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Preface to the Series

Contributions to Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are cru-
cial in coping with the challenges arising in the sciences and in many areas of their
application. New concepts and approaches are necessary in order to overcome the
complexity barriers particularly created by nonlinearity, high-dimensionality, mul-
tiple scales and uncertainty. Combining advanced mathematical and computational
methods and computer technology is an essential key to achieving progress, often
even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-fields,
as well as to scientific disciplines that are based on mathematical concepts and meth-
ods, including sub-fields of the natural and life sciences, the engineering and so-
cial sciences and recently also of the humanities. It is a major aim of this series
to integrate the different sub-fields within mathematics and the computational sci-
ences, and to build bridges to all academic disciplines, to industry and other fields
of society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research, as well as surveys of the
state-of-the-art in a manner not usually possible in standard journal publications. Its
volumes are intended to cover themes involving more than just a single “spectral
line” of the rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collecting
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viii Preface to the Series

papers submitted in advance. The exchange of information and the discussions dur-
ing the meetings should also have a substantial influence on the contributions.

This series is a venture posing challenges to all partners involved. A unique
style attracting a larger audience beyond the group of experts in the subject areas of
specific volumes will have to be developed.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Heidelberg University, Hans Georg Bock
Germany Willi Jäger

Otmar Venjakob



Preface

During the more than 100 years of its existence, the notion of the fundamental group
has undergone a considerable evolution. It started by Henri Poincaré when topology
as a subject was still in its infancy. The fundamental group in this setup measures
the complexity of a pointed topological space by means of an algebraic invariant, a
discrete group, composed of deformation classes of based closed loops within the
space. In this way, for example, the monodromy of a holomorphic function on a
Riemann surface could be captured in a systematic way.

It was through the work of Alexander Grothendieck that, raising into the focus
the role played by the fundamental group in governing covering spaces, so spaces
over the given space, a unification of the topological fundamental group with Galois
theory of algebra and arithmetic could be achieved. In some sense the roles have
been reversed in this discrete Tannakian approach of abstract Galois categories:
first, we describe a suitable class of objects that captures monodromy, and then, by
abstract properties of this class alone and moreover uniquely determined by it, we
find a pro-finite group that describes this category completely as the category of
discrete objects continuously acted upon by that group.

But the different incarnations of a fundamental group do not stop here. The con-
cept of describing a fundamental group through its category of objects upon which
the group naturally acts finds its pro-algebraic realisation in the theory of Tannakian
categories that, when applied to vector bundles with flat connections, or to smooth
�-adic étale sheaves, or to iso-crystals or . . . , gives rise to the corresponding funda-
mental group, each within its natural category as a habitat.

In more recent years, the influence of the fundamental group on the geometry
of Kähler manifolds or algebraic varieties has become apparent. Moreover, the
program of anabelian geometry as initiated by Alexander Grothendieck realised
some spectacular achievements through the work of the Japanese school of Hiroaki
Nakamura, Akio Tamagawa and Shinichi Mochizuki culminating in the proof that
hyperbolic curves over p-adic fields are determined by the outer Galois action of the
absolute Galois group of the base field on the étale fundamental group of the curve.

A natural next target for pieces of arithmetic captured by the fundamental group
are rational points, the genuine object of study of Diophantine geometry. Here there
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x Preface

are two related strands: Grothendieck’s section conjecture in the realm of the étale
arithmetic fundamental group, and second, more recently, Minhyong Kim’s idea to
use the full strength of the different (motivic) realisations of the fundamental group
to obtain a nonabelian unipotent version of the classical Chabauty approach towards
rational points. In this approach, one seeks for a nontrivial p-adic Coleman analytic
function that finds all global rational points among its zeros, whereby in the one-
dimensional case the number of zeros necessarily becomes finite. This has led to
a spectacular new proof of Siegel’s theorem on the finiteness of S-integral points
in some cases and, moreover, raised hope for ultimately (effectively) reproving the
Faltings–Mordell theorem. A truely motivic advance of Minhyong Kim’s ideas due
to Gerd Faltings and Majid Hadian is reported in the present volume.

This volume originates from a special activity at Heidelberg University under the
sponsorship of the MAThematics Center Heidelberg (MATCH) that took place in
January and February 2010 organised by myself. The aim of the activity was to bring
together people working in the different strands and incarnations of the fundamental
group all of whose work had a link to arithmetic applications. This was reflected
in the working title PIA for our activity, which is the (not quite) acronym for π1–
arithmetic, short for doing arithmetic with the fundamental group as your main tool
and object of study. PIA survived in the title of the workshop organised during
the special activity: PIA 2010 — The arithmetic of fundamental groups, which in
reversed order gives rise to the title of the present volume.

The workshop took place in Heidelberg, 8–12 February 2010, and the abstracts
of all talks are listed at the end of this volume. Many of these accounts are mirrored
in the contributions of the present volume. The special activity also comprised ex-
pository lecture series by Amnon Besser on Coleman integration, a technique used
by the non-abelian Chabauty method, and by Tamás Szamuely on Grothendieck’s
fundamental group with a view towards anabelian geometry. Lecture notes of these
two introductory courses are contained in this volume as a welcome addition to the
existing literature of both subjects.

I wish to extend my sincere thanks to the contributors of this volume and to all
participants of the special activity in Heidelberg on the arithmetic of fundamental
groups, especially to the lecturers giving mini-courses, for the energy and time they
have devoted to this event and the preparation of the present collection. Paul Seyfert
receives the editor’s thanks for sharing his marvelous TEX–expertise and help in
typesetting this volume. Furthermore, I would like to take this opportunity to thank
Dorothea Heukäufer for her efficient handling of the logistics of the special activity
and Laura Croitoru for coding the website. I am very grateful to Sabine Stix for
sharing her organisational skills both by providing a backbone for the to do list of
the whole program and also in caring for our kids Antonia, Jaden and Lucie. Finally,
I would like to express my gratitude to Willi Jäger, the former director of MATCH,
for his enthusiastic support and for the financial support of MATCH that made PIA
2010 possible and in my opinion a true success.

Heidelberg Jakob Stix
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Chapter 1
Heidelberg Lectures on Coleman Integration

Amnon Besser∗

Abstract Coleman integration is a way of associating with a closed one-form on a
p-adic space a certain locally analytic function, defined up to a constant, whose dif-
ferential gives back the form. This theory, initially developed by Robert Coleman
in the 1980s and later extended by various people including the author, has now
found various applications in arithmetic geometry, most notably in the spectacular
work of Kim on rational points. In this text we discuss two approaches to Coleman
integration, the first is a semi-linear version of Coleman’s original approach, which
is better suited for computations. The second is the author’s approach via unipo-
tent isocrystals, with a simplified and essentially self-contained presentation. We
also survey many applications of Coleman integration and describe a new theory of
integration in families.

1.1 Introduction

In the first half of February 2010 I spent 2 weeks at the Mathematics Center Hei-
delberg (MATCH) at the university of Heidelberg, as part of the activity PIA 2010
– The arithmetic of fundamental groups. In the first week I gave 3 introductory lec-
tures on Coleman integration theory and in the second week I gave a research lecture
on new work, which was (and still is) in progress, concerning Coleman integration
in families. I later gave a similar sequence of lectures at the Hebrew University in
Jerusalem.

A. Besser (�)
Department of Mathematics, Ben-Gurion, University of the Negev, Be’er-Sheva, Israel
e-mail: bessera@math.bgu.ac.il

∗ Part of the research described in these lectures was conducted with the support of the Israel

J. Stix (ed.), The Arithmetic of Fundamental Groups, Contributions in Mathematical
and Computational Sciences 2, DOI 10.1007/978-3-642-23905-2__1,
© Springer-Verlag Berlin Heidelberg 2012
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Science Foundation, grant number: 1129/08, whose support I would like to acknowledge.

bessera@math.bgu.ac.il


4 A. Besser

This article gives an account of the 3 instructional lectures as well as the lecture
I gave at the conference in Heidelberg with some (minimal) additions. I largely
left things as they were presented in the lectures and I therefore apologize for the
sometimes informal language used and the occasional proof which is only sketched.
As in the lectures I made an effort to make things as self-contained as possible.

The main goal of these lectures is to introduce Coleman integration theory. The
goal of this theory is (in very vague terms) to associate with a closed 1-form
ω ∈ Ω1(X), where X is a “space” over a p-adic field K, by which we mean a fi-
nite extension of Qp, for a prime p fixed throughout this work, a locally analytic
primitive Fω, i.e., such that dFω =ω, in such a way that it is unique up to a constant.

In Sect. 1.4 we introduce Coleman theory. The presentation roughly follows
Coleman’s original approach [Col82, CdS88]. One essential difference is that we
emphasize the semi-linear point of view. This turns out to be very useful in numeri-
cal computations of Coleman integrals. The presentation we give here, which does
not derive the semi-linear properties from Coleman’s work, is new.

In Sect. 1.5 we give an account of the Tannakian approach to Coleman integration
developed in [Bes02]. The main novelty is a more self contained and somewhat
simplified proof from the one given in loc. cit. Rather than rely on the work of
Chiarellotto [Chi98], relying ultimately on the thesis of Wildeshaus [Wil97], we
unfold the argument and obtain some simplification by using the Lie algebra rather
than its enveloping algebra.

At the advice of the referee we included a lengthy section on applications of
Coleman integration. In the final section we explain a new approach to Coleman in-
tegration in families. We discuss two complementary formulations, one in terms of
the Gauss-Manin connection and one in terms of differential Tannakian categories.

Acknowledgements. I would like to thank MATCH, and especially Jakob Stix,
for inviting me to Heidelberg, and to thank Noam Solomon and Ehud de Shalit
for organizing the sequence of lectures in Jerusalem. I also want to thank Lorenzo
Ramero for a conversation crucial for the presentation of Kim’s work. I would
finally like to thank the referee for making many valuable comments that made this
work far more readable than it originally was, and for a very careful reading of the
manuscript catching a huge number of mistakes.

1.2 Overview of Coleman Theory

To appreciate the difficulty of integrating a closed form on a p-adic space, let us
consider a simple example. We consider a form ω = dz/z on a space

X = {z ∈ K ; |z| = 1}.

Morally, the primitive Fω should just be the logarithm function log(z). To try to
find a primitive, we could pick α ∈ X and expand ω in a power series around α as
follows:
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ω =
d(α+ x)
α+ x

=
dx

α+ x
=

1
α

dx
1+ x/α

=
1
α

∑(−x
α

)n
dx

and integrating term by term we obtain

Fω(α+ x) = −
∑ 1

n+1

(−x
α

)n+1
+C

where these expansions converge on the disc for which |x| < 1.
So far, we have done nothing that could not be done in the complex world. How-

ever, in the complex world we could continue as follows. Fix the constant of inte-
gration C on one of the discs. Then do analytic continuation: For each intersecting
disc it is possible to fix the constant of integration on that disc uniquely so that the
two expansions agree on the intersection. Going around a circle around 0 gives a
non-trivial monodromy, so analytic continuation results in a multivalued function,
which is the log function.

In the p-adic world, we immediately realize that such a strategy will not work
because two open discs of radius 1 are either identical or completely disjoint. Thus,
there is no obvious way of fixing simultaneously the constants of integration.

Starting with [Col82], Robert Coleman devises a strategy for coping with this
difficulty using what he called analytic continuation along Frobenius. To explain
this in our example, we take the map φ : X → X given by φ(x) = xp which is a lift of
the p-power map. One notices immediately that φ∗ω = pω. Coleman’s idea is that
this relation should imply a corresponding relation on the integrals

φ∗Fω = pFω+C

where C is a constant function. It is easy to see that by changing Fω by a constant,
which we are allowed to do, we can assume that C = 0. The equation above now
reads

Fω(xp) = pFω(x) .

Suppose now that α satisfies the relation αpk
= α. Then we immediately obtain

Fω(α) = Fω(αpk
) = pkFω(α) ⇒ Fω(α) = 0 .

This condition, together with the assumption that dFω = ω fixes Fω on the disc
|z−α| < 1. But it is well known that every z ∈ X resides in such a disc, hence Fω is
completely determined.

In [Col82] Coleman also introduces iterated integrals (only on appropriate sub-
sets of P1) which have the form

∫
(ωn ×

∫
(ωn−1 × · · ·

∫
(ω2 ×

∫
ω1) · · ·) ,

and in particular defines p-adic polylogarithms Lin(z) by the conditions
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dLi1(z) =
dz

1− z
,

dLin(z) = Lin−1(z)
dz
z

,

Lin(0) = 0 ,

so that locally one finds

Lin(z) =
∞∑

k=1

zk

kn .

Then, in the paper [Col85b] he extends the theory to arbitrary dimensions but with-
out computing iterated integrals. In [CdS88] Coleman and de Shalit extend the
iterated integrals to appropriate subsets of curves with good reduction.

In [Bes02] the author gave a Tannakian point of view to Coleman integration
and extended the iterated theory to arbitrary dimensions. Other approaches exist.
Colmez [Col98], and independently Zarhin [Zar96], used functoriality with respect
to algebraic morphisms. This approach does not need good reduction but cannot
handle iterated integrals. Vologodsky has a theory for algebraic varieties, which is
similar in many respects to the theory in [Bes02]. Using alterations and defining a
monodromy operation on the fundamental group in a very sophisticated way he is
able to define iterated Coleman integrals also in the bad reductions case. Coleman
integration was later extended by Berkovich [Ber07] to his p-adic analytic spaces,
again without making any reductions assumptions.

Remark 1. There are two related ways of developing Coleman integration: the linear
and the semi-linear way. For a variety over a finite field κ of characteristic p the
absolute Frobenius ϕa is just the p-power map and its lifts to characteristic 0 are
semi-linear. A linear Frobenius is any power of the absolute Frobenius which is
κ-linear.

What makes the theory work is the description of weights of a linear Frobenius
on the first cohomology (crystalline, rigid, Monsky-Washnitzer) of varieties over
finite fields, see Theorem 4. The theory itself can be developed by imposing an
equivariance conditions with respect to a lift of the linear Frobenius, as we have
done above and as done in Coleman’s work, or imposing equivariance with respect
to a semi-linear lift of the absolute Frobenius. Even in this approach one ultimately
relies on weights for a linear Frobenius.

The two approaches are equivalent. Since a power of a semi-linear Frobenius lift
is linear, equivariance for a semi-linear Frobenius implies one for a linear Frobe-
nius. Conversely, as Coleman integration is also Galois equivariant [Col85b, Corol-
lary 2.1e] one recovers from the linear equivariance the semi-linear one.

The linear approach is cleaner in many respects, and it is used everywhere in
this text with the exception of Sects. 1.3 and 1.4. There are two main reasons for
introducing the semi-linear approach:

• It appears to be computationally more efficient.
• It may be applied in some situations where the linear approach may not apply,

see Remark 11.
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1.3 Background

Let K be a complete discrete valuation field of characteristic 0 with ring of integers
R, residue field κ of prime characteristic p, uniformizer π and algebraic closure K̄.
We also fix an automorphism σ of K which reduces to the p-power map on κ, and
when needed extend it to K̄ such that it continues to reduce to the p-power map.
When the cardinality of κ is finite we denote it by q = pr.

1.3.1 Rigid Analysis

Let us recall first a few basic facts about rigid analysis. An excellent survey can be
found in [Sch98]. The Tate algebra Tn is by definition

Tn = K〈t1, . . . , tn〉 =
{∑

aIt
I ; aI ∈ K, lim

I→∞
|aI| = 0

}
,

which is the same as the algebra of power series with coefficients in K converging
on the unit polydisc

Bn = {(z1, . . . ,zn) ∈ K̄n ; |zi| ≤ 1} .

An affinoid algebra A is a K-algebra for which there exists a surjective map
Tn → A for some n. One associates with A its maximal spectrum

X = spm(A) : = {m ⊂ A maximal ideal }
= {ψ : A → K̄ a K-homomorphism}/Gal(K̄/K)

i.e., the quotient of the set of K-algebra homomorphisms from A to K̄ (no topology
involved) by the Galois group of K̄ over K. The latter equality is a consequence of
the Noether normalization lemma for affinoid algebras from which it follows that a
field which is a homomorphic image of such an algebra is a finite extension of K.
Two easy examples are

spm(Tn) = Bn/Gal(K̄/K) ,

spm(T2/(t1t2 −1)) = {(z1,z2) ∈ B2 ; z1z2 = 1}/Gal(K̄/K)

= {z ∈ K̄ ; |z| = 1}/Gal(K̄/K)

In what follows we will shorthand things so that the last space will simply be written
{|z| = 1} when there is no danger of confusion.

The maximal spectrum X = spm(A) of an affinoid algebra with an appropriate
Grothendieck topology and sheaf of functions will be called an affinoid space, and
in a Grothendieckian style we associate with it its ring of functions O(X) =A. Rigid
geometry allows one to glue affinoid spaces into more complicated spaces, and ob-
tain the ring of functions on these spaces as well. We will say nothing about this
except to mention that the space B◦

n = {|zi| < 1} ⊂ Bn can be obtained as the union of
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the spaces {|zk
i /π| ≤ 1} for k ∈ N, and its ring of functions is not surprisingly

O(B◦
n) =

{∑
aIt

I ; lim
I→∞

|aI|r|I| = 0 for any r < 1
}

where |(i1, . . . , in)| = i1 + · · ·+ in.

1.3.2 Dagger Algebras and Monsky-Washnitzer Cohomology

The de Rham cohomology of rigid spaces is problematic in certain respects. To
see an example of this, consider the first de Rham cohomology of T1, which is the
cokernel of the map

d : T1 → T1dt .

This cokernel is infinite as one can write down a power series
∑

ait
i such that the ai

converge to 0 sufficiently slowly to make the coefficients of the integral
∑

ait
i+1/(i+1)

not converge to 0. On the other hand, as B1 can be considered a lift of the affine
line, one should expect its cohomology to be trivial.

To remedy this, Monsky and Washnitzer [MW68] considered so called weakly
complete finitely generated algebras. An excellent reference is the paper [vdP86].

We consider the algebra

T†
n =

{∑
aIt

I ; aI ∈ R, ∃r > 1 such that lim
I→∞

|aI|rI = 0
}
.

In other words, these are the power series converging on something slightly bigger
than the unit polydisc, hence the term overconvergence. Integration reduces the
radius of convergence, but only slightly: if the original power series converges to
radius r the integral will no longer converge to radius r but will converge to any
smaller radius, hence still overconverges.

An R-algebra A† is called a weakly complete finitely generated (wcfg) al-
gebra if there is a surjective homomorphism T†

n → A†. Since T†
n is Noetherian,

see [vdP86] just after (2.2), such an algebra may be presented as

A† = T†
n /( f1, . . . , fm) . (1.1)

The module of differentials Ω1
A† is given, in the presentation (1.1), as

Ω1
A† =

n⊕

i=1

A†dti/(d f j , j = 1, . . .m) ,
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where d f =
∑

i
∂ f
∂ti

dti as usual, see [vdP86, (2.3)]. Be warned that this is not the
algebraic module of differentials. Taking wedge powers one obtains the modules of
higher differential forms Ωi

A† and the de Rham complex Ω•
A† .

One observes that T†
n /π is isomorphic to the polynomial algebra κ[t1, . . . , tn].

Thus, if A† is a wcfg algebra then Ā� A†/π is a finitely generated κ-algebra.
Assume from now throughout the rest of this work that the κ-algebras considered

are finitely generated and smooth. Any such κ-algebra can be obtained as an Ā for
an appropriate A† by a result of Elkik [Elk73]. In addition, we have the following
results on those lifts.

Proposition 2 ([vdP86, Theorem 2.4.4]). We have:

(1) Any two such lifts are isomorphic.
(2) Any morphism f̄ : Ā → B̄ can be lifted to a morphism f † : A† → B†.
(3) Any two maps A† → B† with the same reduction induce homotopic maps

Ω•
A† ⊗K → Ω•

B† ⊗K .

Thus, the following definition makes sense.

Definition 3. The Monsky-Washnitzer cohomology of Ā is the cohomology of the
de Rham complex Ω•

A† ⊗K

Hi
MW(Ā/K) = Hi(Ω•

A† ⊗K) .

It is a consequence of the work of Berthelot [Ber97, Corollaire 3.2] that Hi
MW(Ā) is

a finite-dimensional K-vector space.
The absolute Frobenius morphism ϕa(x)= xp of Ā can be lifted, by Proposition 2,

to a σ-linear morphism φa : A† → A†. Indeed, A† with the homomorphism

R
σ−→ R → A†

is a lift of Ā with the map

κ
xp

−−→ κ → Ā

and ϕa induces a homomorphism between Ā and this new twisted κ-algebra. The
σ-linear φa induces a well defined σ-linear endomorphism ϕa of Hi

MW(Ā). On the
other hand, if κ is a finite field with q = pr elements, then ϕr

a is already κ-linear and
therefore induces an endomorphism ϕ = ϕr

a of Hi
MW(Ā). By [Chi98, Theorem I.2.2]

one knows the possible eigenvalues of ϕ on Monsky-Washnitzer cohomology. This
result, modeled on Berthelot’s proof [Ber97] of the finiteness of rigid cohomology,
ultimately relies on the computation of the eigenvalues of Frobenius on crystalline
cohomology by Katz and Messing [KM74], and therefore on Deligne’s proof of the
Weil conjectures [Del74].

Theorem 4. The eigenvalues of the κ-linear Frobenius ϕ on H1
MW(Ā) are Weil num-

bers of weights 1 and 2. In other words, they are algebraic integers and have abso-
lute values q or

√
q under any embedding into C.
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1.3.3 Specialization and Locally Analytic Functions

One associates with a wcfg algebra A† the K-algebra A, which is the completion T†
n

of A† ⊗K by the quotient norm induced from the Gauss norm, the maximal absolute
value of the coefficients of the power series. This is easily seen to be an affinoid
algebra. If A† =T†

n /I, then A = Tn/I. We further associate with A the affinoid space
X = spm(A). Letting Xκ = Spec(Ā) we have a specialization map

Sp : X → Xκ

which is defined as follows. Take a homomorphism ψ : A → L, with L a finite ex-
tension of K. Then one checks by continuity that A† maps to OL and one associates
with the kernel of ψ the kernel of its reduction mod π.

For our purposes, it will be convenient to consider the space Xgeo of geometric
points of X, which means K-linear homomorphismsψ : A → K̄. This has a reduction
map to the set of geometric points of Xκ obtained in the same way as above.

Definition 5. The inverse image of a geometric point x : Spec κ̄ → Xκ under the
reduction map will be called the residue disc of x, denoted Ux ⊂ Xgeo.

By Hensel’s Lemma and the smoothness assumption on Ā it is easy to see that Ux
is naturally isomorphic to the space of geometric points of a unit polydisc.

Definition 6. The K-algebra Aloc of locally analytic functions on X is defined as
the space of all functions f : Xgeo → K̄ which satisfy the following two conditions:

(i) The function f is Gal(K̄/K)-equivariant in the sense that for any τ ∈ Gal(K̄/K)
we have f (τ(x)) = τ( f (x)).

(ii) For each residue disc choose parameters z1 to zl identifying it with a unit poly-
disc over some finite field extension of K. Then restricted to such a residue
disc f is defined by a power series in the zi, which is therefore convergent on
the open unit polydisc.

There is an obvious injection A† ⊗K ⊂ Aloc. The algebra of our Coleman functions
will lie in between these two K-algebras.

Another way of stating the equivariance condition for locally analytic functions,
given the local expansion condition, is to say that given any τ ∈ Gal(K̄/K) transform-
ing the geometric point x of Xκ to the geometric point y, we have that τ translates
the local expansion of f near x to the local expansion near y by acting on the coeffi-
cients. This way one can similarly define the Aloc-module Ωn

loc of locally analytic
n-forms on X, the obvious differential d :Ωn−1

loc →Ωn
loc, and an embedding, compat-

ible with the differential, Ωn
A† ⊗K ↪→ Ωn

loc.
We define an action of the σ-semi-linear lift of the absolute Frobenius φa defined

in the previous subsection on the spaces above. We first of all define an action on
Xgeo as follows. Suppose ψ : A → K̄ ∈ Xgeo is a K-linear homomorphism. Then

φa(ψ) = σ−1 ◦ψ◦φa , (1.2)
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recall that we have extended σ to K̄. Note that this is indeed K-linear again. We
can describe this action on points concretely as follows. Suppose A = Tn/( f1, . . . , fk)
and let gi = φa(ti) so that φa is given by the formula

φa(
∑

aIt
I) =

∑
σ(aI)(g1, . . . ,gn)I .

Suppose that z� (z1, . . . ,zn) ∈ Xgeo, so that fi(z) = 0 for each i. Then we have

φa(z) = (σ−1g1(z), . . . ,σ−1g1(z)) .

Having defined φa on points we now define it on functions by

φa( f )(x) = σ f (φa(x)) (1.3)

From (1.2) it is quite easy to see that for f ∈ A this is just the same as φa( f ) as
previously defined. We again have a compatible action on differential forms.

1.4 Coleman Theory

We define Coleman integration in a somewhat different way than the one Coleman
uses, emphasizing a semi-linear condition and stressing the Frobenius equivariance.

Theorem 7. Suppose that K is a finite extension of Qp. Then there exists a unique
K-linear integration map

∫
: (Ω1

A† ⊗K)d=0 → Aloc/K

satisfying the following conditions:

(i) The map d ◦
∫

is the canonical map (Ω1
A† ⊗K)d=0 →Ω1

loc.

(ii) The map
∫

◦d is the canonical map A†
K → Aloc/K.

(iii) One has φa ◦
∫
=

∫
◦φa.

In addition, the map is independent of the choice of φa. Finally, in the above Theo-
rem, equivariance with respect to the semi-linear Frobenius lift φa may be replaced
by equivariance with respect to a linear Frobenius lift φ, and yields the same theory.

Proof. Since H1
MW(Ā) is finite-dimensional, we may choose ω1, . . . ,ωn ∈ Ω1

A† ⊗ K

such that their images in H1(Ω•
A† ⊗ K) form a basis. If we are able to define the

integrals Fωi
�

∫
ωi for all the ωi’s, then the second condition immediately tell us

how to integrate any other form. Namely, write

ω =
n∑

i=1

αiωi +dg , αi ∈ K , g ∈ A†
K . (1.4)



12 A. Besser

Put all the forms above into a column vector ω. Then we have a matrix M ∈ Mn×n(K)
such that

φaω =Mω+dg , (1.5)

where g ∈ (A†
K)n. Conditions (ii) and (iii) in the theorem tell us that (1.5) implies

the relation
φaFω =MFω+g+ c , (1.6)

where c ∈ Kn is some vector of constants. We first would like to show that c may be
assumed to vanish. For this we have the following key lemma.

Lemma 8. The map σ−M : Kn → Kn is bijective.

Proof. We need to show that for any d ∈ Kn there is a unique solution to the system
of equations σ(x)=Mx+d. By repeatedly applying σ to this equation we can obtain
an equation for σi(x)

σi(x) =Mix+di

where
Mi = σi−1(M)σi−2(M) · · ·σ(M)M .

As [K : Qp] < ∞ there exists some l such that σl is the identity on K and so we
obtain the equation x =Mlx+dl. Recalling that the cardinality of the residue field κ
is pr, we see that r divides l and that the matrix Ml is exactly the matrix of the l/r
power of the linear Frobenius ϕr

a on H1
MW(Ā/K). It follows from Theorem 4 that the

matrix I−Ml is invertible. This shows that

x = (I−Ml)
−1dl

is the unique possible solution to the equation. This shows that the map is injective,
and since it is Qp-linear on a finite-dimensional Qp-vector space it is also bijective
(one can also show directly that x above is indeed a solution). ��

Remark 9. In computational applications, it is important that the modified equation
x =Mlx+dl can be computed efficiently in O(log(l)) steps, see [LL03, LL06].

Since φa acts as σ on constant functions we immediately get from the lemma that
by changing the constants in Fω we may assume that c = 0 in (1.6).

We claim that now the vector of functions Fω is completely determined. Indeed,
since dFω = ω by condition (i), we may determine Fω on any residue disc up to
a vector of constants by term by term integration of a local expansion of ω. It is
therefore sufficient to determine it on a single point on each residue disc. So let x be
such a point. Substituting x in (1.6) and recalling the action of φa on functions (1.3)
we find

σ(Fω(φa(x))) =MFω(x)+g(x) .

Since φa(x) is in the same residue disc as x the difference

e� Fω(φa(x))−Fω(x) =
∫ φa(x)

x
ω



1 Heidelberg Lectures on Coleman Integration 13

is computable from ω alone. Substituting in the previous equation we find

σ(Fω(x))+σ(e) =MFω(x)+g(x) ,

and rearranging we find an equation for Fω(x) that may be solved using Lemma 8
for some finite extension of K where x is defined. This shows uniqueness and gives
a method for computing the integration map.

It is fairly easy to see that the method above indeed gives an integration map
satisfying all the required properties. Note that by uniqueness the integration map
is independent of the choice of basis ω.

When using a linear Frobenius lift φ, one relies instead on the fact that any point
defined over a finite field will be fixed by an appropriate power of ϕ. Considering
equivariance with respect to that power, mapping the residue disc of the point x
back to itself, we can determine the integral at x by a similar method. Thus, if φ is
a power of φa and is linear, equivariance for φa implies one with respect for φ, and
since the theory is determined uniquely by equivariance the converse is also true.

It remains to show that it is independent of the choice of φa. By the above, it is
easy to see that it suffices to do this with respect to the equivariance property with
respect to a linear Frobenius. So suppose we are given two linear Frobenii φ and
φ′ and that we have set up the theory for φ. We want to show that it also satisfies
equivariance with respect to φ′. Let ω be a closed form and suppose we have chosen
the constant in Coleman integration so that Fφ(ω) = φFω. By Proposition 2 we have

h ∈ A†
K such that φ′(ω)−φ(ω) = dh. We now compute

∫
φ′(ω)−φ′

∫
ω =

∫
φ′(ω)−φ′

∫
ω− (

∫
φ(ω)−φ

∫
ω)

=

∫
(φ′(ω)−φ(ω))− (φ′

∫
ω−φ

∫
ω)

= h− (φ′
∫

ω−φ

∫
ω)

and substituting at a point x we get

h(x)−
∫ φ′(x)

φ(x)
ω .

We need to show that this is a constant independent of x. To do this, consider the
subspace of X×X

D� {(x,y) ∈ X×X ; Sp(x) = Sp(y)} ,

in Berthelot’s language this is the tube of the points reducing to the diagonal. This
is a rigid analytic space and Coleman shows [Col85b, Proposition 1.2] that there
exists a rigid analytic function H on D such that dH = π∗

yω−π∗
xω, where πx and πy

are the projections on the two coordinates. The pullback to the diagonal of H is thus
constant, and may be assumed 0. It follows that H(x,y) =

∫ y
x
ω. The two lifts φ and
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φ′, having the same reduction, define a map Φ = (φ,φ′) : X → T and φ = πx ◦Φ,

φ′ = πy ◦Φ on X. Therefore, we may take h(x) = H(Φ(x)) =
∫ φ′(x)
φ(x) ω. ��

Example 10. Let us demonstrate the above on the example from the introduction.
Our dagger algebra is

A† = T†
2 /(t1t2 −1)

over Zp. Setting t = t1 and t−1 = t2 we have

A† �

⎧⎪⎪⎨⎪⎪⎩
∑

i∈Z
ait

i ; ai ∈ Zp , lim
|i|→∞

|ai|r|i| = 0 for some r > 1

⎫⎪⎪⎬⎪⎪⎭

and the module of 1-forms is Ω1
A† = A†dt. The associated Monsky-Washnitzer co-

homology H1(Ω•
A† ⊗ K) is clearly one-dimensional, generated by the form ω = dt

t .
Since it is clear how to integrate exact forms, it suffices to integrate ω. The integral
is to be a function on the space associated with the algebra A = T2/(t1t2 −1) which
is just {z ∈ Q̄p ; |z| = 1}, see Sect. 1.3.1. Finally, we may take the lift of Frobenius φa
such that φa(t) = tp.

For the computation of the Coleman integral Fω of ω we notice that, as in the
introduction, φaω = pω. Thus, we may pick our integral so that when evaluating
at a point x we have σ(Fω(φa(x))) = pFω(x), where here φa(x) = σ−1(xp). We can
now either proceed with a general x as in the proof of the theorem or, as in the
introduction, consider an x which is a root of unity of order prime to p. In this case
it is easy to see that φa(x) = x and so one finds the relation σ(c) = pc for c = Fω(x).
Now, if σl(c) = c we find c = plc so c = 0. Thus, we again discover that our integral
vanishes at all these roots of unity.

Remark 11. (1) Note that we have used the semi-linear approach here, whereas in
the introduction we used the linear approach.

(2) It is interesting to note that the equation σ(c) = pc yields c = 0 even without
assuming a finite residue field, because it implies that σ(c), hence c, are divisible by
p and iterating we find that c is divisible by any power of p hence is 0. This suggests
an interesting alternative to Coleman integration, applicable when all slopes are
positive, using slopes rather than weights, that works without assuming finite residue
fields. It also works for example for polylogarithms. We plan to come back to this
method in future work.

To end this section, let us sketch how one may define iterated integrals using an
extension of the method above. Note that this differs from the method of [Col82]
and [CdS88] and is again geared towards computational applications. A similar
method to the one sketched above is worked out (in progress) by Balakrishnan.

As explained in the introduction, prior to the introduction of isocrystals into Cole-
man integration, iterated integrals were only defined on one-dimensional spaces.
This restriction means that any form is closed and can therefore be integrated. Let
us explain then how one can define integrals

∫
(ω×

∫
η) for ω and η in Ω1

A† ⊗ K,
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where the space Xgeo is one-dimensional. More complicated iterated integrals are
derived in exactly the same manner.

We begin by observing that when η = d f is exact, then the above integral is just∫
fω which has already been defined. To proceed, we will impose an additional

condition, which is the integration by parts formula

∫ (
ω×

∫
η

)
+

∫ (
η×

∫
ω

)
=

(∫
ω

)
×

(∫
η

)
+C , (1.7)

see Remark 33 for a justification of this formula. Using this formula and our knowl-
edge of

∫
ω and

∫
η we can also compute

∫
(ω×

∫
η) when ω is exact.

Consider again a basis ω1, . . . ,ωn ∈ Ω1
A† ⊗ K. Decomposing both ω and η as

in (1.4) and using the above it is sufficient to compute the integrals
∫

(ωi ×
∫
ω j) for

all pairs (i, j). If M is the matrix satisfying (1.5), then M⊗M is the matrix describing
the action of φa on the basis {ωi ⊗ω j} of H1(Ω•

A† ⊗K)⊗H1(Ω•
A† ⊗K). Eigenvalues

of (appropriately linearized) M ⊗ M are just products of eigenvalues of M (again
linearized), and they are again Weil numbers of positive weight. Thus, the same
arguments used for proving Theorem 7 may be used to obtain iterated integrals.

1.5 Coleman Integration via Isocrystals

In this section we explain the approach to Coleman integration using isocrystals
introduced in [Bes02]. We comment that the approach there works globally as well,
but we only explain it in the affine, more precisely, the affinoid situation, in which
we described Coleman’s work.

The main idea is that the iterated integral
∫

(ωn

∫
(ωn−1

∫
(· · ·

∫
ω1) · · ·))

is the yn coordinate of a solution of the system of differential equations

dy0 = 0, dy1 = ω1y0, . . .dyn = ωnyn−1 (1.8)

or, in vector notation

dy = Ωy , Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
ω1 0 0 · · · 0
0 ω2 0 · · · 0
0 0 ω3 · · · 0
. . . . . . . . . . . . . . .
0 · · · 0 ωn 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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with y0 = 1. This is just a unipotent differential equation. The Frobenius equivari-
ance condition can now be interpreted as saying that we have a system y of good
local solutions for this equation, in such a way that φy is a good system of solutions
for the equation dy = φ(Ω)y. This, as well as the independence of the choice of the
lift of Frobenius, turns out to be very nicely explained by the Tannakian formalism
of unipotent isocrystals.

1.5.1 The Tannakian Theory of Unipotent Isocrystals

We assume familiarity with the basic theory of neutral Tannakian categories. The
standard reference is [DM82].

Definition 12. A unipotent isocrystal on Ā is an A†
K-module M together with an

integrable connection
∇ : M → M⊗A†

K
Ω1

A† ⊗K

which is an iterated extension of trivial connections, where trivial means the object

�� (A†
K,d) .

We first observe that the module M is in fact free, because it is an iterated exten-
sion of A†

K, which is obviously split.

A morphism of unipotent isocrystals is just a map of A†
K-modules which is hori-

zontal, meaning that it commutes with the connection.
We denote the category of unipotent isocrystals on Ā by Un(Ā). It is a basic fact

of the theory [Ber96, (2.3.6) and following paragraph] that, as the notation suggests,
the category depends only on Ā and not on the particular choice of lift A†.

Example 13. Let M ∈ Un(Ā) have rank 2. Then it sits in a short exact sequence

0 → �→ M → �→ 0

which is non-canonically split. It is thus isomorphic to the object having underlying

module A†
K

2
and connection

∇ = d−
(

0 0
ω 0

)
.

By associating with M the class of ω in H1(Ω•
A† ⊗ K) = H1

MW(Ā/K) it is easy to
check that one obtains a bijection

Ext1Un(Ā)
(�,�) � H1

MW(Ā/K) .

Theorem 14. The category Un(Ā) is a rigid abelian tensor category.

To see this, assuming the corresponding result [Cre92, p. 438] for the category of all
overconvergent isocrystals, one follows the proof of [CLS99, 2.3.2] which discusses
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F-isocrystals but the proof is word for word the same, to show that Un(Ā) is closed
under sub and quotient objects, tensor products and duals in the category of all
overconvergent isocrystals.

To make Un(Ā) into a neutral Tannakian category what is missing is a fiber
functor, i.e., an exact faithful functor into K-vector spaces preserving the tensor
structure. We can associate such a functor with each κ-rational point as follows.

Definition 15. Let x ∈ Xκ(κ) be a rational point. We associate with it the functor

ωx : Un(Ā) → VecK , ωx(M,∇) = {v ∈ M(Ux),∇(v) = 0}

where Ux is the residue disc of x and M(Ux) consists of the sections of M on the
rigid analytic space Ux.

The fact that ωx is indeed a fiber functor is quite standard. The key point to observe
is the following: a precondition for a functor such as ωx to be a fiber functor is that
the dimension of ωx(M,∇) equals the rank of M. For a general differential equation
there is no reason why this should be the case and one introduces a condition of
overconvergence, which among other things guarantees this. A unipotent isocrys-
tal is always overconvergent. It is, however, easy to see without knowing this that
indeed ωx(M,∇) has the right dimension for a unipotent ∇ simply because finding
horizontal sections amounts to iterated integration and one can integrate power se-
ries converging on the unit open polydisc to power series with the same property as
the algebra of power series converging on the open polydisc of radius 1 has trivial
de Rham cohomology.

In the general theory of overconvergent isocrystals one can realize the functor
ωx as simply the pullback x∗ to an isocrystal on Spec(κ), see the remark just before
Lemma 1.8 in [Cre92].

The general theory of Tannakian categories [DM82] tells us that the category
Un(Ā) together with the fiber functor ωx determine a fundamental group

G = Gx = π1(Un(Ā),ωx)

which is an affine proalgebraic group, and an equivalence of categories between
Un(Ā) and the category of finite dimensional K-algebraic representations of G. We
recall that G represents the functor that sends a K-algebra F to the group

Aut⊗(ωx ⊗F)� {M ∈ Un(Ā) → (αM : ωx(M)⊗F → ωx(M)⊗F) ,

αM natural isomorphism and

αM⊗N = αM ⊗αN , α
�
= id} .

(1.9)

The description of the Lie algebra g of G is well known. Consider the algebra
K[ε] of dual numbers where ε2 = 0. Then g is just the tangent space to G at the
origin and is thus given by

g = Ker(G(K[ε]) → G(K)) .
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In terms of the description (1.9) to G an element α ∈ g sends M ∈ Un(Ā) to

αM = id+ εβM , βM ∈ End(ωx(M)) .

Such an element is automatically invertible. The conditions on the αM easily trans-
late to conditions on the βM and we obtain

g = {(M →βM ∈ End(ωx(M))) ,

βMnatural,β
�
= 0 ,

β(M⊗N) = βM ⊗ idωx(N)+ idωx(M) ⊗βN} .

The Lie bracket is given in this representation by the commutator.

Lemma 16. The elements of G are unipotent and the elements of g are nilpotent
in the sense that for every M ∈ Un(Ā) the corresponding αM is unipotent and the
corresponding βM is nilpotent.

Proof. Choose a flag M =M0 ⊃ M1 ⊃ · · · with trivial consecutive quotients. Then
the naturality of α and β implies that with respect to a basis compatible with the
associated flag on ωx(M) the matrices of αM and βM are upper triangular, with 1
respectively 0 on the diagonal. ��

It follows that there is well-defined algebraic exponential map exp : g→ G(K)
sending βM to exp(βM) given by the usual power series. Tensoring with an arbitrary
K-algebra we can easily see, using the fact that K has characteristic 0, that exp
induces an isomorphism of affine schemes from the affine space associated with g
to G. The product structure on G translates in g to the product given by the Baker-
Campbell-Hausdorff formula. It is further clear that the following holds.

Proposition 17. The reverse operations of differentiation and exponentiation give
an equivalence between the categories of algebraic representations of G and con-
tinuous Lie algebra representations of g.

Here, continuous representation means with respect to the discrete topology on the
representation space and with respect to the inverse limit topology on g.

1.5.2 The Frobenius Invariant Path

Consider now two κ-rational points x,z ∈ Xκ. Then we have a similarly defined
space of paths Px,z � Iso⊗(ωx,ωz) (same functoriality and tensor conditions) which
is clearly a right principal homogeneous space for Gx (and a left one for Gz, note that
in [Bes02] the directions are wrong). In concrete terms, the path space Px,z consists
of rules for “analytic continuation” for each unipotent differential equation (M,∇),
of a solution, i.e., horizontal section, yx ∈ M(Ux)∇=0 to yz ∈ M(Uz)

∇=0 compatible
with morphisms and tensor products. Composition of paths
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Px,z ×Pz,w → Px,w (1.10)

is derived from composition of natural transformations.
Suppose now that f̄ : B̄ → Ā is a morphism. The pullback f̄ ∗ in the geometric

sense is a tensor functor from Un(B̄) to Un(Ā). We have a natural isomorphism of
functors

ω f̄ (x) → ωx ◦ f̄ ∗ , (1.11)

which is compatible with the tensor structure. This is obvious from the general the-
ory since, as one may recall, we interpreted ωx as the pullback x∗ to Spec(κ). To
translate into concrete terms choose a lifting f : B† → A† of f̄ . Then the assump-
tions imply that f maps Ux to U f̄ (x) and the isomorphisms is obtained by composi-
tion with f of the horizontal sections on U f̄ (x).

It is easy to see that f̄ induces a map f̄ : Px,z → P f̄ (x), f̄ (z). In concrete terms,
suppose that α ∈ Px,z (over some extension algebra) is a rule for analytic continuation
of solutions from Ux to Uz, then f̄ (α) is a rule for analytic continuation from U f̄ (x)
to U f̄ (z) given as follows. Start from a horizontal section in M(U f̄ (x)), pull back by f
to obtain a horizontal section of f̄ ∗(M) on Ux, apply the rule α to obtain a horizontal
section on Uz and finally apply the inverse of pullback by f . It is formally checked
that f̄ is compatible with composition of paths (1.10). In particular, when x = z,
f̄ : Gx → G f̄ (x) is a group homomorphism and in general it is compatible with the
structure of Px,z as a principal homogeneous space for Gx.

Suppose now that f̄ : Ā → Ā and f̄ fixes both x and z. Then we can check what
it means for a path α ∈ Px,z to be fixed by f̄ . The analytic continuation α has the
property that the following diagram commutes,

ωx(M)
αM ��

��

ωz(M)

��

ωx( f̄ ∗M)
α f̄ ∗M

�� ωz( f̄ ∗M)

where the vertical maps are the isomorphisms of (1.11). Even more concretely,
restricting to the differential equation (1.8), α translates a solution yx on Ux to a
solution yz on Uz in such a way that it now translates the local solution f ∗yx to the
system

dy0 = 0, dy1 = ( f ∗ω1)y0, . . . ,dyn = ( f ∗ωn)yn−1

on Ux to the solution f ∗yz on Uz. In particular, if we think of a collection of solutions
to dy0 = 0, dy1 = ωy0, with y0 = 1, compatible under α as an integral of ω, then
the path α provides such an integral for each closed one-form ω in such a way
that

∫
f ∗ω = f ∗

∫
ω, plus a constant arising from the choice of which solutions to

extend. When f̄ is a κ-linear Frobenius this is exactly what we want our Coleman
integration to do. Thus, it is clear that the following theorem provides the sought
after generalization of Coleman integration.
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Theorem 18 ([Bes02, Corollary 3.3]). Suppose that ϕ is a κ-linear Frobenius fixing
the two κ-rational points x and z. Then there exists a unique γx,z ∈ Px,z(K) fixed by ϕ.
Furthermore, these paths are compatible under raising ϕ to some power and under
composition.

Note that we are now denoting by ϕ the linear Frobenius, whereas previously it was
the semi-linear Frobenius, as now we have abandoned the semi-linear point of view.
The proof of Theorem 18 is more or less an immediate consequence of the following
theorem.

Theorem 19 ([Bes02, Theorem 3.1]). Let ϕ be as above, fixing the rational point
x. Then the map g �→ ϕ(g)−1g from Gx to itself is an isomorphism of schemes.

We first prove that Theorem 19 implies Theorem 18. Clearly, the theorem implies
that g �→ gϕ(g)−1 is an isomorphisms as well. Since Gx is unipotent, there exists
a K-rational point γ′ ∈ Px,z(K) [Ser97, Prop. III.6]. Let g′ ∈ Gx(K) be such that
ϕ(γ′) = γ′g′ and let g ∈ Gx(K) be the element, whose uniqueness and existence is
guaranteed by Theorem 19, such that g′ = gϕ(g)−1. Let γ = γ′g. Then

ϕ(γ) = ϕ(γ′)ϕ(g) = γ′g′ϕ(g) = γ′g = γ

proving existence. On the other hand, if both γ and γ′ are fixed by ϕ and if γ = γ′g,
then ϕ(g) = g and by the uniqueness in Theorem 19 we have that g is the identity
element and γ′ = γ. The compatibility with respect to raising Frobenius to some
power and with respect to composition are both obvious from the uniqueness.

For the proof of Theorem 19 we need to study in more detail the Lie algebra g. As
the group G is pro-algebraic, it can be written as an inverse limit of algebraic groups
lim←−−α

Gα. Its Lie algebra can thus be written as an inverse limit of finite-dimensional
Lie algebras

g = lim←−−
α

g/gα

with some indexing set of α’s. We consider the lower central series of g obtained as
follows:

g1 = [g,g] , gn+1 = [g,gn] .

Here, the commutators should be taken in the topological sense, i.e., completed.

Proposition 20 (Wildeshaus [Wil97, p. 32]). There is a canonical isomorphism

g/g1 → Ext1Un(Ā)
(�,�)∗ .

Proof. We exhibit a natural pairing g× Ext1Un(Ā)
(�,�) → K as follows. Consider

� ∈ g and an extension
0 → �→ M → �→ 0 .

When applying ωx we can use a compatible basis to write the matrix of � on ωx(M)
as

(
0 α
0 0

)
. Then the pairing will send (�,M) to α, note that this is independent of the

basis chosen. Since the commutator of two matrices of the form
(

0 ∗
0 0

)
is 0, and since
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the representation of g on ωx(M) is continuous by Proposition 17, it is clear that the
pairing factors via (g/g1).

To establish the isomorphism of the Proposition we need to use the full force
of Tannakian duality, that is the part of theory implying that the category Un(Ā)
is equivalent to the category of continuous Lie algebra representations of g. Thus,
if the extension M is in the kernel of the pairing, it corresponds to a trivial Lie
algebra representation and is therefore trivial. In the reverse direction, suppose that
a : g/g1 → K is a continuous functional. It thus extends to a functional a : g→ K
which is continuous and which vanishes on all commutators. It follows easily that

� →
(

0 a(�)
0 0

)

is a continuous Lie algebra representation of g, which is an extension of the required
type and gives back a when pairing with it. It follows that Ext1(�,�) is isomorphic
to the continuous dual of g/g1. As Ext1(�,�) is finite dimensional, it follows that so
is g/g1 and they are dual as discrete vector spaces. ��

Proposition 21. The quotients gn/gn+1 are finite-dimensional and the commutator
induces a surjective map

[ ] : g/g1 ⊗ gn−1/gn → gn/gn+1 . (1.12)

Proof. We prove this by induction. The case n= 0 for the finiteness follows from the
previous Proposition. The Jacobi identity immediately implies that [g1,gn−1] ⊂ gn+1
and by definition [g,gn] = gn+1. Thus, the map (1.12) is defined. Suppose we al-
ready showed that gk/gk+1 is finite for k < n. To show surjectivity (which is not
obvious because we are taking completed brackets) we can choose complementary
subspaces V and W for g1 in g and for gn in gn−1 respectively, which are finite-
dimensional by the induction hypothesis. Surjectivity follows if we show that the
inclusion [V,W]+ gn+1 ⊂ gn is an equality. But this is clearly the case after com-
pletion and so we are done because the sum of a finite-dimensional subspace and a
closed subspace is closed (prove this!). Finally, the surjectivity immediately proves
that gn/gn+1 is finite-dimensional again. ��

Corollary 22. For every n the quotient g/gn is finite-dimensional.

Proposition 23. The topology on g induced by the gn is stronger than the gα topol-
ogy.

Proof. For each α the Lie algebra g/gα is a finite-dimensional nilpotent Lie algebra,
implying that for a sufficiently large n its lower central series vanishes, from which
it follows that gn ⊂ gα. ��

Now we use again the action of a κ-linear Frobenius ϕ. By functoriality it induces
a continuous endomorphism of g. It therefore clearly preserves the filtration gn and
induces an endomorphism on the quotients g/gn and gn/gn+1.

Proposition 24. The eigenvalues of ϕ on g/gn and gn/gn+1 have strictly negative
weights.
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Proof. This follows for gn/gn+1 because ϕ has positive weights on Ext1(�,�) =
H1

MW(Ā/K) hence negative weights on its dual g/g1, and by Proposition 21 we have
a surjective map (g/g1)⊗n+1 → gn/gn+1, compatible with ϕ. Since g/gn has a filtra-
tion whose quotients are of the form gk/gk+1 the result follows. ��

Corollary 25. The map ϕ− id is invertible on g/gn and gn/gn+1.

Proof of Theorem 19. For simplicity we prove bijectivity on K-rational points. Since
the proof relies on the Lie algebra it will work for any extension.

We begin with injectivity. Suppose that ϕ(g) = g for some g � 1. Then g = exp(�)
for some 0 � � ∈ g and since exp is an isomorphism compatible with ϕ we have
ϕ(�) = �. But, by Proposition 23, for some sufficiently large n the image of � in g/gn
is non-zero and is therefore an eigenvector for ϕ with eigenvalue 1 contradicting
Corollary 25.

To prove surjectivity, let g′ = exp(�′) ∈ G(K). Define a sequence �n ∈ gn as fol-
lows. Set �0 = �′. Suppose we have defined �n. Consider the function

f (k) = exp−1
(
exp(ϕ(k))−1 exp(�n)exp(k)

)
= �n+ k −ϕ(k)+ commutators

Since 1 − ϕ is invertible on gn/gn+1 by Corollary 25 we can find kn ∈ gn such that
�n+1 � f (kn) ∈ gn+1. Now let

gn = exp(k0)exp(k1) · · ·exp(kn) .

Then
(ϕ(gn))−1g′gn = exp(�n+1) ,

and by Proposition 23 the limit g = limn→∞ gn exists. It follows that (ϕ(g))−1g′g = 1
or g′ = ϕ(g)g−1 as required. ��

Remark 26. Note the similarity of the above proof with the theory in Sect. 1.4. The
main point is that ϕ− I is invertible on tensor powers of the dual of H1

MW(Ā/K), just
like Lemma 8 was responsible for the existence of Coleman integrals of holomor-
phic forms and a similar invertibility on H1

MW(Ā/K)⊗H1
MW(Ā/K) was responsible

for iterated integrals.

1.5.3 Coleman Functions

The work of the previous subsection explains how to analytically continue solutions
of differential equations to get Coleman functions. The functions themselves are
obtained as components of the solutions. The iterated integral

∫
(ωn

∫
(ωn−1

∫
(· · ·

∫
ω1) · · ·))
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is going to be the component yn in a system of local horizontal solutions of the
system (1.8), compatible with respect to Frobenius invariant paths. One can do this
in a more streamlined way, which extends also to the non-affine case, by considering
arbitrary functionals on the underlying vector bundle for a connection instead of just
the projection on the last component. This gives rise to the following definition.

Definition 27. An abstract Coleman function on A† is a four tuple, which we write

(M,∇,yx, s)

in which ∇ is a unipotent integrable connection on an A†
K-module M, yx refers to a

system of horizontal sections for each Ux, compatible with the Frobenius invariant
paths, and s ∈ Hom(M,A†

K).

We note that specifying for which points x one has the yx does not matter. They are
all derived from one of them by doing analytic continuation so one could instead just
specify yx for one x and this formulation is only done for symmetry. We further note
that s is usually not horizontal, because a horizontal s produces a constant function.
In fact, one can define a notion of Coleman functions with values in any sheaf by
changing the target of s.

Definition 28. A Coleman function is made into an actual locally analytic function
by evaluating the s on the yx’s.

Many abstract Coleman functions may produce the same function. One way in
which this can happen is the following.

Definition 29. Two abstract Coleman functions (M,∇,yx, s) and (M′,∇′,y′
x, s

′) are
called equivalent if there exists a horizontal morphism f : M → M′ carrying the
yx’s to the y′

x’s and such that s = s′ ◦ f . By the properties of the invariant paths it
suffices to check this for one x. More generally they are called equivalent if they are
related by the equivalence relation generated by the above relation. An equivalence
class of abstract Coleman functions is called a Coleman function.

It is trivial to check that equivalent abstract Coleman functions give rise to the same
locally analytic function, which is therefore associated to the Coleman function as
just defined. It is not immediately clear, but turns out to be true, that a Coleman
function inducing the 0 function is indeed equivalent to 0. This is a consequence of
the identity principle, to be discussed below. There are some advantages to defining
Coleman functions without reliance on a physical representation as a locally analytic
function. One example is integration of meromorphic differentials on curves.

We denote the K-algebra of all Coleman functions by ACol. Coleman functions
with values in a sheaf F will be denoted ACol(F ). In particular, we have degree n
Coleman differential forms defined by Ωn

Col = ACol(Ω
n).

Example 30. Consider again the rank 2 unipotent isocrystal considered in Exam-
ple 13 having underlying module A†

K ⊕A†
K and connection

∇(y1,y2) = (dy1,dy2 −ωy1) ,
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with ω ∈ Ω1
A† ⊗ K closed. Choose one residue disc Ux0

and let yx0
be a horizon-

tal section on Ux0
whose first coordinate is 1 and use analytic continuation to ex-

tend this to a compatible system of horizontal sections yx on each residue disc Ux.
Since the projection on the first coordinate is a morphism of isocrystals to the trivial
isocrystal it follows from the definition of the notion of a path as being compatible
with morphisms that the first coordinate of each yx is 1.

Let s be the projection on the second coordinate. This gives an abstract Coleman
function. The associated Coleman function F has the property that when interpreted
as a locally analytic function, which is the y2 of a horizontal section (1,y2) of ∇, it
satisfies dF = ω. This construction is unique up to a constant.

Another choice is obtained by choosing yx0
differently. To still be a horizontal

section with first coordinate 1 we can only add a constant to the second coordinate.
But since y2 → (0,y2) is a morphism of isocrystals from the trivial isocrystal it fol-
lows again from the properties of paths that this will add the same constant to the
second coordinate of each yx and thus we just add the constant to F.

The function obtained in this way is exactly the Coleman integral of ω as de-
fined in Sect. 1.4. Indeed, we have already explained before Theorem 18 why the
invariance of the path with respect to Frobenius implies Frobenius equivariance for
the collection of sections with respect to a linear Frobenius. Let us show why the
integral of dg, with g ∈ A†

K is just g. The reason is that the corresponding isocrystal
is trivial. In fact, the map (y1,y2) �→ (y1,y2+gy1) provides a horizontal isomorphism
from the trivial two dimensional isocrystal and maps the horizontal section (1,0) to
(1,g). Since taking (1,0) in each residue disc is a compatible system of horizontal
sections for the trivial isocrystal, it follows that (1,g) is a compatible system, hence
we get F= g as an integral of dg. We leave checking linearity to the interested reader.
More generally, the theory reduces to the theory of Coleman iterated integrals when
those are defined [Bes02, Sect. 5].

Many properties of Coleman functions can easily be derived from the description
above. It is easy to define sums and products of Coleman functions, compatible with
the same operations on locally analytic functions. It is also easy to define pullbacks
of Coleman functions by a morphism f : A† → B†,

f ∗ : ACol → BCol (1.13)

compatible with the corresponding operation on locally analytic functions.
To give an example of the properties of Coleman functions we discuss the identity

principle. This was proved by Coleman for P1 in [Col82] and for curves by Coleman
and de Shalit [CdS88]. It says the following.

Proposition 31. Suppose that the Coleman function F is 0 on one residue disc. Then
it is identically 0.

The proof of this result is based on the following construction: We recall that part
of the data for a Coleman function is a section s : M → A†

K. One can construct Ms,
which is the maximal subconnection contained in Ker(s). The point is to construct it
concretely as the intersection of the kernels of the section s and its derivatives of all
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orders with respect to the dual connection. If F vanishes on the residue disc Ux0
, then

the local horizontal section yx0
in the definition of F is contained in Ker(s) and since

∇yx0
= 0 the construction of Ms implies that yx0

∈ Ms(Ux0
). From the compatibility

of analytic continuation along paths with morphisms of isocrystals it now follows
that on any residue disc Ux we have yx ∈ Ms(Ux), with yx the corresponding local
horizontal section. We find F to be equivalent with (Ms,∇,yx,0), and this is clearly
equivalent to 0.

Corollary 32. If dF = 0 then F is a constant function.

Proof. The function F is a constant on some residue disc. Subtracting that constant
we may assume F = 0 on one residue disc, hence F = 0 by the identity principle. ��

Remark 33. The above Corollary, together with the fact that the product of Coleman
functions is again a Coleman function, immediately gives the integration by parts
formula (1.7).

The main result about Coleman functions is the following Theorem.

Theorem 34. The sequence

0 → K → ACol
d−→Ω1

Col
d−→Ω2

Col

is exact.

Everything is already proved except for the fact that we may integrate a closed Cole-
man form. The idea is roughly that having a closed Coleman form ω, the condition
dF = ω can be written as a new unipotent differential equation. The closedness of
ω is used to find a subconnection which is integrable in addition to being unipo-
tent, from which F can be constructed. For full details see the proof of [Bes02,
Theorem 4.15], which is a more general result.

1.5.4 Tangential Base Points

One of the advantages of the Tannakian approach to Coleman integration is that new
fiber functors are integrated in the theory with no extra cost. The prime example of
this so far are fiber functors coming from Deligne’s tangential base points [Del89].
In this subsection we sketch this extension. Full details may be found in the pa-
per [BF06].

The de Rham version of Deligne’s tangential base point is defined as fol-
lows [Del89, 15.28–15.30]. Suppose C is a curve over a field K of characteristic
0, smooth at a point P, with a local parameter t at P, and suppose

∇ : M → M⊗Ω1
C(logP)

is a connection with logarithmic singularities at P, so that locally ∇ = d+Γ with Γ is
a section of End(M)⊗Ω1

C(logP). One defines the residue connection on the constant
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vector bundle, with fiber the fiber of M at P, on the complement of 0 in the tangent
line TP(C), with log singularities at 0,∞, by

ResP(∇)� d+ (ResPΓ)d log(t̄)

where t̄ is the induced coordinate on the tangent space. Here, the residue is defined
in the usual way and since we are assuming that Γ has log-singularities may simply
be defined as the value of tΓ at P. While the definition of the residue connection
looks like it depends on the parameter it is in fact not the case, up to a canonical
isomorphism, and Deligne gives a coordinate free description.

There is no difficulty in replacing the algebraic curve by a p-adic analytic one.
Since the action of a lift of Frobenius, assumed to fix P, extends to an action on the
tangent space, one can analytically continue horizontal sections of ∇ along Frobe-
nius to horizontal section of ResP ∇ on residue discs in TP(C)− {0}. One can set up
a theory of Coleman functions of algebraic origin where the underlying bundle and
connection are algebraic with logarithmic singularities at P, in such a way that these
functions now have values at the points of TP(C)− {0}.

This turns out to be far less mysterious than one might expect. Consider a unipo-
tent differential equation with logarithmic singularities near P. It terms of the pa-
rameter t one easily sees that it has a full set of solutions in the ring K[[t]][log(t)].
Define the constant term (with respect to t) of an element in K[[t]][log(t)] by for-
mally setting log(t) = 0 and then evaluating at 0. In [BF06, Proposition 4.5] we
showed that taking the constant term of a Coleman function corresponds to analyti-
cally continuing to the tangent space and evaluating at the tangent point t̄ = 1.

This is already useful for p-adic polylogarithms. Recall from the introduction
that these were defined to be Coleman functions that satisfy the unipotent system of
differential equations:

dLi1(z) =
dz

1− z

dLin(z) = Lin−1(z)
dz
z

Lin(0) = 0 .

The problem with this definition is that the equations have singularities at 0 and 1
and the boundary conditions are made at the singular point 0. In practice there is
no problem because things are arranged in such a way that the Lin are holomorphic
at 0. Deligne pointed out in the complex case that one should interpret the boundary
conditions at the singular point 0 to mean analytic continuation from the tangent
vector t̄ = 1 at 0, and this holds true in the p-adic case as well. One replaces the
condition Lin(0) = 0 by the equivalent condition that the constant term there is 0.
One can use the same method to assign values to p-adic polylogarithms and multiple
polylogarithms at 1.

For multiple polylogarithms, one has to consider a generalization of the notion
of a tangential base point, which is also due to Deligne [Del89, 15.1–15.2]. Given a
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smooth variety X and a divisor D =
∑

i∈I Di with normal crossings and smooth com-
ponents, set, for J ⊂ I, DJ = ∩ j∈JD j. Let NJ be the normal bundle to DJ and let N0

J
be the complement in NJ of NJ′ |DJ

for J′ ⊂ J, and let N00
J be the restriction of N0

J to
D0

J �DJ −∪ j�JD j. Note that when |I| = dim(X) = 1 so D is just one point P, we have
N00

J = TP(X)−{0}. Deligne associates to a connection on X with logarithmic singu-
larities along D, residue connections on every N00

J with logarithmic singularities at
infinity.

Thus we again obtain new fiber functors on the category of unipotent connections
by taking the fiber of the residue at points of the spaces N00

J .

Remark 35. An important observation is that some of these constructions provide
naturally isomorphic fiber functors. A typical example which captures the essence
of things [BF06, Prop. 3.6 and Rem. 3.7] is the following. Suppose X = A2 and
Di is defined by xi = 0 where xi, i = 1,2, are the coordinates. One can start with a
connection with log singularities along D1 ∪D2, take the residue along D1, which
can be interpreted again as a connection on A2 with logarithmic singularities along
x1 = 0, x2 = 0, restrict to x1 = 1, take the residue at the point x2 = 0 and restrict to
x2 = 1. Then this is exactly the same as taking the fiber at (1,1) after taking the
residue to N00

{1,2}. Consequently, it is also the same as doing the above procedure
with the roles of 1 and 2 reversed.

In [BF06, Sect. 4] we proved that if we have a Coleman function of algebraic
origin on X, then one can analytically continue it to the spaces N00

J and furthermore
one obtains Coleman functions on these spaces. One can further deduce, essen-
tially from the definition of the residue connection, differential relations between
the Coleman functions restricted to the spaces N00

J from the original differential re-
lations. Indeed. In Proposition 4.4 there we proved, for the special case of restricting
to the normal bundle of one of the components E of D, that

d f =
∑

ωigi ⇒ d f (E) =
∑

(ResE ωi)g
(E)
i (1.14)

where f (E) is the restriction to the normal bundle to E of f and where, if ω is locally
written as ω′+hdlog(t), with t the defining parameter for E, then

ResE(ω) = ω′|E+h|Ed log(t̄) .

1.6 Applications of Coleman Integration

In this section we survey, giving only occasional details, several applications of
Coleman integration. It is not meant as an exhaustive list and reflects the author’s
knowledge and personal taste.
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1.6.1 The p-Adic Abel-Jacobi Map

In [Col85b, Theorem 2.3] Coleman uses his theory to define integrals of closed
forms of the second kind on a smooth complete variety X over K with good reduc-
tion. Recall that a meromorphic differential on a complete variety is of the second
kind if it can be written, locally in the Zariski topology, as the sum of a holomorphic
and of an exact differential. On a curve this means that all its residues vanish.

To define the integral, Coleman covers X with affinoids, each coming from some
wcfg algebra on which the form can be written as holomorphic plus exact. Since
there is no problem in integrating exact differentials, and since closed holomorphic
forms can be integrated by Coleman’s method, one gets local integrals, and one
easily observes that these can be glued to give a global integral, which is defined
outside the divisor of singularity of the form. Coleman uses functoriality (1.13)
and the Albanese variety to show that the integral is in fact independent of auxil-
iary choices and depends only on X, and is furthermore functorial with respect to
arbitrary algebraic maps.

In particular, one has everywhere defined integrals for holomorphic one-forms.
Let X be a smooth complete curve over K and initially assume that it has good
reduction. Let f : X → J be an Albanese map of the curve into its Jacobian (extend
K when needed to have a K-rational point). Any holomorphic one-form on X is
f ∗ of an invariant differential ω on J, so by functoriality knowing Fω suffices for
computing the integral on X. Functoriality again and the invariance of ω implies
that if Fω(0)= 0, then in fact Fω is a group homomorphism from J(K̄) to the additive
group of K̄. Locally near 0 it is the integral of ω vanishing at 0.

There is another way to obtain Fω on J, which does not involve Frobenius at all.
Namely, let T = T0(J) be the tangent space to J at 0, thought of as a vector group.
The exponential map T → J can be locally inverted to provide a logarithm

logJ : U0(K̄) → T(K̄) ,

which is additive, where U0 is the residue disc of 0. However, for any x ∈ J(K̄) there
exists an 0 � n ∈ Z such that nx ∈ U0(K̄) and the additivity of logJ means it can be
extended to a map logJ : J(K̄) → T(K̄) by setting logJ(x) = n−1 logJ(nx). It is now
very easy to see that

Fω = ω0 ◦ logJ , (1.15)

where ω0 means the value of ω at 0 viewed as a cotangent vector.
The above procedure works even when J has bad reduction [Bou98, III, 7.6] and

therefore gives a way of computing Coleman integrals in the bad reduction case as
well. In fact, extended to generalized Jacobians and Albanese varieties it is the basis
of the approaches of Colmez and Zarhin [Col98, Zar96] for Coleman integration. It
is important to note though that even if this geometric method can compute Coleman
integrals in greater generality, though incapable of treating iterated integrals, it gives
little information and is quite hard to compute in practice.
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Let X be a complete curve over K and let ω be a holomorphic form on X. Given
a divisor D of degree 0 on X

D =
∑

ni(Pi) , ni ∈ Z , Pi ∈ X(K̄) ,
∑

ni = 0 ,

we may define ∫

D
ω =

∑
niFω(Pi) ,

which is independent of the particular choice of Fω by the condition
∑

ni = 0.

Proposition 36. If D is principal, then
∫

Dω = 0.

Proof. This is obvious since we have shown that the integral factors via the Al-
banese map X → J. One can also show this in two other ways:

(1) In the good reduction case it is a consequence of the reciprocity law [Bes00c,
4.10], a generalization of Coleman’s reciprocity law on curves [Col89b]. Namely,
one easily checks that if D = div( f ), then

∫
D
ω is the global index of Fω and log( f ),

and is thus the cup product in H1
dR(X/K) of the projections of ω and d f / f , but the

projection of d f / f is 0. This method extends to the bad reduction case [Bes05] but
it then needs Coleman integration in the bad reduction case, which either uses the
methods of Colmez and Zarhin or that of Vologodsky which is far more complicated.

(2) Again in the good reduction case it follows from [Bes00a] that the integral
factors via the syntomic regulator on the Chow group of zero cycles on X, see below,
thus killing principal divisors. ��

Let Ω1(X/K) be the space of holomorphic forms on X and let
(
Ω1(X/K)

)∗
be its

dual. The map Div0(X) →
(
Ω1(X/K)

)∗
given by

D �→ (ω �→
∫

D
ω)

is formally a p-adic analogue to the Abel-Jacobi map using p-adic integrals rather
than complex integrals. This analogy can be made precise in two different but re-
lated manners:

(1) The map above is nothing but the composition

Div0(X) → J(K)
logJ−−−→ T(K) �

(
Ω1(X/K)

)∗
, (1.16)

and by the description of the Bloch-Kato exponential map [BK90, Example 3.10.1]
one sees that the composition

Div0(X) →
(
Ω1(X/K)

)∗
� H1

dR(X/K)/F1 exp
−−→ H1(Gal(K̄/K),H1

ét(X⊗ K̄,Qp(1)))

is the p-adic étale Abel-Jacobi map [Jan88].
(2) Let X be a smooth and proper model of X over R. It follows from the main

theorem of [Bes00a] that the map above is is also the same as the composition
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Div0(X) → Div0(X)
reg
−−→ H1

dR(X/K)/F1 �
(
Ω1(X/K)

)∗
,

where the last isomorphism is by Poincaré duality. The regulator here is the syn-
tomic regulator, see below Sect. 1.6.3, which is the p-adic analogue of the Beilinson
regulater to Deligne cohomology, and for 0-divisors on curves this last regulator is
nothing but the Abel-Jacobi map.

1.6.2 Torsion Points on Curves and Effective Chabauty

In [Col85b,Col86,Col87] Coleman uses the considerations in the preceding subsec-
tion to get bounds on torsion points on curves. In [Col85a] he uses them to get an
effective version of an old idea of Chabauty [Cha41].

Consider a smooth complete curve C over a field L and assume it has an L-
rational point P0 which may be used to get a map of C into its Jacobian J. Let
L ⊂ K, where K is a p-adic field. Then we have a commutative diagram

C(L) ��

��

C(K)

��

J(L) �� J(K) .

In both works the idea is to get a Coleman integral Fω of a holomorphic form ω
to vanish on C(L)∩ J(L)tor ⊂ C(K) (respectively all of C(L) ⊂ C(K)). This imposes
strong finiteness restrictions on the respective set of L-rational points.

For torsion points it follows from the description as a logarithm that any Coleman
integral Fω vanishes on them. Coleman uses this to get for example the following
result:

Theorem 37 ([Col86, Theorem A]). Let L be an algebraically closed field of char-
acteristic 0 and let C be the Fermat curve with projective equation Xm+Ym+Zm = 0
over L. Suppose that p is a prime, 1 ≤ n ≤ 8, m = (p − 1)/n and m ≥ 4. Then, if
P,Q ∈ C(L) are such that P−Q is torsion in the Jacobian of C, and one of them is a
cusp (meaning that one of the projective coordinates is 0), then so is the other.

For effective Chabauty, the field L is a number field and K = Lv, the completion
of L with respect to some place lying above p. The idea of Chabauty, reinterpreted
in terms of Coleman theory, is as follows. Suppose C has genus g but the rank of
J(L) is smaller than g. The image of J(L) in T(K) under logJ is contained in the
subspace generated by the images of a basis for J(L). By the assumption on the
rank of J(L) this is a proper subspace, hence there exists a non-zero functional on
T(K) vanishing on it. Using (1.15) there exists an invariant differential on J whose
Coleman integral, with value 0 at 0, vanishes on J(L). Since C(L) ⊂ J(L), we find
using functoriality that there exists a form ω ∈ Ω1(X/K) such that for any P ∈ C(L)
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we have
∫ P

P0
ω = 0. Coleman’s contribution is to use his method for computing

∫ P
P0

ω

to get effective bounds on C(L). The result is as follows.

Theorem 38 ([Col85a, § 0 (ii)]). Under the assumptions above suppose C has good
reduction above v and that p > 2g, and let n be the norm of v. Then C(L) has less
than n+2g(

√
n+1) points.

The importance of this work is twofold. On the one hand, it provides a very
useful tool for the explicit determination of rational points on curves [Wet97,Fly97,
FW99, FW01, Bru02, Bru03, Sik09]. On the other hand, it serves as an important
motivation for the work of Kim, see below Sect. 1.6.5 and also in the contribution of
Majid Hadian in the present volume, which may be viewed as a non-abelian version
of the Coleman-Chabauty method: it attempts to find iterated Coleman integrals
that would vanish on the rational points.

1.6.3 Syntomic Regulators

As mentioned above, syntomic cohomology is the p-adic analogue of Deligne co-
homology, in a precise sense to be recalled below. Syntomic regulators are maps
from algebraic K-theory or motivic cohomology into syntomic cohomology. They
are the p-adic analogue of Beilinson’s regulators. The relation with Coleman in-
tegration theory is twofold. On the one hand, computation of syntomic regulators
often lead to Coleman integrals. On the other hand, there is an alternative approach
to Coleman integration theory which uses a cohomology theory similar to syntomic
cohomology.

Let X be a smooth R-scheme. To explain the origin of syntomic cohomology
Hi

syn(X,n) with twist n of X, we note that X gives rise to the following cohomolog-
ical data:

(1) The de Rham cohomology of its generic fiber Hi
dR(XK/K). This is a K-vector

space that comes with the Hodge filtration F•.
(2) The rigid cohomology of its special fiber Hi

rig(Xs/K0), where Xs denotes
the special fiber of X. Rigid cohomology is the global version of Monsky-
Washnitzer cohomology, defined by Berthelot [Ber86]. This is a K0-vector
space, where K0 is the maximal unramifed extension of Qp inside K. It car-
ries a σ-semi-linear map ϕa.

(3) A comparison map, known as the specialization map [BB04],

Hi
dR(XK/K)

Sp
−−→ Hi

rig(Xs/K0)⊗K0
K ,

which need not be an isomorphism in general.

Thus, the p-adic cohomologies associated with X form an object Hi(X) in the
category MFf

K consisting of triples (V0,V,Sp) where V0 is a K0-vector space
equipped with a σ-semilinear operator ϕa, V is a filtered K-vector space and
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Sp : V → V0 ⊗K0
K is a K-linear map. The category MFf

K has twists and an identity
object �. The key property of syntomic cohomology is that it sits in a short exact
sequence,

0 → Ext1
MFf

K
(�,Hi−1(X)(n)) → Hi

syn(X,n) → Ext0
MFf

K
(�,Hi(X)(n)) → 0 .

This is formally like Deligne cohomology, which sits in a similar short exact se-
quence where the Exts are in the category of mixed Hodge structures, in which
the the Betti and de Rham cohomologies of a complex variety X, together with their
comparison isomorphisms, form an object. The analogy here runs somewhat deeper,
see [Ban02].

The construction of syntomic cohomology is rather involved, see [Bes00b].
However, in the affine case, a modified version of it, known as the Gros style mod-
ified rigid syntomic cohomology, loc. cit. Definition 9.3, can be easily described
in terms of what we have already done. Namely, suppose that X is the spec-
trum of the R-algebra R[t1, . . . , tn]/( f1, . . . , fm). Associate with this the wcfg alge-
bra A† = T†

n /( f1, . . . , fm) and consider the complex of differentials Ω•
A† ⊗ K and its

stupid filtrations Ω≥n
A† ⊗K. We further assume that we have a lift φ : A† → A†, of a

linear Frobenius ϕ, which is of degree q.

Definition 39. The Gros style modified syntomic cohomology of X is

H̃i
ms(X,n)� Hi(MF(1− φ

qn : Ω≥n
A† ⊗K −→Ω•

A† ⊗K)
)
,

where MF stands for the mapping fiber, i.e., the cone shifted by −1.

Actually, one should take the direct limit of the above over all powers of φ, with q
modified accordingly, but we shall ignore this point, as the connecting maps tend to
be isomorphisms in many of the relevant cases. Taking the long exact cohomology
sequence associated with the mapping fiber we obtain the following short exact
sequence,

0 →
Hi−1

MW(Ā/K)

(1−ϕ/qn)FnHi−1
MW(Ā/K)

→ H̃i
ms(X,n) → Hi(Ω≥n

A† ⊗K)ϕ=qn → 0 ,

where we set

Hi(Ω≥n
A† ⊗K) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hi
MW(Ā/K) n < i

(Ωn
A† ⊗K)d=0 n = i

0 n > i

, FnHi−1
MW(Ā/K) =

⎧⎪⎪⎨⎪⎪⎩
Hi

MW(Ā/K) n ≤ i

0 n > i

and on the right hand side of the sequence above the comparison ϕ = qn is done in
FnHi−1

MW(Ā/K), to which Hi(Ω≥n
A† ⊗K) is mapped in the obvious way.

Remark 40. To bring up an interesting analogy with the theory of Kim to be de-
scribed in Sect. 1.6.5, we comment on a certain normalization issue, compare
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Remark 43. It often happens that Hi(Ω≥n
A† ⊗ K)ϕ=qn

= 0 so that we have an isomor-
phism

H̃i
ms(X,n) � Hi−1

MW(Ā/K)/(1−ϕ/qn)FnHi−1
MW(Ā/K) .

It turns out that it is best to identify, when possible this last group with

Hi−1
MW(Ā/K)/FnHi−1

MW(Ā/K)

via the map 1−ϕ/qn, of course, only if 1−ϕ/qn is invertible on Hi−1
MW(Ā/K). Note

that this is true even if FnHi−1
MW(Ā/K) = 0. There are several reasons for making this

identification. From the point of view of the general theory of syntomic cohomology
this identification is the one that exists in general [Bes00b, Prop. 8.6]. It is also the
one that remains stable if we replace ϕ by a power of it. The most important reason,
though, is that in practice it is this identification that gives the nice formulas for
syntomic regulators.

In complete analogy to Beilinson’s conjectures [Bei85] there is a p-adic Beilin-
son conjecture, first formulated in a rather different way by Perrin-Riou [PR95],
see also [BBdJR09], connecting syntomic regulators (whose complicated definition
we do not recall here) to special values of p-adic L-functions. Thus, there is some
interest in computing syntomic regulators. We recall here two cases where this
computation involves Coleman integration.

The first case in fact predates the theory of syntomic regulators and was the
motivation for the extension of the theory of iterated integrals to curves. Let C be a
complete curve over K with good reduction and let K(C) be its function field. We
recall that the second K-group K2(L) of a field L, is generated by Steinberg symbols
{ f ,g} for f ,g ∈ L× subject to some simple relations, and that K2(C) is the subgroup
of K2(K(C)) where all tame symbols vanish.

In [CdS88] Coleman and de Shalit use iterated Coleman integration to define a
map

rp,C : K2(K(C)) → Ω1(C/K)∗

{ f ,g} �→
(
ω �→

∫

div( f )
log(g)ω

)

to the dual of the space of holomorphic forms on C. They called the restriction of
this map to K2(C) the p-adic regulator, and for elliptic curves with complex multi-
plication overQ they showed a relation with special values of the p-adic L-function.
Namely, let E be such an elliptic curve with complex multiplication by the full ring
of integers of a quadratic imaginary field F and with good ordinary reduction above
the prime p. Fix an embedding Q̄→ Q̄p. Then p = pp̄ in F, where p is fixed to be the
prime ideal coming from Q̄p. Let ψ be the Grössencharakter of F associated with
E by the theory of complex multiplication and let π = ψ(p). Let ω be an invariant
differential on E defined over Q. This differential defines a p-adic period Ωp. Con-
sider a symbol { f ,g} ∈ K2(Q(E)), where the divisors of f and g have their support
in torsion points (which implies that a multiple of the symbol extends to K2(E)) and
satisfying a mild technical condition. Then Coleman and de Shalit prove, loc. cit.
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Theorem 5.11, the formula
(
1− 1

πp

)
rp,E( f ,g)(ω) = c f ,gΩpLp(ψ) ,

where c f ,g ∈ Q and Lp is the p-adic L-function of F [Kat76].
In [Bes00c] we showed that upon identifying K2(C) up to tensoring with Q with

K2(C), where C is an integral model of C, the p-adic regulator of Coleman and de
Shalit is exactly the syntomic regulator

K2(C) → H2
syn(C,2) � H1

dR(C/K)/F1 � Ω1(C/K)∗

where the last identification is via Poincaré duality.
The second case involves higher K-theory of number fields. Let L be such a field.

Then, for n ≥ 2 one can write a certain motivic complex

M̃•
(n)(L) : M̃n → M̃n−1 ⊗L×

Q
→ M̃n−2 ⊗

2∧
L×
Q

→ ·· · → M̃2 ⊗
n−2∧

L×
Q

→
n∧

L×
Q

in degrees 1 through n, where L×
Q
= L× ⊗Q, whose H1 injects, and is conjectured to

be isomorphic, to motivic cohomology

H1
M(L,Q(n)) .

The group M̃n = M̃n(L) is generated by symbols {x}n, for x ∈ L − {0,1} (but the
relations between them are unclear) and the differential in the complex is given by

{x}k ⊗ y1 ∧ · · ·∧ yn−k �→ {x}k−1 ⊗ x∧ y1 ∧ · · ·∧ yn−k .

In the classical case [BD92, dJ95] show that the map induced by the Beilinson reg-
ulator and an embedding τ : L → C,

H1(M̃•
(n)(L)) → H1

M(L,Q(n))
τ−→ H1

M(C,Q(n))
reg
−−→ C

is induced by the map M̃n →C sending the symbol {x}n to a constant times Pn(τ(x)),
where Pn is a certain single valued version of the complex polylogarithm. In [BdJ03]
we have shown that the same result holds under some integrality assumptions for the
map

H1(M̃•
(n)(L)) → Q̄p ,

induced by the syntomic regulator and an embedding τ : L → Q̄p, with the single
valued version of the complex polylogarithm replaced by the function

Ln(z)+Ln−1(z)
log(z)

n
with Ln(z) =

n−1∑

m=0

(−1)m

m!
Lin−m(z) logm(z) .



1 Heidelberg Lectures on Coleman Integration 35

We end this subsection by recalling another relation between syntomic cohomol-
ogy and Coleman integration. Let us consider, for an affine X as before,

H̃1
ms(X,1) �

{
(ω,g) ; ω ∈Ω1

A† ⊗K , g ∈ A†
K , dω = 0 , dg = (1−φ/q)ω

}

One observes that the map H̃1
ms(X,1) → (Ω1

A† ⊗K)d=0 obtained by sending (ω,g)
to ω is not surjective, because its image can contain only ω whose cohomology class
is killed by 1 − ϕ/q. This can be changed if we replace 1 − φ/q by P(φ), where P
is the characteristic polynomial of P on H1

MW(Ā/K). This gives the so called finite
polynomial cohomology of [Bes00a].

Observe that an element of this cohomology is represented by a pair (ω,g) where
ω is a closed one-form and g ∈ A†

K with dg = P(φ)ω. Applying Coleman integration
in the linear Frobenius approach we obtain P(φ)Fω = g+C. This is a functional rela-
tion from which Fω can be recovered. This is in fact Coleman’s original approach. It
turns out that one can simply think of the cohomology class of (ω,g) as the Coleman
integral of ω, and view the value of this integral at some point as pulling back the
cohomology class to the point. This approach, developed in [Bes00a], generalizes
to give Coleman integrals of forms of degree greater than 1.

1.6.4 Multiple Zeta Values

In this subsection we recall the classical theory of multiple zeta values and their
relations and the p-adic theory of Furusho [Fur04], and we explain how the theory
of tangential base points in Coleman integration, as described in Sect. 1.5.4, was
used in [BF06] to obtain some relations between p-adic multiple zeta values.

For k = (k1, . . . ,km), ki > 0, km > 1, the multiple zeta value ζ(k) is defined as the
convergent series,

ζ(k) =
∑

0<n1<···<nm

1

nk1
1 · · ·nkm

m

. (1.17)

for example, for k = (k), ζ(k) = ζ(k) is the usual zeta value.
These numbers, already known to Euler, are of interest because of their algebraic

interrelations, which are expected to reflect deep arithmetic information. The sim-
plest types of relations are the so called series or harmonic shuffle product formu-
lae. The easiest example of these, which we will concentrate on in this subsection,
see [BF06] for the general theory, is the formula

ζ(a)ζ(b) = ζ(a,b)+ ζ(b,a)+ ζ(a+b) (1.18)

which one gets by writing

ζ(a)ζ(b) =
∑

n1,n2>0

1
na

1

1

nb
2
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and dividing the summation over the infinite square n1,n2 > 0 into the sum over the
bottom and top triangles and over the diagonal.

There is another type of relation for multiple zeta values which one obtains from
an integral representation of these values. To derive it, define the k-th multiple
polylogarithm, where the index k can now have km = 1, by the series

Lik(z) =
∑

0<n1<···<nm

znm

nk1
1 · · ·nkm

m

. (1.19)

and observe that ζ(k) = Lik(1) when km > 1. From the power series expansion one
easily arrives at the following unipotent differential equation:

dLik1,...,km
(z) =

⎧⎪⎪⎨⎪⎪⎩
Lik1,...,km−1(z) dz

z km � 1

Lik1,...,km−1
(z) dz

1−z km = 1 .
(1.20)

In particular, multiple polylogarithms are iterated integrals and can be written as
integrals over certain triangular domains. In fact, borrowing from the description of
multiple polylogarithms in terms of the KZ differential equation, associate with k
the word w = BAk1−1BAk2−1 · · ·BAkm−1, and consider the differential form

ωw
i �

⎧⎪⎪⎨⎪⎪⎩
dti
ti

if i’th place in w is A
dti

1−ti
otherwise .

Then one obtains the formula

ζ(k) =
∫

0≤t1≤t2≤···≤1
ωw

1 (t1)ωw
2 (t2) · · · .

This serves as a source for the integral shuffle product formulae. The simplest ex-
ample is:

ζ(2)ζ(2) =

(∫

0≤t1≤t2≤1

dt1
1− t1

dt2
t2

)(∫

0≤s1≤s2≤1

ds1

1− s1

ds2

s2

)
=

∫
0≤t1≤t2≤1
0≤s1≤s2≤1

Ω

where Ω = dt1
1−t1

dt2
t2

ds1
1−s1

ds2
s2

. We can write this as a sum of six terms, depending on
the inequalities between the coordinates,

=

∫

t1≤t2≤s1≤s2

Ω+

∫

s1≤s2≤t1≤t2

Ω+

∫

t1≤s1≤t2≤s2

Ω

+

∫

s1≤t1≤s2≤t2

Ω+

∫

s1≤t1≤t2≤s2

Ω+

∫

t1≤s1≤s2≤t2

Ω .

The six terms are themselves iterated integrals and one finds the formula

ζ(2)2 = 2ζ(2,2)+4ζ(1,3) .
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In [Fur04] Furusho set out to develop a p-adic theory of multiple zeta values.
The immediate problem is that the series (1.17) does not converge p-adically. In
order to overcome this he checked that multiple polylogarithms, defined as Coleman
functions using the differential equation (1.20), have a limit when z approached
1 and this limit is then defined to be the corresponding multiple zeta value. As
explained in Sect. 1.5.4, one could simplify things by using the constant term.

Since p-adic multiple zeta values were defined using the multiple polylogarithm,
it is perhaps not surprising that Furusho was only able to prove the analogues of
the integral shuffle product formulae. The series product formulae were established
in [BF06] and further work concerning generalized multiple zeta values, covering
the case km = 1 as well, was later done in [FJ07]. The strategy for proving the series
shuffle relation is rather simple, but certain intricacies have to be overcome by using
the tangential base points and their generalizations. Again, we only deal with the
simplest case, namely, the p-adic analogue for (1.18).

The natural function to consider for proving this is the two variable p-adic mul-
tiple polylogarithm defined near (0,0) by

Li(a,b)(x,y) =
∑

0<n<m

xnym

namb
.

One checks easily the differential relations between these functions:

x
d

dx
Li(a,b)(x,y) =

⎧⎪⎪⎨⎪⎪⎩
Li(a−1,b)(x,y) a > 1

1
x−1 (Lib(xy)−Lib(y)) a = 1

y
d
dy

Li(a,b)(x,y) =

⎧⎪⎪⎨⎪⎪⎩
Li(a,b−1)(x,y) b > 1

y
1−y Lia(xy) b = 1 .

Thus, one may analytically continue Li(a,b)(x,y) to Coleman functions in two vari-
ables. Indeed, as Lia and Lib are Coleman functions, so are Lia(xy) and Lib(xy) by
functoriality (1.13) so the resulting system is easily seen to be unipotent. Now, the
relation

Lia(x)Lib(y) = Li(a,b)(x,y)+Li(b,a)(y, x)+Lia+b(xy)

is obvious, because on the power series defining these functions near (0,0) it is true
by the same summation proving the series shuffle product formula, hence it is true
globally by the identity principle Proposition 31. Thus, to get the required formula
one only needs to substitute x = y = 1. This is where the main difficulty in the
entire argument is. It is by no means clear that Li(a,b)(1,1) = Lia,b(1). Of course,
the difficulty is increased by the fact that both points are singular for the differential
equations defining the two functions.

To treat this difficulty, one has to work with the generalization of the notion of a
tangential base point, as in Sect. 1.5.4. We apply the results there to the functions
Li(a,b). One first observes that the differential equations defining these functions
ultimately have singularities along x = 0,1,∞, y = 0,1,∞ and xy = 1, where the
last divisor comes from the appearance of functions like Li(xy) in the expressions.
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Consequently, one should blow up P1 × P1 at the point (1,1) to make the singular
locus normal crossing. The resulting space, if one blows up further the irrelevant
points (0,∞), (∞,0) is also the Deligne-Mumford compactification for the moduli
space of curves of genus 0 with 5 marked points. One gets the picture in Fig. 1.1

y=0

x=0

y=1

xy=1

Li=0

x = 1 Li=Li(y)

Li=Li(1,1)

Fig. 1.1 Analytic continuation to (1,1)

We now try to compute Li(a,b)(1,1). First we should interpret it as the value
of Li(a,b) on a tangent vector (x, ȳ) = (1,1) at the point (1,1). The first step in the
computation of this value is to restrict to the divisor y = 0. By this we mean that
we analytically continue to the normal bundle of y = 0 minus the 0 section and then
restrict to the section ȳ = 1. In this case, the recipe outlined in (1.14), together with
the restriction to ȳ = 1 boils down to removing the part multiplying dy and then
setting y = 0 in the formulas. The equations are therefore going to become

x
d

dx
Li(a,b)(x,0) =

⎧⎪⎪⎨⎪⎪⎩
Li(a−1,b)(x,0) a > 1

0 a = 1 .

Since the boundary conditions on these functions are always set so that the constant
term at 0 is 0 it follows immediately that the function Li(a,b)(x,0) is identically 0.
This is not surprising based on its expansion and the identity principle.

We now repeat the same considerations but this time restricting to the divisor
x = 1. In the same way as before the differential equations are going to be

y
d
dy

Li(a,b)(1,y) =

⎧⎪⎪⎨⎪⎪⎩
Li(a,b−1)(1,y) b > 1

y
1−y Lia(y) b = 1
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which are of course the same differential equations satisfied by the single variable
Li(a,b). Based on the computation at y = 0 and on Remark 35 we see that the bound-
ary values at y = 0 for all of these functions are 0, which now gives the result
Li(a,b)(1,y) = Lia,b(y).

One cannot now just substitute at the point (1,1) since that point has been blown
up. However, one checks that the differential equation for restricting to the excep-
tional divisor formed by the blowup, with an appropriately chosen coordinate, forces
Li(a,b)(x,y) to be constant on the exceptional divisor. This makes the blowup benign
and completes the proof.

It is interesting to note that in the case b= 1 it is no longer the case that Li(a,b)(x,y)
is constant on the exceptional divisor and one therefore gets different normalizations
for the multiple zeta values, depending on a chosen location on the exceptional
divisor. This is worked out in [FJ07].

1.6.5 The Non-abelian Unipotent Albanese Map and the Work of
Kim on Rational Points

In the last few years M. Kim developed a fascinating non-abelian analogue of the
Chabauty method, and used it to obtain results, some new and some old, on ra-
tional and integral points on curves [Kim05, Kim09, Kim10a, Kim10b, CK10]. In
Kim’s theory, the p-adic Abel-Jacobi map is replaced by the unipotent Albanese
map, which is intimately connected with Coleman integration theory. We describe
Kim’s map and the relation with Coleman theory, as well as list some results prov-
able by Kim’s method. We do not say much about the other great contribution of
Kim – Selmer varieties, which should be viewed as the non-abelian analogues of
the Jacobians in Chabauty’s work. Conversations with L. Ramero contributed to
our presentation.

Let X be a smooth R-scheme and fix on it an R-point x. We may associate with
the pair (X, x), in analogy with the situation in Sect. 1.6.3, the following data:

(1) The de Rham unipotent fundamental group GdR
x of the category of unipotent

vector bundles on XK with connections with log singularities at infinity, with
respect to the fiber functor of taking the fiber of the bundle at x. This is
an affine group scheme over K and comes equipped with a Hodge filtration
F•GdR

x , which is defined by a filtration by ideals F• on the associated Hopf
algebra K[G], the filtration F1−iK[G] defines FiGdR

x , see [Woj93, Theorem E].
(2) The rigid fundamental group Grig

x . This is the global version of the group
we discussed in Sect. 1.5.1, using the definition of unipotent overconvergent
isocrystals on the variety Xs. As in Sect. 1.5.1, it is an affine group scheme
over K and comes equipped with a linear Frobenius ϕ. One can also take the
group over K0 and use a semi-linear Frobenius but it makes little difference
and for clarity we avoid this.

(3) A specialization map Sp : Grig
x → GdR

x , note the reversed direction.
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Similarly, if y is another R-point, then we have spaces of paths PdR
x,y and Prig

x,y, which
are right torsors for the respective groups, and which have filtrations, Frobenius and
specialization maps compatible with the group actions. We can make the following.

Definition 41. The unipotent Albanese map sends the point y to the isomorphism
class of pairs of right (GdR

x ,Grig
x ) torsors with compatible additional structures rep-

resented by (PdR
x,y,P

rig
x,y).

Our goal now is to make this definition concrete. Note first that the rigid side
of the torsor is completely trivialized, by the Frobenius invariant path γx,y. Further-
more, the compatibility of the Hodge filtrations means that the filtration on PdR

x,y is
completely determined by a path lying in F0. The following is thus easy.

Lemma 42. The map that sends an isomorphism class as above to the class of
δ−1

x,ySp(γx,y) in F0\GdR
x , where δx,y ∈ F0PdR

x,y, is a bijection.

Composing with the unipotent Albanese map we obtain a map

α : X(R) → F0\GdR
x

which we continue to call the unipotent Albanese map. To make this even more
concrete, given a function f ∈ K[GdR

x ], which is invariant from the left under F0GdR
x ,

we can evaluate f on α(y). This way we obtain a map α f : X(R) → K. In Proposi-
tion 44 we will show that α f (y) is given by evaluating a certain Coleman function
associated with f on y.

Remark 43. (1) The condition that f is invariant under left multiplication by F0 is
easily translated into Hopf algebra terms to mean that

Δ( f ) ∈ F1K[GdR
x ]⊗K[GdR

x ] ,

with Δ the comultiplication.
(2) There is another way to classify isomorphism classes of torsors, which is

suggested by Deligne [Del02]. Suppose that the specialization map is an isomor-
phism, as for example is the case if X is compactified such that the complement is
a smooth divisor with relative normal crossings, so that we may transport ϕ to the
de Rham torsor. Then, we may instead send the isomorphism class of (PdR

x,y,P
rig
x,y) to

the element δx,yϕ(δx,y)−1. Different choices of δx,y mean that this element is well
defined in the quotient of GdR

x by the action of F0 given by h(g) = ϕ(h)gh−1. Let
us write this quotient as F0\ϕGdR

x . Clearly, the two constructions are related by the
map F0\GdR

x → F0\ϕGdR
x induced by g �→ ϕ(g)g−1. This should be thought of as a

non-abelian analogue of the two different normalizations of syntomic cohomology,
see Remark 40.

To interpret the unipotent Albanese map in terms of Coleman integration, we
need to recall the construction of the the Hopf algebra K[GdR

x ] and of the algebra
of functions on path spaces [Del90]. Let G be the Tannakian fundamental group
associated with the Tannakian category T and the fiber functor ω. The algebra K[G]



1 Heidelberg Lectures on Coleman Integration 41

may be described concretely as an algebra of matrix coefficients. An element in such
an algebra is provided by a pair (T,E) where T ∈ T , E ∈ ω(T)⊗ω(T)∗, where ω(T)∗

is the K-dual of ω(T), subject to certain identifications which we do not describe.
When T is the category of representations of an affine group scheme G and ω(T)
is just the underlying vector space to T ∈ T , then a pair (T,v⊗w∗) is to be thought
of as corresponding to the function on G given by g �→ w∗(gv). Similarly, if ω′ is
another fiber functor and we replace ω(T)∗ by ω′(T)∗ in the above construction, we
get the space of functions on the path space Pω,ω′ .

Now, let B be a K-algebra and suppose we have a fiber functor ω′ with values
in locally free finite rank B-modules. Then the same construction gives a space of
functions on an affine space over B, which we denote by Pω,ω′ , whose fiber over
each point y ∈ Spec(B) is just Pω,ω′

y
, with ω′

y the fiber functor obtained by taking the
fiber of ω′ at y.

This suggests the following interpretation of Coleman functions, based on Def-
inition 27. Let A† be a wcfg algebra with associated Tate algebra A and reduction
Ā, and let x be a κ-rational point of Xκ. Let ωx be the associated fiber functor on the
category of unipotent A†

K-modules with an integrable connection. This is Un(Ā)
but we need to remember the particular A†. and let ω′ be forgetful fiber functor into
A†

K-modules. This results in a path space Px,ω′ over A†
K. Definition 27 exactly says

that a Coleman function is a function on this path space and Definition 28 means
that evaluating the Coleman function at a point y means evaluating the function on
the associated Frobenius invariant path from x to y. More precisely, the composition
of the invariant path to the reduction of y composed with the path from the reduction
to y obtained by taking a horizontal section and evaluating at y.

We can state the following.

Proposition 44. Let f ∈ K[GdR
x ] be invariant on the left by F0GdR

x . Then there exists
a Coleman function F on X such that α f (y) = F(y) for any R-rational point y of X.

Proof. This is somewhat sketched, as we have not properly defined Coleman func-
tions on X. Globalizing the considerations above we see that we have:

(1) A principal GdR
x -bundle over XK, PdR, of paths emminating from x, with a

filtration F•. We denote its projection to XK by π.
(2) A principal Grig

x -bundle Prig over an overconvergent space X† (this can either
be taken literally as in [GK00] or requires an appropriate interpretation using
the work of Berthelot), with a Frobenius.

(3) A specialization map Sp from Prig to the restriction of PdR to X†.

All of this compatible with the corresponding structure on GdR
x and Grig

x . Now, for an
affine open V ∈ X, we can find a section δ : VK → F0PdR, which we may reinterpret
as a trivialization v : PdR → GdR

x × V with v(γ) = (δ(π(γ))−1γ,π(γ)). Starting with
f ∈ K[GdR

x ], extended to a function on V × GdR
x by pulling back via the projection,

we have f ◦ v ∈ K[PdR] which we may restrict to X† and pullback via Sp to Prig

giving us, locally on X†, a Coleman function. The left F0 invariance of f means
that these functions are independent of the choice of δ and they thus glue to give a
global Coleman function F. Visibly, evaluating this on γx,y gives α f (y). ��
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Remark 45. For the second normalization one can also evaluate functions on GdR
x

on the unipotent Albanese and the results from the two normalizations are related
in terms of the action of ϕ on GdR

x . In the second normalization, it is not too hard
to see that one gets certain analytic functions rather than Coleman functions. Two
cases of this are worked out in [Fur07, Example 2.10].

As mentioned before, the other main ingredient in Kim’s work is the Selmer
variety. This is a certain pro-algebraic variety, constructed from Galois cohomology
so that the unipotent Albanese for global points factors through it. If the map of the
Selmer variety to F0\GdR

x is not surjective, more precisely, not so already on some
finite level, then one can find a Coleman function vanishing on all global points.
Kim shows that image of the unipotent Albanese map is Zariski dense, implying
that this Coleman function does not vanish on p-adic points, giving a non-trivial
condition for global points. The main difficulty in the method is to show the non-
surjectivity.

We mention two results obtained by Kim. In [Kim05] he reproves a theorem
of Siegel about the finiteness of integral points on P1 − {0,1,∞}. In [Kim10a], as
corrected in [BKK11], he shows the following result.

Theorem 46. Let E be an elliptic curve over Q given by the Weierstrass equation
y2 = x3 + ax+ b and assume that it has an integral j-invariant and a Mordell-Weil
group of rank 1. Let p be a prime of good reduction with the property that the p∞

component of the Tate-Shafarevich group of E is finite. Suppose there is an integral
solution Q of the Weierstrass equation above which is a point of infinite order in
E(Q). Then, any other integral solution is contained in the 0-set of the function

Fω(Q)2D2(z)−Fω(z)2D2(Q)

where ω = dx/y is the invariant differential, η = xdx/y, and D2 = FωFη
, and all

Coleman integrals are normalized to have value 0 at a tangential base point at 0,
which is an integral base for the tangent space.

1.7 Coleman Integration in Families

An important observation to be made about Coleman integration is that it ultimately
relies on the ground field having a finite residue field (by varying the field we can
deal with residue fields which are algebraic over their prime fields) because we rely
on the linear Frobenius. It is an interesting problem to try to remove this condition.

In this section we report on some recent work, which is still in progress. Full
details will appear somewhere else. The problem that we want to address in this
work is. Given an algebraic family of closed forms, how can we integrate the family
in a way better than just integrating each family member separately. More precisely,

suppose that X
π−→ S is a smooth family of overconvergent rigid spaces over the

field K, which has a finite residue field as before (in this section we treat the nature
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of the spaces involved in a rather loose way), and ω ∈ Ω1
X/S is a relatively closed

relative form. We would like to associate with ω a Coleman integral Fω which,
when restricted to s ∈ S is a Coleman integral of ωs on π−1(s), but which is more
canonical then just taking a choice of integral for each fiber, with the possibility of
choosing a different constant of integration for each fiber. For affine S this can be
thought of as doing Coleman integration over OS, thus giving one solution to the
problem posed in the previous paragraph.

One motivation for treating this problem is computational and comes from the
work of Lauder [Lau03, Lau04b, Lau04a]. In this work, one sees the possibility
of computing the matrix of Frobenius on a variety by putting it inside a family,
deforming to a fiber where this matrix can be computed easily, and then relying on
the fact that the matrix of Frobenius satisfies a differential equation, derived from
the Picard-Fuchs equation and computable, to recover the matrix by solving the
equation with boundary terms provided by the simple fiber. One can speculate on the
possibility of doing the same with Coleman integrals, given that the computation of
the matrix of Frobenius is such an important part in the computation of the Coleman
integral, as we have seen in Sect. 1.4.

Following the approach to Coleman integration we presented, it is natural to
attempt to look for the answer by imposing additional constraints on the association
of a Coleman integral to a form. Given the type of problem it makes sense to look
for a differential condition. We would like to have a condition saying roughly that
the formation of Coleman integrals commutes with differentiation in the direction
of the base, i.e., ∫

∂

∂s
ω =

∂

∂s
Fω (1.21)

where we assume for simplicity from now onward that S is one-dimensional, and
the derivative refers to some vector field on the base.

There exists a well-defined notion of differentiation of differential forms with
respect to a vector field. However, there is no obvious way of lifting a vector field
on S to a vector field on X, except when X = Y × S, which is an interesting test
case. Thus, Equation 1.21 does not quite make sense. Trying to get a meaningful
statement out of it we are led to the following condition.

Lift the form ω to an absolute form ω̃ on X. This can be done at least locally in
the rigid topology. Since ω is relatively closed we may interpret dω̃ as an element
of Γ(X,π∗Ω1

S ⊗Ω1
X/S). Note here that projecting from Ω1

X/S to the first relative de
Rham cohomology exactly yields the Gauss-Manin connection applied to the coho-
mology class of ω. Hypothesizing the existence of the theory of relative Coleman
integration, we would like to integrate dω̃ to obtain a section

Fdω̃ ∈ Γ(X,π∗Ω1
S ⊗OCol(X/S))

with a hypothetical sheaf of relative Coleman functions OCol(X/S). Alternatively,
we can integrate ω to get Fω. We expect that drFω = ω, where dr is the relative
differential. Thus dFω − ω̃ is a one-form on X locally coming from the base. This
suggest the following condition
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dFω − ω̃ = Fdω̃ . (1.22)

Our goal in the rest of this section is to show that this is indeed a meaningful con-
dition, and gives a good theory of integration in families, from two different points
of view. The first involves the Gauss-Manin connection while the second comes
from fairly recent work on differential Tannakian categories. One should think of
this condition as cutting the indeterminacy in solving a relative unipotent differential
equation from analytic functions on some residue disc on S to just the constant ones,
thus going back to working over K, where the weight arguments of the preceding
sections can be used again.

1.7.1 Integration via the Gauss-Manin Connection

Let us first briefly recall the construction of the Gauss-Manin connection in [KO68].
We have a filtration on the complex of differential forms Ω•

X, where

Fi = Im(Ω•−i
X ⊗π∗Ωi

S →Ω•
X)

with graded pieces gri = Fi/Fi+1 � π∗Ωi
S ⊗Ω•−i

X/S. For future use we denote the pro-
jection on the second graded piece

� : (Ker : Ω2
X →Ω2

X/S) → π∗Ω1
S ⊗Ω1

X/S . (1.23)

The spectral sequence for the right derived functor of a filtered object, applied to the
functor π∗, reads, see loc. cit. (7),

Ep,q
1 = R

p+qπ∗grp �Ωp
S ⊗Hq

dR(X/S) =⇒ R
qπ∗Ω

•
X ,

and the Gauss-Manin connection

∇GM : Hq
dR(X/S) → Ω1

S ⊗Hq
dR(X/S)

is simply the differential in the spectral sequence d0,q
1 : E0,q

1 → E1,q
1 . In concrete

terms this is just the composition

R
qπ∗gr0 δ−→ Rq+1π∗F1 → Rq+1π∗gr1 ,

where the map δ is the connecting homomorphism in the long exact sequence associ-
ated with 0 → F1 → F0 → gr0 → 0, while the second map is induced from the projec-
tion F1 → gr1. In even more concrete terms, concentrating on H1

dR for affine X and S,
the Gauss-Manin connection starts with the class of ω ∈Ω1

X/S, closed with respect to

the relative differential. One chooses a lift ω̃ ∈Ω1
X, computes �dω̃ ∈Ω1

S ⊗Ω1
X/S, ob-

serves that result must lie in Ω1
S ⊗ (Ω1

X/S)dr=0 and finally projects on Ω1
S ⊗H1

dR(X/S).
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A first attempt to use the condition (1.22) to get a relative Coleman integration
theory follows roughly the same line as the approach in Sect. 1.4. We assume that
X and S are affine in the appropriate setting. By further localizing, we can choose a
vector ω ∈ (Ω1

X/S)n whose entries form a basis for the relative de Rham cohomology

module H1
dR(X/S) over OS and choose a lifting ω̃ ∈ (Ω1

X)n. Since ω̃ consists of a
basis, we find a relation of the form

�(dω̃) = Θ(s)⊗ω+dr(g) .

Here, Θ(s) in an n by n matrix with entries in Ω1
S, g has entries in Γ(X,π∗Ω1

S), dr is
the relative differential, extended Ω1

S linearly and � is the projection from (1.23).
Let us first observe that upon identifying H1

dR(X/S) with On
S via the basis ω the

Gauss-Manin connection is simply given by d−Θt, where Θt is the matrix transpose
to Θ. Now, applying (1.22) we get the following relation.

dFω = ω̃+Θ(s)Fω+g .

