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Preface

Spherical harmonics have been studied extensively and applied to solving a
wide range of problems in the sciences and engineering. Interest in approxima-
tions and numerical methods for problems over spheres has grown steadily.
These notes provide an introduction to the theory of spherical harmonics
in an arbitrary dimension as well as a summarizing account of classical and
recent results on some aspects of approximation by spherical polynomials and
numerical integration over the sphere. The notes are intended for graduate
students in the mathematical sciences and researchers who are interested in
solving problems involving partial differential and integral equations on the
sphere, especially on the unit sphere S

2 in R
3. We also discuss briefly some

related work for approximation on the unit disk in R
2, with those results being

generalizable to the unit ball in more dimensions. The subject of theoretical
approximation of functions on S

d, d > 2, using spherical polynomials has been
an active area of research over the past several decades. We summarize some
of the major results, giving some insight into them; however, these notes are
not intended to be a complete development of the theory of approximation
of functions on S

d by spherical polynomials.
There are a number of other approaches to the approximation of functions

on the sphere. These include spline functions on the sphere, wavelets,
and meshless discretization methods using radial basis functions. For a
general survey of approximation methods on the sphere, see Fasshauer and
Schumaker [46]; and for a more complete development, see Freeden et al.
[47]. For more recent books devoted to radial basis function methods, see
Buhmann [24], Fasshauer [45], and Wendland [118]. For a recent survey of
numerical integration over S2, see Hesse et al. [63].

During the preparation of the book, we received helpful suggestions from
numerous colleagues and friends. We particularly thank Feng Dai (University
of Alberta), Mahadevan Ganesh (Colorado School of Mines), Olaf Hansen
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(California State University, San Marcos), and Yuan Xu (University of
Oregon). We also thank the anonymous reviewers for their comments that
have helped improve the final manuscript. This work was partially supported
by a grant from the Simons Foundation (#207052 to Weimin Han).
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Chapter 1
Preliminaries

The study of spherical harmonics has a long history, over 200 years by
now. Classical spherical harmonics on the unit sphere of three dimensional
Euclidean space can be viewed as extensions of trigonometric functions on
the unit circle. Originally introduced for the study of gravitational theory in
the works of Laplace and Legendre in the 1780s, spherical harmonics have
been studied extensively and applied to solving a wide range of problems in
the natural sciences and engineering, including geosciences, neutron transport
theory, astronomy, heat transfer theory, optics, atmospheric physics, oceanic
physics, quantum mechanics and other areas [29,30,38,43,49,82,86,116,122].
As an example, in a number of disciplines of science and engineering, an
equation of central importance is the radiative transfer equation or transport
equation. The steady-state monoenergetic version of the radiative transfer
equation is

ω·∇u(x,ω) + μt(x)u(x,ω) = μs(x) (Su)(x,ω) + f(x,ω). (1.1)

Here x ∈ R
3 is a spatial variable, ω ∈ S

2 is a direction variable, S2 being the
unit sphere in R

3, μt = μa + μs. In optics, μa is the absorption coefficient,
μs is the scattering coefficient, f is a light source function. The symbol S on
the right side of (1.1) is an integral operator defined by

(Su)(x,ω) =

∫
S2

η(x,ω·ω̂)u(x, ω̂) dσ(ω̂),

η being a nonnegative normalized phase function:

∫
S2

η(x,ω·ω̂) dσ(ω̂) = 1 ∀x, ∀ω ∈ S
2.

In the literature, the function η is usually assumed to be independent of x,
and then we write η(ω·ω̂) instead of η(x,ω·ω̂). One well-known example is

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 1, © Springer-Verlag Berlin Heidelberg 2012

1



2 1 Preliminaries

the Henyey–Greenstein phase function (cf. [62])

η(t) =
1− r2

4π(1 + r2 − 2rt)3/2
, t ∈ [−1, 1], (1.2)

where the parameter r ∈ (−1, 1) is the anisotropy factor of the scattering
medium. Note that r = 0 for isotropic scattering, r > 0 for forward scattering,
and r < 0 for backward scattering.

Such issues as function approximation and numerical integration over
the unit sphere arise naturally in numerically solving the radiative transfer
equation (1.1). Approximation of a solution of the equation through a
linear combination of spherical harmonics of an order up to N leads to
the PN methods in the literature [74]. Since the radiative transfer equation
is a high dimensional problem with five independent variables, numerical
methods that allow easy parallel implementation are attractive. In this
regard, discontinuous Galerkin methods appear to be a good choice for the
discretization of the radiative transfer equation. Some discontinuous Galerkin
methods for the radiative transfer equation are studied in [57]. In recent years,
inverse problems with the radiative transfer equation as the forward model
have found applications in optical molecular imaging [6, 7, 19, 56].

This book intends to present the theory of the spherical harmonics on
the unit sphere of a general d-dimensional Euclidean space and provides a
summarizing account of function approximation and numerical integration
over the unit sphere S

2 and the related problem of approximation over the
unit disk in R

2, including recent research results. Several excellent books
are available on spherical harmonics, e.g., [47,78,84,85]. The presentation of
the theory of the spherical harmonics is given here in a manner similar to
[85], yet more easily accessible to a reader with only a basic knowledge of
analysis. This is done in Chaps. 2 and 3. Function approximation over the
unit sphere in R

3 and the unit disk in R
2 are discussed in Chap. 4. Numerical

integration over the unit sphere in R
3 and the unit disk in R

2 is the topic
of Chap. 5. The book ends with Chap. 6 on examples of spectral methods
over the unit sphere and the unit disk. A boundary integral equation in
R

3 is converted to one over the unit sphere in R
3, and a boundary value

problem for a partial differential equation in R
2 is converted to one over the

unit disk in R
2. Spectral numerical methods are then proposed and analyzed

for the solution of these transformed problems. This chapter of applications
ends with a spectral method for solving the Laplace–Beltrami equation
over Sd.

This preliminary chapter presents notation that will be used regularly
throughout the book, as well as a brief introduction to the Γ-function that
will be needed later in the study of spherical harmonics. In the final section
of the chapter, we introduce some basic results related to the sphere.
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1.1 Notations

We adopt the symbol “:=” for equality by definition. We will use the following
sets of numbers:

N: the set of positive integers
N0: the set of non-negative integers
Z: the set of integers
R: the set of real numbers
R+: the set of positive numbers
C: the set of complex numbers

For x ∈ R, [x] denotes the smallest integer that is larger than or equal to x.
For m,n ∈ N0, m ≥ n, the binomial coefficient

(
m

n

)
:=

m!

n! (m− n)!
.

Here m! is the m factorial,

m! := 1 · 2 · · ·m for m ∈ N, 0! := 1.

We also recall the notation of double factorial for later use,

m!! =

{
m (m− 2) (m− 4) · · · 2, m even,

m (m− 2) (m− 4) · · · 1, m odd,
0!! = 1.

Throughout this work, except in Chap. 5, we use d ∈ N to represent the
dimension of a geometric set. The set

R
d :=

{
x = (x1, · · · , xd)T : xj ∈ R, 1 ≤ j ≤ d

}

is the d-dimensional Euclidean space with the inner product and norm

(x,y) :=

d∑
j=1

xjyj, |x| := (x,x)1/2 for x,y ∈ R
d.

In R
d, we use the canonical basis

e1 = (1, 0, · · · , 0)T , · · · , ed = (0, · · · , 0, 1)T

and write

x =

d∑
j=1

xjej
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for x ∈ R
d. Sometimes it is helpful to show the dimension explicitly and then

we will write x(d) instead of x. Thus,

x(d) = x(d−1) + xded.

Here, x(d−1) = (x1, . . . , xd−1, 0)
T ∈ R

d. For convenience, we will use the
symbol x(d−1) to also mean the (d − 1)-dimensional vector (x1, . . . , xd−1)

T .
This will not cause confusion from the context. We will frequently use the
unit sphere in R

d,

S
d−1 :=

{
ξ ∈ R

d : |ξ| = 1
}
.

Usually we simply say the sphere to mean the unit sphere. For any 0 �=
x ∈ R

d, we have x = |x| ξ with ξ ∈ S
d−1.

The (Euclidean) distance between two points ξ,η ∈ S
d−1 is

|ξ − η| =
√
2 (1− ξ·η).

The geodesic distance between ξ and η on S
d−1 is the angle between the two

vectors:

θ(ξ,η) := arccos(ξ·η) ∈ [0, π].

It is also the arc-length of the shortest path connecting ξ and η. From the
elementary inequalities

2

π
t ≤ sin t ≤ t, t ∈ [0, π/2],

we can deduce the following equivalence relation between the two definitions
of distance:

2

π
θ(ξ,η) ≤ |ξ − η| ≤ θ(ξ,η), ξ,η ∈ S

d−1.

It is convenient to use the multi-index notation. A multi-index with d
components is α = (α1, · · · , αd), α1, · · · , αd ∈ N0. When we need to indicate
explicitly the dependence on the dimension, we write α(d) instead of α. The

length of α is |α| =
∑d

j=1 αj . We write α! to mean α1! · · ·αd!. With x =

(x1, · · · , xd)T we define

xα := xα1
1 · · ·xαd

d .

Similarly, with the gradient operator ∇ = (∂x1 , · · · , ∂xd
)T , we define

∇α :=
∂|α|

∂xα1
1 · · · ∂xαd

d

.
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Note in passing that the Laplacian operator

Δ = ∇ ·∇ =

d∑
j=1

(
∂

∂xj

)2

.

When it is necessary, we write Δ(d) and∇(d) to indicate the spatial dimension
d explicitly.

1.2 The Γ-Function

The Γ-function will be frequently used throughout this book.

Definition 1.1.

Γ(x) :=

∫ ∞

0

tx−1e−tdt, x ∈ R+. (1.3)

The following formulas can be verified [5, Chap. 1].

∫ ∞

0

tx−1e−atbdt = b−1a−x/bΓ(x/b), x, a, b ∈ R+, (1.4)

∫ 1

0

|ln t|x−1
dt = Γ(x), x ∈ R+, (1.5)

Γ(x+ 1) = xΓ(x), x ∈ R+, (1.6)

Γ(k)(x) =

∫ ∞

0

(ln t)k tx−1e−tdt, k ∈ N0, x ∈ R+. (1.7)

Obviously, Γ(1) = 1. Hence, from the formula (1.6) we deduce that

Γ(n+ 1) = n!, n ∈ N0. (1.8)

In other words, the Γ-function extends the factorial operator from positive
integers to positive numbers. We also have the value

Γ(1/2) =
√
π. (1.9)

Using (1.6), we have

Γ

(
n+

1

2

)
=

(
n− 1

2

)(
n− 3

2

)
· · · 1

2
Γ

(
1

2

)

=
1 · 3 · 5 · · · (2n− 1)

2n
Γ

(
1

2

)
,
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which can be expressed as, with the help of (1.9),

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π =

(2n)!

22nn!

√
π. (1.10)

Stirling’s formula provides the asymptotic order of the Γ-function when
its argument tends to ∞:

lim
x→∞

Γ(x)√
2 π xx−1/2e−x

= 1. (1.11)

Choosing x = n+ 1 ∈ N in (1.11), we deduce that

lim
n→∞

n!√
2 π nnne−n

= 1.

We write

n! ∼
√
2 π n

(n
e

)n

for n sufficiently large.

Pochhammer’s symbol is defined as follows. Let x ∈ R. Then,

(x)0 := 1, (x)n := x (x+ 1) (x+ 2) · · · (x+ n− 1) , n ∈ N.

It is handy to note

(x)n =
Γ(x + n)

Γ(x)
for x ∈ R+. (1.12)

A closely related function is the beta-function,

B(x, y) :=

∫ 1

0

tx−1(1 − t)y−1dt, x, y ∈ R+. (1.13)

We have the following relation:

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
, x, y ∈ R+. (1.14)

1.3 Basic Results Related to the Sphere

We use dV d for the d-dimensional volume element and dSd−1 for the (d− 1)-
dimensional surface element over the unit sphere Sd−1. Over the surface of a
general domain, we use dσ for the surface element.
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For d ≥ 3, we write, for ξ = ξ(d) ∈ S
d−1,

ξ(d) = t ed +
√
1− t2 ξ(d−1), t ∈ [−1, 1], ξ(d−1) ∈ S

d−1. (1.15)

Here and below, similar to x(d−1), depending on the context, we use ξ(d−1) to

represent both a d-dimensional vector (ξ1, . . . , ξd−1, 0)
T ∈ S

d−1 and a (d−1)-
dimensional vector (ξ1, . . . , ξd−1)

T ∈ S
d−2. Then it can be shown that [85,

Sect. 1] for d ≥ 3,

dSd−1(t ed +
√
1− t2 ξ(d−1)) = (1− t2)

d−3
2 dt dSd−2(ξ(d−1)), (1.16)

or simply,

dSd−1 = (1− t2)
d−3
2 dt dSd−2. (1.17)

As an example, let d = 3. For a generic point in S
2, in spherical coordinates,

ξ(3) =

⎛
⎝cosφ sin θ

sinφ sin θ

cos θ

⎞
⎠ , 0 ≤ φ < 2π, 0 ≤ θ ≤ π.

Denote

t = cos θ ∈ [−1, 1], ξ(2) =

⎛
⎝cosφ

sinφ

0

⎞
⎠ ∈ S

2.

Then,

ξ(3) = t e3 +
√
1− t2 ξ(2).

Furthermore, dS1 = dφ and (1.17) takes the form dS2 = dt dφ.
The formula (1.17) will be applied frequently later in the book. In partic-

ular, we can use this formula to compute the surface area of the unit sphere

|Sd−1| :=
∫
Sd−1

dSd−1.

We have

|Sd−1| =
∫ 1

−1

(1− t2)
d−3
2 dt

∫
Sd−2

dSd−2 = |Sd−2|
∫ 1

−1

(1 − t2)
d−3
2 dt.

To compute the integral, we use the change of variable s = t2. Then,

∫ 1

−1

(1− t2)
d−3
2 dt =

∫ 1

0

s−
1
2 (1− s)

d−3
2 ds = B

(
1

2
,
d− 1

2

)

=
Γ(12 ) Γ(

d−1
2 )

Γ(d2 )
=

√
π Γ(d−1

2 )

Γ(d2 )
.
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Thus, we have the recursive relation

|Sd−1| =
√
π Γ(d−1

2 )

Γ(d2 )
|Sd−2| for d ≥ 3, |S1| = 2 π. (1.18)

We derive from (1.18) the following formula

|Sd−1| = 2 π
d
2

Γ(d2 )
. (1.19)

This formula is proved for d ≥ 2; for d = 2, S1 is the unit circle and |S1| = 2π
is the circumference of the unit circle. We will use the formula (1.19) also for
d = 1 by defining |S0| := 2. Note that the formula (1.19) can also be stated
as follows:

|S2k−1| = 2 πk

(k − 1)!
, |S2k| = 2k+1πk

(2k − 1)!!
, k ∈ N.

We record some useful relations in computing integrals with change of
variables. Their proofs can be found in [85, Sect. 1].

If A ∈ R
d×d is orthogonal, then dSd−1(Aξ) = dSd−1(ξ), dV d(Ax) =

dV d(x).
With polar coordinates x(d) = rξ(d), r = |x(d)| and ξ(d) = ξ ∈ S

d−1, we

have dV d(rξ) = rd−1dr dSd−1(ξ).
We denote by C(Sd−1) the space of complex-valued or real-valued contin-

uous functions on S
d−1. This is a Banach space with its canonical norm

‖f‖∞ := sup{|f(ξ)| : ξ ∈ S
d−1}.

We denote by L2(Sd−1) the space of complex-valued or real-valued squared
integrable functions on S

d−1. This is a Hilbert space with the canonical inner
product

(f, g) :=

∫
Sd−1

f g dSd−1

and its induced norm

‖f‖2 := (f, f)1/2.

We will also use (f, g)L2(Sd−1) or (f, g)Sd−1 for the L2(Sd−1) inner product,

and use ‖ · ‖L2(Sd−1) for the L
2(Sd−1) norm.

We will consider the space C(Sd−1) with the L2(Sd−1) inner product and
norm. Note that then C(Sd−1) is not complete. The closure of C(Sd−1) with
respect to the ‖ ·‖2 norm is L2(Sd−1). In other words, given an f ∈ L2(Sd−1),
there exists a sequence {fn} ⊂ C(Sd−1) such that
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‖fn − f‖2 → 0 as n→ ∞.

For f ∈ C(Sd−1), define its modulus of continuity

ω(f ; δ) := sup{|f(ξ)− f(η)| : ξ,η ∈ S
d−1, |ξ − η| ≤ δ} (1.20)

for δ ∈ (0, 1). Then

ω(f ; δ) → 0 as δ → 0.

For δ ∈ (0, 1), define the set

Ωδ =
{
x ∈ R

d : |x| ∈ [1− δ, 1 + δ]
}
. (1.21)

In studying a function f defined on S
d−1, a useful trick is to consider its

following extension

f∗(x) := f

(
x

|x|

)
= f(ξ) for x ∈ Ωδ. (1.22)

For k ∈ N, we say f is k-times continuously differentiable on S
d−1 whenever

f∗ is k-times continuously differentiable in Ωδ. Obviously, this definition of
differentiability of f on S

d−1 does not depend on the choice of δ ∈ (0, 1). For
k ∈ N0, we define Ck(Sd−1) to be the space of complex-valued or real-valued
functions on S

d−1 that are k-times continuously differentiable; C0(Sd−1) ≡
C(Sd−1). We define the norm

‖f‖Ck(Sd−1) := ‖f∗‖Ck(Ωδ). (1.23)

The right side of (1.23) does not depend on the choice of δ ∈ (0, 1). We
will use the simplified notation ‖f‖∞ for ‖f‖C(Sd−1). Under the norm (1.23),

Ck(Sd−1) is a Banach space.



Chapter 2
Spherical Harmonics

This chapter presents a theory of spherical harmonics from the viewpoint
of invariant linear function spaces on the sphere. It is shown that the
system of spherical harmonics is the only system of invariant function
spaces that is both complete and closed, and cannot be reduced further.
In this chapter, the dimension d ≥ 2. Spherical harmonics are introduced
in Sect. 2.1 as the restriction to the unit sphere of harmonic homogeneous
polynomials. Two very important properties of the spherical harmonics are
the addition theorem and the Funk–Hecke formula, and these are discussed in
Sects. 2.2 and 2.5, respectively. A projection operator into spherical harmonic
function subspaces is introduced in Sect. 2.3; this operator is useful in proving
various properties of the spherical harmonics. Since several polynomial spaces
are used, it is convenient to include a discussion on relations of these
spaces and this is done in Sect. 2.4. Legendre polynomials play an essential
role in the study of the spherical harmonics. Representation formulas for
Legendre polynomials are given in Sect. 2.6, whereas numerous properties
of the polynomials are discussed in Sect. 2.7. Completeness of the spherical
harmonics in C(Sd−1) and L2(Sd−1) is the topic of Sect. 2.8, and this refers to
the property that linear combinations of the spherical harmonics are dense in
C(Sd−1) and in L2(Sd−1). As an extension of the Legendre polynomials, the
Gegenbauer polynomials are introduced in Sect. 2.9. The last two sections
of the chapter, Sects. 2.10 and 2.11, are devoted to a discussion of the
associated Legendre functions and their role in generating orthonormal bases
for spherical harmonic function spaces.

2.1 Spherical Harmonics Through Primitive Spaces

We start with more notation. We use O
d for the set of all real orthogonal

matrices of order d. Recall that A ∈ R
d×d is orthogonal if ATA = I,

or alternatively, AAT = I, I = Id being the identity matrix of order d.

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 2, © Springer-Verlag Berlin Heidelberg 2012
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The product of two orthogonal matrices is again orthogonal. In algebra
terminology, Od is a group; but in this book, we will avoid using this term. It
is easy to see that det(A) = ±1 for any A ∈ O

d. The subset of those matrices
in O

d with the determinant equal to 1 is denoted as SO
d. For any non-zero

vector η ∈ R
d,

O
d(η) :=

{
A ∈ O

d : Aη = η
}

is the subset of orthogonal matrices that leave the one-dimensional subspace
span{η} := {αη : α ∈ R} unchanged.

For a function f : Rd → C and a matrix A ∈ R
d×d, we define fA : Rd → C

by the formula

fA(x) = f(Ax) ∀x ∈ R
d.

We will use this definition mainly for A ∈ O
d and for study of symmetry

properties of functions.

Proposition 2.1. If fA = f for any A ∈ O
d, then f(x) depends on x

through |x|, so that f is constant on a sphere of an arbitrary radius.

Proof. For any two vectors x,y ∈ R
d with |x| = |y|, we can find a matrix

A ∈ O
d such that Ax = y. Thus, f(x) = fA(x) = f(y) and the proof is

completed. ��

Consider the subset Od(ed). It is easy to show that any A ∈ O
d(ed) is of

the form

A =

(
A1 0

0T 1

)
, A1 ∈ O

d−1. (2.1)

Similar to Proposition 2.1, if fA = f for any A ∈ O
d(ed), then f(x) depends

on x through |x(d−1)| and xd.
We will introduce spherical harmonic spaces of different orders as primitive

subspaces of C(Sd−1). Consider a general subspace V of functions defined in
R

d or over a subset of Rd.

Definition 2.2. V is said to be invariant if f ∈ V and A ∈ O
d imply fA ∈ V.

Assume V is an invariant subspace of an inner product function space with
the inner product (·, ·). Then V is said to be reducible if V = V1 + V2 with
V1 �= ∅, V2 �= ∅, both invariant, and V1 ⊥ V2. V is irreducible if it is not
reducible. V is said to be primitive if it is both invariant and irreducible.

We note that V1 ⊥ V2 refers to the property that (f, g) = 0 ∀ f ∈ V1,
∀ g ∈ V2.

Definition 2.3. Given f : Rd → C, define span
{
fA : A ∈ O

d
}
, the space of

functions constructed through f and O
d, to be the space of all the convergent

combinations of the form
∑

j≥1 cjfAj with Aj ∈ O
d and cj ∈ C.
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For the above definition, it is easy to see span
{
fA : A ∈ O

d
}
is a function

subspace. Moreover, if V is a finite dimensional primitive space, then

V = span
{
fA : A ∈ O

d
}

∀ 0 �= f ∈ V.

2.1.1 Spaces of Homogeneous Polynomials

We start with H
d
n, the space of all homogeneous polynomials of degree n in

d dimensions. The space H
d
n consists of all the functions of the form

∑
|α|=n

aαx
α, aα ∈ C.

As some concrete examples,

H
2
2 =

{
a1x

2
1 + a2x1x2 + a3x

2
2 : aj ∈ C

}
,

H
3
2 =

{
a1x

2
1 + a2x1x2 + a3x1x3 + a4x

2
2 + a5x2x3 + a6x

2
3 : aj ∈ C

}
,

H
2
3 =

{
a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 : aj ∈ C

}
.

It is easy to see that H
d
n is a finite dimensional invariant space. To

determine the dimension dimH
d
n, we need to count the number of monomials

of degree n: xα with αi ≥ 0 and α1 + · · · + αd = n. We consider a set of
n + d − 1 numbers: 1, 2, . . . , n + d − 1. Let us remove from the set d − 1
numbers, say β1 < · · · < βd−1. Denote β0 = 0 and βd = n+ d. Then define

αi = βi − βi−1 − 1, 1 ≤ i ≤ d,

i.e., define αi to be the number of integers between βi−1 and βi, exclusive.
Note that

∑n
i=1 αi = d. This establishes a one-to-one correspondence between

the set of non-negative integers α1, . . . , αd with a sum n and the set of d− 1
distinct positive integers β1 < · · · < βd−1 between 1 and n+ d− 1. Since the
number of ways of selecting d − 1 different numbers from a set of n + d − 1
numbers is (

n+ d− 1

d− 1

)
,

we have

dimH
d
n =

(
n+ d− 1

d− 1

)
=

(
n+ d− 1

n

)
. (2.2)
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In particular, for d = 2 and 3, we have

dimH
2
n = n+ 1, dimH

3
n =

1

2
(n+ 1) (n+ 2). (2.3)

We give in passing a compact formula for the generating function of the
sequence {dimH

d
n}n≥0,

∞∑
n=0

(
dimH

d
n

)
zn.

Recall the Taylor expansion (e.g., deduced from [9, (1.1.7)])

(1 + x)s =

∞∑
n=0

(
s

n

)
xn, |x| < 1,

(
s

n

)
:=

s (s− 1) · · · (s− n+ 1)

n!
.

Replacing x by (−x) and choosing s = −d, we obtain

(1− x)−d =

∞∑
n=0

(
n+ d− 1

n

)
xn, |x| < 1. (2.4)

Thus,
∞∑
n=0

(
dimH

d
n

)
zn =

1

(1− z)d
, |z| < 1. (2.5)

For n ≥ 2,

| · |2Hd
n−2 :=

{
|x|2Hn−2(x) : Hn−2 ∈ H

d
n−2

}

is a proper invariant subspace of Hd
n. Hence H

d
n|Sd−1 , the restriction of Hd

n to
S
d−1, is reducible. Let us identify the subspace of Hd

n that does not contain
the factor |x|2.

Any Hn ∈ H
d
n can be written in the form

Hn(x) =
∑

|α|=n

aαx
α, aα ∈ C.

For this polynomial Hn, define

Hn(∇) =
∑

|α|=n

aα∇α.

Given any two polynomials in H
d
n,

Hn,1(x) =
∑

|α|=n

aα,1x
α, Hn,2(x) =

∑
|α|=n

aα,2x
α,
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it is straightforward to show

Hn,1(∇)Hn,2(x) =
∑

|α|=n

α!aα,1aα,2 = Hn,2(∇)Hn,1(x).

Thus,

(Hn,1, Hn,2)Hd
n
:= Hn,1(∇)Hn,2(x) (2.6)

defines an inner product in the subspace H
d
n.

Recall that a function f is harmonic if Δf(x) = 0. Being harmonic is an
invariant property for functions.

Lemma 2.4. If Δf = 0, then ΔfA = 0 ∀A ∈ O
d.

Proof. Denote y = Ax. Then ∇x = A∇y. Since A ∈ O
d, we have

Δx = ∇x ·∇x = ∇y ·∇y = Δy.

So the stated property holds. ��

We now introduce an important subspace of Hd
n.

Definition 2.5. The space of the homogeneous harmonics of degree n in d
dimensions, Yn(R

d), consists of all homogeneous polynomials of degree n in
R

d that are also harmonic.

We comment that non-trivial functions in Yn(R
d) do not contain the factor

|x|2. This is shown as follows. Suppose Yn(x) = |x|2Yn−2(x) is harmonic,
where Yn−2(x) is a homogeneous polynomial of degree (n− 2). Then

(Yn, Yn)Hn,d
= Yn−2(∇)ΔYn(x) = 0.

Hence, Yn(x) ≡ 0.

Example 2.6. Obviously, Yn(R
d) = H

d
n if n = 0 or 1.

For d = 1, Yn(R) = ∅ for n ≥ 2.
For d = 2, Y2(R

2) consists of all polynomials of the form a
(
x21 − x22

)
+

b x1x2, a, b ∈ C. Polynomials of the form (x1 + i x2)
n belong to Yn(R

2).
For d = 3, any polynomial of the form (x3 + i x1 cos θ + i x2 sin θ)

n, θ ∈ R

being fixed, belongs to Yn(R
3). �

Let us determine the dimension Nn,d := dimYn(R
d). The number Nn,d

will appear at various places in this text. Any polynomial Hn ∈ H
d
n can be

written in the form

Hn(x1, · · · , xd) =
n∑

j=0

(xd)
jhn−j(x1, · · · , xd−1), hn−j ∈ H

d−1
n−j . (2.7)
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Apply the Laplacian operator to this polynomial,

Δ(d)Hn(x(d)) =

n−2∑
j=0

(xd)
j
[
Δ(d−1)hn−j(x(d−1))

+ (j + 2) (j + 1)hn−j−2(x(d−1))
]
.

Thus, if Hn ∈ Yn(R
d) so that Δ(d)Hn(x(d)) ≡ 0, then

hn−j−2 = − 1

(j + 2) (j + 1)
Δ(d−1)hn−j, 0 ≤ j ≤ n− 2. (2.8)

Consequently, a homogeneous harmonicHn ∈ Yn(R
d) is uniquely determined

by hn ∈ H
d−1
n and hn−1 ∈ H

d−1
n−1 in the expansion (2.7). From this, we get

the following relation on the polynomial space dimensions:

Nn,d = dimH
d−1
n + dimH

d−1
n−1. (2.9)

Using the formula (2.2) for dimH
d−1
n and dimH

d−1
n−1, we have, for d ≥ 2,

Nn,d =
(2n+ d− 2) (n+ d− 3)!

n!(d− 2)!
, n ∈ N. (2.10)

In particular, with n ∈ N, for d = 2, Nn,2 = 2, and for d = 3, Nn,3 = 2n+ 1.
It can be verified directly that N0,d = 1 for any d ≥ 1, and

N0,1 = N1,1 = 1, Nn,1 = 0 ∀n ≥ 2. (2.11)

Note the asymptotic behavior

Nn,d = O(nd−2) for n sufficiently large. (2.12)

For the generating function of the sequence {Nn,d}n, we apply the relation
(2.9) for n ≥ 1,

∞∑
n=0

Nn,dz
n = 1 +

∞∑
n=1

Nn,dz
n

= 1 +
∞∑
n=1

(
dimH

d−1
n

)
zn +

∞∑
n=1

(
dimH

d−1
n−1

)
zn

=

∞∑
n=0

(
dimH

d−1
n

)
zn + z

∞∑
n=0

(
dimH

d−1
n

)
zn

= (1 + z)

∞∑
n=0

(
dimH

d−1
n

)
zn.
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Thus, using the formula (2.5), we get a compact formula for the generating
function of the sequence {Nn,d}n:

∞∑
n=0

Nn,dz
n =

1 + z

(1− z)d−1
, |z| < 1. (2.13)

We can use (2.13) to derive a recursion formula for Nn,d with respect to
the dimension parameter d. Write

1 + z

(1− z)d−1
=

1 + z

(1− z)d−2
· 1

1− z
=

( ∞∑
m=0

Nm,d−1z
m

)( ∞∑
k=0

zk

)
.

We have

1 + z

(1 − z)d−1
=

∞∑
n=0

(
n∑

m=0

Nm,d−1

)
zn.

Comparing this formula with (2.13), we obtain

Nn,d =

n∑
m=0

Nm,d−1. (2.14)

2.1.2 Legendre Harmonic and Legendre Polynomial

We now introduce a special homogeneous harmonic, the Legendre harmonic
of degree n in d dimensions, Ln,d : Rd → R, by the following three conditions:

Ln,d ∈ Yn(R
d), (2.15)

Ln,d(Ax) = Ln,d(x) ∀A ∈ O
d(ed), ∀x ∈ R

d, (2.16)

Ln,d(ed) = 1. (2.17)

The condition (2.16) expresses the isotropical symmetry of Ln,d with respect
to the xd-axis, whereas the condition (2.17) is a normalizing condition. Write
Ln,d in the form (2.7) and A ∈ O

d(ed) in the form (2.1). Then the condition
(2.16) implies

hn−j(A1x(d−1)) = hn−j(x(d−1)) ∀A1 ∈ O
d−1, x(d−1) ∈ R

d−1, 0 ≤ j ≤ n.

From Proposition 2.1, hn−j depends on x(d−1) through |x(d−1)|. Since hn−j

is a homogeneous polynomial, this is possible only if (n − j) is even and
we have
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hn−j(x(d−1)) =

{
ck|x(d−1)|2k if n− j = 2k,

0 if n− j = 2k + 1,
ck ∈ R.

Hence,

Ln,d(x) =

[n/2]∑
k=0

ck|x(d−1)|2k(xd)n−2k,

where [n/2] denotes the integer part of n/2. To determine the coefficients

{ck}[n/2]k=0 , we apply the relation (2.8) to obtain

ck = − (n− 2k + 2) (n− 2k + 1)

2k (2k + d− 3)
ck−1, 1 ≤ k ≤ [n/2].

The normalization condition (2.17) implies c0 = 1. Then

ck = (−1)k
n! Γ(d−1

2 )

4kk! (n− 2k)! Γ(k + d−1
2 )

, 0 ≤ k ≤ [n/2].

Therefore, we have derived the following formula for the Legendre harmonic

Ln,d(x) = n! Γ

(
d− 1

2

) [n/2]∑
k=0

(−1)k
|x(d−1)|2k(xd)n−2k

4kk! (n− 2k)! Γ(k + d−1
2 )

. (2.18)

Using the polar coordinates

x(d) = rξ(d), ξ(d) = t ed + (1− t2)1/2ξ(d−1),

we define the Legendre polynomial of degree n in d dimensions, Pn,d(t) :=
Ln,d(ξ(d)), as the restriction of the Legendre harmonic on the unit sphere.
Then from the formula (2.18), we have

Pn,d(t) = n! Γ

(
d− 1

2

) [n/2]∑
k=0

(−1)k
(1− t2)ktn−2k

4kk! (n− 2k)! Γ(k + d−1
2 )

. (2.19)

Corresponding to (2.17), we have

Pn,d(1) = 1. (2.20)

This property can be deduced straightforward from the formula (2.19). Note
the relation

Ln,d(x) = Ln,d(rξ(d)) = rnPn,d(t). (2.21)
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The polynomial Pn,3(t) is the standard Legendre polynomial of degree n.
Following [85], we also call Pn,d(t) of (2.19) Legendre polynomial.

Detailed discussion of the Legendre polynomials Pn,d(t) is given in
Sects. 2.6 and 2.7.

2.1.3 Spherical Harmonics

We are now ready to introduce spherical harmonics.

Definition 2.7. Y
d
n := Yn(R

d)|Sd−1 is called the spherical harmonic space
of order n in d dimensions. Any function in Y

d
n is called a spherical harmonic

of order n in d dimensions.

By the definition, we see that any spherical harmonic Yn ∈ Y
d
n is related

to a homogeneous harmonic Hn ∈ Yn(R
d) as follows:

Hn(rξ) = rnYn(ξ).

Thus the dimension of Yd
n is the same as that of Yn(R

d):

dimY
d
n = Nn,d

and Nn,d is given by (2.10).
Take the case of d = 2 as an example. The complex-valued function (x1 +

i x2)
n is a homogeneous harmonic of degree n, and so are the real part and the

imaginary part of the function. In polar coordinates (r, θ), ξ = (cos θ, sin θ)T

and the restriction of the function (x1 + i x2)
n on the unit circle is

(cos θ + i sin θ)n = einθ = cos(nθ) + i sin(nθ).

Thus,
yn,1(ξ) = cos(nθ), yn,2(ξ) = sin(nθ) (2.22)

are elements of the space Y
2
n.

Let ξ ∈ S
d−1 be fixed. A function f : Sd−1 → C is said to be invariant

with respect to O
d(ξ) if

f(Aη) = f(η) ∀A ∈ O
d(ξ), ∀η ∈ S

d−1.

We have the following result, which will be useful later on several occasions.

Theorem 2.8. Let Yn ∈ Y
d
n and ξ ∈ S

d−1. Then Yn is invariant with respect
to O

d(ξ) if and only if
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Yn(η) = Yn(ξ)Pn,d(ξ·η) ∀η ∈ S
d−1. (2.23)

Proof. (=⇒) Since ξ is a unit vector, we can find an A1 ∈ O
d such that

ξ = A1ed. Consider the function

Ỹn(η) := Yn(A1η), η ∈ S
d−1.

Then Ỹn is invariant with respect to O
d(ed). From the definition of the

Legendre harmonic Ln,d(x), we know that the homogeneous harmonic

rnỸn(η) is a multiple of Ln,d(r
nη),

rnỸn(η) = c1Ln,d(r
nη), r ≥ 0, η ∈ S

d−1

with some constant c1. Thus,

Ỹn(η) = c1Ln,d(η), η ∈ S
d−1.

Choosing η = ed, we find
c1 = Ỹn(ed).

Hence,

Ỹn(η) = Ỹn(ed)Ln,d(η) = Ỹn(ed)Pn,d(η·ed), η ∈ S
d−1.

Then,

Yn(η) = Ỹn(A
T
1 η)

= Yn(A1ed)Pn,d(A
T
1 η·ed)

= Yn(A1ed)Pn,d(η·A1ed)

= Yn(ξ)Pn,d(η·ξ),

i.e., the formula (2.23) holds.
(⇐=) The function Yn(η) satisfying (2.23) is obviously invariant with

respect to O
d(ξ). ��

Consequently, the subspaces of isotropically invariant functions from Y
d
n

are one-dimensional.

2.2 Addition Theorem and Its Consequences

One important property regarding the spherical harmonics is the addition
theorem.
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Theorem 2.9 (Addition Theorem). Let {Yn,j : 1 ≤ j ≤ Nn,d} be an

orthonormal basis of Yd
n, i.e.,∫

Sd−1

Yn,j(η)Yn,k(η) dS
d−1(η) = δjk, 1 ≤ j, k ≤ Nn,d.

Then

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) =
Nn,d

|Sd−1|
Pn,d(ξ·η) ∀ ξ,η ∈ S

d−1. (2.24)

Proof. For any A ∈ O
d and 1 ≤ k ≤ Nn,d, Yn,k(Aξ) ∈ Y

d
n and we can write

Yn,k(Aξ) =

Nn,d∑
j=1

ckjYn,j(ξ), ckj ∈ C. (2.25)

From

∫
Sd−1

Yn,j(Aξ)Yn,k(Aξ) dS
d−1(ξ) =

∫
Sd−1

Yn,j(η)Yn,k(η) dS
d−1(η) = δjk,

we have

δjk =

Nn,d∑
l,m=1

cjlckm (Yn,l, Yn,m) =

Nn,d∑
l=1

cjlckl.

In matrix form, CCH = I. Here CH is the conjugate transpose of C. Thus,
the matrix C := (cjl) is unitary and so CHC = I, i.e.,

Nn,d∑
j=1

cjlcjk = δlk, 1 ≤ l, k ≤ Nn,d. (2.26)

Now consider the sum

Y (ξ,η) :=

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η), ξ,η ∈ S
d−1.

For any A ∈ O
d, use the expansion (2.25),

Y (Aξ, Aη) =

Nn,d∑
j=1

Yn,j(Aξ)Yn,j(Aη) =

Nn,d∑
j,k,l=1

cjkcjlYn,k(ξ)Yn,l(η),

and then use the property (2.26),
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Y (Aξ, Aη) =

Nn,d∑
k=1

Yn,k(ξ)Yn,k(η) = Y (ξ,η).

So for fixed ξ, Y (ξ, ·) ∈ Y
d
n and is invariant with respect to O

d(ξ). By
Theorem 2.8,

Y (ξ,η) = Y (ξ, ξ)Pn,d(ξ·η).

Similarly, we have the equality

Y (ξ,η) = Y (η,η)Pn,d(ξ·η).

Thus, Y (ξ, ξ) = Y (η,η) and is a constant on S
d−1. To determine this

constant, we integrate the equality

Y (ξ, ξ) =

Nn,d∑
j=1

|Yn,j(ξ)|2

over Sd−1 to obtain

Y (ξ, ξ) |Sd−1| =
Nn,d∑
j=1

∫
Sd−1

|Yj(ξ)|2dSd−1 = Nn,d.

Therefore,

Y (ξ, ξ) =
Nn,d

|Sd−1|
and the equality (2.24) holds. ��

The equality (2.24) is, for d = 3,

2n+1∑
j=1

Yn,j(ξ)Yn,j(η) =
2n+ 1

4 π
Pn,3(ξ·η) ∀ ξ,η ∈ S

2, (2.27)

and for d = 2,

2∑
j=1

Yn,j(ξ)Yn,j(η) =
1

π
Pn,2(ξ·η) ∀ ξ,η ∈ S

1. (2.28)

For the case d = 2, we write ξ = (cos θ, sin θ)T and η = (cosψ, sinψ)T . Then,
ξ·η = cos(θ − ψ). As an orthonormal basis for Y2

n, take (cf. (2.22))

Yn,1(ξ) =
1√
π

cos(nθ), Yn,2(ξ) =
1√
π

sin(nθ).
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By (2.28),

Pn,2(cos(θ − ψ)) = cos(nθ) cos(nψ) + sin(nθ) sin(nψ) = cos(n (θ − ψ)) .

Thus,
Pn,2(t) = cos(n arccos t) , |t| ≤ 1, (2.29)

i.e., Pn,2 is the ordinary Chebyshev polynomial of degree n.
We note that for d = 2,

n∑
k=0

1

π
Pk,2(ξ·η) =

1

2 π

sin((n+ 1/2)φ)

sin(φ/2)
, cosφ := ξ·η,

is the Dirichlet kernel, whereas for d = 3,

n∑
k=0

2k+1∑
j=1

Yk,j(ξ)Yk,j(η) =
n+ 1

4 π
P (1,0)
n (ξ·η) ∀ ξ,η ∈ S

2. (2.30)

Here P
(1,0)
n (t) is the Jacobi polynomial of degree n on [−1, 1], based on the

weight function w(t) = 1 − t; and as a normalization, P
(1,0)
n (1) = n + 1.

This identity is noted in [50]. See Sect. 4.3.1 for an introduction of the Jacobi
polynomials.

We now discuss several applications of the addition theorem.
The addition theorem can be used to find a compact expression of the

reproducing kernel of Yd
n. Any Yn ∈ Y

d
n can be written in the form

Yn(ξ) =

Nn,d∑
j=1

(Yn, Yn,j)Sd−1Yn,j(ξ). (2.31)

Applying (2.24),

Yn(ξ) =

∫
Sd−1

Yn(η)

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) dS
d−1(η)

=
Nn,d

|Sd−1|

∫
Sd−1

Pn,d(ξ·η)Yn(η) dSd−1(η).

Hence,

Kn,d(ξ,η) :=
Nn,d

|Sd−1|
Pn,d(ξ·η) (2.32)

is the reproducing kernel of Yd
n, i.e.,

Yn(ξ) = (Yn,Kn,d(ξ, ·))Sd−1 ∀Yn ∈ Y
d
n, ξ ∈ S

d−1. (2.33)
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Define

Y
d
0:m :=

m⊕
n=0

Y
d
n

to be the space of all the spherical harmonics of order less than or equal to
m. Then by (2.33),

K0:m,d(ξ,η) :=
1

|Sd−1|

m∑
n=0

Nn,dPn,d(ξ·η) (2.34)

is the reproducing kernel of Yd
0:m in the sense that

Y (ξ) = (Y,K0:m,d(ξ, ·))Sd−1 ∀Y ∈ Y
d
0:m, ξ ∈ S

d−1.

We now derive some bounds for any spherical harmonic and for the
Legendre polynomial, see (2.38) and (2.39) below, respectively.

Since Pn,d(1) = 1, we get from (2.24) that

Nn,d∑
j=1

|Yn,j(ξ)|2 =
Nn,d

|Sd−1|
∀ ξ ∈ S

d−1. (2.35)

This provides an upper bound for the maximum value of any member of an
orthonormal basis in Y

d
n:

max
{
|Yn,j(ξ)| : ξ ∈ S

d−1, 1 ≤ j ≤ Nn,d

}
≤

(
Nn,d

|Sd−1|

)1/2

. (2.36)

Consider an arbitrary Yn ∈ Y
d
n. From (2.31), we find

∫
Sd−1

|Yn(ξ)|2dSd−1(ξ) =

Nn,d∑
j=1

|(Yn, Yn,j)Sd−1 |2. (2.37)

By (2.31) again,

|Yn(ξ)|2 ≤
Nn,d∑
j=1

|Yn,j(ξ)|2
Nn,d∑
j=1

|(Yn, Yn,j)Sd−1 |2.

Then using (2.35) and (2.37),

|Yn(ξ)|2 ≤ Nn,d

|Sd−1|
‖Yn‖2L2(Sd−1).
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Thus we have the inequality

‖Yn‖∞ ≤
(
Nn,d

|Sd−1|

)1/2

‖Yn‖L2(Sd−1) ∀Yn ∈ Y
d
n, (2.38)

which extends the bound (2.36).
By (2.24) and (2.35), we have

Nn,d

|Sd−1|
|Pn,d(ξ·η)| ≤

⎡
⎣
Nn,d∑
j=1

|Yn,j(ξ)|2
⎤
⎦
1/2 ⎡

⎣
Nn,d∑
j=1

|Yn,j(η)|2
⎤
⎦
1/2

=
Nn,d

|Sd−1|
.

Therefore,

|Pn,d(t)| ≤ 1 = Pn,d(1) ∀n ∈ N, d ≥ 2, t ∈ [−1, 1]. (2.39)

We have an integral formula

∫
Sd−1

|Pn,d(ξ·η)|2dSd−1(η) =
|Sd−1|
Nn,d

. (2.40)

This formula is proved as follows. First we use (2.24) to get

∫
Sd−1

|Pn,d(ξ·η)|2dSd−1(η)

=

(
|Sd−1|
Nn,d

)2 ∫
Sd−1

∣∣∣∣
Nn,d∑
j=1

Yn,j(ξ)Yn,j(η)

∣∣∣∣
2

dSd−1(η)

=

(
|Sd−1|
Nn,d

)2 Nn,d∑
j=1

|Yn,j(ξ)|2.

Then we apply the identity (2.35).
As one more application of the addition theorem, we have the following

result.

Theorem 2.10. For any n ∈ N0 and any d ∈ N, the spherical harmonic
space Y

d
n is irreducible.

Proof. We argue by contradiction. Suppose Y
d
n is reducible so that it is

possible to write Y
d
n = V1 + V2 with V1 �= ∅, V2 �= ∅, and V1 ⊥ V2. Choose

an orthonormal basis of Yd
n in such a way that the first N1 functions span V1

and the remainingN2 = Nn,d−N1 functions span V2. For both V1 and V2, we
can apply the addition theorem with the corresponding Legendre functions
Pn,d,1 and Pn,d,2. Since V1 ⊥ V2,
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∫
Sd−1

Pn,d,1(ξ·η)Pn,d,2(ξ·η) dSd−1(η) = 0 ∀ ξ ∈ S
d−1. (2.41)

For an arbitrary but fixed ξ ∈ S
d−1, consider the function η �→ Pn,d,1(ξ·η).

For any A ∈ O
d(ξ), we have ATA = I and Aξ = ξ, implying AT ξ = ξ. Then

Pn,d,1(ξ·Aη) = Pn,d,1(A
T ξ·η) = Pn,d,1(ξ·η),

i.e., the function η �→ Pn,d,1(ξ·η) is invariant with respect to O
d(ξ). By

Theorem 2.8,

Pn,d,1(ξ·η) = Pn,d,1(ξ·ξ)Pn,d(ξ·η) = Pn,d(ξ·η).

Similarly,
Pn,d,2(ξ·η) = Pn,d(ξ·η).

But then the integral in (2.41) equals |Sd−1|/Nn,d by (2.40) and we reach a
contradiction. ��

2.3 A Projection Operator

Consider the problem of finding the best approximation in Y
d
n of a function

f ∈ L2(Sd−1):

inf
{
‖f − Yn‖L2(Sd−1) : Yn ∈ Y

d
n

}
. (2.42)

In terms of an orthonormal basis {Yn,j : 1 ≤ j ≤ Nn,d} of Yd
n, the solution of

the problem (2.42) is

(Pn,df)(ξ) =

Nn,d∑
j=1

(f, Yn,j)Sd−1Yn,j(ξ). (2.43)

This is the projection of any f into Y
d
n and it is defined for f ∈ L1(Sd−1). The

disadvantage of using this formula is the requirement of explicit knowledge of
an orthonormal basis. We can circumvent this weakness by applying (2.24)
to rewrite the right side of (2.43).

Definition 2.11. The projection of f ∈ L1(Sd−1) into Y
d
n is

(Pn,df)(ξ) :=
Nn,d

|Sd−1|

∫
Sd−1

Pn,d(ξ·η) f(η) dSd−1(η), ξ ∈ S
d−1. (2.44)
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The operator Pn,d is obviously linear. Let us derive some bounds for the
operator Pn,d. First, we obtain from (2.39) that

|(Pn,df)(ξ)| ≤
Nn,d

|Sd−1|
‖f‖L1(Sd−1), ξ ∈ S

d−1.

Then, for all f ∈ L1(Sd−1),

‖Pn,df‖C(Sd−1) ≤
Nn,d

|Sd−1|
‖f‖L1(Sd−1), (2.45)

‖Pn,df‖L1(Sd−1) ≤ Nn,d‖f‖L1(Sd−1). (2.46)

Next, assume f ∈ L2(Sd−1). For any ξ ∈ S
d−1,

|(Pn,df)(ξ)|2 ≤
(
Nn,d

|Sd−1|

)2 ∫
Sd−1

|Pn,d(ξ · η)|2dSd−1(η)

·
∫
Sd−1

|f(η)|2dSd−1(η).

Use (2.40),

|(Pn,df)(ξ)|2 ≤ Nn,d

|Sd−1|
‖f‖2L2(Sd−1).

Hence, for all f ∈ L2(Sd−1),

‖Pn,df‖L2(Sd−1) ≤ N
1/2
n,d ‖f‖L2(Sd−1), (2.47)

‖Pn,df‖C(Sd−1) ≤
(
Nn,d

|Sd−1|

)1/2

‖f‖L2(Sd−1). (2.48)

We remark that (2.47) can be improved to

‖Pn,df‖L2(Sd−1) ≤ ‖f‖L2(Sd−1);

see (2.134) later. Furthermore, if f ∈ C(Sd−1), a similar argument leads to

‖Pn,df‖C(Sd−1) ≤ N
1/2
n,d ‖f‖C(Sd−1). (2.49)

Proposition 2.12. The projection operator Pn,d and orthogonal transfor-
mations commute:

Pn,dfA = (Pn,df)A ∀A ∈ O
d.
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Proof. We start with the left side of the equality,

(Pn,dfA)(ξ) =
Nn,d

|Sd−1|

∫
Sd−1

Pn,d(ξ·η) f(Aη) dSd−1(η)

=
Nn,d

|Sd−1|

∫
Sd−1

Pn,d(Aξ·ζ) f(ζ) dSd−1(ζ),

which is (Pn,df)A(ξ) by definition. ��

A useful consequence of Proposition 2.12 is the following result.

Corollary 2.13. If V is an invariant space, then Pn,dV := {Pn,df : f ∈ V}
is an invariant subspace of Yd

n.

Since Y
d
n is irreducible, by Theorem 2.10, Corollary 2.13 implies that if

V is an invariant space, then either V is orthogonal to Y
d
n or Pn,dV = Y

d
n.

Moreover, we have the next result.

Theorem 2.14. If V is a primitive subspace of C(Sd−1), then either V ⊥ Y
d
n

or Pn,d is a bijection from V to Y
d
n. In the latter case, V = Y

d
n.

Proof. We only need to prove that if Pn,d : V → Y
d
n is a bijection, then

V = Y
d
n. The two spaces are finite dimensional and have the same dimension

Nn,d = dim(Yd
n). Let {Vj : 1 ≤ j ≤ Nn,d} be an orthonormal basis of V.

Since V is primitive, for any A ∈ O
d, we can write

Vj(Aξ) =

Nn,d∑
k=1

cjkVk(ξ), cjk ∈ C,

and the matrix (cjk) is unitary as in the proof of Theorem 2.9. Consider the
function

V (ξ,η) :=

Nn,d∑
j=1

Vj(ξ)Vj(η).

Then again as in the proof of Theorem 2.9, we have

V (Aξ, Aη) = V (ξ,η) ∀A ∈ O
d.

Given ξ,η ∈ S
d−1, we can find an A ∈ O

d such that

Aξ = ed, Aη = t ed + (1− t2)1/2ed−1 with t = ξ·η.

Then
V (ξ,η) = V (ed, t ed + (1− t2)1/2ed−1)
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is a function of t = ξ·η. Denote this function by Pd(t). For fixed ξ, the
mapping η �→ Pd(ξ·η) is a function in V, whereas for fixed ζ, the mapping
η �→ Pn,d(ζ·η) is a function in Y

d
n. Consider the function

φ(ξ, ζ) =

∫
Sd−1

Pd(ξ·η)Pn,d(ζ·η) dSd−1(η).

