In U(g), consider the left ideal /, generated by E,, where
y € Rt,and by H + p(H) — y(H), where H € b. Define the g-module M,
setting M, = U(g)/I,. Let m, stand for the natural generator of M, (over g), i.e.,
the image of 1 € U(g) under the mapping U(g) — M. The module M, and the
vector m, clearly satisfy the universal property. O

Since Verma module is generated by a highest weight vector, the results of
Sect. 1.6 imply that it lies in category O.
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Lemma. Let y € b*. Then M, is a free U(n_) — module with one generator m.

Proof. The statement follows from the decomposition U(g) = U(n-) ® U(h) ®
Umny). |

Corollary. (1) The set of weights P(M,) of the module M, equalsto (y—p)—Q ™,
i.e. weights of My are of the form y — p — q forq € Q.

(2) Let M be an arbitrary g-module, m € M a highest weight vector of weight
x—pandi, : My, — M be the corresponding unique morphism. Then i, is
an embedding if and only if Xm # 0 for any nonzero X € U(n_).

4.5 The Irreducible Objects L

The next lemma provides a precise parametrization of isomorphism classes of
irreducible objects in the category O in terms of characters of b.

Lemma. (/) Let y € bh*. Then Verma module M, has a unique irreducible
quotient L, and Hom(M,, L,) ~ K.

(2) Any irreducible module L € O is isomorphic to a module L, for a unique
weight y € b*.

In other words, up to isomorphism L, is the unique irreducible g-module that
has highest weight vector of weight y — p. Modules L, for different y are not
isomorphic and every irreducible object L in category O is isomorphic to one of the
modules L.

Proof. (1) Consider the weight decomposition M = M'? @& M’ where M is the
one-dimensional space M (y —p) and M’ = @M (u) with sum over u = y —p.
Any g-submodule N C M, splits with respect to this decomposition, i.e N =
N\ M™ & N () M’. Since any non-zero vector of the space M'P generates
the module M,, we see that any proper g-submodule of M is contained in M.
Thus, the sum of all proper submodules is contained in M’. This shows that
M, has a unique maximal proper submodule and hence it has unique simple
quotient.

(2) Lemma 4.3. implies that every simple module L in O has a highest weight
vector. Using 4.4 we construct a non-zero morphism M, — L and this implies
that L is isomorphic to the module L.

Note that the set of weights P(L )+ p has y as the unique maximal element.
This shows how to reconstruct the weight y from the simple module L. O

Remark. An alternative argument that yields the uniqueness of an irreducible
module with highest weight y — p is as follows. Let M|, M, be two irreducible
modules of highest weight y — p and m, m, be their highest weight vectors. Then
N =Um_)(m; & my) C M, & M, is a U(g)-submodule. Since both projections
N — M; and N — M, are non zero we see that M, ~ M,.
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4.6 Characters

In the study of modules from the category O we will use the notion of the character
of a g-module M.

More generally, let M be a g-module such that it is h-finite and in the weight
decomposition all the weight spaces M () are finite-dimensional. In this case, we
define the character 7y to be the function on h* defined by the equation

7y (x) = dim M ().
On b*, define the Kostant function K by the equality

K(y) = the number of presentations of the weight y in the form

X =- Z n,y, where n, € Zsy.
yERT

For any function u on h* set supp u = {y € b* | u(y) # 0}. Denote by £ the space
of Z-valued functions u on h* such that supp u is contained in the union of a finite
number of sets of the form ¢ — Q, where ¥ € h*. For example, supp K = —Q ™,
hence, K € €.

Lemma. (i) 7y, (¥) = K(Y — x + p).
(it) If M € O, then my; is defined and wy € E.

Proof. (1) Letus enumerate the elements of R*,e.g., y1, ..., y5. Then the elements
Eﬁl),l ...Eﬁsysmx, where ni,...,n; € Zso, form a basis in M,. Hence,
o, () = K(Y¥ — x + p).

(2) Choose a finite-dimensional h-invariant subspace V' C M that generates M.
Replacing V' by U(n4)V we can assume that V is also ni-invariant. This
implies that M = U(n_)V. Thus we can write M = > U(n_)(v;), where
v; is a basis of V' consisting of weight vectors.

As in heading (i) we have dim M(¢) < Y. K(¥ — y; + p) implying lemma. O
I<i<k

Exercise. Prove the converse statement: Let M is a finitely generated U(g)-module

such that it is h-diagonalizable, its character ), is defined and lies in £. Then

MeO.

5 The Weyl Modules A;,A € P+

In this section we construct for every A € P a finite dimensional g-module A
of highest weight A. Later we will show that A, = L, , and that these modules
exhaust all irreducible finite dimensional g-modules.
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5.1 Injections Between Verma Modules

We begin with the following key Proposition:

Proposition. Let M be a g-module and m € M a highest weight vector of weight
x — p. Suppose that k = y(Hy) € Zso. Then the vector m’ = E* _m is either zero
or a highest weight vector of weight o, (x) — p.

Proof. Clearly, the weight of the vector m’ = E* oMy isequalto y — p —ka =

Oa(X) —pP.
By Lemma 4.3. it suffices to show that Egm’ = 0 for 8 € B.If § # «, then

Egm' = EgEX my, = EX Egm, =0,
because [Eg, £_,] = 0. Further,
Eym’ = EqEX jm, = E* [Eqm, + kE*'(Hy — (k — 1))m, = 0,
since Homy = (x — p)(Ho)m, = (k — 1)m,. O

Remark. This last point is just a repetition of s[(2) computation in 2.2.

Corollary. Suppose y € b* and o € B are such that o,(x) < .
Then there is a canonical embedding M,,;y —> M, that maps mg,(y to
EX m,, where k = y(Hy)

5.2 myis oy-Invariant

Lemma. Let ¢« € B be a simple root and let s, C g be the corresponding
5l(2)-subalgebra. Let M € O be a s,-finite module. Then the character mwy is
Oy invariant.

Proof. Consider the decomposition M = @M (k) with respect to the action of
H, € gq. By sl(2) theory, we have EX, : M(k) —> M(—k) is an isomorphism for
any k > 0. Decomposing M (k) = @M (y), where y € h* with y(H,) = k it is
clear that E¥  induces an isomorphism between M () and M (o, (x)). O

5.3 Construction of the Weyl Modules

Forany A € PT = P N C we have 0,(A + p) 2 A + p and hence by Corollary 5.1.
we have the containment My, (h+p) & Mi4,
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We now set

Ay =Mip/ Y Mooty

a€EB

Theorem. (1) my, (1) = 1.

(2) P(A)) CA— Q% C Pandmy (wv) =m4,(v)foranyw € Wandv € P.

(3) If v is a weight of A;, then either v ~ A or |v| < |A|, where |v| is the length of
the weight v.

(4) dim A, < oo.

Proof. (1) The modules Mo, 1+, do not contain vectors of weight A; hence,
these modules are contained in Zwa*\{ 23 Mo4p(¥). Therefore, dim A, (A) =
dim M) 1 ,(A) = 1.

(2) Since W is generated by o, where o € B, it is enough to verify heading (2) for
these elements. Fix a € B. Since A, is generated by s,-finite vector, Lemma
1.6.1. implies that A; is s,-finite. The result now follows from Sect. 5.2.

(3) Itis clear that

supp 74, C supp 7y, = A — or.

Let 74, (v) # 0. By replacing v with a W-equivalent element we can assume
that v € C. Hence, A = v + ¢, where ¢ € Q. Further on

AR =P+ gl +2(v.9) = v + g

Hence, either |A| > |v| org = 0 and then A = v.
(4) supp w4, is contained in the intersection of the lattice P with the ball |v| < |A],
and, therefore, is finite. Hence, dim A, < oo. O

We can now deduce a few results concerning the modules L, that are finite
dimensional.

Corollary. An irreducible module L, is finite dimensional if and only if y—p€ P +,

What is missing is the irreducibility of the modules A, as this identifies them
with Lj4,. This will be proven in Sect. 8.

6 Statement of Harish—Chandra’s Theorem on 3(g)

The center of the associative algebra U(g) plays an important role in the study of
representations of g. It is common to denote this commutative algebra by 3(g).
In this section I formulate the Harish—Chandra theorem that describes the algebra
3(g). The description of the Harish—-Chandra homomorphism is very simple when
we consider the action of 3(g) on Verma modules. Indeed, it is easy to see that any
element z € 3(g) acts by a scalar on each of the modules M,. Thus we obtain,
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for each z € 3(g) a complex valued function on h*. We show below that this is
a polynomial function on h* that is invariant with respect to the Weyl group. The
complete proof of Harish—Chandra’s theorem is carried out in Sect. 9.

6.1 The Harish-Chandra Projection

In what follows we will identify the algebra U(h) = S(h) with the algebra Pol(h*)
of polynomial functions on the space h*.

For any element X € U(g) we will construct a function j(X) on the space h* as
follows. Given a weight y € h* consider the Verma module M, its highest weight
vector m = m, of weight y —p and a functional /' = f, on M, such that f(m) = 1
and f vanishes on the complementary subspace M’ = @y»,_, M, (V).

It is clear that such functional f exists and is uniquely defined. Now we define

JX)(0) = fr(Xmy).
Lemma. Forany X € U(g) the function j(X) is a polynomial function in .

Proof. Using triangular decomposition we can write X = Xy + X4 4+ X_, where
Xo € U(h), X4+ € U(g)ny and X_ € n_U(g). This implies that j(X)(y) =
Jj(X0)(x) = Xo(x — p) and this is a polynomial function in y. O

This proof shows that up to a p shift the function j(X) coincides with the
“central” part Xy of the element X € U(g); this part is often called the Harish—
Chandra projection.

6.2 The Harish—Chandra’s Homomorphism

Lemma. (/) Forany z € 3(g) the operator z on the Verma module M, is a scalar
operator j(2)(x) - Idu,.

(2) j :3(g) — Pol(b*) is a morphism of algebras (it is called Harish—Chandra
homomorphism).

(3) Forany z € 3(g) the function j(z) € Pol(h*) is W -invariant.

Proof. (1) Since z commutes with action of ) we see that zm, € M,(y — p) and
hence zm, = cm. Since vector m, generates M, we see that z = ¢ - Id. It is
clear that ¢ = j(z)(y).

(2) immediately follows from 1.

(3) We would like to show that for any w € W we have j(z)(wy) = j(z)(y). It
suffices to consider the case when w = o, for @ € B.



118 J. Bernstein

Since j(z)(x) and j(z)(04())) are polynomial functions in y, it suffices to prove
the equality for y € PT. But in this case My, ;) C M, and that implies that the
action of z on the Verma modules M, and M, is given by the same scalar. O

6.3 The Harish—Chandra Theorem

By the previous lemmas, the correspondence z + j, defines a ring homomorphism
J :3(g) —> Pol(h*)". We can now state the following important result of Harish—
Chandra.

Theorem. The Harish—Chandra morphism j : 3(g)—> Pol(h*)" is an isomor-
phism of algebras.

Remark. In [Di], the map j is described as a composition of the so-called Harish—
Chandra projection with a shift. It is easy to trace both in our construction.

Remark. Our construction of the Harish—-Chandra map appears to depend on a
choice of ordering on the root system.

A different choice of ordering yields the same map, although this statement
requires a proof.

7 Corollaries of the Harish—Chandra Theorem

7.1 Description of Infinitesimal Characters

Denote by ©® = Spec(3(g)) the set of all homomorphisms 6 : 3(g) — K -
such morphisms are usually called infinitesimal characters. The Harish—-Chandra
morphism j : 3(g) — Pol(h*) defines a map of sets o : h* — ©. We usually
denote the image o (y) by 6,.

One of the important corollaries of the Harish—Chandra theorem is the following.

Proposition. The map o gives a bijectiono : h*/ W ~ ©.

We have seen that 6 (wy) = o(y) so o defines a map of sets o : h*/ W — ©.
First let us show that this map is an imbedding.

Lemma. 60, =0, onlyif x1 ~ xa.

Proof. Let y1 # y». Let us construct a polynomial T € Pol(h*)" such that
T(y1) = 0, while T(x2) # 0. For this, take a polynomial 7’ € Pol(h*) such that
T'(wy1) =0and T'(wyz) = 1 foranyw € Wandset T(x) = Y, T'(wy).
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As follows from the Harish—Chandra theorem, there is an element z € 3(g) such
that j, = T'. But then

J(x1) = 0,,(2) # 0,,(2) = j.(x2)- O

The proof of the surjectivity of the map ¢ : h*/W — O requires some
knowledge of commutative algebra. In fact we will not need this statement so we
leave it as an exercise for the reader.

Exercise. Show that any homomorphism of algebras 6 : Pol(h*)" — K is of the
form 6, for a certain y € h*.

Hint. First show that Pol(h*) is finitely generated Pol(h*)" -module. Then using
Nakayama lemma prove the following general fact from commutative algebra:

Let A be a commutative K-algebra and B C A is a K-subalgebra such that 4 is
finitely generated as B-module. Then any morphism of algebras 6 : B — K can be
extended to a morphism of algebras 4 — K (see e.g. lemma 1.4.2 in [Ke]).

7.2 Decomposition of the Category O

Lemma. Let M € O. Then there exist an ideal J C 3(g) of finite codimension
such that JM = 0.

Proof. We can find finite family of weights yi,..., y, such that V. = @®M(y;)
generates M. The space V' is 3(g)-invariant. The ideal J = ker(3(g) — End(V'))
has the desired property. O

Corollary. Any M € O is 3(g)-finite and hence has a direct sum decomposition
M = ®gM(0). Moreover; the set of characters 0 € © such that M(6) # 0 is finite.

This follows from the Lemma and Proposition A.2 of the Appendix.

Remark. In our case, the submodule M (0) C M can be described explicitly as
M(0) = Ker(Iy)

for sufficiently large n, where Iy = Ker(0 : 3(g) — K).

Exercise. Show that the category O admits the following decomposition O =
@Oy, where the sum runs over § € ® = Spec(3(g)).
Deduce that if N is a subquotient of M then ®(N) C ©(M).
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7.3 Finite Length

Proposition. Any module M € O has a finite length.

Proof. We will prove a more precise statement. Fix S C ©® and consider the full
subcategory Og of O consisting of all objects M such that (M) C S. Consider
the set E := E(S) C h* consisting of weights y € h* such that 6,4, € S. Consider
the exact functor Resz : O — Vect, defined by

Ress(M) = @yezM(x).

Lemma. Resg is faithful on the subcategory Og

The lemma follows from the fact that for any irreducible object L in Og we have

Resz (L) # {0}.
The lemma implies that for any M € Og we have that the length of M is bounded
by dim Resz (M). O

Exercise. Show that if L, is a subquotient of M, then ' ~ x. Furthermore, if
L lies in the kernel of M, — L, then y' ¥ y

7.4 The Grothedieck Group of the Category O

We will use the standard construction that assigns to every (small) abelain category
C an abelian group K(C) that is called Grothendieck group of C.

Namely, denote by A the free abelian group generated by symbols [M ], where
M runs through the isomorphism classes of objects of C. Let B be the subgroup of
A generated by expressions [M1] 4+ [M;] — [M] for all exact sequences

0O— M — M — M, — 0.
By definition, the Grothendieck group K(C) of the category C is the quotient
A/B.

Exercise. Suppose we know that every object of an abelian category C is of finite
length. Show that

(i) The map Z[IrrC] —> K(C) is an epimorphism. In other words, the classes of
simple objects of C generate K(C).

(ii) Prove that the map above is an isomorphism. In particular, K(C) is a free abelian
group. Hint: Jordan-Hoelder.

In what follows we will use the fact that the collection {[L ]} e+ forms a basis
for K(O).

Proposition. The collection {{M,]},ey+ forms a basis of K(O).
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Proof. We can write K(O) = & K(Og). We will show that for a given infinitesimal
character ¢ the collection {[M,] : y €b* is such that §, = 0} forms a basis for
K(Op). We note that the collection {[L,] : y €b* is such that §, = 6} forms a
basis K(Op). Recall that for any ¢ € h*

[My] = [Ly]+ Z ny[Ly],
P2V, o~y

where n, € Z. Inverting this unipotent matrix yields the result. O

7.5 Realization of the Grothendieck group K(QO)

It will be convenient to have a realization of the group K(O) by embedding it into
the group &, the group of Z-valued functions on h* (see Sect.4.6). Namely, we
introduce the convolution product on £ by setting

wxv)() = Y ulp)v(x —¢) for uve&.

pCh*

Note that only a finite number of the summands are non-zero. Since u x v € £, the
convolution endows £ with a commutative algebra structure.
For any y € h* define §, € & by setting §,(¢) = 0for¢ # y and §,(x) = 1.
Clearly, § is the unit of £.

Set
L= l—[ 8y —=8—y2) =6 l_[ (80 —6-)
yeRt yeRt
Here IT is the convolution product in £.
We can now define a homomorphism 7 : K(QO) — £ by the formula

t([M]) = L x 7y,

where M € O,

Theorem. (1) t(M,) = 4,.
(2) The mapping t : K(O) — & gives an isomorphism of K(O) with the subgroup
E. C & consisting of functions with compact support.

Proof. The second point is an immidiate consequence of the first in lieu of the fact
that the family {[M,]} generates K(O). The proof of the first point is based on
Lemma 4.6 and the following Lemma.

Lemma. Let K be the Kostant function, see Sect. 4.6. Then

Kx6_,x L =6.
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Proof. Forany y € R" seta, = 8y + 8-y + ... + §—yy + .... The definition of K
implies that

Further, (§o — 8-, )a, = 8. Since L can be representedas IT1 (8o —3—,)3,, we are
yERT
done. ]

Remark. The theorem implies that finding the exact transition matrix between the
basis {{M,]} and the basis {[L,]} is equivalent to the determination of t(L,). This
is the subject of the Kazhdan—Lusztig conjecture.

8 Description of Finite Dimensional Representations

8.1 Complete Reducibility of Finite Dimensional Modules

In this section, we will describe all finite dimensional representations of a semisim-
ple Lie algebra g. As was shown in Sect.4.2, all such representations belong
to O. Recall that in Sect.5 we constructed a collection of finite dimensional g-
modules A, parameterized by weights A € P+. We will now show that any finite
dimensional module is isomorphic to a direct sum of such modules, and that these
are irreducible. This yields complete reducibility.

Theorem. (1) Let M be a finite dimensional g-module. Then M is isomorphic to
a direct sum of modules of the form A for A € P+,
(2) All the modules A;, where A € P, are irreducible.

Proof. (1) We may assume that M = M(6), where § € ©. Let m be any highest
weight vector of M and A its weight. Then 6 = 0,4 ,. Besides, for any simple
root @ we have EX_m = 0 for large k, and hence by Lemma 2.2 A(H,) € Zso.
Therefore, A € P,

Since A € P the element A + p lies inside the interior of the Weyl
chamber and thus is uniquely recovered from the infinitesimal character of the

module A4;.
Let my,...,m; be a basis of M(1). Let us construct the morphism p :
® M(A+ p) — M so that each generator (m)4,); fori =1,2,...,1 goes
1<i<l

to m;. As follows from Lemma 2.2, for any simple root o we have Eﬁ;mi =0,
where ky = (A + p)(Hy)

Hence p may be considered as the morphism p : ®1<j<;(43); — M.

Let L, and L, be the kernel and cokernel of the morphism p. Then ®(L;) =
{6} and L;(A) = 0, where i = 1,2. As was shown above, L; = L, = 0, i.e,,
M= & (4.

1<i<l
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(2) Let M be a nontrivial submodule of A;. Then ©(M) = 04 ,, hence, M(1) #
0, i.e., M contains a vector of weight A. But then M = A, . Thus, the module
A, is irreducible and the proof of the Theorem is complete. O

Corollary. A, = Lj4,, where A € P™.

Remark. The module A, is an irreducible module of highest weight A. The strange
shift in its numbering as an irreducible module corresponds to the Harish—Chandra
shift.

8.2 Characters of Highest Weight Modules A ),

Consider the natural action of the group W on the space of functions on h*
defined by
(wu)(yx) = u(w™'y) forw e W, y € h*.

Lemma. wlL =detw- L foranyw e W.

Proof. Tt suffices to verify that 0, = —L for « € B. Since o, permutes the
elements of the set R \ {o} and transforms o into —o, then

GaL = (8—05/2_80(/2) l—[ (8}//2_8—)//2) =—L. |
yERT\{a}

The next theorem provides a formula for the formal character of the finite
dimensional irreducible module L. This will give us Kostant multiplicity formulas,
Weyl character formula and Weyl dimension formula.

Theorem. Suppose L, is finite dimensional. Then

Lx*xmp, = Z detw - 8y(3).
wew

Proof. We have
[Li] =) aulM,]

n~A
witha) = 1.
Applying t to this equation, we obtain

(L)) = > audy.

H~A

Since 7z, is W-invariant and L is W-skew invariant, we see that t([L,]) =
L * 7, is W-skew-invariant as well.
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Thus,

Lxmp, = Z detw - 8,3 *)
wew

Theorem 8.2 is proved. O

Corollary. (1) forany A € PT we have [A)] = Y. detw - [My,i4p)]
wew
(2) the Kostant formula for the multiplicity of the weight w4, () = > detw -

wew
KW+ p—w(A + p)) forany ¢ € h*.

Proof. Since t is an isomorphism, to verify the first item, we may apply t to both
sides. The second item is a reformulation of the first in view of the Lemma 4.6. O

8.3 Weyl Character Formula

Denote by F(h) the ring of formal power series in f, i.e. the completion of the
algebra of polynomial functions Pol(h) at the point zero. For any y € h* set eX =

Yizo 4t
Clearly, e € F(h) and e*™V = eXeV for y, € b*. Let M be a finite
dimensional g-module. Define the character chy; € F(h) of M by the formula

chy = Z m(x)e’.

XEP

Theorem. Set

L'= )" (detw)e".

wew
Then for A), where A € Pt we have
L'chy, = Z(detw)ewu+p).
wew
Proof. The mapping j:£ —> F(h) defined by the formula j(u)= Z){Gh*

u(y)e” is a ring homomorphism. Inserting A = p in formula (*) of 8.2, we obtain

Zdetw'SWp:L*nAo =Lx*x§ = L.
wew

Hence, j(L) = L'. The result now follows by applying ;j to formula (*) of 8.2 with
Ay = LA+p. O
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Remark. (1) When K = C, all the power series involved in Theorem 8.3 converge
and define analytic functions on f. Theorem 8.3 claims the equality of two such
functions.

(2) Let G be a complex semisimple Lie group with Lie algebra g and H C G
the Cartan subgroup corresponding to the Lie subalgebra fy. Consider the finite
dimensional representation T of G corresponding to the g-module 4,. Let h €
H. Then h = exp(H), where H € b. It is easy to derive from Theorem 8.3 that

Z detw - e(W(l"‘P))(H)

_ weWw
T T = =5Getw - o ()
wew

This is the well-known H. Weyl’s formula for characters of irreducible repre-
sentations of complex semisimple Lie groups.

8.4 Weyl’s Dimension Formula
Theorem. Let A € PT. Then

A' )
dimA; = [] @tpy)

ert PV

Proof. Set

F, = Z detw - € for any y € h*.
wew

Clearly, F, = L' = [ e+ (e”/?> —e77/?). For any y € h* and H € b, we may
consider F, (tH) as a formal power series in one variable ¢.

Let p’ and A’ be elements of § corresponding to p and A, respectively, after the
identification of  with h* by means of the Killing form. Then

Fyy,(tp")

dim A = chA, (0) = F (Z‘p’)
P

lr=0
Observe that

Fopotp) =Y detw- 0070 = F (1 (1 + p')).
wew
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Hence by the product formula we have

F,(t(A +p')

dim A, =
R RS

|t=0 =

el 20V +0") _ o—t/2(y(V +0"))
o200 — e—t/20(p)  11=0

The quantity on the right hand side is evaluated easily to be

ert (1P

8.5 Summary of Results

We collect here the results we have proven for finite dimensional representations
of g.

1. For any weight A € P we have constructed a finite dimensional irreducible
g-module Aj. All such modules are nonisomorphic. Any finite dimensional
irreducible g-module is isomorphic to one of A;, where A € P ™.

2. Complete reducibility

Any finite dimensional g-module M is isomorphic to a direct sum of A4,.

3. The module A, is h-diagonalizable and has the unique (up to a factor) highest
weight vector a;. The weight of a, is equal to A. The module A4, is called a
highest weight module of highest weight A.

4. Harish-Chandra theorem on ideal.

The module A} is generated by the vector a; as U(n—)-module (in particular,
all the weights of A, are less than or equal to A). The ideal of relations I =
{X € Un_) | Xa, = 0} is generated by the elements E™«"! where « € B
and my = A(Hy).

5. The function 4, is W-invariant.

If  is a weight of A,, then either A ~ Y or | ¥ |<| A |.

7. A, has infinitesimal character 0, 1 ,. Explicitly, for any a € A, and z € 3(g)
we have za = 04 ,(2)a.

If A1, A2 € PT and A; # A,, then homomorphisms 01, +p and 0,4, are
distinct.

8. Weyl character formula

o

L-chy, = Z(detw)ew(lﬂ’), where L = Z(detw)ew(")
wew wew
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9. Kostant multiplicity formula.

a (1) = ) ([detw)K(p+ p—w(k + p)).
wew

10. Weyl dimension formula

A
dim A; = l_[ u

ert (1P

11. For any finite dimensional g-module V', the module V is h-diagonalizable and
its character sty is W -invariant.

9 Proof of the Harish—Chandra Theorem

The proof we describe here will be obtained by first reducing Harish—Chandra’s
theorem to Chevalley’s restriction theorem. The proof of Chevalley’s theorem is
obtained using characters of finite dimensional representations A4, of g.

The proof we present uses implicitly a group action without defining the group
that acts. The existence of the action should not be surprising in view of Corollary
2.5 that finite representations of the Lie algebra s[(2) admits an action of the group
SL(2). A similar idea applies in general. Instead of providing a formal statement let
us briefly explain how to obtain such a group.

Let G be the adjoint group of automorphisms of g. This is the group generated
by groups SL(2), corresponding to all the roots y. This group acts on g, on U(g),
S(g) and preserves natural structures on all these spaces. On each of these spaces V'
the actions of g and G are related as follows.

(*)Let X € gy and g = exp ad(X) € G. Then for any vector v € V we have

1
gv=exp(X)v:= Z Fka.
— k!

This expression makes sense since X*v = 0 for large k.
In particular the invariants with respect to G and g in each of these spaces are the
same.

9.1 Reduction to Chevalley’s Theorem

We constructed a morphism j : 3(g) — Pol(h*)" = U(h)" and would like to
show that it is an isomorphism. By construction, j is the restriction to 3(g) of a
linear map j : U(g) — U(h) defined by Harish—Chandra projection (see 6.1).
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Morphism j is compatible with natural filtrations on 3(g) and U(h)" obtained
by restrictions of standard filtrations on U(g) and U(h). So in order to show that
J is an isomorphism it is enough to check that the associated graded morphism
a = grj : gr3(g) — grU(h)" is an isomorphism. Let us identify these two
spaces.

First of all notice that 3(g) = U(g)? where we consider the adjoint action of g on
U(g), ad(X)(u) = [X, u]. Let us also consider the adjoint action of g on the algebra
S(g) such that ad(X) is the derivation of the algebra S(g) satisfying ad(X)(Y) =
[X,Y]for Y € g C S(g). Using the morphism symm discussed in Corollary 1.5.
We see that the space gr 3(g) coincides with the space S(g)? (this follows from the
fact that symm is a morphism of g-modules). Similarly, gr((U(h)")) coincides with
the space S(h)".

Consider the morphism g : S(g) = S(n—) ® S(h) ® S(n—) — S(h) obtained
by mapping n_ and n4 to 0. Analyzing the explicit description of the morphism
« described above it is easy to see that it coincides with the restriction of 8 to g-
invariant elements.

Using Killing form we will identify g with g* and § with h*. In this way we
interpret S(g) as the algebra Pol(g) of polynomial functions on g and S(h) as the
algebra Pol(h) of polynomial functions on f. Morphism § after this identification
is just the restriction of polynomial functions on g to b.

This shows that Harish—Chandra theorem follow from the following result

Theorem (The Chevalley’s restriction theorem). Let Po/(g) and Pol(h) be alge-
bras of polynomial functions on g and b, respectively, and 1 : Pol(g) —> Pol(h)
the restriction homomorphism. Then Pol(g)? —> Pol(h)" is an isomorphism.

9.2 Proof of Injectivity in Chevalley’s Theorem

Let us choose an ordering yy, ..., y, of roots of the algebra g and consider the
algebraic variety Y = [][g,, x b; in fact this is just an affine space isomorphic
to g. Let us define a morphism of algebraic varietiesa : ¥ — g by

a(Xi,....X,, H) = expad(X;)expad(X,)...expad(X,)(H).

Clearly, any function f € Pol(g)? in the kernel of the morphism 1 will also lie in
the kernel of morphism of algebras a* : Pol(g) — Pol(Y) corresponding to the
morphism a.

However, if we choose a regular element H € § (i.e., an element such that
y(H) # 0 for every root y) and consider the point y = (0,...,0, H) € Y, then
easy computation shows that the differential da at this point is an isomorphism of
linear spaces. This implies that the kernel of the homomorphism a* is 0.
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9.3 Proof of Surjectivity in Chevalley’s Theorem

Fix a non-negative integer k. To every finite dimensional representation (p, V') of
the Lie algebra g, we assign a polynomial function Py on the Lie algebra g as
follows Py.y(X) = tr(p(X)¥). Clearly, this is a g-invariant polynomial function
on g. The surjectivity of the morphism 7 follows from

Proposition. The collection of functions Py.y on by spans Pol(h)".

Proof. Let us denote by F(h) the completion of the algebra Pol(h) at maximal
ideal m corresponding to the point 0 € . In other words, if (y;) is a coordinate
system on the linear space b, then F(h) = K[[yi, ..., y,]]. Since polynomials Py y
are homogeneous in order to prove the proposition, it is enough to prove that the
K-linear span of the collection of polynomials Py y is dense in the algebra F(h)" .

To see this we will consider a different model for the algebra F(h). Namely
consider the category R (h) of finite dimensional h-modules. We say that an object
V of R(h) is integrable if the action of b is completely reducible and all coroots H,
have integral spectrum. We denote by R the full subcategory of R(h) of integrable
objects. The Grothendieck group K(R) of this category is naturally isomorphic to
the group algebra Z(P) of the lattice P. Namely, a weight A € P corresponds to a
one-dimensional representation 7}, of the Lie algebra h of weight A.

Consider a homomorphism of algebras ¢ : K(R) — F () defined by

o((p. V) = trvexp(p(e) = Y 2oty (o))
B

In particular, o (7)) = exp(A).

It is easy to see that the K-span of the image of morphism o is dense in F(h) (in
fact F(h) can be realized as the completion of the algebra K(P) := Z(P) ®z K at
the maximal ideal corresponding to the homomorphism K(P) = K(R) ® K — K
given by V - dim(V).

Now consider the category R(g) of finite dimensional g-modules and the
restriction functor r : R(g) — R(h). Based on the s[(2) theory we may view r as a
functor r : R(g) — R. Denote by 7 the corresponding morphism of Grothendieck
groups 7 : K(R(g)) - K(R).

For every V € R(g) the element 7 (V') considered as a function on P is just the
character 7ty of V', which was defined in Sect. 4.6.