Rearranging terms we find

(d−Θ(s))Fω = ω̃+g . (1.24)

We now observe that on S the operator d −Θ(s) is nothing but the dual connection
to the Gauss-Manin connection ∇∗

GM on the dual vector bundle H1
dR(X/S)∗. Conse-

quently, the equation (1.24) describes Fω as a preimage, under π∗∇GM of a certain
1-form ω̃+ g. Note that fiber by fiber π∗∇∗

GM restricts to just ordinary derivative
while ω̃+g restricts to ω so fiber by fiber we indeed obtain the required integrals of
our forms.

In [Col89a, Col94] Coleman extended his theory of integration to define integra-
tion (but not iterated integrals) of one-forms with values in overconvergent Frobe-
nius isocrystals, that is, differential equations which overconverges in the appro-
priate sense, which have an action of Frobenius. Using this version of Coleman
integration theory we obtain the required Fω.

This method of integration can be extended to iterated integrals by using univer-
sal unipotent connections.

1.7.2 Motivation from Differential Tannakian Categories

In this section we explain how the condition (1.22) can be motivated by the theory
of differential Tannakian categories. We only give a minimal description of this rel-
atively new theory referring instead to the original work of Ovchinikov and Kamen-
sky [Ovc08,Ovc09a,Ovc09b,Kam09,Kam10] as well as to our brief sketch [Bes11].

A rigid abelian tensor category T over the field K is given a differential structure
by an auto-functor D, part of a short exact sequence of functors
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0 → id → D → id → 0 , (1.25)

and having a certain behavior with respect to the tensor structure.

Example 47. (1) A differential field is a field K together with a derivation ∂. The
category VecK of finite-dimensional vector spaces over the differential field K is
given a differential structure by sending the K-vector space V to the K-vector space
D(V) which as an abelian group is V×V and with the K-vector space structure given
by

α(v1,v2) = (αv1,αv2 −∂(α)v1) . (1.26)

(2) Let K = C(t). Consider the K-linear category of differential equations of the
form

∇ : ∂xy = Ay , (1.27)

over the field C(x, t). Let y be a solution of the above equation. Using the fact that
the two derivations commute we obtain

∂x(∂ty) = ∂t(Ay) = (∂tA)y+A∂ty .

This means that we obtain a new differential equation corresponding to the matrix(
A 0
∂tA A

)
and a solution derived from y which is

( y
∂ty

)
. The construction of the new

differential equation is clearly functorial and provides the differential structure D.
(3) A differential affine group scheme G over the differential field K is a Hopf

algebra K[G] over K together with a derivation ∂ extending the one on K and
commuting with multiplication and comultiplication. As an object of the cate-
gory of differential K-algebras, i.e., K-algebras with a derivation ∂ compatible with
its name sake on K, it represents a group valued functor. The category RepG of
finite-dimensional representations of G is the category of K[G]-comodules which
are finite-dimensional vector spaces over K. The differential structure is given by
sending the K-vector space V with comodule structure ρ : V → V ⊗K K[G] to the
vector space D(V) from the previous example with comodule structure D(ρ) given
as follows: Identify the vector v ∈ V with (0,v) ∈ D(V) and denote the map v �→ (v,0)
by ∂. Then D(ρ) can be described by the two formulae

D(ρ)(v) = ρ(v) , D(ρ)∂v = ∂(ρ(v))

with the rule
∂(a⊗b)= (∂a)⊗b+a⊗ (∂b)

for the action of ∂ on tensor products. The rest of the structure is the same as in the
standard theory [DM82].

Definition 48. A differential tensor functor T1
F−→ T2 between two differential

rigid abelian tensor categories, with differential structures D1 and D2 respectively,
is a tensor functor together with a natural isomorphism D2 ◦F � F◦D1 compatible
in the obvious way with the short exact sequence (1.25). A morphism of differen-
tial tensor functors α : F → F′ is a natural transformation of tensor functors which
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commutes with D in the sense that the diagram

F◦D1
α ��

��

F′ ◦D1

��

D2 ◦F
D2(α)

�� D2 ◦F′

commutes.

Example 49. Quite clearly the forgetful functor RepG → VecK is a differential tensor
functor. Another example is solutions of differential equations. Consider the functor
Sol that takes a differential equation ∇ as in (1.27) over the field C(x, t) to its space
of solutions (in the differential closure of the field) considered as a vector space over
C(t). Then, according to part (2) of Example 47 above, we can map D(Sol(∇)) to
Sol(D(∇)) using the formula

(y1,y2) �→ (y1,y2+∂ty1) .

Note that to make this aC(t) linear map we exactly need to give D(Sol(∇)) the vector
space structure (1.26).

Definition 50. A differential fiber functor on a differential rigid abelian tensor cat-
egory is a faithful differential tensor functor ω to VecK. If the category has a fiber
functor it is called neutral Tannakian.

Clearly, the category RepG for an affine differential group scheme G is a neu-
tral differential Tannakian category with the obvious forgetful functor into vector
spaces. The theory of differential Tannakian categories concerns itself with identi-
fying neutral differential Tannakian categories with categories of representations of
differential affine group schemes. In fact, let T be a differential rigid abelian tensor
category. given two differential fiber functors ω1,ω2, consider the functor that asso-
ciates to a differential K-algebra F the set of F-valued differential paths between ω1
and ω2, which is by definition the set Iso(ω1 ⊗F,ω2 ⊗F) of isomorphisms between
the two functors. One can compose differential paths. In particular for a single dif-
ferential fiber functor ω, the functor F �→ Aut(ω⊗ F) is a group valued functor on
differential K-algebras.

Theorem 51 ([Ovc09b, Theorem 1]). Let T be a neutral differential Tannakian
category with the differential fiber functor ω. Then T is equivalent to the category
RepG of finite-dimensional representations of an affine differential group scheme G.
Furthermore, for a differential K-algebra F we have

G(F) = Aut(ω⊗F) . (1.28)

For the present work, we are concerned only with the notion of differential paths.
However, we first need to modify part (2) of Example 47, since that example is
dependent on the choice of a derivation. If we want to get a theory which takes all
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derivations into account (like connections do) we are led, after some thought into
making the following construction.

Recall that we are assuming a situation π : X → S and that S is one-dimensional.
Suppose M is a vector bundle on X equipped with a relative connection

∇ : M → M⊗Ω1
X/S

which is integrable. Suppose we can lift ∇ to an absolute connection

∇̃ : M → M⊗Ω1
X .

Because ∇ is integrable, the curvature of ∇̃, which in general lies in Ω2
X ⊗End(M),

actually lies in its first filtered part F1 ⊗End(M), see Sect. 1.7.1, and so we may use
(1.23) to define

C =�∇̃2 ∈Ω1
S ⊗Ω1

X/S ⊗End(M) .

We define a new module with connection D=D∇̃ =D(M,∇)∇̃ where D=M⊕Ω1
S ⊗M

and the connection is defined by

∇D(m1,α⊗m2) = (∇m1,α⊗∇m2 −C×M) .

This connection is integrable. It is independent of ∇̃ up to a canonical isomor-
phism: suppose ∇̃′ = ∇̃+A is another lift. Here A ∈ Γ(X,π−1Ω1

S ⊗End(M)) because
it projects to 0 in relative forms. Then it is easy to compute that the corresponding
curvature is C′ = C+∇(A) (where ∇ takes Ω1

S as constants and acts in the induced
way on End(M)). Then we get a canonical horizontal isomorphism between D∇̃ and
D∇̃′ given by

(m1,α⊗m2) �→ (m1,α⊗m2+Am1) .

Consequently we can glue these objects, coming from different local liftings of ∇,
to obtain a global object D(M,∇). Clearly, there is a short exact sequence of vector
bundles with relative connections,

0 → Ω1
S ⊗M → D(M,∇) → M → 0

because all the horizontal isomorphisms constructed commute with these short exact
sequences. Clearly, the construction D is functorial.

For vector bundles over S we can make an analogous functorial construction. For
such a vector bundle M define D(M) =M⊕Ω1

S ⊗M with the OS-module structure

s× (m1,α⊗m2) = (sm1, sα⊗m2+ds⊗m1) .

Suppose now that X and S are residue discs. Then, mimicking the constructions
in Example 49 we have a well behaved solutions functor

Sol : {Relative connections (M,∇ : M →Ω1
X/S)} → {Vector bundles on S}

given by taking horizontal sections, and a map
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D◦Sol → Sol◦D , (m1,α⊗m2) �→ (m1,α⊗m2+ ∇̃m1) (1.29)

with ∇̃ the local lifting of ∇ used for the construction of D(M), where m1 and m2 are
horizontal sections for ∇, implying that ∇̃m1 ∈Ω1

S ⊗M.
We now show that, using this modified version of differential Tannakian theory,

condition (1.22) may be interpreted as coming from analytic continuation along a
differential path invariant under Frobenius between two residue discs. Suppose we
have a closed ω ∈ Ω1

X/S and we lift it to a ω̃ ∈ ΩX. correspondingly we have the

connection ∇ and its lift ∇̃ given by

∇ = dr −
(
0 0
ω 0

)
, ∇̃ = d−

(
0 0
ω̃ 0

)
.

The curvature of ∇̃ is going to be
(

0 0
−dω̃ 0

)
. We can now compute that the connection

∇D is going to be given by the following formula,

∇D

((
y1
y2

)
,α⊗

(
y3
y4

))
=

(
∇

(
y1
y2

)
,α⊗∇

(
y3
y4

)
+

(
0 0

�dω̃ 0

)(
y1
y2

))
.

Now we check what it means for
(

1
Fω

)
to be a horizontal section at the residue discs

of x and z, say, which is compatible with respect to translation by a differential path.
Appropriately translating the condition in Definition 48 we find that it simply means
that another horizontal section that translates under the same path is the image of(

1
Fω

)
under (1.29) which is ((

1
Fω

)
,

(
0

dFω − ω̃

))
.

In other words, dFω − ω̃ is a Coleman integral, which is just (1.22).
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Chapter 2
Heidelberg Lectures on Fundamental Groups

Tamás Szamuely∗

Abstract We survey topics related to étale fundamental groups, with emphasis on
Grothendieck’s anabelian program, the Section Conjecture and Parshin’s proof of
the geometric case of Mordell’s conjecture.

As a prelude to the PIA conference, in February 2010 Amnon Besser and I gave
introductory lecture series at Universität Heidelberg, following the kind request of
Jakob Stix. These notes constitute a revised version of the ones I distributed dur-
ing the lectures. They begin with a quick introduction to Grothendieck’s concept
of the algebraic fundamental group. After a reminder on basic results concerning
fundamental groups of curves, we move on to discuss what is arguably the most
famous open problem in the area, Grothendieck’s Section Conjecture. The next sec-
tion presents in detail a beautiful application of the ideas involved in the conjecture:
Parshin’s hyperbolic proof of the geometric case of Mordell’s conjecture. The final
section gives an overview of the most important features of anabelian geometry.

I thank Jakob Stix for giving me an opportunity to deliver the lectures and his
warm hospitality at Heidelberg, as well as the referee for a very careful reading of
the text.

2.1 Grothendieck’s Fundamental Group

Grothendieck’s theory of the algebraic fundamental group is a common generaliza-
tion of Galois theory and the theory of covers in topology. Let us briefly recall both.
The proofs of all statements in this section can be found in [Sza09].

T. Szamuely (�)
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127,
1364 Budapest, Hungary
e-mail: szamuely@renyi.hu

∗ The author acknowledges partial support from OTKA grant No. NK81203.

J. Stix (ed.), The Arithmetic of Fundamental Groups, Contributions in Mathematical
and Computational Sciences 2, DOI 10.1007/978-3-642-23905-2__2,
© Springer-Verlag Berlin Heidelberg 2012

53

szamuely@renyi.hu


54 T. Szamuely

Let k be a field. Recall that a finite dimensional k-algebra A is étale over k if it
is isomorphic to a finite direct product of separable extensions of k. Fix a separable
closure ks|k. The Gal(ks|k)-action on ks induces a left action on the set of k-algebra
homomorphisms Homk(A,ks). The rule A �→ Hom(A,ks) is a contravariant func-
tor. The main theorem of Galois theory in Grothendieck’s version is the following
statement.

Theorem 1. The contravariant functor F : A �→ Homk(A,ks) gives an anti-equi-
valence between the category of finite étale k-algebras and the category of finite
sets with continuous left Gal(ks|k)-action.

Note that the functor F depends on the choice of the separable closure ks. The
latter is not a finite étale k-algebra but a direct limit of such. Also, one checks that
Gal(ks|k) is naturally isomorphic to the automorphism group of the functor F, i.e.,
the group of natural isomorphisms F

∼−→ F.

Now to the topological situation. Let X be a connected, locally connected and
locally simply connected topological space. Recall that a cover of X is a space Y
equipped with a continuous map p : Y → X subject to the following condition:
each point of X has an open neighbourhood V for which p−1(V) decomposes as
a disjoint union of open subsets Ui of Y such that the restriction of p to each Ui
induces a homeomorphism of Ui with V.

Given a point x ∈ X, the fundamental group π1(X, x) has a natural left action
on the fibre p−1(x) defined as follows: given α ∈ π1(X, x) represented by a closed
path f : [0,1] → X with f (0) = f (1) = x as well as a point y ∈ p−1(x), we define
αy � f̃ (1), where f̃ is the unique lifting of the path f to Y with f̃ (0) = y. One
checks that this indeed gives a well-defined left action of π1(X, x), once we make
the convention that the product f g of two paths f ,g is given by going through g first
and then through f . It is called the monodromy action.

Theorem 2. The functor Fibx sending a cover p : Y → X to the fibre p−1(x)
equipped with the monodromy action induces an equivalence of the category of
covers of X with the category of left π1(X, x)-sets.

Here again, the functor Fibx depends on the choice of the point x. It is in fact
representable by a cover π : X̃x → X, i.e., we have an isomorphism of functors

Fibx � Hom(X̃x,−) .

The space X̃x can be constructed as the space of homotopy classes of paths starting
from x, the projection π mapping the class of a path to its other endpoint. As a
consequence, we have isomorphisms

Aut(X̃x)op � Aut(Fibx) � π1(X, x) .

Here Aut(X̃x)op denotes the opposite group to Aut(X̃x), i.e., the group with the same
underlying set but with multiplication given by (x,y) �→ yx. We have to pass to the
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opposite group because the natural left action of Aut(X̃x) on X̃ induces a right action
after applying the functor Hom(X̃x,−).

Here is an important consequence. Call a cover Y → X finite if it has finite fibres;
for connected X these have the same cardinality, called the degree of X.

Corollary 3. For X and x as in Theorem 2, the functor Fibx induces an equiva-
lence of the category of finite covers of X with the category of finite continuous left
̂π1(X, x)-sets.

Here ̂π1(X, x) denotes the profinite completion of π1(X, x), i.e., the inverse limit
of the natural inverse system of its finite quotients.

We can now come to Grothendieck’s common generalization in algebraic geom-
etry. Let S be a connected scheme. By a finite étale cover of S we mean a finite
étale map X → S. In particular, it is surjective and each fibre at a point s ∈ S is the
spectrum of a finite étale κ(s)-algebra. Fix a geometric point s̄ : Spec(Ω) → S. For
a finite étale cover X → S we consider the geometric fibre X×S Spec(Ω) over s̄, and
denote by Fibs̄(X) its underlying set. This gives a set-valued functor on the category
of finite étale covers of X.

We define the algebraic fundamental group π1(S, s̄) as the automorphism group
of this functor. By definition an automorphism of Fibs̄ induces an automorphism of
the set Fibs̄(X) for each finite étale cover X. In this way we obtain a natural left
action of π1(S, s̄) on the set Fibs̄(X).

Theorem 4. (Grothendieck) Let S be a connected scheme, and s̄ : Spec(Ω) → S a
geometric point.

(1) The group π1(S, s̄) is profinite, and its action on Fibs̄(X) is continuous for every
finite étale cover X → S.

(2) The functor Fibs̄ induces an equivalence of the category of finite étale covers
of S with the category of finite continuous left π1(S, s̄)-sets.

Here the functor Fib s̄ is pro-representable, which means that there exists a fil-
tered inverse system P = (Pα,φαβ) of finite étale covers and a functorial isomorphism

lim−−→Hom(Pα,X) � Fibs̄(X) .

The automorphism group of each finite étale cover Pα → S is finite, and

π1(S, s̄) = lim←−−
α

Aut(Pα)op ,

which explains its profiniteness. In fact, Grothendieck showed that one may choose
as a pro-representing system the system Pα → X of all Galois covers, i.e., those
connected finite étale covers for which Aut(Pα|S) acts transitively on geometric fi-
bres. These are turned into an inverse system by choosing a distinguished point
pα ∈ Fibs̄(Pα) for each α. For each pair α,β there is then at most one S-morphism
Pβ → Pα sending pβ to pα. We define this map to be φαβ, if it exists.
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Remark 5. Any two fibre functors on the category of finite étale S-schemes are (non-
canonically) isomorphic. One way to prove this is to use pro-representability of the
fibre functor which reduces the construction of an isomorphism between functors to
the construction of a compatible system of automorphisms of the Galois objects Pα

transforming one system of maps φαβ to another. This can be done by means of a
compactness argument.

An isomorphism between two fibre functors

γ : Fibs̄
∼−→ Fibs̄′

is called a path from s̄ to s̄′. It induces an isomorphism of fundamental groups

γ(−)γ−1 : π1(S, s̄)
∼−→ π1(S, s̄′) .

In the topological situation such an isomorphism is induced by the choice of a usual
path between base points, whence the name in the algebraic situation. As in topol-
ogy, the two isomorphisms induced by different paths differ by an inner automor-
phism of π1(S, s̄).

Remark 6. Historically, the case of a normal scheme was known earlier. If S is an
integral normal Noetherian scheme, denote by Ks a fixed separable closure of the
function field K of S, and by KS the composite of all finite subextensions L|K of Ks
such that the normalization of S in L is étale over S. Then KS|K is a Galois extension,
and it can be shown that the Galois group Gal(KS|K) is canonically isomorphic to
the fundamental group π1(S, s̄) for the geometric point s̄ : Spec(K) → S, where K
is an algebraic closure of K containing Ks.

The following examples show that the algebraic fundamental group indeed yields
a common generalization of the algebraic and topological cases.

Example 7. (1) For X = Spec(k), and x̄ : Spec(k) → Spec(k) we have

π1(X, x̄) � Gal(ks|k) .

This holds basically because finite étale Spec(k)-schemes are spectra of finite étale
k-algebras.

(2) For X of finite type over C and x̄ : Spec(C) → X there is a canonical isomor-
phism

̂
π

top
1 (Xan, x̄)

∼→ π1(X, x̄)

where on the left hand side we have the profinite completion of the topological
fundamental group of Xan with base point the image of x̄, and Xan denotes the
complex analytic space associated with X.

This isomorphism relies on a deep algebraization theorem for finite topological
covers of schemes of finite type over C.

A base point preserving morphism of schemes induces a continuous homomor-
phism of fundamental groups. To construct it, let S and S′ be connected schemes,
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equipped with geometric points s̄ : Spec(Ω) → S and s̄′ : Spec(Ω) → S′, respec-
tively. Assume given a morphism φ : S′ → S with φ◦ s̄′ = s̄. For a finite étale cover
X → S consider the base change X ×S S′ → S′. The condition φ ◦ s̄′ = s̄ implies
that Fibs̄(X) = Fibs̄′(X ×S S′). This construction is functorial in X, and thus every
automorphism of the functor Fibs̄′ induces an automorphism of Fib s̄, which defines
the required map φ∗ : π1(S′, s̄′) → π1(S, s̄).

The above functoriality, together with Example 7 (1), defines the maps in the
following exact sequence which is fundamental not only because it involves funda-
mental groups.

Proposition 8. Let X be a quasi-compact and geometrically connected scheme over
a field k. Fix an algebraic closure k of k, and let ks|k be the corresponding separable
closure. Write X � X ×Spec(k) Spec(ks), and let x̄ be a geometric point of X with

values in k. The sequence of profinite groups

1 → π1(X, x̄) → π1(X, x̄) → Gal(ks|k) → 1 (2.1)

induced by the maps X → X and X → Spec(k) is exact.

The group π1(X, x̄) acts on its normal subgroup π1(X, x̄) via conjugation, whence
a map

φX : π1(X, x̄) → Aut(π1(X, x̄)) .

Inside Aut(π1(X, x̄)) we have the normal subgroup Inn(π1(X, x̄)) of inner automor-
phisms; the quotient is the group Out(π1(X, x̄)) of outer automorphisms. By the
commutative diagram

1 −−−−−−→ π1(X, x) −−−−−−→ π1(X, x) −−−−−−→ Gal(ks|k) −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ Inn(π1(X, x)) −−−−−−→ Aut(π1(X, x)) −−−−−−→ Out(π1(X, x)) −−−−−−→ 1

we get an important representation

ρX : Gal(ks|k) → Out(π1(X, x̄))

called the outer Galois representation. It will appear several times in subsequent
sections.

Example 9. Assume X is a smooth proper curve of genus g, and fix a prime number
� different from the characteristic of k. As we shall see in Remark 11, the maximal
abelian pro-�-quotient of π1(X ×k k, x) is isomorphic to the Tate module T�(J) of
the Jacobian J of X ×k k. Taking the pushout of the sequence (2.1) by the natural
map π1(X ×k k) → T�(J) we obtain an extension of Gal(k|k) by T�(J). By the same
argument as above it gives rise to a Galois representation

Gal(ks|k) → Aut(T�(J)) � GL2g(Z�) .
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It is none but the usual Galois representation on torsion points of the Jacobian, a
central object of study in number theory. The outer Galois representation can thus
be viewed as a non-abelian generalization.

2.2 Fundamental Groups of Curves

In the first part of this section k denotes an algebraically closed field of characteristic
p � 0 and X a proper smooth curve over k. We recall some basic structure results
about the fundamental group of X and of its open subschemes. As they concern the
groups up to isomorphism, we drop base points from the notation.

Theorem 10. (Grothendieck [SGA1]) Let U ⊂ X be an open subcurve possibly
equal to X, and n � 0 the number of closed points in X \ U. Then π1(U)(p′) is
isomorphic to the profinite p′-completion of the group

Πg,n � 〈a1,b1, . . . ,ag,bg,γ1, . . . ,γn | [a1,b1] . . . [ag,bg]γ1 . . .γn = 1〉 .

Here G(p′) denotes the maximal prime-to-p quotient of the profinite group G, i.e.,
the inverse limit of its finite continuous quotients of order prime to p. For p = 0 we
define it to be G itself.

For k = C the theorem follows via Example 7 (2) from the well-known structure
of the topological fundamental group. In this particular case the underlying alge-
braization theorem is just the Riemann existence theorem of complex analysis. One
deduces the result for k of characteristic 0 using a rigidity theorem (see e.g. [Sza09,
Proposition 5.6.7 and Remark 5.7.8]) which says that the fundamental group of
a smooth curve does not change under extensions of algebraically closed fields of
characteristic 0. This also holds in positive characteristic, but only for proper curves.

In positive characteristic Grothendieck proved the result by first lifting the curve
to characteristic 0 and then proving a specialization theorem establishing an iso-
morphism between maximal prime-to-p quotients of the fundamental groups of the
curve and its lifting. Thus this case also relies on the topological result overC. How-
ever, Wingberg [Win84] was able to prove using delicate group-theoretic arguments
that for � � p a prime the maximal pro-� quotients of π1(U) have the above structure
(in the paper this is stated only for k = Fp but the argument works in general).

Remark 11. For X proper and � � p a prime, the theorem implies that the maximal
abelian pro-�-quotient of π1(X) is isomorphic to Z2g

�
. On the other hand, for J the

Jacobian of X, the Tate module T�(J) has the same structure. This is not a coinci-
dence: by a theorem of Serre and Lang [LS57] (see also [Sza09, Theorem 5.6.10])
every finite étale cover of J of �-power degree is a quotient of some cover given by

0 → �nJ → J
�n

−−→ J → 0 .
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On the other hand, given some embedding X → J obtained by sending a point x to
the divisor class of x − ξ for a fixed base point ξ, the induced map on fundamental
groups

π1(X, ξ) → π1(J,0)

becomes an isomorphism on the maximal prime-to-p abelian quotient: abelian
prime-to-p covers are obtained via pullback from the Jacobian.

There is also a generalization to open curves: if U ⊂ X is an open subcurve,
one still identifies the maximal abelian pro-�-quotient of π1(U) with the �-adic Tate
module of the Jacobian J̃ of U. The latter is a commutative group variety which is an
extension of J by the (n−1)-st power of the multiplicative group Gm, in accordance
with the theorem, see e.g. [KL81, (2.7)] .

The maximal pro-p quotient G(p) of G is defined as the inverse limit of finite
quotients of p-power order, and we have the following result.

Theorem 12. (Shafarevich [Sha47]) Assume p > 0. Then π1(X)(p) is a free pro-p
group of finite rank equal to the p-rank of the Jacobian variety of X.

For an open subcurve U � X the group π1(U)(p) is a free pro-p group of infinite
rank equal to the cardinality of k.

Here recall that the p-rank of an abelian variety A over an algebraically closed
field k of characteristic p > 0 is the dimension of the Fp-vector space given by the
kernel of the multiplication-by-p map on the k-points of A. It is a nonnegative
integer bounded by dimA.

Using methods of étale cohomology one can give a quick proof of this theorem,
see e.g. [Gil00] for details. It is based on the group-theoretic fact that a pro-p-
group G is free if and only if the Galois cohomology groups Hi(G,Z/pZ) vanish
for i > 1. In the case G = π1(X)(p) they can be identified with the étale cohomology
groups Hi

ét(X,Z/pZ) of X using arguments of cohomological dimension. The latter
groups are known to vanish for i > 1. The rank is then equal to that of the maximal
abelian quotient, i.e., the dual of H1

ét(X,Z/pZ), and thus can be determined using
Artin–Schreier theory.

Remark 13. Observe that Theorems 10 and 12 do not elucidate completely the struc-
ture of the fundamental group of an integral normal curve over an algebraically
closed field of positive characteristic. This is still unknown at the present day. The
theorems give, however, a good description of its maximal abelian quotient: this
group is the direct sum of its maximal prime-to-p and pro-p quotients, and hence
the previous two theorems together suffice to describe it.

Concerning curves over non-algebraically closed fields, a much-studied object is
the outer Galois representation

ρX : Gal(ks|k) → Out(π1(X, x̄))

over fields of arithmetic interest. One of the basic results is the following.
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Theorem 14. (Matsumoto [Mat96]) If k is a number field and X is affine such that
X has non-commutative fundamental group, then ρX is injective.

Recently, Hoshi and Mochizuki [HM09] proved that the result holds for proper
curves of genus > 1 as well. One can easily decide using Theorem 10 which curves
have noncommutative geometric fundamental group: those for which

(g,n) � (0,0), (0,1), (0,2), (1,0) .

These are the hyperbolic curves: their fundamental groups are center-free and, for
n > 0, even free.

The case (g,n)= (0,3) is due to Belyi [Bel79] and is a consequence of his famous
theorem stating that every smooth proper curve definable over a number field can
be realized as a finite cover of P1 branched above at most 3 points. The proof of the
general case uses different methods.

2.3 Grothendieck’s Section Conjecture

Arguably the most famous open question concerning fundamental groups of curves
is Grothendieck’s Section Conjecture, stated in [Gro83]. It concerns the exact se-
quence

1 → π1(X, x̄) → π1(X, x̄)
p∗−−→ Gal(ks|k) → 1 (2.2)

of Proposition 8, where p : X → Spec k is the structure map.
Any k-rational point y : Spec k → X induces by functoriality a map

σy : Gal(ks|k) → π1(X, ȳ)

for a geometric point ȳ lying above y. This is not quite a splitting of the exact
sequence above because of the difference of base points. But the choice of a path
(see Remark 5) from ȳ to x̄ on X induces an isomorphism

λ : π1(X, ȳ)
∼−→ π1(X, x̄) .

Changing the path on X is reflected by an inner automorphism of π1(X, x̄), more
precisely by an element of π1(X, x̄). The composite λ ◦σy is then a section of the

exact sequence uniquely determined up to conjugation by elements of π1(X, x̄). We
thus obtain a map

X(k) → {π1(X, x̄)-conjugacy classes of sections of p∗}. (2.3)

The Section Conjecture now states:

Conjecture 15. (Grothendieck [Gro83]) If k is finitely generated over Q and X is a
smooth projective curve of genus g � 2, then the above map is a bijection.
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Remark 16. Grothendieck also formulated a variant of the conjecture for open
curves. Its formulation is, however, more complicated than the above because one
has to circumvent the fact that for an affine curve U with smooth compactification
X there are tons of sections coming from rational points of X \U (see [EH08]).

Injectivity is not hard to prove and was known to Grothendieck. As the argument
works over other base fields as well, we include a slightly more general statement.

Proposition 17. Let X be a smooth projective curve of genus g > 0 over a field k.
Assume any of the following:

(i) k is finite.
(ii) k is p-adic.
(iii) k is finitely generated over Q.

Then the map (2.3) is injective.

Proof. The proof will show that even the sections of the exact sequence

0 → πab
1 (X) → Π → Gal(ks|k) → 1

obtained from (2.2) by pushout via the abelianization map π1(X, x) → πab
1 (X) sepa-

rate the k-points of X.
Set Γ � Gal(k|k). Fix a k-point y0 of X and denote by s0 the corresponding

section Γ→ π1(X, x̄). Given another k-point y of X with corresponding section s,
the composite map

Γ→ π1(X, x̄) → πab
1 (X)

induced by s0s−1 has image in πab
1 (X) and is a continuous 1-cocycle. We thus get

compatible classes in
H1(Γ,πab

1 (X)/m)

for all m > 0. Denoting by J the Jacobian of X we have a Galois-equivariant isomor-
phism πab

1 (X)/m � mJ (see Remark 11) so we actually get maps

Div0(X) → H1(Γ,mJ)

for all m, where Div0(X) is the group of degree 0 divisors on X. Moreover, it is an
exercise to check the commutativity of the diagram

Div0(X) −−−−−−→ H1(Γ,mJ)
⏐⏐⏐⏐⏐#

$⏐⏐⏐⏐⏐
J(k)

�−−−−−−→ J(k)Γ

where the right vertical map comes from the Kummer sequence

J(k)Γ
m→ J(k)Γ→ H1(Γ,mJ) .
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By this commutativity, if we assume s = s0, the class of the divisor y− y0 lies in the
kernel of the Kummer map J(k)Γ → H1(Γ,mJ) for all m, i.e., it is divisible in J(k).
But if k satisfies any of the assumptions above, the group J(k) has trivial divisible
subgroup: over a finite k it is finite, over a p-adic k it has a finite index subgroup
isomorphic to a finite direct power of Zp by Mattuck [Mat55], and for k finitely
generated over Q it is finitely generated by the Mordell–Weil–Lang–Néron theorem
[Lan91, Chap. I, Corollary 4.3]. Therefore the class of the divisor y− y0 is trivial in
J(k). As X has positive genus, we conclude that y = y0. ��

Remark 18. The injectivity result of the proposition holds for open hyperbolic
curves U as well, with basically the same proof. The role of J is played by the
generalized Jacobian J̃ encountered in the second paragraph of Remark 11.

Remark 19. Assume k is a subfield of a finitely generated extension of Qp for some
prime p, for example a p-adic field or a finitely generated field overQ. Consider the
exact sequence

1 → π1(X, x̄)(p) → Π p → Gal(ks|k) → 1 (2.4)

obtained from (2.2) by pushout via the map π1(X, x) → π1(X, x̄)(p). Mochizuki has
shown in [Moc99, Theorem 19.1] as a consequence of his anabelian characteriza-
tion of hyperbolic curves (see Theorem 33 below) that the injectivity result of the
proposition (and also its generalization as in the previous remark) remains valid for
splittings of (2.4) that come from k-points of X. On the other hand, Hoshi [Hos10]
recently gave examples of curves over number fields where not all splittings of (2.4)
come from k-points. Therefore the pro-p-version of the section conjecture is false.

So much about injectivity in the section conjecture. As for surjectivity, it is
widely open: at the time of writing not a single curve is known over a number field
that has a rational point and for which the map (2.3) is proven to be bijective, or at
least for which the finiteness of conjugacy classes of sections is known. The latter
statement would yield another proof of Mordell’s conjecture. In the next section
we shall see that over function fields over C statements of this type can actually be
proven.

Let us mention, however, a nice observation that goes back to Tamagawa [Tam97]
that was first stated in [Koe05].

Proposition 20. Conjecture 15 is equivalent to the following seemingly weaker
statement: if k is finitely generated over Q and X is a smooth projective curve
of genus g � 2, then X has a k-rational point if and only if the sequence (2.2) splits.

The proposition does not claim that for a given curve the splitting of (2.2) implies
the bijectivity of (2.3); one has to consider all curves.

The proof is based on the following lemma which has many other applications.

Lemma 21. (Tamagawa) Let X be a smooth curve over a field k. Assume k satisfies
one of the assumptions as in Proposition 17; in the third case assume moreover that
the smooth compactification of X has genus � 2.

A section s : Gal(ks|k) → π1(X, x) comes from a k-point if and only if for each
open subgroup H ⊂ π1(X, x) containing s(Gal(ks|k)) the corresponding cover XH has
a k-point.
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Proof. Let X̃ be the “universal cover” of X, i.e., the normalization of X in the ex-
tension KX|K of Remark 6. If s is a section coming from a k-rational point P, the
image s(Gal(ks|k)) is the stabilizer in π1(X, x) of a closed point Q of X̃ above P.
For H ⊃ s(Gal(ks|k)) it is also the stabilizer of Q under the action of π1(XH, x). In
particular, it maps onto Gal(ks|k) under the projection

π1(XH, x) → Gal(ks|k) .

This means that the image of Q by the projection X̃ → XH is k-rational.
For the converse we choose x to be a geometric generic point. The sets XH(k)

form a natural inverse system indexed by the subgroups H ⊂ s(Gal(ks|k)). Under any
of the three assumptions on k these sets are compact in their natural topology. In
the first two cases this is immediate but the third case is based on a highly nontrivial
input: Faltings’s theorem on the finiteness of XH(k). Hence the inverse limit of the
XH(k) is nonempty. An element of the inverse limit defines a point of X̃ whose
image in X induces s. ��

The proposition follows from the lemma because the splitting of (2.2) for X by a
section s : Gal(ks|k) → π1(X, x) implies its splitting for XH when H ⊃ s(Gal(ks|k)).

Remark 22. In recent years a birational analogue of the Section Conjecture was also
studied. If K is the function field of a smooth proper curve X over a field k of
characteristic 0, a k-rational point P of X induces a conjugacy class of sections of
the exact sequence of Galois groups

1 → Gal(K|Kk) → Gal(K|K) → Gal(k|k) → 1 .

Indeed, the local ring of P is a discrete valuation ring with fraction field K and
residue field k. A decomposition group DP ⊂ Gal(K|K) of this valuation is isomor-
phic to Gal

(
k((t))|k((t))

)
. The natural projection

Gal
(
k((t))|k((t))

)
→ Gal(k|k)

has a section. Its image is the subgroup of Gal
(
k((t))|k((t))

)
fixing the extension of

k((t)) obtained by adjoining the n-th roots of t for all n > 1. The composite map

Gal(k|k) → Gal
(
k((t))|k((t))

) ∼−→ DP → Gal(K|K)

is a section as required.
Each k-point P is uniquely determined by the conjugacy classes of sections it

induces because the arising DP pairwise intersect trivially by an old theorem of
F. K. Schmidt [Sch33]. One may then ask whether the analogue of the Section
Conjecture holds over arithmetically interesting fields. Koenigsmann [Koe05] ob-
served that the answer is yes if k is a p-adic field (see also [Pop10b] for a sharpened
version). Over a global field there are only partial results, but in contrast to the
original conjecture of Grothendieck at least examples are known of curves having
rational points where the answer is positive [HS12, Sto07].
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2.4 Parshin’s Proof of Mordell’s Conjecture over Function Fields

Let B be a smooth projective connected curve over the field C of complex num-
bers, and let C be a smooth projective geometrically connected curve defined over
the function field C(B) of B. The following statement is usually called the geomet-
ric case of Mordell’s Conjecture or the Mordell Conjecture for function fields of
characteristic 0.

Theorem 23. Assume that there is no finite extension K|C(B) for which the base
changed curve C ×

C(B) K can be defined over C. Then C has only finitely many
C(B)-rational points.

As a consequence, one gets the same result over finitely generated base fields of
characteristic 0, assuming B geometrically integral.

This famous theorem has several proofs. The first one was given by Manin
[Man63]. Coleman later discovered that it contained a gap which he was able to fill
in [Col90]. The first complete published proof seems to be that of Grauert [Gra65].
Parshin himself gave two proofs, in [Par68] and [Par90]. It is the second one that we
are going to explain now. As we shall see, it is partly inspired by the ideas explained
in the previous section. We prove the following equivalent statement.

Theorem 24. Let V be a smooth projective surface equipped with a proper flat mor-
phism p : V → B with generic fibre C as above. If V as a family over B is non-
isotrivial, then the projection p has only finitely many sections.

Recall that the family p : V → B is isotrivial if there is a finite flat base change
B′ → B such that V×B B′ → B′ is a trivial family, i.e., isomorphic to C′ ×B′ → B′.

To see the equivalence of the two statements, note that one may find a smooth
projective surface Ṽ over C whose function field is that of the curve C of Theo-
rem 23, by resolution of singularities for surfaces. The inclusion C(B) → C(Ṽ)
induces a rational map Ṽ → B with generic fibre C. By elimination of indetermi-
nacy we find a blowup V of Ṽ in finitely many points equipped with a morphism
p : V → B as required. A section of p induces a section on the generic fibre. On the
other hand, by properness of V any section of the projection C → Spec C(B) extends
uniquely to a section of p.

Strategy of the proof of Theorem 24. Choose a Zariski open subset B0 ⊂ B such that
p is smooth over B0. Fix a point b0 ∈ B0, and denote by F the fibre p−1(b0). Fixing
a base point v0 ∈ F, we have a homotopy exact sequence of topological fundamental
groups

1 → π
top
1 (F,v0) → π

top
1 (V0,v0)

p∗−−→ π
top
1 (B0,b0) → 1

where V0 = p−1(B0). A section s0 : B0 → V0 of p over B0 meets F in a point v1,
whence a map

s0∗ : π
top
1 (B0,b0) → π

top
1 (V0,v1) .

Fixing a path from v0 to v1 induces an isomorphism

π
top
1 (V0,v1)

∼−→ π
top
1 (V0,v0)
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unique up to inner automorphism. By composition s0∗ induces a section of the map
p∗ above. Therefore we obtain a map

S : {sections of p|v0
: V0 → B0} → {conjugacy classes of sections of p∗} .

As any section of p is determined by its restriction to B0, the theorem follows from
the two claims below. ��

Claim 25. The map S has finite fibres.

Claim 26. The map S has finite image.

We begin with the proof of Claim 25. First we recall the notion of K|k-trace for
abelian varieties. Given a field extension K|k and an abelian variety A over K, the
K|k-trace trK|k(A) is the k-abelian variety characterized by the property that

Hom(BK,A)
∼−→ Hom(B, trK|k(A))

for all k-abelian varieties B. Its existence is a theorem of Chow, see [Kah06,
Appendix A] or [Con06] for modern proofs. Applying the defining property with
B = Spec(k) we obtain a bijection A(K)

∼−→ trK|k(A)(k). Its inverse is induced by the
map τ : trK|k(A)K → A obtained by setting B = trK|k(A) and taking the map cor-
responding to the identity. The image of τ is the maximal abelian subvariety of A
defined over k.

Proof of Claim 25. The diagram

C −−−−−−→ Spec C(B)
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
V0 −−−−−−→ B0

(2.5)

is Cartesian, so a section s0 : B0 → V0 induces a section s : SpecC(B) → C;
moreover, s0 is uniquely determined by s. On the other hand, a section

π
top
1 (B0,b0) → π

top
1 (V0,v0)

induces a map on profinite completions, i.e., a map π1(B0,b0) → π1(V0,v0) of alge-
braic fundamental groups. For some geometric point c0 of C above v0 the diagram
of groups

π1(C,c0) −−−−−−→ Gal(C(B)|C(B))
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
π1(V0,v0) −−−−−−→ π1(B0,b0)

coming from diagram (2.5) commutes, the sections s and s0 inducing compatible
sections of the horizontal maps. Hence it is enough to show that the map
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C(C(B)) → {conjugacy classes of sections of π1(C,c0) → Gal(C(B)|C(B))}

has finite fibres. This is done as in the injectivity part of the section conjecture. If
y0 is a a C(B)-point of C and y another C(B)-point inducing the same section

Gal(C(B)|C(B)) → π1(C,c0) ,

then the argument given there shows that the class of the divisor y−y0 is divisible in
J(C(B)). But by the Lang–Néron theorem (see [Kah09] for a beautiful short proof)
the group

J(C(B))/τ(trC(B)|C(J)(C))

is finitely generated and as such has no nontrivial divisible element. Therefore the
image of y by the embedding C → J with base point y0 lies in the image of the trace
trC(B)|C(J). But if C is non-isotrivial, the whole of C cannot lie in the trace. This can
be checked using the explicit construction of the trace in [Kah06]. Their intersection
is thus a proper closed, hence finite subset of C, which shows that there can be only
finitely many points y inducing the same section as y0. ��

The proof of Claim 26 is entirely topological. The idea is to bound the size
of sections of p∗ in a suitable way. This is accomplished using ideas of complex
hyperbolic geometry, of which we summarize here some basic facts. See [Kob76]
and [Lan87] for proofs and much more.

Equip the complex unit disc D with the Poincaré metric given by z �→ (1−|z|2)−1.
It defines a distance function dhyp on D which we may use to define the Kobayashi
pseudo-distance on any complex manifold X:

dX(x,y) = inf

⎛⎜⎜⎜⎜⎜⎜⎝
r∑

i=1

dhyp(pi,qi)

⎞⎟⎟⎟⎟⎟⎟⎠

where the infimum is taken over systems of points pi,qi ∈ D (1 � i � r) for which
there exist holomorphic maps f1, . . . , fr : D → X with f1(p1) = x, fr(qr) = y and
fi(qi) = fi+1(pi+1). Holomorphic maps are distance-decreasing: if φ : X → Y
is a holomorphic map, then dY(φ(x),φ(y)) � dX(x,y). This follows from the case
X = Y = D, where it is a consequence of the Schwarz lemma.

The pseudo-distance dD is identically 0, so dX does not satisfy dX(x,y) � 0 for
x � y in general. The manifold X is said to be hyperbolic if dX(x,y) � 0 for x � y,
and in this case we get a distance function that can be used to define the length of
a path in X. Given a holomorphic map X → Y which is topologically a cover, it is
known that the hyperbolicity of Y implies that of X.

By a classical theorem of Brody, a compact manifold X is hyperbolic if and only
if there is no non-constant holomorphic map C→ X. In particular, a compact Rie-
mann surface of genus g > 1 is hyperbolic and we may obtain a hyperbolic manifold
from any compact Riemann surface after removing finitely may open discs. Also, a
fibred complex manifold with base and fibre of this type is again hyperbolic.

So in our case we can make a hyperbolic manifold V′ out of V0 by removing
the preimage of finitely many open discs in B, which we may assume to contain
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the finitely many deleted points of B. Write B′ = p(V′) and assume that the fixed
fibre F, and in particular the base point v0, lies in V′. The inclusion V′ ↪→ V0 then
induces an isomorphism π

top
1 (V′,v0)

∼−→ π
top
1 (V0,v0) since V′ is a deformation retract

of V0. Similarly, we have a canonical isomorphism π
top
1 (B′,b0)

∼−→ π
top
1 (B0,b0).

Lemma 27. For each C > 0 there are only finitely many elements of πtop
1 (V0,v0) �

π
top
1 (V′,v0) that can be represented by paths lying in V′ that have length at most C

in the hyperbolic metric of V′.

Proof. Consider the universal cover Ṽ′ → V′. It carries a canonical holomorphic
structure. Any holomorphic map D → V′ lifts to Ṽ′, therefore the definition of the
pseudo-distance implies that liftings of paths of length � C starting at v0 stay inside
a closed ball of radius C. As V′ is hyperbolic, so is the cover Ṽ′, and therefore the
ball is compact. Closed paths around v0 lift to paths with endpoints contained in a
fixed orbit of π

top
1 (V′,v0). As these orbits are discrete, they intersect the compact

ball in finitely many points. ��

Now fix generators x1, . . . , xr of the finitely generated group π
top
1 (B0,b0). In view

of the lemma, Claim 26 is a consequence of:

Proposition 28. There exists a constant C > 0 such that for any section s : B0 → V0
the images of x1, . . . , xn under the induced map

π
top
1 (B0,b0) → π

top
1 (V0,v0)

can be represented by paths lying in V′ that have length at most C.

Proof. Let s : B0 → V0 be a section, and let s′ : B′ → V′ be its restriction to B′.
We may identify the map π

top
1 (B0,b0) → π

top
1 (V0,v0) induced by s with the map

π
top
1 (B′,b0) → π

top
1 (V′,v0)

induced by s′ and hence we may assume that the xi are represented by closed paths
γi lying inside B′. As holomorphic maps are distance-decreasing, we have for points
x,y ∈ s′(B′) a sequence of inequalities

ds′(B′)(x,y) � dV′(x,y) � dB′(p(x), p(y)) � ds′(B′)(x,y)

induced by the maps

s′(B′) ↪→ V′ p
→ B′ s′→ s′(B′) .

Thus we have equality throughout, which shows that for each i the length of s(γi)
calculated with respect to dV′ is the same as that of γi with respect to dB′ . This
gives a uniform bound on the V′-length of the s(γi). A representative of s∗(xi) in
π

top
1 (V0,v0) is given by γs(γi)γ

−1, where γ is a path lying in F ⊂ V′ joining v0 to
s(b0). But F is a compact hyperbolic Riemann surface, so we may join v0 to any
point by a path of length bounded by an absolute constant, e.g. a geodesic. This
proves the proposition, and thereby Claim 26. ��
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2.5 Anabelian Geometry

By anabelian geometry one refers to a sheaf of conjectures formulated by Groth-
endieck in a famous letter to Faltings [Gro83]. The rough idea is that a certain
category of schemes defined over finitely generated fields should be determined by
their geometric fundamental groups together with its outer Galois action. There are
two kinds of motivation for the conjectures. The first one comes from topology.

Fact 29. Recall that for a smooth proper curve X of genus� 2 overC the topological
fundamental group has a presentation

Π = 〈a1,b1, . . . ,ag,bg | [a1,b1] . . . [ag,bg] = 1〉.

This group is non-commutative, and moreover, it has trivial center. The universal
cover of X is the unit disc D which is contractible. Therefore the higher homotopy
groups πq(X) are trivial for q� 2, and so X is the Eilenberg-MacLane space K(Π,1).
As such it is determined up to homotopy by Π = π1(K(Π,1)).

As an algebraic curve, X may be defined over a finitely generated extension k/Q.
The hope therefore arises that the extra structure given by Galois action on Π may
determine X up to algebraic isomorphism, not just up to homotopy.

The second motivation comes from the Tate conjecture.

Fact 30. Let k now be a number field, and let X1,X2 be smooth proper curves of
genus � 2 over k. Assume for simplicity that both have a k-point. These k-points
can be used to embed Xi in its Jacobian Ji. Write Xi � Xi ×k k and similarly for Ji.
We know that for each prime � and i = 1,2

T�(Ji) � πab
1 (Ji)

(�) � πab
1 (Xi)

(�)

where T� stands for the �-adic Tate module as in Remark 11.
By a fundamental theorem of Faltings [Fal83], the ex Tate conjecture, the natural

map

Hom(J1,J2)⊗Z Z� → HomZ�(T�(J1),T�(J2))Gal(k|k)

is bijective. In other words, Galois-equivariant homomorphisms T�(J1) → T�(J2)
can be approximated �-adically by morphisms J1 → J2.

One can ask here whether working with the whole geometric fundamental group
instead of its abelian quotient can give a stronger result: does a Galois-invariant
outer homomorphism π1(X1) → π1(X2) come from a k-morphism X1 → X2? Or,
even more economically, does a Galois-invariant outer homomorphism

π1(X1)(�) → π1(X2)(�)

between maximal pro-�-quotients come from a map of curves?
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Before formulating precise statements, let us elucidate the role of center-freeness.
Recall that the representation

ρX : Gal(k|k) → Out(π1(X, x))

is defined using the exact commutative diagram

1 �� π1(X, x) ��

��

π1(X, x) ��

��

Gal(k|k) ��

��

1

1 �� Inn(π1(X, x)) �� Aut(π1(X, x)) �� Out(π1(X, x)) �� 1 .

Observe that, when the center of π1(X, x) is trivial, this becomes a pushout diagram.
Therefore

π1(X, x) � Aut(π1(X, x))×Out(X,x) Gal(k|k) ,

and π1(X, x) is determined by π1(X, x) and ρX. When k ⊂ C, it thus appears as a
transcendental object endowed with a Galois action.

We now define a category of profinite groups as follows. Given two profinite
groups G1, G2 together with morphisms pi : Gi → G, define Hom∗

G(G1,G2) as the
set of morphisms G1 → G2 compatible with the pi up to conjugation by an element
of G. This set carries an action of G1 from the left and of G2 from the right. The
latter defines a finer equivalence, so put

Homext
G (G1,G2) = Hom∗

G(G1,G2)

modulo action of G2. Fixing G we thus get a category Profext
G with objects profi-

nite groups with projections onto G and Hom-sets the Homext
G (G1,G2). Denote by

Profext,open
G the full subcategory with the same objects but with morphisms having

open image. Sending a variety over a field k to its algebraic fundamental group gives
a functor

π1 : {k-varieties} → Profext
Gal(k)

where base points do not play a role any more, so we drop them from now on.
Similarly, sending a field to its absolute Galois group yields a contravariant functor

Gal : {field extensions of k} → Profext
Gal(k) .

In his letter to Faltings, Grothendieck formulated the following conjecture.

Conjecture 31. Let k be a finitely generated extension of Q. Denote by Hypk the
category of hyperbolic k-curves equipped with dominating k-morphisms. Then

π1 : Hypk → Profext,open
Gal(k)

is a fully faithful functor.
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Recall that hyperbolic k-curves are the smooth k-curves of genus g with at least
2 − 2g+ 1 geometric points at infinity. These are precisely the smooth curves with
non-trivial center-free geometric π1. Grothendieck also speculated about extending
Hypk by including some higher-dimensional varieties called anabelian varieties.
At present there is no precise conjectural characterization of anabelian varieties in
dimensions > 1. However, there is a precisely formulated birational analogue:

Conjecture 32. Let k be finitely generated overQ. Denote by Birdom
k the category of

fields finitely generated over k together with k-morphisms. Then

Gal : Birdom
k → Profext,open

Gal(k)

is a fully faithful contravariant functor.

Here are the most important known results about these conjectures.

Theorem 33. (Mochizuki [Moc99]) Conjecture 31 is true more generally for k sub-
p-adic, i.e., a subfield of some finitely generated extension of Qp. In fact, over
such fields the following holds: for a hyperbolic k-curve X and an arbitrary smooth
k-variety V the map

Homdom
k (V,X) → Homext,open

Gal(k) (π1(V),π1(X))

is bijective. Here π1 may be replaced by its quotient πp
1 classifying covers whose

base change to k is of p-power degree.

This is all the more remarkable as the Tate conjecture does not hold over Qp.
Concerning the birational version, we have:

Theorem 34. (1) (Pop, [Pop00, Sza04]) The isomorphism version of conjecture 32
is true, even in positive characteristic. More precisely, if K, L are finitely generated
fields over the prime field, the natural map

Isomi(K,L) → Isomext(Gal(L),Gal(K))

is bijective, where on the left Isomi means isomorphisms between some purely in-
separable extensions K′|K and L′|L.

(2) (Mochizuki [Moc99]) Conjecture 32 is true more generally for k sub-p-adic.

Here part (2) has been recently improved by Corry and Pop [CP09]: one can
replace Gal(K) and similarly Gal(L) by its natural quotient obtained as an extension
of Gal(k) by the maximal pro-p quotient of the subgroup Gal(Kk). Thus one has a
birational result that is completely analogous to Theorem 33. However, the positive
characteristic analogue is not known at present.

Remark 35. The statements of Theorem 34 are of arithmetic nature. In remark-
able contrast to this, Bogomolov [Bog91] initiated a program according to which
finitely generated fields of transcendence degree at least 2 over algebraically closed
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fields should be characterized up to isomorphism by their absolute Galois group,
and even by its maximal pro-� nilpotent quotient of class 2, for a prime � different
from the characteristic. There has been important recent progress in this direc-
tion, by Bogomolov–Tschinkel [BT08], and in a series of papers by Pop including
[Pop10a].

Observe that Pop’s result does not use the augmentation Gal(K) → Gal(k). This
hints at the possibility that absolute forms of Grothendieck’s conjecture hold true.
And indeed, Mochizuki proved by combining Theorem 31 and Theorem 32 (1):

Theorem 36. (Mochizuki [Moc04]) Let X and Y be hyperbolic curves defined over
some finitely generated extension of Q (not necessarily the same). Then the natural
map

Isom(X,Y) → Isomext(π1(X),π1(Y))

is bijective.

Even more surprisingly, absolute results hold over a finite base field:

Theorem 37. (1) (Tamagawa [Tam97]) Let X and Y be smooth affine curves defined
over some finite field (not necessarily the same) with profinite universal covers X̃,
Ỹ, respectively. Then the natural map

Isom(X̃|X, Ỹ|Y) → Isom(π1(X),π1(Y))

is bijective. Here on the left hand side we have the set of commutative diagrams of
isomorphisms

X̃
�−−−−−−→ Ỹ

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

X
�−−−−−−→ Y .

(2) (Mochizuki [Moc07]) The same statement holds for proper smooth curves of
genus � 2 over a finite field.

Here the profinite universal cover of an normal integral scheme S means its nor-
malization in the field KS of Proposition 6.

Remark 38. (1) Recently Saïdi and Tamagawa [ST09] proved that in the theorem
above one may replace fundamental groups by their maximal prime-to-p quotients
where p is the characteristic of the base field. They also proved results with even
smaller quotients but it is not known whether the statement holds for the maximal
pro-� quotients of the fundamental groups where � � p is a prime.

(2) Before the full statement of Theorem 33 was proven, by specialisation argu-
ments Tamagawa and Mochizuki derived the statement of Theorem 33 for isomor-
phisms of hyperbolic curves over number fields from Theorem 37 (1). Stix [Sti02]
used a similar method to prove an isomorphism statement for hyperbolic curves over
global fields of positive characteristic.
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Although in the oral lectures I gave a sketch of some of the ideas involved in the
proofs of the above results, I feel that one cannot do them justice in just a couple of
pages. On the other hand, besides the mostly well-written original papers there are
quite a few detailed surveys that the interested reader may consult with profit. So
let me conclude with some bibliographic indications.

The first results that can be associated with anabelian geometry, though they
actually predate the formulation of the conjectures, are the theorems of Neukirch
[Neu77] and Uchida [Uch77] concerning Galois characterization of global fields.
They can now be viewed as special cases of Theorem 34 (1) of Pop, but in fact
their methods have been highly inspirational for the proof of the general result. A
nice exposition can be found in the last chapter of the book [NSW08] by Neukirch,
Schmidt and Wingberg. As for Pop’s theorem, the reader may consult my Bourbaki
exposé [Sza04].

The impact of the Neukirch-Uchida techniques can also be seen in Tamagawa’s
proof of Theorem 37 (1) and the recent results of Saïdi–Tamagawa mentioned above
refine this method further. An introduction to these ideas can be found in [Sza00].
But the best introduction to the contributions of Tamagawa and Mochizuki is the sur-
vey paper [NTM01] which also includes an overview of the work of Nakamura that
contains germs of many of the ideas that were developed later. Mochizuki’s meth-
ods are completely different from the approach initiated by Neukirch and Uchida
and are based on constructions in p-adic Hodge theory. A succinct survey can be
found in the Bourbaki exposé [Fal98] by Faltings.
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Chapter 3
Vector Bundles Trivialized by Proper
Morphisms and the Fundamental
Group Scheme, II

Indranil Biswas and João Pedro P. dos Santos

Abstract Let X be a projective and smooth variety over an algebraically closed
field k. Let f : Y −→ X be a proper and surjective morphism of k–varieties. As-
suming that f is separable, we prove that the Tannakian category associated to the
vector bundles E on X such that f ∗E is trivial is equivalent to the category of rep-
resentations of a finite and étale group scheme. We give a counterexample to this
conclusion in the absence of separability.

3.1 Introduction

The present work is a continuation of [BdS10], giving some applications of the main
result in [BdS10] which throw light on the nature of the fundamental group scheme
of Nori [Nor76] for a smooth projective variety.

Let X be a smooth projective variety over an algebraically closed field k. The
fundamental group scheme of X is the affine group scheme obtained from the Tan-
nakian category of essentially finite vector bundles on X, see Definition 3. The main
theorem of [BdS10] says that a vector bundle E over X is essentially finite if and
only if there is a proper k–scheme Y and a surjective morphism f : Y −→ X such
that f ∗E is trivial. As an application of this theorem, we prove the following.

Theorem 1. Let X be a smooth and projective variety over the algebraically closed
field k, let x0 : Spec(k) −→ X be a point, and f : Y −→ X a proper and surjective
morphism of varieties:
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(i) The full subcategory of VB(X)

TY(X) =
{
V ∈ VB(X) ; f ∗V is trivial

}

is Tannakian. The functor x∗
0 : TY(X) −→ (k–mod) is a fibre functor.

(ii) Assume that f is separable. Let G(Y/X) denote the affine group scheme ob-
tained from TY(X) and x∗

0. Then G(Y/X) is finite and étale.
(iii) If the separability assumption on f is removed, then there exists a counterex-

ample to the conclusion in (ii) in which G(Y/X) is not a finite group scheme.

Part (i) of the above theorem is routine, see Lemma 7. Part (ii) is the subject of
Theorem 8, while the counterexample alluded to in (iii) is produced in Sect. 3.4.1.

Acknowledgements. We thank the referee for pertinent remarks which made the
present text much clearer.

3.2 Preliminaries

Throughout k will stand for an algebraically closed field. By a variety we mean an
integral scheme of finite type over k.

3.2.1 Notation and Terminology

Let V be a normal variety. Its field of rational functions will be denoted by R(V).
We will let Val(V) denote the set of discrete valuations of R(V) associated to V.
More precisely, a discrete valuation v : R(V) −→ Z∪{∞} belongs to Val(V) if and
only if there exists a point ξ of codimension one in V such that

OV,ξ = {ϕ ∈ R(V) ; v(ϕ) ≥ 0} .

Given a finite extension of fields L/K and a set of discrete valuations S of K,
we say that L is unramified above S if for each discrete valuation v of S and each
prolongation w of v to L, the ramification index e(w/v) = 1 and the extension of
residue fields is separable.

A dominant morphism f : W −→ V between two varieties is separable if the
extension of function fields R(W)/R(V) is separable. This differs from the homony-
mous notion defined in [SGA1, X, Definition 1.1].

A vector bundle over a scheme is a locally free coherent sheaf. The category of
all vector bundles on X will be denoted by VB(X). If E is a vector bundle over the k–
scheme X, we will say that E comes from a representation of the étale fundamental
group if there exists a finite group Γ, a representation

ρ : Γ −→ GLm(k)
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and an étale Galois cover Y −→ X of Galois group Γ, such that

E � Y×Γ k⊕m .

For the general definition of the contracted product of a torsor and a representation,
see e.g. [Jan87, I 5.8, 5.14].

Given an affine group scheme G over k, we will let Rep(G) denote the category
of all finite dimensional representations of G [Wat79, Chap. 3]. A morphism of
affine group schemes f : G −→ H is a quotient morphism if it is faithfully flat,
or, equivalently, if the morphism induced on the function rings is injective [Wat79,
Chap. 14].

If T is a Tannakian category over k [DM82] and V ∈ T , we define the mon-
odromy category of V to be the smallest Tannakian sub–category of T containing
V. It will be denoted by 〈V;T〉⊗.

Consider the neutral Tannakian category Rep(G) over k. For any V ∈ Rep(G), the
category 〈V;Rep(G)〉⊗ is equivalent to the category of representations of the image
of the tautological homomorphism ρV : G −→ GL(V). This image will be called
the monodromy group of V, see Definition 2.5 and the remark after it in [BdS10]
for more information.

3.2.2 Vector Bundles Trivialized by Proper and Surjective
Morphisms

Let X be a smooth and projective variety over k. Recall that k is algebraically closed.

Definition 2 (Property T). A vector bundle E over X is said to have property (T)
if there exists a proper k–scheme Y together with a surjective proper morphism
f : Y −→ X such that the pull–back f ∗E is trivial.

The main result of [BdS10] relates property (T) to the more sophisticated notion
of essential finiteness.

Definition 3. Following Nori [Nor76], we say that a vector bundle over X is es-
sentially finite if there exists a finite group scheme G, a G–torsor P −→ X and a
representation ρ : G −→ GL(V), such that

P×G V � E .

The category of all essentially finite vector bundles over X will be denoted by

EF(X) .

Remark 4. Every essentially finite vector bundle enjoys property (T) as these are
trivialized by a torsor under a finite group scheme.
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The category EF(X) is Tannakian [Nor76]. The above definition of essential
finiteness is not the one presented in [Nor76], but a consequence of the results of
that work.

Theorem 5. [BdS10, Theorem 1.1] Let X be a smooth and projective variety over
the algebraically closed field k. Then a vector bundle E over X is essentially finite
if and only if it satisfies property (T).

The reader is urged to read Remark 16 at the end of this text to be directed to
another proof of the case where dimX = 1. This proof was suggested to us by
Parameswaran and is based on [BP11, §6] which contains very interesting concep-
tual advancements. Also, we indicate that recently Antei and Mehta put forward a
generalisation of Theorem 5 in the case where X is only normal [AM10].

It should be clarified that the smoothness condition on Theorem 5 cannot be
dropped. This is shown by the following example.

Example 6. Let X ⊂ P2
k be the nodal cubic defined by (y2z = x3+ x2z). Let

f : P1 −→ X, (s : t) �→ (s2t − t3 : s3 − st2 : t3) ,

be the birational morphism which identifies the points (1 : 1) and (−1 : 1). It is
well–known that Pic0(X) = k∗, so that any line bundle L of infinite order over X
gives a counterexample to the generalization of Theorem 5 to the case where X is
not normal.

3.2.3 The Fundamental Group Scheme

Fix a k–rational point x0 : Spec(k) −→ X. The essentially finite vector bundles
with the fibre functor defined by sending any essentially finite vector bundle E to
its fibre x∗

0E over x0 form a neutral Tannakian category [DM82, Definition 2.19].
The corresponding affine group scheme over k [DM82, Theorem 2.11] is called the
fundamental group scheme [Nor76, Nor82]. This group scheme will be denoted
by

ΠEF(X, x0) .

3.3 Vector Bundles Trivialized by Separable Proper Morphisms

Throughout this section, we let X stand for a projective and smooth variety and
f : Y −→ X for a proper surjective morphism from a proper variety Y. We also
choose a k–rational point x0 : Spec(k) −→ X.
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3.3.1 The Object of Our Study

For general terminology on Tannakian categories the reader should consult [DM82].

Lemma 7. The full subcategory of VB(X)

TY(X) =
{
V ∈ VB(X) ; f ∗V is trivial

}

is Tannakian. The functor x∗
0 : TY(X) −→ (k–mod) is a fibre functor.

Proof. That TY(X) is stable by tensor products and direct sums is clear. That it is
an abelian category is a consequence of the fact that all vector bundles in TY(X)
are Nori–semistable, so that kernels and cokernels are always vector bundles, see
[BdS10, Corollary 2.3] and [Nor76, Lemma 3.6]. Using this last remark, it is easy
to understand why the functor x∗

0 is exact and faithful. As TY(X) has only vector
bundles as objects, the rigidity axiom for a Tannakian category is satisfied. ��

The affine group scheme obtained from TY(X) and the fibre functor x∗
0 via the

main theorem of Tannakian categories [DM82, Theorem 2.11] will be denoted by
G(Y/X) in the sequel.

3.3.2 Finiteness of G(Y/X) for Separable Morphisms

Theorem 8. We assume that f : Y −→ X is separable.
(1) If the vector bundle E is such that f ∗E is trivial, then E is essentially finite

and in fact comes from a representation of the étale fundamental group. Moreover,
the monodromy group of E in the category EF(X) at the point x0 ∈ X(k) is a quotient
of a fixed finite étale group scheme Γnr.

(2) The group scheme G(Y/X) is finite and étale.

The first step towards a proof of Theorem 8, and also of [BdS10, Theorem 1.1],
is to consider the Stein factorization of f :

Y h ��

f
��
��

��
��

��
Y′

g

��

X,

where g is finite and h∗(OY) = OY′ . The latter equality implies that the morphism
h∗ : VB(Y′) −→ VB(Y) is full and faithful, so that g∗E is already trivial.

Definition 9. Let ϕ : V −→ X be a finite, surjective and separable morphism of
varieties. By R(V)nr we denote the maximal unramified intermediate extension of
R(V)/R(X), which is the compositum of all sub-extensions R of R(V)/R(X) which
are unramified over Val(V). We let
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ϕnr : Vnr −→ X

denote the normalization of X in R(V)nr. If R(V)/R(X) is Galois of group Γ,
then R(V)nr/R(X) is Galois. Let Γnr denote the Galois group of the extension
R(V)nr/R(X).

Proof of Theorem 8. (1) That E is essentially finite is the content of Theorem 5.
For the remainder, it is enough to prove statement (1) in the theorem under the
assumption that f is finite. There is also no loss of generality in assuming that the
field extension R(Y)/R(X) is Galois. Let Γ be its Galois group.

We first prove that if Γnr is trivial, i.e., f nr = idX, then E is likewise. Let G be the
finite group scheme associated, by Tannakian duality, to the category 〈E;EF(X)〉⊗
via the point x0 ∈ X(k), see Sect. 3.2.1. Let P be the G–torsor associated to E [Nor76,
§2]. The functor

P×G (•) : Rep(G) −→ 〈E;EF(X)〉⊗
induces an equivalence of monoidal categories. We denote by Get the finite étale
group scheme of connected components of G [Wat79, Chap. 6]. As P is connected
[Nor82, Proposition 3, p. 87], so is

Pet � P/ker
(
G −→ Get

)
= P×G Get .

Since Pet −→ X is an étale morphism, it follows that Pet is a normal variety.

Claim 10. The triviality of f ∗E implies the triviality of the G–torsor

PY � P×X Y −→ Y .

Let ρ : G −→ GL(V) be a representation of G such that E = P×G V. It follows
that ρ is a closed embedding and we are able to deduce the triviality of PY by using
the triviality of PY ×G GL(V) together with the fact that the natural map

H1
fppf(Y,G) −→ H1

fppf(Y,GL(V))

is injective. Indeed, the kernel is the set of all morphisms from Y to the affine
scheme GL(V)/G, see [DG70, p. 373, III, §4, 4.6].

Let h : Y −→ P be the X–morphism derived from an isomorphism PY � Y × G
and let j : Y −→ Pet be the morphism of X–schemes obtained from h. It is not hard
to see that j takes the generic point of Y to the generic point of Pet, so j gives rise to
a homomorphism of R(X)–fields R(Pet) −→ R(Y). Since R(Pet)/R(X) is unramified
above Val(X), we must have R(Pet) = R(X). As a consequence, Pet = X and thus
Get is trivial. This means that G is a local group scheme. We will now prove the
following.

Claim 11. If G is local, then the existence of an X–morphism h : Y −→ P implies
the triviality of P.
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Let Spec(A) ⊆ X be an affine open and let Spec(B) ⊆ Y (respectively, Spec(S) ⊆ P)
be its pre–image in Y (respectively, in P). We then have a homomorphism of A–
algebras η : S −→ B; let S′ ⊆ B be its image. Since

Spec(S) −→ Spec(A)

is a G–torsor, above any maximal ideal m ⊆ A, there exists only one maximal ideal
of S. The same property is valid if we replace S by S′. Hence, the extension of fields
defined by S′ ⊇ A must be purely inseparable. Because R(Y)/R(X) is a separable
extension, and A is a normal ring, it follows that S′ =A. This allows one to construct
a section σ : X −→ P. Therefore E is trivial. This proves Claim 11.

Now we treat the general case. Since f nr : Ynr −→ X is unramified above Val(X),
the Zariski–Nagata purity Theorem, see [SGA1, X, 3.1], permits us to conclude that
f nr is étale. In particular Ynr a smooth projective variety over k. Moreover, the map
f nr : Ynr −→ X is an étale Galois covering of group Γnr. Let

g : Y −→ Ynr

denote the obvious morphism, we have gnr = idYnr . Applying what was proved above
to Ynr, we conclude that f nr∗E is trivial. By [LS77, Proposition 1.2], we conclude
that

E � Ynr ×Γnr
V ,

where V is a representation of Γnr. This proves that the monodromy group of E in
EF(X) is a quotient of Γnr.

(2) The proof rests on the same sort of argument used for the proof of (1). As in
(1), we assume that f is finite. Let

G(Y/X)� G = lim←−−Gi

be the profinite group scheme associated to TY(X) via x∗
0. Here each group Gi is

finite and the transition morphisms G j −→ Gi are all faithfully flat. (The reader
unfamiliar with this sort of structure argument will profit from [Wat79, 3.3] and
[Wat79, 14.1].) Write P −→ X for the universal G–torsor [Nor76, §2] and Pi for
P×G Gi. We remark that Proposition 3 on p. 87 of [Nor82] proves that Γ(Pi,OPi

)= k.
In this situation, we can find X–morphisms

hi : Y −→ Pi .

(The details of the argument are given in the proof of (1) above.) Let Get
i be the

largest étale quotient of Gi [Wat79, Chap. 6]. The morphism

Pet
i � P×G Get

i −→ X

is finite and étale and the number of k–rational points on a fiber equals rankGet
i .

From the surjectivity of the composition
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Y −→ Pi −→ Pet
i ,

the integers rankGet
i are bounded from above, so

Get � lim←−−Get
i = Get

i0

for some i0. Then X′ � Pet
i0
= Pet

i is a smooth and projective variety and the obvious
morphism

Pi −→ Pi/G0
i = Pi/(kerGi −→ Get

i0
) = X′, i ≥ i0

gives Pi −→ X′ the structure of a torsor over X′ under the structure group G0
i . More-

over, since Γ(Pi,OPi
) = k, the torsor Pi cannot be trivial over X′ unless G0

i = {e}.
Employing the X′–morphisms Y −→ Pi, we see, using Claim 11 proved in part (1),
that G0

i = {e}. This means that G = Get
i0

. ��

3.4 Finiteness of G(Y/X), Reducedness of the Universal Torsor
and Base Change Properties

As in Sect. 3.3, we let X stand for a projective and smooth variety and f : Y −→ X
for a proper surjective morphism from a (proper) variety Y. We also choose a k–
rational point x0 : Spec(k) −→ X.

3.4.1 An Instance Where G(Y/X) Is Not Finite and the Universal
Torsor is not Reduced

Let G(Y/X) be the affine fundamental group scheme associated to the Tannakian
category

TY(X)

by means of the fiber functor x∗
0 : TY(X) −→ (k–mod). If V is an object of TY(X)

which is stable as a vector bundle (all vector bundles in TY(X) are semistable of
slope zero [BdS10, Proposition 2.2]), the representation of G(Y/X) obtained from
V must be irreducible. Since a finite group scheme only has finitely many iso-
morphism classes of irreducible representations – these are all Jordan–Hölder com-
ponents of the right regular representation [Wat79, 3.5] – we have a proved the
following lemma.

Lemma 12. If there are infinitely many non–isomorphic stable vector bundles in
TY(X), then the group scheme G(Y/X) is not finite.

The existence of infinitely many stable bundles in TY(X) also causes the follow-
ing particularity.



3 Bundles Trivialized by Proper Morphisms, II 85

Proposition 13. Assume that there are infinitely many non–isomorphic stable vector
bundles in TY(X). Then there exists a finite quotient G0 of G(Y/X) and a G0–torsor
over X, call it P0, such that:

(1) Γ(P0,OP0
) = k and

(2) The scheme P0 is not reduced.

Moreover, in this case, the universal torsor X̃ −→ X for the fundamental group
scheme ΠEF(X, x0) is not reduced as a scheme.

Proof. Let
G(Y/X)� G = lim←−−Gi ,

where each Gi is a finite group–scheme and the transition morphisms G j −→ Gi are
faithfully flat, just as in the proof of Theorem 8. By Lemma 12 and the assumption,
G is not a finite group scheme. We will show that the conclusion of the statement
holds under the extra assumption that the group schemes Gi are all local. The gen-
eral case can be obtained from this one as in the proof of Theorem 8. Let P −→ X be
the universal G–torsor associated to TY(X) ⊂ EF(X) via the constructions in [Nor76,
§2]. The torsor P gives rise to Gi–torsors

ψi : Pi = P×G Gi −→ X .

Due to [Nor82, Proposition 3, p. 87], we have Γ(Pi,OPi
) = k. Since Gi is a local

group scheme, for any field extension K/k, the map

ψi(K) : Pi(K) −→ X(K)

is bijective, by [EGAI-IV, I, 3.5.10, p. 116] the map ψi induces a bijection on the
corresponding topological spaces. Hence, ψi is a homeomorphism and it follows
that Pi is irreducible for each i. We assume that each Pi is also reduced. Proceeding
as in the proof of Theorem 8, see Claim 10, there exists a X–morphism h : Y −→ Pi
for each i. This bounds deg ψi = rankGi by above and leads to a contradiction with
the assumption that G is not finite.

The proof of the last statement is a direct consequence of what we just proved
together with [Nor82, Proposition 3] and [EGAI-IV, IV3, 8.7.2]. ��

In view of Lemma 12 and Proposition 13, we can use [Pau07] to give an example
of a smooth curve X having two extraordinary features: (1) there exists a finite
morphism Y −→ X such that G(Y/X) is not finite and (2) the universal torsor X̃
for the fundamental group scheme ΠEF(X, x0) is not reduced. Indeed, let X be the
smooth curve constructed in [Pau07, (3.1) and Proposition 4.1], a particular smooth
projective curve defined by a single explicit equation in P2

k . Here k is a field of
characteristic two.

Let f : Y −→ X be the fourth power of the Frobenius morphism, so Y is iso-
morphic to X as a scheme. Pauly [Pau07, Proposition 4.1] constructs a locally free
coherent sheaf over X × S, where S is a positive dimensional k–scheme, such that
for every s ∈ S(k), the vector bundle E|X × {s} is stable and f ∗(E|X × {s}) is trivial.
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Furthermore, for two different points s, t ∈ S(k), the sheaves E|X× {s} and E|X× {t}
are not isomorphic. In other words, there are infinitely many isomorphism classes
of stable vector bundles of fixed rank satisfying the condition that the pullback by
f is trivial. By Lemma 12, the affine group scheme G(Y/X) is not finite. From
Proposition 13, it follows also that the universal torsor X̃ −→ X is not reduced.

Remark 14. In [EHS08, Remark 2.4] the reader can find an example of an αp–torsor
over a reduced variety which is not reduced. The example we have just given shows
that the situation can be bad even if the ambient variety is smooth.

3.4.2 A Link Between the Quantity of Vector Bundles Trivialized
by the Frobenius Morphism and the Universal Torsor

We assume that k is of positive characteristic, and let F : X −→ X be the absolute
Frobenius morphism. Define

S(X,r, t) =

{
isomorphism classes of stable vector bundles of rank r
on X, whose pull–back by Ft is trivial

}

Here we refrain from using the terminology F–trivial, since there is a question of
stability which is not constant in the literature [Pau07, MS08]. In their study of
base change for the local fundamental group scheme and these bundles, Mehta and
Subramanian [MS08] showed the following.

Theorem 15 ([MS08, Theorem, p. 208]). Let X be a smooth projective variety
over k. The following are equivalent:

(a) For any algebraically closed extension k′/k, any pair r, t ∈ N and any E′ in
S(X⊗k k′;r, t), there exists a vector bundle over X and an isomorphism

E⊗k k′ � E′ .

(b) For any two given r, t ∈ N, the set S(X;r, t) is finite.
(c) The local fundamental group scheme of X ⊗k k′ is obtained from the local

fundamental group scheme of X by base change.

For the definition of the local fundamental group scheme, the reader should con-
sult [MS08]. In Proposition 13 we have shown that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

The universal torsor for the
fundamental group
scheme is a reduced scheme

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=⇒ {Condition (b) in the above theorem holds.}

As Vikram Mehta made us realize, the reverse implication need not be true and
the arguments to follow are due to him. To construct a counter–example, we con-
sider an abelian threefold A and ι : X ↪→ A a closed smooth surface defined by
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intersecting A with a hyperplane section of high degree in some projective em-
bedding A ↪→ PN. By the Lefschetz Theorem [BH07, Theorem 1.1], we have an
isomorphism

ΠEF(ι) : ΠEF(X, x0)
�−→ ΠEF(A, x0)

so that, if B −→ A is a pointed torsor under a finite group scheme with the property
of being Nori reduced [Nor82, Proposition 3, p. 87], i.e.,

H0(B,OB) = k ,

then the same can then be said about the restriction of B to X. Using the torsors

[p] : A −→ A ([p] is multiplication by p) ,

we see that X admits a Nori reduced torsor under a finite group scheme which is
not reduced as a scheme. This follows from the factorization [p] = VF and the fact
that F−1(Z) is never reduced if Z ⊆ A is a proper closed sub–scheme. By another
application of the Lefschetz Theorem [BH07, Theorem 1.1], we obtain a bijection

S(A,r, t)
∼←→ S(X,r, t) .

Since the iteration of the Frobenius morphism Ft
A : A −→ A sits in a commutative

diagram

A
[pt]

��

��
��

��
��

��
A

A

FA

��

if Ft
A

∗E is trivial, then [pt]∗E is likewise. Consequently, we obtain an injection

S(A,r, t) ↪→
{

isomorphism classes of simple
representations of rank r of ker[p]

}
.

This entails that S(X,r, t) is always a finite set and we arrive at the desired counter–
example to the above highlighted implication.

Remark 16 (Made after completion). In a recent discussion, Parameswaran called
our attention to a simpler proof of the fact that a vector bundle E on X which
becomes trivial after being pulled back by a finite morphism from a smooth and
projective variety f : Y −→ X in fact comes from a representation of the étale fun-
damental group of X, compare Theorem 8. The main idea is to use the coherent
sheaf of algebras

f∗(OY)max

associated to a separable and finite morphism f : Y −→ X from a smooth pro-
jective variety Y to X. Here the subscript max stands for the maximal semistable
subsheaf. That this is in fact an algebra requires a proof and the reader is directed
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to [BP11, Lemma 6.4]. One of the consequences of [BP11] (which Parameswaran
was kind enough to explain to the second author) is that f∗(OY)max is the maximal
étale extension of OX inside f∗OY. Together with [BP11, Proposition 6.8], the triv-
iality of f ∗E implies the triviality of the pull–back of E to the finite étale X–scheme
Ymax = Spec f∗(OY)max and this enough to show that E is essentially finite. The
reader should also note that in [BP11, §6], the framework is such that the domain
variety is smooth, which is not sufficient to obtain Theorem 8 directly. But it is pos-
sible that the methods in [BP11] can be extended (for example, to a normal domain
variety) to give another proof of Theorem 8.

References

[AM10] M. Antei and V. Mehta. Vector bundles over normal varieties trivialized by finite
morphisms. 2010, arXiv:1009.5234. Archiv der Mathematik, DOI: 10.1007/s00013-
011-0327-1.

[BdS10] I. Biswas and J. P. dos Santos. Vector bundles trivialized by proper morphisms and
the fundamental group scheme. Jour. Inst. Math. Jussieu, 10(02):225 – 234, 2010.

[BH07] I. Biswas and Y. Holla. Comparison of fundamental group schemes of a projective
variety and an ample hypersurface. J. Algebraic Geom., 16(3):547–597, 2007.

[BP11] V. Balaji and A. J. Parameswaran. An analogue of the Narasimhan–Seshadri theorem
and some applications. Journal of Topology, 4(1):105–140, 2011.

[DG70] M. Demazure and P. Gabriel. Groupes algébriques. Masson & Cie, Paris; North-
Holland Publishing Co., Amsterdam, 1970.

[DM82] P. Deligne and J. Milne. Tannakian categories. Lecture Notes in Mathematics 900,
pages 101–228. Springer-Verlag, Berlin, New York, 1982.

[EGAI-IV] A. Grothendieck. Éléments de Géométrie Algébrique. Publ. Math. IHÉS, 8, 11
(1961), 17 (1963), 20, (1964), 24 (1965), 28 (1966), 32 (1967).

[EHS08] H. Esnault, P. H. Hai, and X. Sun. On Nori’s fundamental group scheme. In Geometry
and dynamics of groups and spaces, Progr. Math. 265, pages 377–398. Birkhäuser,
Basel, 2008.

[Jan87] J. C. Jantzen. Representations of algebraic groups. Pure and Applied Mathematics,
131, 1987.

[LS77] H. Lange and U. Stuhler. Vektorbündel auf Kurven und Darstellungen der algebrais-
chen Fundamentalgruppe. Math. Zeit., 156:73–84, 1977.

[MS08] V. B. Mehta and S. Subramanian. Some remarks on the local fundamental group
scheme. Proc. Indian Acad. Sci. (Math. Sci.), 118:207–211, 2008.

[Nor76] M. V. Nori. On the representations of the fundamental group. Compos. Math., 33:29–
41, 1976.

[Nor82] M. V. Nori. PhD thesis. Proc. Indian Acad. Sci. (Math. Sci.), 91:73–122, 1982.
[Pau07] C. Pauly. A smooth counter–example to Nori’s conjecture on the fundamental group

scheme. Proceedings of the American Mathematical Society, 135:2707–2711, 2007.
[SGA1] A. Grothendieck. Revêtements étale et groupe fondamental (SGA 1). Séminaire de

géométrie algébrique du Bois Marie 1960-61, directed by A. Grothendieck, aug-
mented by two papers by Mme M. Raynaud, Lecture Notes in Math. 224, Springer-
Verlag, Berlin-New York, 1971. Updated and annotated new edition: Documents
Mathématiques 3, Société Mathématique de France, Paris, 2003.

[Wat79] W. C. Waterhouse. Introduction to affine group schemes. Number 66 in Graduate
Texts in Mathematics. Springer, New York-Berlin, 1979.



Chapter 4
Note on the Gonality of Abstract Modular
Curves

Anna Cadoret

Abstract Let S be a curve over an algebraically closed field k of characteristic
p � 0. To any family of representations ρ = (ρ� : π1(S) → GLn(F�)) indexed by
primes � � 0 one can associate abstract modular curves Sρ,1(�) and Sρ(�) which,
in this setting, are the modular analogues of the classical modular curves Y1(�) and
Y(�). The main result of this paper is that, under some technical assumptions, the
gonality of Sρ(�) goes to +∞ with �. These technical assumptions are satisfied by
F�-linear representations arising from the action of π1(S) on the étale cohomology
groups with coefficients in F� of the geometric generic fiber of a smooth proper
scheme over S. From this, we deduce a new and purely algebraic proof of the fact
that the gonality of Y1(�), for p � �(�2 −1), goes to +∞ with �.

4.1 Introduction

Let k be an algebraically closed field of characteristic p � 0 and S a smooth, sep-
arated and connected curve over k with generic point η. Let π1(S) denote its étale
fundamental group. Fix an integer n � 1. For each prime � � 0, let H� be an F�
vector space of dimension n on which π1(S) acts continuously. We will write ρ for
the family of the resulting F�-linear representations

ρ� : π1(S) → GL(H�) � GLn(F�) .

To such data, one can associate families of abstract modular curves Sρ,1(�) → S
and Sρ(�) → S, see Sect. 4.2, which, in this setting, are the modular analogues of the
classical modular curves Y1(�) → Y(0) and Y(�) → Y(0) classifying �-torsion points
and full level-� structures of elliptic curves respectively.
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The main examples of such representations we have in mind are the F�-linear
representations arising from the action of π1(S) on the étale cohomology groups
with coefficients in F� of the geometric generic fiber of a smooth proper scheme
over S. In particular, this includes those representations arising from the action of
π1(S) on the group of �-torsion points of the geometric generic fiber of an abelian
scheme over S, see Sect. 4.2.3.

The properties satisfied by these representations motivated, in [CT11b], the intro-
duction of technical conditions on ρ, denoted by (A), (WA) and (AWA) for abelian-
ization, weak abelianization and alternating weak abelianization respectively, (I)
for isotriviality, (T) for tame and (U) for unipotent, see Sect. 4.2.2 for a precise
formulation of these conditions.

Let gρ,1(�) and gρ(�) (resp. γρ,1(�) and γρ(�)) denote the genus (resp. the k-
gonality) of the abstract modular curves Sρ,1(�) and Sρ(�) respectively. The main
result of [CT11b, Thm. 2.1] asserts that, if conditions (AWA), (I), (U) are satisfied
then

lim
�→+∞

gρ,1(�) = +∞ .

An intermediate step in the proof of this result is that, if conditions (WA), (I), (T)
are satisfied then

lim
�→+∞

gρ(�) = +∞ .

In this note, we prove that the same holds with gonality replacing genus.

Theorem 1. If conditions (WA), (I), (T) are satisfied then

lim
�→+∞

γρ(�) = +∞ .

The proof of Theorem 1 is purely algebraic and based on the equivariant-primiti-
ve decompositions introduced by A. Tamagawa in [Tam04] to estimate the gonality
of Galois covers. The method, however, fails to prove the analogue for Sρ,1.

Conjecture 2. Assume that conditions (WA), (T), (U) are satisfied. Then

lim
�→+∞

γρ,1(�) = +∞ .

Our method shows Conjecture 2 only when we restrict to n = 2 and primes � with
p � �(�2 − 1), or, more generally, for the variant of Sρ,1(�) classifying points v ∈ H�

whose π1(S)-orbit generates a subspace of rank 2, see Proposition 17. This pro-
vides in particular an algebraic proof of the following well-known fact, cf. [Abr96],
[Poo07].

Corollary 3.
lim

�→+∞
p��(�2−1)

γY1(�) = +∞ .

When p = 0, it seems that variants of Theorem 1 can be proved by the techniques
from differential geometry and Cayley-Schreier graph theory generalizing [Abr96]
and developed in [EHK10].



4 Note on the Gonality of Abstract Modular Curves 91

Apart from their intrinsic geometric interest, statements as Theorem 1 and Con-
jecture 2 also have arithmetic consequences. In characteristic 0, this follows from
the following corollary of [Fal91].

Corollary 4. ([Fre94]) Let k be a finitely generated field of characteristic 0 and
let S be a smooth, proper, geometrically connected curve over k with k-gonality γ.
Then, for any integer 1 � d �

[
γ−1

2

]
, the set of all closed points s of S with residue

field k(s) of degree [k(s) : k] � d is finite.

So, for instance, Conjecture 2 for p = 0 combined with [CT11a, Prop. 3.18], to
rule out the k-isotrivial torsion points of Aη, would imply:

For any finitely generated field k of characteristic 0, smooth, separated and ge-
ometrically connected curve S over k, abelian scheme A → S and integer d � 1
the set of closed points s of S with degree [k(s) : k] � d and such that As carries a
k(s)-rational torsion point of order � is finite for � � 0.

Acknowledgements. I am very indebted to Jakob Stix for his impressive editorial
work (from which the exposition of this paper gained a lot) and for pointing out
mathematical gaps in the last part of the proof of Theorem 1 and in the proof of
Corollary 3. I am also grateful to Akio Tamagawa for his careful reading of the first
version of this text as well as to the referee for his detailed and constructive report.

4.2 Abstract Modular Curves

We fix once and for all an algebraically closed field k of characteristic p � 0. By a
curve over k we mean a connected, smooth and separated k-scheme of dimension 1.

4.2.1 Notation

Let S be a curve over k with a geometric generic point η above its generic point
η ∈ S. We will write S ↪→ Scpt for the smooth compactification of S and π1(S) for its
étale fundamental group with base point η. Fix an integer n � 1, and, for each prime
� � 0, let H� be an F�-module of rank n on which π1(S) acts. We will write ρ for the
family of the resulting F�-linear representations

ρ� : π1(S) → GL(H�) � GLn(F�) .

For every prime �� 0, set G� = im(ρ�) and for any subgroup U ⊂ G�, the abstract
modular curve associated to U is the connected étale cover SU → S corresponding
to the open subgroup ρ−1

�
(U) ⊂ π1(S). We write gSU

and γSU
for the genus and the

gonality of SU respectively.
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Remark 5. As we are only interested in the asymptotic behaviour of abstract mod-
ular curves, it is enough to consider only big enough primes �. Furthermore, in
practice, H� will be an étale cohomology group Hi(Xη,F�) for some smooth proper
morphism X → S with connected geometric generic fibre Xη. In particular, the di-
mension of Hi(Xη,F�) may become constant only for � � 0, see Sect. 4.2.2.

In the following, we will consider only specific classes of abstract modular curves
of two kinds. First, for v ∈ H� we denote by Sv → S the abstract modular curve
associated to the stabilizer of G�,v ⊂ G� of v, and let gv and γv denote its genus and
gonality respectively.

Secondly, for a π1(S)-submodule M ⊂ H�, we denote by SM → S the abstract
modular curve associated to

Fix(M)� {g ∈ G� ; g|M = IdM} ,

and let gM and γM denote its genus and gonality respectively. The connected étale
cover SM → S is Galois with Galois group GM = G�/Fix(M), which is the image of
the induced representation ρM : π1(S) → GL(M).

For v ∈ H� and the π1(S)-submodule M(v)� F�[G� · v] ⊂ H� generated by v, the
cover SM(v) → S is the Galois closure of Sv → S.

Let F = (F�) denote a sequence of non-empty families of subgroups of G�. We
will say that

Sρ,F (�)�
⊔

U∈F�

SU → S

is the abstract modular curve associated with F� and define

dρ,F (�)�min{[G� : U] ; U ∈ F�}
gρ,F (�)�min{gSU

; U ∈ F�}
γρ,F (�)�min{γSU

; U ∈ F�},

which we call the degree, genus and gonality of the abstract modular curve Sρ,F (�).
Following the notation for the usual modular curves, we will write

Sρ,1(�), dρ,1(�), gρ,1(�), γρ,1(�)

when F� is the family of all stabilizers G�,v for 0 � v ∈ H�, and

Sρ(�), dρ(�), gρ(�), γρ(�)

when F� is the family of all Fix(M), for 0 �M ⊂ H�. Note that by construction

dρ(�) � dρ,1(�), gρ(�) � gρ,1(�) and γρ(�) � γρ,1(�) .



4 Note on the Gonality of Abstract Modular Curves 93

4.2.2 Conditions (WA), (I), (T)

Given an integer 1 � m � n and a π1(S)-submodule M ⊂ ΛmH�, write again

ρM : π1(S) → GL(M)

for the induced representation. We consider the following technical conditions:

(WA) For any open subgroup Π ⊂ π1(S), there exists an integer BΠ � 1 such that,
for every prime �, integer 1 � m � n and Π-submodule M ⊂ ΛmH�, one has

ρM(Π) abelian of prime-to-� order ⇒ |ρM(Π)| � BΠ .

(WA)’ For any open subgroup Π ⊂ π1(S), there exists an integer BΠ � 1 such that,
for every prime �, integer 1 � m � n and Π-submodule M ⊂ ΛmH�, one has

ρM(Π) abelian ⇒ |ρM(Π)| � BΠ .

(I) For any open subgroup Π ⊂ π1(S) the F�-submodule HΠ
�

of fixed vectors
under Π is trivial for � � 0.

(T) For any P ∈ Scpt
� S there exists an open subgroup TP of the inertia group

IP ⊂ π1(S) at P such that ρ�(TP) is tame for � � 0.

In [CT11b], we introduce an additional condition (U), which asserts that for any
P ∈ Scpt

�S there exists an open subgroup UP of the inertia group IP ⊂ π1(S) at P
such that ρ�(UP) is unipotent for � � 0. Condition (U) is stronger than condition
(T), but we will not use it in the following. See [CT11b, §2.3] for more details, in
particular for the following lemma.

Lemma 6 ([CT11b, Lem. 2.2, 2.3 and 2.4]).

(1) Assume that condition (T) is satisfied. Set K �
⋂

� ker(ρ�). Then π1(S)/K is
topologically finitely generated.

(2) Conditions (I) and (T) imply lim
�→+∞

dρ,1(�) = +∞.

(3) Conditions (I), (T) and (WA) imply condition (WA)’.

Assume that conditions (I), (T) and (WA) are satisfied. Since dρ(�) � dρ,1(�), it
follows from Lemma 6 parts (2) and (3) that for � � 0 and any π1(S)-submodule
0 �M ⊂ H� the group GM cannot be abelian.

Corollary 7. Assume that conditions (I), (T) and (WA) hold. Then, for any integer
B � 1, for every π1(S)-submodule 0 �M ⊂ H� and for every abelian subgroup A of
GM one has [GM : A] � B for � � 0.

Proof. Otherwise, there exists an integer B � 1 and an infinite set of primes S such
that, for every � ∈ S, there exists a π1(S)-submodule 0 � M� ⊂ H� and an abelian
subgroup A� of GM�

with [GM�
: A�] � B. But, since it follows from Lemma 6 (1)

that π1(S) acts through a topologically finitely generated quotient, there are only
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finitely many isomorphism classes of connected étale covers of S corresponding to
the ρ−1

M�
(A�) ⊂ π1(S) for � ∈ S. Hence at least one of them, say S′ → S, appears

infinitely many times. Up to base-changing by S′ → S, we may assume that GM�
is

abelian for infinitely many � ∈ S, which contradicts Lemma 6 (2) and (3). ��

4.2.3 Etale Cohomology

Let X → S be a smooth, proper morphism with geometrically connected fibers. For
every integer i � 0 the F�-rank ni,� of Hi

�
� Hi(Xη,F�) is finite and independent of

� for � � 0. Indeed, when p = 0, this follows from the comparison isomorphism
between Betti and étale cohomology with finite coefficients and the fact that Betti
cohomology with coefficient in Z is finitely generated. More generally, when p � 0,
this follows from the fact that �-adic cohomology with coefficients in Z� is torsion
free for � � 0 [Gab83] and that the Q�-rank of �-adic cohomology with coefficients
in Q� is independent of �. So, we will simply write ni instead of ni,� for � � 0.

For each i � 1 and � � 0, the action of π1(S) on Hi
�

gives rise to a family ρi = (ρi
�
)

of ni-dimensional F�-linear representations

ρi
� : π1(S) → GL(Hi

�) � GLni
(F�) .

It follows from [CT11b, Thm. 2.4] that the families ρi for i � 1 satisfy conditions
(T) and (WA). As for condition (I), if Xη is projective over k(η) then, for i = 1 it can
be ensured by the condition:

Pic0
Xη/k(η) contains no non-trivial k-isotrivial abelian subvarieties.

4.3 Technical Preliminaries

The proof of Theorem 1 is based on a combination of Lemma 6 with the use of E-P
decompositions and group-theoretic ingredients. We gather the results we will need
in Sects. 4.3.1, 4.3.2 and 4.3.3 respectively.

4.3.1 E-P Decompositions

Consider a diagram of proper curves over k

Y
f

��

π
��

B

Y′,

(4.1)



4 Note on the Gonality of Abstract Modular Curves 95

where f : Y → B is a non-constant k-morphism of proper curves and π : Y → Y′ is
a G-cover with group G, i.e., G acts faithfully on Y and π : Y → Y′ is the quotient
morphism Y → Y/G. We will say that a pair of maps (π, f ) as in (4.1) is equivariant
if for any σ ∈ G there exists σB ∈ Autk(B) such that f ◦σ = σB ◦ f and that (π, f ) as
in (4.1) is primitive if it does not have any equivariant nontrivial subdiagram that
is, more precisely, if for any commutative diagram (4.2) of morphisms of proper
curves over k

Y

π

��

f

��

f ′
�� B′

f ′′
�� B

Y′

(4.2)

with f ′ and f ′′ of degree � 2, the pair (π, f ′) is not equivariant.
We will resort to the following corollary of the Castelnuovo-Severi inequality.

Lemma 8 ([Tam04, Thm. 2.4]). If the pair of maps (π, f ) as in (4.1) is primitive
then

deg( f ) �

√
gY+1
gB+1

.

For a pair (π, f ) as in diagram (4.1), among all equivariant decompositions, i.e.,
diagrams as (4.2) with the pair (π, f ′) equivariant, we choose a pair (π, f ′ : Y → C)
with deg( f ′) maximal. This exists as (π, id) is equivariant and deg( f ′) � deg( f ) is
bounded. By definition, the action of G on Y induces an action on C, hence we
obtain a homomorphism G → Autk(C). We set G = G/K where

K� Ker(G → Autk(C)) .

Then diagram (4.1) for (π, f ) can be enriched to a commutative diagram with respect
to the maximal equivariant decomposition (π, f ′) as follows

Y
f

����
���

���
���

���
���

��

Z ��

��

C ��

��

B

Y′ �� C′

(4.3)

where the vertical maps Y → Z = Y/K, Z → Y′ = Z/G and C → C′ = C/G are
the quotient morphisms. By construction, the pair (Z → Y′,Z → C) is equivariant
and the pair (C → C′,C → B) is primitive. We will call such a decomposition an
equivariant-primitive decomposition (E-P decomposition for short).
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4.3.2 Review of the Classification of Finite Subgroups of SL2

We remind that k is a fixed algebraically closed field of characteristic p � 0. Then
we have the following description of finite subgroups of SL2(k).

Theorem 9 ([Suz82, Thm. 3.6.17]). A finite subgroup G of SL2(k) is one from the
following list:

(1) A cyclic group,
(2) For some n � 2 a group with presentation

〈x,y | xn = y2, y−1xy = x−1〉 ,

(3) SL2(3), or SL2(5),
(4) The representation group Ŝ4 of the permutation group S4 in which transposi-

tions lift to elements of order 4,
(5) An extension

1 → A → G → Q → 1 ,

where A is an elementary abelian p-group and Q is a cyclic group of prime-
to-p order,

(6) A dihedral group,
(7) SL2(kr), where kr denotes the subfield of k with pr elements,
(8) 〈SL2(kr),dπ〉, where dπ is the scalar matrix with diagonal entries given by a

π ∈ k such that kr(π) has p2r elements and π2 is a generator of k×
r .

Case (6) occurs only when p = 2 and cases (7) and (8) occur only when p > 0.

We will use two corollaries of Theorem 9. Observing that PGL2(k) = PSL2(k) when
k is algebraically closed, we get the following well known corollary.

Corollary 10. A finite subgroup G of PGL2(k) is of the following form:

(1) A cyclic group,
(2) A dihedral group,
(3) A4, S4, A5,
(4) An extension

1 → A → G → Q → 1 ,

where A is an elementary abelian p-group and Q is a cyclic group of prime-
to-p order,

(5) PSL2(kr),
(6) PGL2(kr).

The last three cases occur only when p > 0.

Also, regarding SL2(F�) as a subgroup of SL2(F�) and ruling out the groups that
cannot lie in SL2(F�), we get:

Corollary 11. Assume that � � 5. A subgroup of SL2(F�) is isomorphic to one of the
following:
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(1) A cyclic group,
(2) For some n � 2 a group with presentation

〈x,y | xn = y2, y−1xy = x−1〉 ,

(3) SL2(F3), or SL2(F5),
(4) The representation group Ŝ4 of the permutation group S4 in which transposi-

tions lift to elements of order 4,
(5) A semi-direct product F� �C contained in a Borel subgroup with C a cyclic

group of prime-to-� order,
(6) SL2(F�).

4.3.3 A Group-Theoretic Lemma

The following lemma provides a practical condition for a finite group to contain a
large normal abelian subgroup.

Lemma 12. Let G be a finite group and assume that G fits into a short exact se-
quence of finite groups

1 → N → G → Q → 1 (4.4)

with Q abelian and generated by � r elements. Then the group G contains a normal
abelian subgroup A with index

[G : A] � μ(Z(N))r · |Aut(N)| ,

where μ(Z(N)) denotes the least common multiple of the order of the elements in the
center Z(N) of N.

Proof. The short exact sequence (4.4) induces by conjugation representations

φ̃ : G → Aut(N) and φ : Q → Out(N)

and induces on the centralizer ZG(N) = ker(φ̃) of N in G the structure of a central
extension

1 → Z(N) → ZG(N) → ker(φ) → 1 .

Because the extension is central, taking the commutator of lifts to ZG(N) defines an
alternating bilinear form [ , ] on ker(φ) with values in Z(N). The radical of [ , ]

R = {q ∈ ker(φ) ; [q,q′] = 0 for all q′ ∈ ker(φ)} ⊂ ker(φ) ,

contains μ(Z(N))ker(φ). We find an extension

1 → Z(N) → Z(ZG(N)) → R → 1
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where A = Z(ZG(N)) is the center of ZG(N). Since N is normal in G, the abelian
group A is also normal in G. We can estimate the index [G : A] as

[G : A] =
|G|

|ZG(N)|
·
|ZG(N)|

|A|
� |Aut(N)| · |ker(φ)|

|R|

� |Aut(N)| · |ker(φ)|
|μ(Z(N))ker(φ)|

� |Aut(N)| ·μ(Z(N))r

since ker(φ) ⊂ Q is also generated by � r elements. ��

4.4 Proof of Theorem 1

Observe first that if S′ → S is any connected finite étale cover then

π1(S′
M) = π1(SM)∩π1(S′) .

In particular, one has

γSM
� γS′

M
� γSM

deg(S′
M → SM) � γSM

deg(S′ → S)

and, as a result, lim
�→+∞

γρ|π1(S′)
(�) = +∞ if and only if lim

�→+∞
γρ(�) = +∞. This allows

to perform arbitrary base changes by connected étale covers. In particular, from
condition (T), one may assume that π1(S) acts through its tame quotient πt

1(S).
For every prime �, consider a π1(S)-submodule 0 � M� ⊂ H� such that γM�

=

γρ(�). We thus have a diagram of proper curves over k

Scpt
M�

f� ��

��

P
1
k

Scpt

(4.5)

with deg( f�) = γρ(�). We can consider an E-P decomposition of (4.5)

Scpt
M�

f�

����
���

���
���

���
���

��

Z�
��

��

C�
��

��

P
1
k

Scpt �� B�

(4.6)
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where, setting K� = ker(GM�
→ Aut(C�)) and GM�

= GM�
/K�, Scpt

M�
→ Z� = Scpt

M�
/K�

and C� → B� = C�/GM�
are the respective quotient maps.

If γρ(�) does not diverge, then there exists an infinite subset S of primes and an
integer γ � 1 such that γρ(�) � γ for all � ∈ S. In particular |K� | � γ, hence

|GM�
| �

dρ(�)

|K�|
�

dρ(�)

γ
.

So, from Lemma 6 (2) one has

lim
�→+∞
�∈S

|GM�
| = +∞ .

To get the contradiction, we distinguish between three cases. In the first case we
assume that gC�

� 2 for all but finitely many � ∈ S. Since by [Sti73] the size of the
automorphism group of a genus g � 2 curve over an algebraically closed field of
characteristic p is bounded by Pp(g) for a polynomial Pp(T) ∈ Z[T] depending only

on p, we find for � ∈ S that |GM�
| � Pp(gC�

), which forces

lim
�→+∞
�∈S

gC�
= +∞ .

But from Lemma 8 applied to the primitive pair (C� → B�,C� → P1
k) in diagram

(4.5), one has

γρ(�) = deg( f�) � deg(C� → P1
k) �

√
gC�
+1 ,

which therefore also diverges for � ∈ S contradicting the choice of S.

If we are not in the first case, then gC�
� 1 for infinitely many � ∈ S. In the

second case, we assume that for infinitely many � ∈ S, and in fact by replacing S
by a subset, that for all � ∈ S we have gC�

= 1. Then for � ∈ S, the group GM�
is an

extension
1 → A� → GM�

→ Q� → 1

with A� a finite quotient of Ẑ2 and |Q� |� 24. Since π1(S) acts through a topologically
finitely generated quotient by Lemma 6, there are only finitely many isomorphism
classes of étale covers of S with degree � 24 corresponding to the inverse image of
A� via

π1(S)
ρM�
� GM�

� GM�
.

So, by replacing S by the composite of all these étale covers of degree � 24, we may
assume that GM�

= A� for all � ∈ S. Now Lemma 12 applied to

1 → K� → GM�
→ A� → 1

shows, since |K� | � γ, that GM�
has an abelian subgroup of index bounded above

independently of � ∈ S in contradiction to Corollary 7.
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In the last case we can and do assume that gC�
= 0 for all � ∈ S. As above,

Corollary 7 shows that the subgroup

GM�
⊂ Aut(C�) � PGL2(k)

can be only of type (4), (5) or (6) as in Corollary 10 for � � 0, and � ∈ S. This
occurs only if p > 0. Without loss of generality, by replacing S by an infinite subset,
we may assume that GM�

is of the same type for all � ∈ S. To rule out these cases,
we are going to use the following theorem.

Theorem 13 ([Nor87, Thm. C]). For any integer n � 1 there exists an integer
d(n) � 1 such that for any prime � � n, integer m � n and subgroup G of GLm(F�)
the following holds. Let G+ denote the (normal) subgroup of G generated by the
elements of order � in G. Then, there exists an abelian subgroup A ⊂ G such that
AG+ is normal in G and [G : AG+] � d(n).

Assume that GM�
is of type (4) for all � ∈ S, that is of the form

(Z/p)r� �Z/N�

for some integers r�,N� � 1 with p � N�.

Claim 14. There exists an integer r(n) � 1 such that r� � r(n) for � � 0 in S.

Proof. Let T� denote the inverse image of (Z/p)r� in GM�
that is T� fits into the short

exact sequence of finite groups

1 → K� → T� → (Z/p)r� → 1 .

Because |K�| � γ we see that � does not divide |T�| for � � 0 and, in particular, that
T+
�

is trivial. Theorem 13 implies that T� fits into a short exact sequence

1 → A� → T� → Q� → 1

with A� abelian and |Q�| � d(n). In turn, A� fits into the sort exact sequence

1 → K� ∩A� → A� → (Z/p)s� → 1

with s� � r�. In particular, A� is an abelian subgroup of GL(M�) of prime-to-� order
and of Z-rank� s�. This implies s� � n since any abelian subgroup A of order prime-
to-� in GLn(F�) is conjugate in GLn(F�) to a diagonal torus. So the claim follows
from r� � s� + logp |Q� | and the bounds for s� and |Q�| � d(n). ��

By Claim 14 and Lemma 12, the group GM�
contains a normal abelian subgroup

A� with index bounded by

[GM�
: A�] � p · |GLr(n)(Fp)| .
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Invoking again that π1(S) acts through a topologically finitely generated quotient,
without loss of generality we may assume that GM�

= A� and then, as above the
contradiction follows from the bound |K�| � γ, Lemma 12 and Corollary 7.

Assume now that GM�
is of type (5) or (6) for all � ∈ S, that is either PSL2(kr�)

or PGL2(kr� ) for some integer r� � 1.
For any non zero vector v ∈ M� the cover SM(v) → S is a quotient of SM�

→ S
hence γSM(v)

� γSM�
. So, without loss of generality, we may assume that M� is a

simple π1(S)-module. In particular, there exists a non zero vector v ∈ M� such that
M� =M(v) and M+

�
� F�[G

+
M�

v] ⊂ M is a simple G+M�
-submodule.

Claim 15. The group G+M�
is nontrivial for � � 0 in S.

Proof. Theorem 13 applied to GM�
⊂ GL(M�) shows that one can write GM�

/G+M�
as an extension

1 → A�G
+
M�

/G+M�
→ GM�

/G+M�
→ Q� → 1

with A�G
+
M�

/G+M�
abelian and |Q� | � d(n), because dim

F�
(M�) � n. As a result, if

G+M�
= 1, we get a contradiction to Corollary 7. This proves the claim. ��

Since PSL2(kr�) is simple and the only nontrivial normal subgroups of PGL2(kr�)
are PSL2(kr�) and PGL2(kr�), Claim 15 implies that the normal subgroup

G
+

M�
� G+M�

/G+M�
∩K�

of GM�
contains PSL2(kr�).

Claim 16. The group Z� � K� ∩G+M�
is a central subgroup of G+M�

for � � 0 in S.

Proof. Because |Z�| � |K�| � γ we see that (i) � � |Z�| and (ii) � � |Aut(Z�)| for � � 0
in S. From (i) and Schur-Zassenhauss, for any �-Sylow S� ⊂ GM�

, the group Z�S� is
a semidirect product Z��S� and, from (ii), the semidirect product Z��S� is actually
a direct product that is S� is contained in the centralizer ZG+M�

(H�) of H� in G+M�
.