We have the property

φ(Aξ, Aζ) = φ(ξ, ζ) ∀A ∈ O
d.

So φ(ξ, ζ) depends on ξ·ζ only. This function belongs to both V and Y
d
n.

Thus, either V = Y
d
n or φ ≡ 0. In the latter case, we have

Nn,d∑
j,k=1

Vj(ξ)Yn,k(ζ) (Vj , Yn,k)L2(Sd−1) = 0 ∀ ξ, ζ ∈ S
d−1,

where {Yn,k : 1 ≤ k ≤ Nn,d} is an orthonormal basis of Yd
n. Since each of the

sets {Vj : 1 ≤ j ≤ Nn,d} and {Yn,j : 1 ≤ j ≤ Nn,d} consists of linearly
independent elements, we obtain from the above identity that

(Vj , Yn,k)L2(Sd−1) = 0, 1 ≤ j, k ≤ Nn,d.

This implies V ⊥ Y
d
n. ��

We let V = Y
d
m, m �= n, in Theorem 2.14 to obtain the following result

concerning orthogonality of spherical harmonics of different order.

Corollary 2.15. For m �= n, Yd
m ⊥ Y

d
n.

This result can be proved directly as follows. Let Ym ∈ Y
d
m and Yn ∈ Y

d
n

be the restrictions on S
d−1 of Hm ∈ Ym(Rd) and Hn ∈ Yn(R

d), respectively.
Since ΔHm(x) = ΔHn(x) = 0, we have

∫
‖x‖<1

(HmΔHn −HnΔHm) dx = 0.

Apply Green’s formula,

∫
Sd−1

(
Hm

∂Hn

∂r
−Hn

∂Hm

∂r

)
dSd−1 = 0. (2.50)

Since Hm is a homogeneous polynomial of degree m,

∂Hm(x)

∂r

∣∣∣∣
x=ξ

= mYm(ξ), ξ ∈ S
d−1.
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Similarly,
∂Hn(x)

∂r

∣∣∣∣
x=ξ

= nYn(ξ), ξ ∈ S
d−1.

Thus, from (2.50),

∫
Sd−1

(n−m)Ym(ξ)Yn(ξ) dS
d−1(ξ) = 0.

Hence, since m �= n,

∫
Sd−1

Ym(ξ)Yn(ξ) dS
d−1(ξ) = 0.

2.4 Relations Among Polynomial Spaces

We have introduced several polynomial spaces in the previous sections. Here
we discuss some relations among these polynomial spaces.

Proposition 2.16. The Laplacian operator Δ is surjective from H
d
n to H

d
n−2

for n ≥ 2.

Proof. Obviously, the operator Δ maps Hd
n to H

d
n−2. By (2.2) and (2.10), we

have

dimH
d
n − dimYn(R

d) =
(n+ d− 1)!

n! (d− 1)!
− (2n+ d− 2) (n+ d− 3)!

n! (d− 2)!

=
(n− 2 + d− 1)!

(n− 2)! (d− 1)!

= dimH
d
n−2.

Therefore, Δ : Hd
n → H

d
n−2 is surjective. ��

It is possible to give another proof of Proposition 2.16 using the inner
product (2.6). Suppose Δ : Hd

n → H
d
n−2 is not surjective. Then there exists a

non-zero function Hn−2 ∈ H
d
n−2 such that

(ΔHn, Hn−2)Hd
n−2

= 0 ∀Hn ∈ H
d
n.

Take Hn(x) = |x|2Hn−2(x) to get

(Hn, Hn)Hd
n
= Hn(∇)Hn(x) = Hn−2(∇)ΔHn(x)

= (Hn−2,ΔHn)Hd
n−2

= 0.
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Hence, Hn(x) = 0 and then Hn−2(x) = 0. This contradicts the assumption
that Hn−2 �= 0.

Lemma 2.17. For n ≥ 2, Hd
n = Yn(R

d) ⊕ | · |2Hd
n−2, with respect to the

inner product (2.6).

Proof. It is shown in the proof of Proposition 2.16 that

dimH
d
n = dimYn(R

d) + dimH
d
n−2.

Thus, it remains to show Yn(R
d) ⊥ | · |2Hd

n−2. For any Yn ∈ Yn(R
d) and any

Hn−2 ∈ H
d
n−2, there holds

(
Yn, | · |2Hn−2

)
Hd

n
= (ΔYn, Hn−2)Hd

n−2
= 0.

Therefore, the statement is valid. ��

The orthogonal decomposition stated in Lemma 2.17 can be applied
repeatedly, leading to the next result.

Theorem 2.18. With respect to the inner product (2.6), we have

H
d
n = Yn(R

d)⊕ | · |2Yn−2(R
d)⊕ · · · ⊕ | · |2 [n/2]

Yn−2 [n/2](R
d). (2.51)

Proof. For any Hn ∈ H
d
n, by Lemma 2.17, we have

Hn(x) = Yn(x) + |x|2Hn−2(x)

with uniquely determined Yn ∈ Yn(R
d) and Hn−2 ∈ H

d
n−2. Applying Lemma

2.17 to Hn−2 ∈ H
d
n−2, we can uniquely determine a pair of functions Yn−2 ∈

Yn−2(R
d) and Hn−4 ∈ H

d
n−4 such that

Hn−2(x) = Yn−2(x) + |x|2Hn−4(x).

Hence,

Hn(x) = Yn(x) + |x|2Yn−2(x) + |x|4Hn−4(x).

Continue this process to obtain the unique decomposition

Hn(x) = Yn(x) + |x|2Yn−2(x) + · · ·+ |x|2 [n/2]Yn−2 [n/2](x), (2.52)

where Yn−2j ∈ Yn−2j(R
d). Note that the terms on the right side of (2.52)

are mutually orthogonal with respect to the inner product (2.6). ��

As consequences of Theorem 2.18, we have the following two results.
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Corollary 2.19. ⎛
⎝ n∑

j=0

H
d
j

⎞
⎠

∣∣∣∣
Sd−1

=

n∑
j=0

Y
d
j .

So the restriction of any polynomial on S
d−1 is a sum of some spherical

harmonics and the restriction of the space of the polynomials of d variables
on S

d−1 is
∑∞

j=0 Y
d
j .

Corollary 2.20. A polynomial Hn ∈ H
d
n is harmonic if and only if

∫
Sd−1

Hn(ξ)Hn−2(ξ) dS
d−1(ξ) = 0 ∀Hn−2 ∈ H

d
n−2. (2.53)

Proof. (⇐=) Use (2.52) to obtain

Hn(ξ) = Yn(ξ) + Yn−2(ξ) + · · ·+ Yn−2 [n/2](ξ).

Then by (2.53) and the orthogonality of spherical harmonics of different order
(Corollary 2.15), we obtain

0 =

∫
Sd−1

Hn(ξ)Yn−2j(ξ) dS
d−1(ξ)

=

∫
Sd−1

|Yn−2j(ξ)|2dSd−1(ξ), 1 ≤ j ≤ [n/2].

So Yn−2j ≡ 0 for 1 ≤ j ≤ [n/2] and Hn(x) = Yn(x) is harmonic.

(=⇒) Assume Hn ∈ Yn(S
d) is harmonic. Recalling (2.52), we write an

arbitrary Hn−2 ∈ H
d
n−2 as

Hn−2(x) = Yn−2(x) + |x|2Yn−4(x) + · · ·+ |x|2 [(n−2)/2]Yn−2−2 [(n−2)/2](x).

Then,

∫
Sd−1

Hn(ξ)Hn−2(ξ) dS
d−1(ξ) =

[(n−2)/2]∑
j=0

∫
Sd−1

Hn(ξ)Yn−2−2j(ξ) dS
d−1(ξ)

= 0,

again using the fact that spherical harmonics of different order are orthogonal.
��

Now we discuss the question of how to determine the harmonic polynomials
Yn, Yn−2, . . . , Yn−2 [n/2] in the decomposition (2.52) for an arbitrary
homogeneous polynomial Hn of degree n. Since Hn(x) is homogeneous of
degree n,
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Hn(λx) = λnHn(x) ∀λ ∈ R, x ∈ R
d.

We differentiate this equality with respect to λ and then set λ = 1 to obtain

d∑
i=1

xi
∂Hn(x)

∂xi
= nHn(x), Hn ∈ H

d
n. (2.54)

Consider the function rmHn(x) with r = |x| and m ∈ N0. Note that

∂r

∂xi
=
xi
r
, 1 ≤ i ≤ d.

We take derivatives of the function rmHn(x) to obtain

∂

∂xi
(rmHn(x)) = mrm−2xiHn(x) + rm

∂Hn(x)

∂xi
,

∂2

∂x2i
(rmHn(x)) =

[
m (m− 2) rm−4x2i +mrm−2

]
Hn(x)

+ 2mrm−2xi
∂Hn(x)

∂xi
+ rm

∂2Hn(x)

∂x2i
,

and hence, using (2.54),

Δ (rmHn(x)) = m (d+ 2n+m− 2) rm−2Hn(x) + rmΔHn(x)

∀Hn ∈ H
d
n. (2.55)

In particular, if Hn(x) = Yn(x) is harmonic, then

Δ (rmYn(x)) = m (d+ 2n+m− 2) rm−2Yn(x) ∀Yn ∈ Yn(R
d). (2.56)

For Hn ∈ H
d
n, we write (2.52) in a compact form

Hn(x) =

[n/2]∑
j=0

|x|2jYn−2j(x). (2.57)

Apply the Laplacian operator Δ to both sides of (2.57) and use the formula
(2.56),

ΔHn(x) =

[n/2]∑
j=1

2j (d+ 2n− 2j − 2) |x|2(j−1)Yn−2j(x).
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In general, for k ≥ 1 an integer, we have

ΔkHn(x) =

[n/2]∑
j=k

2j · 2(j − 1) · · · 2(j − (k − 1)) (d+ 2n− 2j − 2)

· (d+ 2n− 2j − 4) · · · (d+ 2n− 2j − 2k) |x|2(j−k)Yn−2j(x).

Using the notation of double factorial,

ΔkHn(x) =

[n/2]∑
j=k

(2j)!! (d+ 2n− 2j − 2)!!

(2j − 2k)!! (d+ 2n− 2j − 2k − 2)!!
|x|2(j−k)Yn−2j(x).

(2.58)
By taking k = [n/2], [n/2] − 1, . . . , 1, 0 in (2.58), we can obtain in turn
Yn−2 [n/2], . . . , Yn(x). In particular, for n even,

Δn/2Hn(x) =
n!! (d+ n− 2)!!

(d− 2)!!
Y0(x).

Hence,

Y0(x) =
(d− 2)!!

n!! (d+ n− 2)!!
Δn/2Hn(x). (2.59)

Example 2.21. Write
x2i = Y2(x) + |x|2Y0(x).

We first apply (2.59) to get

Y0(x) =
1

d
.

We then use (2.58) with n = 2 and k = 0 to obtain

Y2(x) = x2i −
1

d
|x|2.

Hence, we have the decomposition

x2i =

(
x2i −

1

d
|x|2

)
+ |x|2 1

d
, 1 ≤ i ≤ d.

The same technique can be applied for higher degree homogeneous
polynomials. �

2.5 The Funk–Hecke Formula

The Funk–Hecke formula is useful in simplifying calculations of certain inte-
grals over Sd−1, cf. Sect. 3.7 for some examples. Introduce a weighted L1 space
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L1
(d−3)/2(−1, 1) :=

{
f measurable on (−1, 1) : ‖f‖L1

(d−3)/2
(−1,1) <∞

}
(2.60)

with the norm

‖f‖L1
(d−3)/2

(−1,1) :=

∫ 1

−1

|f(t)| (1− t2)(d−3)/2dt.

Note that for d ≥ 2, C[−1, 1] ⊂ L1
(d−3)/2(−1, 1). In the rest of the section,

we assume d ≥ 2.
Recall the projection operator Pn,d defined in (2.44). Given f ∈

L1
(d−3)/2(−1, 1) and ξ ∈ S

d−1, define fξ(η) = f(ξ·η) for η ∈ S
d−1. Then

(Pn,dfξ)A = Pn,dfξ for any A ∈ O
d(ξ). Since Pn,dfξ ∈ Y

d
n, by Theorem 2.8,

it is a multiple of Pn,d(ξ·):

(Pn,dfξ)(η) = λn
Nn,d

|Sd−1|
Pn,d(ξ·η).

This is rewritten as, following the definition (2.44),

λnPn,d(ξ·η) =
∫
Sd−1

Pn,d(ζ·η) f(ξ·ζ) dSd−1(ζ). (2.61)

We determine the constant λn by setting η = ξ in (2.61):

λn =

∫
Sd−1

Pn,d(ξ·ζ) f(ξ·ζ) dSd−1(ζ).

The integral does not depend on ξ and we may take ξ = ed. Then using
(1.16),

λn = |Sd−2|
∫ 1

−1

Pn,d(t) f(t) (1 − t2)
d−3
2 dt. (2.62)

Let Yn ∈ Y
d
n be arbitrary yet fixed. Multiply (2.61) by Yn and integrate

over Sd−1 with respect to η:

λn

∫
Sd−1

Pn,d(ξ·η)Yn(η) dSd−1(η)

=

∫
Sd−1

f(ξ·ζ)
(∫

Sd−1

Pn,d(ζ·η)Yn(η) dSd−1(η)

)
dSd−1(ζ). (2.63)

Applying the addition theorem, Theorem 2.9, we see that

∫
Sd−1

Pn,d(η·ζ)Yn(η) dSd−1(η) =
|Sd−1|
Nn,d

Nn,d∑
j=1

(Yn, Yn,j)Sd−1 Yn,j(ζ),
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i.e., ∫
Sd−1

Pn,d(η·ζ)Yn(η) dSd−1(η) =
|Sd−1|
Nn,d

Yn(ζ). (2.64)

Hence, from (2.63),

∫
Sd−1

f(ξ·η)Yn(η) dSd−1(η) = λnYn(ξ). (2.65)

We summarize the result in the form of a theorem.

Theorem 2.22 (Funk–Hecke Formula). Let f ∈ L1
(d−3)/2(−1, 1), ξ ∈

S
d−1 and Yn ∈ Y

d
n. Then the Funk–Hecke formula (2.65) holds with the

constant λn given by (2.62).

From (2.65), we can deduce the following statement using the formula
(2.24). Assume f ∈ L1

(d−3)/2(−1, 1). Then

∫
Sd−1

f(ξ·ζ)Pn,d(η·ζ) dSd−1(ζ) = λnPn,d(ξ·η) ∀ ξ,η ∈ S
d−1, n ∈ N0,

(2.66)
where λn is given by the formula (2.62).

Letting f = Pn,d in (2.65) and comparing it with (2.64), we deduce the
formula ∫ 1

−1

[Pn,d(t)]
2 (

1− t2
) d−3

2 dt =
|Sd−1|

Nn,d|Sd−2|
, (2.67)

which is equivalent to (2.40).

2.6 Legendre Polynomials: Representation Formulas

Further studies of spherical harmonics require a deeper knowledge of the
Legendre polynomials. In this section, we present compact formulas for
the Legendre polynomial Pn,d defined in (2.19): one differential formula
(Rodrigues representation formula) and some integral representation for-
mulas. These formulas are used in proving properties of the Legendre
polynomials in Sect. 2.7.

2.6.1 Rodrigues Representation Formula

By Corollary 2.15,

∫
Sd−1

Pm,d(ξ·ζ)Pn,d(ξ·ζ) dSd−1(ξ) = 0 for m �= n.
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By the formula (1.17), the left side integral equals

∫
Sd−2

(∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt

)
dSd−2

= |Sd−2|
∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt.

So ∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt = 0 for m �= n. (2.68)

Consequently, denoting Pm a polynomial of degree less than or equal to m,
we have the orthogonality

∫ 1

−1

Pm(t)Pn,d(t)
(
1− t2

) d−3
2 dt = 0, m < n. (2.69)

The Legendre polynomials are determined by the orthogonality relation
(2.68) and the normalization condition Pn,d(1) = 1.

Theorem 2.23 (Rodrigues representation formula).

Pn,d(t) = (−1)nRn,d(1− t2)
3−d
2

(
d

dt

)n

(1− t2)n+
d−3
2 for d ≥ 2, (2.70)

where the Rodrigues constant

Rn,d =
Γ(d−1

2 )

2nΓ(n+ d−1
2 )

. (2.71)

Proof. The function

pn(t) = (1− t2)
3−d
2

(
d

dt

)n

(1− t2)n+
d−3
2

is easily seen to be a polynomial of degree n. Let us show that these polyno-

mials are orthogonal with respect to the weight
(
1− t2

) d−3
2 . For n > m,

∫ 1

−1

pn(t) pm(t)
(
1− t2

) d−3
2 dt =

∫ 1

−1

pm(t)

(
d

dt

)n (
1− t2

)n+ d−3
2 dt.

Performing integration by parts n times shows that the integral is zero.
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The value pn(1) is calculated as follows:

pn(1) = (1− t2)
3−d
2

(
d

dt

)n [
(1 + t)n+

d−3
2 (1− t)n+

d−3
2

] ∣∣∣∣
t=1

= (1− t2)
3−d
2 (1 + t)n+

d−3
2

(
d

dt

)n

(1 − t)n+
d−3
2

∣∣∣∣
t=1

= (−1)n
(
d− 1

2

)
n

(1 + t)n
∣∣∣∣
t=1

= (−1)n
2nΓ(n+ d−1

2 )

Γ(d−1
2 )

,

where the formula (1.12) for Pochhammer’s symbol ((d− 1)/2)n is used.
Hence,

Pn,d(t) = (−1)nRn,dpn(t),

which is the stated formula. ��

In the case d = 3, we recover the Rodrigues representation formula for the
standard Legendre polynomials:

Pn,3(t) =
1

2nn!

(
d

dt

)n

(t2 − 1)n, n ∈ N0.

In the case d = 2, we use the relation

Γ

(
n+

1

2

)
=

(2n)!

22nn!
Γ

(
1

2

)
,

derived from a repeated application of (1.6), and obtain

Pn,2(t) = (−1)n
2nn!

(2n)!
(1− t2)

1
2

(
d

dt

)n

(1 − t2)n−
1
2 , n ∈ N0.

This formula is not convenient to use. A more familiar form is given by the
Chebyshev polynomial:

Pn,2(t) = cos(n arccos t), t ∈ [−1, 1].

This result is verified by showing cos(n arccos t) is a polynomial of degree
n, has a value 1 at t = 1, and these polynomials satisfy the orthogonality
condition (2.68) with d = 2. See also the derivation leading to (2.29).

In the case d = 4, we can similarly verify the formula

Pn,4(t) =
1

n+ 1
Un(t), t ∈ [−1, 1],
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where

Un(t) =
1

n+ 1
P ′
n+1,2(t)

is the nth degree Chebyshev polynomial of the second kind. For −1 < t < 1,
we have the formula

Un(t) =
sin((n+ 1) arccos t)

sin(arccos t)
.

We note that the Legendre polynomial Pn,d(t) is proportional to the Jacobi

polynomial P
(α,α)
n (t) with α = (d − 3)/2. The Jacobi polynomials P

(α,β)
n (t)

are introduced in Sect. 4.3.1.

2.6.2 Integral Representation Formulas

In addition to the Rodrigues representation formula (2.70), there are integral
representation formulas for the Legendre polynomials which are useful in
showing certain properties of the Legendre polynomials.

Let d ≥ 3. For a fixed η ∈ S
d−2, the function x �→ (xd + ix(d−1)·η)n is

a homogeneous harmonic polynomial of degree n. Consider its average with
respect to η ∈ S

d−2,

Ln(x) =
1

|Sd−2|

∫
Sd−2

(
xd + ix(d−1)·η

)n
dSd−2(η).

This function is a homogeneous harmonic of degree n. For A ∈ O
d(ed), we

recall (2.1) and write

Ax =

(
A1x(d−1)

xd

)
, A1 ∈ O

d−1.

Note that here we view x(d−1) as a vector in S
d−2. Then

Ln(Ax) =
1

|Sd−2|

∫
Sd−2

(
xd + ix(d−1)·AT

1 η
)n
dSd−2(η).

With a change of variable ζ = AT
1 η, we have

Ln(Ax) =
1

|Sd−2|

∫
Sd−2

(
xd + ix(d−1)·ζ

)n
dSd−2(ζ),

which coincides with Ln(x). Moreover, Ln(ed) = 1. Thus, Ln(x) is the
Legendre harmonic of degree n in dimension d. By the relation (2.21), we
see that
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Pn,d(t) =
1

|Sd−2|

∫
Sd−2

[
t+ i (1− t2)1/2ξ(d−1)·η

]n
dSd−2(η), t ∈ [−1, 1].

In this formula, ξ(d−1) ∈ S
d−2 is arbitrary. In particular, choosing ξ(d−1) =

(0, · · · , 0, 1)T in S
d−2 and applying (1.17), we obtain the first integral

representation formula for the Legendre polynomials.

Theorem 2.24. For n ∈ N0 and d ≥ 3,

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1−s2)

d−4
2 ds, t ∈ [−1, 1]. (2.72)

An easy consequence of the representation formula (2.72) is that Pn,d(t)
has the same parity as the integer n, i.e.,

Pn,d(−t) = (−1)nPn,d(t), −1 ≤ t ≤ 1. (2.73)

There is another useful integral representation formula that can be derived
from (2.72). Recall definitions of hyper-trigonometric functions:

sinhx :=
ex − e−x

2
, coshx :=

ex + e−x

2
,

tanhx :=
sinhx

coshx
=
ex − e−x

ex + e−x

and differentiation formulas

(sinhx)′ = coshx, (coshx)′ = sinhx, (tanhx)′ =
1

cosh2 x
.

Use the change of variable

s = tanhu, u ∈ R. (2.74)

We have s→ 1− as u→ ∞, s→ −1+ as u→ −∞, and

ds =
1

cosh2 u
du, 1− s2 =

1

cosh2 u
. (2.75)

Since Pn,d(−t) = (−1)nPn,d(t) by (2.73), it is sufficient to consider the case
t ∈ (0, 1] for the second integral representation formula. Write

t+ i (1− t2)1/2 = eiθ

for a uniquely determined θ ∈ [0, π/2). Then t = cos θ and

t+ i (1− t2)1/2s = cos θ + i tanhu sin θ.
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The hyper-trigonometric functions are defined for complex variables and it
can be verified that

cos θ + i tanhu sin θ =
cosh(u+ iθ)

coshu
.

Thus,

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1− s2)

d−4
2 ds =

∫ ∞

−∞

coshn(u+ iθ)

coshn+d−2 u
du.

The integrand is a meromorphic function of u with poles at u = iπ (k+1/2),
k ∈ Z. We then apply the Cauchy integral theorem in complex analysis [2]
to obtain

∫ ∞

−∞

coshn(u+ iθ)

coshn+d−2 u
du =

∫ ∞

−∞

coshn u

coshn+d−2(u − iθ)
du.

Return back to the variable s, using the relation

cosh(u− iθ) = coshu
[
t− i(1− t2)1/2s

]

together with (2.74) and (2.75),

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

(1− s2)
d−4
2[

t− i (1− t2)1/2s
]n+d−2

ds.

Note that changing s to −s for the integrand leads to another integral
representation formula for Pn,d(t). In summary, the following result holds.

Theorem 2.25. For n ∈ N0 and d ≥ 3,

Pn,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

(1 − s2)
d−4
2[

t± i (1− t2)1/2s
]n+d−2

ds, t ∈ (0, 1]. (2.76)

2.7 Legendre Polynomials: Properties

In this section, we explore properties of the Legendre polynomials by using
the compact presentation formulas given in Sect. 2.6.
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2.7.1 Integrals, Orthogonality

The following result is useful in computing integrals involving the Legendre
polynomials.

Proposition 2.26. If f ∈ Cn([−1, 1]), then

∫ 1

−1

f(t)Pn,d(t)
(
1− t2

) d−3
2 dt = Rn,d

∫ 1

−1

f (n)(t)
(
1− t2

)n+ d−3
2 dt, (2.77)

where the constant Rn,d is given in (2.71).

Proof. By the Rodrigues representation formula (2.70), the left side of
(2.77) is

(−1)nRn,d

∫ 1

−1

f(t)

(
d

dt

)n (
1− t2

)n+ d−3
2 dt.

Performing integration by parts n times on this integral leads to (2.77). ��

Recall the formula (2.40) or (2.67),

∫ 1

−1

[Pn,d(t)]
2 (

1− t2
) d−3

2 dt =
|Sd−1|

Nn,d |Sd−2|
. (2.78)

Combining (2.68) and (2.78), we have the orthogonality relation

∫ 1

−1

Pm,d(t)Pn,d(t)
(
1− t2

) d−3
2 dt =

|Sd−1|
Nn,d |Sd−2|

δmn. (2.79)

Using (1.18), we can rewrite (2.78) as

∫ 1

−1

[Pn,d(t)]
2 (1− t2

) d−3
2 dt =

√
π Γ(d−1

2 )

Nn,d Γ(
d
2 )
.

In particular, for d = 3, Nn,3 = 2n+ 1 and

∫ 1

−1

[Pn,3(t)]
2
dt =

2

2n+ 1
.

For d = 2, Nn,2 = 2 and

∫ 1

−1

[Pn,2(t)]
2
(1− t2)−

1
2 dt =

π

2
.
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We can verify this result easily by a direct calculation using the formula

Pn,2(t) = cos(n arccos t).

2.7.2 Differential Equation and Distribution of
Roots

First we derive a differential equation satisfied by the Legendre polynomial
Pn,d(t). Introduce a second-order differential operator Ld defined by

Ldg(t) :=
(
1− t2

) 3−d
2

d

dt

[(
1− t2

) d−1
2

d

dt
g(t)

]
, g ∈ C2[−1, 1].

Also introduce a weighted inner product

(f, g)d :=

∫ 1

−1

f(t) g(t)
(
1− t2

) d−3
2 dt.

Then through integration by parts, we have

(Ldf, g)d = (f, Ldg)d ∀ f, g ∈ C2[−1, 1]. (2.80)

Thus, the operator Ld is self-adjoint with respect to the weighted inner
product (·, ·)d.

Consider the function LdPn,d(t). Since

Ldg(t) = (1 − t2) g′′(t)− (d− 1) t g′(t),

we see that if pn(t) is a polynomial of degree n, then so is Ldpn(t). Let
0 ≤ m ≤ n− 1. By the weighted orthogonality relation (2.69), we have

(Pn,d, LdPm,d)d = 0.

Then by (2.80),

(Pm,d, LdPn,d)d = 0, 0 ≤ m ≤ n− 1.

Thus, the polynomial LdPn,d(t) must be a multiple of Pn,d(t). Writing

Pn,d(t) = a0n,dt
n + l.d.t. (2.81)



44 2 Spherical Harmonics

Here l.d.t. stands for the lower degree terms. We have

LdPn,d(t) = −n (n+ d− 2) a0n,dt
n + l.d.t.

Hence,
LdPn,d(t) + n (n+ d− 2)Pn,d(t) = 0.

So Pn,d is an eigenfunction for the differential operator −Ld corresponding to
the eigenvalue n (n+ d− 2). In other words, the Legendre polynomial Pn,d(t)
satisfies the differential equation

(
1− t2

) 3−d
2

d

dt

[(
1− t2

) d−1
2

d

dt
Pn,d(t)

]
+ n (n+ d− 2)Pn,d(t) = 0, (2.82)

which can also be written as

(1− t2)P ′′
n,d(t)− (d− 1) t P ′

n,d(t) + n (n+ d− 2)Pn,d(t) = 0. (2.83)

Next, we present a result regarding distributions of the roots of the
Legendre polynomials. This result plays an important role in the theory of
Gaussian quadratures. From the differential equation (2.83), we deduce that
Pn,d(t) and P

′
n,d(t) cannot both vanish at any point in (−1, 1); in other words,

Pn,d(t) has no multiple roots in (−1, 1). Assume Pn,d(t) has k distinct roots
t1, · · · , tk in the interval (−1, 1), and k < n. Then

pk(t) = (t− t1) · · · (t− tk)

is a polynomial of degree k, pk(1) > 0, and Pn,d(t) = qn−k(t) pk(t) with
a polynomial qn−k of degree n − k. Since the polynomial qn−k(t) does not
change sign in (−1, 1) and is positive at 1, it is positive in (−1, 1). So

∫ 1

−1

Pn,d(t) pk(t)
(
1− t2

) d−3
2 dt =

∫ 1

−1

qn−k(t) pk(t)
2
(
1− t2

) d−3
2 dt > 0.

However, since k < n, the integral on the left side is zero and this leads to
contradiction. We summarize the result in the form of a proposition.

Proposition 2.27. The Legendre polynomial Pn,d(t) has exactly n distinct
roots in (−1, 1).

For n even, Pn,d(t) is an even function so that its roots can be written
as ±t1, . . . , ±tn/2 with 0 < t1 < · · · < tn/2 < 1. For n odd, Pn,d(t) is an
odd function so that its roots can be written as 0, ±t1, . . . , ±t(n−1)/2 with
0 < t1 < · · · < t(n−1)/2 < 1.

In the particular case d = 2, it is easy to find the n roots of the equation

Pn,2(t) = cos(n arccos t) = 0
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to be

tj = cos
(2j + 1)π

2n
, 0 ≤ j ≤ n− 1.

For n = 2k even, noting that t2k−1−j = −tj , we can list the roots as

±t0, ±t1, · · · , ±tk−1 with tj = cos
(2j + 1)π

4k
, 0 ≤ j ≤ k − 1.

For n = 2k + 1 odd, noting that tk = 0 and t2k−j = −tj , we can list the
roots as

0, ±t0, ±t1, · · · , ±tk−1 where tj = cos
(2j + 1)π

2(2k + 1)
, 0 ≤ j ≤ k − 1.

2.7.3 Recursion Formulas

Recursion formulas are useful in computing values of the Legendre polyno-
mials, especially those of a higher degree.

Let us first determine the leading coefficient a0n,d of Pn,d(t) (see (2.81)).
We start with the equality

∫ 1

−1

[Pn,d(t)]
2 (1− t2

) d−3
2 dt = a0n,d

∫ 1

−1

tnPn,d(t)
(
1− t2

) d−3
2 dt, (2.84)

obtained by an application of the orthogonality property (2.69). By (2.78),
the left side of (2.84) equals

|Sd−1|
Nn,d |Sd−2|

.

Applying Proposition 2.26, we see that the right side of (2.84) equals

a0n,dRn,dn!

∫ 1

−1

(
1− t2

)n+ d−3
2 dt.

To compute the integral, we let s = t2:

∫ 1

−1

(
1− t2

)n+ d−3
2 dt =

∫ 1

0

s
1
2−1(1− s)n+

d−1
2 −1ds

=
Γ(12 ) Γ(n+ d−1

2 )

Γ(n+ d
2 )

.
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Hence,
|Sd−1|

Nn,d |Sd−2|
= a0n,dRn,dn!

Γ(12 ) Γ(n+ d−1
2 )

Γ(n+ d
2 )

.

Therefore, the leading coefficient of the Legendre polynomial Pn,d(t) is

a0n,d =
2n−1Γ(d− 1) Γ(n+ d−2

2 )

Γ(d2 )Γ(n+ d− 2)
. (2.85)

As an application of the formula (2.85), we note that

a0n,d
a0n−1,d

=
2n+ d− 4

n+ d− 3
.

So
(n+ d− 3)Pn,d(t)− (2n+ d− 4) t Pn−1,d(t)

is a polynomial of degree ≤ n − 1 and is orthogonal to Pk,d(t) with respect
to the weighted inner product (·, ·)d for 0 ≤ k ≤ n − 3. Thus, when this
polynomial is expressed as a linear combination of Pj,d(t), 0 ≤ j ≤ n − 1,
only the two terms involving Pn−2,d(t) and Pn−1,d(t) remain. In other words,
for two suitable constants c1 and c2,

(n+ d− 3)Pn,d(t)− (2n+ d− 4) t Pn−1,d(t) = c1Pn−1,d(t) + c2Pn−2,d(t).

The constants c1 and c2 can be found from the above equality at t = ±1,
since Pk,d(1) = 1 and Pk,d(−1) = (−1)k (cf. (2.73)):

c1 + c2 = 1− n,

c1 − c2 = n− 1.

The solution of this system is c1 = 0, c2 = 1 − n. Thus, the Legendre
polynomials satisfy the recursion relation

Pn,d(t) =
2n+ d− 4

n+ d− 3
t Pn−1,d(t)−

n− 1

n+ d− 3
Pn−2,d(t), n ≥ 2, d ≥ 2.

(2.86)
The initial conditions for the recursion formula (2.86) are

P0,d(t) = 1, P1,d(t) = t. (2.87)

It is convenient to use the recursion formula (2.86) to derive expressions of
the Legendre polynomials. The following are some examples. Note that in any
dimension d, the first two Legendre polynomials are the same, given by (2.87).
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For d = 2,

P2,2(t) = 2 t2 − 1,

P3,2(t) = 4 t3 − 3 t,

P4,2(t) = 8 t4 − 8 t2 + 1,

P5,2(t) = 16 t5 − 20 t3 + 5 t.

For d = 3,

P2,3(t) =
1

2

(
3 t2 − 1

)
,

P3,3(t) =
1

2

(
5 t3 − 3 t

)
,

P4,3(t) =
1

8

(
35 t4 − 30 t2 + 3

)
,

P5,3(t) =
1

8

(
63 t5 − 70 t3 + 15 t

)
.

For d = 4,

P2,4(t) =
1

3

(
4 t2 − 1

)
,

P3,4(t) = 2 t3 − t,

P4,4(t) =
1

5

(
16 t4 − 12 t2 + 1

)
,

P5,4(t) =
1

3

(
16 t5 − 16 t3 + 3 t

)
.

For d = 5,

P2,5(t) =
1

4

(
5 t2 − 1

)
,

P3,5(t) =
1

4

(
7 t3 − 3 t

)
,

P4,5(t) =
1

8

(
21 t4 − 14 t2 + 1

)
,

P5,5(t) =
1

8

(
33 t5 − 30 t3 + 5 t

)
.

Graphs of these Legendre polynomials are found in Figs. 2.1–2.4.
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Fig. 2.1 Legendre polynomials for dimension 2
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Fig. 2.2 Legendre polynomials for dimension 3
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Fig. 2.3 Legendre polynomials for dimension 4
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Fig. 2.4 Legendre polynomials for dimension 5
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As another application of the formula (2.85), we derive a formula for
derivatives of the Legendre polynomials in terms of the polynomials
themselves. Note that

a0n,d
a0n−1,d+2

=
n+ d− 2

d− 1
.

So

(d− 1)P ′
n,d(t)− n (n+ d− 2)Pn−1,d+2(t) (2.88)

is a polynomial of degree ≤ n− 2. For k ≤ n− 2,

∫ 1

−1

P ′
n,d(t)Pk,d+2(t)

(
1− t2

) d−1
2 dt

= −
∫ 1

−1

Pn,d(t)
d

dt

[
Pk,d+2(t)

(
1− t2

) d−1
2

]
dt

= −
∫ 1

−1

Pn,d(t)
[
(1 − t2)P ′

k,d+2(t)− (d− 1) t Pk,d+2(t)
] (

1− t2
) d−3

2 dt.

Since

(1 − t2)P ′
k,d+2(t)− (d− 1) t Pk,d+2(t)

is a polynomial of degree ≤ n− 1,

∫ 1

−1

P ′
n,d(t)Pk,d+2(t)

(
1− t2

) d−1
2 dt = 0, 0 ≤ k ≤ n− 2.

Thus, the polynomial (2.88) is of degree ≤ n− 2 and is orthogonal to all the
polynomials of degree ≤ n − 2 with respect to the weighted inner product
(·, ·)d+2. Then the polynomial (2.88) must be zero. Summarizing, we have
shown the following relation

P ′
n,d(t) =

n (n+ d− 2)

d− 1
Pn−1,d+2(t), n ≥ 1, d ≥ 2. (2.89)

Applying (2.89) recursively, we see that

P
(j)
n,d(t) = cn,d,jPn−j,d+2j(t)

where the constant cn,d,j is

n (n− 1) · · · (n− (j − 1)) · (n+ d− 2) (n+ d− 1) · · · (n+ j + d− 3)

(d− 1) (d+ 1) · · · (d+ 2j − 3)
.
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The denominator of the above fraction can be rewritten as

2j
(
d− 1

2

)
j

=
2jΓ(j + d−1

2 )

Γ(d−1
2 )

,

where (1.12) is applied. Thus,

P
(j)
n,d(t) =

n! (n+ j + d− 3)! Γ(d−1
2 )

2j(n− j)! (n+ d− 3)! Γ(j + d−1
2 )

Pn−j,d+2j(t), n ≥ j, d ≥ 2.

(2.90)
Note that for n < j, P

(j)
n,d(t) = 0.

The formula (2.90) provides one way to compute the Legendre polynomials
in higher dimensions d ≥ 4 through differentiating the Legendre polynomials
for d = 3 and d = 2. This is done as follows. First, rewrite (2.90) as

Pn,d(t) =
2jn! (n+ d− j − 3)! Γ(d−1

2 )

(n+ j)! (n+ d− 3)! Γ(d−1
2 − j)

P
(j)
n+j,d−2j(t). (2.91)

For d = 2k even, take j = k − 1. Then from (2.91),

Pn,2k(t) =
2k−1n! (n+ k − 2)! Γ(k − 1

2 )

(n+ k − 1)! (n+ 2k − 3)! Γ(12 )
P

(k−1)
n+k−1,2(t).

Applying (1.10), we have

Pn,2k(t) =
(2k − 2)!n!

2k−1(n+ k − 1) (k − 1)! (n+ 2k − 3)!
P

(k−1)
n+k−1,2(t).

For d = 2k + 1 odd, take j = k − 1. Then from (2.91),

Pn,2k+1(t) =
2k−1n! (k − 1)! (n+ k − 1)!

(n+ k − 1)! (n+ 2k − 2)!
P

(k−1)
n+k−1,3(t)

=
2k−1n! (k − 1)!

(n+ 2k − 2)!
P

(k−1)
n+k−1,3(t).

Let us derive some recursion formulas for the computation of the derivative
P ′
n,d(t). First, we differentiate (2.76) to obtain

(1− t2)P ′
n,d(t) = −(n+ d− 2) [Pn+1,d(t)− t Pn,d(t)] . (2.92)

Since (2.76) is valid for d ≥ 3 and t ∈ (0, 1], the relation (2.92) is proved for
d ≥ 3 and t ∈ (0, 1). For d = 2, Pn,2(t) = cos(nθ) with θ = arccos θ, and it is
easy to verify that both sides of (2.92) are equal to n sin θ sin(nθ). Then the
relation (2.92) is valid for d ≥ 2 and t ∈ (0, 1). Since Pn,d(−t) = (−1)nPn,d(t),
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we know that (2.92) holds for t ∈ (−1, 0) as well. Finally, since both sides of
(2.92) are polynomials, we conclude that the relation remains true for t = ±1
and 0, i.e.,

(1− t2)P ′
n,d(t) = −(n+ d− 2) [Pn+1,d(t)− t Pn,d(t)] ,

n ∈ N0, d ≥ 2, t ∈ [−1, 1]. (2.93)

Then, from (2.86), we have

t Pn,d(t) =
1

2n+ d− 2
[(n+ d− 2)Pn+1,d(t) + nPn−1,d(t)] .

Using this equality in (2.93) we obtain another relation

(1− t2)P ′
n,d(t) =

n (n+ d− 2)

2n+ d− 2
[Pn−1,d(t)− Pn+1,d(t)] ,

n ∈ N, d ≥ 2, t ∈ [−1, 1]. (2.94)

Finally, we differentiate the integral representation formula (2.72),

P ′
n,d(t) =

|Sd−3|
|Sd−2|

∫ 1

−1

n
[
t+ i (1− t2)1/2s

]n−1

·
[
1− i t (1− t2)−1/2s

]
(1− s2)

d−4
2 ds.

Then we find out

(1− t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] .

This equality is proved for d ≥ 3. For d = 2, Pn,2(t) = cos(n arccos t) and one
can verify directly the equality. So we have the relation

(1 − t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] , n ≥ 1, d ≥ 2, t ∈ [−1, 1].

(2.95)

2.7.4 Generating Function

Consider the following generating function of the Legendre polynomials

φ(r) =

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(t) r

n, |t| ≤ 1, |r| < 1. (2.96)

Let us first derive a compact formula for φ(r).
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Since |Pn,d(t)| ≤ 1 for any n, d and t, it is easy to verify that the series
converges absolutely for any r with |r| < 1. We differentiate (2.96) with
respect to r to find

φ′(r) =
∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 (2.97)

=

∞∑
n=0

(n+ 1)

(
n+ d− 2

d− 3

)
Pn+1,d(t) r

n. (2.98)

Using (2.97) and (2.98), we can write

(
1 + r2 − 2 r t

)
φ′(r) =

∞∑
n=0

(n+ 1)

(
n+ d− 2

d− 3

)
Pn+1,d(t) r

n

+

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n+1

− 2 t

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n. (2.99)

In the first sum of (2.99), for n ≥ 1, use the following relation from (2.86):

Pn+1,d(t) =
2n+ d− 2

n+ d− 2
t Pn,d(t)−

n

n+ d− 2
Pn−1,d(t).

Then after some straightforward algebraic manipulations, we obtain from
(2.99) that (

1 + r2 − 2 r t
)
φ′(r) = (d− 2) (t− r)φ(r). (2.100)

The unique solution of the differential equation (2.100) with the initial
condition

φ(0) = P0,d(0) = 1

is

φ(r) =
(
1 + r2 − 2 r t

)− d−2
2 .

Therefore, we have the following compact formula for the generating function
of the Legendre polynomials:

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(t) r

n =
(
1 + r2 − 2 r t

)− d−2
2 , |t| ≤ 1, |r| < 1.

(2.101)
In particular, we have, for Pn(t) := Pn,3(t),

∞∑
n=0

rnPn(t) =
1

(1 + r2 − 2rt)1/2
, |t| ≤ 1, |r| < 1. (2.102)
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The Legendre polynomials Pn,3(t) were originally introduced as coefficients
of the expansion (2.102).

For d ≥ 3, we differentiate (2.101) with respect to r for |r| < 1:

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 =
(d− 2) (t− r)

(1 + r2 − 2 r t)
d
2

. (2.103)

Note that

1

(1 + r2 − 2 r t)
d−2
2

+
2 r (t− r)

(1 + r2 − 2 r t)
d
2

=
1− r2

(1 + r2 − 2 r t)
d
2

.

Multiply both sides by (d−2) and apply (2.101) and (2.103). Then we obtain

∞∑
n=0

(2n+ d− 2)

(
n+ d− 3

d− 3

)
Pn,d(t) r

n =
(d− 2) (1− r2)

(1 + r2 − 2 r t)
d
2

.

This identity can be rewritten as

∞∑
n=0

Nn,dr
nPn,d(t) =

1− r2

(1 + r2 − 2rt)
d
2

and has been proved for d ≥ 3. It can be verified that the identity holds also
for d = 2. Therefore, we have the next result.

Proposition 2.28. (Poisson identity) For d ≥ 2,

∞∑
n=0

Nn,dr
nPn,d(t) =

1− r2

(1 + r2 − 2rt)
d
2

, |r| < 1, t ∈ [−1, 1]. (2.104)

Consider the special case d = 2. Then Pn,2(t) = cos(n arccos t). With
t = cos θ, the Poisson identity (2.104) is

1 + 2

∞∑
n=1

rn cos(nθ) =
1− r2

1 + r2 − 2r cos θ
|r| < 1, 0 ≤ θ ≤ π. (2.105)

With d = 3, the Poisson identity (2.104) is

∞∑
n=0

(2n+ 1) rnPn,3(t) =
1− r2

(1 + r2 − 2rt)
3
2

, |r| < 1, t ∈ [−1, 1].

This Poisson identity provides the expansion of the Henyey–Greenstein phase
function (1.2) with respect to the Legendre polynomials.
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We now use (2.101) to derive a few more recursive relations involving the
first order derivative of the Legendre polynomials. Differentiate (2.101) with
respect to t,

∞∑
n=0

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n = (d− 2) r
(
1 + r2 − 2 r t

)− d
2 .

Differentiate (2.101) with respect to r,

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n−1 = (d− 2) (t− r)
(
1 + r2 − 2 r t

)− d
2 .

Combining these two equalities we have

(t− r)

∞∑
n=1

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n =

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n,

i.e.,

t

∞∑
n=1

(
n+ d− 3

d− 3

)
P ′
n,d(t) r

n −
∞∑
n=2

(
n+ d− 4

d− 3

)
P ′
n−1,d(t) r

n

=

∞∑
n=1

n

(
n+ d− 3

d− 3

)
Pn,d(t) r

n.

Thus, for n ≥ 2,

t

(
n+ d− 3

d− 3

)
P ′
n,d(t)−

(
n+ d− 4

d− 3

)
P ′
n−1,d(t) = n

(
n+ d− 3

d− 3

)
Pn,d(t),

which can be simplified to

(n+ d− 3) t P ′
n,d(t)− nP ′

n−1,d(t) = n (n+ d− 3)Pn,d(t). (2.106)

Differentiate (2.86) with respect to t,

(n+ d− 2)P ′
n+1,d(t) = (2n+ d− 2)

[
t P ′

n,d(t) + Pn,d(t)
]
− nP ′

n−1,d(t).
(2.107)

Add (2.106) and (2.107) to obtain

(n+ d− 2)P ′
n+1,d(t)− (n+ 1) t P ′

n,d(t) =
[
n2 + (d− 1)n+ d− 2

]
Pn,d(t).
(2.108)
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We can use either (2.106) or (2.108) to express a Legendre polynomial in
terms of derivatives of Legendre polynomials:

Pn,d(t) =
1

n
t P ′

n,d(t)−
1

n+ d− 3
P ′
n−1,d(t), (2.109)

and

Pn,d(t) =
n+ d− 2

n2 + (d− 1)n+ d− 2
P ′
n+1,d(t)

− n+ 1

n2 + (d− 1)n+ d− 2
t P ′

n,d(t). (2.110)

Replace n by (n− 1) in (2.108),

(n+ d− 3)P ′
n,d(t)− n t P ′

n−1,d(t) = n (n+ d− 3)Pn−1,d(t).

Then subtract from this relation the identity obtained from (2.106) multiplied
by t,

(1− t2)P ′
n,d(t) = n [Pn−1,d(t)− t Pn,d(t)] .

This is the formula (2.95).
From (2.86),

Pn−1,d(t) =
2n+ d− 2

n
t Pn,d(t)−

n+ d− 2

n
Pn+1,d(t).

We can use this relation in (2.95) to recover (2.93).

2.7.5 Values and Bounds

First, we recall the parity property (2.73),

Pn,d(−t) = (−1)nPn,d(t), −1 ≤ t ≤ 1. (2.111)

We know from (2.20) that

Pn,d(1) = 1.

Using the property (2.111), we further have

Pn,d(−1) = (−1)n. (2.112)
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This result also follows from the value

pn(−1) =
2nΓ(n+ d−1

2 )

Γ(d−1
2 )

,

computed with a similar technique used in evaluating pn(1) in the proof of
Theorem 2.23.

We use (2.72) to compute Pn,d(0) for d ≥ 3.

Pn,d(0) =
|Sd−3|
|Sd−2|

∫ 1

−1

insn(1 − s2)
d−4
2 ds.

For n odd, n = 2k + 1, k ∈ N0, obviously,

P2k+1,d(0) = 0. (2.113)

For n even, n = 2k, k ∈ N0,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2|

2

∫ 1

0

s2k(1− s2)
d−4
2 ds.

Use the change of variable t = s2,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2|

∫ 1

0

tk−1/2(1− t)
d−4
2 dt.

Therefore,

P2k,d(0) = (−1)k
|Sd−3|
|Sd−2|

Γ(d−2
2 ) Γ(k + 1

2 )

Γ(k + d−1
2 )

. (2.114)

As an example,

P2k,3(0) = (−1)k
(2k − 1)!!

2kk!
.

Alternatively, we may use the generating function formula (2.101) to
compute the values. For example, take x = −1 in (2.101):

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(−1) rn = (1 + r)−(d−2).

Apply (2.4) to expand the right side to obtain

∞∑
n=0

(
n+ d− 3

d− 3

)
Pn,d(−1) rn =

∞∑
n=0

(
n+ d− 3

d− 3

)
(−r)n, |r| < 1.
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Hence,
Pn,d(−1) = (−1)n.

We may also apply (2.90) to find derivative values at particular points.
For instance, since

Pn−j,d+2j(1) = 1,

Pn−j,d+2j(−1) = (−1)n−j ,

we have for n ≥ j and d ≥ 2,

P
(j)
n,d(1) =

n!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

,

P
(j)
n,d(−1) =

(−1)nn!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

.

In particular, for d = 3,

P
(j)
n,3(1) =

(n+ j)!

2jj!(n− j)!
,

from which,

P ′
n,3(1) =

1

2
n (n+ 1) , P ′′

n,3(1) =
1

8
(n− 1)n (n+ 1) (n+ 2) .

Next we provide some bounds for the Legendre polynomials and their
derivatives. We use (2.72) to bound Pn,d(t). For s, t ∈ [−1, 1],

∣∣∣t+ i (1− t2)1/2s
∣∣∣ = [

t2 + (1− t2) s2
]1/2 ≤ (t2 + 1− t2)1/2 = 1. (2.115)

So for d ≥ 3,

|Pn,d(t)| ≤
|Sd−3|
|Sd−2|

∫ 1

−1

(1− s2)
d−4
2 ds = 1, t ∈ [−1, 1].

This bound is valid also for d = 2. Thus,

|Pn,d(t)| ≤ 1, n ∈ N0, d ≥ 2, t ∈ [−1, 1]. (2.116)

Instead of (2.115), we can use the bound

∣∣∣t+ i (1− t2)1/2s
∣∣∣ = [

1− (1 − t2) (1− s2)
]1/2 ≤ e−(1−t2) (1−s2)/2
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for s, t ∈ [−1, 1]. Then,

|Pn,d(t)| ≤
|Sd−3|
|Sd−2|

∫ 1

−1

e−n (1−t2) (1−s2)/2(1− s2)
d−4
2 ds

= 2
|Sd−3|
|Sd−2|

∫ 1

0

e−n (1−t2) (1−s2)/2(1− s2)
d−4
2 ds.

Let t ∈ (−1, 1). Use the change of variable s = 1 − u and the relation u ≤
1− s2 ≤ 2u for s ∈ [0, 1],

|Pn,d(t)| < 2
d−2
2

|Sd−3|
|Sd−2|

∫ ∞

0

e−n (1−t2)u/2u
d−4
2 du.

For the integral, we apply the formula (1.4),

∫ ∞

0

e−n (1−t2)u/2u
d−4
2 du =

[
2

n (1− t2)

] d−2
2

Γ

(
d− 2

2

)
.

Then,

|Pn,d(t)| < 2d−2 |Sd−3|
|Sd−2|

Γ(d−2
2 )

[n (1− t2)]
d−2
2

=
Γ(d−1

2 )√
π

[
4

n (1− t2)

] d−2
2

.

This inequality is valid also for d = 2. Therefore,

|Pn,d(t)| <
Γ(d−1

2 )√
π

[
4

n (1− t2)

] d−2
2

, n ∈ N0, d ≥ 2, t ∈ (−1, 1). (2.117)

From (2.90), we have bounds for derivatives of Pn,d(t) of any order:

∣∣∣P (j)
n,d(t)

∣∣∣ ≤ P
(j)
n,d(1) =

n!(n+ j + d− 3)!Γ(d−1
2 )

2j(n− j)!(n+ d− 3)!Γ(j + d−1
2 )

.