Now, the image o (7 (V)) € F(h) equals >, Pk y/k!. Thus, in order to show that
polynomials P y span a dense subset of F(h)" , it is enough to prove the following.

Lemma. The image of morphism w : K(R(g)) — K(R) equals to the subgroup
K(R)Y c K(R) of W-invariant elements.
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The lemma easily follows from Theorem 5.3. Namely, if an elementu € K(R) =~
Z(P) is W -invariant, then induction on the maximal length of weights in the support
of u implies that u can be written as a Z -linear combination of 7 (A,), where
ArepPt. O

A. Appendix: Eigenspaces Decomposition

In this section, we present the standard Eigen-space decomposition of linear algebra
with few variations that are needed in the text.

A.l1 Standard Eigenspace Decomposition

Let K be an algebraically closed field. Let 7 be an operator on a finite dimensional
K-vector space V.

We denote by Spec(T, V') the set of A € K such that the operator 7 — A1 is
not invertible. Since V' is finite dimensional, the operator T satisfies some equation
P(T) = 0 for some monic polynomial P that could be written as [ [(T —A;1) = 0.
This shows that if V' # {0} then the set Spec(T, V') is not empty.

For any A € K, we denote by V(A) the space of vectors v € V' annihilated by
some power of the operator 7—A1. Vectors of the these spaces are called generalized
eigenvectors. It is clear that V(A1) #£ 0iff A € Spec(T, V).

Denote by V**(1) = Ker(T — A1) C V(A). Vectors of these spaces are called
eigenvectors. We say that T is semisimple if V' is spanned by eigenvectors of T'.

Note that if S is an operator commuting with 7" then S preserves all the spaces
VSS(A), V(X).

Proposition. V = @V(1) where the sum is taken over all A € K.

Proof. (a) We first prove linear independence. Otherwise, take the shortest depen-
dence of the form v; + ... + v = 0, where each v; is a generalized eigenvector
with eigenvalues A;, and all eigenvalues are distinct. Clearly, & > 2. Applying
T — A11 several times to the above identity, we get a shorter dependency.

(b) For every A € K consider the quotient space O, = V/V(A). We claim that
Spec(T, Q)) does not contain A. Indeed, let V/(1) C V be the preimage of the
space Q;(A). Then some power of the operator T — A1 maps V'(1) to V(1)
and hence some larger power maps it to 0. This implies that /(1) = V(1) and
hence Q; (1) = 0.

Consider now the space Q@ = V/ Y, V(A). Since this space is a quotient of all

the spaces Q), the set Spec(T, Q) C N, Spec(T, Q) is empty and hence Q = 0.0

Corollary. If T is semisimple then V- = @®V*5(L).
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A.2 Eigenspace Decomposition for Commuting Families

Let now A be a commutative K-algebra acting on a K-vector space V. For each
character y : A — K we denote by m, = ker(y) the corresponding maximal
ideal of A. We denote by V() the subspace of vectors in V' that are annihilated by
some power of m. They are called generalized eigenvectors corresponding to the
character y. We denote by V**(y) the space of vectors annihilated by m. They are
called eigenvectors.

We say that the action is locally finite if V is a union of finite dimensional A-
submodules.

Proposition. Let A be a commutative algebra and V be a locally finite A-module.
We have:

(1) V = @V (x) where the sum is taken over all characters y of A.
(2) Ifeach a € A acts semisimply on V', then V = @V (y).

Proof. We first consider the case dim(V') < oo.

For (1) note that the linear independence of the spaces V(x) follows from the
previous proposition. To show that V is a direct sum we argue by induction on
dimension of V. If each a € A has only one eigenvalue «(a), then « is a character
and we are done. Otherwise, we can split V', using the previous proposition, as a sum
of generalized eigenspaces for some a € A. Since each of these spaces is invariant
with respect to the algebra A, we can apply induction. The same proof gives the
decomposition in the semi-simple case.

Now the locally finite case is an obvious formal consequence of the finite
dimensional case. O

Corollary. Let A be a finite dimensional commutative algebra over K with
unit. Then

(1) In A, there is a finite number of maximal ideals m;, wherei = 1,... k.
(2) There are elements e; € A, wherei = 1, ...k, such that

eiej =0fori # j and e} = e;;
ei+e+...+e =1;
e; Emjfori 75],

e;m! = 0 forn > dim A.

Proof. Let A act on itself by multiplication. By the previous proposition, we have a
projection P, : A — A(y) for each character y of A. Write the identity operator as
asum 1 =) P; where all P; = P,, are non zero.

If P is one of these projectors, then it is given by multiplication by an element
e = P(1) € A(Indeed, P(b) = P((b-1))=b-P(1)=b-e).

These elements ¢; = P;(1) and the maximal ideals m; = ker(y;) satisfy the
statement of the corollary. O
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1 Introduction

This paper' is an attempt to present an introduction to the Stein—Sahi complemen-
tary series available for non-experts and beginners.

1.1 History of the Subject

The theory of infinite-dimensional representations of semi-simple groups was
initiated in the pioneer works of I. M. Gelfand and M. A. Naimark (1946-1950),
V. Bargmann [2] (1947), and K. O. Friedrichs [12] (1951-1953). The book by
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I. M. Gelfand and M. A. Naimark [14] (1950) contains a well-developed theory
for the complex classical groups GL(n, C), SO(n, C), and Sp(2n, C) (the parabolic
induction, complementary series, spherical functions, characters, Plancherel theo-
rems). However, this classic book? contains various statements and asseverations
that were not actually proved. In the modern terminology, some of the chapters were
“mathematical physics”. Most of these statements were really proved by 1958—1962
in works of different authors (Harish-Chandra, F. A. Berezin, etc.).

In particular, I. M. Gelfand and M. A. Naimark (1950) claimed that they classi-
fied all unitary representations of GL(n, C), SO(n, C), and Sp(2n, C). E. Stein [46]
compared Gelfand—Naimark constructions for the groups SL(4, C) ~ SO(6, C) and
observed that they are not equivalent. In 1967, E. Stein constructed “new” unitary
representations of SL(2n, C).

D. Vogan [48] in 1986 obtained the classification of unitary representations of
groups GL(2n) over real numbers R and quaternions H. In particular, this work
contains an extension of Stein’s construction to these groups. In the 1990s, the
Stein-type representations were a topic of interest of S. Sahi (see [40—42]), S. Sahi—
E. Stein [44], and A. Dvorsky-S. Sahi [8, 9]. In particular, Sahi extended the
construction to other series of classic groups, specifically to the groups SO(2n, 2n),
U(n,n), Sp(n,n), Sp(2n, R), SO*(4n), Sp(4n, C), and SO(2xn, C).

1.2 Stein—-Sahi Representations for U(n, n)

Denote by U(n) the group of unitary n x n matrices. Consider the pseudo-unitary
group U(n, n). We realize it as the group of (n 4+ n) X (n + n)-matrices g = (a Z)
¢

satisfying the condition

(D62 =62)

Lemma 1.1. The formula

2> 28 = (a +z0)7V (b + 2d) (1.1)

determines an action of the group U(n, n) on the space U(n).

The unitary group is equipped by the Haar measure du(z); hence, we can
determine the Jacobian of a transformation (1.1) by

_ du(E#)

&9="00

2Unfortunately, the book has been published only in Russian and German.
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Lemma 1.2. The Jacobian of the transformation z — 7181 on U(n) is given by
J(g.2) = |det(a + zc)|7>".

Fix o, t € C. For g € U(n,n), we define the following linear operator in the
space C*°(U(n)):

Po1c(8) f(2) = f(E) det(a 4+ z¢) " det (@ +z¢) . (1.2)

The formula includes powers of complex numbers, the precise definition of
which is given below. In fact, g +— ps;(g) is a well-defined operator-valued
function on the universal covering group U(n,n)~ of U(n, n).

The chain rule for Jacobians,

J(g182.2) = J(g1,2)J (g2.24), (1.3)

implies
Po1c(&1) o1 (82) = Po|(£182)-

In other words, p,|; is a linear representation of the group U(n,n)™~.

Observation 1.3. I[fReo +Ret = —n, Imo = Im, then a representation py|; is
unitary in L*>(U(n)).

This easily follows from the formula for the Jacobian.
Next, let o, t be real. We define the Hermitian form on C*(U(n)) by the
formula

(f1, 2)ole 1=/ / det(1 — zu*)’ (1 — 2*u)" f1(2) fo(u) du(z) dpa(u). (1.4)
U(n) JU(n)

Proposition 1.4. The operators p,s|.(g) preserve the Hermitian form (-, ).

Theorem 1.5. For o, t € Z, the Hermitian form (-, -)|, is positive iff integer parts
of numbers —o — n and t are equal.

In fact, the domain of positivity is the square —1 <t < 0,—n <o < —n +1
and its shifts by vectors (—j, j), j € Z ; see Fig. 5.

In particular, under this condition, a representation p,|, is unitary.

For some values of (o, ) the form (-, -) |, is positive semi-definite. The two most
important such cases are:

1. For = 0, we get the highest weight representations (or holomorphic rep-
resentations). Thus, the Stein—Sahi representations are the nearest relatives of
holomorphic representations.

2.For t = 0, 0 = 0, —1, =2,..., —n, we obtain some exotic “small”
representations of U(n, n).
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1.3 The Structure of the Paper

We discuss only groups® U(n, n).

In Sect.2 we consider the case n = 1 and present the Pukanszky classification
[37] of unitary representations of the universal covering group of SL(2,R) =~
SU(1, 1).

In Sect. 3 we discuss Stein—Sahi representations of arbitrary U(n, n). In Sect. 4
we explain the relationships of Stein—Sahi representations and holomorphic rep-
resentations. In Sect.5 we give explicit constructions of the Sahi “unipotent”
representations.

In Sect. 6 we discuss some open problems of harmonic analysis.

1.4 Notation

Leta, u, v € C. Denote

a" = qg. (1.5)

If u — v € Z, then this expression is well defined for all @ # 0. However, the
expression is well defined in many other situations, for instance, if |1 —a| < 1 and
u, v are arbitrary (and even for |1 —a| = 1,a # 1).

The norm ||z|| of an n x n-matrix z is the usual norm of a linear operator in the
standard Euclidean space C".

We denote the Haar measure on the unitary group U(n) by u; assume that the
complete measure of the group is 1.

3A comment for experts: Stein—Sahi representations of a semisimple Lie group G are com-
plementary series induced from a maximal parabolic subgroup with an Abelian nilpotent
radical.

The cases G = U(n,n), Sp(2n,R), and G = SO*(4n) (related to tube-type Hermitian
symmetric spaces) are parallel. The only difficulty is Theorem 3.11 (the expansion of the integral
kernel in characters); we choose G = U(n, n) because this can be done by elementary tools. In
the general Hermitian case, one can refer to the version of the Kadell integral [20] from [29] (the
integrand is a product of a Jack polynomial and a Selberg-type factor).

For other series of groups, Stein—Sahi representations depend on one parameter, and picture
is clear (in particular, inner products for degenerate [“unipotent”] representations can be written
immediately). A BC analog of the Kadell integral is unknown (certainly, it must exist, and
some special cases were evaluated in the literature; see, e.g., [30]). On the other hand, Stein—
Sahi representations have multiplicity-free K-spectra. In such situation, there are a lot of ways to
examine the of positivity of inner products; see, e.g., [5,41,42].

New elements of this paper are a “blow-up construction” for unipotent representations
and (apparently) tame models for representations of universal coverings. The representations
themselves were constructed in works of Sahi.
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The Pochhammer symbol is given by

_Tla+n) Ja@+1)...(a+n-1), ifn=0

(@) = (@) (1.6)

1 .
(a=1)..(a—n)’ ifn <0.

2 Unitary Representations of SU(1, 1)

Denote by SU(1, 1)™ the universal covering group of SU(1, 1).

In this section, we present constructions of all irreducible unitary representations
of SU(1, 1)™. According to the Bargmann—Pukanszky theorem, there are four types
of such representations:

(1.) Unitary principal series

(2.) Complementary series

(3.) Highest-weight and lowest-weight representations
(4.) The one-dimensional representation

Models of these representations are given below.
The general Stein—Sahi representations are a strange “higher copy” of the
SU(1, 1) picture.

References. The classification of unitary representations of SL(2,R) ~ SU(1, 1)
was obtained by V. Bargmann [2]; it was extended to SU(1, 1)~ by L. Pukanszky
[37]; see also P. Sally [45]. O

2.1 Preliminaries

2.1.1 Fourier Series and Distributions

By S! we denote the unit circle |z| = 1 in the complex plane C. We parameterize
Slbyz=c¢e".
By C*(S') we denote the space of smooth functions on S'. Recall, that

o0
flp) = Z a,e"? e C*(Sh iff |a,| = o(jn|™%) forall L.

n=—0oo

Recall that a distribution &(¢) on the circle admits an expansion into a Fourier
series:

o0
hp) = anei’w, where |b,| = O(|n|*) for some L.
=0
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For s € R, we define the Sobolev space W* (S 1) as the space of distributions
o0
h(p) = anelmp such that Z |bn|2(1 + |n|)2s < .
n=0

By definition, W°(S') = L?(S'). For a positive integer s = k, this condition is
equivalent to a%h € L2(S"). Evidently, s < 5" implies W* > W'

2.1.2 The Group SU(1, 1)

The group SU(1, 1) ~ SL(2, R) consists of all complex 2 x 2-matrices having the

form
a b 2 2
g=1- _]. where |a|” — |p|” = 1.
b a
This group acts on the disk |z] < 1 and on the circle |z] = 1 by the Mobius
transformations

2 (a +b2) "' (b +a2).

2.1.3 A Model of the Universal Covering Group SU(1, 1)~

Recall that the fundamental group of SU(1,1) is Z. A loop generating the
fundamental group is

elv 0

R(p) = (o e_w), R(Q2r) = RO) = 1. @2.1)

Some examples of multi-valued continuous function on SU(1, 1) are

a b a b A._ Alna
(E E)l—)lna, (E E)|—>a =a .

We can realize SU(1, 1)~ as a subset in SU(1, 1) x C consisting of pairs

— _),0]), wheree’ =a.
b a

Thus, for a given matrix (6—1 é) the parameter o ranges if the countable set
. ba
o =Ina + 2rki.
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Define a multiplication in SU(1, 1) x C by

(g1.01) 0 (g2,02) = (8182.01 + 02 + c(g1. &2)).

where ¢(g1, g2) is the Berezin—Guichardet cocycle,

as
c(g1,82) =In——.
ayaz

Here a3 is the matrix element of g3 = g1g>.

as

Theorem 2.1. (a) i

(b) The operation o determines the structure of a group on SU(1, 1) x C.
(c) SU(1, 1)~ is a subgroup in the latter group.

— 1‘ < 1, and therefore the logarithm is well defined.

The proof is a simple and nice exercise.
Now we can define the single-valued function Ina on SU(1,1) by setting
Ina :=o.

2.2 Non-Unitary and Unitary Principal Series

2.2.1 Principal Series of Representations of SU(1, 1)

Fix p, g € C. For g € SU(1, 1), define the operator T,|,(g) in the space C*°(S"')
by the formula

Q

b+a _
Tpiq (E g) f&=1r1 (a i ZZ) (a+ba)=rmah, 2.2)

bz
We use the notation (1.5) for complex powers here.

Observation 2.2. (a) T, is a well-defined operator-valued function on SU(1, 1)
(b) It satisfies

Tp\q(gl)Tp\q(gZ) = Tp\q(gng)-
Proof. (a) First,

_ —_— _ ]
(@a+bz)y Pla+bz) =aP-a (1 +a'byy (1 +a'bz) .
Since |z] = 1 and |a| > |b|, the last two factors are well defined. Next,
aPa1:= exp{—p Ina + qm}

and In a is a well-defined function on SU(1, 1)~.
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Proof of (b). One can verify this identity for g, g, near the unit and refer to the
analytic continuation. O

The representations 7,,(g) are called representations of the principal (non-
unitary) series.

Remark. (a) A representation T, is a single-valued representation of SU(1, 1) iff
p — ¢ is integer.

2.2.2 The Action of the Lie Algebra

The Lie algebra su(1, 1) of SU(1, 1) consists of matrices
P ﬁ , where @ € R, 8 € C.
B —ix

It is convenient to take the following basis in the complexification su(l, 1)¢ =

s((2,C):
(=1 0 (0 1 (0 0
w3 (00 = (0 8) = (G 0) e

These generators act in C*°(S!) by the following operators:

L=:211o-9 o= g Lo=234 (2.4)
o—ZdZ ZP q), T4 qz +—ZdZ pz. :

Equivalently,

1
Lo?' = (n +50 —q)) 2 L =m—q), Lo =+ p)Th
(2.5)

2.2.3 Subrepresentations

Proposition 2.3. A representation T\, is irreducible iff p, q ¢ 7.

Proof. Let p, q ¢ 7. Consider an Ly-eigenvector z". Then all vectors (L)¥7",
(L-)'z" are nonzero. They span the whole space C*®(S"). O

Observation 2.4. (a) Ifq € Z, then 2%, 291", .. span a subrepresentation in Ty,
(b) If p € Z, then 77P, 77771, z7P72, ... span a subrepresentation in Ty

Proof of (a). Clearly, our subspace is L°-invariant and LT -invariant. On the other
hand, L™z¢ = 0, and we cannot leave our subspace. O
All possible positions of subrepresentations of T),, are listed in Fig. I.
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quotient-module submodule
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 5 [ ] [ ] [ ] [ ] [ ] [ ] [ ]
a) q 1s integer;

submodule quotient-module

-P
b) p is integer;
submodule submodule
[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ]
-P q
finite-dimensional
quotient-module
¢) p, q are integer, ¢ +p > 1;
quotient-module quotient-module
[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ) [ ]
q -p
finite-dimensional
submodule

d) p, q are integer, g +p < 1.

Fig. 1 Subrepresentations of the principal series. Black circles indicate vectors z". A representa-
tion Ty, is reducible iff p € Zorq € Z

2.2.4 Shifts of Parameters

Observation 2.5. If k is an integer, then Tpyxjq—x == Tp4. The intertwining
operator is

Af(2) =7 f(2).

A verification is trivial. O

2.2.5 Duality
Consider the bilinear map

IM:C®(S") x C®(S") - C
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given by

2

2w
ey [ A AEw= [ fosas o
T Jo 2 Jo Z

Observation 2.6. Representations Ty, and T, -, are dual with respect to
I1; ie.,

T (T (2) fis T pii—g (8) f2) = TL(fi, f5). 2.7

Proof. After simple cancellations, we get the following expression on the left-hand
side of (2.7):

1 b+a b+a - ———-1d
o A ( 6—12) 2 ( C_ZZ) (a +bz) Y(a + b2) &
271 Jyzj=1 a+ bz a+ bz Z

1

Keeping in mind z = 7, we transform

— _———=—"1d — - b+az\™' (b+a
(@+b2) a +b2) = = (a+b2)"'(h+az) ' dz= ( +fz) d ( +fz) .
z a+bz a+bz
Now the integral comes into the desired form:
1 du
2—/ Si@) fo(u) —. a
L J|u|=1 u
We also define a sesquilinear map
IM*: C®(SH x C®(S') - C
by
. o 2 —_dz
I (f1. f2) =11/, /o) = | S12) 2(2) 7 (2.8)

Observation 2.7. Representations T\, and Ti_g|—5 are dual with respect to IT*.

The proof is the same. O

2.2.6 Intertwining Operators
Consider the integral operator

Ly, : C®(S") — C®(Sh)
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given by

1 dz
- _ apyir—tla—1 g &
Lpjg f(u) = FETS m=1(1 a)t @) . 29)

where the function (1 — zit)t?~1l9=1} is defined by
(1 —zm)tr~tle=1 .= lim (1 - ) L (2.10)
—1—

The integral converges if Re(p + g) > —1.

Theorem 2.8. The map (plq) +— [,, admits the analytic continuation to a
holomorphic operator-valued function on C.

Theorem 2.9. The operator 1), intertwines Ty, and T1_q1—p; i.e.,

T pli—¢(8) 1 plg = Tpig Tplg(8)-
Corollary 2.10. If p ¢ Z, q ¢ Z, then the representations Ty, and Ti_41—, are
equivalent.
2.2.7 Proof of Theorems 2.8 and 2.9

Lemma 2.11. The expansion of the distribution (2.10) into the Fourier series is
given by

—\p—1 _ _1_F(P+CI—1) = (1_q)n E n
(-0 —z0 = i T, (W) e

n=—0oQo

_ .- (—1)" z\"
_F(p+q—1)n;oo SPEST - (;) . (2.12)

Proof. Let Re p, Re g be sufficiently large. Then we write

-z (1 -z = Z(l 2 (‘) [Z(l_q)[ (z)} -

j=0 =0

and open brackets in (2.13). For instance, the coefficient at (z/u)" is

Z (I =p)h(1 =g

A = F(1—-p,1—g;l:1),

k=0
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where , F| is the Gauss hypergeometric function. We evaluate the sum with the
Gauss summation formula for , F;(1); see [18], (2.1.14). O

Proof of Theorem 2.8. Denote by

Gy
" T(p+mI(g—n)

the Fourier coefficients in (2.12). Evidently, ¢, admits a holomorphic continuation
to the whole plane* C2.
By [18], (1.18.4),

I'(n+a)

NCEW)) ~ |n|®t asn — Foo.

Keeping (2.11) in mind, we get

¢y ~ const- |n|'7P74 asn — oo. (2.14)
Then
Iy, 2" e
and
Iy Zanz” — Zanc_nz”.
Obviously, this map sends smooth functions to smooth functions. O
Proof of Corollary 2.10. 1In this case, all ¢, # 0. O

Proof of Theorem 2.9. The calculation is straightforward:
Tl—q\l—p (g)lp\q S(u)

1 _ b1 {g—1lp—1} d
- (a+ bu){q—llp—l}/ (1 - ( + i’“) z) @)=
2mi lul=1 a+bu z

Next, we observe

(a + bu) (1-(”?”)2) = (a—b?) (l—u<ﬂ)>
a—+ bu a—>bz

4The Gamma function I'(z) has simple poles at z = 0, —1, —2, ...and does not have zeros.
Therefore, 1/(I'(p +n)I'(¢ —n)) has zerosat p = —n,—n — 1, ...andatg =n,n — 1, ....
In particular, if both p, g are integers and ¢ < p, when I,, = 0.
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Fig. 2 The unitary principal series in coordinates

h=(p—q+1)/25s=1p+qg—1/2

Equivalently,

p=h+is,q=1—h+is.

The shift # — h + 1 does not change a representation. Also, the symmetry s — —s sends
a representation to an equivalent one. Therefore, representations of the principal series are
enumerated by the a semi-strip 0 < 4 < 1, s = 0. It is more reasonable to think that representations
of the unitary principal series are enumerated by points of a semicylinder (s, &), where s = 0 and
h is defined modulo equivalence 4 ~ h 4 k, where h € Z

and come to
— {g—1lp—1}
1 —-b +az d
— 1—u ;cfz (a — bz)la=1r=1 £(5) &
270 Jig=1 a—bz b4

Now we change a variable again,

b+ aw _ —b+az
T —— W:—

z —_—, —,
a+ bw a—bz

and come to the desired expression:

e (1 — uw)tr~tla=1} ¢ (w) (a + EW){—P\—q}d_W.
271 Jjw=1 a+bw w

2.2.8 The Unitary Principal Series
Observation 2.12. A representation T, is unitary in L*(S") iff

Imp =Img, Rep + Req = 1. (2.15)

The proof is straightforward; also, this follows from Observation 2.7. O
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2.3 The Complementary Series

2.3.1 The Complementary Series

Now let
0<p<l, 0<g<l. (2.16)

Consider the Hermitian form on C*°(S!) given by

1 — dzdu
_ _ \ip—llg—1} s
Vi P = e T+ g =1 /|z|=l /uzl(l @AW
2.17)
By (2.12),
1 1—9),
(&) g = (1=9) 2.18)

L@ ("
Theorem 2.13. If0 < p < 1,0 < g < 1, then the inner product (2.17) is positive
definite.

Proof. Indeed, in this case all coefficients

(I—=q)n  (1—p)y

(P)n (@)—n

in (2.17) are positive. |

Theorem 2.14. Let0 < p < 1,0 < q < 1. Then the representation T, is unitary

with respect to the inner product (-, -) |, i.e.,

plg>

(Tplq(g)flv Tp\q(g)f2>p|q = (f1, fz),”\q‘

Proof. This follows from Theorem 2.9 and Observation 2.7. Indeed,

(fls f2>p|q = H*(Ipqulv f2)

and

H*(Ipqup\q(g)fl’ Tp\q(g)ﬁ) = H*(Tl—q\l—p(g)]p\qflv Tplq(g)fZ)

=TIy f1, f2) = (f1. o) plg-
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Fig. 3 The complementary q
series. The diagonal is

contained in the principal

series (the segment of the axis 1
Oh in Fig. 2). The symmetry «
with respect to the diagonal N \
sends a representation to an e
equivalent representation

Keeping in mind our future purposes, we propose another (homotopic) proof
(Fig. 3). Substitute

b+ a7 b+au
= —_—, U= —
a—+ b7 a+ bu

Z

into the integral in (2.17). Applying the identity

b+al\ThFar\ _ S
1_( +EZ)( +fu):(a+bz/)_l(1—2/ﬁ/)(a+bu’) ,
a+ b7 a+ bu

we get

(Tp\q(g)flva\q(g)ﬁ>p|q' u

2.3.2 Sobolev Spaces

Denote by H ,|, the completion of C*°(S"') with respect to the inner product of the
complementary series.

First, we observe that the principal series and the complementary series have an
intersection [see (2.15), (2.16)], namely, the interval

p+q=1, O0<p<l.

In this case the inner product (2.18) is the L2-inner product; i.e., Hpli—p = L2(Sh).
Next consider arbitrary (p,q), where 0 < p < 1,0 < ¢ < 1. By (2.14), the
space H |, consists of Fourier series )  a,z" such that

[e.e]

Z la,*n' =P~ < oo.

n=—0o0

Thus, H,,., is the Sobolev space W1=7=9/2(S1),
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2.4 Holomorphic and Anti-Holomorphic Representations

Denote by D the disk |z] < 1 in C.

2.4.1 Holomorphic (Highest-Weight) Representations

Setg = 0, and
b+az
T 7) =
wos@ =1 (23

Z

) (a +bz)7".

Since |a| > |b|, the factor (a + bz)? is holomorphic in the disk D. Therefore,
the space of holomorphic functions in D is SU(1, 1)~ -invariant. Denote the
representation of SU(1, 1)~ in the space of holomorphic functions by T; .

Theorem 2.15. (a) For p > 0, the representation T; is unitary, and the invariant
inner product in the space of holomorphic functions is

<Zanzn’2bnzn> _ Z%anﬁn. (2.19)

n=0 n=0 n>0

(b) For p > 1, the invariant inner product admits the following integral represen-
tation:

gy =21 [ ARG (1 - PP 2dA),
T lz]<1

where dA(z) is the Lebesgue measure in the disk.
(c) For p = 1, the invariant inner product is

2 o -
i) = [ A B a0 =5 [ ARG @20
7 Jo 27i Jiz=1 Z

We denote this Hilbert space of holomorphic functions by ’H;’

Proof. The invariance of inner products in (b) and (c) can be easily verified by
straightforward calculations.

To prove (a), we note that weight vectors 7" must be pairwise orthogonal.

Next, operators of the Lie algebra su(l,1) must be skew-self-adjoint. The
generators of the Lie algebra must satisfy

(Ly)*=L_.

Therefore,
(L—‘,-anzn-l—l) — (Zn,L—Zn+1>
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or
(n+p) (T =+ 1) (7).

This implies(a).
If p = 1, then (",7") = 1 forn > 0;i.e., we get the L2-inner product. O

The theorem does not provide us with an explicit integral formula for the inner
product in 7—[;’ if 0 < p < 1. There is another way to describe inner products in
spaces of holomorphic functions.

2.4.2 Reproducing Kernels
Theorem 2.16. For each p > 0, for any f € HY, and for each a € D,
(f@,(1—za)™ ") = f(a) (the reproducing property). (2.21)

Proof. Indeed,

<Zanzn’2 %Znﬁn> — Zan (i)'n un<zn’zn) — Zan“n — f(u) O

In fact, the identity (2.21) is an all-sufficient definition of the inner product. We
will not discuss this (see [10,31]), and prefer another way.

2.4.3 Realizations of Holomorphic Representations in Quotient Spaces

Consider the representation 71—, of the principal series,

o
TAAﬁﬂ@=f(aif

Z

— e m——— |
) (a+b2) Na +b2)
The corresponding invariant Hermitian form in C°(S!), is
1 o ———dz du
iy = g | [ (-mrp@R@ TS @2
@7ri)* Ji=1 Jjui=1 z u

[we write another pre-integral factor in comparison with (2.17)]. The integral
diverges for p > 1. However, we can define the inner product by

the latter definition is valid for all p > 0.
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We denote by L C C>(S") the subspace consisting of the series Y, _, anz".
This subspace is SU(1, 1)-invariant and our form is nondegenerate and positive
definite on the quotient space C*°(S!)/L.

Next, we consider the intertwining operator

Toyjo-p 1 C(SY) - C=(SY

as above (but we change a normalization of the integral):

~ 1 d
L f@ =5 [ -2 /@) 7

L J)zl=1

The kernel of the operator is L and the image consists of holomorphic functions.

Observation 2.17. (a) The operator I_y_,_, is a unitary operator
C®(SH/L — M.

(b) The representation T_y|_1—, in C°(S")/L is equivalent to the highest-weight
representation TI;" .

2.4.4 Lowest-Weight Representations

Now set p = 0, ¢ > 0. Then operators Ty, preserve the subspace consisting
of “antiholomorphic” functions ), ., a,z". Denote by T, the corresponding
representation in the space of antiholomorphic functions. These representations are
unitary.

We omit further discussion because these representations are twins of highest-
weight representations (Fig. 4).

2.5 The Blow-Up Trick

Here we discuss a trick that produces “unipotent” representations of U(n,n) for
n = 2; see Sect.5.2.

2.5.1 The ExoticCase p =1,4 =0

In this case,

Ty=T"&T .
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a
submodule submodule
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
-1]10
b
q
1

Fig. 4 (a) The structure of the representation 77 |o.

(b) Ways to reach (p,q) = (1,0) from different directions give origins to different invariant
Hermitian forms on 77o. By our normalization, the inner product is positive definite in the gray
triangle and negative definite in the white triangle. Therefore, coming to (1,0) from the gray
triangle, we get a positive form

Let us discuss the behavior of the inner product of the complementary series near
the point (p|g) = (1]0):

(fi. g = / _ =@ AR AG df (2.23)

1
2mi)?

Consider the limit of this expression as p — 1, ¢ — 0. The Fourier coefficients
of the kernel are the following meromorphic functions:

=D"'T(p+q—1)
L(g—nI(p+n)

cn(p.q) =

Note that

1. ¢,(p,q) has a pole at the line p + ¢ = 1.
2. For n = 0, the function ¢, (p, ¢) has a zero on the line ¢ = 0.
3. For n < 0, the function ¢, (p, ¢) has a zero at the line p = 0.

Thus, our point (p, g) = (1, 0) lies on the intersection of a pole and of a zero of
the function ¢, (p, q). Let us substitute

p=1+es q = st, where s + ¢ # 0,

to ¢, (p, q) and pass to the limit as ¢ — 0. Recall that

re ==

= + 0(1), asz — —n,wheren =0,1,2,.... (2.24)
nl(z+n)
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Therefore, we get

ifn=0

-2 ifn <O.