But, by definition, for � � 0 the group G+M�
is generated by the �-Sylow subgroups

S� of GM�
hence G+M�

= ZG+M�

(Z�). ��

The group Z� acts semisimply on H�, because Z� is commutative and of prime-
to-� order. Since Z� is central in G+M�

by Claim 16, the group G+M�
preserves the

isotypical decomposition
M⊗F� F� =

⊕

χ

Eχ

with respect to the characters χ of Z�. The induced projective representations

pχ : G+M�
→ PGL(Eχ)

factor over G
+

M�
. As

⋂
χ ker(pχ) is of order prime-to-�, this shows that the sim-

ple normal subgroup PSL2(kr� ) ⊆ G
+

M�
embeds into PGLm(F�) for some m � n. By
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[LS74, Thm. p. 419], this can occur only for finitely many values of r�, which,
in turn, contradicts the fact that r� → ∞ for � ∈ S by Lemma 6 (2). The proof of
Theorem 1 is now complete.

4.5 The Case of Sρ,1(�)

Whenever it is defined, we set for i = 1, . . . ,n = dimF� (H�)

γi
ρ,1(�)�min{γv ; 0 � v ∈ H� and dim

F�
(M(v)) � i} .

Note that, when n = i, one has γn
ρ,1(�) = γρ,1(�). Let S denote the set of all primes �

such that H� contains a π1(S)-submodule of F�-rank 2. Assume that S is infinite. In
this section, we prove the following.

Proposition 17. Assume that conditions (WA), (I) and (T) are satisfied. Then:

lim
�→+∞

p��(�2−1)

γ2
ρ,1(�) = +∞ .

Proposition 17 will lead to a proof of Corollary 3. The proof of Proposition 17
needs some preparation. We first study the possible structure of the group GM when
dim

F�
(M) = 2 and � � 0.

Lemma 18. Assume that conditions (WA), (I) and (T) are satisfied. Then, for � � 0
and any π1(S)-submodule M ⊂ H� of F�-rank 2 one has SL(M) ⊂ GM.

Proof. We write GM as an extension

1 → GM ∩SL(M) → GM
det−−→ DM → 1 ,

where
DM = det(GM) ⊂ F×� � Z/(�−1) .

Let us show first that |GM ∩SL(M)| diverges with �→ ∞ in S and M is any π1(S)-
submodule M ⊂ H� of F�-rank 2. Otherwise, up to replacing S by an infinite subset,
we may assume that there exists an upper bound

|GM ∩SL(M)| � B

for all possible M. From Lemma 6 (2), one has

lim
�→+∞
�∈S

|GM�
| = +∞ ,

which forces |DM| to diverge when � → ∞ in S. Let o(B) denote the maximal order
of the automorphism group of a group of order �B. Then, as DM is cyclic, it follows
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from Lemma 12 that GM contains a normal abelian subgroup of index � B · o(B),
which contradicts Corollary 7 for � � 0 in S.

Hence, for � � 0 in S and any π1(S)-submodule M ⊂ H� of F�-rank 2, the only
possibilities with respect to the list of Corollary 11 for GM ∩SL(M) are (1), (2), (5)
or (6). The types (1) and (2) are ruled out by condition (WA)’ and Lemma 6, and
type (6) is exactly what the lemma claims. It remains to rule out type (5).

If GM ∩SL(M) is of type (5), then it is contained in a Borel and thus fixes a line
F� · v ⊂ M for some 0 � v ∈ H�. The line is uniquely determined since the �-Sylow
of GM ∩SL(M) is nontrivial, and thus F� · v is also invariant under GM. However,
by condition (WA) and Lemma 6 (2), the group GM cannot fix F� · v, which is the
desired contradiction. ��

Lemma 19. Assume that conditions (WA), (I) and (T) are satisfied. Then, there
exists an integer D � 1 such that for � � 0 and any π1(S)-submodule M ⊂ H� one
has |det(GM)| � D.

Proof. Let m denote the F�-rank of M. Then the action of GM on the line ΛmM
factors through a faithfull action of DM � det(GM). So the conclusion follows from
condition (WA)’. ��

Now we can prove Proposition 17. Let S denote the set of all primes � such that
there exists v ∈ H� with M(v) of F�-rank 2. Assume that S is infinite and for every
� ∈ S, choose v� ∈ H� with M� � M(v�) of F�-rank 2 such that γv� = γ2

ρ,1(�). By
Lemma 18 and for � � 0 in S we write again GM�

as an extension

1 → SL(M�) → GM�

det−−→ D� → 1 ,

where
D� = det(GM�

) ⊂ F×� � Z/(�−1) .

From Lemma 19, we have |D�| � D. Consider an E-P decomposition

Scpt
M�

f�

����
���

���
���

���
���

��

Z�
��

��

C�
��

��

P
1
k

Scpt �� B�

(4.7)

where, setting K� = ker(GM�
→ Aut(C�)) and GM�

= GM�
/K�, Scpt

M�
→ Z� = Scpt

M�
/K�

and C� → B� = C�/GM�
are the respective quotient maps, and deg( f�) = γM�

. We set
DK

�
for the image of K� in D�. Then K� fits into the short exact sequence
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1 → K� ∩SL(M�) → K� → DK
� → 1 .

As the only normal subgroups of SL2(F�) are 1, Z/2 and SL2(F�), there are only
two possibilities for K� ∩SL(M�), namely:

(1) K� ∩SL(M�) = SL(M�),
(2) K� ∩SL(M�) = 1, Z/2.

In case (1), one has the estimate

γM�
= deg( f�) � deg(Scpt

M�
→ Z�) = |K� | = �(�2 −1) · |DK

� | = |GM�
| ·

|DK
�
|

|D�|
.

Since SL(M�) acts transitively on M� \{0}, the stabilizer GM�,v� of v� under the action
of GM�

, namely the Galois group of SM(v) → Sv, has index �2 −1 and so

γ2
ρ,1(�) = γv� �

γM�

|GM�,v� |
� (�2 −1) ·

|DK
�
|

|D�|
�

�2 −1
D

→ +∞ .

In case (2), the stabilizer has size

|GM�,v� | =
|GM�

|
�2 −1

= � · |D�| ,

and thus Lemma 8 applied to the primitive pair (C� → B�,C� → P1
k) in diagram (4.7)

yields the estimate

γ2
ρ,1(�) = γv� �

γM�

|GM�,v� |
�

deg(Scpt
M�

→ Z�) ·deg(C� → P1
k)

� · |D�|
�

|K�| ·
√

gC�
+1

� · |D�|
(4.8)

For � � 0 and in particular � > p, the group GM�
contains SL(M�) or PSL(M�), and

so it is not a subgroup of the automorphism group of a curve of genus 0 or 1 over
an algebraically closed field of characteristic p � 0. As a result, one may assume
that C� has genus � 2. If p does not divide �(�2 −1) then p does not divide |GL(M�)|
hence, a fortiori, does not divide |GM�

|. Consequently, the cover C� → B� lifts to
characteristic 0 and we have the Hurwitz bound for the automorphism group

�(�2 −1)|D�|
|K�|

= |GM�
| � 84(gC�

−1) .

In combination with (4.8) this yields

γ2
ρ,1(�) �

|K�| ·
√

gC�
+1

� · |D�|
�

|K�|
� · |D�|

√
�(�2 −1)|D�|

84|K�|
+2

Hence
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γ2
ρ,1(�) �

√
(�2 −1)

84 · � · |D|
→ +∞ .

This completes the proof of Proposition 17.

Remark 20. When p|�(�2 − 1), one can assert only that �(�2 − 1) � Pp(gC�
) so the

resulting lower bound for gC�
is too small to conclude. Also, from condition (T),

one could observe that Z� → Scpt is tame for � � 0 but, if p | �(�2 −1) and Scpt → B�

is wildly ramified, it may happen that C� → B� is wildly ramified as well hence does
not necessarily lift to characteristic 0.

Finally, we give a proof of Corollary 3. Let Y(0) and Y1(�) denote the coarse
moduli schemes of the stack E of elliptic curves and of the stack E1(�) of elliptic
curves with a torsion point of order exactly � as stacks over k. For any nonisotrivial
relative elliptic curve E → S and 0 � v ∈ Eη[�], one has the following commutative
diagram

E

��

E

��
E1(�)

���������

��
Y(0) S

b		

Y1(�)

d 

������
Svc

		
a

���������

In particular we can estimate the gonality as

γY1(�) �
γv

deg(c)
=

γv deg(d)

deg(a)deg(b)
=

γv(�2 −1)/2

|G� · v|deg(b)
�

γv

2deg(b)

with deg(b) independent of v and �. Applying Proposition 17 to the family of rank-2
F�-linear representations

ρ� : π1(S) → GL(Eη[�])

gives the conclusion of Corollary 3.
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Chapter 5
The Motivic Logarithm for Curves

Gerd Faltings

Abstract The paper explains how in Kim’s approach to diophantine equations
étale cohomology can be replaced by motivic cohomology. For this Beilinson’s
construction of the motivic logarithm suffices, and it is not necessary to construct a
category of mixed motives as it is done by Deligne–Goncharov for rational curves.

5.1 Introduction

The purpose of this note is to exhibit the definition of a motivic logarithm for smooth
curves, following Beilinson. I personally prefer the name polylogarithm but I have
learned that there is some opposition to this because the name polylogarithm is
already in use for different (although in my opinion related) objects. Many finer
properties of motivic categories are only shown over fields, but our definition makes
sense over any base. We show that its different realisations give the logarithm in
étale and crystalline cohomology. For rational curves this has been done in Deligne–
Goncharov. They in fact achieve much more by also defining a category of mixed
Tate-motives which contains the motivic logarithm. Here we are more modest and
only construct the logarithm itself, without exhibiting it as an object in a category
of mixed motives. It is something like the free tensor-algebra in the reduced motive
of the curve, and the motivic fundamental group has as its Lie-algebra the free Lie-
algebra. In fact we work with Q-coefficients where nilpotent groups and nilpotent
Lie-algebras correspond via the Hausdorff series, see [Bou75, Chap. 2, 6]. At the
end we try to define the notion of a motivic torsor. Unfortunately the desired proper-
ties need some additional vanishing assumptions. For the moment these are known
only for Tate-motives over a field, where however we already can cite Deligne–
Goncharov [DG05].
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Our main motivation for this work was the new method of Kim [Kim05] in dio-
phantine geometry, and its improvement by Hadian-Jazi [HJ10] which involves mo-
tivic cohomology. However so far the results are not really useful in that context
because of our general inability to compute motivic cohomology groups. The few
known cases concern Tate-motives mainly of number fields and use the connection
with algebraic K-theory. In this context it might be useful to define some regulator
with values in K-theory. For example this might work over the integers while the
most essential properties of motivic cohomology are only shown over a field.

Acknowledgements. Thanks for enlightening discussions go to A. Beilinson,
H. Esnault, and M. Levine, and also to the referee for his comments.

We assume that S is an arbitrary base-scheme and

X → S

a relative smooth curve with geometrically irreducible fibres. Furthermore we as-
sume that X admits an embedding

X ⊆ X̄

into a smooth projective curve X̄ such that the complement

D = X̄−X

is a divisor which is finite étale over S. We denote by M the Karoubian hull of
the category of smooth S-schemes, with maps given on connected components by
Z-linear combinations of actual maps of schemes. That is an object of M is defined
by a smooth S-scheme T together with a projector in the locally constant combina-
tions of elements of EndS(T). M is an additive category (sums are disjoint unions)
with tensor product given by the fibered product of smooth S-schemes. The same is
true for the category K(M) of finite complexes with entries in M, where the tensor
product is the usual tensorproduct of complexes which is symmetric with the usual
sign-rule. Objects of K(M) have well defined cohomology for any reasonable coho-
mological functor on the category of smooth S-schemes, and M is sufficiently big
to allow our basic construction. For a smooth S-scheme X we denote by M(X) its
image in M.

Later we shall pass to coefficients Q but keep the same notations.

5.2 Enveloping Algebras and Symmetric Groups

This section collects some general remarks for later use. All algebras are algebras
over a base field k of characteristic zero. Its purpose is to construct certain operators
(linear combinations of permutations) which operate on the free Lie algebra but can
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also be applied to the motivic logarithm. Assume first that g is a Lie-algebra over k.
Define its central series Zn(g) by the rule that Zn is the subspace generated by n-fold
commutators, so

Z1(g) = g .

Furthermore U(g) and S(g) denote the enveloping algebra and the symmetric alge-
bra. The algebra U(g) admits a cocommutative and coassociative coproduct

c : U(g) → U(g)⊗U(g)

which is a homomorphism of rings and satisfies

c(x) = x⊗1+1⊗ x

for x ∈ g. If we compose with the multiplication on U(g) we obtain a linear operator
λ on U(g). It has the following alternate description:

There exists, see [Bou75, Ch. 1, 2, 7], a g-linear isomorphism between S(g) and
U(g) which sends a monomial

x1 · · · · · xn ∈ S(g)

to the average over the symmetric group Sn of all permuted products in U(g). One
easily checks that λ operates on the image of Sn(g) by multiplication by 2n. Thus λ
is a diagonalisable automorphism of U(g) with eigenvalues 2n. If

I ⊂ U(g)

denotes the augmentation-ideal one easily sees that In is the image of the subspace
of weight ≥ n in S(g). Here the weight of an element x ∈ g is the maximal n such
that x ∈ Zn(g), or ∞, and the weight of a monomial x1 . . . xn is the sum of the weights
of its components. It follows that λ respects In and that on the quotient

U(g)/In

the λ = 2-eigenspace is isomorphic to

g/Zn(g) .

As a generalisation, modify c to (x ∈ U(g))

c̃(x) = c(x)− x⊗1−1⊗ x

and consider the complex

k → U(g) → U(g)⊗U(g) → . . .

where the differential is the alternating sum
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d(x1 ⊗ x2 ⊗ . . .) = c̃(x1)⊗ x2 ⊗ · · ·− x1 ⊗ c̃(x2)⊗ . . .

The square of the differential vanishes because of the coassociativity of c. Via the
symmetrisation map this complex is isomorphic to the analogeous complex for the
symmetric algebra S(g).

Lemma 1. The cohomology of the c̃-complex is isomorphic to the exterior algebra
∧(g).

Proof. This is an assertion about k-vector spaces. For a finite dimensional vector
space W let the dual Wt operate via the diagonal on the standard simplicial model
for EWt, that is the simplicial scheme with entries Wt,n+1 in degree n. The complex
of regular algebraic functions on EWt gives a resolution of k by injective S(W)-
modules. Our complex is the complex of Wt-invariants via the diagonal action
whose cohomology is

Ext•S(Wt )(k,k) = ∧(W) . ��

Remark 2. It is easy to see that the differential, a graded derivation, vanishes on the
subspaces

g⊗n ⊂ U(g)⊗n ,

and the subspaces ∧n(g) of antisymmetric elements represent the cohomology.

Cocycles representing these classes are for example cup-products of linear func-
tions on Wt, or their antisymmetrisations. Translated to Lie-algebras we obtain that
our original complex has cohomology ∧(g) and all classes are represented by anti-
symmetric elements. That is let the groups Sn operate on U(g)⊗n and denote by εn
the projector onto antisymmetric elements. Although the different εn’s do not com-
mute with the differentials they still annihilate their image because of the symmetry
of c̃. As they operate as the identity on suitable representatives of the cohomology
classes they induce an injection of the n-th cohomology into U(g)⊗n. So a cocycle
is a coboundary if it is annihilated by εn.

Finally assume that g is the free Lie-algebra on a k-vectorspace V. Then

U(g) = T(V)

is the free tensoralgebra in V, with the coproduct

c : T(V) → T(V)⊗T(V)

induced by the diagonal on V, and thus given by the shuffle formula

c(v1 ⊗ v2 · · · ⊗ vn) =
∑

vA ⊗ vB ,

where the sum is over all disjoint decompositions

{1, . . . ,n} = A�B ,
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and vA,vB denote the products (in natural order) of the vi with i ∈ A,B. It follows
that the operator λ respects the direct sum V⊗n and acts on it via a certain element of
the group-ring Z[Sn] which is independant of V. As the operation of Q[Sn] on V⊗n

is faithful if V has dimension at least n it follows that this element is semisimple
with eigenvalues {1,2, . . . ,2n}, that is its action by left-multiplication on Q[Sn] has
this property. The projection onto the λ = 2-eigenspace is then defined by a certain
universal element

en ∈ Q[Sn]

which is a polynomial in λ. Its image consists of the image of the free Lie-algebra,
that is of all Lie-polynomials of length n in its generators. For example for n = 2 we
obtain all commutators, so

e2 = (1−σ)/2

with σ the transposition in S2. The en have the property that for any k-vectorspace
V the direct sum ∑

n

en(V⊗n)

is a Lie-algebra, that is we have in Q[Sm+n] the identity (in hopefully suggestive
notation)

(1− em+n)(em ⊗ en − en ⊗ em) = 0 .

A general formula for en can be found in [Bou75, Ch. II §3.2].
We give another argument which generalises to other cases. The actions of the

algebraic group GL(V) and the finite group Sn on V⊗n commute, and it is known,
see [Wey46, Thm. 4.4.E], that the commutator of GL(V) in End(V⊗n) is the image
of the group ring k[Sn], equal to it if dim(V) ≥ n. Also we know that the action of
GL(V) is reductive. Thus any GL(V)-invariant subspace is the image of a projector
e in k[Sn], and the right ideal generated by e in k[Sn] is canonical. So for the Lie-
polynomials of degree n we obtain such a projector in Q[Sn] which can be chosen
independantly of V.

We apply this as follows to our complex with entries T(V)⊗n and differentials
d the alternating sums of c̃’s: There exist universal matrices u,v,w with entries
elements of Q[Sl] (l suitable) such that on T(V)⊗n we have the identity

id = d ◦u+ v◦ εn+w◦d .

For applications we also need a superversion which amounts to the same with
signs added at suitable locations: now g is graded into even and odd parts, and for
two odd elements the commutator has to be replaced by the supercommutator. By
S(g) we denote the supersymmetric algebra, that is the tensorproduct of the sym-
metric algebra on even elements and the alternating algebra on odd elements. Again

S(g) � U(g) .

The enveloping algebra U(g) is also Z/(2)-graded and the coproduct
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c : U(g) → U(g)⊗U(g)

is a ring homomorphism induced by the diagonal on g. However the multiplication
rule on the tensorproduct is “super", that is two odd elements in the factors anticom-
mute. The definition of λ is the same as before, and it operates on the image of Sn(g)
as 2n. Furthermore λ respects the powers In of the augmentation ideal I ⊂ U(g) and
the λ = 2-eigenspace on U(g)/In is g/Zn(g).

Finally, if V is an odd k-vectorspace we can apply this to the free Lie-algebra
in V. The coproduct on

U(g) = T(V)

is given by the shuffle formula

c(v1 ⊗ . . .⊗ vn) =
∑

A,B

±xA ⊗ xB

where the sum is over all disjoint decompositions of {1, . . . ,n} and the sign is that of
the shuffle, i.e., that of the permutation which defines it. It follows that the λ = 2-
eigenspace in V⊗n is again defined by a universal projector

fn ∈Q[Sn]

which differs from the previous en by an application of the sign-character. For ex-
ample

f2 = (1+σ)/2 .

Also as before
(1− fm+n)( fm ⊗ fn − (−1)mn fn ⊗ fm) = 0 .

Finally, also the results about c̃ carry over.

5.3 The Definition of the Motivic Logarithm

Assume we are given an S-point X ∈ X(S). The composition of projection and the
inclusion

X → S → X

is an idempotent ex acting on M(X), and M(X)◦ denotes the image of 1 − ex, the
reduced homology. Similarly a product like

M(X)◦ ⊗M(X)◦ ⊗M(X)

denotes the direct summand of M(X×X×X) where we apply the above idempotent
to the first two factors.

Now define a projective system of complexes in K(M) by chosing for Pn the
complex
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M(S) → M(X)◦ → M(X)◦⊗2 → ·· · → M(X)◦,⊗n

where the maps are induced by the alternating sums of the adjacent diagonals δi,i+1
which double the argument in position i, for 0 ≤ i ≤ n. In particular, the first map is 0.
It is obviously related to the simplicial object Cosk0(X) but should not be confused
with the usual chain complex whose differentials have the opposite direction. By
the equality

δ · ex = (ex ⊗ ex) · δ

for the diagonal
δ : M(X) → M(X×X) =M(X)⊗M(X)

the diagonals induce maps on the reduced quotient of M(X)⊗m. There are compatible
associative products

Pn ⊗Pn → Pn

induced from the juxtaposition

M(X)⊗a ⊗M(X)⊗b → M(X)⊗a+b

which sends (x1, . . . , xa) ⊗ (xa+1, . . . , xa+b) to (x1, . . . , xa+b). Also we have graded
cocommutative and coassociative shuffle coproducts

Pm+n → Pm ⊗Pn

induced from

(x1, . . . , xa+b) �→
∑

σ

sign(σ)(xσ(1), . . . , xσ(a))⊗ (xσ(a+1), . . . , xσ(a+b)) ,

where the sum is over all permutions of {1, . . . ,a + b} which are monotone on
{1, . . . ,a} and on {a+ 1, . . . ,a+ b}. The sum of these makes the right unbounded
complex

P = lim←−−Pn

a cocommutative Hopf-algebra.
If we pass to Q-coefficients we obtain as a direct summand a super Lie algebra

as follows.

Proposition 3. The direct summands fn(M(X)◦⊗n) are preserved by the differentials
(the fn are polynomials in the composition of multiplication and comultiplication)
and they form a super Lie algebra L with truncations Ln.

Proof. This follows from the rule

(1− fm+n)( fm ⊗ fn − (−1)mn fn ⊗ fm) = 0 . ��

If we are given another S-point y ∈ X(S) define a new complex P(y) by the rule
that its terms are the same as for P but that we add to the differential

Xn → Xn+1
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the map induced by
(x1, . . . , xn) → −(y, x1, . . . , xn) .

The same formulas as before define a cocommutative and coassociative coproduct

P(y) → P(y)⊗P(y)

as well as an associative product

P(y)⊗P → P(y) .

The terms of the complex for P(y) are the same as those for P but the differential
differs by left-multiplication with the element

a = x− y

in degree zero. The element a satisfies the Maurer-Cartan equation

d(a)+a⊗a= 0 .

If we pass to Q-coefficients the element a lies in the super Lie algebra L and the sum
of the differential d and the superbracket with a has square zero, therefore defines a
new complex. If we vary y we can replace the base S by X and get a universal P(y)
over X.

5.4 The Étale Realisation

Assume � is a prime invertible in S. The étale log is the universal unipotent Z�-sheaf
on X trivialised at x. One epigonal (to [Del89]) reference is [Fal07]. We claim that
unless X is projective of relative genus zero it can be realised as the étale homology
relative S, namely the dual of higher direct images of P(y) for the universal section
y over X given by the diagonal in X×X. This can be seen as follows.

Obviously there exists a spectral sequence starting with the homology of powers
M(X)◦,⊗m for 0 ≤ m ≤ n, shifted by degree −m, and converging to the homology
of Pn. If X is affine all nonzero terms have homological degree 0, so the spectral
sequence degenerates and the homology is a repeated extension of the powers of
the Tate-module T�(X)⊗m. If X is projective the homology of M(X)◦,⊗m can be
computed by the Künneth-formula, which gives a direct sum of tensor products
where each factor is either T� (in degree 1) or Z�(1) (in degree 2). If we shift by −m
this is the direct sum of powers T�(X)⊗m−i(i) placed in degree i, for 0 ≤ i ≤ m. The
first differential in the spectral sequence multiplies these by the homology class of
the diagonal in X×X (the class of y vanishes in reduced étale homology). This class
is a sum

cΔ =
∑

α j ⊗β j ,
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with α j and β j forming a dual basis for the dual of the cupproduct on T�(X). We
claim that after the first differential only terms associated to M(X)◦,⊗m survive. This
comes down to the following.

Lemma 4. Suppose R is a commutative ring, T a free R-module of rank r ≥ 2, α j

and β j two sets of basis for R, c=
∑

jα j ⊗β j ∈ T⊗2. For each m consider the complex

M(m)
∗ given by

Mm → Mm−1 → ·· · → M0

where Ml ⊆ T⊗m is the sum over all l+1-tuples (a0, . . . ,al) with
∑

i ai = m−2l, of

T⊗a0 ⊗ c⊗T⊗a1 ⊗ c . . .c⊗T⊗al .

The differentials in the complex are the sums of the inclusions (0 ≤ i < l) with signs

T⊗ai ⊗ c⊗T⊗ai+1 ⊂ T⊗ai+2+ai+1 .

The sign for the i-th inclusion is

(−1)a0+...ai+i .

Then this complex is exact in degrees � 0.

Proof. We denote by Tm the quotient of M0 under the image of M1. The direct sum

T =
⊕

m

Tm

is the quotient of the tensoralgebra of T under the two sided ideal generated by c.
We claim first that multiplication by any basiselement α is injective on T.

We may assume that α = α1, as c can be written using any basis. The assertion
clearly holds for multiplication on T0. If the assertion holds on Tl suppose z ∈Tl+1 is
annihilated by α1. As Tl+2 is the quotient of T⊗Tl+1 under c⊗Tl we have a relation

α1 ⊗ z = c⊗ y =
∑

α j ⊗β jy .

Thus for j � 1, which is possible as r ≥ 2, we have

β jy = 0

and by induction, since β j is also part of a basis,

y = 0, z = 0 .

Now for the assertion of the lemma use induction over m. The case m = 1, or
even m= 2, is trivial. In general the subcomplex consisting of direct summands with
a0 > 0 is the tensorproduct of T and the complex for m − 1, thus exact in positive
degrees. The quotient is the tensorproduct of c and the complex for m − 2 and has
non-trivial homology Tm−2 only in degree 0. The connecting map
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Tm−2 → T⊗Tm−1

is given by multiplication by c and injective by the proceeding arguments: decom-
pose the T on the right according to the basis αi and consider components. ��

We derive from this the following proposition.

Proposition 5. The spectral sequence for the étale homology of Pn degenerates af-
ter the first differential. The étale homology is free over Z� and concentrated in
degrees between 0 and n. The homology in degree zero is equal to the truncated
étale logarithm. The map

Pn+1 → Pn

induces zero on homology in strictly positive degrees. The pro-object of étale re-
alisations of Pn is isomorphic in the derived category to the pro-object of étale
logarithms.

Proof. The first step in the spectral sequence is the sum of the complexes M(m)
∗ as

above, truncated at level n. We derive that after the first differential of the spectral
sequence the surviving terms are locally free and either correspond to homology
in degree 0, or to higher homology and then are subspaces of the homology of
M(X)◦,⊗n+1. Furthermore we use a weight argument to show that all higher dif-
ferentials vanish, so that the homology is locally free (it is the last homology of a
truncation of the complex in the lemma) and mixed of certain weights, and this also
applies to the homology of Pn.

To introduce weights we may assume by base change that S is of finite type over
Spec(Z), and consider the eigenvalues of Frobenius at closed points of S. Then all
terms in the complex M(m)

∗ are pure of weight −m. Thus for degree 0-homology the
weights lie between −n and 0, while for higher homology in degree i > 0 the weight
is −(n+ i). As the higher differentials in the spectral sequence respect weights they
must vanish. Also because of weights under the projection Pm+1 → Pm the induced
maps in strictly positive homological degree vanish. It follows that the projection
P2n → Pn induces in homology a map of complexes which factors canonically over
the projection to H0.

This H0 has a filtration with subquotients the same as for the étale log, see for
example [Fal07], the discussion on page 178. Furthermore for n = 1 the extension

0 → T� → H0 → Z� → 0

is induced from the diagonal and thus coincides with the first step of the étale log-
arithm. Thus we get a homomorphism from the universal étale logarithm to our H0
which is compatible with the multiplication by the fibre at x, and induces an iso-
morphism on the first two graded subquotients of the filtration. It follows easily that
it induces isomorphisms on all graded subquotients, and that the étale H0 coincides
with the étale log. ��

As usual the products and coproducts on the P(y) make the homology of P the
affine algebra of a prounipotent group-scheme Get over Z�, and the homology of
P(y) that of a torsor over Get.
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The pro-� fundamental groups of the fibers of X/S form a local system

Get

on S, or more precisely there exists a profinite group which is an extension of the
fundamental group of S by this pro-� group. This extension has a splitting defined by
x and thus becomes a semidirect product. The projective system of �-adic homolo-
gies of Pn is identified with the local system given by the completed group-algebra
A, that is it is as a pro-object isomorphic to the projective system of quotients A/In

where I⊂A is the augmentation ideal. More precisely the 0-th homology of Pn cor-
responds to the universal unipotent sheaf of length n, that is to A/In+1.

From the structure of the fundamental group we know that it is a free pro-� group,
divided by one relation if X/S is projective. This relation is the commutator of gen-
erators. The completed group-algebra of the free group is a completed free tenso-
ralgebra. The one relation corresponds modulo the cube of the augmentation-ideal
to the element c from above, and becomes equal to it after applying a suitable auto-
morphism. It follows that in any case A is non canonically isomorphic respecting
augmentations to the completed tensor-algebra

T =
∏
Tn .

If we pass to Q�-coefficients the Lie algebra of Get/Zn+1 is obtained from A/In+1

by applying the operators fm, for m ≤ n, to Pn or the operators en to the subquo-
tients of its homology. The group Get/Zn+1 is isomorphic to its Lie algebra via the
exponential map, and the multiplication on it is defined by the Hausdorff-series.

5.5 The de Rham and Crystalline Realisation

The arguments are essentially the same as in the previous section. The relative de
Rham homology of Pn is defined by dualising the double complex derived from
the de Rham complexes on X̄n with logarithmic poles along D. It admits a Hodge
filtration. Also, if S0 ⊂ S is a closed subscheme defined by an ideal with divided
power-structure, the de Rham cohomology (without the Hodge filtration) depends
only on the restriction of (X̄,D) to S0. In fact it is defined for a relative curve
over X0. The remaining arguments carry over verbatim, for example, the weight ar-
gument uses that locally the pair (X̄,D) comes by pullback from a smoothZ-scheme.
We obtain unipotent flat group-schemes Gcr and GDR. The latter admits a Hodge
filtration by flat closed subschemes Fi(GDR), and the GDR-torsors defined by P(y) re-
duce to F0(GDR)-torsors. A possible reference is again [Fal07]. However we should
note that while our category M admits crystalline realisations there is no obvious
extension to the motivic category as the action of correspondences on crystalline
cohomology still poses some problems.
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5.6 The Motivic Realisation

Voevodsky defines a derived category of motives as a quotient of the derived cat-
egory of Nisnevich sheaves with transfers. The Pn obviously correspond to com-
plexes of such sheaves and we obtain objects in this derived category. Again passing
to Q-coefficients we may apply the operators fn to get (super) Lie algebras. All this
can be done before taking the quotient under Nisnevich coverings andA1-homotopy,
but passing to it we get objects in the motivic category. Also the P(y) become objects
in the derived category which obviously should be torsors. However the definition
of a torsor in this context is not so obvious.

5.7 Torsors in Triangulated Categories

We have to study mixed extensions in derived categories. One of the fundamental
difficulties in the theory is that mapping cones are only defined up to non canoni-
cal isomorphism. To get around this we have to make vanishing assumptions under
which all objects become sufficiently welldefined. Recall the definition of exten-
sions in a triangulated category. An extension of B by A is an exact triangle

A → E → B → A[1] .

An isomorphism of extensions is an isomorphism of E’s commuting with the maps
from A and those into B. Isomorphism classes are classified by the map B → A[1]
as follows. If E and E′ induce the same map there is a map of triangles, by axiom
TR3, which is necessarily an isomorphism.

The difference of two such maps is induced by a map of E’s which induces 0 on
A and B. It is induced by a

α : E → A

such that its composition with A → E (from both sides, that is applied twice) van-
ishes. If

Hom(A,B[−1]) = (0)

it induces a trivial endomorphism of A and thus is induced from a map B → A. On
the other hand such maps operate obviously as automorphisms of any extension. If
in addition

Hom(A,A[−1]) = Hom(B,B[−1]) = (0)

this operation is free.
A similar problem is the classification of mixed extensions. Given A,B,C and

extensions, i.e., exact triangles,

A → D → B → A[1]

and
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B → E → C → B[1] ,

we consider F’s which lie in triangles

D → F → C → D[1]

as well as
A → F → E → A[1]

such that the three possible compositions (from A to F, from F to C, and from D to E)
coincide. We are interested in automorphisms, isomorphism classes, and existence
conditions. The last is easy: the composition of the two classifying maps

C → B[1] → A[2]

must vanish. Indeed, this is necessary as the first map goes to zero if composed with

B[1] → E[1]

and the second extends to E[1]. Conversely if the composition vanishes we get a lift

C → D[1] ,

thus an extension F of C by D which induces the extension E.
For the classification of isomorphism classes we show that under suitable van-

ishing conditions they form a principal homogeneous space under

Hom(C,A[1]) .

Assume right away that

Hom(A,B[−1]) = Hom(A,C[−1]) = Hom(B,B[−1]) = Hom(B,C[−1]) = (0) .

Then we obtain an operation of Hom(C,A[1]) on the isomorphism classes of mixed
extensions. Namely assume we have a mixed extension F and an

A → G → C → A[1] .

The direct sum F ⊕ G maps to C ⊕ C, and we denote by H the preimage of the
diagonal, that is H lies in an exact triangle

H → F⊕G → C → H[1]

and is unique up to non-unique isomorphism. The inclusions of A and D into the
direct summands factor over H, uniquely up to maps into C[−1], so they are unique.
Especially the antidiagonal in A⊕A comes from a unique A → H. Finally define F′

is a mapping cokernel of this map, that is it lies in an exact triangle

A → H → F′ → A[1] .
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The map from H to C factors uniquely over F′, and so does the projection to E. The
maps define exact triangles

D → F′ → C → D[1]

and
A → F′ → E → A[1] .

Furthermore the composition D → E coincides with the original composition, that
is the factorisation over B, so that F′ is a mixed extension.

Conversely given mixed extensions F and F′ modify F⊕F′ by taking a preimage
of the diagonal E ⊂ E ⊕ E and dividing by the diagonal D ⊂ D ⊕ D, which amounts
to forming mapping cones. Call the result G. For the second we need to lift the
inclusion of the diagonal D which is unique up to an element of Hom(D,E[−1])
which by our vanishing conditions is zero. The inclusions of A into F,F′ as well as
the projections to C extend/factor uniquely and define an exact triangle

A → G → C → A[1] ,

and one easily sees that this gives an inverse.
Finally an automorphism of F is given by the sum of the identity and compatible

endomorphisms of
A → F → E → A[1]

and
D → F → C → D[1]

which vanish on the extremes, that is by compatible morphisms

E → A,C → D .

The obstruction that the first factors over C lies in Hom(B,A) and induces zero in
Hom(B,D), thus comes from an element in

Hom(B,B[−1]) = (0) .

Thus the factorisation exists and we get a map

C → A .

By a dual argument also the map from C to D factors over A. The difference of the
two maps from C to A vanishes if we compose to get a map

E → D .

The obstruction for it to vanish is first get an element in Hom(E,B[−1]) and then
one in Hom(B,A[−1]). Both groups vanish, so finally the automorphisms of F are
the sum of the identity and a unique element of Hom(C,A).
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We subsume the above in the following lemma.

Lemma 6. Assume the vanishing of

Hom(A,B[−1]) = Hom(A,C[−1]) = Hom(B,B[−1]) = Hom(B,C[−1]) = (0) .

Then the obstruction to extend given extensions of B by A and C by B to a mixed
extension lies in Hom(C,A[2]). If it vanishes the isomorphism classes of solutions
form a torsor under Hom(C,A[1]), and the automorphisms of any solutions are
Hom(C,A).

We apply these generalities to the motivic log, to define motivic Ln-torsors. We
work in the derived category of finitely filtered Nisnevich sheaves with transfer, that
is Nisnevich sheaves F with a finite decreasing filtration of length n, for a fixed n,

F = G0(F ) ⊃ G1(F ) ⊃ · · · ⊃ Gn+1(F ) = (0) .

The transfer should respect filtrations. For example Pn with its stupid filtration
defines a complex in this category, with graded

gri
G(Pn) =M(X)◦,⊗i[−i] .

In the derived category we invert as usual filtered quasi-isomorphisms.
We also assume that our complexes are bounded above, and for the derived prod-

uct
A⊗LB

we take the usual derived product divided by elements of filtration degree > n+ 1.
We know that Pn is an algebra and coalgebra in this category. Any such complex can
be resolved by complexes whose associated gradeds are injective. If we further as-
sume that the associated gradeds lie in the triangulated category DMeff

gm, see [Voe00],
generated by motives of smooth schemes we get by truncation right bounded re-
solutions which are sufficiently Ext-acyclic as to compute cohomology (defined as
maps in the derived category but usually difficult to compute unless one has injective
resolutions).

In the following we consider filtered right Pn-modules, that is right bounded fil-
tered complexes K• together with a map of complexes

K• ⊗Pn → K•

which is strictly associative (no homotopies involved). The coproduct on Pn defines
a Pn-module structure on the derived tensorproduct of two Pn-modules. The exact
forgetful functor to filtered complexes has a right-adjoint which maps K• to the
internal Hom of filtration preserving maps

Hom(Pn,K
•) ,

defined in the obvious way from the rule
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Hom(M(X),F )(T) = F (X×T) .

Applied to filtered injective resolutions without Pn-module structure we obtain
acyclic resolutions of Pn-modules which allow us to compute cohomology. It then
coincides with the usual Nisnevich cohomology.

Also as usual we can pass to A1-homotopy invariant objects by applying the
functor C∗ with

C∗(F )(T) = F (T×Δ•) ,

and define motivic cohomology by

Hi
M(S,F ) = Hi(S,C∗(F )) .

So from now on we compute in the triangulated category of filtered (with filtration
degrees between 0 and n) bounded above complexes of Q-Nisnevich sheaves with
transfer which are Pn-modules, modulo filtered quasi-isomorphisms and modulo
A

1-homotopy. All our objects will lie in the category generated by geometric effec-
tive motives, so have finite Ext-dimension. Finally, to apply our previous theory of
mixed extensions we make the general assumption that for i ≤ j the cohomology

H−1
M(S,Hom(gri

G(Pn),gr j
G(Pn)) = H j−i−1

M (S,Hom(M(X)◦,⊗i,M(X)◦,⊗ j)) = (0)

vanishes.
We now define a Ln-torsor as a filtered Pn-module Q

n
together with cocommuta-

tive and coassociative coproduct

c : Q
n
→ Q

n
⊗LQ

n
.

Also we assume that we have isomorphisms compatible with the multiplication

gri
G(Q

n
) � C∗(gri

G(Pn)) .

Examples of such objects are the previous Pn(y).
Obviously, for n = 0, there is only one isomorphism class of such objects. Fur-

thermore, a Q
n

induces naturally a Q
n−1

. Conversely given a Q
n−1

let us analyse the
possible lifts to Q

n
. Necessarily we have

G1(Q
n
) = Q

n−1
⊗LPn−1

G1(Pn−1) .

Here the tensor product is defined as follows. The complex G1(Pn) has the same
terms as

Pn−1 ⊗M(X)◦[−1] ,

but with the differential modified by adding multiplication by the diagonal in P1
n(X).

This diagonal satisfies the Maurer-Cartan equation, so we may define the tensor-
product as

Q
n−1

⊗M(X)◦[−1]
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with multiplication by the same element added to the differential.
Thus Q

n
becomes a mixed extension with the following subquotients C∗(Z),

Q
n−2

⊗LPn−2
G1(Pn−1), and C∗(grn

G(Pn). The obstruction z to get such an extensions
lies in

H2
M(S,grn

G(Pn) = H2−n
M (S,L(M(X)◦,⊗n)) .

By the existence of the coproduct on Q
n−1

it satisfies the equation

c(z) = z⊗1+1⊗ z ,

thus lies in the cohomology of the direct summand which is the n-th graded of the
Lie algebra.

If z vanishes two mixed extensions differ up to isomorphisms by a class in
H1

M(S,grn
G(Pn)). The obstruction w to extend the coproduct lies in

H1
M(S,grn

G(Pn ⊗Pn))

(we have a mixed extension for the tensorproduct), is annihilated by the counits in
each factor, and satisfies

(id⊗c)(w)+1⊗w= (c⊗ id)(w)+w⊗1 .

If we modify c by the rule

c̃(z) = c(z)− z⊗1−1⊗ z

this can be written as
(id⊗c̃)(w) = (c̃⊗ id)(w) .

The obstruction is symmetric and by the general results on Lie algebras, see
Lemma 1 and the discussion following it, w lies in the image of c̃:

We know that a certain complex formed from free Lie algebras is acyclic and
thus null homotopic. The homotopies are given by elements of group rings Q[Sn],
namely the elements u,v,w from the end of Sect. 5.2. Applying the same elements
to the Pn gives null-homotopies for the motivic cohomology.

Thus changing the mixed extension Q
n

by a class in H1
M(S,grn

G(Pn)) we can make
it zero, so the comultiplication extends.

For coassociativity we similarly obtain an obstruction in H0
M(S,grn

G(P⊗3)) which
satisfies the cocycle condition and whose (super-)antisymmetric projection van-
ishes. So it is a coboundary of an element in H0

M(S,grn
G(P⊗2)) which can be chosen

symmetric. Thus finally our torsor extends if the obstruction vanishes.
By similar but simpler arguments the isomorphism classes of extensions form a

torsor under the first motivic cohomology of the grade n-part of the Lie algebra, and
the automorphisms are H0

M.

Remark 7. For complete curves the vanishing assumptions refer to the reduced sub-
space of the motivic cohomology (where i ≤ j)
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H2i−1
M (Xi+ j,Q( j)) .

For an affine curve we need partially compact support. For rational curves (where
we deal with Tate-motives) we need the vanishing for l ≥ 0 of

H−1
M(S,Q(l)) .

5.8 Representability

Spaces of torsors with an obstruction theory as in the last chapter admit a versal
representative as follows. We assume that

H1
M(S,grn

G(L))

is a finitely generated Q-vectorspace. For any Q-algebra R we can by the same
procedure as before define torsors with coefficients in R, such that the obstruction
to liftings are classified by H2, the liftings by H1 and the automorphisms of liftings
by H0, all with coefficients in R. Then there exist a finitely generated commutative
Q-algebra Rn and a versal Ln-torsor over Rn, such that any other such torsor over an
R is obtained from it via pushout Rn → R.

Namely the assertion holds for n = 0. Assume we have constructed Rn−1 the
obstruction to lift the versal torsor to Ln lies in

H2
M(S,grn

G(Ln))⊗
Q

Rn−1 .

Writing it as an Rn−1-linear combination of basis elements of H2
M(S,grn

G(Ln)) the
coefficients generate an ideal

In−1 ⊂ Rn−1 .

The torsor then lifts over Rn−1/In−1 and we chose one such lift. If H1
M(S,grn

G(Ln))
has dimension l we then obtain a versal torsor over

Rn = Rn−1/In−1[T1, . . . ,Tl]

by modifying the lift with the element of H1 corresponding to the linear combination
of basis elements with coefficients Ti.

If in addition the H0
M(S,gr j

G(Ln)) vanish this torsor is universal and Rn repre-
sents the motivic torsors. In any case its dimension is bounded by the sum of the
dimensions of H1

M(S,gr j
G(Ln)).

Finally by comparison to étale cohomology, for example [SV96, Th. 7.6], the
homologies of the Q

n
define torsors under the étale unipotent fundamental group

and also algebraic maps of the representation spaces. The torsors given by points
y ∈ X(S) correspond.
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Chapter 6
On a Motivic Method in Diophantine Geometry

Majid Hadian

Abstract Let k be a totally real number field, S be a finite set of finite places of k,
and OS be the ring of S-integers in k. Let X be a smooth scheme over OS which
admits a “nice” projectivization whose generic fiber is unirational. By studying the
motivic unipotent fundamental group and path torsors associated to X, we show
that S-integral points of X can be covered by the zero loci of finitely many nonzero
p-adic analytic functions provided the unipotent fundamental group of the complex
points of X is sufficiently non-abelian in a sense that is made precise.

6.1 Introduction

First of all, let us make it clear that this article is an exposition on some recent ideas
introduced by Kim in [Kim05] and extended by Faltings in [Fal07] and the author
in [Had10] toward studying integral points on varieties over number fields. Being
so, instead of giving technical proofs, we refer the reader to proper references for
complete treatment. The involved chain of ideas is quite wide and sophisticated,
but our main emphasis is on motivic aspects which are introduced in [Had10]. The
following notations will be fixed in the sequel.

Let k be a number field with [k : Q] = d, S be a finite set of finite places of k, and
OS be the ring of S-integers in k. v will denote a generic finite place of k outside S,
i.e., any finite place of k outside some finite set of places containing S. Let p denote
the rational prime which is divisible by v. For any finite place v of k, kv (resp. Ov,
resp. Fv) denotes the completion of k at v (resp. the ring of integers of kv, resp. the
residue field of Ov). We will be considering triples (X,X,D) over OS consisting of a
smooth projective connected scheme X over Spec(OS) with geometrically connected
fibers, a relative divisor D in X, and the complement X� X − D. Finally, for any
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n � 1, let rn denotes the rank of the abelian group Zn(π1)/Zn+1(π1), where Z•(π1)
is the descending central series of the fundamental group of the complex manifold
X(C). Note that, although the fundamental group of the complex manifold X(C)
might depend on the embedding of k in C, the numbers rn are independent of this
embedding. Let us introduce the following notion.

Definition 1 (V-property). For any scheme X over OS, any finite place v of k, and
any given S-integral point x ∈ X(OS), we say that X satisfies VS,v-property at x if
there exists a nonzero p-adic analytic function on the p-adic open unit ball B◦

1(xkv
)

centered at xkv
which vanishes at all S-integral points of X in B◦

1(xkv
). We say that

X satisfies VS,v-property if it satisfies VS,v-property at every S-integral point.

Now we would like to propose the following:

Conjecture 2. Assume that (X,X,D) is a triple over OS such that rn > 0 for all n � 1.
Then X satisfies VS,v-property.

Our goal in this article is to sketch the ideas which can be used to prove the
above conjecture under some extra conditions. Before making it more precise, let
us introduce the following definition which simplifies the statement.

Definition 3. A standard triple (X,X,D) over OS is a triple such that:

(i) The irreducible components of the divisor D are smooth and surjective over
Spec(OS) and the generic fiber Dk is a normal crossing divisor whose irre-
ducible components are absolutely irreducible.

(ii) The generic fiber Xk of X is unirational.

Theorem 4 (Main Theorem). Conjecture 2 is valid provided:

(i) k is a totally real number field.
(ii) The triple (X,X,D) is a standard triple over OS.
(iii) h1(XC) = 0.
(iv) For any constant c, there exists a natural number n ∈ N such that

c+d(r3+ r5+ · · ·+ r2 (n−1)/2!+1) < r1+ r2+ · · ·+ rn .

Remark 5. Note that in the one dimensional case, the VS,v-property even for a single
place v, implies finiteness of S-integral points. This is the case because the curve
X can be covered by finitely many p-adic open unit disks and a nonzero p-adic an-
alytic function on a p-adic open unit disk vanishes at finitely many kv-points. So
in the case of the standard triple (P1,X, {p1, p2, . . . , pl+1}), where l � 2 is a natural
number and pi ∈ P1(OS) for 1� i� l+1, the Main Theorem gives rise to finiteness of
S-integral points of P1 − {p1, p2, . . . , pl+1} over any totally real field of degree d � l.
In particular, it gives us a motivic proof of the Siegel’s celebrated finiteness theorem
over totally real quadratic fields and the field of rational numbers. We would like to
mention that Kim in [Kim05] uses different realizations of the unipotent fundamen-
tal group and path torsors to prove Siegel’s finiteness theorem over Q. Here in this
exposition, we try to explain how motivic fundamental groups and path torsors can
be used to promote Kim’s method to bigger number fields.
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Let us finish up the introduction by sketching the methodology which is going
to be exposed in this article. Suppose that we are interested in the Diophantine set
X(OS) for a scheme X defined over OS. Fix a base point x ∈ X(OS) if X(OS) � ∅.
Kim’s approach in [Kim05] suggests to study the variation of path torsors from the
fixed base point x to a varying point y in étale and de Rham settings in order to obtain
some period maps and compare these period maps using p-adic Hodge theory. More
precisely:

1. One has to first define the étale and the de Rham notions of the unipotent funda-
mental group and path torsors over it, see Sect. 6.3.

2. Then, in order to get interesting torsors, and also in order to be able to compare
these two notions using p-adic Hodge theory, one needs to endow the de Rham
objects with Hodge filtration and Frobenius action and to endow the étale objects
with Galois action, see Sect. 6.4.

3. Finally, for having proper target spaces for period maps, one has to construct
some algebraic spaces which parametrize the path torsors in a natural way, see
Sect. 6.5.

This, together with some sophisticated techniques from p-adic Hodge theory, essen-
tially reduces the VS,v-property for the scheme X to showing that “global Galois co-
homology groups are smaller than local Galois cohomology groups”, see Sect. 6.6.
This last statement is obviously too vague to be a mathematical statement, but hope-
fully the reader makes sense of it by consulting the current exposition and other
articles in the literature.

The general difficulty in the above approach appears in estimating the size of
global Galois cohomology groups. The most important feature of [Had10] and also
of this article is to employ the motivic objects in the sense of Voevodsky to lift this
obstacle and replace the global Galois cohomology groups by some algebraic K-
groups, see Sects. 6.2 and 6.8. This brings new methods and techniques, which of
course involve new difficulties, to the subject.

Acknowledgements. This exposition is based on my Ph.D. thesis. So first of all I
would like to thank Professor Doctor G. Faltings for supervising this project, and
Max-Planck Institute for Mathematics in Bonn, Germany for providing an excellent
atmosphere for doing research. I would also like to thank J. Stix for inviting me to
the workshop PIA 2010 and giving me the opportunity to speak there.

6.2 Motivic Fundamental Groups and Path Torsors

In this section, following [DG05], we are going to introduce the most important in-
gredients in our methodology, namely motivic fundamental groups and path torsors.
Let us begin by Voevodsky’s construction of the triangulated category of mixed geo-
metric motives over the number field k. Note that most of Voevodsky’s construction
can be done over any base field and all of it can be done over any perfect field, see
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for example [Voe00]. But being only interested in the case of number fields and to
avoid introducing new notations we will stick to the number field k as our base. Fur-
thermore, though it is very important that the following construction can be made
with integral coefficients, we are only interested in the rational coefficient case and
hence restrict ourselves to this case for the ease of notation.

Let SmCor(k)Q be the category whose objects are smooth separated schemes
over k and a morphism from X to Y is an element of the Q-vector space generated
by closed integral subschemes Z ⊂ X ×k Y where Z → X is finite and dominates a
connected component of X. For any smooth separated scheme X over k (resp. any
morphism f : X → Y between smooth separated schemes over k) let [X] (resp.
[ f ]) denotes the corresponding object (resp. morphism) in SmCor(k)Q. Note that
SmCor(k)

Q
is aQ-linear category with disjoint union as direct sum. The triangulated

category of mixed geometric motives with rational coefficients over k is obtained
from SmCor(k)Q as follows:

1. Let T be the thick subcategory in the homotopy category hb(SmCor(k)Q) of
bounded complexes over SmCor(k)

Q
which is generated by complexes of the

form

[X×kA
1]

[pr1]
−−−−→ [X]

for all X, and complexes of the form

[U∩V] → [U]⊕ [V] → [X]

for any Zariski open covering X = U ∪ V. Then hb(SmCor(k)
Q

)T denotes the
Verdier localization of the category hb(SmCor(k)Q) with respect to T.

2. Define DMeff(k)Q to be the Karoubian envelope of the category hb(SmCor(k)Q)T.
Let M(X) ∈ DMeff(k)Q denote the object associated to a smooth separated
scheme X. Then DMeff(k)Q can be endowed with a tensor product in such a way
that

M(X×k Y) �M(X)⊗M(Y)

for all smooth separated schemes X and Y over k.
3. Finally, let DM(k)

Q
be the category resulted by inverting the Tate object in

DMeff(k)
Q

, where the Tate object is defined as

Q(1)� M̃(P1)[−2] ,

with M̃(P1) being the complement of the direct summand of M(P1) induced by
the idempotent associated to a constant map P1 → P1. The tensor product of
DMeff(k)

Q
can be extended to a tensor product on DM(k)

Q
. This tensor product

together with proper notions of internal Hom-object and dual put a rigid tensor
triangulated structure on the category DM(k)

Q
.

The main importance of the category DM(k)
Q

is that it is a strong candidate for
being the derived category of the undiscovered category of mixed motives over k.
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The problem is that there is no known t-structure on DM(k)Q whose heart gives the
category of mixed motives. Recall that a t-structure (T �0,T �0) on a triangulated
category T consists of strictly full subcategories T �0 and T �0 of T such that:

(1) T �0[1] ⊂ T �0 and T �0[−1] ⊂ T �0.
(2) HomT (X,Y) = 0 for any X ∈ T �0 and any Y ∈ T �0[−1].
(3) For any object X ∈ T , there are objects A ∈ T �0, B ∈ T �0[−1], and a distin-

guished triangle
A → X → B → A[1] .

Moreover, a t-structure is said to be non-degenerate if

(4) The intersections ∩nT �0[−n] and ∩nT �0[n] consist only of the zero object.

The heart of a t-structure is defined to be the full subcategory T �0 ∩T �0. As
we mentioned above, there is no known t-structure on the whole category DM(k)Q
which gives the abelian category of mixed motives over k, but on a certain subcate-
gory of DM(k)Q the situation is much better in the following sense.

The triangulated category of mixed Tate motives DMT(k)
Q

is defined to be the tri-
angulated subcategory of DM(k)

Q
generated by objectsQ(n)�Q(1)⊗n, for all n� 1.

Using the validity of Beilinson–Soulé vanishing conjecture for number fields, we
can put a non-degenerate t-structure on the category DMT(k)

Q
whose heart MT(k)

Q

is called the abelian rigid tensor category of mixed Tate motives. Now we have two
important facts at our disposal. The first one is that the Hom-groups in DMT(k)Q are
given by a certain decomposition of the rational algebraic K-groups of the base num-
ber field k and the second one is Borel’s explicit calculation of algebraic K-groups
of number fields. These two facts can be put together to deduce the following im-
portant calculation of the Ext-groups in the category MT(k)

Q
, which plays a crucial

role in the sequel.

Ext1MT(k)Q
(Q(0),Q(n))� K2n−1(k)⊗ZQ .

Different realizations of Tate objects, with comparison isomorphisms between
them, can be extended to a realization functor

real : MT(k)
Q

→ Rk ,

where Rk denotes the Tannakian category of mixed realizations over k. This real-
ization functor enjoys the following properties:

Theorem 6 ([DG05, 2.14 and 2.15]). The above mentioned realization functor is
fully faithful, and the image is essentially stable by sub-objects, that is if an object
is in the image of real, so are all its sub-objects.

Now let X be a “nice” variety over the number field k, for example the comple-
ment of a normal crossing divisor in a smooth projective variety. By fixing a base
point x ∈ X(k) one can define the Betti, the de Rham, and the étale unipotent funda-
mental group of X with the base point x and furnish them with Hodge filtration and
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Frobenius action in the de Rham case and with Galois action in the étale case, see
Sects. 6.3 and 6.4 for more details in the one dimensional case. These realizations
together with the comparison isomorphisms between them lead to a pro-unipotent
affine group scheme GR over the category Rk. The path torsors GR(x,y) can be de-
fined similarly for any point y ∈ X(k). An interesting question is whether or not the
unipotent fundamental group GR and path torsors over it are motivic in the sense
that they lie in the image of the realization functor real. The following important
theorem gives a partial affirmative answer.

Theorem 7 ([DG05, Proposition 4.15]). For any standard triple (X,X,D) over k
and any rational point x ∈ X(k) (resp. any two rational points x,y ∈ X(k)), the pro-
unipotent fundamental group scheme GR (resp. the path torsor GR(x,y)) is motivic.

Let us denote the motivic fundamental group (resp. the motivic path torsor) by
the symbol Gmot (resp. Gmot(x,y)), and just mention that there is an integral version
of Theorem 7, see for example [DG05, Proposition 4.17]. This integral version
is crucial for us, simply because we are interested in studying integral points on
varieties, and essentially says that if we start with a standard triple (X,X,D) over
the ring of S-integers OS of k and if the rational points x,y ∈ X(k) are generic fibers
of S-integral points xS,yS ∈ X(OS) then the motivic fundamental group and path
torsors of Theorem 7 are unramified outside S.

6.3 Different Realizations

The goal of this section is to recall the ideas and techniques in constructing different
realizations of the unipotent fundamental group and path torsors of curves. In our
applications in coming sections, we are only interested in the punctured projective
line over a field of characteristic zero, but our treatment here, following [Fal07],
works in a much more general setting. Throughout this section, R is a commutative
ring with unit, C → Spec(R) is a smooth, projective, connected curve with geomet-
rically connected fibers, and X � C − D where D ⊂ C is a surjective étale divisor
over Spec(R). We have the following categories of unipotent objects.

Ccoh : The category of vector bundles E over C which are iterated extensions of
trivial bundles, where a trivial bundle is a bundle of the form P ⊗R OC for
a finitely generated projective R-module P. The coherent Tate module is
defined as:

Tcoh � (H1(C,OC))∨ .

CdR : The category of vector bundles E over C together with a connection ∇ with
logarithmic poles along D such that (E,∇) is an iterated extension of trivial
vector bundles with connection. A trivial vector bundle with connection is a
pair (P ⊗R OC, IdP ⊗ d), where P is a finitely generated projective R-module
and d from OC to ΩC/R(D) is the canonical differential. The de Rham Tate
module is defined as:
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TdR � (H1
dR(C,OC))∨ .

Cét : The category of smooth �-adic étale sheaves S on X which are iterated ex-
tensions of the trivial ones. Here � is any invertible prime in R and a trivial
�-adic étale sheaf on X is the pull back of a smooth �-adic étale sheaf from
Spec(R). Finally, the étale Tate module is defined as:

Tét � (H1
ét(X,Q�))

∨ .

In the sequel, CM denotes any of the above categories, no matter which one. The
same convention will be applied to TM, and so on. Moreover, we always refer to the
constant ring by the symbol R, and it should be realized as the base ring R in the
coherent and de Rham cases and as the field Q� in the étale case. The symbol C◦

stands for the projective curve C in the coherent and de Rham cases and the open
complement X in the étale case. An object E in CM is called unipotent of class n,
if it admits a filtration of length n with trivial subquotients. We denote by CM,n the
full subcategory of CM which consists of all objects of unipotent class n.

Now any point x ∈ X(R) (resp. any geometric point in the étale case) gives us a
functor FM : E �→ E[x] from the category CM to the category of finitely generated
projective R-modules. The first step in constructing different realizations of the
unipotent fundamental group and path torsors is the following pro-representability
result for the functor FM.

Theorem 8 ([Had10, Sect. 2.1]). There exists a pro-object PM in the category CM,
and an element p ∈ PM[x] such that for any object E in CM and any element e ∈ E[x],
there exists a unique morphism ϕe : PM → E such that ϕe,x(p) = e.

Using the above pro-representability theorem we can put a co-product map ΔM
on the ring:

AM � PM[x] = End(PM) ,

which is uniquely determined by the property ΔM(p) = p ⊗ p. Moreover, there is a
canonical surjection AM � R, which can be taken as the co-unit. This makes AM
into a co-commutative Hopf algebra over R. Now we can define

GM � Spec(A∨
M)

which is a flat pro-unipotent group scheme over Spec(R). For any integer n � 1,
consider

GM,n � GM/Zn(GM) ,

where Z• is the descending central series. Furthermore, for any other point y ∈ X(R)
(resp. for any other geometric point in the étale case) there is a co-associative,
co-commutative co-product on PM[y] together with the co-unit PM[y]� R, which
endows PM[y] with a co-commutative co-algebra structure (note that PM[y] does
not have a ring structure in general). Using Theorem 8 again, we can show that the
affine R-scheme

GM(x,y)� Spec(PM[y]∨) ,
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admits a torsor structure on GM. The affine scheme GM(x,y) is called the path torsor
from y to x, referring to its torsor structure over GM. For any n� 1, the push forward
of GM(x,y) along the projection GM�GM,n is denoted by GM,n(x,y).

The fiber functor FM : E �→ E[x] is a tensor functor from the category CM to the
category RepR(GM) of GM-representations over finitely generated R-modules. The
following result says that the group scheme GM is in fact the unipotent fundamental
group we are looking for.

Theorem 9 ([Had10, Theorem 2.1.9]). The tensor functor FM gives an equivalence
between the category CM of unipotent bundles over C◦ and the category RepR(GM)
of GM-representations on finitely generated projective R-modules.

Let us finish this section by the following crucial remark. This remark is a direct
consequence of the explicit construction of the universal pro-unipotent object PM
appeared in Theorem 8.

Remark 10. The fiber E[x] of any unipotent bundle E in CM is a finitely generated
projective R-module. In particular, any short exact sequence of these fibers splits,
and hence we obtain a (non-canonical) isomorphism

AM �
∞∏

i=0

T⊗i
M .

Now the Baker-Campbell-Hausdorff formula implies that when R is a field of char-
acteristic zero, GM is a pro-unipotent group scheme over R which is isomorphic to
its Lie algebra. By the above observation, this Lie algebra is isomorphic to the free
Lie algebra in TM.

6.4 Extra Structures

Having introduced the de Rham and the étale unipotent fundamental group and path
torsors of curves in the previous section, we are going to put some extra structures
on them in this section. These extra structures, namely the Hodge filtration and
the Frobenius action on the de Rham realization and the Galois action on the étale
realization, are important in comparing these two different theories and integrating
them into the motivic theory. They are also important since they cause path torsors
to be nontrivial.

Let us start with the Hodge filtration. For any object (E,∇) of CdR, we con-
sider finite decreasing Hodge filtrations F• by subobjects which satisfy Griffiths’
transversality property, that is for any integer i

∇(Fi(E)) ⊂ Fi−1(E)⊗OC
ΩC/R(D) .

The trivial object in this context is (OC,d) equipped with the trivial Hodge filtration
which is given as F0(OC) = OC and F1(OC) = 0. Moreover, we consider the filtered
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morphisms between these filtered objects. Recall that a morphism f : E → G be-
tween filtered objects is called filtered if it satisfies f (Fi(E)) ⊂ Fi(G) for all i. These
Hodge filtrations on objects, induce Hodge filtrations on the de Rham complexes as-
sociated to them and hence on the algebraic de Rham cohomologies as well. More
precisely, for any filtered object (E,∇) and any integer i, we define

Fi(E ∇−→ E⊗OC
ΩC/R(D))� Fi(E)

∇−→ Fi−1(E)⊗OC
ΩC/R(D) ,

and

FiH∗
dR(C,E)�H∗(C,Fi(E ∇−→ E⊗OC

ΩC/R(D))) .

Note that the images of the obvious maps from FiH∗
dR to H∗

dR give the Hodge fil-
tration on H∗

dR. Now we can check that, in this refined category, maps and ex-
tensions are determined by the zeroth step of the Hodge filtration of appropriate
Hom-bundles. In fact, for any two filtered objects E and G, it is evident that filtered
maps from E to G are given by F0H0

dR(C,Hom(E,G)). But the less obvious and
more important fact is the following:

Proposition 11 ([Had10, Proposition 2.2.3]). For any two filtered objects E and G,
the set of isomorphism classes of filtered extensions of G by E is in bijection with

F0H1
dR(C,Hom(G,E)) .

By using the above proposition, we can prove that there is a unique Hodge filtra-
tion on PdR which makes it the universal object in the category of filtered objects
with the distinguished element p in F0(PdR[x]). More precisely, we have the fol-
lowing filtered analogue of Theorem 8 in the de Rham setting.

Theorem 12 ([Had10, Proposition 2.2.7]). For any filtered object (E,∇,F•) and
any element e ∈ F0(E[x]), there exists a unique horizontal, strictly compatible ho-
momorphism ϕe : PdR → E such that ϕe,x(p) = e.

This canonical Hodge filtration on PdR induces a Hodge filtration on the fiber
PdR[x] and hence a Hodge filtration on the coordinate ring OGdR

of the de Rham
unipotent fundamental group. On the other hand, it is well known in Hodge theory
that the Hodge filtration on H1

dR(C,OC) is concentrated in degrees 0 and 1, and is
given by the following exact sequence

0 → H0(C,ΩC/R(D)) → H1
dR(C,OC) → H1(C,OC) → 0 .

Using this we can show that the Hodge filtration on the affine coordinate ring OGdR
of GdR is concentrated in nonnegative degrees and

OGdR
/F1(OGdR

) � OGcoh
.

So we get a closed immersion from the coherent unipotent fundamental group Gcoh
into the de Rham unipotent fundamental group GdR and the defining ideal sheaf of
the image is the first step of the Hodge filtration.
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The second important decoration that we can put on the de Rham unipotent fun-
damental group is the Frobenius action. The key idea is to use the logarithmic
crystalline theory and show that when the base ring R is a discrete complete valua-
tion ring with unequal characteristic p > 0, uniformizer π, and absolute ramification
index e < p, the category CdR depends only on the reduction modulo π of the curve
C and hence admits a Frobenius action. Let us briefly recall these ideas, following
[Kat89].

Recall that a logarithmic structure on a scheme X is a sheaf of monoids M on
the étale site Xét of X together with a multiplicative homomorphism α : M → OX
where the induced map

α−1(O∗
X)

α−→ O∗
X

is an isomorphism. The following class of logarithmic structures on schemes will
be enough for our purposes.

Example 13. Let X be a regular scheme and D be a reduced divisor with normal
crossing on X. Put Y� X−D and let j : Y → X be the open immersion. Then the
monoid

M� j∗O∗
Y ∩OX

and the canonical inclusion M ↪→ OX puts a logarithmic structure on X.

Now fix a quadruple (S,L,I,γ) as the base, where S is a scheme such that OS
is killed by a power of a prime number p, L is a fine logarithmic structure on S
(all logarithmic structures of Example 13 are fine), I is a quasi coherent sheaf of
ideals in OS, and finally γ is a DP-structure on I. Assume moreover that (X,M) is
a scheme with a fine logarithmic structure over (S,L) and that γ extends to X. Then
we can define the logarithmic crystalline site Cr(X/S)log as follows:

An object of Cr(X/S)log consists of the data (U
i−→ T,MT, δ) where

U
f
−→ X

is an étale morphism, (T,MT) is a scheme with fine logarithmic structure over (S,L),

i : (U, f ∗(M)) → (T,MT)

is an exact closed immersion over (S,L), and δ is a DP-structure on the defining
ideal sheaf of U in T which is compatible with γ. Morphisms in Cr(X/S)log are
commutative diagrams

T �� T′

U

i

��

�� U′

i′

��

where U → U′ is a morphism in the étale site of X and T → T′ is a DP-morphism
between fine logarithmic schemes over (S,L). Finally, coverings are defined to be
the usual coverings in the étale site of X, regardless of the involved logarithmic
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structures. The topos of sheaves of sets over Cr(X/S)log will be denoted by (X/S)log
Cr .

The structure sheaf OX/S on Cr(X/S)log is defined to be the sheaf which assigns to
an object (U → T,MT, δ) the ring of global sections Γ(T,OT). Now we can define
logarithmic crystals as follows:

Definition 14. A logarithmic crystal on Cr(X/S)log is a sheaf of OX/S-modules F
in (X/S)log

Cr such that for any morphism g : T′ → T in Cr(X/S)log, the induced map
g∗(FT) → FT′ is an isomorphism.

Over a fixed base (S,L,I,γ), forgetting the DP-structure gives rise to the forgetful
functor from the category of fine logarithmic DP-schemes over S to the category of
fine logarithmic schemes over S with a distinguished quasi coherent sheaf of ideals.
Very important for us is that this forgetful functor has a right adjoint, see [Kat89,
Proposition 5.3], which sends a fine logarithmic scheme over S with a distinguished
quasi coherent sheaf of ideals to its divided power envelope, DP-envelope for short.
Finally we can state the following important result.

Theorem 15 ([Kat89, Theorem 6.2]). Let (Y,N) be a scheme with fine logarithmic
structure which is smooth over (S,L), and let (X,M) → (Y,N) be a closed immer-
sion. Denote by (D,MD) the DP-envelope of (X,M) in (Y,N). Then the following
categories are equivalent.

(a) The category of crystals on Cr(X/S)log.
(b) The category of OD-modules with an integrable, quasi nilpotent connection.

Now let us go back to the case of interest to us. Namely, let the base ring R = V
be the ring of integers in a complete non-archimedean field K of characteristic zero,
and assume that the residue field k of V is a perfect field of characteristic p > 0.
Fix a uniformizing parameter π for V and assume that vπ(p) < p. Let XV be a
smooth curve over V which admits an open immersion into a projective, smooth,
connected curve CV over V such that CV has geometrically connected fibers and the
complement DV of XV in CV is an étale and surjective relative divisor over V. Then
we have the following:

Theorem 16 ([Had10, Theorem 2.3.8]). The category Ccr of unipotent crystals on
Cr(Ck/Spec(V))log is equivalent to the category CdR of unipotent vector bundles on
CV with logarithmic connection along DV.

Now suppose that k contains the finite field with q = ps elements Fq, and assume
that Ck is defined over this subfield Fq of k. Then Ck admits a Frobenius action in-
duced by F � Frs, where Fr is the absolute Frobenius. So by the above theorem,
the category CdR admits also a Frobenius action, which is compatible with tensor
products and dual. Moreover, if the reduction modulo π of the base point x is invari-
ant under F, the Frobenius action on CdR respects the fiber functor FdR associated
to x. This means that the de Rham unipotent fundamental group GdR can be also
furnished with a Frobenius action.

Let us finish this section by shortly mentioning that if the base ring R = K is a
field, then the étale unipotent fundamental group and path torsors associated to the
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curve XK can be endowed with compatible Galois actions by the absolute Galois

group Gal(K/K). This Galois action on étale path torsors, like Hodge filtration and
Frobenius action on de Rham path torsors, play an important role in the sequel.

6.5 Torsor Spaces and Crystalline Torsors

So far we have introduced different notions of the unipotent fundamental group and
path torsors associated to a curve. But in order to define period maps on the curve
under study, we need to have some algebraic spaces parametrizing path torsors.
These spaces are going to be the target spaces of the period maps, which will be
introduced in the next section.

In this section, we are mainly interested in étale torsors. To begin with, we con-
sider a more general situation. Assume that K is a complete Hausdorff topological
field of characteristic zero, Γ is a profinite group, and fix finite dimensional contin-
uous representations {ρi : Γ→ GL(Li)}r

i=1 of Γ over K. For any finitely generated
K-algebra A and any finitely generated module M over A, we put the inductive limit
topology on M, as an infinite dimensional K-vector space, induced from the natural
canonical topology of finite dimensional subspaces. Then one can show that the set
of isomorphism classes of continuous representationsM of Γ over A which admit a
Γ-stable filtration

(0) =W0(M) ⊂ W1(M) ⊂ · · · ⊂ Wr(M) =M ,

with Wi(M)/Wi−1(M) �Γ Li ⊗K A is in a natural bijection with the first non-abelian
cohomology set H1(Γ,G(A)), whereG is the following unipotent group scheme over
K:

G�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I HomK(L2,L1) . . . HomK(Lr,L1)
0 I . . . HomK(Lr,L2)
...

...
. . .

...
0 0 . . . I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Γ acts on G via
gγ = Diag(ρi(γ)).g.Diag(ρi(γ))−1 .

The following representability result leads to algebraic spaces which naturally
parametrize étale path torsors.

Theorem 17 ([Had10, Corollary 3.1.3 and Theorem 3.1.6]). Suppose that for all
i < j we have

H0(Γ,HomK(L j,Li)) = (0) ,

and
dimK(H1(Γ,HomK(L j,Li))) < ∞ .
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Then for any Γ-stable closed subgroup H of G, the functor A �→ H1(Γ,H(A)) from
the category of finitely generated K-algebras to sets is representable by an affine
scheme over K.

Now let us restrict to the following situation. Let Γ be the absolute Galois group
of a finite extension K ofQp, and suppose that we are interested in finite dimensional
continuous Γ-representations over Qp. Theorem 17 says that, under the assumed
hypotheses, the space ofH-torsors is representable by an affine scheme overQp. But
in this situation there are some interesting torsors, the so called crystalline torsors.
We are going to study the subset in the representing affine scheme of torsors which
consists of crystalline ones. Our aim in the remaining of this section is to show
that in this setting and under the assumptions of Theorem 17, the subfunctor of
crystalline torsors is also representable by an affine scheme over Qp.

Let us first fix some notations. K is a finite extension of Qp, V is the ring of
integers in K, and k is the residue field of V. Let K0 be the maximal unramified sub-
extension of K and V0 be the ring of integers of K0. The Frobenius automorphism
of K0 over Qp will be denoted by Φ0. Finally let Γ � Gal(K/K) be the absolute
Galois group of K. In order to study finite dimensional representations of Γ over
Qp, Fontaine has introduced the period rings Bcr and BdR. Bcr is a K0-algebra
which admits Frobenius action, Galois action by Γ, and a decreasing filtration F•.
BdR is defined to be the filtered completion of Bcr with respect to F•. Recall that
BdR inherits a filtration F• and a Galois action from Bcr, but it does not admit a
Frobenius action.

The importance of these period rings is that they establish connection between
the category Rep

Qp
(Γ) of finite dimensional continuous representations of Γ over

Qp and the category F M of filtered Frobenius modules. Recall that an object in
F M is a triple (E,Φ,F•) consisting of a finite dimensional vector space E over K0,
a Frobenius semi-linear automorphism Φ on E, and a decreasing filtration F• on
EK � E ⊗K0

K. Let L be an object in Rep
Qp

(Γ) and (E,Φ,F•) be an object in F M
such that there exists a Bcr-linear isomorphism

L⊗
Qp

Bcr �Bcr
E⊗K0

Bcr

which respects Frobenius and Galois actions, and after extension of scalars to K,
the filtrations. Then we say that L is a crystalline representation, (E,Φ,F•) is a Bcr-
admissible filtered Frobenius module, and L and (E,Φ,F•) are associated to each
other. An essential outcome of Fontaine’s theory is that the functor of base extension
to Bcr induces an equivalence between the category of crystalline representations
and the category of admissible filtered Frobenius modules.

Now let L1, . . . ,Lr be some fixed crystalline representations in Rep
Qp

(Γ). For any
1 � i � r, let (Ei,Φi,F

•
i ) be the object in FM associated to Li. Moreover, let E be a

(K0,Φ)-module with an increasing filtration

(0) =W0(E) ⊂ W1(E) ⊂ · · · ⊂ Wr(E) = E
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with Wi(E)/Wi−1(E) � Ei as (K0,Φ)-modules. Note that by a (K0,Φ)-module we
mean a finite dimensional K0 vector space endowed with a Frobenius semi-linear
automorphism. Now the isomorphism classes of crystalline representationsL which
are iterated extensions of Li’s is in bijection with the set of possible filtrations on
EK � E⊗K0

K which induce F•
i on EiK for all 1 � i � r. To understand the space of

such filtrations, consider the following unipotent group scheme G over K0:

G�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I HomK0
(E2,E1) . . . HomK0

(Er,E1)
0 I . . . HomK0

(Er,E2)
...

...
. . .

...
0 0 . . . I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Obviously G has a Frobenius actionΦ, induced from Ei’s, and GK�G⊗K0
K admits

a filtration F• by subgroups, induced by the filtrations on EiK’s. Now we can check
that the set of possible filtrations on EK which induce F•

i on EiK, for all 1 � i � r,
is in bijection with K-points of GK/F0(GK). In other words, crystalline representa-
tions L which are iterated extensions of Li’s are parametrized by the quotient space
GK/F0(GK). By a similar argument over finitely generated Qp-algebras, we see that
for any such algebra R, any element of (GK/F0(GK))(R ⊗Qp

K) gives a crystalline

element in H1(Γ,G(R)). So we obtain an algebraic map

c : WK/Qp
(GK/F0(GK)) → H1(Γ,G) ,

where WK/Qp
stands for the Weil restriction functor. We call this map the compari-

son map and the points in the image of this map are called crystalline points.
Now since we assumed that Li’s and (Ei,Φi,F

•
i )’s are associated to each other, the

group G is Bcr-admissible, and is associated to the crystalline group G, which was
introduced above. Furthermore, the closed crystalline subgroups of G correspond
to the closed Bcr-admissible subgroups of G. By using the above theories and the
equivalence between the category of crystalline representations and the category of
Bcr-admissible filtered Frobenius modules, we can now show the following:

Theorem 18 ([Had10, Proposition 3.2.5]). Under the hypotheses of Theorem 17
and the ones made above, assume H is a closed Γ-stable crystalline subgroup of G
and that H is the associated subgroup in G. Then the comparison map

c : WK/Qp
(HK/F0(HK)) → H1(Γ,H)

is injective and identifies WK/Qp
(HK/F0(HK)) with a closed sub-scheme of H1(Γ,H).
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6.6 Period Maps

Using the above theories, we are finally able to define period maps. These pe-
riod maps are going to be maps from the variety under study to the spaces which
parametrize the path torsors of that variety. By definition, period maps encode the
variations of path torsors. In this section, we use the notations which are introduced
in the introduction, but for the moment we stick to the one dimensional case and
leave the higher dimensional case to later sections. Recall that in the one dimen-
sional case, our Main Theorem is equivalent to the finiteness of the Diophantine set
X(OS). If X(OS) = ∅ then we are done, otherwise fix an S-integral point x ∈ X(OS)
as the base point and define period maps as follows.

The general idea is to pull back the triple (C,X,D), which is a priori defined over
OS, to the local field kv or the global field k and use the base point x̃ induced by
x to get unipotent group schemes GM,n. Then for any point y we get a path torsor
GM,n(x̃,y) over GM,n. Note that, by results of Sect. 6.4, all these unipotent funda-
mental groups and path torsors admit extra structures. These extra structures are
critical in the sense that without them all path torsors, being torsors over unipotent
group schemes over a field of characteristic zero, are trivial. Then, as we saw in
Sect. 6.5, under some assumptions these path torsors are parametrized by some al-
gebraic spaces. By varying the point y, the isomorphism class of the path torsor
GM,n(x̃,y), hence the corresponding point in the parametrizing space of path torsors,

varies and this variation gives rise to period maps p(n)
M . Let us have a closer look at

different versions of these period maps.
Let v be a finite place of k and assume that the point xkv

∈ X(kv) lies in X(W(Fv)).
For any n � 1 there is a unipotent fundamental group GdR,n associated to this base
point. Moreover, for any point y ∈ X(kv) and any n � 1, we have the path torsor
GdR,n(xkv

,y). These fundamental groups and path torsors admit Hodge filtration and
Frobenius action, see Sect. 6.4, and as we mentioned above these extra structures
are important in making the path torsors nontrivial. But an important fact here is
that if we restrict to the p-aidc open unit disc D◦

1(xkv
) around the base point xkv

,
the Frobenius action alone is not enough to make the path torsors nontrivial. More
precisely, the system of path torsors over D◦

1(xkv
) admits a system of Frobenius in-

variant elements compatible with concatenation. This is the case because by results
of [Fal90] the pull back of any Frobenius isocrystal on Xkv

to the p-adic open unit
disc centered at a W(Fv)-point is constant. Hence by forgetting the Hodge filtration,
we have

OGdR,n(xkv ,y) � OGdR,n
, ∀n � 1 ,

as Frobenius modules over W(Fv)[1/p] ⊂ kv. So, by varying the point y ∈ X(kv), we
obtain a varying family of Hodge filtrations on the coordinate rings OGdR,n

for any
n � 1, which leads to the following de Rham period maps

p(n)
dR : X(kv)∩D◦

1(xkv
) → (GdR,n/F0(GdR,n))(kv) .
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The following result contains two crucial properties enjoyed by the de Rham period
maps.

Theorem 19 ([Had10, Theorem 3.3.1]). For any n � 1, the restriction of the period
map p(n)

dR to the p-adic integral points in the p-adic open unit disk around xkv
gives

a rigid analytic map with Zariski dense image in GdR,n/F0(GdR,n).

There are two other versions of period maps which are important for us, namely
the local and the global étale period maps. To define the local étale period map, we
work with Xk̄v

with base point xk̄v
. Now consider the étale version of the theory

developed in Sect. 6.3 to get unipotent group schemes Gét,n, on which the absolute
Galois group

Gv � Gal(k̄v/kv)

acts. Moreover, for any point y ∈ X(kv), if we denote by y the induced point in Xk̄v
,

we obtain path torsors Gét,n(xk̄v
,y) equipped with compatible Gv-actions.

Now suppose that we had started with a triple (P1
OS

,X, {p1, . . . , pd+1}) over OS.
Then these unipotent groups Gét,n admit finite increasing filtrations with subquo-
tients being isomorphic to the tensor powers of the étale realization of the Tate
object

H1
ét(Xk̄v

,Q�)
∨ � Q�(1)d .

Hence, by putting Γ = Gv, we can apply Theorem 17 to obtain the following local
étale period maps

ploc,(n)
ét : X(kv) → H1(Gv,Gét,n)(Qp) .

The construction of the global étale period map is completely parallel to the
construction of the local one. The only difference is that we consider the variety Xk.
Note that in the global case the resulting unipotent group schemes and path torsors
are equipped with an action of the global Galois group

GT � Gal(kT/k) ,

where kT is the maximal extension of k unramified outside the Galois closure T of
S ∪ {v}. In exactly the same way, for the triple (P1

OS
,X, {p1, . . . , pd+1}) over OS we

get the following global étale period maps

pgl,(n)
ét : X(OT) → H1(GT,Gét,n)(Qp) .

All these maps and the comparison map of Sect. 6.5 can be put together in the
following important commutative diagram.

Remark 20. For the triple (P1
OS

,X, {p1, . . . , pd+1}) over OS and any integer n � 1, we
have the following commutative diagram in which X(OT)◦ is the set of T-integral
points with the same reduction modulo p as the base point x.
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(GdR,n/F0)(kv)
=

��

X(OT)◦
i ��

pgl,(n)
ét

��

Xkv
(Ov)∩D◦

1(xkv
)

p(n)
dR

����

ploc,(n)
ét

��

�� Wkv/Qp
(GdR,n/F0)(Qp)

c




H1(GT,Gét,n)(Qp) res �� H1(Gv,Gét,n)(Qp)

Note that “res” is the usual restriction map between group cohomologies induces by
the inclusion

Gv ⊂ GT .

The left square in the diagram is evidently commutative, but the commutativity of
the lower right triangle is a much deeper claim which is a consequence of non-
abelian p-adic Hodge theory. We will not address this theory in this article and refer
the interested readers to the original source [Fal02] or to a brief review given in
[Had10, Sect. 4.1]. Furthermore, note that the non-abelian cohomology sets of the
bottom row, by general results of Sect. 6.5, are affine algebraic spaces over Qp, and
“res” is a Qp-algebraic map with respect to these Qp-algebraic structures.

Now we get to the key part of this line of ideas. Namely, the very hard problem
concerning global Galois cohomology which is the main obstruction in obtaining
our main result from the above commutative diagram. The point is that if we could
manage to prove that for some n � 1

dim
Qp

(H1(GT,Gét,n)) < dimkv
(GdR,n/F0(GdR,n))

then we would be able to prove the finiteness of S-integral points of X from the
above commutative diagram. This inequality, in the case k = Q, could be proven
using a vanishing result of Soulé which is used in [Kim05] in order to prove Siegel’s
theorem over Q along the above line of ideas. Our way to get rid of this difficulty
is to use motivic unipotent fundamental groups, in the sense of Voevodsky, in order
to replace the global Galois cohomology groups by the algebraic K-groups of the
number field k. Before summing up things in Sect. 6.8, let us briefly sketch in the
following section how one can apply the above methodology to higher dimensions
as well.

6.7 Descent to Lower Dimensions

In order to study the structure of different realizations of the unipotent fundamental
group of higher dimensional unirational varieties, we can use different versions of
the Lefschetz hyperplane section theorem. As a byproduct, we obtain some use-
ful information concerning the motivic unipotent fundamental group of unirational
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varieties, which is essential in proving our main result. Let us begin with some
generalities on Lefschetz hyperplane section theorem.

It is very well known in algebraic topology that the (co)homology and homotopy
groups of a CW-complex in low degrees depend only on the low dimensional skele-
ton of that CW-complex. On the other hand, as Lefschetz has proved, a generic
hyperplane section of a high dimensional CW-complex, which is embedded into
a projective space, becomes homotopy equivalent to the original CW-complex af-
ter attaching high dimensional cells. Hence it is expected that the maps between
low degree (co)homology and homotopy groups of a generic hyperplane section
of a high dimensional CW-complex and the CW-complex itself are isomorphisms.
There are different ways of making this a precise statement, which are known in
the literature as Lefschetz hyperplane section theorem or weak Lefschetz theorem.
By putting different versions of Lefschetz hyperplane section theorem together and
using the fullness assertion in Theorem 6, we obtain the following motivic version
of Lefschetz hyperplane section theorem.

Theorem 21 ([Had10, Theorem 4.3.4]). Let (X,X,D) be a standard triple over a
number field k. Fix a closed immersion X ↪→ PN

k and consider a generic linear sub-
space H of the ambient projective space through x. If X∩H has positive dimension
(resp. dimension at least 2) then the map

Gmot(X∩H, x) → Gmot(X, x)

induced by inclusion is surjective (resp. isomorphism).

Note that the same result as above is obviously valid for the algebraic quotients
Gmot,n, for any n � 1. Hence, if we denote the kernel of the projection

Gmot,n+1�Gmot,n

by Kn, and we continue with all the assumptions under which the above theorem
holds, we get the following commutative diagram.

0 �� Kn(X∩H) ��

ψ

��

Gmot,n+1(X∩H, x) ��

����

Gmot,n(X∩H, x) ��

����

0

0 �� Kn(X) �� Gmot,n+1(X, x) �� Gmot,n(X, x) �� 0

But when X ∩ H is a punctured projective line, Kn(X ∩ H) is isomorphic to some
power of the Tate object Q(n), and Q(n) is a simple object in MT(k). On the other
hand, the map ψ in the above diagram can be shown to be a surjection and hence
we deduce that Kn(X) is also isomorphic to some power of Q(n). This gives us the
following important corollary.

Corollary 22 ([Had10, Corollary 4.3.5]). Under the hypotheses of Theorem 21, for
any n � 1 we have the following exact sequence
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0 →Q(n)rn → Gmot,n+1(X, x) → Gmot,n(X, x) → 0 ,

where rn is the dimension of the vector group

Zn(Gmot(X, x))/Zn+1(Gmot(X, x)) .

Now using the above results, for any standard triple (X,X,D) over the ring of
S-integers OS, we can show that the local and global étale torsor spaces are repre-
sentable by affine varieties. Also we can define different versions of period maps
and obtain the analogue for X of the main diagram which appeared in Remark 20.
In fact, by the above mentioned observations, all this facts can be reduced to the one
dimensional case by using Bertini’s theorem over k and enlarging S to a bigger finite
set S′ of finite places of k. Note that this enlargement of S to a bigger finite set S′

is harmless for us in the sense that the validity of our Main Theorem for a smaller
finite set S of finite places of k is a consequence of its validity for a larger finite set
S′ of finite places of k.

6.8 Main Result

Finally, we can put the above techniques together and prove our main result. Fol-
lowing the notations we fixed in Sect. 6.1, for a standard triple (X,X,D) over the
ring of S-integers OS of the number field k and a fixed base point x ∈ X(OS) let

{rn � dim(Zn(πmot
1 (X, x))/Zn+1(πmot

1 (X, x))) : n � 1}

be the set of natural numbers appearing in Corollary 22. As we saw in previous
sections, the unipotent fundamental group and path torsors of X are motivic. This,
in particular, implies that the global étale period maps factor through the motivic
period maps

p(n)
mot : X(OT)◦ → H1(MT(OT),Gmot,n)(Qp) ,

where MT(OT) is the full subcategory of MT(k) consisting of the objects for which
the étale realization is unramified outside T. Now by using exact sequences of
Corollary 22 and using the fact that for any n � 2

H1(MT(OT),Q(n)) � K2n−1(k)⊗Z Q ,

we can find good enough upper bounds for the dimension of the Zariski closure of
the image of pgl,(n)

ét , which shows that under the assumptions of our Main Theorem,
for some n this dimension is strictly less than dimkv

(GdR/F0(GdR)). So we get:

Theorem 23 (Main Theorem). Let k/Q be a totally real number field of degree d,
and assume that h1,0(X) = 0. Moreover, assume that for any constant c ∈ N there
exists a natural number n ∈ N such that
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c+d(r3+ r5+ · · ·+ r2 (n−1)/2!+1) < r1 + r2+ · · ·+ rn .

Then X satisfies VS,v-property for almost all finite places v of k.

Remark 24. For any standard triple of the form (P1,P1 − D,D) over OS, where D =
{p1, p2, . . . , pd+1} consists of at least three S-integral point in P1, we can compute the
numbers rn as

rn =
1
n

∑

m|n
μ(m)dn/m ,

where μ is the Möbius function. Hence the numerical assumption of the above
theorem is satisfied for any totally real number field of degree less than or equal to
d. Now Theorem 23 can be applied to show the VS,v-property for almost all v. But
in the one dimensional case, the VS,v-property even for a single place v, implies
finiteness of integral points.

Corollary 25. Combining the above remark and Theorem 23 gives a motivic proof
of finiteness of integral points in P1 − {p1, p2, . . . , pd+1} over totally real fields of
degree at most d, where d � 2 is any natural number. In particular, we obtain a
motivic proof of Siegel’s finiteness theorem of integral points over any totally real
quadratic number field and the field of rational numbers.
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Chapter 7
Descent Obstruction and Fundamental Exact
Sequence

David Harari and Jakob Stix

Abstract We establish a link between the descent obstruction against rational
points and sections of the fundamental group extension that has applications to the
Brauer–Manin obstruction and to the birational case of the section conjecture in
anabelian geometry.

7.1 Introduction

Let k be a field of characteristic zero with algebraic closure k and absolute Galois
group Γk = Gal(k/k). Let X be a geometrically connected variety over k. Fix a geo-
metric point x̄ ∈ X(k) and let π1(X) = π1(X, x̄) be the étale fundamental group of X.
Set X = X ×k k and denote by π1(X) = π1(X, x̄) the étale fundamental group of X.
Recall Grothendieck’s fundamental exact sequence of profinite groups, cf. [SGA1,
IX Thm 6.1],

1 → π1(X) → π1(X) → Γk → 1 . (7.1)

By covariant functoriality of π1, the existence of a k-point on X implies that the ex-
act sequence (7.1) has a section. Grothendieck’s section conjecture predicts that the
converse statement is true whenever X is a proper hyperbolic curve over a number
field, see [Gro83]. There is also a version of the section conjecture for affine hyper-
bolic curves when k-rational cusps need to be considered as well, see [Gro83, page
8/9]. For a p-adic version of this conjecture, see for example Conjecture 2 of [PS11]
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or earlier [Koe05], where the p-adic section conjecture can be read inbetween the
lines.

The goal of this note is to relate the existence of a section for (7.1) when k is
a number field to the fact that X has an adelic point for which there is no descent
obstruction, in the sense of [Sko01, II §5.3] as introduced in [HS02], associated to
torsors under finite group schemes. The first result of this flavour is Theorem 11. Its
main applications are Theorem 15, Theorem 17, and Theorem 21. The latter seems
to be (up to date) the most general known statement relating the descent obstruction
to the birational fundamental exact sequence.

In Sect. 7.3 we will also prove related statements over arbitrary fields, so that the
reader can distinguish between purely formal results and results related to arithmetic
properties.

Acknowledgements. We thank U. Görtz for a stimulating question and M. Çiperi-
ani, J-L. Colliot-Thélène, M. Stoll, T. Szamuely, and O. Wittenberg for helpful com-
ments. This work started when both authors visited the Isaac Newton Institute for
Mathematical Sciences in Cambridge, whose excellent working conditions and hos-
pitality are gratefully aknowledged.

7.2 Preliminaries

Since we want to deal with variants of the exact sequence (7.1), for example the
abelianized fundamental exact sequence, we need to introduce a general setting as
follows. Let U < π1(X) be a closed subgroup which is a normal subgroup in π1(X).
For example U could be a characteristic subgroup in π1(X) of which there are plenty,
because π1(X) is finitely generated as a profinite group. We set A = π1(X)/U. The
pushout of (7.1) by the canonical surjection π1(X) → A is the exact sequence

1 → A → πU
1 (X) → Γk → 1 , (7.2)

that can be defined because U is also normal in π1(X) and in particular by definition
the kernel of the induced quotient map π1(X) → πU

1 (X). This construction contains

as special cases for A the profinite abelianized group π1(X)ab if we take for U the
closure of the derived subgroup of π1(X), and A = π1(X) if we take for U the trivial
group.

Let (ki)i∈I be a family of field extensions of k. The guiding example is the
case of a number field k together with the family of all completions kv of k, or
of all corresponding henselizations1 kh

v of k. Fix an algebraic closure ki of ki

and embeddings k → ki, so that with Γi = Gal(ki/ki) we have canonical restric-
tion maps θi : Γi → Γk. Moreover, the embedding k → ki yields canonically a

1 By convention if kv is an archimedean completion of k, the henselization kh
v means the algebraic

closure of k into kv.
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geometric point x̄i of Xi = X ×k ki, that projects onto x̄, and thus a canonical map
π1(Xi, x̄i) → π1(X, x̄). The reason for assuming characteristic zero in the first place
is that by the comparison theorem, cf. [Sza09, p. 186, Remark 5.7.8.], the natural
maps induce an isomorphism

π1(Xi, x̄i)
∼−→ π1(X, x̄)×Γk

Γi .

Thus a section s of (7.1) induces canonically a section si of the analogue of (7.1) for
the ki-variety Xi. In this formal setting the main goal of this note is to establish a
criterion inspired by the descent obstruction for when a collection of sections (si)i∈I

comes from a section s up to conjugation from π1(X).

We continue with a reminder on nonabelian H1. Recall that the étale cohomology
set H1(X,G) for a finite k-group scheme G is the same as the cohomology set

H1(π1(X),G(k)) ,

where the action of π1(X) on G(k) is induced by the projection map π1(X) → Γk that
occurs in (7.1), cf. [SGA1, XI §5].

The identification is natural in both X and G, although for a map Y → X the
induced map π1(Y) → π1(X) is only well defined up to inner automorphism by
an element of π1(X). In fact, such an inner automorphism acts as the identity on
H1(π1(X),G(k)

)
by the following reasoning. Recall that in general if ϕ = γ(−)γ−1 is

an inner automorphism of a profinite group π by an element γ ∈ π and M is a discrete
π-group, then the map (ϕ∗,γ−1) which is the composite

H1(π,M)
ϕ∗
−−→ H1(π,ϕ∗M)

γ−1.
−−−→ H1(π,M) ,

that exploits the π-map ϕ∗M → M multiplication by γ−1 and which on cocycles is
given by (

σ �→ aσ

) �→ (
σ �→ γ−1(aγσγ−1)

)
,

is the identity map. This is classical when M is abelian, see [Ser68, VII.5. Proposi-
tion 3], and easy to check in the general case by the same direct computation:

γ−1(aγσγ−1) = γ−1(aγ)aσγ−1 = γ−1(aγ)aσσ(γ−1(aγ)) , (7.3)

which shows that (σ �→ aσ) is indeed cohomologous to σ �→ γ−1(aγσγ−1). In our

geometric example the element γ ∈ π1(X) acts trivially on the coefficients G(k) such
that (ϕ∗,γ−1) becomes simply the pullback by conjugation with γ, which therefore
acts as identity on H1(π1(X),G(k)).

The étale cohomology set H1(X,G) for G = G×k k is naturally the set

Homout(π1(X),G(k))
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of continuous homomorphisms π1(X) → G(k) up to conjugation by an element of
G(k), see [Ser94, I.5].

The following interpretation of H1(Γ,G) will become useful later. Let

1 → G → E → Γ̄→ 1

be a short exact sequence of profinite groups, and let ϕ : Γ→ Γ̄ be a continuous
homomorphism. The set of lifts ϕ : Γ→ E of ϕ up to conjugation by an element
of G is either empty or, with the group G equipped with the conjugation action of
Γ via a choice of lift ϕ0, in bijection with the corresponding H1(Γ,G). Indeed for a
cocycle a : Γ→ G the twist of ϕ0 by a = (γ �→ aγ), i.e., the map γ �→ aγ ·ϕ0(γ), is
another lift. Any other lift of ϕ can be described by such a twist. Two cocycles are
cohomologous if and only if they lead to conjugate lifts. The description of lifts via
H1(Γ,G) is natural with respect to both Γ and G.

7.3 Results over Arbitrary Fields

The notation and assumptions in this whole section are as above. In particular we
consider the exact sequence (7.2) associated to a quotient A of π1(X) by a subgroup
U that remains normal in π1(X).

For each i ∈ I, let σi : Γi → π1(Xi, x̄i) be a section of the fundamental sequence
associated to Xi. For example σi could be the section associated to a ki-rational
point Pi ∈ X(ki). By composition we obtain a section map

si : Γi
σi−−→ π1(Xi) → π1(X) → πU

1 (X) .

Let G be a finite k-group scheme, hence G(k) is a finite discrete Γk-group. Via
the map θi : Γi → Γk we may view G(k) = θ∗i G(k) also as a discrete Γi-group that
describes the base change G×k ki.

A cohomology class α ∈ H1(X,G) such that the corresponding geometric ele-
ment ᾱ ∈ H1(X,G) has trivial restriction to U, has an evaluation α(si) ∈ H1(ki,G)
as follows. By the restriction–inflation sequence the class α uniquely comes from
H1(πU

1 (X),G(k)) and so the pullback class

α(si)� s∗i (α) ∈ H1(ki,G)

is defined. Note that the coefficients G here are indeed the group G(k) with Γi action
induced by θi because si comes from a section σi. By formula (7.3) the evaluation
does only depend on si up to conjugation by an element of πU

1 (X) with trivial action

on G(k).

By analogy with [Sto07, Definition 5.2], we say that the tuple of section maps
(si)i∈I survives every finite descent obstruction if the following holds.
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(a) For every finite k-group scheme G and every α ∈ H1(X,G) such that the cor-
responding element ᾱ ∈ H1(X,G) has trivial restriction to U, the family

(α(si)) ∈
∏

i∈I

H1(ki,G)

belongs to the diagonal image of H1(k,G).

Clearly, if the sections si are the sections associated to ki-rational points, then (si)
survives every finite descent obstruction if and only if the collection (Pi) of rational
points survives every finite descent obstruction in the sense of [Sto07]. We fur-
thermore say that the tuple of section maps (si)i∈I survives every finite constant
descent obstruction if the following holds.

(a’) For every finite constant k-group scheme G and every α ∈ H1(X,G) such that
the corresponding element ᾱ ∈ H1(X,G) has trivial restriction to U, the family

(α(si)) ∈
∏

i∈I

H1(ki,G)

belongs to the diagonal image of H1(k,G).

We first establish a link to continuous homomorphisms Γk → πU
1 (X). Let us

define a continuous quotient of a profinite group as a quotient by a normal and
closed subgroup.

Proposition 1. Consider the following assertion:

(b) There exists a continuous homomorphism s : Γk → πU
1 (X) such that for each

i ∈ I, we have si = s◦ θi up to conjugation in πU
1 (X).

Then (b) implies property (a’). If we assume further that the following hypothesis
holds:

(∗) For every finite and constant k-group scheme G, the fibres of the diagonal
restriction map H1(k,G) →

∏
i∈I H1(ki,G) are finite.

Then (b) is equivalent to property (a’).

Proof. Assume (b). Let G and α ∈ H1(X,G)=Homout(π1(X),G(k)) be as in property
(a’). Since the restriction of α to U is trivial, the class α corresponds to a map
denoted again α : πU

1 (X) → G(k) up to conjugation in G(k). We get

α(si) = α◦ si = α◦ s◦ θi = θ∗i (α(s))

up to conjugation in G(k), so that (α(si)) is the image of α(s) ∈ H1(k,G) under the
diagonal map, whence property (a’).

Suppose now that assertion (a’) and the additional hypothesis (∗) hold. We are
going to show that (b) holds as well. For a finite continuous quotient p : πU

1 (X) → G
we consider the set
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SG � {s′ ∈ Hom(Γk,G) ; ∀i ∈ I, θ∗i (s′) = p ◦ si ∈ H1(ki,G)} ,

where we view G as a constant k-group scheme. The set SG is non empty by assump-
tion (a’) and finite thanks to (∗) and to the finiteness of G. Therefore lim←−−G

SG where

G ranges over all finite continuous quotients of πU
1 (X) is not empty, see [Bou98,

Chap. I §9.6 Proposition 8]. An element s ∈ lim←−−G
SG is nothing but a continuous

homomorphism
s : Γk → lim←−−

G

G = πU
1 (X)

such that for every i ∈ I, and every finite continuous quotient p : πU
1 (X) → G the

equality p ◦ s◦ θi = p ◦ si holds up to conjugation by elements from the finite set

Ci,G = {c ∈ G ; p ◦ s◦ θi = c
(
p ◦ si

)
c−1} ⊆ G

The set lim←−−G
Ci,G is not empty by the same argument, which implies that for each

i ∈ I, we have s◦ θi = si up to conjugation in πU
1 (X). ��

Remark 2. (1) Without additional assumptions, we cannot force the supplementary
property that s is a section. Indeed, take ki = k for every i ∈ I. Then all sets H1(ki,G)
are trivial, hence the condition (a) and thus condition (a’) is automatically satisfied.
Although condition (b) also holds trivially by the choice of the trivial homomor-
phism, because there is no interpolation property to be satisfied, nevertheless (7.2)
does not always admit a section, see for example [Sti10] or [HS09] for counterex-
amples over local and global fields.

(2) For an example with a nontrivial homomorphism s : Γk → π1(X) but no
section we consider the case k = R, ki = C and a real Godeaux–Serre variety. Com-
putations with SAGE, see [S+08], show that the homogenous equations

z2
0 + z2

1+ z2
2+ z2

3+ z2
4+ z2

5+ z2
6 = 0

z0z2+ z1z3 + z2
4+ z5z6 = 0

i(z2
0 − z2

1)+3i(z2
2 − z2

3)−2z2
6 = 0

i(z0z1+ z2z3)+ z4z5 + z5z6 + z6z4 = 0

define a smooth surface Y of general type in P6
C

with ample canonical bundle
ωY = O(1)|Y as computed by the adjunction formula. By the Lefschetz theorem
on hyperplane sections Y is simply connected. The surface Y is preserved by the
ΓR-semilinear action of G = Z/4Z on P6

C
generated by

[z0 : z1 : z2 : z3 : z4 : z5 : z6] �→ [−z̄1 : z̄0 : −z̄3 : z̄2 : z̄4 : z̄5 : z̄6] ,

and avoids the fixed point set of the G-action. Hence the quotient map Y → X with
X = Y/G is the universal cover of the geometrically connected R-variety X with
π1(X) = Z/4Z. The analogue of (7.1) for X is given by

1 → π1(X×
R
C) → Z/4Z→ Γ

R
→ 1
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which clearly does not admit sections. Nevertheless, there is a nontrivial morphism
Γ
R

→ π1(X).

However, if we suppose that (7.2) has a section, then we can prove the following
stronger approximation result.

Proposition 3. Consider the following assertion:

(c) There exists a section s : Γk → πU
1 (X) of (7.2) such that for each i ∈ I, we have

si = s◦ θi up to conjugation in A.

Then (c) implies (a) which implies the following (a”).

(a”) For every finite k-group scheme G and every α ∈ H1(X,G) such that the cor-
responding element ᾱ ∈ H1(X,G) has trivial restriction to U and is surjective
(or equivalently, the G-torsor Y → X corresponding to α is assumed to be
geometrically connected), the family

(α(si)) ∈
∏

i∈I

H1(ki,G)

belongs to the diagonal image of H1(k,G).

If we moreover assume that (∗) holds and that the exact sequence (7.2) admits a
section s0, then the properties (a), (a”) and (c) are all equivalent.

Proof. The implications (c) ⇒ (a) ⇒ (a”) are obvious because by formula (7.3) a
section s as in (c) implies for every α ∈ H1(X,G) as in (a) that

α(si) = s∗i (α) = (s◦ θi)
∗(α) = θ∗i (s∗(α)) .

It remains to show that (a”) ⇒ (c) under the additional assumption of (∗) and the
existence of a section s0 of πU

1 (X) → Γk. The method is similar to [Sto06], Lemma
9.13, which deals with the case when k is a number field and (ki) is the family of its
completions for miscellaneous A, like A= π1(X) or A= πab

1 (X). For the convenience
of the reader we give a grouptheoretic version of the argument.

Let us assume (a”). Let AV be the quotient π1(X)/V for an open subgroup
V < π1(X) containing U and normal in π1(X). Let pV : πU

1 (X)� πV
1 (X) be the cor-

responding quotient map. The composition s0,V = pV ◦ s0 splits the exact sequence

(7.2) for V
1 → AV → πV

1 (X) → Γk → 1 , (7.4)

so that πV
1 (X) is isomorphic to a semi-direct product. The map pV and

p0,V : πU
1 (X) → Γk

s0,V−−−→ πV
1 (X)

lift the natural projection πU
1 (X) → Γk. Their difference γ �→ pV(γ)p0,V(γ)−1 is a

cohomology class αV ∈ H1(πU
1 (X),AV), with πU

1 (X) acting via p0,V and conjugation,
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that corresponds to a class in H1(X,AV) which becomes trivial when restricted to
U. The restriction of αV to π1(X) equals the surjective map pV|π1(X) : π1(X)�AV,
hence is geometrically connected.

We now apply (a”) to the class αV. The class αV(si)= s∗i (αV) measures the differ-

ence between pV ◦ si and p0,V ◦ si = s0,V ◦ θi. Twisting s0,V by a class in H1(k,AV)
that diagonally maps to (αV(si)) we obtain a section sV : Γk → πV

1 (X) such that

sV ◦ θi equals pV ◦ si up to conjugation in AV.
Assumption (∗) now implies that the set of such sections sV is finite. Again by

[Bou98, Chap. I §9.6 Proposition 8], there is a compatible family of sections (sV) in
the projective limit over all possible V, which defines a section

s : Γk → lim←−−
V

πV
1 (X) = πU

1 (X)

such that s◦θi = si up to conjugation in A by the projective limit argument as in the
proof of Proposition 1. This completes the proof of (c). ��

Remark 4. It is worth noting that the additional assumption that (7.2) has a section
allows us to find a genuine section s that interpolates the si up to conjugation even
in A, and not merely a homomorphism or interpolation up to conjugation in πU

1 (X).

We can prove more under the additional assumption of the collection of fields
(ki) being arithmetically sufficiently rich in a sense to be made precise as follows.
Consider the following property.

(∗∗) The union of the conjugates of all the images Γi → Γk is dense in Γk.

Lemma 5. Property (∗∗) is inherited by finite extensions k′/k with respect to the set
of all composita ki · k′.

Proof. For any σ ∈ Γk let k′
i,σ be the field extension of ki associated to the preimage

Γ′i,σ = θ−1
i (σ−1Γk′σ) in Γi, namely the compositum kiσ

−1(k′) in ki using the fixed

embedding σ−1(k′) ⊂ k ⊂ ki that yields θi. The inclusion k′ ⊂ k′
i,σ induces the map

θ′i,σ = σ(−)σ−1 ◦ θi : Γ′i,σ → Γk′ .

The union of the conjugates of the images of all θ′i,σ is dense in Γk′ , saying that
property (∗∗) is inherited for finite field extensions k′/k for the new family of fields
(k′

i,σ). Indeed, we have to show that

⋃

i,σ

θ′i,σ(Γ′i,σ) =
(⋃

i,σ

σΓiσ
−1)∩Γk′

surjects onto cofinally any finite continuous quotient of Γk′ . It is enough to treat
quotients p0 : Γk′ → G0 with ker(p0) normal in Γk, i.e., the map p0 extends to a
finite continuous quotient p : Γk → G. Then
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p0

((⋃

i,σ

σΓiσ
−1

)
∩Γk′

)
= p

(⋃

i,σ

σΓiσ
−1

)
∩G0 = G0

by property (∗∗). ��

Lemma 6. Property (∗∗) implies property (∗).