In particular,

max
t∈[−1,1]

∣∣∣P (j)
n,d(t)

∣∣∣ = O(n2j). (2.118)

As an application of (2.118), we observe that for any t, s ∈ [−1, 1],

Pn,d(t)− Pn,d(s) = P ′
n,d(τ) (t− s)
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for some τ between t and s. Applying (2.118) with j = 1, we have

|Pn,d(t)− Pn,d(s)| ≤ c n2|t− s| ∀ t, s ∈ [−1, 1]. (2.119)

Hence,

|Pn,d(ξ·ζ)− Pn,d(η·ζ)| ≤ c n2|ξ − η| ∀ ξ,η, ζ ∈ S
d−1. (2.120)

2.8 Completeness

In this section, we show in a constructive way that the spherical harmonics
are complete in C(Sd−1) and in L2(Sd−1), i.e., linear combinations of the
spherical harmonics are dense in C(Sd−1) and in L2(Sd−1).

2.8.1 Completeness in C(Sd−1)

Let f ∈ C(Sd−1). Formally,

f(ξ) =

∫
Sd−1

δ(1 − ξ·η) f(η) dSd−1(η), ξ ∈ S
d−1

using a Dirac delta function δ(t) whose value is 0 at t �= 0, +∞ at t = 0, and
which satisfies formally

∫
Sd−1

δ(1− ξ·η) dSd−1(η) = 1 ∀ ξ ∈ S
d−1.

The idea to demonstrate the completeness of the spherical harmonics in
C(Sd−1) is to construct a sequence of kernel functions {kn(t)} such that
kn(ξ·η) approaches δ(1 − ξ·η) and is such that for each n ∈ N, the function∫
Sd−1 kn(ξ·η) f(η) dSd−1(η) is a linear combination of spherical harmonics of
order less than or equal to n. One possibility is to choose kn(t) proportional
to (1 + t)n/2n. Thus, we let

kn(t) = En,d

(
1 + t

2

)n

,

where En,d is a scaling constant so that

∫
Sd−1

kn(ξ·η) dSd−1(η) = 1 ∀ ξ ∈ S
d−1. (2.121)
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To satisfy the condition (2.121), we have

En,d =
(n+ d− 2)!

(4π)
d−1
2 Γ(n+ d−1

2 )
. (2.122)

This formula is derived as follows. First,

∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = |Sd−2|
∫ 1

−1

(
1 + t

2

)n

(1− t2)
d−3
2 dt.

Use the change of variable s = (1 + t)/2,

∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = 2d−2|Sd−2|
∫ 1

0

sn+
d−3
2 (1− s)

d−3
2 ds.

By (1.19),

|Sd−2| = 2 π
d−1
2

Γ(d−1
2 )

.

Moreover,

∫ 1

0

sn+
d−3
2 (1 − s)

d−3
2 ds = B

(
n+

d− 1

2
,
d− 1

2

)
=

Γ(n+ d−1
2 ) Γ(d−1

2 )

Γ(n+ d− 1)
.

Thus ∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = (4π)
d−1
2

Γ(n+ d−1
2 )

Γ(n+ d− 1)
.

Hence, (2.122) holds.
Now we introduce an operator Πn,d by the following formula

(Πn,df)(ξ) := En,d

∫
Sd−1

(
1 + ξ·η

2

)n

f(η) dSd−1(η), f ∈ C(Sd−1).

(2.123)
Let us express (Πn,df)(ξ) as a linear combination of spherical harmonics of
order less than or equal to n. For this purpose, we write

En,d

(
1 + t

2

)n

=

n∑
k=0

μn,k,d
Nk,d

|Sd−1|
Pk,d(t). (2.124)

To determine the coefficients {μn,k,d}nk=0, multiply both sides by the function

Pl,d(t) (1 − t2)
d−3
2 , 0 ≤ l ≤ n, integrate from t = −1 to t = 1 and use the

orthogonality relation (2.79) to obtain
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μn,l,d = |Sd−2|En,d

∫ 1

−1

(
1 + t

2

)n

Pl,d(t) (1 − t2)
d−3
2 dt.

Applying Proposition 2.26, we have

μn,l,d = |Sd−2|En,dRl,d

∫ 1

−1

(
d

dt

)l (
1 + t

2

)n

(1− t2)l+
d−3
2 dt

= |Sd−2|En,dRl,d
n!

2n(n− l)!

∫ 1

−1

(1 + t)
n−l

(1− t2)l+
d−3
2 dt.

To compute the integral, we let t = 2 s− 1. Then

∫ 1

−1

(1 + t)
n−l

(1− t2)l+
d−3
2 dt = 2n+l+d−2

∫ 1

0

sn+
d−3
2 (1 − s)l+

d−3
2 ds

= 2n+l+d−2Γ(n+ d−1
2 ) Γ(l + d−1

2 )

Γ(n+ l + d− 1)
.

Hence, using the formulas (1.19), (2.71), and (2.122), we have

μn,l,d =
n!(n+ d− 2)!

(n− l)!(n+ l+ d− 2)!
.

It is easy to see that μn,l,d < μn+1,l,d and μn,l,d → 1 as n → ∞. From the
expansion (2.124), we get, by making use of the projection operator Pn,d

defined in Definition 2.11,

(Πn,df)(ξ) =

n∑
k=0

μn,k,d(Pk,df)(ξ). (2.125)

In other words, Πn,df is a linear combination of spherical harmonics of order
less than or equal to n.

To prove the completeness, we note the following property.

Lemma 2.29. If t ∈ [−1, 1), then

lim
n→∞

En,d

(
1 + t

2

)n

= 0.

Proof. By Stirling’s formula (1.11),

Γ(x) ∼
√
2π xx−1/2e−x for x→ ∞.
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Then,

En,d ∼ n
d
2

(4π)
d−1
2

and the statement holds. ��

Now we state and prove a completeness result.

Theorem 2.30.

lim
n→∞

‖Πn,df − f‖C(Sd−1) = 0 ∀ f ∈ C(Sd−1). (2.126)

Proof. Use the modulus of continuity

ω(f ; δ) = sup{|f(ξ)− f(η)| : ξ,η ∈ S
d−1, |ξ − η| ≤ δ}, δ > 0,

and recall that since f ∈ C(Sd−1),

ω(f ; δ) → 0 as δ → 0.

Denote

M := sup{|f(ξ)− f(η)| : ξ,η ∈ S
d−1} <∞.

Let ξ ∈ S
d−1 be arbitrary but fixed. Using (2.121), we have

(Πn,df)(ξ)− f(ξ) = En,d

∫
Sd−1

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η)

≡ I1(ξ) + I2(ξ),

where

I1(ξ) = En,d

∫
{η∈Sd−1:|ξ−η|≤δ}

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η),

I2(ξ) = En,d

∫
{η∈Sd−1:|ξ−η|>δ}

(
1 + ξ·η

2

)n

[f(η)− f(ξ)] dSd−1(η).

We bound each term as follows:

|I1(ξ)| ≤ ω(f ; δ)En,d

∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(η) = ω(f ; δ),

|I2(ξ)| ≤M En,d|Sd−1|
(
1− δ2

2

)n

.
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In bounding I2(ξ), we used the relation

|ξ − η| > δ =⇒ ξ·η < 1− δ2

2

for ξ,η ∈ S
d−1. Thus, for any δ ∈ (0, 1), applying Lemma 2.29, we have

lim sup
n→∞

‖Πn,df − f‖C(Sd−1) ≤ ω(f ; δ).

Note that ω(f ; δ) → 0 as δ → 0. So the stated result holds. ��

Using the formula (2.125), we can restate Theorem 2.30 as follows.

Theorem 2.31. For any f ∈ C(Sd−1),

f(ξ) = lim
n→∞

n∑
k=0

μn,k,d(Pk,df)(ξ) uniformly in ξ ∈ S
d−1.

If Pk,df = 0 for all n ∈ N0, then f = 0.

Theorem 2.31 combined with Theorem 2.14 implies that {Yd
n : n ∈ N0} is

the only system of primitive spaces in C(Sd−1) since any primitive space not
identical with one of Yd

n, n ∈ N0, is orthogonal to all and is therefore trivial.

2.8.2 Completeness in C(Sd−1) via the Poisson
Identity

We now use the Poisson identity (2.104) to give another constructive proof
of the completeness of the spherical harmonics. First we introduce a lemma.

Lemma 2.32. The function

Gd(r, t) :=
|Sd−2|
|Sd−1|

1− r2

(1 + r2 − 2rt)
d
2

, |r| < 1, t ∈ [−1, 1] (2.127)

is positive and has the properties:

∫ 1

−1

Gd(r, t) (1− t2)
d−3
2 dt = 1, (2.128)

lim
r→1−

Gd(r, t) = 0 uniformly for t ∈ [−1, t0]

with any fixed t0 ∈ (−1, 1). (2.129)
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Proof. For (2.128),

∫ 1

−1

Gd(r, t) (1− t2)
d−3
2 dt =

|Sd−2|
|Sd−1|

∫ 1

−1

∞∑
n=0

Nn,dr
nPn,d(t)(1 − t2)

d−3
2 dt

=
|Sd−2|
|Sd−1|

∫ 1

−1

(1− t2)
d−3
2 dt

= 1.

For (2.129), note the bound

1− r2

(1 + r2 − 2rt)
d
2

=
1− r2

[(1 − r)2 + 2r(1 − t)]
d
2

≤ 1− r2

[2r(1− t0)]
d
2

which is valid for t ∈ [−1, t0]. ��

Define an operator Gd(r) by

(Gd(r)f)(ξ) =
1

|Sd−2|

∫
Sd−1

Gd(r, ξ·η) f(η) dSd−1(η).

Note that for |r| < 1,

(Gd(r)f)(ξ) =
1

|Sd−2|

∞∑
n=0

Nn,dr
n

∫
Sd−1

Pn,d(ξ·η) f(η) dSd−1(η),

i.e.,

(Gd(r)f)(ξ) =

∞∑
n=0

rn(Pn,df)(ξ). (2.130)

Thus, Gd(r)f is the limit of a sequence of finite linear combinations of the
spherical harmonics.

Theorem 2.33 (Completeness).

lim
r→1−

‖Gd(r)f − f‖C(Sd−1) = 0 ∀ f ∈ C(Sd−1). (2.131)

Proof. The proof is similar to that of Theorem 2.30. Using (2.128),

(Gd(r)f)(ξ)− f(ξ) =

∫
Sd−1

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η)

≡ I1(ξ) + I2(ξ),
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where

I1(ξ) =

∫
|ξ−η|≥δ

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η),

I2(ξ) =

∫
|ξ−η|<δ

Gd(r, ξ·η) [f(η)− f(ξ)] dSd−1(η).

For any δ > 0, by (2.129),

|I1(ξ)| → 0 uniformly as r → 1− .

Also,
|I2(ξ)| ≤ ω(f ; δ).

So
lim sup
r→1−

‖Gd(r)f − f‖C(Sd−1) ≤ ω(f ; δ)

and (2.131) follows. ��

2.8.3 Convergence of Fourier–Laplace Series

We now consider convergence in average and uniform convergence of the
Fourier–Laplace series. For a given function f , the series

∞∑
k=0

Pk,df

is called the Fourier–Laplace series of the function f . Recall Definition 2.11
for the projection Pk,df .

First, we present a result for convergence in average.

Theorem 2.34. We have the convergence in average of the Fourier–Laplace
series:

lim
n→∞

∥∥∥f −
n∑

k=0

Pk,df
∥∥∥
L2(Sd−1)

= 0 ∀ f ∈ L2(Sd−1). (2.132)

Proof. Note that the operator Pk,d is self-adjoint:

(f,Pk,dg) = (Pk,df, g) ∀ f, g ∈ L2(Sd−1).

Also, (Pk,d)
2 = Pk,d. Therefore,

(f,Pk,df) = (f, (Pk,d)
2f) = (Pk,df,Pk,df) = ‖Pk,df‖2L2(Sd−1)
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and

(Pk,df,Pn,df) = δkn‖Pk,df‖2L2(Sd−1).

Apply the above two equalities to obtain

∥∥∥f −
n∑

k=0

Pk,df
∥∥∥2
L2(Sd−1)

= ‖f‖2L2(Sd−1) −
n∑

k=0

‖Pk,df‖2L2(Sd−1). (2.133)

Hence,
n∑

k=0

‖Pk,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1) ∀n ∈ N0.

Then,

∞∑
k=0

‖Pk,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1) ∀ f ∈ L2(Sd−1). (2.134)

First we assume f ∈ C(Sd−1). From the formula (2.130),

‖Gd(r)f‖2L2(Sd−1) =
∞∑
k=0

r2k‖Pk,df‖2L2(Sd−1). (2.135)

By Theorem 2.33, Gd(r)f converges uniformly to f on S
d−1 as r → 1−. Take

the limit r → 1− in (2.135) to obtain

‖f‖2L2(Sd−1) =

∞∑
k=0

‖Pk,df‖2L2(Sd−1). (2.136)

Then by (2.133) we obtain (2.132) for f ∈ C(Sd−1).
Extension of the result from a C(Sd−1) function to an L2(Sd−1) function is

achieved by using the density of C(Sd−1) in L2(Sd−1), by noticing that since
spherical harmonics of different order are orthogonal,

∥∥∥
n∑

k=0

Pk,df
∥∥∥2
L2(Sd−1)

=

n∑
k=0

‖Pk,df‖2L2(Sd−1)

and by applying the bound (2.134). ��

Then we turn to a study of uniform convergence of the Fourier–Laplace
series.

Define Sn : C(Sd−1) → C(Sd−1) to be the linear operator given by the
partial sum of the spherical harmonic expansion
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Snf(ξ) :=

n∑
k=0

(Pk,df)(ξ), f ∈ C(Sd−1). (2.137)

Denote by ‖Sn‖ the norm of the operator. To answer the question when do
the partial sums {Snf} converge uniformly to f , an important tool is the
following result, due to Lebesgue.

Theorem 2.35. For f ∈ C(Sd−1),

‖f − Snf‖C(Sd−1) ≤ (1 + ‖Sn‖)En,∞(f), (2.138)

where

En,∞(f) := inf
{
‖f − pn‖C(Sd−1) : pn ∈ Y

d
0:n

}
(2.139)

and

Y
d
0:n :=

n⊕
j=0

Y
d
j .

Proof. Note that

Snpn = pn ∀ pn ∈ Y
d
0:n.

Thus,

f − Snf = (f − pn)− Sn(f − pn) ∀ pn ∈ Y
d
0:n.

Apply the C(Sd−1)-norm,

‖f − Snf‖C(Sd−1) ≤ (1 + ‖Sn‖) ‖f − pn‖C(Sd−1).

Then take the infimum with respect to pn over the subspace Y
d
0:n to get

(2.138). ��

The operator norm ‖Sn‖ is called the “Lebesgue constant”. In [94], it is
shown that

‖Sn‖ = O
(
n(d−2)/2

)
, d ≥ 3.

Based on this bound, the next result regarding the uniform convergence of
the Fourier–Laplace series can be proved.

Theorem 2.36. Let d ≥ 3 and f ∈ Ck,α
(
S
d−1

)
for some k ≥ 0 and α ∈

(0, 1]. Assume k+α > d/2−1. Then Snf converges uniformly to f over Sd−1.

The spaces Ck
(
S
d−1

)
and Ck,α

(
S
d−1

)
can be defined in a variety of ways,

some of which are discussed in Sects. 4.2.1 and 4.2.2.We say f ∈ Ck,α
(
S
d−1

)
if

all of its kth-order derivatives are Hölder continuous with exponent α ∈ (0, 1].
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This theorem is proven in [94], based on results from [93] and [54]. Results
from these papers are discussed in greater detail in Sect. 4.2 for the special
case of S2.

In the case d = 2, the Fourier–Laplace series reduces to the ordinary
Fourier series. The Lebesgue constant is [123, Chap. 2, p. 67]

‖Sn‖ =
4

π2
lnn+O(1).

The following uniform convergence result on the Fourier series holds (see,
e.g., [13, Sect. 3.7]).

Theorem 2.37. Let f : R → R be a periodic function, with 2π being an
integer multiple of its period. If f ∈ Ck,α(R) with k ∈ N0 and α ∈ (0, 1], then
for the nth order partial sum Snf of the Fourier series of the function f ,

‖f − Snf‖C[0,2π] ≤ c
ln(n+ 2)

nk+α
.

In particular, this implies the uniform convergence of the Fourier series of
the function f .

2.8.4 Completeness in L2(Sd−1)

Theorem 2.34 implies the completeness of spherical harmonics in L2(Sd−1),
i.e., the subspace of linear combinations of spherical harmonics is dense in
L2(Sd−1).

An alternative way to show the completeness of spherical harmonics in
L2(Sd−1) is through using the operator Πn,d defined in (2.123). First, we

show the operator Πn,d is bounded as a mapping from L2(Sd−1) to L2(Sd−1):

‖Πn,df‖L2(Sd−1) ≤ ‖f‖L2(Sd−1) ∀ f ∈ L2(Sd−1). (2.140)

This is proved as follows:

‖Πn,df‖2L2(Sd−1) =

∫
Sd−1

E2
n,d

[∫
Sd−1

(
1 + ξ·η

2

)n

f(η) dSd−1(η)

]2
dSd−1(ξ)

≤
∫
Sd−1

E2
n,d

[∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(η)

∫
Sd−1

(
1 + ξ·η

2

)n

|f(η)|2dSd−1(η)

]
dSd−1(ξ).
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Apply (2.121),

‖Πn,df‖2L2(Sd−1) ≤
∫
Sd−1

En,d

[∫
Sd−1

(
1 + ξ·η

2

)n

|f(η)|2dSd−1(η)

]
dSd−1(ξ)

=

∫
Sd−1

|f(η)|2
[
En,d

∫
Sd−1

(
1 + ξ·η

2

)n

dSd−1(ξ)

]
dSd−1(η).

Apply (2.121) again to obtain

‖Πn,df‖2L2(Sd−1) ≤ ‖f‖2L2(Sd−1),

i.e., (2.140) holds.
Let f ∈ L2(Sd−1). For any ε > 0, by the density of C(Sd−1) in L2(Sd−1),

we can find a function fε ∈ C(Sd−1) such that

‖f − fε‖L2(Sd−1) <
ε

3
.

Choose n sufficiently large so that, following Theorem 2.30,

‖Πn,dfε − fε‖L2(Sd−1) <
ε

3
.

Then,

‖Πn,df − f‖L2(Sd−1) ≤ ‖Πn,d(f − fε)‖L2(Sd−1) + ‖Πn,dfε − fε‖L2(Sd−1)

+ ‖f − fε‖L2(Sd−1)

≤ 2 ‖f − fε‖L2(Sd−1) + ‖Πn,dfε − fε‖L2(Sd−1)

< ε.

Thus, the spherical harmonics are dense in L2(Sd−1).
Since spherical harmonics of different orders are orthogonal, we can also

deduce the next result.

Theorem 2.38. We have the orthogonal decomposition

L2(Sd−1) =

∞⊕
n=0

Y
d
n.

Thus, any function f ∈ L2(Sd−1) can be uniquely represented as

f(ξ) =

∞∑
n=0

fn(ξ) in L
2(Sd−1), fn ∈ Y

d
n, n ≥ 0. (2.141)
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We call fn ∈ Y
d
n the n-spherical harmonic component of f and have the

following formula

fn(ξ) =
Nn,d

|Sd−1|

∫
Sd−1

f(η)Pn,d(ξ·η) dSd−1(η), n ≥ 0. (2.142)

This formula is derived from (2.141) as follows. Replace ξ by η in (2.141), mul-
tiply both sides by Pn,d(ξ·η) and integrate with respect to η ∈ S

d−1 to obtain

∫
Sd−1

f(η)Pn,d(ξ·η) dSd−1(η) =

∫
Sd−1

∞∑
j=0

fj(η)Pn,d(ξ·η) dSd−1(η)

=

∞∑
j=0

∫
Sd−1

fj(η)Pn,d(ξ·η) dSd−1(η).

By the orthogonality of spherical harmonics of different orders,

∫
Sd−1

fj(η)Pn,d(ξ·η) dSd−1(η) = 0 ∀ j �= n.

Moreover, by (2.33),

∫
Sd−1

fn(η)Pn,d(ξ·η) dSd−1(η) =
|Sd−1|
Nn,d

fn(ξ).

Hence, ∫
Sd−1

f(η)Pn,d(ξ·η) dSd−1(η) =
|Sd−1|
Nn,d

fn(ξ)

and the formula (2.142) is proved. Notice that fn(ξ) = (Pn,df)(ξ) with the
projection operator Pn,d defined in (2.44).

As a consequence of (2.141), we have the Parseval equality on L2(Sd−1):

‖f‖2L2(Sd−1) =

∞∑
n=0

‖fn‖2L2(Sd−1) ∀ f ∈ L2(Sd−1), (2.143)

where fn is given by (2.142). This equality extends (2.136) from C(Sd−1)
functions to L2(Sd−1) functions.

2.9 The Gegenbauer Polynomials

The Gegenbauer polynomials are useful in generalizing the expansion
(2.102). Recall the integral representation formula (2.72) for the Legendre
polynomials.
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Definition 2.39. For ν > 0, n ∈ N0,

Cn,ν(t) :=

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
(1 − s2)ν−1ds

(2.144)
is called the Gegenbauer polynomial of degree n with index ν.

Note that for an arbitrary number a, the binomial coefficient

(
a

n

)
:=

a (a− 1) · · · (a− (n− 1))

n!
, n ∈ N.

Why Cn,ν(t) is a polynomial of degree n? First,

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

(
n

j

)
tn−j(1− t2)j/2(is)j .

For j = 2k + 1 odd, the integral of the corresponding term is

∫ 1

−1

s2k+1(1− s2)ν−1ds = 0.

So Cn,ν(t) is real valued and

Cn,ν(t) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

[n/2]∑
k=0

(
n

2k

)
tn−2k(−1)k(1− t2)k

·
∫ 1

−1

s2k(1− s2)ν−1ds

is a polynomial of degree ≤ n. The coefficient of tn in Cn,ν(t) is

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

[n/2]∑
k=0

(
n

2k

)∫ 1

−1

s2k(1− s2)ν−1ds > 0.

Hence, Cn,ν(t) is a polynomial of degree n.
Observe that, recalling the formula (2.72),

Cn, d−2
2
(t) =

(
n+ d− 3

n

)
Pn,d(t), d ≥ 3. (2.145)

Proposition 2.40. (Gegenbauer identity)

∞∑
n=0

rnCn,ν(t) =
1

(1 + r2 − 2rt)ν
, |r| < 1, t ∈ [−1, 1]. (2.146)
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Proof. First we calculate Cn,ν(1):

Cn,ν(1) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

(1 − s2)ν−1ds.

Let t = s2. Then,

Cn,ν(1) =

(
n+ 2ν − 1

n

)
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

0

t−
1
2 (1− t)ν−1dt.

Since ∫ 1

0

t−
1
2 (1 − t)ν−1dt =

Γ(12 ) Γ(ν)

Γ(ν + 1
2 )
,

we have

Cn,ν(1) =

(
n+ 2ν − 1

n

)
. (2.147)

From the power series (2.4),

∞∑
n=0

(
n+ 2ν − 1

n

)
zn =

1

(1− z)2ν
, |z| < 1.

For |r| < 1 and |t| ≤ 1,

∞∑
n=0

rnCn,ν(t) =
Γ(ν + 1

2 )√
π Γ(ν)

∫ 1

−1

(1− s2)ν−1

[1− rt− i r (1 − t2)1/2s]2ν
ds. (2.148)

Write
1− rt− i r (1 − t2)1/2 = (1 + r2 − 2rt)1/2e−iα

for some α ∈
[
0, π2

)
. Use the substitution (2.74), recall the relations (2.75),

and note that

1− rt− i r (1− t2)1/2s = (1 + r2 − 2rt)1/2 (cosα− i tanhu sinα)

= (1 + r2 − 2rt)1/2
cosh(u− iα)

coshu
.

So from (2.148), we have

∞∑
n=0

rnCn,ν(t) =
Γ(ν + 1

2 )√
π Γ(ν)

1

(1 + r2 − 2rt)ν

∫ ∞

−∞

1

cosh2ν(u− iα)
du.

Since the poles of the function (coshu)−2ν are u = iπ (k + 1/2), k ∈ Z, and
since 0 ≤ α < π/2, we can apply the Cauchy integral theorem in complex
analysis to get
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∫ ∞

−∞

1

cosh2ν(u− iα)
du =

∫ ∞

−∞

1

cosh2ν u
du,

which is a constant. Thus, for some constant c,

∞∑
n=0

rnCn,ν(t) =
c

(1 + r2 − 2rt)ν
.

Let t = 1 and use the value (2.147):

c

(1− r)2ν
=

∞∑
n=0

(
n+ 2ν − 1

n

)
rn =

1

(1− r)2ν
.

So the constant c = 1. ��

Obviously, (2.102) is a special case of (2.146) by taking ν = 1/2.

2.10 The Associated Legendre Functions

We have seen that the Legendre polynomials play an important role in the
study of spherical harmonics. In an increasing order of complexity, we next
introduce associated Legendre functions which are useful in constructing
spherical harmonics from those in a lower dimension.

2.10.1 Definition and Representation Formulas

Recall the first integral representation formula (2.72) for the Legendre
polynomials. We then introduce the following definition.

Definition 2.41. For d ≥ 3 and n, j ∈ N0,

Pn,d,j(t) =
|Sd−3|
|Sd−2|

i−j

∫ 1

−1

[
t+ i (1− t2)1/2s

]n
Pj,d−1(s) (1− s2)

d−4
2 ds,

t ∈ [−1, 1]. (2.149)

is called the associated Legendre function of degree n with order j in
dimension d.

When j = 0, Pn,d,0(t) = Pn,d(t) is the Legendre polynomial of degree
n in d-dimensions. The factor i−j is included in (2.149) to make Pn,d,j(t)
real-valued. To see this, note that
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[
t+ i (1− t2)1/2s

]n
=

n∑
k=0

(
n

k

)
tn−k(1− t2)k/2iksk.

Thus,

Pn,d,j(t) =
|Sd−3|
|Sd−2|

n∑
k=0

(
n

k

)
tn−k(1− t2)k/2ik−j

∫ 1

−1

skPj,d−1(s) (1− s2)
d−4
2 ds.

By the parity property (2.111) for the Legendre polynomials, when |k− j| is
odd, skPj,d−1(s) is an odd function and then

∫ 1

−1

skPj,d−1(s) (1− s2)
d−4
2 ds = 0.

Consequently, Pn,d,j(t) is real-valued.
The associated Legendre functions can be used to generate orthonormal

systems of spherical harmonics on S
d−1; see Sect. 2.11.

Applying Proposition 2.26, we have

Pn,d,j(t) = Rj,d−1
|Sd−3|
|Sd−2|

n!

(n− j)!
(1 − t2)

j
2

·
∫ 1

−1

[
t+ i (1− t2)1/2s

]n−j

(1 − s2)j+
d−4
2 ds,

where by (2.71),

Rj,d−1 =
Γ(d−2

2 )

2jΓ(j + d−2
2 )

.

Since

∫ 1

−1

[
t+ i (1− t2)1/2s

]n−j

(1− s2)j+
d−4
2 ds =

π
1
2Γ(j + d−2

2 )

Γ(j + d−1
2 )

Pn−j,d+2j(t)

by an application of the integral representation formula (2.72), we have thus
shown the following result.

Proposition 2.42. For d ≥ 3 and 0 ≤ j ≤ n,

Pn,d,j(t) =
n!Γ(d−1

2 )

2j(n− j)!Γ(j + d−1
2 )

(1− t2)
j
2Pn−j,d+2j(t), t ∈ [−1, 1].

In some references, the associated Legendre functions are also called the
associated Legendre polynomials. From Proposition 2.42, it is evident that
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the associated Legendre function Pn,d,j(t) is a polynomial in t if and only if
j is even.

Combining Theorem 2.23 and Proposition 2.42, we obtain the formula

Pn,d,j(t) =
(−1)n−jn!Γ(d−1

2 )

2n(n− j)!Γ(n+ d−1
2 )

(1− t2)
3−d−j

2

(
d

dt

)n−j

(1− t2)n+
d−3
2

for d ≥ 3, 0 ≤ j ≤ n and t ∈ [−1, 1]. For the particular case d = 3, with
0 ≤ j ≤ n and t ∈ [−1, 1],

Pn,3,j(t) =
(−1)n−j

2n(n− j)!
(1− t2)−

j
2

(
d

dt

)n−j

(1− t2)n. (2.150)

Furthermore, by the formula (2.90), we obtain the next result.

Proposition 2.43. For d ≥ 3 and 0 ≤ j ≤ n,

Pn,d,j(t) =
(n+ d− 3)!

(n+ j + d− 3)!
(1− t2)

j
2P

(j)
n,d(t), t ∈ [−1, 1].

Thus, the associated Legendre functions can be computed through differ-
entiating the Legendre polynomials.

Combining Theorem 2.23 and Proposition 2.43, we obtain the formula

Pn,d,j(t) =
(−1)n(n+ d− 3)!Γ(d−1

2 )

2n(n+ j + d− 3)!Γ(n+ d−1
2 )

(1 − t2)
j
2

·
(
d

dt

)j [
(1 − t2)

3−d
2

(
d

dt

)n

(1 − t2)n+
d−3
2

]

for d ≥ 3, 0 ≤ j ≤ n and t ∈ [−1, 1]. For d = 3, with 0 ≤ j ≤ n and
t ∈ [−1, 1],

Pn,3,j(t) =
(−1)n

2n(n+ j)!
(1− t2)

j
2

(
d

dt

)n+j

(1− t2)n. (2.151)

From (2.150) and (2.151), we obtain an identity

(1− t2)j
(
d

dt

)n+j

(1− t2)n = (−1)j
(n+ j)!

(n− j)!

(
d

dt

)n−j

(1− t2)n, 0 ≤ j ≤ n.

For d = 2, we use the formulas given in Proposition 2.42 or Proposition 2.43
to define Pn,2,j(t) for 0 ≤ j ≤ n.
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2.10.2 Properties

First we present an addition theorem for the associated Legendre functions.
The function

[
t+ i (1− t2)1/2s

]n
is a polynomial of degree n in the variable s.

Consider the expansion

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

cj(t)Pj,d−1(s)

and let us determine cj(t). By Definition 2.41, for 0 ≤ k ≤ n,

Pn,d,k(t) =
|Sd−3|
|Sd−2|

i−k
n∑

j=0

cj(t)

∫ 1

−1

Pk,d−1(s)Pj,d−1(s) (1− s2)
d−4
2 ds.

Using (2.79), we have

Pn,d,k(t) =
1

ikNk,d−1
ck(t).

So
ck(t) = ikNk,d−1Pn,d,k(t)

and then we can write the expansion as

[
t+ i (1− t2)1/2s

]n
=

n∑
j=0

ijNj,d−1Pn,d,j(t)Pj,d−1(s). (2.152)

Temporarily assume m ≥ n ≥ 0. We use the identity (2.152) to obtain

Pm+n,d(t) =
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]m+n

(1 − s2)
d−4
2 ds

=
|Sd−3|
|Sd−2|

∫ 1

−1

[
t+ i (1− t2)1/2s

]m n∑
j=0

ijNj,d−1Pn,d,j(t)

· Pj,d−1(s) (1− s2)
d−4
2 ds

=
|Sd−3|
|Sd−2|

n∑
j=0

ijNj,d−1Pn,d,j(t)

∫ 1

−1

[
t+ i (1− t2)1/2s

]m

· Pj,d−1(s) (1− s2)
d−4
2 ds

=

n∑
j=0

(−1)jNj,d−1Pm,d,j(t)Pn,d,j(t),
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recalling the defining relation (2.149). Thus,

Pm+n,d(t) =

min{m,n}∑
j=0

(−1)jNj,d−1Pm,d,j(t)Pn,d,j(t), m, n ∈ N0. (2.153)

This is an addition theorem for the associated Legendre functions.
For the case d = 2, Pn,2(t) = cos(n arccos t). With the new variable θ =

arccos t, we have Pn,2(cos θ) = cos(nθ). Also, in this case, Nn,1 is given by
(2.11). By Proposition 2.43,

Pn,2,j(t) =
(n− 1)!

(n+ j − 1)!
(1− t2)

j
2

(
d

dt

)j

cos(n arccos t). (2.154)

In particular, with j = 1, we obtain from (2.154) that

Pn,2,1(t) = sin(n arccos t).

The addition theorem formula (2.153) with d = 2

Pm+n,2(t) =

min{m,n}∑
j=0

(−1)jNj,1Pm,2,j(t)Pn,2,j(t)

takes the following familiar form, with θ = arccos t,

cos((m+ n)θ) = cos(mθ) cos(nθ)− sin(mθ) sin(nθ), m, n ∈ N0.

Next, we derive a differential equation for Pn,d,j(t). Differentiate (2.83) j
times,

(
d

dt

)j [
(1 − t2)P ′′

n,d(t)− (d− 1) t P ′
n,d(t) + n (n+ d− 2)Pn,d(t)

]
= 0.

Since

(
d

dt

)j [
(1− t2)P ′′

n,d(t)
]
= (1 − t2)P

(j+2)
n,d (t)− 2 j t P

(j+1)
n,d (t)

− j (j − 1)P
(j)
n,d(t),

(
d

dt

)j [
t P ′

n,d(t)
]
= t P

(j+1)
n,d (t) + j P

(j)
n,d(t),
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we get

(1− t2)P
(j+2)
n,d (t)− (2j + d− 1) t P

(j+1)
n,d (t)

+ [n (n+ d− 2)− j (j + d− 2)]P
(j)
n,d(t) = 0. (2.155)

By Proposition 2.43,

P
(j)
n,d(t) = c0(1− t2)−

j
2Pn,d,j(t), c0 =

(n+ j + d− 3)!

(n+ d− 3)!
.

Then,

P
(j+1)
n,d (t) = c0(1 − t2)−

j
2

[
P ′
n,d,j(t) + j t (1− t2)−1Pn,d,j(t)

]
,

P
(j+2)
n,d (t) = c0(1 − t2)−

j
2−1

[
(1− t2)P ′′

n,d,j(t) + 2 j t P ′
n,d,j(t)

+ j
(
(j + 2)(1− t2)−1 − (j + 1)

)
Pn,d,j(t)

]
.

Substitute these expressions in (2.155) and rearrange the terms to get the
differential equation

(1− t2)P ′′
n,d,j(t)− (d− 1) t P ′

n,d,j(t)

+

[
n (n+ d− 2)− j (j + d− 3)

1− t2

]
Pn,d,j(t) = 0. (2.156)

Taking j = 0 in (2.156), we recover the differential equation (2.83) for the
Legendre polynomials Pn,d(t) = Pn,d,0(t).

We now use the differential equation (2.156) to prove the following
orthogonality property.

Proposition 2.44.

∫ 1

−1

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 dt = 0, m �= n. (2.157)

Proof. We rewrite (2.156) in the form

(1− t2)−
d−3
2
d

dt

[
(1− t2)

d−1
2
d

dt
Pn,d,j(t)

]

+

[
n (n+ d− 2)− j (j + d− 3)

1− t2

]
Pn,d,j(t) = 0.
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From this equation, we deduce that

Pm,d,j(t)
d

dt

[
(1− t2)

d−1
2
d

dt
Pn,d,j(t)

]
− Pn,d,j(t)

d

dt[
(1− t2)

d−1
2
d

dt
Pm,d,j(t)

]
+ (m− n) (m+ n+ d− 2)

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 = 0.

Integrate this equation for t ∈ [−1, 1] to get

(m− n) (m+ n+ d− 2)

∫ 1

−1

Pm,d,j(t)Pn,d,j(t) (1 − t2)
d−3
2 dt = 0.

Thus, (2.157) holds. ��

Various recursion formulas for the associated Legendre functions exist;
see [49, Sect. 3.12] in the case d = 3. The recursion formulas are useful for
pointwise evaluation of the functions.

2.10.3 Normalized Associated Legendre Functions

In explicit calculations involving the associated Legendre functions, usually
it is more convenient to use the normalized ones. From the formula given in
Proposition 2.42,

∫ 1

−1

[Pn,d,j(t)]
2 (1− t2)

d−3
2 dt =

[
n!Γ(d−1

2 )

2j(n− j)!Γ(j + d−1
2 )

]2

∫ 1

−1

[Pn−j,d+2j(t)]
2
(1− t2)j+

d−3
2 dt.

Use (2.79) for the integral,

∫ 1

−1

[Pn−j,d+2j(t)]
2
(1 − t2)j+

d−3
2 dt =

|Sd+2j−1|
Nn−j,d+2j|Sd+2j−2|

.

Then

∫ 1

−1

[Pn,d,j(t)]
2
(1− t2)

d−3
2 dt =

2d−2(n!)2Γ(d−1
2 )2

(2n+ d− 2) (n− j)!(n+ d+ j − 3)!
.
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Thus, we define normalized associated Legendre functions

P̃n,d,j(t) =
[(2n+ d− 2) (n− j)! (n+ d+ j − 3)!]

1
2

2
d−2
2 n! Γ(d−1

2 )
Pn,d,j(t),

t ∈ [−1, 1]. (2.158)

We can also write, with the help of Proposition 2.43,

P̃n,d,j(t) =
(n+ d− 3)!

n! Γ(d−1
2 )

[
(2n+ d− 2) (n− j)!

2d−2(n+ d+ j − 3)!

] 1
2

(1− t2)
j
2P

(j)
n,d(t),

t ∈ [−1, 1]. (2.159)

These functions are normalized:

∫ 1

−1

[
P̃n,d,j(t)

]2
(1 − t2)

d−3
2 dt = 1.

Moreover, note that P̃n,d,j(t) is proportional to Pn,d,j(t). Hence, these func-
tions are orthonormal:

∫ 1

−1

P̃n,d,j(t) P̃m,d,j(t) (1 − t2)
d−3
2 dt = δnm. (2.160)

In the case d = 3,

P̃n,3,j(t) =

[
(n+ 1

2 ) (n− j)!

(n+ j)!

] 1
2

(1 − t2)
j
2P

(j)
n,3(t). (2.161)

In the case j = 0, P̃n,d,0(t) is proportional to the Legendre polynomial Pn,d(t),

P̃n,d,0(t) =
1

Γ(d−1
2 )

[
(2n+ d− 2) (n+ d− 3)!

2d−2n!

] 1
2

Pn,d(t).

2.11 Generating Orthonormalized Bases for
Spherical Harmonic Spaces

We now discuss a procedure to generate an orthonormal basis in Y
d
n from

orthonormal bases in (d − 1) dimensions, by making use of the associated
Legendre functions introduced in Sect. 2.10.
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Let d ≥ 3. Consider a vector ζ = ζ(d) ∈ C
d of the form ζ(d) = ed +

i
(
ηT , 0

)T
with η ∈ S

d−2. A simple calculation shows ζ · ζ = 0 and
hence Δx(ζ·x)n = 0. So the function x �→ (ζ·x)n = (xd + ix(d−1)·η)n is
homogeneous and harmonic. Then

f(x) :=
i−j

|Sd−2|

∫
Sd−2

(xd + ix(d−1)·η)nYj,d−1(η) dS
d−2(η)

is a homogeneous harmonic polynomial of degree n, i.e., it is an element of
Yn(R

d). Use the polar coordinates (1.15),

x = |x| ξ, ξ = t ed +
√
1− t2 ξ(d−1), |t| ≤ 1, ξ(d−1) ∈ S

d−1,

noting that ξ(d−1) denotes a d-dimensional vector (ξ1, · · · , ξd−1, 0)
T . The

restriction of the function f(x) to S
d−1 is

f(ξ) =
i−j

|Sd−2|

∫
Sd−2

(t+ i (1− t2)
1
2 ξ(d−1)·η)nYj,d−1(η) dS

d−2(η).

Applying the Funk–Hecke formula (Theorem 2.22), we have

∫
Sd−2

(t+ i (1− t2)
1
2 ξ(d−1)·η)nYj,d−1(η) dS

d−2(η) = λYj,d−1(ξ(d−1)),

where

λ = |Sd−3|
∫ 1

−1

Pj,d−1(s)
(
t+ i (1− t2)

1
2 s

)j

(1− t2)
d−4
2 dt.

Thus,
f(ξ) = Pn,d,j(t)Yj,d−1(ξ(d−1))

is a spherical harmonic of order n in dimension d. So we have shown the
following result.

Proposition 2.45. If Yj,d−1 ∈ Y
d−1
j , then Pn,d,j(t)Yj,d−1(ξ(d−1)) ∈ Y

d
n in

polar coordinates (1.15).

This result allows us to construct a basis for Yd
n in d dimensions in terms

of bases in Y
d−1
0 , . . . ,Yd−1

n in (d− 1) dimensions. In the following we use the
normalized associated functions P̃n,d,j since most formulas will then have a
simpler form.

Definition 2.46. For d ≥ 3 and m ≤ n, define an operator

P̃n,m : Yd−1
m → Y

d
n
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by the formula

(P̃n,mYm,d−1)(ξ) = P̃n,d,m(t)Ym,d−1(ξ(d−1)), Ym,d−1 ∈ Y
d−1
m .

Then define Y
d
n,m := P̃n,m(Yd−1

m ), called the associated space of order

m in Y
d
n.

The spherical harmonic space Y
d
n can be decomposed as an orthogonal

sum of the associated spaces Yd
n,m, 0 ≤ m ≤ n.

Theorem 2.47. For d ≥ 3 and n ≥ 0,

Y
d
n = Y

d
n,0 ⊕ · · · ⊕ Y

d
n,n. (2.162)

Proof. First we show that the subspaces on the right side of (2.162) are
pairwise orthogonal. Let 0 ≤ k,m ≤ n with k �= m. For any Yk,d−1 ∈ Y

d−1
k

and any Ym,d−1 ∈ Y
d−1
m ,

(P̃n,kYk,d−1, P̃n,mYm,d−1)L2(Sd−1)

= (Yk,d−1, Ym,d−1)L2(Sd−2)

∫ 1

−1

P̃n,d,k(t) P̃n,d,m(t) (1− t2)
d−3
2 dt

= 0

using the orthogonality (2.160). Thus, Yd
n,k ⊥ Y

d
n,m for k �= m.

For each m, 0 ≤ m ≤ n, Yd
n,m is a subspace of Yd

n and so

Y
d
n ⊃ Y

d
n,0 ⊕ · · · ⊕ Y

d
n,n. (2.163)

Since the mapping P̃n,m : Yd−1
m → Y

d
n,m is a bijection,

dimY
d
n,m = dimY

d−1
m = Nm,d−1.

Hence, recalling the identity (2.14),

n∑
m=0

dimY
d
n,m =

n∑
m=0

Nm,d−1 = Nn,d = dimY
d
n.

In other words, the two sides of equality (2.162) are finite-dimensional spaces
of equal dimension. Then the equality (2.162) holds in view of the relation
(2.163). ��

From Theorem 2.47 and its proof, we see that if

{Ym,d−1,j : 1 ≤ j ≤ Nm,d−1}



84 2 Spherical Harmonics

is an orthonormal basis for Yd−1
m , 0 ≤ m ≤ n, then

{
P̃n,d,m(t)Ym,d−1,j(ξ(d−1)) : 1 ≤ j ≤ Nm,d−1, 0 ≤ m ≤ n

}
(2.164)

is an orthonormal basis for Yd
n.

Example 2.48. An orthonormal basis for Y2
n is presented in Sect. 2.2. Let us

apply the above result and use the orthonormal basis for Y2
n to construct an

orthonormal basis for Y3
n. We use the relation

ξ(3) = t e3 +
√
1− t2

(
ξ(2)
0

)
,

where t = cos θ for 0 ≤ θ ≤ π, ξ(2) = (cosφ, sinφ)T for 0 ≤ φ ≤ 2 π. In the
notation of the above discussion,

{
Ym,2,1(ξ(2)) =

1√
π

cos(mφ), Ym,2,2(ξ(2)) =
1√
π

sin(mφ)

}

is an orthonormal basis for Y2
m. Recall the formula (2.161),

P̃n,3,m(t) =

[
(n+ 1

2 ) (n−m)!

(n+m)!

] 1
2

(1− t2)
m
2 P

(m)
n,3 (t).

Here P
(m)
n,3 (t) denotes the mth derivative of the function Pn,3(t). Then, an

orthonormal basis for Y3
n is given by the functions

[
(2n+ 1) (n−m)!

2 π (n+m)!

] 1
2

(sin θ)mP
(m)
n,3 (cos θ) cos(mφ), 0 ≤ m ≤ n,

[
(2n+ 1) (n−m)!

2 π (n+m)!

] 1
2

(sin θ)mP
(m)
n,3 (cos θ) sin(mφ), 1 ≤ m ≤ n.

The basis is usually also written as

(−1)(m+|m|)/2
[
(2n+ 1) (n− |m|)!

4 π (n+ |m|)!

] 1
2

(sin θ)mP
(m)
n,3 (cos θ) eimφ,

− n ≤ m ≤ n.

This latter form is more convenient to use in some calculations. �
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We now use the orthonormal system (2.164) to express the addition
theorem. Set

ξ(d) = t ed + (1− t2)
1
2 ξ(d−1), −1 ≤ t ≤ 1,

η(d) = s ed + (1− s2)
1
2η(d−1), −1 ≤ s ≤ 1.

Then the identity (2.24)

Nn,d

|Sd−1|
Pn,d(ξ·η) =

Nn,d∑
k=1

Yn,k(ξ)Yn,k(η)

is rewritten as

Nn,d

|Sd−1|
Pn,d(s t+ (1 − s2)

1
2 (1− t2)

1
2 ξ(d−1)·η(d−1))

=

n∑
m=0

P̃n,d,m(s)P̃n,d,m(t)

Nn,d−1∑
k=1

Ym,k(ξ(d−1))Ym,k(η(d−1))

=
n∑

m=0

Nm,d−1

|Sd−2|
P̃n,d,m(s)P̃n,d,m(t)Pm,d−1(ξ(d−1)·η(d−1)),

where in the last step, the identity (2.24) is applied again. Denote u =
ξ(d−1)·η(d−1). Then for d ≥ 3 and s, t, u ∈ [−1, 1],

n∑
m=0

Nm,d−1P̃n,d,m(s)P̃n,d,m(t)Pm,d−1(u)

=
Nn,d|Sd−2|
|Sd−1|

Pn,d(s t+ (1− s2)
1
2 (1− t2)

1
2u). (2.165)

Another identity can be derived from (2.165) as follows. Multiply both

sides of (2.165) by Pk,d−1(u) (1 − u2)
d−4
2 , 0 ≤ k ≤ n, integrate with respect

to u from −1 to 1, and use the orthogonality relation (2.79) for the Legendre
polynomials,

Nn,d

|Sd−1|

∫ 1

−1

Pn,d(s t+ (1− s2)
1
2 (1− t2)

1
2u)Pk,d−1(u) (1 − u2)

d−4
2 du

=
1

|Sd−3|
P̃n,d,k(s)P̃n,d,k(t),
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i.e.,

∫ 1

−1

Pn,d(s t+ u (1− s2)
1
2 (1− t2)

1
2 )Pk,d−1(u) (1 − u2)

d−4
2 du

=
2π

(d− 2)Nn,d
P̃n,d,k(s)P̃n,d,k(t). (2.166)

In particular, taking k = 0 in (2.166) and noting that

P̃n,d,0(t) =

(
Nn,d|Sd−2|
|Sd−1|

) 1
2

Pn,d(t),

we arrive at an identity for the Legendre polynomials,

∫ 1

−1

Pn,d(s t+ (1− s2)
1
2 (1− t2)

1
2u)(1− u2)

d−4
2 du =

|Sd−2|
|Sd−1|

Pn,d(s)Pn,d(t)

(2.167)
for d ≥ 3.



Chapter 3
Differentiation and Integration
over the Sphere

In this chapter, we discuss some properties and formulas for differentiation
and integration involving spherical harmonics. In Sect. 3.1, we derive rep-
resentation formulas for the Laplace–Beltrami operator, which is defined
to be the restriction of the Laplace operator on the unit sphere. In
Sect. 3.2, a concrete formula is shown for the Laplace–Beltrami operator
through coordinates and derivatives with respect to the coordinates of the
x variable in R

d. It turns out that spherical harmonics are eigenfunctions
of the Laplace–Beltrami operator, and this property provides convenience
in some calculations involving spherical harmonics; this is the content of
Sect. 3.3. Section 3.4 discusses some integration formulas over the unit sphere.
In Sect. 3.5, we present some differentiation formulas that are related to
the spherical harmonics. Section 3.6 is devoted to some integral identities
for spherical harmonics and the section begins with a review of some basic
properties of harmonic functions for a general dimension d ≥ 3. In Sect. 3.7,
we show the derivation of some integral identities through a straightforward
application of the Funk–Hecke formula. In Sect. 3.8, we introduce Sobolev
spaces over the unit sphere through expansions in terms of an orthonormal
basis of spherical harmonics. It is possible to study Sobolev spaces over
regions of the unit sphere as well as polynomial or spline approximations, see
e.g., [37,71,87], or even Sobolev spaces of vector-valued functions [69]. Finally,
in Sect. 3.9, we discuss positive definite functions, a concept important in the
study of meshless discretization methods for handling discrete data with no
associated mesh or grid.

3.1 The Laplace–Beltrami Operator

The Laplace–Beltrami operator is the restriction of the Laplace operator on
the unit sphere.

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 3, © Springer-Verlag Berlin Heidelberg 2012

87
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For a bijection x = x(u) or u = u(x) over R
d, define the following

quantities

gij :=
∂x

∂ui
· ∂x
∂uj

=

d∑
k=1

∂xk
∂ui

∂xk
∂uj

,

gij :=

d∑
k=1

∂ui
∂xk

∂uj
∂xk

for 1 ≤ i, j ≤ d, and

g := det(gij).

By the chain rule,

(gij) = (gij)
−1.

Then we have the following transformation formula for the Laplacian operator

Δ(d) :=

d∑
j=1

(
∂

∂xj

)2

=
1
√
g

d∑
i,j=1

∂

∂ui

(
gij

√
g
∂

∂uj

)
. (3.1)

Now assume ξ(d) = ξ(u1, . . . , ud−1) is a bijection between a set U of Rd−1

and S
d−1 such that the mapping is C2 in the interior of U . We use u1, . . . , ud−1

and ud = r = |x| as the polar coordinates. Then x(d) = rξ(d). Similar to the

quantities gij , g
ij and g, we define

γij :=
∂ξ(d)

∂ui
·
∂ξ(d)

∂uj
=

d∑
k=1

∂ξk
∂ui

∂ξk
∂uj

,

(γij) := (γij)
−1, 1 ≤ i, j ≤ d− 1

and

γ := det(γij).

We have

gij = r2γij , 1 ≤ i, j ≤ d− 1.

Differentiate the identity

1 = ξ(d) · ξ(d) =
d∑

k=1

(ξk)
2
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with respect to ui, 1 ≤ i ≤ d− 1, to obtain

ξ(d)·
∂ξ(d)
∂ui

=

d∑
k=1

ξk
∂ξk
∂ui

= 0, 1 ≤ i ≤ d− 1.

Thus,

gid = r ξ(d)·
∂ξ(d)

∂ui
= r

d∑
k=1

ξk
∂ξk
∂ui

= 0, 1 ≤ i ≤ d− 1.

Moreover,

gdd = ξ(d) · ξ(d) = 1.

Hence,

g = r2(d−1)γ,
√
g = rd−1√γ.

From (gij) = (gij)
−1, we obtain

gij =
1

r2
γij , 1 ≤ i, j ≤ d− 1,

gdi = gid = 0, 1 ≤ i ≤ d− 1,

gdd = 1.