_t

lim ¢, (1 + &s,¢t) = g t+s
g—0

t+s

In particular, for s = 0 we get the T1+—inner product, and for ¢+ = 0 we get the
T -inner product. Generally,

o0 o0
. n . t T s —
EIB;I(I)< E an? , E bnzn>l+m|£t = f+s E anbn I+ E anbn-

n=—0o0 n=—oo

Therefore, we get a one-parametric family of invariant inner products for 7jo.
However, all of them are linear combinations of two basis inner products mentioned
above (t = 0and s = 0).

3 Stein—Sahi Representations
Here we extend constructions of the previous section to the groups G := U(n, n).
The analogy of the circle S! is the space U(n) of unitary matrices.

3.1 Construction of Representations

3.1.1 Distributions £,

Let z be an n xn matrix with norm < 1. For o € C, we define the function det(1—z)°
by

o(o — 1)Zz 3 o(o0 — 1)((7—2)Z3 +]

o ._ _
det(1 — 2) .—det[l ozt ——; N

Extend this function to matrices z satisfying ||z|| < 1, det(1 —z) # 0 by

det(1 —2)? ;== lim det(l —u)°.

u—z, |lull<1

The expression det(1 — z)° is continuous in the domain ||z|]] < 1 except for the
surface det(1 —z) = 0.
Denote by det(1 — z){!7} the function

det(1 — 2)'17 := det(1 — 2)? det(1 —2)".
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We define the function £,|,(g) on the unitary group U(n) by

Cole(z) i= 27T det(1 — 7)1, (3.1)
Obviously,
Lo (h7'2h) = L, (z)  forz, h € U(n). (3.2)
Lemma 3.1. Ler eV, ..., eV where 0 < Y < 2m, be the eigenvalues of
z€ U(n). Then
i . 143
- o+
Ly (z) = exp { E(U —1) Xk:(l//k — n)} kl:[l sin? ™" 5> (3.3)

Proof. 1t suffices to verify the statement for diagonal matrices; equivalently, we
must check the identity

(1—e")lols = exp{%(cf -0y — n)} sin?*7 %

We have
%(1 —eV) = exp{%(g// - n)} sin %

Further, both the sides of the equality

279(1 —elV)’ = eXp{l—U(llf - 71)} sin? K,
2 2
are real-analytic on (0, 277) and the substitution ¥ = 7 gives 1 on both sides. O

3.1.2 Positivity

Let Re(o + t) < 1. Consider the sesquilinear form on C*°(U(n)) given by
Uil = [ @) A@E@ @@, G
U(n)xU(n)

For o, t € R this form is Hermitian; i.e.,

(2, fidole = (S1s 2o

Observation 3.2. For fixed fi, f» € C°(U(n)), this expression admits a mero-
morphic continuation in o, T to the whole C2
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P
— ° ° ° ° - ].
1 g
|
. ) . Shift
I L] L] L] L]

1. The dotted squares correspond to unitary representations p,|.

2. Vertical and horizontal rays in the south-west of Figure correspond to nondegen-
erate highest weight and lowest weight representations. Fat points correspond to
degenerated highest and lowest weight representations, and also to the unipotent
representations. The point (o, 7) = (0, 0) corresponds to the trivial one-dimensional
representation.

3. In points of the thick segments, we have some exotic unitary sub-quotients.

4. The shift (0, 7) = (¢ + 1,7 — 1) send a representation p,, of SU(n,n)™ to an
equivalent representation.

5. The permutation of the axes (7,0 ) — (0,7 ) gives a complex conjugate repre-
sentation.

6. The symmetry with respect to the point (—n/2, —n/2) (black circle) gives a
dual representation (for odd n this point is a center of a dotted square; for even n
this point is a common vertex of two dotted squares).

7. For o+7 = n (the diagonal line) our Hermitian form is the standard L2-product.
8. Linear (non-projective) representations of U(n,n) correspond to the family of
parallel lines 0 — 7 € Z.

Fig. 5 Unitarizability conditions for U(n,n). The case n = 5

This follows from general facts about distributions; however, this fact is a
corollary of the expansion of the distributions £, in characters; see Theorem 3.11.

This expansion also implies the following theorem:

Theorem 3.3. For o,t € R\ Z, the inner product (3.4) is positive definite (up to a

sign) iff integer parts of —o —n and t are equal.

The domain of positivity is the union of the dotted squares in Fig. 5.
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For o, T satisfying this theorem, denote by H,|. the completion of C*°(U(n))
with respect to our inner product.
3.1.3 The Group U(n, n)
Consider the linear space C" @ C" equipped with the indefinite Hermitian form
vow v ewl=v.V)oe — (W), (3.5)

where (-, -) is the standard inner product in C". Denote by U(n, n) the group of linear
operators in C" @ C" preserving the form {-, -}. We write elements of this group as

block (n + n) x (n 4+ n) matrices g := (a Z) By definition, such matrices satisfy
¢

1 0\ ., (1 0
g(o _l)g _(0 _1). (3.6)

Lemma 3.4. The following formula

the condition

i = (a+z20)7' b +2d),  zeUm), g= (Ccl Z) €Un.n), (3.7)

determines an action of the group U(n, n) on the space U(n).

The proof is given in Sect. 3.3.3.

3.1.4 Representations ps|, of U(n, n)
Denote by U(n,n)~ the universal covering of the group U(n,n); for details, see

Sect.3.3.1. Fix 0, t € C. We define an action of U(n,n)~ in the space C*°(U(n))
by the linear operators

Polc(8) f(2) = f (@) det ™17 (a + z0). (3.8)
We must explain the meaning of the complex power in this formula. First,
a+zc=(1+zca a.

The defining (3.6) implies ||ca™"|| < 1. Hence, for all matrices z satisfying ||z|| < 1,
complex powers of 1 4+ zca™! are well defined. Next,

det(a) "0 = exp{—(n + 7)Indeta — (n + o)ln deta}
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My mg3 Mo my
0O OO m OO0 O0DO0O0OO OO OO COMaSMEBTOo0TOo o . O

Fig. 6 A Maya diagram for signatures. We draw the integer “/ine” and fill the boxes my, ..., my
with black

It is a well-defined function on U(n,n)~. We set

det(a + z¢) "0 = det[(l +zea”H)y T —n—a] det(a)~"~71-"=0

3.1.5 The Stein—-Sahi Representations

Proposition 3.5. The operators p,|.(g) preserve the form (-, ) g
The proof is given in Sect. 3.3.6.

Corollary 3.6. For o, t satisfying the positivity conditions of Theorem 3.3, the
representation pq|, is unitary in the Hilbert space H|;.

3.1.6 The Degenerate Principal Series

Proposition 3.7. LetRe(p + 0) = —n, Imo = Im 1. Then the representation pg|,
is unitary in L>(U(n)).

Proposition 3.8.

(fls f2>a\r
[TioTo+t+))

= const - A (u)m du(u).
U(n)

O=—n—rt

3.1.7 Shifts of Parameters
Proposition 3.9. For integer k,
Po+kle—k = (detg)* + pye.
The intertwining operator is multiplication by the determinant
F(z) = F(2) det()~.

This operator also defines an isometry of the corresponding Hermitian forms
(Fig.6).
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3.2 Expansions of Distributions { |, in Characters. Positivity

3.2.1 Characters of U(n)

See Weyl’s book [49]. The set of finite-dimensional representations of U(n) is
parameterized by collections of integers (signatures)

m: mip >my > -+ > MmMy.

The character yp of the representation’ 7y, (a Schur function) corresponding to a
signature m is given by

_ detej=12... ¢’ ’ 3.9
Im(2) dot 2. n [0 DV (3.9)

where e'V* are the eigenvalues of z. Recall that the denominator admits the
decomposition

iJ—Dyry — i _ LUk
(git{e }—l_[l<k(e V). (3.10)

The dimension of w,, is

n0$a<ﬂ$n (mg —mp)

[Tj=1 !

dimmy, = ym(1) = (3.11)
3.2.2 Central Functions
A function F(z) on U(n) is called central if

F(h™'zh) = F(z)  forallz, h € U(n).

In particular, characters and £, are central functions.
For central functions F on U(n), the following Weyl integration formula holds:

1 . .
/ F()du(z) = / - / F(diag(e", ..., ")) x
U(n) 2m)'n! Jocy,<2n O<yn <27

% “‘[ (elVm — elvr)

m<k

2 n
[ Tdex. (3.12)
k=1

where diag(-) is a diagonal matrix with given entries.

SExplicit constructions of representations of U(n) are not used below.
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Any central function F € L?(U(n)) admits an expansion in characters,

F(z) = Zm Cm Xm(2),

where the summation is given over all signatures m and the coefficients ¢y, are L>-
inner products:

m=z@F®m@W@.

Note that ¥, = ym=*, Where
m :=mn—-1-my,,....n—1—my,n—1—my).

Applying formula (3.12), explicit expression (3.9) for characters, and formula
(3.10) for the denominator, we obtain

Cm = ——— F(dlag eV .. eV )x
" (277)””' 0<yr <27 0<y, <2m { }
n
det {eUTVVRY  det feTimivk dy. 3.13
x k,j=16,:2 ..... n{e }k,j=le,2 ..... n{e } kl:[l Pk ( )

Let F(z) be multiplicative with respect to eigenvalues,
F) =]]/(%)
k

[for, instance F' = {|,; see (3.3)]. Then we can apply the following simple lemma
(see, e.g., [28]).

Lemma 3.10. Let X be a set,

/X" 1!:[1 S (xx) k,liel,t...n{ul (xx)} k,l(ifl:’tmn{w(xk)} 1_[ dx; =

Jj=1

= n!l,mg?t . {/X F(X)u (x)v (x) dx} . (3.14)

3.2.3 Lobachevsky Beta-Integrals

We wish to apply Lemma 3.10 to functions £,,. For this purpose, we need for the
following integral (see [15], 3.631,1, 3.631,8,)
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2l—unr(u)eibn/2
(p+b+1)/2)T((r—b+1)/2)

/ sin? " (p) e?¥ dp = (3.15)
0 r

It is equivalent to the identity (2.12).

In a certain sense, the integral (3.21) is a multivariate analog of the Lobachevsky
integral. On the other hand, (3.21) is a special case of the modified Kadell
integral [29].

3.2.4 Expansion of the Function £, |, in Character

Theorem 3.11. Let Re(o + 1) < 1. Then

boi ()
_1 n(”l_l)/z s n 2_(U+‘L')}’L n
- Sm"(M) [[r@+7+))
n .
j=1
L T(—o+m;—n+1)
“ m 3.16
X ;{ 1<o!:,[3<n(m mﬂ)}l:[l T(c+m; +1) X (g)§ ( )

— (_l)n(n—l)/22—(a+r)n l_[ F(O’ S+ 4+ ])
Jj=1

X Z{ (_l)sz nl$a<ﬁ$n(m“ - mﬂ)
[

oD —m;+nm(t+m;+ 1)Xm(g)} : (3.17)

m

The proof is contained in Sect. 3.2.6. For the calculation, we need Lemma 3.13
proved in the next subsection.

3.2.5 A Determinant Identity

Recall that the Cauchy determinant (see, e.g., [22]) is given by

_ Hl$k<[$n('xk - X[) : Hl$k<[$n(yk B yl)

det = (3.18)
ki { Xk + Yi } [Ti<ks<n Gk + 1)

The following version of the Cauchy determinant is also well known.
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Lemma 3.12.

det

1 1 1 1

1 1 1 1
x1+by x2+by x3+by Xn+bi

1 1 1 1
x1+b X2+by x3+by Xpn+b

1 1 1 1

X1+by—1 x2+by—1 x3t+by—1 T

_ i<k cr<n Gk =30 Ti<ucpn—1(ba

Xp+bp—1

—bp)

Y.A. Neretin

(3.19)

[T 1<ksn (xk + ba)

I<a<n—1

Proof. Let A be the Cauchy determinant (3.18). Then

We take limy, 500 y1A

Y1 Y1 Y1
x1+yr x2+yr 7 xi+n
1 1 1
X1t+y2 x2+y2 7" xpty2
VA =
1 1 1
Xi+yn X2Fyn 777 Xptwn

and substitute yy4+1 = by.

The following determinant is a rephrasing of [22], Lemma 3.

Lemma 3.13.

1

X1+b;
x1+a;

(x1ta)(x1+az)

1 1
X2+a; x3+a;
x2+by x3+b;

(x2+a1)(x2+az) (x3+a)(x3+az)

1

Xptai
xp+by

(ntar)(xntaz)

det|  Ca+bn(i+h)

]—Ilﬁménfl(xl'*'“M)

(x2+b1)(x2+b2) (x3+b1)(x3+b2)

nlﬂménfl (x2t+am) HlSmSn*l (x3+ap)

(xn+b1)(xn+b2)

Hm: lsm<n—1 (x" +am)

1<m=<n—1(X1+bm)

Hlsmsn—l(«\'Z‘{'bm) Hlémﬁnfl(x,?‘{'bm) o

_ i<t <r<n Ok = %0 Ti<uspen—i1 (@0 — bp)
[Ti<k<n1<p<n—1 (ck + bp)

nm: Ism<n—1 (xXn +bM)

(3.20)
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Proof. Decomposing a matrix element into a sum of partial fractions, we obtain

(i ta). (wta) [<olaj=bp) 1
(xk +b1) ... (xk + by) 1<p<a l_[jsa,j;éﬂ(bj —bg) Xk + bg

Therefore, the (o« 4 1)-th row is a linear combination of the following rows:

(v o)

1 1 1
x1+b1 x2+by "7 xp+by ’

1 1 1
( xX1+by x2+by "7 xp+by )

Thus, our determinant equals

1 1
-1
| |‘;:1(aj —ba) det x1+b1 x2+by Xp+by

[T

w TT1521(65 — ba)

1 1 1
X1+by X2+by T Xptby

and we refer to Lemma 3.12. O

3.2.6 Proof of Theorem 3.11

We must evaluate the inner product
/ Lol (8) xm(g) die(g).
U(n)

Applying (3.13), we get

n

1y, L1012 esp {0 = 0 = )]

2m)" n! ke

n
x det fe”™V1y. det {*TVV[Tdyu (3.21)
=1

1<k,<n 1<k,<n
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By Lemma 3.10, we reduce this integral to

det I(k,j),
Q2m)" 1sk,ejsn (k)

where
) 2
Ik, j) = e—l<”—f>”/2/ sin” " (y/2) - exp{i( (0 + 1)/2+ k —1—m;)} dy.
0
We apply the Lobachevsky integral (3.15) and get

21707 (o 4 v 4+ 1) (1)1

I(k,j) =
(k. J) Io+k—mj)(t—k+m;+2)

Applying standard formulas for the I'-function, we come to
(o +m;—k+1)
F(‘L’ + m; — k + 2)

F(—o+m;—n+1)
Fc+m;—n+2)

I(k,j) =2""""T(0 + t + 1) sin(—on) -

=2""""T'(6 + v + 1) sin(—ox) -

(o +mj—n+1),—
(t+mj—n+2),,_k

The factors outside the box do not depend on on k. Thus, we must evaluate the
determinant

det (—o+mj—n+1),—
iskj<n (t4mj—n+2),—

Up to a permutation of rows, it is a determinant of the form described in Lemma
3.13 with

Xj =mj, aj=—0—n+j, b=t—n+j+1.

After a rearrangement of the factors, we obtain the required result. O

3.2.7 Characters of Compact Groups. Preliminaries

First, recall some standard facts on characters of compact groups; for details, see,
e.g.,[21],9.2, 11.1.
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Let K be a compact Lie group equipped with the Haar measure u, let u(K) = 1.
Let 1, m, ...be the complete collection of pairwise distinct irreducible represen-
tations of K. Let i, x2, ...be their characters. Recall the orthogonality relations,

e X 2200) = /K 2 D3GR dpa(h) = 81y (3.22)

and

1 e
Xk * X1 = dim oy Xk ifk =1,
0 ifk # 1,

(3.23)

where * denotes the convolution on the group,
weote) = [ uleh™)vih) duth),
Consider the action of the group K x K in L?(K) by the left and right shifts
(ki.k2) 2 f(g) = flki' gka).

The representation of K x K in L?*(K) is a multiplicity-free direct sum of
irreducible representations having the form 7, ® 77, where 7, denotes the dual
representation

LK)~ P ® 7. (3.24)
k

Denote by Vi C L?(K) the space of representation x ® 7;". Each distribution f
on K is a sum of “elementary harmonics”,

f= " e

The projector to a subspace Vj is the convolution with the corresponding
character,

L

dim Tk

S * Xk (3.25)

(in particular, £¥ is smooth).
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Observation 3.14. Let f be afunctiononU(n), f =" an [™, where ™ € V.

(a) f e C®Um)iff

1™l =o0(Xm) " foranL.

(b) f is a distribution on U(n) iff there exists L such that

L
1™ =0 (3 m?) .

Proof. Note that f € L*(U(n)) iff }_ || f™||7, < oo. Denote by A be the second-

order invariant Laplace operator on U(n). Then A f™ = g(m) f™, where g(m) =

Zm? + ... is an explicit quadratic expression in m. For f € C* we have A? f €

C*°; this implies the first statement. Since ¢(m) has a finite number of zeros (one),

the second statement follows from (a) and the duality. O

3.2.8 Hermitian Forms Defined by Kernels

Let 2 be a central distribution on K satisfying E(g~') = E(g). Consider the
following Hermitian form on C *°(K):

o fo) = /f =(gh™) £ (h) Falg) du(h) du(g). (3.26)
KXK

Consider the expansion of E in characters

82 = ch)(k-
k

Lemma 3.15.

Ck

()=

dim 7
P’ k

/U S duch (3.27)

Proof. The Hermitian form (3.26) is K x K-invariant. Therefore, the subspaces
Vi ~ me ® ]T: must be pairwise orthogonal. Since 7y ® 71]:‘ is an irreducible
representation of K x K, it admits a unique up to a factor K x K-invariant Hermitian
form. Therefore, it is sufficient to find these factors.
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Set fi = f, = xx. We evaluate

I (; o <gh—1>) 1600 dia() ) = 24—

using (3.22) and (3.23). |

3.2.9 Positivity

Let Re(o + t) < 1. Consider the sesquilinear form on C*°(U(n)) given by
Uil = [ @) p@E@aR@ @, G29
U(n)xU(n)

where the distribution £, is the same as above.

Observation 3.16. For fixed fi, f» € C*°(U(n)), the expression { f1, f2)s|. admits

a meromorphic continuation in o, t to the whole C2,

Proof. Expanding fi, f> in elementary harmonics

@R =)@,  LR=). L6,

we get (see Lemma 3.15)

i Ao =3 o RACEACLHC)

dim TTm JU®

m

where the meromorphic expressions for ¢, were obtained in Theorem 3.11. The
coefficients ¢m have polynomial growth in m. On the other hand, || /|| rapidly
decreases; see Observation 3.14. Therefore, the series converges. O

Proof of positivity. Corollary 3.6. We look at expression (3.16). It suffices to
examine the factor
F(—o—n+m; +1)
Fit4+m;+1)

, (3.29)

because signs of all the remaining factors are independent on m ;. Let n € Z and
a € (0,1). Then

+1,  ifn=>0,

signl'(n + @) =
£ =D", ifn<0

Therefore, (3.29) is positive whenever integer parts of T and —o —n are equal. O
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3.2.10 The L2-limit. Proof of Proposition 3.8

Thus, let 0 + © = —n. Then
-1

n
l_[ Fo+t+)) {5 = const - Z(dimnm))(m
j=1

Indeed, in this case I"-factors in (3.16) cancel, and we use (3.11).

Keeping in mind (3.27), we get Proposition 3.8.

3.3 Other Proofs

Here we prove that the operators p,|, preserve the inner product determined by the
distribution £,

3.3.1 The Universal Covering of the Group U(n, n)
The fundamental group of U(n, n) is®
7 (U(n,n)) ~Z & Z.

The universal covering U(n, n)™~ of U(n,n) can be identified with the set &l of

triples
a b
% ( ),s,t}eU(n,n)x(Cx(C
c d

satisfying the conditions
det(a) = ¢*, det(d) = €.
The multiplication of triples is given by the formula
(81.51.11) 0 (g2, 52.12) = (8182.51 + 52 + ¢ T (g1, 82). 1 + 1 + ¢ (g1, £2)).
where the Berezin cocycle ¢ is given by

c+(g1,g2) = trln(al_la3a2_1), ¢ (g1,8) = trln(dl_ldgdz_l);

5By a general theorem, a real reductive Lie group G admits a deformation retraction to its maximal
compact subgroup K. In our case, K = U(n) X U(n) and 7;(U(n)) = Z.
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here g3 = gig2,and g; = (i/ Z’) It can be shown that ||a; 'azay! — 1] < 1;
jaj

therefore, the logarithm is well defined. On the other hand,
e = enrtotet g - det(a)) det(a,) det(a; 'aza;") = det(as).

This shows that the £l is closed with respect to multiplication.
For details, see [31].
In particular, det(a) is a well-defined single-valued function on U(n,n)~. In our
notation, it is given by
(g,s,1) > s.

3.3.2 Another Model of U(n, n)

We can realize U(n,n) as the group of (n 4+ n) x (n + n)-matrices g = (a ’g)
satisfying the condition v

0 i\ « (0 i
g(_l. O)g —(_l. o) (3.30)

3.3.3 Action of U(n, n) on the Space U(n). Proof of Lemma 3.4

‘We must show that for
ab
zeU(m) and g = (c d) e U(n,n),

we have
8= (a +z2¢)7'(b + zd) € U(n,n). (3.31)
For z € U(n), consider its graph graph(z) C C" @ C". It is an n-dimensional

linear subspace, consisting of all vectors v & vz, where a vector-row v ranges in C".
Since z € U(n), the subspace graph(z) is isotropic’ with respect to the Hermitian

form ((1) 01). Conversely, any n-dimensional isotropic subspace in C" @ C”" is a

graph of a unitary operator z € U(n).
Thus, we get a one-to-one correspondence between the group U(n) and the
Grassmannian of n-dimensional isotropic subspaces in C" & C”.

7A subspace V in a linear space is isotropic with respect to Hermitian form Q if Q equals O on V.
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The group U(n, n) acts on the Grassmannian, and therefore U(n, n) acts on the
space U(n). Then (3.31) is the explicit expression for the latter action. Indeed,

(VEB vz) (i 2) =v(a+zc) ® v(b + zd).

We denote £ := v(a + zc) and get

EDE+ze) (b +2zd),

and this completes the proof of Lemma 3.4. O

Thus, U(n) is a U(n, n)-homogeneous space. We describe without proof (it
is a simple exercise) the stabilizer of a point z = 1. It is a maximal parabolic
subgroup.

In the model (3.30) it can be realized as the subgroup of matrices having the

structure
o 0
'3 a* 1

It is a semidirect product of GL(n, C) and the Abelian group R,

In our basic model the stabilizer of z = 1 is the semi-direct product of two
subgroups
l (a+a* ! a—a*!
- el ol where g € GL(n, C), (3.32)
2\a—«a o+ a* 7,
and
1 +iT iT "
, here T =T". 3.33
( T l—iT) where (3-33)

3.3.4 The Jacobian
Lemma 3.17. For the Haar measure j1(z) on U(n), we have
(28 = | det™" (a + z¢)| - (). (3.34)

Proof. A verification of this formula is straightforward; we only outline the main
steps. First, J(g.z) := |det " (a + zc)| satisfies the chain rule (1.3). Next, the

formula (3.34) is valid for g € U(n,n) having the form (g 2), where u, v €

U(n). Indeed, the corresponding transformation of u + ul" is u > a='ud and its
Jacobian is 1.
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Therefore, we can set z = 1, zI8) = 1. Now we must evaluate the determinants
of the differentials of maps z > zI¢! at z = 1 for g given by (3.32) and (3.33). In
the second case the differential is the identity map; in the first case the differential
is dz — a*(dz)a. We represent a as pAgq, where A is the diagonal with real

eigenvalues and p, g are unitary. Now the statement becomes obvious.

3.3.5 The Degenerate Principal Series. Proof of Proposition 3.7
Thus, let Re(o + t) = —n, Im(0) = Im(7) = 5. Then
det(a + uc) ™17 = | det(a + uc)| "2 i(FmAredet(atuc)
where Arg(-) is the argument of a complex number. Therefore,
(T51: (&) /1. T 12 (2) f2) L2u(ny)

[ A AEED [deta + ue) | dpu)
U(n)

= Sl fo(uls))| det(a + uc)| 7" dp(u),
U(n)

and we change the variable z = ul¢!, keeping Lemma 3.17 in mind.

3.3.6 The Invariance of the Kernel. Proof of Proposition 3.5
Lemma 3.18. The distribution L, satisfies the identity
€a|t(u[g](v[g])*) = Lo (uv™) det(a + uc)=1=% det(a + ve)olmT

Proof. This follows from the identity

O

(3.35)

1— Y = (@ + ue)™' (1 — w*)(a + ve)* ', where g € U(n, n),

which can be easily verified by a straightforward calculation (see, e.g., [31]).

O

Proof of Proposition 3.5. First, let Re(o + t) < 1. Substitute h; = u[lg], hy, = u[zg]

in the integral

o Pdore = // Core (i) £ () To02) dpaCin) dpe (o).
U(n)xU(n)



170 Y.A. Neretin

By the lemma, we obtain

// Lo (uru) det(a + wyc) =77 det(a + upc)| 70177
U(n)xU(n)

x fi(ur) fo(uz)| det(a + uyc)| ™" | det(a + upc)| =" dya(uy) dp(uo)
= (palr(g)fls palr(g)f2>alr-

Thus, our operators preserve the form (-, *) /.
For general o, T € C, we consider the analytic continuation. O

3.3.7 Shift of parameters Proof of Proposition 3.9

First, we recall Cartan decomposition. Fort; = ... = t, denote

cosh(t)) 0 .. sinh(t;) 0
CH(r) := 0 cosh() ... |  SH():= 0 sinh(t,)

The following statement is well known.

Proposition 3.19. Each element g € U(n, n) can be represented in the form

_ (w0 (CH@) SH() (Mz 0)
g_(O Vl) (SH(t) CH(t)) 0 (3:30)

for some (uniquely determined) t and some uy, u, vi, vo € U(n).

Now we must show that the operator f(z) + det(z) f(z) intertwines p,|, and
Po+1]z—1- A straightforward calculation reduces this to the identity

det(a +zc) det(zlel)
det(a + zc) det(z)

which becomes obvious after the substitution (3.36).
Also,

Lot1)e=1(2) = =g (2) detz,

and this easily implies the second statement of Proposition 3.9.

4 Hilbert Spaces of Holomorphic Functions

Theorem 3.3 exhausts the cases when the form (,-),|, is positive definite on
C®°(U(n)). However, there are cases of positive semi-definiteness. They are
discussed in the next two sections (Fig. 7).



Stein—Sahi Complementary Series and Their Degenerations 171

n-1 0 o

Fig. 7 Conditions of positivity of holomorphic representations &, (the “Berezin—Wallach set”)

Set T = 0. In this case, our construction produces holomorphic representations®
of U(n, n). Holomorphic representations were discovered by Harish—Chandra (holo-
morphic discrete series, [17]) and Berezin (analytic continuations of holomorphic
discrete series, [3]). They are discussed in numerous texts (for partial expositions
and further references, see, e.g., [10, 31]); our aim is to show a link with our
considerations.

4.1 Thecaset =0

Substituting T = 0, we get the action

Polo(g) f(2) = £ (1) det(a + zc)"det(a + zc) S

The Hermitian form is
iofdow= [ [ dettt =270 () @ dnca) e
U(n) JU(n)

Theorem 4.1. The form ( f1, f2)s|0 is positive semi-definite iff o is contained in
the set
0=0,—-1,...,—(n—1),0roc <—(n—1).

This means that all coefficients ¢, in the formula (3.27) are non-negative, but
some coefficients vanish. In fact, the proof (see below) is the examination of these
coefficients.

Under the conditions of the theorem we get a structure of a pre-Hilbert space in
C*°(U(n)). Denote by H,, the corresponding Hilbert space.

Next, consider the action of the subgroup U(n) x U(n) in H,. We must get an

orthogonal direct sum
D o

meQ,

Some of summands of (3.24) disappear, when we pass to the quotient space;
actually, the summation is taken over a proper subset 2, of the set of all
representations. The next theorem is the description of the set 2.

80r highest-weight representations.
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Theorem 4.2. (a) Ifo < —(n — 1), then
Qy 1= {m: m, = 0}.
(b) Ifo = —n + o, wherea = 1,2, ..., n— 1, n, then
Q, = {m:m,, =0, my—1 =1, ..., My_gti :a—l}.

Proof. ° Substitute t = 0 in (3.17),

n
Cm — (_1)7!(}1—1)/22—67! l_[ F(O_ + _])
j=1

« Z{ (_1)ij H1$a<ﬂ$n(ma - mﬁ)
7 Co s+ [T 1)

(=DM 2in" (o) 27O L

xm(g)} 4.1)

m

—~ [[r©+) 4.2)
j=1
B F'—o+m;—n+1) 43
» z{ Tt }1 SO m<g>} ay

We have I'(m; 4+ 1) = oo for m; < 0. Therefore, the corresponding fractions
in (4.3) are zero, and the expansion of £,y has the form

EUlOZ Z CmXm- 4.4)

m: m;, =0

Let us list possible cases.

Case 1. If o < —n — 1, then all coefficients ¢y, are positive, [see (4.3)]; in the line
(4.2), poles of the Gamma functions cancel with zeros of sines.

Case 2. If 0 = —n — 1 is non-integer, then all the coefficients ¢y, are non-zero, but
they have different signs.

Case 3. Let o be integer, 0 = —n + 1. Consider a small perturbation of o,

o=-n-+aua-+e¢.

9This is the original Berezin’s proof; he started from explicit expansions of reproducing
kernels (4.6).
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0 1
o o o oj]o ooo = 00 0 OO0 = 0 o0 & 0O

all boxes are empty

b obligatory part

0 1 2 3 4
0O OO Oflm = @m ® 8|0 0O @B 00 0O O ® O O

all boxes are empty
Fig. 8 “Maya diagrams” for signatures of harmonics in holomorphic representations.

(a) A general case, 0 <n — 1.
(b) Degenerate case. Here 0 = —(n — 1) + 5

In this case we get an uncertainty in the expression (4.1):

[ljoi T(n+a+e+j)
n};:l Fla—mj+e)

e — 0.

The order of the pole of the numerator is n — «. However, order of a pole in the
denominator ranges between n — o and n according to m. If the last order > n — «,
then the ratio is zero (Fig. 8). The only possibility to get the order of a pole = n —«
is to set

m, =0, my_1 =1, ..., my—g4+1 =0. 4.5)

Thus, the coefficients ¢y, are nonzero only for signatures satisfying (4.5); they are

positive.
We omit a discussion of positive integer o (the invariant inner product is not
positive). O

4.2 Intertwining Operators

Denote by B,, the space of complex n x n matrices with norm < 1.
Consider the integral operator

I, f(2) = /U( )det(l —zh™)? f(h) du(h), 7€ B,.