Proof. To prove (∗) we consider a finite k-group G and α ∈ H1(k,G). We need to
show that the following set is finite:

Xα = {β ∈ H1(k,G) ; θ∗i (β) = θ∗i (α) ∈ H1(ki,G) for all i ∈ I} .

By the technique of twisting, see [Ser94, I §5.4], we may assume that α is the trivial
class in H1(k,G). Let k′/k be a finite Galois extension that trivialises G. With the
notation as in Lemma 5, the commutative diagram

H1(k,G)
res−−−−−−→ H1(k′,G)

θ∗i

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#θ′∗i,σ

H1(ki,G)
res−−−−−−→ H1(k′

i,σ,G)

shows that under restriction Xα maps into

Xtrivial = {χ ∈ Homout(Γk′ ,G) ; χ◦ θ′i,σ = 1 for all i,σ}

which contains only the trivial class due to property (∗∗) and Lemma 5. Hence,
due to the nonabelian inflation–restriction sequence, the group Xα is contained in
H1(Gal(k′/k),G(k′)) which is a finite set. ��

Proposition 7. Under the assumption of (∗∗) the properties (a) and (c) are equiva-
lent.

Proof. By Lemma 6 we also have assumption (∗). By Proposition 3 it suffices to
show that under assumption (a) the map πU

1 (X) → Γk admits a section. As (a) triv-
ially implies (a’) we may use Proposition 1 to deduce (b), so that we have found at
least a continuous homomorphism u : Γk → πU

1 (X) such that for all i ∈ I we have
si = u◦θi up to conjugation in πU

1 (X). Let ϕ : Γk → Γk be the composition of u with
the projection p : πU

1 (X) → Γk. To find a section s0 of (7.2) and thus to complete
the proof of Proposition 7, it suffices to prove that ϕ is bijective because we can then
take s0 = u ◦ϕ−1. We have

ϕ◦ θi = p ◦ (u ◦ θi) = p ◦ si = θi

up to conjugation in Γk. Thus for every γ ∈
⋃

i
⋃

g∈Γk
gθi(Γi)g

−1 the image ϕ(γ) is
conjugate to γ in Γk. By assumption (∗∗) the set

⋃
i
⋃

g∈Γk
gθi(Γi)g

−1 is dense in Γk
so that ϕ preserves every conjugacy class of Γk by continuity and compactness of Γk.
In particular ϕ is injective.
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In every finite quotient Γk → G the image of ϕ(Γk) is a subgroup H < G such that
the union of the conjugates of H covers G. An old argument that goes back to at
least Jordan, namely the estimate

|G| = |
⋃

g∈G/H

gHg−1| � (G : H) · (|H| −1)+1= |G| − (G : H)+1 � |G| ,

shows that necessarily H = G. Thus ϕ is also surjective. ��

Remark 8. (1) The isomorphism ϕ that occurs in the proof of Proposition 7 preserves
conjugacy classes of elements, hence is of a very special type which is much studied
by group theorists.

(2) In the case of a number field, every automorphism of Γk is induced by an
automorphism of k by a theorem of Neukirch, Uchida and Iwasawa, see [Neu77],
and there are also famous extensions of this result by Pop to function fields. In
particular every automorphism of ΓQ is an inner automorphism.

Proposition 9. Under the assumption of (∗∗) the properties (b) and (c) are equiva-
lent.

Proof. Clearly (c) implies (b). For the converse let u : Γk → πU
1 (X) be a homomor-

phism as in (b), so that there are γi ∈ πU
1 (X) with u ◦ θi = γi(−)γ−1

i ◦ si for all i ∈ I.
With the natural projection p : πU

1 (X) → Γk the proof of Proposition 7 says that the
homomorphism ϕ = p ◦ u is an isomorphism, so that s = u ◦ϕ−1 is a section. With
p(γi)� σi we compute

ϕ◦ θi = p ◦u ◦ θi = p ◦
(
γi(−)γ−1

i
)
◦ si = σi(−)σ−1

i ◦ θi ,

since si is a section and thus p ◦ si = θi. Applying ϕ−1 to both sides yields with
τi = ϕ−1(σ−1

i ) the equation

τi(−)τ−1
i ◦ θi = ϕ−1 ◦ θi .

Now the section s interpolates the following

s◦ θi = u ◦ϕ−1 ◦ θi = u ◦
(
τi(−)τ−1

i
)
◦ θi =

(
u(τi)(−)u(τi)

−1)◦u ◦ θi

=
(
u(τi)(−)u(τi)

−1)◦ (
γi(−)γ−1

i
)
◦ si =

(
(u(τi)γi)(−)(u(τi)γi)

−1)◦ si ,

and because of
p(u(τi)γi) = ϕ(τi)p(γi) = σ−1

i σi = 1

we find that s actually satisfies the stronger interpolation property of (c). ��

Corollary 10. Under the assumption of (∗∗) the properties (a), (a’), (b) and (c) are
equivalent to each other and to (a”) together with the existence of section.

Proof. This follows immediately by Lemma 6, Proposition 1, Proposition 3, Propo-
sition 7, and Proposition 9. ��
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7.4 Results over Number Fields

From now on we assume that k is a number field. We consider the exact sequence

1 → A → πU
1 (X) → Γk → 1

as above in (7.2). Let kv be the completion of k at a place v of k. A choice of
embeddings k → kv of the respective algebraic closures identifies the absolute Galois
group Γv =Gal(kv/kv) of kv with the decomposition subgroup of v, or more precisely
the place of k above v corresponding to the embeding k → kv. Hence the restriction
map θv : Γv → Γk as defined in the introduction is injective.

Theorem 11. Let S be a set of places of k of Dirichlet density 0, for example a finite
set of places. Assume that X(kv) � ∅ for v � S. For each v � S, let sv : Γv → πU

1 (X)
be the section map associated to a kv-rational point Pv ∈ X(kv).

Then the following assertions are equivalent:

(i) For every finite k-group scheme G and every α ∈ H1(X,G) such that ᾱ has
trivial restriction to U, the family (α(Pv)) belongs to the diagonal image of
H1(k,G) in

∏
v�S H1(kv,G).

(i’) For every finite constant k-group scheme G and every α ∈ H1(X,G) such that
ᾱ has trivial restriction to U, the family (α(Pv)) belongs to the diagonal image
of H1(k,G) in

∏
v�S H1(kv,G).

(i”) There is a section s0 : Γk → πU
1 (X) and for every finite k-group scheme G

and every α ∈ H1(X,G) such that ᾱ restricts trivially to U and the associated
G-torsor on X is geometrically connected, the family (α(Pv)) belongs to the
diagonal image of H1(k,G) in

∏
v�S H1(kv,G).

(ii) There exists a homomorphism s : Γk → πU
1 (X) of (7.2) such that for each v � S,

we have sv = s◦ θv up to conjugation in πU
1 (X).

(iii) There exists a section s : Γk → πU
1 (X) of (7.2) such that for each v � S, we

have sv = s◦θv up to conjugation in A, i.e, the sections sv come from a global
section s.

Proof. This is merely a translation of Corollary 10 into the number field setting,
once we notice that assertion (∗∗) follows immediately from Chebotarev’s density
theorem. ��

Remark 12. (1) For U trivial, we have πU
1 (X) = π1(X) and assertion (i) means in

the language of [Sto07, Definition 5.2], that the family (Pv) survives every X-torsor
under a finite group scheme G/k, while assertion (i’) says that (Pv) survives every
X-torsor under a finite constant group scheme. By (i”) this is equivalent to the
existence of a section2 together with (Pv) surviving every geometrically connected
X-torsor under a finite group scheme.

2 Thanks to M. Stoll for pointing out the importance of this condition.
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(2) Even when X(k) � ∅, it is not sufficient to demand in (i”) that (Pv) survives
every geometrically connected torsor under a finite and constant group scheme to
deduce that (Pv) satisfies the equivalent properties of Theorem 11. Take for example
k = Q and X such that π1(X) = μ3 with the corresponding Galois action. Such ex-
amples arise among varieties of general type. Then the only G-torsor over X with G
finite constant and Y geometrically connected is X with trivial group G. Neverthe-
less, there is a torsor Y → X under μ3 with Y geometrically connected, and certain
families (Pv) do not survive Y, see [Har00, Remark after Corollary 2.4].

(3) An interesting case is when U is the closure of the derived subgroup of π1(X),
so that A = π1(X)/U is just the abelianized profinite group πab

1 (X). Then the sec-
tion s in assertion (iii) corresponds to a section of the geometrically abelianized
fundamental exact sequence

1 → πab
1 (X) → πU

1 (X) → Γk → 1 .

Then assertion (i) means that the family (Pv) survives every X-torsor Y under a finite
group scheme G such that Y → X has abelian geometric monodromy, that is: such
that the image of the homomorphism π1(X) → G associated to Y → X is an abelian
group. Similar statements hold for abelian replaced by solvable or nilpotent taking
for A the maximal prosolvable or pronilpotent quotient of π1(X).

(4) The analogue of Theorem 11 holds with the same proof if we replace the
family of completions (kv) by the corresponding henselizations (kh

v ), simply because
the assertions only depend on the associated sections and the map Γkv

→ Γkh
v

induced

by kh
v ⊂ kv is an isomorphism.

7.5 Abelian Applications

Let k be a number field. Denote by Ωk the set of all places of k. For a smooth and
projective k-variety X its Brauer–Manin set is the subset X(Ak)Br of

∏
v∈Ωk

X(kv)
consisting of those adelic points that are orthogonal to the Brauer group for the
Brauer–Manin pairing, cf. [Sko01, II. Chap. 5].

The following corollary is a consequence of the implication (iii) ⇒ (i) in The-
orem 11. Similar results had already been observed independently (at least) by
J-L. Colliot-Thélène, O. Wittenberg and the second author.

Corollary 13. Let X be a smooth, projective, geometrically connected curve over a
number field k. Assume that the abelianized fundamental exact sequence

1 → πab
1 (X) → Π → Γk → 1

has a section s, such that for each v ∈Ωk the corresponding section sv is induced by
a kv-point Pv of X. Then (Pv) ∈ X(Ak)Br .
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Proof. We take for U the closure of the derived subgroup of π1(X) in Theorem 11.
Then (Pv) satisfies condition (iii) of Theorem 11, hence by (i) it survives every X-
torsor with abelian geometric monodromy under a finite k-group G. In particular,
the adelic point (Pv) survives any X-torsor under a finite abelian group scheme. It
remains to apply [Sto07, Corollary 7.3]. ��

Remark 14. (1) Let X be a smooth projective curve of genus 0. Then the assumption
of Corollary 13 seems vacuous as π1(X)= 1 and there is a section with no arithmetic
content. But we also assume the existence of an adelic point, whence the curve
X has k-rational points by the classical Hasse local–global principle for quadratic
forms. Moreover, any adelic point on X � P1

k satisfies the Brauer–Manin obstruction
because Br (k) = Br(P1

k).
(2) Let X be a smooth projective curve of genus 1 as in Corollary 13 with Ja-

cobian E. Then X corresponds to an element [X] in the Tate–Shafarevich group
X(E/k). The existence of an adelic point which survives the Brauer–Manin ob-
struction then implies by [Sko01, Theorem 6.2.3] that [X] belongs to the maximal
divisible subgroup of X(E/k), which also follows from [HS09, Proposition 2.1].
When X(E/k) is finite as is conjecturally always the case, then the curve X has a
k-rational point and is actually an elliptic curve E.

(3) It is conjectured that a p-adic version of Grothendieck’s section conjecture
holds, which would imply that for a smooth, projective, geometrically integral curve
of genus at least 2, each local section sv as in Corollary 13 is automatically induced
by a kv point. See also Remark (2) after Theorem 19.

(4) If we assume further that the Jacobian variety of X has finitely many ratio-
nal points and finite Tate-Shafarevich group, then the conclusion of Corollary 13
implies X(k) � ∅ by a result due to Scharaschkin and Skorobogatov, see [Sko01,
Corollary 6.2.6.] or [Sto07, Corollary 8.1].

The following result and its proof are inspired by Koenigsmann’s theorem
[Koe05], namely the fact that for a smooth, geometrically connected curve over a
p-adic field, the existence of a section for the birational fundamental exact sequence
implies the existence of a rational point.

Theorem 15. Let X be a smooth, projective and geometrically connected curve over
a number field k. Assume that the birational fundamental exact sequence

1 → Γk(X) → Γk(X) → Γk → 1 (7.5)

has a section. Then X(Ak)Br � ∅. If we assume further that the Jacobian variety of
X has finitely many rational points and finite Tate–Shafarevich group, then X(k)� ∅.

A non-abelian version of this theorem will be given in the next section in Theo-
rem 21.
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Proof. A section s : Γk → Γk(X) of (7.5) induces3 for every place v of k a section sh
v

for the analogous sequence for k replaced by kh
v . We follow the argument used by

Koenigsmann [Koe05, Proposition 2.4 (1)].
The image of sh

v defines a field extension Lh
v/kh

v (X) as the fixed field in the alge-
braic closure of kh

v (X). Because the natural maps between absolute Galois groups

ΓLh
v
→ Γkh

v
← Γkv

are isomorphisms, the fields Lh
v , kh

v and kv are p-adically closed fields, see [Koe95,
Theorem 4.1], and thus Lh

v is an elementary extension of kh
v , see [Koe05, Fact 2.2].

In particular, the tautological Lh
v point of X given by

Spec(Lh
v) → Speckh

v (X) → X

implies the existence of a kh
v -point and thus a kv-point on X.

The core of the following well-known limit argument goes back at least to
Neukirch, and was introduced in anabelian geometry by Nakamura, while Tama-
gawa emphasized its significance to the section conjecture. We perform the limit
argument by applying the above existence result to every connected branched cover
X′ → X, necessarily geometrically connected over k, with

s(Γk) ⊂ Γk(X′) ⊂ Γk(X) .

Thus the projective system lim←−−X′ X′(kv) over all such X′ is a projective system of
nonempty compact spaces, and is therefore itself nonempty by [Bou98, Chap. I §9.6
Proposition 8].

Let (P′
v) with P′

v ∈ X′(kv) be an element in the projective limit with lowest stage
Pv ∈ X(kv). It follows that the section sPv

: Γkh
v
→ Γkh

v (X) composed with the natural
projection Γkh

v (X) → Γk(X) agrees with the v-local component s ◦ θv for the original
section s. We may now apply Corollary 13 to the composition

Γk
s−→ Γk(X) → π1(X) ,

which shows that the adelic point (Pv) of X is orthogonal to BrX for the Brauer-
Manin pairing.

Under the further assumptions that the Jacobian of X has finite Mordell–Weil
group and finite Tate–Shafarevich group we now apply the result by Scharaschkin–
Skorobogatov, see Remark (4) above, to complete the proof of the theorem. ��

Remark 16. In [EW10, Theorem 2.1] H. Esnault and O. Wittenberg discuss a ge-
ometrically abelian version of Theorem 15 with the result that an abelian bira-
tional section yields a divisor of degree 1 on X under the assumption of the Tate-
Shafarevich group of the Jacobian of X being finite.

3 This would not be clear if we had replaced k by kv instead of kh
v . Indeed the existence of a

birational section is not a condition that is stable by extension of scalars; see [EW10, Remark
3.12(iii)].
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We next describe an application towards the birational version of the section
conjecture of Grothendieck’s. Recall that for a geometrically connected k-variety
X a k-rational point a ∈ X(k) describes by functoriality a π1(X)-conjugacy class
of sections sa of (7.1). In the birational setting the k-rational point leads to the
following. Define Ẑ(1) as the inverse limit (over n) of the Γk-modules μn(k). Due to
the characteristic zero assumption the decomposition group Da of a ∈ X(k) in Γk(X)
is an extension

1 → Ẑ(1) → Da → Γk → 1 (7.6)

that splits for example by the choice of a uniformizer t at a and a compatible choice
of nth roots t1/n of t. It follows that up to conjugacy by Ẑ(1), the inertia group at
a, we have a packet of sections of (7.6) with a free transitive action by the huge
uncountable group

H1(k, Ẑ(1)) = lim←−−
n

k∗/(k∗)n .

It can be proven in at least two different ways that the map Da → Γk(X) maps the
Ẑ(1)-conjugacy classes of sections of (7.6) injectively into the set of Γk(X)-conjugacy
classes of sections of (7.5), see for example [Koe05, Sect. 1.4], or [Sti08, Sect. 1.3
and Theorem 14+17], or [EH08].

The birational form of the section conjecture speculates that for a smooth,
projective geometrically connected curve the map from k-rational points to packets
of sections of (7.5) is bijective and that there are no other sections of (7.5), see
[Koe05, Sect. 1.4+5].

The following theorem is a corollary4 of Stoll’s results [Sto06, Corollary 8.6 and
Theorem 9.18].

Theorem 17. Let X be a smooth, projective and geometrically connected curve over
k. If we assume that there is a nonconstant map X → A to an abelian variety A/k
with finitely many k-rational points and finite Tate–Shafarevich group, then every
section s of the birational fundamental exact sequence

1 → Γk(X) → Γk(X) → Γk → 1 (7.7)

is the section sa associated to a k-rational point a ∈ X(k). In other words, the
birational section conjecture is true for such curves X/k.

Proof. Let s be a section of (7.7), and let X′ → X be a finite branched cover, such
that upon suitable choices of base points the image of s is contained in Γk(X′) ⊂ Γk(X).
Then Theorem 15 shows that X′(Ak)Br � ∅. Exploiting the finite map X′ → X → A
we may use Stoll’s result [Sto07] Theorem 8.6, to deduce X′(k) � ∅. Cofinally all
such X′ will have genus at least 2 so that X′(k) then is nonempty and finite by
Faltings–Mordell [Fal83, Satz 7]. It follows that

lim←−−
X′

X′(k) ,

4 Note however that in the proof of [Sto06, Theorem 9.18], it is not explained why the existence of
a birational section over k implies the same property over kv.
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where X′ ranges over the system of all X′ as above, is nonempty by [Bou98,
Chap. I §9.6 Proposition 8]. Let a ∈ X(k) be the projection to X(k) of an element
of lim←−−X′ X′(k), then the image of s is contained in the decomposition subgroup

Da ⊂ Γk(X)

and s belongs to the packet of sections associated to the k-rational point a.
It remains to refer to the literature for the injectivity of the (birational) section

conjecture, which was already known to Grothendieck [Gro83], see for example
[Sti08, Appendix B]. ��

Remark 18. (1) The conjecture of Birch and Swinnerton-Dyer predicts that an
abelian variety A over a number field k has both finite A(k) and finite X(A/k)
if and only if its complex L-function L(s,A/k) does not vanish at the critical point
s = 1. This is known in the case of elliptic curves E/Q due to work of Coates-Wiles,
Rubin, and Kolyvagin. For abelian varieties A/Q with L(1,A/Q) � 0 the work of
Kolyvagin-Logachev [KL91] allows to conclude finiteness of A(Q) and X(A/Q)
subject to an additional technical condition.

Following Mazur [Maz78], every Jacobian J0(p) of the modular curve X0(p) for
p = 11 or a prime p � 17 has a nontrivial Eisenstein quotient, see J̃ [Maz78, II
(10.4)], with finite Mordell–Weil group J̃(Q). But only for an Eisenstein ideal p the
p-component of the Tate–Shafarevich groupX(J̃/Q) is known to be finite. Building
on the work of Mazur, modular quotients J0(p) → A, which satisfy L(1,A/Q) � 0,
have been determined in abundance, see for example Duke [Duk95].

Consequently, every smooth, projective geometrically connected curve X over Q
with a nonconstant map X → A for one of the good abelian varieties A above will
(subject to the validity of the technical assumption necessary in [KL91] or uncondi-
tionally if dim(A) = 1) satisfy Theorem 17 and thus the birational section conjecture
will hold for such X with k = Q.

(2) A recent result of Mazur and Rubin, [MR10, Theorem 1.1], guarantees for
any algebraic number field k the existence of infinitely many elliptic curves E/k
with E(k) = 0. As conjecturally X(E/k) is always finite, these elliptic curves and
moreover their branched covers X → E can be used in Theorem 17 to at least con-
jecturally produce examples of the birational section conjecture over any algebraic
number field.

7.6 Non-abelian Applications

We turn our attention to geometrically non-abelian applications of Theorem 11.

Theorem 19. Let X be a smooth, projective, geometrically connected curve over
a number field k. Let (Pv)v∈Ωk

be an adelic point of X that survives every X-torsor
under a finite group scheme. Then (Pv) survives every X-torsor under a linear group
scheme.
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Proof. We apply Theorem 11 in the case U = 0, hence we have A = π1(X). The
hypothesis means that (Pv) satisfies condition (i) of this theorem, hence there is a
section s : Γk → π1(X) as in condition (iii).

Let Y → X be a geometrically connected torsor under a finite group scheme.
Using the section s, we can lift (Pv) to an adelic point (Qv) on some twisted torsor
Yσ such that s takes values in the subgroup π1(Yσ) of π1(X). This means that (Qv)
again satisfies condition (iii) of Theorem 11. In particular Corollary 13 implies that
(Qv) ∈ Yσ(Ak)Br . So we have proved that for every geometrically connected torsor
Y under a finite group scheme G, the adelic point (Pv) can be lifted to an adelic point
(Qv) ∈ Yσ(Ak)Br for some twisted torsor Yσ.

This still holds if Y is not assumed to be geometrically connected: indeed the
assumption that there exists an adelic point of X surviving every X-torsor under a fi-
nite group scheme implies (by a result of Stoll, see also Demarche’s paper [Dem09],
beginning of the proof of Lemma 3) that there exists a geometrically connected tor-
sor Z → X under a finite k-group scheme F, a cocycle σ ∈ Z1(k,G), and a morphism
F → Gσ such that Yσ is obtained by pushout of the torsor Z. We conclude with the
functoriality of the Brauer–Manin pairing.

It remains to apply the main result of [Dem09] to finish the proof, namely that
the étale Brauer–Manin obstruction is a priori stronger than the descent obstruction
imposed by linear algebraic groups. ��
Remark 20. (1) The previous result does not hold in higher dimension. For example
there are smooth, projective, geometrically integral and geometrically rational sur-
faces X, in particular we have π1(X) = 1, with X(k) � ∅, but such that some adelic
points (Pv) do not belong to X(Ak)Br . For an example with an intersection of two
quadrics in P4 see [CTS77, p. 3, Example a]. By [Sko01, Theorem 6.1.2 (a)], such
adelic points do not survive the universal torsors, which are those torsors under the
Néron-Severi torus of X whose type in the sense of Colliot-Thélène and Sansuc’s
descent theory is an isomorphism, see [Sko01, Definition 2.3.3].

(2) Let X be a curve of genus at least 2 such that the fundamental exact sequence
(7.1) has a section. If we knew the p-adic analogue of Grothendieck’s section con-
jecture, Theorem 11 and Theorem 19 would yield the existence of an adelic point
(Pv) that survives every torsor under a linear k-group scheme, which is a priori
stronger than (Pv) ∈ X(Ak)Br . Recall that as we have seen before (a result by Scha-
raschkin/Skorobogatov), the condition X(Ak)Br � ∅ already implies X(k) � ∅ if the
Jacobian variety of X has finitely many rational points and finite Tate-Shafarevich
group.

The following result is the non-abelian version of Theorem 15.

Theorem 21. Let X be a smooth, projective and geometrically connected curve over
a number field k. Assume that the birational fundamental exact sequence

1 → Γk(X) → Γk(X) → Γk → 1 (7.8)

has a section. Then X contains an adelic point (Pv) that survives every torsor under
a linear k-group scheme.
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Proof. We proceed exactly as in the proof of Theorem 15, except that at the end we
apply Theorem 11 instead of Corollary 13, so that we obtain that the adelic point
(Pv) of X survives every torsor under a finite k-group scheme, hence every torsor
under a linear k-group scheme by Theorem 19. ��

Remark 22. Over a number field or a p-adic field, no example of a smooth and
geometrically integral variety X such that the exact sequence (7.5) has a section, but
X(k)= ∅, is known. According to Grothendieck, a sufficiently small non empty open
subset U of X should be anabelian, which would imply, if one believes a general
form of his section conjecture, see [Gro83], that X has a rational point as soon as
the sequence (7.5) is split. We don’t know whether Theorem 15 and Theorem 21
still hold in arbitrary dimension.

Let Γk(X) → Γsolv
k(X)

be the maximal pro-solvable quotient of Γk(X) and

1 → Γsolv
k(X)

→ Γ(solv)
k(X) → Γk → 1 (7.9)

the pushout of (7.5) by Γk(X) → Γsolv
k(X)

. With this exact sequence we can prove the

following geometrically pro-solvable version of Theorem 21.

Theorem 23. Let k be a number field, and let X be a smooth, projective and ge-
ometrically connected curve over k. Assume that the geometrically pro-solvable
birational fundamental exact sequence

1 → Γsolv
k(X)

→ Γ(solv)
k(X) → Γk → 1

has a section. Then X contains an adelic point (Pv) that survives every torsor under
a finite k-group scheme with geometric monodromy a finite solvable group.

Proof. We start as in the proof of Theorem 15. Let v | p be a place of k above p.
The local section

sh
v : Γkh

v
→ Γ(solv)

kh
v (X)

⊂ Γ(solv)
kh

v (X)

restricts, i.e., after adjoining the pth roots of unity 〈ζp〉, to a liftable section

sh
v |... : Γkh

v (ζp) → Γ(p)

kh
v (ζp)(X)

in the sense of [Pop10] for the geometrically pro-p birational fundamental exact se-
quence of the scalar extension X×k kh

v (ζp). Now [Pop10, Theorem B 2)] shows that,
modulo the geometric commutator, the section sh

v |... belongs to a unique bouquet
of sections associated to a point Pv ∈ X(kv(ζp)) with coefficients in the completion
kv(ζp) of kh

v (ζp). Since sh
v |... is invariant under

Gal(kh
v (ζp)/kh

v) = Gal(kv(ζp)/kv) ,

the uniqueness of Pv, structure transport and Galois descent show that Pv ∈ X(kv).
The same limit argument as in the proof of Theorem 15 applies and shows that in
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fact the local section sh
v agrees with the composite

sPv
: Γkh

v
= Γkv

→ Γ(solv)
kv(X) � Γ

(solv)

kh
v (X)

The rest of the proof follows as in the proof of Theorem 15. ��

References

[Bou98] N. Bourbaki. General topology. Chapters 1–4. Elements of Mathematics. Springer,
1998. Translated from the French, reprint of the 1989 English translation, vii+437 pp.

[CTS77] J.-L. Colliot-Thélène and J.-J. Sansuc. La descente sur une variété rationnelle définie
sur un corps de nombres. C. R. Acad. Sci. Paris, 284:1215–1218, 1977.

[Dem09] C. Demarche. Obstruction de descente et obstruction de Brauer-Manin étale. Algebra
and Number Theory, 3(2):237–254, 2009.

[Duk95] W. Duke. The critical order of vanishing of automorphic L-functions with large level.
Invent. Math., 119(1):165–174, 1995.

[EH08] H. Esnault and Ph. H. Hai. Packets in Grothendieck’s Section Conjecture. Adv. Math.,
218(2):395–416, 2008.

[EW10] H. Esnault and O. Wittenberg. On abelian birational sections. Journal of the American
Mathematical Society, 23:713–724, 2010.

[Fal83] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.,
73(3):349–366, 1983.

[Gro83] A. Grothendieck. Brief an Faltings (27/06/1983). In L. Schneps and P. Lochak, ed-
itors, Geometric Galois Actions 1, volume 242 of LMS Lecture Notes, pages 49–58.
Cambridge, 1997.

[Har00] D. Harari. Weak approximation and non-abelian fundamental groups. Ann. Sci. école
Norm. Sup. (4), 33(4):467–484, 2000.

[HS02] D. Harari and A. N. Skorobogatov. Non-abelian cohomology and rational points. Com-
positio Math., 130(3):241–273, 2002.

[HS09] D. Harari and T. Szamuely. Galois sections for abelianized fundamental groups. Math.
Ann., 344(4):779–800, 2009. With an appendix by E. V. Flynn.

[KL91] V. A. Kolyvagin and D. Yu. Logachëv. Finiteness of X over totally real fields. Izv.
Akad. Nauk SSSR Ser. Mat., 55(4):851–876, 1991. Russian, translation in Math. USSR-
Izv. 39(1):829–853, 1992.

[Koe95] J. Koenigsmann. From p-rigid elements to valuations (with a Galois-characterization
of p-adic fields). J. Reine Angew. Math., 465:165–182, 1995. With an appendix by
Florian Pop.

[Koe05] J. Koenigsmann. On the “section conjecture” in anabelian geometry. J. Reine Angew.
Math., 588:221–235, 2005.

[Maz78] B. Mazur. Modular curves and the Eisenstein ideal. IHES Publ. Math., 47:33–186,
1978.

[MR10] B. Mazur and K. Rubin. Ranks of twists of elliptic curves and Hilbert’s Tenth Problem.
Invent. Math., 181(3):541–575, 2010.

[Neu77] J. Neukirch. Über die absoluten Galoisgruppen algebraischer Zahlkörper. Journées
Arithmétiques de Caen 1976, Astérisque, 41-42:67–79, 1977.

[Pop10] F. Pop. On the birational p-adic section conjecture. Compositio Math., 146(3):621–637,
2010.

[PS11] F. Pop and J. Stix. Arithmetic in the fundamental group of a p-adic curve: on the p-adic
section conjecture for curves. Preprint, arXiv:math.AG/1111.1354, 2011.

[S+08] W. A. Stein et al. Sage Mathematics Software (Version 3.1.4), The Sage Development
Team, 2008, www.sagemath.org.

www.sagemath.org


166 D. Harari and J. Stix

[SGA1] A. Grothendieck. Revêtements étale et groupe fondamental (SGA 1). Séminaire de
géométrie algébrique du Bois Marie 1960-61, directed by A. Grothendieck, augmented
by two papers by Mme M. Raynaud, Lecture Notes in Math. 224, Springer-Verlag,
Berlin-New York, 1971. Updated and annotated new edition: Documents Mathéma-
tiques 3, Société Mathématique de France, Paris, 2003.

[Ser68] J.-P. Serre. Corps locaux. Publications de l’Université de Nancago, No. VIII., Hermann,
Paris, 1968. (deuxième édition).

[Ser94] J.-P. Serre. Cohomologie Galoisienne. Springer Verlag, 1994. (cinquième édition,
révisée et complétée).

[Sko01] A. N. Skorobogatov. Torsors and rational points. Volume 144 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2001.

[Sti08] J. Stix. On cuspidal sections of algebraic fundamental groups. Preprint, arXiv:math.AG/
0809.0017v1. Philadelphia–Bonn, 2008.

[Sti10] J. Stix. On the period-index problem in light of the section conjecture. Amer. J. of
Math., 132(1):157–180, 2010.

[Sto06] M. Stoll. Finite descent obstructions and rational points on curves. Preprint,
arXiv:math.NT/0606465v2. Draft version no. 8.

[Sto07] M. Stoll. Finite descent obstructions and rational points on curves. Algebra and Number
Theory, 1(4):349–391, 2007.

[Sza09] T. Szamuely. Galois groups and fundamental groups, volume 117 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2009.



Chapter 8
On Monodromically Full Points of
Configuration Spaces of Hyperbolic Curves

Yuichiro Hoshi∗

Abstract We introduce and discuss the notion of monodromically full points of
configuration spaces of hyperbolic curves. This notion leads to complements to
M. Matsumoto’s result concerning the difference between the kernels of the natu-
ral homomorphisms associated to a hyperbolic curve and its point from the Galois
group to the automorphism and outer automorphism groups of the geometric fun-
damental group of the hyperbolic curve. More concretely, we prove that any hyper-
bolic curve over a number field has many nonexceptional closed points, i.e., closed
points which do not satisfy a condition considered by Matsumoto, but that there exist
infinitely many hyperbolic curves which admit many exceptional closed points, i.e.,
closed points which do satisfy the condition considered by Matsumoto. Moreover,
we prove a Galois-theoretic characterization of equivalence classes of monodromi-
cally full points of configuration spaces, as well as a Galois-theoretic characteriza-
tion of equivalence classes of quasi-monodromically full points of cores. In a similar
vein, we also prove a necessary and sufficient condition for quasi-monodromically
full Galois sections of hyperbolic curves to be geometric.

8.1 Introduction

In this paper, we discuss monodromically full points of configuration spaces of hy-
perbolic curves. The term monodromically full was introduced in [Hos11], but the
corresponding notion was studied by M. Matsumoto and A. Tamagawa in [MT00].
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Let � be a prime number, k a field of characteristic 0 with algebraic closure k, and
X a hyperbolic curve of type (g,r) over k. For an extension k′ ⊆ k of k, write Gk′ �
Gal(k/k′) for the absolute Galois group of k′ determined by the given algebraic
closure k. For a positive integer n, we write Xn for the n-th configuration space of
the hyperbolic curve X/k. The natural projection Xn+1 → Xn to the first n factors
may be regarded as a family of hyperbolic curves of type (g,r+n). We shall say that
a closed point x ∈ Xn of the n-th configuration space is �-monodromically full if the
k(x)-rational point, where k(x) is the residue field at x, of Xn ⊗k k(x) determined by
x is an �-monodromically full point with respect to the family of hyperbolic curves
Xn+1 ⊗k k(x) over Xn ⊗k k(x) in the sense of [Hos11, Definition 2.1], i.e., roughly
speaking, the image of the pro-� outer monodromy representation of π1(Xn ⊗k k)
with respect to the family of hyperbolic curves Xn+1 → Xn is contained in the image
of the pro-� outer Galois representation of Gk(x) with respect to the hyperbolic k(x)-
curve Xn+1 ×Xn

Spec(k(x)), see Definition 8 and Remark 11(i).
We write

Δ{�}
X/k

for the geometric pro-� fundamental group of X, i.e., the maximal pro-� quotient of
the étale fundamental group π1(X⊗k k) of X⊗k k, and

Π {�}
X/k := π1(X)/ker

(
π1(X⊗k k)� Δ{�}

X/k

)

for the geometrically pro-� fundamental group of X. Then conjugation by elements
of Π {�}

X/k determines a commutative diagram of profinite groups

1 −−−−−−→ Δ{�}
X/k −−−−−−→ Π {�}

X/k −−−−−−→ Gk −−−−−−→ 1
⏐⏐⏐⏐⏐# ρ̃

{�}
X/k

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#ρ

{�}
X/k

1 −−−−−−→ Inn(Δ{�}
X/k) −−−−−−→ Aut(Δ{�}

X/k) −−−−−−→ Out(Δ{�}
X/k) −−−−−−→ 1

with exact rows. The left-hand vertical arrow is, in fact, an isomorphism. On the
other hand, for a closed point x ∈ X, we have a homomorphism

π1(x) : Gk(x) → Π {�}
X/k

induced by x ∈ X and well-defined up to Π {�}
X/k-conjugation. In [Mat11], Matsumoto

studied the difference between the kernels of the following two homomorphisms

ρ{�}
X/k |Gk(x)

: Gk(x) −→ Out(Δ{�}
X/k) ,

Gk(x)
π1(x)
−→ Π {�}

X/k

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k) .

The notion of monodromically full points allows to give some complements to
Matsumoto’s result [Mat11]. To state these complements, let us review the result
given in [Mat11].

We shall say that E(X, x, �) holds if the kernels of the above two homomorphisms
coincide and write

XE� ⊆ Xcl
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for the subset of the set Xcl of closed points of X consisting of exceptional x ∈ Xcl

i.e., E(X, x, �) holds, cf. [Mat11, §1, §3], as well as Definition 32 in the present
paper. Then the main result of [Mat11] may be stated as follows:

Let g � 3 be an integer. Suppose that � divides 2g − 2 and write �ν for the highest power
of � that divides 2g−2. Then there are infinitely many isomorphism classes of pairs (K,C)
of number fields K and proper hyperbolic curves C of genus g over K which satisfy the
following condition: For any closed point x ∈ C of C with residue field k(x), if �ν does not
divide [k(x) : k], then E(C, x, �) does not hold.

In the present paper, we prove that if a closed point x ∈ X of the hyperbolic curve
X is �-monodromically full, then E(X, x, �) does not hold, cf. Proposition 33 (ii). On
the other hand, as a consequence of Hilbert’s irreducibility theorem, any hyperbolic
curve over a number field has many �-monodromically full points, cf. Proposi-
tion 13, as well as, [MT00, Theorem 1.2] or [Hos11, Theorem 2.3]. By applying
these observations, one can prove the following result, which may be regarded as a
partial generalization of the above theorem due to Matsumoto, cf. Theorem 36.

Theorem A (Existence of many nonexceptional closed points). Let � be a prime
number, k a finite extension of Q, and X a hyperbolic curve over k. Then, regarding
the set of closed points Xcl of X as a subset of X(C), the complement

Xcl \XE� ⊆ X(C)

is dense with respect to the complex topology of X(C). Moreover X(k)∩XE� is finite.

On the other hand, in [Mat11, §2], Matsumoto proved that for any prime
number �, the triple

(P1
Q
\ {0,1,∞},

→
01, �) ,

where
→
01 is a Q-rational tangential base point, is a triple for which a version of

E(X, x, �) for rational tangential base points holds. As mentioned in [Mat11, §2],
the fact that E(X, x, �) holds for this triple was observed by P. Deligne and Y. Ihara.

However, a tangential base point is not a point. In this sense, no example of a
triple (X, x, �) for which E(X, x, �) holds appears in [Mat11]. The following result
concerns the existence of triples (X, x, �) for which E(X, x, �) holds, cf. Theorem 41.

Theorem B (Existence of many exceptional closed points for certain hyperbolic
curves). Let � be a prime number, k a field of characteristic 0, X a hyperbolic
curve which is either of type (0,3) or of type (1,1), and Y → X a connected finite
étale cover over k which arises from an open subgroup of the geometrically pro-
� fundamental group Π {�}

X/k of X and is geometrically connected over k. Then the

subset YE� ⊆ Ycl is infinite. In particular, the subset XE� ⊆ Xcl is infinite.

Note that in Remark 43, we also give an example of a triple (X, x, �) such that X
is a proper hyperbolic curve, and E(X, x, �) holds.

A k-rational point x ∈ Xn(k) of the n-th configuration space Xn of the hyperbolic
curve X/k determines n distinct k-rational points x1, . . . , xn of X. Write
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X[x] ⊆ X

for the hyperbolic curve of type (g,r+n) over k obtained by X\{x1, . . . , xn}, i.e., X[x]
may be regarded as the fiber product

Xn+1 ×Xn,x Spec(k) .

We shall say that two k-rational points x and y of Xn are equivalent if X[x] � X[y]
over k. In [Hos11], the author proved that the isomorphism class of a certain (e.g.,
split, cf. [Hos11, Definition 1.5 (i)]) �-monodromically full hyperbolic curve of
genus 0 over a finitely generated extension of Q is completely determined by the
kernel of the natural pro-� outer Galois representation associated to the hyperbolic
curve, cf. [Hos11, Theorem A]. By a similar argument to the argument used in the
proof of [Hos11, Theorem A], one can prove the following Galois-theoretic char-
acterization of equivalence classes of �-monodromically full points of configuration
spaces, cf. Theorem 49.

Theorem C (Galois-theoretic characterization of equivalence classes of mon-
odromically full points of configuration spaces). Let � be a prime number, n a
positive integer, k a finitely generated extension ofQ, and X a hyperbolic curve over
k. Then for two k-rational points x and y of Xn which are �-monodromically full, cf.
Definition 8, the following three conditions are equivalent:

(i) x is equivalent to y, i.e., X[x] is isomorphic to X[y] over k.
(ii) Ker(ρ{�}

X[x]/k) = Ker(ρ{�}
X[y]/k).

(iii) We have Ker(φx) = Ker(φy) for the composites

φx : Gk
π1(x)
−→ π1(Xn)

ρ̃{�}
Xn/k
−→ Aut(Δ{�}

Xn/k) ,

φy : Gk
π1(y)
−→ π1(Xn)

ρ̃
{�}
Xn/k
−→ Aut(Δ{�}

Xn/k) .

In [Moc03], S. Mochizuki introduced and studied the notion of a k-core, cf.
[Moc03, Definition 2.1], as well as [Moc03, Remark 2.1.1]. It follows from [Moc98,
Theorem 5.3], together with [Moc03, Proposition 2.3], that if 2g−2+ r > 2, then a
general hyperbolic curve of type (g,r) over k is a k-core, cf. also [Moc03, Remark
2.5.1]. For a hyperbolic curve over k which is a k-core, the following stronger
Galois-theoretic characterization can be proven, cf. Theorem 51.

Theorem D (Galois-theoretic characterization of equivalence classes of quasi-
monodromically full points of cores). Let � be a prime number, k a finitely gener-
ated extension of Q, and X a hyperbolic curve over k which is a k-core, cf. [Moc03,
Remark 2.1.1]. Then for two k-rational points x and y of X which are quasi-�-
monodromically full, cf. Definition 8, the following four conditions are equivalent:

(i) x = y.
(ii) x is equivalent to y.
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(iii) With Ux =X\ {x} and Uy =X\ {y}, the intersection Ker(ρ{�}
Ux/k)∩Ker(ρ{�}

Uy/k) is

open in Ker(ρ{�}
Ux/k) and Ker(ρ{�}

Uy/k).
(iv) For the composites

φx : Gk
π1(x)
−→ π1(X)

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k),

φy : Gk
π1(y)
−→ π1(X)

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k),

the intersection Ker(φx)∩Ker(φy) is open in Ker(φx) and Ker(φy).

Finally, in a similar vein, we prove a necessary and sufficient condition for a
quasi-�-monodromically full Galois section, cf. Definition 46, of a hyperbolic curve
to be geometric, cf. Theorem 53.

Theorem E (A necessary and sufficient condition for a quasi-monodromically
full Galois section of a hyperbolic curve to be geometric). Let � be a prime num-
ber, k a finitely generated extension of Q, and X a hyperbolic curve over k. Let
s : Gk → Π {�}

X/k be a pro-� Galois section of X, i.e., a continuous section of the

natural surjection Π {�}
X/k � Gk, cf. [Hos10, Definition 1.1 (i)], which is quasi-�-

monodromically full, cf. Definition 46. Write φs for the composite

Gk
s−→ Π {�}

X/k

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k) .

Then the following four conditions are equivalent:

(i) The pro-� Galois section s is geometric, cf. [Hos10, Definition 1.1 (iii)].
(ii) The pro-� Galois section s arises from a k-rational point of X, cf. [Hos10,

Definition 1.1 (ii)].
(iii) There exists a quasi-�-monodromically full k-rational point x ∈ X(k), cf. Def-

inition 8, such that if we write φx for the composite

Gk
π1(x)
−→ Π {�}

X/k

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k) ,

then the intersection Ker(φs)∩Ker(φx) is open in Ker(φs) and Ker(φx).
(iv) There exists a quasi-�-monodromically full k-rational point x ∈ X(k), cf. Def-

inition 8, such that with U� X \ Im(x), the intersection Ker(φs) ∩Ker(ρ{�}
U/k)

is open in Ker(φs) and Ker(ρ{�}
U/k).

The present paper is organized as follows: In Sect. 8.3 we introduce and dis-
cuss the notion of monodromically full points of configuration spaces of hyperbolic
curves. In Sect. 8.4 we consider the fundamental groups of configuration spaces
of hyperbolic curves. In Sect. 8.5 we consider the kernels of the outer representa-
tions associated to configuration spaces of hyperbolic curves. In Sect. 8.6 we prove
Theorems A and B. In Sect. 8.7 we prove Theorems C, D, and E.
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8.2 Notations, Conventions, and Terminology

Numbers. The notationPrimes will be used to denote the set of all prime numbers.
We shall refer to a finite extension of Q as a number field.

Profinite Groups. Let G be a profinite group and H ⊆ G a closed subgroup.
We shall write NG(H) for the normalizer of H in G, ZG(H) for the centralizer

of H in G, Z(G) := ZG(G) for the center of G,

Zloc
G (H) := lim−−→

H′⊆H

ZG(H′) ⊆ G ,

where H′ ⊆ H ranges over the open subgroups of H, for the local centralizer of H
in G, and Zloc(G) := Zloc

G (G) for the local center of G. It is immediate from the
definitions involved that

H ⊆ NG(H) ⊇ ZG(H) ⊆ Zloc
G (H) ,

and that if H1, H2 ⊆ G are closed subgroups of G such that H1 ⊆ H2 (respectively,
H1 ⊆ H2; H1 ∩ H2 is open in H1 and H2), then ZG(H2) ⊆ ZG(H1) (respectively,
Zloc

G (H2) ⊆ Zloc
G (H1); Zloc

G (H1) = Zloc
G (H2)).

We shall say that G is center-free if Z(G) = {1}. We shall say that G is slim if
Zloc(G) = {1} or equivalently every open subgroup of G is center-free.

We shall denote by Aut(G) the group of continuous automorphisms of the profi-
nite group G, by Inn(G) the group of inner automorphisms of G, and by Out(G)
the quotient Aut(G)/Inn(G). If G is topologically finitely generated, then the topol-
ogy of G admits a basis of characteristic open subgroups, which induces a profinite
topology on Aut(G), hence also on Out(G).

Curves. Let S be a scheme and C a scheme over S. For a pair (g,r) of nonnegative
integers, we shall say that C → S is a smooth curve of type (g,r) over S if there
exist an S-scheme Ccpt which is smooth, proper, of relative dimension 1 with geo-
metrically connected fibres of genus g, and a closed subscheme D ⊆ Ccpt which is
finite étale of degree r over S such that the complement of D in Ccpt is isomorphic
to C over S.

We shall say that C is a hyperbolic curve over S if there exists a pair (g,r) of
nonnegative integers with 2g−2+ r > 0 such that C is a smooth curve of type (g,r)
over S. A tripod is a smooth curve of type (0,3).

For a pair (g,r) of nonnegative integers such that 2g − 2+ r > 0, write Mg,r for
the moduli stack over Spec(Z) of smooth proper curves of genus g with r ordered
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marked points, cf. [DM69,Knu83], and Mg,[r] for the moduli stack over Spec(Z) of
hyperbolic curves of type (g,r). We have a natural finite étale Sr-Galois cover

Mg,r → Mg,[r] ,

where Sr is the symmetric group on r letters.

8.3 Monodromically Full Points

We introduce and discuss the notion of monodromically full points of configuration
spaces of hyperbolic curves. Let Σ ⊆ Primes be a nonempty subset of Primes and
let S be a regular and connected scheme.

Definition 1. Let X be a regular and connected scheme over S.
(i) Let 1 → Δ → Π → G → 1 be an exact sequence of profinite groups. Sup-

pose that Δ is topologically finitely generated. Then conjugation by elements of Π
determines a commutative diagram of profinite groups

1 −−−−−−→ Δ −−−−−−→ Π −−−−−−→ G −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ Inn(Δ) −−−−−−→ Aut(Δ) −−−−−−→ Out(Δ) −−−−−−→ 1

with exact rows. We shall refer to the continuous homomorphism

Π −→ Aut(Δ)
(
respectively, G −→ Out(Δ)

)

obtained as the middle (respectively, right-hand) vertical arrow in the above diagram
as the (respectively, outer) representation associated to 1 → Δ → Π → G → 1 .

(ii) We shall write
ΔΣ

X/S

for the maximal pro-Σ quotient of ker
(
π1(X) → π1(S)

)
and set

ΠΣ
X/S := π1(X)/

(
ker

(
ker(π1(X) → π1(S))� ΔΣ

X/S
))

.

Thus, we have a commutative diagram of profinite groups

1 −−−−−−→ Ker(π1(X) → π1(S)) −−−−−−→ π1(X) −−−−−−→ π1(S)
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
∥∥∥∥

1 −−−−−−→ ΔΣ
X/S −−−−−−→ ΠΣ

X/S −−−−−−→ π1(S)

with exact rows and surjective vertical arrows. If S is the spectrum of a ring R, then
we shall write ΔΣ

X/R � ΔΣ
X/S and ΠΣ

X/R �ΠΣ
X/S.
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(iii) Suppose that the natural homomorphism π1(X) → π1(S) is surjective, or,
equivalently, ΠΣ

X/S → π1(S) is surjective. Then we have an exact sequence of profi-
nite groups

1 −→ ΔΣ
X/S −→ ΠΣ

X/S −→ π1(S) −→ 1 .

We shall write
ρ̃ΣX/S : ΠΣ

X/S −→ Aut(ΔΣ
X/S)

for the representation associated to the above exact sequence as in (i), and refer to
ρ̃ΣX/S as the pro-Σ representation associated to X/S. Moreover, we shall write

ρΣX/S : π1(S) −→ Out(ΔΣ
X/S)

for the outer representation associated to the above exact sequence as in (i), and refer
to ρΣX/S as the pro-Σ outer representation associated to X/S. If S is the spectrum

of a ring R, then we shall write ρ̃ΣX/R � ρ̃ΣX/S and ρΣX/R � ρΣX/S. Moreover, if � is a
prime number, then for simplicity, we write pro-� instead of pro-{�}.

(iv) Suppose that the natural homomorphism π1(X) → π1(S) is surjective, or,
equivalently, ΠΣ

X/S → π1(S) is surjective, and that the profinite group ΔΣ
X/S is topo-

logically finitely generated. Then we shall write

ΠΣ
X/S�ΦΣ

X/S � Im(ρ̃ΣX/S)

for the quotient of ΠΣ
X/S determined by the pro-Σ representation ρ̃ΣX/S associated to

X/S. Moreover, we shall write

π1(S)� ΓΣX/S � Im(ρΣX/S)

for the quotient of π1(S) determined by the pro-Σ outer representation ρΣX/S associ-

ated to X/S. If S is the spectrum of a ring R, then we shall write ΦΣ
X/R �ΦΣ

X/S and

ΓΣX/R � Γ
Σ
X/S.

(v) Let π1(X)� Q be a quotient of π1(X). Then we shall say that a finite étale
cover Y → X is a finite étale Q-cover if Y is connected, and Y → X arises from an
open subgroup of Q, i.e., the open subgroup of π1(X) corresponding to the connected
finite étale covering Y → X contains the kernel of the surjection π1(X)�Q.

Remark 2. In the notation of Definition 1, if S is the spectrum of a field k, then it
follows from [SGA1, Exposé V, Proposition 6.9] that π1(X) → π1(S) is surjective
if and only if X is geometrically connected over k. Suppose, moreover, that X is
geometrically connected and of finite type over S. Then it follows from [SGA1,
Exposé IX, Théorème 6.1] that the natural sequence of profinite groups

1 −→ π1(X⊗k ksep) −→ π1(X) −→ π1(S) −→ 1

is exact, where ksep is a separable closure of k. Thus, in this case, it follows that
ΔΣ

X/k is naturally isomorphic to the maximal pro-Σ quotient of the étale fundamental

group π1(X⊗k ksep) of X⊗k ksep. In particular, if k is of characteristic 0, then ΔΣ
X/k is

topologically finitely generated by [SGA7-I, Exposé II, Théorème 2.3.1].
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Remark 3. In the notation of Definition 1, suppose that X is a hyperbolic curve
over S. Since S is regular, it follows from [SGA1, Exposé X, Théorème 3.1] that the
natural homomorphism π1(ηS) → π1(S), where we write ηS for the generic point of
S, is surjective. In light of the surjectivity of π1(X ×S ηS) → π1(ηS), see Remark 2,
we conclude that the natural homomorphism π1(X) → π1(S) is surjective. In partic-
ular, we have an exact sequence of profinite groups

1 −→ ΔΣ
X/S −→ ΠΣ

X/S −→ π1(S) −→ 1 .

If, moreover, every element of Σ is invertible on S, then it follows as in the proof
of [Hos09, Lemma 1.1] that ΔΣ

X/S is naturally isomorphic to the maximal pro-Σ
quotient of the étale fundamental group π1(X ×S s), where s → S is a geometric
point of S. In particular, it follows immediately from the well-known structure of
the maximal pro-Σ quotient of the fundamental group of a smooth curve over an
algebraically closed field of characteristic � Σ that ΔΣ

X/S is topologically finitely
generated and slim. Thus, we have continuous homomorphisms

ρ̃ΣX/S : ΠΣ
X/S −→ Aut(ΔΣ

X/S) ,

ρΣX/S : π1(S) −→ Out(ΔΣ
X/S) .

Moreover, there exists a natural bijection between the set of the cusps of X/S and
the set of the conjugacy classes of the cuspidal inertia subgroups of ΔΣ

X/S.

Lemma 4 (Outer representations arising from certain extensions). Let

1 −→ Δ −→ Π −→ G −→ 1 (8.1)

be an exact sequence of profinite groups. Suppose that Δ is topologically finitely
generated and center-free. Write ρ̃ : Π −→ Aut(Δ) and ρ : G −→ Out(Δ) for the
continuous homomorphisms arising (8.1), see Definition 1 (i). Then we have:

(i) The natural surjection Π � G induces an isomorphism

Ker(ρ̃) = ZΠ (Δ)
∼−→ Ker(ρ) .

In particular, Δ∩Ker(ρ̃) = {1}.
(ii) The normal closed subgroup Ker(ρ̃) ⊆ Π is the maximal normal closed sub-

group N of Π such that N∩Δ = {1}.
(iii) Write Aut(Δ ⊆ Π) ⊆ Aut(Π) for the subgroup of Aut(Π) consisting of auto-

morphisms which preserve the closed subgroup Δ ⊆ Π . Suppose that ZΠ (Δ) = {1}.
Then the natural homomorphism Aut(Δ ⊆ Π) → Aut(Δ) is injective, and its image
coincides with NAut(Δ)(Im(ρ̃)) ⊆ Aut(Δ), i.e.,

Aut(Δ ⊆ Π)
∼−→ NAut(Δ)(Im(ρ̃)) ⊆ Aut(Δ) .

Proof. Assertion (i) follows immediately from the definitions involved. Next, we
verify assertion (ii). Let N ⊆ Π be a normal closed subgroup such that Δ∩N = {1}.
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Then since Δ and N are both normal in Π , for any x ∈ Δ, y ∈ N, it holds that
xyx−1y−1 ∈ Δ∩ N = {1}. In particular, we obtain N ⊆ ZΠ (Δ) = Ker(ρ̃) by (i). This
completes the proof of assertion (ii).

Finally, we verify assertion (iii). It follows from the definitions that the natural
homomorphism Aut(Δ ⊆ Π) → Aut(Δ) factors through NAut(Δ)(Im(ρ̃)) ⊆ Aut(Δ). On
the other hand, since the natural surjection Π � Im(ρ̃) is an isomorphism, cf. asser-
tion (i), conjugation by elements of NAut(Δ)(Im(ρ̃)) determines a homomorphism

NAut(Δ)(Im(ρ̃)) → Aut(Im(ρ̃))
∼← Aut(Π) ,

which factors through Aut(Δ ⊆ Π) ⊆ Aut(Π). This homomorphism is the inverse of
the homomorphism in question. This completes the proof of assertion (iii). ��

Lemma 5 (Certain automorphisms of slim profinite groups). Let G be a topo-
logically finitely generated and slim profinite group and α ∈ Aut(G). If α induces
the identity automorphism on an open subgroup, then α is the identity.

Proof. Let H ⊆ G be an open subgroup of G such that α induces the identity auto-
morphism of H. By replacing H by the intersection of all G-conjugates of H, we may
assume that H is normal in G. Then since ZG(H) = {1}, it follows from Lemma 4
(iii), that α is the identity automorphism of G. ��

Proposition 6 (Fundamental exact sequences associated to certain schemes).
Let X be a regular and connected scheme over S such that π1(X) → π1(S) is surjec-
tive, and such that the profinite group ΔΣ

X/S is topologically finitely generated and
center-free. Then the following hold:

(i) We have a commutative diagram of profinite groups

1 �� ΔΣ
X/S

�� ΠΣ
X/S

��

ρ̃ΣX/S
��

π1(S)

ρΣX/S
��

�� 1

1 �� ΔΣ
X/S

�� ΦΣ
X/S

�� ΓΣX/S
�� 1

(8.2)

with exact rows and surjective vertical arrows.
(ii) The quotient ΠΣ

X/S � ΦΣ
X/S determined by ρ̃ΣX/S is the minimal quotient

ΠΣ
X/S�Q of ΠΣ

X/S such that Ker(ΠΣ
X/S�Q)∩ΔΣ

X/S = {1}.

Proof. Assertions (i) and (ii) follow from Lemma 4 (i) and (ii) respectively. ��

Definition 7. Let n be a nonnegative integer, (g,r) a pair of nonnegative integers
such that 2g−2+r > 0, S a regular and connected scheme, and X a hyperbolic curve
of type (g,r) over S.

(i) We shall write Xn for the n-th configuration space of X/S, i.e., the open
subscheme of the fiber product of n copies of X over S which represents the functor
from the category of schemes over S to the category of sets given by
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T� { (x1, · · · , xn) ∈ X(T)×n | xi � x j if i � j } ,

in particular, we have X0 = S. For a nonnegative integer m � n, we always regard
Xn as a scheme over Xm by the natural projection Xn → Xm to the first m factors.
Then Xn+1 is a hyperbolic curve of type (g,r+n) over Xn. If every element of Σ is
invertible on S, then we have continuous homomorphisms

ρ̃ΣXn+1/Xn
: ΠΣ

Xn+1/Xn
−→ Aut(ΔΣ

Xn+1/Xn
) ,

ρΣXn+1/Xn
: π1(Xn) −→ Out(ΔΣ

Xn+1/Xn
) ,

cf. Remark 3. Moreover, it follows immediately that Xn is naturally isomorphic to
the (n−m)-th configuration space of the hyperbolic curve Xm+1/Xm.

(ii) Let m � n be a nonnegative integer, T a regular and connected scheme over
S, and x ∈ Xm(T) a T-valued point of Xm. Then we shall write

X[x] ⊆ X×S T

for the open subscheme of X ×S T obtained as the complement of the images of
the m distinct T-valued points of X×S T determined by the T-valued point x. Then
X[x] is naturally a hyperbolic curve of type (g,r+m) over T, and the base change of
Xn → Xm via x is naturally isomorphic to the (n−m)-th configuration space X[x]n−m
of the hyperbolic curve X[x]/T, i.e., the following diagram

X[x]n−m −−−−−−→ Xn⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

T −−−−−−→
x

Xm

is a cartesian diagram of schemes.
(iii) Let T be a regular and connected scheme over S and x, y ∈ Xn(T) two T-

valued points of Xn. Then we shall say that x is equivalent to y if there exists an
isomorphism X[x]

∼→ X[y] over T.

Definition 8. Let n be a nonnegative integer, S a regular and connected scheme, T
a regular and connected scheme over S, and X a hyperbolic curve over S, and let
x ∈ Xn(T) be a T-valued point of the n-th configuration space. For any prime �

invertible on S, we write ΓT,x,� ⊆ Γ{�}Xn+1/Xn
for the image of the composite

π1(T)
π1(x)
→ π1(Xn)

ρ
{�}
Xn+1/Xn
� Γ

{�}
Xn+1/Xn

and Γgeom,� ⊆ Γ{�}Xn+1/Xn
for the image of the composite

Ker
(
π1(Xn) → π1(S)

)
↪→ π1(Xn)

ρ{�}
Xn+1/Xn
� Γ

{�}
Xn+1/Xn

,
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cf. Definitions 1 (iii), (iv), 7 (i).
(i) We shall say that a T-valued point x ∈ Xn(T) is �-monodromically full if

ΓT,x,� contains Γgeom,�. We shall say that x is quasi-�-monodromically full if the
intersection ΓT,x,� ∩Γgeom,� is an open subgroup of Γgeom,�.

(ii) Suppose that every element of Σ is invertible on S. Then we shall say
that a T-valued point x ∈ Xn(T) is Σ-monodromically full (respectively, quasi-Σ-
monodromically full) if it is �-monodromically full (respectively, quasi-�-mono-
dromically full) for every � ∈ Σ in the sense of (i).

(iii) Moreover, we shall say that a point x ∈ Xn of Xn is Σ-monodromically
full (respectively, quasi-Σ-monodromically full) if, for any � ∈ Σ, the correspond-
ing k(x)-valued point of Xn, where we write k(x) for the residue field at x, is Σ-
monodromically full (respectively, quasi-Σ-monodromically full).

Remark 9. (i) Note that in Definition 8, since the closed subgroup Γgeom,� ⊆ Γ{�}Xn+1/Xn
is normal, whether or not ΓT,x,� contains Γgeom,� (respectively, ΓT,x,� ∩Γgeom,� is an
open subgroup of Γgeom,�) does not depend on the choice of the homomorphism
π1(x) : π1(T) → π1(Xn) induced by x ∈ Xn(T) among the various π1(Xn)-conjugates.

(ii) As the terminologies suggest, it follows immediately from the definitions that
Σ-monodromic fullness implies quasi-Σ-monodromic fullness.

Remark 10. The notion of (quasi-)monodromic fullness defined in Definition 8, as
well as the notion of (quasi-)monodromic fullness defined in [Hos11, Definitions
2.1 and 2.2], is motivated by the study by Matsumoto and Tamagawa of the dif-
ference between the profinite and pro-� outer Galois representaions associated to
a hyperbolic curve, cf. [MT00]. A consequence obtained from the main result of
[MT00] is the following: Suppose that S is the spectrum of a finite extension k/Q.
Let k be an algebraic closure of k. Then for any closed point x of Xn, the image of
the profinite outer Galois representation associated to the hyperbolic curve X[x] has
trivial intersection with the image of the profinite outer monodromy representation
associated to Xn+1 ⊗k k/Xn ⊗k k. On the other hand, for any prime number �, there
exist many �-monodromically full closed points of Xn, i.e., a closed point x such that
the image of the pro-� outer Galois representation associated to the hyperbolic curve
X[x] contains the image of the pro-� outer monodromy representation associated to
Xn+1 ⊗k k/Xn ⊗k k, cf. Remark 14 below.

Remark 11. (i) In the notation of Definition 8, if S is the spectrum of a field k of
characteristic 0, then it follows that for a closed point x ∈ Xn of Xn with residue
field k(x), the following two conditions are equivalent:

• The closed point x ∈ Xn is a Σ-monodromically full (respectively, quasi-Σ-
monodromically full) point in the sense of Definition 8.

• The k(x)-rational point of Xn ⊗k k(x) determined by x is a Σ-monodromically
full (respectively, quasi-Σ-monodromically full) point with respect to the hy-
perbolic curves Xn+1 ⊗k k(x)/Xn ⊗k k(x) in the sense of [Hos11, Definition 2.1].

(ii) If X= P1
k \{0,1,∞}, then Xn =M0,n+3 ⊗

Z
k, the moduli stack of smooth proper

curves of genus 0 with n+ 3 ordered marked points, and for a closed point x ∈ Xn
with residue field k(x), the following two conditions are equivalent:
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• The closed point x ∈ Xn is a Σ-monodromically full (respectively, quasi-Σ-
monodromically full) point in the sense of Definition 8.

• The hyperbolic curve X[x] over k(x), cf. Definition 7 (ii), is a Σ-monodromically
full (respectively, quasi-Σ-monodromically full) hyperbolic curve over k(x) in
the sense of [Hos11, Definition 2.2].

Remark 12. In the notation of Definition 8, suppose that S = T. Then it follows from
the various definitions involved that the following two conditions are equivalent:

(i) The S-valued point x ∈ Xn(S) is a Σ-monodromically full (respectively, quasi-
Σ-monodromically full) point.

(ii) For any � ∈ Σ, the following composite is surjective (resp. has open image)

π1(S)
π1(x)
→ π1(Xn)

ρ
{�}
Xn+1/Xn
� Γ

{�}
Xn+1/Xn

.

Proposition 13 (Existence of many monodromically full points). Let Σ be a
nonempty finite set of prime numbers, k a finitely generated extension of Q, and
X a hyperbolic curve over k. Let n be a positive integer, and Xn the n-th configu-
ration space of X/k. Let Xcl

n be the set of closed points of Xn, and XΣ-MF
n ⊆ Xcl

n the
subset of Xcl

n consisting of closed points of Xn which are Σ-monodromically full. If
we regard Xcl

n as a subset of Xn(C), then the subset

XΣ-MF
n ⊆ Xn(C)

is dense with respect to the complex topology of Xn(C). Moreover, if X has genus
0, then the complement in Xn(k) of Xn(k) ∩XΣ-MF

n forms a thin set in Xn(k) in the
sense of Serre.

Proof. This follows from [Hos11, Theorem 2.3], together with Remark 11(i). ��

Remark 14. Let n > 0 be an integer, Σ a nonemtpy subset ofPrimes, k a finite exten-
sion of Q, and X a hyperbolic curve over k. For a closed point x ∈ Xn with residue
field k(x), as in Definition 8, write Γk,x,Σ ⊆ ΓΣXn+1/Xn

for the image of the composite

π1
(
Spec(k(x))

) π1(x)
→ π1(Xn)

ρΣXn+1/Xn
� ΓΣXn+1/Xn

and write Γgeom,Σ ⊆ ΓΣXn+1/Xn
for the image of the composite

Ker
(
π1(Xn) → π1(Spec(k))

)
↪→ π1(Xn)

ρΣXn+1/Xn
� ΓΣXn+1/Xn

.

Now, Proposition 13 asserts that many closed points of Xn satisfy Γgeom,{�} ⊂ Γk,x,{�}.
On the other hand, it follows immediately from [MT00, Theorem 1.1] and [HM11,
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Corollary 6.4] that for any closed point x ∈ Xn, we have Γk,x,Primes ∩Γgeom,Primes =

{1}. In particular, since Γgeom,Primes � {1}, the inclusion Γgeom,Primes ⊂ Γk,x,Primes
never holds.

8.4 Fundamental Groups of Configuration Spaces

We consider the fundamental groups of configuration spaces of hyperbolic curves.
Let Σ be a nonempty subset of Primes, S a regular and connected scheme, and X a
hyperbolic curve over S. Suppose that every element of Σ is invertible on S.

Lemma 15 (Fundamental groups of configuration spaces). Let 0 � m < n be in-
tegers. Suppose that Σ = Primes or that Σ = {�} for one prime �. Then we have:

(i) The natural homomorphism π1(Xn) → π1(Xm) is surjective. Thus, we have an
exact sequence of profinite groups

1 −→ ΔΣ
Xn/Xm

−→ ΠΣ
Xn/Xm

−→ π1(Xm) −→ 1 .

(ii) For a geometric point x → Xm, the group ΔΣ
Xn/Xm

is naturally isomorphic to
the maximal pro-Σ quotient of the étale fundamental group π1(Xn ×Xm

x).
(iii) Let T be a regular and connected scheme over S and x ∈ Xm(T) a T-valued

point of Xm. Then the homomorphism

ΔΣ
X[x]n−m/T −→ ΔΣ

Xn/Xm

determined by the cartesian square of schemes of Definition 7(ii)

X[x]n−m −−−−−−→ Xn⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

T −−−−−−→
x

Xm

is an isomorphism. In particular, the right-hand square of the diagram

1 −−−−−−→ ΔΣ
X[x]n−m/T −−−−−−→ ΠΣ

X[x]n−m/T −−−−−−→ π1(T) −−−−−−→ 1

%
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#π1(x)

1 −−−−−−→ ΔΣ
Xn/Xm

−−−−−−→ ΠΣ
Xn/Xm

−−−−−−→ π1(Xm) −−−−−−→ 1,

with exact rows, is cartesian.
(iv) We have a natural exact sequence of profinite groups

1 −→ ΔΣ
Xn/Xm

−→ ΔΣ
Xn/S −→ ΔΣ

Xm/S −→ 1 .

(v) The profinite group ΔΣ
Xn/Xm

is topologically finitely generated and slim. Thus,
we have representations
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ρ̃ΣXn/Xm
: ΠΣ

Xn/Xm
−→ Aut(ΔΣ

Xn/Xm
) ,

ρΣXn/Xm
: π1(Xm) −→ Out(ΔΣ

Xn/Xm
) .

(vi) Let T be a regular and connected scheme over S and x ∈ Xm(T) a T-valued
point of Xm. Then the diagram of profinite groups

π1(T)
ρΣX[x]n−m/T−−−−−−−−→ Out(ΔΣ

X[x]n−m/T)

π1(x)
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#%

π1(Xm) −−−−−−→
ρΣXn/Xm

Out(ΔΣ
Xn/Xm

)

cf. assertion (v), where the right-hand vertical arrow is the isomorphism de-
termined by the isomorphism obtained in assertion (iii), commutes.

(vii) The centralizer
ZΔΣ

Xn/S
(ΔΣ

Xn/Xm
)

of ΔΣ
Xn/Xm

in ΔΣ
Xn/S is trivial.

(viii) The pro-Σ outer representation associated to Xn/Xm

ρΣXn/Xm
: π1(Xm) −→ Out(ΔΣ

Xn/Xm
)

factors through the natural surjection π1(Xm)� ΠΣ
Xm/S, and, moreover, the

composite of the natural inclusion ΔΣ
Xm/S ↪→ ΠΣ

Xm/S and the resulting homo-

morphism ΠΣ
Xm/S → Out(ΔΣ

Xn/Xm
) is injective.

Proof. First, we verify assertion (i). By induction on n−m, we may assume without
loss of generality that n = m+1, Then Xn → Xm is a hyperbolic curve over Xm. The
desired surjectivity follows from Remark 3.

Next, we verify assertion (ii). It is immediate that there exists a connected fi-
nite étale cover Y → Xm of Xm which satisfies the condition (c) in the statement of
[MT08, Proposition 2.2], hence also (a), (b), and (c) of [MT08, Proposition 2.2],
which therefore implies that if y → Y is a geometric point, then ΔΣ

Xn×Xm Y/Y is natu-

rally isomorphic to the maximal pro-Σ quotient of π1(Xn ×Xm
y). On the other hand,

it follows from the various definitions involved that ΔΣ
Xn×Xm Y/Y is naturally isomor-

phic to ΔΣ
Xn/Xm

. Thus, assertion (ii) follows from the fact that any geometric point
of Xm arises from a geometric point of Y. This completes the proof of assertion (ii).

Assertion (iii) follows immediately from assertion (ii). Assertion (iv) (respec-
tively, (v)) follows immediately from [MT08, Proposition 2.2 (iii) (respectively,
(ii))], together with assertion (ii). Assertion (vi) follows immediately from asser-
tion (iii).

Next, we verify assertion (vii). Since ΔΣ
Xn/Xm

is center-free, cf. assertion (v), it

holds that ZΔΣ
Xn/S

(ΔΣ
Xn/Xm

)∩ΔΣ
Xn/Xm

= {1}. Thus, to verify assertion (vii), by replacing

ΔΣ
Xn/S by the quotient
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ΔΣ
Xm+1/S

∼← ΔΣ
Xn/S/Δ

Σ
Xn/Xm+1

,

cf. assertion (iv), of ΔΣ
Xn/S by ΔΣ

Xn/Xm+1
⊆ (ΔΣ

Xn/Xm
⊆) ΔXn/S, we may assume without

loss of generality that n = m+1. Then it follows from Lemma 4 (i) that it suffices to
show that the outer representation ΔΣ

Xm/S → Out(ΔΣ
Xm+1/Xm

) associated to the exact
sequence of profinite groups

1 −→ ΔΣ
Xm+1/Xm

−→ ΔΣ
Xm+1/S −→ ΔΣ

Xm/S −→ 1 ,

cf. assertion (iv), is injective. On the other hand, this injectivity follows immediately
from [Asa01, Theorem 1], together with [Asa01, Remark following the proof of
Theorem 1]. This completes the proof of assertion (vii).

Finally, we verify assertion (viii). The fact that the pro-Σ outer representation
ρΣXn/Xm

factors through the natural surjection π1(Xm)�ΠΣ
Xm/S follows immediately

from assertion (iv). The fact that the composite in question is injective follows
immediately from assertion (vii), together with Lemma 4 (i). ��

Proposition 16 (Monodromic fullness and base changing). Let n be a positive
integer, T a regular and connected scheme over S, and x ∈ Xn(T) a T-valued point
of Xn. Then the following hold:

(i) The point x is (quasi-)Σ-monodromically full if and only if the T-valued point
of Xn ×S T determined by x is (quasi-)Σ-monodromically full.

(ii) Let T′ be a regular and connected scheme over S and T′ → T a morphism
over S such that the natural outer homomorphism π1(T′) → π1(T) is surjective (re-
spectively, has open image, e.g., T′ → T is a connected finite étale cover). Then
the point x is Σ-monodromically full (respectively, quasi-Σ-monodromically full) if
and only if the T′-valued point of Xn determined by x is Σ-monodromically full
(respectively, quasi-Σ-monodromically full).

Proof. This follows immediately from Lemma 15 (vi), and Remark 12. ��

Lemma 17 (Extensions arising from FC-admissible outer automorphisms). Let
m < n be positive integers, G a profinite group, and

1 −→ ΔΣ
Xn/S −→ En −→ G −→ 1

an exact sequence of profinite groups with associated outer representation

φ : G −→ Out(ΔΣ
Xn/S).

Suppose that Σ is either Primes or {�} for one prime number �, and that φ factors
through the closed subgroup

OutFC(ΔΣ
Xn/S) ⊆ Out(ΔΣ

Xn/S) ,

where we refer to [Moc10, Definition 1.1 (ii)] concerning OutFC.
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With2 Bm = En/Δ
Σ
Xn/Xm

and the natural isomorphism ΔΣ
Xn/S/Δ

Σ
Xn/Xm

∼−→ ΔΣ
Xm/S, cf.

Lemma 15 (iv), we have exact sequences of profinite groups

1 −→ ΔΣ
Xn/Xm

−→ En −→ Bm −→ 1 ,

1 −→ ΔΣ
Xm/S −→ Bm −→ G −→ 1 .

and the corresponding continuous representations

ρ : Bm −→ Out(ΔΣ
Xn/Xm

) ,

ρ̃ : Bm −→ Aut(ΔΣ
Xm/S) .

Then the following hold:

(i) The natural surjection Bm� G induces an isomorphism Ker(ρ̃)
∼→ Ker(φ).

(ii) Ker(ρ) = Ker(ρ̃) = ZBm
(ΔΣ

Xm/S).

(iii) ZEn
(ΔΣ

Xn/Xm
) = ZEn

(ΔΣ
Xn/S).

(iv) The natural surjections En� Bm�G induce isomorphisms

ZEn
(ΔΣ

Xn/Xm
) = ZEn

(ΔΣ
Xn/S)

∼−→ Ker(ρ) = Ker(ρ̃) = ZBm
(ΔΣ

Xm/S)
∼−→ Ker(φ) .

Proof. First, we verify assertion (i). Write Z ⊆ Bm for the image of the centralizer
ZEn

(ΔΣ
Xn/S) of ΔΣ

Xn/S in En via the natural surjection En � Bm. Then it follows
immediately that

Z ⊆ ZBm
(ΔΣ

Xm/S) .

Now I claim that

(#1) the surjection Bm�G induces an isomorphism Z
∼→ Ker(φ).

Indeed, since ΔΣ
Xn/S is center-free by Lemma 15 (v), we have

ΔΣ
Xn/S ∩ZEn

(ΔΣ
Xn/S) = {1} .

In particular, the natural surjection ZEn
(ΔΣ

Xn/S)� Z is an isomorphism. Thus claim
(#1) is equivalent to the fact that the surjection En�G induces an isomorphism

ZEn
(ΔΣ

Xn/S)
∼→ Ker(φ) .

This follows immediately from ΔΣ
Xn/S being center-free, together with Lemma 4 (i).

This completes the proof of claim (#1).
Next, I claim that

(#2) Z = ZBm
(ΔΣ

Xm/S).

Indeed, by Lemma 4 (i), the image of ZBm
(ΔΣ

Xm/S) ⊆ Bm via the natural surjection
Bm� G coincides with the kernel of the composite

2 Note that since φ factors through OutFC(ΔΣ
Xn/S), it follows immediately that ΔΣ

Xn/Xm
is a normal

closed subgroup of En.
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G
φ

−→ OutFC(ΔΣ
Xn/S) −→ OutFC(ΔΣ

Xm/S) ,

where the second arrow is the homomorphism induced by the natural surjection
ΔΣ

Xn/S � ΔΣ
Xm/S, cf. Lemma 15 (iv). Thus, by [HM11, Theorem B], the image of

ZBm
(ΔΣ

Xm/S) ⊆ Bm via the surjection Bm � G coincides with Ker(φ). On the other

hand, since ΔΣ
Xm/S is center-free, it holds that ΔΣ

Xm/S ∩ZBm
(ΔΣ

Xm/S) = {1}. Thus, since

Z ⊆ ZBm
(ΔΣ

Xm/S), by considering the images of Z and ZBm
(ΔΣ

Xm/S) in G, claim (#1)

implies that Z = ZBm
(ΔΣ

Xm/S). This completes the proof of claim (#2).

Now it follows from Lemma 4 (i) that Ker(ρ̃) = ZBm
(ΔΣ

Xm/S). Thus, assertion (i)
follows from the claims (#1), (#2).

Next, we verify assertion (ii). Now I claim that

(#3) Ker(ρ̃) ⊆ Ker(ρ).

Indeed, claim (#2) and Lemma 4 (i) imply that Ker(ρ̃) = ZBm
(ΔΣ

Xm/S) = Z. On

the other hand, since ZEn
(ΔΣ

Xn/S) ⊆ ZEn
(ΔΣ

Xn/Xm
), cf. Lemma 15 (iv), it follows from

Lemma 4 (i), together with the definition of Z ⊆ Bm, that Z ⊆ Ker(ρ). This completes
the proof of claim (#3).

Now, by Lemma 15 (viii), we have Ker(ρ) ∩ ΔΣ
Xm/S = {1}. Thus, assertion (ii)

follows immediately from claim (#3), together with Lemma 4 (ii).
We verify assertion (iii). Observe that ZEn

(ΔΣ
Xn/S) ⊆ ZEn

(ΔΣ
Xn/Xm

), cf. Lemma 15
(iv). It follows from Lemma 4 (i) (respectively claim (#2), together with
Lemma 4 (i)) that the image of ZEn

(ΔΣ
Xn/Xm

) (respectively, ZEn
(ΔΣ

Xn/S)) via the
natural surjection En � Bm coincides with Ker(ρ) (respectively, Ker(ρ̃)). On the
other hand, since ΔΣ

Xn/Xm
is center-free, we have ΔΣ

Xn/Xm
∩ZEn

(ΔΣ
Xn/Xm

) = {1}. There-

fore, by considering the images of ZEn
(ΔΣ

Xn/S) and ZEn
(ΔΣ

Xn/Xm
) in Bm, assertion (iii)

follows from assertion (ii).
Assertion (iv) follows immediately from assertions (i), (ii), and (iii), together

with Lemma 4 (i). ��

Remark 18. A similar result to Lemma 17 (ii) can be found in [Bog09, Thm. 2.5].

Proposition 19 (Two quotients of the fundamental group of a configuration
space). Let m < n be positive integers, T a regular and connected scheme over S,
and x ∈ Xm(T) a T-valued point of Xm. Suppose that Σ is either Primes or {�} for
one prime �. Then the following hold:

(i) The kernel of the pro-Σ representation associated to Xm/S

π1(Xm)�ΠΣ
Xm/S

ρ̃ΣXm/S
→ Aut(ΔΣ

Xm/S)

coincides with the kernel of the pro-Σ outer representation

ρΣXn/Xm
: π1(Xm) → Out(ΔΣ

Xn/Xm
)
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associated to Xn/Xm, i.e., the two quotients ΦΣ
Xm/S and ΓΣXn/Xm

of ΠΣ
Xm/S co-

incide. In particular, we obtain a commutative diagram of profinite groups

1 −−−−−−→ ΔΣ
Xm/S −−−−−−→ ΠΣ

Xm/S −−−−−−→ π1(S) −−−−−−→ 1
∥∥∥∥

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ ΔΣ
Xm/S −−−−−−→ ΓΣXn/Xm

−−−−−−→ ΓΣXm/S −−−−−−→ 1

with exact rows and surjective vertical arrows.
(ii) The kernel of the pro-Σ outer representation associated to X[x]n−m/T

ρΣX[x]n−m/T : π1(T) → Out(ΔΣ
X[x]n−m/T)

and the kernel of the composite

π1(T)
π1(x)
→ π1(Xm)�ΠΣ

Xm/S

ρ̃ΣXm/S→ Aut(ΔΣ
Xm/S)

coincide. In particular, for a point x ∈ X(T) and U � (X ×S T) \ Im(x), the
kernel of the pro-Σ outer representation associated to U/T

ρΣU/T : π1(T) → Out(ΔΣ
U/T)

coincides with the kernel of the composite

π1(T)
π1(x)
→ π1(X)� ΠΣ

X/S

ρ̃ΣX/S→ Aut(ΔΣ
X/S) .

(iii) The following two conditions are equivalent:

(iii-1) The T-valued point x ∈ Xn(T) is (resp. quasi-)Σ-monodromically full.
(iii-2) For any � ∈ Σ, if we write ΦT ⊆ Φ{�}

Xm/S for the image of the composite

π1(T)
π1(x)
→ π1(Xm)� Π {�}

Xm/S

ρ̃
{�}
Xm/S
� Φ{�}

Xm/S

and Φgeom ⊆ Φ{�}
Xm/S for the image of the composite

Ker
(
π1(Xm) → π1(S)

)
↪→ π1(Xm)�Π {�}

Xm/S

ρ̃
{�}
Xm/S
� Φ{�}

Xm/S ,

then ΦT contains Φgeom (respectively, ΦT ∩Φgeom is an open subgroup of
Φgeom).

(iv) If S = T, then the following two conditions are equivalent:

(iv-1) The S-valued point x ∈ Xn(S) is (resp. quasi-)Σ-monodromically full.
(iv-2) For any � ∈ Σ, the composite
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π1(S)
π1(x)
→ π1(Xm)�Π {�}

Xm/S

ρ̃
{�}
Xm/S
� Φ{�}

Xm/S

is surjective (respectively, has open image).

Proof. Assertion (i) follows from Lemma 17 (ii) and Proposition 6 (i). Assertion (ii)
follows from assertion (i) and Lemma 15 (vi). Assertion (iii) follows from assertion
(i), and assertion (iv) follows immediately from assertion (iii). ��

Lemma 20 (Extension via the outer universal monodromy representations). Let
(g,r) be a pair of nonnegative integers such that 2g − 2+ r > 0. Let n be a positive
integer and k a field of characteristic 0. Let s : Spec(k) → Mg,r be a morphism
of stacks corresponding to an r-pointed smooth curve C of genus g over k, and let
Cn → Mg,r+n be the natural morphism from the n-th configuration space Cn of C/k,
namely the base change of s by the morphism Mg,r+n → Mg,r obtained by forgetting
the last n sections.

Let Σ either be Primes or {�} for one prime �. Then Cn → Mg,r+n and the pro-Σ
outer universal monodromy representations, cf. [Hos11, Definition 1.3(ii)],

ρΣg,r : π1(Mg,r ⊗Z k) −→ Out(ΔΣ
g,r) ,

ρΣg,r+n : π1(Mg,r+n ⊗Z k) −→ Out(ΔΣ
g,r+n),

determine a commutative diagram of profinite groups

1 −−−−−−→ π1(Cn ⊗k k) −−−−−−→ π1(Mg,r+n ⊗Z k) −−−−−−→ π1(Mg,r ⊗Z k) −−−−−−→ 1
⏐⏐⏐⏐⏐# ρΣg,r+n

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#ρΣg,r

1 −−−−−−→ ΔΣ
Cn/k −−−−−−→ Im(ρΣg,r+n) −−−−−−→ Im(ρΣg,r) −−−−−−→ 1

with exact rows and surjective vertical arrows.

Proof. The sequence of stacks

Cn ⊗k k → Mg,r+n ⊗
Z

k → Mg,r ⊗Z k

gives rise to the commutative diagram of the statement of Lemma 20, cf. Lemma 15
(viii). The exactness of the top row follows from [MT00, Lemma 2.1].

To verify the exactness of the bottom row, we write Π for the quotient of
π1(Mg,r+n ⊗Z k) by the kernel of the natural surjection π1(Cn ⊗k k)� ΔΣ

Cn/k, i.e.,

Π = ΠΣ
Mg,r+n⊗Zk/Mg,r⊗Zk

with notation as in Definition 1 (ii), and

ρ̃ : Π → Aut(ΔΣ
Cn/k) and ρ : π1(Mg,r ⊗Z k) → Out(ΔΣ

Cn/k)

for the (outer) representation associated to the natural exact sequence
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1 −→ ΔΣ
Cn/k −→ Π −→ π1(Mg,r ⊗Z k) −→ 1 .

Then it follows from [HM11, Theorem B] that Ker(ρ) = Ker(ρΣg,r). On the other
hand, by Lemma 15 (viii), ρΣg,r+n : π1(Mg,r+n ⊗Z k) → Out(ΔΣ

g,r+n) factors through
the natural surjection π1(Mg,r+n ⊗

Z
k)�Π . Moreover, by Lemma 17 (ii), the kernel

of the homomorphism Π → Out(ΔΣ
g,r+n) determined by ρΣg,r+n coincides with Ker(ρ̃).

Therefore, the exactness of the bottom rows follows from Lemma 15 (v), together
with Lemma 4 (i). This completes the proof of Lemma 20. ��
Proposition 21 (Monodromically full curves and monodromically full points).
Suppose that S is the spectrum of a field k of characteristic 0. Let n be a posi-
tive integer and x ∈ Xn(k). Then the hyperbolic curve X[x] over k is (quasi-)Σ-
monodromically full, cf. [Hos11, Definition 2.2], if and only if the following two
conditions are satisfied:

(i) The hyperbolic curve X over k is (quasi-)Σ-monodromically full.
(ii) The k-rational point x ∈ Xn(k) is (quasi-)Σ-monodromically full.

Proof. Suppose that X is of type (g,r). By the definition of (quasi-)monodromic
fullness, we may replace Σ by {�} for � ∈ Σ and treat one prime at a time.

Moreover, again by the definition of (quasi-)monodromic fullness, we may re-
place k by the minimal Galois extension over which X is split, see [Hos11, Defini-
tion 1.5 (i)] for the term split. Hence, we may assume that X is split over k, i.e., the
classifying morphism Spec(k) → Mg,[r] factors as sX : Spec(k) → Mg,r through the
natural Mg,r → Mg,[r]. Then, by Lemma 20, we have a commutative diagram

π1(Spec(k))

π1(x)
⏐⏐⏐⏐⏐#

1 −−−−−−→ π1(Xn ⊗k k) −−−−−−→ π1(Xn) −−−−−−→ π1(Spec(k)) −−−−−−→ 1
∥∥∥∥

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#π1(sX)

1 −−−−−−→ π1(Xn ⊗k k) −−−−−−→ π1(Mg,r+n ⊗
Z

k) −−−−−−→ π1(Mg,r ⊗Z k) −−−−−−→ 1
⏐⏐⏐⏐⏐# ρΣg,r+n

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#ρΣg,r

1 −−−−−−→ ΔΣ
Xn/k −−−−−−→ Im(ρΣg,r+n) −−−−−−→ Im(ρΣg,r) −−−−−−→ 1

with exact rows, where π1(x) and π1(sX) are the outer homomorphisms induced
by x, sX, respectively. By definition, the composite of the three middle verti-
cal arrows π1(Spec(k)) → Im(ρΣg,r+n) coincides with the outer pro-Σ representation
ρΣX[x]/k associated to X[x]/k, and the composite of the two right-hand vertical ar-

rows π1(Spec(k)) → Im(ρΣg,r) coincides with the outer pro-Σ representation ρΣX/k
associated to X/k. Therefore, again by the various definitions involved, cf. also
Remark 12, if we write ρ : π1(Xn) → Im(ρΣg,r+n) for the composite of the middle
vertical arrow π1(Xn) → π1(Mg,r+n ⊗Z k) and the lower middle vertical arrow ρΣg,r+n,
then
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• the hyperbolic curve X[x] is Σ-monodromically full (respectively, quasi-Σ-mo-
nodromically full) if and only if the composite of the three middle vertical ar-
rows, i.e., ρΣX[x]/k , is surjective (respectively, has open image in Im(ρΣg,r+n)),

• the hyperbolic curve X is Σ-monodromically full (respectively, quasi-Σ-mo-
nodromically full) if and only if the composite of the two right-hand vertical
arrows, i.e., ρΣX/k, is surjective (respectively, has open image in Im(ρΣg,r)), and

• the k-rational point x ∈ Xn(k) of Xn is Σ-monodromically full (respectively,
quasi-Σ-monodromically full) if and only if the image of the composite of the
three middle vertical arrows, i.e., ρΣX[x]/k , coincides with the image of ρ (respec-
tively, is an open subgroup of the image of ρ).

One now may easily verify that Proposition 21 holds. ��

Remark 22. One verifies easily that P1
k \ {0,1,∞} is a Primes-monodromically full

hyperbolic curve, cf. [Hos11, Definition 2.2 (ii)]. Thus, one may regard Proposi-
tion 21 as a generalization of Remark 11(ii).

8.5 Kernels of the Outer Representations Associated
to Configuration Spaces

In the present section, we consider the kernels of the outer representations associ-
ated to configuration spaces of hyperbolic curves. Let Σ ⊆ Primes be a nonempty
subset of Primes, S a regular and connected scheme such that every element of Σ is
invertible on S, and X a hyperbolic curve over S.

Lemma 23 (Difference between kernels of outer representations arising from
extensions). In the commutative diagram of profinite groups with exact rows

1 −−−−−−→ Δ′ −−−−−−→ Π ′ −−−−−−→ G −−−−−−→ 1

α

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

∥∥∥∥
1 −−−−−−→ Δ −−−−−−→ Π −−−−−−→ G −−−−−−→ 1

where the right-hand vertical arrow is the identity of G, we suppose that Δ and Δ′

are topologically finitely generated. Write

ρ : G −→ Out(Δ) and ρ′ : G −→ Out(Δ′)

for the outer representations associated to the lower and top rows. Then the follow-
ing hold:

(i) If α is injective, then we have a natural exact sequence of profinite groups

1 −→ Ker(ρ)∩Ker(ρ′) −→ Ker(ρ)
ρ′

−→ Im(φ) ,

where we write φ for the outer representation induced by conjugation
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NΔ(Δ′)/Δ′ −→ Out(Δ′) .

(ii) If α is surjective, then we have an inclusion Ker(ρ′) ⊆ Ker(ρ).
(iii) If α is an open injection, and Δ is slim, then

ZΠ′ (Δ′) = ZΠ (Δ)∩Π ′ and Ker(ρ′) ⊆ Ker(ρ) .

Moreover, ZΠ (Δ) ⊆ Π ′ if and only if Ker(ρ′) = Ker(ρ).

Proof. Assertions (i) and (ii) follow immediately from the definitions. For assertion
(iii), since Δ and Δ′ are center-free, it follows from Lemma 4 (i) that it suffices to
prove ZΠ′ (Δ′) = ZΠ (Δ)∩Π ′. As Δ is topologically finitely generated and slim, this
follows from Lemma 5. This completes the proof of assertion (iii). ��

Proposition 24 (Monodromic fullness and partial compactifications). Let n be a
positive integer, T a regular and connected scheme over S, and x ∈ Xn(T) a T-valued
point of the n-th configuration space Xn of X/S. Suppose that the T-valued point x ∈
Xn(T) is Σ-monodromically full (respectively, quasi-Σ-monodromically full). Then
the following hold:

(i) Let Z be a hyperbolic partial compactification of X/S, i.e., a hyperbolic curve
Z over S which contains X as an open subscheme over S. Then the T-valued
point of Zn determined by x and the natural open immersion Xn ↪→ Zn is
Σ-monodromically full (respectively, quasi-Σ-monodromically full).

(ii) Let m < n be a positive integer. Then the T-valued point of Xm determined by
x is Σ-monodromically full (respectively, quasi-Σ-monodromically full).

Proof. By Proposition 16 (i), we may replace X by X×S T, and so we may assume
without loss of generality that S = T. Let � be a prime number in Σ. First, we verify
assertion (i). The natural open immersion X ↪→ Z induces a commutative diagram
of schemes

Xn+1 −−−−−−→ Xn⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

Zn+1 −−−−−−→ Zn ;

thus, we obtain a commutative diagram of profinite groups

1 −−−−−−→ Δ{�}
Xn+1/Xn

−−−−−−→ Π {�}
Xn+1/S −−−−−−→ Π {�}

Xn/S −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ Δ{�}
Zn+1/Zn

−−−−−−→ Π {�}
Zn+1/S −−−−−−→ Π {�}

Zn/S −−−−−−→ 1

with exact rows, cf. Lemma 15 (iv), and surjective vertical arrows, cf. Lemma 15
(ii). Then the right vertical arrow induces a surjection Γ{�}Xn+1/Xn

� Γ{�}Zn+1/Zn
, and

assertion (i) follows from Remark 12.
Next, we verify assertion (ii). We have a commutative diagram of schemes
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Xn+1 −−−−−−→ Xn⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

Xm+1 −−−−−−→ Xm

where the left-hand vertical arrow is the projection obtained as

(x1, · · · , xn+1) �→ (x1, · · · , xm, xn+1)

and the other arrows are the natural projections. We obtain a commutative diagram

1 −−−−−−→ Δ{�}
Xn+1/Xn

−−−−−−→ Π {�}
Xn+1/S −−−−−−→ Π {�}

Xn/S −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ Δ{�}
Xm+1/Xm

−−−−−−→ Π {�}
Xm+1/S −−−−−−→ Π {�}

Xm/S −−−−−−→ 1

with exact rows, cf. Lemma 15 (iv), and surjective vertical arrows, cf. Lemma 15
(i) (ii). Now the right-hand vertical arrow induces a surjective map Γ{�}Xn+1/Xn

�

Γ
{�}
Xm+1/Xm

. Thus, assertion (ii) follows from Remark 12. ��

Proposition 25 (Kernels of the outer representations associated to the funda-
mental groups of configuration spaces). Let n be a positive integer, T a regular
and connected scheme over S, Y → Xn a finite étale ΠΣ

Xn/S-cover, cf. Definition 1(v),
y ∈ Y(T) a T-valued point of Y. Write x ∈ Xn(T) for the T-valued point of Xn de-
termined by y. Suppose that Σ = Primes or that Σ = {�} for one prime number �.
Suppose, moreover, that the natural outer homomorphism π1(Y) → π1(S) is surjec-
tive. Thus, we have a commutative diagram of profinite groups

1 −−−−−−→ ΔΣ
Y/S −−−−−−→ ΠΣ

Y/S −−−−−−→ π1(S) −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
∥∥∥∥

1 −−−−−−→ ΔΣ
Xn/S −−−−−−→ ΠΣ

Xn/S −−−−−−→ π1(S) −−−−−−→ 1

with exact rows, where the vertical arrows are open injections, and ΔΣ
Y/S is topolog-

ically finitely generated and slim, cf. Lemma 15 (v). Then the following hold:
(i) Ker(ρΣY/S) is an open subgroup of Ker(ρΣXn/S), and Ker(ρΣXn/S) = Ker(ρΣY/S) if

and only if the cover Y → Xn is a finite étale ΦΣ
Xn/S-cover.

(ii) The natural inclusion ΠΣ
Y/S ↪→ ΠΣ

Xn/S induces a commutative diagram

1 −−−−−−→ ΔΣ
Y/S −−−−−−→ ΦΣ

Y/S −−−−−−→ ΓΣY/S −−−−−−→ 1
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ ΔΣ
Xn/S −−−−−−→ ΦΣ

Xn/S −−−−−−→ ΓΣXn/S −−−−−−→ 1
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with exact rows, where the left-hand and middle vertical arrows are open injection,
and the right-hand vertical arrow is a surjection with finite kernel.

(iii) The kernels of the following two composites coincide:

π1(T)
π1(y)
→ π1(Y)

ρ̃ΣY/S→ Aut(ΔΣ
Y/S) ,

π1(T)
π1(x)
→ π1(Xn)

ρ̃ΣXn/S→ Aut(ΔΣ
Xn/S) .

(iv) If n = 1, and Y is a hyperbolic curve over S, then, for UY � (Y×S T) \ Im(y)
and UX � (X×S T) \ Im(x), we have

Ker(ρΣUY/T) = Ker(ρΣUX/T) .

(v) Suppose that S = T, that Σ = {�}, and that x ∈ Xn(T) is �-monodromically full.
Then the cover Y → Xn is an isomorphism if and only if Ker(ρΣY/S)=Ker(ρΣXn/S), i.e.,
if the cover Y → Xn is not an isomorphism, then the cokernel of the natural inclusion
Ker(ρΣY/S) ↪→ Ker(ρΣXn/S) is nontrivial. If, moreover, ΔΣ

Y/S ⊆ ΔΣ
Xn/S is normal, then

we have an exact sequence of profinite groups

1 −→ Ker(ρΣY/S) −→ Ker(ρΣXn/S) −→ ΔΣ
Xn/S/Δ

Σ
Y/S −→ 1 .

Proof. Assertion (i) follows from Lemma 4 (i) and Lemma 23 (i) (iii). Assertion (ii)
follows from Lemma 4 (i) and Lemma 23 (i) (iii), together with Proposition 6 (i).

Assertion (iii) follows from assertion (ii). Assertion (iv) follows from assertion
(iii) together with Proposition 19 (ii).

Finally, we verify assertion (v). Since S = T, and x ∈ Xn(T) is �-monodromically
full it follows from Proposition 19 (iv) that the composite

π1(S)
π1(x)
→ π1(Xn)

ρ̃ΣXn/S
� ΦΣ

Xn/S

is surjective. Thus, by assertion (ii), we have a commutative diagram

1 −−−−−−→ ΔΣ
Y/S −−−−−−→ ΦΣ

Y/S −−−−−−→ ΓΣY/S −−−−−−→ 1
⏐⏐⏐⏐⏐# %

⏐⏐⏐⏐⏐#
⏐⏐⏐⏐⏐#

1 −−−−−−→ ΔΣ
Xn/S −−−−−−→ ΦΣ

Xn/S −−−−−−→ ΓΣXn/S −−−−−−→ 1

with exact rows, where the middle vertical arrow is an isomorphism. Therefore, if
the cover Y → Xn is not an isomorphism, then the kernel of the natural surjection
ΓΣY/S� Γ

Σ
Xn/S is nontrivial. If, moreover, ΔΣ

Y/S ⊆ ΔΣ
Xn/S is normal, then the exactness

of the sequence as in assertion (v) follows from Lemma 23 (i). This completes the
proof of assertion (v). ��

Remark 26. Let k/Q be a finite extension, (g0,r0) a pair of nonnegative integers such
that 2g0 −2+ r0 > 0, and N ⊆ π1(Spec(k)) a normal closed subgroup. Write
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IGal(�,k,g0,r0,N)

for the set of the isomorphism classes over k of hyperbolic curves C of type (g0,r0)
over k such that

N = ker
(
ρ{�}

C/k : π1(Spec(k)) −→ Out(Δ{�}
C/k)

)
.

Then, by [Hos11, Theorem C], the set IGal(�,k,g0,r0,N) is finite. On the other hand,
by Proposition 25 (i), in general,

IGal(�,k,N)�
⋃

2g−2+r>0

IGal(�,k,g,r,N)

is not finite. Indeed, let C be a hyperbolic curve over k such that there exists a k-
rational point x ∈ C(k) which is not quasi-�-monodromically full, e.g., C is a tripod,
cf. Proposition 33 (ii) and Theorem 41 below. Then, by Remark 12, the image of
the composite

φ : π1(Spec(k))
π1(x)
→ π1(C)� Φ{�}

C/k

is not open. Thus, there exists an infinite sequence of open subgroups of Φ{�}
C/k which

contain Im(φ)

Im(φ) ⊆ · · · �Φn � · · · �Φ2 �Φ1 �Φ0 = Φ{�}
C/k ,

hence also an infinite sequence of nontrivial connected finite étale covers of C

· · · −→ Cn −→ ·· · −→ C2 −→ C1 −→ C0 = C,

where we write Cn for the finite étale cover of C corresponding to the open subgroup
Φn ⊆Φ{�}

C/k. Then since Im(φ) ⊂Φn, Cn is a hyperbolic curve over k. Moreover, since

Cn is a finite étale Φ{�}
C/k-cover, it follows from Proposition 25 (i) that Ker(ρ{�}

C/k) =

Ker(ρ{�}
Cn/k). In particular, the set

IGal(�,k,Ker(ρ{�}
C/k)) =

⋃

2g−2+r>0

IGal(�,k,g,r,Ker(ρ{�}
C/k))

is not finite.

Proposition 27 (Monodromic fullness and finite étale covers). Let Y → X be a
finite étale ΠΣ

X/S-cover over S, T a regular and connected scheme over S, and y ∈
Y(T) a T-valued point of Y. Write x ∈ X(T) for the T-valued point of X determined
by y. Suppose that Y is a hyperbolic curve over S, and that Σ = {�} for some prime
number �. Then the following hold:

(i) If x ∈ X(T) is �-monodromically full, then y ∈ Y(T) is �-monodromically full.
(ii) x ∈ X(T) is quasi-�-monodromically full if and only if y ∈ Y(T) is quasi-�-

monodromically full.
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Proof. By Proposition 16 (i), we may replace X by X×S T, and thus we may assume
without loss of generality that S=T. Then Proposition 27 follows immediately from
Proposition 19 (iv) and Proposition 25 (ii). ��

Lemma 28 (Kernels of outer representations associated to certain finite étale
covers). Let Y → X be a finite étale ΠΣ

X/S-cover over S. Suppose that the following
five conditions are satisfied:

(i) Y is a hyperbolic curve over S. In particular, n = 1.
(ii) Σ = {�} for some prime number �.
(iii) The subgroup ΔΣ

Y/S ⊆ ΔΣ
X/S is normal, i.e., there exists a geometric point s → S

such that the connected finite étale cover Y×S s → X×S s is Galois.
(iv) The action of the Galois group Gal(Y×S s/X×S s), cf. condition (iii), on the

set of the cusps of Y ×S s is faithful. In particular, if the cover Y → X is not
an isomorphism, then Y, hence also X, is not proper over S.

(v) Every cusp of Y/S is defined over the connected (possibly infinite) étale cover
of S corresponding to Ker(ρΣX/S) ⊆ π1(S).

Then Ker(ρΣX/S) = Ker(ρΣY/S).

Proof. It follows from Proposition 25 (i) that Ker(ρΣY/S) ⊆ Ker(ρΣX/S). Thus it suffices
to show the other inclusion. Let

φ : ΔΣ
X/S/Δ

Σ
Y/S −→ Out(ΔΣ

Y/S)

be the outer representation induced by conjugation. By condition (iii), together with
Lemma 23 (i), the image of Ker(ρΣX/S) ⊆ π1(S) via ρΣY/S is contained in Im(φ). Now,

by condition (iv), the action of Im(φ) on the set of the ΔΣ
Y/S-conjugacy classes of

cuspidal inertia subgroups of ΔΣ
Y/S is faithful, cf. Remark 3. On the other hand,

by condition (v), the action of ρΣY/S(Ker(ρΣX/S)) on the set of the ΔΣ
Y/S-conjugacy

classes of cuspidal inertia subgroups of ΔΣ
Y/S is trivial. Therefore, it follows that

ρΣY/S(Ker(ρΣX/S)) = {1}. This completes the proof of Lemma 28. ��

We abbreviate M0,4 = Spec
(
Z[t±1,1/(t −1)]

)
by P and denote, for any scheme S,

the base change P×Z S by PS.

Proposition 29 (Kernels of outer representations associated to certain covers of
tripods). Let � be a prime number which is invertible on S. Let U → PS be a finite
étale Π {�}

PS/S-cover over S such that U is a hyperbolic curve over S. Suppose that the
following three conditions are satisfied:

(i) The subgroup Δ{�}
U/S ⊆Δ{�}

PS/S is normal, i.e., there exists a geometric point s → S
such that the connected finite étale cover U×S s → PS ×S s is Galois.

(ii) The action of the Galois group Gal(U ×S s/PS ×S s), cf. condition (i), on the
set of the cusps of U×S s is faithful.

(iii) Every cusp of U/S is defined over the connected (possibly infinite) étale
Galois cover of S corresponding to the kernel Ker(ρ{�}

PS/S) ⊆ π1(S) of ρ{�}
PS/S.
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Let V be a hyperbolic partial compactification of U over S, i.e., a hyperbolic
curve over S which contains U as an open subscheme over S. Then, Ker(ρ{�}

V/S) =

Ker(ρ{�}
PS/S). In particular, Ker(ρ{�}

U/S) = Ker(ρ{�}
PS/S).

Proof. It follows from [HM11, Theorem C] and Lemma 23 (ii) that we have inclu-
sions

Ker(ρ{�}
U/S) ⊆ Ker(ρ{�}

V/S) ⊆ Ker(ρ{�}
PS/S) .

Thus it suffices to show Ker(ρ{�}
PS/S) ⊆ Ker(ρ{�}

U/S), that follows from Lemma 28. ��

Remark 30. A similar result to Proposition 29 can be found in [AI88, Corollary
3.8.1].

Proposition 31 (Kernels of outer representations associated to certain hyper-
bolic curves arising from elliptic curves). Let � be a prime number which is in-
vertible on S, N a positive integer, and E an elliptic curve over S. Write o ∈ E(S) for
the identity section of E, and E[lN] ⊆ E for the kernel of multiplication by �N. We set

Z� E \ Im(o) and U� E \E[�N] .

Let V be an open subscheme of Z such that U ⊆ V ⊆ Z. Then Ker(ρ{�}
V/S) =Ker(ρ{�}

Z/S).

In particular, Ker(ρ{�}
U/S) = Ker(ρ{�}

Z/S).

Proof. Note that Z (respectively, U) is a hyperbolic curve of type (1,1) (respectively,
(1, �2N)) over S. Observe that multiplication by lN determines an open injection
Π {�}

U/S ↪→ Π {�}
Z/S over π1(S).

First, the natural action of Ker(ρ{�}
Z/S) on E[�N]×S s � Δ{�}

Z/S/Δ
{�}
U/S is trivial, where

s → S is a geometric point of S. Now, by Lemma 23 (ii), the natural open immer-
sions U ↪→ V ↪→ Z induce inclusions

Ker(ρ{�}
U/S) ⊆ Ker(ρ{�}

V/S) ⊆ Ker(ρ{�}
Z/S) .

Thus, it suffices to show Ker(ρ{�}
Z/S) ⊆ Ker(ρ{�}

U/S). By the above, the finite étale cover

U → Z arising from multiplication by lN satisfies condition (v) of Lemma 28. Thus,
by applying Lemma 28 to U → Z, we conclude that Ker(ρ{�}

Z/S) = Ker(ρ{�}
U/S). ��

8.6 Some Complements to Matsumoto’s Result Concerning
the Representations Arising from Hyperbolic Curves

We give some complements to Matsumoto’s result obtained in [Mat11] concerning
the difference between the kernels of the natural homomorphisms associated to a
hyperbolic curve and its point from the Galois group to the automorphism and outer
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automorphism groups of the geometric fundamental group of the hyperbolic curve.
Let � be a prime number, k a field of characteristic � �, and X a hyperbolic curve
over k. Write

Xcl

for the set of closed points of X.

Definition 32. Let x ∈ Xcl be a closed point of X. Then we shall say that E(X, x, �)
holds if the kernel of the composite

π1(Spec(k(x)))
π1(x)
−→ π1(X)

ρ̃{�}
X/k−→ Aut(Δ{�}

X/k) (8.3)

coincides with the kernel of the composite

π1(Spec(k(x))) −→ π1(Spec(k))
ρ
{�}
X/k

−→ Out(Δ{�}
X/k) ,

i.e., the intersection of the closed subgroup Inn(Δ{�}
X/k) ⊆ Aut(Δ{�}

X/k) and the image

of (8.3) is trivial, cf. [Mat11, §1 and §3]. Since Inn(Δ{�}
X/k) is normal in Aut(Δ{�}

X/k),
whether or not the intersection in question is trivial does not depend on the choice
of the homomorphism π1(x) : π1(Spec(k(x))) → π1(X) induced by x ∈ X among the
π1(X)-conjugates. Moreover, we shall write

XE� ⊆ Xcl

for the set of closed points x of X such that E(X, x, �) holds.

Proposition 33 (Properties of exceptional points). Let x ∈ X(k) be a k-rational
point of X. Then the following hold:

(i) We set U� X \ Im(x). Then the following four conditions are equivalent:

(1) E(X, x, �) holds.
(2) The section of the natural surjection π1(X)� π1(Spec(k)) induced by x

determines a section of the natural surjection Φ{�}
X/k� Γ

{�}
X/k, cf. Proposi-

tion 6 (i).
(3) Ker(ρ{�}

X/k) = Ker(ρ{�}
U/k).