Using these relations in (3.1), we have

Δ(d) =
1

rd−1

∂

∂r

(
rd−1 ∂

∂r

)
+

1

r2
Δ∗

(d−1), (3.2)

where the Laplace–Beltrami operator

Δ∗
(d−1) =

1
√
γ

d−1∑
i,j=1

∂

∂ui

(
γij

√
γ

∂

∂uj

)
. (3.3)

Recall the extension f∗ of f , (1.22). Then, if f ∈ C2(Sd−1),

Δ(d)f
∗(x)||x|=1 = Δ∗

(d−1)f(ξ). (3.4)

Thus, the value of Δ∗
(d−1)f(ξ) does not depend on the coordinate system

for Sd−1.
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In the polar coordinates u1, . . . , ud−1, ud = r = |x|, the gradient operator
can be expressed as

∇ = ξ
∂

∂r
+

1

r
∇∗

(d−1), (3.5)

where

∇∗
(d−1) :=

d−1∑
i,j=1

γij
∂ξ

∂ui

∂

∂uj
(3.6)

is the first-order Beltrami operator on S
d−1. Observe that the operator

∇∗
(d−1) = r∇ − ξr

∂

∂r

does not depend on the coordinate system for Sd−1. Similar to (3.4), we have

∇(d)f
∗(x)||x|=1 = ∇∗

(d−1)f(ξ) (3.7)

for f ∈ C1(Sd−1).

Example 3.1. Consider the case d = 2. We have

x = rξ, ξ =

(
cos θ

sin θ

)
, 0 ≤ θ < 2π.

We let u1 = θ. Then,

γ = γ11 = (− sin θ)2 + (cos θ)2 = 1, γ11 = 1,

g = g11 = r2,
√
g = r.

By (3.6) and (3.3), we obtain

∇∗
(1) =

(
− sin θ

cos θ

)
∂

∂θ
, Δ∗

(1) =
∂2

∂θ2
.

It can be verified that Δ∗
(1) = ∇∗

(1) ·∇∗
(1). �

Example 3.2. Consider the case d = 3. We have

x = rξ, ξ =

⎛
⎜⎝

cosφ sin θ

sinφ sin θ

cos θ

⎞
⎟⎠ , 0 ≤ θ ≤ π, 0 ≤ φ < 2 π.
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We let u1 = θ and u2 = φ. Then,

γ11 = 1, γ22 = sin2 θ, γ12 = γ21 = 0,

γ = sin2 θ,
√
γ = sin θ,

γ11 = 1, γ22 = sin−2 θ, γ12 = γ21 = 0.

By (3.6) and (3.3), we obtain

∇∗
(2) =

⎛
⎜⎝

cos θ cosφ

cos θ sinφ

− sin θ

⎞
⎟⎠ ∂

∂θ
+

1

sin θ

⎛
⎜⎝

− sinφ

cosφ

0

⎞
⎟⎠ ∂

∂φ
,

Δ∗
(2) =

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
.

It can be verified that Δ∗
(2) = ∇∗

(2) ·∇∗
(2).

Another possibility is to use t = cos θ and write

x = Φ(r, t, φ) ≡ r ξ, ξ =

⎛
⎜⎝
√
1− t2 cosφ

√
1− t2 sinφ

t

⎞
⎟⎠ , −1 ≤ t ≤ 1, 0 ≤ φ < 2 π.

We let u1 = t and u2 = φ. Then,

γ11 =
1

1− t2
, γ22 = 1− t2, γ12 = γ21 = 0,

γ = 1,

γ11 = 1− t2, γ22 =
1

1− t2
, γ12 = γ21 = 0.

By (3.6) and (3.3), we obtain

∇∗
(2) = et

√
1− t2

∂

∂t
+ eφ

1√
1− t2

∂

∂φ
,

Δ∗
(2) =

∂

∂t

((
1− t2

) ∂
∂t

)
+

1

1− t2
∂2

∂φ2
,

where eφ and et together with er form a local vector basis for R3:

er =

∣∣∣∣∂Φ(1, t, φ)

∂r

∣∣∣∣
−1

∂Φ(1, t, φ)

∂r
=

⎛
⎜⎝
√
1− t2 cosφ√
1− t2 sinφ

t

⎞
⎟⎠ ,
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eφ =

∣∣∣∣∂Φ(1, t, φ)

∂φ

∣∣∣∣
−1

∂Φ(1, t, φ)

∂φ
=

⎛
⎝− sinφ

cosφ

0

⎞
⎠ ,

et =

∣∣∣∣∂Φ(1, t, φ)

∂t

∣∣∣∣
−1

∂Φ(1, t, φ)

∂t
=

⎛
⎜⎝
−t cosφ
−t sinφ√
1− t2

⎞
⎟⎠ .

The second possibility is more widely used in applications (cf. [47, 48]). �
We now explore a relation between Δ∗

(d−1) and Δ∗
(d−2). This will allow us

to find a representation formula for Δ∗
(d−1) explicitly. For ξ = ξ(d) ∈ S

d−1,

we write (cf. (1.15))

ξ(d) = t ed +
√

1− t2 ξ(d−1),

where t ∈ [−1, 1] is identified with ud−1, and ξ(d−1) is a d-dimensional vector

(ξ1, . . . , ξd−1, 0)
T ∈ S

d−1 and we will also use ξ(d−1) to represent a (d − 1)-

dimensional vector (ξ1, . . . , ξd−1)
T ∈ S

d−2. Then,

∂ξ(d)

∂ud−1
= ed −

t√
1− t2

ξ(d−1),

∂ξ(d)

∂ui
=

√
1− t2

∂ξ(d−1)

∂ui
, 1 ≤ i ≤ d− 2.

Thus,

γd−1,d−1 =
∂ξ(d)

∂ud−1
·
∂ξ(d)

∂ud−1
=

1

1− t2
,

γi,d−1 = γd−1,i =
∂ξ(d)

∂ud−1
·
∂ξ(d)

∂ui
= 0, 1 ≤ i ≤ d− 2,

γij =
∂ξ(d)
∂ui

·
∂ξ(d)
∂uj

=
(
1− t2

) ∂ξ(d−1)

∂ui
·
∂ξ(d−1)

∂uj
, 1 ≤ i, j ≤ d− 2.

Denote

γij =
∂ξ(d−1)

∂ui
·
∂ξ(d−1)

∂uj
, 1 ≤ i, j ≤ d− 2

and let

(
γij

)
=

(
γij

)−1
.
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Then

γ := det(γij)(d−1)×(d−1) = (1− t2)d−3γ

where

γ := det(γij)(d−2)×(d−2)

and

γd−1,d−1 = 1− t2,

γi,d−1 = γd−1,i = 0, 1 ≤ i ≤ d− 2,

γij =
1

1− t2
γij , 1 ≤ i, j ≤ d− 2.

Hence, by the formula (3.3),

Δ∗
(d−1) =

1
√
γ

∂

∂ud−1

(
γd−1,d−1√γ ∂

∂ud−1

)
+

1
√
γ

d−2∑
i,j=1

∂

∂ui

(
γij

√
γ

∂

∂uj

)

=
1

(1− t2)(d−3)/2

∂

∂t

(
(1− t2)(d−1)/2 ∂

∂t

)

+
1

(1− t2)
√
γ

d−2∑
i,j=1

∂

∂ui

(
γij

√
γ

∂

∂uj

)
.

Therefore, we have the following recursion formula,

Δ∗
(d−1) =

1

(1− t2)(d−3)/2

∂

∂t

(
(1− t2)(d−1)/2 ∂

∂t

)
+

1

(1− t2)
Δ∗

(d−2). (3.8)

As an example, consider using the d-dimensional spherical coordinates

x1 = r cos θ1 sin θ2 sin θ3 · · · sin θd−1,

x2 = r sin θ1 sin θ2 sin θ3 · · · sin θd−1,

x3 = r cos θ2 sin θ3 · · · sin θd−1,

...

xd−1 = r cos θd−2 sin θd−1,

xd = r cos θd−1,

r ≥ 0, 0 ≤ θ1 < 2 π, 0 ≤ θj ≤ π for 2 ≤ j ≤ d− 1.
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For t = cos θ with 0 ≤ θ ≤ π, it can be verified that

1

(1− t2)(d−3)/2

∂

∂t

(
(1− t2)(d−1)/2 ∂

∂t

)
=

1

(sin θ)d−2

∂

∂θ

(
(sin θ)d−2 ∂

∂θ

)
.

Therefore, using the results from Example 3.1 and (3.8) with t = cos θd−1,
we have

Δ∗
(1) =

∂2

∂θ21
,

Δ∗
(d) =

1

sind−1 θd

∂

∂θd

(
sind−1 θd

∂

∂θd

)
+

1

sin2 θd
Δ∗

(d−1), d ≥ 2.

We can use (3.4) and (3.7) to prove integral identities over the sphere. One
such example is the following.

Proposition 3.3. (Green–Beltrami identity) For any f ∈ C2(Sd−1) and
any g ∈ C1(Sd−1),

∫
Sd−1

gΔ∗
(d−1)f dS

d−1 = −
∫
Sd−1

∇∗
(d−1)g·∇∗

(d−1)f dS
d−1. (3.9)

Proof. For the extensions f∗(x) = f(x/|x|) and g∗(x) = g(x/|x|), we apply
the Green’s identity

∫
1−δ≤|x|≤1+δ

(g∗Δf∗ +∇g∗·∇f∗) dx = 0,

i.e.,

∫ 1+δ

1−δ

rd−3

[∫
Sd−1

(
gΔ∗

(d−1)f +∇∗
(d−1)g·∇∗

(d−1)f
)
dSd−1

]
dr = 0.

So (3.9) holds. ��

As a consequence of Proposition 3.3, we have the next integral identity.

Corollary 3.4. For any f, g ∈ C2(Sd−1),

∫
Sd−1

gΔ∗
(d−1)f dS

d−1 =

∫
Sd−1

f Δ∗
(d−1)g dS

d−1. (3.10)

3.2 A Formula for the Laplace–Beltrami Operator

In this section, we derive a formula for the Laplace–Beltrami operator written
in terms of the variable x and derivatives with respect to the components
of x.
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Consider the operator

D(d) := −
∑

1≤j<i≤d

(
xi

∂

∂xj
− xj

∂

∂xi

)2

= −1

2

d∑
i,j=1

(
xi

∂

∂xj
− xj

∂

∂xi

)2

.

(3.11)

For i �= j, we have

(
xi

∂

∂xj
− xj

∂

∂xi

)2

= xi
∂

∂xj

(
xi

∂

∂xj
− xj

∂

∂xi

)

− xj
∂

∂xi

(
xi

∂

∂xj
− xj

∂

∂xi

)

= x2i
∂2

∂x2j
+ x2j

∂2

∂x2i
− xi

∂

∂xi
− xj

∂

∂xj
− 2 xixj

∂2

∂xi∂xj
.

Then,

D(d) = −
d−1∑
j=1

⎛
⎝ d∑

i=j+1

x2i

⎞
⎠ ∂2

∂x2j
−

d∑
i=2

⎛
⎝i−1∑

j=1

x2j

⎞
⎠ ∂2

∂x2i

+
∑
i
=j

xixj
∂2

∂xi∂xj
+ (d− 1)

d∑
i=1

xi
∂

∂xi
,

i.e.,

D(d) = −r2Δ(d) +
d∑

i,j=1

xixj
∂2

∂xi∂xj
+ (d− 1)

d∑
i=1

xi
∂

∂xi
. (3.12)

We will use more compact expressions for the two sums in (3.12). Consider
an arbitrary differentiable function f(x) = f(rξ), ξ ∈ S

d−1. We differentiate
the function with respect to r:

∂f(rξ)

∂r
=

d∑
i=1

ξi
∂f(rξ)

∂xi
. (3.13)

Multiply both sides by r,

r
∂f

∂r
=

d∑
i=1

xi
∂f

∂xi
.

Since f is arbitrary,

d∑
i=1

xi
∂

∂xi
= r

∂

∂r
. (3.14)
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Now assume f is twice differentiable and differentiate (3.13) with respect
to r,

∂2f(rξ)

∂r2
=

d∑
i,j=1

ξiξj
∂2f(rξ)

∂xi∂xj
.

Multiply both sides by r2,

r2
∂2f

∂r2
=

d∑
i,j=1

xixj
∂2f

∂xi∂xj
.

Since f is arbitrary, we have

d∑
i,j=1

xixj
∂2

∂xi∂xj
= r2

∂

∂r2
. (3.15)

Using (3.14) and (3.15) in (3.12), we obtain

D(d) = −r2Δ(d) + r2
∂

∂r2
+ (d− 1) r

∂

∂r
. (3.16)

This relation can be rewritten in the form

Δ(d) =
1

rd−1

∂

∂r

(
rd−1 ∂

∂r

)
− 1

r2
D(d). (3.17)

Comparing (3.17) and (3.2), we see that D(d) is the Laplace–Beltrami
operator. Therefore,

Δ∗ = −
∑

1≤j<i≤d

(
xi

∂

∂xj
− xj

∂

∂xi

)2

. (3.18)

3.3 Spherical Harmonics As Eigenfunctions
of the Laplace–Beltrami Operator

Consider any non-zero function Yn ∈ Y
d
n, write Yn(x) = Yn(rξ) = rnYn(ξ).

Then

0 = ΔYn(x) =

(
1

rd−1

∂

∂r

(
rd−1 ∂

∂r

)
+

1

r2
Δ∗

(d−1)

)
rnYn(ξ),
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i.e.,

−Δ∗
(d−1)Yn(ξ) = n (n+ d− 2)Yn(ξ). (3.19)

In other words, Yn(ξ) is an eigenfunction of the operator−Δ∗
(d−1) correspond-

ing to the eigenvalue n (n+ d− 2). More precisely, we have the following
result.

Proposition 3.5. Non-zero functions in the space Y
d
n are eigenfunctions

of the Laplace–Beltrami operator −Δ∗
(d−1) on S

d−1 corresponding to the

eigenvalue n (n+ d− 2). The dimension Nn,d = dimY
d
n is the multiplicity

of the eigenvalue n (n+ d− 2).

For f ∈ C1(Sd−1) and Yn ∈ Y
d
n, we apply the Green-Beltrami iden-

tity (3.9),

∫
Sd−1

∇∗f ·∇∗YndS
d−1 = −

∫
Sd−1

fΔ∗YndS
d−1.

By (3.19),

∫
Sd−1

∇∗f ·∇∗YndS
d−1 = n (n+ d− 2)

∫
Sd−1

f YndS
d−1. (3.20)

For any fixed ξ ∈ S
d−1, let Yn(η) = Pn,d(ξ·η) in (3.20) to obtain

∫
Sd−1

∇∗f(η) ·∇∗
ηPn,d(ξ·η) dSd−1(η)

= n (n+ d− 2)

∫
Sd−1

f(η)Pn,d(ξ·η) dSd−1(η). (3.21)

The next result can be derived from (3.21).

Proposition 3.6.

∫
Sd−1

|∇∗
ηPn,d(ξ·η)|2dSd−1(η) = n (n+ d− 2)

|Sd−1|
Nn,d

∀ ξ ∈ S
d−1. (3.22)

Proof. Take f(η) = Pn,d(ξ·η) in (3.21),

∫
Sd−1

|∇∗
ηPn,d(ξ·η)|2dSd−1(η) = n (n+ d− 2)

∫
Sd−1

|Pn,d(ξ·η)|2dSd−1(η).

Note that the integral on the right side equals |Sd−1|/Nn,d by (2.40). ��
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Now we study relations between the order of growth of the Fourier–Laplace
components {Pn,df}n≥0 and the order of differentiability. Recall (2.44) for
the definition of the projection Pn,df .

First, assume f ∈ C1(Sd−1). Then, using (3.21), we can write

(Pn,df)(ξ) =
Nn,d

n (n+ d− 2) |Sd−1|

∫
Sd−1

∇∗
ηPn,d(ξ·η)·∇∗f(η) dSd−1(η).

We bound the integral term first by applying the Cauchy–Schwarz inequality:

∣∣∣∣
∫
Sd−1

∇∗
ηPn,d(ξ·η)·∇∗f(η) dSd−1(η)

∣∣∣∣ ≤
[∫

Sd−1

|∇∗
ηPn,d(ξ·η)|2dSd−1(η)

∫
Sd−1

|∇∗f(η)|2dSd−1(η)

]1/2
,

and then by applying (3.22),

∣∣∣∣
∫
Sd−1

∇∗
ηPn,d(ξ·η)·∇∗f(η) dSd−1(η)

∣∣∣∣ ≤
[
n (n+ d− 2)

|Sd−1|
Nn,d

]1/2

[∫
Sd−1

|∇∗f(η)|2dSd−1(η)

]1/2
.

So

‖Pn,df‖C(Sd−1) ≤
[

Nn,d

n (n+ d− 2) |Sd−1|

]1/2
‖∇∗f‖L2(Sd−1). (3.23)

Since Nn,d = O(nd−2) (cf. (2.12)), we conclude

‖Pn,df‖C(Sd−1) = O(n
d
2−2) if f ∈ C1(Sd−1). (3.24)

Then, assume f ∈ C2(Sd−1). Note that by the Green-Beltrami iden-
tity (3.9),

(Pn,df)(ξ) = − 1

n (n+ d− 2)
(Pn,dΔ

∗f)(ξ)

and also recall the bound (2.48). So

‖Pn,df‖C(Sd−1) ≤
1

n (n+ d− 2)
‖Pn,dΔ

∗f‖C(Sd−1)

≤ 1

n (n+ d− 2)

(
Nn,d

|Sd−1|

)1/2

‖Δ∗f‖L2(Sd−1)
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and we obtain

‖Pn,df‖C(Sd−1) = O(n
d
2−3) if f ∈ C2(Sd−1). (3.25)

In general, we have

‖Pn,df‖C(Sd−1) = O(n
d
2−k−1) if f ∈ Ck(Sd−1). (3.26)

From this we see that the Fourier–Laplace series

∞∑
n=0

Pn,df(ξ) converges for f ∈ Ck(Sd−1) with k >
d

2
.

For f, g ∈ C2(Sd−1), by the integral identity (3.10),

(f,Δ∗g)Sd−1 = (Δ∗f, g)Sd−1 .

So for n �= m, Yn ∈ Y
d
n and Ym ∈ Y

d
m,

(Yn, Ym)Sd−1 = 0, (3.27)

i.e., eigenfunctions corresponding to distinct eigenvalues of −Δ∗ are orthog-
onal. The orthogonality (3.27) also follows from Corollary 2.15.

We deduce from (3.20) that

(∇∗Pn,df,∇∗Pm,df)Sd−1 = n (n+ d− 2) ‖f‖2L2(Sd−1) δnm.

If f ∈ C1(Sd−1), then

(∇∗f,∇∗Pn,df)Sd−1 = n (n+ d− 2) (f,Pn,df)Sd−1

= n (n+ d− 2) ‖Pn,df‖2L2(Sd−1).

We use these two properties in the proof of the next result.

Proposition 3.7. Let L⊥
n be the set of all f ∈ C1(Sd−1) with ‖f‖L2(Sd−1) =1

and f ⊥ Y
d
k for 0 ≤ k ≤ n. Then

inf
{
‖∇∗f‖2L2(Sd−1) : f ∈ L

⊥
n

}
= (n+ 1) (n+ d− 1) . (3.28)

Proof. First, for any f ∈ C1(Sd−1) and any m ∈ N,

0 ≤
∥∥∥∥∥∇∗f −∇∗

m∑
k=0

Pk,df

∥∥∥∥∥
2

L2(Sd−1)
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= ‖∇∗f‖2L2(Sd−1) −
m∑

k=0

k (k + d− 2) ‖Pk,df‖2L2(Sd−1).

Consequently, by letting m→ ∞,

‖∇∗f‖2L2(Sd−1) ≥
∞∑
k=0

k (k + d− 2) ‖Pk,df‖2L2(Sd−1).

Thus, for f ∈ L
⊥
n ,

‖∇∗f‖2L2(Sd−1) ≥
∞∑

k=n+1

k (k + d− 2) ‖Pk,df‖2L2(Sd−1).

Also, note that

1 = ‖f‖2L2(Sd−1) =
∞∑

k=n+1

‖Pk,df‖2L2(Sd−1).

So (3.28) holds and the infimum is assumed by elements in Y
d
n+1. ��

3.4 Some Integration Formulas

Let Yn(x) be a homogeneous harmonic polynomial of order n. Then Yn(∇)
defines a harmonic differential operator of order n.

First, we present an integration formula which can be evaluated through
applying a harmonic differential operator to a homogeneous harmonic
polynomial.

Proposition 3.8. For n ≥ k,

∫
Sd−1

(x · ζ)n−kYk(ζ)Yn(ζ) dS
d−1(ζ) =

π
d
2 (n− k)!

2n−1Γ(n+ d
2 )
Yk(∇)Yn(x). (3.29)

Proof. Writing x = |x| ξ, ξ ∈ S
d−1, we have

∫
Sd−1

(x · ζ)nYn(ζ) dSd−1(ζ) = |x|n
∫
Sd−1

(ξ · ζ)nYn(ζ) dSd−1(ζ).

By the Funk–Hecke formula (Theorem 2.22),

∫
Sd−1

(x · ζ)nYn(ζ) dSd−1(ζ) = λn,d|x|nYn(ξ) = λn,dYn(x),
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where (cf. (2.62)),

λn,d = |Sd−2|
∫ 1

−1

tnPn,d(t) (1− t2)
d−3
2 dt.

We apply Proposition 2.26 to compute the integral in the formula for λn,d,

λn,d = |Sd−2|n!Rn,d

∫ 1

−1

(1− t2)n+
d−3
2 dt

=
π

d
2 n!

2n−1Γ(n+ d
2 )
.

Thus,

Yn(x) =
1

λn,d

∫
Sd−1

(x · ζ)nYn(ζ) dSd−1(ζ), (3.30)

Yk(∇) =
1

λk,d

∫
Sd−1

Yk(η)(η ·∇)kdSd−1(η). (3.31)

Hence, Yk(∇)Yn(x) equals

1

λk,dλn,d

∫
Sd−1

Yn(ζ)

[∫
Sd−1

Yk(η)(η ·∇)k(x · ζ)ndSd−1(η)

]
dSd−1(ζ)

=
1

λk,dλn,d

∫
Sd−1

Yn(ζ)

[
n!

(n− k)!

∫
Sd−1

Yk(η)(x · ζ)n−k(η · ζ)kdSd−1(η)

]
dSd−1(ζ)

=
1

λk,dλn,d

n!

(n− k)!

∫
Sd−1

Yn(ζ)(x · ζ)n−kλk,dYk(ζ) dS
d−1(ζ)

=
n!

λn,d(n− k)!

∫
Sd−1

(x · ζ)n−kYk(ζ)Yn(ζ) dS
d−1(ζ).

The formula (3.29) follows from this relation and the formula for the
constant λn,d. ��

In the rest of this section, we follow [17] and discuss some integration
formulas over the unit sphere.

We recall that spherical harmonics of different degrees are orthogonal.
In particular, this implies

∫
Sd−1

Yj(ξ) dS
d−1(ξ) = 0 ∀Yj ∈ Y

d
j , j ≥ 1. (3.32)



102 3 Differentiation and Integration over the Sphere

Using this property and (2.52), we see that

∫
Sd−1

Hn(ξ) dS
d−1(ξ) = 0 ∀Hn ∈ H

d
n, n odd. (3.33)

For n even, by (2.52), (2.59) and (3.32), we have

∫
Sd−1

Hn(ξ) dS
d−1(ξ) = |Sd−1|Y0,

i.e.,

∫
Sd−1

Hn(ξ) dS
d−1(ξ) =

(d− 2)!! |Sd−1|
n!! (d+ n− 2)!!

Δn/2Hn(x) ∀Hn ∈ H
d
n, n even.

(3.34)

Note that for Hn ∈ H
d
n, Δ

n/2Hn(x) is a constant.
As some examples of (3.34), we have

∫
Sd−1

ξ21 dS
d−1(ξ) =

(d− 2)!! |Sd−1|
2!! d!!

Δ(x21) =
|Sd−1|
d

,

∫
Sd−1

ξ41 dS
d−1(ξ) =

(d− 2)!! |Sd−1|
4!! (d+ 2)!!

Δ2(x41) =
3 |Sd−1|
d (d+ 2)

.

An integration formula is given in [17] for an integrand that can be
expanded into a power series.

Proposition 3.9. Assume f ∈ L1(Sd−1) and

∥∥∥f −
n∑

j=0

fj

∥∥∥
L1(Sd−1)

→ 0 as n→ ∞, (3.35)

where fj ∈ Y
d
j , j ≥ 0. Then

∫
Sd−1

f(ξ) dSd−1(ξ) =
2 πd/2(d− 2)!!

Γ(d/2)

∞∑
j=0

1

(2j)!! (2j + d− 2)!!
Δjf2j(x).

(3.36)

Proof. By the assumption (3.35), we have, as n→ ∞,

∣∣∣∣∣∣
∫
Sd−1

f(ξ) dSd−1(ξ)−
n∑

j=0

∫
Sd−1

fj(ξ) dS
d−1(ξ)

∣∣∣∣∣∣ ≤
∥∥∥f −

n∑
j=0

fj

∥∥∥
L1(Sd−1)

→ 0.
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Thus,

∫
Sd−1

f(ξ) dSd−1(ξ) =

∞∑
j=0

∫
Sd−1

fj(ξ) dS
d−1(ξ).

We then apply the formulas (3.33) and (3.34) to get (3.36). ��

A sufficient condition for (3.35) is that the sequence of the partial sums
{
∑n

j=0 fj}n≥0 converges uniformly on S
d−1 to the function f .

Corollary 3.10. Suppose a real variable function g has a Taylor expansion
at t = 0 with a convergence radius r0 > 0:

g(t) =

∞∑
j=0

g(j)(0)

j!
tj, |t| < r0. (3.37)

For a fixed vector k ∈ R
d, define a vector variable function

f(x) := g(k·x), x ∈ R
d.

Write x = r ξ, r > 0, ξ ∈ S
d−1, and assume r |k| < r0. Then,

∫
Sd−1

f(rξ) dSd−1(ξ) =
2 πd/2(d− 2)!!

Γ(d/2)

∞∑
j=0

g(2j)(0) r2j |k|2j
(2j)!! (2j + d− 2)!!

. (3.38)

Proof. Since r |k| < r0, the power series in (3.37) with t replaced by k·x
converges uniformly with respect to ξ ∈ S

d−1. Hence,

∫
Sd−1

f(rξ) dSd−1(ξ) =

∞∑
j=0

g(j)(0)

j!

∫
Sd−1

(r k·ξ)jdSd−1(ξ).

By a straightforward calculation,

Δj(k·x)2j = (2j)! |k|2j .

Therefore, the formula (3.38) follows from an application of (3.34). ��

As some examples of the formula (3.38), we note

∫
Sd−1

sin(k·ξ) dSd−1(ξ) = 0,

∫
Sd−1

cos(k·ξ) dSd−1(ξ) =
2 πd/2(d− 2)!!

Γ(d/2)

∞∑
j=0

(−1)j |k|2j
(2j)!! (2j + d− 2)!!

.
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Recall the Taylor expansion

(1 + t)α =

∞∑
j=0

(
α

j

)
tj , |t| < 1.

Here,
(
α

j

)
:=

α (α− 1) · · · (α− (j − 1))

j!
, j ≥ 1,

(
α

0

)
:= 1.

Applying the formula (3.38), for r |k| < 1,

∫
Sd−1

(1 + k·ξ)α dSd−1(ξ) =
2 πd/2(d− 2)!!

Γ(d/2)

∞∑
j=0

∏2j−1
l=0 (α− l) |k|2j

(2j)!! (2j + d− 2)!!
.

3.5 Some Differentiation Formulas

There are formulas that simplify the calculation of applying the harmonic
differential operator to certain functions. Consider applying the harmonic
differential operator Yn(∇) to a radial function f(x) = ϕ(|x|2). Suppose f
is n times continuously differentiable. Let x be fixed. For h ∈ R

d, denote
h = |h|. As h→ 0, by the Taylor theorem,

f(x+ h) =
n∑

j=0

1

j!
(h ·∇x)

jf(x) + o(hn).

With x = |x| ξ and h = hη, ξ,η ∈ S
d−1, we rewrite the above relation as

ϕ(|x|2 + 2 |x| ξ·η h+ h2) =

n∑
j=0

hj

j!
(η ·∇x)

jϕ(|x|2) + o(hn). (3.39)

Use (3.31),

∫
Sd−1

Yn(η)(η ·∇)jdSd−1(η) =

⎧⎪⎨
⎪⎩

0, 0 ≤ j ≤ n− 1,

π
d
2 n!

2n−1Γ(n+ d
2 )
Yn(∇), j = n.

We then derive from (3.39) that

∫
Sd−1

ϕ(|x|2 + 2 |x| ξ·η h+ h2)Yn(η) dS
d−1(η)

=
π

d
2 hn

2n−1Γ(n+ d
2 )
Yn(∇x)ϕ(|x|2) + o(hn). (3.40)
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By the Funk–Hecke formula (Theorem 2.22), the left side of (3.40) equals
λn,dYn(ξ) with

λn,d = |Sd−2|
∫ 1

−1

ϕ(|x|2 + 2 |x|h t+ h2)Pn,d(t) (1 − t2)
d−3
2 dt.

Apply the formula (2.77),

λn,d = |Sd−2|
Γ(d−1

2 ) (|x|h)n

Γ(n+ d−1
2 )

·
∫ 1

−1

ϕ(n)(|x|2 + 2 |x|h t+ h2) (1 − t2)n+
d−3
2 dt

=
2 π

d
2 |x|nhn

Γ(n+ d
2 )

ϕ(n)(|x|2) + o(hn).

Thus, from (3.40),

2 π
d
2 |x|nhn

Γ(n+ d
2 )

ϕ(n)(|x|2)Yn(ξ) =
π

d
2 hn

2n−1Γ(n+ d
2 )
Yn(∇x)ϕ(|x|2) + o(hn).

Now divide both sides by hn and take the limit h → 0 to obtain, after some
rearrangement

Yn(∇x)ϕ(|x|2) = 2nϕ(n)(|x|2)Yn(x). (3.41)

This shows that homogeneous harmonics are reproduced by harmonic
differentiations of orthogonally invariant functions. Note that

(
d

d(r2)

)n

=
1

2n

(
1

r

d

dr

)n

.

We state (3.41) in the form of a theorem.

Theorem 3.11. Let f ∈ Cn(a, b). Then for a < |x| < b,

Yn(∇)f(|x|) = μn(|x|)Yn(x), μn(r) =

(
1

r

d

dr

)n

f(r). (3.42)

With x = rξ,

Yn(∇)f(r) = μn(r) r
nYn(ξ), μn(r) =

(
1

r

d

dr

)n

f(r). (3.43)

As an application of Theorem 3.11, let there be given a function f ∈
Cn[−R,R]. Denote |x| = r. Then for 0 < r < R,
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∫
Sd−1

f(x · η) dSd−1(η) = |Sd−2|
∫ 1

−1

f(rt) (1 − t2)
d−3
2 dt ≡ F (r).

With x = rξ and Yn ∈ Y
d
n,

Yn(∇)

∫
Sd−1

f(x · η) dSd−1(η) =

∫
Sd−1

f (n)(x · η)Yn(η) dSd−1(η). (3.44)

Apply Theorem 3.11,

Yn(∇)F (r) = μn(r) r
nYn(ξ), μn(r) =

(
1

r

d

dr

)n

F (r).

Use the Funk–Hecke formula (Theorem 2.22),

∫
Sd−1

f (n)(x · η)Yn(η) dSd−1(η) = λn(r)Yn(ξ),

where

λn(r) = |Sd−2|
∫ 1

−1

f (n)(rt)Pn,d(t) (1− t2)
d−3
2 dt.

Thus, from (3.44),

rnμn(r)Yn(ξ) = λn(r)Yn(ξ).

Summarizing, we have the following result.

Proposition 3.12. Let f ∈ Cn[−R,R]. Then

rn
(
1

r

d

dr

)n ∫ 1

−1

f(rt) (1 − t2)
d−3
2 dt

=

∫ 1

−1

f (n)(rt)Pn,d(t) (1 − t2)
d−3
2 dt, 0 < r < R. (3.45)

3.6 Some Integral Identities for Spherical Harmonics

In this section, we first review some basic properties of harmonic functions,
as is done in [70] but for a general dimension d ≥ 3, and then derive an
integral identity for spherical harmonics. In the following, we always assume
d ≥ 3. Proofs of the results are straightforward extensions of those for the
case d = 3. For completeness, we include the proofs.
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Proposition 3.13. For fixed y ∈ R
d, the function

x �→ Φ(x,y) :=
1

(d− 2) |Sd−1|
|x− y|2−d (3.46)

is harmonic in R
d\{y}.

Proof. It is convenient to write |x−y| =
(
|x− y|2

)1/2
when we differentiate

|x− y|:

∂

∂xi
|x− y| = 1

2

(
|x− y|2

)−1/2 ∂

∂xi
|x− y|2 =

1

2
|x− y|−12 (xi − yi).

Thus,

∂

∂xi
|x− y| = (xi − yi)|x− y|−1, 1 ≤ i ≤ d. (3.47)

Use this formula,

∂

∂xi
Φ(x,y) =

1

(d− 2) |Sd−1|
(2− d) |x− y|1−d ∂

∂xi
|x− y|

= − 1

|Sd−1|
(xi − yi) |x− y|−d.

We note in passing that

∇xΦ(x,y) = − 1

|Sd−1|
|x− y|−d(x− y). (3.48)

Differentiate with respect to xi another time and use (3.47) again,

∂2

∂x2i
Φ(x,y) = − 1

|Sd−1|
[
|x− y|−d − d (xi − yi)

2|x− y|−d−2
]
.

Hence, for fixed y,

ΔΦ(x,y) =

d∑
i=1

∂2

∂x2i
Φ(x,y) = 0

and x �→ Φ(x,y) is harmonic for x �= y. ��

The function Φ(x,y) defined by (3.46) is usually called the fundamental
solution of the Laplace equation.

Next we review some integration by parts formulas.
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Theorem 3.14. Let Ω ⊂ R
d be a bounded domain with a C1 boundary ∂Ω.

Denote by ν = (ν1, . . . , νd)
T the unit outward normal vector on ∂Ω. Then we

have the formulas

∫
Ω

(uΔv +∇u·∇v) dx =

∫
∂Ω

u
∂v

∂ν
dσ ∀u ∈ C1(Ω), v ∈ C2(Ω), (3.49)

∫
Ω

(uΔv − vΔu) dx =

∫
∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ ∀u, v ∈ C2(Ω). (3.50)

Here,

∂v

∂ν
:= ∇v · ν

is the normal derivative of v on ∂Ω.

Proof. Recall the following integration by parts formula

∫
Ω

u
∂v

∂xi
dx =

∫
∂Ω

u v νi dσ −
∫
Ω

v
∂u

∂xi
dx ∀u, v ∈ C1(Ω). (3.51)

For u ∈ C1(Ω) and v ∈ C2(Ω), we apply (3.51),

∫
Ω

uΔv dx =

∫
Ω

u

d∑
i=1

∂2v

∂x2i
dx =

d∑
i=1

∫
Ω

u
∂2v

∂x2i
dx

=
d∑

i=1

(∫
∂Ω

u
∂v

∂xi
νi dσ −

∫
Ω

∂u

∂xi

∂v

∂xi
dx

)

=

∫
∂Ω

u
∂v

∂ν
dσ −

∫
Ω

∇u·∇v dx.

Thus, the formula (3.49) holds.
Interchanging u and v in (3.49) and subtracting the resulting formula from

(3.49), we obtain (3.50). ��

The smoothness assumption that ∂Ω ∈ C1 in Theorem 3.14 can be
weakened. Nevertheless, we will mainly apply the theorem to the case where
Ω is an open ball which has an infinitely smooth boundary.

Corollary 3.15. Let Ω be as in Theorem 3.14 and let u ∈ C1(Ω) be
harmonic in Ω. Then

∫
∂Ω

∂u

∂ν
dσ = 0.
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Proof. Consider a sequence of domains that approximate Ω:

Ωn = {x ∈ Ω : dist(x, ∂Ω) < 1/n} , n ∈ N.

Since ∂Ω ∈ C1, for n sufficiently large, ∂Ωn ∈ C1. Note that u is harmonic in
Ω, implying u ∈ C2(Ωn). We apply (3.50) with v = 1 on Ωn with n sufficiently
large:

∫
∂Ωn

∂u

∂ν
dσ = 0.

Then take the limit n→ ∞ to obtain the stated result. ��

Theorem 3.16. Let Ω be as in Theorem 3.14 and let u ∈ C1(Ω) be harmonic
in Ω. Then

u(x) =

∫
∂Ω

[
∂u

∂ν
(y)Φ(x,y)− u(y)

∂Φ(x,y)

∂νy

]
dσ(y), x ∈ Ω. (3.52)

Proof. As in the proof of Corollary 3.15, it is sufficient to show the result
under the assumption u ∈ C2(Ω). Fix x ∈ Ω. For ε > 0, denote the sphere

S(x; ε) :=
{
y ∈ R

d : |y − x| = ε
}

and the ball

B(x; ε) :=
{
y ∈ R

d : |y − x| < ε
}
.

If ε is small enough, which we assume is the case, then B(x; ε) ⊂ Ω. We
apply the formula (3.50) on the set

Ωε := Ω\B(x; ε)

to obtain

∫
∂Ω∪S(x;ε)

[
∂u

∂ν
(y)Φ(x,y)− u(y)

∂Φ(x,y)

∂νy

]
dσ(y) = 0, (3.53)

where ν is the unit outward normal vector on ∂Ωε.
From (3.48),

∇yΦ(x,y) =
1

|Sd−1|
|x− y|−d(x− y).
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Note that on S(x; ε),

νy =
x− y

|x− y|

and so

∂Φ(x,y)

∂νy
= ∇yΦ(x,y)·νy =

1

|Sd−1|
|x− y|1−d =

ε1−d

|Sd−1|
. (3.54)

Hence,

lim
ε→0+

∫
S(x;ε)

u(y)
∂Φ(x,y)

∂νy
dσ(y) = u(x).

Since

Φ(x,y)|S(x;ε) =
ε2−d

(d− 2) |Sd−1|
,

we have

lim
ε→0+

∫
S(x;ε)

∂u

∂ν
(y)Φ(x,y) dσ(y) = 0.

By taking the limit ε→ 0+ in (3.53), we obtain the formula (3.52). ��

It is easily seen from (3.52) that a harmonic function u is infinitely smooth
in Ω. Now we can state and prove the mean value property of harmonic
functions.

Theorem 3.17. Let u be harmonic in an open ball B(x; r) and be continuous
in the closed ball B(x; r). Then

u(x) =
1

|Sd−1| rd−1

∫
S(x;r)

u(y) dσ(y) =
d

|Sd−1| rd

∫
B(x;r)

u(y) dy. (3.55)

Proof. For any s ∈ (0, r), u ∈ C2(B(x; s)). We apply (3.52) and Corollary
3.15 on Ω = B(x; s), noting the formula (3.54),

u(x) =
1

|Sd−1| sd−1

∫
S(x;s)

u(y) dσ(y). (3.56)

Take the limit s → r− and use the continuity of u in B(x; r) to obtain the
first formula of (3.55).
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We multiply (3.56) by sd−1 and integrate the equality with respect to s
from 0 to r:

u(x)

∫ r

0

sd−1ds =
1

|Sd−1|

∫ r

0

ds

∫
S(x;s)

u(y) dσ(y).

Rearranging the terms in the above equality, we obtain the second formula
of (3.55). ��

The mean value property leads to a maximum–minimum principle for a
harmonic function.

Theorem 3.18. A harmonic function on a domain cannot have its maxi-
mum or minimum unless it is a constant function.

Proof. Let u be harmonic on the domain Ω. It is sufficient for us to show
that if u achieves its maximum value M in Ω, then u(x) = M for x ∈ Ω.
Introduce the set

ΩM := {x ∈ Ω : u(x) =M} .

This set is non-empty and is relatively closed in Ω. Let x ∈ ΩM be such that
B(x; r) ⊂ Ω for some r > 0. Apply Theorem 3.17 to the harmonic function
M − u(x) in B(x; r),

0 =M − u(x) =
d

|Sd−1| rd

∫
B(x;r)

[M − u(y)] dy.

Thus, u(y) =M for y ∈ B(x; r) and then B(x; r) ⊂ ΩM . Hence, ΩM is also
relatively open in Ω. Therefore, ΩM = Ω and u is a constant in Ω. ��

Corollary 3.19. Let Ω be a bounded domain. Then a harmonic function in
Ω that is continuous on Ω has both its maximum and minimum values on ∂Ω.

Returning to (3.52), let x0 be a point on ∂Ω. From Theorem 18.5.1 in [81],

lim
x∈Ω
x→x0

∫
∂Ω

u(y)
∂Φ(x,y)

∂νy
dσ(y) = −1

2
u(x0) +

∫
∂Ω

u(y)
∂Φ(x0,y)

∂νy
dσ(y).

From the proof of Theorem 18.6.1 in [81],

lim
x∈Ω
x→x0

∫
∂Ω

∂u

∂ν
(y)Φ(x,y) dσ(y) =

∫
∂Ω

∂u

∂ν
(y)Φ(x0,y) dσ(y).

Thus, it can be deduced from (3.52) that

u(x0) =

∫
∂Ω

[
∂u

∂ν
(y)Φ(x0,y)− u(y)

∂Φ(x0,y)

∂νy

]
dσ(y) +

1

2
u(x0).

We state the result as follows.
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Theorem 3.20. Let Ω be a bounded domain with a C1 boundary. Assume u
is harmonic in Ω such that u ∈ C1(Ω). Then

1

2
u(x) =

∫
∂Ω

[
∂u

∂ν
(y)Φ(x,y)− u(y)

∂Φ(x,y)

∂νy

]
dσ(y), x ∈ ∂Ω. (3.57)

Now we are ready to derive an integral identity for spherical harmonics.
Apply (3.57) with ∂Ω = S

d−1 and

u(x) = rnYn(ξ), x = rξ, ξ ∈ S
d−1,

where Yn ∈ Y
d
n, n ∈ N0. Write y = |y|η, η ∈ S

d−1. Observe the following
relations

u(y)|Sd−1 = Yn(η),

∂u

∂ν
(y)

∣∣∣
Sd−1

= n |y|n−1Yn(η)||y|=1 = nYn(η),

Φ(x,y)|Sd−1 =
1

(d− 2) |Sd−1|
|ξ − η|2−d.

Moreover, recalling the formula (3.48) useful in computing ∇yΦ(x,y) and
noticing that

ν(y) = η,

we have

∂Φ(x,y)

∂νy

∣∣∣
Sd−1

= ∇yΦ(x,y)·νy|Sd−1 =
1

|Sd−1|
|ξ − η|−d(ξ − η)·η.

Now

(ξ − η)·η = ξ·η − 1 = −1

2
|ξ − η|2.

Thus,

∂Φ(x,y)

∂νy

∣∣∣
Sd−1

= − 1

2 |Sd−1|
|ξ − η|2−d.

Using these relations in (3.57), after some simplifications, we get the following
integral identity

∫
Sd−1

Yn(η)

|ξ − η|d−2
dSd−1(η) =

(d− 2) |Sd−1|
2n+ d− 2

Yn(ξ), ξ ∈ S
d−1. (3.58)
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We turn to another integral identity for spherical harmonics on S
2. First,

we recall the Rayleigh–Green identity:

∫
Ω

[
ϕ(y)Δ2ψ(y)− ψ(y)Δ2ϕ(y)

]
dy

=

∫
∂Ω

[
ϕ(y)

∂ (Δψ(y))

∂ν
−Δϕ(y)

∂ψ(y)

∂ν

]
dσ(y)

−
∫
∂Ω

[
ψ(y)

∂ (Δϕ(y))

∂ν
−Δψ(y)

∂ϕ(y)

∂ν

]
dσ(y). (3.59)

It is obtained from the divergence theorem in much the same manner as
(3.50) in Theorem 3.14. Restrict Ω to be a subset of R3. Let ϕ be biharmonic
over Ω, meaning Δ2ϕ = 0. Also, let ψ(y) = |y − x|, y �= x. Much as in
Theorem 3.16, this leads to the following identity.

2

∫
∂Ω

[
ϕ(y)

∂

∂νy

(
1

|y − x|

)
− 1

|y − x|
∂ϕ(y)

∂ν

]
dσ(y)

−
∫
∂Ω

[
|y − x|∂(Δϕ(y))

∂ν
−Δϕ(y)

∂

∂νy
|y − x|

]
dσ(y)

= −4 π ϕ(x), x ∈ ∂Ω. (3.60)

For details of this argument, see [66, Appendix 9].
The formula (3.60) was applied in [31, Theorem 5.2.1] to show that

spherical harmonics on S
2 are eigenfunctions of the single layer biharmonic

potential. Letting ϕ = Yn be a spherical harmonic of order n on S
2, then

∫
S2

|ξ − η|Yn(η) dS2(η) =
−16 π

(2n+ 1) (2n− 1) (2n+ 3)
Yn(ξ) ∀ ξ ∈ S

2.

(3.61)

In Sect. 3.7, we will apply the Funk–Hecke formula to derive families of
integral identities that include (3.58) and (3.61) as special cases.

3.7 Integral Identities Through the Funk–Hecke
Formula

In this section, we show the derivation of some integral identities through a
straightforward application of the Funk–Hecke formula. As we will see, such
integral identities as (3.58) and (3.61) can be obtained easily. The material
of this section follows a recent paper [55].
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3.7.1 A Family of Integral Identities for Spherical
Harmonics

Let Yn ∈ Y
d
n be an arbitrary spherical harmonic of order n in d dimensions.

Consider an integral of the form

I(g)(ξ) :=

∫
Sd−1

g(|ξ − η|)Yn(η) dSd−1(η). (3.62)

Recall the weighted L1 space L1
(d−3)/2(−1, 1) defined in (2.60). We have the

following result.

Proposition 3.21. Assume

g(21/2(1− t)1/2) ∈ L1
(d−3)/2(−1, 1). (3.63)

Then

I(g)(ξ) = μnYn(ξ), (3.64)

where

μn = |Sd−2|
∫ 1

−1

g(21/2(1 − t)1/2)Pn,d(t) (1 − t2)
d−3
2 dt. (3.65)

Proof. Since

|ξ − η| = [2 (1− ξ · η)]1/2 , ξ,η ∈ S
d−1, (3.66)

we can write

I(g) =

∫
Sd−1

g(21/2(1− ξ · η)1/2)Yn(η) dSd−1(η).

Applying Theorem 2.22, we obtain the formula (3.64) with the coefficient μn

given by (3.65). ��

Using the Rodrigues representation formula (2.70) for the Legendre
polynomial Pn,d(t), we can express μn from (3.65) in the form of

μn = (−1)n|Sd−2|Rn,d

∫ 1

−1

g(21/2(1− t)1/2)

(
d

dt

)n

(1− t2)n+
d−3
2 dt. (3.67)

Let us apply Proposition 3.21 to the following function

g(t) = tν . (3.68)
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The condition (3.63) requires

ν > 1− d. (3.69)

In the following we assume (3.69) is satisfied. Then from (3.64) and (3.67),
we have the integral identity

∫
Sd−1

|ξ − η|νYn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (3.70)

where

μn = (−1)n2ν/2|Sd−2|Rn,d

∫ 1

−1

(1− t)ν/2
(
d

dt

)n

(1− t2)n+
d−3
2 dt. (3.71)

We can simplify the formula for μn through computing the integral

I(ν) =

∫ 1

−1

(1− t)ν/2
(
d

dt

)n

(1− t2)n+
d−3
2 dt. (3.72)

Under the condition (3.69), we can perform integration by parts repeatedly
on I(ν) and all the boundary value terms at t = ±1 vanish. After integrating
by parts n times, we have

I(ν) =
ν

2

(ν
2
− 1

)
· · ·

(ν
2
− (n− 1)

)
J(ν) = (−1)n

(
−ν
2

)
n
J(ν), (3.73)

where

J(ν) :=

∫ 1

−1

(1− t)ν/2−n(1− t2)n+
d−3
2 dt.

Write

J(ν) =

∫ 1

−1

(1− t)(ν+d−3)/2(1 + t)n+
d−3
2 dt

and introduce the change of variables t = 2 s− 1. Then

J(ν) = 2n+
ν
2 +d−2

∫ 1

0

(1− s)
ν+d−1

2 −1sn+
d−1
2 −1ds

= 2n+
ν
2 +d−2Γ(

ν+d−1
2 ) Γ(n+ d−1

2 )

Γ(n+ ν
2 + d− 1)

.

Therefore, for μn of (3.71),

μn = 2ν+d−1π
d−1
2

(
−ν
2

)
n

Γ(ν+d−1
2 )

Γ(n+ ν
2 + d− 1)

. (3.74)
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From the formula (3.74), we see that

μn = 0 if ν = 0, 2, 4, . . . , 2(n− 1).

Now consider some special cases for the formula (3.70) with (3.74).

Special case 1: ν = 2− d. Applying (1.12),

(
−ν
2

)
n
=

(
d− 2

2

)
n

=
Γ(n+ d−2

2 )

Γ(d−2
2 )

.

Then,

μn = 2 π
d−1
2

Γ(n+ d−2
2 )

Γ(d−2
2 )

Γ(12 )

Γ(n+ d
2 )

=
2 π

d
2

Γ(d2 )

d− 2

2n+ d− 2
.

Hence,

μn =
(d− 2) |Sd−1|
2n+ d− 2

. (3.75)

So we have the integral identity

∫
Sd−1

Yn(η)

|ξ − η|d−2
dSd−1(η) = μnYn(ξ), ξ ∈ S

d−1, (3.76)

where μn is given by (3.75). Notice that this is formula (3.58) in Sect. 3.6.
Special case 2: ν = −1. Then,

μn = 2d−2π
d−1
2

1

2
· 3
2
· · · 2n− 1

2

Γ(d−2
2 )

Γ(n+ d− 3
2 )
.

After some simplification,

μn = 2d−2π
d−1
2

(2n)!

22nn!

Γ(d−2
2 )

Γ(n+ d− 3
2 )
. (3.77)

So we have the integral identity

∫
Sd−1

Yn(η)

|ξ − η| dS
d−1(η) = μnYn(ξ), ξ ∈ S

d−1, (3.78)
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where μn is given by (3.77). Note that for d = 3,

μn =
4 π

2n+ 1
. (3.79)

Special case 3: ν = 1. Then,

μn = (−1)n2dπ
d−1
2

1

2

(
−1

2

)(
−3

2

)
· · ·

(
−

(
n− 3

2

))
Γ(d2 )

Γ(n+ d− 1
2 )
.

Since

Γ

(
n+ d− 1

2

)
=

(
n+ d− 3

2

)(
n+ d− 5

2

)
· · · 1

2
Γ

(
1

2

)
,

we have

μn = −22d−1π
d−2
2

Γ(d2 )

(2n− 1) (2n+ 1) · · · (2n+ 2d− 3)
. (3.80)

So we have the integral identity

∫
Sd−1

|ξ − η|Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (3.81)

where μn is given by (3.80). Note that for d = 3,

μn = − 16 π

(2n− 1) (2n+ 1) (2n+ 3)
, (3.82)

and we recover formula (3.61) derived in Sect. 3.6.

We may also choose g as a log function in applying Proposition 3.21:

g(t) = log t.

Note that this function satisfies the condition (3.63). Then we obtain the
formula

∫
Sd−1

log |ξ − η|Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (3.83)

where

μn =
|Sd−2|

2

∫ 1

−1

log(2 (1− t))Pn,d(t) (1 − t2)
d−3
2 dt. (3.84)
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Using the orthogonality of the Legendre polynomials, for n ≥ 1, we can
simplify (3.84) to

μn =
|Sd−2|

2

∫ 1

−1

log(1− t)Pn,d(t) (1 − t2)
d−3
2 dt, n ≥ 1. (3.85)

3.7.2 Some Extensions

Proposition 3.21 can be extended straightforward to some other similar
integrals.