It intertwines ps|o with the representation p_,|—,—,. Denote the last representation
by &,:

5(8) (@) = f(@¥) det(a + z¢)°.
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The I,-image H, of the space H, consists of functions holomorphic in B,. The
structure of a Hilbert space in the space of holomorphic functions is determined by
the reproducing kernel

Ky (z,u) = det(1 — zu™)°. (4.6)

4.3 Concluding Remarks (Without Proofs)

(a) Foro < —(2n — 1), the inner product in /{7 can be written as an integral

(fi, /o) =const | fi(z) fo(z) det(l —zz*) """ dzdz.

By

(b) Foro < n — 1, the space H_ contains all polynomials.

(¢) Leto =0,—1,...,—(n — 1). Consider the matrix
9 d
0z11 T 0z1p
A =
3 3
0Zp1 e 0Znn
Th.e space H°_(n_1) consists of functions f satisfying the partial differential
equation

(detA) f(z) = 0.

The space H_, where 0 = 0, —1, ..., —(n — 1), consists of functions that are
annihilated by all (—o + 1) x (—o + 1) minors of the matrix A. Also, H_ contains
all polynomials satisfying this system of equations.

In particular, the space H; is one-dimensional.

5 Unipotent Representations

Here we propose models for “unipotent representations” of Sahi [43] and Dvorsky—
Sahi [8,9] (Fig.9).

5.1 Quotients of ps|, at Integer Points

Set
=0, o=-n+uqa, wherea =0,1,...,n—1. 6.1
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obligatory part

0 1 a-1
a a o = 0O a Oofm = = | =m0 O | O O = a

Fig. 9 Maya diagram for signatures € Z;; here j is the number of black boxes to the left of the
“obligatory part.”

Fig. 10 The case n = 2. a b
@a=0The m, may
decomposition of L*(U(2) .
into a direct sum. ///
(b) @ = 1. White circles /,’ *
correspond to the big P my ° my
subrepresentation W,,;;. The R
quotient is a direct sum of B e e e
two subrepresentations. VA SR I I
. . 7/
(¢) @ = 2. The quotient is % o 14 o o o o o
one-dimensional.
dO0<t<l1,0=—n.The (o d
invariant filtration. The Mo, Mo,
subquotients are unitary o e
ed
sl .
77
o 42’0 o o
~ _my L0 _my
& > P &= >
o} .7 e o o o
L0
o ,7 el e o o o
Y I
o o / o ol e o o o
For j = 0,1, ..., n — «a, denote by Z; the set of all signatures m of the form
(Fig. 10).
m=(my,.... My_qj,a0—Lla—=2,...,0,m,_jy1,...my).

Denote by V, the U(n) x U(n) subrepresentation in C *°(U(n)) corresponding a
signature m; see Sect. 3.2.7.

Theorem 5.1. (a) The subspace

Wi = @ Vi C C®(UM)),

mgUZ;

is U(n, n)-invariant.
(b) The quotient C°°(U(n))/ Wi is a sumn — o + 1 subrepresentations

Wj = eamEZj V.

The representation of U(n, n) in each W, is unitary.
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We formulate the result for « = 0 separately. In this case Wy, = 0.

Theorem 5.2. The representation p_y) is a direct sum of n + 1 unitary represen-
tations W;, where 0 < j < n. We have Vi, C W, if the number of negative labels
my is j

In particular, we get a canonical decomposition of L*>(U(n)) into a direct sum of

(n + 1) subspaces.
The proof is given in the next subsection.

5.2 The Blow-Up Construction

10 The distribution {4|; depends meromorphically on two complex variables o, 7.
Its poles and zeros are located at o € Z and in t € Z. For this reason, values of {|,
at points (0, T) € Z? generally are not uniquely defined. Passing to such points from
different directions, we get different limits.''

Thus, set

o=-n+a+se T=1I¢ where (s, 1) # (0,0). (5.2)

Substituting this in (3.17), we get

n
E—n—i—a—i—as\st — (_l)n(n—l)/22—(d+r)n l_[ F(—I’l + Ol&‘(S + Z) + k)
k=1

x (D= TTi<actzn (Ma — mp) Im(@g . (5.3)
— | [Ti= T(e + &5 —m)T (et + my + 1) " ' '

Theorem 5.3. (a) Let s # —t. Then there exists a limit in the sense of
distributions:

ES:I(Z) = gi_l;%g—n+a+£s\st(z)‘ (5.4)

In other words, the function (o|t) = {5 has a removable singularity at ¢ = 0
on the line

o =—-n+a-+es, T = &t, where ¢ € C.

(b) Denote by cy(s : t) the Fourier coefficients of £5'. If m is in the “tail,” i.e.,
m¢ UZ;, thencp(s i t) = 0.

10The case U(1, 1) was considered above in Sect. 2.5.1.

A remark for an expert in algebraic geometry: We consider blow-up of the plane C? at the point
(—n + «,0).
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(c) Moreover, £*" admits a decomposition

n()(tjsna]

£, 5.5
Z < (s 1) )
where £; is of the form
= ) amim. (5.6)
mEZj

where the ay do not depend on s, t.
(d) Foreach j, all coefficients aly in (5.6) are either positive or negative.

Proof. For the numerator of (5.3), we have the asymptotic

n

l_[ D(—n+as(s+1)+k)=Ce " (s +1)7"* 4 0" T*T), e — 0.
k=1

Next, examine factors of the denominator,
Ar(m)(et)™ ifmg <0

I'(a+es—m)T (et +myp + 1) ~ { Ax(my) ifo<m; <a. £—>0
As(mp)(es)™! ifmy >

where A, Ay, A3z do not depend on s, t. Therefore, the order of the pole of
denominator [ [, of (5.3)is

number of m; outside the segment [0, a — 1].

The minimal possible order of a pole of the denominator is n — «. In this case, ¢y
has a finite nonzero limit, of the form

number of my = o tnumber of my < 0.

(S + t)n—oz

cm(s 1 1) = A(m) -

If an order of pole in the denominator is > n — «, then ¢y(s : £) = 0. This
corresponds to the tail.

We omit the need to watch the positivity of ¢y (s : £).

Formally, it is necessary to watch the growth of ¢, (s : #) as m — oo and the
growth of

ad
—cm(—n 4+ a + €5, €t)
de

to be sure that (5.4) is a limit in the sense of distributions. This is a more or less
trivial exercise on the Gamma function. O



178 Y.A. Neretin

There are many ways to express £/ in the terms of £°*. One of variants is given
in the following obvious proposition.

Proposition 5.4. The distribution £; is given by the formula

1 9/

£i(2) = o0

(T+0"™e"@)| (5.7)

5.3 The Family of Invariant Hermitian Forms

Thus, for (0,7) = (—n + «,0), we obtained the following families of p_, 1 4|o-
invariant Hermitian forms:

R (fi, f) 1= /[ @) O B@ A du)  (5.8)
U(n)xU(n)
and

0,(fi fi) = //U o HEOAOED A . 69

They are related as

n—a

stn—a—j

R¥(fi, fo) = ;0 WS’ (i, fo).

A form £; is zero on
Yj = Wit @ (®ix; Wp)

and determines an inner producton W; >~ C*(U(n))/Y;.

6 Some Problems of Harmonic Analysis

6.1 Tensor Products ps|; ® po’|c

Nowadays the problem of decomposition of a tensor product of two arbitrary unitary
representations does not seem interesting. We propose several informal arguments
for the reasonableness of the problem in our case.
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(a) For n = 1, it is precisely the well-known problem of the decomposition of
tensor products of unitary representations of SL(2,R)™ ~ SU(1,1)™; see
[16,23,32,36,39].

(b) Decomposition of tensor products ps o & ps’,0 of holomorphic representations
is a well-known combinatorial problem; see [19].

(c) Tensor products ps0 ® poj.+ are Berezin representations; see [4,27,47].

(d) All of the problems (a)—(c) have interesting links with the theory of special
functions.

(e) There is a canonical isomorphism: '

P—n/2|-n/2 ® P—n/2l—nj2 = LZ(U(”s }’l)/GL(}’l, (C)) (6.1

Thus, we again come to a classical problem, i.e., the problem of decom-
position of L? on a pseudo-Riemannian symmetric space G/H; see [11, 35]."3
General tensor products p,|; ® p,|;» can be regarded as deformations of the space
LZ(U(n,n)/GL(n,(C)).

6.2 Restriction Problems

1. Consider the group G* := U(n,n) and its subgroup G := O(n,n). The group
G has an open dense orbit on the space U(n), namely,

G/H := O(n,n)/O(n,C).

The restriction of the representation p_,/5—,/» to G is equivalent to the
representation of G in L?(G/H). Restrictions of other Po|r can be regarded as
deformations of L>(G/H).
The same argument produces deformations of L? on some other pseudo-
Riemannian symmetric spaces. In particular, we have the following variants:
. G* =UQ2n,2n), G/H = Sp(n,n)/Sp(2n, C).
G* =U(n,n), G/H = SO*(2n)/0(n,C).
. G* =UQ2n,2n), G/H = Sp(4n,R)/Sp(2n, C).
G* = U(p+4q.p+4q), G/H = U(p.q) x U(p.q)/U(p.q). In this case,
G/H >~ U(p,q).
6. G* =U(n,n), G = GL(n, C). In this case, we have (n+ 1) open orbits G/H, =
7. G* =U(n,n)xU(n,n), G = U(n,n). This is the problem about tensor products
discussed above.

2Indeed, U(n) >~ U(n,n)/P, where P is a maximal parabolic subgroup in U(n, n). The group
U(n,n) has an open orbit on U(n,n)/ P X U(n,n)/ P, and the stabilizer of a point is >~ GL(n, C).
3n a certain sense, the Plancherel formula for L?(G/H) was obtained in [1, 6]. However, no
Plancherel measure, nor spectra are known. The corresponding problems remain open.
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6.3 The Gelfand-Gindikin Program

Recall the statement of the problem; see [13,34]. Let G/H be a pseudo-Riemannian
symmetric space. The natural representation of G in L?>(G/H) has several pieces
of spectrum. Therefore, L?(G/H ) admits a natural orthogonal decomposition into
direct summands having uniform spectra. The problem is: to describe explicitly the
corresponding subspaces or corresponding projectors.

In Sect. 5.1 we obtained a natural decomposition of L?(U(n)) into (n + 1) direct
summands. Therefore, in the cases listed in Sect. 6.2, we have a natural orthogonal
decompositions of L*>(G/H).

In any case, for the one-sheet hyperboloid U(1,1)/C* we get the desired
construction (see Molchanov [24,25]).

6.4 Matrix Sobolev Spaces?

Our inner product {:,-)s|; seems to be similar to Sobolev-type inner products
discussed in Sect.2.3.2. However, it is not a Sobolev inner product, because the
kernel det(1 — zu*){!7} has a non-diagonal singularity.
Denote
§=—0—71T+n.

Let F be a distribution on U(n), and let F = Y Fy, be its expansion in a series
of elementary harmonics. We have

Cm )
F € Hy, — Zdimn | Fl?, < 00
m m

= D Ml [Ja+1mD) <00, (62)

Jj=1

where || Fiu|| 12 denotes

1/2
| Fallz = ( /U . |Fm(h)|2du(h))

Our Hermitian form defines a norm only in the case |s| < 1, but (6.2) makes sense
for arbitrary real s. Thus, we can define a Sobolev space Hy on U(n) of arbitrary
order.

The author does not know specific applications of this remark, but it seems that
it can be useful in the following situation.

First, a reasonable harmonic analysis related to semisimple Lie groups is the
analysis of unitary representations. But around 1980, Molchanov observed that
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many identities with special function admit interpretations on a “physical level of
rigor” as formulas of non-unitary harmonic analysis. Until now, there have been
no reasonable interpretations of this phenomenon [but formulas exist; see, e.g., [7],
see also [27], Sect. 1.32, and formulas (2.6)—(2.15) ]. In particular, we do not know
reasonable functional spaces that can be the scene of action of such an analysis. It
seems that our spaces Hg can be possible candidates.

Acknowledgement Supported by the grant FWE, project P19064, P22122, Russian Federal
Agency for Nuclear Energy, Dutch grant NW0.047.017.015, and grant JSPS-RFBR-07.01.91209.
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The Special Symplectic Structure
of Binary Cubics

Marcus J. Slupinski and Robert J. Stanton

Abstract We present a thorough investigation of binary cubics over a field of
characteristic not 2 or 3 using equivariant symplectic methods. The primary
symplectic tools are the moment map and its norm, as well as the symplectic
gradient of the norm. Among the results obtained are a symplectic stratification
of the space of binary cubics, the identification of a group structure on generic
orbits, a symplectic derivation of the Cardano-Tartaglia formula, and a symplectic
formulation and proof of the Eisenstein syzygy.
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1 Introduction

Binary cubic polynomials have been studied since the nineteenth century, being the
natural setting for a possible extension of the rich theory of binary quadratic forms.
An historical summary of progress on this subject can be found in [5], especially
concerning results related to integral coefficients. While for a fixed binary cubic
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interesting questions remain open, e.g. its range in the integers, the number of
solutions, etc., it is the structure of the space of all binary cubics that is the topic
of this paper.

The space of binary cubics, we will take coefficients in a field, is an example of a
prehomogeneous vector space under Gl(2, k), and from this point of view has been
thoroughly investigated. Beginning with the fundamental paper by Shintani [14],
recast adelically in [16], an analysis of this pv sufficient to obtain the properties
of the Sato—Shintani zeta function was done. Subsequently, several descriptions
of the orbit structure were obtained, in particular relating them to extensions of
the coefficient field. A feature of this space, and some other prehomogeneous
spaces, apparently never exploited is the existence of a symplectic structure which
is preserved by the natural action of SI(2, k).

The purpose of this paper is to expose the rich structure of the space of binary
cubics when viewed as a symplectic module using the standard tools of equivariant
symplectic geometry, viz. the moment map, its norm square, and its symplectic
gradient i.e. the natural Hamiltonian vector field. The advantages are several:
somewhat surprisingly, the techniques are universally applicable, with the only
hypothesis that the fields not be of characteristic 2 or 3; there are explicit symplectic
parameters for each orbit type (including the singular ones not studied previously)
that are easily computed for any specific field; the computations are natural; we
obtain new results for the space of binary cubics, e.g. a group structure on orbits;
we obtain ancient results for cubics, namely a symplectic derivation of the Cardano—
Tartaglia formula for a root.

This paper arose as a test case to see the extent that we might push a more
general project [ 15] on Heisenberg graded Lie algebras. A symplectic module can be
associated with every such graded Lie algebra and in the case of the split Lie algebra
G, this symplectic module turns out to be isomorphic to the space of binary cubics
with the S1(2, k) action mentioned above. Although our approach to binary cubics
is inspired by the general situation, in order to give an accessible and elementary
presentation, we have made this paper essentially self-contained with only one or
two results quoted without proof from [15].

The symplectic technology consists of the following. The moment map, u,
maps the space of binary cubics S3(k2") to the Lie algebra sl(2, k) of SI(2,k).
By means of the Killing form on s[(2, k), one obtains a scalar valued function
Q on S*(k*™), the norm square of p. Using the symplectic structure, one con-
structs ¥, the symplectic gradient of Q, as the remaining piece of symplectic
machinery. This symplectic module appears to be “special” in several ways, e.g.
a consequence of our analysis is that all the S1(2, k) orbits in S3(k%™) are co-
isotropic (see [15] for the general case). Let us recall that over the real numbers
it has been shown that there is also a very strong link between special symplec-
tic connections (see [3]) and Heisenberg graded Lie algebras (called 2-graded
in [3]).
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Here is a more detailed overview of the paper. We will analyze each of the
symplectic objects 1, Q, ¥ and determine for each of them their image, their fiber,
the S1(2, k) orbits in each fiber, and explicit parameters and isotropy for each orbit
type. This is all done with symplectic methods, so that furthermore we identify
the symplectic geometric meaning of these fibers. For example, we show that the
null space, Z, of p is the set of multiples of cubes of linear forms. As S1(2, k)
preserves the null space, we obtain a decomposition into a collection of isomorphic
Lagrangian orbits which we show are parameterized by k*/k**. Binary cubics
whose moment lies in the nonzero nilpotent cone of s[(2, k) turn out to be those
which contain a factor that is the square of a linear form. For these there is only
one orbit, whose image under u we characterize. The pullback by means of u of
the natural symplectic structure on the image and the restriction of the symplectic
form on S3(k2") essentially coincide. The generic case is when the image of the
moment map lies in the semisimple orbits of s[(2, k). In this case, the S1(2, k) orbits
are different from the GI(2, k) orbits, in contrast to the earlier cases. Here, each of
the values of Q in k* determine a collection of SI(2, k) orbits for which we give
symplectic parameters using a ‘sum of cubes’ theorem. As a consequence, we show
that the orbits for a fixed nonzero value of Q form a group (over Z see [1]) which
we explicitly identify. Interestingly, a binary cubic is in the orbit corresponding to
the identity of this group if and only if it is reducible. The set of binary cubics
corresponding to a fixed nonzero value of Q is not stable under GI(2, k). However,
the set of binary cubics for which the value of Q belongs to a fixed nonzero square
class of k is stable under GI(2, k) and we obtain an explicit parametrization of all
Gl(2, k) orbits on this set.

If the field of coefficients is specialized to say C, then several of the results herein
are known. For example, that the zero set of Q is the tangent variety to Z, or that
the generic orbit is the secant variety of Z can be found in the complex algebraic
geometric literature. For some other fields, other results are in the literature.
However, the use of symplectic methods is new to all these cases and gives a
unifying approach that seems to make transparent many classic results. For example,
a careful analysis of u and ¥ in the generic case leads to a proof of the Cardano—
Tartaglia formula for a root of a cubic. As another application we conclude the
paper with a symplectic generalization of the classical Eisenstein syzygy for the
covariants (compare to [12],[10]) of a binary cubic. This is interesting because
there is an analogue of this form of the Eisenstein syzygy for the symplectic module
associated with any Heisenberg graded Lie algebra ([15]). Finally, we remark that
the symplectic methodology used in this paper could be used to understand binary
cubics over the integers or more general rings.

We are very pleased to acknowledge the support of our respective institutions
that made possible extended visits. To the gracious faculty of the Université Louis
Pasteur goes a sincere merci beaucoup from RJS. In addition, RJS wants to
acknowledge the support of Max Planck Institut, Bonn, for an extended stay during
which some of this research was done.
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2 Binary Cubics as a Symplectic Space

Let k be a field such that char(k) # 2,3. The vector space k2" has a symplectic
structure

Q(ax+by,a'x +b'y) = ab' — bd.

Functorially, one obtains a symplectic structure on the set of binary cubics
S} (k™) = {ax® + 3%y +3cxy* +dy’ : a.b.c.d € k).

Explicitly, if P = ax® 4+ 3bx’y 4 3cxy* + dy? and P’ = a’'x> + 3b'x%y + 3¢’
2 g3
xy- +d'y”,
w(P, Py =ad —dd —3bc’ + 3cb'. (1)

In particular, we have
w(P.(ex + fy)’) = P(f.—e). 2

Hence forex + fy # 0,
(ex+f) | P < (P, (ex + 1)) =0. 3)

This indicates that one can use the symplectic form w to study purely algebraic
properties of the space of binary cubics. More generally, the interplay of symplectic
methods and the algebra of binary cubics will be the primary theme of this paper.

The group
SI2, k) = { (“ ﬂ) a8 — By = 1}
y 4
acts on k2" via the transpose inverse:

(a’B)-xzé’x—,By, (a'B)-y=—)/x+ozy, “4)
y 8 y 8

and this action identifies S1(2, k) with the group of transformations of k%" that
preserve the symplectic form £2, i.e. Sp(k%*, £2). It follows that the functorial action
of SI(2, k) on S?(k*™) preserves the symplectic form w. There is no kernel of this
action thus S1(2, k) < Sp(S3(k2™), w).

The Lie algebra s[(2, k) acts on k%" via the negative transpose:

a B o a B o
(y_a)-X— ax — By, (y_a) y=-yx+ay, )
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which in terms of differential operators acting on polynomial functions on k2
corresponds to the action

(j,{ _ﬂa) S =al=xdy f + 0, f) = Byo. f —yxd, f. (6)

In particular, this gives the following action of sl(2, k) on cubics:

x¥ > 3ax —3px%y

X2y > —yx® —ax?y —2Bxy?
W e =2yx?y + oxy? — By’

y3 > —3yxy2 + 3ay3.

2.1 Symplectic Covariants

Among the basic tools of equivariant symplectic geometry are the moment map (u),
its norm square (Q) and the symplectic gradient of Q (¥). The symplectic structure
on S3(k2") is not generic as it is consistent with one inherited from an ambient
Heisenberg graded Lie algebra, hence the description “special”. In [15] in the setting
of Heisenberg graded Lie algebras, we derive the fundamental properties of the
basic symplectic objects as well as give explanations for normalizing constants,
and identify characteristic features of these special symplectic structures. For the
purposes of this paper, the explicit formulae will suffice.

Definition 2.1. (i) The moment map p : S3 (k*™) — sl(2, k) here is

d—bc 2(bd—c?
u(x3+3bx2y+3cxy2+dy3)=<a ¢ A C)). @)

2(b% — ac) —(ad — be)
(ii) The cubic covariant ¥ : S3(k2") — S3(k2") is given by
W(P) = u(P)- P = (=3aa — 3by)x* + (=3ap — 3ba — 6¢y)x*y
+ (—6bB + 3ca — 3dy)xy* + (=3¢ + 3da)y?, (8)

where P = ax® + 3bx*y + 3cxy* + dy? and

(a ,3)_( ad — bc 2(bd—c2))
y —a)  \2(b*—ac) —(ad—bc) )’
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(iii) The normalized quartic invariant Q,, : $?(k2") — k is
0,(P) = —det(P) = (a*d® — 3b*c® — 6abed + 4b°d + 4ac’).  (9)

Notice that Q,(P) is a multiple (-1) of the classic discriminant of the
polynomial P.

Remark 2.2. The symmetric role of the coordinates x and y is implemented by
0 -1
J= ,
which satisfies J - x = y,J-y = —x and

J. (ax3 + 3bx*y + 3exy? + dy3) = —dx® + 3cx’y — 3bxy* + ay’.

From (7) it follows that u(J - P) is the cofactor matrix of w(P).

Remark 2.3. The set of symplectic covariants w, u, ¥, O, Q, defined above is
not the only choice possible for the purposes of this article. One could just as
well use
wy = Ao, w=An, W= 0, =270,
where A € k*.
The moment map is characterized by the identity

Tr(u(P)€) = —%a)(g .P,P) VP eSk*™), VEesl(2,k), (10)

which specialized to § = p(P) gives a characterization of ¥
0(P) = 8a(P.W(P)). (11)
From (10), one gets that w is S1(2, k)-equivariant:
u(g-P)=gu(P)g™"  YPeS(k*), Yg € SI(2.k),
and sl(2, k)-equivariant:
dupE-P)=[6,u(P)] VP eSK™), VE €sl(2,k).

Here, djup(Q) = 2B, (P, Q) where B, : S*(k*") x S*(k*™) — sl(2,k) is the
unique symmetric bilinear map such that u(P) = B, (P, P).
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From the S1(2, k) and sl(2, k) equivariance of p one obtains the S1(2, k) and
s[(2, k) equivariance of ¥, Q and Q,. Several useful relations among u, ¥ and Q
are derived in [15]. The following involves a relation between vanishing sets of
symplectic covariants.

Proposition 2.4. Let P be a binary cubic. Then
wP)y=0= wv(P)=0= Q(P)=0.

Proof. Since W(P) = u(P) - P, it is obvious that u(P) = 0 = ¥(P) = 0.
Suppose that ¥(P) = 0. Then by equation (10)

1
Tr(u(P)*) = —30(W(P), P) =0.

But 4(P)? + detiu(P)Id = 0 by the Cayley—Hamilton theorem, so detu(P) = 0
and hence Q(P) = 0. O

From the invariant theory point of view, a covariant is an S1(2, k) invariant in
S*(S*(k2")) ® S*(k2™). Concerning completeness of the symplectic invariants one
has the classic syzygy of Eisenstein for k = C [8].

Proposition 2.5. (i) u,¥, Q and the identity generate the SI(2, k) invariants in
S3(k*™) ® S* (k).
(ii) The only relation among them viewed as functions on k* is

W(P)O? —90,(PY PO = 3 (P )’

here 2 is extended by duality to k* x k2.
Proof. We shall give a symplectic proof of the relation (ii) for k in §3. O

Remark 2.6. There are two interesting results related by a simple scaling to the
Eisenstein syzygy. Fix P € $3(k2") with Q,(P) # 0. One can associate with P
a type of Clifford algebra, Cliff», and in [9] it is shown that the center of Cliffp is
the coordinate algebra of the genus one curve X? — 270Q,(P) = Z3. The other
result arises from the observation that we could work over, say, Z instead of k. Then
in [11] Mordell showed that all integral solutions (X, Y, Z) to X*> + kY? = Z?3
with (X, Z) = 1 are obtained from some P € S*(Q*") with 0, (P) = —4k and
evaluating (ii) at a lattice point in Q2. We will not use these results in this paper but
we will give a symplectic proof at another time.

Remark 2.7. The Proposition gives a complete description of binary cubics from the
point of view of SI(2, C) invariant theory. From the symplectic theory point of view,
in [15] we give characterizations of SI(2, k) as the subgroup of Sp(S?(k2"), w) that
preserves O(-) and as the subgroup of Sp(S*(k%™), w) that commutes with &.
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2.2 The Image of the Moment Map

As p @ S3(k?™) — sl(2,k) is equivariant, the image of y is a union of SI(2, k)
invariant sets. Of course, the invariant functions on sl(2, k) are generated by det.
The following description of the orbits of S1(2, k) acting on level sets of det uses
the symplectic structure on K2 Lacking any reference for this probably known
result we include a proof. Subsequently, Paul Ponomarev brought to our attention
the material in [2] p.158-159 from which an alternate albeit non-symplectic proof
can be extracted.

Proposition 2.8. Let A € k and set
sl(2,k)a = {X €5l(2,k)\ {0} : detX = A},
k% = {x € k* : Ja,b € k such that x = a® + b*A}.

Then the orbits of SI(2, k) acting on s((2, k) 4 are in bijection with k* [k under the
map va : sl(2,k)a — k* [k} defined by

va(X) =[R20, X -v)], (12)

where v is any element in k*", which is not an eigenvector of X.

Proof. We make some preliminary remarks before proving the result. First we
observe that the definition of v4(X) is independent of choice of v. Indeed, given
v which is not an eigenvector of X, then {v, X - v} is a basis of k2*. Given w any
other vector which is not an eigenvector then w = av + bX - v, and using Cayley—
Hamilton we obtain that [2(v, X - v)] = [2(w, X - w)].

Next, note that if X € s[(2, k) there exists g € SI(2, k) and B, y € k such that

(0 B
sxe 1_'(V 0)'

So to prove the result, we need only consider matrices in sl(2,k)s of the form

X = (O g ) with either 8 or y nonzero. Since
14

0 1\(0 B\[(O0 1\ _[0 -y

-1 o/\y oJ\-1 o) ~\-B o)
we can further suppose that y # 0. Then x is not an eigenvector of X and
Vaex (X) = [£2(x, X - )] = [2(x, yx)] = [y].

/
Suppose (0 g) and (0, ’%) in s[(2,k) have the same value of vy, i.e.,
14 14

By = —A =By and [y] = [y'].
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Then there exist p, ¢ in k such that y’ = (p? + g*detX)y. Take as Ansatz

Then

A routine computation shows that

a b\(0 pN\N(d -by_ (0 B
c d)J\y 0)J\= a) \y o)
and so v, separates orbits.
To show that given « # 0, there is an X with det X = A and va(X) = [«], take

Then det X = A and va(X) = [«]. Finally, S1(2, k) invariance of v follows from
the definition of v 4. O

Remark 2.9. We make some elementary observations concerning the S1(2,k)
adjoint orbits. If —A € k*?, then k% = k* and there is only one orbit. If A = 0 then
k= k*? and there is one nilpotent orbit for every element of k* /k*>. If —A & k*?
is nonzero, then k’; is the set of values in k* taken by the norm function associated
to the quadratic extension k(M) or, equivalently, by the anisotropic quadratic
form x> + Ay? on k2. It is well known that this is a proper subgroup of k*, at least
in characteristic 0 (with thanks to P. Ponomarev for a discussion on characteristic p)
and so in characteristic zero there are at least two orbits.

Remark 2.10. Since k*/k% is a group, the Proposition puts a natural group
structure on the set of orbits of S1(2, k) acting on trace free matrices of fixed
determinant. Alternatively, s[(2,k) can be S1(2, k)-equivariantly identified with
S2(k2"), the space of binary quadratic forms, by

X <« qgx(m)=R20W, X v).
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By transport of structure, the Proposition then puts a natural group structure on the
set of orbits of SI(2, k) acting on binary quadratic forms of fixed discriminant. One
can check that this is Gauss composition. In Theorems 3.35 and 3.47, we will put a
natural group structure on orbits of binary cubics with fixed nonzero discriminant.

The image of the moment map can be characterized as follows.
Theorem 2.11. Let X € sl(2,k) \ {0}. Then
Xelmp <<=  vx(X)=][2].
Proof. As before, we can suppose without loss of generality that X = ()(3 g) with

say 8 nonzero.
(=):If X = uw(P)and P = ax’ + 3bx>y + 3cxy? + dy?, we have

ad—bc =0
2(bd—c*) = B
2(b%* —ac) = y.

Hence, b = dy and

a=s{e-eg) oo (3 m) (o (3 )

so that vgex (X) = [-8] = [2].
(<): Since vgerx (X) = [—B] and by hypothesis vgerx (X) = [2], there exist p, g
in k such that
—B = 2(p* + g*detX) = 2(p* — ¢*By).
If we set

y
c=pa=gp d=PBq, b=yq

and
P = ax® + 3bx°y + 3cexy? + dy3,

it is easily checked that

_( ad—bc 2(bd—c*)\ _ (0 B\ _
wp) = (2(b2—ac) —(ad — bc) ) - (y O) =X -

Remark 2.12. This result is a weak form of the Eisenstein identity. Indeed, if one
cubes both sides of v4ex (X) = [2] and uses Gauss composition, one obtains the
Eisenstein identity evaluated at a particular vector.

Remark 2.13. Varying the symplectic structure to wy, A € k* one can sweep out
the other orbits with a moment map.

Remark 2.14. The image of the linearized moment map, B, (:, ), cannot be speci-
fied. Indeed, the convex hull of the image will contain all s[(2, k).
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Corollary 2.15. Let P, P’ be nonzero binary cubics such that Q,(P) = Q,(P’)
and such that w(P) and w(P') are nonzero. Then there exists g € SI(2, k) such that

g u(P) = u(P).

Proof. Since Q,(P) = Q,(P’), we have det u(P) = det u(P’). By the previous
theorem,

Vdetu(P)(/‘L(P)) = Udel;L(P’)(l'L(P/))

and the result follows from Proposition 2.8. O

2.3 The Image and Fibers of ¥

Proposition 2.16. P € S3(k2") with Q,,(P) # 0 is in the image of ¥ if and only
if90,(P) is a cube in k*.