(4) The cokernel of the inclusion Ker(ρ{�}
U/k) ⊆ Ker(ρ{�}

X/k), cf. Lemma 23 (ii),
is finite.

(ii) The following holds: x is an �-monodromically full point =⇒ x is a quasi-�-
monodromically full point =⇒ E(X, x, �) does not hold.

Proof. First, we verify assertion (i). The equivalence (1) ⇔ (2) follows from the def-
initions. The equivalence (1) ⇔ (3) follows from Proposition 19 (ii), and (3) ⇒ (4)
is immediate. Finally, we verify (4) ⇒ (3). By Proposition 19 (ii), the natural surjec-
tion Γ{�}U/k � Γ

{�}
X/k factors through the natural injection Γ{�}U/k ↪→ Φ{�}

X/k. In particular,



196 Y. Hoshi

the cokernel of the natural inclusion Ker(ρ{�}
U/k) ⊆ Ker(ρ{�}

X/k) may be regarded as a

closed subgroup of Δ{�}
X/k. Therefore, since Δ{�}

X/k is torsion-free, if the cokernel of

Ker(ρ{�}
U/k) ⊆ Ker(ρ{�}

X/k) is finite, then it is trivial. This completes the proof of the
implication (4) ⇒ (3), hence also of assertion (i).

Assertion (ii) follows immediately from Proposition 19 (iv). ��

Remark 34. In the notation of Proposition 33 (ii), in general, the implication

E(X, x, �) does not hold =⇒ x is a quasi-�-monodromically full point

does not hold. Indeed, for X� P1
Q
\{0,1,∞}, the point x = 2 ∈ X(Q)=Q\{0,1} is not

quasi-�-monodromically full, i.e., the hyperbolic curve U � P1
Q

\ {0,1,2,∞} is not
quasi-�-monodromically full, cf. Remark 11(ii), together with [Hos11, Corollary
7.12].

On the other hand, since U = P1
Q
\ {0,1,2,∞} has bad reduction at the prime 2, if

�� 2, then it follows from [Tam97, Theorem 0.8] that the extension ofQ correspond-
ing to Ker(ρ{�}

U/Q
) is ramified at 2. In particular, the natural surjection Γ{�}U/Q

� Γ{�}X/Q
is not an isomorphism. Thus, by the equivalence (1) ⇔ (3) in Proposition 33 (i), we
have that E(P1

Q
\ {0,1,∞},2, �) does not hold.

Proposition 35 (Exceptional points and finite étale covers). Let Y → X be a finite
étale Π {�}

X/k-cover over k and y ∈ Y(k). In particular, Y is a hyperbolic curve over k.
Write x ∈ X(k) for the k-rational point of X determined by y. Then E(X, x, �) holds
if and only if E(Y,y, �) holds, and if both hold, then Ker(ρ{�}

X/k) = Ker(ρ{�}
Y/k).

Proof. We write UX � X \ Im(x) and UY � Y \ Im(y). Then the maps UY ⊂ Y → X
and UX ⊂ X induce a commutative diagram of profinite groups

Γ
{�}
UY/k −−−−−−→ Γ

{�}
Y/k

%
⏐⏐⏐⏐⏐#

⏐⏐⏐⏐⏐#
Γ

{�}
UX/k −−−−−−→ Γ

{�}
X/k

where the left vertical arrow is the isomorphism obtained by Proposition 25 (iv).
Now observe that

• the horizontal arrows are surjective, cf. Lemma 23 (ii), and
• the right vertical arrow is surjective and has finite kernel, cf. Proposition 25 (i).

If E(X, x, �) holds, then by the equivalence (1) ⇔ (3) in Proposition 33 (i), the
lower horizontal arrow is an isomorphism. Thus, also the top horizontal arrow and
the right-hand vertical arrow are isomorphisms. In particular, again by the equiva-
lence (1) ⇔ (3) in Proposition 33 (i), E(Y,y, �) holds, and Ker(ρ{�}

X/k) = Ker(ρ{�}
Y/k).

On the other hand, if E(X, x, �) does not hold, then it follows from the equivalence
(1) ⇔ (4) in Proposition 33 (i) that the kernel of the lower horizontal arrow is infinite.
Since the kernel of the right-hand vertical arrow in the above diagram is finite, the
kernel of the top horizontal arrow is infinite. In particular, again by the equivalence
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(1) ⇔ (4) in Proposition 33 (i), E(Y,y, �) does not hold. This completes the proof of
Proposition 35. ��

Theorem 36 (Existence of many nonexceptional points). Let � be a prime number,
k/Q a finite extension, and X a hyperbolic curve over k. We regard Xcl as a subset
of X(C). Then the complement

Xcl \XE� ⊆ X(C)

is dense in the complex topology of X(C). Moreover, X(k)∩XE� is finite.

Proof. That Xcl \XE� is dense in the complex topology of X(C) follows from Propo-
sition 13 and Proposition 33 (ii). Finiteness of X(k)∩XE� follows from the equiva-
lence (1) ⇔ (3) in Proposition 33 (i), [Hos11, Thm. C], and Lemma 37 below. ��

Lemma 37 (Finiteness of the set consisting of equivalent points). Let n be a pos-
itive integer and x ∈ Xn(k) a k-rational point of Xn. Then the set of k-rational points
of Xn which are equivalent to x is finite.

Proof. Write Xcpt for the smooth compactification of X over k and x1, . . . , xn ∈ X(k)
for the the n distinct k-rational points determined by x ∈ Xn(k). Now by replac-
ing k by a suitable finite separable extension of k, we may assume without loss of
generality that every cusp of X is defined over k. Write g for the genus of X and set

ng �

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3 if g = 0,
1 if g = 1,
0 if g � 2,

and fix ng distinct cusps

a1, . . . ,ang
∈ S� Xcpt(k) \X(k)

of X. Then finiteness of the set of k-rational points of Xn which are equivalent to
x ∈ Xn(k) follows from the finiteness of the set

{ f ∈ Autk(Xcpt) | {ai}
ng

i=1 ⊆ f (S)∪{ f (x1), . . . , f (xn)} } .

This finiteness follows immediately from the well-known finiteness of the automor-
phism group of a hyperbolic curve. This completes the proof of Lemma 37. ��

Remark 38. Matsumoto proved the following theorem, cf. [Mat11, Theorem 1]:

Let � be a prime number and g � 3 an integer. Suppose that � divides 2g− 2 and write �ν

for the highest power of � that divides 2g− 2. Then there are infinitely many isomorphism
classes of pairs (k,X) of number fields k and hyperbolic curves X of type (g,0) over k which
satisfy the following condition: For any closed point x ∈ X with residue field k(x), if �ν does
not divide [k(x) : k], then E(X, x, �) does not hold.

Theorem 36 may be regarded as a partial generalization of this theorem.

Recall that we set Pk � Spec(k[t±1,1/(t −1)]).
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Proposition 39 (Exceptional points via tripods). The following hold:

(i) Let U → Pk be a finite étale Π {�}
Pk/k-cover such that the following holds:

(1) For a separable closure ksep of k, the cover U ⊗k ksep → Pk ⊗k ksep is
Galois. In particular, U is geometrically connected over k.

(2) The action of the Galois group Gal(U ⊗k ksep/Pk ⊗k ksep), cf. condition
(1), on the set of cusps of U⊗k ksep is faithful.

(3) Every cusp of U is defined over the (possibly infinite) Galois extension
of k corresponding to the kernel Ker(ρ{�}

Pk/k) ⊆ π1(Spec(k)) of ρ{�}
Pk/k.

Let V be a hyperbolic partial compactification of U over k, and let x ∈ Vcl

be a closed point of V such that the complement V \ {x} contains U. Then
E(V, x, �) holds.

(ii) Let N be a positive integer. If a closed point x ∈ Pcl
k of Pk is contained in the

closed subscheme of Pk determined by the principal ideal

(t�
N −1) ⊆ k[t±1,1/(t −1)] ,

then E(Pk, x, �) holds.

Proof. First, we verify assertion (i). After replacing k by the residue field k(x) at x,
we may assume without loss of generality that x ∈ V(k). Then it follows immediately
from Proposition 29 that

Ker(ρ{�}
V/k) = Ker(ρ{�}

(V\{x})/k) .

Thus, assertion (i) follows from the equivalence (1) ⇔ (3) in Proposition 33 (i).
Next, we verify assertion (ii). By replacing k by the residue field k(x) at x, we may
assume without loss of generality that x ∈ Pk(k). Write

U� Spec
(
k[s±1,1/(s�

N
−1)]

)
−→ Pk

for the finite étale cover given by t �→ s�
N

. Then U → Pk satisfies the three conditions
in the statement of assertion (i). Now by assumption, we have an open immersion
U ↪→ Pk \ Im(x), so that assertion (ii) follows from assertion (i). ��

Proposition 40 (Exceptional points via elliptic curves). Let N be a positive integer
and E an elliptic curve over k. Write o ∈ E(k) for the identity section of E, and E[�N]
for the kernel of multiplication by �N. We set Z� E \ Im(o) and U� E \E[�N].

Let V be an open subscheme of Z such that U ⊆ V ⊆ Z and x ∈ Vcl a closed point
such that the complement V \ {x} contains U. Then E(V, x, �) holds. In particular,
for any closed point z ∈ Zcl contained in E[�N], property E(Z,z, �) holds.

Proof. By replacing k by the residue field k(x) at x, we may assume without loss of
generality that x ∈ X(k). Then it follows immediately from Proposition 31 that

Ker(ρ{�}
V/k) = Ker(ρ{�}

(V\{x})/k) ,



8 On Monodromically Full Points of Configuration Spaces of Hyperbolic Curves 199

and we conclude by the equivalence (1) ⇔ (3) in Proposition 33 (i). ��

Theorem 41 (Many exceptional points for certain hyperbolic curves). Let � be
a prime number, k a field of characteristic 0, X a hyperbolic curve over k which
is either of type (0,3) or type (1,1), and Y → X a finite étale Π {�}

X/k-cover which is

geometrically connected over k. Then the subset YE� ⊆ Ycl is infinite. In particular,
the subset XE� ⊆ Xcl is infinite.

Proof. By definition of the set (−)E� , we may replace k by a finite Galois exten-
sion over which the cusps of X are defined. We may thus assume without loss of
generality that every cusp of X is defined over k. Then it follows from Proposi-
tion 39 (ii) and Proposition 40 that the set XE� is infinite. Therefore, it follows from
Proposition 35 that the set YE� is infinite. ��

Remark 42. By a similar argument to the argument used in the proof of Theorem 41,
one may also prove the following assertion:

Let � be a prime number, k a field of characteristic 0, and r � 3 (respectively, r � 1) an
integer. Then there exist a finite extension k′ of k and a hyperbolic curve X over k′ of type
(0, r) (respectively, (1, r)) such that the subset XE� ⊆ Xcl is infinite.

Indeed, write C0 � Spec
(
k[t±1,1/(t −1)]

)
and C1 for the complement in an elliptic

curve E over k of the origin. Let N be a positive integer such that r � �N. Moreover,
write FN

0 ⊆ C0 for the closed subscheme of C0 defined by the principal ideal (t�
N −1)

and FN
1 ⊆ C1 for the closed subscheme obtained as the kernel of the multiplication

by �N of E. After replacing k by a finite extension, we may assume without loss
generality that every geometric point of FN

0 and of FN
1 can be defined over k. Then

it is immediate that for g = 0 or 1, there exists an open subscheme Xg ⊆ Cg of Cg

such that Xg is of type (g,r), and, moreover, Xg contains the complement of FN
g in

Cg. Now by Proposition 29 and Proposition 31, we have Ker(ρ{�}
Cg/k) = Ker(ρ{�}

Xg/k).
Therefore, by Proposition 39 (i) and Proposition 40, together with the equivalence
(1) ⇔ (3) in Proposition 33 (i), one may verify easily that the set XE�

g is infinite.

Remark 43. An example of a triple (X, x, �) such that X is a proper hyperbolic curve
over a number field k, and, moreover, E(X, x, �) holds is as follows: Suppose that
� > 3. Let k be a number field and set

U� Spec
(
k[t±1

1 , t±1
2 ]/(t�1+ t�2 −1)

)
.

Then the connected finite étale cover

U −→ Spec
(
k[t±1,1/(t −1)]

)

given by t �→ t�1 satisfies the three conditions of Proposition 39 (i). In particular, for

X� Proj
(
k[t1, t2, t3]/(t�1+ t�2 − t�3)

)

and x� [1,−1,0] ∈ X(k), it follows from Proposition 39 (i) that E(X, x, �) holds.
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Remark 44. In [Mat11, §2], Matsumoto proved that for any prime number �, the
triple

(P1
Q
\ {0,1,∞},

→
01, �),

where
→
01 is a Q-rational tangential base point, is a triple for which E(X, x, �) holds,

as observed by P. Deligne and Y. Ihara. However, a tangential base point is not a
point. In this sense, [Mat11] contains no example (X, x, �) for which E(X, x, �) holds.

8.7 Galois-Theoretic Characterization of Equivalence Classes of
Monodromically Full Points

We prove that the equivalence class of a monodromically full point of a configura-
tion space of a hyperbolic curve is completely determined by the kernel of the repre-
sentation associated to the point, cf. Theorem 49 and Theorem 51 below. Moreover,
we also give a necessary and sufficient condition for a quasi-monodromically full
Galois section, cf. Definition 46 below, of a hyperbolic curve to be geometric, cf.
Theorem 53 below.

In this section, let n be a positive integer, k a field of characteristic 0, k an
algebraic closure of k, and X a hyperbolic curve over k. As before, we write
Gk �Gal(k/k) for the absolute Galois group of k determined by k.

Lemma 45 (Equivalence and automorphisms). For x, y ∈ Xn(k), if there is an au-
tomorphism α ∈ Autk(Xn) with y=α(x), then x is equivalent to y, cf. Definition 7(iii).

Proof. If the hyperbolic curve X is of type (0,3) (respectively, neither of type (0,3)
nor of type (1,1)), then Lemma 45 follows immediately from [Hos11, Lemma 4.1
(i) (ii)], (respectively, [NT98, Theorem A, Corollary B] and [Moc99, Theorem A]).
Thus, we may assume that X is of type (1,1).

Write E for the smooth compactification of X over k and o ∈ E(k) for the k-
rational point E\X. The pair (E,o) is canonically an elliptic curve with origin o ∈ E.
By [NT98, Theorem A, Corollary B] and [Moc99, Theorem A], the group Autk(Xn)
is generated by the images of the natural inclusions

Autk(X) ↪→ Autk(Xn) and Sn ↪→ Autk(Xn) ,

where Sn is the symmetric group on n letters, together with the automorphism of
Xn induced by

E×k . . .×k E −→ E×k . . .×k E

(x1, . . . , xn) �→ (x1, x1 − x2, x1 − x3, . . . , x1 − xn).

Therefore it suffices to verify that for any n distinct x1, . . . , xn ∈ X(k), the hyperbolic
curve of type (1,n+1)

E \ {o, x1, . . . , xn}
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is isomorphic over k to the hyperbolic curve of type (1,n+1)

E \ {o, x1, x1 − x2, x1 − x3, . . . , x1 − xn} .

This is the composite of multiplication by −1 and translation a �→ a+ x1. ��

Definition 46. Let Σ′ ⊆ Σ be nonempty subsets of Primes and let

s : Gk → ΠΣ
Xn/k

be a pro-Σ Galois section of Xn/k, i.e., a continuous section of ΠΣ
Xn/k�Gk. Then we

shall say that s is Σ′-monodromically full (respectively, quasi-Σ′-monodromically
full) if, for any � ∈ Σ′, the composite

Gk
s→ ΠΣ

Xn/k�Π {�}
Xn/k

ρ
{�}
Xn+1/Xn
� Γ

{�}
Xn+1/Xn

,

cf. Lemma 15 (viii), is surjective (respectively, has open image).

Remark 47. Let x ∈ Xn(k) be a k-rational point of Xn. Then by Remark 12, the
following two conditions are equivalent:

(i) The k-rational point x ∈ Xn(k) is Σ-monodromically full (respectively, quasi-
Σ-monodromically full).

(ii) The pro-Primes Galois section of Xn arising from x ∈ Xn(k) is Σ-monodro-
mically full (respectively, quasi-Σ-monodromically full).

Lemma 48 (Certain two monodromically full Galois sections). Let � be a prime
number and s, t pro-� Galois sections of Xn/k. We write φa for the composite

Gk
a−→ Π {�}

Xn/k

ρ̃
{�}
Xn/k−→ Aut(Δ{�}

Xn/k)

for a ∈ {s, t}. Then the following hold:

(i) If s and t are �-monodromically full, and Ker(φs) = Ker(φt), then there exists
an automorphism α of Π {�}

Xn/k over Gk such that α◦ s = t.
(ii) If s and t are quasi-�-monodromically full, and Ker(φs) ∩Ker(φt) is open in

Ker(φs) and Ker(φt), then, after replacing Gk by a suitable open subgroup,
we have for a ∈ {s, t} a finite étale Φ{�}

Xn/k-cover Ca→ Xn over k which is geo-

metrically connected over k, and an isomorphism α : Π {�}
Cs/k

∼→ Π {�}
Ct/k over Gk,

such that

• for a ∈ {s, t}, the pro-� Galois section a : Gk → Π {�}
Xn/k factors through

Π {�}
Ca/k ⊆ Π {�}

Xn/k, and
• the composite α◦ s coincides with t.

Proof. First, we verify assertion (i). Since s and t are �-monodromically full, it
follows from Proposition 19 (i), that Im(φs) = Im(φt) =Φ{�}

Xn/k. Write β for the auto-

morphism of Φ{�}
Xn/k obtained as the composite
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Φ{�}
Xn/k = Im(φs)

∼←− Gk/Ker(φs) = Gk/Ker(φt)
∼−→ Im(φt) =Φ{�}

Xn/k .

Then β is an automorphism over Γ{�}Xn/k. Thus, since the right-hand square in
(8.2) from Proposition 6 is cartesian, by base-changing β via the natural surjec-
tion Gk � Γ

{�}
Xn/k, we obtain an automorphism α of Π {�}

Xn/k over Gk. It follows from
the definitions that α satisfies the condition of assertion (i).

Next, we verify assertion (ii). By replacing Gk by an open subgroup, we may as-
sume that Ker(φs)=Ker(φt). Now since s and t are quasi-�-monodromically full, the
images Im(φs) and Im(φt) are open in Φ{�}

Xn/k by Proposition 19 (i). We write Cs → Xn
and Ct → Xn for the corresponding connected finite étale covers. By Proposi-
tion 25 (ii), for a ∈ {x,y}, the open injection Π {�}

Ca
↪→ Π {�}

Xn/k determines a diagram

Π {�}
Ca/k� Φ{�}

Ca/k = Im(φa) ⊆ Φ{�}
Xn/k .

By Proposition 25 (i), the natural surjection Γ{�}Ca/k� Γ
{�}
Xn/k is an isomorphism. Write

β for the isomorphism obtained as the composite

Φ{�}
Cs/k = Im(φs)

∼←− Gk/Ker(φs) = Gk/Ker(φt)
∼−→ Im(φt) =Φ{�}

Ct/k

Then we obtain a commutative diagram of profinite groups

Φ{�}
Cs/k = Im(φs)

β
��

�� Φ{�}
Xn/k

�� Γ
{�}
Cs/k = Γ

{�}
Xn/k

Im(φt) =Φ{�}
Ct/k

�� Φ{�}
Xn/k

�� Γ
{�}
Xn/k = Γ

{�}
Ct/k

Thus, since the right-hand square in (8.2) from Proposition 6 is cartesian, by base-
changing β via the natural surjection Gk � Γ

{�}
Xn/k = Γ

{�}
Cs/k = Γ

{�}
Ct/k, we obtain an iso-

morphism α : Π {�}
Cs/k

∼→ Π {�}
Ct/k over Gk that satisfies the condition of assertion (ii). ��

Theorem 49 (Galois-theoretic characterization of equivalence classes of mon-
odromically full points of configuration spaces). Let � be a prime number, n a
positive integer, k a finitely generated extension of Q, k an algebraic closure of k,
and X a hyperbolic curve over k. Then for two k-rational points x and y of Xn which
are �-monodromically full, the following three conditions are equivalent:

(i) x is equivalent to y.
(ii) Ker(ρ{�}

X[x]/k) = Ker(ρ{�}
X[y]/k).

(iii) We have Ker(φx) = Ker(φy) for the composites

φx : Gk
π1(x)
−→ π1(Xn)

ρ̃
{�}
Xn/k−→ Aut(Δ{�}

Xn/k)
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φy : Gk
π1(y)
−→ π1(Xn)

ρ̃
{�}
Xn/k−→ Aut(Δ{�}

Xn/k) .

Proof. The implication (i) ⇒ (ii) is immediate, while (ii) ⇔ (iii) follows from Propo-
sition 19 (ii). Thus it suffices to show (iii) ⇒ (i). Suppose that condition (iii) is
satisfied. Then it follows from Lemma 48 (i) that there exists an automorphism α of
Π {�}

Xn/k over Gk such that the two homomorphisms

Gk
π1(x)
−→Π {�}

Xn/k

α
∼−→ Π {�}

Xn/k

Gk
π1(y)
−→ Π {�}

Xn/k

coincide. Now by [NT98, Corollary B], [Moc99, Theorem A], [Hos11, Lemma 4.1
(i) and Lemma 4.3 (iii)], the automorphism α of Π {�}

Xn/k arises from an automorphism
fα of Xn over k. Thus, it follows from [Moc99, Theorem C], that fα ◦ x = y. In
particular, it follows from Lemma 45 that condition (i) is satisfied. ��

Remark 50. If, in Theorem 49, one drops the assumption that x and y are �-monodro-
mically full, then the conclusion no longer holds in general. Such a counter-example
is as follows. Suppose that � � 2. Let Q be an algebraic closure of Q and ζ� ∈ Q a
primitive �-th root of unity. Write k = Q(ζ�) and X = P1

k \ {0,1,∞}, and set

x = ζ�, y = ζ2
� ∈ X(k) = k \ {0,1}

and moreover Ux = U \ Im(x) and Uy = U \ Im(y). Then it follows from Proposi-
tion 39 (ii) that E(X, x, �) and E(X,y, �) hold. Thus, it follows from the equivalence
(1) ⇔ (3) in Proposition 33 (i) that

Ker(ρ{�}
X/k) = Ker(ρ{�}

Ux/k) = Ker(ρ{�}
Uy/k) .

In particular, x and y satisfy condition (ii) in the statement of Theorem 49. On the
other hand, if, moreover, � � 3, then one verifies easily that Ux is not isomorphic to
Uy over k, i.e., x and y do not satisfy condition (i) in the statement of Theorem 49.

Theorem 51 (Galois-theoretic characterization of equivalence classes of quasi-
monodromically full points of cores). Let � be a prime number, k a finitely gen-
erated extension of Q, k an algebraic closure of k, and X a hyperbolic curve over
k which is a k-core, cf. [Moc03, Remark 2.1.1]. Then for two k-rational points x
and y of X which are quasi-�-monodromically full, the following four conditions are
equivalent:

(i) x = y.
(ii) x is equivalent to y.
(iii) With Ux = X \ Im(x) and Uy = X \ Im(y), then Ker(ρ{�}

Ux/k)∩Ker(ρ{�}
Uy/k) is open

in Ker(ρ{�}
Ux/k) and Ker(ρ{�}

Uy/k).
(iv) For the composite
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φx : Gk
π1(x)
−→ π1(X)

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k) and φy : Gk
π1(y)
−→ π1(X)

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k),

the intersection Ker(φx)∩Ker(φy) is open in Ker(φx) and Ker(φy).

Proof. It is immediate that the implications (i) ⇒ (ii) ⇒ (iii) hold. On the other
hand, it follows, by Proposition 19 (ii), that the equivalence (iii) ⇔ (iv) holds. Thus,
it suffices to show (iv) ⇒ (i). Suppose that condition (iv) is satisfied. Then it follows
from Lemma 48 (ii), after replacing Gk by a suitable open subgroup, that there exist

• for a ∈ {x,y}, a finite étale Φ{�}
X/k-cover Ca → X over k which is geometrically

connected over k, and
• an isomorphism α : Π {�}

Cx/k

∼→ Π {�}
Cy/k over Gk

such that

• for a ∈ {x,y}, the pro-� Galois section π1(a) : Gk → Π {�}
X/k determined by a ∈ X(k)

factors through Π {�}
Ca/k ⊆ Π {�}

X/k, and
• the composite α◦π1(x) coincides with π1(y).

Note that if k′ ⊆ k is a finite extension of k, then by [Moc03, Proposition 2.3 (i)], the
curve X⊗k k′ is a k′-core.

Now by [Moc99, Theorem A], the isomorphism α : Π {�}
Cx/k

∼→ Π {�}
Cy/k arises from

an isomorphism fα : Cx
∼→ Cy over k. Moreover, since X is a k-core, it follows that

the isomorphism fα is an isomorphism over X. Therefore, by [Moc99, Theorem C],
condition (i) is satisfied. ��

Remark 52. A general hyperbolic curve of type (g,r) with 2g−2+ r > 2 over a field
k of characteristic 0 is a k-core, by [Moc98, Theorem 5.3], together with [Moc03,
Proposition 2.3], cf. also [Moc03, Remark 2.5.1].

Theorem 53 (A necessary and sufficient condition for a quasi-monodromically
full Galois section of a hyperbolic curve to be geometric). Let � be a prime
number, k a finitely generated extension of Q, X a hyperbolic curve over k, and
s : Gk → Π {�}

X/k a pro-� Galois section of X which is quasi-�-monodromically full.
Write φs for the composite

Gk
s−→ Π {�}

X/k

ρ̃{�}
X/k−→ Aut(Δ{�}

X/k),

Then the following four conditions are equivalent:

(i) s is geometric, cf. [Hos10, Definition 1.1 (iii)].
(ii) s arises from a k-rational point of X, cf. [Hos10, Definition 1.1 (ii)].
(iii) There is a quasi-�-monodromically full point x ∈ X(k) such that if we write φx

for the composite

Gk
π1(x)
−→ Π {�}

X/k

ρ̃
{�}
X/k−→ Aut(Δ{�}

X/k),

then the intersection Ker(φs)∩Ker(φx) is open in Ker(φs) and Ker(φx).
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(iv) There is a quasi-�-monodromically full point x ∈ X(k) such that with U =
X \ {x} the intersection Ker(φs)∩Ker(ρ{�}

U/k) is open in Ker(φs) and Ker(ρ{�}
U/k).

Proof. By Remark 47, we have (ii) ⇒ (iii), while (iii) ⇔ (iv) follows from Proposi-
tion 19 (ii). Thus, it suffices to show (i) ⇒ (ii) and (iii) ⇒ (i).

To verify (i) ⇒ (ii), suppose that condition (i) is satisfied. Since the pro-� Ga-
lois section s is geometric, there exists a k-rational point x ∈ Xcpt(k) of the smooth
compactification Xcpt of X such that the image of s is contained in a decomposition
subgroup D ⊆ Π {�}

X/k of Π {�}
X/k associated to x. Suppose that x is a cusp of X, i.e., an

element of Xcpt(k) \X(k). Write I ⊆ D for the inertia subgroup of D. Then since x is
a cusp of X, it follows immediately from [Moc04, Lemma 1.3.7] that D = N

Π
{�}
X/k

(I)

and I = N
Π{�}

X/k
(I)∩ΔX/k. Therefore, since the composite

Δ{�}
X/k ↪→ Π {�}

X/k� Φ{�}
X/k

is injective, cf. Lemma 15 (v), if we write D, I ⊆ Φ{�}
X/k for the images of the com-

posites
D ↪→ Π {�}

X/k�Φ{�}
X/k and I ↪→ Π {�}

X/k�Φ{�}
X/k ,

respectively, then it holds that D ⊆ N
Φ

{�}
X/k

(I) and I = N
Φ

{�}
X/k

(I) ∩Δ{�}
X/k. In particular,

D ⊆Φ{�}
X/k is not open in Φ{�}

X/k. On the other hand, since s is quasi-�-monodromically
full, it follows immediately from Proposition 19 (ii) that the image of φs, hence also
D ⊆ Φ{�}

X/k, is open in Φ{�}
X/k. Thus, we obtain a contradiction. Therefore, x is not a

cusp of X. This completes the proof of the implication (i) ⇒ (ii).
Next, to verify the implication (iii) ⇒ (i), suppose that condition (iii) is satisfied.

Then it follows from Lemma 48 (ii), after replacing Gk by a suitable open subgroup
of Gk, that there exist:

• for a ∈ {s, x}, a finite étale Φ{�}
X/k-cover Ca→ X over k, cf. Definition 1 (v), which

is geometrically connected over k, and
• an isomorphism α : Π {�}

Cx/k

∼→ Π {�}
Cs/k over Gk

such that

• the pro-� Galois section π1(x) : Gk → Π {�}
X/k factors through Π {�}

Cx/k ⊆ Π {�}
X/k, and

• the composite α◦π1(x) coincides with s.

Now it follows from [Moc99, Theorem A] that the isomorphism

α : Π {�}
Cx/k

∼→ Π {�}
Cs/k

arises from an isomorphism Cx
∼→ Cs over k. Therefore, it follows from Lemma 54

below that condition (i) is satisfied. This completes the proof of Theorem 53. ��

Lemma 54 (Geometricity and base-changing). Suppose that k is a finitely gener-
ated extension ofQ. Let Σ ⊆Primes be a nonempty subset ofPrimes, s : Gk → ΠΣ

X/k
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a pro-Σ Galois section of X/k, and k′ ⊆ k a finite extension of k. Then s is geometric
if and only if the restriction s|Gk′

of s to Gk′ ⊆ Gk is geometric.

Proof. The necessity of the condition is immediate. Thus, it suffices to verify the
sufficiency of the condition. Suppose that the restriction s|Gk′

of s to Gk′ ⊆ Gk is
geometric. Now by replacing k′ by a finite Galois extension of k, we may assume
without loss of generality that k′ is Galois over k. Moreover, by replacing ΠΣ

X/k by

an open subgroup of ΠΣ
X/k which contains the image Im(s) of s, we may assume

without loss of generality that X is of genus � 2. Let

· · · ⊆ Δn ⊆ · · · ⊆ Δ2 ⊆ Δ1 ⊆ Δ0 = ΔΣ
X/k

be a sequence of characteristic open subgroups of ΔΣ
X/k such that

⋂
i Δi = {1}.

Write Πn � Δn · Im(s) ⊆ ΠΣ
X/k, Xn → X for the connected finite étale cover cor-

responding to Πn and sn : Gk → Πn = ΠΣ
Xn/k for the pro-Σ Galois section of Xn/k

determined by s. Note that it holds that
⋂

i

Πi = Im(s) .

Now (Xn)cpt(k) � ∅, where (Xn)cpt denotes the smooth compactification of Xn. In-
deed, since the restriction s|Gk′

is geometric, it holds that the image of the composite

Gk′

sn |Gk′
↪→ ΠΣ

Xn/k�ΠΣ
(Xn)cpt/k

is a decomposition subgroup D associated to a k′-rational point xn of (Xn)cpt. On
the other hand, since this decomposition subgroup D associated to xn is contained in
the image of the homomorphism sn from Gk, and k′ is Galois over k, by considering
the Im(sn)-conjugates of D, it follows from [Moc99, Theorem C] that the k′-rational
point xn is defined over k. In particular, it holds that (Xn)cpt(k) � ∅.

Since the set (Xn)cpt(k) is finite by Mordell-Faltings’ theorem, the projective limit
(X∞)cpt(k) of the sequence of sets

· · · −→ (Xn)cpt(k) −→ ·· · −→ (X2)cpt(k) −→ (X1)cpt(k) −→ (X0)cpt(k)

is nonempty. Let x∞ ∈ (X∞)cpt(k) be an element of (X∞)cpt(k). Then it follows from⋂
iΠi = Im(s) that the pro-Σ Galois section of X/k arising from x∞ coincides with

s. In particular, s is geometric. This completes the proof of Lemma 54. ��

Remark 55. In [Hos10], the author proved that there exist a prime number �, a num-
ber field k, a hyperbolic curve X over k, and a pro-� Galois section s of X/k such that
the pro-� Galois section s is not geometric, cf. [Hos10, Theorem A]. On the other
hand, it seems to the author that the nongeometric pro-� Galois sections appearing
in [Hos10] are not quasi-�-monodromically full. It is not clear to the author at the
time of writing whether or not there exists a pro-� Galois section of a hyperbolic
curve over a number field which is nongeometric and quasi-�-monodromically full.
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Chapter 9
Tempered Fundamental Group and Graph
of the Stable Reduction

Emmanuel Lepage

Abstract The tempered fundamental group of a hyperbolic curve over an alge-
braically closed nonarchimedean field is an invariant that does not depend only on
the genus of the curve. In this paper we review what can be recovered of a hyper-
bolic curve from its tempered fundamental group. S. Mochizuki proved that, for a
curve over Qp, one can recover the graph of the stable reduction of the curve. For
Mumford curves, one can also recover a natural metric on this graph.

9.1 Introduction

In characteristic 0, one cannot recover much of a proper curve over an algebraically
closed field from the geometric fundamental group: it only depends on the genus. In
p-adic analytic geometry, the homotopy type of a curve cannot be described in terms
of the genus of the curve. Here we will be interested in what one can recover of a
p-adic curve from a category of geometric analytic coverings, including finite étale
coverings and infinite coverings from analytic geometry. More precisely, we will be
interested in tempered coverings, i.e., coverings that become topological coverings
after pullback by some finite étale covering. These coverings are classified by a
topological group called the tempered fundamental group.

This paper reviews what can be recovered of a hyperbolic curve from its geo-
metric tempered fundamental group. Mochizuki proved in [Moc06] that one can
recover the graph of its stable reduction:

Theorem 1 ([Moc06, Cor. 3.11]). If Xα and Xβ are two hyperbolic Qp-curves, ev-

ery (outer) isomorphism φ : π
temp
1 (Xα,Cp

) � π
temp
1 (Xβ,Cp

) determines, functorially in
φ, an isomorphism of graphs of the stable reductions φ̄ : GXα

� GXβ
.
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More precisely, one can recover from the tempered fundamental group a (p′)-
version of the fundamental group, which classifies coverings that become topologi-
cal after pullback by some finite Galois covering of order prime to p. One can de-
scribe the graph of the stable reduction from this (p′)-tempered fundamental group
in the following way:

• Vertices correspond to conjugacy classes of maximal compact subgroups of the
(p′)-tempered fundamental group.

• Edges correspond to conjugacy classes of nontrivial intersection of two different
maximal compact subgroups.

In [Lep10], we were interested in recovering a natural metric of the graph of the
stable reduction from the tempered fundamental group. The metric is defined so that
the length of an edge is the width of the annulus which is the generic fiber of the
formal completion of the node corresponding to this edge. We proved the following:

Theorem 2 ([Lep10, Thm. 4.13]). If X1 and X2 are hyperbolic Mumford Qp-
curves, i.e., with totally degenerate stable reduction, then for an isomorphism

φ : π
temp
1 (X1,Cp

) � π
temp
1 (X2,Cp

) ,

the induced φ̄ : GX1
→ GX2

is an isomorphism of metric graphs.

In this paper, we will explain the proof of this result. In contrast to the previous
result, one cannot recover this metric from the (p′)-tempered fundamental group.
We will also have to study the topological behavior of wildly ramified coverings,
in particular, wildly ramified abelian torsors on a Mumford curve X and follow the
study made in [vdP83b] and [vdP83a].

The abelian torsors on Mumford curves can be described in terms of currents on
the graph of the stable reduction. Indeed, the pullback of a μpn-torsor of X to the
universal coveringΩ of X can be obtained by pulling back the canonical μpn-torsor
on Gm along some theta function Ω→ Gan

m .
Theta functions can be described in terms of currents on the graph of the sta-

ble reduction: given a theta function f : Ω→ Gan
m , the potential associated to the

corresponding current is the function x �→ | f (x)|. This gives a surjective map

Hom(πtemp
1 (X),μn) → C(GX,Z/nZ)

from the set of μn-torsors on X to the set of currents on X with value in Z/nZ. We
will show in Proposition 14 that these morphisms for X1 and X2 are compatible with
φ and φ̄ up to a scalar. For the canonical μph-torsor on Gm, the splitting of the torsor
at a Berkovich point depends on the distance of this point to the skeleton of Gan

m ,
i.e., the line linking 0 to ∞. For a given theta function Ω→ Gm, one can then get
information about the splitting of the torsor in a point in terms of the distance of the
point to the support of the corresponding current.

In Sect. 9.2 we recall the Berkovich space of an algebraic variety and define the
tempered fundamental group. In Sect. 9.3 we explain Theorem 1, and in Sect. 9.4
we study abelian coverings of Mumford curves, and prove Theorem 2 in Sect. 9.5.
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9.2 Tempered Fundamental Group

Let K be a complete nonarchimedean field. We will mostly be interested later on in
the case where K = Cp. The norm will be chosen so that |p| = p−1 and the valuation
so that v(p) = 1. All valued fields will have valuations with values in R.

9.2.1 Berkovich Analytification of Algebraic Varieties and Curves

If X is an algebraic variety over K, one can associate to X a topological set Xan

with a continuous map φ : Xan → X defined in the following way. A point of
Xan is an equivalence class of morphisms SpecK′ → X over SpecK where K′ is a
complete valued extension of K. Two morphisms SpecK′ → X and SpecK′′ → X
are equivalent if there exists a common valued extension L of K′ and K′′ such that

SpecL ��

��

SpecK′′

��

SpecK′ �� X

commutes. In fact, for any point x ∈ Xan, there is a unique smallest such complete
valued field defining x denoted by H(x) and called the completed residue field of x.
Forgetting the valuation, one gets points Spec(K) → X from the same equivalence
class of points: this defines a point of X, hence the map Xan → X. If U = SpecA
is an affine open subset of X, every x ∈ φ−1(U) defines a seminorm | |x on A. The
topology on φ−1(U) is defined to be the coarsest such that x �→ | f |x is continuous for
every f ∈ A.

The space Xan is locally compact, and even compact if X is proper. In fact Xan is
more than just a topological space: it can be enriched into a K-analytic space, in the
sense of and as defined by Berkovich in [Ber90].

Let us assume for simplicity that X is irreducible and reduced. One can describe
the sheaf O of analytic functions on Xan as follows. But recall that an analytic space
in the sense of Berkovich is not just given by a locally ringed space, thus more data
should be given to get a well defined analytic space. If U is an open subset of Xan,
then O(U) is the ring of functions f : U →

⊔
x H(x) such that f (x) ∈ H(x) and f

is locally a uniform limit of rational functions: for every x ∈ U, there is an open
neighborhood V of x and a sequence (gn) of rational functions on X with no poles
in U such that

sup
x∈V

| f (x)−gn(x)| → 0 .

The sheaf M of meromorphic functions on X is the sheaf associated to the presheaf
mapping an open subset U of Xan to the total ring of fractions of O(U).
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For a hyperbolic curve X over an algebraically closed complete nonarchimedean
field K, the homotopy type of Xan can be described in terms of the stable model X of
X, see [Knu83, Def. 1.1] for the definition of stable curves in the non-proper case.
Indeed, consider the graph GX of the stable reduction of X: the vertices corre-
spond to the irreducible component of the stable reduction and the edges correspond
to the nodes of the stable reduction. There is a canonical embedding GX ↪→ Xan

which admits a canonical strong deformation retraction Φ. In particular, it is a ho-
motopy equivalence. The image of GX is called the skeleton of X.

Let e be an edge corresponding to a double point of the special fiber Xs of the
stable model of X. Locally for the étale topology, X is isomorphic to

SpecOK[x,y]/(xy−a)

with a ∈ K and |a|< 1. If e̊ is an open edge of GX, its preimage Φ−1(e̊) is isomorphic
to the open annulus {z ; |a| < |z| < 1}. One can define a metric on GX by setting the
length of e to be

lg(e) = v(a) .

A metric graph GX′ can also be defined for any semistable model X′ of X, and
there is also a natural embedding GX′ ↪→ Xan. Those metrics are compatible under
blow-up.

Let us assume K = Cp. Points of A1,an are of four different types and are de-
scribed in the following way:

• A closed ball B = B(a,r) ⊂ Cp of center a and radius r defines a point b = ba,r

of A1,an by
| f |b = sup

x∈B
| f (x)| .

The point ba,r is said to be of type 1 if r = 0, of type 2 if r ∈ pQ and of type 3
otherwise. The pairs (a,r) and (a′,r′) define the same point if and only if r = r′

and |a−a′| � r, that is, if and only if

B(a,r) = B(a′,r′) .

• A decreasing family of balls E = (Bi) with empty intersection defines a point by

| f |E = inf | f |bi
.

Such a point is said to be of type 4.

The analytic projective line P1,an is obtained from A1,an by adding a point at
infinity. There is a natural metric on the set of points of type 2 and 3 of P1,an defined
by the following formula:

d(ba,r,ba′,r′ ) =

{
logp(|a−a′|/r)+ logp(|a−a′|/r′) if |a−a′| �max(r,r′)
| logp(r′/r)| if |a−a′| �max(r,r′) .
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This metric is compatible with the metrics of the graphs of the semistable reductions.
It is invariant under automorphisms of P1,an. The metric topology defined on the set
of points of type 2 and 3 is much finer than the Berkovich topology.

If x � y ∈ P1,an, there is a unique smallest connected subset of P1,an that contains
x and y. It is homeomorphic to a closed interval and is denoted [x,y]. We also set

]x,y[= [x,y]\{x,y} ,

which consists of points of type 2 and 3. The topology induced by the restriction of
the metric d to ]x,y[ is the topology induced by the topology of P1,an. For example,
if x,y ∈ A1(Cp),

]x,y[= {bx,r}0<r�|x−y| ∪ {by,r}0<r�|x−y| .

9.2.2 Definition of the Tempered Fundamental Group

Let K be a complete nonarchimedean field, and let X be a connected smooth alge-
braic variety over K. The usual definition of tempered fundamental groups, as given
in [And03, Def. 2.1.1], uses a notion of étale topology on Berkovich spaces defined
in [Ber93]. However, we will start with a description of the tempered fundamental
group that only uses the topology of the analytifications of the finite étale coverings
of X. This description will be enough for our purposes.

Let x : SpecK′ → X be a geometric point of X and assume that K′ is provided
with a complete valuation extending the valuation of K so that x also defines a point
of Xan.

Let (Y,y) → (X, x) be a pointed Galois finite étale covering of (X, x). Then y also
defines a point of the Berkovich space Yan. Let

φ : (Y∞,y∞) → (Yan,y)

be the pointed universal covering of (Yan,y). Let us consider the following group:

HY � {(g,h) ∈ Gal(Y/X)×AutXan (Y∞) ; φh = ganφ} .

Heuristically, the group HY can be thought of as the Galois group of Y∞ over X.
There is a natural homomorphism π

top
1 (Yan,y) → HY that maps h ∈ Gal(Y∞/Y) to

(idY,h) and a natural homomorphism HY → Gal(Y/X) mapping (g,h) to g. One thus
gets an exact sequence

1 → π
top
1 (Yan,y) → HY → Gal(Y/X) → 1 .

The surjectivity of the morphism on the right comes from the extension property of
universal topological coverings.
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By the strong deformation retraction recalled above, the group π
top
1 (Yan) is iso-

morphic to π
top
1 (GY) and the extension of Gal(Y/X) by π

top
1 (GY) can also be directly

described in terms of the action of Gal(Y/X) on GY.
For a morphism ψ : (Y1,y1) → (Y2,y2) of pointed Galois finite étale coverings,

let ψ∞ : (Y∞
1 ,y∞

1 ) → (Y∞
2 ,y∞

2 ) be the morphism of pointed topological spaces ex-
tending ψ. One defines a morphism HY1

→ HY2
by mapping (g,h) to (g′,h′) such

that h′ψ = ψh and g′ψ∞ = ψ∞g.

Definition 3. The tempered fundamental group of X, pointed at x, is the topolog-
ical group

π
temp
1 (X, x) = lim←−−

(Y,y)∈C0

HY ,

where C0 is the filtered category of pointed Galois finite étale coverings.

By a result of J. de Jong, the morphism of groups πtemp
1 (X, x) → HY is surjective for

any (Y,y) and the group π
temp
1 (X, x) does not depend on x up to inner automorphism.

The tempered fundamental group is functorial: if (Y,y) → (X, x) is a morphism of
geometrically pointed smooth varieties, one gets a morphism of topological groups
π

temp
1 (X, x) → π

temp
1 (Y,y). If we forget base points, one gets a functor π

temp
1 from

smooth K-varieties to topological groups with outer morphisms.
We will be mainly interested in curves X over Qp in this paper, and abbreviate

Xan = Xan
Cp

and

π
temp
1 (X) = π

temp
1 (XCp

) .

As stated before, the tempered fundamental group classifies a category of ana-
lytic coverings. A morphism of K-analytic spaces f : S → Xan is said to be an étale
covering if Xan is covered by open subsets U such that f −1(U) =

⊔
V j and V j → U

is finite étale, see [dJ95]. For example, finite étale coverings, also called algebraic
coverings, and coverings in the usual topological sense for the Berkovich topology,
also called topological coverings, are tempered coverings. Then, André defines
tempered coverings as follows:

Definition 4 ([And03, Def. 2.1.1]). An étale covering S → Xan is tempered if it is
a quotient of the composition of a topological covering T′ → T with a finite étale
covering T → X.

Here are two properties of the category of tempered coverings.

Proposition 5. Let X be a proper curve over Qp.
(1) The category of tempered coverings of X is equivalent to the category of

locally constant sheaves for the Berkovich étale topology on Xan.
(2) There is an equivalence between the category of sets endowed with an action

of π
temp
1 (X, x) that goes through a discrete quotient and the category of tempered

coverings of Xan.
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9.3 Mochizuki’s Results on the pro-(p′) Tempered Group of a
Curve

Mochizuki proves in [Moc06] the folllowing theorem.

Theorem 6 ([Moc06, Cor. 3.11]). If Xα and Xβ are two hyperbolic Qp-curves, ev-
ery isomorphism

γ : π
temp
1 (Xα,Cp

) � π
temp
1 (Xβ,Cp

)

determines, functorially in γ, an isomorphism of graphs γ̄ : GXα
� GXβ

.

Let us explain this result. In fact, the graph of the stable reduction of the curve
can even be recovered from a prime-to-p version of the fundamental group. Let

π
temp
1 (X, x)(p′) = lim←−−

(Y,y)∈C
HY

where C is the category of pointed Galois finite étale coverings (Y,y) of (X, x) such
that the order of Gal(Y/X) is prime to p. Any morphism π

temp
1 (X1) → π

temp
1 (X2)

induces a morphism
π

temp
1 (X1)(p′) → π

temp
1 (X2)(p′) .

Indeed, the system (HY)p∧$Gal(Y/X)=1 is cofinal among discrete quotients of πtemp
1 (X)

that are extensions of a finite prime-to-p group by a torsionfree group. Hence, if C is
the class of discrete groups that have a normal torsionfree subgroup of finite prime-
to-p index, then π

temp
1 (X)(p′) is the pro-C completion of πtemp

1 (X).
A finite prime-to-p covering Y → X extends as a Kummer covering Y → X,

where Y and X are the stable models of Y and X. The map Y → X induces a
morphism of graphs GY → GX and a commutative diagram

GY
� � ��

��

Yan

��

GX
� � �� Xan .

Let z be a vertex (resp. an edge) of GX. Let us consider a compatible family
(z∞Y )Y∈C where z∞Y is a vertex (resp. an edge) of G∞

Y over z. Then π
temp
1 (X, x)(p′) acts

on G∞
Y for every Y. Let Dz be the subgroup of π

temp
1 (X, x)(p′) that stabilizes zY for

every Y. Changing the family (z∞Y )Y would replace Dz by a conjugate subgroup, so
that Dz only depends on z up to conjugacy. The group Dz is called the decomposi-
tion subgroup of z. It is a profinite subgroup of π

temp
1 (X)(p′), and in fact it can be

identified with the decomposition group of z in π
alg
1 (X)(p′), which is the prime-to-p

completion of πtemp
1 (X)(p′).

If e is an edge that ends at the vertex v, then De is a subgroup of Dv. This gives
a natural structure of a graph of profinite groups on GX The important facts for
Theorem 6 are that (1) every compact subgroup of πtemp

1 (X)(p′) is contained in some
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decomposition group of some vertex of Gx, and that (2) if the intersection of two
different decomposition subgroups of a vertex is non trivial, then this intersection is
the decomposition subgroup of a unique edge, and that (3) the intersection of three
different decomposition subgroups of a vertex is trivial. Hence GX can be recovered
from π

temp
1 (X)(p′) together with the structure of graph of profinite groups on it in the

following way.

• The vertices of GX correspond to conjugacy classes of maximal compact sub-
groups of π

temp
1 (X)(p′). Such a maximal compact subgroup is called a vertical

subgroup of πtemp
1 (X)(p′).

• The edges of GX correspond to conjugacy classes of nontrivial intersections of
two different maximal compact subgroups. Such an intersection is called an
edge-like subgroup of πtemp

1 (X)(p′).

A connected finite étale covering f : Y → X induces a morphism of stable mod-
els Y → X. One can recover GX from π

temp
1 (X) and GY from π

temp
1 (Y). We are

now interested in the combinatorial data of the morphism Ys → Xs which can be
recovered from the embedding ι : π

temp
1 (Y) ↪→ π

temp
1 (X). If H is a vertical subgroup

of πtemp
1 (Y)(p′) corresponding to an irreducible component y of Ys, then ι(p′)(H) is

• Either a finite index subgroup of a unique vertical subgroup H′ of π
temp
1 (X)(p′)

if y maps onto an irreducible component x of Xs, and then H′ is the vertical
subgroup corresponding to x.

• Or a commutative group and hence not a finite index subgroup of any vertical
subgroup.

Thus, for a given irreducible component x of Xs, one can recover from ι the set of
irreducible components of Ys that map onto x. Translated into Berkovich spaces,
one gets the following.

Proposition 7. One can recover from ι the preimage of any vertex of the skeleton
of Xan. In particular, one can know if the covering is split at this vertex.

9.4 Abelian Coverings of Mumford Curves

Definition 8. A proper curve X overQp is a Mumford curve if the following equiv-
alent properties are satisfied:

(a) All normalized irreducible components of its stable reduction are isomorphic
to P1.

(b) Xan is locally isomorphic to P1,an.
(c) Its Jacobian variety J has multiplicative reduction.
(d) The universal topological covering of Jan is a torus J̃.

The universal topological covering Ω of Xan for a Mumford curve X is an open
subset of P1,an. More precisely there is a Shottky subgroup Γ of PGL2(Cp), i.e., a
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free finitely generated discrete subgroup of PGL2(Cp), such thatΩ= P1,an\L, where
L is the closure of the set of Cp-points stabilized by some nontrivial element of Γ,
and X is p-adic analytically uniformized as

Xan = Ω/Γ

with Γ = π
top
1 (X). The points of L are of type 1, i.e., are Cp-points.

Let GX be the graph of the stable reduction of X and TX be its universal topo-
logical covering. The graph TX embeds in Ω and can be described as the smallest
subset of Ω such that TX ∪L is connected, i.e.,

TX =
⋃

(x,y)∈L2

]x,y[ .

9.4.1 Abelian Torsors and Invertible Functions on Ω

Let X be a Mumford curve of genus g � 2 overQp, let Ω ⊂ P1 be the universal topo-
logical covering of Xan, and Γ = Gal(Ω/X), so that Xan = Ω/Γ. All the cohomology
groups will be cohomology groups for étale cohomology in the sense of algebraic
geometry or in the sense of Berkovich. One can replace étale cohomology of Xan

by étale cohomology of X thanks to [Ber95, Thm. 3.1]. Kummer theory gives us the
following diagram with exact lower row, see [Ber93, Prop. 4.1.7] for the Kummer
exact sequence in Berkovich étale topology.

H1(X,μn) ��

��

H1(X,O∗)

��

1 �� O(Ω)∗/(O(Ω)∗)n �� H1(Ω,μn) �� H1(Ω,O∗)

The map H1(X,O∗) → H1(Ω,O∗) is zero, and thus H1(X,μn) → H1(Ω,μn) goes
through O(Ω)∗/(O(Ω)∗)n. Let us explain why H1(X,O∗) → H1(Ω,O∗) is zero. There
is a commutative diagram with exact lines:

Cp(X)∗ ��

��

Div(X) ��

��

H1(X,O∗)

��

M(Ω)∗ �� Div(Ω) �� H1(Ω,O∗)

where M(Ω)∗ is the group of nonzero meromorphic functions on Ω and Div(Ω) is
the group of divisors on Ω(CP) with discrete support, i.e.,

Div(Ω) = { f : Ω(Cp) → Z ; the support {x ∈Ω(Cp) | f (x) � 0} is discrete} .
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Since Div(X) → H1(X,O∗) is surjective, the next proposition tells us that the map
H1(X,O∗) → H1(Ω,O∗) is zero.

Proposition 9 ([vdP83b, Prop. 1.3]). M(Ω)∗ → Div(Ω) is surjective.

Proof. Assume ∞ ∈ Ω. Let D =
∑

i∈I nixi ∈ Div(Ω). Let us choose yi ∈ L such
that |yi − xi| = minz∈L |z − xi|. Then the infinite product

∏
i∈I(

z−xi
z−yi

)ni is uniformly
convergent on every compact of Ω and thus defines a meromorphic function f such
that div( f ) = D. ��

Combining the above, we find morphisms for every n ∈ N

H1(X,μn) → O(Ω)∗/(O(Ω)∗)n ↪→ H1(Ω,μn) .

Moreover, H1(X,μn) is mapped into the set of Γ-equivariant elements of H1(Ω,μn).
There is a spectral sequence

Hp(Γ,Hq(Ω,μn)) =⇒ Hn(Xan,μn) = Hn(X,μn)

associated to the Galois étale coveringΩ→ Xan. It gives a five-term exact sequence

0 → H1(Γ,μn) → H1(X,μn) → H1(Ω,μn)Γ→ H2(Γ,μn) → H2(X,μn) .

We have H2(Γ,μn) = 0, since Γ is free. Thus H1(X,μn) → H1(Ω,μn)Γ is surjective,
which in turn implies that

(O(Ω)∗/(O(Ω)∗)n)Γ→ H1(Ω,μn)Γ

is an isomorphism. The kernel of H1(X,μn) → H1(Ω,μn) is denoted by H1
top(X,μn)

and consists of μn-torsors that are already locally constant for the topology of Xan.

9.4.2 Invertible Functions on Ω and Currents on T

We recall the combinatorial description of O(Ω)∗ in terms of currents on the graph
T = TX as given in [vdP83b]. If G0 is a locally finite graph and A is an abelian
group, a current C on G0 with coefficients in A is a function

C : {oriented edges of G0} → A

such that

• C(e) = −C(e′) if e and e′ are the same edge but with reversed orientation.
• If v is a vertex of G0, then

∑
e ending at v C(e) = 0.

The group of currents on G0 with coefficients in A will be denoted C(G0,A). We
will simply write C(G0) for C(G0,Z).
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Proposition 10 ([vdP83b, Prop. 1.1]). There is an exact sequence

1 → C∗
p → O(Ω)∗ → C(T) → 0 .

Proof (sketch). The morphism O(Ω)∗ → C(T) assigns to an f ∈ O(Ω∗) a current C f

on T as follows. For any oriented open edge e̊, the preimage Φ−1(e̊) is isomorphic
to an open annulus

{z ∈ P1 ; 1 < |z| < r}

where the beginning of the edge tends to 1 and the end tends to r. Let

i : {z ∈ P1 ; 1 < |z| < r} → Φ−1(e̊)

be such an isomorphism. Then f i can be written in a unique way as z �→ zmg(z) with
m ∈ Z and |g| is constant. Then we set C f (e) = m, which does not depend on the
choice of i.

For x,y ∈ L, let fx,y : P1 → P1 be an automorphism of P1 that maps x to 0 and y
to ∞. It restricts to a mapΩ→Gm, i.e., an element fx,y ∈ O(Ω)∗ that depends on the
chosen homography only up to multiplication by a scalar. Let us choose x0 ∈Ω(Cp)
and fix fx,y by imposing fx,y(x0) = 1. The corresponding current is denoted by c]x,y[.
We find c]x,y[(e) = ±1 for every edge that belongs to ]x,y[ and c]x,y[(e) = 0 for any
other edge.

Every current c ∈ C(T) can be written as a locally finite sum c =
∑

i∈I nic]xi ,yi[.
Then f =

∏
fxi ,yi

is a locally uniformly convergent product and defines a preimage
of c in O(Ω)∗. The exactness in the middle comes from the fact that every bounded
analytic function on Ω is constant. ��

The Kummer exact sequence of Ω gives a map

C(T,Z/nZ) = C(T)/nC(T) � O(Ω)∗/(O(Ω)∗)n → H1(Ω,μn) ,

that combined with (O(Ω)∗/(O(Ω)∗)n)Γ =C(T,Z/nZ)Γ =C(G,Z/nZ) yields an exact
sequence

0 → H1
top(X,μn) → H1(X,μn) → C(G,Z/nZ) → 0. (9.1)

9.4.3 Splitting of Abelian Torsors

We now assume n = ph for some positive integer h. Let c be a current on T with
coefficients in Z/ph

Z. The subtree ∪e|c(e)�0 of T is called the support of c and
is denoted by suppc. It can also be viewed as a subset of Ω. We show that the
corresponding μph-torsor of Ω is split at some point if this point is far enough from
the support of c.

Let us begin with the simplest case, the torsor corresponding to the current c]x,y[.

Lemma 11. Let z ∈Ω be of type 2 or 3, and let h be a positive integer. The μph-torsor
corresponding to the current c]x,y[ is split over z if and only if
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d(z, ]x,y[) > h+1/(p−1)

where d is the metric defined in 9.2.1.

Proof. Up to changing the embedding Ω→ P1, one can assume x = 0 and y =∞.
Then the μph-torsor is just f : Gm → Gm, with f (t) = tph

.
We first assume that h = 1. Let ba,r be a preimage of z. Then f (ba,r) = bap,r′ = z

with r′ = sup|x−a|�r | f (x)−ap|. If a = 0, then r′ = ph. Otherwise we compute

f (y+a)−ap =

p∑

k=1

(
p
k

)
ap−kyk

and r′ = supk=1...p |
(

p
k

)
| · |a|p−krk with |

(
p
k

)
| = p−1 if 1 � k � p−1 and |

(
p
p

)
| = 1. Thus

r′ =

⎧⎪⎪⎨⎪⎪⎩
rp if r � |a|p− 1

p−1

|a|p−1r if r � |a|p− 1
p−1 .

Let ζ be a generator of μp. The torsor is split over z if and only if the orbit of ba,r
under the action of μp is not reduced to one point, if and only if bζa,r � ba,r, if and

only if |ζa−a|> r, i.e., a� 0 and |ζ−1|> r/|a|. But |ζ−1|= p− 1
p−1 . If a= 0, z ∈]0,∞[

and the torsor is not split. Otherwise, one can assume r′ < |ap|. The torsor is split

over z = bap,r′ if and only if r′/|ap| < p− p
p−1 . But

d(bap,r′ , ]0,∞[) = inf
r′′

d(bap,r′ ,b0,r′′ ) = logp |ap|/r′ .

The result follows for any h by induction. ��

Every current c on T can be decomposed as a locally finite sum c =
∑

i∈I nic]xi ,yi[.
For any point z of type 2 or 3, the set

Iz = {i ; d(z, ]xi,yi[) � h+1/(p−1)}

is finite, and locally around z, the μph torsor Yc → Ω defined by c is isomorphic
to the μph-torsor defined by c′ =

∑
i∈Iz

nic]xi,yi[. One can moreover choose the de-
composition c =

∑
i∈I nic]xi ,yi[ such that suppc = ∪]xi,yi[. This proves the following

proposition.

Proposition 12. If z is a point of type 2 or 3 of Ω such that d(z,suppc) > h+ 1
p−1 ,

then the μph-torsor of Ω defined by c is split over z.

9.5 Metric Graph and Tempered Fundamental Group

We consider now two Mumford curves X1 and X2 over Qp of genus g � 2, and an
isomorphism
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φ : π
temp
1 (X1)

∼→ π
temp
1 (X2) ,

together with the induced isomorphism of graphs

φ̄ : G1
∼→ G2 ,

hence an isomorphism φ̄ : T(Ω1)
∼→ T(Ω2).

Theorem 13. The isomorphism φ̄ : G1 → G2 is an isomorphism of metric graphs.

We will sketch the proof of this result. The metric di on Ti obtained by pullback of
the metric on Gi is equal to the one induced by the natural metric of P1,an. Consider
the diagram

H1(X2,μn) ��

��

H1(X1,μn)

��

C(G2,Z/nZ) �� C(G1,Z/nZ)

(9.2)

where the vertical arrows are given by equation (9.1), the upper arrow is Hom(φ,μn)
after identifying H1(Xi,μn) = Hom(πtemp

1 (Xi),μn). The lower arrow is C(φ̄,Z/nZ).

Proposition 14. The diagram (9.2) above commutes up to multiplication by a scalar
λ ∈ (Z/nZ)∗.

Proof. For i = 1,2, a μn-torsor on Xi is in H1
top(Xi,μn) if and only if it is dominated

by a Galois tempered covering with torsion free Galois group. Thus the isomor-
phism H1(X2,μn) → H1(X1,μn) is compatible with a unique isomorphism

φ̃ : C(G2,Z/nZ) → C(G1,Z/nZ) .

We have to show that there exists λ ∈ (Z/nZ)∗ such that for every c ∈ C(G2,Z/nZ)
and every edge e of G1, we have φ̃(c)(e) = λc(φ̄(e)).

Let e1 be an edge of G1 such that G1\e1 is connected, and let e2 = φ̄(e1). By
contracting Gi\ei to a point, one gets a map Gi → S1 to the circle S1. There is a
unique connected Galois covering S1 → S1 of order n and Galois group G = Z/nZ,
the pullback of which to Gi we denote by ψi : G(n)

i → Gi. Let X(n)
i be the corre-

sponding topological covering of Xi. We will use the following lemma, where for
sake of clarity we have omitted the indices i = 1,2.

Lemma 15. For a current c ∈ C(G,Z/nZ) we have c(e)= 0 if and only if there exists
c′ ∈ C(G(n),Z/nZ) such that ψ∗c =

∑
g∈G g∗c′.

Proof. Assume there is such a current c′. Then, the fact that c′ is a current implies
that c′(e′) is the same for every preimage e′ of e. Thus if e′ is such a preimage of e,
then

c(e) = ψ∗c(e′) =
∑

e′′∈ψ−1(e)

c′(e′′) = n · c′(e′) = 0 .
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If c(e) = 0, then c induces a current on G\e. Let A be a connected component of
ψ−1(G\e). Since ψ is a trivial covering above G\e, the component A is isomorphic
to G\e and c thus induces a current on A. One extends this current by 0 on G(n)\A
to get a current c′ on G(n) for which ψ∗c =

∑
g∈Γ g∗c′. ��

Let us come back to the proof of Proposition 14. The map φ induces a commutative
diagram

π
temp
1 (X(n)

1 )
φ(n)

��

� �

��

π
temp
1 (X(n)

2 )
� �

��

π
temp
1 (X1)

φ
�� π

temp
1 (X2) .

It induces a commutative diagram compatible with the actions of G

C(G2,Z/nZ)
φ̃

��

ψ∗
2

��

C(G1,Z/nZ)

ψ∗
1

��

C(G(n)
2 ,Z/nZ)

φ̃(n)
�� C(G(n)

1 ,Z/nZ) .

Lemma 15 shows that φ̃(c)(e1) = 0 if and only if ψ∗
1φ̃(c) is a norm in C(G(n)

1 ,Z/nZ)

for the G-action. This holds if and only if ψ∗
2(c) is a norm in C(G(n)

2 ,Z/nZ) for the
G-action, or again by Lemma 15 if and only if c(e2) = 0.

An edge e of a graph G is said to be unconnecting if π0(G\{e}) → π0(G) is
injective. If the evaluation map eve : C(G1,Z/nZ) → Z/nZ is nonzero, then e is
unconnecting and eve is surjective.

Let e be an unconnecting edge of G1. Since φ̃ maps Ker(evφ̄(e)) to Ker(eve), one
gets an isomorphism

Z/nZ = C(G2,Z/nZ)/Ker(evφ̄(e)) → C(G1,Z/nZ)/Ker(eve) = Z/nZ

induced by φ̃, that is multiplication by a unique λe ∈ (Z/nZ)∗. This means that for
every c ∈ C(G1,Z/nZ), we have φ̃(c)(e) = λec(φ̄(e)). One has now to prove that λe
does not depend of e.

Let π2 : G′
2 → G2 be a finite topological covering, let X′

2 → X2 be the corre-
sponding finite topological covering of X2, let π1 : G′

1 = φ̄∗G′
2 → G1 and let X′

1 be

the corresponding finite topological covering of X1. Let φ′ : π
temp
1 (X1) → π

temp
1 (X2)

be the induced isomorphism. Let e′ be a preimage of e which is also unconnecting.
The scalar λe′ ∈ Z/nZ induced by φ′ turns out to be equal to λe because for every
current c ∈ C(G2,Z/nZ) we have

λe · φ̃′(π∗
2c)(e′) = λeλe′ ·π∗

2c(φ̄′(e′)) = λeλe′ · c(φ̄(e))

= λe′ · φ̃(c)(e) = λe′ ·π∗
1φ̃(c)(e′) = λe′ · φ̃′(π∗

2c)(e′) .
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If ea and eb are two unconnecting edges of G1, there exists a finite topological
covering G′

1 → G1, a preimage e′
a (resp. e′

b) of ea (resp. eb) and a cycle of G′
1 that

goes through e′
a and e′

b. Let c be the Z/nZ-current on G′
2 which follows this cycle

and is zero everywhere else. Since φ̃′(c) must also be a current, one gets that λ must
be constant on the cycle and thus λea

= λe′
a
= λe′

b
= λeb

. Therefore the scalar λ� λe

does not depend of e and, for every c ∈ C(G2,Z/nZ) and every edge e of G1, we
have φ̃(c)(e) = λc(φ̄(e)). ��

We continue the proof of Theorem 13. Let L1 be an oriented loop in G1, and set
L2 = φ̄(L1). Let L̃1 be an oriented path lifting L1 in T1 and set L̃2 = φ̄(L̃1). Then
L̃i =]xi,yi[ for some points xi,yi ∈ Ωi. Let z1 be a vertex of T1 and set z2 = φ̄(z1).
The stabilizer H ⊂ Γ1 of L̃1 is the image of π1(L1) → π1(G1) = Γ1.

We fix an integer h′ > 0. Let Γ′ be a finite index subgroup of Γ1 such that, for
every g ∈ Γ′\H,

min{d1(L̃1,gL̃1),d2(L̃2, φ̄(gL̃1))} > h′ .

The current
c1 =

∑

g∈Γ′/(H∩Γ′)
g∗c]x1,y1[

is Γ′-equivariant, and we set c2 = (φ̄−1)∗c1. We consider the finite topological cov-
ering X′

1 = Ω1/Γ
′ → X1, and set X′

2 = φ∗X′
1 = Ω2/φ(Γ′).

Let Y1 be a μph-torsor of X′
1, whose pullback S1 to Ω1 is induced by c1. Let

Y2 = (φ−1)∗Y1 and let S2 be its pullback to Ω2. According to Proposition 14, the
torsor S2 is the μph-torsor induced by λc2 for some λ ∈ Z/ph

Z.
For h′ chosen big enough, locally around z1 (resp. z2), S1 (resp. S2) is isomorphic

to the μph-torsor induced by c]x1 ,y1[ (resp. λc]x2 ,y2[), hence is split at z1 (resp. z2) if

and only if d1(]x1,y1[,z1) > h+ 1
p−1 (resp. d2(]x2,y2[,z2) > h + 1

p−1 ). According
to Proposition 7, those two conditions must be equivalent for any z1 and h. In
particular, ∣∣∣ d1(]x1,y1[,z1)−d2(]x2,y2[,z2)

∣∣∣ � 2 . (9.3)

Let L′
1 be a loop in G1 and L̃′

1 be a lifting of the universal covering of L′
1 to T1 such

that L̃′
1 � L̃1. This is possible since X1 is hyperbolic and thus L̃1 � T1. Let lg1(L′

1)
be the length of this loop and lg2(φ̄(L′

1)) be the length of φ̄(L′
1).

Let (zn
1)n∈Z be the family of preimages in L̃′

1 of a vertex of L′
1, numbered com-

patibly with an orientation of L̃′
1. Let zn

2 be the image of zn
1 in T2. Then there exists

constants c1 and c2 such that, for n � 0,

d1(]x1,y1[,zn
1) = n lg1(L′

1)+ c1 ,

d2(]x2,y2[,zn
2) = n lg2(φ̄(L′

1))+ c2 .

Thus, for n � 0,

n| lg1(L′
1)− lg2(φ̄(L′

1))| = |d1(]x1,y1[,z1)−d2(]x2,y2[,z2)+ c1 − c2| � 2+ |c1|+ |c2| .
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Since the sequence (n| lg1(L′
1)− lg2(φ̄(L′

1))|)n∈N is bounded,

lg1(L′
1) = lg2(φ̄(L′

1)) .

Theorem 13 is thus a consequence of the following purely combinatorial statement
applied to G =G1 and f = lg1 − lg2 ◦φ̄.

Proposition 16 ([Lep10, Prop. A.1]). Let G be finite graph such that the valency of
every vertex is at least 3. Let

f : {edges of G} → R

be any function. Let us denote also by f the induced function on the set of edges of
a topological covering of G. Let us set f (C) =

∑
x∈{edges of C} f (x) for C a loop of a

covering of G.
If f (C) = 0 for every loop C of every covering of G, then f = 0.

Remark 17. Thm. 13 is also true for open Mumford curves, see [Lep09, Cor. 3.4.7].
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Chapter 10
Z/� Abelian-by-Central Galois Theory of Prime
Divisors

Florian Pop∗

Abstract In this manuscript I show how to recover some of the inertia structure of
(quasi) divisors of a function field K|k over an algebraically closed base field k from
its maximal mod � abelian-by-central Galois theory of K, provided td(K|k) > 1. This
is a first technical step in trying to extend Bogomolov’s birational anabelian program
beyond the full pro-� situation, which corresponds to the limit case mod �∞.

10.1 Introduction

At the beginning of the 1990s, Bogomolov [Bog91] initiated a program whose final
aim is to recover function fields K|k over algebraically closed base fields k from their
pro-� abelian-by-central Galois theory. That program goes beyond Grothendieck’s
birational anabelian program as initiated in [Gro83], [Gro84], because k being alge-
braically closed, there is no arithmetical Galois action in the game. In a few words,
the precise context for Bogomolov’s birational anabelian program is as follows:

• Let � be a fixed rational prime number.
• Consider function fields K|k with k algebraically closed of characteristic � �.
• Let K′ ↪→ K′′ be maximal pro-� abelian, respectively abelian-by-central, exten-

sions of K.
• Let pr : Πc

K → ΠK be the corresponding projection of Galois groups.

Notice that pr : Πc
K → ΠK can be recovered group theoretically from Πc

K, as its ker-
nel is exactly the topological closure of the commutator subgroup of Πc

K. Actually,
we set G(1) = GK for the absolute Galois group of K, and for i � 1 we let
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G(i+1) := [G(i),G(1)](G(i))�
∞

be the closed subgroup of G(i) generated by all the commutators [x,y] with x ∈ G(i),
y ∈ G(1) and the �∞-powers of all the z ∈ G(i). Then the G(i), i � 1, are the descending
central �∞ terms of the absolute Galois group GK, and

Πc
K = G(1)/G(3) → ΠK = G(1)/G(2).

Further, denoting G(∞) = ∩iG
(i), it follows that GK(�) := GK/G(∞) is the maximal

pro-� quotient of GK, see e.g. [NSW08, page 220]. The program initiated by Bogo-
molov1 mentioned above has as ultimate goal to recover function fields K|k as above
from Gal(K′′|K) in a functorial way. If completed, this program would go far be-
yond Grothendieck’s birational anabelian geometry, see [Pop98] for a historical note
on birational anabelian geometry, and [Pop11, Introduction], for a historical note
on Bogomolov’s Program and an outline of a strategy to tackle this program. For
an early history beginning even before [Gro83], [Gro84], see [NSW08] Chap. XII,
the original sources [Neu69], [Uch79], as well as Szamuely’s Séminaire Bourbaki
talk [Sza04]. To conclude, I would like to mention that in contrast to Grothendieck’s
birational anabelian program, which is completed to a large extent, Bogomolov’s
birational anabelian program is completed only in the case the base field k is an
algebraic closure of a finite field, see Bogomolov–Tschinkel [BT08] for the case
td(K|k) = 2 and Pop [Pop11] in general.

The results of the present manuscript represent a first step and hints at the possi-
bility that a mod � abelian-by-central form of birational anabelian geometry might
hold, which would then go beyond Bogomolov’s birational anabelian program in
many ways.

In order to put the results of this paper in the right perspective, let me mention that
the present paper shares similarities with [Pop06] and [Pop10], where similar results
were obtained, but working with the full pro-� Galois group GK(�), respectively
the maximal pro-� abelian-by-central Galois group Πc

K. Whereas a key technical
tool used in [Pop10] is the theory of Z� commuting liftable pairs as developed in
Bogomolov–Tschinkel [BT02], which was used as a black box, we use here the
theory of Z/� commuting liftable pairs. The fact that such a mod � variant might
hold was already suggested by previous results from Mahé–Mináč–Smith [MMS04]
in the case � = 2. The details for the theory of Z/� commuting liftable pairs can be
found in the manuscript Topaz [Top11].

Before going into the details of the manuscript, let me introduce notations which
will be used throughout the manuscript and mention briefly facts used later on.

• Let � be a prime number.
• Consider function fields K|k with k algebraically closed of characteristic � �.
• Let K′ ↪→ K′′ be a maximal Z/� abelian extension, respectively a maximal Z/�

abelian-by-central extension of K.
• Let pr : Π

c
K → ΠK be the corresponding quotient map of Galois groups.

1 Recall that Bogomolov denotes Gal(K′′ |K) by PGalcK.
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Note that pr : Π
c
K →ΠK can be recovered group theoretically from Π

c
K, as its kernel

is the topological closure of the commutator group of Π
c
K.

Let v be a valuation of K, and v′ some prolongation of v to K′. Let Tv′ ⊆ Zv′

be the inertia group, respectively decomposition group, of v′ in ΠK. By Hilbert de-
composition theory for valuations, the groups Tv′ ⊆ Zv′ of the several prolongations
v′ of v to K′ are conjugated. Thus, since ΠK is abelian, the groups Tv′ ⊆ Zv′ de-
pend on v only, and not on its prolongations v′ to K′. We will denote these groups
by Tv ⊆ Zv, and call them the inertia group, respectively decomposition group, at
v. And we denote by K′Zv =: KZ ⊆ KT := K′Tv the corresponding fixed fields. It
turns out that the residue field K′v′ of v′ is actually a maximal Z/� extension of the
residue field Kv of v, i.e., K′v′ = (Kv)′[

�√
Kv ], which is abelian if char(Kv) � �. We

further set KZ1
:=KZ[ �

√
1+mv ] and KT1

:=KZ[ �
√
O×

v ] and denote Z1
v :=Gal(K′|KZ1

)

and T1
v :=Gal(K′|KT1

), and call these groups the minimized decomposition, respec-
tively inertia, groups of v. We notice that by Lemma 2, one has Z1

v ⊆ Zv and T1
v ⊆ Tv,

and Z1
v = Zv and T1

v = Tv, provided char(Kv) � �.
We next recall that for a k-valuation of K, i.e., a valuation of K whose valuation

ring Ov contains k, and thus k canonically embeds in the residue field Kv := Ov/mv,
the following conditions are equivalent:

(i) The valuation ring Ov equals the local ring OX,xv
of the generic point xv of

some Weil prime divisor of some normal model X → Spec(k) of K|k.
(ii) The transcendence degrees satisfy td(Kv |k) = td(K|k)−1.

A prime divisor of K|k is any k-valuation v of K which satisfies the above equiv-
alent conditions. In particular, if v is a prime divisors of K|k, then vK � Z and Kv|k is
a function field satisfying td(Kv |k) = td(K|k) − 1. By Hilbert decomposition theory
for valuations, see e.g. [Bou64] Chap. 6, it follows that the following hold:

Tv � Z/� and Zv � Tv ×Gal(K′v′|Kv) � Z/�×Gal(K′v′|Kv).

For a prime divisor v, we will call Zv endowed with Tv a divisorial subgroup of ΠK
or of the function field K|k.

As a first step in recovering K|k from its mod � abelian-by-central Galois theory,
one would like to recover the divisorial subgroups of ΠK from Π

c
K. This is indeed

possible if k is the algebraic closure of a finite field, see below. Unfortunately, there
are serious difficulties when one tries to do the same in the case k is not an algebraic
closure of a finite field, as the non-trivial valuations of k interfere. Therefore one is
led to considering the following generalization of prime divisors, see e.g. [Pop06]
Appendix. The valuation v of K is called quasi divisorial, or a quasi prime divisor
of K, if the valuation ring Ov of v is maximal among the valuation rings of valuations
of K satisfying:

(i) The relative value group vK/vk is isomorphic to Z as abstract groups.
(ii) The residue extension Kv |kv is a function field with td(Kv |kv) = td(K|k)−1.

Notice that a quasi prime divisor v of K is a prime divisor if and only if v is trivial
on k. In particular, in the case where k is an algebraic closure of a finite field, the
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quasi prime divisors and the prime divisors of K|k coincide, as all valuations of K
are trivial on k.

For a Galois extension K̃|K and its Galois group Gal(K̃|K), we will say that a
subgroup Z of Gal(K̃|K) endowed with a subgroup T of Z is a quasi-divisorial
subgroup of Gal(K̃|K)— or of K|k in case Gal(K̃|K) is obvious from the context —
if T ⊆ Z are the inertia group, respectively the decomposition group, above some
quasi-divisor v of K|k. One defines the corresponding minimized quasi-divisorial
subgroups T1 ⊆ Z1 of the quasi-divisorial subgroups T ⊂ Z of Gal(K̃|K), and notice
that if char(Kv) � �, then T1 = T and Z1 = Z. We notice that by Proposition 7, it
follows that T ⊂ Z and T1 ⊂ Z1 determine each other uniquely, provided T1

v � 1.

It was the main result in Pop [Pop10] to show that the quasi-divisorial subgroups
of the Galois group ΠK can be recovered by a group theoretical recipe from the
canonical projection Πc

K → ΠK, which itself can be recovered from Πc
K. Paralleling

that result, the main result of this paper can be summarized as follows:

Theorem 1. Let K|k be a function field over the algebraically closed field k of char-
acteristic char(k) � �, and let

Π
c
K → ΠK

be the canonical projection. For subgroups T, Z, Δ of ΠK, let T′′, Z′′, Δ′′ denote
their preimages in Π

c
K. Then one has:

(1) The transcendence degree d = td(K|k) is the maximal integer d such that there
exist closed subgroups Δ � (Z/�)d of ΠK with Δ′′ abelian.

(2) Suppose that d := td(K|k) > 1. Let T ⊂ Z be closed subgroups of ΠK. Then Z
endowed with T is a minimized quasi divisorial subgroup of ΠK if and only Z
and T are maximal in the set of closed subgroups of ΠK which satisfy:

(i) Z contains a closed subgroup Δ � (Z/�)d such that Δ′′ is abelian.
(ii) T � Z/�, and T′′ is the center of Z′′.

Actually the above theorem is a special case of the more general assertions
Proposition 15, and Theorems 17 and 19, which deal with generalized [almost]
(quasi) prime r-divisors. The above Theorem corresponds to the case r = 1.

Acknowledgements. I would like to thank all who showed interested in this work,
among whom: Jakob Stix, Tamás Szamuely and Adam Topaz for technical dis-
cussions and help, and Viktor Abrashkin, Minhyong Kim, Pierre Lochak, Hiroaki
Nakamura, Mohamed Saïdi and Akio Tamagawa for discussions at the INI Cam-
bridge during the NAG Programme in 2009.

10.2 Basic Facts from Valuation Theory

Let K be a field of characteristic � � containing all �-th roots of unity μ� . In par-
ticular, we can fix a (non-canonically) isomorphism ıK : μ� → Z/� as GK modules.
Kummer theory provides a canonical non-degenerate pairing
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K×/�×ΠK → μ� ,

that by Pontrjagin duality gives rise to canonical isomorphisms ΠK = Hom(K×,μ�)
and K×/� = Homcont(GK,μ�). Thus we finally get isomorphisms:

ΠK = Hom(K×, μ�)
ıK−→ Hom(K×, Z/�).

10.2.1 Hilbert Decomposition in Abelian Extensions

In the above context, let v be a valuation of K, and v′ some prolongation of v to K′.
Further, let p = char(Kv) be the residual characteristic. We denote by Tv ⊆ Zv the
inertia, respectively decomposition, groups of v′|v in ΠK. We notice that one has:
First, if � � p, then the ramification group Vv of v′|v is trivial, as p = char(Kv) � �
does not divide the order of ΠK, thus that of Zv. Second, if � = p, then char(K) = 0,
and Tv = Vv, because p = � is the only prime dividing the order of ΠK. We also
notice that Vv ⊆ Tv ⊆ Zv do depend on v only, and not on the prolongation v′|v
used to define them. Finally, we denote by KT and KZ the corresponding fixed
fields in K′.

Let ζ� ∈ μp be primitive, and set θ := ζ� −1 ∈ K×. The following are well known
facts, and we reproduce them here for the reader’s convenience.

Lemma 2. In the above context one has the following:

(1) Let U1
v = 1+mv � K× be the group of principal v-units in K. Then, if p = �,

K[ �
√

1+ θ�mv ] ⊆ KZ ⊆ K[
�
√

U1
v ] = KZ1

and else

KZ = K[
�
√

U1
v ] = KZ1

In particular, KZ1
= K′ if and only if K×/� = U1

v/�.
(2) Let Uv be the group of v-units of K. Then, if p = �,

K[ �
√

1+ θ�Uv ] ⊆ KT ⊆ K[ �
√

Uv ] = KT1

and else
KT = K[ �

√
Uv ] = KT1

.

(3) The field extension (Kv)′ ⊆ K′v′ is purely inseparable, and equality holds if
char(Kv) � �. Setting δv = dim(vK/�), the following holds:

(a) T1
v = Hom(vK,Z/�) � (Z/�)δv non-canonically.

(b) Gv := Z1
v/T1

v = Zv/Tv = Hom(Kv/�,μ�).
(c) There are isomorphisms (the latter non-canonical) of �-torsion groups:

Z1
v � T1

v ×G1
v � (Z/�)δv ×Hom(Kv/�,μ�).
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Proof. (1) Let Kh be some Henselization of K containing KZ. Then by general
decomposition theory, KZ = Kh ∩K′. We first prove that

�
√

1+ θ�mv ⊆ KZ.

Equivalently, if a = 1+ θ�x with x ∈ mv, then we have to show �
√

a ∈ KZ. First,
consider the case p = �. Then the equation Xp = 1+ θ�x is equivalent to

(X0+1)p = 1+ θ�x,

and setting Y = X0/θ
�, we get the equation of the form Yp −Y = y with y ∈ mv. The

latter has a solution in KZ by Hensel’s Lemma, hence in K′ ∩Kh.
Second, if p � �, one has a ≡ 1 (modmv) and it follows that

X� −a ≡ X� −1 mod mv,

hence X� − a has � distinct roots (modmv). By Hensel’s Lemma, X� − a has a root
in Kh, hence in K′ ∩Kh.

For the second inclusion, let a ∈ K× be such that �
√

a ∈ KZ. Since K and KZ have
equal value groups, and �

√
a ∈ KZ, it follows that there is an element b ∈ K such that

v �
√

a = vb, hence va = � · vb. We set c := a/b� ∈ Uv and find

�√c = �√a/b ∈ KZ.

Since K and KZ have equal residue fields, it follows that there is d ∈ Uv such that
�
√

c ≡ d modmv, hence c = d� ·a1 with a1 ∈ U1
v . Thus finally as claimed

�√a = bd �
√

a1 ∈ K[
�
√

U1
v].

Finally, if p � �, then θ ∈ Uv, hence 1+ θ�mv = U1
v .

In the case p� �, the last assertion of (1) is just the translation via Kummer theory

of the fact that we have equalities K′ = K[
�√
K× ] and K[

�
√

U1
v ] = KZ.

The proof of (2) is similar, and therefore we will omit the details. And finally,
(3) is just a translation in Galois terms of the assertions (1) and (2). ��

Recall that for given valuation v, one can recover Ov from mv, respectively U1
v ,

respectively Uv. Indeed, if Uv is given, then

U1
v = { x ∈ Uv | x � Uv −1 } ,

by which we deduce mv = U1
v −1, and finally recover Ov through its complement

K\Ov = { x ∈ K× | x−1 ∈ mv } .

Finally, recall that for given valuations v,w of K, with valuation rings Ov, re-
spectively Ow, we say that w � v, or that w is a coarsening of v, if Ov ⊆ Ow. From
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the discussion above we deduce that for given valuations v, w, of K, the following
assertions are equivalent:

(i) w is a coarsening of v.
(ii) mw ⊆ mv.
(iii) U1

w ⊆ U1
v .

(iv) Uv ⊆ Uw.

These facts have the following Galois theoretic translation.

Fact 3. In the above context and notations, the following hold:

(1) Zv ⊆ Zw if and only if KZ
w ⊆ KZ

v , and Z1
v ⊆ Z1

w if and only if U1
w/� ⊆ U1

v/�.
(2) Tw ⊆ Tv if and only if KT

v ⊆ KT
w, and T1

v ⊆ T1
w if and only if Uv/� ⊆ Uw/�.

(3) In particular2, if w � v, then Tw ⊆ Tv ⊆ Zv ⊆ Zw, and T1
w ⊆ T1

v and Z1
v ⊆ Z1

w.

10.2.2 The Z/� Abelian Form of Two Results of F. K. Schmidt

In this subsection we give the abelian pro-� form of two results of F. K. Schmidt
and generalizations of these like the ones in Pop [Pop94, The local theory]. See also
Endler–Engler [EE77].

Let v be a fixed valuation of K, and v′|v a fixed prolongation of v to K′. Let
further Λ|K be a fixed sub-extension of K′|K containing KZ. Let V′

Λ,v′ be the set of
all coarsenings w′ of v′ such that Λw′ ⊇ (Kw)′, or equivalently, Λw′ ⊆ K′v′ is purely
inseparable. Let w be the restriction of w′ to K, and let VΛ,v be the restriction of
V′

Λ,v′ to K. We set V0
Λ,v =VΛ,v ∪{v}.

Lemma 4. (1) The set VΛ,v depends on v and Λ only, and not on the specific pro-
longation v′ of v. In fact, VΛ,v consists of all the coarsenings w of v such that
Λ′w ⊇ (Kw)′ for some prolongation w of w to K′ (and equivalently, for every pro-
longation w′ of w to K′).

(2) More precisely, we have w ∈ VΛ,v ⇐⇒ KT
w ⊆ Λ ⇐⇒ Gal(K′|Λ) ⊆ Tw, and

in particular, v ∈ VΛ,v ⇐⇒ KT
v ⊆ Λ ⇐⇒ Gal(K′|Λ) ⊆ Tv.

Proof. (1) If ṽ is another prolongation of v to K′, then there exists some σ in ΠK
such that ṽ = v′ ◦σ−1 := σ(v′), and so σ defines a bijection

Vv′ ,Λ → Vṽ,σ(Λ)

by w �→ w ◦σ−1. Note that since Λ|K is abelian, thus in particular Galois, one has
Λ = σ(Λ). Thus for w′ ∈ VΛ,v′ , and w̃ = σ(w′) := w′ ◦σ one has: σ gives rise to an
Kw-isomorphism of the residue fields

(Kw)′ = Λw′ → σ(Λ)σ(w′) = Λw̃.

2 This is actually true for all Galois extensions K̃|K, and not just for K′|K. But then one has to start
with valuations ṽ and coarsenings w̃ of those on K̃, etc.
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The proof of the remaining assertions is clear.
(2) Let w′ be a coarsening of v′. By general decomposition theory for valuations

it follows that KZ
w ⊆ KZ

v . Further, by general decomposition theory, KT
w|KZ

w is the
unique minimal one among all the sub-extensions of K′|KZ

w having residue field
equal to (Kw)′. Now since by hypothesis KZ

w ⊆ KZ
v ⊆ Λ, we have: KT

w ⊆ Λ, provided
Λw′ ⊇ (Kw)′. Thus, w ∈ V0

Λ,v if and only if KT
w ⊆ Λ, by the discussion above. ��

Definition 5. By general valuation theory, the set V0
Λ,v has an infimum whose valu-

ation ring is the union of all the valuation rings Ow with w ∈ V0
Λ,v. We denote this

valuation by
vΛ := inf V0

Λ,v

and call it the Z/�-abelian Λ-core of v.

Proposition 6. In the above context and notations, suppose that Λ � K′ is a proper
sub-extension of K′|K containing KZ, thus in particular, KZ � K′. Then the Z/�-
abelian Λ-core vΛ of v is non-trivial and lies in V0

v,Λ. Consequently:

(1) If v1 is a valuation of K satisfying v1 < vΛ, then Λv′
1 � (Kv1)′. If Λv′ ⊇ (Kv)′,

then Λv′
Λ ⊇ (Kv)′, and vΛ is the minimal coarsening of v with this property.

(2) (KvZ)′ = KvZ ⇔ (Kv)′ = Kv, where vZ is the Z/�-abelian KZ-core of v.
(3) If v has rank one, or if Kv � (Kv)′, then v equals its Z/�-abelian KZ-core vZ.

Proof. If VΛ,v is empty, i.e., Λv′
� (Kv)′, then V0

Λ,v = {v}, hence vΛ = v, and there
is nothing to show. Now suppose that VΛ,v is non-empty. Then Λv′ ⊇ (Kv)′, hence
v ∈ VΛ,v, and we will show that actually vΛ ∈ VΛ,v. Equivalently, by Lemma 4 (2),
above, we have to show that KT

vΛ ⊆ Λ. Since KT
vΛv′

Λ is the maximal separable
subextension of (Kv)′v′ | Kv, the inclusion KT

vΛ ⊆ Λ is equivalent to showing that
(Kv)′v′

Λ | Λv′
Λ is purely inseparable. On the other hand, since by the definition of vΛ

we have OvΛ = ∪w Ow, w ∈ V0
Λ,v, and mvΛ = ∩wmw, and since each (Kw)′w′ | Λw′

are purely inseparable, by “taking limits” the same is true for (Kv)′v′
Λ | Λv′

Λ.
The assertions (1), (2), (3) are immediate consequences of the main assertion of

the proposition proved above, and we omit their proof. ��

Proposition 7. (1) Let v1,v2 be valuations of K such that KZ
v1

, KZ
v2

are contained in
some Λ � K′. Then the Z/�-abelian Λ-cores of v1 and v2 are comparable.

(2) Let v1,v2 be valuations of K which equal their Z/�-abelian KZ-cores, respec-
tively. If KZ

v1
= KZ

v2
, then v1 and v2 are comparable. (Obviously, if KZ

w ⊂ KZ
v strictly,

then w < v strictly.)

Proof. (1) Recalling that θ := ζ� − 1, we first remark for independent valuations v1
and v2 of K one has K× = (1+θ�mv1

) · (1+θ�mv2
). Indeed, this follows immediately

from the Approximation Theorem for independent valuations. In particular, if v1
and v2 are independent, then K′ equals the compositum KZ

v1
KZ

v2
inside K′. Now

since by hypothesis we have KZ
v1
,KZ

v2
⊆ Λ � K′, it follows that v1 and v2 are not

independent. Let v be the maximal common coarsening of v1 and v2. By general
valuation theory, the valuation ideal mv is the maximal common ideal of Ov1

and
Ov2

. Denote wi = vi/v on the residue field L := Kv. Then we have:
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• If both w1 and w2 are non-trivial, then they are independent.
• For i = 1,2 we have

LZ
wi
= (KZ

vi
)v′ ⊆ Λv′ ⊆ K′v′.

Therefore, by the discussion above, we either have Λv′ ⊇ (Kv)′, or otherwise at least
one of the wi is the trivial valuation.

First, we consider the case when one of the wi is trivial. Equivalently, we have
vi = min(v1,v2), hence v1 and v2 are comparable. Thus any two coarsenings of v1
and v2 are comparable, hence their Z/�-abelian Λ-cores are comparable, too.

Second, consider the case Λv′ ⊇ (Kv)′. Then by the definition of V′
Λ,vi

, it follows
that v ∈ V′

Λ,vi
, as v is by definition a coarsening of vi, i = 1,2. Hence finally the

Z/�-abelian Λ-cores of v1 and v2 are both some coarsenings of v, thus comparable.
(2) We apply assertion (1) with Λ = KZ

v1
= KZ

v2
. ��

10.3 Hilbert Decomposition in Z/� Abelian-by-Central
Extensions

We keep the notations from the introduction and the previous sections concerning
field extensions K|k and the canonical projection pr : Π

c
K → ΠK.

Fact/Definition 8. In the above notations we have the following:

(1) For a family Σ = (σi)i of elements of ΠK, let ΔΣ be the closed subgroup gen-
erated by Σ. Then the following are equivalent:

(i) There are preimages σ′
i ∈ Π

c
K, for all i, which commute with each other.

(ii) The preimage Δ′′
Σ in Π

c
K of ΔΣ is abelian.

We say that a family of elements Σ = (σi)i of ΠK is commuting liftable, for
short c.l., if Σ satisfies the above equivalent conditions (i), (ii).

(2) For a family (Δi)i of subgroups of ΠK the following are equivalent:

(i) All families (σi)i with σi ∈ Δi are c.l.
(ii) If Δ′′

i is the preimage of Δi in Π
c
K, then [Δ′′

i ,Δ
′′
j ] = 1 for all i � j.

We say that a family of subgroups (Δi)i of ΠK, is commuting liftable, for short
c.l., if it satisfies the equivalent conditions (i), (ii) above.

(3) We will say that a subgroup Δ of ΠK is commuting liftable, for short c.l., if
its preimage Δ′′ in Π

c
K is commutative.

(4) We finally notice the following: For subgroups T ⊆ Z of ΠK, let T′′ ⊆ Z′′ be
their preimages in Π

c
K. Then the following are equivalent:

(i) The pair (T, Z) is c.l.
(ii) T′′ is contained in the center of Z′′.
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(5) In particular, given a closed subgroup Z of ΠK, there exists a unique maximal
(closed) subgroup T of Z such that T and (T,Z) are c.l. Indeed, denoting by
Z′′ the preimage of Z in Π

c
K, and denoting by T′′ its center, the group T is the

image of T′′ in ΠK under the canonical projection pr : Π
c
K → ΠK.

We next recall the following fundamental fact concerningZ/� liftable commuting
pairs. It might be well possible that one could work out a proof along the technical
steps in the proofs from Bogomolov–Tschinkel [BT02]. But there is a much sim-
pler/easier way to get the result by using the theory of rigid elements, originating
in work by Ware [War81], and further developed by Arason–Jacob–Ware [AEJ87],
Koenigsmann [Koe01], and others; see Topaz [Top11] for complete proofs.

Key Fact 9. Let K|k be an extension with k algebraically closed and char(k) � �. Let
σ,τ ∈ ΠK be such that 〈σ,τ〉 is isomorphic to (Z/�)2. Then σ,τ is c.l. if and only if
there exists a valuation v of K with the following properties:

(i) The group 〈σ,τ〉 is contained in the minimized decomposition group Z1
v .

(ii) The intersection 〈σ,τ〉∩ T1
v is non-trivial.

Proof. We only give a sketch of a proof, see Topaz [Top11] for details. Let T ⊂ K×/�
be the orthogonal complement of 〈σ,τ〉 under the Kummer pairing. Equivalently,
KT := K[

�√
T] is the fixed field of 〈σ,τ〉 in K′, and (K×/�)/T is the Kummer dual

of 〈σ,τ〉 under the Kummer pairing. Let x,y ∈ K× be such that K×/� is generated
by T, x,y as an abelian group. Then the fact that σ,τ is a commuting liftable pair
implies that for the characters χx,χy ∈ Hom(ΠK,μ�) defined by x,y, it follows that
their cup product

χx ∪χy ∈ H2(K,μ⊗2
� )

is non-trivial. From this fact it follows instantly that

T+Tz ⊂ ∪�−1
1=0ziT

for all z ∈ K×/�. Thus all the elements of K×/� are quasi rigid with respect to T.
One concludes that there T-rigid elements in K×, thus there exists a valuation v of
K such that 1+mv ⊆ T, and (vK/�)/vT is not trivial, etc. ��

10.3.1 Inertia Elements

Recall that in the notations from above, we say that an element σ ∈ ΠK is an �-
inertia element, for short inertia element, if there exists a valuation v of K such
that σ ∈ Tv and char(Kv) � �. Clearly, the set of all the inertia elements at v is
exactly Tv.

Lemma 10. Let σ � 1 be an inertia element of ΠK. Then there exists a valuation vσ
of K, which we call the canonical valuation for σ such that the following hold:
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(i) σ ∈ Tvσ , i.e., σ is inertia element at vσ.
(ii) If σ is inertia element at some valuation v, then vσ � v.

Proof. We construct vσ as follows. Let Λ be the fixed field of σ in K′. For every
valuation v such that σ ∈ Tv, let vΛ be the Z/�-abelian Λ-core of v. We claim that
vσ := vΛ satisfies the conditions (i) and (ii). Indeed, since σ ∈ Tv, and KTv′ ⊇ (Kv)′,
we have KT

v ⊆ Λ, hence Λv′ ⊇ (Kv)′. Therefore, by Proposition 6 (1), it follows
that Λv′

Λ ⊇ (KvΛ)′. But then one must have KT
vΛ ⊆ Λ, and therefore Gal(K′|Λ) ⊆ TvΛ .

Hence σ ∈ TvΛ verifies (i).
In order to prove (ii), let v1 be another valuation of K such that σ ∈ Tv1

. For the
Z/�-abelian Λ-core v1,Λ of v1, by the discussion above, we have Λv′

1,Λ ⊇ (Kv1,Λ)′.
We claim that actually vΛ = v1,Λ. Indeed, both vΛ and v1,Λ equal their Z/�-abelian Λ-
cores. Hence they are comparable by Proposition 7 (1). By contradiction, suppose
that v1,Λ � vΛ, say v1,Λ < vΛ. Since vΛ equals its Z/�-abelian Λ-core, and v1,Λ < vΛ,
it follows by Proposition 6 (1), that Λv′

1,Λ � (Kv1,Λ)′, contradiction. Thus vΛ = v1,Λ.
Since v1,Λ � v1, we finally get vΛ � v1. This completes the proof of (ii). ��

Proposition 11. In the context and the notations from above, the following hold:
(1) Let Σ = (σi)i be a c.l. family of inertia elements. Then the canonical val-

uations vσi
are pairwise comparable. Moreover, denoting by vΣ = supi vσi

their
supremum, and by Λ the fixed field of Σ in K′, one has:

(a) σi ∈ TvΣ for all i.
(b) vΣ equals its Z/�-abelian Λ-core.

(2) Let Z ⊆ ΠK be some subgroup, and ΣZ = (σi)i be the family of all inertia
elements σi in Z such that (σi,Z) is c.l. for each i. Suppose that Z is not cyclic.
Then the valuation v := vΣZ

as constructed above with respect to ΣZ satisfies:

(a) Z ⊆ Z1
v.

(b) ΣZ = Z∩T1
v.

Proof. (1) We may assume that all σi are nontrivial. For each σi let Ti be the closed
subgroup of ΠK generated by σi, and Λi the fixed field of σi in K′. Thus one has
that Ti = Gal(K′|Λi), and σi � 1 implies that Ti � Z/�. Setting T := Ti ∩T j, we have
the following possibilities:

Case T � {1}: Since Ti � Z/� � T j, we have T = Ti = T j, and Λ = Λi = Λ j is the
fixed field of T in K′. Hence by Proposition 7 (2), the Z/�-abelian Λ-core of vσi
and vσ j

are comparable. But then reasoning as at the end of the proof of (ii) from
Lemma 10, it follows that vΛ,i = vΛ, j. Hence finally vσ j

= vσi
, as claimed.

Case T = {1}: Let Ti j be the subgroup generated by σi,σ j in ΠK, and let Λi j be
the fixed field of Ti j in K′. Since Ti ∩T j = {1}, we have Ti j � Z/�×Z/�, thus Ti j is
not pro-cyclic. Hence by the Key Fact 9 above, there exists a valuation v such that
Ti j ⊆ Z1

v , and T :=T1
v ∩Ti j is non-trivial. Moreover, by replacing v by its Z/�-abelian

Λi j-core, we can suppose that actually v equals its Λi j-core. Finally let us notice that
we have Ti j/T =Gal

(
(Kv)′|Λi jv

′), and by Kummer theory, Gal
(
(Kv)′|Λi jv

′) is of the
form (Z/�)r for some r. Now since T is non-trivial, and Ti j � Z/�×Z/�, we finally
get: Ti j/T is either trivial, or Ti j/T � Z/� else.
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Next let vi be the Z/�-abelian Λi-core of v. The we have the following case
discussion:

Suppose vi > vσi
: Reasoning as in the proof of (ii) of Lemma 10, by Proposi-

tion 6 (1), we get: Since vi is the Z/�-abelian Λi-core of v, and vσi
< vi, we have

Λiv
′
σi
� (Kvσi

)′, contradiction. The same holds correspondingly for vσ j
and the

corresponding v j. Hence we must have vi � vσi
, and v j � vσ j

.
Suppose vi < vσi

: Recall that vσi
equals its Z/�-abelian Λi-core, and further

Λiv
′
σi

⊇ (Kvσi
)′ by the definition/construction of vσi

. Since vi < vσi
, it follows by

Proposition 6, (1), that Λiv
′
� (Kvi)

′. But then by Proposition 6, (3), it follows that
vi = v. Hence finally we have the following situation: v = vi < vσi

, and Λiv
′
� (Kv)′.

Equivalently, Λi � KT
v , and so, Ti � Tv. On the other hand, since ΠK is �-torsion, it

follows that Ti ∩Tv is trivial, hence Ti ∩T is trivial. Hence by the remarks above
we have: Ti j = Ti T. On the other hand, v < vσi

implies that Tv ⊆ Tvσi
, and therefore

T ⊆ Tvσi
. Since Ti ⊆ Tvσi

by the definition of vσi
, we finally get: Ti j is contained in

Tvσi
. Therefore, σi,σ j are both inertia elements at vσi

. But then reasoning as at the
end of the proof of (ii) from Lemma 10, we deduce that the Z/�-abelian Λ j-core of
vσi

, say wi, equals vσ j
. Thus finally we have vσ j

= wi � vσi
, hence vσ j

and vσi
are

comparable, as claimed.
By symmetry, we come to the same conclusion in the case v j < vσ j

, etc. Thus it
remains to analyze the case when vσi

= vi and vσ j
= v j. Now since both vi and v j

are coarsenings of v, it follows that they are comparable. Equivalently, vσi
= vi and

vσ j
= v j are comparable, as claimed.

(2) Let σ ∈ ΣZ be a non-trivial element, and let vσ be the canonical valuation
attached to σ as defined above at Lemma 10.

Claim. Z ⊆ Z1
vσ .

Let τ ∈ Z be any element such that the subgroup Zσ,τ generated by σ,τ is not
pro-cyclic. We claim that τ ∈ Z1

vσ . Indeed, by the Key Fact 9 above, it follows that
there exists a valuation v having the following properties: Zσ,τ ⊆ Z1

v , T := Zσ,τ ∩T1
v

is non-trivial, etc. Let ρ be a generator of T. Then since (σ,Z) is c.l., and ρ ∈ Z, it
follows that (σ,ρ) is a c.l. pair of inertia elements of ΠK. Hence by assertion (1)
above, it follows that the canonical valuations vσ and vρ are comparable. We notice
that vρ � v, as the former valuation is a core of the latter one. We have the following
case by case discussion:

- Suppose that vσ � vρ : Then vσ � vρ � v, hence Zv ⊆ Zvρ ⊆ Zvσ , and therefore,

Z1
v ⊆ Z1

vρ ⊆ Z1
vσ . Since τ ∈ Zσ,τ ⊆ Z1

v , we finally get τ ∈ Z1
vσ , as claimed.

- Suppose that vσ > vρ : Then in the notations from above, Λσv′
ρ � (Kvρ)′, hence

Tσ is mapped isomorphically into the residual Galois group Gal(K′v′
ρ|Λσv′

ρ). In
particular, since ρ ∈ Tvρ , it follows that Tσ ∩Tρ is trivial, hence σ,ρ generate Zσ,τ.

On the other hand, vσ > vρ implies Tvρ ⊆ Tvσ ⊆ Zvσ , hence T1
vρ ⊆ T1

vσ ⊆ Z1
vσ too.

Since ρ ∈ T1
vρ , we finally get ρ ∈ Z1

vσ . Hence finally τ ∈ Z1
vσ .

Combining both cases conclude the proof of the claim.

Now recall that by (1), the valuations vσ are comparable, and that v denotes their
supremum. By general decomposition theory for valuation, since Z ⊆ Z1

vσ for all σ,
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one has Z ⊆ Z1
v too. In order to show that ΣZ = Z∩T1

v , we proceed as follows. First,
reasoning as above, by the Key Fact 9, we see that T1

v , Z1
v is c.l., thus so is the pair

of groups Z∩T1
v , Z. Hence by the maximality of ΣZ, it follows that

Z∩T1
v ⊆ ΣZ.

And reasoning as above, it follows that ΣZ ⊆ Z ∩ T1
v , thus finally ΣZ = Z ∩ T1

v , as
claimed. ��

10.3.2 Inertia Elements and the c.l. Property

Proposition 11 has the following consequence.

Proposition 12. (1) Let Δ be a c.l. subgroup of ΠK. Then Δ contains a subgroup
Σ consisting of inertia elements such that Δ/Σ is pro-cyclic (maybe trivial). In
particular, there exists a valuation v := vΣ such that Δ ⊆ Zv, and Δ∩Tv = Σ, and v
equals its Z/�-abelian Λ-core, where Λ is the fixed field of Σ in K′.

(2) Let Z ⊆ ΠK be a closed subgroup, and ΣZ a maximal subgroup of Z such that
the following are satisfied:

(#) ΣZ and (ΣZ,Z) are c.l.

Suppose that 1 � ΣZ � Z. Then ΣZ is the unique maximal subgroup of Z satisfy-
ing (#), and it consists of all the inertia elements σ in Z such that (σ,Z) is c.l. And
there exists a unique valuation v such that Z ⊆ Z1

v,

ΣZ = Z∩T1
v ,

and v equals its Z/�-abelian Λ-core, where Λ is the fixed field of ΣZ in K′.

Proof. (1) When all σ ∈ Δ are inertia elements, then Σ = Δ and the conclusion fol-
lows by applying Proposition 11 (1).

Now we assume that there is an element σ0 ∈ Δ which is not an inertia element.
Then for each σ′

i ∈ Δ such that the closed subgroup Zσ0,σ
′
i

generated by σ0,σ
′
i is not

pro-cyclic, the following holds. Since (σ′
i ,σ0) is by hypothesis c.l., it follows that

there exists a valuation vi of K such that Zσ′
i ,σ0

⊆ Z1
vi

, and Ti := Z1
σ′

i ,σ0
∩T1

vi
is not

trivial. Moreover, since σ0 is by assumption not an inertia element, it follows that
denoting by σi a generator of Ti, we have: σ0,σi generate topologically Zσ′

i ,σ0
, and

σi is an inertia element in Δ. In particular, if vσi
is the canonical valuation attached

to the inertia element σi, then vσi
� vi. Hence we have σ0 ∈ Z1

vi
⊆ Z1

vσi
. We next

apply Proposition 11 and get the valuation

v := vΣ = sup
i

vσi
.