Let a and b be non-zero real numbers. Similar to (3.66),

|a ξ + bη| =
(
a2 + b2 + 2 a b ξ · η

)1/2
, ξ,η ∈ S

d−1. (3.86)

Then for a function g satisfying

g
(
(a2 + b2 + 2 a b t)1/2

)
∈ L1

(d−3)/2(−1, 1),

we can apply Theorem 2.22 to get

∫
Sd−1

g(|a ξ + bη|)Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (3.87)

where

μn = (−1)n|Sd−2|Rn,d

∫ 1

−1

g
(
(a2 + b2 + 2 a b t)1/2

)(
d

dt

)n

(1− t2)n+
d−3
2 dt.

(3.88)

This formula includes Proposition 3.21 as a special case with a = 1 and
b = −1. Choosing a = b = 1, we obtain another special case formula:

∫
Sd−1

g(|ξ + η|)Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1, (3.89)

where

μn = (−1)n|Sd−2|Rn,d

∫ 1

−1

g(21/2(1 + t)1/2)

(
d

dt

)n

(1− t2)n+
d−3
2 dt. (3.90)

More generally, let g(t1, . . . , tL) be a function of L real variables, and let
al, bl, 1 ≤ l ≤ L, be 2L non-zero real numbers. Assume

g
(
(a21 + b21 + 2 a1b1t)

1/2, . . . , (a2L + b2L + 2 aLbLt)
1/2

)
∈ L1

(d−3)/2(−1, 1).
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Then
∫
Sd−1

g(|a1ξ + b1η|, . . . , |aLξ + bLη|)Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1,

where

μn = (−1)n|Sd−2|Rn,d

∫ 1

−1

g̃(t) dt

and

g̃(t) = g
(
(a21 + b21 + 2 a1b1t)

1/2, . . . , (a2L + b2L + 2 aLbLt)
1/2

)

·
(
d

dt

)n

(1− t2)n+
d−3
2 .

As a particular example, for ν1 > 1− d and ν2 > 1− d,

∫
Sd−1

|ξ − η|ν1 |ξ + η|ν2Yn(η) dSd−1(η) = μnYn(ξ), ξ ∈ S
d−1,

where μn equals

(−1)n2(ν1+ν2)/2|Sd−2|Rn,d

∫ 1

−1

(1− t)ν1/2(1 + t)ν2/2
(
d

dt

)n

(1− t2)n+
d−3
2 dt.

Applying the Funk–Hecke formula, we have derived identities for some
integrals involving spherical harmonics over the unit sphere in an arbitrary
dimension. Integral identities of the forms (3.70) and (3.83) are useful in
numerical approximations of boundary integral equations [10]. Note that
direct derivation of such identities as (3.76), (3.78), and (3.81) are quite
involved, often using some form of Green’s integral identities; see Sect. 3.6
or [81].

3.8 Sobolev Spaces on the Unit Sphere

In this section, we discuss Sobolev spaces over the sphere. The spaces are
defined through expansions in terms of an orthonormal basis of spherical
harmonics, following [47].

Let {Yn,j : 1 ≤ j ≤ Nn,d, n ≥ 0} be an orthonormal basis of spherical

harmonics over Sd−1. For a function v, introduce a sequence of numbers

vn,j := (v, Yn,j)L2(Sd−1) , 1 ≤ j ≤ Nn,d, n ≥ 0, (3.91)

wherever the integrals are defined.
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First, we consider general Sobolev spaces corresponding to a given
sequence of numbers {an : n ≥ 0}. Introduce an inner product

(u, v)H({an};Sd−1) :=

∞∑
n=0

|an|2
Nn,d∑
j=1

un,jvn,j , (3.92)

wherever the right side is defined. We note that this definition does not
depend on the choice of the basis functions {Yn,j : 1 ≤ j ≤ Nn,d} in Y

d
n, since

by the addition formula (2.24),

Nn,d∑
j=1

un,jvn,j =

Nn,d∑
j=1

∫
Sd−1

u(ξ)Yn,j(ξ) dS
d−1(ξ)

∫
Sd−1

v(η)Yn,j(η) dS
d−1(η)

=

∫
Sd−1

∫
Sd−1

u(ξ) v(η)

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) dS
d−1(ξ) dSd−1(η)

=
Nn,d

|Sd−1|

∫
Sd−1

∫
Sd−1

u(ξ) v(η)Pn,d(ξ·η) dSd−1(ξ) dSd−1(η).

The norm associated with the inner product (3.92) is

‖v‖H({an};Sd−1) := (v, v)
1/2

H({an};Sd−1)
. (3.93)

Let C∞({an}; Sd−1) be the space of all infinitely differentiable functions with
a finite H({an}; Sd−1)-norm.

Definition 3.22. The Sobolev space H({an}; Sd−1) is the completion of the
smooth function space C∞({an}; Sd−1) with respect to the norm (3.93).

This defines H({an}; Sd−1) as a Hilbert space with the inner product
(3.92).

Now we consider Sobolev spaces with particular choices of the numbers
an, n ≥ 0. Since

−Δ∗Yn,j = n (n+ d− 2)Yn,j ,

we have

(
−Δ∗ + δ2d

)
Yn,j = (n+ δd)

2
Yn,j , (3.94)

where

δd :=
d− 2

2
. (3.95)
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For any s ∈ R, we formally write

(
−Δ∗ + δ2d

)s/2
Yn,j = (n+ δd)

s
Yn,j. (3.96)

For a function v ∈ L2(Sd−1), we use the expansion

v(ξ) =

∞∑
n=0

Nn,d∑
j=1

vn,jYn,j(ξ). (3.97)

Then formally,

(
−Δ∗ + δ2d

)s/2
v(ξ) =

∞∑
n=0

Nn,d∑
j=1

vn,j (n+ δd)
s
Yn,j(ξ)

as long as the right side is defined. Thus,

∥∥∥(−Δ∗ + δ2d
)s/2

v
∥∥∥2
L2(Sd−1)

=

∞∑
n=0

Nn,d∑
j=1

(n+ δd)
2s |vn,j |2.

Definition 3.23. The Sobolev space Hs(Sd−1) is the completion of the
smooth function space C∞(Sd−1) with respect to the norm

‖v‖Hs(Sd−1) : =
∥∥∥(−Δ∗ + δ2d

)s/2
v
∥∥∥
L2(Sd−1)

=

⎡
⎣ ∞∑
n=0

Nn,d∑
j=1

(n+ δd)
2s |vn,j |2

⎤
⎦
1/2

(3.98)

which is induced by the inner product

(u, v)Hs(Sd−1) : =

∫
Sd−1

(
−Δ∗ + δ2d

)s/2
u(ξ)

(
−Δ∗ + δ2d

)s/2
v(ξ) dσ(ξ)

=
∞∑

n=0

Nn,d∑
j=1

(n+ δd)
2s un,jvn,j . (3.99)

We list a few properties of the Sobolev spaces Hs(Sd−1) below.
From Definition 3.23, the smooth function space C∞(Sd−1) is dense in

Hs(Sd−1) for any s ∈ R.
If t < s, then we have the embedding

Hs(Sd−1) ↪→ Ht(Sd−1) (3.100)
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as well as the inequality

‖v‖Ht(Sd−1) ≤ max{1, δs−t
d } ‖v‖Hs(Sd−1). (3.101)

Since
∥∥∥(−Δ∗ + δ2d

)t/2
v
∥∥∥
Hs(Sd−1)

= ‖v‖Hs+t(Sd−1) ∀ v ∈ Hs+t(Sd−1),

we see that the operator
(
−Δ∗ + δ2d

)t/2
is bounded from Hs+t(Sd−1) to

Hs(Sd−1).
Let us show the embedding

Hs(Sd−1) ↪→ C(Sd−1) ∀ s > d− 1

2
. (3.102)

For this purpose, we only need to show the inequality

‖v‖C(Sd−1) ≤ c ‖v‖Hs(Sd−1) ∀ v ∈ Hs(Sd−1), s >
d− 1

2
. (3.103)

We start with the expansion (3.97) and obtain

|v(ξ)| ≤
∞∑

n=0

Nn,d∑
j=1

|vn,j | |Yn,j(ξ)|.

Apply the Cauchy–Schwarz inequality and then (2.35),

|v(ξ)| ≤
∞∑
n=0

⎛
⎝

Nn,d∑
j=1

|vn,j |2
⎞
⎠

1/2 ⎡
⎣
Nn,d∑
j=1

|Yn,j(ξ)|2
⎤
⎦
1/2

=

∞∑
n=0

(
Nn,d

|Sd−1|

)1/2
⎛
⎝

Nn,d∑
j=1

|vn,j |2
⎞
⎠

1/2

.

Recall from (2.12), Nn,d = O(nd−2). Thus,

|v(ξ)| ≤ c
∞∑
n=0

⎛
⎝(n+ 1)d−2

Nn,d∑
j=1

|vn,j |2
⎞
⎠

1/2

.

Define t = 2 s− d+ 2. Since s > (d− 1)/2, t > 1 and so

∞∑
n=1

n−t <∞.



3.8 Sobolev Spaces on the Unit Sphere 123

Thus,

|v(ξ)| ≤ c
∞∑
n=0

(n+ 1)−t/2

⎛
⎝(n+ 1)2s

Nn,d∑
j=1

|vn,j |2
⎞
⎠

1/2

≤ c

[ ∞∑
n=0

(n+ 1)−t

]1/2
⎡
⎣ ∞∑
n=0

(n+ 1)2s
Nn,d∑
j=1

|vn,j |2
⎤
⎦
1/2

≤ c ‖v‖Hs(Sd−1).

So the inequality (3.103), and hence the embedding (3.102), holds.
We note that the condition s > (d − 1)/2 for the embedding (3.102) is

natural. This is explained as follows. For the unit ball Bd in R
d, the Sobolev

embedding

Ht(Bd) ↪→ C(Bd)

holds for t > d/2. Traces on S
d−1 = ∂Bd of Ht(Bd) functions form the space

Ht−1/2(Sd−1). Thus, a condition for the embedding

Ht−1/2(Sd−1) ↪→ C(Sd−1)

is expected to be t− 1/2 > (d− 1)/2. Then equate t− 1/2 with s.
Finally, we mention an approximation result. Denote

Pn(S
d−1) := span {Yk,j : 0 ≤ j ≤ Nk,d, 0 ≤ k ≤ n} . (3.104)

Assume v ∈ Hs(Sd−1) for some s > 0. Then there exists a function vn ∈
Pn(S

d−1) such that

‖v − vn‖Ht(Sd−1) ≤ (n+ 1 + δd)
−(s−t) ‖v‖Hs(Sd−1) ∀ t ∈ [0, s]. (3.105)

Indeed, writing

v(ξ) =

∞∑
k=0

Nk,d∑
j=1

vk,jYk,j(ξ),

we define

vn(ξ) =

n∑
k=0

Nk,d∑
j=1

vk,jYk,j(ξ).
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Then vn ∈ Pn(S
d−1) and

‖v − vn‖2Ht(Sd−1) =
∞∑

k=n+1

Nk,d∑
j=1

(k + δd)
2t|vk,j |2.

Since v ∈ Hs(Sd−1),

‖v‖2Hs(Sd−1) =

∞∑
k=0

Nk,d∑
j=1

(k + δd)
2s|vk,j |2 <∞.

Hence,

‖v − vn‖2Ht(Sd−1) =

∞∑
k=n+1

Nk,d∑
j=1

(k + δd)
2t|vk,j |2

≤ (n+ 1 + δd)
2(t−s)

∞∑
k=n+1

Nk,d∑
j=1

(k + δd)
2s|vk,j |2

≤ (n+ 1 + δd)
2(t−s)‖v‖2Hs(Sd−1).

Thus, (3.105) holds.
The Sobolev spaces discussed here will be needed in Sect. 6.3.

3.9 Positive Definite Functions

An important area of approximation theory is “meshless discretization
methods”, developed to handle discrete data with no associated mesh or
grid. An important topic in the foundations of this subject is that of “positive
definite functions”; and in the case of data distributed over the sphere S

d−1,
spherical harmonics can be used to analyze behaviour of such functions. For
this section, we follow closely the development in Wendland [118, Chap. 17].
A number of these ideas trace back to Schoenberg [101].

Definition 3.24. Let Φ : Sd−1 × S
d−1 → R be a continuous and symmetric

function, symmetry referring to the property that Φ(ξ,η) ≡ Φ(η, ξ) ∀ ξ,η ∈
S
d−1. The function Φ is called positive semi-definite if for any q ≥ 1 and any

set of distinct points
{
ξ1, . . . , ξq

}
⊂ S

d−1,

q∑
i,j=1

Φ(ξi, ξj)ζiζj ≥ 0 ∀ ζ ∈ R
q. (3.106)

If equality holds only when ζ = 0, then Φ is called positive definite.
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We comment that the above definition is not universal in the literature,
and the reader should check the definition used in each source.

The functions {Φ(·, ξi) : i = 1, . . . , q} are used as a basis for interpolation
of the data {f1, . . . , fq} given at the points

{
ξ1, . . . , ξq

}
: choose the interpo-

latory mapping

Iqf(ξ) =
q∑

j=1

αjΦ(ξ, ξj)

to satisfy

q∑
j=1

αjΦ(ξi, ξj) = fi, i = 1, . . . , q.

When Φ is positive definite, this is a non-singular system, and Iqf is well-
defined. However, this linear system may be quite ill-conditioned.

An important source of positive definite functions are those of the form

Φ(ξ,η) = ϕ(θ(ξ,η)) . (3.107)

Recall that θ(ξ,η) = cos−1(ξ·η) ∈ [0, π] is the geodesic distance between ξ
and η on S

d−1 and is equal to the arc-length θ of the shortest path connecting
ξ and η. Equivalently, let Φ(ξ,η) = ϕ̂(‖ξ − η‖2). Noting that

‖ξ − η‖22 = (ξ − η) · (ξ − η)

= 2− 2 ξ·η (3.108)

= 2 (1− cos θ) ,

we can write

ϕ(θ) = ϕ̂
(√

2 (1− cos θ)
)
.

A function of the variable θ is called a radial function. Many important
examples of such radial functions ϕ̂ over regions in R

d are given in Fasshauer
[45, Chap. 4].

In the special case of the unit sphere Sd−1, d ≥ 3, we study positive definite
functions of the form

Φ(ξ,η) =

∞∑
n=0

Nn,d∑
j=1

αn,jYn,j(ξ)Yn,j(η), ξ,η ∈ S
d−1. (3.109)

This uses the notation of Sect. 3.8, with
{
Yn,1, . . . , Yn,Nn,d

}
an orthonormal

basis of Yd
n. Without loss of generality, the basis functions are chosen to be

real-valued.
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Theorem 3.25. The function Φ of (3.109) is a radial function if and only
if αn,j is a constant function of j for all n ≥ 0.

Proof. Assume that αn,j = an, 1 ≤ j ≤ Nn,d, for n ≥ 0. Then

Φ(ξ,η) =

∞∑
n=0

an

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η), ξ,η ∈ S
d−1.

Using Theorem 2.9 (the addition theorem),

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) =
Nn,d

|Sd−1|Pn,d(ξ·η) (3.110)

=
Nn,d

|Sd−1|Pn,d(cos θ).

Thus

Φ(ξ,η) = ϕ(θ) =
1

|Sd−1|

∞∑
n=0

anNn,dPn,d(cos θ), (3.111)

proving Φ is a radial function.
Conversely, let

Φ(ξ,η) = ϕ(θ) ≡ ϕ∗(ξ·η).

Using the completeness of the Legendre polynomials {Pn,d : n ≥ 0}, expand
the function ϕ∗(t):

ϕ∗(t) =
∞∑
n=0

bnPn,d(t), −1 ≤ t ≤ 1.

Use Theorem 2.9 to write

ϕ∗(ξ·η) =
∣∣Sd−1

∣∣ ∞∑
n=0

bn
Nn,d

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η).

Using the uniqueness of an orthonormal expansion in L2(Sd−1) with the
orthonormal basis

{Yn,j : 1 ≤ j ≤ Nd,n, n ≥ 0}

concludes the proof that ϕ∗ has the form (3.109). ��
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What are conditions on the coefficients in the expansion (3.109) that will
imply Φ is a continuous function on S

d−1 × S
d−1? We begin with the bound

(2.116),

|Pn,d(t)| ≤ 1, −1 ≤ t ≤ 1.

For the special case of a radial function ϕ (θ) as in (3.111), we have

|Φ(ξ,η)| ≤ 1

|Sd−1|

∞∑
n=0

|an|Nn,d, ξ,η ∈ S
d−1.

If we assume

∞∑
n=0

|an|Nn,d <∞, (3.112)

then the Weierstrass comparison test implies that the series (3.111) is
uniformly convergent and the limit is continuous.

For a function Φ(ξ,η) of the general form (3.109), let

a∗n = max
1≤j≤N

|αn,j | , n ≥ 0.

Theorem 3.26. Assume

∞∑
n=0

a∗nNn,d <∞. (3.113)

Then the series on the right side of (3.109) is uniformly convergent and
defines a continuous function Φ on S

d−1 × S
d−1.

Proof. Introduce

Sn(ξ;η) =

Nn,d∑
j=1

αn,jYn,j(ξ)Yn,j(η).

Fix an arbitrary η and consider Sn as a function of ξ. From the orthonor-
mality of {Yn,j : 1 ≤ j ≤ Nn,d} in L2

(
S
d−1

)
, we have

‖Sn(·;η)‖L2 =

√√√√Nn,d∑
j=1

|αn,j |2 |Yn,j(η)|2 ≤ a∗n

√√√√Nn,d∑
j=1

|Yn,j(η)|2.
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Apply (3.110) with ξ = η and the normalization condition Pn,d(1) = 1 to
obtain

‖Sn(·;η)‖L2 ≤ a∗n

√
Nn,d

|Sd−1| ∀η ∈ S
d−1.

Using (2.48) to obtain

|Sn(ξ;η)| ≤
√

Nn,d

|Sd−1| ‖Sn(·;η)‖L2 ≤ Nn,d

|Sd−1|a
∗
n.

For the full series in (3.109),

|Φ(ξ,η)| ≤
∞∑
n=0

|Sn(ξ;η)| ≤
1

|Sd−1|

∞∑
n=0

Nn,da
∗
n.

The conclusion of the theorem then follows from (3.113) and the Weierstrass
comparison test. �

The condition (3.113) is satisfied if a∗nNn,d = O
(
n−(1+ε)

)
for some ε > 0.

Since Nn,d = O
(
nd−2

)
, we have convergence of (3.113) if

a∗n = O
(
n−(d−1+ε)

)
.

When are functions Φ of the form (3.109) positive definite? We begin with
a needed lemma.

Lemma 3.27. Let
{
ξ1, . . . , ξq

}
be q distinct points in S

d−1. Then there
exists a spherical polynomial p for which

p(ξ1) = 1,

p(ξj) = 0, j = 2, . . . , q.

Proof. Define

p(x) =

q∏
j=2

∥∥x− ξj
∥∥2

2∥∥ξ1 − ξj
∥∥2
2

, x ∈ R
d,

a polynomial of degree 2 (q − 1). When restricted to S
d−1, it is a spherical

polynomial, and it satisfies the requirements of the lemma. ��

Theorem 3.28. The function Φ of (3.109) is positive semi-definite if and
only if all coefficients αn,k are non-negative, 1 ≤ k ≤ Nn, n ≥ 0. It is positive
definite if all the coefficients are positive.
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Proof. Begin with a set of points
{
ξ1, . . . , ξq

}
⊂ S

d−1. When the quadratic
form in (3.106) is combined with the formula (3.109),

q∑
i,j=1

Φ(ξi, ξj)ζiζj =
∞∑
n=0

Nn,d∑
k=1

αn,k

q∑
i,j=1

ζiζjYn,k(ξi)Yn,k(ξj)

=
∞∑
n=0

Nn,d∑
k=1

αn,k

[
q∑

i=1

ζiYn,k(ξi)

]⎡
⎣ q∑
j=1

ζjYn,k(ξj)

⎤
⎦

=
∞∑
n=0

Nn,d∑
k=1

αn,k

[
q∑

i=1

ζiYn,k(ξi)

]2

, ζ ∈ R
q. (3.114)

If the coefficients αn,k are all non-negative, then (3.114) implies that the
quadratic form for Φ is non-negative for all choices of ζ ∈ R

q, all q ≥ 1, and
all

{
ξ1, . . . , ξq

}
⊂ S

d−1, thus proving Φ is positive semi-definite.
Now assume that all the coefficients αn,k > 0. To show that Φ is positive

definite, assume

q∑
i,j=1

Φ(ξi, ξj)ζiζj = 0

for some q > 0, some ζ ∈ R
q, and some

{
ξ1, . . . , ξq

}
⊂ S

d−1. We need to
show that ζ = 0. The formula (3.114) implies that

q∑
i=1

ζiYn,k(ξi) = 0

for all of the basis functions {Yn,k : 1 ≤ k ≤ Nn, n ≥ 0}. By taking linear
combinations, it follows that

q∑
i=1

ζip(ξi) = 0

for all spherical polynomials p. By using Lemma 3.27, we can choose for each
i, 1 ≤ i ≤ q, a polynomial p that satisfies p(ξj) = δij , j = 1, . . . , q. This then
implies ζi = 0 for each i, and thus ζ = 0.

It is more complicated to show the reverse implication, that Φ being
positive semi-definite implies all αn,k are non-negative, although (3.114) is
suggestive of it. For this, we refer the reader to the discussion in Wendland
[118, p. 312]. ��
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To motivate the choice of the form in (3.109), introduce the integral
operator K,

Kf(ξ) =
∫
Sd−1

Φ(ξ,η) f(η) dSd−1(η), ξ ∈ S
d−1,

considered as an operator from L2
(
S
d−1

)
into L2

(
S
d−1

)
, and assume its kernel

function Φ is a symmetric function of its arguments. The operator K is called
positive if

(Kf, f) ≥ 0 ∀f ∈ L2
(
S
d−1

)
,

(Kf, f) = 0 =⇒ f = 0.
(3.115)

It follows from standard theory for integral operators that the eigenvalues
{λj} of K are real and positive, and the corresponding eigenfunctions {ψj},
Kψj = λjψj , can be chosen to be an orthonormal basis of L2

(
S
d−1

)
. The

following theorem is proved in Hochstadt [65, p. 90].

Theorem 3.29. (Mercer) Assume the kernel function Φ : Sd−1×S
d−1 →R

is continuous and symmetric, and assume K is a positive integral operator.
Then

Φ(ξ,η) =

∞∑
j=1

λj ψj(ξ)ψj(η), ξ,η ∈ S
d−1, (3.116)

and this series converges absolutely and uniformly over S
d−1 × S

d−1.

If the integral operator K is positive, then numerical integration of

(Kf, f) =
∫
Sd−1

∫
Sd−1

Φ(ξ,η) f(ξ) f(η) dSd−1(η) dSd−1(ξ)

by an equal weight rule leads to statements of the form (3.106) for the
particular quadrature nodes being used. Hence, (3.116) can be considered
a motivation for the assumed form (3.109). Conversely, if Φ is a positive
definite function of the form (3.109), then it is straightforward to show that
the integral operator K with kernel function Φ is a positive operator on
L2

(
S
d−1

)
; moreover, the coefficients {αn,k} are the eigenvalues of K and the

spherical harmonics {Yn,k} are the corresponding eigenfunctions.



Chapter 4
Approximation Theory

For functions of a single variable, there is a rich literature on best approxi-
mations by ordinary polynomials and by trigonometric polynomials. In this
chapter we discuss the extensions of these ideas to approximation on the
sphere S

2 in R
3 and the unit disk D in R

2. These results extend to higher
dimensions, but most cases of interest in applications are for approximations
on the unit sphere S

2, the unit disk D in R
2, and the unit ball B3 in R

3.
At the center of approximation theory on S

2 is the concept of “spherical
harmonic”, generalizing to S

2 the trigonometric functions

{1, cosnϕ, sinnϕ : n ≥ 1}

used in the univariate theory on S
1. For developments of the one-variable

theory, see, for example, Lorentz [77], Powell [91], or Rivlin [97]. Using
spherical harmonics, the Fourier series representation of a periodic univariate
function generalizes to the “Laplace series” or “Fourier–Laplace series”
representation of a function defined on S

2. As the name implies, the use
of the Laplace series is an old idea, going back to P. Laplace and A. Legendre
in the late 1700s. Their research arose from examining the function

1

|x− y|

for the potential of a gravitational force field at a point x arising from a
unit mass at a point y. This is still a useful topic and perspective, but other
approaches to the subject are now more fruitful, especially when considering
the approximation of functions defined on the sphere. A general introduction
to the modern theory of spherical harmonics, spherical polynomials and
approximation by them on S

d, d ≥ 1, is given in Chap. 2. In this chapter
we expand on this material, while also restricting it to S

2.

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 4, © Springer-Verlag Berlin Heidelberg 2012
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Section 4.1 is a study of spherical polynomials, and Sect. 4.2 presents
results from the research literature on the best approximation of functions by
spherical polynomials. Section 4.3 presents analogous results on polynomials
defined on the unit disk in R

2. We restrict the presentation to real-valued
functions, although there are usually straightforward extensions to complex-
valued functions.

4.1 Spherical Polynomials

If p(x) is a polynomial, then we call its restriction to S
2 a “spherical

polynomial”. We define

Πn(S
2) := {p|S2 : deg(p) ≤ n} ,

the space of spherical polynomials of degree ≤n. Note that different polyno-
mials p can result in the same spherical polynomial. For example, consider the
two polynomials p1(x) ≡ 1 and p2(x) ≡ |x|2 = x21+x

2
2+x

2
3, which lead to the

same spherical polynomial. If we consider the corresponding approach using
a polynomial p(x1, x2) over R

2, then restricting p to the unit circle results
in the function p(cosϕ, sinϕ), which is called a “trigonometric polynomial”.
Spherical polynomials can be considered as generalizations of trigonometric
polynomials.

To better understand spherical polynomials, we specialize to S
2 some

results from Chap. 2. Begin with polynomials p(x) over R3, letting

Πn(R
3) := {p(x) : deg p ≤ n} .

The space Hn

(
R

3
)
consists of polynomials of degree n that are homogeneous.

In the notation of Chap. 2, this space is denoted as H
3
n. A simple basis for

Hn(R
3) is

{xα ≡ xα1
1 xα2

2 xα3
3 : |α| ≡ α1 + α2 + α3 = n, α1, α2, α3 ≥ 0} (4.1)

and thus

dimHn(R
3) =

1

2
(n+ 1) (n+ 2) ;

see (2.3). Easily,

Πn(R
3) = H0(R

3) +H1(R
3) + · · ·+Hn(R

3). (4.2)
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Also recall the space Yn(R
3) of harmonic homogeneous polynomials of

degree n. The space Yn ≡ Yn(S
2) consists of the restrictions to S

2 of the
polynomials in Yn(R

3), and they are called spherical harmonics. Recalling
(2.10), dimYn(R

3) = 2n+ 1.
The following result gives the relation ofHn(R

3) to the spherical harmonics
Yn(R

3). It is taken from [47, Theorem 2.2.2] and was proven earlier in
Theorem 2.18 for the case of a general dimension d.

Lemma 4.1. For n ≥ 2, a polynomial p ∈ Hn

(
R

3
)
can be decomposed as

p(x) = h(x) + |x|2q(x) (4.3)

with h ∈ Yn

(
R

3
)
and q ∈ Hn−2

(
R

3
)
. The choices of h and q are unique within

the spaces Yn

(
R

3
)
and Hn−2(R

3), respectively. Moreover, the polynomials
h(x) and |x|2q(x) are orthogonal using the inner product (2.6).

Hn

(
R

3
)
= Yn

(
R

3
)
⊕ | · |2Hn−2

(
R

3
)

(4.4)

is an orthogonal decomposition of Hn(R
3).

By letting |x| = 1, the decomposition (4.3) implies that each spherical
polynomial p ∈ Πn(S

2), n ≥ 2, can be written as the sum of a spherical
harmonic of degree n and a spherical polynomial of degree n − 2. Also,
Πn

(
S
2
)
= Yn for n = 0, 1. Using (4.2) and induction with (4.3), it follows

that the spherical harmonics can be used to create all spherical polynomials.
If this is combined with Corollary 2.15, then we have

Πn(S
2) = Y0 ⊕ Y1 ⊕ · · · ⊕ Yn (4.5)

is a decomposition of Πn

(
S
2
)
into orthogonal subspaces, with the orthogo-

nality based on the standard inner product for L2(S2),

(f, g) =

∫
S2

f(η) g(η) dS2(η). (4.6)

This decomposition (4.5) is Corollary 2.19 for the case d=3. For the
remainder of this chapter, we will consider Πn as denoting Πn(S

2), unless
stated explicitly otherwise.

With the orthogonal decomposition (4.5), a basis for Πn can be introduced
by giving a basis for each of the subspaces Yk, k ≥ 0. The standard basis for
spherical harmonics of degree n is (cf. Example 2.48)

Yn,1(ξ) = cnPn(cos θ),

Yn,2m(ξ) = cn,mP
m
n (cos θ) cos(mφ), (4.7)

Yn,2m+1(ξ) = cn,mP
m
n (cos θ) sin(mφ), m = 1, . . . , n
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with ξ = (cosφ sin θ, sinφ sin θ, cos θ)T . In this formula, Pn(t) is a Legendre
polynomial of degree n,

Pn(t) =
1

2nn!

dn

dtn
[
(t2 − 1)n

]
, (4.8)

see (2.70) with d = 3, and Pn (t) = Pn,3(t). Also, P
m
n (t) is an associated

Legendre function,

Pm
n (t) = (−1)m(1− t2)

1
2m

dm

dtm
Pn(t), 1 ≤ m ≤ n, (4.9)

In the notation of Sect. 2.10,

Pm
n (t) ≡ (−1)m

(n+m)!

n!
Pn,3,m(t).

Additional information on Pn(t) is given later following (4.74). The constants
in (4.7) are given by

cn =

√
2n+ 1

4π
,

cn,m =

√
2n+ 1

2π

(n−m)!

(n+m)!
.

Using the standard inner product of (4.6), the spherical harmonics given in
(4.7) are an orthonormal basis of Yn. We obtain an orthonormal basis of Πn

using (4.7) and (4.5). For a development of the basis (4.7), see also MacRobert
[78, Chaps. 4–7].

Although (4.7) appears to be the most popular choice of a basis for Yn,
other orthonormal bases for Yn and Πn are possible, both for the inner
product of (4.6) and for other weighted inner product spaces over S2. This is
explored at great length in [121] and [44].

Recall the discussion in Sect. 2.8. For f ∈ L2(S2), the Fourier–Laplace
series

f(η) =

∞∑
�=0

P�f(η) (4.10)

is convergent in L2
(
S
2
)
with the standard inner product (4.6) and associated

norm. The term P�f is the orthogonal projection of f into the subspace Y�

of spherical harmonics of order �,

P�f(η) =

2�+1∑
j=1

(f, Y�,j)Y�,j(η) (4.11)
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using an orthonormal basis {Y�,j : 1 ≤ j ≤ 2�+ 1} for Y�, for example (4.7).
The convergence of (4.10) is discussed in Sect. 2.8.3. In the following section,
we include a discussion of how the differentiability of f affects the rate of
convergence.

As a part of our discussion of the convergence of the series in (4.10),
we consider the orthogonal projection operator Q, defined by

Qnf(η) =
n∑

�=0

P�f(η), (4.12)

which maps L2(S2) onto Πn(S
2). An important quantity in the consideration

of the uniform convergence of (4.10) in C(S2) is the norm

‖Qn‖C→C .

This is discussed later in Sect. 4.2.4.

4.2 Best Approximation on the Unit Sphere

For 1 ≤ p < ∞, recall that Lp(S2) denotes the space of all measurable
functions f on S

2 for which

‖f‖p =

[∫
S2

|f(η)|p dS2(η)

] 1
p

<∞.

For p = ∞, recall that C(S2) denotes the space of all continuous functions f
on S

2, and we use the uniform norm

‖f‖∞ = max
η∈S2

|f(η)| .

Introduce the error of “best approximation” as follows. For f ∈ Lp(S2) if
1 ≤ p <∞ or f ∈ C(S2) for p = ∞, define

En,p(f) = min
g∈Πn

‖f − g‖p. (4.13)

A straightforward argument based on compactness and the Heine–Borel
Theorem shows that the minimum is attained; the proof is omitted here.

There is a long history in the research literature for measuring the rate at
which En,p(f) decreases as a function of the “smoothness” of the function f .
We note, in particular, the papers of Gronwall [54], Newman and Shapiro
[88], Ragozin [93], Rustamov [99], Ditzian [39, 40], and Dai and Xu [36].
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The latter paper contains both an excellent review of the literature and an
extensive bibliography. A central concern of much, but not all, of the research
literature of the past few decades has been the relationship of En,p(f) to
the smoothness of f . The researchers Rustamov, Ditzian, and Dai and Xu
have given various ways of defining moduli of smoothness for f , and then,
of showing an equivalence between the rates at which En,p(f) and their
moduli of smoothness converge to zero. These results are quite deep and
are technically complicated to prove. We do not prove them in this text,
instead just giving some of the background needed for understanding them.
In addition, these papers prove results for the unit sphere S

d, d ≥ 2; we
specialize these results to S

2.
Ragozin [93] gives a bound on En,∞(f) for f ∈ C(S2); the paper does not

consider lower bounds for En,∞(f). Ganesh, Graham, and Sivaloganathan
[50, Sect. 3] and Bagby, Bos, and Levenberg [18, Theorem 2] extend Ragozin’s
results to the related problem of simultaneously approximating f and its low
order derivatives.

To bound En,p(f), we present results of both Dai and Xu [36] and
Ragozin [93].

4.2.1 The Approach to Best Approximation
of Dai and Xu

The results in [36] are quite general, while also giving a definition of
modulus of smoothness which relates more easily to our ordinary sense of
differentiability on S

2. We begin with a method for defining finite differences
of a function f defined on S

2.
Let e1, e2, e3 denote the standard orthogonal basis in R

3. Recall from
Sect. 2.1 that SO

3 denotes the set of all 3 × 3 orthogonal matrices with
determinant 1. For t ∈ R and 1 ≤ i �= j ≤ 3, let Qi,j,t ∈ SO

3 denote the
orthogonal matrix which causes a rotation of size t in the xixj-plane, oriented
such that the rotation from the vector ei to the vector ej is assumed to be
positive. For example,

Q1,2,t(ξ1, ξ2, ξ3)
T = (s cos(φ+ t), s sin(φ+ t), ξ3)

T
,

where (ξ1, ξ2) = s (cosφ, sinφ). It is known that every rotation Q ∈ SO
3 can

be written as

Q = Q1,2,θ1Q2,3,θ2Q1,2,θ3 (4.14)

for some θ1, θ3 ∈ [0, 2π), θ2 ∈ [0, π). The angles θ1, θ2 and θ3 are the “Euler
angles” of the rotation Q; see [117, p. 947].
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For any Q ∈ SO
3, denote

(TQf)(ξ) := f(Qξ), ξ ∈ S
2, (4.15)

and denote the rth-order forward difference based on Q by

Δr
Qf := (I − TQ)

r
f, r ∈ N. (4.16)

As usual, Δ0
Qf = f . There is no difficulty in interpreting this definition as

an ordinary finite difference, e.g.

ΔQf(ξ) = f(ξ)− f(Qξ).

To simplify the notation, let

Δr
i,j,tf ≡ Δr

Qi,j,t
f, 1 ≤ i �= j ≤ 3. (4.17)

The result (4.14) shows the generality of the rotations Qi,j,t, and thus we
restrict the definition of the modulus of smoothness by referring only to these
basic rotations. Define

ωr(f ; τ)p := sup
|t|≤τ

max
1≤i<j≤3

‖Δr
i,j,tf‖p, r ∈ N. (4.18)

The case of r = 1 and p = ∞ is bounded by the usual modulus of continuity
for a continuous function,

ω1(f ; τ)∞ ≤ ω(f ; τ) ≡ sup
ξ,η∈S

2

θ(ξ,η)≤τ

|f(ξ)− f(η)| . (4.19)

As with the difference operators Δr
Qi,j,t

defined on the great circle intersec-

tion of S2 with the xixj -plane in R
3, we can also define derivative operators

Dr
i,j . For example, consider differentiation in the great circle intersection in

the (1, 2)-plane. Define

Dr
1,2f(ξ) =

(
− ∂

∂φ

)r

f(s cosφ, s sinφ, x3), ξ ∈ S
2, (4.20)

with (ξ1, ξ2) = (s cosφ, s sinφ), for r ∈ N. For r = 0, Dr
i,jf = f . Other ways

of expressing these derivatives are discussed in [36, Sect. 2], [37, Sect. 3];
also, distributional derivatives Dr

1,2f for general f ∈ Lp(S2) are defined.
The properties of the rotations Qi,j,t and the modulus of continuity

function ωr are given in [36, Sect. 2]. Among these is the following important
inequality that links Δr

i,j,t to the derivatives Dr
i,j on S

2: for 1 ≤ p ≤ ∞,
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‖Δr
i,j,tf‖p ≤ c |t|r ‖Dr

i,jf‖p, r = 0, 1, 2, . . . , (4.21)

provided the function f is r-times differentiable over S2.

Theorem 4.2. (Dai and Xu) For f ∈ Lp(S2) if 1 ≤ p <∞ and f ∈ C(S2)
if p = ∞, it follows that

En,p(f) ≤ cr ωr

(
f ;

1

n+ 1

)
p

, n ≥ 0 (4.22)

for some constant cr > 0.

Proof. This theorem is given in [36, Theorem 3.4]. The proof is complicated
and it uses a number of results from the research literature which would take
a great deal of space to develop. For that reason, we only give an outline of
the proof; and some of the results are discussed for only p = ∞. The outline
follows closely the proof given in [36, p. 1250].

Using the addition theorem (2.24), introduce the reproducing kernel
integral operator

P�f(η) =
2�+ 1

4π

∫
S2

f(ξ)P�(η·ξ) dS2(ξ), η ∈ S
2, � ≥ 0, (4.23)

which is also the projection operator of (4.11). In this formula, P�(t) is the
Legendre polynomial of degree � on [−1, 1], defined in (4.8). Next, introduce
a C∞-function χ : [0,∞) → [0, 1] with

χ(t) =

{
1, 0 ≤ t ≤ 1,

0, t ≥ 2,

and 0 ≤ χ(t) < 1 for 1 < t < 2. Introduce the integral operator

Vnf(η) =

2n−1∑
�=0

χ

(
�

n

)
P�f(η)

=

∫
S2

Kn(η·ξ) f(ξ) dS2(ξ), η ∈ S
2 (4.24)

with

Kn(t) =

2n−1∑
�=0

χ

(
�

n

)
2�+ 1

4π
P�(η·ξ).
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Properties of the kernel Kn are given in [23, Lemma 3.3], and in particular,
for any integer k > 0,

|Kn(cos θ)| ≤
ckn

2

(1 + nθ)
k
, 0 ≤ θ ≤ π, (4.25)

with some constant ck > 0.
Properties of the operator Vn are given in Rustamov [99, Lemma 3.1]; and

in particular,

A1 Vnf ∈ Π2n−1(S
2);

A2 Vnf = f if f ∈ Πn(S
2);

A3 For all n ≥ 1,

‖Vnf‖p ≤ ‖Vn‖p ‖f‖p , f ∈ Lp
(
S
2
)
, (4.26)

where ‖Vn‖p denotes the operator norm of Vn : Lp
(
S
2
)
→ Lp

(
S
2
)
.

The first two properties are straightforward, whereas the property (4.26)
is deeper and is complicated to prove; see [99, p. 316]. The operator Vn is
used to define explicitly a polynomial of degree ≤ n for which the error of
approximating f is bounded by a constant multiple of En,p(f).

Consider the polynomial V[n/2]f , which is of degree≤ n. Then by definition
of the minimax error,

En,p(f) ≤
∥∥f − V[n/2]f

∥∥
p
.

Using A2 from above with the constant polynomial,

∫
S2

Kn(η·ξ) dS2(ξ) ≡ 1.

We now restrict to the case p = ∞. Then

f(η)−
(
V[n/2]f

)
(η) =

∫
S2

[f(η)− f(ξ)]K[n/2](η·ξ) dS2(ξ),

∣∣f(η)− (
V[n/2]f

)
(η)

∣∣ ≤
∫
S2

|f(η)− f(ξ)|
∣∣K[n/2](η·ξ)

∣∣ dS2(ξ). (4.27)

Denote by Γ(η, ξ) the shorter of the great circle paths that connects η and ξ,
and recall the definition of the geodesic distance

θ(η, ξ) = cos−1(η·ξ).



140 4 Approximation Theory

Using an argument similar to that in the proof of [36, Lemma 3.2], it can be
shown that

|f(η)− f(ξ)| ≤ c ω1(f, θ(η, ξ)) , ξ,η ∈ S
2

for a suitably chosen constant c > 0. Combining this with (4.27),

∥∥f − V[n/2]f
∥∥
∞ ≤ c max

η∈S2

∫
S2

ω1(f, θ(η, ξ))
∣∣K[n/2](η·ξ)

∣∣ dS2(ξ).

Next, subdivide Γ(η, ξ) into subintervals of arc-length ≤ 1/n; this can be
done with no more than [n θ(η, ξ)] ≤ 1 + n θ(η, ξ) such subintervals. Then

∥∥f − V[n/2]f
∥∥
∞ ≤ c ω(f, 1/n) max

η∈S2

∫
S2

(1 + n θ(η, ξ))
∣∣K[n/2](η·ξ)

∣∣ dS2(ξ).

(4.28)
The integral on the right side can be bounded independently of n. To do so,

first note that the integral is constant as a function of η due to the rotational
symmetry of the integrand and of S

2. Thus, it is adequate to examine
the integral for the special case of η = (0, 0, 1)

T
. Then η·ξ= ξ3 = cos θ,

θ(η, ξ)= θ, 0 ≤ θ ≤ π. Also, use the bound (4.25) with k = 4. Then

∫
S2

(1 + n θ(η, ξ))
∣∣K[n/2](η·ξ)

∣∣ dS2(ξ)

= c4

∫ 2π

0

∫ π

0

(1 + n θ)
∣∣K[n/2](cos θ)

∣∣ dθ dφ

≤ 2πc4

∫ π

0

(1 + n θ)
(n/2 + 1)2

(1 + n θ/2)
4 sin θ dθ

≤ 2π (n/2 + 1)
2
c4

∫ π

0

(1 + n θ) θ

(1 + n θ/2)
4 dθ,

where the latter inequality is obtained from

sup
0<θ≤π

sin θ

θ
= 1.

Change the variable of integration by letting u = 1 + n θ/2. Then

∫
S2

(1 + n θ(η, ξ))
∣∣K[n/2](η·ξ)

∣∣ dS2(ξ)

≤ 2π (1 + 2/n)
2
c4

∫ 1+ 1
2nπ

1

(2u− 1) (u− 1)

u4
du
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< 18 π c4

∫ ∞

1

(2u− 1) (u− 1)

u4
du

Combining this with (4.28), we have

∥∥f − V[n/2]f
∥∥
∞ ≤ c ω1(f, 1/n)

for a constant c > 0. This shows (4.22) for r = 1 and p = ∞. For 1 ≤ p <∞,
a similar but longer argument is given in [36, Lemma 3.2].

To show the result for r > 1, an inductive argument is given in [35, Sect. 4].
We omit it here. �

By combining (4.22) with (4.18) and (4.21), we have the following corollary.

Corollary 4.3. Let r ≥ 1 be an integer. Assume f is r-times continuously
differentiable over S

2 with all such derivatives in Lp(S2) for 0 ≤ p < ∞ and
in C(S2) for p = ∞. Then

En,p(f) ≤
c

(n+ 1)r
, n ≥ 0. (4.29)

Results inverse to these are given in [36, Sect. 3.2]. We give one such result,
taken from [36, Corollary 3.5].

Theorem 4.4. For 0 < α < r and f ∈ Lp
(
S
2
)
if 1 ≤ p <∞ and f ∈ C

(
S
2
)

if p = ∞, the statements En,p ∼ n−α and ωr(f ; t)p ∼ t−α are equivalent,
where both are statements of proportionality.

These results have been extended in [37], giving bounds using a Sobolev
space setting. Define the Sobolev space Wr

p (S
2) to be the space of functions

f ∈ Lp(S2) whose distributional derivatives Dr
i,jf ∈ Lp(S2), 1 ≤ i < j ≤ 3,

and which satisfy

‖f‖Wr
p
≡ ‖f‖p +

∑
1≤i<j≤3

‖Dr
i,jf‖p <∞. (4.30)

For p = ∞, replace L∞(S2) with C(S2). To generalize the idea of a space of r-
times differentiable Hölder continuous functions, introduce the set Wr,α

p (S2),
α ∈ (0, 1] and r ≥ 0, to be the space of all f ∈ Wr

p (S
2) for which

‖f‖Wr,α
p

≡ ‖f‖p + max
1≤i<j≤3

sup
0<|t|≤1

‖Δi,j,t(D
r
i,jf)‖p

|t|α <∞.

In [37, Sect. 3], the relationship of these spaces Wr
p (S

2) and Wr,α
p (S2) to

other definitions are discussed; they are equivalent or closely related to other
definitions of Sobolev spaces on S

2.
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Using this framework, the following result is proven. It provides a complete
generalization to S

2 of the Jackson type results for approximation on the unit
circle S

1.

Theorem 4.5. Let r ∈ N0, α ∈ (0, 1], and 1 ≤ p ≤ ∞. Then for any
f ∈ Wr,α

p (S2)

En,p(f) ≤
c

(n+ 1)
r+α ‖f‖Wr,α

p (S2), n ≥ 0.

Complete results for weighted best approximation over Sd, d ≥ 2, are also
given in Dai and Xu [36, Sect. 4].

4.2.2 The Approach to Best Approximation
of Ragozin

The paper of Newman and Shapiro [88] presents a constructive approximation
that leads to the rate of convergence ω(f ; 1/n) for En,∞(f). This construction
was used by Ragozin [93, Theorem 3.3] to extend their result to functions
that are several times continuously differentiable over S2, obtaining rates of
convergence analogous to Theorem 4.5. The results in [93, Theorem 3.3] are
for S

d, d ≥ 2; and we specialize to only S
2. The analysis of Ragozin uses a

framework from differential geometry to work with differentiation of functions
f defined on S

2. We briefly discuss below the ideas needed to understand this
work. In doing so, we follow closely the presentation of Ganesh, Graham, and
Sivaloganathan [50, Sect. 3].

We begin by considering the standard way of discussing the differentiability
of a function defined on S

2 (or on any smooth manifold in R
3). At a point

x0 on S
2, form the tangent plane, say U . The plane U will be the basis of a

local coordinate system for representing the nearby surface of S2. Select an
open neighborhood of x0 on S

2, say V , and project it orthogonally onto U ,
obtaining a planar region. Denote this mapping by ϕ : V → ϕ(V ) ⊂ U .

Functions defined on V can be reformulated as functions on U via the
mapping ϕ. If f ∈ C(V ), then consider the function f̂ defined on ϕ(V ) by

f̂(ϕ(x)) = f(x), x ∈ V, (4.31)

or

f̂(u) = f(ϕ−1(u)), u ∈ ϕ(V ).

The region ϕ(V ) is a subset of the plane U ; we have our ordinary sense of

partial differentiation when differentiating f̂(u) based on a coordinate system

in U . If the function f̂ ∈ Ck(ϕ(V )), then we say f ∈ Ck(V ), k ≥ 0.
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We can choose a finite set of such tangent planes U so as to “cover” all
of S2, having corresponding (overlapping) regions V . With the sphere S2, six
such tangent planes are sufficient, and we denote them by U1, . . . , U6. The
corresponding (overlapping) regions on S

2 are denoted by V1, . . . , V6, with

corresponding mappings ϕ1, . . . , ϕ6. We say f ∈ Ck(S2) if f̂i = f ◦ ϕ−1
i ∈

Ck(ϕi(Vi)), i = 1, . . . , 6. We define a norm on Ck(S2) by

‖f‖Ck(S2) = max
1≤i≤6

max
|α|≤k

‖Dα(f̂i)‖Ck(ϕi(Vi)). (4.32)

For the derivatives,

Dαg(u) =
∂|α|g(u)

∂uα1
1 ∂uα2

2

, α = (α1, α2)

refers to differentiation within the associated tangent plane Ui, using a u1u2-
coordinate system in U . With this norm, Ck(S2) is a Banach space. If γ ∈
(0, 1], we can define similarly Ck,γ(S2) as the set of functions f ∈ Ck(S2) for
which all derivatives Dα(f ◦ ϕ−1

i ), |α| = k, are Hölder continuous on ϕi(Vi)
with exponent γ, 1 ≤ i ≤ 6. A norm ‖f‖Ck,γ(S2) can be defined analogously
to (4.32).

This definition of Ck(S2) is standard and it involves ordinary partial
derivatives over planar regions, using local charts as described above.
However, other ways of referring to the smoothness of functions f ∈ C(S2)
have been found necessary when analyzing the behaviour of En,p(f), and this
is reflected in the definition (4.18) used in the analysis of Dai and Xu [36].
The work of Ragozin [93] uses a differential geometry perspective, using Lie
algebras and associated derivatives, as Lie derivatives provide a simple and
global way to describe the smoothness of functions f ∈ C(S2). It is also a
framework for more general differentiable manifolds in R

d, d ≥ 2.
Recall that SO3 denotes the set of 3 × 3 real orthogonal matrices A with

determinant equal to 1,

ATA = I, detA = 1;

and let g denote the set of 3× 3 real skew-symmetric matrices D,

DT = −D.

The matrices in g can be used to generate elements of SO3. In particular, for
real t consider the one-parameter family of matrices

A(t) = e−tD =

∞∑
k=0

(−1)ktkDk

k!
.
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Using elementary matrix algebra, it follows that

A(t)T = e−tDT

= etD = A(t)−1,

A(t)TA(t) = I,

showing A(t) is orthogonal for all t. Trivially, detA(0) = 1; and the orthog-
onality of A(t) implies detA(t) = ±1. The determinant function detB is
a continuous function of its argument B. When combined with the earlier
statements on detA(t), it follows that detA(t) = 1 for all t.

To aid in calculating e−tD, we use the following property of matrix
exponentiation. Assume that a square matrix B has the canonical form

B = P−1ΛP (4.33)

with Λ a diagonal matrix and some nonsingular matrix P . Then

eB =

∞∑
k=0

Bk

k!
=

∞∑
k=0

(
P−1ΛP

)k
k!

=

∞∑
k=0

P−1Λ
k

k!
P

= P−1eΛP. (4.34)

The matrix eΛ can be calculated using standard exponentiation.
As an important example, consider

D1 =

⎡
⎣ 0 0 0

0 0 −1

0 1 0

⎤
⎦ . (4.35)

Then D1 = P−1ΛP with Λ = diag [0, i,−i] and

P =

⎡
⎣ 1 0 0

0 1 i

0 1 −i

⎤
⎦ .

Using (4.34),

e−tD1 =

⎡
⎣1 0 0

0 cos t − sin t

0 sin t cos t

⎤
⎦ .

The mapping x �→ e−tD1x rotates x through an angle of t in the x2x3-plane
in R

3. The matrices
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D2 =

⎡
⎣0 0 −1

0 0 0

1 0 0

⎤
⎦ , D3 =

⎡
⎣ 0 −1 0

1 0 0

0 0 0

⎤
⎦ (4.36)

yield rotations in the x1x3-plane and x1x2-plane, respectively.
Some additional notation is needed. Given f ∈ C(S2) and E ∈ SO

3, the
mapping ξ �→ f(E−1ξ) is called the “action” of E on f ; it is denoted by E ◦f
and belongs to C(S2). Let T be a continuous linear mapping from C(S2) to
C(S2). We say T is an equivariant map with respect to SO

3 if

E ◦ (T f) = T (E ◦ f), ∀ f ∈ C(S2), ∀E ∈ SO
3.

The following lemma is important because the construction of a polynomial
approximation in [88] is an equivariant mapping; see (4.46) below.

Lemma 4.6. Let p ∈ C[−1, 1] and define

T f(ξ) =
∫
S2

p(ξ · η) f(η) dS2(η), ξ ∈ S
2.