Proof. (=) : Suppose that P = W(B). The key to the argument is a result
from [15] that is special to Heisenberg graded Lie algebras, namely a formula
for ¥2. From this result, one obtains ¥?(B) = —(90Q,(B))?>B. On the other hand,
we have ¥?(B) = W(P). Hence, B = —(90,(B))">¥(P). Applying ¥ again
and using that ¥ is cubic we obtain P = W¥(B) = —n*(90,(P))>P, where
n = —(90,(B)7* So (=n)* = (90.(P))™>. Now (—n(90,(B))*)’ = 1 so
(90,(B))® = (=)~ = (9Q,(P))*. Thus, we obtain 90, (P) = (£90,(B))’.
(<) : Suppose 90, (P) = A*. Set B = —A1—2lI/(P). Then as above, ¥(B) = P. O

Corollary 2.17. For P € S3(k*™) with 90, (P) € k**, the fiber W~ (P) consists
of one element.

Proof. From the previous proof, if P = ¥(B) then B = —(90,(B))?¥(P). O

Remark 2.18. We will see later that a nonzero P € S3(k2") with 0, (P) = 0 is in
the image of ¥ if and only if u(P) = 0 and I7(P) = [6] (cf Proposition 3.19). The
fiber of ¥ is then given by Proposition 3.23.

3 Orbits and Fibers

3.1 Symplectic Covariants and Triple Roots

One has the natural ‘algebraic’ condition
Definition 3.1. 7 = {P € S}(k%") : P # 0 and P has a triple root},

and the natural ‘symplectic’ condition
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Definition 3.2. Z, = {P € S*(k*"): P # Oand j(P) = 0}.

The next proposition shows that the symplectic quantity p detects the purely
algebraic property of whether or not a binary cubic has a triple root.

Proposition3.3. T = Z,,.

Proof. Let P = ax® + 3bx?y + 3cxy* 4+ dy3. Then P € Z, iff u(P) = 0 iff
ad = bc,bd = ¢? and b? = ac.

If be = 0, then chd = ¢ = 0 and b = ach = 0. Hence b = ¢ = 0 and either
a =0ord = 0.In the first case P = dy> and in the second P = ax>.
If bc # 0,thena = bT,z andd = ‘})—2 which means P = ﬁ(bx +cy)3. O

In order to determine the SI(2,k) orbit structure in the level set Z,, =
1w~ 1(0)\{0} we need to construct an invariant that separates the orbits. We begin
with the observation that the factorization of P € T is not unique.

Lemma 3.4. Let A,y € k* and ¢, € k2" be such that A¢p> = py>. Then % isa
cube and ¢ and  are proportional.

Proof. Unique factorization. O
This means the following (algebraic) definition makes sense.

Definition 3.5. Define I : T — k*/k** by
I7(P) = M]k*/k*’z’

where P = A¢p>, A € k* and ¢ € k2.

One can formulate the definition using symplectic methods. Given a nonzero
¢ € k** thereisa g € SI(2,k) with 2(¢, g - ¢) = 1.If P = A¢>, then

o(P.(g-¢)’) =ro(@’. (g ¢)’) = A2(. g ¢)* = A. (13)

Thus, I7(P) = [o(P, (g - ¢)°)].
Proposition 3.6. (i) Let Py, P, € T. Then

SI2,k)- Py =SI2,k)- P, < Ir(P1) = Ir(Py). 14)
(ii) The map It induces a bijection of the space of orbits
Z,/SI2. k) <> k* Jk*>. (15)

(iii) Let P € T andlet Gp = {g € SI2,k) : g- P = P} be the isotropy subgroup
of P. Then

Gp=1{geSIQ2.k):IJueck*st g-¢p =pupandp’ =1},

where P = A3, A € k* and ¢ € k2"
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Proof. (i): Suppose that P; = A¢> and that there exists g € SI(2, k) such that
g-Pr= Py Then P, = g- (A¢p’) = A(g - ¢)* and I7(P2) = [A] = I (P)).
Conversely, suppose P, = Alqﬁf’, P, = )tzqﬁ;’ and Ip(Py) = Iy (P,). The
action of SI(2, k) on nonzero vectors of k2~ is transitive, so we can find g €

S1(2, k) such that g - ¢; = ¢, and hence such that

g P =1i¢;.
Since I7(Py) = I (P»), there exists p € k such that A; = p3A, and
g- P =Ly(pg)’.
Choosing /i € SI(2, k) such that i - (p¢2) = ¢, we have (hg) - P, = P.
(ii): By (i), the map /7 induces an injection of the space of orbits of S1(2, k) acting

on 7T into k*/k*>. This is in fact a surjection since if A € k*, I7(Ax?) = [A].
(iii): This follows from unique factorization. |

Remark 3.7. Extending ¢ to a basis of k", we have the isomorphism

1
m

N
(=2
Q

):uek*,u3:1anda€k )

Consequently, all the S1(2, k) orbits in Z,, are isomorphic. Hence, Z,, is a smooth
variety, and in [15] we show that it is Lagrangian.

As the center of GI(2, k) acts on Z, by “cubes” it preserves /7, and thus the
S1(2, k) orbits in Z,, are the same as the G1(2, k) orbits. From the point of view of
algebraic groups, the result by Demazure [4] characterizes S1(2, k) as the subgroup
of the automorphisms of S3(k2") that preserves Z e

3.2 Symplectic Covariants and Double Roots

In a similar way, next we consider the ‘algebraic’ condition

Definition 3.8. D = {P € S*(k2") : P # 0 and P has a double root},

and the ‘symplectic’ condition

Definition 3.9. N, = {P € $* (k?*) : P % 0 and p(P) is nonzero nilpotent}.

Again it turns out that the symplectic quantity pu detects the purely algebraic
property of whether or not a binary cubic has a double root.

Theorem 3.10. D = N,,.
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Proof. The inclusion D € N, follows from the

Lemma 3.11. Let P € D and write P = (ex + fy)*(rx +sy) withex + fy and
rx + sy independent. Then

_ 2 2 _ef _f2
K(P) = les — 1) <ez ; )

In particular, Ker (P) is spanned by the double root ex + fy.
Proof. Straightforward calculation. O

To prove the inclusion N, € D, suppose ((P) is a nonzero nilpotent. Then
Ker u(P) is one-dimensional, spanned by, say, v € k™. Since SI1(2,k) acts
transitively on nonzero vectors in k2" there exists g € SI(2, k) such that g - v = x.
Then (g - P) = gu(P)g™" is nonzero nilpotent with kernel spanned by x. Let
g+ P = ax® + 3bx?y + 3cxy? + dy>. Then by the formulae (6) and (7), the
condition (g - P) - x = 01is equivalent to the system

ad—bc =0
bd—c* = 0.

If (c,d) # (0,0), this implies there exists A, v € k such that (a,b) = A(c,d) and
(b,c) = v(c,d). Hence, ¢ = vd,b = v’d,a = v3d and u(g - P) = 0 which is
a contradiction. Thus,c = d = Oand g - P = ax® + 3bx’y = x*(ax + 3by). We
have b # 0 (otherwise i(P) = 0) so x and ax + by form a basis of k%. Applying
g 'to g+ P = x%(ax + 3by) completes the proof. O

Again, in order to obtain parameters for the orbit structure of N, we need
standard representatives. The factorization of P € N, given by Theorem 3.10 is

not unique. However, we can use the symplectic form £2 on k¥ to get a canonical
form for P.

Lemma 3.12. Let P € N,. There exists a unique basis {¢,&} of k" such that
P = ¢’ and 2(p,£) = 1.

Proof. If P € N, then P has a double root by Theorem 3.10. Fix a factorization
P = ¢12§1. By unique factorization, any other factorization is of the form P = ¢?¢,
where

Le,

¢ = Ag1, g:ﬁ

for some A € k*. Then 2(¢,&) = 1iff A = £2(¢1, &) and this proves the
claim. O
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Proposition 3.13. The group SI(2, k) acts simply transitively on N,,. Consequently,
GIl(2, k) has one orbit on N,,.

Proof. Let P,Q €N, and write P =¢%* and 0 =¢¢ with 2(¢.€)=
2(¢',&") =1. The element g of GL(2,k) definedby g-¢ = ¢’ and g-& = &
is clearly in SI(2, k), satisfies g - P = Q and is the unique element of S1(2, k)
sending P to Q. O

Remark 3.14. In[15] when char k = 0 we show that N, is the tangent variety to Z,.

Remark 3.15. From Proposition 3.3, Theorem 3.10 and (9) we see that Q,(P) =0
iff P has a multiple root, which is consistent with the classic discriminant
interpretation. Also, the open subset of double roots is isomorphic to S1(2, k).
Consequently the variety Q,(P) = 0 is not smooth, but has singular set which
is a union over k* /k** of isomorphic Lagrangian SI(2, k)-orbits.

Image and Fibers of i:N, — s((2,k)
The image of the moment map on N, is given by Theorem 2.11:
Corollary 3.16. p(N,) ={X €sl(2,k) \ {0} : detX = 0and vo(X) = [2]}.

Now we give two descriptions of the fibers of u : N, — sl(2,k): the first
symplectic, the second algebraic. Note that the fibers of the moment map are
symplectic objects so it is not a priori clear that they have a purely algebraic
description.

Proposition 3.17. Let P € N, and let ¢ € k" be a square factor of P.

(a) W ' (u(P)) ={P +a¥(P):ackyU{—P +b¥W(P):bck).
(b) w N (u(P)) ={P +a¢>: ackU{—P +be>:bck}.
(c) The affine lines in (a) and (b) are disjoint.

Proof. Since S1(2,k) acts transitively on N, we can assume without loss of
generality that P = 3x2y. Then by (7) and (8),

0 O
3x%y) =
neen = (3 ¢

), w(3x%y) = —6x°.

We want to find all O € S*(k%™) such that

0 0
@)= (3 ) 16)

By Theorem 3.10, a solution of this equation is of the form Q = (ex +fy)?(rx + sy)
with es — fr # 0. Substituting back in (16), we get

2 s(—ef —f2\_ (0 0
gles =/ (e2 ef)_(2 0)
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from which it follows that the set of solutions of equation (16) is:
{x*(’rx+3y): e k™ r ek} U{x*(e’rx—3y): eck* r ek}.

Since P = 3x2y and V(P) = —6x72, this proves (a), (b) and (c). O
The fiber of w at u(P) is also the orbit through P of the isotropy group of w1 (P).

Corollary 3.18. Let P € N, and let Gypy = {g € SIQ2,k) : gu(P)g™! =
p(P)}. Then =" (u(P)) = Gucp) - P.

Proof. Since p(P) is nilpotent nonzero, a simple calculation shows that
Gupy=d+ap(P): ackiU{=Id +bu(P): beck}

and the result follows from Proposition 3.17. O

It appears that N, is a regular contact variety. If one endows the nilpotent
variety A" in sl(2, k) with the KKS symplectic structure, then o : N, — N is
a prequantization of the image of x.

Image and Fibers of ¥:N,, — Z,,

We begin with some properties of ¥.
Proposition 3.19. Let P = ¢2£ with ¢, & € k**. Then:

(i) p(W(P)=0;
(ii) ¢* divides W (P);
(iii) ¥(P) =0iff w(P) =0;
(iv) W(P) #0 = Ir(¥(P)) = [6]k*/k*3~

Proof. Set ¢ = ex + fy and & = rx 4 sy. Then calculation gives

ne) =g (1),

e? ef
2 3 3
v(P) = —§(es —fr)’(ex + fy) a7
and all parts of the proposition follow immediately from these formulae. O

Corollary 3.20. The image of ¥ on N, is Z,,[6].

Proof. According to Proposition 3.19(v), ift P € N, then ¥(P) € Z, and
I7(W(P)) = [6]k*/k*3. Since ¥ is S1(2, k)-equivariant and SI(2, k) acts transitively
on both N, and Z,,[6], it is clear that ¥ maps N, onto Z,[6]. O

To describe the fibers, we need a symplectic characterization of the double root
of a P € Z,. Recall that ex + fy # 0 is a root of P iff (P, (ex + fy)*) = 0.
Analogous to this result we have
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Proposition 3.21. Let P be a binary cubic and (ex + fy) € k2" be nonzero.
(ex+fy)* | P < Bu(P.(ex+fy)’) = 0. (18)

Proof. We begin with two remarks. First, since SI(2, k) acts transitively on nonzero
elements of k2 and since B, and ¥ are S1(2, k)-equivariant, we can assume without
loss of generality that ex + fy = x. Second, the formula for B, obtained by
polarizing (7) is

Yad' + dd — b — cb') (bd’ + db") — 2cc’
2
B,(P.P") = (19)

260’ — (ac’ + cd’)  —1(ad’ +dd' —bc’ —cb')

if P = ax® +3bx*y 4+ 3cxy? +dy? and P/ = a’x® 4 3b'x%y + 3c'xy? 4+ d'y°.
Let P = ax® + 3bx’y + 3cxy? + dy?. Then

Ld o
B,(P,x) =12
= (53,)

and hence x? divides P iff ¢ = d = 0iff B,(P,x*) = 0. O

Now since ¥ maps D to T we expect a criterion involving ¥ for ex + fy # 0 to
be a double root of P.

Proposition 3.22. Let P be a binary cubic and (ex + fy) € k2" be nonzero.

(i) If (ex + fy)? divides P, then W(P) is proportional to (ex + fy)>.
(ii) If W(P) is a nonzero multiple of (ex + fy)3, then (ex + fy)* divides P.
(iii) {P € S*(k*") : B,(P,(ex + fy)®) = 0} is a Lagrangian subspace of
S3(k2™).
Proof. (1) If x? divides P, then taking e = 1 and f = 0 in the formulae (17) we
get U(P) = —%d3x3.
(ii): If there exists A € k* such that (ex + fy)3 = %lI/(P), we have

1
B (P.(ex + fy)*) = 7 Bu(P.i(P) - P).

But B, (P, u(P) - P)+ B, (u(P)- P, P) = [u(P), n(P)] = O0since B, is
sl(2, k)-equivariant. Hence, B, (P, ju(P)- P) = 0 and B, (P, (ex+£)?) = 0,
which implies by the previous result that (ex + fy)? divides P.

(iii): Let L = {P € S*(k*™) : B, (P, (ex + fy)*) = 0}. As we saw in the proof
above, the binary cubic ax® + 3bx’y + 3cxy> + dy’isin Liffc =d =0
and hence L is of dimension two. It follows from (1) that w(P, P') = 0 if
P, P’ € L and hence L is Lagrangian. O
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We can now give two descriptions of the fibers of ¥ : N, — Z,[6], the first
symplectic, the second algebraic. Again, as the fibers of ¥ are symplectic objects it
is not a priori clear that they have a purely algebraic description.

Proposition 3.23. Let P € N, andlet ¢ € k** be a square factor of P.
(i) W (W (k*P)) ={aP+bW¥(P): ack* bck).
(ii) $~Y (W (k*P)) ={Q € N, : ¢* divides Q}.
Explicit factorization of P when Q,(P) =0
From what has been done thus far we obtain readily

Proposition 3.24. Let P = ax® + 3bx*y + 3cxy* + dy? be a nonzero binary cubic
over a field k such that char(k) # 2, 3.

(i) If u(P) =0, then Q,(P) = 0 and

p— ax’ or dy? ifbc =0,
| Ax+ey) ifbe #0.
(ii) If W(P) #0and Q,(P) =0, then

x2(ax + 3by) or (3cx + d)y? ifad —bc = 0,

P = 2 p .
(—(b? — ac)x + L(ad — bo)y) ( e + y) if ad — be # 0.

3.3 Symplectic Covariants and Sums of Coprime Cubes

We have seen that a P with multiple roots corresponds to Q,(P) = 0. So we begin
the study of P with Q,(P) # 0, in which case the SI(2, k) orbits are not the same
as the GI(2, k) orbits. The values of the symplectic invariant @, (P) will have much
to say about the roots of P. We begin with the ‘natural’ condition

Definition 3.25. Oy = {P € S*(k*") : Q,(P) is a square in k*}.
The relevant ‘algebraic’ definition turns out to be

Definition 3.26. S = {P € S*(k*™) : AT\, T, € T st P = T) + T> with T}, T»
coprime}.

Specializing to the space of binary cubics a general theorem valid for the symplectic
covariants of the g; of any Heisenberg graded Lie algebra g, we get the

Theorem 3.27. (i) Let P € S andlet P = T\ + T, with T\, T, € T coprime.
Then Ty, T, are unique up to permutation.
(ii) Let P =T, + Tr with T\, T, € T. Then

0.(P) = w(T1. Tr)*. (20)
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(iii) Let P € Oy and suppose Q,(P) = q* with q € k*. Then

1 1 1 1
=3 (P + QW(P)) . h=3 (P - EW(P))

are coprime elements of T such that P = Ty + T».

T

Proof. For k algebraically closed an argument that P is a sum of cubes can be
found in [6, 17-18]. The fact that Q,(P) = (T}, T»)? and (i) and (iii) are proved
for general k and for Heisenberg graded Lie algebras in [15]. O

Corollary 3.28. S = Op;.

Remark 3.29. There is a natural bi-Lagrangian foliation of Oyj obtained by means
of the decomposition P = T} + T>. Modulo some technicalities, if one fixes 7, and
varies over 7' such that (T, T») = (T}, T») mod k*?, then does the same with
Ty, one obtains a pair of foliations that are transverse and Lagrangian, for details
see [15].

Recall that elements of T are, up to a scalar factor, cubes of linear forms. Hence
a binary cubic P is in S iff there exist a basis {¢;, ¢, } of k¥ and A1, A, € k* such
that

P =2i¢} + Aatps. (21)
The A; and ¢; in this equation are not unique but the direct sum decomposition
kz* =<¢1>@<¢2>

is canonically associated with P as is described in the next result.

Corollary 3.30. (i) P € Opiff u(P) # 0 is diagonalizable over k, hence (P
is contained in a semisimple orbit.
(ii) Let P € Oy and let {¢p1, ¢»} be a basis of k2*. The following are equivalent:

(a) There exist A1, > € k™ such that P = /\14513 + /\24523.
(b) {¢1, P2} is a basis of eigenvectors of L(P).

(iii) Let P € Opj and suppose P = M3 + Argp3, where A1, Ay € k* and {1, ¢2}
is a basis of k>*. Then if q is the square root A A22(¢1, $2)> of 0, (P),

W(P) - ¢1 = —qd1,
w(P) - ¢ = qpo.
Proof. (i): By Cayley—Hamilton and equation (9),
0 = u(P)* + deti(P)Id = u(P)* — Q,(P)Id.

Hence, n(P) is diagonalizable over k iff O, (P) is a square in k.
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(ii): Since there exists g € SI(2,k) with < g- ¢ >=<x >and < g- ¢, >=<
y >, we can assume without loss of generality that ¢; = x and ¢ = y.
Setting P = ax® 4+ 3bx’y + 3cxy? + dy?, we have: {x?, y?} is a basis of
eigenvectors of w(P) iff w(P) is diagonal iff (by equation (7))

bd—c?> =b*—ac =0.

This equation implies b(ad — bc) = 0 and hence, since Q,(P) # 0, that
b = 0 and ¢> = bd = 0. It follows that {x3, y3} is a basis of eigenvectors of
w(P)iff b = ¢ = 0iff P = ax’® + dy°.

(iii): As above, we can suppose without loss of generality that P = ax® + dy?

and then
ad 0
P) = ,
n(P) (0 L d)

which implies u(P) - x = —adx and p(P) - y = ady. This proves (iii) since
2(x,y) =1 O

Corollary 3.31 (Fibers of p on Opy)). Let X € sl(2, k) be diagonalizable over k,
let £q be its eigenvalues and let ¢ and ¢p— be corresponding eigenvectors in k**.
Then

I
af2(¢p-. p+)°

Proof. This follows from Corollary 3.30(ii) and (iii). O

w (X)) = {agd + ¢} aeck*).

Orbit parameters for Oy

For generic k, there will be many S1(2, k) orbits on Oy). So the first task is to
obtain parameters for the orbits. For this the symplectic result Theorem 3.27 leads
to a new and effective method. Let P € Opj. Then as we have seen, there exist a
unique unordered pair of elements 77, T, in T such that

P=T+T1,
0.(P) = w(T1, Tr). (22)

Hence, the map Io, : O — k* xz, k*/k*3
Loy (P) = [o(T1, T). It (T1) I7(T2) '] (23)

is well defined where k* xz, k*/k** denotes the quotient of k* x k*/k** by the
Z,-action

—1-Aa) = (A, a7 h).
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Remark 3.32. The invariant /o, (-) is symplectic not algebraic since its definition
requires the symplectic form. We have not found this invariant for binary cubics in
the literature.

The next result shows that the image of /¢, is constrained.

Proposition 3.33. Let P € O, let g € k* be a square root of Q,(P) and let
(11(9). 12(q)) € T x T be defined by (22). Choose a basis {¢1.$2} of k** and
A1, Ay € k* such that Ti(q) = A3 and 12(q) = Aagh3. Then

q

T = 2@’ (24)
() (gho) = (Lf es)
2(¢1.42)
Proof. The two equations are equivalent and follow immediately from
¢ = 0(n(@). n(@) = L@ $3) = 1122Q(¢1. ). o

Theorem 3.34. Let Iy, : Oy — k* xz, k* /k** be defined by (23) above.
(i) Let P, P' € Op). Then
SI2,k) - P' = SI2.k) - P <= loy(P') = Ioy(P).
(ii) The map I@“] induces a bijection
O /SI2, k) «— Kk* xz, k* [K*.
(iii) Let P € Oy and suppose P = A1} + Arp3, where Ay, Ay € k* and {1, ¢}
is a basis of k**. Let Gp = {g € SI(2,k) : g- P = P). Then

1
Gp=1g€SI2,k): 3pek™ st g-¢1=pd,g ¢= ;qbzand/f =l.

Proof. (i): Since w and I are SI(2, k)-invariant, it is clear from (23) that the map
Loy = Opp — k™ Xz, k* /k*3 factors through the action of SI(2, k). To show that
the induced map on orbit space is injective, suppose that P and P’ are binary cubics
such that /o, (P") = Ioy,(P). First choose g, g’ € SI(2, k) such that

g- P =ax’ + by,
g P =dx*+by. (26)
From equations (1) and (9), we have

w(x3’y3) =1, Qn(P) — aZbZ’ Qn(P/) — a/Zb/Z'
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Hence, lo,, (P') = lo,,(P) implies
lab, [a][p]™'] = [a'b", [a][b'] "]

ink* xz, k* /k*3. There are two possibilities:

c ab=a't', [a]p]™" =[]
e ab=—a't), [a]b]"" = [P[a]".

In the first case, we have
[abl[a |[b]™" = [a'b|[a"][p']™".

hence [¢2] = [a’*] and so [a] = [a] as the group k* /k*? is of exponent 3. Thus,
there exists 7 € k* such that ' = r3a and b’ = r%b. If we define h € GL(2,k) by

1
h-x=rm, h-y=-y,
,

it is clear that 1 € S1(2,k) and h - (g- P) = g’ - P'. Hence, P and P’ are in the
same S1(2, k)-orbit.

In the second case, we have [a2] = [b"*], [a] = [b'] and there exists r € k* such
that ' = r’a anda’ = —r%b. If we define h € GL(2,k) by

h-x=ry, h~y:—lx,
r
it is clear that 1 € S1(2,k) and h - (g- P) = g’ - P'. Hence, P and P’ are in the
same SI(2, k)-orbit and we have proved that lo,, : Oy — k™ Xz, k*/k*3 separates
S1(2, k)-orbits.
To prove (ii), it remains to prove that o, : Oy — k™ Xz, k*/k*3 is surjective.
Let (g, [«]] € k* xz, k*/ k*3 and consider the binary cubic

1
P =—x+q%y’.
qo

-1
Toy (P) = [q, [i} [qza]} = [q, [%ﬂ = [4.[a]]
qo qa

andso loy, : O — k* Xz, k*/k*3 is surjective. This completes the proof of (ii).
To prove (iii), recall that the representation P = A;¢; 4+ A2¢)3 is unique up to
permutation. Then g - P = P leads to two cases:

o g- (M) = Mg} and g - (A293) = A29h3;
o g- (M) = dagp; and g - (A2¢h3) = A9y

Then



The Special Symplectic Structure of Binary Cubics 207

In the first case, g - ¢; = ji¢p; where j? = 1 and since g € SI(2,k), we must
have j;j, = 1. In the second case, there exist r,s € k* such that g - ¢; = r¢y,
g =51, Air> = Ly, Ays® = A;and rs = —1. Hence, (rs)’ = land rs = —1
which is impossible and this case does not occur. O

Properties of orbit space

We will use the parameterization
Toy : Ony/SI2. k) «— k* xz, k*/k*°.
to study orbit space. The parameter space has two natural maps
sq  k* xz, K*k* > k*? sq(lg.a)) = ¢ (27)

and
t:k* xz, k*/k* — (k*/k*) ) Z2, 1([q.a]) = [a] (28)

corresponding to projection onto the orbit spaces of the two factors. We then have
the following diagram:

k* Xz, k*/k*3

% \ (29)

k*Z (k*/k*3)/22

The map
sq  k* xg, k*Jk* > k*? (30)
is the fibration associated with the principal Z,-fibration
k* — k*?

and the action of Z, on k*/k** by inversion. Since Z5 acts by automorphisms, the
fiber s¢ ' (¢%) over any point ¢ € k*? has a natural group structure

. ] x[g. B] = [q. «p] (1)

independent of the choice of square root g of ¢. Taking the identity at each point,
we get a canonical section e : k** — k* X 7, k* /k*3 of (30) given by

e(q®) = [g.1] (32)
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but, although each fiber is a group isomorphic to k* /k**, the fibration (30) is not in
general isomorphic to the product

K2 x k* [k — k*2

To translate the above features of orbit space into more concrete statements about
binary cubics over k, note that the map sq is essentially the quartic Q,, since for all
P e 0[1] ,

Sq(IO[l](P)) = 0. (P).

Theorem 3.35. Let M € k*?, let
Oy ={P € S* (k) : Qu(P) = M}

and let Oy /SI(2, k) be the space of SI(2, k)-orbits in Oy.

(i) The map loy, : Opy — k* Xz, k* /k** induces a bijection
Ou/SIQ2, k) <> sq~ (M)

and, by pullback of (31), a group structure on Oy /SI(2, k).

(ii) As groups, Oy /SI2, k) = k* /k*3.

(iii) Let q € k* be a square root of M. The identity element of O /SI(2,k) is
characterized by:

SI2,k)- P =1 < P is reducible over k < Io,(P) = [q, 1].
Proof. Parts (i) and (ii) follow from the discussion above. Part (iii) follows from

Theorem 3.37(i) and equation (32). |

Remark 3.36. From the Corollary, it follows that if the classical discriminant
is a nonzero square there is a unique SI(2,k) orbit consisting of reducible
polynomials. We remove the ‘square’ restriction in Corollary 3.48. In particu-
lar, over an algebraically closed field, there is only one orbit of fixed nonzero
discriminant.

To finish this section, we briefly discuss the map ¢t : k* X k*/k*3 —
y p 2
(k*/k**)/Z, in diagram (29) given by

(lg.a]) = [a].

This a fibration with fiber £* outside the identity coset [1] but

7N ([1)) = e(k*?)
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is a ‘singular fiber’. There is a k*-action:
A-lg.a] = [Aq,al, (33)
which maps fibers of sq to fibers of sq:
sq(lq'. o) = sq([g. &) = sq(A-[q", &) = sq(A - [g, ),
and whose orbits are exactly the fibers of ¢:
t(qg o) =t(g. o)) & IL ek* st [¢, o] =A-[q.a].

1 ifa #1
{£1} ifa =1.

It would be interesting to interpret these features of orbit space in terms of
the original binary cubics. Conversely, one can also identify actions on the orbits
in terms of their orbit parameters. For example, the commutant of SI(2,k) in
GI(S?(k*™)) acts on orbit space. This gives the action

Isotropy for this action is given by: Isot= ([¢, a]) =

A [g.0] = [W2q.0]

of k* on k* xz, k*/ k*3, which is the square of the action (33). Another example
is obtained from ¥ : S3(k2*) — S3(k2") which, since it commutes with the action
of SI(2, k), induces a map from k* Xz, k*/k*3 to itself. This is easily seen to be
given by

[qv Ol] = [_q3s [q]a]s (34’)

where [¢] denotes the class of ¢ in k* /k*>.
Reducibility and factorization

Theorem 3.37. Let P € S and let {¢1, ¢} be a basis of k** such that P = )kl¢>l3 +
Aag3 with Ay, Ay € k*. Let g € k* be a square root of Q,(P). The following are
equivalent:

(a) P is reducible over k.

(b) % is acubeink™.

(c) qAyis acubeink™.

(d) qAyisacubeink®.

(e) There is a basis {¢], §,} of k** such that P = é(gb’? + gb’;).

Proof. (a) = (b): Suppose P is reducible over k. Then for all g € SI(2, k),

g-P =g 91+ (g )’
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is also reducible over k. Since ¢, ¢, form a basis of kz*, we can choose g such that
g-¢1 =xand g - ¢, = py for some p € k* so that

A1x3 + A0y’
is reducible over k. Hence, there exist a, b, ¢, d, e € k such that
Mx? 4+ A20°y = (ax + by)(cx® + dxy + ey?),
which gives the system

Ay =ac, 0 =ad+ bc,
)sz3 = be, 0 = ae + bd.

Since A1 and A, are nonzero it follows that a, b, ¢, d, e are nonzero and, since ¢ =
—% and e = —2 we get 2L = (p%)>.
b) = (a): Suppose Al = r3 with r € k*. Then

P = a(r’¢] + ¢3) = ha(rér + ¢2)(r°¢7 + réids + ¢3) (35)

and P is reducible over k.

(b) & (¢) & (d): Setv; = gA; and v, = gA,. By Proposition 3.33, there exists
s € k* such that viv, = s>. Hence if any one of the three numbers vy, v;, —L = %
is a cube so are the other two since formally

(] () ().

(@) = (e): If P is reducible we have just proved that there exists r € k* and
s € k™such that A; = qr and A, = s3. Set ¢ = r¢p and ¢ = s¢». Then

1
_ 3 3 /3 /3
P =higl + i = (917 +94).

which proves (e).
(e) = (a): Evident since ¢, + ¢', divides ¢/:1$ + ¢/§- o

Corollary 3.38. Let P € S be reducible and let {¢), $}} be a basis of k>* such
that P = 2(¢'] + 63

(a) If =3 is not a square in k, then

(¢1+¢2)(¢1 — B15 + 5

and ¢|> — ¢! ph + @47 is irreducible over k.
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(b) If =3 is a square in k, then
1
P =@+ 80+ TG0+ T ). (36)

where j = %(—1 4+ ~/—3). The factors of P are pairwise independent.

To a certain extent, we can normalize bases of k2" satisfying Theorem 3.27(e).
Corollary 3.39. Let P € S.

(a) P is reducible iff there is a basis {¢}|, p5} of k** such that P = é(d)’? + ¢>’;
and 2(¢',.9') = q. )

(b If{d], $5} and {¢p} ., ¢} are two bases of k" satisfying (a), there exists a cube
root of unity j € k* such that ¢ = j¢| and ¢} = j~' ¢}

Proof. Choose a basis {¢1, ¢} of k2" and A1, A, € k* such that P = MP3 + A3
andletg = A1A,92(¢h1, ¢2)3. If P is reducible, by Theorem 3.27, there exists r € k*
suchdthat)tl = $r3. Sets = rﬂ(gm’ ¢ = r¢; and ¢} = s¢,. Then 2(¢',. ¢',) =
q an

3 3
’ (79(¢1,¢2)) 21, ) q (‘1 1) (qA2) = qAs.