Since σ0 ∈ Z1
vσi

for all i, by general valuation theory one has σ0 ∈ Z1
vΣ .
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(2) We first claim that ΣZ consists of inertia elements. By contradiction, suppose
that this is not the case, and let σ0 ∈ ΣZ be a non-inertia element. Reasoning as in
(1) above and in the above notations we have: For every σ′

i ∈ Z such that the closed
subgroup Zσ′

i ,σ0
generated by σ0,σ

′
i is not pro-cyclic, there exists an inertia element

σi ∈ Zσ′
i ,σ0

, such that σ′
i ∈ Z1

vσi
, and the closed subgroup generated by σi,σ0 equals

Zσ′
i ,σ0

. Then if vσi
is the canonical valuation for σi, we have Zσ′

i ,σ0
⊆ Z1

vσi
, and

Zσ′
i ,σ0

∩ T1
vσi

is generated by σi. In particular, if Λ0 is the fixed field of σ0 in K′,
then for every σi one has Λ0v′

σi
� (Kvσi

)′, hence vσi
equals its Z/�-abelian Λ0-core.

Now taking into account that for all subscripts i one has KZ1

vσi
⊂ Λ0, it follows by

Proposition 7, (1), that (vσi
)i is a family of pairwise comparable valuations. Let

v = supi vσi
be the supremum of all these valuations. Since vσi

� v for all σi, it
follows that Tvσi

⊆ Tv and T1
vσi

⊆ T1
v for all σi and σ0 � Tv. Moreover, all the σi

together with σ0 generate Z. Hence T := Z ∩ Tv together with σ0 topologically
generate Z. But then (σ0,T) is c.l., and therefore Z is c.l., contradiction.

Hence we conclude that ΣZ consists of inertia elements only, and by hypothesis,
ΣZ is c.l. We next let v := vΣZ

be the valuation constructed in Proposition 11 (1), for
the c.l. family consisting of all the elements from ΣZ.

Claim. Z ⊆ Z1
v .

Indeed, let σ0 ∈ Z\ΣZ be a fixed element � 1, and σ′
i ∈ ΣZ. Then (σ′

i ,σ0) is c.l.
by hypothesis of the Proposition. Reasoning as in (1) above, we obtain σi and vσi

as
there. On the other hand, σ′

i ∈ ΣZ is itself an inertia element, as ΣZ consists of inertia
elements only by the discussion above. Since (σ′

i ,Z) is c.l. by hypothesis, it follows
that (σ′

i ,σi) is c.l. Since they are inertia elements, it follows by Proposition 11 (1),
that vσi

and vσ′
i

are comparable. And further note that σ0 ∈ Z1
vσi

. We have the
following case by case discussion.

- If vσi
� vσ′

i
for all i, then v0 := supi vσi

� supi vσ′
i
= vΣZ

= v. Hence Zv0
⊆ Zv

and Z1
v0

⊆ Z1
v . Since σ0 ∈ Z1

vi
for all σi, it follows that σ0 ∈ Z1

v0
. Thus we finally get

σ0 ∈ Z1
v , as claimed.

- If vσi
< vσ′

i
for some σ′

i , then σ′
i � Tvσi

, hence (σi,σ
′
i ) and (σ0,σ

′
i ) generate the

same closed subgroup. Or equivalently, σ0 is contained in the subgroup generated
by (σi,σ

′
i ). On the other hand, vσi

< vσ′
i
� v implies Tvσi

⊆ Tvσ′
i
⊆ Tv, and therefore

T1
vσi

⊆ T1
vσ′

i
⊆ T1

v

too. Hence σi,σ
′
i ∈ T1

v . But then σ0 ∈ T1
v , and in particular, σ0 ∈ Z1

v , as claimed.
Finally to prove that ΣZ = Z∩T1

v , apply Proposition 11 (2). ��
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10.4 Almost Quasi r-Divisorial Subgroups

In this section we will prove a more general form of the main result announced in the
Introduction. We begin by quickly recalling some basic facts about (transcendence)
defectless valuations, see e.g. Pop [Pop06] Appendix for more details.

10.4.1 Generalized Quasi Divisorial Valuations

Let K|k be a function field over the algebraically closed field k with char(k) � �.
For every valuation v on K, or on any algebraic extension of K, like for instance
K′ or K′′, since k is algebraically closed, the group vk is a totally ordered Q-vector
space, which is trivial, if the restriction of v to k is trivial. We will denote by rv
the rational rank of the torsion free group vK/vk, and by abuse of language call it
the rational rank of v. Next notice that the residue field kv is algebraically closed
too, and Kv |kv is some field extension, but not necessarily a function field. We will
denote tdv = td(Kv |kv) and call it the residual transcendence degree. By general
valuation theory, see e.g. [Bou64] Chap. 6 Sect. 10.3,

rv+ tdv � td(K|k)

and we will say that v has no (transcendence) defect, or that v is (transcendence)
defectless, if the above inequality is an equality.

Using Fact 5.4 from [Pop06], it follows that for a valuation v of K and r � td(K|k)
the following are equivalent:

(1) v is minimal among the valuations w satisfying rw = r and tdw = td(K|k)− r.
(2) v has no relative defect, and rv = r, and rv′ < r for any proper coarsening v′ of v.

Definition 13. A valuation of K with the equivalent properties (i) and (ii), above is
called almost quasi r-divisorial, or an almost quasi r-divisor of K|k, or simply a
generalized almost quasi divisor, if the rank r is not relevant for the context.

Remark 14. In the above context, one has:
(1) The additivity of the rational rank r(·), see [Pop06] Fact 5.4 (1), implies, if

v is almost quasi r-divisorial on K|k, and v0 is almost quasi r0-divisorial on Kv |kv,
then the compositum v0 ◦ v is an almost quasi (r+ r0)-divisor of K.

(2) Similar to [Pop06] Appendix, Fact 5.5 (2) (b), if v is almost quasi r-divisorial,
then Kv|kv is a function field with td(Kv |kv) = td(K|k)− r, and vK/vk � Zr.

(3) A prime divisor of K|k is an almost quasi 1-divisor. And conversely, an almost
quasi 1-divisor v of K is a prime divisor if and only if v is trivial on k.

Proposition 15. In the above context, suppose that d = td(K|k) > 1. Let v be an
almost quasi r-divisor of K|k, and Tv ⊂ Zv be the corresponding almost quasi di-
visorial subgroups of ΠK, and T1

v ⊂ Z1
v be the minimized ones as usual. Then the

following hold:



240 F. Pop

(1) T1
v � (Z/�)r and canonically via Kummer theory Z1

v/T1
v � Hom

(
Kv)/�,μl

)
.

(2) The following hold:

(a) Z1
v contains c.l. subgroups � (Z/�)d and Z1

v is maximal among the sub-
groups Z1 of ΠK which contain subgroups T1 � (Z/�)r with (T1,Z1) c.l.

(b) T := T1
v is the unique maximal subgroup of Z := Z1

v with (T,Z) c.l. Equiv-
alently, if T′′ ⊆ Z′′ are the preimages of T ⊆ Z under the canonical pro-
jection Π

c
K → ΠK, then T′′ is the center of Z′′.

Proof. Assertion (1) follows immediately from the behavior of the decomposition
and inertia groups in towers of algebraic extensions, and Fact 2.1 (2) (3) of [Pop06].

(2a) First let us prove that Zv contains c.l. subgroups Δ � (Z/�)d. Since v is an
almost quasi r-divisor, we have td(Kv |kv) = tdv = td(K|k) − r. Now if tdv = 0, then
we are done by assertion (1) above. If tdv > 0, then we consider any almost quasi
tdv-divisor v0 on the residue field Kv. Then denoting by w := v0 ◦ v the refinement
of v by v0, we have v < w, hence Tv ⊆ Tw and T1

v ⊆ T1
w. And

d = td(K|k) = r+ tdv = rw,

hence w is an almost quasi d-divisor of K. An easy verification shows that K′|KT1

w
has Galois group isomorphic to (Z/�)d, thus T1

w � (Z/�)d. By Key Fact 9, it follows
that T1

w � (Z/�)d is c.l. Second, reasoning as in the case of w, it follows that T1
v �

(Z/�)r, and by applying Key Fact 9, it follows that (T1
v , Z1

v) are c.l.
We next show that Z = Z1

v is the maximal subgroup of ΠK such that (T,Z) is c.l.,
where T = T1

v . Let namely Z be such that Z1
v ⊆ Z and (T,Z) is c.l. We claim that

Z = Zv. Let Σ be a maximal c.l. subgroup of Z such that T ⊆ Σ, and (Σ,Z) is c.l. too.
Applying Proposition 12, let w := vΣ be the resulting valuation from loc.cit. Hence
we have Z ⊆ Z1

w, and Σ = Z∩Tw.

Claim. w � v.

Indeed, suppose by contradiction that w < v. Then by the fact that v is an almost
quasi r-divisor, it follows that rw < r = rv and w has no defect. But then

dim(wK/�) = rw < r = dim(vK/�),

hence T1
w � (Z/�)rw . Since T � (Z/�)r and T ⊆ Σ � (Z/�)rw , we get a contradiction

and the claim is proved. Therefore Zw ⊆ Zv, thus Z1
w ⊆ Z1

v ; and since Z ⊆ Z1
w, we

finally have Z ⊆ Z1
v , as claimed.

(2b) By assertion (2a), it follows that (T1
v ,Z

1
v) is c.l. We show that T1

v is the
unique maximal (closed) subgroup of Z1

v with this property. Indeed, let T be a
closed subgroup of Z1

v as in (2a). Then denoting by Σ the closed subgroup of Zv
generated by T1

v and T, since (T1
v ,Z

1
v) and (T,Z1

v) are c.l., it follows that (Σ,Z1
v) are

c.l. too. Thus w.l.o.g. we may assume that T1
v ⊆ T, and that T is maximal with the

properties from (2b). Now if r = d, then Z1
v =T1

v , and there is nothing to prove. Thus
suppose that r < d. Let vΣ be the unique valuation of K given by Proposition 12.
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Claim. vΣ � v.

Indeed, suppose by contradiction that vΣ > v. Since v is a quasi r-divisor of K, it
follows that Kv|kv is a function field with

td(Kv|kv) = tdv = d − r > 0.

Since the valuation v0 := vΣ/v on Kv is non-trivial, it follows that Z1
v0

⊆ Gal
(
(Kv)′|Kv

)

is a proper subgroup of ΠK. Taking into account that Z1
vΣ is the preimage of

Z1
v0

⊆ Gal
(
(Kv)′|Kv

)

under the canonical projection Zv → Gal
(
(Kv)′|Kv

)
, it follows that Z1

vΣ is strictly
contained in Z1

v , contradiction!
By the claim, we have vΣ � v and so TvΣ ⊆ Tv, and therefore, T1

vΣ ⊆ T1
v . Hence

one has T ⊆ Σ ⊆ T1
vΣ ⊆ T1

v , thus finally T ⊆ T1
v . We conclude that T := T1

v is the
unique maximal subgroup of Z := Z1

v such that (T,Z) is c.l., as claimed. ��

10.4.2 Characterizing Almost Quasi r-Divisorial Subgroups

We keep the notations from the previous section.

Definition 16. We say that a closed subgroup Z of ΠK is an almost quasi r-
divisorial subgroup, if there exists an almost quasi r-divisor v of K|k such that
Z = Zv.

Below we give a characterization of the almost quasi r-divisorial subgroups of ΠK,
thus of the almost quasi r-divisors of K, in terms of the group theoretical information
encoded in the Galois group Π

c
K alone, provided r < td(K|k).

Theorem 17. Let K|k be a function field over the algebraically closed field k with
char(k) � �. Let pr : Π

c
K → ΠK be the canonical projection, and for subgroups T, Z,

Δ of ΠK, let T′′, Z′′, Δ′′ denote their preimages in Π
c
K. Then the following hold:

(1) The transcendence degree d = td(K|k) is the maximal integer d such that there
exists a closed subgroup Δ � (Z/�)d of ΠK with Δ′′ abelian.

(2) Suppose that d := td(K|k) > r > 0. Let T ⊆ Z be closed subgroups of ΠK. Then
T ⊆ Z is a minimized almost quasi r-divisorial subgroup of ΠK if and only if Z
is maximal in the set of closed subgroups of ΠK which satisfy:

(i) Z contains a closed subgroup Δ � (Z/�)d such that Δ′′ is Abelian.
(ii) T � (Z/�)r, and T′′ is the center of Z′′.

Proof. Recall from Fact/Definition 8, especially the points (3)–(5), that Δ′′ being
abelian is equivalent to Δ being c.l., and T′′ being the center of Z′′ is equivalent
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to T being the maximal subgroup of Z such that (T,Z) is c.l. We will use the c.l.
terminology from now on.

(1) Let Δ be any c.l. closed non-procyclic subgroup of ΠK. Then by Proposi-
tion 12 (1), it follows that there exists a valuation v of K such that Δ ⊆ Zv, and
setting TΔ := Δ∩ Tv, it follows that Δ/TΔ is pro-cyclic (maybe trivial). Hence we
have the following cases.

Case TΔ = Δ. Then TΔ � (Z/�)δ, and by Lemma 2 (3), it follows that δv � δ.
Since td(K|k) � rv � δv, we finally get td(K|k) � δ.

Case Δ/TΔ is non-trivial. Then Δ/TΔ � Z/� and TΔ � (Z/�)δ−1. So the image
of Δ in ΠKv is non-trivial, hence ΠK is non-trivial. Since kv is algebraically closed,
we must have Kv � kv. Equivalently, tdv > 0. Proceeding as above, we also have
rv � (δ−1), hence finally: td(K|k) � rv+ tdv > (δ−1) and td(K|k) � δ.

We now show the converse inequality. Using Pop [Pop06] Fact 5.6, one con-
structs valuations v of K such that rv = td(K|k) =: d. If v is such a valuation, then
dim(vK/�)= d. Hence by Lemma 2 (3), T1

v � (Z/�)d; and T1
v is a c.l. closed subgroup

of ΠK.
(2) By Proposition 15, it follows that if v is an almost quasi-prime r-divisor,

then T1
v ,Z

1
v satisfy the properties asked for T,Z in (2). For the converse assertion,

let T ⊆ Z be closed subgroups of ΠK satisfying the conditions (i) and (ii). Then
T � (Z/�)r, and Z contains c.l. subgroups Δ � (Z/�)d with d = tr.deg(K|k) > r. And
notice that the fact that T′′ is the center of Z′′ is equivalent to the fact that T is the
unique maximal subgroup of Z such that T and (T,Z) are c.l.

Step 1. Consider a maximal c.l. subgroup Δ � (Z/�)d of Z –which exists by the
hypothesis. Since T is by hypothesis a c.l. subgroup of Z such that (T,Z) is c.l. too,
it follows that the closed subgroup T1 of Z generated by T and Δ is a c.l. closed
subgroup of Z. Hence by the maximality of Δ it follows that T1 ⊆ Δ, hence T ⊆ Δ.

Step 2. Applying Proposition 12, let v0 be the valuation of K deduced from the
data (T,Z). Hence Z ⊆ Z1

v0
, and T = Z ∩ Tv0

. Let Λ be the fixed field of T in K′.

Then we obviously have KT1

v0
⊆ Λ. Let v be the Z/�-abelian Λ-core of v0. We will

eventually show that v is an almost quasi r-divisor of K, and that Z=Z1
v , T=T1

v , thus
concluding the proof. Note that T ⊆ Tv0

implies KT1

v0
⊆ Λ, thus Λv′

0 ⊇ (Kv0)′. Hence
by Proposition 6 (1), the same is true for the Z/�-abelian Λ-core v of v0. Therefore
we have Λv′ ⊇ (Kv)′.

Step 3. By Proposition 12 applied to Δ, it follows that there exists a valuation vΔ
of K such that Δ ⊆ Z1

vΔ . Moreover, by the discussion in the proof of assertion (1)
above, it follows that vΔ is defectless, and one of the following holds: Either rvΔ = d,
and moreover, in this case Δ = T1

vΔ , thus Δ consists of inertia elements only. Or
rvΔ = d − 1, and in this case we have T1

vΔ � (Z/�)d−1; and since Δ is a c.l. subgroup

of ΠK, and T ⊆ Δ consists of inertia elements only, it follows that T ⊆ T1
vΔ . Finally,

Δ contains non inertia elements of ΠK.
Let w be the Z/�-abelian Λ-core of vΔ. Since T ⊆ T1

vΔ , we must have KT1

vΔ ⊆ Λ.
Hence Λv′

Δ ⊆ K′v′
Δ is purely inseparable. But then by Proposition 6 (1), the same is

true for w, i.e., Λw′ ⊆ K′w′ is purely inseparable.
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Claim. v = w

We argue by contradiction. Suppose that v � w, and first suppose that v > w.
Since by the conclusion of Step 2 we have that Λv′ ⊆ K′v′ is purely inseparable, and
v equals its Z/�-abelian Λ-core, it follows by Proposition 6 (1) that Λw′ ⊆ K′w′ is
not purely inseparable. But this contradicts the conclusion of Step 3.

Second, suppose that v < w. Then reasoning as above, we contradict the fact that
Λv′ ⊆ K′v′ is purely inseparable. The claim is proved.

Now since w is a coarsening of vΔ, and the latter valuation is defectless, the same
is true for w, thus for v = w. We next claim that v is an almost quasi r-divisor.
Indeed, we have:

- First, T ⊆ T1
w = T1

v , and since T � (Z/�)r, it follows that T1
v � (Z/�)δ for some

r � δ � d.
- Second, since v � v0, it follows that Zv0

⊆ Zv and Z1
v0

⊆ Z1
v . Hence Z ⊆ Z1

v , as
Z ⊆ Z1

v0
by the definition of v0.

- Moreover, (T1
v ,Z

1
v) is c.l. In particular, (T,Z1

v) is a c.l. pair too.
The maximality of Z and T implies that Z = Z1

v and T = T1
v , as claimed. ��

10.5 A Characterization of Almost r-Divisorial Subgroups

Definition 18. We say that an almost quasi r-divisorial valuation of K|k is an almost
r-divisorial valuation or an almost prime r-divisor of K|k, if v is trivial on k. We
will further say that a closed subgroup Z of ΠK endowed with a closed subgroup
T ⊂ Z is an almost divisorial r-subgroup of ΠK, if there exists an almost prime
r-divisor v of K|k such that T = T1

v and Z = Z1
v .

We now show that using the information encoded in sufficiently many 1-
dimensional projections, one can characterize the almost r-divisorial subgroups
among all the almost quasi r-divisorial subgroups of ΠK. See Pop [Pop06], espe-
cially Fact 4.5 for more details. Let us recall that for t ∈ K a non-constant function,
we denote by κt the relative algebraic closure of k(t) in K, and that the canonical (sur-
jective) projection prt : ΠK → Πκt

is called a one dimensional projection of ΠK.

Theorem 19. Let K|k be a function field as usual with td(K|k) > r > 0. Then for
a given almost quasi r-divisorial subgroup Z ⊆ ΠK, the following assertions are
equivalent:

(i) Z is an almost r-divisorial subgroup of ΠK.
(ii) There is an element t ∈ K\k such that pt(Z) ⊆ Πκt

is an open subgroup.

Proof. The proof is word-by-word identical with the one of Pop [Pop06], Proposi-
tion 5.6, and therefore we will omit the proof here. ��



244 F. Pop

References

[AEJ87] J. K. Arason, R. Elman, and B. Jacob. Rigid elements, valuations, and realization of
Witt rings. J. Algebra, 110:449–467, 1987.

[Bog91] F. A. Bogomolov. On two conjectures in birational algebraic geometry. In A. Fujiki
et al., editors, Algebraic Geometry and Analytic Geometry, ICM-90 Satellite Confer-
ence Proceedings. Springer Verlag, Tokyo, 1991.

[Bou64] N. Bourbaki. Algèbre commutative. Hermann Paris, 1964.
[BT02] F. A. Bogomolov and Yu. Tschinkel. Commuting elements in Galois groups of function

fields. In F. A. Bogomolov and L. Katzarkov, editors, Motives, Polylogarithms and
Hodge theory, pages 75–120. International Press, 2002.

[BT08] F. Bogomolov and Yu. Tschinkel. Reconstruction of function fields. Geometric And
Functional Analysis, 18:400–462, 2008.

[EE77] O. Endler and A. J. Engler. Fields with Henselian valuation rings. Math. Z., 152:191–
193, 1977.

[Gro83] A. Grothendieck. Brief an Faltings (27/06/1983). In L. Schneps and P. Lochak, ed-
itors, Geometric Galois Action 1, volume 242 of LMS Lecture Notes, pages 49–58.
Cambridge, 1997.

[Gro84] A. Grothendieck. Esquisse d’un programme. In L. Schneps and P. Lochak, editors,
Geometric Galois Action 1, volume 242 of LMS Lecture Notes, pages 5–48. Cam-
bridge, 1997.

[Koe01] J. Koenigsmann. Solvable absolute Galois groups are metabelian. Inventiones Math.,
144:1–22, 2001.
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Chapter 11
On �-adic Pro-algebraic and Relative Pro-�
Fundamental Groups

Jonathan P. Pridham∗

Abstract We recall �-adic relative Malcev completions and relative pro-� comple-
tions of pro-finite groups and homotopy types. These arise when studying unipotent
completions of fibres or of normal subgroups. Several new properties are then estab-
lished, relating to �-adic analytic moduli and comparisons between relative Malcev
and relative pro-� completions. We then summarise known properties of Galois
actions on the pro-Q�-algebraic geometric fundamental group and its big Malcev
completions. For smooth varieties in finite characteristics different from �, these
groups are determined as Galois representations by cohomology of semisimple local
systems. Olsson’s non-abelian étale-crystalline comparison theorem gives slightly
weaker results for varieties over �-adic fields, since the non-abelian Hodge filtration
cannot be recovered from cohomology.

11.1 Introduction

Given a topological group Γ, an affine group scheme R over Q�, and a continuous
Zariski-dense representation

ρ : Γ→ R(Q�) ,

the relative Malcev completion ΓR,Mal is the universal pro-unipotent extension
ΓR,Mal → R equipped with a continuous homomorphism

Γ→ ΓR,Mal(Q�)
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extending ρ. Relative Malcev completion was introduced by Hain in [Hai98] for
discrete groups, and was extended to pro-finite groups in [Pri09], although the sim-
ilar notion of weighted completion had already appeared in [HM03b]. In Sect. 11.2,
we recall its main properties and establish several new results.

Relative Malcev completion simultaneously generalises both (unipotent) Mal-
cev completion (take R = 1) and the deformation theory of Q�-representations (by
restricting the unipotent extensions – see 11.2.1.3). As an example of its power,
consider a semi-direct product Γ = Δ	Λ. Unless the action of Δ on Λ is nilpotent,
the Malcev completion ΓR,Mal of Γ can destroy Λ. However, Example 19 shows that
for suitable R we have

ΓR,Mal = ΔR,Mal
	Λ1,Mal ,

where Λ1,Mal is the unipotent Malcev completion of Λ.
Although relative Malcev completion is right-exact, it is not left-exact. However,

there is a theory of relative Malcev homotopy types and higher homotopy groups,
as developed in [Pri11] and summarised in 11.2.2. There is a long exact sequence
of homotopy (Theorem 18), allowing us to describe the Malcev completion of the
kernel of a surjection Γ� Δ in terms of the relative Malcev homotopy types of Γ
and Δ. In 11.2.2.3 we establish criteria for these higher homotopy groups to vanish.

In Sect. 11.3, we introduce a new notion, that of relative Malcev completion

Γ
ρ,Mal
Z�

over Z�. This is a canonical Z�-form of the Q�-scheme Γρ,Mal, and is a strictly finer
invariant from which we can recover analytic moduli spaces of Γ-representations
over Q� (Proposition 41), rather than just local deformations.

A similar notion to relative Malcev completion is the relative pro-� completion
Γ(�),ρ of [HM09]. For a surjective homomorphism ρ̄ : Γ→ R̄ of pro-finite groups,
the pro-finite group Γ(�),ρ̄ is the universal pro-� extension of R̄ equipped with a con-
tinuous homomorphism

Γ→ Γ(�),ρ

extending ρ̄. It turns out (Proposition 34) that Γ(�),ρ is in fact the relative F�-Malcev
completion of Γ over R̄, where the latter is regarded as a pro-finite group scheme
over F�.

However, specialisation of Γρ,Mal
Z�

to F� does not recover Γ(�),ρ in general. Instead,
we need to look at the specialisation of the relative Malcev homotopy type over Z�,
with a universal coefficient theorem giving the required data (Proposition 45). In
this sense, the homotopy type over Z� acts as a bridge between relative Malcev and
relative pro-� completions.

In the final section, we summarise the main implications of [Pri09], [Ols11] and
[Pri11] for relative Q�-Malcev completions

πét
1 (X, x̄)R,Mal
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of geometric fundamental groups. For smooth quasi-projective varieties in finite
characteristic, these can be recovered as Galois representations from cohomology
of semisimple local systems (Propositions 48 and 49). Over �-adic local fields,
there are similar results (Theorem 53) using Olsson’s non-abelian étale-crystalline
comparison theorem, but for a full description it is necessary to understand the non-
abelian Hodge filtration as well. Over global fields K, we just have a weight filtration
on πét

1 (X, x̄)R,Mal, which splits Gal(K̄p/Kp)-equivariantly for each prime p of good
reduction (11.4.4).

Notation. For any affine scheme Z, we write O(Z)� Γ(Z,OZ).

11.2 Relative Malcev Completion

Fix a topological group Γ, an affine group scheme R over Q�, and a continuous
Zariski-dense representation

ρ : Γ→ R(Q�) ,

where R(Q�) is given the �-adic topology. Explicitly, [DMOS82, Chap. II] shows
that R can be expressed as a filtered inverse limit

R = lim←−−Rα

of linear algebraic groups. Each Rα(Q�) has a canonical �-adic topology induced by
any embedding Rα ↪→ GLn. We define the topology on R(Q�) by

R(Q�) = lim←−−Rα(Q�) .

The following definition appears in [Hai98] for Γ discrete, and in [Pri09] for Γ pro-
finite.

Definition 1. The Malcev completion Γρ,Mal (or ΓR,Mal) of Γ relative to ρ is defined
to be the universal diagram

Γ
ρ̆
−→ Γρ,Mal(Q�)

p
−→ R(Q�) ,

with p : Γρ,Mal → R a pro-unipotent extension, and with p ◦ ρ̆ = ρ.

If Rred is the maximal pro-reductive quotient of R, then R → Rred is a pro-
unipotent extension, so there is a morphism ΓRred,Mal → R. This must itself be a
pro-unipotent extension, so we see that

ΓRred,Mal = ΓR,Mal .

For this reason, from now on we will (unless otherwise stated) assume that R is
pro-reductive.
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Example 2. If R = 1, then Γ1,Mal is the (pro-unipotent) Malcev completion of Γ.

Example 3. Take Γred to be universal among Zariski-dense morphisms Γ→ R(Q�)
to pro-reductive affine group schemes, and set R = Γred. Then ΓR,Mal = Γalg, the
pro-algebraic (or Hochschild–Mostow) completion of Γ. The morphism

Γ→ Γalg(Q�)

is universal among continuous morphisms from Γ to affine group schemes over Q�.
In fact, we can describe O(Γred) explicitly: if T is the set of isomorphism classes

of irreducible representations of Γ over Q�, then

O(Γred)⊗Q� �
⊕

V∈T

End(V)

as a vector space. For example,

O(Ẑred) = Q�[Z�
∗]Gal(Q�/Q�) .

Note that since Q� is of characteristic 0, there is a Levi decomposition

ΓR,Mal � R	Ru(ΓR,Mal) ,

unique up to conjugation by Ru(ΓR,Mal), where

Ru(ΓR,Mal) = ker(ΓR,Mal → R)

is the pro-unipotent radical.

Lemma 4. The affine group scheme Ru(ΓR,Mal) is determined by its tangent space

ru(ΓR,Mal)

at 1, regarded as a pro-(finite dimensional nilpotent) Lie algebra.

Proof. This is true for all pro-unipotent group schemes U. Given an inverse system
V = {Vα} of vector spaces, write V⊗̂A� lim←−−α

(Vα⊗A). We may thus regard the Lie
algebra u of U as an affine scheme, with A-valued points given by

u(A)� u⊗̂A ,

for any Q�-algebra A. The Lie algebra structure of u(A) over A then allows us to
define a group

exp(u)(A) = exp(u(A))

with the same elements as u(A), but with multiplication given by the Baker–
Campbell–Hausdorff formula. Exponentiation then gives a canonical isomorphism

U � exp(u)
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of group schemes. For unipotent U this is standard, and the pro-unipotent case
follows by taking inverse limits. ��

11.2.1 Properties of Relative Malcev Completion

We now summarise various properties of relative Malcev completion.

11.2.1.1 Representations

The category of finite-dimensional ΓR,Mal-representations

FDRep(ΓR,Mal)

has a natural forgetful functor to the category of continuous finite-dimensional Γ-
representations

FDRep(Γ) .

Lemma 5. The natural forgetul functor

FDRep(ΓR,Mal) → FDRep(Γ)

is full and faithful, and a Γ-representation V lies in the essential image of this func-
tor if and only if its semisimplification Vss is an R-representation – in other words,
if the morphism Γ→ GL(Vss) factors through ρ : Γ→ R.

Proof. Take an algebraic morphism ΓR,Mal → GL(V), and define a decreasing filtra-
tion SpV on V by

SpV = (RuΓ
R,Mal −1)pV .

Since RuΓ
R,Mal is pro-unipotent, either SpV = 0 or dimSp+1V < dimSpV. Thus the

filtration is Hausdorff, and grSV is the semisimplification of V. Since grSV is an
R-representation, this establishes essential surjectivity.

Full faithfulness just follows because the map Γ→ ΓR,Mal(Q�) is Zariski-dense.
If it were not, then the Zariski closure of its image would have the same universal
property, giving a contradiction. ��

In particular, the category FDRep(Γred) consists of continuous semisimple finite-
dimensional Γ-representations, while FDRep(Γalg) consists of all continuous finite-
dimensional Γ-representations. An arbitrary ΓR,Mal-representation V is by defi-
nition an O(ΓR,Mal)-comodule. This is the same as saying that V is a sum of
finite-dimensional ΓR,Mal-representations, as is true for all affine group schemes,
see [DMOS82, Chap. II].
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11.2.1.2 Cohomology

The following is [Pri09, Lemma 2.3].

Lemma 6. For any finite-dimensional R-representation V, the canonical maps

Hi(ΓR,Mal,V) → Hi(Γ,V) ,

are bijective for i = 0,1 and injective for i = 2.

Note that the long exact sequence of cohomology then implies that the same is true
for all finite-dimensional ΓR,Mal-representations V.

We may regard O(R) as an R-representation via left multiplication. Applying
the Hochschild-Serre spectral sequence, as in [Pri09, Lemma 2.6], to the morphism
ΓR,Mal → R then gives canonical isomorphisms

Hi(RuΓ
R,Mal,Q�) � Hi(ΓR,Mal,O(R)) .

As observed in [Pri09, Lemma 2.7], there are canonical isomorphisms

H∗(RuΓ
R,Mal,Q�) � H∗(ruΓ

R,Mal,Q�) .

These results combine to show that there is a presentation of ruΓ
R,Mal with genera-

tors dual to
H1(ΓR,Mal,O(R))

and relations dual to
H2(ΓR,Mal,O(R)) .

If H∗(Γ,−) commutes with filtered direct limits, we then have a presentation with
generators H1(Γ,ρ−1O(R))∨ and relations H2(Γ,ρ−1O(R))∨, where ρ−1O(R) is the
Γ-representation induced by the R-representation O(R) above.

11.2.1.3 Deformations

We now show how relative Malcev completions naturally encode all the information
about framed deformations of a representation. We take a representation

ρ : Γ→ GL(V)

and consider the formal scheme Fρ, defined for any Artinian localQ�-algebra A with
residue field Q� by

Fρ(A) = Hom(Γ,GL(V⊗A))×Hom(Γ,GL(V)) {ρ} .

Now, with m(A) the maximal ideal of A, we have

GL(V⊗A) = GL(V)	 (1+End(V)⊗m(A)) .
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If R is the Zariski closure of the image of ρ (which need not be reductive), then

Fρ(A) = Hom(Γ,R(Q�)	 (1+End(V)⊗m(A)))×Hom(Γ,R(Q� )) ρ

= HomQ�
(ΓR,Mal,R	 (1+End(V)⊗m(A)))×Hom(ΓR,Mal ,R) p ,

since R	 (1+End(V)⊗m(A)) is a unipotent extension of R. Applying the logarithm

log : 1+End(V)⊗m(A) → End(V)⊗m(A) ,

we see that Fρ is a formal subscheme contained in the germ at 0 of

O(ΓR,Mal)⊗End(V) ,

defined by the conditions

exp( f ) ·ρ ∈ Fρ(A) ⇐⇒ f (a ·b) = f (a)# (adρ(a)( f (b)))

for a,b ∈ ΓR,Mal, where ad denotes the adjoint action, and # is the Baker–Campbell–
Hausdorff product

a#b = log(exp(a) · exp(b)) .

Remark 7. Note that the same formulae hold if we replace R with any larger quotient
of Γalg. In particular, this means that we can recover Fρ directly from Γalg.

Remark 8. There is also a natural conjugation action of the group

1+End(V)⊗m(A)

on O(ΓR,Mal)⊗End(V)⊗m(A), so we can even recover the formal stack

A �→ [Fρ(A)/(1+End(V)⊗m(A))]

of representations modulo infinitesimal inner automorphisms.

Remark 9. If we wished to consider representations to an arbitrary linear algebraic
group G, then the formulae above adapt, replacing End(V) with the Lie algebra g,
and 1+End(V)⊗m(A) with

ker(G(A) → G(Q�)) = exp(g⊗m(A)) .

11.2.2 Higher Homotopy Groups

Relative Malcev completion was developed in [Pri11] for any pointed pro-finite
homotopy type (X, x). Examples of pro-finite homotopy types are the classifying
space BΓ of a pro-finite group Γ, or Artin and Mazur’s pointed étale homotopy type
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(Yét, ȳ) of a connected Noetherian scheme Y as in [AM69] or [Fri82]. In particular,
note that:

(1) π1(BΓ) = Γ.
(2) πn(BΓ) = 0 for all n > 1.
(3) π1(Yét, ȳ) = πét

1 (Y, ȳ).
(4) H∗(Yét,F) = H∗

ét(Y,F) for all πét
1 (Y, ȳ)-representations F in finite abelian

groups.

The first stage in the construction of relative Malcev completion is to form, as in
[Pri11, §1], a simplicial pro-finite group

Ĝ(X, x) ,

based on Kan’s loop group construction [Kan58]. It has the following properties:

(1) πn(Ĝ(X, x)) = πn+1(X, x) for all n ≥ 0.
(2) H∗(Ĝ(X, x),F) = H∗(X,F) for all finite π1(X, x)-modules F.
(3) For all n, the pro-finite group Ĝ(X, x)n is freely generated.

In particular, this means that Ĝ(BΓ), for any pro-finite group Γ, is a free simplicial
resolution of Γ in pro-finite groups.

Definition 10. The relative Malcev homotopy type (X, x)R,Mal (or (X, x)ρ,Mal) of
a pointed pro-finite homotopy type (X, x) relative to a pro-reductive affine group
scheme R over Q� and to a Zariski-dense map

ρ : π1(X, x) → R(Q�)

is defined to be the simplicial affine group scheme over Q� given by

Ĝ(X, x)
R,Mal

as in [Pri11, Definition 3.20 and Lemma 1.17]. The relative Malcev homotopy
groups �n(X, x)R,Mal are defined by

�n(X, x)R,Mal � πn−1Ĝ(X, x)
R,Mal

.

Relative Malcev homotopy types have the following properties:

(1) �1(X, x)R,Mal = π1(X, x)R,Mal,
(2) For n > 1, �n(X, x)R,Mal is a commutative pro-unipotent group scheme,
(3) For any finite-dimensional π1(X, x)R,Mal-representation V, the map

H∗(XR,Mal,V) → H∗(X,V)

coming from the morphism Ĝ(X, x) → Ĝ(X, x)
R,Mal

is an isomorphism,
(4) There is a conjugation action of �1(X, x)R,Mal on �n(X, x)R,Mal,
(5) For m,n > 1, there is a graded Lie bracket – the Whitehead bracket

[−,−] : �m(X, x)R,Mal ×�n(X, x)R,Mal → �m+n−1(X, x)R,Mal .
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Remark 11. In [Pri08], a category sE(R) was introduced to model relative Malcev
homotopy types over R. Its objects are simplicial diagrams G =G• of pro-unipotent
extensions Gn → R. A morphism f : G → H in sE(R) is said to be a weak equiva-
lence if it induces isomorphisms πnG → πnH on homotopy groups for all n.

The category obtained by formally inverting all weak equivalences in sE(R)
forms the homotopy category

Ho∗(sE(R))

of pointed relative Malcev homotopy types, as studied in [Pri10, Theorem 3.28].
For unpointed relative Malcev homotopy types, we define Ho(sE(R)) to have the

same objects as sE(R), but with

HomHo(sE(R))(G,H)�HomHo∗(sE(R))(G,H)/(RuH0) ,

where RuH0 acts by conjugation. As we will see in Theorem 17, the functor

(X, x) �→ Ĝ(X, x)
R,Mal

descends to a functor from unpointed pro-finite homotopy types to Ho(sE(R)).
A related result is [Pri08, Corollary 3.57], which shows that Ho(sE(R)) forms a

full subcategory of Toën’s unpointed schematic homotopy types [Toë06] over BR.
The same argument shows that Ho∗(sE(R)) forms a full subcategory within pointed
schematic homotopy types over BR.

Definition 12. Let Lie(V) be the free graded Lie algebra generated by a graded
vector space V. Here, the bracket follows usual graded conventions, so for a of
degree i and b of degree j, we have

[a,b] = (−1)i j+1[b,a] .

The grading on Lie(V) is given by setting any bracket of length r of homogeneous
elements ai of degrees di to have degree

∑r
i=1 di.

Let Lier(V) ⊂ Lie(V) be the graded subspace consisting of elements of bracket
length r in V, so Lie(V) =

⊕
r>0 Lier(V).

For the ease of stating the next two results, we introduce the notation that Π1 is
the Lie algebra of Ru�1(X, x)R,Mal, while for all n > 1

Πn ��n(X, x)R,Mal .

These are pro-finite-dimensional vector spaces – note that taking continuous duals
(lim←−−α

Vα)∨ = lim−−→α
V∨

α gives a contravariant equivalence from pro-finite-dimensional
vector spaces to arbitrary vector spaces.

Proposition 13. There is a convergent Adams spectral sequence in pro-finite-dimen-
sional vector spaces

E1
pq = (Lie−p(H̃∗+1(X,ρ−1O(R))∨))p+q =⇒ Πp+q ,
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where H̃ denotes reduced cohomology. Moreover, the differential

d1
−1,q : H̃q(X,ρ−1O(R))∨ → (

∧2
H̃∗+1(X,ρ−1O(R))∨)q−2

= ((Sym2H̃∗(X,ρ−1O(R)))q)∨

is dual to the cup product on H̃∗(X,ρ−1O(R)).

Proof. This is [Pri08, Proposition 4.37]. The spectral sequence is induced by study-
ing the lower central series filtration on the pro-unipotent radical

RuĜ(X, x)
R,Mal

.

Beware that ρ−1O(R) is here regarded as an ind-object of finite-dimensional local
systems, with cohomology calculated accordingly. This is only an issue if H∗(X,−)
does not preserve filtered colimits. ��

Theorem 14. There is a canonical convergent reverse Adams spectral sequence

Epq
1 = (Symp(Π∗−1))p+q =⇒ Hp+q(X,ρ−1O(R)) ,

where Sym is the symmetric functor on graded vector spaces.

Proof. This is [Pri08, Theorem 1.53]. ��

Finally, these combine to give a Hurewicz theorem.

Corollary 15. Let V be the (ind-)local system on X corresponding to the π1(X, x)-
representation O(�1(X, x)R,Mal). Then for n ≥ 1, the following conditions are equiv-
alent

(a) �i(X)R,Mal = 0 for all 2 ≤ i < n,
(b) Hi(X,V) = 0 for all 2 ≤ i < n,

and if either of these conditions holds, then

�n(X)R,Mal � Hn(X,V)∨ .

In particular, this always holds for n = 2.

Proof. If �1(XR,Mal) = 1, then V = Q� and these results follow by studying the
Adams and reverse Adams spectral sequences. For the general result, we replace
XR,Mal with its universal cover

˜XR,Mal .

Explicitly, ˜XR,Mal is the homotopy fibre of XR,Mal over �1(X, x)R,Mal, given by tak-
ing any free resolution of the kernel

ker
(
Ĝ(X, x)

R,Mal → �1(X, x)R,Mal) .
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Now, �1( ˜XR,Mal) = 1, and the Hochschild-Serre spectral sequence gives

H∗( ˜XR,Mal,Q�) = H∗(X,V) ,

so the general results follow from the simply connected case. ��

Beware that �n(BΓ)R,Mal can be non-zero for n > 1. Determining when this
happens is the purpose of 11.2.2.3.

11.2.2.1 Equivariant Cochains

Given a pro-finite homotopy type (X, x) with π1(X, x) = Γ, and a continuous Γ-
representation Λ in finite rank Z�-modules, [Pri11, Definition 1.21] constructs a
cosimplicial �-adic sheaf C •(Λ). This is an acyclic resolution of Λ, so gives a cosim-
plicial Z�-module

C•(X,Λ)� Γ(X,C •(Λ))

with the property that H∗C•(X,Λ) = H∗(X,Λ).
In particular, if X is the étale homotopy type Yét of a Noetherian scheme Y, then

C•(Yét,Λ)

is a model for the �-adic étale Godement resolution of Y with coefficients in Λ. If
X = BΓ, then C•(BΓ,Λ) is just the continuous group cohomology complex

Cn(BΓ,Λ) = Homcts(Γ
n,Λ) ,

with its usual operations.

Definition 16. Take a pro-finite homotopy type X with π1(X, x) = Γ, an affine group
scheme R over Q�, and a representation ρ : Γ→ R(Q�). Given a finite-dimensional
R-representation V, choose a Γ-equivariant Z�-lattice Λ ⊂ V, and define the cosim-
plicial vector space C•(X,ρ−1V) by

C•(X,ρ−1V)� C•(X,ρ−1Λ)⊗Z� Q� .

If U =
⋃

α Uα is a nested union of finite-dimensional R-representations, define

C•(X,ρ−1U)�
⋃

α

C•(X,ρ−1Uα) .

In particular this applies when U = O(R), in which case Proposition 27 will provide
us with a canonical choice O(R

Z�
) of lattice.

Theorem 17. The relative Malcev homotopy type (X, x)R,Mal is determined up to
pointed homotopy (i.e., up to unique isomorphism in the category Ho∗(sE(R)) of
Remark 11) by the quasi-isomorphism class of the augmented R-equivariant cosim-
plicial algebra
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C•(X,ρ−1O(R))
x∗
−−→ O(R) .

Up to unpointed homotopy, i.e., up to unique isomorphism in the category
Ho(sE(R)) of Remark 11, (X, x)R,Mal is determined by the quasi-isomorphism class
of

C•(X,ρ−1O(R)) .

In particular, the relative Malcev homotopy groups �n(X, x)R,Mal are functorially
determined by the augmented cosimplicial algebra, while the unaugmented algebra
determines the �n(X, x)R,Mal up to conjugation by Ru�1(X, x)R,Mal.

Proof. This is [Pri11, Theorem 3.30], and makes use of a bar construction from
cosimplicial algebras to simplicial Lie algebras.

We now sketch a demonstration of how to recover �1(X, x)R,Mal in the unpointed
case. First note that for a unipotent R-equivariant group scheme U,

Hom(�1(X, x)R,Mal,R	U)R/U ,

where Hom(−,−)R denotes morphisms over R, is the set of isomorphism classes of
(R	U)(Q�)-torsors T on X for which

T×(R	U)(Q�) R(Q�)

is the R(Q�)-torsor T0 associated to ρ.
Now, the construction of C•(X,G) extends to non-abelian pro-finite groups G,

with group cohomology H1(X,G) given by

H1(X,G) = Z1(X,G)/C0(X,G) ,

where the 1-cocycles are

Z1(X,G) = {ω ∈ C1(X,G) ; ∂1ω = (∂2ω)(∂0ω) ∈ C2(X,G)} ,

and C0(X,G) acts by setting

g(ω) = (∂1g)ω(∂0g)−1 .

These formulae can be extended from pro-finite groups to �-adic Lie groups, and
the set of torsors we want is then

{ω ∈ Z1(X,R	U) ; ω �→ T0 ∈ Z1(X,R)}/C0(X,U) .

If u is the Lie algebra of U, regarded as an R-representation, then it turns out that
this is just

{ω ∈ exp(C1(X,ρ−1u)) ; ∂1ω = (∂2ω)# (∂0ω)}/exp(C0(X,ρ−1u)) ,

where # is the Baker–Campbell–Hausdorff product. Since
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C•(X,ρ−1u) = C•(X,ρ−1O(R))⊗R u ,

we have recovered
Hom(�1(X, x)R,Mal,R	U)R/U

from C•(X,ρ−1O(R)) functorially in U, which amounts to determining

�1(X, x)R,Mal

up to conjugation by Ru�1(X, x)R,Mal. ��

11.2.2.2 The Long Exact Sequence of Homotopy

Theorem 18. Take a morphism f : (X, x) → (Y,y) of pro-finite homotopy types
which is surjective on fundamental groups. Assume that the homotopy fibre F of
f over {y} has finite-dimensional cohomology groups Hi(F,Q�), and let R be the
reductive quotient of the Zariski closure of the homomorphism

π1(Y,y) →
∏

i

GL(Hi(F,Q�)) .

Then the unipotent Malcev homotopy type (F, x)1,Mal is the homotopy fibre of

(X, x)R,Mal → (Y,y)R,Mal .

In particular, there is a long exact sequence

. . . → �n(F, x)1,Mal → �n(X, x)R,Mal → �n(Y,y)R,Mal → �n−1(F, x)1,Mal →
. . . → �1(F, x)1,Mal → �1(X, x)R,Mal → �1(Y,y)R,Mal → 1 .

Proof. This is a special case of [Pri11, Theorem 3.32]. ��

If f is a fibration, then the homotopy fibre is just the fibre. One case when this
happens is for nerves

BΔ → BΓ

of surjections of pro-finite groups, in which case the homotopy fibre is just

Bker(Γ→ Δ) .

Other cases are when f is the étale homotopy type of a geometric fibration of
schemes in the sense of [Fri82, Definition 11.4]. These include smooth projective
morphisms, and smooth quasi-projective morphisms where the divisor is transverse
to f .

Example 19. If Γ= Δ	Λ is a semi-direct product of pro-finite groups with H∗(Λ,Q�)
finite-dimensional, then we may apply the theorem with X = BΓ, Y = BΔ and F =
BΛ. Since Γ→ Δ has a section, the connecting homomorphism
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�2(Δ)R,Mal → Λ1,Mal

is necessarily 0, so we get

ΓR,Mal � ΔR,Mal
	Λ1,Mal .

In fact, this even remains true if we take R to be the reductive quotient of the Zariski
closure of the homomorphism Δ → GL(H1(Λ,Q�)), see [Pri07, Lemma 4.6].

Example 20. For a case where higher homotopy can affect fundamental groups, con-
sider the symplectic group Spg(Z�) for g ≥ 2. This has

(Spg(Z�))
alg = Spg ,

which is reductive. Letting R = Spg, we get

H2(Spg(Z�),O(R)) � Q�

as effectively calculated in [Hai93, Hai97] and [HM09]. Thus Corollary 15 implies
that

�2(BSpg(Z�))
R,Mal = Ga .

For any surjective map Γ � Spg(Z�) whose kernel Λ has H1(Λ,Q�) finite-
dimensional, this gives us an exact sequence

Ga → Λ1,Mal → ΓR,Mal → Spg → 1 ,

confirming the observation in [HM09, Proposition 6.2] that ker(Λ1,Mal → ΓR,Mal) is
at most 1-dimensional, and proving that it is indeed central. Examples of this form
arise from taking Γ to be a group (such as a Galois group or the mapping class
group) acting on cohomology of a genus g curve.

Example 21. If we set Y = Bπ1(X, x), then F will be the universal covering space of
X, a simply connected space with πn(F, x) = πn(X, x) for n ≥ 2 (if X is an étale ho-
motopy type, these are Artin–Mazur étale homotopy groups). When each Hi(F,Q�)
is finite-dimensional, Theorem 18 gives a long exact sequence

. . . �� πn(X, x)⊗
Ẑ
Q�

�� �n(X, x)R,Mal �� �n(Bπ1(X, x))R,Mal

����

���	

����� πn−1(X, x)⊗
Ẑ
Q�

�� . . . �� �3(Bπ1(X, x))R,Mal

����

���	

������ π2(X, x)⊗
Ẑ
Q�

�� �2(X, x)R,Mal �� �2(Bπ1(X, x))R,Mal �� 0 ,

see [Pri11, Theorem 3.40] for a refinement.
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11.2.2.3 Relative Goodness

We now establish criteria for the higher relative Malcev homotopy groups of BΓ to
vanish.

Definition 22. Say that a pro-finite group Γ is Bn relative to a continuous Zariski-
dense map ρ : Γ→ R(Q�) if

�i(BΓ)
R,Mal = 0

for all 1 < i ≤ n. We say that Γ is good relative to ρ if it is Bn for all n.

By [Pri11, Examples 3.38], the following are good relative to all representations:
free pro-finite groups, finitely generated nilpotent pro-finite groups, and étale fun-
damental groups of smooth projective curves over algebraically closed fields.

Proposition 23. For ρ : Γ→ R(Q�) as above, the following are equivalent:

(a) Γ is Bn relative to ρ.
(b) Hi(Γ,ρ−1O(ΓR,Mal)) = 0 for all 0 < i ≤ n, where ρ−1O(ΓR,Mal) is interpreted as

an ind-finite-dimensional representation.
(c) For all finite-dimensional ΓR,Mal-representations, Hi(ΓR,Mal,V) → Hi(Γ,V) is

an isomorphism for all i ≤ n, and injective for i = n+1.
(d) For all finite-dimensional ΓR,Mal-representations, Hi(ΓR,Mal,V) → Hi(Γ,V) is

surjective for all i ≤ n.
(e) For all finite-dimensional ΓR,Mal-representations V, all 1 < i ≤ n, and any el-

ement x ∈ Hi(Γ,V), there exists an embedding V ↪→ Wx of finite-dimensional
ΓR,Mal-representations, with x lying in the kernel of Hi(Γ,V) → Hi(Γ,Wx).

Proof. This is based on [KPT09, Lemma 4.15]. The Hurewicz theorem, Corol-
lary 15, implies that (a) and (b) are equivalent. So let us assume (b). As a ΓR,Mal-
representation,

V⊗O(ΓR,Mal)

is injective, so there is a cosimplicial injective resolution V ⊗ O(WΓR,Mal), as in
[Pri08, Example 1.45], given by O(WΓR,Mal) = O(ΓR,Mal)⊗n+1 in level n. This gives
us spectral sequences

Ei j
1 = Hi(Γ,V⊗O(WΓR,Mal) j) =⇒ Hi+ j(Γ,V) .

By hypothesis (b), Ei j
1 for 0 < i ≤ n. Since V⊗O(WΓR,Mal) is an injective resolution,

and
H0(Γ,−) = H0(ΓR,Mal,−) ,

the complex E0•
1 computes H∗(ΓR,Mal,V). Thus

E0 j
2 = H j(ΓR,Mal,V) ,

and Ei j
2 = 0 for 0 < i ≤ n, implying (c).
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That (c) implies (d) is immediate, and, since O(ΓR,Mal) is injective as a ΓR,Mal-
representation, assumption (d) implies that Hi(Γ,O(ΓR,Mal)) = 0 for 0 < i ≤ n and
thus (b).

It remains to show the equivalence of (d) and (e). Let us assume condition (d).
Then x ∈ Hi(Γ,V) lifts to x̃ ∈ Hi(ΓR,Mal,V). Write

V⊗O(ΓR,Mal) = lim−−→
α

Wα

as a union of finite-dimensional subrepresentations. Thus the image of x̃ in

lim−−→
α

Hi(ΓR,Mal,Wα)

is 0, so for some Wα, the image of x in Hi(Γ,Wα) is 0, and (e) holds.
Conversely, let us assume that (e) holds. We prove (d) by induction on i, the

case i = 0 being trivial. Choosing some x ∈ Hi(Γ,V), it follows from the long exact
sequence of cohomology that x lies in the image of the connecting homomorphism

Hi−1(Γ,Wx/V) → Hi(Γ,V) .

Let y lie in the pre-image of x. By induction, there exists ỹ ∈ Hi−1(ΓR,Mal,Wx/V)
lying over y. Thus the image of ỹ in Hi(ΓR,Mal,V) lies over x, giving the required
surjectivity. ��

Thus super rigid groups Γ cannot be good for any representation. This is because
we necessarily have ΓR,Mal = R for any R as above, so

H∗(ΓR,Mal,Q�) = Q� ,

whereas H∗(Γ,Q�) has non-trivial higher cohomology. Examples of super rigid
groups are Spg(Z�) for g ≥ 2, and SLn(Z�) for n ≥ 3. For these examples, the respec-
tive pro-algebraic completions are Spg and SLn, since every Spg(Z�)-representation
is an algebraic Spg-representation, and likewise for SLn.

11.2.3 Weighted Completion

A closely related notion to relative Malcev completion is that of the weighted com-
pletion of ρ : Γ→ R(Q�), developed in [HM03b]. This assumes the extra data of a
cocharacter

Gm → R ,

and agrees with the relative completion if Ru(ΓR,Mal)ab is of strictly negative weights
for theGm-action. If not, the weighted completion is the largest quotient G of ΓR,Mal

on which Ru(G) is of strictly negative weights.
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As shown in [HM03a, §7], representations of the weighted completion corre-
spond to Γ-representations equipped with a well-behaved weight filtration.

Example 24. Let Γ be the Galois group of the maximal algebraic extension of Q
unramified outside �. Then for the cyclotomic character

ξ : Γ→ Gm(Q�) ,

Hain and Matsumoto proved [HM03b, Theorem 7.3] that the pro-unipotent radical
Ru(G) of weighted completion G of Γ is freely generated by Soulé elements

s1, s3, s5, . . . .

In Sect. 11.4, we will be establishing weight filtrations on relative completions

�1(Xét, x̄)R,Mal

of geometric fundamental groups, with the pro-unipotent radical being of strictly
negative weights. These will therefore correspond to weighted completions when-
ever the Gm-action is an inner action.

In general, relative completion and weighted completion tend to be applied to
different types of groups. As we saw in Theorem 18, relative completions of ge-
ometric fundamental groups arise when studying fibrations. Galois actions respect
the weight filtrations of 11.4, and often the action on the graded group

grW(�1(Xét, x̄)R,Mal)

is pro-reductive and algebraic, so we can set S to be the Zariski closure of

Gal → Aut(grW(�1(Xét, x̄)R,Mal)) .

Assuming that the canonical weight map

Gm → Aut(grW(�1(Xét, x̄)R,Mal))

factors through S, it then follows that the weighted completion of Gal over S acts on
�1(Xét, x̄)R,Mal.

Remark 25. An alternative way to look at weighted completion is to use affine
monoid schemes rather than group schemes. Tannakian theory shows that for any
exact tensor category C (not necessarily containing duals) fibred over Q� vector
spaces, there is an affine monoid scheme M such that FDRep(M)is equivalent to C.
For instance, for the subcategory of FDRep(Gm) generated by {Q(n)}n≤0, M is just
the multiplicative monoid A1.

Since we just want to work with the category generated by {Q(n)}n<0, we can go
further, and require that our monoid M contains an element 0, with the property that
0 · g = g · 0 = 0 for all g ∈ M. Then we define M-representations to be multiplica-
tive morphisms M → End(V) preserving 0 and 1, so A1-representations are strictly
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negatively weighted vector spaces. For affine group schemes G, the corresponding
monoid is then just G�{0}.

In the scenario of Theorem 18, we would then replace R with the Zariski clo-
sure R′ of A1 ∪ R in End(H>0(F,Q�)) (for A1 acting according to the weights on
cohomology). Weighted completion of π1(Y,y) can then be interpreted as a kind of
(monoidal) relative completion over R′.

An even more efficient choice would be to set R′ as the Zariski closure of the
monoid {0} ∪ π1(Y,y), so FDRep(R′) would be the exact tensor subcategory of
FDRep(π1(Y,y)) generated by H>0(F,Q�), meaning that we only consider local sys-
tems of geometric origin (and not their duals).

11.3 Relative Malcev Completion over Z� and F�

In this section, we introduce canonical Z�-forms for relative Malcev completion,
and show how this recovers finer invariants of the fundamental group. Beware that
unlike most models over Z�, our affine group scheme G

Z�
will seldom be of finite

type, even when G is so, see Example 30.

11.3.1 Forms Defined over Z�

Now assume that our topological group Γ is compact, e.g. pro-finite.

Definition 26. Given a set S, a scheme X over a ring A, and a map f : S → X(A),
say that f is Z-dense if there is no closed subscheme Y � X with f (S) ⊂ Y(A). If
A is a field, note that this is equivalent to saying that X is reduced and f is Zariski-
dense.

Proposition 27. Given a continuous Zariski-dense group homomorphism

φ : Γ→ G(Q�)

to an affine group scheme G over Q�, there is a model G
Z�

for G over Z�, unique
subject to the conditions

(i) φ : Γ→ G
Z�

(Q�) factors through G
Z�

(Z�).
(ii) If we set Ḡ�GZ� ⊗Z� F�, then the morphism φ̄ : Γ→ Ḡ(F�), given by reduction

modulo �, is Z-dense.

Proof. Define a valuation on O(G) by setting

‖ f ‖ =max
γ∈Γ

| f (φγ)| ,

noting that this is well-defined because Γ is compact. The first condition above says
that for all f ∈ O(G

Z�
), we find ‖ f ‖ ≤ 1.
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The second condition says that the morphism ψ : O(GZ�) → Homcts(Γ,F�) to the
set of continuous maps Γ→ F� is injective. Considering kerψ, this is equivalent to
saying that

kerψ = { f ∈ O(G
Z�

) ; ‖ f ‖ < 1} ⊂ �O(G
Z�

) .

The conditions thus force us to set

O(GZ�) = { f ∈ O(G) ; ‖ f ‖ ≤ 1} ,

and it is straightforward to check that this is indeed a Hopf algebra over Z�. ��

Note that we may apply this construction to the representation ρ : Γ→ R(Q�)
considered earlier, and even to the universal representation ρ̆ : Γ→ ΓR,Mal(Q�). As
the topology on G(Q�) is totally disconnected, the image of φ is pro-finite, so these
maps all factor through the pro-finite completion Γ̂ of the topological group Γ.

Lemma 28. Given φ : Γ→ G(Q�) as above and an affine group scheme H over
Z�, morphisms G

Z�
→ H correspond to morphisms ψ : G → H ⊗

Z�
Q� for which

ψφ(Γ) ⊂ H(Z�).

Proof. A Hopf algebra map ψ$ : O(H) → O(G
Z�

) is determined by the correspond-

ing map ψ$ : O(H) ⊗
Z�
Q� → O(G). Now, ψ$ preserves the Z�-models if and only

if ‖ψ$( f )‖ ≤ 1 for all f ∈ O(H). This is equivalent to saying that f (ψφγ) ∈ Z� for all
γ ∈ Γ, or equivalently that ψφ(Γ) ⊂ H(Z�). ��

In particular, if we take H = GLn, this describes GZ�-representations in finite

free Z�-modules. It also implies that ΓR,Mal
Z�

→ R
Z�

is the universal pro-unipotent
extension under Γ, i.e., the relative Malcev Z�-completion.

Proposition 29. Assume we have a Z�-model H for an affine group scheme G over
Q�, and a surjective continuous group homomorphism φ : Γ→ H(Z�) for which the
induced map φ : Γ→ H(Q�) = G(Q�) is Zariski-dense.

Then G
Z�

is the affine scheme over Z� given on Z�-algebras A by

GZ�(A) = H(W(A))×H(A)N0 H(A) ,

where W =W�∞ is the Witt vector functor, w : W(A) → AN0 is the ghost component
morphism, and H(A) → H(A)N0 is the diagonal map.

Explicitly, O(GZ�) is the smallest Z�-subalgebra of O(G) containing O(H) and
closed under the operations

f �→ w−1( f , f , . . .)n

for all n ≥ 0, where w−1 : O(G)N0 → W(O(G)) is inverse to w.

Proof. First observe that the functor GZ� above preserves arbitrary limits. Write
H = lim←−−Hα as a filtered limit of finitely generated affine group schemes, and set
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Gα,n,Z� (A)�Hα(Wn(A))×Hα(A)[0,n] Hα(A) .

Thus the functor Gα,n,Z� commutes with filtered colimits and arbitrary limits, so is
represented by a finitely generated affine group scheme. Since

GZ� = lim←−−
α,n

Gα,n,Z� ,

it is also an affine group scheme over Z�.
We need to show that GZ� satisfies the conditions of Proposition 27. The first

observation to make is that for Q�-algebras A, the map w : W(A) → AN0 is an
isomorphism, so G

Z�
(A) = H(A) = G(A) and

GZ� ⊗Z� Q� = G .

We now have to check that φ(Γ) ⊂ GZ�(Z�) in G(Q�). We know that

W(Z�)×
Z
N0
�

Z� = Z� ,

since on the one hand � is not a zero divisor in Z� and the map w : W(Z�) → ZN0
�

is

injective, and on the other hand (b,b,b, . . .) lies in the image of w : W(Z�) → ZN0
�

by
the ghost component integrality lemma, e.g. [Haz78, Lemma 17.6.1]. We conclude
that

GZ�(Z�) = H(Z�) .

The last check is that φ(Γ) → Ḡ(F�) is Z-dense. For this, we first make the defi-
nition

Ḡα,n �Gα,n,Z� ⊗Z� F� ,

for Gα,n,Z� as above, and note that for n ≥ 1 and A an F�-algebra,

Wn(A)×(A)[0,n] A =Wn({a ∈ A : a� = a}) .

If SpecA is connected, this is just Wn(F�) = Z/�
n, so Ḡα,n is the finite group scheme

Hα(Z/�n). This means that Ḡ(F�) is pro-finite, so φ(Γ) → Ḡ(F�) is Z-dense if and
only if it is surjective. But Ḡ(F�) = H(W(F�)) = H(Z�), and we have surjectivity by
hypothesis.

Finally, for the description of O(G
Z�

), let Dn( f ) � w−1( f , f , . . .)n, and let B be
the smallest Z�-subalgebra of O(G) containing O(H) and closed under the oper-
ations Dn. Then B is a Hopf algebra over Z�, and for any ring homomorphism
f : O(H) → Z�, there is a unique compatible homomorphism f̃ : B → Z�, deter-
mined by the conditions that f̃ (Dna) =Dn f (a). Thus H′ � SpecB satisfies the same
conditions as H. Now, there is a canonical element

ω ∈ H′(W(B))×H′(B)N0 H′(B) = G
Z�

(B) ,
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given by a �→ (Da,a) for a ∈ B. This amounts to giving a section of GZ� → H′, so
we must have H′ = G

Z�
. ��

Example 30. For Γ = Z� and G = Ga, with φ : Z� → Ga(Q�) the standard inclusion
Z� ↪→ Q�, the Z� form is given by

G
Z�
=W×

G
N0
a
Ga ,

whereW is the Witt vector group schemeW(A) =W(A).

11.3.2 Relative Malcev Completion over F�

In fact, relative Malcev completion can be defined over any field, and we now re-
place Q� with F�. Assume that we have an affine group scheme R̄ over F� and a
continuous Z-dense representation ρ̄ : Γ→ R̄(F�), where R̄(F�) is given the pro-
discrete topology. Explicitly, [DMOS82, Chap. II] shows that R̄ can be expressed as
a filtered inverse limit R̄ = lim←−− R̄α of linear algebraic groups. Each R̄α(F�) is given

the discrete topology, and we define R̄(F�) to be the topological space lim←−−Rα(F�).

In particular, this implies that R̄(F�) is a pro-finite topological group.

Definition 31. Define the Malcev completion Γρ̄,Mal (or ΓR̄,Mal) of Γ relative to ρ̄ to
be the universal diagram

Γ→ Γρ̄,Mal(F�)
p
−→ R̄(F�) ,

with p : Γρ̄,Mal → R̄ a pro-unipotent extension of affine group schemes over F�, and
the composition equal to ρ.

There are various ways to prove that this universal object exists. Since the ana-
logue of Lemma 5 must also hold over F�, we can characterise the category of
Γρ̄,Mal-representations in terms of Γ and ρ̄. The Tannakian formalism of [DMOS82,
Chap. II] then uniquely determines Γρ̄,Mal.

Definition 32. Given a pro-finite group Γ = lim←−−Γα, define the associated affine
group scheme ΓF� over F� by

ΓF� � lim←−−(Γα ×SpecF�) .

Explicitly, O(Γ
F�

) consists of continuous functions from Γ to F�, and Γ
F�

(U) = Γ for
any connected affine scheme U.

Definition 33. We say that an affine group scheme G over F� is pro-finite if the map
G(F�)F� → G is an isomorphism.

This is equivalent to saying that G is a filtered inverse limit of group schemes of the
form F×SpecF�, for F finite.

From now on, assume that Γ is compact.
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Proposition 34. The group schemes R̄ and Γρ̄,Mal are pro-finite, and

Γρ̄,Mal(F�) → R̄(F�)

is the relative pro-� completion Γ(�),ρ of Γ over R̄(F�), in the sense of [HM09].

Proof. The image of ρ̄ : Γ→ R̄(F�) is compact and totally disconnected, hence pro-
finite. Thus ρ̄(Γ)F� is a closed subscheme of R̄ containing the image of Γ, so must
equal R̄, since ρ̄ is Z-dense. The same holds for Γρ̄,Mal (where the corresponding
map is Z-dense by universality).

Now, observe that a pro-finite group scheme over F� is pro-unipotent if and only
if it is a pro-� group. Thus

Γ→ Γρ̄,Mal(F�)
p
−→ R̄(F�)

is the universal such diagram with p a pro-� extension; in other words, this says that

Γρ̄,Mal(F�) = Γ
(�),ρ . ��

Proposition 35. Given an affine group scheme GZ� over Z�, arising from a contin-
uous Zariski-dense group homomorphism φ : Γ→ G(Q�) as in Proposition 27, set
Ḡ� G

Z�
⊗
Z�
F�. Then φ : Γ→ G

Z�
(Z�) is surjective, and Ḡ = φ(Γ)

F�
.

Proof. By Proposition 27, φ̄ : Γ→ Ḡ(F�) is Z-dense, so Proposition 34 implies that
Ḡ = GZ� (F�)F� . We therefore need to show that the maps

φ(Γ) → GZ�(Z�) → GZ� (F�)

are isomorphisms. Since the first map is injective and the composition surjective, it
suffices to show that GZ�(Z�) → GZ�(F�) is injective.

If ε2 = 0, there is a ring isomorphism

(Z/�n+1)×
F�
F�[ε] � (Z/�n+1)×(Z/�n) (Z/�n+1)

a+bε �→ (a,a+ �nb) .

Thus

GZ�(Z/�
n+1)×GZ� (Z/�n) GZ�(Z/�

n+1) � GZ�(Z/�
n+1)×Ḡ(F� ) Ḡ(F�[ε]) .

Now, since Ḡ is pro-finite, Ḡ(F�[ε]) � Ḡ(F�), so we have shown that

G
Z�

(Z/�n+1) → G
Z�

(Z/�n)

is injective. Since G
Z�

(Z�) = lim←−−n
G
Z�

(Z/�n), this completes the proof. ��

Proposition 36. If Γ is a freely generated pro-finite group, then the natural mor-
phism



11 On �-adic Pro-algebraic and Relative Pro-� Fundamental Groups 267

Γ(�),ρ → Γρ,Mal(Q�)

is injective.

Proof. Let K be the kernel of Γ(�),ρ → ρ(Γ), and form the lower central series LnK
by setting L1K = K, and

Ln+1K = [K,LnK] .

Then Γ(�),ρ = lim←−−n
Γ/LnK, and this maps to

(Γρ,Mal/LnRu(Γρ,Mal))(Q�) .

It therefore suffices to show that the associated graded map
∏

n≥1

grn
LK →

∏

n≥1

grn
LRu(Γρ,Mal)

is injective. Now,
grLRu(Γρ,Mal) � grLru(Γρ,Mal) ,

which is the free pro-(nilpotent finite-dimensional) Lie algebra generated by

H1(Γ,ρ−1O(R))∨ .

Meanwhile, grLK is a Lie ring (topologically) generated by K/[K,K]. Thus it suf-
fices to show that the map

K/[K,K] → H1(Γρ,Mal,ρ−1O(R))∨

is injective. It follows from the Hochschild–Serre spectral sequence for Γ→ ρ(Γ)
that

K/[K,K] = H1(Γ(�),ρ,Z�[ρ(Γ)]) ,

which is just H1(Γ,Z�[ρ(Γ)]). Meanwhile, if we write O(R) = lim−−→Vα for Vα finite-
dimensional, then

H1(Γρ,Mal,ρ−1O(R)) = lim−−→
α

H1(Γ,ρ−1Vα) ,

so
H1(Γρ,Mal,ρ−1O(R))∨ = lim←−−

α

H1(Γ,ρ−1V∨
α ) = H1(Γ,ρ−1O(R)∨) ,

where we regard ρ−1O(R)∨ as a pro-finite-dimensional Γ-representation.
Since Z�[ρ(Γ)] embeds into O(R)∨, we now apply the long exact sequence of

homology with coefficients in pro-abelian groups. As Γ is free, H2 is identically 0,
so

H1(Γ(�),ρ,Z�[ρ(Γ)]) ↪→ H1(Γ,O(R)∨)

is injective, as required. ��
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Corollary 37. If Γ is a freely generated pro-finite group, then

Γ
ρ,Mal
Z�

⊗Z� F� = Γ
ρ̄,Mal .

Proof. By Proposition 35, Γρ,Mal
Z�

⊗Z� F� = ρ(Γ)F� . By Proposition 36, this is Γ(�),ρ
F�

,

which is Γρ̄,Mal by Proposition 34. ��

11.3.3 The �-adic Analytic Moduli Space of Representations

The space Hom(Γ,GL(V)) has the structure of an �-adic analytic space. As a set, it
is just Hom(Γalg,GL(V)), and 11.2.1.3 shows how infinitesimal neighbourhoods in
this space can be recovered from Γalg. The purpose of this section is to show how
the full analytic structure can be recovered from the Z�-form of Γalg.

Definition 38. Given a Zariski-dense morphism φ : Γ→ G(Q�), define Ô(G) to be
the completion of O(G) with respect to the valuation ‖.‖ from the proof of Proposi-
tion 27. Explicitly,

Ô(G) = lim←−−
n

O(G)/�nO(GZ�) .

Lemma 39. The canonical morphism Ô(G) → Homcts(φ(Γ),Q�) is an isomorphism.

Proof. We can rewrite this ring homomorphism as

(lim←−−
n

O(GZ�)/�
nO(GZ�))⊗Z� Q� → (lim←−−

n

Homcts(φ(Γ),Z/�n))⊗Z� Q� ,

since Γ is compact. It therefore suffices to show that the maps

�nO(GZ�)/�
n+1O(GZ�) → Homcts(φ(Γ), �n

Z/�n+1
Z)

are isomorphisms. But Proposition 35 gives

O(GZ�)⊗Z� F� = Homcts(φ(Γ),F�) ,

yielding the required isomorphisms. ��

Definition 40. Define R(G
Z�
,GL(V)) to be the subset of Ô(G)⊗ End(V) consisting

of f such that

μ( f ) = m( f ⊗ f ) ∈ ̂O(G×G)⊗End(V)

ε( f ) = 1 ∈ End(V) ,

where μ : O(G) → O(G)⊗O(G) is the comultiplication, ε : O(G) →Q� the co-unit,
and m : End(V)⊗End(V) → End(V) multiplication.
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Proposition 41. R(GZ� ,GL(V)) has the natural structure of an �-adic analytic
space, isomorphic to Hom(φ(Γ),GL(V)).

Proof. This follows immediately from Lemma 39. ��

Remark 42. Note that Hom(G,GL(V)) is just

R(G
Z�
,GL(V))∩ (O(G)⊗End(V)) .

If G = Γalg (or any affine group scheme, such as Γ̂, for which the map Γ̂→ G(Q�) is
injective), then this shows that the analytic spaces

Hom(Γ,GL(V))

can be recovered directly from G
Z�

. If G = ΓR,Mal, then for any

ψ ∈ Hom(ΓR,Mal,GL(V)) ,

the results from 11.2.1.3 show that the space R(GZ� ,GL(V)) contains an open neigh-
bourhood of ψ in Hom(Γ,GL(V)).

11.3.4 Homotopy Types over F�

For any field k, [KPT09] develops a theory of schematic homotopy types over
k, using simplicial affine group schemes over k. In many respects, these behave
like schematic homotopy types over fields of characteristic 0, except that we no
longer have Levi decompositions or the correspondence between unipotent group
schemes and nilpotent Lie algebras. This means that although there is not an ex-
plicit analogue of Theorem 17, equivariant cochains still determine the homotopy
type [KPT09, Proposition 3.26].

Definition 43. Take a pro-finite homotopy type (X, x), an affine group scheme R̄
over F�, and a continuous Z-dense representation

ρ̄ : π1(X, x) → R̄(F�) .

Define the relative Malcev homotopy type (X, x)R̄,Mal of (X, x) over R̄ to be the
simplicial affine group scheme

Ĝ(X, x)
R̄,Mal

= Ĝ(X, x)
(�),ρ̄

,

the identification following from Proposition 34.

Definition 44. Define relative Malcev homotopy groups by

�n(X, x)R̄,Mal � πn−1Ĝ(X, x)
R̄,Mal

.
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Observe that, since relative Malcev completion is right exact,

�1(X, x)R̄,Mal = π1(X, x)R̄,Mal .

Theorem 18 is also true for relative Malcev homotopy types over F�, since the proof
only involves the Hochschild-Serre spectral sequence. Thus the long exact sequence
of homotopy allows us to interpret the failure of relative completion to be left exact,
as observed in [HM09], in terms of the non-vanishing of �2(BΓ)R̄,Mal.

Now take a Zariski-dense continuous homomorphismρ : π1(X, x) → R(Q�), form
R
Z�

as in Proposition 27, and set R̄ � R
Z�

⊗
Z�
F�. We cannot recover π1(X, x)(�),ρ̄

from the relative Malcev completion over Z�, since the latter annihilates elements
of kerρ which are not infinitely �-divisible. However, the following proposition
implies that we can recover π1(X, x)(�),ρ̄ from the Z� form

Ĝ(X, x)
R,Mal
Z�

of the homotopy type, given by applying Proposition 27 levelwise. This can be in-
terpreted as saying that information about non-divisible elements of kerρ is encoded
by higher homotopy over Z�.

Proposition 45. For ρ : π1(X, x) → R(Q�) as above,

Ĝ(X, x)
R̄,Mal

= Ĝ(X, x)
R,Mal
Z�

⊗Z� F� .

This gives an exact sequence

0 → O(�1(X, x)R,Mal
Z�

)⊗Z� F� → O(π1(X, x)R̄,Mal)

→ H1(O(Ĝ(X, x)
R,Mal
Z�

))
�−→ H1(O(Ĝ(X, x)

R,Mal
Z�

)).

Proof. Since ̂Gn(X, x) is freely generated as a pro-finite group, it satisfies the hy-

potheses of Corollary 37, giving ̂Gn(X, x)
R̄,Mal

= ̂Gn(X, x)
R,Mal
Z�

⊗Z� F� for all n.
This gives an exact sequence

0 → O(Ĝ(X, x)
R,Mal
Z�

)
�−→ O(Ĝ(X, x)

R,Mal
Z�

) → O(Ĝ(X, x)
R̄,Mal

) → 0 .

Applying the long exact sequence of cohomology gives the required result, since

H0(O(Ĝ(X, x)
R̄,Mal

) = O(π1(X, x)R̄,Mal) . ��

Note that Proposition 14 relates H∗(O(Ĝ(X, x)
R,Mal
Z�

)) ⊗
Z�
Q� to the homotopy

groups �∗(X, x)R,Mal.
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11.4 Geometric Fundamental Groups

In this section, we will describe geometric fundamental groups as Galois represen-
tations. All relative Malcev completions will be over Q�.

X0 will be a connected variety over a field k, with k̄ an algebraic closure of k,
and we write X = X0 ⊗k k̄. Assume that we have a point x ∈ X0(k), with associated
geometric point x̄ ∈ X(k̄).

11.4.1 Weight Filtrations

If X0 is smooth and quasi-projective, with smooth compactification j : X0 → X̄0,
then [Pri11, Definition 4.37] gives an associated Leray filtration W (there denoted
by J) on �ét

1 (X, x̄)R,Mal, and indeed on �ét
n (X, x̄)R,Mal for all n. Explicitly (as in

[Pri11, Corollary 6.15]), we have a sequence

. . . ≤ W−r�
ét
∗ (X, x̄)R,Mal ≤ . . . ≤ W0�

ét
∗ (X, x̄)R,Mal =�ét

∗ (X, x̄)R,Mal

of closed subgroup schemes, with

[W−r�
ét
m(X, x̄)R,Mal,W−s�

ét
n (X, x̄)R,Mal] ≤ W−r−s�

ét
m+n−1(X, x̄)R,Mal .

If R is a quotient of �ét
1 (X, x̄), then the filtration W has the additional property

that
W−1�

ét
n (X, x̄)R,Mal = ker(�ét

n (X, x̄)R,Mal → �ét
n (X̄, x̄)R,Mal) .

The construction of W is based on the idea that the R-equivariant cosimplicial
algebra C•(X,ρ−1O(R)) of 11.2.2.1 is quasi-isomorphic to the diagonal of the bi-
cosimplicial algebra

C•(X̄, j∗C
•(ρ−1O(R))) ,

and that good truncations of j∗C
•(ρ−1O(R)) give an increasing Leray filtration

W0 = C•(X̄, j∗ρ
−1O(R)) ⊂ . . . ⊂ W∞ � C•(X,ρ−1O(R))

by R-equivariant cosimplicial complexes, with Wi · W j ⊂ Wi+ j. This filtration is
essentially the same as the weight filtration of [Del71, Proposition 3.1.8].

In [Pri11, Theorem 4.22], the bar construction is used to transfer this filtration to
a filtration W0 ≥ W−1 ≥ . . . by (simplicial) subgroup schemes on the homotopy type
(Xét, x̄)R,Mal and homotopy groups �ét

n (X, x̄)R,Mal, satisfying the conditions above.
The rough idea is to adapt Theorem 17 to give a functor on negatively filtered Lie
algebras, replacing the cosimplicial Lie algebra C•(X,ρ−1u) with

W0C•(X, j∗C
•(ρ−1u))�

∑

i≥0

WiC
•(X, j∗C

•(ρ−1O(R)))⊗R W−iu .
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Studying the spectral sequence of Proposition 13 shows that when R is a quotient
of �ét

1 (X, x̄), the Leray filtration on �ét
1 (X, x̄)R,Mal is given by

W−1�
ét
1 (X, x̄)R,Mal = ker(�ét

1 (X, x̄)R,Mal → �ét
1 (X̄, x̄)R,Mal)

W−n�
ét
1 (X, x̄)R,Mal = [W−1�

ét
1 (X, x̄)R,Mal,W1−n�

ét
1 (X, x̄)R,Mal]

for n ≥ 2.
In fact, décalage gives another filtration, DecW, on C•(X̄, j∗C

•(ρ−1O(R))), and
this is the true weight filtration, cf. [Mor78] or [Del75], in the sense that

Ha(X̄,Rb j∗ρ
−1O(R))

has weight a+2b with respect to DecW, but only weight b with respect to W.
Via the bar construction, this also induces a filtration

(DecW)0 ≥ (DecW)−1 ≥ . . .

on the homotopy type and homotopy groups. Beware, however, that décalage does
not commute with the bar construction. Studying the spectral sequence of Proposi-
tion 13 then gives that when R is a quotient of �ét

1 (X, x̄),

(DecW)−1�
ét
1 (X, x̄)R,Mal = Ru�

ét
1 (X, x̄)R,Mal

(DecW)−2�
ét
1 (X, x̄)R,Mal = ker(Ru�

ét
1 (X, x̄)R,Mal → (Ru�

ét
1 (X̄, x̄)R,Mal)ab) ,

with the lower terms determined inductively by the condition that for n ≥ 3, the sub-
group (DecW)−n�

ét
1 (X, x̄)R,Mal is the smallest closed normal subgroup containing

[(DecW)1−n, (DecW)−1] and [(DecW)2−n, (DecW)−2]. This filtration is analogous
to the weight filtration of [Pri10, Theorem 5.14], which however is only defined for
smooth proper complex varieties.

The following sections give circumstances in which the filtration DecW splits
canonically.

11.4.2 Finite Characteristic, � � p

In this section, we assume that k is a finite field of characteristic p � �. Fix a Galois-
equivariant Zariski-dense representation ρ : πét

1 (X, x̄) → R(Q�), where R is a pro-
reductive affine group scheme equipped with an algebraic Gal(k̄/k)-action. In other
words, Gal(k̄/k)alg

	R is a quotient of �ét
1 (X0, x̄).

Example 46. To see how such groups R arise naturally, assume that f0 : Y0 → X0
is a smooth proper morphism with connected fibres. Let R be the Zariski closure of
the map

πét
1 (X, x̄) →

∏

n

Aut((Rn fét,∗Q�)x̄) ,
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then R is a pro-reductive affine group scheme satisfying the hypotheses.

Example 47. The universal case is given by letting G be the image of the homomor-
phism πét

1 (X, x̄)alg → πét
1 (X0, x̄)alg, then setting R� Gred, the pro-reductive quotient.

In that case, [Pri09, Lemma 1.3] implies that G = πét
1 (X, x̄)R,Mal, and that

πét
1 (X0, x̄)alg = G�Gal(k̄/k)alg .

The following is [Pri09, Theorem 2.10]; see [Pri11, Theorem 6.10] for a gener-
alisation to higher homotopy groups.

Proposition 48. If X is smooth and proper over k̄, then there is a unique Galois-
equivariant isomorphism

�ét
1 (X, x̄)R,Mal � R	 exp

(
Fr(H1(X,ρ−1O(R))∨)/ ∼

)
,

where Fr is the free pro-(finite-dimensional nilpotent) Lie algebra functor, and ∼ is
generated by

H2(X,ρ−1O(R))∨
∪∨
−−→

∧2
H1(X,ρ−1O(R))∨ ,

the map dual to the cup product.

Proof (sketch). The Galois action on R gives the sheaf ρ−1O(R) the natural struc-
ture of a sheaf on X0. Lafforgue’s Theorem [Laf02, Thm. VII.6 and Cor. VII.8],
combined with the description of Example 3, shows that the sheaf ρ−1O(R) is pure
of weight 0.

By [Del80, Corollaries 3.3.4–3.3.6], the group Hn(X,ρ−1O(R)) is thus pure of
weight n, so the spectral sequence of Proposition 13 thus degenerates at E2. This
gives a description of all homotopy groups in terms of H∗(X,ρ−1O(R)).

Explicitly, write u for the Lie algebra of Ru�
ét
1 (X, x̄)R,Mal, and note that

uab � H1(X,ρ−1O(R))∨ ,

which is pure of weight 1. Now,

H2(u,Q�) � H2(X,ρ−1O(R)) ,

which is pure of weight 2, so the only possible relation defining u is

∪∨ : H2(X,ρ−1O(R))∨ →
∧2

H1(X,ρ−1O(R))∨ ⊂ Fr(H1(X,ρ−1O(R))∨) . ��

This can be used to construct examples of groups which cannot be fundamental
groups of any smooth proper variety in finite characteristic, e.g. [Pri09, Ex 2.30].

The following specialises [Pri11, Theorem 6.15] and Corollary 6.16 to the case
of fundamental groups.

Proposition 49. Assume that X = X̄−D for X̄ smooth and proper over k̄, with D ⊂ X̄
a divisor locally of normal crossings. If ρ has tame monodromy around the compo-
nents of D, then there is a Galois-equivariant isomorphism
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�ét
1 (X, x̄)R,Mal � R	 exp(Fr(H1(X̄, j∗ρ

−1O(R))∨ ⊕H0(X̄,R1 j∗ρ
−1O(R))∨)/ ∼) ,

where ∼ is generated by the images of the maps

H2(X̄, j∗ρ
−1O(R))∨

(d∨
2 ,∪∨)

−−−−−−→ H0(X̄,R1 j∗ρ
−1O(R))∨ ⊕

∧2
H1(X, j∗ρ

−1O(R))∨,

H1(X̄,R1 j∗ρ
−1O(R))∨

(∪∨)
−−−→ H0(X̄,R1 j∗ρ

−1O(R))∨ ⊗H1(X, j∗ρ
−1O(R))∨,

H0(X̄,R2 j∗ρ
−1O(R))∨

(∪∨)
−−−→

∧2
H0(X̄,R1 j∗ρ

−1O(R))∨ .

Here ∪∨ is the map dual to the cup product, and d∨
2 is dual to the differential d2 on

the E2 sheet of the Leray spectral sequence.

Proof (sketch). Again, the Frobenius action on ρ−1O(R) is pure of weight 0, so
[Del80, Corollaries 3.3.4–3.3.6] imply that Ha(X̄,Rb j∗ρ

−1O(R)) is pure of weight
a+2b. This means that the Leray spectral sequence

Eab
2 = Ha(X̄,Rb j∗ρ

−1O(R)) =⇒ Ha+b(X,ρ−1O(R))

degenerates at E3.
Substituting the terms Ha(X̄,Rb j∗ρ

−1O(R))∨ into the Adams spectral sequence
of Proposition 13, the relations above turn out to be the only maps compatible with
both the Frobenius weights and the Leray filtration W on �ét

1 (X, x̄)R,Mal. ��

Note that the filtration W (resp. DecW) on �ét
1 (X, x̄)R,Mal is then determined

by the conditions that W−1R = (DecW)−1R = 1, and that Ha(X̄,Rb j∗ρ
−1O(R))∨ is

contained in W−b (resp. (DecW)−a−2b), but not in W−b−1 (resp. (DecW)−a−2b−1).
Thus DecW is precisely the filtration by weights of Frobenius on the Lie algebra of
�ét

1 (X, x̄)R,Mal.
Proposition 49 can be used to construct examples of groups which cannot be

fundamental groups of any smooth quasi-projective variety in finite characteristic,
e.g. [Pri09, Example 2.31].

11.4.3 Mixed Characteristic, � = p

In this section, we will assume that X0 is a connected variety of good reduction over
a local field K, with residue field k.

Explicitly, let V be a complete discrete valuation ring, with residue field k (finite,
of characteristic p), and fraction field K (of characteristic 0). Let k̄, K̄ be the alge-
braic closures of k,K respectively, and V̄ the algebraic closure of V in K̄. Write K0
for the fraction field of W(k).

Assume that we have a scheme XV = X̄V − DV over V, with X̄V smooth and
proper, DV a normal crossings divisor, and X0 = XV ⊗V K. Also fix a basepoint
xV ∈ XV(V), giving x ∈ XV(K) = X0(K) and x̄ ∈ X0(K̄). Write X� X0 ⊗K K̄.
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11.4.3.1 Crystalline Étale Sheaves

We now introduce crystalline étale sheaves, as in [Fal89] V(f), [Ols11, §6.13], or
[AI09].

Definition 50. Say that a smooth Qp-sheaf V on XK is crystalline if it is associated
to a filtered convergent F-isocrystal on (X̄V,DV).

This means that there exists a filtered convergent F-isocrystal E, and a collection
of isomorphisms

ιU : V⊗
Qp

Bcris(Û) → E(Bcris(Û))

for U → XV étale, compatible with the filtrations and semi-linear Frobenius auto-
morphisms, and with morphisms over X, so that ι becomes an isomorphism of étale
presheaves. Here, Bcris(Û) is formed by applying Fontaine’s construction to the
p-adic completion Û of U.

By [Pri11, Proposition 7.8], the category of crystalline Qp-sheaves is closed un-
der extensions and subquotients, and the isocrystal associated to a crystalline Qp-
sheaf is essentially unique. More precisely, association gives a fully faithful functor
DX

cris from crystalline Qp-sheaves to filtered convergent F-isocrystals.

11.4.3.2 Structure of Fundamental Groups

Now fix a Galois-equivariant Zariski-dense representation ρ : πét
1 (X, x̄) → R(Q�),

where R is a pro-reductive affine group scheme equipped with an algebraic Gal(k̄/k)-
action.

Assume that DX
crisρ

−1O(R) is an ind-object in the category of ι-pure overconver-
gent F-isocrystals. This is equivalent to saying that for every R-representation V, the
corresponding sheaf V on XK̄ can be embedded in the pullback of a crystalline étale
sheaf U on XK, associated to an ι-pure overconvergent F-isocrystal on (X̄k,Dk)/K.
Also note that this implies that O(R) is a crystalline Galois representation for which
the Frobenius action on DcrisO(R) is ι-pure.

Example 51. To see how these hypotheses arise naturally, assume that f0 : Y0 → X0
is a smooth proper morphism with connected components, for Y of good reduction.
Let R be the Zariski closure of the map

πét
1 (X, x̄) →

∏

n

Aut((Rn fét,∗Qp)x̄) ,

so R is a pro-reductive affine group scheme. By [Fal89], Rn fét,∗Qp is associated
to Rn f cris

k̄,∗ OYk̄ ,cris, which by [Ked06, Theorem 6.6.2] is ι-pure. Thus the semisim-
plifications of the R-representations (Rn fét,∗Qp)x̄ are direct sums of ι-pure repre-
sentations. Since these generate the Tannakian category of R-representations, the
hypotheses are satisfied.

We may write F� Y × f ,X,x̄ SpecK̄, and Theorem 18 then shows that the homo-
topy fibre of
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YR,Mal
ét → XR,Mal

ét

over x̄ is the unipotent Malcev homotopy type F1,Mal
ét .

Definition 52. From now on, write B� Bcris(V), with Bσ ⊂ B the invariants under
Frobenius.

Theorem 53. For R as above, there is a Galois-equivariant isomorphism

�ét
1 (X, x̄)R,Mal ⊗

Qp
Bσ

� (R	 exp(Fr(H1(X̄, j∗ρ
−1O(R))∨ ⊕H0(X̄,R1 j∗ρ

−1O(R))∨)/ ∼))⊗Qp
Bσ ,

of affine group schemes over Bσ, where the relations ∼ are defined as in Proposi-
tion 49.

Proof. This is [Pri11, Theorem 7.35], or alternatively [Ols11, Theorem 7.22] when
X is projective, which also has corresponding results for higher homotopy groups
and indeed the whole homotopy type. [Ols11, 6.8] introduces a ring B̃ ⊃ Bcris(V)
equipped with a Hodge filtration and Galois action. The proof then proceeds by
using the results of [Ols11], which give a weak equivalence

XR,Mal
K̄,ét

⊗
Qp

B̃ ∼ XDcrisR,Mal
k̄,cris

⊗K0
B̃ ,

preserving Hodge filtrations and Galois actions. Here, XDcrisR,Mal
k̄,cris

is a relative Mal-
cev crystalline homotopy type over K0; representations of its fundamental group are
isocrystals, and its cohomology is crystalline cohomology.

This implies that O(�ét
1 (X, x̄)R,Mal) is crystalline as a Galois representation, and

that
DcrisO(�ét

1 (X, x̄)R,Mal) = O(�cris
1 (Xk̄, x̄)DcrisR,Mal) .

Now, if we write E (R) � DX
crisρ

−1O(R), then replacing [Del80] with [Ked06],
Proposition 49 adapts to show that

�cris
1 (Xk̄, x̄)DcrisR,Mal

� DcrisR	 exp(Fr(H1
cris(X̄, j∗E (R))∨ ⊕H0(X̄,R1 j∗E (R) )∨)/ ∼) ,

for ∼ defined as in Proposition 49. This isomorphism is Frobenius-equivariant, but
need not respect the Hodge filtration.

The final step is to tensor this isomorphism with Bcris and to take Frobenius-
invariants, using the comparison above to replace crystalline fundamental groups
and cohomology with étale fundamental groups and cohomology. ��

In fact, [Pri11, Theorem 7.35] also shows that the isomorphism of Theorem 53
also holds without having to tensor with Bσ, but at the expense of Galois-equivari-
ance.

Remark 54. Although Theorem 53 is weaker than Proposition 49, it is more satisfac-
tory in one important respect. Proposition 49 effectively shows that relative Malcev
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fundamental groups over Q� carry no more information than cohomology, whereas
to recover relative Malcev fundamental groups over Qp, we still need to identify

�ét
1 (X, x̄)R,Mal ⊂ �ét

1 (X, x̄)R,Mal ⊗
Qp

Bσ .

This must be done by describing the Hodge filtration on �cris
1 (Xk̄, x̄)DcrisR,Mal, which

is not determined by cohomology (since it is not Frobenius-equivariant). Thus the
Hodge filtration is the only really new structure on the relative Malcev fundamental
group.

Remark 55. There is a similar Archimedean phenomenon established in [Pri10, §2].
If X is a smooth proper variety over C, with R a real affine group scheme and

ρ : π1(X(C), x) → R(R)

Zariski-dense, then we can study the relative Malcev completion �1(X, x)R,Mal of
the topological fundamental group π1(X(C), x). If all R-representations underlie
variations of Hodge structure, then [Pri10, Theorems 5.14 and 4.20] show that the
Hopf algebra O(�1(X, x)R,Mal) is a sum of real mixed Hodge structures.

If we define B(R)� C[t] to be of weight 0, with Hodge filtration given by

FilnB(R) = (t − i)nB(R) ,

and with σ denoting complex conjugation, then by [Pri10, Theorem 4.21], there is
an equivariant isomorphism

�1(X(C), x)R,Mal ⊗
R

B(R)σ � (R	 exp(Fr(H1(X(C),ρ−1O(R))∨)/ ∼))⊗
R

B(R)σ

preserving Hodge and weight filtrations, for ∼ as in Theorem 48.
If X is the complex form of a real variety X0, then (by [Pri10, Remark 2.15])

this isomorphism is moreover Gal(C/R)-equivariant, where the non-trivial element
of Gal(C/R) acts on B(R) as the C-algebra homomorphism determined by t �→ −t.

11.4.4 Global Fields

We now summarise how the previous sections provide information over global
fields. Given a smooth quasi-projective variety X0 = X̄0 −D0 over a number field K,
Sect. 11.4.1 gives a filtration DecW on �ét

1 (X, x̄)R,Mal. Assume that Gal(K̄/K) acts
algebraically on R, and that the Zariski-dense representation

ρ : πét
1 (X, x̄) → R(Q�)

is Galois-equivariant.

Theorem 56. For each prime p � � of K̄ at which (X̄,D) has potentially good reduc-
tion and tame monodromy round the divisor, there is a weight decomposition
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�ét
1 (X, x̄)R,Mal =

∏

n≤0
pWn�

ét
1 (X, x̄)R,Mal ,

splitting the true weight filtration DecW. These decompositions are conjugate un-
der the action of Gal(K̄/K), in the sense that

g(pW∗) = gpW∗ .

If p | � is a prime at which (X̄,D) has potentially good reduction, and ρ−1O(R)
is a potentially crystalline Q�-sheaf associated to a sum of ι-pure overconvergent
F-isocrystals, then there is a weight decomposition

�ét
1 (X, x̄)R,Mal ⊗

Qp
Bσ

cris =
∏

n≤0
pWn�

ét
1 (X, x̄)R,Mal ⊗

Qp
Bσ

cris ,

of affine schemes over Bσ
cris, splitting the true weight filtration DecW. These decom-

positions are conjugate under the action of Gal(K̄/K).

Proof. This combines Proposition 49, using smooth specialisation to compare spe-
cial and generic fibres, and Theorem 53, assigning R the weight 0, then

H1(X̄, j∗ρ
−1O(R))∨

the weight −1 and H0(X̄,R1 j∗ρ
−1O(R))∨ the weight −2. ��
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Chapter 12
On 3-Nilpotent Obstructions to π1 Sections
for P1

Q
−{0,1,∞}

Kirsten Wickelgren∗

Abstract We study which rational points of the Jacobian of P1
k − {0,1,∞} can be

lifted to sections of geometrically 3-nilpotent quotients of étale π1 over the absolute
Galois group. This is equivalent to evaluating certain triple Massey products of
elements of k∗ ⊆ H1(Gk, Ẑ(1)) or H1(Gk,Z/2Z). For k =Qp or R, we give a complete
mod 2 calculation. This permits some mod 2 calculations for k = Q. These are
computations of obstructions of Jordan Ellenberg.

12.1 Introduction

The generalized Jacobian of a pointed smooth curve can be viewed as its abelian
approximation. It is natural to consider non-abelian nilpotent approximations. Gro-
thendieck’s anabelian conjectures predict that smooth hyperbolic curves over certain
fields are controlled by their étale fundamental groups. In particular, approximating
π1 should be similar to approximating the curve. We study the effect of 2 and 3-
nilpotent quotients of the étale fundamental group of P1 − {0,1,∞} on its rational
points, using obstructions of Jordan Ellenberg.

More specifically, a pointed smooth curve X embeds into its generalized Jacobian
via the Abel-Jacobi map. Applying π1 to the Abel-Jacobi map gives the abelianiza-
tion of the étale fundamental group of X. Quotients by subgroups in the lower
central series lie between π1(X) and its abelianization, giving rise to obstructions to
a rational point of the Jacobian lying in the image of the Abel-Jacobi map. These
obstructions were defined by Ellenberg in [Ell00].
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For simplicity, first assume that X is a proper, smooth, geometrically connected
curve over a field k. The absolute Galois group of k will be denoted by

Gk = Gal(k/k)

where k denotes an algebraic closure of k. Assume that X is equipped with a k point,
denoted b and used as a base point. A k-variety will be said to be pointed if it is
equipped with a k-point. The point b gives rise to an Abel-Jacobi map

α : X → JacX

from X to its Jacobian, sending b to the identity. Applying π1 to α⊗ k produces the
abelianization of π1(Xk). For any pointed variety Z over k, there is a natural map

κ : Z(k) → H1(Gk,π1(Zk))

where Z(k) denotes the k points of Z. In particular, we have the commutative dia-
gram

Jac(X)(k) �� H1(Gk,π1(Xk)ab)

X(k)

��

�� H1(Gk,π1(Xk))

��
(12.1)

Any k point of Jac(X) which is in the image of the Abel-Jacobi map satisfies the
condition that its associated element of H1(Gk,π1(Xk)ab) lifts through the map

H1(Gk,π1(Xk)) → H1(Gk,π1(Xk)ab) . (12.2)

Therefore, showing that the associated element of H1(Gk,π1(Xk)ab) does not admit
such a lift obstructs this point of the Jacobian from lying on the curve. Ellenberg’s
obstructions are obstructions to lifting through the map (12.2). Since they obstruct
a conjugacy class of sections of π1 of JacX → Speck from being the image of a
conjugacy class of sections of π1 of X → Speck, they are being called obstructions
to π1 sections in the title. They arise from the lower central series and are defined
in Sect. 12.2.

More specifically, Ellenberg’s obstruction δn is the H1 → H2 boundary map in
Gk cohomology for the extension

1 → [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1 (12.3)

where π is the étale fundamental group of Xk, and

π = [π]1 ⊃ [π]2 ⊃ [π]3 ⊃ . . .
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denotes the lower central series of π. The obstruction δn is regarded as a multi-
valued function on H1(Gk,π

ab) via H1(Gk,π/[π]n) → H1(Gk,π
ab) and also on

JacX(k) via κ.
Now assume that X = P1

k − {0,1,∞} and that k is a subfield of C or a completion
of a number field. By replacing the Jacobian by the generalized Jacobian and en-
larging X(k) to include k rational tangential base points, we obtain a commutative
diagram generalizing (12.1). The same obstructions to lifting through (12.2) define
obstructions δn for X. As there is an isomorphism

π � 〈x,y〉∧

between π and the profinite completion of the topological fundamental group of
P

1
C
− {0,1,∞}, bases of

[π]n/[π]n+1 � Ẑ(n)N(n)

can be specified by order n commutators of x and y, decomposing the obstructions
δn into multi-valued, partially defined maps

H1(Gk, Ẑ(1)⊕ Ẑ(1))�H2(Gk, Ẑ(n)) .

Section 12.3 expresses δ2 and δ3 in terms of cup products and Massey products.
For a in k∗, let {a} denote the image of a in H1(Gk, Ẑ(1)) under the Kummer map. For
(b,a) in JacX(k) � (Gm ×Gm)(k), the obstruction δ2 is given by δ2(b,a) = {b}∪ {a},
see [Ell00]. It is a charming observation of Jordan Ellenberg that this computation
shows that the cup product factors through K2(k), see Remark 28. The obstruction
δ3 is computed by Theorem 19 as

δ3,[[x,y],x] (b,a) = 〈{−b}, {b}, {a}〉

δ3,[[x,y],y](b,a) = −〈{−a}, {a}, {b}〉− f ∪{a} ,

where f ∈ H1(Gk, Ẑ(2)) is associated to the monodromy between 0 and 1. The in-
determinacy of the Massey product and the conditions required for its definition
coincide with the multiple values assumed by δ3 and the condition for its definition.

Section 12.4 contains computations of δ2, and its mod 2 reduction. In particular,
Sect. 12.4.4 provides points on which to evaluate δ3, which can be phrased as the
failure of a 2-nilpotent section conjecture for P1

k − {0,1,∞}. Tate’s computation of
K2(Q) gives a finite algorithm for determining whether or not δ2(b,a) = 0 for k = Q
described in Sect. 12.4.5.

The main results of this paper are in Sect. 12.5. The mod 2 reduction of δ3 for a
finite extension kv of Qp with p odd is computed as follows.

Theorem 36. Suppose that δmod2
2 (b,a) = 0. Then δmod2

3 (b,a) � 0 if and only if
one of the following holds:

• {−b} = 0 and {2
√
−b}∪ {a} � 0.

• {−a} = 0 and {2
√
−a}∪ {b}+ {2}∪ {a}� 0.

• {b} = {a} and {2
√

b
√

a}∪ {a} � 0.
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Here, equalities such as {−b} = 0 take place in H1(Gkv
,Z/2Z) and non-equalities

such as {2
√
−b}∪a � 0 take place in H2(Gkv

,Z/2Z). The cocycle

f : Gk → [π]2/([π]3([π]2)2) � Z/2Z

described above is known due to contributions of Anderson, Coleman, Deligne,
Ihara, Kaneko, and Yukinari, and its computation is required for Theorem 36. For
points

(b,a) ∈ (Z− {0})× (Z− {0}) ⊂ JacX(Qp)

such that p divides ab exactly once, the vanishing of δmod2
3 for Qp can be expressed

in terms of the congruence conditions of Corollary 38:

• δmod2
2 (b,a) = 0 ⇐⇒ a+b is a square mod p.

• When δmod2
2 (b,a) = 0, then δmod2

3 (b,a) = 0 ⇐⇒ a+b is a fourth power mod p.

As the image of X in its Jacobian consists of (b,a) such that b+ a = 1, and the
image of the tangential points of X are (b,a) such that b+a = 0, or b = 1, or a = 1,
we see in Corollary 38 that δmod2

3 vanishes on the points and tangential points of
X. Of course, δmod2

3 is constructed to satisfy this property, but here it is visible that
δmod2

2 and δmod2
3 are increasingly accurate approximations to X inside its Jacobian.

The obstruction δmod2
3 for k = R is computed in Sect. 12.5.3. Consider k = Q.

Although an element of H2(GQ,Z/2Z) is 0 if and only if its restriction to all places,
or all but one place, vanishes, the previous local calculations can only be combined
to produce a global calculation when the Massey products are evaluated locally
using compatible defining systems. This involves the local-global comparison map
on Galois cohomology with coefficients in a 2-nilpotent group, see Remark 46. In
Sect. 12.5.5, such lifts are arranged and the local calculations are used to show that

δmod2
3 (−p3, p) = 0

for k = Q. Proposition 48 computes δmod2
3 on a specific lift of (−p3, p) for k = Q,

which is equivalent to the calculation of the G
Q

Massey products with Z/2Z coeffi-
cients 〈{p3}, {−p3}, {p}〉 and 〈{−p}, {p}, {−p3}〉 for any specified defining system.
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12.2 Ellenberg’s Obstructions to π1 Sections for P1
k −{0,1,∞}

We work with fields k which are subfields of C or completions of a number field. In
the latter case, fix an embedding of the number field into C, as well as an algebraic
closure k of k, and an embedding Q ⊂ k, where Q denotes the algebraic closure of
Q in C. These specifications serve to choose maps between topological and étale
fundamental groups, as in (12.11).

This section defines Ellenberg’s obstructions. In Sect. 12.2.1, we recall Deligne’s
notion of a tangential point [Del89, §15] [Nak99], and define in (12.5) the map κ
from k points and tangential points to H1(Gk,π1(Xk)). We then specialize to X =
P

1
k − {0,1,∞}, give the computation of κ composed with

H1(Gk,π1(Xk)) → H1(Gk,π1(Xk)ab)

in (12.16) and Lemma 4, and define Ellenberg’s obstructions in Sect. 12.2.3.

12.2.1 Tangential Base Points, Path Torsors, and the Galois Action

Let X be a smooth, geometrically connected curve over k with smooth compactifica-
tion X ⊆ X and x ∈ X(k), so in particular, x could be in (X−X)(k). A local parameter
z at x gives rise to an isomorphism

k[[z]]
�−→ ÔX,x ,

where ÔX,x denotes the completion of the local ring of x. Let k be a fixed algebraic
closure of k. Since we assume that k has characteristic 0, the field of Puiseux series

k((zQ))� ∪n∈Z>0
k((z1/n))

is algebraically closed. The composition

Speck((zQ)) → Speck[[z]] � Spec ÔX,x → X

factors through the generic point of X and thus defines a geometric point of X

bz : Speck((zQ)) → X

that will be called the tangential base point of X at x in the direction of z. The
tangential base point bz determines an embedding

k(X) ⊂ k((z)) ⊂ k((zQ)) .
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The coefficientwise action of Gk on k((zQ)) gives a splitting of Gk((z)) → Gk. Com-
bined with the embedding k(X) ⊂ k((z)), this splitting gives a splitting of Gk(X) → Gk
and therefore a splitting of

πet
1 (X,bz) → Gk ,

see [SGA1, V Prop 8.2], and a Gk action on πet
1 (Xk,bz).

A geometric point associated to a k point or tangential point will mean

x : SpecΩx → X

where Ωx is an algebraically closed extension of k, such that either x arises as a
tangential base point as described above or x has a k point as its image. Such a
geometric point determines a canonical geometric point of Xk, and the associated
fiber functor has a canonical Gk action. A path between two such geometric points
b and x is a natural transformation of the associated fiber functors, and the set of
paths

π1(Xk;b, x)

from b to x form a trivial πet
1 (Xk,b) torsor whose Gk action determines an element

[π1(Xk;b, x)] ∈ H1(Gk,π
et
1 (Xk,b))

represented by the cocycle
g �→ γ−1 ◦g(γ) (12.4)

where γ is any path from b to x. Composition of paths is written right to left so that
γ−1 ◦g(γ) is the path formed by first traversing g(γ) and then γ−1.

A local parameter z at a point x of X determines a tangent vector

Speck[[z]]/〈z2〉 → X .

For b or x a tangential base point, the associated element of H1(Gk,π
et
1 (Xk,b)) only

depends on the choice of local parameter up to the associated tangent vector. Fur-
thermore, if x is a k tangential point which comes from a tangent vector at a point p
of X, then

[π1(Xk;b, x)] = [π1(Xk;b, p)] .

This describes a map κ, which is often called the non-abelian Kummer map,

κ = κ(X,b) : X(k) ∪
⋃

x∈X−X

(TxX(k)− {0}) −→ H1(Gk,π1(Xk,b)) . (12.5)

Example 1. The boundary map for the Kummer sequence

1 → Z/nZ(1) →Gm
n·−→ Gm → 1 (12.6)

yields in the limit over all n the Kummer map
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k∗ → H1(Gk, Ẑ(1)) (12.7)

which is represented on the level of cocycles by

σ �→ {z}(σ) =
(
σ( n√z)/ n√z

)
n

(12.8)

for any compatible choice of nth roots of z ∈ k
∗
. This cocycle, or by abuse of notation

also the class it represents, will also be denoted by z, or denoted by {z} if there is
possible confusion.