Then T : C(S2) → C(S2) is linear and continuous, and it is equivariant with
respect to SO

3.

Proof. It is straightforward that f ∈ C(S2) implies T f ∈ C(S2), and also
that T : C(S2) → C(S2) is linear and continuous. To show T is equivariant,
let f ∈ C(S2) and E ∈ SO

3. Then

(E ◦ (T f))(ξ) =
∫
S2

p((E−1ξ) · η) f(η) dS2(η) (4.37)

=

∫
S2

p((E−1ξ) · (E−1η)) f(E−1η) dS2(η) (4.38)

=

∫
S2

p(ξ · η) f(E−1η) dS2(η) (4.39)

= (T (E ◦ f))(ξ). (4.40)

Line (4.38) follows from the invariance under rotation of integrals over S
2;

and (4.39) follows from

(
E−1ξ

)
·
(
E−1η

)
= ξ ·

(
E−TE−1η

)
= ξ · η

due to the orthogonality of E. �
We now introduce another approach to differentiation of elements in C(S2).

Let f ∈ C(S2). Given an element D ∈ g, we define an “algebraic derivative”
of f , associated with D, by
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Df(ξ) = lim
t→0

f(e−tDξ)− f(ξ)

t
= lim

t→0

(etD ◦ f) (ξ)− f(ξ)

t
(4.41)

if it exists and is continuous over S
2. This is defined globally over S

2.
This notation can be confusing; each D ∈ g is to be associated with a
differentiation of f over S

2. The cases in (4.35)–(4.36) are of particular
importance. The following lemma is critical to the analysis of the rate of
convergence of En,∞ → 0 in [93] and to extensions given in [50].

Lemma 4.7. Let T : C(S2) → C(S2) be a linear, continuous, and SO
3-

equivariant mapping. Let f ∈ C(S2) and D ∈ g. If Df exists, then so does
D(T f), and moreover,

D(T f) = T (Df). (4.42)

Proof.

D(T f)(ξ) = lim
t→0

(
etD) ◦ (T f)

)
(ξ)− (T f) (ξ)
t

.

Using the linearity, continuity, and equivariant properties of T ,

D (T f) (ξ) = lim
t→0

(
T

(
etD ◦ f

))
(ξ)− T f(ξ)
t

= T lim
t→0

(
etD ◦ f

)
(ξ)− f(ξ)

t

= T Df(ξ). �

A new space of differentiable functions is introduced in [50, p. 1396].

C1
alg =

{
f ∈ C(S2) : Df ∈ C(S2) for all D ∈ g

}
.

Inductively, for k ≥ 1,

Ck
alg =

{
f ∈ Ck−1

alg : Df ∈ Ck−1(S2) for all D ∈ g
}

(4.43)

with C0
alg = C(S2). A norm is introduced based on the algebraic derivatives

associated with D1, D2, and D3 from (4.35)–(4.36). For a multi-index α =
(α1, α2, α3), consider algebraic derivatives

Dα = Dα1
1 Dα2

2 Dα3
3 . (4.44)

For f ∈ Ck
alg, define

‖f‖k,alg = max {‖Dαf‖∞ : |α| ≤ k} ,
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where the derivatives Dαf are restricted to those of the form in (4.44). The
following is shown in [50, Theorem 3.4]; we omit the proof.

Theorem 4.8. For k ≥ 0, Ck
alg = Ck(S2). In addition, there are constants

ck, dk > 0 such that

ck‖f‖k,alg ≤ ‖f‖Ck(S2) ≤ dk‖f‖k,alg ∀ f ∈ Ck(S2). (4.45)

This says that smoothness of a function f in Ck
alg is equivalent to

smoothness in the sense of the classical space Ck(S2). The space of rotations
SO

3 is called the full orthogonal group for R
3 and it is an example of a Lie

group. The space g is a Lie algebra, and the derivative in (4.41) is a Lie
derivative.

We return to the problem of bounding the minimax error En,∞(f).
Newman and Shapiro [88, p. 216] created a special operator for generating
good polynomial approximations. They did so for only even degrees n, say
n = 2m. Since En,∞(f) is monotone nonincreasing with En,∞ → 0 as n→ ∞,
there is no problem with such a restriction on n. Let Pm+1(t) be the Legendre
polynomial of degree m+ 1 on [−1, 1], and let λm+1 denote its largest root.
Define

Kn(t) =

(
Pm+1(t)

t− λm+1

)2

.

This is a polynomial of degree n = 2m. For f ∈ C(S2), define

Tnf(ξ) =

∫
S2

Kn(ξ · η) f(η) dS2(η)
∫
S2

Kn(ξ · η) dS2(η)

, ξ ∈ S
2. (4.46)

The denominator is independent of ξ,

∫
S2

Kn(ξ · η) dS2(η) = 2π

∫ 1

−1

Kn(t) dt.

The function Tnf(ξ) is a spherical polynomial of degree ≤ n; and Tn :
C(S2) → Πn is a linear, continuous, and equivariant mapping. The following
result is proven in [88, pp. 213–216].

Theorem 4.9. (Newman and Shapiro) Assume f ∈ C(S2). Then

‖f − Tnf‖∞ ≤ c ω

(
f ;

1

n+ 1

)
, n ≥ 0 (4.47)

for a suitable constant c > 0 that is independent of n and f .
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Note that En,∞(f) is the minimum of all approximation errors, and
consequently,

En,∞(f) ≤ ‖f − Tnf‖∞ .

Equation (4.47) bounds En,∞(f). This applies also to the bound given below
in Theorem 4.11.

Ragozin showed how to use this construction to obtain improved bounds
for En,∞(f) when f has additional smoothness. In particular the following
theorem is proven in [93, Theorem 2.1]. We begin with his definition
of modulus of continuity for algebraic derivatives. Refer to the algebraic
derivatives associated with D1, D2, and D3 from (4.35)–(4.36). For a function
f ∈ Ck+1(S2), define

ωR(f (1);h) :=

3∑
j=1

ω(Djf ;h),

ωR(f (k+1);h) :=

3∑
j=1

ωR((Djf)
(k);h), k ≥ 1.

By means of Theorem 4.8, we can interpret these as standard moduli of
continuity for functions in Ck(S2), k ≥ 1.

Theorem 4.10. (Ragozin) Let T : C(S2) → C(S2) be a continuous,
equivariant linear mapping. Suppose that T satisfies

‖f − T f‖∞ ≤ Aω(f ;h) ∀ f ∈ C(S2)

with some constant A > 0. Then kT := I − (I − T )
k+1

satisfies

‖f −k T f‖∞ ≤ Ak+1hk ωR(f (k);h) ∀ f ∈ Ck(S2).

Moreover, Range(kT ) ⊂ Range(T ).

Using this, Ragozin [93, Theorem 3.3] proved the following.

Theorem 4.11. Let Tn be the operator defined in (4.46), and let kTn :=

I − (I − Tn)k+1
. Then

‖f −k Tnf‖∞ ≤ Akn
−k ωR

(
f (k);

1

n+ 1

)
, n ≥ 0, ∀f ∈ Ck(S2) (4.48)

for some constant Ak > 0.

As a corollary, assume f ∈ Ck,γ(S2) for some γ ∈ (0, 1], meaning all of the
kth-order derivatives of f satisfy

|g(ξ)− g(η)| ≤ ck,γ(f) |ξ − η|γ , ξ,η ∈ S
2,
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where g is a generic designation of all such derivatives and ck,γ(f) ≥ 0 is a
constant. Then

En,∞(f) ≤ Bkck,γ(f)

(n+ 1)
k+γ

, n ≥ 0. (4.49)

The constant Bk > 0 is independent of f and n. This bound is of the same
order as that given earlier in Theorem 4.5.

4.2.3 Best Simultaneous Approximation Including
Derivatives

Theorem 4.11 on the rate of uniform convergence of best approximations
to a function f ∈ C(S2) has been extended to the case of simultaneous
approximation of f and its low-order derivatives. Ganesh, Graham, and
Sivaloganathan [50, Theorem 3.5] used the above framework to study the
simultaneous approximation of a function f and its derivatives up to a given
order �.

Theorem 4.12. (Ganesh, Graham, and Sivaloganathan) Let � ≥ 0.

For n ≥ 0, let �Tn := I−(I − Tn)�+1
with Tn as defined in (4.46). Then there

exists a constant c� > 0 such that

‖f −� Tnf‖k ≤ c�n
k−� ‖f‖C�(S2) , 0 ≤ k ≤ �, ∀ f ∈ C�(S2). (4.50)

The proof is omitted except for the note that a crucial role is played by
Tn being equivariant, namely that

‖Dα(f −� Tnf)‖∞ = ‖Dαf −� TnDαf‖∞

This permits the application of Ragozin’s Theorem 4.11 to Dαf .
An alternative derivation of the bound (4.50) is given in Bagby, Bos, and

Levenberg [18, Theorem 2]. To carry it out, we first discuss an extension of

f to an open neighborhood of S2. Given f ∈ C(S2), define f̂ as follows:

f̂(x) = f

(
x

|x|

)
, 1− ε < |x| < 1 + ε (4.51)

for some 0 < ε < 1. Denote this open neighborhood of S2 by Ωε. The mapping
f̂ extends f as a constant in the direction orthogonal to S

2.
Recall the multi-index notation α = (α1, α2, α3) used in (4.1). With it we

recall the derivative notation

Dαf̂ (x) =
∂|α|f̂ (x1, x2, x3)

∂xα1
1 ∂xα2

2 ∂xα3
3

. (4.52)
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It is straightforward to show that

f ∈ Cr(S2) =⇒ f̂ ∈ Cr(Ωε), r ∈ N0. (4.53)

The following is proven in [18, Theorem 2].

Theorem 4.13. Assume f ∈ Cr(S2) for some r ∈ N. Then for each n ∈ N0,
there is a polynomial pn ∈ Πn(R

3) for which

∥∥∥Dαf̂ −Dαpn

∥∥∥
C(Ωε)

≤ c

n�−|α|

∑
|γ|≤�

‖Dγ f̂‖C(Ωε), |α| ≤ min {�, n} (4.54)

for some constant c > 0.

The bound (4.54) for spatial derivatives of f̂ can be related back to
associated surface derivatives of f via (4.51) and to the norm for Ck(S2)
given in (4.32). This is omitted here.

4.2.4 Lebesgue Constants

The Laplace expansion (4.10) of f ∈ L2
(
S
2
)
is given by

f(η) =

∞∑
k=0

2k+1∑
�=1

(f, Yk,�)Yk,�(η), η ∈ S
2. (4.55)

The truncation of this to terms of order ≤ n is given by

Qnf(η) =

n∑
�=0

P�f(η)

=
n∑

k=0

2k+1∑
�=1

(f, Yk,�)Yk,�(η), η ∈ S
2; (4.56)

see (4.12). Recalling (4.23), the projection P�f of (4.11) is given by

P�f(η) =
2�+ 1

4π
(f, P�(η·◦))

=
2�+ 1

4π

∫
S2

f(ξ)P�(η·ξ) dS2 (ξ)

with P�(t) the Legendre polynomial of degree � on [−1, 1], defined in (4.8).
From [50, p. 1399],



4.2 Best Approximation on the Unit Sphere 151

Qnf(η) =
n+ 1

4π

(
f, P (1,0)

n (η·◦)
)

=
n+ 1

4π

∫
S2

f(ξ)P (1,0)
n (η · ξ) dS2(ξ), η ∈ S

2. (4.57)

The function P
(1,0)
n (t) is the Jacobi polynomial of degree n associated

with the weight function w(t) = 1 − t on the interval [−1, 1]; see (4.73)
below. The function Qnf is the orthogonal projection of f onto the subspace
Πn of L2(S2) and it satisfies

‖f −Qnf‖L2(S2) = min
g∈Πn

‖f − g‖L2(S2). (4.58)

The orthogonal projection operator Qn has norm 1 when regarded as a
mapping from L2(S2) to L2(S2).

Let f ∈ L2(S2). Recalling the definition of best approximation in (4.13),
let pn ∈ Πn be a best approximation to f in C(S2) using the uniform norm.
Then

f −Qnf = f − pn −Qn(f − pn)

= (I −Qn) (f − pn) . (4.59)

The operator I − Qn is also an orthogonal projection and thus has norm
1 as an operator from L2(S2) to L2(S2). Applying the L2(S2) norm and
using (4.58),

‖f −Qnf‖L2(S2) ≤ ‖f − pn‖L2(S2)

≤ 2
√
π ‖f − pn‖∞

≤ 2
√
π En,∞(f). (4.60)

Apply Theorem 4.5 or Theorem 4.11 to obtain a bound on the rate of
convergence of Qnf to f in L2(S2).

In order to discuss the uniform convergence of Qnf on S
2, use the uniform

norm ‖ · ‖∞ and, as before, bound f −Qnf via (4.59). Then

‖f −Qnf‖∞ ≤ (1 + ‖Qn‖C→C) ‖f − pn‖∞,

‖f −Qnf‖∞ ≤ (1 + ‖Qn‖C→C)En,∞(f). (4.61)

Thus we obtain uniform bounds for the error in the truncated Laplace series
for f by finding a bound for ‖Qn‖C→C . This is often called the “Lebesgue
constant” for the approximation Qnf .

Recalling (4.57), we notice the projection Qn is an integral operator.
Bounding ‖Qn‖C→C is equivalent to finding the operator norm of this integral
operator from C(S2) to C(S2), a well-known process. In this case,
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‖Qn‖C→C =
n+ 1

4π
max
η∈S2

∫
S2

∣∣∣P (1,0)
n (η·ξ)

∣∣∣ dS2(ξ).

Using symmetry in ξ ∈ S
2, this integral over S

2 is constant and thus it
simplifies to

‖Qn‖C→C =
n+ 1

4π

∫
S2

∣∣∣P (1,0)
n (η3)

∣∣∣ dS2(η)

=
n+ 1

2

∫ 1

−1

∣∣∣P (1,0)
n (z)

∣∣∣ dz. (4.62)

In Gronwall [54], this is shown to lead to

lim
n→∞

1√
n
‖Qn‖C→C = 2

√
2

π
. (4.63)

Hence,

‖Qn‖C∼C ≈ 2

√
2

π

√
n for n sufficiently large. (4.64)

The generalization of this to S
d for any d ≥ 2 is given in [94].

Corollary 4.14. Assume that f ∈ Ck,γ(S2) for some k ≥ 0 and some γ ∈
(0, 1], and further assume that k + γ > 1

2 . Then

‖f −Qnf‖∞ ≤ c

nk+γ−1/2

for a suitable constant c > 0. Thus the Laplace series (4.55) is uniformly
convergent in C(S2).

Proof. It is a straightforward combination of (4.49), (4.61), and (4.63). �
Evaluating Qnf requires evaluating the integral coefficients (f, Yk,�).

A numerical method for doing so is given in Sect. 5.7.1.

4.2.5 Best Approximation for a Parameterized
Family

Consider approximating a function u(ξ, t) with 0 ≤ t ≤ T for some T > 0.
Approximating such functions occurs when solving problems over S2 with a
dependence on time t. Error bounds often depend on some norm involving
both the spatial variable ξ and the time variable t. The earlier error bounds
for best approximation can be extended to such approximation over S

2,
obtaining polynomials over S

2 that vary with t. We present one approach
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to doing so by using the construction from Theorem 4.11. As notation, let
ut = u(·, t), t ∈ [0, T ].

Using (4.46), consider

Tnut(ξ) =

∫
S2

Kn(ξ·η)u(η, t) dS2(η)
∫
S2

Kn(ξ·η) dS2(η)

, ξ ∈ S
2. (4.65)

Then Tnut ∈ Πn and thus has coefficients that are functions of t. Note that
if u is continuously differentiable with respect to t, then we can differentiate
Tnut with respect to t, obtaining yet another polynomial in Πn,

∂

∂t
(Tnut(ξ)) =

∫
S2

Kn(ξ·η)
∂u(η, t)

∂t
dS2(η)

∫
S2

Kn(ξ·η) dS2(η)
, ξ ∈ S

2.

This same process can be applied to powers of Tn, and thus to the operator

kTn = I − (I − Tn)k+1
introduced in Theorem 4.11. The quantity kTnut is a

polynomial in Πn for all t ∈ [0, T ], as is its derivative ∂ (kTnut) /∂t.
We can apply (4.48) from Theorem 4.11 to obtain error bounds for Tnut

and its derivatives with respect to t:

‖ut −k Tnut‖∞ ≤ Akn
−k ωR

(
u
(k)
t ;

1

n+ 1

)
,

∥∥∥∥∂ut∂t − ∂ (kTnut)
∂t

∥∥∥∥
∞

≤ Akn
−k ωR

((
∂ut
∂t

)(k)

;
1

n+ 1

)
.

(4.66)

Using (4.45), we can relate these bounds to the differentiability over S2 of ut
and ∂ut/∂t. Assume, ut, ∂ut/∂t ∈ Ck,γ

(
S
2
)
, k ≥ 0 and some γ ∈ (0, 1], for

0 ≤ t ≤ T . Further assume that the kth-order derivatives of ut over S
2 satisfy

|gt(ξ)− gt(η)| ≤ ĉk,γ |ξ − η|γ , ξ,η ∈ S
2, 0 ≤ t ≤ T,∣∣∣∣∂gt(ξ)∂t

− ∂gt(η)

∂t

∣∣∣∣ ≤ ĉk,γ |ξ − η|γ , ξ,η ∈ S
2, 0 ≤ t ≤ T,

where gt is a generic such derivative and ĉk,γ > 0 is a constant dependent on
u, k, and γ. Combining (4.66) and (4.45),

max

[
‖ut −k Tnut‖∞ ,

∥∥∥∥∂ut∂t − ∂ (kTnut)
∂t

∥∥∥∥
∞

]
≤ Bk ĉk,γ

(n+1)
k+γ

, n≥ 0, 0≤ t≤T

(4.67)
for a constant Bk > 0 that is independent of u and n.
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4.3 Approximation on the Unit Disk

We consider the approximation by multivariate polynomials of functions
defined on the unit disk B

2 =
{
x ∈ R

2 : |x| < 1
}
. Let Πn

(
R

2
)
denote that

space of all polynomials p in the variable x = (x1, x2) of degree less than or
equal to n,

p(x) =
∑

i+j≤n

ai,jx
i
1x

j
2.

It is straightforward to show that

dimΠn

(
R

2
)
=

1

2
(n+ 1) (n+ 2) .

Later in this section we discuss bases for Πn

(
R

2
)
that are orthogonal over B2.

Given f ∈ C(B
2
), define

En(f) = min
g∈Πn(R2)

‖f − g‖∞ (4.68)

Using the Weierstrass Theorem, En(f) → 0 as n → ∞. A natural question
is to ask how this convergence is affected by the differentiability of f . One
answer to this was given in Ragozin [93]. We begin with some notation. For
partial derivatives of a function f , we proceed in analogy with (4.52):

Dαf(x) =
∂|α|f(x1, x2)

∂xα1
1 ∂xα2

2

, α = (α1, α2) .

Define

‖f‖r =
∑
|α|≤r

‖Dαf‖∞,

ω(f ;h) = sup
|x−y|≤h

|f(x)− f(y)| ,

ω(f (r);h) =
∑
|α|=r

ω(Dαf ;h).

The following result is from Ragozin [93, Theorem 3.4].

Theorem 4.15. Given f ∈ Cr(B
2
),

En(f) ≤
C(r)

nr

(
‖f‖r
n

+ ω

(
f (r);

1

n

))
, n ≥ 1, (4.69)

with C(r) ≥ 0 dependent only on r.
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If all derivatives Dαf with |α| = r satisfy a Hölder condition with exponent
γ ∈ (0, 1], then it follows immediately from (4.69) that

En(f) = O(n−(r+γ)). (4.70)

Additional results on best approximation in Lp(B2) are given in Dai and Xu
[36, Part II], and an extension of (4.70) is given in [37, Corollary 5.9].

For simultaneous approximation of f and some its low order derivatives,
we have the following result from Bagby, Bos, and Levenberg [18, Theorem 1].

Theorem 4.16. Assume f ∈ Cr+m(B
2
) for some r,m ≥ 0. Then

inf
p∈Πn(R2)

max
|α|≤r

‖Dαf −Dαp‖∞ ≤ c(f,m)

nm
ωm+r(f, 1/n), n ≥ 1

with

ωm+r(f, δ) = max
|α|=m+r

sup
|x−y|≤δ

|Dαf(x)−Dαf(y)| .

4.3.1 Orthogonal Polynomials

We proceed in analogy with the decomposition (4.5) for Πn

(
S
2
)
. Let V0

denote the set of constant functions on B
2, and define

Vn =
{
p ∈ Πn

(
R

2
)
: p ⊥ Πn−1

(
R

2
)}
, n ≥ 1,

p ⊥ Πn−1

(
R

2
)
⇐⇒ (p, q) = 0 ∀ q ∈ Πn−1

(
R

2
)
,

(p, q) =

∫
B2

p(y) q(y) dy. (4.71)

Then we can write

Πn

(
R

2
)
= V0 ⊕ V1 ⊕ · · · ⊕ Vn. (4.72)

To generate an orthonormal basis for Πn

(
B
2
)
using the inner product of

(4.71), we must generate an orthonormal basis for the space Vk and show it
is orthogonal to Πk−1

(
B
2
)
, k ≥ 1.

The dimension of Vk is

1

2
(k + 1) (k + 2)− 1

2
k (k + 1) = k + 1.
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For k ≥ 1, there is no unique orthonormal basis for Vk. There are a number
of well-known orthonormal bases, and we give two of them. An excellent
development of this topic is given in Xu [121], along with connections to
orthonormal bases over other standard regions, including the sphere, and to
weighted L2 spaces over B2.

We begin with some notation and results for some important orthogonal
polynomials of one variable. As additional references, we refer the reader to
[5, Chap. 5], [9, Sect. 4.4], [52, 115]. In addition, see the handbooks
[1, Chap. 22] and [89, Chap. 18].

The Jacobi polynomials
{
P

(α,β)
n : n ≥ 0

}
are the polynomials that are

orthogonal on [−1, 1] with respect to the inner product

(f, g) =

∫ 1

−1

f(t) g(t) (1− t)
α
(1 + t)β dt.

It is assumed that α, β > −1. There are various ways of writing the Jacobi
polynomials. For example,

P (α,β)
n (t) =

(−1)
n

2n n!
(1− t)

−α
(1 + t)

−β dn

dtn

[
(1− t)

α+n
(1 + t)

β+n
]
. (4.73)

The Jacobi polynomials are normalized by requiring

P (α,β)
n (1) =

(
n+ α

n

)
, n = 0, 1, . . . .

We have

∫ 1

−1

[
P (α,β)
n (t)

]2
(1− t)

α
(1 + t)

β
dt

=
2α+β+1

2n+ α+ β + 1

Γ (n+ α+ 1) Γ (n+ β + 1)

n! Γ (n+ α+ β + 1)
.

There are several important special cases, with all being a constant multiple
of an appropriate Jacobi polynomial of the same degree.

• The Legendre polynomials, Pn(t). Take α = β = 0. These are discussed
in extensive detail in Sect. 2.7, and we review here only a very few
of their properties. The inner product associated with the definition of
orthogonality is simply

(f, g) =

∫ 1

−1

f(t) g(t) dt.
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Then

Pn(t) =
(−1)

n

2n n!

dn

dtn

[(
1− t2

)n]
, n = 1, 2, . . . (4.74)

with P0(t) ≡ 1; recall (4.8). Note that Pn(t) ≡ Pn,3(t) in the notation of
Chap. 2. They are normalized with Pn(1) = 1, n ≥ 0. Also,

∫ 1

−1

[Pn(t)]
2
dt =

2

2n+ 1
, n = 0, 1, . . . .

The triple recursion relation is

Pn+1(t) =
2n+ 1

n+ 1
tPn(t)−

n

n+ 1
Pn−1(t), n = 1, 2, . . . .

• The Chebyshev polynomials of the first kind, Tn(t). Take α = β = − 1
2 .

The inner product is

(f, g) =

∫ 1

−1

f(t) g(t)√
1− t2

dt.

Then

Tn(t) = cos(nθ), t = cos θ, n = 0, 1, . . . .

Note that Tn(t) ≡ Pn,2(t) in the notation of Chap. 2. They are normalized
with Tn(1) = 1. Also,

∫ 1

−1

[Tn(t)]
2

√
1− t2

dt =

{
1
2π, n ≥ 1,

π, n = 0,

Tn(t) =
P

(−1/2,−1/2)
n (t)

P
(−1/2,−1/2)
n (1)

.

The triple recursion relation is

Tn+1(t) = 2 t Tn(t)− Tn−1(t), n = 1, 2, . . . .

• The Chebyshev polynomials of the second kind, Un(t). Take α = β = 1
2 .

The inner product is

(f, g) =

∫ 1

−1

f(t) g(t)
√
1− t2 dt.
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Then

Un(t) =
sin(n+ 1)θ

sin θ
, t = cos θ, n = 0, 1, . . . .

They are normalized with Un(1) = n+ 1 for n ≥ 0. Also,

∫ 1

−1

[Un(t)]
2
√

1− t2 dt =
1

2
π, n = 0, 1, . . . ,

Un(t) = (n+ 1)
P

(1/2,1/2)
n (t)

P
(1/2,1/2)
n (1)

.

The triple recursion relation is

Un+1(t) = 2 t Un(t)− Un−1(t), n = 1, 2, . . . . (4.75)

• The Gegenbauer polynomials, Cn,λ(t) with λ> − 1
2 , λ �=0. These polyno-

mials are briefly discussed in Sect. 2.9. Take α = β = λ − 1
2 . The inner

product is

(f, g) =

∫ 1

−1

f(t) g(t)
(
1− t2

)λ− 1
2 dt

Then define

Cn,λ(t) =
(2λ)n(
λ+ 1

2

)
n

P (λ−1/2,λ−1/2)
n (t)

=
(2λ)n

(−2)
n (
λ+ 1

2

)
n
n!

(
1− t2

) 1
2−λ dn

dtn

[(
1− t2

)λ− 1
2+n

]
,

n=0, 1, . . . , where Pochhammer’s symbol (γ)n is used. They are normal-
ized with the condition

Cn,λ(1) =

(
n+ 2λ− 1

n

)

for n ≥ 1; and C0,λ(1) = 1. Also,

∫ 1

−1

(
1− t2

)λ− 1
2 [Cn,λ(t)]

2
dt =

π21−2λΓ (n+ 2λ)

n! (n+ λ) [Γ (λ)]
2 .

The triple recursion relation is

Cn+1,λ(t) =
2 (n+ λ)

n+ 1
Cn,λ(t)−

n+ 2λ− 1

n+ 1
Cn−1,λ(t), n = 1, 2, . . . .
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Example 4.17. Returning to the definition of an orthonormal basis for the
subspace for Vn, we generally denote it by {ϕn

0 , ϕ
n
1 , . . . , ϕ

n
n}.

For n = 0, 1, . . . and k = 0, 1, . . . , n, define

ϕn
k (x) = hk,nCn−k,k+1(x1)

(
1− x21

)k/2
Ck,1/2

(
x2√
1− x21

)
, (4.76)

with hk,n so chosen that ‖ϕn
k‖L2 = 1,

hk,n = 2kk!

[
(n− k)! (2k + 1) (n+ 1)

π (n+ k + 1)!

] 1
2

.

To prove that

(ϕn
k , ϕ

m
� ) = 0, (n, k) �= (m, �) ,

and to obtain the formula for hk,n, apply the following identity suggested by
[121, p. 138],

∫
B2

f(x) dx =

∫ 1

−1

∫ √
1−x2

1

−
√

1−x2
1

f(x1, x2) dx1 dx2

=

∫ 1

−1

∫ 1

−1

f

(
x1, s

√
1− x21

)√
1− x21 dx1 ds

and use the identities given earlier for the Gegenbauer polynomials. Figure 4.1
contains a graph of ϕ5

4(x) over B
2. �

Example 4.18. For n = 0, 1, . . . and k = 0, 1, . . . , n, define

ϕn
k (x) =

1√
π
Un

(
x1 cos

kπ

n+ 1
+ x2 sin

kπ

n+ 1

)
. (4.77)

This family of polynomials was introduced in [76]. These are sometimes called
“ridge polynomials” as they are constant along the lines

x1 cos
kπ

n+ 1
+ x2 sin

kπ

n+ 1
= constant,

looking oscillatory along a perpendicular to this line. As an illustrative
example, Fig. 4.2 contains a graph of ϕ5

4(x) over B
2. This family is particularly

useful when there is a need to calculate partial derivatives of the basis
functions. Recurrence formulas for low order derivatives of Un can be obtained
by differentiating the recurrence relation (4.75). �
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Fig. 4.1 The polynomial ϕ5
4(x) defined in (4.76)

Fig. 4.2 The ridge polynomial ϕ5
4(x)

Another family of orthonormal polynomials over B2 is given in [121, Sect.
1.2.2]. And yet another family of orthonormal polynomials are the Zernike
polynomials; see [117, p. 3234].
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4.3.2 Properties of Orthogonal Polynomials over B
2

Orthogonal polynomials of one variable have a number of special properties;
for example, they satisfy a triple recurrence relation, as is illustrated with
the orthogonal polynomials given earlier. Some of these properties generalize
to the multivariable case, and a thorough discussion of this topic is given in
Xu [121]. We present one such generalization from [121]: the triple recursion
relation.

We begin by introducing some additional notation. Let

Φn(x) = [ϕn
0 , ϕ

n
1 , . . . , ϕ

n
n]

T , n = 0, 1, . . . .

It is important to note that even though there are many possible bases for
each subspace Vn, the subspace decomposition (4.72) for Πn

(
R

2
)
is invariant.

By looking for a relationship between the subspaces Vn, it is possible to
generalize the proof that is used often in deriving the triple recurrence relation
for univariate orthogonal polynomials.

For n ≥ 1, multiply Φn(x) by xi for i = 1, 2. Then each component of
xiΦn(x) will be a polynomial of degree n+ 1. As such, each component can
be expanded using the orthonormal basis {ϕm

� : 0 ≤ � ≤ m, 0 ≤ m ≤ n+ 1}
for Πn+1

(
R

2
)
. Using the orthonormality of our basis functions and the

decomposition

Πn+1

(
R

2
)
= V0 ⊕ V1 ⊕ · · · ⊕ Vn+1,

we have

xiϕ
n
k (x) =

n+1∑
m=0

m∑
�=0

(xiϕ
n
k , ϕ

m
� )ϕm

� (x). (4.78)

Consider each coefficient

(xiϕ
n
k , ϕ

m
� ) =

∫
B2

xiϕ
n
k (x)ϕ

m
� (x) dx.

The function xiϕ
m
� (x) is a polynomial of degree m + 1. For m ≤ n − 2, use

the orthogonality of ϕn
k (x) to V0, . . . ,Vn−1 to obtain

(xiϕ
n
k , ϕ

m
� ) = 0, 0 ≤ � ≤ m, 0 ≤ m ≤ n− 2.

Returning to (4.78), we have

xiϕ
n
k (x) =

n+1∑
m=n−1

m∑
�=0

(xiϕ
n
k , ϕ

m
� )ϕm

� (x).
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In vector notation,

xiΦn(x) = An,iΦn+1(x) +Bn,iΦn(x) + Cn,iΦn−1(x), i = 1, 2. (4.79)

The matrix coefficients are given by

An,i =

∫
B2

xiΦn(x)Φ
T
n+1(x) dx,

Bn,i =

∫
B2

xiΦn(x)Φ
T
n (x) dx,

Cn,i =

∫
B2

xiΦn(x)Φ
T
n−1(x) dx = AT

n−1,i.

See Dunkl and Xu [44] and Xu [121] for a complete introduction to
multivariable orthogonal polynomials on the unit sphere, the unit ball, and
the unit simplex in R

d, d ≥ 2.

4.3.3 Orthogonal Expansions

The set of all polynomials over R2 are dense in L2(B2); this follows from the

Weierstrass theorem and the denseness of C(B
2
) in L2(B2). As a consequence,

we consider the orthonormal expansion

f(x) =
∞∑

m=0

m∑
k=0

(f, ϕm
k )ϕm

k (x), x ∈ B
2. (4.80)

This is convergent in the norm of L2(B2). The function

Qnf(x) =

n∑
m=0

m∑
k=0

(f, ϕm
k )ϕm

k (x), x ∈ B
2 (4.81)

is the orthogonal projection of f onto the subspace Πn(R
2) of L2(B2). This

means that

‖f −Qnf‖L2(B2) = min
g∈Πn(R2)

‖f − g‖L2(B2). (4.82)

The projection Qn has norm 1 as an operator from L2(B2) to L2(B2).
Assume f ∈ C(B2). Recalling (4.68), let pn ∈ Πn(R

2) denote a best
approximation for which En,∞(f) = ‖f − pn‖∞. Then

f −Qnf = (I −Qn) (f − pn) (4.83)
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because Qnpn = pn. The operator I − Qn is also an orthogonal projection
and has norm 1. Applying the L2(B2)-norm and using (4.82),

‖f −Qnf‖L2(B2) ≤ ‖f − pn‖L2(B2)

≤
√
π ‖f − pn‖∞

=
√
π En,∞(f).

Theorem 4.15 can then be applied to bound the order of convergence of Qnf
to f in L2(B2).

To obtain a bound for the rate of uniform convergence of Qnf to f , we
proceed similarly. In particular, we have from (4.83) that

‖f −Qnf‖∞ ≤ (1 + ‖Qn‖C→C)En,∞(f). (4.84)

We need to bound ‖Qn‖C→C , the operator norm for Qn when it is regarded
as a linear operator from C(B2) to C(B2). From [120, (1.2)],

Qnf(x) =

∫
B2

Gn(x,y) f(y) dy, x ∈ B
2,

Gn(x,y) =

√
π (n+ 2)!

4 Γ(n+ 3
2 )

∫ π

0

P
( 3

2 ,
1
2 )

n

(
x · y +

√
1− |x|2

√
1− |y|2 cosψ

)
dψ.

In addition,

‖Qn‖C→C = max
x∈B2

∫
B2

|Gn(x,y)| dy

= O(n) (4.85)

with the latter result taken from [120, Theorem 1.1].

Corollary 4.19. Assume f ∈ Cr(B2) with r ≥ 1; and further assume that
the rth-derivatives satisfy a Hölder condition with exponent α ∈ (0, 1]. Then
Qnf converges uniformly to f on S

2, and

‖f −Qnf‖∞ ≤ c

nr−1+α
(4.86)

for some constant c ≥ 0.

Proof. Combine (4.70), (4.84), and (4.85). �
Evaluating Qnf requires computing the integral coefficients (f, ϕm

k ).
A numerical method for doing so is given in Sect. 5.7.2.



Chapter 5
Numerical Quadrature

In this chapter we discuss numerical approximation of the integral

I(f) =

∫
S2

f(η) dS2(η). (5.1)

The integrand f can be well-behaved or singular, although our initial
development assumes f is continuous and, usually, several times continuously
differentiable. Such integrals occur in a wide variety of physical applications;
and the calculation of the coefficients in a Laplace series expansion of a given
function (see (4.55)) requires evaluating such integrals.

Another important source of such integrals (5.1) comes from transforming
an integral over a more general surface to an integral over S

2. Assume we
have a mapping

M : S2
1−1−→
onto

∂Ω, (5.2)

where Ω is a simply connected region in R
3 and ∂Ω denotes its boundary.

This mapping is usually assumed to be continuously differentiable, thus
eliminating regions Ω for which the boundary has corners or edges. Using
this mapping, the integral of a function g over ∂Ω can be transformed to an
integral over S2. In particular,

∫
∂Ω

g(x) dσ(x) =

∫
S2

g(M(η))JM(η) dS2(η), (5.3)

where JM(η) denotes the absolute value of the Jacobian of the mapping M.
As an aid to the construction of this Jacobian, see the appendix in [11].

In addition to the notation x=(x1, x2, x3)
T , we will also write

x=(x, y, z)T on occasions; and in two dimensions, we use x = (x1, x2)
T

or x = (x, y)T .

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 5, © Springer-Verlag Berlin Heidelberg 2012
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Example 5.1. Let Ω denote the ellipsoid with boundary

(x
a

)2

+
(y
b

)2

+
(z
c

)2

= 1 (5.4)

for some constants a, b, c > 0. The mapping M is given by

M : η �→ (aη1, bη2, cη3) , η ∈ S
2. (5.5)

Its Jacobian is given by

JM(η) =

√
(bcη1)

2 + (acη2)
2 + (abη3)

2. �

We refer to formulas for the numerical approximation of I(f) as quadrature
formulas or numerical integration formulas. There are a variety of approaches
to developing such quadrature formulas and we examine several of them
in this chapter. We begin in Sect. 5.1 with methods based on I(f) being
represented as a double integral using spherical coordinates, followed by
application of suitably chosen single variable quadrature schemes. In Sect. 5.2
we look at composite methods that are based on giving a mesh on S

2

and then using a simple formula for quadrature over each element of the
mesh. In Sect. 5.3 we discuss high order methods that generalize the concept
of Gaussian quadrature for functions of a single variable. In Sect. 5.4 we
give a simple approach to the numerical integration of empirical data. In
Sect. 5.5 we discuss a numerical integration method for integrands containing
a point singularity, and in Sect. 5.6 a brief discussion is given of numerical
approximation of integrals defined on the unit disk in the plane. The chapter
concludes in Sect. 5.7 with a discussion of the use of numerical integration
to approximate the truncated Laplace expansion on S

2 and the truncated
orthogonal polynomial expansion on the unit disk B

2 in R
2, which are

concepts introduced in Chap. 4. In this chapter we consider mainly the
approximation of integrals on S

2, and for that reason, we simplify our notation
for spherical polynomials by using Πn rather than Πn(S

2).
For a summary of multivariate quadrature, see the book [111] and the

papers [32], [33].

5.1 The Use of Univariate Formulas

The easiest approach to approximating I(f) begins by using spherical
coordinates,

η �→ (cosφ sin θ, sinφ sin θ, cos θ) , 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π,

leading to

I(f) =

∫ 2π

0

∫ π

0

f(cosφ sin θ, sinφ sin θ, cos θ) sin θ dθ dφ. (5.6)
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We can now use single variable numerical integration on each of the iterated
integrals.

Since the integrand is periodic in φ with period 2π, it is sensible to use
the trapezoidal rule with uniform spacing,

Ĩ(g) ≡
∫ 2π

0

g(φ) dφ ≈ Ĩm(g) ≡ h

m∑
j=0

′′
g(jh), h =

2π

m
. (5.7)

The double-prime notation implies that the first and last terms should be
halved before the summation is computed. Since g is periodic over [0, 2π],
this simplifies to

Ĩm(g) ≡ h

m−1∑
j=0

g(jh) = h

m∑
j=1

g(jh).

Later we need the following standard result for the trapezoidal method.

Lemma 5.2. For m ≥ 2, k ≥ 0,

∫ 2π

0

cos(kφ) dφ =

{
2π, k = 0,

0, k > 0,
(5.8)

2π

m

m−1∑
j=0

cos

(
k
2jπ

m

)
=

{
2π, k = 0,m, 2m, . . . ,

0, otherwise,
(5.9)

∫ 2π

0

sin (kφ) dφ =
2π

m

m−1∑
j=1

sin

(
k
2jπ

m

)
= 0, k ≥ 0.

Proof. For the trapezoidal rule sums, combine the identities

cos(ω) =
1

2

(
eiω + e−iω

)
,

sin(ω) =
1

2i

(
eiω − e−iω

)

with the summation formula for a finite geometric series. �
The trapezoidal rule converges quite rapidly in the case that g is a smooth

function. To discuss convergence for periodic functions, we introduce suitable
function spaces. Begin by introducing the Fourier series of a function f ∈
L2(0, 2π):

f(φ) =

∞∑
k=−∞

akψk(φ), ψk(φ) =
1√
2π
eikφ,
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ak =

∫ 2π

0

f(ω)ψk(ω) dω. (5.10)

For any real number q ≥ 0, define Hq(2π) to be the set of all functions
g ∈ L2(0, 2π) for which

‖f‖q ≡

√√√√√|a0|2 +
∞∑

k=−∞
k 
=0

|k|2q |ak|2 <∞,

where (5.10) is the Fourier series for f . The space Hq(2π) is a Hilbert space,
and the inner product associated with it is given by

(f, g)q = a0b0 +

∞∑
k=−∞
k 
=0

|k|2q akbk,

where f and g have the Fourier series with coefficients {ak} and {bk},
respectively. When q is an integer, the norm for Hq(2π) is equivalent to
the norm for Hq(0, 2π). The following is a well-known result; for a proof, see
[13, p. 316].

Theorem 5.3. Assume q > 1
2 , and let g ∈ Hq(2π). Then

∣∣∣Ĩ(g)− Ĩm(g)
∣∣∣ ≤

√
4πζ(2q)

mq
‖g‖q , m ≥ 1, (5.11)

where ζ denotes the zeta function,

ζ(s) =

∞∑
j=1

1

js
.

The remaining integral in (5.6) for 0 ≤ θ ≤ π is more problematic.
To obtain an efficient numerical integration method for (5.6), the integration
in θ must be chosen with some care. Begin by using the change of variable
z = cos θ in (5.6),

I(f) =

∫ 2π

0

∫ 1

−1

f
(
cosφ

√
1− z2, sinφ

√
1− z2, z

)
dz dφ.

Then apply Gauss–Legendre quadrature to the integration over −1 ≤ z ≤ 1.
More precisely, given n > 1, apply the trapezoidal rule with m = 2n

subdivisions to the integration in φ, and apply Gauss–Legendre quadrature
with n nodes to the integration in z over [−1, 1]. Let
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h =
π

n
, φj = jh, j = 0, 1, . . . , 2n.

Let {z1, . . . , zn} and {w1, . . . , wn} denote the Gauss–Legendre nodes and
weights, respectively, over [−1, 1]. Then define

In (f) = h

2n−1∑
j=0

n∑
k=1

wkf

(
cosφj

√
1− z2k, sinφj

√
1− z2k, zk

)

= h
2n−1∑
j=0

n∑
k=1

wkf(cosφj sin θk, sinφj sin θk, cos θk) , (5.12)

where zj = cos θj , j = 1, . . . , n. We call this a “product Gaussian quadrature
formula”.

Theorem 5.4. Assume f ∈ Π2n−1, a spherical polynomial of degree less
than or equal to 2n− 1. Then I(f) = In(f). In addition, for f(x, y, z) = z2n,
I(f) �= In(f).

Proof. Let

f(x, y, z) = xryszt, r + s+ t ≤ 2n− 1.

Using spherical coordinates,

(x, y, z) = (cosφ sin θ, sinφ sin θ, cos θ) ,

we obtain

I =

∫
S2

xryszt dU = Jr,sKr,s,t,

Jr,s =

∫ 2π

0

cosr φ sins φdφ,

Kr,s,t =

∫ π

0

sinr+s+1 θ cost θ dθ.

For the corresponding numerical integral, we have

Im =
2n∑
j=1

n∑
k=1

wkx
r
j,ky

s
j,kz

t
k = Jr,s

n Kr,s,t
n ,

Jr,s
n = h

2n∑
j=1

cosr φj sin
s φj ,
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Kr,s,t
n =

n∑
k=1

wk sin
r+s+1 θk cos

t θk.

The numbers {xj,k, yj,k, zk} refer to the cartesian coordinates of the points
on the sphere obtained by using the spherical coordinates {φj} and {θk},

(xj,k, yj,k, zk) = (cosφj sin θk, sinφj sin θk, cos θk) .

We are interested in analyzing the error

En = I − In = Jr,sKr,s,t − Jr,s
n Kr,s,t

n .

At this point we break into cases.
Assume now that r is odd and s is even. Using the properties

cosr(π + ω) = cosr(π − ω) ,

sins(π + ω) = sins(ω) ,

sins
(π
2
+ ω

)
= sins

(π
2
− ω

)
,

cosr
(π
2
+ ω

)
= − cosr

(π
2
− ω

)
,

we have

Jr,s =

∫ 2π

0

cosr φ sins φdφ = 0.

The same properties will show that

Jr,s
n = h

2n∑
j=1

cosr φj sins φj = 0.

Similar arguments show that when r is even and s is odd, or when both are
odd, Jr,s = Jr,s

n = 0. Therefore, I − In = 0 in these cases.
For handling Jr,s, we begin by writing

cosr φ sins φ = (cosr φ)
(
1− cos2 φ

)s/2
.

This is a polynomial in powers of cos2 φ, with the highest degree term being
cosr+s φ.

To look at even powers of cosφ, say 2� for � ≥ 1, use the identity

(cosφ)
2�

= 4−�

⎡
⎣
(
2�

�

)
+ 2

�∑
j=1

(
2�

�+ j

)
cos (2jφ)

⎤
⎦ .
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This can be proven by expanding

(cosφ)
2�

=

(
eiφ + e−iφ

2

)2�

.

Using (5.8) from Lemma 5.2 with m = 2�, it follows that

∫ 2π

0

(cosφ)
2�
dφ = h

2n−1∑
j=0

(cosφj)
2�

for 0 ≤ 2� ≤ 2n− 2. This then proves Jr,s = Jr,s
n for r and s even, r+ s+ t ≤

2n− 1. For the error En,∞, we can now write

En = Jr,s
(
Kr,s,t −Kr,s,t

n

)

and only the error in the Gauss–Legendre quadrature must be considered.
Consider now Kr,s,t, again with r and s even. Let z = cos θ,

Kr,s,t =

∫ π

0

sinr+s+1 θ cost θ dθ =

∫ 1

−1

zt
(
1− z2

) 1
2 (r+s)

dz.

This integrand is a polynomial in z of degree r + s + t ≤ 2n − 1. Since
Gauss–Legendre quadrature with n nodes is used in defining Kr,s,t

n , we have
Kr,s,t = Kr,s,t

n . Thus I − In = 0.
Combining these results, we have I = In for any monomial f = xryszt with

r+s+ t ≤ 2n−1, r, s, t ≥ 0, completing the proof that the degree of precision
of In in (5.12) is at least 2n − 1. If we now consider f(x, y, z) = z2n, then
I − In is simply the error in the Gaussian quadrature formula for integrating
z2n, and this is well-known to be nonzero (see [9, (5.3.16)]). �

We now look at an error bound for the product Gaussian quadrature
formula (5.12). Recall the results from Theorem 4.5 on best uniform
approximation by spherical polynomials. The minimax error for the uniform
approximation of a function f ∈ C(S2) by a polynomial from Πm is defined by

Em,∞(f) := min
p∈Πm

‖f − p‖∞.

Let p∗m denote a polynomial from Πm for which this minimax error is attained.
An elementary argument shows the existence of such a polynomial p∗m. For
the formula (5.12), we have

I(p∗2n−1) = In(p
∗
2n−1).
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Table 5.1 Product
Gaussian quadrature
method

n Nodes Error

2 8 −1.17E− 02

3 18 −4.00E− 04

4 32 −4.91E− 07

5 50 −3.84E− 09

6 72 −2.21E− 12

Also, note that for any g ∈ C(S2),

|I(g)| ≤ 4π‖g‖∞, |In(g)| ≤ 4π‖g‖∞.

Then,

I(f)− In(f) = I(f − p∗2n−1)− In(f − p∗2n−1),

|I(f)− In(f)| ≤
∣∣I(f − p∗2n−1)

∣∣+ ∣∣In(f − p∗2n−1)
∣∣

≤ 8π‖f − p∗2n−1‖∞.

Therefore,

|I(f)− In(f)| ≤ 8 πE2n−1,∞(f). (5.13)

We now apply the bounds for the minimax uniform error given in (4.49),
with the rate of convergence to zero depending on the smoothness of the
function f .

Example 5.5. Consider evaluating the integral

I =

∫
S2

exdS
.
= 14.7680137457653. (5.14)

The numerical results are given in Table 5.1, where the column Error gives
I − In. The convergence is very rapid. �

5.2 Composite Methods

We define quadrature methods over S
2 that are the generalization of com-

posite piecewise single-variable numerical integration rules over an interval
[a, b]. Recall the schema for the single variable case.

• Subdivide the integration region [a, b] into smaller subintervals.
• Apply a simple rule to perform the integration on each such subinterval.

The trapezoidal rule (5.7) and Simpson’s rule are examples.
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For approximating the spherical integral I(f), begin by subdividing S
2,

S
2 =

N⋃
i=1

Δi

for elements Δ1, . . . ,ΔN with non-overlapping interiors. Then write

I(f) =

∫
S2

f(η) dS2(η) =

N∑
i=1

∫
Δi

f(η) dS2(η). (5.15)

Next apply a simple quadrature formula to each sub-integral. There are two
aspects to this, both important in obtaining an accurate and convenient
formula.

1. How to choose the mesh {Δi}Ni=1?
2. How to choose the quadrature formula for the sub-integral?

There is a large literature on creating meshes for domains in the plane,
space, and surfaces. We restrict ourselves to schema that seem desirable
when doing numerical quadrature over the sphere. In our presentation in
this section, we restrict the elements to being spherical triangles. The choice
of how to create a triangular mesh is important, as we illustrate later with a
numerical example.

We begin with an initial triangulation of S2, say

T0 = {Δ0,1, . . . ,Δ0,N0} .

We subdivide or refine it, obtaining ever finer meshes, resulting in a sequence
of triangulations,

T� = {Δ�,1, . . . ,Δ�,N�
} , S

2 =

N�⋃
i=1

Δ�,i

for � = 0, 1, . . . . For notation, we let N� = |T�| denote the number of elements
in T�.

To refine a spherical triangle Δ, we connect the midpoints of each side of Δ
with a great circle path, thus producing four new spherical triangles. This is
illustrated in Fig. 5.1.With this method of refinement, the number of elements
in T� is four times the number in T�−1, or N� = 4N�−1. A desirable feature
of this refinement method is that the angles in a newly-formed refinement
triangle will not vary a great deal from those in the original triangle.

For the initial triangulation, we begin with one of the regular polyhedrons
with triangular faces: the 4-sided tetrahedron, the 8-sided octahedron, and the
20-sided icosahedron. Inscribe one of these into S

2, and then project outward
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Fig. 5.1 A spherical
triangle Δ and its
refinement by connecting
the midpoints of its sides

Fig. 5.2 Icosahedral
triangulation of sphere

from the polyhedron onto S
2. Figure 5.2 shows the use of the icosahedron to

generate T0.
We write

I(f) =

N�∑
j=1

∫
Δ�,j

f(η) dS2(η)

and we approximate each of the sub-integrals by a simple low-order method.

5.2.1 The Centroid Method

Consider the generic sub-integral

∫
Δ

f(η) dS2(η). (5.16)
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The simplest approximation is to replace f(η) by the constant function equal
to f

(
η(c)

)
, with η(c) the centroid of Δ, and follow this by integrating exactly

the resulting sub-integral. Let Δ have vertices {v1,v2,v3}. The centroid is
defined by

η(c) =
v1 + v2 + v3

|v1 + v2 + v3|
.

Thus we have

∫
Δ

f(η) dS2(η) ≈ f
(
η(c)

) ∫
Δ

dS2(η) = f
(
η(c)

)
area (Δ) .

For such a spherical triangle Δ, “Girard’s Theorem” states that

area (Δ) = θ1 + θ2 + θ3 − π (5.17)

with θi the angle of Δ at the vertex vi [117, p. 1196]. The “centroid rule” for
approximating I(f) is given by

I(f) ≈ IN�
(f) ≡

N�∑
j=1

f
(
η
(c)
j

)
area (Δ�,j) (5.18)

with η
(c)
j the centroid of Δ�,j.

Using an error analysis that we discuss later and assuming the refinement
process illustrated above in Fig. 5.1, with N� = 4N�−1, it can be shown that

I(f)− IN�
(f) = O

(
1

N�

)
, (5.19)

provided f is twice-continuously differentiable over S
2. The error should

decrease by a factor of approximately 4 when comparing the use of T� with
that of T�−1.