Hence,

1
_ 3 3 /3 /3
P =hgl +ia = (97 +91).

In the classical literature on cubics, this is called the Viete Substitution.

Conversely, if there is a basis {¢], ) of k>* such that P = é(gb/ S+ ¢'3), then
¢, + ¢ divides P and P is reducible.

To prove (b), note ﬁrst that by Theorem 3.27(a), we have either ¢;” = - 13 and

3/3 or ¢//3 and ¢//3 /3

In the ﬁrst case, by unique factor1zat10n, there exist cube roots of unity jj, j»
such that ¢ = ji¢], ¢ = jo¢} and j j» = 1. This is exactly what we want to
prove.

In the second case, there exist cube roots of unity ji, j> such that ¢;' = ji¢3,

= j»¢; and ji j» = —1. This is impossible since (j; j2)* = 1. O

Explicit formulae for /o, and Cardano-Tartaglia formulae

Proposition 3.40. Let P = ax® 4 3bx*y + 3cxy? 4 dy? be an element of Ony, let
q € k* be a square root of Q,(P) and define o, B,y and § in k by

(ad—bc)  2(bd—c?) a B
P)= = .
e (2(172 —ac) —(ad— bc)) ()’ 5)



212 M.J. Slupinski and R.J. Stanton

Then P = Mi¢3 + Ar¢3 and loy(P) =g, [A1][A2]7" ] where:

(i) Ifp=y =0,
Al:asd)l:xs
ad = q.
A2:ds¢)2:ys

(ii) Ify #0,

_ 1 4 _ g
A= Z(a-’_q)a_'_ﬁb’ @1 —x—(T)y,

Az=—ﬁ(a—q)a—ﬁb, ¢y =x— % ¥y,

(iii) If B # 0,
=Lt La—ga = (%)Jwy,

2q 2q
Ay = —%c + ﬁ(oz +q)d, ¢ = (%)x +,

2
(1, ¢2) = —

Y
(1, ¢2) = %]

If P € Oy is reducible, we can use these formulae together with Theorem 3.37
and Corollary 3.38 to get an explicit formula for a linear factor of P in terms of the
coefficients of P, a square root g of Q,(P) and a cube root r of gA;. Recall that the
existence of a cube root of gA; in k is a necessary and sufficient condition for P to

be reducible over k.

Proposition 3.41. Let P = ax® + 3bx’y + 3cxy? + dy> € Oy be reducible, let

q € k* be a square root of Q,,(P) and suppose ad # 0.

(i) If B =y =0, let r be a cube root of ga and let s = 11 Then

rx + sy

divides P.

(ii) If y # 0, let r be a cube root of (&« 4 q)a + yb and let s = —X. Then

(r—s+b)
x4+ (———)»
a

divides P.

(iii) If B #£ 0, let r be a cube root of Bc — (¢ — q)d and let s = g Then

u X +
d y

divides P.
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Proof. Since P is reducible, there exists a basis ¢!, ¢} of k> such that P = é(q&’ T+

@’ ;) (cf Theorem 3.37 ) and then ¢’ + ¢’, divides P. As shown in the proof of
Corollary 3.39(a), we can take ¢'; = r¢; and ¢’, = s¢, where r is a cube root
of gA1, s = rS?(tZW and ¢y, ¢, A; are given by Proposition 3.40. The explicit
formulae in the three cases are:

(@) B=y =0: risacuberootofga, rs = q and ¢| = rx, ¢} = sy;

(b) y #0: risacuberootof W, s = —L and

2r
/ 1 / 1
pr=rx+ —(@—q)y. ¢ =sx+ —(a+q)y;
2s 2r
(c) B #0: risa cuberootof w,s = 2ﬁr and

1 1
¢ = Z(OH“])X +ry, @)= 5(05—61))6 + sy.

Calculating ¢’, + ¢’, in the first case obviously gives (i). In the second case
we have

1 1
¢+ =0 +9)x+ (E(oc—q) +5 (@ +61))y

= +s)x+ (L(—2s3 —yb) + L(2r3 — yb)) y (37
2sa 2ra

since 3 = gA; = —(“+q;"+”b

coefficient of y we get

and s* = ghy = w. Simplifying the

1 1 1 b 1 1
— (=28 —yb) + —(Q2r* —yb) = — Post o 2 (2 + -
2sa 2ra a 2 ros
r—s+b
=0r+s)——
since 2rs = —Y, and this implies (ii). Similarly, (iii) follows from (c). ]

As an application of the above results, consider the homogeneous Cardano—
Tartaglia polynomial

P=x +pxy2 + qy3
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over a field k£ of characteristic not 2 or 3. Assume p # 0 and ¢ # O so that
factorizing P is a nontrivial problem. Then

P 3
M(P)Z( ‘ 29), 0.(P) = (¢ +4%).
.,y —q 27
3

To be able to apply our approach we assume Q,(P) has a square root in k*

which we denote /g2 + 4]2’—;. Then by Theorem 3.37 and Proposition 3.40(ii), P is

reducible iff
a  Jj@ P _4q, | P
2TV T 8 TtV Ty

has a cube root in k.

If this is the case, then Proposition 3.41 (ii) implies that x 4+ (r — s)y divides P,
2 3

) 2 3 )
where r is a cube root of £+ /4 4 £ and s is the cube root £~ of =% +/ 4 + &=
Hence, with the obvious notation,

q2 3
4 +27

]

P 3

3 2 3
3( i+ "7+§—7>

is a root of the inhomogeneous cubic x> + px? +¢ and this is the classical Cardano—
Tartaglia formula. If kK = R, this can be written

3 q 9>  p 3q q>  p?
* r_\/2+V4+27 \/2+V4+27

since cube roots are unique.

q
2+

3.4 Symplectic Covariants and Sums of Coprime Cubes
in Quadratic Extensions

In this article, we have until now considered only binary cubics P such that Q,(P)
is a square in k. In this section, we will study binary cubics P such that Q,(P) is a
square in a fixed quadratic extension of k.

Letk bea quadratic extension of k. Recall that since char(k) # 2, the extension
k /k is Galois and the Galois group Gal(lg /k) is isomorphic to Z,. The Galois
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group Gal(l€ / k) acts naturally on any space over k obtained by base extension of a
space over k and its fixed point set is the original space over k. We always denote
the action of the generator of Gal(lg /k) by x — X and we denote by 2 and &,
respectively, the symplectic forms on k2* and S3(k>*) obtained by base extension
of 2 and w. The quartic on S3(k2*) obtained by base extension of Q,, will be
denoted Q\n and we set

Op = {P € S*(k**) : 0u(P) € k*?.

Finally, let Imk = {A e k:X= —A} and let T c S3(l€2*) be the set of nonzero
binary cubics over k, which have a triple root over k.

Remark 3.42. Note that (Imlé*)2 C k* is the inverse image under k* — k** of
a single nontrivial square class in k*/ k*2. Conversely, a nontrivial square class in
k*/k*? determines up to isomorphism a quadratic extension of k with this property.

This notation out of the way, we make a symplectic definition
O(k) = {P € S*(k*™) : k is a splitting field of x> — 0, (P)}

and an algebraic definition
S(k)={P e S*k*"): AT € T s.t. P = T + T with T, T coprime}.

Proposition 3.43. (’)(lg) =S (/2).

Proof. Let P € (’)(k) Then Q,, (P) has two square roots in k but no square roots in
k since k is a sphttlng field of x2—Q,,(P). By Theorem 3.27, there exists 7}, T € T
such that P = T; + T and the square roots of Q,(P) are + & (T, Tz) Since
P = P and since T, and T, are unique up to permutation, we have either T1 =T
and Tz T, or T1 T, and Tz T1. In the first case,

o(T\,Tr) = &(Th, 1) = &(Th, Tr),

so &(Ty, T,) € k and Q,(P) has a square root in k which is a contradiction. Hence,
P =T +T.To prove that 7} and T, are coprime, write 7} = Aa’ where A € k
and @ € k2*. Then, by unique factorization, 77 and 7_"1 are not coprime iff o and o
are proportional. But then &(7T;, T;) = 0 and Q,(P) = 0 has a square root in k.
Hence, T} and T} are coprime and P € S (12).

To prove inclusion in the opposite direction, suppose P € S (lg) and let P =
T + T with T, T coprime and T € T. Note that P # 0 since otherwise 7" and T
would not be coprime. By Theorem 3.27, we have Q,,(P) = (& (T, T))2 and Q, (P)
has two square roots + (7T, T) in k.Let T = Aa® where A € k* and o € k>*.
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As we saw above, T and T are coprime implies o and @ are not proportional, and
this is equivalent to £2(c, &) # 0 since dimk?>* = 2. From

O(T, T) = A(R2(a, @)

it follows that (T, T') # 0. On the other hand,

(T, T)=o(T,T) =—(T,T)

and &(T, T) is pure imaginary. Hence, the square roots +&(7, T') of Q,,(P) are not
in k and k is a splitting field of x> — Q,(P). O
Proposntlon 3.44 (Fibers of x on (’)(k)) Let X € sl(2,k) be such that —det X €

(Im k*)2 and Vg x (X) = [2]. Let q.q9 € Imk* be its eigenvalues and let ¢ and ¢
be corresponding eigenvectors in k**.

(i) There exists a € k* such that aa (.97 =q.
(it) A
PN (X) = {uag® +ua ¢ : u € k* and ui = 1}.
Proof. Recall that vgex (X) = [2] is a necessary and sufficient condition for X to

be in the image of . (cf Theorem 2.11). Since ¢ + ¢ is not an eigenvector of X, we
have

21 =[R2 +¢.X-¢+X-§)] = [-2¢2(¢,9)].
Hence, there exists o € k* such that aé = q2(¢,¢) and thena = Z—i is a solution

of (i).
By Corollary 3.31, the fiber of the k-moment map /i : S3(k>*) — sl(2,k) is

ATHX) = {cq? +—1 _¢ce 13*}

c2(¢. ¢)°
and hence
N U S A DU S R
w0 = e+ ek = ).
This together with (i) implies (ii). O

Orbit parameters for O(I})
It is clear that O(k) is stable under the action of S1(2, k) and in this section we
will give a parameterization of the space of orbits.
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Let P € (’)(12). Then, since Q,(P) € k*2, the S1(2, IE) orbit of P regarded as a
binary cubic over k is entirely determined by 15[1] (P), where

.7 A Dk 1 3
I, Om = k" xz, K/ k*

is the S1(2, lg)-invariant function defined in Theorem 3.34. Recall that to calculate
15[1](P)’ we choose A € k* and @ € k2* such that

P =Ad’ + A’

and then by definition,

I5,,(P) = [®(Aa®, A@), [AAT1]). (38)
The square roots +@(Ae®, Aa>) of Q,(P) are pure imaginary since

O3, @) = AT, 1) = —d(had, @),
and the class [AA '] of AA~! in the group lg*/ k*3 satisfies
PATI A = 1.

It follows that

I5, (P) € Imk* xz, Uk*/ k*),
where

Uk*/ k*) ={a e k*/ k™ st.aa = 1}.

is the ‘unitary’ group of £*/ k*3. Note that the Z, action on Imk* x U(k*/ k*3) is
precisely the natural action of Gal(k/ k).

Theorem 3.45. Let I O(k) — Imk* xz, U(k*/k*3) be defined by (38)
above.

(i) Let P, P' € O(k). Then

r_ . ~ N — T
SI2,k)- P'=S812,k)- P — IO“](P ) = IO“](P).
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(ii) The map 16[1] induces a bijection
Ok)/SI2, k) < Imk* xz, U(k*] k*3).

(iii) The isotropy group of P € (’)(lg) is isomorphic to

A 0 ~ -
- 12,k): AV =1,2=1
{(0 l) $H)

Proof. (i): The function /5 O(k) — Imk* xz, U(k*/ k*?) is SI(2, k)-invariant

since it is by definition the restriction of an SI(2, Ig)—invariant function on a larger
space.
To prove 15[1] separates orbits, suppose 16[1](})/) = 15[1](}))' Writing P =

Aa® 4+ 2@ and P! = Mo® + Vo, there exists o € Z, such that
(6 (Vo2 7o) VAT ]) =0 (@ (ae?, 2@ PAT]) 39)

and, permuting cube terms if necessary, we can suppose without loss of generality
that o is the identity. Then, equation (39) implies

& (Vo i) =6 (et 23, VAT = A1) (40)
or equivalently,
Wro («f @) = 2o @ @), [V ] =[],
which by (2) is equivalent to
W@ @) =@, [V =AY, @1)
Taking classes in k*/ k*3, we get
P = AL [T ] = (a2
and multiplying the two equations gives
W7 = 2.

From this, it follows that [A’] = [A] since the cube of any element in k* / k*3 is the
identity.
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Let now £ € k* be such that
A =82
Substituting in the first equation of (41), we get
Q) = 2. @),
which means
Q. fa) = j 2. @)
for some j € k such that j? = 1. The conjugate of this equation is
~R2(o S = —] Q. @)

and hence j = j.
Define g € GI(2, k) by

g-a=jkd, g-a=jéd.
Then g commutes with conjugation by definition, and preserves 2 since
Qg-o.g-@) =R §o) = R0.T) = 2(.a).
Hence, g € S1(2, k). Furthermore,
g P =Mg- ) +A@®) = A(j§o) + A(jEX) = Vo + Vo’ = P/,

which shows that P and P’ are in the same SI(2, k)-orbit. This proves (i).
To prove (ii), we only have to show that B is surjective since by (i), the function

I@m induces an injection O(lg)/Sl(2,k) < Imk* X7, U(lé*/lg*3).

Let (¢,5) € Imk* x U(IG*/IQ*3). First, pick A € k* such that
[A] =5. (42)

Since [AA] = 55 = 1, we know AA is a cube in k* but in fact, since lg*/k is a
quadratic extension and AA € k, this implies that there exists r € k* such that

AL =7, (43)

Now let
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(where £, § € k2* are the base extensions of x, y € k2*) and let

A
P==a—
q

IS

. (44)

This is a binary cubic of the form 7 4+ T where T € T. We are now going to show
that P € O(k) and that 15[1](P) = [q, s].
Note first that

= _ = q . =« 49\, A q q q
2@ =2(-y i +5-(5)8+5) =5+ (5) ==
(@, @) er—i—y 2r Xy 2r+ 2r r

s0 £2(at, @) # 0 which means « and @ are not proportional. Hence, o® and &> are

coprime and P € (9(]2).

Next, we have
3

o, &) = 2a) =-L (45)
r
and _ 2
A A 1 -
o=, @) = —(—) Md(e’, @) =g¢ (46)
q q q
using equations (43) and (45). Finally, it follows from (42) that
A (r)
~ 1= =M =5 =5 =52 = 47)
q\4

Hence, putting together equations (38), (44), (46) and (47), we get
I5, (P) = [g.5]

and this proves that 15[1] : (’)(lg) — Imk* Xz, U(lg*/ 12*3) is surjective.
Part (iii) follows from Theorem 3.34 (iii). O

Corollary 3.46. Let P, P' € O(k). Then
SI2.k)- P =SIQ2.k)- P <> SIQ2,k)- P’ =SI2.k)- P.

Proof. Both properties are equivalent to 15“] (P) = Iam (P’) by the above theorem
and Theorem 3.34. O

Properties of orbit space

The parameter space
Imk* xz, U(k*/ k*?)
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for SI(2, k) orbits in (’)(lé) is very analogous to the parameter space
kA* Xz, k*/ k*3

for S1(2, k) orbits in Oy that we gave in Theorem 3.34. Its main features can best
be summarized in the diagram

Imk* xz, U(k*] k*3)

/ \ (48)
=

(Imk*)? U(k*/ k*3)/ Zs.
The map
5 : Imk* X7, Uk*/ k*?) > (Imk*)> (49)
given by

sq(lg.al) = ¢°
is the fibration associated with the principal Z,-fibration
Imk* — (Imk*)2
and the action of Z, on U (12* / 12*3) by conjugation. Since Z, acts by automor-
phisms, the fiber s’&_l(qz) over any point g> € (Imk*)? has a natural group
structure

(g, u1] X [g.u2] = [q, uuz] (50)

independent of the choice of square root g of ¢. Taking the identity at each point,
we get a canonical section é : (Imk*)? — Imk* xz, U(k*/ k*3) of (49) given by

e(q®) = lg.1] (51)

but, although each fiber is a group isomorphic to U (12* / 12*3), the fibration (49) is
not in general isomorphic to the product

Amk*) x U(k*/ k*3) — Imk*)>.
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To translate the above features of orbit space into more concrete statements about
binary cubics over k, note that the map 5¢ is essentially the quartic Q,, since for all
P € O(k),

$a(15, (P) = Qu(P).
Theorem 3.47. Let M € (Imk*)?, let

Om =1{P € S*(K*"): Q.(P) = M}

and let Oy /SI(2, k) be the space of S1(2, k)-orbits in Oyy.
(i) The map 16[1] : (9(12) — Imk* X7, U(lg*/ l€*3) induces a bijection

Om/SIQ2, k) < 537" (M)

and, by pullback of (50), a group structure on Oy /SI(2, k).
(ii) As groups, Oy /SI(2, k) = U(k*/ k*3).
(iii) The identity element of Oy /SI(2, k) is characterized by:

SI2,k)- P =1 <% P is reducible over k.

Proof. Parts (i) and (ii) follow from the discussion above. To prove (iii), first note
that P is reducible over k iff P is reducible over k since P is cubic and k /k is
a quadratic extension. By Theorem 3.35(iii), P is reducible over k iff ]5“]( P) =

[, 1], where g € kisa square root of M, and by equation (51), this is the identity
element of Oy, /S1(2, k). O

Corollary 3.48. Let P, P’ € S3(k*™) be reducible binary cubics such that
0.(P) = Q,(P’) is nonzero. Then there exists g € SI(2,k) such that P’ = g - P.

Proof. Suppose Q,(P) = Q0,(P)) = M.If M € k*?, the result follows from
Theorem 3.35(iii). If M € k* is not a square, one can find a quadratic extension k
of k such that M € (Imk*)?. The result then follows from Theorem 3.47 (iii). O

To finish this section, we briefly discuss the map 7 : Im k* x 7z U (lg* / 12*3) —
U(k*/ k*3)/Z, in diagram (48) given by

i(lg.a]) = [a].
This is a fibration with fiber Imk* outside the identity coset [1] but

PO = k™)
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is a ‘singular fiber’. There is a k*-action:
A-lg.a] = [Aq.al, (52)

which maps fibers of 5¢ to fibers of §3:

5q(lq". ') = sq(lg.a]) = sq(A-[¢".&']) = 5G( - [g. ).
and whose orbits are exactly the fibers of 7:

i(q".d') =t(g.a]) & ILek*st[q.a]=A-[g.al]

1 ifa #1
{£1} ifa =1.

It would be interesting to interpret these features of the orbit space in terms of
the original binary cubics.

Isotropy for this action is given by: I soty+([q, @]) =

4 Parameter Spaces for GI(2, k)-Orbits

We have seen that the S1(2, k)-orbits in

O = {P e ") : 0.(P) €k}

are parameterized by
k* Xz, k* /k*

and that if & is a quadratic extension of k, the SI(2, k)-orbits in
a 3,.2% Py 2
o) = {P € S3(k>*) 1 0,(P) € Imk*) }

are parameterized by
Imk* xz, U(k*/k*?).

The group GL(2, k) also acts on binary cubics and since
Qulg- P) = (detg)*Qu(P) Vg €Gl2.k).VP € S* (k).

the spaces Ofj; and (’)(lg) are stable under G1(2, k).
In general, if G1(2, k) acts on a space X, there is a map

X/S12,k) — X/Gl(2,k)
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from the set of SI(2, k)-orbits onto the set of G1(2, k)-orbits. The fibers of this map
are the orbits of the k*-action on X /SI(2, k) given by

Ax[x] =[A-x], (53)

where A is any element of GI(2, k) such that det A = A. Thus, to get parameter
spaces for Op;1/Gl(2, k) and O(k)/Gl(2, k) we need just to calculate the k*-actions
onk* xz, k*/k*3 and Im k* Xz, U(k* /k*3) corresponding to (53).

Lemma4.1. (i) Letk* actonk* xz, k"‘/k"‘3 by
A5 a] =[A§, ]
and let Ioy, : Oy — k™ Xz, k*/k*3 be defined by (23). Then

Ioy(g+ P) = (detg) ™ - Io,(P) VP €Oy, Vg € GI2.k).

(ii) Let k* acton Imk* X 7, U(Ig*/]€*3) by
A-[§.a] =[A8.a]
and let I O(k) — Imk* xz, U(k* /k*3) be defined by (38). Then
I’@[l](g +P) = (detg)”- lo,,(P) VP e 0(12), Vg € GI(2,k).

Proof. To prove (i), since for any P € O there exists & € Gl(2,k) and a, b € k*
such that

h-P =ax’®+ by3,

it is sufficient to prove that

Loy, (g-(ax®+by?)) = (detg) 1oy, (ax’+by?) Ya,b € k*, Vg € GI(2,k).

, detg O
g = .
0 1

_ _ 1 _ -1
Thendetg’ = detg, g’ - x = Forg X and g -y =y Henceg'g~! €SI1(2,k),

Consider

IO[[] (g- (ax3 + by3)) = IO[[](g/ : (ax3 + by3))
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and

b
Tou - @x' + 0y = Toy, (e + ') ) = | iy 071

The result follows since Ioy, (ax® + by?) = [ab,[ab™']].
Part (ii) follows from (i) applied to k. |

Corollary 4.2. (i) If P € Oy and A € k™ then
1
1(’)[1](A *[P]) = F ' 1(9[1]([P])-
(ii) If P € O(k) and X € k* then
Is (Ax[P]) = ! I P
oy ¥ [P) = 25 - Iz (PD.

Proof. Immediate from the lemma. O

From this, we get the k*-actions on the parameter spaces k* xz, k*/ k*3 and
Imk* X7, U(lg*/lg*3) corresponding to (53) : A € k* acts by multiplication by 173
on the first factor.

Hence, by the discussion above, the maps loy, : Op — k™ Xz, k*/k*3 and
15“] : (’)(lg) — Imk* X 7, U(lg*/l€*3) induce bijections
Ony/Gl(2, k) «— (k™ xz, k*/kﬁ'ﬁ)/k*3 =k*/k* x (k*/k*3)/ 25,

0(k)/GI(2, k) «— (Imk* xz, U™ Jk**))/k** = (Imk*)/k*> x Uk* Jk*3)) Z».

To summarize, we have proved the

Theorem 4.3. (a) Define m : k* xz, k*/k** — k*/k*3 x (k*/k*¥)/Z, by
(£ al) = (] [e]) and Joy, : O — k*/k* x (k*/k*)/ 22 by oy, =
T o Io“].

(i) Let P, P' € Op) Then
GlQ2,k)- P =GI2,k)- P &  Joy(P) = Jo,(P).
(ii) The map Joy, induces a bijection
On/Gl2, k) < k*/k* x (k*/k*)/ Z,.
(b) Define # : Imk* xz, U(k*/k*?) —>A(Iml€*)/k*3 x U(k*/k**)/Z, by
A0 = (E[e) and J5 i Ok) — k*/k** x (k*/k*)/Z by

J~ =mol~ .
Opy op
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(i) Let P, P' € O(k). Then

_ . / A — . /
GI2.k)-P=Gl2.k)- P & Iz (P)=Us (P).

(ii) The map Jam induces a bijection

O(k)/GI(2.k) < (Imk*)/k*> x U(k*/k*3)/ Zs.

Orbits spaces when £ is a finite field of characteristic not 2 or 3

Let k be a finite field with ¢ elements, not of characteristic 2 or 3. The following
facts are well known:

e k*/k*?* = Z, so up to isomorphism, there is only one quadratic extension of k
and k*2 has 1(¢q — 1) elements;

e ifg=1mod3, k*/k*} = 7Z/3Z;

e ifg =2mod3, k* = k*3;

e ifg = 1 mod 3 and lé/k is a quadratic extension, U(lé*/lg*3) ~1;

e if g =2 mod 3 and lg/k is a quadratic extension, U(lg*/l€*3) ~ 7./3Z.

These facts together with Theorem (3.34) and Theorem 4.3 immediately give the

Proposition 4.4. Let k be a finite field with q elements, not of characteristic 2 or 3
and let k be a quadratic extension. Set

Oy = {P e 3> : 0,(P) € k*z},
Ok) = {P € 3k : 0.(P) € (Imlé*)z}.

(a) If g = 1 mod 3, Oy is the union of %(q — 1) SI(2, k)-orbits and O(lg) is the
union of%(q — 1) SI(2, k)-orbits.

(b) If ¢ = 1 mod 3, O is the union of 6 GI(2, k)-orbits and (9(12) is the union of
3 GI(2, k)-orbits.

(c) If ¢ = 2 mod 3, Oy is the union of %(q — 1) SI(2, k)-orbits and (’)(lg) is the
union of%(q — 1) SI(2, k)-orbits.

(d) If g = 2 mod 3, Oy is a GI(2, k)-orbit and (9(12) is the union of 2 GI(2,k)-
orbits.

Proof. As examples, let us count the number of SI(2, k)-orbits in Oj;) when g = 1

mod 3 and the number of GI(2, k)-orbits in (’)(12) when ¢ = 2 mod 3.

In the first case, by Theorem (3.34), the parameter space is k* Xz, k* / k*3 which,
being a fiber bundle over k** with fiber k*/k**, has (¢ — 1) x 3 = 3(¢ — 1)
elements.
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In the second case, by Theorem 4.3 , the parameter space is (Imlé*) Jk*3 x
U(k*/k*3¥)/Z, and this has 1 x 2 = 2 elements since Z, acts on U(k*/k*?) by
inversion. O

According to [10] (Proposition 5.6) at least part of the following corollary can be
found in Dickson [7].

Corollary 4.5. Let k be a finite field with q elements, not of characteristic 2 or 3.
The number of SI(2, k)-orbits of binary cubics with nonzero discriminant is 2(q—1).
The number of GI(2, k)-orbits of binary cubics with nonzero discriminant is 9 if
q = 1mod 3 and 3 if ¢ = 2 mod 3.

Proof. A binary cubic of nonzero discriminant is either in Oy or in (9(12) since
up to isomorphism, k has only one quadratic extension. Hence, the total number
of SI(2, k)-orbits with nonzero discriminant is the number of SI(2, k)-orbits in O

plus the number of SI(2, k)-orbits in (9(12). The same is true for Gl1(2, k)-orbits and
the result follows from Proposition 4.4. O

S A Symplectic Eisenstein Identity

The following identity is a symplectic generalization of the classical Eisenstein
identity which, as we will see, is obtained from it in the special case when Q is
the cube of a linear form. There is an analogous identity for the symplectic module
associated with any Heisenberg graded Lie algebra ([15]).

Theorem 5.1. Let P, Q € S3(k>*). Then
9
o(¥(P), 0)* —90,(P)w(P. Q)* = 3 o(u(P)® -0, 0)

9
—5 (P ou(P)-0.0). (9

where L(P)®? denotes the unique endomorphism of S*(k**) satisfying u(P)®? -
(@) = (u(P) -a)’ forall a € k**.

Proof. If u(P) = 0, then ¥(P) = 0, Q,(P) = 0 and all terms in the identity
are zero.

If w(P) is nilpotent nonzero, then Q,(P) = 0 and there exists g € SI(2,k)
such that g - P = x?y. Since the identity (54) is SI(2, k)-invariant, we can suppose
without loss of generality that P = x?y. Then, by calculation,

2 2
WP =20 Py =~ ((1) 8)
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— __2
and so u(P)-x =0and u(P)-y = —5x. Let
0 = px* +3rx%y + 3sxy? + 1y,

The LHS of (54) is

and the RHS of (54) is

9 9 3 2
ot -0.0=30(-(5) ) = (5) 7

Thus, (54) holds if u(P) is nilpotent nonzero.

To complete the proof of the proposition, it remains to prove (54) if O, (P) # 0.
As the identity is independent of the field we may suppose that O, (P) is a square
in k* and hence that P € Oy. Since the identity (54) is SI1(2, k)-invariant, we can
further suppose without loss of generality that

P =ax’ +dy’.

Then
0.(P) = a’d>, W(P) = 3ad(—ax’ + dy®), u(P) = (ad 0 )
0 —ad
and so w(P) - x = —adx and w(P) -y = ady. Let
0 = px* + 3y + 3> + 1.
The LHS of (54) is
(¥ (P), 0)* = 90,(P)a(P, Q)
= 9a’d*(w(—ax’ +dy’, 0)* — w(ax® + dy*, 0)?)
= -36a’d*w(x*, Q)w(y?, Q)
= 36a°d°pt. (55)

On the other hand, the first term of the RHS of (54) is
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9 9
—S0((P)® - 0.0) = —a'd w(—px’ +3ny = 30 + 1. Q)

9
= —§a3d3(—2pt — 6rs)
= 9a’d>(pt + 3rs) (56)

and the second term of the RHS of (54) is
9 9 3.3 3 2 2 3
—3Qu(P)o(u(P) - 0. 0) = —Sa*d’w(=3px’ = 3y + 3507 + 30, Q)
9 3.3
=5 d’(—6pt + 6rs)

= 27ad>(pt — rs). (57

The result follows from equations (55), (56) and (57). O

To obtain the classical Eisenstein identity from this result, recall that one can
use the symplectic form £2 on k2* to define a S1(2, k)-equivariant isomorphism ~:
k? — k**:if v € k?, we let v € k2* be the unique linear form such that

$0) = 2.7 V€ k.
It then follows that
P(v) = w(P,7®) VP e S*(k**), Vv e k?, (58)
so that the operation of evaluating a binary cubic at a point of k2 can be expressed
in terms of the symplectic form @ on S3(k%*). One can also pullback £2 to get an
SI(2, k)-invariant symplectic form £2;2 on k?:
Re(v,w) =20, W) VYv,w ek

Corollary 5.2 (Classical Eisenstein identity). Let P € S3(k*>*) and let v € k>.
W(PYW? ~90,(P) P = — 2 Ds(u(P) v, )’
Proof. Setting Q = ¥ in (54) and using (58), we get
(YW —90,(P) PO = 3 w(u(P)® .7

— g 0,(P) o(uu(P) -7, 7). (59)
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The result follows from this since

o(u(P)-7,7) = 3o((u(P) - )i, 7%) =0

(1(P) - )7 has at least a double root at v) and

o(u(P)®* -7V = 2(u(P) - 1,9)* = 22 (1(P) - v, v)’. 0
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On the Restriction of Representations
of SL(2, C) to SL(2, R)

B. Speh and T.N. Venkataramana

Abstract We prove that for a certain range of the continuous parameter, the
complementary series representation of SL(2,R) is a direct summand of the com-
plementary series representations of SL(2,C). For this, we construct a continuous
“geometric restriction map” from the complementary series representations of
SL(2,C) to the complementary series representations of SL(2,R). In the second part,
we prove that the Steinberg representation o of SL(2,R) is a direct summand of the
restriction of the Steinberg representation 7 of SL(2,C). We show that o does not
contain any smooth vectors of .