When n = 2, both choices of square root of z produce the same cocycle. Further-
more, canonically μ2 = Z/2Z and thus we have a well-defined homomorphism

k∗ → C1(Gk,Z/2Z) ,

where C1(Gk,Z/2Z) denotes the group of continuous 1-cocycles of Gk with values
in Z/2Z.

For (X,b) = (Gm,1), the map κ is the Kummer map: for

x ∈ Gm,k(k) = k∗ ,

choose compatible nth roots n√x of x, and choose 1 as the nth root of unity for each
n ∈ Z>0. These choices determine a path γ from 1 to x as follows. On the degree n
cover

pn : Gm,k →Gm,k

given by t �→ tn, the path γ maps

γ : p−1
n (1) → p−1

n (x)

by multiplication by n√x. For g ∈ Gk, the path gγ is the path sending g1 to g( n√x),
and thus multiplies by g( n√x). We conclude

κ(x) = γ−1 ◦g(γ) = g( n√x)/ n√x = {x}(g) .

Identifying the choice of path from 1 to x with the choice of compatible nth roots of
x, there is an equality of cocycles κ(x) = {x}.

Similarly, for w ∈ T0P
1
k(k) − {0} = k∗, a compatible choice of nth roots n√w of w

determines a path γ from 1 to
−→
0w, where

−→
0w is the k tangential point

Speck((zQ)) → Speck[t, t−1] (12.9)

given by t �→ wz, by defining γ to map ζ ∈ μn(k) = p−1
n (1) to the point of p−1

n (
−→
0w)

given by (12.9) and t �→ n√wζz1/n. For any g ∈ Gk, we have g(γ)(ζ) = g(γ(g−1ζ))
is the path given by (12.9) and t �→ (g n√w)ζz1/n, whence γ((g n√w)ζ/ n√w) = g(γ)(ζ).
We conclude

κ(
−→
0w) = γ−1 ◦g(γ) = g( n√w)/ n√w = {w}(g) = κ(w) .
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Example 2. The map κ(X,b) depends on the choice of base point, even when π1(Xk,b)
is abelian and is therefore independent of b. In this case, if b1 and b2 are two
geometric points associated to a k point or tangential point of X, a straightforward
cocycle manipulation shows that

κ(X,b2)(x) = κ(X,b1)(x)− κ(X,b1)(b2)

for any k point or tangential point x. In particular, Example 1 implies that

κ
(Gm ,

−→
01)
= κ(Gm ,1) .

For higher dimensional geometrically connected varieties Z over k, we will not
need the notion of a tangential base point, but we will use the map

κ = κ(Z,b) : Z(k) → H1(Gk,π1(Zk,b)) (12.10)

defined precisely as in the case of curves above.

Let X = P1
k −{0,1,∞}= Speck[t, 1

t ,
1

1−t ], and base X at
−→
01 as in Example 1 (12.9).

We fix an isomorphism

π = πet
1 (P1

k
− {0,1,∞},−→01) � 〈x,y〉∧ (12.11)

between π and the profinite completion of the free group on two generators as fol-
lows: recall that we assume that k is a subfield of C or the completion of a number
field at a place, and we have fixedC⊃Q⊆ k, see 12.2. The morphismsC⊃Q⊆ k and

the Riemann existence theorem give an isomorphism π � π
top
1 (P1

C
− {0,1,∞},−→01)∧,

where the base point for the topological fundamental group, also denoted
−→
01, is the

tangent vector at 0 pointing towards 1. Let x be a small counterclockwise loop

around 0 based at
−→
01. Let y′ be the pushforward of x by the automorphism of

P
1
C
− {0,1,∞} given by 1 �→ 1− t, so in particular, y′ is a small loop around 1 based

at
−→
10, where

−→
10 is the tangent vector at 1 pointing towards 0. Conjugating y′ by

the direct path along the real axis between
−→
10 and

−→
01 produces a loop y, and an

isomorphism π
top
1 (P1

C
− {0,1,∞},−→01) = 〈x,y〉, giving (12.11).

An element σ ∈ Gk acts on π by

σ(x) = xχ(σ) (12.12)

σ(y) = f(σ)−1yχ(σ)f(σ) = [f(σ)−1,yχ(σ)]yχ(σ) ,

where f : Gk → [π]2 is a cocycle with values in the commutator subgroup [π]2 of

π coming from the monodromy of the above path from
−→
01 to

−→
10, and χ : Gk → Ẑ∗

denotes the cyclotomic character, see [Iha94].
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12.2.2 The Abel-Jacobi map for P1
k −{0,1,∞}

Let X ⊆ X denote a smooth curve over k inside its smooth compactification. The
generalized Jacobian JacX of X is the algebraic group of equivalence classes of
degree 0 divisors of X where two divisors are considered equivalent if they differ by
Div(φ) for a rational function φ such that φ(p) = 1 for all p in X−X. It follows that
Jac(X) is an extension of Jac(X) by the torus

T =
( ∏

p∈X−X

Resk(p)/kGm,k(p)

)
/Gm,k

where p ranges over the closed points of X − X with residue field k(p), the torus
Resk(p)/k Gm,k(p) denotes the restriction of scalars of Gm,k(p) to k, and where Gm,k
acts diagonally. For more information on generalized Jacobians see [Ser88].

For X = P1
k − {0,1,∞}, the Jacobian of X = P1

k is trivial. The complement of X in

X consists of three rational points and

Jac(P1
k − {0,1,∞}) � Gm,k ×Gm,k . (12.13)

Since the fundamental group of a connected group is abelian, the fundamental group
does not depend on base points. We find

π1(Jac(P1
k
− {0,1,∞})) = π1(Gm,k,1)×π1(Gm,k,1) = Ẑ(1)⊕ Ẑ(1) . (12.14)

We choose an isomorphism (12.13) by sending Div( f ) for a rational function f on

P
1 to f (0)/ f (∞)× f (1)/ f (∞) in Gm ×Gm. The Abel-Jacobi map based at

−→
01

α : P1
k − {0,1,∞} → Jac(P1

k − {0,1,∞}) = Gm,k ×Gm,k

t �→ (t,1− t)

induces the abelianization

π = π1(P1
k
− {0,1,∞},−→01)� πab = π1(Jac(P1

k
− {0,1,∞})). (12.15)

Remark 3. From (12.11) and (12.12), we have fixed an isomorphism

πab � Ẑ(χ)x⊕ Ẑ(χ)y .

The isomorphism πab � Ẑ(1)⊕ Ẑ(1) of (12.14) and (12.15) above is the composition
of the former with the isomorphism

Ẑ(χ) � Ẑ(1)� lim←−−
n

μn,k



290 K. Wickelgren

corresponding to the compatible choice of roots of unity given by the action of the

loop x on the fiber over
−→
01 on the finite étale covers of Gm,k , i.e., to the choice

(ζn)n∈Z>0
, with ζn = e2πi/n, of compatible primitive nth roots of unity. We will here-

after identify
Ẑ(1) = Ẑ(χ)

by this isomorphism, and for typographical reasons, we will use the notation Ẑ(n)
for Ẑ(χn), although the group law will be written additively.

By Example 1, the map κ for the k scheme Gm ×Gm pointed by (1,1) is two
copies of the Kummer map:

k∗ × k∗ → H1(Gk, Ẑ(1))×H1(Gk, Ẑ(1))

b×a �→ {b}× {a} .

By functoriality of κ and Example 2, the following diagram is commutative:

H1(Gk,π) �� H1(Gk,π
ab)

(P1
k − {0,1,∞})(k)

κ−→
01

��

t �→(t,1−t)
�� (Gm ×Gm)(k)

κ(1,1)

��
(12.16)

We can similarly compute the image of the k tangential points of P1
k − {0,1,∞} in

H1(Gk,π
ab), which is what we now do, see also [Ell00]. We define a map

α : ∪t=0,1,∞(TtP
1 − {0})(k) → (Gm ×Gm)(k)

α(
−→
0w) = (w,1), α(

−→
1w) = (1,−w), α(−−→∞w) = (w−1,−w−1)

where w ∈ k∗, the tangent vector
−→
1w is the pushforward of

−→
0w under t �→ t+ 1, and

−−→∞w is the pushforward of
−→
0w under t �→ 1/t.

Lemma 4. The following diagram commutes:

H1(Gk,π) �� H1(Gk,π
ab)

⋃

t=0,1,∞
(TtP

1 − {0})(k)

��

α �� (Gm ×Gm)(k) .

��

Proof. The commutativity of the two diagrams
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X
α ��

t �→1−t
��

JacX

(b,a)�→(a,b)
��

X
α �� JacX

X
α ��

t �→1/t
��

JacX

(b,a)�→( 1
b ,

−a
b )

��

X
α �� JacX

reduces the lemma for t = 1 or ∞ (respectively) to the case t = 0.
By functoriality of κ applied to the Abel-Jacobi map t �→ (t,1 − t), we have that

the image of κ
(P1

k−{0,1,∞},−→01)
(
−→
0w) in H1(Gk,π

ab) is

κ
(Gm×Gm,

−→
01×1)

(
−→
0w,

−−−−→
1(−w)) = κ

(Gm ,
−→
01)

(
−→
0w)× κ(Gm,1)(

−−−−→
1(−w)) .

The geometric point
−−−−→
1(−w) factors through 1−w ∂

∂t : Speck[[z]] →Gm,k

t �→ 1−wz .

The quotient map Speck → Speck[[z]] given by z �→ 0 gives a bijection between the
fiber over 1−w ∂

∂t and the fiber over 1 of the multiplication by n cover

pn : Gm,k → Gm,k .

These bijections determine a Galois equivariant path between 1 and
−−−−→
1(−w) showing

that
κ(Gm ,1)(

−−−−→
1(−w)) = κ(Gm,1)(1) .

The lemma now follows from Examples 1 and 2. ��

12.2.3 Ellenberg’s Obstructions

Let π be π1(P1
k
− {0,1,∞},−→01) or more generally π can be any profinite group with

a continuous Gk action, e.g., the étale fundamental group of a k-variety after base
change to k. The lower central series of π is the filtration of closed characteristic
subgroups

π = [π]1 ⊃ [π]2 ⊃ . . . ⊃ [π]n ⊃ . . .

where the commutator is defined [x,y] = xyx−1y−1, and [π]n+1 = [π, [π]n] is the clo-
sure of the subgroup generated by commutators of elements of [π]n with elements
of π. The central extension

1 → [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1

gives rise to a boundary map in continuous group cohomology

δn : H1(Gk,π/[π]n) → H2(Gk, [π]n/[π]n+1)
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that is part of an exact sequence of pointed sets (see for instance [Ser02, I 5.7]),

1 →([π]n/[π]n+1)Gk → (π/[π]n+1)Gk → (π/[π]n)Gk

→H1(Gk, [π]n/[π]n+1) → H1(Gk,π/[π]n+1) → H1(Gk,π/[π]n)

→H2(Gk, [π]n/[π]n+1).

The δn give a series of obstructions to an element of H1(Gk,π/[π]2) being the
image of an element of H1(Gk,π), thereby also providing a series of obstructions to
a rational point of the Jacobian coming from a rational point of the curve: to a given
element x of H1(Gk,π/[π]2), if δ2(x) � 0, then x is not the image of an element of
H1(Gk,π). Otherwise, x lifts to H1(GK,π/[π]3). Apply δ3 to all the lifts of x. If δ3
is never 0, then x is not the image of an element of H1(Gk,π). Otherwise, x lifts to
H1(Gk,π/[π]4), and so on.

Definition 5. For x in H1(Gk,π/[π]2), say that δnx = 0 if x is in the image of

H1(Gk,π/[π]n+1) → H1(Gk,π/[π]2) . (12.17)

Otherwise, say δnx � 0.

Let X = P1
k − {0,1,∞}, or more generally X could be a smooth, geometrically

connected, pointed curve over k, with an Abel-Jacobi map X → JacX. As we are
interested in obstructing points of the Jacobian from lying on X, it is convenient to
identify a rational point of JacX with its image under κ cf. (12.5).

Definition 6. For a k-point x of JacX, say that δnx = 0 if κ(Jac X,0)x is in the image of
(12.17), where 0 denotes the identity of JacX. Otherwise, say δnx � 0.

For k a number field, and K the completion of k at a place ν, the obstruction δn
for K will sometimes be denoted δνn, and applied to elements of H1(Gk,π/[π]n); it is
to be understood that one first restricts to H1(GK,π/[π]n). In other words, given x in
H1(Gk,π/[π]2), the meaning of δνnx = 0 is that there exists xn+1 in H1(GK,π/[π]n+1)
lifting the restriction of x to H1(GK,π/[π]2). For x a point of JacX(k), the meaning
of δνnx = 0 is that δνnκ(Jac X,0)x = 0. This is equivalent to taking the image of x under
JacX(k) → JacXK(K) and applying Definition 6 with K as the base field.

Any filtration of π by characteristic subgroups such that successive quotients
give rise to central extensions produces an analogous sequence of obstructions. For
instance, consider the lower exponent 2 central series

π = [π]2
1 ⊃ [π]2

2 ⊃ . . . ⊃ [π]2
n ⊃ . . . ,

defined inductively by

[π]2
n+1 = [π, [π]2

n] · ([π]2
n)2

where [π, [π]2
n] · ([π]2

n)2 denotes the subgroup generated by the indicated commu-
tators and the squares of elements of [π]2

n. The resulting obstructions are denoted
δ2

n, and will also be evaluated on JacX(k) in the following manner: πab maps to
(π/[π]2

n+1)ab, giving a map
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H1(GK,π
ab) → H1(GK, (π/[π]2

n+1)ab) ,

where either K = k or K is the completion of a number field k ⊂ C at a place v as
above. Precomposing with κ for the Jacobian (12.5) gives a map

Jac(X)(k) → H1(GK, (π/[π]2
n+1)ab) .

For x in Jac(X)(k), say δ2
nx = 0 (respectively δ(2,v)

n x = 0) if there exists xn+1 in
H1(GK,π/[π]2

n+1) such that x and xn+1 have equal image in H1(GK, (π/[π]2
n+1)ab).

Otherwise, say δ2
nx � 0 (respectively δ(2,v)

n x � 0). The obstruction δνn for ν the place
2 will not be considered, so the notation δ2

n will not be ambiguous. Obstructions δm
n

corresponding to the lower exponent m central series,

[π]m
n+1 = [π, [π]m

n ] · ([π]m
n )m

are defined similarly.
As one final note of caution, H1(GK,π/[π]n) is in general only a pointed set.

Furthermore, even for n = 2, the map δ2 is not a homomorphism, see Proposition 7.

12.3 The Obstructions δ2 and δ3 as Cohomology Operations

We express δ2 and δ3 for P1
k − {0,1,∞} in terms of cohomology operations, where k

is a subfield of C or the completion of a number field at a place; in the latter case,
fix an embedding of the number field into C and an embedding Q ⊂ k, giving the
isomorphism

π = πet
1 (P1

k
− {0,1,∞},−→01) � 〈x,y〉∧

of (12.11). We will use the following notation.
For elements x and y of a group, let [x,y] = xyx−1y−1 denote their commutator.

For a profinite group G and a profinite abelian group A with a continuous action of
G, let (C∗(G,A),D) be the complex of inhomogeneous cochains of G with coeffi-
cients in A as in [NSW08, I.2 p. 14]. For c ∈ Cp(G,A) and d ∈ Cq(G,A′), where A′

is a profinite abelian group with a continuous action of G, let c ∪ d denote the cup
product c∪d ∈ Cp+q(G,A⊗A′)

(c∪d)(g1, . . . ,gp+q) = c(g1, . . . ,gp)⊗g1 · · ·gpd(gp+1, . . . ,gp+q) ,

which induces a well defined map on cohomology, and gives C∗(G,A) the structure
of a differential graded algebra, for A a commutative ring, via A ⊗ A → A. For a
profinite group Q, no longer assumed to be abelian, the continuous 1-cocycles

Z1(Gk,Q) = {s : Gk → Q ; s is continuous, s(gh) = s(g)gs(h)}
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of Gk with values in Q form a subset of the set of continuous inhomogeneous
cochains

C1(Gk,Q) = {s : Gk → Q ; s is continuous} .

See [Ser02, I §5] for instance. For s ∈ C1(Gk,Q), let

Ds : Gk ×Gk → Q

denote the function Ds(g,h) = s(g)gs(h)s(gh)−1.

12.3.1 The Obstruction δ2 as a Cup Product

For any based curve X over k with fundamental group π = π1(Xk), [Zar74, Thm
p. 242] or [Ell00, Prop. 1] show that

δ2(p+q)− δ2(p)− δ2(q) = [−,−]∗p∪q ,

where [−,−]∗ is the map on H2 induced by the commutator

[−,−] : πab ⊗πab → [π]2/[π]3

defined by
[γ,�] �→ γ�γ−1�−1 ,

where γ ∈ πab is the image of γ ∈ π/[π]3 and similarly for �. It follows that δ2 is the
sum of a cup product term and a linear term, after inverting 2.

For X = P1
k − {0,1,∞} based at

−→
01, the linear term vanishes and we can avoid

inverting 2 by slightly changing what is meant by the cup-product term. This was
shown by Ellenberg, who gave a complete calculation of δ2 in this case [Ell00, p.
11]. Here is an alternative calculation of this δ2, showing the same result. Using
the notation of (12.11) we identify π/[π]2 with Ẑ(1)⊕ Ẑ(1) using the basis x,y, and
identify [π]2/[π]3 with Ẑ(2) using the basis [x,y]. So δ2 is identified with a map

H1(Gk, Ẑ(1)⊕ Ẑ(1)) → H2(Gk, Ẑ(2)) .

Proposition 7. Let p(g) = ya(g)xb(g) be a 1-cocycle of Gk with values in π/[π]2, so

b,a : Gk → Ẑ(1)

are the cocycles produced by the isomorphism π/[π]2 � Ẑ(1)x⊕ Ẑ(1)y. Then

δ2 p = b∪a .

Proof. Sending yaxb ∈ π/[π]2 to yaxb ∈ π/[π]3 determines a set-theoretic section s
of the quotient map π/[π]3 → π/[π]2. Then δ2(p) is represented by the cocycle
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(g,h) �→ δ2(p)(g,h)= s(p(g))gs(p(h))s(p(gh))−1

Using (12.12) and since f(g) ∈ [π]2 is mapped to a central element in π/[π]3 we find

δ2(p)(g,h)=
(
ya(g)xb(g))((f(g)−1yχ(g)f(g)

)a(h)xχ(g)b(h)
)(

ya(gh)xb(gh))−1

=
(
ya(g)xb(g))(yχ(g)a(h)xχ(g)b(h))(x−b(g)−χ(g)b(h)y−a(g)−χ(g)a(h))

= ya(g)[xb(g),yχ(g)a(h)]y−a(g) = [xb(g),yχ(g)a(h)] = [x,y]b(g)·χ(g)a(h)

= [x,y](b∪a)(g,h)

giving the desired result. ��
Proposition 7 characterizes the lifts to H1(Gk,π/[π]3) of an element of

H1(Gk,π
ab) � H1(Gk, Ẑ(1))⊕H1(Gk, Ẑ(1)) .

Let b,a : Gk → Ẑ(1) be cochains. For any c ∈ C1(Gk, Ẑ(2)), define

(b,a)c : Gk → π/[π]3 by (b,a)c(g) = ya(g)xb(g)[x,y]c(g) . (12.18)

Corollary 8. Let p(g) = ya(g)xb(g) be a 1-cocycle of Gk with values in π/[π]2. The
lifts of p to a cocycle in C1(Gk,π/[π]3) are in bijection with the set of cochains
c ∈ C1(Gk, Ẑ(2)) such that

Dc = −b∪a

by
c ↔ (b,a)c .

Proof. D((b,a)c) = δ2(p)+Dc, where D((b,a)c) is as above (cf. 12.3), and δ2(p)
denotes its cocycle representative given in the proof of Proposition 7. ��

12.3.2 The Obstruction δ3 as a Massey Product

Let χ be the cyclotomic character. Note that χ(g) − 1 is divisible by 2 in Ẑ for any
g ∈ Gk. This allows us to define

χ−1
2

: Gk → Ẑ(χ) by g �→
χ(g)−1

2
∈ Ẑ(χ) .

For any compatible system of primitive nth roots of unity in Ẑ(1) giving an identifi-
cation Ẑ(1) = Ẑ(χ), and in particular for (ζn) determined by Remark 3, we have

{−1} = χ−1
2

(12.19)

in H1(Gk, Ẑ(1)), where {−1} denotes the image of −1 under the Kummer map.
The equality (12.19) holds as an equality of cocycles in C1(Gk, Ẑ(1)) when {−1}
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is considered as the cocycle Gk → Ẑ(1) given by choosing as the nth root of −1, the
chosen primitive (2n)th root of unity. This is shown by the following calculation.

{−1}(g) =
(
g(ζ2n)/ζ2n

)
n =

(
ζ
χ(g)−1
2n

)
n =

(
ζ

χ(g)−1
2

n
)
n ,

where for an element a ∈ Ẑ(1), the reduction of a in Z/n(1) is denoted (a)n.

Definition 9. Profinite binomial coefficients are the maps
(
m

)
: Ẑ→ Ẑ for m � 0

defined for a ∈ Ẑ with a ≡ an mod n by

(
a
m

)
≡ am!n(am!n −1)(am!n −2) . . .(am!n −m+1)/m! mod n

for every n ∈ N.

Example 10. For a cocycle b ∈ C1(Gk, Ẑ(χ)), let
(
b
2

)
in C1(Gk, Ẑ(χ2)) denote the

cochain given by

g �→
(
b(g)

2

)
.

We have

D

(
b
2

)
= −(b+

χ−1
2

)∪b ,

as shown by the computation:

D

(
b
2

)
(g,h) =

(
b(g)

2

)
+χ(g)2

(
b(h)

2

)
−

(
b(gh)

2

)
=

b(g)(b(g)−1)
2

+
χ(g)2b(h)(b(h)−1)

2
− (b(g)+χ(g)b(h))(b(g)+χ(g)b(h)−1)

2

= −b(g)χ(g)b(h)− χ(g)2b(h)−χ(g)b(h)
2

= −(b∪b)(g,h)− (
χ−1

2
∪b)(g,h) .

Example 11. Let b be an element of k∗ with compatibly chosen nth roots
n√

b in k,
giving a cocycle b : Gk → Ẑ(1) via the Kummer map. Identify Ẑ(1) = Ẑ(χ) with
(ζn)n∈Z>0

from Remark 3. When restricted to an element of C1(Gk(
√

b),Z/2Z),

(
b
2

)
= {

√
b} ∈ C1(Gk(

√
b),Z/2Z) ,

where {
√

b} denotes the image of
√

b under the Kummer map, which is independent

of the choice of
√√

b. To see this, note that
(
{b}(g)

)
4 = 2

(
{
√

b}(g)
)
4 is even, whence

({b}(g)−1
)
2 = 1, and the value of 1

2 (
({b}(g)

)
4) in Z/2Z is

({
√

b}(g)
)
2. Here, as above,

the reduction mod n of an element a ∈ Ẑ is denoted (a)n.
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Remark 12. Note that
(
b
2

)
is a cochain taking values Ẑ(χ2), but Example 11 identifies

its image in C1(Gk(
√

b),Z/2Z) with a cocycle taking values in Z/2Z(1). Furthermore,

the cohomology class of the image of
(
b
2

)
in H1(Gk(

√
b),Z/2Z) depends on the choice

of
√

b used to define b : Gk → Ẑ(1). Nevertheless,
(
b
2

)
appears in the expressions

for δ3 which will be given in Proposition 17; it is involved in expressions which
make the choice of

n√
b irrelevant, cf. Remark 37. In writing down elements of π in

terms of x and y, we have identified Ẑ(1) and Ẑ(χ) because monodromy around x
distinguishes a compatible system of roots of unity.

Identify Ẑ(1) and Ẑ(χ) using (ζn) as in Remark 3. In particular, we can apply
profinite binomial coefficients to elements of Ẑ(1) or any Ẑ(n).

We define a 1-cocycle f (σ) ∈ C1(Gk, Ẑ(2)) by

f(σ) = [x,y] f (σ) mod [π]3 (12.20)

where f(σ) is the 1-cocycle from (12.12) that describes the Galois action on π.
The basis [[x,y], x], [[x,y],y] for [π]3/[π]4 as a Ẑmodule decomposes δ3 into two

obstructions

δ3,[[x,y],x] , δ3,[[x,y],y] : H1(Gk,π/[π]3) → H2(Gk, Ẑ(3)) .

Since an arbitrary element of π/[π]3 can be written uniquely in the form yaxb[x,y]c

for a,b,c ∈ Ẑ, an arbitrary element of C1(Gk,π/[π]3) is of the form (b,a)c, as in
(12.18). The obstruction δ3 is therefore computed by the following.

Proposition 13. Let (b,a)c be a 1-cocycle for Gk with values in π/[π]3. Then:

(1) δ3,[[x,y],x](b,a)c is represented by the cocycle that maps (g,h) to

c(g)χ(g)b(h)+

(
b(g)+1

2

)
χ(g)a(h)+b(g)χ(g)2a(h)b(h)− χ(g)−1

2
χ(g)2c(h) ,

(2) δ3,[[x,y],y](b,a)c is represented by the cocycle that maps (g,h) to

c(g)χ(g)a(h)+b(g)

(
χ(g)a(h)+1

2

)
− χ(g)−1

2
χ(g)2c(h)− f (g)χ(g)a(h) .

Proof. We have the following equality in π/[π]4 :

xbya = yaxb[x,y]ab[[x,y],y]b(a+1
2 )[[x,y], x]a(b+1

2 ) . (12.21)

Replacing b and a by −a in (12.21), yields:

[xa,ya] = [x,y]a2
[[x,y], x]−a(a

2)[[x,y],y]−a(a
2) (12.22)

For any g ∈ Gk, a straightforward computation using (12.12), (12.22) and (12.20)
shows that:
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g(yaxb[x,y]c) = yχ(g)a xχ(g)b[x,y]χ(g)2c[[x,y], x]−
χ(g)−1

2 χ(g)2c

× [[x,y],y]−
χ(g)−1

2 χ(g)2c− f (g)χ(g)a (12.23)

An arbitrary element of π/[π]3 can be written uniquely in the form yaxb[x,y]c for
a,b,c ∈ Ẑ. Sending yaxb[x,y]c ∈ π/[π]3 to yaxb[x,y]c ∈ π/[π]4 determines a section
s of the quotient map π/[π]4 → π/[π]3. Let p = (b,a)c. δ3 p is represented by the
cocycle

(g,h) �→ s(p(g))gs(p(h))s(p(gh))−1

which gives cocycles representing δ3,[[x,y],x] p and δ3,[[x,y],y] p. Combining (12.21)
and (12.23) gives the desired result. ��

We give a formula for δ3 in terms of triple Massey products.

Definition 14. The triple Massey product 〈α,β,γ〉 for 1-cocycles α,β,γ such that
α∪β = 0 and β∪γ = 0 is described by choosing cochains A,B such that DA = α∪β
and DB = β∪γ, and setting

〈α,β,γ〉 = A∪γ+α∪B .

The choice {A,B} is the called the defining system. The triple Massey product
determines a partially defined multivalued product on H1.

Remark 15. Results of Dwyer and Stallings [Dwy75] relate the element of

H2(π/[π]n, [π]n/[π]n+1)

classifying the central extension

1 → [π]n/[π]n+1 → π/[π]n+1 → π/[π]n → 1

to nth order Massey products. The computation of δ3 is equivalent to computing the
element of H2(π/[π]3�Gk, [π]3/[π]4) classifying

1 → [π]3/[π]4 → π/[π]4�Gk → π/[π]3�Gk → 1 .

Because Dc = −b ∪ a and D
(
b+1

2

)
= −(b − χ−1

2 ) ∪ b, where the latter equality fol-
lows by the argument of Example 10, the expression for δ3,[[x,y],x] (b,a)c given in
Proposition 13 looks similar to a triple Massey product ±〈{±b}, {±b},a〉, except the
c∪b term should be b∪c. The cup product on cohomology is graded commutative,
and the analogue on the level of cochains, given below in Lemma 16, allows us to
change the order of c and b, which will express δ3,[[x,y],x](b,a)c as a Massey product.

For cochains c ∈ C1(Gk, Ẑ(n)) and b ∈ C1(Gk, Ẑ(m)), define

cb : Gk → Ẑ(n+m) by (cb)(g) = c(g)b(g) .

Lemma 16. Let c ∈ C1(Gk, Ẑ(n)) be an arbitrary cochain, and b in C1(Gk, Ẑ(m)) be
a cocycle. Then
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(D(cb)+b∪ c+ c∪b)(g,h)= Dc(g,h)b(g)+Dc(g,h)χ(g)mb(h) .

Proof. By definition of D, for any g,h ∈ Gk,

D(cb)(g,h) = (cb)(g)+χ(g)n+m(cb)(h)− (cb)(gh) ,

c(gh) = c(g)+χ(g)nc(h)−Dc(g,h) .

Since b is a cocycle, b(gh) = b(g)+χ(g)mb(h). Combining equations, we have

D(cb)(g,h)=c(g)b(g)+χ(g)n+mc(h)b(h)

− (c(g)+χ(g)nc(h)−Dc(g,h))(b(g)+χ(g)mb(h))

=Dc(g,h)b(g)+Dc(g,h)χ(g)mb(h)− (c∪b(g,h)+b∪ c(g,h))

which proves the lemma. ��

Proposition 17. Let p = (b,a)c ∈ C1(Gk,π/[π]3) be a 1-cocycle, where (b,a)c is as
in the notation of (12.18). Then the following holds:

(1) δ3,[[x,y],x] (p) = −(b+ χ−1
2 )∪ c−

(
b
2

)
∪a ,

(2) δ3,[[x,y],y](p) = (a+ χ−1
2 )∪ (ab− c)+

(
a
2

)
∪b− f ∪a .

Proof. By Corollary 8 and Lemma 16, we have that −D(cb)(g,h)=

c(g)χ(g)b(h)+b(g)χ(g)2c(h)+b(g)2χ(g)a(h)+b(g)χ(g)2a(h)b(h) .

Subtracting this expression for −D(cb) from the cocycle representing δ3,[[x,y],x] p
given in Proposition 13 shows that δ3,[[x,y],x] p is represented by the cocycle send-
ing (g,h) to

−b(g)χ(g)2c(h)−b(g)2χ(g)a(h)+

(
b(g)+1

2

)
χ(g)a(h)− χ(g)−1

2
χ(g)2c(h) .

Note that

−b(g)2χ(g)a(h)+

(
b(g)+1

2

)
χ(g)a(h)=

b(g)(−b(g)+1)
2

χ(g)a(h)

= −
((b

2

)
∪a

)
(g,h) .

Therefore

δ3,[[x,y],x] p = −b∪ c−
(
b
2

)
∪a−

χ−1
2

∪ c ,

giving the claimed expression for δ3,[[x,y],x] p.
The claimed expression for δ3,[[x,y],y] p follows from this formula for δ3,[[x,y],x] p

and a symmetry argument. Consider the action of Gk on the profinite completion of
the free group on two generators F∧

2 = 〈x,y〉∧ given by
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g(x) = xχ(g) and g(y) = yχ(g) .

The Gk action on π described by (12.12) would reduce to this action on F∧
2 if f were

in the center of π. In particular, sending x to x and y to y induces isomorphisms of
profinite groups with Gk actions

π/[π]3 � F∧
2 /[F∧

2 ]3

[π]3/[π]4 � [F∧
2 ]3/[F∧

2 ]4

Furthermore, viewing f as a formal variable in the proof of Proposition 13, we
see that Proposition 13 implies that these isomorphisms fit into the commutative
diagram

H1(Gk,π/[π]3)

�
��

δ3+f∪a
�� H2(Gk, [π]3/[π]4)

H1(Gk,F
∧
2 /[F∧

2 ]3)
δ3 �� H2(Gk, [F

∧
2 ]3/[F∧

2 ]4)

�

��
(12.24)

Let i : F∧
2 → F∧

2 be the Gk equivariant involution defined by

i(x) = y

i(y) = x .

Note that i induces an endomorphism of the short exact sequence of Gk modules

1 → [F∧
2 ]3/[F∧

2 ]4 → F∧
2 /[F∧

2 ]4 → F∧
2 /[F∧

2 ]3 → 1 .

Thus we have a commutative diagram

H1(Gk,F
∧
2 /[F∧

2 ]3)
δ3 �� H2(Gk, [F

∧
2 ]3/[F∧

2 ]4)

H1(Gk,F
∧
2 /[F∧

2 ]3)
δ3 ��

i∗

��

H2(Gk, [F
∧
2 ]3/[F∧

2 ]4)

i∗

��

Since i is an involution, so is i∗, whence

δ3 = i∗δ3i∗ .

With respect to the decomposition

H2(Gk, [F
∧
2 ]3/[F∧

2 ]4) = H2(Gk, Ẑ(3)) · [[x,y], x]⊕H2(Gk, Ẑ(3)) · [[x,y],y] . (12.25)

i∗ acts by the matrix (
0 −1
−1 0

)
,
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or in other terms,
δ3,[[x,y],y] = −δ3,[[x,y],x]i∗ . (12.26)

The map i∗ on H1(Gk,F
∧
2 /[F∧

2 ]3) we compute as

i∗((b,a)c)(g) = xa(g)yb(g)[y, x]c(g) = [xa(g),yb(g)]yb(g)xa(g)[x,y]−c(g)

= yb(g)xa(g)[x,y]a(g)b(g)−c(g) = (a,b)ab−c(g) .

Combining (12.24) with (12.26) we get

δ3,[[x,y],y]((b,a)c) = δ
F∧

2
3,[[x,y],y]((b,a)c)− f ∪a = −δF∧

2
3,[[x,y],x](i∗(b,a)c)− f ∪a

= −δF∧
2

3,[[x,y],x] ((a,b)ab−c)− f ∪a = −δ3,[[x,y],x] ((a,b)ab−c)− f ∪a

= (a+
χ−1

2
)∪ (ab− c)+

(
a
2

)
∪b− f ∪a

as claimed by the proposition. In the above manipulation, we have marked obstruc-
tions corresponding to F∧

2 with a superscript to avoid confusion. ��
Remark 18. The above symmetry argument combined with the explicit cocycle for
δ3,[[x,y],y] given in Proposition 13 gives unexploited computational information.

Theorem 19. Let p be an element of H1(Gk,π/[π]3), so p is represented by a cocycle
(b,a)c ∈ C1(Gk,π/[π]3) in the notation of (12.18). Then

δ3,[[x,y],x] (p) = 〈(b+
χ−1

2
),b,a〉 defining system:{−

(
b
2

)
,−c}

δ3,[[x,y],y] (p) = −〈(a+
χ−1

2
),a,b〉− f ∪a defining system:{−

(
a
2

)
,c−ab} .

In particular, for (b,a) ∈ Jac(P1
k − {0,1,∞})(k) = k∗ × k∗, we have

δ3,[[x,y],x](b,a) = 〈{−b},b,a〉
δ3,[[x,y],y](b,a) = −〈{−a},a,b〉− f ∪a .

Remark 20. (i) As above, an element of k∗ also denotes its image in H1(Gk, Ẑ(1))
under the Kummer map in the last two equations. The brackets in the notation
{−b}, {−a} serve to distinguish between the additive inverse of b in H1(Gk, Ẑ(1)) and
the image of −b under the Kummer map. We note the obvious remark that the
Kummer map is a homomorphism, because this will appear in (ii) of this remark
on the level of cocycles; namely given a,b ∈ k∗ with compatibly chosen nth roots

n√a and
n√

b, then {a}+ {b} : Gk → Ẑ(1) is the image under the Kummer map of
ab with n√a

n√
b chosen as the nth root of ab. This means that if one has chosen

compatible primitive roots of −1, as is the case by (12.19) and Remark 3, then the
cocycle {−1}+ {a} is different from −{−1}+ {a} although both give the same class in
cohomology, namely the class {−a}.
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(ii) Expressing δ3 in terms of Massey products reduces the dependency on c to
the choices of the defining systems. In fact, after restricting to defining systems of
the appropriate form, the choice of these defining systems and the choice of lift are
equivalent. More explicitly, we will say that a choice for the defining systems {A,B}
of 〈{−x}, x,y〉 and {C,D} of 〈{−y},y, x〉 is compatible if B+D = −xy, A = −

(
x
2

)
, and

C = −
(

y
2

)
. The choice of defining system also encompasses choosing cocycle repre-

sentatives for the cohomology classes involved; the cocycle representative for {−x}
is the representative for x plus χ−1

2 , and similarly for {−y}, as in (i). Then choosing
a lift of (b,a) in H1(Gk,π/[π]2) to (b,a)c in H1(Gk,π/[π]3) is equivalent to choos-
ing compatible defining systems for 〈{−b},b,a〉 and 〈{−a},a,b〉, by Corollary 8 and
Theorem 19. As we are ultimately interested in obstructing points of the Jacobian
from lying on the curve, it is natural to suppress both the defining system in the
Massey product and the choice of lift, and view δ3 and triple Massey products as
multivalued functions on H1(Gk,π/[π]2).

Proof. Comparing the expression for δ3,[[x,y],x](b,a)c of Proposition 17, and the

equations D(−
(
b
2

)
) = (b+ χ−1

2 )∪b of Example 10, and D(−c) = b∪a of Corollary 8
with the definition of the triple Massey product shows

δ3,[[x,y],x] (b,a)c = 〈(b+ χ−1
2

),b,a〉

with the defining system {−
(
b
2

)
,−c}. By Lemma 16,

−D(ab) = a∪b+b∪a ,

whence D(c − ab) = a ∪ b by Corollary 8. Comparing D(−
(
a
2

)
) = (a + χ−1

2 ) ∪ a,
D(c−ab) = a∪b, and the expression for δ3,[[x,y],y](b,a)c of Proposition 17 with the
definition of the triple Massey product shows

δ3,[[x,y],y](b,a)c = −〈(a+ χ−1
2

),a,b〉− f ∪a

with defining system {−
(
a
2

)
,c−ab}. By (12.19), we have a+ χ−1

2 = {−a} and b+ χ−1
2 =

{−b}, showing the theorem. ��

12.4 Evaluating δ2 on Jac(k)

Let k be a subfield of C or a completion of a number field equipped with C ⊃ Q ⊆ k
as in 12.2. Let X = P1

k − {0,1,∞} and recall that in 12.2.2 we fixed an isomorphism

Jac(X) = Gm,k ×Gm,k. Let π = π1(Xk,
−→
01). In (12.11), we specified an isomorphism

π = 〈x,y〉∧.
The obstruction δ2 is given on (b,a) in Jac(X)(k) by δ2(b,a)= b∪a, so evaluating

δ2 is equivalent to evaluating the cup product
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H1(Gk, Ẑ(1))⊗H1(Gk, Ẑ(1)) → H2(Gk, Ẑ(2)) . (12.27)

Evaluating the obstruction δ2
2 coming from the lower exponent 2 central series, cf.

Sect. 12.2.3, is equivalent to evaluating the mod 2 cup product

H1(Gk,Z/2Z)⊗H1(Gk,Z/2Z) → H2(Gk,Z/2Z) , (12.28)

and this evaluation is recalled for k = Qp, R, and Q in Sects. 12.4.1–12.4.3. The
remainder of Sect. 12.4 gives evaluation results for the obstruction δ2 itself. From
the bilinearity of δ2, Proposition 24 finds infinite families of points of Jac(k) which
are unobstructed by δ2, but which are not the image of a rational point or tangential
point under the Abel-Jacobi map. This is rephrased as “the 2-nilpotent section con-
jecture is false” in Sect. 12.4.4 and Proposition 25. These families provide a certain
supply of points on which to evaluate δ3. Section 12.4.5 contains a finite algorithm
for determining if δ2 is zero or not for k = Q, using Tate’s calculation of K2(Q), and
gives Jordan Ellenberg’s geometric proof that the cup product factors through K2.

12.4.1 The mod 2 cup Product for kv

Let p be an odd prime. Let kv be a finite extension of Qp with valuation v : k∗
v � Z,

ring of integers Ov and residue field Fv. Let p be a uniformizer of Ov and u ∈ O∗
v be

a unit and not a square, so p,u is a basis for the F2 vector space

H1(Gkv
,Z/2Z) = k∗

v/(k∗
v)2 .

By Hilbert 90 and the local invariant map, see e.g. [CF67, VI], we have

H2(Gkv
,Z/2Z) = Br(kv)[2] =

1
2
Z/Z .

The mod 2 cup product (12.28) is given by the table

∪ u p

u 0 1/2
p 1/2 {−1}∪p

where {−1}∪p = 0 if −1 is a square in Fv and {−1}∪p = 1/2 otherwise.
We include a derivation of this well-known calculation: as H2(Gkv

,Z/2Z) injects

into H2(Gkv
,kv

∗
), we may calculate in the Brauer group. For (a,b) ∈ k∗

v ⊕ k∗
v , define

E(
√

a,b) ∈ C1(Gkv
,kv

∗
) by

E(
√

a,b)(σ) = (
√

a)b(σ) ,

where b : Gkv
→ {0,1} is defined by (−1)a(σ) = (σ

√
a)/

√
a. A short calculation

shows that
DE(

√
a,b)(σ,τ) = (−1)a(σ)b(τ)ab(σ)b(τ) ,



304 K. Wickelgren

whence a∪b in H2(Gkv
,kv

∗
) is represented by

(σ,τ) �→ ab(σ)b(τ). (12.29)

Let knr
v denote the maximal unramified extension of kv, and v : (knr

v )∗ → Z the ex-
tension of the valuation. For b = u, the cocycle (12.29) factors through Gal(knr

v /kv)2,
and by [CF67, Chap VI 1.1 Thm 2 pg 130],

v∗ : H2(Gal(knr
v /kv),knr,∗

v ) → H2(Gal(knr
v /kv),Z)

is an isomorphism, showing that {u}∪ {u} = 0, and the invariant of {p}∪ {u} is 1/2 as
claimed, see [CF67, pg 130].

To compute p∪p, note that for a = −1, the cochain (σ,τ) �→ ab(σ)b(τ) equals b∪b.
By the above, a∪b is also represented by (σ,τ) �→ ab(σ)b(τ), so it follows that

{−1}∪p = p∪p .

It follows that δ2 is non-trivial: let X = P1
Q

− {0,1,∞}. Let δ
(2,p)
2 denote δ2

2 for

k = Qp and X
Qp

. Consider δ(2,p)
2 as a function on Jac(X)(Q) by evaluating δ

(2,p)
2 on

the correspondingQp point of Jac(X
Qp

).

Corollary 21. Choose x,y in Q∗. Let p be an odd prime and u be an integer
which is not a quadratic residue mod p. Then δ

(2,p)
2 (uy2, px2) � 0, and therefore

δ2
2(uy2, px2) � 0 and δ2(uy2, px2) � 0.

12.4.2 The mod 2 Cohomology of GR

By [Hat02, III Example 3.40 p. 250] or [Bro94, III.1 Ex 2 p.58 p.108], there is a
ring isomorphism

H∗(G
R
,Z/2Z) � H∗(Z/2Z,Z/2Z)� Z/2Z[α]

where α is the nontrivial class in degree 1, namely

α = {−1} ∈ R∗/(R∗)2 = H1(GR,μ2) = H1(GR,Z/2Z) .

In particular, the cup product is an isomorphism

H1(G
R
,Z/2Z(1))⊗H1(G

R
,Z/2Z(1)) → H2(G

R
,Z/2Z(2)) .

The map C2(GR,Z/2Z) → Z/2Z given by evaluating a cochain at (τ,τ) for τ the
non-trivial element of G

R
determines an isomorphism H2(G

R
,Z/2Z) → Z/2Z.

Let X = P1
Q
− {0,1,∞}, and let δ(2,R)

2 denote δ2
2 for k = R and XR. Consider δ(2,R)

2

as a function on Jac(X)(Q) by evaluating δ(2,R)
2 on the corresponding R point of

Jac(X
R

).
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Corollary 22. Let b,a be elements of Q∗. Then δ
(2,R)
2 (b,a) � 0 if and only if a,b < 0.

If a,b < 0, then δ2
2(b,a) � 0 and δ2(b,a) � 0.

12.4.3 The mod 2 Cup Product for GQ

There is a finite algorithm for computing the cup product of two Kummer classes

Q
∗ ⊗Q∗ → H1(GQ,Z/2Z(1))⊗H1(GQ,Z/2Z(1)) → H2(GQ,Z/2Z(2)) .

The phrase “computing an element of H2(G
Q
,Z/2Z(2))” means the following. By

the local-global principle for the Brauer group, the theorem of Hasse, Brauer, and
Noether, see [NSW08, 8.1.17 Thm p. 436], we have an isomorphism

H2(G
Q
,Z/2Z(2))= Br(Q)2 ⊗μ2 = ker

(⊕

v

Br(Qv)2

∑
v invv−−−−−→ Q/Z)⊗μ2

where A2 is the 2-torsion of an abelian group A and invv : Br(kv) ↪→ Q/Z is the
local invariant map for the Brauer group of the local field kv, see [CF67, VI], and v
ranges over all places of Q. The class in H2(G

Q
,Z/2Z(2)) is therefore completely

determined by its restrictions to local cohomology groups with the freedom to ignore
one place by reciprocity. We will benefit from this freedom by ignoring the prime 2
for which we did not describe the mod 2 cup product computation above.

Given b and a in Q∗, we give a finite algorithm for computing invν({b}∪ {a}) for
every ν � 2. By Sect. 12.4.1, for an odd prime p with p � ab we have {b}∪{a} = 0. It
therefore remains to evaluate

invv({b}∪ {a})

for v = R and the finitely many odd primes v = p with p | ab. This is accomplished
in finitely many steps by Sects. 12.4.1 and 12.4.2.

In fact, given any field extension Q ⊂ E and any cocycle in C2(Gal(E/Q),Z/2Z),
for instance the ones given in Proposition 17, there is a finite algorithm for comput-
ing the associated element of H2(G

Q
,Z/2Z).

12.4.4 The 2-Nilpotent Section Conjecture for Number
Fields Is False

We describe families of points of Jac(P1
k − {0,1,∞})(k) such that δ2 vanishes.

Example 23. (1) The map δ2 vanishes on the k points and tangential points of the
curve P1

k − {0,1,∞} by design. Therefore, the k points of

Jac(P1
k − {0,1,∞}) = Gm,k ×Gm,k
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of the form (x,1− x) or (−x, x) satisfy δ2 = 0 by (12.16) and Lemma 4.
From a more computational point of view, the vanishing of δ2 on (−x, x) follows

from the the calculation in Lemma 10 identifying the cochain whose boundary is
{−x}∪ {x}. I do not presently see a specific cochain in C1(Gk, Ẑ(2)) whose boundary
is {x}∪ {1− x}, although I would not be surprised if such a cochain could be written
down explicitly.

(2) Since δ2(b,a) = {b} ∪ {a} by Proposition 7, the map δ2 is bilinear in both
coordinates of

k∗ ⊕ k∗ = (Gm ×Gm)(k) = Jac(P1
k − {0,1,∞})(k)

Therefore, for any (b,a) in k∗ ⊕ k∗ such that δ2(b,a) = 0, the points of the form
(bm,an), for integers m and n, satisfy δ2(bm,an) = 0 as well. Likewise for any (b,a),
(b,c) such that δ2(b,a) = δ2(b,c) = 0, the point of the Jacobian (b,ac) also satisfies
δ2(b,ac) = 0. As was pointed out by Jordan Ellenberg, this produces many families
of k points of Jac(P1

k −{0,1,∞}) which are unobstructed by δ2. A special case of this
is mentioned in Proposition 24 below.

Proposition 24. Let X = P1
k − {0,1,∞}. For any x in k∗, the map δ2 vanishes on

(x, (1− x)m), ((−x)m, x), ((1− x)(−x), x) ,

(xn1 (1− ((1− x)n2(−x)n3)), (1− x)n2(−x)n3) .

Proof. This follows immediately from the discussion in Example 23 above. ��

Say the “n-nilpotent section conjecture” for a smooth curve X over a field k
holds if the natural map from k points and tangential points to conjugacy classes of
sections of

1 → π1(Xk)ab → π1(X)/[π1(Xk)]2 → Gk → 1 (12.30)

which arise from k points of JacX, and lift to sections of

1 → π1(Xk)/[π1(Xk)]n+1 → π1(X)/[π(Xk)]n+1 → Gk → 1 (12.31)

is a bijection. This is similar to the notion of “minimalistic” birational section con-
jectures introduced by Florian Pop [Pop10]. The notion given here has the disad-
vantage that it mentions the points of the Jacobian, and is therefore not entirely
group theoretic. The reason for this is that finite nilpotent groups decompose as a
product of p-groups, so the sections of (12.30) and (12.31) decompose similarly,
allowing for sections which at different primes arise from different rational points
of X. Restricting to a single prime will not give a “minimalistic” section conjecture
by results of Hoshi [Hos10].

Because the conjugacy classes of sections of a split short exact sequence of profi-
nite groups

1 → Q → Q�G → G → 1

are in natural bijective correspondence with the elements of H1(G,Q), the n-
nilpotent section conjecture for a curve with a rational point is equivalent to: the
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natural map from k points and tangential points to the kernel of δn is a bijection,
where the kernel of δn is considered as a subset of JacX. More precisely, a smooth,
pointed curve X gives rise to a commutative diagram

H1(Gk,π/[π]n)
δn ��

pr

��

H2(Gk, [π]n/[π]n+1)

H1(Gk,π/[π]2) X(k)∪
⋃

x∈X−X(TxX(k)− {0})
α

		

Jac(X)(k)

κ

��

where X denotes the smooth compactification of X, and π denotes the fundamental
group of Xk. The n-nilpotent section conjecture is the claim α induces a bijection

X(k)∪
⋃

x∈X−X

(TxX(k)− {0}) → κ(Jac(X)(k))∩ pr(ker(δn)) .

Say the “n-nilpotent section conjecture” holds for a field k, if for all smooth,
hyperbolic curves over k, the n-nilpotent section conjecture holds.

Proposition 25. The 2-nilpotent section conjecture fails for any subfield k of C or
k the completion of a number field. In fact, the 2-nilpotent section conjecture does
not hold for P1

k − {0,1,∞}.

Proof. Choose x � 1 in k∗ such that (1 − x)2 does not equal −x. Then the k point
of Jac(P1

k − {0,1,∞}) given by (x, (1− x)2) is not the image of a k point or tangential
point of P1

k − {0,1,∞} by (12.16) and Lemma 4. By Proposition 24, the section of
(12.30) determined by (x, (1− x)2) lifts to a section of (12.31) for n = 2. ��

While the failure of a “minimalistic section conjecture” is not surprising at all,
some do hold. Moreover, the “minimalistic section conjectures” in [Pop10] [Wic10]
do not mention the points of the Jacobian and so control the rational points of X
group theoretically.

12.4.5 The Obstruction δ2 over Q

By [Tat76, Theorem 3.1], the cup product (12.27) composed with the Kummer
map (12.7)

k∗ ⊗ k∗ → H2(Gk, Ẑ(2)) (12.32)

factors through the Milnor K2-group of k

K2(k) = k∗ ⊗
Z

k∗/〈x⊗ (1− x) : x ∈ k∗〉
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mapping to H2(Gk, Ẑ(2)) by the Galois symbol hk : K2(k) → H2(Gk, Ẑ(2)).

Proposition 26. Let k be a finite extension of Q, and X = P1
k − {0,1,∞}. For any

(b,a) ∈ Jac(X)(k) = k∗ × k∗ we have δ2(b,a) = 0 if and only if b⊗a = 0 in K2(k).

Proof. As δ2(b,a) = b∪a by Proposition 7, the map δ2 factors through hk, which is
an isomorphism onto the torsion subgroup of H2(Gk, Ẑ(2)) by [Tat76, Thm. 5.4]. ��

Tate’s computation of K2(Q) thus gives an algorithm for computing δ2 for the
curve P1

Q
− {0,1,∞} on any rational point (b,a) of Jac(P1

Q
− {0,1,∞})(Q) = Q∗ ×Q∗.

By [Mil71, Thm. 11.6], there is an isomorphism

K2(Q) � μ2 ⊕p odd prime F
∗
p

given by the tame symbols: for odd p (with p-adic valuation vp)

K2(Q) → F∗p
x⊗ y �→ (x,y)p = (−1)vp(x)vp(y)xvp(y)y−vp(x) ∈ F∗p ,

and a map at the prime 2
K2(Q) → μ2

x⊗ y �→ (x,y)2 = (−1)iI+ jK+kJ

where x = (−1)i2 j5ku and y = (−1)I2J5Ku′ with k,K = 0 or 1, and u,u′ quotients of
integers congruent to 1 mod 8.

By Proposition 26, we have δ2(b,a) = 0 if and only if (b,a)p = 0 for p = 2 and for
p equal to all odd primes dividing a or b.

Example 27. As an example of this algorithm, consider δ2(p,−p) for p an odd
prime: for q different from p and 2, we have (p,−p)q = 1 because vq(p) and vq(−p)
vanish. At the prime p, we have (p,−p)p = (−1)1 p/(−p) = 1. For the prime 2,
express p in the form p = (−1)i2 j5ku with k = 0,1 and u a quotient of integers con-
gruent to 1 mod 8. Then −p = (−1)i+12 j5ku, and

(p,−p)2 = (−1)i(i+1)+2 jk = 1 .

Thus δ2(p,−p) = 0, as also followed from Lemma 4, as (p,−p) is the image of a
tangential point of P1

Q
− {0,1,∞}, or can be deduced from the Steinberg relation.

Remark 28. The computation of δ2 for P1
k − {0,1,∞} gives a geometric proof that

(12.32) factors through K2(k), as observed by Jordan Ellenberg. Namely, by con-
struction δ2 vanishes on the image of

P
1
k − {0,1,∞}(k) → Jac(P1

k − {0,1,∞})(k) = k∗ × k∗ .

By (12.16), this image is (x,1− x), and by Proposition 7, the obstruction δ2 is given
by δ2(b,a) = b ∪ a. Thus, the map (12.32) vanishes on x ⊗ (1 − x), and therefore
factors through K2(k).
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12.5 Evaluating Quotients of δ3

We keep the notation k, X = P1
k − {0,1,∞}, and π = π1(P1

k
− {0,1,∞},−→01) from

Sect. 12.4. In particular, we have a chosen isomorphism π = 〈x,y〉∧ as above. To
evaluate δ3 on points in Kerδ2 requires Galois cohomology computations with co-
efficients in [π]3/[π]4 � Ẑ(3)⊕ Ẑ(3). As computing in H2(Gk, Ẑ(3)) seems difficult,
we will evaluate a quotient of δ3 which can be computed in H2(Gk,Z/2Z(3)) =
H2(Gk,Z/2Z). This quotient is denoted δmod2

3 and can be described as “the reduc-
tion of δ3 mod 2” as well as “the 3-nilpotent piece of δ2

3,” where δ2
3 is the obstruction

coming from the lower exponent 2 central series as in Sect. 12.2.3.

12.5.1 Definition of δmod 2
3

Composing the obstruction

δ3 : H1(Gk,π/[π]3) → H2(Gk, [π]3/[π]4)

with the map on H2 induced from the quotient

[π]3/[π]4 � Ẑ(3)[[x,y], x]⊕ Ẑ(3)[[x,y],y]

����

[π]3/[π]4([π]3)2 � Z/2Z[[x,y], x]⊕Z/2Z[[x,y],y]

gives a map H1(Gk,π/[π]3) → H2(Gk, [π]3/[π]4([π]3)2) which factors through

H1(Gk,π/[π]3) → H1(Gk,π/[π]2
3)

as follows from Proposition 17 where [π]2
n denotes the nth subgroup of the lower

exponent 2 central series, cf. Sect. 12.2.3. The resulting map

δmod2
3 : H1(Gk,π/[π]2

3) → H1(Gk, [π]3/[π]4([π]3)2)

is defined as δmod2
3 . The basis [[x,y], x], [[x,y],y] decomposes δmod2

3 into two ob-
structions

δ2
3,[[x,y],x] , δ

2
3,[[x,y],y] : H1(Gk,π/[π]2

3) → H2(Gk,Z/2Z)

which are compatible with the previously defined δ3,[[x,y],x] , δ3,[[x,y],y] in the obvious
manner. In words, δmod2

3 is δ3 reduced mod 2.
The obstruction δmod2

3 can also be constructed from a central extension extension
of groups with an action of Gk. To see this, we recall certain well-known results on
the lower exponent p central series of free groups: for a free group F, the successive
quotient [F]n/[F]n+1 of the lower central series is isomorphic to the homogeneous
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degree n component of the free Lie algebra on the same generators. The Lie basis
theorem gives bases for [F]n/[F]n+1 explicitly via bases for the free Lie algebra
[MKS04, Thm 5.8]. For the free group on 2 generators x and y, the following are
bases in the respective degree n:

n = 1 x,y
n = 2 [x,y]
n = 3 [[x,y], x], [[x,y],y]
n = 4 [[[x,y], x], x], [[[x,y],y],y], [[[x,y],y], x]

Results of [MKS04] and [Laz54] can be used to show that if βi is a basis for

[F]i/[F]i+1 for i = 1, . . . ,n and β
pn−i

i denotes the set whose elements are the elements
of βi raised to the pn−i, then

β
pn−1

1 ∪β
pn−2

2 ∪β
pn−3

3 ∪ . . .∪βn

is a basis for [F]p
n/[F]p

n+1, where [F]p
n denotes the nth subgroup of the lower exponent

p central series. Thus, as a Gk-module we have

[π]p
3/[π]p

4 = Z/pZ(3) · [[x,y], x]⊕Z/pZ(3) · [[x,y],y]

⊕Z/pZ(2) · [x,y]2⊕Z/pZ(1) · x4⊕Z/pZ(1) · y4 .

It follows that

1 → [π]3/[π]4([π]3)p → π/[π]p
4([π]p

2)p → π/[π]p
3 → 1 (12.33)

is an exact sequence, and δmod2
3 is also the boundary map in Gk cohomology of

(12.33) for p = 2.
Since we view Ellenberg’s obstructions as constraints for points of the Jacobian,

we will define a lift of a point of Jac(X)(k) to H1(Gk,π/[π]2
3) and then define

δmod2
3 : Ker

(
δ2

2 : Jac(P1
k − {0,1,∞})(k) → H2(Gk, [π]2

2/[π]2
3)

) → {0,1}

which assigns to (b,a) in k∗ × k∗ the element 0 if there exists a lift of (b,a) such that
δmod2

3 = 0, and assigns to (b,a) the element 1 if there does not exist such a lift. If
δmod2

3 (b,a) � 0, it follows that (b,a) is not the image of a k point or tangential point
under the Abel-Jacobi map.

For (b,a) in k∗ × k∗ = Jac(P1
k − {0,1,∞})(k), let (b,a) also denote the associated

element of H1(Gk,π
ab). For a characteristic closed subgroup N < π, a lift of (b,a) to

H1(Gk,π/N) is an element whose image under

H1(Gk,π/N) → H1(Gk, (π/N)ab)

equals the image of (b,a) under
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Jac(X)(k) → H1(Gk,π
ab) → H1(Gk, (π/N)ab) .

For example, the lifts of (b,a) to H1(Gk,π/[π]2
3) can be described as follows. The

fixed embeddings C ⊃ Q ⊆ k and resulting identification π = 〈x,y〉∧ give canonical
identifications

(π/[π]2
3)ab = Z/4Z(1) · x⊕Z/4Z(1) · y ,

Ker(π/[π]2
3 → (π/[π]2

3)ab) = Z/2Z(2) · [x,y] .

We choose fourth roots of b and a, that give cocycles via the Kummer map

b,a : Gk → Z/4Z(1) ,

and g �→ ya(g)xb(g) represents (b,a) in H1(Gk, (π/[π]2
3)ab). The obstruction to lifting

(b,a) to H1(Gk,π/[π]2
3) is

δ2
2(b,a) = b∪a ∈ H1(Gk,Z/2Z(2)) .

For (b,a) such that δ2
2(b,a) = 0, the lifts of (b,a) are in bijection with the set

of cochains c ∈ C1(Gk,Z/2Z) such that Dc = −b ∪ a (note the minus sign) up to
coboundary by

c ↔ (b,a)c ,

where
(b,a)c(g) = ya(g)xb(g)[x,y]c(g) .

The set of these lifts is a H1(Gk,Z/2Z(2)) torsor. We could have equivalently con-
sidered the set of cochains c such that Dc = −b∪a, as the Gk action on Z/2Z(2) is
trivial, cf. Corollary 8.

Example 29. (1) Let (b,a) ∈ Jac(X)(k) be the image of a rational point or a ratio-
nal tangential point of X = P1

k − {0,1,∞}. For x,y ∈ k∗ then (bx4,ay4) is unob-
structed by δmod2

2 and δmod2
3 since (b,a) is unobstructed and defines the same class

in H1(Gk,π
ab ⊗Z/4Z).

(2) Similarly, the mod m obstructions δmodm
n coming from the lower m-central

series of π are m-adically continuous in the sense that the obstruction map δmodm
n+1 is

constant on cosets by (k∗)mn
.

(3) (b, (1 − b)4) determines the same element of H1(GK,π/([π]2π
4)) as (b,1)

which is the image of a k tangential point at 0 (Lemma 4). Therefore

δmod2
3 (b, (1−b)4) = 0 .

This is an example of a point of the Jacobian unobstructed both by δ2, see Proposi-
tion 24, and by δmod2

3 .

We can also compute δmod2
3 (b, (1−b)4) directly using Proposition 13. We include

the calculation. Let [π]m
4 denote the subgroup of the lower exponent m central series,

cf. Sect. 12.2.3.
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Proposition 30. The conjugacy class of the section of

1 → πab/(π)m3
→ π1(P1

k − {0,1,∞},−→01)/([π]2[π]m
4 ) → Gk → 1 (12.34)

determined by (b, (1−b)m2
) lifts to a section of

1 → π/[π]m
4 → π1(P1

k − {0,1,∞},−→01)/[π]m
4 → Gk → 1 .

Proof. Let (b,a) = (b, (1 − b)m2
). Choose compatible systems of nth roots of b and

1 − b, giving cocycles b,1 − b : Gk → Ẑ(1), and let a : Gk → Ẑ(1) be m2(1 − b).
Conjugacy classes of sections of (12.34) are in bijection with H1(Gk,π

ab/(π)m3
)

using
−→
01 as the marked splitting. We claim that

g �→ ya(g)xb(g) (12.35)

defines a cocycle Gk → π/[π]m
4 , showing the proposition. Note that the reduction

mod m2 of a is 0, showing that b∪a = 0 mod m2, whence (12.35) is a cocycle with
values in π/[π]m

3 . By Proposition 13, with a = 0 mod m and c = 0, we have that

δm
3,[[x,y],x] = 0. An easy algebraic manipulation shows that

(
χ(g)a(h)+1

2

)
is 0 mod m2

for m odd, and 0 mod m for any m, so the expression for δ3,[[x,y],y] of Proposition 13
with a = c = 0 mod m shows that δm

3,[[x,y],y] = 0. ��

12.5.2 Evaluating the 2-Nilpotent Quotient of f

The cocycle f : Gk → [π]2 in the description given in (12.12) of the Galois action

on π1(P1
k
− {0,1,∞},−→01) records the monodromy of the standard path from

−→
01 to

−→
10.

To evaluate δ2
[[x,y],y] , we will need to evaluate the 2-nilpotent quotient

f : Gk → Ẑ(2) · [x,y]

of f that was introduced in (12.20), or more precisely its mod 2 reduction. Work
of Anderson [And89], Coleman [Col89], Deligne, Ihara [Iha91, 6.3 Thm p.115],
Kaneko, and Yukinari [IKY87] gives the formula

f (σ) =
1

24
(χ(σ)2 −1) (12.36)

where we recall that χ : Gk → Ẑ∗ denotes the cyclotomic character. For the conve-
nience of the reader, we introduce enough of the notation of [Iha91] to check (12.36)
from the statement given in loc. cit. 6.3 Thm p.115.

Let Ẑ〈〈ξ,η〉〉 denote the non-commutative power series algebra in two variables
over Ẑ. The Magnus embedding of the free group on two generators in Ẑ〈〈ξ,η〉〉
gives rise to an injective map
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M : π � 〈x,y〉∧ ↪→ Ẑ〈〈ξ,η〉〉

defined by
M(x) = 1+ ξ ,

M(y) = 1+η .

By [MKS04, Cor 5.7], M takes [π]n to elements of the form 1+
∑

m�n um, where um
is homogeneous of degree m. By [MKS04, §5.5] Lemma 5.4, for any j ∈ Ẑ,

M([x,y] j) = 1+ j(ξη−ηξ)+
∑

m>2

um

where um is some homogeneous element of degree m depending on j. More gener-
ally, to lowest order in Ẑ〈〈ξ,η〉〉, M takes the commutator of the group π to the Lie
bracket of the associative algebra Ẑ〈〈ξ,η〉〉, in the manner made precise by loc. cit.
§5.5 Lemma 5.4 (7). Thus

f(σ) = 1+ f (σ)(ξη−ηξ)+O(3) (12.37)

where O(3) is a sum of monomials of degree � 3.
As a Ẑ module, Ẑ〈〈ξ,η〉〉 is the direct sum

Ẑ〈〈ξ,η〉〉 � Ẑ⊕ Ẑ〈〈ξ,η〉〉ξ⊕ Ẑ〈〈ξ,η〉〉η .

Define ψ : Gk → Ẑ〈〈ξ,η〉〉 to be the projection of (f)−1 onto the direct summand
Ẑ⊕ Ẑ〈〈ξ,η〉〉ξ i.e.,

(f(σ))−1 = 1+a1ξ+a2η

ψ(σ) = 1+a1ξ .

By (12.37), we have

(f(σ))−1 = 1− f (σ)(ξη−ηξ)+O(3) ,

so f (σ) is the coefficient of ηξ in ψ(σ). As the only degree 2 terms that ψ(σ) can
contain are Ẑ linear combinations of ηξ and ξ2, the cocycle f is determined by the
degree 2 terms of the projection of ψ(σ) to the commutative power series ring. More
explicitly, let ψab : Gk → Ẑ[[ξ,η]] denote the composition of ψ with the quotient

Ẑ〈〈ξ,η〉〉 → Ẑ[[ξ,η]]

where Ẑ[[ξ,η]] denotes the commutative power series ring. Then

ψab(σ) = 1+ f (σ)ηξ+ r

where r is a sum a monomial of the form bξ2 with b ∈ Ẑ and monomials of degree
greater than one.
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The formula in [Iha91, 6.3 Thm p.115] expresses ψab(σ) in terms of the Bernoulli
numbers and the variables X = log(1+ ξ), and Y = log(1+η). This formula gives

ψab(σ) = 1− 1
2

b2(1−χ(σ)2)ηξ+O(3)

where O(3) is a sum of monomial terms in the variables η,ξ of degree � 3, and
b2 =

1
12 . This implies (12.36).

We denote the mod 2 reduction of f by

f : Gk → Ẑ(2) → Z/2Z(2) = Z/2Z .

Lemma 31. The class represented by f in H1(Gk,Z/2Z) is the class of 2 under the
Kummer map.

Proof. We may assume that k = Q by functoriality. The value of 1
24 (1−χ(σ)2) mod

2 is determined by 1−χ(σ)2 mod 48, which is determined by χ(σ) mod 8. A direct
check shows that f (σ) = 1 when χ(σ) is ±3 mod 8, and f (σ) = 0 otherwise. Thus f
corresponds to the quadratic extension k ⊂ k(ζ8+ ζ

−1
8 ) = k(

√
2) inside k ⊂ k(ζ8). ��

12.5.3 Local 3-Nilpotent Obstructions mod 2 at R

We compute δmod2
3 for k = R. For a point

(b,a) ∈ R∗ ×R∗ � Jac(P1
R
− {0,1,∞})(R) ,

we have the associated element of H1(GR,π
ab). Recall the notation (b,a)c and char-

acterization of the lifts of this element to H1(G
R
,π/[π]2

3) of Sect. 12.5.1. Recall
as well that {−1} in C1(Gk,Z/2Z) denotes the image of −1 under the Kummer
map, and note that given c in C1(GR,Z/2Z(2)) such that Dc = −b ∪ a, we have
that c+ {−1} is another cochain such that D(c+ {−1}) = −b ∪ a. Thus (b,a)c and
(b,a)c+{−1} are two lifts of (b,a) to H1(G

R
,π/[π]2

3), and they are the only two as
H1(G

R
,Z/2Z(2)) = Z/2Z.

Proposition 32. For any (b,a)c in H1(G
R
,π/[π]2

3), either

δmod2
3 (b,a)c = 0 or δmod2

3 (b,a)c+{−1} = 0 .

Proof. Since f = 2 ∈ H1(G
R
,Z/2Z) vanishes by Lemma 31, it suffices by Theo-

rem 19 to show that the triple Massey products

δmod2
3,[[x,y],x] (b,a) = 〈{−b},b,a〉 ∈ H2(GR,Z/2Z)

δmod2
3,[[x,y],y](b,a) = −〈{−a},a,b〉− f ∪b = 〈{−a},a,b〉 ∈ H2(GR,Z/2Z)

admit the value 0 for a compatible choice of the defining systems as in Remark 20
(ii). Changing c by a 1-cocycle ε ∈ C1(G

R
,Z/2Z) has the effect by Proposition 17
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that

δmod2
3 (b,a)c − δmod2

3 (b,a)c+ε = {−b}∪ ε · [[x,y], x]+ {−a}∪ ε · [[x,y],y] .

Since a∪b = 0 we conclude that at most one of a,b is negative.
Case a,b > 0: we may choose trivial defining systems, i.e., the defining system

for 〈{−b},b,a〉 is {
(
b
2

)
,0} = {0,0} and the defining system for 〈{−a},a,b〉 is the pair

{
(
a
2

)
,ab+0}= {0,0}, so the obstruction vanishes.
Case a > 0 and b < 0: regardless of the defining system, the Massey product

〈{−b},b,a〉 always vanishes. The other Massey product can be adjusted if necessary
by ε = −1 since {−1}∪ {−1} generates H2(G

R
,Z/2Z).

Case a < 0 and b > 0: regardless of the defining system, the Massey product
〈{−a},a,b〉 always vanishes. The other Massey product can be adjusted if necessary
by ε = −1 since {−1}∪ {−1} generates H2(G

R
,Z/2Z). ��

12.5.4 Local 3-Nilpotent Obstructions mod 2 Above Odd Primes

Let k be a number field embedded into C. Let p ∈ Z be an odd prime, kv the com-
pletion of k at a prime v above p, and choose an embedding Q ⊂ kv, where Q is the
algebraic closure of Q in C.

We compute δ
(mod2,v)
3 for all kv-points of the Jacobian of P1

kv
− {0,1,∞} in the

kernel of δ(mod2,v)
2 . Note that Sect. 12.4.1 and

δmod2,v
2 (b,a) = a∪b ∈ H2(Gkv

,Z/2Z(2))

characterize this kernel, and recall the notation (b,a)c for lifts of (b,a) ∈ Kerδmod2,v
2

to H1(Gkv
,π/[π]2

3) given in Sect. 12.5.1.

Lemma 33. Let (b,a) in Jac(P1
kv

− {0,1,∞})(kv) be in the kernel of δmod2,v
2 and let

(b,a)c be a lift of (b,a) to H1(Gkv
,π/[π]2

3).

(1) If {−b} = 0 in H1(Gkv
,Z/2Z), then δ(2,v)

3,[[x,y],x] (b,a)c =
(
b
2

)
∪a is independent of c.

(2) If {−a} = 0 in H1(Gkv
,Z/2Z), then δ(2,v)

3,[[x,y],y] (b,a)c =
(
a
2

)
∪ b+ f ∪ a is indepen-

dent of c.
(3) If {b} = {a} in H1(Gkv

,Z/2Z), then

δ
(2,v)
3,[[x,y],x] (b,a)c+ δ

(2,v)
3,[[x,y],y](b,a)c = (

(
a
2

)
+

(
b
2

)
+ f )∪a

is independent of c.

Otherwise
δ(mod2,v)

3 (b,a) = 0 .



316 K. Wickelgren

Proof. Changing the lift is equivalent to adding a 1-cocycle ε ∈ C1(Gkv
,Z/2Z) to c

with the effect by Proposition 17 that

δmod2
3 (a,b)c − δmod2

3 (a,b)c+ε = {−b}∪ ε · [[x,y], x]+ {−a}∪ ε · [[x,y],y]. (12.38)

We abbreviate the differences componentwise by introducing the notation

Δ2
3,[[x,y],x] (b,a,z) = {−b}∪ z ,

Δ2
3,[[x,y],y] (b,a,z) = {−a}∪ z .

Using Proposition 17, case (1) and (2) are now immediate. In case (3), note that
Proposition 17 implies that

δ(2,v)
3,[[x,y],x] (b,a)c+ δ

(2,v)
3,[[x,y],y](b,a)c = (a+

χ−1
2

)∪ (ab)+

(
b
2

)
∪a+

(
a
2

)
∪b+ f ∪a

Since a = b, we have (ab) = a2 = a, so

(a+
χ−1

2
)∪ (ab) = (a+

χ−1
2

)∪a = 0 .

This equation and a = b show case (3).
If the map

Δ : H1(Gkv
,Z/2Z) → H2(Gkv

,Z/2Z)⊕H2(Gkv
,Z/2Z) (12.39)

z �→
(
Δ2

3,[[x,y],x] (b,a,z),Δ2
3,[[x,y],y](b,a,z)

)
=

(
{−b}∪ z, {−a}∪ z

)

is surjective, namely by the nondegeneracy of the cup product pairing, if {−a}, {−b}
forms a basis of H1(Gkv

,Z/2Z), then for a suitable choice of correction term z, the
corresponding c will lead to a vanishing

δmod2
3 ((b,a)c) = 0 .

Since H1(Gkv
,Z/2Z) � Z/2Z⊕Z/2Z, the elements {−a}, {−b} form a basis unless at

least one of cases (1), (2), or (3) holds. ��

To compute when there is a local obstruction as in case (1) or (2), we need to
understand the cochain (

a
2

)
: Gkv

→ Z/2Z

when {−a} is 0 in C1(Gkv
,Z/2Z), cf. Examples 10 and 11.

Lemma 34. Let K be a field of characteristic � 2, and let ζ4 be a primitive fourth
root of unity in a fixed algebraic closure of K. Let −x ∈ (K∗)2 be a square, and
choose a fourth root 4√x of x giving a Kummer cocycle x : GK → Z/4Z(1) and the
cochain

(
x
2

)
: GK → Z/2Z obtained by the identification Z/4Z(1) = Z/4Z(χ) using

ζ4. Then there is an equality of cocycles
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(
x
2

)
= {2

√
−x} : GK → Z/2Z

where
√
−x = ζ4( 4√x)2.

Proof. Note that squaring (1+ ζ4) 4√x gives 2
√
−x, so letting η = 2

√
−x ∈ K, we see

that K( 4√x, ζ4) =K(
√
η,ζ4). Both cochains

(
x
2

)
, {2

√
−x} : GK →Z/2Z factor through

Gal(K( 4√x, ζ4)/K), and there are four possibilities for the action of g ∈ GK on
√
η

and ζ4. It is enough to check that
(

x
2

)
(g) and {η}(g) agree in each case:

g(
√
η) g(ζ4) x(g)

(
x(g)

2

)

√
η ζ4 (ζ4)0 0√
η (ζ4)3 (ζ4)1 0

−√
η ζ4 (ζ4)2 1

−√
η (ζ4)3 (ζ4)3 1

This shows the claim
(

x
2

)
= {η} = {2

√
−x}. ��

To compute when there is a local obstruction as in case (3), we need to understand
the cochain (

a
2

)
+

(
b
2

)
: Gkv

→ Z/2Z

when a = b in C1(Gkv
,Z/2Z).

Lemma 35. Let K be a field of characteristic � 2, and let ζ4 be a primitive fourth
root of unity in a fixed algebraic closure of K. Let a,b be non-zero elements of
K such that a/b is a square a/b ∈ (K∗)2. We choose fourth roots of both, and let
a,b : GK → Z/4Z(1) denote the corresponding cocyles. Then

(
a
2

)
+

(
b
2

)
: GK → Z/2Z

equals the cocycle
{
√

b/
√

a} : GK → Z/2Z ,

where
√

b,
√

a are defined as the squares of the chosen fourth roots of b, a respec-
tively.

Proof. For any two elements d1,d2 in Z/4Z, direct calculation shows that in Z/2Z

(
d1+d2

2

)
−

(
d1

2

)
−

(
d2

2

)
= d1d2 .

Therefore for all g in GK,

(
a(g)

2

)
+

(
b(g)

2

)
=

(
a(g)+b(g)

2

)
−a(g)b(g)



318 K. Wickelgren

Since mod 2, a(g) = b(g), we have that a(g)b(g)= a(g) mod 2. Therefore
(
a(g)

2

)
+

(
b(g)

2

)
=

(
a(g)+b(g)

2

)
−a(g)

Since b/a is a square in K, ab is also a square in K. Let
√

a,
√

b denote the squares
of our chosen fourth roots of a and b respectively. By Lemma 11, and because ab is
a square in K,

g �→
(
a(g)+b(g)

2

)

equals {
√

a
√

b}. Therefore
(
a
2

)
+

(
b
2

)
= {

√
a
√

b}−a .

Since {
√

a
√

b}−a = {
√

b/
√

a}, the lemma is shown. ��

The previous results combine to give necessary and sufficient conditions for
δ

(mod2,v)
3 to obstruct a kv-point of the Jacobian in the kernel of δ

(mod2,v)
2 from lying

on the curve, i.e., from being the image of a kv-point or tangential point of X. For
any given point (b,a) of JacX, these conditions are easy to verify using Sect. 12.4.1.

Theorem 36. Let kv be the completion of a number field k at a place above an
odd prime. For (b,a) ∈ Jac(P1

kv
− {0,1,∞})(kv) such that δ(mod2,v)

2 (b,a) = 0, we have

δmod2
3 (b,a) � 0 if and only if one of the following holds:

(i) −b ∈ (k∗
v)2 and {2

√
−b}∪a � 0.

(ii) −a ∈ (k∗
v)2 and {2

√
−a}∪b+ {2}∪a� 0

(iii) ab ∈ (k∗
v)2 and {2

√
b
√

a}∪a � 0

Remark 37. In case (i), the notation
√
−b denotes either square root of −b, both of

which are in kv. The expression {2
√
−b} ∪ a denotes the corresponding element of

H2(Gkv
,Z/2Z), which is independent of the choice of square root because

{−1}∪a = {−b}∪a = −δ(mod2,v)
2 (b,a) = 0 .

Similar remarks hold in cases (ii) and (iii).
Note that obstructions such as {2

√
−b}∪a look as though they are naturally ele-

ments of H2(GQp
,Z/2Z(2)), but δ(2,p)

3,[[x,y],x] (b,a)c is in H2(GQp
,Z/2Z(3)). The shift in

weight happened in Lemmas 11, 34, and 35.

Proof. Fix C ⊃ k ⊂ kv. It is sufficient to show that in Lemma 33 case (i) (ii) (iii)
respectively, we have
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(
b
2

)
∪a = {2

√
−b}∪a ,

(
a
2

)
∪b+ f ∪a = {2

√
−a}∪b+ {2}∪a ,

(

(
a
2

)
+

(
b
2

)
+ f )∪a = {2

√
b
√

a}∪a .

For cases (i) and (ii), this follows immediately from Lemmas 34 and 31. In case
(iii), Propositions 35 and 31 show that

(

(
a
2

)
+

(
b
2

)
+ f )∪a = {2

√
b/

√
a}∪a .

Since
√

b/
√

a is in kv, we have that a
√

b/
√

a =
√

b
√

a is in kv. As a ∪ b = 0 and
a = b, it follows that {2

√
b/

√
a}∪a is also equal to {2

√
b/

√
a}∪a+a∪a, which in

turn equals {2
√

b
√

a}∪a. ��

Corollary 38. Let (b,a) be a rational point of Jac(P1
Q
− {0,1,∞}) such that (b,a) is

in (Z− {0})× (Z− {0}) and p divides ab exactly once. Then:

(1) δ
(mod2,p)
2 (b,a) = 0 ⇐⇒ a+b is a square mod p

(2) When (1) holds, δ(mod2,p)
3 (b,a) = 0 ⇐⇒ a+b is a fourth power mod p

Remark 39. (1) Note that under the hypotheses of Corollary 38, the condition that
a + b is congruent to a (2n)th power mod p is equivalent to the condition that
whichever of a or b not divisible by p is a (2n)th power mod p.

(2) For the points of the Jacobian satisfying the conditions described in its state-
ment, Corollary 38 computes δ

(mod2,p)
3 and δ

(mod2,p)
2 in terms of congruence condi-

tions mod p. These congruence conditions allow us to see that δ(mod2,p)
3 and δ

(mod2,p)
2

vanish on the points and tangential points of the curve which satisfy the hypotheses
of the Corollary. Namely, by (12.16) and Lemma 4, the image of P1 − {0,1,∞} and
its tangential points is the set of (b,a) such that a+b = 0, a+b = 1, a = 1, or b = 1.
As 0 and 1 are fourth powers mod every prime, we see the vanishing of Ellenberg’s
obstructions on the points of the curve.

(3) It is tempting to hope that under certain hypotheses

• δ
(mod2,p)
n (b,a) = 0 ⇐⇒ a+b is a 2n−1 power mod p.

Since 0 and 1 are the only integers which are 2n−1 powers for every n, mod every
prime, such a result could show that the nilpotent completion of π determines the
points and tangential points of P1 − {0,1,∞} from those of the Jacobian. This is a
mod 2, pro-nilpotent section conjecture for P1 − {0,1,∞}, cf. Sect. 12.4.4.

Proof. (1) Note that by hypothesis, exactly one of b and a equals p or u + p
in H1(G

Qp
,Z/2Z(1)), where the notation p,u is as defined in Sect. 12.4.1.

By Sect. 12.4.1, it follows that the other is 0 in H1(GQp
,Z/2Z(1)) if and only if
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b ∪ a vanishes. By Hensel’s Lemma, this is equivalent to the other being a square
mod p, which in turn is equivalent to the condition that a+b is a square mod p.

(2) Exactly one of b and a is not divisible by p. Call this element r. The only
case listed in Theorem 36 that can hold is {−r} = 0 in H1(G

Qp
,Z/2Z(1)). By (1), we

have that r is a square mod p, whence {−r} = {−1} in H1(GQp
,Z/2Z(1)). Note also

that if r = a, then f ∪a = {2}∪a = 0, as neither 2 nor a is divisible by p. Therefore,
δ

(mod2,p)
3 (b,a) � 0 if and only if p = 1 mod 4, and {2

√
−r}∪ p � 0.

For p = 1 mod 4, and r and −r squares mod p,

{2
√
−r}∪ p = {

√
r}∪ p

in H1(GQp
,Z/2Z(1)) where either square root of r or −r in Qp can be chosen. To see

this: note that since −1 is a square, it is clear that changing the square root has no
effect. Note that (1+ ξ4)2 = 2ξ4, for ξ4 a primitive fourth root of unity in Qp, from
which it follows that

{
√

r} = {
√

r(1+ ξ4)2} = {2
√
−r} .

In the last equality
√
−r is ξ4

√
r, but we are free to choose either square root to see

the claimed equality.
Thus, δ

(mod2,p)
3 (b,a) � 0 if and only if p = 1 mod 4, and {

√
r} ∪ p � 0 in

H1(G
Qp

,Z/2Z(1)). Note that {
√

r}∪ p � 0 if and only if {
√

r} � 0, since r is not di-

visible by p. The condition p = 1 mod 4 and {
√

r} � 0 is equivalent to the condition
p = 1 mod 4 and r is not a fourth power mod p. Since r is a square mod p, the con-
dition that r is not a fourth power implies that p = 1 mod 4. Thus, δ(mod2,p)

3 (b,a) � 0
if and only if r is not a fourth power mod p. This last condition is equivalent to a+b
is not a fourth power mod p. ��

Remark 40. The proof of Corollary 38 only uses the computation of f given in
Lemma 31 to ensure that f ∈ {0,u} ⊂ H1(G

Qp
,Z/2Z).

Definition 41. For an obstruction δ′ which is defined on the vanishing locus of an
obstruction δ, we say that δ′ is not redundant with δ if δ′ does not vanish identi-
cally.

Example 42. We compare the obstruction δmod2
3 with δ2 for k = Q.

(1) As 4= (−1)+5 is a square but not a fourth power mod 5, Corollary 38 implies
that δ(mod2,5)

2 (−1,5) = 0, and

δ(mod2,5)
3 (−1,5) � 0 .

In other words, the 3-nilpotent obstruction δ
(mod2,p)
3 is not redundant with the 2-

nilpotent obstruction δ
(mod2,p)
2 .

(2) In fact, it is easy to check that {−1}∪ {5} = 0 in H2(GQ,Z/2Z) since

{−1}∪ {5} = {−1}∪ {5}+ {1−5}∪ {5}= {4}∪ {5} = 2 · ({2}∪ {5})= 0 .
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Alternatively, {−1}∪ {5} = 0 in H2(GQ,Z/2Z) because the Brauer-Severi variety

−u2+5v2 = w2

has the rational point [u,v,w] = [1,1,2]. Thus, δ(mod2,p)
3 is not redundant with the

global obstruction δmod2
2 . It also follows that the global 3-nilpotent obstruction

δmod2
3 is not redundant with the global 2-nilpotent obstruction δmod2

2 .

(3) One can ask whether δ(mod2,p)
3 is redundant with the global obstruction δ2 for

k = Q. The tame symbol at p

b⊗a �→ (b,a)p = (−1)vp(b)vp(a) bvp(a)

avp(b)
∈ F∗p

vanishes on any (b,a) such that δ2(b,a) = 0. In particular, given b,a ∈ Z such that p
divides ab � 0 exactly once, we will have that

bvp(a)

avp(b)
= 1 mod p

and that bvp(a)

avp(b) equals either b or 1/a depending on which of b or a is divisible by p.
In particular, a+ b = 1 mod p, and thus, Corollary 38 does not show that δ3 is not
redundant with δ2 for k = Q.

The points (b,a) of Jac(P1
Q
− {0,1,∞})(Q) = Q∗ ×Q∗ considered in Corollary 38

and satisfying δ
(mod2,p)
2 (b,a) = 0 have the property that at any finite prime p, either

b or a determines the 0 element of

C1(GQp
,Z/2Z) � H1(GQp

,Z/2Z) .

Thus a lift (b,a)c of (b,a) to a class of H1(G
Qp

,π/[π]2
3) is such that c is a cocycle,

as opposed to a cochain. By Theorem 19, Corollary 38 consists of evaluations of
Massey products where certain cup products of cochains are not only coboundaries,
but 0 as cochains. Indeed, a direct proof of Corollary 38 can be given along these
lines, although the methods involved are not sufficiently different from those of
Theorem 36 to merit inclusion.

Let p vary through the odd primes, and let m vary through the positive integers.
The points ((−p)2m+1, p) satisfy δ2 = 0 by Proposition 24, but both (−p)2m+1 and
p determine non-zero elements of C1(G

Qp
,Z/2Z) via the Kummer map, unlike the

examples computed via Corollary 38. Theorem 36 allows us to evaluate δ
(mod2,p)
3 on

these points.

Example 43. Let p be an odd prime and m a positive integer. Then δ
(mod2,p)
3 vanishes

on (−p2m+1, p) and (p2m, p) in Jac(P1
Q
− {0,1,∞})(Q). For (−p2m+1, p) we show that

neither case (i–iii) of Theorem 36 holds. Note that {p2m+1} (resp. {−p}) is nontrivial
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in H1(GQp
,Z/2Z), so case (i) (resp. case (ii)) does not hold. When p ≡ 3 mod 4, the

class {−p2m+1 · p} = {−1} is nontrivial in H1(G
Qp

,Z/2Z) and case (iii) does not hold.
For p ≡ 1 mod 4, we have a fourth root of unity ζ4 ∈ Qp and thus the product

−p2m+1 · p is a square in Qp. In this case the first equation of (iii) is satisfied, but the
second is not:

{2
√

−p2m+2}∪ p = {2pm+1ζ4}∪ p = {2ζ4}∪ p = {(1+ ζ4)2}∪ p = 0

because p∪ p = 0 by Sect. 12.4.1.
For (p2m, p) one shows similarly that δ(mod2,p)

3 (p2m, p) = 0. Now cases (ii) and
(iii) do not apply for obvious reasons and (i) can at most apply for p ≡ 1 mod 4. But
then

{2
√

−p2m}∪ {p} = ({2ζ4}+m{p})∪{p} = {(1+ ζ4)2}∪ p = 0

vanishes as well.

Example 44. Let p be a prime congruent to 3 mod 4. Let x ∈ Z− {0,1} be divisible
by p. Then

δ
(mod2,p)
3 ((1− x)(−x), x)= 0 .

Note that by Proposition 24, the point ((1 − x)(−x), x) is in the kernel of δ
(mod2,p)
2 ,

and even in the kernel of δ2.
We again show that neither case (i)-(iii) of Theorem 36 holds. The element 1− x

is a square in Qp, as 1− x ≡ 1 mod p, whence

{(1− x)(−x)}= {−x} ∈ H1(GQp
,Z/2Z) .

Since p ≡ 3 mod 4, the class {−1} is nonzero in H1(G
Qp

,Z/2Z). Therefore case (iii)
does not hold. Case (ii) holds if and only if {−x} = 0 and

{2
√
−x}∪ {(1− x)(−x)}+ {2}∪ {x}� 0 .

Since (−x, x) is the image of a rational tangential base point by Lemma 4, the ob-
struction δ

(mod2,p)
3 (−x, x) = 0 vanishes. By Theorem 36 case (ii), this implies that

{2
√
−x}∪ {(−x)}+ {2}∪ {x} = 0

when {−x} = 0, so (ii) does not hold for ((1− x)(−x), x), because

{(1− x)(−x)} = {(−x)} .

Case (i) holds if and only if {(1− x)(x)} = {x} = 0 and

{2
√

(1− x)x}∪ {x} � 0

which is impossible.



12 On 3-Nilpotent Obstructions to π1 Sections 323

12.5.5 A Global mod 2 Calculation

The local calculations of Sect. 12.5.4 and Sect. 12.5.3 allow us to evaluate the global
obstruction δmod2

3 on (−p3, p) in Jac(P1
Q
−{0,1,∞})(Q). This evaluation relies on the

Hasse–Brauer–Noether Theorem for the Brauer group, see [NSW08, Thm. 8.1.17],

0 → H2(G
Q
,Z/2Z) →

⊕

v

H2(G
Qp

,Z/2Z)
∑

v invv−−−−−→ 1
2
Z/Z→ 0 (12.40)

but is more subtle, as the evaluation of δmod2
3 over Q depends on the lifts of a point

of the Jacobian to H1(G
Q
,π/[π]2

3), whereas each evaluation of δ(mod2,p)
3 depends on

the lifts to H1(GQp
,π/[π]2

3). One may not be able to find a global lift to restricting
to some given set of local lifts.

In Proposition 30, it was shown that

δmod2
3 (b, (1−b)4) = 0

for k a number field and b in k − {0,1} = P1
k − {0,1,∞}(k), giving a calculation of the

global obstruction δmod2
3 on a point of the Jacobian not lying on the curve or coming

from a tangential base point. However, the point (b, (1 − b)4) determines the same
element of H1(G

Q
,π/([π]2π

4)) as the point (b,1) which is the image of a rational
tangential point by Lemma 4, so this vanishing is trivial.

We now let p vary through the primes congruent to 1 mod 4, and evaluate δmod2
3

on the family of points (−p3, p). Note that (−p3, p) does not determine the same
element of H1(GQ,π/([π]2π

4)) as a rational point or tangential point of P1
Q
−{0,1,∞}

by (12.16) and Lemma 4, so this gives a nontrivial calculation of δmod2
3 over Q.

Proposition 45. Let p be a prime congruent to 5 mod 8. Consider (−p3, p) in
Jac(P1

Q
− {0,1,∞})(Q). Then δmod2

3 (−p3, p) = 0.

Proof. We evaluate the obstruction as triple Massey products with compatible defin-
ing systems by Theorem 19

δ2
3,[[x,y],x] (−p3, p) = 〈p3, {−p3}, p〉 (12.41)

δ2
3,[[x,y],y](−p3, p) = −〈{−p}, p, {−p3}〉− {2}∪ p

valued in H2(GQ,Z/2Z), using Lemma 31 to evaluate f .
Let S= {2, p,∞} and letQS denote the maximal extension ofQ unramified outside

S. Then all classes {−1}, {±p}, {2}, etc. involved in (12.41) are unramified outside
S, i.e., they already lie in H1(Gal(QS/Q),Z/2Z). The map

H2(Gal(QS/Q),Z/2Z) ↪→ H2(G
Q
,Z/2Z) (12.42)

is injective. One way to see this injectivity is: let OQ,S denote the S integers of Q
and let U = SpecO

Q,S. The étale cohomology groups H∗(U,Z/2Z) are isomorphic to
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the Galois cohomology groups H∗(Gal(QS/Q),Z/2Z) by [Hab78, Appendix 2 Prop
3.3.1], and by the Kummer exact sequence, the sequence

H1(U,Gm) → H2(U,Z/2Z) → H2(U,Gm)

is exact in the middle. Since OQ,S is a principal ideal domain, H1(U,Gm) = 0, and
by [Mil80, III 2.22], the natural map H2(U,Gm) → H2(GQ,Gm) is an injection. Thus
(12.42) is injective. Its image consists of the classes whose image under (12.40)
have vanishing local component except possibly at 2,p and ∞. It follows we can
restrict to defining systems of cochains for Gal(QS/Q). Thus the Massey product
takes values in H2(Gal(QS/Q),Z/2Z) and the local components for primes not in S
vanish a priori.

We will show the vanishing of a global lift at p and ∞, and deduce the vanishing
at 2 from reciprocity (12.40).

Since p ≡ 5 mod 8, we have that 2 is not a quadratic residue mod p, so {2} and
{p} span H1(G

Qp
,Z/2Z), as in Sect. 12.4.1. Thus the set of lifts (−p3, p)c where c

varies among the cochains factoring through Gal(QS/Q) surjects onto the set of all
lifts of (−p3, p) to H1(GQp

,π/[π]2
3). By Example 43, we can therefore choose such

a lift such that δ(2,p)
3 (−p3, p)c = 0. Since p is congruent to 1 mod 4, the restriction

of {−1} to C1(GQp
,Z/2Z) is 0. By Proposition 32, either δmod2

3 (−p3, p)c = 0 or

δmod2
3 (−p3, p)c+{−1} = 0, so we can choose a lift factoring through Gal(QS/Q) such

that δmod2
3 vanishes at both p and ∞. ��

Remark 46. (1) In the proof of Proposition 45, the vanishing of δmod2
3 (−p3, p) was

shown for p ≡ 5 mod 8 by using the local vanishing of δ(mod2,ν)
3 (−p3, p) and showing

that the global lifts of (−p3, p) to H1(GQ,π/[π]2
3) with ramification constrained to

lie above S = {2, p,∞} surjected onto the product over the local lifts of (−p3, p) to
H1(G

Qν
,π/[π]2

3) for the places p and ∞.
(2) It would be desirable to relate δmod2

3 = 0 to the simultaneous vanishing of all

(or all but one) δ(2,ν)
3 , where ν varies over the places of a given number field k. For

this, we would need to compare the set of restrictions to the kν of lifts of (b,a) to
H1(Gk,π/[π]2

3) with the set of independently chosen lifts of (b,a) to H1(Gkν ,π/[π]2
3)

for all ν. In other words, we are interested in the map

H1
(b,a)(Gk,π/[π]2

3) →
∏

ν

H1
(b,a)(Gkν ,π/[π]2

3) (12.43)

where H1
(b,a)(Gk,π/[π]2

3) denotes the subset of H1(Gk,π/[π]2
3) of lifts of (b,a) and

similarly for each H1
(b,a)(Gkν ,π/[π]2

3). A nonabelian version of Poitou-Tate duality
would give information about (12.43).

We can also evaluate δ2
3,[[x,y],x] and δ2

3,[[x,y],y] on a specific lift of (−p3, p), which

is equivalent to the calculation of the Massey products 〈p3,−p3, p〉 and 〈−p, p,−p3〉
with the defining systems specified in Remark 20 (ii), and the mod 2 cup product
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{2} ∪ {p}. The cup product {2} ∪ {p} can be calculated with Sect. 12.4.3; it van-
ishes except at 2 and p, and at p, {2} ∪ {p} vanishes if and only if p ≡ ±1 mod
8. An arbitrary defining system for 〈p3,−p3, p〉 or 〈−p, p,−p3〉 produces Massey
products differing from the originals by cup products, which can also be evaluated
with Sect. 12.4.3. So evaluating δ2

3,[[x,y],x] and δ2
3,[[x,y],y] on a specific lift allows for

the computation of 〈p3,−p3, p〉 and 〈−p, p,−p3〉 in H2(GQ,Z/2Z) with any defining
system. We remark that a complete computation of the triple Massey product on
H1(Gal(kS(2)/k),Z/2Z) for certain maximal 2-extensions with restricted ramifica-
tion kS(2) of a number field k is given in [Vog04, II §1].

Remark 47. Note that {−p3} = {−p} and {p3} = {p} in H1(GQ,Z/2Z). The reason for
distinguishing between, say, −p3 and −p in 〈p3,−p3, p〉 is that the defining systems
to evaluate δ2

3,[[x,y],x] and δ2
3,[[x,y],y] are different for −p3 and −p, as they depend on

the image of −p3 in H1(G
Q
,Z/4Z(1)). However, for the discussion of evaluating

triple Massey products of elements of H1(G
Q
,Z/2Z) for any defining system, the

distinction is of course irrelevant.

Consider the following lift of (−p3, p): choose compatible nth roots of p, and
let {p} denote the corresponding element of C1(G

Q
, Ẑ(1)) via the Kummer map. As

above, {p} will sometimes be abbreviated by p. Note that the chosen nth roots of
p give rise to a choice of compatible nth roots of −p3 such that the corresponding
element of C1(GQ, Ẑ(1)) is 3(p+ χ−1

2 ). It is therefore consistent to let {−p3} and −p3

denote 3(p+ χ−1
2 ). Let c0 = 3

(
p
2

)
in C1(GQ, Ẑ(2)). Let (−p3, p)c0

in C1(GQ,π/[π]3)
be as in Corollary 8, i.e., for all g in GQ

(−p3, p)c0
(g) = y{p}(g)x{−p3}(g)[x,y]c0(g) ,

so (−p3, p)c0
is a cocycle lifting (−p3, p). The image of (−p3, p)c0

under the map
C1(G

Q
,π/[π]3) → C1(G

Q
,π/[π]2

3) will also be denoted (−p3, p)c0
.

Proposition 48. Let p be a prime congruent to 1 mod 4. Let (−p3, p)c0
be as above.

δmod2
3 (−p3, p)c0

is the element of H2(GQ, [π]3/[π]4([π]3)2) determined by

δ
(2,p)
3,[[x,y],x] (−p3, p)c0

= δ
(2,p)
3,[[x,y],y](−p3, p)c0

= 2∪ p =

⎧⎪⎪⎨⎪⎪⎩
1
2 if p ≡ 5 mod 8,

0 if p ≡ 1 mod 8.

δ
(2,ν)
3,[[x,y],x] (−p3, p)c0

= δ
(2,ν)
3,[[x,y],y](−p3, p)c0

= 0

for ν equal to R or a finite odd prime not equal to p.

Here, H2(GQp
,Z/2Z) is identified with the two torsion ofQ/Z for all finite primes

p via the invariant map, and elements of H2(G
Q
,Z/2Z) are identified with their

images under (12.40).

Proof. Let S = {2, p,∞} and let QS denote the maximal extension of Q unramified
outside S. The cocycle (−p3, p)c0

factors through Gal(QS/Q), and it follows that
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δ
(2,ν)
3,[[x,y],x] (−p3, p)c0

= δ
(2,ν)
3,[[x,y],y](−p3, p)c0

= 0

for ν equal to any prime not in S.
The obstruction δ(2,ν)

3 (−p3, p)c0
for ν = R decomposes into two elements

δ(2,R)
3,[[x,y],x] (−p3, p)c0

and δ(2,R)
3,[[x,y],y] (−p3, p)c0

of Z/2Z � H2(GR,Z/2Z), obtained by evaluating each of the cocycles given in
Proposition 13 at (g1,g2) = (τ,τ), where τ denote complex conjugation in GQ, c.f.
Sect. 12.4.2. Note that since p is positive, the equalities {−p3}(τ) = 1, {p}(τ) = 0,(−{p}(τ)+1

2

)
= 0, and c0(τ) = 0 hold in Z/2Z. Substituting these equations into the

cocycles in Proposition 13 shows that

δ(2,R)
3,[[x,y],x](−p3, p)c0

= δ(2,R)
3,[[x,y],y](−p3, p)c0

= 0 .

By Lemma 33 case (3), we have that

δ
(2,p)
3,[[x,y],x] (−p3, p)c+ δ

(2,p)
3,[[x,y],y](−p3, p)c (12.44)

does not depend on the choice of lift. By Example 43, there is a lift (−p3, p)c such
that

δ
(2,p)
3,[[x,y],x] (−p3, p)c = δ

(2,p)
3,[[x,y],y](−p3, p)c = 0

and it follows that (12.44) vanishes. It follows from Proposition 13 that

δ
(2,p)
3,[[x,y],x] (−p3, p)c0

= (

(
p
2

)
+

(
−(p+ χ−1

2 )

2

)
)∪ p. (12.45)

To see this, note that χ−1
2 = 0 and −p3 = p in C1(G

Qp
,Z/2Z). Thus the cocycle

g �→ p(g)3(p+
χ−1

2
)(g)

equals the cocycle g �→ p(g) in C1(GQp
,Z/2Z). Note that equating these two cocy-

cles requires identifyingZ/2Z(1) with Z/2Z(2), so the weight is not being respected.
Substituting these equalities into Proposition 13 implies

δ
(2,p)
3,[[x,y],x] (−p3, p)c0

=

(
p
2

)
∪ p+

(
3(p+ χ−1

2 )+1

2

)
∪ p+ p∪ p .

Then note that in C1(G
Qp

,Z/2Z),

(
3(p+ χ−1

2 )+1

2

)
=

(
3(p+ χ−1

2 )

2

)
+3(p+

χ−1
2

) =

(
−(p+ χ−1

2 )

2

)
+ p ,



12 On 3-Nilpotent Obstructions to π1 Sections 327

showing (12.45). Here it is important to distinguish between 3(p+ χ−1
2 ) and p in the

binomial coefficient as these two cocycles are not equal in C1(GQp
,Z/4Z(1)).

For any two elements d1,d2 in Z/4Z, direct calculation shows

(
d1+d2

2

)
−

(
d1

2

)
−

(
d2

2

)
= d1d2

in Z/2Z. Thus

(
p
2

)
+

(
−(p+ χ−1

2 )

2

)
=

(
−χ−1

2

2

)
+ p(p+

χ−1
2

) =

(
−χ−1

2

2

)
+ p .

Combining with the above, we see

δ2
3,[[x,y],x] (−p3, p)c0

=

(
−χ−1

2

2

)
∪ p .

Since p is congruent to 1 mod 4, Qp contains a primitive fourth root of unity and

χ(g) ≡ 1 mod 4 for every g in G
Qp

. Therefore, χ(g)−1
2 is 0 or 2 mod 4, whence

(− χ−1
2

2

)

is 0 for g fixing the eight roots of unity and 1 otherwise. It follows that

δ2
3,[[x,y],x](−p3, p)c0

=

⎧⎪⎪⎨⎪⎪⎩
1
2 if p ≡ 5 mod 8 ,

0 if p ≡ 1 mod 8 . ��
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Chapitre 13
Une remarque sur les courbes de
Reichardt–Lind et de Schinzel

Olivier Wittenberg

Résumé. We prove that the arithmetic fundamental group of X admits no section
over the absolute Galois group of Q when X is the Schinzel curve, thereby confir-
ming in this example the prediction given by Grothendieck’s section conjecture.

13.1 Introduction

Les courbes de Reichardt–Lind [Rei42, Lin40] et de Schinzel [Sch84] sont deux
exemples célèbres de courbes projectives et lisses X sur Q possédant des points
réels et des points p-adiques pour tout premier p, mais pas de point rationnel ni
même de diviseur de degré 1. La première est la courbe de genre 1 intersection
dans P3 des quadriques d’équations w2 = xz et 2y2 = x2 − 17z2. La seconde est de
genre 3 : il s’agit de la courbe quartique plane d’équation x4 − 17z4 = 2(y2+ 4z2)2.
Dans cette note, à l’aide des résultats de [EW09] concernant l’algébricité des classes
de cycles de sections du groupe fondamental arithmétique sur les corps locaux, nous
établissons le théorème suivant :

Théorème 1. Soit X la courbe de Reichardt–Lind ou la courbe de Schinzel. La suite
exacte fondamentale

1 �� π1(X⊗QQ) �� π1(X) �� Gal(Q/Q) �� 1 (∗)

n’est pas scindée.
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Dans le cas de la courbe de Schinzel, le Théorème 1 confirme la prédiction don-
née par la conjecture des sections de Grothendieck [Gro83]. Dans le cas de la courbe
de Reichardt–Lind, il répond à une question posée par Stix [Sti11].

La courbe quartique de Schinzel est ainsi le second exemple connu d’une courbe
projective et lisse X sur Q, de genre � 2, telle que la suite (∗) ne soit pas scindée bien
que X(AQ)� ∅. Un premier exemple avait en effet été construit par Harari, Szamuely
et Flynn [HS09]. Les arguments de [HS09] requièrent la connaissance d’informa-
tions fines sur l’arithmétique de la jacobienne de X (entre autres : finitude du groupe
de Tate–Shafarevich, rang). Il n’en est pas ainsi de la preuve du Théorème 1, dont le
seul ingrédient arithmétique global est la loi de réciprocité pour le groupe de Brauer
de Q.

Au paragraphe 13.2 de cette note, nous donnons un critère général pour que
le groupe fondamental d’une courbe projective et lisse sur un corps de nombres
n’admette pas de section, sous l’hypothèse qu’une obstruction de Brauer–Manin
s’oppose à l’existence d’un diviseur de degré 1 sur cette courbe. Nous démontrons
ensuite le Théorème 1, à l’aide de ce critère, au paragraphe 13.3.

Remerciements. Le contenu de cette note fut en partie exposé à Heidelberg lors de
la conférence PIA 2010 organisée par Jakob Stix, que je remercie pour son hospita-
lité. Je remercie également Tamás Szamuely pour ses commentaires utiles sur une
première version du texte.

Notations. Si M est un groupe abélien, on note Mtors le sous-groupe de torsion
de M. Tous les groupes de cohomologie apparaissant ci-dessous sont des groupes
de cohomologie étale. Si X est une courbe irréductible, projective et lisse sur un
corps k, on note Pic1(X) le sous-ensemble de Pic(X) constitué des classes de degré 1
et Br(X) =H2(X,Gm) le groupe de Brauer de X. Lorsque k est un corps de nombres,
on désigne par Ω l’ensemble des places de k et, pour v ∈Ω, par kv le complété de k
en v. Dans cette situation, Manin a défini un accouplement

⎛⎜⎜⎜⎜⎜⎜⎝
∏

v∈Ω
Pic(X⊗k kv)

⎞⎟⎟⎟⎟⎟⎟⎠×Br(X) → Q/Z, (13.1)

somme d’accouplements locaux

Pic(X⊗k kv)×Br(X⊗k kv) → Q/Z ; (13.2)

le noyau à gauche de (13.1) contient l’image diagonale de Pic(X), cf. [Sai89, (8-2)].
On dit qu’un sous-groupe B ⊂ Br(X) (resp. une classe A ∈ Br(X)) est responsable
d’une obstruction de Brauer–Manin à l’existence d’un diviseur de degré 1
sur X si aucun élément de

∏
v∈ΩPic1(X ⊗k kv) n’est orthogonal à B (resp. à A)

pour (13.1).
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13.2 Un critère pour l’absence de sections sur un corps de
nombres

Dans ce paragraphe, nous supposons donnés un corps de nombres k, une courbe X
projective, lisse et géométriquement irréductible sur k, un entier N � 1 et un sous-
groupe Γ ⊂ H2(X,μN). Considérons les deux hypothèses suivantes :

(BM) L’ensemble Pic1(X⊗k kv) est non vide pour tout v ∈ Ω et l’image de Γ par la
flèche naturelle p : H2(X,μN) → Br(X) est responsable d’une obstruction de
Brauer–Manin à l’existence d’un diviseur de degré 1 sur X.