Example 5.6. Consider the integral (5.14) used in Example 5.5. In Table 5.2,
we give the errors when using triangulations based on the tetrahedral, octa-
hedral, and icosahedral triangulations. We also give the ratios of successive
errors, to measure the rate at which the error is decreasing. With each
triangulation scheme, the error has an error ratio of approximately 4 for
larger values of N�, and this is in agreement with (5.19). As stated earlier,
the type of triangulation can make a significant difference in the accuracy
of the approximation scheme. The icosahedral triangulation leads to a much
smaller error when compared to the other triangulations with a comparable
number of nodes. A partial explanation of this is given in Sect. 5.3.2. �
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Table 5.2 Centroid method errors for (5.14) for varying triangulations

Tetrahedral Octahedral Icosahedral

N Error Ratio N Error Ratio N Error Ratio

4 3.35E− 1 8 4.84E− 2 20 −9.55E− 5

16 5.81E− 2 5.8 32 4.70E− 4 103 80 6.71E− 7 −142

64 2.11E− 2 2.7 128 4.27E− 4 1.1 320 5.01E− 8 13.4

256 4.58E− 3 4.6 512 1.00E− 4 4.3 1, 280 1.01E− 8 4.9

1,024 1.12E− 3 4.1 2, 048 2.47E− 5 4.1

4,096 2.77E− 4 4.0

5.2.2 General Composite Methods

For a more general approach to approximating the generic sub-integral in
(5.16), we begin by using a change of variables to transform the integration
region Δ to the unit simplex σ in the plane,

σ = {(s, t) : 0 ≤ s, t, s+ t ≤ 1} . (5.20)

See Fig. 5.3. Given a spherical triangle Δk with vertices {vk,1,vk,2,vk,3},
introduce

pk(s, t) = vk,1 + t (vk,2 − vk,1) + s (vk,3 − vk,1) (5.21)

= uvk,1 + tvk,2 + svk,3,

mk(s, t) =
pk(s, t)

|pk(s, t)|
, (5.22)

with u = 1− s− t. The image of pk(s, t) as (s, t) varies over σ is the planar
triangle joining the three vertices {vk,1,vk,2,vk,3}. The image of mk(s, t) is
the spherical triangle Δk. This defines a mapping

mk : σ
1−1−→
onto

Δk.

The integral of f over Δk becomes

∫
Δk

f(η) dS2(η) =

∫
σ

f(mk(s, t)) |Dsmk ×Dtmk| dσ. (5.23)

For notation,

Dsmk(s, t) =
∂mk(s, t)

∂s
, Dtmk(s, t) =

∂mk(s, t)

∂t
,
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s

t

1

1

Fig. 5.3 The unit
simplex σ. The symbol “*”
indicates the centroid of σ

and |Dsmk ×Dtmk| denotes the Euclidean norm of the cross-product of
Dsmk and Dtmk. Use numerical integration approximations over σ to
approximate integrals over Δk. Then combine these to approximate the
integral of f over S2.

There is a large literature on numerical approximations to integrals over σ,

∫
σ

g(s, t) dσ.

We give a few such rules and their degree of precision.

R1. Degree of precision 2.

∫
σ

g(s, t) dσ ≈ 1
6

[
g
(
0, 12

)
+ g

(
1
2 , 0

)
+ g

(
1
2 ,

1
2

)]
. (5.24)

This is based on integrating the quadratic polynomial in (s, t) that
interpolates g at the three corner points {(0, 0) , (0, 1) , (1, 0)} and at
the midpoints of the three sides of σ, namely

{(
0, 12

)
,
(
1
2 , 0

)
,
(
1
2 ,

1
2

)}
.

R2. Degree of precision 2.

∫
σ

g(s, t) dσ ≈ 1
6

[
g
(
1
6 ,

1
6

)
+ g

(
1
6 ,

2
3

)
+ g

(
2
3 ,

1
6

)]
. (5.25)

Rule R2 is based on integrating the linear polynomial that interpolates
g at the points

{(
1
6 ,

1
6

)
,
(
1
6 ,

2
3

)
,
(
2
3 ,

1
6

)}
. From its definition, it will

integrate exactly any linear polynomial in (s, t). It can then be checked
that it also integrates exactly any quadratic polynomial in (s, t).
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R3. Degree of precision 5.

∫
σ

g(s, t) dσ ≈ 9
80g(

1
3 ,

1
3 ) +B [g(α, α) + g(α, β) + g(β, α)]

+ C [g(γ, γ) + g(γ, δ) + g(δ, γ)] (5.26)

with

α =
6−

√
15

21
, β =

9 + 2
√
15

21
,

γ =
6 +

√
15

21
, δ =

9− 2
√
15

21
,

B =
155−

√
15

2400
, C =

155 +
√
15

2400
.

The formulas R1 and R2 are the two cases of formula Tn:2-1 from Stroud
[111, p. 307], and R3 is formula T2:5-1 from [111, p. 314]. When used over all
of S2, as in (5.15), and with the method of refinement given above (as illus-
trated in Fig. 5.1), the rules R1 and R2 have an effective degree of precision
of 3. An argument for this uses a certain symmetry in the mesh due to the
refinement being used here; see [10, Theorem 5.3.4]. For other quadrature
rules over σ, see Stroud [111, p. 306] and Lyness and Jespersen [75].

Example 5.7. Consider again the numerical integration of the integral (5.14),
but now apply composite quadrature based on each of the rules R1–R3. In
light of the superior performance with the icosahedral triangulation seen in
Table 5.2, we use only it for illustrating the composite rules based onR1–R3.
The numerical results with varying N = N� are given in Table 5.3. The ratios
imply that the composite methods based on R1 and R2 have an empirical
convergence rate of O

(
N−2

)
, whereas the composite method based on R3

has an empirical rate of O
(
N−3

)
. We explain these rates of convergence in

the error analysis given below. �

5.2.3 Error Analysis

To analyze the error in a composite quadrature method, we begin with a
short discussion of Taylor’s theorem for functions of two variables.

Lemma 5.8. Assume g ∈ Cq+1(σ) for some integer q > 0, with σ the unit
simplex of (5.20). Choose a point of expansion (a, b) ∈ σ. Then

g(a+ ξ, b+ η) = Tq(g) +Rq(g), (a+ ξ, b + η) ∈ σ, (5.27)
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Tq(g) =
q∑

k=0

1

k!

(
ξ
∂

∂s
+ η

∂

∂t

)k

g(s, t)

∣∣∣∣∣
(s,t)=(a,b)

, (5.28)

Rq(g) =
1

q!

∫ 1

0

(1− τ)
q

(
ξ
∂

∂s
+ η

∂

∂t

)q+1

g(s, t) dτ (5.29)

=
1

(q + 1)!

(
ξ
∂

∂s
+ η

∂

∂t

)q+1

g(s, t)

∣∣∣∣∣
(s,t)=(a+θξ,b+θη)

. (5.30)

Following the differentiation in (5.29), let (s, t) = (a+ τξ, b + τη). In (5.30),
θ is some number satisfying 0 < θ < 1.

Proof. As is standard in the derivation of this formula, introduce

F (τ) = g(a+ τξ, b + τη), 0 ≤ τ ≤ 1.

Using the one-variable Taylor’s theorem with remainder,

F (1) =

q∑
k=0

1

k!
F (k)(0) +

1

q!

∫ 1

0

(1− τ)
q
F (q+1)(τ) dτ

=

q∑
k=0

1

k!
F (k)(0) +

1

(q + 1)!
F (q+1)(θ).

Note that

F (0) = g(a, b),

F (1) = g(a+ ξ, b+ η).

To relate this more directly to g(a+ τξ, b+ τη), note that

F (k)(τ) =

(
ξ
∂

∂s
+ η

∂

∂t

)k

g(s, t)

∣∣∣∣∣
(s,t)=(a+τξ,b+τη)

for k ≥ 1, and thus Tq(g) is an expansion about (a, b) in terms of products of
powers of ξ and η. Combining these results proves the lemma. �

For (5.27) we commonly use (a, b) =
(
1
3 ,

1
3

)
, the centroid of σ, or (a, b) =

(0, 0). Also, we obtain an expansion for g(s, t) by applying (5.27)–(5.29) with
(ξ, η) = (s− a, t− b).

We now turn to an analysis of the error for quadrature rules over σ, such as
R1–R3 given earlier. Let L denote a linear functional on C(σ). For example,
the rule R2 can be written as
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L(g) = 1
6

[
g
(
1
6 ,

1
6

)
+ g

(
1
6 ,

2
3

)
+ g

(
2
3 ,

1
6

)]
. (5.31)

Consider the error functional

E(g) =
∫
σ

g(s, t) dσ − L(g).

Assume that

E(g) = 0 for any polynomial g with deg(g) ≤ q.

For the above L in (5.31), q = 2. Recall the Taylor expansion (5.27). Since E
is linear,

E(g) = E(Tq(g)) + E(Rq(g)).

The term E(Tq(g)) = 0 since Tq(F ) is a polynomial in (s, t) of degree ≤ q.
Thus

E(g) =
∫
σ

Rq(g) dσ − L(Rq(g)). (5.32)

The error in integrating g over σ equals that of the error in integrating the
Taylor series error Rq(g).

Return to the remainder formula (5.29) with the derivatives of g evaluated
at (s, t) = (a+ τξ, b + τη). To bound the error

E(g) =
∫
σ

Rq(g) dσ − L(Rq(g)),

we must apply both the integral over σ and the linear functional L to Rq(g).
The important thing to note is that all terms will involve

∂q+1g(s, t)

∂sj∂tk
, 0 ≤ j, k ≤ q + 1, j + k = q + 1.

We now apply this to

∫
Δk

f(η) dS2(η) =

∫
σ

f(mk(s, t)) |Dsmk ×Dtmk| dσ (5.33)

and thus we must look at the derivatives of

g(s, t) = f(mk(s, t)) |Dsmk ×Dtmk| . (5.34)

To do this, we must examine the derivatives of mk(s, t). Recall
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pk(s, t) = vk,1 + t (vk,2 − vk,1) + s (vk,3 − vk,1)

= uvk,1 + tvk,2 + svk,3

with u = 1− s− t. As (s, t) varies over σ, the image pk (σ) gives the planar
triangle with vertices {vk,1,vk,2,vk,3}, and

mk(s, t) =
pk(s, t)

|pk(s, t)|

has Δk as its image. To simplify the notation, consider

p(s, t) = v1 + t (v2 − v1) + s (v3 − v1) ,

m(s, t) =
p(s, t)

|p(s, t)| . (5.35)

Also, let ps = ∂p/∂s and pt = ∂p/∂t, and do similarly for ms and mt.
Immediately,

ps = v3 − v1, pt = v2 − v1.

We also need the partial derivatives with respect to s and t of |p(s, t)|.
First,

∂

∂s

(
|p|2

)
=

∂

∂s
(p · p) = 2ps · p.

Also,

∂

∂s

(
|p|2

)
= 2 |p| ∂

∂s
(|p|) .

Thus,

∂

∂s
(|p|) = ps · p

|p| .

Returning to the derivative of m(s, t) in (5.35),

ms =
ps

|p| −
p

|p|2
∂

∂s
(|p|) = ps

|p| −
p

|p|2
ps · p
|p|

=
ps

|p| −m

(
m · ps

|p|

)
.

There is an analogous formula for mt.
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From the definition of pk(σ) as the planar triangle determined by the
vertices {vk,1,vk,2,vk,3}, it is easy to visualize that pk(s, t) is bounded away
from 0 for all of our polyhedral triangulations,

c ≤ |pk(s, t)| ≤ 1, (s, t) ∈ σ

for some c > 0. Consequently,

|ms(s, t)| ≤
|ps|
|p| + |m|

(
|m| |ps|

|p|

)

≤ 2

c
|v3 − v1| , (s, t) ∈ σ,

using |m| = 1. Analogously,

|mt(s, t)| ≤
2

c
|v2 − v1| , (s, t) ∈ σ.

This argument can be continued inductively to yield

∣∣∣∣∂
q+1m(s, t)

∂sj∂tk

∣∣∣∣ ≤ cqh
q+1, 0 ≤ j, k ≤ q + 1, j + k = q + 1

with h = max {|v2 − v1| , |v3 − v1|}. Note also that

|Dsm×Dtm| ≤ 4

c2
h2. (5.36)

Return to the integral

∫
Δk

f(η) dS2(η) =

∫
σ

f(mk(s, t)) |Dsmk ×Dtmk| dσ

in which we apply the above with

g(s, t) = f(mk(s, t)) |Dsmk ×Dtmk| .

We are using a sequence of triangulations

T� = {Δ�,1, . . . ,Δ�,N�
} .

Let

h� = max
Δ∈T�

diam(Δ) .
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We assume a regularity in the triangulation T� by means of

h2�N� = O(1), (5.37)

where N� = |T�|. This is easily shown to be true for our polyhedral-based
triangulations.

As earlier, we assume f ∈ Cq+1
(
S
2
)
. By applying the earlier bounds, it is

straightforward to obtain

∣∣∣∣∂
q+1g(s, t)

∂sj∂tk

∣∣∣∣ ≤ cqh
q+3, 0 ≤ j, k ≤ q + 1, j + k = q + 1. (5.38)

We apply this to the integral (5.33), with g defined in (5.34). Doing this leads

to an error of size O
(
hq+3
�

)
for the single integral over Δk.

Theorem 5.9. Assume the triangulation scheme T0, T2, . . . satisfies (5.37).
For a function f ∈ C

(
S
2
)
, let IN�

(f) denote the composite quadrature formula
obtained by applying the basic quadrature formula L to each integral

∫
Δk

f(η) dS2(η) =

∫
σ

f(mk(s, t)) |Dsmk ×Dtmk| dσ, (5.39)

where L has degree of precision q ≥ 0 over σ. Assume f ∈ Cq+1
(
S
2
)
. Then

I(f)− IN�
(f) = O

(
hq+1
�

)
. (5.40)

Proof. Use (5.38) for each of the N� sub-integrals (5.39), obtaining

I(f)− IN�
(f) = O

(
N�h

q+3
�

)
.

Applying (5.37) completes the proof. �
The result (5.40) agrees with the empirical results shown in Table 5.3.

What is lacking in this discussion is a proof that the composite formulas
based on R1 and R2 have an effective degree of precision q = 3 rather than
the degree of precision of q = 2 that is true over just σ. As noted earlier,
this requires an additional analysis, and we refer the reader to [10, Theorem
5.3.4]. Again, this is a consequence of the refinement process illustrated in
Fig. 5.1. As an analogy, recall how quadratic interpolation is used to define the
3-point Simpson’s quadrature rule for functions of one variable. A fortuitous
cancellation occurs when the middle interpolation point is the midpoint of
the remaining two interpolation points, leading to a degree of precision of 3,
whereas the use of quadratic interpolation would lead one to expect a degree
of precision of only 2.
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For the centroid rule, the error functional over a single spherical triangle
Δ is

E(f) =
∫
Δ

f(η) dS2(η)− f
(
η(c)

)∫
Δ

dS(η)

=

∫
σ

[
f(m(s, t))− f

(
m

(
1
3 ,

1
3

))]
|Dsm×Dtm| dσ.

For f a constant function, E(f) = 0, and thus the degree of precision q ≥ 0;
and it can be shown to be exactly q = 0. In analogy with the preceding
paragraph for the composite formulas based on R1 and R2, the centroid
method can be shown to have an effective degree of precision of q = 1 when
used with the type of refinement illustrated in Fig. 5.1. Again, use the type
of analysis given in [10, Theorem 5.3.4]; it is omitted here. With q = 1, we
obtain the convergence asserted earlier in (5.19).

5.3 High Order Gauss-Type Methods

For one-variable integration, a Gaussian quadrature formula is based on
asking that the formula be exact for polynomials of as large a degree as
possible. Recall that with n nodes, it is possible to have a degree of precision
of 2n− 1. This approach generalizes to multivariable integration. Consider a
formula

I(f) ≡
∫
S2

f(η) dS2(η) ≈ IN (f) ≡
N∑

k=1

wkf(ηk). (5.41)

The nodes {ηk} and weights {wk} are to be so chosen that the formula is
exact for spherical polynomials of as large a degree as possible.

To simplify the development of such formulas, much such work has begun
with the following important theorem of S. Sobolev [109, Theorem 1].
It involves the notion of a group G of rotations on S

2. If γ ∈ G, then

γ : S2
1−1−→
onto

S
2 is some rotation of the sphere. We also allow “inversions” of the

sphere in which points η ∈ S
2 are reversed through a given plane containing

the origin. If f ∈ C
(
S
2
)
, then fγ ∈ C

(
S
2
)
is defined by fγ(η) = f(γ(η)),

η ∈ S
2. We say f is “invariant under G” if fγ = f for all γ ∈ G.

Theorem 5.10. Let G denote a finite rotation group on the sphere, possibly
including inversion. Consider a numerical quadrature scheme (5.41). Assume
the numerical scheme is invariant under the actions of the rotation group,

IN (fγ) = IN (f) ∀ γ ∈ G. (5.42)
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This implies

{ηi : i = 1, . . . , N} = {γ (ηi) : i = 1, . . . , N}

for all γ ∈ G. In addition, for each node ηi, i = 1, . . . , N , consider Si =
{γ (ηi) : γ ∈ G}. Then (5.42) implies that the weights {wj} associated with
the nodes in Si are to be equal.With such an invariant quadrature scheme,
in order that I(f) = IN (f) for each f ∈ Πd, it is necessary and sufficient
that I(f) = IN (f) for each f ∈ Πd that is invariant under the action of all
elements of G. We then say that IN (f) has “degree of precision d”.

Proof. Because of the rotational symmetry of S2, we have

I(f) =

∫
S2

f(η) dS2(η) =

∫
S2

fγ(η) dS
2(η) = I(fγ). (5.43)

Define

f∗ =
1

|G|
∑
γ∈G

fγ ,

where |G| denotes the number of elements in G. It is straightforward to show
that f∗ is invariant under G (i.e. f∗

γ = f∗ for all γ ∈ G). Moreover, from
(5.43), I(f) = I(f∗). Similarly, from (5.42), IN (f) = IN (f∗). Combining,

I(f)− IN (f) = I(f∗)− IN (f∗).

Thus if we want I(f) = IN (f) for all f ∈ Πd, we need only show that the
result is true for all f ∈ Πd that are invariant with respect to G. �

As earlier with the product Gauss formulae in (5.13), we can show

∣∣I(f)− IN(d)(f)
∣∣ ≤ 8 πEd(f). (5.44)

And as before, the minimax error given in (4.49) can be applied to give
a bound on the rate of convergence of IN (f) to I(f), depending on the
smoothness of the function f .

To obtain the nodes {ηi} and weights {wi} is quite complicated. The
nodes and weights in the quadrature formula (5.41) must be chosen to be
invariant under the actions in G, and the polynomials that are invariant under
G must be identified. The error I(f) − IN (f) must be zero for the invariant
polynomials f of as large a degree as possible, and this leads to solving
a system of nonlinear algebraic equations. The number of such algebraic
equations is given in [109, Theorem 2].
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To illustrate the use of Sobolev’s theorem, we consider a formula

I32(f) = A

12∑
k=1

f
(
η
(v)
k

)
+B

20∑
k=1

f
(
η
(f)
k

)
(5.45)

in which the nodes
{
η
(v)
k

}
are the vertices of an icosahedron inscribed

in S
2 and

{
η
(f)
k

}
are the centroids of its faces. The two lowest-degree

spherical polynomials that are invariant under the icosahedral group G∗
20 with

inversions are 1 and

5x4z2 + 5y4z2 + z6 + 10x2y2z2 − 5x2z4 − 5y2z4 + 2x5z + 10xy4z − 20x3y2z.

The formula (5.45) is applied to these two polynomials and is equated to the
true integrals. The resulting formula has the weights

A =
5π

42
, B =

9π

70
. (5.46)

The next higher degree invariant polynomial is of degree 10 and the
quadrature (5.45)–(5.46) is not exact for this case. Consequently, the formula
(5.45)–(5.46) has degree of precision 9. This is formula U3:9-1 in Stroud [111,
p. 299].

Lebedev [73] applied Sobolev’s theorem using G = G∗
8, the octahedral

rotation group with inversion. Elements of this group leave invariant the
octahedron in R

3. A spherical polynomial is invariant under G∗
8 if and only

if it is a polynomial in τ1 and τ2,

τ1 = x2y2 + x2z2 + y2z2,

τ2 = x2y2z2.

In his paper, Lebedev gives a family of formulas

IN (f) =

N(d)∑
i=1

wif(Pi) (5.47)

for various degrees of precision d ≤ 29. The case d = 23 is given explicitly; it
uses 194 nodes, and the weights wi are positive. For details, see [73].

Finding such quadrature formulas IN (f) for the icosahedral group with
inversion is discussed by Ahrens and Beylkin [3]. We give an example of their
use later in this section, for the integral (5.50). Other related approaches to
developing high order formulas are given in Keast and Diaz [67], McLaren [79],
and Stroud [111].
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Table 5.4 High degree of
precision quadrature

d Nodes Error

5 12 1.72E− 04

9 32 3.40E− 09

14 72 1.24E− 14

Example 5.11. Consider again the numerical integration of the integral
(5.14), but now apply the integration formulas from Stroud [111, Sect. 8.6]
that have a high degree of precision. The first is U3:5-1 and uses as nodes the
vertices of an inscribed icosahedron (degree of precision d = 5), the second
is U3:9-1 (d = 9), and the third one is U3:14-1 (d = 14). The results are
given in Table 5.4. Compare these results with those of the product Gauss
quadrature given earlier in Table 5.1. �

5.3.1 Efficiency of a High-Order Formula

For the N -point formula (5.41), there are 4N parameters to be determined,
namely the weights {wi} and the components of the nodes {ηi}. The nodes
are subject to the constraints |ηi| = 1, i = 1, . . . , N . Thus there are essentially
3N parameters to be determined. If we wish to have IN (f) = I(f) for all f ∈
ΠL, then the number of constraints on the formula is equal to the dimension
of ΠL, namely (L + 1)2. As a measure of the efficiency of the quadrature
method (5.41), it was suggested in McLaren [79] that the ratio

R ≡ (L+ 1)2

3N
(5.48)

be used.
In general we would expect this ratio to be bounded by 1, although there

are a few quadrature formulas for which E is slightly larger than 1. As an
illustration of the latter, r = 100/96 for (5.45)–(5.46). The methods described
in [3, 73] generally have R ≈ 1, especially for larger values of N and L.
In contrast, the product Gauss formula In of (5.12) has L = 2n − 1 and
N = 2n2, and thus it has the efficiency

R =
(2n)2

3 (2n2)
=

2

3
. (5.49)

For a comparable degree of precision, the product Gauss formula (5.12)
uses approximately 50% more function evaluations than do the methods of
this section which have an efficiency ratio of approximately 1. However, the
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Table 5.5 Comparison of product Gauss and Ahrens–Beylkin formulas

Product Gauss Ahrens–Beylkin

deg Nodes Error deg nodes Error Ratio

27 392 2.92E− 05 27 312 3.15E− 06 1.26

37 722 −2.96E− 08 36 492 1.02E− 08 1.47

41 882 −3.91E− 09 40 612 −4.51E− 10 1.44

45 1,058 3.00E− 10 45 732 2.55E− 10 1.45

49 1,250 −1.16E− 11 50 912 1.54E− 12 1.37

57 1,682 8.88E− 16 54 1,032 −8.88E− 16 1.63

product Gauss formula has the virtue that its nodes and weights are very
easy to construct.

Example 5.12. Consider approximating the integral

I =

∫
S2

sin2
(
π
(
η1 + η22 + η33

))
dS2(η)

.
= 4.373708291416826. (5.50)

We compare the product Gauss formula (5.12) and the optimal formulas
of C. Ahrens and G. Beylkin [3, Icosahedral-based optimal-order nodes and
weights, private communication, 2010]. Table 5.5 contains numerical results
for increasing degrees of precision deg. Rows 1 through 5 are for comparable
degrees of precision. Row 6 is the lowest degree of precision in which full
double-precision accuracy was attained. The final column gives the ratio of
the number of nodes used with the product Gauss formula as compared to
the number of nodes used with the Ahrens–Beylkin formula. The results are
consistent with the results stated following (5.49). �

5.3.2 The Centroid Method

Recall the centroid method (5.18) and its numerical illustration for the
integral (5.14), with the numerical results given in Table 5.2. The numerical
results varied significantly with the triangulation, with the accuracy improv-
ing from the tetrahedral to the octahedral to the icosahedral triangulations.
We can now give an explanation of this. First, note that the centroid method
is invariant under the rotation group associated with its triangulation. As
a consequence, the centroid method has a degree of precision that can be
computed using Sobolev’s theorem by considering only those polynomials
that are invariant under the rotation group. The centroid rule is exact for
constant functions with any triangulation. With the tetrahedral, octahedral,
and icosahedral groups (with inversion), the next higher degree invariant
spherical polynomials have degrees 3, 4, and 6, respectively. The centroid
method with any of these regular polyhedral triangulations is not exact for
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the latter associated invariant polynomial. As a consequence, the centroid
method with the tetrahedral, octahedral, and icosahedral triangulations has
a degree of precision of 2, 3, and 5, respectively.

Denote the degree of precision by d, and let p∗d denote the best uniform
approximation of the integrand f by spherical polynomials from Πd. Then
the error in the centroid method when integrating f satisfies

I(f)− In(f) = I(f − p∗d)− In(f − p∗d),

|I(f)− In(f)| ≤ 8 πEd,∞(f).

Thus the error is actually based on the function f − p∗d rather than on f .
Because ‖f − p∗d‖∞ decreases as d increases, it is likely that the centroid
error will be less as d increases. This is exactly what is seen in Table 5.2.

5.3.3 An Alternative Approach

Another approach to creating quadrature methods with a large degree
of precision is to begin by seeking a suitable polynomial interpolation
formula and to then integrate it. This is a topic that also has application
to extending empirical data and to other approximation problems on the
sphere. Integrating the resulting interpolation formula leads to a numerical
integration formula with a high degree of precision. For a desired degree of
precision d > 0, the dimension of Πd is

N = (d+ 1)2 .

Given a set of basis functions {ϕ1, . . . , ϕN} for Πd, consider maximizing the
quantity

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(η1) · · · ϕk(η1) · · · ϕN (η1)

...
. . .

...
. . .

...

ϕ1(ηj) · · · ϕk(ηj) · · · ϕN (ηj)

...
. . .

...
. . .

...

ϕ1(ηN ) · · · ϕk(ηN ) · · · ϕN (ηN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.51)

as {η1, . . . ,ηN} is allowed to vary over S2, and of course, such a maximum
value will be positive. Sets of such points {ηi} for which this determinant
is nonzero are called “fundamental systems” for polynomial interpolation
over S2. With such a choice of points, we can define “Lagrange interpolation
basis functions”,
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�j(η) =

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(η1) · · · ϕk(η1) · · · ϕN (η1)

...
. . .

...
. . .

...

ϕ1(ηj−1) · · · ϕk(ηj−1) · · · ϕN (ηj−1)

ϕ1(η) · · · ϕk(η) · · · ϕN (η)

ϕ1(ηj+1) · · · ϕk(ηj+1) · · · ϕN (ηj+1)

...
. . .

...
. . .

...

ϕ1(ηN ) · · · ϕk(ηN ) · · · ϕN (ηN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(η1) · · · ϕk(η1) · · · ϕN (η1)

...
. . .

...
. . .

...

ϕ1(ηj) · · · ϕk(ηj) · · · ϕN (ηj)

...
. . .

...
. . .

...

ϕ1(ηN ) · · · ϕk(ηN ) · · · ϕN (ηN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.52)

for j = 1, . . . , N . These satisfy �j(ηi) = δi,j , i, j = 1, . . . , N . With the
optimality property for the nodes we have

|�j(η)| ≤ 1, η ∈ S
2, j = 1, . . . , N. (5.53)

The polynomial

p(η) =

N∑
j=1

f(ηj) �j(η) (5.54)

belongs to Πd and it interpolates f(η) at the points {η1, . . . ,ηN}. The
property (5.53) provides a type of stability for the interpolation.

For the integration formula, use

I(f) ≈ Id(f) =
N∑
j=1

f(ηj)wj , (5.55)

wj =

∫
S2

�j(η) dS
2(η).

The maximizing of (5.51) and its subsequent use in defining interpolation and
quadrature formulas have been studied by Sloan and Womersley [107, 108].
They use the basis functions

ϕi(η) = Gn(η,ηi),
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Table 5.6 Comparison of Sloan–Womersley and Ahrens–Beylkin formulas

Sloan–Womersley Ahrens–BeylkinDegree of

precision Nodes Error Λd Nodes Error

27 784 −8.14E− 6 30.78 312 3.15E− 06

36 1,369 −7.07E− 9 49.03 492 1.02E− 08

40 1,681 6.60E− 10 48.91 612 −4.51E− 10

45 2,116 3.02E− 12 57.88 732 2.55E− 10

50 2,601 −2.66E− 13 69.47 912 1.54E− 12

where Gn(ξ,η) is the reproducing kernel for Πn. These basis functions are
discussed below following (5.87). Formulas with high degrees of precision are
found for which all weights wk are positive. The positivity of the weights is
important in guaranteeing stability in the quadrature formula as a function
of N , as is illustrated in (5.57)–(5.58) in the following section. Tables of nodes
and weights based on maximizing (5.51) are given in [119].

Example 5.13. We compare this method with the results given in Example
5.12 for the integral (5.50); see Table 5.6. For the same degree of precision,
the errors are comparable for the Sloan–Womersley and Ahrens–Beylkin
formulas. However, the former is less efficient because of the much larger
number of nodes needed. For the integration formula Id of (5.55), the
efficiency ratio of (5.48) is

R =
(d+ 1)

2

3 (d+ 1)2
=

1

3
.

For an equivalent degree of precision, the cost in function evaluations is
three times that for the Ahrens–Beylkin formulas and it is two times the
cost of the product Gauss formula (5.12). However, the Sloan–Womersley
choice of points has good properties as regards interpolation on S

2. Define
the interpolatory projection operator

Pdf(η) =
N∑

k=1

f(ηk) �k(η)

which maps C(S2) onto Πd. Then the property (5.53) implies

Λd := ‖Pd‖C(S2)→Πd
≤ (d+ 1)

2
.

These are called the Lebesgue constants for the interpolation method. Their
actual values are listed in Table 5.6; they increase faster than d, much less
rapidly than (d+ 1)2. �
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5.4 Integration of Scattered Data

An important source of quadrature problems on the sphere is the integration
of empirical data obtained from scattered nodes on the unit sphere. To handle
such problems and associated topics in the interpolation and approximation of
functions using scattered data, the area of “meshless discretization methods”
has been developed. This is a very large topic and we do not attempt to cover
it here; instead we give a simple and low-order approach to the numerical
integration of scattered data over the sphere. For introductions to the general
area of meshless discretization methods, see Buhmann [25], Fasshauer [45],
and Wendland [118]. For a survey of the approximation and interpolation of
meshless data over the unit sphere, including the use of radial basis function
methods, wavelets, and spline functions, see the review of Fasshauer and
Schumaker [46]; and for an introduction to quadrature of scattered data using
radial basis functions, see Sommariva and Womersley [110].

Assume we are given node points P = {η1, . . . ,ηN} and associated
approximate function values {fi : i = 1, . . . , N}, fi ≈ f(ηi). We want to
approximate

I(f) =

∫
S2

f(η) dS2(η).

The data values fi will often contain experimental error. We give a simple
and straightforward method for estimating I(f).

Let TN =
{
Δ1, . . . ,ΔM(N)

}
denote a triangulation of S

2 in which the
vertices of the triangulation are exactly the nodes P . Then

I(f) =

M∑
k=1

∫
Δk

f(η) dS2(η).

To approximate the integral over Δk, use

∫
Δk

f(η) dS2(η) ≈ 1

3

[
f
(
ηk,1

)
+ f

(
ηk,2

)
+ f

(
ηk,3

)]
area (Δk)

in which
{
ηk,1,ηk,2,ηk,3

}
denotes the vertices of Δk. Denote by IN (f) the

resulting approximation of I(f),

IN (f) =
1

3

M∑
k=1

[
f
(
ηk,1

)
+ f

(
ηk,2

)
+ f

(
ηk,3

)]
area (Δk) . (5.56)

For area (Δk), see (5.17).
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An error analysis can be given similar to that in Theorem 5.9 for the
methods (5.24)–(5.26). The method (5.56) has a degree of precision of 0, and
as a consequence,

|I(f)− IN (f)| ≤ 4πcfh

with

h = max
Δ∈TN

diam(Δ).

This assumes only that the function f is Lipschitz continuous over S2 with a
Lipschitz constant cf .

Assume there is error in the function values {f(ηi)}, say

f(ηi) = f̂i + εi, i = 1, . . . , N, (5.57)

and let IN (f̂) denote the numerical integral based on using the approximate

values
{
f̂i

}
. Then it is straightforward to show

∣∣∣IN (f)− IN (f̂)
∣∣∣ ≤ 4π max

1≤i≤N
|εi| . (5.58)

How is the triangulation TN to be chosen? A popular choice is the Delaunay
triangulation [21, Chap. 9], in part because it satisfies certain optimality
conditions when used for planar data. For a discussion of alternative
triangulations, see [46, p. 135].

Example 5.14. We generate a set of nodes that is somewhat uniformly
distributed over S

2, while still having some randomness. This is to reflect
the sometimes random choice of measurement points η in practice. For our
example, we begin with an icosahedral-based triangulation, and then we
generate one node point ηi randomly within each face. For the construction
of the Delaunay triangulation, we use MATLAB codes from Burkardt [26];
also, Fortran codes are given in Renka [96]. A graph of a resulting Delaunay
triangulation is given in Fig. 5.4 with N = 80. Using this triangulation, we
apply the quadrature formula (5.56) with N = 80 to the integral (5.14) used
in our earlier examples. The error is −2.01 × 10−2, with a relative error of
−1.36× 10−3. �

A related problem is to determine a set of nodes {η1, . . . ,ηN} at which the
experimental data is to be calculated. Often this is combined with a desire
to estimate I(f) using

I(f) ≈ IN (f) ≡ 4π

N

N∑
k=1

f(ηk).
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Fig. 5.4 Pseudo-random points on the sphere (left) and the Delaunay triangulation of
those points (right)

If the nodes are determined such that this formula has a degree of precision
d, then this formula is called a “spherical d-design”. For introductions and
extensive discussions of the spherical d-designs, see Bannai and Bannai [20]
and Cui and Freeden [34].

In general, it is believed to be more efficient when doing empirical
measurements if the points {η1, . . . ,ηN} at which data is to be measured
are “equidistributed” over the sphere. There are many different ways of
defining this concept, and there is a large literature on determining such
equidistributed point sets. For example, one approach is to compute a set of
points {η1, . . . ,ηN} that maximizes the quantity

min
1≤i<j≤N

∣∣ηi − ηj

∣∣ ,

thus maximizing the distance between the points ηk. See Saff and Kuijlaars
[100] and Hardin and Saff [59] for a discussion of this problem. For a recent
construction of spherical d-designs that have a good equidistribution of nodes
and are useful for polynomial interpolation over Πn, see An, Chen, Sloan, and
Womersley [4].

5.5 Integration of Singular Functions

Consider the numerical approximation of integrals with a point-singularity in
the integrand. Two examples from potential theory are the single-layer and
double-layer potentials,

Sρ(x) =
∫
∂Ω

ρ(y)

|x− y| dσ(y), x ∈ ∂Ω,

Dρ(x) =
∫
∂Ω

ρ(y)
∂

∂νy

(
1

|x− y|

)
dσ(y), x ∈ ∂Ω,
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respectively. In these integrals, ∂Ω is the boundary of a simply-connected
bounded region in R

3. The integrands are singular at y = x. The single-
layer potential Sρ(x) has a singular behaviour of order |x− y|−1

for y ≈ x;
and the same is true for the double-layer potential Dρ(x) if ∂Ω is a smooth
surface. (If ∂Ω is not smooth, e.g. when it has edges and/or corners, then Dρ
has a more complicated singular behaviour.) When ∂Ω is a smooth surface,
a change of variables will convert such integrals to an integral over S2 with a
singularity point on the sphere corresponding to x; for an example of such a
mapping, see Example 5.1.

We begin by first considering the case in which the integrand f in

I(f) =

∫
S2

f(η) dS2(η)

is well-behaved, defining a numerical method which we extend later to
singular integrands. Before applying a numerical method, we apply a
transformation

L : S
2 1−1−→

onto
S
2.

Using spherical coordinates, define

L : η = (cosφ sin θ, sinφ sin θ, cos θ)

�→ η̃ =
(cosφ sinq θ, sinφ sinq θ, cos θ)√

cos2 θ + sin2q θ
≡ L(φ, θ). (5.59)

In this transformation, q ≥ 1 is a “grading parameter”. The north and south
poles of U remain fixed, while the region around them is distorted by the
mapping.

The integral I(f) becomes

I(f) =

∫
S2

f(η̃) dS2(η̃)

=

∫
S2

f(L(η̃)) JL(η̃) dS
2(η̃) (5.60)

with JL(η̃) the Jacobian of the mapping L,

JL(η̃) = |DφL(φ, θ)×DθL(φ, θ)| =
sin2q−1 θ

(
q cos2 θ + sin2 θ

)
(
sin2q θ + cos2 θ

) 3
2

. (5.61)

In spherical coordinates,

I(f) =

∫ π

0

sin2q−1 θ
(
q cos2 θ + sin2 θ

)
(
sin2q θ + cos2 θ

) 3
2

∫ 2π

0

f(ξ, η, ζ) dφ dθ,
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(ξ, η, ζ) =
(cosφ sinq θ, sinφ sinq θ, cos θ)√

sin2q θ + cos2 θ
. (5.62)

For n ≥ 1, let h = π/n, and

θj = jh, 0 ≤ j ≤ n; φj = jh, 0 ≤ j ≤ 2n.

For a generic function g, introduce the bivariate trapezoidal approximation

∫ π

0

∫ 2π

0

g(sin θ, cos θ, sinφ, cosφ) dφ dθ

≈ h2
n∑

k=0

′′
2n∑
j=0

′′
g(sin θk, cos θk, sinφj , cosφj)

in which the superscript notation ′′ means to multiply the first and last terms
by 1

2 before summing. Apply this to (5.62). Note that the integrand is zero
for θ = 0, π and that the integrand has period 2π in φ. Therefore

∫ π

0

∫ 2π

0

g(sin θ, cos θ, sinφ, cosφ) dφ dθ

≈ h2
n−1∑
k=1

2n∑
j=1

g(sin θk, cos θk, sinφj , cosφj) ≡ In, (5.63)

g =
sin2q−1 θ

(
q cos2 θ + sin2 θ

)
(
sin2q θ + cos2 θ

) 3
2

f(ξ, η, ζ),

with (ξ, η, ζ) as in (5.62).
To analyze the convergence of this method, we apply the following result;

see [9, p. 285] or most other numerical analysis textbooks for a discussion of
this theorem.

Theorem 5.15. (Euler–MacLaurin formula) Let m ≥ 0, n ≥ 1, and
define h = (b− a) /n, xj = a + jh for j = 0, 1, . . . , n. Further assume ψ is
2m+ 2 times differentiable on [a, b] with ψ(2m+2) ∈ L1(a, b). Then

∫ b

a

ψ(x) dx − h

n∑
j=0

′′
ψ(xj) =

m∑
i=1

B2i

(2i)!
h2i

[
ψ(2i−1)(b)− ψ(2i−1)(a)

]

+
h2m+2

(2m+ 2)!

∫ b

a

B2m+2

(
x− a

h

)
ψ(2m+2)(x) dx.

(5.64)



198 5 Numerical Quadrature

In this formula, {Bk} are the Bernoulli constants, Bk(x) is the Bernoulli
polynomial of degree k, and Bk(x) is the periodic extension of Bk(x) on [0, 1].
For definitions of {Bk} and {Bk (x)}, see [9, Sect. 5.4].

Theorem 5.16. Apply the trapezoidal rule

I ≡
∫ π

0

γ(θ) dθ ≈ Tn ≡ h

n∑
j=0

′′
γ(jh), h =

π

n

to the integral

∫ π

0

t(θ) sinm θ dθ

with t(θ) a sufficiently differentiable function and m ≥ 0 an integer. More
precisely, assume t(p) ∈ L1(0, π) with

p =

{
m+ 2, m even,

m+ 1, m odd.

Then

I − Tn = O(hp) . (5.65)

The proof is an immediate corollary of the Euler–MacLaurin expansion
(5.64) The theorem generalizes to non-integer values p; see Sidi [104,
Appendix D], [105].

Theorem 5.17. In the integral (5.62), assume q ≥ 1 and 2q is a positive
integer. Introduce

p =

{
2q, 2q even,

2q + 1, 2q odd.

Assume f is p-times differentiable with f (p) ∈ L1(S2). Then the error in
approximating (5.62) by (5.63) satisfies

I − In = O(hp) . (5.66)

A proof of this is given in [11, Theorem 2.1], and extensions to non-integer
values of 2q are given in [105]. The values of q with 2q an odd integer are
particularly good. In such cases, the rate of convergence improves to I−In =
O
(
h4q

)
; see [16, 105].
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5.5.1 Singular Integrands

We examine the application of the above schema to the integral

I =

∫
∂Ω

ρ(y)

|y − x| dσ(y), (5.67)

where Ω is an open, bounded simply connected region in R
3, its boundary ∂Ω

is a smooth surface, and x ∈ ∂Ω. Other integral singularities can be treated
similarly. As earlier in (5.2)–(5.3), we apply a transformation of variables

M : S2
1−1−→
onto

∂Ω,

obtaining

I =

∫
S2

ρ(M(η))JM(η)

|x−M(η)| dS2(η). (5.68)

Since the transformation L of (5.59) is based on smoothing the integrand at
the north pole (0, 0, 1) and south pole (0, 0,−1) of S2, the original coordinate
system of R3 needs to be rotated to have one of the poles of S2 in the rotated
system be the location of the singularity in the integrand.

Let M(ξ̂) = x, ξ̂ ∈ S
2. We introduce an orthogonal Householder transfor-

mation of R3,

η = Hη∗, η∗ ∈ S
2 (5.69)

before we apply the final mapping L. Choose a Householder matrix H =
I − 2wwT, wTw = 1, such that

H

⎡
⎣ 0

0

±1

⎤
⎦ = ξ̂, or equivalently, Hξ̂ =

⎡
⎣ 0

0

±1

⎤
⎦ (5.70)

with the sign chosen later to minimize any loss of significance error. The
requirement (5.70) means that ξ̂ will be mapped to either the north or south

pole of S2, or conversely, a pole of S2 is mapped to ξ̂.
Finding w is straightforward and inexpensive, requiring only a small

number of arithmetic operations; see [9, Sect. 9.3]. In evaluating (5.69), use

η = Hη∗

= η∗ −w
(
2wTη∗)

= η∗ − cw, c = 2wTη∗
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Computing 2wTη∗ requires four multiplications and two additions; and
computing η requires a further three multiplications and three subtractions
(a total of 12 arithmetic operations for η∗ �→ η).

In the integral (5.68), the transformation η = Hη∗ yields

I =

∫
S2

ρ(M(Hη∗)) JM(Hη∗)

|x−M(Hη∗)| dS2(η∗)

since the absolute value of the determinant of the Jacobian of the mapping
is 1. Now use the mapping

η∗ = L(η̃) , η̃ ∈ S
2

as before in (5.61)–(5.62), yielding

I =

∫
S2

ρ(M(HL(η̃))) JM(HL(η̃))
|P −M(HL(η̃))| JL(η̃) dS

2(η̃) . (5.71)

Now apply the scheme of (5.63) to I, obtaining a numerical approximation
In of I. For the convergence of In to I, we have the following.

Theorem 5.18. Let q ≥ 1 be an integer, and introduce

p =

{
q, q even,

q + 1, q odd.

In the integral (5.71), assume that ρ ∈ Cp(∂Ω). Assume that the surface ∂Ω
is similarly differentiable, which is equivalent to assuming that the mapping
M is suitably differentiable. Let In be the approximation of (5.71) based on
the schema of (5.63). Then

I − In = O(hp) . (5.72)

A proof is given in [11, Theorem 4.2]. It is also conjectured there that

I − In = O(hq) (5.73)

holds for an arbitrary real q ≥ 1; there are possibly improved rates for
special choices of q, as with q an odd integer in (5.72). These conjectures
are illustrated in the following example.

Example 5.19. We give numerical results for

I =

∫
∂Ω

e0.1(y1+2y2+3y3)

|x− y| dσ(y). (5.74)
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Table 5.7 Numerical integrals for (5.74) with q = 2.5 and q = 3

q = 2.5 q = 3

n N In − I 1
2
n Ratio EOC In − I 1

2
n Ratio

4 24 1.99E + 1 2.21E + 01

8 112 −5.93E− 1 −33.65 −2.46E + 00 −8.96

16 480 1.58E− 1 −3.76 −7.66E− 02 32.2

32 1,984 2.56E− 2 6.16 2.62 −1.00E− 03 76.5

64 8,064 4.53E− 3 5.64 2.50 7.07E− 08 −14,168

128 32,512 8.01E− 4 5.66 2.50 3.22E− 10 219

256 130,560 1.42E− 4 5.66 2.50 5.04E− 12 63.9

512 523,264 2.50E− 5 5.66 2.50 5.68E− 14 88.8

1, 024 2,095,104 4.43E− 6 5.66 2.50 0

We use the ellipsoidal surface ∂Ω of (5.4) with the surface parameters
(a, b, c) = (1, 2, 3). We choose the point x to correspond to the spherical
coordinates (θ, φ) = (π/4, π/4) under the mapping M of (5.5). In this case,
the true value of I is given by

I
.
= 38.254918969803924.

In Table 5.7, we give numerical results for the choices q = 2.5 and q = 3. The
column N gives the number of node points on S

2 and the column EOC gives
the estimated order of convergence for the case q = 2.5, as then the error has
a regular behaviour. The rate of convergence for the q = 2.5 case agrees with
the conjecture in (5.73). The case q = 3 is much better than predicted by
(5.72), since an order O

(
h4

)
would have the values of Ratio approaching 16

with increasing n. Clearly the convergence is much more rapid than O
(
h4

)
.

�

5.6 Quadrature over the Unit Disk

Related to quadrature over the unit sphere S
2 is quadrature over the unit

disk D in the plane R
2,

D =
{
(x, y) : x2 + y2 ≤ 1

}
.

We begin with a connection between these two domains, and then we discuss
some numerical methods for quadrature over the unit disk.

Begin by looking at the upper hemisphere S2+ as the image of the mapping

z =
√
1− x2 − y2, (x, y) ∈ D.
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Then the surface integral over this hemisphere,
∫
S2+

f(η) dS2(η)

can be transformed to

∫
D

f
(
x, y,

√
1− x2 − y2

)√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dx dy

=

∫
D

f
(
x, y,

√
1− x2 − y2

) dx dy√
1− x2 − y2

.

Consequently, we can write
∫
S2

f(η) dS2(η) =

∫
D

[
f
(
x, y,

√
1− x2 − y2

)

+ f
(
x, y,−

√
1− x2 − y2

)] dx dy√
1− x2 − y2

. (5.75)

Integration over S
2 is equivalent to a weighted integration over the unit

disk D.

5.6.1 A Product Gauss Formula

For the integral

I(f) =

∫
D

f(x, y) dx dy,

we develop a numerical method in a fashion analogous to that of the product
Gauss formula (5.12). Using polar coordinates, we write

I(f) =

∫ 2π

0

∫ 1

0

r f(r cos θ, r sin θ) dr dθ. (5.76)

For the integration in θ, we use the trapezoidal rule (5.7), as in (5.12). For
the integration in r, we apply Gauss–Legendre quadrature to the integrand
r f(r cos θ, r sin θ).

Using Gauss–Legendre quadrature, we introduce the formula

In(f) = h
2n∑
j=0

n∑
k=0

wkrkf(rk cos θj , rk sin θj) . (5.77)
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The nodes θj = jh, j = 0, 1, . . . , 2n, h = 2π/(2n+1); and {wk} and {rk} are
the weights and nodes, respectively, for the (n+ 1)-point Gauss–Legendre
quadrature formula on [0, 1].

Theorem 5.20. If f(x, y) is a polynomial of degree ≤ 2n, then I(f) =
In(f). The quadrature formula (5.77) has degree of precision 2n.

Proof. Let f(x, y) = xαyβ, with α, β non-negative integers and α + β ≤ m.
Then

I(f) =

(∫ 2π

0

(cos θ)
α
(sin θ)

β
dθ

)(∫ 1

0

rα+β+1 dr

)
≡ Jα,βKα+β+1,

In(f) =

⎛
⎝h

2n∑
j=0

(cos θj)
α
(sin θj)

β

⎞
⎠

(
n∑

k=0

wkr
α+β+1
k

)
≡ Jα,β

n Kα+β+1
n

with

K� =

∫ 1

0

r� dr, K�
n =

n∑
k=0

wkr
�
k.

If β is odd, the integrals Jα,β = Jα,β
n = 0, much as was done in the proof of

Theorem 5.4. If β is even, we can convert the integrand (cos θ)
α
(sin θ)

β
into

a polynomial of powers of cos θ with degree α+ β. Using Lemma 5.2, we can
then show

Jα,β
n = Jα,β , α+ β ≤ 2n.

The (n+ 1)-point Gauss–Legendre quadrature formula has a degree of
precision of 2n+ 1, from which

Kα+β+1
n = Kα+β+1, α+ β ≤ 2n.

This proves In(f) = I(f) for all α, β ≥ 0, 0 ≤ α+ β ≤ 2n.
To show that (5.77) has degree of precision exactly 2n, consider the

polynomial f(x, y) = r (r cos θ)
2n+1

. Then J2n+1,0 = 0 and both J2n+1,0
n

and K2n+2
n are nonzero. �

5.7 Discrete Orthogonal Expansions

Recall the orthogonal expansions described in Chap. 4. In particular, recall
the Laplace expansion (4.55) on S

2 and the orthogonal polynomial expansion
(4.80) over the unit disk D. In both cases the coefficients in the expansion
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are inner products, and generally they must be evaluated numerically. In this
section we use product Gauss formulas to evaluate these integrals, obtaining
approximations to the orthogonal projections Qn defined earlier in (4.56)
and (4.81).

5.7.1 Hyperinterpolation over S
2

Recall the truncated Laplace expansion: for f ∈ C(S2),

Qnf(η) =

n∑
m=0

2m+1∑
k=1

(f, Ym,k) Ym,k(η), η ∈ S
2

with Qn the associated orthogonal projection operator from L2
(
S
2
)
onto

Πn; see (4.55). We introduce a “discrete inner product” using the product
Gaussian quadrature formula (5.12), but with n replaced with n+ 1,

In+1(F ) = h

2n+1∑
j=0

n∑
k=0

wkF (cosφj sin θk, sinφj sin θk, cos θk) . (5.78)

The nodes {z� = cos θ�} and weights {w�} are for the (n+ 1)-point
Gauss–Legendre formula on [0, 1]; and for the azimuthal angle stepsize,
h=π/ (n+ 1). This formula has degree of precision 2n+ 1.

Define

(f, g)n = In+1(fg), (5.79)

From the degree of precision of (5.78), this discrete inner product has the
important property that

(f, g)n = (f, g) ∀ f, g ∈ Πn(S
2). (5.80)

Using (5.79), define

Q̃nf(η) =

n∑
m=0

2m+1∑
k=1

(f, Ym,k)n Ym,k(η), η ∈ S
2. (5.81)

Applying (5.80),

Q̃nf = f ∀ f ∈ Πn(S
2),
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thus making Q̃n a projection operator from C(S2) onto Πn(S
2). The calcu-

lation of Q̃nf using (5.81) is commonly referred to as “hyperinterpolation”.

The operator Q̃n is also called a “discrete orthogonal projection operator”.
For analyzing the error in Q̃nf , we can follow exactly the derivation of

(4.61), leading to

‖f − Q̃nf‖∞ ≤
(
1 + ‖Q̃n‖C→C

)
En,∞(f). (5.82)

Recalling (4.64), the orthogonal projection operator Qn satisfies

‖Qn‖C→C = O
(√
n
)
.