Keywords Complementary series representations * Restriction ® Subgroup
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1 Introduction

Let G = SL(2,C) and denote by B(C) the (Borel-)subgroup of upper triangular
matrices in G, by N(C) the subgroup of unipotent upper triangular matrices in G.
Given an element b = (g a’il) of B(C), write p(b) =| a |>. The group K = SU(2)
is a maximal compact subgroup of G. Given a complex number u, we obtain a
(g, K)-module 7, realized on the space of functions on G, which satisfy for all
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b € B(C) and all g € G(C) the formula

f(bg) = p(b)' ™" f(g)

and in addition are K-finite under the action of K by right translations.
If Re(u) > 0, define the map /¢ (u) : m, — m—, by the formula

(U6 )@ = [ dnfouon).
N(©)
The integral converges for Re(u) > 0. If u is real and 0 < u < 1, then the pairing

o f)m = /K T 16 ) () (k) dk

defines a positive definite G-invariant inner product on K-finite functions in m,.
The completion 7, with respect to this inner product is the complementary series
representation with continuous parameter u.

Given a complex number i’ € C, denote by o,/ the representation of (U(h), Kg),
where b is the Lie algebra of H = SL(2,R), and Ky = SO(2) is the maximal
compact subgroup of H, defined as the space of complex valued right K g-finite

functions on H such that for all upper triangular matrices b = g a’il in H and

all h € H, we have f(bh) =| a |'™ f(h). The character | a |* is the character
p(a)? , where p? is the sum of positive roots.

Denote by Np the group of unipotent upper triangular matrices in H. If
Re(u') > 0, we define the intertwining operator I 4 (i) : 0,y — o—, as follows: for
all g € H, set

(In () £)(g) = / dnf (wong).

Nu (R)

The integral is convergent if Re(u’) > 0. Now for fy, gy € o, and ' is real and
0 < u’ < 1, the pairing

(fH.8H)o, =/K STy W) gn)(ky)dkg

defines a positive definite H—invariant inner product on o;. The completion is the
complementary series representation o,.
Theorem 1.1. Let % < u < land v = 2u — 1. The complementary series

representation 0, of SL(2,R) is a direct summand of the restriction of the
complementary series representation 7, of SL(2, C).
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This theorem is proved by Mukunda [6] in 1968. In this paper, we give a different
proof and we realize the projection map from 7, to 0,1 as a simple geometric
map of sections of a line bundle on the flag varieties of G = SL(2,C) and H =
SL(2,R). For a precise formulation and details, see Theorem 2.5 and its corollary.
In a sequel to this article, we will use this idea to analyze the restriction of the
complementary series representations of SO(n, 1) [7].

Consider the Steinberg representation 7 = Indg (x). Here, Ind refers to
unitary induction from a unitary character y of B. Given two functions f, f’ € x,
the product ¢ = f f’ liesin Indg (p). The G-invariant inner product on 7 is defined
by

) = /K (T k)dk.

Let 7 be the (g, K)-module of the Steinberg representation. We have the exact
sequence of (g, K)-modules

O->m—>m—>1—0.

The (h, Krr)— module o of the Steinberg representation of SL(2, R) is defined by
the exact sequence
0—>0—>0 —>1—>0

and the completion ¢ is a direct sum of 2 discrete series representations.

Theorem 1.2. The restriction to H of T contains the Steinberg Representation &
of H as a direct summand.

More precisely, the restriction is a sum of the holomorphic discrete series
representation o of H, its complex conjugate o, and a sum of two copies of
L*>(H/K N H), where K N H is a maximal compact subgroup of H . By a theorem
of T. Kobayashi (Theorem 4.2.6 in [4]), this implies that ¢ does not contain any
nonzero K—finite vectors in 7. Using an explicit description of the functions in the
subspace & we prove a stronger result.

Theorem 1.3. The intersection
cNT® =0.

That is & does not contain any nonzero smooth vectors in T.

It is very important in the above theorems to consider a unitary representation of
G (respectively H) and not only the unitary (g, K)-modules (respectively (h, K y)-
modules) as the following example shows.

Fix a semisimple noncompact real algebraic group G and let C.(G) denote the
space of continuous complex valued functions on G with compact support. Let =
denote an irreducible representation on a Hilbert space (which, we denote again
by ) of G of the complementary series, which is unramified (i.e., fixed under a
maximal compact subgroup K of G). Fix a nonzero K-invariant vector v in .
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Denote by || w ||, the metric on the space . Given ¢ € C.(G), we get a bounded
operator (¢) on m . Define a metric on C.(G) by setting

1o 1P=Il @) I3 + 1] ¢ 1172,

where the latter is the L?-norm of ¢. The group G acts by left translations on C.(G)
and preserves the above metric. Hence, it operates by unitary transformations on the
completion (the latter is a Hilbert space) of this metric.

Proposition 1.4. Under the foregoing metric, the completion of C.(G) is the direct
sum of the Hilbert spaces

7 @® L*(G).

The action of the group G on the direct sum, restricted to the subspace C.(G), is
by left translations.

Note that the direct sum 7 @ L?(G) and L?*(G) both share the same dense
subspace C.(G) on which the G action is identical, namely by left translations,
and yet the completions are different: 7 @ L? is the completion with respect to the
new metric and L?(G) is the completion under the L2-metric. We have therefore an
example of two nonisomorphic unitary G-representations with an isomorphic dense
subspace.

This is not possible in the case of irreducible unitary representations, as can be
seen as follows.

The kernel to the map ¢ +— 7 (¢p)v on C.(G) is just those functions, whose
Fourier transform vanishes at a point on C (the latter is the space of not-necessarily
unitary characters of R). This is clearly dense in C.(G) and hence dense in L?(G).
The restriction of the new metric to the kernel is simply the L2-metric, and the
kernel is dense in L2. Therefore, the completion of the kernel gives all of L2

Since the map from C.(G) to the first factor 7 is nonzero, it follows that the
completion of C.(G) cannot be only L2. The irreducibility of 7 now implies that
the completion must be 7 @ L*(G).

2 Complementary Series Representations for SL(2, R)
and SL(2,C)

2.1 Complementary Series Representations &, for SL(2,R)

The space o,/ consists, by construction, of K y-finite vectors and the restriction of
o, to Ky is an injection; under this map, o,, may be identified with trigonometric
polynomials on Ky, which are even. The space of even trigonometric polynomials
is spanned by the characters
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¥ 0 > ettt [ €Z.
Each y;-eigenspace in m,/ is one dimensional and has a unique vector y;,/ such that
for all k € Ky we have y; (k) = y;(k). The intertwining operator Iy (u') maps

X1 into a multiple of y; —,. After replacing Iy (1) by a scalar multiple, we may
assume that for the K- fixed vector yg

IH (M/)XO,L/ = X0,—u-

The normalized intertwining operator will, by abuse of notation, also be denoted
Iy («'). One computes that for all integers / = 0 and all k € Ky,

Ty ) piw = di) g1,

where
1-u)Y3—u)---Q2|1]|-1—-d
dl(u/) — ( /)( /) ( | I /) (1)
A4+u)B+u)---Q|1|-1+4d)
and dy(u') = 1. Note that if ¢ (u') = ll:égl—m then we have
S0+ =u)/2)
di() =c@W)™! 2
1) =c@') T+ T0)/2) (2)
We note that for y; ,» we have
|| Xl ||§u, = (X[,u’s IH(M/)XI,M’) (3)
=di ) 1| 11 12y, - (4)
Therefore, the norm of y; _, in o—, is given by
e 2= —— 1l 10 I )
Xl —u o_y dl (I/l/) X1 L2(Kp) "

We have already noted that if 0 < u’ < 1, the pairing (, ) on o,/ is positive definite.
This easily follows from the formula (1) for d;(u’), which shows that d; (1) > 0,
and the (3).

The space Rep({£1)\Kn) = @®i>001, where o = Cy; & Cy—; for !/ > 1
and o9 = Cyy. The elements of o; may be thought of as the space of Harmonic
Polynomials in the circle of degree 2/.
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Note that d; (') < 1. It can be shown, using Stirling’s asymptotic formula for the
Gamma function and (2), that for | [ |— oo there exists a constant C such that

1
dW) ~C—-—.
|1
Ifu' =2u—1and! > 1, then

(0 =wQ—-w---(—u) (I +u)
S 0+wH+w - (+u) u

di ()

Define A; (1) by the formula

I +u
-

di(u') = Ai(u)

2.2 Complementary Series 7, of SL(2,C)

For any u € C, the restriction of the (g, K)-module 7, to the maximal compact
subgroup K is isomorphic to Rep(T\ K), where T is the group of diagonal matrices
in K, and Rep(T\K) denotes the space of representation functions on 7\ K on
which K acts by right translations. It is known that as a representation of K, we have

Rep(T\K) = ®m>00m»

where p,, = Sym®"(C?) is the 2m-th symmetric power of C?, the standard two-
dimensional representation of K; p,, is irreducible and occurs exactly once in
Rep(T\K). The same decomposition holds if 7, is replaced by w_,. The operator
I (u) may be normalized so that under the identification of the K-representations

w, >~ R(T\K) ~ n_,,
it acts on each p,, by the scalar

(0= w)2—u)---(m—u)

Il = @ T w )

T'(1—u)
T'(1+u) "

Write cc(u) = Then we have
Fm+1—u)

_ —1
A1) = cew) Tm+1+u)

(6)

Lemma 2.1. Let p,, = Sym>"™(C?) be the 2m-th symmetric power of the standard
representation of K = SU(2). Let (, ) be a K-invariant inner product on p, and
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v, w vectors in p, of norm one with respect to (, ) such that v is invariant under
the diagonals T on K and the group Ky = SO(2) acts by the character y; on the
vector w. Then the formula

Zml'*(m—zl-}—l)l—w(m+21+l)
n—D(m + D!

| (v.w) |=

holds.

Proof. The formula clearly does not depend on the K-invariant metric chosen,
since any two invariant inner products are scalar multiples of each other. We will
view elements of p,, as homogeneous polynomials of degree 2m with complex

coefficients in two variables X and Y such that if k = (_‘% g) € SU(2), then
k acts on X and Y by k(X) = «X — BY and k(Y) = BX + @Y. The vector
vV = X"Y™ € p,, is invariant under the diagonal subgroup T of SU(2).

i
The subgroup Ky = SO(2) is conjugate to 7' by the element ky = ( f f )
V2 V2
That is, SO(2) = koTky'. If —m <[ < m, then the element w" = X"+ ym-!
an eigenvector for T with eigencharacter y; : @ > e*"'%_ Consequently, the vector
w' = ko(w") is an eigenvector of SO(2) with eigencharacter y;.
If

m m
f=Y X"y g = 3" b, X"THY" TR e p,,,

p=—m p=—m

then the inner product

m

(f8)= Y aubu(m+pw!m— p)!

p=—m

is easily shown to be K-invariant (see p. 44 of [8]). Therefore, the vectors

xmym Xm+l Ym—l
w=-—" v=ko (7

m! (m + D'm —1)!

satisfy the conditions of Lemma 2.1. We compute

_ X +iv\"" fix+ v\
ket = (L) ()
)

o) B )

a=0
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Using the fact that the vectors X"+ Y~ are orthogonal for varying /, we find that
the inner product of XY™ with ko(X”+'Y™=!) is the sum (overa < m + [ and

b<m-1I)
§ (m|)2 cm+l—a.:b (M +1 m—1
—1 l .
2m a b

a+b=m

Lemma 2.2 implies that the absolute value of this sum is equal to

1 m! [+1 —1+1
—m—4’”F m+ 1+ r m + ‘ ®)
T 2m 2 2
if m + [ is even and 0 if m + [ is odd.
The Lemma follows from (7) and (8). |

Lemma 2.2. The equality

23 () e e () ()

a+b=m

holds if m + [ is even, the sum on the left-hand side is 0 if m + [ is odd.

Proof. If f(z) = Y ax7" is a polynomial with complex coefficients, then the
coefficient a,, is given by the formula

1 2 o g
am = — dof(e”)e .
21 0

The sum X on the left-hand side of the statement of the Lemma is clearly (2%! times)
the mth-coefficient of the polynomial

f@) =1+ (1 -

We use the foregoing formula for the mth coefficient to deduce that

1 2

— E i dee—ime(l + ei@)m-i-[(l _ ei@)m—l‘

)’.

After a few elementary manipulations, the integral becomes

2 (3o ) (25
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Substituting ¢ = tan(6/2) the integral becomes

2im—l4m o) tm—[
- / d—
T 0 (1 + 2«2)m+1

and the latter, when multiplied by 2%' = r(’;nfl), is the right side of the

Lemma 2.2. O

‘We now collect some estimates for the Gamma function, which will be needed
later.

Lemma 2.3. If Re(z) > 0, then we have, as m tends to infinity, the asymptotic
relation

1
['(m + z) ~ Constant m" 7>, —.
e

In particular, as m tends to infinity through integers,

1
m! = T'(m + 1) ~ Constant m"t —
e"’l

The formula for the inner product in Lemma 2.1 is unchanged if we replace / by
—I. We may therefore assume that/ > 0.Letm > 0and0 <[ <m.Putm =k +1.
From Lemmas 2.3 and 2.1 we obtain (notation as in Lemma 2.1), as m tends to
infinity and [ is arbitrary, the asymptotic

+21+ k
- Constant 25! k+20+1 S k+1 :
I (V, W) | — (k Y 1)k+2l-2|-(1/2) (k 4 1)k+(21/2) ) T
Constant

= (k +21 + HY4(k + 1)1/4°

Moreover, the constant is independent of /.
This proves:

Lemma 2.4. Let m > 0 be an integer and ( , ) a SU(2)-invariant inner product on
the representation p, = Sym>"(C?). Let 0 <1 < m and putm = k + [. Let v,,
a vector of norm 1 in py, invariant under the diagonals T in SU(2) and wy,; € pp,
a vector of norm 1 on which SO(2) acts by the character y;. We have the following
asymptotic as m = k + [ tends to infinity:

Constant
(k + 21 + DHY4(k + 1)1/4°

| Vs Win 1) |

Given m > 0 and —m < [ < m, define the function for k € K = SU(2) by the
formula

Y (k) = Vs P (k)W ).
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The functions v, ; form a complete orthogonal set for Rep(T\ K). The norm of
Vm. with respect to the L2 norm on functions K, is, by the Orthogonality Relations
for matrix coefficients of p,,, equal to /2m + 1.

Notation: If ¥ is a function on K in Rep(T\K), denote by || ¥ ||3 the integral
(dk is the Haar measure on K)

/ |y P dk.
K

Define similarly the number || ¢ ||%<H for ¢ € Rep(Kp), where Ky = SO(2).

2.3 The Restriction of &, to SL(2,R)

The restriction of the function ¥, ; to Ky = SO(2) is, by the choice of the vector
w1, a multiple of the character x;: for kg € Ky, we have

VUmikr) = Y1 (1) x1(kpr).
By Lemma 2.4, we have, for k + [ = m tending to infinity, the asymptotic

Constant
VE+2+ Dk +1)

| Y (1) [P )

Let % < u < 1 and let 7_, be the (g, K)- module of the complementary series
representationof G = SL(2, C) as before. Set ' = 2u—1.Then0 < o’ < 1.Ifo_,,
is the (h, Kg)-module of the complementary series representation of SL(2,R) as
before, the restriction of the functions (sections) in 7—, on G/ B(C) to the subspace
H/B(R) lies in 0_,, as is easily seen. Denote by

res : m—, — O—y

this restriction of sections.
Note that if v € p, C Rep(T\K) ~ m_, (the latter isomorphism is of K
modules), then

1
2 _
.= 5

Similarly, if ¢ € Cy; C Rep({£1}\Kp) =~ o_, (the last isomorphism is of K-
modules), then

v Ik - (10)

_ 1
- di(u')

2 2
e lls_, 11 1lk, -
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Moreover, from (6), (2) and the Stirling approximation for the Gamma function
(Lemma 2.3), we have the asymptotic

Constant Constant
An(u) ~ ———, di(u) =~ ——, (11)
m2 | [ 21

u

as m and | [ | tends to infinity.

Theorem 2.5. Let % <u < 1. The map
Ies ! w—y —> 0—(2u—1)

is a continuous map of the unitary for (g, K)—, respectively (), K )-modules of the
complementary series representations.

Proof. We must prove the existence of a constant C such that for all ¥ € 7_,, the
estimate

1V 112,=<C Ilres@) 12, -

The map res is equivariant for the action of H and in particular, for the action
of Ky. The orthogonality of distinct eigenspaces for Ky implies that we need to
only prove this estimate when v is an eigenvector for the action of Ky ; however,
the constant C must be proved to be independent of the eigencharacter.

Assume then that v is an eigenvector for Ky with eigencharacter y;. The
function ¥ is a linear combination of the functions ¥, ; (m >| [ |). Write

Y= Z Xin Wl s

m=|l|

where the sum is over a finite set of the m’s; the finite set could be arbitrarily large.
The orthogonality of v, ; and the equalities in (10) imply

1
19 1= D2 1w Pl Y 15, =D Lo P 5 PIALALS
m=|l| "

We therefore get, for v € m_,,

1
2 _ 2
lll/flln_u—m;uml RSy (12)
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We now compute res(y) and its norm. Since v is an eigenvector for Ky with
eigencharacter j;, we have

res(¥) =¥ () = Z XinWma (1) | X1

m=|l|

Therefore,
1

IRECON ‘(Z x’"l//m”(l)))z diQu—1)

The Cauchy—Schwartz inequality implies

[ res(¥) [5_,
2 1 2\ 1
< (Z | Xm | m) (Z(Zm + DAm @) | Yma(1) | ) 46)

Assume for convenience that / > 0. Putk = m + [. Then k > 0. The estimate
(9) and the equality (12) imply that (write o for o_(,—1y and & for m_,),

2k +20 + 1
Fres(¥) 1211w 112 | D2 —

S Sk +2A+ Dk + D) e+ ()

L
di ()

Let X denote the sum in brackets in the above equation. To prove Theorem 2.5,
we must show that ¥ is bounded above by a constant independent of /. We now use
the asymptotic (11) to get a constant C such that

r<cY 2k +21 +1 2t
- V& + 20+ Dk + 1) (k+ 1>

k>0

This is a decreasing series in k and therefore bounded above by the sum of the
k = 0 term and the integral

/°° dk 2k +21 4+ 1 JRC
0 V20 + Dk + 1) (k+ D2

We first compute the k = 0 term: this is

2041 2] 2

<
VeI +1) P T 20+ 1

which therefore tends to O for large / and is bounded for all /.
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To estimate the integral, we first change the variable from k to kI. The integral
becomes

/°° dk 2kl +21 +1 R
0 V&I 421 + 1) (kI + 1) (kI + 1)>
o0 2k +3 1

dk :
= 0 V& +2)(k) (k + 1)

and since 2u > 1, the latter integral is finite (and is independent of /).
We have therefore checked that both the k' = 0 term and the integral are bounded
by constants independent of / and this proves Theorem 2.5. O

Corollary 1. Let 3 < u < 1. Ifu' = 2u— 1, then Gy is a direct summand of 7,
restricted to SL(2,R).

Proof. We may replace m, and o, by the isomorphic (and isometric) modules 7_,
and o_,. By Theorem 2.5, the restriction map n—, — o0_, is continuous and
extends to the completions. Hence, 7, is, as a representation of SL(2,R), the
direct sum of the kernel of this restriction map and of 6_,/. This completes the
proof. O

Remark 1. This corollary is proved in [6]; the proof in this paper is that the
“abstract” projection map is realized as a simple geometric map of sections of a
line bundle on the flag varieties of G = SL(2,C) and H = SL(2,R).

3 Branching Laws for the Steinberg Representation

Let G = SL,(C) and H = SL,(R). and let 7 be the Steinberg Representation of G
(For a definition see Sect. 1.).

3.1 The Representation 7ty and a G-Invariant Linear Form

Consider the representation 7y = indg (0?). In this equality, ind refers to nonuni-
tary induction and 7, is the space of all continuous complex valued functions on G
such that for all g € G and man € MAN = B, we have

¢ (mang) = p*(a)$(g).

Here, p? is the product of all the positive roots of the split torus A occurring in the
Lie algebra of the unipotent radical N of B and M is a maximal compact subgroup
of the centralizer of 4 in G.

Now, 7y a nonunitary representation and has a G-invariant linear form L defined
on it as follows. The map C.(G) — 7y given by integration with respect to a left
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invariant Haar measure on B is surjective. Given an element ¢ € 7 select any
function ¢* € C.(G) in the preimage of ¢ and define L(¢) as the integral of ¢*
with respect to the Haar measure on G. This is well defined (i.e., independent of the
function ¢* chosen) and yields a linear form L. Moreover, if a function ¢ € 7y is a
positive function on G, then L(¢) is positive.

Under the action of the subgroup H on the G-space G/ B, the space G/B has
three disjoint orbits: the upper half plane H™, the lower half plane H™ and the space
H/B N H. The upper and lower half planes form open orbits. Given a function
¢ € C.(H™), we may view it as a function in 7y as follows. The restriction of
the character p? to the maximal compact subgroup of H is trivial; therefore, the
restriction of any element of 7, to H yields a function on H™ and also on H™.
Conversely, given ¢ € C, (H™T), extend ¢ by zero outside HT: we get a function,
which we will again denote by ¢, in 7. The linear form L applied to C.(H™)
yields a positive linear functional, which is H -invariant. Hence, the positive linear
functional L is a Haar measure on H™, respectively on H™.

3.2 The Metric on the Steinberg Representation of G

Consider the Steinberg representation 7 = Indg (x)- Here, Ind refers to unitary
induction from a unitary character y of B and again we consider only continuous
functions. Given two functions f, f’ € 7, the product ¢ = f f (f" is the complex
conjugate of f') lies in 77y. The linear form L applied to ¢ gives a pairing

(£ S =L )

on 7 which is clearly G-invariant. This is the G-invariant inner product on 7.

Given a compactly supported function f on H, which under the left action of
K N H acts via the restriction of a character y to K N H, we extend it by zero
to an element of ;. Then the inner product < f, f > is, by the conclusion of the
last paragraph in (2.1), just the Haar integral on H applied to the function | f |*€
C.(H™). Consequently, the metric on 7 restricted to C.(H ) N7 is just the restriction
of the L?-metric on C.(H).

Remark 2. We know that the Steinberg representation 7 of G is tempered and
is induced by a unitary character from the Borel subgroup of upper triangular
matrices. The tempered dual of G does not contain isolated points, since G does
not have discrete series representations. Moreover, the entire tempered dual is
automorphic [3]. Consequently, the Steinberg representation, which has nontrivial
(g, K)— cohomology, is not isolated in the automorphic dual of G.
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3.3 Decomposition of the Steinberg Representation ©

Proposition 3.1. The restriction to H of T contains the Steinberg representation
of H. More precisely, the restriction is a sum of the Steinberg representation ¢ of H,
and a sum of two copies of L*>(H/K N H), where K N H is a maximal compact
subgroup of H.

Proof. The Steinberg Representation 7 is unitarily induced from a unitary charac-
ter y of the Borel Subgroup B = B(C) of upper triangular matrices in G = SL,(C).
Recall that the group H has three orbits the space G/B; the upper half plane H™,
the lower half plane H™ and the projective line P! (R) over R. The first two are open
orbits and P'(R) has zero measure in G/B. From this, it is clear from Sect. 3.2,
that 7 is the direct sum of L?(H™, yxnpg) and L*(H™, %), where the subscript
denotes the restriction of the character y to the subgroup K N H and y* denotes the
complex conjugate of y.

The representations y and y* are such that their restrictions to K N H are
minimal K-types of holomorphic, respectively, antiholomorphic discrete series
representations of H = SL(2,R). The space L*(H*, yxnu) & L*(H™, xkny)
is therefore a direct sum of the Steinberg representation o and 2 copies of the full
unramified tempered spectrum, since any unramified representation contains y xn g
and y%n~py asa K N H-types.

The Proposition now follows immediately. O

Remark 3. The Steinberg representation 7 is unitarily induced from the unitary
character y. Thus, it is nonunitarily induced from the character §cy whose
restriction to B(R) is §3. Here, §2 denotes the character by which the split torus
S(R) acts on the Lie algebra of the unipotent radical of B(R). Similarly, §% denotes
the square of the character by which the split real torus in S(C) acts on the complex
Lie algebra of the unipotent radical of B(C).

The proposition was proved by restricting 7 to the open orbits; we may instead
restrict 77 to the closed orbit G(R)/B(R). We thus get a surjection of 7 onto the
space of K N H -finite sections of the line bundle on G(R)/B(R), which is induced
from the character 8]1% on B(R).

The latter representation contains the trivial representation as a quotient. We have
therefore obtained that the trivial representation is a quotient of the restriction of 77 to
the subgroup SL, (R). This shows that there is a mapping of the (h, K N H)-modules
of the restriction of 7 to h) onto the trivial module of H; however, this map does
not extend to a map of the corresponding Hilbert spaces, since the Howe—Moore
Theorem implies that the matrix coefficients of 7 restricted to the noncompact
subgroup H must tend to zero at infinity.
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3.4 A Generalization

Suppose that G; = SO(2m +1,1) and H; = SO(2m, 1) and let I, be the unitary
irreducible representation of G, which has nonzero cohomology in degree m, and
vanishing cohomology in lower degrees. Then M, is a tempered representation
[1]. Let =,, be the unitary representation of H; which has nontrivial cohomology
in degree m and vanishing cohomology below that. Then S, is a discrete series
representation [1]. Following the proof of Proposition 3.1, we obtain the following
proposition.

Proposition 3.2. The representation %, is a direct summand of the restriction of
the G—representation I1,, to H;.

Remark 4. 1f G = SO(2m + 1, 1), then G; hs no compact Cartan subgroup, and
hence L?(G1) does not have discrete spectrum. Let I" be an arithmetic (congruence)
subgroup of G. The notion of “automorphic spectrum” of G, with respect to the
Q-structure associated with I' was defined by Burger and Sarnak. [3] Since all the
tempered dual of G is automorphic [3], it follows that the representation I,, is not
isolated in the automorphic spectrum of Gj. Thus, representations with nontrivial
cohomology may not be isolated in the automorphic dual.

3.5 Functionsino C &

Denote by o the space of K N H -finite functions in the Steinberg representation
o of SLy(R). By Proposition 3.1, this space of functions restricts trivially to the
lower half plane. Moreover, in the space of L>-functions on the upper half plane,
the representation ¢ occurs with multiplicity one. In this subsection, we describe
explicitly, elements in o viewed as functions on the upper half plane.

We will now replace H = SL»(R) with the subgroup SU(1, 1) of G = SL,(C).
Since SU(1, 1) is conjugate to H, this does not affect the statement and proof of
Proposition 3.1. The upper and lower half planes are then replaced, respectively, by
the open unit ball in C and the complement of the closed unit ball in P!(C). With
this notation, elements of o are now thought of as functions on SU(1, 1) with the
equivariance property

F(ht) = 1) f(W)Yt € K N H,Yh € SU(1, 1).

Some functions in of o are explicitly described in [5] (Chap.IX, Sect.2,
Theorem 1 in p. 181 of Lang with m = 2). The eigenvectors of K N H in one

summand of ¢ are
;
_ B
$rtor=a =),
o
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withr =0,1,2,---. In this formula, an element of SU(1, 1) is of the form
« B
g o)’

la P =] BIP=1.

with «, 8 € C such that

These functions span the (h, K N H)-modules D.
Furthermore, the function ¢, vanishes on the complement of the closed disc. That

is, if g = (‘Cl Z) with | £ [> 1, then ¢hs(g) = 0.

It follows from the last two paragraphs that if g = (‘Cl 2) € SL,(C), then one of

the following two conditions hold:

Proposition 3.3. If | % |< 1, then for any matrix h = g) e SU(1,1) with

L
B
(00)h = (00)g (the inequality satisfied by g ensures that there exists an h with this
property), we have

1

2
¢2(g)_a |d|2_|c|2'

If| £ |> 1, then ¢(g) = 0.

Proof. The points on the open unit disc are obtained as translates of the point at
infinity by an element of SU(1, 1). Therefore, if % has modulus less than one, there

exists an element 7 € SU(1, 1) such that (c0)g = % = oo(h). This means that

u n
= h
=)

nl) € SL,(C) (elements of type b form the isotropy

u
0Ou
subgroup of G at infinity).

The intersection of the isotropy at infinity with SU(1, 1) is the space of diagonal
matrices whose entries have absolute value one. Therefore, we may assume that the
entry u above of the matrix b is real and positive. Then it follows that

for some element b =

1

shy=u>= ———
x8(b) = u A<

and this proves the first part of the proposition.
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The second part was already proved, as we noted that the restriction of the
functions in the discrete series representations to the complement of the closed unit
disc vanishes. O

Consider the decomposition
T=0®LY(KNH\H)® L*(KNH\H)

of 7 as a representation of the group H and recall that @ is a direct sum of discrete

series representations D @ D. It canbe proved that the space 7°° of smooth vectors
for the action of G = SL,(C) is simply the space of smooth functions on G which
lie in 77, by proving the corresponding statement for the maximal compact subgroup
K = SU(2) of G. A natural question that arises is whether the (h, K N H)-module
o contains any smooth vectors in 77. We answer this in the negative.

Proposition 3.4. The intersection
oNa®=0.

That is,  does not contain any nonzero smooth vectors in 7.

Proof. We will show the proposition for D. The proof for D is similar.

The intersection in the proposition is stable under H and hence under the
maximal compact subgroup K N H. If the intersection is nonzero, then it contains
nonzero K N H -finite vectors. The space D of K N H -finite vectors is irreducible
as a (h, K N H)-module. Therefore, the space of smooth vectors in D contains all
of D and in particular, contains the function f = ¢, introduced above. That is, the
function ¢, is smooth on G (and hence on K).

We will now view ¢, as a function on the group

SO0Q2) = (kg = (COSQ Sme) 10<0 <27l

—sin 6 cos 0

If | %:n@e |< 1, then there exists a real number ¢ such that

cos 6 cosh(?)

—sin@  sinh(r)’

By Proposition 3.3,

ko) = o 2u"? = cosh(t) > ———8M——.
92(ke) ! ® cos? 0 —sin® 0
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Moreover, it follows from the fact that # = bg (in the notation of Proposition 3.3)
that u~" cosh(t) = cos @ and hence that cosh?(f)u~2 = cos §~2. We have then:

1
ko) = ——
$a (ko) o2 @
if 0 < 6 <m/4and 0if /4 < 6 < m/2. This contradicts the smoothness of ¢, as
a function of 6 and proves the Proposition. 3.4. O

Remark 5. The Proposition shows in particular that although the completion of the
Steinberg module of SL(2,C) contains discretely the completion of the Steinberg
module of SL(2,R), this decomposition does not hold at the level of K-finite
vectors. This also follows from the results of Kobayashi (see [4]),
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Asympotics of Spherical Functions For Large
Rank: An Introduction

Jacques Faraut

Abstract We present the scheme developed by Okounkov and Olshanski for
studying asymptotics of spherical functions on a compact symmetric space as the
rank goes to infinity. The method is explained in the special case of the unitary
group, and results are stated in the general case.
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This paper has been written following a talk given as an introduction to the work
of Okounkov and Olshanski about asymptotics of spherical functions for compact
symmetric spaces as the rank goes to infinity. This topic belongs to the asymptotic
harmonic analysis, i.e., the study of the asymptotics of functions related to the
harmonic analysis on groups or homogeneous spaces as the dimension goes to
infinity. Such questions have been considered before, for instance, by Krein and
Schoenberg for Euclidean spaces, spheres and real hyperbolic spaces, which are
Riemannian symmetric spaces of rank one. The behavior is very different when the
rank is unbounded, and new phenomenons arise in that case.