(T) Pour toute place v de k divisant N et tout γ ∈ Γ, il existe γv,0 ∈ H2(kv,μN) et
γv,1 ∈ Pic(X⊗k kv)tors tels que l’image γv de γ dans H2(X⊗k kv,μN) s’écrive

γv = γv,0 + c(γv,1),

où c désigne l’application classe de cycle c : Pic(X⊗k kv) → H2(X⊗k kv,μN).

L’hypothèse (BM) entraîne que Pic1(X) = ∅ et, par conséquent, que X(k) = ∅.
D’après Grothendieck [Gro83], il devrait s’ensuivre, si le genre de X est � 2, que la
suite exacte fondamentale

1 �� π1(X⊗k k) �� π1(X) �� Gal(k/k) �� 1, (13.3)

cf. [SGA1, Exp. IX, 6.1], n’est pas scindée. Nous montrons dans le Théorème 2 que
tel est bien le cas si en outre l’hypothèse (T) est satisfaite (et ce, même si X est de
genre 1).

Théorème 2. Soit X une courbe projective, lisse et géométriquement irréductible,
sur un corps de nombres k. Soient N � 1 un entier et Γ ⊂ H2(X,μN) un sous-groupe.
Si (BM) et (T) sont vérifiées, la suite (13.3) n’est pas scindée.

Ainsi, étant données une courbe X et une classe A ∈ Br(X) responsable d’une
obstruction de Brauer–Manin à l’existence d’un diviseur de degré 1 sur X, pour
que la suite (13.3) ne soit pas scindée, il suffit qu’il existe un entier N � 1 et un
relèvement γ ∈ H2(X,μN) de A tels que pour toute place v de k divisant N, l’image
de γ dans H2(X ⊗k kv,μN) appartienne au sous-groupe engendré par H2(kv,μN) et
par c(Pic(X⊗k kv)tors).

Preuve du Théorème 2. Par l’absurde, supposons la suite (13.3) scindée et fixons-en
une section s : Gal(k/k) → π1(X). L’hypothèse (BM) entraîne que la courbe X est de
genre � 1 ; c’est donc un K(π,1) et l’on peut associer à s une classe de cohomologie
étale α ∈ H2(X,μN), cf. [EW09, 2.6]. Rappelons que α, dite classe de cycle de s, est
caractérisée par la propriété suivante : il existe un revêtement étale f : Y → X tel
que s se factorise par π1(Y) et que, notant pr1 : X×k Y → X la première projection,
la classe dans H2(X×k Y,μN) du graphe de f soit égale à pr#1 α.

Pour v ∈ Ω, notons c : Pic(X ⊗k kv) → H2(X ⊗k kv,μN) l’application classe de
cycle et αv l’image de α dans H2(X⊗k kv,μN).
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Proposition 3. Pour tout v ∈Ω ne divisant pas N, il existe Dv ∈ Pic1(X⊗k kv) tel que
αv = c(Dv).

Preuve. Soit v ∈Ω ne divisant pas N. Notons kv une clôture algébrique de kv conte-
nant k. La flèche verticale de gauche du diagramme commutatif

1 �� π1(X⊗k kv)

��

�� π1(X⊗k kv)

��

�� Gal(kv/kv)

��

�� 1

1 �� π1(X⊗k k) �� π1(X) �� Gal(k/k) �� 1

étant un isomorphisme, cf. [SGA1, Exp. X, 1.8], la section s induit une section
sv : Gal(kv/kv) → π1(X⊗k kv) de la première ligne de ce diagramme. À l’aide de la
caractérisation de la classe de cycle d’une section rappelée ci-dessus, on voit que la
classe de cycle de sv est égale à αv. Comme v ne divise pas N, il résulte maintenant
de [EW09, Cor. 3.4, Rem. 3.7 (ii)], si v est finie, ou de [EW09, Rem. 3.7 (iv)], si v
est réelle, qu’il existe Dv,0 ∈ Pic(X ⊗k kv) tel que αv = c(Dv,0). L’image de αv dans

H2(X⊗k kv,μN) = Z/NZ est égale à 1, cf. [EW09, 2.6]. Par conséquent

deg(Dv,0) = 1+Nm

pour un m ∈ Z. Soit Dv,1 un élément de l’ensemble Pic1(X ⊗k kv), non vide par hy-
pothèse. Posons Dv = Dv,0 −NmDv,1. On a alors bien deg(Dv) = 1 et c(Dv) = αv. ��

Fixons, pour chaque v ∈ Ω divisant N, un élément arbitraire Dv ∈ Pic1(X ⊗k kv),
et pour chaque v ∈ Ω ne divisant pas N, un élément Dv ∈ Pic1(X⊗k kv) tel que αv =

c(Dv). Nous allons maintenant démontrer que la famille (Dv)v∈Ω est orthogonale,
pour l’accouplement (13.1), à l’image de Γ par p : H2(X,μN) → Br(X).

Pour toute extension K/k, notons

		

−,−


		 : H2(X⊗k K,μN)×H2(X⊗k K,μN) → Br(K)

la composée du cup-produit

H2(X⊗k K,μN)×H2(X⊗k K,μN) → H4(X⊗k K,μ⊗2
N )

et de la flèche

δ : H4(X⊗k K,μ⊗2
N ) → H2(K,H2(X⊗k K,μ⊗2

N )) = H2(K,μN) ⊂ Br(K)

issue de la suite spectrale de Hochschild–Serre. D’autre part, pour v ∈ Ω, notons
invv : Br(kv) ↪→ Q/Z l’invariant de la théorie du corps de classes local et notons
encore p : H2(X⊗k kv,μN) → Br(X⊗k kv) la flèche naturelle.

Lemme 4. Soit v ∈ Ω. Les accouplements 		

−,−


		 et (13.2) s’inscrivent dans un dia-

gramme commutatif
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H2(X⊗k kv,μN)×H2(X⊗k kv,μN)

p
��

�� Br(kv)

invv
��

Pic(X⊗k kv)×Br(X⊗k kv)

c
��

�� Q/Z.

Preuve. Soient x ∈ X ⊗k kv un point fermé et i : Spec(kv(x)) ↪→ X ⊗k kv l’injection
canonique. Pour tout y ∈ H2(X⊗k kv,μN), on a

		

c(x),y



		= δ(c(x) % y) = δ(i#i#y) ,

où la seconde égalité résulte de la formule de projection. Compte tenu de la défi-
nition de (13.2), cf. [Sai89, p. 399], il suffit donc, pour conclure, de vérifier que
l’application δ◦ i# : H2(kv(x),μN) → H2(kv,μN) s’identifie au morphisme de cores-
triction de kv(x) à kv.

Notons ρ : X ⊗k kv → Spec(kv) le morphisme structural et a : i#μN → μ⊗2
N [2]

la flèche, dans la catégorie dérivée des faisceaux étales en groupes abéliens sur X,
donnant naissance au morphisme de Gysin

i# : H2(kv(x),μN) → H4(X⊗k kv,μ
⊗2
N ) .

La composée de Rρ#a et de la troncation

Rρ#μ
⊗2
N [2] →

(
τ�2Rρ#μ

⊗2
N

)
[2] = μN

est une flèche entre complexes concentrés en degré 0. Elle provient donc d’un unique
morphisme de modules galoisiens b : (ρ◦ i)#μN → μN. La flèche obtenue en appli-
quant à b le foncteur H0(kv,−) est la composée

μN(x⊗kv
kv) → H2(X⊗k kv,μ

⊗2
N ) → μN

des applications classe de cycle et degré tordues par μN. Par conséquent b est l’ap-
plication norme. D’autre part, en appliquant à b le foncteur H2(kv,−), on retrouve le
morphisme δ ◦ i# ; ainsi le lemme est prouvé. ��

Soit γ ∈ Γ. Pour v ∈Ω, notons γv l’image de γ dans H2(X⊗k kv,μN).

Proposition 5. Pour tout v ∈Ω, on a 		

αv,γv



		= 		

c(Dv),γv




		.

Preuve. Soit v ∈ Ω. Si v ne divise pas N, on a même αv = c(Dv). Supposons donc
que v divise N et reprenons les notations γv,0, γv,1 apparaissant dans l’hypothèse (T),
de sorte que γv = γv,0 + c(γv,1).

Lemme 6. Soient x ∈ H2(X⊗k kv,μN) et y ∈ H2(kv,μN). Si x s’annule dans le groupe
H2(X⊗k kv,μN), alors 		

x,y




		= 0.

Preuve. Notons (FiH2n)i∈Z la filtration décroissante de H2n(X⊗k kv,μ
⊗n
N ) induite par

la suite spectrale de Hochschild–Serre. Les hypothèses du lemme signifient que x ∈
F1H2 et y ∈ F2H2. Or le cup-produit respecte cette filtration, cf. [Jan88, Prop. 6.2],
d’où x % y ∈ F3H4, ce qui se traduit par l’égalité 		

x,y




		= 0. ��
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La construction de la classe de cycle associée à une section du groupe fonda-
mental étant fonctorielle par rapport aux coefficients, la classe αv se relève dans
lim←−−m�1

H2(X⊗k kv,μm), cf. [EW09, 2.6]. Par conséquent p(αv) ∈ Br(X⊗k kv) est in-
finiment divisible. En particulier p(αv) est orthogonal à Pic(X ⊗k kv)tors pour l’ac-
couplement (13.2). Or γv,1 ∈ Pic(X ⊗k kv)tors d’ après l’hypothèse (T), le Lemme 4
implique donc que 		

αv,c(γv,1)




		= 0.

D’autre part, il résulte du Lemme 4 que 		

c(Dv),c(γv,1)



		= 0, puisque p ◦ c = 0.

Enfin, le Lemme 6 entraîne que 		

αv − c(Dv),γv,0



		= 0. Vu la décomposition

		

αv − c(Dv),γv,0 + c(γv,1)



		= 		

αv − c(Dv),γv,0




		+ 		

αv,c(γv,1)




		− 		

c(Dv),c(γv,1)




		,

la Proposition 5 est maintenant établie. ��

Nous sommes en position d’achever la preuve du Théorème 2. D’après la loi de
réciprocité globale, la somme des invariants de 		

α,γ




		 ∈ Br(k) est nulle. Par consé-

quent
∑

v∈Ω invv
		

αv,γv




		= 0. Il s’ensuit, grâce à la Proposition 5, que

∑

v∈Ω
invv

		

c(Dv),γv



		= 0 ,

ce qui signifie, compte tenu du Lemme 4, que la famille (Dv)v∈Ω est orthogo-
nale à p(γ) pour l’accouplement (13.1). L’élément γ ∈ Γ étant quelconque, l’hy-
pothèse (BM) est ainsi contredite. ��

13.3 Les courbes de Reichardt–Lind et de Schinzel

Il existe un morphisme évident de la courbe de Schinzel vers la courbe de Reichardt–
Lind, à savoir [x : y : z] �→ [xz : x2 : y2 + 4z2 : z2]. Or la suite exacte (∗) dépend
fonctoriellement de X. Pour établir le Théorème 1, il suffit donc de traiter le cas de
la courbe de Reichardt–Lind.

Soit X la courbe de Reichardt–Lind, définie comme la compactification lisse de
la courbe affine d’équation 2y2 = w4 −17 sur Q. Pour montrer que la suite (∗) n’est
pas scindée, nous allons appliquer le Théorème 2 avec N = 2 et Γ = {0,γ} où γ ∈
H2(X,Z/2Z) est une classe à préciser. Le reste du présent paragraphe est consacré à
la construction de γ et à la vérification des hypothèses du Théorème 2.

Le diviseur de la fonction rationnelle y sur X s’écrit P−2Q, où P,Q ∈ X sont des
points fermés de degrés respectifs 4 et 2 sur Q. Posons V = X \ {P}. Le diviseur de y
sur V étant un double, le revêtement de V obtenu en extrayant une racine carrée de y
est étale. Notons [y] sa classe dans H1(V,Z/2Z). Notons d’autre part [17] l’image
de 17 par l’application naturelle

Q
#/Q#2 = H1(Q,Z/2Z) → H1(V,Z/2Z) .

Lemme 7. La flèche de restriction H2(X,Z/2Z) → H2(V,Z/2Z) est injective.
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Preuve. En effet, dans la suite exacte de localisation

H1(V,Z/2Z) �� H2
P(X,Z/2Z) �� H2(X,Z/2Z) �� H2(V,Z/2Z) ,

la première flèche est surjective puisque H2
P(X,Z/2Z)= H0(P,Z/2Z) = Z/2Z et que

[y] ∈ H1(V,Z/2Z) s’envoie sur 1 ∈ Z/2Z. ��

Le résidu de [y] % [17] ∈ H2(V,Z/2Z) en P est nul puisque 17 est un carré
dansQ(P). Par conséquent [y]% [17] est la restriction d’un élément de H2(X,Z/2Z).
D’après le Lemme 7, celui-ci est uniquement déterminé. Nous le noterons γ.

L’image de γ dans Br(X) est la classe de l’algèbre de quaternions (y,17). Il est
bien connu que cette classe est responsable d’une obstruction de Brauer–Manin à
l’existence d’un diviseur de degré 1 sur X et que X(Qv) � ∅ pour toute place v de Q.
Voir [Sti11, §5], où l’obstruction de Brauer–Manin à l’existence d’un point rationnel
est discutée ; noter que Pic1(X ⊗QK) = X(K) pour toute extension K/Q puisque X
est une courbe de genre 1 ; ainsi l’obstruction de Brauer–Manin à l’existence d’un
diviseur de degré 1 sur X est équivalente à l’obstruction de Brauer–Manin à l’exis-
tence d’un point rationnel.

L’hypothèse (BM) du paragraphe 13.2 est donc satisfaite. Il reste à vérifier l’hy-
pothèse (T).

Afin de simplifier les notations, posons X = X⊗
Q
Q, V = V⊗

Q
Q et enfin

H2(X⊗
Q

K,Z/2Z)0 = Ker
(
H2(X⊗

Q
K,Z/2Z) → H2(X⊗

Q
K,Z/2Z)

)

pour toute extension K/Q, où K désigne une clôture algébrique de K.

Proposition 8. L’image de γ dans H2(X,Z/2Z) est nulle.

Preuve. Le diviseur de la fonction rationnelle w2 −
√

17 sur X est un double ; celle-
ci définit donc une classe [w2 −

√
17] ∈ H1(X,Z/2Z). Cette classe est invariante sous

l’action de Gal(Q/Q) puisque (w2 −
√

17)(w2 +
√

17) = w4 − 17 = 2y2 est un carré
dans Q(X).

Lemme 9. Les images de [w2 −
√

17]× [−2] et de [y]× [17] par le cup-produit

H0(Q,H1(V,Z/2Z))×H1(Q,Z/2Z) → H1(Q,H1(V,Z/2Z)) (13.4)

coïncident.

Preuve. Il suffit de montrer que le cocycle a : Gal(Q/Q) → H1(V,Z/2Z) défini par

a(σ) = χ−2(σ)[w2 −
√

17]−χ17(σ)[y]

est un cobord, où χq : Gal(Q/Q) → Z/2Z désigne le caractère quadratique associé

à q ∈ Q#. Soit f = w2 −
√

17−
√
−2y. Le diviseur de f sur V est un double. D’où

une classe [ f ] ∈ H1(V,Z/2Z). On vérifie aisément que a(σ) =σ[ f ]− [ f ] pour tout σ
tel que l’un au moins de χ−2(σ) et de χ17(σ) soit nul. Or a est un cocycle ; par
conséquent a(σ) = σ[ f ]− [ f ] pour tout σ ∈ Gal(Q/Q) et a est donc un cobord. ��
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Comme H2(V,Z/2Z)= 0, la suite spectrale de Hochschild–Serre et les flèches de
restriction fournissent un diagramme commutatif

H2(X,Z/2Z)0

��

δX �� H1(Q,H1(X,Z/2Z))

��

�� H3(Q,H0(X,Z/2Z))

%
��

H2(V,Z/2Z)
δV �� H1(Q,H1(V,Z/2Z))

d �� H3(Q,H0(V,Z/2Z))

dont les lignes sont exactes et dont la flèche verticale de droite est un isomorphisme.
Cette suite spectrale étant compatible au cup-produit, cf. [Jan88, Prop. 6.2], l’image
de [y] × [17] par (13.4) est égale, à un signe près, à δV([y] % [17]) ; en particu-
lier appartient-elle à Ker(d). Il s’ensuit, grâce au Lemme 9 et à une chasse au dia-
gramme, que l’image de [w2 −

√
17]× [−2] par le cup-produit

H0(Q,H1(X,Z/2Z))×H1(Q,Z/2Z) → H1(Q,H1(X,Z/2Z))

s’écrit δX(γ ′) pour un γ ′ ∈ H2(X,Z/2Z)0.
La flèche naturelle Ker(δX) → Ker(δV) est surjective puisque tout élément de

Ker(δV) provient de H2(Q,Z/2Z). Quitte à modifier γ ′, on peut donc supposer que la
restriction de γ ′ à V coïncide avec [y] % [17] ∈ H2(V,Z/2Z). Le Lemme 7 entraîne
maintenant que γ = γ ′. D’où finalement γ ∈ H2(X,Z/2Z)0. ��

Proposition 10. Pour toute extension K/Q, le noyau de la flèche de restriction

H2(X⊗QK,Z/2Z)0 → H2(V⊗QK,Z/2Z) (13.5)

est contenu dans c(Pic(X⊗QK)tors), où c désigne l’application classe de cycle.

Preuve. Le lieu de ramification du morphisme X → P1
Q

, (y,w) �→ w est P, qui est de
degré 4 sur Q. Par conséquent, le choix d’un point géométrique de X au-dessus de P
munit X⊗QK d’une structure de courbe elliptique dont le sous-groupe de 2-torsion

est P⊗
Q

K. Les diviseurs de degré 0 sur X⊗
Q

K supportés sur P⊗
Q

K sont donc tous
de torsion dans Pic(X ⊗Q K). Or leurs classes de cycles dans H2(X ⊗Q K,Z/2Z)0

engendrent le noyau de (13.5), en vertu de la suite exacte de localisation. ��

L’image de γ dans H2(V⊗QQ2,Z/2Z) est nulle puisque 17 est un carré dans Q2.
Les Propositions 8 et 10 entraînent donc que l’hypothèse (T) est satisfaite (avec
γ2,0 = 0). Ainsi le Théorème 2 permet-il de conclure la démonstration du Théo-
rème 1.

Remarque 11. Soit X la courbe de Schinzel. Nous avons montré que la suite (∗)
n’est pas scindée. À l’instar de l’exemple de [HS09], la courbe de Schinzel vérifie
une propriété plus forte : même la suite exacte fondamentale abélianisée

1 �� π1(X)ab �� π1(X)[ab] �� Gal(Q/Q) �� 1,
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obtenue en poussant (∗) le long du morphisme d’abélianisation π1(X) → π1(X)ab,
n’est pas scindée. En effet, la suite exacte fondamentale abélianisée est tout aussi
fonctorielle que la suite exacte fondamentale, et les deux coïncident dans le cas de
la courbe de Reichardt–Lind puisque celle-ci est de genre 1.
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Chapter 14
On �-adic Iterated Integrals V: Linear
Independence, Properties of �-adic
Polylogarithms, �-adic Sheaves

Zdzisław Wojtkowiak

Abstract In a series of papers we have introduced and studied �-adic polylog-
arithms and �-adic iterated integrals which are analogues of the classical complex
polylogarithms and iterated integrals in �-adic Galois realizations. In this note we
shall show that in the generic case �-adic iterated integrals are linearly independent
over Q�. In particular they are non trivial. This result can be viewed as analogous
of the statement that the classical iterated integrals from 0 to z of sequences of one
forms dz

z and dz
z−1 are linearly independent over Q. We also study ramification prop-

erties of �-adic polylogarithms and the minimal quotient subgroup of the absolute
Galois group GK of a number field K on which �-adic polylogarithms are defined. In
the final sections of the paper we study �-adic sheaves and their relations with �-adic
polylogarithms. We show that if an �-adic sheaf has the same monodromy repre-
sentation as the classical complex polylogarithms then the action of GK in stalks is
given by �-adic polylogarithms.

14.1 Introduction

In this paper we study properties of �-adic iterated integrals and �-adic polyloga-
rithms introduced in [Woj04] and [Woj05a]. We describe briefly the main results of
the paper, though in the introduction we do not present them in full generality.

Let K be a number field with algebraic closure K̄. Throughout this paper we fix
an embedding K̄ ⊂ C. Let z ∈ K \ {0,1} or let z be a tangential point of

P
1
K̄
\ {0,1,∞}
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defined over K, and let γ be an �-adic path from
−→
01 to z on P1

K̄
\ {0,1,∞}. For any

σ ∈ GK = Gal(K̄/K) we set

fγ(σ)� γ−1 ·σ(γ) ∈ πét
1 (P1

K̄
\ {0,1,∞},−→01)pro−� .

Here and later our convention of composing a path α from y to z with a path β from
x to y will be that α ·β is defined as a path from x to z.

Let V be an algebraic variety defined over K and let v be a K-point or a tangential
point defined over K. By the comparison homomorphism

π1(V(C),v) → πét
1 (VK̄,v)pro−�

any element of π1(V(C),v) determines canonically an element of πét
1 (VK̄,v)pro−�,

and we shall use the same notation for an element of π1(V(C),v) and its image. In
particular, we have the comparison homomorphism

π1(U,
−→
01) → πét

1 (SpecK̄((z)),
−→
01)pro−� ,

where U ⊂C\ {0} is a punctured infinitesimal neighbourhood of 0 and SpecK̄((z)) is
an algebraic infinitesimal punctured neighbourhood of 0 in P1

K̄
. Hence a loop around

0 in C \ {0} determines canonically an element of

πét
1 (SpecK̄((z)),

−→
01)pro−� .

Similarly we have the comparison map from the torsor of paths from v to z on V(C)
to the torsor of �-adic paths from v to z on VK̄.

Informally, we define �-adic iterated integrals from
−→
01 to z as functions

lb(z) = lb(z)γ : GK → Q�

given by coefficients of fγ( ) indexed by elements b in a Hall basis B of the free
Lie algebra Lie(X,Y) on two generators X and Y. Let Bn be the set of elements of
degree n in B. Let

Hn ⊂ GK(μ�∞ )

be the subgroup of GK(μ�∞ ) defined by the condition that all lb(z) and lb(
−→
10) vanish

on Hn for all b ∈
⋃

i<n Bi.
Our first result concerns linear independence of �-adic iterated integrals.

Theorem 1. Assume that z ∈ K \ {0,1} is not a root of any equation of the form
zp · (1− z)q = 1, where p and q are integers such that p2+q2 > 0. Then the functions

lb(z) : Hn →Q�

for b ∈ Bn are linearly independent over Q�.
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Our next results concerns �-adic polylogarithms. Hence we recall here their def-
inition, see [Woj05a, Definition 11.0.1.]. Let x and y be the standard generators
of

πét
1 (P1

K̄
\ {0,1,∞},−→01)pro−� ,

see for example [Woj05a, Picture 1 on page 126]. Let Q�{{X,Y}} be the Q�-algebra
of non-commutative formal power series in non-commutative variables X and Y.
Let

E : πét
1 (P1

K̄ \ {0,1,∞},−→01)pro−� →Q�{{X,Y}}

be a continuous multiplicative embedding of πét
1 (P1

K̄
\ {0,1,∞},−→01)pro−� into the al-

gebra Q�{{X,Y}} given by
E(x) = exp(X) ,

E(y) = exp(Y) .

The �-adic polylogarithms ln(z) and the �-adic logarithm l(z) are defined as functions
on σ ∈ GK by the coefficients of the following expansion

logE( fγ(σ)) = l(z)(σ)X+
∞∑

n=1

ln(z)(σ)YXn−1+ . . . ,

where only relevent terms on the right hand side are written. The �-adic polylog-

arithms ln(z) and l(z) depend on a choice of a path γ from
−→
01 to z. If we want to

indicate the dependence on a path γ we shall write ln(z)γ and l(z)γ. The function

l(z) : GK →Q�

takes its values in Z� and agrees with the Kummer character κ(z) associated to z, see
[Woj05b, Proposition 14.1.0.].

Our second result concerns the minimal quotient of GK, on which the �-adic
polylogarithms ln(z) are defined and their ramification properties. For z ∈ K \ {0,1}
we consider the fields K(μ�∞ ) and K(μ�∞ ,z

1/�∞). Let

M(K(μ�∞ ,z
1/�∞))ab

�,1−z

be the maximal pro-� abelian extension of K(μ�∞ ,z1/�∞) that is unramified outside �
and 1− z.

Theorem 2. Assume that z ∈ K \ {0,1} is not a root of any equation of the form
zp · (1− z)q = 1, where p and q are integers such that p2+q2 > 0. Then we have:

(1) The �-adic polylogarithm
ln(z) : GK →Q�

factors through the group

Gal(M(K(μ�∞ ,z
1/�∞ ))ab

�,1−z/K) .
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(2) The �-adic polylogarithm ln(z) ramifies only at prime factors of the fractional
ideals

(�) , (z) , (1− z) .

(3) The �-adic polylogarithm ln(z) determines a non-trivial element in the group

Hom
(
Gal(M(K(μ�∞ ,z

1/�∞))ab
�,1−z/K(μ�∞ ,z

1/�∞)),Q�

)
.

Our third result connects �-adic polylogarithms to non-abelian Iwasawa theory
though we are not sure if our terminology of non-abelian Iwasawa theory is not an
exaggeration, since the result is quite elementary. Let us set

G = Gal
(
M(K(μ�∞ ,z

1/�∞))ab
�,1−z/K(μ�∞ ,z

1/�∞ )
)

and
Φ = Gal(K(μ�∞ ,z

1/�∞ )/K) .

The Galois group G is a Φ-module, hence it is also a Z�[[Φ]]-module. Therefore
Hom(G,Q�) is also a Z�[[Φ]]-module. If f ∈ Hom(G,Q�) and μ ∈ Z�[[Φ]] then we
denote by f μ the element f acted (multiplied) by μ.

Let χ : GK → Z×
�

denote the �-adic cyclotomic character. Observe that χ and l(z)
are continuous functions on Φ, hence we can integrate them against the measure μ.

Theorem 3. Let z belong to K \ {0,1}. Then we have

(lm(z))μ =
(∫

Φ
χm(x)dμ

)
lm(z)+

m−1∑

k=1

(∫

Φ

(−l(z)(x))k

k!
χm−k(x)dμ

)
lm−k(z)

for any μ ∈ Z�[[Φ]].

In the final sections of the paper we study �-adic sheaves. We shall show that
if an �-adic sheaf has the same monodromy representation as the classical complex
polylogarithm then the Galois action in stalks is given by the �-adic polylogarithms.

We say a few words about our terminology and our notation. The functions ln(z),
l(z) and lb(z) appear exactly at the same place in our studies as the classical complex
polylogarithms, the logarithm and iterated integrals when calculating sections of
the universal pro-unipotent connection on P1(C) minus a finite number of points.
Moreover the equation

l(xy) = l(x)+ l(y) ,

the fact that l(z) : GK → Z�(1) is a cocycle, functional equations of ln(z) and lb(z),
the fact that ln(ξ) is a cocycle for ξ a root of unity, the precise value of

l2n(
−→
10)

are proved using geometry, see [Woj05a, Woj05b] and [Woj09]. Geometry is also
used to calculate them explicitely, see [NW02] for �-adic polylogarithms and our
work in progress for arbitrary �-adic iterated integrals.
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Notation. The tensor product M⊗
Z�
Q� of a Z�-module M is denoted by M⊗Q�.

14.2 The Projective Line Minus 0, ∞ and n-th Roots of Unity

In this section we recall some elementary results concerning Galois actions on fun-
damental groups in the special case of

P
1
Q(μn) \ ({0,∞}∪μn) ,

see [Woj05b] and [DW04]. Let us fix a rational prime �. Let K be a number field
containing the group μn of n-th roots of unity. We abbreviate

V = P1
K \ ({0,∞}∪μn)

and denote by

π1(VK̄,
−→
01)

the pro-� completion of the étale fundamental group of VK̄ based at
−→
01.

First we describe how to choose generators of π1(VK̄,
−→
01). We fix the primitive

n-th root of unity

ξ� exp(
2πi
n

)

using the fixed embedding K̄ ⊂ C. Let β be the standard path from
−→
01 to

−→
10. Let x

be a loop around 0 in the counterclockwise direction based at
−→
01 in an infinitesimal

neighbourhood of 0 and such that the integral along x of the one-form dz/z is 2πi.

Let y′
0 be a loop around 1 based at

−→
10 in an infinitesimal neighbourhood of 1 defined

in the analogous way. Let sk be a path from
−→
01 to

−−→
0ξk in an infinitesimal neibourhood

of 0 as in [Woj05b, Picture 2, page 20]. Let rk : V → V be the automorphism given
by

rk(z) = ξk · z ,

and set

yk =

{
β−1 · y′

0 ·β for k = 0 ,

s−1
k · rk,∗(y0) · sk for 0 < k < n .

Then the elements
x,y0,y1, . . . ,yn−1
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are free generators of π1(VK̄,
−→
01). Observe that

s−1
k · rk,∗(y j) · sk =

{
y j+k for j+ k < n ,

x−1 · y j+k · x for j+ k � n .
(14.1)

Let z be either a K-rational point z ∈ V(K) or a tangential point defined over K. Let

γ be an �-adic path from
−→
01 to z on VK̄. For every σ ∈ GK, the element

fγ(σ) = γ−1 ·σ(γ)

is a pro-� word in the generators of π1(VK̄,
−→
01), hence we shall write

fγ(σ) = fγ(σ)(x,y0, . . . ,yn−1) .

Observe that rk,∗(γ) · sk is a path from
−→
01 to ξkz and by (14.1)

frk,∗(γ)·sk
(σ) = s−1

k · rk,∗(γ−1) ·σ(rk,∗(γ) · sk) = s−1
k · rk,∗( fγ(σ)) · sk · fsk

(σ)

= fγ(σ)(x,yk,yk+1, . . . ,yn−1, x
−1y0x, . . . , x−1yk−1x) · x

k(χ(σ)−1)
n . (14.2)

Let
E : π1(VK̄,

−→
01) → Q�{{X,Y0, . . . ,Yn−1}}

be the continuous multiplicative embedding of π1(VK̄,
−→
01) into the Q�-algebra of

non-commutative formal power series Q�{{X,Y0, . . . ,Yn−1}} given by

E(x) = exp(X) ,

E(y j) = exp(Y j)

for 0 � j < n. Let

π1(VK̄;z,
−→
01)

be the right π1(VK̄,
−→
01)-torsor of �-adic paths from

−→
01 to z. The map

δ → γ−1 · δ

defines a bijection as right torsors

tγ : π1(VK̄;z,
−→
01) → π1(VK̄,

−→
01) .

Composing tγ with the embedding E we get an embedding

Eγ : π1(VK̄;z,
−→
01) →Q�{{X,Y0, . . . ,Yn−1}}.

The Galois group GK acts on π1(VK̄,
−→
01) and on π1(VK̄;z,

−→
01) compatible with the

torsor structure. Hence we get two Galois representations
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ϕ−→
01

: GK → Aut(Q�{{X,Y0, . . . ,Yn−1}}) ,

ψγ : GK → GL(Q�{{X,Y0, . . . ,Yn−1}})

deduced from the action of GK on π1(VK̄,
−→
01) via the embedding E and on the torsor

of paths π1(VK̄;z,
−→
01) via the embedding Eγ respectively, see [Woj04, Sect. 4] and

also [Woj07, Sect. 1].
Before going farther we fix the following notation. The set of Lie polynomials

in Q�{{X,Y0, . . . ,Yn−1}} we denote by

Lie(X,Y0, . . . ,Yn−1) .

It is a free Lie algebra on n+ 1 generators X,Y0, . . . ,Yn−1. The set of formal Lie
power series in Q�{{X,Y0, . . . ,Yn−1}} we denote by

L(X,Y0, . . . ,Yn−1) .

We denote by
I2

the closed Lie ideal of L(X,Y0, . . . ,Yn−1) generated by Lie brackets with two or
more Y’s. We shall use the following inductively defined short hand notation

[Yk,X
(m)] =

{
Yk if m = 0
[[Yk,X

(m−1)],X] for m > 0 .

In an algebra the operator of the left (resp. right) multiplication by a we denote by
La (resp. Ra).

We recall the definition of �-adic iterated integrals from [Woj04]. Let B be
a Hall base of the free Lie algebra Lie(X,Y0, . . . ,Yn−1) on n+ 1 free generators
X,Y0, . . . ,Yn−1 and let Bm be the set of elements of degree m in B. For b ∈ B we
define �-adic iterated integrals

lb(z) : GK(μ�∞ ) → Q�

as follows. For σ ∈ GK(μ�∞ ) the expression (logψγ(σ))(1) is a Lie element, hence

(logψγ(σ))(1) =
∑

b∈B
lb(z)(σ) ·b .

More naively, for σ ∈ GK we define functions

lib(z) : GK →Q�

by the equality
logΛγ(σ) =

∑

b∈B
lib(z)(σ) ·b , (14.3)
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where
Λγ(σ)� E( fγ(σ)) . (14.4)

If n = 1 and Y = Y0 then the formula from the introduction defining �-adic poly-
logarithms has the form

logΛγ(σ) ≡ l(z)(σ)X+
∞∑

n=1

ln(z)(σ)[Y,X(n−1)] mod I2 .

With the representations ϕ−→
01

and ψγ there are associated the filtrations

{Gm = Gm(V,
−→
01)}m∈N

{Hm = Hm(V;z,
−→
01)}m∈N

of GK, see [Woj04, Sect. 3, pp. 122-124]. We recall that

Hm =

{
σ ∈ GK(μ�∞ )

∣∣∣∣∣∣
lb(z)(σ) = 0 and lb(ξk)(σ) = 0

for 0 � k < n and for all b ∈
⋃

i<m Bi

}
.

If b ∈ Bm and σ ∈ Hm then lb(z)(σ) = lib(z)(σ).
Let L be a Lie algebra. The Lie ideals of the lower central series are defined

recursively by

ΓmL =

{
L if m = 1
[Γm−1L,L] for m > 1.

Proposition 4. For σ ∈ Hm(V;z,
−→
01) we have

(logψγ(σ))(1) ≡ logΛγ(σ) ≡ Λγ(σ)−1 mod Γm+1L(X,Y0, . . . ,Yn−1) . (14.5)

Proof. It follows from [Woj04, Lemma 1.0.2.] that

ψγ(σ) = LΛγ(σ) ◦ϕ−→
01

(σ) .

After taking logarithm and applying the Baker-Campbell-Hausdorff formula we get
the first congruence of the proposition. The second congruence is clear. ��

Let us set
γk � rk,∗(γ) · sk. (14.6)

Our next result is a consequence of the formula (14.2).

Proposition 5. Let σ ∈ Hm(V;z,
−→
01). Then

log(Λγk
(σ)(X,Y0, . . . ,Yn−1)) ≡ log(Λγ(σ)(X,Yk, . . . ,Yn−1,Y0, . . . ,Yk−1))

modulo Γm+1L(X,Y0, . . . ,Yn−1).

Proof. The proof is the same as the proof of Lemma 15.2.1 in [Woj05b]. ��
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Corollary 6. (1) Let m > 1 and let σ ∈ Hm(V;z,
−→
01). Then we have

log(Λγ(σ)(X,Y0, . . . ,Yn−1)) ≡
n−1∑

k=0

lm(ξ−kz)(σ)[Yk,X
(m−1)]

modulo Γm+1L(X,Y0, . . . ,Yn−1)+ I2.
(2) Let σ ∈ GK(μ�∞ ). Then we have

log(Λγ(σ)(X,Y0, . . . ,Yn−1)) ≡ l(z)(σ)X+
n−1∑

k=0

l(1− ξ−kz)(σ)Yk

modulo Γ2L(X,Y0, . . . ,Yn−1).

Proof. The corollary follows from the very definition of �-adic polylogarithms and
from Proposition 5. ��

Now we shall define polylogarithmic quotients of the representations ϕ−→
01

and
ψγ. Let I be a closed ideal of Q�{{X,Y0, . . . ,Yn−1}} generated by monomials with
any two Y’s and by monomials YkX for 0 � k � n−1. We set

Pol(X,Y0, . . . ,Yn−1)� Q�{{X,Y0, . . . ,Yn−1}}/I .

Observe that the classes
Xi and XiYk

with i = 0,1, . . . and 0 � k � n − 1 form a topological base of Pol(X,Y0, . . . ,Yn−1).
We denote by

Ωγ(σ) ∈ Pol(X,Y0, . . . ,Yn−1)

the image of the power series Λγ(σ) ∈ Q�{{X,Y0, . . . ,Yn−1}}.

Proposition 7. (1) The representation ϕ−→
01

induces a representation

ϕ̄−→
01

: GK → Aut(Pol(X,Y0, . . . ,Yn−1)) .

given by

ϕ̄−→
01

(σ)(X) = χ(σ)X

ϕ̄−→
01

(σ)(Yk) = χ(σ)Yk+

∞∑

i=1

(−1)i

i!
χ(σ)

( k
n

(χ(σ)−1)
)iXiYk

for k = 0,1, . . . ,n−1.
(2) The representation ψγ induces a representation

ψ̄γ : GK → GL(Pol(X,Y0, . . . ,Yn−1))

given by the formula
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ψ̄γ(σ) = LΩγ(σ) ◦ ϕ̄−→
01

(σ) .

(3) For n = 1 we have

log(Ωγ(σ)) = l(z)γ(σ)X+
∞∑

i=1

(−1)i−1li(z)γ(σ)Xi−1Y0 .

Proof. (1) It follows from [Woj05b, Proposition 15.1.7] that ϕ−→
01

(I) ⊂ I. Hence ϕ−→
01

induces a representation on the quotient space. The explicit formulae also follow
from [Woj05b, Proposition 15.1.7].

(2) We recall that ψγ(σ) = LΛγ(σ) ◦ϕ−→
01

(σ), see [Woj04, Sect. 4], hence the exis-
tence of ψ̄γ and the explicit formula. Assertion (3) follows from the definition of
�-adic polylogarithms. ��

For α ∈ Q×
�

we denote by τ(α) the automorphism of the Q�-algebra Pol(X,Y)
such that

τ(α)(X) = α ·X

τ(α)(Y) = α ·Y

and continuous with respect to the topology defined by the powers of the augmen-
tation ideal. For n = 1 we have a very simple description of ϕ̄−→

01
.

Corollary 8. If n = 1 then ϕ̄−→
01

(σ) = τ(χ(σ)).

14.3 Linear Independence of �-adic Iterated Integrals

In this section we shall prove linear independence of �-adic polylogarithms in a
generic situation. We use the notation of Sect. 14.2.

If a1, . . . ,ak belong to K× we denote by

〈a1, . . . ,ak〉 = 〈ai | 1 � i � n〉

the subgroup of K× generated by a1, . . . ,ak.

Theorem 9. Suppose that z ∈ K is not a root of any equation

zp ·
n−1∏

k=0

(z− ξk)qk = 1 ,

where p and qk are integers not all equal zero. Suppose that

〈z,1− ξ−kz | 0 � k � n−1〉∩ 〈1− ξ−k | 1 � k � n−1〉 ⊂ μn .

Then the homomorphisms
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lb(z) : Hm(V;z,
−→
01)/Hm+1(V;z,

−→
01) → Q�

for b ∈ Bm are linearly independent over Q�.

Proof. It follows from the formula

ψγ(σ) = LΛγ(σ) ◦ϕ−→
01

(σ) ,

see [Woj04, page 131], that the morphism

ψγ : GK → GL(Q�{{X,Y0, . . . ,Yn−1}})

induces the morphism of associated graded Lie algebras

Ψ
z,
−→
01

:
∞⊕

m=1

Hm(V;z,
−→
01)

Hm+1(V;z,
−→
01)

⊗Q� → Lie(X,Y0, . . . ,Yn−1)�Der
(
Lie(X,Y0, . . . ,Yn−1)

)
.

It follows from [Woj05b, Lemma 15.2.5.] that the image of Ψ
z,
−→
01

is contained in

Lie(X,Y0, . . . ,Yn−1)�Der∗
Z/nLie(X,Y0, . . . ,Yn−1) ,

see [Woj05b, Definition 15.2.4.] for the definition of the right hand factor. The Lie
algebra of special derivations

Der∗
Z/nLie(X,Y0, . . . ,Yn−1)

is isomorphic as a vector space to Lie(X,Y0, . . . ,Yn−1) divided by a vector subspace
generated by Y0. The Lie bracket of the Lie algebra of special derivations induces
a new bracket denoted by { } on Lie(X,Y0, . . . ,Yn−1). The obtained Lie algebra we
denote by

Lie(X,Y0, . . . ,Yn−1){ } ,

see [Woj05b, page 24 and Lemma 15.2.8.]. To simplify the notation let us set

L̃ien � Lie(X,Y0, . . . ,Yn−1)�Lie(X,Y0, . . . ,Yn−1){ }

Hence, finally, the morphism ψγ : GK → GL(Q�{{X,Y0, . . . ,Yn−1}}) induces the
morphism of graded Lie algebras

Ψ
z,
−→
01

:
∞⊕

m=1

Hm(V;z,
−→
01)

Hm+1(V;z,
−→
01)

⊗Q� → L̃ien .

For σ ∈ Hm(V;z,
−→
01) the morphism Ψ

z,
−→
01

is given by the formula

[
Ψ

z,
−→
01

(σ)
]
degm
=

(
logΛγ(σ), logΛβ(σ)

)
mod Γm+1(L̃ien) ,
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see [Woj07, Sect. 1, page 194]. Hence, it follows from Corollary 6 (2) that the
morphism Ψ

z,
−→
01

in degree 1 is given by

[
Ψ

z,
−→
01

(σ)
]
deg1
=

(
l(z)(σ)X+

n−1∑

k=0

l(1− ξ−kz)(σ)Yk,

n−1∑

k=1

l(1− ξ−k)(σ)Yk

)
.

The elements z and 1−ξ−kz, for 0 � k < n are linearly independent in K× ⊗Q, and
the intersection

〈1− ξ−k | 1 � k � n−1〉⊗Q∩〈z,1− ξ−kz | 0 � k � n−1〉⊗Q

is trivial in K× ⊗Q. By Kummer theory we find τ ∈ H1 = K(μ�∞ ) and σk ∈ H1 for
0 � k < n such that

[
Ψ

z,
−→
01

(τ)
]
deg1
= (X,0) and

[
Ψ

z,
−→
01

(σk)
]
deg1
= (Yk,0)

for 0 � k < n. We conclude that the image of Ψ
z,
−→
01

contains the first factor of L̃ien.

For m > 1 and for σ ∈ Hm(V;z,
−→
01) we have

logΛγ(σ) ≡
∑

b∈Bm

lb(z)(σ)b mod Γm+1L(X,Y0, . . . ,Yn−1) .

Hence, it follows that the functions

lb(z) : Hm(VK;z,
−→
01) → Q�

are linearly independent over Q�. ��

Theorem 1 of Sect. 14.1 follows immediately from Theorem 9.

Corollary 10. The �-adic polylogarithms

lm(ξkz) : Hm(V;z,
−→
01)/Hm+1(V;z,

−→
01) →Q�

for k = 0,1, . . . ,n−1 are linearly independent over Q�.

Proof. Corollary 10 follows immediately from Theorem 9 and Corollary 6 (1) of
Sect. 14.2. ��

Remark 11. Theorem 9 is an analogue of the statement, as far as we know unproven,
that the iterated integrals indexed by elements of Bm as in [Woj91] of sequences of

length m of 1-forms dz
z and dz

z−ξk for 0 � k � n−1 along a fixed path γ from
−→
01 to a z

satisfying the assumption of Theorem 9, are linearly independent over Q.
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14.4 Ramification Properties of �-adic Polylogarithms

Let as above K be a number field and z either a rational or a tangential point of

P
1 \ {0,1,∞}

defined over K. Let γ be an �-adic path on P1
K̄
\ {0,1,∞} from

−→
01 to z.

For an algebraic extension L/K and z ∈ K, we denote the maximal pro-� (resp.
maximal abelian pro-�) extension of L that is unramified outside � and all prime
factors of the fractional ideal (z) by

M(L)�,z (resp. M(L)ab
�,z ) .

The triple (P1
K \ {0,1,∞},z,−→01) has good reduction outside the prime ideals which

are factors of the fractional ideals (z) or (1 − z). Therefore the action of GK on the
torsor of �-adic paths

π1(P1
K̄
\ {0,1,∞};z,

−→
01)

from
−→
01 to z factors through

Gal(M(K(μ�∞))�,z(1−z)/K) .

Hence the �-adic polylogarithm lm(z)γ : GK → Q� factors as a map

lm(z)γ : Gal
(
M(K(μ�∞))�,z(1−z)/K) → Q� .

Let us consider the tower of fields K ⊆ K(μ�∞) ⊆ K(μ�∞ ,z
1/�∞ ).

Proposition 12. The �-adic polylogarithm lm(z)γ factors through

Gal
(
M(K(μ�∞ ,z

1/�∞))ab
�,1−z/K

)
.

Proof. We consider the polylogarithmic quotient ψ̄γ : GK → GL(Pol(X,Y)) as in
Proposition 7 and restrict to

GK(μ�∞ ,z1/�∞ ) ⊂ GK .

By Proposition 7 (1) we have ϕ̄−→
01

(σ) = id for σ ∈ GK(μ�∞ ), so that

ψ̄γ(σ) = LΩγ(σ) ∈ GL(Pol(X,Y))

by Proposition 7 (2). By Proposition 7 (3) for σ ∈ GK(μ�∞ ,z1/�∞ ) we have

log(Ωγ(σ)) =
∞∑

n=1

(−1)n−1ln(z)γ(σ)Xn−1Y
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and

Ωγ(σ) = exp
( ∞∑

n=1

(−1)n−1ln(z)γ(σ)Xn−1Y
)
= 1+

∞∑

n=1

(−1)n−1ln(z)γ(σ)Xn−1Y .

Observe that the subgroup in GL(Pol(X,Y)) of automorphisms of the form LΩ,
where Ω = 1+

∑∞
n=1 cnXn−1Y is abelian. Hence we deduce a factorization

ψ̄γ : Gal(M(K(μ�∞ ,z
1/�∞ ))ab

�,z(1−z)/K) → GL(Pol(X,Y)) .

Therefore the �-adic polylogarithm lm(z)γ factors through the Galois group

Gal(M(K(μ�∞ ,z
1/�∞))ab

�,z(1−z)/K) .

The functions lm(z)γ are given explicitely by Kummer characters associated to

�n−1∏

i=0

(1− ξi
�nz1/�n

)im−1/�n
,

see [NW02]. In fact, the lm(z)γ factor through Gal(M(K(μ�∞ ,z
1/�∞ ))ab

�,1−z/K), since

1− ξi
�nz1/�n ≡ 1 modulo any prime dividing a prime factor that occurs in (z). ��

Corollary 13. The �-adic polylogarithm lm(z)γ restricted to the Galois group

Gal
(
M(K(μ�∞ ,z

1/�∞))ab
�,1−z/K(μ�∞ ,z

1/�∞ )
)

is a homomorphism.

Proof. In the proof of Proposition 12 we have already seen that the representation
ψ̄γ restricted to GK(μ�∞ ,z1/�∞ ) is abelian. ��

Combining Proposition 12, Corollary 10 and 13 we get Theorem 2 of Sect. 14.1.

14.5 Iwasawa Action on �-adic Polylogarithms

We keep the notation of Sect. 14.4. Let us consider the tower of fields

K ⊆ K(μ�∞) ⊆ K(μ�∞ ,z1/�∞) ⊆ M(K(μ�∞ ,z
1/�∞ ))ab

�,1−z

with Galois groups

G = Gal
(
M(K(μ�∞ ,z

1/�∞ ))ab
�,1−z/K(μ�∞ ,z

1/�∞)
)

Z�(1) = Gal(K(μ�∞ ,z
1/�∞)/K(μ�∞))

Γ = Gal(K(μ�∞)/K)
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where Gal
(
K(μ�∞ ,z

1/�∞ )/K(μ�∞)
)
= Z�(1) as a Γ-module. We set

Φ = Gal
(
K(μ�∞ ,z

1/�∞)/K
)
= Z�(1)�Γ

and want to understand the action of Φ and of Z�[[Φ]] on G. By Corollary 13,
the �-adic polylogarithms ln(z)γ induce elements of Hom(G,Q�). As our first step to
understand G we shall study the Z�[[Φ]]-module generated by ln(z)γ in Hom(G,Q�).

We recall that Φ acts on G on the left in the following way. Let σ ∈ Φ and τ ∈ G.
Let σ̃ ∈ Gal

(
M(K(μ�∞ ,z

1/�∞ ))ab
�,1−z/K

)
be a lifting of σ. Then the formula

στ� σ̃ · τ · σ̃−1

defines the action of Φ on G. The right action of Φ on Hom(G,Q�) is given by

fσ(τ) = f (σ̃ · τ · σ̃−1) .

Lemma 14. For any α,τ ∈ GK we have in Q�{{X,Y}}

Λγ(α · τ ·α−1) = Λγ(α) ·ϕ−→
01

(α)(Λγ(τ)) ·ϕ−→
01

(α · τ ·α−1)(Λγ(α)−1) .

Proof. This follows from [Woj04, Proposition 1.0.7 and Corollary 1.0.8]. ��

We define the product # on the Lie algebra of formal Lie power series L(X,Y)
by the Baker-Campbell-Hausdorff formula

A#B� log
(
exp(A) · exp(B)

)
.

Proposition 15. The action of σ ∈ Φ on lm(z)γ ∈ Hom(G,Q�) is given by

(lm(z)γ)σ = χ(σ)m · lm(z)γ +
m−1∑

k=1

(−l(z)γ(σ))k

k!
·χ(σ)m−k · lm−k(z)γ .

Proof. Let τ ∈ G and let σ̄ and τ̄ be liftings of σ and τ to Gal(K̄/K). It follows from
Lemma 14 that

logΛγ(σ̄ · τ̄ · σ̄−1) = logΛγ(σ̄)#ϕ−→
01

(σ̄)(logΛγ(τ̄))#
(
ϕ−→

01
(σ̄ · τ̄ · σ̄−1)(− logΛγ(σ̄))

)
.

Hence we get modulo I2 that

∞∑

n=1

ln(z)(στ)[Y,X(n−1)] ≡
(
l(z)(σ̄)X+

∞∑

n=1

ln(z)(σ̄)[Y,X(n−1)]
)
#

(
χ(σ̄)l(z)(τ)X

+

∞∑

n=1

χ(σ̄)n · ln(z)(τ)[Y,X(n−1)]
)
#

(
− l(z)(σ̄)X−

∞∑

n=1

ln(z)(σ̄)[Y,X(n−1)]
)
.
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Observe that l(z)(σ̄) and χ(σ̄) depend only on σ. Hence we replace them by l(z)(σ)
and χ(σ). We get the formula of the proposition by calculating the right hand side
of the congruence and comparing coefficients at [Y,X(n−1)]. ��

Corollary 16. Let μ ∈ Z�[[Φ]]. Then (lm(z)γ)μ equals

(∫

Φ
χ(x)mdμ(x)

)
· lm(z)γ+

m−1∑

k=1

(∫

Φ

(−l(z)γ(x))k

k!
·χ(x)m−kdμ(x)

)
· lm−k(z)γ .

Proof. This generalization of Proposition 15 is straightforward. ��

Observe that we have just proved Theorem 3 from Sect. 14.1.

14.6 Profinite Sheaves

The �-adic polylogarithms and �-adic iterated integrals studied in [Woj04],
[Woj05a], [Woj05b] and in [NW02] arise from actions of Galois groups on �-adic
paths

π1(P1
Q
\ {a1, . . . ,an};z,v) .

On the other side in [BD94], [BL94] and in various other papers motivic polylog-
arithmic sheaves are studied. Their �-adic realizations are inverse systems of locally
constant sheaves of Z/�n

Z-modules in étale topology. Each stalk is equipped with a
Galois representation. The relation between parallel transport and the Galois repre-
sentations in stalks is given by the formula

σt ◦ p∗ = σ(p)∗ ◦σs , (14.7)

where p∗ (resp. σ(p)∗) is the parallel transport along the path p (resp. σ(p)) from s
to t, σs (resp. σt) is the action of σ ∈ GK in the stalk over s (resp. over t) and σ(p)
is the image of p by σ in the torsor of paths from s to t.

The formula (14.7) is fundamental to relate �-adic polylogarithms introduced in
[Woj05a] with polylogarithmic sheaves, which we discuss next.

Let S be a smooth quasi-projective, geometrically connected algebraic variety
over K. We denote by Sét the étale site associated to S. We denote by Π1(Sét) the
fundamental groupoid on Sét, see [SGA1, Exp V].

Definition 17. A locally constant sheaf of finite sets on Sét is a functor

Π1(Sét) →
(

category of finite sets
)
.

Let ā : Spec(K̄) → S be a geometric point of S with values in K̄. The cate-
gory Π1(Sét) is equivalent to the category with one object and automorphism group
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πét
1 (S, ā). Hence a locally constant sheaf F of finite sets on Sét is a finite discrete set

Fā, the stalk of F in ā, equipped with a continuous action of πét
1 (S, ā).

Let S have a K-point s : Spec(K) → S and let s̄ : Spec(K̄) → SK̄, and by abuse
of notation also s̄ : Spec(K̄) → S, be the corresponding geometric point of SK̄ or S.
The structure map pr : S → Spec(K) induces the projection

pr∗ : πét
1 (S, s̄) → π1(Spec(K),Spec(K̄)) = GK

that is canonically split by
s∗ : GK → πét

1 (S, s̄) .

Therefore we have a semidirect product

πét
1 (S, s̄) = πét

1 (SK̄, s̄)�GK ,

and for a locally constant sheaf F both groups πét
1 (SK̄, s̄) and GK act on Fs̄. If s and t

are two K-points of S then the relation between actions of GK on Fs̄ and Ft̄ is given
by the formula (14.7).

Definition 18. A profinite sheaf on S is a projective system of locally constant
sheaves of finite sets on Sét.

The category of finite sets we can replace by the category of finite groups, finite
abelian groups, finite �-groups, finite �-sets, finite Z�-modules, finite Z�-algebras
and so on. Then we speak about a profinite sheaf of groups, abelian groups, and so
on. A classical smooth �-adic sheaf provides an example of a profinite sheaf.

Let F = {Fi}i∈I be a profinite sheaf on S. Then

Fs̄ � lim←−−Fi,s̄

is the stalk of the profinite sheaf F over s̄. The group πét
1 (S, s̄) acts continuously on

Fs̄. Hence we get two representations:

ρs̄ : πét
1 (SK̄, s̄) → Aut(Fs̄) ,

called the monodromy representation in the stalk over s̄ and

GK → Aut(Fs̄) ,

the Galois representation in the stalk over s̄. The relation between Galois represen-
tations in the stalks over s̄ and t̄, where t is another K-point of S, are given by the
formula

σt̄ ◦p∗ = σ(p)∗ ◦σs̄ , (14.8)

where p∗ (resp. σ(p)∗) is the parallel transport along the path p (resp. σ(p)) from s̄
to t̄, σs̄ (resp. σt̄) is the action of σ ∈ GK in the stalk over s̄ (resp. over t̄) and σ(p)
is the image of p by σ in the torsor of paths from s̄ to t̄.
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It is clear from (14.8) that the Galois representation in the stalk over s̄ together
with the cocycle σ �→ p−1 ·σ(p) determines uniquely the Galois representation in
the stalk over t̄. Let us write (14.8) in the form

p−1
∗ ◦σt̄ ◦ p∗ =

(
p−1 ·σ(p)

)
∗ ◦σs̄ .

Therefore it is crucial to calculate the element

fp(σ)� p−1 ·σ(p) ∈ πét
1 (SK̄, s̄) .

We started to study fp(σ) in the series of papers on �-adic iterated integrals.
For the next proposition we introduce the following notation

FS,s̄
(
GK

)
� {T−1 ·σ(T) ∈ πét

1 (SK̄, s̄) ; T ∈ πét
1 (SK̄, s̄), σ ∈ GK} .

Proposition 19. Let us assume that FS,s̄
(
GK

)
topologically and normally generates

πét
1 (SK̄, s̄). Let F be a profinite sheaf on S such that the monodromy representation

ρs̄ : πét
1 (SK̄, s̄) → Aut(Fs̄)

is non-trivial. Then the Galois representation GK → Aut(Fs̄) in the stalk Fs̄ is also
non-trivial.

Proof. For T ∈ πét
1 (SK̄, s̄) and σ ∈ GK formula (14.8) leads to

T−1
∗ ◦σs̄ ◦T∗ ◦ (σs̄)

−1 = (T−1 ·σ(T))∗.

If σs̄ = id for all σ ∈ GK then the set FS,s̄
(
GK

)
lies in the kernel of ρs̄. But the set

FS,s̄
(
GK

)
topologically and normally generates πét

1 (SK̄, s̄). Hence σs̄ cannot be the
identity for all σ ∈ GK. ��

14.7 On Profinite Sheaves Related to Bundles
of Fundamental Groups

In this section we shall study examples of profinite sheaves for which the mon-
odromy representation determines Galois representations in the stalks. The notation
and assumptions are as in Sect. 14.6. We recall only that π1(SK̄, s̄) is the pro-� com-
pletion of πét

1 (SK̄, s̄).
For σ ∈ GK we denote by σ the induced automorphisms of πét

1 (SK̄, s̄) and of
π1(SK̄, s̄). We have the surjective map πét

1 (SK̄, s̄) → π1(SK̄, s̄). If T ∈ πét
1 (SK̄, s̄) we

denote also by T its image in π1(SK̄, s̄).

Proposition 20. Let S and s be as in Sect. 14.6. We assume that π1(SK̄, s̄) is a free
noncommutative pro-� group. Let Ps̄ be a profinite sheaf of �-groups on S whose
stalk over s̄ is the group (Ps̄)s̄ = π1(SK̄, s̄) with the monodromy representation
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ρs̄ : πét
1 (SK̄, s̄) → Aut(π1(SK̄, s̄))

given by ρs̄(T)(w) = T ·w ·T−1. Then for any σ ∈ GK and any w ∈ π1(SK̄, s̄) we have

σs̄(w) = σ(w) .

Proof. Let σ ∈ GK, T ∈ πét
1 (SK̄, s̄) and w ∈ π1(SK̄, s̄). The formula (14.8) implies

σs̄(T ·w ·T−1) = σ(T) ·σs̄(w) ·σ(T)−1 .

Let us take T such that its image in π1(SK̄, s̄) is w. Then

σs̄(w) = σ(w) ·σs̄(w) ·σ(w)−1 .

The assumption that π1(SK̄, s̄) is a free pro-� group implies that σs̄(w) = σ(w)η(σ,w),
where η(σ,w) ∈ Z�. Let w1,w2 ∈ π1(SK̄, s̄) be two arbitrary noncommuting elements.
Then

σs̄(w1 ·w2) = σ(w1 ·w2)η(σ,w1·w2) = (σ(w1) ·σ(w2))η(σ,w1·w2)

and
σs̄(w1) ·σs̄(w2) = σ(w1)η(σ,w1) ·σ(w2)η(σ,w2) .

Hence we get

(σ(w1) ·σ(w2))η(σ,w1·w2) = σ(w1)η(σ,w1) ·σ(w2)η(σ,w2)

for two noncommuting elements σ(w1), σ(w2) in the free pro-� group π1(SK̄, s̄) and
for η(σ,w1 ·w2) � 0, η(σ,w1) � 0 and η(σ,w2) � 0. This implies that η(σ,w) = 1 for
all σ and w. ��

Proposition 21. Let S and s be as above. Let P be a profinite sheaf on S×S whose
stalk over (s̄, s̄) is P(s̄,s̄) = π1(SK̄, s̄) considered as a set. We assume that the mono-
dromy representation

ρ(s̄,s̄) : πét
1 (SK̄, s̄)×πét

1 (SK̄, s̄) → Bijections(π1(SK̄, s̄))

is given by ρ(s̄,s̄)(T1,T2)(w)=T1 ·w ·T−1
2 . We assume also that the center of the group

π1(SK̄, s̄) is 1. Then for any σ ∈ GK and any w ∈ π1(SK̄, s̄) we have

σ(s̄,s̄)(w) = σ(w) .

Proof. The formula (14.8) implies

σ(T1) ·σ(s̄,s̄)(w) ·σ(T2)−1 = σ(s̄,s̄)(T1 ·w ·T−1
2 ) . (14.9)

Let us take T1 = T2 = T and w = 1. Then we get

σ(T) ·σ(s̄,s̄)(1) ·σ(T)−1 = σ(s̄,s̄)(1) .
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Hence σ(s̄,s̄)(1) lies in the center of π1(SK̄, s̄) and σ(s̄,s̄)(1)= 1. Let us take T2 =w= 1
in the formula (14.9). Then we get σ(T1) = σ(s̄,s̄)(T1) for any T1 ∈ π1(SK̄, s̄). ��

14.8 Polylogarithmic Profinite Sheaves and �-adic
Polylogarithms

We shall show that if a profinite sheaf of Z�-modules on P1
K \ {0,1,∞} has the same

monodromy representation as the classical complex polylogarithm then the Galois
representation in the stalk over z ∈

(
P

1
K \ {0,1,∞}

)
(K) is given by the �-adic polylog-

arithms evaluated at z.
We start by recalling a result about the monodromy of classical complex poly-

logarithms. The constant vector bundle with fibre Pol(X,Y)

P
1(C) \ {0,1,∞}×Pol(X,Y) → P1(C) \ {0,1,∞}

is endowed with the connection ∇ = d −ω defined by the 1-form

ω =
1

2πi
dz
z

⊗X+
1

2πi
dz

z−1
⊗Y .

The space of horizontal sections Λ : P1(C) \ {0,1,∞} → Pol(X,Y) is the solution
space of the differential equation

dΛ(z)− (
1

2πi
dz
z

⊗X+
1

2πi
dz

z−1
⊗Y) ·Λ(z)= 0 .

One checks that

Λ−→
01

(z)� exp
( 1
2πi

log(z)
)
X+

1
2πi

log(1− z)Y+
∞∑

k=2

−1

(2πi)k
Lik(z)Xk−1Y

is locally a horizontal section. The functions log(z), log(1− z) and Lik(z) are calcu-

lated along a path α from
−→
01 to z.

Let x and y be the standard generators of π1(P1(C)\{0,1,∞},−→01). To calculate the
monodromy of Λ−→

01
(z) we integrate along the paths α · x and α · y. The monodromy

transformation of Λ−→
01

(z) is given by

x : Λ−→
01

(z) → Λ−→
01

(z) · exp(X)

y : Λ−→
01

(z) → Λ−→
01

(z) · (1+Y) .

The group π1(P1(C) \ {0,1,∞},z) is freely generated by

αx = α · x ·α−1 and αy = α · y ·α−1 .
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The monodromy representation of (Pol(X,Y),∇) in z

ρz : π1(P1(C) \ {0,1,∞},z) → GL(Pol(X,Y))

is given by
ρz(

αx) = Rexp(X)

ρz(
αy) = R1+Y .

For a word w(αx,α y) in αx and αy we thus find

ρz
(
w(αx,α y)

)
= Rw(exp(X),1+Y) = RĒ(w) .

Now we shall study the �-adic situation. Let z0 be a K-point of P1
K \ {0,1,∞}. We

start with the description of the action of GK on

π1(P1
K̄ \ {0,1,∞},z0) .

Let γ be a path from z0 to
−→
01 and let p be the standard path from

−→
01 to

−→
10. We recall

that x and y are the standard generators of π1(P1
K̄
\ {0,1,∞},−→01). Then

xz0
= γ−1 · x ·γ and yz0

= γ−1 · y ·γ

are free generators of the pro-� group π1(P1
K̄
\ {0,1,∞},z0). The following lemma is

a standard exercice.

Lemma 22. The action of GK on π1(P1
K̄
\ {0,1,∞},z0) is given by the formulae

σ(xz0
) = fγ(σ)−1 · xz0

χ(σ) · fγ(σ)

σ(yz0
) = fγ(σ)−1 · (γ−1 · fp(σ)−1 ·γ) · yz0

χ(σ) · (γ−1 · fp(σ) ·γ) · fγ(σ) .

Let z be another K-point of P1
K \ {0,1,∞}. Let δ be a path from z to z0. Let us set

γz � γ · δ .

The following equalities can be found in [Woj04].

fγ·δ(σ) = δ−1 · fγ(σ) · δ · fδ(σ) and fδ−1 (σ)−1 = δ · fδ(σ) · δ−1 . (14.10)

Hence we get
δ · fγ·δ(σ) · δ−1 = fγ(σ) · fδ−1(σ)−1 . (14.11)

The group π1(P1
K̄
\ {0,1,∞},z) is freely generated by the elements

xz � γ−1
z · x ·γz and yz � γ−1

z · x ·γz

as a pro-� group. We use the following exponential embedings.
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E−→
01

: π1(P1
K̄
\ {0,1,∞},−→01) →Q�{{X,Y}}

E−→
01

(x)� exp(X) and E−→
01

(y)� exp(Y) ,

Ez0
: π1(P1

K̄
\ {0,1,∞},z0) →Q�{{X,Y}}

Ez0
(xz0

)� exp(X) and Ez0
(yz0

)� exp(Y) ,

Ez : π1(P1
K̄ \ {0,1,∞},z) →Q�{{X,Y}}

Ez(xz)� exp(X) and Ez(yz)� exp(Y) .

In other words we have trivialized the bundle of fundamental groups along the path
γz. The action of GK on Q�{{X,Y}} considered over a K-point s is deduced from the
action of GK on π1(P1

K̄
\ {0,1,∞}, s) so it depends on s

Using the embeddings Ea, for a ∈ {−→01,z0,z}, we can define the Λ-series as

Λδ(σ)� Ez( fδ(σ)) and Λγ(σ)� Ez0
( fγ(σ)) .

The composition of an embedding Ea with the quotient map Q{{X,Y}} → Pol(X,Y)
we denote by Ēa. We recall that the images of Λ-series by the quotient map are
Ω-series. For example we have

Ωδ−1(σ) = Ēz0
( fδ−1 (σ)) .

Because of the trivialization of the bundle of fundamental groups we can compare
various Λ-series. It follows from (14.10) and (14.11) that

Λγ·δ(σ) = Λγ(σ) ·Λδ(σ) ,

(
Λδ−1 (σ)

)−1
= Λδ(σ)

Λγ·δ(σ) = Λγ(σ) ·
(
Λδ−1(σ)

)−1 . (14.12)

These equalities imply the analogous equalities for Ω-series.

Theorem 23. Let z0 be a K-point of P1
K \ {0,1,∞}, and let P be a profinite sheaf of

Z�-algebras over P1
K \ {0,1,∞} such that:

(i) Pz0
⊗Q� = Pol(X,Y) as a Q�-algebra, and

(ii) The monodromy representation of P on the stalk over z0 tensored by Q�

ρz0
: πét

1 (P1
K̄ \ {0,1,∞},z0) → GL(Pol(X,Y))

is given by the formula
ρz0

(
w
)
= LĒz0 (w) .

Let z be another K-point of P1
K \ {0,1,∞}. Let δ be a path from z to z0 and let α be a

path from
−→
01 to z. Then
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δ∗ ◦σz ◦ (δ∗)−1 = LΩα(σ) ◦RB(σ) ◦τ(χ(σ)) ,

where B : GK → Pol(X,Y) satisfies B(σ ·σ1) =
(
τ(χ(σ))(B(σ1))

)
·B(σ) and

log
(
Ωα(σ)

)
= l(z)α(σ)X+

∞∑

i=1

(−1)i−1li(z)α(σ)Xi−1Y .

Proof. Let us set γ = (δ ·α)−1. Then γ is a path from z0 to
−→
01. Let σ ∈ GK and let

w ∈ πét
1 (P1

K̄
\ {0,1,∞},z0). It follows from Lemma 22 that

Ēz0

(
σ(w)

)
) = (Ωγ(σ))−1 ·

(
Ēz0

(w)(χ(σ)X,χ(σ)Y)
)
·Ωγ(σ) . (14.13)

It follows from (14.8) that

σz0

(
Ēz0

(w)
)
= Ēz0

(σ(w)) ·σz0
(1) .

Hence it follows from (14.13) that

σz0

(
Ēz0

(w)
)
= (Ωγ(σ))−1 · Ēz0

(w)(χ(σ)X,χ(σ)Y) ·Ωγ(σ) ·σz0
(1) . (14.14)

Hence for any W(X,Y) ∈ Pol(X,Y) we have

σz0
(W(X,Y)) = (Ωγ(σ))−1 ·W(χ(σ)X,χ(σ)Y) ·Ωγ(σ) ·σz0

(1) . (14.15)

We shall calculate the representation of GK in Pz ⊗Q�. It follows from the funda-
mental formula (14.8) that

δ∗ ◦σz ◦ δ−1
∗ = δ∗ ◦σ(δ)−1

∗ ◦σz0
.

Observe that

δ∗ ◦σ(δ)−1
∗ = (δ ·σ(δ−1))∗ = ( fδ−1 (σ))∗ = ρz0

( fδ−1 (σ)) = LΩ
δ−1 (σ) .

Hence we get
δ∗ ◦σz ◦ δ−1

∗ = LΩ
δ−1 (σ) ◦σz0

.

The formula (14.15) implies that

LΩ
δ−1 (σ) ◦σz0

= LΩ
δ−1 (σ) ◦L(Ωγ(σ))−1 ◦RΩγ(σ)·σz0 (1) ◦τ(χ(σ))

= LΩ
δ−1 (σ)·(Ωγ(σ))−1 ◦RΩγ(σ)·σz0 (1) ◦τ(χ(σ)) .

By (14.12) we deduce that

Ωδ−1(σ) · (Ωγ(σ))−1 = (Ωγ·δ(σ))−1 = (Ωα−1(σ))−1 = Ωα(σ) .

With B(σ) = Ωγ(σ) ·σz0
(1) we therefore finally get
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δ∗ ◦σz ◦ δ−1
∗ = LΩα(σ) ◦RB(σ) ◦τ(χ(σ)) .

The equality (τ ·σ)z = τz ◦σz implies that B : GK → Pol(X,Y) indeed satisfies the
formula of the theorem.

Since the path α is from
−→
01 to z, the formula for log

(
Ωα(σ)

)
follows from the

very definition of �-adic polylogarithms. ��

Remark 24. (1) We need one more condition to show that B = 1. We can require for

example that over
−→
01 the Galois group GK acts on Pol(X,Y) through τ◦χ.

(2) Let us set

Ωα(σ) = 1+ exp(l(z)(σ)X)+
∞∑

n=1

−lin(z)(σ)Xn−1Y .

Then the matrice of LΩα(σ) in the base

1,Y,XY,X2Y,X3Y, . . .

is exactly as the matrice L(z) expressing the monodromy of polylogarithms in
[BD94].

(3) If ξ is a root of unity, then l(ξ)α vanishes for a suitable choice of a path α
and ln(ξ)α are cocycles, see [Woj05a, Corollary 11.0.12. and its proof]. Hence the
representation of GK on Pξ ⊗Q� is an extension of Q�(0) by

∏∞
n=1Q�(n) if B = 1.

14.9 Cosimplicial Spaces and Galois Actions

In this last section we will work more generally over a field k, still with a fixed
complex embedding k ⊂ C, but not necessarily a number field. Let V be a smooth
quasi-projective, geometrically connected algebraic variety over k and let v be a k-
point of V. The étale fundamental group πét

1 (Vk̄,v) and its maximal pro-� quotient
π1(Vk̄,v) are equipped with the action of Gk = Gal(k̄/k) induced by conjugation and
the canonical section v∗ as

GK = πét
1 (Spec(k),Spec(k̄))

v∗−−→ πét
1 (V,v)

γ �→γ(−)γ−1

−−−−−−−−−→ Aut
(
πét

1 (Vk̄,v)
)
. (14.16)

On the other side, given an algebraic variety V and a k-point v there is a cosimplicial
algebraic variety V•, which is a model in algebraic geometry for the loop space
based at v, see [Woj93] and [Woj02]. Let V(C) (resp. V•(C)) be the set of C-points
of V endowed with its natural structure as a (resp. cosimplicial) complex variety.
The de Rham cohomology group of complex differential forms

H0
DR(V•(C))
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is the algebra of polynomial complex valued functions on the Malcev Q-completion

π1(V(C),v)⊗Q .

The étale cohomology group
H0

ét(V
•
k̄
,Q�)

can be interpreted as the algebra of polynomial Q�-valued functions on the Q-
completion, or better on the Malcev Q�-completion, for which we have the com-
parison isomorphism

π1(V(C),v)⊗Q� = π1(Vk̄,v)⊗Q� ,

with the Malcev Q�-completion π1(Vk̄,v) ⊗Q� of the pro-� group π1(Vk̄,v). The
Galois group Gk acts on H0

ét(V
•
k̄
,Q�). We interpret H0

ét(V
•
k̄
,Q�) as the algebra of

polynomialQ�-valued functions on π1(Vk̄,v)⊗Q�. Therefore Gk acts also on

π1(Vk̄,v)⊗Q� .

In this section we shall compare these two Galois actions. Our arguments will be
very sketchy in some places because of a lot of technical material.

We first fix some notation. The sheaf AXét
(resp. AX(C)) is the constant sheaf

with values in A on the étale site Xét (resp. X(C)) for an algebraic variety X. With
Δ[1] we denote the standard simplicial model of the 1-simplex, while ∂Δ[1] is its
boundary. The n-th truncation of a cosimplicial object X• will be denoted by X•

[n].

Let X be a smooth quasi-projective, geometrically connected algebraic variety
over k. The inclusion of simplicial sets

∂Δ[1] ↪→ Δ[1]

induces the morphism of cosimplicial algebraic varieties

p• : XΔ[1] → X∂Δ[1] .

Therefore for each n we get the morphism between their n-th truncations

p•
[n] : XΔ[1]

[n] −→ X∂Δ[1]
[n] .

For each i, the map

pi : XΔ[1]i = X×Xi ×X → X∂Δ[1]i = X×X

is the projection map on the first and the last factor.

First we shall study the Gauss-Manin connection associated to the morphism
p• : XΔ[1] → X∂Δ[1]. We review briefly the results from [Woj93] in a form suitable
for our study here. We apply to the map between the n-th truncations
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p•
[n] : XΔ[1]

[n] → X∂Δ[1]
[n]

the standard construction of the Gauss-Manin connection, see [Woj93]. For each
0 � i � n the complex of sheaves Ω�

XΔ[1]i
is equipped with a canonical filtration

F jΩ�
XΔ[1]i

� Image
(
Ω�−i

XΔ[1]i /X∂Δ[1]i
⊗O

XΔ[1]i
pi,∗Ω j

X∂Δ[1]i
→ Ω�

XΔ[1]i

)
.

Hence on X∂Δ[1]i = X × X we have a filtered complex R pi
∗
(
Ω�

XΔ[1]i

)
. We form the

total complex

Tot
(
R p•

[n],∗(Ω�
XΔ[1]

[n]

)
)
=

n⊕

i=0

R pi
∗
(
Ω�

XΔ[1]i

)
.

The filtration on each summand on the right hand side induces a filtration on the
left hand side. Applying the spectral sequence of a finitely filtered object, we get a
spectral sequence converging to the cohomology sheaves

H j
(
Tot

(
R p•

[n],∗(Ω�
XΔ[1]

[n]

)
))

on X×X, the E1-term of which reads

Ep,q
1 = Ω

p
X×X ⊗OX×X

Hq
(
Tot

(
R p•

[n],∗(Ω�
XΔ[1]

[n] /X∂Δ[1]
[n]

)
))

,

where

Tot
(
R p•

[n],∗(Ω�
XΔ[1]

[n] /X∂Δ[1]
[n]

)
)
=

n⊕

i=0

R pi
∗
(
Ω�

XΔ[1]i /X∂Δ[1]i

)
.

Farther we denote the relative de Rham complex Ω�
XΔ[1]

[n] /X∂Δ[1]
[n]

on XΔ[1]
[n] by Ω� in the

algebraic case, by Ω�hol in the holomorphic case and by Ω�C∞ in the smooth complex
case. The differential

d0,q
1 : E0,q

1 → E1,q
1

is the integrable Gauss-Manin connection on the relative de Rham cohomology
sheaves

Hq(Tot
(
R p•

[n],∗Ω
�)
)
.

Let x and y be two k-points of X. The fiber of Hq(Tot
(
R p•

[n],∗Ω
�)
)

over a point
(x,y) ∈ X×X is

Hq
DR

(
(p•

[n])
−1(x,y)

)
.

Note that if x = y then (p•
[n])

−1(x, x) is the n-th truncation of the cosimplicial alge-
braic variety, which is a model in algebraic geometry for the loop space based at x
from the very beginning of the section.

Recall that we fixed an embedding k ⊂ C. Then we get the morphism of cosim-
plicial complex varieties
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p(C)• : X(C)Δ[1] −→ X(C)∂Δ[1]

and the maps between the n-th truncations

p(C)•[n] : X(C)Δ[1]
[n] −→ X(C)∂Δ[1]

[n] .

We do the same construction for holomorphic differentials. The holomorphic de
Rham sheaf Ω�

X(C)Δ[1]
[n]

is the resolution of the constant sheaf CX(C)Δ[1]
[n]

on X(C)Δ[1]
[n] .

Let us set

Tot
(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
)
=

n⊕

i=0

R pi
∗(CX(C)Δ[1]i ) .

Hence we get that
Hq

(
Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

is the sheaf of the flat sections of the holomorphic Gauss-Manin connection

(d0,q
1 )hol : Hq(Tot(R p(C)•[n],∗Ω

�
hol)

)
→Ω1

X(C)2 ⊗OX(C)2
Hq(Tot(R p(C)•[n],∗Ω

�
hol)

)
.

We shall calculate the monodromy representation of the locally constant sheaf

H0
(
Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

.

The de Rham complexes of smooth differentials are acyclic for direct image func-
tors. Hence there is a quasi-isomorphism

Tot
(
R p(C)•[n],∗Ω

�
hol

)
� Tot

(
p(C)•[n],∗Ω

�
C∞

)
.

Let ω1, . . . ,ωn ∈ Ω1
C∞(X(C)) be closed one-forms on X(C). Let us assume that

ωi ∧ωi+1 = 0 for all i. Then the tensor product 1 ⊗ω1 ⊗ . . .⊗ωn ⊗ 1 defines an ele-
ment of OX(C) ⊗Ω�C∞(X(C)n)⊗OX(C). Hence

1⊗ω1 ⊗ . . .⊗ωn ⊗1

defines a global section of H0(Tot
(
p(C)•[n],∗Ω

�
C∞

))
. We shall calculate the action of

d0� (d0,0
1 )C∞ on the section 1⊗ω1 ⊗ . . .⊗ωn ⊗1. The connection d0 is the boundary

homomorphism of the long exact sequence associated to the short exact sequence

0 → F1/F2 → F0/F2 → F0/F1 → 0 .

We recall that the coface maps

δi : X×Xn−1 ×X → X×Xn ×X

are given by
δi(x0, x1, . . . , xn) = (x0, . . . , xi−1, xi, xi, . . . , xn)
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for 0 � i � n. We set

δn �
n∑

i=0

(−1)n−i(δi)∗ .

The boundary operator of the total complex is given by D = δn + (−1)nd, where d is
the exterior differential of the de Rham complex.

We denote by
∫

a
ω1, . . . ,ωi a function defined on a contractible subset of X(C)

containing a and sending z to the iterated integral
∫ z

a
ω1, . . . ,ωi along any path con-

tained in this contractible subset. After calculations we get the following result.

Lemma 25. Let (a,b) ∈ X(C)×X(C). We have

D
( ∑

0�i� j�n

∫

a
ω1, . . . ,ωi ⊗ωi+1 ⊗ . . .⊗ω j ⊗ (−1)n− j

∫

b
ωn, . . . ,ω j+1

)
= 0 .

We denote by π1(X(C);b,a) the right π1(X(C),a)-torsor of paths from a to b on
X(C) and by

π1(X(C);b,a)⊗Q

the induced right π1(X(C),a)⊗Q-torsor. We denote by

Alg
C

(π1(X(C);b,a)⊗Q)

the algebra of complex valued polynomial functions on π1(X(C);b,a)⊗Q. The fiber
of the sheaf H0(Tot

(
p(C)•∗Ω

�
C∞

))
over (a,b) is H0

DR((p(C)•)−1(a,b)). The shuffle
product defines a multiplication on H0

DR((p(C)•)−1(a,b)), hence the 0-th cohomol-
ogy group is a C-algebra and if a = b it is a Hopf algebra.

The element 1⊗ω1 ⊗ . . .⊗ωn ⊗1 in H0
DR((p(C)•)−1(a,b)) determines a polynomial

complex valued function on the torsor of rational paths π1(X(C);b,a)⊗Q, which to
a path γ from a to b associates the iterated integral

∫
γ
ω1 . . . ,ωn. Hence we get an

isomorphism of C-algebras

H0
DR

(
(p(C)•)−1(a,b)

)
� AlgC(π1(X(C);b,a)⊗Q)

and if a = b we get an isomorphism of Hopf algebras by the work of Chen. Observe
that

lim−−→
n

H0
DR((p(C)•[n])

−1(a,b)) = H0
DR((p(C)•)−1(a,b)) .

The same holds also for cohomology sheaves, considered by us and for the connec-
tions. Farther we shall need the following lemma.

Lemma 26. Let X be a smooth quasi-projective, geometrically connected algebraic
variety over a field k ⊂ C. Then there is an affine smooth algebraic curve S over k
and an algebraic map f : S → X over k such that the induced map

f∗ : H1(S(C),Q) → H1(X(C),Q)

is surjective.
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Proof. The lemma follows from the successive applications of the Lefschetz hy-
perplane theorem for quasi-projective varieties, see [GM88, pages 22 and 23]. To
assure that S and f : S → X are over k one takes successive hyperplanes over k. ��

Proposition 27. Let X be a smooth quasi-projective, geometrically connected alge-
braic variety over a field k ⊂ C. The monodromy representation of the bundle of flat
sections of the Gauss-Manin connection

d0 = (d0,0
1 )hol : H0(Tot(R p(C)•∗Ω

�
hol)

)
→Ω1

X(C)2 ⊗OX(C)2
H0(Tot(R p(C)•∗Ω

�
hol)

)

at a point (a,b) ∈ X(C)×X(C)

ρa,b : π1(X(C),a)×π1(X(C),b) → Aut(Alg
C

(π1(X(C);b,a)⊗Q))

is given by the formula

((ρa,b(α,β))( f ))(γ) = f (β−1 ·γ ·α) , (14.17)

where (α,β) ∈ π1(X(C),a) × π1(X(C),b) acts on f ∈ Alg
C

(π1(X(C);b,a) ⊗Q) and
where γ ∈ π1(X(C);b,a)⊗Q.

Proof. First we suppose that X is an affine smooth algebraic curve over a field k ⊂C.
We can find smooth closed one-forms

η1, . . . ,ηr ∈Ω1
C∞(X(C))

such that their classes form a base of H1
DR(X(C)) and ηi ∧η j = 0 for 1� i, j � r. Then

all possible tensor products 1⊗ηi1 ⊗ . . .⊗ηik ⊗1 form a base of

H0
DR((p(C)•)−1(a,b)) .

Let 1⊗ω1 ⊗ . . .⊗ωn ⊗1 be one of such products. The stalk of the locally constant
sheaf

H0(Tot
(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

over the point (a,b) is equal H0((p(C)•[n])
−1(a,b),C), which in turn we calculate

using complexes of smooth differential forms. The element 1 ⊗ω1 ⊗ . . .⊗ωn ⊗ 1 is
considered in the stalk of the sheaf H0(Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

over the point

(a,b). We prolongate 1 ⊗ω1 ⊗ . . .⊗ωn ⊗ 1 to a continuous section s of the locally
constant sheaf H0(Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

along

(α,β) ∈ π1(X(C),a)×π1(X(C),b) .

We have s(0) = 1⊗ω1 ⊗ . . .⊗ωn ⊗1. It follows from Lemma 25 that

s(1) =
∑

0�i� j�n

(
∫

α
ω1, . . . ,ωi)⊗ωi+1 ⊗ . . .⊗ω j ⊗ (−1)n− j(

∫

β
ωn, . . . ,ω j+1)
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as an element of

H0((p(C)•)−1(a,b),C) = H0
DR((p(C)•)−1(a,b)) = Alg

C
(π1(X(C);b,a)⊗Q) .

Then, for any path γ from a to b, we have

s(1)(γ) =
∑

0�i� j�n

(
∫

α
ω1, . . . ,ωi) · (

∫

γ
ωi+1, . . . ,ω j) · (−1)n− j(

∫

β
ωn, . . . ,ω j+1)

which by Chen’s formulae, see [Che75], equals

s(1)(γ) =
∫

β−1·γ·α
ω1, . . . ,ωn .

Hence the monodromy transformation along (α,β) maps the function

f (−)� s(0) ∈ Alg
C

(π1(X(C);b,a)⊗Q)

into the function f (β−1 · − ·α) ∈ Alg
C

(π1(X(C);b,a)⊗Q) . Therefore the proposition
is proved for affine smooth algebraic curves over k.

Now we assume that X is a smooth quasi-projective, geometrically connected
algebraic variety over a field k ⊂ C. It follows from Lemma 26 that there is an affine
smooth algebraic curve S over k and an algebraic map f : S → X over k such that
the induced map

f∗ : H1(S(C),Q) → H1(X(C),Q)

is surjective.
The morphism f induces a morphism of locally constant sheaves

f ∗H0
(
Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

−→ H0
(
Tot

(
R p(C)•[n],∗(CS(C)Δ[1]

[n]
)
))

.

Consider first (a,b) ∈ X(C)×X(C) which is the image of (s, t) ∈ S(C)×S(C). Then
H0((p(C)•[n])

−1(a,b)) is a subalgebra of H0((p(C)•[n])
−1(s, t)). Hence it follows from

what we have already proved for smooth affine curves that the monodromy repre-
sentation of the sheaf

H0
(
Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

at the point (a,b) is given by the formula (14.17). But then it is given by the formula
(14.17) at any point of X(C)×X(C). ��

We recall that X is a smooth quasi-projective, geometrically connected algebraic
variety over the field k with a fixed complex embedding k ⊂ C. Let us set

Tot
(
R p•

[n],∗(Z/�m
ZXΔ[1]

[n],ét
)
)
=

n⊕

i=0

R pi
∗
(
Z/�m

Z
X

Δ[1]i
ét

)
,
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where Tot is the total complex of a bicomplex. Let us define

Ri p•
[n],∗

(
Z/�m

ZXΔ[1]
[n],ét

)
=H i

(
Tot

(
R p•

[n],∗(Z/�m
ZXΔ[1]

[n],ét
)
))

. (14.18)

Observe that the stalks of the sheaves in (14.18) are equipped with Galois actions.
From now on we assume that the field k is algebraically closed with a fixed

complex embedding k ⊂ C.

Lemma 28. The cohomology sheaves Ri p•
[n],∗

(
Z/�m

ZXΔ[1]
[n],ét

)
are sheaves of finitely

generated Z/�m
Z-modules on (X×X)ét.

Proof. The spectral sequence of the bicomplex

n⊕

i=0

R pi
∗
(
Z/�m

Z
X

Δ[1]i
ét

)
,

converges to the cohomology sheaves in question. The E1-term reads

Ei, j
1 = Ri p j

∗
(
Z/�m

Z
X

Δ[1] j
ét

)

and is a constant sheaf on (X×X)ét with finitely generated Z/�m
Z-modules as stalks.

As only finitely many E1-terms are nonzero, the lemma follows. ��

We need to know if the sheaves

Ri p•
[n],∗

(
Z/�m

ZXΔ[1]
[n],ét

)

are locally constant and we need to calculate their monodromy representations.
Let Y be a topological space. We denote by Ylh the site of local homeomorphisms

on Y. The functors Ri p(C)•[n],∗ for the sites X(C)lh and X(C) are defined as Ri p•
[n],∗

in (14.18) for Xét. The morphisms of sites

ε : (X×X)(C)lh → (X×X)ét and α : (X×X)(C)lh → (X×X)(C)

induce the comparison isomorphisms

Ri p•
[n],∗(Z/�m

ZXΔ[1]
[n],ét

) � ε∗
(
Ri p(C)•[n],∗(Z/�m

ZX(C)Δ[1]
[n],lh

)
)

(14.19)

and

Ri p(C)•[n],∗(Z/�m
ZX(C)Δ[1]

[n]
) � α∗

(
Ri p(C)•[n],∗(Z/�m

ZX(C)Δ[1]
[n],lh

)
)
. (14.20)

We do not know whether the sheaves in (14.19) and (14.20) are locally constant.
However we have

(
lim←−−

m

Ri p(C)•[n],∗(Z/�m
ZX(C)Δ[1]

[n]
)
)
⊗Q� �H i

(
Tot

(
R p(C)•[n],∗(ZX(C)Δ[1]

[n]
)
))

⊗Q� .
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The sheaf H i
(
Tot

(
R p(C)•[n],∗(CX(C)Δ[1]

[n]
)
))

is locally constant as the sheaf of flat sec-

tions of the integrable connection d0. Hence the sheaf

H i
(
Tot

(
R p(C)•[n],∗(ZX(C)Δ[1]

[n]
)
))

⊗Q

is locally constant on (X×X)(C). This implies that the sheaf

H i
(
Tot

(
R p(C)•[n],∗(ZX(C)Δ[1]

[n],lh
)
))

⊗Q

is locally constant on (X×X)(C)lh. Therefore the sheaf

(
H i

(
Tot

(
R p(C)•[n],∗(ZX(C)Δ[1]

[n],lh
)
)))

/torsion

is also locally constant on (X×X)(C))lh.
If A is locally constant sheaf of finite sets on Tlh, where T is a topological space,

then the stalk of A in t ∈ T can be naturally identified with A(T̄) for some finite
covering T̄ → T of T that trivializes A. Moreover if T̄ → T is a Galois covering then
the finite quotient π1(T, t)/π1(T̄, t) acts on A(T̄). We apply this to calculate the stalk

(
lim←−−

m

Ri p(C)•[n],∗(Z/�m
Z)X(C)Δ[1]

[n],lh
⊗Q�

)
(a,b)

in (a,b) ∈ (X×X)(C). By the comparison isomorphism (14.19) the same is true for
the stalk in the correspinding geometric point (a,b) and the projective system of
sheaves

{Ri p•
[n],∗(Z/�m

ZXΔ[1]
[n],ét

)}m∈N .

Moreover we get an action of πét
1 (X×X, (a,b)) on

lim←−−
m

(
Ri p•

[n],∗(Z/�m
ZXΔ[1]

[n],ét
)
)
(a,b)

⊗Q� � Hi
ét((p•

[n])
−1(a,b),Q�) . (14.21)

It follows from the work of Chen that

H0
DR

(
(p(C)•)−1(a,b)

)
� Alg

C
(π1(X(C);b,a)⊗Q) .

We shall use Sullivan’s polynomial differential forms with Q-coefficients, see
[Sul77, page 297]. The subscript SDR denotes the corresponding cohomology
groups. We get the corresponding isomorphism of Q-algebras

H0
SDR

(
(p(C)•)−1(a,b)

)
� Alg

Q
(π1(X(C);b,a)⊗Q)

where Alg
Q

denotes the algebra of polynomial functions on π1(X(C);b,a)⊗Q with
values in Q. If a = b then we get even an isomorphism of Hopf algebras. The
comparison isomorphism leads to isomorphisms
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H0
ét
(
(p•)−1(a,b),Q�

)
� H0((p(C)•)−1(a,b),Q

)
⊗Q�

� H0
SDR

(
(p(C)•)−1(a,b)

)
⊗Q�

from étale via singular to de Rham cohomology, the last one calculated using Sulli-
van polynomial differential forms. We conclude a natural isomorphism

H0
ét
(
(p•)−1(a,b),Q�

)
� Alg

Q�
(π1(X(C);b,a)⊗Q)

where Alg
Q�

denotes the algebra of polynomials with values in Q�. On the other
side we have an isomorphisms of torsors

π1(X(C);b,a)⊗Q� � π1(X;b,a)⊗Q� ,

where π1(X;b,a) is the right π1(X,a)-torsor of �-adic paths from a to b on X and
π1(X;b,a) ⊗Q� is the induced right π1(X,a) ⊗Q�-torsor. Therefore we get an iso-
morphism of Q�-vector spaces

H0
ét
(
(p•)−1(a,b),Q�

)
� Alg

Q�
(π1(X;b,a)⊗Q�) . (14.22)

The shuffle product on H0
DR is defined using codegeneracies, and can thus be

defined also on H0
ét. The Hopf algebra structure on H0

DR((p(C)•)−1(a,a)) is defined
by the maps

1⊗ω1 ⊗ . . .⊗ωn ⊗1 →
n∑

i=0

(1⊗ω1 ⊗ . . .⊗ωi ⊗1)⊗ (1⊗ωi+1⊗ . . .⊗ωn ⊗1) ,

hence one can use maps Xn → Xi × Xn−i to define it. Therefore the isomorphism
(14.22) is an isomorphism of Q�-algebras and if a = b it is an isomorphism of Hopf
algebras. We get that the monodromy representation on the projective limit of stalks
(14.21) for i = 0 reads

ρ(a,b) : πét
1 (X,a)×πét

1 (X,b) −→ Aut
(
Alg

Q�
(π1(X;b,a)⊗Q�)

)

and is given by the formula

((ρ(a,b)(α,β))( f ))(γ) = f (β−1 ·γ ·α) . (14.23)

Now we suppose that X is defined over a number field K with a complex embed-
ding K ⊂ C and that a and b are two K-points of X. Then the Galois group GK acts
on H0

ét

(
(p•)−1(a,b),Q�

)
, where

p• : XΔ[1]
K̄

→ X∂Δ[1]
K̄

.

On the other side GK acts on π1(XK̄;b,a), the set of isomorphisms of fiber functors,
see [SGA1, Exp V], which in this paper we call the set of �-adic paths, by
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σ(α) = σb̄ ◦α◦σ−1
ā .

If a = b this is the action described in (14.16).

Proposition 29. Let X be a smooth quasi-projective, geometrically connected alge-
braic variety defined over a number field K with a complex embedding K ⊂ C. Let a
and b be two K-points of X. Then the isomorphism of Q�-algebras

H0
ét((p•)−1(a,b),Q�) � Alg

Q�
(π1(XK̄;b,a)⊗Q�)

is an isomorphism of GK-modules, where on the left hand side GK acts on the étale
cohomology group and on the right hand side the action of GK is deduced from the
action on π1(XK̄;b,a).

Proof. The projective system of sheaves
{
H0

(
Tot

(
R p•

[n],∗(Z/�m
Z(XK̄)Δ[1]

[n],ét
)
))}

m∈N

over XK̄ ×XK̄ is equipped with Galois action in each stalk. Moreover the projective
limit tensored with Q� is locally constant. The Galois action and parallel transport
satisfy the formula (14.8). To see this one need to do all constructions over Spec(K)
instead of Spec(K̄).

More naively, if f : XK̄ → XK̄ is a morphism of algebraic varieties over K̄,
then for any σ ∈ GK we have σ ◦ f = σ( f ) ◦σ on XK̄. Let Z → XK̄ × XK̄ be an
étale Galois covering and let f : Z → Z be a covering transformation. Let A be
a sheaf on (XK̄ × XK̄)ét, like the sheaves considered in this paper. Then f induces
f∗ : A(Z) → A(Z) and once more one have σ◦ f∗ =σ( f )∗ ◦σ on A(Z). The map f∗
is the monodromy along an element of πét

1 (XK̄ × XK̄, (a,b)), which induces f . The
equality σ◦ f∗ = σ( f )∗ ◦σ is the formula (14.8).

For (α,β) ∈ πét
1 (XK̄,a)×πét

1 (XK̄,a), for σ ∈ GK and for

f ∈ H0
ét((p•)−1(a,a),Q�)

we have a formula for the Galois action that reads

σ(a,a)
(
(α,β)∗( f )

)
= (σ(α),σ(β))∗(σ(a,a)( f ))

=
(
γ �→ (σ(a,a)( f ))(σ(β)−1 ·γ ·σ(α))

)
(14.24)

by (14.8) and (14.23).
The function γ → f (β−1 ·γ ·α) is calculated using the Hopf algebra structure on

H0
ét((p•)−1(a,a),Q�). The Galois group GK acts on H0

ét((p•)−1(a,a),Q�) throughQ�-
isomorphisms. Therefore after applying σ(a,a) and setting β = 1 and γ = 1 we get
that the left hand side of (14.24) is equal f (α).

If we plug β= 1 and γ = 1 into the right hand side we get (σ(a,a)( f ))(σ(α)). Hence
for any σ ∈ GK and any α ∈ π1(XK̄,a) we have
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(σ(a,a)( f ))(α) = f (σ−1(α)) .

Therefore the GK-modules H0
ét((p•)−1(a,a),Q�) and Alg

Q�
(π1(XK̄,a) ⊗Q), where

the action of GK on the second one comes from the action of GK on π1(XK̄,a), are
isomorphic. We deduce also a GK isomorphism

H0
ét((p•)−1(a,b),Q�) � Alg

Q�
(π1(XK̄;b,a)⊗Q�)

for any pair (a,b). ��
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Amnon Besser
Department of Mathematics, Ben-Gurion University of the Negev, Be’er- Sheva, Israel

Coleman integration in families

Suppose that X/S is a smooth family of rigid varieties with good reduction,
and that we are given a closed relative 1-form. Then we can try to ask for
the corresponding family of Coleman integrals, which is more restrictive, and
better behaved than just fiber by fiber Coleman integral. This can be achieved
by imposing equivariance with respect to differentiation in the direction of the
base, a term which needs to be made precise, in addition to the usual Frobenius
equivariance. I will explain how one can get this theory, and a more general
theory for iterated Coleman integration in families, using new ideas of Ovchin-
nikov on differential Tannakian theory. This theory adds structure to Tannakian
categories so that they become equivalent to representations of differential alge-
braic groups, rather than ordinary algebraic groups. One interprets the relative
Coleman integration theory as saying that there exists a unique path with zero
derivative and invariant under Frobenius.

Anna Cadoret
Centre Mathématiques Laurent Schwarz, École Polytechnique, Palaiseau, France

Growth of the genus of the generic torsion of abelian schemes over curves

A consequence of the geometric torsion conjecture for abelian varieties over
function fields is the following. Let k be an algebraically closed field of char-
acteristic 0. For any integers d, g � 1 there exists an integer N� N(k,d,g) � 1
such that for any function field K/k with transcendence degree 1 and genus g
and any d-dimensional abelian variety A/K containing no nontrivial k-isotrivial
subvariety, the order of torsion in A(K) is bounded by N. In this talk, I will deal
with the weak variant of this statement, where the integer N(k,d,g) is allowed
to depend on the abelian variety A/K. More precisely, I will show that if K
has genus at least 1 or if K has genus 0 and A/K has semistable reduction over
all but possibly one place then, for any integer g � 1, there exists an integer

J. Stix (ed.), The Arithmetic of Fundamental Groups, Contributions in Mathematical
and Computational Sciences 2, DOI 10.1007/978-3-642-23905-2,
© Springer-Verlag Berlin Heidelberg 2012
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N�N(A,g)� 1 such that for any finite extension L/K with genus� g, the order
of torsion in A(L) is bounded by N. Previous joint work with Akio Tamagawa
shows that the above holds – without any restriction on K or the reduction
type of A/K – for the �-primary torsion with � a fixed prime. So, it is enough
to prove that there exists an integer N � N(A,g) � 1 such that for any finite
extension L/K with genus � g, the prime divisors of the order of |A(L)tors| are
all bounded by N. This is joint work with A. Tamagawa.

Gerd Faltings
Max Planck Institute for Mathematics, Bonn, Germany

Rational points and the motivic polylogarithm

In Kim’s new proof of Siegel’s theorem one key ingredient is an upper bound
for global Galois cohomology. The purpose of this talk is to explain how this
might be replaced by motivic cohomology, and to explain some of the difficul-
ties with this approach, and how to resolve them sometimes.

Majid Hadian
Max Planck Institute for Mathematics, Bonn, Germany

Motivic fundamental groups and integral points

By studying the variation of different realizations of motivic path torsors of
unirational varieties over number fields and comparing them, we show that
S-integral points of such a variety over a totally real number field with highly
enough non-abelian fundamental group lie, locally in the p-adic analytic topol-
ogy, in the zero locus of a non-zero p-adic analytic function.

David Harari
Département de Mathématiques d’Orsay, Université de Paris-Sud, France

The fundamental group and cohomological obstructions to the Hasse principle
and weak approximation

Let X be an algebraic variety defined over a number field k. I will explain
how the non-triviality of the geometric fundamental group of X can provide
obstructions to the existence of a rational point or to the weak approximation
property. This is related to a non-abelian descent formalism, which gives many
interesting examples, as elliptic surfaces and Enriques surfaces. The relation-
ship between descent obstructions and Grothendieck’s section conjecture will
also be discussed.

David Harbater
Department of Mathematics, University of Pennsylvania, Philadelphia, USA

Split covers and local-global principles

This talk will consider curves over complete discretely valued fields, where
patching methods can be used. In this context we relate a certain quotient of the
fundamental group, which we call the split fundamental group, to local-global
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principles for structures such as torsors and quadratic forms. This is done via
the topological fundamental group of an associated reduction graph. This is
joint work with Julia Hartmann and Daniel Krashen.

Yuichiro Hoshi
Research Institute for Mathematical Sciences, Kyoto, Japan

Existence of non-geometric pro-p Galois sections of hyperbolic curves

In this talk, we construct a non-geometric pro-p Galois section of a hyperbolic
curve over a number field, as well as over a p-adic local field. Moreover, we
observe that there exists a proper hyperbolic curve over a number field which
admits infinitely many conjugacy classes of pro-p Galois sections.

Minhyong Kim
Department of Mathematics, University College London, UK

Diophantine geometry and Galois theory 12

In his manuscripts form the 1980’s Grothendieck proposed ideas that have been
interpreted variously as embedding the theory of schemes into either:

– Group theory and higher-dimensional generalizations,
– or homotopy theory.

It was suggested, moreover, that such a framework would have profound im-
plications for the study of Diophantine problems. In this talk, we will discuss
mostly the little bit of progress made on this last point using some mildly non-
abelian motives associated to hyperbolic curves.

Guido Kings
Fakultät für Mathematik, Universität Regensburg, Germany

Abelian polylogarithms on curves

Elements in the étale cohomology H1(Z[1/N],Zp�G�(1)) where G is an almost
pro-p-group play a crucial role in the construction of Euler systems and the
p-adic study of special values of L-functions. In our talk we discuss how the
polylogarithm on curves gives rise to such cohomology classes and explain
some of their fundamental properties. In the abelian case we show that the
classes are motivic, i. e., in the image of the regulator map from K-theory. Ac-
cording to general conjectures this should imply that these classes are related
to special values of L-functions.

Emmanuel Lepage
Institut de Mathématiques de Jussieu, Université de Paris 6, France

The tempered fundamental group of Mumford curves and the metric graph of
their stable reduction

The tempered fundamental group of a smooth Berkovich space over a complete
non archimedean field is a topological group that classifies étale coverings for
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the étale topology of Berkovich that become (potentially infinite) topological
coverings for the topology of Berkovich after pullback by a finite étale cover-
ing. S. Mochizuki proved that one can recover the graph of the stable reduction
of a hyperbolic curve from its geometric tempered fundamental group. I show
that, for a Mumford cuve, one can in fact also recover the metric of the graph.
The proof involves the theory of theta functions of a Mumford curve.

Florian Pop
Department of Mathematics, University of Pennsylvania, Philadelphia, USA

Hints about a “minimalistic” form of BAP

After recalling Bogomolov’s Anabelian Program (BAP), I will give some hints
about the why and how of a minimalistic form of this program (MAP). If true,
MAP would bring a completely new quality in birational anabelian geometry.

Jonathan P. Pridham
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK

Pro-algebraic �-adic fundamental groups

For smooth varieties in finite and mixed characteristics, the �-adic pro-algebraic
fundamental group is largely determined as a Galois representation by coho-
mology of semisimple local systems, and the same holds for big Malcev com-
pletions. There are also a pro-algebraic crystalline fundamental group and a
non-abelian étale-crystalline comparison theorem, but these cannot be recov-
ered from cohomology alone.

Gereon Quick
Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Germany

Torsion algebraic cycles and étale cobordism

We show that over an algebraically closed field of positive characteristic the
classical integral cycle class map from algebraic cycles to étale cohomology
factors through a quotient of �-adic étale cobordism. This implies that there
is a strong topological obstruction for cohomology classes to be algebraic and
that examples of Atiyah and Hirzebruch for non-algebraic integral cohomology
classes and of Totaro for non-trivial elements in the Griffiths group also work
in positive characteristic.

João Pedro P. dos Santos
Institut de Mathématiques de Jussieu, Université de Paris 6, France

A new characterization of essentially finite bundles and some applications to
fundamental groups of rationally connected varieties

The category of essentially finite bundles (Nori 1976) over a projective variety
X/k is a Tannakian category such that, the k-affine group scheme associated to
it by Tannaka duality classifies torsors P → X with finite structure group. This
group scheme is then a generalization of the algebraic fundamental group. I
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will show that an essentially finite vector bundle E over X is simply a vector
bundle which, when pulled back by a suitable proper and surjective morphism
f : Y → X becomes trivial. This can be appreciated in two ways:

– It gives a technically simpler characterization of essentially finite bundles.
– It generalizes a well known result, due to Lange and Stuhler, characterizing

k-representations of the fundamental group as bundles trivialized by étale
morphisms.

This property will allow us to conclude that all fundamental group schemes
associated to a smooth rationally connected variety are trivial. This is joint
work with I. Biswas.

Annette Werner
Institut für Mathematik, Goethe-Universität Frankfurt, Germany

Vector bundles on p-adic curves and parallel transport

We define functorial isomorphisms of parallel transport along étale paths for
a class of vector bundles on a p-adic curve. All bundles of degree zero with
potentially strongly semistable reduction belong to this class. In particular, they
give rise to representations of the algebraic fundamental group of the curve.

Kirsten Wickelgren
AIM and Harvard University, Cambdridge MA, USA

Étale π1 obstructions to rational points

Grothendieck’s section conjecture says that for a hyperbolic curve over a num-
ber field, rational points are in bijection with sections of étale π1 of the structure
map. We use cohomological obstructions of Jordan Ellenberg to study such sec-
tions. We will relate Ellenberg’s obstructions to Massey products, and explicitly
compute versions of the first and second for P1

Q
− {0,1,∞}. Over R, we show

the first obstruction alone determines the connected components of real points
of the curve from those of the Jacobian.

Olivier Wittenberg
CNRS and Département de Mathématiques et Appl.,École Normale Supérieure, Paris, France

Around cycle classes of sections

To every section of the arithmetic fundamental group of a smooth K(π,1) variety
X over a field k, one may associate a cycle class in the étale cohomology with
compact supports of X. We discuss various applications of this construction.
By investigating the algebraicity of this cycle class, we prove that Schinzel’s
quartic curve has no section over the rationals, as predicted by the section con-
jecture. This is partly joint work with Hélène Esnault.
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Zdzisław Wojtkowiak
Département de Mathématiques, Université Nice Sophia-Antipolis, France

Periods of mixed Tate motives, examples, �-adic Galois side

The iterated integrals on P1(C) − {0,1,∞} from 0 to 1 suitably normalized in
sequences of 1-forms dz/z and dz/(z − 1) are periods of mixed Tate motives
over Spec(Z). The natural question is: do we obtain in this way all periods of
mixed Tate motives over Spec(Z)? We will discuss an �-adic version of this
problem. In �-adic setting analogs of periods are coefficients and the analogs of
iterated integrals are geometric coefficients. We will show that all coefficients
of mixed Tate motives over Spec(Z) can be expressed as some suitable sums of
coefficients of the natural representation of GalQ on the pro-� completion of

π1(P1
Q̄
− {0,1,−1,∞},

→
01) ,

and these coefficients are geometric coefficients. We shall also show that all
Tate motives over Spec(Z[1/p]) can be expressed as some suitable sums of co-
efficients of the natural representation of Gal

Q(μp) on the pro-� completion of

π1(P1
Q̄
− ({0,∞}∪μp),

→
01) .
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