Sloan and Womersley [106, Theorem 5.5.4] extended this as follows.

Theorem 5.21. For the hyperinterpolation operator of (5.81),

‖Q̃n‖C→C = O(
√
n). (5.83)

The proof of this is quite complicated, and therefore, we prove only the weaker
result

‖Q̃n‖C→C = O(n). (5.84)

Before giving the proof of this result, we introduce some additional framework
that is also useful in examining interpolation and other approximation theory
problems over S2.

Begin by recalling the reproducing kernel

Gn(ξ,η) =
n∑

m=0

2m+1∑
k=1

Ym,k(ξ)Ym,k(η), ξ,η ∈ S
2;

see (2.34) in Chap. 2. This satisfies

(Gn(·,η) , p) = p(η), η ∈ S
2, ∀ p ∈ Πn, (5.85)

using the standard L2-inner product (·, ·) over S2. This property implies that
Gn is unique; and thus Gn is independent of the particular basis of spherical
harmonics being used. This is true in general for reproducing kernels.
Recalling (2.30), the above formula for Gn can be simplified greatly, to

Gn(ξ,η) = G̃n(ξ·η) ,

G̃n(t) = P (0,1)
n (t); (5.86)
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also see [50, p. 1399]. This is the basis of formula (4.57) for Qnf . To simplify
notation in the remainder of this section, let {Y1, . . . , YN} denote the basis
{Ym,k : 1 ≤ k ≤ 2m+ 1, 0 ≤ m ≤ n} for Πn, N = (n+ 1)

2
.

Recall the discussion in Sect. 5.3.3 of interpolation using spherical poly-

nomials. Let
{
ηj : j = 1, . . . , N = (n+ 1)

2
}

be a fundamental system, for

example, one that maximizes the determinant function in (5.51), thus
guaranteeing that the interpolation matrix

Ψn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(η1) · · · Yk(η1) · · · YN (η1)

...
. . .

...
. . .

...

Y1(η�) · · · Yk(η�) · · · YN (η�)

...
. . .

...
. . .

...

Y1(ηN ) · · · Yk(ηN ) · · · YN (ηN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is nonsingular. Introduce the functions

gj(ξ) = Gn

(
ξ,ηj

)
, j = 1, . . . , N. (5.87)

These are another basis for Πn. To see this, introduce the interpolation matrix

Kn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(η1) · · · gk(η1) · · · gN (η1)

...
. . .

...
. . .

...

g1(η�) · · · gk(η�) · · · gN(η�)

...
. . .

...
. . .

...

g1(ηN ) · · · gk(ηN ) · · · gN (ηN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose elements are calculated easily from (5.86). Then

Kn = ΨT
n Ψn,

implying that Kn is nonsingular. The matrix Kn occurs when interpo-
lating data using linear combinations of {g1, . . . , gN}: given data values
{f1, . . . , fN}, find

(Inf) (η) =
N∑
j=1

αjgj(η)

such that

(Inf) (ηi) = fi, i = 1, . . . , N.
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The coefficients {αj} are obtained by solving the linear system

Kn [α1, . . . , αN ]T = [f1, . . . , fN ]T .

Returning to (5.81) for Q̃nf , write it as

Q̃nf(η) =

N∑
k=1

(f, Yk)n Yk(η), η ∈ S
2. (5.88)

Write the quadrature formula (5.78) as

In+1(F ) =

M∑
j=1

wjF (τ j).

with M = 2 (n+ 1)2, and recall the definition (5.79) for (·, ·)n. If we expand
the formula (5.88) and re-arrange terms, we obtain

Q̃nf(η) =

M∑
j=1

wjf(τ j) γj(η), (5.89)

γj(η) = Gn(η, τ j) = G̃n(η·τ j) , j = 1, . . . ,M.

Lemma 5.22.

‖Q̃n‖C→C = max
η∈S2

M∑
j=1

wj |γj(η)| . (5.90)

Proof. From (5.89),

∣∣∣Q̃nf(η)
∣∣∣ ≤ ‖f‖∞

M∑
j=1

wj |γj(η)| ,

‖Q̃nf‖∞ ≤ ‖f‖∞max
η∈S2

M∑
j=1

wj |γj(η)| ,

‖Q̃n‖∞ ≤ max
η∈S2

M∑
j=1

wj |γj(η)| . (5.91)

To prove equality, choose a point η0 ∈ S
2 for which the maximum in the sum

on the right side of (5.90) is attained. Then construct a continuous function

f̂ for which
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f̂(τ j) = sign γj(η0), j = 1, . . . ,M.

and ‖f̂‖∞ = 1. For this function, we have

Q̃nf̂(η0) =

M∑
j=1

wj |γj(η0)| ,

‖Q̃nf̂‖∞ ≥ max
η∈S2

M∑
j=1

wj |γj(η)| ,

‖Q̃n‖∞ ≥ max
η∈S2

M∑
j=1

wj |γj(η)| .

When combined with (5.91), this completes the proof of (5.90). �
Proof of (5.84). Using (5.90), let η0 be a point for which the maximum in
the sum on the right side of (5.90) is attained,

‖Q̃n‖C→C =
M∑
j=1

wj |γj(η0)| =
M∑
j=1

wj |Gn(η0, τ j)|

=

M∑
j=1

√
wj

(√
wj |Gn(η0, τ j)|

)

≤

⎛
⎝ M∑

j=1

wj

⎞
⎠

1
2
⎛
⎝ M∑

j=1

wj [Gn(η0, τ j)]
2

⎞
⎠

1
2

.

The last step uses the Cauchy–Schwarz inequality. Note that [Gn(η0, τ )]
2
is a

spherical polynomial of degree 2n. The integration formula (5.78) has degree
of precision 2n+ 1, and therefore

M∑
j=1

wj [Gn(η0, τ j)]
2
=

∫
S2

[Gn(η0, τ )]
2
dS2(τ ).

Apply the reproducing kernel property (5.85) with p = Gn(η0, ·), obtaining∫
S2

[Gn(η0, τ )]
2
dS2(τ ) = Gn(η0,η0).

From (5.86),

Gn(η0,η0) = G̃n(1) = P (0,1)
n (1).
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From Reimer [95],

P (0,1)
n (1) =

(n+ 1)
2

4π
.

Combining these results, we have

‖Q̃n‖C→C ≤
√
4π

√
P

(0,1)
n (1) ≤ n+ 1,

thus proving (5.84). �
The proof of the much better result (5.83) is more complicated, requiring

a more careful analysis of the properties of the quadrature method; see [106,
pp. 102–114]. The paper [106] examines other quadrature schemes for the
discrete inner product (·, ·)n, although (5.79) seems the most widely used
quadrature method.

Returning to the convergence analysis of Q̃nf , use (5.82) to show that the

rate of uniform convergence of Q̃nf to f should be the same as that of Qnf
to f . As with the derivation of Corollary 4.14, we have the following result.

Corollary 5.23. Assume that f ∈ C
(
S
2
)
is Hölder continuous with expo-

nent α ∈ (12 , 1]. Then

‖f − Q̃nf‖∞ ≤ c

nα−1/2

for a suitable constant c > 0. The discrete orthogonal projection Q̃nf is
uniformly convergent to f in C(S2) as n→ ∞.

Computational cost. When compared with the Laplace expansion using spher-
ical harmonics, methods based on the numerical evaluation of Fourier series
have had the advantage of efficient evaluation by means of the fast Fourier
transform; e.g. see [60], [61, Chap. 13], and [92, Sect. 10.9.2]. Improving the
efficiency of evaluating the Laplace expansion while maintaining its accuracy
has been a long term goal of many researchers. In chronological order, we
note in particular the papers of Orszag [90], Swarztrauber [112,113], Driscoll
and Healy [42], and Swarztrauber and Spotz [114]. Recent research, however,
has led to methods of evaluating spherical polynomials and numerically
approximating the discrete orthogonal projection Qnf that are competitive
with the fast Fourier transform; in particular, see Keiner and Potts [68],
Mohlenkamp [83], and Rokhlin and Tyger [98]. The number of arithmetic

operations to evaluate the coefficients in Q̃nf(η) appears at first hand to be
O(n4). An algorithm is given in [83] that reduces this to O(n2 log2 n); and
this is the same as the cost of evaluating a discrete double Fourier series using
trigonometric polynomials of degree n in each variable.
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5.7.2 Hyperinterpolation over the Unit Disk

Recall the truncated orthogonal polynomial expansion (4.80) over the unit
disk D:

Qnf(x) =

n∑
m=0

m∑
k=0

(f, ϕm
k )ϕm

k (x), x ∈ D

with {ϕm
k : 0 ≤ k ≤ m, m ≥ 0} a complete family of orthonormal polynomials

over D. Proceed as in Sect. 5.6. We apply the product Gauss formula (5.77)
to define

(f, g)n = In(fg). (5.92)

Define

Q̃nf(x) =

n∑
m=0

m∑
k=0

(f, ϕm
k )n ϕ

m
k (x), x ∈ D. (5.93)

Using Theorem 5.20, we have

(f, g)n = (f, g) ∀ f, g ∈ Πn(S
2).

This implies that Q̃n is a projection from C(D) onto Πn(R
2), and as before

‖f − Q̃nf‖∞ ≤
(
1 + ‖Q̃n‖C→C

)
En,∞(f). (5.94)

It is shown in [58] that

‖Q̃n‖C→C = O(n logn).

This is only slightly worse than the result ‖Qn‖C→C = O(n) of (4.85). As in
(4.86), we have the following.

Corollary 5.24. Assume f ∈ Cr(D) with r ≥ 1; and further assume that
the rth-derivatives satisfy a Hölder condition with exponent α ∈ (0, 1]. Then

Q̃nf converges uniformly to f on S
2, and

‖f − Q̃nf‖∞ ≤ c logn

nr−1+α
, n ≥ 2 (5.95)

for some constant c ≥ 0.



Chapter 6
Applications: Spectral Methods

This chapter begins with two illustrations of the application of the material
from the preceding chapters. The first, given in Sect. 6.1, is to solve the
Dirichlet problem

−Δu(x) = 0, x ∈ Ω ⊂ R
3, (6.1)

u(x) = f(x), x ∈ ∂Ω, (6.2)

with Ω an open simply-connected region having a smooth boundary. This
is converted to an integral equation over S2 and then a Galerkin method is
used to solve it numerically, obtaining an approximation related to spherical
polynomials.

Our second illustration, given in Sect. 6.2, is to solve the Neumann problem

−Δu(x) + γ(x)u(x) = f(x), x ∈ Ω ⊂ R
2,

∂u(x)

∂νx
= g(x), x ∈ ∂Ω,

with Ω an open simply-connected region having a smooth boundary. This
is converted to an equivalent elliptic problem over the unit disk D and it
is solved numerically with Galerkin’s method, obtaining an approximation
based on polynomials over R2.

In the final section of the chapter, we discuss a Galerkin method for the
following Beltrami-type equation

−Δ∗u+ c0u = f in S
d−1,

where c0 > 0 and f are given. Here the dimension d ≥ 3 is arbitrary.

K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Lecture Notes in Mathematics 2044,
DOI 10.1007/978-3-642-25983-8 6, © Springer-Verlag Berlin Heidelberg 2012
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6.1 A Boundary Integral Equation

One method of solving (6.1)–(6.2) is to use the classical boundary integral
equation that arises from representing the solution u as a double layer
potential,

u(x) =

∫
∂Ω

ρ(y)
∂

∂νy

(
1

|x− y|

)
dσ(y), x ∈ Ω. (6.3)

In this representation, ρ is an unknown “double-layer density function”. The
notation ∂/∂νy denotes the normal derivative in the direction of νy, the outer
normal at y ∈ ∂Ω. For all integrable functions ρ, this function u is harmonic,
meaning it satisfies (6.1). By requiring it to also satisfy the Dirichlet boundary
condition (6.2), one obtains the boundary integral equation

−2 π ρ(x) +

∫
∂Ω

ρ(y)
∂

∂νy

(
1

|x− y|

)
dσ(y) = f(x), x ∈ ∂Ω. (6.4)

As notation, let

L(x,y) =
∂

∂νy

(
1

|x− y|

)

and introduce the integral operator L,

L(x) =
∫
∂Ω

L(x,y) g(y) dσ(y), x ∈ ∂Ω

for a generic function g. The integral equation (6.4) is represented abstractly
in operator notation as

(−2π + L) ρ = f.

There is a well-developed theory for this equation. In particular, the integral
operator L is compact from C(∂Ω) to C(∂Ω) and from L2(∂Ω) to L2(∂Ω).
Let Y denote either of these spaces. Then it is well-known that

−2π + L : Y 1−1−→
onto

Y (6.5)

and the inverse (−2π + L)−1 is a bounded linear operator from Y onto Y.
For a complete development of these ideas, see Kress [70, Chap. 6].

We convert (6.4) to another integral equation, but defined on S
2. To

accomplish this, assume that a smooth mapping

M : S2
1−1−→
onto

∂Ω (6.6)



6.1 A Boundary Integral Equation 213

is known. Recalling the discussion in Sect. 4.2.2 about the differentiation of
functions defined on S

2, we assume that the components of the mapping M
are continuously differentiable. Using M , change the variable of integration
in (6.4). For a generic function G,

∫
∂Ω

G(x,y) dσ(y) =

∫
S2

G(x,M(η))J(η) dS2(η)

with J(η) the Jacobian of the mapping. If

M(η) =M(cosφ sin θ, sinφ sin θ, cos θ) ≡ M̂(θ, φ),

then

J(η) =
1

sin θ

∣∣∣∣∣
∂M̂

∂θ
× ∂M̂

∂φ

∣∣∣∣∣ .

An example of such a mapping M for an ellipsoidal boundary is given in
Example 5.1.

Applying this to (6.4), obtain

−2 πR(ξ) +

∫
S2

R(η)L(M(ξ),M(η))J(η) dS2(η) = F (ξ), ξ ∈ S
2, (6.7)

with R(ξ) = ρ(M(ξ)) and F (ξ) = f(M(ξ)). As additional notation, let

K(ξ,η) = L(M(ξ),M(η))J(η),

and let K denote the associated integral operator in (6.7). Let X denote
either C(S2) or L2(S2). Then from the properties of the double-layer
integral operator L, cited earlier, and from the properties of the boundary
mapping M , it is straightforward to show that K is a compact mapping from
X to X and

−2π +K : X 1−1−→
onto

X . (6.8)

The inverse (−2π +K)−1 is a bounded linear operator on X to X . The kernel
function K(ξ,η) is singular when ξ = η, and this affects the implementation
of numerical methods for the solution of

(−2π +K)R = F. (6.9)

We now describe such a numerical method.
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Recall from (4.55) the orthogonal projection Qn : L2(S2) → Πn(S
2).

To approximate (6.9), find Rn ∈ L2(S2) such that

(−2π +QnK)Rn = QnF. (6.10)

Equivalently, find Rn ∈ Πn(S
2) such that

Qn [(−2π +K)Rn − F ] = 0. (6.11)

This is Galerkin’s method, written in the form used with integral equations
of the second kind. For the analysis of the existence and convergence of Rn,
use (6.10), and for actually computing Rn, use (6.11).

To implement the method, begin by expressing the projection Qn in the
form

Qng =

Nn∑
j=1

(g, ϕj)ϕj (6.12)

with {ϕ1, . . . , ϕN} an orthonormal basis of Πn(S
2). For example, see the basis

(4.7). Represent the solution Rn of (6.11) as

Rn(η) =

Nn∑
j=1

α
(n)
j ϕj(η). (6.13)

Then (6.10) is equivalent to solving for
[
α
(n)
1 , . . . , α

(n)
N

]T
in the linear system

−2 π α
(n)
i +

N∑
j=1

α
(n)
j (ϕi,Kϕj) = (F, ϕi) , i = 1, . . . , Nn. (6.14)

The coefficient matrix [(ϕi,Kϕj)] is Nn × Nn. All of the coefficients of this
linear system are twofold surface integrals over S2, and thus they are fourfold
single integrals. The size of the linear system is usually quite small for a partial
differential equation in R

3, but the numerical integration of the coefficients
can be quite expensive if not done carefully.

Note that the numerical method (6.10)–(6.14) also makes sense within the
space C(S2), although Qn is no longer an orthogonal projection. As earlier,
let X denote either L2(S2) or C(S2).

6.1.1 Convergence Theory

For a review of the analysis of Galerkin methods for the solution of integral
equations of the second kind, see [10, Chap. 3]. A crucial step is showing that
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‖K −QnK‖X→X → 0 as n→ ∞ (6.15)

for the operator norm on X . In the case that X = L2(S2), this is relatively
straightforward. The projections {Qn} are pointwise convergent on L2(S2),
i.e. Qng → g as n→ ∞, for every g ∈ L2(S2); see Theorem 2.34. In addition,
K is compact on L2(S2). The result (6.15) then follows from [10, Lemma
3.1.2].

For the case X = C(S2), showing (6.15) requires a closer examination of
the properties of K, which are derived from those of L and of the surface
mapping M . Recall the discussion in Sect. 4.2.2 about the differentiation of
functions defined on S

2. We assume that the components of the mapping M
are differentiable, at least once, and further that the first-order derivatives
are Hölder continuous with exponent λ ∈ (12 , 1]. It then follows from the
argument in [8, p. 268] that

‖K −QnK‖C→C ≤ c

nλ−1/2

for all sufficiently large n, for some constant c > 0. This shows (6.15) for
X = C(S2).

To show the invertibility of −2π +QnK, use the identity

−2π +QnK = (−2π +K)− (K −QnK)

= (−2π +K)
[
I − (−2π +K)

−1
(K −QnK)

]
,

which makes use of the existence and boundedness of (−2π +K)
−1

, which
follows from (6.8). From (6.15) it follows that

∥∥∥(−2π +K)
−1

(K −QnK)
∥∥∥
X→X

≤ 1

2

for all sufficiently large n, say n ≥ n0. The geometric series theorem [13,
Theorem 2.3.1] then implies the existence and uniform boundedness of
(−2π +QnK)−1 for n ≥ n0, thus also showing the solvability of (6.10):

(−2π +QnK)−1 =
[
I − (−2π +K)−1 (K −QnK)

]−1

(−2π +K)−1 ,

∥∥∥(−2π +QnK)−1
∥∥∥
X→X

≤

∥∥∥(−2π +K)
−1

∥∥∥
X→X

1−
∥∥∥(−2π +K)

−1
(K −QnK)

∥∥∥
X→X

≤ 2
∥∥∥(−2π +K)

−1
∥∥∥
X→X

, n ≥ n0. (6.16)
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For convergence, use the identity

R −Rn = −2π (−2π +QnK)
−1

(R−QnR) . (6.17)

Then,

‖R−Rn‖X ≤ 2π
∥∥∥(−2π +QnK)

−1
∥∥∥
X→X

‖R −QnR‖X . (6.18)

From (6.16) and (6.17), we have Rn → R if and only if QnR → R.
When X = L2(S2),

‖R−Rn‖L2(S2) = O
(
‖R−QnR‖L2(S2)

)
. (6.19)

The error R − QnR was investigated in Sect. 4.2.4, and QnR → R for any
R ∈ L2(S2). For rates of convergence as a function of the differentiability of
R, see (4.60). In particular, if R ∈ Ck,α(S2) with k ≥ 0, α ∈ (0, 1], then

‖R−Rn‖L2(S2) = O
(
n−(k+α)

)
. (6.20)

With X = C(S2), the sequence {‖Qn‖C→C : n ≥ 0} is unbounded (see
(4.64)), and then the principle of uniform boundedness (see [13, Sect. 2.4.3])
implies that there is a function R ∈ C(S2) for which QnR does not converge
uniformly to R. Using Corollary 4.14, we have convergence of QnR to R
provided R ∈ Ck,α(S2) with k ≥ 0, α ∈ (0, 1], and k + α > 1

2 , namely

‖R−QnR‖∞ ≤ c

nk+α−1/2
, (6.21)

for a suitable c> 0. When combined with (6.18), we have uniform convergence
of Rn to R whenever R ∈ Ck,α(S2) with k + α > 1

2 , and

‖R−Rn‖∞ ≤ O
(
n−(k+α−1/2)

)
. (6.22)

In addition to the convergence of Rn to R, it is necessary to also consider
the convergence of the resulting approximation of the double layer potential
(6.3). As notation, let ρn(y) = Rn(η) for y = M(η), η ∈ S

2. For x ∈ Ω,
define

un(x) =

∫
∂Ω

ρn(y)
∂

∂νy

(
1

|x− y|

)
dσ(y) (6.23)

=

∫
S2

ρn(M(η))
∂

∂νy

(
1

|x− y|

)∣∣∣∣
y=M(η)

J(η) dS2(η). (6.24)
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This will need to be evaluated numerically, but we first consider the error
u−un. The function u−un is harmonic on Ω, and consequently we can apply
the maximum principle (Corollary 3.19) for harmonic functions to obtain

max
x∈Ω

|u(x)− un(x)| = max
x∈∂Ω

|u(x)− un(x)| . (6.25)

Subtracting (6.23) from (6.3),

u(x)− un(x) =

∫
∂Ω

en(y)
∂

∂νy

(
1

|x− y|

)
dσ(y), x ∈ Ω

with en = ρ− ρn. Form the limit as x approaches a point on the boundary
∂Ω, as was done in obtaining (6.4). This yields

u(x)− un(x) = −2 π en(x) +

∫
∂Ω

en(y)
∂

∂νy

(
1

|x− y|

)
dσ(y), x ∈ ∂Ω.

So

u− un = (−2π + L) en

for u−un restricted to ∂Ω. Forming bounds, the error u−un on ∂Ω satisfies

‖u− un‖∞ ≤ (2π + ‖L‖C→C) ‖ρ− ρn‖∞. (6.26)

Error bounds for ρn from (6.22) then yield the same rates of convergence
for un to u over ∂Ω. If ‖ρ− ρn‖∞ → 0 on ∂Ω, then (6.25) implies that the
convergence un(x) to u(x) is uniform over Ω.

6.1.2 Quadrature

Referring to the approximating linear system (6.14), the matrix coefficients
(ϕi,Kϕj) and the right sides (F, ϕi) must be evaluated numerically in almost
all cases. There are two integrations to consider: (i) approximating the inner
product (·, ·), and (ii) evaluating the integral operator term Kϕi. The inner
product can be dealt with exactly as described in Sect. 5.7.1. Define a discrete
inner product (·, ·)n as in (5.80). Then replace (6.14) with

−2πα̃
(n)
i +

N∑
j=1

α̃
(n)
j (ϕi,Kϕj)n = (F, ϕi)n , i = 1, . . . , Nn. (6.27)

The numerical solution is then

R̃n(η) =

Nn∑
j=1

α̃
(n)
j ϕj(η).
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Note that Kϕj is not being approximated at this point. This “semi-discrete
Galerkin method” is analyzed in [53, Sect. 3], and it is shown to have the same
convergence analysis and results as given in (6.15)–(6.26) when analyzed as
an approximation within C(S2).

The integrand in

Kg(ξ) =
∫
S2

g(η)L(M(ξ),M(η))J(η) dS2(η), ξ ∈ S
2

is singular at η = ξ. This can be reduced to a bounded discontinuity by
means of the identity

∫
∂Ω

∂

∂νy

(
1

|x− y|

)
dσ(y) ≡ −2π, x ∈ Ω;

see [70, Example 6.16]. Then we can write

∫
S2

g(η)L(M(ξ),M(η))J(η) dS2(η)

= −2 π g(ξ) +

∫
S2

[g(η)− g(ξ)]L(M(ξ),M(η))J(η) dS2(η).

If the function g is Lipschitz continuous on S
2, then the new integrand has

a bounded discontinuity at η = ξ. However, this is still a difficult integral to
evaluate numerically, and a number of different approaches have been used.
We use something similar to the ideas in Sect. 5.5.

Assume we are approximating an integral

∫
S2

g(η) dS2(η)

in which the integrand g is singular at η = ξ. Perform a spherical rotation
(see (5.69)) to change the integrand to one in which the singularity is located
at the north or south poles of S2 (at (0, 0,±1)), resulting in a new integral

∫
S2

ĝ(ζ) dS2(ζ).

Use spherical coordinates to write this as the iterated integral

I(g) =

∫ 2π

0

∫ 1

−1

ĝ
(√

1− z2 cosφ,
√

1− z2 sinφ, z
)
dz dφ.

For the integration in φ, use the standard trapezoidal method, as was done
with the singular integration method (5.63). For the integration in z, we use
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a method analogous to that of (5.63) to handle the singularity at one of the
poles. It is called the “IMT method”, is due to Iri, Moriguti, and Takasawa,
and is discussed in [9, pp. 306–307]. It is especially suitable for integrands
with endpoint singularities. Combining these rules, we have the quadrature
method

I(ĝ) ≈ Im1,m2(ĝ) (6.28)

where Im1,m2(ĝ) equals

π

m1

2m1∑
j=1

m2−1∑
k=1

wk,m2 ĝ
(√

1− z2k,m2
cosφj,m1 ,

√
1− z2k,m2

sinφj,m1 , zk,m2

)
.

The nodes {zk,m2} and weights {wk,m2} are those of the IMT method on
[−1, 1]. For the trapezoidal rule, φj,m1 = jπ/m1, j = 1, . . . , 2m1. Note that
the periodicity of the integrand in φ has been used to simplify the trapezoidal
rule.

The evaluation of the coefficients (ϕi,Kϕj), i, j = 1, . . . , N , using the
discrete inner product (·, ·)n and the IMT method for approximating Kϕj

is computationally expensive. The total number of arithmetic operations is
O(n2m1m2). We evaluate the coefficients simultaneously, doing so as to avoid
unnecessary re-calculation of quantities shared between the various coeffi-
cients. It is also convenient to use parallel computation, greatly increasing the
speed. To lessen the cost when solving the Dirichlet problems with multiple
boundary functions f(x), evaluate these coefficients and save them for later
use with the various boundary functions.

An alternative approach. Graham and Sloan [53, Sect. 4] use an alternative
approach to approximating Kϕj . Begin again by rotating the coordinate
system to place the singularity at a pole, η → T η ≡ ζ, and denote the new
kernel function by K̃(ξ, ζ) = K(ξ,η). Then write the kernel function K̃ as

K̃(ξ, ζ) =
K̃1(ξ, ζ)

|ξ − ζ| ,

where

K̃1(ξ, ζ) = |ξ − ζ| K̃(ξ, ζ).

The function K̃1 has a bounded discontinuity at ζ = T ξ. Expand K̃1(ξ, ·) as
a truncated Laplace series,

K̃1(ξ, ζ) ≈
N�∑
j=1

(
K̃1(ξ, ·), ϕj

)
�
ϕj(ζ)
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with integration parameter � and N� = (�+ 1)
2
. To complete the method,

use the identity (3.58) with dimension d = 3:

∫
S2

ϕj(η)

|ξ − η| dS
2(η) =

4π

2dj + 1
ϕj(ξ),

where dj is the degree of the spherical harmonic ϕj .
It is shown in [53, Theorem 4.1] that if � = an+1 for some a > 1, then the

overall rate of convergence of this discretization for implementing Galerkin’s
method is the same as that given in (6.22) for the original Galerkin method.

As another approach to a spectral method for boundary integral equations
on S2, see [51].

Evaluating the solution. Returning to the evaluation of the approximate
solution un(x) in (6.23), use the product Gauss formula (5.12). Let nq

denote the integration parameter used in (5.12). For any fixed nq, the
integration error in evaluating un(x) will increase as x approaches ∂Ω because
the integrand becomes increasingly peaked. To check the accuracy of our
numerical method, we choose a rectangular grid covering the unit ball B3,
and then we map it onto another grid in Ω using

x �→ |x|M(x/|x|), x ∈ B
3\ {0} , (6.29)

with the origin in B
3 mapping to the origin in Ω. We note that our following

numerical example is for a region Ω that is “starlike” with respect to the
origin. In the following tables and graphs, we look at the error at only those
points x ∈ B

3 for which |x| ≤ r < 1, for some r.

6.1.3 A Numerical Example

As an interesting non-convex surface, consider the surface defined by the
mapping

M(x, y, z) = β(x, y, z) (ax, by, cz) , (x, y, z) ∈ S
2,

β(x, y, z) = 2− α

1 + 5 (−z + x2 + 1)
2

with constants a, b, c > 0 and α ∈ (0, 2). This is called a “bean-shaped
region”. We use the particular surface ∂Ω obtained with (a, b, c) = (2, 1, 1)
and α = 1.5. Figure 6.1 shows the surface ∂Ω, and Fig. 6.2 shows the cross-
sections with the xz and yz coordinate planes.

To study empirically our Galerkin method for solving (6.1)–(6.2), we
choose two illustrative true solutions u, and we attempt to retrieve them
from their boundary values.
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Fig. 6.1 The bean-shaped
region Ω

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2 xz plane
yz plane

Fig. 6.2 Cross-sections of Ω with the xz and yz coordinate planes

u(1)(x, y, z) =
1

|(x, y, z)− (5, 4, 3)| , (6.30)

u(2)(x, y, z) = eγx cos(γy) + eγz sin(γx), (6.31)

with γ = 1. The solution u(1) is very well-behaved, whereas the solution u(2)

contains greater variation in size and also some oscillatory behaviour.
We use the numerical quadrature described in Sect. 6.1.2, using very

large integration parameters to ensure that our integrations are exact to
machine accuracy, which is much more accuracy than is needed ordinarily.
The resulting Galerkin coefficients are saved; and then they are retrieved for

use when solving for the coefficients
{
α
(n)
j

}
in (6.14); we do so with various

choices of the boundary function f . The accuracy of the solution ρn must
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Fig. 6.3 Maximum errors for solution u
(1)
n (see (6.30)) at points ξ = M(x) ∈ Ω, x ∈ B3,

|x| ≤ 0.8
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Fig. 6.4 Errors for u
(1)
16 at points ξ = M(x) ∈ Ω, x ∈ B3, |x| ≤ 0.8

be checked indirectly. We evaluate un(x) using (6.23) and compare it to the
true solution u(x) at a variety of points within Ω. The approximation un(x)
must be evaluated numerically, as described preceding (6.29).
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n

Fig. 6.5 Maximum errors for solution u
(2)
n (see (6.31)) at points ξ = M(x) ∈ Ω, x ∈ B3,

|x| ≤ 0.8
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Fig. 6.6 Errors for u
(2)
16 at points ξ = M(x) ∈ Ω, x ∈ B3, |x| ≤ 0.8

To check the accuracy, we proceed as described preceding and following
(6.29). In the following graphs, we use r = 0.8. We choose a large value for
the integration parameter nq to ensure maximal accuracy in the evaluation
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of un(x) from (6.23). Figures 6.3 and 6.4 show errors for the case of the true
solution u(1), see (6.30); and Figs. 6.5 and 6.6 show errors for the case of
the true solution u(2), see (6.31). The horizontal axis in Figs. 6.3 and 6.5 is
the degree n, varying from 5 to 16. An exponential rate of convergence as a
function of n would result in a straight line, and that is consistent with these
two graphs. The horizontal axis in Figs. 6.4 and 6.6 is r = |x|. They show the
large variation in the error as x varies, even for constant |x|.

6.2 A Spectral Method for a Partial Differential
Equation

There is a rich literature on spectral methods for solving partial differential
equations. For the more recent literature, see the books [22, 27, 28, 41, 64,
102, 103]. Their bibliographies contain references to many earlier papers on
spectral methods. Almost all of the spectral methods have been based on
one-variable approximations, considering all multi-variable problems as some
combination of one-variable problems. In the following we give a spectral
method that directly applies multivariable approximation, using the material
presented earlier in Sect. 4.3.

Consider the Neumann problem

−Δu(s) + γ(s)u(s) = f(s), s ∈ Ω ⊂ R
2, (6.32)

∂u(s)

∂νs
= g(s), s ∈ ∂Ω (6.33)

with Ω an open simply-connected region having a smooth boundary ∂Ω
and νs denoting the outer unit normal at s ∈ ∂Ω. For simplicity in our
presentation, assume that the function γ is positive and continuous on Ω,
and thus

γ(s) ≥ cγ > 0, s ∈ Ω, (6.34)

for some cγ . Further assume f ∈ C(Ω), g ∈ C(∂Ω). We seek a solution
u ∈ C2(Ω) ∩ C1(Ω).

This problem has the following variational reformulation: Find u ∈ H1(Ω)
for which

A(u, v) = �1(v) + �2(v) ∀ v ∈ H1(Ω). (6.35)

In this equation,

A(v1, v2) ≡
∫
Ω

[∇v1(s) · ∇v2(s) + γ(s) v1(s) v2(s)] ds, (6.36)
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for v1, v2 ∈ H1(Ω), and

�1(v) ≡
∫
Ω

v(s) f(s) ds,

�2(v) ≡
∫
∂Ω

v(s) g(s) dσ(s)

for v ∈ H1(Ω). The reformulation is obtained by multiplying (6.32) by v(s),
integrating over Ω, and then applying the divergence theorem to integrate by
parts.

The theory for this variational formulation is very well-developed; see [13,
Chap. 8]. We give a very minimal outline of this theory, briefly reviewing
notation and results that are needed in discussing the numerical solution of
(6.35) by Galerkin’s method. First recall the Lax–Milgram Lemma.

Theorem 6.1. (Lax–Milgram Lemma) Assume V is a Hilbert space,
a(·, ·) is a bounded, V -elliptic bilinear form on V , � ∈ V ′. Then the problem

u ∈ V, a(u, v) = �(v) ∀ v ∈ V (6.37)

has a unique solution. Moreover, for some constant c > 0 independent of �,

‖u‖V ≤ c ‖�‖V ′ .

The norm in H1(Ω) is ‖v‖1 =
√
(v, v)1,

(v1, v2)1 =

∫
Ω

[∇v1(s) · ∇v2(s) + v1(s) v2(s)] ds, v1, v2 ∈ H1(Ω).

The bilinear functional A is bounded,

|A(v1, v2)| ≤ cA‖v1‖1‖v2‖1, v1, v2 ∈ H1(Ω),

cA = max {1, ‖γ‖∞} .

With the assumption (6.34), A is “strongly elliptic”,

|A (v, v)| ≥ min {1, cγ} ‖v‖21, v ∈ H1(Ω). (6.38)

The linear functionals �1 and �2 are bounded linear functionals on H1(Ω).
By the Cauchy–Schwarz inequality,

|�1(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖1. (6.39)
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Showing the boundedness of �2 is more complicated, requiring looking at the
trace on ∂Ω of functions v ∈ H1(Ω). Begin by noting that the restriction
mapping ρ : H1(Ω) → H1/2(∂Ω) is continuous [80, Theorem 3.37] and the
embedding ι : H1/2(∂Ω) ↪→ L2(∂Ω) is compact [80, Theorem 3.27]. If we
further denote by lg the continuous mapping

lg : w �→
∫
∂Ω

w(s) g(s) dσ(s), w ∈ L2(∂Ω),

then we see �2 = lg ◦ ι ◦ ρ, and therefore �2 is bounded on H1(Ω).
Under our assumptions on A, including the strong ellipticity in (6.38),

Theorem 6.1 implies the existence of a unique solution u to (6.35) with

‖u‖1 ≤
1

ce
(‖�1‖+ ‖�2‖) . (6.40)

In order to define a numerical method for solving (6.35), we introduce a
change of variables to transform the Neumann problem (6.32)–(6.33) on Ω to
an equivalent problem on the unit disk B

2. Introduce a change of variables,

s = Φ(x), |x| ≤ 1

with Φ a twice-differentiable mapping that is one-to-one from B
2
onto Ω. Let

Ψ = Φ−1 : Ω
1−1−→
onto

B
2
. Finding such a mapping can be difficult, but there are

also simple examples. For Ω the ellipse given by

(s1
a

)2

+
(s2
b

)2

≤ 1,

define

Φ(x) = (ax1, bx2) , |x| ≤ 1.

This Φ is easily seen to be a twice-differentiable mapping.
As notation to make it easier to see the relation between a function

defined on Ω and the corresponding function defined on B
2, we introduce

the following. For v ∈ L2(Ω), let

ṽ(x) = v(Φ(x)), x ∈ B
2
,

and conversely,

v(s) = ṽ(Ψ(s)), s ∈ Ω.
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Assuming v ∈ H1(Ω), it follows that

∇xṽ(x) = J(x)T∇sv(s), s = Φ(x)

with J(x) the Jacobian matrix for Φ over the unit ball B2,

J(x) ≡ (DΦ) (x) =

[
∂Φi(x)

∂xj

]2
i,j=1

, x ∈ B
2
.

Similarly,

∇sv(s) = K(s)T∇xṽ(x), x = Ψ(s)

with K(s) the Jacobian matrix for Ψ over Ω. Also,

K(Φ(x)) = J(x)−1.

The differentiability of a function ṽ(x) depends on that of v(s) and the
mapping Φ(x).

Using the change of variables s = Φ(x), the formula (6.36) converts to

A(v1, v2) =

∫
B2

{[K(Φ(x))T∇xṽ1(x)]
T[K(Φ(x))T∇xṽ2(x)]

+ γ(Φ(x))v1(Φ(x))v2(Φ(x)} |det [J(x)]| dx

=

∫
B2

{[J(x)−T∇xṽ1(x)]
T[J(x)−T∇xṽ2(x)]

+ γ̃(x)ṽ1(x)ṽ2(x)} |det [J(x)]| dx

=

∫
B2

{∇xṽ1(x)
TA(x)∇xṽ2(x) + γ̃(x)ṽ1(x)ṽ2(x)} |det [J(x)]| dx

≡ Ã(ṽ1, ṽ2) (6.41)

with

A(x) = J(x)−1J(x)−T.

We can also introduce analogues to �1 and �2 following a change of
variables, calling them �̃1 and �̃2 and defined on H1(B2). For example,

�̃1(ṽ) =

∫
B2

ṽ(x)f(Φ(x)) |det [J(x)]| dx.
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We can then convert (6.35) to an equivalent problem over H1(B2). The
variational problem becomes the following: Find ũ ∈ H1(B2) for which

Ã(ũ, ṽ) = �̃1(ṽ) + �̃2(ṽ) ∀ ṽ ∈ H1(B2). (6.42)

The assumptions and results in (6.36)–(6.39) extend to this new problem on
H1(B2). The strong ellipticity condition (6.38) becomes

Ã(ṽ, ṽ) ≥ c̃e‖ṽ‖21, ṽ ∈ H1(B2),

c̃e = ce
min

x∈B
2 |detJ(x)|

max
[
1,max

x∈B
2 ‖J(x)‖22

] ,

where ‖J(x)‖2 denotes the operator matrix 2-norm of J(x) for R2,

‖J(x)‖2 =
√
max {λ1(x), λ2(x)}

with λ1(x), λ2(x) the eigenvalues of J(x)TJ(x). Also,

∣∣∣Ã(ṽ, w̃)
∣∣∣ ≤ c̃A ‖ṽ‖1 ‖w̃‖1 ,

c̃A =

{
max
x∈B

2
|det [J(x)]|

}
·max

{
max
x∈B

2
‖A(x)‖2 , ‖γ‖∞

}
.

The Lax–Milgram Theorem can be applied to (6.42), just as was done earlier
for (6.35) to obtain (6.40). Thus we have the existence of a unique solution
ũ ∈ H1(B2) with

‖ũ‖1 ≤ 1

c̃e

(
‖�̃1‖+ ‖�̃2‖

)
. (6.43)

To obtain a numerical solution to (6.42), use Galerkin’s method with the
approximating subspace Πn ≡ Πn(B

2). We want to find ũn ∈ Πn such that

Ã(ũn, ṽ) = �̃1(ṽ) + �̃2(ṽ) ∀ ṽ ∈ Πn. (6.44)

The Lax–Milgram theorem implies the existence of a unique ũn for all n.
For the error in this Galerkin method, apply Cea’s Lemma [13, Proposition
9.1.3],

‖ũ− ũn‖1 ≤ c̃A
c̃e

inf
ṽ∈Πn

‖ũ− ṽ‖1. (6.45)

Since the set of all polynomials is dense inH1(B2), it follows that the Galerkin
method of (6.44) is convergent for all solutions ũ ∈ H1(B2).
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The best approximation error on the right side of this inequality can be

bounded by using Theorem 4.16. In particular, if ũ ∈ Cm+1(B
2
), then it can

be shown that

‖ũ− ũn‖1 ≤ c

nm
ωm+1(ũ, 1/n) (6.46)

for some c > 0, where

ωm+1(ũ, δ) = max
|α|=m+1

sup
|x−y|≤δ

|Dαũ(x)−Dαũ(y)| .

6.2.1 Implementation

We seek

ũn(x) =

N∑
k=1

αkϕk(x) (6.47)

with {ϕ1, . . . , ϕN} a basis of Πn. Then (6.42) is equivalent to

N∑
k=1

αk

∫
B2

⎡
⎣ 2∑
i,j=1

ai,j(x)
∂ϕk(x)

∂xj

∂ϕ�(x)

∂xi
+ γ(x)ϕk(x)ϕ�(x)

⎤
⎦ |det[J(x)]| dx

=

∫
B2

f(x)ϕ�(x) |det[J(x)]| dx

+

∫
S1

g(x)ϕ�(x) |Jbdy(x)| dS1(x), � = 1, . . . , N. (6.48)

The function |Jbdy(x)| arises from the transformation of an integral over ∂Ω

to one over S1 = ∂B2, associated with the change from �2 to �̃2 as discussed
preceding (6.42). For example, ∂Ω is often represented as a mapping

χ(θ) = (χ1(θ), χ2(θ)) , 0 ≤ θ ≤ 2π.

In that case, |Jbdy(x)| is simply |χ′(θ)| and the associated integral is

∫ 2π

0

g(χ(θ))ϕ�(χ(θ)) |χ′(θ)| dθ. (6.49)

The basis {ϕ1, . . . , ϕN} is often taken to be orthonormal using the
standard inner product of L2(B2). The reason for doing so is the empir-
ical observation that the resulting linear system in (6.48) is then fairly
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well-conditioned. The setup of (6.48) requires calculating the orthonormal
polynomials and their first partial derivatives; and following, the integrals in
the linear system need to be evaluated, usually numerically. For the integrals
over B

2, we use the product Gauss method (5.77). For the one-variable
integral in (6.49), we use the trapezoidal rule. In the following numerical
illustration, the ridge polynomials (4.77) are used for the basis functions.

6.2.2 A Numerical Example

As an illustrative example, consider the mapping s = Φ(x),

s1 = x1 − x2 + ax21,

s2 = x1 + x2.
(6.50)

Figure 6.7 shows the images in Ω of the circles r = j/10, j = 1, . . . , 10 and
the azimuthal lines θ = jπ/10, j = 1, . . . , 20.

The following information is needed when implementing the transforma-
tion from −Δu+ γu = f on Ω to a new equation on B

2:

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Fig. 6.7 Images of (6.50), with a = 0.5, for lines of constant radius and constant azimuth
on the unit disk
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Fig. 6.8 The function u(s, t) of (6.52)

DΦ(x) = J(x1, x2) =

(
1 + 2ax1 −1

1 1

)
,

det(J) = 2 (1 + ax1) ,

J(x)−1 =
1

2 (1 + ax1)

(
1 1

−1 1 + 2ax1

)
,

A(x) = J(x)−1J(x)−T =
1

2 (1 + ax1)
2

(
1 ax1

ax1 2a2x21 + 2ax1 + 1

)
.

The latter are the coefficients needed to define Ã in (6.41).
We give numerical results for solving the equation

−Δu(s) + es1−s2u(s) = f(s), s ∈ Ω. (6.51)

As a test case, we choose

u(s) = e−s21 cos(πs2), s ∈ Ω. (6.52)

The solution is pictured in Fig. 6.8. To find f(s), we substitute this u
into (6.51). We use the domain parameter a = 0.5, with Ω pictured in
Fig. 6.7. The numerical integrals in the system (6.48) were evaluated using the
product Gauss method (5.77) with a sufficiently large integration parameter.
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Fig. 6.9 The errors ‖u− un‖∞ vs. the degree n

To calculate the error, we evaluate the numerical solution ũn and the
analytical solution ũ on the grid

Φ(xi,j , yi,j) = Φ(ri cos θj , ri sin θj)

(ri, θj) =

(
i

10
,
jπ

10

)
, i = 0, 1, . . . , 10; j = 1, . . . , 20.

The results are shown graphically in Fig. 6.9. The use of a semi-log scale
demonstrates the exponential convergence of the method as the degree
increases. For simplicity, we have chosen to use the uniform norm ‖u− un‖∞
rather than the Sobolev norm ‖u− un‖1 of H1(Ω) that arises in the
theoretical error bounds of (6.45)–(6.46).

This spectral method is developed at length in the series of papers [12,14,
15], for both Dirichlet and Neumann boundary conditions.

6.3 A Galerkin Method for a Beltrami-Type
Equation

We take the following Beltrami-type equation

−Δ∗u+ c0u = f in S
d−1 (6.53)
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as an example to develop the Galerkin method using spherical harmonics to
solve differential equations posed over the unit sphere. It is possible to extend
the discussion of the Galerkin method for solving equations on a portion of
the sphere, but we limit ourselves to (6.53). For the given data, we assume
c0 > 0 and f ∈ L2(Sd−1). Note that in this section, the dimension parameter
d ≥ 3 is arbitrary.

Through a standard procedure, we arrive at the following weak formulation
of (6.53): Find u ∈ H1(Sd−1) such that

(∇∗u,∇∗v)L2(Sd−1)d−1 + c0 (u, v)L2(Sd−1) = (f, v)L2(Sd−1) ∀ v ∈ H1(Sd−1).

(6.54)

We apply the Lax–Milgram Lemma, Theorem 6.1, to show the solution
existence and uniqueness of the problem (6.54). For this purpose, it is
convenient to note that

‖v‖H1(Sd−1) :=
[
(∇∗v,∇∗v)L2(Sd−1)d−1 + (v, v)L2(Sd−1)

]1/2
(6.55)

defines an equivalent norm over the Sobolev space H1(Sd−1). Let us demon-
strate this equivalence. Expand the function v in terms of an orthonormal
basis {Yn,j : 1 ≤ j ≤ Nn,d} of Yd

n for each n ∈ N0:

v(ξ) =

∞∑
n=0

Nn,d∑
j=1

vn,jYn,j(ξ), vn,j = (v, Yn,j)L2(Sd−1) , ξ ∈ S
d−1. (6.56)

From Definition 3.23, the norm on the space H1(Sd−1) is

⎡
⎣ ∞∑
n=0

Nn,d∑
j=1

(n+ δd)
2 |vn,j |2

⎤
⎦
1/2

. (6.57)

Apply (3.19) to Yn,j ,

−Δ∗
(d−1)Yn,j(ξ) = n (n+ d− 2)Yn,j(ξ).

Multiply both sides by Ym,k(ξ), integrate over S
d−1 and then perform an

integration by parts to obtain
∫
Sd−1

∇∗Yn,j ·∇∗Ym,k dS
d−1 = n (n+ d− 2)

∫
Sd−1

Yn,jYm,k dS
d−1.

Therefore, we have the orthogonality of the gradient of the spherical harmonic
basis functions:∫

Sd−1

∇∗Yn,j ·∇∗Ym,k dS
d−1 = n (n+ d− 2) δnmδjk. (6.58)
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Take the gradient of the equality (6.56),

∇∗v(ξ) =
∞∑

n=0

Nn,d∑
j=1

vn,j∇∗Yn,j(ξ).

Then use the orthogonality relation (6.58) to find

∫
Sd−1

|∇∗v|2 dSd−1 =

∞∑
n=0

Nn,d∑
j=1

n (n+ d− 2) |vn,j |2 . (6.59)

Thus, we have the following expression for the norm ‖v‖H1(Sd−1) defined by
(6.55):

‖v‖H1(Sd−1) =

⎧⎨
⎩

∞∑
n=0

Nn,d∑
j=1

[n (n+ d− 2) + 1] |vn,j |2
⎫⎬
⎭

1/2

.

From this expression, the equivalence of the two norms defined in (6.55) and
(6.57) is evident.

Take V = H1(Sd−1) with the norm ‖ · ‖H1(Sd−1) and

a(u, v) = (∇∗u,∇∗v)L2(Sd−1)d−1 + c0 (u, v)L2(Sd−1) ,

�(v) = (f, v)L2(Sd−1) .

It is then a routine matter to verify all the conditions stated in Theorem 6.1
are valid. Therefore, the problem (6.54) has a unique solution u ∈ V .
Moreover, it can be shown that actually u ∈ H2(Sd−1) and the equality
(6.53) holds a.e. in S

d−1.
To develop a Galerkin method with spherical harmonic basis functions, let

VN = span {Yn,j : 1 ≤ j ≤ Nn,d, 0 ≤ n ≤ N} , N ∈ N

and consider the problem of finding uN ∈ VN such that

(∇∗uN ,∇∗v)L2(Sd−1)d−1 + c0 (uN , v)L2(Sd−1) = (f, v)L2(Sd−1) ∀ v ∈ VN .

(6.60)

Theorem 6.1 can be applied again to conclude that the Galerkin scheme (6.60)
admits a unique solution uN ∈ VN .

For convergence and error estimation of the Galerkin solution uN , we apply
the Cea’s Lemma [13, Proposition 9.1.3],

‖u− uN‖H1(Sd−1) ≤ c inf
{
‖u− v‖H1(Sd−1) : v ∈ VN

}
(6.61)

for some constant c > 0 independent of N and u.
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To proceed further, we explore the solution smoothness for (6.53). For the
right side of the equation, assume

f ∈ Hs(Sd−1), s ≥ 0. (6.62)

Write

f(ξ) =

∞∑
n=0

Nn,d∑
j=1

fn,jYn,j(ξ), fn,j = (f, Yn,j)L2(Sd−1) , ξ ∈ S
d−1

and similarly for the solution u:

u(ξ) =

∞∑
n=0

Nn,d∑
j=1

un,jYn,j(ξ), un,j = (u, Yn,j)L2(Sd−1) , ξ ∈ S
d−1.

The assumption (6.62) implies

‖f‖Hs(Sd−1) =

⎡
⎣ ∞∑
n=0

Nn,d∑
j=1

(n+ δd)
2s |fn,j |2

⎤
⎦
1/2

<∞. (6.63)

Since

−Δ∗u(ξ) =
∞∑
n=0

Nn,d∑
j=1

n (n+ d− 2)un,jYn,j(ξ),

from (6.53) we get the equality

∞∑
n=0

Nn,d∑
j=1

[n (n+ d− 2) + 1]un,jYn,j(ξ) =

∞∑
n=0

Nn,d∑
j=1

fn,jYn,j(ξ).

Therefore,

un,j =
1

n (n+ d− 2) + 1
fn,j, 1 ≤ j ≤ Nn,d, n = 0, 1, . . . .

The condition (6.63) then implies

‖u‖Hs+2(Sd−1) =

⎡
⎣ ∞∑
n=0

Nn,d∑
j=1

(n+ δd)
2 (s+2) |un,j|2

⎤
⎦
1/2

<∞
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and we have the solution regularity

u ∈ Hs+2(Sd−1), ‖u‖Hs+2(Sd−1) ≤ c ‖f‖Hs(Sd−1) (6.64)

for some constant c > 0 independent of f .
Thus, under the assumption (6.62), we have (6.64). Combining (6.61),

(6.64), and (3.105), we deduce the following error bound for the Galerkin
solution

‖u− uN‖H1(Sd−1) ≤
c

Ns+1
‖f‖Hs(Sd−1), (6.65)

where the constant c > 0 is independent of f and N . It can be shown that
the convergence order (s + 1) is optimal under the smoothness assumption
(6.62) on the right side f of (6.53).

For a further discussion of solving elliptic partial differential equations on
a sphere, see [72].
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École Normale Supérieure de Cachan,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: morel@cmla.ens-cachan.fr

Professor B. Teissier, Institut Mathématique de Jussieu,
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