In this introductory paper, we present the scheme developed by Okounkov and
Olshanski for studying limits of spherical functions on a compact symmetric space
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G(n)/K(n) as the rank n goes to infinity. These limits are identified as spherical
functions for the Olshanski spherical pair (G, K), with

G = G Gn), K = G K(n).

n=1 n=1

We will explain results and methods in the special case of the unitary groups U(n).
This amounts to studying asymptotics of Schur functions. The proof uses a binomial
formula for Schur functions involving shifted Schur functions. This presentation is
based on two papers: [Okounkov-Olshanski, 1998c¢], for the type A, and [Okounkov-
Olshanski, 2006], for the type BC. The case of the unitary groups have been
considered by Vershik and Kerov, following a slightly different method ([1982]).

In Sect. 5, we present without proof general results by Okounkov and Olshanski
for series of classical compact symmetric spaces, and finally in Sect. 6 we consider
the cases for which there is a determinantal formula for the spherical functions.

1 Olshanski Spherical Pairs

Let us recall first what is a spherical function for a Gelfand pair. A pair (G, K),
where G is a locally compact group, and K a compact subgroup, is said to be a
Gelfand pair if the convolution algebra L'(K\G/K) of K-biinvariant integrable
functions on G is commutative. Fix now a Gelfand pair (G, K). A spherical function
is a continuous function ¢ on G which is K-biinvariant, ¢(e) = 1, and satisfies the
functional equation

/K ok n)a(dk) = p(e(y) (x.y € G).

where « is the normalized Haar measure on the compact group K. The characters y
of the commutative Banach algebra L' (K\G/K) are of the form

() = /G FE)p(ym(d).

where ¢ is a bounded spherical function (m is a Haar measure on the group G,
which is unimodular since (G, K) is a Gelfand pair).

If the spherical function ¢ is of positive type (i.e., positive definite), there is an
irreducible unitary representation (1, ) with dim HX = 1, where #X denotes the
subspace of K-invariant vectors in H, such that

o(x) = (ulm(x)u),
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with u € HX, |lu|| = 1. The representation (v, ) is unique up to equivalence. An
irreducible unitary representation (7, ) with dim HX = 1 is said to be spherical,
and the set 2 of equivalence classes of spherical representations will be called the
spherical dual for the pair (G, K). Equivalently 2 is the set of spherical functions of
positive type. We will denote the spherical functions of positive type for the Gelfand
pair (G, K) p(A;x) (A € 2, x € G).

Consider now an increasing sequence of Gelfand pairs (G(n), K (n)):

Gn)CGn+1), Kn) CK(n+1), Kn)=G6Gn)NKn+ 1),
and define

G = G Gn), K = G K(n).

n=1 n=1

We say that (G, K) is an Olshanski spherical pair. A spherical function for the
Olshanski spherical pair (G, K) is a continuous function ¢ on G, ¢(e) = 1, which
is K-biinvariant and satisfies

lim p(xky)a,(dk) = ¢(x)p(y) (x,y € G),

n—=>00 J k()

where o, is the normalized Haar measure on K (7). As in the case of a Gelfand pair,
if ¢ is a spherical function of positive type, there exists a spherical representation
(7, ’H) of G (i.e., irreducible, unitary, with dim HX = 1) such that

o(x) = (ul(x)u),

with u € HX, ||lu|| = 1. In the same way, the spherical dual Q2 is identified with the
set of spherical functions of positive type. Such a function will be written ¢(w; x)
(we R, x €q).

On €2, seen as the set of spherical functions of positive type, we will consider the
topology of uniform convergence on compact sets.

We will consider the following question. Let €2, be the spherical dual for the
Gelfand pair (G(n), K (n)), and let us write a spherical function of positive type for
(G(n), K(n)) as ¢, (A, x) (A € Q,, x € G(n)). For which sequences (A™), with
A e Q.. does there exist w € § such that

lim ¢,(A":x) = p(w;x) (x € G)?

In the cases we will consider, there is, for each n, a map

T, :Q, > Q,
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such that, if
lim 7,(A") = 0,
n—>oo
for the topology of €2, then
lim ¢,(A"); x) = @(w; x).
n—od

It is said that (A(™) is a Vershik—Kerov sequence.

2 The Unitary Group

For a compact group U, we consider the pair
G=UxU, K={u,u)|luelU} ~U.

Then, G/K >~ U. A K-biinvariant function f on G is identified to a central function
¢ on U by

f(x,y) =py™).

The convolution algebra L'(K\G/K) is isomorphic to the convolution algebra
Ll(U )eentral Of central integrable functions on U, which is commutative. Hence,
(G, K) is a Gelfand pair. We will say that a continuous central function ¢ is spherical
if p(e) = 1, and

/U oCayu™a(du) = p()p(y) (v, y € U),

where « is the normalized Haar measure on U'. In fact, it amounts to saying that the
corresponding function f on G is spherical for the Gelfand pair (G, K).
If (7, H) is an irreducible representation of U, then the normalized character

X (1)
X (e) '

is a spherical function, and all spherical functions are of that form. Hence the
spherical dual 2 for the pair (G, K) is the dual U of the compact group U.

For U = U(n), the unitary group, the spherical dual €2, = U/(;) is identified to
the set of signatures

ou) = X (u) = tr(7(w)).

A:(Al,...,/\n), /\,’ e, /\1 szn



Asympotics of Spherical Functions For Large Rank: An Introduction 255

The character y, of an irreducible representation in the class A is given by a Schur
function. Define, fort = (¢1,...,t,) € (C*",a = (a1,...,a,) € Z",

Ag(t) = det(t]").
For a signature A, the Schur function s, is given by

Ax+5(t)
Vi)

(1) =
where§ = (n—1,n—2,...,1,0), V(¢t) = As(t) is the Vandermonde determinant:

V(t) = l—[(li — l‘j).

i<j
For a diagonal matrix, u = diag(t, ..., ),

() = 5;3.(2).

3 The Infinite Dimensional Unitary Group

The infinite dimensional unitary group U(oo) is defined as
o0
U(oo) = | UM).
n=1

One associates to U(oo) the following inductive limit of Gelfand pairs:

Gn)=Um)xUm), Kmn) = {(u,u) | ue U(n)},

G =[G = U(c0) x U(c0).

n=1
K =|JK@mn) = {@wu)|ue U
n=1

Let us first state the following result by Voiculescu [1976]. Consider a power
series

oo
o) =) cnt™.

m=0
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with

o0
en =0, D)= cu=1 Jt|=<L

Define the function ¢ on U(co) by
¢(g) = det O(g).

This means that the function ¢ is central, and, if g = diag(¢y,...,#,,1,...), then

p(g) = @(11) ... ().

Theorem 3.1 (Voiculescu, 1976). The function ¢ is of positive type if and only if
® has the following form:

ot v ] LB

with

o0
@ =0.0<Be <1y =0 (o + ) < oo.
k=1

We propose to call such a function a Voiculescu function. Let Q¢ be the set of
triples w = (o, B, y) as above. We will write

(1) = P(w: 1),

and consider on €2 the topology corresponding to the uniform convergence of the
functions ®(w; -) on the unit circle. This topology can be expressed in terms of the
parameters «, 8, y as follows: for a continuous function u on R, put

Ly(@) =Y exulen) + Y Beu(—Br) + yu(0).

k=1 k=1

Then the topology of €2 coincides with the initial topology defined by the functions
L, (i.e., the coarser topology for which all the functions L, are continuous).

The Voiculescu function ®(w; ) is meromorphic in ¢, with poles 1 + i It is
holomorphic in the disc |t| < r, with r = 1 + inf % Its logarithmic derivative is
holomorphic near 1:

d o0
d—zlog P(w;1+2z2) = Z am?",
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with
o0 o0
ao=y+y e+ P
k=1 k=1
o0 o0
am :Z:Ollrcn+l_i_(_l)mZ:IBIrcn+l7 m>1.
k=1 k=1
Observe that

am = Ly, (@) with upy(s) = s".

Theorem 3.2. The spherical functions of positive type on U(c0) are the following
ones:

e, w1 g) =det®(wh;g)det D(w ; g7,
with o', o~ € Q.
[Vershik-Kerov, 1982], [Boyer, 1983].

Hence, the spherical dual of the Olshanski spherical pair (G, K) associated to
U(oo) is the set Q = Qg x Qg of pairs (0™, w™).
We will now describe the sequences of signatures (1)) with

A0 = (2,2 €,
for which there exists w = (a)+, ™) such that
lim ¢,(A":g) = p(0™. 071 g).
n—>oo
We will first consider the case of positive signatures. We say that a signature A is
positive if the numbers A; are > 0, and we will denote by 2, the set of positive
signatures in €2,,. One defines the Frobenius parameters a = (@;) and b = (b;) of a

positive signature A as follows:

a; = A, —1i ifA; > i, a; = 0 otherwise,
b; =/Vj —j+1 if)L’j > j —1, b; = 0 otherwise,
where A’ is the transpose signature. For instance, if A = (6,4,4,2,1), thena =
(5,2,1,0,0),b = (5,3,1,0,0).
We define the map

Tn:Q;:__>907 AHU):((X,,B,)/),
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by
aj bk
o = —, ,Bkz—, )/20.
n n
Theorem 3.3. Ler A" = ()Lgn), .. ,)L,(ln) ) be a sequence of positive signatures.

Assume that
Jim T () = o
for the topology of Q2. Then, for g € U(c0),
lim ¢, (A" g) = det ®(w:g).
uniformly on each U(k).
[Vershik-Kerov, 1982], [Okounkov-Olshanski, 1998c].

Example. For two numbers p, k € N with p > k, consider the positive signature

A=(p,...,p,0,...),

where p is repeated k times. The Young diagram of A is a rectangle with sides p
and k. The Frobenius parameters are a = (a;) with

ai=p—i ifi <k, a =0 ifi >k,
and b = (b;) with
bj=k—j+1 ifj<k b;j=0 ifj>k.
Observe that
Zai +ij = kp.
For a continuous function # on R,

LT 0) :Zk:Pn—iu<pn—i)+Zk:k—£+lu(_k—’/1'+1).

i=1 Jj=1

Consider now two sequences (p™) and (k), and let (1) be the correspond-
ing sequence of signatures. Assume that

p(n),\,\/ﬁ, k(’l),\,\/ﬁ_

Then
lim L,(T,(A")) = u(0).
n—o00
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This means that
lim 7,(A") = o,

n—o0

with w = (0,0, 1), i.e. o = O, ,Bk — O, y = 1. Therefore
lim @n(l(");g) = det(exp(g — 1)) = ote=D)
n—o0

We consider now the general case. To a signature A, one associates two positive
signatures A1 and A7: if

Al le ZOZAP-H sznv

then
AT = A1, 25,0,.0), AT =(A4n ..., =2,p41,0,..0).

One adds as many zeros as necessary to get positive signatures A*, 1~ in QF. Then
we define the map

T,: 2, > Q=QyxQ

by extending the map 7,, previously defined:
T,(A) = (T,(A"), T,(A7)).
Theorem 3.4. Let (A")) be a sequence of signatures, with A" € Q,,. Assume that
lim 7,(A") =w = (0*,07).
n—o0
Then, for g € U(0c0),
lim ¢,(A"; g) = det D(w™; g) det D(w ;g7")
n—o0

uniformly on each U(k).

We will prove Theorem 3.3 in Sect. 5. For the proof of Theorem 3.4, see
[Okounkov-Olshanski, 1998c], and also [Faraut, 2008]. The proof of Theorem 3.3
will involve a binomial formula for Schur functions.

4 Binomial Formula for Schur Functions

We will use a formula for Schur expansions due to Hua ([Hua, 1963],
Theorem 1.2.1).
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Proposition 4.1 (Hua’s formula). Consider n power series:
o0
fiw)y =Y e,
m=0

which are convergent for |w| < r for some r > 0. Define the function F on C" by

det(fi (Zj))

F(z)=F(zi.....2) = 70

lzj| <r.

Then F admits the following Schur expansion:

F@) = ) dmsm(),

my==my =0

with 4
am = det(c,(;iﬂ_j).

In particular

. det fl (Zj) (@)
1 ———— = F(0) = a9 = det ).
zl,...l,z,,—>0 V(2) 0) =ay € (cn—j)
For a positive signature m = (my,...,m,), the shifted Schur function sy, is

defined, for a signature A = (11,...,1,) by

S* _ det([ki + Si]m/'-l—Sj)
" det([A; + &is;)

3

where §; = n —1i, and
[alk =a@—1)...(a—k +1).

The functions s (A) are shifted symmetric functions. The ordinary Schur function
sm(x) is symmetric, i.e.,

Sm(oe o X Xigt, o) = Sm(oe o X1, X, .00,
while the shifted Schur function s (1) satisfies

S;:l(...,/\,',/\,’+1,...) :s;:l(--'ski-i-l_lvki +1,...).
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The algebra of symmetric functions is denoted by A, and the algebra of shifted
symmetric functions will be denoted by A*. (See [Okounkov-Olshanski, 1998a]
and [1998b].)

Theorem 4.2 (Binomial formula).

si(l4zi,..0, 1 +2) !
Sl(l,...,l) Z ( “1‘8)'

Sm(A)Sm (2).

my=+>my >0

For n = 1 this is nothing but the classical binomial formula:

[e.]

A+t =) —[/\]mw

mO

Proof. The theorem is a straightforward application of Hua’s formula (Proposi-
tion 4.1) in the case

[e.]

fiw) = (1 whHi =" —[A + 8"

mO

One observes that

VO +8)  det([ +81s,)

si(1,...,1) = — O
sl D= 5
If A is a positive signature, then s (1) = 0if m &€ A, and
4z 1+ z,) 5,
= 5= (A)sm(2).
S/l(l,...,l) lnXC%L(m—i_S)' m( )m()
If, in Theorem 4.2, one takes z; = z,z2 = 0,...,z, = 0, then one obtains

Lemma 3 in [Vershik-Kerov, 1982]:

sl(1+z,1,..., - 1 .
= h A/ m-
sl .. 1 Z=:n(n+1) +m-—1) )z

The shifted complete symmetric function 4 (1) is denoted by ®,,(1) in [Vershik-
Kerov, 1982]. By using the fact that the Value of a determinant does not change
when adding to a column a linear combination of the other ones, one obtains, with
g,’ = A.i +n—i .
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Eilmtn—1  [liln— .. 1
. 1 Co)mtn—1  [L2ln— .. 1
Enlm+n—1 [aln— ... 1
[£1]m+n—1 e’f_z A |
1 Gl 6572 0]
R0
[en]m+n—l 62_2 R |

By expanding now [x],4+,—1 in powers of x:
Xlm4n—1 =x(x=1)...(x —m—n+2)
m
= Z em_k(O, —1,...,—(m+n-— 2))xk+”_l
k=0
+ terms of degree < n — 1,

where ey is the k-th elementary symmetric function, one obtains the formula from
Lemma 3 in [Vershik-Kerov, 1982]:

hn() =Y emi(0.=1.....—(m + n — 2)) ke (0).
k=0

5 Proof of Theorem 3.3

We follow the method of proof of [Okounkov-Olshanski, 1998c].
(a) The morphism A — C(S2y)

One defines an algebra morphism A — C(£2¢) which maps a symmetric function
f to a continuous function f on 2. Since the power sums

Pim(X1, ooy Xnyetn) =Zx§"
i

generate A as an algebra, this morphism is uniquely determined by their images p,,.
One puts, for w = (o, B, y) € Qop, witha = (ax), B = (Bk),
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o0 o0
Pi@)=> o+ B+
k=1 k=1
o0 o0
Pml@) =Y o+ (=D)" Y By (m>2).
k=1 k=1
The functions p,, are continuous on £2y. In fact, as we saw above, p,,(w) = L,(w),

with u(s) = s (m > 1).

Proposition 5.1. The functions il:,: (w) are the Taylor coefficients of the Voiculescu
Sfunction ®(w;t)att = 1:forzeC, |zl <r = inf%,

o0
P(:l+2) =Y hu(@)".
=0
Proof. One starts from the generating function of the complete symmetric

functions h,,:
o0 n 1
H(x;z) = th(x)z’" = l_[ ] .
m=0 - sz

Jj=1

Its logarithmic derivative is given by
d o0
L ogH:D) = 3 ()"
=0
On the other hand, as we saw in Sect. 3,

d N
@ log ®(@:1+2) = Y put1(@)".

m=0

Therefore, the coefficients ¢, (w) defined by
o
P(w:1+2) =Y (@)
=0

are images, by the morphism f* - f , of the complete symmetric functions #,,:
en(@) = h(®). O

Corollary 5.2. Forz = (z1,...,2,) € C", |zj| <1,

l—[ D(w; 1 +7z;) = Z Sm (@) Sm (2).

Jj=1 my==m;=0
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Proof. Observe that the statement of Proposition 5.1 can be written as
H(w:z) = ®(w; 1 +2),
and apply the morphism f f to both sides of the Cauchy identity
- 1
H H(x;zj) = l_[ m = Z Sm ()5m (2).
j=1 i,j= my=-2my >0
(b) Asymptotics of shifted symmetric functions
Proposition 5.3. Consider a sequence (A™) of positive signatures with A" € Qf
and let w € Q. Assume that, for the topology of 2,
lim 7,(A") = w.
n—>oo
Then, for every shifted symmetric function f* € A*
im Loy = F
lim — f*(A") = f(o).
n—>o00 pM
where m is the degree of f*, and f is the homogeneous part of degree m in f*.
We will prove the statement in the special case f* = g

au) =Y (i —i + 1 = [=i + 1]).

i>1

The function g, (A1) is shifted symmetric of degree m and the homogeneous part
of degree m is equal to the Newton power sum p;,(A). Since the functions g, (1)
generate A* as an algebra, the statement of the proposition will be proven.

Lemma 54. Let a = (a;), b = (b;) be the Frobenius parameters of the positive
signature A. Then

an) =" +ailm—Y [1=bjln.

i>1 j>1

Proof of Proposition 5.3. Let a™ = (ai(”)) and b = (b}")) be the Frobenius
parameters of the positive signature A", and w = (a, B, y) € Q. with & = (o),
B = (Br)- By assumption, for every continuous function u on R,

lim L,(T,(A")) = Ly(w),
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or

(n) (n) b(”) b(”)

a. a. : :
lim El_u I +§:J_u L
n—oo n ( n ) n ( n

i>1

= Z apu(oy) + Z,Bku( Bi) + yu(0).
k=1

k=1

Consider the sequence of the functions

un (s) = [ns + 1.
Then
1
Lu,, (Tn(k(n))) = _q;;(k(n))
nm
On the other hand, the sequence u,(s) converges to the function u(s) = s"!

uniformly on compacts sets in R, and

Lu(@) = pm(w).

It follows that

1
lim —q* (A") = (). O
n—o0 pmn
(c) End of the proof of Theorem 3.3
To finish the proof, one applies the following:

Proposition 5.5. Let v, be a sequence of C®°-functions on the torus T of positive
type, with ¥,(0) = 1, and W an analytic function in a neighborhood of 0. Assume
that, for every o = (ay, ..., o) € N,

Jlim 0y,,(0) = 0"y (0).

Then  has an analytic extension to T*, and , converges to r uniformly on T*.

For the proof, see for instance [Faraut, 2008], Proposition 3.11.
We consider a sequence of positive signatures (1) such that

lim 7,A") = w.
n—0o0
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Put, with ; = /%,
Yty ... 1) = qon(/\(”);diag(tl, 1),

k
Yt ) =[] @(:1)).

Jj=1

By Theorem 4.2,

8!
Yol +z1,..., 1+ z¢) = Z —s,’;(k("))sm(zl, ...

(m + §)!

mpgzzm; 20

Then, by Proposition 5.3,

. 1 * (n) _ o~
Jim msm@ ) = Sm(w),

and, by Corollary 5.2,
k
Y m@sm@..m) =[] @@ +2) =y +z..
myzezmy j=1
Finally, observing that

(m + 5)!
s

™ (n > o),

we obtain, by Proposition 5.5,

nl_i)HC}OWn(tlwn,tk) =y(t,... . ),

J. Faraut

2 Zk).

oL+ ze).

uniformly on T*. In fact, the Taylor coefficients of ¥, as a function on T*, are finite
linear combinations of the coefficients in the Schur expansion of ¥, (1 + zi, ...,

1+ z,).

6 Inductive Limits of Compact Symmetric Spaces

O

One knows that if G/ K is a Riemannian symmetric space, then (G, K) is a Gelfand

pair. Let G(n)/ K (n) be a compact symmetric space of rank n, and

g(n) = t(n) + p(n)
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be a Cartan decomposition of the Lie algebra g(n) of G(n). Fix a Cartan subspace
a(n) C p(n), a(n) ~ R", and put A(n) = expa(n) >~ T". Let R, denote the system
of restricted roots for the pair (a(n)c, g(n)c).

(a) Classical series of type A

We consider one of the following series of compact symmetric spaces.

G(n) Kn) d
U(n) Oomn) 1
Umn)xUm) Un) 2
U(2n) Sp(n) 4
The system R,, of restricted roots is of type A,—;. For a suitable basis (e1, . .., e,)

of a(n), the restricted roots are
O{,'j=8,'—£j (175])

((e1, ..., &) is the dual basis), with multiplicities d = 1,2, 4.

These symmetric spaces appear as Shilov boundaries of bounded symmetric
domains of tube type. In particular, the symmetric space U(n)/O(n) can be seen
as the space of symmetric unitary n x n matrices. The subgroup A(n) can be taken
as the subgroup of unitary diagonal matrices. The space U(n) /O (n) can also be seen
as the Lagrangian manifold A(#n), the manifold of n-Lagrangian subspaces in R?".

The spherical dual €2, of the Gelfand pair (G(n), K (n)) is parametrized by
signatures

A=A, 0 ), A €Z, Ay = - = Ay

The restricted highest weight of the spherical representation corresponding to A is
Yimi Aiki.

The restriction to A(n) ~ T" of the spherical function ¢, (4; x) is a normalized
Jack function: fora = (¢1,...,1t,),

Ly, ... tha)

n/\; = s
enka) = T e

with @ = % For d = 2, it is a Schur function. (See [Stanley, 1989] for definition
and properties of Jack functions, and also [Macdonald, 1995], Sect. VI.10.)
The Jack functions are orthogonal with respect to the following inner product:

P10) = [ POO@IVOL pan.

where f is the normalized Haar measure on T". With ¢; = el
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60 — 6 |
d _ .U
V()| = | |4 sm—2 ,
j<k
dr) = do; ...do,.
plan) = 56

We consider now the Olshanski spherical pair (G, K) with

G=JGom. k=[JKm.

n=1 n=1

We state without proof the main results by Okounkov-Olshanski ([1998c]). The
spherical dual for the pair (G, K) is, as in the case of the infinite dimensional unitary
group, parametrized by a pair o = (01, w7), ie., Q = Qy x Qp. For o € Qo,
o= (o, B,y), witha = (), B = (Br), define

oo
O (@ 1) = 10D [ — =D
k=1 (1 — 2ot — 1)) ’

(t eT).

For d = 2, it is the Voiculescu function we considered in Sect. 3.

Theorem 6.1. The spherical functions of positive type, for the Olshanski spherical
pair (G, K), are given, fora = (t1,...,t,,1,...) € A ~ (), by

‘ 1
p@:a) = [[ 2" 10 (w_; t—) :
j=1 /
withw = (0F,07) € Q.

One defines the map 7, : 2, — Q = Qg x Qo as in the case of the unitary
groups (see Sect. 3).

Theorem 6.2. Let (A"™) be a sequence of signatures with A" € Q,,. If
lim 7,(A") =0 = (0T, 0").
n—od

then, witha = (t1,...,t,1,...) € A,

k
1
lim ¢,(A":a) = [] @ (@F:1;)0 (a)_; —) .
n—00 =1 Zj
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Since there is no simple formula for the Jack functions for @ # 1, the proof for
d # 2 is more difficult than in the case of the unitary groups. However, it follows the
same lines. The first step is a binomial formula for the normalized Jack functions.

(b) Classical series of type BC

We consider the following series of compact symmetric spaces.

G(n) K(n) Ro d _p g
1 0@2n)x 0@2n) 0(2n) D, 2 0 0
2 0@2n+1)x0@2n+1) 02n+1) B, 2 2 0
3 Sp(n) x Sp(n) Sp(n) ¢ 2 0 2
4 Spn) U(n) c, 1 0 1
5 0O(4n) U(2n) C, 0
6 0(4n+2) U2n+1) BC, 4 4 1

OQ2n + k) Om)yxOm+k) BGC, 1 k 0
8 UQRn+k) Un)yxUm+k) BC, 2 2k 1

Sp(2n + k) Sp(n) x Sp(n +k) BC, 4 4k 3

The possible roots and multiplicities are

o | dei ke og 2¢&;

d P q

Series 1, 2, and 3 are compact groups seen as symmetric spaces.

Series 4, 5, and 6 are compact Hermitian symmetric spaces.

Series 7, 8, and 9 are Grassmann manifolds: spaces of n-subspaces in [F2n+k s
withF =R, C,or H, d = dimgF, p = dk,q = d — 1. If k = 0, the root system
R, is of type C,,. The symmetric space U(2n + k)/U(n) x U(n + k) is Hermitian
as well. For series 7, 8, and 9 the Cartan subgroup A(n) can be taken as the group
of the following matrices:

Mgy

cos % 0 —sin %
a(f) = 0 I 0 ,
sin £ 0 cos 2

2 2

with 8 = (6y,...,6,), and

9 . 9] 9n . 9 . . 91 . 9}1
cos — = diag | cos —,...,cos — |, sin—- =diag|sin—,...,sin— |.
2 2 2 2 2 2
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We assume that the multiplicities d, p, ¢ don’t depend on n. The spherical dual €2,
is parametrized by positive signatures:

A=A, .. ), AieN, A > >4, >0.
The restriction to A(n) =~ T" of the corresponding spherical function is a

normalized Jacobi polynomial. (See Hypergeometric and Special Functions, by
Heckman, in [Heckman-Schichtkrull,1994], for definition and properties of Jacobi

polynomials associated to a root system.) Fora = (¢#1,...,t,) € A(n),
Paltr, - tn)
on(Aia) = —.
! Pa(l,.... 1)

The polynomials 3, are orthogonal with respect to the inner product

10) = [ PRBIDOIBW)

with, if ; = €%,

d d
by =[] (sin b _; 9]-) (sin b ; ej) I1 (sin %)p (sin 0;)7.

i<j i=1

By putting x; = cos6; = % (t; + 1Y), the inner product is carried over an integral
on [—1, 1]" with the weight

[T = x4 T = x4+ x)?,

i<j i=l1

witha = % (p+gq—1),8= % (g —1). We will write P, for the Jacobi polynomial
in the variables Xx;:

1 _
Pk(xl,...,x,,):%A(Il,...,tn), Xi :E(li—i-li l).

As in Sect. 6(a), we define, for w € Q,

[e.]

& D (w:r) = I ] LHAE=D e,

d

k=1 (1 — 2oy (t - 1)) ’
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Theorem 6.3. The spherical dual for the pair (G, K) is parametrized by Q. The
spherical functions are given, fora = (t1,...,t,,1,...) € A ~ T©®) by

n
1
ca) = d@D ;t-cb(d) ),
o(ia) = [T o wiao (: -

Jj=1

with w € Q.

One defines the map 7, : 2, — £ as in the case of the unitary groups for
positive signatures.

Theorem 6.4. Let (")) be a sequence of signatures, with A" € Q,,. If
lim 7,(A") = w,
n—>oo

then, fora = (t1,...,1;,1,...),

k
1
: (n). — @) (et VP -
e L Gl

7 The Case d = 2. Determinantal Formula, Binomial Formula
for Multivariate Jacobi Polynomials

In this last section, we will present, in case d = 2, a determinantal formula for the
multivariate Jacobi polynomials, and then a binomial formula.

In their paper, Berezin and Karpelevi¢ gave a determinantal formula for the
spherical functions on the Grassmann manifolds U(p + q)/U(p) x U(q) ([1958],
see also [Takahashi, 1977], [Hoogenboom, 1982]). In fact, such a determinantal
formula exists in all cases with d = 2.

Let 1 be a positive measure on R with infinite support and finite moments: for
allm e N,

/ [#|" pu(dt) < oo.
R

By orthogonalizing the monomials ™, one obtains a sequence of orthogonal
polynomials p,, (t):

/Rpg(t)pm(t)u(dt) =0 ifl #m.
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For a positive signature A, define the multivariate polynomials Pj

det(py, +5 (x))

Pk(xl,...,xn)= V(x) s

where A is a positive signature, and, as above,§ = (n — 1, ..., 1,0). The symmetric
polynomials P, are orthogonal with respect to the inner product

(P|O) = /Rn P(x1,....x)0(x1,....x)V(x1,....x,)°(dx1) ... p(dxy).

If the polynomials p,, are normalized such that
pm(t) = t™ 4+ lower order terms,

then
Py(x1,...,x,) = 8sp(x1,...,x,) + lower order terms.

Consider now the measure p on R given by

1
/ Fludr) = / FO =01+ b,
R —1

with o, B > —1. Then, the orthogonal polynomials with respect to this measure are
the Jacobi polynomials p,,(t) = p£,7 h) (t). The multivariable polynomials PA(a"6 )

given by, for x = (x1,...,x,),

det(pyL} (x7))

PP = =

are orthogonal for the inner product

(PlQ) = /[_1 " P(X)W]—[(xi —x;)* l—[(l —x)%(1 + x;)Pdx; ... dx,,

i<j i=1

and are, up to a constant factor, the Jacobi polynomials associated with the root
system of type BC,, and the multiplicity (d, p,q), withd = 2.
Normalized by the condition p,(,f 2 (1) = 1, the Jacobi polynomials p,(,f #) admit

the following hypergeometric representation:
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1—1¢
PPty =5 F (—m,m+a+ﬁ+ Lo+ I;T)

=Xm:(_m)k(m+a+,3+1)ki(l—t)k

P (o + D)y K\ 2

Let us introduce the notation

o 1
o=#, {=m+ o,

(.ol = (2 —0%)...(* — (0 + k —1)?).

The binomial formula for the Jacobi polynomial p( “P) can be written as

. m "1 Lol w
PP 14 w) = ;a() wh Z '(Ol-i-l)k( )

By Hua’s formula,
PED(LLLL 1) = det(al ) = 2757 ! ]_[ !y e,
A (@ + 1)

with £; = A; + 6; + 0. Since
det([¢;.0ls,) = VL5, ....00).
Theorem 7.1.

PP A4z, 1+ 2)
PP, .. 1)

B S\ [T= (e + 1)s,
_ Il  Li=1 — ST (A)su(zi s 20),
;LZC% (n+ ! ni=l(“ + 1)#i+51 : e

with
det([€;, 0l +5;)

S*(A) =
u®) Ve, e

, Li=MA+6 +o.

Proof. This is once more an application of Hua’s formula (Proposition 4.1). In the
present case
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Ai+6; Ai+6;

ﬁ(w)—p§“f§(1+w)= Z hit8), Z

k=0

1 [elso—]k —k
K@+ e W,

with £; = A; + 6; + 0. Then we get

P;a’ﬁ)(l—i—zl,...,l—i-z,,): Z auS (2L, .. 2n)s
1= >0
with
a, = det(cM ) = ! ! det([li, 0]y, +5,)
g Hitd (M= + Dyyss, R
Observe that, if 4 € A, thena, = 0. O
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